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Zusammenfassung

Will man ein WENO Finite–Volumen–Verfahren vom eindimensionalen Fall
auf den mehrdimensionalen Fall übertragen, so ist die dimensionsweise An-
wendung des Verfahren die einfachste Möglichkeit. Bei nichtlinearen Proble-
men ist das resultierende Verfahren jedoch höchstens von zweiter Ordnung.

In dieser Arbeit wird eine Möglichkeit vorgestellt, diese Beschränkung zu
überwinden. Dazu werden Formeln hergeleitet, die es erlauben Mittelwerte
in Punktwerte ohne Ordnungsverlust umzurechnen. Mit den Punktwerten
kann nun der Fluss im Zentrum der Zellkante berechnet werden. Für ein
Finite–Volume–Verfahren wird jedoch der Mittelwert des Flusses über die
Kante benötigt. Daher erfolgt anschließend die Umrechnung der Punktwerte
in Mittelwerte. Das Verfahren wird detailliert für Erhaltungsgleichungen in
Divergenzform beschrieben. Dabei wird sowohl der räumlich zweidimensio-
nale als auch der dreidimensionale Fall betrachtet. Des Weiteren wird ein
entsprechendes Verfahren für hyperbolische Systeme, die nicht in Divergenz-
form vorliegen, entwickelt.

Die Anwendung des Verfahrens ist beschränkt auf kartesische Gitter.
Adaptive Gitterverfeinerung (AMR) erhöht jedoch die Flexibilität der Git-
terstruktur. Dazu wird das Rechengebiet in Blöcke aufgeteilt und jeder Block
wird durch ein kartesisches Gitter diskretisiert.

Das entwickelte Verfahren wird bezüglich Aufwand und Genauigkeit, so-
wohl mit dem klassischen dimensionsweisen Ansatz als auch mit einem Ver-
fahren, das auf mehrdimensionale Rekonstruktion basiert, verglichen. Mit
deutlich geringerem Rechenaufwand erreicht das vorgestellte Verfahren eine
Genauigkeit, die vergleichbar ist mit der Genauigkeit der mehrdimensionalen
Rekonstruktion. In zahlreichen numerischen Rechnungen werden die Euler–
Gleichungen der Gasdynamik und die Gleichungen der Magnetohydrodyna-
mik betrachtet.

Die hier präsentierten Resultate sind zu großen Teilen in den zwei bereits
erschienenen Publikationen [1] und [2] zu finden.



Abstract

We present a WENO–based finite volume method for the approximation
of hyperbolic conservation laws on adaptively refined Cartesian grids. These
retain the high spatial order of accuracy of the one–dimensional discretization
when applied to nonlinear multidimensional systems of conservation laws.

We derive formulas that allow us to compute high–order accurate point
values of the conserved quantities at grid cell interfaces. Using those point
values, we compute a high–order flux at the center of a grid cell interface.
Those point values are then used to compute high–order accurate averaged
fluxes at cell interfaces, as needed by a finite volume method. The method
is described in detail for conservation laws in divergence form in 2D as well
as 3D. Furthermore, the method is extended to WENO–type methods for
hyperbolic systems that are not in divergence form.

The method is restricted to Cartesian grids. With AMR, we add more
flexibility to the grid structure. On each single patch the grid is still Carte-
sian. So, the method can be applied as it is.

Numerical tests illustrate the accuracy of the new adaptive WENO finite
volume method. The method is compared with both, the classical dimension–
by–dimension approach as well as the multidimensional reconstruction where
a high–order quadrature formula is used to compute the fluxes. The accuracy
of the multidimensional reconstruction is comparable with the new method,
while it is three times more expensive in 2D and even nine times more ex-
pensive in 3D.

Most of the main results presented in this thesis can also be found in two
previous publications: [1] and [2].
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Chapter 1

Introduction

High–order WENO (i.e. weighted, essentially non-oscillatory) methods are
widely used for the approximation of hyperbolic problems. See, for example,
the recent review of Shu [3]. The simplest way to use WENO methods
on multidimensional Cartesian grids consists in applying a one–dimensional
WENO scheme in each direction. This spatial discretization is typically
combined with a Runge–Kutta method in time, i.e. during each stage of
the Runge–Kutta method, one–dimensional WENO schemes are used in a
dimension–by–dimension fashion.

On uniform Cartesian grids, conservative finite difference WENO meth-
ods based on flux interpolation, as introduced by Shu and Osher [4, 5], are
very efficient. These finite difference methods are conservative and retain
the accuracy of the one–dimensional WENO method in the multidimensional
case, both for linear as well as nonlinear problems. An extension to smoothly
varying mapped grids is possible (see [6]). In contrast to this, finite volume
WENOmethods based on a dimension–by–dimension approach retain the full
order of accuracy for smooth solutions of linear multidimensional problems
but are only 2nd–order accurate for smooth solutions of nonlinear problems
(see [3, 7]).

Here, we restrict our focus to finite volume WENO methods. For hyper-
bolic equations in divergence form, an advantage of finite volume methods is
that they approximate the integral form of a conservation law that remains
valid at discontinuities, where the differential form of the equation is not valid
in the classical sense. In general, it is straightforward to extend finite volume
methods to unstructured grids. The dimension–by–dimension approach lim-
its the focus to Cartesian grids, but not necessarily to equidistant Cartesian
grids. To avoid loss of accuracy for finite volumeWENOmethods, one can re-
place the simple dimension–by–dimension approach using a multidimensional
reconstruction of the conserved quantities and use a high–order quadrature
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Chapter 1. Introduction

formula for the flux computation. Such methods were used on unstructured
and structured grids in [8, 9, 7, 10]. However, such high–order finite vol-
ume methods are much more expensive than the dimension–by–dimension
approach, as will be shown in the various examples.

We present here a simple modification of finite volume WENO meth-
ods, which also leads to the full spatial order of accuracy by using only
one–dimensional polynomial reconstructions in a dimension–by–dimension
approach. While WENO reconstruction is typically of an odd order (here we
consider methods of order five and seven), the corrections introduced in this
thesis lead to fluxes of even order (here we present the formulas for order
four and six). For the temporal discretization, we use explicit Runge–Kutta
methods of order four, five, or seven. The crucial step is a transformation
between face–averaged values and point values of the conserved quantities
and the interface fluxes. This makes our method only slightly more expen-
sive compared to a dimension–by–dimension finite volume WENO method
or a finite difference WENO method. Such a transformation has also been
used in the recently proposed 4th–order accurate finite volume method of
McCorquodale and Colella [11].

We also extend the modified finite volume WENO method to grids with
adaptive mesh refinement. For the implementation we used the parallel, mesh
adaptive framework Racoon, developed by Dreher and Grauer [12]. The grid
is split into blocks and each block can be refined by a regular bisection. In
this way we increase the flexibility of the grid structure significantly while
local it remains Cartesian, so the new method can be applied as it is.

On uniform as well as on adaptively refined grids, the new method is
only slightly more expensive than the dimension–by–dimension approach, but
it produces results comparable with those obtained using multidimensional
reconstruction.

Most of the results presented in this thesis have been published by Buch-
müller and Helzel in [1] and Buchmüller, Dreher, and Helzel in [2]. In par-
ticular, parts of the introduction and several sections are adapted from [1] or
[2]. The corresponding sections are indicated by footnotes. My contributions
to these publications is outlined in Appendix C.
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Chapter 2

Motivation for the use of
high–order accurate methods

To illustrate the need for high–order accurate methods, we consider the equa-
tions of linear acoustics in two space dimensions, given by⎛⎝ p

u
v

⎞⎠
t

+

⎛⎝ 0 K0 0
1
ρ0

0 0

0 0 0

⎞⎠⎛⎝ p
u
v

⎞⎠
x

+

⎛⎝ 0 0 K0

0 0 0
1
ρ0

0 0

⎞⎠⎛⎝ p
u
v

⎞⎠
y

= 0, (2.1)

where K0 is the bulk modulus of compressibility [13]. This first example was
suggested by R.J. LeVeque in a private email.

Example 2.1. We consider the solution of (2.1) on the domain [−1, 1]2.
The initial data is given by

p(x, y, 0) = 2 + e−100(r−0.5)2 sin(100r),

u(x, y, 0) = v(x, y, 0) = 0,

where r =
√

x2 + y2. We set K0 = 4 and ρ0 = 1.

At final time T = 0.1, we compare the results with a reference solution
computed on a very fine grid. The initial data, shown in Figure 2.1, consists
of a wave package located around 0.5 units from the origin. With time, the
initial wave package separates in two similar packages moving in opposite
directions: one moving toward the origin and one moving away from the
origin.

At this point, the particular setup of the used method is not so important;
therefore, all details are moved to Appendix A. For now, we simply think of
any 3rd–order, 5th–order, and 7th–order method.
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Chapter 2. Motivation for the use of high–order accurate methods

(a) Pseudocolor plot (b) Scatter plot

Figure 2.1: Initial pressure distribution, (left) pseudocolor plot, (right) scat-
ter plot with respect to the radius.

(a) 2562 grid cells (b) 5122 grid cells

Figure 2.2: Pressure at final time T = 0.1. In both plots, 3rd–order method
(upper left corner), 5th–order method (upper right corner), 7th–order method
(lower right corner), and the reference solution (lower left corner).
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Figure 2.2 shows the results at the final time of the three methods as well
as the reference solution. The results of the 3rd–order method (upper left
corner) differ the most from the reference solution (lower left corner). On
the coarse grid with 2562 grid cells, the solution structure became almost
invisible. The results of the 5th–order method (upper right corner) fits much
better. Looking very carefully, one can see some differences at least on the
coarse grid. On the fine grid, the solution is identical for the eye with the
reference solution. The same holds for the results of the 7th–order method
(lower right corner) on both grid resolutions.

Figure 2.3 shows scatter plots for the same results. Again, we see that
the 3rd–order method (red squares) resolves poorly the solution structure on
both the grids. The two higher–order methods perform much better. On
the coarse grid and especially in Figure 2.3c, one can still see the difference
for the 5th–order method (grey triangles) and even for the 7th–order method
(blue circles). On the fine grid, however, the difference is not visible to the
eye.

What we see in Figures 2.2 and 2.3 is also consistent with the measured
L1 error shown in Table 2.1. On the coarsest grid, none of the methods con-
verges. On a grid with 2562 grid cells, the 5th– and 7th–order methods start
to converge. But the low–order method still does not do so. On a grid with
5122 cells, the 5th–order method converges almost with the expected order.
For the 7th–order method, we see even superconvergence on this grid while
the low–order method still converges very slowly. This example demonstrates
the advantage and the need of high–order methods.

3rd–order 5th–order 7th–order
grid ∥p− pex∥1 EOC ∥p− pex∥1 EOC ∥p− pex∥1 EOC
642 2.042E-02 2.038E-02 2.039E-02
1282 3.089E-02 -0.60 2.796E-02 -0.46 2.347E-02 -0.20
2562 2.725E-02 0.18 2.053E-03 3.77 4.409E-04 5.73
5122 9.795E-03 1.48 7.309E-05 4.81 2.405E-06 7.52
10242 2.528E-03 1.95 2.367E-06 4.95 1.931E-08 6.96

Table 2.1: Convergence study for Example 2.1. The used methods are
discussed in Appendix A.
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Chapter 2. Motivation for the use of high–order accurate methods

(a) 2562 grid cells (b) 5122 grid cells

(c) 2562 grid cells (d) 5122 grid cells

Figure 2.3: Scatter plot of the pressure with respect to the radius at final
time T = 0.1. Results of the 3rd–order method (red squares), the 5th–order
method (grey triangles), and the 7th–order method (blue circles).
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Chapter 3

The WENO reconstruction

In 1994, Liu et al. [14] introduced the first WENO scheme as an improve-
ment over the ENO scheme developed by Harten et al. [15]. A more general
framework was proposed by Jiang et al. [16] in 1996. In the more recent
review of Shu [3], more applications and a detailed discussion of the WENO
scheme can be found.

3.1 The WENO method

In this section, we describe the main idea of a WENO method of order
(2r−1). In the following sections, we discuss the particular methods used in
this thesis in more detail. For simplicity, we first restrict our considerations
to the one–dimensional case, i.e. we consider initial value problems of the
form

∂tq + ∂xf(q) = 0

q(x, 0) = q0(x),
(3.1)

where q : R×R+ → Rm is a vector of conserved quantities, and f : Rm → Rm

is a vector–valued flux function.
We discretize (3.1) using the method of lines approach on an equidistant

mesh with grid cells Ci = [xi− 1
2
, xi+ 1

2
] and mesh width ∆x. The semi–discrete

form can then be written as

Q′
i(t) = − 1

∆x

(
f(q(xi+ 1

2
, t))− f(q(xi− 1

2
, t))
)
, (3.2)

where Qi(t) is the cell–average of the conserved quantities in grid cell Ci and
f(q(xi± 1

2
, t)) is the flux at grid cell interfaces. Throughout this thesis, we

assume that the temporal discretization is carries out by a sufficiently accu-
rate Runge–Kutta method. We neglect the dependency on t for simplicity.
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Chapter 3. The WENO reconstruction

The numerical flux Fi± 1
2
is an approximation to f(q(xi± 1

2
)). To obtain an

(2r − 1)th–order accurate approximation of the cell–average Qi, we need

Fi± 1
2
= f(q(xi± 1

2
)) +O(∆x2r−1). (3.3)

Let q±
i+ 1

2

be an approximation to the limit lim
h→±0

q(xi+ 1
2
+h). Then the flux can

be computed using a numerical flux function such as the local Lax-Friedrichs
flux, i.e. we compute

Fi+ 1
2
=

1

2

[
f(q−

i+ 1
2

) + f(q+
i+ 1

2

)− α
(
q+
i+ 1

2

− q−
i+ 1

2

)]
, (3.4)

where α is an upper estimate for the largest absolute value of the eigenvalues
of the flux Jacobian matrix. Alternatively, we can compute a unique interface
value q∗

i+ 1
2

of the conserved quantities, by exact or approximative solution of

the Riemann problem with data q±
i+ 1

2

. The flux can then be computed using

Fi+ 1
2
= f(q∗

i+ 1
2

). However, to satisfy Equation (3.3), we need

q±
i+ 1

2

= q(xi+ 1
2
) +O(∆x2r−1). (3.5)

We first consider an rth–order accurate polynomial reconstruction on cell
Ci. There are r obvious choices for a stencil containing cell Ci. These are
{Sr

i,0, ..., S
r
i,r−1} with Sr

i,k := {Ci+k−(r−1), ..., Ci+k}. Each polynomial P r
i,k re-

constructed on Sr
i,k satisfies the conditions∫

C

P r
i,k(x) =

∫
C

q(x), ∀C ∈ Sr
i,k (3.6)

and provides an rth–order accurate approximation to the conserved quantity
in cell Ci. In Figure 3.1, the different stencils for r = 3 are illustrated. In the

i−2 i−1 i i+1 i+2

S3
i,0

S3
i,1

S3
i,2

Figure 3.1: Illustration of the stencils for r = 3.
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3.1. The WENO method

context of ENO, one would choose the polynomial that was reconstructed in
the “most smooth” region and thus avoid reconstruction over discontinuities.
But if the solution is smooth in all of the stencils there is no reason to
restrict ourselves to only one. Instead, we can use the union of the r stencils
S2r−1
i,r−1 := {Ci−(r−1), ..., Ci+r−1} and reconstruct a polynomial P 2r−1

i,r−1 , which
provides an approximation of order 2r−1. The idea of the WENO scheme is
now to combine the lower–order reconstructions through weights ωk, which
satisfy

∑r−1
k=0 ωk = 1. Assuming we are interested in the value of the conserved

quantity q at xi+ 1
2
,

qi+ 1
2
=

r−1∑
k=0

ωkP
r
i,k(xi+ 1

2
) (3.7)

is the WENO approximation for this quantity.
The crucial step here is to define the weights wk in such a way that

r−1∑
k=0

wkP
r
i,k(xi+ 1

2
) = P 2r−1

i,r−1(xi+ 1
2
) +O(∆x2r−1) (3.8)

whenever q is smooth in the large stencil S2r−1
i,r−1. On the other hand, if

Sr
i,k contains a discontinuity, then wk should be close to zero to reduce the

influence of P r
i,k and in this way imitate the ENO behavior.

We first note that for r ≥ 2 there exist optimal weights γk > 0 with∑r−1
k=0 γk = 1 in such a way that

r−1∑
k=0

γkP
r
i,k(xi+ 1

2
) = P 2r−1

i,r−1(xi+ 1
2
) = q(xi+ 1

2
) +O(∆x2r−1). (3.9)

A common way of defining those weights is

ωk =
ω̃k∑r−1
k=0 ω̃k

, ω̃k =
γk

(ϵ+ ISk)p
, k = 0, ..., r − 1, (3.10)

where ϵ is the sensitivity, p the power parameter, and ISk are indicators for
the smoothness of q in Sr

i,k. The smoothness indicators are usually defined as
in [16],

ISk =
r−1∑
l=1

∆x2l−1

∫
Ci

(
dl

dxl
P r
i,k(x)

)2

. (3.11)

Liu et al. [14] originally defined ϵ as a constant to avoid division by zero
(ϵ = 10−5). Later [17, 18, 19], it was pointed out that ϵ should be chosen as
a function of ∆x. Otherwise, an ϵ that is too large may undermine the ENO
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Chapter 3. The WENO reconstruction

behavior of the scheme; meanwhile, an ϵ that is too small may reduce the
order of accuracy at critical points. The WENO reconstruction described
above is usually denoted as the WENO-JS scheme in the literature.

As an alternative to retaining the optimal order of accuracy, Henrick et
al. [17] proposed a mapping for the weights. Their method is known as the
WENO-M scheme. According to Don et al. [20], it is about 25% more
expensive than the WENO-JS scheme in terms of CPU time. Therefore, we
will not further consider the WENO-M scheme in this thesis.

Another definition of the weights ωk was proposed by Borges et al. [21],
and Don and Borges [20]. In order to describe their method we introduce
the so-called global optimal–order smoothness indicator

τ2r−1 =

⏐⏐⏐⏐⏐
r−1∑
k=0

ckISk

⏐⏐⏐⏐⏐ , (3.12)

where ck are the given constants discussed in [18]. The weights are now given
by

ωk =
ω̃k∑r−1
k=0 ω̃k

, ω̃k = γk

(
1 +

τ2r−1

(ϵ+ ISk)p

)
, k = 0, ..., r − 1, (3.13)

where ϵ is the sensitivity and p the power parameter. According to Don
and Borges [20], the ϵ in (3.13) should be defined as ϵ = ∆xm. Where
the optimal choice of m is dependent on r and the power parameter p, the
resulting WENO method is known in the literature as the WENO-Z scheme.

In the next subsections, we will provide all the so far omitted coefficients
that are necessary for implementing the different WENO methods used in
this thesis.

3.1.1 The 5th–order WENO method

A 5th–order accurate method is obtained by setting r = 3. On a uniform
grid, the evaluation of the three polynomials P 3

i,k, k = 0, 1, 2 at the interface
of cell Ci leads to the following formulas

q
(0−)

i+ 1
2

=
1

3
Qi−2 −

7

6
Qi−1 +

11

6
Qi, q

(0+)

i− 1
2

= −1

6
Qi−2 +

5

6
Qi−1 +

1

3
Qi,

q
(1−)

i+ 1
2

= −1

6
Qi−1 +

5

6
Qi +

1

3
Qi+1, q

(1+)

i− 1
2

=
1

3
Qi−1 +

5

6
Qi −

1

6
Qi+1,

q
(2−)

i+ 1
2

=
1

3
Qi +

5

6
Qi+1 −

1

6
Qi+2, q

(2+)

i− 1
2

=
11

6
Qi −

7

6
Qi+1 +

1

3
Qi+2.

(3.14)
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3.1. The WENO method

The interface values of the conserved quantities are then computed by

q−
i+ 1

2

= ω−
0 q

(1−)

i+ 1
2

+ ω−
1 q

(2−)

i+ 1
2

+ ω−
2 q

(3−)

i+ 1
2

,

q+
i− 1

2

= ω+
0 q

(1+)

i− 1
2

+ ω+
1 q

(2+)

i− 1
2

+ ω+
2 q

(3+)

i− 1
2

.
(3.15)

As discussed in the previous section, we have several ways of defining
the weights ω±

k . However, we first need the smoothness indicators ISk. For
r = 3, Equation (3.11) leads to

IS0 =
13

12
(Qi−2 − 2Qi−1 +Qi)

2 +
1

4
(Qi−2 − 4Qi−1 + 3Qi)

2 ,

IS1 =
13

12
(Qi−1 − 2Qi +Qi+1)

2 +
1

4
(Qi−1 +Qi+1)

2 ,

IS2 =
13

12
(Qi − 2Qi+1 +Qi+2)

2 +
1

4
(3Qi − 4Qi+1 +Qi+2)

2 .

(3.16)

To obtain the 5th–order accurate WENO-JS method, we use Equation
(3.10) to define the weights

ω±
k =

ω̃±
k

ω̃±
0 + ω̃±

1 + ω̃±
2

, ω̃±
k =

γ±
k

(ϵ+ ISk)p
, k = 0, 1, 2 (3.17)

with γ−
0 = γ+

2 = 1
10
, γ−

1 = γ+
1 = 3

5
, γ−

2 = γ+
0 = 3

10
, ϵ = ∆x2 and p = 2.

To obtain the 5th–order accurate WENO-Z method, we use Equation
(3.13) to define the weights

ω±
k =

ω̃±
k

ω̃±
0 + ω̃±

1 + ω̃±
2

, ω̃±
k = γ±

k

(
1 +

(
τ5

ISk + ϵ

)p)
, k = 0, 1, 2 (3.18)

with τ5 = |IS0 − IS2|, ϵ = ∆x4, p = 2, and γ±
k as above.

3.1.2 The 7th–order WENO method

We will also use 7th–order accurate WENO methods. In this case, we set
r = 4 and the interfaces values of the conserved quantities are computed by

q∓
i± 1

2

=
3∑

k=0

ω∓
k q

(k∓)

i± 1
2

, (3.19)

with

q
(k∓)

i± 1
2

=
3∑

l=0

a±k,lQi−3+k+l. (3.20)
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l 0 1 2 3

a+0,l
−3
12

13
12

−23
12

25
12

a+1,l
1
12

−5
12

13
12

3
12

a+2,l
−1
12

7
12

7
12

−1
12

a+3,l
3
12

13
12

−5
12

1
12

Table 3.1: Coefficients for the 7th–order WENO reconstruction.

The coefficients a+k,l are given in Table 3.1. Due to the symmetry of the

scheme, the relation a−k,l = a+3−k,3−l holds. Applying Equation (3.11) for
r = 4, we get (up to a scaling factor)

IS0 = Qi−3(547Qi−3 − 3882Qi−2 + 4642Qi−1 − 1854Qi)+

Qi−2(7043Qi−2 − 17246Qi−1 + 7042Qi)+

Qi−1(11003Qi−1 − 9402Qi) + 2107Q2
i ,

IS1 = Qi−2(267Qi−2 − 1642Qi−1 + 1602Qi − 494Qi+1)+

Qi−1(2843Qi−1 − 5966Qi + 1922Qi+1)+

Qi(3443Qi − 2522Qi+1) + 547Q2
i+1,

IS2 = Qi−1(547Qi−1 − 2522Qi + 1922Qi+1 − 494Qi+2)+

Qi(3443Qi − 5966Qi+1 + 1602Qi+2)+

Qi+1(2843Qi+1 − 1642Qi+2) + 267Q2
i+2,

IS3 = Qi(2107Qi − 9402Qi+1 + 7042Qi+2 − 1854Qi+3)+

Qi+1(11003Qi+1 − 17246Qi+2 + 4642Qi+3)+

Qi+2(7043Qi+2 − 3882Qi+3) + 547Q2
i+3.

(3.21)

Note that in the definition of the weights a scaling factor for the smoothness
indicators is neglectable.

Again, we have two ways of defining the weights. To obtain the 7th–order
accurate WENO-JS method, we use Equation (3.10) to define the weights

ω±
k =

ω̃±
k∑3

m=0 ω̃
±
m

, ω̃±
k =

γ±
k

(ϵ+ ISk)
p , k = 0, .., 3 (3.22)

with γ−
0 = γ+

3 = 1
35
, γ−

1 = γ+
2 = 12

35
, γ−

2 = γ+
1 = 18

35
, γ−

3 = γ+
0 = 4

35
, ϵ = ∆x2

and p = 2.
To obtain the 7th–order accurate WENO-Z method, we use Equation
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3.2. Comparing the methods in 1D

(3.13) to define the weights

ω±
k =

ω̃±
k∑3

m=0 ω̃
±
m

, ω̃±
k = γ±

k

(
1 +

(
τ7

ISk + ϵ

)p)
, k = 0, .., 3 (3.23)

where τ7 = |IS0 + 3IS1 − 3IS2 − IS3|, ϵ = ∆x5 and p = 2 as suggested in
[20].

The smoothness indicators, as defined in Equation (3.11), should always
be non-negative. But for ISk close to zero, due to round–off errors, the
computations in Equation (3.21) might result in a small negative value. To
avoid unexpected behavior, we used |ISk| in our implementation instead.

3.2 Comparing the methods in 1D

In this section, we test and compare the methods introduced so far by apply-
ing them to the Euler equations of gas dynamics. These equations describe
the conservation of mass, momentum, and energy. A detailed discussion of
the equations can be found in many textbooks, such as [22] or [13]. The
one–dimensional Euler equations are given by

∂t

⎛⎝ ρ
ρu
E

⎞⎠+ ∂x

⎛⎝ ρu
ρu2 + p
u(E + p)

⎞⎠ = 0, (3.24)

with the total energy density

E =
p

γ − 1
+

1

2
ρu2. (3.25)

Here, ρ is the density, u the velocity, and p the pressure. The constant γ
in the equation of state (4.21) is often called the adiabatic exponent. The
value depends on the gas under consideration. In this chapter, we always set
γ = 1.4.

We use adaptive mesh refinement (AMR) realized by a regular bisection
of grid blocks. In Chapter 5, the grid structure will be discussed in more
detail.

The test cases are taken from the collection of Liska and Wendroff [23].
The setup for the first five tests is always the same. Initially, a discontinuity
located at x0 ∈ I separates two constant states (ρL, uL, pL) to the left and
(ρR, uR, pR) to the right of x0. The computation is performed until the final
time T . We apply SSP-RK(10,4) with CFL ≈ 1.5 in time and use the Roe
Riemann solver with an entropy fix, in accordance with Harten and Hyman
[24], to compute the fluxes. All computations are compared using the exact
solution obtained by the exact Riemann solver presented by Toro [22].
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Chapter 3. The WENO reconstruction

(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

Figure 3.2: Result for Example 3.1 on a uniform grid with 128 grid cells.

Example 3.1. This is a variant of Sod’s Riemann problem. We set

x0 = 0.3, T = 0.2, I = [0, 1],

ρl = 1, ul = 0.75, pl = 1,

ρr = 0.125, ur = 0, pr = 0.1.

(3.26)

Figure 3.2 presents the result at final time for each of the methods on
a uniform grid. Both 7th–order accurate methods are more oscillatory than
the 5th–order accurate methods. The relative L1 error in Table 3.2 shows
that the results are quite similar. In Figure 3.3, we present the result on a
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3.2. Comparing the methods in 1D

(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

(e) Structure of the AMR grid at final time.

Figure 3.3: Result for Example 3.1 on a grid with 128 grid cells and two
AMR levels.

grid with two levels of refinement. The cell size is 1/128 on the coarsest grid,
1/256 on the first refinement level, and 1/512 on the second refinement level.
The structure of the grid is shown in Figure 3.3e. Both discontinuities are
covered by grids with the finest resolution. Therefore, the oscillations reduce
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Chapter 3. The WENO reconstruction

significantly. For both 7th-order methods, tiny oscillations are still visible.
However, the oscillations do not increase the L1 error compared with the
5th–order methods. The entire rarefaction wave is outside the refined zone.
Nevertheless, the result on the AMR grid agrees much better with the exact
solution. This is due to better resolution of the solution at earlier times.

(a) WENO-Z5 (b) WENO-Z7

Figure 3.4: Result for Example 3.3 on a uniform grid with 128 grid cells.

Example 3.2. This is the 123 problem first proposed by Einfeld et al. [25].
We set

x0 = 0.5, T = 0.15, I = [0, 1],

ρl = 1, ul = −2, pl = 0.4,

ρr = 1, ur = 2, pr = 0.4.

(3.27)

The exact solution for this test consists of two rarefaction waves moving
in opposite directions. At the center, a low–density and low–pressure region
is created. This leads to difficulties since negative pressure is reconstructed
after a few steps by each of the methods. Positivity preserving considerations,
as discussed by Zhang et al. [26], could resolve this issue. But they are not
within the scope of this work.

Example 3.3. We set

x0 = 0.8, T = 0.012, I = [0, 1],

ρl = 1, ul = −19.59745, pl = 1000,

ρr = 1, ur = −19.59745, pr = 0.01.

(3.28)
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3.2. Comparing the methods in 1D

(a) WENO-Z5 (b) WENO-Z7

(c) Structure of the AMR grid at final time.

Figure 3.5: Result for Example 3.3 on a grid with 128 grid cells and two
AMR levels.

The exact solution for this test consists of a left rarefaction wave, a con-
tact, and a right shock. The results of this test are presented in Figure 3.4.
Both WENO-JS methods reconstruct negative pressure after several time
steps and, therefore, fail this test. This could be resolved by reducing the
CFL number or the sensitivity parameter ϵ. However, this would not be a
fair comparison anymore. All results are quite oscillatory, especially those
produced by the 7th–order accurate method.

Example 3.4. We set

x0 = 0.4, T = 0.35, I = [0, 1],

ρl = 5.99924, ul = 19.5975, pl = 460.894,

ρr = 5.99242, ur = −6.19633, pr = 46.095.

(3.29)

The solution consists of two shock waves and a contact discontinuity.
Figure 3.6 presents the results on a uniform grid with 128 grid cells. All
methods produce oscillatory results, the 7th–order methods more so than the
5th–order methods. This can also be seen from the error in Table 3.2. With
two levels of refinement, the results are much less oscillatory, as shown in
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(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

Figure 3.6: Result for Example 3.4 on a uniform grid with 128 grid cells.

Figure 3.7. Due to the nested structure of the grid and the location of the
discontinuities, only a small part of the computational domain is covered by
the coarsest grid.

Example 3.5. The peak problem. We set

x0 = 0.5, T = 0.0039, I = [0.1, 0.6],

ρl = 0.1261192, ul = 8.9047029, pl = 782.92899,

ρr = 6.59143, ur = 2.2654207, pr = 3.1544874.

(3.30)

Figure 3.8 presents the solution on a uniform grid with 128 grid cells.
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(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

(e) Structure of the AMR grid at final time.

Figure 3.7: Result for Example 3.4 on a grid with 128 grid cells and two
AMR levels.

The density peak is better resolved by the 7th–order methods. According to
the L1 error in Table 3.2, the WENO-Z methods perform better than their
WENO-JS counterparts. With two levels of refinement, all methods produce
similar results (see Figures 3.9).
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(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

Figure 3.8: Result for Example 3.5 on a uniform grid with 128 grid cells.

Example 3.6. Another classical test is the so–called shock entropy wave
interaction. The initial data is given by

ρ = 3.857143, u = 2.629369, p = 10.33333 when x < 1,

ρ = 1 + 0.2 sin 5x, u = 0, p = 1, when x ≥ 1.

This test starts with a Mach 3 shock moving to the right and interacting
with a sine wave in density. Figure 3.10 presents the results on a uniform
grid with 400 cells. The solid line in each plot is the result of a computa-
tion on 6,400 grid cells using WENO-Z7. None of the methods can resolve
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(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

(e) Structure of the AMR grid at final time.

Figure 3.9: Result for Example 3.5 on a grid with 128 grid cells and two
AMR levels.

the maximum behind the shock on the coarse grid. The performance is most
different in the region around x = 5.6. Both 7th–order accurate methods per-
form better than the 5th–order accurate methods. This becomes even more
obvious on comparing the L1 errors in Table 3.2. In Figure 3.11, the results
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(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

Figure 3.10: Result for Example 3.6 shock entropy wave interaction on a
uniform grid with 400 grid cells.

(a) WENO-JS5 (b) WENO-Z5

(c) WENO-JS7 (d) WENO-Z7

(e) Structure of the AMR grid at final time.

Figure 3.11: Result for Example 3.6 shock entropy wave interaction on a
grid with 400 grid cells and two AMR levels.
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with two levels of refinement are presented. The shock is inside the refined
region. Figure 3.3e shows the grid structure at the final time. Each of the
visualized blocks consists of 50 cells in the x direction. Now, the maximum
right after the shock is resolved by each method. The high–frequency region
agrees better with the highly resolved computation for each method, even
though only a part is covered by the fine grid.

E
x
am

p
le WENO-JS5 WENO-Z5 WENO-JS7 WENO-Z7

grid ∥ρ− ρex∥1 ∥ρ− ρex∥1 ∥ρ− ρex∥1 ∥ρ− ρex∥1

3.1
128 4.13E-03 3.69E-03 4.02E-03 3.99E-03

128 + 2L 1.40E-03 1.26E-03 1.24E-03 1.23E-03
512 1.32E-03 1.21E-03 1.21E-03 1.19E-03

3.2 failed failed failed failed

3.3
128 failed 4.69E-03 failed 3.82E-03

128 + 2L failed 1.66E-03 failed 2.06E-03
512 failed 1.66E-03 failed 2.06E-03

3.4
128 9.44E-03 9.34E-03 1.02E-02 1.02E-02

128 + 2L 4.14E-03 3.91E-03 4.07E-03 4.29E-03
512 4.39E-03 4.18E-03 4.35E-03 4.58E-03

3.5
128 1.90E-02 1.63E-02 1.47E-02 1.33E-02

128 + 2L 5.09E-03 4.67E-03 4.92E-03 4.85E-03
512 5.09E-03 4.67E-03 4.92E-03 4.86E-03

3.6
400 5.52E-03 5.83E-03 3.83E-03 4.02E-03

400 + 2L 1.45E-03 1.61E-03 1.28E-03 1.45E-03
1600 1.04E-03 1.15E-03 1.01E-03 1.15E-03

Table 3.2: Relative L1 error for the 1D Riemann problems on a coarse
uniform grid, an AMR grid with two levels of refinement, and a fine uniform
grid.

For each example, the L1 errors on the AMR grid correspond very well
with the L1 errors on the fine uniform grid (see Table 3.2). The resolution of
the fine uniform grid matches the resolution on the highest refinement level
of the AMR grid.
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Chapter 3. The WENO reconstruction

3.3 The dimension–by–dimension WENO

method

A common and simple way to extend the method to higher dimensions is the
dimension–by–dimension approach. We consider the initial value problem of
the form

∂tq + ∂xf(q) + ∂yg(q) = 0

q(x, y, 0) = q0(x, y),
(3.31)

where q : R2 ×R+ → Rm is a vector of conserved quantities and f, g : Rm →
Rm are the vector–valued flux functions.

We discretize (3.31) using the method of lines approach on an equidistant
mesh with grid cells Ci,j = [xi− 1

2
,j, xi+ 1

2
,j] × [yi,j− 1

2
, yi,j+ 1

2
] and mesh width

∆x,∆y. The semi–discrete form can then be written as

Q′
i,j(t) = − 1

∆x

(
Fi+ 1

2
,j(t)− Fi− 1

2
,j(t)

)
− 1

∆y

(
Gi,j+ 1

2
(t)− Gi,j− 1

2
(t)
)
,

(3.32)
where Qi,j(t) is the cell–average of the conserved quantities in the grid cell
Ci,j and the terms Fi± 1

2
,j(t) and Gi,j± 1

2
(t) are the interface fluxes

Fi± 1
2
,j(t) =

1

∆y

∫ y
j+1

2

y
j− 1

2

f(q(xi± 1
2
, y, t))dy,

Gi,j± 1
2
(t) =

1

∆x

∫ x
i+1

2

x
i− 1

2

g(q(x, yj± 1
2
, t))dx.

(3.33)

Relation (3.32) is an exact formula. As before, we neglect the dependency
of t for simplicity and assume that the temporal discretization is carries out
by a sufficiently accurate Runge–Kutta method. The numerical fluxes Fi± 1

2
,j

and Gi,j± 1
2
are approximations of Fi± 1

2
,j and Gi,j± 1

2
, respectively. To obtain

an pth–order accurate approximation of the cell–average Qi,j, we need

Fi± 1
2
,j = Fi± 1

2
,j +O(∆xp +∆yp),

Gi,j± 1
2
= Gi,j± 1

2
+O(∆xp +∆yp).

(3.34)

Applying any one–dimensional WENO reconstruction from the previous
section, we compute averaged values of the conserved quantities at all grid
cell interfaces, which are denoted by Q±

i+ 1
2
,j

and Q±
i,j+ 1

2

. These interface
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values are pth–order accurate approximations of edge–averaged values of the
conserved quantities, i.e.

Q±
i+ 1

2
,j
=

1

∆y

∫ y
j+1

2

y
j− 1

2

q(xi+ 1
2
, y)dy +O(∆xp)

Q±
i,j+ 1

2

=
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, yj+ 1
2
)dx+O(∆yp),

(3.35)

where q is the exact solution. As before, the superscript ± refers to the limit
x → xi+ 1

2
± 0 for Q±

i+ 1
2
,j
and similar to the limit y → yj+ 1

2
± 0 for Q±

i,j+ 1
2

.

These edge–averaged interface values of the conserved quantities can now
be used to compute interface fluxes. One choice could be the local Lax-
Friedrichs flux formula, i.e. we compute

Fi+ 1
2
,j =

1

2

[
f(Q−

i+ 1
2
,j
) + f(Q+

i+ 1
2
,j
)− α

(
Q+

i+ 1
2
,j
−Q−

i+ 1
2
,j

)]
Gi,j+ 1

2
=

1

2

[
g(Q−

i,j+ 1
2

) + g(Q+
i,j+ 1

2

)− α
(
Q+

i,j+ 1
2

−Q−
i,j+ 1

2

)]
,

(3.36)

where α is an upper estimate for the largest absolute value of the eigenvalues
of the flux Jacobian matrix. Alternatively, we can compute a unique interface
value Q∗

i− 1
2
,j
of the conserved quantities by exact or approximative solution

of the Riemann problem with data Q±
i− 1

2
,j
. The flux can then be computed

using Fi− 1
2
,j = f(Q∗

i− 1
2
,j
). At some point, however, we need to evaluate the

flux f(Qi− 1
2
,j). For a linear flux, we get

f(Qi− 1
2
,j) =f(

1

∆y

∫ y
j+1

2

y
j− 1

2

q(xi+ 1
2
, y)dy +O(∆xp))

=
1

∆y

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1
2
, y))dy +O(∆xp)

=Fi+ 1
2
,j +O(∆xp),

(3.37)

which is exactly what we need, the interface–averaged flux.

Using these fluxes in a finite volume method results in a pth–order accurate
approximation. If the flux function is nonlinear, Equation (3.37) does not
hold. But since any cell–average is a 2nd–order accurate approximation to
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the cell–centered point value, we get

f(Qi− 1
2
,j) =f(

1

∆y

∫ y
j+1

2

y
j− 1

2

q(xi+ 1
2
, y)dy +O(∆xp))

=f(q(xi+ 1
2
, yj)) +O(∆xp +∆y2)

=
1

∆y

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1
2
, y))dy +O(∆xp +∆y2)

=Fi+ 1
2
,j +O(∆xp +∆y2).

(3.38)

We obtained the interface–averaged flux once again, but this time only with
2nd–order accuracy. Therefore, using these fluxes results in a 2nd–order accu-
rate approximation (see [1, 3, 7]). Analogously, the method can be extended
to any dimension, resulting always in a 2nd–order accurate approximation for
nonlinear fluxes. We will refer to this approach as dim–by–dim.

For sufficiently smooth solutions of hyperbolic systems in divergence form,
the results of this section are summarized in the following theorem.

Theorem 3.1. The dim–by–dim WENO finite volume method is 2nd–order
accurate for general hyperbolic systems in divergence form. For linear hyper-
bolic systems, the dim–by–dim approach retains the full order of the WENO
reconstruction.

3.4 The multidimensional WENO method

To avoid the loss of accuracy of the dim–by–dim approach, it is crucial to
evaluate fluxes only at point values. The averaged flux can then be computed
by quadrature formulas at each grid cell interface. This section describes a
5th– and 7th–order accurate multidimensional WENO reconstruction. We
will refer to this approach as multi–dim.

3.4.1 The 5th–order WENO method1

For a 5th–order accurate method, we approximate

1

∆y

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1
2
, y))dy ≈ 1

∆y

3∑
s=1

csfi+ 1
2
,js

=: Fi+ 1
2
,j,

(3.39)

1This section was adapted from [2] with minor changes.
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where

yj1 = yj −
∆y

2

√
3

5
, yj2 = yj, yj3 = yj +

∆y

2

√
3

5
(3.40)

are the nodes and

c1 =
√
π/6, c2 = 2

√
π/3, c3 =

√
π/6. (3.41)

are the weights of a Gaussian quadrature formula.

To get a high–order accurate approximation of the flux via Equation
(3.39), we need to compute 5th–order accurate point values of the flux func-
tion at the nodes of the quadrature formula. This is again done using a
numerical flux formula, such as the local Lax-Friedrichs flux, i.e. we compute

fi+ 1
2
,js

= F(q−
i+ 1

2
,js
, q+

i+ 1
2
,js
), s = 1, 2, 3. (3.42)

The values q±
i+ 1

2
,j1
, . . . , q±

i+ 1
2
,j3

are 5th–order accurate approximations of point

values of the conserved quantities at the nodes of the quadrature formula,
i.e.

q±
i+ 1

2
,js

= q(xi+ 1
2
, yjs) +O(∆x5 +∆y5).

To compute these left and right point values, we can use a multidimen-
sional polynomial reconstruction of the conserved quantities. Let pij(x, y)
denote a 5th–order accurate polynomial reconstruction of the conserved quan-
tities in grid cell Ci,j. At a grid cell edge (i + 1

2
, j), the reconstructed poly-

nomials can be evaluated at the points yj1 , . . . , yj3 to compute

q−
i+ 1

2
,js

:= pij(xi+ 1
2
, yjs), q+

i+ 1
2
,js

:= pi+1,j(xi+ 1
2
, yjs), s = 1, 2, 3. (3.43)

On Cartesian grids, the reconstruction can be simplified. In 1993, Casper
and Atkins [8] proposed a method based on the ENO scheme. But any
WENOmethod can be applied in the same way. Instead of a two–dimensional
polynomial reconstruction, one can use two one–dimensional WENO re-
constructions at each edge. Let us again consider the interface (i + 1

2
, j).

Using a one–dimensional WENO reconstruction, we obtain a high–order
accurate approximation of edge–averaged values of the conserved quanti-
ties at grid cell interfaces. In a second reconstruction step, these edge–
averaged values Q±

i+ 1
2
,j−2

, . . . , Q±
i+ 1

2
,j+2

are used to construct the point values

q±
i+ 1

2
,j1
, . . . , q±

i+ 1
2
,j3
. To simplify the notation, we suppress the ±–superscript

in the following paragraph.
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k 0 1 2

γ1
k

1008+71
√
15

5240
403
655

1008−71
√
15

5240

γ2
k − 9

80
49
40

− 9
80

γ3
k

1008−71
√
15

5240
403
655

1008+71
√
15

5240

k 0 1 2

γ2+
k

9
80

49
20

9
80

γ2−
k

9
40

49
40

9
40

Table 3.3: Weights for WENO reconstruction of point values at Gaussian
nodes.

Analogously to the computation of the interface values described in Sec-
tion 3.1.1, a 5th–order accurate approximation of the point value at the Gaus-
sian nodes yjs is described in the form

qi+ 1
2
,js

= γs
0q

(0)

i+ 1
2
,js

+ γs
1q

(1)

i+ 1
2
,js

+ γs
2q

(2)

i+ 1
2
,js
, (3.44)

with

q
(0)

i+ 1
2
,js

= as0,0Qi+ 1
2
,j−2 + as0,1Qi+ 1

2
,j−1 + as0,2Qi+ 1

2
,j,

q
(1)

i+ 1
2
,js

= as1,0Qi+ 1
2
,j−1 + as1,1Qi+ 1

2
,j + as1,2Qi+ 1

2
,j+1,

q
(2)

i+ 1
2
,js

= as2,0Qi+ 1
2
,j + as2,1Qi+ 1

2
,j+1 + as2,2Qi+ 1

2
,j+2.

(3.45)

The values of γ are given in the left part of Table 3.3 and the coefficients
ask,l are given in Table 3.4. Since γ2

0 and γ2
2 are negative, we cannot apply

WENO limiting in the same way as in the situation of Section 3. Instead, we
follow the approach of Shi et al. [27] and split γ2

k for k = 0, 1, 2 into a positive
and a negative part, as shown in the right part of Table 3.3. For both parts,
we can now apply WENO-JS5 (3.17) or WENO-Z5 (3.18) limiting, i.e. we
compute ω±

k using γ2±
k , k = 0, 1, 2. Now, we can compute

qi+ 1
2
,j2±

= ω±
0 q

(0)

i+ 1
2
,j2

+ ω±
1 q

(1)

i+ 1
2
,j2

+ ω±
2 q

(2)

i+ 1
2
,j2
, (3.46)

and finally we compute

qi+ 1
2
,j2

= σ+qi+ 1
2
,j2+

− σ−qi+ 1
2
,j2−

, (3.47)

with

σ+ =
2∑

k=0

γ2+
k =

214

80
and σ− =

2∑
k=0

γ2−
k =

67

40
.

At the Gaussian nodes yj1 and yj3 , we can directly compute

qi+ 1
2
,js

= ω0q
(0)

i+ 1
2
,js

+ ω1q
(1)

i+ 1
2
,js

+ ω2q
(2)

i+ 1
2
,js
, s = 1, 3, (3.48)
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3.4. The multidimensional WENO method

l 0 1 2

a10,l
2−3

√
15

60
−4+12

√
15

60
62−9

√
15

60

a11,l
2+3

√
15

60
56
60

2−3
√
15

60

a12,l
62+9

√
15

60
−4−12

√
15

60
2+3

√
15

60

a20,l − 1
24

2
24

23
24

a21,l − 1
24

26
24

− 1
24

a22,l
23
24

2
24

− 1
24

a30,l
2+3

√
15

60
−4−12

√
15

60
62+9

√
15

60

a31,l
2−3

√
15

60
56
60

2+3
√
15

60

a32,l
62−9

√
15

60
−4+12

√
15

60
2−3

√
15

60

Table 3.4: Coefficients for WENO reconstruction of point values at Gaussian
nodes.

with ω0, ω1, ω2 computed as in (3.17) or (3.18).

In order to compute the six point values of the conserved quantities
q±
i+ 1

2
,j1
, q±

i+ 1
2
,j2
, q±

i+ 1
2
,j3
, the above formulas are evaluated both for the left and

the right interface–averaged values of the conserved quantities. Finally, these
pairs of point values are used to compute the interface flux using (3.39) and
(3.42). Analogously, we compute fluxes Gi,j+ 1

2
in the y direction.

3.4.2 The 7th–order WENO method2

To guarantee 7th–order accuracy, we use the Gauss quadrature rule with four
points

1

∆x

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1
2
, y))dy ≈ 1

∆x

4∑
s=1

csfi+ 1
2
,js

=: Fi+ 1
2
,j,

(3.49)

2This section was adapted from [2] with minor changes.
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Chapter 3. The WENO reconstruction

where

yj1 = yj −
∆y

2

√
3

7
+

2

7

√
6

5
, yj2 = yj −

∆y

2

√
3

7
− 2

7

√
6

5
,

yj3 = yj +
∆y

2

√
3

7
− 2

7

√
6

5
, yj4 = yj +

∆y

2

√
3

7
+

2

7

√
6

5

are the nodes and

c1 =
18−

√
30

36
, c2 =

18 +
√
30

36
, c3 =

18 +
√
30

36
, c4 =

18−
√
30

36
(3.50)

are the weights of the quadrature formula. Analogously to Section 3.1.2, a
7th–order accurate approximation of the point value at the Gaussian node
yjs , s = 1, ..., 4 is described in the form

qi+ 1
2
,js

= γs
0q

(0)

i+ 1
2
,js

+ γs
1q

(1)

i+ 1
2
,js

+ γs
2q

(2)

i+ 1
2
,js

+ γs
3q

(3)

i+ 1
2
,js

with

q
(0)

i+ 1
2
,js

= as0,0Qi+ 1
2
,j−3 + as0,1Qi+ 1

2
,j−2 + as0,2Qi+ 1

2
,j−1 + as0,3Qi+ 1

2
,j,

q
(1)

i+ 1
2
,js

= as1,0Qi+ 1
2
,j−2 + as1,1Qi+ 1

2
,j−1 + as1,2Qi+ 1

2
,j + as1,3Qi+ 1

2
,j+1,

q
(2)

i+ 1
2
,js

= as2,0Qi+ 1
2
,j−1 + as2,1Qi+ 1

2
,j + as2,2Qi+ 1

2
,j+1 + as2,3Qi+ 1

2
,j+2,

q
(3)

i+ 1
2
,js

= as3,0Qi+ 1
2
,j + as3,1Qi+ 1

2
,j+1 + as3,2Qi+ 1

2
,j+2 + as3,3Qi+ 1

2
,j+3.

(3.51)

The values of γs
k and ask,l are given in Tables 3.5 and 3.6. The limited values

at the Gaussian nodes are given by

qi+ 1
2
,js

= ω0q
(0)

i+ 1
2
,js

+ ω1q
(1)

i+ 1
2
,js

+ ω2q
(2)

i+ 1
2
,js

+ ω3q
(3)

i+ 1
2
,js

where ωk is computed analogously as in Equation (3.22) or (3.23). As dis-
cussed in Section 3.4.1, we evaluate these formulas for the left and the right
interface–averaged values of the conserved quantities. Finally, these pairs of
points are used for the flux evaluation in Equation (3.49). Analogously, we
compute the fluxes Gi,j+ 1

2
.

34



3.4. The multidimensional WENO method

k
0

1
2

3

γ
1 k

0.
09
78
97
33
93
74
82
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19
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0.
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45
89
30
01
73
79
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49

0.
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41
00
89
22
79
25
46

0.
03
68
72
35
15
28
58
38
86
0

γ
2 k

0.
04
22
16
05
70
22
94
44
71
7

0.
34
88
43
63
91
32
50
38
42

0.
43
08
04
62
79
49
65
19
75

0.
17
81
35
67
58
94
89
97
10

γ
3 k

0.
17
81
35
67
58
94
89
97
10

0.
43
08
04
62
79
49
65
19
75

0.
34
88
43
63
91
32
50
38
42

0.
04
22
16
05
70
22
94
44
71
7

γ
4 k

0.
03
68
72
35
15
28
58
38
86
0

0.
37
06
41
00
89
22
79
25
46

0.
49
45
89
30
01
73
79
73
49

0.
09
78
97
33
93
74
82
62
19
5

T
ab

le
3.
5:

W
ei
gh

ts
fo
r
W

E
N
O
-7

re
co
n
st
ru
ct
io
n
of

p
oi
n
t
va
lu
es

at
G
au

ss
ia
n
n
o
d
es
.

35



Chapter 3. The WENO reconstruction

l
0

1
2

3

a
10
,l

0.0878583391504588917
−
0.427831293623330335

1.02265572559231028
0.317317228880561163

a
11
,l

−
0.0763979370214947678

0.495505690689556931
0.668750585482396728

−
0.0878583391504588914

a
12
,l

0.189913942603577861
1.12713820761136533

−
0.393450087236437961

0.0763979370214947678

a
13
,l

1.88679397802567678
−
1.53293374285790512

0.836053707435806209
−
0.189913942603577861

a
20
,l

0.0776175431540304203
−
0.345066168275341003

0.627270228881018877
0.640178396240291707

a
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−
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a
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−
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a
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−
0.216001525790907703

1.15822454281172931
0.0231809873199590709

a
32
,l

−
0.0776175431540304203

0.950648568856413386
0.161564969956836354

−
0.0345959956592193208

a
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,l

0.640178396240291707
0.627270228881018877

−
0.345066168275341003

0.0776175431540304203

a
40
,l

−
0.189913942603577861

0.836053707435806209
−
1.53293374285790512

1.88679397802567678

a
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0.0763979370214947678
−
0.393450087236437961

1.12713820761136533
0.189913942603577861

a
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−
0.0878583391504588914

0.668750585482396728
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−
0.0763979370214947678

a
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,l

0.317317228880561163
1.02265572559231028

−
0.427831293623330335

0.0878583391504588917
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3.5. WENO reconstruction in 3D

3.5 WENO reconstruction in 3D

The dimension–by–dimension approach

In 3D, the interface is no longer a one–dimensional object but a two–dimen-
sional one. For the dim–by–dim WENO reconstruction discussed in Section
3.3, nothing changes. A two–dimensional cell–average is still a 2nd–order
approximation to the center of the cell and the other way around. Therefore,
the extension to 3D or even higher dimensions is straightforward.

The multidimensional approach

The multi–dimWENO reconstruction of Section 3.4 can also be extended to
3D easily. Assuming we use a quadrature rule with n nodes at the interface,
the algorithm is

1. Reconstruct interface values Q±
i+ 1

2
,j,k

in the x direction.

2. Apply the reconstruction in the y direction on the interfaces to get
values at the quadrature nodes Q±

i+ 1
2
,jm,k

, 1 ≤ m ≤ n.

3. Apply the reconstruction in the z direction on each quadrature node
to get the point values q±

i+ 1
2
,jm,ks

, 1 ≤ m, s ≤ n.

4. Compute flux point values fi− 1
2
,jm,ks

= F(q−
i− 1

2
,jm,ks

, q+
i− 1

2
,jm,ks

).

5. Use the quadrature rule to get the flux average
Fi+ 1

2
,j,k =

∑n
m=1

∑n
s=1 cmcsfi− 1

2
,jm,ks

.

Analogously, we compute the fluxes G and H in the y and z directions. The
difference with the 3D case is that, after Step 2, the values are still averaged
in one direction. Therefore, we have to apply another reconstruction step to
get the point values. In the end, we have n2 point values at every interface.
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Chapter 4

A new approach for a
high–order WENO finite
volume method in 2D

We now describe a modification of the dim–by–dim WENO method, which
avoids the accuracy drop described in Section 3.5. With this modification,
the full order of accuracy can be retained for multidimensional nonlinear
problems. The method is computationally less expensive than the methods
described in Section 3.4, since the computational expensive WENO recon-
struction is performed only once. Furthermore, the new approach requires
only one evaluation of the flux function per interface.

The WENO reconstruction provides high–order accurate approximations
of averaged values of the conserved quantities at grid cell interfaces. As
discussed in Section 3.5 with respect to conservation laws with nonlinear
flux functions, we cannot compute high–order accurate averaged values of
the interface flux directly from these edge–averaged values.

Instead, we first compute the point values of the conserved quantities at
the center of the grid cell interfaces. The numerical fluxes at these point
values can then be computed without loss of accuracy. Finally, we compute
averaged values of the fluxes at grid cell interfaces. Similar transformations
were used by several authors in a different context (see [11, 28, 29, 30]).

These transformations will be based on Theorem 4.1. To ensure that the
theorem remains generic, we first introduce some additional notations. In a
d–dimensional space, we use the typical multi–index notation i = (i1, ..., id) ∈
Zd,n = (n1, ..., nd) ∈ Nd,x = (x1, ..., xd) ∈ Rd, with n! = n1! · · ·nd!, |n| =
n1 + · · · + nd and xn = xn1

1 · · ·xnd
d . In this sense, it is 1 = (1, ..., 1) ∈ Nd,

∆x = (∆x1, ...,∆xd) ∈ Rd, ∆x1 = ∆x1 · · ·∆xd and so on. Furthermore, we
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denote by Ci a grid cell of the form Ci =
[
xi1− 1

2
, xi1+

1
2

]
×· · ·×

[
xid− 1

2
, xid+

1
2

]
with mesh width ∆x = (∆x1, ...,∆xd).

The Taylor series in several variables is discussed in many textbooks (e.g.
[31]). With the notation above, we can write the multidimensional Taylor
series expansion of a sufficiently smooth function f : Rd → R for x,a ∈ Rd.
in a very compact form

Tf (x) =
∑
n∈Nd

(x− a)n

n!

∂|n|f(a)

∂xn
. (4.1)

Theorem 4.1. Let q : Rd → R be a sufficient smooth function and Qi =
1

∆x1

∫
Ci

q(x)dx the averaged value of q over cell Ci. Then the equation

Qi = q(xi) +
∑

1<|n|<N
ni even ∀i

∆xn

n!(n+ 1)12n

∂|n|q(xi)

∂xn
+O(∆xN), (4.2)

holds with ∆x = max{∆x1, ...,∆xd}.

Proof. Without loss of generality, we assume ∆x1 = · · · = ∆xd = ∆x and
xi = 0. Then, we first note that for n = (n1, ..., nd) ∈ Zd we have

1

∆x1

∫
Ci

xndx =
1

∆xd

∫ ∆x
2

−∆x
2

· · ·
∫ ∆x

2

−∆x
2

xn1
1 · · · xnd

d dx1 · · · dxd

=
d∏

i=1

(
1

∆x

∫ ∆x
2

−∆x
2

xni
i dxi

)

=
d∏

i=1

(
1

∆x

1

ni + 1

((
∆x

2

)ni+1

−
(
−∆x

2

)ni+1
))

=

{∏d
i=1

1
ni+1

(
∆x
2

)ni if ni even ∀i
0 else

=

{
∆xn

(n+1)12n if ni even ∀i
0 else.

(4.3)

Using (4.3) and the multidimensional Taylor series expansion (4.1), we obtain
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Chapter 4. A new approach for a high–order WENO finite volume method in 2D

Qi =
1

∆x1

∫
Ci

q(x)dx

=
1

∆x1

∫
Ci

∑
0≤|n|<N

(x− xi)
n

n!

∂|n|q(xi)

∂xn
+O(∆xN)dx

(xi=0)
=

∑
0≤|n|<N

1

n!

(
1

∆x1

∫
Ci

xndx

)
∂|n|q(xi)

∂xn
+O(∆xN)

= q(xi) +
∑

1<|n|<N

n∈2Nd

∆xn

n!(n+ 1)12n

∂|n|q(xi)

∂xn
+O(∆xN).

(4.4)

Similar transformations are also possible in mapped coordinates, as shown
by Colella et al. [29].

4.1 Transformation between average values

and point values3

We discuss the transformation between average values and point values for
functions of one spatial variable. This is in line with the situation that
will later be used in our 2D method, since the second variable at grid cell
interfaces will just lead to an additional index. To simplify the notation, we
suppress the time dependence of the functions in this section.

We denote with Qi an approximation of the cell–average of the function
q in grid cell Ci = (xi− 1

2
, xi+ 1

2
), and by qi an approximation of the point

value q(xi) of the quantities q at the midpoint xi of the grid cell. Applying
Theorem 4.1 in 1D, we obtain the transformation

qi = Qi −
∆x2

24
q′′(xi)−

∆x4

1920
q(4)(xi) +O(∆x6) (4.5)

between point values and cell–averaged values.
Thus, we need expressions for the approximation of the second and fourth

derivatives. In order to transform from point values to cell–averaged values,
we can approximate these derivatives using standard finite difference for-
mulas. If we transform from cell–averaged values to point values, we use
cell–averaged values of the conserved quantities to approximate the second
and fourth derivatives at the midpoint of the interval.

3 This section, except for the last part, was adapted from [1] with some amendments.
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4.1. Transformation between average values and point values

Approximation of derivatives from point values

The second derivative q
′′
(xi) can be approximated using point values of the

quantity q via the well–known second–order accurate finite difference formula

q
′′
(xi) =

qi−1 − 2qi + qi+1

∆x2
+O(∆x2). (4.6)

A 4th–order accurate representation of q
′′
(xi) can be obtained using the for-

mula

q
′′
(xi) =

−qi−2 + 16qi−1 − 30qi + 16qi+1 − qi+2

12∆x2
+O(∆x4). (4.7)

A second–order accurate representation of q(4)(xi) can be computed from
point values using the finite difference formula

q(4)(xi) =
qi−2 − 4qi−1 + 6qi − 4qi+1 + qi+2

∆x4
+O(∆x2). (4.8)

All of these formulas can be verified using Taylor series expansion.

Approximation of derivatives from cell–averaged values

Second–order accurate approximations of q′′(xi) and q(4)(xi) can be obtained
using formulas analogously to (4.6) and (4.8) with the point values qi replaced
by average values Qi.

A 4th–order accurate approximation of q
′′
(xi) can be computed from cell–

averaged values via the formula

q
′′
(xi) =

−Qi−2 + 12Qi−1 − 22Qi + 12Qi+1 −Qi+2

8∆x2
+O(∆x4). (4.9)

This formula can also be verified by Taylor series expansion, after using (4.5)
to express the cell–averaged values with the help of point values.

Note that Equations (4.6)–(4.9) are only valid for uniform Cartesian grids.

Transformation between average values and point values

Formula (4.6) is sufficient to derive a 4th–order accurate transformation be-
tween average values and point values. With Equations (4.5) and (4.6), we
get

Qi −
Qi−1 − 2Qi +Qi+1

24
= Qi −

∆x2

24

(
q
′′
(xi) +O(∆x2)

)
= Qi −

∆x2

24
q
′′
(xi) +O(∆x4)

= qi +O(∆x4).

(4.10)
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Chapter 4. A new approach for a high–order WENO finite volume method in 2D

Analogously, we get

qi −
qi−1 − 2qi + qi+1

24
= Qi +O(∆x4). (4.11)

To compute a 6th–order accurate approximation of a point value from aver-
aged values, we use the formulas (4.8) and (4.9). In contrast, when computing
a 6th–order accurate approximation of an averaged value from point values,
we use the formulas (4.8) and (4.7).

4.2 Modification of the dimension–by–dimen-

sion WENO method

The considerations of the previous section suggest the following modification
of the dim–by–dim WENO method.

Algorithm: Modified dimension–by–dimension WENO method

1. Compute averaged values of the conserved quantities at grid cell inter-
faces using the dim–by–dim WENO approach, i.e. compute

Q±
i− 1

2
,j
, Q±

i,j− 1
2

at all grid cell interfaces.

2. Compute point values of the conserved quantities at the center of each
grid cell interface, i.e. compute

q±
i+ 1

2
,j
= Q±

i+ 1
2
,j
− 1

24

(
Q±

i+ 1
2
,j−1

− 2Q±
i+ 1

2
,j
+Q±

i+ 1
2
,j+1

)
q±
i,j+ 1

2

= Q±
i,j+ 1

2

− 1

24

(
Q±

i−1,j+ 1
2

− 2Q±
i,j+ 1

2

+Q±
i+1,j+ 1

2

)
.

(4.12)

3. Compute fluxes at the center of the grid cell interfaces using a consistent
numerical flux function, i.e.

fi− 1
2
,j = F(q−

i− 1
2
,j
, q+

i− 1
2
,j
), gi,j− 1

2
= F(q−

i,j− 1
2

, q+
i,j− 1

2

)

4. Compute averaged values of the flux, i.e. compute

Fi+ 1
2
,j = fi+ 1

2
,j +

1

24

(
fi+ 1

2
,j−1 − 2fi+ 1

2
,j + fi+ 1

2
,j+1

)
Gi,j+ 1

2
= gi,j+ 1

2
+

1

24

(
gi−1,j+ 1

2
− 2gi,j+ 1

2
+ gi+1,j+ 1

2

)
.

(4.13)
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4.3. Approximation of shock waves and contact discontinuities

5. Approximate the semi–discrete system (3.2), using a high–order accu-
rate Runge–Kutta method.

Using any WENO method described in Section 3.1, this method will be 4th–
order accurate for both linear and nonlinear flux functions. We will refer to
this approach as modified–4. To get an even higher order of accuracy, we
can replace Equations (4.12) and (4.13) with

q±
i+ 1

2
,j
= Q±

i+ 1
2
,j
−

2∑
ν=−2

ανQ
±
i+ 1

2
,j+ν

(4.14)

and

Fi+ 1
2
,j = fi+ 1

2
,j +

2∑
ν=−2

βνQ
±
i+ 1

2
,j+ν

(4.15)

where the coefficients αν and βν are given in Table 4.1. We will refer to this
approach as modified–6. Note that the formulas in Equations (4.14) and
(4.15) include both the approximation of the 2nd as well as the 4th derivative.
Combined with one of the 5th–order WENO reconstructions, this leads to a
5th–order accurate method, and using one of the 7th–order WENO recon-
structions, this leads to a 6th–order accurate method.

ν −2 −1 0 1 2

αν − 3
640

29
480

−107
960

29
480

− 3
640

βν − 17
5760

77
1440

− 97
960

77
1440

− 17
5760

Table 4.1: Coefficients for the 6th–order transformation formulas.

Assuming that the solution is sufficiently smooth and the WENO recon-
struction sufficiently accurate, we have derived the following result.

Theorem 4.2. The modified–4 WENO finite volume method is 4th–order
accurate and the modified–6 WENO finite volume method is 6th–order ac-
curate for general hyperbolic systems in divergence form.

4.3 Approximation of shock waves and con-

tact discontinuities4

The derivation of our modified dimension–by–dimension WENO–FV method
is based on Taylor series expansion, i.e. it is assumed that the solution we

4 This section was adapted from [2] with minor changes.
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wish to approximate is sufficiently smooth. However, it is well known that
the solution of hyperbolic conservation laws can contain shock waves and
contact discontinuities along which the solution even becomes discontinuous.
For discontinuous solutions, it is easy to construct situations in which the
transformation (4.12) or (4.14) from cell–averaged values to point values of
the conserved quantities produces unphysical results, for example, a negative
density or a negative pressure for the Euler equations of gas dynamics.

To avoid such problems, we used a simple approach that reduces our
method to the classical dim–by–dim approach near shock waves. For a grid
cell interface in the x direction, we rewrite the transformation (4.12) or (4.14)
in the form

q±
i+ 1

2
,j
= Q±

i+ 1
2
,j
−D±

i+ 1
2
,j
. (4.16)

If the change described by D is too large, we switch to the dim–by–dim
approach. This is implemented in the following way:

1. Compute D±
i+ 1

2
,j
for all components of the conserved quantities (recall

that q ∈ Rm).

2. If |Q±
i+ 1

2
,j
| < 2|D±

i+ 1
2
,j
| and |D±

i+ 1
2
,j
| > 10−15 (in any component) then

set q±
i+ 1

2
,j
= Q±

i+ 1
2
,j

else set q±
i+ 1

2
,j
= Q±

i+ 1
2
,j
−D±

i+ 1
2
,j

3. Compute fluxes fi+ 1
2
,j = F(q−

i+ 1
2
,j
, q+

i+ 1
2
,j
)

4. Use transformation (4.13) or (4.15) only at those grid cell interfaces
where we have used the transformation form edge–averaged values to
point values in Step 2.

This simple extension of our modified–4/modified–6 approach was only
used in our test simulations of the double Mach reflection problem in Section
5.2.2 and the cloud–shock interaction problem in Section 6.2.

4.4 The stencil5

In Figures 4.1 and 4.2, we show the stencil used in one time stage of our
modified–4 method with 5th–order WENO reconstruction. In the left part
of Figure 4.1, we show the stencil that is used to compute edge–averaged
values of the conserved quantities marked as two dashed lines. In a standard

5 This section was adapted from [1] with minor changes.
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dim–by–dim approach, those edge–averaged values are used to compute the
interface flux. In our modified–4 method, we compute point values of the
conserved quantities using Equation (4.12). For this computation, we need
neighboring edge–averaged values. This enlarges the stencil, as indicated in
the right part of Figure 4.1. The point values of the conserved quantity (in-
dicated by black dots) are used to compute point values of the flux (indicated
by the open ellipse.)

Figure 4.1: The plot on the left shows the stencil for the computation of
Q±

i− 1
2
,j
. These averaged interface values are indicated by the two dashed lines.

The right plot shows the stencil for the computation of the point values q±
i− 1

2
,j
,

indicated as black dots in the figure. Those point values are used to compute
point values of the flux, denoted by fi− 1

2
,j. The point value of the flux is

marked as an open ellipse.

Figure 4.2: The plot on the left shows the stencil used to compute the cell–
averaged value of the flux at the interface, i.e. Fi− 1

2
,j. This flux is marked

as a dark solid line. The plot on the right shows the complete stencil used
to update the grid cell at the center. The dark shaded cells are used in a
classical dim–by–dim approach.
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In the plot on the left of Figure 4.2, we show the stencil needed to com-
pute edge–averaged values of the flux according to Equation (4.13). This
transformation requires neighboring point values of fluxes, which further en-
larges the stencil. In the plot on the right of Figure 4.2, we show the full
stencil of cells used to update one cell. The dark shaded grid cells are those
used by the dim–by–dim WENO method. After computing all fluxes (of the
modified–4 method) for one cell, most of the work for the neighboring cells
is already done. Therefore, the larger stencil only leads to a relatively small
increase of the computational costs, as shown below in Table 5.3.

We can replace the flux computation in (4.13) by using a formula of the
form

Fi− 1
2
,j = fi− 1

2
,j +

1

24

(
f̄i− 1

2
,j−1 − 2f̄i− 1

2
,j + f̄i− 1

2
,j+1

)
, (4.17)

and analogously for Gi,j− 1
2
, where f̄i− 1

2
,k = F(Q−

i− 1
2
,k
, Q+

i− 1
2
,k
), k = j ± 1, j, is

a flux computed using the averaged values of the conserved quantities. The
resulting finite volume method has a more local stencil (for WENO-5, the
16 outermost light shaded cells in the plot on the right of Figure 4.2 would
not be used). However, this approach requires the computation of two fluxes
per interface. We have also tested such versions of the method and obtained
good results. These computations will not be presented here.

4.5 Extension to 3D

In 3D, the interfaces between grid cells are two–dimensional objects. There-
fore, to apply the new method in 3D, we have to find a transformation
between face–averaged values and point values for functions of two spatial
variables. Applying Theorem 4.1 in 2D, we obtain the transformation

qij =Qij −
∆x2

24
qxx(xi, yj)−

∆y2

24
qyy(xi, yj)

− ∆x4

1920
qxxxx(xi, yj)−

∆x2∆y2

576
qxxyy(xi, yj)−

∆y4

1920
qyyyy(xi, yj)

+O(∆x6 +∆y6)

(4.18)

between point values and cell face–averaged values. Using Equation (4.18),
it is straightforward to construct a 4th–order accurate transformation. Just
apply the finite difference formula from (4.6) in the x and y directions.

For the 6th–order accurate transformation, we can also compute the ap-
proximations to the 2nd derivative in the x and y directions, as well as 4th

derivative in the x and y directions, by applying the formulas of Section 4.1
in each direction. But there is another term ∆x2∆y2

576
qxxyy(xi, yj); therefore,
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we need an approximation to qxxyy(xi, yj). Since the term is multiplied with
∆x2∆y2

576
, a 2nd–order accurate approximation is sufficient here. As in Section

4.1, we can compute the derivative using a finite difference formula, i.e.

qxxyy(xi, yj) =
1

∆x2∆y2
(qi−1,j+1 + qi+1,j+1 + qi−1,j−1 + qi+1,j−1

−2(qi,j+1 + qi,j−1 + qi+1,j + qi−1,j) + 4qi,j)

+O(∆x2 +∆y2).

(4.19)

For the approximation of the derivative from cell–averaged values, the same
formula can be used since we need only 2nd–order accuracy here.

4.6 The methods used in this work

So far, we have presented different reconstruction methods in 1D and different
ways of extending these methods to higher dimensions. Several combinations
of the methods are possible. In this section, we give an overview of the
combinations used in this work. In Section 3.1, we presented two 5th–order
methods to which we refer as WENO-JS5 and WENO-Z5, and two 7th–order
methods to which we refer as WENO-JS7 and WENO-Z7.

Each of the methods can be applied in a dimension–by–dimension fashion,
as discussed in Section 3.3. Such a combination will be denoted as dim–by–
dim.

In Section 3.4, we presented a multidimensional reconstruction. The 5th–
order methods are combined with a Gaussian quadrature formula of order 6
and the 7th–order methods are combined with a Gaussian quadrature formula
of order 8. Thus, we formally retain the full order of accuracy of the under-
lying WENO reconstruction. These methods will be denoted as multi–dim.

Finally, in Section 4.2, we presented a new approach to retain the high–
order of accuracy. The 4th–order transformation will be used mainly with
a 5th–order WENO reconstruction and denoted as modified–4 . The 6th–
order transformation will be denoted as modified–6 and used mainly with
a 7th–order WENO reconstruction.

In Table 4.2, an overview is given of the theoretical order of accuracy
of the different combinations, when applied to linear problems in higher di-
mensions. When applied to nonlinear problems in higher dimensions, the
theoretical order of accuracy is given in Table 4.3.
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WENO-JS5 WENO-Z5 WENO-JS7 WENO-Z7

dim–by–dim 5th–order 5th–order 7th–order 7th–order

multi–dim 5th–order 5th–order 7th–order 7th–order

modified–4 4th–order 4th–order 4th–order 4th–order

modified–6 5th–order 5th–order 6th–order 6th–order

Table 4.2: Theoretical order of accuracy for linear multidimensional prob-
lems.

WENO-JS5 WENO-Z5 WENO-JS7 WENO-Z7

dim–by–dim 2nd–order 2nd–order 2nd–order 2nd–order

multi–dim 5th–order 5th–order 7th–order 7th–order

modified–4 4th–order 4th–order 4th–order 4th–order

modified–6 5th–order 5th–order 6th–order 6th–order

Table 4.3: Theoretical order of accuracy for nonlinear multidimensional prob-
lems.

4.7 Comparing the methods in 2D

In this section, we test and compare the methods introduced so far by ap-
plying them to the Euler equations of gas dynamics in 2D.

The two–dimensional Euler equations are given by

∂t

⎛⎜⎜⎝
ρ
ρu
ρv
E

⎞⎟⎟⎠+ ∂x

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

u(E + p)

⎞⎟⎟⎠+ ∂y

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
v(E + p)

⎞⎟⎟⎠ = 0, (4.20)

with the total energy density

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2

)
, (4.21)

where ρ is the density, u the velocity in the x direction, v the velocity in the
y direction, and p the pressure.
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4.7.1 Linear problem

Example 4.1. We consider periodic solutions of (4.20) on the computational
domain [0, 1]× [0, 1]. The initial values are given by

ρ(x, y, 0) = 1 + 0.5 sin(κ2πx) cos(κ2πy)

p(x, y, 0) = 1

u(x, y, 0) = v(x, y, 0) = 1.

(4.22)

In this case, velocity and pressure remain constant for all times and the
initial density profile is advected by the velocity field. Thus, we are approx-
imating a problem in the linear regime.
This is a modified version of the linear test case from [1]. The original setup
can be retrieved by setting κ = 1. Here, we set κ = 5 to increase the
variation in the density profile, which makes the problem more challenging.
Therefore, we can perform computations with higher resolutions before run-
ning into problems with machine precision.
For all computations in this chapter, we will use the HLL Riemann solver
proposed by Harten et al. [32], including the considerations of Davis [33].
More details can be found in [22]. The experimental order of convergence
(EOC) is computed using the formula

EOC =
log(∥ρn2 − ρex∥1/∥ρ(2n)2 − ρex∥1)

log(2)
,

where ρn2 is the numerical solution in density, computed on an n× n coarse
grid, while ρex is the exact value of the density evaluated on the same grid.

Table 4.4 shows the results of a numerical convergence study. We compute
the L1 grid function norm of the error in density by comparing the solution
obtained on each grid with the exact solution. In all of these computations,
we used RK(10,5) of Section B.2 as the time–stepping scheme. The upper
part of the table shows the results for 5th–order WENO-JS reconstruction.
As expected in the linear case, the simple dim–by–dim approach converges
with 5th–order. The full order of convergence of the WENO-JS reconstruction
is also retained by the multi–dim approach. In fact, the results are almost
identical. But the modified–4 approach also converges with 5th–order. This
is surprising since the method is formally only 4th–order accurate. Only on
the finest grid do we see a drop in the convergence rate.

In the lower part of the table, we show the results for the 5th–order
WENO-Z reconstruction. Again, the dim–by–dim approach and the multi–
dim approaches converge with 5th–order, but the error is lower than in the
WENO-JS computations. The convergence rate of the modified–4 approach
is around five on coarse grids and drops down to four on finer grids.

49



Chapter 4. A new approach for a high–order WENO finite volume method in 2D

dim–by–dim modified–4 multi–dim
grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

W
E
N
O
-J
S
5 1282 1.044E-03 1.047E-03 1.043E-03

2562 3.269E-05 5.00 3.285E-05 4.99 3.268E-05 5.00
5122 1.022E-06 5.00 1.035E-06 4.99 1.022E-06 5.00
10242 3.193E-08 5.00 3.345E-08 4.95 3.193E-08 5.00
20482 9.973E-10 5.00 1.179E-09 4.83 9.973E-10 5.00

W
E
N
O
-Z
5 1282 1.488E-04 1.563E-04 1.488E-04

2562 4.690E-06 4.99 5.398E-06 4.86 4.690E-06 4.99
5122 1.470E-07 5.00 2.210E-07 4.61 1.470E-07 5.00
10242 4.597E-09 5.00 1.129E-08 4.29 4.597E-09 5.00
20482 1.432E-10 5.00 6.582E-10 4.10 1.432E-10 5.00

Table 4.4: Convergence study for Example 4.1 with WENO-JS5/WENO-Z5
reconstruction and RK(10,5). The HLL flux and a time step with CFL ≈ 1.5
were used for these computations.

dim–by–dim modified–6 multi–dim
grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

W
E
N
O
-J
S
7 1282 2.680E-05 2.672E-05 2.662E-05

2562 4.134E-07 6.02 4.129E-07 6.02 4.133E-07 6.01
5122 5.761E-09 6.16 5.767E-09 6.16 5.761E-09 6.16
10242 6.282E-11 6.52 6.302E-11 6.52 6.282E-11 6.52

W
E
N
O
-Z
7 1282 1.905E-06 1.981E-06 1.905E-06

2562 1.512E-08 6.98 1.684E-08 6.88 1.512E-08 6.98
5122 1.186E-10 6.99 1.642E-10 6.68 1.186E-10 6.99
10242 9.725E-13 6.93 2.083E-12 6.30 1.029E-12 6.85

Table 4.5: Convergence study for Example 4.1 with WENO-JS7/WENO-Z7
reconstruction and RK(11,7). The HLL flux and a time step with CFL ≈ 0.9
were used for these computations.

In Table 4.5 (top), we show the results for the 7th–order WENO-JS recon-
struction in combination with RK(11,7) of Section B.3 as the time–stepping
scheme. As for WENO-JS5, any combination leads to almost identical re-
sults. But we never see the theoretical order of convergence. The accuracy
loss is related to a well–known issue of the classical WENO-JS scheme. As
already mentioned in Section 3.1, the choice of ϵ (see (3.17) and (3.22)) might
affect the order of convergence. This was discussed by many authors, such
as Henrick et al. [17]. This loss of accuracy motivated the development of
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the WENO-Z method.
In Table 4.5 (bottom), we show results for the 7th–order WENO-Z re-

construction. As for WENO-Z5, any combination leads to almost identical
results. We also see the full theoretical order of convergence for both the
dim–by–dim approach as well as for the multi–dim approach. Similar to
the results for WENO-Z5, we see superconvergence for the modified–6 ap-
proach on coarse grids decreasing with refinement.

4.7.2 Nonlinear problem

Example 4.2. We now consider the two-dimensional vortex evolution prob-
lem (see e.g. [34]) on the periodic domain [−7, 7] × [−7, 7]. The initial data
consists of a mean flow ρ = u = v = p = 1, which is perturbed by adding⎛⎜⎜⎝

δρ
δu
δv
δp

⎞⎟⎟⎠ =

⎛⎜⎜⎝
(1 + δT )1/(γ−1) − 1

−y σ
2π
e0.5(1−r)

x σ
2π
e0.5(1−r)

(1 + δT )γ/(γ−1) − 1

⎞⎟⎟⎠ . (4.23)

Here, δT , the perturbation in the temperature, is given by

δT = −(γ − 1)σ2

8γπ2
e1−r2 , (4.24)

with r2 = x2 + y2 and the vortex strength σ = 5.

The initial data is also used as a reference solution at time t = 14, where
it agrees with the exact solution. As in the previous example, we will com-
bine the 5th–order WENO methods with RK(10,5) and the 7th–order WENO
reconstruction with RK(11,7).

In Table 4.6 (top), we show the results for the 5th–order WENO-JS re-
construction. As expected in the nonlinear case, the order of convergence of
the dim–by–dim approach drops down to two. The modified–4 approach
and the multi–dim approach provide very similar results with a convergence
order of around five.

In Table 4.6 (bottom), we show the results for the 5th–order WENO-Z
reconstruction. Again, the convergence order of the dim–by–dim approach
drops, while the modified–4 and multi–dim approaches provide similar
results. Compared to the WENO-JS5 reconstruction, the results are always
better for the modified–4 and multi–dim approaches. The dim–by–dim
approach provides similar results with both reconstructions, since the 2nd–
order error term dominates.
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dim–by–dim modified–4 multi–dim
grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

W
E
N
O
-J
S
5 1282 3.730E-05 1.639E-05 1.632E-05

2562 7.095E-06 2.39 5.753E-07 4.83 5.707E-07 4.84
5122 1.758E-06 2.01 1.868E-08 4.95 1.838E-08 4.96
10242 4.396E-07 2.00 5.988E-10 4.96 5.758E-10 5.00
20482 1.099E-07 2.00 1.973E-11 4.92 1.802E-11 5.00

W
E
N
O
-Z
5 1282 2.953E-05 8.172E-06 8.158E-06

2562 7.038E-06 2.07 2.403E-07 5.09 2.371E-07 5.10
5122 1.756E-06 2.00 7.716E-09 4.96 7.408E-09 5.00
10242 4.396E-07 2.00 2.569E-10 4.91 2.302E-10 5.01
20482 1.099E-07 2.00 9.958E-12 4.69 8.736E-12 4.72

Table 4.6: Convergence study for Example 4.2 with WENO-JS5/WENO-Z5
reconstruction and RK(10,5). The HLL flux and a time step with CFL ≈ 1.5
were used for these computations.

dim–by–dim modified–6 multi–dim

grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

W
E
N
O
-J
S
7 642 1.336E-04 5.728E-05 5.722E-05

1282 2.808E-05 2.25 5.232E-07 6.77 5.231E-07 6.77

2562 7.014E-06 2.00 3.655E-09 7.16 3.652E-09 7.16

5122 1.757E-06 2.00 2.783E-11 7.04 2.772E-11 7.04

10242 4.396E-07 2.00 2.181E-13 7.00 2.158E-13 7.01

W
E
N
O
-Z
7 642 1.182E-04 3.084E-05 3.079E-05

1282 2.805E-05 2.07 4.853E-07 5.99 4.850E-07 5.99

2562 7.014E-06 2.00 4.286E-09 6.82 4.278E-09 6.82

5122 1.757E-06 2.00 3.459E-11 6.95 3.439E-11 6.96

10242 4.396E-07 2.00 2.774E-13 6.96 2.712E-13 6.99

Table 4.7: Convergence study for Example 4.2 with WENO-JS7/WENO-Z7
reconstruction and RK(11,7). The HLL flux and a time step with CFL ≈ 0.9
were used for these computations.

In Table 4.7, we show the results obtained for the 7th–order WENO-JS
and WENO-Z reconstruction. In both cases, RK(11,7) was used for the
time integration. For the dim–by–dim approach, the 2nd–order error term
dominates; therefore, the results are similar to those of the 5th–order recon-
structions as well. The modified–6 and the multi–dim approaches provide
similar results for each reconstruction. WENO-JS andWENO-Z show similar
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results. In all further computations, however, we will only use the WENO-Z
reconstructions.
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Chapter 5

The computational framework
(RACOON)

We implemented the methods discussed in Chapters 3 and 4 into the parallel
AMR framework Racoon developed by Dreher and Grauer [12]. The adaptive
mesh refinement and the parallelization are based on blocks, where each
block consists of a Cartesian grid. This is a key advantage since all discussed
methods from Chapters 3 and 4 are restricted to Cartesian grids. Therefore,
using Racoon, we can apply any of the methods as it is.

5.1 The general structure of the AMR grid6

In Racoon, mesh refinement is realized by a regular bisection of grid blocks.
By using a refinement ratio of 2, a block of level ℓ is replaced by 2d blocks
of level ℓ + 1, where d is the spatial dimension. Thus, the grid resolution
increases by a factor of 2 with increasing refinement level ℓ. For simplicity,
we assume in this chapter that the number of cells in each direction within
a block is the same; therefore, a d-dimensional block consists of 8d or 16d

finite volume mesh cells. But it does not have to be this way. The only
restrictions are that the number of cells in each direction has to be even
and bigger than the number of ghost cells. In Figure 5.1a, the refinement
strategy is illustrated. The coarsest resolution consists of level ℓ = 2 blocks,
i.e. a domain decomposition is used to divide the computational domain into
16 coarse patches. Some of these patches are further refined recursively.

Every few time steps, an error indicator is computed for all grid cells. If
a block contains at least one grid cell that is marked for refinement, then
the whole block will be refined. Furthermore, neighboring blocks may be

6 This section was taken from [2] in revised form.
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(a) Hierarchy of grid blocks. (b) A single block.

Figure 5.1: (a) Hierarchy of grid blocks in which each grid block consists of
a Cartesian mesh with a fixed number of cells. Shown here is an adaptive
mesh consisting of blocks of level 2–5. (b) A single block consisting of 16×16
grid cells, and four rows and columns of ghost cells.

refined as well. If a grid cell in the upper right part of a block is marked for
refinement, then the block on the right side, the upper block, and the block
in the upper right diagonal direction will also be refined, unless these blocks
have the same refinement level already. Analogously, additional blocks are
refined if a cell in the upper left, lower right, or lower left part of a block is
marked for refinement. This is necessary since a usual reason for refinement
could be a shock wave. To guarantee that this shock wave does not leave
the refined area until the next check, we have to refine these neighboring
blocks. Finally, the blocks are required to be properly nested, in the sense
that neighboring blocks should either both have the same level of refinement
or their level of refinement differs by one. This may lead to an additional
refinement of some blocks.

5.1.1 Transfer of data between grid patches

Each patch typically consists of 8 × 8 or 16 × 16 grid cells, which belong
to the physical domain. In addition, each patch is equipped with four rows
and columns of ghost cells, which are used to transfer data between patches
(see Figure 5.1b). The 5th–order accurate WENO reconstruction can be
implemented by using only three ghost cells. However, the implementation
of the data transfer between patches can be done more efficiently using four
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rows and columns of ghost cells.
If a patch is located at the physical boundary of the domain, then the

ghost cells are used to implement the boundary conditions (in the same way
as this is typically done for a single grid). Ghost cells that belong to internal
boundaries of patches are set by using the grid cell values of the conserved
quantities from neighboring patches.

Most of the required data transfer operators are trivial and consist in
copying cell–averaged values of the conserved quantities from neighboring
patches to ghost cells. Here, we only describe the procedure used to create
fine grid values from coarse grid cell–averaged values.

If a patch is refined, then we need to assign cell–averaged values of the
conserved quantities to the newly refined grid cells using cell–averages of the
conserved quantities from coarser grid cells. With finite volume methods, it is
straightforward to do this in a conservative way, without losing accuracy. On
the coarser level ℓ, let Qℓ

ij denote the cell–average of the conserved quantities
in grid cell Cℓ

ij. Furthermore, the geometrical center of this cell is the point
(xi, yj) and the mesh width is denoted by ∆xℓ, ∆yℓ. On the refined level, we
use the index ℓ+ 1.

In grid cell Cℓ
ij on the coarse grid level ℓ, we reconstruct a polynomial of

the form

p(x, y) =
4∑

m,n=0

cmn(x− xi)
m(y − yj)

n. (5.1)

The 25 coefficients c00, . . . , c44 are determined using the condition∫∫
Ckl

p(x, y)dxdy = ∆xℓ∆yℓQkl, k = i−2, . . . , i+2, l = j−2, j+2. (5.2)

Now, 5th–order accurate cell–averaged values on the refined grids can be
computed by integrating p(x, y) over the four grid cells on the refined level
that cover Cℓ

ij. For the refined grid cell on the upper right (denoted by ur),
we compute

Qℓ+1
ur =

1

∆xℓ+1∆yℓ+1

∫ y
j+1

2

yj

∫ x
i+1

2

xi

p(x, y) dxdy, (5.3)

and analogously for the other three refined cells. The same approach can be
used to fill ghost cells of a fine mesh from coarser grid cells of a neighboring
patch.

In order to obtain a polynomial of the desired accuracy, we only need
the coefficients cmn with m + n ≤ 4, i.e. only 15 coefficients. Thus, as
an alternative to the approach used here, a conservative reconstruction of
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5.1. The general structure of the AMR grid

the form presented in [35] can be used, together with a least square fit to
determine the coefficients of the polynomial. Analogously, we can reconstruct
polynomials of higher degree to obtain higher–order accurate cell–averaged
values on the refined grids.

The conservative computation of coarse grid cell–averages from fine grid
cells can be performed by simple averaging.

5.1.2 A conservative flux evaluation at grid patch in-
terfaces

For the adaptive method to be conservative, we need to ensure that the same
flux is used at interfaces between different grid patches. This requires some
exchange of fluxes between neighboring patches and is a well–understood
component of adaptive finite volume methods for hyperbolic problems (see,
e.g. [36, 11]). Along the boundary of patches with different resolutions, we
use the fluxes computed from the fine mesh to update the conserved quan-
tities on both sides of the interface. In a parallel framework, this might add
some additional communication across CPUs. However, it is much easier to
realize such an exchange efficiently when a low–storage Runge–Kutta method
is used for the time integration.

5.1.3 Refinement criteria

To decide whether a block should be marked for refinement, we compute in
2D the quantity

δ =
|qi−1,j − 2qi,j + qi+1,j|+ |qi,j−1 − 2qi,j + qi,j+1|

|qi,j|∆x∆y
(5.4)

for each grid cell, where q is the conserved quantity and ∆x∆y is the size of
the cell. If δ is larger than a predefined threshold δ0, then the grid cell (i, j) is
marked for refinement. A block will be refined as soon as it contains a single
mesh cell that is marked for refinement. The value δ0 is problem–dependent
and will be provided for each test case. Similar refinement criteria were used
in [37]. For the Euler equations, it is usually sufficient to check only the mass
density ρ. But if there is a discontinuity in one of the other components and
not in the density, such as in Example 3.3, we have to check each component.

A more sophisticated refinement criteria, as discussed by Li [38] or Puppo
and Semplice [39], could provide better results. But this will not be covered
in the present thesis.
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5.2 Comparing the methods in 2D with AMR

As in Section 4.7, we test the methods by applying them to the two–dimen-
sional Euler equations of gas dynamics.

5.2.1 Nonlinear problem

We first consider Example 4.2 of Section 4.7.2.

Figure 5.2: Numerical results for the vortex evolution problem using the
modified–4 approach on an adaptively refined grid. The coarse grid corre-
sponds to a resolution with a mesh width of 14/256. The numerical solution
is shown at times 0, 2.8, 5.6, 8.4, 11.2, 14.

Figure 5.2 shows the results of a simulation with two levels of refinement
starting on a grid with 256×256 mesh cells. In this situation, the coarse grid
corresponds to a level 4 grid with 16 × 16 blocks. Some of these blocks are
further refined and contain blocks of refinement level 5 or 6. Each block is
discretized with a Cartesian mesh with 16×16 mesh cells plus ghost cells. The
642 grid computation starts with a level 2 grid and the 1282 grid computation
starts with a level 3 grid. Thus, in the convergence study of Tables 5.1–5.2,
each block is always discretized using a Cartesian mesh with 16 × 16 mesh
cells.
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5.2. Comparing the methods in 2D with AMR

We now present some computations with one or two levels of adaptive
mesh refinement (AMR). The threshold for refinements is set to δ0 = 0.01
(see Section 5.1.3). As mentioned above, we will consider only the WENO-
Z reconstruction. All computations will be combined with the low–storage
Runge–Kutta method, RK(10,5).

Tables 5.1–5.2 show the results of the convergence studies. The number
of grid cells indicates the number of cells used to discretize the domain on the
coarsest mesh. Thus, the AMR computation with two levels of refinement,
starting with 1282 grid cells, should be compared with the accuracy obtained
by a uniform mesh with 5122 grid cells.

The error ∥ρn2 − ρex∥ is computed using the L1 grid function norm of
the difference between the numerical and exact solution on the AMR grid,
although n2 is the number of grid cells that would be used to discretize the
problem on the coarsest grid.

dim–by–dim modified–4 multi–dim
AMR grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

1
le
ve
l

642 2.95E-005 8.15E-006 8.14E-006
1282 7.03E-006 2.07 2.41E-007 5.08 2.38E-007 5.09
2562 1.76E-006 2.00 8.17E-009 4.89 7.81E-009 4.93
5122 4.41E-007 1.99 3.34E-010 4.61 2.96E-010 4.72
10242 1.13E-007 1.97 1.73E-011 4.27 1.28E-011 4.54

2
le
ve
l 642 7.03E-006 2.41E-007 2.38E-007

1282 1.76E-006 2.00 1.01E-008 4.57 9.88E-009 4.59
2562 4.41E-007 1.99 6.93E-010 3.87 5.84E-010 4.08
5122 1.13E-007 1.96 9.62E-011 2.85 5.96E-011 3.29

Table 5.1: Convergence study for Example 4.2 with WENO-Z5 reconstruc-
tion and RK(10,5). The HLL flux and a time step with CFL ≈ 1.5 were
used for these computations. We used an AMR grid with one and two levels
of refinement. Compare with Table 4.6 (bottom) for the computation on a
uniform grid.

In Table 5.1, we show the results for the WENO-Z5 reconstruction with
one and two levels of refinement. The dim–by–dim method converges as
expected with 2nd–order. The modified–4 and multi–dim approaches per-
form very well with one level of refinement. The error on each grid is of the
same magnitude as in a corresponding computation on a uniformly refined
grid (see Table 4.6 (bottom)). The EOC is lower than on the uniform grid,
especially with two levels of refinement, where we see a drop in the order of
convergence.
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Chapter 5. The computational framework (RACOON)

One reason for this loss is the use of different grid structures for different
resolutions. It is also possible to enforce the same grid structure for every
resolution. Instead of increasing the number of blocks, we could increase the
number of cells per block. With this strategy, we are able to retrieve about
the same EOC as on uniform grids (see [2]). But this strategy is less efficient
in a practical computation and will not be presented here.

dim–by–dim modified–4 multi–dim
AMR grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

u
n
if
or
m

642 1.182E-04 3.084E-05 3.079E-05
1282 2.805E-05 2.07 4.853E-07 5.99 4.850E-07 5.99
2562 7.014E-06 2.00 4.285E-09 6.82 4.277E-09 6.83
5122 1.757E-06 2.00 3.474E-11 6.95 3.454E-11 6.95
10242 4.396E-07 2.00 2.432E-12 3.84 2.432E-12 3.83

1
le
ve
l 642 2.805E-05 4.835E-07 4.833E-07

1282 7.011E-06 2.00 4.311E-09 6.81 4.306E-09 6.81
2562 1.758E-06 2.00 3.897E-11 6.79 3.841E-11 6.81
5122 4.415E-07 1.99 2.441E-12 4.00 2.440E-12 3.98

2
le
ve
l 642 7.011E-06 4.310E-09 4.304E-09

1282 1.757E-06 2.00 7.456E-11 5.85 7.241E-11 5.89
2562 4.412E-07 1.99 4.115E-12 4.18 4.063E-12 4.16

Table 5.2: Convergence study for Example 4.2 with WENO-Z7 reconstruc-
tion and RK(10,5). The HLL flux and a time step with CFL ≈ 0.9 were
used for these computations.

Table 5.2 presents the results for the WENO-Z7 reconstruction on a uni-
form grid as well as with one and two levels of refinement. The dim–by–dim
method converges as expected with 2nd–order. The modified–4 and multi–
dim approaches perform quite similarly on any grid. Furthermore, the error
of computations with one or two levels of refinement is always of the same
magnitude as in the corresponding computation on a uniformly refined grid.
The drop in the convergence rate on the fines grid is induced by the round–
off error of the low–storage Runge–Kutta method. This issue was recently
discussed by Ketcheson et al. [40].

Finally, in Table 5.3, we show the results of a performance test for the
vortex evolution problem. The CPU time is computed as the average of
10 runs. All computations were performed on equivalent machines with two
Intel Xeon E5-2697 CPUs (12 cores each). The setup is the same as before for
computations using WENO-Z5 as well as for computations using WENO-Z7.
For a better comparison, the CPU time is scaled on each grid with respect
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5.2. Comparing the methods in 2D with AMR

WENO-Z5 WENO-Z7
AMR grid modified–4 multi–dim modified–6 multi–dim

u
n
if
or
m

1282 1.12 3.19 1.06 2.44
2562 1.09 3.41 1.04 2.76
5122 1.10 3.52 1.09 3.11
10242 1.10 3.54 1.09 3.14

1
le
ve
l 642 1.00 2.40 1.02 2.43

1282 1.06 2.75 1.08 2.79
2562 1.09 3.22 1.08 2.97
5122 1.09 3.37 1.08 3.08

2
le
ve
l 642 1.07 2.75 1.07 2.72

1282 1.07 3.01 1.08 2.87
2562 1.08 3.25 1.08 2.99
5122 1.09 3.37 1.08 2.35

Table 5.3: Performance test for the different methods. The test is scaled
by the performance of the classical dim–by–dim method, i.e. the classical
dim–by–dim method has the value one for each grid and each refinement
level.

10
1

10
2

10
3

10
4

10
5

10
6

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

 

 

dim–by–dim

modified–4

multi–dim

Figure 5.3: Plot of accuracy versus CPU time for the three methods used
to approximate the vortex evolution problem.

to the performance of the corresponding dim–by–dim method. In terms of
computational time, the dim–by–dim method is most efficient. However,
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Chapter 5. The computational framework (RACOON)

the modified–4 approach is only about 1.1 times more expensive, while
the accuracy increases significantly. The same holds for the modified–6
approach. Here, the additional costs are about the same in relation to the
dim–by–dim approach using WENO-Z7. In both cases, the multi–dim
approach increases the computational costs by a factor of about three. This
agrees with the fact that the WENO reconstruction is applied three times
more often, which forms the most expensive part of the computation.
Note that these ratios differ from the results in [2]. The reason is that these
relations are very sensitive to the implementation of the reconstruction. A
more efficient reconstruction may result in a worse ratio for the modified–
4/modified–6 method. However, the necessary transformations are very
simple; therefore, those methods will always be faster than the multi–dim
method.

Figure 5.3 shows plots of the accuracy versus the CPU time in s for
the three different methods using WENO-Z5 applied to the vortex evolu-
tion problem. We use logarithmic scales on both the horizontal and vertical
axes. It clearly shows that, for a given accuracy, the two high–order accurate
methods require less CPU time than the second–order accurate dim–by–dim
approach. The fully multidimensional method is about three times more
expensive than the modified–4 approach, but almost identical results are
produced.

5.2.2 Discontinuous problems

We now study the performance of the three different methods for the approx-
imation of two–dimensional Riemann problems proposed by Schulz-Rinne
[41, 42]. For all computations of this subsection, we used the 5th–order ac-
curate WENO-Z method.

Example 5.1. We consider a configuration of four interacting shocks. In
this case, the initial values have the form

(ρ, p, u, v)(x, y, 0) =

⎧⎪⎪⎨⎪⎪⎩
(1.1, 1.1, 0.0, 0.0) x > 0.5, y > 0.5

(0.5065, 0.35, 0.8939, 0.0) x < 0.5, y > 0.5
(1.1, 1.1, 0.8939, 0.8939) x < 0.5, y < 0.5
(0.5065, 0.35, 0.0, 0.8939) x > 0.5, y < 0.5

. (5.5)

In Figure 5.4 (top), we show the results obtained on adaptively refined
grids of level 3–5. In these plots, we also show the boundaries of the different
grid patches. In Figure 5.4 (bottom), we show the results for the three
different methods on adaptive grids of levels 3–7. The three different methods
all produce the same solution structure.
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5.2. Comparing the methods in 2D with AMR

Figure 5.4: Numerical results for the two–dimensional Riemann problem
with initial values (5.5) on adaptive grids of levels 3–5 (top) and 3–7 (bot-
tom), where each patch contains 16 × 16 grid cells. Left: dim–by–dim
approach, middle: modified–4 approach, right: multi–dim method.
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Chapter 5. The computational framework (RACOON)

Example 5.2. In the second configuration, the solution structure consists of
two contact discontinuities, a rarefaction wave and a shock wave. For this
configuration, the initial values have the form

(ρ, p, u, v)(x, y, 0) =

⎧⎪⎪⎨⎪⎪⎩
(1.0, 1.0, 0.0,−0.4) x > 0.5, y > 0.5
(2.0, 1.0, 0.0,−0.3) x < 0.5, y > 0.5

(1.0625, 0.4, 0.0, 0.2145) x < 0.5, y < 0.5
(0.5197, 0.4, 0.0, 0.2741) x > 0.5, y < 0.5

. (5.6)

We again consider the results for the three different methods on adaptive
grids of levels 3–5 and 3–7. Contour plots of the solution structure are
shown in Figure 5.5. For both examples, we set the threshold for refinement
to δ0 = 104.

Figure 5.5: Numerical results for the two–dimensional Riemann problem
with initial values (5.6) on adaptive grids of levels 3–5 (top) and 3–7 (bot-
tom), where each patch contains 16 × 16 grid cells. Left: dim–by–dim
approach, middle: modified–4 approach, right: multi–dim method.

Our numerical results suggest that, for problems with discontinuities in
the solution structure, the numerical solutions obtained with the popular
dim–by–dim approach compare very well with the results obtained with
the two higher–order methods. This was also observed in Zhang et al. [7],
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5.2. Comparing the methods in 2D with AMR

where the dim–by–dim approach was compared with a fully multidimen-
sional method.

We tested all of the two–dimensional Riemann problems proposed by
Schulz-Rinne [41, 42] and obtained similar results. Further results have been
published in [1] and [2]. For the two examples presented here, it was not
necessary to apply the considerations discussed in Section 4.3.

Example 5.3 (Double Mach reflection). A classical test problem of Wood-
ward and Colella [43] is the reflection of a Mach 10 shock off a 30–degree
wedge. Here, the computational domain is the rectangle [0, 3]× [0, 1].

For this computation, each block contains 36 × 12 mesh cells plus four
rows and columns of ghost cells. The grid consists of blocks of levels 3–
7. For all computations we set the threshold for refinement to δ0 = 2000.
Level 3 corresponds to a discretization of the whole domain with 288 × 96
mesh cells, while level 7 corresponds to a discretization with 4608 × 1536
mesh cells. Figure 5.6 shows the results of the computation, including the
block structure using the modified–4 approach, with a close–up view of the
Mach stem region. Figure 5.7 presents a close–up view of the Mach stem

(a) (b)

Figure 5.6: AMR computation of Example 5.3 using the modified–4 ap-
proach.

region using the modified–4 approach once again. Here, a uniform mesh
with 4608 × 1536 mesh cells was used in (a) and the adaptive mesh was
used in (b). The resolution of the finest level for the AMR computation of
Figure 5.7 (b) agrees with the resolution used in the whole domain for the
computation shown in (a). For this test case, the considerations of Section
4.3 are actually necessary. Otherwise, we would obtain negative pressure
across the shock after the transformation to point values. In comparison,
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(a) Uniform (b) AMR

Figure 5.7: Close–up view of the double Mach reflection problem computed
with the modified–4 approach. For (a) we used a uniform Cartesian mesh
with 4608×1536 mesh cells and in (b) we used the adaptive mesh with blocks
at level 3–7.

Figures 5.8 and 5.9 show the same close–up view from computations that
employed the multi–dim WENO method of Section 3.4 and the classical
dim–by–dim approach of Section 3.3, respectively.

5.3 Comparing the methods in 3D with AMR

In this section, we apply the methods to the Euler equations of gas dynamics
in 3D. The three–dimensional Euler equations are given by

∂t

⎛⎜⎜⎜⎜⎝
ρ
ρu
ρv
ρw
E

⎞⎟⎟⎟⎟⎠+∂x

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

u(E + p)

⎞⎟⎟⎟⎟⎠+∂y

⎛⎜⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎞⎟⎟⎟⎟⎠+∂y

⎛⎜⎜⎜⎜⎝
ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎞⎟⎟⎟⎟⎠ = 0,

(5.7)
with the total energy density

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
, (5.8)

where ρ is the density, u the velocity in the x direction, v the velocity in the
y direction, w the velocity in the z direction, and p the pressure.
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(a) Uniform (b) AMR

Figure 5.8: Close–up view of the double Mach reflection problem computed
with the multi–dim WENO method. For (a) we used a uniform Cartesian
mesh with 4608×1536 mesh cells and in (b) we used the adaptive mesh with
blocks at level 3–7.

(a) Uniform (b) AMR

Figure 5.9: Close–up view of the double Mach reflection problem computed
with the classical dim–by–dim approach. For (a) we used a uniform Carte-
sian mesh with 4608× 1536 mesh cells and in (b) we used the adaptive mesh
with blocks at level 3–7.
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5.3.1 Rotated vortex

This example is an extension of a 2D vortex introduced by Kadioglu et al.
[44].

Example 5.4. We place the vortex described in [44] at the origin and set all
values to be constant in the third dimension. A fully three–dimensional ver-
sion of the problem is obtained by rotating the structure within the domain by
45◦ around the y–axis. To obtain a periodic solution in the domain [−1, 1]3,
the data is assumed to be periodic with period

√
2 in the rotated coordinates.

This is realized as follows. For r =
√

x̃2 + ỹ2/r0 < 1, we set the tangential
velocity to

ϑ(r) = 1024(1− r)6r6,

where
x̃ =

((
cos(

π

4
)x+ sin(

π

4
)z + 1

)
mod

√
2
)
− 1, ỹ = y.

The initial data for the rotated vortex is then given by⎛⎜⎜⎜⎜⎝
ρ
u
v
w
p

⎞⎟⎟⎟⎟⎠ (x, y, z, 0) =

⎛⎜⎜⎜⎜⎝
ρ0 +

1
2
(1− r2)6

u0 − cos(π
4
) ỹ
r
ϑ(r)

v0 +
x̃
r
ϑ(r)

w0 − sin(π
4
) ỹ
r
ϑ(r)

p0 +
∫ r

1
ρ(s)ϑ(s)2

s
ds

⎞⎟⎟⎟⎟⎠ . (5.9)

Outside of the vortex (i.e. r ≥ 1), we set (ρ, u, v, w, p) = (ρ0, u0, v0, w0, p0).

For the computation, we set the vortex radius to r0 = 0.4, ρ0 = 1
2
and

u0 = v0 = w0 = p0 = 1, so that at final time t = 2.0, the solution structure
is consistent with the initial data. In Figure 5.10, the solution structure
is shown at different times. In [44], the pressure p is given explicitly as a
polynomial of degree 36. However, according to private correspondence with
the authors, one of the coefficients in the original paper was incorrect. It
should be

(
−269

15
r30
)
instead of

(
−259

15
r30
)
.

Table 5.4 shows the results of a numerical convergence study. In all of
these computations, we used RK(10,5) as time–stepping scheme and the 5th–
order WENO-Z reconstruction. In the upper part of the table, we show
the results obtained on uniform grids. Similar to the 2D case, the order of
convergence of the dim–by–dim approach drops to two, while themodified–
4 and multi–dim approaches provide very similar results with a convergence
order of around five. In the lower part of the table, we show the results
obtained on an AMR grid with two levels of refinement. The threshold for
refinement was set to δ0 = 100. The number of grid cells indicates the number
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(a) t = 0 (b) t = 0.666

(c) t = 1.333 (d) t = 2

Figure 5.10: 3D contour plot of the density.

of cells that are used to discretize the domain on the coarsest mesh. Thus,
the AMR computation, starting with 643 grid cells, should be compared with
the accuracy obtained on a uniform mesh with 2563 grid cells. In fact, each
method produces results similar to those of the corresponding uniform grid.

When applying the multi–dim approach in 2D, we first reconstruct
interface–averaged values Q±

i+ 1
2
,j
in the x direction. In a second step, the

reconstruction is applied to Q+
i+ 1

2
,j
and Q−

i+ 1
2
,j
to obtain point values at the

quadrature nodes. Analogously, the reconstruction in the y direction is per-
formed. Thus, the reconstruction is applied three times more often than in
the dim–by–dim approach. In Section 5.2.1, we showed that the method is
also about three times more expensive in terms of CPU time.
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dim–by–dim modified–4 multi–dim
AMR grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

u
n
if
or
m

643 1.561E-03 1.568E-03 1.575E-03
1283 1.239E-04 3.65 1.140E-04 3.78 1.113E-04 3.82
2563 1.197E-05 3.37 1.677E-06 6.09 1.613E-06 6.11
5123 2.884E-06 2.05 4.516E-08 5.21 3.905E-08 5.37

2 level
643 1.197E-05 1.677E-06 1.612E-06
1283 2.883E-06 2.05 4.516E-08 5.21 3.906E-08 5.37

Table 5.4: Convergence study for Example 5.4 with WENO-Z5 reconstruc-
tion and RK(10,5). The HLL flux and a time step with CFL ≈ 1.5 were
used for these computations.

In 3D, the second reconstruction step does not provide point values. In-
stead, we get the values Q±

i+ 1
2
,jm,k

, 1 ≤ m ≤ n at the n quadrature nodes.

In a third step, the reconstruction is applied to Q+
i+ 1

2
,jm,k

and Q−
i+ 1

2
,jm,k

for

1 ≤ m ≤ n to obtain the point values q±
i+ 1

2
,jm,ks

for 1 ≤ m, s ≤ n. Analo-

gously, the reconstruction in the y and z direction is performed. Thus, the
reconstruction is applied 3 + 2n times more often than in the dim–by–dim
approach. To recover the full order of convergence of the WENO-Z5 method,
we use the Gaussian quadrature rule with three points, i.e. the reconstruc-
tion is applied nine times more often than by the dim–by–dim approach. In
Table 5.5, the results of a performance test confirm the theoretical consider-
ations. The multi–dim method is about nine times more expensive than the
dim–by–dim approach. As in 2D, the modified–4 approach is only slightly
more expensive. Thus, in 3D, the advantage of the new method is even more
significant.

Figure 5.11 shows plots of the accuracy versus the CPU time in s for the
three different methods using WENO-Z5 applied to Example 5.4. We use
logarithmic scales on both the horizontal and vertical axes. The multi–dim
method is about 10 times more expensive than the modified–4 approach,
but almost identical results are produced. Unlike the 2D case, the dim–by–
dim approach seems very efficient compared to the multi–dim approach at
least on coarse grids.
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AMR grid modified–4 multi–dim
u
n
if
or
m

643 0.97 9.54
1283 1.14 10.26
2563 1.13 10.40
5123 1.15 10.58

2 level
643 1.12 9.39
1283 1.16 9.50

Table 5.5: Performance test of the different methods. The test is scaled
by the performance of the classical dim–by–dim method, i.e. the classical
dim–by–dim method has the value one for each grid and each refinement
level.
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Figure 5.11: Plot of accuracy versus CPU time for the three different meth-
ods used to approximate the 3D vortex evolution problem.
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Chapter 6

Nonlinear systems in
quasilinear form

The WENO reconstruction can also be used to construct high–order accurate
methods for hyperbolic equations in the quasilinear form

qt + A(q)qx +B(q)qy = 0. (6.1)

Recently, Ketcheson et al. [45] developed a high–order wave propagation
method based on the WENO reconstruction. Their numerical method can
be written in the semi–discrete form

d

dt
Qi,j(t) =− 1

∆x

(
A−∆Qi+ 1

2
,j +A+∆Qi− 1

2
,j +A∆Qi,j

)
− 1

∆y

(
B−∆Qi,j+ 1

2
+ B+∆Qi,j− 1

2
+ B∆Qi,j

)
.

(6.2)

The fluctuations A±∆Q and B±∆Q are computed using an eigenvector de-
composition of the jump of the reconstructed quantity q at each grid cell
interface, as explained in [45, 13]. In particular,

A±∆Qi− 1
2
,j =

d∑
p=1

(
sp(Q−

i− 1
2
,j
, Q+

i− 1
2
,j
)
)±

Wp(Q−
i− 1

2
,j
, Q+

i− 1
2
,j
) (6.3)

where Wp(Q−
i− 1

2
,j
, Q+

i− 1
2
,j
) are the waves and sp(Q−

i− 1
2
,j
, Q+

i− 1
2
,j
) the eigen-

values of A(q) at the interfaces. By (a)±, we denote the positive (a)+ =
max(a, 0) or negative (a)− = min(a, 0) part of a. The waves can be obtained
through decomposition of the jump Q+

i− 1
2
,j
−Q−

i− 1
2
,j
in terms of eigenvectors

rp(Q−
i− 1

2
,j
, Q+

i− 1
2
,j
)

Q+
i− 1

2
,j
−Q−

i− 1
2
,j
=

d∑
p=1

αprp(Q−
i− 1

2
,j
, Q+

i− 1
2
,j
) =

d∑
p=1

Wp(Q−
i− 1

2
,j
, Q+

i− 1
2
,j
). (6.4)
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Analogously to the computation of fluxes for equations in divergence, we
need interface–averaged values of the fluctuations. Since both the eigenvalues
as well as the waves depend on the reconstructed values, the product will,
in general, be only 2nd–order accurate if the averaged interface values Q±

i− 1
2
,j

are used.
The approach to retain the high–order of accuracy can be applied here

as well. Analogously to Section 4.2, we modify the computation of the fluc-
tuations A±∆Q and B±∆Q, i.e.

1. Compute averaged values of the conserved quantities at grid cell inter-
faces using one–dimensional WENO reconstruction, i.e. compute

Q±
i+ 1

2
,j
, Q±

i,j+ 1
2

at all grid cell interfaces.

2. Compute point values of the conserved quantities at the midpoints of
grid cell interfaces, i.e. compute

q±
i+ 1

2
,j
= Q±

i+ 1
2
,j
− 1

24

(
Q±

i+ 1
2
,j−1

− 2Q±
i+ 1

2
,j
+Q±

i+ 1
2
,j+1

)
q±
i,j+ 1

2

= Q±
i,j+ 1

2

− 1

24

(
Q±

i−1,j+ 1
2

− 2Q±
i,j+ 1

2

+Q±
i+1,j+ 1

2

)
.

(6.5)

3. Compute fluctuations at the midpoints of the grid cell interfaces

A±∆qi+ 1
2
,j =

d∑
p=1

(
sp(q−

i+ 1
2
,j
, q+

i+ 1
2
,j
)
)±

Wp(q−
i+ 1

2
,j
, q+

i+ 1
2
,j
),

B±∆qi,j+ 1
2
=

d∑
p=1

(
sp(q−

i,j+ 1
2

, q+
i,j+ 1

2

)
)±

Wp(q−
i,j+ 1

2

, q+
i,j+ 1

2

).

(6.6)

4. Compute averaged values of the fluctuations, i.e. compute

A±∆Qi+ 1
2
,j = A±∆qi+ 1

2
,j

+
1

24

(
A±∆qi+ 1

2
,j−1 − 2A±∆qi+ 1

2
,j +A±∆qi+ 1

2
,j+1

)
,

B±∆Qi,j+ 1
2
= B±∆qi,j+ 1

2

+
1

24

(
B±∆qi−1,j+ 1

2
− 2B±∆qi,j+ 1

2
+ B±∆qi+1,j+ 1

2

)
.

(6.7)
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Chapter 6. Nonlinear systems in quasilinear form

However, this is not enough. We also have to compute the terms A∆Qi,j

and B∆Qi,j, which requires some additional transformations. Consider the
discretization of

A∆Qi,j ≈
1

∆y

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

A(q(x, y, t))qx(x, y, t)dxdy. (6.8)

Using a quadrature formula with nodes xi− 1
2
≤ xi1 < . . . < xiℓ ≤ xi+ 1

2
and

weights c1, . . . , cℓ, one can compute

A∆Qi,j ≈
ℓ∑

k=1

ck

⎛⎝ 1

∆y

∫ y
j+1

2

y
j− 1

2

A(q(xik , y, t))qx(xik , y, t)dy

⎞⎠ , (6.9)

where we need a high–order approximation to

1

∆y

∫ y
j+1

2

y
j− 1

2

A(q(xik , y, t))qx(xik , y, t)dy. (6.10)

Let q1i,j(x), xi− 1
2
< x < xi+ 1

2
denote the pth–order accurate WENO recon-

struction in the x direction in cell (i, j). The evaluation of q1i,j provides us
with

q1i,j(xik) =
1

∆y

∫ y
j+1

2

y
j− 1

2

q(xik , y)dy +O(∆xp +∆yp), k = 1, . . . , ℓ, (6.11)

i.e. we obtain the averaged value of q in the y direction at the quadrature
nodes. WENO can also be used to approximate the derivative of q. By dif-
ferentiating the polynomial q1i,j, we obtain an approximation of the averaged
derivative, i.e.(

q1i,j
)
x
(xik) =

1

∆y

∫ y
j+1

2

y
j− 1

2

qx(xik , y)dy +O(∆xp−1 +∆yp), k = 1, . . . , ℓ.

(6.12)
Note that a pth–order accurate WENO reconstruction provides only a (p −
1)th–order accurate approximation to the derivative.

Using these values directly would lead to a 2nd–order accurate method.
Instead, we again use the transformation formulas from Section 4.1 to com-
pute approximations of the point values q(xik , yj) and qx(xik , yj) for k =
1, . . . , ℓ and yj = (yj− 1

2
+ yj+ 1

2
)/2. Now, we can evaluate the point values

A(q1i,j(xik , yj, t))q
1
x(xik , yj, t) for k = 1, . . . , ℓ. Once again using the transfor-

mation of Section 4.1, we compute the averaged values of these quantities in

74



6.1. Numerical experiments for the equations of ideal magnetohydrodynamics

the y direction and denote them by

A(q1i,j(xik , t))q
1
x(xik) ≈

1

∆y

∫ y
j+1

2

y
j− 1

2

A(q(xik , y))qx(xik , y)dy k = 1, . . . , ℓ.

(6.13)
These values are finally used in the quadrature formula (6.9), i.e.

A∆Qi,j =
ℓ∑

k=1

ckA(q1i,j(xik , t))q
1
x(xik). (6.14)

Analogously, we can compute the term

B∆Qi,j ≈
1

∆x

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

B(q(x, y, t))qy(x, y, t)dxdy. (6.15)

The extension to 3D is straightforward. The WENO reconstruction is
used in the same way, and the transformation between point values and av-
eraged values is performed as discussed in Section 4.5. The order of accuracy
of the resulting method depends on the used WENO reconstruction, the
quadrature formula, and the order of the transformation formula. For suffi-
ciently smooth solutions of (6.1) the results of this section are summarized
in the following theorem.

Theorem 6.1. Using a pth–order accurate WENO reconstruction, a quadra-
ture formula of order r, and the modified–4 transformation formula the
scheme described above is of order s = min(p− 1, r, 4).

6.1 Numerical experiments for the equations

of ideal magnetohydrodynamics7

Finally, we apply the modified WENO method to a more complex appli-
cation, namely, the approximation of the 3D ideal magnetohydrodynamic
(MHD) equations.

The ideal MHD equations can be written in the form

∂

∂t

⎛⎜⎜⎝
ρ
ρu
E
B

⎞⎟⎟⎠+∇ ·

⎛⎜⎜⎝
ρu

ρuu+
(
p+ 1

2
∥B∥2

)
I−BB

u
(
E + p+ 1

2
∥B∥2

)
−B (u ·B)

uB−Bu

⎞⎟⎟⎠ = 0,

∇ ·B = 0,

(6.16)

7 This section was adapted from [1] with minor changes.
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Chapter 6. Nonlinear systems in quasilinear form

where ρ, ρu = (ρu, ρv, ρw)T and E are the total mass, momentum, and
energy densities, and B = (B1, B2, B3)T is the magnetic field. The thermal
pressure, p, is related to the conserved quantities through the ideal gas law

p = (γ − 1)

(
E − 1

2
∥B∥2 − 1

2
ρ∥u∥2

)
, (6.17)

where γ = 5/3 is the ideal gas constant.
It is well known that numerical methods for the multidimensional MHD

equations must control errors in the discrete divergence of the magnetic field.
One way to do this is by using so-called constrained transport (CT) methods.
Here, we use an approach that was recently developed by Helzel, Rossmanith,
and Taetz [46, 10], and which is based on earlier work by Rossmanith [47].
A FD-WENO method for the ideal MHD equations, using the same kind of
constrained transport, was recently proposed by Christlieb, Rossmanith, and
Tang [48].

Since B is divergence–free, we can set B = ∇ × A, where A ∈ R3 is
the magnetic potential. Inserting this relation in the last line of the MHD
equations, we derive an evolution equation for the magnetic potential

∂tA+ (∇×A)× u = −∇ϕ. (6.18)

Here, ϕ is an arbitrary scalar function. Different choices of ϕ represent differ-
ent gauge condition choices, as explained in [46]. We use the so-called Weyl
gauge, which means that we set ∇ϕ = 0 in (6.18). The resulting evolution
equation for the magnetic potential can be written in the form

At +N1(u)Ax +N2(u)Ay +N3(u)Az = 0, (6.19)

with

N1 =

⎛⎝ 0 −v −w
0 u 0
0 0 u

⎞⎠ , N2 =

⎛⎝ v 0 0
−u 0 −w
0 0 v

⎞⎠ , N3 =

⎛⎝ w 0 0
0 w 0
−u −v 0

⎞⎠ .

(6.20)
The system (6.19) with matrices of the form (6.20) is weakly hyperbolic, i.e.
the matrix N(n) = n1N1(u)+n2N2(u)+n3N3(u) has real eigenvalues for all
n ∈ S2, but there are directions for which N(n) fails to have a complete set
of right eigenvectors (see [46]).

To describe the general form of the constrained transport algorithm, we
introduce the notation

Q′
MHD(t) = L1(QMHD(t)), (6.21)

76



6.1. Numerical experiments for the equations of ideal magnetohydrodynamics

for the semi-discrete form of the MHD equations. Here, QMHD(t) represents
the grid function at time t consisting of all cell–averaged values of the con-
served quantities from the MHD equation (6.16). Analogously, we introduce

Q′
A(t) = L2(QA(t), QMHD(t)), (6.22)

to describe the semi-discrete form for the evolution equation of the magnetic
potential. Note that the evolution of the potential depends on the velocity
field, which we take as a given function from the solution step of the MHD
equations.

To simplify the notation, we present the numerical method using forward
Euler time–stepping.

0. Start with Qn
MHD and Qn

A (i.e. the solution from the previous time
step).

1. Update without regard for the divergence–free condition on the mag-
netic field, to obtain Q∗

MHD and Qn+1
A :

Q∗
MHD = Qn

MHD +∆tL1(Q
n
MHD) (6.23)

Qn+1
A = Qn

A +∆tL2(Q
n
A, Q

n
MHD) (6.24)

2. Correct the magnetic field components Q∗
MHD using the divergence–free

values Bn+1 = ∇×Qn+1
A . Set Qn+1

MHD = (ρn+1, ρun+1, En+1,Bn+1).

In Step 1, update (6.23), we use a straightforward extension to the three-
dimensional case of our modified WENO method for hyperbolic partial dif-
ferential equations in divergence form. Here, we used the 5th–order WENO-Z
method with a correction that leads to 4th–order accurate flux functions, i.e.
modified–4.

In Step 1, update (6.24), we used a three–dimensional extension of our
method from Section 6, to update the evolution equation for the magnetic po-
tential. Due to the weak hyperbolicity of (6.19), the fluctuationsA±∆Qi+ 1

2
,j,k,

B±∆Qi,j+ 1
2
,k and C±∆Qi,j,k+ 1

2
cannot be computed using an eigenvector de-

composition of the jump in QA at grid cell interfaces. Instead, we computed
the fluctuations using an approach based on the idea of path conservative
methods, as explained in [10].

In Step 2, we compute Bn+1 = (B1, B2, B2) from the cell–averaged values

77



Chapter 6. Nonlinear systems in quasilinear form

of Qn+1
A = (A1, A2, A3), using the formulas

B1
i,j,k =

1

12∆y

(
A3

i,j−2,k − 8A3
i,j−1,k + 8A3

i,j+1,k − A3
i,j+2,k

)
− 1

12∆z

(
A2

i,j,k−2 − 8A2
i,j,k−1 + 8A2

i,j,k+1 − A2
i,j,k+2

)
B2

i,j,k =
1

12∆z

(
A1

i,j,k−2 − 8A1
i,j,k−1 + 8A1

i,j,k+1 − A1
i,j,k+2

)
− 1

12∆x

(
A3

i−2,j,k − 8A3
i−1,j,k + 8A3

i+1,j,k − A3
i+2,j,k

)
B3

i,j,k =
1

12∆x

(
A2

i−2,j,k − 8A2
i−1,j,k + 8A2

i+1,j,k − A2
i+2,j,k

)
− 1

12∆y

(
A1

i,j−2,k − 8A1
i,j−1,k + 8A1

i,j+1,k − A1
i,j+2,k

)
.

(6.25)

This is a 4th–order accurate approximation of cell–averaged values of ∇×A
using cell–averaged values of the magnetic potential.

6.2 Comparing the methods in 3D

Example 6.1. We consider the three–dimensional smooth Alfvén wave prob-
lem (see e.g. [46]). The initial data is given by

ρ(x, y, z, 0) = 1,

p(x, y, z, 0) = 0.1,

u(x, y, z, 0) = unn+ utt+ urr,

B(x, y, z, 0) = Bnn+Btt+Brr

where
un = 0, Bn = 1,

ut = 0.1 sin(2πn · x), Bt = 0.1 sin(2πn · x),
ur = 0.1 cos(2πn · x), Br = 0.1 cos(2πn · x)

and

x =

⎛⎝x
y
z

⎞⎠ ,n =

⎛⎝cosϕ cos θ
sinϕ cos θ

sin θ

⎞⎠ , t =

⎛⎝− sinϕ
cosϕ
0

⎞⎠ , r =

⎛⎝− cosϕ sin θ
− sinϕ sin θ

cos θ

⎞⎠ .

In our computations, we set ϕ = θ = tan−1(0.5) and the computational
domain is

Ω =

[
0,

1

cosϕ cos θ

]
×
[
0,

1

sinϕ cos θ

]
×
[
0,

1

sin θ

]
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6.2. Comparing the methods in 3D

with periodic boundary conditions. To use the CT method, we also have to
specify initial conditions for the magnetic potential A,

A1(x, y, z, 0) = zn2 − 1

2π
sinϕ sin(2πn · x),

A2(x, y, z, 0) = xn3 +
1

2π
cosϕ sin(2πn · x),

A3(x, y, z, 0) = yn1 +
1

2π cosϕ
cos(2πn · x).

The boundary conditions are not simple periodic for the magnetic potential;
instead, A consists of a linear but time–independent part and a periodic time–
dependent part. The linear part can be handled by linear extrapolation, which
is exact in this case, and the periodic part is handled by applying periodic
boundary conditions.

In all of these computations, we used RK(10,5) as time–stepping scheme
and the 5th–order WENO-Z reconstruction. In Table 6.1, we show the results
of a numerical convergence study. As expected, the dim–by–dim approach
converges with 2nd–order and the dim–by–dim approach with 4th–order. Us-
ing the constraint transport method discussed in Section 6.1, the error is
bigger. But we still see the theoretical order of convergence. Even so, for

dim–by–dim modified–4
CT grid ∥ρ− ρex∥1 EOC ∥ρ− ρex∥1 EOC

off
64× 1282 3.258E-07 3.820E-08
128× 2562 7.602E-08 2.10 1.679E-09 4.51
256× 5122 1.884E-08 2.01 9.128E-11 4.20

on
64× 1282 3.528E-06 4.197E-07
128× 2562 8.770E-07 2.01 2.661E-08 3.98
256× 5122 2.190E-07 2.00 1.675E-09 3.99

Table 6.1: Convergence study for Example 6.1 with WENO-Z5 reconstruc-
tion and RK(10,5). The HLL flux and a time step with CFL ≈ 1.8 were used
for these computations.

this particular example, we do not need to control ∇·B. This shows that we
can easily combine the constraint transport method with the modified–4
approach to obtain a higher–order method.

Example 6.2. We consider the three–dimensional cloud–shock interaction
problem (see e.g. [49]). On the computational domain [0, 1]3, the initial data
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Chapter 6. Nonlinear systems in quasilinear form

consists of a shock located at x0 = 0.09375 and a density cloud of radius
r0 = 0.15 centered at c = (0.3, 0.5, 0.5)

ρ(x, y, z, 0) =

⎧⎪⎨⎪⎩
3.86859 x < x0

10 ∥(x, y, z)− c∥2 < r0

1 else

,

p(x, y, z, 0) =

{
167.345 x < x0

1 else
,

(u, v, w)(x, y, z, 0) =

{
(11.2536, 0, 0) x < x0

(0, 0, 0) else
,

(B1, B2, B3)(x, y, z, 0) =

{
(0, 2.182682,−2.182682) x < x0

(0, 0.56418958, 0.56418958) else
.

As before, to use the CT method, we also have to specify initial conditions
for the magnetic potential A,

(A1, A2, A3)(x, y, z, 0) =

{
(2.1826182y, 0,−2.1826182(x− x0)) x < x0

(−0.56418958y, 0,−0.56418958(x− x0)) else.

For the conserved quantities, we impose inflow boundary conditions at x = 0
and outflow boundary conditions on all other sides. The magnetic potential,
however, is handled by linear extrapolation.

For all computations in this section, we use the HLL flux and RK(10,4)
with CFL ≈ 1.4. In Figure 6.1, the solution structure is shown at final
time t = 0.055. For this computation, we used the WENO-Z5 reconstruction
with the constrained transport method and the modified–4 approach, as
discussed in Section 6. The initial data satisfies the constraint ∇ · B = 0.
Figure 6.2 shows the evolution of ∥∇ · B∥∞ in time for different methods.
Without the constraint transport method, ∥∇ ·B∥∞ grows in time for both
the dim–by–dim and the modified–4 approaches. But also, if we increase
the spatial resolution, compare Figures 6.2a and 6.2b. On the other hand,
using the constraint transport method, we always get ∥∇ · B∥∞ < 10−11.
If we compare the results of the dim–by–dim method with the results of
the modified–4 method, we see some clear differences. But Figure 6.2 also
shows that the general behavior of both methods is very similar.

Note that the considerations of Section 4.3 are crucial for this test case.
If the transformation (4.12) is applied across the shock, the resulting point
value will be unphysical. Therefore, the modified–4 method is reduced to
the classical dim–by–dim method near the shock, as discussed in Section
4.3.
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6.2. Comparing the methods in 3D

Figure 6.1: Density at final time t = 0.055 of Example 6.2.
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Figure 6.2: Evolution of ∥∇ ·B∥∞ in time, on different grid resolutions for
Example 6.2.
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Chapter 7

Conclusions and outlook

7.1 New results

In this thesis, a modification of the popular dim–by–dim WENO method for
Cartesian grids has been developed. For more flexibility regarding the grid
structure, the method has also been extended to adaptively refined grids.
The modification improves the order of accuracy, while only slightly increas-
ing the computational costs in two and three spatial dimensions. Several
test computations confirmed the gain in accuracy and an increase of less
than 20% of the computational costs. The alternative, a multi–dim WENO
reconstruction, increases the computational costs by at least a factor of three
in 2D. In 3D, it is even a factor of nine. When applied to discontinuous prob-
lems, the new method behaves very similarly to the classical dim–by–dim
approach.

Furthermore, the method has been extended to nonlinear systems in
quasilinear form and applied together with the unstaggered CT method de-
veloped by Helzel et al. [10] to the ideal MHD equations in 3D. As for equa-
tions in divergence form, the modification improves the order of accuracy,
while only slightly increasing the computational costs.

7.2 Future work

One problem with the new method is the limiting at strong discontinuities, as
discussed in Section 4.3. Even so, the proposed limiter provided satisfactorily
results so far. There might be situations where the limiter fails. However,
since only strong discontinuities need to be detected, it should be possible to
find an inexpensive and effective limiter for the transformation step.

Also of interest is the extension of the modified–4/modified–6 ap-
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7.2. Future work

proach to mapped coordinates. Colella et al. [29] proposed a transforma-
tion between average values and point values on mapped grids. Therefore,
the question would be whether all results in this thesis can be extended to
mapped coordinates.
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Appendix A

Initial Example

The initial example of Section 2 was discussed while neglecting the details
of the used methods. For completeness, we now specify what methods were
used.

A.1 The setup

We are interested in the solution on the domain [−1, 1]2. But to avoid interac-
tions with the boundary, the actual computational domain is [−1.125, 1.125]2.
For our computation, this surrounding area was sufficient to avoid any inter-
actions with the boundary. But thinking of a long–term computation, this
surrounding area can also be used as an absorbing layer of a PML method.
Following the lead of Hesthaven [50], we implemented and tested the absorb-
ing layer with similar results. But as mentioned above, it is not necessary
for this particular computation.

The error was computed only on the domain [−1, 1]2 and the grid resolu-
tion always refers to the resolution of this domain. The surrounding area is
discretized with additional cells of the same size. The computational domain
and the grid resolution are chosen so that the boundary of the domain of
interest is always an interface of the grid. For example, if 2562 grid cells
discretize the domain [−1, 1]2, then 2882 grid cells of the same size discretize
the computational domain [−1.125, 1.125]2.

For the time integration, we used RK(11,7) of Section B.3 for every
method. The HLL flux and a time step with CFL ≈ 0.9 were also used in all
computations. The 3rd–, 5th–, and 7th–order methods refer to a WENO-Z3,
WENO-Z5, and WENO-Z7 reconstruction, respectively. While WENO-Z5
and WENO-Z7 are discussed in Section 3.1, WENO-Z3 will be discussed be-
low. To extend the methods to two dimensions, the dim–by–dim approach
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A.2. The 3rd–order WENO method

of Section 3.3 was used.

A.2 The 3rd–order WENO method

In the case p = 3, the interfaces values of the conserved quantities are com-
puted by

q∓
i± 1

2

= ω∓
0 q

(0∓)

i± 1
2

+ ω∓
1 q

(1∓)

i± 1
2

, (A.1)

with
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(0−)

i+ 1
2

= −1

2
Qi−1 +

3

2
Qi, q

(0+)

i− 1
2

=
1

2
Qi−1 +

1

2
Qi,

q
(1−)

i+ 1
2

=
1

2
Qi +

1

2
Qi+1, q

(1+)

i− 1
2

=
3

2
Qi −

1

2
Qi+1.

(A.2)

The coefficients ω±
0 , ω

±
1 are the weights and they depend basically on the

smoothness of the solution in the corresponding stencil. Equation (3.11)
leads to

IS0 = (Qi −Qi−1)
2

IS1 = (Qi+1 −Qi)
2 .

(A.3)

The weights are then defined as suggested in [20] by

ω±
j =

ω̃±
j

ω̃±
0 + ω̃±

1

, ω̃±
j = γ±

j

(
1 +

(
τ3

ISj + ϵ

)2
)

(A.4)

with γ−
0 = γ+

1 = 1
3
, γ−

1 = γ+
0 = 2

3
and τ3 = |IS0 − IS1|. The ϵ is a

small positive number used to avoid division by zero. We set ϵ = ∆x4.
The description is now complete. We refer to this reconstruction method as
WENO-Z3.
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Appendix B

Discretization in time

In this chapter, we present the time discretization methods used in this work.
As mentioned, we use the method of lines to separate the discretization in
space and time. After discretizing the PDE in space, we obtain a system of
ODEs of the form

d

dt
Q(t) = L(Q(t)), (B.1)

where Q(t) is a grid function of cell–averaged values of the conserved quanti-
ties at time t. We discretize the resulting ODE system using explicit Runge–
Kutta methods of order four, five, or seven.

B.1 The 4th–order Runge–Kutta method

1: Qn
1 = Qn

2: Qn
2 = Qn

3: for i = 1 : 5 do
4: Qn

1 = Qn
1 +∆t1

6
L(Qn

1 )
5: end for
6: Qn

2 = 1
25
Qn

2 +
9
25
Qn

1

7: Qn
1 = 15Qn

2 − 5Qn
1

8: for i = 6 : 9 do
9: Qn

1 = Qn
1 +∆t1

6
L(Qn

1 )
10: end for
11: Qn+1 = Qn

2 +
3
5
Qn

1 +∆t 1
10
L(Qn

1 )

Algorithm B.1: Low–storage implementation of the strong stability preserv-
ing Runge–Kutta scheme of Ketcheson [51]
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B.2. The 5th–order Runge–Kutta method

For computations with shock waves, we use the 10–stage 4th–order strong
stability preserving (SSP) Runge–Kutta scheme of Ketcheson [51]. 10 stages
may sound computationally expensive and complicated, but the opposite is
the case. With this method, it is possible to have a very high CFL number.
Furthermore, it is possible to implement the method using only two memory
registers, i.e. it is low–storage. Let Qn = Q(tn). Then, one time step is
described in Algorithm B.1. We will refer to this method as SSP-RK(10,4).
For more details on the scheme, we refer to the original paper [51].

B.2 The 5th–order Runge–Kutta method

For convergence tests with a 5th–order WENO reconstruction, we use the
10–stage 5th–order Runge–Kutta scheme of Parsani et al. [52]. With this
method, it is also possible to have a very high CFL number. It is also quite
efficient in the sense that it can be implemented using only three memory
registers, i.e. it is low–storage. Let Qn = Q(tn). Then, one time step is
described in Algorithm B.2. The coefficients δi, γj,i, βi for i = 1, ..., 10, j =

1: Qn
1 = Qn

2: Qn
2 = 0

3: Qn
3 = Qn

4: for i = 1 : 10 do
5: Qn

2 = Qn
2 + δiQ

n
1

6: Qn
1 = γ1,iQ

n
1 + γ2,iQ

n
2 + γ3,iQ

n
3 + βi∆tL(Qn

1 )
7: end for
8: Qn+1 = Qn

1

Algorithm B.2: Low–storage implementation of the Runge–Kutta scheme of
Parsani et al. [52]

1, ..., 3 can be found in the Appendix of the original paper [52]. We will refer
to this method as RK(10,5).

B.3 The 7th–order Runge–Kutta method

For convergence tests with a 7th–order WENO reconstruction, we use the
11–stage 7th–order Runge–Kutta scheme of Fehlberg [53]. This method is
not low–storage. It is also not possible to have a large CFL number, so it
might be not very efficient. But in order to avoid any influence from the
time–stepping scheme, we will use this method for some convergence tests.
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Appendix B. Discretization in time

The method is described in the classical way by the Butcher tableau in Tables
B.1.

0
2
27

2
27

1
9

1
36

1
12

1
6

1
24

0 1
8

5
12

5
12

0 −25
16

25
16

1
2

1
20

0 0 1
4

1
5

5
6

− 25
108

0 0 125
108

−65
27

125
54

1
6

31
300

0 0 0 61
225

−2
9

13
900

2
3

2 0 0 −53
6

704
45

−107
9

67
90

3
1
3

− 91
108

0 0 23
108

−976
135

311
54

−19
60

17
6

− 1
12

1 2383
4100

0 0 −341
164

4496
1025

−301
82

2133
4100

45
82

45
164

18
41

41
840

0 0 0 0 34
105

9
35

9
35

9
280

9
280

41
840

Table B.1: Butcher tableau of a 7th–order accurate Runge–Kutta method
from [53].
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Appendix C

Statement about my
contribution in previously
published work

The theoretical results presented in [1] have been obtained in joint work with
my thesis adviser Christiane Helzel. However, all the numerical tests have
been perform by myself.

In order to develop our scheme on grids with adaptive mesh refinement as
presented in [2] we used the software package Racoon developed by Dreher
and Grauer. Jürgen Dreher introduced me to this software and provided
support for the implementation of the new algorithm. With this help, I
carried out all the computations by myself.

Acknowledgements

Computational support and infrastructure was provided by the “Centre for
Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany).

89



Bibliography

[1] Pawel Buchmüller and Christiane Helzel. Improved accuracy of high-
order WENO finite volume methods on Cartesian grids. Journal of
Scientific Computing, 61(2):343–368, 2014.

[2] Pawel Buchmüller, Jürgen Dreher, and Christiane Helzel. Finite volume
WENO methods for hyperbolic conservation laws on Cartesian grids
with adaptive mesh refinement. Applied Mathematics and Computation,
272, Part 2:460 – 478, 2016. Recent Advances in Numerical Methods for
Hyperbolic Partial Differential Equations.

[3] Chi-Wang Shu. High order weighted essentially nonoscillatory schemes
for convection dominated problems. SIAM Review, 51(1):82–126, 2009.

[4] Chi-Wang Shu and Stanley Osher. Efficient implementation of essen-
tially non-oscillatory shock-capturing schemes. Journal of Computa-
tional Physics, 77(2):439 – 471, 1988.

[5] Chi-Wang Shu and Stanley Osher. Efficient implementation of essen-
tially non-oscillatory shock-capturing schemes, II. Journal of Computa-
tional Physics, 83(1):32 – 78, 1989.

[6] Barry Merriman. Understanding the Shu–Osher conservative finite dif-
ference form. Journal of Scientific Computing, 19(1):309–322, 2003.

[7] Rui Zhang, Mengping Zhang, and Chi-Wang Shu. On the order of
accuracy and numerical performance of two classes of finite volume
WENO schemes. Communications in Computational Physics, 9(3):807–
827, 2011.

[8] J. Casper and H.L. Atkins. A finite-volume high-order ENO scheme for
two-dimensional hyperbolic systems. Journal of Computational Physics,
106(1):62 – 76, 1993.

90



Bibliography

[9] P. Tsoutsanis, V.A. Titarev, and D. Drikakis. WENO schemes on ar-
bitrary mixed-element unstructured meshes in three space dimensions.
Journal of Computational Physics, 230(4):1585 – 1601, 2011.

[10] Christiane Helzel, James A. Rossmanith, and Bertram Taetz. A
high-order unstaggered constrained-transport method for the three-
dimensional ideal magnetohydrodynamic equations based on the method
of lines. SIAM Journal on Scientific Computing, 35(2):A623–A651,
2013.

[11] Peter McCorquodale and Phillip Colella. A high-order finite-volume
method for conservation laws on locally refined grids. Mathematical
Sciences Publishers, 6(1):1–25, 2011.

[12] Jürgen Dreher and Rainer Grauer. Racoon: A parallel mesh-adaptive
framework for hyperbolic conservation laws. Parallel Computing, 31(8–
9):913 – 932, 2005.

[13] Randall J LeVeque. Finite volume methods for hyperbolic problems.
Cambridge university press, 2002.

[14] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Computational Physics, 115(1):200–212,
1994.

[15] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R.
Chakravarthy. Uniformly high order accurate essentially non-oscillatory
schemes, III. Journal of Computational Physics, 131(1):3 – 47, 1997.

[16] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of
weighted ENO schemes. Journal of Computational Physics, 126(1):202
– 228, 1996.

[17] Andrew K. Henrick, Tariq D. Aslam, and Joseph M. Powers. Mapped
weighted essentially non-oscillatory schemes: Achieving optimal order
near critical points. Journal of Computational Physics, 207(2):542 –
567, 2005.

[18] Marcos Castro, Bruno Costa, and Wai Sun Don. High order weighted
essentially non-oscillatory WENO-Z schemes for hyperbolic conservation
laws. Journal of Computational Physics, 230(5):1766 – 1792, 2011.
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