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Intracellular Networks

A Computational Systems Biology Perspective

by

Armin Sadat Khonsari

Summary

Computational systems biology has emerged as a promising new biological field
which studies the complexity of biological systems as a whole by integrating mathe-
matical, computational and experimental approaches. The two applications presented
in this thesis are concerned with different aspects of intracellular networks, elucidating
the wide range of topics within this field.

In the first part the regulation of metabolic networks of fast growing microbes un-
der fluctuating environmental nutrient availability is explored. Fast growth represents
an effective strategy for microbial organisms to survive in competitive environments.
To accomplish this task, cells must adapt their metabolism to changing nutrient con-
ditions in a way that maximizes their growth rate. However, the regulation of the
growth related metabolic pathways can be fundamentally different among microbes.
Therefore, it was asked whether growth control by perception of the cell’s intracel-
lular metabolic state can give rise to higher growth than by direct perception of
extracellular nutrient availability. The results of the computer simulation indicate
that the intracellular perception is advantageous under situations where the up and
down regulation of pathways cannot follow the fast changing nutrient availability in
the environment. In this case, optimal regulation ignores any other nutrients except
the most preferential ones, in agreement with the phenomenon of catabolite repression
in prokaryotes. As a result, species that rely on intracellular perception gain a rel-
evant fitness advantage in fluctuating nutrient environments, which enables survival
by outgrowing competitors.

The second part focuses on the network inference of gene regulatory networks
(GRN) and signal transduction networks (STN) from perturbation data. An impor-
tant aspect in understanding organisms on a cellular level is the knowledge about
the exact causal interaction network between biochemical components inside the cell.
The inference of these GRN or STN exclusively from variations in the abundance
of mRNA or phospho-proteins, respectively, in response to perturbations is experi-
mentally more feasible on one hand but challenging due to high measurement noise
on the other hand. Here, a novel machine learning technique in the field of network
inference has been developed, which overcomes Gaussian measurement noise despite
of only a few replicate experiments. The technique is based on the theory of prob-
abilistic principle component analysis applied to partial correlations, which leads to
a dimensionality reduction of the network inference problem. Knowledge about the
structure of GRN and STN builds the groundwork for predictive models, which can be
used to find new therapeutic targets in diseased cells or help to reprogram organisms
in biotech applications.
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Zusammenfassung

Computational systems biology hat sich als vielversprechendes neues Gebiet der
Biologie etabliert, das durch die Integration mathematischer, computergestützter und
experimenteller Ansätze die Komplexität biologischer Systeme als Ganzes untersucht.
Die zwei in dieser Arbeit beschriebenen Anwendungen beschäftigen sich jeweils mit
unterschiedlichen Aspekten von intrazellulären Netzwerken, was die Breite der unter-
schiedlichen Themen in diesem Gebiet verdeutlicht.

Im ersten Teil wird die Regulation von metabolischen Netzwerken von schnell
wachsenden Mikroben in einer sich verändernden Nährstoffumgebung untersucht.
Für mikrobielle Organismen in Konkurrenzsituationen stellt ein schnelles Wachstum
eine effektive Überlebensstrategie dar. Um diese Aufgabe zu erfüllen, müssen Zellen
ihren Stoffwechsel an sich verändernde Nährstoffbedingungen in einer Weise anpassen,
die ihre Wachstumsrate maximiert. Jedoch kann bei Mikroben die Regulation von
Stoffwechselwegen, die das Wachstum kontrollieren, fundamental unterschiedlich sein.
Daher kam die Frage auf, ob eine Wachstumsregulation basierend auf der Wahrneh-
mung des intrazellulären Stoffwechselzustands zu einem höheren Wachstum führen
kann als eine Regulation basierend auf der direkten Wahrnehmung der extrazellulären
Nährstoffverfügbarkeit. Die Ergebnisse der Computersimulation zeigen, dass die in-
trazelluläre Wahrnehmung unter Situationen von Vorteil ist, wo das Herauf- und
Herunterregulieren der Stoffwechselwege nicht den schnellen Veränderung der Nähr-
stoffverfügbarkeit in der Umgebung folgen kann. In diesem Fall ignoriert die opti-
male Regulation alle anderen Nährstoffe mit Ausnahme des am meisten bevorzugten
Nährstoffs, übereinstimmend mit dem Phänomen der Katabolitrepression in Prokary-
oten. Infolgedessen gewinnen Spezies, die sich auf die intrazelluläre Wahrnehmung
verlassen, einen Fitnessvorteil in fluktuierenden Nährstoffumgebungen, sodass das
Überleben durch das Überwachsen der Konkurrenten gewährleistet ist.

Der zweite Teil beschäftigt sich mit der Netzwerk-Inferenz von Gen-regulatorischen-
Netzwerken (GRN) und Signaltransduktions-Netzwerken (STN) anhand von experi-
mentellen Störungsdaten. Ein wichtiger Aspekt um Organismen auf einer zellulären
Ebene zu verstehen, ist das Wissen um das genaue kausale Interaktions-Netzwerk
zwischen biochemischen Komponenten innerhalb einer Zelle. Die Inferenz von GRN
bzw. STN ausschließlich aus Variationen in der Menge von mRNA bzw. Phosphopro-
teinen ist zwar experimentell einfacher durchführbar, jedoch wird das Vorhaben durch
hohes Messrauschen erschwert. Deshalb wird in der vorliegenden Arbeit eine neuar-
tige “Machine Learning” - Methode auf dem Gebiet der Netzwerk-Inferenz entwickelt,
die weißes Messrauschen trotz nur weniger Wiederholungsexperimente bewältigt. Die
Methode basiert auf der Anwendung der probabilistischen Hauptkomponentenanalyse
(PPCA) auf partiellen Korrelationen, was zu einer Verringerung der Dimensionalität
des Netzwerk-Inferenz-Problems führt. Das Wissen über die Struktur der GRN und
STN bildet die Grundlage für Vorhersagemodelle, die verwendet werden können, um
neue therapeutische Targets in erkrankten Zellen zu finden, oder um Organismen in
Biotech-Anwendungen neu zu programmieren.
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Chapter 1

Introduction

One of the most essential aspects of living cells is growth and its associated control

to fit the organisms’ needs. In human, selection for fast and selfish growth can result

in cancer, while it represents a very effective evolutionary strategy for microorgan-

isms to survive in a competitive environment. The reproductive success of microbial

organism depends on the fast and precise adjustment of their growth rate to the ac-

tual environmental condition [55]. The reason is that most microbes live in a highly

competitive environment where fast and effective transfer of available nutrients into

biomass can give a significant fitness advantage [45].

Selection for fast growth leads to phenomena such as overflow metabolism [26,61,

62], where fast but wasteful conversion of glucose into biomass can be of advantage

in comparison to the effective use of nutrients. The overflow metabolism of E.coli

is also known as Crabtree effect in S. cerevisiae and as Warburg effect in cancer

cells [37]. Another regulatory phenomena that is associated with fast growth and

is commonly used among many bacteria and other microbes is carbon catabolite

repression (CCR) [17,23,65]. To grow fast microbes selectively utilize preferred carbon

sources in a hierarchical manner. In the presence of a preferred sugar such as glucose,

CCR causes metabolic enzymes of alternative carbon sources to be expressed at low

rate and can additionally reduce their activity.

There is strong evidence that growth dependent phenomena such as overflow

metabolism or CCR are the consequence of a metabolic regulation or growth con-
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trol in response to extracellular nutrient availability. Further, it seems possible that

the perception of extracellular nutrient availability plays an important role in growth

control [69], as it is the primary information cellular response is based on. We define

two distinct types of perception, termed intracellular and extracellular perception.

In the case of extracellular perception the cell regulates its metabolism exclusively

in response to extracellular nutrient information, while in the case of intracellular

perception microbes indirectly recognize nutrient availability by perceiving the intra-

cellular metabolic state. The intracellular perception is motivated by experimental

observations [18,32,68] of microbes, e.g. E.coli, which do not possess any extracellular

carbohydrate receptors, like the Rgt2 and Snf3 glucose sensors of yeast [47,71]. These

microbes should be capable of perceiving extracellular nutrient availability indirectly

from intracellular metabolic states. Intuitively, the extracellular perception should

lead to a more precise and fast adaptation to nutrient availability, since changes in the

environment can be perceived faster and to higher accuracy. Here, the question arises

whether exclusive intracellular perception can result in a growth benefit in presence

of fast fluctuating nutrient concentrations. Following this question, we are interested

in which frequency regimes the exclusive perception of intracellular nutrient concen-

tration is evolutionary more beneficial than the exclusive perception of extracellular

nutrient concentrations. Furthermore, what are the regulatory principles causing this

benefit in average growth rate or fitness and can the regulatory phenomenon of carbon

catabolite repression be understood by means of nutrient perception?

To give an answer to these questions and an explanation how the integration of

the perception strategies for growth control contribute to shape growth rate in mi-

croorganisms, we will introduce a simplified replicator model for microbial growth.

The replicator model consists of a minimal metabolic network, ribosomes, and a

controller that can detect intracellular and extracellular metabolite concentrations.

Optimal growth control is realized by minimizing the difference between the actual

intracellular concentrations of metabolites and precursors and their desired concentra-

tions, which is determined by the perceived nutrient availability. Using this simplified

model we are able to show that growth control by perception of extracellular nutri-
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ent concentrations is of selective advantage if environmental conditions change slowly

over time. If environmental conditions change fast in comparison to the minimum

generation time, gene regulation and protein turnover will lag behind and the model

predicts that in this case sensing the intracellular precursor state is of advantage.
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Chapter 2

Methods

2.1 Self-replicator model

The first step in modeling a system is to understand the main features which have a

relevant effect on the studied phenomenon or scientific objective. These features are

taken to construct the most simple model which still suffices to reproduce reality. In

this study we are interested in fast growing unicellular organisms in changing envi-

ronments with focus on cell metabolism and its regulation. Growth is a consequence

of the underlying metabolic fluxes and growth rate is affected by changes in metabolic

rate which in turn can be a result of environmental changes (see Figure 2-1(a)). In the

following, we define growth by the amount of protein that is synthesized. Focusing

exclusively on the protein content and thereby neglecting other cellular components

is legitimate since the protein synthesis capacity of a cell remains approximately con-

stant over time [56,57].

The next question is how a real-life metabolism can be further simplified and gen-

eralized, to avoid inclusion of too many molecular details. Molenaar et al. [45] have

successfully shown that simple self-replicating systems (self-replicators) qualitatively

reproduce the regulation of major cellular components (protein, lipids, etc.) for uni-

cellular organisms. The simplest self-replicator consists of ribosomes which synthesize

themselves by means of precursors (real-life example [35]). In this work we rely on

a slightly more complex architecture which is obtained by adding transporters and
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Figure 2-1: The metabolism of the self-replicator shown in two possible rep-
resentation. (a) Block diagram: blocks symbolize processes and arrows associated
inputs and outputs. The big dashed circle distinguishes between intracellular and ex-
tracellular processes. The process of growth is caused by the underlying metabolism
which in turn depends on the nutrient availability in the environment. (b) Pool di-
agram: ellipses represent the protein and metabolite pools. Red arrows symbolize
uptake transports and green arrows stand for metabolic pathway fluxes. The self-
replicator consists of two metabolic pathways – one for preferential nutrients and one
for non-preferential ones.

metabolic pathways to the simple self-replicator model.

The whole self-replicating system, as sketched in Figure 2-1(b), consists of a

metabolic flux network, where metabolite pools are connected by biochemical re-

actions catalyzed by specific enzymes. For the sake of simplicity and without loss of

generality, it is assumed that there are only two types of time varying nutrient com-

ponents, namely a preferential sugar (PS) and a non-preferential sugar (NPS), which

both can be growth limiting. All other compounds that are required for growth are

assumed to be available in excess. Further, we assume that the self-replicating sys-

tem will be situated in a surrounding that periodically switches between a PS and an

NPS environment. As only two nutrient components change over time, our simplified
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cell comprises two catabolic pathways. The external nutrients can be imported into

the cell by specific permeases, where they are transformed into metabolic precursors,

i.e. amino acids, as the only precursor in the system. Using amino acids, ribosomes

synthesize the five distinct enzyme types that the self-replicator consists of, including

themselves. These five enzymes constitute the total amount of proteins belonging to

one self-replicator. Their relative share of the total protein amount influences the

protein synthesis rate, i.e. growth rate.

Each metabolic pathway, represented by the fluxes and arrows in Figure 2-1(b),

can be thought to be catalyzed by a group of enzymes with concentrations ˆ

E

i

. The

effective enzyme concentration of one whole pathway j is expressed as E

j

=

P
i

ˆ

E

i

.

It is assumed that the maximum concentration of the proteome does not exceed a

constant proteome density E

max
=

P
j

E

j

[42, 60]. The overall protein mass density

of the whole population is defined as total protein mass M

tot of the population per

total cell volume of the population V

pop.

E

max
:=

M

tot
(t)

V

pop
(t)

= const. (2.1)

Note that M

tot and V

pop are quantities that are measured in batch culture exper-

iments and that E

max corresponds to the population averaged cellular protein con-

centration. In what follows, we assume that fast growing organisms are optimized

for biomass production, an assumption which is strongly supported by recent exper-

imental results [56,68]. In order to describe the system dynamics with the necessary

accuracy, we introduce a mathematical description for the metabolite and enzyme

pool dynamics.
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2.2 Metabolite pool dynamics

A metabolite pool is characterized by its mass density. The mass density [X] of

metabolite X is denoted as metabolite mass m

X

(t) per population volume V

pop.

[X](t) :=

m

X

(t)

V

pop
(t)

(2.2)

Alternatively, one can use the particle density ˜

[X] := n

X

/V

pop, which is the amount

of particle in mol over population volume in l. (This definition is utilized for flux

balance analysis with the Matlab toolbox cobra [52].) All metabolite pool dynamics

are defined by continuity equations. Furthermore the concentration and fluxes must

always be positive, as it is hinted in Figure 2-2.

• Continuity: d[X](t)
dt

= vin(t)− vout(t)

• Positivity: [X](t) ≥ 0 and v

i

≥ 0

The outflow rate vout(t) depends on the pool concentration [X](t) in conjunction with

the related enzyme concentration E

X

, whereas there is no direct dependency to the

inflow rate vin(t). Due to the existence of a single metabolic network, all pools are

connected. This gives rise to interpret all inflow rates as an outflow rate of an upper

pool [Y ](t). Hence for a linear pathway, it is sufficient to define the outflow rate as:

v

X

(t) := v

out

(t) =

[X](t)

K

X

M

+ [X](t)

· k
X

· E
X

(t) , (2.3)

where KX

M

is the Michaelis-Menten constant and k

X

is the catalytic rate of the enzyme

reaction. The inflow rate has the same expression as above with the only difference

of being defined by the upper pool [Y ](t), i.e. vin = vY. In order to work with

normalized quantities, the relative mass λ

X

of metabolite X is introduced by

λ

X

(t) :=

m

X

(t)

M

tot
(t)

=

[X](t)

E

max . (2.4)
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v (t)in v (t)out

[ ]X (t)

Figure 2-2: Concentration dynamic of arbitrary metabolite X. While the
outflow rate vout(t) depends on the metabolite pool concentration [X](t), the inflow
rate vin(t) is independent of [X](t) and is subject to an upstream pool.

The pool dynamics follow from the defined fluxes, the continuity equation, and the

definition of the relative metabolite mass.

d

dt

λ

X

(t) =

1

E

max · d

dt

[X](t) =

v

Y

(t)− v

X

(t)

E

max (2.5)

2.3 Enzyme pool dynamics: regulation and growth

A mathematical description of growth control can be obtained by determining the

time dynamics of growth rate and the enzyme pools. Optimal growth control is

achieved by regulating metabolic fluxes in a way that maximizes growth rate. The

metabolic fluxes are driven by their related enzyme concentrations and extra- and

intracellular metabolite concentrations. Since the latter is a not influenceable envi-

ronmental factor, growth control exclusively means regulating enzyme concentrations.

The optimal timing, by which this regulation is performed, is influenced by the growth

rate. The reason is that the enzyme concentrations can be diluted or over-expressed

due to growth. In the following, the proper quantitative definitions of growth, growth

rate and regulation will be developed in order to obtain the basis for deriving their

time dynamics.

2.3.1 Definition

To describe cellular growth, the protein mass is a better quantity than the cor-

responding concentration. The time evolution of the total protein mass M

tot
(t) is

proportional to its cell population volume V

pop
(t), since we assume a constant total

protein concentration E

max. Consequently, d
t

E

max
= d

t

(M

tot
(t)/Vcell(t)) = 0, despite
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of increasing mass and volume. Hence, the total protein mass and the associated total

protein mass flux are the appropriate quantities for describing cell growth and growth

rate, respectively.

To describe the regulatory dynamics of the various enzyme pools we introduce

the relative enzyme mass φ

j

= M

j

/Mtot by the ratio of the enzyme mass M

j

(t) of a

metabolic pathway j to the total protein mass M

tot
(t). As the cellular system tends

to maximize its growth rate, which is represented by the synthesized protein mass

per time unit, optimal growth rate is a result of an optimized metabolism. In this

model, the only way of tuning metabolism is by means of redistributing the enzyme

concentrations E

j

(t) of metabolic pathways. This is due to a constant intracellular

protein concentration, which is maintained by the cell to ensure efficiency of central

cellular processes, such as protein folding [10, 42]. In analogy to the relative enzyme

mass φ

j

, one can define a relative enzyme concentration E

j

(t)/E

max, which can be

shown to be related:

φ

j

(t) :=

M

j

(t)

Mtot(t)
=

✓
M

j

(t)/V

pop
(t)

◆

✓
M

tot
(t)/V

pop
(t)

◆
=

E

j

(t)

E

max , (2.6)

where M

tot
(t) =

P
j

M

j

(t) and
P

j

φ

j

(t) = φ

max
= 1. Both quantities can likewise be

used to describe metabolic regulation. But the relative enzyme mass φ

j

(t) is more

favorable, because it stands in direct relation to the definition of cellular growth, and

will be used for the derivation of the regulatory dynamics below.

2.3.2 Regulation

The regulatory dynamics are obtained by taking the time derivative of the relative

protein mass φ

j

(t). The time derivative d/dtφ

j

(t) depends on the derivatives of the

total protein mass d
t

M

tot
(t) and the pathway protein mass d

t

M

j

(t). For this purpose
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one can define the following useful relation between both mass quantities:

γ

j

(t) :=

d

dt

M

j

(t)

d

dt

M

tot
(t)

, (2.7)

where
P

j

γ

j

(t) ⌘ 1. The relative synthesis rate γ

j

(t) is the synthesis rate of enzymes

from pathway j with respect to the overall synthesis rate. It can be interpreted as

the fraction of protein synthesis capacity that is assigned to enzyme j. This synthesis

capacity can be generalized to other biological regulatory mechanisms, like the amount

of mRNA , tRNA etc. . Deriving the relative protein mass and using relation Eq. (2.7)

yields the ordinary differential equation for the regulatory dynamics.

d

dt

✓
M

j

(t)

M

tot
(t)

◆
=

M

tot
(t) · (d

t

M

j

(t))−M

j

(t) · (d
t

M

tot
(t))

(M

tot
(t))

2

=

d

dt

M

tot
(t)

M

tot
(t)

·
 

d

dt

M

j

(t)

d

dt

M

tot
(t)

− M

j

(t)

M

tot
(t)

!

d

dt

φ

j

(t) =

d

dt

M

tot
(t)

M

tot
(t)

·
⇥
γ

j

(t)− φ

j

(t)

⇤
(2.8)

The differential equation (Eq. (2.8)) describes the change of the relative enzyme

mass for each pathway. This time-dependency of enzymatic resources represents the

regulatory dynamics of a single cell, under the simplifying assumptions introduced

before. The relative enzyme mass φ
j

tends toward the synthesis rate ratio γ

j

with the

population size independent growth rate vgrowth = d

t

M

tot
/M

tot. Eq. (2.8) describes a

growing cellular system that redistributes its protein synthesis capacity in regulatory

manner, under the constraint
P

j

γ

j

(t) ⌘ 1.

There are three scenarios with respect to regulation. Using relation Eq. (2.8), one

can find following interpretation:

1. Dilution: enzyme concentration decreases

γ

j

(t) < φ

j

(t) , d

dt

M

j

(t)

M

tot(t)
< 0 , d

dt

E

j

(t) < 0

If the relative synthesis rate γ

j

is smaller than the relative enzyme mass φ
j

, the

synthesis rate of enzyme j will be smaller than the growth rate. Hence, a dilution
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effect will be initiated and relative enzyme mass and enzyme concentration E

j

will decrease.

2. Over-expression: enzyme concentration increases

γ

j

(t) > φ

j

(t) , d

dt

M

j

(t)

M

tot(t)
> 0 , d

dt

E

j

(t) > 0

If the relative synthesis rate γ

j

is larger than the relative mass φ
j

, enzyme j will

be synthesized faster than the rate the cell is growing. Hence, an over-expression

effect will be initiated and relative enzyme mass and enzyme concentration E

j

will increase.

3. Homeostasis: enzyme concentration stays constant

γ

j

(t) = φ

j

(t) , d

dt

M

j

(t)

M

tot(t)
= 0 , d

dt

E

j

(t) = 0

If the relative synthesis rate γ

j

is as large as the relative mass φ
j

, enzyme j will

be synthesized exactly as fast as the rate the cell is growing. Hence, the cellular

enzyme composition will be preserved and homeostasis is established - relative

enzyme mass and enzyme concentration E

j

will stay constant.

The system always tends to the third case, homeostasis, where following relation is

established:
d

dt

M

j

(t) = φ

j

(t) · d

dt

M

tot
(t) (2.9)

2.3.3 Growth

In order to determine the time dependency of cellular protein mass growth, the fol-

lowing ordinary differential equation has to be solved:

d

dt

M

tot
(t) =

⇣
β

R

(t) · k
R

· φ
R

(t)

⌘
·M tot

(t) , (2.10)

where β
R

(t) = ([AA])/(K

R

M

+[AA]) is the probability of amino-acid-binding to a ribo-

some and [AA] is the amino acid concentration. We do not consider the contribution

of different amino acids because one type is sufficient for our phenomenological model,

regarding previous assumptions. This differential equation, Eq. (2.10), represents ex-

ponential growth with a time-dependent growth rate vgrowth(t) := β

R

(t) · k
R

· φ
R

(t),
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whereas vgrowth(t) is based on Michaelis-Menten kinetics of ribosomal translation.

Solving this ordinary differential equation yields the following exponential growth

relation.

M

tot
(t) = M

tot
(t0) · exp

 
k

R

·
Z

t

t0

β

R

(t) · φ
R

(t) dt

!
(2.11)

Eq. (2.11) can be seen as microscopic view of cellular growth, where the population’s

protein mass is exponentially increased instead of the the number of cells. To trans-

form Eq. (2.11) into a more classical macroscopical form of cell growth, one hast to

introduce the relation M

tot
(t) = hMcelli · n(t), where n(t) denotes the number of cells

in a population and hMcelli is the average proteome mass of a single cell. Applying

this relation and the connection vgrowth(t) = ln 2/t

D

(t) between growth rate vgrowth

and cellular doubling time t

D

yields the macroscopic view of cellular growth.

n(t) = n(t0) · 2
R

t

t0

1
t

D

(t)
dt (2.12)

Here, the time-dependent cellular doubling time is expressed as

t

D

(t) =

ln(2)

β

R

(t) · k
R

· φ
R

(t)

. (2.13)

Eq. (2.12) and Eq. (2.13) show that the population size doubles by a time which

depends on the amino acid concentration [AA] and relative protein mass investment

in ribosomes. The more ribosomes and amino acids are present, the shorter is the

cellular doubling time and the faster is cellular growth. Assuming stable proteins,

the doubling time equals the response time t

R

, i.e. the time a cell needs to respond

properly to an environmental change.

2.4 Control system

A living cell can be regarded as a control system consisting of a system to be con-

trolled, controller, actuator, and sensors. The system to be controlled is represented

by the metabolic network, while the actuator can be seen as the protein synthesis
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machinery, i.e. ribosomes which produce specific enzymes with a probability given by

the relative protein synthesis rate γ

j

. Next, sensors and controller have to be added

to the model in order to complete the control system. In the following the process of

sensing will be referred to as perception and there will be only two types as will be

seen below, namely intracellular perception and extracellular perception. The explicit

nature of the sensors are not important for our research question, since we are only

interested in the effective information content of those. The controller yields cellular

regulation, which must be inferred by an mathematical optimization process.

Having all pieces together, one can explain the dynamic steps of growth control

by means of the control system sketched in Figure 2-3. The metabolic system takes

up nutrients from the environment and metabolizes them into proteins, which in turn

increase cell mass, i.e. the cell grows. This process is regulated by the controller which

receives information about the nutrient availability from perception and hands over

desired enzyme concentrations to the actuator, namely the ribosomes. The actuator

implements this desired values by changing the actual enzyme concentration. This

total control process is time dependent and hence explains the dynamic steps of

growth control.

As mentioned, the modeled control system has a desired value and an actual

value for all fluxes and enzyme concentrations. Former has to be distinguished from

the optimal value. While the desired value is a quantity that the actual value

aims for, the optimal value is a quantity which represents the global maximum or

minimum of an objective function (here: growth rate). If and only if the desired value

is determined under ideal conditions, it will be equal to the optimal value.

2.4.1 Desired value

The desired value, which represents the control of a system, depends strongly on the

information quality of the surrounding environment, namely the extracellular nutri-

ent concentration. This information is of utmost importance for the desired value’s

accuracy, that is the degree of optimality with respect to the control. Obviously, the

measurement of extracellular nutrient concentration is more precise than the one of
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Figure 2-3: Block diagram of the whole modeled replicating system. This
control system consists of a system to be controlled, namely the metabolic network, a
controller, actuators and sensors for determining the metabolic pools’ relative mass.
Each block represents a process, which can contain sub-processes. While blue ar-
rows represent input and output of the different processes, the red and black arrows
represent the input for intracellular and extracellular perception, respectively.

intracellular nutrient concentration. On the other hand, a highly precise determina-

tion of the actual extracellular concentration can be disadvantageous with respect to

growth, in the case of a rapidly changing environment.

Another important point for the determination of the desired value is a matching

amount of enzymes to their associated metabolites. This optimal resource allocation

prohibits the waste of enzymes in the case of enzyme overproduction and prevents

from a non-optimal growth rate due to the mismatch between catalytic capacity of too

less enzymes and the existing larger metabolite pool [16]. A non-optimal distribution

of resources will always cause a decrease in growth rate compared to the optimal

state. In physical terms, optimal resource allocation is defined as the condition, in

which the metabolite net inflow rate v

in

into a pool equals the catalytic net outflow
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rate v

out

.
X

i

v

i

in

(t) =

X

k

v

k

out

(t) (2.14)

This assumption or condition, respectively, implicates balanced fluxes and constant

pool concentrations for the whole network, if the environment is regarded to be con-

stant. Therefore, it is possible to consider the pool and flux dynamics as an stationary

process, where the pool concentration and flux instantaneously adapt to an new en-

vironment by tuning enzyme concentrations to the according desired values.

2.4.2 Actual value

Balanced fluxes is a condition for optimality, but cannot always be achieved by the

cell in reality. This is due to two major facts:

1. The information content is imprecise, e.g. because of the cell only measuring

the intracellular nutrient concentration.

2. The change between different environments happens faster than the cells ability

to adapt to the desired value.

Consequently, actual and desired value cannot always be identical, as it is in the case

of a stationary process. It is appropriate to assume a stationary process in order to

compute the desired values. But on the matter of determining the actual value, one

must consider real dynamics of fluxes as well as pool concentrations.

2.4.3 Defining the desired value

The desired value φ

⇤
j

(

ˆ

t) at time ˆ

t is defined by the relative enzyme mass φ

j

(t) which

the system targets for if the environmental conditions would remain constant for

t >

ˆ

t. The proximity of the actual value to the desired value depends on how long the

environment remains fixed relative to the response time t

R

of the system. The two

following limiting cases are possible, by defining T as the average time over which

environmental conditions stay constant.
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• No adaptation (t
R

>> T ): The desired value changes at any time.

• Total adaptation (t
R

<< T ): The desired value remains fixed until full

adaptation (homeostasis).

The desired value can be defined by the stationary case of the regulatory enzyme

pool dynamics in Eq. (2.8). Above, it was assumed that optimal resource allocation

or constant relative enzyme pools, respectively, is a state desired by the system.

Therefore, the desired value φ

⇤
j

follows from the condition

d

dt

φ

j

(t)

!
= 0

and corresponds to the relative enzyme mass synthesis rate γ

j

at time t.

φ

⇤
j

(t) := γ

j

(t) =

d

dt

M

j

(t)

d

dt

M

tot
(t)

(2.15)

The cell implements the desired value by adjusting (regulating) the synthesis rate

ratio γ

j

, as Eq. (2.15) shows. The system drives the enzyme mass ratio φ

j

towards

the synthesis rate ratio, regardless of the initial condition of φ(t0), i.e. pathway mass

M

j

(t0) and total mass M

tot
(t0).

M

j

(t) +M

j

(t0)

M

tot
(t) +M

tot
(t0)

t!1−!
d

dt

M

j

(t)

d

dt

M

tot
(t)

In summary, the synthesis rate ratio can be regarded as the control function of

the cell. By having the knowledge of the ratio γ

j

, it is possible to predict the state

dynamics of the whole metabolic system. Of course, the control function has to

depend on the extracellular nutrient concentrations and therefore on environmental

conditions.
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1
E

max

· d

dt

[X] = d

dt

mj(t)

M

tot(t)

!
=

1
M

tot(t)
· d

dt

m

j

(t)

Enzyme

1
E

max

· d

dt

E

j

= d

dt

Mj(t)

M

tot(t)
6= 1

M

tot(t)
· d

dt

M

j

(t)

Figure 2-4: Relative mass flux and normalized absolute mass flux. Metabolic
reactions happen on a much faster time scale than the rate of protein synthesis.
Consequently, the relative mass flux and normalized absolute mass flux are unequal
for enzymes, while they are identical for metabolites.

2.5 Determining the optimal desired value

2.5.1 Relative and absolute mass fluxes

One has to distinguish between relative mass fluxes and normalized absolute mass

fluxes, as shown in Figure 2-4 and Figure 2-5.

v5 =

X

j

d

dt

M

j

(t)

M

tot
(t)

6=
X

j

d

dt

M

j

(t)

M

tot
(t)

= 0

While both quantities are identical for the metabolite fluxes v1, v2, v3, v4, they are

totally different for protein mass fluxes. The reason for this is the following assump-

tion: the time dependent change of the metabolite pools happens on a much faster

scale than the rate of protein synthesis. Therefore, the protein pathway mass M
j

and

the total protein mass M

tot can be regarded as constants for the time dynamics of

metabolite mass m

X

(t).

2.5.2 Objective function and stoichiometric matrix

It is assumed that the metabolic network is optimized in such a way that the system’s

growth rate is maximized [16,19,28]. In order to determine the desired value φ

⇤
(t) of

the relative protein mass at time t, the metabolic network, with normalized absolute

mass fluxes (dm
j

/dt)/M

tot and (dM

tot
/dt)/M

tot, has to be optimized with respect to
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Figure 2-5: Schematic figure of the simplified metabolic network. (a) Growth:
the arrows represent normalized absolute mass fluxes, while the metabolite and pro-
tein pools are quantified by normalized absolute mass. The growth rate v5 = vgrowth

is an absolute mass flux, since growth can only be understood in absolute terms. The
normalization 1/M

tot is utilized to keep quantities independent of population size.
(b) Regulation: the arrows represent relative mass fluxes, while the metabolite and
protein pools are quantified by their relative mass. The self-replicator distributes its
constrained protein resources between permeases φ1, φ2, metabolic enzymes φ3, φ4,
and ribosomes φ5. The enzyme synthesis acts as an feedback loop on the metabolic
network, since metabolic fluxes v

j

depend on enzyme levels v

j

/ φ

j

.

its growth rate (see Figure 2-5(a)). This optimization has to be applied for each time

t. The growth rate vgrowth, corresponding to fitness, is defined as normalized absolute

protein mass flux (synthesis rate):

vgrowth := v5 =

✓
d

dt

M

tot
(t)

◆

M

tot
(t)

. (2.16)

Absolute fluxes are of paramount importance, since growth can only be understood

in absolute terms. Normalized fluxes, specifically the normalized protein flux, are

utilized because they are independent of population size.

A stoichiometric matrix S with three metabolites and five fluxes can be formulated
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for this metabolic network. As defined above, inflow fluxes are positive and outflow

fluxes are negative.

S :=

0

BBB@

+1 0 −1 0 0

0 +1 0 −1 0

0 0 +1 +1 −1

1

CCCA
(2.17)

Using this matrix, the metabolite pool dynamic can be expressed as:

d

dt

~m(t) =

0

BBB@

+1 0 −1 0 0

0 +1 0 −1 0

0 0 +1 +1 −1

1

CCCA
·

0

BBBBBBBBB@

v1

v2

v3

v4

v5

1

CCCCCCCCCA

, (2.18)

where

~m(t) :=

0

BBB@

λ3(t)

λ4(t)

λ5(t)

1

CCCA
. (2.19)

2.5.3 Optimization conditions

The mathematical problem is to find the desired values φ⇤
j

(t) at time t for a given set

of actual values of the metabolite pools and extracellular nutrient concentration. The

actual values of the enzyme pools are not relevant for this purpose, since the cellular

system drives towards the desired value, regardless of initial conditions of the enzyme

pools. Since the growth rate is a flux, the desired relative protein masses φ

⇤
j

need to

be expressed in terms of desired metabolite fluxes v

⇤
j

.

v

⇤
j

(t) := ↵

⇤
j

(t) · φ⇤
j

(t) , (2.20)

where

↵

⇤
j

(t) :=

λ

⇤
j

(t)

K

(j)
M

E

max

+ λ

⇤
j

(t)

· k
j

for j = 1, ..., 5 . (2.21)
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The relative metabolite masses λ

⇤
j

at time t represent perceived values, which can

differ with respect to the type of perception and need not to be equal to the real

values λ
j

(t). The desired relative protein masses can be obtained by maximizing the

growth rate for each time t under following conditions.

• Positive fluxes: The fluxes are constrained to be positive. (By constraining

the lower boundary to a non zero value, one could simulate a basal enzyme

expression level, which is not done here.)

• Optimal resource allocation: This condition implicates constant metabolite

pools and hence balanced fluxes, as can be seen by setting the time derivative

of all metabolite masses to zero (see Eq. (2.18)).

d

dt

~m(t)

!
= 0

S · ~v⇤(t) !
= 0 (2.22)

• Proteome density conservation (Molecular Crowding [10,42,56]) : The total

amount of all enzyme pools summed up together is restricted, which arises from

the assumed constant total enzyme concentration E

max. Therefore, the sum of

all relative protein mass is restricted by one,

5X

j=1

φ

⇤
j

= 1 ,

from which follows, using Eq. (2.20),

v

⇤
1(t)

↵

⇤
1(t)

+

v

⇤
2(t)

↵

⇤
2(t)

+

v

⇤
3(t)

↵

⇤
3(t)

+

v

⇤
4(t)

↵

⇤
4(t)

+

v

⇤
5(t)

↵

⇤
5(t)

= 1 . (2.23)

This density conservation constrains the allocation of cellular resources [1, 56,

57]. Our model basically incorporates a three component partition of the pro-

teome [68], namely permeases φ1, φ2, metabolic enzymes φ3, φ4, and ribosomes

φ5. The cellular system has to distribute its constrained protein resources be-
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tween those three components.

2.6 Perception

Perception is the key to proper regulation. Depending on the perceived extracellular

nutrient availability, the system’s controller regulates its metabolism differently. We

define two kinds of perception, namely the extracellular and intracellular perception.

In the case of extracellular perception the cell regulates its metabolism exclusively

in response to extracellular nutrient information, while in the case of intracellular

perception the opposite holds. In the latter case the cell indirectly recognizes nutrient

availability by perceiving intracellular metabolic information.

Looking at Figure 2-3 one understands why extracellular perception effectively

has to act as a feedforward loop while intracellular perception acts as feedback loop

on the regulation. Assuming extracellular perception, the information about changes

in external nutrient availability have already entered the controller before the cell

is able to take them up. Thus, pathways are regulated in response to changes in

the environment, even before nutrients enter the metabolism. Contrarily assuming

intracellular perception, the information about external nutrients enters the controller

not before nutrients have already been transported inside the cell. Thus, pathways are

regulated in response to changes in intracellular nutrient concentrations, some time

after the nutrient availability has changed in the environment. The cell indirectly

perceives its environment and slowly adapts by a feedback control mechanisms.

The incorporation of perception into the above presented mathematical context is

done by defining two types of proteome density conservation (see Eq. (2.23)) according

to both perception types. Since, intracellular perception is equivalent to an exclusive

information about intracellular metabolite pools, only the intracellular quantities ↵3,

↵4, ↵5 enter the conservation equation of a system with intracellular perception.

v

⇤
1(t)

↵3(t)
+

v

⇤
2(t)

↵4(t)
+

v

⇤
3(t)

↵5(t)
+

v

⇤
4(t)

↵5(t)
+

v

⇤
5(t)

↵5(t)
= 1 (2.24)
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Extracellular perception is equivalent to an exclusive information about the extra-

cellular nutrient availability. Therefore, only the extracellular quantities ↵1 and ↵2

enter the conservation equation of a system with extracellular perception.

v

⇤
1(t)

↵1(t)
+

v

⇤
2(t)

↵2(t)
+

v

⇤
3(t)

↵1(t)
+

v

⇤
4(t)

↵2(t)
+

v

⇤
5(t)

(↵1(t) + ↵2(t))
= 1 (2.25)

2.7 Determining the actual value: protein synthesis

& metabolism

To determine the actual values of the enzyme and metabolite pools, the metabolic

network (Figure 2-5(b)) with relative mass fluxes λ
j

and φ

j

has to be used. The actual

system can be modeled by a system of 10 coupled ordinary differential equations:

d

dt

λ

j

(t) = ↵

Y

(t) · φ
Y

(t) − ↵

j

(t) · φ
j

(t) (2.26)

d

dt

φ

j

(t) = vgrowth(t) ·
⇥
φ

⇤
j

(t)− φ

j

(t)

⇤
, (2.27)

where

vgrowth(t) = ↵5(t) · φ5(t)

and

↵

j

(t) =

λ

j

(t)

K

(j)
M

E

max

+ λ

j

(t)

· k
j

.

Here, the index Y denotes the upstream metabolites and enzymes.

2.8 Simulation

To evaluate the fitness benefit due to perception in dependency of environmental fluc-

tuations, a competing species experiment in a fluctuating environment was simulated.

While each species exclusively perceives its environment according to intracellular or

extracellular perception, the metabolic and regulatory mechanisms are similarly based

on the above presented mathematical model. Hence, the only difference between both
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species is the perception type.

The computer simulation of each species is implemented according to the block

diagram Figure 2-3, which produces the dynamic behavior of growth rate, enzyme

and metabolite concentrations, and relative protein synthesis rate (control function).

The metabolic network is regulated by a flux balance analysis (FBA) based optimiza-

tion process [28, 52, 59] (control process), which maximizes cellular growth rate [19]

with respect to constant proteome density [42,60] and optimal enzyme-resource allo-

cation [16]. Particularly, our simulation of the pool dynamics can be regarded as some

type of dynamic FBA with quasi-steady-state assumption. This assumption includes

discretizing the time into time intervals ∆t of constant growth rate vgrowth = const.

and regulation (control) γ

j

= const., whereas the former is kept constant for the

enzyme dynamics only. During an interval ∆t, the enzyme and metabolite levels are

variable and determined by the system of coupled differential equations, Eq. (2.26)

and Eq. (2.27). At the end of each time step ∆t the controller computes the de-

sired enzyme levels γ
j

by linear programing within FBA on the basis of the perceived

metabolite levels λ

⇤
j

(Eq. (2.24) or Eq. (2.25)). Finally, the updated growth rate

vgrowth and regulation γ

j

are taken to repeat this procedure for the next time step.

The difference of our simulation to conventional dynamic FBA [34, 38] is the notion

of a control system, which is rather an element of cybernetic modeling [70].

To obtain regulatory and growth dynamics of the cell which are independent of

initial conditions, the simulation operates until both species show a stable periodic

behavior. The process of obtaining a stable periodic behavior simulates an evolu-

tionary process in which the cell adapts to an environment with highly predictable

fluctuations in nutrient availability. Having attained stability, one periodic growth

rate interval is taken to compute the average growth rate, which is the measure for

fitness. The whole procedure is repeated for different fluctuation frequencies and

therefore yields a frequency dependent plot of the average growth rate. In conclusion,

the computer simulation delivers a frequency dependent plot of the species’ fitness as

well as the underlying dynamic behavior of metabolism and regulation.
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Chapter 3

Results

3.1 Simulation: average growth rate for different switch-

ing times

To determine the frequency regimes in which the intracellular perception is evolution-

ary more beneficial than the extracellular perception, the average growth rate of the

intracellular perceiving system (IPS) and extracellular perceiving system (EPS) was

plotted against the relative switching time T/t

min
D

, as can be seen in Figure 3-1.

The modeled self-replicators live in a highly predictable ecology, which fluctuates

between two environments, namely the non-preferential sugar (NPS) and the prefer-

ential sugar (PS) environment. Both sugar types are always present, whereas their

concentration fluctuates with respect to the environment. In the NPS environment

the NPS possess 50% of the maximum sugar concentration, while the concentration

of the PS is as low as 0.25%, which can be regarded as zero. In the PS environment

the NPS concentration immediately decreases to 0.25%, while the PS transfers to a

maximum concentration of 100%. For preferentiality in vitro, a difference between

maximum PS and NPS concentration is not necessary, because changes in fluxes are

caused by the quality of the sugar types, i.e the uptake rate. Nevertheless, this model

feature guarantees sugar preferentiality in silico without loss of generality. The dura-

tion of one environment, PS or NPS, is called the switching time T . The reciprocal
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Figure 3-1: Simulation results of competing species experiment in a fluctu-
ating nutrient environment. Average growth rate for different relative switching
times T/t

min
D

and perception types, whereas t

min
D

denotes the minimum cellular dou-
bling time. The average growth rate is normalized by its maximal observable value
for the sake of generality. The dashed black line at the break-even point tBE di-
vides fluctuating environments in regimes of fast T = [0, tBE] and slow T =]tBE, 100]

fluctuations. (a) Average growth rate for the interval T/tmin
D

= [0, 100]. While the
self-replicator with intracellular perception only grows on preferential sugar (PS), the
one with extracellular perception also grows on non-preferential sugar (NPS). These
contributions to the average growth rate can be seen for the steady state value. (b)
Average growth rate for the interval T/tmin

D

= [0, 15].
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value of the switching time is exactly the frequency f := 1/T of the fluctuations.

To gain a more general view all time quantities are normalized by the minimum

cellular response time tmin
R

= const., which corresponds to the time the cellular system

needs to adapt to a constant PS environment. The response time is defined as the

time, the cellular system needs to finish 50% of its regulatory work. Specifically it is

the average time, the relative enzyme masses ~

φ need to reach half the way between

initial ~φ(t0) and desired value ~

φ

⇤.

~

φ(t

R

) :=

1

2

· (~φ⇤ − ~

φ(t0)) (3.1)

Here, the initial values at time t0 are the steady state values in the NPS environment.

While the minimum response time gives an upper speed limit of cellular adaptation to

changing nutrient availability, the cellular doubling time is experimentally more ac-

cessible. Assuming no protein degradation, the minimum response time tmin
R

measures

approximately the time a cell needs to double itself once in a constant PS environ-

ment, i.e. the minimum cellular doubling time t

min
D

= const. (minimum generation

time) [4]. This minimum doubling time t

min
D

is constant and corresponds to the maxi-

mum growth rate that is achievable. Hence, normalization by the minimum response

time can be interpreted as normalization by the minimum cellular doubling time

generating the relative switching time T/t

min
D

and relative time t/t

min
D

. These quanti-

tates produce an organism-independent view on average growth rate and regulatory

dynamics, which makes Figure 3-1 valid for all exponentially growing microorganisms.

Each point in Figure 3-1 represents the average growth rate for a given relative

switching time, that is for a given fluctuation frequency. The average growth rate

vgrowth(T ) is defined as the time integral over the growth rate dynamics v

(T )
growth(t)

divided by one period of fluctuations, specifically twice the switching time.

vgrowth(T ) :=
1

2T

Z
t0+2T

t0

v

(T )
growth(t) dt (3.2)

There are four switching time points, which are of interest for a qualitative analysis

of the average growth rate. These are (i) T approaching zero, (ii) T around the
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minimum response time (minimum doubling time), (iii) T at the break-even point

t

BE

, and (iv) T approaching infinity. The break-even point divides Figure 3-1 into two

regimes, which are the fast fluctuating regime T 2 ]0, t

BE

] and the slowly fluctuating

regime T 2 [t

BE

,1[. Inside the first regime the IPS has a larger average growth

rate, whereas the EPS grows faster in the second one. For infinitely large switching

times, the cells go into steady state. The steady state average growth values can be

assigned to contributions due to full adaptation to the PS or NPS environment. As

will be seen below, the IPS only adapts to the PS environment, which is equivalent

to a cellular system under permanent carbon catabolite repression. Therefore, its

steady state value in average growth rate is the contribution v

PS

growth due to exclusive

PS adaptation. The EPS adapts fully to both sugar types when in steady state and

will only utilize carbon catabolite repression if there are relevant amounts of PS in

the environment. Thus, the difference between steady state values of EPS and IPS is

exactly the contribution v

NPS

growth caused by adapting completely to NPS surrounding.

The contribution to exclusive adaptation to the PS environment has to be larger

than the one for the NPS environment, because this is actually the definition of sugar

preferentiality. In the here presented environmental example, v

NPS

growth = 15% and

v

PS

growth = 85%. In conclusion, the intracellular perception, yielding permanent carbon

catabolite repression, is evolutionary more beneficial for switching times T 2 ]0, t

BE

]

and the extracellular perception is more beneficial for T 2 [t

BE

,1[.

3.2 Simulation: actual value

To understand the underlying regulatory principles of the results of Figure 3-1, the

control, enzyme pool, metabolite pool and growth rate dynamics were analyzed at

representative relative switching time values. The control dynamics can be under-

stood as the dynamics of the relative protein synthesis rate ~γ(t).
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3.2.1 Mixed environments (T ! 0)

If the switching time converges towards zero, the cellular system will no longer be

able to distinguish between the two environments. Therefore, the cell will perceive

a mixed environment. Further, the cell has no time to adapt to any individual envi-

ronment, since the nutrient fluctuations are much faster than the minimum response

time (T << t

min
R

). There are two regulatory ways to handle this situation, used by

the EPS and the IPS, respectively. First, the cell can go into a mixed state, which

responds to both environments at the same time. Because of limited resources, ac-

cording to constant proteome density, the cell adapts partly and gains only half, 50%,

of its possible average growth rate (see Figure 3-1 for T/t

min
D

! 0). This is the reg-

ulatory principle of the EPS. Secondly, the cell can go into and stay in the state of

the preferential sugar (PS) environment. This gives rise to no nutrient uptake in the

NPS environment and a maximum nutrient uptake in the PS environment. Due to

this one-sided adaptation to the PS, the cell gains an average growth rate below the

maximum(100%) but higher than 50%. This is the regulatory principle of the IPS.

3.2.2 Resonance and antiresonance point (T = ⌧ ⇡ t

min

R

⇡ t

min

D

)

If the switching time approaches the minimum response time t

min
R

approximated by

the minimum cellular doubling time t

min
D

, the regulatory effects will be observable.

By approaching t

min
D

another quantity becomes relevant, namely the time delay ⌧

due to nutrient signaling, which is considered to be approximately equal to t

min
D

.

This signaling time delay reflects the adaptation kinetics of the underlying metabolic

network and thus is present in both systems, EPS as well as IPS. After changing the

relative enzyme masses, it takes this time delay to observe an effect on the growth

rate. Thus, any regulatory action will take effect only after ⌧ . Moreover, the IPS

needs this time to perceive its surrounding, before even being able to take any proper

regulatory steps.

While the EPS perceives its nutrient environment in an exact and instantaneous

manner, the IPS has a limited and delayed vision of its surrounding (see Figure 3-2(a),
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where the IPS does not grow at all in the NPS environment and Figure 3-3(a), where

there is no NPS uptake at all). There are two main features that distinguish the

IPS from the EPS or the intracellular perception from the extracellular perception,

respectively. First, the IPS has to wait for a time delay ⌧ until the nutrient signaling

affects the intracellular metabolic pools, in order to sense what has happened exter-

nally. Secondly, the IPS deactivates the NPS pathway, which prevents the system to

perceive NPS. Hence, the IPS is not able to sense the switching between environments

with T  t

min
D

. Based on these perception types, the EPS adapts to each individual

environment whereas the IPS adapts to the one with PS, only. Additionally, the

IPS prepares itself for an increased PS uptake by hyper-up-regulation of PS uptake

transporters during the NPS environment. This increased PS uptake only occurs for

a short time interval (see Figure 3-3(b)), so that an environmental change with a

switching time similar to the signaling time delay produces a resonance effect (see

Figure 3-2(b)).

Considering a switching time that equals the signaling time delay T = ⌧ ⇡ t

min
D

,

the EPS yields an antiresonance effect with the wrong pathway regulation at the

wrong time. This effect generates the worst average growth rate possible (< 50%),

whereas the growth is even smaller than for adapting to both sugar types simultane-

ously in a mixed environment. In contrary, the IPS supplies the perfect regulation

with the best possible result (100%), resulting from a resonance effect. Concluding,

if there is no time for regulation to act on growth rate, it will be beneficial to focus

on PS and use the PS gap phase to prepare for the PS environment.

3.2.3 Break-even point (T = t

BE

)

If the switching time T approaches the break-even point t

BE

, the EPS will approach

the IPS in average growth rate. Specifically, the Growth Benefit, due to adaptation

to the NPS environment, will exceed its associated growth loss.

The IPS perceives correctly the extracellular PS concentration in both environ-

ments and imposes an constant activation of the PS pathway. On the other hand,

the EPS alternately activates and deactivates NPS and PS pathways to adapt to the
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Figure 3-2: Growth rate dynamics at the break-even point and resonance
point. The plot shows one period 2T of fluctuations between non-preferential and
preferential environment, whereas the dashed black line separates both environments
(periodic boundary conditions). Time t is normalized by the minimum cellular dou-
bling time tmin

D

. (a) Growth benefit and loss of intracellular perception due to exclusive
adaptation to preferential sugar. The area between both graphs is the measure for
benefit and cost relative to both perception types. (b) Growth dynamics at the res-
onance point T/t

min
D

= 0.7 ⇡ 1. The large amplitude of the growth rate fluctuations
for intracellular perception leads to an optimal average performance and is caused by
the resonance of cellular response time with switching time T between environments.
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environment. There is enough time for full response and the EPS can implement the

control function (desired value) into reality. Nevertheless, the IPS stays fixed inside

the state of hyper-up-regulation throughout the whole NPS environment. After its

amino acid pool becomes zero, there is no driving growth rate to regulate pathways.

To understand, why EPS and IPS approach the same average growth rate at the

break-even point one has to understand the concept of growth benefit and growth

loss due to the underlying regulatory strategy. Simply spoken, the IPS only uses the

PS pathway to grow, while the EPS uses both pathways. To decide which of the

strategies is more favorable, one has to explain for which cases using two pathways is

more favorable than only one. The advantage of the IPS is that it does not need to

adapt to the PS, so it gains a maximal growth rate while the EPS still is adapting to

the new environment. This represents a growth benefit for the IPS (see Figure 3-2).

The advantage of the EPS is that it can also grow in the NPS while the IPS goes into

a type of growth arrest. This represents a growth loss for the IPS (see Figure 3-2).

Concluding, these two growth effect are exactly equal at the break-even point.

3.2.4 Steady state (T ! 1) & limits of the model

If the switching time becomes larger than the break-even point and approaches in-

finity, the extracellular perception and therefore the EPS will have the dominant

strategy. The cells enter steady state, therefore balanced fluxes, optimal resource

allocation and constant metabolite pools are realized. The latter feature can be seen

in Figure 3-3, where the metabolite pool concentrations converge to the one of extra-

cellular nutrients.

A switching time that lasts an infinitely long time is the equivalent of an nutrient

environment that stays constant and does not fluctuate at all. On one hand, the EPS

imposes full adaptation to the respective nutrient environments, which intuitively

makes sense for an infinitely large switching time. On the other hand, the IPS only

adapts to the PS and thus resides in growth arrest during NPS surrounding (Fig-

ure 3-2(a)). The IPS traps itself in using PS until this resource is exhausted. More

reasonable, the resulting drop in growth rate should promote the transition to strin-
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Figure 3-3: Metabolite pool dynamics. The plot shows one period 2T of fluc-
tuations between non-preferential and preferential environment, whereas the dashed
black line separates both environments (periodic boundary conditions). Time t is nor-
malized by the minimum cellular doubling time t

min
D

. (a) Extracellular perception at
break-even point: both sugar types, preferential (PS) and non-preferential (NPS), are
taken up. The condition of constant metabolite pools, caused by optimal enzymatic
resource allocation, is approached for switching times T larger than the break-even
point tBE. (b) Intracellular perception at T/t

min
D

= 3 between resonance point and
break-even point: only PS is taken up with an increased PS uptake during the PS
environment, which is the cause for the optimal growth at the resonance point.
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gent response, right after the break-even point t

BE

. Stringent response would enable

the IPS to activate the NPS pathway by bypassing the limited nutrient perception.

Then, the average growth rate of IPS would probably converge to the one of the EPS.

Since our research questions is asking for regulatory principles in fluctuating en-

vironments, the case of infinitely large switching time is not relevant. It is only

necessary to understand the limits of this model. After the break-even point t
BE

, the

model system makes no valid predictions for the IPS. It has no stringent response and

thus can theoretically grow on the smallest amount of PS, which is 0.25% in the here

presented example. This is a physiological unrealistic case. In order to add stringent

response to the model, a constraint on the minimal detectable nutrient concentration

could be introduced. If the PS concentration goes below this constraint, stringent

response will be turned on.
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Chapter 4

Discussion

This study indicates that indirect intracellular perception of extracellular nutrient

availability can give rise to a growth benefit under situations where the up and down

regulation of pathways cannot follow the fast changes of the nutrient environment. Al-

though intracellular perception carries less information about the actual environmen-

tal conditions, this regulatory mechanism enables exponentially growing organisms

to gain maximal average growth if nutrient concentrations fluctuate on timescales

comparable to the minimum generation time.

In our simulation, a system with intracellular perception responds to strong fluctu-

ations by keeping preferential nutrient pathways activated and non-preferential path-

ways inactivated. As a result the cell can take up preferential nutrients as soon as

they are available without any prior regulation. This regulatory strategy is a good

example for minimal adjustment. According to Schuetz et al. [55] there is a trade-off

between optimality under one given condition and minimal adjustment between dif-

ferent conditions, i.e. Pareto optimality [49]. In other words, cells will tune metabolic

pathways to obtain optimal growth if surrounded by a constant environment. Con-

trarily, in a fluctuating environment, cells will regulate their pathways to respond to

environmental changes by minimal adjustment of pathways. In this sense, intracel-

lular perception gives rise to a regulation of minimal adjustment, which is dominant

under fast environmental changes. Additionally, our results show that the notion of

optimality is also given under fluctuating conditions, since minimal adjustment is a
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consequence of maximizing an objective function averaged over the range of condi-

tions.

Moreover, our model of intracellular perception is in agreement with the phe-

nomenon of carbon catabolite repression [17, 23], if cells are not able to distinguish

between different conditions anymore, i.e. the fluctuation frequency approaches in-

finity. This situation is equivalent to a mixed constant environment. While carbon

catabolite repression reflects the cell’s affinity to preferential sugars in a stable mixed

nutritional surrounding, our results indicate that this mechanism holds under fast

fluctuations (around the minimum generation time) as well. To our knowledge, CCR

has not been obtained from an mathematical optimization process, before.

Furthermore, our simulation of the growth dynamics produced a break-even point,

where the average growth rate of the IPS and EPS are equal (Figure 3-1). At this

point the growth benefit of the IPS in the preferential environment matches the

growth loss in the non-preferential environment. Growth benefit and loss arise from

the exclusive adaptation to the PS environment (Figure 3-2(a)). This is in agreement

with the experimental work of Mitchell et al. [44], who have observed anticipation of

environmental changes in the sugar metabolism of E.coli and S.cerevisiae. Mitchell

et al. classified the regulatory response to environmental changes into direct and an-

ticipatory regulation, whereas the former regulates its metabolism in direct response

and the latter in advanced preparation. Further, they state that an anticipatory re-

sponse will be evolutionary beneficial if “the benefit gained from anticipation exceeds

the cost of early preparation". We can identify the anticipatory regulation with the

IPS and the direct regulation with the EPS. As we have shown intracellular percep-

tion yields a preparation for the PS environment during the NPS environment, which

can be regarded as an anticipatory behavior. Especially, the hyper-up-regulation of

the PS uptake transporter in the presence of NPS environment, which results in the

resonance peak of the average growth rate, serves as a good example for anticipatory

regulation. This course of action is only beneficial for fluctuating environments with

frequency smaller than the break-even frequency. Thus, anticipatory behavior in a

highly predictable fluctuating environment can be understood by limited and delayed
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intracellular perception.

Using our phenomenological computer model, we further showed that extracellular

perception is of selective advantage under slow environmental fluctuations. However,

it is reasonable to assume that intracellular perception always contributes to some

extent to growth control. This hypothesis is supported by the observations of New et

al. [51], who have shown that wild S. cerevisiae strains divide into sub-populations

of specialist and generalists according to their growth rate related response time (lag

phase). Generalist will adapt faster to a new carbon environment than specialists if

the environment changes from a preferential to a non-preferential carbon source. Our

results in Figure 3-2(a) for the non-preferential regime exhibit the same relation be-

tween growth regulation by means of extracellular perception (EPS) and intracellular

perception (IPS). The EPS, like the generalists, adapts faster to the non-preferential

environment than the IPS. In this context generalist could be seen as microbes whose

growth control mainly depends on extracellular perception, while the contribution

of intracellular perception has an bigger impact on the specialist’s growth control.

Although, both perception types can be utilized by microorganisms, their contribu-

tion to growth control can be differently depending on the individual evolutionary

background.

Regarding the IPS, an interesting result of our simulation is the existence of a

resonance peak for fluctuations around the minimum generation time. At this peak,

the time delay in nutrient perception equals the switching time between environments

resulting in optimal fitness. The data-based mathematical model of Mitchell and

Pilpel [43] supports our finding as their cellular system shows a fitness peak around

1− 2.5 generation times.

To summarize, our work indicates that intracellular perception is of selective ad-

vantage and gives rise to CCR in oscillating environments, so that microbes specialize

on the preferential nutrient and anticipate it in its absence. In general, intracellu-

lar perception could be a fundamental regulatory principle of minimal adjustment to

changing conditions. Although our study is limited to a purely qualitative conclusion,

due to the simplicity of our approach, the presented model is sufficient to gain insight
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in the fundamental differences of microbial growth control. In following projects, it

would be worthwhile to test our simulation with real metabolic networks, like from

the model organisms E.coli or S.cerevisiae. Moreover, experimental evidence, i.e.

competing species experiments, is needed to confirm our theory of the dominance of

intracellular perception under fast fluctuations.
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Part II

Inference of Biological Network

Structure from Perturbation Data
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Chapter 5

Introduction

In part 1 of this thesis, the regulation of metabolic networks was examined, while

in part 2 the focus lies on the other two types of intracellular biological networks,

i.e. signal transduction networks (STN) and gene regulatory networks (GRN). From

a methodological perspective, in this second part the network structure and its in-

teraction rate parameters are unknown, while the previous part assumed that the

underlying molecular interactions are known. In order to predict or even control

complex regulatory behavior of cells, like the cell response to environmental changes,

the underlying molecular interaction pattern must be understood. This is exactly the

general topic and purpose of part 2 of this thesis.

5.1 Biological networks

5.1.1 Gene regulatory networks

Gene regulatory network (GRN) control the main aspects of life, like cell differenti-

ation, metabolism, the cell cycle and signal transduction [27]. They illustrate how

the expression of genes are indirectly controlled by others and organized in a net-

work like manner. Gene regulation is mostly a response to changes in the cellular

environment, which can be triggered by growth factors or nutrient availability, but

also by intracellular changes like DNA damage. Cellular response to these changes
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(a) Schematic view of a simple gene regulatory network. Genes are transcribed to
mRNA, which are translated to transcriptions factors (TF). The TF can promote
(activate) or repress (deactivate) gene expression of downstream genes.

A B C D

(b) Mathematical graph representation: The whole transcriptional and transla-
tional component belonging to one gene are effectively combined in a single node
which can influence other nodes. Filled nodes stand for external perturbation,
like gene knockout or changes in the genes’ expression levels.

Figure 5-1: Example of a simple linear gene regulatory network. Bold arrows
represent causal interaction between molecular components, i.e. transcriptions factors
interact with genes which can activate or deactivate gene expression.

consists of co-expressing (activating) a set of genes that code for proteins associated

with a specific cellular response. Co-expressed genes are often co-regulated by the

same transcription factor [3]. In bacteria co-expressed genes are often organized in

operons, which only have a single promoter region. Thus a single master regulator,

i.e. transcription factor (TF), can initiate transcription of the whole gene set. The

Lac operon of E.coli is a famous example [2,24], which codes for the protein machinery

that takes up lactose from the environment and metabolizes it. In eukaryotic cells the

loci of co-expressed genes are scattered over the whole genome, but still most genes

are activated by a few master regulators (e.g. p53). The notion of master regulators

and sparse networks otherwise leads to the assumption that GRN are scale free net-

works. In fact, most biological networks are assumed to be scale free networks, which

means that the number of interactions k (degree) per node is distributed according
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to a power law p(k) / k

−γ [8]. This degree distribution implies very few master reg-

ulator genes, called hubs, that regulate the vast amount of genes, while most genes

are linked very sparsely to the rest of the GRN.

The direct causal molecular interplay between genes in a regulatory network is

highly complex, due to different types of biochemical and physical reactions and in-

teractions that effectively cause gene A to activate (promote) gene B - as it is sketched

in Figure 5-1(a). Measuring these interplays directly would involve a variety of high

through-put experiments that are specialized to measure the different molecular com-

ponents. For a genome wide approach this is mostly not feasible financially as well

as experimentally. State of the art RNA sequencing techniques [63] produce more

easily and accurate genome wide transcriptome data, which can be utilized to infer

gene regulatory networks by exclusively focusing on one molecular component of the

complex regulatory interplay .

By focusing only on the mRNA as a proxy, it is possible to mathematically rep-

resent complex GRN as a graph with directed edges, the so called directed graphical

model (Bayesian networks). As sketched in Figure5-1(b) network nodes summarize

the whole molecular machinery that is involved in interacting with the next genes.

In the simplified example of Figure5-1 a chain is sketched in which node A activates

(promotion of gene expression) or deactivates (suppression of gene expression) node

B. The interaction is symbolized by an direct edge from node A to node B, indicat-

ing that the interaction is not reversible. Probabilistically, each node is denoted by a

random variable which is chosen to be the mRNA abundance of the associated gene.

Directed edges, also called links, between nodes represent conditional dependencies

between random variables.

Choosing mRNA as a proxy for gene interactions has the disadvantage that any

approximation bears, namely the uncertainty in the results. This will be discussed

in more detail in the next section 5.2. But first signal transduction networks will be

shortly introduced. Despite different characteristics, they have enough similarities to

be inferred by the same method introduced in chapter 6.
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5.1.2 Signal transduction networks

Cells of multicellular organisms need to communicate with one another in order to

function properly and to respond to environmental changes as a whole. Therefore,

there is a division of labor among differentiated cells inside a multicellular organism,

where different cell types respond differently to the same extracellular signal. The

differentiation of a cell is manifested by the expressed and not expressed genes, keeping

in mind that all cells posses approximately the same DNA. Hence, signaling proteins

and pathways depend on the cell type or differentiation, respectively.

While extracellular signal molecules mediate the communication between cells,

intracellular signaling pathways forward the signal into the cell and initiate cellular

response. An intracellular signaling pathway basically consist of three parts, namely

reception, signal transduction, and initiation of cellular response. In the first step

extracellular signal molecules (ligands) bind to receptor proteins on the outside of

the plasma membrane (see Fig.5-2(a)), and activate intracellular signaling proteins.

During signal transduction, signaling proteins are activated or inhibited (deactivated)

in a cascade like manner which results in signal propagation through the cell. These

signaling proteins act as molecular switches which mostly are activated by either

phosphorylation or GTP binding. During signal transduction via a phosphorylation

cascade, upstream signaling proteins act as kinases which phosphorylate downstream

proteins. In the last step cellular response to the extracellular stimulation is initiated

by activating effector proteins. Effector proteins can alter metabolism, gene expres-

sion, or cell morphology and movement. In the case of gene regulation, whole gene

regulatory networks are usually activated.1

The phrase pathway in signaling pathway is somehow misleading, since in reality

it is a complex network rather than a linear interaction scheme. In addition to the

pathway’s own complexity, there are cross-talks between different pathways associated

with other extra- and intracellular signals. An example is the Akt-pathway, which

has crosstalk to the MAPK pathway [6].

A major challenge is to infer protein-protein interactions of signal transduction
1This whole paragraph is based on [2]
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(a) Schematic view of a simple signal transduction network, i.e. a phosphorylation
cascade. Signaling proteins have an active A

⇤ and inactive state A, whereas active
signaling proteins can activate inactive proteins downstream. Ligands can bind extra-
cellularly to membrane receptors to transmit a signal to the cytoplasm. The dashed
semi-circle symbolizes the cell membrane.

A B C D

(b) Mathematical graph representation: Filled nodes stand for external pertur-
bations, e.g. inhibiting the kinase activity by drugs. The node activity is given
by the abundance of active phosphorylated signaling proteins.

Figure 5-2: Example of a simple linear signal transduction network, i.e phos-
phorylation cascade. Bold arrows represent causal interaction between molecular
components, i.e. active signaling proteins which can activate (phosphorylate) or de-
activate (de-phosphorylate) downstream proteins.
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from variations in the phosphor-protein abundance in response to inhibitory drugs and

activating ligands. A mathematical representation for signal transduction networks

are directed graphical models (Bayesian networks) that can explain direct causal

interactions between signaling proteins. In Figure Fig.5-2 a simplified sketch of a

phosphorylation cascade can be seen, where activated phospho-protein A

⇤ serves as

a kinase for deactivated (de-phosphorylated) signaling protein B. In the graph rep-

resentation, each active phospho-protein is symbolized by a network node, while the

respective protein abundance is understood as random variable - reflecting the prob-

abilistic nature of the problem. Causal interactions between signaling proteins, i.e.

phosphorylations, are mathematically captured by directed links representing condi-

tional dependencies between random variables, i.e. protein abundance.

5.2 Network inference

5.2.1 The purpose of network inference

The goal of network inference is to reverse engineer the network structure from node

activity data. The phrase “reverse” indicates that node activities are actually the effect

of the networks’ complex interaction scheme. They can naturally be computed if the

engineered system, determined by network structure and interaction parameters, is

known. Therefore, finding the real cause to the measured effects and thereby gaining

knowledge about the underlying interaction scheme is the fundamental goal of network

inference.

The systems of interest in this work are gene regulatory networks (GRN) and

signal transduction networks (STN), both engineered by evolution and therefore a

priori unknown. In these two biological systems the measured effect is the mRNA or

phospho-protein abundance, respectively. Going forward they will be referred to as

node activity, according to the terminology of graphical models.

To distinguish cause from pure correlation is a main problem which all reverse

engineering tasks have in common. A correlation measures the statistical relationship
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between two quantities and therefore can only predict the mutual behavior but not

the causal reason for this behavior [15] . The ice cream sales - swimming pool drawing

association is a famous example from marketing. Ice cream consumption correlates

positively with the number of deaths by drowning. This is a pure correlation, since

the common cause is an increase in temperature which leads to both effects [14]. In

a deterministic system knowing the cause implies knowing the exact effect, while the

reverse implication does not hold in general. Inference from node activities as the only

source of information gives rise to correlation relations between the nodes. Additional

information is needed to distinguish causal relations from pure correlations. The

stochastic nature of biological systems poses an additional obstacle, so that only the

probability of an effect or event can be determined. For that reason node activities

are treated as random variables which can be described by an stochastic process.

Concluding, network inference reconstructs the underlying network from node ac-

tivity data, whereas causal relations have to be distinguished from pure correlations.

The stochasticity of node activity data leads to a probabilistic interpretation of the

inferred network. To infer biological networks exclusively from variations in the abun-

dance of selected molecular components in response to systematic perturbations, is

the goal of the here presented work. In the next subsection some network specific

obstacles will be explained, that will be tackled in the method chapter 6.

5.2.2 Fundamental concepts of network inference

Perturbation experiments generate correlation data

Controlled2 perturbations influence the network and generate correlation data. To

understand this influence, it is of advantage to begin with an intuitive view on the

problem. An intuitively accessible analogy is the spring-mass network, capable of

describing the effect and the necessity of controlled perturbations. Figure5-3 shows

an example of such spring-mass network which has nine metal balls connected by

springs with specific spring constant, representing the link strength between nodes.
2 Here the phrase “controlled” is chosen to distinguish controlled perturbations from random

perturbations due to thermal noise and to emphasize the directed force on only one node.
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(a) Spring-mass network in a heat bath. Ball m1

is perturbed from its point of rest, which is il-
lustrated by a transparent node m1. Due to the
perturbation the spring of m1 attached to m2 and
m4 is under tension, so that a restoring force back
to the point of rest is present.

x1
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x3
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x6

x7
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(b) Graphical model representation
of the spring-mass network. The
blue filling of node x1 symbolizes the
perturbation.

Figure 5-3: Spring-mass network as a demonstrative example from physics.
Each metal ball of mass m

j

is connected to the other balls by the use of springs. By
deviating (perturbing) ball m1 from its point of rest, all network nodes will oscillate
around their points of rest leading to information flow through the whole network.
The heat bath, illustrated by the blue background color, generates fast random per-
turbations on each node in addition to the controlled perturbation of ball m1.

The measured node activity of each ball is given by its relative position x to its point

of rest. Obviously, if no external forces act on the balls, there will be no sufficient data

information to infer how each ball is connected to the rest of the network. In other

words, in the presence of no perturbations it will be impossible to infer the network

structure from node activity data, since there is no information flow propagating

through the network. Perturbing in the sense of deviating one of the metal balls from

its point of rest, as is sketched for mass m1 in Figure5-3, will influence the rest of the

network balls to oscillate around their point of rest. It is very important that these

perturbations propagate through the whole network and thereby affect all nodes that

can be affected by a single perturbation. This requires a long lasting and relative

constant effect on the network as long as a controlled perturbation is applied.
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To bring this analogy closer to the statistic treatment of GRN and STN, one

can consider a statistic sample set of many such identical and independent spring

networks. It is only possible to measure all networks from the sample set separately

at a specific point in time - generating the so called replicate experiments. The

deviations for each system will be different, depending on the system’s state during

measurement. However, by means of statistics it is possible to compute the mean

standard deviation or variance of each node in response to the single perturbations.

Comparing these variances by determining the covariance gives rise to correlation

associations between node pairs.

Coming back to the biological networks, the point of rest in the analogy can rep-

resent constant gene expression levels in a GRN or a constant growth signal in STN,

which must not necessarily be zero. Like in the analogy systematic perturbations

are crucial for network inference, otherwise there is no information flow through the

network. Examples for controlled perturbations in GRN are transcriptional pertur-

bations like gene over expression [21] or gene knockdowns with RNAi [13], while

drugs, i.e. pharmacological inhibitors, can specifically inhibit phospho-proteins in

STN, e.g. rapamycin inhibits signaling protein mTOR [50]. These controlled pertur-

bations deviate steady state node activities slightly from their steady state values,

whereas replicate experiments are required to see this deviation. In other words, the

expected steady state value is the mean node activity of the replicates, while the vari-

ance represents the deviation from that value. The covariances of different nodes give

rise to positive and negative correlations that describe mutual behavior of nodes to

the systematically applied perturbations. Hence, the information about the network

structure lies in the deviation from the steady state node activity behavior.

Summarizing, controlled perturbations deviate node activities from their steady

state values and propagate through the whole network. As a result of this propagation

correlation associations between node pairs can be discovered.
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Perturbations

node 1
node 2

1stexp.

node 1 node 2?

(a) Incomplete data set: Not all molecular components (nodes)
have been perturbed in single perturbation experiments.

Perturbations

node 1
node 2

1stexp. 2ndexp.

node 1 node 2node 1 node 2

(b) Complete data set: All nodes have been perturinferredbed.

Figure 5-4: Systematic perturbation experiments are needed to infer all
direct causal molecular interactions from abundance measurements.

Causal relations and inferability

Systematic perturbations contain information about causal relations How

is it possible to reconstruct the underlying network from correlation data? As men-

tioned above additional information is required to infer causal relation between nodes

instead of correlating associations. This additional information is obtained by sys-

tematic perturbations of the network consisting of single controlled perturbation ex-

periments. In this systematic way, all networks nodes are perturbed step by step and

the respective network responses are observed to produce a complete data set. The

additional information lies in knowing the exact targeted node of each of these per-

turbation experiments, whereas knowledge about the exact effect on targeted nodes

are not necessary. This will be derived analytically in the next chapter, but the

spring-mass network analogy can help to give an intuitive explanation.

A direct causal link between mass 1 (node 1) and mass 2 (node 2) can be inferred

if a significant part of the variation in the relative position of mass 2 can be explained

by the one of mass 1, but not by the variations of other network nodes. In plain

terms, it must be shown that the movement of mass 2 around its point of rest is
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immediately influenced by the oscillation of mass 1 and is not mediated indirectly

through oscillations of other masses in the network. The significance of variations can

easily be derived from the amplitude (magnitude of variance) if all spring constants

are identical, that is if all links share the same link strength. Otherwise, it will be

more complicated but still possible, if a complete perturbation data set is available.

A complete perturbation data set can be taken to compare the variances of each node

from different perspectives, according to different perturbation targets. This allows

one to distinguish between causal links and pure correlations as will be shown in

chapter 6.

Incomplete data set leads to non-identifiability problem A complete pertur-

bation data set enables one to infer all causal links in a network, while an incomplete

data set represents an underdetermined system with not inferable causal links. A net-

work of size3
D has D2 possible directed links denoted by D

2 unknown link strength

parameters, which describe the network structure. In other words, the network infer-

ence problem has D2 degrees of freedom, that have to be constrained by perturbation

data. Each perturbation experiment contains activity data from D nodes, with the

result that D unknown parameters can be determined. Hence, P = D single pertur-

bations experiments are necessary to uniquely identify all parameters, so that there

is one and only one parameter set describing the network dynamics and structure.

Therefore, a network can be uniquely inferred if there is a complete data set with

as many perturbations experiments as nodes in the network. In the case of an in-

complete data set P < D with less perturbations than network nodes, the system

is underdetermined leading to non-identifiable parameters or non-inferable links, re-

spectively. Non-inferable links in this sense mean that it is not possible to distinguish

between a direct causal link and a pure correlation association. Figure 5-4 shows

the inferability problem for a network of size D = 2. By solely perturbing node 1,

only a possible outgoing link from node 1 to node 2 can be inferred, while there is

no information to infer a possible reverse link. The link from node 2 to node 1 is
3The network size denotes the number of nodes in a network.
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Figure 5-5: Measurement noise is increased due to measuring only one
molecular component, leading to more observed false positives. By mea-
suring only mRNA abundance in GRN or phospho-protein abundance in STN, two
of the three control mechanisms are neglected. As a result the false positive rate of
network inference algorithm increases.

called “non-inferable”. This is an example for an incomplete data set leading to an

underdetermined problem. To infer the whole network the second node has to be

perturbed as well, like in Figure5-4(b). Concluding, the non-inferability problem is

equivalent to the non-identifiability problem, whereas a complete perturbation data

set is indispensable to uniquely infer the whole network.

Measurement noise

Measurement noise consists mostly of biological noise and to some smaller extend to

technical noise [31], whereas biological noise is a consequence of thermal noise and

other biological uncertainties. In biological networks one has to distinguish between

two different kinds of perturbations, namely the controlled perturbations mentioned

so far and the fast changing random perturbations due to thermal noise. Random

thermal perturbations act and change on a much faster time scale than the controlled

ones. They can be modeled by a heat bath in the spring network analogy (see Figure5-

3), which shakes the metal balls around their respective points of rest even if no

controlled perturbations are applied. In biological networks thermal perturbations
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are recognized as gene expression noise, adding uncertainty to the steady state mRNA

level as well as to the protein abundance [7].

Another source of uncertainty, which belongs to biological noise, is the fact that

one molecular component, namely mRNA or phospho-protein abundance is chosen

as proxy for the more complicated underlying interaction scheme. The mRNA abun-

dance is regarded as a proxy for gene regulatory interactions of a GRN, but is actually

just a measure for abundance changes caused by transcriptional control. Changes of

gene expression due to translational and post-translational regulation are neglected

in this way, and manifest an source of uncertainty. A similar problem arises for STN

if only phospho-protein abundance is measured and included to the network infer-

ence model. Signal tranduction can be understood as a cascade of post-translational

modifications to the signaling proteins. In the broader sense phospho-protein abun-

dance is a measure for changes in the post-translational control. Variation in the

abundance influenced by transcriptional or translation control are ignored by this

approach, leading to another source of uncertainty similar to the one in GRN.

To Conclude, by choosing a measure that neglects parts of the complex interaction

scheme, uncertainty arises that manifest as noise in the data. A consequence is that

false positive links will be inferred, as sketched in Figure5-5.
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5.3 Overview over network inference methods

Following, a short summary of correlation based linear network inference methods will

be given. Linear models are less prone to overfitting due to noisy data and explain

major phenomenons. On the other hand they can only describe two-body interaction,

which means that more complicated interaction schemes involving 2 nodes or more

to activate a target node are not captured in the model.

There are many different approaches to network inference. Mutual information,

correlation coefficients and probabilistic graphical models, like Bayesian or Markov

networks, are some prominent examples [39]. Certainly, it is possible to categorize

these methods as undirected and directed network models or as generative and non-

generative models, whereas most sophisticated methods stand somewhere in-between

these categories. From a logical perspective, most network inference methods can be

divided into two categories, namely inductive approaches based on similarity matrices4

between each pair of nodes and deductive approaches based on modeling the node

activity as a effect of a hypothesis network. The inductive inference starts with

the observed empirical effect, i.e. similar node activity behavior, and reconstructs

the links which are the general causation for this behavior. The deductive inference

begins with a potential cause , i.e. a hypothesis network, which can reproduce the

measured node activities. The here presented inductive network inference method is

correlation based, so that some correlation based concepts will be shortly summarized,

next.

5.3.1 Correlation coefficients

The Pearson correlation coefficient is a linear measure of association between two

random variables. The phrase random emphasizes the fact that neither of these

variables can be controlled in experiments, in contrast to a regression problem with

one variable depending on a controlled variable [15]. Given two random variables x

j

and x

i

representing node activities as well as N replicate measurements x

jn

and x

in

,
4so called measures of association
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The Pearson correlation coefficient r for a data sample is expressed as:

r

ji

=

P
N

n=1 (xjn

− x̄

j

) · (x
in

− x̄

i

)

⇣P
N

n=1 [xjn

− x̄

j

]

2
⌘ 1

2 ·
⇣P

N

n=1 [xin

− x̄

i

]

2
⌘ 1

2

(5.1)

where n denotes the replicate experiment and x̄

j

a long with x̄

j

are sample means of

the respective random variables.

x̄

j

=

1

N

NX

n=1

x

jn

(5.2)

The correlation coefficient can be understood as a normalized covariance with

values in the interval [−1, 1]. Therefore, the sample correlation coefficient can be

written as sample covariance s

ji

normalized by the sample standard deviations s

j

and s

i

of the node activity measurements [15].

r

ji

=

s

ji

s

j

s

i

(5.3)

=
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◆
·
✓
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)
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◆
. (5.4)

with sample covariance

s

j,i

=

1

N − 1

NX

n=1

(x

jn

− x̄

j

) · (x
in

− x̄

i

) , (5.5)

and sample standard deviations

s

j

=

 
1

N − 1

NX

n=1

(x

jn

− x̄

j

)

2

! 1
2

(5.6)

The actual information about node activity associations lies in the covariance, so

that it will be sufficient to focus on this quantity for the ongoing discussion. For a

network of size D, it is convenient to introduce a covariance matrix containing all

associations between pairs of network nodes on the off-diagonal and variances on the
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diagonal. Accordingly, the sample covariance matrix is

S :=

0

BBBBBB@

s11 s12 . . . s1D

s21 s22

... . . . ...

s

D1 s

DD

1

CCCCCCA
, (5.7)

and the population covariance matrix is written as

C := cov [~x] =

0

BBBBBB@

cov[x1, x1] cov[x1, x2] . . . cov[x1, xD

]

cov[x2, x1] cov[x2, x2]

... . . . ...

cov[x

D

, x1] cov[x

D

, x

D

]

1

CCCCCCA
, (5.8)

with

cov[x

j

, x

i

] = E [x

j

· x
i

] − E[x

i

] · E[x

i

] . (5.9)

The sample measure is an approximation for the population measure and converges

in the limit of very large5 replicate data sets N!1. The population measure can be

regarded as the model quantity coming from theory.

To conclude, the covariance matrix already establishes a very simple correlation

network, which is bidirectional or undirected and is unable to distinguish causal links

from pure correlations in the case of GRN and STN.

5The phrase Big Data is used as a synonym in this case.
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5.3.2 Inverse covariance matrix - partial correlation

A more sophisticated technique to infer pairwise associations is obtained by examin-

ing the inverse covariance matrix C

−1, whose elements are called partial correlation

coefficients. Like in the case of correlations, partial correlations can only infer linear

associations between a pair of random variables. Unlike correlations, partial correla-

tions are calculated by considering the whole network or as Adi Raveh stated in his

paper [54] from 1985 :

“ In contrast to the elements of [C], the elements of the in-

verse [covariance matrix C

−1] usually change as additional

[random] variables are added to or deleted from the set . [...]

The inverse correlation matrix behaves in a truly multivari-

ate fashion, rather than merely in a multibivariate fashion, as

does [the correlation] itself.” [54]

An easy clarifying example is the expression for the inverse C

−1 of a two by two

non-singular covariance matrix C, representing a network with two nodes or random

variables, respectively.

C

−1
=

0

@c11 c12

c21 c22

1

A
−1

=

1

c11c22 − c21c12

·

0

@ c22 −c12

−c21 c11

1

A (5.10)

The elements of C−1 are considered as partial correlations, which are computed by

dividing by the determinant. The determinant is the main reason that accounts for

the whole network and hence distinguishes correlations from partial ones. Partial

correlations in the network can be interpreted as the immediate correlation between

two nodes after removing the contribution of the remaining network on them, i.e.

removing the influence of confounding6 nodes.

The question that arises now is for which type of network structures and data, the

inverse covariance matrix and partial correlations can be regarded as causal interac-

tions? In other words, for which case does the inverse covariance matrix determine
6Assume a network A  C ! B, then the mutual parent C of A and B is called confounding

factor
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the network structure? To answer this question the spring-mass system from Figure

5-3 will be considered again to heuristically derive the requirements. Because the

spring mass system is situated in a heat bath, it can be regarded as a system in

thermodynamic equilibrium. Thermodynamic equilibrium or equilibrium in general

is defined as the absence of a net energy flow, whereas random energy fluctuation

around a constant mean can be present. For the spring mass network this means that

the system is in equilibrium as long as only random perturbations due to thermal

noise are present. In contrast, the system will be in non-equilibrium if a net energy

flow is present that can be initiated by controlled perturbations from outside the

system. Controlled perturbations propagate through the whole network and thereby

push the system out of equilibrium.

The probability of a certain system state, i.e. network structure, in the thermal

equilibrium is given by the Gibbs-Boltzmann distribution

p(A) =

1

Z

· exp
✓
−U(A)

k

B

T

◆
, (5.11)

with link strength matrix, also called interaction matrix, which is related to the spring

constants.

A =

0

BBB@

A11 . . . A1D

... . . . ...

A

D1 . . . A

DD

1

CCCA
. (5.12)

While the off-diagonal elements of the link strength matrix denote the strength of

direct interactions between pairs of nodes, the diagonal elements represent a restoring

force, like the degradation rate in GRN and STN. The network structure is determined

by the pattern that zero elements of the interaction matrix generate, whereas A
ji

= 0

means no direct influence of node i upon node j. Partition matrix Z is the normalizing

constant that sums over all possible states and is responsible for the Gibbs-Boltzmann

distribution being a real probability distribution with values in the interval [0, 1].

Z =

X

A

exp

✓
−U(A)

k

B

T

◆
(5.13)
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Quantity U(A) in eq.5.11 is called Gibbs measure in the general theory of Markov

random fields [30]. Historically, it was introduced by physicist Ising in his model of

ferromagnetism, where it is regarded as an energy function in the thermodynamic

units k

B

· T with k

B

being the Boltzmann constant and T the temperature. The

Gibbs measure U(A) for the spring-mass system of network size D with node activity

x

j

can be formulated as

U(A) = −
DX

j,i=1

x

j

A

ji

x

i

= −~x

T · A · ~x , (5.14)

where ~xT

= (x1, . . . , xD

) is the transpose of ~x. Inserting this Gibbs measure in eq5.11

yields the probability p(A) of the network having structure A

p(A) =

1

Z

· exp
✓
~x

T · A · ~x
k

B

T

◆
. (5.15)

By neglecting the constants of this equation and adding an mean node activity vector~µ

p(A) / exp


−1

2

(~x− ~µ)

T

(−A) (~x− ~µ)

�
(5.16)

one can see the similarity to a multivariate Gaussian distribution

p(~x|~µ, C) / exp


−1

2

(~x− ~µ)

T

C

−1
(~x− ~µ)

�
. (5.17)

By comparing eq.5.16 with eq.5.17, one can see the connection between the inverse

covariance matrix C

−1 and the interaction matrix A. To answer the question from

the beginning of this section, namely for which conditions A is determined by C

−1, it

is sufficient to know the features of the covariance matrix of a Gaussian distribution.

For a multivariate Gaussian distribution the covariance matrix must be symmetric

C = C

T and positive-definite. Its inverse C

−1 must also be symmetric and positive-

definite ( [11] p.688/689). An additional obvious restriction for the sample data is

that ~x must be distributed according to a joint Gaussian distribution [36]. Applying
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this conditions to answer above question, one can summarize:

C

−1
= −A (5.18)

is only valid for inferring the real causal network structure, if

1. the network structure is bidirectional A = A

T , so that an interaction is regarded

as a reversible process,

2. A is negative-definite (−A must be positive-definite), and

3. the node activity data must be distributed according to a Gaussian distribution

around mean ~µ. This is only valid for a system in equilibrium, which was an

initial condition for the heuristic derivation above.

The second condition, positive definiteness 7, means that all eigenvalues are pos-

itive and not equal to zero, hence A is invertible. Exclusive positive eigenvalues are

necessary since they ensure that node activities x

j

remain positive after interacting

with the network. Node activities represent abundance quantities like concentration

or copy number, therefore they must always be positive to make physically sense.

Hence, positive definiteness is a general condition that must be valid for all network

inference methods.

To conclude, the inverse covariance matrix and partial correlations do not deter-

mine the network structure of GRN and STN, since these biological networks are

not bidirectional. Additionally, controlled perturbation experiments are usually per-

formed, which contradicts another essential condition. Controlled perturbations are

needed to generate an information flow through the network, as explained in previous

sections. However, partial correlations for GRN and GRN can still be computed as

long as the covariance matrix is positive definite, which is a sufficient condition for

matrix inversion. In this case it is of paramount importance that these partial cor-
7Geometrically a positive definite matrix maps any vector on the positive subspace, where all

vector elements stay positive. Therefore, it only stretches and distorts the vector - much like the
multiplication of a positive real number does in a one dimension.
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relations are not confused with real causal interaction - this is another example for

undirected networks.

5.3.3 Response matrix

An approach that can infer direct network links from controlled perturbation data, if

the perturbation strength is known, is the response matrix method [9,20] . The local

response G

ji

denotes how changes δx

i

in the activity of node i influence changes δx

j

in the activity of nodes j.

G

ji

:=

δx

j

δx

i

(5.19)

Consequently, by determining the response matrix G, one can infer the underlying

network structure A, which is not necessarily the same quantity.

In following the relation between response matrix G and interaction matrix A

will be derived, to show the limits of the response matrix method. Assuming no

random perturbations and no measurement noise, one can formulate the steady state

(d~x/dt = 0) equation for node activities ~x as:

A · ~x+ ~u

!
= 0 (5.20)

, ~x = −A

−1 · ~u , (5.21)

where ~u = (u1, . . . , uD

)

T is the vector with controlled perturbations for a network of

size D. Above equation 5.21 can be translated into an element-wise notation:

x

j

= −A

−1
ji

· u
i

, (5.22)

where A

−1
ji

stands for element (j, i) of the inverse interaction matrix A

ji

. Assuming

the system stays in equilibrium, the direct (node activity) response δx

j

of node j to

a perturbation δu

i

exclusively acting on node i is

δx

j

= −A

−1
ji

· δu
i

. (5.23)
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Since the system musst stay in (close to) equlibrium, the notion of δx
j

and δu

i

can

be regarded as some kind of infinitesimal small virtual displacement away from the

equilibrium similar to the one in theoretical physics. Experimentally this can only be

realized by small perturbations, which do not push the system to far away from its

expected value and therefore permanently into another equlibrium state. Next, the

perturbation effect or response δx

i

of the perturbed node itself due to degradation

rate A

ii

and a net feedback from the whole network, can be written as:

δx

i

= −A

−1
ii

· δu
i

, δu

i

= − δx

i

A

−1
ii

(5.24)

, A

−1
ii

= −δx

i

δu

i

. (5.25)

Finally it is possible to connect the interaction matrix with the response matrix by

G

ji

=

δx

j

δx

i

=

A

−1
ji

A

−1
ii

(5.26)

However, trying to determine the absolute value A

−1
ji

leads to the problem that infor-

mation about the perturbation strength δu

i

musst be available, which is usually not

the case in biological networks.

A

−1
ji

=

δx

j

δu

i

= G

ji

· A−1
ii

(5.27)

From a different perspective, this lack of information about δu

i

is equivalent to the

unknown diagonal elements A

ii

(e.g. degradation rate) of the interaction matrix A,

which could be computed if δu
i

was known.

Concluding, the response matrix will only infer the network structure correctly, if

there is experimental information about the exact perturbation strength. In biological

networks, i.e. GRN and STN, information about the strength of perturbations is

usually not available. There are a couple of very controversial [53] approximations to

eq.5.27, which try inference without knowledge of the pertubation strength [9,20]. For
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example is this achieved by setting the diagonal elements of the interaction matrix

to A

ii

= −1 [9], leading to infered link strengths that are normalized wrongly and

are therefore not comparable with each other. As a result the slightest measurement

noise will decrease performance drastically [53].
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Chapter 6

Model and theory

6.1 Objective

The weakness of the inference methods described in the previous chapter, motivates

to create a new improved network inference method which can infer the underlying

network structure from correlation data. In detail, it should infer direct causal links

between observed nodes, from controlled perturbation data. Additionally, it will be

assumed that the target node of each perturbation experiment is known, whereas the

exact perturbation strength is unknown. Further, this new method shall not be biased

by approximating the diagonal elements of the interaction matrix, as it is the case for

the response matrix methods. This can be achieved by focusing on the relative link

strengths A

ji

/A

jj

with respect to the unknown restoring force (degradation rate),

as will be shown later in this chapter. The relative link strengths can be used to

infer the network structure but do not lead to link strength parameter estimation. In

this work, the goal is to infer the network structure, whereas parameter estimation is

considered to be a different topic.

In mathematical terms, the task is to infer structure G of a network with size D

from P  D controlled single perturbation experiments Xp , each having N replicates

X

p

= {~x1, . . . , ~xn

, . . . , ~x

N

}. Here, ~x = (x1, . . . , xD

)

T is the vector of random variables

denoting the activity of all observed nodes in the network. The graph, which is also
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x2 x3

x4

A31
A21 A34

Figure 6-1: Example network of size D = 4 with two perturbed nodes. Node
i acts on node j with a link strength (interaction strength) A

ji

. Node activities are
modeled by random variables ~x = (x1, . . . , xD

)

T .

called network structure, is given by

G =

0

BBB@

G11 . . . G1D

... . . . ...

G

D1 . . . G

DD

1

CCCA
, (6.1)

where G

ji

2 {0, 1} denotes a directed link from node i to node j (i!j). Following,

the network structure or graph denoted by matrix G will be distinguished from the

link strength matrix A.

A =

0

BBB@

A11 . . . A1D

... . . . ...

A

D1 . . . A

DD

1

CCCA
, (6.2)

where A

ji

2 R denotes the directed link strength from node i upon node j (i!j).

While the network structure G is boolean with zero entries standing for no links and

ones for direct links, the link strength matrix A shows how strong the effect of one

node is upon the other. Due to measurement noise link strength estimations are

hardly ever set link strengths A

ji

exactly to zero, so that the inferred link strength

matrix A

⇤ can not determine the network structure G without any further informa-

tion. Additional information can be a cutoff which sets weak links to zero or prior

structural information like network sparsity.

Before starting to derive the new inference method a short overview of this chap-

ter will be provided. First the inference problem of finding the whole network will

be simplified by inferring the incoming links of a single node, so that the whole net-
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work can be reconstructed step by step. This simplification will be probabilistically

formulated in analogy to a Bayesian Network setting, where direct incoming links

are referred to as random variables being conditional dependent on their immediate

parents. In section 6.3 the node interactions will be modeled by a linear differen-

tial equation in steady state, which will lead to an expression for the population

covariance matrix. This theoretically derived covariance matrix stands in contrast

to the sample covariance matrix from the data samples. Assuming that all possi-

ble links exist, the so called total connectivity assumption, a maximum likelihood

(ML) estimate b
A

⇤
= A

⇤
ji

/A

⇤
jj

for the relative link strength b
A

ji

= A

ji

/A

jj

will be

derived. Finally, a Markov chain Monte Carlo simulation draws a set of most likely

network structures {G} from the posterior distribution p(G|data, A⇤
) over sparse net-

work structures given the link strength ML estimate A

⇤. The posterior distribution

will be obtained by introducing different sparsity priors (L0, L1, L2), which restrict

model complexity with different emphasis.

6.2 From correlation data to direct causal incoming

links

Considering a complete perturbation data set (P = D), the inference of the whole

network A at once can be simplified into inferring the incoming links of each node

step by step. In each step the incoming links A

j,row := (A

j1, . . . , AjD

) of node j can

be computed from the mean sample covariance matrix

¯

S

(p 6=j)
:=

1

P − 1

·
PX

p=1,p 6=j

S

(p) P=D

=

1

D − 1

·
DX

p=1,p 6=j

S

(p)
, (6.3)

where S(p) is the sample covariance matrix of the pth perturbation experiment in which

only node p is perturbed and the node activity for all nodes is measured in N replicate

experiments. By averaging over all perturbation experiment but the one where node

j is perturbed, the correlation information between all other network nodes will be
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destroyed. Any information about existing indirect paths is destroyed by taking

the mean ¯

S

(p 6=j) of sample covariance matrices S

(p). The remaining correlations are

direct ones between each perturbed node i and the unperturbed node j, whereas these

correlations are either due to direct causal influence from the network upon node j or

due to measurement noise. Since the perturbed target nodes are known, correlations

between any perturbed node i and the one unperturbed node j, can be regarded as

directed incoming links of latter. Concluding, to infer the incoming links of each node

j step by step average correlation information from all perturbation experiments but

the one where j is perturbed is utilized. In simple words, the incoming links of node

j can be computed if all other nodes are perturbed as it is sketched in Figure 6-2 .

For an incomplete perturbation data set (P < D) network inference becomes a

non-identifiable1 problem, because the degrees of freedom are larger than the number

of constraints given by single perturbations (see section 5.2.2). From the perspective

of correlations, not all indirect paths are destroyed, so that possible direct incoming

links to node j can be a result of pure correlations. Nevertheless, given an incomplete

data set the mean sample covariance is

¯

S

(p 6=j)
:=

1

Q

·
PX

p=1,p 6=j

S

(p)
, (6.4)

where Q = P − 1 for j being a removed perturbation experiment and Q = P if there

is no perturbation experiment available for node j.

Probabilistic view by means of Bayesian networks: The notion of inferring

the incoming links of one node j independent of the remaining network structure,

can be probabilistically formulated in analogy to a Bayesian network (BN) setting.

Bayesian networks belong to the family of linear probabilistic graphical models ( [11]

p.359) and are typically applied in order to model directed causal interactions. They

are defined as directed acyclic graphs with random variables standing for node ac-
1The non-identifiability problem can be solved by the “rescaling” concept, which is a numerical

approach introduced in our paper [12]. The rescaling concept is not part of this PhD thesis, so that
the non-identifiability problem for in complete data sets will not be sufficiently covered in the here
presented work.
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Figure 6-2: Inference of the whole network can be simplified by inferring
the incoming links of each node step by step. In an approach analogous to
Bayesian networks, immediate parents of nodes j can be formulated as conditional
dependencies. Parents must be perturbed to infer in-coming links of node j, whereas
data where j is perturbed is removed. Perturbed nodes are filled with blue, while not
perturbed ones are white.

tivities. Direct links (or edges) between nodes characterize the conditional proba-

bilistic independence of one node to the rest of the network given its direct parent

nodes [11,48]. As a result the joint probability p (~x|A,G) factorizes into a product of

conditional probabilities p(x

j

|G
j,row

, A

j,row

, Pa

G

(x

j

)).

p (~x|G,A) = p (x1, . . . , xD

|G,A) =

DY

j=1

p(x

j

|G
j,row

, A

j,row

, Pa

G

(x

j

)) , (6.5)

where the probability of node activity x

j

only depends on the immediate parents’

node activities Pa

G

(x

j

), which are given by the network structure G. Actually, the

immediate parents Pa

G

(x

j

) are determined by the incoming links denoted by G

j,row

and A

j,row

, so that the conditional probabilities can be understood as conditional

independent parts of the network.

Hence, the approach of inferring the incoming links step by step can be heuris-

tically connected to the Baysian network description, by identifying the parents

Pa

G

(x

j

) of node j as nodes that are perturbed and node j itself as the only un-

perturbed node for a complete data set (see Figure 6-2). Further, total connectivity

will be assumed G = 1, i.e. G

ji

= 18j, i, where each node is connected to all other
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nodes in the network.

p(x

j

|G,A

j,row

, Pa

G

(x

j

))

G=1
= p(x

j

|A
j,row

, {x
i 6=j

}) b= p(

¯

S

(p 6=j)|A
j,row

, ) (6.6)

= p({Xp 6=j}|A
j,row

)

where the parents Pa

G

(x

j

) = {x
i 6=j

} are the whole network without node j. In eq.6.6

the parents are identified with the perturbed nodes p, while the activity date x
j

in BN

is identified with the perturbation data {Xp 6=j}, which is equivalent to the notation

with the mean sample covariance notation ¯

S

(p 6=j). Now, the joint probability of the

whole network can be understood as the product of conditional probabilities of part

of the network, namely the incoming links of each nodes.

p ({Xp}|G = 1, A)

=p

�
{Xp 6=1}, . . . , {Xp 6=D}|G = 1, A

�
=

DY

j=1

p({Xp 6=j}|A
j,row

)

=p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G = 1, A
�
=

DY

j=1

p(

¯

S

p 6=j|A
j,row

) (6.7)

In other words, eq.6.7 describes how the joint likelihood of the whole perturbation

data given the whole network A is equal to the product of conditional likelihoods of

unperturbed node j given only its incoming links A
j,row

and the perturbed nodes’ data

in the form of ¯

S

(p 6=j). Consequently, determining the likelihood of part of the network

A

ji

can be achieved without considering the remaining network. This is exactly

the approach which will be implemented in the upcoming sections to compute a

maximum likelihood estimate for the incoming link strengths leading to the whole link

strength matrix A. Notice that in contrast to Bayesian networks, the total network

can comprise cycles, since each conditional likelihood is conditioned on differently

averaged data represented by ¯

S

(p 6=j).
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6.3 A probabilistic view

The goal of this section is to formulate a linear stochastic model which describes the

steady state activity of the network in order to obtain a theoretical expression for the

population covariance matrix C. As mentioned in the previous section 5.2.2, the infor-

mation about the link strength of an interaction will be contained in the co-variations

of node activities, if controlled perturbation are applied. Consequently, the mean or

expectation of node activities do not contain any information for reconstructing the

network.

In detail, the model describes node activity deviations ~x−~µ from the steady state

value µ as a linear process:

d~x(t)

dt

= A ·
h
~x(t)− ~µ

i
+ ~u

!
= 0 , (6.8)

where the steady state value is regarded as the expectation value µ := E[~x] and per-

turbation vector ~u = (u1, . . . , uD

)

T consists of single controlled perturbations on each

network node. Controlled perturbations must be applied long enough to propagate

through the whole network, which is implemented by ~u being constant in time or

independent of time, respectively. The link strength matrix A is considered to be a

negative definite matrix, so that −A is positive definite like in the case of partial cor-

relations (see section 5.3.2). The definiteness condition ensures that the link strength

matrix is invertible and that its inverse A

−1 is negative definite as well. Since the

process in eq.(6.8) is actually a linear stochastic one, the variables in above equation

will be substituted by random variables denoted by replicate index n. After rear-

ranging eq.(6.8) with respect to node activities ~x
n

and adding Gaussian noise ✏

n

, the

generative view of this linear Gaussian model will be:

~x

n

= −A

−1 · ~u
n

(~a

n

) + ~µ+ ~✏

n

, (6.9)

where ~x

n

is the measured node activity with technical measurement noise ~✏

n

=

(✏1n, . . . ✏Dn

)

T . The technical noise is assumed to be Gaussian distributed with zero
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population mean E[~✏] = 0 and covariance matrix cov[~✏] = σ

2
✏

·I
D

, whereas I
D

denoting

a D⇥D identity matrix and σ

✏

the common standard deviation. In other words, the

technical noise has the same uncertainty effect σ

✏

on all network nodes leading to

noisy observations even in the absence of external controlled perturbations. However,

this uncertainty effect vanishes on average for large replicate numbers (large sample

size), which can represent the statistical population size sufficiently. In the generative

view, one can define the noise random variable as

~✏

n

= σ

✏

· I
D

· ~⇠
n

= σ

✏

· ~⇠
n

(6.10)

p (~✏) = N
�
~✏ | 0 , σ

2
✏

· I
D

�
, (6.11)

where random variable ~

⇠

n

is sampled from the standard normal distribution p(

~

⇠) =

N
�
~

⇠ | 0, I
D

�
. Further, the effect of perturbations ~u(~a

n

) on the network are assumed

to be linear and Gaussian with an zero expectation E[~u] = 0 (population mean) and

a covariance matrix cov(~u) = B · BT

~u

n

= B · ~a
n

(6.12)

p(~u) = N
�
~u | 0 , B · BT

�
, (6.13)

where random variable ~a

n

is sampled from the standard normal distribution p(~a) =

N
�
~a | 0, I

D

�
. In the here presented model, perturbations represent small stochastic

deviations from the mean node activity and can therefore only affect the standard

deviation. This is the reason why E[~u] is set to zero and is valid without loss of

generality. In the general case of a non zero expected perturbation, the expectation

value of node activities µ = E[~x] can be formulated with respect to the expectation

value E[~u] of perturbations.

~µ = E[~x] = J

−1 · E[~u] , (6.14)

The definition of matrix B 2 RD⇥D and hence cov[~u] depend both on the experimen-

tal implementation of perturbations. It will be assumed that the effect of different
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perturbations u
k

are independent, which results in zero covariance cov(u
k

, u

i

) = 0 for

all k 6= j between single perturbation experiments. The uncertainty of the perturba-

tion effect on the nodes is the same for all nodes in the network, i.e. the variances are

identical var(u
k

) = var(u

i

) ⌘ σ

2
u

for all k, j . Further, the complete perturbation data

set {X(p)} will be arranged to a data set {X(p 6=j)} which includes all perturbations

except for node j, whose incoming links should be infered by the sample covariance

matrix S

(p 6=j) (see section 6.2). These conditions lead to the exact expression for the

standard deviation matrix:

B :=σ

u

· I
B

= σ

u

·
PX

p=1,p 6=j

I

(p) (6.15)

I

B

:=

PX

p=1,p 6=j

I

(p)
, (6.16)

where I

(p) 2 RD⇥D is a diagonal matrix with the only non-zero entry I

(p)
pp

= 1 signi-

fying the perturbed target node p of a single perturbation experiment.

I

(p)
:= diag

�
0, . . . , 0, I

(p)
pp

= 1, 0, . . . , 0

� e.g.

D=3
p=2
=

0

BBB@

0 0 0

0 1 0

0 0 0

1

CCCA
(6.17)

The standard deviation matrix B of perturbations contains two types of information

about the controlled perturbations, namely the unknown strength of perturbations σ
u

and the known target of perturbations I
B

. Finally, the general form of the generative

view is obtained by inserting eq.(6.12) and (6.10) into eq.(6.9), which yields

~x

n

= − A

−1 · B · ~a
n| {z }

standard deviation

+ ~µ|{z}
mean

+ σ

✏

· ~⇠
n| {z }

noise

(6.18)

It can be understood as the sum of standard deviation due to perturbations, node

activity mean, and random Gaussian noise.

To obtain an expression for the population covariance matrix C of the network

activity ~x

n

, eq.(6.18) can be formulated in a probabilistic way. Since the sum of two
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Gaussian is again a Gaussian distributions, joint probability distribution p (~x) must

be multivariate Gaussian distributed, too.

p (~x) = N
�
~x | E [~x] , cov [~x]

�
, (6.19)

where, considering E[~a] = 0, E[~✏] = 0, the expectation or population mean of the

node activities is

E [~x] = E[A

−1 · B · ~a
n

+ ~µ+ ~✏

n

] = ~µ , (6.20)

and, by considering E[~a ·~✏] = E[~a] ·E[~✏], cov[~a] = E[~a~a

T

] = I

D

, the covariance matrix

is

C := cov [~x] = E

h
(~x

n

− E [~x

n

]) · ( ~x
n

− E [~x

n

])

T

i

= E

⇥
(A

−1 · B · ~a
n

+ ~✏

n

) · (A−1 · B · ~a
n

+ ~✏

n

)

T

]

) C = A

−1
BB

T

| {z }
cov(~u)

�
A

−1
�
T

+ σ

2
✏

· I
D

. (6.21)

Concluding, the theoretically derived population covariance matrix C depends on two

model parameters, which are the inverse link strength matrix A

−1 and the variance

of technical noise σ

2
✏

. These model parameters have to be inferred from training data,

i.e. systematic perturbation data, whereas inferring the link strength matrix A and

hence the network structure is the actual goal. The joint Gaussian distribution, which

is used to define the likelihood function in the upcoming section, is

p

�
~x|A−1

�
= N

�
~x | ~µ, C

�
A

−1
, σ

2
✏

� �

=

✓
1

2⇡

◆
D/2

·
✓

1

det(C)

◆1/2

exp


−1

2

· (~x
n

− ~µ)

T

C

−1
(~x

n

− ~µ)

�
(6.22)

Finally, notice that the generative view established by eq.(6.18), can and will be used

to produce synthetic data, which is a typical way to assess the performance of network

inference algorithms.
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6.4 Maximum likelihood estimate of link strength

assuming total network connectivity

The goal of this section is to determine the principle components of the inverse mean

sample covariance matrix (

¯

S

(p 6=j)
)

−1, which can be identified with the maximum likeli-

hood estimate of the incoming links A
j,row of the not perturbed node j. As mentioned

in section 6.2, any information about indirect paths is destroyed by taking the mean
¯

S

(p 6=j), so that the remaining associations are due to direct links from perturbed nodes

i to the unperturbed node j. In other words, the remaining real information left in
¯

S

(p 6=j) is the one about the incoming links A

j,row of node j, whereas measurement

noise distorts this information. Further, this incoming link A

j,row can be found to

be the principle components (PC) of the partial correlation matrix (

¯

S

(p 6=j)
)

−1, i.e.

the principle partial correlations, while the remaining components are due to pure

measurement noise.

The general idea of principle component analysis (PCA) is to map correlation data

associations from the data space RD of dimension D into the principle subspace RM

of dimension M  D. The principle subspace RM represents the subspace of real cor-

relations associations, while the complement subspace RM0
:= RD−M represents the

space of correlation associations due to “noise”. By looking at the eigendecomposition

(spectral decomposition) of S one can easily show that the principle subspace of the

inverse mean sample covariance matrix (S)

−1 (partial correlations) is identical to the

“noise” subspace of S. According to PCA [11], the eigenvectors corresponding to the

largest M eigenvalues of S span the principle subspace of S, while compliment sub-

space RM0 is spanned by the eigenvectors of the M0 smallest eigenvalue. By looking
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at the eigendecomposition (spectral decomposition) of S and of its inverse (S)

−1,

S =

MX

i=1

λ

i

~

U

i

~

U

T

i

| {z }
principle subspace of

correlations S

+

M0X

l=1

λ

l

~

U

l

~

U

T

l

| {z }
principle subspace of

partial correlations (S)−1

(6.23)

(S)

−1
=

z }| {
MX

i=1

1

λ

i

~

U

i

~

U

T

i

+

z }| {
M0X

l=1

1

λ

l

~

U

l

~

U

T

l

, (6.24)

it is obvious that the principle subspace of partial correlations (S)−1 is spanned by the

M0 eigenvectors of the smallest eigenvalues of S, since the reciprocal values are the

largest eigenvalues of the partial correlation matrix. This feature enables one to de-

termine the principle subspace of partial correlations by determining the eigenvectors

U

M0 of S.

Each component or random variable in the PCA framework stands for the activity

x

i

of one node in the network inference framework, so that the dimension of the data

space is determined by the number of nodes D in the network. Further, the dimension

M of the principle subspace of correlations can be identified with the number of

perturbed nodes in the reduced data set represented by mean sample covariance

matrix ¯

S

(p 6=j) (for a complete data set M = P−1). Consequently, the dimension of the

principle subspace of partial correlations is identified with the number of unperturbed

nodes, which is M0 = 1 for a complete data set. In summary, the PCA framework

can be used to distinguish the relevant partial correlation associations in the reduced

data set from the associations due to measurement noise.

6.4.1 Generalized probabilistic principle component analysis

In the following, a generalization of probabilistic principle component analysis (PPCA)

[11,58] will be introduced which is motivated by above notion of complementary prin-

ciple subspaces RM and RM0 and which will enable one to determine the principle

components of the inverse mean sample covariance matrix (

¯

S

(p 6=j)
)

−1. Moreover, these
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principle components, i.e. principle partial correlations, will be shown to be the in-

coming links of the unperturbed nodes in the data sample, which generates (

¯

S

(p 6=j)
).

The regular PPCA introduced by Bishop and Tipping [58] has a generative view of

the observed data ~x, that is naturally understood as a map from a lower dimensional

principle subspace RM into the data space RD. The main idea is that the observed

data ~x

n

2 RD can be generated by the sum of unobserved (hidden) random variable

~z 2 RM from a lower dimensional subspace, called principle subspace, and multivari-

ate Gaussian noise from the complementary subspace. The unobserved variables ~z

represent the part of the observed data that is due to the actual examined (physical)

process, which could have been measured directly in the absence of noise, i.e. other

processes that interact with the examined process. Since subspace RM represents the

actual examined process it is called principle subspace. On the other hand, the noise

random variables from the complementary subspace RM0 represent uncontrollable

stochastic processes, which intermingle with the actual examined process, thereby

distorting measurements.

The method of PPCA determines a new set of basis vectors for the observed data

space RD that enables one to separate observation due to the actual examined process

from observations due to random noise. Hence it is possible to define principle random

variables and noise random variable, which can explain the observed data. The new

basis is given by the column vectors of a matrix W

M

2 RD⇥M , which maps any vector

~z from the principle subspace onto an observation ~x

(real) without noise in the higher

dimensional data space

W

M

: RM ! RD

W

M

: ~z

n

7!
�
~x

(real)
n

− ~µ

�
, (6.25)

where ~µ is the expectation value E[~x

n

]. The generative view of the noisy observation

~x

n

using matrix W

M

is then given by

~x

n

− ~µ = W

M

· ~z
n

+ ~✏

n

, (6.26)
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where ~z

n

2 RM and ~x

n

2 RD as in the previous section. The generative eq.(6.26) can

be reformulated using the orthogonal projection matrix I

M

2 RD⇥D and the matrix

W

D

2 RD⇥D

~x

n

− ~µ = W

D

· I
M

· ~a
n

+ ~✏

n

, (6.27)

where ~a
n

2 RD is a vector in data space, which is sampled from the standard normal

distribution N (~a|0, I
D

). Matrix W

D

2 RD⇥D consists of M first column vectors, that

span the principle subspace RM , and M0 = D−M remaining column vectors, which

span the complementary subspace RM0 leading to a set of basis vectors of the whole

data space RD

= RM ⊕ RM0 .

W

D

:=

⇣
W

M

W

M0

⌘
=

⇣
W

M

W

D−M

⌘
, (6.28)

with block matrix W

M0 2 RD⇥M0 consisting of the basis vectors that span the comple-

mentary subspace RM0 . The orthogonal projection matrix I

M

= I

M

·I
M

(I
M

2 RD⇥D)

is a diagonal matrix, with the first M diagonal elements equal to one, while the re-

maining elements are zero.

I

M

:= diag
⇣ Dz }| {
1, . . . , 1| {z }

M

, 0, . . . , 0| {z }
M0

⌘
(6.29)

The matrix product of W
D

and I

M

like in eq.(6.27), produces a map from the data

space into the principle subspace.

W

D

· I
M

:=

⇣
W

M

0

⌘
(6.30)

Consequently, the formulation of eq.(6.27) is equivalent to the standard PPCA for-

mulation eq.(6.26). In contrast to standard PPCA, the alternative formulation uses

a map within the data space

W

M

· I
M

: RD ! RD

W

M

· I
M

: ~a

n

7!
�
~x

(real)
n

− ~µ

�
, (6.31)
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so that the subspace is expressed in terms of the basis vectors that span the data

space. Further, the image im(W

M

· I
M

) is equal to the principle subspace, while the

nullspace null(W
M

· I
M

) generates the complementary subspace.

The generative view of perturbation experiments eq.(6.18) looks very similar to

the alternative PPCA formulation eq.(6.27). By identifying W

D

with the inverse

interaction matrix A

−1 and the orthogonal projection I

M

by the diagonal standard

deviation matrix B = σ

u

· I
B

,

~x

n

− ~µ =− A

−1 · B · ~a
n

+ ~✏

n

=− A

−1 · σ
u

· I
B

· ~a
n

+ ~✏

n

, (6.32)

one can see the similarity. The orthogonal projection matrix I

B

is a diagonal matrix,

with diagonal elements

(I

B

)

ii

=

8
<

:
0 node i unperturbed

1 node i perturbed
. (6.33)

An example for I

B

for a complete perturbation data set P = D (see section 6.2 &

section5.2.2) of a network of size D = 3, where perturbation data of node j = 2 is

removed, is

I

B

P=D,j=2

D=3
=

0

BBB@

1 0 0

0 0 0

0 0 1

1

CCCA
. (6.34)

The differences between the orthonormal project matrices I

M

and I

B

are that the

non-zero elements of I
B

must not be ordered contrary to the elements of I
M

. This is

actually not a real difference, since by changing the order of random variable notations

I

B

could be transformed into an ordered version like I

M

. Regardless of the order of

diagonal elements, both projections map onto the principle subspace of correlations.

In an additional step the alternative PPCA formulation can be generalized in

a way that only distinguishes between complementary subspaces. This is achieved

by introducing biological noise ~b
n

⇠ N
⇣
~

b|0, σ2
⌘

· I
D

⌘
, which propagates through the
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whole network and acts similar to perturbations but with less “strength”. The biolog-

ical noise has a standard deviation σ

⌘

that is much smaller than the one, σ
u

, caused

by controlled perturbations. Hence, it has only relevance for the unperturbed nodes,

while it can be neglected for the perturbed nodes. As a consequence, one can add

an biological noise term to eq.(6.32) which only acts on the complementary subspace

RM0 .

~x

n

− ~µ =− A

−1 · B · ~a
n

− A

−1 · B · ~⌘
n

=− A

−1 · σ
u

I

B

· ~a
n

− A

−1 · σ
⌘

I

B

· ~⌘
n

, (6.35)

where I

B

is introduced to be the matrix complement of projection I

B

with I

B

+ I

B

=

I

D

and ~⌘

n

⇠ N (~⌘|0, I
D

) is sampled from the standard normal distribution. The

complement B = I

B

can be understood as the standard deviation matrix of the

biological noise acting only on the complementary subspace RM0 . Matrix B = σ

⌘

·I
B

is

a diagonal matrix with elements equal to σ

⌘

for unperturbed nodes and zero elements

otherwise. Since it represents unperturbed nodes affected by biological noise, it has

no factor σ
u

like in the case of B.

B

jj

=

8
<

:
σ

⌘

node j unperturbed

0 node j perturbed
. (6.36)

In eq.(6.35) the technical noise term ~✏

n

= σ

✏

· I
D

· ~⇠
n

has been neglected since it is

much smaller than biological noise, as explained in section 5.2.2. To summarize the

magnitude of controlled perturbations σ

u

, biological noise σ

⌘

, and technical noise σ

✏

with respect to each other, one can write following relation

σ

u

� σ

⌘

� σ

✏

. (6.37)
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For an ordered sequence of perturbed and unperturbed nodes, one can write fol-

lowing identity

B + B = diag
⇣ Dz }| {
σ

u

, . . . , σ

u| {z }
M

, σ

⌘

, . . . , σ

⌘| {z }
M0

⌘
, (6.38)

whereas M0 = 1 and M = P −1 for an complete data set. The general form of PPCA

can now be understood as a sum of two terms, where the first term represents a map

from data space onto the principle subspace of correlations

A

−1 · I
B

:=

⇣
A

−1
M

A

−1
M0

⌘
· I

B

=

⇣
A

−1
M

0

⌘
, (6.39)

and where the second term stands for a map from the data space onto the comple-

mentary subspace.

A

−1 · I
B

:=

⇣
0 A

−1
M0

⌘
. (6.40)

As in section 6.3 the generative view in eq.(6.35) can be transformed into the proba-

bilistic expression, resulting in a joint Gaussian distribution N (~x|µ,C). This Gaus-

sian distribution has the same expression like before, but with a different expression

for the population covariance matrix C, which will derived similarly to the previous

section 6.3.

C := cov [~x] = E

h
(~x

n

− E [~x

n

]) · ( ~x
n

− E [~x

n

])

T

i

= E

⇥
(A

−1 · B · ~a
n

+ A

−1 · B · ~⌘
n

) · (A−1 · B · ~a
n

+ A

−1 · B · ~⌘
n

)

T

]

) C = A

−1
B · BT

�
A

−1
�
T

| {z }
principle subspace of C

+ A

−1
B ·BT

�
A

−1
�
T

| {z }
principle subspace of C−1

, (6.41)

where folowing relations have been applied: E [~a

n

] = 0 = E[~⌘] and E

⇥
~a

n

· ~aT
n

⇤
= I

D

=

E[~⌘

n

· ~⌘T
n

]. By comparing the modeled population covariance matrix from eq.(6.41)

with the mean sample covariance matrix from eq.(6.23) one can already guess, that

the first and second term can be represented with respect to complementary sets of

eigenvectors of covariance matrix C.

After having obtained the general form for the covariance matrix C, an expression
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for the inverse population covariance matrix C

−1 (partial correlations) will be derived

by taking the inverse of eq.(6.41).

C = A

−1
h
B · BT

+ B ·BT

i �
A

−1
�
T

= A

−1
⇥
σ

u

B + σ

⌘

B

⇤ �
A

−1
�
T

eq.(6.38)
= A

−1 · diag
⇣ Dz }| {
σ

2
u

, . . . , σ

2
u| {z }

M

, σ

2
⌘

, . . . , σ

2
⌘| {z }

M0

⌘
·
�
A

−1
�
T (6.42)

This new expression for C can be easily inverted, keeping in mind that −A is positive

definite. Without loss of generality it is assumed that the diagonal matrix elements

of B ·BT

+ B ·BT follow an ordered sequence, which makes it visually more simple.

From eq.(6.42) follows

C

−1
= A

T · diag
⇣

Dz }| {
1

σ

2
u

, . . . ,

1

σ

2
u| {z }

M

,

1

σ

2
⌘

, . . . ,

1

σ

2
⌘| {z }

M0

⌘
· A

= A

T ·

1

σ

2
u

I

B

+

1

σ

2
⌘

I

B

�
· A

= A

T ·
✓

1

σ

u

I

T

B

◆
·
✓

1

σ

u

I

B

◆
+

✓
1

σ

⌘

I

T

B

◆
·
✓

1

σ

⌘

I

B

◆�
· A

) C

−1
=

1

σ

2
u

· AT · IT
B

· I
B

· A| {z }
noise subspace

+

1

σ

2
⌘

· A

T · IT
B

· I
B

· A| {z }
principle subspace of C−1

(6.43)

Eq.(6.43) states the general expression for the inverse population covariance matrix,

representing partial correlations. As mentioned before, the principle subspace of C−1

is given by the unperturbed nodes denoted by the image of projection matrix I

B

.

Therefore, the first term of eq.(6.43) can be regarded as noise subspace with not

important components, which can be understood by partial correlations between per-

turbed nodes. The information about partial correlations between perturbed nodes

is destroyed as explained in section 6.2, so that any observed partial correlations be-

tween perturbed nodes are regarded as noise. Further, one can see from the prefactor

1/σ

u

⌧ 1/σ

⌘

that the second term of eq.(6.43) is the dominating part, while the first
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term approaches zero for very large controlled perturbations σ

u

. Since, the goal is

to model the inverse mean population covariance matrix denoted by C

−1, a couple

of approximation will be done to the the first term. This will simplify eq.(6.43) and

bring the formulation closer to a PPCA representation of partial correlations.

C

−1 ⇡ 1

σ

2
u

· diag
�
A

T

I

T

B

I

B

A

�
+

1

σ

2
⌘

· AT · IT
B

· I
B

· A

⇡ 1

σ

2
u

· diag
�
mean

⇥
diag

�
A

T

I

T

B

I

B

A

�⇤�
+

1

σ

2
⌘

· AT · IT
B

· I
B

· A

⇡ 1

σ

2
u

· ↵2 · I
D

+

1

σ

2
⌘

· AT · IT
B

· I
B

· A

⇡
↵

2 · σ2
⌘

σ

2
u

· I
D

+ A

T · IT
B

· I
B

· A , (6.44)

where ↵ is an estimate for the noise subspace, which can be used for assessing the

limits of this approximation, like in the case of regular PPCA. The fraction σ

2
⌘

/σ

2
u

can

be regarded as a noise-to-signal ratio, where perturbation variance σ

2
u

is the signal

and the variance σ

⌘

represents biological noise. For a signal which is much larger

than the noise σ

⌘

the first term of eq.(6.44) converges to zero.

To get closer to the final PPCA formulation of partial correlations, one should

understand the effect of the projection matrix I

B

on the interaction matrix A, whereas

an ordered sequence of M perturbed and M0 unperturbed nodes is considered without

loss of generality.

I

B

· A := I

B

·

0

@ A

M

A

M0

1

A
=

0

@ 0

A

M0

1

A
, (6.45)

where A
M0 2 RM0⇥D is a block matrix whose rows represent the incoming link strength

of unperturbed nodes or, in terms of PCA, whose row vectors span the principle

subspace of C−1, respectively. For a complete dataset block matrix A

M0 reduces to

the row vector A

j,row, whose elements are the incoming links of unperturbed node j

introduced in section 6.2. On the other hand, the rows of A

M

2 RM⇥D stand for

the incoming link strengths of the perturbed nodes, which span the complementary
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subspace and are assumed to be due to noise only. Note, that A

M

does not stand

for part of the real network, it only reflects the observation for the reduced data set

leading to ¯

S

(p 6=j). Contrary, A
M0 represents the real link strengths of unperturbed

links.

The eq.(6.44) can be reformulated exclusively by means of block matrix A

M0 ,

similarly to the reformulation of eq.(6.26) to eq.(6.27), but only reverse. Matrix A

M0

is a map from the principle subspace RM0 of partial correlations onto the higher

dimensional (inverse) data space RD, that is A

M0 : RM0 ! RD. By utilizing this

perspective, the inverse population covariance matrix will be

C

−1
= A

T

M0
· A

M0 + σ

2
nsr · ID , (6.46)

where σ

2
nsr := ↵

2 · σ2
⌘

/σ

2
u

. Note, that for convenience the equal sign has been used in

eq.(6.46), despite it is still an approximation. Finally, the joint Gaussian probability

distribution from eq.(6.22) can naturally be expressed with respect to the inverse

covariance matrix C

−1 by applying identity det(C) = 1/ det(C

−1
) for C being a non

singular quadratic matrix.

p (~x|A
M0) = N

�
~x | ~µ, C−1

�
A

M0 , σ
2
nsr

� �

=

✓
1

2⇡

◆
D/2

·
⇥
det(C

−1
)

⇤1/2 · exp

−1

2

· (~x− ~µ)

T

C

−1
(~x− ~µ)

�
(6.47)

This probability function does depend directly on the link strength matrix A

M0 , since

the expression for the inverse mean population covariance matrix C

−1 from (6.46)

does depend on A

M0 .

6.4.2 Maximum likelihood PCA for partial correlations

In order to infer the incoming link strengths A

M0 of unperturbed nodes from the

reduced data set {X(p 6=j)} a maximum likelihood approach similar to the one from

PPCA [11] will be implemented, next. Assuming data {X(p 6=j)} to be independently
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distributed, the full expression of the likelihood function is

p

�
{X(p 6=j)}|A

M0 , σ
2
nsr, ~µ

�

=

QY

p=1,p 6=j

NY

n=1

✓
1

2⇡

◆
D/2 ⇥

det(C

−1
)

⇤1/2
exp


−1

2

·
�
~x

(p)
n

− ~µ

�
T

C

−1
�
~x

(p)
n

− ~µ

��

=

N ·QY

l=1

✓
1

2⇡

◆
D/2 ⇥

det(C

−1
)

⇤1/2
exp


−1

2

· (~x
l

− ~µ)

T

C

−1
(~x

l

− ~µ)

�
, (6.48)

where Q = P−1 for j being a removed perturbation experiment and Q = P if there is

no perturbation experiment for node j available (incomplete data set). The number

of included perturbation experiments, denoted by Q, and the number of replicate

experiments N for each perturbation experiment is combined in the last step in the

above equation. The corresponding log likelihood L can be written as

L := ln

�
p

�
{X(p 6=j)}|A

M0 , σ
2
nsr, ~µ

��

=− NQ

2

 
D ln(2⇡) − ln

⇥
det(C

−1
)

⇤
+

1

NQ

N ·QX

n=1

�
~x

l

− ~µ

�
T

C

−1
�
~x

l

− ~µ

�
!
. (6.49)

The next steps are constituted of maximizing above log likelihood L with respect to

its unknown parameters, namely the population mean ~µ, the partial link strength

matrix A

M0 2 RM0⇥D and the noise-to-signal ratio σ

2
nsr. Maximizing L with respect

to the population mean ~µ yields the sample mean over the reduced data set {X(p 6=j)}.

~µML =

1

NQ

NQX

l=1

~x

l

=: ~x (6.50)

By substituting the population mean ~µ with the sample mean ~x the log likelihood

of eq.(6.49) can be expressed through the mean sample covariance matrix ¯

S

(p 6=j)

introduced in section 6.2.

L = ln

�
p

�
¯

S

(p 6=j)|A
M0 , σ

2
nsr, ~µML

��

=− NQ

2

⇣
D ln(2⇡) − ln

⇥
det(C

−1
)

⇤
+ Tr

⇥
C

−1 · ¯S(p 6=j)
⇤ ⌘

, (6.51)
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where the mean sample covariance matrix, which is computed over the reduced data

set and can also be understood as the mean over sample covariance matrices S

(p) of

each perturbation experiment.

¯

S

(p 6=j)
:=

1

NQ

NQX

l=1

�
~x

l

− ~x

��
~x

l

− ~x

�
T

=

1

Q

QX

p=1

1

N

NX

n=1

�
~x

(p)
n

− ~x

(p)��
~x

(p)
n

− ~x

(p)�
T

=

1

Q

QX

p=1

S

(p) (6.52)

The derivative 2 of the log likelihood function L of eq.(6.51) with respect to A

M0 will

be determined and set equal to zero to obtain the maximum likelihood estimate A

⇤
M0

under the total connectivity assumption. It is sufficient to compute the derivative

of the second and third term of L separately, while the first term can be neglected

since it does not depend on A

M0 . Keeping in mind that the expression for the inverse

covariance matrix C

−1 is given by eq.(6.46), the derivatives of the second and third

term are

d

dA

M0

ln

⇥
det

�
A

T

M0
· A

M0 + σ

2
nsr · ID

�⇤
= 2 · A

M0 · C (6.53)

d

dA

M0

Tr

⇥�
A

T

M0
· A

M0 + σ

2
nsr · ID

�
· ¯S(p 6=j)

⇤
= 2 · A

M0 · ¯S(p 6=j)
. (6.54)

Combining the single derivative results yields the derivative of the total log likelihood

function.

dL (A

M0)

dA

M0

= QN

�
A

M0 · C − A

M0 · ¯S(p 6=j)
� !
= 0 (6.55)

, A

M0 · C = A

M0 · ¯S(p 6=j)

,
�
¯

S

(p 6=j)
�−1 · C · AT

M0
= A

T

M0
(6.56)

The last equation,eq.(6.56), depends on the inverse mean sample covariance matrix
�
¯

S

(p 6=j)
�−1, representing observed partial correlations in the reduced data set. There

2 In this context, the first derivative is sufficient to find the maximum, since the likelihood function
is considered to be a Gaussian with a single maximum.
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are three different solutions to this equation, namely A

M0 = 0, C =

¯

S

(p 6=j) and

a third case with A

M0 6= 0 and C 6= ¯

S

(p 6=j), which is the interesting one. The

second case C =

¯

S

(p 6=j) does not reduce the dimensionality like it is the case in

Principle Component Analysis (PCA), which means that it is not in agreement with

the notion of a underlying principle subspace. To reduce the dimensionality, a singular

value decomposition (SVD) of link strength matrix A

M0 2 RM0⇥D (M0 < D) will be

introduced

A

M0 = V

T

⌃U

A

T

M0
= U

T

⌃V , (6.57)

where U is an orthonormal M0 ⇥ D matrix with UU

T

= I

M0 , V is an orthonormal

M0 ⇥ M0 matrix with V

T

V = I

M

= V V

T , representing a rotation in the principle

subspace of partial correlations, and ⌃ = diag(l1, ..., lM0) is a M0⇥M0 diagonal matrix

with singular values l
j

. Matrix U is chosen to be a row vector matrix, corresponding

to the rows of A

M0 , which stand for the incoming links of the unperturbed nodes.

Using the SVD and the identity V ·V T

= I

M0 the mean population covariance matrix

C has the following form

C =

�
A

T

M0
· A

M0 + σ

2
nsr · ID

�−1 (6.58)

=

�
σ

2
nsr · ID + U

T

⌃

2
U

�−1 (6.59)

Above expression, eq.(6.59), can be rewritten by utilizing the Woodbury identity3,

which leads to

C = σ

−2
nsrID − σ

−2
nsrIDU

T

⇥
⌃

−2
+ Uσ

−2
nsrIDU

T

⇤−1
Uσ

−2
nsrID

= σ

−2
nsrID − U

T

σ

−2
nsrIM0

⇥
⌃

−2
+ UU

T

σ

−2
nsrIM0

⇤−1
σ

−2
nsrIM0U

) C = σ

−2
nsrID − U

T

σ

−2
nsrIM0

⇥
⌃

−2
+ σ

−2
nsrIM0

⇤−1
σ

−2
nsrIM0U , (6.60)

3Woodbury identity: (L+U

T
KU)−1 = L

−1−L

−1
U

T (K−1+UL

−1
U

T )−1
UL

−1 with L : D⇥D

matrix, UT : D ⇥M0 matrix, UT : M0 ⇥D matrix, and K : M0 ⇥M0 matrix
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where identity matrix I

M0 2 RM0⇥M0 should be distinguished from identity matrix

I

D

2 RD⇥D. Further, I
D

U

T

= U

T

= U

T

I

M

and σnsrU
T

= U

T

σnsr has been applied.

After having obtained the SVD eq.(6.57) and the associated expression for C in

eq.(6.60), one can return to eq.(6.56) and insert those equations.

�
¯

S

(p 6=j)
�−1

h
σ

−2
nsrID − U

T

σ

−2
nsrIM0

⇥
⌃

−2
+ σ

−2
nsrIM0

⇤−1
σ

−2
nsrIM0U

i
U

T

⌃V = U

T

⌃V

,
�
¯

S

(p 6=j)
�−1

U

T

σ

−2
nsrIM0 −

�
¯

S

(p 6=j)
�−1

U

T

σ

−2
nsrIM0

⇥
⌃

−2
+ σ

−2
nsrIM0

⇤−1
σ

−2
nsrIM0 = U

T

,
�
¯

S

(p 6=j)
�−1

U

T

h
σ

−2
nsrIM0 − σ

−2
nsrIM0

⇥
⌃

−2
+ σ

−2
nsrIM0

⇤−1
σ

−2
nsrIM0

i
= U

T (6.61)

After above manipulations, the Woodbury identity will be applied again to eq.(6.61)

to arrive at a more compact form.

�
¯

S

(p 6=j)
�−1

U

T

⇥
⌃

2
+ σ

2
nsrIM0

⇤−1
= U

T

)
�
¯

S

(p 6=j)
�−1

U

T

M0
=

⇥
⌃

2
M0

+ σ

2
nsrIM0

⇤
U

T

M0
= ⇤

M0U
T

M0
, (6.62)

Obviously, eq.(6.62) is an eigenvalue equation where the eigenvalues, denoted by

diagonal matrix ⇤

M0 , and eigenvectors, contained as row vectors in matrix U

M0 , of
�
¯

S

(p 6=j)
�−1 must be determined. As a consequence, the problem of maximizing the

likelihood function L with respect to link strength matrix A

M0 can be understood

as an eigenvalue problem of the inverse mean sample covariance matrix
�
¯

S

(p 6=j)
�−1,

i.e. the observed partial correlations. The index M0 has been added to U , i.e. U

M0 ,

to indicate that U

T

M0
contains only the principle eigenvectors that span the principle

subspace of
�
¯

S

(p 6=j)
�−1.

To infer the incoming links A

M0 of the unperturbed nodes, the first M0 largest

eigenvalues and their corresponding eigenvectors have to be computed by eq.(6.62).

From the eigenvalues ⇤

M0 it it possible to determine the singular values ⌃

M0

⌃

M0 =

⇥
⇤

M0 − σ

2
nsrIM0

⇤ 1
2 (6.63)

Finally, the expression for the maximum likelihood estimate A

⇤
M0

for the incoming
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link strengths of the unperturbed nodes is obtained by inserting the singular value

⌃

M0 2 RM0⇥M0 and eigenvectors U

M0 2 RM0⇥D into the SVD of A
M0 of eq.(6.57).

A

⇤
M0

= V

T

M0
·
⇥
⇤

M0 − σ

2
nsrIM0

⇤ 1
2 · U

M0 (6.64)

The orthonormal rotation matrix V

M0 can not be determined by the here presented

maximum likelihood approach, which similarly occurs in the case of regular PPCA

[58]. In other words, the exact values of A⇤
M0

are non-identifiable with respect to a

rotation in the principle subspace spanned by the row vectors of matrix U

M0 . The

reason behind is the rotational invariance of the modeled inverse covariance matrix

C

−1 , which was derived in eq.(6.59). Following the same derivation as for regular

PPCA [58], it can be shown that ⇤
M0 comprises the M0 largest eigenvalues. Further,

in accordance with [58] , the noise-to-signal ratio σ

2
nsr is the average over the M =

D −M0 discarded eigenvalues {λ
i

} of the complementary noise subspace RM .

σ

2
nsr =

1

D −M0

DX

i=M0+1,i 6=j

λ

i

(6.65)

In the following, above solution will be specified for two different cases, namely the

complete and incomplete data set introduced in section5.2.2

Complete data set M0 = 1 (P = D): As a reminder, the complete data set

consists of as many single controlled perturbation experiments P as nodes in the

network D. In this case the corresponding reduced set {X(p 6=j)} comprises all pertur-

bation experiments except for the one of node j, whose incoming links can be inferred.

From a linear algebra perspective, the principle subspace has only one dimension, i.e.

M0 = 1. Consequently, the ML estimated link strength matrix A

⇤
M0

from eq.(6.64)

reduces to the row vector A

⇤
j,row, representing the incoming link strength of node j
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under the total connectivity assumption.

A

⇤
j,row = v ·

⇥
λ

j

− σ

2
nsr

⇤ 1
2 · U

j,row (6.66)
�
A

⇤
j1 . . . A

⇤
jD

�
= v ·

⇥
λ

j

− σ

2
nsr

⇤ 1
2 · (U

j1 . . . UjD

) , (6.67)

where the rotational matrix V

M0 reduces to scalar v 2 {−1, 1} and λ

j

denotes the

only eigenvalue of ¯

S

(p 6=j) associated with the principle subspace, which is spanned by

the only eigenvector U
j,row. The non-identifiability problem that undetermined scalar

v states can be solved by considering the relative link strength, which is the link

strength A

⇤
ji

relative to the link strength A

⇤
jj

of node j on itself, i.e. the degradation

rate or restoring force, respectively.

b
A

⇤
ji

:=

A

⇤
ji

A

⇤
jj

=

v · [λ
j

− σ

2
nsr]

1
2 · U

ji

v · [λ
j

− σ

2
nsr]

1
2 · U

jj

=

U

ji

U

jj

(6.68)

) b
A

⇤
jj

= 1 (6.69)

The relative link strength quantity does not determine the real strength of interac-

tions, but it is a sufficient measure to infer the network structure. In contrast to the

response matrix method (see section5.3.3), the inferred link strengths of the here pre-

sented method are comparable, which makes it possible to use it to infer the network

structure. This comparability is restricted to networks in which the real restoring

force A

jj

is the same for all nodes.

A very interesting consequence of the relative link strength b
A

⇤
ji

for the complete

data set, is that it only depends on the eigenvector U

j,row. The eigenvectors of the

covariance matrix ¯

S

(p 6=j) and its inverse (

¯

S

(p 6=j))−1 are the same, as mentioned in the

beginning of this section (see eq.(6.23)). Therefore, one can infer the relative link

strength b
A

⇤
ji

by computing the eigenvectors of the covariance matrix ¯

S

(p 6=j), whereas

the transposed eigenvectors corresponding to the smallest eigenvalue of ¯S(p 6=j) must be

chosen. This different approach can be practically more easily applicable, if ¯

S

(p 6=j) is

close to singularity. Concluding, it is possible to infer the whole network by inferring

the incoming links of each node separately step by step using P different mean sample
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covariance matrices ¯

S

(p 6=j).

Incomplete data set M0 > 1 (P < D): The complete data set case is the focus of

this work, nevertheless the here presented framework is capable of treating incomplete

data. For incomplete data the dimension M0 of the principle subspace increases to

multidimensional subspace, so that eq.(6.64) will have the form

0

BBB@

A

⇤
11 · · · A

⇤
1D

... . . . ...

A

⇤
M01

. . . A

⇤
M0D

1

CCCA
=

0

BBB@

V

T

11 · · · V

T

1M0

... . . . ...

V

T

M01
. . . V

T

M0M0

1

CCCA

0

BBB@

⌃11 0
. . .

0 ⌃

M0M0

1

CCCA

0

BBB@

U11 · · · U1D

... . . . ...

U

M01 . . . U

M0D

1

CCCA

Then each element of A⇤
M0

has the following expression

A

⇤
ji

=

M0X

k=1

V

T

jk

· ⌃
kk

· U
ki

, (6.70)

for j 2 {1, . . . ,M0} denoting the unperturbed nodes in the reduced data set and

i 2 {1, . . . , D} going over all nodes. Consequently, the relative link strength b
A

⇤
ji

for

an incomplete data set is obtained by

b
A

⇤
ji

=

P
M0

k=1 V

T

jk

· ⌃
kk

· U
ki

P
M0

k=1 V

T

jk

· ⌃
kk

· U
kj

(6.71)

As can be seen from above equation, the problem of the non-identifiable rotational

vector V

M0 is not solved by using the relative link strength for an incomplete data

set. However, it is possible to use a numerical approach, called “rescaling method”, as

well as some assumptions for V

M0 and ⌃

M0 to arrive at an identifiable problem. As

mentioned earlier the incomplete data case and hence this numerical approach is not

part of the here presented work and was only summarized for the sake of completeness.
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6.5 Markov chain Monte Carlo sampling over poste-

rior distribution of network structures

The goal of this section is to find the most probable network structure and hence to

improve the network inference results of the maximum likelihood estimate introduced

in the former section, section 6.4. Adding prior information about network sparsity,

enables one to draw samples from the posterior over network structures (given the

link strength) by means of Markov chain Monte Carlo (MCMC) sampling. In section

6.4 the link strengths A⇤
ji

between nodes were estimated from correlation information

by assuming that every node is affected by the total network, i.e. total connectivity

of the network structure G = 1. The next step is to find an estimate for the network

structure G, which is most likely considering the link strength ML estimate A

⇤ and

the data. This way it is possible to find more precisely the real interactions (links) in

contrast to A

⇤ which incorporates the total connectivity assumption.

6.5.1 The likelihood function in dependence of the network

structure

To express the likelihood function with respect to a variable network structure or

graph G, one can return to eq.(6.7). Assuming that the link strength A is given by

the maximum likelihood estimate A⇤ and that the structure G is a variable parameter,

the joint likelihood can be written as:

p ({Xp}|G,A

⇤
)

= p

�
{Xp 6=1}, . . . , {Xp 6=D}|G,A

⇤�
=

DY

j=1

p({Xp 6=j}|G
j,row

, A

⇤
j,row

)

= p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G,A

⇤�
=

DY

j=1

p(

¯

S

p 6=j|G
j,row

, A

⇤
j,row

)

= p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G
�
=

DY

j=1

p(

¯

S

p 6=j|G
j,row

) (6.72)
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In the last step of eq.(6.72) the notation of the joint and conditional likelihood func-

tions are simplified by neglecting to write down explicitly the A

⇤ and A

⇤
j,row depen-

dency. In the current case, the network structure G 2 {0, 1}D⇥D can be arranged

in any possible way, while the total connectivity assumption in the previous section

led to the structure G = 1. In other words, the conditional likelihood distribution

p(

¯

S

p 6=j|G
j,row

) given a certain incoming network structure G

j,row

of node j, expresses

the probability that the activity X

j

of node j can be explained by the direct interac-

tion of a subset of network nodes, i.e. the immediate parents Pa

G

j,row

(X

j

). Therefore,

structure G is the model parameter, which has to be inferred from training data. Fur-

ther, the following derivations are based on a complete data set, so that the maximum

likelihood estimate A

⇤
j,row ⌘ A

⇤
M0=1 of eq.(6.67) will be applied.

The conditional likelihood function p(

¯

S

p 6=j|G
j,row

, A

⇤
j,row) of the mean sample co-

variance matrix ¯

S

p 6=j given the incoming link structure G

j,row

and the incoming link

strength ML estimate A

⇤
j,row can be derived from the log likelihood expression in

eq.(6.51)

p

�
¯

S

p 6=j|G
j,row

, A

⇤
j,row

�

=

✓
1

2⇡

◆DNQ

2

·
�
det

⇥
C

−1
⇤�NQ

2 · exp
✓
−NQ

2

· Tr
⇥
C

−1 · ¯Sp 6=j

⇤◆
(6.73)

This likelihood function can be understood as a measure which compares the modeled

correlations represented by C

−1 with the observed correlations given by ¯

S

p 6=j. The

closer C gets to ¯

S

p 6=j, the higher the probability, and vice versa. Hence , the condi-

tional likelihood could also be expressed as the likelihood p

�
¯

S

p 6=j|C−1
�
G

j,row

, A

⇤
j,row

)

�

of the sample covariance matrix given the modeled population covariance matrix. At

the first glance above equation, eq.(6.73), looks similar to the likelihood function

which was maximized to obtain the link strength A

⇤
j,row, i.e. eq.(6.51). However,

the inverse population covariance matrix C

−1 of eq.(6.73) depends on the constant

row vector A

⇤
j,row =

�
A

⇤
j1 . . . A

⇤
jD

�
and the variable structure G

j,row = (G

j1 . . . GjD

).

This general expression for the inverse population covariance matrix is obtained from
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eq.(6.46) by forcing the incoming structure upon the ML link strength.

C

−1
=

�
A

⇤
j,row ◦G

j,row
�
T ·

�
A

⇤
j,row ◦G

j,row
�
+ σ

2
nsr · ID , (6.74)

where “ ◦ ” is the Hadamard product, which stands for an element wise matrix

multiplication. By incorporating the element wise multiplication of the structure

G

j,row to link strength A

⇤
j,row, incoming link strengths can be set exactly to zero. Notice

that eq.(6.46) and eq.(6.74) are identical under the total connectivity assumption,

where each element of G

ji

= 1 is equal to one and hence can be neglected. This

general expression can be further specified by inserting the ML solution A

⇤
j,row of the

link strength given by eq.(6.67), leading to

C

−1
=

�
λ

j

− σ

2
nsr

�
· (U

j,row ◦G
j,row)

T · (U
j,row ◦G

j,row) + σ

2
nsr · ID . (6.75)

The non identifiable parameter v 2 {−1, 1} drops out, since it enters quadratically

above expression, whereas σ

2
nsr is given by eq.(6.65) for a one dimensional principle

subspace, i.e. M0 = 1.

σ

2
nsr =

1

D − 1

DX

i=2,i 6=j

λ

i

(6.76)

As a reminder, λ
j

and U

j,row are the largest eigenvalue and the corresponding eigenvec-

tor of the inverse ( ¯Sp 6=j

)

−1, while λ
i

in above sum represents the discarded eigenvalues

of the noise subspace complementary to the principle subspace.

6.5.2 Sparsity prior and posterior probability

Biological networks like gene regulatory or signal transduction network are usually

sparse [33], meaning that direct links between nodes are rare. In addition to the

available training data, this information about the network structure can enhance

network inference results. The common procedure to include additional general in-

formation, like network sparsity, to the inference setting is achieved by introducing

a sparsity prior probability distribution. This prior p(G) on the network structure is
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multiplied to the likelihood p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G
�

to arrive at the posterior probability

p

�
G| ¯Sp 6=1

, . . . ,

¯

S

p 6=D

�
, which measures the probability of a certain structure G given

the data (in the form of the mean sample covariance matrices). According to Bayes’

theorem the posterior takes the form

p

�
G| ¯Sp 6=1

, . . . ,

¯

S

p 6=D

�
=

p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G
�
· p(G)

p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D

� (6.77)

) p

�
G| ¯Sp 6=1

, . . . ,

¯

S

p 6=D

�
/ p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D|G
�
· p(G) . (6.78)

As will be seen later, the unknown normalizing constant embodied by the data prob-

ability p

�
¯

S

p 6=1
, . . . ,

¯

S

p 6=D

�
will disappear if applied to the MCMC framework, making

eq.(6.78) to the more relevant one. Further, this joint posterior probability from

above has a formulation based on the conditional probabilities introduced earlier for

the likelihood function. The joint posterior probability takes the form

p

�
G| ¯Sp 6=1

, . . . ,

¯

S

p 6=D

�

=

DY

j=1

p

�
G

j,row| ¯Sp 6=j

�
/

"
DY

j=1

p

�
¯

S

p 6=j|G
j,row

�
#
·
"

DY

j=1

p (G

j,row)

#
(6.79)

=

DY

j=1

p

�
G

j,row| ¯Sp 6=j

�
/

DY

j=1

p

�
¯

S

p 6=j|G
j,row

�
· p (G

j,row) . (6.80)

The expression of eq.(6.80) shows that instead of introducing a prior p(G) for the

whole network G it is possible to create a prior p (G

j,row) which acts only on the

incoming link structure G

j,row. Therefrom once again, the inference problem of the

whole network can be simplified to one of inferring the incoming links of each unper-

turbed node step by step.

p

�
G

j,row| ¯Sp 6=j

�
/ p

�
¯

S

p 6=j|G
j,row

�
· p (G

j,row) (6.81)

In contrast to the likelihood approach the posterior includes additional network in-

formation, established by the prior.
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Figure 6-3: Sparsity prior distributions without normalization for a link J

ji

from node i to j given the regularization coefficient γ = 10 . The L0 norm
imposes the strongest sparsity condition upon the link strength J

ji

, since this function
is strongly peaked for J

ji

= 0 and otherwise J

ji

6= 0 close to to zero, i.e. exp(−γ).
The discontinuous jump of the L0 prior at J

ji

= 0 is visualized by the blue arrow.
The other two priors constitute weaker sparsity constraints than the L0 prior. The
L1 prior follows a Laplace distribution, which is distributed closer around its peak
than the Gaussian distribution of the L2 prior. Notice, that p (J

j,row) =
Q

D

i=1 p (Jji)

and p (J

ji

) / exp

h
−γ · kJ

j,i

kl
l

i
, with l denoting the norm.

Network sparsity priors

There are many priors that can induce network sparsity, nonetheless the main feature

they all have in common is a high probability for the absence of any link G

ji

. As a

consequence links must be properly supported by the training data, i.e. possess a high

likelihood, to be inferred as existing link. In terms of machine learning these sparsity

priors lead to a reduction of model complexity, which is manifested in a reduced

number of parameters G
ji

used to explain the observed data. In the following the L0

sparsity prior and for comparison only three more priors will be introduced.

In this work the main interest lies in the L0 sparsity prior based on the L0 norm

regularizer, because it represents the strongest possible sparsity condition. The L0

prior drives link strengths that are not supported by data to exactly zero resulting

in a clear structure without the need of a cutoff, as it is the case for the maximum
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likelihood (ML) estimate b
A

⇤. This kind of cutoff stands for a threshold under which

inferred link strengths are considered to be zero and hence to not exist. Before writing

down the prior expressions, one should be aware that by considering the Hadamard

product between the structure G and the ML estimate A

⇤ in eq.(6.73) a novel link

strength matrix J has been established.

J := A

⇤ ◦G , J

j,row := A

⇤
j,row ◦G

j,row (6.82)

Notice that the priors act on this new interaction strength J and not exclusively on

the structure G - only in the case of the L0 prior both dependencies are identical.

Finally the L0 prior which acts on the incoming links of node j takes the form

p (G

j,row) =
1

c

· exp
⇥
−γ · kG

j,rowk0
⇤

/ exp

⇥
−γ · kG

j,rowk0
⇤

(6.83)

where γ is the regularization coefficient or strength parameter, which measures how

strong prior information is imposed upon the inference algorithm. The L0 matrix

norm4 is given by the sum over all incoming structure elements G

ji

2 {0, 1}

kG
j,rowk0 =

DX

i=1

G

ji

=

DX

i=1

kJ
ji

k0 (6.84)

and c is the the normalization constant, so that
R
p (J

j,row) dJj,row
!
= 1. The L0 prior

will be compared to the L1 and L2 norm priors, which will be formulated next. The

4
L0 matrix norm kJkl =

PD
j,i=1 δ(Jji) , where δ is the Kronecker delta with δ(Jji) = 1 if Jji 6= 0

and δ(Jji) = 0 if Jji = 0. In this sense, the L0 matrix norm measure the number of non-zero
elements of matrix J .
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L1 prior [41] for the incoming link strengths J
i,row considering expression eq.(6.67) is

p (G

j,row) ⌘ p

�
G

j,row|A⇤
j,row

�
=

γ

2

· exp
⇥
−γ kJ

j,rowk1
⇤

(6.85)

/ exp

⇥
−γ · kJ

j,rowk1
⇤

p (G

j,row) / exp

h
−γ ·

⇥
λ

j

− σ

2
nsr

⇤ 1
2 · kU

j,row ◦G
j,rowk1

i
, (6.86)

where the explicit notation of A⇤
j,row has been omitted from the prior p (G

j,row), indi-

cated by “ ⌘ “ in the first equation line. Due to the L1 norm5 the non-identifiable

rotation parameter v 2 {0, 1} vanishes. The L1 prior has the form of a Laplace dis-

tribution, which is sharply peaked around a zero link strength(see Figure 6-3). The

disadvantage of the L1 norm is that it expresses a weaker condition for sparsity than

the L0 norm, so that unlikely link strengths are not driven to zero [46, 50, 66]. The

same behavior will be observed if the L2 prior is applied, which poses an even weaker

constraint due to a broader distribution around zero. The L2 prior is a Gaussian dis-

tribution and the common norm to prevent overfitting in linear regression problems

( [11], p.10). The L2 sparsity prior takes on the following expression

p (G

j,row) ⌘ p

�
G

j,row|A⇤
j,row

�
=

⇣
γ

⇡

⌘ 1
2 · exp

⇥
−γ · kJ

j,rowk22
⇤

(6.87)

/ exp

⇥
−γ · kJ

j,rowk22
⇤

p (G

j,row) / exp

⇥
−γ ·

⇥
λ

j

− σ

2
nsr

⇤
· kU

j,row ◦G
j,rowk22

⇤
. (6.88)

For the use of above priors in the MCMC framework only the proportionality

relations eq.(6.83),(6.86) & (6.88) are of interest, since the normalization constants

will be reduced with respect to ratios of priors. Figure 6-3 shows a plot of the three

priors without any normalization, so that the plotted functions in this figure can not

be regarded as probability density functions whose integral is one. In this form the

priors can be regarded as weight functions, which reduce model complexity.

5Matrix norm kJkl =
⇣PD

j,i=1 |Jji|
l
⌘1/l
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6.5.3 Markov chain Monte Carlo sampling over posterior

As the title of this section has already indicated a sample of network structures

from the derived posterior probability distribution will be drawn using Markov chain

Monte Carlo (MCMC) sampling. Having obtained a sample of network structures

representing the posterior sufficiently, it will be possible to determine the sample mean

of the posterior distribution, i.e. the average network structure. Finally, the mean

value of each network link serves as a score, which measures the inferred probability

that this link exists given the perturbation data.

Sampling over the whole posterior distribution leads to a set of possible net-

work structures {G(t)}, which can be used to score the existence of each link with

the relative frequency of its appearance within the sample set. Alternatively, one

could determine the maximum posterior (MAP) network structure by an optimiza-

tion procedure like Simulated Annealing [5,46]. However, the MAP approach has the

disadvantage of yielding only one probable network structure, whereby neglecting al-

ternative structures of similar probability. Especially in the presence of measurement

noise not all links are sufficiently supported by data. Therefore, inferring a set of

probable structures will lead to a deeper insight into the underling network structure

than the inference of a single MAP solution [46,50].

In the following, the applied MCMC algorithm will be briefly explained with the

help of the pseudocode of Algorithm 1. The focus of this section is to explain how

MCMC sampling is applied to above derived network inference framework. For a

detailed mathematical explanation of MCMC in the machine learning context the

reader is referred to [5]. The here applied MCMC simulation has the special feature

of sampling over the incoming structure independent of the rest of the network. Re-

member that the problem of inferring the whole network at once has been simplified

to one of inferring the incoming links of each node step by step. Therefore, it is

possible to sample over the incoming structure rather than over the whole network,

that is to sample over the conditional posterior p
�
G

j,row| ¯S(p 6=j)
�

rather than over the

joint posterior p

�
G| ¯S(p 6=1)

, . . . ,

¯

S

(p 6=D)
�
.
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Algorithm 1 Metropolis algorithm for inferring the incoming links of each node j step by step
1: for j  1 to D do

2: for t  1 to MCMC do

3: Produce pseudo random numbers:
4: Sample u  U[0,1] . Sample from uniform distribution of interval [0,1]
5: Sample i  U[1,2,...,D]|i 6=j

. Sample from uniform distribution over all nodes i 6= j. J

ji

: i ! j

6: Monte Carlo step:

7: Z

j,row

= G

(t)
j,row

. G

(t)
j,row

: accepted network structure of MCMC step t

8: Z

ji

= 1− Z

ji

. Flip (remove or add) 1 incoming link ! proposal structure Z

j,row

of MCMC step t

9: Compute inverse pop. covariance C for use in likelihood function :

10: C

−1
prop

=
⇣

A

⇤
j,row

◦ Z

j,row

⌘

T

·
⇣

A

⇤
j,row

◦ Z

j,row

⌘

+ σ

2
nsr

· I
D

. For proposal structure

11: C

−1
old

=
⇣

A

⇤
j,row

◦G

(t)
j,row

⌘

T

·
⇣

A

⇤
j,row

◦G

(t)
j,row

⌘

+ σ

2
nsr

· I
D

. For last accepted structure

12: Determine acceptance probability a

⇣

Z

j,row

, G

(t)
j,row

⌘

:

13:

I

⇣

C

−1
prop

, C

−1
old

⌘

=
p

�

Z

j,row

|S̄p6=j

�

p

⇣

G

(t)
j,row

|S̄p6=j

⌘ =
p

�

S̄

p6=j |Z
j,row

�

p

⇣

S̄

p 6=j |G(t)
j,row

⌘ ·
p (Z

j,row

)

p

⇣

G

(t)
j,row

⌘

. Posterior probability ratio

14: a

⇣

Z

j,row

, G

(t)
j,row

⌘

= min
n

1 , I

⇣

C

−1
prop

, C

−1
old

⌘o

. Acceptance probability

15: Check acceptance of proposal structure :
16: if u < a then

17: G

(t+1)
j,row

= Z

j,row

. Proposal structure is accepted
18: else

19: G

(t+1)
j,row

= G

(t)
j,row

. Proposal structure is not accepted
20: end if

21: end for

22: end for

In Algorithm 1 a MCMC simulation is executed for each node, indicated by the

loop over unperturbed node j. The MCMC sampling procedure can be regarded as

a random walk in the solution space of incoming structures, whereas each new pro-

posal structure is generated only from the last accepted structure as it is the case

in a Markov chain. The incoming proposal structure Z

j,row is obtained by adding or

removing (flipping) one incoming link to or from the last accepted incoming structure

G

(t)
j,row, whereas t denotes the Monte Carlo step (Algorithm 1 line 8). The flipped

incoming link i is drawn from a uniform6 distribution, so that each possible Monte

Carlo step is equally likely. Therefore, the random walk in the space of proposal

structures can be regarded as a symmetric random walk justifying the use of the
6As the diagonal elements of network structure, i.e. the degradation rate, are assumed to always

exist, they are fixed to one G

(t)
jj ⌘ 1.

106



Metropolis algorithm [5]. In the next step the conditional posterior ratio of the pro-

posed structure p(Z

j,row| ¯Sp 6=j

) relative to the last accepted structure p(G

(t)
j,row| ¯Sp 6=j

) is

computed, which is equal to the associated likelihood ratio times the prior ratio.

p

�
Z

j,row| ¯Sp 6=j

�

p

⇣
G

(t)
j,row| ¯Sp 6=j

⌘
=

p

�
¯

S

p 6=j|Z
j,row

�

p

⇣
¯

S

p 6=j|G(t)
j,row

⌘ · p (Z

j,row)

p

⇣
G

(t)
j,row

⌘ (6.89)

As mentioned above all constant terms, i.e. the data probability p

�
¯

S

p 6=j

�
and nor-

malization constant of the different priors, vanish within the ratio term. This has the

advantage that the posterior probability can even be utilized in the case of undeter-

mined quantities like the data probability. The likelihood ratio takes the form

p

�
¯

S

p 6=j|Z
j,row

�

p

⇣
¯

S

p 6=j|G(t)
j,row

⌘

=

"
det

�
C

−1
prop

�

det

�
C

−1
old

�
#NQ

2

· exp

NQ

2

·
�
−Tr

⇥
C

−1
prop · ¯Sp 6=j

⇤
+ Tr

⇥
C

−1
old · ¯Sp 6=j

⇤��
(6.90)

where C

−2
old denotes the inverse population covariance matrix of the last accepted

structure G

(t)
j,row and C

−1
prop

−1 the one of the proposal structure Z

j,row. The inverse

covariance matrix is given by eq.(6.75). To have a complete picture the prior ratios

for the three different prior can be found below. The prior ratio for the L0 prior can

be written as

p (Z

j,row)

p

⇣
G

(t)
j,row

⌘
= exp

h
γ

⇣
−
���Z

j,row

���
0
+

���G(t)
j,row

���
0

⌘i
. (6.91)

The prior ratio for the L1 prior has the form

p (Z

j,row)

p

⇣
G

(t)
j,row

⌘

= exp

h
γ ·

⇥
λ

j

− σ

2
nsr

⇤ 1
2 ·

⇣
−
���U

j,row ◦ Z
j,row

���
1
+

���U
j,row ◦G(t)

j,row

���
1

⌘i
. (6.92)
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Finally, the prior ratio for the L2 prior is given by

p (Z

j,row)

p

⇣
G

(t)
j,row

⌘

= exp


γ ·

⇥
λ

j

− σ

2
nsr

⇤
·
✓
−
���U

j,row ◦ Z
j,row

���
2

2
+

���U
j,row ◦G(t)

j,row

���
2

2

◆�
. (6.93)

As can be seen from above expressions neither of the prior ratios nor the likelihood

ratio depend on their normalization constants. In the next step of the Metropolis

algorithm (Algorithm 1 line 14) the acceptance probability a of the proposal structure

will be set to one if the proposal posterior is larger than the posterior of the last

accepted structure. In this case the proposal structure Z

j,row is simply accepted

(Algorithm 1 line 17). If the opposite case p(Z
j,row| ¯Sp 6=j

) < p(G

(t)
j,row| ¯Sp 6=j

) the proposal

structure will be accepted with a probability equal to the posterior ratio.

Concluding, the here presented network inference method produces a set of prob-

able network structures by sampling over the conditional posterior probability of

network structures given a complete perturbation data set. The problem of sampling

over the whole space of networks structures is simplified to the one of sampling over

the incoming link structures of each node separately. In other words there are D inde-

pendent MCMC simulations for a network of size D, whereas each MCMC simulation

scans over all possible incoming link structures.
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Chapter 7

Performance Assessment

The goal of this section is to assess the performance of the network inference algorithm

derived in the previous sections with the help of synthetic data generated from a signal

transduction network.

7.1 Synthetic data

The here used signal transduction network1 is a combination of the four epidermal

growth factor receptors ErbB1 (EGFR), ErbB2, ErbB3, ErbB4 [67] with the MAP

kinase signaling cascade ( [64] p.175). Additionally, four ligands that can bind to the

ErbB receptor family are included as nodes to the signaling network in accordance

with [48,67], which yields a network of 14 nodes and 16 links as can be seen in Fig.7-

1. For the sake of brevity this network will be referred to as EGFR network in the

following. The EGFR network of Figure 7-1 can be transformed into a structure

matrix G and a link strength matrix A representing the “gold-standard”, which the

inferred network structure will be compared to below.

G

ji

=

8
>>><

>>>:

1 for existing interactions

1 for j = i

0 no interaction

(7.1)

1 This specific signal transduction network was used by Mukherjee et al. (2008) [48] to generate
synthetic data and assess their own network inference algorithm.
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EGF AREG NRG1 NRG2

EGFR ErbB2 ErbB3 ErbB4

GAP Shc

Ras Raf MEK Erk

Epidermal
growth factors
(EGF familiy)

Receptor
tyrosine kinases
(ErbB family)

Mitogen-activated
protein kinases

(MAPK) pathway

Figure 7-1: The EGFR network used to generate synthetic data. The data
generating network structure is taken from [48] and consists of growth factors from
the epidermal growth factor family, which activate receptor tyrosine kinases (RTKs)
from the ErbB family (EGFR, ErbB2, ErbB3, ErbB4). The receptor proteins are
bound within the cell membrane, so that a growth factor can bind to the receptors
extracellularly in order to mediate the signal to intracellular phospho-proteins [67].
Among others, the activation of the RTKs initiates the phosphorylation cascade of the
mitogen-activated protein kinases (MAPK) pathway, which follows the order Ras, Raf,
MEK, and Erk. The MAPK pathway initiates cell proliferation as cellular response
to the growth signal [64]. The blue color of all nodes indicates that all nodes are
perturbed in single experiments. Further, the protein abundance (node activity) of
the whole network is measured (observed). Arrows in the here presented EGFR
network represent an activation process, e.g. activation of the kinase activity by
means of upstream phosphorylation.

The link strengths A

ji

of the existing links G

ji

will be assumed to be

A

ji

=

8
>>><

>>>:

1 for existing interactions

−1.5 for j = i i.e. degradation rate

0 no interaction

. (7.2)

Note that these values do not represent the real biological link strengths, i.e. reaction

rates, so that this artificial network serves only as a proof of principle. However, the

objective of the here presented network inference algorithm is to infer the correct

network structure, while inferring the reaction parameters, i.e. the link strengths, is
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not part of it. Hence, using real reaction rates for data generation is not imperative.

Further, the link strength matrix is chosen to be negative definite, which ensures that

node activities, e.g. phospho-proteins’ abundance, stay positive and do not diverge

with respect to the stochastic process used to generate the synthetic data. To produce

synthetic data the interplay of the molecular components in the EGFR network will be

assumed to follow the linear stochastic process introduced by eq.(6.18). As reminder

this process took the mathematical form

~x

(p)
n

= −A

−1 · B(p) · ~a
n

+ σ · ~φ
n

, (7.3)

where n denotes the replicate experiment and p the perturbation experiment and σ is

assumed to be all types of measurement noise (not only technical noise). The mean

node activity ~µ is set to zero, since its value is irrelevant for the inference algorithm

and therefore can take any arbitrary value (see section 5.2.2 and 6.3). Further, ~a
n

and ~

φ

n

are drawn from the standard normal distribution. To obtain a complete data

set X := {~x(p)
n

}8n,p of single perturbation experiments (P = D), the perturbation

standard deviation matrix B

(p) is chosen to be

B

(p) ⌘ diag
�
0, . . . , 0, B

(p)
pp

= σ

u

, 0, . . . , 0

�
(7.4)

for each perturbation experiment, i.e. only one node at a time is perturbed. The

standard deviation of measurement noise σ and of perturbations σ
u

are chosen relative

to each other, so that the noise-to-signal ratio nsr = σ/σ

u

is the relevant quantity.

This enables one to generate complete data sets for different nsr levels, making it

possible to assess the network inference algorithm under the influence of different

measurement noise levels with respect to the signal σ
u

.

As as special case one complete data set with a noise-to-signal ratio nsr = 0.15

and a replicate number N = 4 is chosen, on which the here presented network in-

ference algorithm is assessed. A replicate number of only a few experiments is the

typical size that one encounters for real state of the art perturbation experiments of

signal transduction networks [25]. Given the N = 4 and the EGFR network, the net-
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work inference algorithm reconstructs the network structure perfectly for nsr < 0.1.

Above nsr > 0.2 the number of false positive inferred links approaches the number

of true positive links, which is equivalent to a 50% chance of inferring a true posi-

tive link. Therefore, the choice of nsr = 0.15 lies exactly in the interesting regime

nsr 2 [0.1, 0.2] in which the choice of prior knowledge and MCMC sampling can boost

the performance compared to a network inference based on the maximum likelihood

(ML) estimate of the relative link strength. The reader should be aware, that this

nsr regime depends on the number of replicates and the examined network, i.e. size

and structure. Obviously, in the case of larger replicate numbers, the algorithm will

be able to cope with higher measurement noise.

7.2 MCMC convergence and prior sensitivity

Before being able to infer the structure with the algorithm, one has to adjust the

parameters of the MCMC sampling and the prior strength parameter γ. The MCMC

simulation is governed by the total number of Monte Carlo (MC) steps, denoted by

MCMC, the burn-in interval, and the subsampling interval [48]. The burn-in in-

terval is the initial period of MC steps until the MCMC simulation converges to its

stationary distribution [22]. It is discarded so that the MCMC sampling does not

depend on the initial condition, namely the initial network structure. The subsam-

pling interval must be set large enough so that the sample points can be regarded

as statistically independent, i.e. one sampled structure does not depend on the one

before. Finally, the total number of Monte Carlo steps MCMC ensures that there is

a large enough sample set with respect to the discarded burn-in and the subsampling

interval, which can represent the stationary distribution, namely the posterior over

network structures, sufficiently.

The here utilized way to select these parameters is by plotting the MCMC con-

vergence curve [40], which is the model error of structure G

(t) given the complete

data set in dependence of the Monte Carlo step t as shown in Figure 7-2. The er-

ror function is defined as the negative logarithm of the joint posterior distribution
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Figure 7-2: Error function of the whole network structure G without nor-
malization constant in dependency of MCMC steps shows the convergence
of the MCMC samples to the stationary distribution. The convergence curve
is shown for the MCMC algorithm with an L0 prior, whereas the other prior have a
similar convergence behavior. After 2000 MC steps the MCMC simulation converges
to its stationary distribution independent of the initial network structure. There-
fore, a burn-in of 5000 and total length of MCMC = 50000 is sufficient to obtain
a representative sample of the posterior distribution over network structures. The
variance of the the error function around the stationary mean depends on the size of
prior strength γ and of course as well on the prior type. In detail the error variance
depends on the posterior variance, so that a larger γ generates a larger error variance.

p(G|{X(p)}), whereas the L0 prior is chosen with the prior strength γ that maximize

the area under the receiver operating characteristic (AUROC) curve as will be shown

below. To remind the reader, there are D = 14 different MCMC simulations, one for

the incoming links of each node represented by the conditional posterior distribution

p(Gj,row|X(p 6=j)
) as derived in chapter 6. The MCMC convergence Figure 7-2 views

the negative logarithm of the joint posterior, which is the product of the conditional

posteriors, i.e. p(G|{X(p)}) =
Q

D

j=1 p(Gj,row|X(p 6=j)
). As can be observed from Figure

7-2 the MCMC simulation converges after about 2000 MC steps. This result holds as

well for randomly chosen initial structures, where convergence occurs after a few thou-

sand MC steps. To be on the save side a burn-in interval of 5000 MC steps is chosen
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and the subsampling interval is set to 100 MC steps according to [40]. With a total

number of MCMC = 50, 000 Monte Carlo steps a subsample set of 450 structures is

drawn from the joint posterior distribution.

Having obtained the MCMC setting one can turn to determining the prior strength

parameter γ. As mentioned γ is set to the value that maximizes the area under the

receiver operating characteristic (AUROC) curve [48]. The ROC curve plots the true

positive rate against the false positive rate for different thresholds [41]. This threshold

serves as a decision boundary, which is compared to the inferred confidence score of

each link, so that confidence scores above the threshold are regarded as inferred

link whereas links with a score below the threshold are regarded as no link. The

confidence score2 for a link inferred by the here presented algorithm is the relative

frequency of link appearance within the subsample set of 450 network structures

gained from the MCMC simulation. The area under the ROC curve can be used

to summarize the ROC performance by a single scalar, namely the AUROC value,

which is computed for different γ value to generate Figure 7-3. The best possible ROC

performance corresponds to an AUROC value of one, while the worst case is stated

by a zero AUROC value. But usually a performance that goes below AUROC = 0.5

is already not reliable. Therefore, setting the γ value to the one that maximizes

the AUROC value is a reasonable way to determine the unknown prior strength γ -

among others [41].

From Figure 7-3(b) one obtains the maximum AUROC values for the here pre-

sented network inference algorithm depending on the chosen prior. The maximum

AUROC for the L0 prior is achieved by setting γ

L0 = 5, while γ
L1 = 0.5 and γ

L2 = 0.1

lead to a maximum AUROC for the L1 and L2 prior, respectively. Another interest-

ing feature of the AUROC curves is gained by observing the sensitivity of AUROC

performance with respect to a wide range of γ choices. As it is shown in Figure 7-3(a),

the performance of the algorithm with a L0 prior is less sensitive towards the choice

of γ than its performance with a L2 prior, whereas the L1 prior is situated somewhere

in-between as Figure 7-3(a) indicates. This robustness in terms of parameter sensi-
2 The confidence score will be explained in more detail in the next subsection.
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(a) The sensitivity of inference results represented by AUROC with respect to the
prior strength parameter γ.The AUROC performance of L0 prior is the most robust
one with respect to the choice of γ, while the L2 prior is very sensitive.
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(b) Determine γmax, so that the AUROC value is maximal. Maximum AUROC values
are generated for γL0

= 5, while γL1
= 0.5 and γL2

= 0.1. Notice, that scaling of γ
axis has been changed to be able to easily compare the AUROC values for different γ
values.

Figure 7-3: Area under the receiver operating characteristic (AUROC)
curve in dependency of the sparsity strength parameter γ. Maximum AU-
ROC values for the MCMC network inference algorithm depending on the chosen
prior as well as the sensitivity of the AUROC results regarding the choice of the
parameter γ.
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tivity is another3 advantage which makes the L0 prior more preferential for network

inference than the other priors.

7.3 Network inference

In this last section the different subtypes of the here presented novel network inference

algorithm will be compared among each other by means of ROC performance for the

previously introduced synthetic data set. In detail, the algorithm based on the ML

estimate of the relative link strength (NetInf_ML) from section 6.4 will be compared

to the algorithm based on MCMC sampling over the posterior of network structures

(NetInf_MCMC ) from section 6.5 . Furthermore, the effect of the different priors on

the performance of NetInf_MCMC will be analyzed. For the sake of convenience each

of this algorithm subtypes is given an abbreviation, namely NetInf_ML for the max-

imum likelihood algorithm and NetInf_MCMC for the MCMC algorithm. The differ-

ent priors of latter algorithm are denoted by NetInf_MCMC:L0, NetInf_MCMC:L1,

and NetInf_MCMC:L2.

Before starting the comparison, the definition and interpretation of ROC curves

will be briefly summarized and the used link confidence scores for each of the algo-

rithms will be explained. As mentioned above the receiver operating characteristic

(ROC) curve plots the true positive rate (TPR) against the false positive rate (FPR)

for different thresholds [39,41].

TPR =

# true positives
# true positives + # false negatives

(7.5)

FPR =

# false positives
# false positives + # true negatives

(7.6)

The threshold represents a decision boundary that is used to discriminate the con-

fidence scores of each inferred link as link or no link in a boolean manner. The
3The previously mentioned advantage of using a L0 prior for network sparsity is its ability to

drive unlikely links, that are not supported by data, exactly to zero in contrast to the other priors.
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confidence score can be interpreted as a measure that evaluates how confident the

network inference algorithm is about the inferred structure. In case of NetInf_ML

the confidence score of each link is simply the absolute value of the inferred relative

link strength score
ML

(

b
A

ji

) = | bA
ji

|. Hence in this case, a large relative link strength

means more confidence and a small link strength less, whereas the absolute value

neglects whether the link stands for an activating or inhibitory process. On the the

other hand, the confidence score in the case of NetInf_MCMC is the relative fre-

quency with which a link appears in the MCMC sample set, i.e. among the L = 450

network structures G

(l) .

score
MCMC

(G

ji

) =

1

L

·
LX

l=1

G

(l)
ji

, (7.7)

where L denotes the total number of sample structures gained from the MCMC

sampling and G

(l) denotes the l

th sample structure. Hence in this case, a link that

appears in most of the sampled structures is weighted with a higher score than a link

that appears in a few sample structures, only.

In Figure 7-4(a) one can see the ROC curves of NetInf_MCMC:L0 compared to

NetInf_ML for the synthetic data of the EGFR network at a noise-to-signal ratio

nsr = 15% and only N = 4 replicates. First of all, one can recognize that both algo-

rithms perform significantly better than an inference algorithm based of random guess

qualifier, indicated by the diagonal dashed line. Furthermore, NetInf_MCMC:L0 per-

forms with significantly higher recall than NetInf_ML. In detail, NetInf_MCMC:L0

infers 70% of the total network structure with only a 10% false positive rate, while

for 60% of the network the false positive rate is even smaller, namely at FPR = 2%.

In contrast, NetInf_ML infers 70% of the total network structure with a 20%, i.e.

twice as much as NetInf_MCMC:L0. For 60% of the network NetInf_ML takes a

false positive rate of about 18%, which is six times higher than the one from Net-

Inf_MCMC:L0.

In Figure 7-4(b) the performance of NetInf_MCMC with different priors is com-

pared. The general impression is that NetInf_MCMC:L1 and NetInf_MCMC:L2
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(a) Comparison in the ROC performance of NetInf_MCMC:L0 compared to NetInf_ML. The
NetInf_MCMC:L0 algorithm performs with significantly higher recall than NetInf_ML.
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(b) Comparison in the ROC performance of NetInf_MCMC with the different priors (L0, L1,
L2). The performance difference among the priors is much smaller than in the case of Net-
Inf_MCMC:L0 and NetInf_ML.

Figure 7-4: ROC curves for the NetInf_MCMC NetInf_ML network infer-
ence algorithms: for the synthetic data of the EGFR network at a noise-to-signal
ratio nsr = 15% and only N = 4 replicates.
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perform very similar to NetInf_MCMC:L0 with respect to their ROC curves. In

other words, the performance difference among the priors is much smaller than in

the case of NetInf_MCMC:L0 and NetInf_ML. In detail, NetInf_MCMC:L0 has a

higher recall till 70% of the total inferred network, which means that at 70% TPR

NetInf_MCMC:L1 has FPR of about 15% and NetInf_MCMC:L2 an even worse

FPR of about 23%. At a TPR of 60% NetInf_MCMC:L1 and NetInf_MCMC:L2

have a FPR below 10% and hence perform more similar to NetInf_MCMC:L0.

Concluding, the here presented network inference framework, derived in section

6.4 & 6.5, is capable of handling noisy data with only a few replicates. Adding

prior knowledge about network sparsity in form of a L0, L1 or L2 prior does enhance

the performance, so that the rate of inferring true links (TPR) is much higher, up

to 30 times, than inferring not existing links (FPR). Although, the NetInf_MCMC

creates similar ROC curve results for all three priors the L0 prior is superior. This

superiority comes from the fact that the L0 prior drives unlikely links to or very close

to zero, which practically makes the decision to classify a link as real more viable.

The ROC representation does not clearly reflect this feature, since it shows results

for a wide range of confidence thresholds. If the the real network is unknown, i.e.

there is no acceptable gold standard as it is the case for real biological data, the

confidence scores of NetInf_MCMC:L0 allow to choose a proper confidence threshold

more easily. In contrast, by using the L1 and L2 priors for real biological data, the

problem of setting up the proper confidence threshold arises, since their scores are

not well distinguishable.
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Chapter 8

Conclusion

In this study a novel machine learning approach for the inference of biological net-

work structure from controlled perturbation data has been introduced, which reduces

the dimensionality of the network inference problem of the whole network to one of

inferring the incoming links of each node separately. As a consequence, the approach

based on the probabilistic principle component analysis (PPCA) of partial correla-

tions, distinguishes direct causal links between observed nodes from pure correlation

associations and overcomes even Gaussian measurement noise despite of only a few

replicate experiments.

By rearranging a complete data set into D different reduced data sets, the net-

work inference problem of the whole network (of size D) is transformed to inferring

incoming links of each node separately - leading to the whole network structure step

by step. Each reduced data set contains all available single perturbation experiments

except for one, so that all nodes but one are perturbed. The main idea (which leads

to a reduced dimensionality), is that the relevant partial correlations in such a re-

duced data set are the ones from the perturbed nodes to the single unperturbed node.

Existing partial correlations between other nodes are “destroyed” by the very act of

controlled perturbations. Further, the relevant partial correlations can be unambigu-

ously regarded as directed links due to the simple fact that the perturbation signal

flows from a perturbed node to the unperturbed one. Hence, the relevant information

contained in each reduced data set is the information about the incoming links of the

120



unperturbed node.

To extract the relevant information from the reduced data set a maximum likeli-

hood (ML) approach was chosen which is based on the notion of probabilistic principle

component analysis (PPCA) [58]. In contrast to regular PPCA, this approach infers

the principle components of the inverse covariance matrix (partial correlations), which

are the incoming links of the unperturbed node. Simply spoken, the likelihood func-

tion in this approach compares the modeled partial correlation, represented by the

inverse population covariance matrix C

−1, with the partial correlations S

−1 of the

reduced data set. By modeling the effect of perturbations upon each node by a linear

Gaussian stochastic process, a relation between the network structure, given in form

of an interaction matrix, and the inverse covariance matrix C

−1 was found. As a

consequence the likelihood function can be maximized with respect to the interac-

tion matrix. Further, it was shown that the notion of a principle subspace of partial

correlations (inverse covariance matrix) can be identified with the inference of the

incoming links of unperturbed nodes in the reduced data setting. This novel idea

of PPCA of partial correlations creates an expression for the modeled C

−1, which

depends only on the incoming network structure of the unperturbed node, thereby

explaining the relevant information of the reduced data set as the principle subspace

of partial correlations.

To further improve inference results, different prior distributions that induce net-

work sparsity were included to the likelihood framework, so that a posterior distri-

bution over incoming network structures was established. By means of Markov chain

Monte Carlo (MCMC) sampling the whole solution space of the posterior can be ex-

amined, resulting in a sample set of probable network structures. Rather than just

obtaining one possible structure as in the ML approach, the MCMC approach has

the advantage of offering a whole set of possible structures. Lastly, a very important

consequence of the dimensionality reduction for the MCMC algorithm is that it only

samples over the incoming network structure of each unperturbed node. This feature

enables faster MCMC convergence, which makes it possible to apply the MCMC tech-

nique to larger networks. This is the advantage of the here presented MCMC approach

121



compared to methods that sample over the whole network structure like [46, 50].

Comparing the ROC performance of MCMC and ML approach for synthetic

data of a EGFR signal transduction network, confirms the improved performance

of MCMC network inference algorithm. For a recall of 60% of the network the false

positive rate (FPR) of the ML approach lies up to nine times above the FPR of the

MCMC approach, so that latter approach leads to a more precise inference result.

This result is obtained for a synthetic data set with a noise-to-signal ratio (nsr) of

15% and only 4 replicate experiments, representing the typical available experimental

data in the presence of high noise level [72]. In general, both approaches infer the

exact correct network in the presence of low or medium noise-to-signal ratios of up to

10% given only a few replicates. Additionally, the ROC performance of the MCMC

approach with respect to the L0, L1, and L2 norm sparsity priors revealed only minor

differences. However, the inference results by means of L1, and L2 norm are very

sensitive regarding the choice of the sparsity strength parameter γ. In contrast, the

L0 norm prior produces robust results for a wide range of γ values, thereby simpli-

fying the parameter choice in practical applications. Furthermore, the fact that the

L0 norm produces a clear threshold for distinguishing inferred link from “noise”, was

reproduced by the MCMC approach.

Although, the here presented theory is derived for a complete data set, comprising

the perturbation of all network nodes, it provides the framework to be extended to

a incomplete data sets. Further, the performance assessment could be seen only as

a proof of principle as long as it has not been applied to real experimental data.

However, experimental data has the flaw of not knowing the real underlying network

structure, making it difficult to assess the algorithm with respect to a gold standard.

Nonetheless, in future work it would be worthwhile to apply the method to different

types of networks with synthetic and experimental data.

To summarize, in this thesis a novel machine learning technique in the field of

network inference has been developed, which overcomes Gaussian measurement noise

despite of only a few replicates. The main achievement is established by the here

introduced theory of probabilistic component analysis of partial correlations, which
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leads to a dimensionality reduction of the network inference problem. In general,

the here presented method creates insight in the exact causal molecular interplay of

gene regulatory or signal transduction network, which is by far superior to the pure

knowledge about their correlations. Knowledge about these interplays builds the

groundwork for predictive models, which enable one to find new therapeutic targets

in diseased cells or help to reprogram organisms to express a desired phenotype in

biotech applications.
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3-1 Simulation results of competing species experiment in a fluc-

tuating nutrient environment. Average growth rate for different

relative switching times T/tmin
D

and perception types, whereas tmin
D

de-

notes the minimum cellular doubling time. The average growth rate is

normalized by its maximal observable value for the sake of generality.

The dashed black line at the break-even point tBE divides fluctuating

environments in regimes of fast T = [0, tBE] and slow T =]tBE, 100]

fluctuations. (a) Average growth rate for the interval T/tmin
D

= [0, 100].

While the self-replicator with intracellular perception only grows on

preferential sugar (PS), the one with extracellular perception also grows

on non-preferential sugar (NPS). These contributions to the average

growth rate can be seen for the steady state value. (b) Average growth

rate for the interval T/tmin
D

= [0, 15]. . . . . . . . . . . . . . . . . . . 34

3-2 Growth rate dynamics at the break-even point and resonance

point. The plot shows one period 2T of fluctuations between non-

preferential and preferential environment, whereas the dashed black

line separates both environments (periodic boundary conditions). Time

t is normalized by the minimum cellular doubling time tmin
D

. (a) Growth

benefit and loss of intracellular perception due to exclusive adaptation

to preferential sugar. The area between both graphs is the measure

for benefit and cost relative to both perception types. (b) Growth dy-

namics at the resonance point T/t

min
D

= 0.7 ⇡ 1. The large amplitude

of the growth rate fluctuations for intracellular perception leads to an

optimal average performance and is caused by the resonance of cellular

response time with switching time T between environments. . . . . . 39
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3-3 Metabolite pool dynamics. The plot shows one period 2T of fluctu-

ations between non-preferential and preferential environment, whereas

the dashed black line separates both environments (periodic boundary

conditions). Time t is normalized by the minimum cellular doubling

time tmin
D

. (a) Extracellular perception at break-even point: both sugar

types, preferential (PS) and non-preferential (NPS), are taken up. The

condition of constant metabolite pools, caused by optimal enzymatic

resource allocation, is approached for switching times T larger than

the break-even point tBE. (b) Intracellular perception at T/t

min
D

= 3

between resonance point and break-even point: only PS is taken up

with an increased PS uptake during the PS environment, which is the

cause for the optimal growth at the resonance point. . . . . . . . . . 41

5-1 Example of a simple linear gene regulatory network. Bold ar-

rows represent causal interaction between molecular components, i.e.

transcriptions factors interact with genes which can activate or deacti-

vate gene expression. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5-2 Example of a simple linear signal transduction network, i.e

phosphorylation cascade. Bold arrows represent causal interaction

between molecular components, i.e. active signaling proteins which can

activate (phosphorylate) or deactivate (de-phosphorylate) downstream

proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5-3 Spring-mass network as a demonstrative example from physics.

Each metal ball of mass m

j

is connected to the other balls by the use

of springs. By deviating (perturbing) ball m1 from its point of rest, all

network nodes will oscillate around their points of rest leading to in-

formation flow through the whole network. The heat bath, illustrated

by the blue background color, generates fast random perturbations on

each node in addition to the controlled perturbation of ball m1. . . . 55
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5-4 Systematic perturbation experiments are needed to infer all

direct causal molecular interactions from abundance measure-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-5 Measurement noise is increased due to measuring only one

molecular component, leading to more observed false posi-

tives. By measuring only mRNA abundance in GRN or phospho-

protein abundance in STN, two of the three control mechanisms are

neglected. As a result the false positive rate of network inference algo-

rithm increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6-1 Example network of size D = 4 with two perturbed nodes.

Node i acts on node j with a link strength (interaction strength) A

ji

.

Node activities are modeled by random variables ~x = (x1, . . . , xD

)

T . . 72

6-2 Inference of the whole network can be simplified by inferring

the incoming links of each node step by step. In an approach

analogous to Bayesian networks, immediate parents of nodes j can be

formulated as conditional dependencies. Parents must be perturbed

to infer in-coming links of node j, whereas data where j is perturbed

is removed. Perturbed nodes are filled with blue, while not perturbed

ones are white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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6-3 Sparsity prior distributions without normalization for a link

J

ji

from node i to j given the regularization coefficient γ = 10

. The L0 norm imposes the strongest sparsity condition upon the link

strength J

ji

, since this function is strongly peaked for J

ji

= 0 and

otherwise J

ji

6= 0 close to to zero, i.e. exp(−γ). The discontinuous

jump of the L0 prior at J

ji

= 0 is visualized by the blue arrow. The

other two priors constitute weaker sparsity constraints than the L0

prior. The L1 prior follows a Laplace distribution, which is distributed

closer around its peak than the Gaussian distribution of the L2 prior.

Notice, that p (J

j,row) =

Q
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i=1 p (Jji) and p (J
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) / exp
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−γ · kJ
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kl
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i
,

with l denoting the norm. . . . . . . . . . . . . . . . . . . . . . . . . 102

7-1 The EGFR network used to generate synthetic data. The data

generating network structure is taken from [48] and consists of growth

factors from the epidermal growth factor family, which activate recep-

tor tyrosine kinases (RTKs) from the ErbB family (EGFR, ErbB2,

ErbB3, ErbB4). The receptor proteins are bound within the cell mem-

brane, so that a growth factor can bind to the receptors extracellularly

in order to mediate the signal to intracellular phospho-proteins [67].

Among others, the activation of the RTKs initiates the phosphoryla-

tion cascade of the mitogen-activated protein kinases (MAPK) path-

way, which follows the order Ras, Raf, MEK, and Erk. The MAPK

pathway initiates cell proliferation as cellular response to the growth

signal [64]. The blue color of all nodes indicates that all nodes are per-

turbed in single experiments. Further, the protein abundance (node

activity) of the whole network is measured (observed). Arrows in the

here presented EGFR network represent an activation process, e.g. ac-

tivation of the kinase activity by means of upstream phosphorylation. 110
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7-2 Error function of the whole network structure G without nor-

malization constant in dependency of MCMC steps shows the

convergence of the MCMC samples to the stationary distri-

bution. The convergence curve is shown for the MCMC algorithm

with an L0 prior, whereas the other prior have a similar convergence

behavior. After 2000 MC steps the MCMC simulation converges to its

stationary distribution independent of the initial network structure.

Therefore, a burn-in of 5000 and total length of MCMC = 50000 is

sufficient to obtain a representative sample of the posterior distribu-

tion over network structures. The variance of the the error function

around the stationary mean depends on the size of prior strength γ

and of course as well on the prior type. In detail the error variance

depends on the posterior variance, so that a larger γ generates a larger

error variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7-3 Area under the receiver operating characteristic (AUROC)

curve in dependency of the sparsity strength parameter γ.

Maximum AUROC values for the MCMC network inference algorithm

depending on the chosen prior as well as the sensitivity of the AUROC

results regarding the choice of the parameter γ. . . . . . . . . . . . . 115

7-4 ROC curves for the NetInf_MCMC NetInf_ML network in-

ference algorithms: for the synthetic data of the EGFR network at

a noise-to-signal ratio nsr = 15% and only N = 4 replicates. . . . . . 118
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