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“Theories are nets to catch what we call ‘the world’: to rationalize, to explain, and

to master it. We endeavour to make the mesh ever finer and finer.”

Karl Popper, in The Logic of Scientific Discovery (1935)
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Abstract
Wirtschaftswissenschaftliche Fakultät

Düsseldorf Institute for Competition Economics (DICE)

Doctor rerum politicarum

Three essays on equilibrium selection with coupled populations

by Ismael Mart́ınez Mart́ınez

Predictions of evolutionary game theory with regard to equilibrium selection gen-

erally depend on whether players interact within a single population or between

two (or more) different populations. Standard one- and two-population models

are the limit cases of a uniparametric family that combines intra- and intergroup

interactions. This dissertation studies a setup that interpolates between both ex-

tremes with a coupling parameter κ. We analyze the bifurcation in the replicator

dynamics of the coupled model applied to the hawk-dove game in Chapter 1. We

identify three regions for equilibrium selection, one of which does not appear in

basic one- and two-population models. We also design and conduct an innovative

experiment in continuous time that widely confirms the theoretical predictions.

Among some subtleties in the behavior of the system for intermediate values of

κ, we observe a systematic bias in the share of hawk play in the mixed regime,

and an upward shift in the critical value of κ for which polarizing behavior begins.

We account for these effects by extending the model to consider perturbed best

response dynamics in Chapter 2. Finally, Chapter 3 proposes a generalization of

the original model to situations where the intra- and intergroup interactions can

be any pair of different games defined by 2×2 payoff matrices. Replicator dynam-

ics predicts a maximum of twenty-one possible scenarios for equilibrium selection.

Motivated by the findings in Chapter 2, we introduce a model of perturbed best

response dynamics which reduces these cases to only four behavioral families. This

exhaustive analysis of the more general model with coupled populations paves the

way for a further experimental agenda based on the predictions of Chapter 3 and

the experiment in continuous time designed for Chapter 1.
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Preface

This dissertation is a result of the three years spent as a doctoral student at the

Düsseldorf Institute for Competition Economics under the supervision of Prof. Dr.

Hans-Theo Normann and Prof. Dr. Alexander Rasch. My main research foci have

been on the application of mathematical and experimental techniques to study pat-

terns in human decision-making, with special attention to strategic interactions in

dynamic environments. During this period of time, I have worked simultaneously

in two different areas: the analysis of equilibrium selection in evolutionary games

with coupled populations, and the development of models for decision-making

dynamics within a non-classical probability framework.

The following chapters deal with the first topic as a concise monograph. Therefore,

I only enumerate here the accomplishments in the field of non-classical models

for decision-making and refer the interested reader to the peer-reviewed publi-

cations. Mart́ınez-Mart́ınez, (2014), published in the Journal of Mathematical

Psychology, explains some departures from perfect rationality with concepts of su-

perposition and entanglement between actions and beliefs. Lambert-Mogiliansky

and Mart́ınez-Mart́ınez, (2015), published as a chapter in Lecture Notes in Com-

puter Science, proposes a model for games with contextual preferences. Mart́ınez-

Mart́ınez and Sánchez-Burillo, (2016), published in Scientific Reports, applies the

general framework of quantum stochastic walks on networks for decision-making

and accounts for different behavioral traits, including violations of the sure thing

principle. Denolf et al., (in press) in the Journal of Mathematical Psychology,

explains the experimental findings by Blanco et al., (2014) with the notion of

complementarity between observed preferences and beliefs of the subjects; their

interaction is a natural consequence of the measurement of two incompatible ob-

servables.
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Introduction

Equilibrium selection is a fundamental issue in the application of game theoretical

models; especially because normal form games usually show multiple Nash equilib-

ria (Harsanyi and Selten, 1988). Evolutionary and learning dynamics play a major

role in the study of this fundamental question (Friedman, 1991). Simple strate-

gic models are enriched with information about the structure of the population,

among other aspects. A renowned example is the distinction made by evolution-

ary game theory when an interaction is described as a one- or a two-population

game (Cressman, 2003; Weibull, 1995). The first model favors symmetric configu-

rations, while the second allows for specialization among groups. As argued in the

following chapters, such sharp distinction between interactions within a group or

between groups establishes an important restriction: both models require a large

degree of isolation between agents that belong to a different or the same group, in

one way or another.

We relax this constraint and analyze what happens when both interactions overlap.

This dissertation provides an exhaustive study of the dynamics and the equilib-

rium selection with coupled populations. The manuscript follows an incremental

approach and aims for a self-contained and concise exposition. The first chapter

develops the core ideas with a model of coupled replicator dynamics applied to

the case of hawk-dove games, and with a novel experiment in continuous time.

The next two chapters extend this study in two complementary directions: first,

we consider deviations from the best response paradigm to explain the behav-

ioral subtleties observed in the experiment; and second, we generalize the original

model to allow the intra- and intergroup interactions to be any pair of symmetric

two-strategy games defined with 2 × 2 payoff matrices, ΠA and ΠB.

Chapter 1 is published in the Journal of Economic Theory (Benndorf et al., 2016).

We first provide the basic motivations for the study of overlapping intra- and

2



Introduction 3

intergroup interactions and conduct a thorough analysis of the model for hawk-

dove games (ΠA = ΠB), both theoretically and with experiments in continuous

time. We propose the model for coupled replicator dynamics with the introduction

of the coupling parameter κ ∈ [0,1] that interpolates linearly between the one-

and two-population models when κ = 0 and κ = 1, respectively. The theoretical

analysis predicts three regions with different stable equilibria. For any level of κ

below a threshold κ∗m = 1
2 the predictions is a non-degenerate mixed equilibrium

as in the one-population setting. For κ > v/c > 1
2 (where v and c are the value

and cost of the conflict in the hawk-dove game, respectively), pure play emerges.

The intermediate regime κ ∈ (κ∗m, κ∗p) shows a qualitatively novel prediction where

one population coordinates on a pure strategy and the second one randomizes

with a pure mixture of hawks and doves. This situation does not occur with

standard one- and two-population models, or in the basic static setting. These

predictions can be understood as a sign that the one-population case extends

with much overlap to the second population; while the range of coupling where

pure equilibria can be sustained is more moderate. Overall, the two extreme

one and two-population cases are robust with respect to moderate perturbations.

The experiment in continuous time confirms the predictions qualitatively, and

especially with regard to the evolution of the separation observed in the play by

both populations. We find mixed behavior in the predicted regime and also the

transition toward a sound separation for greater values of κ. But we also observe

a considerable level of heterogeneity across sessions in the location of the splitting

point (coupling level for which the populations split into two groups of mostly

hawks or doves).

Chapter 2 is motivated by these final observations in Chapter 1. On the one hand,

replicator dynamics predicts symmetric mixed play with 2
3 of hawk play for κ < 1

2 ,

and a sudden bifurcation is expected at κ = 1
2 such that one population plays pure

hawk and the other plays mixed strategy with 1
3 of hawk. Separation increases

monotonically on κ in the interval [12 , 23] and the system is totally polarized for

κ > 2
3 . On the other hand, a perturbed best response model applied to our experi-

mental setting makes two more refined predictions by introducing behavioral noise

(logit function) in the selection of actions with finite λ, in line with the minor sub-

tleties observed in Chapter 1. The share of hawk choices in the symmetric mixed

equilibrium can be lower than 2
3 ; and perturbed best response dynamics implies

that the impact of the polarizing forces on the behavior of the system is weaker



Introduction 4

than suggested by replicator dynamics. Both results are positive given our data

set.

Chapter 3 revisits the theoretical model introduced in Chapter 1 for the special

case of hawk-dove games and generalizes the benchmark of coupled interactions to

any pair of 2 × 2 symmetric payoff matrices (in general, ΠA ≠ ΠB). We show how

only three parameters are sufficient to cast any possible overlap of interactions of

this kind, and relate a derivation of the coupling parameter κ to the fundamental

scaling parameters of the payoff matrices in angular notation. As a result, we

obtain a total of twenty-one possible bifurcations with replicator dynamics, the

majority of them presenting more intricate predictions regarding the regimes with

intermediate levels of coupling than those observed in Chapter 1. Following from

the evidence accumulated in Chapter 2 about how human behavior in the lab

can be fairly accounted for with the introduction of noise in the perturbed best

response dynamics, we are able to regroup these scenarios to a set of four families

of behavioral predictions.



Chapter 1

Equilibrium selection with coupled

populations in hawk-dove games☆

Theory and experiment in continuous time

Summary of the chapter

Standard one- and two-population models for evolutionary games are

the limit cases of a uniparametric family combining intra- and inter-

group interactions. Our setup interpolates between both extremes with

a coupling parameter κ. For the example of the hawk-dove game, we

analyze the replicator dynamics of the coupled model. We confirm the

existence of a bifurcation in the dynamics of the system and identify

three regions for equilibrium selection, one of which does not appear in

common one- and two-population models. We also design a continuous-

time experiment, exploring the dynamics and the equilibrium selection.

The data largely confirm the theory.

☆This chapter is published in the Journal of Economic Theory, 165 (2016) 472–486,
co-authored with Volker Benndorf and Hans-Theo Normann.
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Chapter 1. Equilibrium selection with coupled populations in hawk-dove games 6

1.1 Introduction

Evolutionary game theory makes an important distinction as to whether players

interact within a single population or between two (or more) disjunct populations

(Cressman, 2003; Friedman, 1991; Weibull, 1995). When matched with opponents

in a single population, players earn the expected payoff as if playing against the ag-

gregate strategy of their own population, so only symmetric strategies can survive.

With a two-population matching, each member of the group of, say, row players

is matched against a rival from the group of column players. Here, polarization

in behavior can occur and the populations may specialize in different strategies.

The same evolutionary forces can thus imply qualitatively different results, so the

distinction of single- and two-population settings is crucial.

The compartmentalization of one- and two-population models may, however, not

always be appropriate. A two-population analysis requires that players exclusively

receive their payoffs from interactions with the external population. Likewise, in

a one-population setting, players never interact with opponents from other pop-

ulations. Both these assumptions may not be warranted: why should players in

a two-population game not interact at least occasionally within their own popu-

lation? Why should agents in a single population setting not sometimes be also

exposed to interactions with agents from other populations? It seems plausible

that the interaction will often be mixed.

For non-human players, examples where the one- and the two-population cases

overlap are abundant in resource conflicts. Animals will predominantly compete

for resources with other members of the same species (intra-species competition).

But there will also be inter-species competition (Birch, 1957)—think of differ-

ent predatory mammals fighting for prey and water, or of various sessile organ-

isms competing for light interception and soil. Inevitably, intra-specific and inter-

specific competition overlap.1

An example with human players can be found in Mailath, (1998). Traders bargain

either within their own village or encounter visitors from a different population.

The game is hawk-dove in both cases but the analysis is one-population in the first

1Connell and Sousa, (1983) and Schoener, (1983) provide surveys of works on inter-specific
competition. Kennedy and Strange, (1986) show how the density of salmon fry in an ecological
niche appears to be influenced by the presence of both older salmons (same species, different
generation) and trout (different species).
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case and two-population in the second and the evolutionary selection mechanisms

differ starkly. But beyond these polar cases traders may, of course, interact at the

same time both with players from their own village and with visitors.2

The notion that intragroup and intergroup interactions overlap makes sense when

agents do not condition their strategy on the population from which an opponent

stems. This will be the case when players cannot identify which population a rival

is from, that is, when group membership is determined by indiscernible factors

such as geographic location and religious or political views. Even when they can

identify the groups to which other players belong, they may still not be able or

willing to condition their strategy on this identification.3 A firm’s strategy may

involve a managerial structure or incentive scheme that cannot be switched on and

off depending on whether the firm is interacting with its peers in a supply chain

or with its customers or suppliers. Boundedly rational players may choose the

same action for intragroup and intergroup interactions due to limited learning in

complex environments. But rational agents may do the same in order to establish

a global reputation, or as a result of the costly cognitive resources they employ to

organize their reasoning (see section 1.2).

In this chapter, we analyze the interaction of one- and two-population dynam-

ics, theoretically and in experiments. We analyze a uniparametric family that

combines the two models by interpolating between both extremes with a coupling

parameter κ which measures the weight of the intergroup interaction.4 One- and

two-population matchings are obtained for κ = 0 and κ = 1, respectively. We ana-

lyze the replicator dynamics of this system theoretically5 and conduct the experi-

ment in continuous time (Pettit et al., 2014). This is more suitable than standard

discrete-time experiments for testing the predictions of evolutionary game theory,

foremost because it allows for asynchronous choices and faster convergence.

2Somewhat similarly, Roll, (1994) interprets stock market traders performing fundamental
analysis as doves and traders gathering information only from price movements as hawks. As
suggested by a referee, Roll’s original model is formulated for one population but could easily be
extended to consider two populations, perhaps in different countries or different types of market
participants, for example, pension funds vs. hedge funds.

3Taking a different approach, Selten, (1980) assumes that players can condition their strategy
based on the information available to them.

4Independently, a similar approach has been developed by Friedman and Sinervo, (2016,
section 3.7). Their starting point is a two-population model, and they introduce coupling in the
form of “own-population effects.” See also a previous analysis of evolutionary models with two
groups of individuals in Cressman, (1995).

5Gómez-Gardeñes et al., (2012) use a similar model to analyze simulations of games on
overlapping graphs.
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Our application is a hawk-dove game. The hawk-dove game is the paradigm for

the analysis of conflicts over scarce resources (Maynard Smith, 1982). Introduced

by Maynard Smith and Price, (1973) in the context of animal conflict, it also

became highly influential for human interactions due to its fairly simple definition

which nevertheless generates very rich dynamics as a population game.

Oprea et al., (2011) analyze the hawk-dove game for the sign-preserving dynamics

of the one- and the two-population case. Their (continuous-time) experiment

confirms the predictions in that the symmetric mixed equilibrium is more likely

to be selected in the one-population treatment whereas separation is stronger in

the two-population treatment.

Our theoretical analysis confirms the existence of a bifurcation in the dynamics

of the system, and the replicator dynamics predicts three regions with different

stable equilibria. First, for any κ < κ∗m the predictions for the aggregate population

strategy is a non-degenerate mixed equilibrium, as in the one-population setting

(κ = 0). For κ > κ∗p pure play emerges for both groups, as in the two-population

analysis (κ = 1). For the intermediate values κ ∈ (κ∗m, κ∗p), a qualitatively novel

prediction emerges where one population coordinates on a pure strategy while the

second population is composed of a mixture of hawks and doves. This hybrid case

does not occur with a single population or with two populations.

One way of interpreting these theoretical results is that the existing analyses of

undiluted one- and two-population cases are robust with respect to perturba-

tions. We find κ∗m = 1/2 and show that κ∗p will vary between a half and one. In

words, the prediction of the one-population case extends with much overlap to a

second population. A more moderate statement can be made regarding the two-

population case as the scope for pure equilibria is typically smaller than the scope

for mixed equilibria. In that sense, the two-population analysis seems somewhat

less robust. Nevertheless, theoretically, it appears that neither of the one- nor the

two-population cases are strongly affected by perturbations.

Our experimental results qualitatively confirm the predictions, but there are also

departures from the theory. We find that mixed behavior is observed throughout

where predicted—including the pure one-population treatment and the coupled

variants with κ < 1/2. We also see a sound separation of hawks and doves in

our pure two-population (κ = 1) treatment. These findings confirm and extend
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the experiments of Oprea et al., (2011). Among the discrepancies between the

replicator dynamics prediction and the experimental results is a general bias in

the mixed strategies: in the treatments where the mixed equilibrium was expected,

the frequency of hawk play was lower than predicted. As for the κ ∈ (κ∗p,1) case

(where a pure equilibrium is predicted), the separating effect is less pronounced

than with κ = 1. The data further indicate that the splitting point (understood as

the level of κ for which the populations split into two groups of “mostly hawks”

and “mostly doves”) experiences notable variations across sessions.

1.2 Literature

The implementation of interactions as population games recovers the spirit of the

“mass action” interpretation of the mixed Nash equilibrium (Björnerstedt and

Weibull, 1996; Young, 2011). Each player in a population can simply play a pure

strategy, but the frequencies of the strategies in the population may correspond

to a mixed Nash equilibrium. This relaxes the reasoning skills required for mixed

play.

When the (static) game exhibits multiple equilibria, the evolutionary approach

provides a powerful tool for equilibrium selection and learning (Friedman, 1996).6

In a seminal contribution to evolutionary game theory, Friedman, (1991) compares

the theoretical conditions for static stability in evolutionary games involving one

and two (or more) groups of individuals, with applications to, for example, male-

female mating problems. Weibull, (1995) attributes the first multi-population

replicator dynamics analyses to Taylor and Jonker, (1978) and Maynard Smith,

(1982).7 Weibull, (1995) considers a different version of replicator dynamics for the

n-population case. Following Nowak and May, (1992), a number of papers have

also analyzed how the structure of a population may affect its behavior (Lieberman

et al., 2005; Taylor et al., 2004).

Our starting point is that players choose the same action when playing the same

game in encounters with players from different populations. This is in line with

6On learning issues, see Camerer and Ho, (1999), Hopkins, (2002), and Huck et al., (1999).
7Page and Nowak, (2002) explain different approaches to deterministic dynamics in popu-

lation games. Hofbauer and Sandholm, (2002) show the connection between stochastic choice-
making and deterministic dynamics. See Szabó and Fáth, (2007) or Sandholm, (2010) for com-
prehensive surveys.
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Figure 1.1: Population structures. Network representation of
(a) one-population and (b) two-population protocols with 24 players.

Samuelson, (2001) who argues that agents facing a problem of multiple strate-

gic interactions may balance the gains from better decision-making against the

cost of using scarce cognitive resources. This can result in the application of

the same choice in several of the interactions. Jehiel, (2005) formalizes the no-

tion of “analogy-based expectation equilibrium” where players best respond to

beliefs that are correct, on average, over various analogous situations. Huck et

al., (2011) provide experimental evidence. Grimm and Mengel, (2014) analyze

learning across games in experiments with the concepts of “belief bundling” and

“action bundling” – both of which can imply that players simplify their decision

environment by choosing the same action in different games, as a form of “best

response bundling.” See also Mengel, (2012) and the discussion contained therein.

1.3 Theory

We analyze the replicator dynamics with an even number of players divided into

two (coupled) populations of equal size, labeled X and Y . We define the sim-

plex SX = {sX = (sX1 , sX2 ) ∶ ∑a=1,2 s
X
a = 1} such that any point in it represents the

fraction of population X employing each available strategy.8 SY is defined analo-

gously for population Y . The product Ω = SX × SY is the set of strategy profiles

and also the state space of the dynamical system. We focus on symmetric two-

strategy games defined by 2 × 2 payoff matrices, with action set S = {s1, s2}. The
matrix element πij defines the payoff from choosing action si when playing against

pure strategy sj. To simplify notation, let x and y be the share of the strategy

s1 in populations X and Y , respectively. The state vector of population X is

ωx = (x,1−x)T , and ωy = (y,1−y)T for population Y . Then, the dimensionality of

8Players could also be using a mixed strategy. This would not alter the analysis.
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the problem is reduced to two, x and y, because the state of the dynamical system

is a composite in the form ω = (x,1 − x; y,1 − y)T ∈ Ω. Let LΠ ∶ [0,1] × [0,1] → R

be a linear operator for any given 2 × 2 payoff matrix Π. Its application over a

bidimensional vector w is defined as LΠ[w] = ⟨e,Πw⟩, where we define e = (1,−1)T
and ⟨⋅, ⋅⟩ is the inner product in the vector space.

Consider the two standard matching protocols: the one-population protocol and

the two-population protocol. In the one-population case, players interact randomly

with other players from their population and so, technically, every player in a

population earns the payoff of her choice against the aggregate strategy of her

own population. With the two-population protocol, the row players (population

X) play against the column players (population Y ). See Figure 1.1 for a graphical

representation of these population structures. In the one-population case for, say,

population X, we can write the rate of growth of the strategy s1 in the population

as ẋ = x(1 − x)LΠA
[ωx]. For population X in the two-population case, we write

ẋ = x(1 − x)LΠB
[ωy]. In general, we can consider different payoff matrices for the

within-group and the between-groups games, ΠA and ΠB, respectively.

As our key novelty, we introduce a new matching protocol involving the coupling

parameter κ ∈ [0,1] which integrates the two protocols in a linear fashion. This

coefficient is restricted to the unit interval, and its extremes κ = 0 and κ = 1

correspond to the one-population and the two-population settings, respectively.

We then define the linear combination ẋ = x(1 − x)[(1 − κ)LΠA
[ωx] + κLΠB

[ωy]]
generalizing the study to situations with a simultaneous existence of strategic in-

teractions at both intra- and intergroup levels. The (instantaneous) payoff function

for a player belonging to population X and choosing strategy si ∈ S is given as

πX(si; x, y)(t) = (1 − κ)[πA
i1x(t) + πA

i2(1 − x(t))] + κ[πB
i1y(t) + πB

i2(1 − y(t))]. (1.1)
Due to symmetry, πY is analogous and just requires the exchange of the population

labels x and y.

We now simplify ΠA = ΠB and choose the hawk-dove game for our analysis of

intra- and intergroup interaction. The hawk-dove game can be parametrized as

ΠA = ΠB = ⎛
⎝
a + 1

2(v − c) a + v

a a + 1
2v

⎞
⎠ , (1.2)
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where the parameters 0 < v < c represent the valuation of the good and the cost of

the conflict, respectively, and a > 0 is the players’ endowment.

We obtain the dynamics of the model as a system of coupled ordinary differential

equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = x(1 − x)12[v − c(x + κ(y − x))]
ẏ = y(1 − y)12[v − c(y + κ(x − y))]. (1.3)

The rate of growth of each strategy in the population is determined solely as a

function of: (i) the current state of the system (x, y), (ii) the value of the good v

and the cost of the conflict c, and (iii) the coupling parameter κ.

This parameter κ represents the strength of the coupling between the two popu-

lations of players, while (1−κ) is the weight of the interaction within each group.

Depending on the context of application of the model, this can mirror different

effects. For the traders in the example in Mailath, (1998), κ measures the frac-

tion of players at the trade fair coming from a neighboring city. For the notion

of best-response bundling in the experiments of Grimm and Mengel, (2014), our

model can be seen as the mean field abstraction of a treatment where κ tunes the

frequency in which each matching protocol appears.9

The following proposition formalizes the analysis of the dynamical system (1.3)

and relates it to our notion of intra- and intergroup conflict. A proof can be found

in the Appendix.

Proposition 1.1. Given the replicator dynamics in (1.3):

(a) if κ < κ∗m, the mixed Nash equilibrium is selected,

(b) if κ > κ∗p, the pure Nash equilibria are selected,

(c) in the intermediate range κ∗m ≤ κ ≤ κ∗p, a hybrid equilibrium is selected where

one population plays a pure strategy and the other one chooses a mixture.

The cutoff points satisfy κ∗m = 1/2 ≤ κ∗p and κ∗p = max{v/c, 1 − v/c}. If c = 2v then

κ∗p = κ∗m = 1/2 and case (c) is void.

Proposition 1.1 contains the one-population and two-population cases from previ-

ous research (Oprea et al., 2011) as limit cases. The prediction for region (a) is

as in the one-population matching (κ = 0) and the one for region (b) is as in the

9The definition can include asymmetric coupling with groups of different sizes or in situations
where the populations weight the two conflicts in a different way, suitable in the meaning of
animal competition.
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Table 1.1: Fixed points’ location. Replicator dynamics (1.3)
with v = 12 and c = 18. See the appendix for the general solution.

Pure states Hybrid states Mixed states

p∗1 = (0,0) p∗5 = (0,2/[3(1 − κ)]) p∗9 = (2/3,2/3)
p∗2 = (1,0) p∗6 = (1, (2 − 3κ)/[3(1 − κ)])
p∗3 = (0,1) p∗7 = (2/[3(1 − κ)],0)
p∗4 = (1,1) p∗8 = ((2 − 3κ)/[3(1 − κ)],1)

two-population matching (κ = 1). The hybrid equilibrium in region (c) is novel

and exists neither as a Nash equilibrium nor as an attractor of the one-population

or two-population settings. Table 1.1 gives the coordinates of the fixed points with

parameters corresponding to the games played in the experiment (section 1.4).

In Figure 1.2, we illustrate the equilibrium selection for the parameters used in

the experiment. For values of κ < κ∗m = 1/2 the only attractor in the phase space

corresponds to both populations being composed of two-thirds hawk. For κ >
κ∗p = 2/3, one group plays purely hawk and other one plays purely dove. For the

intermediate range κ ∈ [1/2,2/3], the replicator dynamics predict a pure-mixed

configuration such that the more hawkish population plays purely hawk (x = 1)

while the more dovish group plays a completely mixed strategy.

Figure 1.2 (a) also shows the impact of the coupling on the phase portrait of the

dynamical system. Starting with κ = 0, an increase in κ rotates the nullclines (zero-

growth isoclines) ẋ = 0 and ẏ = 0 clockwise and counterclockwise, respectively.

No qualitative change happens at the beginning, but between κ = 0.2 and 0.4

these nullclines cross the upper-left and bottom-right corner of the phase space

and eliminate two saddle points. This does not have a major impact on the

qualitative predictions. We obtain the first bifurcation in the system for κ = 1/2:
both nullclines coincide and their intersection transforms from attractor to saddle

point. Simultaneously, the remaining saddle points located at the edges become

the attractors of the system. These attractors move along the edges when κ

continues increasing. Finally, the second bifurcation occurs when they meet the

two corner points (1,0) and (0,1) which become the attractors of the system.

Proposition 1.1 generates testable hypotheses. In addition to relying on the equi-

librium predictions (mixed for κ < 1/2, pure for κ > 2/3), we will use a “separation

index,” Δs(κ) ∈ [0,1]. This index is defined as Δs(κ) = s̄1(κ,X) − s̄1(κ,Y ).
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Figure 1.2: Replicator dynamics. Plots with v = 12 and c = 18. (a) Phase
portrait of (1.3). White-filled points: non-stable. Red-filled points: stable.
Dark lines: nullclines. (b) Share of strategy s1 (hawk) in populations depending
on κ. Shaded areas: stability domains (eigenvalues νi(κ) as inset and in this

chapter’s appendix). (c) Resulting bifurcation diagram.
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That is, Δs(κ) is the share of the hawk strategy in the more hawkish population

minus the share of the hawk strategy in the more dovish population,10 for a given

value of the treatment variable κ. Using Δs(κ) and interpreting Proposition 1.1

in a qualitative fashion, we obtain our main hypotheses:

Δs(0) =Δs(0.2) =Δs(0.4) <Δs(0.6) <Δs(0.8) =Δs(1). (1.4)

1.4 Experiment

For the experiment, we choose the payoff parameters a = 3, v = 12, and c = 18.

This results in the following hawk-dove game:

Π = ⎛
⎝
0 15

3 9

⎞
⎠ . (1.5)

The standard two-player game has three Nash equilibria of the form (σX , σY ) ∈
{(1,0), (0,1), (2/3,2/3)}, where σl denotes the probability that strategy hawk will

be chosen by player l ∈ {X,Y }.
Our treatment variable is the coupling parameter κ. We consider κ ∈ {0,0.2,0.4,
0.6,0.8,1}. The cases κ ∈ {0,0.2,0.4} correspond to Proposition 1.1 (a), the cases

κ ∈ {0.8,1} to Part (b), and κ = 0.6 corresponds to Proposition 1.1 (c).

We use a within-subjects design and all subjects play all six treatments consec-

utively. To mitigate order effects or hysteresis, we randomize the order of the

treatments at the session level (see Table 1.2). To prevent reputation effects and

to maintain the one-shot character of the experiment, we employ random match-

ing such that the composition of the groups changes at the beginning of each

treatment. Players are independently and randomly assigned their initial actions

in each treatment. Furthermore, subjects are paid only for one randomly-selected

treatment in order to avoid wealth effects or hedging behavior across treatments

(Blanco et al., 2010). This randomization is implemented with a public dice roll

at the end of each session.

Other experimental procedures were as follows. All participants received hard-

copies of the instructions at the beginning of the session, and afterwards these

10The label “population X” is arbitrarily assigned to the more hawkish group in the steady
state for the analysis of the experimental data in the rest of the chapter.
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Table 1.2: Sequence of treatments in each session

Period Session 1 Session 2 Session 3 Session 4 Session 5 Session 6
1 κ = 0.8 κ = 0.2 κ = 1 κ = 0.8 κ = 0.4 κ = 1
2 κ = 0.2 κ = 1 κ = 0.4 κ = 0 κ = 0.8 κ = 0.6
3 κ = 0 κ = 0.6 κ = 0.6 κ = 0.4 κ = 0.2 κ = 0.2
4 κ = 0.6 κ = 0 κ = 0 κ = 0.6 κ = 1 κ = 0.4
5 κ = 0.4 κ = 0.8 κ = 0.2 κ = 1 κ = 0 κ = 0.8
6 κ = 1 κ = 0.4 κ = 0.8 κ = 0.2 κ = 0.6 κ = 0

were verbally summarized (see the instructions, available as online appendix).

Each session began with a trial part consisting of three 90-second periods in which

the players had the opportunity to familiarize themselves with the software. The

subjects were aware that no payoffs would result from playing these three periods

and we chose payoff matrices different from the hawk-dove games that would be

used in the actual treatments. The six periods in which we ran the treatments

had a time length of 210 seconds each. Subjects reported a good comprehension

of the task and software in an anonymous questionnaire which they filled in at the

end of the sessions.

The experiment was conducted with the software ConG. This software package

has been made available in open-access by Pettit et al., (2014) and allows for

experiments to be played in (virtually) continuous time.11 This particular setting

allows the players to make their choices in a fully asynchronous manner and they

experience the updating of the system in real time. This framework is particularly

suitable in our case because standard evolutionary models assume asynchronous

updating by the agents and make long-run predictions which may be distorted if

the experiments are performed as a finite sequence of synchronous repetitions of

a stage game. See Oprea et al., (2011) on this issue.

Figure 1.3 shows two examples of the graphical display presented to the subjects

in our experiment. On the left side of the screen, players could see the payoff

matrices and the selection tool. Every agent was framed as a row player who

needed to choose either A (hawk) or B (dove). The selection could be made with

the radio buttons or with the up and down arrow keys. Subjects could change

their action at any point in time and their choices had an immediate impact on

11We extended the basic package of ConG with a new payoff function, a customized matching
scheme, and a new graphical interface adapted to the information set that needs to be displayed
according to our design.



Chapter 1. Equilibrium selection with coupled populations in hawk-dove games 17

both games. The instantaneous choice was highlighted with a blue shadow in the

selected row.

Players saw two payoff matrices: the left one refers to the interaction with the “own

group” and the second one refers to the interaction with the “other group.” The

entries of these two matrices displayed are determined as (1−κ)Π and κΠ, respec-

tively, with Π defined in (1.5) and κ being the treatment variable (not known by

players). Subjects were informed that the level of their payoff flow was determined

as the sum of what they were simultaneously earning in the interactions with the

own and with the other group. The upper-left corner indicates the accumulated

payoff during the period and the remaining time.

The right half of the screen provides the players with all relevant information on

the state of play. The top chart plots the average strategy (that is, the share

of subjects choosing hawk) of each population. The middle chart documents the

player’s own choice, which can only alternate between A (hawk) and B (dove).

The bottom chart plots a dark red solid line representing the payoff flow that the

player is earning at a given point in time. The red shadow helps participants to

understand that the payoff they earn is accumulated over time. The three charts

share the same horizontal axis, that is, time. Note that all the changes of any

factor are shown in the corresponding charts without any noticeable delay.

We ran six experimental sessions at the DICELab for experimental economics

in Düsseldorf in April and May 2015. Each session comprised 24 subjects (two

populations of 12 subjects each) with 144 subjects in total. Generally, participants

were recruited from the local subject pool which contains students of various fields

at the Heinrich Heine University of Düsseldorf, using ORSEE (Greiner, 2015).

1.5 Results

Figure 1.4 presents the data from all sessions and from all treatments. The vertical

axis represents the share of players who chose hawk in the two populations of each

session, at each instant. The horizontal axis represents time in seconds. This

figure shows the evolution of the average strategy of the populations over time.
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Figure 1.3: Experimental display. Screenshot (translated from German)
of two terminals at the end of two treatments. Top: player in a hawkish group

in κ = 1. Bottom: player in a mixed-strategy group when κ = 0.4.
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Figure 1.5: Aggregate results. (a) Share of hawk choices in steady
state by κ in all sessions, compared to the bifurcation diagram in Figure 1.2.

(b) Δs(κ) for each session.

Consider first κ ∈ {0,0.2,0.4} where both populations are expected to converge to

the mixed equilibrium. Observed group behavior is in line with the predictions

of two-thirds hawk, as can be seen in the first three rows of the plot. Also, the

average strategies oscillate around that value in all 18 charts. When we consider

the last 60 seconds of play as the steady state of the system, we find that the

separation index Δs(κ) is between 0 and 0.13 in all six sessions of these three

treatments.

For κ = 0.6, theory suggests the hybrid case where one population should choose

purely hawk while in the other population one-sixth hawkish play should emerge.

Figure 1.4 shows this kind of outcome for sessions 3, 5, and 6 where we observe

Δs = 0.37, 0.31, and 0.65, respectively. In the other three sessions, the steady state

is more in line with the mixed equilibrium and we observe separation indices in the

vicinity of 0.15, resembling the data in the treatments with a lower κ. The level

of κ for which the populations separate appears to vary from session to session.

With κ ∈ {0.8,1}, the average strategies of the two populations are predicted to

converge to pure play in the steady state. In Figure 1.4, the last two rows of

the graph show much polarization between the two populations at the end of the

treatments. The average separation in the two-population treatment (κ = 1) is

0.93 whereas we obtain Δs(0.8) between 0.70 and 0.95, except in session 4. In

that session, we observe a period of experimentation with mixing behavior, with a

slow and delayed departure toward a pure equilibrium, such that Δs(0.8) = 0.45.
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Figure 1.5 summarizes how the populations in all sessions behave in the steady

state (last 60 seconds of play). Panel (a) compares the aggregate results of all

sessions to the bifurcation predicted by the replicator dynamics. We arbitrarily

assign the population label X to the more hawkish population in the steady state.

We observe three main effects. First, for κ ∈ {0,0.2,0.4}, mixing behavior occurs,

but with a general downward bias in the share of hawk choices in all populations.

Second, the scatter plot for κ = 0.6 and 0.8 shows considerable dispersion, and

even though the existence of the bifurcation is apparent, the intensity of polarizing

behavior is clearly weaker than predicted by the replicator dynamics. Third, most

of the deviation from perfect separation in the last two treatments (κ ∈ {0.8,0.1})
is driven by the dovish populations. When κ = 1, the share of hawk in the steady

state of the hawkish populations is larger than x = 0.99 in five cases and x = 0.96

in the sixth (Session 1). By contrast, the share of strategy hawk in the dovish

populations is non-zero throughout and reaches values of almost 20% in several

sessions. For κ = 0.8 both the hawkish and the dovish populations deviate from

perfect separation, but a similar argument still applies.

The finding that pure-strategy behavior is more pronounced for the hawk popula-

tions can be explained as follows. The separation into hawk and dove populations

induces substantial payoff inequalities. (See also the discussion in Oprea et al.,

2011, section 4.) In the more dovish population, some individuals foresee that

their group is doomed to earn the lowest payoff and thus deviate systematically

from their best response. There are two pure equilibria, and such deviating be-

havior of doves can be seen as an attempt to break the coordination and push play

toward the more profitable equilibrium. This kind of behavior is rather apparent

for κ = 0.8 (see Figure 1.4). In some sessions, the identity of the more hawkish

population changes several times.

Panel (b) of Figure 1.5 plots the separation indices for each treatment, classi-

fied by session. Despite the subtleties described above, the statistical analysis

qualitatively confirms the hypotheses (1.4) of the replicator dynamics. Wilcoxon

signed-rank tests yield the following results, where two-sided p values above the

(in)equality signs indicate whether or not the according null hypothesis is rejected:

Δs(0) p>0.999= Δs(0.2) p>0.999= Δs(0.4) p=0.031< Δs(0.6) p=0.031< Δs(0.8) p=0.062< Δs(1). (1.6)
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There are no significant differences between the consecutive separation indexes

with κ ∈ {0,0.2,0.4}, consistent with our prediction. We also confirm (1.4) in that

Δs(0.4) < Δs(0.6) and Δs(0.6) < Δs(0.8) are statistically significant. Finally,

and in a deviation from the prediction, the separation index for κ = 1 is weakly

significantly larger than for κ = 0.8.

1.6 Conclusion

Equilibrium selection and learning in populations are prime targets for evolution-

ary game theory. We analyze what happens when intra- and inter-group inter-

actions overlap. We predict a dynamical bifurcation from symmetric mixed to

asymmetric pure equilibria in the hawk-dove game which depends on the fre-

quency of interaction in the own vs. another (second) population. The transition

occurs at an intermediate range of the coupling parameter κ. In the transition

range, one population coordinates on a pure strategy while the second population

is composed of a mixture of hawks and doves.

We also analyze to what extent human behavior matches the bifurcation in

continuous-time experiments, extending a previous study by Oprea et al., (2011).

Our experimental results largely confirm the hypotheses. One implication of the

results is that the predictions for one-population and two-population settings are

robust with respect to the presence of overlapping inter- and intragroup inter-

actions. Nevertheless, the transition regime experiences notable variation across

experimental sessions.

This chapter demonstrates the usefulness of continuous-time experiments in the

analysis of intra- and intergroup interactions. Observations of actual bifurcations,

together with other recent developments in the field such as the analysis of limit-

cycles in rock-paper-scissors games (Cason et al., 2014), show a much improved

degree of resolution with which experiments can study evolutionary forces.
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Appendix - Proof of Proposition 1

Location of fixed points. We obtain the zero-growth curves directly from (1.3).

Because of the linearity of the fitness functions, all the nullclines are simple lines

in the plane:

ẋ = 0→ x = 0 ẏ = 0→ y = 0

ẋ = 0→ x = 1 ẏ = 0→ y = 1

ẋ = 0→ x = v − κcy

(1 − κ)c ẏ = 0→ y = v − κcx

(1 − κ)c.
(1.7)

Fixed points are located at the different intersections of a horizontal and a vertical

nullcline. Obviously, the corners of the state space are fixed points and represent

possible equilibria in which both populations play pure strategies,

p∗1 = (0,0), p∗2 = (1,0), p∗3 = (0,1), p∗4 = (1,1). (1.8)

There are four other possible points where one population plays a pure strategy

while the other is mixed,

p∗5 = (0, v/[(1 − κ)c]), p∗6 = (1, [v − κc]/[(1 − κ)c]),
p∗7 = (v/[(1 − κ)c],0), p∗8 = ([v − κc]/[(1 − κ)c],1). (1.9)

Finally, we also obtain a possible configuration in which both populations mix

strategies in a symmetric manner,

p∗9 = (v/c, v/c). (1.10)

Point p∗9 is always inside the unit square because 0 < v < c. Nevertheless, the

fixed points p∗5 and p∗7 only exist for κ ∈ [0,1 − v/c] while p∗6 and p∗8 only exist for

κ ∈ [0, v/c].

Linear stability analysis. The Jacobian J with matrix elements Jmn = ∂ṁ/∂n
is defined by

2 × Jxx(x, y) = v − 2vx + c[3x2(1 − κ) − κy − 2x(1 − κ − κy)]
2 × Jxy(x, y) = κcx(1 − x), (1.11)
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with Jyx and Jyy given by symmetry (x ↔ y). Stable points are those fixed

points for which both eigenvalues of J (evaluated at the point’s coordinates) are

negative (Hofbauer and Sigmund, 2003). The eigenvalues are the two roots of the

characteristic polynomial det [νI2 − J].
For p∗1 and p∗4, we obtain ν1 = ν2 = v/2 > 0, and ν1 = ν2 = (c− v)/2 > 0, respectively.

These two symmetric equilibria in pure strategies are never attractors of the sys-

tem. For the asymmetric equilibria in pure strategies (p∗2, p
∗
3), the eigenvalues are

ν1 = (c − v − κc)/2, and ν2 = (v − κc)/2. If c < 2v, then ν2 > ν1 and the asymmetric

pure equilibria are stable for κ ∈ [v/c,1]. If c > 2v, then ν1 > ν2 and they are stable

for κ ∈ [1 − v/c,1].
Considering p∗5 and p∗7, the eigenvalues are ν1 = v − v/[2(1 − κ)], and ν2 = [v2 −
(1 − κ)cv]/[2c(1 − κ)]. Note that ν1 is negative for κ ∈ (1/2,1), and ν2 is negative

for κ < 1 − v/c. These two points are stable for κ ∈ [1/2,1 − v/c], when c > 2v.

For the points p∗6 and p∗8, the eigenvalues are ν1 = (c − v)(2κ − 1)/[2(κ − 1)], and
ν2 = (c − v)(κc − v)/[2c(1 − κ)]. ν1 is negative for κ ∈ (1/2,1) and ν2 is so for

κ < v/c. Thus, these points are stable for the range κ ∈ [1/2, v/c], provided c < 2v.

Finally, the symmetric equilibrium in mixed strategies p∗9 yields eigenvalues ν1 =
v(v − c)/2c, and ν2 = v(c − v)(2κ − 1)/2c. The first one is constant and always

negative since c > v in the hawk-dove game. The second is negative for κ < 1/2, so
p∗9 is stable when κ ∈ [0,1/2].
Thus, we have characterized the attractors of the dynamical system (1.3) to be

selected for each region of the coupling parameter κ. These results are summarized

in Proposition 1.1 and illustrated in Figure 1.2.
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Chapter 2

Perturbed best response dynamics in a

hawk-dove game☆

Summary of the chapter

We linearly interpolate between the evolutionary one- and two-population

models of a hawk-dove game and examine the impact of behavioral

noise on equilibrium selection. We find that perturbed best response

dynamics generates two hypotheses in addition to the bifurcation pre-

dicted by standard replicator dynamics. First, when replicator dynam-

ics suggests mixing behavior (close to the one-population model), there

will be a bias against hawkish play. Second, the polarizing behavior

that replicator dynamics predicts in the vicinity of the two-population

model will be less extreme in the presence of behavioral noise. Both

effects are clearly present in our experimental data set.

☆This chapter is co-authored with Volker Benndorf.

26
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2.1 Introduction

Evolutionary and learning processes are key to understand the dynamics of equilib-

rium selection and to analyze departures from the best-response paradigm (Goeree

and Holt, 1999; Mailath, 1993; Sandholm, 1998). Hofbauer and Sandholm, (2002)

derive convergence results and show that asymptotic behavior is obtained in terms

of the perturbed best response (PBR) dynamics. This family of models introduces

random disturbances in the definition of the best response correspondences. The

main result about deterministic representability of the stochastic process holds

independent of the distributional assumptions about the random component. See

Blume, (1993), Hofbauer and Hopkins, (2005), and Hopkins, (2002).

The logit choice function is a prominent model of PBR which is in line with

standard random utility models. Players exhibit bounded rationality and behave

as myopic best repliers who tremble in their decisions. They update their actions

in a probabilistic manner such that better alternatives are chosen more frequently

than others. This system can show configurations that replicator dynamics cannot

explain. Traulsen et al., (2010) provide evidence supporting this model of strategy

updating in human behavior. Alós-Ferrer and Netzer, (2010) and Zhuang et al.,

(2014) characterize long run properties of the logit response dynamics.

In this chapter, we focus on the application of logit response dynamics in a hawk-

dove game, extending the analysis of a recent experiment by Benndorf et al., (2016)

(Chapter 1). As a static interaction, this game exhibits a symmetric NE in mixed

strategies and two polarized NE in pure strategies where one agent plays hawk

and the other chooses dove. Basic intuition in population games is sufficient to

argue that mixing behavior emerges when the game is played within the popu-

lation (one-population matching) because only symmetric equilibria can survive

(see Oprea et al., 2011). The polarized case is more likely to be observed in the

between-populations matching (two-population model). The transition between

both regimes of equilibrium selection has been observed in a novel experiment by

linearly interpolating both extreme structures with a coupling parameter κ ∈ [0,1]
(Benndorf et al., 2016, Section 5). The one-population case corresponds to κ = 0

and the two-population case to κ = 1.

As the benchmark case for comparison, replicator dynamics predicts symmetric

mixed play with 2
3 of hawk play for κ < 1

2 . A sudden bifurcation happens at κ = 1
2
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such that one population plays pure hawk and the other plays mixed strategy with
1
3 of hawk. Separation increases monotonically on κ in the interval [12 , 23] and the

system is totally polarized for κ > 2
3 .

The PBR model applied to our experimental setting makes two strong predictions

that go beyond the scope of the best-response paradigm of replicator dynamics.

First, the share of hawk choices in the symmetric mixed equilibrium will be lower

than 2
3 . Second, PBR implies that the impact of the polarizing forces on the

behavior of the system will be weaker than suggested by replicator dynamics.

This effect has two interpretations (see further explanation of the model below):

the separation (difference in the share of hawk play) between the two populations

will be lower than predicted by replicator dynamics. An alternative perspective is

that the value of the coupling parameter κ for which the system transits from the

mixed regime to the asymmetric configuration will be higher than 1
2 .

2.2 PBR model

We consider two populations of players (X and Y ) in a two-strategy environment.

Let SX = {(s1, s2) ∶ sX1 + sX2 = 1} such that any point in it represents the share of

each strategy among population X (equivalent definition for population Y ). The

pair (x, y) gives the state of the system, with x = sX1 and y = sY1 , respectively.

Information about s2 is redundant.

In order to capture the bifurcation, we interpolate the play of the game between

the one- and the two-population models with a coupling parameter κ ∈ [0,1]. If

κ = 0, the player only participates in interactions within the population. If κ = 1,

we recover the play between populations. Intermediate values of κ correspond

to simultaneous interaction at the intra- and intergroup level (Benndorf et al.,

2016, Section 3). The instantaneous payoff earned by a player in population

X choosing strategy si for a given state of the system (x, y) is πX(si; x, y) =
(1−κ)[πi1x+πi2(1−x)] +κ[πi1y +πi2(1− y)] where πij are the elements of a 2× 2

payoff matrix.

According to the logit response function, a player in population X who observes

a choice profile in the populations (x, y), and given the chance to revise the play,
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chooses action s1 with probability

pX(s1; x, y) = 1

1 + e−λΔπX(x,y)
. (2.1)

ΔπX(x, y) = πX(s1; x, y)−πX(s2; x, y) is the payoff advantage (in population X) of

strategy s1 over strategy s2. Analogous for Y . The comparison of profits influences

the dynamics of the system weighted by λ ∈ [0,∞). This parameter captures

deviations from the best response function. If λ = 0, the revision mechanism is

independent from the payoff structure of the game and the system evolves toward

an equal share of strategies in the populations. When λ → ∞, PBR mirrors

replicator dynamics.

We define the action set S = {s1, s2} such that s1 corresponds to strategy hawk,

and s2 to dove. Then, the hawk-dove game in matrix notation is

Π = ⎛
⎝
a + 1

2(v − c) a + v

a a + 1
2v

⎞
⎠ . (2.2)

This game represents a conflict of cost c over a scarce resource of value 0 < v < c,

and a > 0 is an endowment of the players. With these parameters (and the payoff

function above) we obtain the fitness function ΔπX(x, y) = 1
2[v − c(x + κ(y − x))].

ΔπY comes by symmetry.

The deterministic dynamics is defined by the system of coupled differential equa-

tions ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = pX(s1; x, y) − x

ẏ = pY (s1; x, y) − y,
(2.3)

with pX and pY defined in (3.14). A rest point of (2.3) corresponds to the logit

quantal response equilibrium (McKelvey and Palfrey, 1995) for the given value of

the parameter λ.

We illustrate the predictions of the PBR model in Figure 2.1. In panel (a), we see

the stable manifold of the logit response dynamics in the hawk-dove game with

the bifurcation as a function of the coupling parameter κ. As shown in panel (b),

the prediction for λ = 0 is independent of the coupling condition and corresponds

to uniform randomization. When λ increases, the system presents a bifurcation

diagram that becomes closer to the prediction with replicator dynamics the higher

the value of λ.
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Figure 2.1: PBR predictions. Parameters a = 3, v = 12 and c = 18.
(a) Stable manifold. (b) Bifurcation diagrams. (c) Location of κcrit.

(d) Share of s1 in mixed equilibrium, as functions of λ.

For every sufficiently high value of the rationality exponent λ (equivalent to very

low levels of noise in the best response correspondences of the players), there

exists a critical value κcrit such that the equilibrium stability shifts from the mixed

configuration toward a more polarized one. We compute κcrit as a function of λ

in panel (c). This value converges monotonically toward 1
2 when the PBR model

degenerates in the replicator dynamics (λ → ∞). A similar logic applies to the

share of the hawk choices in the populations for the regime with low coupling

(κ < κcrit). We illustrate in panel (d) how the level of hawk play monotonically

increases with λ and converges to the mixed NE, v/c = 2
3 , when λ→∞.

From this discussion, we see that the PBR model generates two testable hypothe-

ses about human behavior in the experiment:

H1. The share of hawk choices in the populations X and Y for treatments with

κ < 1
2 will be lower than v/c = 2

3 and higher than 1
2 .
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H2. The observed separation between populations (difference between hawk play

in groups X and Y ) for the treatment with κ = 0.6 will be lower than 5
6 .

Formulation of H2 deserves some explanation. As discussed above, the presence

of noise in the best response function shifts the location of the critical level of the

population coupling κcrit for which polarization begins (upward shift increasing in

λ). It is not possible to make an ex-ante point prediction for λ and one cannot cover

all possible values of κ as a treatment variable. Therefore, the exact point κcrit

cannot be directly observed in an experiment; however, we can identify the effect

of the upward shift by measuring how buffered is the polarizing incentive perceived

by the players with respect to the prediction with replicator dynamics. According

to the PBR model, the higher the κcrit, the smaller the separation reached by the

populations for a fixed level of coupling, κ = 0.6. See Figure 2.1-Panel (b) and

Figure 2.3.

2.3 Experiment

In this chapter, we utilize the dataset generated in an experiment by Benndorf

et al., (2016). Subjects played the hawk-dove game with parameters a = 3, v = 12,

and c = 18. The payoff entries are π11 = 0, π12 = 15, π21 = 3, and π22 = 9. The static

game presents three NE as already mentioned. The two NE in pure strategies are

equivalent and imply coordination of the two groups in opposite strategies, (1,0)
or (0,1). The third equilibrium is symmetric in mixed strategies with a share

v/c = 2
3 of hawk choices in each population.

The coupling parameter κ was the treatment variable and took the six values from

0 to 1 with step Δκ = 0.2. Logit response dynamics predicts symmetric mixed play

for the three treatments with lower κ. Separation can occur for the three other

cases.

The experiment varied the treatments within subjects. All participants played all

six treatments consecutively and the order of these treatments was randomized at

the session level. The composition of the groups was randomized at the treatment

level and players were independently and randomly assigned their initial actions
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Figure 2.2: Experimental results (I).

Steady states for each κ and fit of PBR dynamics, by session.

in each treatment. Each treatment lasted 210 seconds of play. Only one treatment

was paid, selected with a random draw at the end of the session. There were six

experimental sessions and we employed a total of 144 participants. All sessions

took place at the DICELab for experimental economics in Düsseldorf, in Spring

2015.

The experiment was conducted in (virtually) continuous time with ConG (Pettit et

al., 2014). This environment is relevant to experiments in evolutionary dynamics

because it allows for asynchronous choice making by the players and implements

real time updating of the information set displayed to the agents.1

2.4 Results

Figure 2.2 reports the experimental results at the session level. We considered the

last 60 seconds of play for the computation of the steady state of the system in

each treatment (total length is 210 seconds). The two scatter plots (red and blue)

show the share of strategy hawk in the two populations together with the error

1Further details about other procedures can be found in Benndorf et al., (2016, Section 4).
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bar. Label X is arbitrarily assigned to the more ‘hawkish’ population in the steady

state. As anecdotal information, we show a fit of the PBR model at the session

level, with the estimated values of λ as inset.2 For the sake of completeness, the

best fit when considering a unique value of λ for the whole data set is for 2.51.

The two hypotheses stated by our PBR model can be tested directly from the

experimental data set and are independent of any consideration about the fit of the

parameter λ. In order to test the first hypothesis, we take the steady states reached

during the three treatments with κ = 0, 0.2 and 0.4 in the six sessions. In total,

we have 36 measurements of the share of hawk play in the range [0.493, 0.660].
However, our experimental design generates only one independent observation per

session. Each session gives six data points: two populations, X and Y , times

three treatments κ ∈ {0,0.2,0.4}. Thus, in order to perform the quantitative tests,

we average the steady state of the two populations X and Y across the three

mentioned treatments to get one observation per session. These six data points

lie in the range [0.551, 0.597]. One-sided sign tests reject the null hypotheses that

the median of the data points is less than or equal to 1
2 and greater than or equal

to 2
3 with p-values of 0.0156 in both cases. The same test fails to reject the null

hypotheses that the median of the data points is greater than or equal to 1
2 and

lower than or equal to 2
3 with p-values of 1 in both cases. Hence, we can confirm

the hypothesis H1 of the PBR model in that the play of hawk strategy in the

mixed regime belongs to the interval (1/2, 2/3). For our sample, average play of

hawk is 0.583 with standard deviation of 0.017.

Regarding the second hypothesis, we have six measures of the separation between

populations for the treatment with κ = 0.6. We define the separation index Δs(κ) ∈
[0,1] as s̄1(κ,X) − s̄2(κ,Y ). The separation index is the share of strategy hawk

in the more hawkish population (X) minus the share of strategy hawk in the

more dovish group (Y ), for a given treatment κ. The observations span the range

[0.126, 0.653], with average of 0.293 and standard deviation of 0.201. The one-

sided sign test rejects the null hypothesis that the median of the data points is

greater than or equal to 5
6 (≈ 0.833) with a p-value of 0.0156 and cannot reject the

null hypothesis that the median of the data points is lower than or equal to 5
6 with

2Grid search on the values of λ with resolution Δλ = 10−2 considering the distance∑κ[x
∗(κ)−

s̄X1 (κ)]
2 + [y∗(κ) − s̄Y1 (κ)]

2 as the objective function to minimize, where (x∗, y∗) is the PBR
prediction (as a function of λ) and s̄1 is the observed share of hawk play in the steady state for
the corresponding population and treatment.
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Figure 2.3: Experimental results (II). Separation index for κ = 0.6. PBR
prediction as a function of λ (dashed green) and experimental observation (solid
black). Inset shows the observed separation for all treatments (solid black) com-
pared to the replicator prediction (dashed blue). Gray bands indicate standard

deviations.

a p-value of 1. The data set confirms H2 in that the observed separation between

the populations for κ = 0.6 is clearly below the prediction under perfect rationality.

Figure 2.3 compares the separation observed in the treatment with κ = 0.6 to the

corresponding model predictions as a function of the level of noise (inverse of λ).

The inset also shows the separation observed throughout all the treatments in

comparison with the sharp step function predicted by replicator dynamics. The

departure from the best-response paradigm in the way subjects played the games

is clear, given our two experimental results being highly significant.

2.5 Discussion

In this chapter, we tested two deviations from replicator dynamics of qualitative

nature. We characterized two traits of human behavior in a dynamic environment

–the bifurcation of the hawk-dove game– that are predicted by PBR dynamics

and that represent a systematic departure from the best response assumption

that underlies the definition of replicator dynamics. Our results relate to other

recent applications of PBR models, for example, to the experimental study of limit
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cycles in rock-paper-scissors games by Cason et al., (2014); and to other recent

characterizations of noise in behavioral dynamics in experimental games (Lim and

Neary, 2016; Mäs and Nax, 2016).

To conclude, we acknowledge the ongoing debate concerning the informative value

of estimating the parameter λ to compare point predictions between quantal re-

sponse equilibrium and Nash equilibrium (see, for example, Brunner et al., (2011),

Goeree et al., (2005), Haile et al., (2008), and Selten and Chmura, (2008) on this

issue). We would like to emphasize that the two experimental results presented

in this chapter are independent of any numerical fit of the parameter λ. The

tests that we performed rely purely on the experimental observations; we offered

estimates of λ in Figure 2.2 only for illustrative purposes.
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Chapter 3

A general model for 2 × 2 games

with coupled populations

Summary of the chapter

This chapter generalizes the linear model of replicator dynamics with

coupled populations of Chapter 1 (Benndorf et al., 2016) to situations

where the intra- and intergroup interactions can be any pair of 2 × 2

games, ΠA and ΠB. Using an angular representation of the games,

only three parameters are relevant for equilibrium predictions: one

angle defining each game, φA and φB; and the coupling parameter κ.

In this model, κ arises naturally as the comparison between the scaling

factors of the two payoff matrices. A comprehensive classification of

this family of coupled interactions with replicator dynamics predicts

a total of twenty-one qualitatively different scenarios of equilibrium

predictions. Following the findings in Chapter 2, the analysis with

perturbed best response dynamics weakens some of the evolutionary

forces and reduces the number of qualitatively different scenarios to

four. These results open the door for designing a future and exhaustive

experiment.

37
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3.1 Introduction

The majority of the literature on evolutionary game theory focuses on models

where agents are grouped in one or two (sometimes more than two disjoint) pop-

ulations, and where the interaction takes place either only within the own pop-

ulation or only with the other population. In both cases, the agent’s payoff is

determined by her own action that is confronted with the average strategy of the

own population or the other population, respectively.

The notion that agents interact exclusively within their own population or ex-

clusively with the other population is disputed, as already stated in Chapter 1.

Benndorf et al., (2016) analyze the coupled model that linearly interpolates be-

tween both extreme population cases while keeping the same payoff matrix for

both interactions. The question of why should players in a two-population setup

not at least occasionally interact with players from their own population is also

proposed in Friedman and Sinervo, (2016, Section 3.7) with the introduction of

“own-population” effects that arise when players’ actions in the two-population

setup also have an impact on their peers in their own population.

Beyond the introduction of perturbations in the matching protocol for a given

base game, coupled models also open the possibility to connect or overlap any

two population games. Put differently, in a coupled model, intra- and intergroup

interactions may differ qualitatively. As a consequence, coupled models allow

for the analysis of a broad spectrum of intra- and intergroup interactions. The

interaction with the own population might, for example, resemble a prisoners’

dilemma while the interaction with the other group may have the characteristics

of a hawk-dove game; this would be a typical situation where a group is subject to

the free riding problem in the provision of public goods within the own population

at the same time that they face a conflict over scarce resources with a competing

neighboring population. One could also imagine a situation such that the two

games present pure dominance but in opposite strategies: it is clear what to do

within the own group and what to do against the other group, but both choices

have conflicting motivations that cannot be disentangled.

Many combinations are possible and applicable to model different scenarios; there-

fore, this chapter takes an integrative approach. We perform an exhaustive analysis

of equilibrium selection with coupled populations by modeling the dynamics of the
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system with a minimal set of three parameters that nevertheless contains all the

relevant information for equilibrium predictions and allows for any pair of 2 × 2

games to be represented. We find a total of twenty-one different analytical sce-

narios for replicator dynamics which we see reduced to four families of behavioral

patterns with the introduction of noise in perturbed best response dynamics.

The model presented in this chapter extends and complements the one in Chapter

1 by taking a more general perspective in two directions. First, we consider the

matrices ΠA and ΠB to be any pair of matrices in general, either the same or dif-

ferent, so the study presented here will contain the predictions stated in Benndorf

et al., (2016) as possible subcases within a broader picture. The complexity in

the analysis of the system is reduced by introducing an angular definition of the

payoff matrices such that only two angular variables, φA, φB ∈ [0,2π), are required
to specify the nature of the interactions and the conditions for equilibrium selec-

tion. Second, the parametrization of the model proposed in this chapter gives rise

to the coupling parameter κ from very basic considerations; κ was introduced in

Chapter 1 as an assumption in the definition of the linear coupling. In this sense,

the linear interpolation used along this thesis in Chapters 1 and 2 is now derived

naturally from the linearity induced by the usage of payoff matrices in the defini-

tion of the utility functions of the players. These results strengthen the validity of

the experimental design employed in the first two chapters and propose a further

research agenda.

3.2 Basic coupled model

We choose the family of symmetric two-strategy games that can be represented

with 2 × 2 payoff matrices. We consider two games: a within-population game

ΠA, and a game ΠB between the populations. These two coupled populations are

labeled X and Y .

The action set is S = {s1, s2}. The simplex SX = {sX = (x,1−x)} with x ∈ [0,1] is
such that any point sX represents the fraction of agents of population X that are

choosing each available strategy. SY goes by analogy; and x and y are the share

of strategy s1 in populations X and Y , respectively. Because of the normalization

condition, the pair (x, y) is sufficient to know the state of the system.
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We analyze the replicator dynamics where the players participate simultaneously

in the two games ΠA and ΠB. The payoff entry πA
ij (or π

B
ij ) determines the payoff

obtained in game A (or B) by a player who chooses action si and confronts pure

strategy sj. In the case of a player in population X the instantaneous payoff

function is

πX(si; x, y) = πA
i1 x + πA

i2 (1 − x) + πB
i1 y + πB

i2 (1 − y). (3.1)

Compare this definition (3.1) to the previous (1.1) and notice that now we do

not postulate the linear interpolation. In this case, we only consider that the

instantaneous payoff earned by players comes from the simultaneous participation

in two games (one with each population) and we will obtain κ below as a result of

the angular parametrization of these games.

Under standard assumptions for replicator dynamics, we can write the coupled

system of ordinary differential equations as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = x(1 − x)ΔπX

ẏ = y(1 − y)ΔπY ,
(3.2)

where ΔπX = πX(s1; x, y) − πX(s2; x, y) is the fitness of strategy s1 in population

X, given the state of the system (x, y). Explicitly:
ΔπX = (πA

11 − πA
21)x + (πA

12 − πA
22) (1 − x) + (πB

11 − πB
21)y + (πB

12 − πB
22) (1 − y). (3.3)

ΔπY is given by symmetry under the exchange of labels x and y. The growth

rate of the strategies in each population is a function of the current state of the

system (x, y) and of the entries of the two payoff matrices ΠA and ΠB. This is an

autonomous system.

3.3 Angular representation of games1

In general two-strategy symmetric games of the form (Π,ΠT ), the matrix Π intro-

duces four degrees of freedom in the definition of the game: one per each element

πij. Nevertheless, Π admits an angular parametrization such that only one degree

1This section presents a detailed derivation of the transformation required to find the angular
parameter φ suggested in Szabó and Fáth, (2007).
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of freedom is relevant for equilibrium predictions. This reduces the complexity of

(3.2) and allows for a systematic analysis.

For any given Π, we can find a transformed matrix Π′ that is equivalent to Π in

the sense of the Nash equilibrium (NE) concept if Π = Π′ +C with

C = ⎛
⎝
c1 c2

c1 c2

⎞
⎠ . (3.4)

This addition of constants by columns preserves the original payoff comparison by

rows. Straightforwardly, Π is also Nash-equivalent to Π′ if we can write

Π = α(Π′ +C) (3.5)

with α positive and finite.2 The matrix C = C(c1, c2) captures two of the degrees

of freedom in Π, and the scalar α a third one. Then, Π′ is constrained to have

only one degree of freedom that we can denote by Π′ = Π′(φ).
Setting α, c1, and c2 such that π12 = αc2 and π21 = αc1, we obtain Π′ as a diagonal

matrix. Because C is defined by columns and α is positive, we have

π22 − π12

π11 − π21

= π′22
π′11

. (3.6)

This ratio between the diagonal elements of Π′ can be parametrized by φ ∈ [0,2π)
with tanφ = π′22/π′11. Thus, there exists a transformation such that

Π = ⎛
⎝
π11 π12

π21 π22

⎞
⎠ ∼NE Π′ = ⎛

⎝
cosφ 0

0 sinφ

⎞
⎠ (3.7)

for any given Π. The angle φ encodes all the relevant information for the equilib-

rium analysis of the two-player game defined in the original payoff matrix Π.

We have defined above φ, c1, and c2 as functions of the elements in the original

matrix Π. Solving explicitly for α in (3.5) with this information, we obtain the

2See Hofbauer and Sigmund, (1998, Section 11.2) for a general treatment of rescaled part-
nership games.
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Figure 3.1: Classification of 2 × 2 symmetric games as a function of φ.

new parametrization in terms of the initial payoff entries that takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ = arctan [(π22 − π12)/(π11 − π21)]
c1 = π21/α
c2 = π12/α
α2 = π11(π11 − 2π21) + π22(1 − 2π12) + π2

12 + π2
21.

(3.8)

Altogether, we obtain

⎛
⎝
π11 π12

π21 π22

⎞
⎠ = α

⎡⎢⎢⎢⎢⎣
⎛
⎝
cosφ 0

0 sinφ

⎞
⎠ + ⎛

⎝
c1 c2

c1 c2

⎞
⎠
⎤⎥⎥⎥⎥⎦
. (3.9)

It is well-known that 2 × 2 symmetric games can present at most three Nash

equilibria (NE): two in pure strategies and one in symmetric mixed strategies.

Figure 3.1 shows the classification of all possible 2×2 symmetric games depending

on the set of NE that they present, as a function of the angular parameter φ

(counterclockwise orientation). This taxonomy is concerned about the structure

of the set of NE in the static version of the games. Later on, we will focus on the

analysis of replicator dynamics to predict stability of the different configurations

under the implementation with coupled populations; therefore, we avoid here any

consideration about the strictness of the NE in the static context.
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Class I: φ ∈ (0, π/2)–symmetric coordination. This group presents two NE in pure

strategies where both players coordinate either in action s1 or in action s2, and

one symmetric NE in mixed strategies. In this case, both players randomize with

a probability xm = ym = 1/(1 + cotφ) of choosing s1, which is increasing in φ.3

When φ reaches the value of π/2, the mixed NE degenerates into the pure NE

where both players coordinate in s2. At this point, we find the transition to the

second class of games.

Class II: φ ∈ (π/2, π)–pure dominance (I). When φ crosses the boundary of π/2
coming from the previous class, the NE in which both players coordinate in action

s2 disappears and only coordination in action s1 remains as a NE of the game.

There is also no NE in mixed strategies. This class contains interactions in which

one strategy exhibits pure dominance, such as the prisoner’s dilemma. When φ = π

the structure of the games changes and we find the transition to the third class of

games.

Class III: φ ∈ (π,3π/2)–asymmetric coordination. When φ crosses the value of

π, the unique NE of the previous class vanishes and two new asymmetric NE in

pure strategies appear: players coordinate in opposite strategies. The previous

symmetric NE in pure strategies is now transformed into a symmetric mixed NE

that moves along the diagonal, once again with coordinates xm = ym = 1/(1+cotφ)
as in Class I. This class contains the hawk-dove game and related ones.

Class IV: φ ∈ (3π/2,2π)–pure dominance (II). When φ crosses 3π/2, the symmetric

mixed NE existing in the class of asymmetric coordination degenerates into a NE

in pure strategies with coordination in action s2. Class IV presents only this NE

in pure strategies and is therefore equivalent to Class II under the exchange of

labels s1 and s2.

This classification based on φ relates to the number of possible NE in the games

and their type: mixed or pure; and in the second case, it also distinguishes asym-

metric from symmetric cases. Cressman, (2003, Section 2.2) offers a similar taxon-

omy of games. More granularity can be obtained if one is concerned about other

3Computing the mixed NE in angular notation is almost trivial. Solving the mixing such
that both pure strategies confronting the mixed one give the same expected payoff, xm cosφ =
(1 − xm) sinφ; and solving for xm we get xm = 1/(1 + cotφ), with derivative ∂xm/∂φ = 1/(cosφ +
sinφ)2 > 0.
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Table 3.1: Baseline equilibria: static games and basic population structures

Game (Static) NE Replicator 1P Replicator 2P

Class I: φ ∈ (0, π2 ) {(0,0), (1,1), (xm, ym)} {p1, p2, p3, p4} {p1, p4}
Class II: φ ∈ (π2 , π) {(0,0)} {p1} {p1}
Class III: φ ∈ (π, 3π2 ) {(0,1), (1,0), (xm, ym)} {p9} {p2, p3}
Class IV: φ ∈ (3π2 ,2π) {(1,1)} {p4} {p4}
with xm = ym = 1/(1 + cotφ)

properties. The notion of Pareto efficiency is not invariant under the relation of

equivalence in the sense of the NE.4

Table 3.1 summarizes the angular classification of the different games that will

be considered for the within- and between-group interactions, together with three

baseline equilibrium predictions. First, we see the static Nash equilibria according

to the discussion in the section above. When turning to the dynamic setting with

standard replicator dynamics under one or two-population settings, we observe the

first differences in how the population structure determines the dynamic stability

of the different Nash equilibria.

For example, regarding Class I we see that under a one-population model, the

only restriction is that the populations must be playing a pure strategy because

every player within the group should make the same choice, and therefore any of

the four corners of the phase space is compatible. Because in the two-population

setting the logic is that both agents in the game (in this case players of opposing

populations) will be playing the same action, then only the corners (0,0) and

(1,1) are compatible. In plain words, we see that standard replicator dynamics

provides two main results for equilibrium selection in coordination games: first,

the mixed NE will never be selected either in one- or two-population settings; and

second, the one-population setting is less demanding in that only within-group

coordination is required (each group has to coordinate in one pure strategy, but

it can be any of the two), while the two-population setting is more demanding if

we interpret that these predictions require not only coordination within the group

such that all agents are playing the same, but also impose a layer of coordination

with the other group such that all players of the two groups are choosing the same.

4See Szabó and Fáth, (2007) also for a discussion about the complexity of classifying games
with more than two strategies or with asymmetries.
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Applied to Class III, we see that the story now is about specialization. The

one-population setting does not allow for such an effect and therefore we only

observe symmetric NE, but under a two-population setting, only the polarized

configurations will be selected. Predictions about the pure dominance classes II

and IV are independent of the population structure for obvious reasons. We now

turn to study how these baseline predictions get enriched with the introduction of

overlapping of the population structures.

3.4 Replicator dynamics

The fitness functions (3.3) have a linear dependency on the payoff structure of the

games. They depend on payoff comparisons in the form πg
1j −πg

2j with j = 1,2 and

g = A,B. Then, plugging the new parametrization of the payoff matrices (3.9)

in the definition (3.3), we see that all terms that contain the constants c1 and c2

cancel out. We obtain the fitness function for strategy s1 (in population X) as

ΔπX = αA[x cosφA − (1 − x) sinφA] + αB[y cosφB − (1 − y) sinφB]. (3.10)

The corresponding formula for population Y comes by symmetry under the ex-

change of labels x and y, like in (3.3). Now, we have the dynamics of the system

(3.2) depending on four parameters: two angular variables, φA and φB; and two

scaling factors, αA and αB. Moreover, we can introduce the coupling parameter κ

defined as

κ = αB

αA + αB

. (3.11)

The term (αA + αB) > 0 that would appear in the coupled system after rewrit-

ing (3.2) in terms of κ can be factored out with no concern. The equilibrium

predictions of replicator dynamics are equivalent up to multiplicative (positive)

constants. Then, the system (3.2) reduces to the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = x(1 − x)[(1 − κ)[x cosφA − (1 − x) sinφA] + κ[y cosφB − (1 − y) sinφB]]
ẏ = y(1 − y)[(1 − κ)[y cosφA − (1 − y) sinφA] + κ[x cosφB − (1 − x) sinφB]].

(3.12)

The triple (κ, φA, φB) defines the complete family of replicator dynamics for

2×2 symmetric games with coupled populations. The coupling parameter κ takes
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Table 3.2: Fixed points of replicator dynamics in (3.12)

Pure states Hybrid states Mixed states

p1 = (0,0) p5 = (0, [(1 − κ) sinφA + k sinφB]/Φh) p9 = (1/(1 +Φm),1/(1 +Φm))
p2 = (1,0) p6 = (1, [(1 − κ) sinφA − κ cosφB]/Φh])
p3 = (0,1) p7 = ([(1 − κ) sinφA + k sinφB]/Φh,0)
p4 = (1,1) p8 = ([(1 − κ) sinφA − κ cosφB]/Φh],1)
with Φh = (1 − κ)(cosφA + sinφA)

Φm = [(1 − κ) cosφA + κ cosφB]/[(1 − κ) sinφA + κ sinφB]

values in the interval [0,1] and measures the relative weight of the interaction

between populations in the fitness function. The last transformation of the system

of coupled differential equations with the introduction of (3.11) is not ill-defined

unless both games have zero scaling factors, αA+αB = 0, a case in which the whole

notion of payoff matrices as defined in (3.9) becomes meaningless. The angular

parameters φA and φB take values in the interval [0,2π) and specify the class

of each game class regarding static (Nash) equilibrium predictions (see Section

above).

Table 3.2 reports the coordinates of the nine possible fixed points as functions of

the three parameters (κ,φA, φB). In the Appendix A to this chapter, we solve

for the location of the fixed points of (3.12), and conduct the linear stability

analysis. In line with the analysis of the model in Chapter 1, there exist four

fixed points corresponding to situations of pure play (the corners of the phase

space), four hybrid states, and one symmetric mixed state. As one could expect

from a generalization of the previous model, we now obtain six critical values

of the coupling parameter κ that will play different roles in the existence and

stability of the different possible fixed points. These elements depend on the

angular parameters of the games, φA and φB, and will be relevant only if they

belong to the interval [0,1] by definition of the coupling parameter κ.

Table 3.3 shows the definition of the six critical values, {κn}6n=1. In particular, we

have a subset of these critical values {κn}4i=1 that determines the conditions under

which each of the possible fixed points exists (see Figure 3.6 in the Appendix

A). The four values κn (n ∈ {1,⋯,4}) can be written in the form 1/(1 + fn) with

these factors fn defined as (±1) a quotient of two trigonometric functions, sine or

cosine. Existence of each critical threshold (understood as κn belonging to the unit

interval) requires fn ≥ 0; and the sign of both sine and cosine functions is given by
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Table 3.3: Critical values of κ

κ1(φA, φB) = 1

1 + sinφB/ cosφA

κ4(φA, φB) = 1

1 − cosφB/ cosφA

κ2(φA, φB) = 1

1 − sinφB/ sinφA

κ5(φA, φB) = cosφA + sinφA

cosφA + cosφB + sinφA + sinφB

κ3(φA, φB) = 1

1 + cosφB/ sinφA

κ6(φA, φB) = cosφA + sinφA

cosφA − cosφB + sinφA − sinφB

the quadrant of the angle. Therefore, the existence of each of these four critical

values of the coupling parameter relates directly to the structure of four domains

in the classification of games by their angular parameter φ. These four critical

values, together with another two that are derived in the Appendix A as well, also

determine the conditions for stability of the different fixed points (conditional on

their existence, when required).

Regarding κ5 and κ6, their formulation is slightly more complex but still, one can

see that such critical values will belong to [0,1] only for certain combinations of

games (φA, φB). Explicitly, for the case of κ5, we find these regions in the space

of parameters to be K1(κ5) = {(φA, φB) ∈ [3π4 , 7π4 ]× [3π4 , 7π4 ]}, K2(κ5) = {(φA, φB) ∈
[0, 3π4 ] × [0, 3π4 ]}, K3(κ5) = {(φA, φB) ∈ [7π4 ,2π] × [0, 3π4 ]}, K4(κ5) = {(φA, φB) ∈
[0, 3π4 ] × [7π4 ,2π]}, and K5(κ5) = {(φA, φB) ∈ [7π4 ,2π] × [7π4 ,2π]}. An equivalent

analysis can be done for κ6.

Altogether, different subsets of the six critical values of κ will play a role in deter-

mining the equilibrium predictions for different combinations of games (φA, φB).
A graphical representation is the more suitable exposition.

Figure 3.2 takes the total two-dimensional space of parameters corresponding to

all different pairs of angular definitions of the games, [0,2π] × [0,2π], and shows

which critical values of κ can play a role under different combinations (φA, φB).
First, we can see a basic orthogonal grid corresponding to steps of π/2 in both an-

gles. These lines show the division of the different classes of games, {I, II, III, IV},
defined in Figure 3.1. Second, there is a finer set of boundaries that shows a

tessellation such that in each tile, the existing values of critical κ maintain a

particular order between them. These lines are analytically defined and there is

no need for numerical solutions. To give the simplest example, the horizontal
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Figure 3.2: Relations among critical values of κ.

line running at a vertical coordinate of φB = 3π/4 is given in implicit form as

{(φA, φB) ∶ κ5(φA, φB) = κ6(φA, φB)}, with κ5 and κ6 defined explicitly in Table

3.3. The rest of the lines are obtained by considering the different comparisons

between the set of critical couplings, and we find eighty tiles in total.

Note that the right panel of Figure 3.2 shows the structure corresponding to the

combinations (φA, φB) that belong to classes II and IV, or IV and II, equally.

These two regions are equivalent to each other; they correspond to the coupling of

games with pure dominance in opposing strategies, and one region can be obtained

from the other one by reversing the labels in the action set. Interestingly enough,

these combinations are the only ones where all six critical values of κ are present.

The overlapping of the simplest strategic interactions can actually show the richest

configurations for intermediate ranges of coupling.

The complexity introduced by this level of granularity in the space of parameters

can be reduced when we focus on the equilibrium predictions. For each of these

eighty tiles, we have found a sequence of critical levels of κ within the range [0,1]
(remember Figure 3.2). In line with the study of the bifurcation in the hawk-dove

game analyzed in Chapter 1, we can understand these sequences of critical values

as candidates for bifurcation diagrams where κ is the bifurcation parameter. For

the pairs of (φA, φB) within a particular tile, we study the effect of transiting from

the one-population (κ = 0) to the two-population matching (κ = 1) in the linear
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interpolation by increasing κ. In line with Section 1.3 of Chapter 1, we can find

some of the thresholds to have a minor impact in the dynamics of the system, such

as stability changes from source to saddle point with no major impact in terms

of equilibrium predictions; but we will also find other thresholds to have a major

impact shifting the stability conditions to qualitatively different configurations.

As an example of this, we focus now on the three lower tiles of the four that span

the rectangle corresponding to the interaction of classes φA ∈ III (within-group)

with φB ∈ II (between-groups) in Figure 3.2. These correspond to the sequences

0 < κ2 < κ6 < κ3 < 1, 0 < κ2 < κ3 < κ6 < 1, and 0 < κ3 < κ2 < κ5 < 1, respectively.

Regarding equilibrium predictions, only κ2 plays a role. As we will see illustrated

later (discussion of the next Section, and diagram for region Φ−III,II in Figure 3.4),

we have the same scenario in the three tiles. First (for low levels of κ), the systems

begins with the symmetric mixed equilibrium p9 being the only attractor of the

system. When κ increases, this p9 approaches the corner p1 with coordinates (0,0).
At the point where the level of coupling reaches κ2, this symmetric mixed point p9

abandons the unit square through the corner (0,0), and the fixed point p1 becomes

the attractor of the dynamical system for values of κ > κ2. Therefore, these three

tiles correspond to the same qualitative bifurcation diagram: the system predicts

always symmetric configurations, but stability shifts from an equilibrium in mixed

strategies to an equilibrium in pure strategy s2.

Going into more detail, at the same time as p9 crosses p1 (κ→ κ2), the two hybrid

points p5 and p7 do the same. Regarding, κ3, this is the level of coupling for which

the other two hybrid points p6 and p8 leave the unit square through the corners

p2 and p3, which then change their (un-)stability properties from source to saddle

point. The threshold κ6 (or κ5, depending on the case) is meaningless because it

affects the sign of the eigenvalues of the symmetric mixed or the hybrid equilibria

when they are already outside of the phase space (unit square).

We can conclude that the three tiles discussed in the paragraphs above actually

correspond to the same class of dynamic predictions. There are only two regimes of

equilibrium selection: symmetric mixed for κ < κ2, and symmetric pure for κ > κ2.

The three tiles do not show qualitative differences in their bifurcation diagrams.

Proceeding sequentially, we study the similarities between the predictions for the

different eighty tiles, and see how they can be regrouped into only twenty-one.
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Figure 3.3: Regions of (φA, φB) grouping different bifurcations.

Figure 3.3 shows the classification of the regions in the parameter space (φA, φB)
according to the regrouping of the tiles of Figure 3.2 as in the example discussed

above. This grouping of the three tiles used to introduce this classification is now

labeled as region Φ−III,II. The subindex III,II indicates that this region considers

the coupling between games of Class III for the within-population interaction with

games of Class II for the interaction between groups. The superindex (−) in this

case distinguishes this region from the neighboring Φ+III,II which also considers

games from the same classes, but restricted to a subset for which slightly different

dynamics are predicted. Table 3.4 and Figure 3.4 complement Figure 3.3 and give

a detailed explanation of all possible bifurcation scenarios that concern equilibrium

selection with coupled populations in symmetric 2 × 2 games.

Two more aspects in Figure 3.3 deserve explanation. First, the shadowed areas

select one of the (usually) two possible cases of each bifurcation scenario listed in

Table 3.4. The next figure 3.4 illustrates these cases in more detail. See also the

discussion below. Second, note that now, the detailed right panel of the figure

only applies to the area corresponding to the coupling of Class IV with Class II

while in Figure 3.2 the right panel was interchangeable for (IV, II) and (II, IV).
When we analyze not only the relation among the critical values of κ but their

equilibrium implications, we find that the bifurcations and dynamic predictions for

the region (II, IV) are center-symmetric with respect to those of (IV, II). This is
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not surprising, because Class IV and Class II are fully identical under the inversion

of labels of the action set.

Table 3.4 in the Appendix B of this chapter shows the grouping of regions. These

regions present qualitatively comparable dynamic predictions, except for some

subtleties. We report twenty-one scenarios, but in all of the cases (except in

scenario 1) we see that each scenario comprises two regions. As a first example,

let us focus on scenario 13 that contains regions Φ+III,III and Φ−III,III. This scenario

contains the hawk-dove model studied in Chapter 1. The experimental payoff

matrix (1.5) sets φA = φB = arctan2−π, a configuration that belongs to the region

Φ+III,III. The intermediate regime of equilibrium selection is such that p6 and p8 are

the possible attractors. If we considered the case of region Φ−III,III we would obtain

the intermediate regime to be with p5 and p7 as attractors.

Both regions present the same bifurcation diagram, up to the usual exchange of

labels in the action set. A similar logic applies for the rest of paired regions that

exhibit the same bifurcation scenarios. We illustrate a representative example of

each reagion with a bifurcation diagram showing the different regimes of equilib-

rium selection in Figure 3.4 and explain them briefly in Section 3.6 where we also

compare them with their respective counterparts with perturbed best response

dynamics.

The following Proposition 3.1 summarizes the results obtained for the general

model of replicator dynamics with coupled populations (3.2). Its structure is

similar to the one in Chapter 1 but with a slightly more complex formulation

because Proposition 1.1 is only a particularly simple subcase of the more general

Proposition 3.1.

Proposition 3.1. Given the coupled system of replicator dynamics in (3.12) and

for every pair of games (φA, φB) ∈ [0,2π)×[0,2π), there exist two critical values of

the coupling parameter κ∗1P ≤ κ∗2P that belong to the interval (0,1), and such that:

(a) if κ < κ∗1P, the equilibrium will be as in the one-population model with the

game determined by φA,

(b) if κ > κ∗2P, the equilibrium will be as in the two-population model with the

game determined by φB,

(c) if κ ∈ (κ∗1P, κ∗2P), the equilibrium will be qualitatively different from the stan-

dard one- and two-population models.
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Table 3.4 (in the Appendix B to this chapter) gives the cutoff points κ∗1P and κ∗1P

for different combinations of (φA, φB) in terms of the critical values of κ defined

in Table 3.3. There are twenty-one different scenarios (in Table 3.3) that can be

classified according to the complexity of their intermediate regime:

1. No intermediate regime (4 scenarios):5 1, 5, 6, and 11.

2. Simple intermediate regime (10):6 2, 3, 4, 7, 8, 10, 12, 13, 17, and 18.

3. Intermediate regime containing two subregimes (2): 9, and 19.

4. Intermediate regime containing three subregimes (4): 14, 15, 16, and 21.

5. Intermediate regime containing four subregimes: 20.

5Cases where case (c) above is void
6Cases comparable to the study in Chapter 1
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Figure 3.4: Bifurcations predicted by replicator dynamics.
(Numerical values of the different angles in Table 3.5, Appendix B.)
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3.5 PBR dynamics

We follow the definition of the model for PBR dynamics employed in Chapter 2

and apply it to the general case of coupled populations that we have explained in

the Section above. Therefore, we consider a system of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = pX(s1; x, y) − x

ẏ = pY (s1; x, y) − y,
(3.13)

where pX is given by

pX(s1; x, y) = 1

1 + e−λΔπX(x,y)
, (3.14)

and pY is defined analogous (given the symmetry of the system). The term

ΔπX(x, y) is the fitness function as already defined in Chapters 1 and 2, ΔπX(x, y) =
πX(s1; x, y) − πX(s2; x, y), with

πX(si; x, y) = (1 − κ)[πi1x + πi2(1 − x)] + κ[πi1y + πi2(1 − y)]. (3.15)

This is slightly different from (3.10) because the predictions with PBR dynamics

are not fully invariant under the transformation defined in (3.9), as opposed to

replicator dynamics. As usual, λ can be interpreted dually as a rationality expo-

nent or also as the inverse of the noise in the system. When λ = 0, the selection

of actions by the players is independent of the payoff structure of the game and

the systems evolve toward an equal share of strategies. When λ →∞, the system

approaches replicator dynamics.

Due to the presence of the exponential function combined with the linear term,

there is no closed form solution to (3.13). We briefly explore the general PBR

system numerically. This provides some behavioral insights to complement the

replicator predictions. Figure 3.5 mirrors the structure of one example per region

as in Figure 3.4 to allow for comparison (solutions are plotted with λ = 2).
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Figure 3.5: Solutions with PBR dynamics.
(Entries of the different payoff matrices in Table 3.6, Appendix B.)
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3.6 Scenarios of equilibrium predictions

The purpose of analyzing the general models of replicator and PBR dynamics with

coupled populations for any possible pair of games ΠA and ΠB is to establish a set

of evolutionary predictions regarding the equilibrium selection for this family of

interactions. Table 3.4 and Figures 3.4 and 3.5 summarize the analysis performed

in this chapter. Before concluding, we describe here the different scenarios that

have been computed with replicator dynamics and comment on the behavioral

variations that we can expect from the insights brought about by the PBR model.

Scenario 1 is the only simple case containing a unique region (ΦI,I) corresponding

to the coupling of two coordination games. There are two regimes of equilibrium

selection with κ1 as the critical value. For lower values κ < κ1, the four corners

{pi}4i=1 are attractors of the system. This is the one-population prediction where

each of the two populations can coordinate in their own strategy, but the strategies

of the two populations are independent of each other. For higher values κ > κ1, only

the two symmetric corners p1 and p4 are attractors. This is the two-population

prediction where the two populations coordinate in the same strategy. In this case,

the effect of a sufficient coupling is to impose full symmetry in the system: players

will align their choices at two levels: with their own group and with the other one.

Scenario 2: Region Φ+I,II (and Φ−I,IV) corresponding to the coupling of a coordination

game within the groups and a pure dominance game between the groups. There

are three regimes of equilibrium selection with κ4 and κ1 (or κ2 and κ3) as critical

values. For lower values κ < κ4 (or κ < κ2), the four corners {pi}4i=1 are attractors

of the system, as above. For higher values κ > κ1 (or κ > κ3), only the symmetric

corner p1 (or p4) is attractor. This is the two-population prediction where the two

groups coordinate in the dominant strategy. For the intermediate range κ4 < κ < κ1

(or κ2 < κ < κ3), three points are attractors: the two polarized ones and the one

corresponding to coordination in the dominant strategy. In this case, the effect

of the introduction of coupling is first to eliminate the attractor in which both

populations would coordinate in the dominated strategy and then to eliminate the

polarized cases.

Scenario 3: Region Φ−I,II (and Φ+I,IV) corresponding as well to the coupling of a

coordination game within the groups and a pure dominance game between the

groups. There are three regimes of equilibrium selection with κ1 and κ4 (or κ3
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and κ2) as critical values. For lower values κ < κ1 (or κ < κ3), the four corners

{pi}4i=1 are attractors of the system, as above. For higher values κ > κ4 (or κ > κ2),

only the symmetric corner p1 (or p4) is attractor, for the same reason as above.

For the intermediate range κ1 < κ < κ4 (or κ3 < κ < κ2), two points are attractors:

the two symmetric ones. Therefore, in this case (and a difference with respect

to the case above) the effect of increasing the coupling is first to eliminate the

polarized configuration and then to eliminate the symmetric configuration that is

not compatible with the game between populations.

Scenario 4: Region Φ+I,III (and Φ−I,III) corresponding to the coupling of a coordina-

tion game within the groups and an asymmetric coordination game between the

groups. There are three regimes of equilibrium selection with κ2 and κ4 (or κ4

and κ2) as critical values. For lower values κ < κ2 (or κ < κ4), the four corners

{pi}4i=1 are attractors of the system, as above. For higher values κ > κ4 (or κ > κ2),

only the asymmetric corners p2 and p3 are attractors. For the intermediate range

κ2 < κ < κ4 (or κ4 < κ < κ2), three points are attractors: the two asymmetric ones

and a symmetric one, p4 (or p2). In this case, the effect of increasing the coupling

is to eliminate the symmetric configurations in a sequential manner, until the only

remaining attractors are compatible with the asymmetry induced by the coupling

between groups.

In these four scenarios containing the coordination games as the interaction within

the groups, the introduction of noise with the PBR model shifts down the critical

values of κ defining the different regimes. Thus, the presence of noise makes

the one-population prediction of replicator dynamics when the home game is a

coordination game less robust against perturbations from coupling with the other

group.

Scenario 5: Region ΦII,I (and ΦIV,I) corresponding to the coupling of a pure domi-

nance game within the groups and a coordination game between the groups. There

are two regimes of equilibrium selection with κ4 (or κ2) as critical values. For lower

values κ < κ4 (or κ < κ2), the only attractor is the symmetric corner p1 (or p4)

as one could expect from the one-population model. For higher values κ > κ4

(or κ > κ2), there exist the two symmetric attractors p1 and p4. In this case,

the effect of increasing the coupling is first to introduce the remaining symmetric

configuration in a sequential manner.
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Scenario 6: Region ΦII,II (and ΦIV,IV) corresponding to the coupling of two pure

dominance games within the groups and between the groups, with the same action

being the dominant one in both interactions. There is a unique regime (0 < κ < 1)

such that the corner with symmetric configuration in the dominant action is the

only attractor (p1 or p4, respectively).

Scenario 7: Region Φ−II,III (and Φ+IV,III) corresponding to the coupling of a pure

dominance game within the groups and an asymmetric coordination game between

the two populations. There are three regimes of equilibrium selection with κ1 and

κ2 (or κ3 and κ4) as critical values. For lower values κ < κ1 (or κ < κ3), the

only attractor is the symmetric corner p1 (or p4) as one could expect from the

one-population model. For higher values κ > κ2 (or κ > κ4), there exist the two

asymmetric attractors p2 and p3 corresponding to the two-population case. In

the intermediate regime κ1 < κ < κ2 (or κ3 < κ < κ4), the three attractors (either

p1, p2, p3 or p2, p3, p4) coexist.

Scenario 8: Region Φ0
II,III (and Φ0

IV,III) corresponding to the coupling of a pure

dominance game within the groups and an asymmetric coordination game between

the two populations. There are three regimes of equilibrium selection with κ2 and

κ1 (or κ4 and κ3) as critical values. For the lower and higher values of κ the logic

is as described above, and the difference with respect to scenario 7 is that now the

intermediate regime has the hybrid points p5 and p7 (or p6 and p8) as attractors.

In this case, the transition from symmetric pure play to asymmetric pure play is

through these points in which one group moves from one strategy to the other one

in a continuous manner.

Scenario 9: Region Φ+II,III (and Φ−IV,III) corresponding to the coupling of a pure

dominance game within the groups and an asymmetric coordination game between

the two populations. There are four regimes of equilibrium selection, as a minor

difference with respect to the previous scenario. The sequence of critical values of

κ is κ2, κ5, κ1 (or κ4, κ5, κ3). The first, third, and fourth regime occur as above,

and the novelty is the presence of a second regime for κ2 < κ < κ5 (or κ4 < κ < κ5)

in which the attractor is the symmetric mixed point.

In all these cases containig the pure dominance game as the within-group game,

the PBR model considering the presence of behavioral noise extends the domain

of κ for which the one-population prediction holds qualitatively, usually reducing
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the scope of the two-population predictions. In the subcases where the system

evolves toward separation for high values of coupling, the transition occurs in a

smooth way, analogous to the analysis performed in Chapter 2. In general, PBR

also smoothens the transition from symmetric pure play to symmetric mixed play,

as we can see in the PBR diagrams for scenario 9.

Scenario 10: Region Φ+III,I (and Φ−III,I) corresponding to the coupling of an asym-

metric coordination game as the within-group interaction and a symmetric coordi-

nation game between the groups. There are three regimes of equilibrium selection

with κ2 and κ4 (or κ4 and κ2) as critical values. For the lower values κ < κ2 (or

κ < κ4), the symmetric mixed point is the only attractor of the system. This point

moves toward the symmetric pure point p1 (or p4) that is the only attractor in

the intermediate regime κ2 < κ < κ4 (or κ4 < κ < κ2). For high values κ > κ4 (or

κ > κ2), a second attractor is present: the remaining symmetric pure configuration

p4 (or p1).

The effect of the introduction of noise in this scenario with PBR dynamics is to

smoothen the S -shape of the transition from the mixed to the pure solution, and

to decrease the scope of the two-population prediction with the two symmetric

solutions.

Scenario 11: Region Φ−III,II (and Φ+III,IV) corresponding to the coupling of an asym-

metric coordination game as the within-group interaction and a pure dominance

game between the groups. There are two regimes of equilibrium selection in this

case, with κ2 (or κ4) as the only critical value of coupling. We observe a direct

transition from the one-population to the two-population prediction through the

movement of the symmetric mixed equilibrium toward the corresponding corner

of the symmetric pure configuration p1 (or p4).

In line with the case above, the effect of the behavioral noise is to smoothen the

S -shape of the transition.

Scenario 12: Region Φ+III,II (and Φ−III,IV) is quite similar to scenario 11 but now,

there are three regimes of equilibrium selection with critical values κ5 and κ2 (or κ5

and κ4). The intermediate regime that we can find in this case introduces a minor

and subtle difference with respect to scenario 11: the transition occurs through

the hybrid configuration, such that one group moves to the pure play earlier (for

lower values of coupling) than the other one.
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This “bubble” vanishes with the introduction of regular levels of behavioral noise

in the PBR model.

Scenario 13: Region Φ−III,III (and Φ+III,III) corresponding to the coupling of two

(generally different) asymmetric coordination games as both the within- and the

between-group interaction. There are two critical values of κ which are κ5 and κ1

(or κ5 and κ3), and the structure of the regimes for equilibrium selection is quite

similar to the one described in scenario 12, except that now, the two-population

prediction is a polarized asymmetric attractor.

The effect of introducing noise with the PBR model is that the symmetric mixed

equilibrium extends for longer overlap, decreasing the scope of the two-population

prediction, and of course, the transition predicted via the hybrid points is smoother

and without kinks.

As stated in Table 3.4, Scenarios 14-21 correspond to the coupling of two games of

pure dominance in opposed strategies and show very intricate sequences of possible

attractors (Figure 3.4, columns 4-5); however, we can describe them intuitively by

regrouping them according to the refinement in the predictions given by PBR

dynamics in Figure 3.5 (columns 4-5 as well).

The four scenarios of column 4 (Figure 3.4) show cases where there is a transition

from the one-population to the two-population prediction via an overlapping of all

possible corners where pure strategies are played. The different scenarios differ in

the way in which different attractors overlap. Column 5 shows the cases where the

transition regime occurs along a situation (or possibly several) of unique predic-

tions, ranging from a simple transition following the moving symmetric attractor,

or through the polarized and hybrid cases. PBR allows us to classify the expected

behavior into two broad groups: (a) almost trivial situations where we observe an

S -curve such that the transition from one pure play to the opposite one is smooth

and the symmetry of the system is never broken (although scenario 16 is more

complex because the system shows hysteresis); (b) a variation of case (a) such

that a “bubble” can appear depending on the level of noise which is reminiscent of

the presence of polarized and hybrid attractors in replicator dynamics. Scenario

15 contains both types of predictions.
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3.7 Conclusion

This chapter presented a thorough and systematic generalization of the ideas in-

troduced theoretically and experimentally in Chapter 1 and further analyzed in

Chapter 2. The initial model (Benndorf et al., 2016) considered only an interpo-

lation between the one-population and the two-population matching protocols of

the same game of the hawk-dove type. Here, we considered the coupled model in

general terms, allowing for any pair of possibly different games. The analysis was

simplified by introducing a minimal set of parameters that represent all relevant

degrees of freedom of the dynamical system, given the best-response paradigm. We

also showed that the parameter κ defining the linear interpolation between the two

matching protocols can be defined naturally in terms of the scaling parameters of

the games in angular notation.

Moreover, the parametrization that we employ allowed us to systematically clas-

sify all possible evolutionary scenarios that can occur under replicator dynamics

when any pair of symmetric 2 × 2 games overlap. There exist twenty-one differ-

ent analytical scenarios for replicator dynamics, and these can be reduced to four

families of behavioral patterns according to perturbed best response dynamics.

The first group contains those situations where a coordination game plays the

role of the within-group interaction. In these cases, obtain different sequences

of equilibria in pure strategies. The second family groups situations where we

expect S -shaped patterns (sometimes starting directly in a mixed situation and

not only in pure strategies) such that the system changes the mixing of strategies

depending on the coupling, but the symmetry is never broken. We can define the

third group as those bifurcations exhibiting a “fork” shape such that the system

presents symmetric states in the vicinity of the one-population model, and transit

to polarized states in close to the two-population matching protocol. The fourth

group shows the S -pattern characteristic from the second family, together with an

intermediate regime with the shape of a “bubble” such that there exist moderate

levels of coupling for which the groups polarize in their behavior, even though the

system exhibits symmetry in the neighborhood of the one- and two-population

cases. These results pave the ground for a further experimental agenda.
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Appendix A - Linear stability analysis

Coordinates of the fixed points

From the replicator dynamics (3.12) we obtain the zero-growth lines:

ẋ = 0→
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = 0

x = 1

x = (1 − κ) sinφA − κy cosφB + κ(1 − y) sinφB(1 − κ)(cosφA + sinφA)

ẏ = 0→
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y = 0

y = 1

y = (1 − κ) sinφA − κx cosφB + κ(1 − x) sinφB(1 − κ)(cosφA + sinφA) .

(3.16)

Intersections of two nullclines (one of zero horizontal velocity and one of zero

vertical velocity) determine the location of the possible fixed points. The first four

points are trivial to obtain and correspond to the corners of the phase space. These

points represent possible equilibria in which both populations play pure strategies:

p1 = (0,0), p2 = (1,0), p3 = (0,1), p4 = (1,1). (3.17)

Other four possible fixed points move along the four edges of the phase space and

describe hybrid states (one population plays a pure strategy and the other mixes):

p5 = (0, [(1 − κ) sinφA + κ sinφB]/Φh) , p6 = (1, [(1 − κ) sinφA − κ cosφB]/Φh) ,
p7 = ([(1 − κ) sinφA + κ sinφB]/Φh, 0) , p8 = ([(1 − κ) sinφA − κ cosφB]/Φh, 1) ,

(3.18)

with Φh = (1 − κ)(cosφA + sinφA). The final possible fixed point is the interior

solution in which both populations play symmetric mixed strategies:

p9 = ( 1

1 +Φm

,
1

1 +Φm

) with Φm = (1 − κ) cosφA + κ cosφB(1 − κ) sinφA + κ sinφB

. (3.19)

Points 1 to 4 always belong to the square of unit side, by definition. The four

hybrid cases 5 to 8 can be grouped by pairs depending on their common existence

conditions. Points p5 and p7 exist if and only if

0 ≤ 1

Φh

[(1 − κ) sinφA + κ sinφB] ≤ 1. (3.20)
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Figure 3.6: Conditions on κ for the existence of the hybrid and mixed states
for all possible combinations of games. The four smaller regions: (1) 0 < κ <
κ2 ∪ κ4 < κ < 1, (2) 0 < κ < κ4 ∪ κ2 < κ < 1, (3) κ4 < κ < κ2, and (4) κ2 < κ < κ4.

The values of κ for which the two inequalities in (3.20) become equalities (inde-

pendently) give two critical values of the coupling parameter,

κ1(φA, φB) = 1

1 + sinφB/ cosφA

and κ2(φA, φB) = 1

1 − sinφB/ sinφA

. (3.21)

Points p6 and p8 exist if and only if

0 ≤ 1

Φh

[(1 − κ) sinφA + κ sinφB] ≤ 1, (3.22)

and in this case we obtain

κ3(φA, φB) = 1

1 + cosφB/ sinφA

and κ4(φA, φB) = 1

1 − cosφB/ cosφA

. (3.23)

Point p9 belongs to [0,1] × [0,1] if and only if Φm ≥ 0. Because Φm is a fraction,

this condition is satisfied only when numerator and denominator have the same

sign. One can check that the critical values of κ for which the numerator and the

denominator equal to zero are κ4 and κ2, respectively.

Given these boundaries that we have computed, {κn}4n=1, we show in Figure 3.6

the conditions for existence of the points with moving coordinates in the different

regions of the space of parameters.
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Eigenvalues of the fixed points

Stability of the fixed points comes determined by the sign of the eigenvalues of

the Jacobian matrix, J , evaluated at each point’s coordinates. We look for the

conditions under which both eigenvalues of J (evaluated at the point’s coordinates)

are negative (Hofbauer and Sigmund, 2003); and these eigenvalues, ν1 and ν2, are

the two roots of the characteristic polynomial det [νI2 − J]. The Jacobian matrix

has its elements Jmn = ∂ṁ/∂n given by

Jxx = (2 − 3x)x(1 − κ) cosφA − (1 − 3x)(1 − x)(1 − κ) sinφA

+(1 − 2x)κ[y cosφB − (1 − y) sinφB],
Jxy = (1 − x)xκ(cosφB + sinφB);

(3.24)

with Jyx and Jyy given by symmetry under the exchange of variables x and y.

Solving for ν1(pi) and ν2(pi) where pi = (xi, yi), and i = 1, . . . ,9 covers the set of

fixed points, we obtain the corresponding eigenvalues according to

ν1(p1) = ν2(p1) = −(1 − κ) sinφA − κ sinφB,

ν1(p2) = ν1(p3) = −(1 − κ) sinφA + κ cosφB,

ν2(p2) = ν2(p3) = −(1 − κ) cosφA + κ sinφB,

ν1(p4) = ν2(p4) = −(1 − κ) cosφA − κ cosφB,

ν1(p5) = ν1(p7) = [(cosφA − κ cosφA − κ sinφB)−1 + (sinφA − κ sinφA + κ sinφB)−1]−1,
ν2(p5) = ν2(p7) = [κ(cosφB + sinφB) − (1 − κ)(cosφA + sinφA)]

×[(1 − κ) sinφA + κ sinφB][(1 − κ)(cosφA + sinφA)]−1,
ν1(p6) = ν1(p8) = [(1 − κ) cosφA + κ cosφB][(1 − κ) sinφA − κ cosφB]

×[(1 − κ)(cosφA + sinφA)]−1,
ν2(p6) = ν2(p8) = [κ(cosφB + sinφB) − (1 − κ)(cosφA + sinφA)]

×[(1 − κ) cosφA + κ cosφB][(1 − κ)(cosφA + sinφA)]−1,
ν1(p9) = [(1 − κ) cosφA + κ cosφB][(1 − κ)(cosφA + sinφA) − κ(cosφB + sinφB)]

×[(1 − κ) sinφA + κ sinφB][(1 − κ)(cosφA + sinφA) + κ(cosφB + sinφB)]−2,
ν2(p9) = [(cosφA − κ cosφA + κ cosφB)−1 + (sinφA − κ sinφA + κ sinφB)−1]−1.

(3.25)

Note that in order to determine the range of parameters for which a fixed point

pi is an attractor of the dynamical system, and therefore likely to be selected as
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an equilibrium during the play, we need to compute the range of κ (for the dif-

ferent combinations of games φA and φB) in which the two eigenvalues ν1(pi) and
ν2(pi) are negative, conditional on the existence of the point (moving coordinates

belonging to the unit square). Carrying this task systematically is not particu-

larly difficult and all elements of the solution are defined analytically; however, its

exposition is very complex due to the large amount of different cases to be consid-

ered. Rather than this, we turn to a more comprehensive and visual explanation

of these results in the main text of the chapter.

Stability of the corner points {pi}4i=1 can be explained in terms of the four critical

values of kappa, {κn}4n=1, obtained in (3.21) and (3.23), in a simple manner. Taking

p1 as an example, one can compute directly that this point will be an attractor in

the regions R1(p1) = {(κ,φA, φB) ∈ [0,1] × [0, π] × [0, π]}, R2(p1) = {(κ,φA, φB) ∈
[0, κ2(φA, φB)]× [0, π]× [π,2π]}, R3(p1) = {(κ,φA, φB) ∈ [k2(φA, φB),1]× [π,2π]×
[0, π]}, and that it is never stable in the region with (φA, φB) ∈ [π,2π] × [π,2π].
Comparable partitions of the space of parameters can be computed for the other

three points in a similar way.

Regarding the moving points (hybrid and mixed states), we enter into a richer

situation where we have the existence condition given again by the four critical

levels of κ that we already know, plus two additional values. The first new value,

κ5(φA, φB) = cosφA + sinφA

cosφA + cosφB + sinφA + sinφB

, (3.26)

can be obtained from analyzing the sign of any of the two eigenvalues of the points

{pi}8i=5, or from ν1(p9). From the study of the sign of ν2(p9) we obtain

κ6(φA, φB) = cosφA + sinφA

cosφA − cosφB + sinφA − sinφB

. (3.27)

This last critical value is usually less binding than κ5 and plays a minor role in the

analysis. As an illustration, the expression for ν2(p9) with φA = φB = arctan2 − π

(the angular parameters for the hawk-dove matrices (1.5) employed in Chapter

1) yields the negative and constant eigenvalue of ν2(p9) = −2/(3√5). Multiplying

by the corresponding scaling factor αA = αB = 3
√
5, we recover the value of −2

observed in the inset of Figure 1.2. See the main text in Section 3.4 for the final

analysis of possible scenarios of the phase portrait.
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Appendix B - Additional tables

Table 3.4: Bifurcation scenarios

Scenario ΠA ΠB Region Sequence of attractors

(1) I I ΦI,I {pi}4i=1 κ1/→ p1, p4

(2) I
II Φ+I,II {pi}4i=1 κ4/→ p1, p2, p3

κ1/→ p1

IV Φ−I,IV {pi}4i=1 κ2/→ p2, p3, p4
κ3/→ p4

(3) I
II Φ−I,II {pi}4i=1 κ1/→ p1, p4

κ4/→ p1

IV Φ+I,IV {pi}4i=1 κ3/→ p1, p4
κ2/→ p4

(4) I III
Φ+I,III {pi}4i=1 κ2/→ p2, p3, p4

κ4/→ p2, p3

Φ−I,III {pi}4i=1 κ4/→ p1, p2, p3
κ2/→ p2, p3

(5)
II

I
ΦII,I p1

κ4/→ p1, p4
IV ΦIV,I p4

κ2/→ p1, p4

(6)
II II ΦII,II p1
IV IV ΦIV,IV p4

(7)
II

III
Φ−II,III p1

κ1/→ p1, p2, p3
κ2/→ p2, p3

IV Φ+IV,III p4
κ3/→ p2, p3, p4

κ4/→ p2, p3

(8)
II

III
Φ0

II,III p1
κ2/→ p5, p7

κ1/→ p2, p3

IV Φ0
IV,III p4

κ4/→ p6, p8
κ3/→ p2, p3

(9)
II

III
Φ+II,III p1

κ2/→ p9
κ5/→ p5, p7

κ1/→ p2, p3

IV Φ−IV,III p4
κ4/→ p9

κ5/→ p6, p8
κ3/→ p2, p3

(10) III I
Φ+III,I p9

κ2/→ p1
κ4/→ p1, p4

Φ−III,I p9
κ4/→ p4

κ2/→ p1, p4

(11) III
II Φ−III,II p9

κ2/→ p1

IV Φ+III,IV p9
κ4/→ p4

(12) III
II Φ+III,II p9

κ5/→ p5, p7
κ2/→ p1

IV Φ−III,IV p9
κ5/→ p6, p8

κ4/→ p4

(13) III III
Φ−III,III p9

κ5/→ p5, p7
κ1/→ p2, p3

Φ+III,III p9
κ5/→ p6, p8

κ3/→ p2, p3

(14)
VI II Φ1

IV,II p4
κ3/→ p2, p3, p4

κ4/→ p2, p3
κ2/→ p1, p2, p3

κ1/→ p1

II IV Φ1
II,IV p1

κ1/→ p1, p2, p3
κ2/→ p2, p3

κ4/→ p2, p3, p4
κ3/→ p4

(15)
VI II Φ2

IV,II p4
κ3/→ p2, p3, p4

κ2/→ {pi}4i=1 κ4/→ p1, p2, p3
κ1/→ p1

II IV Φ2
II,IV p1

κ1/→ p1, p2, p3
κ4/→ {pi}4i=1 κ2/→ p2, p3, p4

κ3/→ p4

(16)
VI II Φ3

IV,II p4
κ2/→ p1, p4

κ3/→ {pi}4i=1 κ1/→ p1, p4
κ4/→ p1

II IV Φ3
II,IV p1

κ4/→ p1, p4
κ1/→ {pi}4i=1 κ3/→ p1, p4

κ2/→ p4

(17)
VI II Φ4

IV,II p4
κ2/→ p1, p4

κ4/→ p1

II IV Φ4
II,IV p1

κ4/→ p1, p4
κ2/→ p4

(18)
VI II Φ5

IV,II p4
κ4/→ p9

κ2/→ p1

II IV Φ5
II,IV p1

κ2/→ p9
κ4/→ p4

(19)
VI II Φ6

IV,II p4
κ4/→ p9

κ5/→ p5, p7
κ2/→ p1

II IV Φ6
II,IV p1

κ2/→ p9
κ5/→ p6, p8

κ4/→ p4

(20)
VI II Φ7

IV,II p4
κ4/→ p9

κ5/→ p6, p8
κ3/→ p2, p3

κ1/→ p5, p7
κ2/→ p1

II IV Φ7
II,IV p1

κ2/→ p9
κ5/→ p5, p7

κ1/→ p2, p3
κ3/→ p6, p8

κ4/→ p4

(21)
VI II Φ8

IV,II p4
κ4/→ p6, p8

κ3/→ p2, p3
κ1/→ p5, p7

κ2/→ p1

II IV Φ8
II,IV p1

κ2/→ p5, p7
κ1/→ p2, p3

κ3/→ p6, p8
κ4/→ p4
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Table 3.5: Angular values used in Figure 3.4.

Class I: φ ∈ (0, π2 ) Class II: φ ∈ (π2 , π) Class III: φ ∈ (π, 3π2 ) Class IV: φ ∈ (3π2 ,2π)
φ1 = 0.414139 φ3 = 1.895701 φ9 = 3.364624 φ14 = 4.913706

φ2 = 1.147486 φ4 = 2.074962 φ10 = 3.785094 φ15 = 5.005756

φ5 = 2.498092 φ11 = 4.154848 φ16 = 5.167108

φ6 = 2.628658 φ12 = 4.199454 φ17 = 5.269930

φ7 = 2.848226 φ13 = 4.511072 φ18 = 5.779019

φ8 = 2.940276 φ19 = 5.989818

Table 3.6: Payoff matrices used in Figure 3.5.

Class I: φ ∈ (0, π2 ) Class II: φ ∈ (π2 , π) Class III: φ ∈ (π, 3π2 ) Class IV: φ ∈ (3π2 ,2π)
Π1 = (20.3 5.1

11.2 9.1
) Π3 = (17.9 0

21.1 9.5
) Π9 = ( 2.2 21.7

11.9 19.5
) Π14 = (6.9 19.6

4.9 9.8
)

Π2 = (20.4 5.1
16.2 14.2

) Π4 = (14.6 0
19.4 8.8

) Π10 = (0 20
8 14

) Π15 = (7.7 19.2
4.8 9.6

)
Π5 = (12 0

20 6
) Π11 = (2.1 21.2

7.4 12.7
) Π16 = (9.4 19.9

5 10.9
)

Π6 = (10.7 0
19.4 4.9

) Π12 = ( 0 19.4
4.9 10.7

) Π17 = (10.6 21.2
5.3 12.7

)
Π7 = ( 9.6 0

19.2 2.9
) Π13 = (2.9 19.6

4.9 9.8
) Π18 = (8.8 19.4

0 13.6
)

Π8 = ( 9.8 0
19.6 2

) Π19 = (9.6 19.2
0 16.3

)



Conclusion

This thesis analyzes several aspects of evolutionary dynamics when the assumption

of disjoint populations is relaxed. It makes two relevant contributions to the related

literature: a conceptual one by making an exhaustive analysis of the model with

coupled populations, and a methodological one by conducting an experiment in

continuous time tailored to such a specific setup. The main conclusion is that one-

and two-population models are robust with respect to moderate overlapping; but

very rich structures can be observed in the transition regime between both cases

which cannot be explained by any of the two models independently.

Chapter 1 introduced the fundamental idea with a model of coupled populations

where both the intra- and the intergroup interactions were the same hawk-dove

game. Human behavior in the lab is in good agreement with the hypotheses stated

by replicator dynamics.

The next two chapters extended this study in two complementary directions.

Chapter 2 dealt with the subtleties observed in the experimental data set, thus

refining and complementing the analysis in Chapter 1. We considered deviations

from the best response paradigm with the introduction of noise to explain the

behavioral patterns.

Chapter 3 generalized the original model in order to allow for the intra- and inter-

group interactions to be any pair of symmetric two-strategy games defined with

2 × 2 payoff matrices. With the introduction of an angular parametrization, the

general model can be defined in terms of only three parameters: one characteristic

of each game, and the coupling parameter; this simplifies the systematic analysis.

There exist a maximum of twenty-one bifurcations that can be observed with repli-

cator dynamics and these are expected to reduce to the order of four behavioral

families with the introduction of noise in the best-response function.
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Experimental instructions

Welcome to this experiment on economic decision making!

Please read these instructions carefully. The experiment is conducted anony-

mously. This means you will not get to know which of the other participants

are interacting with you or which participant is acting in which role. Please note

that you must not talk to other participants once the experiment has started. Also

note that the use of mobile phones or similar devices is prohibited for the dura-

tion of the experiment. If you have any questions after reading these instructions,

please raise your hand and we will come to your cubicle to answer your questions

personally.

There are several peculiarities about this experiment:

• The experiment consists of six parts, but only one randomly selected part

will be paid.

• You will play in multiple groups at the same time.

• The experiment is conducted in continuous time.

The different parts of the experiment

As mentioned above, there are six parts. At the end of the experiment, a random

draw of the computer will determine which part is going to be paid. Please try to

play each part as if it was the only one.

You will play in multiple groups at the same time

At the beginning of each part, the participants will be sorted into two groups.
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This sorting is random and will take place anew at the beginning of each part.

Thus, the composition of the groups will change in each part. That means that

participants who were in your group in one part may be in the other group in the

next part, and vice versa.

One of the two groups will consist of you and 11 other participants. This group

is referred to as “your group” or “own group.” The second group consists of 12

other participants and is referred to as the “other group.”

You will always interact with both groups at the same time. The details on this

interaction are discussed in a later section of these instructions. For now, just note

that you (and all other participants) always need to choose between the options

“A” and “B” and that your choice affects the interaction with both groups.

The experiment is conducted in continuous time

Each part lasts 210 seconds. At the beginning of a part, the computer will ran-

domly select one of the options “A” or “B” for you to start with. After that, you

can change your decision at any point in time and as often as you want. Below,

you can see a screenshot of the experimental software. The left part of the screen

informs you of the game that is played in the current part. This is also where you

make your decision.
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How do I make or change my decision?

The radio buttons on the far left of the screen determine your current choice. To

change your decision, you can use the mouse to click on the corresponding radio

button or you may also use the up and down keys on the keyboard to change your

decision. The up key will select option “A” and the down key will select option

“B.” As previously mentioned, you can change your decision at any point in time

during the entire part.

How can I see what the others are doing or what I did at an earlier

point in time?

The decisions of participants are recorded and displayed in the upper-right area

of the screen. The black line documents your own decisions over time. It depicts

whether you chose “A” or “B” at a given point in time. The blue and the green line

in the upper chart document the decisions of the participants in your own group

and in the other group, respectively. Either line displays the share of participants

who choose “A” in the corresponding group.

How do I see how much money I earn?

In this experiment, you earn a steady income that accumulates over time. The

current income is documented in the red chart in the lower-right area of the screen.

The higher the red line, the higher the income you earn. Note that your income

is a flow of payoffs. If you realize an income of 10 for the entire duration of the

part, you would earn a total payoff of 10 in that part. Analogously, an income of

15 means that you would receive 15 Euros if your income was constantly 15 and

the corresponding part was randomly selected as the one chosen to be paid.

Your total profits are represented by the red area under the red line. Moreover,

the red text in the upper-left area of the screen will always show the total payoffs

you have realized so far.

How is my income calculated?

As mentioned above, you are always playing in two groups at the same time. The
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interaction is described by two payoff matrices: the left matrix applies to the

interaction with your own group, the right matrix describes the interaction with

the other group. The matrices inform you of the income you can generate while

playing with either group.

Consider the following example (from the screenshot):

Your group Other group
A B A B

A 7.5 3.0 4.0 12.0
B 12.0 5.0 5.0 8.5

Assume you and all other participants (in both groups) choose “B.” In this case,

your income from your own group will be 5 (indicated in the lower-right corner of

the left matrix) and your income from the other group would be 8.5. Your total

income would thus be 13.5.

Another example, assume that one half of the participants in your group choose

“A” while the other half of your group chooses “B.” Moreover, assume that 70%

of the participants in the other group choose “A” and that the remaining 80%

choose “B.”

• If you are among those who choose “A”:

Income from your group: 0.5 × 7.5 + 0.5 × 3 = 5.25.

Income from other group: 0.7 × 4 + 0.3 × 12 = 6.4.

Total income: 5.25 + 6.4 = 11.65.

• If you are among those who choose “B”:

Income from your group: 0.5 × 12 + 0.5 × 5 = 8.5.

Income from with other group: 0.7 × 5 + 0.3 × 8.5 = 6.05.

Total income: 8.5 + 6.05 = 14.05.

In general, the income streams are calculated as follows. The matrices below

are general, OwnPayXY and OthPayXY are just placeholders for the entries of

the matrix with your group and with the other group, respectively. The terms

OwnShareA, OwnShareB, OthShareA and OthShareB represent the share of par-

ticipants who choose “A” or “B” in either group, respectively.
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Your group Other group
A B A B

A OwnPayAA OwnPayAB OthPayAA OthPayAB
B OwnPayBA OwnPayBB OthPayBA OthPayBB

Your decision determines the relevant row of the payoff matrices. If you choose

“A” only the first row is used, and if you choose “B” only the second row is used.

Your income from your group would be:

• If you choose “A”:

OwnPayAA ×OwnShareA + OwnPayAB ×OwnShareB

• If you choose “B”:

OwnPayBA ×OwnShareA + OwnPayBB ×OwnShareB

The same logic also applies to the interaction with the other group. Here, your

income would be:

• If you choose “A”:

OthPayAA ×OthShareA + OthPayAB ×OthShareB

• If you choose “B”:

OthPayBA ×OthShareA + OthPayBB ×OthShareB

The only difference between the interactions with your own group and with the

other group is that your own decision will have an impact on OwnShareA and

OwnShareB but not on OthShareA and OthShareB.

Your total income is the sum of your income from your group and the income from

the other group. Keep in mind that the red line will always show your current total

income and that you may change your choice at any point in time. Moreover, the

red text in the upper-left area of the screen will keep you informed of the payoffs

you have accumulated so far.
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Summary

• There are six parts. Only one randomly selected part will be paid in the

end. Each part lasts 210 seconds.

• There are always two groups. The composition of these groups is random

and will change in every part.

• You will play in two groups at a time: one with your own group and one

with the other group.

• Both groups generate a flow of income and your actual payoff will accumulate

over time.

• You can change your decision at any point in time. Use the radio buttons

on the left side of the screen or the Up/Down keys on the keyboard to do

so.

The experiment will start with three short (90 seconds) trial parts that will not

affect your payoff. These are simply to familiarize you with the payoff structure

and the software for this experiment.

If your have any further questions, please raise your hand and we will come to

your cubicle to answer the questions personally.
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