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SUMMARY

Adsorption and condensation processes in porous materials have
been the subject of many experimental and computational studies. In
many porous materials, such as zeolites, the accessible void space is
very narrow, thus the storage capacities and available inner surface
area to guest molecules is quite limited. Conversely, metal–organic
frameworks (MOFs) have much larger pores, only held together by an
open framework structure. Consequently, guest molecules in MOFs
are expected to show different phase behavior and adsorption kinetics
compared to more closed porous materials.

In this thesis, we investigate phase transitions of methane (CH4)
in the metal–organic frameworks IRMOF-1, IRMOF-8 and IRMOF-
16 (isoreticular MOFs) using extensive grand-canonical Monte Carlo
(GCMC) computer simulations in combination with successive um-
brella sampling. In IRMOF-1, we find two novel first-order phase
transitions: (a) a transition related to the pore filling and liquefaction
of the adsorbed gas in the void space and (b) a second transition at
low densities and pressures on the inner surface of the MOF. While the
first transition is similar to the liquid–gas transition in the bulk, thus
called IRMOF-liquid–gas (ILG) transition, the nature of the IRMOF-
surface (IS) transition has not been reported before. The structure
of the coexisting phases is analyzed in detail. Remarkably, we find
that in the IS transition the methane particles undergo a first-order
phase transition between two heterogeneous bulk states where the
gas particles are condensed on the surface of the framework. In the
bulk phase at low densities gas particles cover the stronger interacting
metallic corners of the MOF, only. This phase is in coexistence with a
phase where the inner surface area of the framework is fully covered
by methane particles.

The openness of the pores makes the phase behavior act differently
from those in other confinements as (e.g., capillary condensation in
thin films) where a cross-over to 2D Ising scaling behavior is observed
asymptotically. Using finite-size scaling methods we determine that
both the IS and ILG transition belong to the 3D Ising universality class.
In MOFs with larger pores, IRMOF-8 and -16, very similar phases
are observed, but the temperature range of IS transitions lowers with
increasing pore diameter, making it increasingly difficult to observe
the surface transition in IRMOF-16. Contrarily, the ILG condensation
transition becomes more similar to the bulk CH4 liquid–gas transition
when the framework becomes more open and the pores larger.

The enrichment of methane molecules around the corners of the
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framework allows us to define a local order parameter for the IS
transition to distinguish between the coexisting phases by counting
the adsorbed molecules around the metallic corners of the MOFs.
With such a local order parameter we identify and study the structure
and thermal fluctuations of the interface between the heterogeneous
phases. We find evidence that the presence of the MOF suppresses
thermal undulations along the interfaces.

We develop an Ising spin model where a similar framework struc-
ture as in IRMOFs is realized via frozen in spins. We show that this
model can reproduce the phase behavior of the ILG phase transition.
The simplicity of the Ising–IRMOF model allows for larger system
sizes, thus finite-size corrections are suppressed and a more accurate
finite-size scaling analysis close to the critical point is employed. We
find small corrections to the universal value of the Binder cumulant of
the 3D Ising model.

Finally, molecular dynamics (MD) computer simulations on graph-
ics processing units (GPU) are employed to investigate the diffusion
dynamics of methane in MOFs. In particular, the mobility of methane
is almost identical in the two IS phases and unaffected by the critical
point. The values of the diffusion coefficients that we find along the IS
binodals are of similar order of magnitude as in previous experimental
and theoretical works.

Moreover, our MD simulations are extended to simulate the ad-
sorption kinetics of gaseous methane into a single IRMOF-1 grain.
Even though in our simulations the pressure is two orders of mag-
nitude lower than the bulk liquid–vapor coexistence pressure, we
observe a condensation of methane in and around the grain. We find
that the porous material acts as a nucleation site for the liquid–vapor
transition in the bulk. As experiments indicate, such a condensation
can also happen in MOF powder, where condensation bridges are
formed between MOF grains. This affects adsorption measurements,
by slowing down the particle kinetics significantly. Therefore, careful
preparation in adsorption experiments with MOF powders is required
in order to avoid condensation in the free volume between the MOF
grains.
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ZUSAMMENFASSUNG

Adsorptions- und Kondensationsprozesse werden sowohl experimen-
tell als auch mit Hilfe von Computersimulationen seit langem unter-
sucht. In vielen porösen Materialien, wie etwa Zeolithen, sind die für
Gase zugänglichen Poren dabei sehr klein, was die Beladungskapazi-
tät und die innere Oberfläche begrenzt. Im Gegensatz dazu besitzen
Metall–Organische Gerüste (metal–organic frameworks, MOFs) sehr
viel größere Poren, die nur von einem offenen Gerüst zusammenge-
halten werden. Demzufolge ist zu erwarten, dass Moleküle in MOFs
ein anderes Phasenverhalten sowie eine andere Adsorptionskinetik
zeigen als in porösen Materialien, in denen sich die Teilchen weniger
frei bewegen können.

Mittels großkanonischer Monte-Carlo-Computersimulation in Kom-
bination mit sukzessivem Umbrella-Sampling untersuchen wir in
dieser Arbeit Phasenübergänge von Methan (CH4) in den Metall–
Organischen Gerüsten IRMOF-1, IRMOF-8 und IRMOF-16 (isoretiku-
läre MOFs). Im prototypischen MOF IRMOF-1 beobachten wir zwei
neuartige Phasenübergänge erster Ordnung: (a) Ein Phasenübergang,
der mit dem Auffüllen der Poren durch die Gasmoleküle und deren
Verflüssigung im Freiraum des porösen Netzwerks assoziiert ist. So-
wie (b) ein zweiter Übergang auf der Oberfläche des MOFs (daher als
IRMOF-Surface (IS)-Übergang bezeichnet), der bei kleinen Drücken
und niedrigen Dichten auftritt. Während der erste Übergang dem
Flüssig–Gas-Phasenübergang im Volumen ähnlich ist und dementspre-
chend als IRMOF-Flüssig–Gas (IRMOF-liquid–gas, ILG) bezeichnet
wird, ist der zweite Übergang in der Literatur bisher noch nicht be-
schrieben worden. In der vorliegenden Arbeit werden die Strukturen
der koexistierenden Phasen aufgeklärt und beschrieben. Bemerkens-
wert am IS-Übergang ist, dass das Methan dort einen Phasenübergang
erster Ordnung zwischen zwei heterogenen Volumenphasen durch-
läuft: Einerseits haben wir eine Phase, bei der das Gerüst nur teilweise,
nämlich an den metallischen Zentren bedeckt ist. Diese ist in Koexis-
tenz mit einer anderen Phase, bei der die Gasteilchen auf der gesamten
inneren Oberfläche kondensiert sind. Dieser Übergang wird hauptsäch-
lich durch die inhomogene Struktur des Gerüsts verursacht. Dadurch,
dass das Gerüstnetzwerk sehr offen aufgebaut ist, ist das Phasenver-
halten anders als in anderen eingeschränkten Geometrien, wie zum
Beispiel bei der Kapillarkondensation in dünnen Filmen, bei der am
kritischen Punkt ein 2D-Ising-Skalenverhalten zu beobachten ist. Mit
Hilfe von Finite-Size-Scaling-Methoden ermitteln wir, dass sowohl der
ILG- als auch der IS-Übergang zur 3D-Ising-Universalitätsklasse gehö-
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ren. In MOFs mit größeren Poren, wie IRMOF-8 und -16, sind sehr ähn-
liche Phasen zu beobachten, jedoch verschiebt sich der kritische Punkt
des IS-Phasenübergangs zu derart niedrigen Temperaturen, sodass
es zunehmend schwierig wird, diesen Übergang zu untersuchen. Im
Gegensatz dazu wird der ILG-Übergang dem Flüssig–Gas-Übergang
im Volumen immer ähnlicher, je offener und größer die Poren des
MOF-Gerüsts sind.

Die Anreicherung von CH4-Molekülen an den Ecken des Gerüsts
erlaubt uns die Einführung eines lokalen Ordnungsparameters be-
züglich der IS-Phasenumwandlung, welcher es erlaubt, durch Zählen
von Methan-Molekülen um ein einzelnes metallisches Zentrum, eine
IS-Phase zuzuordnen. Mit diesem Ordnungsparameter identifizieren
und untersuchen wir die Struktur und thermischen Fluktuationen
entlang der Grenzfläche zwischen den koexistierenden Phasen. Wir
zeigen, dass die Anwesenheit des MOFs Kapillarwellenanregungen
entlang dieser Grenzflächen unterdrückt.

Wir entwickeln ein Ising-Spin-Modell, in dem mit Hilfe von ein-
gefrorenen Spins eine ähnliche Gerüststruktur wie in IRMOFs nach-
gestellt wird. Wir weisen nach, dass dieses Modell in der Lage ist,
die ILG-Phasen und die entsprechenden Phasenübergänge zu repro-
duzieren. Das Ising–IRMOF-Modell erlaubt die Untersuchung des
Skalenverhaltens für größere Systeme als im atomistischen Modell.
Aufgrund der viel größeren Systeme wird die Finite-Size-Scaling-
Analyse nur noch von kleinen Korrekturen beeinflusst. Mit diesen
Berechnungen bestimmen wir außerdem die Korrekturen zur univer-
sellen Binder-Kumulante des 3D-Ising-Modells.

Zum Abschluss dieser Arbeit führen wir Molekulardynamik (MD)-
Computersimulationen auf Grafikkarten durch, um die Diffusionsdy-
namik von Methan in MOFs zu untersuchen. Es zeigt sich, dass die
Beweglichkeit der Moleküle in beiden IS-Phasen fast identisch ist und
kaum vom kritischen Punkt beeinflusst wird, in Übereinstimmung mit
früheren experimentellen und theoretischen Arbeiten.

Die MD-Simlationen wurden daraufhin erweitert, um die Adsorp-
tionskinetik eines Gases in ein MOF-Korn zu simulieren. Obwohl der
Druck zwei Größenordnungen kleiner als der Koexistenzdruck des
Flüssig–Gas-Übergangs ist, beobachten wir um und im MOF-Kristall
eine Kondensation des Methans. Hierbei agiert der poröse Kristall
als Nukleationskeim im Volumen. Experimente deuten an, dass eine
solche Kondensation auch in den Zwischenräumen des MOF-Pulvers
stattfinden kann und so die Adsorptionskinetik erheblich verlangsamt.
Eine sorgfältige Durchführung von Adsorptionsmessungen ist erfor-
derlich, um diese Gaskondensation zwischen den MOF-Kristallen zu
vermeiden.
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1

INTRODUCTION

Energy storage and transport are important aspects in our world:
Cars would not drive, in case of a power blackout there would be no
possibility to bridge the loss of power by a local energy storage. One
of the open questions in this regard is how to store the energy? One
very obvious solution is to use a simple fuel tank, put our gasoline
in and be done; and for oil, this works very well. On the other hand,
light gases, such as Methane and Hydrogen, have to be liquefied
and compressed to very high pressures1 1. For example, compressed natural

gas (CNG) is compressed to 20 to
25MPa in order to improve the
volume to energy ratio.

: an expensive and space
consuming process. One method to lower the required pressures is
to make use of adsorption in porous materials. The adsorption in
porous media then is in principle similar to the condensation of water
that is present in air on the surface of a window glass, but porous
materials have a much larger (inner) surface, thus the amount of gas
that can be adsorbed increases significantly. Adsorption processes are
not only interesting for energy or gas storage, but are important to
build molecular sieves, particle sensors or catalysis.
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Figure 1.1: Schematic sorption
isotherms and their classification
of as per recommendation of IU-
PAC. Modified version from Sing,
Everett, et al., (1985).

One very promising class of materials which have gained much
interest in the last 15 years are metal–organic frameworks (MOFs)
(Farrusseng, 2011). High chemical and mechanical stability, vast
inner surface and the ability to tailor the structure by exchanging
specific parts, makes MOFs particularly interesting for gas storage,
filtering and as catalysts. One of the central experimental properties
are adsorption isotherms, measuring the amount of gas adsorbed as a
function of ambient pressure at a certain temperature. The six types of
adsorption isotherms classified by the IUPAC2

2. International Union of Pure and
Applied Chemistry.

are shown in Figure 1.1.
Mesoporous materials with pore diameters between 2 to 50nm such
as MOFs often show isotherms of type IV, while for example on planar
surfaces or in macroporous adsorbents a type II isotherm is obtained,
where the point B would indicate the point where a single wetting layer
is formed and multilayer adsorption begins. A detailed discussion
about the types of sorption isotherms can be found in Sing, Everett, et
al., (1985), Gelb, Gubbins, Radhakrishnan, and Sliwinska-Bartkowiak,
(2000), and Thommes, Kaneko, et al., (2015).

Using the adsorption isotherms, other properties of the porous
medium can be determined, e.g. pore size distribution or surface
area. It is common practice in chemistry to assume a layer-by-layer
growth of the adsorbent on a planar surface. Applying Langmuir or
BET theories3 3. For the original works, see Lang-

muir, (1916), Langmuir, (1918),
and Brunauer, Emmett, and Teller,
(1938).

assuming such a growth, an inner surface area can be
calculated (Mason, Veenstra, and Long, 2014).

It is questionable whether such a simple model is applicable on
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heterogeneous porous media such as MOFs, where the inner surface is
not flat, but has a complicated surface structure along the framework,
available to the guest particles. Applying BET theory to MOFs also
requires a pressure regime where a (linear) growth in layers actually
occurs (indicated by point B in Figure 1.1). If the pressure is too low
the surface is covered inhomogeneously by the gas, and at very large
pressures the gas will liquefy and fill whole pores. In addition to inner
surface area measurements adsorption isotherms can be interpreted
to reveal hierarchies in the porous structures – for example, multistep
features may indicate a network of small and larger pores as large
pores get filled only at high relative pressures (Sing, 2001). Note that
often these isotherms show hysteresis loops, i.e. the adsorption is
different whether one increases or decreases the pressure. Only one of
these curves can satisfy thermodynamic equilibrium, but the system
may be stuck in a well-defined metastable state and could be associated
with a liquid–vapor like phase transition (F. Rouquerol, J. Rouquerol,
et al., 2014). While having a similar shape as type VI isotherms (c.f.
the occurrence of steep jumps at certain pressures) it is completely
unrelated to its usual interpretation of adsorption in pores of different
sizes. Also, phase transitions may affect the kinetic behavior of pore
filling and evacuation significantly. Therefore, knowledge about phase
transitions in MOFs is of important practical relevance – but difficult
to understand without information at molecular length scales, which
is not provided by adsorption isotherms.

While adsorption experiments only provide a macroscopic informa-
tion, X-ray diffraction (XRD) and Nuclear magnetic resonance (NMR)
measurements at low pressures have shown that, depending on the
loading of the MOF (Rowsell, Spencer, et al., 2005; Braun, J. J. Chen,
et al., 2015), a structural change of the preferred adsorption sites takes
place. This is a very different behavior from “classical” adsorption
on a planar surface where a homogeneous layer-per-layer adsorption
can be assumed, and isotherms cannot resolve such differences.

Figure 1.2: Adsorption isotherm
as a function of pressure P rel-
ative to the vapor pressure P0

in IRMOF-6 at 78K. Source:
Eddaoudi, Kim, et al., (2002).

While
adsorption isotherms are a useful measure for the loading of guest
particles, it does not tell anything about where the guest particles are.
Note that adsorption isotherms are often given in units of the vapor
saturation pressure P0 on a linear axis. For many gases P0 is in the
order of kPa at room temperature (20 ◦C) (e.g. Ethanol 5.83 kPa, Water
2.3 kPa), but can be also much higher, as in the case of CO2, where
P0 = 5.7MPa. To observe the preference of the guest molecules to
certain sites in the MOF structure, very low pressures are required, as
only a small number of particles is adsorbed in these phases. Thus, it
is useful to plot the pressure on a logarithmic scale instead of linear
scale (as used in Figure 1.2) to resolve possible phase transitions in
this parameter range.

Methane, being the most simple hydrocarbon, is quite important
as a candidate for energy storage, since burning CH4 produces only
a single CO2 molecule44. Under ideal conditions Methane

burns as CH4 + 2 O2 → CO2 + 2 H2O.
, therefore having a smaller carbon dioxide

footprint than burning oil while having a slightly higher heat of com-
bustion (M. Q. Wang and Huang, 2000). Additionally, methane is easy
to model which makes it a good prototype to study the phase behavior
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in MOFs using computer simulations, predict associated equilibrium
adsorption isotherms and characterize the coexisting phases. With
the use of computer simulations we can give information about the
microscopic structure and kinetics involved in the phase transitions
being inaccessible otherwise and are able to explore the parameter
space much faster and in a more controlled way than experiments can
often do. For example, Toni, Pullumbi, Coudert, and Fuchs, (2010)
were able to predict a first-order phase transition of carbon dioxide in
IRMOF-15 5. IRMOF-1, also known as MOF-

5 is one of the most prominient
MOF, first synthesized by H. Li,
Eddaoudi, O’Keeffe, and Yaghi,
(1999).

with a critical temperature 30% below the Tc of bulk CO2
using computer simulations.

Their result is compatible with what is known from thin film con-
finements (discussed in, e.g. Binder, Horbach, Vink, and De Virgiliis,
(2008)): Depending on the distance of the confining walls, the critical
point as well as the width of the coexistence region can be tuned.
A strong confinement (i.e. a narrow slit) causes the critical tempera-
ture to be lowered significantly and can change the phase behavior
in general reducing the dimensionality of the transition from three
to two-dimensional behavior. In another work done by Lenz and
Lipowsky, (1998) it is shown that wetting layers on patterned sur-
faces exhibit transitions between a homogeneous and inhomogeneous
phases, depending on the droplet volume and contact angle.

The aim of this thesis is to characterize the phase transitions that
can be observed in the confinement of MOFs and compare their
structural and kinetic properties of the coexisting phases these to
the bulk liquid–vapor phase transition of methane using computer
simulations. As shown in this work, by varying the pore size, one can
change the width and critical point of the liquid–vapor coexistence
region at presence of the framework – where there is the trend that
smaller pores cause a lower critical temperature. This IRMOF-liquid–
gas (ILG) transition has a shifted coexistence region towards higher
densities, due to a wetting layer on the inner surface in the gas phase
of the pores. While the thin film geometry restricts the growth of
critical fluctuations eventually on two dimensions, therefore reducing
the effective behavior from 3D- to 2D-universality class, such a cross-
over scaling is not expected in MOFs since the fluid is not spatially
restrained in any way: all pores are open and connected to each other.

Further, the previously mentioned heterogeneity of the surface of
the MOF induces a new type of phase transition (IRMOF-Surface (IS)
transition) between two three-dimensional inhomogeneous phases.
These heterogeneous phases are characterized by a partial (at low den-
sities) wetting of the corners of the framework and a complete wetting
layer (at higher densities) on the inner surface of the MOF. Compared
to the liquid–gas transition, the IS transition occurs in IRMOF-1, the
prototype of MOFs (H. Li, Eddaoudi, O’Keeffe, and Yaghi, 1999) and
a member of the large class of “IRMOFs”, at pressures 3 − 4 orders of
magnitudes lower than the bulk coexistence pressure. This raises the
question how the interface between heterogeneous phases behaves in
IRMOFs. We study if thermal fluctuations of the interface can be sup-
pressed by the MOF structure and how the structure of the interface
between the IS phases is affected by heterogeneous coexisting phases.
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We also want to understand to what extent the external field (due to
the framework) can influence the geometry of phase interfaces.

Comparing the phase behavior of CH4 in other IRMOFs, IRMOF-
8 and -16, reveals that the critical points of the IS and ILG phase
transitions can be shifted by tuning the pore size (IRMOF-16 has the
largest pores, with IRMOF-8 being in between IRMOF-1 and -16):
With increasing pore size the ILG transition becomes more bulk-like
as its critical temperature is higher and the coexistence density region
becomes broader. The IS transition is affected in the reverse, the
density differences between the phases become smaller and the critical
temperature lower, making the IS practically inaccessible or absent in
the system with the largest pores.

As the phase behavior is very complicated, to reduce computa-
tional effort it is tempting to introduce a minimal model for gas
condensation in a MOF-like porous structure, while preserving the
features of phase transitions in MOFs. In collaboration with Beatriz
Seoane and Victor Martin-Mayor we have developed a minimal model
based on Ising66. The Ising model is a lattice

model originally developed to de-
scribe ferromagnetism.

system. In this model spin particles are placed on a
lattice. The only allowed value for the spin are up and down, they
can align to the neighboring spins or, if an external (magnetic) field
is applied, they may align to this field. Even though the microscopic
physics is very different, by carefully recreating the geometry we are
able to reproduce the structure ILG phases behavior of the MOFs in
the Ising model. Using this model we are able to study systems of
larger scale, which allows for more accurate measurements of the
universal behavior in (MOF) confinements.

As it turns out, finding evidence of the IS and ILG phase transi-
tions in experiment becomes difficult, because the liquid–vapor phase
transition of the bulk can cause liquid droplets to form on MOF grains.
Condensation of the gas on the grain can become a quite important
effect, since MOFs are typically in powder form, thus have also a
large outer surface, meaning the gas would not be inside the MOF,
but between MOF grains. Adsorption experiments done by Gamall
Makhloufi at the Heinrich-Heine Universität Düsseldorf and computer
simulations on single MOF grains give evidence that this is indeed the
case.

This thesis is organized as follows. After this introduction metal–
organic frameworks are briefly described and an overview of their
physical and chemical properties is given. The third chapter gives an
introduction into phase transitions using the Ising model to describe
the physics and observations as they occur in phase transitions and in
the vicinity of the critical point, the “end point” of phase coexistence.
The critical point is of certain importance as many phase transition
show the same qualitative (universal) behavior, even though they are
microscopically very different.

Then, in Chapter 4 (p. 27) computational methods required to
study phase transitions and adsorption kinetics are presented. It
includes an introduction to grand canonical Monte Carlo (GCMC)
methods, finite-size scaling, molecular dynamics (MD) simulations
and their application to our problem. While GCMC is used to generate
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equilibrium configurations and for the calculation of coexistence points
in the phase diagrams, MD simulations (on computer graphics cards)
allow for the study of kinetic properties related to, e.g. diffusion
dynamics.

Equipped with the above algorithms and methods, Chapter 5
(p. 45) presents the results. There are five main findings in this work:

1. We observe two novel lines of first-order phase transitions, both
ending in a critical point. One line is associated with a liquid–
vapor like transition related to the pore filling. The other one,
here reported for the first time, is related to the transition on the
inner surface of the framework. In the following we call these
transitions ILG- and IS transition, respectively.

2. Studying three different MOFs, we observe that, with respect
to temperature and density range, the location of both phase
transitions can be tuned upon varying the pore size.

3. We analyze the interface between the coexisting inhomogeneous
phases of the IS transition and reveal a suppression of thermal
fluctuations along the interface. Evidently, the presence of the
framework is inhibiting this kind of distortions in the interface
structure. Further, our results show 3D Ising compatible scaling
behavior in the critical region of the IS transition.

4. We introduce an Ising model resembling a MOF structure and
reproduce the ILG phase behavior as found in MOFs. This
minimal and therefore computationally faster model allows to
study the critical scaling and universality with greater accuracy.

5. Also, the diffusion dynamics and adsorption kinetics of methane
in MOFs are studied. We calculate diffusivities of the IS phases
with respect to single particle– and collective diffusion dynamics.
Further, the adsorption kinetics are studied on single MOF grains
to understand microscopic details of the adsorption required to
understand adsorption isotherms obtained from experiments.
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2

METAL–ORGANIC FRAMEWORKS

Metal–organic frameworks (MOFs), also referred to as porous coor-
dination polymers (PCP), are a relatively new class of porous media
of very large pore volume and inner surface area. The definition as
recommended by Batten, Champness, et al., (2013) is as follows:

A metal–organic framework, abbreviated to MOF, is a coordination network
with organic ligands containing potential voids.

They consist of two building units: The metallic cluster, also known
as secondary building unit (SBU) and the organic linkers, connecting the
SBUs and forming the framework. This topology enables uncountable
possibilities of building many framework topologies and allows for
tailoring porosity, reactivity (e.g. by adding side chains with catalytic
properties to the linkers), magnetism and other physical or chemical
properties (Janiak and Vieth, 2010). The remarkable properties of
MOFs have gained interest in the scientific community greatly in the
last decade as indicated by the rapid increase of publications on these
materials in the last 15 years (cf. Figure 2.1).

Figure 2.1: Number of publications with keywords “Metal–organic framework” or
“mof” from 2000 – 2015 as determined from Thomson Reuters Web of Science.
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Adsorption in MOFs

Figure 2.2: Powder of MOF
as it is prepared for ad-

sorption measurements.

In recent years, a vast number of MOFs have been synthesized and
categorized by their physical and chemical properties. As in other
porous media, one of the most important properties of MOFs are
adsorption isotherms. They measure the amount of guest molecules
that can be adsorbed by the framework as a function of the pressure
at constant temperature. Adsorption isotherms are experimentally
easily accessible and they give already information about the inner
surface that is available for the gas molecules in a porous medium.
In volumetric adsorption experiments, the MOF samples (typically a
powder as in Figure 2.2) are evacuated and the test tube is put into
a bath or thermostat with the desired temperature. Then a valve is
opened to allow further gas to enter the tube until the target pressure
is reached and the system is in equilibrium (or after a certain time
interval). Repeating this for a number of pressures, one obtains the
adsorption isotherm. Alternatively, instead of measuring the volume,
one can also use the gravimetric method, where the changes in weight
of a sample are recorded instead.

From an adsorption isotherm one can quantify the specific inner
surface area using the BET theory, selectivity1

1. In gas mixtures, the selectivity
compares the amount adsorbed for

each species at a certain pressure.

, pore volume and
distribution (Barrett, Joyner, and Halenda, 1951), or hysteresis effects.
The BET equation, based on an empirical model, reads2

2. A derivation of the equation can
be found in F. Rouquerol, J. Rou-

querol, et al., (2014).

:

p/p0

n(1 − p/p0)
=

1
nmC

+
C− 1
nmC

(

p

p0

)

, (2.1)

where p is the pressure, p0 is the vapor pressure, n the amount
of gas adsorbed by the material, nm the monolayer capacity. The
parameter C is associated exponentially with the energy of monolayer
adsorption and the value of C can indicate the shape of the adsorption
isotherm (in the BET range). The objective is to derive the monolayer
capacity nm to calculate the inner surface area using the average
area σ the test molecule occupies on the surface. Typically, one uses
Nitrogen at 77K (which has a molecular cross section σ = 0.162nm2)
to obtain the BET area. One of the four criteria (J. Rouquerol, P.
Llewellyn, and F. Rouquerol, 2007) to select the valid pressure range
for BET calculation is that if n(p0 − p) is plotted as a function of
p/p0, the valid range must be below the maximum (cf. Figure 2.3b).
In this range the BET plot of (p/p0)/[n(1 − p/p0)] should become
linear. From the intersection with the axis and the slope of the fitted
curve according to Eq. (2.1) this allows to determine the quantities nm

and C. However, identifying the relevant linear pressure range from
adsorption in mirco- or mesoporous materials is more complicated,
as shown in Figure 2.3. In the shown case the slope in the BET
curve is not constant with increasing pressure, and one could identify
three different linear regions in the BET plot (plus a linear fit over
the whole curve). While there exist criteria (Thommes, Kaneko, et
al., 2015) which region to select by omitting nonsensical results, an
interpretation of the other ranges remains unclear nonetheless. Further,
the result only gives information about the area that is accessible at
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this measured temperature with the test gas. Other gases at different
temperatures can behave very differently and “see” a different surface.
However, the MOF community is well aware of the above problems
in the BET calculations, thus calling the determined area “BET area”
is preferred over “BET surface area”3 3. Simulation studies by Walton

and Snurr, (2007) and Bae, Yazay-
dın, and Snurr, (2010) suggest that
the accessible N2 area can be very
similar to the BET area.

and is still a useful quantity
to validate synthesized material with reference values of the BET
area. Therefore, it is also understood and used as a “fingerprint”
for the material (Thommes, Kaneko, et al., 2015). As stated in the
review by Thommes and Cychosz, (2014), one of the big challenges
in the detailed understanding of physical adsorption includes the
development of new simulation methods coupled with advanced
experimental protocols.

Figure 2.3: a) Nitrogen adsorption isotherm for NU-109 at 77K. Consistency plot as
shown in b) determines the maximum pressure range to consider for BET calcula-
tion – only pressures below the maximum p/p0 = 0.28. The BET plot in c) becomes
inconclusive, consisting of multiple linear regions. From F. Rouquerol, J. Rouquerol,
et al., (2014) with data from Farha, Eryazici, et al., (2012).

Material BET area Reference
(m2/g)

ZSM-5 260–310 Sang, Chang, et al., (2004)
LTA-SiO2 zeolite 695 Palomino, Corma, Rey, and Valencia, (2010)
IRMOF-1 2833 Millward and Yaghi, (2005)
IRMOF-8 4326 Feldblyum, Dutta, et al., (2013)
MIL-101 4230 P. L. Llewellyn, Bourrelly, et al., (2008)

Table 2.1: BET areas for various MOFs and zeolites from N2 adsorption at 77K.
Note that depending on the reference, the reported BET areas for the MOFs may be
significantly different (cf. Mason, Veenstra, and Long, (2014)).

Comparison to zeolites

While MOFs have been developed out of zeolite4

4. The term zeolite was introduced
by the swedish chemist Axel Cron-
stedt, who observed that some min-
erals appear to boil while heating,
thus calling them “boiling stones”,
greek “zeolite”.

research (Cheetham,
Férey, and Loiseau, 1999), their high modularity and porosity (large

9



inner surface area and pore volume, cf. Table 2.1) makes MOFs com-
petitive to zeolites. Zeolites are porous inorganic minerals with frame-
works constructed of SiO4 and ALO4 tetrahedra, interlinked with each

Figure 2.4: Pore structure of ZSM-5 zeolite. Pores are connected by narrow chan-
nels. From Lei, Jockusch, Ottaviani, and Turro, (2003).

other. They are extremely stable (mechanically as well as chemically)
and have very high melting temperatures > 1000 ◦C. Some structures
occur naturally (e.g. herschelite, mordenite and others) but are also
synthesized and both are used in industry for water purification, odor
control and more (S. Wang and Peng, 2010; Virta and Flanagan, 2015).
Zeolites have pore networks with diameters below 10Å and typically
form cylindrical narrow channels, as displayed in Figure 2.4 for one
of the most prominent zeolite, ZSM-5. Similarly to MOFs, zeolites are
interesting for capture of CO2 and many computer simulations studies
have been done to understand the adsorption in zeolites. Limiting
in the application of zeolites are the narrow pores which can inhibit
mass transport (diffusion) in and out of the pores. Channels may also
be clogged by large molecules, decreasing the catalytic performance of
these materials. Metal–organic frameworks, on the other hand, have
very open, easily accessible pores, which allow higher diffusivities in
the pores. With their building block approach one can easily exchange
of linkers or metallic clusters, which allows for larger pore sizes and
a huge variety of structures, as the examples of MIL-101 and MIL-53
(displayed in Figure 2.5) indicate. In contrast to zeolites, which are
used in petrochemical industry, a large-scale application of MOFs
has not appeared yet, due to difficult synthesis and therefore high
production cost (Yilmaz, Trukhan, and U. Müller, 2012). But as the
synthesis of new materials and the development of new techniques is
an active field of research, a breakthrough is still possible.
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Figure 2.5: Different topologies of the framework structures. On the left a
schematic picture of MIL-101, a MOF with spherical pores with diameters of
≈ 34Å, from Jeazet, Koschine, et al., (2013). Right: MIL-53ht, a MOF with rhom-
bic channels and a pore diameter of 8.5Å, first described by Loiseau, Serre, et al.,
(2004). Image from Wikimedia Commons, (2010).

MOFs used in this work

A particularly promising application for MOFs is methane storage5 5. For a recent review about methane
storage in MOFs see He, W. Zhou,
Qian, and B. Chen, (2014).

and separation of CH4-CO2 mixtures for natural gas upgrading (Zhang,
Sunarso, S. Liu, and R. Wang, 2013). There, a detailed knowledge
about adsorption of methane on the inner surface and an understand-
ing of the phase behavior is important to understand the macroscopic
adsorption. We expect this to be relevant also for other gases, such as
Hydrogen (energy storage), Water (dehumidification) and so on.

IRMOF-1
L = 26.669Å

IRMOF-8
L = 30.0915Å

IRMOF-16, L = 42.980Å

CH4

3.73Å

Figure 2.6: Unit cells of exemplary MOF structures from left to right: IRMOF-
1, IRMOF-8 and IRMOF-16. These structure have identical metallic centers but
different ligands, therefore tuning the pore size. Methane molecule diameter as
approximate reference length scale.

The MOFs studied in this work are different variations of the
“IRMOF”-class. The acronym stands for Isoreticular metal–organic frame-
work. As defined in Random House Webster Unabridged Dictionary,
“reticular” means “net-like”, or “having the form of a net”. Therefore,
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isoreticular is defined as “having the same network topology”. Three
types of IRMOFs (IRMOF-1, -8, and -16) are shown in Figure 2.6.

While structurally extremely similar (only the ligands connecting
the metal oxides at the corners are different), they vary in mechanical
stability and inner surface area. Due to the large free volume

.

Figure 2.7: Structure of dou-
bly interpenetrated IRMOF-
0, the second interpenetrat-
ing framework is shown as

in gray. Source: Tranchemon-
tagne, Hunt, and Yaghi, (2008).

in
IRMOF-8 and -16 they often form (doubly) interpenetrated porous
networks as in the example shown in Figure 2.7. Interpenetration
increases the mass density, inner surface area and reduces the free
volume of the MOF and must be considered during synthesis, but
interpenetrated MOFs are not within the scope of this work. In our
model we must introduce simplifications, such as we fix the MOF
atoms at their positions. Thus, we will be unable to study breathing

Figure 2.8: Raster electron microscopy (REM) images of IRMOF-1. Due to the cubic
geometry of the unit cell, the macroscopic crystals become cubic, too. Shot taken by
Gamall Makhloufi from HHU.

of MOFs, where the crystal deforms upon gas loading (Coudert,
Boutin, Fuchs, and Neimark, 2013). From crystallographic analysis
it can be also shown that the metallic clusters in IRMOFs display a
structural isomerism: One way to place the metallic center is by simple
translation or by introducing an additional rotation, see Figure 2.9.
In principle, it is random which metal center is rotated. The linker
itself is not necessarily affected from this isomerism (e.g. by a rotation).
Even though the structure does not change dramatically and previous

Figure 2.9: Two possible conformations of metallic centers in MFU-1. Such a rota-
tion of the ionic clusters can be found in IRMOF-1, too. From Tonigold, Lu, et al.,
(2011).
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simulation studies do not include this property, it is important to be
aware of this behavior, as it may become important when comparing
the numeric results to experimental observations. Other MOFs, e.g.
MFU-4 developed at the University Augsburg (Biswas, Grzywa, et al.,
2009) do not have this isomerism, which exhibits the same topology
as IRMOF-1.

The crystalline structure of the IRMOF class features a cubic sym-
metry. Thus, the grains, which have edge lengths up to 10µm, form
also cubic crystals, as shown in the REM image in Figure 2.8.

Computer simulation studies by Toni, Pullumbi, Coudert, and
Fuchs, (2010) have already shown the existence of a phase transition
of CO2 in IRMOFs and with the prediction of adsorption isotherms
as shown in Figure 2.10. Magdysyuk, Denysenko, et al., (2014) have
studied crystallization of Xenon in MOFs, observing preferred adsorp-
tion sites on the inner surface, similar to what Rowsell, Spencer, et al.,
(2005) have reported. Thus, phase transitions in MOFs have gained

Figure 2.10: Adsorption isotherm as determined from computer simulation studies
where at temperatures lower than 225K a phase transition occurs. Dashed lines
indicate the first-order phase transitions and coexistence regions.

some interest in the scientific community. To understand what a phase
transition is and what interesting phenomena can be found in such
state changes will be elucidated in the following chapter.
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3

BASICS OF PHASE TRANSITIONS

Matter can be found in very different states, one of the examples
known to everyone is water. The states of water that are best known
in everyday life are ice (solid), water (liquid) and water vapor (gas) –
and all of them can coexist:

1. Liquid water and ice: An iceberg floating in the ocean.

2. Vapor and ice: During winter, at temperatures below 0 ◦C, water
will freeze to ice and coexist with steam.

3. Liquid and vapor: This is observed at room temperature. It
is most obvious when boiling water: A part of the liquid will
evaporate and forms gas bubbles in the water.

4. At the triple point of water (at 273.16K and 611.73 Pa) all states
of matter coexist and very small changes to temperature or
pressure can already fully transform the substance into liquid,
ice, or gas.

Except for the triple point, these phenomena are well known from
everyday life, and are neither limited to water nor must the phase be
liquid, gas, or solid – matter can form diverse types of phases. For
example, a phase can be defined by its density, the concentration of
a species in a binary mixture, the structural order, magnetization or
conductivity. If these properties change and a new phase is formed
and both phases can coexist at the same time, then a phase transition is
taking place. During a first-order phase transition an order parameter
relevant for the transition makes a sudden jump with respect to an
intensive thermodynamic variable. In the liquid–vapor transition, for
example, the order parameter is the density. The information under
which conditions phase transitions occur, are maintained in phase
diagrams. For water, such a phase diagram is given in Figure 3.1a (see
also Wagner, Saul, and Pruss, (1994)). The above p-T diagram shows
coexistence pressures as a function of temperature. Note that water
is somewhat exceptional; there, the coexistence pressure of ice and
water increases with temperature. This is one of the many anomalies
of water – as increasing the pressure usually favors a solidification.

Both pressure and temperature are intensive thermodynamic vari-
ables1

1. Intensive variables (such as tem-
perature, pressure, or chemical
potential) are invariant of system
size. Extensive variables depend
on the system size, examples are
particle number, volume, or inner
energy.

and at phase coexistence all the intensive variables must be
equal, as the phases must be in thermodynamic equilibrium. Extensive
variables, on the other hand, may show a discontinuity: The densities
between liquid and vapor phase are distinct and exhibits a jump in
the Pressure-Volume plane (cf. Figure 3.1b).
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Figure 3.1: Simplified phase diagram of water in the Pressure–Temperature (a)
and pressure–volume (b) plane. Solid lines in the p-T plane denote coexistence
curves of water, vapor, and ice. Plateaus in the V-P plane of isotherms represent
the coexistence region of vapor and liquid. At supercritical temperatures, the
plateau vanishes a continuous transition takes place instead.

One observes that – in contrast to the liquid–solid transition – the
liquid–vapor phase transition (and also the order parameter) vanishes
above a certain temperature. This point denotes the critical point
of the fluid and is of certain importance. At the critical point, the
correlation length22. The correlation length ξ is the

“typical” length scale over which
microscopic fluctuations are corre-

lated.

ξ associated with density fluctuations diverges3

3. The absence of a characteristic
length scale is also a key feature of

fractals.

; if
the correlation length becomes infinite, in return it means that very
small changes can change the whole system very quickly. Critical
opalescence, observed in regions of second order phase transitions
(also said to be continuous), is one of the effects caused by the large
fluctuations. In this region many thermodynamics properties act in a
scale-invariant manner.

Scale invariant behavior implies an underlying power-law behavior.
Even with this large variety of phase transitions, it turns out they can
be classified by their power-law exponents. This universality class is set
by the dimensions of the system space and order parameter. It means
that different phase transitions can obey the same universal (power)
laws and allows for studying simplified systems while learning about
the characteristics of very distinct systems. For example, the three-
dimensional spin lattice with the magnetization as an order parameter
(i.e. the 3D-Ising model) lies in the same universality class as the
liquid–vapor transition in simple fluids. As the Ising model is of such
importance to this date, a brief introduction follows in the next section.

3.1 The Ising model: The fruit fly for phase
transitions

As noted above, the phenomena present in phase transitions become
universal in the vicinity of a critical point, meaning that exponents
of very distinct systems are identical. One of the most important
system for the study of phase transition is the Ising model, which
was introduced to describe ferromagnetic behavior in solids (Ising,
(1925), for a review about the history see Niss, (2005), for example).
In the Ising model, particles are placed on a lattice and assigned a
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“spin” s, which can have the value +1 or −1 (↑ and ↓, respectively).
Interactions between the spins is restricted to the nearest neighbors
and an external magnetic field may be applied, to which the spins
align to with a certain probability. The Hamiltonian HIsing of this
system with N particles in the configuration s = {s1, . . . , sN} is given
by

HIsing(s) = −J
∑

⟨i,j⟩

sisj −H

N∑

i=1

si , (3.1)

where
∑

⟨i,j⟩ denotes the sum over all nearest neighbors of particles, J
is exchange energy of nearest-neighbor interaction and H the constant
external magnetic field.

The equilibrium probability for a configuration s at a given inverse
temperature β = 1/kBT can be expressed by

P(s) =
1
Z
e−βHIsing(s) , (3.2)

where Z =
∑

s e
−βHIsing is the partition function summing over all

possible configurations s, which normalizes P(s) such that
∑

P(s) = 1.
At higher temperatures the spins will show like a paramagnetism: If
the external field is turned off, the average magnetization per spin will
be zero. If the field is turned on, spins will align towards this field.
H > 0 will prefer σ = +1 and for H < 0 more spins will be σ = −1.
However, at lower temperatures the spin-spin contributions become
more important and the system shows ferro- or anti-ferromagnetic
behavior. There, the spins align with the external field and keep a net
magnetization even in the absence of the magnetic field.

In the following we assume J > 0, i.e. ferromagnetic behavior.
From Eq. (3.1), we can see that the alignment of spins is more likely4 4. In an anti-ferromagnetic system

where J < 0, the ground state is
given by alternating spins (↑↓↑ · · · ).

and that with increasing external magnetic field strength H, spins will
have a preferred alignment along the field.

One observable quantity in the Ising ferromagnet is the magnetiza-
tion per spin, defined by

m =
1
N

N∑

i=1

si , (3.3)

which is in the range from −1 (all spins down) to +1 (all spins up).
This can be also expressed by means of partial derivatives of the
partition function:

m =
kBT

N

∂ lnZ(N,H, T)
∂H

∣

∣

∣

∣

T

. (3.4)

In the Ising model one observes the following for m (Cipra, 1987):
If we are at a high temperature with the external field H, spins will
align preferably along this external field, depending on its strength.
If H is reduced, the system will go into an disordered paramagnetic
state and the magnetization will vanish.
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Figure 3.2: Sketch of phase diagrams of the Ising model in the temperature– (a)
and external field-magnetization (b) plane.

Repeating the experiment below a certain (critical) temperature
Tc, a certain magnetization will persist instead. This spontaneous
magnetization at zero magnetic field is a first-order phase transition
and the order parameter is m, as defined above. The phase diagram in
the m-T plane is shown in Figure 3.2. The shown binodal curve defines
the parameter range where a phase coexistence appears from the one
phase region. Coexisting phases, on the other hand imply there is an
interface between the two phases. According to Eq. (3.2), this interface
is minimized in an equilibrated system. Thus, in finite sized systems,
the form of the interface depends strongly on the geometry of the
system.

The interface has some interesting properties: First, there are ther-
mally caused undulations and capillary wave theory (CWT) (Buff, Lovett,
and Stillinger Jr, 1965; Bedeaux and Weeks, 1985) is a framework to
describe long-wavelength distortions along the interface. Capillary
waves result from Goldstone modes in symmetry-broken systems (a
phase-separated system breaks translational symmetry). The Gold-
stone theorem (Wallace, 1982) predicts an excitation of low-energy
modes. These modes cost no energy as the wave number q → 0 and
introduce a displacement h(x,y) in the surface perpendicular to the
interface.

According to capillary wave theory, the height-height correla-
tion function in Fourier space ⟨h(q)h(−q)⟩, with h(r) = h(x,y) =
1
L

∑
q h(q)eiq·r behaves in the limit of infinite system size L → ∞ like

⟨|h(q)|2⟩ = kBT

γq2 , (3.5)

where γ is the interfacial tension. Transforming this back into real
space by integrating over all possible modes q = [qmin,qmin]

55. qmin = 2π/L is set by the lat-
eral system size L (and there-

fore the longest wavelength) and
qmax = 2π/l is a required cutoff

above the microscopic length scale.

we
find an expression for the mean-squared interfacial width w2 (Weeks,
1977),

w2 = ⟨h(r)2⟩ = kBT

2πγ
ln

L

l
, (3.6)
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where l is the bulk correlation length. Therefore, in the thermody-
namic limit L → ∞, w diverges – very weakly, since w grows with
lnL. In the presence of gravitation with strength g, the height-height
correlation ⟨|h(q)|2⟩ yields (Weeks, 1984)

⟨|h(q)|2⟩ = kBT

γ(q2 + ξ−2
g )

, (3.7)

where ξg is the correlation length in lateral dimension, or capillary
length and measures the range of the correlations along the interface.
It is given by

ξg =

√

γ

∆mg
, (3.8)

where ∆m is the difference in the magnetizations of the coexisting
phases ∆m = m+ −m−. The real-space transformation the height
fluctuation spectrum from Eq. (3.7) reads

⟨h2(r)⟩ = kBT

2πγ
ln
(

ξg

l

)

. (3.9)

If the system size L ≫ ξg, the width w =
√

⟨h2(r)⟩ is dominated and
limited by the gravitation and even when L → ∞.

Therefore, in finite systems we can assign a width w to the interface
located around x0, which is typically determined from a tanh(x)-fit of
the form

m(x) =
m+ +m−

2
−

m+ −m−

2
tanh

(

x− x0

2w

)

, (3.10)

where the interface is perpendicular to the x-axis and m± are the
respective magnetizations of the system on the binodal line (cf. Fig-
ure 3.2). The above equation can be applied also for asymmetric cases
where m+ ̸= −m−. w is dependent on the lateral size of the interface,
temperature and the interaction strength J. Although the shape of the
interface profile described by Eq. (3.10) is actually a result from mean
field theory, which is only valid in the critical region, the hyperbolic
tangent fit is useful to determine an effective interface width w from
density profiles (Rozas and Horbach, 2011).

Approaching the critical temperature Tc from a temperature below
Tc, w will grow and finally diverge (this will be explained in the
next section), resulting in the absence of an interface. This can be
seen in Figure 3.3: While at temperatures far away from criticality the
interface is well-defined, close to Tc it becomes increasingly difficult
to determine the location of an interface.

Further, an interface formation implies a free energy cost, which
in turn means there is an interfacial tension6 6. The interfacial surface tension

has the dimension of energy per
unit area or equivalently, force per
unit length.

. In the Ising ferromagnet
the free energy cost contributes from neighboring spins of opposite
sign. While in the thermodynamic limit this contribution vanishes,
there is a finite contribution in the two-phase region.
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Figure 3.3: Example snapshots of the two-dimensional square lattice Ising model at
kBT/J = 1.66, 2.2, 3.0 (from left to right) as determined from computer simulations
with no external field applied. Black/white color indicate the spin values s = ±1.
Periodic boundary conditions have been applied and a magnetization around
m = 0 was enforced for T < Tc. The critical point in this model is at kBTc/J =

2/ ln(1 +
√

2) ≈ 2.269.

3.1.1 The critical point and critical phenomena

One ansatz to describe the behavior of the Ising model close to the
critical point at zero field is mean field theory. Within this model,
each spin si is replaced by the average magnetic field m plus a small
fluctuation δsi (Tuckerman, 2010):

si → m+ δsi, (3.11)

therefore sisj can be rewritten as:

sisj = (m+ δsi)(m+ δsj)

= m2 +m( δsi︸︷︷︸
=si−m

+δsj) + δsiδsj

= −m2 +m(si + sj) + δsiδsj. (3.12)

Within the mean-field approximation, fluctuations are considered
small and the term δsiδsj is dropped. Inserting Eq. (3.12) into Eq. (3.1)
yields the mean-field Hamiltonian for the Ising model:

HIsing, MF = −J
∑

⟨i,j⟩

(

−m2 +m(si + sj)
)

+H
∑

i

si

=
1
2
NJm2 − (H+ Jm)

∑

i

si (3.13)

for N spins. The result in Eq. (3.13) is the same as for an ideal
(noninteracting spins) paramagnet in an effective field:

Heff = H+ Jm . (3.14)

We then obtain a self-consistent equation for the magnetization of each
spin experiencing this effective field,

-1

	0

	1

-1 	0 	1

m

T>Tc

T<Tc

Figure 3.4: By plotting m (straight
line) and tanh(βJm) (dotted lines)

in the same graph, one can read
off the solutions (the intersection

between both curves) from the
self-consistent equation of the

mean-field approximation of the
two-dimensional Ising model. For

1/β = kBT > kBTc one a single so-
lution m = 0 exists. For T < Tc,

three solutions can be found.

m = ⟨s⟩ =
∑

sie
βHeffsi

∑
eβHeffsi

=
eβHeffsi − e−βHeffsi

eβHeffsi + e−βHeffsi
(3.15)

= tanh [β(Jm+H)] , (3.16)
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which can be solved numerically, or graphically as shown in Figure 3.4.
For T > Tc there is only the paramagnetic solution, m = 0 – but
for lower temperatures we have two, ±|m|. We can find them by
expanding Eq. (3.15) in the field free case H = 0 and assuming that
m ≪ 1 holds close to the critical point

m = tanh(βJm) = βJm−
1
3
(βJ)3m3 +O(m5) . (3.17)

At the critical point we have βcJ = J/(kBTc) = 1 and dropping the
higher order terms O(m5) yields

1 =
Tc

T
−

1
3

(

Tc

T

)3

m2 , (3.18)

with the solutions

m = ±
√

3
(

T

Tc

)3/2(
Tc − T

Tc

)1/2

, (3.19)

which behaves as (the β used here is not the inverse temperature)7 7. And it should be clear from the
context. The unit of the inverse
temperature 1/kBT = Energy−1,
while the scaling exponent is di-
mensionless.

m ∝ (T − Tc)
β with β = 1/2 . (3.20)

Similarly, the magnetic susceptibility χ = ∂m
∂H |T , describing the vari-

ance of the magnetization has an analogous behavior at the critical
point

χ ∝ |T − Tc|
−γ with γ = 1 , (3.21)

thus fluctuations become singular at the critical point. A quantity
closely related to χ which is of importance in phase transitions is the
correlation length ξ, in the Ising model it measures the length scale of
correlations between fluctuations ∆si = si − ⟨si⟩ of spins si:

〈

(si − ⟨si⟩)(sj − ⟨sj⟩)
〉

= e−|dij|/ξ , (3.22)

where dij is the distance between the spins i and j. The characteristic
length scale on which such correlations decay, ξ is called the corre-
lation length. It can be understood as the linear dimension of the
“typical” cluster size of regions with same magnetization. Consider a
single spin flipping at a certain position, the correlation length then
measures the distance where the probability of other spins also flip-
ping are affected by this flip and it can be shown to scale within the
framework of mean field theory like

ξ ∝
∣

∣

∣

∣

T − Tc

Tc

∣

∣

∣

∣

−ν

with ν = 1/2 . (3.23)

As fluctuations grow with the increase of the correlation length, the
interface width separating the two phases will grow, too. Within
mean-field theory the interface between the two phases has a profile
which can be expressed as (Cahn and Hilliard, 1958; Fisk and Widom,
1969)

m(x) = m+ tanh
( x

2w

)

, (3.24)
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with the assumption of an intrinsic width w. This width w is pro-
portional to the correlation length ξ and scales near the critical point
accordingly. Consequently, the width diverges with the exponent ν,
too.

From Eqs. (3.23) and (3.21) we find that fluctuations become in-
creasingly important as criticality is approached, while the mean-field
model is able to predict the qualitative phase behavior, it fails quantita-
tively in systems of low (< 4) dimensions, as shown in Table 3.1. The

Quantity Exponent MFT Ising

τ ≡ |T − Tc|/Tc 2D 3D

specific heat, τ−α α 0 0 0.125
order parameter, τβ β 0.5 0.125 0.326
susceptibility, τ−γ γ 1 1.75 1.25
correlation length, τ−ν ν 0.5 1 0.630

Table 3.1: Incomplete list of critical exponents for different universality classes,
where quantities show a power-law behavior of x ∝ (T − Tc)

y close to the critical
temperature Tc, with y as critical exponent. Values for mean-field theory (MFT)
and two-dimensional (2D) Ising models are exact, while critical exponents from in
3-dimensional (3D) Ising universality class are determined from numerical models.
Parameters where taken from Pelissetto and Vicari, (2002).

reason for the failure of the correct prediction of the scaling behavior
is due to the large fluctuations and the initial assumption of the mean
field theory does not hold anymore. A diverging correlation length
means that all length scales become important, and at dimensions
smaller than 4, the mean field theory gives wrong quantitative results.
Nevertheless, it is remarkable that such a simple model predicts cor-
rect qualitative behavior with regard to power-law scaling in phase
transitions.

3.2 From the Ising model to simple fluids

In the previous section we explained that at the critical point one ob-
serves scale-invariant behavior due to the divergence in the correlation
length. This means, on the other hand, that the very local, microscopic
details of the particle interaction become unimportant at the critical
point and the same scaling behavior can be found in other systems.
In the Ising model there are spins, up and down, which interact only
with the nearest neighbors and their preferred orientation (depending
on the temperature) can be influenced by the external field H.

Let us now consider a classical gas of N particles in a system
with volume V interacting attractively with each other. We divide our
total volume into Ncell small sub-volumes v in such a way that each
v can be occupied by a single particle only (but move freely around)
and particles are allowed to interact with nearest-neighbor cells. The
fraction of occupied sub volumes x is given by

x =
N

V/v
=

N

Ncell
. (3.25)
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This model is known as the lattice gas model (C. N. Yang and Lee, 1952;
Lee and C. N. Yang, 1952) and even though it describes a fluid, its
relation to the Ising model is easily noticeable (and mathematically
equivalent). An occupied cell corresponds to a spin up (↑) and vacant
sites to spin down (↓), other quantities can be related between the two
models, as shown in Table 3.2. Even though expressed via different

Ising model Lattice gas

No. of spins volume V

No. of spins ↑ No. of atoms N

Magnetization m Avg. volume occupied by atoms
External magnetic field H Chemical potential difference ∆µ

Free energy per spin Pressure P

Table 3.2: Relationships between corresponding quantities of lattice gas and Ising
model.

quantities, phase transitions in the lattice gas will look very similar
compared to the Ising model (cf. Figure 3.3). Above the critical tem-
perature Tc, only homogeneous phases can be observed and the local
density x(δV) of a block δV (larger than v) will be identical to the total
average of x(V). At temperatures far below Tc phase separation occurs
and macroscopic phases of two different fractions of occupied cells
emerge, a gas and a liquid phase with x = xgas and xliquid, respectively.
These phases will be separated by an interface. At the critical point,
the correlation length grows and clusters of occupied and vacant re-
gions appear, and fluctuations of x(δV) increase and the local density
will deviate strongly from the mean value of x(V). Thus, the lattice
gas is thermodynamically equivalent to the Ising model.
Extending the lattice gas model further to effectively describe noble
gases, the liquid–gas transition is qualitatively (by the means of critical
scaling) identical to 3D-Ising universal behavior. This close relation
between the Ising model and simple fluids is one of the reasons why
the Ising model has become so valuable in statistical mechanics. As
long as two systems belong to the same universality class, an Ising
ferromagnet (may it be two- or three-dimensional) behaves identical
(by the means of scaling) to in the vicinity of the critical point.

3.3 Phase transitions in confinement

Introducing geometrical confinement (for example walls, thin film
geometries, or in porous media) to systems undergoing a phase tran-
sition, have been known to induce exciting phase behavior unknown
from bulk phases (Dietrich, 1999; Gelb, Gubbins, Radhakrishnan, and
Sliwinska-Bartkowiak, 2000).

D

z

xy

Figure 3.5: A fluid confined in a
thin film geometry with attractive
walls. Particles can move freely in x

and y directions, but are limited in
z to [0;D].

One extensively studied example are thin films geometries. There,
the fluid is confined by two attractive parallel walls separated by a
distance D as sketched in Figure 3.5. A vapor–liquid phase transition
is still present, but it is modified compared to the bulk transition.
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Depending on the thickness D of the slit, the critical temperature
and coexistence pressure is lowered with varying wall distance D.
Figure 3.6 illustrates this for the analogue Ising system. This process is
called capillary condensation. Close to the critical point, with the growth

0

H

T

D = ∞

D < ∞

ΔTc

Tc(D)

Hc(D)

ΔHc

Tc
∞

Figure 3.6: Schematic of the shift in the coexistence curve and critical point induced
by a thin film geometry of thickness D. Redrawn from Binder, D. P. Landau, and
M. Müller, (2003).

of the correlation length, ξ becomes larger than D and a gradual
cross-over scaling from three- to two dimensional universality takes
place (Binder and D. P. Landau, 1992) as the correlation length is
not limited in x and y direction. Similar phenomena also exist in
confined cylindrical pores, as present in various porous materials,
where the correlation length is bounded by the pore diameter. The
lateral dimension, however is much larger, thus the fluid gains a one-
dimensional character (Wilms, Winkler, Virnau, and Binder, 2010).

Slit pore confinements have been extensively studied in exper-
iments and with computer simulation models of colloid-polymer
suspensions (Binder, Horbach, Vink, and De Virgiliis, 2008; Aarts
and Lekkerkerker, 2004). Such suspensions are experimentally eas-
ier to study due to their large particle size (of the order of ≈ 1µm),
so the phase behavior and interface phenomena can be investigated
using laser scanning microscopy as shown in Figure 3.7. In these

Figure 3.7: Interface between gas (G) and liquid (L) phases close to a hard wall,
as determined from experiment using laser scanning microscopy. From Aarts and
Lekkerkerker, (2004).

mixtures, the colloid-rich phase correspond to the liquid phase and
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the polymer-rich phase to the vapor phase. When confined by hard
walls, a meniscus occurs between the coexisting phases (see Figure 3.7
and from computer simulation in Figure 3.8).

Figure 3.8: Simulation snapshot of a model colloid-polymer mixture at coexistence
condition of polymer and colloid-rich phases. From Vink, De Virgiliis, Horbach,
and Binder, (2006).

In another system, where the wall substrate is subject to an inho-
mogeneous pattern of hydrophilic and hydrophobic areas, as studied
by Lenz and Lipowsky, (1998) and Gau, Herminghaus, Lenz, and
Lipowsky, (1999), wetting layers of different morphologies can form
on the substrate, depending on the droplet volume. Water droplets
can form heterogeneous patterns on the substrate domains as shown
in Figure 3.9. With increasing adsorbed volume the adsorption pat-
tern undergoes a transition from partial to full wetting of the surface.
Modifying the pattern to include edges introduces additional effects,
as there is a preferred enrichment of water at the kinks, as shown in
Figure 3.9b.

a) b)

Figure 3.9: a) Depending on the adsorbed volume, the striped pattern of the hy-
drophobic surface promotes different droplet phases. Results from experiments
with water adsorbed on a pattern with kinked hydrophilic stripes are shown in
b). From Lenz and Lipowsky, (1998) and Gau, Herminghaus, Lenz, and Lipowsky,
(1999).

Now, metal–organic frameworks combine some properties ex-
plained above, it introduces a confinement given by the framework.
Yet, this structure is much more open, so one can expect fluids to
behave differently compared to capillary condensation as observed
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in many porous materials. The character (i.e. universality class) of
phase transitions in this medium is not obvious and could depend on
multiple properties of the MOF, e.g. pore size, interaction strength,
mobility of guest molecules in the MOF and so forth.

Another feature in MOFs is the heterogeneity of the interaction
of the MOF with the fluid. The metallic clusters at the framework
corners are known to interact stronger (i.e. more attractive) with guest
molecules (Walton and Snurr, 2007), as illustrated in Figure 3.10. At
very low pressures only the corners are covered (point A in Figure 3.10
and with increasing pressure a wetting layer covers the whole frame-
work (B and C) until at very high pressures the pore is filled with
liquid completely (D). Still, it remains unclear whether the transi-

Figure 3.10: Snapshots from computer simulations of the adsorption of of Nitro-
gen in IRMOF-1 at 77K. Labels A-D correspond to the pressure as marked in the
adsorption isotherm. From Walton and Snurr, (2007).

tion between the different state points A-D is associated with one or
more thermodynamic phase transitions with critical points and which
universal scaling applies there.

The aim of this work is to elucidate the phase behavior of methane
in the prototypical MOF, IRMOF-1, and its close relatives IRMOF-8
and -16 and try to understand the role of the heterogeneous inter-
action of the framework with its guest particles. Patterned wetting
layers analogous to the two-dimensional pattern on substrates are
imaginable – with the important difference that MOFs are, of course
three-dimensional. If there is more than a liquid–vapor like phase
transition in MOFs, a structural analysis will follow. With the methods
introduced in the following chapter we will analyze the critical behav-
ior and compare it with the confinements mentioned in this chapter.
Further, as the mobility and diffusion of particles in IRMOFs plays
an important role for industrial use (Stallmach, Gröger, et al., 2006),
the adsorption kinetics (also with respect to possible phase transitions
in the MOF) must be understood in more detail – also in conjunction
with the bulk phase behavior of the fluid.
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4

METHODS

This chapter gives an introduction into the applied methods required
to calculate the phase diagram of methane in MOFs. As purely an-
alytical methods often fail in more complicated systems with many
particles, numerical methods are applied to investigate the phase
behavior and adsorption kinetics in metal–organic frameworks.

4.1 Computer Simulations

Pioneered by the work of von Neumann and Goldstine, (1947), com-
puters have become the most valuable tool for numerical calculations.
They have long outperformed humans on doing repetitive, identical
work. Still, there are numerous numerical methods and algorithms,
depending on the problem that needs to be solved. In physics, many
of the methods originate from the Manhattan Project in the 40’s and
50’s of the 20th century. While computer simulations span a wide
field of methods and strategies, the focus in this work is on particle
based computer simulations. This means each particle will be handled
individually and the only input into the simulations is the interaction
potential, no further assumptions about the substances is required.
The most simple systems are models of hard spheres, which have
an infinite repulsion below a certain distance (its behavior is similar
to steel balls without the influence of an external field, i.e. gravity).
For the description of noble gases the Lennard-Jones (LJ) model has
proven to work well – also for other spherical uncharged molecules,
such as methane. Lennard-Jones particles have a short-ranged repul-
sion, caused by the Pauli repulsion of the electrons while at larger
distances there is an attraction originating in van-der-Waals forces.

In the following interaction models used in the simulations to
model metal–organic frameworks and methane are presented as well
as the methods, namely grand canonical Monte Carlo and molecular
dynamics simulations.

4.2 Modeling Methane and Metal–Organic
Frameworks

From a computational point of view methane has some advantages
over other molecules as CO2, H2, or polymers. It is almost spherical
(reducing the translational degrees of freedom), it has no dipole (so
long-ranged electrostatic interaction can be omitted) and it can be
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described by the means of classical mechanics in the targeted tem-
perature range of 30 − 300 K. The united atom model (i.e. describing
methane as a single spherical particle instead of considering each atom
separately) follows the work of Smit, Karaborni, and Siepmann, (1995),
approximating CH4 by a cut-off and shifted Lennard-Jones interaction
potential u(r):

uLJ(r) = 4ϵαβ

[

(σαβ

r

)12
−
(σαβ

r

)6
]

u(r) =

{
uLJ(r) − uLJ(rc) if r ⩽ rc

0 otherwise
, (4.1)

where r is the distance between particle centers, ϵαβ the depth of the
potential, and σαβ the effective diameter of this interaction. rc is the
cut-off distance.

Similarly, Metal–Organic Frameworks (MOFs) are described by an
atomistic particle model, i.e. each atom of the framework will interact
separately with the guest particles11. Also known as all-atom models as

each atom is simulated individually.
. To determine ϵαβ and σαβ,

Lorentz-Berthelot mixing rules2

2. Lorentz-Berthelot mixing rules
for two particle types α and β are

defined as

ϵαβ =
√
ϵαϵβ ,

σαβ =
σα + σβ

2
.

Original works by Lorentz, (1881)
and Berthelot, (1898).

are applied. The potential parameters
for the framework atoms based on the van-der-Waals parameters of the
Unified-Force-Field (UFF) as described in Rappé and Casewit, (1992)
and are listed in Table 4.1. The cut off radius rc is 2.5σCH4 for guest-
guest interactions and in the case of guest-host rαβ

c = 3.43σαβ. Further,

Particle ϵ/kB (K) ϵ/kB (K) σ (Å)
(original work) (this work)

Methane (CH4) 148.0 175.9 3.73
Carbon (C) 52.84 62.81 3.43
Hydrogen (H) 22.14 26.31 2.57
Oxygen (O) 30.19 35.88 3.12
Zinc (Zn) 62.40 74.17 2.46

Table 4.1: Lennard-Jones parameters of methane and the framework atoms. The
constant factor multiplied to ϵ is introduced in order to shift the critical point of
bulk methane to the experimentally obtained value. For details, see text.

all framework atoms will be fixed at their positions, so flexibility of
the MOF structure is not taken into account.

This model has been used in other works determining adsorption
isotherms from computer simulations and the results match exper-
imental values quite accurately (Düren, Sarkisov, Yaghi, and Snurr,
2004).

4.2.1 Grid-interpolation for MOF-Methane interaction

As noted above, the framework atoms are on fixed positions, which
allows for pretabulation of the potential energy landscape (and its
derivatives) on a three-dimensional lattice. These lattice points are
used with a 3-D cubic Hermite spline interpolation (Schultz, 1973)
for a faster computation of the guest-host interaction in the porous
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medium. This method has the advantage that it works very nicely
with periodic boundary conditions even with asymmetric unit cells
and has been well tested for modeling methane in silicates (June, Bell,
and Theodorou, 1990) and has also been used in computational studies
for MOFs (Skoulidas and Sholl, 2002).

The idea of Hermite splines can be explained in the one-dimensional
case most easily and is as follows: Consider a segment on points, at
x0 and x1 with their respective function values y1 and y2 called knots.
Mapping the distance between x1 and x2 to a unit interval

xr =
x− x1

x2 − x1
with x2 > x1 and xr ∈ [0, 1] , (4.2)

we can introduce a third order polynomial f̃(xr) which goes through
f(x1) and f(x2) with the same derivatives ∂xf(x1,2) at x1,2 (Schultz,
1973):

f̃(xr) = [2f(x0) − 2f(x1) + ∂xf(x0) + ∂xf(x1)] x
3
r

+ [−3f(x0) + 3f(x1) − 2∂xf(x0) − ∂xf(x1)] x
2
r

+ ∂xf(x0)xr + x0 ,

(4.3)

which can be rewritten in terms of helper functions h
j
i(xr),

h1
0(x) = x2(3 − 2x)

h0
0(x) = (1 + 2x)(1 − x)2 = h1

0(1 − x)

h1
1(x,d) = dx2(x− 1)

h0
1(x,d) = h1

1(1 − x,−d)

(4.4)

yielding

f̃(x) = h0
0(xr)f(x0) + h0

1(xr,∆x)∂xf(x0)

+ h1
0(xr)f(x1) + h1

1(xr,∆x)∂xf(x1)

=

1∑

i=0

hi
0(xr)f(xr) + hi

1(xr,∆x)∂xf(xi) ,

(4.5)

where ∆x = x2 − x1. By combining all intervals, one obtains a smooth
continuous function, which is quite useful if one interpolates the
potential energy, the first derivative (the force) will be continuous, too.
The above scheme in Eq. (4.5) can be easily extended to two and three
dimensions by subsequently application of the same interpolation into
y and z direction. In two dimensions, there are then four nearest knots
and the interpolated function f̃(x,y) reads

f̃(x,y) =
1∑

j=0

([

1∑

i=0

hi
0(xr)f(xi,yj) + hi

1(xr,∆x)∂xf(xi,yj)

]

h
j
0(yr)

+

[

1∑

i=0

∂yh
i
0(xr)f(xi,yj) + ∂yh

i
1(xr,∆x)∂xf(xi,yj)

]

h
j
1(yr,∆y)

)

=

1∑

j=0

1∑

i=0

[

hi
0(xr)h

j
0(yr)f(xi,yj) + hi

1(xr,∆x)hj
0(yr)∂xf(xi,yj)

+ hi
0(xr)h

j
1(yr,∆y)∂yf(xi,yj) + hi

1(xr,∆x)hj
1(yr,∆y)∂x∂yf(xi,yj)

]

.

(4.6)
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x

f(x)

x1 x2 x3 x4

Figure 4.1: Illustration for one-dimensional Hermite-Splines. The function values
and derivatives (indicated in blue) of two neighboring points (knots), x1 and x2 are
used for a piecewise interpolation between these points. Repeating the procedure
for all intervals gives an interpolation over the full range (dashed line).

In three dimensions, we 8 neighbors are required and interpolation
equation includes 64 terms:

f̃(x,y, z) =
1∑

k=0

1∑

j=0

1∑

i=0

[

hi
0(zr)h

i
0(xr)h

j
0(yr)h

k
0 (zr)f(xi,yj, zk)

+ hi
1(xr,∆x)hj

0(yr)h
k
0 (zr)∂xf(xi,yj, zk)

+ hi
0(xr)h

j
1(yr,∆y)hk

0 (zr)∂yf(xi,yj, zk)

+ hi
0(xr)h

j
0(yr)h

k
1 (zr,∆z)∂zf(xi,yj, zk)

+ hi
1(xr,∆x)hj

1(yr,∆y)hk
0 (zr)∂x∂yf(xi,yj, zk)

+ hi
1(xr,∆x)hj

0(yr)h
k
1 (zr,∆z)∂x∂zf(xi,yj, zk)

+ hi
0(xr)h

j
1(yr,∆y)hk

1 (zr,∆z)∂y∂zf(xi,yj, zk)

+ hi
1(xr,∆x)hj

1(yr,∆y)hk
1 (zr,∆z)∂x∂y∂zf(xi,yj, zk)

]

.

(4.7)

In our computer simulations, where an interpolation of the potential
energy landscape U(r) of a methane particle with the MOF atoms is
required, this spline interpolation scheme has the advantage of being
constant in time, independent of the number of interacting particles,
since those are hidden in the knots and its derivatives – which are
calculated only once. In this work we use a periodic grid with a
spacing of ≈ 3Å between neighboring knots. In a three dimensional
system, each knot requires 8 coefficients, thus for IRMOF-1 (with 130
knots on each edge) there are 1.75× 107 coefficients. With double

precision (8Byte per value) the total memory required for holding the
coefficients is ≈ 134MB.

4.3 Monte Carlo simulations

Named after the casino in Monaco33. As explained in Metropolis,
(1987), Metropolis suggested

the name because the uncle of
Stanislaw Ulam, used to borrow

money from his relatives, because
he “had to go to Monte Carlo”.

, Monte Carlo simulations are
generating a vast amount of random numbers and connecting these to
physical variables in order to sample a large number of states in the
thermodynamic system. Using sophisticated sampling techniques, it
allows for accessing equilibrium properties of the analyzed model.
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Probably the most used introductory example for Monte Carlo
methods is the following: Consider the estimation of π using the area
of a circle with radius d surrounded by a square with an edge length
d, as shown in Figure 4.2. The ratio of both areas is given by

d

2d
Figure 4.2: Illustration for the esti-
mation of π: The ratio of the areas
Acircle/Asquare is equal π

4 . This ra-
tio be estimated numerically by
choosing ntot random positions
and counting how many of the to-
tal trials (ntrial) where in the circle
(gray area). Then 4ncirc

ntrial
gives an

estimate for π.

area of circle
area of square

=
π

4
(4.8)

and can be approximated numerically by choosing two random num-
bers of uniform distribution in the range of [−d;d] defining a random
point in the square. By counting all “hits” into the circle ncirc, the
approximated value of π can be calculated by 4ncirc/ntrial after ntrial
total tries. This rather intuitive strategy is called direct sampling and
can be modified in the following manner: Instead of choosing a ran-
dom position in each step, a displacement ∆ = (δx, δy), is sampled
using random numbers with δx, δy = rand(−a,a), where rand(−a,a)
returns a random number in the range [−a,a]. Starting from an arbi-
trary position (this could be at the center of the circle), we propagate
through the whole space and count the number of hits in the circle
analogously to the previous method. As any nth step only depends
on the previous step n− 1, this process is “memoryless”4

4. Processes with no memory are
processes where the future de-
pends on the present, only – the
history plays no role.

, and the
whole process becomes a Markov chain. However, this strategy has
the following problem: What happens when the new position would
leave the square (cf. step (k) → (k+ 1) in Figure 4.3)?

Assuming the system is in equilibrium and the transition proba-
bility between two states p(· → ·) is known, the following equation,
detailed balance, holds5 5. A derivation of detailed balance

can be found in Allen and Tildesley,
(1989).

:

f(old)p(old → new) = f(new)p(new → old) , (4.9)

(1)

(2)

(k)
(k+ 1)

Figure 4.3: Modification for direct
sampling: Markov chains. Conse-
quent steps i only depend on the
previous step i− 1, i.e. no “mem-
ory” is retained and a random walk
takes place. For an explanation
about the step (k) → (k+ 1), see
text.

where f(·) is the stationary (equilibrium) probability of finding the
system in a certain state. It means that the probability of being in a
state old and transitioning into another state new, must be equal to the
stationary probability of old and moving to state new. In a Markov
chain, p(old → new) can be rewritten as

p(old → new) = A(old → new) acc(old → new) , (4.10)

where acc(·, ·) is the acceptance probability and A(old → new) denotes
the “a priori probability”.

Using Eq. (4.10) and assuming that A is symmetrical, i.e. A(old →
new) = A(new → old), the Metropolis criterion (see Metropolis, Rosen-
bluth, et al., (1953)) can be used to satisfy detailed balance6

6. The generalized case, where A is
asymmetrical, has been discussed
by Hastings, (1970).

:

acc(old → new) = min
(

1,
f(new)

f(old)

)

. (4.11)

This rule for the acceptance probability can be used to determine
whether consecutive steps will be accepted and a move takes place or
if the step is rejected and the current value will be reused.
With this criterion it is possible to solve the above problem: If the new
position is outside the allowed box, therefore the probability of being
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in that state is zero and f(new) = 0. Consequently, this displacement
move is rejected, step (k) will be counted again and serves as a starting
point for the next trial.

Now, if we extend the problem to the sampling in thermodynamic
systems, we want to determine the average of a quantity A. In the
canonical ensemble such an average reads

⟨A⟩ =
∫

drNA(rN) exp
[

−U(rN)/kBT
]

∫
drN exp(−U(rN)/kBT)

, (4.12)

where rN = {r1, r2, . . . , rN} is a microscopic state of N particles at a
given temperature T . U(rN) is the inner energy at such state. The
term exp

[

−U(rN)/kBT
]

from Eq. (4.12) is an extremely sharp distri-
bution where only an exponentially small fraction of states actually
contribute to ⟨A⟩. Thus, with simple sampling, where the states are
chosen homogeneously from the phase space, one would have mostly
states from the tail of the distribution – which is very ineffective and
determining an accurate value for ⟨A⟩ becomes impossible. Instead,
we introduce a probability weight p to each phase space contribution,
such that the exponential cancels out,

⟨A⟩ =
∫

drNA(rN) exp
[

−U(rN)/kBT
]

/p(rN)
∫

drN exp(−U(rN)/kBT)/p(rN)
(4.13)

choosing p(rN) = exp(−U(rN)/kBT) simplifies ⟨A⟩ to an arithmetic
average:

⟨A⟩ = 1
N

N∑

i=1

Ai(r
N) . (4.14)

Obeying detailed balance from Eq. (4.9),

p(old → new)

p(new → old)
= exp

{[
U(rNnew) −U(rNold)

]

/kBT
}

≡ exp [−∆U/kBT ] ,
(4.15)

the Metropolis criterion reads

acc(old → new) = min (1, exp [−∆U/kBT ]) . (4.16)

This method is known as importance sampling, as states that contribute
most are also weighted strongest. In practice this means that we will
accept all trials where the potential energy decreases, otherwise we ac-
cept the new configuration only with a probability of exp [−∆U/kBT ].

As the main interest in this work is oriented towards the study of
phase behavior in confinement, in particular the liquid–vapor phase
transition, the “natural” ensemble to perform computer simulations
in is the grand canonical (µVT) ensemble.77. See Binder, (1999), for example. This means that the order
parameter ρ = N/V is fluctuating, while the chemical potential µ,
the volume V and the temperature T are kept constant. This can be
achieved by coupling the thermodynamic system to an external basin
of particles at the same temperature and chemical potential, but allow
for particle and energy transfer between the systems.
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In equilibrium, the probability of finding the system in a configura-
tion of N particles at their microscopic states rN (at given temperature
T , volume V , and chemical potential µ) is given by

P(N, rN)µVT =
1

Z(µ,V , T)
VN

λ(T)3NN!
e−βU+βµN , (4.17)

where β = 1/kBT , U is the internal energy of the system and λ(T)

is the de Broglie thermal wavelength. The grand partition function
Z(µ,V , T) is the sum over all possible state in the grand canonical
ensemble, therefore normalizes P(N, rN), such that

∫
P(N, rN) = 1.

Integrating Eq. (4.17) over all states at a given N, we can determine
the probability of finding the system at a specific particle number N:

P(N)µVT ∝ eβµN

∫

drN
1

λ(T)3NN!
e−βU (4.18)

= eβµNe−βF(N,V ,T) . (4.19)

Note that in Eq. (4.18) the normalizing prefactors have been dropped,
as we are not interested in the absolute probabilities, only relative
probabilities to a reference state. F(N,V , T) is the Helmholtz free energy.

Thus, keeping T and V constant and varying only the particle
number, the free energy is a function of the order parameter only. This
is especially useful as F is directly related to the probability P(N) of
a thermodynamic state, i.e. by measuring P(N) one can obtain a free
energy density f = F(N)/N,

f(N,V , T) =
F(N,V , T)

N
= −

kBT

N
lnP(N)µVT + const. (4.20)

Monte Carlo simulations can then be used to effectively compute a
histogram of visited states as function of N by inserting and removing
particles with a Metropolis algorithm in the grand canonical ensemble.
After each insertion and removal trial Nc, where Nc is the current
number of particles, displacement steps are performed. This histogram
is used to compute the normalized probability in order to calculate
the free energy as of Eq. (4.20).
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Figure 4.4: Probability distribu-
tion of a simple Lennard-Jones
fluid at vapor–liquid phase coex-
istence. The probability P(ρ*) of
visiting a state in the two-phase
region at these conditions is ≈ 60
decades lower than for the pure
vapor or liquid phases (with σ as
the Lennard-Jones diameter of the
particles).

4.3.1 Successive umbrella sampling

Given the considered system is in a grand canonical ensemble, the
probability P(c) of finding the system in configuration c, scales with
P(c) ∝ exp(−βF(c)) (see Eq. (4.20)), where F(c) is the free energy of
the system. At system parameters above a critical temperature or
outside a phase-separated region, the output probability distribution
P(N) will display a single Gaussian peak around the expected particle
number N according to the set values of T , V , and µ. When lowering
the temperature below the critical temperature Tc and setting coexis-
tence conditions, the system can phase separate and instead of only
a single Gaussian distribution around an average density, two peaks
will appear – one for each bulk phase, see Figure 4.4a. However, using

33



direct sampling it will become impossible (especially for temperatures
far below Tc) to sample states between these peaks and transition
from one bulk phase into the other. Figure 4.4b illustrates this for a
vapor–liquid transition at a temperature 20% below Tc: In that case
sampling states in the two-phase region is approximately 60 orders of
magnitude lower than purely gaseous or liquid states. The free energy
cost between the probability maxima and minimum is associated with
the creation of an interface between the coexisting phases.

To sample equilibrated states over the full range of the relevant
order parameter, more sophisticated sampling schemes are required.
Biased sampling methods for Monte Carlo simulations, such as Wang-
Landau sampling88. See F. Wang and D. P. Landau,

(2001).
, transition matrix Monte Carlo9

9. See Errington, (2003).

, or successive um-
brella sampling, developed by Virnau and M. Müller, (2004), are tech-
niques trying to overcome such barriers by increasing the probability
of visiting otherwise very improbable states (cf. Figure 4.4). The latter
sampling method will be introduced in the following.

The main idea in successive umbrella sampling is to discretize the
system into n small bins of the relevant order parameter η – e.g. for
the liquid–vapor phase transition this could be the volume. Within
such a window [ηl,ηr] the free energy difference should be small, so
the sampling probability is similar for all configurations. The system
is then allowed to perform normal Monte Carlo moves according to
the Metropolis algorithm. At the same time, a histogram of visited
configurations as a function of η is recorded. To satisfy detailed
balance (see Eq. (4.9)), the system is not allowed to leave the order
parameter window. If a state at step k with η(k) outside the window
is sampled, the move will be rejected, step k− 1 is counted once more
and serves as starting point for the next Monte Carlo step. Note that
this is analogous to the example outlined above for the estimation of
π when a displacement leaves the square (see also Figure 4.3). The
algorithm for successive umbrella sampling is also summarized in a
flowchart in Figure 4.6.
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Figure 4.5: Principle of succes-
sive umbrella sampling: The full
probability distribution (dashed)

is reconstructed from smaller
windows (red). Within each win-

dow, only the relative probabil-
ity is known. The relative prob-
ability for each successive win-

dow is extrapolated from the
previous. For details, see text.

Now, with the above algorithm, as one obtains n local histograms
H[0], . . . ,H[n], covering the full order parameter range (see also Fig-
ure 4.5), containing the information for the complete probability dis-
tribution relative to the initial state P[1]:

P[n]

P[1]
=

H[1]r
H[1]l

· H[2]l
H[1]r
︸ ︷︷ ︸
=w[i]

·H[2]r
H[2]l

· · · H[n]r

H[n]l
, (4.21)

where H[i]l,H[i]l indicate the left and right boundary of the i-th win-
dow, respectively. If the boundaries of the windows are overlapping,
the ratio w[i] = H[i + 1]l/H[i]r is 1, in non-overlapping scenarios
w[i] can be estimated by extrapolating H[i] to H[i + 1]l 1010. It is also possible to include the

information from more that just a
single window.

. Virnau
and M. Müller, (2004) suggested a second order polynomial for the
extrapolation of w[i].
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Figure 4.6: Flowchart for grand canonical particle insertion and removal trials
using successive umbrella sampling. Random numbers r1 and r2 uniformly chosen
from the range [0; 1).

4.3.2 Histogram reweighting

Consider the probability function P(N)µVT as in Equation (4.19):
changes in µ are weighted exponentially in P(N), and this makes
it rather difficult to set the coexistence chemical potential µcoex for a
liquid–vapor phase transition – requiring that the bimodal probability
distribution having the same weight for both peaks (Binder and D. P.
Landau, 1984; Borgs and Kotecký, 1990), as shown in Figure 4.4a.

Histogram reweighting, developed by Ferrenberg and Swendsen,
(1988), is a powerful technique for Monte Carlo simulations allowing
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the exploration of large parameter ranges from a single simulation
run. Applied on GCMC simulations, it can be used to solve the
above problem: Consider the probability distributions P(N)µ ′VT and
P(N)µ ′VT of two ensembles differing in the chemical potential µ and
µ ′, only. According to Eq. (4.19) they are related via

P(N)µ ′VT = eβ(µ−µ ′)NP(N)µVT , (4.22)

where P(N)µ ′VT needs to be normalized such that
∑Nmax

n=Nmin
P(n) = 1,

where [Nmin,Nmax] is the sampling range for the number of particles.
The normalization is required to be able to compare the different prob-
ability distributions, as distinct simulation parameters (e.g. number of
Monte Carlo sweeps, Nmin) can shift the free energy by an irrelevant
constant value, which translates to a prefactor of P(N).

4.3.3 Method applied in this work

To determine the probability distribution at a given temperature and
chemical potential for methane in IRMOF-1, IRMOF-8 and IRMOF-16,
we applied grand canonical Monte Carlo (GCMC) using successive
umbrella sampling. Additionally, every 200 to 500 particle insertion
and removal trials, a displacement move cycle is inserted. In this cycle,
N trial displacements are applied to a configuration of N particles.
The additional displacement steps allow the system to equilibrate
locally after particle insertion (or removal), as new, more optimal
positions can found within the displacement range of a particle. Thus,
fewer sampling trials are required overall to obtain equilibrium states.
The maximum displacement ∆ was set to 0.67Å, which is ≈ 1/5th
the diameter of CH4 molecules. ∆ is determined by maximizing the
mean squared displacement (MSD) per cycle while trying to keep the
acceptance rate high enough to sample the whole phase space.

Starting with very small systems (the MOF structure restrict the
allowed system sizes to multiples of the unit cells) of a single MOF unit
cell, allows for a first estimation of the coexistence chemical potential.
These preliminary runs are also helpful as they give information about
the density region a phase transition can occur, therefore effectively
reducing the computational effort needed for larger systems. In a
next step, system sizes are increased and running the simulation at
(or close to) coexistence conditions. Running multiple independent
simulations simultaneously (we use 5 to 10 independent runs) will
reduce statistical errors in the measurement of observables. In each run
the probability of the states as function of the particle number P(N)µ
will be recorded. P(N)µ is then subjected to histogram reweighting to
calculate P(N)µc . At phase coexistence P(N) will display two peaks,
and each peak must contribute the same weight to the distribution
function (Borgs and Kotecký, 1990; Binder and D. P. Landau, 1984).
The first moment of each peak corresponds to the point on the binodal
in the phase diagram.
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4.4 Finite-Size scaling

Numerical studies of phase behavior are only able to consider finite-
sized systems and this imposes a problem: Phase transitions require
infinite systems, since the condition of a phase transition is a singu-
larity. And true singularity requires some kind of sum over infinite
elements. By observing thermodynamic quantities in system of differ-
ent sizes, an extrapolation to the thermodynamic limit is possible in
many cases.

Consider a cubic system of size L× L× L with periodic boundary
conditions in the two phase region of the liquid–gas transition. At
densities away from of the bulk phases ρl, and ρg (e.g. around ρ =

(ρg + ρl) and far below the critical temperature) one will observe a
region where changes of the density will not result in a change of
free energy per volume, but only in a change of relative amounts
of the coexisting phases (cf. Figure 4.4). This means the interfaces
will be displaced, but its area is preserved (hence, the interface must
be planar), as long as the free energy is a horizontal plateau. The
associated surface tension
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Figure 4.7: Finite-size scaling for
the surface tension γ as a function
of the system size L. Reprinted
from Binder, Block, Virnau, and
Tröster, (2012).

γ(L) is then (Binder, 1982)

γ(L) = L
f(L)(T , ρ)

2
, (4.23)

where f(L) is the interfacial free energy per volume of a system where
the area of a single interface is A = L2. Data for γ(L) versus 1/L
is shown in Figure 4.7. The non-zero slope indicates that finite-size
corrections ∝ 1/L are introduced and an extrapolation to 1/L → 0
is required to obtain the bulk value of the surface tension. These
corrections are due to the excitation of long-wavelength capillary
waves, which will be cut off at wavelengths in the order of L (Widom
and Rowlinson, 1970). This is just one example where the finite size
of the system introduces modifications to physical quantities – finite
size scaling in the vicinity of the critical point becomes particularly
important for the study of phase transitions.

4.4.1 Close to the critical point

At the critical point the phase transition is of second order, thus
continuous. At this point the correlation length ξ diverges, which also
affecting many other physical properties of the material.
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Figure 4.8: Illustration of the sus-
ceptibility in a system undergoing
a continuous phase transition. In
a system with a finite dimension
L, the fluctuations are limited by
the system size and the crititical
temperature can be shifted.

Following
the correlation length, they show a power-law behavior, too (see § 3.1.1
(p. 20)).

However, in finite systems with a linear dimension L, correlations
cannot exceed L and corrections compared to the infinite system are
introduced. Figure 4.8 displays the behavior of susceptibility χ (or
similar fluctuations of the order parameter, e.g. the compressibility in
fluids) in the vicinity of the critical point. While in infinite systems ξ

can grow indefinitely at Tc, in finite systems it is limited by L. Yet, by
carefully observing the phase behavior with finite size scaling analysis,
one can learn about the properties of the infinite system. The finite
size scaling ansatz states that the singular term of the free energy F
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can be expressed by (Privman and Fisher, 1984; D. P. Landau and
Binder, 2014)

F(L, T) = L−(2−α)/νF(ϵL1/ν) , (4.24)

where ϵ = (T − Tc)/Tc is the relative distance to the critical temper-
ature. The scaling of the form ϵL1/ν is motivated by the fact that
the correlation length is limited by the system size L, and diverges
as ξ ∝ ϵ−ν. Note that the above ansatz require temperatures in the
critical region and large enough L, otherwise corrections to this scal-
ing must be taken into account. At the critical point ϵ = 0 the above
Equation (4.24) simplifies to

F(L, Tc) = L−(2−α)/νF0 , (4.25)

where F0 is a constant amplitude. Therefore, the partial derivatives of
the free energy will have a very similar form. In the Ising model, the
magnetization m = −∂F/∂H exhibits a power-law behavior at Tc upon
varying the system size L:

⟨m⟩ = −
∂F

∂H
= L−β/νm0 . (4.26)

with the amplitude m0.
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Similar scaling functions can be found for the susceptibility χ or
the specific heat, which can be useful determining ratios of universal
exponents. With the analysis of higher-order moments of m and
their finite size-scaling, Binder, (1981) has shown that the fourth-order
cumulant can be written as

UL = 1 −

〈

m4
〉

L

3 ⟨m2⟩2
L

, (4.27)

where
〈

mk
〉

L
is the k-th moment of the probability distribution PL(m)

in a system with linear dimension L,

〈

mk
〉

L
=

∫

dmmkPL(m) . (4.28)

For a probability distribution of the order parameter that consists of
two Gaussians T < Tc (each corresponding the order parameter of
one of the coexisting phases) UL → 2/3, and for a single Gaussian
(above Tc) UL will vanish. But T = Tc for all system sizes UL collapses
into a common universal fixed point, U∗, as illustrated in Figure 4.9.
The Binder cumulant UL is quite useful, since it allows to determine
the critical temperature accurately from computer simulations from
the analysis of probability distributions (which are related to the free
energy, see § 4.3 (p. 30)) of different system size. It also allows to
identify the universality class of a phase transition as the intersection
point U*, but can vary also depending on the choice of boundary
conditions or system geometry.
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4.5 Molecular dynamics simulations

Molecular dynamics (MD) is one of the most widely used methods
in order to simulate dynamical systems. The underlying principle is
very fundamental: The idea is to solve Newton’s equations of motion,

mi
d2ri
dt2 = Fi (4.29)

for each particle i with mass mi and position ri on a time-discretized
lattice. Fi(t) is the total force acting on the particle, which is related to
the potential via

F(r(t)) = −∇rV(r(t)) . (4.30)

Thus, thermodynamic variables can be extracted directly from the
particle configuration and time-evolution.

One of the most widely used methods to solve the equations of
motion is the velocity Verlet integration scheme, which reads

ri(t+ δt) = ri(t) + vi(t)δt+
Fi(t)

2mi
δt2 +O(δt4) , (4.31)

vi(t+ δt) = vi(t) +
δt

2mi
[Fi(t) + Fi(t+ δt)] +O(δt2) , (4.32)

where ri(t) and vi(t) are the position and velocity of particle i at time
t, respectively. In the case of radially symmetric potentials V(r) = V(r)

between particles, the total force on particle i can also be written as

Fi(ri(t)) = −
∑

j ̸=i

∂

∂r
V(|ri(t) − rj(t)|) . (4.33)

The total energy E(t) at a time t is for Eqs. (4.31), (4.32) is given by

Etot(t) =
1
2

∑

i

miv
2
i(t) +

∑

i

∑

j>i

V(|ri(t) − rj(t)|) . (4.34)

The Verlet integration method is a time-reversible, symplectic algo-
rithm. Hence, it is phase space conserving and has a very good long
time stability in energy conservation. The energy oscillates with a
term scaling with δt2 around the initial energy

Etot(t) = Etot(0) +O(δt2). (4.35)

Therefore, with the above algorithm we conserve the number of parti-
cles, volume, and energy, meaning the statistical ensemble is micro-
canonical.

4.5.1 Self-diffusion and interdiffusion

One of the very easily accessible transport coefficient from computer
simulations is the self-diffusion coefficient Ds. It describes how fast a
single particle can observe its surrounding on average. This means,
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considering the time-evolution of the single-particle density ρs =

ρs(r, t)
∂ρs

∂t
= Ds∇2ρs , (4.36)

Ds is the constant measuring the mobility of a single particle. A
similar property can be defined for collective behavior, i.e. by the
means of a concentration gradients in a binary mixture of species A

and B:
∂cA

∂t
= DAB∇2cA , (4.37)

where cA is the concentration of A-particles.
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Figure 4.10: Mean squared dis-
placement (MSD) as a function
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time (t < 3× 10−4 ns) this data

shows a ballistic regime (MSD
∝ t2), while for very long times

t > 1ns the mean squared displace-
ment becomes linear with a slope

of Ds, the self-diffusion coefficient.

The self-diffusion coefficient Ds can be determined via the Einstein
relation:

Ds = lim
t→∞

〈

[r(t) − r(0)]2
〉

2dt
, (4.38)

where ⟨·⟩ is the ensemble average over particles and time.
〈

[r(t) − r(0)]2
〉

is the average mean-squared displacement of a tagged particle. It is
very easily measurable in molecular dynamics computer simulation
and is typically displayed in a log-log plot (cf. Figure 4.10) as it allows
to identify the different regimes from the involved exponents using a
single plot. For very short times, particles behave ballistically, as in this
short period not collisions with other atoms take place. In this regime
the exponent of the time-dependence of the MSD is ∝ t2. However, for
very long times, the tracer particle has had many collisions with other
atoms and the mean-squared displacement is diffusive, and grows
linearly with the slope related to Ds via Eq. (4.38), where test particles
behave random-walk like with no preferred direction.

The intermediate cross-over regime between ballistic and diffusive
time scales is quite complicated and its behavior depends strongly on
the density, particle interaction, and so on.

Interdiffusion (also called mutual diffusion) describes processes
where concentration gradients are involved and is connected to collec-
tive motions like electrical conductivity in ionic liquids. For collective
diffusion very similar relations can be established. Whereas for single
particle diffusion the displacement of tracer particle positions is con-
sidered, for interdiffusion the relevant mean-squared displacement is
determined from the center of mass rcm of a component α:

rcm(t) =
1
Nα

Nα∑

i=1

r
(α)
i (t) (4.39)

and the interdiffusion coefficient DAB in a binary mixture with A and
B components then can be computed in computer simulation with a
relation similar to the Einstein relation above (Horbach, Das, et al.,
2007),

DAB = lim
t→∞

(

1 +
mAca

mBcB

)2

ϕ
NcAcB

6t
〈

[rcm(t) − rcm(0)]2
〉

, (4.40)

where cα (α = A,B) are the respective concentration of the species
in the system, mα the particle mass. ϕ is the thermodynamic factor
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related to the second derivative of the Gibbs free energy density g,

ϕ =
cAcB

kBT

∂2g

∂cA∂cB
. (4.41)

In very dilute systems where no cross-correlations between the par-
ticles occur, the collective diffusion coefficient simplifies to a linear
combination of the self-diffusion coefficients of both species,

DAB = ϕ(cBDA + cADB) , (4.42)

which is the Darken equation (Darken, 1949).

4.5.2 Parallelization using GPUs

One of the advantages of the Verlet algorithm is that it is very easy to
parallelize since every new configuration at time t+ δt is dependent
on the particle positions ensemble rN at the previous time step t. This
means one can calculate each particle propagation step independent
from the others, thus in parallel. This makes the Velocity-Verlet inte-
gration scheme ideally suited for computation on GPGPU11 11. GPGPU = General Purpose

Computation on Graphics Process-
ing Unit

which are
based on massive parallelization of relatively weak microprocessors
exploiting the architecture of graphics cards for scientific computation.
Such a parallelization does not come without constraints: A graphics
processing unit (GPU) is has a hierarchical memory model: Very fast
local memory (registers), but its scope is restricted to a single thread
(processor) and the number of registers is limited. Shared memory,
as the name indicated is shared between threads that belong to the
same thread block (usually 32 threads), it can be used fastest if each
thread accesses are synchronized, otherwise a significant slowdown
may be observable. It also allows (limited) communication between
the threads. The slowest memory type on the GPU is the global mem-
ory, it is accessible by all threads and the slowest type of memory
(access times approximately 100 times slower than shared memory)
but also the largest in capacity. Global memory access should also
be executed in a coalesced manner, i.e. reads and write should be in
parallel and on sequential locations on the memory to make proper
use of the available bandwidth in the GPU.

Note that this is a simplified picture of the architecture in GPUs12 12. A more sophisticated documen-
tation about CUDA programming
can be found in CUDA C Program-
ming Guide v8.0 by Nvidia, (2016).

,
but it should give a general overview about the challenges related to
programming on GPGPUs, compared to classic codes for single CPU,
where everything is processed serially. Speedups with factors 70 to
100 times faster compared to single CPU cores are not unusual. This
enables the computation of systems with more particles, time-steps,
but requires more careful programming to maintain the performance
advantage. As the programming models and algorithms for serial
and parallel computation are very different in many cases, instead of
extending available programs written for running on CPUs, HALMD
(Colberg and Höfling, 2011) has been written from the ground up
for computation on GPGPUs using a modular design both for both
the processor architecture and extensibility with regard to numerical
algorithms.
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4.6 Cell– and Verlet neighbor lists

In computer simulations the biggest computational effort is the cal-
culation of the interactions between particles. An optimization of the
involved routines and algorithms is compelling, as a speedup there
will allow for a simulation of larger systems with more particles or
time steps in the same amount of time.

In the worst case, one would have to compute the interaction of
each particle with every other particle – in such cases the number of
required iterations for the energy or force calculation is of the order N2,
where N is the total number of particles. But if the interaction range rc
is short, in most of the cases the distance r between the particles will
be larger than rc and not contribute to the particle movement or total
potential energy. To improve the efficiency in systems with short-range
interaction a widely used technique is to subdivide the simulation box
into smaller cells as shown in Figure 4.11a. The regular grid allows to
calculate the associated cell from a particle position very quickly. With
all particles assigned to cells, only pairs of particles in neighboring
cells have to be considered (red region in Figure 4.11a). If the cell
edge length is equal or larger than rc, in a three dimensional system
one has to consider 27 cells, independent of the total system size, thus
reducing the number of iterations required to O(N). Because there is
some computational overhead to the assigning particles to cells and
list updates (occurring at each particle removal and insertion), cell
lists are only effective for larger system sizes and depending on the
cut-off radius rc. If the cells are too big, neighboring cells may already
include most of the particles in the system and the advantage will
be gone. In our studies, systems more than 200 CH4 molecules in
the simulated density ranges have proven to be more effective than
a naive implementation, as long as there are more than three cells in
any linear dimension.

a) b)

Figure 4.11: a) Sorting particles into cells, which can be easily calculated from their
position. Particles interacting with the reference particle (black), must be in the
neighboring cells (red). b) With Verlet lists each particle maintains its own neighbor
list, reducing the number of particles tested for interaction with the reference
particle.

The above idea of maintaining a list of particles associated to a
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position can be improved further, by modifying the list such that each
particle maintains its own list of neighboring particles. Neighbors
within the cut-off distance plus a skin, ∆rskin are stored in an array
as indicated in Figure 4.11b. In this way, one introduces a “grace
time”, as an update of all neighbor lists is required only if a particle
moves more than ∆rskin/2 since the last neighbor list update13 13. The factor 1/2 in the maximum

displacement comes from the fact
that both the reference and another
particle could move towards each
other.

. How-
ever, these Verlet lists are not applicable in grand canonical particle
insertion and removals; in such cases cell lists are required. Yet, for
displacement moves or in molecular dynamics simulations, where the
particle number is constant, Verlet lists are usually faster than cell lists.
If possible, both methods should be combined: The cell lists can be
used to look up neighboring particles when the neighbor list needs to
be updated.
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5

RESULTS

5.1 Evidence for two critical points

The results of this section have been published in Höft and Horbach,
(2015) and will be reviewed in this section. Phase behavior in con-
finement has been extensively studied for a wide range of geometries,
such as in confined walls, thin films or cylindrical pores. Metal–
organic frameworks, on the other hand, form an ordered, porous
network opening the possibility of new classes of phase transitions.
Experimental and computer simulation studies1 1. Rowsell, Spencer, et al., 2005;

Rosi, Eckert, et al., 2003; Yildirim
and Hartman, 2005; Siberio-Pérez,
Wong-Foy, Yaghi, and Matzger,
2007; Uzun and Keskin, 2014;
Mueller and Ceder, 2005; Walton,
Millward, et al., 2008; Dubbeldam,
Frost, Walton, and Snurr, 2007; B.
Liu, Q. Yang, et al., 2008; Fairen-
Jimenez, Seaton, and Düren, 2010

have shown that the
arrangement of guest particles in MOFs can change for different pres-
sures: At very low densities, the guest particles preferably occupy
sites close to the metallic clusters. When increasing the pressure, the
adsorbed molecules form a wetting layer on the whole surface of
the porous medium. For even higher densities, pores can be filled
completely with molecules. This poses the question whether the above
structural changes are connected to phase transitions (and therefore
coexistence of different macroscopic bulk phases seperated by an in-
terface) and critical points. It is not obvious how the heterogeneous
structure affects phase behavior.

Figure 5.1: Unit cell of IRMOF-1
crystal. Spheres represent different
atoms, the color of the sphere in-
dicates the element: C (turquoise),
O (red), H (white) and Zn (yellow).
From Höft and Horbach, (2015).

In fact, we find two lines of first-oder phase transitions of CH4 in
IRMOF-1, the IS (IRMOF-surface) and ILG (IRMOF-liquid-gas) tran-
sitions, both ending in a critical point. The location and structure of
these phase transitions have been determined by using grand canoni-
cal Monte Carlo (GCMC) computer simulations in combination with
successive umbrella sampling (see also § 4.3 (p. 30)). The details of
the applied particle model of the MOF and CH4 can be found in
§ 4.2 (p. 27). The presented results a collected from averages over
10 independent runs using 2× 107 trial removals and insertions in
each histogram window. After every 400 insertion and removal, a
displacement cycle is applied to a given configuration of N parti-
cles, consisting of N trial displacements of a random particle with a
maximal displacement of 0.67Å. The cubic unit cell of IRMOF-1 is
shown in Figure 5.1 and has an edge length of Lunit = 26.669Å and
the considered system size edge lengths L are multiples of the unit
cells, ranging from L = 2Lunit to 4Lunit.

Fixing the volume V , temperature T and the chemical potential µ,
and allowing the particle number N to fluctuate, a result we obtain
from GCMC simulations is the probability distribution P(N) as a
function of N (which is related to the free energy F(N) of the system,
see Eq. (4.20)). A first-order phase transition requires a bimodal
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distribution in P(N) with both peaks having equal weights2

2. See Ferrenberg and Swendsen,
(1988) and Binder and D. P. Lan-

dau, (1984).

. Each peak
then corresponds to one of the coexisting densities at ρlow = Nlow/V

and ρhigh = Nhigh/V , respectively. The coexistence chemical potential
is estimated in preliminary runs and then accurately set to µcoex via
histogram reweighting, such that the area under both peaks around
ρlow and ρhigh becomes equal, meaning that both phases have the same
free energy (see also § 4.3.2 (p. 35)). In Figure 5.2 the logarithm of P(N)

is displayed for the two observed phase transitions under coexistence
conditions for different temperatures below the critical temperature
Tc.

Figure 5.2: Probability distributions for (a) IS and (b) ILG phase transitions at
different temperatures at coexistence chemical potential. Data from system sizes
L = 4Lunit (IS) and L = 2Lunit (ILG) is shown. From Höft and Horbach, (2015).

Snapshots of pure phases at T = 95.0K for the IS and at T =

89.7K already indicate that the IS transition is a transition between
configurations of different wetting layers on the framework, while in
the ILG transition the difference in coexisting phases lies in the filling
of pores. In both transitions, the configurations in the two-phase
regions also suggest planar, two-dimensional interfaces separating
the coexisting phases from each other. The probability distributions
as in Figure 5.2 are directly related to the phase diagram in the
density–temperature plane, as the maxima in P(N) are points of the
binodal.
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Figure 5.3: Rectification plots
of the order parameter scaling

laws as a function of temperature
for IS and ILG phase transitions
in IRMOF-1 assuming 3D Ising
universality (β = 0.326). ∆ρ is

measured in units of g cm−3.

Figure 5.4 shows the binodals of the IS and ILG phase
transitions as a function of the CH4 mass density ρm = NMCH4 ,
with MCH4 = 26.63× 10−24 g. For reference, the figure also includes
the binodal of the liquid–gas phase transition of bulk CH4, with a
critical temperature at 190K. Using finite-size scaling of the Binder
cumulant, UL in the IS transition yields a critical temperature of
T IS
c = 114.5K. The critical temperature of the ILG is estimated via the

scaling relationship of the coexistence diameter

∆ρ ≡ ρh − ρl = Aop

(

Tc − T

Tc

)β

, (5.1)

where Aop is a critical amplitude and ρl and ρh are the densities of the
dilute and dense phases, respectively. Assuming 3D Ising universality,
i.e. setting β = 0.326 (Pelissetto and Vicari, 2002), fits of Eq. (5.1) for
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the two transitions can be found in the inset of Figure 5.4a. The critical
density ρc can estimated by a coexistence diameter law (Widom and
Rowlinson, 1970) for δ ≡ (ρlow − ρhigh)/2 via

δ ∝ (T − Tc)
1−α , (5.2)

with α = 0.113 (Pelissetto and Vicari, 2002). Due to the smallness
of α, Eq. (5.2) is treated as linear instead (i.e. α = 0). The fits of the
coexistence diameter laws can be found as solid lines in Figure 5.4a.
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Figure 5.4: Phase diagram in the a) density-temperature and b) temperature-
pressure plane for the IS and ILG phase transition of CH4 in IRMOF-1. Critical
points are shown as open symbols. The coexistence diameter δ ≡ (ρhigh − ρlow)/2
is shown with fits to the coexistence diameter law (cf. Eq. (5.2)). From Höft and
Horbach, (2015).

Note that the coexistence chemical potentials (and therefore also
pressures) for IS and ILG transitions are at different values. In
Figure 5.4b the coexistence lines are displayed in the temperature–
pressure plane and it reveals that the critical pressures are 3 to 4
orders of magnitudes lower than the bulk critical pressure.

We also use a finite-size study of the IS phase behavior using
Binder’s cumulant UL introduced in Binder, (1981) to determine Tc
and the universality class accurately. This fourth order cumulant is
defined as

UL = 1 −
⟨ρ4

M⟩
3⟨ρ2

M⟩2 , (5.3)

where ⟨ρnM⟩ is the nth moment of the probability distribution P(ρM),
thus ⟨ρnM⟩ =

∫
dρnMP(ρM). For different system sizes curves of UL(T)

are expected to intersect at an universal value U*
L. The intersection

point determines the critical temperature and its value is dependent
on the universality class of the system. For 2D-Ising universality it
is found to be U*

L = 0.61069, and for 3D-Ising universality classes
U*

L = 0.4655.3 3. The universal value of U*
L for 2D

Ising universality can be found in
Kamieniarz and Blote, (1993), while
the cited value for 3D Ising was
reported by Luijten, Fisher, and
Panagiotopoulos, (2002).

In Figure 5.5 the Binder cumulant is shown for three
system sizes. The intersection point at T = 114.52K, gives U*

L very
close to the universal value of 3D universality and let us conclude that
the IS transition is in fact compatible with 3D Ising universality. Due
to the finite size of the system, small corrections to U*

L = 0.4655 are
expected.
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The structure of the IRMOF–liquid–gas transition is, as its name
suggests, related to the liquid–gas transition of the bulk fluid, with the
difference this transition takes place in the

2r0

2rcut

Figure 5.6: Illustration for the cal-
culation of the coordination pa-

rameter z around the metallic
clusters. Only particles within

in the shell r0 < r < rcut
contribute to coordination z.

From Höft and Horbach, (2015).

pores of the system: On
the one hand almost empty pores (particles are mostly on the surface
of the framework) which can be in coexistence with pores filled very
densely with a liquid phase of CH4 (cf. snapshots in Figure 5.2b). The
IS phase transition is compared to the ILG transition very different:
In the IS dilute phase, molecules preferably arrange only around
metallic clusters and in the dense phase a wetting layer covering
the whole IRMOF-framework. We quantify the change of ordering by
introducing a radial distribution function gmet with respect the Oxygen
atom located in the center of the metallic cluster, as illustrated in
Figure 5.6. gmet(r) measures the probability of finding CH4 molecules
at a distance r, relative to the ideal gas at the same bulk density.

Figure 5.7 displays gmet(r) for 96.7, 107.3 and 113.5K and the
curves for the low- and high density IS phases show very distinctive
behavior. As the atoms of the metallic cluster occupy space by them-
selves and are repulsive at short distances, no methane particles can
be found for r ⩽ 4Å. Then, remarkably, in the low density phase gmet
exhibits a double-peak structure. In this phase methane molecules
prefer adsorption sites very close to the metallic cluster, but some
of them are a little further away. As the snapshot in Figure 5.6 indi-
cates, the shoulder originates from particles adsorbed on the organic
linkers, close to the metallic center. However, in the high density
IS phase the double-peak is mirrored; while the first peak is practi-
cally absent, the second peak more pronounced. Thus, in the dense
phase methane is covering all the inner framework surface, forming
a wetting layer on the MOF surface. In the pores 4.0 < r < 7.0Å
essentially no molecules are present, which we have confirmed by
explicitly counting the atoms. The second two-peak structure around
r ≈ 10Å corresponds to particles around the next metallic center.

While at low temperatures the two phases are very distinct, at
temperatures closer to Tc they become more similar and are barely
distinguishable from each other and the two phases become identical
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r0 rcut

Figure 5.7: Radial distribution function gmet for the coexisting phases in the IS
phase transition at T = 96.8, 107.3 and 113.5K. The radial particle distribution
around the metallic clusters at the critical point is shown in dashed lines. Snap-
shots on the left correspond the the low density phase, snapshots on the right
to the For clarity, gmet(r) for higher temperatures have been shifted by multiples
of +6 on the ordinate. From Höft and Horbach, (2015) with additional data for
113.5K.

at the critical point, as expected.
The strong differences between gmet(r) allow for introducing a

local order parameter:
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Namely the number of particles z around a
metallic center within a distance r < rcut = 7.995Å, as indicated
in Figure 5.6 and Figure 5.7. To confirm the validity of z as an
appropriate choice as order parameter, we mapped z to the binodal of
the IS transition (cf. Figure 5.8), which shows strong agreement that
(at least close to the critical point) z can be mapped to the particle
density and it is a reasonable choice to distinguish between the two
phases locally. The resulting critical coordination number is zcr = 9.58.
The identification of the local phase in a single configuration via z is
applied by determining z around each Zn4-O cluster, and if zlocal < zcr
then all particles are assigned to the dilute phase. All remaining CH4
molecules must be in the dense phase of the IS transition. An example
snapshot is where this scheme is applied to a configuration in the two-
phase region is shown in Figure 5.9 and allows for an identification of
the location of the planar interfaces, separating the coexisting phases.
A detailed study of the interfaces can be found in § 5.3 (p. 64).

5.1.1 Conclusion

We have successfully applied grand canonical Monte Carlo simulations
with successive umbrella sampling to investigate the phase behavior
of methane within IRMOF-1. Remarkably, in addition to a condensa-
tion transition in the free volume of the pores we find a novel phase
transition on the inner surface of the MOF, the IS transition. Both of
the first-order phase transitions end in a critical point and we have
shown they belong to 3D Ising universality. This IS condensation
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Figure 5.9: Snapshot of CH4 in IRMOF-1 at coexistence conditions at 70K of the
IS phase transition. Colors indicate the local phase of CH4, low density (blue) and
high density (red) are determined from the local order parameter z. IRMOF-1
atoms are shown in grey color.

transition occurs in a pressure region 1.0 < P < 10× 103 P at temper-
atures around 100K and is characterized by the coexistence of two
heterogeneous bulk phases. Other IRMOFs are expected to show a
very similar phase behavior, as they only differ in the linker and the
heterogeneity of the framework is still in place there. The available
linker surface area and pore volume varies of course and will influence
the exact parameters of the transitions. Utilizing the same methods as
for IRMOF-1, in the next section we will present the phase behavior
of methane in two other IRMOFs, IRMOF-8 and -16. With the same
topology as IRMOF, the aim is to study the interplay between pore
size, linker length and the hetereogeneous interaction with its guest
molecules on the phase behavior in IRMOFs.
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5.2 Dependence on pore size

In the previous chapter we analyzed the phase behavior and structure
of these phases of Methane in IRMOF-1. One of the advantages of
MOFs is the tailorable framework architecture and in the following we
study the phase behavior of methane in other IRMOFs: IRMOF-8, and
IRMOF-16 and compare these with the results of CH4 in IRMOF-1.

The studied MOF materials are very similar with respect to their
geometry and atomic structure. They have an identical symmetry
of the cubic framework, where the corners of the structure built by
Zn4O clusters. By replacing the “connection” (i.e. the ligands) between
the corners, we get a new MOF with different chemical and physical
properties. To understand the influence of the pore size on the phase
behavior, we chose ligands that are structurally very similar to those
in IRMOF-1. This allows to concentrate the study on the influence
of the pore size to the phase behavior only. The structural formulas
for each linker can be found in Figure 5.10. The edge lengths of
a single pore as determined from Eddaoudi, Kim, et al., (2002) are
L = 6.88 Å (IRMOF-1), 8.09 Å (IRMOF-8) and 11.52 Å (IRMOF-16).
The unit cells of these IRMOFs are displayed in Figure 2.6 (p. 11).
To visualize the differences between the IRMOFs in the potential

Figure 5.10: The different ligands for a) IRMOF-1 (1,4-benzenedicarboxylate,
BDC), b) IRMOF-8 (naphthalenedicarboxylate, NDC), and c) IRMOF-16 (ter-
phenyldicarboxylate, TPDC). The ligands connect the metallic Zn4O- clusters (d) at
the corner of the framework and define the porosity of the medium. Source for d):
https://commons.wikimedia.org/wiki/File:BasicZnAcetate.png.

energy, we have determined the interaction energy exerted from the
MOF atoms on a single methane molecule. A slice of this energy
map in the layer of the linkers (i.e. in the strongest confinement) is
shown in Figure 5.11.4

4. The coordinates in the potential
energy map correspond to the cen-
ter of a single methane molecule.
The diameter of CH4 in our model
is 3.73Å.

In this figure, white regions indicate regions
with a very low probability to find methane particles, which includes
everything outside the pore, as the repulsive part of the Lennard-Jones
interactions with the framework becomes dominant. The dark blue
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Figure 5.11: Slice in the potential energy in the layer of the metallic clusters. The
landscape is showing only energies U < 0. Approximate positions of framework
yatoms added for orientation. The white regions outside the pore corresponds to
potential energies > 0 and very unlike/forbidden regions to find methane particles.

regions indicate locations with a low potential energy. Entropic effects
aside (i.e. at zero temperature), in these regions it is more likely to find
methane particles. This is only a very rough estimate, though. Still, in
accordance to our finding in the previous section, we find potential
minima at the corners of the framework. Also, with larger the pore
sizes the attraction of the framework will reach less into the pore, as
indicated by the larger white regions in the center of IRMOF-8 and
-16. Therefore, we can expect the guest particles to get into the pores
less likely, upon increasing the linker size. On the other hand, as the
free pore volume increases, the ILG transition will be more dominant
because the relative volume of low-energy pockets compared to the
pores decreases.

5.2.1 Results

As in the study of phase transitions in IRMOF-1, the central output
of the GCMC simulation are the probability distributions P(N) as a
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function of the density (or equivalently, number of adsorbed particles
per unit cell) at coexistence conditions. In Figure 5.12 for the largest
simulated system sizes, the P(N)’s are shown for the IS and ILG
transition for IRMORF-1, -8, and -16. Note that these plots do not
include all measured histograms, those which where very close to the
critical temperature have been left out for clarity.

Probability distributions First, lets consider the IS transition: In
IRMOF-1 and -8 the densities of the phases are quite similar, even
though in the denser phase IRMOF-8 is able to adsorb more particles
due it its larger surface area. IRMOF-16, however seems to be able
to adsorb a much larger amount of molecules, which could be caused
by the much larger inner surface area (per unit cell) and the very
low temperatures at which we find the phase transition. Due to
this large number of particles, and the required computational effort,
probability distributions at even lower temperatures have not been
computed. If the temperature is far enough away from Tc, a plateau
in P(N) can be observed. In this region planar interfaces separate
coexisting phases. The structure of the interface is analyzed in detail
in § 5.3 (p. 64), which also includes a discussion of the oscillations in
the probability distribution as seen in the IS transition of IRMOF-8
(Figure 5.12b). In the same histogram we also observe a slight tilt of
the expected plateau regime. This is an artifact from Monte Carlo
sampling that is not perfectly equilibrated, since acceptance rates of
particle insertion and removal sweeps drop with temperature. Note
that, if the histogram was reweighted such that the plateau was planar,
the maximum at higher densities is shifted only marginally.

Due to the high densities of the ILG phases, which decrease the
acceptance rate even further, the investigation concentrates on the
region closer to the critical point. As the thermal fluctuations are
larger, a plateau in the histogram indicating a planar interface is not
directly observable, except for IRMOF-16. There, we find similar
oscillations of the free energy barrier (visible for 102.0 and 112.6K
in Figure 5.12c) which is associated to the shape of the interface,
and its alignment to the framework structure. Compared to the IS
distributions, the ILG transitions seem to be more asymmetric with
respect to the critical density ρc, the dilute phase is typically closer to
the critical density, especially in IRMOF-1.

Binodal curves Figure 5.13 shows the binodals of all the found phase
transitions in the studied IRMOFs, the exact values of the critical
values of temperature, density and pressure are summarized Table 5.1.
The points of the binodal lines have been directly obtained from the
probability distributions above. The first moment of each peak in
the histograms corresponds to a point on the coexistence lines in the
density–temperature phase diagram.

One can observe different behavior for the widths and critical
temperatures of the IS and ILG binodals depending on the MOF – and
therefore the porosity. Both the width and the critical temperatures of
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Figure 5.12: Semilogarithmic plots of the probability distribution P(N) as a func-
tion of number of particles per unit cell N at coexistence conditions for the IS (left
panel) and ILG (right panel) phase transitions for the largest available system sizes.

ILG transition are increasing with pore size, as seen in Figure 5.13b.
This effect is caused by an increase free volume and decreasing inter-
action of the framework with the methane molecules. With larger pore
size the low density branch of the ILG transition will shift to lower
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densities, because the number of adsorbed particles per unit volume
will decrease (in the dilute ILG phase almost all particles are located
on the surface of the framework) and the liquid branch will allow
higher densities per volume as the excess free volume also increases.
A more “bulk-like” with larger linker size is reasonable, as in the
limit of infinite pore size the phase behavior must become identical
to the bulk liquid–vapor transition. As seen in Figure 5.13a for the
IS transition the inverse occurs, the critical temperature is lowered
significantly with increasing pore size. This indicates that thermal
fluctuations can inhibit the IS phase transition if the metallic centers
are very far apart from each other – even though the accessible surface
area for the molecules increases.
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Figure 5.13: Coexistence curves of a) IS phases and b) ILG phase transitions of
CH4 in IRMOF-1 (blue), IRMOF-8 (green) and IRMOF-16 (red). Critical points are
shown as open symbols, bulk CH4 liquid–vapor binodal (black line) added for
reference.

Figure 5.14: Coexistence pressure
lines for IS and ILG phase transi-
tions for IRMOF-1 (blue), -8 (green)
and -16 (red, without IS phase).
Critical points are shown as open
symbols.

Determining a direct relation between linker size and critical den-
sity of the two-phase region from Figure 5.13 is not obvious. While ρc
in the IS transitions from IRMOF-1 to IRMOF-8 shifts to lower densi-
ties, in IRMOF-16 it increases again. This could be related to the large
inner surface area accessible to the gas atoms. It could also imply that
the structure of the coexisting phases is qualitatively different. The
ILG coexistence regions become broader with linker size and the but
the critical temperature is almost identical for IRMOF-1 and -8 (110.7K
and 108.4K, respectively). It appears plausible that the larger inner
surface area compared to the length of the organic linkers in IRMOF-8
(see Figure 5.10) yields a stronger influence to gas particle in the pores,
thus reducing the free pore volume and the critical temperature. This
claim is supported by the fact that the dense ILG phases of IRMOF-1
and -8 have very similar particle densities.

Further, at lowest measured temperatures the dense phase of the IS
and the dilute phase of the ILG transition have very similar densities.
These phases are closely related to each other and it is possible that
they may, at very low temperatures, become identical. Consequently,
at such a triple point, three phases could be in coexistence: (i) The
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dilute IS phase, (ii) the dense ILG liquid phase where all particles are
liquefied in the MOF, and (iii) the phase where the whole framework
is covered by methane molecule. For a clearer picture, in Figure 5.15
the IS and ILG transitions are shown in a common phase diagram. The
phase diagram suggests a triple point for IRMOF-1 at temperatures
< 50K. Still, it is quite speculative, since crystallization of methane
can occur as well (and has been reported by Magdysyuk, Denysenko,
et al., (2014) for Argon in the MOF MFU-4l) and a simple extrapolation
is not very safe, anyway.

Figure 5.15: Binodal coexistence curves for IS and ILG phases in IRMOF-1 (blue)
and -8 (green). At very low temperatures a triple point could exist.

Tc (K) ρc (g/cm3) Pc (Pa)

IS transitions
IRMOF-1 114.5 0.120 1.466× 102

IRMOF-8 77.2 0.091 1.748× 10−1

IRMOF-16 (36) (0.14) –

ILG transitions
IRMOF-1 110.7 0.281 4.509× 102

IRMOF-8 108.4 0.251 4.497× 102

IRMOF-16 128.4 0.528 5.995× 104

Table 5.1: Critical values for the IS and ILG transition of methane in IRMOF-1, -8
and -16.

Binder cumulants and scaling close to Tc The Binder cumulants
UL for the IS phase transitions are shown in Figure 5.16. From the
intersection of UL for different system sizes L× L× L (where the cubic
system size is always in multiples of the unit cell of the IRMOF), we
determine the critical temperature and universality class of the phase
transition in the same way as done in § 5.1 (p. 45). We find that in
IRMOF-8 the intersection point of the Binder cumulants of different
system sizes UL is slightly larger than for IRMOF-1 at similar number
of unit cells. Since U*

L converges towards the universal value for the
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3D Ising universality, we can conclude that this is due to corrections
caused by the finite size of the system. These corrections are due
to the larger pore size of IRMOF-8, compared to IRMOF-1. The
phase transition for IRMOF-16 at low densities on the other hand is
qualitatively different in the behavior of the cumulant: For all system
sizes, U*

L is much closer to the universal value of the 2D Ising behavior
with U*

L = 0.61069 (Kamieniarz and Blote, 1993); it is not obvious
why an apparent change in the universal behavior should occur. It
is possible that this transition is associated with a second layer of
methane molecules around the metallic clusters and on the framework
surface. Simulating system sizes larger than 5 × 5 × 5 unit cells was
not possible in this case, as the number of required particles increases
significantly and thus the computational effort.
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Figure 5.16: Finite-size behavior of the Binder Cumulant UL(T) for the IS phase
transitions in the IRMOF systems (a) IRMOF-1, b) IRMOF-8, and c) IRMOF-16) for
different system sizes (given in multiples of unit cells).

For the ILG transitions, on the other hand, we assumed 3D Ising
universal behavior and then plotted ∆ρ1/β, where

∆ρ ≡ ρh − ρl = Aop

(

Tc − T

Tc

)β

, (5.4)

as a function of the temperature. The points of ∆ρ should then
collapse on a single line with the slope A

1/β
op and the intersection with

the abscissa then gives the critical temperature. Figure 5.17 displays
these rectification plots for all simulated MOFs.

Structure of phases As the IS phase transition is caused by the het-
erogeneous interaction of methane molecule with the metallic clusters
and organic linkers, we utilize the radial distribution gmet of methane
particles as a function of distance r to the central Oxygen atom in the
metallic cluster to characterize the phases, as explained in § 5.1 (p. 45).
Figure 5.19 displays gmet(r) for the studied MOFs for temperatures
below and close to Tc.

We find qualitative similarities in the IS phases of IRMOF-1 and -8.
In the dilute phase almost all methane particles can be found in the
vicinity of the metallic clusters at distances 4.0 < r < 7.0Å from the
central Oxygen atom in the metallic site. This is in good agreement
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Figure 5.17: Order parameter scaling close to the critical points for the ILG phase
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a) IRMOF-1, 95K b) IRMOF-8, 56K

c) IRMOF-16, 25K

Figure 5.18: Snapshots of coexisting IS phases from a 4 × 4 × 4 unit cells system at a)
N = 23 and 130 (95.0K) b) N = 28 and 163 (56.3K) and c) N = 281 and 535 (24.6K)
methane particles per unit cell.

with the potential energy surface displayed in Figure 5.11, showing
very deep potential energy “pockets” at these corners. In both MOFs
this is connected with the first peak at distances 4 to 5Å, visible the
best at the lowest shown temperatures.

In the dense phase, methane covers the whole framework structure
while leaving the pores mostly empty. While in IRMOF-1 a few
particles5

5. In the dense IS phase there
are ≈ 15 methane molecules

around the metallic center at 95K.
The particle density per pore is
≈ 130/8 = 16.25, thus finding

particles outside the cutoff for the
local order parameter z is very rare.

can be found in the pore itself, in IRMOF-8 the pores are
always empty in the dense IS phase – a result of the larger pores. Also,
in IRMOF-8 the 2, 6-NDC linkers (cf Figure 5.10) have a larger surface
area allowing particles to form a wetting layer of larger area on the
framework. The snapshots of the coexisting phases in Figure 5.18
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confirm these differences. In IRMOF-8 we also find an increased
probability of finding methane particles at intermediate distances
8 < r < 9Å, which shows as a small peak in gmet(r) in the dense
phase, see Figure 5.19b.

At the critical point the coexisting phases must become identical,
where the first peak is located at 4 < r < 5Å in gmet(r) and almost van-
ishes when approaching Tc. The second shoulder more pronounced
making the gmet(r) of the dilute phase more identical to the dense
phase. Similarly, the peak in IRMOF-8 at 8 < r < 9Å grows with
higher temperatures in the dilute phase, while in the dense phase
it becomes slightly smaller and both curves eventually follow the
gmet(r) which can be observed at the critical point (dashed green line
in Figure 5.19a-b). In the case of the low-density phase transition in
IRMOF-16 this picture is not as clear, as in the IS transitions of IRMOF-
1 and -8: Since the density differences between the phases a very low,
one can expect only very small differences in gmet(r), as displayed in
Figure 5.19c. Also, the very low temperatures of the transition cause a
very high ordering of adsorbed molecules on the surface, as seen in
Figure 5.18c. Whether these phases are crystalline and if there are even
more transitions at higher densities has not been examined. While in
the presented transition it seems that an additional layering around
the metallic cluster of methane particles occurs in this transition, a
more detailed analysis with larger system sizes would be required.

The local order parameter z introduced in the IS phase analysis
in IRMOF-1, can be applied in the IRMOF-8 phases as well. There,
we have chosen rcut = 7.0Å as indicated in Figure 5.19., which is
slightly smaller than for IRMOF-1, where rcut = 7.995Å. Therefore, the
additional particles on the linkers at distances around 7.8 < r < 9.1Å
do not contribute to the local order parameter. Figure 5.20 proves
that the local density can be mapped very well to the coordination of
molecules around the corners of the framework, even though small
corrections are expected, as a small amount molecules present in the
MOF do not contribute to z. The critical coordination number for
IRMOF-8 is zc = 9.29, very close to the value determined in IRMOF-1
with zc = 9.64.

Adsorption isotherms From the probability distributions as shown
in Figure 5.12 we determine adsorption isotherms as a function of
the pressure. To do so, we reweight the histograms from coexistence
conditions to a different chemical potential. We assume that the
corrections to an ideal gas at these densities are small, and relate the
chemical potential directly to the pressure of an ideal gas. In the work
of W. Zhou, Wu, Hartman, and Yildirim, (2007) it was shown that the
deviations in this pressure and temperature range are negligible. These
equilibrium adsorption isotherms give predictions where to expect the
phase transition in experiment. The first-order phase transitions are
indicated by jumps in the adsorption isotherm if one plots the number
of adsorbed particles as a function of pressure. Figures 5.21, 5.22 and
5.23 display this type of adsorption isotherm for IRMOF-1, -8, and -16,
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Figure 5.19: Radial distribution functions gmet for the IS transition of CH4 in dif-
ferent IRMOFs. With increasing temperatures the ordering of methane molecules
around the metallic clusters becomes more and more similar of the two phases.

respectively. While the information shown is very similar to that given
from the coexistence lines in Figure 5.14, the adsorption isotherms
are a typical property determined to characterize adsorption behavior
in porous media in general. Different types of shapes are usually
associated with the porous structure of the material, e.g. a two-step
behavior is classified as an IUPAC type IV isotherm, see Chapter 1
(p. 1) which occurs in porous media with heterogeneous pore sizes
which are filled with guest molecules at different pressures ranges.
But here the double-step form of the adsorption isotherms is caused
by the phase transitions instead – a very different phenomenon.

While in principle experimental adsorption isotherms can be deter-
mined also at very low pressures, they are often measured at standard
conditions for temperature and pressure (STP, 273.15K and 100 kPa)66. Also, slight variations are com-

mon, too. E.g. normal tempera-
ture and pressure (NTP) with a

temperature of 293.15K and at a
pressure of 1 atm = 101.325 kPa.

,
finding the IS and ILG phase transitions requires low pressures and
temperatures, e.g. P < 1× 102 Pa and T < 115K in the case of IRMOF-
1 in order to observe the IS phase transitions. For IRMOF-8, these
values are even lower and in IRMOF-16 it is unclear whether the IS
transition exists at all (and thus the data is not shown in Figure 5.23).
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Figure 5.20: Coexistence lines of the IS transitions in the coordination–temperature
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Figure 5.21: Equilibrium Adsorption isotherms for IRMOF-1 as a function of pres-
sure from GCMC simulations for IRMOF-1. Colored areas indicate the two-phase
regions of the phase transitions, critical points are shown as open symbols.

5.2.2 Conclusion

We have extended our study of the phase behavior of methane using
grand canonical Monte Carlo simulation of a single MOF system,
IRMOF-1, to two more representatives of the IRMOF-class: IRMOF-8
and -16. Both MOFs have larger pores than IRMOF-1 and tune the
critical point of both condensation transitions. While the IS transi-
tion temperature is lowered with increasing pore size, for the ILG
transition the critical temperature rises. Similar behavior is found
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Figure 5.22: Adsorption isotherms as a function of pressure from for IRMOF-
8 as determined by histogram reweighting of from probability distributions at
coexistence conditions. Regions of phase coexistence are colored.

Figure 5.23: Adsorption isotherms as a function of pressure from equilibrium
simulations for IRMOF-16 at coexistence conditions. Only ILG phase transition is
shown, as the nature of the IS transition is unclear at this point.

for the coexistence density range. It becomes broader with increased
pore volume for the ILG transition, and narrower for the IS transition.
Consequently, the parameter range of the coexistence lines of both
transitions diverges in MOFs with large free volume for the guest
molecules. In IRMOF-1 the critical temperatures were only ≈ 4K

apart from each other, in IRMOF-8 the difference is 31K. The appar-
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ent critical temperature of the IS transition in IRMOF-16 is so low
that we obtain crystalline-like condensation on the inner surface and
further study is required to resolve the nature of the IS transition in
IRMOF-16.

The IS phases of IRMOF-1 and -8 are very similar, allowing to apply
the local order parameter introduced for the IRMOF-1 IS transition
also for IRMOF-8. In both MOFs we can map the bulk density of the
phases to a local coordination of particles around a metallic center.

Our analysis of the scaling behavior close to the critical points gives
evidence that the universal behavior is unchanged and all phase tran-
sitions belong to the 3D Ising universality class – with the exception
of the IS transtion in IRMOF-16. We predict equilibrium adsorption
isotherms for temperatures above the phase transitions and below.
Both can be used to compare them to future experimental results. As
we show in § 5.5 (p. 79) such experiments will require a careful sample
preparation and measurement.
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5.3 Structure and thermodynamic properties of
interfaces

In § 5.1 (p. 45) the interface separating coexisting phases of the IS phase
transition in IRMOF-1 has been identified as being two-dimensional
and planar, and in this chapter interface properties of the IS phase
transition in CH4 IRMOF-1 and IRMOF-8 are discussed, particularly
with regard to capillary wave theory. The simulations in this section
have been performed by Mojtaba Eshraghi as part of his master thesis
(Eshraghi, 2015).
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Figure 5.24: Coexistence temperatures of the IS transition of CH4 in IRMOF-1 and
IRMOF-8 as a function of the density. Critical points are shown as open symbols.

5.3.1 Methods

The simulation setup follows what has been done before to study the
phase behavior of CH4 in IRMOF-1: grand canonical Monte Carlo
where temperature T , volume V and chemical potential µ are fixed,
and the number of particles N is allowed to fluctuate. The phase
diagram in Figure 5.24 displays the coexistence temperatures and
density range of the IS phase transition.

Successive umbrella sampling allows for sampling equilibrium
states in the two phase region where an interface is separating the
two bulk phases. The access to equilibrium configurations in the
two-phase region is crucial to study interface properties. However, in-
stead of cubic simulation boxes, the geometry is of the form L×L×Lz
with Lz > L and L,Lz being multiples of the unit cell edge length
LIRMOF-1 or LIRMOF-8, with periodic boundary conditions applied in all
spatial directions. This setup will create two interfaces perpendicular
to the z direction, as the area of the interface will be minimized to
minimize the free energy. Compared to cubic geometries, this has also
the advantage that the interfaces are further apart and interactions
between them can be avoided. Typical snapshots from such a simula-
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Figure 5.25: Snapshot of CH4 in IRMOF-1 at coexistence conditions at 98.5K with a
density of 75 particles per unit cell of the IS phase transition. Colors determine the
local phase of CH4, low density (blue) and high density (red) are determined from
the local order parameter z.

tion are shown in Figure 5.25 (IRMOF-1) and Figure 5.28 (IRMOF-8).
At temperatures below the critical temperature Tc, one will observe
an interface separating the two bulk phases. The free energy cost
∆F to create the interface between two bulk phases is related to the
interfacial tension γ via (Binder, 1982)

γ =
∆F

2A
, (5.5)

where A is the area of the interface, hence in a system with periodic
boundary conditions, two interfaces will form . ∆F can be obtained
directly from the probability distribution (cf. Figure 5.26) by calculating
the difference between the maxima (corresponding to the bulk phases)
and minima (in the coexistence region) of the probability distribution
P(N), thus ∆F = ln(Pmin) − ln(Pmax), see also Equation (4.20). Close to
the critical point the interfacial tension is expected to scale with

γ ∝ (T − Tc)
2ν , (5.6)

where the exponent 2v = 1.26 corresponds to the 3D Ising behavior
(cf. Table 3.1 (p. 22)). In § 5.1 (p. 45) we have already shown that the
IS transition in fact belongs to this universality class.

5.3.2 Results

Using the scaling relation in Eq. (5.6) we can compare the critical
temperatures determined from finite size scaling of Binder’s cumulant
(see § 5.1 (p. 45) and § 5.2 (p. 51)) of IRMOF-1 and IRMOF-8 to the
scaling behavior of the interface tension γ. By plotting γ1/2ν versus T ,
we obtain a straight line and the intersection of the extrapolated line
with the abscissa yields Tc. The data presented in Figure 5.27 shows
an excellent agreement with 3D Ising scaling for all tested system
sizes and the critical points differ only ≈ 0.6% for both IRMOF-1 and
IRMOF-8 7

7. For comparison, the critical tem-
peratures for the IS transition as
determined from finite size scaling
are 114.5K and 77.2K for IRMOF-1
and -8, respectively.

.
Since we have access to equilibrium configurations in phase sep-

arated states, in the following we can analyze the interface in detail.
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To do so, we chose a density where approximately half of the system
volume is in the dilute phase and the other half is in the high den-
sity phase. This ensures that the two interfaces are separated by the
largest possible distance and therefore minimizes interactions between
interfaces. The selected densities are also tagged in the probability
distribution in Figure 5.26. We average over 50 independent runs and
align the interfaces by minimizing the correlation of the CH4 density
profiles ρ(z). As the local methane density fluctuates strongly since the
both phases form an inhomogeneous wetting layer on the framework
surface, we apply a kernel density with a Gaussian kernel:

ρ(z) =
1√

2πσ2

∑

i

exp
[

−
(z− zi)

2

2σ2

]

, (5.7)

where
∑

i denotes the sum over all particles i with their respective
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Figure 5.28: Snapshot of CH4 in IRMOF-8 at coexistence conditions at 61.6K with
an average density of 93 particles per unit cell of the IS phase transition. Colors
determine the local phase of CH4, low density (blue) and high density (red) are
determined from the local order parameter z.

z-coordinate zi; the range parameter σ is chosen to be 1.37Å.
From the density profile one can assign a width w of the associated

interface which is perpendicular to the z direction, by approximating
the measured ρ(z) to a hyperbolic tangent:

ρ̂(z) =
1
2

[

(ρh + ρl) + (ρh − ρl) tanh
(

z− z0

2w

)]

, (5.8)

where ρl and ρh are the densities of the dilute (l) and dense (h) phases
on the binodal, respectively. The parameters ρl, ρh, z0 and w are fitted
by means of least squares. Eq. (5.8) originates from the result from the
interface profile as found by mean-field theory (Gelfand and Fisher,
1990), where w is the intrinsic width. Even though this result is only
valid very close to the critical point, the description of the interface
shape works fairly well to assign a width to the interface even far
away from criticality (Rozas and Horbach, 2011).

The density profile and the associated tanh-fit are displayed in
Figure 5.29 and while fir IRMOF-1 the fit shows excellent agreement
with the measured density (ρl and ρh are in good agreement with the
binodal of the phase diagram (cf. Figure 5.24 (p. 64)) and allows for
a proper definition of the interface width, as expected. The density
profile in IRMOF-8, as shown in Figure 5.29b illustrates the much
stronger heterogeneity of the phases: The local density ρ(z) oscillates
much stronger in both bulk phases – even with the Gaussial kernel
smoothing. The density maxima correspond an increased probability
of finding a metallic cluster at this distance to the interface, while
minima indicate the presence of organic ligands. This behavior makes
locating the interface more difficult and a hyperbolic tangent approxi-
mation is less sensitive as it is less clear whether a change in density is
caused by the structure of the phase or by the presence of the interface.
Also, the interface width is quite small, as coexistence temperatures
are quite low, thus suppressing thermal fluctuations. Still, the bulk
densities, as determined from Eq. (5.8), are in good agreement with
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Figure 5.29: Averaged density profile for a) IRMOF-1 and b) IRMOF-8 as obtained
from 75 independent runs in systems of 3 × 3 × 6 unit cells. Periodic boundary
conditions imply a second interface, which appears around z = 0 and z = Lz.
The densities of the bulk phases ρl and ρh can be read off directly from the fit, as
indicated in a).

the binodal of the IRMOF-8 IS transition. Further, the presence of
these oscillations in the density profile also proofs that the interface
location is also partially imprinted from the external potential and
cannot emerge on arbitrary locations.

With the lever rule (L. D. Landau and Lifshitz, 1980)8

8. The lever rule states that the frac-
tions of each phase xα = Nα/N

(Nα is the number of particles
in phase α) are inversely propor-

tional to the volumes they occupy:

x1
x2

=
V2 − V

V − V1
. (5.9) we can also

understand why oscillations occur in the probability distributions of
IRMOF-8 at low temperatures (see Figure 5.26b) and certain states cost
less free energy than others, depending on the density. Configurations
with lower free energy cost ∆F are states where the interface is aligned
with the framework, i.e. located in a plane where metallic centers
are, too. The organic linkers occupy space (they are parallel to the
interface), thus reducing the interface area and the free energy cost.
When an interface is located in the whole pore, the linkers are perpen-
dicular to the interface and therefore it must have a larger area and
∆F increases, too. With increasing system size we expect this effect to
vanish, as this it is quite small and fluctuations in the interface will
screen these oscillations.

For the local order parameter zc, as defined in § 5.1 (p. 45), mea-
suring the coordination around the metallic clusters of the IRMOF,
shows a very similar behavior as the density profile ρ(z) as shown in
Figure 5.30a, yielding excellent agreement between the interface width
from the density profile (5.39Å from ρ(z) vs. 5.46Å from zc(z)).

Similarly, to the power-law scaling of the interfacial tension in
Eq. (5.6), we can test the scaling of the interfacial width as determined
from the density and order parameter profiles, since w should be
related to the correlation length ξ and diverge at Tc:

w(T) = w0

(

T

Tc
− 1
)−ν

, ν ≈ 0.630 , (5.10)

with w0 being a critical amplitude. If w−1/ν is plotted versus the
temperature, the dependence should become linear with w−1/ν and
vanish at Tc. We find indeed agreement with this scaling hypothesis
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as shown in Figure 5.31. The critical temperatures are overestimated
slightly, but inaccuracies are expected as this scaling is valid only very
close to the critical point and for lower temperatures capillary wave
fluctuations are large enough to screen the power-law scaling of the
critical fluctuations.

In the IRMOF-8 system, on the other hand, the scaling works well
even at lower temperatures, as thermal capillary fluctuations are more
suppressed by the stronger interaction with the framework. Thus,
the interface broadening is caused by the correlation length increase
solely.
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Figure 5.31: Interface width power-law behavior as a function of the temperatures
for a) IRMOF-1 and b) IRMOF-8. For IRMOF-1, only temperatures above 101K are
taken into account for the fit, whereas for IRMOF-8 all displayed data points are
used.

In the absence of external fields capillary wave theory (CWT)
predicts a broadening of the interface width w with increasing lateral
system size L (see also § 3.1 (p. 16) and Brézin and Zinn-Justin, (1985)
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size for a) IRMOF-1 and b) IRMOF-8.

and Jasnow, (1984)):

w2 = w2
0 +

kBT

4γ
lnL , (5.11)

where γ is the interfacial tension and w2
0 a squared intrinsic width.

However, in the presence of an external field (e.g. gravitation), thermal
fluctuation in the long-wave limit will be suppressed and w becomes
finite in the thermodynamic limit (Weeks, 1977; Bedeaux and Weeks,
1985). To understand whether interface broadening in inhibited by
the presence of IRMOF, we plot w2 as a function of the logarithm
of the system size L in Figure 5.30b. For both temperatures, the
broadening of the interfacial width is below the prediction of CWT as
of Eq. (5.11), from which we conclude that the external field (i.e. the
MOF) is suppressing thermal fluctuations. This is supported by the
observation that in IRMOF-8 the interface width was not increasing
with system size significantly (cf. Figure 5.33). In fact, for the two
largest system sizes (4 × 4 × 6 and 5 × 5 × 6 unit cells) no differences
in the interface profiles are visible. Note that data for largest L in
Figure 5.30b should be considered with caution, as in such systems
the two interfaces in the system may interact with each other.

Further, the data in Figure 5.30a shows that both the width cal-
culation using the density and from the local order parameter zc,
measuring the coordination of particles around metallic clusters, yield
almost the same result, validating the choice of zc as a suitable order
parameter for the IS phase transition.

5.3.3 Conclusion

In conclusion, with the analysis of the interfaces in the IS phase
transition we find an excellent agreement with 3D-Ising universal
behavior by testing the scaling laws of the interfacial tension and
interfacial width in the vicinity of the critical point – both in IRMOF-1
and IRMOF-8. We find an oscillation of the interfacial free energy
in the parameter range where planar interfaces can be observed –
a unique property related to the specific geometry and pore size

70



0.00

0.05

0.10

0.15

 40  60  80  100  120  140

system size (unit cells)

ρ
(z
) [

g/
cm

3 ]

z  [Å]

2x2x6
3x3x6
4x4x6
5x5x6

IRMOF-8
T = 61.6 K, N = 93 (per unit cell)

Figure 5.33: Density profiles for IRMOF for different interface areas, but with
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of IRMOF-8, and likely in others, too. The finite-size study of the
interface width shows a suppression of capillary waves in IRMOF-1.
In IRMOF-8, the interface broadening was almost completely absent,
due to the low temperatures and high interfacial tensions in the IS
transition.
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5.4 Ising model for gas condensation in MOFs

5.4.1 Motivation and Model

In the previous sections, we analyzed the phase transitions of fluids
in MOFs in detail, but computer simulations for large MOFs are still
quite difficult, as it requires large particle numbers. Equilibration of
the IRMOF systems with 4 × 4 × 4 unit cells is about the upper bound
in size that is viable to perform computations in a reasonable amount
of time. Consequently, finite-size scaling analysis is limited to 4 system
sizes at most (13 to 43 unit cells) – and for the smallest systems, strong
corrections to finite-size scaling are expected (see § 4.4 (p. 37)).

Therefore, we seek a minimal model that is able to reproduce the
phase transitions in IRMOFs, while reducing the computational load.
Such a model should show the same scaling behavior and similar
structures of the phases as those observed in IRMOFs. The Ising
model we propose here, fulfills these requirements with respect to the
ILG transition. The IS transition, however, is not included in this Ising
model, yet. The computer simulations of the Ising model have been
performed by Beatriz Seoane.

Figure 5.34: Porous networks of a) the Ising system showing the fixed spins only
and b) IRMOF-16, the details of its structure can be found in § 5.2 (p. 51). A pore of
the Ising model consists of 10 fixed spins, the IRMOF-16 framework pore has 113

atoms.

We consider an Ising system of N spins, with each spin i having
the possible orientation σi = ±1, placed on a regular cubic lattice in
a linear dimension LIs with periodic boundary conditions applied in
all spatial directions. We distinguish between two types of spins: free
and fixed. While free spins can change their orientation, fixed spins
are frozen into σ = +1 forming a framework structure mimicking the
porous network of IRMOF, see Figure 5.34. Each spin is interacting
with its nearest neighbors and with the externally applied magnetic
field, H, described by the interaction strength h. Thus, the Hamiltonian
of the Ising model reads

H = −J
∑

⟨i,j⟩

σiσj − h

N∑

i=1

σi , (5.12)
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where
∑

⟨i,j⟩ denotes the sum over all nearest neighbors pairs, where
both fixed and free spins contribute to and J denotes the interaction
strength between the spins. Therefore, the average magnetization over
all spins mtot can be written as

mtot =
1
N

N∑

i=1

σi

=
1

Nfixed

∑

fixed

σi +
1

Nfree

∑

free

σi

︸ ︷︷ ︸
≡m

, (5.13)

and thus it will always include a constant contribution from the fixed
spins. Thus, in the following m determines the average magnetization
of the free spins. The Ising model is simulated in the canonical
ensemble at fixed temperature kBT = 1/β, number of spins N and the
volume V of the system. In a similar fashion to successive umbrella
sampling (Virnau and M. Müller, 2004), we apply a biased sampling
method, tethered umbrella sampling9 9. A detailed description of teth-

ered umbrella sampling can be
found in Fernandez, Martin-Mayor,
and Yllanes, (2009), Martin-Mayor,
Seoane, and Yllanes, (2011), and
Fernandez, Martin-Mayor, Seoane,
and Verrocchio, (2012).

, which allows for sampling states
in the two-phase region far below the critical temperature, which
are associated with large free energy barriers and therefore very low
probabilities to visit such states using unbiased sampling schemes.
The output of this simulation is very similar to the GCMC computer
simulations of the IRMOF-system: We get a probability distribution
P(m) as a function of the magnetization of the free spins m. In the
following ,we consider only system with a pore size (periodicity) of
the

Figure 5.35: Liquid-gas coexistence
of CH4 in IRMOF-16, the interface
aligns on the the framework struc-
ture preferrebly.

fixed spin framework of p = 4, i.e. every fourth spin we insert a
parallel lines of fixed spins (cf. Figure 5.34a), resulting in 54 free spins
per pore.

5.4.2 Results

Figure 5.36a displays the probability distribution at coexistence condi-
tions for the Ising-MOF model. For values of magnetization between
−0.2 to +0.2 we observe a flat plateau developing ripples for very low
temperatures (T ≲ 3.23kBJ). While a flat region in the free energy usu-
ally indicates a planar interface between the two phases, oscillations in
∆F suggest that the external field (and therefore the pores) influences
the interface in a very similar fashion as observed in the IS transition
as discussed in § 5.3 (p. 64).

For comparison, the probability distribution P(N) of the ILG tran-
sition of CH4 in IRMOF-16 as shown in Figure 5.36b show the same
qualitative behavior as described above. Due to the smaller system
size10 10. The largest IRMOF-16 system

consists of 2 × 2 × 2 unit cells,
equating 64 pores, whereas in the
largest Ising-MOF there are 643

pores.

of the atomistic model the amplitude of the oscillations in the
free energy is more pronounced as the increase of the interface area
by misalignment to the framework structure has a larger contribution
in smaller systems. To support this claim, in Figure 5.37 we plotted
the probability distribution as a function of the order parameter at
temperatures far away from the critical point for different system sizes.
We have scaled the histograms with the area of the interface, L2 (where
L is LIs or LIs, depending on the system). We see two things in the
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Ising and in the MOF models: a) The amplitude of the oscillations
in interfacial tension γ = ∆F

L2
1111. ∆F = log(Pmax) − log(Pmin)

the logarithmic difference be-
tween the maxima and minimum

in the probability distribution

decrease with increasing system size.
However, the number of maxima in the plateau of P(m) increases.
b) The scaling with the interfacial area works quite well. However,
extrapolating a value for γ in the thermodynamic limit, γ∞, is not
possible in IRMOF-16, as P(N) is subjected to too much noise. Nev-
ertheless, in the Ising model we observe an increase in γ with LIs.
However, whether this rise in the interface tension is due to capillary
waves should be examined in forthcoming studies.
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Figure 5.37: Semilogarithmic plots of the probability distributions for different
system sizes scaled with 1/A, with A being the area of the planar interface.

From the probability distributions one can directly extract the
binodal of the phase transition – the first moment of each respective
peak corresponds to the coexistence density. The phase diagrams in the
magnetization–temperature plane – and density–temperature plane in
the case of the atomistic model are shown in Figure 5.39. In this kind of
framework confinement, both systems exhibit a very similar behavior,
namely both critical temperatures are lowered with respect to the bulk
phase behavior. Note that the critical temperature of the Ising system
could potentially be tuned to match the behavior of bulk methane
compared to methane in IRMOF-16. This could be accomplished by
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Figure 5.38: Configuration snapshots at coexistence conditions at for a) the Ising-
MOF model at T = 3.12kB/J, no magnetization (m = 0) showing spins with
σ = 1 only (free spins in red, fixed framework spins in gray); and b) the IRMOF-16
model, at T = 102.0K with N = 864 per unit cell. Red and gray spheres represent
CH4 molecules and framework atoms, respectively.

2.5

3.0

3.5

4.0

4.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

MOF

bulk

a)

T
 ×

 k
B
 /
 J

 

m

 100

 120

 140

 160

 180

 200

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

IRMOF-16

bulk

b)

T
 [
K

]

ρ [g/cm³]

Figure 5.39: Phase diagram showing binodal lines of the a) the MOF-model in the
Ising system and b) CH4 in IRMOF-16, showing the ILG phase transition, each in
comparison to the bulk phase behavior. Critical points are shown as open symbols.

varying the interaction of the free spins with the framework spins, by
increasing its interaction range or -strength. The lowering of Tc is also
known from other confinements, for example thin film systems (Fisher
and Nakanishi, 1981). The shift of the critical point towards larger
magnetization and higher densities can be easily explained by the
attractiveness of the framework structure: In the Ising system (see also
snapshots in Figure 5.38) free spins interacting with framework spins
likely align to the framework spins, thus lowering the average free
energy per spin, decreasing Tc and shifting the critical magnetization
mc. In the atomistic system the argument analogous, but there we
have a shift in the critical density instead of a magnetization.

The two-phase region is also narrower with the presence of the
framework structure, also being in accordance found in thin films
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confinements. However, in thin films a crossover from 3D to 2D-Ising
scaling behavior close to the critical point is observed (Nakanishi and
Fisher, 1982). Such a cross-over is absent, as finite-size scaling of
the Binder cumulant UL – displayed in Figure 5.40 – shows. For all
measured system sizes no indication of a cross-over in the universality
has been observed, both in the Ising spin and in the atomistic IRMOF
system. Due to the large computational effort of the GCMC simulation
of the IRMOF-system the Ising model aids by allowing to determine
a much higher accuracy of critical exponents, as finite-size scaling
can span a much larger range of system sizes. The list of calculated
exponents and critical valued can be found in Table 5.2.
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Figure 5.40: a) Binder’s cumulant UL for the Ising-MOF system for different sys-
tem sizes L close to the critical temperature. The inset shows the intersection vale
of UL, U*

L, as a function of system size and fits extrapolating U*
L to L → ∞ using

a linear function (red) and a constant (green). The figure in b) shows the same
cumulant for IRMOF-16. 3D Ising universal values of U*

L ≈ 0.465 are included as
indicated.

bulk
Ising framework model

J = 1,P = 4 J = 1,P = 8 J = 0.1,P = 4

βsim 0.2666 0.2339 0.2564
βc 0.22165463(8) 0.266 642(7) 0.233 961(6) 0.256 359(5)
hc 0 −0.563 515(2) −0.114 187(5) −0.056 657 2(7)
ν 0.63002(10) 0.629(9) 0.629(5) 0.628(5)
η 0.03627(10) 0.027(14) 0.03(3) 0.04(7)
(ΣL2)* − 1.57(3) 1.58(8) 1.600(19)
U*

L 0.465477(3) 0.468(3) 0.4673(19) 0.471(6)

Table 5.2: Extrapolation of the critical points and exponents to the thermodynami-
cal limit for the three models studied. The L−dependent value β

(L)
c and (ΣL2)(L)

are obtained from the crossing point between the curves ΣL2(β) for L and 2L, ν(L)

and η(L) from the derivatives of ΣL2(β) and ∆m(β) with respect to β at that point.
U
(L)
L and h

(L)
c are interpolated from each respective curves with β at β(L)

c . For the
extrapolations L → ∞, we consider a linear function a+ bx where x = L−ω for ν,
η, (ΣL2)* and U*

L; x = L−ω+1/ν for βc; x = L−β/ν−D for hc, using the exponents
ω,ν,β taken from Hasenbusch, (2010).

As corrections due to the finite system size are expected and we
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have access to a larger number of system sizes in the Ising model,
we can extrapolate U*

L to the thermodynamic limit L → ∞. Plotting
U*

Li
, as a function of L−ω and extrapolating this using a linear ap-

proximation via U*
L(x = L−ω) = mx+ c by fitting the parameters m

and c. Such extrapolation can be found in the inset of Figure 5.40a,
also including an extrapolation using a constant, as it appears to work
equally well. In both cases we observe a deviation to U*

L as obtained
by Hasenbusch, (2010) for the 3D Ising universality class, which allows
us to conclude the external framework potential introduces (small)
corrections to U*

L compared to the bulk system.
In addition to the main model we presented, we calculated the

critical values and exponents for modified versions of the Ising-MOF
model, one with doubled periodicity P and with decreased spin-spin
coupling constant J. The results are also shown in Table 5.2. As
expected, in both cases the phase behavior becomes more bulk-like
with respect to the critical temperature shift and the external field at
the critical point, hc.

5.4.3 Conclusion

In conclusion, we have found a minimal model reproducing the phase
behavior of the ILG transition as found in IRMOF-systems. The pro-
posed Ising model finds a heterogeneous phase corresponding to the
low-density (gas-like) phase of the IRMOF-system, which can be in
coexistence with a homogeneous phase – which is the analogue to the
liquid phase from the atomistic model. Further, our Ising-framework
model is able to mimic scaling behavior, the universality class, and
effects of the interface behavior caused by geometric constraints as
found in IRMOF-16. On the other hand, the Ising-framework model
can be refined in order to include the IS-phase transition by tuning the
interaction with the framework spins. The introduction of heterogene-
ity in the surface of the framework would be one possibility – as it is
the case in IRMOF-systems, see Figure 5.41. Further, the interaction
range of the framework spins could be increased to enhance the effect
of the framework while maintaining the pore size.
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Figure 5.41: Potential energy as a function of the position in the plane of linkers
and metallic centers in a single pore of IRMOF-16. Negative values of the potential
energy U correspond to attractive interactions, potential energies ⩾ 0 are shown in
white. Approximate framework atoms positions as indicated.
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5.5 Adsorption kinetics and diffusion dynamics

With the exploration of the phase behavior of Methane in IRMOFs
it seems natural to expand the question from static, in-crystal be-
havior to an understanding of kinetics of light gases in presence of
metal–organic frameworks: How are the gas particle adsorbed and
which mechanics are important for an effective gas storage and is the
heterogeneity of the framework affecting transport processes inside
the porous structure? Understanding the kinetics in MOFs is also
relevant in order to understand charging and uncharging processes
for effective gas storage. Further, the mobility of particles plays an
important role in the separation of gas mixtures (Wesselingh and
Krishna, 2000; J.-R. Li, Kuppler, and H.-C. Zhou, 2009). A number of
computational studies have been conducted on the kinetic behavior of
gases in metal–organic frameworks (e.g. Skoulidas and Sholl, (2005)
and Kundu, Pascal, Prendergast, and Whitelam, (2016)). However,
in these studies the effect of phase transitions of the fluid on the ki-
netics was not considered, as they were unknown and measured at
temperatures and densities far away from the phase transitions.

To investigate the effect of the IS transition on the kinetics, we
applied molecular dynamics simulations to the same IRMOF model
that is used in the grand canonical Monte Carlo simulations (Sec-
tions 5.1–5.4). In the second part of this section we study the influence
of liquid–gas transition on the adsorption behavior

5.5.1 Transport in “pure phases”

Transport properties of light gases in MOFs have been studied already
previously (e.g. by Skoulidas and Sholl, (2005)), but were typically
determined at temperatures around room temperature. With the
knowledge about the IS and ILG phase transitions in IRMOF-1 as
shown in § 5.1 (p. 45), it is unclear if the coexisting phases show
different transport properties. With the finding of new critical points
in IRMOF-1, critical dynamical behavior (e.g. critical slowing down)
can be studied using molecular dynamics computer simulations.

Methods

The start configurations for the molecular dynamics (MD) simulations
were generated from GCMC simulations at the required point in the
phase diagram (i.e. with a fixed density and temperature T ). We
use 10 independent configurations for subsequent thermalisation in
MD simulations. The average internal energy of all configurations in
the thermalisation is then used as initial total energy for subsequent
microcanonical measurement runs. Two sets of measurements are
applied, both exploring the kinetic behavior of the IS phases of CH4
in IRMOF-1. One part is to compare diffusivities along the low- and
high-density branches of the binodal in the IS transition (cf. Figure 5.4
(p. 47)). Additionally, we determine the kinetic behavior of in the
vicinity of the critical point. Here, at the critical point with ρ = ρIS

c
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and T = T IS
c starting configurations will be generated from GCMC

and thermalised within MD simulations at temperatures T ∈ [1.0 ×
T IS
c , 1.1 × T IS

c ] for system sizes of 4×4×4 and 6×6×6 IRMOF-1 unit
cells, followed by measurements up to 5000τ1212. τ is the natural time unit for

Lennard-Jones interactions and
is given by τ =

√

mσ2/ϵ. For CH4
τ = 3.0314× 10−12 s.

. In both cases we have
set the density to the critical density ρc = 0.12 g/cm3, corresponding
to N = 4896 and 16 522 methane particles in the system, respectively.

To accelerate computer simulations for large systems and improve
statistics of the measurements, MD simulations have been computed
using GPU code with the HALMD simulation package by Colberg and
Höfling, (2011) and available on http://halmd.org. Compared to the
GCMC simulations, the MD simulations do not interpolate the MOF-
guest interaction. Our benchmarks have shown that the GPU code is
much faster in calculating the interaction of methane molecules with
the IRMOF atoms (which are fixed in position) during the simulation.
To verify, that both methods do sample equivalent equilibrium states,
we have compared the radial distribution of methane particles around
the metallic clusters, gmet(r). For 70K the comparison of gmet(r) from
GCMC and MD simulations is shown in Figure 5.42. In the low
density phase there are only small deviations between MD and GCMC
simulations and at the high density phase the structure is virtually
identical, validating that both methods yield the same phases. In the
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Figure 5.42: Radial distribution functions of methane particles as a function of the
distance to the center of metallic cluster in IRMOF-1 of the coexisting IS phase
at 70.4K. The differences in the obtained equilibrium configurations, determined
molecular dynamics (MD) and grand canonical Monte Carlo computer simulations
are almost identical.

MOF one can define an interdiffusion coefficient, describing the mass
transport of methane relative to the framework atoms.

Analogous to the interdiffusion in a binary mixture as outlined
in § 4.5.1 (p. 39), we can determine the interdiffusion coefficient Dint
for the sorbate particles similar as outlined in Maginn, Bell, and
Theodorou, (1993) for interdiffusion in zeolites,

Dint = lim
t→∞

ϕ
N

6t
〈

[rcm(t) − rcm(0)]2
〉

, (5.14)
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where rcm(t) is the center of mass of the methane molecules at time t,
N the total number of sorbate atoms, and ϕ a temperature-dependent
thermodynamic factor. In binary mixtures, theories predict a power-
law behavior of the interdiffusion coefficient close to the critical point
of demixing Tc (Bhattacharjee and Ferrell, 1981),

Dint ∝
(

T − Tc

Tc

)xeff

, (5.15)

with the effective exponent xeff. A similar behavior as been found in
computer simulations (Das, Horbach, et al., 2006; Roy, Dietrich, and
Höfling, 2016). Note that the measurement of Dint from computer
simulations is rather noisy compared to the self diffusion constant Ds,
as in a single system there is no averaging over independent particles
in Dint.

Results

The mean-squared displacement (MSD) determined from our simula-
tions are shown in Figure 5.43a and they show that the single-particle
motion is ballistic for very short times and become diffusive around
10ns. While the motion in the low density phase is slightly faster, its
diffusion coefficients D are very similar to the denser phase where the
wetting layer covers the whole framework, as shown in Figure 5.43b.
But a remarkable difference between the kinetic behavior is in the
intermediate time regime of 10−3 to 10−2 ns, especially at lower tem-
peratures: In the high density phase small oscillations appear within
that time regime the MSD is constant or increasing only very little.
This can be interpreted as a kind of caging and back scattering (a
lowering of the MSD means the particle comes back to its original
position again) at time scales where particles have traveled approx-
imately 1.0Å (the diameter of a Methane molecule is 3.73Å). This
could be understood by the following picture: Particles are distributed
almost on the surface only – and in fact quite densely. When the
particle diffuses away from a location on the framework, it will do so
on the inner surface of the framework (the pores are mostly empty in
the IS high density states) and scatter back and forth until the particle
escapes this cage. For long times, a diffusive behavior is obtained
again. At higher temperatures the caging effect smears out as particles
can diffuse more easily into the pores and therefore may avoid further
collisions with other particles.
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Figure 5.44: The coexistence line
(dashed line fits the data points
according to 3D Ising universality)
of the IRMOF-1 IS transition in-
cluding the points of diffusion and
interdiffusion measurements (red
crosses).

Additionally, we have also measured diffusion and interdiffusion
coefficients close to the critical point of the IS transition. To determine
a possible size-dependent diffusion behavior, we tested two system
sizes, 4 × 4 × 4 and 6 × 6 × 6 unit cells. Equilibrium configurations
have been generated in the same manner as explained above.

Due to the small temperature differences, the mean-squared dis-
placements are very similar both for interdiffusion and single-particle
diffusion (cf. Figure 5.45a). However, the associated inter- and self-
diffusion coefficients D(T) increase (as expected) with temperature,
finite size effects are absent, also close to the critical point. This is
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consistent with results obtained in previous simulation studies at the
critical point in binary mixtures (Das, Horbach, et al., 2006). Yet, the
behavior of the interdiffusion coefficient close to Tc is subject to large
noise, which increases for the larger system, inhibiting a study of
power-law behavior of the interdiffusion coefficients.

The numerical values for D are lower compared to the values
determined from pulsed field gradient NMR experiments where
D = 1.9× 10−3 cm2/s at 173K was reported (Stallmach, Gröger, et al.,
2006). This discrepancy might be caused by the higher temperature
in the experiment and by the different loading of methane particles
in the MOF. Additionally, in the experiment intercrystalline diffu-
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sion of molecules is taken into account, too. It is also unclear if the
measurements have been realized at equilibrium conditions, as the
adsorption kinetics into the MOF can be slowed down by nucleation
effect significantly, as shown in the next section.
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5.5.2 Adsorption kinetics

As the phase diagram in Figure 5.4 (p. 47) shows, the temperature and
pressures of the IS and ILG two-phase regions are below the liquid–
gas coexistence regions of bulk CH4. This is important to know for a
full understanding of the adsorption kinetics and the interpretation
of results from adsorption measurements in experiments. The phase
behavior of the bulk gas which is supposed to be adsorbed by the
MOF may play a crucial role for charging and uncharging kinetics of
MOFs.

Figure 5.46: Equilibrium Adsorption isotherms of CH4 in IRMOF-8 from computer
simulations.

In cooperation with the Chemical Department at the Heinrich-
Heine-University in Düsseldorf, we have determined the adsorption
isotherms of methane in IRMOF-8 from volumetric adsorption experi-
ments at room temperature and temperatures around as well as below
the critical temperature of bulk methane (190K). The prediction for
the equilibrium sorption isotherms from GCMC simulations at these
temperatures are do not show peculiar behavior (see also Figure 5.46).
However, in the experiment, we observe a strong hysteresis for T < Tc
between adsorption and desorption, see Figure 5.47a, which is more
pronounced, the lower the temperature becomes. The pressure region
where we this hysteresis is obtained about two orders of magnitude
lower than the pressure of the coexistence line. For reference, the pres-
sure is marked in Figure 5.47b. The temperature region is far above the
IS and ILG phase transition, thus the hysteresis must originate from
other effects. Also, the adsorption curve is above the desorption curve
– different from what is usually measured in MOFs, where particles
are stuck in the pores and desorption becomes a very slow process.
The experimental data lacks microscopic information for an interpre-
tation of the presented data. In this section we study the adsorption
kinetics of gas particles with computer simulations by placing a single
IRMOF-1 grain and surround it by methane. By compressing and
expanding the system (excluding the grain) we are able to study the
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adsorption behavior as a function of pressure and with the analysis
of equilibrium configurations we expect to understand the inverse
hysteresis effect that are observed in experiment.

Computational methods

The simulation samples are prepared as follows and illustrated in

x

y

MOF

Vlocal =
1

2
(fxrx + fzrz)

Figure 5.48: Pressure calculation
from molecular dynamics in the
presence of a MOF grain (dark
gray). The local virial average Vlocal
is restricted to particles within the
light gray domain.

Figure 5.49: We place a IRMOF-1 seed of the size 3×3×3 unit cells
in the center of the simulation domain. The simulation box itself is
larger than the MOF and the free volume outside the MOF is filled
with methane particles using GCMC insertions and removal trials.
Molecular dynamics simulations are then used to equilibrate the outer
part with the MOF seed until the number of particles and pressure
stabilize both inside and outside the MOF. The temperature is kept
constant throughout the simulation by resampling velocities according
to a Boltzmann distribution yielding the targeted temperature every
nB time steps. Temperatures chosen for the simulations were 263.9,
189.8 and 167.1K, the first one being close to the bulk critical point of
methane (190.0K), the latter temperature is far below the critical point
and the influence of bulk condensation should play an important role.
Finding the pressure of a system the presence of an arbitrary external
field is not easily possible in computer simulations (see also Varnik,
Baschnagel, and Binder, (2000)), the pressure is determined from the
particles outside the MOF, since equilibrium requires the intensive
variables to be equal in the whole system. The bulk pressure P is
determined from computer simulations via the relation (Hansen and
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a) b)

d)c)

Figure 5.49: Sample preparation for molecular dynamics simulations of the ad-
sorption kinetics. After placing the single MOF grain (in white) in the center of
the cubic simulation box with linear dimension L = 223.8K (a), methane particles
are places outside the grain (b). After certain simulation time, particles will be
adsorbed (adsorbed particles are colored in red) and depending on the temper-
ature, different equilibrium states are obtained (c) and (d) for 263.9 and 167.1K,
respectively. For clarity, the top-front-right octant has been cut out of the snapshot.

McDonald, 2006)

P = ρkBT +
1

3V

〈

∑

i<j

f(rij) · rij

〉

, (5.16)

where ρ is the particle density, kB the Boltzmann constant and T the
temperature. f(rij) is the force between particles with index i and j

with distance rij = ri − rj.
Selecting slabs spanning the whole system in two spatial direction

but restricting in the other, modifies the second term in the above
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equation such that

P = ρkBT +
1

2V

〈

∑

i<j

(fαrα + fβrβ)

〉

, (5.17)

where α,β are the dimensions of the domain where particles are not
directly affected by the MOF and span the full system; in the above
example as shown in Figure 5.50 these are x and z. To explore different
pressure regions, the total system size is tuned, while leaving the MOF
grain unchanged. To allow a selection of particles in the simulation on
the GPU with CUDA, HALMD has been extended to support selecting
particles within a certain sub-volume of the simulation domain. For
the particle selection a stream compaction algorithm is used based
on parallel prefix sums (Horn, 2005; Harris, Sengupta, and Owens,
2007). In total, we have seven regions, six slabs outside the MOF grain
and a region inside the MOF, for counting the number of particles
adsorbed. After equilibration, the lateral pressure tensor elements
are then averaged over all slabs to calculate the pressure according to
Eq. (5.16).

To characterize the density profile in this inhomogeneous system
by calculating a cubic distribution function gc(r) around the center of
the MOF grain. It is very similar to the radial distribution function,
but instead of using spherical shells, cuboidal shells are used, taking
the symmetry of the MOF into account.

Results and Discussion

We observe very different adsorption behavior between T = 189.8 and
167.1K. At temperatures close to and above the bulk critical temper-
ature of methane a homogeneous fluid phase both in– and outside
the MOF forms. While the particle density is higher in the MOF, the
influence of the MOF itself is in the range of a few Ångström and
quickly reaches its bulk value (see Figure 5.52b). The Methane density
inside IRMOF-1 increases steadily with compression, a saturation of
the adsorption is not visible in the tested parameter range.

For lower temperatures, the MOF grain acts as a condensation
center, i.e. liquid droplets form only inside and around the MOF –
similar to heterogeneous nucleation, but it will always be around the
IRMOF-1 grain. At smaller system sizes, when the total pressure is
below the coexistence pressure of vapor–liquid phase transition of
this system, the MOF gets filled homogeneously and only further
compression of the simulation box causes liquid droplet to grow
beyond the MOF boundaries (cf. Figure 5.50). To test if this is the
vapor–liquid coexistence we compared the densities outside the MOF
with coexistence densities of bulk methane at 167.1K: The density
of the gas phase outside has been determined as ρv = 0.031 g/cm3

and liquid density of ρl = 0.305 g/cm3 which is in good agreement
to the coexistence densities found in the CH4 bulk phase diagram
ρbulk
v = 0.034 g/cm3 and ρbulk

l = 0.32 g/cm3, (see also Figure 5.51
(p. 88)). This effect can also be seen in Figure 5.53b, where the local
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a) 189.8 K

c) 167.1 K

b) 167.1 K

186.5 Å

186.5 Å

238.7 Å

Figure 5.50: Cuts through equilibrium configurations for 3× 105 methane parti-
cles with 3×3×3 unit cells of IRMOF-1 in a cubic system with periodic boundary
conditions. To make the inside visible the system is cut open, adsorbed methane
in white, methane outside the MOF is turquoise, MOF atoms are white. a) At a
temperature of 189.8K, the system is homogeneous both inside and outside the
MOF grain. b), c): For 167.1K, a liquid droplet of methane forms around the grain,
surrounded by a gaseous phase. At higher pressures (or smaller system size), the
liquid droplet grows outside the extents of the grain with a liquid–vapor interface.
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Figure 5.51: Bulk phase diagram of the liquid–gas transition with marked position
corresponding to the densities in the MOF grain. The marks refer to the methane
densities in the snapshot at 167.1, 189.8 and 263.9K in Figure 5.49d, Figure 5.50a-c.

fluid density outside the grain has been determined by dividing the
outer volume into sub-volumes The formation of the liquid nucleus
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For the lower temperature, the adsorption saturates and the fluid starts to liquefy
around the MOF (see also Figure 5.50). (b) Cubic distribution gc(r) of methane
particles as a function of the distance to the MOF center. For clarity, the larger
system is shifted by +5 on the ordinate.

Figure 5.53: (a) Number of adsorbed particles N per unit cell as a function of pres-
sure from Molecular Dynamics (MD) and grand-canonical Monte Carlo (GCMC)
simulations. (b) Distribution of methane density in the free volume as determined
from molecular dynamics simulations in a cubic system with edge length 171.6Å.
For temperatures below Tc, the distribution becomes bimodal. ρbulk

l and ρbulk
v the

bulk liquid and vapor densities at 167.1K, respectively.

inhibits further adsorption of gas molecules and saturates at ≈ 191
molecules per unit cell. To increase the loading beyond saturation
will require a liquefaction of all guest particles. In practice IRMOF-
1 is in powder form consisting of single crystals with diameters of
a few µm (see Figure 2.8 (p. 12)) which allows formation of liquid
bridges between single crystals (and has been observed in computer
simulations, where a fluid bridge between periodic images arises).

This is an experimental challenge as under bulk coexistence con-
ditions adsorption behavior is not governed by the properties of the
porous material but mostly by the bulk liquid–gas phase transition.
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Formation of macroscopic liquid bridges between single crystals can
slow down evaporation and condensation kinetics.
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6

CONCLUSIONS & OUTLOOK

In this work we have conducted a detailed analysis of the phase
behavior of methane in three IRMOFs – IRMOF-1, -8, and -16. Caused
by the heterogeneous interaction with the framework we found two
novel phase transitions where (locally) heterogeneous phases can
coexist with each other and investigated the structure of these phases.
In IRMOFs we identify three different regions where particles can be
adsorbed: First, there are the pores with their void volume, where
the guest particles feel almost no interaction with the MOF and high
pressures are required to fill the void space with guest molecules.
Then, the weakly attractive organic linkers, such that a condensation
with the formation of a wetting layer will occur at lower pressures.
Third, the metallic clusters at the corners of the framework, yielding
a strong attraction with the guest molecules. They are centers of
adsorption at lowest pressures and a wetting layer on the metallic
centers can be observed consequently. At high temperatures there is
a gradual transition between these three phases, but at temperatures
below ≈ 120K one or two (depending on the MOF) first-order phase
transitions can be observed in computer simulations. These two
transitions are the IRMOF-surface (IS) and the IRMOF-liquid–gas
(ILG) transition. In both transitions inhomogeneous bulk phases
coexist with each other. While IS transition is associated with the
heterogeneous interaction of the framework with the gas particles, the
ILG transition is related to a filling of the pore space.

We have shown that the framework – in stark contrast to confine-
ments in thin films – does not modify the universality class compared
to bulk phase behavior and no cross-over or rounding from three-
to two dimensional universal scaling occurs. The most important
difference of MOFs is, that in fact the confinement does not introduce
a length scale limiting the growth of the correlation length in any
spatial dimension.

With our methods we predict the temperature and pressure range
where these phase transitions would be expected, including how
adsorption isotherms in these regimes would look like. Experimental
verification of these results, however, is still pending, and the literature
is quite sparse for adsorption isotherms at very low pressures and
temperatures in which we expect the IS and ILG phase transitions.

Extending our study to MOFs of different pore sizes revealed that
the interplay between pore size, organic linkers and metallic centers
influence the coexistence regions and critical points significantly. In
MOFs with small pore diameters where the inner surface is large
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compared to the free volume, the IRMOF–surface transition coexis-
tence region spans a wider density and temperature range, while in
MOFs with longer linkers (thus larger pores) the coexistence range for
the density becomes very narrow. In IRMOF-16, the MOF with the
largest pore volume, the IS transition is increasingly difficult to detect,
because the temperature very low and the densities of the phases are
very similar. In IRMOF-16 the nature of the IS transition is still unclear,
and requires further investigation to ascertain whether it is a first-
order phase transition or whether it will vanish in the thermodynamic
limit. The ILG transition on the other hand, is similar to the liquid–gas
transition and in the limit of infinite pore volume the ILG transition
would eventually become the bulk liquid–gas phase transition. In
MOFs with small pores, the density of the coexisting ILG phases is
very similar, and are almost indistinguishable. Hence, the IS and ILG
transitions behave inversely with regard to the critical temperature
when tuning the pore size of a MOF. Understanding this can become
an important part for practical application when one wants to tune
the adsorption behavior of fluids.

Another aspect that is not covered in this work is whether the
coexistence of all three phases is possible (i.e. a triple point) – if such
a state exists, it is expected to occur at very low temperatures. Due
to the large free energy barriers at very low temperatures and the
involved difficulties in the sampling of equilibrium states makes a
further study unfeasible at this time.

Thermal undulations of the interface of coexisting IS phases are
weaker than predicted by capillary wave theory, which is understood
as a suppression of long-wavelength and low energy excitations due
to the presence of the framework and the low temperatures at which
the phase transitions are observable. This suppression is stronger in
IRMOF-8, where an interface broadening due to thermal fluctuations
can be observed only for very small systems. In larger systems, an
interface broadening caused by capillary waves is practically absent.
The external field due to the framework atoms suppress thermal fluc-
tuations, thus inhibit capillary waves along the interface – analogously
to the external field exerted by gravity.

The proposed Ising model to mimic the phase behavior in metal–
organic frameworks has successfully reproduced the ILG phases and
the associated first-order phase transition, which lies in the same
universality class as in the atomistic model. When one varies the
density of the fluid at coexistence pressure and planar interfaces can
be observed, both models show an oscillation of interface tension,
caused by the geometry of the framework. However, these oscillations
vanish with increasing system size. Due to the simplicity of the
Ising model, the computational load to simulate larger systems is
greatly reduced: we had a system of 4 × 4 × 4 unit cells in IRMOF-16
while the IRMOF–Ising model allowed to increase the system size
to 64 × 64 × 64 unit cells. As a result, we could estimate the critical
Binder cumulant U∗

L with higher accuracy and have identified small
corrections in comparison with the value from the bulk 3D Ising model.
Nonetheless, as all framework spins of IRMOF–Ising model interact
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identically with the free spins, the IS transition cannot emerge. Hence,
heterogeneous framework interactions must be introduced to model
the IS transition, too. This could be implemented by increasing the
interaction strength or the range at the corners with the free spins, or
both.

Our results from molecular dynamics simulations in IRMOF-1
show that the self-diffusion dynamics in the IS low- and high-density
phases are very similar and unaffected by the critical point. Although
quantitatively different, interdiffusion behaves qualitatively identical
to self-diffusion. Therefore, we can conclude that the phase behavior
itself is affecting the mobility of the guest particles only marginally,
but the study of larger systems to support this claim especially for
interdiffusion is still required.

In spite of the fact that both IS and ILG transition are within
coexistence densities of bulk methane and below the bulk critical
temperature, molecular dynamics simulations on a single MOF grain
surrounded by bulk methane show an influence of bulk phase behavior
on the adsorption kinetics. For temperatures above the bulk critical
point the adsorption behavior is as expected: Particles diffuse into the
MOF and at equilibrium the fluid is distributed homogeneously in-
and outside the grain. In this case the equilibration process is quite fast.
However, at lower temperatures a very different picture is visible, there
the gas may liquefy inside the MOF while outside the MOF methane is
still in the gas phase. Then, if one increases the pressure such that the
grain is fully loaded, the liquid droplet will grow beyond the extents
of the grain. While the simulation was limited to one single grain, in a
powder with lots of small MOF crystals, intercrystalline liquid bridges
can form which slow down the adsorption process. Also, slowly
diffusing liquid droplets may form. As a result adsorption into the
MOF will decrease and reaching equilibrium will take much longer
time. Volumetric adsorption experiments realized at the Heinrich-
Heine University Düsseldorf in the group of Prof. Dr. Christoph
Janiak confirms this picture. When temperatures are above the bulk
Tc, adsorption and desorption curves are identical – but for lower
temperatures this is no longer true and a hysteresis occurs, which
is found to vanish after a few adsorption-desorption cycles. This
behavior is understood as slowing down of the adsorption kinetics
by the condensation of gaseous methane on the surface of the MOF
crystals and in the free volume of the powder.

This is problematic for adsorption measurements in general, if
condensation occurs outside the porous material then the measured
adsorption is much higher than the actual loading in the pores. In
these cases a protocol to avoid non-equilibrium measurements is re-
quired. For example, adsorption on single crystals could be employed
to avoid condensation in the free volume between crystallites. Or,
applying heating and cooling cycles in order to speed up the diffusion
into the pores could be a feasible method, too. Nonetheless, a close
collaboration with experimental groups is required to understand
the complex processes associated with adsorption in metal–organic
frameworks.
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There is also room for improvement in the numerical methods.
GCMC simulations with successive umbrella sampling have been
shown to give valuable results, as for the first time it was possible to
access equilibrium states in the coexistence region of phase transitions
in MOFs. Still, simplifications were required to obtain our results
in a reasonable time. For one, we have only considered rigid MOFs,
while in practice the framework atoms, of course, fluctuate in their
position. This alone may alter the phase behavior. Even though not
necessarily relevant in IRMOFs, in certain MOFs the shape of the
pores may change significantly, depending on the loading of guest
molecules (which is known as breathing). Further, in this work we
considered only methane as the guest molecule. While the observed
phase behavior is generic to some extent – as long as the interaction
with the framework is heterogeneous – it is not clear how phase
transitions with more complex molecules, e.g. CO2 or H2O with longer
ranging interaction look like. Further, frameworks with pore structures
of symmetries other than cubic could be certainly interesting and yield
a wide range of (heterogeneous) phases. To that end, the author hopes
to stimulate further studies on the phase behavior in MOFs.
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