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Tag der mündlichen Prüfung: 11. November 2016





Eidesstattliche Erklärung

Ich versichere an Eides statt, dass die Dissertation von mir selbst verfasst und ohne un-
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Summary
Excitation energy transfer (EET) is an important photophysical process which describes
the non-radiative transfer of electron-hole pairs between molecules. The process has vari-
ous applications ranging from organic photovoltaics to methods for the structure determi-
nation of biomolecules. Most quantum chemical approaches for the prediction of the EET
rate are based on Fermi s Golden rule. Here, the EET rate is proportional to the square of
the excitonic coupling matrix element (ECME) between the appropriate electronic states.
In this work, the monomer transition density (MTD) approach for the computation of the
ECME between two excited singlet states was implemented, adapted to the DFT/MRCI
code and extended to exchange contributions. Furthermore, the method was re ned by
introducing a mechanism which ensures that only the orbitals are considered which refer
to non-vanishing elements of the transition density matrices. To overcome the approxima-
tion of treating the supermolecular EET system as two arti cially isolated monomers and
in order to consider charge-transfer (CT) contributions to the ECME, the MTD method
was extended to the supermolecular transition density (STD). Both methods were applied
to a number of EET cassettes in which BODIPY serves as exciton acceptor and is linked
to anthracene by a molecular bridge. Using the MTD approach and in presence of the
linker, the experimental EET rates in the range of picoseconds could fairly be reproduced.
In absence of the bridge, MTD and STD provide similar results while the MTD seems
to overestimate the ECME in presence of the linker due to the neglect of the CT contri-
butions. It could be shown that the experimentally observed highly e cient EET in a
cassette with perpendicular donor acceptor transition dipole moment orientation can be
traced back to dynamic e ects. To study the validity of the Förster EET model at small
donor acceptor distances in a realistic system, a method was developed making a large
number of snapshots, obtained from molecular dynamics (MD) simulations, accessible to
a transition density-based method for the computation of the ECME. By the use of a
quaternion-based approach preoptimized structures of the two subsystems were aligned
to the MD snapshots such that a costly relaxation of the structures and recomputation
of the transition density matrices is avoided. The method was applied to a pair of dyes
attached to a double-stranded RNA. Due to certain preferred relative arrangements of the
dyes, substantial deviations from an isotropic transition dipole moment distribution and
a Gaussian distance vector distribution could be found. However, the EET rates remain
una ected because the periods in which the failure of the ideal dipole approximation (IDA)
is large, have a minor statistical weight.

X



Zusammenfassung
Exzitonischer Energietransfer (EET) ist ein bedeutender photophysikalischer Prozess, der
den strahlungslosen Transfer von Elektronen-Loch-Paaren zwischen Molekülen beschreibt.
Anwendungen reichen von der organischen Photovoltaik bis hin zur Strukturaufklärung
von Biomolekülen. Die meisten quantenchemischen Methoden zur Berechnung der EET-
Rate basieren auf Fermis Goldener Regel. Dabei ist die EET-Rate proportional zum
Quadrat des exzitonischen Kopplungsmatrixelements (ECME). In der vorliegenden Ar-
beit wurde die MTD-Methode zur Berechnung des ECME auf die DFT/MRCI Methode
angepasst und um einen Austauschterm erweitert. Durch einen neuen Mechanismus, wer-
den nur solche Orbitale berücksichtigt, die sich auf nicht verschwindend kleine Elemente
der Übergangsdichtematrizen beziehen. Um Charge-Transfer (CT) Beiträge berücksich-
tigen zu können und die Subsysteme nicht isoliert betrachten zu müssen, wurde eine
zum MTD Ansatz analoge Methode entwickelt, die auf den Übergangsdichten des Super-
moleküls basiert. Beide Methoden wurden auf eine Reihe von EET-Kassetten angewen-
detet, in denen ein Anthracen-Donor über eine molekulare Brücke mit einem BODIPY-
Akzeptor verbunden ist. Unter Anwendung des MTD Ansatzes und Berücksichtigung der
Brücke konnten die experimentellen EET-Raten in der Grö enordnung von Picosekun-
den reproduziert werden. In Abwesenheit der Brücke liefern MTD und STD ähnliche
Ergebnisse, während MTD aufgrund der Vernachlässigung der CT Beiträge das ECME in
Anwesenheit der Brücke überschätzt. Weiterhin konnte gezeigt werden, dass der e ziente
EET in einer der Kassetten, in der die Übergangsdipolmomente von Donor und Akzep-
tor rechtwinklig angeordnet sind, auf dynamische E ekte zurückzuführen ist. Um die
Richtigkeit des EET-Modells von Förster in einem realistischen System zu untersuchen,
wurde eine Methode entwickelt, mit der eine gro e Anzahl von Schnappschüssen aus einer
Molekulardynamiksimulation (MD) einer Übergangsdichte-basierten Methode zur Berech-
nung des ECME zugänglich gemacht werden kann. Durch die Anpassung voroptimierter
Strukturen der Farbsto e an die Strukturen der MD Schnappschüsse kann eine aufwendige
Relaxierung der Strukturen und somit eine erneute Berechung der Übergangsdichtematri-
zen vermieden werden. Die Methode wurde auf ein Farbsto paar angewendet, wobei
die beiden Farbsto e jeweils kovalent an eine doppelsträngige RNA gebunden waren.
Aufgrund bestimmter, bevorzugter relativer Anordnungen der Farbsto e konnten Ab-
weichungen von einer perfekten Gau -förmigen Abstandsverteilung und von einer per-
fekten isotropischen Verteilung des Übergangsdipolmoments gefunden werden. Trotzdem
bleibt die EET-Rate nahezu unverändert, da die Zeiträume, in denen der Fehler der idealen
Dipolnäherung (IDA) gro ist, einen geringen statistischen Ein uss haben.

XI



Chapter 1

Introduction

1.1 Excitons

-
+

-
+

BA

Figure 1.1: Schematic illustration of Frenkel (A) and Wannier-Mott (B) excitons in a
lattice.

An exciton is a quasi-particle de ned as a coupled electron-hole pair. The term has its
origin in solid-state physics. The process of excitation energy transfer, which is treated in
this work, refers to the migration of such electron-hole pairs within a molecular aggregate,
a polymer or a molecular dimer and is not restricted to the solid state. However, to get
an insight into the formation and behavior of electron-hole pairs, a basic understanding
of the chemical composition of solids is required.
In a solid, atoms are periodically arranged on a 3-dimensional lattice. Solids characterized
by a long-range order of this lattice are called crystals. The electronic structure of crys-
talline solids can be described by the band model. [1] In the case of only two interacting
atoms, atomic orbitals (AOs) of the same kind (1s, 2s, 2p, ...) split into pairs of binding
and anti-binding molecular orbitals (MOs). Adding more and more atoms, the number
of resulting MOs increases while the energetic distance becomes smaller and smaller, -
nally resulting in a band structure. The highest occupied energy band is called valence
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2 CHAPTER 1. INTRODUCTION

band while the lowest unoccupied energy band is called conduction band. As long as a
band is not fully occupied, the electrons are fully delocalized such that the charge-carriers
can move freely from atom to atom within the lattice. Excitation of an electron from
the valence band to the conduction band leads to a coupled electron-hole pair a so-
called exciton. Due to the band structure, the electron-hole-pair can move freely within
the three-dimensional lattice. The binding energy between the electron in the conduction
band and the hole in the valence band depends on their distance according to which exci-
tons can be classi ed (Fig. 1.1). In honor of the Russian physicist Jakow Iljitsch Frenkel,
local, tightly-bound excitons are called Frenkel excitons. [2] They are characterized by
small electron-hole separations in the range of 1 nm and high binding energies of up to
1 eV. [3] In contrast, excitons with a substanially larger electron-hole distance and smaller
binding energy, respectively, are named after the Swiss and English physicists Gregory
Hugh Wannier and Nevill Francis Mott (Wannier-Mott excitons). [4] In the special
case in which the electron and the hole are located on adjacent molecules of the lattice,
the exciton is called charge-transfer (CT) exciton and can be regarded as an intermediate
state between a Frenkel and a Wannier-Mott exciton. [5]
In the case of single organic molecules instead of crystalline solids, the situation is more
straightforward since a band structure does not exist. Therefore, each electronically ex-
cited state can be regarded as an exciton. [6] An excitation which is perfectly localized
on one molecule is treated as Frenkel exciton while a charge transfer excitation between
two molecules is regarded as Wannier-Mott exciton. In larger multichromophoric ensem-
bles and periodic polymeric structures the situation is similar to the one in crystalline
solids. Here, the monomer units of the polymer play a role comparable to the atoms
within the lattice of a solid. The interaction between two excitons is called excitonic cou-
pling (EC). Restricting our considerations to the interaction between single molecules in
bichromophoric systems and small ensembles of chromophores, the EC is equivalent to the
interaction between two electronically excited states.

1.2 Excitation energy transfer

VDA

A

A*

D

D*

Figure 1.2: EET can in the simplest case be understood as simultaneous excitation of the
acceptor and a deexcitation of the donor.
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FörsterLUMO

HOMO

DexterLUMO

HOMO

DonorAcceptor

Figure 1.3: Illustration of the Förster and the Dexter EET mechanisms in a HOMO-
LUMO-model.

Excitation energy transfer (EET) is a photophysical process which describes the non-
radiative transfer of an exciton between two molecular systems. These systems can either
be individual molecules, monomeric units of a di- or polymeric structure or elements of
a large molecular ensemble. EET was rst described by Theodor Förster in the 1940s
considering two individual chromophores which can be independently photoexcited. [7, 8]
Förster described the process as a simultaneous excitation and deexcitation process of
the acceptor and the donor, respectively, without emission and reabsorption of a photon
(Fig. 1.2). In a four-electron-four-orbital model the Förster mechanism can be explained
as a local transition of an electron from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO) in the acceptor which is coupled
to the appropriate opposite transition in the exciton donor (Fig. 1.3). It is important
to mention that both transitions are strongly localized on the individual molecules and
that no exchange of charge carriers takes place. According to the Förster mechanism
EET can only take place if both transitions are allowed. Strictly speaking, this is only
the case if both excited states have the same multiplicity as the appropriate electronic
ground state. However, formally spin-forbidden processes can become allowed in the case
of strong spin-orbit coupling. Therefore, EET can take place, according to the Förster
mechanism, between a triplet and a singlet state if the donor phosphorescence is strong.
Nevertheless, the term Förster resonance energy transfer (FRET) usually describes the
transfer of excitation energy between two excited singlet states. Since the vehicle of the
coupling between the two transitions is the dipole-dipole interaction which decreases with
r−3, the donor acceptor separation can reach values in the range of 30-80 A and higher. [9]
In the 1960s, David L. Dexter developed a mechanism describing EET at short donor
acceptor distances requiring an overlap of the MOs. [10] In contrast to Förster, Dexter
described the EET processes as simultaneous migration of an electron from the donor to
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the acceptor and of another electron from the acceptor back to the donor (Fig. 1.3). The
Dexter exchange mechanism is able to describe triplet-triplet energy transfer for which
the Förster term is vanishing, and explains additional contributions in the case of short-
range singlet-singlet EET where the spatial overlap of the MOs of interacting molecules
is not negligible. To achieve a high EET e ciency EEET , the EET rate kEET has to be
signi cantly larger than the rates of the competing processes [11]

EEET =
kEET

kEET + kfl + knr
(1.1)

where kfl and knr are the donor uorescence rate and non-radiative decay rate, respec-
tively. Typical EET rates are found in the range of picoseconds. It is important to
mention that EET always denotes the formal transfer of an electron-hole pair between
two molecules. The migration of single electrons is described by the Marcus theory [12]
and will not be discussed in this work.

1.3 Importance and applications

EET is an important photophysical process which is exploited for numerous technical and
scienti c applications based on optoelectronics. In nature, it was originally found as a
key step of photosynthesis which takes place in the light-harvesting complexes (LHC) of
plants. [13] In an attempt to imitate this highly e cient process of energy conversion, solar
cells have been developed. [14] Furthermore, EET is exploited in biophysical chemistry for
the investigation of the molecular structure and the dynamics of biomolecular systems. [15,
16] In the following, an overview of the most important applications of EET will be given.

1.3.1 Photosynthesis

Phototropic organisms such as plants, algae and some bacteria are able to convert electro-
magnetic radiation into a chemical potential. [17] During photosynthesis in plants, single
chlorophyll molecules located in the LHCs in the chloroplasts are photoexited. To cover
a large part of the visible spectrum, the LHCs not only contain chlorophyll-a but also
chlorophyll-b and various carotenoids. The created excitons are transferred between adja-
cent chlorophyll molecules towards the reaction centers where the charge separation takes
place by various redox reactions in photosystem I and II creating a H+ gradient between
stroma and lumen of the cell. The gradient is exploited to drive the biosynthesis of ATP
which is the universal energy carrier of living organisms.
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Figure 1.4: Schematic design and working principle of an organic solar cell. A: Photon
absorption, B: Exciton migration, C: Charge separation, D: Charge carrier migration.
HTL: hole transport layer (reception layer), ETL: electron transport layer.

1.3.2 Organic photovoltaics

In organic photovoltaics, inorganic semiconductors such as silicium dioxide or titanium
dioxide are replaced by cheaper organic compounds. [18] The working principle is closely
related to the process of photosynthesis in nature. An organic solar cell is generally
composed of two electrodes, a reception layer (also termed hole transport layer, HTL)
and an electron transport layer (ETL) (Fig 1.4). [14, 19] One electrode is composed of
indium tin oxide or another transparent electronically conductive material such that sun
light can reach the excitation layer. Both, excitation layer and ETL, consist of di erent
polymeric materials which are arranged in a way maximizing the interface area. The
process of energy conversion can be separated into four major steps (Fig. 1.4). In the
rst step, a photon is absorbed by a monomer unit of the polymeric excitation layer

material. During absorption, the monomer unit is photoexcited and passes over to an
electronically excited state representing an exciton. In a second step, the exciton migrates
from monomer unit to monomer unit via EET towards the intersection area between
excitation and electron transport layer. To achieve a high e ciency of the solar cell, the
process of exciton migration has to be much faster than the competing processes such as
spontaneous uorescence or recombination of the electron and the hole. At the intersection
between the two layers the exciton is separated into two free charge carriers. In a last step,
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hole and electron migrate from monomer unit towards the electrodes creating a voltage
which can be used to run an electrical consumer. Hole and electron recombine via the
circuit, resetting the system to the initial state.

1.3.3 Structure determination of biomolecules

hvin hvout
hvin hvout

FRET

Figure 1.5: Example of FRET used for the detection of the structural change of a protein
upon substrate binding.

In biophysical chemistry, the phenomenon of EET is used for the investigation of the
structure and the dynamics of biomolecules such as enzymes and nucleic acids. [15] In the
most straightforward scenario, a suitable pair of uorescent dyes is covalently bound to
di erent sites of the target molecule (Fig. 1.5). [20] Since EET takes place between the
uorescent singlet states of the dyes in this context, the term FRET is used in particular,

where the F refers to the Förster theory. The dyes and linkers are chosen in a way
ensuring that the structure and activity of the enzyme remain largely una ected. Changes
of the molecular structure of the target molecule induced by the binding of a substrate
or a biochemical reaction can be monitored via changes of the EET rate due to the
altered distances between donor and acceptor. When photoexciting the donor, almost
exclusively donor uorescene will be detected when the dyes are well separated. Due to
a decreased donor acceptor distance induced by a structural change of the target system,
EET becomes more e cient. In this case, acceptor uorescence can be detected as well
upon photoexcitation of the donor. Over the last four decades, highly demanding setups
have been developed allowing, e.g., the real-time monitoring of biochemical reactions in
vivo and in vitro. [16, 20]
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1.4 State of the art

Experimentally, EET rates can be determined by ultra-fast laser spectroscopy in the pi-
cosecond or femtosecond regime. [21, 22] One possibility to access EET rates in quantum
chemistry is the application of Fermi s Golden rule. In this context, the EET rate is propor-
tional to the square of the ECME between the interacting electronically excited states. [6]
It is important to underline that a high ECME is a necessary but not a su cient condition
for an e cient EET as the pairs of donor deexcitation and acceptor excitation have to be
energy-conserving. Alternatively, EET rates can be obtained by excited state molecular
dynamics (MD) simulations which is beyond the scope of this work. From a quantum
chemical point of view, the challenge is to nd an e cient way to accurately compute the
EC for molecular systems in which donor and acceptor are not identical. Otherwise the
total coupling can directly be calculated from half of the energy splitting (Davydov split-
ting) between the interacting states as will be shown later. [23] Methods for computing
the EC can be separated into monomeric and supermolecular approaches.
In monomeric approaches both subsystems are calculated separately. The wave function
of the supermolecular system is approximated as the product of the wave functions of
the two individual subsystems. The simplest monomeric approach is directly based on
the Förster theory, calculating the EC as a distance-dependent interaction of two transi-
tion dipole moments. [6, 7, 8] More accurate results can be achieved if the full transition
densities are used instead. In the transition density cube (TDC) method, the transition
densities are numerically integrated using a three-dimensional grid. [24] Another way is
provided by the distributed transition monopole (DTM) approach approximating the tran-
sition densities as a set of point charges located on the two subsystems between which the
interaction takes place. [25] The monomer transition density (MTD) approach constitutes
a further development of the TDC method expanding the transition densities within the
MO basis. [26, 27] The MTD approach is the major approximation used within this work
and will be treated in detail later on. Furthermore, Mennucci and coworkers developed a
monomeric approach including solvation e ects represented by a continuum model. [28, 29]
In the 1990s, Harcourt et al. presented a minimal four-electron-four-orbital model provid-
ing the opportunity of a separate consideration of local, exchange and CT contributions
to the EC in a homodimer. [30, 31, 32] Russo et al. generalized the model to an arbitrary
number of orbitals. [33] A method for the consideration of CT contributions which is not
restricted to homodimers was developed by Fujimoto. [34, 35] Introducing two ionic in-
termediate states the EET process can take place according to four di erent pathways.
While the direct part of the EC between the pure locally excited initial and the pure
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locally excited nal states is calculated in analogy to the MTD method, CT excitations
are approximated in a HOMO-LUMO-based approach. Additionally, Fujimoto considers
the presence of the respective other monomer by using a frozen-density-embedding formal-
ism. A similar approach based on subsystem-density functional theory (DFT) has been
presented by Neugebauer et al. [36, 37] A method which aims for the approximation of
the in uence of the molecular linker between the donor and the acceptor subsystems was
introduced by Caprasecca and Mennucci. [38]
In contrast to monomer based methods, the electronic wave function of the total system is
used for further analysis in all supermolecular-based approaches. The simplest approach
of this kind is the use of the Davydov splitting for the calculation of the EC which is
only possible in the case of a homodimer. [23] Although the calculated EC is exact with
respect to the accuracy of the quantum chemical method, its separation into the indi-
vidual contributions is not straightforward. In supermolecular-based methods suitable
for the treatment of molecular heterodimers, diabatization techniques are applied. The
calculation is performed by nding the correct unitary transformation which converts the
diagonal adiabatic Hamiltonian into the non-diagonal Hamiltonian of the interacting dia-
batic states. In this case, the EC is equivalent to the o -diagonal elements of the diabatic
Hamiltonian. Exploiting a phyical quantity which is known for both, the excited states
of the isolated monomers and for the corresponding excited states of the supermolecular
system, a unitary transformation can be deduced. In a second step this unitary trans-
formation is used for the transformation of the adiabatic Hamiltonian. By this means,
the fragment excitation di erence (FED) and the fragment spin di erence (FSD) methods
developed by Hsu et al. enable the calculation of the EC between two singlet and two
triplet states, respectively. [39, 40, 41, 42] In 2014, Blancafort and Voityuk developed a
similar model using a quantity for the exciton delocalization within the supermolecular
arrangement introduced by Lischka and coworkers [43] to nd the correct unitary trans-
formation. [44] In order to account for additional CT contributions, the formalism has
been extented to a three-state model. Irrespective of the higher computational cost in
comparison to monomer based calculations, supermolecule approaches often provide less
accurate results. [45] The problem is that the adiabatic states are not solely composed of
energetically lowest local transitions but comprise signi cant additional contributions of
higher diabatic states.

1.5 Motivation and objectives

EET is an important photophysical process with numerous applications in chemistry and
physics. A detailed understanding of the process is the basis of technological advance
in the eld of optoelectronics. Research particularly aims for the development of new
chemical compounds enhancing the still low e ciency of organic solar cells. Theoretical
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calculations can make a decisive contribution predicting the EC and EET rates. By this
means, the expensive and demanding synthesis of new compounds can be concentrated on
theoretically promising candidates. By the study of model systems, the detailed coupling
mechanism, the importance of the molecular geometries and certain substitutes as well as
the in uence of the architecture of the molecular linker can be understood. A detailed
understanding of the processes in model systems provides a valuable basis for the devel-
opment of new materials.
The primary objective of this work was the implementation of a transition density-based
method for the calculation of the EC between two excited singlet states in bichromophoric
systems which is adapted to the DFT/MRCI code [46]. The program was devised for the
investigation of a number of EET cassettes focussing on the in uence of the molecular
linker between the donor and the acceptor subsystems. Furthermore, an e cient method
connecting to molecular dynamics (MD) simulations was to be provided to be able to
study also the dynamics of EET. The method was applied to a well-known FRET model
system investigating the validity of the IDA-based Förster theory in the case of very small
donor acceptor distances.
The use of monomer-based approaches implies the necessity of splitting the considered
supermolecular donor-acceptor system into two isolated subsystems. In the case of a
molecular bridge between the donor and the acceptor moiety, a covalent bond has to be
split and the resulting fragments have to be saturated with hydrogen atoms. Both, the
arti cial treatment of the donor and the acceptor as isolated systems and the modi cation
of the chemical structure only allow an approximate study of the original system. To over-
come this problem, the initial objective was to use the fragment molecular orbital (FMO)
method [47, 48] as implemented in the GAMESS US suite of programs [49] to split the
supermolecule into donor and acceptor subsystems. The method was originally developed
for the description of large molecules in the electronic ground state and provides excellent
results for polypeptides and proteins. [50] In the FMO method, the target system is split
into fragments whose energies are determined variationally considering the electrostatic
interaction between the fragments by an iterative computation scheme fully relaxing the
fragment electron densities. The energy of the unperturbed system can directly be cal-
culated from the sum of the energies of the fragments. In a second step, the interaction
energies between each pair of fragments is calculated and added as perturbational correc-
tion. Therefore, the electronic ground state energy of the total system (E) is obtained
from the appropriate energies of the individual fragments (Ei) and fragment pairs (Eij).

E =
∑

i

Ei +
∑
i>j

(Eij − Ei − Ej) (1.2)
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Due to the dimer correction (second term in Eq. 1.2) the methods is not fully varia-
tional. [50] In the FMO method, covalent bonds are split heterolytically. A capping of
the resulting fragments is performed e ectively by adding the Coulomb eld of all other
fragments to the considered fragment. Therefore, a saturation with hydrogen atoms is not
necessary. An extension of the method to the multi-con guration self-consistent eld (MC-
SCF) approach enables the description of electronically excited states. [51] To calculate
the EC in molecular dimers, the FMO method was planned to be used to compute a set of
perfectly donor and acceptor localized MOs. These orbitals were intended for the calcula-
tion of the one- and two-electron integrals required by the DFT/MRCI method providing
the transition densities. However, it showed that the FMO method in its present form is
incompatible with the DFT/MRCI approach. The orbitals obtained by the FMO method
are not canonical (diagonal Fock matrix) which is explicitly required in DFT/MRCI. Fur-
thermore, the systems to be studied are characterized by molecular linkers leading to a
delocalization of the MOs beyond the borders of the donor and acceptor moieties. The
FMO fragmentation principle refers to the splitting of single bonds preserving the elec-
tron density within each fragment as most as possible. Therefore it particularly cannot
be applied to -conjugated systems.



Chapter 2

Theory

This section is particularly based on refs. [6, 52, 53].

2.1 Photophysical processes and Franck-Condon principle
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Figure 2.1: Jablonski diagram schematically illustrating the most important photophysical
processes. A: absorption, F: uorescence, P: phosphorescence, IC: internal conversion,
ISC: intersystem crossing, SS-EET: singlet-singlet excitation energy transfer, TT-EET:
triplet-triplet excitation energy transfer. Dashed arrows denote non-radiative relaxation
processes.
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v = 0
v = 1

v = 2
v = 3
v = 4

Req

v = 0
v = 1

v = 2
v = 3
v = 4

absorption
uorescence

E

S0

S1

Figure 2.2: Absorption and uorescence according to the Franck-Condon approximation
using the harmonic approximation.

2.1.1 Absorption

The term absorption refers to the excitation of a molecular system due to interaction with
resonant electromagnetic radiation. While low energetic radiation in the microwave and
infrared (IR) region gives rise to molecular vibrations and rotations, respectively, reso-
nant radiation in the visible (Vis) and the ultraviolet (UV) region (14000 − 50000 cm−1)
causes a reorganization of the electron density within the molecule. In the electronically
excited state, which usually has the same spin-multiplicity as the electronic ground state,
the electron density as well as the positions of the nuclei in space has changed compared
to the electronic ground state. The Franck-Condon principle [54, 55, 56] states that the
reorganization of the nuclei takes place on a slower time-scale than the electronic transi-
tion due to the much higher mass of the nuclei compared to the electrons. Therefore, each
electronic state can be regared as being composed of a number of vibrational substates,
where the combination of an electronic and a certain vibrational substate is called vibronic
state (Fig. 2.2). A vibronic transition refers to a transition between a certain vibrational
substate of a certain electronic state and a certain vibrational substate of a di erent elec-
tronic state. The di erence between the equilibrium molecular geometries of the electronic
ground state and the electronically excited state is described by the coordinate ı Req. Ac-
cording to the thermal occupation of the vibrational substates of the electronic ground
state, an excitation takes place vertically leading to the occupation of di erent vibrational
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substates of a certain electronically excited state which depends on the excitation energy.
The vibrational progression of the absorption spectrum can be explained by the di erent
probabilities of these vibronic transitions which depend on the overlap of the vibrational
wave functions. The intensity of a vibronic transition is proportional to the absolute
square of the transition dipole moment fi

2 between the initial i and the nal vibronic
states f which are de ned as the product of the appropriate electronic and vibrational
wave functions. [1]

i(r1 r2 rN R1 R2 RM ) = i(r1 r2 rN R1 R2 RM ) (2.1)

i(R1 R2 RM )

f (r1 r2 rN R1 R2 RM ) = f (r1 r2 rN R1 R2 RM ) (2.2)

f (R1 R2 RM )

In atomic units, the molecular dipole operator is given by

= −
N∑

i=1
ri︸ ︷︷ ︸

el

+
M∑

j=1
ZjRj

︸ ︷︷ ︸
nuc

(2.3)

where ri and Rj are the cartesian coordinates of the i-th electron and the j-th nucleus,
respectively, and where Zj is the atomic number of the j-th nucleus. The absolute square
of the expectation value of the transition dipole moment between the initial and the nial
vibronic states reads

fi
2 = f i

2 (2.4)

= f el i + f nuc i
2 (2.5)

= f f el i i + f f nuc i i
2 (2.6)

Applying the Condon approximation Eq. 2.6 can further be decomposed to

fi
2 =

∣∣∣ f i f el i R=Req + f i R=Req︸ ︷︷ ︸
=0

f nuc i

∣∣∣2 (2.7)

Due to the orthogonality of the electronic states, the term which depends on the nuclear
coordinates vanishes such that the the expression becomes

fi
2 = f i f el i

2 (2.8)

= f i
2 · f el i

2 (2.9)
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where the absolute square of the overlap integral between the vibrational wave functions is
de ned as so-called Franck-Condon factor which is a measure for the probability of the
appropriate vibronic transition. The Franck-Condon principle not only holds true in the
framework of absorption but can also be applied to emission as long as the reorganization
of the nuclei is slower than the reorganization of the electrons.

2.1.2 Deactivation of electronically excited states

Due to the higher energy of the electronically excited state compared to the electronic
ground state, the system returns to the electronic ground state as fast as possible. Due to
the existence of di erent radiating and non-radiating photophysical processes, more than
only one pathway is possible for deactivation. [1] Which processes actually take place in
a certain molecular system depends on the appropriate rate constants. According to the
Franck-Condon principle, the excitation takes place vertically from thermally occupied
substates of the electronic ground state populating di erent vibrational substates of the
electronically excited state with a di erent probability. In solution or in the solid state
where the excited molecule can exchange energy with the surrounding molecules, the
system relaxes to the vibrational ground state of the current electronically excited state by
vibrational relaxation. During this process, parts of the excitation energy are converted
to thermal energy due to molecular vibrations and due to collisions with solvent molecules.
From the vibrational ground state, the system can undergo a transition to an isoenergetic
vibrational substate of a di erent electronic state of either the same spin multiplicity
(typically singlet to singlet or triplet to triplet transitions) or a di erent spin multiplicity
(transitions between singlet and triplet states). Such transitions between two states of the
same spin multiplicity are called internal conversion (IC) while transitions between two
states of di erent spin multiplicity requiring a spin ip are called intersystem crossing
(ISC). While IC is spin-allowed, ISC is a spin-forbidden process which only takes place
in molecular systems with high spin orbit coupling (SOC) causing a mixture of singlet
and triplet states. SOC is important in all compounds which comprise at least one heavy
atom such as sulfur or a transition metal. Furthermore, a radiative deactivation can
theoretically take place vertically from the lowest vibrational level of each electronically
excited state by either fluorescence or phosphorescence, respectively. The resulting
emission spectrum has a vibrational progression which corresponds to Franck-Condon
factors between the di erent vibronic states. Since IC and ISC usually are faster than
uorescence and phosphorescence, respectively, Kasha s rule states that uorescence and

phosphorescence always takes place from the lowest excited state of a given multiplicity
(S1 and T1). [57] This rule is true for most but not for all molecular systems. Since
phosphorescence is a spin-forbidden process, it usually occurs on a much slower time scale
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than uorescence. Similar to ISC, phosphorescence is only possible in molecules with
non-zero SOC. If a second, suitable molecule is located next to an electronically excited
state, the excitation energy may also be transferred to the second molecule. A detailed
quantum chemical description of this non-radiating process known as excitation energy
transfer (EET) is the main scope of this work and will be treated in detail. EET can
take place between electronic states with the same (singlet to singlet, or triplet to triplet)
or a di erent spin-multiplicity (singlet to triplet, or triplet to singlet). In this work, we
restrict our considerations to the EET between two excited singlet states. Excitation of a
molecule may also induce a photochemical reaction which is beyond the scope of this work.
Typical time scales of the most important photophysical processes are listed in Tab. 2.1.

Photophysical Process Lifetime Rate (s−1)
absorption fs 10−15

internal conversion ps 10−14 - 10−11

internal conversion (to GS) ns - μs 10−9 - 10−7

intersystem crossing ns 10−11 - 10−8

uorescence ns - μs 10−11 - 10−6

phosphorescence ms - s 10−3 - 10+2

excitation energy transfer ps - ns

Table 2.1: Typical time scales of photophysical processes. [11] GS: electronic ground state.

2.2 EET rate

2.2.1 Fermi s Golden rule

Under speci c conditions which will become clear in the course of this section, the EET
rate can be calculated using Fermi s Golden rule. [52] The formula derived by Enrico
Fermi and Paul Dirac [58, 59] generally provides a rate constant for the transition from a
certain energy eigenstate into a continuum of eigenstates and is based on a perturbational
treatment of the Hamiltonian H of the target system. [6, 60, 61] In the framework of EET,
the non-perturbed Hamiltonian H0 represents the non-interacting donor and acceptor
molecules. To obtain the Hamiltonian H of the interacting chromophores, the interaction
V(t) is introduced as a time-dependent perturbation of the non-interacting system.

H = H0 + V(t) (2.10)

The time-independent Schrödinger equation of the non-interacting system reads

H0 n = En n (2.11)
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where n are the eigenstates of H0 with eigenenergies En. The eigenstates n(t) of
the corresponding time-dependent Schrödinger equation of the non-interacting system are
composed of a time-independent term which is equivalent to the eigenstates of H0 and a
time-dependent term represented by an imaginary exponential function.

n(t) = n e
−iEnt

� (2.12)

The solutions (t) of the time-dependent Schrödinger equation of the interacting system
H

H (t) = (H0 + V(t)) (t) = i�
d

dt
(t) (2.13)

are assumed to be linear combinations of the eigenstates n(t) of the non-interacting
system H0.

(t) =
∑

n

cn(t) n(t) (2.14)

=
∑

n

cn(t) n(t) e
−iEnt

� (2.15)

Substituting Eq. 2.15 into Eq. 2.13, one obtains

H0
∑

n

cn(t) n e
−iEnt

� + V(t)
∑

n

cn(t) n e
−iEnt

� =
d

dt
i�
∑

n

cn(t) n e
−iEnt

� (2.16)

Using Eq. 2.11 the expression simpli es to

∑
n

cn(t)En n e
−iEnt

� + V(t)
∑

n

cn(t) n e
−iEnt

� =
d

dt
i�
∑

n

cn(t) n e
−iEnt

� (2.17)

Applying the product rule to derive the right hand side of the equation, we obtain

∑
n

cn(t)En n e
−iEnt

� + V(t)
∑

n

cn(t) n e
−iEnt

� (2.18)

= i�
∑

n

(
d

dt
cn(t) n

)
e

−iEnt
� +

∑
n

cn(t)En n e
−iEnt

�

Multiplying with k , the expression reads

∑
n

cn(t) k V(t) n e
−iEnt

� = i�
∑

n

(
d

dt
cn(t) k n

)
e

−iEnt
� (2.19)

Introducing the perturbation matrix element Vkn

Vkn(t) = k V(t) n (2.20)
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and using the orthogonality of the eigenstates k and n ( k n = kn), one obtains

∑
n

cn(t)Vkn(t)e
−iEnt

� = i�

(
d

dt
ck(t)

)
e

−iEkt

� (2.21)

Rearranging the expression and de ning the energy di erence between the eigenstates k

and n as

kn =
Ek − En

�
(2.22)

leads to
d

dt
ck(t) =

1
i�

∑
n

cn(t)Vkn(t)ei knt (2.23)

The di erential equation can be solved approximately by a perturbation expansion
which is truncated after the rst-order term. Here, the solution of order (p+1) is obtained
iteratively from the solution of order p. [61]

d

dt
c

(p+1)
k (t)

1
i�

∑
n

c(p)
n (t)Vkn(t)ei knt (2.24)

Suppose that for t = 0 the system is in the initial state i such that

c
(0)
k (t = 0) = ki

⎧⎨
⎩1 for k = i

0 for k = i
(2.25)

which is the zeroth-order solution of Eq. 2.23 since all expansion coe cients ck remain
constant in time in absence of a perturbation. The rst-order solution describes the
situation in which the perturbation is switched on and is obtained by substituting the
zeroth-order solution (Eq. 2.25) into Eq. 2.23 and solving the resulting di erential equation.

d

dt
c

(1)
k (t) =

1
i�

Vki · ei kit (2.26)

Since the perturbation is supposed to describe the electrostatic interaction between two
excitons, it can be assumed to be time-independent

Vki(t) = Vki = const (2.27)
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Therefore, the di erential equation can simply be solved by integration of the exponential
function such that the rst-order solution yields

c
(1)
k (t) =

1
i�

Vki

∫ t

0
ei kitdt (2.28)

=
1
i�

Vki

(ei kit − 1
i ki

)
(2.29)

Truncating the perturbation expansion after the rst-order term, it follows that

ck(t) ki︸︷︷︸
c

(0)
k

+
1
i�

Vki

(ei kit − 1
i ki

)
︸ ︷︷ ︸

c
(1)
k

(2.30)

The probability of nding the system in state k di erent from the initial state i at time
t is given by

Pki(t) = ck(t) 2 =
1
�2 Vki

2
∣∣∣ei( ki)t − 1

i ki

∣∣∣2 (2.31)

=
1
�2 Vki

2
∣∣∣ei( ki) t

2 · ei( ki) t
2 − e−i( ki) t

2

i ki

∣∣∣2 (2.32)

=
1
�2 Vki

2
∣∣∣ei( ki) t

2 · 2 sin( ki
t
2)

ki

∣∣∣2 (2.33)

=
4
�2 Vki

2 sin2( ki
t
2)

2
ki

(2.34)

The average rate is given by the transition probability per time

Pki(t)
t

=
4
�2 Vki

2 · sin2( kit
2 )

t · 2
ki︸ ︷︷ ︸

f(t ki)

(2.35)

Finding the system in the nal state k after a long time (t ) forces energy conservation
due to the strong peaking of f(t ki) at ki 0.

lim
t→∞ f(t ki) =

2
( ki) (2.36)

De ning dn as the number of states in the energy interval d ki, the density of states near
Ek is

(Ek) =
dn

dEk
(2.37)
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Therefore, the total transition rate kki only refers to nal states k′ near state k with an
energy close to Ek.

kki =
1
t

∑
k′ near k

Pk′i(t) (2.38)

=
1
t

∫
Pk′i(t) · (Ek) dEk (2.39)

Here, the sum is replaced by an integral and the condition k′ near k is ful lled by the
density of states. Substituting Eq. 2.34 into Eq. 2.39 and using the angular frequency
instead of the energy E, the expression becomes

kki =
1
t

∫ 4
�2 Vki

2 sin2( ki
t
2)

2
ki

· ( k) d� ki (2.40)

=
4
�

Vki
2 ( k)

∫ 1
t

sin2( ki
t
2)

( ki)2 d ki (2.41)

4
�

Vki
2 ( k)

∫ +∞

−∞
1
t

sin2( ki
t
2)

( ki)2 d ki (2.42)

=
4
�

Vki
2 ( k) ·

2
(2.43)

=
2
�

· Vki
2 · ( k) (2.44)

Eq. 2.44 is known as Fermi s Golden rule and is generally valid for an arbitrary photo-
physical process in the weak-coupling limit (Pki(t) 1).

2.2.2 Franck-Condon weighted density of states

Generally, the density of states (E) is formally de ned as the derivative of the number
of quantum states N with respect to the energy E and describes the number of quantum
states within a certain energy interval [E1; E2].

(E) =
dN

dE
(2.45)

dN = (E)dE (2.46)

N =
∫ E2

E1
(E)dE (2.47)

In the framework of EET, the so-called Franck-Condon weighted density of states has to
be used to calculate the rate constant.

kEET =
2
�

· VDA
2 · (FCWD) (2.48)
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The following derivation is primarily based on ref. [62]. The vibronic wave functions ( )
of the donor and the acceptor are de ned as the product of the appropriate electronic ( )
and vibrational wave functions ( )

D∗N (rD RD) = D∗(rD RD) · D∗N (RD) (2.49)

DM (rD RD) = D(rD RD) · DM (RD) (2.50)

A∗L(rA RA) = A∗(rA RA) · A∗L(RA) (2.51)

AK(rA RA) = A(rA RA) · AK(RA) (2.52)

where N and M denote the vibrational states of the electronically excited donor molecule
D∗ and the donor molecule in the electronic ground state D, respectively. Likewise, K

denotes the vibrational state of the acceptor molecule in the electronic ground state A,
while L denotes the vibrational state of electronically excited acceptor molecule A∗. The
initial and the nal vibronic states of the total system ( I and F ) are de ned as the
product of the appropriate vibronic states of the donor and the acceptor, respectively.

I = D∗N · AK (2.53)

F = DM · A∗L (2.54)

During the EET process, the donor undergoes a vibronic transition from a vibrational
substate N with energy ED∗N of the relevant excited state to a vibrational substate M

with energy EDM of the electronic ground state. Simultaneously, the exciton acceptor
undergoes a transition from a vibrational substate K of its electronic ground state with
energy EAK to a vibrational substate L of the excited state with energy EA∗L. For the
EET process to be energy-conserving, the initial energy of the total system ED∗N + EAK

needs to be equivalent to the energy of the nal total system EDM +EA∗L. In other words,
the amount of energy which is set free by the donor (ED∗N − EDM ) as well as the amount
of energy which is received by the acceptor (EAK − EA∗L) have to be equivalent to the
amount of transferred energy E (energy of the exciton [6]). Considering all combinations
of vibronic transitions associated with the initial and the nal electronic states i (D∗A)
and k (DA∗), the EET rate becomes

kEET =
2
�

∑
M N

∑
K L

f(ED∗N )f(EAK)
∣∣∣ DM A∗L V D∗N AK

∣∣∣2 (2.55)

(ED∗N + EAK − EDM − EA∗L)

where the -distribution ensures energy conservation and where f(ED∗N ) and f(EAK) de-
scribe the thermal populations of the appropriate vibrational states of the donor excited
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and acceptor ground state, respectively, according to a Boltzmann distribution. Introduc-
ing the Condon approximation (see Sec. 2.1.1), the coupling matrix element is separated
into an electronic term and a vibrational term

DM A∗L V D∗N AK = D A∗L V D∗ A DM D∗N A∗L AK (2.56)

such that the coupling between the two vibronic states k and i can be described as
coupling between the appropriate electronic states D∗ A and D A∗ weighted by a mea-
sure of the transition probability between the appropriate vibrational states which is pro-
vided by the overlap integrals between the vibrational wave functions D∗N DM and

AK A∗L . As already mentioned in Sec. 2.1.1 the squares of these overlap integrals are
called Franck-Condon factors. Substituting Eq. 2.56 into Eq. 2.55 the EET rate becomes

kEET = 2
�

∣∣∣ D A∗ V D∗ A

∣∣∣2 ∑
M N

∑
K L

f(ED∗N )f(EAK) (2.57)

∣∣∣ DM D∗N A∗L AK

∣∣∣2 (ED∗N + EAK − EDM − EA∗L)

2.2.3 Spectral overlap integral

The spectral overlap integral is a crude approximation of the FCWD which is based on
the lineshape of the emission spectrum of the donor [62]

ED( ) =
∑
M N

f(ED∗N ) D∗N DM
2 (ED∗N + EDM − � ) (2.58)

and the lineshape of the absorption spectrum of the acceptor

AA( ) =
∑
K L

f(EAK) AK A∗L
2 (EAK + EA∗L + � ) (2.59)

where both spectra have to be normalized to unit area. Substituting Eqs. 2.58 and 2.59
into Eq. 2.57 and using

(ED∗N +EAK −EDM −EA∗L) =
∫ +∞

−∞
(ED∗N −EDM −E) (EAK −EA∗L−E) dE (2.60)

where E is the energy of the exciton (see sec. 2.2.2), the EET rate can be rewritten as

kEET =
2
�

· VDA
2 ·
∫ ∞

0
AA( )ED( ) d (2.61)

where the integral is termed spectral overlap integral. Note that the spectral overlap
integral used in Förster theory is di erent from the quantity introduced here. In Förster
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theory, the spectral overlap integral not only covers the density of states but also comprises
parts of the ECME as will be shown later (see Sec. 2.5). Since the -function is a probability
distribution, the density of states and therefore the spectral overlap integral is given in
units of inverse energy.

2.3 Density matrix theory

The electronic wave function of a molecule consists of a large number of Slater determinants
or con guration state functions (CSF) based on MOs that are again linear combinations
of basis functions (i.e. a set of AOs). Although the wave function covers all information
concerning the target molecule, it does not provide a simple picture of the electron distri-
bution determinating its physical and chemical properties. The electron distribution can
easily be described in terms of density and transition density functions providing a valu-
able tool to derive the molecular properties from the electronic wave function. Transition
densities play a key role for the calculation of the ECME and therefore for the description
of EET.1

2.3.1 Density function of an N-electron system

Taking the simplest case of a system with only a single electron with spin +1
2 in orbital

A, the wave function is directly given by the wave function of the corresponding spin
orbital A.

A(x) = A(r) (s) (2.62)

where x comprises the three spatial coordinates as well as the spin of the electron. In
this case, the probability of nding the electron with spin +1

2 in the volume element dr

(spin-space volume element dx) is given by

(x) dx = A(x) 2 dx (2.63)

= A(r) 2 (s) 2 drds (2.64)

where the (x) is called density function. The corresponding spin-free density function
P (r) relates to the probability of nding the electron with any spin in the volume element
dr and is obtained from the density function by integration over the spin.

P (r) =
∫

s
(x) ds (2.65)

1Sec. 2.3 is essentially based on ref. [53]
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These considerations which have been made for the minimal system depending on only one
electron, can be generalized to an arbitrary system of N electrons. Here, the probability
of nding electron 1 in the spin-space volume element dx1 and simultaneously electron 2
in the spin-space volume element dx2, etc. is given by

(x1 x2 xN ) dx1dx2 dxN = (x1 x2 xN ) 2 dx1dx2 dxN (2.66)

such that the density function of the entire system is de ned as

sys(x1 x2 xN ) = (x1 x2 xN ) ∗(x1 x2 xN ) (2.67)

2.3.2 Reduced density functions

Considering only the location of electron 1 explicitly, one needs the probability of nding
electron 1 in the spin-space volume-element dx1 and all other (N-1) electrons anywhere.

dx1

∫
(x1 x2 xN ) ∗(x1 x2 xN )dx2 dxN (2.68)

Since electrons cannot be distinguished, the probability of nding any of the N electrons
in the spin-space volume element dx1 and all remaining (N-1) electrons anywhere can be
expressed as

1(x1) dx1 = N · dx1

∫
(x1 x2 xN ) ∗(x1 x2 xN )dx2 dxN (2.69)

where 1(x1) is de ned as the reduced one-electron density function. The cor-
responding density function without reference to the spin is de ned as the spin-free
reduced one-electron density function.

P1(r1) =
∫

s
(x1) ds1 (2.70)

= N ·
∫

s

∫
(x1 x2 xN ) ∗(x1 x2 xN )dx2 dxN ds1 (2.71)

For the sake of simplicity all reduced one-electron density functions will be referred to
as (x1) and P (r1) in the following omitting the index of 1. By analogy, the reduced
two-electron density function refers to the probability of nding any two of the N
electrons in the spin-space volume elements dx1 and dx2 and all remaining N-2 electrons
anywhere.

(x1 x2) = N · (N − 1)
∫

(x1 x2 xN ) ∗(x1 x2 xN ) dx3 dxN (2.72)
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The spin-free variant can again be obtained by integration over the spin.

(r1 r2)
∫

s
(x1 x2) ds1ds2 (2.73)

2.3.3 Expectation values of one- and two-electron operators

Taking again the simplest case of a system with only a single electron in spin orbital A

(electron with spin +1
2 in the spatial orbital ), the expectation value of an arbitrary

operator O is given by
O =

∫
∗
A(x) · O · A(x) dx (2.74)

If the operator does not involve di erentiation or integration, one may also write

O =
∫

O · A(x) ∗
A(x) dx (2.75)

=
∫

O · (x) dx (2.76)

Since operators usually involve di erentation or integration in quantum chemistry, an
auxiliary coordinate x′ is introduced with

∗(x′) = ∗(x) (2.77)

to avoid O to act on ∗ and

O =
∫

O · A(x) ∗
A(x′) dx (2.78)

=
∫

O · (x; x′) dx (2.79)

is obtained where it is understood that x′ is replaced by x after acting with the operator
O but before integration.2 Generalizing these considerations to an arbitrary N -electron
system, the density function of the entire system

(x1 x2 xN ; x′
1 x′

2 x′
N ) = (x1 x2 xN ) ∗(x′

1 x′
2 x′

N ) (2.80)

the reduced one-electron density function

(x1; x′
1) = N ·

∫
(x1 x2 xN ) ∗(x′

1 x2 xN )dx2 dxN (2.81)

2If explicitly only the ”diagonal elements” (�x = �x′) should be considered, it is possible to use the short
notation ρ(�x) instead of ρ(�x; �x′) which will be avoided in this work for the sake of consistency.
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and its spin-free variant

P (r1; r′
1) = N ·

∫
(x1 x2 xN ) ∗(x′

1 x2 xN )dx2 dxN ds1 (2.82)

are rewritten. Thus, the expectation value of an arbitrary one-electron operator O1 =∑
i h(xi) of a many-electron system can be written in terms of the reduced one-electron

density function

O1 =
∫

∗(x1 x2 xN )
[∑

i

h(xi)
]

(x1 x2 xN ) dx1 dx2 dxN (2.83)

= N ·
∫

h(x1) (x1 x2 xN ) ∗(x′
1 x2 xN ) dx1 dx2 dxN (2.84)

=
∫

h(x1) (x1; x′
1) dx1 (2.85)

By analogy, the reduced two-electron density function and its spin-free variant are
rewritten

(x1 x2; x′
1 x′

2) = N(N −1)
∫

(x1 x2 x3 xN ) ∗(x′
1 x′

2 x3 xN ) dx3 dxN (2.86)

(r1 r2; r′
1 r′

2) =
∫

s
(x1 x2; x′

1 x′
2) ds1 ds2 (2.87)

Thus, the expectation value of an arbitrary two-electron operator O2 =
∑

ij g(xi xj) can
also be expressed in terms of the reduced two-electron density function.

O2 =
∫

g(xi xj) (x1 x2; x′
1 x′

2) dx1dx2 (2.88)

If the electronic states are represented by single Slater determinants (1-determinant ap-
proximation), the reduced two-electron density function can be written in terms of reduced
one-electron density functions.

(x1 x2; x′
1 x′

2) = (x1; x′
1) (x2; x′

2) − (x2; x′
1) (x1; x′

2) (2.89)

(r1 r2; r′
1 r′

2) = P (r1; r′
1)P (r2; r′

2) − 1
2

P (r2; r1)P (r1; r2) (2.90)

Eq. 2.90 holds true for a closed shell system where all spatial orbitals are doubly occupied
with one electron with spin and one electron with spin according to the Pauli principle.
The factor 1

2 can be traced back to the fact that there is no exchange interaction between
electrons of anti-parallel spin. In this case, the expectation value of an arbitrary two-
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electron operator becomes

O2 =
∫

g(x1 x2)
(

(x1; x′
1) (x2; x′

2) − (x2; x′
1) (x1; x′

2)
)

dx1dx2 (2.91)

=
∫

(x1; x′
1)g(x1 x2) (x2; x′

2) dx1dx2 −
∫

(x2; x′
1)g(x1 x2) (x1; x′

2) dx1dx2

and in the spin-free case

O2 =
∫

P (r1; r′
1)g(r1 r2)P (r2; r′

2) dr1dr2 − 1
2

∫
P (r2; r1)g(r1 r2)P (r1; r2) dr1dr2

(2.92)
For the two-electron operator being the Coulomb operator r−1

12 , it becomes obvious that
the rst integral refers to the Coulomb contribution J while the second integral refers to
the exchange contribution K.

K
∑

ijr−1
ij K =

∫
P (r1; r′

1)P (r2; r′
2)

r12
dr1dr2︸ ︷︷ ︸

J

− 1
2

∫
P (r2; r′

1)P (r1; r′
2)

r12
dr1dr2︸ ︷︷ ︸

K

(2.93)

This expression will become important later on, when the formalism is extended to group-
function theory.

2.3.4 Transition density functions

While density functions describe physical properties which depend on a single electronic
state (e.g. static dipole moments), transition density functions describe properties which
depend on two electronic states (e.g. transition dipole moments). This is particularly
important for the analysis of excitation and deexcitation processes. Transition density
functions are de ned in analogy to their corresponding density functions. The reduced
one-electron transition density function between two electronic states K and L and
its spin-free variant are given by

(KL x1; x′
1) = N ·

∫
K(x1 x2 xN ) ∗

L(x′
1 x2 xN ) dx2 dxN (2.94)

P (KL r1; r′
1) =

∫
s

(KL x1; x′
1) ds1 (2.95)

while the reduced two electron density function and its spin-free variant read

(KL x1 x2; x′
1 x′

2) = N(N −1)
∫

K(x1 x2 x3 xN ) ∗
L(x′

1 x′
2 x3 xN ) dx3 dxN

(2.96)
(KL r1 r2; r′

1 r′
2) =

∫
s

(KL x1 x2; x′
1 x′

2) ds1ds2 (2.97)
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In the framework of transition density functions, the transition matrix elements for arbi-
trary one- and two-electron operators (O1 =

∑
i h(xi) and O2 =

∑
ij g(xi xj)) are given

by

L O1 K =
∫

h(x1) (KL x1; x′
1) dx1 (2.98)

L O2 K =
∫

g(x1 x2) (KL x1 x2; x′
1 x′

2) dx1dx2 (2.99)

It should be mentioned that in the special case of K = L all expressions become equivalent
to the corresponding density function equations. In the case of 1-determinantal wave
functions, the reduced two-electron transition density functions can again be written in
terms of reduced one-electron transition density functions

(KL x1 x2; x′
1 x′

2) = (KL x1; x′
1) (KL x2; x′

2) − (KL x2; x′
1) (KL x1; x′

2) (2.100)

(KL r1 r2; r′
1 r′

2) = P (KL r1; r′
1)P (KL r2; r′

2) − 1
2

P (KL r2; r′
1)P (KL r1; r′

2) (2.101)

such that the transition matrix element of the Coulomb operator reads

L
∑

ijr−1
ij K =

∫
P (KL r1; r′

1)P (KL r2; r′
2)

r12
dr1dr2︸ ︷︷ ︸

J

(2.102)

− 1
2

∫
P (KL r2; r′

1)P (KL r1; r′
2)

r12
dr1dr2︸ ︷︷ ︸

K

2.3.5 From density functions to density matrices

The density functions de ned in Eqs. 2.81 and 2.86 and the transition density functions
de ned in Eqs. 2.94 and 2.96 often are referred to as density matrices or transition density
matrices, respectively. These unfortunate [53] and mathematically wrong terms, coined
by von Neumann and Dirac, can be traced back to the notation (x; x′) of the density
functions which is similar to the notation of matrix elements Mij . However, x and x′ are
continuous variables while the indices i and j are discrete numbers. This means that the
density matrix is not a real matrix since its de nition is based on improper basis vectors.
Only if the density matrix refers to a nite dimensional Hilbert space such as a set of
orthonormal of spin orbitals as it is used in the case of quantum chemical calculations,
does the density matrix become a true matrix. Assuming single Slater determinantal wave
function for each electronic state, the one- and two-electron (transition) density functions
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can be expanded in the basis of (spin) orbitals i .

(KL x1) = (KL x1; x1) =
∑
ij

KL
ij · i(x1) ∗

j (x1) (2.103)

(KL x1 x2) = (KL x1 x2; x1 x2) =
∑
ijkl

KL
ijkl · i(x1) j(x2) ∗

k(x1) ∗
l (x2) (2.104)

The set of expansion coe cients KL
ij is de ned as matrix representation of the newly

introduced density operator
i j = ij (2.105)

and is denoted as reduced one-electron (transition) density matrix. The short term
(one-electron) density is used synonymously. Having expanded the one- and two-electron
densities in the basis of spin orbitals, the expectation values for arbitrary one- and two
electron operators are given by

L
∑

ih(xi) K =
∑
ij

KL
ij j h i = tr( h) (2.106)

L
∑

ijg(xi xj) K =
∑
ijkl

KL
ijkl k l g i j (2.107)

2.3.6 Con guration interaction

A common way to overcome the simple 1-determinantal representation of electronic states
neglecting electron correlation is the con guration interaction (CI) formalism. Here, the
wave functions of the electronic states ( K , L) are expanded in terms of Slater determi-
nants ( , ). Instead of Slater-determinants, con guration state functions (CSFs) can
be used to speed up the calculation which will not be considered here.

K =
∑

CK (2.108)

L =
∑

CL (2.109)

The expansion coe cients CK and CL representing the contribution of each determinant
are termed CI coe cients. In the framework of CI, the elements of the reduced one-
electron transition density matrix KL

ij describing the one-electron transitions between the
CI states K and L can be obtained by the weighted sum of the appropriate reduced
one-electron transition density matrix elements ij .

KL
ij =

∑
CKCL∗

ij (2.110)
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By analogy, the reduced two-electron transition density matrix KL
ijkl describing the two-

electron transitions between the CI-states K and L can be obtained by the weighted
sum of the appropriate reduced two-electron transition density matrix elements ijkl.

KL
ijkl =

∑
CKCL∗

ijkl (2.111)

The spinless forms of reduced (transition) density matrices can be obtained by replacing
the basis of spin orbitals i with a basis of spatial orbitals i .

2.3.7 Second quantization

In second quantization, the reduced (transition) density matrices can easily be expressed
using the (singlet) excitation operator a†

jai annihilating an electron in spin orbital i and
recreating it in spin orbital j.

KL
ij = L a†

jai K (2.112)

KL
ijkl = L a†

ja†
l akai K (2.113)

If a basis of (orthonormal) spatial orbitals is used instead of spin orbitals, the excitation
operator becomes

Eji =
∑

a†
j ai (2.114)

where the index denotes the electron spin ( or ). The operator describes a transition
of an electron from spatial orbital i to spatial orbital j and a conservation of the spin. In
this case, the spin-free reduced one-electron transition density matrix is given by

P KL
ij = L

∑
a†

j ai K (2.115)

Analogously, this applies for the spin-free reduced two-electron transition density matrix.

ejilk =
∑

1

∑
2

a†
j 1ai 1a†

l 2
ak 2 = EjiElk − jkEkj (2.116)

KL
ijkl = L ejilk K (2.117)

2.3.8 Extension to group-function theory: Molecular dimers

So far, only densities and transition densities of isolated molecules have been treated. The
formalism can be extended to molecular aggregates in order to characterize the interaction
between the individual subsystems, assuming that the interaction is weak such that the
individuality of the subsystems will be preserved. The general idea is to expand the
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supermolecular wave function in the basis of the subsystem wave functions in analogy
to the expansion of a usual electronic wave function in the basis of spin orbitals. In the
simplest case, one considers a molecular dimer composed of subsystems A and B. Here, the
supermolecular wave function can be expressed as a simple product of the wave functions
of the two subsystems each representing a group of electrons.

(HP )(x1 x2 xNA+NB
) = (A)(x1 x2 xNA

) (B)(xNA+1 xNA+2 xNA+NB
)

(2.118)
By this means, the total set of electrons is divided into two groups of electrons which
either belong to subsystem A or subsystem B. Since the simple product does not ful ll
the Pauli principle, the antisymmetry operator A has to be introduced

(x1 x2 xNA+NB
) = M · A · (HP )(x1 x2 xNA+NB

) (2.119)

where M is a normalization factor. It is obvious, that Eq. 2.119 represents a generalization
of the formalism of a 1-determinantal wave function. Thus, the antisymmetrized product
of group functions is analogous to a Slater determinant which is de ned as an antisym-
metrized product of spin orbitals. This means that the representation of a supermolecular
state as antisymmetrized product of the wavefuction of the individual molecules is anal-
ogous to a 1-determinantal description of a molecular electronic state.3 As we require
orthogonality of the subsystem wave functions, the same de nitions and calculation rules
apply as in the case of Slater determinants. In particular, the de nitions of the one- and
two-electron (transition) density matrices are analogous.

As it is possible to represent the supermolecular ground-state wave function in terms
of the ground-state wave functions of the monomers, the formalism can be extended to
excited states by analogy. Here, the electronically excited states of the supermolecule
are represented by antisymmetrized products of the subsystem wave functions in di erent
electronic states which can either be the ground state or a certain excited state. These
excited supermolecular wave functions behave analogously to singly (one monomer unit in
an electronically excited state), doubly (two subsystems in an electronically excited state),
... excited Slater determinants. Restricting the considerations to a molecular dimer (RS),
allowing only a single excited subsystem in the supermolecule and considering only a
certain electronically excited state per subsystem (i.e. the S1 state), we can formulate two
supermolecular states and , respectively, in which either group R is in its electronic

3The subsystem-based description of the dimer can in principle be enhanced by a formalism similar to
configuration interaction. Since this is usually not of interest in the framework of excitonic coupling, the
formalism is not further considered in this work.
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ground state r while group S is in its excited state s′ or vice versa.

= M · A · ( (R)
r

(S)
s′ ) (2.120)

= N · A · ( (R)
r′

(S)
s ) (2.121)

The expectation value of an arbitrary two-electron operator behaves in the same way as in
the case of 1-determinantal wave functions. Considering the similarity of subsystem wave
functions and spin orbitals with respect to Eqs. 2.100 and 2.100, respectively, Eq. 2.93 can
be rewritten as

(R)
r

(S)
s′
∑

ijrij
(R)
r′

(S)
s =

∫
PR(rr′ r1)PS(ss′ r2)

r12
dr1dr2︸ ︷︷ ︸

JRS(rr′ ss′)

(2.122)

− 1
2

∫
PR(rr′ r2; r1)PS(ss′ r1; r2)

r12
dr1dr2︸ ︷︷ ︸

KRS(rr′ ss′)

(2.123)

where P (rr′ r1 r′
1) is the reduced one-electron transition density function which

refers to the transition from the electronic state r to state r′ in group R. The matrix
element (R)

r′
(S)
s′
∑

ij r−1
ij

(R)
r

(S)
s expresses the electrostatic interaction in terms of

Coulomb and exchange contributions between an electronic transition in group R and a
simultaneous transition in group S. If the overlap between the two electronic states is
small, the exchange contribution becomes negligible and a simple product ansatz without
antisymmetrization is su cient. In this case, the exchange term vanishes and the matrix
element reduces to the Coulomb contribution.

(R)
r′

(S)
s′
∑

ijrij
(R)
r

(S)
s

∫
PR(rr′ r1)PS(ss′ r2)

r12
dr1dr2 (2.124)

2.3.9 Analysis of the excited-state wave functions

Here a method for the analysis of excited-state wave functions introduced by Plasser and
Lischka [43] is reviewed which is based on the spin-free reduced one-electron transition
density matrices P

[ n]
qp between the electronic ground state and an excited state n.4

The method provides the percentage of local- and CT- transitions of an electronically
excited state in terms of a CT matrix. The formalism holds true for all electronically
excited states which are particularly dominated by one-electron contributions. Each su-
permolecular electronically excited state n can be represented by a 2 2 CT matrix

4A very similar review has been given in ref. [63]
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n

n =
(

n
AA

n
AB

n
BA

n
BB

)
(2.125)

which recovers the extent of charge delocalization within the excited state and which can
directly be computed from the transition density matrix in a subsystem-localized basis. [43]
While the diagonal elements n

AA and n
BB represent the weight of local excitations on

subsystems A and B, respectively, the o -diagonal elements n
AB and n

BA are known
as CT numbers. They are de ned as the percentage of electrons transferred from one
subsystem to the other one during the excitation. Since the set of molecular orbitals (MO)
i generally is delocalized over the whole supermolecular system, the atomic orbital (AO)

basis is used for the analysis. The one-electron transition density matrix P ′[ n] in
AO basis can be obtained by a transformation

P ′[ n] =
∑
pq

c∗
p P [ n]

pq cq (2.126)

where cq are the elements of the MO coe cient matrix. [64] Applying the AO overlap
matrix S to ensure orthonormality, the elements of the CT matrix can be computed as
given by

n
A→B =

1
2
∑
∈A

∑
∈B

(P ′[ n]S) (SP ′[ n]) (2.127)

where AOs are localized on subsystem A and AOs on subsystem B. Since contributions
from all higher excitations are neglected within the one-electron density matrix, the CT
matrix has to be normalized to 1.

n =
∑
A B

AB
!= 1 (2.128)

The total percentage of one-electron excitations can be obtained from Eq. 2.128 before nor-
malization. If the quantity is signi cantly smaller than 0.8 the method may be imprecise
for the analysis of the appropriate excited state.

2.4 Excitonic coupling matrix element

2.4.1 The two-state system

An e ective system of only two interacting states provides a su ciently accurate model
for the description of many processes in molecular systems as long as further states are not
signi cantly involved. [6] The model provides analytically exact results such that further
approximations are not necessary. Before applying the model to the process of EET, a
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general review will be given in the following.

The Hamiltonian of a two-state quantum-mechanical system with eigenstates ± and
eigenenergies E± ful lling the Schrödinger equation

H = E (2.129)

can be written as
H = E+ + + + E− − − (2.130)

The corresponding Hamiltonian matrix reads

Ha =
(

E+ 0
0 E−

)
(2.131)

To determine the unkown adiabatic eigenstates ±, one uses a basis of two rst-order
diabatic states 1 and 2 with energies 1 and 2, respectively.

= c1 1 + c2 2 (2.132)

In the framework of a molecular dimer, the rst-order diabatic states refer to the appro-
priate states of the isolated monomers. Using the diabatic states, the Hamiltonian of the
two-state system given in Eq. 2.130 can be rewritten as

H = 1 1 1 + 2 2 2 + V12 1 2 + V ∗
21 2 1 (2.133)

The corresponding Hamilton matrix reads

Hd =
(

1 V12

V ∗
21 2

)
(2.134)

where V12 = V ∗
21. The objective is to transform the Hamiltonian given in Eq. 2.133 to

the form of Eq. 2.130 which is equivalent to a diagonalization of Hd yielding both, the
adiabatic energies E± and the expansion coe cients c1 and c2.

C†HdC = Ha (2.135)

HdC = CHa (2.136)

HdC = HaC (2.137)(
1 V12

V12 2

)
·
(

c1

c2

)
= E ·

(
c1

c2

)
(2.138)

In a two-state model, the adiabatic eigenvalues E± can directly be determined by setting
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the secular determinant to zero.∣∣∣∣∣ 1 − E V12

V12 2 − E

∣∣∣∣∣ = 0 (2.139)

E± =
1
2

(
1 + 2

√
( 1 − 2)2 + 4 V12 2

)
(2.140)

In the special case where 1 equals 2 Eq. 2.140 simpli es to

E± =
1
2

(
2

√
4 V12 2

)
(2.141)

= V12 (2.142)

The energy di erence between the two adiabatic states E+ and E− is symmetric

ı E = E+ − E− = ( + V12 ) − ( − V12 ) (2.143)

= 2 V12 (2.144)

and is referred to as Davydov splitting. Therefore, V12 can be computed from half of
the Davydov splitting in the case of a molecular homodimer (section 2.4.3). However, the
method only provides exact results if the simple two-state model really applies for the
considered molecule.

2.4.2 Molecular heterodimer

The electronic Hamiltonian H of a molecular aggregate consisting of M individual molecules
can be expressed as the sum of the electronic Hamiltonians of the isolated molecules and the
sum of the operators describing the interaction between each pair of molecules. [6, 52, 65]

H =
M∑

m=1
Hm +

1
2

M∑
m=1

N∑
n=1

Vmn (2.145)

=
M∑

m=1
Hm +

M∑
m=1

N∑
n>m

Vmn (2.146)

In a simple donor acceptor system the aggregate reduces to a molecular dimer which can
be described by analogy.

H = HD + HA + VDA (2.147)

The ground and electronically excited states D(rD), D∗(rD), A(rA) and A∗(rA) of the
isolated donor and acceptor are eigenstates of HD and HA, respectively, with eigenenergies

D, D∗ , A and A∗ . If the electron overlap is small such that the electronic structure of
the interacting monomers is largely preserved, the supermolecular ground state G can
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be written as product of the ground-state wave functions of the individual monomers.

G(rD rA) = D(rD) · A(rA) (2.148)

= D · A (2.149)

= DA (2.150)

The Schrödinger equation of the supermolecular system with respect to the electronic
ground state reads

H G = EG G (2.151)

H DA = EG DA (2.152)

Multiplication with DA yields

DA H DA = EG · DA DA︸ ︷︷ ︸
=1

(2.153)

Due to the de nition of the supermolecular Hamiltonian, the supermolecular ground state
energy can be expressed as sum of the ground state energies ED and EA of the isolated
monomers and an additional term which is denoted as the van der Waals interaction energy
VDA by Kasha et al. [65]

EG = G H G (2.154)

= DA H DA (2.155)

= DA (HD + HA + VDA) DA (2.156)

= DA HD DA + DA HA DA + DA VDA DA (2.157)

= A A︸ ︷︷ ︸
=1

D HD D + D D︸ ︷︷ ︸
=1

A HA A + DA VDA DA (2.158)

= ED + EA + VvdW (2.159)

The formalism can be extended to electronically excited states of the supermolecule and
is analogous to the general case of a two-state model discussed in Sec. 2.4.1. In contrast
to the electronic ground state, two limiting cases of perfectly locally excited states are
conceivable. In D∗A the donor is in the electronically excited state and the acceptor
remains in the electronic ground state while the acceptor is excited and the donor remains
in the ground state in DA∗. Therefore, the supermolecular (adiabatic) excited states E

are expanded in the basis of the (diabatic) locally excited states

E = r D∗A + s DA∗ (2.160)
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where r and s are expansion coe cients. As shown in Sec. 2.4.1 this leads to a linear
system of equations which in matrix representation reads

(
D∗A H D∗A − E D∗A H DA∗

DA∗ H D∗A DA∗ H DA∗ − E

)
·
(

r

s

)
= E

(
r

s

)
(2.161)

The energies E of the electronically excited states can be obtained by setting the secular
determinant to zero.∣∣∣∣∣ D∗A H D∗A − E D∗A H DA∗

DA∗ H D∗A DA∗ H DA∗ − E

∣∣∣∣∣ = 0 (2.162)

E± = 1
2

{
D∗A H D∗A + DA∗ H DA∗ (2.163)√(

D∗A H D∗A − DA∗ H DA∗
)2

+ 4 DA∗ H D∗A 2
}

Eq. 2.163 exactly holds true for an arbitrary heterodimer in a 2-state model and is equiv-
alent to Eq. 2.140. [6] Using the de nition of the supermolecular Hamiltonian (Eq. 2.147)
the matrix elements in Eq. 2.163 can further be simpli ed

D∗A H D∗A = D∗A (HD + HA + VDA) D∗A (2.164)

= D∗A HD D∗A︸ ︷︷ ︸
〈A|A〉〈D|HD|D∗〉

+ D∗A HA D∗A︸ ︷︷ ︸
〈D∗|D∗〉〈A|HA|A〉

+ D∗A VDA D∗A (2.165)

= D∗ HD D∗ + A HA A + D∗A VDA D∗A (2.166)

= D∗ + A + V
(D∗A)

vdW (2.167)

DA∗ H DA∗ = D + A∗ + V
(DA∗)

vdW (2.168)

DA∗ H D∗A = DA∗ (HD + HA + VDA) D∗A (2.169)

= DA∗ HD D∗A︸ ︷︷ ︸
〈A∗|A〉〈D|HD|D∗〉

+ DA∗ HA D∗A︸ ︷︷ ︸
〈D|D∗〉〈A∗|HD|A〉

+ DA∗ VDA D∗A (2.170)

= DA∗ VDA D∗A (2.171)

= VDA (2.172)

where DA∗ VDA D∗A is de ned as the ECME. Since VDA is assumed to be the Coulomb
operator, the matrix element is equivalent to Eq. 2.124 and can therefore be expressed
in terms of the spin-free reduced one-electron transition densities PA and PD of the
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monomers.
VDA =

∫
PD(r1)PA(r2)

r12
dr1dr2 (2.173)

2.4.3 Davydov splitting: The molecular homodimer

In honor of Soviet physicist Alexander Sergeevich Davydov, the splitting of excitonic
energy levels in molecular crystals is termed Davydov splitting. [23] In the framework of
EET, the term denotes the energy splitting ı E between the coupled donor and acceptor
localized states. In the special case of a homodimer where donor and acceptor are
identical molecules, Eq. 2.163 simpli es to [6, 52]

E± = D∗A H D∗A DA∗ VDA D∗A (2.174)

Thus, the two equivalent bright monomer states symmetrically split into an energeti-
cally stabilized and an energetically destabilized state. The distribution of the oscillator
strength among the two states depends on the orientation of the transition dipoles. If
the stabilized state is bright and the destabilized state is dark, the absorption spectrum
is red shifted. If the destabilized state is bright while the stabilized state is dark, the
absorption spectrum will be blue shifted. Geometrical donor acceptor arrangements lead-
ing to a red shift are termed J-aggregates while arrangements leading to a blue shift are
termed H-aggregates. A splitting of the monomer absorption into two bands occurs if the
oscillator strength is largely equally distributed among the two states and if the energetic
splitting is large enough. In the case of a homodimer, the energy di erence ı E between
the interacting states (Davydov splitting) is

ı E = E− − E+ = 2 · VDA (2.175)

For this reason, the ECME in homodimeric systems can directly be calculated from half
of the energy splitting of the interacting states (Fig. 2.3). However, even for small systems
such as an ethylene dimer, the energy splitting may not be symmetric if the simple picture
of the 2-state model does not fully apply. This can be traced back to the interaction of
the considered Frenkel (local) excitonic states with energetically stabilized CT states. [63]

VDA =
ı E

2
(2.176)

For heterodimers the energetic splitting is not symmetric and the ECME has to be com-
puted by diabatization schemes or monomer-based approaches which will be dealt with in
the following.
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E+

E-

A*D*
2VDA

Figure 2.3: Energy splitting in a homodimeric system.

2.4.4 Ideal dipole approximation

If the spatial extensions of the transition densities of the coupled donor (D) and acceptor
(A) localized transitions are small compared to the intermolecular distance, the ECME
can be approximated as electrostatic interaction between the transition dipoles. [6] To this
end, the interaction between the two transitions is written in terms of the distance vector
rmn between the coordinates of the m-th electron of D and the n-th electron of A with
respect to the intermolecular distance vector X connecting the centers of mass of both
chromophores.

VDA =
∑
m n

e2

X + rmn

(2.177)

= e2∑
m n

1
X + rmn

(2.178)

To remove the negligible explicit short-range interaction between each electron on D and
each electron on A, a multipole expansion in cartesian coordinates (three-dimensional
Taylor expansion) is carried out

VDA = e2∑
m n

1
X + rmn

(2.179)

= e2∑
m n

1
X

+ rmn X
1
X

+
1
2

(rmn X)(rmn X)
1
X

+ (2.180)

With

rmn X
1
X

= −rmnX

X 3
(2.181)
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and

(rmn X)(rmn X)
1
X

= −(rmn X)
rmnX

X 3
(2.182)

= −r2
mn X

(
X · 1

X 3

)
(2.183)

= −r2
mn

(
X · X

1
X 3

+
1

X 3 XX
)

(2.184)

= − r2
mn

X3
+ 3

(rmnX)2

X 5
(2.185)

Eq. 2.180 becomes

VDA e2∑
m n

1
X

− rmnX

X 3
+

1
2

(
− r2

mn

X3
+ 3

(rmnX)2

X 5

)
(2.186)

VDA = e2
(∑

m n

1
X

− Xrm − Xrn

X 3
− 1

2
r2

m − 2rmrn + r2
n

X3
(2.187)

+
3
2

X2r2
m − 2XrmXrn + X2r2

n

X 5

)
(2.188)

Since charge neutrality is assumed, the zeroth- and rst-order terms of the multipole
expansion as well as all terms comprising r2

m and r2
n vanish. With the de nition of the

transition dipole moment

D = e
∑
m

rm (2.189)

A = e
∑

n

rn (2.190)

one obtains

VDA

∑
m n

m n

X3
− 3

X mX n

X 5
(2.191)

Eq. 2.191 requires the knowledge of absolute value and direction of the transition dipole
moments. In the framework of FRET experiments which are carried out in solution, the
consideration of single ( frozen ) donor acceptor orientations is not possible. Therefore
the average relative orientation of the transition dipole moments has to be used, which
results from a probability distribution. In this context, it would be comfortable to have
an expression which only depends on the absolute value of the transition dipole moments
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which can be multiplied by a statistical factor representing the average transition dipole
moment orientation. Such an expression can be obtained by introducing unit vectors
pointing in the direction of the transition dipole moments and a unit vector pointing in
the direction of the intermolecular distance vector.

nD =
∑
m

rm

rm
(2.192)

nA =
∑

n

rn

rn
(2.193)

eDA =
X

X
(2.194)

By this means, ECME becomes

VDA = e2∑
m n

rmrn

X3
− 3

XrmXrn

X 5
(2.195)

= e2∑
m n

rm
|rm| rm · rn

|rn| rn

X3
− 3

X
|X| X · rm

|rm| rm · X
|X| X · rn

|rn| rn

X 5
(2.196)

= e2∑
m n

rm
|rm| rm · rn

|rn| rn

X3
− 3

X
|X| · rm

|rm| rm · X
|X| · rn

|rn| rn

X 3
(2.197)

=
nD m · nA n

X3
− 3

eDA · nD m · eDA · nA n

X 3
(2.198)

=
{

nD · nA − 3
(
(eDA · nD) · (eDA · nA)

)}
· m · n

X3
(2.199)

= κ · m · n

X3
(2.200)

where κ is a scalar representing the relative transition dipole moment orientation. Since
the EET rate depends on the absolute square of the ECME, the orientation factor is
de ned as κ2.

The orientation factor

The orientation factor κ2 is a scalar describing the relative orientation of the two inter-
acting transition dipole moments in the IDA. [6, 66] Since transition dipole moments are
constant quantities of the regarded molecules, the orientation factor indirectly describes
the relative orientation of the donor and the acceptor molecules. As shown in Eq. 2.200,
unit vectors can be used for its calculation. In a more descriptive manner, the orientation
factor κ2 can be expressed in terms of the angles between the two interacting transition
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dipole moment vectors (Fig. 2.4).

κ2 = (cos θDA − 3 cos θD · cos θA)2 (2.201)

κ2 can adopt values between 0 and 4, where 0 describes the limiting case of a perfectly

D

A

XDA

D

A

Figure 2.4: Illustration of the angles de ning the relative orientation of the two interacting
transition dipole moments according to the ideal dipole approximation (IDA). These angles
can be used for the determination of the orientation factor κ2.

perpendicular orientation of the transition dipole moments while 4 describes the limiting
case of the two vectors arranged in a row. [66] An orientation factor of 1 describes a
coplanar orientation (Fig. 2.5). Nevertheless, it has to be stated that a certain value of

2=0 2=1 2=4

Figure 2.5: Limiting cases of the orientation factor κ2. κ2 = 0 describes the limiting case
of a perpendicular transition dipole moment orientation. κ2 = 1 describes two transition
dipole moment vectors which are arranged in a coplanar manner while an orientation
factor of 4 describes an orientation of both vectors in a row.

κ2 is not associated with only a single transition dipole moment orientation. Di erent
relative orientations lead to the same orientation factor. This means that the actual
relative transition dipole moment orientation cannot be traced back if the orientation
factor is known (Fig. 2.6). Furthermore, only a coplanar orientation of the transition
dipole moments leads to an orientation factor of 1 while all other parallel orientations lead
to an orientation factor between 0 and 4.
In most experimental studies, a perfectly isotropic probability distribution of the transition
dipoles of the interacting dyes is assumed. This is the case if both dyes are able to rotate
freely in space. This approximation is justi ed if the interaction between the individual dye
molecules is small. Nevertheless, the approximation is even ful lled if the dye molecules
are attachted to a target molecule with largely exible linkers. [67] A spherically isotropic
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Figure 2.6: Examples of di erent arrangements of the donor and acceptor transition dipole
moments. Points denote a perpendicular orientation of the appropriate transition dipole
moments with respect to the plane de ned by the intermolecular distance vector and the
respective other transition dipole moment vector. Figure adapted from van der Meer et
al. [66]

distribution of the transition dipoles results in a probability function of the orientation
factor that can be described by an analytic discontinuous logarithmic function, which is
highest for κ2 = 0 and close to zero for κ2 = 4 (Fig. 2.7). [68, 69, 70]

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4

ρ(
κ2 )

κ2

Figure 2.7: Isotropic transition dipole moment distribution. The orientation factor of 2
3

usually used for freely rotation dyes can be obtained as the average of this distribution.

(κ2) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 3κ2

ln(2 + 3) 0 κ2 < 1
1

2 3κ2
ln( 2+

√
3√

2+
√

2−1
) 1 κ2 4

(2.202)

The average value κ2 is calculated as the expectation value of the isotropic transition
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dipole moment distribution

κ2 =
∫ 4

0
κ2 (κ2)dκ2 =

2
3

(2.203)

2.4.5 Monomer transition density approach

The monomer transition density approach (MTD) is a method developed by Fink et
al. [26, 27] for the computation of the ECME on the basis of spinless reduced one-electron
transition density matrices of the exciton donor and the exciton acceptor. In contrast to
the IDA, where the ECME is reduced to an interaction between two transition dipoles,
the MTD is a more sophisticated method considering the whole transition densities. The
method approximates the supermolecular wave function of the dimer as product of the
monomer wave functions. Since antisymmetrization is neglected in the original version,
the ECME reduces to the Coulomb contribution as given in Eq. 2.173.

VDA JDA =
∫

P (D)(r1)P (A)(r2)
r12

dr1dr2 (2.204)

Expanding the transition densities in terms of spatial MOs yields

JDA =
∫ (
∑

ij P
(D)
ij · ∗

i (r1) j(r1)) · (
∑

kl P
(A)
kl · ∗

k(r2) l(r2))
r12

dr1dr2 (2.205)

=
∑
ij

∑
kl

P
(D)
ij P

(A)
kl

∫
∗
i (r1) j(r1) · r−1

12 · ∗
k(r2) l(r2) dr1dr2 (2.206)

where the indices i, j, k and l run over all donor and acceptor occupied and virtual orbitals.
Using the de nition of two-electron integrals in Mulliken notation,

(ij kl) =
∫

∗
i (r1) j(r1) · r−1

12 · ∗
k(r2) l(r2) dr1dr2 (2.207)

the ECME becomes
JDA =

∑
ijkl

P
(D)
ij P

(A)
kl (ij kl) (2.208)

The exchange contribution can be introduced by analogy to Eq. 2.123 [71, 34]

KDA = −1
2
∑
ijkl

P
(D)
ij P

(A)
kl (il kj) (2.209)
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2.4.6 Supermolecular transition density approach: Consideration of CT
contributions

At small intermolecular distances and in the presence of a molecular linker, the CT contri-
butions to the ECME cannot be neglected. Unfortunately, the MTD approach only con-
siders interactions between local transitions (direct contributions). The newly developed
STD approach can be understood as extension of the MTD approach to CT transitions
(indirect contributions) (Fig. 2.8). In the following, a novel method based on the super-
molecular spin-free reduced one-electron matrices of the interacting electronically excited
states is presented.5 Since the method does no longer require an arti cial separation of
donor and acceptor treated as isolated molecules, a further enhancement of the description
of the direct contribution can be obtained at small intermolecular distances. The method
is closely related to the TDFI-TI (transition-density-fragment interaction combined with
transfer integral) method introduced by Fujimoto. [34, 35] In contrast to TDFI-TI, our
method is not based on a subsystem formalism and is not restricted to a four-orbital four-
electron model considering the indirect contributions.

In a hypothetical biorthonormal subsystem-localized orbital basis, the wave functions of
the initial and nal states can be divided into two local and two CT contributions. This
subdivision can be looked upon as a decomposition of the states into individual substates

I = D∗A I + DA∗
I + D+A−

I + D−A+
I (2.210)

F = F DA∗ + F D∗A + F D+A− + F D−A+ (2.211)

where the rst term in expression (2.210), describing local excitations on D in the initial
state I , and the rst term in expression (2.211), describing local excitations on A in
the nal state F are expected to be dominant, respectively. To calculate the total
ECME F V I , all four substates of the nal state have to be combined with all
four substates of the initial state yielding 16 terms in total. F D∗A V D∗A I and

F DA∗ V DA∗
I do not contribute to the ECME because they describe the interaction

between two local excitons on the same subsystem, such that 14 coupling terms remain in

5The new method has already been presented in ref. [63]
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total:

F V I = F DA∗ V D∗A I + F D∗A V DA∗
I︸ ︷︷ ︸

VDir

(2.212)

+ F D+A− V D−A+
I + F D−A+ V D+A−

I︸ ︷︷ ︸
VCT

(2.213)

+ F D+A− V D∗A I + F D−A+ V D∗A I

+ F D+A− V DA∗
I + F D−A+ V DA∗

I

+ F D∗A V D−A+
I + F DA∗ V D−A+

I (2.214)

+ F D∗A V D+A−
I + F DA∗ V D+A−

I︸ ︷︷ ︸
VP ol

+ F D+A− V D+A−
I + F D−A+ V D−A+

I︸ ︷︷ ︸
VCorr

(2.215)

The rst two terms have been combined into VDir which describes the direct interactions
between locally excited con gurations. VCT represents the interactions between two CT
con gurations that arise from an electron transfer from D to A and from A to D, respec-
tively. The polarization term VP ol is composed of eight mixed couplings between local
and CT excitations. Finally, a correlation term VCorr has been de ned which represents
the coupling between CT con gurations of the same type. In a microsopic representa-
tion involving the reduced transition density matrices and two-electron integrals in the
hypothetical biorthonormalized MO basis, the matrix element F D∗A V DA∗

I reads

F D∗A V DA∗
I =
∑
i∈D

∑
a∈D

∑
j∈A

∑
b∈A

(F )
ia

(I)
jb [(ai jb) − 1

2
(ab ji)] (2.216)

corresponding to the well-known expression for the Förster and Dexter exchange contri-
butions in the MTD approach [34, 26, 27].
The use of a biorthogonalized MO basis can be avoided if the AO basis is employed instead.
In the following, greek letters label the AOs whereas roman letters denote the MOs which
may be delocalized over the whole supermolecular system (i j a b DA). Expressing the
two-electron integrals in terms of the AO basis and the MO coe cients

(ai jb) =
∑∑∑∑

c ic jc ac b( ) (2.217)
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Eq. (2.216) can be rewritten as [62]

F D∗A V DA∗
I =

∑
i∈DA

∑
a∈DA

∑
j∈DA

∑
b∈DA

∑
∈D

∑
∈D

∑
∈A

∑
∈A

(F )
ia

(I)
jb c ic jc ac b[( )−1

2
( )]

(2.218)
Transforming the reduced transition density matrices of the initial and the nal state to
the AO basis [62, 34, 64]

(F ) =
∑

i∈DA

∑
a∈DA

c ic a
(F )
ia (2.219)

(I) =
∑

j∈DA

∑
b∈DA

c jc b
(I)
jb (2.220)

yields the nal expression

F D∗A V DA∗
I =

∑
∈D

∑
∈D

∑
∈A

∑
∈A

(F ) (I)[( ) − 1
2

( )] (2.221)

Similar formulae can be derived for the other 13 coupling matrix elements which only
di er in the subsystems over which the indices , , and run.

2.5 Forster theory

The Förster theory is a formalism which allows the determination of the intermolecular
distance X between the exciton donor and the exciton acceptor directly from the exper-
imentally measured donor uorescence intensity. [7, 8] In the framework of the Förster
theory, EET is termed FRET (Fluorescence / Förster Resonant Energy Transfer). The
FRET rate follows a Golden rule expression, where the ECME is given in Condon approx-
imation (see Sec. 2.2.2)

kF RET =
2
�

VDA
2 ∑

M N

∑
K L

fD∗N fAK · D∗N DM
2 · AK A∗L

2 (2.222)

(ED∗N + EAK − EDM − EA∗L)

Using the IDA for expressing the ECME (see Sec. 2.4.4)

VDA = κ · D · A

X 3
(2.223)

the rate constant reads

kF RET =
2 κ2

D
2

A
2

� X 6

∑
M N

∑
K L

fD∗N fAK D∗N DM
2

AK A∗L
2 (2.224)

(ED∗N + EAK − EDM − EA∗L)
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Using ∫ ∞

−∞
(ED∗N − EDM − � ) (EAK − EA∗L + � ) dE (2.225)

= (ED∗N + EAK − EDM − EA∗L)

and substituting the donor emission spectrum

ID( ) =
4 3

3c3 D
2 ∑

M N

f(ED∗N ) D∗N DM
2 (ED∗N + EDM − � ) (2.226)

as well as the acceptor absorption coe cient

A( ) =
4 2 nmol

3�c
A

2∑
K L

f(EAK) AK A∗L
2 (EAK + EA∗L + � ) (2.227)

into Eq. 2.226, the EET rate becomes [72]

kF RET =
9c4

8 nagg
· κ2

X 6
·
∫ ∞

0
ID( ) · A( ) · −4 d (2.228)

where nmol and nagg are the volume densities (n = N V ) of the absorbing and aggregate
molecules, respectively. Note that the spectral overlap integral covers the absolute values
of the interacting transition dipole moments which are parts of the ECME and therefore
di ers from the spectral overlap integral introduced in Sec. 2.2.3.6 It should clearly be
stated that the spectral overlap integral is not the area enclosed by the two spectra and
the coordinate system, but the integral over the product of the two spectra. [72]
Since free rotation of the dyes is assumed (κ2 = 2

3) and the spectral overlap integral is a
constant for a given pair of dyes, Förster was able to provide an expression for the EET
rate which solely depends on the length of the intermolecular distance vector.

kF RET X−6 (2.229)

The FRET e ciency E is a value between 0 and 1 de ned as the ratio of the FRET rate
and all donor decay rates

E =
kF RET

kF RET + kfl + krl
(2.230)

where kfl is the donor uorescence rate and krl relates to the radiationless decay of the
donor exciton. Neglecting radiationless processes, the FRET e ciency can be obtained

6To calculate the spectral overlap integral in practice, the acceptor absorption spectrum is normalized
to the intensity of the absorption maximum and weighted by the molar absorption coefficient (M−1cm−1)
while the donor fluorescence spectrum is normalized to unit area (dimensionless). Therefore, the quantity
is given in units of M−1cm−1nm4 if a nm energy scale is used.
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from the ratio of the intensities of the donor uorescence in the target donor acceptor
system (IDA) and the isolated donor (ID).

E = 1 − IDA

ID
(2.231)

The Förster radius RF is de ned as the donor acceptor distance for which the FRET
e ciency E reduces to 0.5. The quantity can be obtained from the spectral overlap
integral and the donor uorescence quantum yield and is listed for all typical pairs of
FRET dyes. [73] Therefore, the donor acceptor distance can directly be calculated from
the donor uorescence intensity.

E =
1

1 +
R6

F

X6

(2.232)

X = RF ·
(
E−1 − 1

)− 1
6 (2.233)

X = RF ·
{(

1 − IDA

ID

)−1
− 1
}− 1

6 (2.234)

Since the Förster theory is based on the IDA, which does neither consider exchange nor
CT contributions it is valid only for medium to large distances (30-80 A) [9].
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Figure 2.8: Schematic comparison of the MTD (top) and the STD approach (bottom)
using a four-electron-four-orbital model. While in the MTD approach the interacting wave
functions of the initial and nal states are composed of local transitions on the donor (D)
and the acceptor (A), respectively, the wave functions comprise CT transitions from D to
A and vice versa in the STD approach. To obtain the total ECME each combination of
transitions has to be considered.
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Chapter 3

Implementations

All programs developed in the course of this work have been assembled in the Excita-
tion Energy Transfer Kit (ExETraK) (Fig. 3.1). The code was specially devised for the
theoretical study of heterodimeric molecular systems. At the moment the program suite
provides routines for the computation of the singlet-singlet ECMEs and EET rates on the
basis of monomer and supermolecule-based approaches. All implementations are adapted
to the DFT/MRCI code developed by Grimme and Waletzke and extended by Lyskov et
al. [46, 75]. The program package can be divided into six FORTRAN programs containing
the main code and various BASH-scripts ensuring an automation of certain calculations.
In the following, a brief overview of the major modules and their functionality will be
given.

Foerster. Calculations of the ECME according to the IDA are carried out with the
foerster program. The cartesian components of the transition dipole moment vectors of
the two interacting excited states as well as the corresponding molecular geometries are
required as input. Due to the general structure of the input, the program is not explicitly
restricted to the DFT/MRCI program. The donor acceptor intermolecular distance is
calculated as distance between the centers of mass according to the molecular geometries.
The program is able to ignore atoms which are marked as dummy atoms in the coordinates
le. In addition to the ECME the non-squared orientation factor κ is provided which is

computed on the basis of the absolute values of the transition dipole moment vectors as
well as the corresponding unit vectors de ned in Eqs. 2.193-2.194.

Freck. This module is the core of the ExETraK package providing the ECME between
two excited singlet states according to the MTD and the STD approaches. The program
requires the spin-free reduced one-electron transition densities of the interacting states in
the basis of spatial molecular orbitals as computed by the DFT/MRCI program. Further-
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more, the program requires the two-electron integrals of the recomposed supermolecular
system in the resolution of the identity (RI) approximation (see mergefrag) and the overlap
matrix of the atomic orbital (AO) basis if a transformation from the MO to the AO basis
is necessary. At the moment three calculation modes are o ered: an MTD calculation
in the MO basis, an MTD calculation in the AO basis (devised mainly for benchmark
calculations) and an STD calculation in the AO basis.

MTD calculations: The freck program provides the possibility to carry out full MTD calcu-
lations according to Eqs. 2.208 and 2.209 including Coulomb and exchange contributions.
Since the calculation time drastically increases with the number of basis functions, the
code has been paralellized using the message passing interface (MPI). A further speed-up
was obtained by freezing core and anti-core orbitals which are not considered in the MTD
calculation. If the exchange contribution is neglected, the main loop running over the
orbitals i, j, k and l can be reduced considering identical combinations. Nevertheless,
due to the high computational cost, the method is still ine cient compared to the IDA.
Therefore, an algorithm has been developed, which drastically reduces the calculation time
from days to minutes. A plot of the transition density matrices reveals that most of the
N N matrix elements are zero or negligibly small (Fig. 3.2). The algorithm pre-scans
both transition density matrices to ensure that only orbitals referring to matrix elements
with an absolute value above a certain threshold are considered in the main loop. To carry
out an MTD calculation with freck program, the supermolecular system has to be split
into two individual subsystems that are treated in two individual quantum chemical cal-
culations providing the transition densities. The two-electron integrals are obtained from
an arti cially recomposed system with the MOs of the subsystems. If the target system
is composed of covalently linked donor and acceptor systems, a bond has to be split in a
homolytical manner and has to be saturated with hydrogen atoms.

STD calculations: The newly developed STD approach according to Eqs. 2.212-2.215 has
also been implemented to the freck program. At the moment the code is not optimized
such that the calculations are very time consuming. A possibility to freeze core and anti-
core orbitals and a pre-scan of the transition densities has not yet been implemented.
In comparison to the MTD approach, the ECME calculation is directly based on a single
quantum chemical calculation of the supermolecular arrangement of donor and acceptor.
By this means, the problem of the arti cially isolated subsystems in the MTD approach
can be overcome since the interaction between the two subsystems is directly considered
within the MOs and therefore within the transition densities. Since the calculation is
performed in the AO basis, there is no need to split a covalent bond. The border between
donor and acceptor moiety can simply be de ned by an atom number.
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Mergefrag. This program is responsible of creating the recomposed structure including
the set of MOs in the case of an MTD calculation. In the MTD approach, the supermolec-
ular system of donor and acceptor is arti cially separated into an isolated donor and an
isolated acceptor which a treated in individual quantum chemical calculations. In order to
calculate the two-electron integrals (ij kl) (Coulomb contribution) and (il kj) (exchange
contribution) connecting the two subsystems, the set of the supermolecular MOs is as-
sumed to be composed of the sets of MOs of the isolated subsystems. Therefore, the
monomer MOs are arranged in blocks with coe cients equal to zero on the other subsys-
tem. To control the size of the integral le, the program takes care of orbital freezing and
can be used for the pre-scan of the transition densities considering only orbitals that
refer to non-zero matrix elements.

Aointprep. This tool is needed for the computation of two-electron integrals in the RI-
approximation if the AO basis has to be used. A faked set of MOs each representing a
single AO is created such that the integral calculation can be performed with the ritraf
program which is part of the DFT/MRCI suite. The program ritraf is devised for the
computation of two-electron integrals in the MO basis. Therefore, the orbitals have to pass
an orthogonality check. This check is performed by calculating the number of electrons N

from the trace of the product of the charge density matrix P and the overlap matrix S

N =
∑

i

(PS)ii (3.1)

and compares it to the number of electrons deduced from the orbital occupation numbers
as de ned in the calculation settings. In the case of a deviation, the program aborts. The
charge density matrix and the overlap matrix are de ned as

P =
N 2∑

i

c i · c i (3.2)

S = (3.3)

where c i and c i are expansion of the i-th MO in the AO basis . The procedure
provides a fast and e cient way for checking the orthogonality of a set of MOs. However,
in the special case in which each MO is represented by a single AO

c i

⎧⎨
⎩1 = i

0 = i
(3.4)
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the method fails and detects the correct number of electrons although the AO basis is
not orthogonal. To explain the issue, the example of an arbitrary molecular system with
6 electrons is taken which is described in a basis of 5 AOs. Since each MO is doubly
occupied in a closed-shell system, the number of occupied MOs is 3. According to Eq. 3.2
all diagonal elements of the charge density matrix for = = i are equal to 2 while all
other diagonal and o -diagonal elements are zero.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
2 0

2
0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

The AO basis is non-orthogonal. Therefore, the o -diagonal elements of the overlap matrix
are non-zero.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1 = 0

1
= 0 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.6)

Multiplication of both matrices yields a matrix with the rst three diagonal elements equal
to 2 and non-zero o -diagonal elements.

DS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
2 = 0

2
= 0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

The trace of DS is 6 and therefore in compliance with the number of electrons of the
molecule although the set of (fake) MOs is non-orthogonal. For this reason, the ritraf
program can directly be used for the calculation of the two-electron integrals in the AO-
basis without any modi cation.

Overlap. This program allows the computation of the spectral overlap integral de ned
in Eq. 2.61 on the basis of the vibrationally resolved donor emission and acceptor ab-
sorption spectra created with this VIBES program. The program takes care for a proper
normalization of both spectra and calculates the product function which is numerically
integrated using the trapezoidal rule to obtain the spectral overlap.
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Align. The program is responsible for the alignment of molecular structures according
to the minimum RMSD applying a quaternion-based algorithm developed by Coutsias
et al. [76] The working principle of the algorithm has been revised in the supporting
information of ref. [77] (see Sec. 4.2). The intention was to provide a tool which makes
molecular structures obtained from molecular dynamics (MD) simulations accessible to
a quantum chemical calculation of the ECME. An alignment of the MD-based structure
with the relaxed ground state structures of the two dyes prevents a relaxation of the MD
structure. Furthermore, the new MO coe cients, adapted to the new orientation of the
molecule in the coordinate system, can simply be obtained by a rotation matrix. By
this means, a recomputation of transition density matrices is circumvented, drastically
reducing the computational cost.

Edbc. This program is a tool for the analysis of the transition densities in dimeric
systems and uses a method developed by Lischka and Plasser which was reviewed in
Sec. 2.3.9. The method provides a measure for contributions of local and CT transitions
of an excited singlet state in terms of a 2 2 matrix. Before the STD approach is chosen
for the calculation of the ECME, one has to de ne which supermolecular states correspond
to the bright monomer states. The edbc program provides valuable information helping
to identify CT states and states which a predominately centered on certain moieties of the
supermolecule. At the moment, the program is restricted to molecular dimers but can in
principle be extended to an arbitrary number of subsystems.
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Figure 3.1: Implementation schemes of the main modules of the ExETraK program pack-
age. Newly devised programs are highlighed in purple. A: Connection of the AMBER
suite [74], B: Implementation of the monomer-based IDA and MTD approaches, C: Im-
plementation of the supermolecule-based STD approach, D: Calculation of the spectral
overlap integral.
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Figure 3.2: Graphical representation of the S0 S1 transition density matrices of BOD-
IPY (l.h.s.) and anthracene (r.h.s.) using the absolute values of the matrix elements.
The black areas represent the parts of the transition density matrices with absolute values
larger than 2 0 10−7 a.u. All other matrix elements are negligibly small and therefore
do not contribute to the ECME. Since less than one third of the total areas of the plots is
black, the MTD calculation can be accelerated extremely by neglecting all matrix elements
in the white areas.
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Chapter 4

Results and discussion

All results have already been published in di erent scienti c journals (refs. [63, 77, 78]).
In the following, the thematic connection including brief reviews of the major objectives
and results will be presented.

4.1 BODIPY/anthracene-based EET cassettes

4.1.1 Direct contribution and the role of the molecular linker

In the rst publication [78] the implementation of the ideal dipole approximation (IDA)
and the monomer transition density (MTD) [26, 27] approach adapted to the DFT/MRCI
code [46] was reported. The main objective was the investigation of ve experimentally
well studied EET cassettes [21, 22, 79] composed of anthracene as exciton donor and
BODIPY as exciton acceptor (Fig. 4.1). The study particularly focuses on the role of
the -conjugated molecular linker di ering in length and chemical structure. In order to
distinguish between through-space and through-bond EET, two fragmentation models [38]
were used completely neglecting or assigning the linker to the donor moiety of the system
(Fig. 4.2). Since the methods are restricted to the direct contribution of the ECME,
possible CT contributions could not be taken into account. The calculated ECMEs of
the di erent EET cassettes and fragmentation models were used to compute the EET
rates. The spectral overlap integral required for this purpose was obtained from the
calculated vibrationally resolved donor uorescence and acceptor absorption spectra which
were considered either unshifted or shifted according to the location of the BODIPY and
anthracene absorption maxima of appropriate supermolecular calculations (Fig. 4.3).
Comparing the IDA to the more sophisticated MTD approach using an ethylene-dimer as
benchmark model system, we nd a better agreement of the MTD approach with the exact
coupling obtained from the Davydov splitting at small intermolecular distances ( 10 A).
Disregarding the molecular linker in the EET cassettes leads to an underestimation of the
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Figure 4.1: Nomenclature and chemical structure of studied EET cassettes. S0 S1
transition dipole moments of BODIPY and anthracene are indicated as arrows. Distances
between the centers of mass are given in (A).

ECME and therefore of the EET rates. This e ect gains in importance with increasing
size of the linker. If the linker was assigned to the donor moiety of the cassettes, the exper-
imentally observed EET rates of 5 0 10−12 s−1 [21] could fairly be reproduced. In one
of the EET cassettes the transition dipole moments of donor and acceptor were perfectly
perpendicularly oriented in the relaxed ground state geometry causing a vanishing EET
rate although the experimentally observed EET rate is in the range of ps−1. By the means
of short ab initio molecular dynamics (MD) simulations it could be shown that a static
description of the EET system is insu cient in this case. While the ECME almost does
not change in the case of parallel transition dipole moments, only slight deviations from a
perfectly perpendicular orientation cause a signi cantly non-zero ECME. An overview of
the most important results is given in Tab. 4.1.

4.1.2 Charge transfer contributions

While the consideration of the ECME was restricted to direct contributions in the rst
publication, indirect contributions were the main focus of the second publication. [63] For
this purpose, a new supermolecular transition density (STD) based method was developed
which can be understood as an extension of the MTD method to CT excitations. In the
STD approach, the transition densities of the interacting electronically excited states of
the supermolecule are used instead of the transition densities of the isolated monomers.
In the AO basis, this leads to block matrices where the diagonal blocks represent local
excitations centered on the donor or the acceptor moiety, respectively, and the o -diagonal
blocks represent CT excitations between the moieties. The total e ective ECME is related
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Figure 4.2: Fragmentation models developed to calculate the EC in the studied EET
cassettes using the example of B2-PE-A. According to model I the linker is completely
removed from the relaxed ground-state structure. Model II tries to approximate the
in uence of the molecular structure of the linker on the EC assigning the latter to the
donor moiety. In both models the obtained fragments are saturated with hydrogen atoms
and the newly created C-H bond were relaxed keeping the rest of the molecule xed.

to the di erent combinations of transition density matrix blocks of the two interacting
states yielding 14 coupling terms in total. The validity of the approach is assessed for a
model system of two -stacked ethylene molecules at varying intermolecular separation.
Using a four-electron-four-orbital model and allowing only single excitations yields only
four possible electronically excited states two Frenkel and two CT excited states. It
has to be mentioned that in the case of the ethylene dimer the electronic states are not
localized. At large intermolecular separations, the two lowest-lying states correspond to
positive and negative linear combinations of pure local excitations on monomer A and
B, respectively, i.e. A∗B AB∗ (Frenkel states). Likewise, the two higher-lying states are
positive and negative linear combinations of the ionic terms A+B− and A−B+, respectively,
(CT states). The computed couplings were compared with the MTD approach and the
energetic splitting between the appropriate adiabatic states. As may be seen in Fig. 4.4,
STD and MTD results match nearly perfectly for intermolecular separations > 5 A. The
analysis of the transition density matrices using the method developed by Plasser and
Lischka[43] shows that Frenkel and CT states start mixing at intermolecular separations
smaller than approximately 5 A. For the upper Frenkel state (II), this is even the case for
small intermolecular separations whereas (negative) CT contributions become more and
more important for the lower Frenkel state (I) with decreasing intermolecular distance.
When compared to the FullQM values, the STD and MTD approaches seemingly overshoot
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Figure 4.3: Computed vibrationally resolved anthracene emission and BODIPY absorption
spectrum.
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at long intermolecular separations. This deviation is traced back to the scaling factor of
0.5682 with which the two-electron integral that couples the two Frenkel excitations is
multiplied in the DFT/MRCI-R method [75], thus deminishing the Davydov splitting
whereas the corresponding two-electron integrals remain unscaled in the STD and MTD
approaches.
Finally, the method was applied to the ve EET cassettes already considered in the rst
publication. For a proper quantum chemical description of the supermolecular systems
required for the STD approach, the redesigned DFT/MRCI (DFT/MRCI-R) Hamiltonian
developed by Lyskov et al. [75] was chosen. Using the original DFT/MRCI Hamilto-
nian [46], arti cially low-lying excited states in ethylene-tetra uoroethylene dimers were
encountered. [75] This failure can be traced back to unphysically large contributions of
four-open shell con gurations in the CI expansion. The new Hamiltonian enables a physi-
cally reasonable description of molecules which are composed of more than one subsystem
which is the case for the studied EET cassettes.
The STD approach overcomes the arti cial separation of the subsystems into isolated
monomers. At extremely small distances ( 5 A) the MTD approach fails due to the
missing indirect contributions which are perfectly covered in the STD approach. Irre-
spective of a systematic red shift, the calculated absorption spectra of the EET cassettes
are in good agreement with the experiment if donor, bridge and acceptor are forced in
a perfectly perpendicular orientation by symmetry constraints. This procedure is neces-
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Table 4.1: Direct and exchange contributions to the EC matrix elements as well as EET
rates of the studied EET cassettes calculated with di erent models.

Cassette B2-A B2-E-A B2-PE-A B2-EPE-A B8-PE-A
S0 geometry (fragmentation model I)

Spectral overlap integral (cm) 1 06 10−5

IDA JDA (cm−1) 983 350 109 63 0.0

MTD
JDA (cm−1) 1141 423 119 67 0.0
KDA (cm−1) 30.0 3.5 0.0 0.0 0.0
EET rate (s−1) 2 3 1013 3 2 1012 2 6 1011 8 3 1010 4 3 100

Acceptor S0, donor S1 geometry (fragmentation model I)
Spectral overlap integral (cm) 1 06 10−5

MTD
JDA (cm−1) 1140 426 123 69 0.0
KDA (cm−1) 30.0 3.1 0.0 0.0 0.0
EET rate (s−1) 2 3 1013 3 3 1012 2 8 1011 8 8 1010 2 5 100

MD snapshots (fragmentation model I)
Spectral overlap integral (cm) 1 06 10−5

MTD JDA (cm−1) 951 377 114 62 6.9
EET rate (s−1) 2 1 1013 2 8 1012 2 7 1011 7 1 1010 1 62 109

S0 geometry (fragmentation model II, spectral overlap of monomers)
Spectral overlap integral (cm) 1 06 10−5

MTD
JDA (cm−1) 1013 766 678 0.0
KDA (cm−1) 92 27 46 0.0
EET rate (s−1) 1 6 1013 1 0 1013 7 3 1012 9 9 102

S0 geometry (fragmentation model II, adapted spectral overlap)
Spectral overlap integral (cm) 8 39 10−5 2 46 10−4 1 79 10−4 2 46 10−4

MTD
JDA (cm−1) 1013 766 678 0.0
KDA (cm−1) 92 27 46 0.0
EET rate (s−1) 8 4 1013 1 6 1014 8 4 1013 1 6 104

MD snapshots (frag. model II, adapted spectral overlap)
Spectral overlap integral (cm) 2 46 10−4

MTD JDA (cm−1) 18
EET rate (s−1) 1 5 1011

exp. EET rate[21] (s−1) > 5 0 1012 > 5 0 1012 > 5 0 1012 > 5 0 1012 2 5 1012

sary due to the unsatisfactory description of CT states and long-range interactions by the
BHLYP functional [80], for which the DFT/MRCI-R Hamiltonian is parameterized. In

-conjugated systems such as the studied EET cassettes, an almost coplanar orientation
of donor, bridge and acceptor leads to an enhanced delocalization of certain frontier MOs
throughout the whole system causing a strong mixture of local and CT states. While the
vertical excitation energies of the lowest BODIPY-localized states of the almost perpen-
dicular structures are in excellent agreement with the experiment, DFT/MRCI-R fails to
properly describe the lowest BODIPY-localized states of the other systems. Here, substan-
tial deviations from a perpendicular orientation lead to an energetic stabilization of the
anthracene-to-BODIPY CT state which strongly mixes with the lowest BODIPY-centered
state. The interaction of the two states leads to an energetic splitting resulting in a sta-
bilized and a destabilized electronic state, both characterized by local and CT transitions
in approximately equal parts and a non-zero oscillator strength. Therefore, the appro-
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Figure 4.4: Benchmark calculations of the supermolecular transition density approach
(STD) of the Frenkel states of the ethylene dimer (left: Frenkel state I, right Frenkel state
II). The ECMEs are compared to the Davydov splitting of the coupled states (FullQM)
and ECMEs of the monomer transition density approach (MTD). The curve labeled STD
direct refers to the coupling between all local transitions on monomer A and all local
transitions on monomer B while STD indirect includes all additional matrix elements.

priate experimental vertical excitation energy of the lowest BODIPY-localized state is
signi cantly underestimated by the stabilized state and overestimated by the destabilized
state. The use of symmetry restraints to overcome this problem can be justi ed by the
extremely small rotational barriers suggesting a free rotation at room temperature. In
agreement with the experiment [22], the absorption spectra of those compound with an
intermediate link to an ethinyl group of the linker, were found to have a stronger red-shift
and a broader spectral band shape due to the higher extent of electron delocalization.
Neglecting the molecular linker, indirect contributions to the ECME become negligible
even for small intermolecular distances such that the total ECME reduces to the direct
contribution, which is in excellent agreement with the MTD approach. In the presence
of the linker, substantial indirect contributions were found for all EET cassettes which
either reinforce or diminish the direct contributions. The latter were generally found to be
smaller than those computed with the MTD approach. In one of the EET cassettes, the
transition dipole moments of donor and acceptor were perfectly perpendicularly oriented
in the relaxed ground state geometry. The STD calculation of the ECME reveals that all
direct and indirect coupling matrix elements are zero. This gives rise to the assumption
presented in the previous publication that the non-zero EET rate in this cassette is solely
caused by dynamic e ects. A comparison of the ECME calculated with both MTD and
STD is given in Tab. 4.2.
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Table 4.2: Composition of the ECME of all P-systems computed using the supermolecular
transition density approach (STD) in comparison with the monomer transition density
approach (MTD).

Method P B2-A P B2-E-A P B2-PE-A P B2-EPE-A P B8-PE-A

STD

Vdir 944 942 408 216 0
VCT 54 109 -93 22 0
Vpol 59 -62 -110 -23 0
Vcorr -10 -15 2 -3 0
Vtot 1047 974 207 212 0

MTD Vdir 1264 1092 455 346 0
Method P B2(-E-)A P B2(-PE-)A P B2(-EPE-)A P B8(-PE-)A

STD

Vdir 443 137 78 0
VCT 17 0 0 0
Vpol -1 0 0 0
Vcorr -12 0 0 0
Vtot 448 137 78 0

MTD Vdir 467 134 76 0

4.2 Distance-dependent validity of IDA-based FRET model

So far, EET has particularly been investigated with respect to only a single geometry of the
target system. This static consideration is mostly su cient for rather rigid systems in
which small deviations from the minimum geometry do not cause substantial deviations of
the ECME. However, the larger a molecular system becomes, the more exible the system
may be. Thus, the importance of dynamic e ects in the framework of EET increases. This
is especially the case in the framework of FRET experiments aiming to provide information
on the structure and dynamics of biophysical systems. In the third publication [77], a
computationally e cient method is presented which makes a large number of snapshots
obtained from molecular dynamics (MD) simulations accessible to a more sophisticated
quantum chemical approach for the computation of the ECME than the IDA. To this end,
the relaxed ground-state structures of the exciton donor and exciton acceptor are aligned
to each snapshot of the MD trajectory (Fig. 4.5). The rotation matrix leading to the best-
t RMSD is used to transform the set of MOs according to their new orientation in space,

which avoids the computationally costly recalculation of the transition densities for each
con guration. By this means, the relative orientation can be well represented neglecting
the only minor important intramolecular degrees of freedom. The procedure avoids the
computationally costly relaxation of the geometry of each snapshot and the recomputation
of molecular orbitals and the transition density matrices. Furthermore, a speed-up of the
MTD approach could be achieved by considering only those orbitals that lead to non-zero
transition density matrix elements. As the IDA is known to fail at small intermolecular
distances, the presented study aims at a critial investigation of the IDA-based FRET model
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Figure 4.5: Overlay of the simpli ed and preoptimized structures of Alexa Fluor 488
(green) and Cy5 (red) to an MD snapshot according to the alignment procedure.

considering the deviation between IDA and the more sophisticated MTD approach. To this
end, a rigid double-stranded RNA was chosen as model system which was labeled with a
pair of FRET dyes at di erent positions using long and exible molecular linkers (Fig. 4.6).
In all setups, certain positions could be identi ed where the dyes are preferably located,

Figure 4.6: Illustration of the studied system composed of a rigid, double-stranded RNA
which is labeled by a pair of FRET dyes using long and exible linkers.

which causes a restriction of the free rotation in space. For two of three studied setups,
certain arrangements could be identi ed in which the dyes stick close to each other at small
distances in the range of 7 to 15 A representing energetically favorable and stable states.
For those setups, substantial deviations from a perfectly Gaussian distance distribution
and a perfect isotropic distribution of the transition dipoles were found (Fig. 4.7). Within
the periods in which the dyes come close to each other, substantial deviations between the
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A B

Figure 4.7: Distributions of the donor acceptor distance and the orientation factor. In the
two setups for which the dyes preferably are located in close distance, substantial deviation
from a perfectly Gaussian distance distribution and a perfect isotropic distribution of the
transition dipoles were found (A). In the third setup, the shapes of the distance and
transition dipole distributions are largely preserved (B).

IDA and the MTD were found. Nevertheless, the number of snapshots a ected by a large
deviation of the IDA represents only a small part of the total trajectories. Thus, they only
have a small statistical impact on the time-averaged EMCE and therefore on the EET
rate. As a conclusion it is stated that the IDA is suited even for FRET experiments with
small donor acceptor distances as long as adherence of the dyes does not dominate the
overall motion behavior.
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Chapter 5

Outlook

The core of this work was the successful implementation of the MTD approach to the
DFT/MRCI code. In a second step, the method was extended to exchange contributions
and optimized to enhance the computational e ciency. Furthermore, a supermolecular
transition density-based formalism was presented, which extends the MTD approach to
indirect CT contributions. EET was studied both statically and dynamically applying
the MTD approach to a set of EET cassettes as well as to a biomolecular system la-
beled with a pair of FRET dyes. In the course of the dynamics study, a fast and e cient
alignment-based methodology was developed, which makes a large number of MD trajecto-
ries accessible to enhanced quantum chemical approaches for calculating the ECME. In the
following, some propositions for a reasonable continuation of this work will be presented.

5.1 Extension of the MTD method to triplet-triplet cou-
plings

So far, only singlet-singlet EET has been considered. However, for many applications such
as triplet-triplet upconversion ECMEs between triplet states are an important issue as well.
The MTD approach cannot consider triplet-triplet couplings because the method requires
the monomer transition densities of the interacting excited states with respect to the
electronic ground states. The transition densities with respect to the (singlet) electronic
ground state are zero since transitions between singlet and triplet states are generally
spin-forbidden unless spin orbital coupling is considered explicitly within the Hamiltonian.
According to the Dexter model, the ECME is solely composed of the Dexter exchange term
in the case of triplet-triplet couplings since the EET is based on a simultaneous migration
of electrons from the donor to the acceptor and vice versa. For this reason, the IDA cannot
be used to approximate triplet-triplet couplings which accounts for the Coulomb (Förster)
contribution. A monomer-based approach for the computation of triplet-triplet excitonic
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couplings may be provided by an extension of the MTD formalism. An expression for
the spin-free reduced transition density matrix in second quantization has been given in
Eq. 2.115. With this, the ECME between two excited singlet states expressed in terms of
the spin-free reduced monomer transition densities reads

K
(SS)
DA = −

∑
ijkl

(il kj) D E
(S)
ij D∗ A∗ E

(S)
kl A (5.1)

= −
∑
ijkl

(il kj) D
1√
2
∑

c†
i cj D∗ A∗ 1√

2
∑

c†
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k cl A︸ ︷︷ ︸
P

(A)
kl
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Considering the electron spin, it has to be stated that electronic singlet states have only one
component ( − ) while triplet states are composed of three components T+1 ( ),
T0 ( + ) and T−1 ( ) which are energetically degenerate in the non-relativistic
case. Therefore, the triplet excitation operator E

(T )
ij is composed of three components as

well. [81]

T 1 +1
ij = −a†

i aj (5.4)

T 1 0
ij =

1
2

(
a†

i aj − a†
i aj

)
(5.5)

T 1 −1
ij = a†

i aj (5.6)

Following Nagae et al. [82], this de nition of the triplet excitation operator can be used to
deduce transition density matrix-like expressions for the triplet-triplet coupling case. In
principle, these expressions are special cases transition density matrix explicitly accounting
for the spin of the excited and deexcited electrons, respectively. Starting the derivation
from an expression analogous to the singlet case

K
(T T )
DA = −

∑
ijkl

(il kj)
(

D E
(T )
ij D∗ A∗ E

(T )
kl A

)
(5.7)

the transition density-like terms can be separated according to the three triplet components

D E
(T )
ij D∗ = D T 1 +1

ij + T 1 0
ij + T 1 −1

ij D∗ (5.8)

= D T 1 +1
ij D∗ + D T 1 0

ij D∗ + D T 1 −1
ij D∗ (5.9)
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where

D T 1 +1
ij D∗ = − D a†

i aj D∗ (5.10)

D T 1 0
ij D∗ =

1
2 D a†

i aj − a†
i aj D∗ (5.11)

=
1
2 D a†

i aj D∗ − 1
2 D a†

i aj D∗

D T 1 −1
ij D∗ = D a†

i aj D∗ (5.12)

Similar matrix elements A∗ E
(T )
kl A can be derived for the acceptor localized excita-

tion.

A∗ T 1 +1
kl A = − A∗ a†

k al A (5.13)

A∗ T 1 0
kl A =

1
2 A∗ a†

k al − a†
k al A (5.14)

=
1
2 A∗ a†

k al A − 1
2 A∗ a†

k al A

A∗ T 1 −1
kl A = A∗ a†

k al A (5.15)

In order obtain the ECME, one has to consider that T-operators are not self-adjoint.
Therefore, one has to combine T 1 +1

ij with T 1 −1
kl , T 1 −1

ij with T 1 +1
kl and T 1 0

ij with T 1 0
kl

(−T 1 +1
ij T 1 −1

kl − T 1 −1
ij T 1 +1

kl + T 1 0
ij T 1 0

kl ). By this means, the ECME for triplet-triplet
couplings can be written as

K
(T T )
DA = −

∑
ijkl

(il kj) (5.16)

{
− D T 1 +1

ij D∗ A∗ T 1 −1
kl A

− D T 1 −1
ij D∗ A∗ T 1 +1

kl A

+ D T 1 0
ij D∗ A∗ T 1 0

kl A

}
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Substituting the de nitions of the matrix elements in Eqs. 5.10 - 5.15 into Eq. 5.16 the
expression becomes

K
(T T )
DA = −

∑
ijkl

(il kj) (5.17)

{
D a†

i aj D∗ A∗ a†
k al A

+ D a†
i aj D∗ A∗ a†

k al A

+1
2 D a†

i aj D∗ A∗ a†
k al A

+1
2 D a†

i aj D∗ A∗ a†
k al A

−1
2 D a†

i aj D∗ A∗ a†
k al A

−1
2 D a†

i aj D∗ A∗ a†
k al A

}

Introducing short notations for the transition density-like matrix elements the ECME can
nally reads

K
(T T )
DA = −

∑
ijkl

(il kj)
{

P
(D)
i ;j P

(A)
k ;l + P

(D)
i ;j P

(A)
k ;l (5.18)

+
1
2

(
P

(D)
i ;j P

(A)
k ;l + P

(D)
i ;j P

(A)
k ;l − P

(D)
i ;j P

(A)
k ;l − P

(D)
i ;j P

(A)
k ;l

)}

The equation generally holds true as long as the electronic ground states have singlet
multiplicity and the excited states have triplet multiplicity. [82] To implement the exten-
sion, mainly the DFT/MRCI code would have to be changed to generate the transition
density matrix-like matrices. Some routines may be adopted from the SPOCK program
suite [83, 84, 85] devised for the calculation of spin-orbit coupling matrix elements. Since
CT contributions become important at distances where the Dexter exchange contributions
are non-zero, it may also be valuable to extend the code in analogy to the STD method
presented in this work.

5.2 Optimization of the STD code

In the current version, the STD is very ine cient and causes a much higher computational
cost than the optimized version of the MTD approach. To be able to study larger systems
or if the use of larger basis sets is necessary, freezing of core and anticore MOs below
or above a certain energy threshold should be made possible. The computational time
may be further decreased by applying a pre-scan similar to the MTD such that matrix
elements below a certain threshold can be neglected. However, it will not be possible
to achieve a similar speed-up since the transition densities are smeared out on most of
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the AOs. Therefore, a pre-scan of the three-index integrals from which the two-electron
integrals are recalculated according to the RI-approximation may be more promising.

5.3 Enhancement of the sampling procedure

Studying the dynamics of EET taking the example of a rigid-double stranded RNA, the
focus was on an e cient interface to molecular mechanics (MM) based molecular dynam-
ics simulations and a quantum chemical approach for computing the ECME. Therefore,
the simplest possible sampling technique called independent snapshot method (ISM) was
used. The ISM treats each snapshot as independent member of the population or in
other words assumes that an EET between donor and acceptor occurs with the same
probability for each snapshot. It has been stated by Speelman et al. [86] that the ISM pro-
vides improper results in the case of transiently occupied con gurations. In future studies
a more sophisticated sampling method such as a Markov chain model could be used. [86]
For each snapshot the probabilities for the di erent decay events of the excited donor
( uorescence, EET or non-radiative decay) and the probability that the donor remains in
the excited state are calculated. The probabilities depend on the rate constants of the ap-
propriate events and the time between the trajectory points. According to the calculated
probabilities a random number is generated deciding which of the events takes place. If
the donor remains in the excited state, the next trajectory point is considered, otherwise
the chain stops and the time between the rst and last snapshot of the chain as well as
the kind of the decay event are stored. The procedure is repeated several times for each
snapshot as starting point of the chain. By this means, a distribution of the nal decay
events of a each chain is obtained providing information on how likely the occurrence of
an EET is for a certain geometry. This likelihood can be used as weighting factor when
calculating the average EET rate from the ECMEs obtained for each snapshot.

5.4 Enhancement of the alignment procedure

To make a large number of MD-based snapshots accessible to an enhanced method for
the quantum chemical calculation of the ECME, an approach was presented according to
which preoptimized structures of the target molecules are aligned to the MD snapshots.
At the moment, the preoptimzed structures are the relaxed ground state geometries of the
appropriate molecules. The procedure can be applied without any problems as long as
the considered molecules are rather rigid, which means that molecular vibrations do not
cause extreme deviations from the preoptimized structures. Otherwise the failure of the
alignment becomes large such that any further analysis is questionable. To overcome this
problem, the algorithm could be extended to more than only one preoptimized structure.
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Considering for example a system which undergoes a cis-trans-isomerization during the
MD simulation. A preoptimzed cis-structure as well as a preoptimized trans-structure
could be aligned to each snapshot discarding the worse of the two alignments. Since the
computational cost for an alignment is low, the enhancement would provide an e cient
way to treat more exible systems with a high level of accuracy.
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ABSTRACT: BODIPY-based excitation energy transfer
(EET) cassettes are experimentally extensively studied and
serve as excellent model systems for the investigation of
photophysical processes, since they occur in any photosynthetic
system and in organic photovoltaics. In the present work, the
EET rates in five BODIPY-based EET cassettes in which
anthracene serves as the donor have been determined,
employing the monomer transition density approach (MTD)
and the ideal dipole approximation (IDA). To this end, a new
computer program has been devised that calculates the direct
and exchange contributions to the excitonic coupling (EC) matrix element from transition density matrices generated by a
combined density functional and multireference configuration interaction (DFT/MRCI) calculation for the monomers. EET
rates have been calculated according to Fermi’s Golden Rule from the EC and the spectral overlap, which was obtained from the
calculated vibrationally resolved emission and absorption spectra of donor and acceptor, respectively. We find that the direct
contribution to the EC matrix element is dominant in the studied EET cassettes. Furthermore, we show that the contribution of
the molecular linker to the EET rate cannot be neglected. In our best fragment model, the molecular linker is attached to the
donor moiety. For cassettes in which the transition dipole moments of donor and acceptor are oriented in parallel manner, our
results confirm the experimental findings reported by Kim et al. [J. Phys. Chem. A 2006, 110, 20−27]. In cassettes with a
perpendicular orientation of the donor and acceptor transition dipole moments, dynamic effects turn out to be important.

1. INTRODUCTION

Excitation energy transfer (EET) is one of the key issues in
organic photovoltaics. In a system in which donor and acceptor
molecules are covalently linked, EET can take place in two
different ways. The limiting case of through-space excitation
energy transfer (TSEET) is based on the interaction between a
de-excitation process on the donor and a simultaneous
excitation process on the acceptor. In 1948, Förster coined
the term “direct coupling” for the coupling between a locally
excited donor interacting with an acceptor through a Coulomb
potential.1 In 1953, Dexter showed that there is also an
exchange contribution to the excitonic coupling (EC), which
becomes more and more important as the donor−acceptor
distance gets smaller.2 Dexter explained this type of EET as a
simultaneous exchange of electrons between donor and
acceptor. In the limiting case of through-bond excitation
energy transfer (TBEET), the excitation energy is directly
transferred through the molecular bridge linking the donor and
the acceptor. The superexchange mechanism proposed by
McConnell in 19613,4 describes the EET as a tunneling process
where the EET rate decreases exponentially with the length of
the linker. In a realistic EET system in which donor and
acceptor are joined in a single molecule, both TSEET and
TBEET coexist and contribute to the EET rate.

1.1. The Excitonic Coupling Matrix Element. The EC
matrix element VDA between an excitation on molecule A and a
de-excitation on molecule D can be derived, considering the
Hamiltonian of a bimolecular system AD.5 The Hamiltonian is
given by the sum of the electronic Hamiltonian, the operator of
the kinetic energy of the nuclei, and the operator of the
internuclear repulsion:

̂ = ̂ + ̂ + ̂ −H R H R T R V R( ) ( ) ( ) ( )el nuc (nuc nuc) (1)

Herein, R is the set of coordinates of all nuclei. Assuming that
the total system can be decomposed into two individual
molecules A and D, intramolecular and intermolecular
coordinates can be separated. In this case, the electronic
Hamiltonian of the bimolecular system can be written as the
sum of the electronic Hamiltonians of A and D and the
interaction V̂DA

(el−el) between the electrons located at the two
molecules consisting of a direct and an exchange term.

̂ = ̂ + ̂ + ̂ −H R H R H R V R( ) ( ) ( )
1
2

( )el D
(el)

A
(el)

DA
(el el)

(2)

The potential V̂DA
(el−el) is responsible for the EC. The

electronic wave function of the total system ϕa,d is expanded
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as antisymmetrized product of the adiabatic electronic states of
the individual systems

ϕ φ φ= ̂r R r R r R( , ) [ ( , ) ( , )]a,d m Aa A Dd d (3)

where rA and rD denote the electronic coordinates of A and D,
respectively, and “a” and “d” label the respective local electronic
states. ̂ represents the antisymmetrization operator:

∑̂ = − ̂
N

P
1

( 1)
p

p

perm (4)

where P̂ generates permutations of the electron coordinates of
molecules A and D in the total system and p is the number of
transpositions. The total number of permutations Np is
dependent on the number of electrons of the individual
systems and is given by

= + !
! ! !

N
N N

N N

( )

( )
p

el
(A)

el
(D)

el
(A)

el
(D)

(5)

Note that the resulting states of the total system are not
orthonormal.
The EC matrix element between a local transition on

molecule A from state a1 to a2 and a local transition on
molecule D from state d1 to d2 is then given by

∫ϕ ϕ φ φ

φ φ

⟨ | ̂ | ⟩ = ̂ · ̂

· ̂

≡ +

− −
V r r r R r R V

r R r R

J K

d d ( [ ( , ) ( , )])

( [ ( , ) ( , )])

a d DA
(el el)

a d A D a A d D DA
(el el)

a A d D

DA DA

2 2 1 1 2 2

1 1

(6)

where JDA is the direct contribution and KDA is the exchange
contribution. KDA is dependent on the spatial overlap of
molecular orbitals located at A and those located at D.
If the exchange contribution KDA is neglected, the electronic

state of the total system can be written as a Hartree product of
the local electronic states:

ϕ φ φ=r r R r R r R( , , ) ( , ) ( , )a,d
HP

A D a A d D (7)

such that the right-hand side of eq 6 simplifies to the direct
contribution term:

ϕ ϕ φ φ φ φ⟨ | ̂ | ⟩ ≈ ⟨ | ̂ | ⟩ =− −V V Ja d DA
(el el)

a d a d DA
(el el)

a d DA2 2 1 1 2 2 1 1 (8)

1.2. The Energy Transfer Rate. The EET process is
termed incoherent if it takes place on a much longer time scale
than intermolecular and intramolecular relaxation (τtrans ≫
τrelax). In this case, the EET rate can be described by a Golden
Rule expression, which has already been applied successfully to
such processes in the past.6−8

∑ ∑π

δ

=
ℏ

|⟨Ψ Ψ | ̂ |Ψ Ψ ⟩|

× + − −

* * *

* *

−k f E f E V

E E E E

2
( ) ( )

( )

MN KL
M L N K M L

M L N K

EET D A D A DA
(el el)

D A
2

D A D A (9)

where f(ED*M) is the thermal occupation of the vibrational state
M of the electronically excited donor molecule with vibronic
wave function ΨD*M and energy ED*M. Similarly, f(EAL) denotes
the thermal occupation of the vibrational state L of the acceptor
molecule in the electronic ground state with vibronic wave
function ΨAL and energy EAL, etc. The delta distribution term
(δ) ensures that only energy-conserving processes contribute to
the EET rate. Assuming that the electronic part of the EC is not
dependent on the nuclear coordinates (Condon approxima-
tion), the coupling matrix element becomes

χ χ χ χ⟨Ψ Ψ | ̂ |Ψ Ψ ⟩ = ⟨ | ⟩⟨ | ⟩*
−

* * *V VK N M L L K M NA D DA
(el el)

D A DA A A D D
(10)

where the χ denote purely vibrational wave functions of the
donor and acceptor molecules in the electronic ground and
excited states, respectively. The EET rate then reads as follows:

∑ ∑π χ χ χ χ

δ

=
ℏ

| | |⟨ | ⟩| ⟨ | ⟩

× + − −

* * *

* *

k V f E f E

E E E E

2
( ) ( )

( )

MN KL
L M L K M N

M L K N

EET DA
2

A D A A
2

D D

D A A D (11)

The Franck−Condon weighted density of states (FCWD)9,10

is typically approximated as the spectral overlap of the
normalized donor emission FD(ω) and the acceptor absorption
spectrum AA(ω). In this case, the EET rate is given by5,6

∫π ω ω ω=
ℏ

| |
∞

k V F A
2

( ) ( ) dEET DA
2

0
D A (12)

1.3. Energy Transfer Cassettes. Because of their physical
and chemical properties, donor−acceptor systems based on 4,4-
difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) are eligible

Figure 1. Nomenclature and chemical structure of studied EET cassettes. The S0 → S1 transition dipole moments of BODIPY and anthracene are
indicated as arrows. Distances between the centers of mass are given in Ångstroms.
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candidates for use in organic photovoltaics.11−15 BODIPY dyes
are characterized by strong absorption of UV light and sharp
fluorescence with high quantum yields.16 The compounds are
largely insensitive to the pH and polarity of the solvent.
BODIPY itself is reported to be chemically unstable and
therefore has not been synthesized until now.16 Within this
article, we use BODIPY as an abbreviation for the 1,3,5,7-
methylated derivate. Alkylated compounds barely differ in their
absorption and emission spectra. Vertical absorption and
emission energies of BODIPY have been calculated by Briggs
et al. at the CAS-PT2 and Restricted Open-Shell Kohn−Sham
levels, respectively.17

Cassettes in which BODIPY is covalently linked to a second
chromophore are experimentally and extensively studied and
serve as model systems for the description of EET processes. In
this work, we present theoretical studies on the EET in five
different BODIPY-based cassettes (see Figure 1). In all
investigated systems, BODIPY serves as the acceptor while
anthracene serves as the donor. Experimentally obtained
fluorescence lifetimes and EET rates of these cassettes were
reported by Kim and Wan.18,19 To the best of our knowledge,
no theoretical studies of EET processes in the investigated
BODIPY-based EET cassettes have been conducted so far. A
theoretical study of the EET in another BODIPY-based dyad
mainly concentrating on solvent screening effects was reported
by Caprasecca et al.20

In this work, we use a monomer-based approach to calculate
the EC and determine the EET rate. The obtained results are
compared to experimental data and confirm the assumption
that the through-space contribution to the EC is dominant.

2. THEORETICAL METHODS
In practice, there are two main approaches to calculate the EC
matrix element.21 In calculations that are based on a
supermolecular description of the entire system, the full EC
can directly be deduced from the energetic splitting of the
involved excited states. In the case of unsymmetric systems, the
eigenstates of the Hamiltonian must be transformed to a
diabatic basis first.22,23 In monomer-based approaches, the
individual contributions to the EC must be computed from
physical quantities obtained from separate quantum-chemical
calculations of the donor and acceptor parts of the total system.
Within this paper, we employ the monomer transition density
(MTD) approach,24−26 the ideal dipole approximation
(IDA)1,27 as well as the symmetric energy splitting method
(Davydov Splitting),28,29 which are outlined in the following. A
detailed derivation of the EC has been given by May and
Kühn.5

2.1. Exact Excitonic Coupling. The exact EC of
homodimers, including direct and exchange contributions, can
be calculated from the symmetric energetic splitting of the
appropriate monomer excited states in a supermolecular
calculation.

= −
V

E E
2AA

2 1
(13)

Since the method is not applicable to heterodimeric systems,
approximate approaches based on monomer calculations are
applied.
2.2. Monomer Transition Density Approach. Starting

from eq 8, the EC matrix element can be regarded as an
interaction between two transition densities located on
monomers D and A.24,25 Within the MO basis, a transition

density is expressed in the form of a matrix. The spinless
reduced one-particle transition density matrix connecting the
electronic states Ψa1 and Ψa2 of an N-electron system A is
defined as30

∫ ∫ ∫ρ | ′ = ··· Ψ* ′

× Ψ

a a r r N x x x

x x x s x x

( ; ) ( , , ..., )

( , , ..., ) d d ... d

a N

a N N

1 2 1 1 1 2

1 2 1 2

2

1 (14)

A similar expression is obtained for subsystem D. Let i and j
be molecular orbitals (MOs) located on monomer A and k and
l are MOs located on monomer D. Evaluating the transition
density matrices in the MO basis yields

∑ ρ ρ= |J ij kl( )
ijkl

ij klDA
(A) (D)

(15)

where we have used the Mulliken convention for denoting the
electronic repulsion integral. Following Fujimoto,26 the
exchange contribution to the EC can be approximated in
analogy to the direct contribution by

∑ ρ ρ= − |K il kj
1
2

( )
ijkl

ij klDA
(A) (D)

(16)

The total coupling is the sum of direct and exchange
contributions.

= +V J KDA DA DA (17)

2.3. Ideal Dipole Approximation. If the intermolecular
distance XDA is large compared to the intramolecular extensions
of molecules A and D, the intermolecular Coulomb interaction
can be subjected to a multipole expansion, which is truncated
after the dipole−dipole contribution.

∑ ∑
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Herein, j denotes the jth electron of molecule A and k is the kth
electron of molecule D. The first- and second-order terms, as
well as parts of the third-order term, vanish because of the
charge neutrality of the individual molecules. Employing the
definition of the transition dipole moments,

∑ ∑μ μ⃗ = ⃗ ⃗ = ⃗e r e rand
j

j
k

kA
(A)

D
(D)

(21)

of molecules A and D, respectively, the term finally reads

μ μ μ μ
=

⃗ ⃗
| ⃗ |

−
⃗ ⃗ ⃗ ⃗
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⎡
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X
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5

(22)

Introducing unit vectors pointing in the directions of the
intermolecular distance vector eD⃗A, which is defined as
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⃗ =
⃗

| ⃗ |
e

X
XDA
DA

DA

and the directions of the transition dipole moments n⃗D and n ⃗A,
which are defined, respectively, as

μ
μ⃗ =

⃗
| ⃗ |

nD
D

D

and

μ
μ⃗ = ⃗
| ⃗ |

nA
A

A

the EC matrix element can be expressed in the familiar form

κ
|μ μ

=
⃗ |·| ⃗ |

| ⃗ |
V

XDA DA
A D

DA
3

(23)

where κDA is the so-called orientation factor,

κ = ⃗ ⃗ − ⃗ ⃗ ⃗ ⃗n n e n e n3( )( )DA A D DA A DA D (24)

2.4. Computational Details. The equilibrium geometries
of the singlet ground states (S0) of the EET cassettes and the
individual monomers were optimized using density functional
theory (DFT), in conjunction with the B3LYP hybrid
functional.31 The molecular structures of the first excited
singlet states (S1) of both BODIPY and anthracene were
optimized using time-dependent density functional theory
(TDDFT). Unless otherwise stated, all calculations were
performed with TURBOMOLE 6.5,32 employing a basis set
of split valence quality with polarization functions on all atoms
(SVP).33 For the optimization of the minimum geometries of
the EET cassettes and coordinate scans, the m5 integration grid
was used. Frequency analyses at the S0 and S1 minimum
geometries were carried out using the SNF program package.34

Unrelaxed torsion angle scans of the EET cassettes were
performed along selected internal coordinates starting from
preoptimized Cs-symmetric structures in which the planes of
BODIPY and anthracene are perpendicularly oriented.
The photophysical properties at the ground- and excited-

state minima of the monomers (vertical transition energies,
transition density matrices, and transition dipole moments)
were calculated using the combined density functional and
multireference configuration interaction (DFT/MRCI) pro-
gram.35 In these calculations, Kohn−Sham orbitals of a ground-
state calculation employing the BHLYP functional36 were
utilized. The two-electron integrals used in the DFT/MRCI
and MTD calculations were approximated with the resolution
of the identity method, as given by

∑| ≈ | · | · |−ij kl ij P P Q Q kl( ) ( ) ( ) ( )
P Q,

1

(25)

where P and Q are auxiliary basis sets.37,38

In the DFT/MRCI method, dynamic correlation effects are
considered by DFT, whereas static correlation effects are taken
into account by a MRCI expansion. The configurations used in
the MRCI are based on Kohn−Sham orbitals of a closed-shell
electronic state. Double-counting of dynamic correlation is
avoided by the use of an effective Hamiltonian comprising five
empirical parameters that are independent from the target
molecule. At present, parameter sets are only available for the
BHLYP functional. The MRCI expansion is truncated by
considering only orbitals below a certain energy cutoff. Within

this paper, we used the original set of parameters35 and an
orbital selection energy threshold of 1.0 EH to compute the 10
lowest eigenvectors. The initial MRCI reference space was
spanned by all single and double excitations from the four
highest occupied MOs to the four lowest unoccupied MOs of
the ground-state Kohn−Sham determinant. A second DFT/
MRCI step was performed with a refined reference space
comprising all configurations, which contribute to one of the 10
lowest-lying eigenvectors of the initial DFT/MRCI calculation
with a squared coefficient of 0.003 and larger.
To calculate the EET between the donor and the acceptor in

the EET cassettes, two fragmentation models were developed,
which are based on the work of Caprasecca et al.39 (Figure 2).

According to fragmentation model I, only the distance between
the donor and the acceptor was considered (TSEET). The
molecular linker was removed from the optimized ground-state
structure and the obtained monomers were saturated with
hydrogen atoms. The newly created C−H bonds were relaxed
keeping the rest of the molecules fixed. Fragmentation model II
aims to take the influence of the molecular linker on the EC
into account and, therefore, can also include the through-bond
contribution. Based on the analysis of the MOs, the linker was
assigned to the donor moiety. The obtained fragments were
again saturated with hydrogen and relaxed.
EET rates were calculated from the spectral overlap and EC

matrix element according to eq 12. The EC matrix elements
were computed according to eqs 13, 17, and 23. To this end, a
FORTRAN program (FRECK, which stands for Fragment
Excitonic Coupling Kit) was newly devised that is adapted to
the DFT/MRCI code. In the framework of IDA, the
intermolecular distance rDA serves as a measure for the distance
between the coupled transition dipoles. As is common practice,
we chose the barycenters of the respective monomers as
reference.
Vibrationally resolved absorption and emission spectra of

BODIPY and anthracene, respectively, were generated with the
VIBES program,40,41 using a temperature of 298 K, an
integration time interval of 3000 fs, and a Gaussian damping

Figure 2. Fragmentation models developed to calculate the EC in the
studied EET cassettes, using the example of B2-PE-A. According to
fragmentation model I, the linker is completely removed from the
relaxed ground-state structure. Fragmentation model II tries to
approximate the influence of the molecular structure of the linker
on the EC by assigning the latter to the donor moiety. In both models,
the obtained fragments are saturated with hydrogen atoms and the
newly created C−H bond were relaxed, keeping the rest of the
molecule fixed.
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of the correlation function of a width of 100 cm−1. Both spectra
were normalized to unit area and the spectral overlap was
determined by numerical integration.
To approximate the influence of molecular vibrations on the

EC matrix-element-free ab initio Born−Oppenheimer molec-
ular dynamic (MD) simulations of all EET cassettes were
performed on the ground-state potential energy surfaces (PES)
using TURBOMOLE. The program employs the Leapfrog
Verlet algorithm42 to integrate Newton’s equation of motion.
All simulations were performed in vacuum at a temperature of
298 K. The equilibrium geometries and random initial velocities
corresponding to an initial temperature of 298 K were used as
starting points for the MD simulations. The integration time
step for the MD simulations was set to 1.94 fs. The MD
simulations reached a length of 3.87 ps. Conformations saved at
97 fs intervals were used for analysis. The total EET rate was
calculated by taking the average of the EET rates of each
conformation, neglecting the exchange contribution to the EC
and applying fragmentation model I. For B8-PE-A, we also
used fragmentation model II for comparison.

3. RESULTS AND DISCUSSION
3.1. Benchmark Calculations. To validate the implemen-

tations of the IDA and MTD approaches, benchmark
calculations were performed using a π-stacked ethylene dimer
as the model system (Figure 3). For this system, literature data

are availble.26 EC was calculated for varying intermolecular
distances and torsion angles, while the intramolecular geometry
parameters were kept fixed to their ground-state values. The
exact EC referred to as ”FullQM” obtained from half of the
Davydov splitting was used as reference.
A DFT/MRCI calculation of an ethylene monomer using the

TZVP (SVP) basis set43 yields a vertical excitation energy of
8.03 eV (154 nm) (8.41 eV (147 nm)) at the ground-state
geometry. The experimental absorption spectrum shows a very
broad absorption band ranging from 140 nm (8.86 eV) to 172
nm (7.21 eV) with a maximum at ∼161 nm (7.70 eV).44

Taking into account that the S1 state of ethylene exhibits a
strongly displaced minimum geometry with orthogonally
twisted CH2 groups45,46 and considering a fidelity of the
DFT/MRCI method of 0.2 eV, the agreement with the
experiment is satisfactory. The wave function of the S1 state is
composed almost exclusively of the determinant describing the
excitation from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital
(LUMO). A total transition dipole moment of 4.27 D (4.24
D) was found pointing in the direction of the CC bond.
EC matrix elements at various internuclear distances and

orientations are displayed in Figures 4 and 5. When the
intermolecular distance of the ethylene π-stack is increased at a

fixed torsion angle of 0°, the direct contribution to the EC
decreases as |X⃗AB|

−3 (Figure 4). While the EC obtained from
the IDA is almost independent of the basis set, MTD provides
slightly higher direct contributions of the EC when the larger
TZVP basis set is used. The exchange part of the EC only has
an appreciable influence if the intermolecular distance is smaller
than ∼4.5 Å. The exchange contribution to the EC is
dependent much stronger on the size of the basis set than
the direct contribution. This behavior is to be expected, because
the exchange interaction is dependent on the orbital overlap
between the two molecules. At large intermolecular separations,
the approximate methods are seen to perform quite well in
comparison with the exact EC obtained from the Davydov
splitting. Up to a distance of ∼4.7 Å, the exact EC is somewhat
smaller than the MTD and IDA values. When |X⃗AB| is decreased
further, a crossover of the curves in Figure 4 is observed. Below
the typical van der Waals distance, the Davydov splitting rises
substantially steeper than |X⃗AB|

−3. This behavior is attributed to
the deformation of the π-orbital densities in the supermolecuar
calculation due to Pauli repulsion. In contrast, the shapes of the

Figure 3. Chemical structure of the π-stacked ethylene dimer used for
benchmark calculations. S0 → S1 transition dipole moments are
indicated as arrows. The distance XAB between the two π-stacked
monomers is indicated as a dashed arrow. θAB denotes the dihedral
between the donor and the acceptor.

Figure 4. Distance and basis set dependency of IDA, MTD, and
FullQM calculations on the ethylene π-stack. JDA denotes the direct
contribution to the EC, KDA is the exchange contribution, and VDA is
the total through-space EC. ”FullQM” denotes the exact EC derived
from the Davydov splitting.

Figure 5. Basis set and torsional dependency of IDA, MTD, and
FullQM calculations on the ethylene π-stack for an intermolecular
distance of 8 a0 (4.23 Å). (For the denomination of terms, see Figure
4.)
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corresponding monomer orbitals employed in the MTD and
IDA approximations remain unchanged when the two ethylene
molecules come closer.
Varying the torsion angle between the two monomers at a

fixed distance of 8 a0 (4.24 Å), the modulus of the EC was
found to reach the maximum value when the torsion angle
amounts to 0° or 180° where the transition dipole moments are
oriented in parallel manner (Figure 3). At the chosen
intermolecular distance, the exchange contribution to the
total EC is almost negligible. The EC is zero when the MTD
moments are pointing in perpendicular directions. This is the
case if the torsion angle is 90° or 270°. Between two minima,
the EC is described by a reversed parabolically shaped function.
These results are in accordance with what has been reported by
Fujimoto.26

In the SVP basis set, the exact EC obtained from the
Davydov splitting has a maximum value of 1259 cm−1, while the
maximal exact EC amounts to 1617 cm−1 when using the larger
TZVP basis set. The substantial deviation of 358 cm−1 can be
traced back to the different representation of the outer parts of
the 2p orbitals by the two basis sets. While the most diffuse p
Gaussian function exhibits an exponent of 0.1527 in the SVP
basis, this spatial region is covered by two freely varying
Gaussian functions with exponents of 0.2889 and 0.1005 in the
TZVP basis. The EC calculated at the DFT/MRCI level of
theory, using the TZVP basis set is in good agreement with the
results reported by Fuijmoto for the same system using
configuration interaction singles (CIS).
Calculating the EC with the MTD approach, we find only a

small deviation from the exact EC when the TZVP basis set is
used. If the SVP basis is employed instead, the MTD
approximation overestimates the corresponding value derived
from the Davydov splitting. These results suggest that the EC
in an ethylene dimer can be determined without significant
deviation if the MTD approach and at least the TZVP basis set
is used.
The EC matrix elements computed using IDA significantly

differ from the exact results obtained from the Davydov
splitting when the TZVP basis set is used. Employing the
smaller SVP basis set, the exact EC matrix elements are
described with less accuracy, yielding much smaller results,
similar to those obtained from IDA calculations with either the
TZVP or SVP basis set. This result confirms the inferior
performance of IDA at small distances previously reported by
Wong et al.,27 even if the larger TZVP basis set is used.
Summarizing, we find that the exact EC in a π-stacked

ethylene dimer is strongly dependent on the size of the basis
set. MTD is a good approximation as long as at least a basis set
of TZVP quality is used. The exchange contribution to the EC
coupling matrix element is negligible for intermolecular
distances larger than 4.5 Å. The IDA description the EC is
not enhanced by the use of the larger TZVP basis instead of the
SVP basis. The deviation between the monomer-based
calculations and the exact is EC is caused by the fact that the
distortion of the electron density of one monomer by the other
is not taken into account. Since donor and acceptor are well
separated in the studied EET cassettes, the error is considered
to be small. In principle, the influence of the electron density of
the other monomer could, for example, be considered in a
subsystem formalism.47

3.2. Energy Transfer Cassettes. An overview over the
calculated vertical absorption and emission energies of

anthracene and BODIPY and corresponding experimental
results is given in Table 1.

3.2.1. Anthracene. In 2008, some of us already reported on
the absorption spectrum of anthracene calculated at the DFT/
MRCI level of theory.48 The relevant results of that study will
be reviewed here. We also comment on the calculation of the
vibrationally resolved emission spectrum.
The ground and first excited states of anthracene can be

classified according to the D2h molecular point group. While the
first excited singlet state belongs to the B2u irreducible
representation, the electronic ground state has Ag symmetry.
The 11B2u wave function is mainly composed of the HOMO →
LUMO excitation and to a minor extent of HOMO−1 →
LUMO+1. The involved frontier orbitals are shown in Figure 6.
Using the SVP basis set, the vertical excitation energy at the
ground-state equilibrium geometry is 3.52 eV (352 nm). When
the larger TZVP basis set is employed, the vertical excitation
energy does not change significantly. Comparison of these
results to the experimental value of 3.60 eV (344 nm)49−52

suggests that the DFT/MRCI method using a SVP basis
describes the 11Ag → 11B2u with a sufficient degree of precision.
The calculated transition dipole moment has an absolute value
of 3.10 D and points in the direction of the short molecular axis
(Figure 1).
A DFT/MRCI calculation at the geometry of the optimized

11B2u state yields a vertical emission energy of 3.13 eV (396 nm,
25 245 cm−1). The experimental fluorescence spectrum was
measured in cyclohexane and is composed of five peaks at 375
nm (26667 cm−1), 397 nm (25189 cm−1), 421 nm (23753
cm−1), 446 nm (22422 cm−1), and 475 nm (21053 cm−1).52,53

The calculated vertical transition with a wavelength of 396 nm
corresponds to the experimental peak with the highest intensity
at 397 nm. The vibrational frequencies of the S0 and S1 states
and the adiabatic excitation energies were used for the
calculation of a vibrationally resolved emission spectrum (see
Figure 7). The computed emission spectrum has the same
shape as the experimental fluorescence spectrum, with a peak at
26 901 cm−1 (372 nm) having a shoulder at 26 512 cm−1 (377
nm) and a peak at 25 367 cm−1 (394 nm) having a shoulder at
24 976 cm−1 (400 nm) as well as peaks at 23 861 cm−1 (419
nm) and 22 365 cm−1 (447 nm).

3.2.2. BODIPY. In this work, we used a C2v symmetric
BODIPY derivate, which carries four methyl substitutents at

Table 1. Calculated Vertical Absorption and Emission
Energies, as Well as Corresponding Transition Dipole
Moments (TDM) of BODIPY, Anthracene, and the
Fragments Used in Fragmentation Model IIa

molecule/
fragment

ΔES0 → S1 (eV)
[exp]

TDM
(D)

ΔES0 ← S1 (eV)
[exp]

TDM
(D)

BODIPY 2.64 [2.46]16,54 8.0 2.53 [2.40]16,54 3.2
anthracene 3.53 [3.60]49−52 3.1 3.13 [3.12]52,53 3.2
E-A 3.22 4.3
PE-A 2.96 6.8
EPE-A 2.83 8.2

aThe energies of the monomers (BODIPY and anthracene) are
calculated with respect to their relaxed ground-state geometries. The
excitation energies of the fragments are calculated with respect to the
relaxed ground-state geometries of the preliminary cassettes after
saturation with hydrogen and letting the newly created C−H bond
relax.
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C1, C3, C5, and C7. Using either the SVP or the TZVP basis
set, the first excited singlet state at DFT/MRCI level of theory
is the 11B2 state with a vertical transition energy of 2.63 eV
(472 nm). This result agrees well with the experimental
absorption maximum of 2.46 eV (505 nm),16,54 taking into
account the precision of the theoretical method used and the
fact that the experimental result was measured in ethanol. The
S1 state is dominated by the HOMO → LUMO excitation but
exhibits also contributions from the HOMO−1 → LUMO
excitation and the determinant describing the double excitation
HOMO, HOMO−3 → LUMO2. The MOs involved in the S0
→ S1 excitation are shown in Figure 8. The vibrationally
resolved absorption spectrum (Figure 7) shows a sharp peak of
high intensity at ∼20 470 cm−1 (489 nm) with a smaller
shoulder at 21 571 cm−1 (464 nm).
The vertical emission energy, with respect to the optimized

S1 state, is 2.52 eV, corresponding to a wavelength of 492 nm,
using either the SVP or the TZVP basis sets. This result again

agrees well to the experimental emission maximum of 2.40 eV
(516 nm) measured in ethanol.16,54

3.3. Orientation of the Donor and Acceptor Moieties.
To obtain an overview over the potential energy surfaces
(PESs) of the EET cassettes, we performed unrelaxed scans
along selected internal coordinates (Figure 9). In B8-PE-A, the
linker was fixed in a perpendicular position, with respect to the
BODIPY frame, because of the strong steric repulsion between
the phenyl ring of the linker and the methyl groups located at
C1 and C7 of the BODIPY moiety, even preventing a coplanar
conformation. In B2-EPE-A and B2-PE-A, the linker was kept
in plane with anthracene, since there is no obvious steric
interaction between anthracene and the phenyl ring of the
linker. The steric repulsion between the methyl groups located
at C1 and C3 of the BODIPY moiety and the appropriate
phenyl group is much weaker than in B8-PE-A. For that reason,
the corresponding degree of freedom was scanned in these
cases. The torsion angle of the minimum nuclear structure is
dependent on the steric repulsion between the donor and the
acceptor on the one hand and, as far as possible, the
conservation of a planar π-conjugated system on the other
hand. In case of B2-A, the donor and the acceptor come very
close and torsion angles of 75°−105° can be regarded as a
compromise between conservation of the π-conjugated system
and a strong steric repulsion. The methyl groups located at C1
and C3 of BODIPY even prevent a planar conformation. In
contrast, in B2-E-A and B2-EPE-A, an almost planar
conformation is preferred because the π-conjugated system
can be conserved on the overall molecule. Assuming structures
with an energy lower than kBT to be thermally occupied, the
torsion angle may change up to 35° and 50°, respectively,
around the global minimum. In B2-PE-A the steric interactions
between the methyl groups of BODIPY and the adjacent
phenyl ring of the linker determine the torsion angle. We find a
global minimum at a torsion angle between the donor and
acceptor frame of ∼62°. Because of the low rotational barrier,

Figure 6. Frontier orbitals of anthracene involved in the S0 → S1 transition and their corresponding orbitals computed for the EET cassettes.

Figure 7. Computed vibrationally resolved anthracene emission and
BODIPY absorption spectrum.
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structures with dihedrals between 50° and 130° are assumed to
be occupied. In B8-PE-A, a perpendicular orientation is
preferred, because of the steric interaction between the methyl
groups located at C1 and C7 of BODIPY and the adjacent
phenyl ring of the linker. The torsion angle may change up to
55° around the global minimum. Nevertheless, the torsion
angle does not significantly influence the EC coupling matrix
element, since it does not change the relative orientation of the
transition dipole moments. The dihedreal angles between the
donor and the acceptor moieties in the relaxed ground-state

geometries of the cassettes slightly deviate from those of the
unrelaxed scans, particularly because of relaxation of the methyl
groups and the phenyl rings.

3.4. Excitonic Coupling. In the framework of TSEET, the
molecular linker is not directly involved in the EET but serves
as a spacer conserving a certain distance and the relative
orientation of the donor and the acceptor. This situation is
described in our fragmentation model I. Our fragmentation
model II takes also parts of TBEET into account while
neglecting charge-transfer (CT) contributions. Excitonic
couplings between BODIPY and anthracene calculated with
the two different fragmentation models are shown in Table 2.
Among the EET cassettes examined in this work, B2-A is the
one with the smallest donor−acceptor distance. In this cassette,
C2 of BODIPY is directly linked to C9 of anthracene. Using
MTD and fragmentation model I, we find a value of 1141 cm−1

for the direct contribution and a value of 30.0 cm−1 for the
exchange contribution. Because of the small intermolecular
distance of only 6.3 Å, the direct contribution is very high and
the exchange contribution is not negligibly small. A
substantially smaller value of 983 cm−1 for the direct
contribution is obtained in the IDA. As already discussed for
the ethylene dimer, IDA underestimates the exact EC at small
distances, because of the limitations of the multipole expansion.
With regard to the relative orientation of BODIPY and
anthracene in this cassette, EC is maximal because the
transition dipole moments are oriented in a parallel manner.
In B2-E-A, B2-PE-A, and B2-EPE-A, the arrangement is
essentially identical but the distance is successively increased.
Concomitantly, direct contribution and exchange contributions
successively become smaller. The exchange contribution
decreases much faster than the direct contribution. It exhibits
a value of 3.5 cm−1 for B2-E-A and is found to be zero in the
case of all other EET cassettes. For a donor−acceptor distance

Figure 8. Frontier orbitals of BODIPY involved in the S0 → S1 transition and their corresponding orbitals computed for the EET cassettes. For all
EET cassettes except for B8-PE-A, HOMO−1 of BODIPY is recovered as a linear combination of two orbitals.

Figure 9. Unrelaxed electronic ground-state scans of the torsion angle
between the planes of BODIPY and anthracene (B3LYP level of
theory, steps of 1°). The linker was fixed perpendicular to the
BODIPY frame in B8-PE-A. In B2-PE-A and B2-EPE-A, the linker
was kept in plane with anthracene. All values are given with respect to
the conformation that yields the lowest energy. Structures with an
energy lower than kBT are assumed to be thermally occupied.
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of more than 15 Å (B2-EPE-A), IDA and MTD almost provide
the same result. Therefore, we strongly recommend that MTD
be used for EET cassettes with small molecular linkers.
On the basis of fragmentation model I, we further examined

how the relaxation of the anthracene scaffold to its S1 state
geometry affects the size of the EC matrix elements (Table 2).
For B2-E-A, we find an increase of the direct contribution by
only 3 cm−1 out of 423 cm−1 in the MTD approach,
corresponding to a change by 0.7%. The exchange contribution
differs by 0.4 cm−1. On a relative scale, the latter change is
larger (i.e., 11.4%). Nevertheless, we consider these changes to
be negligible. The direct EC matrix elements of the larger
cassettes increase slightly. From these results, we conclude that
a possible relaxation of the donor to its S1 state geometry has
only a minor effect the EC matrix element. This justifies the use
of donor and acceptor geometries directly derived from the
electronic ground state of the EET cassette without any further
optimization.
Furthermore, we tested the influence of the atomic orbital

basis set on the size of the EC, taking the example of B2-E-A.
Within the IDA, the EC increases by only 0.6% if the large

TZVP basis set is used instead of the SVP basis. The EC
computed within the MTD approach is not affected much by
an enhanced description of the EC in B2-E-A either. The direct
contribution to EC decreases by 11 cm−1, to a value of 421
cm−1, if the TZVP basis set is used, while the exchange
contribution increases by 0.4 cm−1, to a value of 3.91 cm−1.
Although the donor and acceptor moieties in BODIPY-based

EET cassettes are connected covalently by a molecular bridge,
there is no obvious way for TBEET.16 To get an estimate how
strongly the linker affects the EC, we applied fragmentation
model II. The MOs of the cassettes are largely localized on the
donor and the acceptor parts of the system, respectively, and
correspond quite well to the frontier orbitals computed for the
monomers (see Figures 6 and 8). This holds true best for B2-A,
since the donor and the acceptor are directly linked in a
perpendicular orientation. In all other EET cassettes, we find a
slight extension of some of the involved MOs to the linker
moiety, indicating an additional contribution of the linker to
the EC. Among the frontier orbitals, the HOMO of the donor
and the LUMO of the acceptor may be assumed to be the two
most important orbitals involved in the EC. As may be seen in

Table 2. Direct and Exchange Contributions to the EC Matrix Elements, as Well as EET Rates of the Studied EET Cassettes
Calculated with Different Models

B2-A B2-E-A B2-PE-A B2-EPE-A B8-PE-A

S0 Geometry (Fragmentation Model I)
spectral overlap integral (cm) 1.06 × 10−5

IDA
|JDA| (cm

−1) 983 350 109 63 0.0
MTD

|JDA| (cm
−1) 1141 423 119 67 0.0

|KDA| (cm
−1) 30.0 3.5 0.0 0.0 0.0

EET rate (s−1) 2.3 × 1013 3.2 × 1012 2.6 × 1011 8.3 × 1010 4.3 × 100

Acceptor S0, Donor S1 Geometry (Fragmentation Model I)
spectral overlap integral (cm) 1.06 × 10−5

MTD
|JDA| (cm

−1) 1140 426 123 69 0.0
|KDA| (cm

−1) 30.0 3.1 0.0 0.0 0.0
EET rate (s−1) 2.3 × 1013 3.3 × 1012 2.8 × 1011 8.8 × 1010 2.5 × 100

MD Snapshots (Fragmentation Model I)
spectral overlap integral (cm) 1.06 × 10−5

MTD
|JDA| (cm

−1) 951 377 114 62 6.9
EET rate (s−1) 2.1 × 1013 2.8 × 1012 2.7 × 1011 7.1 × 1010 1.62 × 109

S0 Geometry (Fragmentation Model II, Spectral Overlap of Monomers)
spectral overlap integral (cm) 1.06 × 10−5

MTD
|JDA| (cm

−1) 1013 766 678 0.0
|KDA| (cm

−1) 92 27 46 0.0
EET rate (s−1) 1.6 × 1013 1.0 × 1013 7.3 × 1012 9.9 × 102

S0 Geometry (Fragmentation Model II, Adapted Spectral Overlap)
spectral overlap integral (cm) 8.39 × 10−5 2.46 × 10−4 1.79 × 10−4 2.46 × 10−4

MTD
|JDA| (cm

−1) 1013 766 678 0.0
|KDA| (cm

−1) 92 27 46 0.0
EET rate (s−1) 8.4 × 1013 1.6 × 1014 8.4 × 1013 1.6 × 104

MD Snapshots (Fragmentation Model II, Adapted Spectral Overlap)
spectral overlap integral (cm) 2.46 × 10−4

MTD
|JDA| (cm

−1) 18
EET rate (s−1) 1.5 × 1011

exp. EET rate19 (s−1) >5.0 × 1012 >5.0 × 1012 >5.0 × 1012 >5.0 × 1012 2.5 × 1012
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Figure 6, the electron density contribution of the HOMO of all
investigated cassettes is mainly located on the donor but
extends markedly to the linker atoms. In contrast, no linker
contributions are observed for the LUMO (Figure 6), which
appears to be an almost-pure acceptor MO. Hence, the
molecular linker was assigned to the donor fragment. Using
fragmentation model II, we find higher direct contributions of
the EC, which decrease much more slowly as the size of the
linker increases (see Table 2). The exchange contributions are
still very small, compared to the direct contributions, but now
are clearly different from zero. In B8-PE-A, the direct and
exchange contributions are found to be extremely small in the
minimum nuclear arrangement with both fragmentation
models, because the transition dipole moments of BODIPY
and anthracene are oriented in an almost-perpendicular
manner. The influence of the EC on the EET rate will be
discussed in the next section.
3.5. EET Rates. EET rates were calculated from the spectral

overlap and the EC obtained with the MTD approach (Table
2). Since the spectral overlap of 1.06 × 105 cm is constant for a
given donor−acceptor pair in fragmentation model I, the
highest EET rate is observed for the EET cassette with the
shortest linker. For B2-A, in which donor and acceptor are
separated only by a single C−C bond, we obtain an EET rate of
2.3 × 1013 s−1. Fragmentation models I and II do not differ for
this cassette. Since the exchange contribution to the EC is
extremely small, compared to the direct contribution, it has
only a very slight influence on the total EET rate. For all other
cassettes, in which the transition dipole moments of anthracene
and BODIPY are oriented in a parallel manner, the calculated
EET rates are smaller, ranging from 3.2 × 1012 s−1 to 8.3 × 1010

s−1, depending on the length of the molecular linker. Kim et
al.19 found EET rates higher than the temporal resolution of
their experiment (5.0 × 1012 s−1) for all cassettes with a parallel
orientation of the transition dipole moments. While B2-A and
B2-E-A perfectly agree with the experimental evidence, the
calculated EET rates of B2-PE-A and B2-EPE-A are smaller by
1 and 2 orders of magnitude, respectively, indicating an
increasing influence of the linker. In B8-PE-A, in which the
transition dipole moments of the donor and the acceptor are
oriented in an almost-perpendicular manner, the calculated
EET rate is extremely small (4.3 × 100 s−1). Concomitantly, the
calculated EET rate is significantly smaller than the
experimental value of 2.5 × 1012 s−1.
For that reason, we investigated the influence of dynamic

effects with the help of short ab initio MD simulations. We
found that the angle between the transition dipole moments of
BODIPY and anthracene changes due to vibration. In B8-PE-A,
the average displacement from the dihedral between the donor
and acceptor moieties of the relaxed ground-state structure
amounts to ∼5° (Figure 10). Since the EC matrix element is
minimal at 90°, sampling of the vibrational motion leads to an
increased direct contribution and, hence, to an increased
average EET rate (1.62 × 109 s−1). Unfortunately, this rate is
still smaller than the experimental value by ∼3 orders of
magnitude. In the other EET cassettes, vibrational averaging
decreases the direct contribution to the EC between BODIPY
and anthracene. Nevertheless, the effect is much weaker and the
mean EET rates are only slightly smaller than those calculated
for the static case. This behavior can be explained by
considering the angular dependency of the EC. When the
transition dipole moments of the donor and the acceptor are
oriented in a parallel manner, the EC is large. At this point, the

slope which describes the change of the EC with the torsion
angle is minimal. Thus, a small change of the torsion angle due
to molecular vibrations causes only a small decrease of the EC.
When the transition dipole moments are oriented in a
perpendicular manner, as in the case of B8-E-A, the EC is
zero but the slope is maximal. Thus, only small changes of the
torsion angle cause a large change of the EC. Independent of
the relative orientation of the transition dipole moments, the
longer the molecular linker, the more significant the dynamic
effects.
The influence of the structure of the molecular linker is

estimated by fragmentation model II. Assuming an unchanged
spectral overlap integral, we find EET rates ranging from 1.6 ×
1013 s−1 (B2-E-A) to 7.3 × 1012 s−1 (B2-EPE-A) for all EET
cassettes in which the transition dipole moments are oriented
in a parallel manner. For B8-PE-A, we calculated an EET rate
of 1.0 × 103 s−1, which is still far from the experimentally
predicted value. All calculated rates are higher by 1 to 2 orders
of magnitude, compared to the results obtained with
fragmentation model I but subsequently decrease with
increasing length of the linker as well. Analyzing the S0 → S1
transitions of the donor fragments, we find a decrease of the
vertical excitation energy and an increase of the transition
dipole moment with increasing size of the linker, when
compared to the plain donor. The influence on the spectral
overlap integral is crudely estimated by a red-shift of the
emission spectrum of anthracene by the appropriate energy
difference. Since the shifted donor emission spectrum and the
unshifted acceptor absorption spectrum come closer, we find an
increasing spectral overlap integral with increasing length of the
linker. Taking both altered EC and spectral overlap integral into
account, we find the highest EET rate of 1.6 × 1014 s−1 for B2-
PE-A. For B2-E-A and B2-EPE-A, we find very similar rates
(8.4 × 1013 s−1), which are in the range of the rate of B2-A, in
which the donor and acceptor are directly linked via a single
C−C bond. All calculated rates are in perfect agreement with
experimental findings, predicting EET rates that are higher than
the experimental lower limit of 5.0 × 1012 s−1.19 Not
unexpectedly, the rate calculated for B8-PE-A, using a static
model (1.6 × 104 s−1), is much smaller than the experimental
value. Considering dynamic effects, the EET rate becomes 1.5
× 1011 s−1, which is too small by only 1 order of magnitude.

4. CONCLUSIONS
The EET rate in five different BODIPY-based EET cassettes
has been determined with quantum chemical methods. To this
end, a computer program was devised that calculates the
through-space contributions to the EET rates either in the IDA

Figure 10. Selected snapshots of the MD simulation of B8-PE-A. JAB
denotes the direct coupling of the appropriate snapshot (given in units
of cm−1). Orientation factor κ indicates the relative orientation of the
transition dipole moments.
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or from monomer transition densities of DFT/MRCI wave
functions. The correctness of the program was validated by
benchmark calculations on a small homodimeric model system
of two π-stacked ethylene molecules. Not unexpectedly, the
IDA fails to describe the EC at small intermolecular distances.
In contrast, the DFT/MRCI-based MTD is found to be a
powerful method to approximate the EC and EET rates in EET
cassettes with dominant through-space contributions.
Experimental absorption and emission spectra of the

acceptor and donor units of the EET cassettes, BODIPY and
anthracene, respectively, are reproduced well by vibrationally
resolved computed spectra. In the cassettes with short to
medium-long molecular linkers, we find that IDA produces
significantly smaller EC matrix elements than MTD. Therefore,
MTD was chosen for the calculation of the EET rates. For all
EET cassettes in which the transition dipole moments of donor
and acceptor are oriented in a parallel manner, we find EET
rates in the order of the temporal resolution of the
experiment19 when fragmentation model II is used, i.e., when
contributions from the molecular linker are taken into account
in an approximate manner. If the simpler fragmentation model I
is applied to EET cassettes with a longer linker, the EET rates
become significantly too small. For B8-PE-A, in which the
transition dipole moments are oriented in a perpendicular
manner, dynamic effects play an important role, increasing the
computational EET rate by up to 10 orders of magnitude,
compared to the static model.
One reason for the deviations of the calculated EET rate of

B8-PE-A from the experimental values19 may be that charge-
transfer (CT) contributions are not considered in our
calculations. In π-stacked electronically excited perylene-
bisimide aggregates, such contributions have been shown to
be important.55 Furthermore, our consideration of the influence
of the nuclear motion is only based on very short MD
trajectories. More exact rates may be obtained either from
longer force-field-based MD simulations or by including
vibronic interactions through a Taylor expansion about the
Franck−Condon point. Work along these lines is in progress.
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a b s t r a c t

BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET).
Through-space EET is brought about by direct and exchange interactions between the transition densities
of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge
transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic cou-
pling matrix element (ECME) including CT contributions which is based on supermolecular one-electron
transition density matrices (STD). The validity of the approach is assessed for a model system of two
p-stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic exci-
tation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton
acceptor are obtained by the redesigned combined density functional theory and multireference config-
uration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the
covalently linked EET cassettes.

� 2016 Published by Elsevier B.V.

1. Introduction

The discovery of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
(BODIPY)-based compounds by Treibs and Kreuzer in 1968 [1] laid
the foundation for a new class of fluorescence dyes characterized
by high stability and high fluorescence quantum yields [2]. In the
last decades, many applications of BODIPY derivatives ranging
from biomolecular labels to sensitizers for solar cells have been
reported [3,4]. Dyads in which BODIPY is covalently linked to
anthracene as exciton donor serve as excellent model systems for
the theoretical and experimental investigation of excitation energy
transfer (EET) (Fig. 1). Whereas EET rates deduced from high-reso-
lution spectroscopy measurements were interpreted assuming a
through-space mechanism [2,5,6], quantum-chemical studies
based on a monomer transition density approach [7,8] focused
on through-space and through-bond mechanisms [9]. The contri-
bution of charge transfer (CT) to the through-bond interactions is
still an open question. A quantum-chemical study of the dyads
may give insight into the relevant transitions. Recently, Liu et al.
[10] presented a method with a similar objective as the here pre-
sented supermolecular approach. Dividing the target molecule into
reasonable fragments, the set of canonical molecular orbitals
(MOs) is localized using the Pipek–Mezey algorithm. The configu-
ration interaction singles (CIS) wave functions of the electronically

excited states are transformed to the localized basis yielding local
and CT configurations. Mixing of the electronically excited states
such that the weight of a single configuration is maximized,
quasi-diabatic states are produced which can be used for the calcu-
lation of excitonic coupling matrix elements (ECME) including
local and CT contributions.

The fast and reliable prediction of excitation energies and
excited states properties is one of the challenges in modern quan-
tum chemistry. To this end, electron correlation methods are
required treating ground and excited states at similar levels of
accuracy. In the electronic ground state, a Kohn–Sham (KS) density
functional theory (DFT) treatment is often sufficient. In contrast,
multi-configuration approaches are required for a proper descrip-
tion of excited-state properties. For small molecules, ab initio com-
plete active space second-order perturbation theory (CASPT2) or
multi-reference configuration interaction (MRCI) are valuable
methods for this purpose [11,12]. With increasing system size,
the concept of active electrons in active orbitals quickly becomes
a bottleneck, however. In 1999, Grimme and Waletzke introduced
the semi-empirical combined density functional theory and multi-
reference configuration interaction (DFT/MRCI) method [13].
Although the original parameterization was performed on a train-
ing set of small molecules, where the method reaches a general
accuracy of �0:2 eV [14], a similar accuracy is observed for
extended p-systems such as polyacenes and oligothiophenes
[15,16]. This method was therefore employed in our first study of
the EET transfer rates in anthracene-BODIPY cassettes based on a
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monomer transition density (MTD) approach [9]. However, in
ethylene-tetrafluroethylene dimers artificially low-lying excited
states were encountered when using DFT/MRCI [17]. Most of these
problems could be traced back to unphysically large contributions
of four-open shell configurations. Recently, some of us presented a
redesigned DFT/MRCI Hamiltonian (DFT/MRCI-R) which aims to
properly treat supermolecules composed of more than one subsys-
tem [17].

In this paper, we apply both, the original and redesigned
DFT/MRCI Hamiltonians to a series of EET cassettes consisting of
an anthracene subsystem as exciton donor and a BODIPY subsys-
tem as exciton acceptor linked via a p-conjugated molecular bridge
(Fig. 1). We compare the results to experimental absorption spec-
tra of the studied EET cassettes and calculate the ECME between
the two lowest donor- and acceptor-localized states using the
newly developed supermolecular transition density (STD)
approach. The CT contributions to the EET become apparent when
comparing the ECMEs computed in the STD and MTD approaches,
respectively.

2. Theoretical methods

2.1. Analysis of the excited-state wave functions

Let us start this section with a brief review of a method that is
based on one-electron transition density matrices and was intro-
duced by Plasser and Lischka [18] for the analysis of excited-state
wave functions. The method provides the percentage of local- and
CT-transitions of an electronically excited state in terms a CT
matrix. Let A and B denote the subsytems of the supermolecule.
According to Plasser and Lischka [18], the extent of charge delocal-
ization within each supermolecular electronically excited state Wn

can be recovered from a 2� 2 CT matrix Xn

Xn ¼ Xn
AA Xn

AB

Xn
BA Xn

BB

 !
ð1Þ

which can directly be computed from the reduced transition den-
sity matrix in a subsystem-localized basis. While the diagonal ele-
ments Xn

AA and Xn
BB represent the weights of local excitations on

subsystems A and B, respectively, the off-diagonal elements Xn
AB

and Xn
BA are known as CT numbers. They are defined as the

percentage of charge density transferred from one subsystem to
the other one during the excitation.

In this work, we employ the reduced transition density matrix
in the atomic orbital (AO) basis q0½UWn � for constructing the CT
matrix. The elements of q0½UWn � can be obtained from the reduced
one-electron transition density matrix q½UWn � between the elec-
tronic ground state U and an excited state Wn in the MO basis with
elements

q½UWn �
pq ¼ UjÊpqjWn

D E
ð2Þ

by the transformation [19]

q0½UWn �
lm ¼

X
pq

clpq½UWn �
pq cmq ð3Þ

where the cmq are elements of the MO coefficient matrix. Applying
the AO overlap matrix S to ensure orthonormality, the elements of
the CT matrix can be computed as given by

Xn
A!B ¼

1
2

X
l2A

X
m2B
ðq0½UWn �SÞlmðSq0½UWn �Þlm ð4Þ

where AOs l are localized on subsystem A and AOs m on subsystem
B. Because contributions from multiple excitations are neglected
within the one-electron transition density matrix, the CT matrix
has to be normalized to 1.

Xn�� �� ¼X
A;B

XAB ¼! 1 ð5Þ

The total percentage of one-electron excitations can be obtained
from Eq. 5 before normalization. If the quantity is significantly
smaller than 0.8, the method may be inappropriate for the analysis
of the excited state [18].

2.2. Excitonic coupling matrix element

In the weak coupling limit, the EET rate can be described by a
Golden Rule expression comprising the square of the total ECME
and the Franck–Condon weighted density (FCWD) of states
[20–22]

kEET ¼ 2p
�h
hWF jV̂jWIi
�� ��2 � FCWD ð6Þ

N
B

N

F
F

N
B

N

F
F

N
B

N

F
F N

B
N

F F

N
B

N

F
F

B2-A B2-E-A B2-PE-A B2-EPE-AB8-PE-A
dDA = 6.2 dDA = 8.9 dDA = 13.3 dDA = 11.6 dDA = 15.8

Fig. 1. Division of the studied EET cassettes into donor (green) and acceptor (red) moieties. The molecular linker is regarded as part of the donor fragment. Distances between
the centers of mass of anthracene and BODIPY are given in Å. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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where the operator V̂ describes the interaction between the initial
state WI and the final state WF with respect to the EET process. In
case of a homodimeric system, the total ECME between two excited
statesWI andWF can directly be obtained from their energetic split-
ting (Davydov splitting).

WF jV̂jWI
� � ¼ EF � EI

2
ð7Þ

In heterodimers, approximate methods have to be used to eval-
uate the ECME. To this end, the supermolecular system is divided
into two subsystems. The division of the here investigated EET cas-
settes into a donor subsystem D and an acceptor subsystem A is
based on a localization study of the involved frontier orbitals
(Figs. 2 and 3). As indicated in Fig. 1, we decided to assign the
molecular bridges between the two chromophores to the donor
part of the system.

Accordingly, the supermolecular electronic Hamiltonian Ĥ is
expressed as the sum of the Hamiltonians of the individual subsys-
tems D and A and the coupling term V̂.

Ĥ ¼ ĤD þ ĤA þ V̂ ð8Þ

2.2.1. Monomer transition density matrix approach
In fragment-based approaches, the coupling is described as the

interaction between two excited states which are perfectly local-
ized on two subsystems [23,24]. In this case, the ECME can be
approximated by a monomer-based approach such as the MTD
method [7–9] or the transition density cube method [25]. The
MTD method approximates the ECME as sum of direct and
exchange interactions between the spinless reduced one-electron
transition density matrices qðDÞ and qðAÞ of the donor and the accep-
tor, respectively,

VDA ¼ hD�AjV̂jDA�i �
X
i;j2D

X
k;l2A

qðDÞij ðijjklÞqðAÞkl

� 1
2

X
i;j2D

X
k;l2A

qðDÞij ðiljkjÞqðAÞkl ð9Þ

where we have used the Mulliken convention for denoting the elec-
tronic repulsion integrals. Alternatively, frozen-density approaches
may be used to determine the coupling between subsystem-local-
ized electronic excitations [26–28].

2.2.2. Supermolecular transition density approach
At small intermolecular distances and in the presence of amolec-

ular linker, the CT contributions to the ECME cannot be neglected. In
the following,we present a novelmethod based on the STDmatrices
of the interacting electronically excited states. Themethod is closely
related to theTDFI-TI (transition-density-fragment interactioncom-
bined with transfer integral) method introduced by Fujimoto
[29,30]. In contrast to TDFI-TI, our method is not based on a subsys-
tem formalism and is not restricted to a four-orbital–four-electron
model considering the indirect contributions.

In a hypothetical biorthonormal subsystem-localized orbital
basis, the wave functions of the initial and final states can be
divided into two local and two CT contributions. This subdivision
can be looked upon as a decomposition of the states into individual
‘‘substates”

jWIi ¼ jD�AiI þ jDA�iI þ jDþA�iI þ jD�AþiI ð10Þ

hWF j ¼ FhDA�j þ FhD�Aj þ FhDþA�j þ FhD�Aþj ð11Þ
where the first term in expression (10), describing local excitations
on D in the initial state jWIi, and the first term in expression (11),
describing local excitations on A in the final state hWF j are expected

to be dominant, respectively. To calculate the total ECME hWF jV̂jWIi,
all four ‘‘substates” of the final state have to be combined with all
four ‘‘substates” of the initial state yielding 16 terms in total.

FhD�AjV̂jD�AiI and FhDA�jV̂jDA�iI do not contribute to the ECME
because they describe the interaction between two local excitons
on the same subsystem, leaving us with 14 coupling terms in total:

hWF jV̂jWIi ¼ FhDA�jV̂jD�AiI þ FhD�AjV̂jDA�iI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VDir

ð12Þ

þ FhDþA�jV̂jD�AþiI þ FhD�AþjV̂jDþA�iI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VCT

ð13Þ

þ FhDþA�jV̂jD�AiI þ FhD�AþjV̂jD�AiI
þ FhDþA�jV̂jDA�iI þ FhD�AþjV̂jDA�iI
þ FhD�AjV̂jD�AþiI þ FhDA�jV̂jD�AþiI ð14Þ
þ FhD�AjV̂jDþA�iI þ FhDA�jV̂jDþA�iI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VPol

þ FhDþA�jV̂jDþA�iI þ FhD�AþjV̂jD�AþiI|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VCorr

ð15Þ

The first two terms have been combined into VDir which describes
the direct interactions between locally excited configurations. VCT

represents the interactions between two CT configurations that
arise from an electron transfer from D to A and from A to D, respec-
tively. The polarization term VPol is composed of eight mixed cou-
plings between local and CT excitations. Finally, we define a
correlation term VCorr which represents the coupling between CT
configurations of the same type. In a microscopic representation
involving the reduced transition density matrices and two-electron
integrals in the hypothetical biorthonormalized MO basis, the
matrix element FhD�AjV̂jDA�iI reads

FhD�AjV̂jDA�iI ¼
X
i2D

X
a2D

X
j2A

X
b2A

qðFÞia q
ðIÞ
jb ðaijjbÞ �

1
2
ðabjjiÞ

� �
ð16Þ

corresponding to the well-known expression for the Förster and
Dexter exchange contributions in the MTD approach [7,8,29].

The use of a biorthogonalized MO basis can be avoided if the AO
basis is employed instead. In the following, greek letters label the
AOs whereas roman letters denote the MOs which may be delocal-
ized over the whole supermolecular system (i; j; a; b 2 DA).
Expressing the two-electron integrals in terms of the AO basis
and the MO coefficients

ðaijjbÞ ¼
X
l

X
m

X
k

X
r
clickjcmacrbðmljkrÞ ð17Þ

Eq. (16) can be rewritten as [20]

System HOMO LUMO

BODIPY

Anthracene

Fig. 2. Frotier orbitals involved in the first excited singlet states of the isolated
monomers.
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FhD�AjV̂jDA�iI ¼
X
i2DA

X
a2DA

X
j2DA

X
b2DA

X
l2D

X
m2D

X
k2A

X
r2A

qðFÞia q
ðIÞ
jb clickjcmacrb

� ðmljkrÞ � 1
2
ðmrjklÞ

� �
ð18Þ

Transforming the reduced transition density matrices of the initial
and the final state to the AO basis [19,20,29]

qðFÞlm ¼
X
i2DA

X
a2DA

clicmaq
ðFÞ
ia ð19Þ

qðIÞkr ¼
X
j2DA

X
b2DA

ckjcrbq
ðIÞ
jb ð20Þ

yields our final expression

FhD�AjV̂jDA�iI ¼
X
l2D

X
m2D

X
k2A

X
r2A

qðFÞlmq
ðIÞ
kr ðmljkrÞ �

1
2
ðmrjklÞ

� �
ð21Þ

Similar formulae can be derived for the other 13 coupling matrix
elements which only differ in the subsystems over which the
indices l; m; k and r run.

2.3. Computational details

2.3.1. Setup of the studied EET cassettes
The EET cassettes studied in this work are composed of an

anthracene exciton donor which is linked to a BODIPY exciton
acceptor by a p-conjugated molecular bridge. In a recent study

System HOMO-1 HOMO LUMO LUMO+1

WL

P_B2-A

P_B2-E-A

P_B2-EPE-A

P_B2-PE-A

P_B8-PE-A

M_B2-A

M_B2-E-A

M_B2-EPE-A

M_B2-PE-A

M_B8-PE-A

Fig. 3. Frontier molecular orbitals of the monomers and EET cassettes involved in the dominant transitions of the coupled electronically excited states in the studied EET
cassettes. WL = all structures without linker.
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[9], we presented the minimum ground state geometries, referred
to as M_B2-A, M_B2-E-A, M_B2-EPE-A, M_B2-PE-A and M_B8-PE-
A (M-structures) in the following (Table 1). While the overall
relative orientation of the donor and acceptor moieties is almost
coplanar in M_B2-E-A and M_B2-EPE-A, the orientation is close
to a perfectly perpendicular arrangement in M_B2-A and M_B8-
PE-A. In M_B2-PE-A, donor and linker adopt a torsion angle of
about 62� with respect to the acceptor. However, in those cassettes
in which an ethynyl linker is attached to BODIPY, the rotational
barriers are extremely low (< 50 meV) such that a nearly free
rotation can be assumed in B2-E-A and B2-EPE-A [9]. To sample
also these conformations, we introduced P_B2-A, P_B2-E-A,
P_B2-EPE-A, P_B2-PE-A and P_B8-PE-A (P-structures) enforcing
a perfectly perpendicular orientation of donor, phenyl bridge, and
acceptor molecular planes by symmetry constraints (Table 1).
The difference between the equilibrium ground state energies of
the corresponding M- and P-structures is small (Table 1) which
suggests that the P-structures are thermally accessible. To study
the influence of the molecular linkers, all calculations were
repeated after removal of the molecular linker from the optimized
ground-state structure and saturation of the obtained monomers
with hydrogen atoms. The newly created C–H bonds were relaxed
keeping the rest of the molecules fixed. The corresponding struc-
tures are referred to as M_B2(-E-) A, etc.

2.3.2. Geometry optimizations
The equilibrium geometries of the singlet ground states (S0) of

the dyads and the individual monomers were taken from a previ-
ous study [9]. While the M-structures had been optimized without
symmetry constraints, Cs or C2v symmetry was employed for the P-
structures. To this end, KS DFT in conjunction with the B3-LYP
hybrid density functional [31] was used. All calculations were per-

formed with TURBOMOLE [32] employing a basis set of split
valence quality with polarization functions on all atoms (SVP) [33].

2.3.3. Excitation energies and excited-state properties
The excited-state properties (vertical excitation energies, tran-

sition density matrices, static dipole moments, transition dipole
moments and oscillator strengths) of the monomers and the EET
cassettes were calculated using a locally modified version of the
DFT/MRCI program [13,17,34]. In the semi-empirical DFT/MRCI
method, dynamic correlation effects are considered by DFT
whereas static correlation effects are taken into account by a MRCI
expansion. The configurations in the MRCI are built up from KS
orbitals of a closed-shell determinant employing the BH-LYP func-
tional [35]. Double-counting of dynamic correlation is avoided by
damping the off-diagonal matrix elements by a rapidly decreasing
function that depends on the energy difference of the configura-
tions and two parameters. All calculations were carried out
employing the original (DFT/MRCI) [13] as well as the recently
redesigned and reparameterized Hamiltonians (DFT/MRCI-R)
[17]. The two-electron integrals were approximated with the reso-
lution of the identity method [36,37]. Only orbitals that refer to
configurations below a certain energy cut-off are considered in
the CI-expansion. Within this paper we used an energy selection
threshold of 1:0EH to compute the lowest 10 eigenvectors. The ini-
tial MRCI reference space was spanned by all single and double
excitations from the four highest occupied MOs to the four lowest
unoccupied MOs of the ground state KS determinant. A second
DFT/MRCI(-R) step was performed with a refined reference space
comprising all configurations which contribute to one of the 10
lowest-lying eigenvectors of the initial run with a squared coeffi-
cient of 0.003 and larger. In a few cases, the number of roots had
to be increased to 15 or 20, respectively. A detailed description
of DFT/MRCI and DFT/MRCI-R has been given elsewhere [13,17].

Table 1
Molecular structures of the studied monomers and EET cassettes. Relative orientation of the donor, linker and acceptor indicated by colored planes. In the P-structures, a strong
delocalization of the molecular orbitals is avoided by symmetry constraints enforcing a perfectly perpendicular orientation of the donor and the acceptor planes (P_B2-A, P_B2-E-
A) or a perfectly perpendicular orientation of the linker plane with respect to donor and acceptor planes (P_B2-PE-A, P_B2-EPE-A, P_B8-PE-A). The M-structures represent the
absolute minimum geometries obtained by geometry optimization without symmetry constraints. DEPM refers to the difference between the DFT/MRCI-R ground state energies of
the corresponding P- and M-structures.

BODIPY Anthracene DEPM (meV)

P_B2-A
dDA ¼ 6:2 Å
Cs

M_B2-A
dDA ¼ 6:2Å
C1

52

P_B2-E-A

dDA ¼ 8:9Å
Cs

M_B2-E-A

dDA ¼ 8:9Å
C1

43

P_B2-EPE-A

dDA ¼ 15:8Å
Cs

M_B2-EPE-A

dDA ¼ 15:8Å
C1

37

P_B2-PE-A
dDA ¼ 13:3Å
Cs

M_B2-PE-A
dDA ¼ 13:3Å
C1

27

P_B8-PE-A
dDA ¼ 11:6Å
C2v

M_B8-PE-A
dDA ¼ 11:6Å
C1

14
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2.3.4. Excitonic coupling matrix elements
The ECME was computed using the newly developed STD

approach (Eqs. (12)–(15)) and the established MTD approach (Eq.
(9)) for comparison. In STD, the ECME calculations were based on
supermolecular DFT/MRCI-R wave functions of the EET cassettes.
The MTD calculations of the ECME were based on the S1 transition
density matrices obtained by individual DFT/MRCI-R calculations
of the fragments. To accelerate the calculations, only transition
density matrix elements with an absolute value higher than 10�6

were considered.

3. Results and discussion

3.1. Comparison of DFT/MRCI and DFT/MRCI-R

3.1.1. Monomers
DFT/MRCI and DFT/MRCI-R find the same energetic order of the

BODIPY excited states and very similar compositions of the wave
functions (Fig. 4, Table 2). Correspondingly, the transition densities
are very similar. While all triplet states are slightly stabilized in
DFT/MRCI-R, most singlet energies are weakly blue-shifted in
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Fig. 4. Vertical excitation energies of the isolated subsystems (a) BODIPY and (b) anthracene with respect to their relaxed ground state geometries calculated using DFT/MRCI
and DFT/MRCI-R. Corresponding states are connected by dashed lines. Singlet states are shown in blue while triplet states are shown in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Vertical excitation energies of the LE states of the supermolecular systems corresponding to the S1 states of isolated BODIPY and anthracene. In case of a strong mixing of the
BODIPY-localized and the anthracene-to-BODIPY-CT state, the energies of both linear combinations are given.

System Anthracene localized state (eV) (nm) BODIPY localized state (eV) (nm)

DFT/MRCI DFT/MRCI-R Experimental [6,40–42] DFT/MRCI DFT/MRCI-R Experimental [6,38]

BODIPY 2.64 (470) 2.63 (471) 2.46 (504)
Anthracene 3.54 (350) 3.43 (361) 3.60 (344)
P_B2(-E-)A 3.31 (375) 3.38 (366) 2.40 (517) 2.65 (468)
P_B2(-EPE-)A 3.21 (386) 3.37 (368) 2.27 (546) 2.63 (471)
P_B2(-PE-)A 3.20 (388) 3.36 (369) 2.29 (542) 2.64 (470)
P_B8(-PE-)A 3.25 (381) 3.36 (369) 2.24 (533) 2.53 (490)

P_B2-A 3.30 (375) 3.36 (369) 3.20 (388) 2.45 (506) 2.61 (475) 2.38 (520)
P_B2-E-A 3.06 (405) 3.12 (397) 2.78 (446) 2.23 (556) 2.45 (506) 2.27 (544)
P_B2-EPE-A 2.87 (432) 3.09 (401) 2.90 (428) 2.05 (605) 2.45 (506) 2.30 (540)
P_B2-PE-A 2.95 (420) 3.09 (401) 2.93 (423) 2.23 (556) 2.60 (477) 2.36 (524)
P_B8-PE-A 2.96 (418) 3.10 (400) 2.92 (424) 2.26 (549) 2.58 (481) 2.46 (503)

M_B2(-E-)A 3.30 (376) 3.38 (367) 2.34 (529) 2.60 (477)
M_B2(-EPE-)A 3.30 (376) 3.37 (368) 2.34 (529) 2.58 (481)
M_B2(-PE-)A 3.60 (345) 3.37 (368) 2.60 (477) 2.58 (481)
M_B8(-PE-)A 3.30 (376) 3.37 (368) 2.34 (529) 2.54 (488)

M_B2-A 3.31 (374) 3.31 (375) 3.20 (388) 2.35 (528) 2.47 (502) 2.38 (520)
M_B2-E-A 2.89 (429) 2.88 (431) 2.78 (446) [S2] 1.92 (646) [S1] 1.94 (639) 2.27 (544)

[S3] 2.76 (449) [S2] 2.64 (470)
M_B2-EPE-A 2.64 (469) 2.67 (464) 2.90 (428) [S1] 1.83 (678) [S1] 1.98 (626) 2.30 (540)

[S3] 2.58 (481) [S2] 2.63 (471)
M_B2-PE-A 2.80 (442) 2.83 (438) 2.93 (423) [S2] 2.05 (605) [S1] 2.24 (554) 2.36 (524)

[S3] 2.69 (461) [S2] 2.79 (444)
M_B8-PE-A 2.79 (444) 2.86 (434) 2.92 (424) 2.27 (546) 2.58 (481) 2.46 (503)
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comparison to DFT/MRCI, but the deviations lie within the confi-
dence interval of the method (�0:2 eV). In particular, the first
bright singlet state, which is dominated by a HOMO!LUMO exci-
tation, is found to have almost the same energy of 2.63 eV (DFT/
MRCI) and 2:64 eV (DFT/MRCI-R). Hence, we conclude that the
absorption behavior of BODIPY can be described by DFT/MRCI
and DFT/MRCI-R with the same level of accuracy when compared
to an experimental absorption maximum of 2.46 eV measured in
ethanol [38]. The first excited triplet state is located at 1.60 eV
(DFT/MRCI) or 1.53 eV (DFT/MRCI-R) which is in good agreement
with the experimental value of 1.59 eV in phosphorescent BODIPY
derivatives [39].

The energetic order of the states is also preserved for anthra-
cene using both Hamiltonians (Fig. 4b, Table 2). We find that the
energetic separation between the S1 and the S2 states increases
from 0.03 eV in DFT/MRCI to 0.12 eV in DFT/MRCI-R. A qualita-
tively similar behavior is observed for the S3 and the S4 states.
The experimental absorption maximum of 3.60 eV [40–42] is well
reproduced with both DFT/MRCI (3.54 eV) and DFT/MRCI-R
(3.43 eV). The first excited triplet state is located at 2.09 eV (DFT/
MRCI) or 1.97 eV (DFT/MRCI-R) which is in fair agreement with
an experimental 0–0 transition energy of 1.87 eV in the gas phase
[43].

3.1.2. Dimers
While the description of the isolated monomers is more or less

identical using the original and the redesigned Hamiltonians,
respectively, substantial differences are found for the supermolec-
ular arrangements. Let us start by analyzing the excitation energies
of the non-linked supermolecular arrangements of BODIPY and
anthracene. M_B2(-PE-) A, for example, is characterized by an
intermolecular separation of 13.3 Å between the centers of mass
of the BODIPY and the anthracene moieties. With both Hamiltoni-
ans we find a perfectly BODIPY locally excited (LE) state (S2 at
2.60 eV in DFT/MRCI, S1 at 2.58 eV in DFT/MRCI-R), a perfectly
anthracene LE state (S11 at 3.60 eV in DFT/MRCI, S2 at 3.37 eV in
DFT/MRCI-R) and an almost pure anthracene to BODIPY CT state
which corresponds to the HOMO!LUMO transition (S13 at
3.74 eV in DFT/MRCI, S7 at 3.59 eV in DFT/MRCI-R) (Figs. 4 and
5). Nevertheless, using the original DFT/MRCI Hamiltonian,

approximately half of the excited states are dominated by four-
open-shell configurations. In particular, the first excited singlet
state exhibits a double excitation with four open shells as the lead-
ing term of the MRCI expansion. At infinite separation, the first
supermolecular four-open-shell singlet state can be regarded as
coupled pair of the lowest monomer triplet states. Thus, the energy
can be approximated as the sum of the T1 energies of the
monomers.

E1ðT1ðAÞ	T1ðBÞÞ � ET1ðAÞ þ ET1ðBÞ ð22Þ
At the DFT/MRCI level, the energy of the first singlet-coupled

triplet-pair state (S1; 1:03 eV) is less than one third of the sum of
the T1 energies of the monomers (3.69 eV). Using DFT/MRCI-R,
we find the lowest four-open-shell dominated state (S4) located
at an energy of 3.46 eV, in excellent agreement with the expected
value of 3.50 eV in this case. Owing to the wrong asymptotic
behavior of the underlying BH-LYP density functional, both
variants of the DFT/MRCI method underestimate the energy of
the CT state, which is expected to appear at � 4:6 eV. 1 by about
1 eV. Qualitatively similar results are obtained for the other
unlinked structures. Summarizing, we conclude that the redesigned
DFT/MRCI-R Hamiltonian is better suited for the calculation of
supermolecular arrangements with more than one subsystem than
the original DFT/MRCI Hamiltonian. In the following, therefore only
the results of the latter method will be discussed.

3.1.3. Absorption spectra of the EET cassettes
In all P-structures, a perfectly perpendicular orientation of the

donor, phenyl bridge and acceptor has been enforced. The vertical
excitation energies of their BODIPY LE states are systematically
blue shifted with respect to the corresponding experimental
peak maxima by 0.12–0.24 eV (Fig. 6 and Table 2). A similar
behavior is found for the anthracene LE state with a systematic
overestimation of the experimental value by 0.16–0.19 eV except
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Fig. 5. Vertical excitation energies with respect to the relaxed ground state geometries of (a) M_B2(-PE-)A and (b) M_B2-PE-A calculated using DFT/MRCI and DFT/MRCI-R.
Corresponding states are connected by dashed lines. States dominated by four-open-shell configurations are shown in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

1 The experimental ionization potential (IP) of anthracene is 7.44 eV [44]. No
experimental data was found for the electron affinity (EA) of BODIPY. In this case, we
use a value of 1.67 eV reported for CCSD(T) calculations [45]. The difference between
the IP and the EA has to be corrected by the Coulomb interaction energy of the cation
and anion at finite intermolecular separation which amounts to � �1 eV in a point-
charge model.
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for P_B2-E-A where a larger deviation of 0.34 eV is observed.
Owing to the systematic blue shift of the vertical excitation ener-
gies, the relative positions and intensities of the absorption max-
ima are qualitatively well reproduced. Solvent effects on the
absorption energies were found to be small, in agreement with
experimental observations [6]. Recalculation of P_B2-A using the
implicit solvent model COSMO [46] to mimic an ethanol environ-
ment (� ¼ 24:5) did not lead to a significant change of the vertical
excitation energies.

For the majority of the M-structures, representing the global
minimum geometries of the EET cassettes, we find very good
agreement between the calculated vertical excitation energies of
the anthracene LE state and the experimental peak positions. Note
that experimental peak maximum of the anthracene absorption in
B2-E-A is substantially red shifted with regard to the other cas-
settes [6] possibly a consequence of the low torsional barrier and
the enhanced p-conjugation that sets in when the p systems of
anthracene and BODIPY are not perfectly perpendicular (Fig. 7)).
Likewise, the almost coplanar orientation of donor, bridge and
acceptor in M_B2-EPE-A leads to a significant delocalization of
HOMO and LUMO+1 densities which in turn causes a strong ener-
getic stabilization of the transition. Comparison of the vertical exci-
tation energies of the M- and P-structures with the position of the
experimental band maximum suggests that the bridging phenyl
ring has an orientation intermediate between a perpendicular
and coplanar arrangement on the average.

The proper description of the BODIPY absorption appears to be
more critical. While the vertical exitation energies of the lowest
BODIPY LE states of the nearly perpendicular structures M_B2-A,
M_B2-PE-A, and M_B8-PE-A are in good agreement with the
experimental values, this is not the case for M_B2-E-A and
M_B2-EPE-A. The almost coplanar orientations of donor, phenyl
bridge, and acceptor moieties of the latter structures cause a
marked delocalization of the frontier MOs (Fig. 3) and an energetic
stabilization of the anthracene-to-BODIPY CT state (HOMO?
LUMO) which in turn strongly mixes with the lowest BODIPY LE
state (HOMO-1? LUMO). Energy profiles for a scan along the

twisting angle between anthracene and BODIPY in B2-E-A are dis-
played in Fig. 7. The excitation energy of the lowest optically bright
BODIPY state is seen to depend markedly on this coordinate. At a
torsion angle of 90�, the oscillator strength of the local BODIPY
transition is largely concentrated in S1  S0. At the nearly coplanar
minimum geometry, the S1 and S2 states are characterized by local
and CT transitions in approximately equal parts and both exhibit
substantial oscillator strengths. For B2-E-A and B2-EPE-A, Wan
et al. [6] notice a stronger red shift and a broader spectral band
shape of the acceptor absorption which they interpret as being
caused by the immediate linkage of BODIPY to an ethynyl group.
The increasing red shift and broadening of the lowest absorption
maximum can be regarded as a measure for the extent of electron
delocalization. The red shift can also be interpreted as measure of
the coplanarity of the entire system. Comparison with experiment
therefore suggests a relative orientation of the dyes and the bridge
in between the P- and M-structure on the average.

3.2. CT contributions to the ECME

3.2.1. STD benchmark calculations
The performance of the newly developed STD approach was

tested using a p-stacked ethylene dimer varying the intermolecu-
lar distance between approximately 3.5 and 9 Å. Supermolecular
MOs were obtained from closed-shell KS calculations using the
BH-LYP functional [35] and an SVP basis set [33]. The MOs are
completely delocalized over the supermolecule. For the sake of
clarity, DFT/MRCI-R single excitation calculations were carried
out for four electrons in four orbitals yielding four electronically
excited states. At large intermolecular separations, the two low-
est-lying states correspond to positive and negative linear combi-
nations of pure local excitations on monomer A and B,
respectively, i.e. A�B� AB� (Frenkel states). Likewise, the two
higher-lying states are positive and negative linear combinations
of the ionic terms AþB� and A�Bþ, respectively, (CT states). The
CT matrix formalism developed by Plasser and Lischka[18], (see
Section 2.1), provides a valuable tool for the quantification of the
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Fig. 6. Gaussian-broadened vertical DFT/MRCI-R absorption spectra of the studied EET cassettes (P-structures) assuming a full width at half maximum of 500 cm�1.
Digitalized experimental spectral spectra (red) were read from Ref. [6]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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percentage of the LE and the CT character of an electronically
excited state. The analysis shows that Frenkel and CT states start
mixing at intermolecular separations smaller than approximately
5 Å (for details see supplementary information (SI)).

In the adiabatic supermolecular representation, all off-diagonal
coupling terms vanish. The ECMEs are instead computed as expec-
tation values of the operator V̂ in STD. In contrast, MTD requires
the computation of off-diagonal matrix elements of LE states, i.e.,
hA�BjV̂jAB�i. The total ECMEs of the two Frenkel states, calculated
with the STD approach, were compared to the coupling obtained
from their Davydov splitting at the DFT/MRCI-R level (FullQM)
and the couplings evaluated with the MTD approach. To get more
insight, we further split up the STD ECMEs into a direct term (Eq.
(12)) and the sum of all indirect terms (Eqs. (13)–(15)). As may
be seen in Fig. 8, STD and MTD results match nearly perfectly for
intermolecular separations >5 Å. For the upper Frenkel state (II),
this is even the case for small intermolecular separations whereas
(negative) CT contributions become more and more important for
the lower Frenkel state (I) with decreasing intermolecular distance.
Similar conclusions were also drawn from the results of test calcu-
lations using the recently developed wave function frozen-density
embedding approach [28]. In purely monomer-based approaches,
these CT contributios to the ECME are not taken into account.
When compared to the FullQM values, the STD and MTD
approaches seemingly overshoot at long intermolecular separa-
tions. This deviation is traced back to the scaling factor of 0.5682
with which the two-electron integral that couples the two Frenkel
excitations is multiplied in the DFT/MRCI-R method [17], thus
deminishing the Davydov splitting whereas the corresponding
two-electron integrals remain unscaled in the STD and MTD
approaches.

3.2.2. LE and CT character of the supermolecular states of the
anthracene-BODIPY EET cassettes

In the anthracene–BODIPY EET cassettes, the CT matrix analysis
tool was applied to the excited states which correlate with the low-
est optically bright states of the isolated monomers. Because both
states may comprise a certain amount of CT contributions in both
directions, we have to identify four excited states in total which
result from the excitonic interaction. In all P- and M-structures

without linker, the picture is quite clear (Tables 3 and 4). The S1
states (dominant contribution:HOMO-1? LUMO) is always almost
completely localized on the BODIPY moiety while the S2 state
(dominant contribution: HOMO? LUMO + 1) is almost completely
localized the anthracene moiety. The corresponding anthracene-to-
BODIPY CT state (dominant contribution: HOMO? LUMO) is desta-
bilized with increasing intermolecular distance. Accordingly, it can
be identified as the S3 state in P_B2(-E-) A and as the S7 state in P_B2
(-EPE-) A. The BODIPY-to-anthracene CT states are (dominant
contribution: HOMO-1? LUMO + 1) are again higher in energy
which also depends on the intermolecular distance.

The clear picture of perfectly LE and pure CT states in a well-
defined energetic order becomes blurred when the molecular lin-
ker is taken into account (Table 3). In P_B2-A, the perpendicularly
oriented anthracene and BODIPY moieties are connected by a sin-
gle C–C bond only. Nevertheless, the BODIPY-centered S1 state cov-
ers 2% of local transitions on anthracene and 2% of CT transitions. A
similar composition was found for the anthracene-centered S3
state. The anthracene-to-BODIPY CT state is energetically stabi-
lized by the covalent linkage and can be assigned to the S2 state.
In P_B2-E-A we find a similar order of the electronic states but
slightly increased CT contributions to the LE states owing to the
ethynyl linker. In P_B2-EPE-A and P_B8-PE-A the energetic order
is similar to the structures without linker because the anthra-
cene-to-BODIPY CT state is stabilized to a minor extent only.
Despite the enforced perpendicular orientation of donor, phenyl
linker, and acceptor and a nearly perfect localization of the frontier
MOs (Fig. 3), CT contributions are not negligible in P_B2-PE-A.
While the BODIPY-centered S1 state comprises 8% of CT contribu-
tions, the S2 state is composed of only 50% local contributions on
the anthracene-moiety, 39% CT transitions and 11% local transi-
tions on the BODIPY-moiety. The net CT is almost zero in this state,
however, which is also reflected in the nearly unchanged perma-
nent dipole moment of the S2 state with respect to the electronic
ground state.

The qualitative picture, based on the analysis of the wave func-
tions of the M-structures, is corroborated by the elements of the CT
matrices (Table 4). While LE and CT states can be told apart for
M_B2-A and M_B8-PE-A, a strong mixture of LE and CT character
can be made out for M_B2-E-A, M_B2-EPE-A and M_B2-PE-A.
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3.2.3. Composition of the total ECMEs
As we have analyzed the supermolecular states of all studied

systems, we were able to calculate the ECME between the lowest
BODIPY- and anthracene-centered states (Table 5). In the P-struc-
tures without linker, the total ECME is almost exclusively com-

posed of the direct contributions (VDir) because CT transitions are
high lying in well-separated donor–acceptor systems. For this rea-
son, STD and MTD provide identical results. Only in P_B2(-E-) A in
which the intermolecular distance between BODIPY and anthra-
cene is rather short (8.9 Å), we find small indirect contributions

Fig. 8. Benchmark calculations of the supermolecular transition density approach (STD) of the Frenkel states of the ethylene dimer (left: Frenkel state I, right Frenkel state II).
The ECMEs are compared to the Davydov splitting of the coupled states (FullQM) and ECMEs of the monomer transition density approach (MTD). The curve labeled ‘‘STD
direct” refers to the coupling between all local transitions on monomer A and all local transitions on monomer B while ‘‘STD indirect” includes all additional matrix elements.

Table 3
Vertical excitation energies, oscillator strengths f, static dipole moments (SDM), transition dipole moments (TDM), percentage of one-electron contributions and CT matrices of
the studied P-structures with respect to their relaxed ground state geometries.

System State E (eV) (nm) f SDM (D) TDM (D) 1e� contr: ð%Þ XD!D ð%Þ XA!A ð%Þ XA!D ð%Þ XD!A ð%Þ
P_B2(-E-)A S1 2.65 (468) 0.84254 2.95 9.15 89 0 100 0 0

S2 3.38 (367) 0.14602 3.81 3.37 91 100 0 0 0
S3 3.39 (366) 0.00000 40.24 0.01 86 0 0 0 100
S8 4.19 (296) 0.00000 40.26 0.01 86 0 0 100 0

P_B2(-EPE-)A S1 2.63 (471) 0.75359 2.97 8.69 89 0 100 0 0
S2 3.37 (368) 0.14331 3.78 3.35 91 100 0 0 0
S7 3.77 (329) 0.00000 75.29 0.00 86 0 0 0 100
S9 4.62 (268) 0.00000 75.21 0.00 86 0 0 100 0

P_B2(-PE-)A S1 2.64 (470) 0.77963 2.98 8.82 89 0 100 0 0
S2 3.36 (369) 0.14331 3.77 3.35 91 100 0 0 0
S7 3.67 (338) 0.00000 62.66 0.00 86 0 0 0 100
S9 4.52 (274) 0.00000 62.57 0.00 86 0 0 100 0

P_B8(-PE-)A S1 2.53 (490) 0.67929 3.20 8.41 89 0 100 0 0
S2 3.36 (369) 0.15264 4.05 3.46 91 100 0 0 0
S6 3.53 (351) 0.00000 56.12 0.00 86 0 0 0 100
S9 4.40 (282) 0.00000 49.57 0.00 86 0 0 100 0

P_B2-A S1 2.61 (474) 0.97981 2.96 9.94 89 2 96 1 1
S2 2.91 (427) 0.00038 25.01 0.19 85 1 3 0 96
S3 3.36 (369) 0.13500 3.83 3.26 91 93 5 1 1
S7 3.64 (341) 0.00007 23.69 0.07 86 5 2 93 0

P_B2-E-A S1 2.45 (506) 1.04627 3.82 10.61 87 3 84 2 11
S2 2.75 (451) 0.00000 31.13 0.02 83 4 2 0 94
S3 3.12 (398) 0.26320 3.82 4.72 91 93 4 1 2
S6 3.34 (372) 0.00000 25.09 0.02 85 35 2 63 0

P_B2-EPE-A S1 2.45 (506) 1.07564 3.73 10.76 88 0 99 0 1
S2 3.09 (401) 0.46270 3.82 5.86 92 84 2 9 6
S4 3.32 (374) 0.00739 61.95 0.77 83 0 17 0 83

P_B2-PE-A S1 2.60 (477) 1.05301 2.94 10.33 90 1 91 4 4
S2 3.09 (401) 0.29518 3.77 5.02 92 50 11 19 20
S3 3.36 (369) 0.00329 53.91 0.51 83 4 26 1 69
S11 4.06 (306) 0.00046 55.73 0.17 84 4 26 68 2

P_B8-PE-A S1 2.58 (481) 0.67300 3.72 8.30 90 0 98 2 0
S2 3.10 (400) 0.39285 5.21 5.78 92 99 0 0 1
S3 3.36 (369) 0.00043 49.06 0.18 84 3 0 0 97
S7 3.83 (323) 0.00000 42.07 0.00 84 0 0 100 0
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and therefore a slightly higher total ECME in the STD approach in
comparison to MTD. Individual contributions of all coupling terms
to the ECMEs may be found in the SI.

The presence of a molecular linker gives rise to additional indi-
rect contributions to the total ECME. For all systems, we find
increased total ECMEs with both STD and MTD indicating an
enhancement of the EET process. However, the results obtained

using the MTD approach are substantially larger than the appropri-
ate STD couplings which can be traced back to the fact that indirect
contributions are not explicitly taken into account in the MTD
model and the total coupling therefore is overestimated. For
P_B2-A we find a direct contribution of 944 cm�1 in the STD
approach compared to 1263 cm�1 in the MTD approach. The devi-
ation of more than 200 cm�1 indicates that the decomposition of

Table 4
Vertical excitation energies, oscillator strengths f, static dipole moments (SDM), transition dipole moments (TDM), percentage of one-electron contributions and CT matrices of
the studied M-structures with respect to their relaxed ground-state geometries.

System State E (eV) (nm) f SDM (D) TDM (D) 1e� contr: ð%Þ XD!D ð%Þ XA!A ð%Þ XA!D ð%Þ XD!A ð%Þ
M_B2(-E-)A S1 2.60 (478) 0.78664 2.98 8.94 89 0 100 0 0

S2 3.30 (376) 0.00109 40.05 0.29 86 0 0 0 100
S3 3.37 (367) 0.17518 3.61 3.70 91 97 3 0 0
S8 4.20 (296) 0.00010 39.98 0.08 86 0 0 100 0

M_B2(-EPE-)A S1 2.58 (481) 0.70734 3.03 8.50 89 0 100 0 0
S2 3.37 (368) 0.15718 3.81 3.51 91 100 0 0 0
S7 3.68 (337) 0.00000 75.26 0.00 86 0 0 0 100
S9 4.64 (267) 0.00000 75.05 0.00 86 0 0 100 0

M_B2(-PE-)A S1 2.56 (485) 0.73601 3.04 8.67 89 0 100 0 0
S2 3.35 (370) 0.14975 3.84 3.42 91 100 0 0 0
S7 3.58 (347) 0.00000 62.65 0.00 86 0 0 0 100
S9 4.53 (274) 0.00000 62.56 0.00 86 0 0 100 0

M_B8(-PE-)A S1 2.54 (488) 0.70469 3.20 8.55 89 0 100 0 0
S2 3.36 (369) 0.15373 4.06 3.47 91 100 0 0 0
S5 3.52 (352) 0.00000 56.15 0.00 86 0 0 0 100
S9 4.41 (281) 0.00000 49.56 0.00 86 0 0 100 0

M_B2-A S1 2.47 (503) 0.83059 3.95 9.42 89 2 88 1 9
S2 2.85 (435) 0.07221 21.98 2.58 84 1 14 0 85
S3 3.31 (374) 0.15745 3.83 3.54 91 90 7 2 1
S8 3.71 (334) 0.00032 22.60 0.15 80 4 3 93 0

M_B2-E-A S1 1.94 (638) 0.68295 11.63 9.63 80 6 50 2 42
S2 2.64 (469) 0.59529 5.46 7.71 69 11 53 10 26
S3 2.88 (430) 0.05041 4.44 2.15 90 64 22 9 5
S8 3.58 (347) 0.00815 6.57 0.78 79 2 93 2 3

M_B2-EPE-A S1 1.98 (628) 1.05630 11.77 11.88 82 7 58 3 32
S2 2.63 (471) 0.37516 14.50 6.13 57 6 48 6 40
S3 2.67 (464) 0.59822 3.69 7.69 90 87 6 3 4
S6 3.22 (385) 0.08782 6.19 2.68 76 50 11 21 18

M_B2-PE-A S1 2.24 (552) 1.05376 8.55 11.13 86 6 72 2 20
S2 2.79 (445) 0.01956 16.29 1.36 70 22 40 0 38
S3 2.83 (438) 0.52841 3.82 7.02 80 85 4 3 8
S8 3.50 (354) 0.03283 17.99 1.57 76 47 9 40 4

M_B8-PE-A S1 2.58 (480) 0.69475 3.92 8.42 90 0 98 2 0
S2 2.86 (433) 0.68676 6.20 7.95 91 99 0 0 1
S3 3.06 (405) 0.00000 42.70 0.00 84 2 1 0 97
S5 3.39 (366) 0.00000 31.16 0.01 84 0 2 98 0

Table 5
Composition of the ECME of all P-systems computed using the supermolecular transition density approach (STD) in comparison with the monomer transition density approach
(MTD).

Method P_B2-A P_B2-E-A P_B2-PE-A P_B2-EPE-A P_B8-PE-A

STD Vdir 944 942 408 216 0
VCT 54 109 �93 22 0
Vpol 59 �62 �110 �23 0
Vcorr �10 �15 2 �3 0
Vtot 1047 974 207 212 0

MTD Vdir 1264 1092 455 346 0

P_B2(-E-)A P_B2(-PE-)A P_B2(-EPE-)A P_B8(-PE-)A
STD Vdir 443 137 78 0

VCT 17 0 0 0
Vpol �1 0 0 0
Vcorr �12 0 0 0
Vtot 448 137 78 0

MTD Vdir 467 134 76 0
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the molecular dimer into two isolated monomers fails at very close
separations of the interacting molecules. STD yields additional
positive indirect contributions (VCT and VPol) of 113cm�1 in total
and negative indirect contributions (VCorr) of 10cm�1 leading to a
total ECME of 1047 cm�1. In P_B2-E-A and P_B2-EPE-A, the CT
contributions (VCT) are positive while the polarization and correla-
tion contributions are negative. As VCT and VPol almost cancel each
other out, the total ECME is in the range of the direct contribution.
In P_B2-PE-A, we find a smaller total ECME than in P_B2-EPE-A
although the linker is shorter. This can be explained by the CT
and polarization terms which are both negative, thus drastically
reducing the direct contribution.

In P_B8-PE-A the direct coupling matrix element is zero due to
the perpendicular orientation of the transition dipole moments of
the interacting electronic states. Owing to the fact that all indirect
coupling matrix elements are zero as well, the high experimentally
obtained EET rate of 2:5� 1012 s�1 [5] can only be explained by
vibrational effects causing slight deviations from the perfectly per-
pendicular orientation of the transition dipole moments [9].

For the M-structures, the STD approach provides similar results
compared to the corresponding P-structures in case of M_B2-A and
M_B8-PE-A. Because DFT/MRCI-R yields strongly mixed wave
functions for the excited states of the residual three non-orthogo-
nally oriented EET cassettes, a proper determination of the ECME
using the STD approach is not possible in this case.

4. Conclusions

The redesigned DFT/MRCI-R Hamiltonian enables the calcula-
tion of excited state energies and properties for donor–acceptor
molecular systems. While the DFT/MRCI expansions of these sys-
tems suffer from physically inappropriate contributions of config-
urations with four open shells, DFT/MRCI-R provides a proper
description of the lowest-lying electronically excited states. Verti-
cal excitation energies could be obtained in good agreement with
the experiment except for cassettes in which an ethynyl linker is
directly coupled to the acceptor. In the latter cassettes, the shifts
of the optically bright transitions with respect to the corresponding
monomer transitions depend markedly on the relative orientation
of the donor, bridge, and acceptor p systems. As the torsional bar-
riers are very small (<50 meV), broad absorption bands result, in
agreement with experimental observations [6]. With regard to CT
transitions, DFT/MRCI-R reveals a similar long-range behavior as
the underlying BH-LYP density functional for which it was param-
eterized. It may thus be worthwhile to reparameterize the Hamil-
tonian in conjunction with long-range corrected functionals.

The newly introduced STD approach was shown to be a valuable
tool for the calculation of the electronic coupling matrix elements
including CT contributions. In case of non-linked donor–acceptor
systems, we generally recommend the use of the much faster
MTD approach since CT contributions play a negligible role. The
presence of a molecular linker gives rise to additional indirect con-
tributions reinforcing or reducing the direct coupling matrix
element.

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft
through projects TA 725/1-1 and MA 1051/14-1 and funds (INST
208/704-1 FUGG) to purchase the hybrid compute cluster used in
this study is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.chemphys.2016.
10.004.

References

[1] A. Treibs, F.-H. Kreuzer, Justus Liebigs Ann. Chem. 718 (1968) 208–223.
[2] A. Loudet, K. Burgess, Chem. Rev. 107 (2007) 4891–4932.
[3] L.J. Jones, R.H. Upson, R.P. Haugland, N. Panchuk-Voloshina, M. Zhou, R.P.

Haugland, Anal. Biochem. 251 (1997) 144–152.
[4] S. Hattori, K. Ohkubo, Y. Urano, H. Sunahara, T. Nagano, Y. Wada, N.V.

Tkachenko, H. Lemmetyinen, S. Fukuzumi, J. Phys. Chem. B 109 (2005) 15368–
15375.

[5] T.G. Kim, J.C. Castro, A. Loudet, J.G.-S. Jiao, R.M. Hochstrasser, K. Burgess, M.R.
Topp, J. Phys. Chem. A 110 (2006) 20–27.

[6] C.-W. Wan, A. Burghart, J. Chen, F. Bergström, L.B.-Å. Johansson, M.F. Wolford,
T.G. Kim, M.R. Topp, R.M. Hochstrasser, K. Burgess, Chem. Eur. J. 9 (2003)
4430–4441.

[7] R. Fink, J. Pfister, A. Schneider, H. Zhao, B. Engels, Chem. Phys. 343 (2008) 353–
361.

[8] R.F. Fink, J. Pfister, H.M. Zhao, B. Engels, Chem. Phys. 346 (2008) 275–285.
[9] J.D. Spiegel, M. Kleinschmidt, A. Larbig, J. Tatchen, C.M. Marian, J. Chem. Theory

Comput. 11 (2015) 4316–4327.
[10] W. Liu, B. Lunkenheimer, V. Settels, B. Engels, R.F. Fink, A. Köhn, J. Chem. Phys.

143 (2015) 084106.
[11] K. Andersson, P.Å. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski, J. Phys. Chem.

94 (1990) 5483–5488.
[12] P.G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, R. Shepard, Chem. Rev. 112

(2011) 108–181.
[13] S. Grimme, M. Waletzke, J. Chem. Phys 111 (1999) 5645–5655.
[14] M.R. Silva-Junior, M. Schreiber, S.P.A. Sauer, W. Thiel, J. Chem. Phys. 129 (2008)

104103.
[15] C.M. Marian, N. Gilka, J. Chem. Theory Comput. 4 (2008) 1501–1515.
[16] S. Siegert, F. Vogeler, C. Marian, R. Weinkauf, Phys. Chem. Chem. Phys. 13

(2011) 10350–10363.
[17] I. Lyskov, M. Kleinschmidt, C.M. Marian, J. Chem. Phys. 144 (2016) 034104.
[18] F. Plasser, H. Lischka, J. Chem. Theory Comput. 8 (2012) 2777–2789.
[19] T. Helgaker, H. Larsen, J. Olsen, P. Jrgensen, Chem. Phys. Lett. 327 (2000) 397–

403.
[20] E. Hennebicq, G. Pourtois, G.D. Scholes, L.M. Herz, D.M. Russell, C. Silva, S.

Setayesh, A.C. Grimsdale, K. Müllen, J.-L. Brédas, et al., J. Am. Chem. Soc. 127
(2005) 4744–4762.

[21] B. Fückel, A. Köhn, M.E. Harding, G. Diezemann, G. Hinze, T. Basché, J. Gauss, J.
Chem. Phys 128 (2008) 074505.

[22] V. Stehr, B. Engels, C. Deibel, R. Fink, J. Chem. Phys 140 (2014) 024503.
[23] V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems,

Wiley-VCH, 2004.
[24] T. Förster, Ann. Phys. (Berlin) 437 (1948) 55–75.
[25] B.P. Krueger, G.D. Scholes, G.R. Fleming, J. Phys. Chem. B 102 (1998) 5378–5386.
[26] J. Neugebauer, J. Chem. Phys 126 (2007) 134116.
[27] C. König, N. Schlüter, J. Neugebauer, J. Chem. Phys. 138 (2013) 034104.
[28] S. Höfener, L. Visscher, J. Chem. Theory Comput. 12 (2016) 549–557.
[29] K.J. Fujimoto, J. Chem. Phys. 137 (2012) 034101.
[30] K.J. Fujimoto, in: T. Akasaka (Ed.), Chemical Science of p-Electron Systems,

Springer, 2015, pp. 761–777.
[31] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)

11623–11627.
[32] TURBOMOLE V6.5 2013. A development of University of Karlsruhe and

Forschungszentrum Karlsruhe GmbH (1989–2007), TURBOMOLE GmbH,
since 2007, available from http://www.turbomole.com.

[33] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys 97 (1992) 2571–2577.
[34] M. Kleinschmidt, C.M. Marian, M. Waletzke, S. Grimme, J. Chem. Phys. 130

(2009) 044708.
[35] A.D. Becke, J. Chem. Phys 98 (1993) 1372–1377.
[36] O. Vahtras, J. Almlöf, M. Feyereisen, Chem. Phys. Lett. 213 (1993) 514–518.
[37] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 294 (1998) 143–

152.
[38] E.V. de Wael, J.A. Pardoen, J.A. van Koeveringe, J. Lugtenburg, Recl. Trav. Chim.

Pays-Bas 96 (1977) 306–309.
[39] A.C. Benniston, G. Copley, Phys. Chem. Chem. Phys. 11 (2009) 4124–4131.
[40] D. Biermann, W. Schmidt, J. Am. Chem. Soc. 102 (1980) 3163–3173.
[41] J. Ferguson, L.W. Reeves, W.G. Schneider, Can. J. Chem. 35 (1957) 1117–1136.
[42] I. Berlman, Handbook of Florescence Spectra of Aromatic Molecules, Academic

Press, N.Y., 1971.
[43] J. Schiedt, R. Weinkauf, Chem. Phys. Lett. 266 (1997) 201–205.
[44] http://www.nist.gov.
[45] J.W. Knight, X. Wang, L. Gallandi, O. Dolgounitcheva, X. Ren, J.V. Ortiz, P. Rinke,

T. Körzdörfer, N. Marom, J. Chem. Theory Comput. 12 (2016) 615–626.
[46] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 (1993) 799–805.

12 J.D. Spiegel et al. / Chemical Physics xxx (2016) xxx–xxx

Please cite this article in press as: J.D. Spiegel et al., Chem. Phys. (2016), http://dx.doi.org/10.1016/j.chemphys.2016.10.004















Failure of the IDA in FRET Systems at Close Inter-Dye Distances Is
Moderated by Frequent Low κ2 Values
J. Dominik Spiegel,† Simone Fulle,§ Martin Kleinschmidt,† Holger Gohlke,‡ and Christel M. Marian*,†

†Institute of Theoretical and Computational Chemistry and ‡Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine
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ABSTRACT: Förster resonance energy transfer (FRET) is analyzed in terms of distance-
and orientation-dependent interactions between the transition dipole moments of the
involved donor and acceptor molecules. However, the ideal dipole approximation (IDA) is
known to fail at short donor−acceptor distances. In this work, we model FRET in a Cy5-
and Alexa Fluor 488-labeled double-stranded RNA by means of combined molecular
dynamics (MD) simulations and quantum-chemical calculations involving the IDA as well
as the more sophisticated monomer transition density (MTD) approach. To this end, the
relaxed ground-state geometries of the dyes were fitted to the MD-based structures.
Although substantial deviations between IDA and MTD results can be observed for
individual snapshots, the statistical impact of the failure on the FRET rates is negligible in
the chosen examples. Our results clearly demonstrate that the IDA-based Förster model
can still be applied to systems with small donor−acceptor distances, provided that the dyes
are not trapped in arrangements with a high IDA failure and that the distribution of the
relative transition dipole orientations is fairly isotropic.

■ INTRODUCTION
Förster resonance energy transfer (FRET)1 is a powerful
method applied in biophysics for the analysis of the structure
and dynamics of biomolecular systems such as proteins or
nucleic acids.2−4 Labeling the target system with a suitable pair
of fluorescent dyes, excitation energy can be transferred from
an electronically excited singlet state of the donor to the
acceptor.

* + → + *D A D A

Whereas the excited donor D* returns to its singlet ground
state in a nonradiative process, the acceptor A is excited to its
first excited singlet state and relaxes to its electronic ground
state by fluorescence. As the efficiency of the process depends
on the distance and the relative orientation of the two
fluorophores, structural information of the target system can be
deduced from the excitation energy transfer (EET) rate.5 The
experimental determination of intermolecular distances is
directly based on the FRET efficiency E, which is defined as
the ratio of the EET rate and the sum of all rates describing the
decay of the excited donor (EET, fluorescence, and non-
radiative processes).6

=
+ +

E
k

k k k
EET

EET fl nr (1)

The FRET efficiency can, for instance, be obtained from the
donor fluorescence intensity in the presence and absence of the
acceptor. The donor−acceptor distance r for which the FRET
efficiency reduces to 50% is defined as the Förster radius RF.

=
+ ( )

E
1

1 r
R

6
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The exponent of six in the denominator of eq 2 can be traced
back to the fact that the Förster model is based on the ideal
dipole approximation (IDA) describing the excitonic coupling
of the interacting dyes as the interaction between two transition
dipole moments. The EET rate is proportional to the square of
this coupling, which decreases with the third power of the
donor−acceptor distance. The Förster radius is a constant
parameter for a given pair of dyes, which depends on the
fluorescence quantum yield of the donor, QD, and the spectral
overlap integral of the donor emission and acceptor absorption
spectra. [The acceptor absorption spectrum, αA(λ), is
normalized to the intensity of the absorption maximum and
weighted by the molar absorption coefficient (M−1 cm−1)
whereas the donor fluorescence spectrum, FD(λ), is normalized
to unit area (dimensionless). Therefore, the quantity is given in
units of M−1 cm−1 nm4 if a nm energy scale is used.]
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where n is the refractive index of the solvent and 2 is the
orientation factor. FRET provides accurate results on the scale
of the target system, typically in the range of 30−80 Å.7 A
similar distance range is covered by EPR spectroscopy, with
continuous-wave EPR providing distance information up to
25 Å,8 and advanced pulse EPR methods, such as pulsed

electron double resonance (PELDOR),9,10 up to 60 Å.
Complementary structural information for lower distances
down to 5 Å can be obtained by nuclear magnetic resonance
spectroscopy.7,11

The first biophysical application of FRET started in 1970.12

Whereas the early research was focused on proteins,
applications to nucleic acids have become more important
since the 1980s. In biomedical research, FRET is used as a
reporter method for monitoring di erent reactions of the
DNA.12 In 1985, Heller and Morrison13 presented a FRET-
based method permitting a real-time observation of the
hybridization process of oligonucleotides to a DNA sequence.
A method for monitoring DNA amplification by the polymer-
ase chain reaction was developed by Livak et al.14,15

Furthermore, the cleavage of a DNA by restriction enzymes
can be verified due to separation of donor and acceptor
moieties in space if the DNA is labeled with a pair of FRET
dyes at suitable positions.16 In bioanalytics, FRET-based
biosensors are used for the detection of heavy metals.17 A
comprehensive review on DNA-based FRET applications in
vitro and in vivo has been given by Didenko.12 In the recent
past, important RNA-based FRET applications have also been
reported. Berman et al. could show by means of single molecule
FRET (sm-FRET) that the RNA-subunit of the ribonucleo-
protein telomerase contributes to the template positioning
within the active site.18 In 2014, Keller et al. presented a study
on the folding kinetics of the Diels−Alderase ribozyme, which
is based on a newly devised hidden Markov model for the
evaluation of sm-FRET measurements.19 An experimental
study on the Mg2+-facilitated conformational change of an
RNA three-helix junction was reported by Kim et al.20

Typically, large molecular linkers are used to couple the dyes
to the target system. By this means, a largely free rotation of the
dyes in space is achieved, such that the mean relative donor−
acceptor orientation follows the well-known isotropic proba-
bility distribution.21−23 Because classical FRET theory is based
on the IDA,1,24 a reasonable structure prediction is possible
only if the assumption of the IDA is widely valid.
As the IDA is known to fail at small donor−acceptor

distances,25 the question arises as to how strongly this failure
a ects the conclusions drawn for a realistic system. To this end,
we studied the dynamics of a double-stranded RNA (dsRNA)
tagged with Alexa Fluor 488 as the exciton donor and Cy5 as
the acceptor at di erent positions. Both dyes as well as the
dsRNA are known to be largely rigid such that the flexibility of
the whole system is mainly based on the degrees of freedom of
the linkers.2,26,27 Similar model systems with larger donor−
acceptor distances have been extensively studied by Seidel,
Gohlke, and co-workers using both experimental and
theoretical methods.2−4,28 Widengren and Schwille stated that
approximately 50% of Cy5 undergoes a photoisomerization to
the nonfluorescent cis-conformer, which is not able to transfer
the excitation energy to the acceptor dye.28 In this work, we
neglect isomerization processes and concentrate on the
fluorescent trans-conformer of Cy5. In 2002, Dietrich et al.
presented an anisotropy-measurement-based study on the
impact of the distance between di erent rhodamine and

cyanine dyes on the FRET efficiency.29 Using C6-aminolinkers
to attach the dyes to a rigid oligonucleotide, they found that in
none of their model systems did the dyes rotate freely in space,
resulting in a dynamic inhomogeneous distribution of the
donor−acceptor distance and orientation. The FRET efficiency
was found to be strongly correlated with the donor−acceptor
distance, depending on whether fluorescence quenching or
electron transfer was promoted. In 2010, Di Fiori and Meller
reported a sm-FRET study on the e ect of dye−dye
interactions in double-stranded DNA molecules labeled with
di erent rhodamine and cyanine dyes.30 The authors state that
sm-FRET can be used for the accurate determination of inter-
dye distances even at small distances down to 3 nm. A time-
dependent density functional theory (TD-DFT) and config-
uration interaction singles-based study on critical FRET
distances between cyanine and rhodamine dyes was presented
by Munoz-Losa et al.31 The IDA was found to perform well
down to inter-dye distances of about 20 Å in the case of an
isotropic transition dipole distribution and down to about 50 Å
if the molecular motions of the dyes are restricted. In 2011,
Speelman et al.32 presented a theoretical study on the sampling
methods of donor−acceptor excitonic couplings obtained from
molecular dynamics (MD) simulations, focusing on the
problem of transiently occupied states. The couplings were
calculated using either the IDA, which was found to
significantly overestimate the couplings at close distances, or
a more sophisticated approach based on the full donor and
acceptor transition densities. The authors state that a Markov
chain-based sampling model, accounting for fluctuations in the
EET rate, provides physically better results in comparison with
an independent sampling of equally weighted trajectory points.
In this work, we aimed at providing a fast and efficient

method for making a large number of donor acceptor
configurations, obtained from MD simulations, accessible to a
quantum-chemical approach beyond the IDA to investigate the
impact of a possible failure of IDA on FRET rates. Simplified
DFT-optimized relaxed ground-state structures of Alexa Fluor
488 and Cy5 were fitted to frames of the MD trajectories,
minimizing the root-mean-square deviation (RMSD). Using the
transformation matrix for rotating the molecular orbitals
(MOs), a computationally costly recalculation of the transition
density matrices of the dyes can be avoided.

■ THEORETICAL METHODS
MD Simulations. Starting Structure Generation. Canon-

ical A-form dsRNA structures were generated using the nucgen
module of the Amber10 package.33 The linker and dye residues
of Cy5 were attached to a modified uracil base of the 8th
nucleotide from the 5 -end of one RNA strand, whereas
di erent positions were tested for attaching the linker carrying
the Alexa Fluor 488 dye to sample small distances between the
two dyes. The initially tested sequence and dye positions are
given below, where the colored nucleotides refer to the labeling
positions with dyes Cy5 (red) and Alexa Fluor 488 (brown,
blue, green, and purple).

The smallest distances ( 8 Å) between the dyes were
sampled by attaching the linker carrying the Alexa Fluor 488
dye to a modified uracil base at position 23nt (23rd nucleotide
in the 3 → 5 direction) (purple) followed by a few snaphots
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with distances about 10 Å by attaching Alexa Fluor 488 at
position 14nt (brown) and 20nt (green).
Further dye positions of Alexa Fluor 488 (blue and green)

were tested around position 23nt using the sequence and dye
positions given below.

In doing so, several snapshots with small distances between the
dyes ( 8 Å) were sampled by attaching Alexa Fluor 488 to a
modified uracil base at position 22nt (green).
The trajectories with Alexa Fluor 488 attached to positions

22nt and 23nt thus formed the basis for the main analysis and
are named dsRNA_8nt_22nt and dsRNA_8nt_23nt. For
comparison, we also analyzed the trajectories with Alexa
Fluor 488 attached to position 14nt (dsRNA_8nt_14nt), as
this position is very close to the anchor point of Alexa Fluor
488 but nevertheless results only in distances of about 10 Å. In
addition, the simulation of dsRNA_8nt_23nt was repeated to
enhance the sampling of snapshots with small distances
between the dyes (named dsRNA_8nt_23ntII).
Setup of MD Simulations and Production Runs. All MD

simulations were performed with the AMBER14 suite of
programs33 together with the 99SB force field.34,35 Charges of
the dyes, the 6-aminohexanal part of the linker, and the
remaining part of the modified nucleotide (prop-2-en-1-amine
group) were determined separately using the RESP proce-
dure,36 which involves restrained fitting to an electrostatic
potential derived at the HF/6-31G* level. Other force-field
parameters were assigned using the generalized Amber force
field (GAFF),37 which is appropriate given that the linker
consists of -amino acids and that the dyes are largely rigid. To
prevent large internal motions of the RNA, harmonic positional

restraints with force constants of 1 kcal/(mol × Å2) were
applied to all phosphorus atoms. That way, the main results of
our simulations should not be sensitive to the Amber force field
used for the dsRNA. For explicit solvent MD simulations, Mg2+

ions were added at a concentration of 0.02 M. Nonbonded
parameters for Mg2+ were taken from Åqvist.38 The system was
neutralized by adding sodium counter ions and solvated in a
box of TIP3P water molecules,39 forming a solvent shell of at
least 11 Å around the solute. The system was thermalized (see
below) and then simulated in the canonical ensemble (constant
number of particles, temperature, and volume; NVT) using the
particle mesh Ewald method40 to treat long-range electrostatic
interactions; bonds involving hydrogen atoms were constrained
by the SHAKE algorithm.41 The integration time step for the
MD simulations in explicit water was 2 fs, with a direct-space,
nonbonded cuto of 9 Å. Conformations saved at 20 ps
intervals were used for analysis. The analyzed MD trajectories
had a length of 300 ns for dsRNA_8nt_14nt and 400 ns for
dsRNA_8nt_22nt, dsRNA_8nt_23nt, and dsRNA_8nt_23n-
tII, respectively.

Thermalization Protocol for MD Simulations. Initially, the
energy of the system was minimized by 250 steps of a steepest
descent minimization followed by 250 steps of a conjugate
gradient minimization. Afterward, MD simulations in the
canonical ensemble were carried out for 50 ps during which
the system was heated from 100 to 295 K. Subsequently, MD
simulations in the isothermal−isobaric ensemble (NPT) were
performed for 50 ps to adjust the solvent density. Harmonic
restraints with force constants of 5 kcal/(mol × Å2) were
applied to all solute atoms during these steps. Finally, the
harmonic constraints were removed from the dyes, and those
applied to the RNA nucleotides were gradually reduced to 1
kcal/(mol × Å2) during 250 ps of NVT-MD.

Figure 1. Structures of (a) Alexa Fluor 488 and (b) Cy5 bound to a uridine unit of the dsRNA as well as simplified structures (c) and (d) used for
QM calculations. Location of the mass-weighted average positions (blue boxes) and transition dipoles (dashed blue arrows) used to calculate
distances and angles between the dyes within the MD part of this article. Parts of the model structures considered for the fit to the MD snapshots are
highlighted in blue.
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Analysis of MD Trajectories. Within the MD part of this
work, distances between the dyes were calculated between the
centers of mass defined by the mass-weighted average positions
of C9 and O10 in the xanthene ring of Alexa Fluor 488 and C3
of the pentyl chain of Cy5 (Figure 1; blue boxes). The angles
between the orientations were calculated on the basis of the
transition dipoles, defined by the vector between the average
positions of C2 and C3, and C6 and C7, in the xanthene ring in
Alexa Fluor 488 and the vector between the C2 atoms of the
two 2,3-dihydro-1H-indole rings in Cy5 (Figure 1; dashed blue
arrows). In this work, we consider only the trajectories in which
Cy5 is all-trans configured in the electronic ground state. In all
QM-based calculations, the centers of mass were calculated
from the positions and masses of all atoms of the appropriate
dye. The distance refers to the length of the vector connecting
the centers of mass of the two dyes. The transition dipole
moments were obtained from DFT-optimized structures (see
below), which were adapted by rotation to the MD orientation
of the appropriate dye.
Quantum-Chemical Calculations. Simplified Structures

of the Dyes. Within the QM part of our calculations, we used
simplified structures of Alexa Fluor 488 and Cy5 (Figure 1). To
avoid handling of the strongly negatively charged systems,
which are poorly described by usual density functionals, the
sulfonate groups were removed. Alexa Fluor 488 is a sulfonate
derivative of a rhodamine precursor. Sulfonation aims to
achieve a better water solubility and to prevent quenching
e ects due to sticking to nucleic acids.42 However, the dye is
reported to have absorption and emission maxima close to its
precursor.42 The same holds true for Cy5 compared to its
nonsulfonated precursor Quasar 670.43 Therefore, we assume
the simplifications to be justified for our purposes.
Furthermore, we performed test calculations on Alexa Fluor
488 and Cy5 including the sulfonate substituents with and
without explicit solvation. Although the absorption behavior
can be excellently reproduced, the description of the emission
behavior fails when sulfonate groups are present. In these cases,
TD-DFT, used for the geometry optimization of excited states,
yields electronic structures that are dominated by charge-
transfer (CT) instead of local excitations. A further
simplification was introduced by substitution of the carboxylate
group located at the phenyl ring of Alexa Fluor 488 by an ethyl
ester to prevent cyclization of the structure during the geometry
optimization of the S1 state.
As previously reported, we used a solvation model including

six explicit water molecules for the calculation of the vertical
excitation energies and the excited-state properties of the
rhodamine dye.44 Two water molecules each were placed on
the two amino groups and the other two close to the central
oxygen atom of the xanthenyl moiety. The microhydration
model correctly describes hydrogen bonding e ects between
solvents and solutes, which turned out to be essential for
reproducing the solvent shift of rhodamines in polar protic
solvents.44,45 To obtain a perfectly Cs symmetric structure,
better suited for a fit to the MD structures, the methyl groups
located at the nitrogen atoms of Cy5 were substituted by
hydrogen. In the rest of the text, we do not distinguish between
the original and simplified structures of the dyes.
Geometry Optimization. The equilibrium geometries of the

singlet ground states (S0) of both (simplified) Alexa Fluor 488
and Cy5 were optimized using DFT in conjunction with the
BHLYP hybrid functional.46 The molecular structures of the
first excited singlet states (S1) of both dyes were optimized

using TD-DFT. All calculations were performed with
TURBOMOLE 6.5,47 employing a basis set of split valence
quality with polarization functions on all atoms (SVP).48

Frequency analyses at the S0 and S1 minimum geometries were
carried out using the SNF program package.49

Excitation Energies and Transition Densities. The photo-
physical properties at the ground- and excited-state minima of
the dyes (vertical transition energies, transition density
matrices, and transition dipole moments) were calculated
using the combined DFT and multi-reference configuration
interaction (MRCI) program.50 In these calculations, Kohn−
Sham orbitals of a ground-state calculation employing the
BHLYP functional46 were used. In the semiempirical DFT/
MRCI method, dynamic correlation e ects are considered by
DFT, whereas static correlation e ects are taken into account
by a MRCI expansion. The configurations used in the MRCI
are based on the Kohn−Sham orbitals of a closed-shell
electronic state. At present, parameter sets are available for
the BHLYP functional.50,51 Double counting of dynamic
correlation is avoided by damping the o -diagonal matrix
elements by a rapidly decreasing function that depends on the
energy di erence of the configurations and a cuto parameter.
Within this article, we used the original set of parameters50 and
an orbital selection energy threshold of 1.0 EH to compute the
lowest 12 eigenvectors in the case of Cy5 and the lowest 30
eigenvalues in the case of Alexa Fluor 488. The initial MRCI
reference space was spanned by all single and double excitations
from the six highest occupied MOs to the six lowest
unoccupied MOs of the ground-state Kohn−Sham determi-
nant. A second DFT/MRCI step was performed, with a refined
reference space comprising all configurations that contribute to
one of the 12 (30) lowest-lying eigenvectors of the initial DFT/
MRCI calculation, with a squared coefficient of 0.003 or larger.

Vibrationally Resolved Spectra. Vibrationally resolved
absorption and emission spectra of both Alexa Fluor 488 and
Cy5 were generated with the VIBES program52,53 using a
temperature of 298 K, an integration time interval of 3000 fs,
and a Gaussian damping of the correlation function of width
100 cm−1. To avoid large displacements of the normal
coordinates due to explicit solvent molecules, we used the
normal modes and geometries of the relaxed S0 and the S1
states in vacuum. The obtained vibrationally resolved spectrum
was shifted by the adiabatic energy di erence of the relaxed S0
and S1 states in the presence of an aqueous environment.

EMCE, EET Rates, Spectral Overlap, and EET Efficiencies.
According to Fermi’s golden rule, the EET rate can be
calculated in Condon approximation from the excitonic
coupling matrix element (ECME) and the Franck−Condon
weighted density (FCWD) of the involved excited states24

π= | | | |

| | × + − −

* *
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k V f E f E

E E E E
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2
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where f(ED*M) is the thermal occupation of the vibrational state
M of the electronically excited donor molecule with energy
ED*M. Likewise, f(EAL) denotes the thermal occupation of the
vibrational state L of the acceptor molecule in the electronic
ground state with energy EAL, and so forth. The delta
distribution term ensures that only energy-conserving processes
contribute to the EET rate. denote purely vibrational
wavefunctions of the donor and acceptor molecules in the
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electronic ground and excited states, respectively. The FCWD
can be easily approximated as an overlap integral of the
vibrationally resolved donor emission ID(E) and the acceptor
absorption AA(E) spectra, both normalized to unit area on an
energy scale.54 It should be mentioned that this definition of
the spectral overlap integral, which is based only on the line
shapes of the spectra, is di erent from the definition in eq 3.
The integral in the theoretical expression (eq 5) accounts for
only the FCWD, whereas the integrated experimental
intensities in eq 3 also cover the absolute values of the
transition dipole moments, which are part of the ECME.

∫π= | |k V A E I E E
2

( ) ( ) dEET DA
2

0
A D (5)

If dDA is large compared to the intramolecular extensions of
molecules D and A, the ECME is well described by the IDA1,25

as the dipole−dipole interaction between the transition dipole
moments D and A of the donor and acceptor localized states.
Furthermore, if Dexter55 and CT contributions can be
neglected, the ECME in IDA is given by

κ=
| |·| |
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d
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The orientation factor 2 depends on the relative orientation
of the interacting transition dipole moments56

κ = −n n e n e n( 3( )( ))2
A D DA A DA D

2
(7)

where eD⃗A, n⃗D, and n ⃗A are unit vectors pointing in the directions
of the intermolecular distance vector and the transition dipole
moments, respectively.24

At small donor−acceptor distances, the Dexter EET cannot
be neglected. Moreover, when the intermolecular separation is
of the same size as the intramolecular extension, the expression
for the dipole−dipole contribution in eq 6 becomes
questionable. In these cases, the monomer transition density
(MTD) approach was shown to provide better results than the
IDA.57−59 The method approximates the ECME as the sum of
direct and exchange interactions between the spinless reduced
one-electron transition density matrices D and A of the donor
and acceptor, respectively,
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where we have used the Mulliken convention for denoting the
electronic repulsion integrals.
For each considered MD snapshot, the optimal overlay of the

quantum mechanically and classically determined structures
was computed and the ECMEs were calculated with IDA (eq
6) and MTD (eq 8). To speed up the calculation, we neglected
all transition density matrix elements with an absolute value
below 1.0 × 10−7a0. EET rates were calculated from the spectral
overlap integral and ECMEs according to eq 5. The EET
efficiency was computed according to eq 1 from the calculated
EET rate and the calculated fluorescence rate of Alexa Fluor
488, neglecting nonradiative transitions.
Structure Superposition. To find the optimal overlay of the

simplified DFT-optimized structures of Alexa Fluor 488 and
Cy5 and those obtained from MD trajectory snapshots, we
implemented a quaternion-based algorithm developed by

Coutsias et al.60 In contrast to the Euler transformation, this
approach does not su er from coordinate singularities. In the
Supporting Information (SI), we give a brief summary of the
working principle. To represent the MD-based configuration of
the dyes as best as possible, we neglected extremely flexible,
freely rotating groups and hydrogen atoms in the fitting
procedure (Figure 1). The calculated RMSD values serve as a
measure of quality and refer to those parts of the dyes that have
actually been aligned.

Rotation of MOs. To avoid a recalculation of the transition
density matrix of the DFT-optimized structures fitted to the
MD-based structures by translation and rotation, the MOs of
each dye have to be rotated as well. Mathematically, the
rotation of MOs is treated as a basis set transformation. MOs i
can be expressed as linear combinations of a set of atom-
centered basis functions j

=
=

ci
j

N

ij j
1 (9)

where cij are the expansion coefficients. Herein, the basis
functions are Cartesian Gaussians that can be divided into s-, p-,
d-, ...-type functions. On changing the orientation of the
molecule in space leaving the coordinate system unchanged, the
atom-centered basis functions are shifted to new positions,
whereas their orientation with respect to the coordinate axes
remains una ected. Instead of rotating the molecule within the
coordinate system, the latter can be rotated while keeping the
molecule fixed. From this point of view, the positions of the
basis functions remain una ected but their orientation coupled
to the orientation of the coordinate axes changes. Because the
MOs are completely independent of the location of the
molecule within the coordinate system, the expansion
coefficients change when the orientation of the atomic orbital
(AO) basis is altered. The transformation matrix T between the
old and new AO basis can be used to obtain the new expansion
coefficients C(new).

= −C T C(new) 1 (10)

The transformation is applied in blocks of basis functions
with the same angular momentum. Whereas s-functions are
independent of the rotation of the coordinate system due to
their spherical symmetry, the transformation matrices of higher
angular momentum functions can be expressed by Euler angles.
In this work, we use Euler transformations directly deduced
from the quaternion corresponding to the best-fit superposition
of model and target structures for the rotation of the MOs.
Transformation matrices for p- and d-functions as well as
information on the conversion of quaternions to Euler angles
are given in the SI.

■ RESULTS AND DISCUSSION
Quantum-Chemical Description of the Dyes. Alexa

Fluor 488. In 2014, some of us already reported on the
absorption and emission spectra of rhodamine A (RhA)
calculated at the DFT/MRCI level of theory.44 Because RhA
is used here as a model system to mimic the spectral properties
of Alexa Fluor 488, the relevant results of that study will be
briefly reviewed in the following. We also comment on the
calculation of the vibrationally resolved emission spectrum.
To calculate the vertical excitation energies with respect to

the relaxed S0 and S1 geometries, an explicit solvation model
comprising six water molecules was used to take account of
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hydrogen bonding e ects.44 Further tests showed that an
implicit solvent model produced almost no solvent shift, in
contrast to experimental evidence. The S1 wave function is
mainly composed of the HOMO → LUMO excitation. The
involved frontier orbitals are predominantly localized on the
xanthene moiety of the molecule (Figure 2). Because of its high

oscillator strength of 0.98, the S0 → S1 transition dominates the
spectrum. The vertical excitation energy at the ground-state
equilibrium geometry is 2.51 eV (493 nm, 20 276 cm−1). This
value is in excellent agreement with the experimental
absorption maximum of 2.48 eV (500 nm, 20 000 cm−1) of
RhA61 and with the absorption maximum of Alexa Fluor 488
(2.50 eV, 495 nm, 20 202 cm−1)62 measured in aqueous
solution. This confirms that the introduced structure
simplifications have a minor e ect on the spectral properties.
The calculated transition dipole moment of the S0 → S1
transition has an absolute value of 10.1 D and points in the
direction of the long molecular axis of the xanthene molecular
frame (Figure 1).
A DFT/MRCI calculation at the geometry of the optimized

S1 state yields a vertical emission energy of 2.39 eV (520 nm,
19 244 cm−1) with a transition dipole moment of 10.1 D. The
calculated emission energy is in excellent agreement with the
experimental fluorescence maximum of rhodamine 123 at 2.36
eV (524 nm, 19 084 cm−1)61,63 and the experimental

fluorescence maximum of Alexa Fluor 488 measured in aqueous
solution (2.39 eV, 519 nm, 19 268 cm−1).62 (In rhodamine 123,
the ethyl ester of RhA has been exchanged for a methyl ester.)
For the calculation of the band shape of the emission spectrum
(Figure 3), we used the normal modes of the relaxed S0 and S1
geometries in vacuum, respectively. The calculated spectrum is
in excellent agreement with the experimental spectrum64,65 and
has a maximum at 18 789 cm−1 and a shoulder at approximately
17 300 cm−1.

Cy5. The electronic ground state and the first excited state of
our Cy5 model can be classified according to the C2v molecular
point group. The S1 wave function is mainly composed of the
HOMO → LUMO excitation and, to a minor extent, of
HOMO − 1, HOMO → LUMO2, and HOMO − 1 → LUMO
+ 1. Except for HOMO − 1, the involved frontier orbitals are
mainly localized on the polyene backbone of the molecule
(Figure 2). The calculated vertical excitation energy at the
ground-state equilibrium geometry is 1.99 eV (622 nm, 16 067
cm−1). Comparison of these results to the experimental value of
1.92 eV (646 nm, 15 480 cm−1)62 measured in water suggests
that the DFT/MRCI method describes the S0 → S1 transition
with a sufficient degree of accuracy. The calculated transition
dipole moment has an absolute value of 15.9 D and points in
the direction of the polyene bridge (Figure 1). A DFT/MRCI
calculation at the geometry of the relaxed S1 state yields a
vertical emission energy of 1.82 eV (679 nm, 14 730 cm−1) with
a transition dipole moment of 16.4 D, in very good agreement
with the experimental value of 1.87 eV (662 nm, 15 106
cm−1).62

The vibrationally resolved absorption spectrum (Figure 3)
shows a maximum at 15 520 cm−1 and a smaller shoulder at
approximately 16 700 cm−1. Although the shape and spectral
shift are in perfect agreement with the experiment, the relative
intensity of the absorption maximum is slightly underestimated
in the calculation.
The spectral overlap integral obtained from the normalized

fluorescence spectrum of the exciton donor Alexa Fluor 488
and the normalized absorption spectrum of exciton acceptor
Cy5 according to eq 5 is 1.23 × 10−4 cm when a wavenumber
scale is used.

ECME Benchmark Calculations. To get a first impression of
the donor−acceptor distance critical for a proper description by
the IDA, we performed a distance scan of the ECME calculated
with both IDA and MTD, taking the example of a -stacked
arrangement of Alexa Fluor 488 and Cy5 (Figure 4a) in which
the transition dipoles are oriented in a parallel manner ( 2 = 1).
For this orientation, we find pronounced deviations between
IDA and MTD for distances approximately 15 Å. In contrast,
for larger distances in the typical FRET range of >30 Å, IDA
and MTD are in perfect agreement. The case of perpendicular
orientation ( 2 = 0) was not considered because the ECME is 0
by definition.
In the framework of FRET, the donor−acceptor distance is

defined as the length of the intermolecular distance vector
between the barycenters of the interacting dyes. Although the
quantity is well defined for the molecular -stack, it
overestimates the real distance in a collinear arrangement ( 2

= 4). For the closest possible collinear arrangement of the Alexa
Fluor 488 and Cy5 model systems, the length of the distance
vector is 17 Å . For such an arrangement, we find pronounced
deviations between IDA and MTD for distances 20 Å (Figure
4a). To account for the problem concerning the definition of
the distance vector, we performed a further benchmark

Figure 2. Frontier MOs involved in the S0 → S1 transitions of the
model structures of Alexa Fluor 488 and Cy5.
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calculation starting from a -stacked arrangement with a fixed
distance of 4.23 Å (Figure 4b). Shifting Cy5 along the long axis
of the xanthene frame of Alexa Fluor 488, the orientation factor
first steeply decreases from 1 to 0 and then gradually increases
to 4 until an almost collinear arrangement is reached. Whereas
a coplanar orientation of the transition dipole moments always
leads to an orientation factor of 1, 2 varies between 0 and 4 for
other parallel arrangements. A detailed explanation of this
behavior has been given by van der Meer.56 In our calculations,
we find a small but pronounced underestimation of the ECME
by the IDA from 20 Å down to 12 Å where the orientation
factor is in the range of 2.5−3.5. For a donor−acceptor distance
below 10 Å, where 2 < 2, the IDA strongly overestimates the
ECME.
As high orientation factors indicating an almost collinear

orientation of the dyes are statistically of small importance
according to an isotropic dipole distribution (Figure 5), we
refer to the value of 15 Å obtained from the first benchmark
calculation and consider donor−acceptor distances below this
threshold to be critical.
Analysis of the MD Trajectories. Quality of the Fit. To

check whether the calculated trajectories are suitable for our
purpose of studying EET at small distances, we analyzed the
donor−acceptor distance as well as the angle between the
transition dipole moments. Indeed, we could identify a
sufficient number of snapshots below the critical distance of
15 Å and transition dipole orientations di erent from 90°
(Figure 6). For each snapshot of the MD trajectories, the dyes
were replaced with their simplified DFT-optimized counter-
parts by a fitting procedure (Figure 7). For Alexa Fluor 488, we
find a largely constant RMSD in the range of 0.2 Å, which is
considered satisfactory. For Cy5, the RMSD mainly varies in an
interval between 0.7 and 1.0 Å. This high RMSD relates to the
fact that the polyene system of Cy5 is much more flexible and
therefore more difficult to fit than the largely rigid xanthene
moiety of Alexa Fluor 488.

Arrangement of the Dyes within the Different Setups. Our
investigations are based on three di erent setups di ering in the
position at which Alexa Fluor 488 is linked to the dsRNA,
whereas the position of Cy5 remains unchanged (Figures 8). By
choosing di erent anchor positions, the relative arrangement of
the dyes can be controlled. In all setups, the dyes are linked to
complementary strands of the dsRNA and di er in the number
of nucleotides in between. Generally, we find that Cy5
preferably tends to stick to the RNA backbone, whereas
Alexa Fluor 488, in contrast, moves largely freely in space.
In the dsRNA_8nt_23nt and dsRNA_8nt_22nt config-

urations (Figure 8b,c), where the anchor points of the dyes are
separated by one turn of the double helix, both linker−dye
combinations sample stable configurations in which the dyes
come very close (<12 Å) although both Alexa Fluor 488 and
Cy5 are negatively charged. For this, the peptide linkers of
Alexa Fluor 488 and Cy5 need to be in a linear conformation.
This occurs, for example, in the dsRNA_8nt_23nt trajectory
between 180 and 210 ns as well as between 300 and 350 ns
(Figures 6 and 9). A visual inspection of these trajectory
sections combined with a hydrogen bond analysis indicated that
the Alexa Fluor 488 configuration is stabilized by weak
hydrogen bonds between the amide group of its linker and
phosphate groups of the RNA backbone (i.e., nucleotides 17
and 18 from the 5 -end of the RNA strand where Cy5 is
attached to; Table 1, Figure 10) as well as by more stable
hydrogen bonds between the carboxylic group of Alexa Fluor
488 and 2 OH groups of the RNA backbone (i.e., nucleotides
16 and 17; Table 1). Similarly, the Cy5 configuration is
stabilized by strong hydrogen bonds between the amide group
of its linker and a phosphate group of the RNA backbone (i.e.,
nucleotide 13 from the 3 -end of the RNA strand where Alexa
Fluor 488 is attached to; Table 1), assisted by weaker hydrogen
bonds between the sulfonate group of the dye and 2 OH
groups of the RNA backbone (i.e., nucleotides 13 and 15; Table
1). Alexa Fluor 488 tries to escape the repulsive steric and

Figure 3. Computed vibrationally resolved fluorescence spectrum of Alexa Fluor 488 (green) and absorption spectrum of Cy5 (red) as used for the
calculation of the spectral overlap integral. Simplified structures were used for the calculations (see Figure 1). The experimental spectra are given for
comparison.62,64,65
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electrostatic interactions by slight variation of the torsion angles
within the linker and by changes in the torsion angle between
the phenyl and the xanthene moieties as observed by visual
inspection of the MD trajectory. Similar results are found in the
dsRNA_8nt_23ntII trajectory for the section 180−240 ns
(Figure 6b). Also in the dsRNA_8nt_22nt trajectory, quite

stable hydrogen bonds are formed between the amide group of

the linkers of Alexa Fluor 488 or Cy5, respectively, with

phosphate groups of the RNA backbone, respectively (Table

1). However, no strong hydrogen bonds between the dye and

the RNA backbone were formed. Overall, these analyses

Figure 4. Distance dependency of the ECME calculated using both IDA and MTD (a) taking the examples of a -stack of Alexa Fluor 488 and Cy5
with an orientation factor of 2 = 1 and a collinear arrangement of both dyes with an orientation factor of 2 = 4 as well as (b) shifting Cy5 along the
axis of the xanthene frame of Alexa Fluor 488. The deviation between the two methods was used for a crude approximation of the critical donor−
acceptor distance.
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suggest that the close distances between the two dyes are
fostered by their favorable interactions with the RNA backbone.
Although dsRNA_8nt_14nt is the setup with the shortest

distance between the two anchor points (Figure 8a), only a few
snapshots with distances of about 10 Å between the dyes were

sampled, whereas the majority had distances above 20 Å
(Figure 6d). One reason for this is that the Cy5 dye has to
sample the other helix groove to come into short distance with
Alexa Fluor 488, which is only possible when the Cy5 linker
adopts a twisted, energetically rather unfavorable conformation.
During the course of the simulation, the Cy5 dye mainly
samples two orientations where it either sticks to the RNA

Figure 5. Analytic function describing the probability distribution of
two isotropic transition dipoles using the orientation factor 2. The
relative arrangements of the transition dipoles for the limiting cases 2

= 0 (perpendicular), 2 = 1 (coplanar), and 2 = 4 (collinear) are
indicated by arrows.

Figure 6. Distances between the exciton donor Alexa Fluor 488 and the exciton acceptor Cy5 (orange) as well as the angles between their transition
dipole moment vectors (magenta) determined directly from the MD trajectories, as indicated in Figure 1. (a) dsRNA_8nt_23nt, (b)
dsRNA_8nt_23ntII, (c) dsRNA_8nt_22nt, and (d) dsRNA_8nt_14nt.

Figure 7. Overlay of the simplified and preoptimized structures of
Alexa Fluor 488 (green) and Cy5 (red) to an MD snapshot. The water
molecules are part of the explicit solvent model used for the
calculation of RhA mimicking Alexa Fluor 488.
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backbone close to the anchor point of Alexa Fluor 488 or to its

own anchor point. In contrast, Alexa Fluor 488 is much more

mobile and does not form stable interactions with the RNA

helix.

Distance Distribution and Orientation Factor Distribution.
In most FRET experiments, a perfectly isotropic probability
distribution of the transition dipoles of the interacting dyes is
assumed. This is indeed the case if both dyes are able to rotate
freely in space or if only one dye is able to rotate freely in space,

Figure 8. Schematic representation of the three di erent setups: (a) dsRNA_8nt_14nt, (b) dsRNA_8nt_22nt, and (c) dsRNA_8nt_23nt. Anchor
points of Alexa Fluor 488 (green) and Cy5 (red) at the dsRNA are indicated by circles, and the dyes are represented by rectangles. Cy5
predominately sticks to the RNA backbone at two di erent positions, whereas Alexa Fluor 488 largely moves freely in space.

Figure 9. Processed trajectory dsRNA_8nt_23nt in which Alexa Fluor 488 and Cy5 were replaced by their preoptimized simplified structures.
Snapshots saved at 1 ns intervals (every 50th snapshot) were used for the analysis. The quality of the fit of the preoptimized dyes to the MD
structure is indicated by the best-fit RMSD. Distances dDA and orientation factors 2 were computed between the centers of mass of the dyes and the
rotated transition dipole moments, respectively. The EMCE was calculated for each considered snapshot using both IDA and MTD approach.
Ranges for which H-bonds were analyzed are marked by green boxes (Table 1).
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whereas the other one is retained in a fixed position. For large

donor−acceptor separations (>30 Å), Kalinin et al.2 showed

that this assumption is largely fulfilled and that the dyes move

freely within their accessible volumes. A spherically isotropic

distribution of the transition dipoles results in a probability

function of the orientation factor that can be described by an

analytic discontinuous logarithmic function, which is highest for

2 = 0 and close to zero for 2 = 4 (Figure 5).21−23

κ
κ

κ

κ κ κ
κ

=

+ <

+
+ −

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

1

2 3
ln(2 3 ) 0 1

1

2 3
ln

2 3

1
1 4

2
2

2

2 2 2
2

(11)

The average value ⟨ 2⟩ is calculated as the expectation value
of the isotropic transition dipole moment distribution

∫κ κ κ κ= =( ) d
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4
2 2 2

(12)

Following Lakowicz and Periasamy,66,67 a Gaussian distribu-
tion of the donor−acceptor distance may be expected in an
ideal FRET system. Because of restrictions caused by the length
and flexibility of the molecular linker as well as due to attractive
and repulsive interactions between the dyes and between the
dyes and the target system, deviations from the model 2 and
distance distributions may occur in a realistic system (see also
Conclusion section). In the following, we discuss our results
obtained for small donor−acceptor distances below the typical
FRET range of 30 Å.
For dsRNA_8nt_14nt (Figures 11 and S4), we find a quite

narrow distribution of the donor−acceptor distance between 10
and 36 Å with a maximum at 25 Å and a small shoulder at
about 20 Å. The shape of the distribution function closely
corresponds to a Gaussian distribution. Distances in the critical
range <15 Å are extremely rare in this setup (0.32% of all
snapshots). The 2 distribution primarily follows the isotropic
model. Small orientation factors are found frequently, whereas
high orientation factors rarely occur.
The close similarity to a perfectly Gaussian distance

distribution and a near-perfectly isotropic 2 distribution,
respectively, can be explained by the choice of the anchor
positions of the dyes. These are located very close to each other
such that the length of the molecular linkers prevents a large

Table 1. Hydrogen Bond Formation for Trajectory Sections with Small Dye Distancesa

dye trajectory section (ns) acceptor donor % occupied

Cy5 dsRNA_8nt_22nt 260−280 nt13@O1P :linker@NH 64
dye b b

dsRNA_8nt_23nt 180−210 nt13@O1P :linker@NH 61
dye@SO3 nt13@2 OH 23

dsRNA_8nt_23nt 300−350 b :linker@NH b

dye@SO3 nt15@2 OH 10
dsRNA_8nt_23ntII 180−240 nt13@O1P :linker@NH 54

dye@SO3 nt13@2 OH 11
Alexa Fluor 488 dsRNA_8nt_22nt 260−280 nt17@O1P :linker@NH 31

dye b b

dsRNA_8nt_23nt 180−210 nt17@O1P :linker@NH 10
dye@COO− nt16@2 OH 10
dye@COO− nt17@2 OH 20

dsRNA_8nt_23nt 300−350 nt18@O1P :linker@NH 23
dye@COO− nt17@2 OH 49

dsRNA_8nt_23ntII 180−240 nt18@O1P nt18@O1P 27
dye@COO− dye@COO− 35

aThe dsRNA_8nt_22nt trajectory is analyzed in the trajectory section 260−280 ns, dsRNA_8nt_23nt in the sections 180−210 ns and 300−350 ns,
and dsRNA_8nt_23ntII in the section 180−240 ns, where inter-dye distances are approximately 10 Å (Figures 6 and 9) . Hydrogen bonds were
defined by a distance cuto of 3.2 Å and an angle cuto of 120° and were only considered if their occupancies attained >10% (percent of simulation
time in which the hydrogen bond is formed). The analysis was performed using the “ptraj” module of Amber10.33 Nucleotide positions of interaction
partners are given for Cy5 from the 3 -end of the RNA strand where Alexa Fluor 488 is attached to and for Alexa Fluor 488 from the 5 -end of the
RNA strand where Cy5 is attached to. bNo stable hydrogen bonds (occupancies <10%) were formed.

Figure 10. Hydrogen bonds (black two-pointed arrows) between
Alexa Fluor 488 and the RNA backbone when the dye is located close
to Cy5.
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overlap of the accessible volumes: To achieve a small distance
between the dyes, the linkers would have to adopt a folded,
energetically unfavorable structure. Because Cy5 predominantly
sticks to the RNA backbone, relative orientations between the
dyes are mainly determined by the freely moving Alexa Fluor
488. Cy5 sticks to two di erent positions of the RNA backbone
with di erent probabilities, producing two superimposed
distributions. The minor one results in the small shoulder of
the distance distribution.
In dsRNA_8nt_23nt, the situation is completely di erent

(Figure 12). We find a very broad distribution of the donor−
acceptor distance between 7 and 54 Å, which is composed of
more than one superimposed Gaussian distribution. The
dominant and broadest one (FWHM 12 Å) has a maximum
at 25 Å and describes the free rotation of Alexa Fluor 488
relative to Cy5 sticking to the complementary RNA strand
directly opposite to its anchor point. Analogous to
dsRNA_8nt_14nt, the shoulder at about 20 Å can be explained
by the fact that Cy5 sticks to the RNA backbone at two
di erent positions with di erent probabilities.
The second distribution is significantly narrower (FWHM

4 Å) and has a maximum at about 12 Å. It represents 23% of all
snapshots and can be traced back to those periods in which the
two dyes stick close to each other. As the adherence of the dyes
is caused by an interaction of the linker of Alexa Fluor 488 and
the RNA backbone (Figure 10), the dye itself is not completely
fixed in space, changing between a perpendicular and a parallel
orientation with respect to Cy5. During this motion, the
intermolecular distance vector remains almost unchanged

causing the distribution of small distances, whereas the
orientation factor changes between 0 and 2.
Larger distances between 35 and 54 Å were found to be

extremely rare and are represented by a further distribution.
They occur in those arrangements in which the linker of Alexa
Fluor 488 is completely unfolded and points in a direction
opposite to the location of Cy5.
The overall 2 distribution almost perfectly resembles the

isotropic model. Nevertheless, orientation factors >2.5 are
underrepresented due to the restriction of the accessible
volumes of the dyes by their molecular linkers. For donor−
acceptor distances below 10 Å, we do not find a single snapshot
with an orientation factor >2. We emphasize that this range is
not underrepresented in our simulation. Because of the
definition of the intermolecular distance vector as the distance
between the centers of mass of the interacting dyes, large
orientation factors cannot be obtained in combination with
small donor−acceptor distances.
With one exception, redundant results were obtained in a

second, independent MD simulation based on the same setup
(dsRNA_8nt_23ntII, Figure S5). Here, we find a slight
overestimation of the orientation factor between 0.5 and 1.0,
which can be traced back to the periods in which the dyes stick
close to each other. In these periods, parallel orientations of
Alexa Fluor 488 and Cy5 are preferred over a perpendicular
one. The deviations between the two trajectories indicate a lack
of convergence, which may be solved by longer simulation
times.

Figure 11. Distributions of the donor−acceptor distance and the orientation factor for dsRNA_8nt_14nt. The analysis is based on averaging all
snapshots within distance intervals of 1 Å and intervals of 0.1 concerning the orientation factor.
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In dsRNA_8nt_22nt, we find a broad distance distribution
between 7 and 46 Å, which is composed of three superimposed
Gaussian distributions (Figure S6). The two distributions with
maxima at 25 and 10 Å can be interpreted analogous to
dsRNA_8nt_23nt. We find a third extremely narrow
distribution with a maximum at about 30 Å, which can be
traced back to the periods in which Alexa Fluor 488 sticks to
the RNA at a position near its own anchor point. In this case,
Cy5 as well as Alexa Fluor 488 are fixed in space and therefore
in a fixed arrangement relative to each other. This arrangement
is characterized by an orientation factor between 0.7 and 1.0,
causing a deviation of the overall 2 distribution compared to
the isotropic model. Generally, orientation factors >1.5 are
underrepresented in this setup due to the restriction of the
accessible volumes of the dyes by their molecular linkers.
In summary, dye configurations with donor−acceptor

distances below the critical value of 15 Å constitute a marked
proportion of the overall distance distribution (23% for
dsRNA_8nt_23nt, 19% for dsRNA_8nt_22nt, and <1% for
dsRNA_8nt_14nt). Thereby, close inter-dye distances can be
the result of dye or linker interactions with the RNA.
Deviation of IDA and MTD. To study the quality of the IDA

in our model systems, we recomputed the ECME using the
MTD approach. As the EET rate is proportional to the square
of the ECME, it is reasonable to consider the absolute value of
the quantity, which will just be termed ECME in the following.
Here, we discuss the question whether the IDA overestimates
or underestimates the ECME depending on the donor−
acceptor distance on the one hand and the orientation factor on

the other hand. To this end, for every 50th snapshot of the
appropriate trajectory, the ECMEs were computed using both
IDA (IDA50) and MTD (MTD50). The analysis is based on
averaging the deviations of all snapshots within intervals of 1 Å
with regard to the intermolecular distance vector and intervals
of 0.1 with regard to the orientation factor.
In dsRNA_8nt_23nt, we find deviations between IDA50

and MTD50 in the range of −300 and 600 cm−1 (Figure 13a).
The maximum underestimation is hence only half the size of
the maximum overestimation. This can be explained by the fact
that underestimates are generally found at larger distances (12−
15 Å) when compared with overestimates (7−11 Å). The
ECME decreases with increasing distance and therefore also the
absolute deviation between the two methods. For donor−
acceptor distances >15 Å, the deviation is small (<100 cm−1).
This confirms our approximation of the critical distance of
about 15 Å obtained by benchmark calculations of a -stacked
and a collinear arrangement of Alexa Fluor 488 and Cy5.
For a closer examination of the critical range, we recomputed

the ECME for every single snapshot with a donor−acceptor
separation below the threshold of 15 Å using both IDA
(IDAfull) and MTD (MTDfull) (Figure 13b). Here, we find a
deviation of the two methods between −300 and 1200 cm−1.
The higher maximum overestimation of the ECME obtained
from IDAfull and MTDfull in comparison with IDA50 and
MTD50 is based on the fact that single snapshots with a high
deviation were, by chance, not considered in our first analysis.
Analyzing the distance dependency of the deviation between

IDA and MTD first, two distinct distance ranges are revealed.

Figure 12. Distributions of the donor−acceptor distance and the orientation factor for dsRNA_8nt_23nt. The analysis is based on averaging all
snapshots within distance intervals of 1 Å and intervals of 0.1 concerning the orientation factor.
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For distances between 7 and 11 Å, we find an overestimation of
the ECME by the IDA, whereas the range from 11 to 15 Å is
characterized by an underestimation. This change of sign can be
explained by considering IDA and MTD as two functions
decreasing with the donor−acceptor distance (dDA

−3 ). Because
the two functions are similar but not identical, an intersection
of both functions can be found. Here, this intersection is
located at approximately 11 Å for almost all orientation factors.

As the ECME increases with the orientation factor, as given
by eq 6, an increasing deviation between IDA and MTD is to
be expected as well. Indeed, such a behavior was found in our
analysis. Consequently, the orientation factor needs to be high
to produce a significant failure of the IDA, if the donor−
acceptor distance is close to the critical value. In the distance
interval between 14 and 15 Å, for example, significant
deviations between IDA and MTD are observed only for
orientation factors 1.0 (Figure 13).

Figure 13. Deviation of the ECME calculated with IDA and MTD in dsRNA_8nt_23nt considering (a) every 50th snapshot and (b) every single
snapshot with a donor−acceptor distance below 15 Å. The analysis is based on averaging all snapshots within distance intervals of 1 Å and intervals
of 0.1 with regard to the orientation factor. Gray-colored areas denote combinations of the donor−acceptor distance and the orientation factor for
which no data points exist.
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dsRNA_8nt_22nt essentially shows the same behavior as
dsRNA_8nt_23nt (Figures S7 and S8). Here, we could
identify a maximum underestimation of the ECME by the
IDA of −200 cm−1 and a maximum overestimation of 1200
cm−1. Significant deviations were not observed for distances
>15 Å.
In dsRNA_8nt_14nt, we find deviations in the range of

−100 to 100 cm−1, which are small compared to the other two
setups (Figure S9). This can be explained by the fact that the
critical distance of 15 Å is reached only in very few snapshots.
Extremely low distances (10 Å) causing high deviations do not
occur.
Averaged ECME and EET Rates. For all setups, we

calculated the averaged ECMEs and the averaged EET rates
according to IDAfull, IDA50, and MTD50 (Table 2). In
dsRNA_8nt_23ntI/II, we find averaged ECME values
(IDAfull) of 127 and 130 cm−1, respectively, which are the
highest values among all setups. This can be explained by the
long periods in which the dyes stick close to each other at a
quite small distance. In dsRNA_8nt_22nt, which is very similar
to the latter setup, the ECME is slightly smaller by about 25
cm−1. The smaller value results from the periods in which Alexa
Fluor 488 sticks to the RNA backbone at a position far away
from Cy5. In dsRNA_8nt_14nt, we find an ECME of only 54
cm−1, which can be traced back to the fact that the dyes do not
come as close to each other as in the other two setups.
Generally, we find that IDAfull and IDA50 provide almost

identical results with a maximum deviation of 3.1%. This
confirms that our approximation of considering only every 50th
snapshot is justified.
For dsRNA_8nt_23nt and dsRNA_8nt_22nt, we find EET

rates in the range of 1012 s−1. The values obtained at the
IDAfull, IDA50, and MTD50 levels vary only slightly (Table 2),
with MTD50 providing the smallest results. Nevertheless, the
calculated EET rates may be considered identical within the
error bounds of the applied methods. Generally, a significant
change in the mean EET rate by a factor of 10 can only be
achieved if the ECME values are increased by a factor of 3.16
on average.
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Small di erences in ECME values calculated by di erent
methods thereby do not have a huge impact on the EET rates.
For dsRNA_8nt_14nt, we find an EET rate in the range of
1011 s−1, which can be traced back to the larger mean donor−
acceptor distance compared to the other two setups.
EET and donor fluorescence are two directly competing

processes. The spontaneous fluorescence rate kfl of the donor
can be calculated from the vertical energy di erence ES0←S1

with respect to the relaxed geometry of the S1 state and the
electronic transition dipole moment el between the fluorescent
state and the electronic ground state.
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For all setups, we find a FRET efficiency >95% due to large
EET rates compared to the fluorescence rate of the donor,
which was computed as 0.23 × 109 s−1 for (simplified) Alexa
Fluor 488. A FRET efficiency in this range was to be expected
because the average distance between the dyes of about 25 Å is
only half the size of the Förster radius of Alexa Fluor 488 and
Cy5 of 49 Å.68

To validate our approach, we exploit the definition of the
Förster radius as the donor−acceptor distance at which the
FRET efficiency is reduced to one half. Consequently, an
arbitrary snapshot with a donor−acceptor separation in the
range of 49 Å and an orientation factor of 0.66 should provide
an EET rate in the range of the donor fluorescence rate. Indeed,
for such a snapshot, we find a rate of 4.10 × 109 s−1, which is in
approximate agreement with the donor fluorescence rate,
considering the accuracy of the computational approach and
that nonradiative decay of the donor fluorescent state has been
neglected.

■ CONCLUSIONS

In this work, we investigated how the failure of the IDA a ects
the analysis of FRET experiments at small donor−acceptor
distances taking the example of Alexa Fluor 488 and Cy5
attached to di erent positions of a dsRNA. For this purpose,
QM-optimized model structures of the dyes were overlayed to
snapshots of trajectories from all-atom MD simulations at the
classical level. The ECME was calculated using both IDA and
MTD to analyze the deviation between the two methods
depending on the distance and relative orientation of the
transition dipoles.

Table 2. Time-Averaged ECMEs and EET Rates Calculated with Both IDA and MTDa

setup IDAfull IDA50 MTD50 combined MTD/IDA

⟨VDA⟩ (cm
−1)

dsRNA_8nt_23nt 127 123 113 122
dsRNA_8nt_23ntII 130 134 128
dsRNA_8nt_22nt 105 105 99
dsRNA_8nt_14nt 54 55 49

EET rate (s−1)
dsRNA_8nt_23nt 7.9 × 1012 7.5 × 1012 6.1 × 1012 6.9 × 1012

dsRNA_8nt_23ntII 6.9 × 1012 7.3 × 1012 6.9 × 1012

dsRNA_8nt_22nt 5.6 × 1012 5.6 × 1012 4.6 × 1012

dsRNA_8nt_14nt 8.1 × 1011 7.7 × 1011 7.1 × 1011

aIDAfull is based on every single snapshot of the appropriate trajectory, whereas the number of considered data points is limited to every 50th
snapshot in IDA50 and MTD50. In dsRNA_8nt_23nt, an additional analysis was carried out considering every snapshot with a donor−acceptor
distance 15 Å with the MTD approach (combined MTD/IDA).
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The vibrationally resolved absorption spectrum of the
acceptor and the emission spectrum of the donor were
described exactly with the chosen QM model. The calculated
spectra were successfully used for the calculation of the spectral
overlap integral needed for the calculation of the FRET rate.
Taking the example of a -stacked and a collinear arrangement
of Alexa Fluor 488 and Cy5, we identified a distance threshold
of 15 Å, below which the IDA significantly deviates from the
MTD approach. This finding was confirmed by further
calculations based on the MD trajectories.
In all setups, we could identify certain positions where the

dyes are preferably located. This causes a restriction of the free
rotation in space and leads to deviations from a perfectly
Gaussian distance distribution and a perfect isotropic
distribution of the transition dipoles. For two of three studied
setups, we could identify certain arrangements in which the
dyes stick close to each other at small distances in the range of
7−15 Å. We emphasize that the distance between the anchor
points of the dyes does not directly imply how close the dyes
can really come to each other. To obtain a better estimate, the
flexibility and length of the molecular linker has to be taken into
account as well, as have to be potential interactions between
linker or dye and the biomolecular target. Dyes in close
distance represent energetically favorable states, which can be
stable for tens to hundreds of nanoseconds. Within these
periods, we could identify significant deviations between the
IDA and the MTD. Nevertheless, the number of snapshots
a ected by a large deviation of the IDA represents only a small
part of the total trajectories. Thus, they have only a small
statistical impact on the time-averaged EMCE and therefore on
the EET rate. We therefore conclude that the IDA is suited
even for FRET experiments with small donor−acceptor
distances as long as adherence of the dyes does not dominate
the overall motion behavior. Nevertheless, we strongly
recommend to study the target FRET system by means of
MD simulations to ensure that the assumption of an isotropic
dipole distribution is still justified and that the number of
snapshots a ected by the failure of the IDA is small.
In addition, it needs to be considered that energy transfer in

realistic systems at finite temperature is only one of many
dynamic molecular processes, which relates to the question
which averaging regime applies for 2.69,70 In case the transfer
time EET = 1/kEET is much shorter than characteristic
relaxation times of dynamic molecular processes, the
assumption of a static 2-distribution is valid. In our case of
short distances, the transfer time is at least one order of
magnitude shorter (Table 2) than the fastest rotational
correlation times measured for Cy5 and Alexa488 in donor-
only and acceptor-only samples when attached to DNA or
RNA.3 In this regime, time-independent orientation factor
distributions ( 2), rather than ⟨ 2⟩ = 2/3, need to be
considered to experimentally recover donor−acceptor dis-
tances.
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Structure superposition

To find the optimal overlay of a model structure an a target structure, we search for an

orthogonal transformation U and a translation r which minimizes the residual distance d

d = 1
N

N∑
k=1

|U�xk + �r − �yk|2 (1)

for a given set of model coordinates {�xk} (DFT-optimized structures) and target coordinates

{�yk} (MD structures) in real space where N is the total number of atoms of the respective

molecule. As a first step, the position vectors of the structures are expressed with respect

to an origin located at the respective center of mass, i.e., x and y.

�̃xk = �xk − x (2)

�̃yk = �yk − y (3)

The quaternion q corresponding to the best-fit orthogonal transformation is the eigenvector

Lmax of the auxiliary matrix F with the largest eigenvalue λmax

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11 + R22 + R33 R23 − R32 R31 − R13 R12 − R21

R23 − R32 R11 − R22 − R33 R12 + R21 R13 + R31

R31 − R13 R12 + R21 −R11 + R22 − R33 R23 + R32

R12 − R21 R13 + R31 R23 + R32 −R11 − R22 + R33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

with matrix elements

Rij =
N∑

k=1
x̃ikỹjk, (5)
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where k labels the atoms and i and j denote the components of the position vectors in real

space. The corresponding best-fit RMSD is then given by

RMSD =

√√√√ 1
N

N∑
k=1

(x̃2
k + ỹ2

k) − 2λmax. (6)

The rotation matrix U in real space can directly be computed from the components of q.

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎟⎟⎟⎟⎟⎠ (7)

To obtain the position vectors �̃x′ of the rotated model structure, the mass-centered position

vectors �̃xk have to be multiplied by the rotation matrix.

x̃′ = Ux̃ (8)

Finally, the molecule-fixed coordinate system of the rotated model structure {�̃x′} has to be

shifted to the center of mass y of the target structure. The final set of coordinates {�x′} of

the fitted model structure then is given by

�x′ = U(�x − x) + y. (9)

Rotation of molecular orbitals

A set of p-functions px, py and pz transforms according to rotation matrix T (p) S1

T (p) =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (10)
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where α, β and γ are Euler angles in ZY’Z" convention. The rotation matrix T (d) of a set of

d-orbitals d2z2−x2−y2 , dxz, dyz, dxz and dx2−y2 readsS1

T (d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos(γ) sin(γ) 0 0

0 − sin(γ) cos(γ) 0 0

0 0 0 cos(2γ) − sin(2γ)

0 0 0 sin(2γ) cos(2γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4(1 + 3 cos(2β)) 1

2
√

3 sin(2β) 0 1
4

√
3(1 − cos(2β))

−1
2

√
3 sin(2β) cos(2β) 0 1

2 sin(2β)

0 0 cos(β) 0

0 0 − sin(β) 0
1
4

√
3(1 − cos(2β)) −1

2 sin(2β) 0 1
4(3 + cos(2β))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos(α) sin(α) 0 0

0 − sin(α) cos(α) 0 0

0 0 0 cos(2α) − sin(2α)

0 0 0 sin(2α) cos(2α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Herein, α, β and γ are Euler angles in ZY’Z" convention. The Euler angles corresponding to

the best-fit superposition of model and target structures can directly be obtained from the

corresponding quaternion q as given byS2

α = atan2(2(q2q3 + q0q1), 2(q1q3 − q0q2))

β = arccos(q2
0 − q2

1 − q2
2 + q2

3) (12)

γ = atan2(2(q2q3 − q0q1), −2(q1q3 + q0q2))
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where atan2 is defined as

atan2(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y

x
if x > 0

arctan y

x
+ π if x < 0, y ≥ 0

arctan y

x
− π if x < 0, y < 0

+π

2 if x = 0, y > 0

−π

2 if x = 0, y < 0

0 if x = 0, y = 0

(13)
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Figure S1: Processed trajectory dsRNA-8nt_nt23 in which Alexa Fluor 488 and Cy5 were
replaced by their preoptimized simplified structures. Every single snapshot was used for the
analysis. MTD was used for every snapshot with a donor–acceptor distance ≤ 15 Å. The
quality of the fit of the preoptimized dyes to the MD structure is indicated by the best-fit
RMSD. Distances dDA and orientation factors κ2 were computed between the barycenters of
the dyes and the rotated transition dipole moments, respectively. Ranges for which H-bonds
were analyzed are marked by green boxes.
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Figure S2: Processed trajectory dsRNA-8nt_nt23II in which Alexa Fluor 488 and Cy5 were
replaced by their preoptimized simplified structures. Every 50th snapshot was used for the
analysis. The quality of the fit of the preoptimized dyes to the MD structure is indicated
by the best-fit RMSD. Distances dDA and orientation factors κ2 were computed between the
barycenters of the dyes and the rotated transition dipole moments, respectively. The EMCE
was calculated for each considered snapshot using both IDA and MTD. Ranges for which
H-bonds were analyzed are marked by green boxes.
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Figure S3: Processed trajectory dsRNA-8nt_nt22 in which Alexa Fluor 488 and Cy5 were
replaced by their preoptimized simplified structures. Every 50th snapshot was used for the
analysis. The quality of the fit of the preoptimized dyes to the MD structure is indicated
by the best-fit RMSD. Distances dDA and orientation factors κ2 were computed between the
barycenters of the dyes and the rotated transition dipole moments, respectively. The EMCE
was calculated for each considered snapshot using both IDA and MTD. Ranges for which
H-bonds were analyzed are marked by green boxes.
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Figure S4: Processed trajectory dsRNA-8nt_nt14 in which Alexa Fluor 488 and Cy5 were
replaced by their preoptimized simplified structures. Every 50th snapshot was used for the
analysis. The quality of the fit of the preoptimized dyes to the MD structure is indicated
by the best-fit RMSD. Distances dDA and orientation factors κ2 were computed between the
barycenters of the dyes and the rotated transition dipole moments, respectively. The EMCE
was calculated for each considered snapshot using both IDA and MTD.
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Figure S5: Distributions of the donor–acceptor distance and the orientation factor for
dsRNA-8nt_nt23II. The analysis is based on averaging all snapshots within distance in-
tervals of 1 Å and intervals of 0.1 with regard to the orientation factor.
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Figure S6: Distributions of the donor–acceptor distance and the orientation factor for
dsRNA-8nt_nt22. The analysis is based on averaging all snapshots within distance intervals
of 1 Å and intervals of 0.1 with regard to the orientation factor.
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Figure S7: Deviation of the ECME calculated with IDA and MTD in dsRNA-8nt_nt23II
considering every 50th snapshot. The analysis is based on averaging all snapshots within
distance intervals of 1 Å and intervals of 0.1 with regard to the orientation factor. Grey-
colored areas denote combinations of the donor–acceptor distance and the orientation factor
for which no data points exist.

S12



Figure S8: Deviation of the ECME calculated with IDA and MTD in dsRNA-8nt_nt22
considering every 50th snapshot. The analysis is based on averaging all snapshots within
distance intervals of 1 Å and intervals of 0.1 concerning the orientation factor. Grey-colored
areas denote combinations of the donor acceptor distance and the orientation factor for which
no data points exist.
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Figure S9: Deviation of the ECME calculated with IDA and MTD in dsRNA-8nt_nt14
considering every 50th snapshot. The analysis is based on averaging all snapshots within
distance intervals of 1 Å and intervals of 0.1 with regard to the orientation factor. Grey-
colored areas denote combinations of the donor acceptor distance and the orientation factor
for which no data points exist.
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