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Zusammenfassung

Mit der Erzeugung von hohen Harmonischen auf der Plasmaoberfläche ist es

möglich einen Laserpuls in eine Reihe von aufeinander folgenden Attosekunden-

oder sogar Zeptosekunden- Pulsen in der Rückstrahlung umzuwandeln. Diese

Attosekunden-Pulse können eine Amplitude haben, die unter bestimmten Voraus-

setzungen um einige Größenordnungen höher als die Amplitude des Laserpulses

ist. Wir untersuchen diesen Vorgang im Detail. Speziell schauen wir uns die

sogenannten Nano-Bündeln von Plasma-Elektronen an. Wir leiten einen ana-

lytischen Ausdruck her, der das Elektronendichte-Profil beschreibt und erhalten

eine gute Übereinstimmung mit particle-in-cell-Simulationen. Wir erforschen

den effizientesten Fall der Erzeugung von hohen Harmonischen bei moderaten

Laserintensitäten (I ≈ 2 · 1020W/cm2) auf dem überdichten Plasma mit einem

exponentiellen Vorplasma-Profil. Wir berechnen die Spektren der einzelnen

Attosekunden-Pulse von der Rückstrahlung. Dabei verwenden wir unseren

Ausdruck für das Dichte-Profil kombiniert mit der Gleichung für das Spektrum

der Nano-Bündel-Strahlung.

Darüber hinaus präsentieren wir einen neuen Mechanismus für die Erzeugung

von extrem-ultravioletten Attosekunden-Pulsen (XUV) an der von einem Laser

bestrahlten überdichten Plasmaoberfläche im Wellenbrechungszustand. Durch die

particle-in-cell-Simulationen und Analysis demonstrieren wir, dass die erhaltene

ultra-kurze XUV Emission, bei den Parametern, die wir verwendet haben,

größtenteils wegen den starken Plasmadichte-Oszillationen und nachfolgender

Wellenbrechung zustande kommt. Die Kopplung der starken Dichtevariation und

der Querfelder an der vorderen Oberflächenschicht gibt den Anlass für die trans-

mittierte Emission mit Frequenzen im Bereich der lokalen Plasmafrequenz. Dieser

Mechanismus öffnet neue Einsichten in das Szenarium von XUV Erzeugung an den

Festkörperoberflächen und auf die Dynamik von Laser-Plasma-Wechselwirkungen.
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Abstract

With the high-order harmonic generation (HHG) from plasma surfaces it is

possible to turn a laser pulse into a train of attosecond or even zeptosecond

pulses in the backward radiation. These attosecond pulses may have amplitude

several orders of magnitude higher than that of the laser pulse under appropriate

conditions. We study this process in detail, especially the nanobunching of

the plasma electron density. We derive an analytical expression that describes

the electron density profile and obtain a good agreement with particle-in-cell

simulation results. We investigate the most efficient case of HHG at moderate laser

intensity (I ≈ 2 · 1020W/cm2) on the over-dense plasma slab with an exponential

profile pre-plasma. Subsequently we calculate the spectra of a single attosecond

pulse from the backward radiation using our expression for the density shape in

combination with the equation for the spectrum of the nanobunch radiation.

Further we present a new mechanism of attosecond extreme-ultraviolet (XUV)

pulses generation from a relativistic laser-driven overdense plasma surfaces in

the wavebreaking regime. Through particle-in-cell simulations and analysis, we

demonstrate that the observed ultrashort XUV emission for the parameters we

considered is predominantly due to a strong plasma-density oscillation subsequent

to wavebreaking. The coupling of the strong density variation and the transverse

fields in the front surface layer gives rise to the transmitted emission with

frequencies mainly around the local plasma frequency. This mechanism provides

new insights into the scenarios of XUV generation from solid surfaces and the

dynamics of laser-plasma interactions.
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enorme Hilfsbereitschaft.
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Chapter 1

Introduction

Since the invention of laser in the year of 1960 [1], laser technology has witnessed

an immense progress [2–17]. The typical duration of a laser pulse was drastically

reduced from several nanoseconds in sixties to a few femtoseconds in our days.

On the other hand the power of a laser systems was grown constantly during last

fifty years and the threshold of 2PW was broken recently [16].

Everything started with lasers of the light power exiting the kilowatt range and

reaching 109 W/cm2 intensity (Fig. 1.1), which opened the door to nonlinear

optics. during the seventies the lasers that could reach 1014 W/cm2 intensity

were constructed. The revolutionary invention of the chirped pulse amplification

technique brought the laser to a completely new level in 1985 [2]. That was the

most important breakthrough in the history of laser technology.

The idea of the CPA is based on a sequence stretcher-amplifier-compressor.

Simply speaking, we stretch an initially short but weak pulse, then amplify the

long pulse and subsequently perform a compression in order to obtain a short and

strong pulse. Obviously the question arises why can not the original short pulse

be amplified directly? The point is that the optical setup would not be able to

stand such power. Let us consider the CPA process in details. We can start with

Ti:Sa-laser containing some nJ of energy. In order to stretch the pulse and to be

able to reverse this process afterwords we impose a positive chirp to the pulse.

That means if the pulse passes through an optical medium the waves with lower

frequencies containing in the pulse propagate faster then the corresponding waves

with higher frequencies. This process causes a broadening of the pulse. With this

principle the stretching factor of the order 104 can be reached. The amplification
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Figure 1.1: (Taken from [18]) Intensity development since beginning from the year
1960, when the first laser was produced. The red line is an aim of the project
proposed by International Center for Zetta- and Exawatt Science and Technology
(IZEST). Black boxes show typical laser energies. Blue boxes show typical particle
energies. QCD: Quantum chromodynamics. QED: Quantum electrodynamics. E:
Electric field. e: Electron charge. λc: Compton wavelength. m0: Electron mass.
c: Speed of light. Ep: Proton energy. mp: Proton mass. Ee: Electron energy.
C3: Cascaded conversion compression. ELI: Extreme Light Infrastructure. ILE:
Institut de la Lumiere Extreme. CUOS: Center for Ultrafast Optical Science.
HHG: High harmonic generation. CPA: Chirped pulse amplification.
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process is usually divided in several stages using pump lasers. Finally the amplified

pulse is compressed by adding a negative chirp.

Roughly twenty years after invention of CPA the record peak intensity of order

1022W/cm2 was reached by focusing of a 45-TW laser beam [12]. Recently, a

compression scheme has been proposed that opens the possibility to generate

ultra-short and ultra-strong laser pulses with focused intensities of 1024W/cm2

and duration of 2fs [17].

The red line in Fig. 1.1 describes the aim of International Center for Zetta-

and Exawatt Science and Technology (IZEST). IZEST plans to explore new low-

repetition-rate technologies and architectures. The symbol C3 is the name of a

new amplification method for cascaded conversion compression [18]. With this

method it should be possible to generate femtosecond pulses with the peak power

above one exawatt. The corresponding intensities should reach the Schwinger

limit (8 · 1030W/cm2), where nonlinear effects in vacuum occur.

The progress in laser technology offers an opportunity to study new physical

phenomena of laser plasma interactions. One of the most important processes in

this field is the HHG, which has been studying very intensely nowadays. As the

minimum achievable duration of laser pulses continuously reduces towards few

femtoseconds, the generation of even shorter pulses (in the attosecond or even

zeptosecond range) is possible only for radiation with shorter wavelengths. The

reduction of the pulse duration and the radiation wavelength would open new

horizons for potential applications, including the exploration of novel ultrafast

dynamics with unprecedented temporal resolution[19], investigation of nonlinear

optics in the XUV region[20], and as a probe for laser-plasma interactions[21, 22].

This is the main motivation in studying the high harmonic generation.

First observations of HHG from plasmas were made in 1981 [23, 24]. Rather

matured is HHG in gases that allows to generate single attosecond pulses with

duration less than 1fs [25–28]. However, this method of HHG requires the

limitation of laser pulse intensity by maximum 1015W/cm2 in order to prevent

the ionization.

Fortunately, there is another method of efficient production of high-order

harmonics by unlimited laser power. This is the interaction process of high
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contrast laser pulses [29] with solid density targets. The pedestal of the pulse

ionizes the surface and the main pulse interacts with electrons of the overdense

plasma, while ions remain nearly immobile during the short pulse duration. One

distinguishes two main HHG mechanisms in this case: coherent wake emission

(CWE) [29–31] and the “relativistically oscillating mirror” (ROM) [32–40].

CWE is caused by fast Brunel electrons [41], which excite plasma oscillations at

the local plasma frequencies. Thus, there are no harmonics beyond the maximal

plasma frequency in the case of CWE. This process dominates for non-relativistic

laser intensities a0 ≲ 1.

For a0 ≫ 1 the harmonics are generated mostly via the ROM mechanism. In

this case, the electron layer at the plasma surface acts as a mirror that oscillates

at relativistic velocities, resulting in the generation of high-order harmonics via

Doppler effect when the surface moves towards the incident wave. During this

process there is no limit of frequency like by CWE, so higher harmonics can be

generated. The first theoretical description of ROM claimed that the intensity

spectrum envelope of reflected wave can be described by I(n) ∝ n 5/2 up to the

“roll over” frequency ωr which is proportional to 4γ2, where n is the harmonic

order and γ is the relativistic gamma factor [35]. Later this theory was improved,

especially the acceleration of the reflecting layer was taken into account. This

leads to the power law I(n) ∝ n 8/3 and ωr ∝ γ3 [37]. This model assumes

the existence of a so called apparent reflection point (ARP) where the transverse

electric field vanishes. Predictions based on that model where experimentally

confirmed [38–40].

Most recently another HHG mechanism was discovered. Using p-polarized oblique

incident light with a0 ≫ 1 one can cause the formation of extremely dense electron

nanobunches under appropriate conditions. These bunches can emit attosecond

pulses with intensities much larger compared to the incident pulse [42, 43]. This

means that the boundary condition assumed in [37] corresponding to ARP fails

and thus the ROM theory can not be applied in this case. This process is called

coherent synchrotron emission (CSE). The reflected radiation in case of CSE in

characterized by the power law I(n) ∝ n 4/3 or I(n) ∝ n 6/5 which is flatter

comparing to ROM [42, 43]. The corresponding experiments can be found in

Ref. [44–46]. Detailed numerical investigation of the case of p-polarized oblique

incidence in Ref. [47] demonstrate that the ROM model can be violated when the
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similarity parameter S = n/a0 (where n is the electron density given in units of

the critical density nc and a0 is the dimensionless laser amplitude [48]) is smaller

than five. The authors of [47] present a new relativistic electronic spring (RES)

model for S < 5.

Since usually one obtains a train of attosecond pulses by HHG, the question

is whether it is possible to isolate one single pulse. One method is to use the

polarization gate technique [49, 50]. This is important because it opens the

opportunity to a number of potential applications [51]. Successful application

of λ3 focusing could even lead to investigation of vacuum instabilities [36, 52].

This work begins with an overview of the theoretical aspects of laser plasma

interaction. Chapter 2 is dedicated to that topic. Here we derive some relations

which are used in further topics starting from basic fundamental laws. In further

chapters two different mechanisms of HHG are considered.

We pursue two main goals in chapter 3. The first one is to provide a more

detailed analytical description of the spectrum in the case of CSE compared to

[42, 43]. For this purpose we introduce an analytical approach which allows us to

calculate the electron density profile of the given nanobunch as well as its current

distribution, that are used in formulas for back-radiating spectrum derived in

[42, 43]. Subsequently we compare the derived expressions with one-dimensional

simulation results done with the VLPL PIC code. The second aim is to determine

the most efficient case of HHG at moderate laser intensity (I ≈ 2 · 1020W/cm2).

For that reason we perform several 1D PIC simulations with different parameters.

Finally we analyze the obtain results and define different regimes of HHG. In the

last section of the chapter we consider the nanobunches moving and radiating in

forward direction.

In chapter 4, we report a new mechanism of ultrafast XUV pulse generation

from laser-irradiated plasma surfaces in the wavebreaking regime. The attosecond

XUV pulse is generated from the front layer of the plasma and then propagates

through the foil target, with frequencies mainly around the local plasma

frequency. Through simulations and analysis, we identify the underlying physics

is predominately due to the strong plasma-density oscillation in the surface layer

subsequent to wavebreaking, which we call wavebreaking-associated transmitted

emission (WTE). We also show that the emission is a general process for a wide

5



range of laser and plasma parameters in the wavebreaking regime. Besides offering

a new option to generate ultrafast XUV pulses, the radiation process identified

here also provides important insights into the mechanism of XUV generation and

the dynamics of laser-plasma interactions.
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Chapter 2

Theoretical basics of the

laser-plasma interaction

In this chapter we are going to review an important theoretical basics such as

ultrashort pulse propagation, laser driven plasma oscillations and radiation from

perturbed plasma. Starting from fundamental equations of electrodynamics we

will derive some well known laws which are important in laser-plasma physics.

Although we always will begin with general approach, we will specify the results

for one dimensional case, since this is important case for further chapters.

2.1 Ultrashort pulse propagation

Since we are basically dealing with ultrashort electromagnetic pulses in this work,

let us firstly consider how such pulses propagate in vacuum. We start our review

with discussion of electromagnetic waves in general and then go over to the short

pulses.

2.1.1 Electromagnetic plane wave in vacuum

Electromagnetic waves are electric and magnetic fields oscillating and propagating

in space, while both fields are always perpendicular to each other and behave in

the same way. Thus without loss of generality we will consider only behavior of

the electric field E(r, t) further. The fields of a wave in absence of charges and

currents have to satisfy the wave equation

∆E(r, t)− 1

c2
∂2E(r, t)

∂t2
= 0, (2.1)
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that can be immediately derived from the Maxwell equations

∇×E +
1

c

∂

∂t
B = 0, ∇ ·B = 0, (2.2)

∇×B − 1

c

∂

∂t
E = 0, ∇ ·E = 0 (2.3)

for J = 0 and q = 0. One of the simplest and common examples solving equation

(2.1) is the plane wave

E(r, t) = E0e
i(k·r−ωt), (2.4)

with the constant amplitude E0, the oscillation frequency ω and the wave vector

k. If the direction ofE0 remains constant then we are dealing with linear polarized

wave. The wave vector k determines the propagation direction of the wave and its

absolute value is given by k = ω/c. The vectors E0 and k are orthogonal to each

other so we have a wave that propagates with the speed of light in the direction

perpendicular to its field oscillations. The physical field is represented by the real

part of E(r, t). Further we are going to consider only linearly polarized waves.

In this case we can choose the coordinates in the way that the vector E(r, t) has

only one nonzero component E(r, t), so the equation (2.1) can be reduced to

∆E(r, t)− 1

c2
∂2E(r, t)

∂t2
= 0. (2.5)

Considering the wave propagating along the z-axis we have

E(r, t) = E0e
i(kz−ωt). (2.6)

In Fig. 2.1 one can see the sketch of such wave. However the field described by

(2.6) does not depend on x and y coordinates, moreover the wave is infinitely

wide. Of course this is absolutely non realistic case. In the next chapter we are

going to derive the expression for pulses that are spatially localized concerning to

x-y-plane.

2.1.2 Paraxial wave equation

In order to derive the expression for some localized electromagnetic waves we

generalize the equation (2.6) to

E(r, t) = E0(r)e
i(kz−ωt). (2.7)

8



Figure 2.1: (Taken from [53]) Schematic representation of the electromagnetic
plane wave.

Now the amplitude E0(r) is not a constant any more but represents the envelope

of the pulse. In order to determine possible envelopes we insert this approach in

(2.5) and obtain: (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ 2ik

∂

∂z

)
E0(r) = 0. (2.8)

This deferential equation represents quite difficult mathematical problem. Nev-

ertheless we can apply well known paraxial approximation [54] by assuming that

E(r) varies only slowly on the intervals of the order of one wave length λ. This

is a good approximation for the most laser systems. Particularly that means⏐⏐⏐⏐∂2E0

∂z2

⏐⏐⏐⏐≪ k

⏐⏐⏐⏐∂E0

∂z

⏐⏐⏐⏐ , (2.9)

so the equation (2.8) takes the form(
∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)
E0(r) ∼= 0. (2.10)

9



One can find the detailed derivation of the solution of this equation in [54]. We

give only the final result:

Emn
0 (r) = E w0

w(z)
Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)
× e

−x2+y2

w2(z)
+i

k(x2+y2)
2R(z)

−i(m+n+1) tan−1
(

z
z0

)
. (2.11)

The numbers m and n are integers and start by zero. Correspondingly Hj denotes

j-th order Hermite polynomial. Further parameters are defined by

R(z) = z +
z20
z
, (2.12)

w(z) = w0

√
1− z2

z20
, (2.13)

z0 =
1

2
kw2

0. (2.14)

Let us say that E and w0 are just some constants. The indices m and n determine

the particular beam mode also called TEMmn mode. One may ask how good

differed modes can be realized in experiments. The most appropriate in this

case are lasers with hemispherical resonators because of low sensitivity to mirror

misalignments. A common example of this type of lasers are the He-Ne lasers. In

Fig. 2.2 different modes of a He-Ne laser are shown. Here we see the distribution

of the intensity in the xy-plane on the certain distance from the laser. We are

interested in the lowest TEM00 mode that is common in many applications and

exhibits Gaussian distribution.

2.1.3 Gaussian laser beams

The envelope for m = n = 0 is given by

E0(r) = E w0

w(z)
e
−x2+y2

w2(z)
+i

k(x2+y2)
2R(z)

−i tan−1
(

z
z0

)
. (2.15)

The function w(z) characterizes the width of the beam. Its minimum w0 by z = 0

is called beam waist (Fig. 2.3, from [54]). The number z0 is called Rayleigh range

and characterizes the length of the waist region. The quantity R(z) is the radius

of the curvature of the wave front defined by (2.12). It is infinite in the center of

the waste (z = 0) and for large numbers of z we have R(z) ≈ z. That means the

10



Figure 2.2: (Taken from [54]) Transverse Modes of He-Ne laser.

wave front behaves like a spherical wave with the center of curvature by z = 0.

The term tan−1
(

z
z0

)
determines the phase shift along the z-axis (x = y = 0),

which varies between −π/2 and π/2.

2.1.4 Ultrashort laser pulses

So far we have considered the simplest solution of the wave equation: the plane

wave. We could spatially localize it via introduction of the envelope function

E0(r) and solution of the paraxial wave equation. Since we are interested in short

pulses we also need a temporal localization. Untill now we had a radiation source

oscillating with the single frequency ω and time independent amplitude. Of course

11



Figure 2.3: (Taken from [54]) Variation of spot size w(z) of a Gaussian beam.

this is a non realistic case since the source would be infinitely wide on the time

scale. In contrary to that a time localized source always has some finite frequency

spectrum. Let us go along the lines of [55] and consider a radiation source E(r⊥, t)

at the position z = 0 with the spectrum Ê(r⊥, ω), where r⊥ ≡ (x, y). The source

produces the field E(r, t) which propagates along the z-axis. We assume that the

spectrum can be written as Ê(r⊥, ω) = p̂(ω)Û(r⊥) with Û(0) = 1. That means

p̂(ω) is the spectrum at the point r⊥ = 0, where the source is approximately

localized. The field at the coordinate origin is given by

E(0, t) =
1

π

∫ ∞

0
p̂(ω)e−iωtdω. (2.16)

Here we can easily check that if the spectrum contains only one single frequency

p̂(ω) ∝ δ(ω − ω0), then E(0, t) ∝ e−iω0t like in the previous case. The spectrum

Ê(r, ω) of the field E(r, t) for z > 0 can be written as

Ê(r, ω) = p̂(ω)Û(r, ω) = p̂(ω)ψ(r, ω)ei
ω
c
z. (2.17)

Obviously because of

E(r, t) =
1

π

∫ ∞

0
Ê(r, ω)e−iωtdω, (2.18)
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using the paraxial approximation we can write(
∂2

∂x2
+

∂2

∂y2
+ 2i

ω

c

∂

∂z

)
ψ(r, ω) ∼= 0. (2.19)

Moreover the paraxial approximation implies ψ(r, ω) = ψ(r⊥,
ω
c z). Further we

use the exponential form of Û(r, ω) and obtain

E(r, t) =
1

π

∫ ∞

0
p̂(ω)a(r, ω)e−i(ωt−φ(r,ω))dω, (2.20)

with a(r, ω) = |ψ(r⊥, ωc z)| and φ(r, ω) = ω
c z + argψ(r⊥,

ω
c z). Since we are

interested in the envelope of the propagating field which is temporal and spatially

localized. Thus we can define the envelope function A(r, t) in the way:

E(r, t) = A(r, t)e−i(ω0t−φ(r,ω0)−ϕ), (2.21)

where ϕ is an additional phase. That means we have enveloped propagating field,

which oscillates with the constant frequency ω0. The choice of ω0 depends on the

shape of p̂(ω) and can be expressed as

ω0 =

∫∞
0 ω|p̂(ω)|dω∫∞
0 |p̂(ω)|dω

. (2.22)

Comparing the equations (2.20) and (2.21) we can follow:

A(r, t) =
1

π

∫ ∞

0
p̂(ω)a(r, ω)e−i((ω−ω0)t−φ(r,ω)+φ(r,ω0)+ϕ)dω. (2.23)

Now we are going to use the general solution of the paraxial wave equation

presented before with combination of the boundary condition

E(r⊥, t) = E(0, t)e
− r2

w2
0 , (2.24)

with r = |r⊥|. This corresponds to the spatially localized radiation source with

Gaussian intensity profile. Es a result we obtain the TEM00 mode with

a(r, ω) =
w0

w(z, ω)

− r2

w2(z,ω) , (2.25)

φ(r, ω) =
ω

c
z − tan−1

(
z

z0(ω)

)
+

ωr2

2cR(z, ω)
. (2.26)
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In the extreme case of p̂(ω) ∝ δ(ω − ω0) we obtain exactly the same situation es

in the previous case (equations (2.7), (2.15)) and the envelope A(r, t) is constant

in time. The present situation is more general and we can choose some source

spectrum with finite FWHM in order to temporally localize the pulse. Obviously

the wider is p̂(ω) the shorter is the pulse. If p̂(ω) has Gaussian shape, then

the radiation source is Gaussian as well (see (2.16)). So we consider the pulses

radiated by the source

E(r⊥, t) ∝ e
− r2

w2
0 e−

t2

b2 e−iω0t, (2.27)

where we have introduced the parameter b, which characterizes the temporal

width of the source. The propagating radiation and its envelope can be calculated

numerically from equations (2.20) and (2.23) respectively. By the parameters

ω0 = 3.2 fs−1, b = 1.668 fs and w0 = 2 µm the pulse with only one optical cycle is

obtained. The propagation of this pulse is analyzed in detail in [55]. Close to the

z-axis the pulse can be well approximated with e(t−z/c)2/b2a(r, ω0)e
iφ(r,ω0)e−iω0t,

where all diffraction effects are neglected. That means the pulse maintains its

shape and propagates with the speed of light. This fact is important for 1D

simulations.

2.2 Laser driven plasma oscillations

After we examined the nature of the ultrashort pulses, we want to pay attention

to the theoretical concepts describing the plasma. Further we will consider how

plasma interacts with such pulses and with electromagnetic waves in general. In

this chapter we will basically orientate on [56] and [57].

2.2.1 Theoretical description of collisionless plasma

One can view a plasma as an ensemble of N charged particles, coupled via

electromagnetic interaction. In order to describe such system even by neglecting

of magnetic fields and electromagnetic waves we have to solve the system of 6N
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coupled differential equations of the form

mir̈i = qiE(ri), (2.28)

E(ri) =
∑
j

qj
|ri − rj |3

(ri − rj), (2.29)

where mi, qi and ri are the mass, charge and position of the particle denoted

by the subscript i and E is the electric field. This is obviously not optimal

approach for systems with large number of particles. One can show that we may

assume the collisionless plasma for the large number of electrons in a Debye sphere

ND = 4
3πnλ

3
De, with the electron density n and the electron Debye length λ3De.

This is a good assumption for many cases being investigated in plasma physics.

By this assumption the charged particles exhibit collective behavior. The central

relation which describes a collisionless plasma is the Vlasov equation:

∂fj
∂t

+ υ · ∂fj
∂r

+
qj
mj

(
E +

υ ×B

c

)
· ∂fi
∂υ

= 0. (2.30)

Here we have introduced the phase space distribution function fj(r,υ, t) of j-

th particle specie. This equation follows from the continuity equation since the

particle conservation is assumed. By averaging over the velocities we obtain such

important quantities like the density, the mean velocity and the pressure tensor

via

n =

∫
f(r,υ, t)dυ, (2.31)

nu =

∫
υf(r,υ, t)dυ, (2.32)

P = m

∫
(υ − u)(υ − u)T f(r,υ, t)dυ. (2.33)

Here are n, u and P the electron density, mean velocity and pressure tensor

respectively. We have also dropped the subscript j since we will consider only

electrons further, assuming that the ions are at rest. Now we are going to insert

the Vlasov equation in the equations (2.31) and (2.32). We obtain the continuity

equation for the density
∂n

∂t
+

∂

∂r
· (nu) = 0 (2.34)
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and the equation of motion for the charged fluid

∂

∂t
(nu) +

∂

∂r
· (nuuT ) =

nq

m

(
E +

u×B

c

)
− 1

m

∂p

∂r
(2.35)

respectively. In order to obtain the last equation we also set P = Ip with the

unit dyad I. In similar way we also calculate an equation of the pressure from∫
1

2
mυ2

(
∂f

∂t
+ υ · ∂f

∂r
+

q

m

(
E +

υ ×B

c

)
· ∂f
∂υ

)
dυ = 0. (2.36)

In one dimensional case we obtain

∂p

∂t
+ u

∂p

∂x
+ 3p

∂u

∂x
+ 2

∂Q

∂x
= 0, (2.37)

with Q ≡ 1
2m
∫
(υ − u)2fdυ. On that point we want to restrict our consideration

to the case of nearly cold plasma where we can neglect the heat flow. That means

we can drop the last term in equation (2.37). The obtained result in combination

with continuity equation (2.34) gives(
∂

∂t
+ u

∂

∂x

)
p

n3
= 0. (2.38)

That means p
n3 = const along the plasma flow. This equation can be generalized

to p
nγ = const, where γ = 2+N

N and N is the number of degrees of freedom. This

relation together with (2.34) and (2.35) gives us full description of a fluid.

2.2.2 Small amplitude fluctuations of the electron density

With the formalism derived above we are able to describe small electron density

fluctuations which, lead to plasma oscillations and plasma waves. If we consider

only one particular dimension the equations (2.34) and (2.35) simplify to

∂n

∂t
+

∂

∂x
(nu) = 0, (2.39)

∂

∂t
(nu) +

∂

∂x
(nu2) = −neE

m
+
neu⊥B

mc
− 1

m

∂p

∂x
, (2.40)

p

n3
= const. (2.41)

Here is u⊥ ortogonal to u and to B. We added the third equation in order

to complete the equation system. Now let us introduce the small amplitude

16



perturbations via n = n0 + ñ, u = ũ, p = n0θ + p̃ and E = Ẽ. Here we use

the temperature θ = mυ2. Using the Poisson equation

∂E

∂x
= −4πe (n− Zni) (2.42)

whih the ion charge Z and neglecting higher perturbation orders it is straight

forward to obtain the equation for the amplitude fluctuations(
∂2

∂t2
− 3υ2

∂2

∂x2
+ ω2

p

)
ñ =

n0
2

∂2u2⊥
∂x2

, (2.43)

with the electron plasma frequency

ωp =

√
4πe2n

m
. (2.44)

If we consider a could plasma, the thermal velocity υ can be neglected and we

obtain simple relation (
∂2

∂t2
+ ω2

p

)
ñ =

n0
2

∂2u2⊥
∂x2

, (2.45)

so the density harmonically oscillates with frequency ωp.

2.2.3 Ponderomotive force

We consider a linearly polarized electromagnetic wave which interacts with the

plasma electrons, since the Ions are assumed to be at rest. The general equation

of the Lorenz force is
dp

dt
= −e

(
E +

u×B

c

)
. (2.46)

The fields are given by

E = −1

c

∂A

∂t
, B = ∇×A, (2.47)

where A is a vector potential that characterizes the electromagnetic field. We

also define a normalized vector potential a via

a =
eA

mc2
. (2.48)
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In the limit |a| ≪ 1 we can write p = pq + p̃, with the quiver momentum pq

defined by
∂pq

∂t
= −eE. (2.49)

This equation describes the respond of the electron fluid on the electric field and

thus the electrons oscillate with the frequency of electromagnetic wave (laser).

This is first order electron fluid motion. We are going to calculate the second

order motion, which is more interesting. We start with

dp̃

dt
=
dp

dt
−
dpq

dt
, (2.50)

= −mc (u×∇× a)−mc (u · ∇)a. (2.51)

Here we have used eqs. (2.46) to (2.49) es well as the operator d
dt =

∂
∂t+(u·∇). To

obtain the second order it is enough to set u = pq/m. Using well known relations

of vector analysis we obtain

dp̃

dt
= −1

2
mc2∇a2. (2.52)

This expression represents the ponderomotive force. In one dimensional consid-

eration this force is represented via

Fp =
1

2
m
∂u2⊥
∂x

. (2.53)

This force is responsible for the electron oscillations in the linear regime (compare

with eq. (2.45)). For example by normal incidence of linear polarized laser pulse

on plasma surface the ponderomotive force pushes electrons inside the plasma

away from boundary.

2.2.4 Wave breaking

The previous description is valued only for small perturbations by a≪ 1. In this

case the electron density end the corresponding wake field (electric field waked

by the density oscillations) oscillate harmonically like a sinus function. However

the situation changes as soon as the laser intensity increases. In order to have

an idea how the wake field looks like for larger perturbations (a ∼ 1) we follow

the Ref. [58] and consider a simple model of plasma electron plane oscillations.

We assume that all electrons behave in the same way along the y- and z-axis, so

18



we consider only the motion along the x-axis. First, we define the equilibrium

position x0 and the displacement from the equilibrium X(x0). The position of an

electron is then given by

x = x0 +X(x0). (2.54)

Further we assume that the ordering of the electrons in x-direction remains

unchanged. So if some electron moves from x0 to x, we have a gain of the positive

charge enX on the left hand side from the electron and the gain of the negative

charge on the right hand side. By integrating of the Poisson eq. (2.42) we obtain

the wake field

E = 4πenX. (2.55)

Furthermore we can write the equation of motion for the electron

m
d2X

dt2
= −eE = −4πe2nX, (2.56)

d2X

dt2
= −ω2

pX. (2.57)

It is not surprising that the last equation is similar to eq. (2.45). The general

solution of this equation of motion is given by

X(x0) = X1(x0) sin(ωpt) +X2(x0) cos(ωpt). (2.58)

The functions X1 and X2 are the arbitrary functions of x0. The common example

of a plasma wave is obtained if we set

X1 = 0 and X2 = A sin kx0. (2.59)

Now we want to analyze the spatial distribution of the wake field and set t = 0.

We obtain:

X = A sin kx0, (2.60)

E = 4πenA sin kx0, (2.61)

x = x0 +X = x0 +A sin kx0. (2.62)

In order to obtain the wake field as a function of x we need to eliminate x0 using

last two equations. Since it is impossible to do it analytically, we still can solve

this problem numerically. Some examples for different amplitudes A are shown
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in Fig. 2.4. As we see for small amplitudes the field has the sine form that

Figure 2.4: (Taken from [58]) Normalized wake field as a function of position x
for different values of the amplitude A.

corresponds to the case of small density perturbations. As soon as the amplitude

increases the maximum and the minimum of the field move towards each other

and coincide for A = 1
k . For greater values of A we obtain the solutions which are

physically forbidden. This means that for the amplitudes greater than 1/k the

assumption of the electrons unchanged ordering fails and we observe the case of

wave breaking. Let us have a look on an example of the density distribution in case

of the moderate amplitude A < 1
k (Fig. 2.5). As soon as the amplitude increases

the density exhibits high spikes between the corresponding extreme values of the

wake field. In the critical case of wave breaking the density tends to infinity. If

we assume that the electrons oscillate with the wave number k = ωp/c, then we

obtain the wave breaking field

EWB =
cmωp

e
. (2.63)

This expression results from equation (2.61) if we set A = 1
k = c

ωp
.
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Figure 2.5: (Taken from [57]) Wake field and corresponding density distribution
as a function of position x.

2.3 Radiation from perturbed plasma

An oscillating plasma driven by a laser radiates electromagnetic waves. In this

section we will derive the expressions allowing us to calculate fields radiated from

the perturbed plasma.

2.3.1 Inhomogeneous wave equation

At the beginning of this chapter we have derived the simple wave equation for the

electric field in absence of charges and currents starting from Maxwell equations.

Now we allow a current distribution J(r, t) in the perturbed plasma. Again, we

start from the Maxwell equations

∇×E +
1

c

∂

∂t
B = 0, ∇ ·B = 0, (2.64)

∇×B − 1

c

∂

∂t
E =

4π

c
J , ∇ ·E = 4πρ. (2.65)
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Using the Coulomb gauge ∇·A = 0 for the vector potential defined by B = ∇×A

we obtain the well known wave equation

∆A(r, t)− 1

c2
∂2

∂t2
A(r, t) = −4π

c
J⊥(r, t), (2.66)

where J⊥ denotes the transverse current given by J⊥ = J − 1
4π∇

∂
∂tφ and serves

as a radiation source. In one dimensional geometry this equation takes the form

∂2

∂x2
A(x, t)− 1

c2
∂2

∂t2
A(x, t) = −4π

c
J⊥(x, t). (2.67)

In order to solve this equation we are going to find the Green’s function G which

depends on (x, x′, t, t′) and satisfy(
∂2

∂x2
− 1

c2
∂2

∂t2

)
G(x, t, x′, t′) = −4π

c
δ(x− x′)δ(t− t′). (2.68)

In absence of boundaries the vector potential is given via

A(x, t) =

∫∫
G(x, t, x′, t′)J⊥(x

′, t′)dx′dt′. (2.69)

In order to find a particular solution of equation (2.68) we need to define some

boundary conditions, which make sense form physical point of view. Thus, we set

G|t=t′ =
∂G

∂t

⏐⏐⏐⏐
t=t′

= 0, (2.70)

G|x→±∞ =
∂G

∂t

⏐⏐⏐⏐
x→±∞

= 0. (2.71)

Physically that means that the source starts to radiate for t > t′ and the radiation

vanishes at the certain time if the distance from the source goes to infinity. Further

we substitute τ ≡ t− t′ and x ≡ x− x′, so the equation (2.68) takes the form(
∂2

∂x2
− 1

c2
∂2

∂τ2

)
G(x, τ) = −4π

c
δ(x)δ(τ). (2.72)
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To solve equation (2.72) we will use the method described in [59]. First, we apply

the Laplace transformation on bough sides of equation (2.72) and write∫ ∞

0

(
∂2

∂x2
− 1

c2
∂2

∂τ2

)
G(x, τ)e−sτdτ

= −4π

c
δ(x)

∫ ∞

0
δ(τ)e−sτdτ. (2.73)

The integration of each term combined with boundary conditions (2.70) gives(
∂2

∂x2
− s2

c2

)
g(x, s) = −4π

c
δ(x), with g(x, s) =

∫ ∞

0
G(x, τ)e−sτdτ. (2.74)

The next step is to take the Fourier transform with respect to x of each term in

equation (2.74) ∫ ∞

−∞

(
∂2

∂x2
− s2

c2

)
g(x, s)eikxdx = −4π

c
. (2.75)

Performing the similar calculations as above and using (2.71) we end up with the

simple equation(
−k2 − s2

c2

)
ĝ(k, s) = −4π

c
, with ĝ(k, s) =

∫ ∞

−∞
g(x, s)eikxdx. (2.76)

Finally we obtain the expression for the double transformed function

ĝ(k, s) =
4πc

c2k2 + s2
. (2.77)

Further we have to perform two inverse transformations to obtain G(x, τ). First,

we perform the Fourier inversion

g(x, s) =
1

2π

∫ ∞

−∞

4πc

c2k2 + s2
e−ikxdk (2.78)

=
2

c

∫ ∞

−∞

1

k2 + s2

c2

e−ikxdk (2.79)

=
2π

s
e−

s
c
|x|. (2.80)

In the last equation we used the table of Fourier transform pairs from [60]. The

last step is the Laplace inversion of g(x, s)

G(x, τ) =
1

2πi

∫ γ+i∞

γ−i∞
g(x, s)esτds, (2.81)
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where γ is a real constant that exceeds the real part of all the singularities of

g(x, s). Using the table of Laplace transform pairs from [60] we finally obtain

G(x, τ) = 2πΘ

(
τ − |x|

c

)
, (2.82)

with the Heaviside step function

Θ(x) =

⎧⎨⎩ 0 for x < 0

1 for x ≥ 0.
(2.83)

The function (2.82) solves the equation (2.72). In order to obtain the solution of

(2.68) we just substitute back to initial variables

G(x, t, x′, t′) = 2πΘ

(
t− t′ − |x− x′|

c

)
. (2.84)

Now we can insert this result in (2.69) and obtain

A(x, t) = 2π

∫ ∞

−∞

∫ t− |x−x′|
c

−∞
J⊥(x

′, t′)dt′dx′. (2.85)

The radiated electric field is related to the vector potential via

E(x, t) = −1

c

∂

∂t
A(x, t). (2.86)

Together with (2.85) this leads to

E(x, t) = −2π

c

∫
J⊥

(
x′, t− |x− x′|

c

)
dx′. (2.87)

So the result is basically the spatial integral over the current distribution taken at

the retarded time tret = t− |x−x′|
c . Using the retarded time we take in to account

the time that the wave needs to revel from the curtain source point x′ to the

observation point x. One can distinguish the radiation coming from the left Eleft

and from the right Eright

Eleft(x, t) = −2π

c

∫ x

−∞
J⊥

(
x′, t− x− x′

c

)
dx′, (2.88)

Eright(x, t) = −2π

c

∫ ∞

x
J⊥

(
x′, t− x′ − x

c

)
dx′. (2.89)

24



This equations tells that the field at the curtain point x results from superposition

of all the waves generated by the given current distribution and arrive x at the

time t. So this description can be applied to describe the radiation from the

cold collisionless plasma. A wave generated at the curtain point x′ inside the

plasma can propagate unchanged through the remaining plasma. Let us consider

a localized plasma with the boundaries x1 and x2 irradiated by some laser pulse

coming from the left. We assume that the laser radiation field Elaser(x, t) is fully

determined. The fields in front and at the rear side of the plasma are given by

Ex>x2(x, t) = −2π

c

∫ x2

x1

J⊥

(
x′, t− x− x′

c

)
dx′ +Elaser(x, t), (2.90)

Ex<x1(x, t) = −2π

c

∫ x2

x1

J⊥

(
x′, t− x′ − x

c

)
dx′ +Elaser(x, t). (2.91)

Equation (2.91) is just the sum of the radiation reflected from the plasma coming

from the right and the remaining laser radiation coming from the left. Similar

equation (2.90) is an expression for the transmitted radiation.

2.3.2 Transverse electric field in plasma

Now we are interested in behavior of the electric field inside the plasma after

the incident wave arrives at the plasma boundary and assume that there are no

currents in plasma before it happens. Let us start with the Maxwell eqs. (2.64)

and (2.65) again and assume ∇ · E = 0. Eliminating the term 1
c
∂
∂t∇ × B and

using vector analysis we obtain

∆E =
1

c2
∂

∂t

(
4πJ +

∂

∂t
E

)
. (2.92)

Using the relation ∂
∂tJ = ne∂u∂t = ne2

m E and E ∝ e−iωt we get

∂2

∂x2
E(x, t)−

ω2
p − ω2

c2
E(x, t) = 0, (2.93)

where we have restricted the analysis to one dimensional case again. Using

the boundary condition E(x1, t) = E0e
−iωt we write the solution E(x, t) =

E0e
i(k(x−x1)−ωt) with the dispersion relation

k =
1

c

√
ω2 − ω2

p. (2.94)
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For high enough plasma density (it will be always the case in further chapters)

we have the case ωp > ω. Then the wave number is imaginary and the wave does

not propagate through the plasma. The solution of equation (2.93) looks like

E(x, t) = E0e
−x−x1

δ e−iωt, with δ =
c

ωp

1√
1− ω2

ω2
p

(2.95)

in this case. That means the electric field decays exponentially inside the overdens

plasma. If the width x2−x1 is sufficiently large there is no transmitted radiation

in ideal case. In terms of equation (2.90) that means that the wave originated

from the current distribution compensate the incident laser wave on the rear side

of the plasma (full reflection).
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Chapter 3

Nanobunching regime of high

harmonics generation

Authorship claim: The content of this chapter is largely reproduced from my

paper [61], which will appear in Physics of Plasmas.

3.1 Simulation set up

For our simulations we use the one-dimensional version of the VLPL PIC code

[62]. In our geometry, the incident wave comes from the left hand side of the

simulation box and propagates along the x-axis. The wave is p-polarized and the

electric field component oscillates along the y-axis. The plasma is located at the

right hand side of simulation box. The Code uses dimensionless normalized units.

The time and space quantities are normalized to

xnum =
x

λ
, tnum =

ct

λ
. (3.1)

Here λ denotes the laser wavelength. The numerical Fields are given by

Enum =
eE

mcω
, Bnum =

eB

mcω
. (3.2)

Here is e the elementary charge and ω the laser frequency related to λ as ω =

2πc/λ. Further important quantities are the electron and current densities. By

its normalization we use the critical electron density

nc =
mω2

4πe2
. (3.3)
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Then the corresponding normalized densities can be written as

nnum =
n

nc
, Jnum =

J

ncce
. (3.4)

It is also possible to simulate oblique incidence with our code. Let θ be the angle

of incidence in the laboratory frame and consider a frame moving along the y-

axis with velocity V = c sin θ. Lorentz transformations verify that the laser is

normally incident in this frame (see [63] for more details). At the same time the

whole plasma moves in y-direction in the frame. Thus, attributing some initial

velocity to plasma in our simulation, we are working in the moving frame. If

we need to get the results in laboratory frame, we have to transform the values

obtained from the simulation via Lorenz transformation. Consequently we obtain

results that correspond to the process with oblique incidence (see appendix A for

more details).

We use the incident wave Ei(τ) of duration T = 10λ/c, that is given by

Ei(τ) =
1

4

(
1 + tanh

( τ

∆t

))(
1− tanh

(
τ − T

∆t

))
sin(2πτ), (3.5)

where ∆t = λ/4 and τ = t − x/c (Fig. 3.1a). Further we use an exponential
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Figure 3.1: (a) Electric field component of the incident electromagnetic wave
in vacuum plotted versus time at x = 0. (b) Initial density profile σ = 0.5λ,
n0 = 100nc, where nc is the critical density.

plasma density ramp for x < 0. For x > 0 the density remains constant (Fig.

28



3.1b),

n(x) =

⎧⎨⎩n0e
x
σ for x < 0

n0 for x > 0.
(3.6)

Assuming that the ions are at rest during the whole interaction process, we

consider only the interaction between the electrons and the incident wave. In

the simple case of normal incidence there are two forces acting on particles along

the x-axis. The electrostatic force proportional to Ex and laser ponderomotive

force oscillating with 2ω (twice of the laser frequency). Thus, the plasma surface

oscillates with the half of the laser period (Fig. 3.2 (a)). In the case of oblique
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Figure 3.2: The electron density distribution in space time domain by (a) normal
incidence and (b) 48◦ oblique incidence. Simulation parameters considering from
the laboratory frame are: plasma density n0 = 100nc, σ = 0.5λ; laser amplitude
a0 = 10. Note that the values in (b) are transformed concerning to the moving
frame.

incidence of a p-polarized wave, there is going to be an additional longitudinal

component of the electric field oscillating at frequency ω and acting on the plasma

surface. Consequently the interaction becomes even more complicated, which

leads to stronger oscillations of the plasma surface containing both ω and 2ω

modes (Fig. 3.2 (b)).

As soon as the electrons are pulled back by the electrostatic force, they form a

thin nanobunch that reaches a velocity close to c. In this case the generation of

high-order harmonics is possible.
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3.2 Density profile of a thin electron layer

In this section we do the first step towards our first goal described in the

introduction and derive two different analytic expressions for two different cases,

which roughly describe the electron density profile at the times where the sharp

spikes appear. The starting point of our calculations is the approximation of

the electron phase space distribution at these times. As we shall see later this

distribution depends on the propagation velocity ẋ0(t) of the given electron layer.

First, let us consider the case of a slow electron bunch ẋ0(t) ≪ c. In Fig. 3.3 the
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Figure 3.3: Electron density (red) and electrons in x-px-plane (green). x0 is the
position of the maximal density. Simulation parameters: initial plasma density
n0 = 241nc; σ = 0.001λ, Pulse with dimensionless amplitude a0 = 10 and p-
polarized oblique incidence at 57◦ angle has the wave length λ = 820nm. All
magnitudes are taken in the simulation frame. The right picture gives a zoom of
the area around x0.

electron density and its distribution in x-px-phase space at time t = 0.875λ/c,

when the electrons are pushed inside the plasma almost to the maximal distance

by the ponderomotive force are visualized. We count the time according to Fig.

3.1 (Fig. 3.1a shows the field oscillations at the point x = 0 where the region with

the constant plasma density begins (Fig. 3.1b)). Because we start with a cold

plasma, the electron distribution function is a (curved) line in the phase space.

We assume that this curve in phase space is described by the function x(p) at

some small interval close to the density spike. Obviously, x0 is the local minimum

of this function that coincides with the position of the spike. In fact, we have

always a spike of electron density at the point, where the function x(p) exhibits

the local extreme value. For instance, if we take a look at another curve in phase
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space, which is enclosed by the previous one, we see that there is also a local

maximum of the density at the point were the curve reaches its minimal x-value.

However the electrons are more scattered (heated) compared to the previous case

and thus the local density maximum is much smaller. The idea, that gives us the

staring point for our calculations is the following one. We can locally describe

given curve in phase space as a parabola:

x(p, t) = x0(t) + α(t)(p− p0(t))
2. (3.7)

The point (x0(t), p0(t)) corresponds to the local minimum. We consider some

short interval ∆x where this assumption makes sense. The distribution function

of the electrons is given by

f(x, p, t) = Cδ
(
x− x0(t)− α(t) (p− p0(t))

2
)
, (3.8)

where C is a normalization constant. In order to get the expression of density we

have to perform the integration in momentum space

n(x, t) =

∫
dpf(x, p, t). (3.9)

By using well known integration properties of the Dirac delta function and doing

some algebra we obtain the expression

n(x, t) =
C√

α(t) (x− x0(t))
. (3.10)

The detailed derivation of this result is given in appendix A. Note that this

equation makes sense only for x > x0. For x < x0 the density has to be zero

in this model. This is true because the argument of delta function in (3.8) as the

function of p vanishes only for x > x0. In other words, there are no electrons on

the left hand side of x0. In order to calculate the constant C, we initially write an

equation for the number of particles in the interval ∆x by integrating the density

from x0(t) to x0(t) + ∆x

N∆x(t) = C
∫ x0(t)+∆x

x0(t)

dx√
α(t) (x− x0(t))

= 2C

√
∆x

α(t)
. (3.11)
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We solve the obtained equation for C and insert it into equation (3.10). Finally,

we obtain the expression for the electron density profile,

n(x, t) =
1

2

N√
∆x (x− x0(t))

, (3.12)

where N is the number of particles contained between x0(t) and x0(t)+∆x. Note

that the parameter α cancels, so it does not affect the density profile. In Fig.
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Figure 3.4: Electron density taken from simulation (blue) and calculated
analytically via (3.12) (red), as well as electrons in x-px-plane (black), with same
simulation parameters as for Fig. 3.3, ∆x = 0.001λ (simulation frame).

3.4 we see that the density described with (3.12) agrees very well with simulation

results. This picture is actually a zoom of the Fig. 3.3 at the position of density

spike. We obtain the best agreement at the instants when the electrons are pushed

inside at the maximal distance. In this case, the mean momentum of the electrons

is close to zero and equation (3.7) describes electrons in phase space quite well.

We call the case where ẋ0(t) ≪ c is valid “parabolic case”.

Now we discuss another case with ẋ0(t) → c. Consider the phase space evolution

taken from the other simulation illustrated in Fig. 3.5. At the beginning,

t = 6.2λ/c, the momentum is close to zero and the distribution is parabolic as
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expected. Further, as soon as the electron bunch is pulled back by the electrostatic

force, the negative momentum of the bunch grows constantly with time and

the distribution changes its form until it becomes a kind of a “whip” between

t = 6.5λ/c and t = 6.6λ/c. The extremely dense electron nanobunch reaches

the velocity close to c during this period. This picture is taken from the same
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Figure 3.5: Electrons in x-px-plane taken from the simulation to different times
t during the process of nanobunching. Simulation parameters: initial plasma
density n0 = 100nc; σ = 0.5λ (laboratory frame), Pulse with dimensionless
amplitude a0 = 10 and p-polarized oblique incidence at 48◦ angle has the wave
length λ = 820nm.

simulation as Fig. 3.2 (b). In this case the phase space distribution can be roughly

fitted with an exponential function

xp(p, t) = x0(t) + eα(t)(p−p0(t)) (3.13)

(see Fig. 3.6). As we will show later, the incident angle and the density gradient

that were used here are optimal for producing the most intense attosecond pulse.

The phase space distribution belongs to the nanobunch that emits this pulse. In

order to simplify the notation we drop the time dependence and set p0 = x0 = 0.

At this point we have

xp(p) = eαp, (3.14)

and the distribution function:

f(x, p) = Cδ (x− xp(p)) . (3.15)
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Figure 3.6: Electrons in x-px-plane (green) and the exponential fit (red) from the
same simulation as Fig. 3.5, taken to the time t = 6.48λ/c.

Going along the same line as in the previous case, we obtain:

n(x) = C
∫
dp δ (x− xp(p)) =

C
αx

. (3.16)

See appendix A for more details. Obviously equation (3.14) can not be applied

at the whole interval [0 : ∆x] as in the parabolic case since the momentum of

the electrons is limited by some amount pcut. Therefore the description (3.14) is

valid only on some interval [xmin : xmax], where xmin = e−αpcut . Strictly speaking

by performing the integration in (3.16) we have to take −pcut as a lower limit,

instead of −∞. This would not change the form of the result but the interval on

which it is valid, namely for x > xmin. Consequently, we integrate the expression

(3.16) from xmin to xmax in order to calculate C and get

n(x) =
N

ln
(
xmax
xmin

)
x
. (3.17)

As we can see from Fig. 3.7 equation (3.17) approximates the density profile quite

well even over the comparably long interval. We call the case where ẋ0(t) → c is
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Figure 3.7: Electron density taken from simulation (blue) and calculated
analytically via (3.17) (red), as well as electrons in x-px-plane (green), with
same simulation parameters compared to Fig. 3.5, taken at t = 6.48λ/c.
xmin − x0 = 8, 5 · 10−4λ; xmax − x0 = 0.05λ (simulation frame).

valid “whip case”.

Although the functions (3.12) and (3.17) work well on the given intervals, we still

have the problem that they both are not continuous or even exhibit a singularity.

Such behavior is obviously not physical. In fact, we are able to describe only

a part of the spike correctly. In order to solve this problem we need to find

an expression that would describe the whole spike. That means for instance on

interval [x0 − ∆x : x0 + ∆x]. In order to find such function we have to replace

the delta function, which is used for the definition of the distribution function in

equations (3.8) and (3.15) by some limited function δa(x) with the property

lim
a→0

δa(x) = δ(x). (3.18)

The parameter a describes the width of δa, which means that a > 0 is required.

Gaussian function would fulfill these conditions, but if we use it in order to define

δa we would not be able to solve the integral (3.9) analytically. That’s why we
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define:

ga(x) ≡
3

4a

(
1− x2

a2

)
(3.19)

δa(x) ≡

⎧⎨⎩ ga(x) for x ∈ [−a, a]

0 otherwise
(3.20)

It is easy to check that with this definition δa(x) does satisfy the condition (3.18).

Let us calculate the electron density profile for the parabolic case with x(p) = αp2

again now, which holds if the electron bunch moves slowly. We have:

na(x) = C
∫
dp δa

(
x− αp2)

)
(3.21)

This integration is more complicated as for the simple case with the δ-function.

We have to be careful with integration boundaries, since δa is a bounded support

function. As a result we obtain:

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2C
5a3

√
α

(
3a2 − 2x2 + ax

)√
x+ a for x ∈ [−a, a]

2C
5a3

√
α

((
3a2 − 2x2

) (√
x+ a−

√
x− a

)
+ ax

(√
x+ a+

√
x− a

))
for x > a

0 for x < −a
(3.22)

It is straight forward to show that

lim
a→0

na(x) = n(x) =

⎧⎪⎨⎪⎩
C√
αx

0

, (3.23)

compare with (3.10). For the number of particles Na,∆x on the interval [−a : ∆x],

that means

Na,∆x = 2C
√

∆x

α
for a≪ ∆x, (3.24)

compare with (3.11). Equation (3.24) follows directly from (3.11) and (3.23) for

a → 0. Via integration of na(x) on the interval [−a,∆x] it can be shown that

(3.24) holds also for a ≪ ∆x, which is a more general case. Actually we are
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always able to chose ∆x in such a way that the condition a≪ ∆x is satisfied and

for that case we can finally write

na,∆x(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Na,∆x

5a3
√
∆x

(
3a2 − 2x2 + ax

)√
x+ a for x ∈ [−a, a]

Na,∆x

5a3
√
∆x

((
3a2 − 2x2

) (√
x+ a−

√
x− a

)
+ ax

(√
x+ a+

√
x− a

))
for x > a

0 for x < −a.
(3.25)

Detailed calculation of this result is shifted to appendix A. We plot some examples

in order to show how our function looks like for different parameters a (Fig. 3.8

(a)). Now let us fit the simulated density from above with the calculated analytical
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Figure 3.8: example of some analytical density profiles with same N = 100, but
different a in case (a) xp(p) = αp2, ∆x = 10 and (b) xp(p) = eαp, xmin = 0.1,
xmax = 10.

profile (Fig. 3.9). We chose a quite small value for a because the plasma is cold

and we are dealing with very the big and sharp spike as it is shown in this example.

This is the case since we use strong laser pulse and very small cell size (5 ·10−5λ).

As we can see, our function agrees well with the simulated profile.

Of course the generalization δ(x) → δa(x) can be also used to calculate the density

in the whip case where xp(p) = eαp. But now we have to take pcut as a lower

limit by the integration (3.16), since otherwise the integral would diverge for

x ∈ [xmin − a, xmin + a]. Doing the same steps as in the previous case, we finally
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Figure 3.9: Electron density taken from the simulation (blue) and calculated
analytically via (3.25) (red), with same simulation parameters as for Fig. 3.3,
∆x = 0.001λ; a = 3, 7 · 10−5 (simulation frame).

obtain the density profile

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3N

4a3 ln
(
xmax
xmin

)((x+ a)

(
x+ (x− a)

(
1

2
+ ln

(
xmin

x+ a

)))

+ xmin

(
1

2
xmin − 2x

))
for x ∈ [xmin − a, xmin + a]

3N

4a3 ln
(
xmax
xmin

) (2ax− (x2 − a2) ln

(
x+ a

x− a

))
for x > xmin + a

0 for x < xmin − a

(3.26)

(see appendix A fo more details). Some examples of this function are plotted in

Fig. 3.8 (b). Now as in the previous case we are going to compare the calculated

analytical function with the simulated density profile (Fig. 3.10). Again we obtain

a good agreement and are able to describe the density spike quite well.
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Figure 3.10: Electron density taken from simulation (blue) and calculated
analytically via (3.26) (red), as well as electrons in x-px-plane (green), with
same simulation parameters compared to Fig. 3.5, taken at t = 6.48λ/c.
xmin − x0 = 8, 5 · 10−4λ; xmax − x0 = 0.05λ; a = 2 · 10−4 (simulation frame).

Before we go further, we analyze the intermediate case ẋ0(t) ≲ c. In this case, the

electron phase space distribution does not have any regular shape and can not

be approximated well neither with a parabolic, nor with an exponential function.

Two examples of this case are shown in Fig. 3.11 and Fig. 3.12. Nevertheless,

we find out that the density profile of the spike can still be well approximated

with equation (3.25) (Fig. 3.11, 3.12), so we classify the cases with intermediate

velocities as parabolic. Fig. 3.11 is taken from the same simulation as Fig. 3.9

but at the later time.

In the following section we are going to analyze the corresponding simulation

results more extensively. We will use the descriptions of the electron density

profile derived here in order to calculate an expression for the spectra of the

reflected waves in different cases.
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Figure 3.11: Electron density taken from simulation (blue) and calculated
analytically via (3.25) (red), as well as electrons in x-px-plane (green), with same
simulation parameters compared to Fig. 3.3 but to the later time. Parameters of
the shape function: ∆x = 0.01λ; a = 5 · 10−4 (simulation frame).

3.3 Reflected radiation in nanobunching regime

In the previous section, we did the first step towards our aim to improve the

analytical description of the spectrum in the case of CSE. We derived two analytic

expressions which describe the electron density profile in two different cases during

CSE process. In this section we will go further and work out the equations for the

transverse current distribution for the corresponding cases, where the expressions

derived previously will be used.

We are interested in the high frequency spectrum of the reflected pulse mostly

determined by the behavior of the electron nanobunch when it moves away from

the plasma with maximal velocity. This moment corresponds to the stationary

phase point (SPP) (see [43]). The gamma factor of the bunch exhibits a sharp

spike at this time, the so called γ-spike [37]. One distinguishes different orders of

γ-spikes depending on behavior of the transverse current (see below).
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Figure 3.12: Electron density taken from simulation (blue) and calculated
analytically via (3.25) (red), as well as electrons in x-px-plane (green). Simulation
parameters: initial plasma density n0 = 100nc; σ = 0.066λ (laboratory frame),
Pulse with dimensionless amplitude a0 = 10 and p-polarized oblique incidence at
60◦ angle has the wave length λ = 820nm. Parameters of the shape function:
∆x = 0.013λ; a = 1.5 · 10−3 (simulation frame).

First, we investigate the example of the whip case (ẋ0(t) → c) from the previous

section illustrated in Fig. 3.2(b), Fig. 3.5 and Fig. 3.10 more extensively. The

reflected wave obtained in this simulation is shown in Fig. 3.13 (a). Since we use

a few cycle laser pulse, we get an attosecond pulse train as reflected radiation.

In the following, we consider only the most intense reflected pulse Epls
r (t) that is

filtered out by the Gaussian function (Fig. 3.13 (b)), i.e.

Epls
r (t) = Er(t)e

(t−tmax)2/σ̃2
, (3.27)

where tmax corresponds to the maximal wave amplitude and σ̃ = 0.2λ/c. The

amplitude of the pulse is about five times larger than of incident wave like in

the CSE case. The electron nanobunch which radiates this pulse can be clearly

recognized from the density distribution shown in Fig. 3.14. For convenience, we

chose the coordinates in Fig. 3.14 (b) in such a way that the SPP is in the point
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Figure 3.13: (a): Part of the reflected radiation given by 1
2(Ey(t) − Bz(t)). (b):

Single pulse from the reflected pulse train filtered out by the Gaussian function.
Simulation parameters are the same as for Fig. 3.5.

(0,0), while in Fig. 3.14 (a) it corresponds to the point (2.16λ, 6.52λ/c). As we

saw in chapter 2 the reflected radiation is determined by the transverse current

distribution J⊥(x, t) via

Er(x, t) = −2π

c

∫ ∞

x
J⊥

(
x′, t− x′ − x

c

)
dx′, (3.28)

(since the wave is p-polarized only y-component is considered). For simplicity

we translate this equation to normalized PIC units. First, we multiply the space

argument in each function with 1/λ and the time argument with c/λ. Then

substitute xnum = x/λ in the integral and get

Er(xnum, tnum) = −2πλ

c

∫ ∞

xnum

J⊥
(
x′num, tnum − (x′num − xnum)

)
dx′num. (3.29)

Further, we multiply each side of this equation with the factor e
mcω and

subsequently use the definition of the critical density in order to simplicity the

factor on the right hand side. As a result equation for reflected radiation simplifies

to

Enum
r (xnum, tnum) = −π

∫ ∞

xnum

Jnum
⊥

(
x′num, tnum − (x′num − xnum)

)
dx′num. (3.30)

Now the equation contains purely numerical quantities. We drop the subscript

“num” and write

Er(x, t) = −π
∫ ∞

x
J⊥
(
x′, t− (x′ − x)

)
dx′. (3.31)
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Figure 3.14: The electron density distribution in space time domain. Simulation
parameters are the same as for Fig. 3.5. All magnitudes are taken in the
simulation frame The green square in (a) marks the nanobunch that is zoomed in
(b). This bunch is responsible for the radiation of the strong pulse shown in Fig.
3.13. In (a) t1 = 6.48λ/c as in Fig. 3.10.

After we translated the equation for reflected field to the normalized units we

want to simplify this expression further by eliminating the x-dependence, which

is not important in our case since we consider the reflected radiation behind the

plasma. To do so, we consider the field on at some point (x0, t0) with t0 = −x0
and evaluate the limit

lim
x0→∞

Er(x0,−x0) = −π
∫ ∞

−∞
J⊥ (x,−x) dx. (3.32)

Finally, we define

Er(t) ≡ lim
x0→∞

Er(x0,−x0 + t), (3.33)

and obtain the simplified expression

Er(t) = −π
∫ ∞

−∞
J⊥ (x, t− x) dx. (3.34)

Starting from this equation we make some assumption of current behavior in

the vicinity of the SPP. Our derivation is similar to the one in [43], but is more

detailed. First of all, we assume that the transverse current density does not
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change its shape during the time and write

J⊥(x, t) = n(x, t)v⊥(x, t) ≈ j(t)f(x− x0(t)), (3.35)

with the density n(t, x), the velocity v⊥(t, x) and the position of the bunch x0.

The function f is the shape that is assumed to be constant close to the SPP. If

we compare the both sides of the last equation in (3.35), we can approximate

υ⊥(x, t) ≈ ῡ⊥(t), n(x, t) ≈ nmf(x− x0(t)). (3.36)

This means that equation (3.35) assumes the transverse velocity being approxi-

mately constant in space and equal to the mean velocity ῡ⊥(t). The density profile

has a constant shape with the maximal value nm and only changes its position

x0(t). Thus the equation (3.35) takes the form

J⊥(x, t) ≈ nmv̄⊥(t)f(x− x0(t)), j(t) = nmv̄⊥(t). (3.37)

In the next step, we assume the ultrarelativistic regime, which means that absolute

velocity of the particles is always close to c. In this case we can write

√
ẋ0(t)2 + v̄⊥(t)2 ≈ υ ≈ c. (3.38)

Now we are going to Taylor expand j(t). Let us first take a look at the Fig. 3.15

(a). It shows the transverse current distribution of the given nanobunch. In the

SPP the bunch exhibits maximal longitudinal velocity υx = υ which is close to

c, so that the transverse component almost vanish. As a result, the transverse

current vanishes as well. This can be seen in the picture. We can also see, that

the current does not change its sign at the SPP. So we assume

j(t) ≈ α0t
2. (3.39)
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Figure 3.15: Transverse current density from the simulation (a) and calculated
analytically (b). In (a) the simulated current density near the SPP (0,0) is
illustrated. As we see the transverse current almost vanish in SPP. Simulation
parameters are the same compared to Fig. 3.5. In (b) the analytically calculated
current distribution is shown. The parameters used in equation (3.41) are:
α0 = 6 · 104, nm = 1100 and γ = 15, while the parameters used for the shape
are: a = 1, 5 · 10−4λ, xmin = 8 · 10−4λ and ˜̃σ = 0.02λ. The velocity υ in (3.41) is
obtained from the gamma factor.

Combining this relation with the second equation from (3.37) and inserting it in

(3.38) leads to

ẋ0(t) ≈ −

√
υ2 − α2

0

n2m
t4 ≈ −υ +

α2
0

2υn2m
t4, (3.40)

x0(t) ≈ −υt+ α2
0

2υn2m

t5

5
≡ −υt+ α1

t5

5
. (3.41)

Here we have the negative sign in front of the square root since the electron layer

moves in the negative direction. To describe the shape f we use the expression

for the density profile (3.26) which is derived in the previous section. With this

function we replace the Gaussian function that is used in [43]. Obviously the

function (3.26) fits the density much better than the Gaussian function as shown

above. From the second equation of (3.36), we read that the maximal value of f
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is one. Consequently we conclude, that

f(x) =
1

nm
na(x). (3.42)

Since nm should represent the maximum of na, we can write nm = na(xm), where

xm is the extrem value of na, which depends on parameters a and xmin. In addition

we multiply the shape function with a wider Gaussian function since f decays too

slowly (∝ 1/x) for positive x and after certain x-value does not coincide with the

given density. Thus, the Gaussian helps as to cut this “tail” with no influence on

the spectrum structure. So we have

f(x) =
na(x)

na(xm)
e−

x2

˜̃σ2 . (3.43)

Now, we just need to insert the equations (3.39), (3.41) and (3.43) in (3.35) in

order to obtain the analytical expression of the current distribution.

J⊥(x, t) = α0t
2 na(ζ)

na(xm)
e−

ζ2

˜̃σ2 , ζ ≡ x+ υt− α1
t5

5
. (3.44)

To get some result we need to choose the parameters contained in this formulas,

in the way that the calculated distribution would be similar to those we obtained

from the simulation (Fig. 3.15 (a)). Moreover, the physical values like the

maximal density nm or maximal velocity υ have to be in line with the simulation

results. We find that the parameter set we used to obtain Fig. 3.15 (b) is a good

choise. First of all, we see that the analytical current distribution fits the original

one quite well (Fig. 3.15). The chosen maximal density nm is in line with the

simulation as can be seen from Fig. 3.10. In order to have an idea concerning

the order of magnitude of the gamma factor, we visualized the distribution of γ

in vicinity of the density spike (Fig. 3.16). As we see γ almost reaches the value

γ = 15. The numbers a and xmin that characterize the shape are similar to those

we used in Fig. 3.10. They are slightly different because these numbers pass

better for fitting the current density through some finite time interval, while in

case of Fig. 3.10 only one particular time point is considered.

Now we consider the radiation emission from the assumed current distribution as

well as its spectrum. Equation (3.28) enables us to calculate the radiation and the

spectrum analytically (see appendix A). Here we give the expression of radiated
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Figure 3.16: Distribution of γ factor in the given nanobunch calculated only in
cells with density bigger than 200nc.

spectrum that is derived in line with [43].

I(ω) = E2
r (ω) = 4π4α2

0(α1ω)
− 6

5

(
Ai′′2(α

− 1
5

1 δω
4
5 )

)2

|f(ω)|2, (3.45)

α1 =
a20

2υn2
, δ = 1− υ, Ai′′2 =

d2

dx2
1

2π

∫
e
i
(
xt+ t5

5

)
dt.

The Fourier transform of the shape function f(ω) is calculated numerically using

FFT. In Fig. 3.17 (b) the spectrum calculated using (3.45) is compared with the

spectrum calculated from original reflected pulse (Fig. 3.13) via FFT. Obviously

the description works very well almost until 1000-th harmonic. Both graphs

diverge for ω < 100ω0 but anyway the method of SPP used here works only

for high harmonics, so we may not expect the coincidence for low frequencies. In

Fig. 3.17 (a) the corresponding pulses are compared. So the red one is the same as

shown in Fig. 3.13 and the black one is determened from the assumed analytical

current distribution using (3.28). Both graphs behave in the similar manner. To

conclude, we can say that we obtained quite good results applying our new shape

function derived in the previous section instead of a Gaussian function.
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Figure 3.17: Reflected radiation obtained from the simulation ((a) red) and from
the analytical current distribution ((a) black), as well as the corresponding spectra
in (b). The spectrum from the simulation is taken directly from the radiated pulse
via FFT, while the other one is obtained using the equation (3.45).

Going along the same line we analyze now the intermediate case ẋ0(t) ≲ c shown

in Fig. 3.11 and 3.12. As we said before, we attribute this case to the parabolic

case. In these figures we have two examples of this case which originate from

two different simulations. We will investigate both of them in order to make sure

that our model works not only for one particular parameter set. First of all, we

consider the reflected pulse trains and filter out the pulses we are interested in

(Fig. 3.18 and 3.19). The density and the gamma factor of the corresponding
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Figure 3.18: (a) Part of the reflected radiation given by 1
2(Ey(t) − Bz(t)). (b)

Single pulse from the reflected pulse train filtered out by the Gaussian function.
Simulation parameters are the same as for Fig. 3.3.

electron bunch is shown in Fig. 3.20 and 3.21. The point (0,0) corresponds to

the SPP like in the previous case. Even from this picture one can clearly see

that the velocity in the SPP significantly deviates from the speed of light and is

approximately 0.85c in Fig. 3.20 and 0.91c in Fig. 3.21. From the distribution of
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Figure 3.19: (a) Part of the reflected radiation given by 1
2(Ey(t) − Bz(t)). (b)

Single pulse from the reflected pulse train filtered out by the Gaussian function.
Simulation parameters are the same as for Fig. 3.12.

the gamma factor we see that it is roughly constant within the electron layer. So

we can use the same approximation as in the previous case

√
ẋ0(t)2 + v̄⊥(t)2 ≈ υ. (3.46)

The difference between (3.38) and (3.46) is of course that in last equation υ is not
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Figure 3.20: (a) Distribution of the gamma factor in the given electron bunch in
space time domain. (b) The electron density distribution in space time domain.
Simulation parameters are the same compared to Fig. 3.3. All magnitudes are
taken in the simulation frame. t1 denotes the time which corresponds to Fig. 3.11,
t1 = −0.028λ/c.

close to c. For that reason the electron phase space distribution does not become

“whip-like” (Fig. 3.11 and 3.12). Now let us consider the corresponding current
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Figure 3.21: (a) Distribution of the gamma factor in the given electron bunch in
space time domain. (b) The electron density distribution in space time domain.
Simulation parameters are the same compared to Fig. 3.12, which corresponds to
t = 0. All magnitudes are taken in the simulation frame.

distributions (Fig. 3.22(a) and 3.23(a)). In this case, the current changes its sign

in the SPP, so we can assume

j(t) ≈ −α0t. (3.47)

Similar to the previous case, we derive

x0(t) ≈ −υt+ α2
0

2υn2m

t3

3
≡ −υt+ α1

t3

3
. (3.48)

Using these assumptions we calculate the current distributions analytically (Fig.

3.22(b) and 3.30(b)). The gamma factors can be roughly read from Fig. 3.20

and 3.21, so we set γ = 2 and γ = 2.5 respectively. These values match well

the corresponding maximum longitudinal velocities of the layer obtained above.

Finally, we obtain the spectrum of a reflected wave (see appendix A)

I(ω) = E2
r (ω) = 4π4α2

0(α1ω)
− 4

3

(
Ai′1(α

− 1
3

1 δω
2
3 )

)2

|f(ω)|2, (3.49)

α1 =
a20

2υn2
, δ = 1− υ, Ai′1 =

d

dx

1

2π

∫
e
i
(
xt+ t3

3

)
dt.

The corresponding pulses and their spectra are shown in Fig. 3.24 and 3.25.
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Figure 3.22: Transverse current density from the simulation (a) and calculated
analytically (b). In (a) the simulated current density near the SPP is illustrated.
Simulation parameters are the same compared to Fig. 3.3. In (b) the analytically
calculated current distribution is shown. The parameters used in equation (3.48)
are: α0 = 3 · 104, nm = 1000 and γ = 2, while the parameters used for the shape
are: a = 4 · 10−4λ and ˜̃σ = 0.02λ. The velocity υ in (3.41) is derived from the
given gamma factor.

Even if the above assumptions did not work as good as in the previous case, the

obtained results still give a satisfactory approximation.

We can generalize the equations (3.45) and (3.49) and write:

I(ω) = E2
r (ω) = 4π4α2

0(α1ω)
− 2n+2

2n+1

(
dn

dξn
Ain(ξn)

)2

|f(ω)|2, (3.50)

ξn = α
− 1

2n+1

1 δω
2n

2n+1 , Ain =
1

2π

∫
e
i
(
xt+ t2n+1

2n+1

)
dt. (3.51)

We obtain this formula from the general assumption j(t) = α0(−t)n for the

transverse current. The index n corresponds to the order of a certain γ-spike.

Thus, we see that in the first example (whip case) we have the second order

gamma spike, while in the second example (parabolic case) the first order gamma

spike is obtained.

Now it is time to deal with our second goal, namely to investigate the most efficient

case of HHG at moderate laser intensity (a0 = 10). For this purpose we perform
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Figure 3.23: Transverse current density from the simulation (a) and calculated
analytically (b). In (a) the simulated current density near the SPP is illustrated.
Simulation parameters are the same compared to Fig. 3.12. In (b) the analytically
calculated current distribution is shown. The parameters used in equation (3.48)
are: α0 = 1 · 104, nm = 500 and γ = 2.5, while the parameters used for the shape
are: a = 1 · 10−3λ and ˜̃σ = 0.02λ. The velocity υ in (3.41) is derived from the
given gamma factor.

several 1D PIC simulations and vary the steepness of the exponential density

gradient as well as the incident angle. For each parameter set we consider the

reflected radiation in order to find the increase of the amplitude that is common

in the case of nanobunching. In Fig. 3.26 we visualized the maximal amplitude

of the reflected wave for each parameter set respectively. Consider the incident

angle between 45◦ and 60◦, since by this angles the most interesting things happen.

Of course, one notices the sharp increase of the reflected wave amplitude in the

area around σ = 0.4λ zoomed in Fig. 3.26(b). By σ = 0.5λ and the angle

48◦ (laboratory frame) we get the amplification of a factor of five. This is the

most efficient HHG we could obtain. We call this area high amplitude parameter

set (HAPS). In this area we mostly obtain the second order γ-spikes and the

current does not change its sign in the SPPs like in Fig. 3.15. Furthermore, our

study shows that the maximum longitudinal velocity of the boundary electron

layer increases monotonically with σ until HAPS, where it almost reaches c. For

σ < 0.05λ the boundary oscillates too slowly so that no short pulses are generated.

Roughly in the range between 0.05λ and 0.1λ we obtain the reflected radiation
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Figure 3.24: Reflected radiation obtained from the simulation ((a) red) and from
analytical current distribution ((a) black), as well as the corresponding spectra in
(b). The spectrum from the simulation is taken directly from the radiated pulse
via FFT, while the other one is obtained using the equation (3.49). Simulation
parameters are the same as for Fig. 3.3.
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Figure 3.25: Reflected radiation obtained from the simulation ((a) red) and from
analytical current distribution ((a) black), as well as the corresponding spectra in
(b). The spectrum from the simulation is taken directly from the radiated pulse
via FFT, while the other one is obtained using the equation (3.49). Simulation
parameters are the same as for Fig. 3.12.

very similar to that from Fig. 3.18, 3.19 and generated via the same mechanism.

We call this area moderate amplitude parameter set (MAPS). Here we have only

the first order γ-spikes and the current changes sign in the SPPs. Thus, the

reflected spectrum in MAPS can be approximated with equation (3.25) (parabolic

case) and the area of HAPS corresponds to the exponential case (equation (3.26)).

In the area between MAPS and HAPS the interaction is too complicated to be

attributed to any model.
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Figure 3.26: Each point in these pictures corresponds to the maximal amplitude
obtained from the reflected radiation taken from corresponding simulation. We
have different angles of incidence along the y-axis and different steepness of the
density gradient along the x-axis, where σ is taken from (3.6) and n0 = 100nc
(laboratory frame). The right picture is the zoom in the parameter range where
the most strong amplification is obtained.

3.4 Transmitted radiation in nanobunching regime

We considered only reflected radiation untill now, but the question if the

transmitted radiation could also be described with our model still can be asked.

The CSE in transmission has already been obtained by normal incidence on

ultra-thin foils [44, 45]. So we performed several simulations using the 0.2λ foil

and varying the density gradient and the density. By choosing σ = 0.4 for the
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Figure 3.27: (a) Part of the transmitted radiation. (b) Single pulse filtered out by
the Gaussian function. Simulation parameters: initial plasma density n0 = 40nc;
σ = 0.4λ, normal incident pulse with dimensionless amplitude a0 = 10 has the
wave length λ = 820nm.

density gradient and a density of 40nc, we could obtain a transmitted pulse with

a maximum amplitude that reaches almost 30% of the incident amplitude (Fig.

3.27). This pulse is radiated by the electron nanobunch that is accelerated in
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forward direction and reaches a velocity of υ ≈ 0.95c in the SPP (Fig. 3.28 (b)).

Unfortunately, the electrons are distributed very arbitrarily in phase space (Fig.
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Figure 3.28: (a) Distribution of the gamma factor in the given electron bunch in
space time domain. Gamma factor is shown only for the cells with density above
20nc. (b) The electron density distribution in space time domain. Simulation
parameters are the same compared to Fig. 3.27.

3.29), so there is no chance to apply our analytical formulas for the density spike

in this case. The reason of the broad distribution function can be the significant

rise of the electron temperature. Instead, the density profile of the considered

electron bunch can be roughly described with a simple Gaussian

f(x) = e−
x2

˜̃σ2 . (3.52)

as done in [42, 43]. In Fig. 3.30 (a) the transverse current distribution of the

given electron bunch is demonstrated. We see that the current changes its sign

in the SPP, so we use equation (3.47) here, while x0(t) changes its sign compared

to (3.48),

x0(t) ≈ υt− α1
t3

3
. (3.53)

Now we can calculate the current distribution of the bunch that is shown in Fig.

3.30 (b). In order to calculate the transmitted radiation, we use

Etr(t) = π

∫
J⊥(x, t+ x)dx, (3.54)
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Figure 3.29: Electron density is taken from simulation in SPP (blue) and
calculated analytically via (3.25) (red), as well as electrons in x-px-plane (green),
Simulation parameters are the same comparing to Fig. 3.27, while by analytical
description we used ˜̃σ = 0.0015λ.

while the formula for the spectrum is obviously the same as in (3.49). Since we

use a Gaussian function as the shape here, we insert its analytical Fourier image

in (3.49). Subsequently, as in the cases of reflected radiation, we consider the

analytical and numerical transmitted pulses as well as their spectra (Fig. 3.31).

It is not very surprising that the results do not fit exactly, especially for the low

frequency range. This is because the radiation is formed within the skin layer

and has to propagate through whole foil. The trajectory of the radiating electron

nanobunch is not in vacuum anymore, but encompasses the bulk plasma.
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Figure 3.30: Transverse current density from the simulation (a) and calculated
analytically (b). In (a) the simulated current density near the SPP is illustrated.
Simulation parameters are the same comparing to Fig. 3.27. In (b) the
analytically calculated current distribution is shown. The parameters are used
in equation (3.48): α0 = 500, nm = 100 and γ = 3, while for the shape we used:
˜̃σ = 0.0015λ. The velocity υ in (3.41) is derived from the given gamma factor.

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

E
rm

ax
(r

)/a
0

ct/λ

(a)  1e-10
 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 10  100

E
rm

ax
(ω

)2 /a
02

ω/ω0

(b)

Figure 3.31: Transmitted radiation obtained from the simulation ((a) red) and
from analytical current distribution ((a) black), as well as the corresponding
spectra in (b). The spectrum from the simulation is taken directly from the
radiated pulse via FFT, while the other one is obtained using the equation (3.49).
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3.5 Conclusions

We were able to obtain two different analytical expressions of the electron density

profile describing the density spikes in two different cases specified by the electron

phase space distribution. First, we presented the parabolic case, where the phase

space distribution can be approximated by a parabola. In the second case, the

electrons in phase space could be fitted with an exponential function. We called

this case the whip case. A few examples, where the analytical formulas describe

the simulated density quite well have been presented . Furthermore, we discussed

simulation results of HHG, where we were able to obtain an amplitude increase

in the reflected pulse by a factor of five without using extremely intense incident

laser pulses. This was possible after we found optimal parameters for the density

gradient combined with an optimal incident angle. Moreover, based on some

simple assumptions, we were able to describe the distribution of transverse current

in the vicinity of the SPP analytically in both cases. The obtained expressions

together with the analytical expressions for electron density give us the possibility

to fit the numerically obtained spectra of the back radiated pulse quite good.



Chapter 4

Wavebreaking-associated

transmitted emission

Authorship claim: The content of this chapter is largely reproduced from the

paper [64] published in New Journal of Physics on June 2016.

4.1 Simulation set up

Both one-dimensional (1D) and 2D particle-in-cell (PIC) simulations are carried

out using the Virtual Laser Plasma Lab (VLPL) code[62]. We firstly present the

1D results to investigate the radiation mechanism in detail. Here, we demonstrate

the basic idea mainly by considering the simplest configuration of normal laser

incidence and step plasma density profile. As such, this mechanism can be pointed

out most clearly since it is easily distinguished from the other mechanisms. For

example, CWE cannot play a role with this geometry, because it requires oblique

laser incidence and short density gradient[65]. Besides, the emission cannot

simply be attributed to ROM either, because ROM only occurs in the reflection

direction[45].

The incident laser is linearly polarized in z-direction, with a Gaussian temporal

profile az(t) = aL exp (−t2/τ2), where aL = eEL/(mecω0) is the normalized laser

amplitude with EL and ω0 the laser field amplitude and the laser frequency

respectively, e, me, and c are respectively the electron mass, the elementary

charge and the speed of light in vacuum, and τ = 0.5T0 is the pulse duration with

T = 2π/ω0 the laser pulse duration. Here for simplicity we firstly consider this
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quasi-single-cycle pulse. The effect of multi-cycle laser pulses will be discussed

in section 5.2. The fully ionized plasma, with a thickness of d=120 nm and

an electron density of n0 = 100nc, is initially located between x = 5λ0 and

x = 5.15λ0, where λ0= 800 nm is the laser wavelength, nc = meω
2
0/4πe

2 is the

critical plasma density. The ions are assumed to be immobile due to the short

interaction time being considered. The cell size is λ0/2000 and each cell is filled

with 100 macroparticles.

4.2 Radiation features

To show the essential signatures of the transmitted XUV pulses, we present the

results of two reference cases in Fig. 4.1, with frames (a) and (b) for a laser

amplitude aL = 20, and frames (c) and (d) for aL = 30. From the temporal profiles

of the electric field depicted in Fig. 4.1(a) and (c), one can see intense few-cycle

pulses have been generated. The emitted pulse has the same polarization with the

laser pulse, i.e., only with electric field along z-direction. This is different from

CWE, which emits y-polarized HHG even for a z-polarized obliquely incidence

laser[65]. The peak electric field is only about one order of magnitude smaller

than that of the laser field. The transmitted XUV emission is strong. Its energy is

about one-fifth of that carried by the reflected XUV harmonics (XUV frequency

components from 10ω0 to 100ω0 are compared). For aL = 30, the XUV pulse

is nearly single-cycle, reaching an extremely high peak field of Ez/EL = 0.3,

corresponding to Ez = 3.5 × 1013 V/m. The insets of Fig. 4.1(a) and (c) show

the pulse intensity. The full-width at half-maximum (FWHM) of the pulses are

approximately 190 attoseconds and 20 attoseconds for aL = 20 and aL = 30,

respectively.

Fig. 4.1(b) and (d) are the Fourier spectra corresponding to Fig. 4.1(a) and (c),

respectively. The spectra display a low-frequency cutoff at the initial plasma

frequency ωp0 = 10ω0. Thus, the pulse can be used directly as it is already

filtered by the target. The pulse energy for aL = 20 as shown in Fig. 4.1(b) is

mostly concentrated at the frequencies ≥ ωp0. The spectrum for aL = 30 shown

in Fig. 4.1(d) is broader and extends to higher frequencies. As such, the temporal

pulse width in Fig. 4.1(c) is much shorter than that in Fig. 4.1(a). When we

further increase the incident laser amplitude aL to above 40, the spectra show
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Figure 4.1: (a), (c) Temporal profiles and (b), (d) frequency spectra of the XUV
pulses observed at the rear side. Frames (a) and (b) are for aL = 20, and frames
(c) and (d) for aL = 30. The insets of (a) and (c) show the temporal profiles
plotted as intensity.
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lower frequencies indicating laser light transmission, as a result of strong target

compression by the light pressure.

4.3 Radiation mechanism

In this section we focus on revealing the underlying mechanism of the XUV

emission. Here we select the case of aL = 20 for demonstration, since the basic

features of radiation and the interaction dynamics are similar for both cases, as

can be seen from the Supplemental movies SM1 and SM2∗.

We start with discussing the possible origins of high-frequency emission based

on the expression for total transverse current leading to the transverse radiation

field. Considering a more general case of laser at oblique incidence with an angle

of θ, the expression for the radiation source, i.e., the total transverse current jτ ,

can be obtained as[65]

jτ (x, t) = −e
2ne(x, t)

me cos θ

A(x, t)

γ(x, t)
− ec tan θ

[
Zni(x, t)−

1

cos θ

ne(x, t)

γ(x, t)

]
êy, (4.1)

where A is the total vector potential, Z is the ion charge number, ni is the ion

density, and êy is the unit vector along y-axis.

The second term is always along the y-direction and only occurs for oblique

incidence with θ ̸= 0. This is the source term responsible for the CWE

mechanism[65]. It can emit radiation directly from the plasma oscillation ne,

without the need to couple with the transverse laser field. This is obviously not

the case in our scheme where θ = 0 and the emission is in the z-direction. In

addition to requiring oblique incidence, CWE is only possible in the presence of a

density gradient, since its mechanism is basically the inverse process of resonance

absorption.

Under the condition of laser field Ez at normal incidence with θ = 0, the total

transverse current is recast to be

jτ (x, t) = − e2

me

ne(x, t)

γ(x, t)
Az(x, t), (4.2)

∗See the supplemental material available at http://iopscience.iop.org/1367-2630/18/6/
063014/media for further results: the animated version of the field and plasma dynamics for
aL = 20 (1D simulations) in movie SM1, aL = 30 (1D simulations) in movie SM2, and aL = 20
(2D simulations) in movie SM3.
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Figure 4.2: (a)-(b) Spatially resolved spectrum of transverse electric field Ez. At
each spatial observation point x, Fourier transform is carried out with respect to
the temporal waveform recorded. The time interval is from t = 0 to t = 3.06T0
(marked as t1 in frame (c)) for frame (a), and from t = 3.06T0 to t = 8.0T0 for
frame (b). The vertical dashed white lines mark the initial plasma boundaries. (c)
Spatial-temporal distribution of the electron density ne(x, t) in units of nc. Time
t3 = 3.10T0 is also marked, which indicates the onset of wavebreaking. Here,
aL = 20.

In this case, high frequencies can be introduced by temporal modulation of the

effective plasma density ne/γ and the vector potential Az, and Doppler upshifting

effect. The ROM mechanism is dominated by the Doppler upshifting effect, and

thus can only occur in the reflected direction[45]. In the following, we show that

our observed transmitted emission can be mainly attributed to strong density

oscillations at wavebreaking level coupled to transverse electric fields in the laser-

illuminated surface layer.

4.3.1 Region of emission

We firstly demonstrate that the transmitted emission originates from the laser-

illuminated front layer of the target. To see this, we plot the spatially resolved
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spectra in Figs. 4.2(a)-(b), which give the information about when and where the

emission occurs. The procedure to obtain these spectra is as following. First, we

record the temporal profile of the transverse electric field Ez(x0, t) at the spatial

position x0 over a period of time. Next, Fourier transformation is carried out with

respect to this temporal profile Ez(x0, t) to obtain Ez(x0, ω). We do this for each

point of x in the range between x = 4.95λ0 and x = 5.20λ0. Finally we map the

spatial-spectra distribution of Ez(x, ω) as Figs. 4.2(a)-(b). The time interval for

Fig. 4.2(a) is from t = 0 to t = 3.06T0, and for Fig. 4.2(b) from t = 3.06T0 to

t = 8.0T0. Here T0 is the laser period. Time t = 3.06T0 is also marked as t1 in

Fig. 4.2(c), which shows the spatial-temporal distribution of the electron density

ne(x, t). Time t3 = 3.10T0 marked in Fig. 4.2(c) indicates, as we will show later,

the onset time of wavebreaking. This means that Fig. 4.2(a) and (b) are plotted

respectively before and after the time when wavebreaking occurs. As can be seen,

there is no transmitted emission before the wavbreaking occurs (see Fig. 4.2(a)),

while after the onset of wavebreaking the transmitted emission is observed (see

Fig. 4.2(b)). Note that the frequency of the transmitted emission in Fig. 4.2(b)

accords with the XUV spectrum shown in Fig. 4.1(b). In addition to the timing of

the transmitted emission, another important observation is that this XUV pulse

observed at the target rear side originates from the front (laser-illuminated) layer

of the target. The XUV pulse then propagates through the plasma slab.

Next, we show that strong plasma density oscillations occur in this front layer.

From the spatial-temporal distribution of the electron density shown in Fig. 4.2(c),

one can see that electrons at the front plasma surface are initially pushed forward

by the laser light pressure and then bounce back in the first half laser cycle.

The same process repeats in the second half laser cycle, but with some different

features: in addition to follow the driving-laser-pulse shape, the plasma surface

also exhibits higher frequency oscillations. As mentioned above, it is during this

time the transmitted emission occurs.

4.3.2 Onset of wavebreaking

To understand how the strong density oscillations arise, we present the plasma

dynamics at six characteristic times in Fig. 4.3: t0 = 2.66T0, t1 = 3.06T0, t2 =

3.09T0, t3 = 3.10T0, t4 = 3.16T0 = t0 + T0/2, and t5 = 3.18T0. In the first half

laser cycle, due to the large laser ponderomotive force, surface electrons are pushed
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Figure 4.3: (a)-(f) Spatial profiles of ne (red), longitudinal electric field Ex

(black), transverse electric field Ez (magenta), velocity in x-direction vx (blue),
and x-component of the total force Fx (green) at six reference times, t0 = 2.66T0,
t1 = 3.06T0, t2 = 3.09T0, t3 = 3.10T0, t4 = 3.16T0 = t0 + T0/2, and t5 = 3.18T0,
where T0 is the laser period. Here aL = 20. The very sharp high-density spike
formed at t3 and the onset of a multi-stream motion in the phase space are the
signatures of wavebreaking.
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deep inside the plasma (see Fig. 4.3(a)), creating a large electrostatic field. As

the laser ponderomotive pressure passes its first maximum, the surface electrons

are pulled back by the large electrostatic restoring force, gaining a large kinetic

energy before exiting beyond the initial foil edge at x = 5λ0 (see Fig. 4.3(b)).

This group of electrons experiences a stronger inward acceleration in the second

half of the laser cycle, when the ponderomotive pressure and electrostatic forces

in the vacuum region are co-directed. When this group of electrons returns to the

plasma edge, it meets background electrons that were initially deeper inside the

surface layer and are now moving in the opposite direction. When the two groups

of electrons cross (see Fig. 4.3(c)), a very sharp high-density spike forms at t3 (see

Fig. 4.3(d)), also indicating the onset of a multi-stream motion in the phase space -

signatures of wavebreaking[58]. For initially cold plasma, the wavebreaking causes

an extremely high spike in the local plasma density, although thermal pressure

effects may limit the actual density increase[66, 67].

4.3.3 Strong density oscillation subsequent to wavebreaking

The onset of wavebreaking is followed by a high level of plasma density oscillation.

This can be seen from the spatial-temporal profile of the electron density shown in

Fig. 4.2(c), and more clearly from the movie SM1 in the Supplemental Material.

The dynamic process of the density oscillation subsequent to wavebreaking can

be understood as following. The electrons, which start to move in the negative

direction at the beginning of the second half laser period, largely affect the

following plasma oscillation. They represent the electron boundary after crossing

over the electrons moving to the right. Afterwards, the laser ponderomotive force

dominates and it reverses the boundary electrons (see Fig. 4.3(e)). At the same

time, the other electron bunches move further inside the plasma. This leads to

the density profile largely different from that of half laser period ago when no

wavebreaking occurs (see Fig. 4.3(a)). In the case of without wavebreaking, Ex

decreases exponentially in the surface layer after reaching its maximum, while in

the case of wavebreaking the electric field decays much slowly (see Fig. 4.3(e)). As

a result, the electrostatic force starts to dominate in the surface layer (see the total

force) and consequently the electrons in this area start to move in the negative

direction. At the same time, the electrons near the boundary still move in the

positive direction, so a second sharp density spike is expected (see Fig. 4.3(f)).
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Figure 4.4: (a) The temporal profiles and (b) frequency spectra of the effective
plasma density oscillation ne/γ, recorded at a fixed position x = 5.05λ0 near the
front surface. The blue lines correspond to a time interval between t = 2.5T0 and
t = 3.0T0 (i.e., before the wavebreaking), while the red lines between t = 3.0T0
and t = 3.5T0 (i.e., after the wavebreaking).

This process repeats several times that several periods of density oscillation can

be expected.

From the point of view of wavebreaking, a direct consequence of wavebreaking is a

large number of formerly nonresonant main body electrons can rapidly exchange

energy with the plasma wave and acquire momenta efficiently. In other words,

wavebreaking implies a considerable fraction of the plasma electrons are trapped

and start oscillating. This leads to a greatly increased plasma fluctuation level.

The strong oscillation of many surface electrons can be seen from the rotating

structure of the electron phase-space distribution at latter times, as shown by the

blue dotted lines in Figs. 4.3(f)-(e) and more clearly from the supplemental movie

SM1.

The density variation is low and smooth before the wavebreaking, while high

and fast after it. For further demonstration, we present one example of the

density variation recorded at a fixed position near the front surface x = 5.05λ0.

Figures 4.4(a) and (b) show the temporal profiles and the corresponding Fourier

spectra, respectively. Here the (relativistically corrected) effective plasma density

ne/γ is used and the Lorentz γ-factor is cell-averaged (γ =< γ >cell). The blue

lines in Fig. 4.4 correspond to a time interval between t = 2.5T0 and t = 3.0T0 (i.e.,

before the wavebreaking), while the red lines between t = 3.0T0 and t = 3.5T0

(i.e., after the wavebreaking). On the one hand, the amplitude of the density
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variation is much higher after the wavebreaking than before it (see the temporal

profiles shown in Fig. 4.4(a)). On the other hand, the frequency of the density

oscillation is also higher after the wavebreaking, as shown in the frequency spectra

of Fig. 4.4(b).

4.3.4 Emission of XUV pulses

Radiation source

Although the plasma oscillation is longitudinal, it is coupled to the electromag-

netic emission via the transverse velocity of electrons in the front surface layer.

To understand this coupling, we consider the wave equation with source term (as

shown in equation (4.2)) in the 1D case. Assuming the laser potential alaserz (x, t)

in the skin layer is large, we can obtain the expression for the small emitted wave

aez: (
∂2x −

1

c2
∂2t

)
aez(x, t) ≈

4πe2

mec2

[
ne(x, t)

γ(x, t)
− n0e(x, t)

γ0(x, t)

]
alaserz . (4.3)

Here, n0e(x, t) and γ0(x, t) are the electron density and γ−factor in the skin layer

respectively in the absence of the plasma oscillations. According to equation

(4.3), the emission is proportional to the laser amplitude and the amplitude of

the electron plasma oscillation.

The XUV amplitude increases with increasing the laser amplitude can be

expected. To see the effect of density variation, we also did the same simulations

by use of a lower intensity laser (aL = 1), or using a high intensity (aL = 30)

but circularly polarized laser. In both cases, no wavebreaking and subsequent

strong density oscillation can occur. As a result, no transmitted emission has

been observed. Only in the wavebreaking regime, the electron density oscillation

can reach such a high level that allows this kind of emission efficiently generated.

It is also seen from the radiation source term in equation (4.3) that the temporal

variation of ne/γ is mainly responsible for the high-frequency XUV emission, since

the laser field changes on a much longer time scale than the plasma oscillation

assuming ne ≫ nc. These demonstrate the strong density oscillation subsequent

to wavebreaking indeed plays a dominant role in the emission process. This is

why we call this radiation “wavebreaking-associated transmitted emission.
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Figure 4.5: (a) The numerically calculated integral given by the first term in
the RHS of equation (4.5) (red) and the second term of the laser field Elaser(t)
(green). (b) The sum of the two colored plots given in frame (a) (red) and the
transmitted field obtained directly from the PIC simulation results (green).

Simulated transverse current

The density variation itself, though playing a dominate role in the emission

process, does not fully determine the radiation properties. It is the retarded

transverse current distribution that contains full information about the radiation.

The transverse electric field measured from the rear side of the target is given by

the general equation:

Ez(t, x) = −2π

c

∫ x

−∞
jz

(
t− x− x′

c
, x′
)
dx′ + Elaser(t, x). (4.4)

The first term in the right hand side (RHS) of equation (4.4) is the integral of the

retarded transverse current distribution jz and the second term is the z-polarized

laser field Elaser(t, x) that propagates through vacuum. To calculate the radiation

at the end of the simulation box, we set x = 10λ and use dimensionless values.

Thus we can drop the x-dependence of the fields and obtain:

Ez(t) = −2π

∫ xc

0
jz
(
t− xc + x′, x′

)
dx′ + Elaser(t), (4.5)

with xc = 10. Since the values of jz at each point of time and space can be obtained

from the PIC simulation results, we can calculate the integral numerically as a

function of time. The result is shown in Fig. 4.5.

During the first half laser cycle when no wavebreaking-associated plasma oscilla-

tion occurs, the value of the integral matches -Elaser(t), i.e., the transmitted field
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Figure 4.6: (a) The current distribution Jz(t, x) as a function of time and
space. The colored oblique lines represent the paths along which Jz(t, x) has
to be integrated to calculate the transmitted field. (b) Spatial distribution of the
retarded current density for five different times. Each line in frame (b) corresponds
to the line of the same color in frame (a). (c) The transmitted fields calculated
numerically using equation (4.5). Each colored point corresponds to the current
of the same color in frame (b).

is zero. During the second half laser cycle, the shape of the integral has some

additional oscillations. Using equation (4.5) we get the calculated transmitted

field that matches the result obtained directly from the PIC simulations as

expected (see Fig. 4.5(b)).

The emission can also be seen directly from the evolution of Ez obtained from

the PIC simulations, as shown in Figs. 4.3(a)-(f). Ez is an evanescent wave in

the skin layer before the wavebreaking (see, e.g., Fig. 4.3(a)). The distribution of

Ez changes drastically after the onset time of wavebreaking, e.g., as depicted in

Fig. 4.3(f), Ez arises beyond the skin depth and propagates through the plasma

foil. From the animated version of the field and plasma dynamics shown in movie

SM1), one can see more clearly that the transmitted emission occurs right after

the onset of wavebreaking.

We can also analyze how the retarded current density oscillation evolves with time

and how it corresponds to each value of the transmitted field. From the green line

in Fig. 4.6(b), we can see that at time t = 8.128T0, the left boundary of the current

profile reverses its moving direction and starts to move to the right. This leads

to the transmitted field reaching a local maximum at the same time, as shown in

Fig. 4.6(c). Similar process occurs at time t = 8.158T0. The left boundary of the

current profile reverses its moving direction again (see the blue line in Fig. 4.6(b)).

Accordingly, the transmitted field reaches another local maximum(see Fig. 4.6(c)).
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Obviously, this behavior of the retarded current corresponds to the plasma-density

oscillation we discussed above. The density oscillation leads to a fast variation of

the total current and thus gives rise to radiation at higher frequencies that can

propagate through the plasma.

Let us go back to Fig. 4.6 and consider the next time point t = 8.178λ/c (pink).

At this time we have an extreme point by the transmitted field (Fig. 4.6c), but

it does not coincide with the changing of the current boundary shifting direction,

as in previous two cases. The current boundary reverses its direction at the time

t = 8.188λ/c (orange). Fortunately, we have an explanation of this disagreement.

If we compare the last two graphs at the interval x > 5.08λ, we notice that the

orange curve is significantly lower than the pink one. That’s why the value of the

integral is lower than we could expect if these two curves would be close to each

other like in case of the black and green graphs. In fact, as the electron skin layer

starts to emit radiation, this electromagnetic waves propagate through the plasma.

Since the frequency of them is of the same order of magnitude as the plasma

frequency, they induce the oscillation of the background electrons deeper in plasma

during the propagation. Consequently, these oscillating electrons affect further

emission. In other words the difference of the last two curves mentioned above

is the result of these background electron oscillations. If we would consider more

plots for different times as shown in Fig. 4.6b we would be able to distinguish these

oscillations clearly. We see from Fig. 4.5b that the frequency of the transmitted

wave is the largest in the first quarter of the second period. It happens because

of two effects. First, the local plasma frequency increase, since the electrons are

pressed by the ponderomotive force and secondly we have a Doppler shifting,

since the electrons are pushed inside. After the first quarter of the cycle the

Doppler effect vanishes and we expect strong decrease of the radiation frequency,

which would also agree with the behavior of current distribution oscillations inside

the skin layer (Fig. 4.6). However, we consider only a slow diminishing of the

radiation frequency (fig 4.5b) and the background electron oscillations caused by

the propagation of the radiation through the plasma explain these contradiction.

4.3.5 Theoretical analysis

To enable the transmitted emission propagate through the plasma slab, the plasma

should locally support higher frequency oscillations which then couple to the
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transverse electric fields. Here we give a simple model to show in principle it

is possible for the local plasma frequency to be higher than the background

plasma frequency due to density compression effect. Let us consider the local

plasma frequency at the laser-plasma interface. Let the plasma be overdense

with ωp ≫ ω0. The laser is characterized by its normalized vector potential

a(t) = eA(t)/mec
2. Electrons oscillate transversely in the laser field at the laser

frequency with the normalized momentum p⊥ = a. The ponderomotive force is

Fp = −∇γ[68, 69], where the gamma factor γ =
√
1 + a2. The ponderomotive

force compresses electron density within the skin depth. The force balance is then

F = −nix− ∂γ

∂x
+

∫ x

x0

ne(x
′)dx′ = 0, (4.6)

where ni and ne are respectively the ion and electron density, x0 indicates the

position of the front of the electron skin layer (may be different from the initial

position xini = 0 due to the compression), and x is a position inside the skin layer.

Taking the spatial derivative of equation (4.6), we find the equilibrium electron

density

ne(x) = ni +
∂2γ

∂x2
. (4.7)

Thus, the equilibrium electron density within the skin layer is, as expected, higher

than the ion density due to the compression by the laser ponderomotive force.

For simplicity, we consider laser field as quasi-static with respect to the high

plasma frequency. Thus, together with the electron-density compression and the

acquired relativistic γ-factor of electrons, the local plasma frequency changes as

well. It can be obtained from the equation of motion dp/dt = −E and the

Maxwell’s equation ∂E/∂t = nep/γ[69], where E is the electric field, so that the

local plasma frequency is

ωp(x) =

√
ne(x)

γ(x)
=

√
ω2
p0 + ∂2γ/∂x2

γ(x)
, (4.8)

where ωp0 =
√
ni. Because the local plasma frequency has a strong spatial

dispersion, plasma waves excited in this region break easily. The change in the

plasma frequency has two sources: electron density compression and increase of

the electron relativistic γ-factor. These two effects tend to compensate each other,

but this compensation is incomplete.
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We assume an exponential decay of the laser field in the skin layer a(x) =

ase
−ωp(x)(x−xs) in the vicinity of xs, which is a position inside the skin layer.

Considering within the skin layer the field amplitude can be small, we can write

γ ≈ 1 + a2/2. To proceed further, since ωp(x) appears in the expression for a(x),

let us firstly find the zeroth-order approximation of ωp near the position xs. Now

the γ-factor is constant and its derivative vanishes. Then equation (4.8) gives

ωp(xs) ≈
ωp0√
γ(xs)

≡ ωp1 (4.9)

To get the first-order correction, we can write a(x) ≈ ase
−ωp1(x−xs) and set x = xs

after calculating the second derivative of γ. In this case we obtain

ωp2 =

√
ω2
p0 + 2a2sω

2
p1

γ(xs)
. (4.10)

For the next higher-order approximations, we can insert ωp2 instead of ωp1 in

the expression for a(x) and so on in the same way. Consequently we obtain the

sequence

ωp n+1 =

√
ω2
p0 + 2a2sω

2
pn

γ(xs)
, n = 1, 2, ... (4.11)

The limit of this sequence is given by

lim
n→∞

ωpn =
ωp0√

γ(xs)− 2a2s
≈ ωp0√

1− 3
2a

2
s

. (4.12)

Therefore we arrive at the approximate local plasma frequency at the position xs

under the assumption of small laser amplitudes within the skin layer:

ωp(xs) ≈
ωp0√
1− 3

2a
2
s

. (4.13)

This expression is larger than the background plasma frequency mainly due to

density compression. Thus, the local plasma oscillations can excite electromag-

netic waves at frequencies above the background plasma frequency. These waves

can propagate through the plasma slab and exit from the rear side of the target.

When the laser intensity is too high, plasma oscillations can have a fundamental

frequency blow that of the background. However, if the oscillations are nonlinear,

their harmonics can propagate through.
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Figure 4.7: Influences of laser normalized amplitude aL (a-b), initial plasma
density ne (c-d), and foil thickness d (e-f) on the XUV energy conversion efficiency
η, XUV pulse FWHM width ∆τ , and XUV pulse FWHM bandwidth ∆ω. In these
simulations, when one parameter is varied, the other parameters are the same with
that presented in section 2. The laser amplitude is aL = 20 in (c)-(f).

4.4 Discussions

4.4.1 Parametric study

Here we present a systematic study to show how the parameters such as laser

intensity, initial plasma density and target thickness influence the generated XUV

pulses. Figure 4.7(a) shows the energy conversion efficiency η grows with the

normalized laser amplitude aL, reaching about 4×10−3 when aL = 30. Here, η =∫
E2(ξtr)dξtr/

∫
E2(ξ0)dξ0, with ξ = t− x/c, ξtr and ξ0 denoting the transmitted

and incident pulses, respectively. When aL further increases, η decreases and

the foil becomes more transparent to the laser pulse. Figure 4.7(b) suggests that

higher laser intensity also favors the generation of XUV pulse with shorter FWHM

duration ∆τ , and correspondingly broader FWHM bandwidth ∆ω. Figure 4.7(c)-

(d) show the influence of the initial plasma density ne. While ∆τ increases and

∆ω decreases with the increase of ne, the conversion efficiency η drops rapidly.

This is because wavebreaking and strong density oscillations are more difficult to

drive for higher density plasmas. The laser intensity should also increase with the

plasma density in order to keep the laser plasma dynamics the same, as indicated

by the dimensionless similarity parameter S = ne/aLnc from the similarity theory

in the ultrarelativistic regime a2L ≫ 1[48]. For the foil thickness d, it does not
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Figure 4.8: Temporal profile and the corresponding Fourier spectrum of the
transmitted XUV emission for the case of using multi-cycle laser pulses. The
laser pulse durations are 10 fs for frames (a)-(b) and 30 fs for (c)-(d). The other
parameters are the same with that in Fig. 4.1(a).

affect the conversion efficiency, as shown in Fig. 4.7(e). This is understandable

because the generation process occurs at the front layer of the target. However,

∆τ increases with d while ∆ω decreases (see Fig. 4.7(f)). This can be attributed

to a result of dispersion when the pulses propagate through the plasmas.

4.4.2 Effect of laser pulse duration

Next we examine the WTE generation by considering two of the most concerns

in real experimental cases, i.e., the effect of using multi-cycle laser pulses and

presence of a finite plasma density gradient, to demonstrate the robustness of this

mechanism.

Figure 4.8(a)-(b) show respectively the temporal profile and the Fourier spectrum

of the WTE using a laser pulse with duration of 10 fs. The other parameters are

the same with the case of aL = 20 in the above simulations. It is seen that a

75



train of attosecond XUV pulses have been generated. The frequency spectrum

contains finer structures than that in Fig. 4.1(b), as a result of the interference

between different pulses in the attosecond pulse train. The effect of interference

is more evident with a longer duration pulse of 30 fs, as shown in Figs. 4.8(c)-

(d). Frequency components below 10ω0 can be attributed to a lowered plasma

frequency of the relativistically heated foil. Using techniques such as polarization

gating, an isolated attosecond XUV pulse may be obtained. Nevertheless, these

results shows the WTE mechanism also works by use of multi-cycle laser pulses.

4.4.3 Effect of plasma density gradient

Since the WTE process relies on the strong plasma-density oscillation subsequent

to wavebreaking, a finite density ramp in the front of the plasma surface will affect

the threshold of wavebreaking and thus the temporal and spectral structures of

the WTE. From the cold nonrelativistic wavebreaking field EWB = mecωp/e,

which is dependent on the plasma frequency and thus the plasma density, we

see that a density ramp can lower the wavebreaking threshold. Consequently,

the presence of a pre-plasma allows the WTE to occur more easily. This can

be seen by considering a longer plasma gradient length. Figure 4.9(a) shows the

temporal profile of the WTE for the case of an exponential plasma density gradient

with scale length L = λ0/5. The emitted pulse lasts a longer time of several

femtoseconds, compared with the case of without pre-plasma in Fig. 4.1(a). This

is due to an earlier wavebreaking and the subsequent strong density oscillation

when the laser pulses interact with the density ramp in the front of the target, as

shown in Figs. 4.9(c)-(d). We can see the multi-stream motion of electrons from

the phase space distribution (x, Px), indicating the wavebreaking has occurred

(see Fig. 4.9(c)). At the same time, the profile of the transverse field Ez shows

the waveform with higher frequencies (see Fig. 4.9(d)). Compared to the case of

L = λ0/5, the duration of the emitted pulse is shorter for the case of a shorter scale

length of L = λ0/10, as shown in Fig. 4.9(e). Correspondingly, the bandwidth of

the spectrum in Fig. 4.9(f) is broader than that in Fig. 4.9(b).

4.4.4 Multi-dimensional effects

The results obtained so far are based on the 1D case. We also performed 2D

simulations to check whether this mechanism works in multidimensional cases.

Here we only intend to compare with the 1D results of the case shown in
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Figure 4.9: (a) Temporal profiles and (b) Fourier spectra of the transmitted XUV
emission for an exponential plasma density gradient with scale length L = λ0/5.
(c) Phase space distribution (x, Px) and (d) profiles of the electron density ne
and transverse field Ez at time t = 3.4T0 for the case of L = λ0/5. (e) Temporal
profiles and (f) Fourier spectra of the transmitted XUV for the case of L = λ0/10.
The other parameters are the same with that in Fig. 4.1(a).
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Figure 4.10: 2D simulation results. (a) A snapshot of the transverse electric
field az distribution at simulation time t = 5T0. The green dashed lines mark the
initial plasma boundaries. (b) Temporal waveform and (c) frequency spectrum of
the transmitted emission recorded at (x=6λ0, y=0).
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Fig. 4.1(a)-(b) to validate the basic physics. In the simulation, a very small grid

step of λ0/1000 is used in the x direction in order to resolve the wavebreaking

related process. Each cell is filled with 8 macroparticles. The other laser and

plasma parameters are the same with those used in Fig. 4.1(a)-(b) in the 1D

simulations, except that the laser pulse has a Gaussian transverse profile with a

focal spot size of 10λ0. Figure 4.10(a) shows a snapshot of the transverse electric

field distribution at time t = 5T0. We see that an ultrashort pulse is generated

at the rear side of the target. Figures 4.10(b)-(c) show the temporal profiles

and the corresponding frequency spectra of the transmitted emission observed at

the position (x=6λ0, y=0) at the rear target side, respectively. The signatures

of both the temporal waveform and frequency spectrum are in good agreement

with the 1D simulation results. An animated demonstration of the laser-plasma

dynamics similar with the 1D case can be seen in movie SM3 in the Supplemental

Material. The density spike indicating the onset of wavebreaking at t = 3.11T0 and

the subsequent transmitted emission at later times can be clearly seen from the

movie. As for the concern of transverse instabilities, we note that experiments of

femtosecond-picosecond laser interaction with nanometer-micrometer thin target

are routinely available nowadays. A number of experiments have been carried out

using similar parameters with ours. For example, experiments of a much longer

pulse laser of 500 fs duration (aL ≈ 20) interacting with thin targets of thickness

125-200 nm have successfully demonstrated the transmitted emission due to the

CSE mechanism[44]. These results indicate the transverse instabilities are not

fatal with the parameters we considered here.

4.5 Conclusions

A new regime of attosecond XUV pulses generation from overdense plasma

surfaces, namely, wavebreaking-associated transmitted emission (WTE), has been

demonstrated. The emission originates from the plasma front surface and

propagates through the target, with frequencies mainly around the local plasma

frequencies. The underlying physics can be attributed to the coupling of the

transverse fields in the skin layer and the strong plasma-density oscillation sub-

sequent to wavebreaking. Thus the emission is evident only in the wavebreaking

regime. This novel scenario of ultrafast XUV pulse emission from overdense

plasmas provides new insights into the dynamics of laser-plasma interactions and
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the physics of radiation process. It may also offer an alternative option to generate

relativistically intense ultrashort XUV pulses that may find extensive applications.
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Chapter 5

Summary

After detailed introduction in development of the laser technology and subse-

quently in different mechanisms of HHG, we started with the review of theoretical

aspects concerning laser-plasma physics in chapter 2.

In chapter 3 we extensively investigated the nanobunching regime of HHG,

represented by CSE mechanism. The main goal here was to provide a detailed

analytical description of the radiated spectrum. For this purpose we have

introduced a novel analytical approach in order to describe the electron density

spikes close to stationary phase points. We started from the simple assumptions

concerning the electron phase space distribution. As a result we obtained two

analytic expressions, which describe the electron density profile in two different

cases during the CSE process. We called those cases “parabolic case” and “whip

case” respectively. Using these results we worked out the analytic equations for the

transverse current distribution in corresponding cases using a set of assumptions.

These equations led us directly to the analytic expressions of the spectrum.

Further in this chapter we found the most efficient case of HHG at moderate

laser intensity (a0 = 10), where the maximal amplitude of the reflected radiation

was five times larger than the original one. We did several 1D PIC simulations

varying the steepness of the exponential density gradient as well as the incident

angle. Based on the simulation results the parameter spectra which corresponds

to parabolic or “whip” cases were determined. In the last section of the chapter

we found an electron bunch moving and radiating in the forward direction.

In chapter 4 we introduced and explored a new mechanism of attosecond pulse

generation. Using a simulation set up with normal laser incidence and step plasma
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density profile we obtained the transmitted XUV emission at the rare side of the

foil. Analyzing the radiation process in detail we found out that the emission

results from the strong electron density oscillations inside the skin layer after

onset of wave breaking. Moreover we analyzed the plasma oscillations process

analytically using some basic assumptions and derived the expression for the local

plasma density inside the skin layer. At the end of the chapter the effects of the

pulse duration, plasma density gradient as well as multidimensional effects were

discussed.
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Appendix A

Analytical derivations

A.1 Moving frame for oblique incidence.

Consider an electromagnetic wave which propagates within xy-plane and its

velocity vector builds an angle θ with the x-axis in the laboratory frame L. Let

us introduce another frame M which is moving parallel to the y-axis with velocity

V (Fig. A.1). The velocity components of the wave can be expressed as

� �

�

�

�

�

� �

�

�

�

� �

Figure A.1: Propagation direction of the electromagnetic wave considered from
laboratory frame L and moving frame M .

υLx = c cos θL, υLy = c sin θL (A.1)
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in the laboratory frame and as

υMx = c cos θM , υMy = c sin θM (A.2)

in the moving frame. These quantities are related to each other via the Lorenz

transformation [63]

υLx =
υMx

√
1− V 2

c2

1 +
υM
y V

c2

, υLy =
υMy + V

1 +
υM
y V

c2

. (A.3)

Taking the quotient of the both components in L leads to the relation between

the angles

cos θL

sin θL
=
c cos θM

√
1− V 2

c2

c sin θM + V
. (A.4)

We are interested in the case where the wave propagates parallel to the x-axis so

that the angle θM vanishes. Thus, we set θM = 0 and obtain

1

sin θ

√
1− sin2 θ =

c

V

√
1− V 2

c2
. (A.5)

Here we have dropped the index L and used cos θ =
√
1− sin2 θ. From the last

equation we can immediately see that

V = c sin θ. (A.6)

In this case we would see the electromagnetic wave normally incident on the

plasma surface from the moving frame if the surface lays in the yz-plane.

Consider how each component of the electric and magnetic fields transforms in

the moving frame. The transformation formulas for the field tensor are given by

EM
x =

EL
x + V

c B
L
z√

1− V 2

c2

, EM
y = EL

y , EM
z =

EL
z − V

c B
L
x√

1− V 2

c2

, (A.7)

for electric field components and by

BM
x =

BL
x − V

c E
L
z√

1− V 2

c2

, BM
y = BL

y , BM
z =

BL
z + V

c E
L
x√

1− V 2

c2

, (A.8)
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for the magnetic field components. In the case of p-polarized wave the

corresponding field vectors can be written as

EL =


−E0 sin θ

E0 cos θ

0

 , BL =


0

0

E0

 (A.9)

in laboratory frame. Applying the transformation formulas from above we obtain

EM =


0

E0 cos θ

0

 , BM =


0

0

E0 cos θ

 (A.10)

in the moving frame. Note that the x-component of the electric field vanishes

in the moving frame under condition (A.6). We obtain a polarized wave which

propagates parallel to the x-axis and has only one nonzero component EM
y = EL

y =

E0 cos θ. As a result the initial two dimensional problem of oblique incidence can

be reduced to one dimension in the moving frame (Fig. A.2). Still we have to be
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Figure A.2: Oblique incident wave in the laboratory frame L and normally
incidence in the moving frame M .

careful, since the frequency of the wave in not the same in different frames.

If we consider the wave four-vector

ki =
(ω
c
,k

)
, (A.11)
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where k corresponds to the classical wave vector, we can obtain the relation

between ωL and ωM . The time component of the wave four-vector transforms as

ωM

c
=

ωL

c − V
c k

L
y√

1− V 2

c2

, (A.12)

and with kLy = ω
c sin θ we can easily derive the relation between both frequencies

ωM = ωL cos θ. (A.13)

Moreover the transformation of the y-component yields kMy = 0 es expected.

The next important quantity is the electron density. The density at the curtain

point (r) can be expressed as

n(r) =
dN(r)

dxdydz
. (A.14)

Considering from the moving frame the plasma is streaming in the negative y-

direction. Then dy transforms es

dyM = dyL
√

1− V 2

c2
= dyL cos θ. (A.15)

Consequently

nM =
nL

cos θ
. (A.16)

Since we are working with the normalized quantities in our simulations, let us

consider how the transformation formulas looks like for dimensionless units. In

order to simulate the moving frame we just let the whole plasma move in the

y-direction with some constant velocity. It means that the numerical wave length

λnum = 1 remains unchanged in each frame. With other words the central

normalization parameter is now λ = λ0/ cos θ, where λ0 is the wave length in

the laboratory frame. First of all we notice that the normalized x-coordinates

scale within

xMnum = xLnum cos θ. (A.17)
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Moreover the expression for the critical density (3.3) contains ω2 = ω2
0 cos

2 θ. This

fact together with the equation (A.16) results to

nMnum =
nLnum
cos3 θ

. (A.18)

Further we consider the electric and magnetic fields. The important point is that

due to the transformation into the moving frame, the amplitude of the wave is

reduced by the factor cos θ

⏐⏐EM
⏐⏐ = E0 cos θ =

⏐⏐EL
⏐⏐ cos θ, (A.19)⏐⏐BM

⏐⏐ = E0 cos θ =
⏐⏐BL

⏐⏐ cos θ. (A.20)

Nevertheless, if we consider the normalized amplitude, we notice that the

normalization factor is reduced by the same factor in the moving frame since

it contains ω in the numerator as we see from the equation (3.2). That means

that the normalized amplitude of the wave remains unchanged

⏐⏐EM
num

⏐⏐ = ⏐⏐EL
num

⏐⏐ , ⏐⏐BM
num

⏐⏐ = ⏐⏐BL
num

⏐⏐ . (A.21)

A.2 Density profile from phase space distribution

containing delta function

A.2.1 Parabolic case

In section 3.2 we have started with the local phase space distribution function

f(x, p, t) = Cδ
(
x− x0(t)− α(t) (p− p0(t))

2
)
, (A.22)

end expressed the density function with

n(x, t) =

∫
dpf(x, p, t). (A.23)

So we have to calculate

n(x, t) = C
∫
dp δ

(
x− x0(t)− α(t) (p− p0(t))

2
)
. (A.24)
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Let us define the argument of the delta function as a function g(p)

g(p) ≡ x− x0(t)− α(t) (p− p0(t))
2 . (A.25)

With this definition the equation (A.24) takes the form

n(x, t) = C
∫
dp δ (g(p)) . (A.26)

Let us consider the general integral
∫
dxδ(g(x)) with a smooth function g, which

vanishes at the points xi, with an integer i. We can Taylor expand the function

g with respect to the certain point xi

g(x) = g(xi) + (x− xi)g
′(xi) +O(x− xi)

2

= (x− xi)g
′(xi) +O(x− xi)

2. (A.27)

Consider a short interval [xi − ε, xi + ε] with ε > 0. If ε tends to zero only first

order survives and we can write

lim
ε→0

g(x)

⏐⏐⏐⏐
x∈[xi−ε,xi+ε]

= (x− xi)g
′(xi). (A.28)

This equation can also be easily proved using the definition

g′(x) = lim
ε→0

g(x+ ε)− g(x)

ε
. (A.29)

Since the delta function equals zero everywhere except the cases where the

argument vanishes, we can write∫
dxδ(g(x)) = lim

ε→0

∑
i

∫ xi+ε

xi−ε
dxδ((x− xi)g

′(xi)). (A.30)

Consequently, we perform the integration using the simple substitution and obtain

the result∫
dxδ(g(x)) =

∑
i

1

|g′(xi)|
, with g(xi) = 0, g′(xi) ̸= 0. (A.31)
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We use this relation in equation (A.26) and obtain

n(x, t) = C
∑
i

1

|g′(pi)|
, with g(pi) = 0, g′(pi) ̸= 0. (A.32)

Now we need to find zero points and the first derivative of function g defined in

(A.25). We find two zero points given by

pi = p0(t) + (−1)i

√
x− x0(t)

α(t)
, i = 1, 2. (A.33)

The derivative is given by

g′(p) = −2α(t) (p− p0(t)) . (A.34)

Using the zero points pi as an argument of the derivative we obtain

g′(pi) = (−1)i−12
√
α(t) (x− x0(t)), i = 1, 2. (A.35)

Inserting this relation in equation (A.32) gives the result

n(x, t) =
C√

α(t) (x− x0(t))
. (A.36)

A.2.2 Whip case

Further in section 3.2 we have considered other distribution function

f(x, p) = Cδ (x− eαp) . (A.37)

The density is given by

n(x) = C
∫
dp δ (x− eαp) . (A.38)

Now we define the argument of the delta function as a function g(p)

g(p) = x− eαp. (A.39)

This function exhibits only one zero point

p1 =
1

α
ln(x), (A.40)
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and the derivative of g is given by

g′(p) = −αeαp. (A.41)

At the point p1 we have

g′(p1) = −αx. (A.42)

Using the equation (A.32) we obtain the result

n(x) =
C
αx

. (A.43)

A.3 Density profile from generalized phase space dis-

tribution

A.3.1 Parabolic case

Here we are going to calculate the integral (A.23) with the local phase space

distribution

fa(x, p) = Cδa(x− αp2), (A.44)

where the function δa is defined as

δa(x) ≡

⎧⎨⎩ ga(x) for x ∈ [−a, a]

0 otherwise
, (A.45)

ga(x) ≡
3

4a

(
1− x2

a2

)
. (A.46)

An example of the function fa is plotted in Fig. A.3. In order to calculate the

local density profile we need to calculate

na(x) = C
∫
dp δa(x− αp2). (A.47)

First, we have to determine the integration boundaries correctly to be able to

replace δa with ga in the integral. Inserting the argument x−αp2 in the definition

of δa (A.45) we see that the equation δa(x− αp2) = ga(x− αp2) holds only if the

condition

− a ≤ x− αp2 ≤ a (A.48)
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Figure A.3: The function f0,3(x, p) for α = 1.

is fulfilled, which is equivalent to

x− a

α
≤ p2 ≤ x+ a

α
. (A.49)

From that point we have to distinguish three different cases.

• x ≥ a:

In this case the inequality (A.49) gives two conditions√
x− a

α
≤p ≤

√
x+ a

α
(A.50)

−
√
x+ a

α
≤p ≤ −

√
x− a

α
(A.51)

• −a ≤ x < a:

In this case the term
√

x−a
α becomes imaginary and for the real values of p

we obtain

−
√
x+ a

α
≤ p ≤

√
x+ a

α
(A.52)
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• x < −a:
In this case there is no real values of p which can fulfill (A.49).

Now we have all the information that we need to write down the integrals for the

different cases with corresponding integration boundaries. For the density profile

that means that it will be a bounded support function

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
∫ −

√
x−a
α

−
√

x+a
α

dp g(x− αp2)

+ C
∫ √

x+a
α√

x−a
α

dp g(x− αp2) for x > a

C
∫ √

x+a
α

−
√

x+a
α

dp g(x− αp2) for x ∈ [−a, a], a > 0

0 for x < −a.

(A.53)

Using the symmetry properties of g(x−αp2) within these boundaries this equation

simplifies to

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2C
∫ √

x+a
α√

x−a
α

dp g(x− αp2) for x > a

2C
∫ √

x+a
α

0
dp g(x− αp2) for x ∈ [−a, a], a > 0

0 for x < −a.

(A.54)

Further steps are straight forward. We use the definition of the function g and

define

g̃(p) ≡ 4a3

3
g(x− αp2) = a2 −

(
x− αp2

)2
. (A.55)

The antiderivative of g̃ is given by

G̃(p) =
(
a2 − x2

)
p+

2

3
αxp3 − 1

5
α2p5. (A.56)
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Inserting the corresponding boundaries and performing some elementary simpli-

fications we obtain

G̃

⏐⏐⏐⏐
√

x+a
α√

x−a
α

=
4

5
√
α

((
a2 − 2

3
x2
)(√

x+ a−
√
x− a

)
+

1

3
ax
(√
x+ a+

√
x− a

))
,

(A.57)

G̃

⏐⏐⏐⏐
√

x+a
α

0

=
4

5
√
α

(
a2 +

1

3
ax− 2

3
x2
)√

x+ a. (A.58)

Now we substitute this result in equation (A.54) in the way that

∫ p2

p1

dp g(x− αp2) =
3

4a3
G̃

⏐⏐⏐⏐p2
p1

. (A.59)

Finally we insert the eqs. (A.57) to (A.59) in (A.54) and obtain

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2C
5a3

√
α

(
3a2 − 2x2 + ax

)√
x+ a for x ∈ [−a, a], a > 0

2C
5a3

√
α

((
3a2 − 2x2

) (√
x+ a−

√
x− a

)
+ ax

(√
x+ a+

√
x− a

))
for x > a

0 for x < −a.

(A.60)

Let us consider how this function behaves at the point x = a. We notate the

density function as nx<a in the case of x ∈ [−a, a] and as nx>a in the case of

x > a. From equation (A.53) we can immediately see that nx<a(a) = nx>a(a)

holds, so the function na is continuous on the whole real axis. Next we check if

the same is valid for the derivative. The derivatives of nx<a and nx>a are given

by

n′x<a(x) = (a− 4x)
√
x+ a+

3a2 − 2x2 + ax

2
√
x+ a

, (A.61)

n′x>a(x) = (a− 4x)
√
x+ a+

3a2 − 2x2 + ax

2
√
x+ a

+ (a+ 4x)
√
x− a− 3a2 − 2x2 − ax

2
√
x− a

. (A.62)
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In order to build the limit x→ a for n′x>a, we have to take a closer look at the last

term of equation (A.62). In this limit the numerator as well as the denominator

tend to zero, so we use the L’Hopital’s rule to calculate the limit.

lim
x→a

3a2 − 2x2 − ax

2
√
x− a

= − lim
x→a

(4x+ a)
√
x− a = 0. (A.63)

With this result we can directly follow

lim
x→a

n′x<a(x) = lim
x→a

n′x>a(x). (A.64)

We have shown that the function n′a is continuous for x > −a. That means that

na(x) is differentiable on this interval. In order to proof that the generalization we

did in this section is correct, we are going to show that the limit lima→0 nx>a(x) =

n(x) is valid (see equation (A.36)). To do this we multiply the first term of the

function nx>a with the 1 expressed as
√
x+a+

√
x−a√

x+a+
√
x−a

. We obtain

nx>a(x)

=
2C

5a3
√
α

(
6a3√

x+ a+
√
x− a

− 4ax2√
x+ a+

√
x− a

+ ax
(√
x+ a+

√
x− a

))
.

(A.65)

Now we combine the last two terms and multiply the result with another “one

term”

nx>a(x) =
2C

5a2
√
α

(
6a2√

x′ + a+
√
x− a

− 2x

(
x−

√
x+ a

√
x− a√

x+ a+
√
x− a

· x+
√
x+ a

√
x− a

x+
√
x+ a

√
x− a

))
=

2C
5
√
α

(
6√

x+ a+
√
x− a

− 2x(√
x+ a+

√
x− a

) (
x+

√
x+ a

√
x− a

)) .
(A.66)

By this form of nx>a we can directly build the limit a→ 0 and obtain the correct

result

lim
a→0

nx>a(x) =
2C
5
√
α

(
3√
x
− 1

2
√
x

)
=

C√
αx

. (A.67)
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In the case of x < a we can see relatively quick that

lim
a→0

nx<a(x) =

⎧⎨⎩∞ for x = 0

0 for x ̸= 0.
(A.68)

In order to obtain the number of particles within the interval [−a,∆x], we have

to calculate

Na,∆x =

∫ ∆x

−a
dxna(x) =

∫ a

−a
dxnx<a(x) +

∫ ∆x

a
dxnx>a(x) (A.69)

This is a long calculation but each step is simple. We just need to apply the

substitution to the arguments of corresponding square roots. Subsequently, we

collect all the terms obtained after the integration and get

Na,∆x =
4C

35a3
√
α

(
(8a2∆x− 2∆x3)

(√
∆x+ a−

√
∆x− a

)
+ (a∆x2 + 5a3)

(√
∆x+ a+

√
∆x− a

))
. (A.70)

Now we want to simplify this result assuming a ≪ ∆x. For this purpose we

rewrite the equation (A.70) in the way that

Na,∆x =
4C

35a3
√
α

(
∆xMa,∆x + 5a3

(√
∆x+ a+

√
∆x− a

))
, (A.71)

Ma,∆x ≡ (8a2 − 2∆x2)
(√

∆x+ a−
√
∆x− a

)
+ a∆x

(√
∆x+ a+

√
∆x− a

)
.

(A.72)

We can see that the expression for Ma,∆x is very similar to nx>a so we apply the

same steps that we have used to calculate lima→0 nx>a(x)

Ma,∆x ≈ 8a3√
∆x

− a3

2
√
∆x

. (A.73)

Inserting this relation in equation (A.71) and neglecting a inside the square roots

we obtain

Na,∆x ≈ 4C
35a3

√
α

(
∆x

(
8a3√
∆x

− a3

2
√
∆x

)
+ 10a3

√
∆x

)
= 2C

√
∆x

α
(A.74)

It is not surprising, that the result is the same as in the spacial case of a → 0

(see equation (3.12)). The important point here is that this relation holds even in
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the case of a ≪ ∆x, as we could show. So it can be used in the density formula

for general case if the assumption is satisfied. The final expression of the local

electron density in this case is given by

na,∆x(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Na,∆x

5a3
√
∆x

(
3a2 − 2x2 + ax

)√
x+ a for x ∈ [−a, a]

Na,∆x

5a3
√
∆x

((
3a2 − 2x2

) (√
x+ a−

√
x− a

)
+ ax

(√
x+ a+

√
x− a

))
for x > a

0 for x < −a.

(A.75)

A.3.2 Whip case

Finally, we consider the phase space distribution

fa(x, p) =

⎧⎨⎩ Cδa (x− eαp) for p > pcut

0 for p ≤ pcut.

An example of the function fa is plotted in Fig. A.4. The density profile can be

obtained from

na(x) = C
∫ ∞

pcut

dp δa(x− eαp). (A.76)

Same as in the parabolic case, we are going to find the corresponding integration

boundaries in order to replace δa with ga. Here we take x − eαp as an argument

of these functions. They are equal under condition

− a ≤ x− eαp ≤ a. (A.77)

This is equivalent to
1

α
ln(x− a) ≤ p ≤ 1

α
ln(x+ a). (A.78)

The other condition is

p ≥ pcut =
1

α
ln(xmin). (A.79)

Again we consider three different cases.
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Figure A.4: The function f0,3(x, p) for α = 1.

• x ≥ a+ xmin:

In this case we have
1

α
ln(xmin) ≤

1

α
ln(x− a), (A.80)

so only the condition (A.78) is relevant.

• −a+ xmin ≤ x < a+ xmin:

Here we have

1

α
ln(x− a) ≤ 1

α
ln(xmin) ≤

1

α
ln(x+ a), (A.81)

and the condition for p is given by

1

α
ln(xmin) ≤ p ≤ 1

α
ln(x+ a). (A.82)

• x < −a+ xmin:

In this case we have
1

α
ln(xmin) ≥

1

α
ln(x+ a), (A.83)
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and consequently there is no values of p which can fulfill both conditions

(A.78) and (A.79).

Es a result we obtain the integration boundaries from eqs. (A.78) and (A.82) for

the first two cases, while there is nothing to integrate in the third case. The

expression for the density profile has the form

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
∫ 1

α
ln (x+a)

1
α
ln (xmin)

dp g(x− eαp) for x ∈ [xmin − a, xmin + a], a > 0

C
∫ 1

α
ln (x+a)

1
α
ln (x−a)

dp g(x− eαp) for x > xmin + a

0 for x < xmin − a.

(A.84)

The calculation of the integrals is straight forward as in the previous case. The

result is

na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3C
4a3α

(
3

2
x2 + (a− 2xmin)x+

1

2
(x2min − a2) + (x2 − a2) ln

(
xmin

x+ a

))
for x ∈ [xmin − a, xmin + a]

3C
4a3α

(
2ax+ (x2 − a2) ln

(
x− a

x+ a

))
for x > xmin + a

0 for x < xmin − a.

(A.85)

Same as in the previous case, we consider how this function behaves at the point

x = xmin + a. We notate the density function as n<a in the case of x ∈ [xmin −
a, xmin + a] and as n>a in the case of x > xmin + a. Equation (A.84) tells that

n<a (xmin+ a) = n>a (xmin+ a) holds, so the function na is continuous on the whole

real axis. Next, we check if the same is valid for the derivative. The derivatives

of n<a and n>a are given by

n<a
′
(x) = 2(a− xmin + x) + 2x ln

(
xmin

x+ a

)
, (A.86)

n>a
′
(x) = 4a+ 2x ln

(
x− a

x+ a

)
. (A.87)
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From these equations it is easy to see that

n<a
′
(xmin + a) = n>a

′
(xmin + a) (A.88)

is valid. This result proofs that the function na defined in (A.85) is continuous

and differentiable at the point xmin + a. Further, we are going to find the limit

lima→0 n
>
a (x) and expect that the result will coincide with equation (A.43). In

order to build this limit we use the L’Hopital’s rule. Let us define the function ñ

via

n>a (x) ≡
3C

4a3α
ñ(a, x). (A.89)

the partial derivative of ñ with respect to a is

∂ñ

∂a
= 2a ln

(
x+ a

x− a

)
, (A.90)

subsequently we have

lim
a→0

n>a (x) = lim
a→0

C
2aα

ln

(
x+ a

x− a

)
. (A.91)

One more derivation of the numerator and denominator gives

lim
a→0

n>a (x) = lim
a→0

C
α

x

x2 − a2
=

C
αx

(A.92)

as expected. We also use this limit to determine the number of particles. In this

case it is not exactly the same as the assumption a ≪ xmax like in the previous

case. However, we usually deal with very thin nanobunch structures and use quite

small values of a, so that the assumption a≪ 1 would make sense. Subsequently

we use the same value for C as in equation (3.17) in the final formula
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na(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3N

4a3 ln
(
xmax
xmin

)(3

2
x2 + (a− 2xmin)x+

1

2
(x2min − a2)

+ (x2 − a2) ln

(
xmin

x+ a

))
for x ∈ [xmin − a, xmin + a]

3N

4a3 ln
(
xmax
xmin

) (2ax+ (x2 − a2) ln

(
x− a

x+ a

))
for x > xmin + a

0 for x < xmin − a.

(A.93)

A.4 Derivation of the analytical spectrum

In this section we are going to derive an expression for the spectrum of the reflected

field radiated by a nanobunch when it passes a SPP. The reflected field is given

by

Er(t) = −π
∫
J⊥ (x, t− x) dx, (A.94)

while the spectrum is defined by

I(ω) = Ē2
r (ω), Ēr(ω) ≡

∫
Er(t)e

−iωtdt, (A.95)

with the assumption

J⊥(x, t) = j(t)f(x− x0(t)). (A.96)

At first we calculate the Fourier transform of the field

Ēr(ω) = −π
∫∫

j(t− x)f(x− x0(t− x))e−iωtdxdt

= −π
∫∫

j(t)f(x− x0(t))e
−iω(t+x)dxdt. (A.97)

With the substitution ζ ≡ x− x0(t) we obtain

Ēr(ω) = −π
∫∫

j(t)f(ζ)e−iω(t+ζ+x0(t))dζdt

= −π
∫
f(ζ)e−iωζdζ

∫
j(t)e−iω(t+x0(t))dt. (A.98)
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The first integral is nothing else but the Fourier transform of the shape function.

Subsequently we squared the transformed field and get the general expression of

the spectrum

I(ω) = π2|f̄(ω)|2
(∫

j(t)e−iω(t+x0(t))dt

)2

. (A.99)

At this point we have to specify the time dependent part of the current distribution

j(t) and the position of the nanobunch x0(t) at the curtain time in order to

specify the expression of the spectrum. For that we again distinguish between the

parabolic and the “whip” case.

A.4.1 Whip case

In the chapter 3 we have assumed

j(t) ≈ α0t
2, x0(t) ≈ −υt+ α1

t5

5
, with α1 =

α2
0

2υn2m
(A.100)

for the “whip” case in vicinity of the SPP. Inserting these expressions in equation

(A.99) gives

I(ω) = π2α2
0|f̄(ω)|2

(∫
t2e

−iω
(
δt+α1

t5

5

)
dt

)2

, with δ = 1− υ. (A.101)

To proceed further, we define the generalized Airy function

Ain(x) =
1

2π

∫
e
i
(
xt+ t2n+1

2n+1

)
dt. (A.102)

From this definition we obtain the well known Airy function “Ai” for n = 1,

Ai1(x) = Ai(x). Now we substitute τ ≡ −(α1ω)
1
5 t by the integration in (A.101)

and get a compact expression of the spectrum

I(ω) = 4π4α2
0(α1ω)

− 6
5

(
Ai′′2(α

− 1
5

1 δω
4
5 )

)2

|f(ω)|2. (A.103)

A.4.2 Parabolic case

The assumptions for this case were

j(t) ≈ −α0t, x0(t) ≈ −υt+ α1
t3

3
, with α1 =

α2
0

2υn2m
. (A.104)
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Therefore the spectrum can be written as

I(ω) = π2α2
0|f̄(ω)|2

(∫
te

−iω
(
δt+α1

t3

3

)
dt

)2

, with δ = 1− υ. (A.105)

In order to simplify this expression we substitute τ ≡ −(α1ω)
1
3 t in the Integral,

which leads to

I(ω) = 4π4α2
0(α1ω)

− 4
3

(
Ai′(α

− 1
3

1 δω
2
3 )

)2

|f(ω)|2. (A.106)
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Appendix B

Authorship claim

The content of the chapter 3 is largely reproduced from my paper [61]. I wrote

the whole text and did all the simulations and calculations. Alexander Pukhov

was a supervisor and helped me with useful ideas and tips.

The content of the chapter 4 is largely reproduced from the paper [64]. My part

was the detailed description of the given process after onset of wavebreaking. The

description is divided in two main parts. First, I discuss the electron density

oscillations (subsections 4.3.2, 4.3.3). Further the electron current behavior as an

origin of transmitted radiation is described (subsection 4.3.4 ”simulated transverse

current”). Furthermore I did a significant contribution to Theoretical analysis

(subsection 4.3.5 p73) and derived equation (4.13).
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[43] D. an der Brügge and A. Pukhov. Theory of attosecond pulses from

relativistic surface plasmas. e-print arXiv:physics/1111.4133, 2011. 4, 5,

40, 43, 45, 47, 55

[44] B. Dromey, M. S. Rykovanov, M. Yeung, R. Horlein, D. Jung, D. C. Gautier,

T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, H. Ruhl,

J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M. Hegelich. Coherent

synchrotron emission from electron nanobunches formed in relativistic

laserplasma interactions. Nat. Phys., 8:804–808, 2012. 4, 54, 79

[45] B. Dromey, S. Cousens, S. Rykovanov, M. Yeung, D. Jung, D. C. Gautier,

T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, J. C.

Fernandez, C. L. S. Lewis, M. Zepf, and B. M. Hegelich. Coherent

synchrotron emission in transmission from ultrathin relativistic laser plasmas.

New J. Phys., 15:015025, 2013. 54, 59, 63

[46] M. Yeung, B. Dromey, S. Cousens, T. Dzelzainis, D. Kiefer, J. Schreiber, J. H.

Bin, W. Ma, C. Kreuzer, J. Meyerter-Vehn, M. J. V. Streeter, P. S. Foster,

S. Rykovanov, and M. Zepf. Dependence of laser-driven coherent synchrotron

emission efficiency on pulse ellipticity and implications for polarization

gating. Phys. Rev. Lett., 122:123902, 2014. 4

[47] A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, M. Marklund, and A. M.

Sergeev. Phys. Rev. E, 84:046403, 2011. 4, 5

[48] S. Gordienko and A. Pukhov. Scalings for ultrarelativistic laser plasmas and

quasimonoenergetic electrons. Phys. Plasmas, 12:043109, 2005. 5, 74

[49] S. G. Rykovanov, M. Geissler, J. Meyer ter Vehn, and G. D. Tsakiris. Intense

single attosecond pulses from surface harmonics using the polarization gating

technique. New J. Phys., 10:025025, 2008. 5

[50] T. Baeva, S. Gordienko, and A. Pukhov. Relativistic plasma control for single

attosecond x-ray burst generation. Phys. Rev. E, 74:065401, 2006. 5

108



[51] A. Pukhov. X-rays in a flash. Nat. Phys., 2:439, 2006. 5

[52] N. M. Naumova, J. A. Nees, I.V. Sokolov, B. Hou, and G. A. Mourou.

Relativistic generation of isolated attosecond pulses in a λ3 focal volume.

Phys. Rev. Lett., 92:063902, 2004. 5

[53] Andrzej Wolski. Theory of electromagnetic fields. e-print

arXiv:physics/1111.4354, 2011. 9

[54] P. W. Milonni and J. H. Eberly. Lasers. Wiley, New York, 1988. 9, 10, 11,

12

[55] Miguel A. Porras. Diffraction effects in few-cycle optical pulses. Phys. Rev.

E, 65:026606, 2002. 12, 14

[56] William L. Kruer. The physics of laser plasma interactions. Addison-Wesley,

California, 1988. 14

[57] E. Esarey, C. B. Schroeder, and W. P. Leemans. Physics of laser-driven

plasma-based electron accelerators. Rev. Mod. Phys., 81:1229, 2009. 14, 21

[58] John M. Dawson. Nonlinear electron oscillations in a cold plasma. Phys.

Rev., 113:383, 1958. 18, 20, 66

[59] Kazumi Watanabe. Definition of Integral Transforms and Distributions.

Springer International Publishing, Cham, 2014. 23

[60] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products.

Elsevier/Academic Press, Amsterdam, 2007. 23, 24

[61] M. Cherednychek and A. Pukhov. Analytical approach to high harmonics

spectrum in the nanobunching regime. Physics of Plasmas, 23:103301, 2016.

27, 103

[62] A. Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell. J.

Plasma Phys., 61:425, 1999. 27, 59

[63] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields. Pergamon,

New York, 1964. 28, 84

[64] Z. Chen, M. Cherednychek, and A. Pukhov. Wavebreaking-associated

transmitted emission of attosecond extreme-ultraviolet pulses from laser-

driven overdense plasmas. New J. Phys., 18:063014, 2016. 59, 103

109
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