
 

 

 
 
 
 

 
 
 

Death before Life? 
 

The role of apoptosis in human embryonic implantation 
 
 
 
 
 
 
 

Inaugural-Dissertation 
 
 
 

zur Erlangung des Doktorgrades 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Heinrich-Heine-Universität Düsseldorf 
 
 
 
 
 

vorgelegt von 
 

Sarah Jean Böddeker 
aus Duisburg 

 
 

 

Düsseldorf, April 2015



 

 

  



 

 
aus der Universitätsfrauenklinik/ Universitäres, interdisziplinäres Kinderwunschzentrum 
Düsseldorf (UniKiD) 
der Heinrich-Heine-Universität Düsseldorf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gedruckt mit der Genehmigung der 
Mathematisch-Naturwissenschaftlichen Fakultät der 
Heinrich-Heine-Universität Düsseldorf 

 
 
 
 

Referentin: PD Dr. med. Alexandra P. Hess 
 

Korreferent: Prof. Dr. rer. nat. Peter Proksch 
 

Tag der mündlichen Prüfung: 
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1. Introduction 

Research in the field of reproductive biology mainly investigates the physiology of the 

reproductive tract, early embryonic development after fertilization and the implantation of 

the embryo into the maternal tissue as a fundamental requirement for the following 

successful pregnancy. But until now, the cellular and molecular background of these 

substantial processes is not fully elucidated. Basic scientific findings support the clinical field 

of reproductive medicine with improvements regarding the maintenance of reproductive 

health, but also diagnosis and treatment of reproductive problems, and last but not least in 

the optimized treatment of infertility by applying assisted reproductive technology (ART). 

Techniques of ART gained more and more importance in human reproduction in the recent 

years, considering that nearly 10% of German couples are involuntarily childless. Early 

implantation-related investigations intensively focused on the embryonic side and due to 

scientific proceedings and improvements the pregnancy ratio after in vitro fertilization (IVF) 

treatment of infertile couples could be elevated up to 40% per cycle1. However, this 

percentage could not be further improved in the last years. This indicates a potential role for 

unexplained processes in the endometrium influencing the pregnancy outcome and the 

necessity of investigations to improve the requirements of the maternal side.   

This thesis investigates the early embryo-maternal dialog, deciphering cell behavior on 

the maternal side as a consequence of embryo contact to gain further insights how the 

female endometrium is involved in the regulation of proper embryo implantation, finally 

leading to a successful pregnancy and a “take home” baby. 

 

1.1 The human endometrium 

The endometrium is the inner layer of the human (and mammal in general) uterus. The 

adjacent middle layer is named myometrium and consists mainly of smooth muscle cells. 

The endometrium is the place of the early conceptus’ nidation, also called implantation. The 

histological composition of the endometrium includes a single layer of columnar epithelium 

with luminal and glandular endometrial epithelial cells (EECs), which are secretory or 

ciliated. The subjacent endometrial stromal cells (ESCs) build a layer of supporting, loose 

connective tissue with fibroblastic cells, blood vessels (built from vascular smooth muscle 

and endothelial cells) as well as immune cells and are referred to as the functional layer. The 
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stromal tissue becomes denser the further it reaches to the myometrium and the cells 

directly adjacent to the myometrium arrange the basal layer. Furthermore, the 

endometrium contains tubular glands, which span the epithelial surface through the stroma 

and sporadically up to the myometrium (Figure 1.1)2,3.  

 

 

The endometrial functional layer underlies intense morphological and structural changes 

during the menstrual cycle, determined by the steroid hormones estradiol (E2) and 

progesterone (P4). These changes are elucidated in detail in the following paragraph and can 

be found schematically illustrated in Figure 1.2. 

The cycle starts with the menstruation from day 1–4. If implantation does not occur, 

circulating E2 and P4 decrease and the entire superficial functional endometrial layer is 

dissociated and discarded with associated bleeding due to the rupture of small blood 

vessels4. The proliferative or follicular phase from day 4–14 of a regular 28 day cycle is 

initiated via increasing E2 secreted by the maturing ovarian follicle and is characterized by 

the formation of a growing endometrial layer due to intense proliferation of endometrial 

cells, which are associated with the basal layer. Besides proliferation, EEC ciliogenesis can be 

observed, as well as an elongation of the glands throughout the stroma3,5. 

The proliferative phase ends with an E2-induced ovulation characterized by a peak 

production of lutenizing hormone (LH) leading to the release of the mature oocyte into the 

fallopian tube. The oocyte starts its journey toward the uterus and is either fertilized in the 

widest section of the fallopian tube, named the ampullary region, or degenerates 12–24 

Fig. 1.1: Human endometrial sections, 
stained with hematoxylin/eosin. (A) 
Overview of the myometrium and 
endometrium. (B) Display of the different 
endometrial regions, i.e. the basal- and 
functional layer. (C) Higher magnification 
to visualize the single layer of epithelial 
cells. Figure modified after

142
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hours after ovulation if fertilization fails to appear. At the time of ovulation the functional 

layer of the endometrium has reached its maximum size about 7-16mm thickness6. In the 

following secretory or luteal phase from day 14–28 the functional layer of the endometrium 

differentiates, achieves final maturity, and becomes receptive for the embryo. The dominant 

hormone of this phase is P4 secreted by the follicle, which has transformed into a cellular 

structure (corpus luteum) after release of the oocyte3. A receptive endometrium is 

characterized by highly secretory glands, influx of distinct immune cells, and the 

development of exclusively endometrial-associated, helical sidled arterioles, which grow 

vertically from the basal layer throughout the functional layer, and designated spiral 

arteries7. Additionally, a biochemical as well as morphological transformation of fibroblast-

like ESCs into large, rounded cells, termed decidual cells (dESCs) occurs in a process known 

as decidualization8. This process of ESC remodeling is progressing and continues in a 

potential pregnancy until the entire endometrium is included and occurs in all species with 

embryo implantation9. However, in human and other menstruating species it arises 

independently of embryonic signals in every menstrual cycle. 

 

 

The period in which the endometrium reaches the maximum receptivity for an embryo is 

between the 20th and 23rd day of the cycle, takes approximately 4 days and is denoted by the 

“window of implantation”10. In the case of a pregnancy, constant increasing P4 facilitates the 

decidual maintenance, whereas if no fertilization of the oocyte and subsequent implantation 

occurs, the corpus luteum atrophies causing a P4 withdrawal, which correspondingly induces 

menstruation and the beginning of a new menstrual cycle.  

Fig. 1.2: Overview of the 
human, menstrual cycle. 
Displayed are the 
growth/ maturation of a 
follicle throughout the 
cycle within the ovary 
including ovulation and 
the occurrence of the 
corpus luteum, the 
ovary derived blood 
levels of E2

 
and P4 

throughout the cycle 
and changes of the 
endometrial lining 
corresponding to the 
hormonal changes from 
top to down. 
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1.2 Embryo implantation 

Embryo implantation into a receptive endometrium is the pivotal process influencing the 

success of a following pregnancy until birth tremendously, because the precise extent of 

invasion as a crucial factor is limited and highly specific11. The importance of implantation 

regarding the establishment of pregnancy becomes evident by the illustration of the 

“pregnancy loss iceberg”12,13 (Figure 1.3) which visualizes that 55% of spontaneous and 65% 

of IVF pregnancies are lost pre-clinically (i.e. prior to the time of missed menstruation and 

therewith normally unperceived) due to implantation failure. 

 

If fertilization of the oocyte occurs in the fallopian tube, the conceptus migrates to the 

uterus within 4 days and passes through different stages of development until it arrives at 

the uterine wall as a blastocyst. The blastocyst consists of an inner cell mass, the 

embryoblast and the cell-free blastocoel, which is encircled by a layer of cells, the 

designated trophoblast, and a protective glycoprotein membrane, the zona pellucida (Figure 

1.4). 

 

 

 

After contact with the receptive endometrium, the blastocyst leaves its zona pellucida 

(“hatching”) and a loose contact between blastocyst and endometrium is generated in the 

first stage the “apposition”, of implantation. Thereafter, the outer trophoblastic cells 

facilitate the interaction with the EECs in the second stage referred to as adhesion. The final 

stage of implantation is the invasion of the in embryo into the maternal endometrial tissue, 

which is accompanied by the differentiation of the trophoblast into two cell populations: the 

Fig. 1.3: Pregnancy loss 
iceberg. Percental distribution 
of pregnancy outcomes after 
spontaneous conception (left) 
and IVF-treatment (right). The 
water surface discriminates 
“invisible” pre-clinical 
pregnancy losses from clinical 
evident pregnancy losses. 

Fig. 1.4: Human embryonic development from (A) pronuclear stage, (B) 2-cell-stage, (C) 4-cell-stage, (D) 
8-cell-stage  and (E) compacted morula to (F) blastocyst. 
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inner cytotrophoblast built of mononuclear cells surrounding the inner cell mass, 

representing the place of intense cell division, and the peripheral syncytiotrophoblast, a 

multinucleated layer of merged cells14,15. The invasive syncytiotrophoblast disrupts the 

endometrial epithelium and invades into the stroma as far as the proximal third of the 

myometrium. A process, which seems to be rather distinctly regulated in space and time16,17. 

The whole process of implantation is completed after 14 days. After this time the entire 

embryo is surrounded by maternal tissue. The syncytiotrophoblast meanwhile facilitates the 

affiliation to the maternal vascular system by rupturing and lining the maternal uterine 

capillaries7,18. 

 

Taken together the embryo implantation (Figure 1.5) as a crucial step for subsequent 

successful pregnancy requires a receptive endometrium with secretory glands and dESCs8, a 

good quality embryo at the blastocysts stage, and a synchronized embryo-maternal dialog19, 

conducted by secreted cytokines, chemokines and growth factors as well as expression of 

corresponding receptors and co-receptors20,21.  

Cytokines are a broad class of small proteins, which are secreted by a vast amount of 

different cells, in contrast to hormones which are only produced by a few specific cells. 

Cytokines affect cells and their function by binding to specific receptors which thereby 

influence intracellular signaling pathways. Cytokines, which particularly mediate a directed 

movement of cells (chemotaxis) are referred to as chemokines. Growth factors are also 

secreted proteins, which act as signaling molecules by binding to receptors. Sometimes the 

terms cytokines and growth factors are used synonymously. It should be noted that most 

Fig. 1.5: Stages of the 
embryo implantation: after 
apposition of the 
cytotrophoblast [CT] to the 
endometrial epithelium [EE], 
the syncytiotrophoblast [ST] 
invades the decidualized 
endometrial stroma [dES] 
which is rich in maternal 
blood capillaries [MBC]. 
With proceeding embryonic 
invasion extracellular caves, 
named trophoblastic 
lacunae [TL] appear in the 
ST which are filled with 
blood [bTL] after the MBCs 
are eroded [eMBC]. 
Modified after

143
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growth factors are cytokines but on the contrary not all cytokines are growth factors due to 

the fact that growth factors mediate cell growth and proliferation in accordance to their 

name, while cytokines may also inhibit proliferation or even induce apoptosis22–24.  

Cytokines secreted by endometrial and trophoblast cells have already been described to 

decisively regulate every step of implantation25. More detailed, high levels of interleukin (IL)-

1β are released by human embryos in vitro26,27. Interferon (IFN)-γ is expressed by the early 

trophoblast and endometrial, immune cells whose number rapidly expand in early 

pregnancy28. Tumor necrosis factor (TNF)-α and the corresponding receptors are found in 

endometrium, placenta and the fetus during pregnancy29. Furthermore, transforming 

growth factor (TGF)-β1 is expressed in endometrial stromal and epithelial cells 30 and in the 

syncytiotrophoblastic layer31. Early studies from our laboratory revealed that decidualized 

stromal cells highly upregulate chemokines such as CXCL1, IL-8 and CXCR4 after treatment 

with embryonic secretion products20. Taken together, secretion of diverse cytokines and 

expression of the corresponding receptors provide the basis for a dynamic and well 

synchronized embryo-maternal dialog during implantation. 

1.3 Pregnancy disorders 

Dysfunction of the embryo invasion as a tight regulated procedure can cause insufficient 

implantation, which in turn enables the occurrence of several known diseases possibly 

leading to developmental disorders or even threaten maternal and/or embryonic life.  

Examples of pregnancy disorders are preterm delivery (birth of the baby before 37 weeks 

of gestational age), intrauterine growth restriction (IUGR; poor growth of the fetus during 

pregnancy) and equally important preeclampsia, which is characterized by maternal high 

blood pressure and protein occurrence in the urine and which can lead to life-threatening 

eclampsia32. Furthermore as the HELLP syndrome, a life threatening disorder which is 

characterized by hemolysis (H), elevated liver enzymes (EL) and low platelet count (LP)33 may 

be induced. These disorders have in common that they are mostly allocated to shallow 

implantation34,35. 

In this context it should be discussed whether techniques of ART correlate with the risk 

of a deficient implantation and therefore are associated with subsequent pregnancy 

disorders. To my knowledge, no study exists in the current literature, which connects the 

coherence of an IVF treatment and the risk of implantation failure directly. Nevertheless, 
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several studies describe an increased occurrence of adverse pregnancy outcomes in those 

women who conceived after IVF treatment, including preterm delivery, low birth weight 

(which might be connected to IUGR), preeclampsia, and placenta previa, an atypical/cervical 

localization of the placenta36–39. In contrast, authors of another study criticized that 

disruptive factors, including especially age, were not incorporated in these statistical 

evaluations. Therefore, this group performed a special analysis to minimize confunders, such 

as age, re-examined the risk for preeclampsia in pregnancies after IVF treatment and failed 

to find any correlation. In summary, they concluded that the association between IVF 

therapies and preeclampsia shown by other studies is swayed by many factors and therefore 

should not be connected40. Herein, it should be considered that more women of advanced 

age, which was defined being >35 years old at the time of delivery41, undergo IVF treatments 

compared to younger women42. A higher maternal age was already correlated with an 

increased risk of pregnancy disorders, enclosed preeclampsia, placenta previa, low birth 

weight, and miscarriages43–46. This is important since the average age of primipara gradually 

increased over the last 20 years in Germany47. Therefore, investigations are urgently needed 

to first achieve a comprehensive understanding of the process of implantation and secondly 

to improve techniques of ART to support a proper implantation. This would help to prevent 

obstetrical problems and particularly long-term side effects for children achieved by ART 

methods. 

 

1.4 Apoptosis – the programmed cell death 

The term “apoptosis” describes a process of eliminating single cells without an immune 

response and damage of the surrounding tissue. It was first introduced in 1972 when the 

distinctive morphological changes (fragmentation and enfolding of cell compartments into 

membrane-covered apoptotic bodies that were removed via phagocytosis) were 

documented by electron microscopy48. More precisely, apoptotic cells reveal an initial 

shrinkage followed by detachment from the surrounding tissue. Thereafter, nuclear 

chromatin condensates and the DNA is degraded into internucleosomal fragments by 

endonucleases49. The plasma membrane bulges outwards and loses its asymmetry as the 

cytosolic membrane component phosphatidylserine translocates to the outer surface of the 

cell48,50. Membrane blebs separate from the cell and form membrane covered particles 

(apoptotic bodies), which contain cellular organelles and fragments of the nucleus. These are 
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phagocytosed by neighboring cells, at which phosphatidylserine serves as an “eat me”-signal 

at the surface51.  

Apoptosis critically governs several different physiological processes such as separation 

of fingers and toes during the embryo development52, elimination of self-reactive 

lymphocytes for achieving self-tolerance and immune homeostasis53 and maintaining the 

homeostatic cellular balance as an antagonist to mitotic cell proliferation54.  

Correspondingly, dysregulated apoptosis can provoke miscellaneous indispositions: on 

the one hand insufficient apoptosis can cause autoimmune diseases, cancer and virus 

infections, on the other hand exaggerated apoptosis can influence the pathology of AIDS, 

apoplectic stroke and neurodegenerative diseases such as Parkinson and Alzheimer’s55–58. 

Apoptotic cell death has a momentous influence on the organism and is therefore tightly 

and multilayered regulated by pivotal mediators, cysteine-dependent aspartate-specific 

proteases, called caspases. By means of their cellular position and role in apoptosis, caspases 

can be classified into two groups: initiator caspases (Caspase-8 and -9) which are activated in 

multicomponent protein-complexes and further activate downstream effector caspases 

(Caspase-3) which irreversibly triggers the cell death with its aforementioned morphological 

changes59. The death signal attains the cell either via external ligands or internal stressors. 

The extrinsic pathway is initiated by death receptors (R), i.e. FasR or TNF-related apoptosis-

inducing ligand receptor (TRAIL R), leading to conformational changes of the receptor and 

recruitment of adaptor proteins in a multicomponent complex, in which Caspase-8 is 

activated60. The intrinsic pathway is initiated via various stimuli e.g. oxidative stress, DNA 

damage or growth factor deprivation, which leads to the permeabilization of mitochondria 

and a release of Cytochrome C, which aggregates with proteins in a complex and afterwards 

activates Caspase-961. Subsequently, both pathways lead to the activation of Caspase-3 and 

are regulated by several pro- and anti-apoptotic factors. The Inhibitor of Apoptosis (IAP) 

family includes different members (XIAP, cIAP-1, -2, Survivin and Livin), which directly 

inactivate caspases62. Furthermore, cIAP-1 and -2 and XIAP serve as suppressors of Fas-

mediated apoptosis through Caspase-3 inhibition and facilitate the transcription of pro-

survival genes via activating nuclear factor (NF)κB63. On the contrary, pro-apoptotic 

molecules for instance the Second mitochondria-derived activator of caspases (SMAC) and 

the High temperature requirement protein A2 (HtrA2), both released from the mitochondria 

bind IAPs and either reduce or even prevent their inhibitory effects on apoptosis64. Members 
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of the B-cell lymphoma 2 (Bcl-2) family govern different actions regarding apoptosis, they 

either facilitate (Bad, Bax) or prevent (Bcl-2, Bcl-xL) the permeabilization of mitochondria 

and therewith function in a pro- or anti-apoptotic manner. 

The complex network of interacting pro- and anti-apoptotic proteins is well-adjusted in a 

viable cell, but a death signal leads to a shift to pro-apoptotic proteins, whose impact is no 

longer buffered by the corresponding pro-survival proteins and consequently leads to 

apoptosis. 

 

Cell death as an irreversible and far-reaching incident is mediated via signaling pathways 

including mitogen-activated protein kinases (MAPKs) and the proteinkinase Akt. Pro-

apoptotic MAPKs, such as JNK, exist in an inactive form within the cell. They need a multi-

step pathway of diverse phosphorylation events in response to different cell stressors 

including cytokines, to become activated. Activated MAPK can directly interact with other 

apoptosis-related proteins, inhibit pro-survival properties and facilitate the transcription of 

pro-apoptotic genes65,66. Correspondingly JNK directly inhibits anti-apoptotic proteins e.g. 

Bcl-2 and Bcl-xL, promotes pro-apoptotic Bad and Bax and lead to the expression of pro-

apoptotic genes implying Bak and Fas-L indirectly by activating the transcription factor c-

Jun67. Akt is a popular key regulator of the phosphatidylinositol-3-kinase (PI3K)-signaling 

pathway and influences multiple cellular processes. Several steps are required to activate 

Akt. Ligands, such as growth factors and other cytokines, stimulate specific transmembrane 

receptors, which activate PI3K. Further, Akt is recruited to the membrane and interacts with 

a kinase named PIP3, which leads to an alteration of the Akt conformation, a crucial 

requirement for phosphorylation and activation of Akt68. The protein Akt possesses several 

phosphorylation sites whose functions are mostly not elucidated until today. Nevertheless, it 

is known that Akt needs to be phosphorylated at two sides to achieve its complete kinetic 

activity69 and respectively dephosphorylation at both sides leads to an inactivation of Akt. 

Up to date approx. 100 target proteins of Akt are identified, which mediate cell proliferation, 

-cycle, -growth and -survival. The latter is promoted via direct inhibition of pro-apoptotic 

proteins including Bad and indirectly via blocking the transcription of forkhead box (FOX)O-

mediated pro-apoptotic target genes and the pro-apoptotic signaling pathways enclosing 

JNK70. Furthermore, Akt activates anti-apoptotic XIAP, Survivin and pro-survival transcription 

factors like NFκB, which subsequently induces the expression of IAPs71,72. 
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1.4.1 Apoptosis in the human reproductive tract 

An important role of apoptosis was already described for several physiologic processes in 

the human female reproductive tract. Inter alia, the distinct reduction in number of ovarian 

follicles present at birth to adolescence and later the huge amount of follicles needed 

monthly to mature one follicle for ovulation, was associated with apoptotic follicle death in 

all different developmental stages73. 

In connection with the uterine menstruation cycle, in particular with the menstrual 

breakdown of the endometrium, the involvement of apoptosis was intensely investigated 

and described in the present literature. The different stages (as described in chapter 1.1) are 

characterized by a varying occurrence of apoptosis in connection with a specific expression 

of apoptosis related proteins. As one might imagine, there is nearly no apoptosis present in 

the endometrium in the proliferative phase. But multiple studies pointed out that at the 

beginning of the secretory phase apoptotic endometrial glands and stromal cells appear and 

the number rises throughout the receptive and following late secretory phase until almost 

all components of the functional layer are involved during menstruation74–76. Because of 

these observations the role of apoptosis as a mediator for endometrial breakdown during 

the menstrual shedding is conceivable and generally accepted. Nonetheless, other antithetic 

studies exist, in which on the one hand the presence of only a small number of apoptotic 

stromal cells throughout the cycle76,77 is described or on the other hand an almost equal 

quantity of apoptotic stromal cells at every phase of the cycle78. 

Nevertheless, the expression of apoptosis-related factors in the endometrium in 

conjunction with the phase of menstrual cycle was also highly examined. The surface 

molecules FasR and TNF R seem to be expressed constantly79, but FasR was observed to be 

localized in the Golgi apparatus during the proliferative phase of the cycle translocating to 

the cell membrane during the secretory phase80. Furthermore, the corresponding ligands 

FasL and TNF are expressed as a function of cyclic-/hormone-dependent changes in the 

endometrial stroma and epithelium, which is mirrored by an increase of the ligands during 

the secretory phase79,81. Accordingly, a strong expression of Bcl-2 was observed during the 

proliferative but not late secretory phase, indicating a role of this anti-apoptotic protein in 

protecting endometrial cells from apoptosis during the proliferative phase82. Further 

references, indicating a role for the intrinsic and extrinsic apoptotic pathway in regulation of 

the menstrual tissue breakdown state an upregulation of active Caspase-3, -8 and -9 in 
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endometrial cells during the late secretory phase83 accompanied by an increase of pro-

apoptotic Bax84.  

In early pregnancy the blastocyst expresses different factors including cytokines, growth 

factors, FasL and TRAIL, which are supposed to be responsible for the induction of apoptosis 

of activated decidual immune cells to maintain immune privilege protecting the fetal 

allograft from the maternal immune system85.  

 

1.4.2 Implantation associated apoptosis in human and animals 

The exact cellular mechanisms mediating a proper implantation in human are still not 

fully understood, but in recent years, the interest of endometrial apoptosis as a fundamental 

prerequisite for successful pregnancy gained more and more interest. Up to date the 

literature regarding the role of endometrial apoptosis during embryo implantation is 

discrepant: on one hand the EEC apoptosis after blastocysts adhesion was intensely 

explored, whereas on the other hand studies about human ESC apoptosis are rare and most 

information derives of animal studies. Furthermore, even antithetic literature exists 

describing ESC apoptosis on the one hand and a resistance of ESCs towards apoptosis on the 

other showing the uncertainty of the current knowledge and the need of elucidating 

investigations.  

Trophoblast penetration of the endometrial epithelial layer as the earliest event of 

human embryo implantation was already investigated before. It was revealed that the 

embryo bears FasL and endometrial cells the corresponding receptor FasR, in connection to 

that EEC disruption was accompanied by Fas-mediated apoptosis as a consequence to 

trophoblast-endometrial contact during the adhesion phase of the implantation process86–88. 

Subsequently, in vitro co-culture experiments were performed with human trophoblast 

spheroids (globular cell conglomerates) attached to an EEC monolayer. Spreading of the 

spheroid in accordance to apoptosis at the spheroid-EEC interface was observed89. 

Treatment with an anti-Fas antibody (ab), which activated the FasR, led to an increased 

spheroid expansion and enhanced EEC apoptosis, whereas a FasR neutralizing ab prevented 

spheroid outgrowth88.  

Although results of animal studies are not 100 percent transferable to the human 

system, it needs to be discussed when it comes to ESC apoptosis since little data about 

human are currently available. Correspondingly, animal studies revealed an important role 
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of EEC and ESC apoptosis in the establishment of pregnancy in mice and rats90–93 as well as in 

rhesus monkeys94 and dogs95. A rather detailed study analyzed the regulation of apoptosis in 

early stages of murine pregnancy in ESCs compared to EECs and the authors concluded that 

two different signaling pathways are involved. The rapid and complete disruption of the 

epithelial layer is mediated via the extrinsic apoptotic pathway. In contrast dESC apoptosis is 

regulated in a more moderate spatial and temporal fashion conciliated by the intrinsic 

pathway96 and this occurrence probably controls the aforementioned precise extent of 

invasion as a crucial factor for a successful pregnancy. 

In vivo studies about human ESC apoptosis during implantation are rare. In vitro studies 

described an inveterate resistance of ESCs toward apoptosis independent of the cells being 

non-differentiated or decidualized97–99. Nevertheless, ESC resistance toward Fas-mediated 

apoptosis was overcome by pretreatment of the cells with interferon (IFN)-γ and tumor 

necrosis factor (TNF)-α97. Furthermore, it was shown before that transforming growth factor 

(TGF)-β1 induces apoptosis in primary cultured ESCs100. Other studies described the role of 

heparin-binding (HB)-EGF, which is expressed by dESCs and trophoblast cells101, mediating 

the survival102,103 and in vitro motility of dESCs104, suggesting an rather active supportive role 

of dESCs during the implantation instead of a passive induction of apoptosis.  

Several clinical studies revealed that multiple pregnancy complications and disorders are 

associated with altered placental development due to apoptosis compared to normal 

developed placentas. An increased number of apoptotic endometrial and placental cells was 

shown in cases of miscarriages74 and unexplained recurrent spontaneous abortion (both 

terms describe the death of the embryo or fetus in the uterus)105, preeclampsia106–108, 

HELLP-Syndrome106,107,109, IUGR106,110–112 and in endometrium out of receptive alignment (a 

syndrome which is related to repeated implantation failure and consecutive infertility or 

early pregnancy loss)113, whereas a diminished number of apoptotic cells was observed as a 

consequence of ectopic pregnancy outside the uterus114. 

Taken together current literature regarding endometrial apoptosis as a crucial step of 

embryo implantation turns out to be very divergent: on one hand EEC apoptosis induced by 

the embryo contact was keenly researched, whereas on the other hand studies about 

human ESC apoptosis are rare and rather conflicting describing either the existence or 

resistance of apoptosis within these cells.  
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Another very important aspect during implantation is the remodeling of maternal spiral 

arteries, which ensure the nutrition of the embryo at this early phase of pregnancy. As 

already mentioned in chapter 1.1 the spiral arteries develop during the secretory phase 

within the endometrium. During implantation these vessels are strongly dilated and their 

contact with the invasive syncytiotrophoblast leads to the loss of vascular smooth muscle 

cells and endothelial cells and correspondingly causing a blood flow out of the eroded vessel 

into lacunae inside the syncytiotrophoblast (see also Figure 5). Different studies correlate 

the vascular cell destruction with the apoptotic cell death facilitating spiral artery 

remodeling. For example, it was shown that trophoblast-derived secretion products activate 

the FasR and TRAIL R system in endothelial and vascular smooth muscle cells in vitro and 

further induce apoptosis115,116. In situ studies of first trimester placental bed samples exhibit 

divergent results, namely the presence 117 and absence 18 of apoptotic vascular smooth 

muscle cells as a consequence to spiral artery remodeling. The nonexistence of apoptosis in 

the latter study was correlated with an active vascular cell migration away from the artery. 

But other studies point out that the rapid removal of apoptotic cells via a large number of 

phagocytes within the decidua aggravates the possibility to detect apoptosis7,117.  

 

1.5 Syndecan-1 

Syndecan-1 (Sdc-1) as schematically displayed in Figure 1.6 is a transmembrane 

proteoglycan, i.e. a protein, which is present on the cell surface, consisting of a 

cytoplasmatic, a transmembrane and an extracellular core domain, which typically carries 

chains of mainly heparan sulfate (HS) but also chondroitin sulfate (CS)118,119. Sdc-1 acts as a 

co-receptor and storage molecule for a wide range of ligands including cytokines and growth 

factors. Its HS chains affect the binding, stability and conformation of ligands and their 

corresponding receptors or increase the ligand concentration on the cell surface. 

Additionally, different studies proposed a role of the highly conserved cytoplasmatic domain, 

regarding the interaction with cytoskeletal proteins and downstream signal transducers and 

therefore the responsibility for mediating a non-catalytic/mechanical transduction, although 

the molecular mechanisms are not known120,121. In this context it was further described, that 

alterations of the Sdc-1 expression lead to changes regarding cell morphology, growth and 

migration, which are all processes connected to cytoskeletal organization121. 
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Besides, cytoplasmatic Sdc-1 was found to be a microtubule-associated protein in the 

mitotic spindle of dividing cells, indicating a role of Sdc-1 in mediating cell proliferation122. 

The ability of Sdc-1 to interact with tubulin is also linked to the findings that Sdc-1 

translocates to the nucleus and is assumed to modulate the function of transcription factors 

therein122,123. 

Moreover, proteolytical cleavage of intact Sdc-1 ectodomains from the cell surface, a 

process recognized as shedding, via heparanase or matrix metalloproteinases (MMP), leads 

to soluble effectors in the extracellular milieu and body fluids124
. In this context a study with 

MMP and Sdc-1 knock out (ko) mice revealed that chemokines bound to Sdc-1 are important 

chemoattractants for immune cells, e.g. neutrophils. Shedding of these chemokine-Sdc-1 

complexes influences whether the recruitment of immune cells occurs on the cell surface or 

in the extracellular milieu125. Furthermore, a study with primary human umbilical vein 

endothelial cells (HUVEC), revealed that membrane bound chemokine-Sdc-1 complexes 

facilitate the transendothelial migration of neutrophils, whereas shedding of these 

complexes destroys the chemotactic gradient resulting in a decreased immune cell 

transmigration126. These results indicate an important role of Sdc-1 and particularly Sdc-1 

shedding in implantation-related processes, including inflammation and angiogenesis.   

Taken together, the supposed biological functions of Sdc-1 are rather multiple and 

complex and comprise regulation of cell-cell-interaction, cell proliferation and – 

differentiation, embryonic development, angiogenesis, and tumor development. 

 

  

Fig. 1.6: Schematic depiction of 
Syndecan-1, a cell surface proteoglycan, 
containing chains of heparan sulfate 
(HS) and chondroitin sulfate (CS) and 
associated binding ligands such as 
cytokines and growth factors. 
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1.5.1 Syndecan-1 in the reproductive biology 

Sdc-1 attracted interest in the field of obstetrics and gynecology as well as reproductive 

medicine in the recent years. It was identified in the female reproductive tract (vaginal 

epithelium, cervix, and endometrium) of normal cycling healthy women. The expression 

pattern varies throughout the menstrual cycle, implicating an influence of sex steroids on 

the regulation of Sdc-1, although the corresponding literature demonstrates an 

inconsistency. 

One study describes Sdc-1 in the whole endometrium (luminal and glandular epithelium, 

as well as stroma) with diverse and partly opposed expression patterns. More specifically, in 

the luminal epithelium Sdc-1 was significantly decreased during the proliferative phase, 

whereas no changes were observed for the glandular epithelium throughout the cycle. 

Opposite to the decreasing luminal expression in the proliferative phase the stromal 

expression of Sdc-1 increased in the proliferative phase127. However, another group found 

an increase of Sdc-1 mRNA expression during the secretory phase of the cycle in the entire 

endometrial tissue and immunohistochemistry analysis revealed that Sdc-1 was mainly 

localized at the apical surface of the glandular epithelium during the phase of endometrial 

receptivity, the so-called window of implantation128. Accordingly, another group also 

described a rise of endometrial epithelial Sdc-1 in the secretory phase129. In summary, 

regulation of Sdc-1 via sex steroids with an increase in the secretory/receptive phase 

epithelium is conceivable, whereas the current literature propagates the contrary effect in 

the stroma with a Sdc-1 decrease in the secretory phase of the cycle. Interestingly, one study 

regarding Sdc-1 expression in the placenta and decidua at early pregnancy demonstrated an 

intense expression of Sdc-1 in the syncytiotrophoblast and placenta, but failed to detect Sdc-

1 in the decidualized stroma and glands130. Studies in mice revealed a Sdc-1 expression 

already in four-cell stage embryos, which persisted until the late blastocyst stage131. 

Correspondingly, human syncytiotrophoblasts exhibited a strong Sdc-1 expression at the 

apical surface130 indicating a potential role of Sdc-1 in the embryo-maternal dialog, a 

prerequisite for a proper implantation, as mentioned, even though the exact functions of 

Sdc-1 in the human placenta are still not fully understood.  

Clinical studies were performed to clarify the involvement of Sdc-1 in the development 

of pregnancy disorders, which result from inadequate implantation as described in chapter 

1.3. In all outlined complications an altered placental Sdc-1 expression compared to healthy 



1. Introduction 

- 16 - 

controls was found. But regarding the exact correlation of Sdc-1 and disease occurrence Sdc-

1 revealed a Janus-faced attitude and therefore the findings were shown to be extremely 

divergent. On the one hand, reduced Sdc-1 expression was correlated with intrauterine 

growth restriction132, preeclampsia133 and HELLP syndrome134 and accordingly elevated Sdc-

1 was connected with a reduced risk for preterm labor135. But on the other hand increased 

syncytiotrophoblastic Sdc-1 expression was also associated with preeclampsia and HELLP 

syndrome136. The limitation of these studies and studies of the human reproductive biology 

in general is the restricted disposability of samples from patients with pregnancy diseases as 

well as healthy controls in early pregnancy stages. Therefore, the current studies in the 

available literature are not able to comprehensively depict Sdc-1’s role in the establishment 

of the aforementioned pregnancy diseases and detailed investigations are urgently needed. 

 

1.5.2 Syndecan-1 and apoptosis 

Studies describing an influence of Sdc-1 regarding the regulation of apoptosis in cancer 

cells are abundant. In this context a Janus-faced attitude of Sdc-1 was also observed. 

However, these findings are oppositional and are implying that Sdc-1 has a varying impact on 

the development and malignancy of cancer. In terms of tumor cells of the human female 

reproductive tract, it was described that Sdc-1 expression was decreased in invasive cervical 

carcinoma cells compared to healthy cervical cells and the inverse correlation between Sdc-1 

expression and development of metastasis was shown137. In contrast, an increased Sdc-1 

expression was correlated with high proliferation, invasion, aggressive phenotype and poor 

clinical prognosis for breast138 and ovarian139 cancer. In endometrial cancer an elevated Sdc-

1 expression was observed compared to healthy endometrium. Furthermore, 

overexpression of Sdc-1 in endometrial cancer cells via in vitro transfection promoted cell 

proliferation140, whereas silencing of Sdc-1 induced apoptosis141. 

In spite of the contrary literature regarding Sdc-1’s role in cancer and pregnancy 

diseases, an influence of Sdc-1 on endometrial cell apoptosis during the physiological 

process of implantation is conceivable, although the knowledge about the exact mechanism 

is very limited so far. 
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2. Aim of the study 

The purpose of this study was to clarify the role of the female endometrium in 

facilitating the establishment of a successful pregnancy, especially the physiological role of 

endometrial cell apoptosis during the process of embryo implantation. In particular the 

apoptotic inducibility of ESCs was supposed to be further elucidated, because it has not been 

sufficiently studied before and a lot of questions remained unclear which are important for 

the field of reproductive medicine. Although implantation-associated EEC apoptosis 

attracted more attention in the past, these cells were also studied herein to clarify the 

conflicting literature and to achieve comparability between the epithelium and the stroma 

composing an interconnected organ in vivo.  

Furthermore, a possible role of Sdc-1 facilitating a proper implantation via mediating the 

apoptotic signal in EECs and ECSs should be resolved using a stable Sdc-1 knock down (kd), 

which was generated in ESCs before in our laboratory and should be reproduced in EECs 

within the scope of this study. To gain insight into a possible role of implantation-related 

endometrial apoptosis a suitable model of embryo contact during implantation was 

supposed to be established. For this purpose embryo secretion products and surface 

molecules as an in vitro treatment of the cells before investigating the induction of apoptosis 

and corresponding signaling pathways were applied.  

Taken together the results of this study should provide further insight into the complex 

and momentous process of implantation deciphering an important role for maternal 

endometrial cell apoptosis to successfully establish a pregnancy. The impact of Sdc-1 in 

regulating endometrial apoptosis is particularly interesting in the light of an already 

described influence on pre-clinical pregnancy losses, pregnancy complications and disorders, 

and therefore might provide a useful clinical tool in the future to prevent infertility or 

pregnancy complications caused by insufficient implantation. 
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4. Findings and wider implications 

In the present work the role of maternal endometrial apoptosis triggered by embryonic 

and implantation-related stimuli has been elucidated by performing in vitro studies with EEC 

and ESC lines treated with cytokines known to be secreted during implantation as well as an 

anti-Fas ab replacing the FasL-bearing embryo mimicking the embryo-maternal contact. The 

findings suggest an induction of apoptosis in EECs and decidualized ESCs due to the embryo 

contact during implantation, supposedly to eliminate EECs to facilitate the embryonic 

invasion via a temporary and intense apoptotic induction and finally to regulate the depth of 

implantation in ESCs by a more temporal and local restricted apoptotic reaction compared to 

EECs. Interestingly, non-decidualized ESCs showed a resistance toward apoptosis, which was 

reversed by decidualization. Decidualization is a known important process to develop a 

receptive endometrium that prepares the window of implantation which is the only time in 

the menstrual cycle where a pregnancy can be successfully established in human. 

Equally important, the role of Sdc-1 in attenuating the apoptotic signal in EECs and ESCs 

has been discovered, generating a new EEC line with a stable kd for Sdc-1 and using a Sdc-1 

kd ESC line, which was generated by our laboratory before. These findings indicate that Sdc-

1 may be involved in the fine-tuning of endometrial cell apoptosis during embryo 

implantation. It is probably influencing the precisely adjusted process of implantation and 

thus the pregnancy outcome, because excessive apoptosis as observed in the Sdc-1 kd EECs 

and ESCs could provoke an incorrect implantation with complications and disorders leading 

to pregnancy complications or even maternal and fetal death. 

 

Limitations of the study are the use of cell lines and the mixture of cytokines and anti-Fas 

ab that served as a model for the embryo-maternal contact. Thus, further studies are 

scheduled reflecting the in vivo situation more closely. More detailed, the cultivation and 

investigation of primary cells directly derived from endometrial tissue will be targeted, to 

exclude a possible influence of the immortalization of the cell lines on the apoptotic 

inducibility. A transient kd of Sdc-1 via siRNA in the primary cells will help to gain new 

insights into the influence on apoptosis within these cells. Current preliminary studies 

regarding the isolation, cultivation and the transient kd of Sdc-1 are displayed in Figure 4.1. 
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Furthermore, a novel array detecting 102 cytokines (R&D systems, Minneapolis, USA) will 

be applied with cell supernatants from human blastocysts being in vitro cultured for 5 days 

in our IVF-laboratory to modify and improve the model to mimic the embryo contact. 

 

 

 

 

 

Since research on embryonic implantation is limited to animal models or in vitro 

experiments with human cells, novel and alternative 3D- and co-culture systems mimicking 

the physiological architecture of the endometrium are targeted to approximate the in vivo 

situation. In preliminary studies, different cell culture systems were established and further 

experiments will utilize the potential of these methods. In detail, with the help of a coated, 

low cell binding 96-well plate with round bottom a defined number of trophoblastic cells 

was conglomerated to dense and globular spheroids, which were co-cultured with 

endometrial cell monolayers. The spheroid outgrowth was monitored and apoptotic cells at 

Fig. 4.1: Preliminary studies with primary endometrial cells. (A) Epithelial, glandular tube at day 1 after 
isolation, (B) after 5 days epithelial cells grow out from the tubular organization. (C) Endometrial 
stromal cells at day 1 after isolation. (D-E) In vitro decidualization of primary stromal cells treated with 
progesterone for 3 days (E) and 6 days (F) versus 6 days untreated (D). (G/H) Transient transfection of 
primary stromal cells. (G) Expression of Cy5-labeled scrambled siRNA 48h after transfection and (H) fold 
induction of Sdc-1 mRNA after transfection with siRNA.  
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the spheroid/endometrial cell interface were stained with specific fluorescent dyes. 

Moreover, a 3D-co-culture system of a thick layer of ESC, a thin EEC layer and a trophoblastic 

cell spheroid on top was established. For this purpose ESCs were incorporated into a scaffold 

of fibrin (from human plasma) and agarose and solidified in a special cell insert with a 

membrane bottom side to guarantee the all-around maintenance of the cells with medium, 

followed by the application of EECs and trophoblastic spheroids. For histological 

characterization the culture system was removed from the insert, fixed, embedded, and 

sectioned like a native tissue (Figure 4.2). This system provides novel opportunities regarding 

the investigation of factors influencing trophoblast invasion, enclosed Sdc-1, signaling 

pathways or even environmental conditions and drugs. 

 

 

 

 

 

In the context of the present work, new targets supposedly mediating endometrial cell 

interaction with the embryo were deciphered, including the TRAIL- /TRAIL R system as well 

as FoxO1a and further studies will give a deeper insight in the regulation of a proper 

implantation.  

In vivo investigations of human implantation sides are not feasible for ethical reasons, so 

in vivo studies are planned with wildtype vs. Sdc-1 ko mice. From murine uteri the 

Fig. 4.2: Preliminary studies with 3D- and co-cultures. (A) Paraffin-embedded section of a 3D-culture 
with endometrial epithelial [EE] and stromal cells [ES], the membrane of the insert [m] is visible at the 
bottom. (B) Paraffin-embedded section of a 3D-culture with trophoblast spheroids [TSph]. (C) Detailed 
view of TSph. (D) TSph after 24h on a tissue culture dish vs. (E) on ES monolayer. The outgrowth of 
trophoblastic cells [T] is visible. (F) TSph stained with cell tracker orange on an unstained ES monolayer. 
Cells at the TSph/ES interface are stained with Annexin-FITC (green) to detect apoptotic cells [apo]. 
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implantation chambers and fetuses are supposed to be extracted at day 4 to 15 post coitum 

and investigated via immunohistochemistry and -fluorescence with regard to apoptotic 

markers such as DNA strand breaks and related proteins including FasR, TRAIL, IAPs and Bad. 

These experiments will help to decipher a possible key role of Sdc-1 on the regulation of 

implantation depth via influencing endometrial apoptosis in mice. 

Taken together, the present work features answers regarding endometrial cell apoptosis 

through embryonic signals and Sdc-1 regulating the apoptotic signal, but also paves the way 

for further experiments to gain deeper insights in the complex regulation of embryo 

implantation in human. 
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5. Summary 

Embryo implantation (invasion and nidation) into the inner wall of the female uterus 

constituted by the endometrium is the perquisite for following successful pregnancy. It 

requires a good quality embryo, a receptive endometrium of highly differentiated epithelial 

and stromal cells and a synchronized molecular dialog between embryo and maternal 

endometrium. We hypothesized that programmed cell death (apoptosis) of maternal 

endometrial epithelial (EEC) and stromal (ESC) cells as a consequence of the embryo contact 

plays a crucial role in pioneering the embryos entrance into the maternal system and in 

regulation of the implantation depth.  

Syndecan-1 (Sdc-1) is a cell surface molecule expressed on endometrial cells and highly 

upregulated in the window of implantation, characterizing the time period of the menstrual 

cycle with the endometrium only being receptive for the embryo implantation. Sdc-1 

functions as a co-receptor for cytokines but also directly influences signaling pathways, such 

as regulators of apoptosis. An altered Sdc-1 expression was already correlated with 

pregnancy disorders, which in turn have been associated with an insufficient implantation. 

Therefore, an involvement of Sdc-1 in the implantation process via regulation of EEC and ESC 

apoptosis is most likely. 

EEC and ESC lines were cultivated in vitro and pendants with a stable Sdc-1 knock downs 

(kd) were generated. ESCs were further decidualized with hormones to achieve the in vivo 

situation of a receptive endometrium. Treatment with the four cytokines interleukin (IL)-1β, 

interferon (IFN)-γ, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 as 

well as an anti-Fas antibody (IITT+F) were applied as a suitable model to mimic embryo 

contact. Non-decidualized ESCs revealed a resistance toward apoptosis induced by IITT+F, 

which was reversed upon decidualization, whereas ESCs with Sdc-1 kd were sensitive to the 

apoptotic signal independent of decidualization. Sdc-1 kd led to a higher apoptotic 

inducibility in ESCs and EECs, which was correlated with an altered expression of pro- and 

anti-apoptotic proteins, in particular the inhibitor of apoptosis family and pro-apoptotic Bad, 

as well as death receptors FasR and TRAIL R. The apoptotic resistance of non-decidualized 

ESCs was associated with a sustained activation of the pro-survival signaling molecule Akt 

and according to this decidualization and Sdc-1 kd, which facilitates the induction of 

apoptosis, deactivates Akt. 
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Taken together, EECs and decidualized ESCs induce apoptosis after in vitro treatment 

with embryonic stimuli, indicating a potential role for maternal apoptosis during 

implantation. Furthermore, Sdc-1 seems to attenuate the apoptotic signal, suggesting that 

Sdc-1 may act as a crucial factor for successful pregnancy affecting implantation via 

regulating endometrial apoptosis. Especially with regards to the development of novel 

therapeutic strategies for obstetrics and reproductive medicine this is of immense 

importance.  

 

6. Zusammenfassung 

Die embryonale Implantation (Einwandern und Einnistung) in die innere Wand des 

weiblichen Uterus (genannt Endometrium) als eine Grundvoraussetzung für eine darauf 

folgende erfolgreiche Schwangerschaft benötigt einen gut entwickelten Embryo, ein 

rezeptives (aufnahmebereites) Endometrium mit differenzierten epithelialen und stromalen 

Zellen und einen hoch abgestimmten molekularen Dialog zwischen Embryo und 

mütterlichen Endometrium. Wir stellten die Hypothese auf, dass der programmierte Zelltod 

in Form von  Apoptose mütterlicher, endometrialer Epithel- (EEZ) und Stromazellen (ESZ), 

hervorgerufen durch den Embryokontakt, eine entscheidende Rolle dabei spielt, dem 

Embryo den Weg in das mütterliche System zu ebnen, sowie die Implantationstiefe zu 

regulieren. 

Syndecan-1 (Sdc-1) ist ein Zelloberflächenmolekül, dass auf endometrialen Zellen 

exprimiert wird und während des Implantationsfensters, dem Zeitpunkt innerhalb des 

Menstruationszyklus, in dem das Endometrium aufnahmebereit für den Embryo ist, stark 

hochreguliert wird. Sdc-1 wirkt als Ko-Rezeptor für Zytokine, kann aber auch Apoptose-

regulierende Signalwege direkt beeinflussen. Eine veränderte Sdc-1 Expression wurde 

bereits mit Schwangerschaftserkrankungen in Verbindung gebracht, welche wiederum mit 

einer unzureichenden Implantation assoziiert werden. Aus diesem Grund ist ein Einfluss von 

Sdc-1 auf die Implantation durch Regulierung von EEZ und ESZ Apoptose 

höchstwahrscheinlich.  

EEZ und ESZ Linien wurden in vitro kultiviert und Gegenstücke mit einem stabilen Sdc-1 

knock down (kd) generiert. ESZ wurden weiterhin durch Hormone dezidualisert, um den in 

vivo Zustand eines rezeptiven Endometriums nachzuahmen. Es wurde eine Behandlung mit 

den vier Zytokinen Interleukin (IL)-1β, Interferon (IFN)-γ, Tumornekrosefaktor (TNF)-α, 
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transforming growth factor (TGF)-β1, sowie einem anti-Fas Antikörper (IITT+F) als adäquates 

Modell, um einen Embryokontakt nachzubilden, angewandt. Undezidualiserte ESZ 

offenbarten eine Resistenz gegenüber Apoptose durch IITT+F, welche durch Dezidualisierung 

aufgehoben wurde, während ESZ mit Sdc-1 kd unabhängig einer Dezidualisierung sensitiv 

gegenüber dem apoptotischen Signal waren. Der Sdc-1 kd führte zu einer höheren 

Auslösbarkeit der Apoptose in EEZ und ESZ und dies wurde mit einer veränderten Expression 

pro- und anti-apoptotischer Proteine, z.B. der inhibitor of apoptosis Familie, dem pro-

apoptotischen Bad und den Todesrezeptoren FasR und TRAIL R, in Verbindung gebracht. Die 

Apoptoseresistenz der undezidualisierten ESZ wurde mit einer konstitutiven Aktivität des 

pro-survival Signalmoleküls Akt in Verbindung gebracht und dementsprechend führte eine 

Dezidualisierung und der Sdc-1 kd, wodurch Apoptose ermöglicht wurde, zu einer De-

aktivierung von Akt. 

Zusammenfassend leiten EEZ und ESZ die Apoptose nach in vitro Behandlung mit 

embryonalen Stimuli ein, was auf eine mögliche Rolle mütterlicher Apoptose während der 

Implantation hinweist. Weiterhin scheint Sdc-1 das apoptotische Signal abzumildern, was 

darauf schließen lässt, dass Sdc-1 ein äußerst wichtiger Faktor für eine erfolgreiche 

Schwangerschaft ist, der die Implantation durch Regulierung endometrialer Apoptose 

beeinflusst. Dies ist gerade auch in Hinsicht auf die Entwicklung neuer therapeutischer 

Strategien für die Geburtshilfe und Reproduktionsmedizin von immenser Bedeutung. 
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4. Abbreviations 

A, C, G, T adenine, cytosine, guanine, thymine 
α alpha 
ab antibody 
AIDS aquired immunodeficiency syndrome 
ART assisted reproductive technology 
β beta 
Bad Bcl-2-associated death promoter 
Bcl-2 B-cell lymphoma 2 
BSA bovine serum albumine 
cAMP cyclic adenosine monophosphate 
cIAP cellular IAP 
CS chondroitin sulfate 
CT cytotrophoblast 
CXCL1 chemokine (C-X-C motif) ligand 1 
CXCR4 C-X-C chemokine receptor type 4 
Da Dalton 
d decidualized 
DMEM Dulbecco’s Modified Eagle medium 
DNA deoxyribonuvleic acid 
E2 estradiol 
EEC endometrial epithelial cell 
e.g. exempli gratia 
ESC endometrial stromal cell 
et al. et alii 
etc. et ceterea 
F anti-Fas ab 
FBS fetal bovine serum 
FCS fetal calf serum 
FoxO forkhead box protein O 
g gramm 
γ gamma 
h hour 
HELLP hemolysis, elevated liver enzymes and low platelet count 
HS heparan sulfate 
HtrA2 high temperature requirement protein A2 
HUVEC human umbilical vein endothelial cells 
IAP inhibitor of apoptosis 
IUGR intrauterine growth restriction 
IITT IL-1β, IFN-γ, TNF-α, TGF-β1 
IVF in vitro fertilization 
JNK c-jun n-terminal kinases 
IL interleukin 
IFN interferone 
k kilo 
kd knock down 
KdS1 St-T1 with stable Sdc-1 kd 
ko knock out 
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l liter 
L ligand 
LH lutenizing hormone 
M molarity 
m milli 
µ micro 
MAPK mitogen-activated protein kinase 
min minute 
MMP matrix metalloproteinases 
MPA medroxypogesterone acetate 
n nano 
NCBI National Center for Biotechnology Information 
NFκB nuclear factor kappa B 
p protein 
P4 progesterone 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PI3K phosphoinositide 3-kinase 
PIP3 phosphatidylinositol 3,4,5 trisphosphate 
R receptor 
RL95-2 epithelioid endometrial carcinoma cell line 
RLSdc1kd RL95-2 with stable Sdc-1 kd 
RNA ribonucleic acid 
rpm rounds per minute 
rt room temperature 
s second 
Sdc-1 Syndecan-1 
sh short hairpin 
SMAC second mitochondria-derived activator of caspases 
ST syncytiotrophoblast 
St-T1 immortalized endometrial stromal cell line 
tet tetracycline 
TNF tumor necrosis factor 
TGF transforming growth factor 
TRAIL TNF-related apoptosis-inducing ligand 
U unit 
XIAP x-linked IAP 
Zeo Zeocin 
  


