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Summary 

This thesis presents work on the hybrid quantum mechanical/molecular mechanical (QM/MM) 
method, both on development and applications. The main focus was on developing a 
polarizable embedding scheme using the Drude Oscillator (DO) polarizable force field as MM 
component, in combination with any QM method. An efficient procedure was implemented to 
obtain the proper polarization state of the QM and MM parts of the system simultaneously. 
Further improvements could be achieved by coupling this approach with solvent boundary 
potentials (BPs) making use of an implicit representation of the distant solvent environment 
through a polarizable dielectric continuum, which reduces the number of degrees of freedom 
substantially. The QM/MM-DO/BP implementation covers the generalized solvent boundary 
potential (GSBP) for molecular dynamics simulations and the solvated macromolecule 
boundary potential (SMBP) for geometry optimizations. These approaches account for long-
range electrostatic interactions in a fully polarizable three-layer QM/MM-DO/BP framework. 

Making use of our new code and the recently published polarizable version of the CHARMM 
force field for proteins, we performed the first QM/MM-DO study of enzymatic reactions with 
polarizable embedding. This involved resolving several technical issues, with regard to the 
convergence behavior in systems with many polarizable interacting MM atoms and the 
treatment of polarization at the QM/MM boundary when cutting a covalent bond. We validated 
the consistency of our QM/MM-DO model for several small test systems through comparisons 
with full QM results. The QM/MM-DO computations on the enzymatic reactions in chorismate 
mutase and p-hydroxybenzoate hydroxylase showed polarization effects on the potential 
energy barriers of the order of 5 to 20%. 

We participated in the development of an intrinsic reaction coordinate (IRC) method capable 
of tackling large QM/MM systems by using a microiterative approach, in which the IRC 
treatment is applied to a subset of atoms and the remainder of the environment is relaxed by 
geometry optimization at every step. The method was shown to work well for suitably chosen 
IRC subsets. We also participated in the development of a QM/MM free energy method that 
combines efficient low-level sampling with infrequent high-level energy evaluations in a Dual 
Hamiltonian Free Energy Perturbation (DH-FEP) approach, the merits of which were 
demonstrated both for small test systems and for two enzymatic reactions. 

On the application side, we performed a standard QM/MM study on the Baeyer-Villiger 
reaction catalyzed by phenylacetone monooxygenase, with emphasis on the role of the active-
site residues. We explored their possible configurations, identified the most relevant of these 
residues, and addressed the role of an extra water molecule in the active site. We also carried 
out a less conventional QM/MM application by computing the energy dissipation in aqueous 
solution of a hot ground state obtained after relaxation from an electronically excited state of a 
HCN tetramer, in the context of a theoretical study that aimed at establishing a photochemical 
pathway for the prebiotic synthesis of purines.  



  



Zusammenfassung 

Die vorliegende Doktorarbeit befasst sich mit der weiteren Entwicklung und mit Anwendungen 
der quantenmechanischen/molekülmechanischen (QM/MM) Methode. Der Schwerpunkt lag 
auf der Entwicklung eines polarisierbaren Einbettungs-Schemas unter Verwendung eines auf 
Drude Oszillatoren (DO) basierenden Kraftfeldes als MM Komponente, in Kombination mit 
beliebigen QM Methoden. Dabei wurde ein effizientes Verfahren implementiert, mit dem die 
Polarisation in den QM und MM Regionen gleichzeitig konvergiert werden kann. Weitere 
Verbesserungen konnten erreicht werden durch Kopplung dieses Ansatzes mit einem 
Lösungsmittel-Grenzpotential (boundary potential, BP), wobei die entfernte Solvens-
Umgebung implizit durch ein polarisierbares Dielektrikum dargestellt wird, was die Zahl der 
Freiheitsgrade deutlich verringert. Die QM/MM-DO/BP Implementierung umfasst zwei 
verschiedene Versionen von Lösungsmittel-Grenzpotentialen, zum Einsatz in 
molekulardynamischen Simulationen (GSBP) und in Geometrieoptimierungen (SMBP). Diese 
Methoden erlauben die Einbeziehung von langreichweitigen elektrostatischen 
Wechselwirkungen im Rahmen eines vollständig polarisierbaren dreilagigen QM/MM-DO/BP 
Ansatzes.  

Unter Verwendung des neuen Codes und der vor kurzem publizierten polarisierbaren 
CHARMM Kraftfelds für Proteine konnten wir die erste QM/MM-DO Studie von 
enzymatischen Reaktionen mit polisierbarer Einbettung durchführen. Dabei mussten zuerst 
einige technische Probleme gelöst werden, im Hinblick auf das Konvergenzverhalten in 
Systemen mit einer großen Zahl von polarisierbaren MM Atomen und der Behandlung der 
Polarisation an der QM/MM Grenze beim Schneiden kovalenter Bindungen. Die Konsistenz 
unseres QM/MM-DO Modells wurde an einigen kleinen Testsystemen durch Vergleiche mit 
QM Rechnungen validiert. QM/MM-DO Rechnungen an den enzymatischen Reaktionen in 
Chorismat-Mutase und p-Hydroxybenzoat- Hydroxylase ergaben Polarisationseffekte auf die 
Barrieren im Bereich von 5 bis 20%. 

Weiterhin waren wir an der Implementierung von intrinsischen Reaktionskoordinaten (IRC) 
für große QM/MM Systeme beteiligt, unter Verwendung eines mikroiterativen Ansatzes, bei 
dem die IRC-Rechnung auf eine Untergruppe vom Atomen beschränkt ist und die Umgebung 
in jedem Schritt durch eine Geometrieoptimierung relaxiert wird. Für geeignet gewählte 
Untergruppen funktioniert diese IRC-Methode gut. Wir waren auch an der Entwicklung einer 
Methode zur QM/MM Berechnung freie Energien beteiligt, die ein effizientes „low-level“ 
Sampling mit periodischen „high-level“ Energieberechnungen kombiniert (Dual Hamiltonian 
Free Energy Perturbation, DH-FEP). Die Vorzüge der DH-FEP Methode konnten für kleine 
Testsysteme und für zwei enzymatische Reaktionen gezeigt werden.   

Im Bereich der Anwendungen wurde eine Standard-QM/MM-Studie zur Baeyer-Villiger-
Reaktion in Phenylaceton-Monooxygenase durchgeführt, mit einem Fokus auf der Rolle der 
Aminosäuren im aktiven Zentrum. Untersucht wurden deren mögliche Konfigurationen und 
Relevanz sowie die Funktion eines zusätzlichen Wassermoleküls. Eine weniger konventionelle 
QM/MM Anwendung betraf die Energiedissipation eines HCN Tetramers in Wasser im heißen 
Grundzustand nach Relaxation aus dem angeregten Zustand, im Rahmen einer theoretischen 
Studie zu möglichen Reaktionspfaden bei der prebiotischen Synthese von Purinen. 
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1. Introduction 

1.1 A Story of Scale  

The concept of scale is inherent to the world of science. Ever since the scientific revolution in 

the late 19th century, the field has been subdivided into disciplines that study events happening 

at different scales. For instance, biology studies systems ranging from the nanometer scale to 

the kilometer scale, going from enzymology to ecology. At larger scale earth science takes over 

and then astrophysics. Chemistry, the subject of this thesis, takes place around the nanometer 

scale which corresponds to the size of a big molecule with the chemical bond lengths being 

about one order of magnitude smaller. Zooming in, one reaches the worlds of first quantum 

physics and then particle physics. Nowadays these separations have become obsolete, and 

interdisciplinary research takes a central role on the scientific scene. Indeed, a quick look at the 

list of recent Nobel laureates will convince anyone that there is a real tendency of escaping 

traditional scientific disciplines and moving towards hybrid approaches.  

The work presented in this thesis follows this trend as it applies mathematical models and 

computational techniques to implement physical laws in order to simulate chemical reactions 

possibly relevant to biology. More precisely, we will focus on the implementation, 

improvement, and application of hybrid methods combining quantum mechanics (QM) and 

molecular mechanics (MM) approaches for simulating enzymatic reactions.1  

In this introduction, we will first describe QM and MM methods separately, and then their 

combination in the QM/MM framework. The second section will address QM/MM method 

development. The main focus is on the implementation of polarizable embedding using the 

Drude oscillator polarizable force field and its combination with a solvent boundary potential, 

which results in a fully polarizable three-layer model.2,3  Other investigated topics include the 

implementation of QM/MM intrinsic reaction coordinates4 and the development of a QM/MM 

dual Hamiltonian free-energy method.5 The third section will cover two examples of QM/MM 

applications, namely the formation of the Criegee intermediate in the enzymatic Baeyer-

Villiger reaction catalyzed by phenylacetone monooxygenase (PAMO) and the energy 

dissipation in aqueous solution of the hot ground state of trans-2,3-diaminomaleonitrile (trans-

DAMN) after relaxation from an electronically excited state.6  
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1.2 Resolution, Tools, Methods, and Size 

To avoid misunderstandings later on, some notational aspects are addressed in this section. The 

aim is to clarify the meaning of terms used in this thesis (without claiming rigorous definitions).  

When it comes to theory and simulation, the concept of “scale” implies another key aspect: the 

“resolution”. For instance, to study a chemical reaction occurring at the molecular level, it is 

necessary to take into account the electronic redistribution that occurs at a smaller scale. The 

scale at which a given process takes place and the one necessary for its explanation can thus be 

different. Normally, the required resolution has a scale of at least one order of magnitude below 

that of the phenomenon being studied.    

Before advancing further, it is important to describe the difference between what will be called 

in this thesis a tool and a method. We consider as “tools” numerical procedures used either to 

get static data such as an optimum geometry or to sample over dynamical data to extract 

properties such as the temperature. Typical tools are thus geometry optimization and molecular 

dynamics (MD) techniques. We consider as “methods” mathematical formulations based on 

physical laws that allow us to calculate potential energy surfaces and other physical properties. 

QM/MM is a hybrid method that combines QM and MM methods. We also use the term “level 

of theory” or simply “level” as synonym of method.  

Another important notion is “size”. Whether a molecule or a system is small, big, or huge 

strongly depends on the method used to describe it and the tools one is willing to apply. It thus 

depends on the property of interest and the type of explanation one wants to obtain. Molecules 

considered here as small may appear huge for someone computing high-resolution spectra. In 

the same way, large macromolecules studied in this thesis will have a negligible size for 

someone in the field of system biology. The notion of size can become rather ambiguous when 

considering hybrid methods such as QM/MM that can be subjected to all kinds of different 

tools. This is why we will, in the following sections, concentrate on providing an appreciation 

of what a method can do for some given resolution, scale, and tools, rather than discussing the 

underlying theoretical aspects in great detail.  
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1.3 Atomic Resolution: Molecular Mechanics 

Molecular mechanics employs classical potentials to study chemical or biochemical systems.7,8 

It is based on Newtonian physics and aims at studying large systems such as solvated 

macromolecules with high efficiency. The method used to compute the potential energy of a 

system is called a force field. Normally, it uses atomic resolution and neglects any electronic 

degrees of freedom. Force fields are commonly applied in combination with molecular 

dynamics or Monte Carlo simulations, which are sampling tools designed to extract data out of 

long simulations using statistical techniques.  

Force fields are purely empirical. Their classical nature does not allow for the description of 

electronic events such as chemical reactions. They are parameterized using experimental and/or 

theoretical data. They have mainly been developed by the biophysics community. A standard 

force field such as CHARMM,9,10 the one mainly used in this thesis, considers every atom as a 

point object and includes two types of interactions: bonded and non-bonded. Bonded 

interactions are usually represented by harmonic potentials for bond stretching and bond angle 

deformations, and by periodic potentials for torsions, in order to achieve a realistic description 

of geometries, vibrational spectra, and dynamical properties. Non-bonded interactions consist 

of two parts, namely the electrostatic interactions between the point charges located at each 

atomic position (as a rough model of the electronic distribution) and the Lennard-Jones terms 

representing the attractive and repulsive van der Waals (vdW) interactions. In its simplest form, 

the potential energy (U) function for a CHARMM-like force field can be written as a sum of 

sums of these terms. 

 

In this equation, the force constants k are force field parameters, and the subscript 0 refers to a 

standard value that needs to be parameterized or is directly taken from literature. The letter r 

denotes distances (between atoms i and j),  is an angle,  is a dihedral angle, and  is an 
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improper angle for an out-of-plane deformation. The first sum over non-bonded terms 

represents the Lennard-Jones interactions; the parameters  are related to the depth of the 

vdW energy minimum. The second sum describes the Coulomb electrostatic interactions 

between the point charges (q) at atoms i and j. Other terms can be added to increase the accuracy 

of a given force field, but they are generally seen as corrections and not as key components 

during force field parameterization. 

1.4 Electronic Resolution: Quantum Mechanics 

Working with atomic resolution is usually not enough to tackle chemical problems, which 

requires inclusion of electronic effects. For this purpose, quantum mechanics has to be used 

and the Schrödinger equation has to be solved.11  

QM calculations can be very challenging, especially for large molecules with many electrons. 

A hierarchy of approximate QM methods has been developed. Depending on the target 

accuracy, the size of the considered system, and the tolerable computational effort, different 

methods can be applied. It is not the purpose of this thesis to cover the whole ensemble of 

available QM methods, nor to detail their development and derivation. Numerous books and 

reviews cover these aspects far more accurately than what can possibly be done here. Instead, 

we compile a general overview over the different classes of available QM methods, focusing 

on accuracy and computational efficiency as well as their usefulness in current QM/MM 

simulations of ground-state properties. 

There are three main families of QM methods which have been used in this thesis to compute 

the properties of the electronic ground state of molecules. The so-called ab initio methods are 

entirely based on first principles. In increasing order of accuracy and complexity as well of 

computational effort, the most prominent ones are the Hartree-Fock method (HF), second-order 

Møller-Plesset perturbation theory (MP2),12 and coupled cluster theory.13 HF calculations are 

rarely used nowadays, because they have been largely superseded by density functional theory 

which generally provides higher accuracy at similar cost. MP2 calculations (normally in 

combination with medium-size basis sets and the resolution-of-identity approximation) offer a 

good compromise between accuracy and cost; MP2 is thus well suited for computing fairly 

accurate ground-state properties of a reasonably large systems, also in a QM/MM framework. 

Coupled cluster calculations with single, double, and perturbative triple excitations (CCSD(T)) 

and large basis sets are currently the “gold standard” of theoretical chemistry for ground states. 

They have been used in some QM/MM simulations, but they are generally too expensive for 
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regular use. It should be noted that there is ongoing work aimed at drastically reducing the cost 

of such computations, which should facilitate the use of CCSD(T) in future QM/MM 

studies.14,15  

Nowadays, the most popular method when it comes to chemistry, and therefore for QM/MM, 

is density functional theory (DFT), which is based on a one-to-one relationship between the 

ground-state electronic density and the nuclear geometry of a molecule.16,17 DFT can be seen, 

in an intuitive manner, as a clever way to separate what you can handle exactly in the electronic 

Hamiltonian from what you cannot (using a formulation in terms of the electron density). The 

unknown parts are lumped together in the exchange-correlation functional, which covers 

exchange and electron correlation effects (as well as kinetic energy corrections in the Kohn-

Sham framework). The accuracy of DFT computations thus essentially depends on the chosen 

exchange-correlation functional. Standard choices, in order of increasing accuracy, involve the 

local density approximation (LDA), the generalized gradient approximation (GGA), and hybrid 

functionals (with partial inclusion of HF exchange). For chemical purposes, LDA functionals 

are generally not accurate enough, GGA functionals are known to give good geometries and 

reasonable energies, and hybrid functionals usually show the best performance with regard to 

energies (when used with reasonably large basis sets). Several other types of functional have 

been developed, but their description is beyond the scope of this thesis.  

The third family of QM methods used in this thesis are semiempirical approaches based on the 

modified neglect of differential overlap and the use of a minimal valence basis.18 They rely on 

a careful parameterization and are extremely fast. Their accuracy can also be quite good, but 

this has to be validated on a system-by-system basis, by comparing their results with those 

obtained from higher-level methods. If applicable, semiempirical methods are extremely useful 

for QM/MM simulations, especially for molecular dynamics and free-energy calculations.  

1.5 Multiscale Modelling: Quantum Mechanics/Molecular Mechanics 

Hybrid QM/MM approaches aim at combining the best of both worlds by performing accurate 

QM computations of the electronically relevant part of the system and simulating the rest using 

efficient MM methods.1,19-24 They can therefore be used only if the properties of interest are 

well localized in the QM part of the system. This approach is particularly suitable for simulating 

enzymatic reactions, which take place rather locally (in the active site) in a structured 

environment (the enzyme) that is difficult to represent in an implicit manner. It was originally 

proposed by Warshel and Levitt in their seminal paper in 1976.25 This work earned them, 
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together with Martin Karplus, the 2013 Nobel Prize in chemistry. In the following sections, we 

will describe some aspects relevant to this technique.26-28  

 

Figure 1: Partitioning of a typical QM/MM system for an enzymatic reaction. The QM region is part of the 
enzyme and is shown in red. The rest of the enzyme is defined at MM level and is shown here in green. The rest 

of the MM region, the blue sphere, is the solvent (generally water).   

 

1.5.1 Energy computation scheme 

Figure 1 represents the basic partitioning of the system for a QM/MM computation on an 

enzyme. The energy for a setup of this kind can be determined using two different strategies, 

from a subtractive or an additive scheme.1  

In the subtractive scheme, one computes the energy of the whole system using the MM force 

field, then removes the part associated with the QM region and replaces it by the QM energy 

of the QM region. It is a simple interpolation scheme, which does not directly compute the 

QM/MM interactions but approximates them at the MM level. It is easy to implement, but often 

lacks accuracy. It can be especially problematic if there are no suitable force field parameters 

for the QM region of the system.  

The additive scheme is generally more accurate. There are separate QM calculations for the 

active site (QM region) and MM calculations for the environment (MM region), and the 

QM/MM interactions are treated explicitly using a particular embedding scheme (see next 

subsection 1.5.2 below). Particular care is required when the QM/MM boundary cuts through 
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a covalent bond (see subsection 1.5.3). The total QM/MM energy is obtained as the sum of the 

QM energy, the MM energy, and the QM/MM interaction energy. The additive scheme is the 

only one used in this thesis.  

1.5.2 Embedding  

The embedding defines how the QM and MM regions are coupled through non-bonded 

interactions,29 i.e., vdW and electrostatic terms. The simplest choice is mechanical embedding, 

which computes all these terms at the MM level (as in the subtractive scheme). 

Nowadays, the standard technique in QM/MM studies is electronic embedding. It still treats 

the vdW interactions at the MM level, but determines the electrostatic QM/MM interactions by 

including the MM point charges into the QM computation (as additional terms in the one-

electron part of the Hamiltonian). This allows the QM wavefunction to polarize under the 

influence of the MM point charges. The corresponding gradient contributions at the MM atoms 

can be easily computed by evaluating the electrostatic field due to the QM region at their 

positions. This technique has the advantage of explicitly computing the electrostatic QM/MM 

interaction energy at the QM level, while at the same time avoiding any in-depth 

parameterization of the force field for the QM region. Standard vdW parameters are normally 

sufficient for computing the vdW part of the QM/MM interaction energy.  

A polarizable embedding is required when using a polarizable force field in the QM/MM 

framework. This creates complications since both the QM and MM regions are now 

polarizable, which calls for a self-consistent treatment. This is one of the main topics of this 

thesis and will thus not be covered here, but later in much detail (see section 2.1).  

1.5.3 Covalent Bond Crossing at the QM/MM Boundary 

When defining the QM and MM regions in a given system, it is often impossible not to have a 

covalent bond being cut at the QM/MM boundary.1,30 This is generally the case for enzymes in 

which one or more active-site residues are involved in the reaction. The problems arising from 

such cuts have received much attention from several groups over the years, and several 

remedies have been suggested. There is still not a universal and accurate method to treat these 

issues, and hence such cuts need to be handled with care. Here we outline the main approaches 

to deal with the problem and list a few rules of thumb.  
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There are three main strategies that have been considered. The link atom schemes satisfy the 

valence at the cut by adding a hydrogen atom at the frontier QM atom. Other techniques use a 

specially parametrized boundary atom or a pseudopotential for this purpose. Finally, the 

valence can also be satisfied by introducing frozen orbitals that replace the cut bond.  

In this thesis, we use the link atom approach in combination with a charge shift scheme, which 

transfers the charge on the frontier MM atom in the cut bond to its closest MM neighbor. 

Additionally, point charges are added to maintain the dipole moment of the MM group next to 

the QM/MM boundary (in order to minimize electrostatic perturbations). This scheme is not 

perfect, but has performed well in many previous QM/MM applications.   

Admittedly, there will be inevitable errors when using the link atom approach with the charge 

shift scheme. To keep them as small as possible, one should try to follow a set of rules:  

- The cut bond should be as distant as possible from the active part of the QM region. 

- Atoms involved in a chemical reaction should not be close to the frontier bond being 

cut. They should be at least three bonds away.   

- It is advisable to cut less polar bonds, for example a simple “C-C” bond.  

- One should avoid cutting through a MM charge group since this can create a local 

artificial charge in the vicinity of the QM region. 

1.5.4 Boundary Conditions and Long-range Interactions 

Systems used in QM/MM calculations are finite in size. Compared to what is found in nature, 

this is an approximation. Traditionally, there are two ways to compensate: periodic boundary 

conditions31 and solvent boundary potentials.32 

Periodic boundary conditions are the method of choice for MM computations.8 In this 

approach, the simulation box is repeated in all three directions periodically for an infinite 

number of times. A molecule leaving the system on one side will therefore appear again on the 

opposite side. The presence of the repeated images allows the inclusion of long-range 

electrostatic effects. The approach is only valid if the simulation box itself is large enough to 

represent its own environment accurately enough. It has been implemented at the QM/MM 

level by Laino et al.33 I have done some initial (incomplete) work on a ChemShell 

implementation, which is not presented in this thesis. This work is continued by Tatiana 

Vasilevskaya.  



9 

 

Solvent boundary potentials (BP) make use of a polarizable dielectric continuum (PDC) outside 

of the atomistically defined QM/MM system. The applied PDC approach is similar to the 

continuum solvation models used in pure QM computations. QM/MM/BP treatments also 

capture long-range electrostatic effects. They may well be the method of choice for solvated 

enzymes as they work with a relatively small number of atoms (compared to periodic boundary 

conditions). In this thesis, we employ the generalized solvent boundary potential (GSBP) 

originally developed in the group of Benoit Roux34,35 and the solvated macromolecule 

boundary potential (SMBP) developed in our group.36,37 The GSBP is designed for highly 

efficient MD simulations; at the QM/MM level, it has only been coupled with semiempirical 

QM methods. SMBP is less efficient but can be used together with any QM method. It has been 

designed for geometry optimization. These two methods will be covered in detail in this thesis 

when we discuss their combination with the Drude oscillator polarizable force field (section 

2.1).  
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2. Improving and Developing QM/MM Methods 

The main purpose of this thesis was to further develop the QM/MM methodology to increase 

its accuracy and efficiency. The key improvement is the implementation of a polarizable 

embedding using the Drude oscillator force field, both in a standard QM/MM framework and 

in a three-layer scheme employing boundary potentials (section 2.1). Two other development 

projects cover tools used in QM/MM computations, namely the implementation of intrinsic 

reaction coordinates (IRC) for large QM/MM systems (section 2.2) and of a dual Hamiltonian 

approach to compute QM/MM free energies with a high-level QM method while sampling with 

a lower-level method (section 2.3).  

2.1 Polarizable Embedding 

Already at an early stage of QM/MM development in the 1990s, polarizable embedding was 

proposed as a more accurate strategy than standard electrostatic embedding.25,29 Applications 

of this approach have been impeded for a long time by the lack of fully parametrized polarizable 

force fields,38,39 which have become available only recently for proteins.40,41  

In the following chapters, we will first describe the different kinds of polarizable force field. 

We will then focus on the Drude Oscillator (DO) model which was used in this thesis.42 We 

continue with technical aspects addressing in some detail the combination of the QM/MM-DO 

methods with a solvent boundary potential to improve the computational efficiency while 

including long-range electrostatic effects.3 Finally, we present pilot applications of the 

QM/MM-DO model to enzymatic reactions.2 

2.1.1 Polarizable Force Fields 

There are two main techniques to simulate electronic polarization at the MM level. One makes 

use of an explicit induced dipole description,41,43-46 while the other applies a charge 

equilibration procedure.47-49 In this subsection we will focus on the explicit induced dipole 

description, which underlies the MM method used in this thesis: the Drude Oscillator force 

field.42,50-52  
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In this approach, an induced dipole moment ( ) is added at all (or some) MM atoms i with 

position . It is obtained from the electric field (E) at and the polarizability ( which is a 

parameter of the force field: 

 

The electric field at can be split into a static part coming from permanent atomic point 

charges ( ) and a dynamic part arising from the other induced dipoles of the system. Denoting 

by the interaction tensor elements between the induced dipoles  and , the electric field 

can be written as:39 

 

In additive (non-polarizable) force fields, the non-bonded interactions between atoms involved 

in bonded interactions (bond, angle, and dihedral terms) are normally omitted. By contrast, it 

is necessary to include them in polarizable force fields in order to obtain the proper polarization 

state of the molecule. Given the fact that such atoms are close in space, a screening function 

needs to be introduced to avoid overpolarization. Such a function was initially proposed by 

Thole.53,54 It contains parameters that need to be optimized when parameterizing the force field. 

Generally, the screening function can be included as a prefactor ( ) that depends on the 

positions of atoms i and j. Therefore, the induced dipole moments can be obtained by solving 

a linear system of equations.2,39 

 

From left to right, this equation contains a diagonal matrix with the inverse of the atomic 

polarizabilities, the screening function tensor ( ), the dipole-dipole interaction 

tensor (elements ), the vector with the Cartesian components of the induced dipoles, and the 

vector with the Cartesian components of the static electric field at each polarizable atom. The 

dimension of all these objects is 3N, with N being the number of polarizable atoms. This system 

of equations can be easily solved by standard linear algebra methods when N is reasonably 

small. However, force fields are designed to tackle very large systems, for which this 

straightforward approach becomes very costly (scaling with N3), and one then normally resorts 

to iterative solvers to obtain the proper polarization of each center.  
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2.1.2 Drude Oscillator Force Field 

A straightforward way to represent an induced dipole at an MM atom is to mimic it by two 

point charges of same magnitude but opposite sign (Figure 2). This strategy leads to the shell,55-

57 charge-on-spring,58-62 and Drude oscillator (DO)40,42,50-52,63,64 models. In all these models the 

two point charges (q) are linked by a spring. The first charge is fixed at the nucleus of the 

polarizable atom while the second one is mobile. Polarization arises from the competition 

between the forces acting on the mobile charge, which are due to the spring and the electrostatic 

interactions with the environment. The optimum position ( ) of the mobile charge (Drude 

particle) is obtained when reaching equilibrium:  

 

The potential energy  of the harmonic spring is evaluated using a force constant ( ) 

that is in the DO case defined in terms of the polarizability of the corresponding atom: 

 

In the chosen DO approach,  is always fixed to 1000 kcal mol-1Å-2 to maintain a small d 

value (to keep the point-dipole approximation valid) and to avoid introducing additional 

parameters. To take DOs into account, the electrostatic part of the MM potential function has 

to be extended by the following terms.  

 

Here, indices i and j run over MM atoms, i’ and j’ denote DO terms (involving Drude particles), 

and r is the corresponding distance. The 1-2 and 1-3 interactions between Drude particles are 

screened by applying the Thole function, which is represented by the following expression: 
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where ,  being the inter-Drude particle distance and  is the Thole parameter: 

 

Here,  and are the Thole parameters coming from the force field parameterization64 of 

atoms i and j. The interactions involving Drude particles are illustrated in Figure 2 (without 

showing the standard interactions between the MM atoms).  

The chosen force field40 also includes an explicit representation of lone pairs to better describe 

the charge distribution around heteroatoms (grey balls in Figure 2). This provides a local 

reference frame to define an anisotropic polarizability for DOs on heteroatoms. The lone pairs 

are rigidly bonded to their hosting atom, and their positions are evaluated at every step with 

the use of internal coordinates. The forces acting on the lone pairs are distributed across the 

hosting atom and its neighbors in a way that conserves the total force and torque. Therefore, 

they are not included as additional degrees of freedom in MD simulations or geometry 

optimizations.  

 

Figure 2: A molecule represented by the Drude oscillator model. Atoms are represented as spheres containing 
the fixed positive charge of the DO model. The Drude particles are bonded to the corresponding atom by a 

spring. Thole-type screenings (arrows) are applied in the DO model only for 1-2 and 1-3 interactions (see atom 
numbering). Lone pairs on heteroatoms are represented by grey balls. 

 

2.1.3 Drude Oscillators in a QM/MM Framework 

The implementation of the DO model within a QM/MM framework was first discussed for 

GROMOS (COS model)65 and then for CHARMM with a preliminary version of the force field 

which did not include Thole-type interactions or lone pairs.66 In both cases, the Drude 

oscillators were included in the QM computation by modifying the one-electron terms in the 

Fock matrix, in complete analogy to the classical MM point charges. The Drude particles give 
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rise to extra one-electron terms, while the compensating charge at the nucleus of the polarizable 

atom is taken into account by adjusting the corresponding atomic charge. 

The electrostatic potential needed to obtain the polarization of the Drude centers is evaluated 

from the electric field (E) at the position of the Drude particle. It is split into three parts: QM, 

MM, and DO contributions. The force (F) on a Drude particle i’ by a given component of the 

electric field can be evaluated in the following manner: 

 

As the contributions ,  and to the electric field are interdependent, a self-

consistent field approach is needed as shown in Figure 3. In our implementation,3 we first 

evaluate  for a set of fixed DO positions, which are then updated in an iterative scheme 

through an MM inner cycle. In this cycle,  and  are computed for the given geometry, 

and the DO positions are updated using the associated forces. This inner cycle is iterated until 

the DO positions are converged in the field of the given QM wave function (as judged by their 

maximum and average displacement from one step to another). Thereafter the convergence of 

the QM energy is checked. If not converged, the process is iterated by recalculating and 

going again through the inner cycle, until full overall convergence is achieved for both the DO 

positions and the QM total energy. 
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Figure 3: Flowchart of the dual SCF approach for determining the DO positions and the MM polarization in a 

QM/MM framework. The outer SCF procedure converges the QM wave function, while the inner one converges 

the DO positions in the field of each other and of the MM atoms.  

We have adopted this basic method and have chosen not to refine the implementation in order 

to avoid modifying any QM code. This choice is motivated by the strategy to be compatible 

with any QM program that is interfaced to ChemShell.67 Also, for MD simulations, Drude 

oscillators can be included as extra degrees of freedom, and an extended Lagrangian scheme68 

or a predictor-corrector approach69,70 can be used to propagate them in time together with the 

atomic degrees of freedom. We have implemented the extended Lagrangian approach in a 

developmental version of ChemShell but do not cover this work here in detail. More 

information can be found in the associated paper.3 

2.1.4 Three-Layer QM/MM-DO/Boundary Potential Approach 

This section covers the paper: “Solvent boundary potentials for hybrid QM/MM 

computations using classical Drude oscillators: a fully polarizable model”, which is 

reprinted in the annex of this thesis. 

Including polarization in a self-consistent manner can be computationally very expensive. The 

computation time sharply increases with the number of Drude polarizable centers and hence 

with system size. In order to speed up the computations we have decided to investigate the use 

of solvent boundary potentials to decrease the number of explicit point charges included in the 

QM/MM-DO computation. This three-layer approach has the further advantage of including 
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long-range electrostatic effects by making use of a polarizable dielectric continuum to 

implicitly represent the solvent far away from the reactive center.37  

2.1.4.1 Solvent Boundary Potentials 

The purpose of a boundary potential is to simulate the electrostatic effects of a virtually infinite 

implicit outer region on a finite explicit inner region,32 for example a QM/MM system.35 In this 

thesis, we have followed the formalism used by Roux and coworkers who introduced two such 

approaches at the MM level, namely the standard solvent boundary potential32 and its 

generalized version (GSBP).34 They showed that, if only the degrees of freedom of the inner 

region are relevant to the computation of some property, this property can be calculated on the 

surface of its potential of mean force (PMF) obtained by integrating out the degrees of freedom 

of the outer region. For a system of N atoms, the first n of them being in the inner region and 

the n+1 to N remaining ones being in the outer region with coordinates : 

 

By picking the appropriate normalization constant (C), it can be shown that the PMF is equal 

to the reversible work ( ) necessary to assemble the inner region inside the outer region. 

This work can be split into contributions from the potential energy (U) of the inner region and 

the free energies arising from conformational restrictions ( ), nonpolar interactions 

( ), and electrostatic interactions ( ).  

 

If the outer region is chosen to be representative of the average outer conformation, one can 

further approximate the PMF by assuming that  and  will both remain constant 

throughout the process studied in the inner region, so that they can be ignored when computing 

changes of inner-region properties, for example relative energies along a reaction path. 

The generalized solvent boundary potential (GSBP) is designed for MD simulations.34 It 

evaluates the inner-outer electrostatic interactions in two different fashions. The non-solvent 

(e.g. enzyme) part of the outer region is treated atomistically, with explicit calculation of 

standard Coulomb interactions. The solvent part of the outer region is described by a 

polarizable dielectric continuum (PDC), and the interactions with the inner region are evaluated 
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by solving the linearized Poisson-Boltzmann equation for a given dielectric constant of the 

solvent. The central idea of GSBP is to precompute this interaction with the use of a Green’s 

function which can be projected onto a set of basis functions.34 This precomputation is 

expensive but needs to be done at the beginning of the computation only once and for all, which 

makes this technique particularly attractive for long MD simulations requiring a large number 

of steps. 

The current QM/MM implementation of GSBP is restricted to semiempirical QM methods.35 

It employs Mulliken charges to represent the QM part of the system in the GSBP computation. 

As the BP contribution is evaluated at every step of the iterative QM SCF procedure, the QM 

code has to be modified.  

Geometry optimizations generally require much less steps than long MD simulations, and 

hence the GSBP strategy with its significant initial overhead is no longer advantageous. This 

motivated the development of the solvated macromolecule boundary potential (SMBP), in 

which the BP interactions are not precomputed but calculated on-the-fly.36,37 This not only 

enhances the computational efficiency of geometry optimizations, but also avoids any 

modifications of the QM codes used for QM/MM. This makes it fully compatible with the 

ChemShell philosophy. Details of this method can be found in the attached paper3 or in the 

initial publication.36  

2.1.4.2 QM/MM-DO/GSBP 

When performing polarizable-embedding QM/MM simulations with GSBP, we use an 

extended Lagrangian approach to propagate the Drude particle in time.50,68 In this scheme, the 

Drude particles provide additional degrees of freedom to the system and can thus be considered 

in the same way as any other MM point charges. This makes the QM/MM-DO/GSBP 

combination easy for the inner region. For the outer region we make the approximation of a 

frozen polarization state when precomputing the GSBP terms. It is therefore necessary to run 

a single-point calculation to obtain the positions of the Drude particles and lone pairs from a 

standard QM/MM-DO computation. Once this is done, the precomputation of the Green’s 

matrix can be carried out in a similar manner as for standard QM/MM/GSBP computations.35  
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Figure 4: Computation time per MD step vs. number of atoms in the system. The black line refers to a standard 
QM/MM computation, and the green, red, and blue lines to QM/MM/GSBP computations with different basis 

sets. 

We assessed the efficiency of the QM/MM-DO/GSBP method for a test system consisting of a 

zwitterionic glycine solvated in a ball of water molecules. We progressively increased the size 

of the water ball and ran MD simulations to determine the average computation time per step. 

The inner region of the system encompassed 903 water molecules having their hydrogen atom 

within 18 Å from the center. Water molecules between 14 and 18 Å were frozen in order to 

avoid diffusion of water out of the inner region. Figure 4 compares the computation times from 

standard QM/MM-DO calculations (black line) to those from QM/MM-DO/GSBP calculations 

employing basis sets of different size for the projection of the GSBP Green’s matrix. With the 

default value of 400 basis functions, the three-layer QM/MM-DO/GSBP scheme becomes 

advantageous at a system size of 14500 atoms. This threshold is similar to the one obtained in 

analogous QM/MM/GSBP simulations with an additive force field. For larger systems that are 

commonly used in QM/MM studies, three-layer hybrid approaches with GSBP thus afford 

appreciable gains in efficiency in MD simulations, without loss of accuracy.  

2.1.4.3 QM/MM-DO/SMBP 

When combining the QM, MM-DO, and SMBP models, there are three self-consistent 

procedures that need to be solved simultaneously. According to the ChemShell philosophy, this 

should be done in a transferable manner, without modifications to the underlying QM codes. 

In our implementation, the QM-SCF treatment is thus incorporated as is into the algorithm. On 

the other hand, the DO-SCF and SMBP-SCF procedures are performed concomitantly to 
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reduce the computational effort. We have designed an algorithm that minimizes the number of 

QM-SCF calculations, which are normally the most expensive part of the evaluation of the 

potential. As shown in Figure 5, data for the DO and SMBP treatments are extracted from the 

same QM calculation, and parts of SMBP potential are evaluated on-the-fly for the next step. 

The QM energy is adopted as overall convergence criterion, because it is the most relevant 

quantity in typical applications (i.e., studying chemical reactions). Details concerning the 

individual steps of the flowchart in Figure 5 can be found in the associated paper.3  

 

Figure 5: SCF procedure used to converge all three component of the QM/MM/SMBP approach. See text for 
details. 

To assess the numerical validity of our implementation we used the same test system (glycine 

in a ball of water) as in the GSBP case. We checked the mean average deviation and the 

maximum deviation of the computed gradient when switching from QM/MM-DO to QM/MM-

DO/SMBP. We confirmed that, if the inner-outer region boundary was far enough from the QM 

region, the differences in the computed gradient for the relevant part of the system were far 

below the convergence criteria generally used for geometry optimization. On the other hand, 

this numerical precision was lost when we tried to further simplify the algorithm shown in 
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Figure 5 (e.g., by neglecting some time-consuming parts of the coupled SCF treatments). 

Hence, the efficiency cannot be further improved without compromising the precision of the 

method.   

 

Table 1: Computation time per geometry optimization step for QM/MM and QM/MM/SMBP calculations using 
different QM methods and different basis sets. Timings were obtained on 2.93 GHz Intel Xeon X5670 machines 

with 12 GB of memory. 

As already noted, the SMBP approach can be used with any QM method, and the speedups will 

thus depend on the chosen QM method. Table 1 compiles average computation times per 

optimization step and the percentages saved in QM/MM-DO/SMBP calculations using 

different semiempirical and DFT methods with different basis sets (compared to standard 

QM/MM-DO). The test system was the same as before (glycine in water). The standard 

QM/MM-DO setup included 10 QM atoms (glycine) and 21260 MM point charges, which was 

reduced to 4515 point charges in the QM/MM-DO/SMBP case (without loss in accuracy). 

Evidently, there is a significant improvement for all tested QM methods, and hence our 

objective of speeding up such computations is achieved.    

2.1.5 QM/MM-DO Computations for Enzymatic Reactions 

This section covers the paper “Toward QM/MM Simulation of Enzymatic Reactions with the 

Drude Oscillator Polarizable Force Field”, which is reprinted in the annex to this thesis. 

Once DO parameter for proteins became available,40 we could investigate enzymatic reactions 

with the polarizable QM/MM-DO method. Since this was the first time that such a study could 

be performed with a well-parameterized polarizable MM-DO force field, we did not use any 

boundary potential in order to be able to identify and analyze each energy contribution at the 

QM/MM level. 
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2.1.5.1 Technical Aspects of Computations on Enzymatic Reactions  

Several problems were encountered when treating enzymes within the QM/MM-DO 

framework. First, in contrast to our previously used glycine-in-water test system, Thole-type 

interactions had to be taken into account, which caused oscillations in the QM/MM-DO SCF 

iterations and prevented convergence for larger systems. This problem was overcome by a 

successive over-relaxation approach.29 In this technique, the positions of the Drude particles 

from the previous iteration are kept in memory, and their new positions are linearly interpolated 

between the previous and the newly predicted ones (thus introducing some damping in the DO 

iterations). In some cases this was not sufficient, and so we had to design a more complicated 

strategy, which utilizes a problem-adapted partitioning of the system and an analytical solution 

for the polarization state of the subsystems via Cholesky factorization of the underlying linear 

system of equations. This technique is described in detail and assessed in the corresponding 

paper.2  

A second crucial aspect that had never been covered before was the treatment of cuts through 

covalent bonds at the QM/MM boundary when a polarizable force field is employed.1,30 We 

tackled this problem by retaining the charge shift scheme for the standard MM point charges 

and trying different approaches for the Drude oscillators. The most accurate model turned out 

to be the complete deletion of the Drude oscillators at the bond being cut. Any of the tested 

more elaborate alternatives (e.g., transfer of polarizability, charge, or Thole parameter to 

adjacent polarizable atoms) significantly decreased the accuracy of the QM/MM results for a 

standard test system comprised of n-butanol and a sodium cation in 100 different positions 

(with cuts being applied through C-C bonds in n-butanol). For our preferred model, the 

deviations of the QM/MM-DO results for the deprotonation enthalpy and proton affinity of n-

butanol from the full QM reference results were similar to those obtained for a standard 

QM/MM treatment with an additive force field. The simplest being the best, we adopted the 

deletion of the Drude oscillators in bonds being cut at the QM/MM-DO boundary as our 

standard procedure.  
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Figure 6: Test systems used for validating QM/MM-DO compatibility. From left to right: the cyclic water 
trimer, the cis-NMA dimer, and the bis(benzene)sodium sandwich complex. 

Before running QM/MM-DO simulations of enzymatic reactions we chose three complexes to 

test QM/MM-DO compatibility (Figure 6): the most stable water trimer, the cis-N-methylamide 

(cis-NMA) dimer, and the bis(benzene)sodium sandwich complex. For each of these 

complexes, we determined the optimum geometries and binding energies at the QM/MM and 

QM/MM-DO levels and compared the results to those from full QM reference calculations. We 

checked a variety of commonly used QM methods covering semiempirical methods, pure and 

hybrid DFT functionals as well as RI-MP2 methods (basis sets: SVP, TZVP, and TZVPP basis 

set). It turned out that the QM/MM-DO results are fairly sensitive to the choice of QM method 

(and basis set), significantly more so than the QM/MM results with an additive force field. The 

RI-MP2 method with moderate basis sets had been employed in the parameterization of the 

currently adopted MM-DO force field, and it may thus not be surprising that this RI-MP2 

approach offered the best compromise in terms of QM/MM-DO compatibility.  
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2.1.5.2 Potential Energy Surfaces of Enzymatic Reactions Using QM/MM-DO 

 

Figure 7: Potential energy profile for the Claisen rearrangement of chorismate to prephenate catalyzed by 
Chorismate Mutase. The dotted line shows the standard QM/MM energy profile obtained with the CHARMM 
additive force field. For each structure along the path, single-point QM/MM-DO calculations were performed 
with full polarization (black line) and with polarization scaled down by a factor 2 (blue line) and switched off 

totally (orange line). 

We first investigated Chorismate Mutase (CM).71 This enzyme catalyzes the Claisen 

rearrangement of chorismate to prephenate (Figure 7). It is often chosen to test QM/MM 

methods as there is no covalent bond crossing the QM/MM boundary so that problems with 

cuts through this bond are avoided.72-74 We used five independent snapshots from a previous 

study5 on CM free-energy calculations (see section 3.3). For each snapshot we performed 

single-point calculations at the previously optimized structures along the reaction path obtained 

at the standard QM/MM level using RI-MP2/SVP as the QM method and the CHARMM27 

additive force field9 for the MM part. Using a set of scripts to set up and to carry out the 

corresponding QM/MM-DO single-point calculations in an automatic fashion, we recomputed 

the energy profile with MM polarization included. To assess the importance of MM 

polarization in this enzymatic reaction we switched it off in a second set of calculations, and 

we also ran a third set including only half of the MM polarization on each DO center. The 

results for each snapshot are given in Table 2, and the potential energy profiles for one selected 

snapshot are shown in Figure 7 for the different types of computation. We find that switching 

off the MM-DO polarization influences the results notably: the computed barriers are lowered 

by 5 to 15% which is a rather small change that should however not be neglected when aiming 

for accurate results.  
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Table 2: Changes in the potential energy barrier (ΔΔE‡) and the reaction energy (ΔΔE) for CM when switching 
on MM polarization. Values in parenthesis are obtained by switching on only half of the MM polarization.  

For the sake of completeness, we investigated another enzyme, p-hydroxybenzoate 

hydroxylase (PHBH), in an analogous manner using again the QM/MM setup from a previous 

study in our group.37 For the reaction catalyzed by PHBH, the influence of MM polarization is 

slightly larger, with changes in the computed barriers of up to 20% (Table 3). Based on these 

initial studies we conclude that MM polarization may affect the computed QM/MM barriers 

notably, on the order of 5-20%. A more complete assessment would of course require geometry 

optimizations at the QM/MM-DO level and computation of free energy profiles using a 

sampling technique.  

 

Table 3: Changes in the potential energy barrier (ΔΔE‡) and the reaction energy (ΔΔE) for PHBH when 
switching on MM polarization. Values in parenthesis are obtained by switching on only half of the MM 

polarization. 

 

2.2 Internal Reaction Coordinate for Large QM/MM Systems 

This section summarizes the paper: “A microiterative intrinsic reaction coordinate method 
for large QM/MM systems”, which is reprinted in the annex of this thesis. 

Intrinsic reaction coordinate (IRC) methods are an invaluable tool for the QM investigation of 

chemical reactions. They are used to verify the character of a transition state and to ensure that 

it directly connects reactants and the desired products. In QM-only studies of reactions of small 

molecules, it is a standard practice to run such IRC calculations. At the QM/MM level, an 

appropriately adapted IRC method has been missing in the toolbox.4 



25 

 

The IRC is defined as the steepest-descent pathway in mass-weighted coordinates starting from 

the transition state and ending in a local minimum on the potential energy surface.75 Several 

algorithms exist to follow this path in discrete steps. The straightforward Euler method only 

requires gradients but lacks accuracy. The local quadratic approximation (LQA) gives more 

precise results by employing information from the Hessian. The predictor-corrector approach 

is an advanced method that corrects the predicted steps using the stored information about 

previous steps on the path being followed.76,77  

QM/MM simulations normally cope with very large systems, and a huge number of degrees of 

freedom would thus need to be included in a standard IRC computation. This would quickly 

become impractical, especially if one wants to include Hessian information in the process. We 

have implemented a microiterative procedure, in which only a small subset of relevant atoms 

(normally QM atoms) is included into the IRC computation itself, whereas the rest of the 

system is relaxed by geometry optimization after each IRC step. This follows the philosophy 

of the microiterative transition state search.78 In our implementation, all the IRC algorithms 

mentioned above are available, and we use a Hessian update method to avoid recomputing it 

at each step of the IRC.79  

We validated our implementation for several test systems including the enzymatic reactions 

catalyzed by CM and PHBH (see above). We find that our microiterative IRC technique is 

capable of handling large QM/MM systems efficiently and with good accuracy. We recommend 

the use of the LQA method with a relatively small step size to ensure that the outer part of the 

system can properly relax at every step. It is of course important to carefully define the inner 

region included in the standard IRC treatment, which should encompass every atom involved 

in the reaction. 

2.3 Dual Hamiltonian Free Energy Perturbation  

This section summarizes the paper “Quantum mechanics/molecular mechanics dual 
Hamiltonian free energy perturbation”, which is reprinted in the annex of this thesis. 

Free energy evaluation techniques are standard tools in MM and QM/MM computations. For 

chemical reactions they allow for computing their rates and the thermodynamics properties of 

the species involved. In the canonical ensemble with partition function Z, the Helmholtz free 

energy can be expressed as:80 
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where  is the Boltzmann constant and T is the temperature. For any system of significant 

size, Z has to be determined numerically, by using sampling techniques such as molecular 

dynamics8 or Monte Carlo.81 The main methods to extract free energies out of such simulations 

are umbrella sampling,82 thermodynamic integration,83 and free energy perturbation (FEP).80 

Each of them has been adapted to QM/MM simulations (for more detailed information see the 

introduction of the attached paper5). 

Free energy computations necessitate extensive sampling, e.g. by means of long MD 

simulations that require a large number of successive QM/MM computations. This often rules 

out the direct use of accurate first-principles QM methods, and one then often resorts to 

semiempirical QM methods for this purpose. There are some methods available that use 

thermodynamic cycles to derive higher-level free energies from lower-level (semiempirical or 

force field) simulations. We propose an FEP-based method of this kind. In the FEP treatment 

of a chemical reaction, one starts from a precomputed potential energy profile with optimized 

geometries along the reaction path, which are then split into discrete windows. For each of 

these windows, one then computes, through MD simulations, the energy necessary to bring the 

system to the next window by perturbing the reaction coordinate. 

In our scheme, a standard QM/MM MD simulation is run using a semiempirical QM method, 

and the QM/MM energy is evaluated with a higher-level QM method every n steps by 

perturbing the reaction coordinate to the next window. We found that n=15 is a good 

compromise between accuracy and efficiency. The use of two distinct QM methods leads to 

the name “dual Hamiltonian free energy perturbation (DH-FEP)”. Our scheme differs from 

previously proposed approaches by not separating the QM and MM degrees of freedom. 

Instead we sample along all QM degrees of freedom with the exception of the reaction 

coordinate, whereas previously proposed methods sample only along MM degrees of 

freedom.84  

We first validated the DH-FEP method by using an analytical two-dimensional energy surface. 

Good results compared to standard thermodynamic integration were obtained when the overlap 

of the two surfaces in the region of sampling was sufficient. Hence, the geometries given by 

both QM methods should be similar along the reaction path, especially for the reaction 

coordinate. We applied our method to the Claisen rearrangement catalyzed by chorismate 

mutase (see subsection 2.1.5.2) using OM3 and SCC-DFTB as low-level methods and RI-
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MP2/SVP as high-level method. The reaction coordinate was initially defined as the difference 

of the distances of the forming and breaking bonds. With this choice, we had to combine 

calculations with both semiempirical methods (for different parts of the path) to produce a 

surface overlapping well enough with the MP2 surface. The key issue turned out to be the 

match of the coordinates of the atoms directly involved in the reaction (as obtained from the 

lower-level and higher-level methods). Constraining the two key distances of the forming and 

breaking bonds in the DH-FEP MD simulations gave fully satisfactory results regardless 

whether OM3 or SCC-DFTB was chosen as lower-level method (without the need of 

constructing a hybrid surface). We therefore recommend to apply the DH-FEP method first by 

using a single appropriate reaction coordinate, and to constrain further relevant reactive degrees 

of freedom in problematic cases. These additional degrees of freedom can be identified, for 

instance, by using the microiterative IRC tool described in the previous chapter.  
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3. Examples of QM/MM Simulations 

In this section, two applications of QM/MM methods are reported. The first one is a “standard” 

QM/MM study of reactions catalyzed by the enzyme phenylacetone monooxygenase (PAMO), 

in collaboration with Prof. Manfred Reetz (previously at the Max Planck Institute, now at 

Marburg University). It is a continuation of previous QM/MM work in our group by Iakov 

Polyak on cyclohexanone monooxygenase (CHMO).85 The current status of this project is 

described in some detail here (section 3.1), because it has not yet been published. The PAMO 

study will be completed by another group member, Yiying Zheng. 

The second project concerns the prebiotic synthesis of purines nucleobases. In this case, 

QM/MM was employed in a less conventional way to model the energy dissipation process 

after relaxation of an electronically excited state producing a “hot” ground state. This work was 

performed in a collaboration led by Mario Barbatti.6 It is summarized in section 3.2.  

3.1 Phenylacetone Monooxygenase 

3.1.1 Introduction 

Phenylacetone monooxygenase (PAMO) is a Baeyer-Villiger monooxygenase (BVMO)86 that 

exhibits good thermal stability and performs well in a variety of solvents.87,88 It catalyzes the 

oxidation of phenylacetone (PHAC) to benzyl acetate using NADPH as an electron donor and 

molecular oxygen as oxidative reactant. NADPH first reduces the enzyme-bound FAD cofactor 

to FADH- which reacts with molecular oxygen yielding a C4a-peroxyflavin intermediate. This 

species reacts with PHAC and generates the product, presumably via a Criegee intermediate 

(Figure 8).89 As in the previous QM/MM study on CHMO,85 we focus on this part of the 

catalytic cycle. Here we only treat the first step leading to the Criegee intermediate, and not the 

second migration step (Figure 8). A direct reaction pathway to the product bypassing the 

Criegee intermediate could not be found.   

 

Figure 8: Mechanism of the formation of the Criegee intermediate and the product in WT PAMO. 
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The crystal structure of PAMO was taken from the work of Orru et al. (pdb: 2YLT).90 It 

includes the protein, the two cofactors (NADPH and FADH), and an inhibitor with a structure 

similar to PHAC. The C4a-peroxyflavin starting structure was generated by manually adding 

an O2 moiety to FADH in the same manner as in the CHMO study.85 The inhibitor in the crystal 

structure was replaced by PHAC, again as before.85 Force field parameters for the substrate 

were adapted from related compounds. The QM/MM setup followed standard procedures.85  

The binding pocket in PAMO is very similar to the one of the previously studied CHMO.85 By 

analogy, we first considered the same QM region. It included PHAC, the peroxyflavin part of 

FADOO-, the region of NAPD+ close to the reacting species, and the residue ARG337. Figure 

9 shows the QM region from the generated starting structure. 

 

Figure 9: Starting structure showing the atoms in the initially chosen QM region. 

  

3.1.2 Orientation of the NADP+ Nicotinamide Moiety  

A closer look at the active site (Figure 9) reveals one key difference from the previous setup,85 

namely the orientation of the nicotinamide moiety in the NADP+ cofactor. In the case of 

CHMO, one of the hydrogen atoms of the carboxamide was found to form a hydrogen bond 

with the proximal oxygen atom of the peroxy group of FADHOO-, in line with experimental 

evidence for the stabilization of peroxyflavin by NADP+. Here, the amide is oriented into the 

opposite direction having the oxygen atom pointing towards ARG337. It engages in a moderate 

hydrogen bond with the closest hydrogen atom of this residue, at a donor-acceptor distance of 

2.97 Å. This conformation is not specific to our QM/MM setup since it is also found in the 

crystal structure (with FADH and no peroxy group).90 In the latter, it could be an artifact 
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induced by the crystallization and thus not representative of the real experimental (or natural) 

conditions. Also, at room temperature, there might be a facile rotation of the carboxamide 

group giving access to both possible orientations.  

These issues were studied by performing a MD simulation at the MM level. As we cannot run 

simulations of more than a few nanoseconds, we cannot expect to observe enough rotations 

during this time to obtain quantitative results. Therefore we applied an enhanced sampling 

technique. We ran a metadynamics91 simulation that allowed us to determine the free energy 

profile along one particular degree of freedom, namely the dihedral angle between the nitrogen 

and the carbon of the amide, the carbon of the ring to which it is bonded, and an adjacent carbon 

atom. During this simulation all other degrees of freedom were freely sampled. In the 

metadynamics procedure, the selected dihedral angle explored all possible conformations, and 

the free energy profile was built taking into account the artificial forces that had to be 

introduced. The simulation was run in the NPT ensemble at 300 K and 1 atm for 12 ns (shorter 

runs of 3 and 6 ns were not long enough to offer adequate sampling).  

 

Figure 10: Free energy of rotation of the carboxamide moiety of the nicotinamide part of the NADP+ cofactor. 

In the computed free energy profile (Figure 10), the minimum at around 50° corresponds to the 

arrangement observed in the crystal structure. The second minimum at -50° has the same 

general orientation but with the oxygen atom pointing down this time. The barrier between the 

two minima is quite low so that switching from one to the other is possible. The structures with 

dihedral angles around -160° benefit from hydrogen bonding of the carboxamide with the 

peroxy group of FADHOO- (analogous to the CHMO case, see above), but they are almost 4 
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kcal/mol above the overall minimum. While they are accessible at room temperature, the 

minimum conformation should clearly be more populated.  

3.1.3 Preliminary QM/MM Computations 

Several QM/MM potential energy scans were run from the initial structure to the Criegee 

intermediate. We chose an analogous QM region as in the previous CHMO study (with PHAC 

as substrate, around 100 QM atoms), and we adopted the same definitions of the reaction 

coordinate and the active region as before.85 For QM regions of this size, DFT is the QM 

method of choice. We tested several exchange-correlation functionals and two different basis 

sets (BP86,92,93 BLYP,94 B3LYP,95 PBE,96 PBE097; SVP,98 TZVP99). It turned out that the 

B3LYP/TZVP level was needed to provide an acceptable accuracy (as previously in the case 

of CHMO85). The computed barrier was around 7-8 kcal/mol, with the Criegee intermediate 

occupying a shallow minimum about 6 kcal/mol above the reactant (again quite similar to what 

had been observed for CHMO85). Note that every DFT method used showed the presence of 

the Criegee intermediate, and no reaction coordinate leading directly to the product could be 

found.  

However, these preliminary scans also indicated that the choice of the QM region may be 

questionable. The energy profiles were not entirely smooth and, more importantly, drastic 

changes in MM energy were sometimes observed along the reaction coordinate. This suggests 

that some more MM residues should be included in the QM region to treat all the relevant parts 

of the system at the QM level on an equal footing.  

3.1.4 A Water Molecule Stabilizing the Criegee Intermediate 

Visual analysis revealed a water molecule in the direct vicinity of the phenylacetone substrate. 

The ketone part of the substrate is stabilized by three hydrogen bonds: from NADP+, from 

ARG337, and from this water molecule, as depicted in Figure 11.  
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Figure 11: H-bonds to the ketone of PHAC in PAMO, involving ARG337, NADP+ and a water molecule. 

Visual inspection also indicates which amino acids are involved in the stabilization of this extra 

water molecule (Figure 12). It accepts a hydrogen bond from TYR502 and donates two 

hydrogen bonds to PHAC and to the peptide bond between ALA442 and LEU443. It is 

important to note that the latter are part of a loop (440-443) which has been in the focus of 

mutation studies to extend the scope of the reaction, either by deleting some or all amino acids 

(441-443) or by mutating PRO440 to make the chain more flexible and allow some kinds of 

rearrangement.87  

 

Figure 12: Environment of the water molecule stabilizing the substrate. It is H-bonded to ALA442 and 

TYR502. 

The water molecule (Figure 12) is not present in the crystal structure and has also been missing 

in the CHMO study.85  In the QM/MM setup for PAMO, it appeared very soon during 

equilibration of the system (after ca. 10-20 ps) and stayed there for the rest of the initial classical 

MD simulation (ca. 10 ns). However, using this computational approach, it is impossible to 

guarantee that this water molecule will always be present and remain near the active site in 
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such a big system. To check the likeliness for this to happen, we performed MD simulations 

with locally enhanced sampling100 at the MM level. This ensures a more extensive sampling of 

the relevant part of the system, the water molecule in our case, and more importantly increases 

the rate of possible transitions to other conformations. The water molecule again stayed close 

to its initial position during the whole simulation time of 10 ns. Therefore we assume that it is 

present when phenylacetone is in the active site. Its absence in the crystal structure might be 

due to the fact that it does not contain phenylacetone in the active site, but a different inhibitor.  

The scan of the first step of the reaction was rerun at the B3LYP/TZVP level including this 

water in the QM region. This modification did not change the reaction path qualitatively but 

lowered the barrier and gave a smoother curve (Figure 13, left). Comparing again different QM 

methods still suggests that the use of B3LYP/TZVP is required (Figure 13, right). 

Figure 

13: Potential energy scan for the formation of the Criegee intermediate. On the left: comparison of initial QM 

region and the QM region including the water molecule at B3LYP/TZVP level. On the right: comparison of 

different QM methods for the new QM region. 

To check whether the Criegee intermediate might react with the extra QM water molecule, we 

ran potential energy scans at the B3LYP/TZVP level with this QM region and at the OM3101,102 

level with an even larger QM region including the residues stabilizing the QM water molecule. 

In both cases, the energy kept going up as the proton of the QM water molecule approached 

the oxygen atom of the Criegee intermediate. 
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3.1.5 Another Key Residue: ASP66 

Visual inspection of the optimized structures along the reaction path and an assessment of the 

electrostatic effects of the active-site environment at the OM3/MM level indicated that the 

ASP66 residue may affect the formation of the Criegee intermediate by interacting with 

ARG337. The importance of this residue had already been highlighted in the paper reporting 

the PAMO crystal structure,90 but without giving a clear interpretation of its role.  

Figure 14 shows the effects of switching off the MM charges of residues (left) or water 

molecules (right) in the active part of the MM region on the energy of the Criegee intermediate 

relative to the reactant complex. The semiempirical OM3 Hamiltonian101,102 was used to 

optimize the geometries of both species followed by single-point B3LYP/TZVP energy 

calculations. Figure 14 shows the differences between the relative energies of the Criegee 

intermediate with the MM charges being switched off and being retained (standard values) as 

obtained at the QM and QM/MM (tot) level; the QM region consisted of the oxidized flavin, 

phenylacetone, and the interacting part of NADP+. This analysis identifies the MM residues 

that have a significant electrostatic influence on the reaction and should thus be included in the 

QM region. In the present case, ASP66 and one further water molecule (2099) were included 

on this basis in the following QM/MM calculations. In this QM region, the ASP66 residue is 

present in its deprotonated form and thus possesses a formal negative charge so that the QM 

region is neutral overall.  
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Figure 14: Residue analysis for the formation of the Criegee intermediate in PAMO. Electrostatic effects of 
PAMO residues (left) and water molecules (right) in kcal/mol. See text for details. 
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3.1.6 Formation of the Criegee Intermediate 

After deciding to include ASP66 in the QM region, we examined three QM/MM partitions 

(Figure 15): “small”, adding just ASP66; “medium”, adding ASP66 and ILE67; “large”, adding 

ASP66, ILE67, and CYS65. We also considered ILE67 and CYS65 as they are hydrogen 

bonded to the flavin moiety. Scans were run with B3LYP/TZVP as QM method, without and 

with D2 dispersion corrections.103  

 

Figure 15: QM(B3LYP/TZVP)/MM energy profiles without (left) and with (right) D2 dispersion corrections for 

formation of the Criegee intermediate using different QM regions including Asp66 (see text). 

The resulting profiles are fairly similar for the three chosen QM regions. They are smoother 

when D2 dispersion corrections are not applied. Here, as in previous scans, it proved to be 

technically difficult or impossible to precisely locate the transition state by an unconstrained 

transition state search. As in the CHMO case,85 the following mechanistic reasoning is thus 

based on the computed energy profiles.  
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3.1.7 Suggested Mechanism and Relevant Residues 

In this section, our aim is to give a detailed interpretation of the role of different active-site 

residues in PAMO. As shown previously,85 ARG337 plays a crucial role in catalysis by Baeyer-

Villiger monooxygenases. Hence we first focus on this residue and its environment.  Figure 16 

shows the active site of PAMO in a 2D representation, with the peroxyflavin just partially 

included for the sake of clarity.  

 

Figure 16: 2D representation of the residues and substrates in the active site of PAMO. For clarity, only a small 

part of the peroxyflavin moiety is represented.  Hydrogen bonds are indicated by dashed lines. 

Wild-type PAMO does not catalyze the Baeyer-Villiger reaction of substrates lacking the 

phenyl ring of phenylacetone. We supposed that π-cation interactions of the π-conjugated 

substrate with the guanidinium moiety of the ARG337 residue could be the cause for this 
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observation. To investigate this aspect, we ran a series of high-level QM computations in the 

gas phase on the guanidinium-toluene complex. In these tests, we replaced PHAC by toluene 

and ARG337 by its guanidinum moiety to directly assess the interactions of the π-conjugated 

ring with the cation. We adopted the optimized geometries obtained from the QM/MM scan in 

the protein for both the substrate and the residue. We added hydrogen atoms to satisfy the 

valence of these compounds and optimized their positions while keeping the rest of the 

molecule frozen. We performed single-point energy evaluations at each geometry along the 

scan at the MP2/aug-cc-pVTZ level, which is expected to model π-cation interactions 

faithfully. We also computed the energies of isolated toluene and guanidinium cation with the 

same method. Figure 17 shows the results from these computations. Apparently (see left side 

of Figure 17), when toluene and guanidinium approach each other in PAMO-derived 

geometries, the energy of isolated toluene does not change much, while the energies of isolated 

guanidinium and of the complex are lowered significantly in the transition state region (by ca. 

2 kcal/mol) and still somewhat in the Criegee intermediate (by ca. 0.5 kcal/mol). The π-cation 

interaction energy along the scan is obtained as the difference of the energies of the complex 

and its two constituents. Evidently (see right side of Figure 17), it remains rather small 

throughout the scan (up to 0.3 kcal/mol) and even shows a drop when approaching the 

conformation corresponding to the transition state. We note that accounting for basis set 

superposition errors may change these results. Furthermore, the scan reported here did include 

the extra QM water molecule in the QM region, but not the ASP66 residue that has later been 

shown to be important (see above).  

 

Figure 17: MP2/aug-cc-pVTZ energy profiles of the toluene-guanidinium complex at geometries taken from 

QM/MM optimizations of PAMO (see text). Left: energies of the complex (blue), toluene (green) and 

guanidinium (red). Right: complexation energy (difference between complex and constituents).  
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The toluene-guanidinium test calculations thus do not support a major role for substrate-

ARG337 π-cation interactions in PAMO. They show, however, that the guanidinium part of 

ARG337 adopts a more favorable (more stable) conformation around the transition state 

leading to the Criegee intermediate. For further analysis, we now monitor the hydrogen bonds 

between ARG377 and its environment.  

The guanidinium part of ARG337 can form hydrogen bonds with the substrate (PHAC), the 

distal (O87) and proximal (O86) oxygen atoms of the peroxyflavin moiety, ASP66, LEU338 

(oxygen atom in the 338-339 peptide bond), and NADP+. We monitored the corresponding 

hydrogen bond distances in a QM/MM scan obtained with the largest QM region considered 

presently (see above). The results are plotted in Figure 18.  

Along the reaction path, ARG337 does not follow the “migrating oxygen”: the ARG337-O87 

distance increases from 1.68 to 2.58 Å when going from the reactant complex to the Criegee 

intermediate. The major part of this change takes place in the transition state region, at values 

of 2.0-1.9 Å for the reaction coordinate. At the same stage, the ARG336-O96 distance shrinks 

by ca. 0.1 Å, thus providing some compensation. Another prominent feature in Figure 18 is the 

continuous decrease of the hydrogen bond distance between ARG337 and the ketone moiety 

of PHAC along the reaction path. Due to geometrical constraints, it is inevitable that the 

substrate approaches ARG337, which leads to enhanced ARG337-PHAC hydrogen bonding 

and increasing stabilization along the reaction path towards the Criegee intermediate.  

The hydrogen bonding effects of the other residues are less pronounced. We summarize them 

in Figure 19 by highlighting the most stabilizing influence of each hydrogen bond involving 

ARG337. It happens that every one of these hydrogen bonds favors the reaction. The hydrogen 

bond to FADO serves as a switch, those to PHAC and LEU338 mainly stabilize the Criegee 

intermediate, and those to NADP+ and ASP66 lower the transition state energy. All these 

effects are rather smaller individually, but they add up and thus result in an important role of 

ARG337 in facilitating the formation of the Criegee intermediate. 
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Figure 18: Hydrogen bond distances of ARG337 with the substrate and different active-site residues in PAMO 

along the reaction path to the Criegee intermediate, from QM(B3LYP/TZVP)/MM optimizations without (left) 

and with (right) D2 dispersion corrections (see text) 

 
Figure 19: Effects of the different hydrogen bonds of ARG337. The most stabilizing influence of each 

hydrogen bond is indicated by a color code. See text for details.  

 

3.2 Prebiotic Synthesis of Purines 

This section summarizes the paper “Photochemical steps in the prebiotic synthesis of purine 
precursors from HCN”, which is reprinted in the annex of this thesis. 

Since its discovery in 1996 by Ferris and Orgel,104 the oligomerization of four HCN molecules 

to cis-2,3-diaminomaleonitrile (cis-DAMN) followed by the rearrangement to 4-amino-1H-

imidazole-5-carbonitrile (AICN) is considered as one of the most probable routes for the 

prebiotic synthesis of purines nucleobases and nucleotides.105,106 Despite years of investigation, 

the mechanism is still unknown. We tackled the problem by using theoretical and 

computational methods. All proposed intermediates found in the literature107-109 were 
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considered as well as some others that we could imagine. The investigated mechanism is 

depicted in Figure 20.  

 

Figure 20: Intermediates considered in this study. Computed barriers in kcal/mol are given for each of the steps 
(arrows). Molecules with an asterisk can be electronically excited, and excited-state reaction energies are given 

in parenthesis. The determined pathway is highlighted by bold arrows. 

As this oligomerization is known to be robust and to happen in any solvent as long as there is 

a high concentration of the HCN monomer, we studied the reactions in the gas phase. We used 

DFT as the QM method: B3LYP95 for ground-state and CAM-B3LYP110 for excited-state 

species, in combination with the aug-cc-pVTZ basis set111 in both cases.  

In terms of the kinetics, only one pathway emerged as possible. It is highlighted in Figure 20 

with bold arrows. As suggested before,112 it starts with a photoisomerization of the cis-DAMN 

molecule (1) into trans-DAMN (4) through a twisted conical intersection and without an energy 
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barrier. This isomer is subsequently excited, followed by a hydrogen transfer with a barrier of 

19 kcal/mol leading to 2-amino-3-iminoacrylimidoyl cyanide (AIAC, 5 in Figure 20). 

Thereafter, an azetene intermediate (7 or 15) can be formed in the ground or excited state, 

which can then to rearrange to 17 or 18. This latter step requires energy barriers which are too 

high in the ground state, and we thus suggest that both steps will occur in the excited state and 

go through the N-heterocyclic carbene 17. In the presence of water or other protic solvents, this 

will lead to AICN. The potential energy profile of this pathway and the different excitations 

that are involved are summarized in Figure 21. 

 

Figure 21: Free energy profile of the proposed mechanism with the individual intermediates and transition 
states. Excited-state steps are indicated by dashed lines. The reaction pathway is marked by arrows. 

As the suggested mechanism involves several excitations and internal conversions, other 

possibilities in terms of reactivity are conceivable. In particular, upon relaxation from the 

excited to the ground state, the excess energy goes into the vibrational modes, and the molecule 

is formed in a so-called “hot” ground state, which might undergo reactions that are normally 

inaccessible under standard condition of temperature and pressure. For example, when 

considering the possible transformations of trans-DAMN (4) in Figure 20, compounds 10 to 13 

could be formed by hot ground-state reactions despite high energy barriers. This could, of 

course, only happen if the molecule stays in this hot ground state long enough for one of these 

reactions to occur. In solution the excess energy could be transferred to the solvent in a 

competing process. This energy dissipation is still an open issue, and we decided to study it for 

the case of trans-DAMN (4) to provide evidence for or against its relevance in the proposed 

mechanism.  
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Our aim was to determine the time for which trans-DAMN will stay in the hot ground state 

while being solvated in water. For this purpose, water needs to be represented explicitly in 

order to take into account the different modes (vibration, rotation, translation) that may be 

involved in energy dissipation. Since the use of a QM-only approach is not feasible 

computationally for a system including enough water to represent many solvation shells, we 

performed QM/MM molecular dynamics simulations to tackle this problem. 

The structure of trans-DAMN embedded in a first solvation shell of nine water molecules was 

first optimized at the B3LYP/6-31G** level of theory.95 This cluster was then solvated in a 

100x100x100 Å³ box of MM water molecules described by the TIP3P water model.113 MM 

parameters for trans-DAMN were assembled from those provided in the CGenFF force field.114 

The system was progressively heated to 300 K, and a 1 ns MD run was performed in the NPT 

ensemble with the micro-solvated trans-DAMN molecule frozen in the center of the box in 

order to maintain its initial geometry. From the final structure of this MM MD simulation, we 

extracted the embedded cluster and all water molecules with an oxygen atom within 48 Å of 

the center of the system. This structure served as the starting point of QM/MM MD simulations.  

For the QM/MM computations, we used the semiempirical OM2115 method to represent trans-

DAMN and the nine surrounding water molecules. The system was equilibrated again for 500 

ps with a time step of 1 fs to establish a temperature of 300 K. Thereafter, we performed two 

simulations in the NVE ensemble. The first one was started with the velocities acquired by 

each atom at the end of the heating process, while the second one employed modified velocities 

on the atoms of trans-DAMN to include the excess photoenergy transferred to its vibrational 

modes. This was done by conserving the direction of the initial velocities for each atom of 

trans-DAMN while modifying their norms to incorporate an excess of 4 eV of photoenergy 

plus the ground-state zero-point vibrational energy of 2.25 eV. Four different trajectories (with 

different energy distributions along the modes) were run and they all showed the same 

tendency.  

The ratio between the kinetic energies during the two MD simulations is shown in the upper 

panel of Figure 22. Evidently, the energy dissipation occurs extremely fast and the thermal 

equilibrium is reached after only 2 ps. Two distinct dissipation steps can be seen: the first one 

is an extremely fast transfer of about one third of the total excess energy to the neighboring 

water molecules occurring on the same time scale as a few N-H stretching oscillations; the 
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second one takes somewhat longer and dissipates the remaining two thirds of the excess 

photoenergy within about 2 ps.  

 

Figure 22: a) Ratio of the kinetic energy of trans-DAMN in a MD simulation of the hot ground state and a 
standard MD run at 300K (see text); b) inverse of the unimolecular reaction rate as a function of the free-energy 

barrier. 

To determine if this fast energy dissipation allows for a competing hot ground-state reaction to 

occur, we focus on the first step of the dissipation taking place within 0.2 ps. From an 

evaluation of the available experimental data116 we can conclude that there are on average 300 

excitation and relaxation processes preceding the reaction, which translates into a 60 ps 

timescale for the reaction to occur. Given this value and the computed excess energy of 4 eV, 

we can use the Rice-Ramsperger-Kassel-Marcus (RRKM)117-119 approach to estimate the 

unimolecular rate constant k(E). The density and the number of states were determined by the 

Beyer-Swinehart direct count method120 on the basis of the computed harmonic frequencies for 

the reactant and the relevant transition state. By estimating k(E) for several values of the free 

energy barrier we find that a barrier of at most 30 kcal/mol can be overcome under these 

conditions (see Figure 22b). This value is significantly smaller than the computed barriers for 

all alternative ground-state reactions, which are all above 50 kcal/mol. Therefore we can rule 

out the possibility that hot ground-state reactions invalidate the proposed mechanism, on the 
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basis of QM/MM MD simulations that allow us to estimate the time required for energy 

dissipation in water.  
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4. Conclusion 

In this thesis we have focused on QM/MM methods. Development work was done both on 

QM/MM methodology and QM/MM-related tools. The main project was the development and 

validation of a polarizable embedding scheme for the Drude oscillator force field. We combined 

this polarizable force field with boundary potentials for efficiency and inclusion of long-range 

electrostatic effects, and we validated the performance of the resulting three-layer scheme for 

an enzymatic reaction. We carried out the first fully polarized QM/MM simulations with a well 

parameterized polarizable force field. We contributed to the development of a microiterative 

scheme for intrinsic reaction coordinate computations for large QM/MM systems and of a dual 

Hamiltonian free energy perturbation QM/MM method that combines high-level energy 

evaluations with low-level MD simulations. 

We performed one standard application to study the enzymatic reaction catalyzed by 

phenylacetone monooxygenase and another less conventional application to assess the energy 

dissipation in solution of a hot ground state after relaxation from an electronically excited state, 

on a topic relevant to prebiotic chemistry. 

Other ongoing work not covered in this thesis addresses periodic boundary conditions and 

adaptive partitionings for QM/MM systems (with Tatiana Vasilevskaya), a metadynamics study 

of cellulose conformations with the aim of explaining its hydrolysis (with Claudia Loerbroks), 

and three-layer QM/MM/coarse-grained force field approaches (with Pandian Sokkar). 
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ABSTRACT: Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization
and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our
approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the
generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary
potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a
finite difference approximation to the Poisson−Boltzmann equation for computing electrostatic interactions and take into
account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully
polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into
account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD)
simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence
contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry
optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal
positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated
with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing
the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be
included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the
PDC does not lead to a polarization catastrophe of the DO models. Optimum values for some key parameters are discussed. We
also address the efficiency of these approaches compared to standard QM/MM-DO calculations without BP. In the SMBP case,
computation times can be reduced by around 40% for each step of a geometry optimization, with some variation depending on
the chosen QM method. In the GSBP case, the computational advantages of using the boundary potential increase with system
size and with the number of MD steps.

1. INTRODUCTION
Hybrid quantum mechanical/molecular mechanical (QM/
MM) methods have become reliable tools for studying
chemical reactions in large biomolecules.1−7 Already the first
such study8 considered the embedding of a QM subsystem in a
polarizable MM environment to be important for the proper
description of enzymes. Since then, polarizable force fields
(PFFs) have undergone much development and are now
approaching maturity. They are being used increasingly in
biomolecular simulations, and highly optimized PFFs for such
applications are expected to be available soon.9,10

There are several ways to simulate the polarizability of MM
atoms.9−11 These include induced dipoles (or multipoles),12−14

fluctuating charges,15−19 and classical Drude oscillators
(DOs).20−26 The DO approach is also called the shell
model27−29 or charge-on-spring (COS) model.11,30−33 In our
early work, we represented MM polarization by induced dipoles
at the MM atoms.34 More recently, we have adopted the DO
(COS) model, in view of its inherent simplicity and its
widespread use in PFF development.23,35−38 The model
consists of a mobile charge linked to a polarizable MM atom
by a spring; a charge of the same magnitude and opposite sign
is added at the nucleus of this atom, so that these two virtual
charges form a dipole. The mobile charge moves in response to
the electrostatic interactions with the environment, thus
simulating MM polarizability. We have included the DO

model in the QM/MM ChemShell software using the
GROMOS COS force field.39 Other interfacing methods have
been discussed for the CHARMM DO force field.40,41

In a QM/MM framework, the influence of MM polarization
should be especially important for processes that involve
charged or very polar species and significant charge relocation.
In these cases, long-range electrostatic interactions are also
expected to play a prominent role.42 This calls for the
development of treatments that cover both these aspects in a
balanced manner.
Long-range electrostatic interactions can be taken into

account in classical MM simulations using several well
established techniques. At the QM/MM level, two such
techniques have been implemented by different groups, namely
periodic boundary conditions and boundary potentials. Periodic
boundary conditions have been applied using Ewald
summation.43−45 This approach will require huge unit cells in
biomolecular work (containing the large nonperiodic bio-
molecule and a solvent environment of sufficient size) and may
thus be less practical at the QM/MM level. The alternative
boundary potential approach circumvents this problem by
considering only a restricted number of atoms explicitly and
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representing the distant environment by a continuum model.
To be more specific, it splits the system into an explicit inner
region (including the QM subsystem as well as the adjacent
MM part of the macromolecule) and an implicit outer region
(consisting of the distant MM atoms of the macromolecule and
the bulk solvent). The long-range electrostatic effects of the
outer region are captured by a boundary potential that
represents the influence of the discrete MM charges in this
region and of the bulk solvent treated as a polarizable dielectric
continuum (PDC). This method is well suited for describing
localized process such as those commonly studied with QM/
MM methods.
The generalized solvent boundary potential (GSBP)46−48

and the solvated macromolecule boundary potential
(SMBP)49,50 allow the use of irregularly shaped dielectric
boundaries between the macromolecule and bulk solvent. This
feature is important in QM/MM computations of enzymes as
the protein and the surrounding water possess very different
dielectric constants.51 GSBP was originally designed for use in
molecular dynamics (MD) simulations. At the QM/MM level,
it has up to now only been interfaced with semiempirical
methods. SMBP was developed for geometry optimizations
with any kind of QM method and can thus be used to compute
QM/MM potential energy surfaces (PESs) also with high-level
QM methods. GSBP and SMBP complement each other in
QM/MM free energy perturbation (FEP) calculations of free
energy differences.52,53 These can be used to estimate the
entropic contribution of the environment by sampling over the
MM degrees of freedom.
Polarizable force fields have already been interfaced with

PDC models, with results that are promising in terms of
accuracy,54−59 and excited-state properties of small molecules
have been studied by embedding the solute molecule (QM) in
a few explicit polarizable solvent molecules (PFF) and a bulk
solvent (PDC).56,60 In our treatment, we combine a QM part
that is intrinsically polarizable, an explicit MM region described
by a PFF, and a solvent represented by a PDC, which leads to a
fully polarizable three-layer model. We also note that boundary
potentials have the general advantage of being quite efficient
compared with full QM/MM treatments, since they consider
only a small part of the system explicitly. This reduced size of
the explicit MM region can be particularly beneficial when
using PFFs which normally require some kind of iterative
scheme to determine the proper MM polarization.
The purpose of this paper is to present combination schemes

for Drude oscillators with GSBP and SMBP in order to obtain a
fully polarizable three-layer QM/MM-DO/BP model at a
reasonable computational cost.

2. THEORY

The system under study is separated into different spatial
regions. As usual in QM/MM methods, there is a central QM
region surrounded by an MM region. The latter is further
partitioned into an explicit inner part (treated atomistically at
the MM level) and an implicit outer part (represented by the
boundary potential). All these subsystems interact with each
other, and the total energy is given by the following additive
expression:

= + + + +

+

E E E E E E

E

tot QM MM BP QM/MM QM/BP

MM/BP (1)

In our implementation in the ChemShell package,61,62 EQM is
the energy of the QM part obtained with any available QM
method, and EMM is the energy obtained from any MM force
field function interfaced with the program. EBP denotes the
energy contribution from the boundary potential. The three last
terms arise from the interactions between the subsystems. In
the following, we describe the interactions that occur when
using the polarizable DO force field for the MM part and the
GSBP or SMBP for the boundary potential.

2.1. Drude Oscillators in a QM/MM Framework. The
DO model aims at simulating the electronic polarizability at the
MM level. It represents the induced dipole at every polarizable
atom by two charges of the same magnitude (q) and opposite
sign linked by a harmonic spring. The first charge is located at
the nucleus of the atom, while the second one is mobile.
Polarization arises from the competition between the forces
acting on the mobile charge, which are due to the spring and
the electrostatic interactions with the environment. The
optimum position (d) of the mobile charge (Drude particle)
is obtained by requiring that these two forces compensate each
other.

∂ +
∂

=
U U

d

( )
0

spring elec
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The electrostatic potential energy Uelec is obtained by
summing over all point-charge interactions applying Coulomb’s
law. The potential energy Uspring of the harmonic spring is
evaluated using a force constant (kd) that is generally defined in
terms of the polarizability (α) of the corresponding atom:

α
=k

q
d

2

(3)

In the CHARMM force field, kd is always fixed to 1000 kcal
mol−1 Å−2 in order to maintain a small d value and to keep the
point dipole approximation valid.26 The implementation of the
DO terms within a standard force field involves only
modifications in the electrostatic part of the MM potential
energy function.
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Here, indices i and j run over atoms, the prime denotes a DO
term, and r is the distance between the two corresponding
centers. In the CHARMM force field, several other terms have
been included in an attempt to properly simulate the electronic
distribution and the dipole response of a molecule.63 The 1−2
and 1−3 interactions between Drude particles (at atoms
located one or two covalent bonds away from each other) are
screened by applying the Thole function:64
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Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300722e | J. Chem. Theory Comput. 2012, 8, 4527−45384528



α α
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T t

r
ij

ij

i j6 (6)

where t is the Thole parameter. Interactions at larger distances
(with three or more bonds in between) are evaluated without
any screening. Also, the charge of a heteroatom (without the
DO contribution) can be split and partly located at one or two
nearby positions (fixed in terms of internal coordinates) to
represent lone pairs. The simultaneous presence of such lone
pair charges and Drude particles may allow the simulation of
anisotropic polarizability.65 Another correction has been
introduced to avoid the so-called polarization catastrophe,
which is caused by strong Coulombic interactions at close
distances that may lead to an excessive drift of the Drude
particle.11 The associated anharmonic hyperpolarizability
damping term is taken into account only if d is higher than a
predefined limit (typically 0.2 Å).24

The implementation of the DO model within a QM/MM
framework has been discussed for GROMOS (COS model)39

and more recently also for CHARMM.40 In both cases, the
Drude oscillators are included in the QM computation by
modifying the one-electron terms in the Fock matrix, in
complete analogy to the classical MM point charges. The
Drude particle gives rise to extra one-electron terms, while the
compensating charge at the nucleus of the polarizable atom is
taken into account by adjusting the corresponding atomic
charge.
To determine the position of the Drude particle, and thus

obtain the induced dipole, the left-hand side of eq 2 must be
minimized. The required electrostatic potential is evaluated
from the electric field (ϕ) at the position of the Drude particle,
which is composed of QM, MM, and DO contributions. The
force (F) exerted on Drude particle i′ by a given component of
the electric field can be written as

α φ φ φ= + +′

′
′ ′ ′′

F
q

( )d
i

i
i i i
MM QM DO

i
(7)

The contributions φi′
MM, φi′

QM and φi′
DO to the electric field are

interdependent, and their computation thus calls for a dual self-
consistent-field (SCF) approach39 as indicated in Figure 1. We
followed the same implementation as in our previous work39

but introduced an additional option: when using the
CHARMM force field, the electric field is computed at the
position of the Drude particle (to conform to CHARMM
conventions), whereas it is calculated at the corresponding
atomic position for the GROMOS COS model.32 In our
computational approach, we first evaluate φi′

QM for a set of fixed
DO positions, which are then updated in an iterative scheme
through an MM inner cycle. In this cycle, φi′

MM and φi′
DO are

computed for the given geometry, and the DO positions are
updated using the forces from eq 7. This inner cycle is iterated
until the DO positions are converged in the field of the given
QM wave function (as judged by their maximum and average
changes). Thereafter, the convergence of the QM energy is
checked. If this is not the case, the process is restarted at the
first step by recalculating φi′

QM and going again through the
inner cycle, until full overall convergence is achieved.
A microiterative scheme has also been proposed, with one

update of the DO positions in each step of the QM SCF
procedure.40 This approach is computationally more efficient
but necessitates the modification of the QM program and thus
cannot be applied directly for any QM code.
The iterative relaxation of the Drude particle to its minimum

energy during each step of an optimization or a sampling
procedure is accurate but can become very expensive if there
are a large number of polarizable atoms in the system.
Therefore, this scheme may no longer be practical for long MD
runs.
One key advantage of Drude oscillators is that they can be

treated as dynamical degrees of freedom. Their direct inclusion
in a standard MD scheme is problematic, however, since the
oscillations of the Drude particles would have very high
frequencies and would thus require very small integration time
steps. This problem can be overcome by the use of extended
Lagrangian dynamics.20 In this scheme, the overall motion of
the atoms and the relative motion within the atom−DO pairs
are separated and propagated in a coupled manner as follows. A
small mass (mD) is taken from the polarizable atom and
assigned to the Drude particle. The polarizable site is
propagated in the overall MD scheme using the center of
mass (Ri) of the atom−DO pair and the total mass of the atom
(mi). The relative motion in the atom−DO pair is propagated
using an extended mass mi′ = mD(1 − mD/mi).

20 In the NVT
ensemble, this leads to the so-called cold DO model.20 The
dynamics of the system is controlled by a thermostat of the
desired temperature (T) while the relative motion within the
DOs is frozen at temperature T∗ = 1 K to avoid high-frequency
oscillations. At each MD step, the DO positions are not fully
converged, but it is assumed that, during the sampling process,
they will oscillate around their respective minima. The
equations of motions, using two Nose−́Hoover thermostats,
are

η̈ = − ̇ ̇mR F mRi i R i i i, (8.a)

η′ ̈ = − ′ ̇
*̇m d F m di i d i i i, (8.b)

∑η ̈ = ̇ −Q mR N k T
j

j j
2

f B
(8.c)

∑η ̈ = ′ ̇ −∗ ∗ ∗Q m d N k T3
j

j j
2

D B
(8.d)

The indices i and j run over all atoms. The variables associated
with the thermostats are the inertia factor Q and the friction

Figure 1. Dual SCF approach for determining the DO positions in a
QM/MM framework. The outer SCF procedure converges the QM
wave function, while the inner one converges the DO positions in the
field of each other and of the MM atoms. See text for details.
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coefficients η̇ that are obtained by solving eqs 8.c and 8.d. The
subscript “∗” refers to the thermostat for the relative motion of
the atom−DO pair. Nf is the total number of degrees of
freedom excluding constrained components and DOs, and ND
is the number of DOs. Note that if an atom is not polarizable,
mi′ is zero and Ri = ri. This extended system can be propagated
in time using a velocity Verlet scheme.66,67 We have
implemented this approach for the NVT ensemble. Analogous
MD runs can also be performed with the NPT ensemble using
a barostat for the extended system,20 but this variant was not
implemented here because the use of BPs constrains the system
to a constant volume (see below). We also did not consider
other methods that propagate classical representations of
electronic polarization using always stable estimator-corrector
algorithms.40,68,69

The implementation of this integration scheme for QM/MM
molecular dynamics necessitates the computation of the forces
that act on the different particles. The contributions to these
forces from the QM and MM regions are additive:

= − ∂ +
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The QM contributions are computed only once per MD step
using the fully converged QM SCF wave function for the given
configuration of MM atoms and DOs. Note that forces are
computed with the charges of each polarizable center reduced
by the DO partial charge qi′ (see above). QM atoms are
propagated classically by treating them as dynamical degrees of
freedom in the equation of motion of the general system; they
are coupled to the same thermostat.
2.2. Boundary Potentials. A boundary potential simulates

the electrostatic influence of an implicit infinite outer region on
the explicit inner region of interest. Figure 2 illustrates this
separation for a solvated protein in a QM/MM framework.

We use R to denote the generic coordinates of a
macromolecule surrounded by N solvent molecules. The
inner region consists of the inner part of the macromolecule
(Ri) as well as n inner solvent molecules, while the outer region
includes the outer part of the macromolecule (Ro) and the
remaining N − n solvent molecules. Statistical observations are
assumed to depend only on the degrees of freedom of the inner
region. They can thus be computed on the surface of its
potential of mean force (PMF) by integrating out the degrees
of freedom of the outer region:

∫= +β β− −
C

R n Ne
1

d d( 1)... d eW R n U R N( ,1,..., )
0

( ,1,... )i

(10)

Note that only configurations for which outer region atoms do
not overlap with the inner region are considered here. By
picking an appropriate normalization constant (C), Beglov and
Roux demonstrated that the PMF is equivalent to the reversible
work necessary to assemble the inner region inside the outer
region.70 They proposed to proceed stepwise, considering
separately the different contributions to this assembly:

Δ = + Δ + Δ + ΔW U W W Wcr np elec (11)

U is the potential energy of the isolated inner region, and the
three following terms are the free energy contributions arising
from configurational restrictions, nonpolar interactions, and
electrostatic interactions, respectively. This approach is only
valid if the configuration of the atoms in the outer region can be
considered representative of the average of all possible
configurations. It will thus be particularly suitable for studying
processes localized in the center of the inner region, while its
accuracy will decrease in the vicinity of the inner−outer
boundary. It is commonly assumed that the configurational
restrictions and nonpolar interactions will remain constant for a
given system and that one may thus focus on the electrostatic
contributions to the boundary potential. The following
subsections describe two approaches to their determination.

2.2.1. Generalized Solvent Boundary Potential. The GSBP
aims at approximating the electrostatic contribution to the PMF
in a scheme suitable for MD simulations. There are two parts,
arising from the direct Coulomb interaction of inner-region
charges with the outer-region charges of the macromolecule
and with the outer-region solvent molecules described by a
PDC. The latter term can be expressed as the interaction of the
inner-region point charges of the macromolecule (qA) with the
reaction field potential ϕrf at their position (rA).

∑ ϕΔ =W q r
1
2

( )
A

A Aelec
solv

rf
(12)

The reaction field potential is defined as the difference of the
electrostatic potentials in solution and in vacuum. It can be
obtained by solving the linearized Poisson−Boltzmann (PB)
equation for both situations using the corresponding dielectric
constants (ε).

ε ϕ κ ϕ πρ∇ ∇ − ̅ = −r r[ ( ) (r)] ( ) (r) 4 (r)2
(13)

Here, ρ(r) is the charge density and κ(̅r) is the modified
Debye−Hückel screening factor. A straightforward implemen-
tation would require solving the PB equation for every
configuration, which would quickly become too expensive for
typical MD runs. To overcome this problem, ΔWelec

solv is

Figure 2. Schematic representation of the separation of regions in the
GSBP and SMBP. The atoms in the QM region atoms are represented
by their van der Waals radii. The MM atoms from the inner region are
pictured explicitly by lines. The outer region of the macromolecule is
symbolized by the ribbons. The region outside of the blue boundary
line corresponds to the bulk solvent simulated by a PDC.
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separated by splitting the charge distribution into an inner and
outer part.

Δ = Δ + Δ + Δ− − −W W W Welec
solv

elec
outer outer

elec
inner outer

elec
inner inner

(14)

The first term represents the interaction of the outer charge
distribution with its self-induced reaction field. It is constant
during the sampling and can thus be neglected or computed
once and for all. The inner−outer contribution to the solvation
free energy can be combined with the calculation of the inner-
outer Coulomb interactions in an efficient scheme using the
electrostatic potential of the outer region in solution
(ϕs

outer(r)).
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outer

elec
inner outer
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s
outer

(15)

Since the outer region is in a frozen configuration, its
potential is constant during the simulation and can be
calculated and stored once and for all, giving rise to a
significant decrease of on-the-fly computational costs. The only
terms remaining are thus the inner−inner contributions. An
analytical solution for this part is provided by the Green’s
function (Grf) that describes the inner-region reaction field
potential.

∫ϕ ρ= ′ ′ ′r r r G r r( ) d ( ) ( , )irf
inner

rf (16)

This formulation allows the projection of the inner charge
distribution and of the Green’s function onto the same set of
basis functions {bn} with associated generalized multipole
moments Qn. The solvation free energy can be expressed as the
matrix product of the reaction field matrix (Mmn) with these
multipole moments, which yields the final expression for the
GSBP.

∑ ∑ϕΔ = +
∈

W r Q M Q( )
1
2A

A
mn

m mn nelec
GSBP

inner
s
outer

(17)

The matrix Mmn can be computed once and for all at the
beginning of the simulation. This requires solving the PB
equation repeatedly, depending on the size of the basis set used.
In a QM/MM framework, the inner region also includes the

QM part of the system. Its contribution is taken into account
separately by splitting the ΔWelec

GSBP expression into QM and
MM parts.

∫∑

∑ ∑
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(18)

In previous GSBP implementations, the continuous QM
charge distribution was represented by Mulliken charges.46,48

This necessitates changes in the QM code when implementing
the GSBP scheme.
2.2.2. Solvated Macromolecule Boundary Potential. The

SMBP is a solvent boundary potential designed for geometry

optimizations with any kind of QM method. It relies on the
same approximations as the GSBP by using the same
decomposition into an inner and outer region. However, as
geometry optimizations require much fewer steps than MD
runs, the PB equation is now solved at each step. Compared
with GSBP, this saves the initial effort of computing the
reaction field matrix (i.e., solving the PB equation typically 800
times for common basis sets). To allow the use of the SMBP
with any QM/MM Hamiltonian, the interactions with the
reaction field potential are computed separately for the QM and
MM regions.

∫ ∫ρ ϕ ρ ϕΔ = +W r r r r r rd ( ) ( ) d ( ) ( )elec
SMBP

QM tot
QM

MM tot
MM

(19)

Here, ϕtot
QM(r) and ϕtot

MM(r) are the effective potentials
experienced by the QM and MM regions, respectively.

ϕ ϕ ϕ ϕ= + +−r r r r( ) ( ) ( )
1
2

( )tot
QM

s
outer

rf
inner MM

rf
QM

(20.a)

ϕ ϕ ϕ= + −r r r( ) ( )
1
2

( )tot
MM

s
outer

rf
inner MM

(20.b)

The reaction field potentials depend of the instantaneous
configuration of the inner region and must thus be updated in
every optimization step. For nonpolarizable MM point charges,
the term ϕrf

inner−MM(r) can be computed by solving the PB
equation once. On the other hand, ϕrf

QM(r) depends on the
polarizable QM density, and hence a self-consistent reaction
field procedure is needed to determine both. This involves the
following steps: (1) With an initial guess for the QM charges,
compute ϕrf

QM(r). (2) Assemble ϕtot
QM(r) and project it on a set

of virtual charges distributed on a sphere around the inner
region. (3) Evaluate the QM wave function in the field of these
virtual charges and the inner-region MM point charges. (4)
Determine ESP charges that represent the QM charge
distribution well enough to generate a realistic electric field.
(5) Loop over steps 2−4 until convergence is reached, i.e., until
the QM reaction field potential changes from one iteration to
the next one by less than a predefined criterion.

2.3. QM/MM-Based Combination of Polarizable Force
Fields with Boundary Potentials. The use of a polarizable
force field for the explicitly treated inner MM region in a QM/
MM/BP setup leads to a three-layer approach which accounts
for polarization effects in all layers. This introduces additional
interdependences which will be described in the following.
To include Drude oscillators in the MM layer of a QM/MM/

BP treatment, eq 11 needs to be supplemented with an
additional term (ΔWpol) that describes the free energy
necessary to switch on the polarizability of the polarizable
MM atoms in the field of the boundary potential. This term is
expressed in different forms in the GSBP and SMBP
formalisms.

2.3.1. Combination with the GSBP. Since GSBP is designed
for MD simulations, the extended Lagrangian approach appears
as the method of choice to treat the equations of motion. In
this approach, the positions of the Drude particles are not
relaxed to their energy minima at every step, and hence there is
no need to apply an iterative method that would converge both
the induced explicit polarization and the boundary potential
simultaneously. Therefore, the DOs can be handled in the
GSBP treatment just like fixed classical point charges. As usual,
their contribution can be separated into inner−inner and
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inner−outer terms. To account for the inner−inner terms,
additional MM point charges (Qm

pol) are introduced into the
formalism and are projected on the same basis set as the other
charges. The expression for ΔWelec

GSBP, eq 17, is thus extended by
adding the following terms.

∑ ∑

∑

+

+

Q M Q Q M Q

Q M Q

1
2 mn

m mn n
mn

m mn n

mn
m mn n

pol pol pol MM

pol QM

(21)

The treatment of the inner-outer contribution depends of the
description of the outer region. Two assumptions can be made.
The first one is to describe the entire outer region by the PDC
model, with different dielectric constants for the macro-
molecular part and the bulk solvent. In this case, the system
is fully polarizable, and there is no need to include the DO
model in the outer region or to make any further modification
to the GSBP expression. This option differs, of course, from the
standard GSBP implementation in QM/MM methods (see
section 2.2). The second option is to assume that the
polarization of the MM atoms of the macromolecule in the
outer region remains the same during the MD run. This is
clearly compatible with the basic GSBP assumption of
neglecting the outer-region thermal fluctuations and hence
keeping the outer-region MM atoms fixed during the MD
simulation. The outer-region DO positions are thus determined
by an initial single-point computation on the full system and are
then kept fixed. The error arising from having a constant outer-
region polarization is expected to be small. The second option
allows us to solve the PB equation for the macromolecule with
a dielectric constant of 1 and to use the previously introduced
approximations that lead to an appreciable gain in efficiency.46

In practice, the second option is implemented by adding Drude
particles during the computation of ϕs

outer in the same manner
as the outer-region MM point charges and by correcting the
latter for the polarizable atoms by the DO counter charges.
To propagate the dynamical degrees of freedom, the force

contributions from the GSBP have to be included in eqs 9.a and
9.b. Before solving the finite-difference PB equation, the
charges describing the electrostatics of the system are projected
onto a grid using B-splines. Thus, the force acting on any MM
point charge will depend on its position on the grid. It is
obtained by taking the first derivative of ΔWelec

GSBP.
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2.3.2. Combination with the SMBP. Inclusion of Drude
oscillators into the SMBP formalism gives rise to additional
contributions (ΔWelec,DO

SMBP ) to the solvation free energy,
accounting for the charge density ρDO(r) that experiences the
field ϕtot

DO (r).

∫ ρ ϕΔ =W r rdr ( ) ( )elec,DO
SMBP

DO tot
DO

(23.a)

In addition, the reaction field ϕrf
DO(r) will contribute to the

boundary potential

ϕ ϕ ϕ ϕ= + + −r r r r( ) ( )
1
2

( ) ( )tot
DO

s
outer

rf
DO

rf
inner MM

(23.b)

Likewise, eqs 20.a and 20.b are modified by adding ϕrf
DO(r) to

take into account the DO contributions. The DO positions are
updated by including the electric field contribution from the
SMBP on the Drude particles in the iterative procedure. The
electric field is determined at these positions by interpolation
from the nearest point on the grid depending of the order of
the B-spline used in the representation. The proper polarization
of the inner region is obtained by solving eq 2 for every
polarizable center in the field of the whole system.

φ φ φ φ φ= + + +tot
DO

MM
DO

QM
DO

DO
DO

SMBP
DO

(24.a)

φ ϕ ϕ ϕ ϕ= + + +−r r r r r( ) ( ) ( ) ( ) ( )SMBP
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rf
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rf
QM

rf
DO

(24.b)

The treatment must take into account the interdependences
between the different subsystems, since the QM wave function,
the PFF, and the boundary potential are all polarizable and
depend on each other. A sequential combination of the dual
self-consistent-field procedures used to update DO positions
and to determine the SMBP would lead to a very expensive
approach, and therefore another technique needs to be
considered.
For a QM/MM computation with a QM region of significant

size modeled by an accurate method, the QM calculation is the
bottleneck in terms of computational time. Therefore, in any
iterative process, the number of QM calculations has to be kept
as small as possible. We thus propose an iterative scheme that
performs only one QM calculation for updating both the
boundary potential and the DO polarization, as shown in
Figure 3. Before starting the iterative procedure, the constant
contribution to the boundary potential from the nonpolarizable
outer-region MM part is computed. In the first step, the
reaction field potential ϕrf

QM(r) is evaluated, and the total
potential acting on the QM region is projected on the virtual
charges. Thereafter, a QM computation is carried out to
evaluate the wave function in the field of the inner MM region,
the DO charges, and the virtual charges representing the
SMBP. A new set of ESP charges is determined to represent the
QM region in the SMBP, and the QM electric field is computed
at the position of the Drude particles. Using the ESP charges,
ϕrf
QM is computed by solving the PB equation, and the electric

field arising from the boundary potential is evaluated at the DO
positions. With all external contributions to the DO electric
field being known at this point, an SCF procedure is performed
to update the DO positions in the field of each other and of the
environment. These new DO positions are then used to
compute their contribution to the SMBP. The convergence
criterion of this iterative procedure is the change in the QM
energy from one step to another, which has been found to be
the quantity that converges most slowly. The default criterion is
the same as that for the QM computation itself (typically on
the order of 10−7 atomic units). For the inner MM cycle, we
have adopted the same convergence criteria as before (see
section 3).
The procedure outlined above allows full convergence of the

different parts. Compared with full QM/MM-DO calculations
without boundary potentials, it is efficient because the inner
SCF cycles for optimizing the DO positions are now restricted
to a small number of inner-region DOs, and the QM
computations need to include only rather few external MM
point charges. Also, the overall process normally requires less
QM calculations than when the full system is represented
explicitly.
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3. IMPLEMENTATION DETAILS
The methods described in section 2 have been implemented in
the modular package ChemShell.62 The code for Drude
oscillators was implemented in a stand-alone module
independent of the program used for MM force field
evaluation. It is compatible with the CHARMM DO and
GROMOS COS formalisms and can be used with any
interfaced QM code. The code for lone pairs is available in a
separate module and can be used together with any MM force
field (polarizable or not).23 The interaction energies involving
lone pairs are computed first, and the associated gradient is
assigned to the atom carrying the lone pair and its two nearest
neighbors in a manner that conserves its total value and the
torque (without generating any additional degrees of freedom).
The propagation of cold Drude oscillators in an extended
Lagrangian scheme has been implemented into the ChemShell
MD module following the previously described implementa-
tion,20 and the settle algorithm71 was included for constraining
water molecules.
The previously implemented PB equation solver46 has been

modified to handle the DO model. We have kept the
approximations introduced to increase its efficiency as well as
the rigid partitioning between inner and outer solvent
molecules (i.e., not allowing for a dynamical and flexible
separation). We use a spherical boundary both for GSBP and
SMBP. When including higher-order terms such as the
polarizability in the MM description, it is common practice

to project the charges of the system on a discrete grid using
higher-order functions.57 For our models, fourth-order instead
of third-order B-splines did not offer any improvement in terms
of accuracy, and we thus adopted the latter. Similarly, the
description of the dielectric boundary57 did not improve
significantly when using up to seventh-order polynomial
switching functions instead of a direct approach, so we kept
the latter.
In the current tests (see below), the QM calculations were

performed using the MNDO200472 and Turbomole 6.3
programs.73 DL_POLY was used for the additive part of the
MM computations with the CHARMM force field. The
HDCLOpt optimizer was employed for geometry optimiza-
tions using hybrid delocalized internal coordinates.74

4. ASSESSMENT
The present assessment consists of two parts. First, the
accuracy of the model is discussed in terms of its ability to
reproduce the gradient and the proper polarization of the inner
region both for GSBP and SMBP. Second, the efficiency is
evaluated by comparing computation times with and without a
boundary potential.

4.1. Accuracy. Our standard test system for accuracy checks
was a glycine molecule in its zwitterionic form solvated in a
water ball of radius 30 Å, which has already been used in one of
our previous studies.49 Its high flexibility and polarity make it a
challenging test case. The system was first thermalized using the
standard nonpolarizable CHARMM force field and TIP3P
water molecules. Five independent snapshots from an
equilibrated MD run were investigated. These configurations
were used in the QM/MM calculations without any further
QM/MM-based equilibration. Since there was no significant
difference between the five sets of QM/MM test results
obtained, we present data only for one of the snapshots.
The glycine molecule is the QM part of the system, and the

water ball is centered on its Cα carbon atom. The MM region
includes 4252 water molecules, bringing the total number of
atoms to 12 766. The 903 water molecules with the oxygen
atom less than 18 Å away from the central carbon atom were
considered as part of the inner region (together with the QM
region). The 473 water molecules with their oxygen atom
located in a buffer region between 14 and 18 Å from the center
were frozen and represented explicitly. The other inner-region
molecules were free to move. The AM175 semiempirical QM
Hamiltonian was used for glycine, and the water molecules
were represented using the SWM4-NDP PFF.76 The relevant
parameters are given in Figure 4. All inner-region DOs were
considered to be active, even those assigned to a frozen explicit
atom, to retain the full polarizability of the inner region.
For direct comparisons between the full Coulomb electro-

static interactions and the SMBP model, the outer-region
dielectric constant was set to 1 (vacuum). Drude oscillators
were included at outer-region atoms in fixed positions and were
not allowed to reorganize themselves later on. Their positions
were obtained by running an initial single-point computation
on the full system without using a boundary potential. This way
the accuracy of the SMBP could be evaluated by comparing
QM/MM/SMBP results to those obtained for the entire QM/
MM system. The PB equation was solved using a focusing
procedure described previously46first on a coarse-grained
grid covering the full system and then with the use of a finer
grid for the inner region, with the previously optimized
spacings of 1.25 and 0.6 Å for the outer and inner grid,

Figure 3. SCF procedure used for the update of DO positions, QM
wave function, and SMBP contribution. The MM SCF procedure is
the same as before (Figure 1). See text for details.
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respectively. To project the SMBP potential acting on the QM
region, 89 virtual surface charges were employed. Note that
different definitions of the boundary potential will be used in
the following tests.
Figure 5 shows (a) the mean absolute deviation (MAD) of

gradient components (x,y,z) for all atoms located in the inner

region and (b) their maximum absolute deviation (MAX). The
data are plotted as a function of the distance to the central
carbon atom of glycine. The black curves correspond to the
QM/MM/SMBP method as discussed in section 2. For QM/
MM geometry optimizations, the convergence criteria used on
gradients are typically on the order of 5 × 10−4 au. Therefore,
the results obtained for this test case show that the SMBP gives
a good approximation of the electrostatic interaction with the
outer region. Indeed, for an active region that encompasses any
molecule within 14 Å of the center, the maximum absolute
deviation from QM/MM results is less than the standard

convergence criterion, and the mean absolute deviation is even
1 order of magnitude smaller (i.e., only 3.6 × 10−5 au). In the
buffer region between 14 and 18 Å, the gradients deviate more
and more from the standard QM/MM values, which supports
the convention to keep this region frozen in SMBP studies.49

The gradients in the QM region show almost no difference, and
localized processes in this region should thus be well simulated.
The results in Figure 5 do not differ significantly from
previously reported SMBP results obtained with identical
parameters and the standard fixed-charge CHARMM force
field.49 Since the accuracy of the calculated QM/MM/SMBP
gradients is essentially the same with and without DO
contributions, it is not governed by the DO treatment but
rather by the intrinsic errors arising from the finite-difference
solution of the PB equation.49

How important are the DO contributions to the gradient?
Do we need the full doubly iterative SCF procedure to obtain
proper gradients? We address these questions by separately
considering the influence of the Drude oscillators in the outer
region (frozen) and in the inner region (active). We assess the
necessity of including DO in the SMBP expression by
considering three cases. The red curves in Figure 5 show the
effects of removing the DO contributions from the outer
region, which are not represented by the boundary potential.
Note that for every DO, the −q charge located at the atomic
position is removed as well. Compared to QM/MM/SMBP,
the deviations (MAD and MAX) from the full QM/MM
reference gradients not only are significantly higher but also
increase faster as the vicinity of the boundary is approached.
This implies that the DO contributions from the outer region
may have a significant influence even on localized inner-region
processes, which is captured by our QM/MM/SMBP approach.
The green curves show the effects of neglecting the influence of
the SMBP terms on the inner-sphere Drude oscillators, both
with regard to the update of the DO positions during the SCF
process and their final contribution to the gradient. The
deviations (MAD and MAX) are prohibitively large, so that this
approximation is not to be used. The blue curves in Figure 5
show the deviations (MAD and MAX) that arise when
neglecting the electric field from the SMBP during the SCF
process of updating the DO positions, while including it during
the final gradient computation. These deviations are smaller
than those obtained upon total neglect of SMBP effects (green
curves), but they are still too large to be tolerated. We conclude
from these computational experiments that the full SCF
procedure should be applied to ensure the needed accuracy.
We now investigate the influence of long-range electrostatic

interactions on the polarization of the Drude oscillators, as
indicated by the self-energy of polarization (i.e., the last term of
eq 4) which is proportional to the DO polarization. Figure 6
shows the variation of this self-energy with the dielectric
constant of the PDC that describes the outer-region solvent in
the SMBP. The total polarization of the 903 inner-region
Drude oscillators quickly increases for dielectric constants up to
20 and then levels off, with the self-energy slowly converging to
a value of about 0.012 au. This corresponds for each Drude
oscillator to a maximum variation of d by ca. 10−3 Å and a
maximum increase of DO polarization by ca. 10−20%. The
convergence of DO polarization in the absence of any damping
terms suggests that the present SMBP treatment does not lead
to the so-called “polarization catastrophe” for high dielectric
constants, so that no special measures need to be taken in this
regard.

Figure 4. Schematic representation and parameters of the SWM4-
NDP water model. The Drude oscillator is represented by a negative
and a positive charge linked by a spring. The lone pair is shown in
gray. Note that the oxygen atom has no charge by itself and is the only
entity with van der Waals parameters. Geometric parameters (except
for the oxygen-lone pair distance) are the same as for the TIP3P water
model.

Figure 5. Deviations of the gradient components on atoms located in
the inner region with a radius of 18 Å, compared with the full QM/
MM results. The top panel shows the mean absolute deviation (MAD)
as a function of the distance from the central carbon atom of glycine.
The corresponding maximum absolute deviation (MAX) is plotted in
the bottom panel. Different approximations are examined (see text).
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We next check in more detail how the self-energy of
polarization evolves with respect to the distance from the
center of the sphere (i.e., the central carbon atom of glycine).
For this purpose, we again use a reference system consisting of
a 30 Å sphere of water including the zwitterionic glycine
molecule (12 766 atoms in total), and we represent the bulk
solvent beyond this sphere in the SMBP by a PDC with a
dielectric constant of 80. We compare the results obtained for
this reference system with those computed for our standard
system, i.e., an 18 Å sphere of water including glycine (2719
atoms in total) with bulk solvent treated as a PDC with
different dielectric constants. To assess the accuracy of the
results for the truncated system compared with the reference
system, we consider the mean average percentage of deviation
(MAD) and maximum percentage of deviation (MAX) of the
self-energy of polarization of the Drude oscillators. These
quantities are plotted in Figure 7 for several choices of the
dielectric constant ε in the truncated system. For ε = 80, the
MAD value is close to zero in the inner part of the active region
and remains below 5% throughout the active region (for
distances R up to 14 Å), while the MAX value rises to 23% at
the active/frozen boundary (at R = 14 Å). This confirms again

that the SMBP provides a reasonably accurate description of
the inner active region of the truncated system. The situation is
less favorable when neglecting the bulk solvent in the truncated
system: for ε = 1 (vacuum), the MAD (MAX) value rises from
ca. 12% (35%) in the inner active region to ca. 15% (80%) at
the active/frozen boundary. When using truncated systems, the
full SMBP approach (with a PDC treatment of bulk solvent)
thus provides a clear improvement compared with a treatment
that neglects the bulk solvent, as far as the polarization of the
MM region is concerned. We also note that the distant-
dependent self-energies converge very quickly with increasing
dielectric constant (being very similar for ε = 15 and ε = 80, see
Figure 7), in analogy to the fast convergence of the total self-
energy (Figure 6).
We have evaluated the ability of the GSBP to properly

reproduce the inner−outer electrostatic interactions in a similar
way as for the SMBP. Initial positions for the Drude particles
and the lone pairs were obtained from a fully converged
iterative QM/MM computation on the complete system. The
gradients on the Drude particles necessary for proper
propagation of the dynamics were evaluated both at the full
QM/MM and the QM/MM/GSBP level. Using the same
computational parameters as in the SMBP case, the gradients
on the mobile inner-region Drude particles (within the 14 Å
active region) show a maximum absolute deviation of 2.7 ×
10−4 au and a mean absolute deviation of 7.3 × 10−5 au from
the full QM/MM reference data. These deviations are slightly
higher than those obtained for the SMBP but in the same range
as in previous GSBP validations,46 in which this accuracy has
been considered good enough for molecular dynamics
simulations.
Going from a fixed-charge to a polarizable force field in the

QM/MM/GSBP treatment may be expected to make the
representation of the electrostatic interactions more demand-
ing. To compute the inner region−inner region interactions,
the GSBP approach employs a projection of the associated
Green’s function onto a basis set, which is also used to
represent the corresponding multipole moments. We checked
the convergence of the GSBP energy with increasing basis set
size for the same test system as before. Figure 8 shows the

Figure 6. Total self-energy of polarization of the 903 Drude oscillators
located in the inner region of the system, as a function of the dielectric
constant used in the SMBP to represent the outer solvent through a
PDC.

Figure 7. Mean average percentage of deviation (MAD) and
maximum percentage of deviation (MAX) of the self-energy of
polarization of Drude oscillators (truncated vs reference system, see
text) plotted as a function of the distance from the central carbon atom
of glycine. In the truncated system, different dielectric constants are
used in the SMBP to represent the outer solvent through a PDC.

Figure 8. Variation of the GSBP energy with the size of the basis set
used to project the inner−inner potential (relative to the value
obtained with 25 basis functions). The dielectric constant of the outer
region was fixed to 80.
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variation of the GSBP energy for the two limiting cases, with
the Drude oscillators being fully included or fully neglected in
both the inner and the outer region. In the former case (red
curve), the GSBP energy converges not quite as fast as in the
latter case (black curve), indicating the need for a larger basis
when including polarization. However, the previously recom-
mended expansion up to l = 20 (400 functions)46 is seen to
capture the main part of the GSBP energy: an extension to l =
25 provides an additional energy gain of 0.52 kcal/mol (with
DO) vs 0.37 kcal/mol (without DO). Hence, only a rather
slight increase in the order of the expansion is needed in the
DO case to ensure the same accuracy as before.
4.2. Efficiency. When using boundary potentials, explicit

atomistic simulations are restricted to the inner region. For
systems that are big enough, one may thus expect an
appreciable reduction of the computational effort compared
with a full QM/MM calculation.
To evaluate the efficiency of the SMBP, we use our test

system (glycine in water). It consists of 10 QM atoms and
21 260 point charges in the MM region (taking into account
lone pairs and Drude oscillators). The SMBP treatment
employed the previously adopted parameters49 and an 18 Å
inner region containing the 10 QM atoms and a total of 4515
MM point charges. Table 1 lists the computation times and

associated savings obtained on average for one geometry
optimization step for an active region encompassing glycine
and all water molecules with their oxygen atom within 14 Å of
the center. For the sake of consistency, interactions within the
fixed outer region were neglected in both cases. The
convergence criteria for the QM energy were 10−7 eV for the
AM175 Hamiltonian and 10−7 au for the DFT computations
using the BLYP77,78 and B3LYP79 exchange-correlation func-
tionals with the SVP80 and TZVPP81 basis sets. The DO
positions were considered converged if the maximum absolute
deviation from one step to another was below 10−5 Bohr and
the mean absolute deviation was below 2 × 10−5 Bohr.
Computations were run on 2.93 GHz Intel Xeon X5670
machines with 12 GB of memory. Averages were taken over the
100 last steps of the geometry optimization (110 steps overall).
The computation time for the optimizer was included and
assumed to be the same in both cases. We obtain appreciable
savings ranging from 33% to 48% depending on the chosen
QM method. These savings arise from different contributions.
In both cases, the use of the SMBP causes a strong reduction of
the number of explicitly treated point charges that is even more
pronounced for the polarizable force field (DO-PFF), which
represents each water molecule by five point charges (rather
than three without DO). We also observe that the implicit
representation of the outer region in the SMBP treatment leads

to faster convergence both in the overall and the inner SCF
procedure.
To evaluate the efficiency of the GSBP, the glycine molecule

was solvated in several water balls of different sizes.
Computation times were determined for MD simulations
using the extended Lagrangian approach. To ensure proper
propagation, we used multiple time steps, i.e., 1 fs for the
atomic motions and 1/30 fs for the thermostat.20 An artificial
mass of 0.4 au was assigned to each DO. Dynamics were run for
100 steps at 300 K to determine average times. The definitions
of the active and inner regions were maintained for every
system size. Figure 9 compares the average time per MD step

for QM/MM and QM/MM/GSBP MD simulations, as a
function of the total number of atoms (not including the virtual
DO and lone pair charges). The black line indicates the linear
increase of the QM/MM computation time with system size.
The colored lines show the QM/MM/GSBP computation
times, which are essentially independent of system size, but
depend strongly on the size of the basis set used for the
required projections. The crossing points specify the system
size, beyond which the QM/MM/GSBP treatment becomes
more efficient than the standard QM/MM approach. For the
previously recommended basis set (l = 20, 400 basis functions),
the crossing occurs at a system size of about 14 500 atoms
when using a polarized force field (DO-PFF), compared with
about 12 500 atoms for fixed-charge force fields.46 In QM/MM
studies of enzymes, the system size is often in the range of
20 000−40 000 atoms so that the use of the GSBP provides
significant savings in both cases.

5. CONCLUSION
In this article, we have combined two types of boundary
potentials (SMBP and GSBP) with a QM/MM treatment, in
which the MM part is described by a polarizable force field
formulated in terms of Drude oscillators. For both boundary
potentials, this leads to a fully polarizable three-layer QM/
MM/BP model. The boundary potentials account for long-
range electrostatic interactions, since they simulate the outer-
region solvent by a polarizable dielectric continuum. In the case
of the GSBP, the effects of the outer region are represented by
a reaction field matrix, which is obtained once and for all at the
beginning of a MD simulation. In the case of the SMBP, they

Table 1. Average Time (s) for One Geometry Optimization
Step at the Full QM/MM Level and the QM/MM/SMBP
Level with the Associated Savingsa

QM basis QM/MM QM/MM/SMBP % saved

AM1 122 66 46
BLYP SVP 505 262 48
BLYP TZVPP 1355 726 47
B3LYP SVP 613 362 41
B3LYP TZVPP 1622 1021 33

aComputations were run on 2.93 GHz Intel Xeon X5670 machines
with 12 GB of memory. See text for further details.

Figure 9. Computation time per MD step as a function of the total
number of atoms. The black line shows the times for the full QM/MM
treatment. In color: QM/MM/GSBP times for different numbers of
basis functions used to project the inner−inner potential.
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are computed on-the-fly during geometry optimization, in a
manner that allows the use of any kind of QM method. The
Drude oscillators simulate the polarization of the explicit inner
MM region by two point charges of opposite sign linked by a
spring, thus forming a dipole. One of the two DO charges is
located at the polarizable atom, while the position of the other
one is optimized in the field of the environment, with
contributions from the QM and MM atoms, the boundary
potential, and the other Drude oscillators. Likewise, DO terms
are included in the evaluation of the QM wave function and
contribute to the boundary potential arising from the inner
region. Hence, the polarization effects in the three layers of our
model are interdependent and coupled with each other. In the
GSBP case, this coupling was treated by using an extended
Lagrangian scheme, which propagates the DO positions as
dynamical degrees of freedom so that they can be considered as
fixed at every MD step, thus allowing us to handle the DO
charges as any other classical MM point charge. In the SMBP
case, the polarizations in the three layers were fully converged
through an SCF procedure designed to minimize the number of
QM evaluations to increase efficiency.
The accuracy of the two combination schemes was checked

for a test system consisting of a glycine molecule in a water ball.
Both schemes reproduce the gradients from corresponding full
QM/MM calculations quite well. A proper SMBP representa-
tion of the inner−outer potential energy term requires the
inclusion of frozen outer-region Drude oscillators. On the other
hand, it also seems advisable to include the DO contributions
during the SCF procedure to determine the SMBP. The
influence of long-range electrostatic interactions on the Drude
model is found to be significant, but there is no evidence for a
“polarization catastrophe” when using a high dielectric constant
to describe the outer-region solvent. The effects of the SMBP
on the DO positions typically amount to less than 10−3 Å and
thus to less than 10% of typical polarization effects. In the
GSBP case, the results depend on the size of the basis set used
to project the potential. When using Drude oscillators,
maintaining the desired accuracy may require a slight extension
of the multipole expansions used to describe the inner−inner
interactions. QM/MM/SMBP computations become faster
than the corresponding QM/MM computations beyond a
certain system size, which depends on the chosen QM method.
In the GSBP case, the efficiency also depends on the size of the
basis set used for projection. In both cases, appreciable savings
can be realized for large systems.
The presented three-layer models are particularly suitable for

accurate ab initio free energy calculations of localized processes
in macromolecules. Such studies require suitable polarizable
force fields for proteins and other biomolecules.
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The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and ef-
ficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular
mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region
is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate
are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular
dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM
single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps.
After validating our method using an analytic model potential with an exactly known solution, we
report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We
suggest guidelines for QM/MM DH-FEP calculations and default values for the required computa-
tional parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination
with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate
(two individual distances), with superior results for the latter choice. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817402]

I. INTRODUCTION

Free energy is a key thermodynamic quantity to charac-
terize chemical processes. It governs the relative stability of
different species and the rate of chemical reactions. Knowl-
edge of the potential energy of the system along the reaction
coordinate (RC) is not sufficient to determine the reaction rate
because of the entropic contributions to the free energy. In
systems that obey classical statistical mechanics, one needs
information about all accessible configurations of the system
through the partition function to calculate the free energy ex-
actly. The Helmholtz free energy is given by

A = − 1

β
ln(Z), (1)

where Z is the canonical ensemble partition function of the
system and β = 1

kBT
is available from the Boltzmann con-

stant kB and the temperature T. Free energy differences can
be expressed in terms of ensemble averages that can be ap-
proximately evaluated with the use of sampling techniques,
such as molecular dynamics (MD) or Monte Carlo (MC)
simulations.1

There are several well-established procedures to calcu-
late the free energy, e.g., umbrella sampling,2 thermodynamic
integration,3 and free energy perturbation (FEP).4 For exam-
ple, FEP can be used to determine the free energy difference
between a perturbed and an unperturbed state of the system,
which are described by two different Hamiltonians, through
the sampling of the potential energy difference between them.

a)Permanent address: Lanxess Deutschland GmbH, 51369 Leverkusen,
Germany.

b)Electronic mail: thiel@mpi-muelheim.mpg.de

Regardless of the chosen procedure, the configurational
phase space needs to be sampled extensively to obtain ac-
curate free energies. This will become computationally de-
manding when going to ever larger systems and to ever more
accurate and time-consuming methods for computing the po-
tential energy during the sampling. Nowadays, classical force
fields are widely used to describe thermodynamic proper-
ties of large biomolecular systems. If electronic effects are
important, e.g., as in chemical reactions, one can apply hy-
brid quantum mechanical/molecular mechanical (QM/MM)
methods,5 in which the electronically relevant part of the sys-
tem is treated quantum-mechanically, while the remainder
is described by a classical force field. QM calculations re-
quire significantly more computational time than MM calcu-
lations, and therefore extensive sampling of large systems is
demanding at the QM/MM level, especially when using first-
principles QM methods. Due to this limitation, there have
been many efforts6–26 to develop QM/MM free energy meth-
ods, which aim at avoiding direct sampling at high levels of
theory while still giving an accurate estimate of the free en-
ergy changes during the reaction.

A powerful approach, initially proposed and developed
by Warshel and co-workers,6–12 and also employed in a mod-
ified form by Ryde and co-workers,13, 14, 27 makes use of ther-
modynamical cycles; an initial estimate of the free energy
is determined by sampling with some approximate reference
Hamiltonian and then corrected by evaluating via FEP the free
energy change when going from the approximate reference
Hamiltonian to the target QM/MM Hamiltonian. In some of
these studies,12, 27 the reference potential has been generated
using semiempirical QM methods. Another approach22–24 is
to accelerate the sampling of configurational phase space
by using auxiliary MC simulations performed with an

0021-9606/2013/139(6)/064105/11/$30.00 © 2013 AIP Publishing LLC139, 064105-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
188.1.234.210 On: Fri, 12 Sep 2014 07:29:43



064105-2 Polyak et al. J. Chem. Phys. 139, 064105 (2013)

approximate Hamiltonian; the resulting final MC structures
are subjected to MC update tests, which are based on the
phase space overlap of the two Hamiltonians, thus signifi-
cantly increasing the rate of the overall convergence. The two
approaches have also been combined.25

There are also QM/MM free energy calculations that
conduct a direct sampling of the whole phase space of the
full QM/MM system on a single potential surface using
umbrella sampling,28 thermodynamic integration,29 or um-
brella integration.30 Such calculations usually employ effi-
cient semiempirical methods as QM component and trajecto-
ries of less than 100 ps (sufficient to obtain converged results
in the investigated enzymatic systems according to standard
statistical tests29). In a recent study,27 the use of semiempir-
ical QM/MM sampling for evaluating the entropic contribu-
tions was however considered questionable, because the phase
space showed only weak overlap with the one derived from
higher-level methods. In the dual-level approach of Tuñon
and co-workers,31, 32 higher-level single-point calculations are
employed to determine correction terms for the semiempiri-
cal QM/MM energy and gradient as a continuous function of
a distinguished reaction coordinate, and free energy calcula-
tions are then done on the resulting surface using umbrella
sampling.

The QM/MM-FE technique developed by Yang et al.26 is
based on the FEP method and targets an especially efficient
QM/MM sampling. In this approach, the reaction path is di-
vided into windows, and in each of them the geometry of the
QM region is obtained by a restrained QM/MM optimization.
This geometry is then kept fixed during the sampling which
is performed only for the MM region, with the QM atoms be-
ing represented by partial charges (derived by an ESP fit of
the electrostatic potential). The perturbations are defined by
the exchange of the two subsequent geometries of the QM
region. This procedure offers an inexpensive way to directly
obtain the free energy profile of a reaction at the QM/MM
level since the sampling of the MM region is effectively done
at the MM level. The conceptual drawback of this approach
is the lack of sampling in the QM region, and hence the en-
tropic QM contribution can only be evaluated at the stationary
points within the rigid-rotor harmonic-oscillator approxima-
tion of statistical thermodynamics.

Amore general formulation of the QM/MM-FE approach
proposed by Rod and Ryde13,14 and named QTCP (quantum-
mechanical thermodynamic-cycle perturbation) uses the FEP
method both for evaluating the MM → MM perturbation
along the reaction coordinate and for estimating the vertical
MM → QM/MM free energy differences in a thermodynam-
ical cycle.

In this paper, we present a modified version of the
QM/MM-FE method, in which the phase space of the QM
region is freely sampled, except for the RC which is the sub-
ject of the perturbation. The sampling of the QM region com-
bines MD simulations at the efficient semiempirical QM/MM
level with first-principles QM/MM energy evaluations (using
ab initio or density functional QM methods). We therefore
call this approach Dual Hamiltonian Free Energy Perturba-
tion (DH-FEP). In Secs. II–III, we first describe the method
and its implementation. Thereafter we validate it for two test

systems: a two-dimensional analytic model potential and the
enzymatic reaction catalyzed by chorismate mutase.

II. METHOD

A. QM/MM-FE

According to Zwanzig,4 the free energy difference be-
tween a perturbed (2) and an unperturbed (1) state can be ex-
pressed as

�A = A2 − A1 = − 1

β
ln

∫
P1(r)exp{−β[E2(r) − E1(r)]}dr,

(2)
where E(r) is the potential energy and P1(r) is the probability
of finding the unperturbed system in the configuration r. For
a QM/MM Hamiltonian, the energy is decomposed into three
parts and therefore we have

�A = − 1

β
ln

∫
P1(r)

× exp{−β[�EQM + �EQM−MM + �EMM ]}dr. (3)

In the QM/MM-FE method introduced by Yang and co-
workers,26 the perturbation is defined as the exchange of two
neighboring QM structures that result from restrained op-
timizations of points along the reaction path. The underly-
ing assumption is that the QM and MM degrees of freedom
(DOFs) can be treated separately and that the sampling needs
to be done only over the MM DOFs, whereas the contribu-
tions to the free energy arising from the fluctuations of the
QM region around its “optimum reaction path” are assumed
to be constant along the RC. The expression for the free en-
ergy difference between “windows” A and B along the RC
is26

�A(Rc) = �EQM (rmin
QM )

− 1

β
ln

∫
P

(
RA

c

)
exp{−β[EQM/MM

(
rmin
QM

(
RB

c

))
−EQM/MM

(
rmin
QM

(
RA

c

))
]}drMM. (4)

Corrections for zero-point vibrational energies and entropic
contributions are only included at the stationary points using
the rigid-rotor harmonic-oscillator approximation,

�AQM − �EQM = �EZPE
QM + �Uth

QM − T �SQM. (5)

The QM/MM-FE method outlined above involves two
major assumptions. The first one is conceptual, namely not
to sample the QM region, which causes a truncation of the ac-
cessible configurational space and may thus lead to an under-
estimation of the entropic contributions. The second and less
critical one arises from the implementation: the representa-
tion of the QM atoms by ESP charges to allow for an efficient
sampling (technically at the MM level).

B. Dual Hamiltonian free energy perturbation

In our approach, we do not separate the QM and MM
DOFs but define the perturbation in terms of a pre-determined
RC ξ on the potential energy surface. The RC is split into
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discrete windows, each having a specific ξ i value assigned, so
that ξ i and ξ i+1 are two constraints defining two neighboring
windows along the RC,

�E
ξi→ξi+1
pert = E(r′, ξi+1) − E(r′, ξi), (6)

where r′ represents any configuration that fulfills the con-
straint ξ i. We thus have a constrained Hamiltonian and can
write the free energy along the RC as

A(ξi) = − 1

β
ln

∫
exp{−βE(r′, ξi)}dr′. (7)

In standard notation,4 the free energy perturbation between
two subsequent points is given by

�Aξi→ξi+1 = − 1

β
ln

∫
Pi(r′, ξi)

×exp{−β[E(r′, ξi+1) − E(r′, ξi)]}dr′. (8)

In practice, the integration is replaced by a discrete sum over
MD steps. In the limit of complete sampling over all r′ we
obtain

�Aξi→ξi+1 = − 1

β
ln

[
1

N

N∑
i=1

exp
{ − β�E

ξi→ξi+1
pert

}]
. (9)

Applying this approach directly in combination with
high-level QM methods would be expensive. Therefore we
look for an approximation that will make our computations ef-
ficient. The integration step size in the MD simulation is usu-
ally chosen rather small to ensure a stable and accurate prop-
agation of the system. Two consecutive points are thus rather
close in geometry and �Epert does not vary much, i.e., the
step size is ideal for the MD run, but not for sampling �Epert

efficiently. Therefore we adopt a procedure, in which �Epert

is computed regularly only after skipping a pre-determined
number of steps; this also decreases the correlation between
subsequent configurations. The intermediate MD steps are
disregarded during the computation of the free energy, which
is thus determined from a limited number of configurations.
This allows us to introduce the next approximation: �Epert is
evaluated with a computationally demanding high-level QM
method at the selected steps (which is affordable because of
the relatively small number of such calculations), while the
sampling is performed at the semiempirical QM/MM level.
Denoting the low-level and high-level Hamiltonian by Ham1
and Ham2, Eq. (8) can then be reformulated accordingly,

�Aξi→ξi+1 =− 1

β
ln

∫
P Ham1

i (r′, ξi)

× exp{−β[EHam2(r′, ξi+1) − EHam2(r′, ξi)]}dr′.

(10)

Using a cumulant expansion,33 the free energy difference
can be expressed as a function of the central moments of the
energy difference distribution,

�A = 〈�E〉 − β

2
σ 2 + O(β)2. (11)

We use this expansion to overcome the problem of possible
random occurrences of low �Epert values in the trajectory,

which may adversely affect the direct exponential average. In
practice, we neglect all higher-order terms (as in Ref. 33), and
the free energy difference is calculated as a sum of the average
value and the variance of the energy difference distribution.

In actual applications, the reaction path is obtained from
a sequence of restrained optimizations for suitably defined
“windows,” each one with a given RC value ξ i. A semiem-
pirical QM/MM MD simulation is then performed for each
window with the constrained RC value ξ i. Every x number
of steps, the RC is perturbed to ξ i+1 and �Epert is evaluated
using a high-level QM Hamiltonian; note that the system is
always propagated at RC = ξ i. The �Epert value obtained is
then tested for equilibration as described in Ref. 29 by ensur-
ing that there is no trend in the coarse-grained average and
variance, and by checking the distribution for normality and
lack of correlation. If the test for trend reveals non-stationarity
of �Epert or its variance, some MD steps from the beginning
of simulation (and rarely from the end) are dropped until the
resulting data becomes stationary. If the above analysis results
in less than 400 equilibrated data points, further sampling is
performed for the given window. The free energy difference
between RC values ξ i and ξ i+1 and the related confidence in-
terval are then calculated based on the cumulant expansion.33

Finally, the free energy profile of the reaction is obtained by
summing up all the free energy differences between adjacent
windows.

So far our development has been in terms of a one-
dimensional RC (e.g., an internal coordinate or a linear com-
bination of internal coordinates) that gives rise to a single
constraint ξ i. However, our formalism, in particular Eq. (10),
remains valid when using a more general collective coordi-
nate, for example a collection of several (N) independent in-
ternal coordinates {dj(i)} that are individually and simulta-
neously constrained during the sampling. A typical case is a
one-dimensional RC defined as a linear combination of two
distances, where the corresponding collective coordinate is
composed of these two distances (N = 2). The use of a col-
lective coordinate may lead to improved results, when the in-
dividual constraints are chosen appropriately and reflect the
most relevant changes during the reaction.

DH-FEP is related to the several existing
methods11,12, 27, 31, 32 in the sense that it uses a reference
potential in order to perform efficient sampling, while
obtaining the free energy difference at a higher theory level.
It differs from previously proposed dual-level free energy
methods in that we do not evaluate and apply high-level
perturbation corrections after the low-level sampling is
finished,11,12, 27 nor do we perform a semiempirical QM/MM
sampling with a pre-calculated first-principles correction
function along the reaction path.31,32 Instead, our goal is
to approximate an accurate high-level QM/MM sampling
by using efficient semiempirical QM/MM MD simulations
and directly evaluating first-principles QM/MM perturba-
tion energies at a relatively small number of selected MD
steps. We thus avoid a perturbation treatment in the method
space, based on the assumption that there is a sufficient
overlap in the phase space of the low-level and high-level
methods used. Both our approach and the methods based
on a thermodynamic cycle may suffer from a possibly weak
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overlap of the two underlying phase spaces. In Ref. 12 this
problem is approached by refining the reference potential,
while we try to tackle it by finding a suitable semiempirical
method that will represent the high-level QM method phase
space well and/or by using an appropriate collective reaction
coordinate (see Sec. IV). DH-FEP thus shares some basic
strategic ideas with the MM based importance function
method of Iftimie et al.,22, 23 which uses a classical MM
potential to guide a first-principles MC simulation, but the
computational framework is of course entirely different in
these two approaches.

The convergence of QM/MM free energy perturbations
based on semiempirical QM/MM simulations has recently
been studied by Heimdal and Ryde.27 The main distinction
from our approach is the use of a thermodynamic cycle to
account for the differences between low-level and high-level
QM/MM methods via FEP. Within this framework, the so-
called QTCP-free calculations are conceptually similar to our
approach in the sense that only the reaction coordinate is kept
fixed (rather than the whole QM system); it is not specified,
however, whether the atoms involved in the reaction coordi-
nate are fixed to their initial Cartesian coordinates or whether
a constraint is applied, which impedes direct comparisons. In
the QTCP-free calculations,27 the error bars for the perturba-
tion along the reaction coordinate are rather small (as in our
approach, see below), whereas those for the perturbation in
the method space (which have no counterpart in our approach)
are quite large.

III. COMPUTATIONAL DETAILS

The DH-FEP method was implemented in a developmen-
tal version of the Chemshell package.34 Constraints were im-
posed using the SHAKE procedure,35 which was extended
to include the difference of two distances between four dif-
ferent atoms. When evaluating �Epert during the MD simu-
lations, the SHAKE procedure is applied twice for the four
atoms involved in the reaction coordinate, first to satisfy the
constraint on the unperturbed system (RC value ξ i), and then
to satisfy the constraint on the perturbed system (RC value
ξ i+1); thereafter the potential energy is computed for the two
resulting structures. For the calculation of free energy differ-
ences and the statistical validation of sampled data, we used
a supplementary program written by Kästner for our original
QM/MM-FE implementation.33

In the QM/MM calculations, we employed the follow-
ing codes: MNDO200536 for the semiempirical QM meth-
ods OM3 (orthogonalization model 3)37,38 and SCC-DFTB
(self-consistent-charge density functional tight binding),39

TURBOMOLE 6.340 for the ab initio QM method RI-MP2
(resolution-of-identity Møller-Plesset second-order perturba-
tion theory),41, 42 and DL-POLY43 for the CHARMM22 force
field.44

IV. ASSESSMENT

We assess our method using two examples. The first one
involves an analytic potential function that allows an exact
evaluation of the free energy and can thus be used to vali-
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FIG. 1. 3D plot and contour plot of the analytic potential E1(ξ , φ) with a
contour spacing of 0.005. All values in atomic units.

date our ansatz for calculating free energy differences along
a pre-defined RC. We use two potential functions that differ
slightly from each other, one of which is used for sampling
and the other one for evaluating the perturbation energy differ-
ences, in order to test the importance of configurational phase
space overlap between the two potentials. The second exam-
ple addresses the evaluation of the activation free energy in
the enzymatic reaction catalyzed by chorismate mutase: here
we examine the performance of our method for a chemically
meaningful QM/MM system and compare the results to ex-
perimental data.

A. Analytical model potential

For numerical validation of our method, we use a two-
dimensional model potential taken from Ref. 30, for which
the free energy can be computed analytically: E1(ξ , φ)
= f(ξ ) + k(ξ )φ2 with f(ξ ) = b − cξ 2 + (c2/4b)ξ 4 and k(ξ )
= kmin + 2db/c +

√
(8d2b)/cξ + dξ 2. The 3D plot and a

contour plot of the potential are shown in Fig. 1. The RC
is represented by ξ while φ is an additional degree of free-
dom, along which the surface will be sampled to compute the
free energy; on the RC, we always have φ = 0. This model
potential has two minima with E1 = 0, which have differ-
ent surroundings and thus differ in free energy (lower at the
minimum with a broader potential because of higher entropic
contributions). The free energy along the RC can be evaluated
analytically as A1(ξ ) = f (ξ ) + ln(k(ξ ))/2β + const.

We used the same parameters as in our previous work.30

In atomic units, the barrier is chosen to be b = 0.01, the min-
ima are placed at ξmin = ±2 by assigning c = 0.005, while
the width of E1 in the direction of φ is defined by setting
d = 0.01 and kmin = 0.01.

Constrained Metropolis MC simulations45 were carried
out on this model potential in the NVT ensemble at a temper-
ature of 298.15 K. The path from ξ = −3 to ξ = 3 was split
into windows separated by a width of 0.05. Fifty thousandMC
trial steps with a maximum step size of 0.05 were performed
for each window along the RC, with each new run starting at
φ = 0 and the RC being constrained to ξ i. At each step, both
φ and ξ were shifted in a random direction. If the step was
accepted, the ξ value was replaced first with ξ i and then with
ξ i+1, and the energies at both points were evaluated. There-
after the next step was performed starting from ξ i. The free
energy difference was calculated from the direct exponential
average of all sampled �Epert values.
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FIG. 2. 3D plot and contour plot of the analytic potential E2a(ξ , φ) with a
contour spacing of 0.005. All values in atomic units.

The resulting activation and reaction free energies are in
excellent agreement with the analytic results. Compared with
the analytic values of 28.250 and 3.512 kJ/mol for the ac-
tivation and reaction free energies, the errors were as small
as 0.043 and 0.049 kJ/mol, respectively, which clearly vali-
dates the FEP ansatz for calculating free energy differences
along the reaction coordinate. With this justification in hand,
we now test the approximation of using two different poten-
tials for sampling and for evaluating �Epert at the sampled
geometries.

For this purpose, we constructed two new model poten-
tials that differ in the transition state region but are the same
at both minima. This choice is motivated by the intended
QM/MM applications, where we expect low-level QM meth-
ods to mimic high-level QM methods more closely near the
minima than near the transition states.

We first introduced into E1 a term that depends in a Gaus-
sian fashion on ξ and quadratically on φ, being zero at φ = 0.
In the resulting function E2a(ξ , φ) = f(ξ ) + k(ξ )φ2 + a exp
{−ξ 2/(2s)}φ2, we chose the parameters as a = 0.1 and
s = 0.2 (see Fig. 2).

Next we shifted the zero of the new term along the φ

axis, thus slightly changing the minimum energy path in the
region of the transition state. The new function was E2b(ξ , φ)
= f(ξ ) + k(ξ )φ2 + a exp {−ξ 2/(2s)}(φ + �)2 (see Fig. 3). We
confirmed that MC calculations of the reaction and activation
free energies for these modified potentials were as accurate as
before (for the E1(ξ , φ) potential, see above) when the energy
differences were evaluated with the same potential that was
used for sampling.

We then ran MC simulations with the same parameters
as before, with the sampling done on the E2a(ξ , φ) poten-
tial and the evaluation of �Epert done on the E2b(ξ , φ) poten-
tial. As expected, the results deteriorate with increasing values
of the shift parameter � that governs the deviation from the
E2a(ξ , φ) sampling potential. In the sequence � = 0.05, 0.1,
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FIG. 3. Contour plot of the analytic potentials E2a(ξ , φ) (solid lines) and
E2b(ξ , φ) (dashed lines) with a contour spacing of 0.005 and � = 0.2. All
values in atomic units.

and 0.2, the error in the activation free energy rises from
0.45 kJ/mol via 2.33 kJ/mol to 9.74 kJ/mol. Due to the delib-
erate choice of the shape of the potentials (see above), the er-
ror in the reaction free energy grows much more slowly, from
0.00 kJ/mol via 0.17 kJ/mol to 0.92 kJ/mol, respectively.

The drastic rise of the error in the activation free energy
confirms the importance of having sufficient overlap between
the configurational phase space accessible on the two sur-
faces. At the transition state, the φ values that can be sampled
on the E2a(ξ , φ) potential range from −0.2 to 0.2 due to the
steep rise of energy along the φ axis. Therefore, as soon as
the transition state on the E2b(ξ , φ) potential is moved close
to the border of the φ values accessible at the E2a(ξ , φ) level,
we no longer sample the correct configurational space, and
hence the computed activation free energy can no longer be
trusted.

The DH-FEP method is thus clearly sensitive to the de-
gree of the overlap of configurational phase space between the
two potentials that are used for sampling and for evaluating
�Epert at the sampled geometries. Therefore the geometrical
correspondence of the two potentials along the RC must be
carefully checked prior to free energy calculations.

B. Chorismate Mutase

As second example we chose a “real-life” QM/MM sys-
tem and calculated the activation free energy of the Claisen
rearrangement of chorismate to prephenate, catalyzed by the
Bacillus subtilis Chorismate Mutase (BsCM) enzyme. This
reaction is a key step on the shikimate pathway of the aro-
matic amino acid synthesis in plants, fungi, and bacteria. It
has been intensively investigated theoretically.46 One peculiar
trait of this system is the lack of covalent bonds between the
substrate and the protein environment during the whole reac-
tion, making it a rather convenient model for testing QM/MM
methods. Experimentally, the entropic contribution to the acti-
vation free energy has been determined47 to be T�S = −11.4
± 1.5 kJ/mol at T = 300 K, which may serve as a reference
value for assessing the results from QM/MM free energy cal-
culations. In our present work on BsCM, we first focus on
technical issues relevant to the proposed DH-FEP approach:
we test the number of steps that may be skipped between two
subsequent �Epert evaluations, as well as the overall number
of MD steps needed to obtain converged results, and we ad-
dress the problem of configurational phase space overlap be-
tween the two potentials and how this affects the results.

In the QM/MM calculations, we treated the substrate (24
atoms) at the QM level (OM3, SCC-DFTB, RI-MP2/SVP)
and the rest of the system comprising the protein and the
solvent shell (13421 atoms in total) with the CHARMM22
force field.44 The initial preparation of the system has been
described elsewhere.48 The first MD snapshot from the pre-
vious study48 was subjected to further MD sampling us-
ing CHARMM33b1,49,50 and six independent new snapshots
were randomly chosen from this MD run.

Following standard conventions, we first defined the RC
as the difference between the lengths of the breaking C–O and
the forming C–C bond (see Fig. 4). Potential energy profiles
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FIG. 4. Claisen rearrangement of chorismate to prephenate in chorismate
mutase. The two parallel red dashed lines in the transition state indicate the
forming and the breaking bonds. The difference between the corresponding
distances is the reaction coordinate.

were calculated at all applied QM/MM levels (see above) for
all the snapshots, via a series of restrained optimizations with
the RC being sequentially changed from −2.4 Å to 2.4 Å in
steps of 0.05 Å. For some of the snapshots, the reaction path-
ways were calculated several times in forward and backward
direction until any unevenness was removed from the poten-
tial energy profile. Subsequent transition state optimizations
and intrinsic reaction coordinate computations confirmed that
the chosen RC is perfectly adequate and a valid reference to
perform the FEP calculations.

In DH-FEP applications, two parameters need to be set,
namely the number of steps skipped between two subsequent
perturbations (x) and the total number of �Epert evaluations
to be performed. We have tested these options in a single MD
run for an arbitrarily chosen window (at RC = −1.15Å). The
system was heated up to 300 K in steps of 10 K during 3 ps
and then equilibrated for 20 ps, before the sampling was per-
formed for 25 ps with �Epert evaluated at every step. In this
and all further MD calculations, the step size was 1 fs. All
MD simulations were run in the canonial ensemble using the
Nosé-Hoover chain thermostat51,52 with a chain length of 4
and a characteristic time for the first thermostat of 0.02 ps.
We used OM3/CHARMM both for sampling and for evalu-
ating �Epert. Results for different values of x with the num-
ber of �Epert evaluations fixed to 1000 are shown in Fig. 5.
We depict both the direct exponential average of all �Epert

evaluations taken (dashed) and the values obtained via cu-
mulant expansion from a reduced number of �Epert values
(solid) selected after applying the statistical test on the lack of
trend. The error bars shown in Fig. 5 refer to the latter; they
were evaluated according to Ref. 33. The two sets of data do
not deviate significantly, reflecting the lack of trend in most
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FIG. 5. Free energy difference between two windows calculated with a dif-
ferent number of steps skipped between the �Epert evaluations, with the over-
all number of these evaluations fixed to 1000. The values in red (solid line)
were obtained after subjecting the data to statistical tests for lack of trend and
decorrelation. The values in green (dashed line) were obtained from direct
exponential averaging of all data points. Data were taken starting from the
end of a 25 ps OM3/CHARMM MD sampling run of one of the windows
along the CM reaction profile (see text for further details).

datasets. �A converges with increasing x, showing that the
decreasing dependency between subsequent �Epert calcula-
tions improves the quality of the sampling. For x between 0
and 4, the free energy is clearly not converged, while values
above 10 seem to be a reasonable choice. In this study, we
adopted x = 14 (i.e., we evaluate �Epert at every 15th step)
since �A fluctuates around some average value for higher x.
In an additional test, we have confirmed that this remains true
up to x = 149, i.e., when extending the time between �Epert

evaluations up to 150 fs (see Fig. S1a of the supplementary
material53).

Concerning the second option, Fig. 6 shows the variation
of �A against the overall number of steps taken, with a fixed
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FIG. 6. Free energy difference between two windows calculated with 14
steps skipped between two �Epert evaluations, with the overall number of
these evaluations being varied. The values in red (solid line) were obtained
after subjecting the data to statistical tests for lack of trend and decorrelation.
The values in green (dashed line) were obtained from direct exponential av-
eraging of all data points. Data were taken during a 25 ps OM3/CHARMM
MD sampling run of one of the windows along the CM reaction profile (see
text for further details).
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value of x = 14. �A seems to converge after MD sampling
times of around 10 ps. As expected, the error bar for �A de-
creases with increasing sampling time, i.e., with the number
of �Epert evaluations performed. This kind of convergence is
confirmed by further test calculations with sampling times up
to 105 ps (see Fig. S1b of the supplementary material53). In
the following, we normally limit ourselves to 10 ps of sam-
pling and use x = 14 throughout. We note in this context that
more extensive sampling will often be hardly affordable in
practice when the �Epert evaluations are carried out with a
high-level QM method.

Next we assess the accuracy of our method by compar-
ing it to the well-established thermodynamic integration (TI)
method. Both the sampling and �Epert evaluations were per-
formed at the OM3/CHARMM level. Since we focus on the
activation free energy, we only considered the first 50 win-
dows from the energy profile, covering the reactant minimum
and transition state areas. The MD calculations were done for
four snapshots in the following way: in every window, the sys-
tem was first heated up to 300 K in steps of 10 K during 3 ps,
then equilibrated for 25 ps, and finally sampled for 15 ps, with
�Epert being computed at every 15th step.

The results from the OM3/CHARMM FEP runs were in
good agreement with those from TI calculations performed
for the same snapshots with the same MD parameters: for all
four snapshots tested, the activation free energies agreed to
within 0.8 kJ/mol, which is of the same order as the error
estimate29 of 1.0 kJ/mol for the TI values with the currently
adopted setup. The computed activation free energies �A‡ for
the four snapshots range between 66.5 and 71.5 kJ/mol, hence
the snapshot-dependent fluctuations are significantly larger
than the uncertainties in the TI and FEP calculations (both
run on the same single potential surface). We have also tested
the convergence of the OM3/CHARMM FEP results for one
particular snapshot with regard to the MD sampling time in
the FEP procedure: when prolonging the sampling time per
window from 15 to 105 ps, the resulting free energy pro-
files remain virtually identical (see Fig. S2 of the supplemen-
tary material53), the activation free energies agree to within
0.2 kJ/mol, and the associated uncertainties decrease from 0.7
to 0.3 kJ/mol.

We now test the central DH-FEP approximation,
namely the use of two different QM Hamiltonians in the
QM/CHARMM calculations: OM3 or SCC-DFTB for sam-
pling and MP2/SVP for evaluating �Epert. As shown in Sub-
section IV A for the analytic model potential, reasonably ac-
curate DH-FEP results can be expected only if the two QM
methods yield reasonably similar geometries along the RC.
To check this crucial DH-FEP issue, we define two crite-
ria of geometrical correspondence: first, the interatomic dis-
tances entering the expression for the RC, and second, the
root-mean-square deviation (RMSD) between the geometries
of the whole QM region along the RC.

For a given value of RC defined as the difference of
the distances in the forming C–O and the breaking C–C
bond, restrained QM/MM optimizations (as well as con-
strained QM/MM dynamics) with two different QM meth-
ods will give different individual C–O and C–C distances,
and therefore comparison of these distances can be a straight-
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FIG. 7. Optimized C–C and C–O distances along the RC for the three differ-
ent QM methods.

forward way to examine the geometrical correspondence of
the two QM methods. Fig. 7 shows that the optimized dis-
tances fromOM3/CHARMM nearly coincide with those from
QM(MP2/SVP)/CHARMM up to RC = −1.4Å, but start to
deviate thereafter, with the difference growing up to 0.4 Å
at RC = 0. The optimized C–O and C–C distances from
SCC-DFTB/CHARMM show the opposite behavior: they dif-
fer from the QM(MP2/SVP)/CHARMM distances somewhat
up to RC = −1.1Å, but then follow them closely up to RC
= 0 except for the region of RC = {−0.6Å, −0.2Å}. Con-
cerning the RMSD values for the optimized QM regions rel-
ative to the QM(MP2/SVP)/CHARMM geometries along the
RC: they vary from 0.04 to 0.06 Å for SCC-DFTB (being
lowest in the region of RC = {−1.2Å, 0.0Å}) while they
range from 0.06 to 0.09 Å for OM3 (being lowest for RC
= {−1.15Å, −0.7Å}).

Going beyond geometry considerations, we performed
a series of QM(MP2/SVP)/MM single-point energy calcula-
tions at the optimized OM3/MM and SCC-DFTB/MM ge-
ometries along the RC (see Fig. 8). None of the resulting
two curves was exactly matching the QM(MP2/SVP)/MM
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level and QM(MP2/SVP)/CHARMM single-point energies at the optimized
OM3 and SCC-DFTB structures along the reaction path.
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FIG. 9. Potential energy, DH-FEP, and QM/MM-FE profiles obtained for
snapshot 6. The potential energy was computed at the QM(MP2/SVP)/
CHARMM theory level. The DH-FEP profile was determined with a hy-
brid approach, in which the first part of the reaction path was sampled
with OM3/CHARMM, and the second part with SCC-DFTB/CHARMM,
while �Epert was evaluated with QM(MP2/SVP)/CHARMM. The conven-
tional QM/MM-FE profile was computed at the QM(MP2/SVP)/CHARMM
level.

energy profile, but the relative energies computed at the
SCC-DFTB/MM geometries were clearly closer to the
QM(MP2/SVP)/MM reference values.

In an overall assessment of the QM/MM geometries for
BsCM, SCC-DFTB thus seems superior to OM3 in repro-
ducing the MP2-based results, and hence it should be a good
choice for performing the sampling in QM/MM DH-FEP cal-
culations. However, the corresponding QM(MP2/SVP//SCC-
DFTB)/MM DH-FEP results (see Fig. S3 of the supplemen-
tary material53) were unsatisfactory: the DH-FEP free energy
profile started rising much too fast at an early stage of the re-
action close to the reactant state, and the activation free en-
ergy was too high compared with the QM(MP2/SVP)/MM
reference value. Moreover, these calculations failed to re-
produce the entropic contribution to the activation free en-
ergy that is known experimentally (see above). By contrast,
the QM(MP2/SVP//OM3)/MM DH-FEP free energy profile
was found to “behave” very well close to the reactant equi-
librium, but to become quite different in shape from the
QM(MP2/SVP)/MM reference curve closer to the TS, as ex-
pected from the geometry correspondence tests (see above).

Given the fact that neither OM3 nor SCC-DFTB provides
sufficiently accurate QM/MM geometries along the whole
RC, we decided to test a hybrid approach, running the MD
sampling for the first part of the reaction (RC = {−2.4Å,

−1.25Å}) with OM3/MM and using SCC-DFTB/MM for the
second part (RC = {−1.25Å, 0.1Å}). To limit the compu-
tational effort for the MP2-based evaluation of �Epert, the
MD procedure was slightly changed: the heating was done
in steps of 5 K during 6 ps, thereafter the system was equi-
librated for 15 ps and sampled for 10 ps. We thus performed
1333 MP2/CHARMM calculations per window. The hybrid
approach (dashed-dotted curve in Fig. 9) gave satisfactory re-
sults: the difference between �E‡ and �A‡ ranged from −2.0
to −18.0 kJ/mol for the individual snapshots, with an average
value of −10.3 kJ/mol and a confidence interval for the barrier
of about 1 kJ/mol. Taking into account the difference �EZPE

QM

between the zero-point vibrational energies of TS and reactant
(−4.2 kJ/mol for each snapshot in harmonic approximation)
and assuming the thermal corrections �Uth to be negligible,
we arrive at an average T�S‡ value of −14.5 kJ/mol, which
is close to the experimental result of −11.4 ± 1.5 kJ/mol.47

It is obvious from Table I that the �A‡ value fluctuates much
less from snapshot to snapshot than the �E‡ value, implying
that the sampling was adequate. The fluctuations in the en-
tropic contributions (�E‡ − �A‡) thus mainly arise from the
differences in the energy barriers for the individual snapshots.

The error estimates given in Table I account only for sta-
tistical fluctuations and incomplete sampling during the MD
runs. They do not include errors caused by an insufficient
overlap of the two underlying configurational spaces, as we do
not apply an explicit reweighting of the semiempirical surface
via FEP, as done, e.g., in Refs. 12 and 27. In the latter work,
the errors associated with the perturbations along the reaction
coordinate were fairly small (as in our case), while those asso-
ciated with the perturbations in the method space (avoided in
our approach) were rather large, thus raising general concerns
about using semiempirical methods to provide the reference
potential. We note that there was no attempt in Ref. 27 to
evaluate the configurational space overlap between the cho-
sen semiempirical and higher-level QM method prior to per-
forming MD simulations, or to go beyond standard MNDO-
type semiempirical methods. Doing so may enhance the qual-
ity of the reference potential in such dual-level free energy
calculations.

For comparison, we also performed conventional
QM/MM-FE calculations26,29 for snapshot 6 (see Fig. 9).
As expected from the lack of sampling in the QM region,
the entropic contribution is underestimated: the free energy
profile basically follows the potential energy profile, and
the TS is even slightly lower, suggesting an entropic con-
tribution with the wrong sign. Following the conventional
procedure,26,29 the entropic contribution for the QM region
can be evaluated at the stationary points using the rigid-rotor

TABLE I. Free energy and potential energy barriers and entropic contributions to the barrier of the BsCM-catalyzed reaction for the six snapshots considered.
All values in kJ/mol.

Snapshots Average Exp.47

Snapshot number 1 2 3 4 5 6

�A‡ 57.1±0.7 59.2±0.7 62.4±0.9 56.7±0.7 62.1±0.8 60.0±0.7 59.6±0.75 64.4
�E‡ 47.5 41.9 44.4 49.2 60.1 52.6 49.3
�E‡ − �A‡ − 9.6±0.7 − 17.3±0.7 − 18.0±0.9 − 7.5±0.7 − 2.0±0.8 − 7.4±0.7 − 10.3±0.75 − 11.4±1.5
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harmonic-oscillator approximation; this gives a T �S
‡
QM con-

tribution of 2.5 kJ/mol, which is clearly too small to get close
to the experimental value of the entropic contribution (see
above). This example confirms that the degrees of freedom
in the QM region should also be sampled to obtain a realistic
entropic contribution to activation free energies in chemical
reactions.

Our results with the hybrid approach indicate that the
DH-FEP approach can provide free energies that closely
mimic those from high-level QM/MM approaches, if the
low-level QM/MM approach used for sampling yields re-
alistic geometries along the RC (close to the high-level
QM/MM geometries). However, such close matching of low-
level and high-level geometries, e.g., from semiempirical and
ab initio QM/MM calculations, may not always be achiev-
able, as presently demonstrated for OM3 or SCC-DFTB ver-
sus MP2/SVP. In such cases, we can generalize the DH-FEP
strategy by using more than one constraint, based on the ob-
servation that it is crucial to match the decisive geometrical
variables entering the RC. In the case of BsCM, instead of
only constraining the RC (i.e., the difference between the dis-
tances of the forming C–O and the breaking C–C bond), we
now constrain the individual C–O and C–C distances to their
reference values from QM(MP2/SVP)/MM restrained opti-
mizations. This choice removes two DOFs of the QM region
from sampling (rather than one DOF as before) and may thus
entail the risk to underestimate the entropic contributions.
This disadvantage is expected to be outweighed by the ad-
vantage of sampling a more appropriate configurational phase
space, with better coverage of the region that is important in
the high-level treatment.

We checked the performance of this collective coordinate
approach by running DH-FEP calculations for snapshot 6,
constraining both relevant C–O and C–C distances separately
and using either OM3/CHARMM or SCC-DFTB/CHARMM
for sampling throughout the whole reaction (see Fig. 10).
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FIG. 10. Potential energy profile from QM(MP2/SVP)/CHARMM calcula-
tions and three free energy profiles computed for snapshot 6. Hybrid DH-FEP
profile, sampling with OM3/CHARMM and SCC-DFTB/CHARMM for the
first and second part of the reaction path, respectively (see text); 2D DH-
FEP profiles, evaluated with the use of a two-dimensional collective coor-
dinate, sampling with OM3/CHARMM and with SCC-DFTB/CHARMM.
�Epert obtained from QM(MP2/SVP)/CHARMM single-point calculations
(see text).

Both DH-FEP calculations gave similar free energy profiles
and reproduced the �A‡ values that had previously been ob-
tained with the hybrid DH-FEP approach. The use of a col-
lective coordinate (here composed of the two relevant inter-
atomic distances) in the DH-FEP calculations thus helps to
overcome the limitations associated with the use of a single
one-dimensional RC.32

The DH-FEP treatment may thus be improved by the ju-
dicious choice of an appropriate collective coordinate, thereby
replacing the single constraint on the RC with two (or more)
constraints on suitably chosen DOFs. This allows for success-
ful applications even when there are appreciable differences
between the low-level and high-level geometries along the
reaction path. Obviously, a careful analysis of these differ-
ences is essential for identifying the DOFs that should enter
the collective coordinate and be constrained in the DH-FEP
calculations. Compared with the conventional QM/MM-FE
procedure,26,29 the DH-FEP approach, regardless of whether
used with a single or a collective reaction coordinate, is ex-
pected to give a better estimate of the entropic contributions
to the free energy profile, because of the explicit sampling of
most of the QM region.

V. CONCLUSION

We have presented the DH-FEP method for evaluating
free energies differences in large QM/MM systems. Com-
pared with the conventional QM/MM-FE approach,26,29 our
method samples not only the MM region but also the QM
region, i.e., the full configurational space except for the re-
action coordinate. For the sake of computational efficiency,
we introduced the approximation to use a less expensive low-
level QM/MM method for sampling, while the perturbation
energy differences �Epert are evaluated through higher-level
single-point QM/MM calculations performed at regular inter-
vals, after skipping a pre-determined number of MD sam-
pling steps. We examined the performance of our method
using two test systems, namely a two-dimensional analytic
model potential and a prototypical enzymatic reaction, the
chorismate-to-prephenate conversion catalyzed by the BsCM
enzyme.

Our implementation of the FEP approach was validated
using the same potential for sampling and for evaluating
�Epert (i.e., a single Hamiltonian approach). The FEP results
were shown to accurately reproduce the exact solutions for an
analytic model potential and the activation free energy of the
BsCM reaction obtained from standard thermodynamic inte-
gration.

In the numerical tests of the dual Hamiltonian approx-
imation for the analytic model potential, the computed free
energies were found to be quite sensitive to the overlap of
the two surfaces in the region accessible to the sampling, thus
calling for a careful analysis of the geometrical correspon-
dence between the low-level and high-level methods chosen
for DH-FEP calculations.

In the QM/MM tests for the enzymatic BsCM reac-
tion, we first determined the necessary simulation parame-
ters: we found that it was sufficient to evaluate �Epert ev-
ery 15 MD steps and to sample for at least 10 ps to obtain
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results that are converged well enough. The subsequent DH-
FEP QM/MM calculations employed the semiempirical OM3
and SCC-DFTB QM methods for sampling and the ab initio
MP2/SVP approach for evaluating �Epert. In the basic DH-
FEP treatment, we constrained only the RC (defined as the
difference between the distances of the forming C–O and the
breaking C–C bond). The quality of the DH-FEP results was
found to depend on the similarity between the low-level and
high-level QM/MM structures along the RC: neither OM3 nor
SCC-DFTB provided a good match to the MP2-based geome-
tries over the entire RC, while being reasonably accurate in
complementary regions of the reaction path. More realistic
DH-FEP results could be obtained by a hybrid approach, in
which the reaction path was divided into two regions, each
described with the most suitable semiempirical method: the
computed entropic contribution to the activation free energy
was close to the experimental value.

Closer analysis of these DH-FEP QM/MM results for
BsCM revealed that the crucial indicator of success is not the
RMSD between the low-level and high-level QM/MM struc-
tures along the RC, but rather the match of the C–O and C–C
distances used to define the RC (see above). Therefore, we
applied the more general collective coordinate approach, with
separate constraints on these two distances, to ensure an im-
proved sampling of the relevant configurational space. The
corresponding results were very close to the those from the
hybrid approach, regardless of whether OM3 or SCC-DFTB
was used for sampling. We thus recommend to use such a col-
lective RC whenever the analysis of the low-level and high-
level QM/MM structures along the RC reveals substantial
discrepancies. A suitable collective RC can be defined by pro-
ceeding as follows. First, high-level QM/MM calculations are
performed to locate the relevant transition state and the reac-
tion path that connects it with the reactants and products. A
natural choice for determining the reaction path is to follow
the intrinsic reaction coordinate (IRC) starting from the op-
timized transition state, which can efficiently be done at the
QM/MM level by an approximate microiterative scheme.54

The IRC can then be used to identify the (small) set of inter-
nal coordinates, e.g., of individual interatomic distances, that
undergo the most drastic changes along the reaction path and
that should thus enter the collective RC for the subsequent
DH-FEP calculations.

Going beyond this type of RC-based DH-FEP approach,
one may attempt to devise procedures that directly control the
space being sampled, for example by using MC techniques
with update criteria based on the overlap between the two
configurational spaces as suggested previously in a differ-
ent context.22 Alternatively, one may implement a DH-FEP
scheme, in which the geometries and energy differences are
stored during MD sampling, with the energy differences be-
ing weighted according to phase space overlap criteria at the
end. Generally speaking, it is advisable to examine whether
there is sufficient similarity of the geometries and sufficient
overlap of the configurational phase spaces obtained with the
low-level and high-level QM/MM methods used in the DH-
FEP approach. If this is the case, DH-FEP offers an efficient
opportunity to calculate accurate free energy differences in
large QM/MM systems.

This approach can become even more valuable with the
increase of computer power that will allow for future large-
scale sampling at more expensive first-principles QM/MM
levels, which may then enable even more accurate free en-
ergy evaluations, e.g., with larger basis sets or coupled cluster
QM methods.
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Hydrogen cyanide (HCN) chemistry is believed to be an
important part of the abiotic synthesis of organic materials,
including nucleobases, amino acids, and oligopeptides.[1] One
of the most probable routes for the synthesis of purine
nucleobases and nucleotides[2] in the prebiotic world
(Scheme 1) involves HCN oligomerization into the tetramer

cis-2,3-diaminomaleonitrile (cis-DAMN, 1), which may be
converted photochemically into an imidazole intermediate (4-
amino-1H-imidazole-5-carbonitrile, AICN, 2).[3] Although
this reaction has been investigated in detail since its discovery
by Ferris and Orgel in 1966,[1,4] the mechanism of the
photochemical steps remains unresolved. Herein, we address
this issue from a theoretical perspective: by the use of
computational chemistry and chemical kinetics we show that
among a number of possibilities, including all those previously
proposed, there is only one sequence of steps that is
thermodynamically and kinetically compatible with the
experimental conditions.

One of the most appealing features of the DAMN!
AICN reaction is its robustness.[5] It was observed in a large
variety of solvents (polar and nonpolar), with several
enaminonitrile derivatives, and at diverse concentrations
and temperatures.[6] The imidazole derivative 2 is photostable
(5% reduction in absorbance after irradiation at 254 nm for

3 h;[4d] see also Ref. [7] on imidazole photostability) and
resistant to hydrolysis (lifetime: 2000 years at pH 8[8]). These
characteristics imply that different prebiotic environments,
either terrestrial or extraterrestrial, could have been the
source of AICN (2) in the prebiotic world.[5] The accumu-
lation of AICN, however, requires relatively large HCN
concentrations (> 10�2m).[9] This requirement sets a first
relevant environmental constraint: such high HCN concen-
trations are only possible in low-temperature environments,
such as ice and eutectic water–HCN phases. Therefore, any
realistic mechanism cannot count on high thermal energy in
addition to the photon energy.

The number of photons and intermediates involved in the
photochemical steps is unknown (Scheme 2). The process

starts with photoexcitation of cis-DAMN (1), the first clearly
stable HCN oligomer.[10] On the basis of the spectral shifts
observed after the irradiation of cis-DAMN, Yamada et al.[4e]

showed that the first intermediate (X1) is the trans-DAMN
isomer 4 (Scheme 3). Irradiation leads to a photostationary

state with a large predominance of trans- (4) over cis-DAMN
(1).[4c] Becker et al.[4d] raised the possibility that carbenes, 6,
are the first intermediate, instead of trans-DAMN (4).
However, the absence of cross-products in the experiments
of Ferris et al. ruled this hypothesis out.[11]

Little is known about X2 (Scheme 2), which may represent
more than one intermediate. Infrared spectra in a liquid film
and a KBr matrix indicated that X2 may possess a ketenimine
group (2000–2020 cm�1)[12] and thus indicated a possible

Scheme 1. Conversion of the HCN tetramer cis-DAMN (1) into AICN
(2), a key intermediate in the synthesis of purine nucleobases and
nucleotides. Adenine (3) is shown as one possible product.

Scheme 2. Photochemical steps in the DAMN!AICN reaction.

Scheme 3. Previously proposed intermediates.
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hydrogen-atom transfer from one of the amino groups of 4 to
form 2-amino-3-iminoacrylimidoyl cyanide (AIAC, 5). The
subsequent formation of AICN (2) requires CN cleavage, for
which pathways via the azetene 7, azirene 8, and a formal
zwitterion 9 have been proposed, without any consensus on
which pathway would be predominant.[4a,6]

In this study, we investigated a large number of possible
reaction pathways. We examined both thermodynamic and
kinetic aspects of the pathways. One first relevant fact
revealed by our simulations is that although energy of 4 eV
is added to the system by the photoexcitation, most of this
energy is quickly dissipated to the environment after relax-
ation to the ground state. In water, this dissipation happens
within about 0.2 ps after internal conversion to the ground
state (see the Computational Section). This ultrafast energy
dissipation sets up a second important constraint for the
reaction: any hot-ground-state reaction should take place in
a very short time span. Naturally, the reaction does not need
to occur immediately after the first excitation. Indeed, Koch
and Rodehorst[4c] showed that the formation of AICN (2)
from the photostationary state has a quantum yield of only
0.0034, which means that DAMN (1 or 4) is excited about 300
times (on average) before cyclization takes place. These two
pieces of information together indicate that any statistical
reaction in a hot ground state should occur in less than 300�
0.2 ps= 60 ps, which corresponds to a maximum free-energy
barrier of roughly 30 kcalmol�1 (see the Computational
Section).

Scheme 4 summarizes our findings. Starting from cis-
DAMN, photoisomerization to trans-DAMN (4) occurs with-
out an energy barrier through internal conversion at a twisted
conical intersection. From the trans isomer, ground-state
reactions leading to all relevant intermediates involve bar-
riers of at least 52 kcalmol�1, which is significantly above our
kinetic threshold of 30 kcalmol�1. This finding implies that
photoexcitation of the trans isomer is required for the
reaction to proceed. In the excited state of 4, CN rearrange-
ment (to 11 or 12), hydrogen transfer from an amino group to
the carbon atom of a cyano group (leading to 10), and HCN
dissociation (to 14) are again not feasible owing to the high
energy barriers (see Scheme 4 and the Supporting Informa-
tion). Intersystem crossing to the triplet ground state, 13, can
be disregarded on the basis of the triplet-sensitizing experi-
ments reported in Ref. [6], which indicated that the photo-
cyclization takes place in the singlet manifold. The only
remaining possibility is an excited-state hydrogen-atom trans-
fer in 4 to form AIAC (5) with a computed energy barrier of
19 kcalmol�1.

From AIAC (5), an azetene intermediate (7 or 15) can be
readily formed either in the ground or in the excited state. In
the ground state, however, there are large barriers to the
subsequent rearrangement of the azetene to 17 or 18, and
moreover, azetenes do not absorb in the wavelength region of
interest. Therefore, the only option is an excited-state
reaction of AIAC (5) via an azetene. From the excited-state
minimum of AIAC, 18 is not accessible, whereas the N-
heterocyclic carbene (NHC) 17 can be formed after a rela-
tively low barrier of 23 kcalmol�1 has been overcome. Finally,
the NHC can tautomerize to AICN (product 2 or 19).

The full proposed reaction, which requires the excitation
of cis-DAMN (1), trans-DAMN (4), and AIAC (5), is shown
in more detail in Figure 1. The need for these three excitation
steps is not a statistical impediment, as we know that the
molecule is excited hundreds of times during the process.[4c]

After the excitation of trans-DAMN, either the cis isomer can
be repopulated or the molecule can relax to the S1 minimum.
In fact, the existence of this minimum explains the predom-
inance of the trans isomer 4 in the photostationary state[4c]

(see the Supporting Information). From the S1 minimum of
trans-DAMN, AIAC (5) can be formed through internal
conversion to the ground state at the CI-2 conical intersec-
tion. After the photoexcitation of AIAC, it may relax to its S1

minimum, from which azetene 7 can be formed by excited-
state ring closure. Since the S1 state of the azetene has near-
zero oscillator strength, it has time to reach the CI-3 conical
intersection. This intersection is characterized by a C�C ring
opening, which helps to guide the rearrangement towards the
formation of the five-membered ring of NHC 17.

At the CI-3 conical intersection and even afterwards in
the hot ground state (TS-2), some branching is expected. Part
of the population will flow back towards the azetene and may
return to AIAC (5), which may be excited again. Another part
will undergo an internal conversion with C�C bond cleavage

Scheme 4. Possible mechanisms for the reaction cis-DAMN (1)!AICN
(2 or 19). The values near the arrows are the computed free energies
of activation (DG) in kcalmol�1 for the ground-state reaction. When an
excited-state reaction is relevant, the corresponding energy barrier is
given in parenthesis. Species that can be photoexcited near 300 nm
are indicated by an asterisk. The final pathway is indicated by bold
arrows. See the Computational Section for a description of the
computational methods.
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in the azetene ring and then directly rearrange to NHC 17.
Such filtering of a reaction at a conical intersection has been
observed before for pyrrole, also with the involvement of
a ring-opening conical intersection.[13]

From NHC 17, the final product AICN (2 or 19) is
obtained by tautomerization. The NHC belongs to the well-
studied imidazol-2-ylidene family. Owing to the absence of
substituents at the ring nitrogen atoms, it is not stable.[14] In
the gas phase, its tautomerization to AICN involves rather
high energy barriers, but it should proceed much more readily
in polar solvents. Our computations show that the rearrange-
ment to AICN is indeed very facile in solution (see the
Supporting Information).

In conclusion, by the use of computational methods, we
have identified a multistep mechanism for the DAMN!
AICN reaction that is thermodynamically and kinetically
compatible with the available experimental data. This mech-
anism rationalizes the observed ketenimine absorption (at
2020 cm�1) and its disappearance upon heating[12] as well as
the preference for the trans isomer in the photostationary
state. It is consistent with a cold environment, which is
required to support a high HCN concentration, and it is also
consistent with the lack of luminescence during the reaction.[6]

Finally, from a more general perspective, the ultrafast energy
dissipation revealed by our simulations provides insight into
the time scales that are relevant in photochemical prebiotic
reactions.

Computational Section
Energy dissipation: After internal conversion has taken place, the
excess electronic energy is transferred to vibrational modes, thus
generating a hot ground state. This local hot spot can in principle be
the source of energy necessary to overcome a reaction barrier that can
normally not be surmounted under standard-temperature conditions.
The feasibility of such a process depends on the time during which the
molecule is hot enough to undergo the chemical reaction. We
employed quantum-mechanical/molecular-mechanical (QM/MM)
dynamics simulations to estimate the energy-dissipation time and

thus to check whether reactions in
the hot ground state may or may not
take place in the DAMN!AICN
conversion.

We simulated the energy dissi-
pation of a hot trans-DAMN ground
state into water. Details of the setup
for this simulation are specified in
the Supporting Information. A QM
region composed of DAMN and 9
water molecules was surrounded by
a sphere of MM water molecules.
The OM2 semiempirical method[15]

was used for the QM calculations.
MM water was described by the
TIP3P model.[16] After equilibration
first at MM and then at QM/MM
levels, NVE-ensemble simulations
were carried out with and without
consideration of the hot spot.

To create the hot spot, we kept
the direction of the velocities from

the initial molecular-dynamics run and only modified their norms to
correspond to an excess of 4 eVof photoenergy plus the ground-state
zero-point energy, 2.25 eV. Four such trajectories were run, and all of
them showed the same tendency. The ratio between the kinetic energy
of trans-DAMN and the average kinetic energy from the reference
simulation (without added energy) is shown in Figure 2a. Evidently,

energy dissipation is extremely fast in water, so that DAMN is already
thermalized after about 2 ps. The energy dissipation shows a double-
exponential-decay profile, with time constants 0.02 and 0.67 ps. The
first dissipation step consists of very fast transfer of about one third of
the excess energy to the neighboring water molecules, on the time
scale of a couple of N�H stretching oscillations. It is followed by
a somewhat slower step, which dissipates the remaining excess energy.

The ultrafast energy-dissipation profile imposes a very short time
window for the occurrence of hot-ground-state reactions. For consid-
erations of the reaction rate (see below), we take this window to be

Figure 1. Reaction mechanism for the photoreaction cis-DAMN (1)!AICN (19), including ground (solid
lines) and excited states (dotted lines). Dashed arrows indicate back reactions.

Figure 2. a) Ratio between the kinetic energy of trans-DAMN and the
average kinetic energy at 300 K as a function of time after creation of
the hot spot. The dashed line is a biexponential-decay fitting of the
data. b) Inverse of the unimolecular reaction rate as a function of the
free-energy barrier.
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0.2 ps, which corresponds to the time during which the excess energy
is reduced to one third of its initial value.

Reaction rate: To estimate the energy barrier that can be
overcome within 60 ps given 4 eV of internal energy, we computed
unimolecular rates k(E) by using the Rice–Ramsperger–Kassel–
Marcus (RRKM) approach.[17] The density and the number of states
were estimated with the Beyer–Swinehart direct-count method[18] on
the basis of the computed harmonic frequencies for the reactant,
trans-DAMN (4), and the transition state for CN rearrangement, 11.
By solving k(E) for several free-energy-barrier values, we could
estimate that the maximum barrier is about 30 kcalmol�1 (Figure 2b).

Computational details: Gas-phase minima and transition states in
the ground and excited states were determined by density functional
theory (DFT) and time-dependent (TD) DFT. The CAM-B3LYP
functional[19] with the aug-cc-pVTZ basis set[20] were employed in
these calculations. The use of gas-phase model calculations was
motivated by the fact that the reaction takes place equally well in
a large variety of solvents.[6] Relevant features of the reaction
pathways were verified by optimization with the second-order
approximate coupled-cluster method (CC2) and the complete-
active-space self-consistent-field method (CASSCF) followed by
single-point-energy evaluations by second-order perturbation
theory (CASPT2). Details of these calculations are described in the
Supporting Information. A collection of spectroscopic data obtained
at different levels and Cartesian coordinates of all relevant structures
are also provided in the Supporting Information. The (TD)DFT and
CASPT2 calculations were carried out with the software Gaus-
sian09[21] and Molcas,[22] respectively.
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A microiterative intrinsic reaction coordinate method
for large QM/MM systems

Iakov Polyak, Eliot Boulanger, Kakali Sen and Walter Thiel*

Intrinsic reaction coordinate (IRC) computations are a valuable tool in theoretical studies of chemical

reactions, but they can usually not be applied in their current form to handle large systems commonly

described by quantum mechanics/molecular mechanics (QM/MM) methods. We report on a development

that tackles this problem by using a strategy analogous to microiterative transition state optimization. In

this approach, the IRC equations only govern the motion of a core region that contains at least the

atoms directly involved in the reaction, while the remaining degrees of freedom are relaxed after each

IRC step. This strategy can be used together with any existing IRC procedure. The present implementation

covers the stabilized Euler, local quadratic approximation, and Hessian predictor–corrector algorithms for

IRC calculations. As proof of principle, we perform tests at the QM level on small gas-phase systems and

validate the results by comparisons with standard IRC procedures. The broad applicability of the method

is demonstrated by IRC computations for two enzymatic reactions using standard QM/MM setups.

I. Introduction

Theoretical and computational studies of chemical reactions
often make use of the concept of an intrinsic reaction coordinate
(IRC). According to the original definition reported by Fukui,1,2 it
is the steepest-descent pathway in mass-weighted coordinates
starting from a transition state (TS) and ending in a local
minimum on a potential energy surface (PES). IRC calculations
proceed in steps, each of which satisfies:

dx

ds
¼ � gðxÞ

jgðxÞj; (1)

where x denotes the mass-weighted Cartesian coordinates of
the nuclei, s is the arc length along the IRC, and g is the mass-
weighted gradient at x.

In quantum-chemical studies of small and medium-sized
molecules, IRC path following has become a routine task to
establish the connection between optimized stationary points
on the PES. There are a number of well-established methods to
integrate the basic IRC equation. The Ishida–Morokuma–
Komornicki stabilization3 of the Euler method is the simplest
approach since it only requires gradients. The local quadratic
approximation (LQA) method4,5 also utilizes information from
the Hessian and is therefore more accurate than Euler methods.
The Gonzalez–Schlegel method6–8 performs a constrained

optimization after each Euler step. Finally, the Hessian- and
Euler-based predictor–corrector (HPC and EulerPC) methods9–11

use either an LQA- or an Euler-type predictor step, and a modified
Bulirsch–Stoer integrator on a fitted distance-weighted interpolant
surface as a corrector step. These various approaches differ in the
required order of energy derivatives and in the number of energy
and gradient evaluations per IRC step.

In QM/MM studies of large systems with many degrees of
freedom, IRC calculations are normally avoided because straight-
forward application of standard IRC procedures would be quite
costly and mostly impractical. Instead, as a pragmatic alternative,
one often performs careful energy minimizations that start from
two structures generated by perturbing the TS coordinates along
the transition mode in both directions and that are supposed to
lead to the two nearest local minima. To our knowledge, the IRC
technique is implemented at the QM/MM level only in the
Gaussian program12 through a combination of the EulerPC
method with the multi-scale ONIOM approach.13 In this imple-
mentation,14 the IRC is computed for the whole system using first
and second derivative information for both the QM and MM part,
and special attention is paid to keep the treatment of the Hessian
terms tractable by using Hessian updates throughout.

In this paper we present a microiterative method for
QM/MM IRC calculations, in which only a subset of QM atoms
(the core region) follow the steepest descent path, while all the
remaining active atoms are subject to minimization after every
IRC step. This is of course an approximation, which will
however become increasingly accurate with the growth of the
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core region. In the original paper on microiterative transition
state optimization,15 the possibility of using the same strategy
for IRC computations was already mentioned, but without
giving any further details (see ref. 16 for an application of
the corresponding implementation in the GRACE program to
chorismate mutase).

The paper is structured as follows. In Section II we describe
the method and implementation details. In Section III we
present proof-of-concept QM applications for two small gas-
phase systems as well as QM/MM IRC calculations for two
enzymatic reactions. We discuss the benefits, pitfalls, and
the potential range of applications of the proposed method.
Section IV offers a summary and an outlook.

II. Method and implementation

The microiterative IRC method follows the philosophy of the
microiterative TS search15 as implemented in the HDLCopt pro-
gram.17 In this kind of TS search, the system is partitioned into the
reaction core that follows the P-RFO (partitioned rational function
optimizer) algorithm18,19 uphill towards the transition state, and
into the remainder that is minimized using the L-BFGS (low-
memory Broyden–Fletcher–Goldfarb–Shanno) algorithm.20,21 This
partitioning is motivated by the need to avoid the calculation and
diagonalization of the Hessian for the whole system. The optimi-
zation is performed by sequential micro- and macro-iterations
such that every single step for the core region is followed by a total
relaxation of the environment. This TS search has been demon-
strated to be accurate and highly efficient for large systems.17

In the microiterative IRC procedure, we perform a full
relaxation of the environment after each IRC step for the core
atoms (Fig. 1). Thereafter, the resulting gradients and Hessian
(if needed) of the core region are used to make the next IRC
step. As in the microiterative TS search, this decoupling of
the inner and outer region introduces errors, which will be
evaluated in the next section. The overall scheme is designed
to provide an efficient method for performing approximate
IRC calculations on large systems that can be utilized at the
QM/MM as well as the pure QM level.

We have implemented the microiterative IRC procedure into
the existing HDLCopt module17 in the ChemShell package.22

Starting from the transition state, the first step in the core region is
taken along the imaginary frequency mode eigenvector,4 regardless
of the chosen IRC integration method. After each IRC step, the
outer region is minimized using the L-BFGS optimizer employing
user-specified convergence criteria which may play an important
role in some cases (see Section III). If needed, the Hessian can be
either recalculated numerically or modified by applying one of the
two available Hessian updates (Powell23 or Bofill24) at every IRC
step. The use of Hessian updates has previously been shown to be
accurate enough for IRC calculations,10 it is fast and the preferred
option for routine applications. The IRC steps in the core region are
always performed in Cartesian coordinates, while the outer region
can be optimized in internal coordinates. For the integration of the
IRC equation, we have currently implemented the IMK-stabilized
Euler, LQA, and HPC methods.

The IMK-stabilized Euler method3 starts from a simple Euler
IRC step with input step size Ds:

xkþ1 ¼ xk � Ds
gðxkÞ
jgðxkÞj: (2)

Then a linear search for the energy minimum is performed
along the bisector of the gradients to correct the Euler step.
This requires additional energy and gradient evaluations (from
three to seven energy and two gradient calculations per step).
This approach is therefore the least efficient one among those
considered here. Nevertheless, it is the simplest way of inte-
grating eqn (1), and with small steps it is expected to work for
any system.

The LQA method employs second-order energy derivative
information and is thus more accurate. It can be used with
larger steps than the Euler methods. An LQA step has the
following form:4

xk+1 = xk + A(t)g(xk), (3)

with

A(t) = Uka(t)U
†
k (4)

where Uk is the matrix of column eigenvectors of the Hessian
(Hk), and a(t) is a diagonal matrix with the following diagonal
elements:

aii(t) = (e�liit � 1)/lii. (5)

Fig. 1 Scheme of the microiterative IRC procedure as implemented in the HDLCopt program.
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The parameter t can be obtained by numerical integration of
the following expression:

ds

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

g0 iðxkÞ2e�2lii t
r

; (6)

where g0(xk) = U†
kg(xk). The LQA method is both accurate (due to

the use of curvature information) and efficient (requiring only
one energy and one gradient calculation per step), and is there-
fore a good choice for the microiterative IRC procedure. The use
of Hessian updates improves the computational efficiency.

In the HPC method,9 an LQA predictor step is performed
first. Then the energy and gradients are evaluated at the new
coordinates, and the Hessian is updated. By interpolating
energy and gradients from the previous and current points
along the IRC, the Euler method is used to integrate the IRC
equation starting from the previous point N times, with the step

size equal to
Ds
N
. This integration is performed several times

with N growing up to an arbitrarily chosen number. A poly-
nomial extrapolation to a step size of 0 (which corresponds to
infinite N) then yields the final, corrected coordinates for this
IRC step. This HPC scheme is generally beneficial, since it
corrects the LQA step using the available energy and gradient
information (from one evaluation per IRC step). It may be
expected to be especially efficient for the microiterative IRC
approach, since the correction is performed after the outer
region is optimized, which should decrease the adverse effects
of decoupling the inner and outer regions.

III. Examples

Several test systems of varying size and complexity were used to
assess the merits and limitations of our approach. These tests
include QM studies on the Diels–Alder cycloaddition between
2,4-hexadiene and ethene and on the internal rotation in 1,2-
diphenylethane, as well as QM/MM calculations on the enzy-
matic reactions catalyzed by chorismate mutase and p-hydro-
xybenzoate hydroxylase.

A. Diels–Alder reaction

The Diels–Alder cycloaddition between 2,4-hexadiene and ethene
(Fig. 2) was used to validate our implementation against an
external standard, to compare the microiterative and full-system
IRC treatments, to test the different IRC integration schemes, and
to check the influence of the chosen IRC step size. In all calcula-
tions, the starting point was a published TS structure25 that was
reoptimized at the B3LYP/SVP26–32 level using ChemShell in
combination with the Gaussian 09 program.

For the purpose of validation, we compared the full-system
LQA IRC paths calculated with HDLCopt and with Gaussian 09
using a step size of 0:15

ffiffiffiffiffiffiffiffiffi
amu

p
bohr. Except for the region close

to the dissociation limit, the two energy profiles overlapped
almost perfectly, with a root-mean-square (RMS) deviation of
0.03 kcal mol�1, and the RMS deviations between the geome-
tries along the two pathways were generally in the range of 10�3

to 10�4 Å occasionally rising up to 0.01 Å. During the last few
steps towards the dissociation limit, the 2,4-hexadiene moiety
undergoes a slight distortion only in the case of the Gaussian
09 calculation, which gives rise to energy differences up to
0.18 kcal mol�1 and RMS deviations up to 0.14 Å in the
geometries. When using a smaller step size in the HDLCopt
calculation, we find the same slight distortion as in the case of
Gaussian 09, indicating that any minor numerical differences
can be resolved by tightening the computational options to
ensure convergence.

Having validated our present IRC implementation in the
HDLCopt module, we performed full-system IRC calculations
using the stabilized Euler, LQA, and HPC methods with IRC
step sizes of 0:15; 0:10 and 0:05

ffiffiffiffiffiffiffiffiffi
amu

p
bohr. The LQA and HPC

methods behaved very similarly and gave essentially the same
IRC curves regardless of the step size, thus confirming that the
largest chosen step size of 0:15

ffiffiffiffiffiffiffiffiffi
amu

p
bohr is accurate enough for

these methods in the case of the Diels–Alder reaction (except close
to the dissociation limit, see above). The IMK-stabilised Euler
method, in contrast, failed to provide a smooth descending curve
for the two larger step sizes. It gave a smooth curve for the step
size of 0:05

ffiffiffiffiffiffiffiffiffi
amu

p
bohr, but the energies were still well above the

corresponding LQA or HPC values, which were closely reproduced
only after decreasing the step size further to 0:01

ffiffiffiffiffiffiffiffiffi
amu

p
bohr.

These results confirm that the LQA and HPCmethods outperform
the stabilized Euler method.

Next we carried out microiterative IRC calculations. The
Diels–Alder cycloaddition involves a concerted formation of
two C–C s bonds, and hence we adopted an inner core region
comprised of the four atoms directly involved in C–C bond
formation, which is the smallest chemically meaningful choice.
The remaining 18 atoms constituted the outer region and were
allowed to move freely during the optimizations. The three IRC
integration methods gave essentially the same microiterative
IRC energy profiles, and the step size of 0:15

ffiffiffiffiffiffiffiffiffi
amu

p
bohr was

accurate enough for all of them, including the IMK-stabilized
Euler method, suggesting that the microiterative scheme toler-
ates larger steps than the conventional IRC scheme.

Given this situation, we only present comparisons between
the microiterative and the full-system IRC results for the LQA
approach (see Fig. 3). The red curve in Fig. 3a is a reference IRC
energy profile from the calculations on the full system. The
green curve is the microiterative IRC energy profile, with the arc
length on the abscissa computed from the coordinates of
the four core atoms, which must lead to a narrower profile
than in the reference curve where the arc length includes the
variations in the positions of all 22 atoms. The blue curve is
obtained from the microiterative IRC path by plotting theFig. 2 Diels–Alder cycloaddition reaction of 2,4-hexadiene and ethene.
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energies as a function of the corresponding full-system arc
length (22 atoms); it is somewhat broader than the reference
curve. For a more direct comparison, we calculated the RMS
deviations between the geometries along the microiterative and
full-system IRC pathways (see Fig. 3b). Due to differences in the
number of steps required to complete the IRC calculation, we
compare points on the microiterative and full-system IRC
pathways that are closest in energy. The RMS deviation is zero
by definition at the transition state (arc length of zero) and then
increases up to values of about 0.1 Å since the two methyl
groups of 2,4-hexadiene rotate faster in the microiterative
approach, whereas the changes in the positions of the other
atoms are very similar on both pathways. The RMS deviations
decrease again at larger arc lengths as both IRC pathways
approach the same reactant and product states.

Overall, the microiterative and full-system IRC pathways for
the Diels–Alder reaction between 2,4-cyclohexadiene and ethene
are in reasonable agreement, especially when considering the
choice of an extremely small core region (4 out of 22 atoms) in
the microiterative calculations. In view of the good performance
of the LQA integration method in the case of the Diels–Alder
reaction, we adopted it in all further IRC calculations.

B. Diphenylethane

We have studied the internal rotation in 1,2-diphenylethane at
the B3LYP/SVP level in an attempt to explore the limitations of
our microiterative IRC approach: considering the rigidity of the
phenyl rings and their steric interaction during internal rotation
around the central C–C bond, it should be difficult to define a
suitable small core region that is sufficiently decoupled from the
remainder of the molecule.

We considered two core regions for the microiterative IRC
procedure (see Fig. 4): the first one (1) included only the four
central carbon atoms with the adjacent hydrogen atoms, while
the second one (2) incorporated four more carbon atoms (the
neighbouring two from each phenyl ring). Region 1 is the
minimum choice to represent a rotation around the central
C–C bond, but is too small to account for the coupled rotation
of the phenyl rings.

We performed standard IRC calculations for the full system
and microiterative IRC calculations with core regions 1 and 2,
using the LQA method and several step sizes including the
default value of 0:15

ffiffiffiffiffiffiffiffiffi
amu

p
bohr. In the case of 1 and 2, the

smoothness and shape of the IRC energy profile were found to
be sensitive to the convergence criteria for the outer-region
optimization steps: the default HDLCopt threshold for the
maximum gradient component of 1.5 � 10�4 hartree per bohr
was not sufficient and had to be tightened by factors of 3 or
even 9 (depending on the IRC step size) to ensure convergence
for the overall IRC energy profile.

Already with the default LQA step size, the microiterative
IRC procedure for 1 and 2 resulted in reasonable paths that
lead to the same product as the standard IRC treatment for the
full system 3. Calculations with smaller LQA step sizes showed
that the IRC results for the full system 3 are essentially
converged for the default step size (see above), while there are
still some changes for 1 and 2, with convergence being reached
at a step size of 0:05

ffiffiffiffiffiffiffiffiffi
amu

p
bohr. The use of smaller LQA step

sizes in the microiterative IRC procedure for 1 and 2 allows a
better and more gradual adaptation of the position of the two
phenyl rings during the internal rotation. The resulting IRC

Fig. 3 IRC results for the Diels–Alder reaction obtained using the LQA method
and a step size of 0:15

ffiffiffiffiffiffiffiffiffiffi
amu

p
bohr. (a) Comparison between full-system and

microiterative IRC energy profiles, see the text. (b) RMS deviations between the
geometries along the full-system and microiterative IRC pathways, see the text.

Fig. 4 Transition state for internal rotation in 1,2-diphenylethane, with assign-
ment of carbon atoms to core regions (see text).
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energy profiles for 1–3 are presented in Fig. 5a, in the case of
1 and 2 again for two different definitions of the arc lengths
(core region and full system). The RMS deviations between
the geometries along the microiterative and full-system IRC
pathways are shown in Fig. 5b. It is obvious from these plots
that core region 1 is too small to give realistic results in the
microiterative IRC treatment: the IRC energy profiles are quite
different from the reference curve obtained from the standard
full-system treatment, and the RMS deviations reach values of
about 0.25 Å at the intermediate stage; visual inspection shows
that the rotation of the phenyl rings happens too early in the
case of 1. By contrast, for the larger core region 2, the IRC
energy profile traces the reference curve closely (when using the
full-system arc length definition), the RMS deviations remain
small (generally below 0.05 Å), and visual inspection confirms
that the microiterative IRC path for 2 closely follows the
standard IRC path for 3, with only slight deviations. The
microiterative IRC procedure can thus be successfully applied
even to complicated coupled systems like 1,2-diphenylethane
provided that the core region is chosen appropriately.

C. Chorismate mutase

To assess the performance of the microiterative IRC method in
QM/MM calculations of enzymatic reactions, we studied the
conversion of chorismate to prephenate (see Fig. 6) catalyzed by
chorismate mutase (BsCM) from Bacillus subtilis. This reaction
is a key step on the shikimate pathway for the synthesis of
aromatic amino acids in plants, fungi and bacteria. It has been
intensely investigated theoretically.33

Using the QM/MM approach we treated the substrate
(24 atoms) using the semiempirical OM3 method34,35 and the
rest of the system (including the protein and the solvent shell,
13 421 atoms in total) using the CHARMM22 force field.36 The
initial preparation of the system has been described else-
where.37 A snapshot from the previous classical molecular
dynamics (MD) simulations37 was selected and subjected to
another MD run in the NVT ensemble using the CHARMM33b1
program.38,39 One snapshot from this MD run was randomly
chosen, and the corresponding transition state for the chorismate–
prephenate conversion was optimized. During geometry optimiza-
tions and reaction path calculations on BsCM, only the atoms
within 16 Å from the ligand were allowed to move (active region),
while the remainder of the system was kept frozen, thus enforcing
a fixed outer solvent layer and preventing solvent water molecules
from escaping into the vacuum.

In BsCM, the ligand is not covalently bound to the protein
matrix, and the rearrangement occurs solely within the ligand
substrate. This enzymatic reaction is thus ideally suited for
applying the microiterative IRC procedure at the QM/MM level:
the substrate (24 atoms) serves as a QM region and at the same
time as a reference core region during IRC computation. We
again compare the corresponding reference IRC results with
those for a much smaller core region (4 atoms) composed of the
oxygen atom and the three carbon atoms that are directly
involved in the bond breaking and bond making processes.

Fig. 5 IRC results for the internal rotation in 1,2-diphenylethane from the
microiterative procedure for systems 1 and 2 (see text) and from the standard
treatment for the full system 3. LQA step sizes: 0:15

ffiffiffiffiffiffiffiffiffiffi
amu

p
bohr for 3 and

0:05
ffiffiffiffiffiffiffiffiffiffi
amu

p
bohr for 1 and 2. (a) IRC energy profiles for 1–3 with different arc

length definitions. (b) RMS deviations between the geometries along different
IRC pathways.

Fig. 6 Claisen rearrangement of chorismate to prephenate in BsCM.
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As can be seen from Fig. 7a, the two IRC energy profiles do
not deviate much from one another, in spite of testing a very
small core region with only four atoms (which clearly undergo
the largest displacements during the reaction). Likewise, the
RMS deviations between the geometries along the two micro-
iterative IRC pathways are quite small and remain well below
0.1 Å (see Fig. 7b), and visual inspection confirms that the two
pathways match very well. When comparing these geometries,
it seems appropriate not to align the ligand structures, which
are in both cases embedded into a protein matrix with a fixed
outer part that provides a structural scaffold. For the sake of
completeness, we have also plotted the RMS deviations after
ligand alignment, which causes a minor overall rotation/trans-
lation of the substrate and leads to somewhat lower curves of
similar shape (see Fig. 7b).

For further validation, we performed microiterative IRC
calculations for a larger core region containing the substrate
(treated at the QM level) and the five residues (treated at the
MM level) that form hydrogen bonds with the substrate during
the reaction: three arginines, one glutamate, and one tyrosine
(see Fig. 8). The resulting IRC energy profile was essentially

indistinguishable from the reference curve obtained from the
full-ligand IRC treatment. This confirms our expectation that
surrounding active-site residues need not be included in the
core region of the microiterative IRC treatment in the case
of BsCM.

D. p-Hydroxybenzoate hydroxylase

As a second QM/MM test system, we have chosen another well-
studied enzymatic reaction, namely the hydroxylation step in
the catalytic cycle of p-hydroxybenzoate hydroxylase (PHBH).
The theoretical work on PHBH has been reviewed recently.40

In the course of reaction, the OH group is being transferred
from the flavin–adenin hydroperoxide cofactor (FADHOOH) to
the p-hydroxybenzoate substrate (see Fig. 9).

The initial preparation of the system is described elsewhere.41

The substrate and the isoalloxazine ring of FADHOOH with the
attached hydroperoxide group (48 atoms) were included in the
QM region and treated using the semi-empirical AM1 method,42

while the rest of the system was described by the CHARMM22
force field. A randomly chosen snapshot from those used in
ref. 41 was subjected to a restrained potential energy scan along
the reaction coordinate defined in ref. 41. The structure with the
highest energy on this scan served as a starting point for TS
optimization. The subsequent microiterative IRC calculations
employed three core regions of different size. The small core
region contained only four atoms: the hydroperoxide group
(OOH) and the substrate carbon atom, to which the OH
group is transferred. The medium core region also included
the remaining atoms of the substrate. The large core region
comprised nearly all the QM atoms: the isoalloxazine ring, the
hydroperoxide group, and the substrate (omitting only the
methyl group representing the ribityl side chain in the QM
calculations). Technically, the default values for the LQA step
size and the outer-region convergence criteria turned out to be
accurate enough for each of the three core regions; using
smaller values did not lead to any significant changes.

The computed IRC QM/MM energy profiles are depicted in
Fig. 10a. They practically coincide when plotted against the arc
lengths of the three individual IRC calculations that include
only the corresponding core region. This may be taken as an

Fig. 7 Microiterative IRC results for the chorismate–prephenate conversion
catalyzed by BsCM. LQA step size: 0:15

ffiffiffiffiffiffiffiffiffiffi
amu

p
bohr. (a) Energy profiles from full-

ligand and small-core IRC calculations (plotted in the latter case with different arc
length definitions). (b) RMS deviations between the geometries along the full-
ligand and small-core IRC pathways, with and without ligand alignment.

Fig. 8 Active center of BsCM. Shown is the substrate in its transition state and
the five hydrogen-bonded active-site residues.
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indication that the largest displacements occur just for the few
atoms directly involved in the reaction. On the other hand, the
curves for the two smaller core regions become broader when
plotted against the arc length evaluated for the full QM region.
A better assessment is provided by direct comparisons between
the geometries of the full QM region along the IRC pathways for
the three chosen core regions. The corresponding RMS devia-
tions (Fig. 10b) are quite small and remain below 0.06 Å. Visual
inspection confirms that the motions within the QM region

along the IRC path are very similar for all three core regions
(with 4, 17, and 45 atoms).

IV. Conclusion

We have presented a microiterative procedure to perform IRC
calculations on large molecular systems. The method is based
on separating the system into a core region and an outer region.
The core region moves along the IRC path, while the outer
region is minimized after every IRC step following the IRC
path adiabatically. This procedure allows large-scale IRC calcu-
lations at the QM/MM level. A prototypical example is the
determination of IRC paths in enzymatic reactions, with the
core region corresponding to the QM region.

Other applications are also possible, of course. The micro-
iterative IRC procedure can be employed at the pure QM level
by defining a core region in a medium-sized molecule that
encompasses only the atoms directly involved in the reaction.
Likewise, in QM/MM studies on large systems, the core region
can be chosen to include only the reactive part of the QM
region. These options have been examined for two gas-phase
test systems and for two enzymatic reactions at the QM and
QM/MM level, respectively. These tests confirm that rather
small core regions can be used successfully provided that they
account for the characteristic bond making and bond breaking
processes during the reaction. If this is the case, small-core IRC
paths tend to be quite similar to large-core or full-system IRC
paths in terms of energies and geometries, and they can thus
safely be used to check the connectivity between an optimized
transition state and the associated reactant and product states.

Among the three IRC integration methods currently imple-
mented, the LQA approach is recommended as the standard
choice, with a default step size of 0:15

ffiffiffiffiffiffiffiffiffi
amu

p
bohr. In semiempirical

QM/MM work, it is generally affordable and recommended to
choose the QM region as a core region for microiterative IRC
calculations. When using first-principles QMmethods, it will often
be more practical to use smaller core regions, which is supported
by the results of the current test calculations. Apart from character-
izing TS connectivity, the resulting IRC paths may also serve as
collective coordinates in free energy calculations that are becoming
increasingly important in large-scale QM/MM studies. The present
implementation of a microiterative IRC treatment should thus be
widely applicable.
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ABSTRACT: The polarization of the environment can
influence the results from hybrid quantum mechanical/
molecular mechanical (QM/MM) simulations of enzymatic
reactions. In this article, we address several technical aspects in
the development of polarizable QM/MM embedding using the
Drude Oscillator (DO) force field. We propose a stable and
converging update of the DO polarization state for geometry
optimizations and a suitable treatment of the QM/MM-DO
boundary when the QM and MM regions are separated by
cutting through a covalent bond. We assess the performance of our approach by computing binding energies and geometries of
three selected complexes relevant to biomolecular modeling, namely the water trimer, the N-methylacetamide dimer, and the
cationic bis(benzene)sodium sandwich complex. Using a recently published MM-DO force field for proteins, we evaluate the
effect of MM polarization on the QM/MM energy profiles of the enzymatic reactions catalyzed by chorismate mutase and by p-
hydroxybenzoate hydroxylase. We find that inclusion of MM polarization affects the computed barriers by about 10%.

1. INTRODUCTION
Hybrid quantum mechanical/molecular mechanical (QM/
MM) approaches have been established as a reliable tool for
computing molecular properties and reaction mechanisms in
the condensed phase.1−4 A prime application example is
provided by enzymatic reactions, for which it is difficult to
represent the heterogeneous biological environment in an
implicit manner.5−7 QM/MM studies provide qualitative
insight into such processes, as well as quantitative predictions
that can be confronted with experimentation. In some cases,
however, the standard QM/MM approach can fail to give the
right answer, which may be due to several reasons. One of them
is the neglect of polarization in the standard MM force fields,
especially when the investigated reaction involves charged or
very polar species.2

There are several ways to include polarization at the MM
level.8−10 The most prominent ones make use of induced
dipoles,11−15 fluctuating charges,16−20 and Drude oscillators
(DO).21−27 The latter approach is adopted in this study and is
also called the charge-on-spring28−32 or shell model.33−35 In the
DO model,21 a mobile charge, called a Drude particle (DP), is
linked to a polarizable atom by a spring. A fixed charge of the
same magnitude but opposite sign is added at the position of
the atom, thus forming a dipole with the DP. Polarization arises
from the electrostatic interactions of the DO with the rest of
the system.
We included this model into the QM/MM framework some

time ago using the GROMOS charge-on-spring force field.36

The CHARMM-DO model was interfaced later in a separate
development.37 More recently, we proposed the extension of
QM/MM to a fully polarizable three-layer treatment to better
account for long-range electrostatics and to increase the
computational efficiency.38 Standard MM-DO polarizable

force field parameters for proteins have become available only
very recently,39 and thus QM/MM-DO studies have mostly
been carried out up to now for small molecules or ions solvated
in water or other solvents.36,40,41

There are some special polarizable force fields that have been
used in QM/MM studies of enzymatic reactions. For instance,
in their pioneering work, Warshel and Levitt proposed a point-
dipole approach to include polarization at the MM level.42

Illingworth et al. employed an induced-charge model to include
MM polarization in QM/MM computations on hydrogen-
bonded model systems and found effects of approximately
10%.43 In a later study on chorismate mutase, their induced-
charge model for MM polarization gave a significant
stabilization of all stationary points in the chorismate-to-
prephenate conversion (15−17% of the total QM/MM
interaction energies from electrostatics and polarization), but
the computed barrier was not affected because of equal MM
polarization contributions.44 In the absence of well-para-
metrized and generally accepted standard polarizable force
fields for proteins, there have not been, to our knowledge, any
systematic studies on enzymatic reactions with MM polar-
ization. In this article, we report pilot QM/CHARMM-DO
applications to biologically relevant macromolecular systems,
namely the enzymatic reactions catalyzed by chorismate mutase
and by p-hydroxybenzoate hydroxylase.
QM/MM calculations on enzymatic reactions normally

employ first-principles QM methods with QM regions
encompassing typically 50 to 150 atoms. They often use
geometry optimization techniques to explore the potential
surface (PES),1 even though free energy calculations can also
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be performed in an approximate manner using various sampling
techniques along the reaction path.45 Here, we focus on
geometry optimizations at the QM/MM-DO level. In this case,
the polarization of every DO has to be fully updated at every
step.36 In principle, this can be done by solving the
corresponding system of equations, but in practice this is not
efficient, and an iterative approach is usually preferred.
Unfortunately, for DO-type polarizable force fields, which
employ the Thole model46 and include 1−2 and 1−3 bonded
interactions in the polarization computation, we find that the
iterative approach oscillates and does not converge for systems
with a large number of bonded polarizable atoms. This will be
the first issue covered in this manuscript.
The QM/MM combination of QM and MM subsystems has

been thoroughly discussed in terms of the required embedding
and boundary treatments.1 The former define the QM/MM
interactions at various levels of approximation (mechanical,
electronic, and polarized embedding), while special protocols
for the latter are needed, especially when a covalent bond is cut
between the two subsystems. In this study, we focus on
improvements for boundary and embedding treatments in the
QM/MM-DO case. After briefly reviewing the methodological
aspects of including DOs in a QM/MM scheme, we propose a
method to update DPs for large systems such as enzymes. We
then develop a special boundary treatment using butanol as a
standard test case. Thereafter, we assess the QM/MM-DO
interactions for three small but typical test cases: the water
trimer, the N-methylacetamide dimer, and the cationic
bis(benzene)sodium sandwich complex. Finally, we check the
sensitivivity of the QM/MM results with regard to the
polarization of the enzymatic environment treated at the
MM-DO level.

2. THEORY
2.1. Polarizable Force Fields. Atomic dipole polar-

izabilities can be introduced into force fields in several
ways.9,10,47 In most cases, the electrostatic part of the potential
function is extended by including induced dipole/static
multipole and induced dipole/induced dipole terms, as well
as self-energy terms that account for the energy needed to
create the dipoles. The static multipoles are usually monopoles,
but expansions up to quadrupoles have been considered.13,14

For force fields with localized polarizable centers, the induced
dipoles (μi) are obtained using classical electrostatics:

αμ = E x( )i i i (1)

where E is the electric field at the position (xi) of the
polarizable atom i and αi is its polarizability, which is a
parameter of the force field. The electric field is comprised of
two parts, the static field due to the other permanent multipoles
in the system (E0) and the field due to all other induced
dipoles.

∑= − μ
≠

E x E x T( ) ( )i i
j i

ij j
0

(2)

where Tij is the interaction tensor element between μi and μj
that takes into account the interdependence of the induced
dipole moments.
For additive force fields, the interactions between bonded

atoms (1−2) and between next-nearest neighbor atoms (1−3)
are commonly neglected in the computation of the electrostatic
part of the potential. On the contrary, for polarizable force

fields, it has been shown that such short-range interactions need
to be included to obtain the proper polarization state.46,48

However, their direct inclusion would lead to overpolarization
due to the close distance between the polarizable centers, and it
is thus necessary to use a damping function. The most popular
choice is the Thole function containing additional parameters
that are adjusted during the parametrization.46,48 In this
formalism, the product Tijμj in eq 2 is multiplied by a prefactor
γij, i.e., the damping function for the interactions between
nearby atoms.
The induced dipole moments of N polarizable atoms in a

given configuration of the system can be obtained by solving
the following linear system of equations.

α γ μ =− T E( )1 0
(3)

where T is a 3N × 3N tensor containing the elements Tij, α
−1 is

a diagonal matrix containing the inverse of the atomic
polarizability tensors, and γ represents the interatomic Thole
damping functions; μ and E0 are 3 × N matrices containing the
Cartesian components of the induced dipoles and of the static
electric field at each atom, respectively. The exact solution of eq
3 by matrix algebra is often not practical for large systems with
thousands of atoms (N), and an iterative self-consistent (SC)
approach is therefore normally preferred.49

When using Thole-type models, we find that the
straightforward SC approach often oscillates and does not
converge for large systems. A common alternative is to use the
Successive Over-Relaxation (SOR) method, in which the
induced dipole moment μi

B of any polarizable center i is
taken at each step as

μ = μ + μ ′m mi
B

A i
A

B i
B

(4)

where mA + mB = 1, μi
A is the dipole moment obtained at the

previous step of the iterative cycle, and μi
B′ is the predicted

dipole moment for the current step using the standard SC
procedure.49 This update procedure helps to achieve
convergence of the SC method. The required number of
cycles strongly depends on the choice of the m coefficients.
Their optimum values can be different for different force fields
and different systems. Occasionally this approach still fails to
converge, and then eq 3 has to be solved by matrix algebra.
Xie et al. proposed a coupled method for converging the

induced dipoles of a polarizable force field.50 In their iterative
scheme, intermolecular interactions are taken into account by
the standard SC procedure, while intramolecular interactions
are handled by matrix inversion. This scheme is directly
applicable to solvents, but there is also a variant for polymers
such as proteins, in which each monomer is treated separately
but with its closest neighbors included in the matrix inversion
procedure. We revisit these aspects in section 4.1 when
developing a method suitable for geometry optimization at the
QM/MM-DO level.

2.2. Drude Oscillators in a QM/MM Framework. The
Drude oscillators provide a polarizable force field model, in
which the induced dipoles are represented by two point charges
of the same magnitude but opposite sign close in space and
linked by a spring.21,51 One of them is maintained at the
position of the polarizable atom while the other, the Drude
particle (DP), is free to move in the external electric field. In
geometry optimizations, the DPs are allowed to adjust, and the
ideal polarization state is computed at every step. Since a point-
charge approximation is used to represent the induced dipole,
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only monopole interactions appear in the electrostatic part of
the potential function, which takes the following form:

∑∑ ∑∑
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DO
elec
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(5)

where qi is the permanent charge at atom i, qi′ is the charge
associated with the Drude oscillator, r is the distance between
the two considered charges, d is the DO charge separation, and
kd,i′ is the force constant of the DO spring, which is a parameter
of the force field. The iterative update of the various positions
proceeds as follows: (1) compute the electric field at every DO
position; (2) based on the resulting induced dipole moment,
update the DP position; (3) check convergence with respect to
criteria based on energy, electric field, and/or position, and if
not converged, restart at the first step.
DO force fields employ the Thole model and include the 1−

2 and 1−3 interactions for induced dipole/induced dipole
interactions.27,52 The screening function is based on an
exponential charge distribution and a damping function,
which for monopole interactions is given by

γ = − + −⎜ ⎟
⎛
⎝

⎞
⎠

u
e1

2
1ij

ij uij
(6)

where μij = rijtij, rij is the inter-DP-distance, and tij the Thole
parameter:

α α
=

+
t

t t
ij

i j

i j6 (7)

with ti and tj being force field parameters of the respective
polarizable centers.
The electrostatic potential function of the CHARMM-DO

force field is extended not only by a point-charge representation
of the atomic dipole polarizability but also by additional point
charges that represent lone pairs.27 These latter charges are
rigidly linked to the heteroatoms of the system and allow a
better description of the fixed charge distribution. Their
positions are determined at every step of a geometry
optimization from the associated set of internal coordinates,
and their gradient components are distributed among the
neighbor atoms such that the total force and the total torque
are conserved. Another technical advantage is that the lone pair
positions can be used to define local internal coordinate
systems centered at heteroatom positions, which allows the use
of anisotropic polarization for DOs.53

In a QM/MM framework, the mutual polarizations of the
QM and MM regions have to be taken into account.36 The
point-charge representation of the DO model allows for a
straightforward combination with most of the QM methods,
since it can be treated in the same way as the point charges of
the additive force fields in the electronic embedding scheme.49

Several approaches have been proposed to find the ideal
polarization state of both the QM and MM parts at every
step.37 We use the dual-SC approach, i.e., we run a full QM
calculation and update the DP position as in the standard
iterative procedure, but include the QM field contribution in

the static electric field at each DP position. This procedure is
iterated until the QM energy and DP position both converge.
This scheme is expensive but leads to accurate results. It can be
easily interfaced with any QM code and can be used for
geometry optimization.
Another issue to consider in QM/MM simulations is the

boundary treatment in cases when the QM/MM partitioning
cuts through a covalent bond. This aspect has not yet been
addressed for QM/MM-DO approaches. We will discuss this
point in section 4.2 and propose a treatment for this situation.

3. COMPUTATIONAL DETAILS

All computations were run using the ChemShell package
interfaced to several programs.54−56 The MNDO program57

was used for semiempirical QM calculations, while all other
QM results were obtained with TURBOMOLE6.3.58 The
additive parts of the MM potential were computed using DL-
POLY.59 All DO-related computations were implemented
separately in the hybrid module of ChemShell.54 If not stated
otherwise, the resolution-of-identity (RI) approximation60 was
applied in the MP2 calculations,61 as is often done in QM/MM
simulations at this level.62

4. RESULTS

4.1. Converging the Drude Oscillators. During geometry
optimization, the SC procedure may fail to converge the DO
positions as soon as a system with bonded polarizable atoms
becomes large enough to justify the use of a force field. The
SOR approach49 is a good alternative but requires more
iterations than the standard SC procedure, and in some cases it
may also fail to converge to the proper polarization state. As the
speed of convergence is a major practical issue in QM/MM
computations, we investigate other options in the following.
We first consider the noniterative approach of solving eq 3

analytically by matrix algebra. Although computationally
demanding, this can be useful in difficult cases, and it should
also lead to fewer cycles in QM/MM dual-SCF procedures.
Equation 3 can formally be solved by matrix inversion, which
becomes very expensive for large systems. Since the considered
matrix is symmetric and positive definite, it is much better to
solve the corresponding system of linear equations, using
Cholesky factorization followed by forward and backward
substitutions. For typical system sizes in QM/MM studies of
enzymes, this leads to 30−40 fold improvements in efficiency
when both procedures are properly implemented. In the
following, any reference to an exact or analytic solution by
matrix algebra implies the use of the latter Cholesky-based
approach.
The analytic procedure does not give exactly the same results

as the SC procedure, in which the electric field is computed at
the position of the DP for the update of DO; this position
changes in each iteration. Note that even if one computes the
electric field at the atomic position, as in the GROMOS charge-
on-spring force field,9 the problem remains due to the point-
charge approximation so that eq 3 is not solved exactly. As an
alternative, we propose an iterative approach in which at each
step the electric field is evaluated at the new DP position
obtained from the previous step. To assess the method, we used
the 30 Å water sphere from our previous work on the solvated
glycine test system (903 water molecules without the glycine
solute).38,63 The water molecules were described by the
SWM4-NDP model.64 This system has the advantage of
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being large without having any 1−2/1−3 interactions, and thus
the iterative approach converges without problems. We also
considered computing the permanent electric field (not the one
due to other dipoles) at the atomic positions. In terms of
polarization energy, the results deviate by less than 0.01% for
both techniques. The mean absolute deviation of the gradient
components is 2.64 × 10−5 au with a maximum value of 1.25 ×
10−4 au If the permanent electric field is also evaluated at the
atomic positions, values of 5.68 × 10−5 and 2.78 × 10−4 au are
obtained, thus roughly doubling the deviations. In both cases,
these values are clearly below the commonly adopted criteria
for geometry optimization (3.0 × 10−4 and 4.5 × 10−4 au). This
confirms that the point-charge approximation to the induced
dipole is accurate enough to simulate point dipoles, which in
turn suggests that we can use the iterative Cholesky
factorization (ICF) approach as a reference for large systems
that do not converge with SC techniques. It can also be used
together with the SOR method in the case of nonconvergence.
For both types of electric field computation, the ICF procedure
took 6 steps for a total of 3.5 h on one 2.9 MHz Xeon
processor. We also tried to evaluate the electric field at
positions different from the DP, but any deviation from this
position decreased the accuracy of the method.
Xie et al. proposed a hybrid approach to tackle systems with

bonded polarizable centers.50 They used the SC technique for
intermolecular interactions and solved eq 3 by matrix algebra
for intramolecular interactions. In the case of polymers, they
suggested to determine intramolecular interactions by matrix
algebra including the two neighbors of each monomer in the
matrix to be inverted. For a system containing a solute
surrounded by small solvent molecules, they discussed the gain
in efficiency obtained, thanks to the good convergence of their
method, but they did not evaluate its accuracy. Here, we take a
bottom-up approach using a more general related model and
compare its results with the ICF scheme.
We consider a system of polarizable DO centers which may

be bonded to each other. We define blocks as any subsets of
these centers. The partitioning into blocks need not be based
on chemical intuition, and it is not necessary that they
correspond to molecules or residues. To obtain the polarization
of each block, the computation is run for a superblock
containing also the neighboring blocks (based on connectivity
or distance). The polarizable atoms not included in a
superblock form the outer shell. The electric field (E) at any
DP position (xi) in a given block can be split in an additive
fashion:

= + +E x E x E x E x( ) ( ) ( ) ( )i i i i
PC SB OS

(8)

where EPC is the electric field due to permanent charges (atoms
and lone pairs), ESB(xi) is the electric field due to all other DOs
in the superblock, and EOS(xi) is generated by the DOs in the
outer shell. To obtain the ideal electric field at each DP position
and to get the polarization state of the system, we use an
iterative hybrid approach. We first compute the electric field
due to every element of the system at every DP position using
monopole interactions such as in the SC approach (EMP(xi)).
From the precomputed electric field, we remove all DO electric
field contributions from within the superblock using

− = + =E x E x E x E x E x( ) ( ) ( ) ( ) ( )i i i i iMP MP
SB

MP
PC

MP
OS

CF
0

(9)

and thus obtain the permanent electric field for the superblock
for each DP, which now includes outer-shell DO contributions.

We solve the linear system of equations for the superblock with
Cholesky factorization using this ECF

0 (xi) as permanent electric
field in eq 3. In this way, we get the induced dipole moment for
each block separately. If necessary, anisotropy can be included a
posteriori with an update of the DP positions. The calculation is
iterated until we achieve convergence of the DP positions. Note
that for QM/MM computations, the field due to QM region
should be included into ECF

0 (xi) and kept constant in a given
iteration.
In this approach, we need to define the partitioning into

blocks and the rules for generating the superblocks. Our only
constraint is that all Thole-type interactions (1−2, 1−3)
involving a given block should be taken into account within its
superblock. To specify the proper combination law, we have
chosen to define each polarizable center as a block and to
generate the superblock either through connectivity or distance
from this atom. As a test system, we have chosen the
chorismate mutase enzyme as described below in section 4.4.
We have removed the substrate and tested our approach at the
full MM level using a preliminary version of the CHARMM-
DO protein force field, noting that the conclusions are directly
portable to the QM/MM level. To check the dependence of
the results on the combination law (connectivity vs distance),
we have computed the polarization state of the enzyme in the
gas phase and in water. Figure 1 shows the maximum absolute
deviation of the gradient components for these two setups
(blue/green, with/without water) between the two combina-
tion laws (connectivity: plain lines; distance, dashed lines). The
units on the x axis are Ångstroms in the case of distance and
refer to the connectivity order up to which atoms were included
into the superblock (1−5 means that 1−2, 1−3, 1−4, and 1−5
are included). Considering that our standard convergence
criterion in geometry optimizations is 4.5 × 10−4 au for the
gradient components, it is clear that the connectivity-based
approach does not converge properly with increasing super-
block size. The distance-based selection seems much better in
this regard, as it converges in both cases for distances of more
than 6 or 7 Å from the polarizable centers. This is confirmed by
comparing the results from the computations in the gas phase
and in water: while the distance-based computations converge
to the same values, there is a significant gap in the connectivity-
based results (implying that distant water molecules play an
important role for the polarization state). In terms of efficiency,
the ICF scheme took 12 h for the full solvated system and 2 h
for the gas-phase system. Solving the linear system of equation
using matrix algebra took 385 h for the full system and gave
precisely the same result. Convergence of the full system with
the distance-based selection of superblocks is reached after 12,
25, and 75 min for cutoffs of 7, 8, and 9 Å, respectively. For
comparison, we note that the SOR approach does not converge
with a damping factor of 0.1 and takes 15 (20) min with a
damping factor of 0.2 (0.4). This similarity in efficiency comes
from the fact that the SOR method requires a larger number of
steps, each of which is less costly.
To compare with the work of Xie et al.,50 we considered the

case in which the blocks are chosen as amino acid residues or
water molecules. For the definition of superblocks, we used
their method of taking the bonded blocks as well as the more
accurate distance-based approach suggested here, selecting any
residue having at least one polarizable center within a
predetermined cutoff distance from any polarizable atom of
the block. For the protein in the gas phase, the bonded
approach gave a mean absolute deviation of 2.6 × 10−5 au with
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a maximum value of 6.84 × 10−4 au, while the distance-based
approach with a cutoff of only 5 Å gave values of 1.07 × 10−5

and 2.4 × 10−4 au, respectively, using the same computation
time (86 and 87 s). As in the case of the atom-based block
definition, the bonded approach failed at producing sufficiently
low gradients while the distance-based approach gave accept-
able results (lower than the commonly used convergence
criteria). The results were less satisfactory for the solvated
enzyme, with a maximum deviation in the computed gradient
components of more than 10 × 10−5 au for the distance-based
approach (cutoff: 7 Å) and more than 15 × 10−5 au for the
bonded approach.
According to our results, the atom-based block definition

with a carefully chosen distance criterion should give the best
results for this kind of hybrid approach. In studies of enzymes,
it can be used together with the SOR technique if there are
convergence problems. It could also be attractive for larger
systems in general, since it can reduce the computation time
significantly. Finally, it may also be useful for other polarizable

force fields that do not employ the DO point-charge
approximation.

4.2. QM/MM Boundary Treatment for the Drude
Oscillator Model. In the development of the QM/MM
method, special care has been taken to develop boundary
treatments that allow cutting a covalent bond at the frontier
between QM and MM regions.65,66 Several approaches have
been proposed, which normally work reasonably well if the
frontier is chosen properly (e.g., cutting at an unpolar single
bond that is as far away as possible from the electronically
relevant part of the QM region).1

At a given atom, the DO model may involve the following
electrostatic entities: the atomic point charge, the lone pairs,
and the DP as well as its counter charge.51 To define a
boundary treatment, we have chosen not to take the lone pairs
into account, assuming that no bond to a heteroatom will be
cut. For the atomic point charges, we apply the commonly
adopted charge shift scheme without any further modifica-
tion.67 In this scheme, the charge on the MM atom in the
frontier bond (M1) is distributed to the other MM atom(s)
that is (are) bonded to it (M2); a point dipole is added at these
atoms (M2) to compensate for the charge shift, and the valence
of the frontier QM atom is satisfied by adding a QM hydrogen
atom (link atom). As this charge shift scheme performs well
with additive force fields, we did not see any need to modify it.
Therefore, we only have to develop a model for treating the
DOs at the boundary.
We have investigated five different models. The first one

(model 0) neglects the DO on the M1 atom, without any other
modification. In model 1, the polarizability of M1 is transferred
to the polarizable centers in the M2 position (without using
this polarizability when computing the Thole screening
function). As these M2 atoms become extremely polarizable
in model 1, it may be more appropriate to compute the Thole
function with the full M2 polarizability (including the
contributed shifted from M1), which leads to model 2. The
full transfer including the ti parameters gives rise to model 3.
Finally, as the M2 atoms are rather close to the virtually bonded
QM region, we considered another model, model 4, in which
the polarizable M2 atoms interact with the QM region
according to the Thole model (without any transfer of
parameters).
In the development of boundary treatments, the proton

affinity (PA) and deprotonation enthalpy (DE) of n-propanol
or n-butanol are commonly used as test systems.65,68 In these
molecules, different C−C bonds can be cut, 2 in the case of n-
propanol and 3 for n-butanol. Cutting the C−C bond closest to
oxygen (cut1) is considered as an extreme case, while the other
options (cut2 and cut3) are more representative of typical
QM/MM applications. In previous work, boundary treatments
that were successful for these test systems have also performed
well in other QM/MM applications.65,66 Therefore, we only
consider n-butanol in the following. In analogy to a previous
study on propanol,65 we used the semiempirical AM1 method69

to evaluate DE and PA for frozen geometries of butanol,
butanolate anion, and butanolium cation. Again following the
literature,65 we also included a sodium cation (Na+) to simulate
an “extreme” environment. In our tests, this cation was put
either in the QM or the MM region. Instead of choosing a set
of a few predetermined positions for the cation, we generated
for each test 100 positions that were randomly picked at
distances of at least 3 Å away from any atom of the molecule
and within 9 Å of the geometric center of the molecule (the

Figure 1. Maximum absolute deviation of the gradient components
when comparing the hybrid CF-SC to the ICF approach (see text) for
chorismate mutase, without substrate, using a preliminary version of
the CHARMM-DO polarizable force field (provided to us by A. D.
MacKerell in 2012). Gas phase (green triangles) and solvated enzyme
(blue circles) were considered with different selection criteria for the
hybrid model. Plain (dashed) lines refer to a connectivity-based
(distance-based) superblock selection, with corresponding units of the
x axis (maximum connectivity order 1 − X/distance in Å; see text).
We target maximum absolute deviations below the red line, which
represents the standard convergence criteria for geometry optimiza-
tion.
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statistical results remain essentially unchanged when running
tests with 150 positions). Note that when the sodium ion is
included in the QM region, the computations crashed
occasionally when the MM part of n-butanol was situated
between the QM part of n-butanol and the QM cation; in these
cases (10−15%), extra computations were run to obtain 100
sampling points.
Table 1 compiles the deviations from the full QM results of

DE (upper part) and PA (lower part) as well as their standard

deviation (in parentheses) for the different boundary treat-
ments (models 0−4), cation treatments (QM vs MM), and
positions of the QM/MM boundary (cut1−cut3). The results
are consistent with previous experience from additive force
fields. The deviations are largest for cut1, and they decrease as
the distance of the QM/MM boundary from the OH group
increases (smallest for cut3). Regardless of other options, the
best boundary treatment is always provided by model 0.
Transferring polarizability to the M2 atom in model 1
systematically increases the deviation from the full QM
reference results. Applying Thole damping at M2 slightly
improves the results in model 2 (but not much), while
transferring the complete Thole parameter set in model 3
makes things even worse. Applying Thole damping to the M2/
QM interaction in model 4 is also detrimental, especially when
the cation is part of the QM region.

The cut1 is obviously not advisable, consistent with the rules
of thumb known for additive force fields. As expected, the cut3
gives the most realistic results: the deviations from the QM
reference results are smallest for both PA and DE, and the
choice of boundary treatment has only little influence
(disregarding model 4 with QM Na+). Overall, the present
results suggest that the inclusion of Drude oscillators in the
force field has little effect on the boundary treatment, since the
quality of the results is similar to what is found for additive
force fields with standard boundary treatments. The simplest
being the best, we recommend the use of model 0, i.e., simply
to remove any DO at the M1 position in QM/MM-DO
calculations.

4.3. Biologically Relevant Test Systems. To evaluate
QM/MM-DO compatibility, we have chosen a set of simple,
biologically relevant systems. The purpose of these tests is not
to obtain any insight into the properties of the studied
molecules but to systematically investigate the ability of
CHARMM-DO to give more accurate results than the
CHARMM22 additive force field in a QM/MM framework.70

Usually, MM molecules are not involved or located in the direct
vicinity of the chemical reaction being studied. We therefore
assume that reproducing the binding energies and geometries
of complexes will give valid insight into QM/MM-DO
compatibility.

4.3.1. Water Trimer. Apart from its biological relevance,
water is one of the cornerstones of force field parametriza-
tion.22,28,64 Indeed, it is generally the first molecule to be
parametrized and is then included in the parametrization of all
others. Checking water is thus the logical first step when it
comes to evaluating QM/MM-DO compatibility. The SWM4-
NDP64 water model (called SWM4 in this study and used in
the CHARMM-DO force field) has been the subject of a few
QM/MM studies. The water dimer was investigated in the tests
by Lu and Zhang using BLYP/6-31G(d,p) as a QM
component.37 QM/MM studies on the solvation of QM ions
have employed SWM4 as a polarizable solvent.40,41

Our test system is the cyclic water trimer.71 This simple
complex has the advantage that each of the three water
molecules is equivalent, donating one hydrogen bond and
accepting another one (see Figure 2). It has been investigated
in several theoretical studies.72−74 It has been included in the
preliminary parametrization of SWM4 using a positive DP,22

but not in the final one with a negative DP.64 Yu et al. have
shown that the SWM4 model properly reproduces both the
binding energy (−14.35 vs −14.92 kcal/mol) and the geometry
of the complex (RMSD 0.07 Å) using MP2/CBS as a
benchmark.75

Two reasonable QM/MM separations are possible, with
either one QM and two MM water molecules or vice versa. We
have investigated both cases using the SWM464 and TIP3P76

water models to compare with the standard additive force field
(TIP3P). To differentiate between the possible combinations,
we adopt a three-letter notation to define which model has
been used for each individual water molecule; Q for QM, S for
SWM4, and T for TIP3P (e.g., QSS means one QM and two
SWM4 water molecules). For the QM part, we used standard
DFT methods that are commonly employed for QM/MM
simulations of enzymes (BP86,77,78 BLYP,79 B3LYP,80 PBE,81

and PBE082). As the water trimer is a noncovalent complex, we
included the Grimme D2 dispersion correction for BP86,
BLYP, B3LYP, and PBE.83 We also considered ab initio
methods, Hartree−Fock (HF) and MP2;60,61 the latter is

Table 1. Average Deviation from the QM Results and
Associated Standard Deviation (in Parentheses) for
Deprotonation Enthalpy (Upper Part) and Proton Affinity
(Lower Part) of n-Butanol in the Presence of a Sodium
Cation at Different Positions (See Text) Computed with
Different QM/MM Boundary Treatments (Models 0−4, See
Text)a

Na+ model cut1 cut2 cut 3

QM 0 6.91 (0.53) 3.72 (0.20) 2.20 (0.12)
1 7.24 (0.57) 4.00 (0.28) 2.21 (0.16)
2 7.21 (0.45) 4.02 (0.24) 2.20 (0.10)
3 7.48 (1.25) 4.01 (0.28) 2.22 (0.21)
4 8.45 (1.29) 6.20 (1.04) 1.38 (2.17)

MM 0 9.74 (1.57) 4.59 (0.37) 2.75 (0.31)
1 10.47 (1.30) 4.49 (0.37) 2.78 (0.33)
2 10.33 (1.37) 4.51 (0.35) 2.77 (0.32)
3 11.25 (1.21) 4.50 (0.35) 2.79 (0.34)
4 9.79 (1.51) 4.60 (0.37) 2.76 (0.31)

QM 0 2.98 (0.48) 3.10 (0.20) 1.49 (0.09)
1 8.79 (0.46) 4.99 (0.19) 1.51 (0.11)
2 7.62 (0.28) 4.98 (0.20) 1.50 (0.09)
3 14.33 (4.75) 4.99 (0.19) 1.51 (0.11)
4 16.39 (0.78) 11.00 (0.64) 1.55 (0.15)

MM 0 3.04 (0.46) 3.20 (0.26) 1.65 (0.26)
1 7.79 (1.36) 4.73 (0.50) 1.67 (0.27)
2 6.85 (0.98) 4.76 (0.47) 1.66 (0.27)
3 12.92 (4.70) 4.73 (0.48) 1.68 (0.28)
4 3.08 (0.47) 3.20 (0.26) 1.65 (0.26)

aValues are given in kcal/mol, and the full QM computation is taken
as a reference. AM1 was used for the QM part and the Drude
Oscillator force field for the MM region. The cuts are defined by the
number of bonds from the hydroxyl group (cut1 being the nearest, and
cut3 the farthest with only one methyl group in the MM region). The
sodium cation (Na+) can be part of the MM or QM region.
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known to give very good results for this complex. The SVP,84

TZVP, and TZVPP85 basis sets were used in all of these
calculations. Further tests were performed using the semi-
empirical QM methods MNDO,86,87 AM1,69 PM3,88 OM1,89

OM2,90 and OM3.91,92 Since both the TIP3P and SWM4
models have been parametrized with rigid geometries, we
constrained the internal geometry of the water molecules
during the optimization but also considered the case when they
are flexible (for consistency with the QM approach). We
discuss the results of the geometry optimizations in terms of
the binding energy of the complex and its structure. The
binding energy was calculated from the energies of the
optimized complex and the optimized water molecule. The
geometry of the complex was assessed by two criteria, namely
the O−O distances and the angles between the O−O−O plane
and the hydrogen atoms not involved in hydrogen bonding.
The latter angles are reported in absolute value, without
distinguishing between the up or down orientation of the
corresponding O−H bonds (note that the up−up−up and
down−down−down orientations were never encountered). We
do not focus here on the ability of the methods to reproduce
experimental or high-level theoretical data but rather on the
compatibility of the QM and MM potentials in a QM/MM
framework to reproduce the QQQ results obtained with the
same QM method.
Binding energies are listed in Table 2. Two key tendencies

are observed. The first one is that the QM/MM prediction of
the binding energy is improved upon basis set extension. This
improvement is systematic for SWM4 when used in
combination with DFT, DFT-D2, or MP2. For TIP3P, the
binding energy is underestimated with MP2 and DFT, except
when applying the D2 correction term. The second general
trend concerns the changes in the QM/MM binding energies
when replacing TIP3P by SWM4 in the MM part. For the first-
principles QM methods, switching from QQT to QQS
increases the binding energy by typically 2.05−2.46 kcal/mol
(and even by 3.27 kcal/mol for B3LYP-D2/TZVPP). When
going from QTT to QSS, this increase is even larger (3.31−
3.44 kcal/mol). These changes in the binding energy are not
due to the inclusion of polarization in SWM4 (always
stabilizing in the complex and zero for an isolated water
molecule) but rather to the parametrization of the MM model
and the SWM4 treatment of the oxygen lone pair. For the

semiempirical QM methods, the changes are in the same
direction but less pronounced (see Table 2).
We now briefly address the performance of specific QM/

MM combinations with regard to the reproduction of the pure
QM reference energies. For DFT QM components, the
functionals with Becke exchange tend to perform better than
the parameter-free PBE approaches when combined with
SWM4, while there is no such clear trend for TIP3P. When
applying the D2 dispersion correction, the results for SWM4
deteriorate, and overall the DFT-D2/TIP3P combinations
seem to perform better than DFT-D2/SWM4 (without clear
distinction between different types of functionals). Concerning
ab initio methods, HF/MM calculations give rather large
deviations from the HF reference energies (regardless of the
chosen MM model). The MP2/MM results are satisfactory for
QQS but not for QSS, QQT, and QTT. There are no obvious
specific patterns when using semiempirical QM methods; here,
PM3 and OM3 seem to perform best.
Upon removing the geometry constraints on the MM water

molecules during the optimizations (see the results given in
parentheses in Table 2), the binding energies are generally
increased slightly (as expected). The changes are typically on
the order of 0.5 (0.3) kcal/mol for QQS (QQT), between 0
and 1.0 kcal/mol for QSS, and around 0.6 kcal/mol for QTT.
These changes do not generally lead to a better reproduction of
the QQQ reference results, and for the sake of consistency, it
seems preferable to retain the constraints on the MM water
geometries in QM/MM geometry optimizations (i.e., to use
frozen MM water geometries). We note that this convention is
usually not adopted during standard QM/MM minimizations
with additive force fields.
With regard to the reproduction of the QQQ reference

binding energies, the QM/SWM4 combination is clearly
superior to QM/TIP3P for the QQX system when using the
BP86, BLYP, and B3LYP functionals with the TZVPP basis set
or ab initio methods with TZVP or TZVPP. This also holds for
the QXX test systems in the case of DFT but not for ab initio
methods. Overall, the best performance among all tested QM/
MM variants is found when combining the SWM4 water model
with the following QM components: DFT/TZVPP with DFT
= BP86, BLYP, or B3LYP; MP2/TZVP; and MP2/TZVPP.
The semiempirical PM3 and OM3 methods also give
acceptable results. Generally, QM/SWM4 performs slightly
better than QM/TIP3P (compared with the QQQ reference

Figure 2. Complexes used in this study to evaluate QM/MM-DO compatibility. From left to right, the water trimer in its most stable cyclic form, the
cis-NMA dimer, and the cationic bis(benzene)sodium sandwich complex.
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data). Finally, we note that, thanks to the careful para-
metrization, the QM/SWM4 binding energies are closer to the
experimental values than the full QM or the QM/TIP3P
results, regardless of the chosen QM method.
The optimized O−O distances are generally between 2.65

and 2.85 Å, except for the ab initio HF and the semiempirical
methods. A significant difference is observed when it comes to
symmetry. For pure QM calculations (QQQ), all three O−O
distances are identical (within the precision of the optimiza-
tion). This also holds for pure MM calculations, which yield
equivalent O−O distances (TIP3P 2.75 Å, SWM4 around 2.80
Å). However, this is no longer true at the QM/MM level,
where we generally find some spread between the different O−
O distances. In the case of one MM water molecule (QQS and
QQT), both MM models show a similar performance. When
there are two MM water molecules (QTT and QSS), the

spread is much smaller, and the computed O−O distances are
close to their values from the full MM calculations.
Interestingly, the values obtained do not depend much on
the chosen QM method, and the QM/SWM4 results for QSS
are thus generally close to experimental results (2.8 Å).71

Contrary to the binding energies, basis set extension does not
affect the O−O distances much.
The difference between the TIP3P and SWM4 water models

becomes more pronounced when considering the angles
between the O−O−O plane and the hydrogen atoms not
involved in hydrogen bonding. In full MM optimizations,
SWM4 gives realistic geometries, while TIP3P produces a
planar trimer. As TIP4P is also known to give proper
geometries,71 this difference is probably due to the explicit
treatment of the lone pairs in SWM4 (rather than polarization
effects). Similar trends are observed at the QM/MM level. The

Table 2. Binding Energies (kcal/mol) of the Water Trimer with Different QM Methods (See Text)a

Hamiltonian basis QQQ QQS QQT QSS QTT

BP86 SVP −28.45 −19.02 (−19.57) −21.47 (−21.79) −14.33 (−15.21) −17.7 (−18.22)
TZVP −18.64 −17.3 (−17.84) −19.49 (−19.82) −15.78 (−16.75) −19.2 (−19.77)
TZVPP −16.63 −16.16 (−16.7) −18.28 (−18.59) −15.24 (−16.36) −18.61 (−19.16)

BLYP SVP −29.24 −19.45 (−19.98) −21.83 (−22.15) −14.09 (−14.21) −17.44 (−17.95)
TZVP −18.04 −17.24 (−17.78) −19.39 (−19.71) −15.67 (−16.62) −19.1 (−19.65)
TZVPP −16.14 −16.14 (−16.66) −18.23 (−18.54) −15.16 (−16.11) −18.53 (−19.07)

B3LYP SVP −27.41 −19.04 (−19.57) −21.47 (−21.79) −14.4 (−15.26) −17.74 (−18.27)
TZVP −18.5 −17.36 (−17.87) −19.58 (−19.91) −15.75 (−15.93) −19.18 (−19.73)
TZVPP −16.43 −16.19 (−16.7) −18.35 (−18.65) −15.21 (−15.29) −18.6 (−19.14)

PBE SVP −31.37 −20.23 (−20.77) −22.63 (−22.95) −14.28 (−15.13) −17.63 (−18.15)
TZVP −20.92 −18.21 (−18.75) −20.4 (−20.73) −15.72 (−16.68) −19.14 (−19.7)
TZVPP −18.99 −17.11 (−17.65) −19.23 (−19.54) −15.19 (−15.15) −18.56 (−19.1)

PBE0 SVP −27.52 −19.15 (−19.71) −21.61 (−21.94) −14.57 (−15.39) −17.94 (−18.48)
TZVP −19.72 −17.73 (−18.27) −19.99 (−20.32) −15.77 (−15.88) −19.2 (−19.76)
TZVPP −17.63 −16.56 (−17.05) −18.75 (−19.06) −15.23 (−16.17) −18.62 (−19.16)

BPE86-D2 SVP −31.97 −20.19 (−20.76) −22.64 (−22.97) −14.33 (−15.22) −17.67 (−18.22)
TZVP −21.84 −18.37 (−18.94) −20.57 (−20.91) −15.77 (−16.75) −19.18 (−19.77)
TZVPP −19.89 −17.25 (−17.8) −19.38 (−19.69) −15.24 (−16.2) −18.59 (−19.16)

BLYP-D2 SVP −33.31 −20.82 (−21.35) −23.18 (−23.49) −14.1 (−14.95) −17.41 (−17.95)
TZVP −21.57 −18.44 (−19) −20.6 (−20.92) −15.67 (−15.8) −19.07 (−19.65)
TZVPP −19.71 −17.35 (−17.89) −19.45 (−19.76) −15.16 (−15.27) −18.5 (−19.07)

B3LYP-D2 SVP −30.87 −20.18 (−20.72) −22.61 (−22.94) −14.4 (−15.22) −17.72 (−18.27)
TZVP −21.55 −18.4 (−18.95) −20.63 (−20.95) −15.76 (−16.71) −19.15 (−19.73)
TZVPP −19.52 −16.14 (−16.65) −19.41 (−19.72) −15.21 (−15.31) −18.57 (−19.14)

PBE-D2 SVP −33.89 −21.07 (−21.62) −23.47 (−23.8) −14.28 (−15.15) −17.61 (−18.16)
TZVP −23.19 −18.98 (−19.55) −21.18 (−21.5) −15.73 (−15.91) −19.12 (−19.7)
TZVPP −21.31 −17.88 (−18.41) −20.02 (−20.32) −15.2 (−15.15) −18.54 (−19.11)

HF SVP −17.83 −16.65 (−17.19) −18.9 (−19.24) −15.02 (−15.9) −18.39 (−18.95)
TZVP −14.04 −16.02 (−16.55) −18.15 (−18.48) −15.84 (−16) −19.25 (−19.82)
TZVPP −12.07 −14.89 (−15.38) −16.98 (−17.29) −15.34 (−16.27) −18.73 (−19.28)

MP2 SVP −24.29 −18.38 (−18.92) −20.8 (−21.13) −14.76 (−15.55) −18.15 (−18.7)
TZVP −18.2 −17.25 (−17.78) −19.43 (−19.76) −15.83 (−16.7) −19.27 (−19.84)
TZVPP −17.41 −16.54 (−17.05) −18.68 (−18.99) −15.33 (−15.45) −18.73 (−19.28)

MNDO / −1.42 −7.75 (−7.85) −9.24 (−9.35) −11.18 (−11.71) −13.47 (−13.82)
AM1 / −15.37 −12.07 (−12.22) −13.55 (−13.68) −11.44 (−11.9) −13.91 (−14.28)
PM3 / −10.07 −9.22 (−9.3) −10.83 (−10.89) −10.68 (−11.09) −13.13 (−13.45)
OM1 / −10.64 −12.63 (−12.96) −14.47 (−14.71) −13.37 (−13.91) −16.18 (−16.65)
OM2 / −14.19 −12.7 (−12.99) −14.58 (−14.81) −12.95 (−13.62) −15.77 (−16.22)
OM3 / −14.66 −13.38 (−13.73) −15.59 (−15.88) −13.78 (−14.46) −16.75 (−17.25)

aThey were computed at the full QM level (QQQ) or using a hybrid QM/MM approach with the TIP3P water force field (T) or the SWM4-NDP
polarizable force field (S). Two kinds of QM regions were considered, one with two water molecules (QQT, QQS) and the other with one water
molecule (QTT, QSS). Binding energies were obtained from geometry optimizations, in which the internal structure of each MM water molecule
was constrained (values in parentheses from calculations without such constraints).
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QM/TIP3P optimizations always give planar trimer structures,
while the QM/SWM4 calculations (in combination with any
first-principle QM method) yield realistic out-of-plane angles
that are typically 1−3° too large (compared with the QQQ
reference data).
In the hybrid QM/MM computations, the SWM4 water

model performs better than TIP3 overall, because it can
properly reproduce the geometries, thanks to the explicit lone-
pair treatment. Being partly parametrized with respect to high-
level ab initio data, it tends to give accurate binding energies in
a QM/MM framework (compared with the full QM data). The
best QM/SWM4 results are obtained when employing the QM
method and basis set used for its parametrization, namely MP2
with a large basis set. The SWM4 model is also compatible with
DFT methods, especially when a large basis set is used. For fast

QM/SMW4 computations, the semiempirical PM3 and OMX
methods appear to be efficient alternatives for this system.

4.3.2. NMA Dimer. N-methylacetamide (NMA) often serves
as a prototype test system when parametrizing a new force field
for proteins, as it provides the smallest possible representation
of the peptide bond.93 It has also been used in benchmark
studies that target biologically relevant data.94,95 Here, we
investigate the NMA dimer, in which both monomers are in
their cis conformation. As shown in Figure 2, two equivalent
hydrogen bonds are formed between the two monomers. The
NMA dimer is particularly relevant for our purposes as this type
of hydrogen bond is often encountered in QM/MM studies of
enzymes.
In QM/MM work, one normally avoids QM/MM

boundaries that cut through a hydrogen bond directly involving
the substrate or other reactive species.1 Here, we deliberately

Table 3. Binding Energies (kcal/mol) and Hydrogen Bond Distances (Å) between the Two Monomers in the cis-NMA Dimera

full QM QM/MM-DO QM/MM

Hamiltonian basis energy dist1 dist2 energy dist1 dist2 energy dist1 dist2

BP86 SVP −18.19 1.76 1.76 −17.64 1.72 1.30 −15.35 1.70 1.61
TZVP −14.41 1.82 1.82 −19.64 1.62 1.19 −16.58 1.72 1.60
TZVPP −14.11 1.80 1.80 −19.37 1.63 1.27 −16.40 1.73 1.60

BLYP SVP −17.75 1.81 1.81 −17.22 1.76 1.53 −15.06 1.71 1.61
TZVP −13.40 1.87 1.87 −19.38 1.63 1.20 −16.39 1.72 1.60
TZVPP −13.00 1.86 1.86 −19.30 1.64 1.25 −16.24 1.73 1.60

B3LYP SVP −17.69 1.84 1.84 −17.60 1.75 1.56 −15.43 1.70 1.62
TZVP −14.06 1.86 1.86 −19.67 1.60 1.19 −16.62 1.72 1.61
TZVPP −13.60 1.86 1.86 −19.30 1.67 1.40 −16.42 1.72 1.61

PBE SVP −19.84 1.76 1.76 −17.69 1.76 1.39 −15.30 1.71 1.61
TZVP −15.75 1.83 1.83 −19.54 1.62 1.19 −16.51 1.73 1.60
TZVPP −15.46 1.80 1.80 −19.29 1.65 1.32 −16.32 1.73 1.60

PBE0 SVP −18.66 1.79 1.79 −17.83 1.72 1.39 −11.83 1.85 1.86
TZVP −15.36 1.83 1.83 −19.62 1.68 1.42 −16.68 1.71 1.61
TZVPP −14.96 1.82 1.82 −19.43 1.66 1.35 −16.50 1.72 1.61

BP86-D2 SVP −22.02 1.72 1.72 −17.94 1.72 1.41 −15.41 1.71 1.61
TZVP −18.09 1.77 1.77 −19.78 1.63 1.18 −16.61 1.72 1.60
TZVPP −17.88 1.76 1.76 −19.66 1.61 1.20 −16.45 1.73 1.59

BLYP-D2 SVP −21.83 1.77 1.77 −17.95 1.73 1.36 −15.09 1.71 1.62
TZVP −17.36 1.82 1.82 −19.61 1.68 1.40 −16.48 1.73 1.60
TZVPP −17.02 1.82 1.82 −20.50 1.69 1.38 −16.28 1.73 1.60

B3LYP-D2 SVP −21.32 1.79 1.79 −17.71 1.75 1.54 −15.47 1.70 1.62
TZVP −17.53 1.82 1.82 −20.27 1.68 1.37 −16.66 1.72 1.61
TZVPP −17.22 1.82 1.82 −19.48 1.61 1.19 −16.47 1.72 1.61

PBE-D2 SVP −22.58 1.73 1.73 −18.08 1.71 1.38 −15.32 1.71 1.61
TZVP −18.39 1.78 1.78 −20.36 1.71 1.38 −16.55 1.73 1.60
TZVPP −18.20 1.77 1.77 −19.41 1.62 1.22 −16.36 1.73 1.59

HF SVP −13.24 1.99 1.99 −18.45 1.73 1.60 −16.32 1.68 1.64
TZVP −11.30 2.01 2.01 −19.93 1.65 1.30 −16.94 1.69 1.64
TZVPP −7.08 1.86 1.86 −19.63 1.67 1.41 −16.72 1.70 1.63

MP2 SVP −18.17 1.84 1.84 −17.06 1.86 1.86 −15.46 1.71 1.62
TZVP −15.46 1.85 1.85 −17.08 1.64 1.37 −16.30 1.72 1.61
TZVPP −16.38 1.82 1.82 −19.28 1.62 1.18 −16.26 1.72 1.61

MNDO −1.17 3.42 3.42 −10.73 1.84 1.90 −10.43 1.78 1.82
AM1 −7.99 2.07 2.07 −11.82 1.85 1.87 −11.40 1.77 1.76
PM3 −6.58 1.80 1.80 −10.35 1.87 1.87 −10.79 1.84 1.78
OM1 −6.87 2.08 2.08 −13.65 1.79 1.80 −13.15 1.71 1.71
OM2 −13.75 1.64 1.64 −14.31 1.79 1.79 −13.73 1.70 1.70
OM3 −12.93 1.50 1.50 −14.61 1.78 1.74 −13.95 1.69 1.66

aDifferent QM methods are used to describe the QM monomer. Results are given for full QM and for QM/MM computations using either the
polarizable Drude Oscillator force field or the CHARMM additive force field to represent the MM monomer. Distances are taken between the
hydrogen atom and the oxygen acceptor atom.
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perform a demanding test on the NMA dimer where this
convention is violated, treating one NMA as a QM molecule
and the other one as an MM molecule (thus cutting through
both hydrogen bonds). Since the dimer is symmetric, the two
possible assignments are equivalent. We again compare QM/
MM results obtained with a polarizable DO force field and the
additive CHARMM force field (QM/MM-DO vs QM/
CHARMM). Parameters for the additive force field were
taken from the distributed CGenFF set,96 and DO parameters
were a refined version of those developed by Harder et al.97 We
focus on the binding energy and the hydrogen bond lengths.
The results are listed in Table 3. Full MM computations lead to
a binding energy of −14.88 kcal/mol and a hydrogen bond
distance of 1.75 Å for the DO model, compared with −11.90
kcal/mol and 1.74 Å for the CHARMM22 force field.
Concerning the binding energies, the full QM reference

results are reproduced very well at the QM/MM-DO level
when using DFT/SVP as the QM method (contrary to what
has been found for the water trimer). Upon basis set extension
from SVP to TZVP, the dimer is destabilized for any QM
method (both in pure QM and hybrid QM/MM calculations,
regardless of the chosen force field). Including dispersion
corrections generally improves the QM/MM results, but not
the QM/MM-DO results. The polarizable force field performs
better than the additive one whenever SVP is used as the basis.
Among the semiempirical QM methods, both force fields give
good results in combination with OM2, which is known to
perform well for these kinds of systems.
Table 3 also lists the hydrogen bonding distances in the

NMA dimer, which are identical by symmetry in the pure QM
and MM calculations. When using a hybrid QM/MM model,
the symmetry is broken, and the difference (splitting) between
the two computed hydrogen bond distances is an excellent
criterion to assess the compatibility of the QM and MM
descriptions. Compared to the full QM reference results, the
QM/CHARMM calculations produce acceptable geometries.
The splitting is 0.09 Å on average (maximum: 0.14 Å for BP86-
D2/TZVPP and PBE-D2/TZVPP), and the deviation from the
QM reference distances amounts to 0.16 Å on average
(maximum: 0.37 Å for OM1, disregarding the pure QM results
from MNDO which fails to give hydrogen bonds). The QM/
MM-DO calculations generally perform less well: the splitting
is 0.28 Å on average (maximum: 0.45 Å for BP86/TZVP), and
the average deviation from the QM reference distances is 0.29
Å (maximum: 0.53 Å for HF/TZVP). The best QM/MM-DO
distances are generally obtained with the SVP basis, which may
at least partially explain the good results for the binding energy
obtained with this basis set. Comparing the performance of
different QM methods in the QM/MM-DO calculations, all
DFT functionals fail to reproduce the pure QM(DFT)
geometries (best match: splitting of 0.19 Å and deviation of
0.185 Å for B3LYP/SVP), and the inclusion of empirical
dispersion corrections does not improve the results at all.
Among the ab initio QM methods, MP2/SVP gives the best
QM/MM-DO results with zero splitting and a deviation of only
0.02 Å, while the others do not perform well. On the other
hand, semiempirical QM methods lead to a very small splitting
at both the QM/MM-DO and QM/CHARMM levels, but they
are less accurate at reproducing the corresponding QM
reference distances. In the QM/MM-DO framework, PM3
and OM2 give no splitting and are closer to the reference
distances than the corresponding full QM results.

To summarize, QM/MM-DO calculations with MP2/SVP as
a QM component best reproduce both the energetic and
geometric QM reference results, and they also yield excellent
agreement with the experimental values. It should be noted in
this context that MP2 with a basis of SVP-type quality has been
used as the QM method for parametrizing the geometry of such
compounds in the MM-DO force fields.98 For other first-
principles QM methods, QM/MM-DO tends to perform less
well than QM/CHARMM, especially when it comes to the
geometry of the NMA dimer. Among the semiempirical QM
methods, OM2 seems to be the best choice.

4.3.3. π-Cation Interactions. The preceding comparisons
indicate that the QM/MM-DO results tend toward those
obtained by the DO model alone when the size of the MM
region is expanded. We verify those aspects with another type
of interaction relevant for enzyme catalysis: the π-cation
interactions. We have chosen the cationic bis(benzene)sodium
sandwich complex as a representative test system (Figure 2).
This complex has no heteroatoms with lone pairs so that we
can directly assess the effect of MM polarization.
At the MM-DO level, several benzene−sodium complexes

were investigated by Orabi and Lamoureux.99 Their results
show a clear improvement over the CHAMM22/27 results in
comparisons with experimental and high-level ab initio data.100

This was achieved by a specific parametrization for the DO
model, which is not used here as we would like to assess the
difference between the reference data and the DO results. We
use the initially proposed DO parameters, designed for
condensed phase simulations.101

As in the case of the water trimer, we investigated several
definitions of the QM and MM regions. We again use a three-
letter notation: the first and third letters refer to the benzene
moieties and the middle one to the sodium cation. In this
scheme, Q stands for QM and D for DO. We tested every
possible combination except QDQ, which showed some
instability.
For such systems, MP2 is known to give fairly accurate

results at reasonable computation cost.100 It was employed to
obtain the geometries of the benzene rings in the DO
parametrization.101 Therefore, we used it here in combination
with the SVP, TZVP, TZVPP, and QZVP basis sets. The
counterpoise correction for the basis set superposition error
was computed for the QQQ and QQD systems. In the QQD
case, this correction was evaluated for the QQ system without
taking into account the benzene ring represented at the MM-
DO level.
As previously, we first consider the binding energy of the

complex. Figure 3 shows the MP2-based results for all basis sets
and QM/MM partitionings, along with the experimental and
the MM-DO value. The pure MP2 results (QQQ) are in good
agreement with experimental results, especially for the larger
basis sets. The MM-DO approach (DDD) overestimates the
binding energy by around 15 kcal/mol when using the original
DO parameters that had been calibrated for proper interaction
with water molecules (solvation energy).101 The QM/MM-DO
binding energies (QQD, QDD, DQD) apparently interpolate
between the QQQ and DDD values, approaching the MM-DO
result when including two fragments in the MM region.
When treating only the sodium cation at the QM level

(DQD), the computed binding energy is essentially identical to
the MM-DO value, regardless of the chosen basis set, indicating
that the MM-DO parameters for Na+ are consistent with its
QM description. Improvements in the parametrization should
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thus focus on the benzene part.99 We note in this context that
the QM/MM-DO nonbonded interactions are calculated from
the same Lennard-Jones potential that is used in the DO
model. As known from other QM/MM-DO studies,99 the
readjustment of these parameters for the QM atoms may
improve the results through a more realistic description of the
Na+/benzene interaction. With proper reparameterization of
the force field, QM/MM-DO calculations should give binding
energies of an accuracy similar to the QQQ approach.
Figure 4 shows the optimized distances between the sodium

cation and the center of the benzene rings for all currently
investigated approaches. In the case of the pure models (QQQ
and DDD), the complex is symmetric, and hence only one
distance value is given. The symmetry is lost for the hybrid
QM/MM models (QQD, QDD, DQD) for which both
distances are shown with the corresponding assignments. In
the pure QM model (QQQ), basis set extension from SVP to
QZVP shortens the distance from 2.5 to 2.3 Å. The QQ
distance in QQD shows similar behavior. In the pure MM
model (DDD), the optimized distance is 2.2 Å. Similar values
are obtained in the QM/MM models for distances involving a
benzene ring described at the MM level, regardless of the
chosen basis set (QQD, QDD, DQD; see Figure 4). The angle
between the three moieties (benzene center−Na+−benzene
center) is always found to be around 180°.
4.4. Influence of Force Field Polarization on

Enzymatic Reactions. In this section, we investigate the

effect of DO polarization on enzymatic reactions. Our goal is to
assess the influence of DO polarization on single-point QM/
MM energies along previously determined enzymatic reaction
pathways. In this initial study, we refrain from geometry
optimizations and from free energy calculations (sampling),
and hence also from comparison with experimental data,
because we consider it most important to first gauge the basic
effect of DO polarization on the QM/MM energetics.
As the main test enzyme, we have chosen chorismate mutase

from Bacillus subtilis, which catalyzes the pericyclic Claisen
rearrangement of chorismate into prephenate through a six-
membered transition state (see Figure 5). This enzyme is well
characterized experimentally102 and has been extensively
studied by QM/MM computations.1,103 The rather small
substrate (24 atoms) is a natural choice for the QM region;
it is bound through noncovalent interactions so that there is no
need for cutting bonds at the QM/MM boundary.104

For the MM region, we used the recently published
CHARMM-DO parameters for proteins39 and the SWM4
parameters for water.64 No further DO parameters are required,
since there are no other species in the MM region. For the
QM-MM nonbonded interactions, we applied the
CHARMM22 Lennard-Jones parameters of the substrate as
in previous studies. These may not be the optimum choice, but
we expect them to be realistic enough for a qualitative

Figure 3. RI-MP2-based results for the energy of the cationic
bis(benzene)sodium sandwich complex relative to the isolated
fragments (in kcal/mol) obtained with four different basis sets.
Shown are the full QM results (QQQ, blue), the QM/MM-DO results
for different partitionings (QQD, red; QDD, green; DQD, purple; see
text), the experimental value (EXP), and the pure MM-DO value
(DO). Energies for complexes with more than one QM fragment were
corrected for basis set superposition error (BSSE). For technical
reasons, the BSSE could not be determined for the QQQ/QZVP
combination.

Figure 4. RI-MP2-based distances between the sodium cation and the
center of the benzene rings in the cationic bis(benzene)sodium
complex for four different basis sets (SVP, TZVP, TZVPP, and QZVP;
see color code). Shown are results from the pure QM treatment
(QQQ), from the pure MM-DO treatment (DDD), and from QM/
MM-DO calculations (QQD, QDD, and DQD; the labels QQ, QD,
and DQ specify which distance is plotted). See text for further details.
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assessment of the effect of MM polarization on the reaction
profile.
In previous work of our group on chorismate mutase,62 we

had taken five snapshots from a classical molecular dynamics
run of the reactant system and had used them as starting points
for QM(MP2/SVP)/CHARMM22 geometry optimizations to
determine reaction paths for the chorismate-prephenate
rearrangement. We have now performed single-point calcu-
lations at the these previously optimized geometries using the
QM(MP2/SVP)/CHARMM-DO approach. These calculations
were done for all five pathways at all available points (intervals
of 0.05 Å). The choice of QM method is supported by the fact
that the MP2/SVP level of theory was the one that gave the
best QM/MM-DO results for the NMA dimer (see section
4.2).
We adopted the following procedure for evaluating the

effects of MM polarization. At any given geometry, we first
replaced the fixed-charged CHARMM22 force field for the MM
region by the nonpolarizable part of the CHARMM-DO force
field (without the DO contributions but including the lone pair
terms at the heteroatoms) and evaluated the corresponding
QM/MM single-point energies (labeled “no pol”). We then
included the DO contributions and reevaluated the single-point
energies with full MM polarization using the SOR approach
with a damping factor of 0.2 to obtain the DP positions (results
labeled “full pol”). To check for consistency, we also considered
the case in which the DO contributions are scaled down by
applying a factor of 0.5, with appropriate scaling of the DO
charges to preserve the force constant of the DO spring (results
labeled “half pol”). We also tried to double the DO
contributions, but this invariably led to nonconvergence of
the iterative SOR procedure (“polarization catastrophe”).
Figure 5 gives an example of the results obtained for one of
the snapshots. Since the computed single-point energies show
some minor irregular fluctuations (“noise” mostly arising from

the replacement of the nonpolarizable terms), we used spline
interpolation to produce smooth curves in Figure 5; this does
not affect the following qualitative assessment of the effects of
MM polarization.
Table 4 lists the changes in the computed barrier height and

reaction energy for the five snapshots considered when

switching from the “no pol” to the “full pol” model (in
parentheses: from “no pol” to “half pol”). Evidently, the
inclusion of full MM polarization consistently diminishes the
barrier height, and it also tends to make the reaction more
exothermic. The “full pol” results are close to those obtained
with the additive CHARMM22 force field, which are known to
be in good agreement with experimental results. Inclusion of
half of the MM polarization normally leads to changes in the
same direction, which are however less pronounced than might
have been expected (typically ca. 40% except for ΔΔE of
snapshot 4, see Table 4), indicating the nonlinear nature of
polarization effects. Quantitatively, the effects of MM polar-
ization on the computed barriers and reaction energies in
chorismate mutase are rather small: for example, the calculated

Figure 5. Potential energy profile of the Claisen rearrangement in chorismate mutase from QM(RI-MP2/SVP)/MM optimizations using the fixed-
charge CHARM22 and the polarizable CHARMM-DO force fields. Also shown are QM/MM results obtained with the CHARMM-DO force field
with the DO contributions switched off (no pol) or scaled down by a factor of 0.5 (half pol). The reaction coordinate is the difference between the
distances for the breaking and forming bonds. The insets show the QM regions for the reactant (left), transition state (middle), and product (right).
See text for further details.

Table 4. Effect of MM Polarization on the Barrier (ΔΔE‡)
and the Reaction Energy (ΔΔE) of the Claisen
Rearrangement in Chorismate Mutase in Five Independent
Snapshots (in kcal/mol)a

snapshot ΔΔE‡ ΔΔE

1 −1.3 (−0.29) −1.21 (−0.41)
2 −1.25 (−0.51) 0.23 (0.09)
3 −1.42 (−0.62) −2.01 (−0.73)
4 −0.52 (−0.13) −0.46 (0.02)
5 −1.15 (−0.51) −2.99 (−1.16)

aThe values correspond to the differences between “full pol” and “no
pol” results (in parentheses: between “half pol” and “no pol”). See text
for details.
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barriers are lowered by 0.5 to 1.4 kcal/mol. The computed
barrier heights for the five snapshots are around 10 kcal/mol;
the contributions from MM polarization thus amount to about
5−15%, which is consistent with previous studies.43

The Claisen rearrangement catalyzed by chorismate mutase
involves relatively little charge transfer,105 and one may thus
suspect that the impact of MM polarization could be more
pronounced in enzymatic reactions that exhibit more
pronounced charge redistribution. To check for this possibility,
we have investigated the enzyme p-hydroxybenzoate hydrolase
(PHBH) in a completely analogous manner. PHBH catalyzes
the transformation of p-hydroxybenzoate into 3,4-dihydroxy-
benzoate, by formally moving an “OH+” moiety from the
cofactor to the substrate, with a concomitant charge transfer of
one electron in the opposite direction. We selected the four
snapshots from our previous QM/MM work on PHBH105 and
performed single-point QM/MM computations with and
without MM polarization using the same QM method
(B3LYP/6-31G*), the same QM region, and the same
geometries as before.105 Like in the case of chorismate mutase,
the effect of MM polarization was assessed by switching it on
and off. In these single-point QM/MM energy evaluations, the
PHBH protein was represented by the CHARMM-DO force
field, whereas the ribityl side chain was described by the
standard CHARMM force field (due to the lack of CHARMM-
DO parameters). This inconsistency is not expected to be
severe, because the main impact of MM polarization should
come from the polarizable PHBH residues surrounding the
reactive center of the system (and not from the rather distant
ribityl side chain at the opposite side of the cofactor). The
single-point results for PHBH are collected in Table 5.

In analogy to chorismate mutase (see Table 4), the effects of
MM polarization in PHBH are rather small on an absolute scale
both for the barrier (0.8 to 2.2 kcal/mol) and for the reaction
energy (0.5 to 2.7 kcal/mol). The QM/CHARMM-DO single-
point values range from 7.6 to 11.0 kcal/mol for the barrier and
from −26.1 to −31.0 kcal/mol for the reaction energy so that
the contributions from MM polarization typically amount to
10−20% and 5−10%, respectively. It seems noteworthy that
inclusion of MM polarization leads to a slight decrease of the
barrier in chorismate mutase, but to a slight increase for PHBH.
Incorporating MM polarization may thus shift barriers in
different enzymes into different directions. More importantly,
however, our two initial tests indicate that these shifts tend to
be rather small regardless of whether the reaction involves little
charge redistribution (chorismate mutase) or strong charge
transfer (PHBH).

5. CONCLUSIONS

In this article, we have addressed several issues connected with
the use of the polarizable DO force fields in QM/MM
simulations of enzymatic reactions.
First, we investigated the convergence of the DO scheme in

QM/MM geometry optimizations. We suggested and assessed
two approaches that can be used in addition or instead of the
one previously proposed.49 The first one consists of iteratively
solving the system of equations of polarization using Cholesky
factorization instead of matrix inversion (for the sake of
efficiency). The second one is a hybrid approach in which
short-distance interactions are treated by Cholesky factorization
and the remaining ones through an iterative self-consistent
approach.
We further studied possible QM/MM boundary treatments

involving MM atoms that carry Drude oscillators. By a series of
tests for n-butanol in the presence of a sodium cation at
different positions, we showed that the simplest possible model,
namely the removal of the DO located at the MM frontier
position (M1), gave the most satisfactory results, with an
accuracy similar to what is normally achieved in standard QM/
MM boundary treatments for additive force fields.
The systematic tests on the water trimer and the NMA dimer

indicate that the DO model performs best in a QM/MM
framework when employing the QM method and basis set used
in the underlying MM parametrization. The match with
experimental results is not perfect but benefits from the
calibration of the MM parameters against experimental data.
We thus propose to preferentially use this QM method in QM/
MM calculations. This is consistent with the approach of
Rowley and Roux who computed the solvation structure of
sodium and potassium ions in water using MP2/def2-TZVP
QM for the ions and neighboring water molecules in
combination with the SWM4 model as a reference system.40

A similar observation was made by Illingworth et al. when
considering the water dimer with different polarizable force
fields.43 They concluded that some force fields were more
compatible with certain basis sets than with others. We
generalize this further by suggesting that best results will be
obtained with the method used during MM parametrization.
These conclusions are based on a few representative test
systems, and further validation will be needed to support them.
In the selected test systems, the QM/MM-DO results for the

binding energies and geometries tend to converge to the pure
MM-DO values when describing an increasing part of the
system at the MM-DO level. This will often lead to rather
accurate results since the MM-DO force field generally gives
results close to experimental ones (more so than the
CHARMM22/27 additive force field).
In the chorismate mutase case, we find that switching on

MM polarization in QM/MM single-point calculations affects
the computed barrier height for the enzymatic Claisen
rearrangement of chorismate to prephenate, but only to a
rather minor extent: the barrier is lowered by 0.5−1.4 kcal/mol
(i.e., by 5−15%) in the five snapshots studied. In PHBH, MM
polarization leads to a slight increase in the computed barriers
by 0.8−2.2 kcal/mol. We expect that inclusion of MM
polarization may generally cause small changes on the order
of 5−20% in the computed energies, but this will need to be
confirmed by further studies that should also include geometry
optimizations and free energy calculations.

Table 5. Effect of MM Polarization on the Barrier (ΔΔE‡)
and the Reaction Energy (ΔΔE) of the Electrophilic
Substitution Reaction in p-Hydroxybenzoate Hydroxylase in
Four Independent Snapshots (in kcal/mol)a

snapshot ΔΔE‡ ΔΔE

1 2.1 (1.7) 1.7 (1.2)
3 0.8 (0.6) 2.8 (1.9)
4 0.8 (0.6) 0.5 (0.3)
5 2.2 (1.3) 2.7 (1.7)

aThe values correspond to the differences between “full pol” and “no
pol” results (in parentheses: between “half pol” and “no pol”). See text
for details. Snapshot 2 was discarded already in the original work for
technical reasons.105
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