

Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung

Reaktionen ausgewählter N-*tert*-butylsubstituierter Bis(amino)silane und Diamine mit Lewis-Säuren

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Daniel Buhl

aus Haan

Düsseldorf, Juni 2016

aus dem Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Walter Frank

Korreferent: Prof. Dr. Christian Ganter

Tag der mündlichen Prüfung: 15.07.2016

Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von Oktober 2013 bis Dezember 2015 am *Institut für Anorganische Chemie und Strukturchemie II* der Heinrich-Heine-Universität Düsseldorf unter der Leitung von Prof. Dr. Walter Frank durchgeführt.

Herrn Prof. Dr. Walter Frank danke ich für die interessante Themenstellung, die wohlwollende Unterstützung, den mir gewährten Freiraum bei der Erstellung dieser Arbeit und für die anregenden Diskussionen.

"Irrtümer haben ihren Wert. Jedoch nur hier und da: Nicht jeder, der nach Indien fährt, entdeckt Amerika."

Erich Kästner, deutscher Schriftsteller, 1899 – 1974

1.	The	eorie und Einführung	1
	1.1.	Bis(amino)silane und Cyclodisilazane	1
	1.2.	Azaazoniasilaalanuidacyclobutane	2
	1.3.	Cyclische (Erd)Alkalimetalldiazasilaaluminate	5
	1.4.	Stickstoffhaltige heterocyclische elementorganische Verbindungen	8
	1.5.	Dynamische NMR-Spektroskopie (DNMR) ^[75-77]	11
2	Pro	blemstellung und Zielsetzung	.14
3.	Erg	ebnisse und Diskussion	.15
	3.1.	Synthese und Untersuchungen des Azaazoniasilaalanuidacyclobutans 1, des Diazasiladi- aluminapentans 2 und der Diazasilaalanuidasodiabicyclo[1.1.1]pentane 3, 4 und 5	15
	3.1.′	 Darstellung und Untersuchungen von 1,3-Di-<i>tert</i>-butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia- 2-sila-4-alanuidacyclobutan (1) 	15
	3.1.2	 Darstellung und Untersuchungen von 2,4-Di-<i>tert</i>-butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza- 3-sila-1,5-dialuminapentan—Diethylether (1/2) (2) 	23
	3.1.3	 Festkörperuntersuchungen von 1,3-Di-<i>tert</i>-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5- sodiabicyclo[1.1.1]pentan (3) und 1,3-Di-<i>tert</i>-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila- 4-alanuida-5-sodiabicyclo[1.1.1]pentan (4). 	27
	3.1.4	 Darstellung und Untersuchungen von 1,3-Di-<i>tert</i>-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila- 4-alanuida-5-sodiabicyclo[1.1.1]pentan (4). 	34
	3.1.	5. Dynamische NMR-spektroskopische Untersuchungen von 3 und 4	37
	3.1.6	 Darstellung und Untersuchungen von 1,3-Di-<i>tert</i>-pentyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila- 4-alanuida-5-sodiabicyclo[1.1.1]pentan (5). 	43
	3.2.	Darstellung und Untersuchungen der Alkandiamin–Trimethylaluminium – Addukte 6 und 8 und der Diazoniadialanuidabicycloalkane 7 und 9	46
	3.2.7	1. Umsetzung von <i>N,N</i> '-Di- <i>tert</i> -butylethylendiamin mit Trimethylaluminium zu 6 und 7	46
	3.2.2	2. Umsetzung von <i>N,N</i> '-Di- <i>tert</i> -butylpropylendiamin mit Trimethylaluminium zu 8 und 9	50
	3.2.3	 Festkörperuntersuchungen von 1,4-Di-<i>tert</i>-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuida- bicyclo[2.1.1]hexan (7), <i>N</i>,<i>N</i>'-Di-<i>tert</i>-butylpropylendiamin—Trimethylaluminium (1/2) (8) und 1,5-Di-<i>tert</i>-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptan (9) 	54
	3.3.	Darstellung und Untersuchungen von 1,4-Di- <i>tert</i> -butyl-5-chlor-1,4,5-diazaborolidin (10)	
		und 1,5-Di- <i>tert</i> -butyl-6-chlor-1,5,6-diazaborinan (11)	60
	3.3.	1. Umsetzung von <i>N,N'-</i> Di- <i>tert</i> -butylethylendiamin mit Bortrichlorid zu 10	60
	3.3.2 3.4.	Darstellungen und Untersuchungen von 1,4-Di- <i>tert</i> -butyl-5,5-dichlor-4-aza-1-azonia-5-ala- nuidacyclopentan (12) und 1,5-Di- <i>tert</i> -butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclo-	05
		hexan (13)	67

3.4.1. Umsetzung von N,N'-Di-tert-butylethylendiamin mit Aluminiumtrichlorid zu 12	67
3.4.2. Umsetzung von N,N'-Di-tert-butylpropylendiamin mit Aluminiumtrichlorid zu 13	68
3.4.3. Festkörperuntersuchungen von 1,4-Di- <i>tert</i> -butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopen (12) und 1,5-Di- <i>tert</i> -butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan (13)	ıtan 70
3.5. Darstellung und Untersuchungen von <i>N</i> , <i>N</i> '-Di- <i>tert</i> -butylethylendiamin—Bortrifluorid (1/1) (14) und <i>N</i> , <i>N</i> '-Di- <i>tert</i> -butylpropylendiamin—Bortrifluorid (1/2) (15)) 77
3.5.1. Umsetzung von <i>N,N</i> '-Di- <i>tert</i> -butylethylendiamin mit Bortrifluorid zu 14	77
3.5.2. Umsetzung von <i>N,N</i> ´-Di- <i>tert</i> -butylpropylendiamin mit Bortrifluorid zu 15	82
4. Zusammenfassung	85
4. Summary	88
5. Experimenteller Teil	91
5.1. Allgemeine Arbeitstechniken	91
5.2. DFT-Rechnungen mit dem Programmpaket Gaussian 03	91
5.3. Verwendete Chemikalien und Lösemittel	92
5.3.1. Nach Literaturvorschriften hergestellte Verbindungen	92
5.3.2. Verwendete Chemikalien und deren Aufarbeitung	92
5.4. Analysengeräte	93
5.4.1. Kernresonanzspektroskopie	93
5.4.2. Schwingungsspektroskopie	94
5.4.3. Massenspektrometrie	95
5.4.4. Elementaranalyse	95
5.4.5. Kristallstrukturanalyse	95
5.4.6. Thermische Untersuchungen	96
5.5. Synthesevorschriften und spektroskopische Daten	97
5.5.1. Darstellung von 1,3-Di- <i>tert</i> -butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia-2-sila-4-alanuida- cyclobutan (1)	97
5.5.2. Darstellung von 2,4-Di- <i>tert</i> -butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialumina pentan–Diethylether (1/2) (2)	a- 101
5.5.3. Herstellung von 1,3-Di- <i>tert</i> -butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo [1.1.1]pentan (3)	103
5.5.4. Darstellung von 1,3-Di- <i>tert</i> -butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodia- bicyclo[1.1.1]pentan (4)	106
5.5.5. Darstellung von 1,3-Di- <i>tert</i> -pentyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo [1.1.1]pentan (5)	o- 111

	5.5.6.	Umsetzung von N,N' -Di- <i>tert</i> -butylethylendiamin mit Trimethylaluminium zu N,N' -Di- <i>tert</i> -butyl- ethylendiamin—Trimethylaluminium (1/1) (6) und 1,4-Di- <i>tert</i> -butyl-5,5,6,6-tetramethyl-	
		1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (7)	113
	5.5.7.	Darstellung von 1,4-Di- <i>tert</i> -butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]- hexan (7)	115
	5.5.8.	Darstellung von <i>N</i> , <i>N</i> '-Di- <i>tert</i> -butylpropylendiamin—Trimethylaluminium (1/2) (8)	118
	5.5.9.	Darstellung von 1,5-Di- <i>tert</i> -butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]- heptan (9)	122
	5.5.10.	Darstellung von 1,4-Di- <i>tert</i> -butyl-5-chlor-1,4,5-diazaborolidin (10)	126
	5.5.11.	Umsetzung von N.N'-Di-tert-butylpropylendiamin mit Bortrichlorid zu 1.5-Di-tert-butyl-6-chlor-	
		1,5,6-diazaborinan (11)	130
	5.5.12.	Umsetzung von N,N'-Di-tert-butylethylendiamin mit Aluminiumtrichlorid zu 1,4-Di-tert-butyl-	
		5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentan (12)	132
	5.5.13.	Umsetzung von N,N'-Di-tert-butylpropylendiamin mit Aluminiumtrichlorid zu 1,5-Di-tert-butyl-	
		6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan (13)	134
	5.5.14.	Darstellung von N,N'-Di-tert-butylethylendiamin-Bortrifluorid (1/1) (14)	137
	5.5.15.	Umsetzung von <i>N,N'</i> -Di- <i>tert</i> -butylpropylendiamin mit Bortrifluorid zu <i>N,N'</i> -Di- <i>tert</i> -butylpropylen- diamin—Bortrifluorid (1/2) (15)	141
6	∆bkür	zungeverzeichnis	112
۰.	AMAN	201193761261611113	143
7	Litora	turvarzaichnie	145
7.	Litera	turverzeichnis	145
7. 8.	Litera Anhar	turverzeichnis	143 145 152
7. 8.	Litera Anhar	turverzeichnis ng «perimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung	143 145 152 152
7. 8.	Litera Anhar 8.1. Ex 8.2. At	turverzeichnis ng	143 145 152 152 159
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar	turverzeichnis ng 	143 145 152 152 159 161
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar	turverzeichnis ng 	143 145 152 152 159 161 165
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar	turverzeichnis 1g 	143 145 152 159 161 165 166
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar 8.6. Ar	turverzeichnis ng xperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung obildungen nhang zu 1 nhang zu 3 nhang zu 4 nhang zu 7	143 145 152 159 161 165 166 171
7. 8.	Litera Anhar 8.1. Ex 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar 8.5. Ar 8.6. Ar 8.7. Ar	turverzeichnis ng ng sperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung obildungen nhang zu 1 nhang zu 3 nhang zu 4 nhang zu 7 nhang zu 8	143 145 152 159 161 165 166 171 172
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar 8.6. Ar 8.6. Ar 8.7. Ar 8.8. Ar	turverzeichnis Ig Aperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung obildungen Inhang zu 1 Inhang zu 3 Inhang zu 4 Inhang zu 7 Inhang zu 8 Inhang zu 9	143 145 152 152 159 161 165 166 171 172 173
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar 8.6. Ar 8.6. Ar 8.7. Ar 8.8. Ar 8.8. Ar	turverzeichnis Ig sperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung obildungen ohang zu 1 ohang zu 3 ohang zu 4 ohang zu 7 ohang zu 8 ohang zu 9 ohang zu 10	143 145 152 152 159 161 165 166 171 172 173 175
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.4. Ar 8.5. Ar 8.6. Ar 8.7. Ar 8.8. Ar 8.8. Ar 8.9. Ar 8.9. Ar	turverzeichnis ng xperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung xbildungen xhang zu 1 xhang zu 2 xhang zu 3 xhang zu 4 xhang zu 7 xhang zu 8 xhang zu 9 xhang zu 10	143 145 152 152 159 161 165 166 171 172 173 175 176
7. 8.	Litera Anhar 8.1. E> 8.2. At 8.3. Ar 8.3. Ar 8.4. Ar 8.5. Ar 8.6. Ar 8.7. Ar 8.8. Ar 8.8. Ar 8.9. Ar 8.9. Ar 8.10. A	turverzeichnis ng xperimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung xpbildungen xhang zu 1 xhang zu 3 xhang zu 4 xhang zu 7 xhang zu 8 xhang zu 9 xhang zu 10 xhang zu 13	143 145 152 159 161 165 166 171 172 173 175 176 178
7. 8.	Litera Anhar 8.1. Ex 8.2. At 8.3. Ar 8.3. Ar 8.4. Ar 8.5. Ar 8.5. Ar 8.6. Ar 8.7. Ar 8.8. Ar 8.9. Ar 8.9. Ar 8.9. Ar 8.10. A 8.11. A	turverzeichnis	143 145 152 159 161 165 166 171 172 173 175 176 178 179

1. Theorie und Einführung

1.1. Bis(amino)silane und Cyclodisilazane

Seit Ende der vierziger Jahre des vergangenen Jahrhunderts sind Bis(amino)silane literaturbekannt.^[1-3] Um sie herzustellen, wurden primäre Amine mit Diorganyldihalogensilanen silyliert (Schema 1.1.1).^[1-3] Nachteilig an diesem Reaktionsweg ist der Einsatz von vier Äquivalenten Amin, die benötigt werden. Die beiden zusätzlichen Äquivalente Amin dienen als Fänger für den Halogenwasserstoff, welcher als Nebenprodukt entsteht. Eine elegantere Methode besteht in der Metallierung mit *n*-Butyllithium und anschließender Umsetzung mit einem Diorganyldihalogensilan (Schema 1.1.1).^[4] Die ersten viergliedrigen Cyclodisilazane wurden zu Beginn der 1960er Jahre erhalten. Hierfür wurden die zuvor erhaltenen Bis(amino)silane mit lithiumorganischen Verbindungen metalliert und anschließend mit Diorganyldihalogensilanen zur Reaktion gebracht (Schema 1.1.1).^[5]

Schema 1.1.1 Synthese von Cyclodisilazanen.^[1-5]

Fortschritte in der Chemie der Cyclodiazane wurden Mitte der 1970er Jahre gemacht. Es gelang erstmals, viergliedrige Heterocyclen mit Silicium, Stickstoff und Zinn, die Cyclostannazane, zu synthetisieren (Abb. 1.1.1a).^[6-7] Dabei handelt es sich um die ersten cyclischen Stickstoffderivate mit einem Element der Gruppe 14, das zweibindig und in der Oxidationszahl +II vorliegt. Durch den carbenoiden Charakter des niederwertigen Zinns gelang es, den viergliedrigen Heterocyclus in polare Einfachbindungen zu insertieren und ihn an Doppelbindungen zu addieren.^[8] Neben den viergliedrigen Heterocyclen wurden auch Spiroverbindungen mit Zinnatomen der Oxidationszahl +IV erhalten (Abb. 1.1.1d).^[6-7] Durch die Cyclostannazane wurde eine Tür zu einer Vielfalt unterschiedlicher Silicium-Stickstoff-Element-Heterocyclen geöffnet. Es folgten mit Germanium und Blei weitere Elemente der Gruppe 14 als Ringglieder, zudem wurden verschiedene Substituenten eingeführt.^[6-11] Als Vertreter der Gruppe 13 sind Verbindungen der Elemente Bor, Aluminium, Gallium, Indium und Thallium bekannt.^[10, 12-16] Des Weiteren sind Ringsysteme mit den schwereren Homologen des Stickstoffs veröffentlicht.^[17-24] Außerdem sind Derivate mit Schwefel^[25], Magnesium^[15] und den

Übergangsmetallen Zirconium^[26-27], Hafnium^[28], Vanadium^[28-29], Niob^[29], Tantal^[29] und Titan^[26, 30] synthetisiert und charakterisiert worden (Abb. 1.1.1). (In Anlehnung an ^[31])

Abb. 1.1.1 a) 1,3-Di-*tert*-butyl-2,2-dimethyl-1,3-diaza-2-sila-Verbindung (M = Mg^[15], Ge^[8, 11], Sn^[6-8], Pb^[8, 11], S^[25]) b) 1,3-Di-*tert*-butyl-2-chloro-4,4-dimethyl-1,3-diaza-4-sila-Verbindung (X = CI; M = Ga^[16], In^[15], P^[8, 17], As^[18], Sb^[18], Bi^[18])

1,3-Di-*tert*-butyl-2,2,4-trimethyl-1,3-diaza-2-sila-Verbindung (X = Me; M = $B^{[10, 13-14]}$, $Ga^{[10, 15-16]}$, $In^{[10, 12, 15]}$

c) 1,3-Di-*tert*-butyl-2,2-dichlor-4,4-dimethyl-1,3-diaza-2-sila-Verbindung (X = CI; M = Ti^[30], V^[29], Nb^[29], Ta^[29], Sn^[6-8])

1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-Verbindung (X = Me; M = Si^[5, 32], Sn^[10])

- d) Spiroverbindung (M = $Zr^{[26-27]}$, $Ti^{[26, 30]}$, $Hf^{[28]}$, $V^{[28]}$, $Sn^{[6-7]}$)
- e) Tetraphosphet [19-20]

1.2. Azaazoniasilaalanuidacyclobutane

Neben den verschiedenen Verbindungen aus Abbildung 1.1.1 haben in den zurückliegenden Jahren Azaazoniasilaalanuidacyclobutane an Bedeutung gewonnen.^[33] Das Interesse an der Verbindungsklasse der Azaazoniasilaalanuidacyclobutane ist der Tatsache geschuldet, dass es sich bei dem Element Aluminium um ein "Elektronenmangelelement" handelt. Dies bedeutet, dass bei Ausbildung von kovalenten Bindungen durch alle drei Valenzelektronen nur ein Elektronensextett und kein Elektronenoktett vorliegt. Um diesen Mangel auszugleichen, ist das Aluminium bestrebt, zusätzliche, koordinative Bindungen auszubilden. In diesem Fall stehen Lewis-Säure-Base-Wechselwirkungen innerhalb des Moleküls im Fokus. Je nach der Stärke der Lewis-Acidität des Aluminiums und der Stärke der Lewis-Basizität des Stickstoffes sind zwei Aufbaumöglichkeiten denkbar. Eine mögliche acyclische, kettenartige Form steht in Konkurrenz zu der in Schema 1.2.1 dargestellten Ringstruktur. ¹H-NMR-spektroskopische Untersuchungen

belegen ausschließlich das Vorhandensein eines fixierten Ringes.^[10] Aluminium nimmt in der 3. Hauptgruppe mit diesem Verhalten eine Sonderstellung ein. Dies spricht für eine hohe Lewis-Acidität des Aluminiums, denn für analoge Verbindungen mit den Elementen Bor, Gallium, Indium und Thallium werden keine ¹H-NMR-Spektren fixierter Ringe beobachtet.^[10, 34] Als Resultat aus diesen Beobachtungen wurde das acide Wasserstoffatom, welches am Stickstoffatom gebunden ist, durch ein weiteres Lewis-acides Fragment ausgetauscht. Als naheliegendste Austauscheinheit bot sich ein Diorganylaluminiumrest an, um so zu den Diazasiladialuminapentanen (Abb. 1.2.2 c) zu gelangen. Die Kristallstruktur zeigt eine offene Form, bestehend aus zwei Enantiomeren, deren Grundgerüst durch zwei kantenverknüpfte Vierringe erzeugt wird. In Lösung werden die beiden Enantiomere durch Bindungsfluktuation ineinander überführt.^[10, 12] Ein möglicher Anwendungsbereich wird seit dem Jahr 2000 diskutiert. Hierbei sollen die Silicium- und Aluminium-Verbindungen ohne Sauerstoff als Vorläufer für Nitridkeramiken dienen.^[33] Als interessant erweist sich das Vorhandensein eines elektrophilen und nukleophilen Zentrums. Es ist deshalb von besonderem Interesse, einen genaueren Einblick in die Struktur und die Reaktivität der Azaazoniasilaalanuidacyclobutane zu erhalten.^[10]

Im Jahre 1985 wurde die Herstellung von 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2sila-4-alanuidacyclobutan publiziert (Schema 1.2.1).^[10] Bei den Syntheserouten a) und b) werden unter anderem die reaktiven Zinn-Stickstoff-Bindungen und die hohe Bildungstendenz von Bromtrimethylstannan und Tetramethylstannan ausgenutzt. Die Varianten c) und d) verlaufen über eine Umaminierungsreaktion. Bei c) findet der Substituentenaustausch der beiden Bis(amino)silane 2,4-Di-*tert*-butyl-1,1,3,3,5,5-hexamethyl-2,4-diaza-3-sila-1,5-dialuminapentan und *N*,*N*'-Di-*tert*-butyl-*Si*,*Si*-dimethylsilandiamin statt. Syntheseroute d) greift auf den Einsatz von Diethylamin anstelle des Dimethylsilandiamins zurück. Die Bildung des Aluminacyclobutans ausgehend von Dimethylsilandiamin und Trimethylaluminium ist thermodynamisch gesehen durch die Freisetzung von Methan begünstigt (e). Hierbei spielt die Reaktionstemperatur eine wichtige Rolle. Sollte diese zu hoch sein, entsteht als Nebenprodukt unter anderem das Diazasiladialuminapentan.

Schema 1.2.1 Syntheserouten zur Bildung von 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4alanuidacyclobutan (in Anlehnung an ^[10]).

Bis heute sind einige Derivate des 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4alanuidacyclobutans literaturbekannt.^[4, 10, 12, 35-36] Hierbei handelt es sich sowohl um symmetrische als auch um unsymmetrische Derivate (Schema 1.2.1 a, b, c). Als Variation wurden die ^{tert}Butyl-Reste durch Aryl- bzw. Alkylreste ersetzt. Darüber hinaus wird in der Literatur von weiteren Diazasilaaluminacyclobutanen berichtet, bei denen Methyl-Gruppen am Aluminium durch Chloratome substituiert worden sind (Abb. 1.2.2a, b). Abbildung 1.2.2 gibt einen Überblick über diese und ähnliche Verbindungen. (In Anlehnung an ^[31])

Abb. 1.2.2 Derivate des 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4alanuidacyclobutans

a) X = Me, R = R[•] = ^tButyl^[10, 12, 36], ⁱPropyl^[36], 2, 4, 6-Trimethylphenyl^[4], 2, 4, 6-Tri ^tbutylphenyl^[4];

 $X = Me, R = {}^{t}Butyl, R' = {}^{i}Propyl^{[36]}$

- $X = CI; R = R' = {}^{tert}Butyl^{[36]}, {}^{i}Propyl^{[36]},$
- b) X = Me; R = R⁴ = ^tBu ^[10]
 X = Cl; R = R⁴ = ^tButyl^[35], ^tPentyl^[35]; R = ^tButyl, R⁴ = ^tPentyl^[35] (die Verbindungen wurden als Diethylether-Solvate erhalten)
- c) X = Me^[10], Cl^[10], Ph^[12]; R = R' = ^tButyl X = Me^[12]; R = ^tButyl, R' = ⁱPropyl
 d) R = ⁱPropyl^[36]

1.3. Cyclische (Erd)Alkalimetalldiazasilaaluminate

In der Regel liegen die zuvor beschriebenen Bis(amino)silane und Cyclodisilazane als neutrale Moleküle vor. Aufgrund dessen ist das Augenmerk vermehrt auf Verbindungen gerichtet worden, die sowohl eine anionische als auch eine kationische Spezies aufweisen. Erste Beispiele für cyclische (Erd)Alkalimetalldiazasilaaluminate wurden 1987 in der Literatur erwähnt. Sie zeichnen sich durch den geringen sterischen Anspruch der eingeführten Austauscheinheiten und deren hohe Lewis-Acidität aus. Bei ihnen werden Lithium-, Natriumund Magnesiumatome von dem Me₂Si(N^tBu)₂AlMe₂-Grundbaustein koordinert, sodass ihr Grundgerüst von einer verzerrt trigonalen Bipyramide gebildet wird.^[15] Schema 1.3.1 zeigt die gängigen Synthesewege, bei welchen Metallierungsreagenzien verwendet werden.

Schema 1.3.1 Synthese cyclischer (Erd)Alkalimetalldiazasilaaluminate.^[4, 15]

Nach heutigem Kenntnisstand sind allerdings nur die beiden Verbindungen {Me₂Si(N^tBu)₂AIMe₂}Li^[4] und [{Me₂Si(N^tBu)₂AIMe₂}MgI]₂^[15] hinreichend charakterisiert. Im prinzipiellen Aufbau unterscheiden sich beide Substanzen kaum. Allerdings liegt die Magnesiumverbindung als dimeres und die Lithiumverbindung als monomeres Ionenaggregat vor. Beide zeigen als auffälligstes Strukturelement eine verzerrt trigonale Bipyramide, wobei ihre Äguatorialflächen aus den drei Atomen Li/Mg, Al und Si bestehen und ihre beiden Spitzen durch die Stickstoffmoleküle gebildet werden. In beiden Strukturen befinden sich sowohl Aluminium als auch Silicium in einer verzerrt tetraedrischen Umgebung. Werden die schwach bindenden Wechselwirkungen der Magnesiumatome zu einer der Methyl-Gruppen der Aluminiumatome vernachlässigt, so befinden sich die Magnesiumatome in einer fast planaren Umgebung. Dies ist sehr ungewöhnlich, da Magnesiumatome tetraedrische Ligandensphären bevorzugen, und kann nur mit den sterischen Ansprüchen im Molekül erklärt werden. Bei dem Lithiumsalz wird am Lithiumatom neben den Wechselwirkungen zu den beiden Stickstoffatomen eine intra- und eine intermolekulare Wechselwirkung zu je einer der beiden Methyl-Gruppen am Aluminiumatom beobachtet. Dies führt zum Aufbau linearer Ketten im Kristall. In Abbildung 1.3.1 sind die quasimolekularen Strukturen der Lithiumund der Magnesiumverbindungen dargestellt.

Abb. 1.3.1 Die quasimolekularen Strukturen von a) { $Me_2Si(N^tBu)_2AIMe_2$ }Li^[4] und b) [{ $Me_2Si(N^tBu)_2AIMe_2$ }MgI]₂.^[15]

Neben den zuvor genannten cyclischen (Erd)Alkalimetalldiazasilaaluminaten mit dem Me₂Si(N^tBu)₂AIMe₂-Grundgerüst sind in der Literatur ähnliche Verbindungen mit einem MeSi(N^tBu)₃AlMe₂-Grundgerüst bekannt.^[37] Drei Verbindungen mit den beiden Metallen Natrium und Magnesium konnten hinreichend charakterisiert werden. Deren Ionenaggregatstrukturen sind in Abbildung 1.3.2 dargestellt. Ähnlich wie das Lithiumatom der Verbinduna $\{Me_2Si(N^tBu)_2AIMe_2\}Li$ ist das Natriumatom in der Verbinduna {MeSi(NH^tBu)(N^tBu)₂AlMe₂}Na tetraedrisch umgeben. Die Natrium-Verbindung liegt ebenfalls als Monomer vor und ist bicyclisch aus den beiden Vierringen Si-N-Al-N und Si-N-Na-N aufgebaut. Die beiden dimeren Magnesium-Verbindungen [{MeSi(NH^tBu)(N^tBu)₂AIMe₂}MgI]₂ und $[{MeSi(NH^{t}Bu)(N^{t}Bu)_{2}AIMe_{2}}MgCH_{3}]_{2}$ sind sich strukturell sehr ähnlich. Die Magnesiumatome befinden sich in einer verzerrt tetraedrischen Koordinationssphäre und können als spirocyclische Zentren beschrieben werden. Insgesamt sind in beiden Dimeren fünf Vierringe gegeben, welche sowohl ecken- als auch kantenverknüpft sind. (In Anlehnung an ^[31])

Abb. 1.3.2 Die Ionenaggregatstrukturen von a) {MeSi(NH^tBu)(N^tBu)₂AIMe₂}Na; b) [{MeSi(NH^tBu)(N^tBu)₂AIMe₂}MgI]₂ und c) [{MeSi(NH^tBu)(N^tBu)₂AIMe₂}MgCH₃]₂.

1.4. Stickstoffhaltige heterocyclische elementorganische Verbindungen

Die ersten stickstoffhaltigen heterocyclischen elementorganischen Verbindungen mit einer Ringgröße von fünf bis sechs Atomen wurden im Jahr 1955 publiziert.^[38] Dabei handelte es sich um Diazaborolidine und Diazaborinane. Diese wurden durch die thermische Umsetzung von Trimethylboran und dem entsprechenden Diamin unter Methanabspaltung erhalten. Bis heute ist zudem eine Vielzahl von ungesättigten Diazaborolen bekannt.^[39-42] Die Diamine, welche als Edukte dienen können, sind seit Mitte des 19. Jahrhunderts synthetisch zugänglich.^[43] Im Jahre 1968 wurden die ersten Organoaluminium-Verbindungen mit viergliedrigen ungeladenen stickstoffhaltigen Heterocyclen in der Literatur erwähnt.^[44] Hierbei handelt es jedoch um Moleküle mit fünffach koordinierten Aluminiumatomen, welche drei kovalente Bindungen aufweisen, die durch die beiden Stickstoffatome eines zweizähligen Chelatliganden ergänzt werden. Allerdings sind in der Literatur nur wenige fünf- und sechsgliedrige stickstoffhaltige heterocyclische aluminiumorganische Verbindungen beschrieben, die zumindest eine kovalente Bindung zu einem Stickstoffatom aufzeigen.^[45-46] Die erste Verbindung stammt aus dem Jahre 1975 und weist sehr interessante Eigenschaften auf. Sie liegt bei Raumtemperatur als Flüssigkeit vor und je nach Art des Lösemittels dimerisiert sie. In aromatischen Lösemitteln liegt

ausschließlich das Monomer, ein Azaazoniaalanuidacyclopentan, vor. In aliphatischen Lösemitteln wird jedoch ein Gleichgewicht aus Monomer und Dimer, einem Diazoniadialanuidacyclobutan, beobachtet. Durch Temperaturerniedrigung wird die Form des Dimers begünstigt. In dem folgenden Jahr wurden analoge Verbindungen synthetisiert und auf ähnliches Verhalten untersucht. Ein besonderes Augenmerk lag auf dem Einfluss sterischer, elektronischer und thermodynamischer Effekte (Schema. 1.4.1).^[46]

Schema 1.4.1Dimerisierung von Azaazoniaalanuidacycloalkanen.Fünfgliedrige Ringe:
 $X = H, R = Me, R' = Me^{[46]}, Et^{[46]};$
 $X = Me, R = Me, R' = Me^{[46]}, Et^{[45-46]}; R = Et, R' = Et^{[46]}$
 $X = Cl, R = Me, R' = Me^{[46]}, Et^{[46]}$
 $X = Ph, R = Me, R' = Et^{[46]}$
Sechsgliedrige Ringe:
 $X = Me, R = Me, R' = Me^{[46]}$
 $X = Et, R = Me, R' = Me^{[46]}$

In den letzten dreißig Jahren ist das Interesse an stickstoffhaltigen heterocyclischen metallorganischen Verbindungen mit Aluminium, Gallium, Indium gestiegen. Aus solchen Verbindungen können dünne Filme oder epitaktische Schichten durch Gasphasenabscheidung gewonnen werden, welche wiederum zur Herstellung von elektrischen, dielektrischen, elektronischen, optischen und optoelektronischen Bau- und Schaltelementen, Verbindungshalbleitern und Lasern verwendet werden.^[47] Neben diesen Verbindungen sind in der Literatur auch weitere stickstoffhaltige heterocyclische elementorganische Verbindungen mit Elementen aus der 13., 14. und 15. Gruppe bekannt. Die Abbildung 1.4.1 gibt eine Übersicht über ausgewählte stickstoffhaltige heterocyclische elementorganische Verbindungen.

Abb. 1.4.1 Ausgewählte stickstoffhaltige, heterocyclische, elementorganische Verbindungen:

a) M = B, X = CI, $R = R' = Me^{[48-51]}$, $Et^{[50]}$, ${}^{i}Pr^{[48, 50]}$, ${}^{t}Bu^{[48, 52]}$; R = R' = Me, $X = H^{[51]}, F^{[51]}, Br^{[49]}, I^{[49]}$ X = Me, R = R' = H^[38], Ph^[39]; R = R' = ^tBu, X = Br^[41], H^[41], Me^[41] $M = Ga, R = H^{t}Bu, R' = {}^{t}Bu, X = Cl_{2}^{[53]}$ M = In; R = R' = Me₂, X = Br^[54], $I_3^{[55]}$ M = Si, $X = Me_2$, $R = Me^{[56]}$, $Ph^{[56]}$ M = Sn, X = Me₂, R = Me^[57]; X = Cl₂, R = Et^[58] $M = P^+$, $R = R' = Me^{[59]}$; M = P, X = CI, $R = Me^{[60]}$ M = As, R = R' = Me, X = $Cl^{[59, 61-62]}$; M = As⁺, R = R' = Me^[59, 61-62] b) M = B, R = R' = Me, $X = Cl^{[49-50, 52]}$, $F^{[49]}$, $Br^{[49]}$, $l^{[49]}$; R = R' = Et. $X = F^{[49]}$. $Cl^{[49]}$. $R = R' = {}^{n}Bu, X = CI^{[52]}; R = R' = {}^{i}Pr, X = CI^{[52]}; R = R' = {}^{t}Bu, X = CI^{[52]};$ $R = R' = H, X = Me^{[38]}; R = H, R' = H_2, X = Me_2^{[38]}$ $M = Si, X = Me_2, R = Me^{[56]}, Ph^{[56]}$ $M = Sn, X = Cl_2, R = {}^{t}Bu^{[58]}; X = Me_2, R = Me^{[57]}$ $M = P, \quad X = CI, R = Me^{[60]}; {}^{t}Bu^{[63]}; {}^{i}Pr^{[64]}; {}^{i}Bu^{[65]}; {}^{sec}Bu^{[66]}; {}^{t}Pent^{[65]}; Benzyl^{[67]}$ $M = As, R = R' = Me, X = Cl^{[59]}; M = As^{+}, R = R' = Me^{[59]}$ c) M = B, $R = Me^{[50]}$, $Et^{[50]}$, ${}^{i}Pr^{[50]}$ d) M = B. $R = H^{[50]}$. $Me^{[50]}$ e) M = Ga, X = Cl, R = ${}^{t}Bu$, R' = $H^{t}Bu^{[53]}$ M = In, $R = R' = Me_2$, $X = Br_2^{[54]}$

Bei den Reaktionen von Bortrifluorid-Etheraten mit Diaminen kann es unter bestimmten Voraussetzungen zur Adduktbildung kommen. Dies geschieht in den Fällen, in denen das Diamin die stärkere Lewis-Base ist, es aber nicht zur Fluorwasserstoffabspaltung kommt. Verbindungen dieser Art wurden zum ersten Mal im Jahre 1943 synthetisiert und charakterisiert. Bis heute ist eine Vielzahl von Verbindungen dieser Substanzklasse bekannt geworden, eine Auswahl ist in Abbildung 1.4.2 dargestellt.

Abb. 1.4.2 Addukte aus stickstoffhaltigen Verbindungen und Bortrifluorid

- a) Alkandiamin–Bortrifluorid (1/1) bzw. (1/2) (R = H, n = 2, 6, m = 2^[68]; R = H,
 - n = 2, 6, m = $1^{[68]}$; R = Me, n = 2, m = $1^{[69]}$, $2^{[69-70]}$; R = Et, n = 2, m = 1, $2^{[71]}$)
- b) Urotropin–Bortrifluorid (1/4)^[72]
- c) DABCO–Bortrifluorid (1/1)^[69] bzw. (1/2)^[69, 73]
- d) ABCO-Bortrifluorid (1/1)^[73-74]

1.5. Dynamische NMR-Spektroskopie (DNMR)^[75-77]

Die NMR-Spektroskopie ist in vielerlei Hinsicht von Bedeutung. Zum einen wird sie zur Strukturaufklärung von Molekülen in Lösung genutzt, zum anderen können mit ihrer Hilfe durch Kombination von temperatur- und konzentrationsabhängigen Messungen dynamische Prozesse inter- und intramolekularer Art untersucht werden, deren Aktivierungsenergien zwischen 20 und 100 kJ/mol liegen.^[78-79] Dies entspricht dynamischen Prozessen, deren Geschwindigkeitskonstanten zwischen 1 und 4 x10⁷ s⁻¹ liegen, also einer Messfrequenz von 100 – 400 MHz. Die dynamischen Prozesse sind neben den Symmetrieoperationen für die Äquivalenz von Kernen verantwortlich.

Beispielhaft kann für den intramolekularen Austausch das Dimethylformamid betrachtet werden. Bei Raumtemperatur liefert das ¹H-NMR-Spektrum zwei scharfe Signale für die beiden Methyl-Gruppen. Wird dem System Energie in Form von Wärme zugeführt, verbreitern sich die Signale, bis sie schließlich genau in der Mitte ihrer ursprünglichen Lage koaleszieren. Die hierbei herrschende Temperatur wird als Koaleszenztemperatur (T_c) bezeichnet.

$$\overline{\nu} = \frac{\nu_A + \nu_B}{2}$$

Die Koaleszenztemperatur ist unter anderem von der Messfrequenz abhängig. Bei weiterer Energiezufuhr wird ein scharfes Signal erzeugt. Folglich sind die Methyl-Gruppen bei niedrigen Temperaturen unterschiedlich abgeschirmt und werden durch Energiezufuhr äquivalent. Eine Erklärung liefern die mesomeren Grenzstrukturen (Schema 1.5.1). Hieraus wird ersichtlich, dass die C--N-Bindung einen nicht zu vernachlässigen Doppelbindungsanteil besitzt. Dieser ist für die eingeschränkte Rotation um die genannte Bindung verantwortlich. Folglich befinden sich die beiden Methyl-Gruppen in unterschiedlicher magnetischer Umgebung. Erst durch Energiezufuhr wird die Rotationsbarriere überwunden und die beiden Methyl-Gruppen sind NMR-spektroskopisch nicht mehr zu unterschiedlen. Der intermolekulare Austausch wird häufig bei Protonenaustauschreaktionen wie zum Beispiel bei Säuren, Alkoholen, Aminen und Wasser beobachtet. Das Spektrenbild ist abhängig von den Konzentrationen, der Temperatur und der Messfrequenz.

Schema 1.5.1 Mesomere Grenzstrukturen von Dimethylformamid.

Mittels der DNMR-Spektroskopie ist es nicht nur möglich, die ablaufenden Prozesse qualitativ zu verfolgen, sondern auch quantitative Aussagen zu treffen. So ist es möglich, unter bestimmten Bedingungen die Austauschgeschwindigkeit (*k*) und weitere Aktivierungsparameter zu ermitteln. Im einfachsten Fall liegt eine reversible Reaktion 1. Ordnung vor (Schema 1.5.2).

$$A \xrightarrow[k_2]{k_1} B \quad k_1 = k_2 = k$$

Schema 1.5.2 Reversible Reaktion 1. Ordnung.

Da die Linienform bei dynamischen Vorgängen auch von der Austauschgeschwindigkeit (*k*) und der Verweildauer in einer bestimmten Umgebung (T_1) abhängig ist, liefert eine vollständige Linienformanalyse (CLA; *Complete Lineshape Analysis*) diese Parameter. Dazu werden NMR-Spektren bei verschiedenen Temperaturen aufgenommen und die daraus resultierenden chemischen Verschiebungen, Kopplungskonstanten und Linienbreiten ermittelt. Mit Hilfe dieser Parameter werden Spektren simuliert und die Austauschgeschwindigkeit (*k*) so lange variiert, bis die simulierten Spektren mit den gemessenen Spektren übereinstimmen. Somit wird für jede Temperatur und dem zugehörigen Spektrum eine Austauschgeschwindigkeit (*k*) ermittelt. Der so erhaltene Datensatz von Temperaturen und zugehörigen Austauschgeschwindigkeiten (*k*) macht es möglich, durch die Eyring-Gleichung die Enthalpie (ΔH^{\neq}) – mittels Steigung ($-\Delta H^{\neq}/R$) – und die Entropie (ΔS^{\neq}) – mittels Ordinatenabschnitt (23,76 + $\Delta S^{\neq}/R$) – zu bestimmen. Dazu wird ln(k/T) gegen 1/T aufgetragen:

$$\ln\left(\frac{k}{T}\right) = 23,76 - \left(\frac{\Delta H^{\neq}}{R}\right) * \frac{1}{T} + \left(\frac{\Delta S^{\neq}}{R}\right)$$

Durch folgenden Zusammenhang aus Enthalpie (ΔH^{\sharp}) und Entropie (ΔS^{\sharp}) lässt sich die freie Aktivierungsenthalpie (ΔG^{\sharp}) errechnen (Gibbs-Helmholtz-Gleichung):

$$\Delta G^{\neq} = \Delta H^{\neq} - T \Delta S^{\neq} \left[\frac{J}{mol} \right]$$

Zusätzlich ist es möglich, mit dem Datensatz und der Arrhenius-Gleichung die Aktivierungsenergie (E_A) – mittels Steigung ($-E_A/R$) – und den Frequenzfaktor (A) – mittels Ordinatenabschnitt ($\ln(A)$) – zu ermitteln. Hierfür wird $\ln(k)$ gegen 1/T aufgetragen:

$$\ln(k) = -\frac{E_A}{RT} + \ln(A)$$

Eine vollständige Linienformanalyse ist allerdings nicht immer notwendig. Die Geschwindigkeitskonstante bei der Koaleszenztemperatur (k_c) kann mit folgender Gleichung abgeschätzt werden:

$$k_c = 2,22 * \Delta \nu \ [s^{-1}]$$

Der Parameter Δv ist als Differenz der beiden Signale in Hertz weit unterhalb der Koaleszenztemperatur definiert. Als weitere Voraussetzungen gelten: eine Reaktion 1. Ordnung, gleiche Intensität der beiden Signale und keine Kopplung zwischen diesen. Zudem muss der proportionale Zusammenhang zwischen Δv und der Messfrequenz beachtet werden. Je größer die Messfrequenz ist, umso größer ist der Abstand zwischen den beiden Signalen. Daraus ergibt sich eine höhere Koaleszenztemperatur.

Durch die ermittelten Werte von Δv , der Geschwindigkeitskonstanten (k_c) und der Koaleszenztemperatur (T_c) kann die freie Aktivierungsenthalpie bei der Koaleszenztemperatur (ΔG^{\neq}_c) abgeschätzte werden.

$$\Delta G_C^{\neq} = R * T_C(22,96 + \ln\left(\frac{T_C}{\Delta v}\right)) \left[\frac{J}{mol}\right]$$

2. Problemstellung und Zielsetzung

Wie aus der Einleitung ersichtlich wird, handelt es sich bei den meisten der aufgeführten Cyclodisilazane um neutrale Moleküle. Aufgrund dessen fiel das Augenmerk auf Spezies mit anionischen Bausteinen der Zusammensetzung {Me₂Si(N^tBu)₂AIMe₂}M (M = Li, Na, MgI)^[4, 15, 80]. Bis heute sind lediglich das Lithium- und das Magnesiumsalz hinreichend charakterisiert. Sowohl für das Lithiumsalz als auch für das Natriumsalz wurden außergewöhnliche strukturelle Merkmale vorhersagt. Für die erstgenannte Verbindung konnten diese im Rahmen einer Dissertation, welche in diesem Arbeitskreis angefertigt wurde, vor kurzem bestätigt werden. Neben den interessanten Eigenschaften im Festkörper stellte sich heraus, dass für Mono- und Bis(THF)-Addukte dieser Verbindung in Lösung höchst interessante Austauschprozesse mittels NMR-spektroskopischer Untersuchungen nachverfolgt werden konnten. Um übergreifende Betrachtungen innerhalb der ersten Gruppe des PSE anstellen zu können, ist daher die Herstellung und Analyse des entsprechenden Natriumdiazasilaaluminats von Bedeutung. Des Weiteren soll der Fragestellung nachgegangen werden, welchen Einfluss die Substituenten an den Siliciumatomen auf die Reaktivität, den Aufbau im Kristall und die Austauschprozesse ausüben. Aus diesem Grund sollen beispielsweise Verbindungen des Typs $\{R_2Si(N^tBu)_2AIMe_2\}$ Na (R = Aryl) synthetisiert und untersucht werden.

Das System der viergliedrigen stickstoffhaltigen heterocyclischen elementorganischen Verbindungen mit den Elementen Silicium und Aluminium soll weiter erforscht. Zudem besteht eine weitere Aufgabe in der Untersuchung des Reaktionsverhaltens bei Substitution des Silicium-Fragments durch Alkylketten. Zu diesem Zweck sollen zweifach substituierte Diamine des Typs $HNR(CH_2)_nRNH$ (R = ^{tert}Butyl, n = 2,3) mit verschiedenen Lewis-Säuren umgesetzt werden. Wenn möglich soll der Aufbau der neu synthetisierten cyclischen stickstoffhaltigen heterocyclischen elementorganischen Verbindungen im Festkörper mit dem literaturbekannter viergliedriger elementorganischer Verbindungen verglichen werden.

3. Ergebnisse und Diskussion

3.1. Synthese und Untersuchungen des Azaazoniasilaalanuidacyclobutans 1, des Diazasiladialuminapentans 2 und der Diazasilaalanuidasodiabicyclo[1.1.1]pentane 3, 4 und 5

3.1.1. Darstellung und Untersuchungen von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-3aza-1-azonia-2-sila-4-alanuidacyclobutan (1)

Die gezielte Synthese von **1** erfolgt in Anlehnung zu der in der Literatur beschriebenen Synthese von cyclischen Azaazoniasilaalanuidacyclobutanen.^[10] Hierbei wird durch die Umsetzung des Bis(amino)silans *N*,*N'*-Di-*tert*-butyl-*Si*,*Si*-diphenylsilandiamin mit Trimethylaluminium unter Methanabspaltung **1** erhalten. Den beiden Phenyl-Gruppen des Diphenylsilandiamins sind im Vergleich zu den bekannten Synthesen mit den Dimethylsilandiaminen die deutlich längere Reaktionszeit und die höhere Reaktionstemperatur geschuldet. Ähnliche Erfahrungen werden bei der Synthese von Diazaphosphasiletidinen gemacht.^[81-83] **1** wird als kristalliner, farbloser Feststoff erhalten. Er ist schlecht in *n*-Pentan und Diethylether löslich und zersetzt sich bei Kontakt mit Wasser unter Gasentwicklung.

Schema 3.1.1.1 Darstellung von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia-2-sila-4alanuidacyclobutan (1).

Die unten stehende Abbildung 3.1.1.1 zeigt das ¹H-NMR-Spektrum von **1**, aufgenommen in CDCI₃. Das Produkt weist eine hohe Reinheit von ca. 99 % auf und zudem sind die erwarteten acht Signale des Produktes mit einem —en Integralverhältnis von 2:2:6:1:9:9:3:3 (**a**:**a**:**b**:**c**:**d**:**e**:**f**) zu sehen. In dem Bereich zwischen 7,43 und 8,03 ppm erzeugen die zehn aromatischen Protonen drei Multipletts (**a**). Eine genauere Zuordnung dieser Signale wurde nicht angestrebt. Ein Vergleich mit dem Edukt macht jedoch deutlich, dass ein Multiplett, welches von zwei Protonen bei ursprünglich 7.68 ppm erzeugt wird, zu höheren Anregungsfrequenzen nach 8,01 ppm verschoben ist. Aufgrund der ungeklärten Zuordnung lässt sich anhand dieser Signale allein keine Aussage treffen, ob die Substitution durch das Dimethylaluminium-Fragment die Symmetrie im Molekül erniedrigt hat und somit die Phenyl-

Gruppen nicht mehr chemisch und magnetisch äquivalent sind. Für diesen Rückschluss müssen die Signale der ^{tert}Butyl-Gruppen (**c**) und (**d**) betrachtet werden. Da es sich hierbei um zwei verschiedene Singuletts handelt, wird deutlich, dass die Spiegelebene, die durch das Siliciumatom ging und sowohl die Phenyl- als auch die Methyl-Gruppen ineinander überführte, verloren gegangen ist. Folglich sind auch die beiden Phenyl-Gruppen in **1** nicht mehr chemisch und magnetisch äquivalent. Die ^{tert}Butyl-Gruppe (**c**) des am Aluminium gebundenen Stickstoffatoms erzeugt bei 1,05 ppm ein scharfes Singulett und die andere ^{tert}Butyl-Gruppe (**d**) bei 0,96 ppm. Für das Amin-Proton wird bei 2,37 ppm ein Singulett detektiert, dessen Integral von 0,89 ein wenig zu niedrig ausfällt. Bei dieser Beobachtung handelt es sich um ein stoffspezifisches Phänomen, welches bei analogen Verbindungen auftritt. Im Bereich der tiefen Anregungsfrequenzen sind die beiden Singuletts (e) und (**f**) der beiden Methyl-Gruppen am Aluminiumatom zu finden.

Abb. 3.1.1.1 ¹H-NMR-Spektrum von **1** in CDCl₃.

Das ¹³C{¹H}-NMR-Spektrum von **1**, dessen Verschiebungen in Abbildung 3.1.1.2 wiedergegeben sind, bestätigt die Interpretation aus dem ¹H-NMR-Spektrum. Hierbei wird die chemische und magnetische Inäquivalenz der Phenyl-Gruppen direkt deutlich, denn es werden im aromatischen Bereich acht verschiedene Signale detektiert. Gleiches gilt für die ^{tert}Butyl-Gruppen. Zudem ist es bei dieser Messung gelungen, für die beiden Methyl-Gruppen am

Aluminiumatom zwei Singuletts, welche zum Teil überlagern und mit einer Halbwertsbreite von $T_{1/2}$ = 18 Hz sehr breit sind, zu detektieren. Zur weiteren NMR-spektroskopischen Charakterisierung wurde ein ²⁷Al-NMR-Spektrum aufgenommen, bei welchem zwei sehr breite Singuletts zu detektieren sind. Bei 161 ppm ist das Produktsignal mit einer Halbwertsbreite von $T_{1/2}$ = 6400 Hz zu sehen. Das zweite Singulett wird von Aluminium-Anteilen aus dem NMR-Röhrchen und aus dem Probenkopf bei ca. 70 ppm erzeugt.

Abb. 3.1.1.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 1 in CDCl₃ [ppm].

Neben der NMR-Spektroskopie wurden als weitere Analyseverfahren die IR- und Raman-Spektroskopie, die El-Massenspektrometrie und die Elementaranalyse herangezogen. Die IRund Raman-Spektroskopie liefern neben der Bande der NH-Streckschwingung bei 3248 bzw. 3244 cm⁻¹ und den CH-Streckschwingungen im Bereich von 2800 bis 3000 cm⁻¹ viele weitere Banden, deren Zuordnung durch einen Literaturvergleich nicht möglich war. Aus diesem Grund wurden DFT (Dichte-Funktional-Theorie)-Rechnungen durchgeführt, mit denen eine genaue Zuordnung ermöglicht wird. In Kapitel 5.2. wird die genaue Herangehensweise beschrieben und in den Tabellen 8.1.1 und 8.1.2 (Anhang) sind sowohl die experimentell gemessenen als auch theoretisch bestimmten Bandenlagen und deren Zuordnung aufgeführt. die Die Elementaranalyse liefert eine gute Übereinstimmung zwischen der berechneten und der gemessenen Zusammensetzung. Mit Abweichungen von 0,08, 0,24 und 0,41 Prozentpunkten liegen die experimentell ermittelten Stickstoff-, Kohlenstoff- und Wasserstoff-Gehalte jeweils nur knapp unter den berechneten Werten. Diese minimalen Abweichungen liegen im Bereich der Messgenauigkeit des Gerätes und sprechen für die hohe Reinheit von 1. Im El-Massenspektrum wird kein Molekülionenpeak detektiert, dafür jedoch eine Reihe von Fragmenten, die Zerfallsprodukten von 2 zugeordnet werden können.

Plättchenförmige, farblose Kristalle von **1** können durch Sublimation im statischen Vakuum erhalten werden. An diesen wurde ein Röntgenbeugungsexperiment zur Einkristallstrukturbestimmung durchgeführt. **1** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit den Gitterparametern a = 16,8410(9) Å, b = 16,3611(8) Å, c = 17,4509(10) Å und $\beta = 98,042(4)$ °. Ein Ausschnitt der gewählten asymmetrischen Einheit ist in Abbildung 3.1.1.3 dargestellt. Sie

besteht aus zwei kristallographisch unabhängigen molekularen Bausteinen. Beide Bausteine besitzen die Punktgruppe C₁. Folglich zeigen sie ein Chiralitätszentrum, welches sich an den beiden Stickstoffatomen N1 und N3 wiederfindet, auf. Die fehlenden Symmetrien decken sich mit den Beobachtungen aus der NMR-Spektroskopie. Wobei die beiden Moleküle in der gewählten asymmetrischen Einheit beide die S-Form aufzeigen. Allerdings sind diese über ein Inversionszentrum mit jeweils einem weiteren Molekül der R-Form zu einem centrosymmetrischen Paar verknüpft. Ausgewählte Atomabstände und Winkel sind in der Tabelle 3.1.1.1 aufgelistet.

Abb. 3.1.1.3 Gewählte asymmetrische Einheit von 1. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

AI1-N1	2,036(7)	N1-AI1-N2	79,5(3)	AI1-N1-Si1	89,5(3)
Al1-N2	1,879(6)	N1-AI1-C1	107,3(3)	AI1-N1-C3	126,9(5)
AI1–C1	1,970(8)	N1-AI1-C2	116,7(4)	AI1-N1-H1	95(6)
Al1–C2	1,969(9)	N2-AI1-C1	116,4(4)	Si1–N1–C3	129,3(5)
		N2-AI1-C2	118,7(4)	Si1–N1–H1	102(6)
Si1–N1	1,820(7)	C1-AI1-C2	113,4(4)	C3-N1-H1	107(6)
Si1–N2	1,689(6)				
Si1–C11	1,876(8)	N1-Si1-N2	91,1(3)	Al1-N2-Si1	99,2(3)
Si1-C17	1,882(7)	N1-Si1-C11	110,3(3)	AI1-N2-C7	129,4(5)
		N1-Si1-C17	112,5(3)	Si1–N2–C7	131,1(5)
N1—H1	0,891(10)	N2-Si1-C11	116,1(3)		
N1-C3	1,504(9)	N2-Si1-C17	116,4(3)		
N2-C7	1,474(9)	C11-Si1-C17	109,3(3)		

Tab. 3.1.1.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 1.

Ergebnisse und Diskussion							
AI2-N3	2,023(7)	N3-AI2-N4	79,7(3)	Al2-N3-Si2	90.5(3)		
AI2-N4	1,919(7)	N3-Al2-C23	108,1(3)	Al2-N3-C25	127.9(5)		
AI2-C23	1,967(8)	N3-Al2-C24	116,2(4)	Si2-N3-C25	128.8(5)		
Al2-C24	1,961(10)	N4-Al2-C23	117,3(4)				
		N4-Al2-C24	116,4(4)	Al2-N4-Si2	97.2(3)		
Si2–N3	1,801(6)	C23-AI2-C24	114,3(4)	Al2-N4-C29	129.2(5)		
Si2—N4	1,701(6)			Si2-N4-C29	131.3(6)		
Si2-C33	1,877(8)	N3—Si2—N4	92,4(3)				
Si2-C39	1,859(8)	N3-Si2-C33	109,2(3)				
		N3-Si2-C39	113,3(3)				
N3-C25	1,505(10)	N4-Si2-C33	115,4(3)				
		N4-Si2-C39	115,5(4)				
N4-C29	1,463(10)	C33-Si2-C39	109,9(3)				
Intramolekulare	e "nichtbindende" A	bstände:					
N1-N2	2,506(8)	N3—N4	2,529(9)				

Das Zentralelement von **1** bildet ein sehr gespannter, fast planarer Vierring mit einer Innenwinkelsumme von 359,3 ° bzw. 359,8 °. Dieser wird aus den Elementen Aluminium, Silicium und einem dreifach und einem vierfach koordinierten Stickstoffatom aufgebaut. Naturgemäß sind die Bindungen zwischen den Elementen Aluminium und Stickstoff (2,036(7) bzw. 2,023(7) und 1,879(6) bzw. 1,919(7) Å) deutlich länger als die Bindungen zwischen den Elementen Silicium und Stickstoff (1,820(7) bzw. 1,801(6) und 1,689(6) bzw. 1,701(6) Å) (Vergleiche Tabellen 3.1.1.2 und 3.1.1.3). Aus dieser Diskrepanz folgt der spitze Winkel am Aluminiumatom, der mit 79,5(3) bzw. 79,7(3) ° deutlich kleiner als 90 ° ist.

Verbindung	λ ^₄ N—Al-Abstände [Å]	λ ⁴ N—Si-Abstände [Å]	Literatur
Me ₃ Al ^N H ₂	2,027(3)		[84]
N-AI-N N-SI-N N-AI-N	2,0149(14)	1,7916(14)	[31]

Tab. 3.1.1.2 Ausgewählte λ^4 N–Al- und λ^4 N–Si-Abstände literaturbekannter Verbindungen.

Tab. 3.1.1.3 Ausgewählte λ^3 N–Al- und λ^3 N–Si-Abstände literaturbekannter Verbindungen.

Verbindung	λ ³ N–Al-Abstände [Å]	λ ³ N–Si-Abstände [Å]	Literatur
Mes Mes AI Si N Si	1,831(7)	1,729(6)	[84]
Ph ₃ Si SiPh ₃	1,880(4); 1,878(4)	1,744(4); 1,740(4)	[90]

Der größte Winkel innerhalb des Vierrings mit fast 100° befindet sich an den λ^3 -Stickstoffatomen. Diese sind trigonal planar (Innenwinkelsumme: 359,7 °) von ihren drei Nachbaratomen umgeben. Aufgrund dessen sind diese Stickstoffatome sp²-hybridisiert. Dieses scheint auf den ersten Blick verwunderlich, denn durch eine sp³-Hybridisierung würde der Idealwinkel Al- λ^3 N-Si 109,5 ° betragen und nicht wie bei der trigonal planaren Anordnung 120°, also nur ca. 10° größer als der beobachtete Winkel und nicht 20°. Nun stellt sich die Frage, warum das Molekül dem Abbau der Ringspannung nicht nachgibt. Es muss einen Energiegewinn in der vorliegenden Anordnung geben und dieser findet sich in der Betrachtung der Molekülorbitale wieder. Als Resultat der sp²-Hybridisierung steht das p-Orbital des Stickstoffatoms senkrecht auf dem Vierring bzw. der planaren Koordinationssphäre und kann in Wechselwirkung mit den p-Orbitalen des Silicium- und des Aluminiumatoms treten, hieraus erfolgt ein erhöhter Doppelbindungsanteil mit p_{π} - p_{π} -Charakter. Diese Überlappung ist nur bei einer sp²- und nicht bei einer sp³-Hybridisierung der Stickstoffatome möglich. Anscheinend ist dieser Energiegewinn größer als der Verlust durch die Ringspannung, weshalb das Molekül der Ringspannung nachgibt. In Abbildung 3.1.1.4 ist das HOMO von 1 dargestellt. Bei näherer Betrachtung des Molekülorbitals fällt auf, dass eine Überlappung über die drei Al- λ^3 N-Si-Atome beobachtet wird, welche einen p_{π} - p_{π} -Charakter aufzeigt. Durch die Farben grün und rot ist diese Überlappung von dem Rest des Molekülorbitals farblich abgetrennt. Werden unter diesem Gesichtspunkt die Bindungslängen innerhalb des Vierrings betrachtet, ist es nur logisch, dass die Abstände von dem λ^3 -Stickstoffatom zum Aluminium- und Siliciumatom mit ca. 0,1 Å deutlich kürzer sind als die Abstände von dem λ^4 -Stickstoffatom zum Aluminium- und Siliciumatom. Es ließe sich vermuten, dass dieser Effekt durch die λ^4 N—Al-Donorbindung verstärkt wird. Doch bei genauerer Betrachtung zeigt sich, dass die λ^4 N1—Al1-Bindung zwar um ca. 0,16 Å (7,7 %) länger ist als die λ^3 N2—Al1-Bindung, aber gleiches gilt für die λ^4 N1—Si1- und λ^3 N2—Si1-Bindung. Dort beträgt Bindungslängenunterschied der jeweiligen Atome ca. 0,13 Å (7,2 %). Folglich kann, wenn überhaupt, nur von einem sehr schwachen Einfluss der Donorbindung auf den Bindungslängenunterschied gesprochen werden. Es ist eher anzunehmen, dass dieser ausschließlich durch die Überlappung der Orbitale erzeugt wird. Ähnliches wurde in analogen Verbindungen beobachtet und mit einem möglichen elektronischen Ausgleich innerhalb des Moleküls begründet, bei welchem der Donorcharakter der λ^4 N—Al-Bindung auch auf die λ^4 N—Si-Bindung verteilt wird.^[80]

Abb. 3.1.1.4 HOMO von 1. Übersichtshalber sind die Molekülorbitale in vier verschiedenen Farben dargestellt.

Die restlichen drei Atome - λ^4 N, Al und Si - des Vierrings sind wie erwartet verzerrt, zum Teil sogar stark verzerrt, tetraedrisch umgeben. Der sterische Anspruch der ^{tert}Butyl-Gruppen wird in der stark verzerrten tetraedrischen Umgebung der λ^4 -Stickstoffatome deutlich. Aufgrund dieser sind die Winkel zwischen den Protonen und den ringbildenden Atomen Aluminium und Silicium deutlich kleiner als der Idealwinkel von 109,5 ° und umgekehrt sind die Winkel zwischen den tertiären Kohlenstoffatomen und den oben genannten ringbildenden Atomen deutlich größer als der Tetraederwinkel.

Die molekularen Bausteine bilden im Festkörper Schichten aus, die parallel zur *ab*-Ebene verlaufen. Innerhalb der Schichten werden nur van-der-Waals-Wechselwirkungen beobachtet. Die Schichten selbst werden entlang der *c*-Richtung durch schwache Y-stacked π - π -Stapelwechselwirkungen^[92-93] verknüpft. Der Abstand der aromatischen Zentren beträgt 4,96 Å.

Aufgrund des großen Abstandes und der damit verbundenen schwachen Wechselwirkung ist anzunehmen, dass Packungseffekte eine größere Rolle bei dem Kristallaufbau spielen. Innerhalb des Kristalls sind keine Wasserstoffbrückenbindungen zwischen den molekularen Bausteinen zu erkennen. Dies liegt höchstwahrscheinlich an der sterischen Abschirmung der Stickstoffatome und der daran gebundenen Wasserstoffatome durch die sterisch anspruchsvollen ^{tert}Butyl- und den Phenyl-Gruppen. In Abbildung 3.1.1.5 ist ein Ausschnitt aus dem Festkörper dargestellt, der den schichtartigen Aufbau zeigt. Durch gestrichelte Linien und unterschiedliche Farbgebung für die Phenyl-Gruppen werden die oben beschriebenen Ystacked π - π -Stapelwechselwirkungen verdeutlicht.

Abb. 3.1.1.5 Ausschnitt aus dem Festkörper von 1 mit Blickrichtung entlang der kristallographischen *a*-Achse. Der besseren Übersichtlichkeit halber sind die Wasserstoffatome nicht dargestellt.

3.1.2. Darstellung und Untersuchungen von 2,4-Di-*tert*-butyl-3,3-diphenyl-1,1,5,5tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan—Diethylether (1/2) (2)

Die koordinativen und katalytischen Eigenschaften des Diethylethers führten in vorangegangenen Arbeiten zur erfolgreichen Produktsynthese^[35], zu höheren Ausbeuten^[15, 31, 80] und zu kürzeren Reaktionszeiten^[15, 31, 80]. Aufgrund dieser Erfahrungen wird durch Zugabe von Diethylether versucht, **1** unter milderen Reaktionsbedingungen im Vergleich zu Kapitel 3.1.1. zu synthetisieren. Allerdings wird in den ¹H-NMR-Spektren, welche zur Reaktionskontrolle dienen, neben dem Bis(amino)silan N,N'-Di-tert-butyl-Si,Si-diphenylsilandiamin eine noch unbekannte Aluminium-haltige Spezies, die letztendlich als 2,4-Di-tert-butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan-Diethylether (1/2) (2) identifiziert werden kann, detektiert.

Durch die erneute Zugabe eines weiteren Äquivalents Trimethylaluminium wird das Integral des Signals, welches dem Bis(amino)silan zugeordnet werden kann, kleiner und ist schließlich nicht mehr zu detektieren, im gleichen Maße wird das Integral des anderen Signals größer. Nach drei Tagen lässt sich in der Reaktionslösung ausschließlich **2** nachweisen. Durch die direkte Zugabe von zwei Äquivalenten Trimethylaluminium kann **2** gezielt hergestellt werden. Die Reinheit des so erhaltenen Produktes beträgt ca. 99 %. **2** liegt als eine viskose, farblose Flüssigkeit vor, welche mit *n*-Pentan und Chloroform mischbar ist. **2** zersetzt sich zügiger als **1** unter Gasentwicklung an der Luft, ebenso in Wasser. Trotz verschiedenster Versuche, wie zum Beispiel der Destillation im dynamischen Vakuum, konnten bisher die zwei Äquivalente Solvatmoleküle Diethylether nicht entfernt werden, ohne das mögliche Diazoniadialanuidabicyclo[1.1.1]pentan zu zersetzen.

Schema 3.1.2.1 Darstellung von 2,4-Di-*tert*-butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5dialuminapentan—Diethylether (1/2) (2).

Das ¹H-NMR-Spektrum von **2** ist in Abbildung 3.1.2.1 dargestellt. Dort ist der erwartete Signalsatz auszumachen. Das relative Integralverhältnis beträgt 4:6:8:12:18:12 (a:a:d:e:b:c). Aufgrund der Integrale kann von einem 1:2 Verhältnis zwischen dem Diazasiladialuminapentan und dem koordinierenden Diethylethermolekülen ausgegangen werden. Eine Zuordnung der zehn aromatischen Protonen (a) ist wie bei 1 nicht möglich. Diese liefern im Bereich von 7,28 bis 7,69 ppm zwei Multipletts. Bei einer vergleichenden Betrachtung mit 1 kann festgestellt werden, dass **2** eine höhere Symmetrie aufweist, denn es wird für die Protonen der ^{tert}Butyl- (**b**) und der Methyl-Gruppen (c) am Aluminiumatom jeweils nur ein Singulett detektiert. Das erst genannte erscheint bei 1,21 ppm und das zweite bei -0,89 ppm. Folglich verläuft durch das Molekül eine Spiegelebene, die die ^{tert}Butyl-Gruppen ineinander überführt. Eine denkbare Erklärung für die chemische und magnetische Äquivalenz der Methyl-Gruppen an den Aluminiumatomen könnte eine in der Literatur beschriebene Überführung der Methyl-Gruppen ineinander, die durch die Rotation um die N-Al-Bindung hervorgerufen wird, liefern.^[12] Die Ursache hierfür liegt in der intramolekularen Säure-Base-Reaktion, die in Schema 3.1.2.2 zur Veranschaulichung dargestellt ist, begründet. Hierbei stehen die λ^3 - und λ^4 -Stickstoffatome in Konkurrenz um die Lewis-aciden Aluminiumatome. Dadurch ergibt sich eine zeitweilige freie Rotation um die N-Al-Bindung und die vier Methyl-Gruppen sind im zeitlichen Mittel bei

Raumtemperatur nicht zu unterscheiden. Allerdings kommt bei **2** ein weiterer konkurrierender Partner, das Diethylethersolvatmolekül, hinzu. Durch die Koordination des Diethylethermoleküls an die beiden Aluminiumatome sollte die Wechselwirkung zwischen den Aluminium- und den Stickstoffatomen geschwächt und somit eine freie Rotation um die N—Al-Bindungen gegeben sein. Folglich sind die vier Methyl-Gruppen chemisch und magnetisch nicht zu unterscheiden.

Schema 3.1.2.2 Intramolekulare Säure-Base-Reaktion von **2** und die daraus resultierende Rotation um die N—AI-Bindung (in Anlehnung an ^[12]).

Die Frage, ob durch die Koordination der Diethylethermoleküle **2** offenkettig vorliegt, oder ob **2** ähnlich wie **1** als Ring beschrieben werden kann, ist mittels ¹H-NMR-Spektroskopie nicht zweifelsfrei zu beantworten. Hierfür wäre eine Einkristallstrukturanalyse vonnöten. Bisher ist es jedoch nicht gelungen, Kristalle von **2** zu erhalten. Die Koordination durch die Diethylethermoleküle äußert sich durch eine Verschiebung des Signals **c** zu niedrigeren Anregungsfrequenzen im Vergleich zu **1** (-0,55 und -0,65 ppm) und zu der analogen Verbindung 2,4-Di-*tert*-butyl-3,3-dimethyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan (-0,18 ppm) ^[10, 12]. Die Protonen **d** und **e** der Diethylethermoleküle liefern aufgrund ihrer vicinalen Kopplung untereinander wie erwartet ein Quartett bei 3,99 ppm und ein Triplett bei 1,32 ppm. Die Kopplungskonstante beträgt 7,1 Hz.

Abb. 3.1.2.1 ¹H-NMR-Spektrum von 2 in CDCl₃.

In Abbildung 3.1.2.2 sind die chemischen Verschiebungen von **2** im ${}^{13}C{}^{1}H$ -NMR-Spektrum dargestellt. Diese decken sich mit den Beobachtungen aus dem ${}^{1}H$ -NMR-Versuch. Die Kohlenstoffatome der Phenylringe, der tert Butyl- und der Methyl-Gruppen an den Aluminiumatomen sind jeweils chemisch und magnetisch äquivalent. Auch hierbei wird eine Verschiebung der Methyl-Gruppen an den Aluminiumatomen durch die Koordination der Diethylethermoleküle zu niedrigeren Anregungsfrequenzen im Vergleich zu **1** (-5,2 und -5,4 ppm) und der analogen Literaturverbindung 2,4-Di-*tert*-butyl-3,3-dimethyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan (-4,0 ppm) [10, 12] deutlich. Zusätzlich wurde von **2** zur vollständigen Charakterisierung ein 27 Al-NMR-Spektrum aufgenommen. Das breite (T_{1/2} = 1856 Hz) Produktsignal erscheint bei 186 ppm.

Abb. 3.1.2.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 2 in CDCI₃ [ppm].
Neben der NMR-Spektroskopie wurden zur weiteren Charakterisierung die IR- und Raman-Spektroskopie, El-Massenspektrometrie und Elementaranalyse herangezogen. Die IR- und Raman-Spektroskopie liefern den endgültigen Beweis für die vollständige Substitution der Amin-Wasserstoffatome durch AlMe₂-Fragmente, denn im Bereich um 3250 cm⁻¹ ist keine Bande einer möglichen NH-Streckschwingung zu sehen. Auf DFT (Dichte-Funktional-Theorie)-Rechnungen wurde verzichtet, da die Bindungsverhältnisse innerhalb des Moleküls unklar sind. Deswegen konnte nicht jeder Bande eine Schwingung zugeordnet werden. Im El-Massenspektrum konnte weder ein Molekülionenpeak noch das lösemittelfreie Fragment von 2 detektiert werden, dafür jedoch eine Vielzahl von Fragmenten, die durch den Zerfall von 2 erhalten werden. Die Elementaranalyse zeigt eine Differenz zwischen der berechneten und der gemessenen Zusammensetzung auf. Diese lässt sich allerdings auf die Probenvorbereitung zurückführen. Da es sich bei 2 um eine viskose Flüssigkeit handelt, konnte diese nicht in der GloveBox abgefüllt und luftdicht verschlossen werden, sondern wurde im Stickstoffgegenstrom in die Tiegel gefüllt, anschließend gewogen und vermessen. Bereits bei der Probenentnahme konnten Zersetzungsreaktionen in Form von Blasen-/Schaumbildung beobachtet werden. Trotz mehrfachen Wiederholens gelang es nicht, die Probe ohne Zersetzung abzufüllen.

3.1.3. Festkörperuntersuchungen von 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (3) und 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (4)

3 (Abb. 3.1.3.1) ist eine seit langem in der Literatur beschriebene, weitestgehend charakterisierte Verbindung.^[15, 31, 80] Es ist bisher jedoch nicht gelungen, geeignete Einkristalle zu erhalten, um den Aufbau im Festkörper anhand einer Einkristallstrukturanalyse zu klären. Im Rahmen dieser Arbeit ist sowohl die Kristallzucht als auch die röntgengraphische Untersuchung gelungen. Außerdem wurden DFT (Dichte-Funktional-Theorie)-Rechnungen (siehe Kapitel 5.2.) durchgeführt, um die IR- und Raman-Banden den jeweiligen Schwingungen zuzuordnen. In den Tabellen 8.1.1 und 8.1.2 (Anhang) sind diese aufgelistet. Außerdem zeigt die Verbindungsklasse der Diazasilaalanuidasodiabicyclo[1.1.1]pentane interessante temperaturabhängige Austauschreaktionen auf, die in dieser Arbeit näher untersucht wurden. Die Ergebnisse finden sich in Kapitel 3.1.5. wieder. Aufgrund des ähnlichen Aufbaus im von **3** und **4** Festkörper werden sie vergleichend in diesem Kapitel behandelt. Die Darstellung und weitere Untersuchungen von **4** sind in Kapitel 3.1.4. und in Kapitel 3.1.5. beschrieben.

Kristalle von **3** und **4** zu erhalten, welche für ein Röntgenbeugungsexperiment zur Einkristallstrukturbestimmung geeignet sind, gestaltete sich schwierig. Erste Versuche zur Kristallisation durch Sublimation verliefen erfolgreich, allerdings waren die erhaltenen Kristalle für das Röntgenbeugungsexperiment viel zu klein. Aus diesem Grund wurden gesättigte Lösungen von **3** und **4** in Toluol hergestellt. Suspensionen der mäßig löslichen Substanzen wurden so weit erhitzt, bis eine klare Lösung vorlag und anschließend langsam auf Raumtemperatur abgekühlt. Auf diese Weise wurden geeignete Kristalle erhalten. Als Nachteil dieser Methode zeigt sich, dass bei **4** Toluol im Kristall eingelagert wird. **3** kristallisiert in der monoklinen Raumgruppe *C*2 mit den Gitterparametern *a* = 11,898(2) Å, *b* = 13,043(2) Å, *c* = 6,1617(13) Å und β = 117,541(14) °. **4** kristallisiert in der triklinen Raumgruppe *P*1 mit den Gitterparametern *a* = 13,0307(4) Å, *b* = 14,5735(5) Å, *c* = 15,3549(5) Å, *α* = 80,457(3) °, *β* = 89,805(3) ° und γ = 71,505(2) °.

Die Abbildung 3.1.3.1 zeigt den molekularen Baustein im Festkörper von 3 und in Abbildung 3.1.3.2 ist ein Ausschnitt der gewählten asymmetrischen Einheit von 4 wiedergegeben. Das Zentralelement in beiden Festkörpern bilden viergliedrige Ringe. Für 3 ist lediglich ein viergliedriger Ring als molekularer Baustein auszumachen, wohingegen der Festkörper von 4 durch zwei kristallographisch unabhängige, viergliedrige Ringe aufgebaut wird. In allen drei Fällen handelt es sich um planare bzw. fast planare, gespannte Vierringe. Wie für diesen Bindungstyp erwartet, tragen die Hauptlast der Ringspannung die Aluminiumatome. Aufgrund der Faltenwinkel von 0(0) ° für 3 kann von einem planaren Vierring gesprochen werden. Bedingt durch die Koordination an die Natriumatome büßen die viergliedrigen Ringe von 4 an Planarität ein. Dieses macht sich in der Innenwinkelsumme von 357,3 bzw. 359,1° bemerkbar. Der auffälligste Unterschied zwischen den viergliedrigen Ringen von 3 und 4 besteht in der Wechselwirkung zu den Natriumatomen. Bei 3 binden die beiden Stickstoffatome eines Ringes an unterschiedliche Natriumatome, wohingegen im Festkörper von 4 die Bindung der beiden Stickstoffatome eines Ringes zu demselben Natriumatom beobachtet wird. Hieraus ergibt sich für 4 als Grundgerüst eine schwach verzerrte guadratische Pyramide, sodass auch eine Beschreibung als Käfigstruktur denkbar ist. Im Festkörper von 4 sind die Wechselwirkungen zwischen den Stickstoff- und Natriumatomen unterschiedlich stark ausgeprägt. Die Atome mit den stärkeren Wechselwirkungen untereinander weisen Abstände von 2,5936(19) (Na1-N1) und 2,4528(19) Å (Na2-N4) auf, wohingegen die Abstände der schwächeren Bindungen mit 2,9469(19) (Na1-N2) und 3,347(2) Å (Na2-N3) deutlich länger sind. Im Gegensatz dazu werden für 3 aufgrund der Symmetrie die gleichen Bindungslängen zwischen den Natriumatomen und den beiden Stickstoffatomen beobachtet. Der Abstand zwischen diesen liegt bei 2,641(3) Å und ist damit vergleichbar mit den kürzeren Abständen innerhalb von 4. Aufgrund der Koordinationssphäre können alle Stickstoffatome innerhalb von **3** und **4** als λ^4 -Stickstoffatome beschrieben werden. Allerdings sind die Abstände zu den benachbarten Silicium- und Aluminiumatomen vergleichbar mit den Bindungslängen der λ^3 -Stickstoffatome von 1, 12, 13 und der literaturbekannten Verbindung 1,3-Di-tert-butyl-2,2-dimethyl-4,4-dichlor-3aza-1-azonia-2-sila-4-alanuidacyclobutan (I)^[12, 80] (N—AI: 1,879(6), 1,779(4), 1,7876(17), 1,830(2) Å; N—Si: 1,689(6), 1,712(2) Å).

Innerhalb eines viergliedrigen Ringes von 4 können Bindungslängenunterschiede zwischen den Aluminiumatomen und den beiden Stickstoffatomen ausgemacht werden. Gleiches wird für die N-Si-Bindungen beobachtet. Die Abstände zwischen den Stickstoffatomen und den Siliciumund den Aluminiumatomen sind für die Stickstoffatome (N1 und N4), die eine stärkere N-Na-Bindung aufweisen, im Vergleich mit den Stickstoffatomen (N2 und N3), für die eine längere N-Na-Bindung beobachtet wird, marginal länger. Am deutlichsten wird dieser Effekt bei dem Vergleich der beiden Stickstoffatome N3 und N4. Bei diesen ist die schwächere N3-Na-Bindung um ca. 0,89 Å länger und dafür sind die stärkeren N3-Al/Si-Bindungen um ca. 0,04 bzw. 0,03 Å verkürzt. Diese Befunde und die guasi trigonal planare Anordnung (Innenwinkelsumme: 354,8 (N1), 353,7 (N2), 357,4 (N3) und 353,7 ° (N4)) der Stickstoffatome, unter Vernachlässigung der N-Na-Bindung, welche lediglich durch den sterischen Anspruch der ^{tert}Butyl-Gruppen von der Planarität schwach abweicht, sprechen für eine sp²-Hybridisierung der Stickstoffatome. Hieraus ergibt sich eine Wechselwirkung zwischen den unhybridisierten p-Orbitalen der Stickstoffatome und den Orbitalen der Natriumatome. Dies erklärt den Zusammenhang der Abstände der N-Na- und der N-Al/Si-Bindungen. Denn wie für 1 gezeigt wurde, kommt es zwischen den unhybridisierten p-Orbitalen der Stickstoffatome und den p-Orbitalen der Silicium- und Aluminiumatome zu positiven Überlappungen und somit zu einem gewissen Doppelbindungsanteil mit p_{π} — p_{π} -Charakter (siehe hierzu auch Kapitel 3.4.3.). Ist nun die Wechselwirkung zwischen den unhybridisierten p-Orbitalen der Stickstoffatome und den Orbitalen der Natriumatome größer, steht der positiven N–Al/Si-Überlappung mit $p_{\pi}-p_{\pi}$ -Charakter weniger Elektronendichte zur Verfügung, was sich in längeren N-Al/Si-Bindungen widerspiegelt. Ausgewählte Abstände und Winkel von 3 und 4 sind in den Tabellen 3.1.3.1 und 3.1.3.2 aufgeführt.

Abb. 3.1.3.1 Molekularer Baustein im Festkörper von **3** (Symmetriecodierung: '1-*x*, *y*, 1-*z*). Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Abb. 3.1.3.2 Ausschnitt aus der gewählten asymmetrischen Einheit von **4**. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Na1–N1	2,641(3)	N1-Na1-N1"	164,7(7)	Na1–N1–Al1	90,4(3)
Na1–C1	2,91(5)			Na1-N1-Si1	101,9(2)
		N1—AI1—N1'	84,3(7)	Na1-N1-C3	107,43(19)
AI1-N1	1,877(14)	N1-AI1-C1	114,1(14)	AI1-N1-Si1	92,6(3)
AI1–C1	1,990(19)	N1—AI1—C1'	118,7(13)	AI1-N1-C3	127,6(6)
		C1—AI1—C1'	106(3)	Si1-N1-C3	128,6(6)
Si1–N1	1,772(14)				
Si1–C2	1,90(2)	N1—Si1—N1'	90,6(9)		
		N1-Si1-C2	122,2(10)		
N1-C3	1,480(4)	N1—Si1—C2'	114,5(15)		
		C2–Si1–C2'	95(3)		
		Symmetric codioruna: ' 1	v v 1 z . " 1 v v 2	7	

 Tab. 3.1.3.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 3.

Symmetriecodierung: '1-*x*, *y*, 1-*z*; ''1-*x*, *y*, 2-*z*

Tab. 3.1.3.2 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 4.

Na1–N1	2,5936(19)	N1-AI1-N2	81,41(7)	Na1–N1–Al1	79,65(6)
Na1–N2	2,9469(19)	N1-AI1-C1	118,70(9)	Na1-N1-Si1	86,31(7)
Na1–C2	2,804(3)	N1-Al1 -C2	114,17(10)	Na1-N1-C3	117,65(12)
		N2-AI1C1	119,28(9)	Al1-N1-Si1	92,03(8)
AI1-N1	1,8922(17)	N2-AI1C2	116,39(10)	AI1N1C3	129,71(14)
AI1–N2	1,8848(17)	C1-Al1 -C2	105,95(10)	Si1–N1–C3	133,09(14)
AI1–C1	1,995(2)				
AI1–C2	1,999(2)	N1-Si1-N2	91,29(8)	Na1-N2-Al1	70,59(6)
		N1-Si1-C11	112,46(9)	Na1-N2-Si1	75,70(6)
Si1–N1	1,7275(17)	N1-Si1-C17	117,18(9)	Na1–N2–C7	135,99(13)
Si1–N2	1,7175(17)	N2-Si1-C11	113,02(9)	Al1-N2-Si1	92,60(8)
Si1–C11	1,899(2)	N2-Si1-C17	115,38(9)	AI1-N2-C7	130,39(13)
Si1–C17	1,894(2)	C11–Si1–C17	107,14(9)	Si1–N2–C7	129,78(13)
N1–C3	1,475(3)				
N2C7	1,474(3)				
Na2–N3	3,347(2)	N3-AI2-N4	82,23(7)	Na2–N3–Al2	65,34(6)
Na2–N4	2,4528(19)	N3-AI2-C23	120,03(10)	Na2–N3–Si2	65,14(6)
Na2-C24	2,985(3)	N3-Al2-C24	114,53(10)	Na2-N3-C29	140,38(15)
		N4-Al2-C23	118,53(10)	Al2-N3-Si2	93,68(8)
AI2-N3	1,8608(18)	N4-Al2-C24	115,50(10)	Al2-N3-C29	131,73(15)
AI2-N4	1,8995(17)	C23-AI2-C24	105,37(11)	Si2-N3-C29	132,02(15)
Al2-C23	1,989(2)				
Al2-C24	2,010(2)	N3-Si2-N4	91,85(8)	Na2–N4–Al2	89,04(7)
		N3-Si2-C33	114,27(9)	Na2–N4–Si2	91,88(7)
Si2–N3	1,7049(18)	N3-Si2-C39	114,54(9)	Na2-N4-C25	108,81(13)
Si2-N4	1,7368(17)	N4-Si2-C33	109,48(9)	Al2-N4-Si2	91,32(8)
Si2-C33	1,907(2)	N4-Si2-C39	119,85(9)	Al2-N4-C25	129,76(14)
Si2-C39	1,887(2)	C39–Si2–C33	106,62(10)	Si2-N4-C25	132,63(14)

N3-C29	1,468(3)			
N4-C25	1,474(3)			
Intermolekulare A	bstände:			
Na1–C23'	2,686(2)	Na2–C1	2,631(2)	
Na1–C24"	3,040(3)			
		Symmetriecodierung: '	x v-1 z [·] "1-x 1-v 2-;	7

Wie in dem obigen Absatz beschrieben werden die Natriumatome (Na1) in dem Festkörper von **3** von zwei Stickstoffatomen (N1 und N1'A) unterschiedlicher Ringe koordiniert. Zusätzlich werden Wechselwirkungen zu zwei Kohlenstoffatomen (C1 und C1'A) unterschiedlicher AIMe₂-Fragmente beobachtet. Hieraus ergeben sich Ketten entlang der *c*-Achse (Abb. 3.1.3.3). Bei einem Vergleich mit der literaturbekannten Verbindung {Me₂Si(N^tBu)₂AIMe₂}Li (**II**)^[4, 15] fällt auf, dass bei dieser im Festkörper ebenfalls Ketten ausgebildet werden (Abb. 3.1.3.4), allerdings unterscheidet sich die Art der Verknüpfung der beiden Ketten, aufgrund der unterschiedlichen Atomradien der Alkalimetalle, voneinander. Im Festkörper von **3** ermöglicht der größere Atomradius der Natriumatome (1,80 Å^[94]) eine Koordination dieser von Stickstoffatomen unterschiedlicher Ringe. Aufgrund des kleineren Atomradius der Lithiumatome (1,45 Å^[94]) ist diese Art der Verknüpfung innerhalb von (**II**) nicht gegeben. Bei diesem erfolgt die Verknüpfung zu Ketten über die Wechselwirkung des Lithiumatoms mit zwei Kohlenstoffatomen verschiedener AIMe₂-Fragmente und mit zwei Stickstoffatomen eines Ringes.

Abb. 3.1.3.3 Kettensegment von 3 entlang der *c*-Achse. ^{tert}Butyl- und Methyl-Gruppen der SiMe₂-Fragmente werden übersichtshalber als Drahtmodelle dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.
 (Symmetriecodierung: '1-x, y, 1-z; A x, y, 1+z; 'A 1-x, y, 2-z; B x, y, 2+z; 'B 1-x, y, 3-z)

Abb. 3.1.3.4 Kettensegment von (II). ^{tert}Butyl-Gruppen werden übersichtshalber als Drahtmodelle dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 25 %.^[4]

Aufgrund der Substitution des SiMe₂-Fragments durch ein SiPh₂-Fragment bei **4** und der damit verbundenen sterischen Veränderung ähnelt die Verknüpfung der molekularen Bausteine zu Ketten im Festkörper dem Aufbau von (II). Bei 4 werden die Natriumatome (Na1 bzw. Na2) von zwei Stickstoffatomen (N1 und N2 bzw. N3 und N4) und einem Kohlenstoffatom (C2 bzw. C24) eines AlMe₂-Fragments koordiniert, wobei diese drei Atome von demselben viergliedrigen Ring stammen. Die Verknüpfung zum benachbarten molekularen Baustein erfolgt über eine C-Na-Bindung (C23 bzw. C1). Auch hierbei stammt das Kohlenstoffatom von einem AlMe₂-Fragment. Zudem werden jeweils zwei Ketten über C-Na-Bindungen zu einem Strang entlang der b-Achse verknüpft. Dabei bindet jedes zweite Natriumatom, das Natriumatom Na1, an ein Kohlenstoffatom (C24") eines AlMe₂-Fragments der benachbarten Kette (Abb. 3.1.3.5). Somit ergibt sich eine unterschiedliche Anzahl koordinierender Atome für die Natriumatome Na1 und Na2. Im Vergleich zu dem Natriumatom Na2 und zu den Metallatomen aus 3 und (II) wird für das Natriumatom Na1 mit drei Kohlenstoff- und zwei Stickstoffkontakten eine zusätzliche Kohlenstoffbindung ausgebildet. Werden die Abstände zwischen den Natriumatomen (Na1 und Na2) und den Kohlenstoffatomen betrachtet, die für die Ausbildung der Ketten (C1 und C23) und der Verknüpfung dieser zu Strängen (C24) verantwortlich sind, kann festgestellt werden, dass die Wechselwirkungen innerhalb der Ketten (2,686(2) und 2,631(2) Å) stärker als die Wechselwirkungen zwischen den Ketten (3,040(3) Å) sind.

Abb. 3.1.3.5 Stränge von 4 entlang der *b*-Achse. ^{tert}Butyl- und Phenyl-Gruppen werden übersichtshalber als Drahtmodelle dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.
 (Symmetriecodierung: 'x, 1+y, z; '' 1-x, 1-y, 2-z; '''1-x, 2-y, 2-z)

3.1.4. Darstellung und Untersuchungen von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (4)

4 kann auf zwei verschiedene Weisen synthetisiert werden. Bei Methode A werden lediglich **2** und Natriumhydrid unter Abspaltung von Dimethylaluminiumhydrid zur Reaktion gebracht. Es kann hierbei auf die Zugabe von Diethylether als Katalysator verzichtet werden, da die koordinierende Menge an Diethylether innerhalb von **2** für die Reaktion ausreichend ist. Bei Methode B wird neben **1** und Natriumhydrid Diethylether benötigt. Die Wasserstoffabspaltung kann optisch anhand der Gasentwicklung nachvollzogen werden. Beide Methoden liefern ähnlich hohe Ausbeuten (63 und 61 %). Die Synthesen erfolgen unter den gleichen Reaktionsbedingungen. **4** wird als farbloses Pulver mit einer Reinheit von 98 bzw. 97 % erhalten. Es ist gut in koordinierenden Lösemitteln wie Tetrahydrofuran und Diethylether löslich, in aromatischen Lösemitteln wie Toluol hingegen schlecht. Deuteriertes Chloroform ist für die Aufnahme von NMR-Spektren ungeeignet, da dieses als Brønsted-Säure reagiert und **4** vollständig deuteriert/protoniert. **4** zersetzt sich unter Gasentwicklung recht zügig an der Luft, allerdings scheint es stabiler als **3** zu sein.

Schema 3.1.4.1 Darstellung von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5sodiabicyclo[1.1.1]pentan (4).

Kapitel Wie 3.1.3. erwähnt werden für 4 in interessante temperaturabhängige Austauschreaktionen in den NMR-Versuchen beobachtet. Diese werden näher in Kapitel 3.1.5 zusammen mit den Austauschreaktionen von 3 behandelt. In diesem Kapitel wird auf die Ergebnisse der NMR-Untersuchungen bei Raumtemperatur einer gesättigten Lösung eingegangen. Das ¹H-NMR-Spektrum von **4** (Abb. 3.1.4.1) zeigt neben den Restprotonensignalen von Toluol-d₈ den erwarteten Signalsatz. Dieser weist sechs Signale mit einem relativen Integralverhältnis von 4:4:2:18:3:3 (a:a:a:b:c:d) auf. Die sechs Protonen der beiden Methyl-Gruppen am Aluminiumatom erzeugen zwei breite Singuletts bei -0,09 und -0,80 ppm (c, d). Die Aufspaltung ist der Tatsache geschuldet, dass die eine Methyl-Gruppe in syn- und die andere in anti-ständiger Position zu dem Natriumatom steht. Übersichtshalber ist dieser Bereich in dem Spektrum vergrößert dargestellt. Die tertButyl-Gruppen sind wegen der Cs-Symmetrie und der damit verbundenen Spiegelebene, die durch die Si-Na-Al-Atome verläuft, chemisch und magnetisch äquivalent und erzeugen bei 1,17 ppm ein scharfes Singulett (b). Infolge der chemischen und magnetischen Inäquivalenz von (c) und (d) sollten für beide Phenyl-Gruppen jeweils drei Signale detektiert werden. Dies ist allerdings nicht der Fall. Es werden lediglich drei Multipletts bei 7,98, 7,24 und 7,19 ppm beobachtet, die nicht näher zugeordnet wurden.

Abb. 3.1.4.1 ¹H-NMR-Spektrum von 4 in Toluol-d₈(*).

Neben der Charakterisierung durch die ¹H-NMR-Spektroskopie wurde **4** mittels ¹³C{¹H}und ²⁷Al-NMR-Spektroskopie näher untersucht. Wie erwartet wird im ²⁷Al-NMR-Spektrum ein sehr breites Singulett (T_{1/2} = 2470 Hz) bei 148 ppm für **4** identifiziert. Im ¹³C{¹H}-NMR-Versuch wird keine Aufspaltung der Signale der Kohlenstoffatome der Phenyl-Gruppen und der Methyl-Gruppen am Aluminiumatom beobachtet. Erwartungsgemäß sind die beiden ^{tert}Butyl-Gruppen chemisch und magnetisch äquivalent und erzeugen zwei Signale, eins für die endständigen und eins für die tertiären Kohlenstoffatome. In Abbildung 3.1.4.2 sind die chemischen Verschiebungen aufgeführt.

Abb. 3.1.4.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 4 in Toluol-d₈ [ppm].

Zusätzlich zur NMR-Spektroskopie wurde mit Hilfe der Elementaranalyse, der El-Massenspektrometrie und der IR- und Raman-Spektroskopie **4** genauer untersucht. Die Elementaranalyse liefert für den Kohlenstoff- und Wasserstoffgehalt eine gute Übereinstimmung zwischen den experimentell bestimmten und den berechneten Werten. Der experimentell bestimmte Wert für den Stickstoffgehalt liegt jedoch 1,1 Prozentpunkte unterhalb des berechneten Wertes. Da **4** als Feststoff vorliegt, erfolgte die Probenvorbereitung in der GloveBox, wodurch die Zersetzung durch Hydrolyse verhindert werden konnte (vgl. **2**). In der El-Massenspektrometrie konnte kein Molekülionenpeak von **4** detektiert werden, dafür aber viele Fragmente, die durch Zerfall von **4** erhalten werden. Zusätzlich wurden IR- und Raman-Spektren aufgenommen. Die so erhaltenen Banden wurden mit Hilfe von DFT (Dichte-Funktional-Theorie)-Rechnungen (siehe Kapitel 5.2.) den jeweiligen Schwingungen zugeordnet. Die Zuordnung ist in den Tabellen 8.1.1 und 8.1.2 (Anhang) aufgeführt.

3.1.5. Dynamische NMR-spektroskopische Untersuchungen von 3 und 4

Die Substanzklasse der cyclischen Alkalimetalldiazasilaaluminate zeigt interessante temperaturabhängige Austauschprozesse, welche mittels der ¹H-NMR-Spektroskopie verfolgt werden können.^[4, 31] In diesem Kapitel sollen die Austauschprozesse von **3** und **4** näher untersucht werden. Diese beruhen auf der Tatsache, dass sich jeweils eine Methyl-Gruppe der SiMe₂- und der AlMe₂-Gruppen in *syn*- und die andere Methyl-Gruppe in *anti*-Position zum Natriumatom befinden. Folglich werden insgesamt für diese Gruppen vier unterschiedliche Signale detektiert. Wird dem System Energie zugeführt, also die Temperatur erhöht, findet ein Austausch der Natrium-Ionen statt. Resultierend aus diesem Effekt werden die Signale der *syn*- und *anti*-ständigen Methylprotonen zuerst breiter, laufen auf einander zu und ab einer bestimmten Temperatur verschmelzen die Signale zu einem einzigen Signal. Diese Temperatur entspricht der Koaleszenztemperatur (T_c). In diesem Zusammenhang wird von einem schnellen Austausch innerhalb des Systems gegenüber der NMR-Zeitskala gesprochen. Durch weitere Energiezufuhr gewinnt das Signal weiter an Schärfe.

In Abbildung 3.1.5.1 sind beispielhaft ausgewählte ¹H-NMR-Spektren von **3** bei verschiedenen Temperaturen und bei einer Konzentration von 0,0096 mol/l dargestellt. Die gewählte Konzentration erscheint für ein solches Experiment aufgrund der möglichen Messfehler sehr klein. Dieses hängt mit der schlechten Löslichkeit von **3** in Toluol zusammen. Versuche, das Lösemittel durch koordinierende Lösemittel auszutauschen, um eine höhere Löslichkeit zu erreichen, hatten zur Folge, dass zwar die Löslichkeit erhöht wurde, allerdings konnte auch bei niedrigen Temperaturen (-40 °C) keine Aufspaltung der Signale, also kein langsamer Austausch, beobachtet werden. Bei Betrachtung der abgebildeten ¹H-NMR-Spektren wird der Anschein erweckt, als würde das Spektrum sehr verunreinigt vorliegen. Dieses kann auf die breiten Signale der austauschenden Protonen und die geringe Konzentration zurückgeführt werden. Da die Protonen der Verunreinigungen keinen Austausch aufweisen, erscheinen sie schärfer als die Signale von **3** und erwecken damit den optischen Eindruck eines geringen Reinheitsgrades. Allerdings beträgt die Reinheit von **3** ca. 99 %. Zur Verdeutlichung ist im Anhang (Abb. 8.2.1) ein ¹H-NMR-Spektrum von **3**, aufgenommen in Tetrahydrofuran-d₈, abgebildet. Durch die koordinativen Eigenschaften des Lösemittels ist die Löslichkeit viel größer und der Austausch schneller, weshalb für die diskutierten Protonen insgesamt zwei scharfe Signale beobachtet werden. Zudem sind die Signale der Verunreinigungen nicht auszumachen.

Abb. 3.1.5.1 ¹H-NMR-Spektren von 3 (c = 0,0096 mol/l) in Toluol-d₈. Übersichtshalber sind nur die Signale der Protonen der SiMe₂- (blau) und AlMe₂- (rot) Gruppen dargestellt. Pfeile kennzeichnen Signale des Edukts, * Verunreinigungen unbekannter Herkunft.

Für **3** mit der Konzentration von 0,0096 mol/l ergibt sich eine Koaleszenztemperatur von 354 K. Anhand dieser und Δv lässt sich mittels der Eyring-Gleichung die Freie Aktivierungsenthalpie unter stark vereinfachten Annahmen (konzentrationsunabhängige Reaktion 1. Ordnung) abschätzen (siehe Kapitel 1.5). Die Ergebnisse sind in Tabelle 3.1.5.1 aufgeführt. Um zu klären, ob es sich um einen inter- oder einen intramolekularen Austausch handelt, müssen weitere temperaturabhängige ¹H-NMR-Spektren von **3** bei unterschiedlichen Konzentrationen aufgenommen werden. Sollte sich für eine andere Konzentration die gleiche Koaleszenztemperatur ergeben, kann von einem intramolekularen Austausch ausgegangen werden. Allerdings wird für **3** bei einer Konzentration von 0,0131 mol/l eine Koaleszenztemperatur von 312 K beobachtet (Abb. 3.1.5.2). Dies spricht für einen intermolekularen Austausch. Dieser wurde bei bekannten analogen Verbindungen ebenfalls beobachtet.^[4] Auch für die zweite Messreihe wurde die abgeschätzte Freie Aktivierungsenthalpie ermittelt (Tab. 3.1.5.1). Die abgeschätzte Freie Aktivierungsenthalpie für die Messreihe mit geringerer Konzentration ist größer als für die mit größerer Konzentration. Diese Beziehung entspricht der chemischen Intuition und kann wie folgt erklärt werden. Bei einer geringeren Konzentration und gleicher Temperatur sind die Wahrscheinlichkeit eines Austausches und damit die Austauschgeschwindigkeit niedriger. Folglich benötigt das System mehr Energie, um die gleiche Austauschgeschwindigkeit zu erreichen.

Abb. 3.1.5.2 ¹H-NMR-Spektren von 3 (c = 0,0131 mol/l) in Toluol-d₈. Übersichtshalber sind nur die Signale der Protonen der SiMe₂- (blau) und AlMe₂- (rot) Gruppen dargestellt. Pfeile kennzeichnen Signale des Edukts, * Verunreinigungen unbekannter Herkunft.

Auch für **4** wurden bei zwei unterschiedlichen Konzentrationen temperaturabhängige ¹H-NMR-Spektren aufgenommen. In Abbildung 3.1.5.3 und Abbildung 8.2.2 (Anhang) sind ausgewählte Spektren von **4** mit einer Konzentration von 0,021 mol/l bzw. 0,024 mol/l abgebildet. Hieraus ergeben sich Koaleszenztemperaturen von 320 und 316 K. Für beide Messreihen wurden die Freien Aktivierungsenthalpien bestimmt (Tab. 3.1.5.1). Wie erwartet wird für die höher konzentrierte Probe eine niedrigere Koaleszenztemperatur beobachtet. Somit unterliegt **4** auch einem intermolekularen Austauschprozess.

Abb. 3.1.5.3 ¹H-NMR-Spektren von **4** (c = 0,021 mol/l) in Toluol-d₈. Übersichtshalber sind nur die Signale der Protonen der AlMe₂-Gruppe (rot) dargestellt. Pfeile kennzeichnen Signale des Edukts, * Verunreinigungen unbekannter Herkunft.

Ein Vergleich der Koaleszenztemperaturen von 3 und 4 miteinander macht deutlich, dass für 3 bei geringerer Konzentration eine annähernd gleiche Koaleszenztemperatur beobachtet wird (Tab. 3.1.5.1). Somit ergibt sich eine niedrigere Energiebarriere für den intermolekularen Austausch der Natrium-Ionen innerhalb von 3 im Vergleich zu 4. Dieses erscheint auf den ersten Blick verwunderlich, da durch den sterischen Anspruch der Phenyl-Gruppen für 4 ein leichterer Austausch vorhergesagt werden könnte. Wird allerdings zum besseren Verständnis der jeweilige Aufbau im Kristall oder das Kalottenmodell (Abbildung 3.1.5.4) herangezogen, lässt sich das Beobachtete erklären. Die Phenyl-Gruppen bewirken genau das Gegenteil zu den Erwartungen, denn diese schirmen das Natrium-Ion gegen einen zweiten Si-N-AI-N-Vierring ab. Infolgedessen muss die Bindung zwischen dem Natrium-Ion und dem Stickstoffatom des ersten Vierrings fast vollständig, wenn nicht sogar ganz, gelöst werden, bevor eine neue Na-N-Bindung zu einem anderen Vierring aufgebaut werden kann. Im Gegensatz dazu ist die Wahrscheinlichkeit bei 3, wegen der geringen Abschirmung der Natrium-Ionen, höher, dass gleichzeitig zwei Bindungen zwischen einem Natrium-Ion und zwei Stickstoffatomen verschiedener Si-N-Al-N-Vierringe aufbaut werden können. Das heißt, bevor sich die Na-N-Bindung komplett gelöst hat, wird das Natrium-Ion von einem Stickstoffatom eines anderen Vierring stabilisiert. Dieses ist energetisch günstiger als der Vorgang bei 4. Mit diesem Wissen lässt sich die niedrigere Energiebarriere, die bei dem intermolekularen Austausch überwunden werden muss, von **3** erklären.

Abb. 3.1.5.4 Kalottenmodell von 3 (links) und 4 (rechts).

Tab. 3.1.5.1 Abgeschätzte Frei	e Aktivierungsenthalpie (ΔG_{c}^{*}) des dynamischen	Austauschprozesses in 3 und 4.
--------------------------------	--	-------------------	--------------------------------

Verbindung	c [mol/l]	Т _с [K]	∆v [Hz]	k _c [s ⁻¹]	∆G [≠] c [kJ/mol]
3	0,0096	354	248	550,56	68,7
3	0,0131	312	299	663,78	59,7
4	0,021	320	394	874,68	60,6
4	0,024	316	397	881,34	59,8

Neben der abgeschätzten Freien Aktivierungsenthalpie sollte diese genauer durch eine vollständige Linienformanalyse (CLA; *Complete Lineshape Analysis*) mit dem Programm G-NMR^[95] bestimmt werden. Mit Hilfe des Programmes werden Reaktionsgeschwindigkeitskonstanten (k) erhalten. Durch das Auftragen von ln(k) und ln(k/T) gegen den Kehrwert der Temperatur werden Arrhenius- und Eyring-Plots für **3** (Abb. 3.1.5.5) und **4** (Abb. 3.1.5.6) erhalten. Anhand der Steigungen und der Ordinatenabschnitte können die Aktivierungsenergien (E_A), die Frequenzfaktoren (A), die Enthalpien (ΔH^{\neq}) und die Entropien (ΔS^{\neq}) bestimmt werden. Aus den so erhaltenen Werten und der Gibbs-Helmholtz-Gleichung lassen sich die Freien Aktivierungsenthalpien berechnen (siehe Kapitel 1.5.).

Abb. 3.1.5.5 Arrhenius-Plot (links) und Eyring-Plot (rechts) der Verbindung 3 (c = 0,0096 mol/l).

Abb. 3.1.5.6 Arrhenius-Plot (links) und Eyring-Plot (rechts) der Verbindung 4 (c = 0,024 mol/l).

Die berechneten Aktivierungsparameter der dynamischen Austauschprozesse in **3** und **4** sind in Tabelle 3.1.5.2 aufgelistet. Es zeigt sich, dass die Freien Aktivierungsenthalpien eine gute Übereinstimmung mit den abgeschätzten Werten liefern. Für **3** werden niedrigere Aktivierungsenergien als für **4** ermittelt. Dies deckt sich mit der oben beschriebenen niedrigeren Energiebarriere von **3** gegenüber der Energiebarriere von **4**, die bei dem jeweiligen intermolekularen Austausch überwunden werden muss. Für die beiden Literatur bekannten Mono- und Bis-(THF)-Addukte von (**II**) wurden ebenfalls die Aktivierungsparameter berechnet.^[4] Die Freien Aktivierungsenthalpien für das Mono-(THF)- und das Bis-(THF)-Addukt betragen ca. 90 kJ/mol und ca. 75 kJ/mol. Die Freie Aktivierungsenthalpie für die Ringinversion des *cis*-1,2-Dimethylcyclohexan wird mit 40,8 kJ/mol angegeben.^[96] Somit befinden sich die Werte für **3** und **4** in der gleichen Größenordnung wie die beiden THF-Addukte von (**II**) und das Cyclohexan-Derivat.

Verbindung	c [mol/l]	E _A [kJ/mol]	A [10⁴]	∆H [≠] [kJ/mol]	∆S [≠] [J/(mol*K)]	∆G [≠] [kJ/mol]
3	0,0096	16,69	15,51	13,97	-154,65	60,07
3	0,0131	8,24	1,69	6,02	-171,42	57,12
4	0,021	33,67	30781,21	31,31	-90,33	58,24
4	0,024	29,88	8447,79	27,52	-101,11	57,67

Tab. 3.1.5.2 Berechnete Aktivierungsparameter der dynamischen Austauschprozesse in 3 und 4.

3.1.6. Darstellung und Untersuchungen von 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-1,3diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (5)

Analog zur Synthese von **4** konnte **5** gezielt nach der Methode B hergestellt werden. Unter Abspaltung von Wasserstoff reagieren 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan und Natriumhydrid zu **5**. Die Wasserstoffabspaltung kann anhand der Gasentwicklung nachvollzogen werden. Zur Reinigung wird **5** im statischen Vakuum sublimiert und scheidet sich in Form von weißen Nadeln ab, deren Qualität für eine Einkristallstrukturanalyse jedoch nicht ausreichend war. Für **5** werden ähnliche Eigenschaften wie für **3** und **4** beobachtet. Es ist in Diethylether und Tetrahydrofuran gut löslich, wohingegen die Löslichkeit in *n*-Pentan und Toluol schlecht ist. Zudem erfolgt eine Protonierung von **5** durch die Brønsted-Säure Chloroform. Es zersetzt sich ebenso wie **3** und **4** an der Luft.

Schema 3.1.6.1 Darstellung von 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5sodiabicyclo[1.1.1]pentan (5).

Die erfolgreiche Synthese von **5** lässt sich anhand des ¹H-NMR-Spektrums (Abb. 3.1.6.1) ausmachen, da es eine C_s-Symmetrie analog zu **3** und **4** aufzeigt. Das relative Integralverhältnis beträgt 4:12:6:3:3:3:3 (**a**:**b**:**c**:d:**e**:**f**:**g**) und bestätigt damit den Erfolg. Für die sechs Protonen der AIMe₂-Einheit und für die sechs Protonen der SiMe₂-Einheit werden bei - 0,31 (**f**), -0,96 ppm (**g**) und bei 0,46 (**d**), -0,05 ppm (**e**) aufgrund ihrer *syn*- und *anti*-ständigen Position zu dem Natriumatom jeweils zwei breite Singuletts beobachtet. Die Breite der Signale

spricht für einen Austausch der Natriumatome, auf welchen in dieser Arbeit nicht näher eingegangen werden soll. Durch die oben erwähnte C_s-Symmetrie sind die ^{tert}Pentyl-Gruppen chemisch und magnetisch äquivalent und erzeugen drei Signale. Die α -Methyl-Gruppen erzeugen bei 1,12 ppm (**b**) ein scharfes Singulett. Aufgrund der vicinalen Kopplung zwischen den Methylenprotonen und den Protonen der endständigen Methyl-Gruppen ergeben sich ein Quartett und ein Triplett bei 1,41 (**a**) und 0,88 ppm (**c**) mit einer Kopplungskonstante von 7,5 Hz.

Abb. 3.1.6.1 ¹H-NMR-Spektrum von 5 in Toluol-d₈.

Im Gegensatz zu **4** werden für die Kohlenstoffatome der AlMe₂-Einheit im ¹³C{¹H}-NMR-Spektrum zwei breite Singuletts bei -3,6 ($T_{1/2}$ = 43 Hz) und -4,6 ppm ($T_{1/2}$ = 46 Hz) aufgenommen. Gleiches gilt für die SiMe₂-Einheit. Wie im ¹H-NMR-Spektrum sind die ^{tert}Pentyl-Gruppen chemisch und magnetisch äquivalent und erzeugen vier Singuletts. Die chemischen Verschiebungen sind in Abbildung 3.1.6.2 aufgeführt. Im ²⁷Al-NMR-Spektrum kann **5** ein breites Singulett ($T_{1/2}$ = 1570 Hz) bei 145 ppm zugeordnet werden.

Abb. 3.1.6.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 5 in Toluol-d₈ [ppm].

Zur vollständigen Charakterisierung dienten weitere Analysemethoden. Unter anderem bestätigt die El-Massenspektrometrie die erfolgreiche Synthese von **5**. Diese liefert zwar keinen Molekülionenpeak, jedoch ein Fragment bei 285 m/z, welches von **5** nach der Abspaltung eines Natriumatoms stammt. Zudem passt das Massenspektrum mit seinen Fragmenten zu **5**. Gemäß der Elementaranalyse liegt der experimentell ermittelte Stickstoffgehalt um 0,59 Prozentpunkte zu hoch, wobei der Kohlenstoff- und der Wasserstoffgehalt um 0,04 und 0,36 Prozentpunkte zu niedrig sind. Diese Abweichungen liegen im Rahmen der Messgenauigkeiten und sprechen für **5** als Reinsubstanz. Mittels IR- und Raman-Spektroskopie lässt sich die Wasserstoffabspaltung nachvollziehen. Im Bereich der NH-Schwingung um die 3250 cm⁻¹ ist keine Bande zu sehen. Zur besseren Zuordnung der Schwingungen zu den Banden wurden DFT (Dichte-Funktional-Theorie)-Rechnungen (siehe Kapitel 5.2.) betrieben. Die Ergebnisse sind in den Tabellen 8.1.1 und 8.1.2 (Anhang) aufgelistet.

3.2. Darstellung und Untersuchungen der Alkandiamin–Trimethylaluminium – Addukte 6 und 8 und der Diazoniadialanuidabicycloalkane 7 und 9

3.2.1. Umsetzung von N,N'-Di-tert-butylethylendiamin mit Trimethylaluminium zu 6 und 7

Das Reaktionsverhalten von N,N'-Di-tert-butylethylendiamin gegenüber Trimethylaluminium soll in dieser Arbeit untersucht werden. Hierzu wurde analog zur Synthese der Azaazoniasilaalanuidacyclobutane (siehe Kapitel 3.1.1.) zu dem Diamin ein Äguivalent Trimethylaluminium zügig zugegeben. Überraschenderweise liefert das ¹H-NMR-Spektrum des erhaltenen Feststoffes zwei Signalsätze. Diese können N,N'-Di-tert-butylethylendiamin-Trimethyl-(**6**) und 1,4-Di-tert-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidaaluminium (1/1)bicyclo[2.1.1]hexan (7) zugeordnet werden. Da das Diamin und das Trimethylaluminium im Verhältnis 1:1 eingesetzt wurden und das Diamin mit Trimethylaluminium im Verhältnis 1:2 zu 7 reagiert, müsste unverbrauchtes Diamin vorliegen. Dieses wird jedoch nicht im Produktgemisch detektiert, sondern kann in den Kühlfallen nachgewiesen werden. Bei den nächsten Versuchen galt es Bedingungen zu finden, bei denen lediglich 6 entsteht. Dies stellte sich als problematisch heraus, denn auch bei tiefen Temperaturen und sehr langsamer Zugabe von Trimethylaluminium konnte zwar ein größeres Verhältnis von 6 zu 7 erhalten werden, jedoch nie reines 6. Deswegen wurde als nächstes versucht, das erhaltene Feststoffgemisch durch Sublimation im dynamischen Vakuum zu trennen. Dies erfolgte in dem Temperaturbereich zwischen Raumtemperatur und 50 °C. Ab 30 °C konnte weißer, sublimierter Feststoff knapp oberhalb des Ölbades beobachtet werden. Als Rückstand wurde ein schwach gelblicher Feststoff erhalten. ¹H-NMR-Untersuchungen ergaben, dass es sich in beiden Fällen um 7 handelt, wobei das ¹H-NMR-Spektrum des gelblichen Rückstandes Verunreinigungen aufzeigt, die wahrscheinlich für die Gelbfärbung verantwortlich sind. Zusätzlich konnte erneut Diamin in der Kühlfalle nachgewiesen werden. Folglich reagiert 6 unter Freisetzung von Diamin zu 7. Versuche, die Trimethylaluminiumzugabe bei höheren Temperaturen und schneller durchzuführen, um auf diesem Weg nur 7 zu erhalten, misslangen ebenfalls. Allerdings konnte eine erfolgreiche Synthese mit einer hohen Ausbeute von 92 % für 7 entwickelt werden. Dabei werden in der Kälte zu dem Diamin zwei Äquivalente Trimethylaluminium gegeben. Anschließend wird der größte Teil des Lösemittels entfernt, bis nur noch ein öliger Rest zurückbleibt. Dieser wird im dynamischen Vakuum auf 50 °C erwärmt, wobei sich 7 in Form von weißen Kristallen abscheidet. In Schema 3.2.1.1 ist eine Übersicht des Reaktionsverhaltens von N,N'-Di-tert-butylethylendiamin mit Trimethylaluminium dargestellt. Sowohl das Pulvergemisch als auch das isolierte 7 lösen sich in Toluol, n-Pentan, Tetrahydrofuran, Diethylether und deuteriertem Chloroform. Bei Kontakt mit Wasser ist eine Zersetzung unter Gasentwicklung zu beobachten.

Als Nächstes stellt sich die Frage, warum für das N,N'-Di-tert-butylethylendiamin ein anderes Reaktionsverhalten gegen Trimethylaluminium als für die Bis(amino)silane beobachtet wird. Bei der Reaktion von einem Äquivalent Trimethylaluminium mit dem Bis(amino)silan wird als Produkt lediglich das Azaazoniasilaalanuidacyclobutan erhalten (siehe Kapitel 1.2.) und kein Addukt. Für die Abspaltungsreaktionen von Methan lässt sich als Übergangszustand eine Amid-Spezies formulieren. Infolge der Stabilisierung der negativen Ladung durch das Siliciumatom scheint der Übergangszustand für das Bis(amino)silan stabiler zu sein. Hierfür liefert die negative Hyperkonjugation eine mögliche Erklärung, die bei Siliciumatomen ausgeprägter als bei Kohlenstoffatomen ist (Vergleiche hierzu das pyramidal aufgebaute Trimethylamin-Molekül mit einem H₃C–N–CH₃-Winkel von 107,8 ° mit dem planaren Trisilylamin-Molekül).^[97] Somit handelt es sich bei dem Bis(amino)silan um die stärkere Brønsted-Säure und die Methanabspaltung wird gegenüber der Adduktbildung bevorzugt. Dass bei der Reaktion von N,N'-Di-tert-butylethylendiamin mit Trimethylaluminium kein Azaazoniaalanuidacyclopentan gebildet wird, lässt sich mit den wegfallenden stabilisierenden Wechselwirkungen zwischen den Orbitalen der Siliciumatome und den sp³-Orbitalen der Stickstoffatome erklären (siehe Kapitel 3.1.1.). Zu einer solchen Stabilisierung sind die neu eingeführten Kohlenstoffatome wenn überhaupt vermutlich nur sehr schwach in der Lage (vgl. Kapitel 3.4.3.).^[97] Daher scheint die Einführung eines zweiten AlMe₂-Fragments energetisch günstiger zu sein.

Schema 3.2.1.1 Umsetzung von N,N'-Di-tert-butylethylendiamin mit Trimethylaluminium.

In Abbildung 3.2.1.1 ist das ¹H-NMR-Spektrum von dem Pulvergemisch, welches nach Umsatz A (schnelle Zugabe) erhalten wurde, abgebildet. In diesem sind zehn Signale von zwei unterschiedlichen Verbindungen zu sehen, es handelt sich zum einen um 6 und zum anderen um 7. Zur besseren Übersicht sind die beiden Signalsätze farblich getrennt und unabhängig voneinander integriert. Für 7 (blau) ist ein relatives Integralverhältnis von 4:18:6:6 (a:b:c:d) und für 6 (rot) 1:3:9:9:1:9 (e:e:f:g:h:i) zu erkennen. Für das Amin-Proton (j) von 6 konnte keine Zuordnung erfolgen. Es wird ein Signal um die 0.75 ppm erwartet, da die Amin-Protonen des N,N'-Di-tert-butylethylendiamins ein Singulett bei 0,75 ppm erzeugen. Es könnte sein, dass das zu erwartende Signal zu höheren Resonanzfrequenzen verschoben ist und von einem Signal der ^{tert}Butyl-Gruppen überlagert wird. Eine andere Möglichkeit besteht darin, dass das Signal zu breit ist und somit vom Untergrund nicht zu unterscheiden ist. Dabei handelt es sich um ein in der Literatur bekanntes Phänomen.^[4, 10, 31, 34] Das zweite Amin-Proton (**h**) ist bei 0.51 ppm aufgrund der Kopplung zu den beiden nächsten Methylenprotonen zu einem Pseudo-Triplett $({}^{3}J({}^{1}H, {}^{1}H) = 8,8 \text{ Hz})$ aufgespalten. Aufgrund des AlMe₃-Fragments sind die beiden Methylenprotonen chemisch und magnetisch verschieden und es müsste ein Dublett vom Dublett beobachtet werden. Durch die Überlagerung des Duplett vom Duplett wird dieses Signal in ein Pseudo-Triplett aufgespalten. Wie oben angedeutet besitzt das Molekül neben der Identität keine weiteren Symmetrieoperationen, weswegen weder die Methylen-Gruppen noch die ^{tert}Butyl-Gruppen chemisch und magnetisch äguivalent sind. Somit erzeugen die vier Methylenprotonen die beiden Multipletts (e) im Bereich von 3,0 - 2,9 und 2,8 - 2,6 ppm und die ^{tert}Butyl-Gruppen die beiden Singuletts (f und g) bei 1,27 und 1,08 ppm. Das Singulett (i) bei -0,89 ppm stammt von dem AlMe₃-Addukt. 7 weist als Symmetrieoperationen unter anderem zwei Spiegelebenen auf. Folglich spaltet 7 in vier Singuletts auf. Die vier Methylenprotonen sind im Unterschied zu 6 chemisch und magnetisch äquivalent und es wird ein Singulett (a) bei 3,03 ppm detektiert. Gleiches gilt für das Singulett (b) der ^{tert}Butyl-Gruppen, welches bei 1,16 ppm erscheint. Für die vier Methyl-Gruppen an den beiden Aluminiumatomen werden zwei Singuletts bei -0.53 und -0.81 ppm (c und d) beobachtet. Die Ursache für diese Aufspaltung liegt in der Ausrichtung der Methyl-Gruppen. Es zeigen jeweils zwei Methyl-Gruppen von verschiedenen Aluminiumatomen aufeinander zu und die anderen beiden voneinander weg. Im Anhang ist das ¹H-NMR-Spektrum von 7 als Reinsubstanz in CDCl₃ abgebildet (Abb. 8.2.3).

Abb. 3.2.1.1 ¹H-NMR-Spektrum von **6** (rot) und **7** (blau) in CDCl₃. Der besseren Übersichtlichkeit halber sind die beiden Signalsätze getrennt voneinander integriert.

In Abbildung 3.2.1.2 sind die ¹³C{¹H}-NMR-Verschiebungen von **6** und **7** dargestellt. Die Verschiebungen für **6** stammen aus dem Pulvergemisch von **6** und **7**, wohingegen das ¹³C{¹H}-NMR-Spektrum vom isolierten **7** aufgenommen wurde. Die Aufspaltungen und Verschiebungen stimmen mit denen aus den ¹H-NMR-Spektren überein. Allerdings konnte für **6** die Verschiebung für das AIMe₃-Fragment nicht aus dem ¹³C{¹H}-NMR-Spektrum entnommen werden. Die Aluminiumatome des isolierten **7** erzeugen im ²⁷Al-NMR-Spektrum ein breites Singulett bei 161 ppm (T_{1/2} = 1740 Hz). Die ²⁷Al-NMR-Aufnahme von dem Pulvergemisch liefert ebenfalls nur ein sehr breites Singulett bei 163 ppm (ca. T_{1/2} = 3000 Hz), weswegen eine genaue Verschiebung für **6** nicht angegeben werden kann.

Abb. 3.2.1.2 Chemische Verschiebung der Signale im ${}^{13}C{}^{1}H$ -NMR-Spektrum von **6** (links) und **7** (rechts) in CDCl₃ [ppm].

Neben der NMR-spektroskopischen Charakterisierung konnte **7** anhand der IR- und Raman-Spektroskopie, der Elementaranalyse und der El-Massenspektrometrie untersucht werden. Weder im IR- noch im Raman-Spektrum ist die Bande der NH-Streckschwingung um 3250 cm⁻¹ zu sehen. Um eine Zuordnung der experimentell bestimmten Banden zu den Schwingungen zu ermöglichen, wurden DFT (Dichte-Funktional-Theorie)-Rechnungen (siehe Kapitel 5.2.) durchgeführt. Die Zuordnungen sind in den Tabellen 8.1.3 und 8.1.4 (Anhang) aufgeführt. Keines der Fragmente, die innerhalb der El-Massenspektrometrie gefunden werden, können dem Molekülion zugeordnet werden. Allerdings stammen viele der beobachteten Fragmente von **7**. Innerhalb der Elementaranalyse zur Bestimmung des Stickstoff-, Kohlenstoff- und Wasserstoffgehaltes liegt die Abweichung unter einem Prozentpunkt und somit innerhalb der Messgenauigkeit des Gerätes. Der experimentell bestimmte Stickstoffgehalt liegt mit 0,82 Prozentpunkten unterhalb des erwarteten Wertes, wohingegen der experimentell bestimmte Kohlenstoffgehalt um 0,41 Prozentpunkte zu hoch ist. Die beste Übereinstimmung liefert der Wasserstoffgehalt mit einer Abweichung von 0,1 Prozentpunkten. All diese Untersuchungen belegen einen vollständigen Umsatz zu **7** mit einer hohen Reinheit.

3.2.2. Umsetzung von *N,N*⁻-Di-*tert*-butylpropylendiamin mit Trimethylaluminium zu 8 und 9

Nachdem das *N*,*N*'-Di-*tert*-butylethylendiamin Reaktionsverhalten von gegen Trimethylaluminium untersucht wurde, soll der Einfluss der Länge der CH₂-Kette auf das Reaktionsverhalten näher betrachtet werden. Aus diesem Grund wird als Edukt das N,N'-Ditert-butylpropylendiamin eingesetzt. Im ersten Ansatz wurde das Diamin im Verhältnis von 1:1 zum Trimethylaluminium eingesetzt. Überraschenderweise wurde als Produkt lediglich das N, N'-Di-tert-butylpropylendiamin—Trimethylaluminium (1/2) (8) detektiert. 8 konnte als weißes Pulver isoliert und charakterisiert werden. In der Hoffnung, dass unter Methanabspaltung 8 zu 1,5-Di-tert-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptan (9) reagiert, wurde 8 im dynamischen Vakuum sublimiert (50 °C). Die so erhaltenen Kristalle können nur 8 zugeordnet werden. Aus diesem Grund wurde eine kleine Menge 8 in deuteriertem Toluol gelöst und in einem geschlossenen Young-NMR-Röhrchen erwärmt (70 °C). Mit der Zeit wird in den ¹H-NMR-Spektren eine neue Spezies detektiert und die Menge an 8 nimmt ab. Die neue Spezies kann als 9 identifiziert werden. Mit diesen neu gewonnenen Erkenntnissen kann 9 gezielt hergestellt werden. Dazu wird das Diamin mit zwei Äquivalenten Trimethylaluminium versetzt und anschließend erwärmt. Das Schema 3.2.2.1 gibt eine Übersicht über das Reaktionsverhalten von Trimethylaluminium mit dem Diamin. Beide Substanzen - 8 und 9 werden als farblose, kristalline Feststoffe erhalten und sind in Toluol, Diethylether, Tetrahydrofuran und deuteriertem Chloroform gut löslich. Die Löslichkeit von 8 und 9 in nPentan ist geringer als die von **6**. **8** reagiert heftiger als **9** bei Kontakt mit der Luft und zeigt pyrophore Eigenschaften.

Da es im Gegensatz zu **6** bei der Sublimation von **8** zu keiner Methanabspaltung kommt, scheint es sich bei dem N,N'-Di-*tert*-butylpropylendiamin um eine schwächere Brønsted-Säure als bei dem N,N'-Di-*tert*-butylethylendiamin zu handeln. Erst durch längeres Erhitzen in Lösung kann **8** erhalten werden. Aus diesem Grund ergibt sich für die abnehmende Brønsted-Säurestärke die Reihenfolge Bis(amino)silan, N,N'-Di-*tert*-butylethylendiamin und N,N'-Di-*tert*-butylpropylendiamin.

Schema 3.2.2.1 Umsetzung von N,N'-Di-tert-butylpropylendiamin mit Trimethylaluminium.

Das ¹H-NMR-Spektrum von dem kristallinen **8** ist in Abbildung 3.2.2.1 wiedergegeben. Für **8** wird ein relatives Integralverhältnis von 4:2:2:18:18 (**a**:**b**:**c**:**d**:**e**) beobachtet. Durch die AlMe₃-Einheiten verliert **8** eine Spiegelebene, die durch die beiden Stickstoffatome verlief. Aus diesem Grund sind die α -ständigen, prochiralen Methylenprotonen (**a**¹) und (**a**²) chemisch und magnetisch inäquivalent und sowohl die beiden Protonen (**a**¹) und als auch die beiden Protonen (**a**²) untereinander nur chemisch äquivalent. Folglich wird für die vier α -ständigen Methylenprotonen (**a**) im Bereich von 2,6 bis 3,0 ppm ein Multiplett detektiert. Bei dem Signal bei 1,85 ppm handelt es sich um ein pseudo-Quintett (**b**), denn die beiden β -ständigen Methylenprotonen sind wie die α -ständigen Methylenprotonen nicht magnetisch äquivalent und koppeln zu chemisch und magnetisch verschiedenen benachbarten Methylenprotonen. Erfahrungsgemäß weist das Singulett (**c**) bei 1,63 ppm, welches von den beiden Amin-Protonen erzeugt wird, eine zu geringe Intensität auf. Sowohl die beiden ^{tert}Butyl-Gruppen als auch die beiden AlMe₃-Fragmente können durch eine Spiegelung ineinander überführt werden und liefern somit jeweils ein Singulett (**d** und **e**). Diese sind bei 1,30 und -0,86 ppm auszumachen. Die Aufspaltung der Signale im ¹H-NMR-Spektrum können alternativ auch von dem Diastereomer **8a** stammen. Bei diesem werden die Protonen nicht wie in **8** durch eine Spiegelebene ineinander überführt sondern durch eine 2-zählige Drehachse. Hieraus ergeben sich für die beiden Diastereomere die Punktgruppensymbole C_s (**8**) und C_2 (**8a**).

Abb. 3.2.2.1 ¹H-NMR-Spektrum von 8 in CDCl₃.

Abbildung 3.2.2.2 zeigt das ¹H-NMR-Spektrum von **9**. Durch die Methanabspaltung und den daraus resultierenden Ringschluss handelt es sich bei **9** (Punktgruppensymbol: C_{2V}) um ein höher symmetrisches Molekül als bei **8**. Im Gegensatz zu **8** sind bei **9** sowohl die α -ständigen Methylenprotonen (**a**) als auch die β -ständigen Methylenprotonen (**b**) chemisch und magnetisch äquivalent. Durch die vicinale Kopplung (³*J*(H,H) = 7,1 Hz) der Methylenprotonen untereinander spalten die α -ständigen, prochiralen Methylenprotonen (**a**) in ein Triplett und die β -ständigen Methylenprotonen (**b**) in ein Quintett auf. Die Verschiebung des Tripletts beträgt 3,23 ppm und die des Quintetts 2,23 ppm. Für die ^{tert}Butyl-Gruppen wird ein Singulett bei 1,19 ppm aufgenommen. Wie bei **7** spalten die Signale der vier Methyl-Gruppen an den beiden Aluminiumatomen aufgrund ihrer Anordnung zueinander in zwei Singuletts bei -0,45 und -0,69 ppm auf.

Abb. 3.2.2.2 ¹H-NMR-Spektrum von 9 in CDCI₃.

Die ¹³C{¹H}-NMR-Verschiebungen von **8** und **9** sind in Abbildung 3.2.2.3 eingetragen. Die Verschiebungen und die Aufspaltung der Signale decken sich mit den Beobachtungen aus den jeweiligen ¹H-NMR-Spektren. Die Verschiebungen von **8** könnten auch dem Diastereomer **8a** zugeordnet werden, dieses wird hier nicht gesondert aufgeführt. Im Gegensatz zu **6** ist es bei den beiden Verbindungen **8** und **9** gelungen, die breiten Signale für die Methyl-Gruppen an den Aluminiumatomen zu detektieren. Außerdem wurden zur Vervollständigung der NMR-spektren bestimmt. Bei 173 ppm (s, $T_{1/2} = 4260$ Hz) liefert **8** ein breites Singulett und bei 161 ppm (s $T_{1/2} = 1410$ Hz) wird für **9** ebenfalls ein Singulett detektiert.

Abb. 3.2.2.3 Chemische Verschiebung der Signale im ${}^{13}C{}^{1}H$ -NMR-Spektrum von **8** (links) und **9** (rechts) in CDCl₃ [ppm].

Zur Vervollständigung der Charakterisierung wurden von **8** und **9** IR- und Raman-Spektren aufgenommen, wobei die Zuordnung der Schwingungen zu den Banden durch DFT (Dichte-Funktional-Theorie)-Rechnungen ermöglicht wurde (siehe Kapitel 5.2.). Mittels IR- und Raman-Spektroskopie kann die erfolgreiche Methanabspaltung nachgewiesen werden. Für **8** wird bei

3239 cm⁻¹ (IR) und bei 3240 cm⁻¹ (Raman) die Bande der NH-Streckschwingung detektiert, wohingegen in diesem Bereich für **9** keine Banden beobachtet werden. Eine Auflistung der Banden und deren Zuordnung sind in den Tabellen 8.1.3 und 8.1.4 (Anhang) zu finden. Zusätzlich wurden die prozentualen Anteile an Kohlenstoff, Stickstoff und Wasserstoff elementaranalytisch bestimmt. Für alle drei Bestimmungen wird eine geringe Abweichung im Rahmen der Messgenauigkeit des Gerätes festgestellt. Die experimentell bestimmten Werte liegen bei einer Analyse sowohl ober- als auch unterhalb der berechneten Werte. Bei der El-Massenspektrometrie wurde weder für **8** noch für **9** der Molekülionenpeak beobachtet. Dafür konnten bei der Messung von **8** das Diamin und weitere Zerfallsprodukte identifiziert werden. Für **9** wird als schwerstes Fragment das Molekülion nach der Abspaltung eines CH₃-Fragments beobachtet.

3.2.3. Festkörperuntersuchungen von 1,4-Di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (7), *N,N*^r-Di-*tert*-butylpropylendiamin—Trimethylaluminium (1/2) (8) und 1,5-Di-*tert*-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptan (9)

Durch Sublimation im statischen bzw. dynamischen Vakuum können gezielt Kristalle von **7**, **8** und **9** erhalten werden, an welchen Röntgenbeugungsexperimente zur Einkristallstrukturbestimmung durchgeführt wurden. **7** kristallisiert in der monoklinen Raumgruppe *C*2/*c* mit den Gitterparametern *a* = 10,9927(7) Å, *b* = 12,8058(6) Å, *c* = 12,8883(8) Å und β = 95,012(5) °. Abbildung 3.2.3.1 (links) zeigt den molekularen Baustein im Festkörper. **8** kristallisiert in der monoklinen Raumgruppen *C*2/*m* mit den Gitterparametern *a* = 12,0077(9) Å, *b* = 11,1420(7) Å, *c* = 9,1857(7) Å und β = 108,021(6) °. Der molekulare Baustein von **8** wird in der Abbildung 3.2.3.2 gezeigt. **9** kristallisiert in der monoklinen Raumgruppen *P*2₁/*c* mit den Gitterparametern *a* = 9,2521(3) Å, *b* = 13,4999(4) Å, *c* = 15,9330(5) Å und β = 106,270(2) °. Die gewählte asymmetrische Einheit von **9** ist in Abbildung 3.2.3.1 (rechts) dargestellt.

Abb. 3.2.3.1 Molekularer Baustein im Festkörper von 7 (links) (Symmetriecodierung: '1-*x*, *y*, 1,5-*z*) und gewählte asymmetrische Einheit von 9 (rechts). Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Aufgrund der ähnlichen molekularen Bausteine im Festkörper von 7 und 9 wird eine vergleichende Betrachtung vorgezogen. Ausgewählte Atomabstände und Winkel sind in den Tabellen 3.2.3.1 und 3.2.3.2 aufgelistet. Den Grundbaustein in beiden Festkörpern bildet ein gespannter Bicyclus, dessen Hauptring aus den beiden Stickstoffatomen und der Alkylenkette besteht. Die beiden Brückenköpfe bilden die beiden Aluminiumatome. Aufgrund der planaren Hauptbrücke in 7 ergibt sich eine zweizählige Drehachse. Durch die Einführung der gewinkelten CH₂-CH₂-CH₂-Kette in **9** in der gegebenen Form entfällt diese Drehachse. Die Aluminiumatome sind in beiden Strukturen verzerrt tetraedrisch umgeben. Dabei macht sich die Ringspannung der Moleküle in den N-Al-N-Winkeln am stärksten bemerkbar. Dieser beträgt 76,01(10) ° (7) und 81,87(6) bzw. 81,92(6) ° (9) und liegt deutlich unterhalb des idealen Winkels von 109,5°. Verantwortlich für die Ringspannung sind die Alkylenketten, die den Abstand zwischen den beiden Stickstoffatomen und damit den Winkel N-Al-N vorgeben. Aufgrund der gewinkelten Alkylenkette in 9 kann ein Teil der Ringspannung auf diese übertragen werden. Bemerkbar macht sich dies in dem Winkel C5-C6-C7 (120,74(18)°). Somit ist der Abstand zwischen den Stickstoffatomen mit 2,605(2) Å geringfügig größer als in 7 (2,436(4) Å) und damit auch der N-Al-N-Winkel stumpfer. Wie oben erwähnt liegen in 7 die Stickstoffatome und die Alkylenkette in einer Ebene, wobei die Kohlenstoffatome nahezu perfekt tetraedrisch umgeben sind. Anders verhält es sich bei den sp³-hybridisierten Kohlenstoffatomen der gewinkelten Alkylenkette in 9. Durch den sterischen Anspruch der beiden AlMe₂-Fragmente wird das Kohlenstoffatom C6 in Richtung der N1-C5-C7-N2-Ebene gedrückt. Dies macht sich in den mit ca. 114 ° zu großen Winkeln N1-C5-C6 und N2-C7-C6 bemerkbar. In beiden Bausteinen sind die Stickstoffatome bedingt durch die Ringspannung verzerrt tetraedrisch umgeben. Die drei Winkel zwischen den tertiären Kohlenstoffatomen, den Stickstoffatomen und Aluminiumatomen bzw. der Alkylenkette sind in beiden Verbindungen deutlich größer als der Idealwinkel von 109,5°, wohingegen die anderen drei Winkel (Al-N-Al, Al-N-C, Al-N-C) deutlich kleiner sind. Wie schon bei der Betrachtung der Winkel um die Aluminiumatome wird hierbei die kleineere Ringspannung, bedingt durch die gewinkelte Alkylenkette, in 9 deutlich. Die Abweichungen von dem Idealwinkel sind merklich kleiner als bei 7. Nur bei dem Al-N-Al-Winkel ist kein Unterschied zwischen den beiden Verbindungen zu erkennen. Dieser Winkel ist mit ca. 90° der spitzeste und steht in Konkurrenz zur Al-N-Bindungslänge. Um eine Winkelaufweitung zu erreichen, müsste der Abstand zwischen den Stickstoff- und den Aluminiumatomen vergrößert werden. Dieser Abstand liegt mit 1,978(2) Å (7) und mit 1,9838(16) bzw. 1,9839(16) Å (9) in der Nähe der Summe der Kovalenzradien (2,00 Å^[98-99]). Das heißt, die Bindungsart kann noch als kovalente Bindung beschrieben werden, liegt jedoch an der Grenze zu einer ionischen Bindung, die auf elektrostatischen Wechselwirkungen beruht. Durch einen längeren Abstand würde im Festköper ein Diamin-Dianion mit zwei Aluminium-Kationen vorliegen, welches höchstwahrscheinlich energetisch ungünstiger wäre. Ähnlich wie bei 1 wäre ein unterschiedlicher Abstand zwischen einem Aluminiumatom und den beiden Stickstoffatomen denkbar. Durch diesen Effekt wäre der Al-N-Al-Winkel größer und die Ringspannung geringer. Bei 1 liegt der größere (Al1-N1) der beiden Abstände mit ca. 2,04 Å nur knapp oberhalb der Kovalenzradien. Für 7 und 9 wäre dieser deutlich oberhalb der Kovalenzradien, weswegen lediglich elektrostatische Wechselwirkungen zur Bindung beitragen würden. Aufgrund dessen scheinen für 7 und 9 trotz der Ringspannung die kleineren Bindungslängen energetisch günstiger zu sein. In Tabelle 3.2.3.3 sind Bindungslängen literaturbekannter Verbindungen aufgeführt, die wie 7 und 9 als Grundbaustein einen gespannten Bicyclus aufweisen.^[100-104] Für diese werden ähnliche Abstände beobachtet. So liegen die Abstände zwischen den Stickstoff- und Aluminiumatomen mit ca. 1,91 – 2,00 Å ebenfalls in der Nähe der Summe der Kovalenzradien. Zudem zeigen die Al-N-Bindungslängen innerhalb einer Verbindung einen Unterschied von maximal 0,03 Å. Auch bei diesen wird vermutlich die dadurch gewonnene Bindungsenergie dem Abbau von Ringspannung vorgezogen.

Innerhalb des Festkörpers von **7** und **9** sind jediglich van-der-Waals-Wechselwirkungen und keine gerichteten Wechselwirkungen zwischen den einzelnen Bausteinen auszumachen.

Al1-N1	1,978(2)	N1—AI1—N1'	76,01(10)	AI1-N1-AI1'	90,72(9)
AI1–C1	1,968(3)	N1-AI1-C1	113,40(12)	AI1-N1-C3	98,18(16)
AI1–C2	1,960(3)	N1'-AI1-C1	114,45(11)	Al1'-N1-C3	98,20(14)

Tab. 3.2.3.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 7.

		Ergebnisse	und Diskussion		
		N1–AI1–C2	119,02(11)	AI1-N1-C4	125,08(16)
N1–C3	1,502(3)	N1'-AI1-C2	118,52(10)	AI1'-N1-C4	125,13(17)
N1-C4	1,498(3)	C1–AI1–C2	111,38(13)	C3-N1-C4	113,37(19)
C3–C3'	1,553(5)			N1-C3-C3	107,10(12)

Intramolekulare "nichtbindende" Abstände:

Symmetriecodierung: 1 - y y 1 5-z					
AI1—AI1'	2.8151(15)	N1—N1'	2,436(4)		
	"				

Symmetriecodierung: '1-x, y, 1,5-z

Tab. 3.2.3.2 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 9.

AI1-N1	1,9838(16)	N1-AI1-N2	81,87(6)	AI1-N1-AI2	90,55(7)
AI1–N2	1,9918(16)	N1-AI1-C1	114,12(9)	AI1N1C5	102,78(12)
AI1–C1	1,974(2)	N1-AI1-C2	118,13(9)	AI1N1C12	122,87(13)
AI1–C2	1,966(2)	N2-AI1-C1	114,10(8)	Al2-N1-C5	107,27(12)
		N2-AI1-C2	118,44(9)	Al2-N1-C12	120,19(12)
Al2-N1	1,9839(16)	C1–AI1–C2	108,42(11)	C5-N1-C12	110,40(15)
Al2-N2	1,9898(16)				
Al2–C3	1,969(2)	N1-AI2-N2	81,92(6)	AI1-N2-AI2	90,15(6)
Al2–C4	1,969(2)	N1-AI2-C3	117,36(9)	AI1N2C7	103,26(11)
		N1-AI2-C4	115,37(9)	AI1N2C8	123,17(12)
N1-C5	1,512(2)	N2-AI2-C3	118,72(9)	AI2-N2-C7	107,53(12)
N1-C12	1,518(2)	N2-AI2-C4	114,21(8)	AI2-N2-C8	120,21(12)
N2-C7	1,510(2)	C3-Al2-C4	107,77(10)	C7–N2–C8	109,88(14)
N2-C8	1,518(2)				
				N1-C5-C6	114,89(17)
C5–C6	1,509(3)			C5–C6–C7	120,74(18)
C6–C7	1,503(3)			N2-C7-C6	114,54(16)

Intramolekulare "nichtbindende" Abstände:

ヿ゚

AI1-AI2	2,8192(8)	N1N2	2,605(2)	

Tab. 3.2.3.3 Ausgewählte Al-N-, Al-Al- und N-N-Abstände literaturbekannter Verbindungen.

Verbindung	AI–N-Abstände [Å]	AI–AI-Abstände [Å]	N–N-Abstände [Å]	Literatur
	1,971(2), 2,025(2)	2,8261(16)	2,824(2)	[100]

Im Unterschied zum Edukt, dem N,N'-Di-tert-butylethylendiamin, welches im Kristall gewinkelt vorliegt^[105], besteht der molekulare Baustein im Festkörper von 8 aus einer gestreckten "Zick-Zack-Kette". Dies macht sich in den mit 131,0(3) und 131,1(3) ° recht großen N1-C3-C4- und C3–C4–C3"-Winkeln Vermutlich ist der bemerkbar. sterische Anspruch der Trimethylaluminiummoleküle für die Aufweitung verantwortlich. Ansonsten weist 8 im Festkörper keine Besonderheiten auf. Sowohl die Aluminiumatome als auch die Stickstoffatome sind wie erwartet verzerrt tetraedrisch umgeben. Die N-Al-Bindungslänge liegt mit 2,065(3) Å in dem Bereich der längeren literaturbekannter Verbindungen.^[101, 106-110] Zudem decken sich die Abstände zwischen den Stickstoff- bzw. Aluminium- und den Kohlenstoffatomen mit denen vergleichbarer Verbindungen. ^[101, 106-110] In den Tabellen 3.2.3.4, 3.2.3.5 und 3.2.3.6 sind sowohl ausgewählte Abstände und Winkel von 8 als auch die vergleichbarer, literaturbekannter Verbindungen aufgeführt. Zwischen den einzelnen molekularen Bausteinen sind nur van-der-Waals-Kräfte wirksam.

Abb. 3.2.3.2 Molekularer Baustein im Festkörper von 8 (Symmetriecodierung: '*x*, -*y*, *z*; '' -*x*, *y*, -*z*; ''' -*x*, -*y*, -*z*). Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

AI1-N1	2,065(3)	N1-AI1-C1	103,07(16)	N1-C3-C4	131,0(3)
AI1–C1	1,966(5)	N1-AI1-C2	106,87(11)	C3–C4–C3"	131,1(3)
AI1–C2	1,965(3)	C1–AI1–C2	111,15(13)		
		C2-AI1-C2'	116,6(2)		
N1-C3	1,391(4)				
N1-C5	1,523(4)	AI1N1C3	115,2(3)		
N1-H1	0,8999	AI1-N1-C5-	122,28(19)		
		C3-N1-C5	117,1(3)		
C3–C4	1,369(4)				

Tab. 3.2.3.4 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 8.

Symmetriecodierung: ' x, -y, z; " -x, y, -z

Tab. 3.2.3.5 Ausgewählte Atomabstände [Å] und Winkel [°] von N,N'-Di-tert-butylethylendiamin^[105].

N–CH ₂	1,4640(13)	CH_2 – CH_2	1,5234(14)	N–CH ₂ –CH ₂	111,76(9)
N-C(CH ₃) ₃	1,4788(13)			CH_2 – CH_2 – CH_2	114,54(9)

Fab. 3.2.3.6 Ausgewählte Al-N-	Al-C- und N-C-Abstände literaturbekannter	Verbindungen
--------------------------------	---	--------------

Verbindung	AI–N-Abstände [Å]	AI–C-Abstände [Å]	N–C-Abstände [Å]	Literatur
H AIMe ₃	2,067(4)	1,953(3), 1,978(3)	1,459(9)	[101]
Me ₃ AIN	1,977(2)	1,975(2), 1,981(2), 1,976(2)	1,490(3), 1,495(2)	[106]

3.3. Darstellung und Untersuchungen von 1,4-Di-*tert*-butyl-5-chlor-1,4,5-diazaborolidin (10) und 1,5-Di-*tert*-butyl-6-chlor-1,5,6-diazaborinan (11)

3.3.1. Umsetzung von N,N'-Di-tert-butylethylendiamin mit Bortrichlorid zu 10

Die gezielte Synthese von 1,4-Di-tert-butyl-5-chlor-1,4,5-diazaborolidin (10) erfolgt auf zwei Wegen erfolgen. Hierbei sei angemerkt, dass es sich bei 10 um eine literaturbekannte Verbindung^[48, 52] handelt, welche jedoch in dieser Arbeit näher charakterisiert und untersucht werden soll. In Abbildung 3.3.1.1 sind beide Methoden zur Synthese von 10 dargestellt. Diese unterscheiden sich in ihren Ausbeuten stark voneinander. Bei Methode A wird Triethylamin als Fänger des Chlorwasserstoffs eingesetzt, welcher bei der Reaktion des Diamins mit Bortrichlorid freigesetzt wird. Allerdings wird ein vollständiger Umsatz erst bei höheren Temperaturen beobachtet. Möglicherweise ist dieser Schritt für den Ausbeuteverlust verantwortlich. Aus diesem Grund wird bei Methode B n-Butyllithium als Metallierungsreagenz eingesetzt. Die anschließende Reaktion mit Bortrichlorid zu 10 erfolgt in der Kälte. Jedoch wird bei der Zugabe von n-Butyllithium zum Diamin eine intensive Gelbfärbung des Reaktionsgemisches beobachtet. Dieser Schritt erklärt den hohen Ausbeuteverlust für Methode B. Das erhaltene Pulver wird zur Reinigung sublimiert. 10 wird anschließend als weißer, kristalliner Feststoff erhalten. Dieser ist nicht gut in n-Pentan und n-Hexan löslich. Bei der Vorbereitung zur Einkristallstrukturanalyse zeigte sich, dass die erhaltenen Kristalle an der Luft stabiler als 7, 8 und 9 sind. Allerdings konnte für 10 eine langsame Zersetzung beobachtet werden.

Schema 3.3.1.1 Darstellung von 1,4-Di-tert-butyl-5-chlor-1,4,5-diazaborolidin (10).

Das ¹H-NMR-Spektrum (Abb. 3.3.1.1) liefert die beiden erwarteten Singuletts mit einem Integralverhältnis von 4:18 (**a**:**b**). Durch eine Spiegelung oder eine Drehung um 180 ° lassen sich die beiden Methylen-Gruppen (**a**) und die beiden ^{tert}Butyl-Gruppen (**b**) jeweils ineinander überführen. So liefern diese bei 3,18 und 1,27 ppm die beiden Singuletts. Im ¹³C{¹H}-NMR-Spektrum werden neben den beiden Singuletts für die Methylenkohlenstoffatome (44,4 ppm) und für die endständigen Kohlenstoffatome der ^{tert}Butyl-Gruppen (30,0 ppm) zusätzlich ein Singulett für die tertiären Kohlenstoffatome der ^{tert}Butyl-Gruppen (51,7 ppm) beobachtet. Für das Boratom wird ein Signal im ¹¹B{¹H}-NMR-Experiment aufgenommen. Dieses erscheint als breites Singulett (T_{1/2} = 92 Hz) bei 27,0 ppm. Ähnlich wie bei den ²⁷Al-NMR-Messungen wird für die Bor-Anteile aus dem NMR-Röhrchen und aus dem Probenkopf ein sehr breites Signal zwischen -30 und 50 ppm detektiert.

Abb. 3.3.1.1 ¹H-NMR-Spektrum von 10 in CDCI₃. * Restprotonensignal von CDCI₃.

Neben der NMR-Spektroskopie wurde **10** mittels der EI-Massenspektrometrie charakterisiert. Das erwartete Isotopenmuster des Molekülions ist deutlich zu erkennen. So werden für das Molekülion vier Peaks bei 218, 217, 216 und 215 m/z beobachtet. Der Basispeak bei 201 m/z stammt vom Molekülion mit den ¹¹B- und ³⁵CI-Isotopen nach der Abspaltung einer CH₃-Gruppe. Die IR- und Raman-Spektroskopie liefern Gewissheit über die Chlorwasserstoff-Abspaltung, da für **10** keine NH-Streckschwingungen beobachtet werden. Abschließend belegt die Elementaranalyse die erfolgreiche Synthese von **10**. Die Abweichungen der experimentell bestimmten prozentualen Anteile an Wasserstoff, Kohlenstoff und Stickstoff von den theoretischen Werten liegen im Bereich der Messgenauigkeit des Gerätes. Die experimentell bestimmten Stickstoff- und Kohlenstoffwerte sind mit 0,08 und 0,14 Prozentpunkten leicht zu hoch, wohingegen der experimentell bestimmte Wasserstoffwert um 0,41 Prozentpunkte zu niedrig ist.

Durch Sublimation von **10** können für ein Röntgenbeugungsexperiment geeignete Kristalle erhalten werden. **10** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit den Gitterparametern a = 7,2341(4) Å, b = 23,2650(8) Å, c = 7,9013(11) Å und $\beta = 101,874(4)$ °. Die Abbildung 3.3.1.2 zeigt die gewählte asymmetrische Einheit von **10**.

Abb. 3.3.1.2 Gewählte asymmetrische Einheit von 10. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Im Festkörper liegt 10 als symmetrieloses Molekül vor. Das Zentralelement bildet ein fünfgliedriger Ring, der durch die Elemente Bor, Kohlenstoff und Stickstoff aufgebaut wird. Das Boratom ist trigonal planar (Innenwinkelsumme: 360,0 °) von den beiden Stickstoffatomen und dem Chloratom umgeben. Die Abstände von 1,414(3) (B1-N1), 1,400(3) (B1-N2) und 1,789(3) Å (B1-Cl1) zwischen dem Boratom und seinen Nachbarn decken sich mit denen literaturbekannter Verbindungen (Tab. 3.3.1.2).^[111-116] Bei der Betrachtung der beiden Stickstoffatome fällt auf, dass diese nur annähernd trigonal planar bzw. verzerrt Ψ -tetraedrisch umgeben sind. Dies macht sich in der Innenwinkelsumme der N1- und N2-Atome von 356,3 und 354,8° bemerkbar. Im Gegensatz dazu sind die Stickstoffatome der literaturbekannten Verbindungen (Tab. 3.3.1.2), deren Ringkohlenstoffatome sp²-hybridisiert sind, "perfekt" trigonal planar koordiniert.^[112-116] Dies legt den Rückschluss nahe, dass bei diesen eine Wechselwirkung zwischen den einsamen Elektronenpaaren der Stickstoffatome und den p-Orbitalen der Kohlenstoffatome des fünfgliedrigen Ringes stattfindet. Aus diesem Grund ist die "perfekte" trigonal planare Anordnung trotz der dadurch hervorgerufenen Ringspannung in diesen Fällen energetisch günstiger. Da bei **10** sp³-hybridisierte Kohlenstoffatome vorliegen, ist eine solche Wechselwirkung nicht möglich. Folglich würde eine planare Koordination der Stickstoffatome zu keinem Energiegewinn, sondern zu einem Energieverlust durch höhere Ringspannung führen. Aus diesem Grund wird eine deutliche Abweichung von der trigonal planaren bzw. eine verzerrt Ψ -tetraedrischen Anordnung beobachtet. Hervorgerufen durch den sterischen Anspruch des Chloratoms sind die Winkel B1-N1-C3 und B1-N2-C7 mit 131,0(2) und mit 130,54(19)° deutlich größer als die Winkel zwischen den tertiären Kohlenstoffatomen und den Methylenkohlenstoffatomen (C1-N1-C3: 119,17(19) und C2-N2-C7 118,06(19) °). Weitere Atomabstände und Winkel sind in der Tabelle 3.3.1.1 aufgeführt. Im Festkörper wirken zwischen den Molekülen nur van-der-Waals-Kräfte.

	100.0.0.1117					
B1–CI1	1,789(3)	CI1-B1-N1	123,64(19)	B1-N2-C2	106,19(18)	
B1-N1	1,414(3)	CI1-B1-N2	123,87(19)	B1-N2-C7	130,54(19)	
B1–N2	1,400(3)	N1-B1-N2	112,5(2)	C2-N2-C7	118,06(19)	
N1-C1	1,458(3)	B1-N1-C1	106,14(18)	N1-C1-C2	104,98(18)	
N1-C3	1,487(3)	B1-N1-C3	131,0(2)	N2-C2-C1	104,78(19)	
		C1-N1-C3	119,17(19)			
N2-C2	1,466(3)					
N2-C7	1,486(3)					
Intramolekular	Intramolekulare "nichtbindende" Abstände:					

Tab. 3.3.1.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 10.

N1-N2 2,340(3)

Tab. 3.3.1.2 Ausgewählte B-CI- un	d B-N-Abstände literaturbekannter Verbindungen.
-----------------------------------	---

Verbindung	B–CI-Abstände [Å]	B–N-Abstände [Å]	Literatur
	1,743(3)	1,403(3), 1,416	[111]
Dipp N B-Cl Dipp	1,742(3)	1,433(4), 1,429(4)	[112]
	1,7650(15)	1,4193(19), 1,4202(19)	[113]
	1,768(2)	1,419(1)	[114]
Dipp N B Dipp	1,7739(14)	1,4096(15), 1,4105(16)	[115]
	1,757(3)	1,420(2)	[116]
CI ↓ Dipp~N ^B N ^{Dipp}	1,7565(14)	1,4159(17), 1,4199(17)	[116]

3.3.2. Umsetzung von N,N'-Di-tert-butylpropylendiamin mit Bortrichlorid zu 11

Für die Synthese von **10** hat sich die Methode A, der Einsatz von Triethylamin als Chlorwasserstoff-Fänger, bewährt. Aus diesem Grund wird 1,5-Di-*tert*-butyl-6-chlor-1,5,6-diazaborinan (**11**) auf die gleiche Weise hergestellt. Die Reinigung von **10** erfolgte durch Sublimation des erhaltenen Pulvers. Dies stellte sich für **11** als problematisch heraus, denn selbst durch mehrmaliges Sublimieren gelang es nicht, **11** zu isolieren. Die NMR-Spektren zeigen das Vorhandensein von zwei Spezies. Neben **11** liegt als zweite Spezies vermutlich das Addukt Bortrichlorid—Triethylamin (1/1) vor. Zudem ist es nicht gelungen, Kristalle von **11** zu erhalten, welche für Röntgenbeugungsexperimente von ausreichend guter Qualität waren.

Schema 3.3.2.1 Darstellung von 1,5-Di-tert-butyl-6-chlor-1,5,6-diazaborinan (11).

Abbildung 3.3.2.1 zeigt das ¹H-NMR-Spektrum von **11** und dem Nebenprodukt. Übersichtshalber sind die beiden Verbindungen in zwei unterschiedlichen Farben dargestellt und wurden unabhängig voneinander integriert. Für **11** (blau) wird der erwartete relative Integralsatz von 4:2:18 (**a**:**b**:**c**) gefunden. Die Signale der sechs Methylenprotonen spalten aufgrund ihrer Kopplung untereinander bei der gegebenen C_{2v}-Symmetrie des Moleküls in ein Triplett (**a**) und in ein Quintett (**b**) (³*J*(H,H) = 5,8 Hz) bei 2,99 und 1,67 ppm auf. Die ^{tert}Butyl-Gruppen liefern erwartungsgemäß ein Singulett bei 1,35 ppm.

Für die zweite Spezies mit dem relativen Integralsatz 6:12 (**d**:**e**) wird im ¹H-NMR-Spektrum ein Multiplett (**d**) zwischen 3,44 – 3,66 ppm und ein Triplett (**e**) bei 1,40 ppm (³*J*(H,H) = 7,4 Hz) beobachtet. Im ¹³C{¹H}-NMR-Experiment können zwei Singuletts bei 52,5 und bei 10,5 ppm dieser Spezies zugeordnet werden. Diese könnten von nicht umgesetzten Triethylamin stammen. Doch werden für Triethylamin in deuteriertem Chloroform sowohl im ¹H-NMR-Experiment als auch im ¹³C{¹H}-NMR-Experiment andere Verschiebungen angegeben (¹H-NMR: δ = 2,53, 1,03 ppm; ¹³C{¹H}-NMR: δ = 47,18, 12,51 ppm).^[117] Hinzu kommt, dass im ¹¹B-NMR-Spektrum neben dem Produktsignal ein weiteres scharfes Signal bei 9,5 ppm ($T_{1/2}$ = 11,4 Hz) detektiert wird. Aufgrund dieser Beobachtungen handelt es sich wahrscheinlich bei der unbekannten Spezies um das Addukt Bortrichlorid—Triethylamin (1/1).

Abb. 3.3.2.1 ¹H-NMR-Spektrum von **11** (blau) und dem Nebenprodukt Bortrichlorid—Triethylamin Addukt (1/1) der Bildungsreaktion gemäß Schema 3.3.2.1 (rot) in CDCl₃.

11 liefert im ¹³C{¹H}-NMR-Spektrum den erwarteten Signalsatz. Aufgrund der Molekülsymmetrie werden vier Singuletts beobachtet. Die Verschiebungen sind in Abbildung 3.3.2.2 aufgeführt. Im ¹¹B{¹H}-NMR-Experiment werden neben dem scharfen Signal bei 9,5 ppm ein breites Singulett ($T_{1/2}$ = 123 Hz) von **11** bei 26,1 ppm und ein breites Signal zwischen -40 und 60 ppm, welches von Boranteilen aus dem Probenkopf und dem NMR-Röhrchen stammt, aufgenommen. Da die Reinigung von 11 nicht gelungen ist, wurde zur weiteren Charakterisierung lediglich die El-Massenspektrometrie betrieben. Wie bei 10 ist das Boratome Isotopenmuster der Chlorund deutlich zu erkennen. Anstelle des Molekülionenpeaks wird als m/z-Peak größter Masse das Signal des Molekülions nach Abspaltung einer Methyl-Gruppe bei beobachtet.

Abb. 3.3.2.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 11 in CDCl₃ [ppm].

3.4. Darstellungen und Untersuchungen von 1,4-Di-*tert*-butyl-5,5-dichlor-4-aza-1azonia-5-alanuidacyclopentan (12) und 1,5-Di-*tert*-butyl-6,6-dichlor-5-aza-1azonia-6-alanuidacyclohexan (13)

3.4.1. Umsetzung von *N*,*N*[′]-Di-*tert*-butylethylendiamin mit Aluminiumtrichlorid zu 12

Die Umsetzung von N,N'-Di-tert-butylethylendiamin mit Aluminiumtrichlorid gestaltete sich schwieriger als ursprünglich angenommen. Zunächst wurde das Diamin mit Aluminiumtrichlorid zur Reaktion gebracht. Als Chlorwasserstoff-Fänger wurde wie gewohnt Triethylamin dem Reaktionsgemisch beigefügt. Anhand des ¹H-NMR-Spektrums konnte das Vorhandensein von zwei verschiedenen Verbindungen festgestellt werden. Eine der beiden Verbindungen konnte als 12 identifiziert werden. Die Identifizierung der anderen Verbindung gestaltet sich als schwierig. Da für die ^{tert}Butyl-Gruppen lediglich ein Signal bei 1,18 ppm zu beobachten ist, kann von einer symmetrischen Verbindung ausgegangen werden. Möglicherweise handelt es sich um das Addukt 1,4-Di-tert-butyl-5-chlor-1,4-diaza-5-aluminapentan-Diethylether (1/1) oder um das Addukt 1,4-Di-*tert*-butyl-5-chlor-1,4-diaza-5-aluminapentan—Triethylamin (1/1). Allerdings konnten keine weiteren Signale der unbekannten Verbindung zugeordnet werden. Dies kann zwei Ursachen haben. Zum einen können die Signale unter den Signalen von 12 liegen und werden somit nicht erkannt oder sie sind von geringer Intensität und können nicht vom Untergrund unterschieden werden. Beide Verbindungen zeigen in *n*-Pentan, *n*-Hexan, Chloroform und Toluol ähnliche Löslichkeiten auf, sodass eine Trennung durch Extraktion nicht erfolgreich war. Auch durch Sublimation gelang es nicht, das Gemisch aufzutrennen. Es wurden Kristalle von 12 erhalten, allerdings schied sich die unbekannte Verbindung in Form von weißem Pulver auf den Kristallen ab. In der GloveBox wurde versucht, lediglich die erhaltenen Kristalle ohne das Pulver in ein NMR-Röhrchen zu überführen. Das ¹H-NMR-Spektrum (Abb. 3.4.1.1) zeigt, dass dies nicht gelungen ist. Der Versuch, das Diamin durch das Metallierungsreagenz n-Butyllithium zu lithiieren, schlug ebenfalls fehl. Es konnte bei der Zugabe von *n*-Butyllithium zum Diamin eine intensive gelbe Färbung beobachtet werden und, nachdem Aluminiumtrichlorid hinzugefügt wurde, schied sich ein brauner Feststoff ab, dessen Identifikation nicht gelungen ist.

Schema 3.4.1.1 Darstellung von 1,4-Di-tert-butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentan (12).

Bei der gegebenen C₁-Symmertrie sind die Protonen der beiden ^{tert}Butyl-Gruppen und die vier Methylenprotonen chemisch und magnetisch nicht äquivalent (Abb. 3.4.1.1). Somit geben die ^{tert}Butyl-Gruppen zwei Singuletts (**c** und **d**) bei 1,45 und 1,19 ppm und die Methylenprotonen zwei Multipletts (**a**) zwischen 3,19 – 3,15 und 3,04 – 3,00 ppm. Zudem wird ein Singulett für das Amin-Proton bei 2,80 ppm detektiert. Auf eine Zuordnung der Verschiebungen im ¹³C{¹H}-NMR-Experiment wurde verzichtet. Im ²⁷Al-NMR-Spektrum wurde ein breites Signal (T_{1/2} = 100 Hz) bei 104 ppm beobachtet. Die Verunreinigung durch die unbekannte Verbindung verhinderte eine weitere Charakterisierung mittels IR- und Raman-Spektroskopie, El-Massenspektrometrie und der Elementaranalyse.

3.4.2. Umsetzung von N,N'-Di-tert-butylpropylendiamin mit Aluminiumtrichlorid zu 13

Bevor das *N,N'*-Di-*tert*-butylpropylendiamin mit Aluminiumtrichlorid zur Reaktion gebracht wurde, wurde das Diamin mit dem Metallierungsreagenz *n*-Butyllithium lithiiert. Das ¹H-NMR-Experiment zeigte wie im vorigen Kapitel das Vorhandensein von zwei Verbindungen (Abb. 3.4.2.1). Die Zuordnung der Signalsätze erwies sich auch bei dieser Reaktion als

problematisch. Der Hauptsignalsatz konnte **13** zugeordnet werden. Die Identifizierung der zweiten Verbindung ist nicht gelungen. Wie bei der Umsetzung von *N,N'*-Di-*tert*-butylethylendiamin mit Aluminiumtrichlorid weist die unbekannte Verbindung nur ein Singulett für die ^{tert}Butyl-Gruppen im ¹H-NMR-Spektrum auf. Es kann wieder von einer symmetrischen Verbindung ausgegangen werden. Auch hier liegt die Vermutung nahe, dass es sich um das Diethyletheraddukte des 1,5-Di-*tert*-butyl-6-chlor-1,5-diaza-6-aluminapentans handelt. Es wurden ohne Erfolg die gleichen Trennungsversuche wie in Kapitel 3.4.1. unternommen. Durch Sublimation wurden lediglich Kristalle von **13** mit Pulverrückständen der unbekannten Verbindung erhalten.

Schema 3.4.2.1 Darstellung von 1,5-Di-tert-butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan (13).

Das ¹H-NMR-Spektrum vom kristallinen **13** mit Pulverrückständen der unbekannten Spezies ist in Abbildung 3.4.2.1 dargestellt. Bei der gegebenen C₁-Symmetrie erzeugen die Protonen der beiden ^{tert}Butyl-Gruppen von **13** zwei Singuletts (**b** und **c**) bei 1,50 und 1,25 ppm. Da von den sechs Methylenprotonen keine chemisch und magnetisch äquivalent sind, werden für diese im Bereich von 3,27 bis 1,79 ppm Multipletts (**a**) erwartet. Jedoch werden dort auch Signale der unbekannten Verbindungen beobachtet, sodass eine genaue Zuordnung nicht möglich war. Ähnlich verhält es sich mit den beobachteten Signalen im ¹³C{¹H}-NMR-Spektrum. Auch in diesem wurde keine eindeutige Zuordnung der Signale vorgenommen. Im ²⁷Al-NMR-Experimt wird lediglich ein breites Signal (T_{1/2} = 50 Hz) bei 104 ppm aufgenommen. Die weitere Charakterisierung mittels IR- und Raman-Spektroskopie, El-Massenspektrometrie und Elementaranalyse war wegen der unbekannten Verbindung nicht möglich.

Abb. 3.4.2.1 ¹H-NMR-Spektrum von 13 in CDCl₃. * Verunreinigung unbekannter Herkunft.

3.4.3. Festkörperuntersuchungen von 1,4-Di-*tert*-butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentan (12) und 1,5-Di-*tert*-butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan (13)

Kristalle von **12** und **13**, die für ein Röntgenbeugungsexperiment zur Einkristallstrukturbestimmung geeignet sind, können durch Sublimation erhalten werden. Beide Verbindungen kristallisieren in dem monoklinen Raumgruppentyp $P2_1/n$ mit folgenden Gitterparametern a = 7,228(2) Å, b = 11,191(2) Å, c = 19,245(5) Å und $\beta = 95,80(2)$ ° (**12**) und a = 7,6580(3) Å, b = 10,6132(3) Å, c = 19,6376(8) Å und $\beta = 101,056(3)$ ° (**13**).

Der Aufbau von **12**, **13** und der literaturbekannten Verbindung 1,3-Di-*tert*-butyl-2,2-dimethyl-4,4dichlor-3-aza-1-azonia-2-sila-4-alanuidacyclobutan (I)^[12, 80] ist im Festkörper sehr ähnlich. Aus diesem Grund wird eine vergleichende Betrachtung bevorzugt. In der Abbildung 3.4.3.1 sind die gewählten asymmetrischen Einheiten dargestellt. Das jeweilige Zentralelement bilden vier-, fünf- und sechsgliedrige Ringe. Die Ringspannung nimmt mit zunehmender Ringgröße ab. Die Hauptlast wird von den verzerrt tetraedrisch umgebenen Aluminiumatomen getragen, was sich in der Varianz des N–AI–N-Winkels bemerkbar macht. Für ein entspanntes System beträgt dieser idealerweise 109 °. Für die drei Verbindungen werden Winkel von 82,6(1), 91,51(14) und 106,55(8) ° beobachtet. Dieser Effekt lässt sich auf die Einführung der Alkylenketten als Rückgrat zurückführen, denn die Einführung der Alkylenketten bedingt, das der Abstand zwischen den beiden Stickstoffatomen im Vergleich zu (I) deutlich größer ist. So beträgt dieser für (I), **12** und **13** 2,527(3), 2,688(4) und 3,027(2) Å. Zum anderen findet eine Verschiebung der Aluminiumatome in Richtung der Ringmitte statt. Der Abstand der Aluminiumatome zu der gedachten N–N-Verbindungslinie wird von ca. 1,41 auf 1,30 bzw. 1,12 Å verkürzt. Diese beiden Effekte haben zur Folge, dass sich, wie oben erwähnt, der N–Al–N-Winkel vergrößert und der Abstand zwischen den Aluminiumatomen und den N2-Stickstoffatomen kleiner wird, ohne dass die Effekte Einfluss auf die Al1–N1-Bindungslänge nehmen (Al1–N2: 1,830(2), 1,779(4), 1,7876(17); Al1–N1: 1,994(2), 1,968(3), 1,9858(17) Å). Neben den sterischen Effekten, welche für die kürzeren Al1–N1-Abstände verantwortlich sind, spielt die Basizität der Stickstoffatome auch eine Rolle. Durch die Silyl-Gruppe wird die Basizität der Stickstoffatome von (I) vermindert, was eine längere Al1–N1-Bindung zur Folge hat. Da weder **12** noch **13** eine Silyl-Gruppe besitzen, werden kürzere Abstände erwartet. Weitere ausgewählte Bindungslängen und Winkel von **12** und **13** sind den Tabellen 3.4.3.1 und 3.4.3.2 zu entnehmen.

Abb. 3.4.3.1 Gewählte asymmetrische Einheiten von (I) (oben), 12 (links) und 13 (rechts). Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

		-			
AI1–CI1	2,1604(17)	CI1-AI1-CI2	106,53(6)	AI1-N2-C2	111,6(3)
AI1–CI2	2,1370(15)	CI1-AI1-N1	104,38(12)	AI1N2C7	129,7(3)
AI1-N1	1,968(3)	CI1-AI1-N2	118,16(15)	C2-N2-C7	117,4(4)
AI1–N2	1,779(4)	CI2-AI1-N1	115,14(11)		
		CI2-AI1-N2	119,64(14)	N1-C1-C2	108,8(4)
N1-C1	1,502(5)	N1-AI1-N2	91,51(14)	N2-C2-C1	108,4(3)
N1-C3	1,527(5)				
N1—H1	0,80(4)	AI1-N1-C1	102,1(2)		
		AI1-N1-C3	124,8(2)		
N2-C2	1,454(5)	AI1-N1-H1	100(3)		
N2C7	1,474(5)	C1-N1-C3	116,3(3)		
		C1-N1-H1	99(3)		
C1–C2	1,513(6)	C3–N1–H1	111(3)		
Intermolekulare	"(nicht)binder	nde" Abstände und Winkel:	Intramoleku	ulare "nichtbindende" Abstär	nde :
H1…CI1'	2,63(5)		N1N2	2,688(4)	
N1–H1…Cl1'	3,422(4)				
N1–H1–CI1'	171(4)				
		Symmetriecodier	ung: ' 1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>		
	Tab. 3.4.3	.2 Ausgewählte Atomabständ	le [Å] und Winkel ['] der Verbindung 13 .	
AI1–CI1	2,1706(7)	CI1-AI1-CI2	105,74(3)	AI1-N2-C1	122,30(14)
AI1–CI2	2,1449(8)	CI1-AI1-N1	99,75(6)	AI1-N2-C8	124,66(14)
AI1-N1	1,9858(17)	CI1-AI1-N2	115,32(7)	C1-N2-C8	113,00(16)
AI1–N2	1,7876(17)	CI2-AI1-N1	111,50(6)		
		CI2-AI1-N2	116,74(7)	N2-C1-C2	113,45(17)
N1-C3	1,502(3)	N1-AI1-N2	106,55(8)	C1–C2–C3	114,17(18)
N1-C4	1,537(3)			N1-C3-C2	111,66(17)
N1—H1	0,84(2)	AI1-N1-C3	110,10(12)		
		AI1-N1-C4	122,95(13)		
N2-C1	1,468(3)	AI1N1H1	97,5(16)		
N2-C8	1,482(3)	C3-N1-C4	113,05(16)		
		C3-N1-H1	105,0(15)		
C1–C2	1,504(3)	C4-N1-H1	105,3(16)		
C2–C3	1,513(3)				
Intermolekulare	"(nicht)binder	nde" Abstände und Winkel:	Intramoleku	ulare "nichtbindende" Abstär	nde :

Tab. 3.4.3.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 12.

Symmetriecodierung: '1-x, 1-y, 1-z

N1-N2 3,027(2)

In allen drei Verbindungen ist das λ^3 -Stickstoffatom trigonal planar (Innenwinkelsumme: 359,5, 358,7 und 360,0 °) umgeben. Dieses hat zur Folge, dass die Al– λ^3 N–Si- bzw. Al– λ^3 N–C-

H1…CI1'

N1-H1···Cl1'

N1-H1-Cl1'

2,63(2)

3,426(2)

160(2)

Winkel idealerweise 120 ° betragen sollten. Wie für 1 (Kap. 3.1.1.) werden für (I) und 12 deutlich kleinere Winkel beobachtet (98,6(1) und 111,6(3)°). Somit wird in den Ringsystemen Ringspannung aufgebaut, welche durch eine sp³-Hybridisierung umgangen werden könnte. Folglich muss die sp²-Hybridisierung einen energetischen Beitrag liefern, mit dem sich die Theorie der Ringspannung erklären lässt. Aufgrund des längeren Rückgrates in 13 wird durch die trigonal planare Umgebung keine Ringspannung aufgebaut (122,30(14)°). Es ist naheliegend, dass wie bei **1** durch eine p_{π} - p_{π} -Überlappung der p-Orbitale der Stickstoffatome mit den p-Orbitalen der Siliciumatome und der Aluminiumatome Bindungsenergie gewonnen wird. Es stellt sich hier die Frage, ob für 12 und 13 zudem eine Überlappung der p-Orbitale der Stickstoffatome mit den Orbitalen Methylenkohlenstoffatomen zustande kommt. Um diese Frage zu klären, werden die Abstände der Stickstoffatome zu den Nachbaratomen betrachtet. Für (I) werden deutlich kürzere Abstände zwischen dem λ^3 -Stickstoffatom und den Aluminiumund Siliciumatomen als zwischen dem λ^4 -Stickstoffatom und seinen Nachbarn beobachtet. Die Abstände von Al1 zu λ^4 N bzw. λ^3 N unterscheiden sich um ca. 0,16 Å (1,994(2), 1,830(2) Å) und die Siliciumatome weisen zu den benachbarten Stickstoffatomen einen Bindungslängenunterschied von ca. 0,15 Å (1,861(2), 1,712(2) Å) auf. Folglich ist es naheliegend, dass eine Überlappung über alle drei Atome Al1, N2 und Si1 stattfindet. Anders sieht es für die beiden Verbindungen 12 und 13 aus. Wie oben beschrieben ist zwar der Bindungslängenunterschied mit ca. 0,18 Å von den Aluminiumatomen zu den beiden Stickstoffatomen noch ausgeprägter, wohingegen sich aber die Abstände der Stickstoffatome zu den Methylenkohlenstoffatomen mit ca. 0,05 bzw. 0,03 Å kaum unterscheiden (12: 1,502(5), 1,454(5) Å; 13: 1,502(3), 1,468(3) Å). Aus diesem Grund ist anzunehmen, dass eine "einseitige" Überlappung der Orbitale der λ^3 -Stickstoffatome mit den Orbitalen der Aluminiumatome stattfindet, aber keine mit den Orbitalen der Methylenkohlenstoffatome. Da die Ringspannung, die in den Molekülen von 12 und 13 durch die sp²-Hybridisierung erzeugt wird, im Vergleich zu (I) kleiner ist, scheint der Energiegewinn durch die "einseitige" Überlappung jedoch ausreichend zu sein.

Um die vermuteten Überlappungen mittels theoretischen Rechnungen zu untermauern, wurde eine DFT (Dichte-Funktional-Theorie)-Studie zu allen drei Verbindungen durchgeführt. Betrachtet werden nur HOMOs, welche in der Abbildung 3.4.3.2 wiedergegeben sind. Übersichtshalber werden die Molekülorbitale in vier verschiedenen Farben dargestellt. Der Teil des Molekülorbitals, welcher für die Überlappung verantwortlich ist, ist in den Farben Grün und Rot gehalten. Der Rest ist durch die Farben Gelb und Türkis kenntlich gemacht. Das HOMO der literaturbekannten Verbindung (I) bestätigt die Orbitalüberlappung der drei Atome Al1, N2 und Si1. Im Unterschied dazu, ist in den HOMOs von **12** und **13** lediglich die "einseitige" Überlappung zwischen den Orbitalen der λ^3 -Stickstoffatome und der Aluminiumatome auszumachen. Es findet keine Überlappung zwischen den Orbitalen der Stickstoffatome und der Methylenkohlenstoffatome statt. In allen drei Verbindungen weisen die angesprochenen Orbitalüberlappungen einen p_{π} - p_{π} -Charakter auf.

Abb. 3.4.3.2 HOMOs von (I), 12 und 13 (von links nach rechts). Übersichtshalber sind die Molekülorbitale in vier verschiedenen Farben dargestellt.

Alle drei λ^4 -Stickstoffatome weisen eine erhebliche Verzerrung der tetraedrischen Umgebung auf. Dem sterischen Anspruch der ^{tert}Butyl-Gruppen und der damit verbundenen Tendenz den Chloratomen und den Methylgruppen der SiMe₂- und der AlMe₂-Fragmente soweit wie möglich auszuweichen, sind die großen Winkel mit Beteiligung der tertiären Kohlenstoffatome geschuldet. Außerdem können als Ausdruck der beobachteten Dimerbildung (Abb. 3.4.3.3) durch Wasserstoffbrückenbindungen die kleinen Winkel mit Wasserstoffatombeteiligung angesehen werden. Hierzu passen die unterschiedlichen Abstände zwischen den Aluminiumund Chloratomen innerhalb einer Verbindung ((I): 2,168(1), 2,109(1) Å; 12: 2,1604(17), 2.1370(15) Å; 13: 2,1706(7), 2,1449(8) Å). Diese decken sich mit Abständen literaturbekannter Verbindungen^[118-121], welche in der Tabelle 3.4.3.3 aufgeführt sind. Zusätzlich sind dort die λ^4 -N–Al-Bindungslängen aufgelistet, welche ebenfalls eine gute Übereinstimmung liefern ((I): 1,994(2) Å; **12**: 1,968(3) Å; **13**: 1,9858(17) Å). Durch Ausbildung von zwei schwachen N1—H1…Cl1-Brückenbindungen (d(N—H): (I): 0,94(3), 12: 0,80(4), 13: 0,84(2) Å; d(H…Cl): (I): 2,739, 12: 2,63(5), 13: 2,63(2) Å) erfolgt die oben erwähnte Dimerbildung. Hierbei werden jeweils ein R- und ein S-Enantiomer zu einem Enantiomerenpaar verknüpft (Abb. 3.4.3.3). Die Bindungslängen decken sich mit den Werten literaturbekannter Verbindungen (Tab. 3.4.3.4).^{[118-} ^{121]} Zwischen den Enantiomerenpaaren wirken ausschließlich van-der-Waals-Wechselwirkungen.

Abb. 3.4.3.3 Zu Dimeren über N1–H1···Cl1-Brückenbindungen verknüpfte Enantiomerenpaare von **12** (links) und von **13** (rechts) (Symmetriecodierung: '1-*x*, 1-*y*, 1-*z*).

Verbindung	AI–CI-Abstände [Å]	λ ^₄ N—Al-Abstände [Å]	Literatur
	2,185(1)	2,010(2)	[118]
$\begin{array}{c} \text{SiMe}_3\\ \text{Me}_3\text{Si} & \begin{array}{c} \text{CI} \\ \text{AI}, \\ \text{Me}_3\text{Si} & \begin{array}{c} \text{SiMe}_3\\ \text{H}_2 \\ \text{SiMe}_3 \end{array} \end{array}$	2,199(1)	2,031(4)	[118]
	2,137(3)	1,987(7)	[118]
	2,1357(14)	1,924(3)	[119]
	2,2056(9)	2,0144(18)	[120]
	2,156(4), 2,169(5)	2,039(1)	[121]

Verbindung	N–H-Abstände [Å]	H…CI-Abstände [Å]	N⋯CI-Abstände [Å]	Lit.
	0,94(3)	2,739		[80]
	0,821(6), 0,832(7)	2,782(7)	3,584(8)	[118]
$\begin{array}{c} \text{SiMe}_3\\ \text{Me}_3\text{Si} & \text{CI} & \text{H}\\ \text{Me}_3\text{Si} & \text{AI}, & \text{Si}\\ \text{Me}_3\text{Si} & \text{SiMe}_3 \end{array}$	0,821(3), 0,786(5)			[118]
$ \begin{array}{c} $	0,821(6), 0,832(7)	2,782(7)	3,584(8)	[118]
H Si-NH NH-Si H CI	0,900(3)	2,650(4)	3,505(4)	[119]
	0,920(2), 0,920(2)	2,779(5)	3,662(2)	[120]
	0,855(2)	2,863	3,680(1)	[121]

Tab. 3.4.3.4 Ausgewählte N-H-	, H…Cl- und N…Cl-Abstände	literaturbekannter Verbindungen.

3.5. Darstellung und Untersuchungen von N,N'-Di-*tert*-butylethylendiamin—Bortrifluorid (1/1) (14) und N,N'-Di-*tert*-butylpropylendiamin—Bortrifluorid (1/2) (15)

3.5.1. Umsetzung von N,N'-Di-tert-butylethylendiamin mit Bortrifluorid zu 14

Die ersten Umsetzungen von *N,N'*-Di-*tert*-butylethylendiamin mit Bortrifluorid wurden in Anlehnung an die Umsetzung des Diamins mit der stärkeren Lewis-Säure Bortrichlorid durchgeführt (Methode B) (siehe Kap. 3.3.1. Methode A und Kap. 3.3.2.). Dabei wird zu dem Bortrifluoriddiethyletherat zuerst Triethylamin als HF-Fänger und anschließend das Diamin gegeben. Anstelle des erwarteten Diazaborolidins wurde lediglich das Addukt *N,N'*-Di-*tert*-butylethylendiamin—Bortrifluorid (1/1) (14) erhalten. Auch durch Erwärmen ist es zu keiner Fluorwasserstoffabspaltung gekommen. Die höchste Ausbeute betrug bei dieser Methode lediglich 55 %. Aus diesem Grund wurde das Bortrifluoriddiethyletherat direkt mit dem Diamin umgesetzt (Methode A), um auf diesem Weg 14 in höherer Ausbeute zu erhalten. Durch Sublimation konnte 14 in Form von stäbchenförmigen, farblosen Kristallen erhalten werden.

Schema 3.5.1.1 Darstellung von N,N'-Di-tert-butylethylendiamin-Bortrifluorid (1/1) (14).

Das ¹H-NMR-Spektrum von **14** (Abb. 3.5.1.1) weist den Signalsatz mit dem relativen Integralverhältnis 1:4:9:9:1 (**a**:**b**:**c**:**d**:**e**) auf. Die beiden Amin-Protonen (**a** und **e**) erscheinen als Singuletts bei 5,16 und 0,71 ppm. Die Verschiebung des Signals (**a**) zu höheren Anregungsfrequenzen kommt durch die Abschirmung des BF₃-Fragments zustande. Die vier Methylenprotonen sind chemisch und magnetisch inäquivalent und erzeugen ein Multiplett (**b**) zwischen 3,1 und 2,6 ppm. Hierunter liegt das Signal der Methylenprotonen des Triethylamins, welches als Verunreinigung in kleiner Menge in der Probe vorliegt. Dies erklärt das erhöhte relative Integral. Für die beiden ^{*tert*}Butyl-Gruppen werden bei 1,34 und 1,08 ppm zwei Singuletts (**c** und **d**) beobachtet.

Abb. 3.5.1.1 ¹H-NMR-Spektrum von 14 in CDCl₃.

Die Verschiebungen von **14** im ¹³C{¹H}-NMR-Experiment sind in Abb. 3.5.1.2 dargestellt. Aufgrund der Kopplung zu dem ¹¹B-Atom spalten die Kohlenstoffatome der einen Methylen-Gruppe und die endständigen Kohlenstoffatome einer ^{tert}Butyl-Gruppe in Quartetts $({}^{2}J({}^{13}C,{}^{11}B) = 2,7 \text{ Hz}; {}^{3}J({}^{13}C,{}^{11}B) = 2,7 \text{ Hz})$ auf. Weitere Quartetts werden in den ${}^{19}F$ -NMRund ${}^{11}B{}^{1}H$ -NMR-Spektren bei -144,4 ppm (${}^{1}J(F,{}^{11}B) = 19,1$ Hz) und bei 0,3 ppm (¹J(¹¹B,F) = 19,1 Hz) beobachtet. In den IR- und Raman-Spektren ist die Bande der NH-Streckschwingung bei 3330 cm⁻¹ zu sehen. Um die beobachteten Banden den Schwingungen zuzuordnen, wurden von 14 DFT (Dichte-Funktional-Theorie)-Rechnungen (siehe Kapitel 5.2.) durchgeführt. Die Zuordnungen sind in den Tabellen 8.1.5 und 8.1.6 (Anhang) aufgelistet. Die Elementaranalyse bestätigt die Bildung von 14. Der experimentell bestimmte Stickstoff-, Kohlenstoff- und Wasserstoffgehalt liegt mit 11,34, 49,69 und 9,99 % nur geringfügig unterhalb des theoretischen Gehaltes (11,67, 50,02 und 10,07 %). Bei dem größten Fragment, welches bei der El-Massenspektrometrie detektiert wird, handelt es sich lediglich um das Diamin. Allerdings wird eine Vielzahl von Fragmenten, die durch den Zerfall von 14 erhalten werden, beobachtet. Unter diesen befinden sich auch die beiden Fragmente $[^{10}BF_2]^+$ und $[^{11}BF_2]^+$, welche ebenfalls die erfolgreiche Synthese von 14 untermauern.

Abb. 3.5.1.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von 14 in CDCl₃ [ppm].

Die durch Sublimation erhaltenen stäbchenförmigen, farblosen Kristalle eignen sich für ein Röntgenbeugungsexperiment zur Einkristallstrukturbestimmung. **14** kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit den Gitterparametern a = 6,3751(2) Å, b = 19,5894(6) Å, c = 21,8358(8) Å und $\beta = 90,804(3)$ °. Abbildung 3.5.1.3 zeigt die gewählte asymmetrischen Einheit.

Die gewählte asymmetrische Einheit ist aus zwei symmetrielosen Enantiomeren von 14 aufgebaut. Die Stickstoffatome N1 (S-Form) und N3 (R-Form) sind als Chiralitätszentren verzerrt tetraedrisch umgeben. Bei ihnen sind die C1-N1-H1-, C3-N1-H1, C11-N3-H3-, C13–N3–H3-Winkel kleiner und die B1–N1–C3- und B2–N3–C13-Winkel größer als der ideale Tetraederwinkel. Die Ursache liegt in den sterischen Ansprüchen der BF₃- und ^{tert}Butyl-Gruppen, da diese versuchen, sich gegenseitig auszuweichen. Die Umgebung der Stickstoffatome N2 und N4 kann als eine tetraedrische Pseudostruktur beschrieben werden. Das Element Bor und die Methylenkohlenstoffatome befinden sich ebenfalls in einer verzerrt tetraedrischen Umgebung. Der Abstand der Boratome zu den Stickstoffatomen N1 bzw. N3 beträgt ca. 1,62 Å und passt damit sehr gut zu den Bindungslängen ähnlicher Verbindungen (Tab. 3.5.1.2).^[74, 122-123] Die Abstände der Boratome zu den drei benachbarten Fluoratomen unterscheiden sich geringfügig voneinander. Jeweils ein Abstand ist mit ca. 1,39 Å (B1-F3 und B2–F4) um ca. 0,02 Å länger als die anderen beiden Abstände (B1–F1, B1–F2, B2–F5 und B2–F6). Dies ist ein Ausdruck der schwachen Wasserstoffbrückenbindungen (N2–H2…F4 und N4'—H4'···F3), durch die die Einzelbausteine entlang [20 $\overline{1}$] zu Strängen verknüpft werden (Abb. 3.5.1.4). In der Tabelle 3.5.1.1 sind ausgewählte Bindungslängen und Winkel aufgeführt. Dort ist der Abstand zwischen den Amin-Protonen H1 bzw. H3 und den Stickstoffatomen N2 bzw. N4 gelistet. Dieser beträgt lediglich ca. 2,2 Å. Dieser kurze Abstand suggeriert eine schwache intramolekulare Wasserstoffbrückenbindung. Allerdings weicht die N-H···N-Bindung mit einem Winkel von 127(3) bzw. 122(3)° sehr stark von dem Ideal einer linearen Wasserstoffbrückenbindung ab. Deswegen ist eher anzunehmen, dass Packungseffekte für die Annäherung verantwortlich sind und der energetische Beitrag des N…H-Kontaktes minimal ist. Innerhalb des Festkörpers sind neben den oben erwähnten Wasserstoffbrückenbindungen nur van-der-Waals-Wechselwirkungen zwischen den einzelnen Bausteinen zu beobachten.

Abb. 3.5.1.3 Ausschnitt aus der gewählten asymmetrischen Einheit von **14**. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Abb. 3.5.1.4 Verknüpfung der Einzelbausteine in 14 zu Ketten durch Wasserstoffbrückenbindungen (gestrichelt) entlang [2 0 1]. Übersichtshalber werden die ^{tert}Butyl-Gruppen als Drahtmodell dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.

Tab. 3.5.1.1 Ausgewählte Atomabstände [Å] und Winkel [°] der Verbindung 14.

B1—F2	1,374(5)	F1—B1—F3	111,4(3)	C2-N2-H2	108(3)
B1—F3	1,392(5)	F1-B1-N1	110,3(3)	C7–N2–H2	110(3)
B1—N1	1,623(5)	F2-B1-F3	109,9(3)		
		F2-B1-N1	108,4(3)	N1-C1-C2	109,2(3)
N1–C1	1,504(5)	F3—B1—N1	106,4(3)	N2-C2-C1	109,5(3)
N1–C3	1,540(5)				
N1—H1	0,77(4)	B1-N1-C1	113,3(3)		
		B1-N1-C3	117,4(3)		
N2-C2	1,454(5)	B1-N1-H1	109(3)		
N2-C7	1,478(5)	C1-N1-C3	113,2(3)		
N2-H2	0,84(4)	C1-N1-H1	101(3)		
		C3-N1-H1	102(3)		
B2F4	1,389(5)	F4—B2—F5	110,1(4)	C12-N4-C17	116,6(3)
B2–F5	1,375(5)	F4—B2—F6	111,6(4)	C12-N4-H4	110(2)
B2–F6	1,375(5)	F4—B2—N3	106,4(3)	C17—N4—H4	109(2)
B2N3	1,622(5)	F5—B2—F6	109,9(4)		
		F5—B2—N3	108,7(3)	N3-C11-C12	110,3(3)
N3-C11	1,505(5)	F6—B2—N3	110,0(3)	N4-C12-C11	108,8(3)
N3–C13	1,542(5)				
N3—H3	0,89(4)	B2-N3-C11	113,0(3)		
		B2-N3-C13	117,2(3)		
N4–C12	1,462(5)	B2-N3-H3	111(2)		
N4–C17	1,484(5)	C11-N3-C13	112,8(3)		
N4—H4	0,83(4)	C11–N3–H3	103(2)		
		C13-N3-H3	98(2)		
Intermolekulare	"(nicht)bindende"	Abstände und Winkel:			
F4…H2	2,35(4)	F3…H4'	2,39(4)		
N2—H2⋯F4	3,191(4)	N4'—H4⋯F3	3,220(4)		
N2—H2—F4	175(4)	N4'—H4'—F3	172(3)		
Intramolekular	e "(nicht)bindende	e" Abstände und Winkel:			
N2…H1	2,20(4)	N4…H3	2,17(4)		
N1—H1⋯N2	2,736(4)	N3—H3⋯N4	2,750(4)		
N1-H1-N2	127(3)	N3-H3-N4	122(3)		

Symmetriecodierung: '1-x, 1,5-y, 0,5+z

Tab. 3.5.1.2 Ausgewählte B–F- und N–B-Abstände literaturbekannter Verbindungen.

Verbindung B–F-Abstände [Å] N-	-B-Abstände [Å] Literatur
--------------------------------	---------------------------

3.5.2. Umsetzung von *N,N* -Di-tert-butylpropylendiamin mit Bortrifluorid zu 15

N,*N*'-Di-*tert*-butylpropylendiamin wird mit zwei Äquivalenten Bortrifluoriddiethyletherat bei Raumtemperatur umgesetzt. Der erhaltene weiße Feststoff besteht neben **15** aus weiteren unbekannten Spezies. Er löst sich schlecht in Toluol, Diethylether, Chloroform, *n*-Hexan und *n*-Pentan. Durch Extraktion und Sublimation ist eine Reinigung nur zum Teil geglückt.

Schema 3.5.2.1 Darstellung von N,N'-Di-tert-butylpropylendiamin-Bortrifluorid (1/2) (15).

In dem ¹H-NMR-Spektrum (Abb. 3.5.2.1) sind vier Signale zu sehen. Von diesen können drei, welche ein relatives Integralverhältnis von 4:2:18 (**a**:**b**:**c**) haben, *N*,*N*'-Di-*tert*-butylpropylendiamin—Bortrifluorid (1/2) (**15**) zugeordnet werden. Die vier Methylenprotonen (**a**) ergeben durch die Kopplung zu den beiden Methylenprotonen (**b**) ein Triplett (³*J*(H,H) = 5,4 Hz) bei 3,00 ppm. Im Umkehrschluss wird für die Methylenprotonen (**b**) ein Quintett (³*J*(H,H) = 5,4 Hz) bei 2,00 ppm aufgenommen. Die ^{tert}Butyl-Gruppen (**c**) erzeugen bei 1,26 ppm ein scharfes Singulett. Die Zuordnung für die beiden Amin-Protonen kann nicht mit Sicherheit erfolgen. Wahrscheinlich werden die Amin-Protonen durch die Bortrifluorid-Fragmente entschirmt und somit zu höheren Anregungsfrequenzen verschoben. Eine Möglichkeit besteht darin, dass das Singulett bei 6,03 ppm von diesen stammt. Allerdings ist das relative Integral größer als zwei, weshalb dieses von mindestens einer weiteren Spezies erzeugt wird. Da die Amin-Protonen nicht immer von dem Untergrund zu unterscheiden sind, ist es auch denkbar, dass das Signal bei 6,03 ppm nur von einer nicht identifizierten Verunreinigung erzeugt wird und das Signal für die Amin-Protonen nicht identifiziert werden kann.

Abb. 3.5.2.1 ¹H-NMR-Spektrum von 15 in CDCl₃. Die Signale a und b sind zusätzlich vergrößert dargestellt.

Im ¹³C{¹H}-NMR-Spektrum können alle beobachteten Signale **15** zugeordnet werden. Das Signal der β-ständigen Methylen-Gruppe ist im Vergleich zum Edukt (32,0 ppm) in Richtung niedrigerer Anregungsfrequenzen (24,0 ppm) verschoben. Dies spricht für einen neu ausgebildeten Kontakt zwischen den Stickstoffatomen und dem Element Bor (Vgl. 8, 9 und 11). Die Verschiebungen sind der Abbildung 3.5.2.2 zu entnehmen. Für das Boratom wird im ¹¹B{¹H}-NMR-Spektrum bei -0,97 ein Multiplett beobachtet. Für die Fluoratome werden im ¹⁹F-NMR-Experiment zwei Signale – ein Multiplett und ein Quartett – aufgenommen. Das Multiplett wird durch die Kopplung zu den ¹⁰B-Atomen hervorgerufen und das Quartett $({}^{1}J(F, {}^{11}B) = 1, 2 \text{ Hz})$ durch die Kopplung zu den ${}^{11}B$ -Atomen. Durch die erneute Durchführung der NMR-Experimente mit einem internen Standard konnte bewiesen werden, dass das Diamin und das Bortrifluorid in einem 1:2 Verhältnis vorliegen. Obwohl die NMR-Spektren nur auf aeringfügige Verunreinigungen hinweisen, stimmt der berechnete Stickstoff-, Kohlenstoff- und Wasserstoffgehalt nicht mit den experimentell bestimmten Werten überein. Die experimentellen Werte fallen deutlich zu hoch aus. Der Stickstoffgehalt zeigt mit einem Prozentpunkt die geringste Abweichung. Deutlicher wird dies bei dem Wasserstoff- und dem Kohlenstoffgehalt mit einer Differenz von ca. 1,5 und 4,2 Prozentpunkten. Auch nach mehreren Extraktionsversuchen mit den Lösemitteln Toluol, Diethylether, Tetrahydrofuran, n-Hexan und *n*-Pentan und durch Sublimation im statischen und dynamischen Vakuum wurde keine Übereinstimmung zwischen den berechneten und den experimentell bestimmten Werten in der Elementaranalyse erzielt. Trotz der unbekannten Verunreinigungen wurde ein El-Massenspektrum aufgenommen. Wie bei **14** konnte auch hierbei kein Molekülionenpeak detektiert werden. Es konnten lediglich Peaks für das Diamin und für verschiedenste Fragmente, die durch den Zerfall von **15** erhalten werden, beobachtet werden.

Abb. 3.5.2.2 Chemische Verschiebung der Signale im ¹³C{¹H}-NMR-Spektrum von **15** in CDCI₃ [ppm].

4. Zusammenfassung

Die vorliegende Arbeit und die darin enthaltenen Ergebnisse lassen sich in zwei Themenbereiche gliedern. Der erste Teil befasst sich mit der Stoffklasse der Azaazoniasilaalanuidacyclobutane (1), der Diazasiladialuminapentane (2) und deren weiteren Umsetzungen Diazasilaalanuidasodiabicyclo[1.1.1]pentanen (3, 4 und 5). Im Rahmen zu dieser Untersuchungen ist es gelungen, den Aufbau im Festkörper des seit dem Jahre 1985 literaturbekannten 1,3-Di-tert-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentans^[80] (3) aufzuklären. Der molekulare Aufbau von 3 zeigt einen planaren, gespannten, viergliedrigen Ring, bestehend aus den Elementen Stickstoff, Aluminium und Silicium, welcher über ein Stickstoffatom und ein Kohlenstoffatom des AlMe₂-Fragments an das Natriumatom koordiniert. Über diese Wechselwirkungen werden die molekularen Bausteine zu Ketten verknüpft (Abb. 4.1).

Abb. 4.1 Kettensegment von 3 entlang der *c*-Achse. ^{ren}Butyl- und Methyl-Gruppen der SiMe₂-Fragmente werden übersichtshalber als Drahtmodelle dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.
(Symmetriecodierung: '1-x, y, 1-z; A x, y, 1+z; 'A 1-x, y, 2-z; B x, y, 2+z; 'B 1-x, y, 3-z)

Der molekulare Aufbau und die Verknüpfung im Festkörper von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (**4**), welches Phenyl-Gruppen anstelle von Methyl-Gruppen an den Siliciumatomen besitzt, unterscheiden sich deutlich von **3**. Bei **4** werden die Natriumatome im molekularen Baustein von den beiden Stickstoffatomen und einem AlMe₂-Kohlenstoffatom des annähernd planaren, gespannten, viergliedrigen Ringes bestehend aus den Elementen Stickstoff, Aluminium und Silicium koordiniert, wodurch sich eine käfigartige Struktur ergibt. Die Verknüpfung der Bausteine zu Strängen (Abb. 4.2) erfolgt im Unterschied zu **3** lediglich über Na–C-Wechselwirkungen, wobei die Kohlenstoffatome ebenfalls von AlMe₂-Fragmenten stammen.

 Abb. 4.2 Stränge von 4 entlang der *b*-Achse. ^{tert}Butyl- und Phenyl-Gruppen werden übersichtshalber als Drahtmodelle dargestellt. Die Ellipsoide der anisotropen Atomauslenkungen entsprechen einer Aufenthaltswahrscheinlichkeit der Elektronendichtemaxima von 50 %.
 (Symmetriecodierung: 'x, 1+y, z; '' 1-x, 1-y, 2-z; '''1-x, 2-y, 2-z)

Neben den Untersuchungen zum Aufbau im Festkörper von **3** und **4** wurden die intermolekularen, temperaturabhängigen Austauschphänomene in Lösung, bei denen die Natriumatome zwischen den viergliedrigen Ringen ausgetauscht werden können, mittels der ¹H-NMR-Spektroskopie aufgeklärt. Dabei konnte für **3** eine niedrigere Energiebarriere als für **4** ermittelt werden. Dieses Ergebnis steht im Einklang mit den Beobachtungen aus den Festkörperuntersuchungen, denn durch die erhöhte Abschirmung der N–Si–N–Al-Ringe durch die Phenyl-Gruppen der SiPh₂-Fragmente im Vergleich zu den Methyl-Gruppen der SiMe₂-Fragmente wird die Annäherung von zwei Ringen an das gleiche Natriumatom erschwert. Folglich müssen erst die Bindungen der beiden Stickstoffatome zu dem Natriumatom gelockert, wenn nicht sogar ganz gebrochen werden, damit ein Austausch zu einem anderen Ring vollzogen werden kann. Bei **3** ist es möglich, dass gleichzeitig zwei viergliedrige Ringe an dasselbe Natriumatom koordinieren. Aus diesem Grund ist der beobachtete Austauschprozess der Natriumatome in Lösung für **3** mit deutlich weniger Aktivierungsenergie verbunden.

Im zweiten Teil der vorliegenden Arbeit stehen die Umsetzungen der zweifach substituierten Alkandiamine mit den Lewis-Säuren Trimethylaluminium, Aluminiumtrichlorid, Bortrifluorid und Bortrichlorid im Blickpunkt. Die Ansätze mit Trimethylaluminium weisen ein interessantes Reaktionsverhalten auf. Bei der Reaktion mit dem zweifach substituierten Ethylendiamin, dem

N,N'-Di-*tert*-butylethylendiamin, wird ein Produktgemisch bestehend aus den beiden Verbindungen N,N'-Di-*tert*-butylethylendiamin—Trimethylaluminium (1/1) (**6**) und 1,4-Di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (**7**) erhalten. Im Unterschied dazu wird durch die Zugabe von Trimethylaluminium zu dem zweifach substituierten Propylendiamin, dem N,N'-Di-*tert*-butylpropylendiamin, lediglich das N,N'-Di-*tert*-butylpropylendiamin—Trimethylaluminium (1/2) (**8**) erhalten. Erst durch Erhitzen von **8** in Lösung kann nach Methanabspaltung das 1,5-Di-*tert*-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptan (**9**) synthetisiert werden. Dass bei der Synthese von Azaazoniasila-alanuidacyclobutanen lediglich die Methanabspaltung und keine Adduktbildung beobachtet wird, wird verständlich bei der Betrachtung der Brønsted-Acidität: Bis(amino)silan > Ethylendiamin > Propylendiamin.

Durch die Umsetzungen von den beiden zweifach substituierten Alkandiaminen mit Aluminiumtrichlorid konnten fünf- bzw. sechsgliedrige Ringe, welche einen sehr interessanten Aufbau im Festkörper zeigen, synthetisiert werden. Ein Vergleich mit dem literaturbekannten 1,3-Di-*tert*-butyl-2,2-dimethyl-4,4-dichlor-3-aza-1-azonia-2-sila-4-alanuidacyclobutan (I)^[12, 80] im Festkörper und die Betrachtung der jeweiligen HOMOs zeigt, dass es zu einem erhöhten Doppelbindungsanteil zwischen den λ^3 -Stickstoffatomen und den Aluminiumatomen kommt. Gleiches konnte für die λ^3 N—Si-Bindung im Festkörper von (I) beobachtet werden, allerdings nicht für die Bindungen zwischen den λ^3 -Stickstoffatomen und den Kohlenstoffatomen des Rückgrates innerhalb von 1,4-Di-*tert*-butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentan (**12**) und 1,5-Di-*tert*-butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan (**13**).

Durch die Reaktion der Lewis-Säure Bortrichlorid mit den beiden zweifach substituierten Alkandiaminen können das 1,4-Di-*tert*-butyl-5-chlor-1,4,5-diazaborolidin (**10**) und das 1,5-Di*tert*-butyl-6-chlor-1,5,6-diazaborinan (**11**) isoliert werden, wohingegen bei der Umsetzung der beiden zweifach substituierten Alkandiamine mit der schwächeren Lewis-Säure Bortrifluorid lediglich die beiden Addukte N,N'-Di-*tert*-butylethylendiamin—Bortrifluorid (1/1) (**14**) und N,N'-Di-*tert*-butylpropylendiamin—Bortrifluorid (1/2) (**15**) als Produkte ausgemacht werden konnten.

4. Summary

The results of the presented thesis can be separated into two main topics. The first part deals with substance classes azaazoniasilaalanuidacyclobutane (1), diazasiladialuminapentane (2) and their conversion to diazasilaalanuidasodiabicyclo[1.1.1]pentanes (3, 4 and 5). Whereas many attempts to determine the crystal structure of the 1,3-di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentane^[80] (3) were done since 1985, this crystal structure was solved within this thesis. The molecular structure of 3 shows a planar, strained, four-membered ring containing the elements nitrogen, aluminium and silicon. The coordination of each ring to two sodium atoms by the nitrogen atoms and the carbon atoms of the AlMe₂ fragment results in chains (figure 4.1).

Figure 4.1 Segment of the chain structure of **3** along c-axis. ^{*tert*}Butyl und methyl groups of the SiMe₂ fragments are drawn in wireframe mode. The ellipsoids of anisotropic atomic displacement are depicted at the 50 % probability level. (Symmetry codes: '1-*x*, *y*, 1-*z*; A *x*, *y*, 1+*z*; 'A 1-*x*, *y*, 2-*z*; B *x*, *y*, 2+*z*; 'B 1-*x*, *y*, 3-*z*)

The molecular structure and the arrangement of atoms in crystalline solid of 1,3-di-*tert*-butyl-2,2diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentane (**4**), which contains an SiPh₂ fragment are clearly different from that of **3**. The sodium atom in the molecular structure of **4** is coordinated by both nitrogen atoms and one AlMe₂ carbon atom of the nearly planar, strained, four-membered ring. The other carbon atom of the AlMe₂ fragment coordinates to the sodium atom of the neighbor molecule implicating chains. Every second sodium atom of each chain is coordinated by a carbon atom of the AlMe₂ fragment of one neighbor chain so that two interconnected chains build up one super molecular strand (figure 4.2).

Abb. 4.2 Strands of **4** along b-axis. ^{tert}Butyl und phenyl groups are drawn in wireframe mode. The ellipsoids of anisotropic atomic displacement are depicted at the 50 % probability level. (Symmetry codes: ' *x*, 1+*y*, *z*; '' 1-*x*, 1-*y*, 2-*z*; '''1-*x*, 2-*y*, 2-*z*)

In addition to crystal structure analyses of **3** and **4** temperature dependent ¹H NMR studies were undertaken to examine the intermolecular exchange of the sodium atoms which can switch back and forth between the four-membered rings. Here, the exchange of the sodium atoms in **4** shows a lower activation energy than in **3**, which is in accord to the observations in the crystal structures. Due to the more bulky phenyl groups in **4**, the approach of two N-Si-N-Al rings to the same sodium atom is more hindered than in **3**. Hence, the bonds between two nitrogen atoms and the sodium atom has to be relaxed or broken before the sodium atom can be coordinated by another four-membered ring in **4**. In contrast, the sodium atom in **3** can be coordinate by two four-membered rings at the same time.

The second part focuses on the reactions of disubstituted alkanediamines with the Lewis acids trimethylaluminium, aluminium trichloride, boron trifluoride and boron trichloride. The reactions of trimethylaluminium and the disubstituted alkanediamines show an interesting behavior. On the one hand the reaction of the N,N'-di-*tert*-butylethylenediamine results in a mixture of the two compounds N,N'-di-*tert*-butylethylenediamine—trimethylaluminium (1/1) (**6**) and 1,4-di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexane (**7**). On the other hand only N,N'-di-*tert*-butylpropylenediamine—trimethylaluminium (1/2) (**8**) is formed in the reaction of N,N'-di-*tert*-butylpropylenediamine with trimethylaluminium. 1,5-Di-*tert*-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptane (**9**) could only be obtained by heating **8** in

solution. In contrast to the disubstituted alkanediamines, the bis(amino)silanes react with trimethylaluminium in a straight forward reaction under the release of methane to azaazoniasilaalanuidacyclobutanes and no trimethylaluminium adducts were build. Thus, the following order of the Brønsted acidity is given: bis(amino)sliane > ethylenediamine > propylenediamine.

The reaction of the disubstituted alkanediamines with aluminium trichloride yields five- and sixmembered rings which show interesting structures in the solid state. A comparison of the crystal structures of 1,4-di-*tert*-butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentane (**12**) and 1,5-di*tert*-butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexane (**13**) with the calculated HOMOs shows a higher double bound content between the λ^3 nitrogen and the aluminium atoms. A similar effect was obtained by the calculation of the HOMO of the already known 1,3-di-*tert*butyl-2,2-dimethyl-4,4-dichlor-3-aza-1-azonia-2-sila-4-alanuidacyclobutane (**I**)^[12, 80] Here, a higher double bond content was found for the λ^3 N—AI bond, too. However, (**I**) has in addition a higher double bond content between the λ^3 nitrogen atoms and the silicium atom, whereas such a bond character cannot be obtained for the analogues λ^3 N—CH₂ bonds in **12** and **13**.

The two compounds 1,4-di-*tert*-butyl-5-chlor-1,4,5-diazaborolidine (**10**) and 1,5-di-*tert*-butyl-6-chlor-1,5,6-diazaborinane (**11**) can be synthesized by the reaction of the Lewis acid boron trichlorid with the two disubstituted alkanediamines. By using the weaker Lewis acid boron trifluorid only the two adducts N,N'-di-*tert*-butylethylenediamine—boron trifluorid (1/1) (**14**) and N,N'-di-*tert*-butylpropylenediamine—boron trifluorid (1/2) (**15**) were obtained.

5. Experimenteller Teil

5.1. Allgemeine Arbeitstechniken

Alle für diese Arbeit durchgeführten Versuche wurden unter Feuchtigkeitsausschluss^[124] in trockenen Lösemitteln unter Argon 5.0 Air Liquide und mit Hilfe der Schlenk-Technik an modifizierten Stock'schen Vakuumapparaturen^[125-131] durchgeführt. Die benutzten Glasgeräte wurden gründlich gereinigt und bei 70 °C im Trockenschrank gelagert. Vor Gebrauch wurden diese evakuiert und mit Argon geflutet. Die Zugabe und das Umfüllen von Flüssigkeiten und Suspensionen erfolgte mit Hilfe von Septen, Spritzen, Stahlkanülen und PE-Schläuchen im Argongegenstrom, nachdem diese Hilfsmittel gründlich mit Argon gespült wurden. Genau wie die Glasgeräte wurden die Stahlkanülen und die PE-Schläuche bei 70 °C im Trockenschrank aufbewahrt. Lösemittelfreie Feststoffe wurden in einer Glove-Box unter Argonatmosphäre umgefüllt und gelagert.

5.2. DFT-Rechnungen mit dem Programmpaket Gaussian 03

Ein bekanntes Problem bei vorangegangenen Arbeiten bestand in der Zuordnung der IR- und Raman-Banden zu den jeweiligen Schwingungen. Oft wird versucht, dieses Problem durch einen Blick in die Literatur zu lösen. Allerdings liegt hierin eine Fehlerquelle, denn bei diesen Substanzklassen werden im Bereich von ca. 500 – 1500 cm⁻¹ (IR-Spektroskopie) und ca. 100 – 1500 cm⁻¹ (Raman-Spektroskopie) unzählige Banden detektiert und eine sichere Zuordnung wird somit zunichte gemacht. Es finden sich zwar in der Literatur für jede Bande eine mögliche Schwingung, meistens jedoch zwei oder mehrere. Aus diesem Grund wurde in dieser Arbeit versucht, für IR- und Raman-Schwingungen von isolierten Molekülen in der Gasphase durch DFT (Dichte-Funktional-Theorie)-Rechnungen^[132-136] mit dem Programmpaket Gaussian 03^[137] unter Nutzung des HPC-Clusters IvyBridge des "Zentrums für Informations- und Medientechnologie" (ZIM) der Heinrich-Heine-Universität Düsseldorf eine möglichst genaue Zuordnung zu erreichen. Als DFT-Methode diente "Becke's drei Parameter Hybrid Funktional" unter Verwendung des "LYP Ausdrucks" und des "VWN Funktionales III" (B3LYP).^[136, 138-140] Als Basissätze wurden verschiedenste ausprobiert. Die besten Übereinstimmungen mit den experimentellen schwingungsspektroskopischen Daten lieferte der Basissatz 6-311++G(2d,2p). Um die Rechenzeit zu verkürzen, wurden die Startkoordinaten aus der Kristallstruktur verwendet und so lange verfeinert, bis die Verbindung keine imaginären Frequenzen (NImag = 0) aufzeigte. Die so erhaltenen optimierten Geometrien entsprechen dem Minimum auf der jeweiligen Energiehyperfläche. Von diesen Geometrien wurden anschließend bzw. während derselben Rechnung die IR- und Raman-Banden und die Molekülorbitale berechnet.

Die Auswertung bzw. Zuordnung der IR- und Raman-Banden und die Visualisierung der Molekülorbitale erfolgte mit dem Programm *GaussView 3.07*^[141]. Dabei wurde eine Schwäche der ausgewählten Parameter deutlich. Im Bereich oberhalb von 1800 cm⁻¹ (CH- und NH-Streckschwingungen) wurden große Abweichungen zwischen den theoretisch und experimentell bestimmten Banden beobachtet. Das Problem ließe sich möglicherweise mit individuellen Skalierungsfaktoren umgehen. Dies könnte zu einer besseren Übereinstimmung führen.

5.3. Verwendete Chemikalien und Lösemittel

Alle zur Synthese verwendeten Lösemittel wurden über ausgeheiztem Molekularsieb und unter Schutzgasatmosphäre gelagert. Wenn nicht anders in Kapitel 5.3.2 aufgeführt, wurden die Edukte ohne weitere Behandlung in Herstellerqualität verwendet, unter Argonatmosphäre gelagert und im Argongegenstrom entnommen.

5.3.1. Nach Literaturvorschriften hergestellte Verbindungen

- N,N'-Di-tert-butyl-Si, Si-diphenylsilandiamin [142]
- *N,N*`-Di-*tert*-butyl-*Si,Si*-dimethylsilandiamin^[142]
- 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan^[10, 36]
- 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan (3)^[15, 31, 80]
- N, N`-Di-tert-pentyl-Si, Si-dimethylsilandiamin^[35]
- 1,3-Di-tert-pentyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan^[31]
- N,N'-Di-tert-butylpropylendiamin^[105]

5.3.2. Verwendete Chemikalien und deren Aufarbeitung

Chemikalie	Reinheitsgrad	Hersteller
Diethylether	p.A.	AppliChem
<i>n</i> -Hexan	p.A.	VWR
<i>n</i> -Pentan	p.A.	AppliChem
Tetrahydrofuran	p.A.	Fisher Chemical
Toluol	p.A.	VWR
Aluminiumtrichlorid	99,99 %	Aldrich
Bortrichlorid	c = 1,0 mol/l in <i>n</i> -Heptan	Aldrich
<i>n</i> -Butyllithium	c = 1,6 mol/l in <i>n</i> -Hexan	Aldrich

<i>tert</i> -Butylamin	99 %	Acros
1,3-Dibrompropan	99 %	Sigma Aldrich
Dichlordimethylsilan	p.A.*	Merck
Dichlordiphenylsilan	p.A.**	Alfa Aesar
Natriumhydrid	mit <i>n</i> -Pentan gewaschen	Fluka
Natriumhydroxid-Plätzchen	99%	AppliChem
<i>N,N</i> '-Di- <i>tert</i> -butylethylendiamin (III)	>98%	TCI
tert-Pentylamin	98%	Aldrich
Tetrabutylammoniumtetrafluoroborat	≥98%	Merck
Triethylamin	p.A.*	Fisher Chemical
Trimethylaluminium	c = 2,0 mol/l in <i>n</i> -Heptan	Aldrich
Bortrifluoriddiethyletherat	Zur Synthese	Sigma Aldrich
Chloroform — Deuterium	99,8%	eurosi-top
Tetrahydrofuran – Deuterium	99,5%	Deutero
Toluol — Deuterium	99,5%	Deutero

* unter Normaldruck destilliert

** im dynamischen Vakuum destilliert

Das Aluminiumtrichlorid wurde vor dem Gebrauch mit Aluminiumspänen vermengt und in einer abgeschmolzenen Ampulle bei vermindertem Druck (3 – 8 x 10^{-3} mbar) sublimiert (170 °C). Das so erhaltene weiße, kristalline Aluminiumtrichlorid wurde zügig verwendet.

Das Bortrifluoriddiethyletherat wurde im statischen Vakuum bei Raumtemperatur umkondensiert. Das Verhältnis zwischen Diethylether und Bortrifluorid wurde mittels NMR-Spektroskopie anhand eines externen Standards (Tetrabutylammoniumtetrafluoroborat) kontrolliert.

5.4. Analysengeräte

5.4.1. Kernresonanzspektroskopie

Die ¹H-,¹¹B{¹H}-, ¹³C{¹H}-, ¹⁹F- und ²⁷Al-NMR-Spektren wurden mit einem *Bruker Avance III – 300 Spektrometer*, einem *Bruker Avance III – 400 Spektrometer* oder einem *Bruker Avance III – 600 Spektrometer* aufgenommen. Sollten keine anderen Temperaturen angegeben sein, betrug die Messtemperatur 25 °C. Zur Aufnahme wurden die Proben (Feststoffe in der Glove-Box) unter Inertgasbedingungen in ein NMR-Röhrchen mit einer Young-PTFE-Spindel gegeben und dort mit den angegebenen deuterierten Lösemitteln, Chloroform-d₁ oder Toluol-d₈, versetzt

bzw. in diesen vollständig gelöst. Die ¹H- und ¹³C{¹H}-NMR-Spektren wurden auf die Restprotonensignale der deuterierten Lösemittel bzw. deren ¹³C{¹H}-Signale referenziert:

- Chloroform-d₁: ¹H 7,26 ppm; ¹³C{¹H} 77,16 ppm
- Toluol-d₈: ¹H 2,09 ppm; ¹³C{¹H} 20,43 ppm

Die folgenden Kerne wurden auf externe Standards referenziert:

- ¹¹B-NMR-Spektren: BF₃-Et₂O (0 ppm)
- ¹⁹F-NMR-Spektren: CFCl₃ (0 ppm)
- 27 Al-NMR-Spektren: Al(H₂O)₆³⁺ (0 ppm)

Zur Vorbereitung für Messungen mittels dynamischen NMR-Spektroskopie (DNMR) wurden die Proben für ca. 1 h auf 100 C° erwärmt. Damit wurde gewährleistet, dass die NMR-Röhrchen den Temperaturen während der Messung standhielten. Anschließend wurden die Messungen durchgeführt. Oberhalb der Raumtemperatur erfolgte jeweils eine Messung im Abstand von ca. 10 °C, unterhalb der Raumtemperatur bei 0, -20 und -40 °C. Nach der Grobbestimmung der Koaleszenztemperatur wurde eine Feinbestimmung in 2 C°-Schritten oberhalb und unterhalb der vermuteten Koaleszenztemperatur durchgeführt. Zur Simulation der NMR-Spektren wurde das Programm *G-NMR*^[95] verwendet.

Bei Spektren 1. Ordnung oder annähernd 1. Ordnung wurde die Kopplungskonstante anhand der Signalmaxima direkt bestimmt. Bei diesen und Spektren 0. Ordnung wird als Verschiebungswert das Signalzentrum angegeben. Ein Signalbereich wird für Spektren höherer Ordnung aufgelistet.

Zur Bezeichnung der Multiplizitäten der NMR-Signale dienen folgende Abkürzungen: s = Singulett, t = Triplett, q = Quartett, qui = Quintett, m = Multiplett.

5.4.2. Schwingungsspektroskopie

Die Infrarot-Spektren wurden mit einem *Digilab Excalibur FTS 3500 Spektrometer* der Firma *Digilab* mit der ATR-Technik (abgeschwächte Total-Reflexion) gemessen und anschließend korrigiert. Der Messbereich liegt zwischen 510 und 4000 cm⁻¹ bei einer Auflösung von 4 cm⁻¹. Die Messungen wurden bei Raumtemperatur und an der Luft durchgeführt. Aus diesen Gründen wurde auf eine schnelle Messdurchführung geachtet. Bei Beobachtung von Banden eines möglichen Hydrolyseproduktes wurde eine neue Probe abgefüllt und die Messung wiederholt. Dies erfolgte, bis ein sauberes Spektrum erhalten werden konnte. Im Gegensatz zu den IR-Spektren wurden die Raman-Spektren in Probengläsern aufgenommen, in denen die Proben unter Inertgasbedingungen abgefüllt wurden. Diese Messungen erfolgten an einem *MultiRam*-

Spektrometer der Firma *Bruker*. Der Messbereich erstreckt sich von 60 bis 4000 cm⁻¹ und die Auflösung beträgt ebenfalls 4 cm⁻¹.

Verwendete Abkürzungen: vs = sehr stark, s = stark, m = mittelstark, w = schwach, vw = sehr schwach; v = Valenz-/Streckschwingung, δ_w = Deformations-/Wippschwingung, T = Torsions-/Drehschwingung, ω = Nickschwingung

5.4.3. Massenspektrometrie

Die Aufnahme der Massenspektren erfolgte an einem *Triple-Quadrupol-Massenspektrometer TSQ 7000 (Finnigan MAT)* mittels Direkteinlass und der <u>E</u>lektronenstoß-<u>I</u>onisation (EI; <u>e</u>lectron impact <u>i</u>onization). Zur Probenvorbereitung wurden die Proben in Aluminiumtiegel unter Inertgasbedingungen abgefüllt und in mit Argon gefluteten Probengläsern gelagert. Der Massenbereich erstreckt sich bis m/z = 4000.

5.4.4. Elementaranalyse

Die Verbrennungsanalyse zur Bestimmung des Kohlenstoff-, Wasserstoff- und Stickstoffgehaltes wurde mit einem *Euro EA* der Firma *HEKAtech* oder einem *vario MICRO cube* der Firma *Elementar Analysensystem GmbH* durchgeführt. Hierfür wurden die flüssigen Proben unter Schutzgas in einen Tiegel eingewogen und dem CHNS-Analysator zugeführt. Feste Proben wurden in der Glove-Box in die tarierten Tiegel eingewogen und dort verschlossen.

5.4.5. Kristallstrukturanalyse

Nach der optischen Betrachtung unter einem Polarisationsmikroskop wurden geeignete Kristalle für die Röntgenstrukturanalyse ausgewählt. Die Datensammlung erfolgte an einem Stoe IPDS 2T Diffraktometer mit MoK_{α}-Strahlung (0,71073 Å). Die jeweiligen Messtemperaturen sind unter den Messparametern zu finden. Die Strukturlösung und -verfeinerung wurden mit dem Programmpaket ShelX-2014^[143] unter der Oberfläche ShelXle – A Qt GUI for SHELXL^[144] durchgeführt. Zur Strukturlösung wurden Direkte Methoden verwendet und die Verfeinerung erfolgte über Minimierung der Fehlerquadratsummen über mehrere Zyklen. Die Koordinaten der "Nichtwasserstoffatome" wurden durch die sukzessive Differenzfouriersynthese ermittelt. Hierzu wurde zu Beginn mit isotropen Auslenkungsparametern gerechnet und erst zum Schluss wurden die anisotropen Auslenkungsparameter in die Rechnung einbezogen. Alle Wasserstoffatome wurden mit isotropen Auslenkungsparametern über das Reiter-Modell einbezogen und ideal-geometrisch behandelt. Wenn nicht anders angegeben, wurden die Uiso-Werte der Methylwasserstoffatome auf das 1,5-fache der äquivalenten, isotropen Auslenkungsfaktoren der zugehörigen Kohlenwasserstoffatome gesetzt. Für Methylenwasserstoffatome wurde ein Faktor von 1,2 verwendet. Abweichungen zu der oben beschriebenen

Lösung werden im jeweiligen experimentellen Teil aufgeführt. Ebenso sind dort Einzelheiten zur numerischen Absorptionskorrektur mit Hilfe der Programme XRed^[145] und X-Shape^[146] aufgeführt. Die Visualisierung erfolgte mit dem Programm *Diamond* (Version 3.2k)^[147].

5.4.6. Thermische Untersuchungen

Zur Untersuchung von möglichen Schmelz- bzw. Zersetzungspunkten wurde das *Schmelzpunktbestimmungsgerät MP90* der Firma *Mettler Toledo* mit einer Videoaufnahme-Option verwendet. Hierfür wurden in der Glove-Box die Proben in Glaskapillaren gefüllt, verschlossen und anschließend dem Temperaturprogramm unterzogen.

5.5. Synthesevorschriften und spektroskopische Daten

5.5.1. Darstellung von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia-2-sila-4alanuidacyclobutan (1)

Das farblose, kristalline *N,N'*-Di-*tert*-butyl-*Si*, *Si*-diphenylsilandiamin (2,18 g, 6,68 mmol; 326,56 g/mol) wird in *n*-Pentan (120 ml) suspendiert. Die Suspension wird gekühlt (-20 °C), die klare, farblose Trimethylaluminiumlösung (3,4 ml, c = 2,0 mol/l in *n*-Heptan; 3,8 mmol) wird vorsichtig zugetropft und das Reaktionsgemisch gerührt (1 h). Innerhalb dieser Zeit nimmt die Niederschlagsmenge deutlich zu. Anschließend wird die Suspension auf Raumtemperatur gebracht und gerührt (5 d). Es ist deutlich weniger Niederschlag vorhanden. Die Mutterlage wird von dem Niederschlag getrennt, erwärmt (70 °C) und gerührt (11 d). Lösemittel und andere flüchtige Bestandteile werden im Vakuum entfernt. 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan bleibt als kristalliner, farbloser Feststoff zurück. Plättchenförmige, farblose Kristalle können durch Sublimation (80 °C) im statischen Vakuum (6 x 10⁻³ mbar) erhalten werden.

Summenformel: C₂₂H₃₅AlN₂Si

Ausbeute: 1,81 g (4,74 mmol) (71 % d. Th.)

Schmelzpunkt: 116 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **8,03** – **7,99** (m, 2H^a), **7,76** – **7,72** (m, 2H^a), **7,52** – **7,43** (m, 6H^a), **2,37** (s, $T_{1/2}$ = 4,5 Hz, 1H^b), **1,05** (s, $T_{1/2}$ = 1,4 Hz, 9H^c), **0,96** (s, $T_{1/2}$ = 1,6 Hz, 9H^d), **-0,55** (s, $T_{1/2}$ = 1,5 Hz, 3H^e), **-0,65** (s, $T_{1/2}$ = 1,5 Hz, 3H^f)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) $\delta = 137,7$ (s, $T_{1/2} = 0,5$ Hz, 2C¹), 137,3 (s, $T_{1/2} = 0,4$ Hz, 1C²), 135,1 (s, $T_{1/2} = 0,4$ Hz, 1C³), 134,7 (s, $T_{1/2} = 0,4$ Hz, 2C⁴), 130,8 (s, $T_{1/2} = 0,5$ Hz, 1C⁵), 129,9 (s, $T_{1/2} = 0,5$ Hz, 1C⁶), 128,2 (s, $T_{1/2} = 0,4$ Hz, 2C⁷), 127,9 (s, $T_{1/2} = 0,5$ Hz, 2C⁸), 53,8 (s, $T_{1/2} = 0,3$ Hz, 1C⁹), 50,4 (s, $T_{1/2} = 0,3$ Hz, 1C¹⁰), 35,3 (s,

Molare Masse: 382,24 g/mol

Reinheit: ≈ 99 %

 $T_{1/2} = 0.5 \text{ Hz}, 3\text{C}^{11}$), **31,6** (s, $T_{1/2} = 0.5 \text{ Hz}, 3\text{C}^{12}$), **-5,2** (s, $T_{1/2} = 18 \text{ Hz}, 1\text{C}^{13}$), **-5,4** (s, $T_{1/2} = 18 \text{ Hz}, 1\text{C}^{14}$)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **161** (s, Ţ_{1/2} = 6393 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 3248 (vw; vNH), 3067 (vw; vC_{Ar}H), 3051 (vw; vC_{Ar}H), 3008 (vw; vC_{Ar}H), 2996 (vw; vCH), 2960 (vs; vCH), 2942 (s; vCH), 2923 (m; vCH), 2868 (w; vCH), 2818 (vw; vCH), 1587 (vw; vC_{Ar}C_{Ar}), 1468 (w; δ CH3**), 1461 (vw; vC_{Ar}C_{Ar}), 1427 (m; δ CH₃*), 1378 (m; δ CH₃*), 1360 (m; vC_{Ar}C_{Ar}), 1468 (w; δ SiC), 1260 (vw; Gerüst), 1228 (s; vCN, Gerüst), 1200 (s; δ C_{Ar}H), 1183 (s; vCN), 1110 (vs; δ C_{Ar}H), 1088 (s; v_{sym}SiN), 1035 (w; v_{asym}SiN), 1026 (w; T_{Ar} H), 998 (vw; T_{CAr} H), 950 (m; Gerüst*), 921 (w; Gerüst*), 882 (s; δ C_{Ar}H) 849 (s; v_{sym}SiN), 783 (vs; v_{asym}SiN, Gerüst), 743 (s; Gerüst), 713 (s; Gerüst), 698 (vs; Gerüst), 668 (vs; vAIC), 631 (m; Gerüst), 606 (w; δ AIC, Gerüst), 584 (w; δ AIC, Gerüst), 567 (w; v_{sym}AIC, Gerüst), 538 (w; Gerüst);

* N – Alkyl, ** Al – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3244 (vw; vNH), 3049 (m; vC_{Ar}H), 2996 (w; vCH), 2962 (m; vCH), 2942 (m; vCH), 2897 (m; vCH), 2818 (w; vCH), 1589 (m; vC_{Ar}C_{Ar}), 1568 (w; vC_{Ar}C_{Ar}, δ CH₃), 1463 (w; vC_{Ar}C_{Ar}), 1440 (w; δ CH₃*), 1378 (vw; vC_{Ar}C_{Ar}), 1314 (vw; vC_{Ar}C_{Ar}), 1233 (vw; vCC*, Gerüst), 1220 (w; δ C_{Ar}H), 1187 (vw; δ C_{Ar}H), 1114 (vw; vSiN, vSiC_{Ar}), 1069 (vw; v_{asym}SiN, Gerüst), 1029 (w; TC_{Ar}H), 999 (s; TC_{Ar}H), 950 (vw; vN_HC, Gerüst*), 911 (w; δ NH), 887 (vw; vCC*), 850 (vw; vSiNAI), 789 (vw; SiN), 713 (vw; TC_{Ar}H), 671 (vw; vAIC, vC_{Ar}C_{Ar}), 621 (w; vC_{Ar}C_{Ar}), 565 (w; Gerüst), 543 (w; δ NSiNAI, Gerüst), 516 (w; δ NSiNAI, Gerüst), 421 (vw; Gerüst), 394 (vw; Gerüst), 322 (vw; Gerüst*), 268 (vw; Gerüst), 246 (w; v(SiN₂AI)Na, Gerüst), 200 (w; v(SiN₂AI)Na, Gerüst), 182 (w; ωCH₃**, Gerüst), 144 (w; Gerüst), 82 (vs; Gerüst) * N – Alkyl, ** AI – Methyl

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	7,32	69,06	9,22
gefunden	7,24	68,82	8,81
El-Massenspektrometrie: 60 °C

Eragmont	Fragment Summenformel		m/z	rel.
	Summernormer	ber.	gef.	Intensität
$[Ph_2SiH_2NC(CH_3)_2N^tButylAlH(CH_3)_2]^{+}$	$C_{21}H_{34}AIN_2Si$	369	369,2	8,0
[Ph₂SiHNC(CH ₃)₂N ^t ButyIAIH(CH ₃)₂] ⁺	$C_{21}H_{33}AIN_2Si$	368	368,2	29,4
$[Ph_2SiNC(CH_3)_2N^tButylAlH(CH_3)_2]^+$	$C_{21}H_{32}AIN_2Si$	367	367,2	100,0
$\left[Ph_{2}SiNC(CH_{3})_{2}NC(CH_{3})_{2}AlH(CH_{3})_{2}\right]^{+}$	$C_{20}H_{29}AIN_2Si$	352	352,2	2,6
$[Ph_2SiNC(CH_3)_2NC(CH_3)_2Al(CH_3)_2]^{+}$	$C_{20}H_{28}AIN_2Si$	351	351,2	8,3
[Ph₂SiN ^t ButylAlH₂(CH ₃)₂] ⁺	C ₁₈ H ₂₇ AINSi	312	312,2	11,4
[Ph₂SiN ^t ButylAlH(CH₃)₂] ⁺	C ₁₈ H ₂₆ AINSi	311	311,2	42,7
[Ph₂SiH₃N ^t Butyl]⁺	$C_{16}H_{22}NSi$	256	256,2	1,7
[Ph₂SiH₂N ^t Butyl]⁺	$C_{16}H_{21}NSi$	255	255,1	7,1
[Ph₂SiHN ^t Butyl]⁺	$C_{16}H_{20}NSi$	254	254,1	16,0
$[Ph_2SiH_2NC(CH_3)_2]^+$	C ₁₅ H ₁₈ NSi	240	240,1	2,4
$[Ph_2SiHNC(CH_3)_2]^{+}$	C ₁₅ H ₁₇ NSi	239	239,1	6,2
$[Ph_2SiNC(CH_3)_2]^+$	C ₁₅ H ₁₆ NSi	238	238,1	24,1
[Ph₂SiNH₃]⁺	$C_{12}H_{13}NSi$	199	199,1	2,2
$[Ph_2SiNH_2]^+$	$C_{12}H_{12}NSi$	198	198,1	10,5
[Ph₂SiNH]⁺	$C_{12}H_{11}NSi$	197	197,1	14,7
$[Ph_2SiN]^+$	$C_{12}H_{10}NSi$	196	196,1	1,3
[PhSiHN ^t Butyl]⁺	$C_{10}H_{15}NSi$	177	177,1	7,8
[PhSiN ^t Butyl]⁺	$C_{10}H_{14}NSi$	176	176,1	20,1
[H₂C₄SiN ^t Butyl] ⁺	$C_8H_{10}NSi$	148	148,1	4,2
[PhSiHN]⁺	C ₆ H ₆ NSi	120	120,0	2,7
[PhSiN]⁺	C ₆ H₅NSi	119	119,0	4,9
[PhSi]⁺	C ₆ H₅Si	105	105,0	2,4
$[NC(CH_2)(CH_3)_2]^+$	C_4H_8N	70	70,1	1,5
[^ք Butyl]⁺	C_4H_9	57	57,0	10,6

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Der Abstand N1—H1 wurde mit einem "DFIX" restraint behandelt. Das Wasserstoffatom H2 wurde frei verfeinert und durch "DFIX" restraints auf physikalisch und chemisch sinnvolle Koordinaten gesetzt. Kristalldaten und Informationen zur Strukturbestimmung sind in Tabelle 5.5.1.1 aufgelistet.

|--|

$C_{22}H_{35}AIN_2Si$
Plättchen, farblos
0,33 x 0,20 x 0,01
monoklin
P21/n
<i>a</i> = 16,8410(9) Å
$b = 16,3611(8)$ Å $\beta = 98,042(4)$ °
<i>c</i> = 17,4509(10) Å
4761,1(4)
8
1,067
123
0,143
1664
1,574 bis 24,999
-20≤h≤20
-17≤k≤19
-20≤l≤20
36954
8393 [<i>R</i> _{int} = 0,2807]
4845
kleinste Fehlerquadrate
8393 / 5 / 492
0,000
$R_1 = 0,1718, wR_2 = 0,1786$
$R_1 = 0,2553, wR_2 = 0,1966$
a = 0,02, b = 1,0912
1,619 (1,619)
0,362 und -0,310
100,0

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF=S = $([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

Das farblose und kristalline *N*,*N*'-Di-*tert*-butyl-*Si*,*Si*-diphenylsilandiamin (2,00 g, 6,12 mmol; 326,56 g/mol) wird in Diethylether (25 ml) und *n*-Pentan (25 ml) suspendiert. Die Suspension wird gekühlt (-10 °C) und die klare, farblose Trimethylaluminiumlösung (6,2 ml, c = 2,0 mol/l in *n*-Heptan; 12,4 mmol) wird langsam mittels einer Spritze zugetropft. Die Reaktionslösung wird auf Raumtemperatur gebracht und bei dieser gerührt (3 d). Die Mutterlauge wird in einen anderen Kolben überführt und bei vermindertem Druck werden Lösemittel und andere flüchtige Bestandteile entfernt. 2,4-Di-*tert*-butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan—Diethylether (1/2) wird als farblose, zähe Flüssigkeit erhalten.

Summenformel: C₃₂H₆₀Al₂N₂O₂Si

Ausbeute: 2,53 g (4,31 mmol) (70 % d. Th.)

Reinheit: ≈ 99 %

Molare Masse: 586,89 g/mol

NMR-Spektroskopie:

¹**H-NMR** (300,13 MHz, CDCl₃, ppm) δ = 7,69 – 7,63 (m, 4H^a), 7,34 -7,28 (m, 6H^a), 1,21 (s, $T_{1/2} = 0.9$ Hz, 18H^b), -0,89 (s, $T_{1/2} = 1.0$ Hz, 12H^c), 3,99 (q, ³J(H,H) = 7,1 Hz, 8H^d), 1,32 (t, ³J(H,H) = 7,1 Hz, 12H^e)

¹³C{¹H}-NMR (75,48 MHz, CDCI₃, ppm) δ = 140,3 (s, $T_{1/2}$ = 1,2 Hz, 2C¹), 135,0 (s, $T_{1/2}$ = 1,3 Hz, 4C²), 128,8 (s, $T_{1/2}$ = 1,2 Hz, 2C³), 127,6 (s, $T_{1/2}$ = 1,2 Hz, 4C⁴), 50,0 (s, $T_{1/2}$ = 1,1 Hz, 2C⁵), 33,8 (s, $T_{1/2}$ = 1,5 Hz, 6C⁶), -8,7 (s, $T_{1/2}$ = 57 Hz, 4C⁷), 66,5 (s, $T_{1/2}$ = 1,9 Hz, 4C⁸), 13,9 (s, $T_{1/2}$ = 1,9 Hz, 4C⁹)

²⁷**AI-NMR** (104,28 MHz, CDCl₃, ppm) δ = **186** (s, $T_{1/2}$ = 1856 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 3069 (w; vC_{Ar}H)^[148], 3050 (vw; vC_{Ar}H)^[148], 2998 (m; vCH)^[149], 2969 (s; vCH)^[149], 2922 (s; vCH)^[149], 2887 (m; vCH)^[149], 2818 (w; vCH)^[149], 1469 (w), 1448 (w), 1428 (m), 1379 (s), 1361 (m), 1328 (vw), 1288 (vw), 1258 (vw), 1223 (s), 1186 (s), 1151 (m), 1106

(m), 1090 (m), 1034 (vs), 997 (m), 919 (vw), 899 (m), 837 (w), 806 (vw), 780 (w), 740 (w), 696 (vs), 686 (vs), 624 (m), 581(vw)

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3183 (vw; vC_{Ar}H)^[150], 3138 (vw; vC_{Ar}H)^[150], 3051(m; vCH)^[150], 2973 (m; vCH)^[150], 2938 (s; vCH)^[150], 2906 (s; vCH)^[150], 2888 (s; vCH)^[150], 2819 (w; vCH)^[150], 1590 (w), 1568 (vw), 1451 (w) 1405 (vw), 1327 (vw), 1221 (w), 1191 (w), 1157 (vw), 1105 (w), 1090 (w), 1031 (w), 999 (s), 909 (w), 836 (vw), 808 (vw), 780 (vw), 711 (w), 666 (w), 622 (w), 572 (vw), 523 (m), 221 (w), 199 (w), 159 (w), 76 (vs)

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	4,77	65,49	10,31
gefunden	5,38	60,43	8,98

El-Massenspektrometrie: 30 °C

Eragmont Summonformol		m/z	rel.
Summenformer	ber.	gef.	Intensität
C ₁₈ H ₂₇ AINSi	312	312,1	26,7
C ₁₈ H ₂₆ AINSi	311	311,1	100,0
C ₁₆ H ₂₂ NSi	256	256,0	5,0
C ₁₆ H ₂₁ NSi	255	255,0	22,9
$C_{16}H_{20}NSi$	254	254,0	64,1
C ₁₅ H ₁₈ NSi	240	240,0	4,1
C ₁₅ H ₁₇ NSi	239	239,0	15,1
C ₁₅ H ₁₆ NSi	238	238,0	70,0
$C_{12}H_{13}NSi$	199	198,9	9,1
$C_{12}H_{12}NSi$	198	197,9	43,8
$C_{12}H_{11}NSi$	197	196,9	49,4
$C_{12}H_{10}NSi$	196	195,9	4,3
$C_{10}H_{14}NSi$	176	175,9	3,1
C ₈ H ₁₀ NSi	148	148,1	21,4
C ₆ H ₆ NSi	120	119,9	5,5
C ₆ H₅NSi	119	118,9	2,2
C_4H_8N	70	70,0	4,9
	Summenformel $C_{18}H_{27}AINSi$ $C_{18}H_{26}AINSi$ $C_{16}H_{22}NSi$ $C_{16}H_{21}NSi$ $C_{16}H_{20}NSi$ $C_{15}H_{18}NSi$ $C_{15}H_{17}NSi$ $C_{15}H_{16}NSi$ $C_{12}H_{13}NSi$ $C_{12}H_{12}NSi$ $C_{12}H_{10}NSi$ $C_{10}H_{14}NSi$ $C_{8}H_{10}NSi$ $C_{6}H_{6}NSi$ $C_{6}H_{5}NSi$ $C_{4}H_{8}N$	$\begin{array}{c c} & \textbf{m/z} \\ \hline \textbf{Summenformel} & \begin{array}{c} \textbf{m/z} \\ \textbf{ber.} \\ \hline \textbf{ber.} \\ \hline \end{array} \\ \hline \\$	$\begin{array}{c ccccc} & m/z & m/z \\ ber. & gef. \\ \hline \\ C_{18}H_{27}AINSi & 312 & 312,1 \\ C_{18}H_{26}AINSi & 311 & 311,1 \\ C_{16}H_{22}NSi & 256 & 256,0 \\ C_{16}H_{21}NSi & 255 & 255,0 \\ C_{16}H_{20}NSi & 254 & 254,0 \\ C_{15}H_{18}NSi & 240 & 240,0 \\ C_{15}H_{17}NSi & 239 & 239,0 \\ C_{15}H_{16}NSi & 238 & 238,0 \\ C_{12}H_{13}NSi & 199 & 198,9 \\ C_{12}H_{12}NSi & 198 & 197,9 \\ C_{12}H_{10}NSi & 197 & 196,9 \\ C_{12}H_{10}NSi & 196 & 195,9 \\ C_{10}H_{14}NSi & 176 & 175,9 \\ C_{8}H_{10}NSi & 148 & 148,1 \\ C_{6}H_{6}NSi & 120 & 119,9 \\ C_{4}H_{8}N & 70 & 70,0 \\ \hline \end{array}$

5.5.3. Herstellung von 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5sodiabicyclo[1.1.1]pentan (3)

Die Synthese erfolgte in Anlehnung an die in der Literatur beschriebenen Synthesen.^[31, 80] Es wird lediglich ergänzende Analytik aufgeführt.

Natriumhydrid (0,20 g, 8,33 mmol; 24 g/mol) und 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-3-aza-1azonia-2-sila-4-alanuidacyclobutan (1,02 g, 3,95 mmol; 258,21 g/mol) werden in Toluol (15 ml) und Diethylether (3 ml) suspendiert. Die graue Suspension wird erwärmt (110 °C) und gerührt (27 h). Anschließend wird die Suspension heiß abfiltriert (Por. 4). Als Filtrat wird eine klare und farblose Lösung erhalten. Nach kurzer Zeit bilden sich in dem abkühlenden Toluol farblose Nadeln. Im Vakuum werden die Lösemittel und andere flüchtige Bestandteile entfernt. Es bleibt ein weißes Pulver zurück. Zum Entfernen weiterer Verunreinigungen wird das Pulver zweimal mit Toluol (20 ml; 15 ml) gewaschen. Das feuchte Pulver wird trocken gezogen (5 x 10⁻³ mbar) und anschließend im statischen Vakuum (3 x 10⁻³ mbar) sublimiert (120 °C; 12 h). 1,3-Di-*tert*butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan wird in Form von farblosen Nadeln erhalten.

Zur Kristallzucht wird eine gesättigte Lösung aus 1,3-Di-*tert*-butyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan in Toluol hergestellt. Diese wird erwärmt (80 °C) und solange gerührt, bis sich der Feststoff komplett gelöst hat. Anschließend wird die Lösung langsam (Heizrate: 1°C/h) auf Raumtemperatur abgekühlt. Es scheiden sich nadelförmige Kristalle ab.

Summenformel: C ₁₂ H ₃₀ AlN ₂ SiNa	Molare Masse: 280,19 g/mol
Ausbeute: 0,89 g (3,18 mmol) (80 % d. Th.)	Reinheit: ≈ 99 %

Schmelzpunkt: beginnende Zersetzung ab ca. 250 °C

c	т _с	E _A	A	∆H [≠]	∆S [≠]	∆G [≠]
[mol/l]	[K]	[kJ/mol]	[10⁴]	[kJ/mol]	[J/(mol*K)]	[kJ/mol]
0,0096	354	16,7	15,5	14,0	-154,7	60,1
0,00131	312	8,2	1,7	6,0	-171,4	57,1

Aktivierungsparameter (400,17 MHz, in C₆D₅CD₃):

IR-Spektroskopie^[31] (\tilde{v} , cm⁻¹): 2959 (vs; vCH), 2907 (m; vCH), 2870 (w; vCH), 2817 (vw; vCH), 1465 (vw; δ CH₃**), 1398 (vw; δ CH₃*), 1378 (m; δ CH₃*), 1360 (m; δ CH₃*), 1251 (m; Gerüst), 1227 (m; vCN, Gerüst), 1193 (m; vCN), 1099 (vw; v_{sym}SiN), 1032 (m; v_{asym}SiN), 1018 (m; Gerüst), 955 (w; Gerüst*), 920 (w; Gerüst*), 898 (w; δ C(CH)₃), 868 (w; v_{sym}SiN), 842 (m; Gerüst), 819 (m; v_{sym}SiN, Gerüst), 789 (m; v_{asym}SiN, Gerüst), 773 (m; v_{sym}SiN, Gerüst), 751 (m; Gerüst), 710 (m; Gerüst), 681 (m; vAINa, Gerüst), 625 (m; Gerüst) * N – Alkyl, ** Al/Si – Methyl

Raman-Spektroskopie^[31] (\tilde{v} , cm⁻¹): 2962 (vs; vCH), 2949 (vs; vCH), 2928 (s; vCH), 2897 (vs; vCH), 2849 (w; vCH), 2815 (vw; vCH), 1459 (w; δ CH₃**), 1434 (w; δ CH₃*), 1398 (vw; δ CH₃*), 1291 (vw; δ SiC), 1250 (vw; vCC*, Gerüst), 1204 (w; vNC, vCC*), 1064 (vw; v_{asym}SiN, Gerüst), 1022 (vw; δ SiNAI), 968 (vw; Gerüst*), 906 (vw; vCC*), 894 (vw; vCC*), 841 (vw; δ SiNAI), 795 (vw; vSiN), 769 (vw; vAIN), 751 (vw; δ C_{3i}H), 693 (vw; vSiNAI, Gerüst), 646 (vw; vSiNAI, vSiC, vAIC), 615 (vw; δ CH₃**), 586 (vw; Gerüst), 539 (w; δ NSiNAI, Gerüst), 482 (vw; ω NSiNAI, vNaN), 422 (vw; Gerüst), 382 (w; Gerüst), 316 (vw; Gerüst*), 251 (w; δ CH₃*), 235 (w; v(SiN₂AI)Na, Gerüst), 196 (vw; v(SiN₂AI)Na, Gerüst)

* N – Alkyl, ** Al/Si – Methyl

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Die Aluminium-, Silicium- und die benachbarten Kohlenstoffatome wurden frei verfeinert und durch "DFIX" restraints auf physikalisch und chemisch sinnvolle Koordinaten gesetzt. Zur Beschreibung der Strukturen werden jeweils zwei Splitpositionen für die Lage der AlMe₂- und SiMe₂-Fragmente ermittelt. Kristalldaten und Informationen zur Strukturbestimmung sind in Tabelle 5.5.3.1 aufgelistet.

Tab.	5.5.3.1	Daten zur	r Kristallstrul	kturbestimmung	von 3.
------	---------	-----------	-----------------	----------------	--------

empirische Formel	C ₁₂ H ₃₀ AIN ₂ SiNa
Kristallhabitus, -farbe	Stäbchen, farblos
Kristallabmessungen [mm]	0,70 x 0,30 x 0,07
Kristallsystem	monoklin

Raumgruppe	C2
	<i>a</i> = 11,898(2) Å
Gitterparameter	$b = 13,043(2)$ Å $\beta = 117,541(14)$ °
	<i>c</i> = 6,1617(13) Å
Volumen der Elementarzelle [Å ³]	847,8(3)
Zahl der Formeleinheiten	2
berechnete Dichte [g/cm ³]	1,099
Messtemperatur [K]	173
Absorptionskoeffizient [mm ⁻¹]	0,201
F(000)	308
Messbereich [°]	3,729 bis 24,986
	-14≤h≤14
Index-Bereich	-15≤k≤15
	-7≤l≤7
gemessene Reflexe	3118
unabhängige Reflexe	1482 [<i>R</i> _{int} = 0,0465]
beobachtete Reflexe [I>2δ(I)]	1385
Verfeinerungsmethode	kleinste Fehlerquadrate
Daten / restraints / Parameter	1482 / 9 / 83
max.shift / su.	0,000
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0470, wR_2 = 0,1172$
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0514, wR_2 = 0,1219$
Wichtungsschema	a = 0,0441, b = 1,3727
GooF (GooF _{restraints}) ^[b]	1,137 (1,137)
Restelektronendichte (max, min) [e•Å-3]	0,365 und -0,366
Vollständigkeit [%]	98,7

[a] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(wF_o^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ mit $P = (F_o^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_o^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter 5.5.4. Darstellung von 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4alanuida-5-sodiabicyclo[1.1.1]pentan (4)

Methode A:

Zu Natriumhydrid (0,29 g, 12,08 mmol; 24 g/mol), in Toluol (20 ml) suspendiert, wird die farblose, zähe Flüssigkeit von 2,4-Di-*tert*-butyl-3,3-diphenyl-1,1,5,5-tetramethyl-2,4-diaza-3-sila-1,5-dialuminapentan—Diethylether (1/2) (2,02 g, 3,44 mmol; 586,89 g/mol) mittels Spritze gegeben. Die graue Suspension wird erwärmt (105 °C) und gerührt (25 h). Anschließend wird die Suspension heiß abfiltriert (Por. 4). Als Filtrat wird eine klare und farblose Lösung erhalten. Im Vakuum werden die Lösemittel und andere flüchtige Bestandteile entfernt. 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan wird als weißes Pulver erhalten. Zum Entfernen weiterer Verunreinigungen wird das Produkt im dynamischen Vakuum (5 x 10^{-3} mbar) erwärmt (40 °C; 12 h).

Methode B:

Die Synthese und Reinigung erfolgen analog zu Methode A. Als Edukte und Lösemittel dienen jedoch 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan (1,44 g, 3,77 mmol; 382,24 g/mol), Natriumhydrid (0,39 g, 16,25 mmol; 24 g/mol), Toluol (20 ml) und Diethylether (1 ml).

Zur Kristallzucht wird eine gesättigte Lösung aus 1,3-Di-*tert*-butyl-2,2-diphenyl-4,4-dimethyl-1,3diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan und Toluol hergestellt. Diese wird im Blockofen erwärmt (70 °C), sodass sich der Niederschlag komplett löst. Anschließend wird die klare Lösung langsam (Heizrate: 1 °C/h) auf Raumtemperatur abgekühlt. Es werden farblose, stäbchenförmige Kristalle erhalten.

```
Summenformel: C<sub>22</sub>H<sub>34</sub>AlN<sub>2</sub>SiNa
```

Molare Masse: 404,58 g/mol

Reinheit: ≈ 98 %

Reinheit: ≈ 97 %

Methode A:

Ausbeute: 0,87 g (2,15 mmol) (63 % d. Th.)

Methode B:

Ausbeute: 0,93 g (2,30 mmol) (61 % d. Th.)

Schmelzpunkt: beginnende Zersetzung ab ca. 200 °C

NMR-Spektroskopie:

¹H-NMR (600,22 MHz, C₆D₅CD₃, ppm) δ = **8,09 – 7,86** (m, 4H^a), **7,28 – 7,22** (m, 4H^a), **7,21 – 7,16** (m, 2H^a), **1,17** (s, $T_{1/2}$ = 1,3 Hz, 18H^b), **-0,09** (s, $T_{1/2}$ = 100 Hz, 3H^c), **-0,80** (s, $T_{1/2}$ = 101 Hz, 3H^d)

¹³C{¹H}-NMR (150,94 MHz, C₆D₅CD₃, ppm) δ = 135,2 (s, $T_{1/2}$ = 1,5 Hz, 2C¹), **129,2** (s, $T_{1/2}$ = 4,8 Hz, 4C²), **128,2** (s, $T_{1/2}$ = 4,0 Hz, 2C³), **125,4** (s, $T_{1/2}$ = 5,4 Hz, 4C⁴), **50,4** (s, $T_{1/2}$ = 1,3 Hz, 2C⁵), **36,4** (s, $T_{1/2}$ = 1,5 Hz, 6C⁶), **-3,8** (s, $T_{1/2}$ = 93 Hz, 2C⁷)

²⁷AI-NMR (104,28 MHz, C₆D₅CD₃, ppm) δ = **148** (s, $T_{1/2}$ = 2470 Hz)

c	Т _с	E _A	A	∆H [≠]	∆S [≠]	∆G [≠]
[mol/l]	[K]	[kJ/mol]	[10 ⁷]	[kJ/mol]	[J/(mol*K)]	[kJ/mol]
0,021	320	33,7	30,8	31,3	-90,3	58,2
0,024	316	29,9	8,5	27,5	-101,1	57,7

Aktivierungsparameter (400,17 MHz, in C₆D₅CD₃):

IR-Spektroskopie (\tilde{v} , cm⁻¹): 3067 (w; vC_{Ar}H), 3047 (w; vC_{Ar}H), 3017 (vw; vC_{Ar}H), 2953 (s; vCH), 2923 (vs; vCH), 2863 (s; vCH), 2815 (m; vCH), 1588 (vw; vC_{Ar}C_{Ar}), 1534 (vw; vC_{Ar}C_{Ar}), 1436 (vw; δ CH₃**), 1464 (w; vC_{Ar}C_{Ar}), 1427 (m; δ CH₃*), 1380 (m; δ CH₃*), 1358 (m; vC_{Ar}C_{Ar}), 1307 (vw; δ SiC), 1259 (vw; Gerüst), 1225 (m; vCN, Gerüst), 1204 (vs; C_{Ar}H), 1157 (w; vCN), 1171 (w; δ C_{Ar}H), 1102 (s; δ C_{Ar}H), 1051 (s; v_{asym}SiN), 1024 (m; TC_{Ar}H, Gerüst), 997 (w; TC_{Ar}H), 950 (vw; Gerüst*), 910 (vw; Gerüst*), 879 (w; δ C_{Ar}H, δ C(CH)₃), 845 (w; v_{sym}SiN), 822 (s;

v_{sym}SiN, Gerüst), 778 (vs; v_{sym}SiN, Gerüst), 739 (s; Gerüst), 697 (vs; vAlNa, Gerüst), 652 (s; vAlC), 610 (m; δAlC, Gerüst), 581 (m; δAlC, Gerüst), 531 (s; Gerüst) * N – Alkyl, ** Al – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3130 (vw; vC_{Ar}H), 3048 (vs; vC_{Ar}H), 2997 (m; vCH), 2956 (s; vCH), 2925 (s; vCH), 2898 (s; vCH), 1588 (s; vC_{Ar}C_{Ar}), 1461 (m; vC_{Ar}C_{Ar}), 1441 (m; δ CH₃*), 1381 (vw; vC_{Ar}C_{Ar}), 1284 (vw; vC_{Ar}C_{Ar}), 1226 (m; vCC*, Gerüst), 1211 (m; δ C_{Ar}H), 1188 (m; δ C_{Ar}H), 1109 (m; vSiN, vSiC_{Ar}), 1066 (vw; v_{asym}SiN, Gerüst), 1029 (m; TC_{Ar}H), 999 (w; TC_{Ar}H), 902 (vw; vCC*), 807 (vw; vSiN), 784 (wv; AIN), 702 (vw; vSiNAI, Gerüst), 677 (vw; vAIC, vC_A^rC_{Ar}), 621 (w; vC_A^rC_A^r), 573 (vw; Gerüst), 540 (w; δNSiNAI, Gerüst), 519 (vw; δNSiNAI, Gerüst), 501 (vw; ωNSiNAI, vNaN), 418 (vw; Gerüst), 388 (vw; Gerüst), 264 (w; Gerüst), 233 (w; v(SiN₂AI)Na, Gerüst), 204 (w; v(SiN₂AI)Na, Gerüst), 172 (w; ωCH₃**, Gerüst), 134 (m; Gerüst), 97 (vs; Gerüst), 75 (vs; Gerüst)

* N – Alkyl, ** Al – Methyl

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	6,92	65,31	8,47
gefunden	5,82	65,92	8,51

El-Massenspektrometrie: 30 °C

Francest	Summanformal	m/z	m/z	rel.
Fragment	Summernormer		gef.	Intensität
[Ph₂SiN ^t ButyIAIH₂(CH₃)₂] ⁺	C ₁₈ H ₂₇ AINSi	312	312,2	24.3
[Ph₂SiN ^t ButylAlH(CH ₃)₂] ⁺	C ₁₈ H ₂₆ AINSi	311	311,2	100,0
[Ph₂SiH₃N ^t Butyl]⁺	C ₁₆ H ₂₂ NSi	256	256,2	4,8
[Ph₂SiH₂N ^t Butyl]⁺	C ₁₆ H ₂₁ NSi	255	255,1	20,0
[Ph₂SiHN ^t Butyl] ⁺	$C_{16}H_{20}NSi$	254	254,1	62,7
$[Ph_2SiH_2NC(CH_3)_2]^+$	C ₁₅ H ₁₈ NSi	240	240,1	3,8
[Ph ₂ SiHNC(CH ₃) ₂] ⁺	$C_{15}H_{17}NSi$	239	239,1	15,8
$[Ph_2SiNC(CH_3)_2]^{+}$	$C_{15}H_{16}NSi$	238	238,1	66,2
[Ph₂SiNH₃] ⁺	$C_{12}H_{13}NSi$	199	199,1	8,8
$[Ph_2SiNH_2]^+$	$C_{12}H_{12}NSi$	198	198,1	45,0
$[Ph_2SiNH]^+$	$C_{12}H_{11}NSi$	197	197,1	45,0
[Ph₂SiN]⁺	$C_{12}H_{10}NSi$	196	196,1	4,6
[H₂C₄SiN ^t Butyl] ⁺	C ₈ H ₁₀ NSi	148	148,1	19,8

Experimenteller Teil				
[Ph]⁺	C_6H_5	77	77,0	1,7
$[NC(CH_2)(CH_3)_2]^+$	C_4H_8N	70	70,1	5,6
[^t Butyl]⁺	C_4H_9	57	57,0	2,0

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: $(\overline{4} \ \overline{30} \ \overline{5})$ 0,2614, (17 25 0) 0,4353, (27 $\overline{28} \ \overline{7}$) 0,3802, (14 $\overline{23} \ 8$) 0,3229, (0 $\overline{1}$ 0) 0,1899, ($\overline{30} \ 6 \ 7$) 0,2897, (5 0 $\overline{2}$) 0,6362, (6 26 5) 0,3445, ($\overline{25} \ 28 \ 2$) 0,2627.

$C_{22}H_{34}AIN_2SiNa C_7H_8$			
Stäbchen, farblos			
0,75 x 0,55 x 0,43			
triklin			
PĪ			
<i>a</i> = 13,0307(4) Å α = 80,457(3) °			
$b = 14,5735(5)$ Å $\beta = 89,805(3)^{\circ}$			
$c = 15,3549(5)$ Å $\gamma = 71,505(2)$ °			
2723,29(16)			
2			
1,099			
173			
numerisch			
$T_{min} = 0,6860, T_{max} = 0,9630$			
0,149			
972			
2,174 bis 24,999			
-15≤h≤15			
-16≤k≤17			
-18≤l≤18			
20719			
9566 [<i>R</i> _{int} = 0,0360]			
8567			
kleinste Fehlerquadrate			
9566 / 0 / 605			
0,000			

Tab. 5.5.4.1 Daten zur Kristallstrukturbestimmung von 4.

finale R-Werte [I>2δ(I)] ^[a]	<i>R</i> ₁ = 0,0497, <i>wR</i> ₂ = 0,1170
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0562, wR_2 = 0,1215$
Wichtungsschema	a = 0,0429, b = 1,7659
GooF (GooF _{restraints}) ^[b]	1,161 (1,161)
Restelektronendichte (max, min) [e•Å-3]	0,487 und -0,296
Vollständigkeit [%]	99,7

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

5.5.5. Darstellung von 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5sodiabicyclo[1.1.1]pentan (5)

Zu einer Suspension aus Natriumhydrid (0,314 g, 12,92 mmol; 24 g/mol) in Toluol (15 ml) und Diethylether (3 ml) wird das farblose, flüssige 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-3-aza-1-azonia-2-sila-4-alanuidacyclobutan (2,31 g, 8,07 mmol; 286,24 g/mol) unter Gasentwicklung mittels Spritze zugetropft. Das Reaktionsgemisch wird erwärmt (115 °C), gerührt (17 h) und anschließend heiß über eine Fritte (Por. 4) abfiltriert. Als Filtrat wird eine klare Lösung erhalten. Im Vakuum werden flüchtige Bestandteile entfernt. 1,3-Di-*tert*-pentyl-2,2,4,4-tetramethyl-1,3-diaza-2-sila-4-alanuida-5-sodiabicyclo[1.1.1]pentan wird als weißer Feststoff erhalten. Zur Reinigung wird dieser im statischen Vakuum (2 x 10^{-3} mbar) sublimiert (120 °C). Es werden feine Nadeln erhalten.

Summenformel: C₁₄H₃₄AlN₂SiNa

Molare Masse: 308,50 g/mol

Ausbeute: 1,77 g (5,74, mmol) (71 % d. Th.)

Reinheit: ≈ 96%

Schmelzpunkt: beginnende Zersetzung ab ca. 180 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, C₆D₅CD₃, ppm) δ = **1,41** (q, ³*J*(H,H) = 7,5 Hz, 4H^a), **1,12** (s, $T_{1/2}$ = 1,7 Hz, 12H^b), **0,88** (t, ³*J*(H,H) = 7,5 Hz, 6H^c), **0,46** (s, $T_{1/2}$ = 27 Hz, 3H^d), **-0,05** (s, $T_{1/2}$ = 34 Hz, 3H^e), **-0,31** (s, $T_{1/2}$ = 34 Hz, 3H^f), **-0,96** (s, $T_{1/2}$ = 28 Hz, 3H^g)

¹³C{¹H}-NMR (100,63 MHz, C₆D₅CD₃, ppm) δ = **52,4** (s, $T_{1/2}$ = 1,9 Hz, 2C¹), **41,4** (s, $T_{1/2}$ = 2,1 Hz, 2C²), **32,8** (s, $T_{1/2}$ = 3 Hz, 4C³), **10,7** (s, $T_{1/2}$ = 2,0 Hz, 2C⁴), **9,8** (s, $T_{1/2}$ = 41 Hz, 1C⁵), **7,6** (s, $T_{1/2}$ = 56 Hz, 1C⁶), **-3,6** (s, $T_{1/2}$ = 43 Hz, 2C⁷), **-4,6** (s, $T_{1/2}$ = 46 Hz, 2C⁸)

²⁷AI-NMR (104,28 MHz, $C_6D_5CD_3$, ppm) δ = 145 (s, $T_{1/2}$ = 1570 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 2963 (vs; vCH), 2924 (vs; vCH), 2882 (s; vCH), 1462 (w; δ CH₃**), 1396 (vw; δ CH₃*), 1380 (w; δ CH₃*), 1374 (w; δ CH₂*), 1359 (w; δ CH₃*, δ CH₂*), 1325 (vw; [CH₂, Gerüst*), 1289 (vw; δ C_{Si}H₃), 1251 (m; Gerüst), 1220 (w; vCN, Gerüst), 1193 (m; vCN), 1096 (vw; v_{sym} SiN), 1063 (w; [CH₂, Gerüst*), 1047 (w; v_{asym} SiN), 1025 (s; Gerüst), 964 (m; Gerüst*), 904 (s; Gerüst*), 855 (m; v_{sym} SiN), 835 (vs; Gerüst), 811 (s; v_{sym} SiN, Gerüst), 784 (vs; v_{asym} SiN, Gerüst), 749 (s; Gerüst), 676 (vs; vAINa, Gerüst), 647 (vs; vAIC) * N – Alkyl, ** Al/Si – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 2971 (vs; vCH), 2941 (vs; vCH), 2899 (vs; vCH), 2818 (w; vCH), 1460 (w; δ CH₃**), 1434 (m; δ CH₃*, ω CH₂), 1398 (vw; δ CH₃*, [CH₂), 1384 (vw; δ CH₃*, ω CH₂), 1317 (vw; [CH₂, Gerüst*), 1293 (w; δ SiC), 1249 (vw; vCC*, Gerüst), 1225 (w; vNC, vCC*), 1197 (w; vNC, vCC*), 1073 (w; v_{asym}SiN, Gerüst), 1045 (w; δ SiNAI), 1013 (w; Gerüst*), 971 (vw; Gerüst*), 916 (w; Gerüst*), 904 (w; vCC*), 839 (vw; δ SiNAI), 783 (vw; vSiN), 755 (w; vAIN), 733 (vw; δ C_{Si}H), 694 (vw; vSiNAI, Gerüst), 649 (w; vSiNAI, vSiC, vAIC), 602 (m; δ CH₃**), 578 (w; Gerüst), 562 (w; Gerüst), 548 (w; δ NSiNAI, Gerüst), 498 (w; ω NSiNAI, vNaN), 431 (w; Gerüst), 387 (vs; Gerüst), 369 (m; vSiNAI, Gerüst), 344 (w; vSiNAI, Gerüst), 246 (m; v(SiN₂AI)Na, Gerüst), 225 (m; ω CH₃**), 192 (m; v(SiN₂AI)Na, Gerüst), 136 (m; Gerüst), 93 (m; Gerüst)

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	9,08	54,51	11,11
gefunden	9,67	54,47	10,75

El-Massenspektrometrie: 70 °C

Fragmont	Summonformol	m/z	m/z	rel.
Fragment	Summernormer	ber.	gef.	Intensität
[M − Na]⁺	$C_{14}H_{34}AIN_2Si$	285	285,2	11,9
$[M - NaCH_2]^+$	$C_{13}H_{31}AIN_2Si$	271	271,3	57,7
$\left[M-Na(CH_2)_2\right]^{+}$	$C_{12}H_{28}AIN_2Si$	255	255,2	5,5
[Me₂SiNHN ^t PentylAlMe₂] ⁺	$C_9H_{23}AIN_2Si$	215	215,4	10,4
$\left[(CH_3)_2AINH(CH_3)_2SiNHC(CH_3)_2(CH_2)\right]^+$	$C_8H_{22}AIN_2Si$	201	201.2	88,1
$[(CH_3)_2AIN(CH_3)_2SiNC(CH_3)_2]^+$	$C_7H_{18}AIN_2Si$	185	185,2	35,8
$[Me_2Si(NH)_2AIMe_2]^+$	$C_4H_{12}AIN_2Si$	144	144,1	56,8
$[(CH_3)_2AINHC(CH_3)_2]^+$	$C_5H_{13}AIN$	114	114,0	67,9
$[(CH_3)_2AI]^+$	C_2H_6AI	57	57,1	30,7

 5.5.6. Umsetzung von N,N´-Di-*tert*-butylethylendiamin mit Trimethylaluminium zu N,N´-Ditert-butylethylendiamin—Trimethylaluminium (1/1) (6) und 1,4-Di-*tert*-butyl-5,5,6,6tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (7)

Umsatz A:

Die klare und farblose Lösung aus *N*,*N*'-Di-*tert*-butylethylendiamin (2,37 g, 13,85 mmol; 172,32 g/mol; 0,80 g/ml) und *n*-Pentan (30 ml) wird gekühlt (-15 °C) und mittels einer Spritze zügig mit der klaren und farblosen Trimethylaluminiumlösung (7 ml, c = 2,0 mol/l in *n*-Heptan; 15,0 mmol) versetzt. Es fällt ein farbloser Niederschlag aus. Das Reaktionsgemisch wird gerührt (30 min.), anschließend auf Raumtemperatur temperiert und weiter gerührt (16 h). Der Niederschlag löst sich komplett auf. Die Lösemittel und andere flüchtige Bestandteile werden bei vermindertem Druck entfernt. Es wird ein schwach gelbes Pulvergemisch von *N*,*N*'-Di-*tert*-butylethylendiamin—Trimethylaluminium (1/1) (6) und 1,4-Di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (7) erhalten. Der Feststoff wird im Vakuum (2,6 x 10^{-1} mbar) sublimiert (50 °C Badtemperatur). Oberhalb des Ölbades werden weiße Kristalle von 7 erhalten und ein schwach gelber Rückstand, bei dem es sich um verunreinigtes 7 handelt, bleibt zurück.

Umsatz B:

Die Synthese erfolgt analog zu Umsatz A, jedoch wird die Trimethylaluminiumlösung mit *n*-Pentan (10 ml) verdünnt und die Zugabe (20 Min.) erfolgt über einen Tropftrichter bei -35 °C. Einwaagen: *N*,*N*'-Di-*tert*-butylethylendiamin (2,47 g, 14,35 mmol; 172,32 g/mol; 0,80 g/ml), Trimethylaluminiumlösung (7 ml, c = 2,0 mol/l in *n*-Heptan; 15,0 mmol) und *n*-Pentan (30 ml)

Beide Umsätze liefern für das Pulvergemisch dieselben Verschiebungen in den NMR-Spektren. Deswegen werden diese Messungen nur einmal aufgeführt. Die NMR-spektroskopischen Ergebnisse vom isolierten **7** sind in Kapitel 5.5.7. aufgeführt.

Summenformel: $C_{13}H_{33}AI_1N_2$ (6)	Molare Masse: 244,25 g/mol (6)
Summenformel: $C_{14}H_{34}AI_2N_2$ (7)	Molare Masse: 284,40 g/mol (7)

Pulvergemisch:

Verhältnis 6 : 7: Umsatz A: ≈ 0,85 : 0,15 Umsatz B: ≈ 0,93 : 0,07

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCI₃, ppm) δ = **3,03** (s, $T_{1/2}$ = 1,2 Hz, 4H^a), **1,16** (s, $T_{1/2}$ = 1,2 Hz, 18H^b), **-0,53** (s, $T_{1/2}$ = 1,5 Hz, 6H^c), **-0,81** (s, $T_{1/2}$ = 1,5 Hz, 6H^d), **3,0-2,9** (m, 1H^e), **2,8-2,6** (m, 3H^e), **1,27** (s, $T_{1/2}$ = 3,8 Hz, 9H^f), **1,08** (s, $T_{1/2}$ = 3,8 Hz, 9H^g), **0,51** (Pseudo-t, ³*J*(¹H, ¹H) = 8,8 Hz, 1H^h), **-0,89** (s, $T_{1/2}$ = 2,1 Hz, 9Hⁱ)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = **52,4** (s, $T_{1/2}$ = 0,3 Hz, 2C¹), **37,9** (s, $T_{1/2}$ = 0,4 Hz, 2C²), **29,9** (s, $T_{1/2}$ = 0,4 Hz, 6C³), **-5,6** (s, $T_{1/2}$ = 26 Hz, 4C⁴), **56,2** (s, $T_{1/2}$ = 4 Hz, 1C⁵), **50,2** (s, $T_{1/2}$ = 4 Hz, 1C⁶), **43,5** (s, $T_{1/2}$ = 7 Hz, 1C⁷), **40,6** (s, $T_{1/2}$ = 7 Hz, 1C⁸), **29,4** (s, $T_{1/2}$ = 5 Hz, 3C⁹), **28,5** (s, $T_{1/2}$ = 5 Hz, 3C¹⁰)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **161** (s, $T_{1/2}$ = 3000 Hz, 3AI^{A+B})

5.5.7. Darstellung von 1,4-Di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan (7)

Die klare und farblose Lösung aus *N,N'*-Di-*tert*-butylethylendiamin (2,46 g, 14,26 mmol; 172,32 g/mol; 0,80 g/ml) und *n*-Pentan (60 ml) wird gekühlt (-20 °C) und mittels einer Spritze zügig mit der klaren und farblosen Trimethylaluminiumlösung (15 ml, c = 2,0 mol/l in *n*-Heptan; 30,0 mmol) versetzt. Es fällt ein farbloser Niederschlag aus. Das Reaktionsgemisch wird gerührt (30 min.), anschließend auf Raumtemperatur temperiert und weiter gerührt (12 h). Der Niederschlag löst sich komplett auf. Das Reaktionsgemisch wird bis auf einen kleinen Rest eingeengt. Die Suspension wird im Vakuum (3,6 x 10⁻¹ mbar) erwärmt (50 °C Badtemperatur). 1,4-Di-*tert*-butyl-5,5,6,6-tetramethyl-1,4-diazonia-5,6-dialanuidabicyclo[2.1.1]hexan scheidet sich in Form von farblosen Kristallen ab. Stäbchenförmige Kristalle werden durch Sublimation (30 °C) unter vermindertem Druck (4 x 10⁻³ mbar) erhalten.

Summenformel: C₁₄H₃₄Al₂N₂

Molare Masse: 284,40 g/mol

Reinheit: ≈ 96 %

Ausbeute: 3,73 g (13,12 mmol) (92 % d. Th.)

Schmelzpunkt: 77 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) $\delta = 3,03$ (s, $T_{1/2} = 1,1$ Hz, 4H^a), **1,17** (s, $T_{1/2} = 1,1$ Hz, 18H^b), **-0,52** (s, $T_{1/2} = 1,4$ Hz, 6H^c), **-0,80** (s, $T_{1/2} = 1,4$ Hz, 6H^d)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = **52,5** (s, $T_{1/2}$ = 0,3 Hz, 2C¹), **38,0** (s, $T_{1/2}$ = 0,3 Hz, 2C²), **29,9** (s, $T_{1/2}$ = 0,4 Hz, 6C³), **-3,6** (s, $T_{1/2}$ = 65 Hz, 2C⁴), **-9,9** (s, $T_{1/2}$ = 65 Hz, 2C⁵)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **161** (s, T_{1/2} = 1740 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 2968 (vs; vCH), 2932 (s; vCH), 2921 (s; vCH), 2899 (s; vCH), 2828 (w; vCH), 1478 (w; δ CH₃**), 1464 (w; δ CH₃**), 1447 (vw; δ CH₃*), 1396 (w; δ CH₃*, TCH₂), 1374 (m; δ CH₃*, ω CH₂), 1368 (m; ω CH₂), 1229 (m; δ CH₃**), 1194 (vs; vNC*, Gerüst*), 1048 (w; vNC*, vCC, δ AIN), 982 (m; v_{asym} NC*, δ AIN, Gerüst*), 924 (vw; Gerüst), 909 (w; Gerüst), 787 (w;

Gerüst), 689 (vs; δCH₃**, ωNAI), 659 (vs; δCH₃**, ωNAI), 626 (s; δCH₃**, vNAI, v_{asym}AIC**), 571 (w; Gerüst) * N – Alkyl, ** AI – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 2977 (vs; vCH), 2931 (s; vCH), 2898 (vs; vCH), 2825 (w; vCH), 1495 (w; vCH), 1465 (m; δ CH₃**), 1442 (w; δ CH₃*), 1396 (vw; δ CH₃*, ω CH₂), 1369 (vw; ω CH₂), 1226 (w; vNC*), 1049 (w; vNN, vCC), 922 (w; v_{sym}NAI, Gerüst), 914 (w; v_{sym}NAINAI, v_{sym}NC, Gerüst), 788 (m; v_{sym}NAI, Gerüst), 698 (w; v_{asym}AIC, δ CH₃**, Gerüst), 666 (w; v_{asym}AIC, δ CH₃**, Gerüst), 613 (w; v_{sym}AIC, v_{sym}NAI), 536 (s; Gerüst), 473 (w; Gerüst), 422 (vw; v_{asym}NAI, Gerüst*), 386 (m; Gerüst), 325 (m; Gerüst), 252 (w; Gerüst), 217 (w; Gerüst), 178 (w; δ CH₃**), 165 (m; Gerüst), 139 (w; Gerüst), 74 (vw; δ CH₃**)

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	9,85	59,13	12,05
gefunden	9,03	59,54	12,04

El-Massenspektrometrie: 30 °C

Eragmont	Summonformol	m/z	m/z	rel.
Fragment	Summernormer	ber.	gef.	Intensität
[AI(CH ₃) ₂ N ^t Butyl(CH ₂) ₂ N ^t ButylAI(CH ₃)] ⁺	$C_{13}H_{31}AI_2N_2$	269	269,2	48,5
[Al(CH₃)N ^t Butyl(CH₂)₂N ^t Butyl] ⁺	$C_{11}H_{25}AIN_2$	212	212,2	12,1
[Al(CH₂)N ^t Butyl(CH₂)₂N ^t Butyl] ⁺	$C_{11}H_{24}AIN_2$	211	211,2	100,0
[AIN ^t Butyl(CH ₂) ₂ N ^t Butyl] ⁺	$C_{10}H_{22}AIN_2$	197	197,2	24,3
$[AINC(CH_2)_2(CH_3)(CH_2)_2N^tButyl]^+$	$C_{10}H_{20}AIN_2$	195	195,1	15,6
$[NC(CH_2)(CH_3)_2]^+$	C_4H_8N	70	70,0	2,0
[^t Butyl] ⁺	C_4H_9	57	57,0	7,9

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Da es sich bei **7** um einen nicht-meroedrischen Zwilling handelt, wurde die Zwillingsroutine des Programmpaketes X-Area^[151] der Firma Stoe benutzt. Die Verfeinerung erfolgte nach der "Methode von Pratt, Coyle und Ibers"^[152] (HKLF 5 Option des Programmpaketes ShelX-2014^[143]). Das Verhältnis der beiden Zwillingsindividuen verfeinert zu einem Wert von ca. 50 : 50. Die beiden Zwillingsindividuen lassen sich durch eine zweizählige Achse ineinander überführen. Die Zwillingsmatrix lautet: 100 0-10 -0,20-1. Jede fünfte reziproke Gitterschicht fällt streng aufeinander.

empirische Formel	$C_{14}H_{34}AI_2N_2$
Kristallhabitus, -farbe	Stäbchen, farblos
Kristallabmessungen [mm]	0,55 x 0,42 x 0,37
Kristallsystem	monoklin
Raumgruppe	C2/c
	<i>a</i> = 10,9927(7) Å
Gitterparameter	$b = 12,8058(6)$ Å $\beta = 95,012(5)$ °
	<i>c</i> = 12,8883(8) Å
Volumen der Elementarzelle [Å ³]	1807,35(18)
Zahl der Formeleinheiten	4
berechnete Dichte [g/cm ³]	1,045
Messtemperatur [K]	173
Absorptionskoeffizient [mm ⁻¹]	0,150
F(000)	632
Messbereich [°]	2,447 bis 24,999
	-13≤h≤13
Index-Bereich	-15≤k≤15
	-15≤l≤15
gemessene Reflexe	9795
unabhängige Reflexe	9795
beobachtete Reflexe [I>2δ(I)]	4845
Verfeinerungsmethode	kleinste Fehlerquadrate
Daten / restraints / Parameter	9795 / 0 / 88
max.shift / su.	0,000
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0492, wR_2 = 0,1115$
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0533, wR_2 = 0,1144$
Wichtungsschema	a = 0,0613, b = 1,8111
GooF (GooF _{restraints}) ^[b]	1,234 (1,234)
Restelektronendichte (max, min) [e•Å-3]	0,319 und -0,222
Vollständigkeit [%]	99,8

Tab. 5.5.7.1 Daten zur Kristallstrukturbestimmung von 7.

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

5.5.8. Darstellung von *N*,*N*[']-Di-*tert*-butylpropylendiamin—Trimethylaluminium (1/2) (8)

Das kristalline N,N'-Di-tert-butylpropylendiamin (1,416 g, 7,60 mmol; 186,21 g/mol) wird in n-Pentan und gekühlt (-10 °C). Mittels einer Spritze (20 ml) gelöst wird eine Trimethylaluminiumlösung (7.6 ml, c = 2.0 mol/l in *n*-Heptan; 15.2 mmol) zügig zugetropft und weiter gerührt (30 min). Auf Anhieb fällt ein weißer Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (12 h). Es tritt keine sichtbare Veränderung auf. Die Lösemittel und flüchtige Bestandteile werden bei vermindertem Druck entfernt. Es bleibt ein weißer Niederschlag zurück. Zur Reinigung wird dieser im dynamischen Vakuum (1 -3 x 10⁻³ mbar) bei 50 °C Badtemperatur sublimiert. N,N'-Di-tert-butylpropylendiamin-Trimethylaluminium (1/2) wird in Form von plättchenförmigen, farblosen Kristallen erhalten.

Summenformel: C₁₇H₄₄Al₂N₂

Molare Masse: 330,52 g/mol

Ausbeute: 2,26 g (6,84 mmol) (90 % d. Th.)

Reinheit: ≈ 96 %

Schmelzpunkt: 113,1 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **2,6-3,0** (m, 4H^a), **1,85** (Pseudo-qui, 2H^b), **1,63** (s, $T_{1/2} = 12 \text{ Hz}, 2\text{H}^{c}$), **1,30** (s, $T_{1/2} = 3,7 \text{ Hz}, 18\text{H}^{d}$), **-0,86** (s, $T_{1/2} = 3,4 \text{ Hz}, 18\text{H}^{e}$)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = **50,8** (s, $T_{1/2}$ = 27 Hz, 2C¹), **42,0** (s, $T_{1/2}$ = 32 Hz, 2C²), **29,1** (s, $T_{1/2}$ = 43 Hz, 1C³), **28,4** (s, $T_{1/2}$ = 19 Hz, 6C⁴), **-5,8** (s, $T_{1/2}$ = 51 Hz, 6C⁵)

²⁷**AI-NMR** (104,28 MHz, CDCl₃, ppm) δ = **173** (s, $T_{1/2}$ = 4260 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 3239 (vw; vNH), 2968 (s; vCH), 2924 (s; vCH), 2888 (m; vCH), 2826 (w; vCH), 1480 (w; δ CH₃**) 1469 (w; δ CH₃**), 1447 (vw; δ CH₃*, δ NH), 1402 (w; δ CH₃*, ω CH₂), 1375 (vw; ω CH₂, TCH₂), 1308 (vw; vCC, Gerüst), 1294 (vw; TCH₂, vCC*), 1241 (w; δ CH₃**), 1230 (w; δ CH₃**), 1193 (m; vNC*, Gerüst*), 1117 (vw; Gerüst), 1096 (w; Gerüst), 1074 (vw; vCC, δ CH₃**), 1053 (vw; vNC, vCC), 1016 (vw; Gerüst*, δ NH), 992 (vw; vNC*, vCC, δ NH),

968 (w; δCH₃*), 926 (vw; Gerüst), 862 (w; v_{asym}NC*, δAIN, Gerüst*), 767 (m; Gerüst), 686 (vs; δCH₃**, ωNAI), 639 (s; δCH₃**, vNAI, v_{asym}AIC**) * N – Alkyl, ** AI – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3240 (w; vNH), 2979 (s; vCH), 2921 (vs; vCH), 2887 (vs; vCH), 2818 (m; vCH), 1468 (w; δ CH₃**), 1444 (w; δ CH₃*), 1418 (vw; δ CH₃*, ω CH₂), 1379 (vw; ω CH₂), 1350 (vw; TCH₂, δ NH), 1323 (vw; Gerüst), 1296 (vw; TCH₂, Gerüst), 1249 (vw; Gerüst), 1185 (m; vNC*), 1120 (vw; Gerüst), 1098 (vw; Gerüst), 1054 (vw; vCC), 1017 (vw; δ CH₃*, δ NH), 994 (vw; vNC, δ NH), 936 (w; Gerüst), 927 (vw; vCC*), 897 (vw; vCC, Gerüst*), 851 (w; Gerüst), 736 (m; v_{asym}AlC, δ CH₃**, Gerüst), 700 (w; v_{asym}AlC, δ CH₃**, Gerüst), 624 (vw; v_{asym}AlC, δ CH₃**), 583 (w; vNAI, Gerüst), 528 (vs; Gerüst), 478 (w; Gerüst), 451 (vw; Gerüst), 415 (vw; Gerüst), 391 (vw; Gerüst), 276 (vw; δ CH₃*), 238 (w; M – Alkyl, ** Al – Methyl

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	8,48	61,78	13,42
gefunden	9,48	61,31	12,80

El-Massenspektrometrie: 30 °C

Eragmont		Summonformal	m/z	m/z	rel.
	Fragment	Summernormer	ber.	gef.	Intensität
	[HN ^t Butyl(CH₂)₃HN ^t Butyl]⁺	$C_{11}H_{26}N_2$	186	186,2	3,3
	[HNC(CH ₃) ₂ (CH ₂) ₃ HN <i>t</i> Butyl] ⁺	$C_{10}H_{23}N_2$	171	171,2	7,7
	[HN(CH₂)₃HN <i>t</i> Butyl] ⁺	$C_7 H_{17} N_2$	129	129,1	50,7
	[(CH₂)₃HN <i>t</i> Butyl]⁺	$C_7H_{16}N$	114	114,1	6,4
	[(CH₂)₃N <i>t</i> Butyl]⁺	$C_7H_{15}N$	113	113,1	44,9
	[(CH₂)₂HN <i>t</i> Butyl]⁺	$C_6H_{14}N$	100	100,1	43,6
	[(CH₂)₂N <i>t</i> Butyl]⁺	$C_6H_{13}N$	99	99,1	7,8
	$[(CH_2)_3NC(CH_3)_2]^+$	$C_6H_{12}N$	98	98,1	100,0
	[(CH₂)HN <i>t</i> Butyl] ⁺	$C_5H_{12}N$	86	86,1	96,3
	[HN <i>t</i> Butyl]⁺	$C_4H_{10}N$	72	72,1	61,4
	[<i>t</i> Butyl]⁺	C ₄ H ₉	57	57,0	61,0
	$[(CH_2)_3]^+$	C_3H_6	42	42	11,1

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Das Amin-Proton wurde durch den "AFIX 3" auf eine chemisch und physikalisch sinnvolle Position gesetzt. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: (16 11 $\overline{11}$) 0,3754, ($\overline{17}$ $\overline{6}$ 6) 0,4974, (4 11 $\overline{2}$) 0,3438, (19 20 1) 0,6327, ($\overline{18}$ $\overline{12}$ 7) 0,4086, (21 20 $\overline{6}$) 0,2839, ($\overline{11}$ $\overline{24}$ 8) 0,3275, ($\overline{25}$ $\overline{8}$ 4) 0,4256, (30 24 $\overline{7}$) 0,3193, (7 $\overline{24}$ 2) 0,6077, ($\overline{11}$ 22 2) 0,7521.

Tab. 5.5.8.1 Daten zur Kristallstrukturbestimmung von 8.

empirische Formel	$C_{17}H_{44}AI_2N_2$
Kristallhabitus, -farbe	Plättchen, farblos
Kristallabmessungen [mm]	0,55 x 0,20 x 0,01
Kristallsystem	monoklin
Raumgruppe	C2/m
	<i>a</i> = 12,0077(9) Å
Gitterparameter	$b = 11,1420(7) \text{ Å} \qquad \beta = 108,021(6) ^{\circ}$
	c = 9,1857(7) Å
Volumen der Elementarzelle [Å ³]	1168,66(15)
Zahl der Formeleinheiten	2
berechnete Dichte [g/cm ³]	0,939
Messtemperatur [K]	173
Absorptionsmothede	numerisch
Absolptionsmethode	$T_{min} = 0,7891, T_{max} = 0,9497$
Absorptionskoeffizient [mm ⁻¹]	0,123
F(000)	372
Messbereich [°]	2,332 bis 24,999
	-13≤h≤14
Index-Bereich	-13≤k≤13
	-10≤l≤10
gemessene Reflexe	4447
unabhängige Reflexe	1089 [<i>R</i> _{int} = 0,0659]
beobachtete Reflexe [I>2δ(I)]	938
Verfeinerungsmethode	kleinste Fehlerquadrate
Daten / restraints / Parameter	1032 / 0 / 92
max.shift / su.	0,000
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0547, wR_2 = 0,1077$
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0660, wR_2 = 0,1125$
Wichtungsschema	a = 0,0185, b = 0,9122

Experimenteller Teil			
GooF (GooF _{restraints}) ^[b]	1,225 (1,225)		
Restelektronendichte (max, min) [e•Å-3]	0,189 und -0,120		
Vollständigkeit [%]	99,9		

 $[a] R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}; w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP] \text{ mit } P = (F_0^2 + 2F_c^2) / 3$

[b] GooF=S = ([$\Sigma w(F_o^2-F_c^2)^2$]/(m-n))^{1/2}, m = Zahl der Reflexe, n = Zahl der Parameter

Das kristalline *N,N'*-Di-*tert*-butylpropylendiamin (0,93 g, 5,00 mmol; 186,21 g/mol) wird in *n*-Hexan (40 ml) gelöst und gekühlt (-10 °C). Mittels einer Spritze wird eine Trimethylaluminiumlösung (5 ml, c = 2,0 mol/l in *n*-Heptan; 30,0 mmol) zügig zugetropft und weiter gerührt (30 min). Auf Anhieb fällt ein weißer Feststoff aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (12 h). Es tritt keine sichtbare Veränderung auf. Anschließend wird die Suspension erwärmt (70 °C) und gerührt (15 h). Es wird eine klare, farblose Lösung erhalten. Bei vermindertem Druck werden die Lösemittel und flüchtige Bestandteile entfernt. Es bleibt ein weißer Feststoff zurück. Zur Reinigung wird dieser im dynamischen Vakuum (3 x 10⁻³ mbar) sublimiert (70 °C). 1,5-Di-*tert*-butyl-6,6,7,7-tetramethyl-1,5-diazonia-6,7-dialanuidabicyclo[3.1.1]heptan wird in Form von farblosen Kristallen erhalten.

Summenformel: C₁₅H₃₆Al₂N₂

Molare Masse: 298,43 g/mol

Ausbeute: 1,14 g (3,80 mmol) (76 % d. Th.)

Reinheit: ≈ 98 %

Schmelzpunkt: 150 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **3,23** (t, ³*J*(H,H) = 7,1 Hz, 4H^a), **2,23** (qui, ³*J*(H,H) = 7,1 Hz, 2H^b), **1,19** (s, $T_{1/2}$ = 1,2 Hz, 18H^c), **-0,45** (s, $T_{1/2}$ = 1,7 Hz, 6H^d), **-0,69** (s, $T_{1/2}$ = 1,6 Hz, 6H^e)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = **55,6** (s, $T_{1/2}$ = 0,3 Hz, 2C¹), **45,3** (s, $T_{1/2}$ = 0,5 Hz, 2C²), **29,7** (s, $T_{1/2}$ = 0,4 Hz, 6C³), **22,5** (s, $T_{1/2}$ = 0,6 Hz, 1C⁴), **1,7** (s, $T_{1/2}$ = 72 Hz, 2C⁵), **-5,5** (s, $T_{1/2}$ = 75 Hz, 2C⁶)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **161**, (s Ţ_{1/2} = 1410 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 2963 (s; vCH), 2924 (s; vCH), 2831 (m; vCH), 1477 (w; δ CH₃**), 1468 (w; δ CH₃**), 1447 (vw; δ CH₃*), 1397 (w; δ CH₃*, ω CH₂), 1342 (vw; vCC, Gerüst), 1295 (vw; TCH₂, vCC*), 1261 (vw; TCH₂), 1223 (m; vNC*, Gerüst*), 1191 (s; vNC*, Gerüst*), 1108 (vw; vCC), 1059 (w; vCC, δ CH₃**), 1012 (vw; vNC), 989 (w; vNC*, vCC), 924 (w; Gerüst), 887 (m; v_{asym}NC*, δ AlN, Gerüst*), 818 (m; Gerüst), 766 (m; Gerüst), 683 (vs; δ CH₃**, ω NAI), 662 (vs; δ CH₃**, ω NAI), 625 (m; δ CH₃**, vNAI, v_{asym}AIC**), 590 (m; δ CH3**, vNAI, v_{asym}AIC**), 571 (m; δ CH₃**, vNAI, v_{sym}AIC**)

* N – Alkyl, ** Al – Methyl

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3013 (m; vCH), 2983 (s; vCH), 2964 (vs; vCH), 2921 (vs; vCH), 2896 (vs; vCH), 2832 (m; vCH), 1468 (m; δ CH₃**), 1451 (m; δ CH₃**), 1437 (m; δ CH₃*), 1401 (w; δ CH₃*, ω CH₂), 1296 (w; TCH₂, Gerüst), 1223 (m; vNC*), 1200 (m; vNC*), 1104 (vw; vCC), 1060 (vw; δ NAINAI), 1027 (vw; $v_{sym}NC$, δ CH₃*), 990 (w; $v_{sym}NC^*$, $v_{sym}CC$), 925 (w; δ NAINAI, vNC, Gerüst), 914 (w; v_{sym} NAINAI, $v_{sym}NC$, Gerüst), 892 (vw; $v_{asym}NAI$, $v_{asym}NC^*$), 878 (w; δ NAINAI, vCC, vNC*), 819 (w; Gerüst), 767 (m; $v_{sym}NAI$, Gerüst), 688 (vw; δ CH₃**), 664 (w; $v_{asym}AIC$, δ CH₃**, Gerüst), 613 (m; $v_{sym}AIC$, $v_{sym}NAI$, 593 (w; $v_{asym}AIC$, δ CH₃**), 528 (s; Gerüst), 443 (w; Gerüst), 391 (s; Gerüst); 341 (w; Gerüst), 318 (s; Gerüst), 242 (m; Gerüst), 200 (m; Gerüst), 177 (m; ω AIC), 113 (m; Gerüst)

* N – Alkyl, ** Al – Methyl

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	9,39	60,37	12,16
gefunden	9,62	60,73	11,67

El-Massenspektrometrie: 50 °C

Fragmont	Summonformal	m/z	m/z	rel.
riaginent	Summernormer	ber.	gef.	Intensität
[Al(CH ₃) ₂ N ^t Butyl(CH ₂) ₃ N ^t ButylAl(CH ₃)] ⁺	$C_{14}H_{33}AI_2N_2$	283	283,2	13,3
[Al(CH ₃)N ^t Butyl(CH ₂) ₃ N ^t Butyl]⁺	$C_{12}H_{27}AIN_2$	226	226,3	2,4
[Al(CH₂)N ^t Butyl(CH₂) ₃ N ^t Butyl] ⁺	$C_{12}H_{26}AIN_2$	225	225,2	17,1
[AIN ^t Butyl(CH ₂) ₃ N ^t Butyl] ⁺	$C_{11}H_{24}AIN_2$	211	211,2	6,8
[HN ^t Butyl(CH ₂) ₃ HN ^t Butyl]⁺	$C_{11}H_{26}N_2$	186	186,2	3,4
[HNC(CH ₃) ₂ (CH ₂) ₃ HN <i>t</i> Butyl] ⁺	$C_{10}H_{23}N_2$	171	171,2	7,2
[NC(CH ₂) ₃ N ^t Butyl] ⁺	$C_8H_{16}N_2$	140	140,1	6,2
[HN(CH ₂) ₃ HN ^t Butyl] ⁺	$C_7H_{17}N_2$	129	129,1	47,8

E	xperimenteller Teil			
[(CH₂)₃HN ^t Butyl]⁺	C ₇ H ₁₆ N	114	114,1	5,8
[(CH₂)₃N ^t Butyl] ⁺	$C_7H_{15}N$	113	113,1	40,8
[(CH ₂) ₂ HN ^t Butyl] ⁺	$C_6H_{14}N$	100	100,1	41,5
[(CH ₂) ₂ N ^t Butyl] ⁺	$C_6H_{13}N$	99	99,1	7,6
$\left[(CH_2)_3NC(CH_3)_2\right]^+$	$C_6H_{12}N$	98	98,1	100,0
[(CH₂)HN ^t Butyl]⁺	$C_5H_{12}N$	86	86,0	90,7
[HN ^t Butyl]⁺	$C_4H_{10}N$	72	72,1	58,2
[^t Butyl] ⁺	C_4H_9	57	57,0	57,8
$[(CH_2)_3]^+$	C_3H_6	42	42	11,0

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: $(0\ \overline{4}\ 17)$ 0,0787, $(5\ \overline{6}\ \overline{14})$ 0,0922, $(\overline{22}\ \overline{16}\ 21)$ 0,0785; $(\overline{11}\ 22\ 30)$ 0,0710, $(0\ 0\ \overline{1})$ 0,0560, $(\overline{16}\ \overline{5}\ \overline{25})$ 0,1196, $(\overline{5}\ \overline{24}\ 29)$ 0,1177, $(10\ 3\ \overline{25})$ 0,0969, $(1\ \overline{18}\ 9)$ 0,1588), $(1\ 4\ \overline{12})$ 0,0915, $(9\ 20\ 11)$ 0,1177, $(\overline{6}\ \overline{14}\ 25)$ 0,0990, $(0\ 4\ 1)$ 0,1289, $(3\ \overline{14}\ \overline{28})$ 0,0908.

Tab.	5.5.9.1	Daten zur	Kristallstruktu	rbestimmung	von 9 .
------	---------	-----------	-----------------	-------------	----------------

empirische Formel	$C_{15}H_{36}Al_2N_2$
Kristallhabitus, -farbe	Plättchen, farblos
Kristallabmessungen [mm]	0,75 x 0,70 x 0,05
Kristallsystem	monoklin
Raumgruppe	P21/c
	a = 9,2521(3) Å
Gitterparameter	$b = 13,4999(4)$ Å $\beta = 106,270(2)$ °
	c = 15,9330(5) Å
Volumen der Elementarzelle [Å ³]	1910,37(10)
Zahl der Formeleinheiten	4
berechnete Dichte [g/cm ³]	1,038
Messtemperatur [K]	173
	numerisch
Absorptionsmethode	T_{min} = 0,9594, T_{max} = 0,9911
Absorptionskoeffizient [mm ⁻¹]	0,145
F(000)	664
Messbereich [°]	2,293 bis 24,999
Index Dereich	-9≤h≤9
Index-Bereich	-16≤k≤16

	-18≤l≤18
gemessene Reflexe	14498
unabhängige Reflexe	3351 [<i>R</i> _{int} = 0,0418]
beobachtete Reflexe [I>2δ(I)]	3095
Verfeinerungsmethode	kleinste Fehlerquadrate
Daten / restraints / Parameter	3351 / 0 / 182
max.shift / su.	0,000
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0471, wR_2 = 0,1046$
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0512, wR_2 = 0,1066$
Wichtungsschema	a = 0,0269, b = 0,8018
GooF (GooF _{restraints}) ^[b]	1,347 (1,347)
Restelektronendichte (max, min) [e•Å-3]	0,309 und -0,181
Vollständigkeit [%]	99,8

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

5.5.10. Darstellung von 1,4-Di-tert-butyl-5-chlor-1,4,5-diazaborolidin (10)

Methode A:

Zu einer gekühlten (-10 °C) Lösung aus Triethylamin (2,04 g, 20,19 mmol; 101,19 g/mol; 0,73 g/ml) und *n*-Hexan (65 ml) wird eine klare, farblose Bortrichloridlösung (10 ml, c = 1,0 mol/l in *n*-Heptan; 10,0 mmol) mittels einer Spritze innerhalb von zwei Minuten zugegeben. Es fällt ein weißer Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (2 h). Anschließend wird das klare und farblose *N*,*N*'-Di-*tert*-butylethylendiamin (1,69 g, 9,81 mmol; 172,32 g/mol; 0,80 g/ml) zugegeben. Die Suspension wird erwärmt (80 °C) und gerührt (45 min.), wobei vermehrt weißer Niederschlag ausfällt. Die Suspension wird Raumtemperatur temperiert und der Niederschlag wird abfiltriert. Lösemittel und andere flüchtige Bestandteile werden im Vakuum (2,0 x 10⁻² mbar) entfernt. Als Rückstand wird ein kristalliner, weißer Feststoff von 1,4-Di-*tert*-butyl-5-chlor-1,4,5-diazaborolidin erhalten. Zur Kristallzucht und Aufreinigung wird dieser in einer abgeschmolzenen Ampulle unter vermindertem Druck bei 25 °C sublimiert.

Methode B:

Klares, farbloses *N,N'*-Di-*tert*-butylethylendiamin (2,34 g, 13,58 mmol; 172,32 g/mol; 0,80 g/ml) wird in *n*-Hexan (20 ml) gelöst. Die Lösung wird gekühlt (-15 °C) und *n*-Butyllithium (11,0 ml, c = 2,5 mol/l in *n*-Hexan; 27,5 mmol) wird langsam mittels einer Spritze zugegeben. Während der exothermen Reaktion färbt sich die Lösung sofort intensiv gelb. Die gelbe Lösung wird auf Raumtemperatur temperiert und gerührt (3 h). Anschließend wird eine Bortrichloridlösung (14,0 ml, c = 1,0 mol/l in *n*-Heptan; 14,0 mmol) mittels einer Spritze innerhalb von zwei Minuten zugegeben. Es fällt sofort ein farbloser Niederschlag aus. Die Suspension wird filtriert und Lösemittel und andere flüchtige Bestandteile werden im Vakuum (2,7 x 10⁻¹ mbar) bei Raumtemperatur entfernt. Als Rückstand wird ein braun-gelbes Öl erhalten. Das braun-gelbe Öl wird zur weiteren Reinigung im Vakuum (2,3 x 10⁻² mbar) umkondensiert (30 °C; 6 h). In der Zwischenkühlfalle wird das Produkt als ein weißer Feststoff aufgefangen.

Summenformel: C₁₀H₂₂BCIN₂

Molare Masse: 216,56 g/mol

Reinheit: ≈ 99 %

Methode A:

Ausbeute: 1,45 g (6,70 mmol) (68 % d. Th.) Reinheit: ≈ 100 %

Methode B:

Ausbeute: 0,88 g (4,06 mmol) (30 % d. Th.)

Schmelzpunkt: 40 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **3,18** (s, $T_{1/2}$ = 1,4 Hz, 4H^a), **1,27** (s, $T_{1/2}$ = 1,5 Hz, 18H^b)

¹³C{¹H}-NMR (100,63 MHz, CDCI₃, ppm) δ = **51,7** (s, $T_{1/2}$ = 0,9 Hz, 2C¹), **44,4** (s, $T_{1/2}$ = 1,3 Hz, 2C²), **30,0** (s, $T_{1/2}$ = 0,4 Hz, 6C³)

¹¹B{¹H}-NMR (128,39 MHz, CDCl₃, ppm) δ = **27,0** (s, $T_{1/2}$ = 92 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 2999 (w; vCH), 2970 (vs; vCH), 2935 (m;

vCH), 2909 (m; vCH), 2866 (m; vCH), 1476 (m; δ CH₃), 1414 (s; vNB, vCC, δ CH₃, ω CH₂), 1397 (m; δ CH₃), 1387 (m; vCC, v_{sym}NBN, δ CH₃, ω CH₂), 1360 (m; vCC, v_{sym}NBN, TCH₂), 1282 (vs; Gerüst), 1236 (s; Gerüst), 1209 (s; vGerüst), 1196 (s; vGerüst, vBCl), 1120 (m; v_{sym}NC, δ CH₂), 1093 (w; v_{asym}NC, δ NBN, Gerüst*), 994 (w; v_{sym}CC, δ NBN, Gerüst*), 942 (w; δ BCl, Gerüst), 800 (vw; vCC*, vBCl, δ NBN), 596 (vw; Gerüst), 574 (wv; BCl, δ Gerüst)

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 2974 (vs; vCH), 2931 (vs; vCH), 2907 (vs; vCH), 2868 (s; vCH), 1481 (m; δ CH₃), 1462 (m; v_{asym} NBN, ω CH₂), 1450 (m; δ CH₃), 1237 (m; Gerüst), 1220

(m; vGerüst, vBCl), 1122 (vw; vNC, δ CH₂), 1038 (w; vNC, δ Gerüst*), 996 (w v; v_{sym}CC, δ NBN, Gerüst*), 944 (vw; δ BCl, Gerüst), 915 (m; δ CH), 802 (s; vBCl, δ NBN, vGerüst), 569 (s; vBCl, δ Gerüst), 515 (w; δ BCl, δ Gerüst*), 495 (m; vBCl, Gerüst*), 403 (m; vBCl, Gerüst*), 323 (vw; δ CH₃), 276 (w; TNCCNB, Gerüst), 186 (vw; δ BCl, δ CH₃), 163 (vw; ω NC, ω BCl, δ CH₃), 142 (w; Gerüst), 70 (m; Gerüst)

* N — Alkyl

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	12,94	55,46	10,24
gefunden	13,02	55,60	9,83

El-Massenspektrometrie: 30 °C

Eragmont	Summonformal	m/z	m/z	rel.
Fragment	Fragment Summernormer	ber.	gef.	Intensität
[M] ⁺	$C_{10}H_{22}{}^{11}B^{37}CIN_2$	218	218,2	3,4
[M] ⁺	$C_{10}H_{22}{}^{10}B^{37}CIN_2$	217	217,2	2,1
[M] ⁺	$C_{10}H_{22}{}^{11}B^{35}CIN_2$	216	216,2	10,7
[M] ⁺	$C_{10}H_{22}{}^{10}B^{35}CIN_2$	215	215,2	2,6
$[M - CH_3]^+$	$C_9H_{19}{}^{11}B^{37}CIN_2$	203	203,2	32,7
$[M - CH_3]^+$	$C_9H_{19}{}^{10}B^{37}CIN_2$	202	202,2	18,2
$[M - CH_3]^+$	$C_9H_{19}{}^{11}B^{35}CIN_2$	201	201,2	100,0
$[M - CH_3]^+$	$C_9H_{19}{}^{10}B^{35}CIN_2$	200	200,2	24,9
[(CH₂)₂N ^t ButylBCI] ⁺	C ₆ H ₁₃ ¹¹ B ³⁷ CIN	147	147,0	23,2
[(CH₂)₂N ^t ButylBCI]⁺	C ₆ H ₁₃ ¹⁰ B ³⁷ CIN	146	146,1	10,3
[(CH₂)₂N ^t ButylBCI] ⁺	C ₆ H ₁₃ ¹¹ B ³⁵ CIN	145	145,0	72,8
[(CH₂)₂N ^t ButylBCI]⁺	C ₆ H ₁₃ ¹⁰ B ³⁵ CIN	144	144,0	17,6
$[NC(CH_3)_2BCI]^+$	C ₃ H ₆ ¹¹ B ³⁷ CIN	104	104,0	5,2
$[NC(CH_2)_2BCI]^+$	C ₃ H ₆ ¹⁰ B ³⁷ CIN	103	103,1	6,2
$[NC(CH_2)_2BCI]^+$	C ₃ H ₆ ¹¹ B ³⁵ CIN	102	102,0	13,8
$[NC(CH_2)_2BCI]^+$	C ₃ H ₆ ¹⁰ B ³⁵ CIN	101	101,0	4,2

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: (2 15 24)

0,1009, (3 25 0) 0,3558, (22 29 27) 0,2113, (4 15 6) 0,1105, (4 17 26) 0,0743, (8 7 14) 0,0904, (1 22 10) 0,0974, (2 30 3) 0,2443, (1 18 1) 0,1416, (0 29 10) 0,2046.

empirische Formel	C ₁₀ H ₂₂ BCIN ₂		
Kristallhabitus, -farbe	Plättchen, farblos		
Kristallabmessungen [mm]	0,95 x 0,53 x 0,45		
Kristallsystem	monoklin		
Raumgruppe	P21/n		
	<i>a</i> = 7,2341(4) Å		
Gitterparameter	$b = 23,2650(8)$ Å $\beta = 101,874(4)$ °		
	<i>c</i> = 7,9013(11) Å		
Volumen der Elementarzelle [Å ³]	1301,34(11)		
Zahl der Formeleinheiten	4		
berechnete Dichte [g/cm ³]	1,105		
Messtemperatur [K]	173		
	numerisch		
Absorptionsmethode	$T_{min} = 0,8272, T_{max} = 0,9765$		
Absorptionskoeffizient [mm ⁻¹]	0,262		
F(000)	472		
Messbereich [°]	2,776 bis 24,998		
	-8≤h≤8		
Index-Bereich	-27≤k≤27		
	-9≤l≤9		
gemessene Reflexe	9791		
unabhängige Reflexe	2285 [<i>R</i> _{int} = 0,0538]		
beobachtete Reflexe [I>2δ(I)]	2074		
Verfeinerungsmethode	kleinste Fehlerquadrate		
Daten / restraints / Parameter	2285 / 0 / 133		
max.shift / su.	0,000		
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0652, wR_2 = 0,1215$		
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0718, wR_2 = 0,1248$		
Wichtungsschema	a = 0,0221, b = 0,8795		
GooF (GooF _{restraints}) ^[b]	1,248 (1,248)		
Restelektronendichte (max, min) [e•Å-3]	0,399 und -0,315		
Vollständigkeit [%]	99,8		

Tab. 5.5.10.1 Daten zur Kristallstrukturbestimmung von **10**.

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit P = $(F_0^2 + 2F_c^2)/3$

[b] GooF=S = ([Σ w(F_o²-F_c²)²]/(m-n))^{1/2}, m = Zahl der Reflexe, n = Zahl der Parameter

Zu einer gekühlten (-15 °C) Lösung aus Triethylamin (1,066 g, 10,55 mmol; 101,19 g/mol; 0,73 g/ml) und *n*-Hexan (30 ml) wird eine klare, farblose Bortrichloridlösung (5 ml, c = 1,0 mol/l in *n*-Heptan; 5,0 mmol) mittels einer Spritze innerhalb von zwei Minuten gegeben. Es fällt ein weißer Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (2 h). Anschließend wird eine Lösung aus dem kristallinen *N*,*N*'-Di-*tert*-butylpropylendiamin (0,94 g, 5,05 mmol; 186,21 g/mol) und *n*-Hexan (60 ml) mittels Schlauch zu der Suspension überführt. Es ist keine Veränderung zu erkennen. Die Suspension wird erwärmt (70 °C) und gerührt (20 h), wobei vermehrt weißer Niederschlag ausfällt. Die Suspension wird auf Raumtemperatur temperiert und der Niederschlag wird abfiltriert. Lösemittel und andere flüchtige Bestandteile werden im Vakuum (6,0 x 10⁻³ mbar) entfernt. Als Rückstand wird eine sehr kleine Menge eines weißen Feststoffes von 1,5-Di-*tert*-butyl-6-chlor-1,5,6-diazaborinan und wahrscheinlich von Triethylamin–Bortrichlorid (1/1) erhalten. Eine Trennung durch Sublimation ist nicht gelungen.

Summenformel: C₁₁H₂₄BCIN₂

Molare Masse: 230,59 g/mol

Ausbeute: nicht isoliert

Reinheit: nicht isoliert

Schmelzpunkt: beginnende Zersetzung ab ca. 125 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) $\delta = 2,99$ (t, ³*J*(H,H) = 5,8 Hz, 4H^a), **1,67** (qui, ³*J*(H,H) = 5,8 Hz, 2H^b), **1,35** (s, $T_{1/2} = 1,7$ Hz, 18H^c), **3,44 – 3,66** (m, 6H^d), **1,40** (t, ³*J*(H,H) = 7,4 Hz, 9H^e)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) $\bar{\delta}$ = **54,8** (s, $T_{1/2}$ = 0,6 Hz, 2C¹), **44,3** (s, $T_{1/2}$ = 0,8 Hz, 2C²), **31,0** (s, $T_{1/2}$ = 0,4 Hz, 6C³), **29,6** (s, $T_{1/2}$ = 1,1 Hz, 1C⁴), **52,5** (s, $T_{1/2}$ = 1,1 Hz, 3C⁵), **10,5** (s, $T_{1/2}$ = 2,0 Hz, 3C⁶)

¹¹B{¹H}-NMR (128,39 MHz, CDCl₃, ppm) δ = **26,1** (s, $T_{1/2}$ = 123 Hz, 1B^A), **9,5** (s, $T_{1/2}$ = 11,4 Hz, 1B^B)

El-Massenspektrometrie: 120 °C

Eragmont	Summonformal	m/z	m/z	rel.
Fragment	Summernormer	ber.	gef.	Intensität
$[M - CH_3]^+$	$C_{10}H_{21}{}^{11}B^{37}CIN_2$	217	217,2	2,7
$[M - CH_3]^+$	$C_{10}H_{21}{}^{10}B^{37}CIN_2$	216	216,2	1,4
$[M - CH_3]^+$	$C_{10}H_{21}{}^{11}B^{35}CIN_2$	215	215,2	7,8
$[M - CH_3]^+$	$C_{10}H_{21}{}^{10}B^{35}CIN_2$	214	214,2	2,0
[HN ^t Butyl(CH₂) ₃ HN ^t Butyl] ⁺	$C_{11}H_{26}N_2$	186	186,2	1,3
[HNC(CH ₃) ₂ (CH ₂) ₃ HN ^t Butyl] ⁺	$C_{10}H_{23}N_2$	171	171,2	8,8
[(CH₂)₃N ^t ButylBCl]⁺	$C_7 H_{15}{}^{11} B^{37} CIN$	161	161,1	2,3
[(CH₂)₃N ^t ButylBCl] ⁺	$C_7 H_{15}{}^{10} B^{37} CIN$	160	160,1	1,2
[(CH₂)₃N ^t ButylBCl] ⁺	$C_7 H_{15}{}^{11} B^{35} CIN$	159	159,1	6,9
[(CH₂)₃N ^t ButylBCl] ⁺	$C_7 H_{15}{}^{10} B^{35} CIN$	158	158,1	1,7
[HN(CH₂)₃HN ^t Butyl] ⁺	$C_7H_{17}N_2$	129	129,1	41,1
[(CH₂)₃HN ^t Butyl]⁺	$C_7H_{16}N$	114	114,1	7,1
[(CH ₂) ₃ N ^t Butyl] ⁺	$C_7H_{15}N$	113	113,1	45,5
[(CH₂)₂HN ^t Butyl]⁺	$C_6H_{14}N$	100	100,1	35,9
[(CH ₂) ₂ N ^t Butyl] ⁺	$C_6H_{13}N$	99	99,1	7,8
$\left[(CH_2)_3NC(CH_3)_2\right]^{+}$	$C_6H_{12}N$	98	98,1	100,0
[(CH₂)HN ^t Butyl] ⁺	$C_5H_{12}N$	86	86,0	93,3
[HN¹Butyl]⁺	$C_4H_{10}N$	72	72,0	72,0
[^t Butyl] ⁺	C_4H_9	57	57,0	74,8

Zu einer Lösung aus *N*,*N*'-Di-*tert*-butylethylendiamin (2,447 g, 14,20 mmol; 172,32 g/mol; 0,80 g/ml) und *n*-Pentan (20 ml) wird klares, farbloses Triethylamin (1,485 g, 14,68 mmol; 101,19 g/mol; 0,73 g/ml) mit einer Spritze dazugegeben. Die Lösung wird gekühlt (-20 °C) und Aluminiumtrichlorid (2,089 g, 15,67 mmol; 133,34 g/mol), welches in gekühltem (-20 °C) *n*-Pentan (10 ml) und Diethylether (10 ml) gelöst ist, mittels einer Spritze zugegeben. Es fällt ein farbloser Niederschlag aus. Die Suspension wird auf Raumtemperatur gebracht und gerührt (12 h). Die klare und farblose Mutterlauge wird mit Hilfe eines Spritzenaufsatzes entnommen. Lösemittel und andere flüchtige Bestandteile werden im Vakuum entfernt. Ein farbloser Niederschlag fällt aus. Zur Reinigung wird das farblose Pulver im statischen Vakuum (3 x 10⁻³ mbar) sublimiert (75 °C). Neben dem 1,4-Di-*tert*-butyl-5,5-dichlor-4-aza-1-azonia-5-alanuidacyclopentan ist eine weitere, unbekannte Spezies vorhanden.

Summenformel: C₁₀H₂₃AlCl₂N₂

Molare Masse: 269,19 g/mol

Ausbeute: nicht isoliert

Reinheit: nicht isoliert

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = 3,19-3,15 (m, 1H^a), 3,04-3,00 (m, 3H^a), 2,80 (s, $T_{1/2}$ = 3,0 Hz, 1H^b), 1,45 (s, $T_{1/2}$ = 1,4 Hz, 9H^c), 1,19 (s, $T_{1/2}$ = 1,4 Hz, 9H^d)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **104** (s, T_{1/2} = 100 Hz)

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Bei den Atomen C7, C8, C9 und C10 wurden die U_{ij}-Werte notwendigerweise durch einen "SIMU-restraint" und einen "DELU-restraint" einander angenähert. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: (6 1 30) 0,1327, (11 $\overline{3}$ $\overline{30}$) 0,1271, ($\overline{10}$ $\overline{9}$ 29) 0,1133, ($\overline{14}$ 18 29) 0,0500, ($\overline{6}$ 1 $\overline{28}$) 0,1460, (5 $\overline{4}$ 17) 0,1495, ($\overline{8}$ $\overline{18}$ $\overline{1}$) 0,1958, (11 8 $\overline{25}$) 0,1514, (7 $\overline{9}$ $\overline{18}$) 0,1613.

empirische Formel	$C_{10}H_{23}AICI_2N_2$				
Kristallhabitus, -farbe	Stäbchen, farblos				
Kristallabmessungen [mm]	0,27 x 0,15 x 0,15				
Kristallsystem	monoklin				
Raumgruppe	P21/n				
	<i>a</i> = 7,228(2) Å				
Gitterparameter	$b = 11,191(2) \text{ Å} \qquad \beta = 95,80(2)^{\circ}$				
	<i>c</i> = 19,245(5) Å				
Volumen der Elementarzelle [Å ³]	1548,7(7)				
Zahl der Formeleinheiten	4				
berechnete Dichte [g/cm ³]	1,154				
Messtemperatur [K]	173				
Absorptionsmethode	numerisch				
	T _{min} = 0,8637, T _{max} = 0,9567				
Absorptionskoeffizient [mm ⁻¹]	0,453				
F(000)	576				
Messbereich [°]	2,108 bis 24,997				
	-8≤h≤8				
Index-Bereich	-13≤k≤13				
	-22≤l≤22				
gemessene Reflexe	11455				
unabhängige Reflexe	2727 [<i>R</i> _{int} = 0,1334]				
beobachtete Reflexe [I>2δ(I)]	2248				
Verfeinerungsmethode	kleinste Fehlerquadrate				
Daten / restraints / Parameter	2727 / 24 / 146				
max.shift / su.	0,000				
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0653, wR_2 = 0,1693$				
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0819, wR_2 = 0,1831$				
Wichtungsschema	a = 0,0785, b = 0,4918				
GooF (GooF _{restraints}) ^[b]	1,324 (1,348)				
Restelektronendichte (max, min) [e•Å-3]	0,433 und -0,338				
Vollständigkeit [%]	100,0				

Tab.	5.5.12.1	Daten 2	zur Krista	llstrukturb	estimmuna	von	12.
	•••••				ee announg		

[a] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [(wF_o^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ mit $P = (F_o^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_o^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

Zu einer farblosen, gekühlten (-10 °C) Lösung aus dem kristallinen *N,N'*-Di-*tert*-butylpropylendiamin (1,62 g, 8,70 mmol; 186,21 g/mol) und *n*-Pentan (80 ml) wird *n*-Butyllithium (3,5 ml, c = 2,5 mol/l in *n*-Hexan; 27,5 mmol) mittels Spritze zugegeben. Es fällt ein wenig farbloser Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (12 h). Die Suspension verfärbt sich schwach gelblich. Anschließend wird das Reaktionsgemisch gekühlt (0 °C) und eine Lösung aus Aluminiumtrichlorid (1,21 g, 9,07 mmol; 133,34 g/mol), *n*-Pentan (15 ml) und Diethylether (15 ml) langsam mit einer Spritze zugegeben. Es fällt sofort ein weißer Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt (3 h). Anschließend wird die Mutterlauge mit Hilfe eines Spritzenaufsatzes entnommen und die Lösemittel und andere flüchtige Bestandteile werden im Vakuum (5 x 10⁻³ mbar) entfernt. Zur Kristallisation und Aufreinigung wird der so erhaltene Rückstand im statischen Vakuum (3 x 10⁻³ mbar) sublimert (80 °C). 1,5-Di-*tert*-butyl-6,6-dichlor-5-aza-1-azonia-6-alanuidacyclohexan wird in Form von farblosen Kristallen erhalten. Eine Isolierung des Produktes ist nicht gelungen.

Summenformel: $C_{11}H_{25}AICI_2N_2$

Molare Masse: 283,22 g/mol

Ausbeute: nicht isoliert

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **3,27-1,79** (m, 6H^a), **1,50** (s, $T_{1/2}$ = 1,3 Hz, 9H^b), **1,25** (s, $T_{1/2}$ = 1,2 Hz, 9H^c)

²⁷AI-NMR (104,28 MHz, CDCl₃, ppm) δ = **104** (s, T_{1/2} = 50 Hz)

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. durchgeführt. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: (7 $\overline{9}$ $\overline{20}$) 0,2155, (3 24 19) 0,2146, ($\overline{28}$ $\overline{19}$ 0) 0,2150, (27 $\overline{5}$ 3) 0,2318, ($\overline{8}$ $\overline{18}$ $\overline{9}$) 0,0826, (24 20 17) 0,1648, (12 26 15) 0,1167, (11 $\overline{19}$ $\overline{23}$) 0,2381, ($\overline{29}$ $\overline{6}$ $\overline{13}$) 0,2072, ($\overline{7}$ 3 $\overline{9}$) 0,3308, (30 6 $\overline{1}$) 0,1703, ($\overline{8}$ $\overline{29}$ 11) 0,4597.

Tab. 5.5.13.1 Daten zur Kristallstrukturbestimmung von **13**.

empirische Formel	$C_{11}H_{25}AICI_2N_2$			
Kristallhabitus, -farbe	Plättchen, farblos			
Kristallabmessungen [mm]	1 x 0,6 x 0,3			
Kristallsystem	monoklin			
Raumgruppe	P21/n			
	<i>a</i> = 7,6580(3) Å			
Gitterparameter	$b = 10,6132(3)$ Å $\beta = 101,056(3)$ °			
	<i>c</i> = 19,6376(8) Å			
Volumen der Elementarzelle [Å ³]	1566,44(10)			
Zahl der Formeleinheiten	4			
berechnete Dichte [g/cm ³]	1,201			
Messtemperatur [K]	173			
Absorptionsmothede	numerisch			
Absorptionsmethode	$T_{min} = 0,5964, T_{max} = 0,9321$			
Absorptionskoeffizient [mm ⁻¹]	0,451			
F(000)	608			
Messbereich [°]	2,113 bis 24,997			
	-9≤h≤9			
Index-Bereich	-12≤k≤12			
	-23≤l≤23			
gemessene Reflexe	11575			
unabhängige Reflexe	2759 [<i>R</i> _{int} = 0,0616]			
beobachtete Reflexe [I>2δ(I)]	2599			
Verfeinerungsmethode	kleinste Fehlerquadrate			
Daten / restraints / Parameter	2759 / 0 / 155			
max.shift / su.	0,000			
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0.0388, wR_2 = 0.0956$			
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0.0414, wR_2 = 0.0971$			
Wichtungsschema	a = 0,0294, b = 0,7797			
GooF (GooF _{restraints}) ^[b]	1,194 (1,194)			

Experimenteller Teil			
Restelektronendichte (max, min) [e•Å-3]	0,429 und -0,237		
Vollständigkeit [%]	99,6		

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF=S = $([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

5.5.14. Darstellung von N,N'-Di-tert-butylethylendiamin-Bortrifluorid (1/1) (14)

Methode A:

Zu einer gekühlten (-20 °C) Lösung aus Bortrifluoriddiethyletherat (1,834 g, 12,92 mmol; 141,93 g/mol; 1,12 g/ml) in *n*-Pentan (10 ml) wird das klare und farblose *N*,*N*'-Di-*tert*-butylethylendiamin (2,25 g, 13,06 mmol; 172,32 g/mol; 0,80 g/ml) mittels Spritze zügig zugegeben. Es fällt ein farbloser Niederschlag aus. Die Suspension wird auf Raumtemperatur temperiert und gerührt. Die Lösemittel und andere flüchtige Bestandteile werden im Vakuum entfernt. Der zurückbleibende lachsfarbende Feststoff wird zur Reinigung im statischen Vakuum (2 x 10^{-2} mbar) sublimiert (40 °C). *N*,*N*'-Di-*tert*-butylethylendiamin—Bortrifluorid (1/1) wird in Form von stäbchenförmigen Kristallen erhalten.

Methode B:

Zu einer gekühlten (0 °C) Lösung aus Bortrifluoriddiethyletherat (1,48 g, 10,42 mmol; 141,93 g/mol; 1,12 g/ml) in *n*-Hexan (10 ml) wird das klare und farblose Triethylamin (2,13 g, 21,08 mmol; 101,19 g/mol; 0,73 g/ml) mittels einer Spritze zügig zugetropft. Es fällt ein weißer Niederschlag aus. Die Suspension wird bis auf Raumtemperatur temperiert und gerührt (1 h), wobei sich der Niederschlag auflöst. Anschließend wird die Lösung wieder gekühlt (-10 °C), es fällt erneut ein weißer Niederschlag aus und das klare, farblose *N*,*N'*-Di-*tert*-butylethylendiamin (1,79 g, 10,41 mmol; 172,32 g/mol; 0,80 g/ml) wird mittels Spritze zügig zu der Suspension hinzugegeben. Es fällt ein lachsfarbener Niederschlag aus. Die Lösemittel und andere flüchtige Bestandteile werden im Vakuum entfernt. Der zurückbleibende lachsfarbene Feststoff wird zur Reinigung im statischen Vakuum (5 x 10^{-2} mbar) sublimiert (40 °C). *N*,*N'*-Di-*tert*-butylethylendiamim—Bortrifluorid (1/1) wird in Form von stäbchenförmigen Kristallen erhalten.

Summenformel: $C_{10}H_{24}BF_3N_2$

Molare Masse: 240,12 g/mol

Reinheit: ≈ 92 %

Methode A:

Ausbeute: 2,62 g (10,92 mmol) (85 % d. Th.)

Methode B:

Ausbeute: 1,37 g (5,71 mmol) (55 % d. Th.) Reinheit: ≈ 87 %

Schmelzpunkt: beginnende Zersetzung ab ca. 140 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **5,16** (s, $T_{1/2}$ = 27 Hz, 1H^a), **2,6-3,1** (m, 4H^b), **1,34** (s, $T_{1/2}$ = 2,8 Hz, 9H^c), **1,08** (s, $T_{1/2}$ = 1,0 Hz, 9H^d), **0,71** (s, $T_{1/2}$ = 32 Hz, 1H^e)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = **58,3** (s, $T_{1/2}$ = 1,5 Hz, 1C¹), **50,6** (s, $T_{1/2}$ = 1,0 Hz, 1C²), **44,2** (s, $T_{1/2}$ = 5 Hz, 1C³), **39,0** (q, ²J(¹³C, ¹¹B) = 2,7 Hz, 1C⁴), **29,3** (s, $T_{1/2}$ = 0,7 Hz, 3C⁵), **27,5** (q, ³J(¹³C, ¹¹B) = 2,7 Hz, 3C⁶)

¹¹B{¹H}-NMR (128,39 MHz, CDCl₃, ppm) δ = 0,3 (q, ¹J(¹¹B,F) = 19,1 Hz)

¹⁹**F-NMR** (376,50 MHz, CDCl₃, ppm) δ = **-144,4** (q, ¹*J*(F, ¹¹B) = 19,1 Hz)

IR-Spektroskopie (\tilde{v} , cm⁻¹): 3330 (vw; vNH), 3157 (m; vCH), 2963 (s; vCH), 2873 (w; vCH), 1484 (w; δ CH3, δ NH), 1471 (w; δ NH, δ CH), 1452 (vw; δ NH, δ CH), 1429 (w; δ NH, δ CH), 1408 (m; δ CH₃, ω CH₂), 1389 (m; δ CH₃, ω CH₂, δ NH), 1380 (m; δ CH₃, ω CH₂, δ NH), 1364 (m; vBF₃, Gerüst), 1294 (vw; vCC*, δ Gerüst), 1275 (vw; vCC*, δ Gerüst), 1236 (vw; vCC*, δ Gerüst, vBF₃), 1210 (s; vNC*, δ CH), 1063 (vs; vCC, vNC, vBF₃, δ CH₃*), 1038 (vs; vCC, vNC, vCC*, δ CH₃*), 944 (vw; δ CH₃, vCC*), 924 (vw; δ CH₃, vCC*), 904 (vw; Gerüst), 850 (vw; δ BF₃, Gerüst), 777 (vw; δ NH, Gerüst), 766 (vw; vNC*, vCC*, δ NH, δ CH₂), 735 (w; Gerüst)

Raman-Spektroskopie (\tilde{v} , cm⁻¹): 3330 (vw; vNH), 2988 (vs; vCH), 2965 (vs; vCH), 2927 (vs; vCH), 1473 (m; δ NH, δ CH), 1452 (m; δ NH, δ CH), 1409 (vw; δ CH₃, ω CH₂), 1377 (w; δ CH₃, ω CH₂, δ NH), 1333 (w; vBF₃, Gerüst), 1274 (w; vCC*, δ Gerüst), 1215 (w; vNC*, δ CH), 1116 (vw; Gerüst), 1093 (w; vNC, vBF₃, δ CH₃), 1066 (vw; vCC, vNC, vBF₃, δ CH₃*), 1041 (vw; Gerüst), 1023 (vw; vCC, vNC, vCC*, δ CH₃*), 928 (w; δ CH₃, vCC*), 915 (w; vCC*, δ CH₃, vNC, vCC), 862 (w; δ BF₃, Gerüst), 767 (m; vNC*, vCC*, δ NH, δ CH₂), 740 (s; Gerüst), 497 (vw; Gerüst), 475 (w; δ Gerüst), 451 (vw; δ Gerüst, δ BF₃), 362 (m; Gerüst), 266 (vw; Gerüst), 236 (vw; δ CH₃), 170 (vw; Gerüst), 83 (m; Gerüst)

* N — Alkyl

Elementaranalyse:			
N [%] C [%] H [%]			
berechnet	11,67	50,02	10,07
gefunden	11,34	49,69	9,99

El-Massenspektrometrie: 30 °C

Fragment	Summenformel	m/z	m/z	rel.
	Guillienonnei	ber.	gef.	Intensität
[M – BF₃] ⁺	$C_{10}H_{24}N_2$	172	172,2	12,9
$[M - BF_3CH_3]^+$	$C_9H_{21}N_2$	157	157,2	21,5
[CH ₂ CH ₂ NH ₂ ^t Butyl] ⁺	$C_6H_{15}N$	101	101,1	15,8
[CH₂CH₂NH ^t Butyl] ⁺	$C_6H_{14}N$	100	100,1	8,0
[CH₂CH₂N ^t Butyl] ⁺	$C_6H_{13}N$	99	99,1	1,7
[CH₂NH₂ ^t Butyl] ⁺	$C_5H_{13}N$	87	87,1	8,9
[CH₂NH ^t Butyl] ⁺	$C_5H_{12}N$	86	86,1	100,0
[NH ^t Butyl]⁺	$C_4H_{10}N$	72	72,1	21,2
[N ^t Butyl]⁺	C_4H_9N	71	71,1	12,2
[[′] Butyl]⁺	C_4H_9	57	57,1	20,0
$[BF_2]^+$	¹¹ BF ₂	49	49,1	7,7
$[BF_2]^{+}$	¹⁰ BF ₂	48	48,0	1,8

Kristallstrukturanalyse:

Die Strukturlösung und -verfeinerung wurden wie in Kapitel 5.4.5. und unter der Berücksichtigung der Zwillingsmatrix (100,008 0-10 00-1) durchgeführt. Das Verhältnis der beiden Zwillingsindividuen verfeinert zu einem Wert von ca. 7,3 : 92,7. Die numerische Absorptionskorrektur wurde über folgende Flächen (h k l) und Abstände durchgeführt: ($\overline{5}$ 4 6) 0,3184, (20 $\overline{3}$ $\overline{30}$) 0,0471, (10 7 $\overline{23}$) 0,1201, ($\overline{10}$ $\overline{23}$ 19) 0,1468, ($\overline{13}$ $\overline{20}$ 22) 0,1516, ($\overline{24}$ 26 19) 0,3417, (10 27 $\overline{12}$) 0,1442, ($\overline{3}$ $\overline{8}$ 27) 0,3206, ($\overline{1}$ 30 $\overline{20}$) 0,3391, (-4 $\overline{29}$ 22) 0,0757.

Tab.	5.5.14.1	Daten zur	Kristallstrukturbestimmung von 1	4.
------	----------	-----------	----------------------------------	----

empirische Formel	$C_{10}H_{24}BF_3N_2$
Kristallhabitus, -farbe	Stäbchen, farblos
Kristallabmessungen [mm]	0,7 x 0,35 x 0,2
Kristallsystem	monoklin
Raumgruppe	P21/c

	a = 6,3751(2) Å		
Gitterparameter	$b = 19,5894(6)$ Å $\beta = 90,804(3)$ °		
	<i>c</i> = 21,8358(8) Å		
Volumen der Elementarzelle [Å ³]	2726,68(16)		
Zahl der Formeleinheiten	8		
berechnete Dichte [g/cm ³]	1,170		
Messtemperatur [K]	173		
Absorptionsmethode	numerisch		
Absorptionomethode	T_{min} = 0,8734, T_{max} = 0,9917		
Absorptionskoeffizient [mm ⁻¹]	0,097		
F(000)	1040		
Messbereich [°]	2,136 bis 24,998		
	-6≤h≤7		
Index-Bereich	-23≤k≤23		
	-25≤l≤25		
gemessene Reflexe	19516		
unabhängige Reflexe	4801 [<i>R</i> _{int} = 0,0653]		
beobachtete Reflexe [I>2δ(I)]	4050		
Verfeinerungsmethode	kleinste Fehlerquadrate		
Daten / restraints / Parameter	4801 / 0 / 318		
max.shift / su.	0,000		
finale R-Werte [I>2δ(I)] ^[a]	$R_1 = 0,0756, wR_2 = 0,1514$		
R-Werte (sämtliche Daten) ^[a]	$R_1 = 0,0910, wR_2 = 0,1614$		
Wichtungsschema	a = 0,0042, b = 8,497294		
GooF (GooF _{restraints}) ^[b]	1,031 (1,031)		
Restelektronendichte (max, min) [e•Å-3]	0,221 und -0,179		
Vollständigkeit [%]	99,9		

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [(wF_0^2)^2]]^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ mit $P = (F_0^2 + 2F_c^2) / 3$ [b] GooF= $S = ([\Sigma w(F_0^2 - F_c^2)^2] / (m-n))^{1/2}$, m = Zahl der Reflexe, n = Zahl der Parameter

Zu einer farblosen Lösung aus dem kristallinen *N*,*N*'-Di-*tert*-butylpropylendiamin (1,03 g, 5,53 mmol; 186,21 g/mol) und *n*-Hexan (60 ml) wird das klare und farblose Bortrifluoriddiethyletherat (0,783 g, 5,52 mmol; 141,93 g/mol; 1,12 g/ml) mittels Spritze zügig zugegeben. Es fällt sofort ein weißer Feststoff aus. Die Lösemittel und andere flüchtige Bestandteile werden im Vakuum entfernt. Es bleiben 0,83 g eines weißen Feststoffes zurück. Dieser löst sich schlecht in Toluol, Diethylether, Dichlormethan, Chloroform, *n*-Hexan und *n*-Pentan. Eine Reinigung durch Waschen oder durch Sublimation (statisch: 3×10^{-3} mbar, 70 - 100 °C) ist nicht gelungen. Ein Teil des weißen Feststoffes kann als *N*,*N*'-Di-*tert*-butylpropylendiamin— Bortrifluorid (1/2) (**15**) identifiziert werden.

Summenformel: C₁₁H₂₆B₂F₆N₂

Molare Masse: 321,95 g/mol

Ausbeute: nicht isoliert

Reinheit: nicht isoliert

Schmelzpunkt: beginnende Zersetzung ab 115 °C

NMR-Spektroskopie:

¹**H-NMR** (400,17 MHz, CDCl₃, ppm) δ = **3,00** (qui, ³*J*(H,H) = 5,4 Hz, 2H^b), **1,26** (s, $T_{1/2}$ = 1,3 Hz, 18H^c)

¹³C{¹H}-NMR (100,63 MHz, CDCl₃, ppm) δ = 53,7 (s, $T_{1/2}$ = 2,3 Hz, 2C¹), 43,5 (s, $T_{1/2}$ = 3,3 Hz, 2C²), 31,0 (s, $T_{1/2}$ = 1,5 Hz, 6C³), 24,0 (s, $T_{1/2}$ = 1,4 Hz, 1C⁴)

¹¹B{¹H}-NMR (128,39 MHz, CDCl₃, ppm) δ = -0,1 (m, T_{1/2} = 1,4 Hz)

¹⁹**F-NMR** (376,50 MHz, CDCl₃, ppm) δ = **-149,3** (m, ¹*J*(F, ¹⁰B)), **-149,3** (q, ¹*J*(F, ¹¹B) = 1,2 Hz)

Elementaranalyse:

	N [%]	C [%]	H [%]
berechnet	8,70	41,04	8,14
gefunden	9,70	45,24	9,60

El-Massenspektrometrie: 50 °C

Fragment	Summenformel	m/z ber.	m/z gef.	rel. Intensität
$[M - (BF_3)_2]^+$	$C_{11}H_{26}N_2$	186	186,2	2,8
$\left[M-(BF_3)_2CH_3\right]^{+}$	$C_{10}H_{23}N_2$	171	171,2	8,2
$[M - (BF_3)_2C(CH_3)_3]^+$	$C_7H_{17}N_2$	129	129,1	42,3
[CH ₂ CH ₂ CH ₂ NH ₂ ^t Butyl] ⁺	$C_7H_{17}N$	115	115,1	2,9
[CH₂CH₂CH2NH ^t Butyl] ⁺	$C_7H_{16}N$	114	114,1	6,2
[CH₂CH₂CH₂N ^t Butyl] ⁺	$C_7H_{15}N$	113	113,1	43,1
[CH₂CH₂NH₂ ^t Butyl] ⁺	$C_6H_{15}N$	101	101,2	2,8
[CH₂CH₂NH ^t Butyl] ⁺	$C_6H_{14}N$	100	100,1	38,5
[CH₂CH₂N ^t Butyl] ⁺	$C_6H_{13}N$	99	99,1	7,7
$[CH_2CH_2CH_2NC(CH_3)_2]^+$	$C_6H_{12}N$	98	98,1	100,0
[CH₂NH ^t Butyl] ⁺	$C_5H_{12}N$	86	86,0	89,3
[NH ^t Butyl]⁺	$C_4H_{10}N$	72	72,1	68,9
[N ^t Butyl]⁺	C_4H_9N	71	71,1	9,8
[^t Butyl] ⁺	C_4H_9	57	57,0	71,2

6. Abkürzungsverzeichnis

A	Frequenzfaktor
Abb.	Abbildung
ABCO	1-Azabicyclo[2.2.2]octan
Ad	Adamantyl
Ar	Aromat
asym	asymmetrisch
С	Konzentration
CLA	vollständige Linienformanalyse (<i>Complete Lineshape Analysis</i>)
δ	chemische Verschiebung
ΔG^{\neq}	Aktivierungsenthalpie
ΔH^{\neq}	Enthalpie
ΔS^{\neq}	Entropie
d	Tag(e)
DABCO	1,4-Diazabicyclo[2.2.2]octan
Dipp	2,6-Diisopropylphenyl
Dpp-bian	1,2-bis[(2,6-diiso-propylphenyl)imino]acenaphthen)
d. Th.	der theoretischen Ausbeute
E _A	Aktivierungsenergie
Et	Ethyl
h	Stunde(n)
НОМО	höchst besetztes Orbital eines Moleküls (highest occupied molecular
	orbital)
ⁱ Pr	iso-Propyl
IR	Infrarot
ⁱ Bu	iso-Butyl
×J	Kopplungskonstante über x Bindungen
k	Austauschgeschwindigkeit
Kat.	Katalysator
Ме	Methyl
Mes	Mesityl
MHz	Megahertz
min.	Minute(n)
<i>n</i> -BuLi	<i>n</i> -Butyllithium
NImag	Anzahl an imaginären Frequenzen (<i>number of imaginary frequencies</i>)
NMR	Kernspinresonanz (<i>nuclear magnetic resonance</i>)

Ph	Phenyl
ppm	Anzahl pro Millionen (p arts p er m illion)
RT	Raumtemperatur
sym	symmetrisch
T 1/2	Halbwertsbreite
Tab.	Tabelle
(tacn)H	1,4-Diisopropyl-1,4,7-triazacyclononane
^{tert} Butyl/ ^t Bu	<i>tert</i> -Butyl
tmp	2,2,6,6-Tetramethylpiperidin
^t Pentyl	<i>tert</i> -Pentyl
T _c	Koaleszenztemperatur
THF	Tetrahydrofuran
VA	Resonanzfrequenz von A
VB	Resonanzfrequenz von B
$\overline{\nu}$	mittlere Resonanzfrequenz

7. Literaturverzeichnis

- [1] E. Larsson, B. Smith, *Acta Chim. Scand.* **1949**, 487-492.
- [2] H. H. Anderson, J. Am. Chem. Soc. **1951**, 73, 5802-5803.
- [3] R. A. Benkeser, R. E. Robinson, H. Landesman, J. Am. Chem. Soc. 1952, 74, 5699-5701.
- [4] N. Meyer, Dissertation, Heinrich-Heine-Universität Düsseldorf, **2011**.
- [5] W. Fink, *Helv. Chim. Acta* **1964**, *47*, 498-508.
- [6] M. Veith, Angew. Chem. **1975**, 87, 287-288.
- [7] M. Veith, Angew. Chem. Int. Ed. Engl. 1975, 14, 263-264.
- [8] M. Veith, M. Grosser, V. Huch, Z. Anorg. Allg. Chem. 1984, 513, 89-102.
- [9] M. Veith, F. Töllner, J. Organomet. Chem. 1983, 246, 219-226.
- [10] M. Veith, H. Lange, A. Belo, O. Recktenwald, *Chem. Ber.* **1985**, *118*, 1600-1615.
- [11] M. Veith, M. Grosser, Z. Naturforsch., B: Chem. Sci. 1982, 37, 1375-1381.
- [12] M. Veith, H. Lange, O. Recktenwald, W. Frank, J. Organomet. Chem. 1985, 294, 273-294.
- [13] W. Storch, W. Jackstiess, H. Nöth, G. Winter, *Angew. Chem. Int. Ed. Engl.* **1977**, *16*, 478-479.
- [14] W. Storch, W. Jackstiess, H. Nöth, G. Winter, *Angew. Chem.* **1977**, *89*, 494-495.
- [15] M. Veith, W. Frank, F. Töllner, H. Lange, J. Organomet. Chem. **1987**, 326, 315-333.
- [16] M. Veith, K. C. K. Swamy, V. Huch, Phosphorus, Sulfur Silicon Relat. Elem. 1995, 103, 25-37.
- [17] J. Neemann, U. Klingebiel, Chem. Ber. 1981, 114, 527-535.
- [18] M. Veith, B. Bertsch, Z. Anorg. Allg. Chem. **1988**, 557, 7-22.
- [19] W. Frank, V. Petry, E. Gerwalin, G. J. Reiß, Angew. Chem. 1996, 108, 1616-1618.
- [20] W. Frank, V. Petry, E. Gerwalin, G. J. Reiß, Angew. Chem. Int. Ed. Engl. 1996, 35, 1512-1514.
- [21] O. J. Scherer, M. Püttmann, C. Krüger, G. Wolmershäuser, Chem. Ber. 1982, 115, 2076-2124.
- [22] O. J. Scherer, N. T. Kulbach, W. Glassel, Z. Naturforsch., B: Chem. Sci. 1978, 33, 652-656.
- [23] D. C. Haagenson, D. F. Moser, L. Stahl, R. J. Staples, *Inorg. Chem.* 2002, 41, 1245-1253.
- [24] D. C. Haagenson, G. R. Lief, L. Stahl, R. J. Staples, J. Organomet. Chem. 2008, 693, 2748-2754.
- [25] C. Bessenbacher, W. Kaim, J. Chem. Soc., Chem. Commun. 1989, 469-470.
- [26] D. J. Brauer, H. Bürger, E. Essig, W. Geschwandtner, J. Organomet. Chem. 1980, 190, 343-351.

- [27] V. Passarelli, F. Benetollo, P. Zanella, G. Carta, G. Rosetto, *Dalton Trans.* **2003**, 1411-1418.
- [28] D. J. Brauer, H. Bürger, G. R. Liewald, J. Wilke, J. Organomet. Chem. 1986, 310, 317-332.
- [29] F. Preuss, M. Scherer, C. Klingshirn, G. Hornung, M. Vogel, W. Frank, G. J. Reiß, Z. Naturforsch., B: Chem. Sci. **1999**, *54*, 1396-1404.
- [30] H. Bürger, D. Beiersdorf, Z. Anorg. Allg. Chem. 1979, 459, 111-118.
- [31] D. Buhl, Masterarbeit, Heinrich-Heine-Universität Düsseldorf, **2013**.
- [32] J. Schneider, E. Popowski, K. Junge, H. Reinke, *Z. Anorg. Allg. Chem.* **2001**, *627*, 2680-2692.
- [33] C. Rennekamp, P. Müller, J. Prust, H. Wessel, H. W. Roesky, I. Usón, *Eur. J. Inorg. Chem.* 2000, 1861-1868.
- [34] M. Veith, A. Belo, Z. Naturforsch., B: Chem. Sci. 1987, 42, 525-535.
- [35] G. Sommer, Bachelorarbeit, Heinrich-Heine-Universität Düsseldorf, **2011**.
- [36] V. Passarelli, B. Franco, P. Zanella, *Dalton Trans.* **2004**, 1424-1431.
- [37] M. Veith, A. Spaniol, J. Pöhlmann, F. Gross, V. Huch, Chem. Ber. 1993, 126, 2625-2635.
- [38] J. Goubeau, A. Zappel, Z. Anorg. Allg. Chem. **1955**, 279, 38-58.
- [39] L. Weber, G. Schmid, Angew. Chem. 1974, 86, 519-520.
- [40] L. Weber, G. Schmid, Angew. Chem. Int. Ed. Engl. 1974, 13, 467.
- [41] L. Weber, I. Domke, W. Greschner, K. Miqueu, A. Chrostowska, P. Baylere, *Organometallics* **2005**, *24*, 5455-5463.
- [42] L. Weber, E. Dobbert, R. Boese, M. T. Kirchner, D. Bläser, *Eur. J. Inorg. Chem.* **1998**, 1145-1152.
- [43] J. Gottlieb, Justus Liebigs Ann. Chem. 1853, 85, 17-41.
- [44] N. N. Greenwood, B. P. Straughan, B. S. Thomas, J. Chem. Soc. A. 1968, 1248-1250.
- [45] O. T. J. Beachley., K. C. Racette, *Inorg. Chem.* **1975**, *14*, 2534-2537.
- [46] O. T. Beachley, K. C. Racette, *Inorg. Chem.* **1976**, *15*, 2110-2115.
- [47] L. Pohl, M. Hostalek, M. Lokai, EP0 432 574 A2, Merck Patent Gesellschaft, **1990**.
- [48] M. Daini, M. Suginome, *Chem. Commun.* **2008**, 5224-5226.
- [49] T. T. Wang, P. J. Busse, K. Niedenzu, *Inorg. Chem.* **1970**, *9*, 2150-2152.
- [50] M. P. Brown, A. E. Dann, D. W. Hunt, H. B. Silver, *J. Chem. Soc., Chem. Commun.* 1962, 4648-4652.
- [51] K. Anton, H. Fußstetter, H. Nöth, Chem. Ber. 1984, 117, 2542-2546.
- [52] M. Herberhold, S. Gerstmann, B. Wrackmeyer, *Phosphorus, Sulfur Silicon Relat. Elem.* 1998, 134/135, 255-277.

- [53] E. S. Schmidt, A. Schier, N. W. Mitzel, H. Schmidbaur, Z. Naturforsch., B: Chem. Sci. 2001, 56, 458-462.
- [54] S. P. Green, C. Jones, A. Stasch, *Chem. Commun.* **2008**, 6285-6287.
- [55] S. Chitsaz, T. Breyhan, J. Pauls, B. Neumüller, Z. Anorg. Allg. Chem. 2002, 628, 956-964.
- [56] R. H. Cragg, R. D. Lane, J. Organomet. Chem. 1985, 294, 7.
- [57] O. J. Scherer, J. Schmidt, J. Wokulat, M. Schmidt, Z. Naturforsch., B: Chem. Sci. 1965, 20, 183-184.
- [58] B. Wrackmeyer, G. Kehr, H. Zhou, S. Ali, *Inorg. Chim. Acta.* **1992**, *1*97, 129-133.
- [59] N. Burford, C. L. B. Macdonald, T. M. Parks, G. Wu, B. Borecka, W. Kwiatkowski, T. S. Cameron, *Can. J. Chem.* **1996**, *74*, 2209-2216.
- [60] P. G. Devitt, T. P. Kee, J. Chem. Soc., Perkin Trans. 1. 1994, 3169-3182.
- [61] N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, Angew. Chem. Int. Ed. Engl. 1994, 33, 1267-1268.
- [62] N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, *Angew. Chem.* **1994**, *106*, 1332-1334.
- [63] E. E. Nifantev, A. I. Zavalishina, S. F. Sorokina, A. A. Borisenko, E. I. Smirnova, I. V. Gustova, J. Gen. Chem. USSR Engl. Transl. 1977, 47, 1793-1802.
- [64] E. E. Nifantev, A. I. Zavalishina, E. I. Orzhekovskaya, L. K. Vasyanina, *J. Gen. Chem.* USSR Engl. Transl. **1989**, 59, 720-723.
- [65] E. Schulze, Bachelorarbeit, Heinrich-Heine-Universität Düsseldorf, **2015**.
- [66] L. A. Vorobeva, S. F. Sorkina, A. I. Zavalishina, E. I. Smirnova, E. E. Nifantev, *J. Gen. Chem. USSR Engl. Transl.* **1984**, *54*.
- [67] E. E. Nifantev, S. F. Sorokina, L. A. Vorobeva, A. R. Bekker, J. Gen. Chem. USSR Engl. Transl. 1985, 55, 269-275.
- [68] C. A. Brown, E. L. Muetterties, E. G. Rochow, J. Am. Chem. Soc. 1954, 76, 2537-2539.
- [69] H. C. Brown, B. Singaram, Inorg. Chem. 1980, 19, 455-457.
- [70] H. C. Brown, B. Singaram, J. R. Schwier, *Inorg. Chem.* **1979**, *18*, 51-53.
- [71] J. S. Hartmann, J. A. W. Shoemaker, Can. J. Chem. 2001, 79, 426-436.
- [72] A. B. Burg, L. V. L. Martin, J. Am. Chem. Soc. 1943, 65, 1635-1637.
- [73] J. R. McDivitt, G. L. Humphrey, Spectrochim. Acta, Part A 1974, 30a, 1021-1033.
- [74] R. E. Banks, M. K. Besheesh, R. G. Pritchard, I. Sharif, Acta Cryst. 1993, C49, 1804-1806.
- [75] H. Friebolin, *Ein- und zweidimensionale NMR-Spektroskopie*, 4. Aufl., Wiley-VCH, Weinheim, **2006**, 311-334.
- [76] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*,
 8. Aufl., Georg Thieme Verlag, Stuttgart, **2012**, 107-115.

- [77] P. S. Pregosin, *NMR in Organometallic Chemistry*, Wiley-VCH, Weinheim, **2012**, 279-284.
- [78] H. Kessler, Angew. Chem. **1970**, 82, 237-253.
- [79] H. Kessler, Angew. Chem. Int. Ed. Engl. 1970, 9, 219-235.
- [80] W. Frank, Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, **1985**.
- [81] D. Mo, Bachelorarbeit, Heinrich-Heine-Universität Düsseldorf, **2012**.
- [82] D. Mo, Masterarbeit, Heinrich-Heine-Universität Düsseldorf, **2014**.
- [83] H. Gün, Privatmitteilung, Heinrich-Heine-Universität Düsseldorf, **2016**.
- [84] D. A. Atwood, D. Rutherford, *Main Group Chem.* **1996**, *1*, 431-442.
- [85] S. J. Trepanier, S. Wang, *Angew. Chem.* **1994**, *106*, 1357-1358.
- [86] S. J. Trepanier, S. Wang, Angew. Chem. Int. Ed. Engl. 1994, 33, 1265-1266.
- [87] E. K. Styron, C. H. Lake, D. H. Powell, L. K. Krannich, C. L. Watkins, J. Organomet. Chem. 2002, 649, 78-85.
- [88] Y. Kim, J. H. Kim, J. E. Park, H. Song, J. T. Park, J. Organomet. Chem. 1997, 545, 99-103.
- [89] M. Veith, Z. Naturforsch., B: Chem. Sci. 1978, 33, 7-13.
- [90] M. A. Petrie, K. Ruhlandt-Senge, P. P. Power, *Inorg. Chem.* **1993**, *32*, 1135-1141.
- [91] F. Kanaan, C. Schulzke, K. Strüber, U. Klingebiel, Z. Anorg. Allg. Chem. 2011, 637, 2183-2192.
- [92] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
- [93] T. F. Headen, C. A. Howard, N. T. Skipper, M. A. Wilkinson, D. T. Bowron, A. K. Soper, J. Am. Chem. Soc. 2010, 132, 5735-5742.
- [94] J. C. Slater, J. Chem. Phys. **1964**, 41, 3199-3204.
- [95] P. H. M. Budzelaar, NMR Simulation Program, gNMR Version 5.0.6, Ivorysoft, **2006**.
- [96] E. Breitmaier, *Vom NMR-Spektrum zur Strukturformel organischer Verbindungen,* 2. Aufl., B. G. Teubner, Stuttgart, **1992**, 177-178.
- [97] J. E. Huheey, E. A. Keiter, R. L. Keiter, *Anorganische Chemie Prinzipien von Struktur und Reaktivität,* 5. Aufl., Walter de Gruyter, Berlin/Boston, **2014**, 1120-1121.
- [98] M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham, *Allgemeine und Anorganische Chemie*, 1. Auflage, Elsevier GmbH, München, **2003**, 49-51.
- [99] A. F. Hollemann, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 102. Aufl., Walter de Gruyter, Berlin, **2007**, 2002-2003.
- [100] H. Sachdev, C. Wagner, C. Preis, V. Huch, M. Veith, J. Chem. Soc., Dalton Trans. 2002, 4709-4713.
- [101] J. Bezombes, B. Gehrhus, P. B. Hitchcock, M. F. Lappert, P. G. Merle, *Dalton Trans.* 2003, 1821-1829.

- [102] C. Cui, G. R. Giesbrecht, J. A. R. Schmidt, J. Arnold, *Inorg. Chim. Acta* **2003**, *351*, 404-408.
- [103] P. Dornan, C. N. Rowley, J. Priem, S. T. Barry, T. J. Burchell, T. K. Woo, D. S. Richeson, *Chem. Commun.* 2008, 3645-3647.
- [104] N. B. Kingsley, K. Kirschbaum, M. R. Mason, Organometallics 2010, 29, 5927-5935.
- [105] M. K. Denk, S. Gupta, J. Brownie, S. Tajammul, A. J. Lough, Chem. Eur. J. 2001, 20, 4477-4486.
- [106] Y. Zhang, P. H. M. Budzelaar, J. M. M. Smits, R. de Gelder, P. R. Hageman, A. W. Gal, *Eur. J. Inorg. Chem.* **2003**, 656-665.
- [107] D. C. Bradley, G. Coumbarides, I. S. Harding, G. E. Hawkes, I. A. Maia, M. Meotevalli, Dalton Trans. 1999, 3553-3558.
- [108] D. R. Armstrong, F. J. Craig, A. R. Kennedy, R. E. Mulvey, *Chem. Ber.* **1996**, 1293-1300.
- [109] C. P. Andrews, S. Calleja, M. Maguire, *Polyhedron* **2006**, *25*, 1625-1632.
- [110] M. Taghiof, D. G. Hendershot, M. Barber, J. P. Oliver, *J. Organomet. Chem.* **1992**, *431*, 271-281.
- [111] F. S. Mair, R. Manning, R. G. Pritchard, J. E. Warren, *Chem. Commun.* 2001, 1136-1137.
- [112] I. L. Fedushkin, O. V. Markina, A. N. Lukoyanov, A. G. Morozov, E. V. Baranov, M. O. Maslov, S. Y. Ketkov, *Dalton Trans.* 2013, *42*, 7952-7961.
- [113] S. M. Mansell, N. C. Norman, C. A. Russel, *Dalton Trans.* **2010**, *39*, 5084-5086.
- [114] L. Weber, J. Förster, H. G. Stammler, B. Neumann, Eur. J. Inorg. Chem. 2006, 5048-5056.
- [115] J. Li, K. Zhang, H. Huang, A. Yu, H. Hu, H. Cui, C. Cui, Organometallics 2013, 32, 1630-1635.
- [116] A. Hinchliffe, F. S. Mair, E. J. L. McInnes, R. G. Pritchard, J. E. Warren, *Dalton Trans.* 2008, 222-233.
- [117] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelmann, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176-2179.
- [118] W. Uhl, J. Molter, W. Saak, Z. Anorg. Allg. Chem. 1999, 625, 321-328.
- [119] C. J. Carmalt, J. D. Mileham, A. J. P. White, D. J. Williams, Organometallics 2003, 22, 1554-1557.
- [120] C. J. Carmalt, S. J. King, J. D. Mileham, E. Sabir, D. A. Tocher, *Organometallics* 2004, 23, 2939-2943.
- [121] K. Knabel, H. Nöth, Z. Naturforsch., B: Chem. Sci. 2005, 60b, 1027-1035.
- [122] M. Liniger, D. G. van der Velde, M. K. Takase, M. Shahgholi, B. M. Stoltz, J. Am. Chem. Soc. 2016, 138, 969-974.

- [123] M. Güizado-Rodriguez, A. Ariza-Castolo, G. Merino, A. Vela, H. Nöth, V. I. Bakhmutov, R. Contreras, *J. Am. Chem. Soc.* 2001, *123*, 9144-9152.
- [124] D. F. Shriver, M. A. Drezdon, *The manipulation of air-sensitive compounds*, 2nd ed., John Wiley & Sons. Inc., Canada, **1986**, 30-40.
- [125] A. Stock, Ber. Dtsch. Chem. Ges. 1914, 47, 154.
- [126] A. Stock, Ber. Dtsch. Chem. Ges. 1914, 47, 3109.
- [127] A. Stock, Ber. Dtsch. Chem. Ges. 1914, 47, 3115.
- [128] A. Stock, Ber. Dtsch. Chem. Ges. 1914, 49, 111.
- [129] A. Stock, Ber. Dtsch. Chem. Ges. 1921, 54A, 142.
- [130] H. Willner, Vakuumtechniken in der präparativen Chemie, Wuppertal, 2004, 9-20.
- [131] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 6th ed., Elsevier, USA, **2009**, 31.
- [132] P. Hohenberg, W. Kohn, *Phys. Rev.* **1964**, *136*, B864-B871.
- [133] W. Kohn, L. J. Sham, *Phys. Rev.* **1965**, *140*, A1133-A1138.
- [134] D. R. Salahub, M. C. Zerner, *The Challenge of d and f Electrons*, ACS, Washington, D.C., **1989**.
- [135] R. G. Parr, W. Yang, *Density-Functional Theory of Atoms and Molecules*, Oxford Univ. Press, Oxford, **1989**.
- [136] A. Frisch, M. J. Frisch, F. R. Clement, G. W. Trucks, *Gaussian 09 Users's Reference Second edition*, Gaussian, Inc., Wallingford, CT, **2013**, 88.
- [137] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford, CT, 2009.
- [138] C. Lee, W. Yang, R. G. Parr, *Phys. Rev.* **1988**, 37, B785-B789.
- [139] A. D. Becke, *Phys. Rev.* **1988**, *38*, A3098-A3100.
- [140] A. D. Becke, J. Chem. Phys **1993**, 98, 1372-1377.

- [141] R. Dennington, T. Keith, J. M. Millam, K. Eppinnett, W. L. Hovell, R. Gilliland, *GaussView, Version 3.07*, Semichem, Inc., Shawnee Mission, KS, **2003**.
- [142] B. Eichhorn, H. Nöth, Z. Naturforsch., B: Chem. Sci. 2000, 55b, 352-360.
- [143] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [144] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
- [145] Stoe & Cie GmbH Darmstadt, XRed Version 1.09, 1997.
- [146] Stoe & Cie GmbH Darmstadt, X-Shape Version 1.01, **1996**.
- [147] K. Brandenburg, Diamond 3.2k, Crystal Impact GbR, Bonn, 2014.
- [148] H. Günzler, H. U. Gremlich, *IR-Spektroskopie: Eine Einführung*, 4. Aufl., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2003**, 230.
- [149] H. Günzler, H. U. Gremlich, *IR-Spektroskopie: Eine Einführung*, 4. Aufl., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2003**, 165-169.
- [150] B. Schrader, R. Rademacher, *Kurzes Lehrbuch der Organischen Chemie*, 3. Aufl., Walter de Gruyter GmbH & Co. KGaA, Berlin, New York, **2009**, 334.
- [151] Stoe & Cie GmbH Darmstadt, X-Area Version 1.55, 2009.
- [152] C. S. Pratt, B. A. Coyle, J. A. Ibers, J. Chem. Soc. A. 1971, 2146-2151.
- [153] H. Günzler, H. U. Gremlich, *IR-Spektroskopie: Eine Einführung*, 4. Aufl., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2003**, 222-224.

8. Anhang

8.1. Experimentelle und berechnete IR- und Raman-Schwingungen sowie deren Zuordnung

Tab. 8.1.1 Experimentelle und berechnete IR-Schwingungen von 1, 3, 4 und 5 sowie deren Zuordnu	ng.
--	-----

1		3		4		5		Zuordnung
Exp.	Ber.	Exp.	Ber.	Exp.	Ber.	Exp.	Ber.	Zuoranung
3248 vw								vNH ^[150, 153]
3067 vw				3067 w				vC _{Ar} H ^[148, 150]
3051 vw				3047 w				vC _{Ar} H ^{82][150]}
3008 vw				3017 vw				vC _{Ar} H ^{82][150]}
2996 vw								vCH ^[149-150]
2960 vs		2959 vs		2953 s		2963 vs		vCH ^[149-150]
2942 s								vCH ^[149-150]
2923 m		2907 m		2923 vs		2924 vs		vCH ^[149-150]
2868 w		2870 w		2863 s		2882 s		vCH ^[149-150]
2818 vw		2817 vw		2815 m				vCH ^[149-150]
1587 vw	1606			1588 vw	1598			vC _{Ar} C _{Ar}
				1534 vw	1524			vC _{Ar} C _{Ar}
1468 w	1470	1465 vw	1466	1436 vw	1463	1462 w	1463	δ _w CH ₃ **
1461 vw	1467			1464 w	1464			vC _{Ar} C _{Ar}
1427 m	1431	1398 vw	1399	1427 m	1429	1396 vw	1401	$\delta_w CH_3^*$
1378 m	1402	1378 m	1398	1380 m	1398	1380 w	1391	$\delta_w CH_3^*$
						1374 w	1365	$\delta_w CH_2^*$
1360 m	1366			1358 m	1355			vC _{Ar} C _{Ar}
		1360 m	1388			1359 w	1360	$\delta_w CH_3^*, \delta_w CH_2^*$
						1325 vw	1324	TCH ₂ , Gerüst*
1308 vw	1298			1307 vw	1295			δ _w SiC
						1289 vw	1293	$\delta_w C_{Si} H_3$
1260 vw	1258	1251 m	1252	1259 vw	1248	1251 m	1246	Gerüst
1228 s	1225	1227 m	1230	1225 m	1222	1220 w	1221	vCN, Gerüst
1200 s	1213			1204 vs	1210			$\delta_w C_{Ar} H$
		1193 m	1224			1193 m	1194	vCN
	1185			1157 w	1182			vCN
1183 s	1184			1171w	1183			$\delta_w C_{Ar} H$
1110 vs	1101			1102 s	1100			$\delta_w C_{Ar} H$
1088 s	1095	1099 vw	1105			1096 vw	1104	v _{svm} SiN
						1063 w	1068	TCH ₂ , Gerüst*
1035 w	1049	1032 m	1054	1051 s	1051	1047 w	1051	v _{asvm} SiN
1026 w	1024			1024 m	1023			TC _{Ar} H
		1018 m	1047			1025 s	1015	Gerüst
998 vw	999			997 w	1007		-	TC _{Ar} H
950 m	949	955 w	956	950 vw	956	964 m	990	Gerüst*
921 w	922	920 w	913	910 vw	912	904 s	911	vCC*
882 s	881			879 w	875			$\delta_w C_{Ar} H$

Anhang

		898 w	897					δC(CH) ₃
849 s	849	868 w	865	845 w	829	855 m	864	v _{sym} SiN
		842 m	840			835 vs	833	Gerüst
		819 m	807	822 s	829	811 s	802	v _{sym} SiN, Gerüst
783 vs	784	789 m	789			784 vs	777	v _{asym} SiN, Gerüst
		773 m	773	778 vs	779			v _{sym} SiN, Gerüst
743 s	736	751 m	737	739 s	737	749 s	741	Gerüst
713 s	715	710 m	713					Gerüst
698 vs	690	681 m	669	697 vs	704	676 vs	672	vAlNa, Gerüst
668 vs	680			652 s	660	647 vs	655	vAIC
631 m	637	625 m	641					Gerüst
606 w	605			610 m	603			δ _w AIC, Gerüst
584 w	586			581 m	573			δ _w AIC, Gerüst
567 w	566							v _{sym} AIC, Gerüst
538 w	540			531 s	531			Gerüst
*N-Alkyl								

**Al/Si-Methyl

Tab. 8.1.2 Experimentelle und berechnete Raman-Schwingungen von 1, 3, 4 und 5 sowie deren Zuordnung.

1		3		4		5		Zuerdnung	
Exp.	Ber.	Exp.	Ber.	Exp.	Ber.	Exp.	Ber.	Zuorunung	
3244 vw								vNH ^[150]	
				3130 vw				vC _{Ar} H ^[150]	
3049 m				3048 vs				$vC_{Ar}H^{[150]}$	
2996 w				2997 m		2971 vs		vCH ^[150]	
2962 m		2962 vs		2956 s				vCH ^[150]	
2942 m		2949 vs		2925 s		2941 vs		vCH ^[150]	
		2928 s						vCH ^[150]	
2897 m		2897 vs		2898 s		2899 vs		vCH ^[150]	
		2849 w						vCH ^[150]	
2818 w		2815 vw				2818 w		vCH ^[150]	
1589 m	1606			1588 s	1598			$vC_{Ar}C_{Ar}$	
1568 w	1527							$vC_{Ar}C_{Ar},\delta_wCH_3$	
1463 w	1463			1461 m	1464			$vC_{Ar}C_{Ar}$	
1403 W	1461	1459 w	1464	1401 111	1463	1460 w	1463	δ _w CH ₃ **	
1440 w	1444	1434 w	1430	1441 m	1430	1434 m	1424	$\delta_w CH_3^*, \omega CH_2$	
		1398 vw	1398			1398 vw	1401	$\delta_w CH_3^*$, $T CH_2$	
1378 vw	1366			1381 vw	1364			$vC_{Ar}C_{Ar}$	
						1384 vw	1391	$\delta_w CH_3^*$, ωCH_2	
						1317 vw	1324	ŢCH ₂ , Gerüst*	
1314 vw	1298			1284 vw	1295			$vC_{Ar}C_{Ar}$	
		1291 vw	1289			1293 w	1293	δ _w SiC	
1233 vw	1237	1250 vw	1230	1226 m	1229	1249 vw	1246	vCC*, Gerüst	
		1204 w	1224			1225 w	1222	vNC, vCC*	
1220 w	1213			1211 m	1210			$\delta_w C_{\text{Ar}} H$	
						1197 w	1194	vNC, vCC*	

				Anha	ng			
1187 vw	1185			1188 m	1183			$\delta_w C_A r H$
1114 vw	1124			1109 m	1115			vSiN, vSiC _{Ar}
1069 vw	1060	1064 vw	1059	1066 vw	1061	1073 w	1079	v _{asym} SiN, Gerüst
		1022 vw	1047			1045 w	1051	δ _w SiNAI
1029 w	1024			1029 m	1028			ŢĊ _{Ar} H
						1013 w	1015	Gerüst*
999 s	1000			999 w	1007			ŢĊ _{Ar} H
		968 vw	958			971 vw	990	Gerüst*
950 vw	949							vN _H C, Gerüst*
						916 w	919	Gerüst*
911 w	913							$\delta_w NH$
887 vw	905	906 vw	903	902 vw	904	904 w	903	vCC*
		894 vw	897					vCC*
850 vw	849							vSiNAI
		841 vw	840			839 vw	833	δ _w SiNAI
780 \	784	795 vw	789	807 vw	804	783 vw	790	vSiN
703 W	782	769 vw	771	784 w	779	755 w	753	vAIN
		751 vw	737			733 vw	740	$\delta_w C_{Si} H$
713 vw	716							ŢĊ _{Ar} H
		693 vw	713	702 vw	704	694 vw	705	vSiNAI, Gerüst
671 vw	680			677 vw	684			$vAIC, vC_{Ar}C_{Ar}$
		646 vw	654			649 w	655	vSiNAI, vSiC,
621 w	636			621 w	637			vC _{Ar} C _{Ar}
		615 vw	608			602 m	609	δCH ₃ **
		586 vw	587	573 vw	573	578 w	587	Gerüst
565 w	566					562 w	584	Gerüst
543 w	540	539 w	529	540 w	531	548 w	537	δ _w NSiNAI, Gerüst
516 w	518			519 vw	520			δ _w NSiNAI, Gerüst
		482 vw	493	501 vw	499	498 w	487	ωNSiNAI, vNaN
421 vw	417	422 vw	421	418 vw	419	431 w	428	Gerüst
394 vw	390	382 w	390	388 vw	394	387 vs	391	Gerüst
						369 m	368	vSiNAI, Gerüst
						344 w	333	vSiNAI, Gerüst
322 vw	316	316 vw	316					Gerüst*
268 vw	269			264 w	261			Gerüst
		251 w	255					δCH ₃ *
246 w	246	235 w	238	233 w	235	246 m	239	v(SiN₂Al)Na, Gerüst
						225 m	227	ωCH ₃ **
200 w	199	196 vw	196	204 w	205	192 m	193	v(SiN₂AI)Na, Gerüst
182 w	179			172 w	162			ωCH₃**, Gerüst
144 w	141			134 m	139	136 m	137	Gerüst
				97 vs	100	93 m	95	Gerüst
82 vs	79			75 vs	81			Gerüst

*N-Alkyl

**Al/Si-Methyl

Zuordnung		9		8		7
Zuoranung	Ber.	Exp.	Ber.	Exp.	Ber.	Exp.
vNH ^[150, 153]				3239 vw		
vCH ^[149-150]		2963 s		2968 s		2968 vs
vCH ^[149-150]		2924 s		2924 s		2932 s
vCH ^[149-150]						2921 s
vCH ^[149-150]				2888 m		2899 s
vCH ^[149-150]						
vCH ^[149-150]		2831 m		2826 w		2828 w
δ _w CH ₃ **	1477	1477 w	1476	1480 w	1478	1478 w
δ _w CH3**	1464	1468 w	1465	1469 w	1463	1464 w
$\delta_w CH_3^*, \delta_w NH$	1444	1447 vw	1446	1447 vw	1442	1447 vw
δ _w CH ₃ *, ŢCH ₂					1410	1396 w
$\delta_w CH_3^*$, ωCH_2	1398	1397 w	1412	1402 w	1381	1374 m
ωCH ₂ , ŢCH ₂			1371	1375 vw		
ωCH ₂ , ŢCH ₂ , Gerüst*						
ωCH_2					1373	1368 m
Gerüst*						
vCC, Gerüst	1330	1342 vw	1318	1308 vw		
TCH ₂ , vCC*	1290	1295 vw	1280	1294 vw		
ŢCH₂	1262	1261 vw				
-			1245	1241 w		
ðCH ₃ **	1253		1236	1230 w	1232	1229 m
	1223	1223 m				
vNC*, Gerüst*	1217	1191 s	1223	1193 m	1228	1194 vs
vCC*						
Gerüst			1133	1117 vw		
vCC	1110	1108 vw				
Gerüst			1103	1096 w		
vCC, δCH ₃ **	1062	1059 w	1074	1074 vw		
vNC	1028	1012 vw				
vNC, vCC			1058	1053 vw		
vNC*, vCC, δ _w AIN					1048	1048 w
Gerüst*, δNH			1026	1016 vw		
vNC*, vCC, δ _w NH	992	989 w	989	992 vw		
v _{asym} NC*, δ _w AIN, Gerüst					981	982 m
δ _w CH ₃ *			970	968 w		
Gerüst	927	924 w	925	926 vw	919	924 vw
Gerüst					914	909 w
v _{asym} NC*, δAIN, Gerüst*	888	887 m	854	862 w		
Gerüst	827	818 m				
Gerüst	768	766 m	776	767 m	786	787 w
δ _w CH ₃ **, vNAI						
- ,		683 vs			688	689 vs
δ _w CH₃**, ωNAI	676	662 vs	712	686 vs	670	659 vs
δ _w CH ₃ **, vNAI, v _{asym} AIC*	628	625 m	638	639 s	626	626 s

 Tab. 8.1.3 Experimentelle und berechnete IR-Schwingungen von 7, 8 und 9 sowie deren Zuordnung.

		Anhang		
		590 m	595	$\delta_w CH_3^{**}$, vNAI, v _{asym} AIC**
		571 m	576	$\delta_w CH_3^{**}$, vNAI, v _{sym} AIC**
571 w	571			Gerüst
*N-Alkyl				

**Al-Methyl

Tab. 8.1.4 Experimentelle und berechnete Raman-Schwingungen von 7, 8 und 9 sowie deren Zuordnung.

7		8		9		- .
Exp.	Ber.	Exp.	Ber.	Exp.	Ber.	Zuordnung
		3240 w				vNH ^[150]
				3013 m		vCH ^[150]
				2983 s		vCH ^[150]
2977 vs		2979 s		2964 vs		vCH ^[150]
2931 s		2921 vs		2921 vs		vCH ^[150]
2898 vs		2887 vs		2896 vs		vCH ^[150]
2825 w		2818 m		2832 m		vCH ^[150]
1495 w	1494					vCH ^[150]
1465 m	1467	1468 w	1465	1468 m	1469	δCH3**
				1451 m	1464	δCH3**
1442 w	1442	1444 w	1444	1437 m	1442	δCH ₃ *
1396 vw	1410	1418 vw	1417	1401 w	1407	$\delta_w CH_3^*, \omega CH_2$
1369 vw	1373	1070	4000			ωCH ₂
		1379 VW	1393			ŢCH₂
		1350 vw	1347			ŢCH₂, δ _w NH
						Gerüst*
		1323 vw	1318			Gerüst
		1296 vw	1280	1296 w	1290	ŢCH ₂ , Gerüst
		1249 vw	1254			Gerüst
1226 w	1228			1223 m	1223	vNC*
		1185 m	1223	1200 m	1217	vNC*
						vCC*
		1120 vw	1134			Gerüst
				1104 vw	1110	vCC
		1098 vw	1103			Gerüst
				1060 vw	1062	δ _w NAINAI
		1054 vw	1058			vCC
1049 w	1052					vNN, vCC
						v _{asym} NC*, v _{asym} CC
				1027 vw	1028	$v_{sym}NC, \delta_wCH_3^*$
		1017 vw	1026			$\delta_w CH_3^*, \delta_w NH$
		994 vw	989			vNC, $\delta_w NH$
				990 w	992	v _{sym} NC*, v _{sym} CC
						v _{asym} NAI, Gerüst
		936 w	937			Gerüst
		927 vw	925			vCC*
				925 w	927	δ _w NAINAI, vNC, Gerüst

922 w	919					v _{sym} NAI, Gerüst
914 w	914			914 w	917	v _{sym} NAINAI, v _{sym} NC, Gerüst
		897 vw	886			vCC, Gerüst*
				892 vw	888	v _{asym} NAI, v _{asym} NC*
				878 w	877	δ_w NAINAI, vCC, vNC*
		851 w	854			Gerüst
				819 w	827	Gerüst
788 m	786			767 m	764	v _{sym} NAI, Gerüst
609	707	736 m	736			
698 W	707	700 w	712			VasymAIC, 0 _w CH ₃ ^{***} , Gefust
				688 vw	696	δCH ₃ **
666 w	670	643 vw	646	664 w	676	v _{asym} AIC, δ _w CH ₃ **, Gerüst
		624 vw	635			v _{asym} AIC, δ _w CH ₃ **
613 w	610			613 m	607	v _{sym} AIC, v _{sym} NAI
						v _{asym} AIC, δ _w CH ₃ **, Gerüst
				593 w	595	v _{asym} AIC, δ _w CH ₃ **
		583 w	585			vNAI, Gerüst
536 s	531	528 vs	525	528 s	525	Gerüst
473 w	472	478 w	469			Gerüst
		451 vw	446	443 w	442	Gerüst
422 vw	418					v _{asym} NAI, Gerüst*
		415 vw	412			Gerüst
200	205	201	200	391 s	393	Carillet
380 11	385	391 VW	389	341 w	344	Gerust
325 m	317			318 s	321	Gerüst
						Gerüst
		276 vw	280			δ _w CH ₃ *
252 w	255	238 w	238	242 m	236	Gerüst
217 w	216	211 m	212	200 m	205	Gerüst
178 w	171					δ _w CH ₃ **
				177 m	185	ωΑΙϹ
165 m	164					Gerüst
		151 m	151			δ _w CH ₃ *
139 w	144	126 w	134	113 m	114	Gerüst
74 vw	75					$\delta_w CH_3^*$
		72 vw	69			Gerüst

Anhang

*N-Alkyl

**Al-Methyl

 Tab. 8.1.5 Experimentelle und berechnete IR-Schwingungen von 10 und 14 sowie deren Zuordnung.

		10	14			
Exp.	Ber.	Zuordnung	Exp. Ber.	Zuordnung		
2999 w		vCH ^[149-150]	3330 vw	vNH ^[150, 153]		
2970 vs		vCH ^[149-150]	3157 m	vCH ^[149-150]		
2935 m		vCH ^[149-150]	2963 s	vCH ^[149-150]		
2909 m		vCH ^[149-150]	2873 w	vCH ^[149-150]		
2866 m		vCH ^[149-150]	1484 w 1484	$\delta_w CH_3$, $\delta_w NH$		

157

Anhang

1476 m	1484	$\delta_w CH_3$	1471 w	1474	$\delta_w NH$, $\delta_w CH$
1414 s	1417	vNB, vCC, δ_wCH_3 , ωCH_2	1452 vw	1446	$\delta_w NH$, $\delta_w CH$
1397 m	1403	$\delta_w CH_3$	1429 w	1438	$\delta_w NH$, $\delta_w CH$
1387 m	1402	vCC, $v_{sym}NBN$, δCH_3 , ωCH_2	1408 m	1408	$\delta_w CH_3$, ωCH_2
1360 m	1320	vCC, v _{sym} NBN, TCH ₂	1389 m	1394	$\delta C_w H_3$, $\omega C H_2$, $\delta_w N H$
1282 vs	1265	Gerüst	1380 m	1389	$\delta_w CH_3$, ωCH_2 , $\delta_w NH$
1236 s	1239	Gerüst	1364 m	1360	vBF₃, Gerüst
1209 s	1231	vGerüst	1294 vw	1307	vCC*, δ _w Gerüst
1196 s	1212	vGerüst, vBCl	1275 vw	1283	vCC*, δ _w Gerüst
1120 m	1118	v _{sym} NC, δCH ₂	1236 vw	1236	vCC*, δ _w Gerüst, vBF ₃
1093 w	1107	v _{asym} NC, δ _w NBN, Gerüst*	1210 s	1225	vNC*, δ _w CH
994 w	1004	v _{sym} CC, δ _w NBN, Gerüst*	1063 vs	1079	vCC, vNC, vBF ₃ , δ_w CH ₃ *
942 w	944	δ _w BCI, Gerüst	1038 vs	1036	vCC, vNC, vCC*, δ_w CH ₃ *
800 vw	798	vCC*, vBCl, δ _w NBN	944 vw	941	$\delta_w CH_3$, vCC*
596 vw	599	Gerüst	924 vw	930	$\delta_w CH_3$, vCC*
574 w	563	vBCI, ōGerüst	904 vw	912	Gerüst
			850 vw	846	δ _w BF ₃ , Gerüst
			777 vw	775	δ _w NH, Gerüst
			766 vw	761	vNC*, vCC*, δ_w NH, δ CH ₂
			735 w	734	Gerüst

*N-Alkyl

 Tab. 8.1.6 Experimentelle und berechnete Raman-Schwingungen von 10 und 14 sowie deren Zuordnung.

	10			14			
Exp.	Ber.	Zuordnung	Exp.	Ber.	Zuordnung		
2974 vs		vCH ^[150]	3330 vw		vNH ^[150]		
2931 vs		vCH ^[150]	2988 vs		vCH ^[150]		
2907 vs		vCH ^[150]	2965 vs		vCH ^[150]		
2868 s		vCH ^[150]	2927 vs		vCH ^[150]		
1481 m	1484	δCH ₃	1473 m	1474	$\delta_w NH, \delta_w CH$		
1462 m	1439	$v_{asym}NBN, \omega CH_2$	1452 m	1446	$\delta_w NH, \delta_w CH$		
1450 m	1436	$\delta_w CH_3$	1409 vw	1408	$\delta_w CH_3$, ωCH_2		
1237 m	1239	Gerüst	1377 w	1389	$\delta_w CH_3, \omega CH_2, \delta_w NH$		
1220 m	1212	vGerüst, vBCl	1333 w	1360	vBF ₃ , Gerüst		
1122 vw	1118	vNC, $\delta_w CH_2$	1274 w	1283	vCC*, δ _w Gerüst		
1038 w	1041	vNC, δ _w Gerüst*	1215 w	1225	vNC*, δ _w CH		
996 w	1004	v _{sym} CC, δ _w NBN, Gerüst*	1116 vw	1118	Gerüst		
944 vw	944	δ _w BCI, Gerüst	1093 w	1097	vNC , vBF_3 , δ_wCH_3		
915 m	916	δ _w CH	1066 vw	1079	vCC, vNC, vBF ₃ , δ_w CH ₃ *		
802 s	798	vBCl, δ _w NBN, vGerüst	1041 vw	1042	Gerüst		
569 s	563	vBCI, δ _w Gerüst	1023 vw	1036	vCC, vNC, vCC*, δ_w CH ₃ *		
515 w	515	δ _w BCl, δ _w Gerüst*	928 w	930	δCH_3 , vCC*		
495 m	492	vBCI, Gerüst*	915 w	917	vCC*, δCH₃, vNC, vCC		
403 m	400	vBCI, Gerüst*	862 w	846	δ _w BF ₃ , Gerüst		
323 vw	325	δCH ₃	767 m	761	vNC*, vCC*, δ NH, δ_w CH ₂		
276 w	275	ŢNCCNB, Gerüst	740 s	734	Gerüst		
186 vw	188	$\delta_w BCI, \delta_w CH_3$	497 vw	506	Gerüst		

	Anhang							
163 vw	161	ωNC, ωBCl, δ _w CH ₃	475 w	473	δ _w Gerüst			
142 w	133	Gerüst	451 vw	455	δ _w Gerüst, δBF ₃			
70 m	62	Gerüst	362 m	354	Gerüst			
			266 vw	267	Gerüst			
			236 vw	247	$\delta_w CH_3$			
			170 vw	159	Gerüst			
			83 m	86	Gerüst			
*N-Alkyl								

8.2. Abbildungen

Abb. 8.2.2 ¹H-NMR-Spektren von **4** (c = 0,024 mol/l) in Toluol-d₈. Übersichtshalber sind nur die Protonen der AlMe₂-Gruppe (rot) dargestellt. Pfeile kennzeichnen Signale des Edukts, * Verunreinigungen unbekannter Herkunft.

Abb. 8.2.3 ¹H-NMR-Spektrum von 7 in CDCl₃.

8.3. Anhang zu 1

 Tab. 8.3.1
 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 1.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Si1	0,6684(1)	0,5610(1)	0,7895(1)	0,028(1)
Si2	0,6683(1)	0,8876(1)	0,2765(1)	0,029(1)
Al1	0,5674(1)	0,6241(2)	0,6689(1)	0,031(1)
Al2	0,5600(1)	0,9514(1)	0,1619(1)	0,033(1)
N1	0,5739(4)	0,6157(4)	0,7860(4)	0,032(2)
N2	0,6583(4)	0,5572(4)	0,6919(4)	0,032(2)
N3	0,5766(4)	0,9437(4)	0,2788(4)	0,041(2)
N4	0,6559(4)	0,8867(4)	0,1781(3)	0,038(2)
C1	0,4677(5)	0,5694(6)	0,6234(5)	0,051(2)
C2	0,5807(6)	0,7338(5)	0,6260(5)	0,056(3)
C3	0,5499(4)	0,6799(5)	0,8400(4)	0,029(2)
C4	0,5568(5)	0,6450(6)	0,9220(5)	0,047(2)
C5	0,4631(4)	0,7013(5)	0,8118(5)	0,044(2)
C6	0,6010(5)	0,7564(5)	0,8375(5)	0,045(2)
C7	0,7011(4)	0,5088(4)	0,6393(4)	0,029(2)
C8	0,6463(6)	0,4420(7)	0,6013(7)	0,090(4)
C9	0,7247(6)	0,5642(6)	0,5768(5)	0,071(3)
C10	0,7759(5)	0,4696(6)	0,6812(5)	0,052(2)
C11	0,6630(4)	0,4605(5)	0,8404(4)	0,030(2)
C12	0,7312(5)	0,4222(5)	0,8802(4)	0,035(2)
C13	0,7259(5)	0,3443(5)	0,9135(4)	0,037(2)
C14	0,6540(5)	0,3032(5)	0,9063(5)	0,042(2)
C15	0,5866(5)	0,3399(5)	0,8663(5)	0,040(2)
C16	0,5904(5)	0,4155(5)	0,8332(5)	0,037(2)
C17	0,7561(4)	0,6214(5)	0,8390(4)	0,029(2)
C18	0,7969(4)	0,6733(5)	0,7936(4)	0,032(2)
C19	0,8603(5)	0,7211(6)	0,8263(5)	0,046(2)
C20	0,8861(5)	0,7181(5)	0,9042(6)	0,052(2)
C21	0,8472(5)	0,6675(5)	0,9498(5)	0,042(2)
C22	0,7845(4)	0,6202(5)	0,9173(4)	0,037(2)
C23	0,4593(5)	0,8949(5)	0,1228(5)	0,048(2)
C24	0,5700(6)	1,0608(6)	0,1183(6)	0,065(3)
C25	0,5579(5)	1,0071(5)	0,3361(5)	0,039(2)
C26	0,5742(5)	0,9705(5)	0,4187(5)	0,042(2)
C27	0,4667(5)	1,0250(6)	0,3160(6)	0,055(2)
C28	0,6056(5)	1,0845(6)	0,3293(6)	0,053(3)
C29	0,6908(4)	0,8346(5)	0,1234(4)	0,033(2)
C30	0,7750(5)	0,8052(7)	0,1590(6)	0,064(3)
C31	0,6945(8)	0,8811(8)	0,0508(6)	0,098(4)
C32	0,6405(6)	0,7578(7)	0,1072(7)	0,083(4)
C33	0,6601(4)	0,7854(4)	0,3236(4)	0,027(2)

		Anhang		
C34	0,7256(4)	0,7426(5)	0,3614(4)	0,035(2)
C35	0,7190(5)	0,6655(5)	0,3934(5)	0,038(2)
C36	0,6437(5)	0,6286(5)	0,3882(4)	0,041(2)
C37	0,5773(6)	0,6690(6)	0,3519(5)	0,048(2)
C38	0,5862(5)	0,7464(6)	0,3215(5)	0,043(2)
C39	0,7587(5)	0,9424(5)	0,3239(4)	0,032(2)
C40	0,7996(5)	0,9987(5)	0,2829(4)	0,036(2)
C41	0,8644(5)	1,0429(5)	0,3156(4)	0,037(2)
C42	0,8932(5)	1,0327(5)	0,3925(4)	0,035(2)
C43	0,8553(4)	0,9767(5)	0,4365(4)	0,035(2)
C44	0,7902(4)	0,9329(5)	0,4018(4)	0,030(2)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Tab. 8.3.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 1.

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1	0,539(4)	0,575(4)	0,785(5)	0,08(3)
H2	0,5343(6)	0,9100(7)	0,2813(6)	0,058
H1A	0,4792	0,5316	0,5843	0,077
H1B	0,4300	0,6095	0,6006	0,077
H1C	0,4453	0,5404	0,6632	0,077
H2A	0,5877	0,7292	0,5726	0,084
H2B	0,6269	0,7596	0,6543	0,084
H2C	0,5339	0,7661	0,6304	0,084
H4A	0,5252	0,5961	0,9216	0,070
H4B	0,5376	0,6845	0,9557	0,070
H4C	0,6119	0,6325	0,9403	0,070
H5A	0,4582	0,7204	0,7593	0,065
H5B	0,4458	0,7435	0,8440	0,065
H5C	0,4302	0,6537	0,8142	0,065
H6A	0,5985	0,7746	0,7849	0,067
H6B	0,6556	0,7441	0,8580	0,067
H6C	0,5812	0,7986	0,8680	0,067
H8A	0,6013	0,4665	0,5697	0,135
H8B	0,6276	0,4090	0,6405	0,135
H8C	0,6754	0,4085	0,5697	0,135
H9A	0,7519	0,5328	0,5419	0,106
H9B	0,7597	0,6064	0,6000	0,106
H9C	0,6775	0,5885	0,5487	0,106
H10A	0,8028	0,4401	0,6449	0,078
H10B	0,7615	0,4325	0,7197	0,078
H10C	0,8108	0,5111	0,7058	0,078
H12A	0,7806	0,4485	0,8845	0,042
H13A	0,7715	0,3205	0,9407	0,044
H14A	0,6507	0,2516	0,9280	0,050
H15A	0,5377	0,3126	0,8617	0,048
H16A	0,5443	0,4379	0,8055	0,045

H18A 0,7809 0,6756 0,7404	0,038
H19A 0,8858 0,7557 0,7952	0,055
H20A 0,9293 0,7498 0,9260	0,063
H21A 0,8636 0,6656 1,0029	0,050
H22A 0,7599 0,5857 0,9492	0,045
H23A 0,4617 0,8754 0,0714	0,073
H23B 0,4152 0,9323 0,1221	0,073
H23C 0,4519 0,8496 0,1560	0,073
H24A 0,5745 1,0562 0,0642	0,098
H24B 0,6169 1,0872 0,1447	0,098
H24C 0,5234 1,0925 0,1246	0,098
H26A 0,5445 0,9206 0,4205	0,063
H26B 0,5578 1,0087 0,4552	0,063
H26C 0,6305 0,9594 0,4317	0,063
H27A 0,4561 1,0484 0,2651	0,082
H27B 0,4505 1,0628 0,3530	0,082
H27C 0,4371 0,9750 0,3174	0,082
H28A 0,6005 1,1010 0,2761	0,079
H28B 0,6610 1,0746 0,3483	0,079
H28C 0,5856 1,1271 0,3593	0,079
H30A 0,7983 0,7736 0,1215	0,096
H30B 0,7706 0,7720 0,2036	0,096
H30C 0,8084 0,8517 0,1741	0,096
H31A 0,7119 0,8456 0,0127	0,147
H31B 0,7317 0,9256 0,0611	0,147
H31C 0,6423 0,9023 0,0319	0,147
H32A 0,5874 0,7725 0,0840	0,124
H32B 0,6378 0,7293 0,1549	0,124
H32C 0,6646 0,7230 0,0726	0,124
H34A 0,7761 0,7667 0,3655	0,042
H35A 0,7643 0,6389 0,4180	0,045
H36A 0,6384 0,5769 0,4092	0,049
H37A 0,5269 0,6448 0,3477	0,058
H38A 0,5406 0,7737 0,2986	0,051
H40A 0,7815 1,0064 0,2305	0,043
H41A 0,8889 1,0798 0,2859	0,044
H42A 0,9374 1,0624 0,4152	0,042
H43A 0,8741 0,9693 0,4888	0,042
H44A 0,7662 0,8955 0,4315	0,036

Tab. 8.3.3 U_{ij}-Werte [Å²] von 1.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si1	0,024(1)	0,032(1)	0,027(1)	0,004(1)	0,005(1)	0,000(1)
Si2	0,027(1)	0,032(1)	0,028(1)	0,004(1)	0,006(1)	0,002(1)
Al1	0,027(1)	0,032(1)	0,033(1)	0,005(1)	0,000(1)	0,000(1)
AI2	0,039(1)	0,024(1)	0,035(1)	0,002(1)	0,001(1)	0,000(1)
N1	0,032(4)	0,035(4)	0,029(3)	-0,004(3)	0,006(3)	-0,003(3)

			Anhang			
N2	0,034(4)	0,028(4)	0,034(3)	-0,001(3)	0,005(3)	0,004(3)
N3	0,040(4)	0,043(5)	0,039(4)	-0,008(3)	-0,003(3)	0,020(3)
N4	0,055(4)	0,033(4)	0,026(3)	0,000(3)	0,005(3)	0,004(3)
C1	0,033(5)	0,070(7)	0,048(5)	-0,013(5)	-0,003(4)	-0,002(4)
C2	0,067(6)	0,040(6)	0,065(6)	0,021(5)	0,022(5)	0,007(5)
C3	0,032(4)	0,026(4)	0,031(4)	-0,011(3)	0,010(3)	-0,006(3)
C4	0,046(5)	0,057(6)	0,036(5)	-0,012(4)	0,003(4)	0,010(4)
C5	0,027(4)	0,034(5)	0,069(6)	-0,007(5)	0,005(4)	0,006(4)
C6	0,043(5)	0,028(5)	0,059(6)	-0,002(4)	-0,009(4)	0,002(4)
C7	0,032(4)	0,025(4)	0,028(4)	-0,001(3)	0,000(3)	0,003(3)
C8	0,048(6)	0,084(9)	0,140(11)	-0,076(8)	0,020(6)	-0,018(6)
C9	0,088(7)	0,065(7)	0,066(7)	0,024(6)	0,036(6)	0,039(6)
C10	0,057(6)	0,062(6)	0,042(5)	-0,002(4)	0,022(4)	0,029(5)
C11	0,029(4)	0,039(5)	0,022(4)	0,000(3)	0,004(3)	0,001(3)
C12	0,042(5)	0,030(5)	0,036(4)	0,000(4)	0,012(4)	0,004(3)
C13	0,035(4)	0,031(5)	0,045(5)	-0,010(4)	0,011(4)	0,014(3)
C14	0,057(5)	0,020(4)	0,049(5)	0,006(4)	0,009(4)	0,004(4)
C15	0,044(5)	0,027(5)	0,052(5)	-0,008(4)	0,013(4)	-0,005(4)
C16	0,031(4)	0,033(5)	0,051(5)	0,000(4)	0,013(4)	0,002(4)
C17	0,024(4)	0,033(5)	0,030(4)	-0,003(4)	-0,003(3)	-0,002(3)
C18	0,024(4)	0,041(5)	0,027(4)	0,009(4)	-0,005(3)	0,002(3)
C19	0,038(5)	0,048(6)	0,047(5)	0,014(4)	-0,005(4)	-0,005(4)
C20	0,039(5)	0,035(5)	0,077(7)	-0,007(5)	-0,010(5)	-0,018(4)
C21	0,051(5)	0,038(5)	0,033(4)	0,001(4)	-0,006(4)	-0,004(4)
C22	0,035(4)	0,043(5)	0,034(4)	0,000(4)	0,005(4)	0,001(4)
C23	0,056(6)	0,042(6)	0,045(5)	-0,001(4)	-0,002(4)	0,002(4)
C24	0,076(7)	0,040(6)	0,081(7)	0,004(5)	0,017(6)	0,004(5)
C25	0,030(4)	0,038(5)	0,048(5)	-0,014(4)	0,004(4)	-0,005(4)
C26	0,048(5)	0,039(5)	0,044(5)	-0,011(4)	0,020(4)	-0,002(4)
C27	0,045(5)	0,041(6)	0,080(7)	-0,010(5)	0,016(5)	0,004(4)
C28	0,048(6)	0,049(6)	0,065(6)	-0,015(5)	0,020(5)	-0,010(5)
C29	0,029(4)	0,039(5)	0,033(4)	-0,008(4)	0,011(3)	-0,008(3)
C30	0,045(6)	0,088(9)	0,060(6)	-0,027(6)	0,010(5)	-0,008(5)
C31	0,141(11)	0,109(11)	0,055(7)	0,034(7)	0,057(7)	0,042(8)
C32	0,057(6)	0,061(7)	0,136(11)	-0,046(7)	0,033(7)	-0,024(5)
C33	0,021(4)	0,037(4)	0,022(4)	0,001(3)	0,005(3)	0,002(3)
C34	0,027(4)	0,035(5)	0,043(5)	0,004(4)	0,001(3)	-0,011(3)
C35	0,041(5)	0,023(4)	0,046(5)	0,004(4)	-0,004(4)	0,007(4)
C36	0,064(6)	0,027(5)	0,033(4)	0,000(4)	0,012(4)	-0,011(4)
C37	0,056(6)	0,054(6)	0,037(5)	0,008(4)	0,013(4)	-0,013(5)
C38	0,041(5)	0,050(6)	0,039(5)	0,013(4)	0,007(4)	0,008(4)
C39	0,048(5)	0,025(4)	0,024(4)	-0,001(3)	0,008(4)	0,013(4)
C40	0,053(5)	0,030(5)	0,026(4)	0,005(3)	0,014(4)	0,009(4)
C41	0,051(5)	0,027(5)	0,033(4)	0,005(4)	0,009(4)	-0,004(4)
C42	0,036(4)	0,026(4)	0,045(5)	-0,004(4)	0,009(4)	-0,001(3)
C43	0,044(5)	0,032(4)	0,027(4)	-0,006(3)	-0,001(4)	0,005(4)
C44	0,038(4)	0,024(4)	0,029(4)	-0,002(3)	0,008(3)	-0,003(3)

8.4. Anhang zu 3

Tab. 8.4.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 3.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Si1A	0,5000	0,4017(14)	0,5000	0,026(1)
AI1A	0,5000	0,6040(13)	0,5000	0,026(1)
Na1A	0,5000	0,5242(10)	1,0000	0,048(1)
C1A	0,426(4)	0,696(3)	0,660(8)	0,038(2)
C2A	0,560(3)	0,304(3)	0,349(8)	0,038(2)
AI1B	0,5000	0,3900(15)	0,5000	0,026(1)
Si1B	0,5000	0,5893(11)	0,5000	0,026(1)
Na1B	0,5000	0,4664(9)	1,0000	0,048(1)
C1B	0,430(4)	0,683(3)	0,637(8)	0,038(2)
C2B	0,582(4)	0,305(3)	0,348(9)	0,038(2)
N1	0,6001(2)	0,4973(6)	0,7008(5)	0,028(1)
C3	0,7395(3)	0,4956(9)	0,8517(6)	0,033(1)
C4	0,7821(6)	0,5820(4)	1,0311(11)	0,045(1)
C5	0,8075(3)	0,4971(10)	0,6919(7)	0,045(1)
C6	0,7810(6)	0,3923(5)	0,9940(11)	0,045(1)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Tab. 8.4.2 Ortskoordinaten ur	nd äquivalente isotrope	Auslenkungsfaktoren alle	er Wasserstoffatome von 3
		0	

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1AA	0,3824	0,7528	0,5506	0,057
H1AB	0,4945	0,7222	0,8133	0,057
H1AC	0,3663	0,6567	0,6953	0,057
H2AA	0,4875	0,2747	0,2047	0,057
H2AB	0,6042	0,2484	0,4652	0,057
H2AC	0,6177	0,3368	0,2986	0,057
H1BA	0,3551	0,7156	0,5064	0,057
H1BB	0,4930	0,7356	0,7292	0,057
H1BC	0,4053	0,6465	0,7479	0,057
H2BA	0,5188	0,2597	0,2252	0,057
H2BB	0,6492	0,2636	0,4741	0,057
H2BC	0,6187	0,3495	0,2689	0,057
H4A	0,7595	0,6474	0,9427	0,068
H4B	0,8742	0,5785	1,1325	0,068
H4C	0,7405	0,5769	1,1358	0,068
H5A	0,7730	0,4427	0,5685	0,068
H5B	0,8984	0,4857	0,7949	0,068
H5C	0,7943	0,5637	0,6103	0,068
H6A	0,7515	0,3351	0,8777	0,068
H6B	0,7441	0,3867	1,1064	0,068
H6C	0,8737	0,3901	1,0875	0,068

Anhang

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si1A	0,022(1)	0,025(3)	0,031(1)	0	0,012(1)	0
AI1A	0,022(1)	0,025(3)	0,031(1)	0	0,012(1)	0
Na1A	0,039(1)	0,070(3)	0,038(1)	0	0,022(1)	0
C1A	0,028(5)	0,041(3)	0,047(3)	-0,007(2)	0,019(3)	-0,001(3)
C2A	0,028(5)	0,041(3)	0,047(3)	-0,007(2)	0,019(3)	-0,001(3)
AI1B	0,022(1)	0,025(3)	0,031(1)	0	0,012(1)	0
Si1B	0,022(1)	0,025(3)	0,031(1)	0	0,012(1)	0
Na1B	0,039(1)	0,070(3)	0,038(1)	0	0,022(1)	0
C1B	0,028(5)	0,041(3)	0,047(3)	-0,007(2)	0,019(3)	-0,001(3)
C2B	0,028(5)	0,041(3)	0,047(3)	-0,007(2)	0,019(3)	-0,001(3)
N1	0,021(1)	0,031(1)	0,031(1)	-0,010(3)	0,011(1)	-0,005(4)
C3	0,021(2)	0,043(2)	0,031(2)	-0,003(4)	0,008(1)	0,004(4)
C4	0,028(1)	0,057(2)	0,045(1)	0,000(2)	0,013(1)	0,006(2)
C5	0,028(1)	0,057(2)	0,045(1)	0,000(2)	0,013(1)	0,006(2)
C6	0,028(1)	0,057(2)	0,045(1)	0,000(2)	0,013(1)	0,006(2)

Tab. 8.4.3 U_{ii}-Werte [Å²] von 3

8.5. Anhang zu 4

Tab. 8.5.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 4.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Si1	0,6674(1)	0,3167(1)	0,7502(1)	0,025(1)
Si2	0,2702(1)	0,9574(1)	0,6936(1)	0,025(1)
Al1	0,5142(1)	0,4225(1)	0,8358(1)	0,026(1)
AI2	0,3862(1)	0,9679(1)	0,8270(1)	0,026(1)
Na1	0,5314(1)	0,2148(1)	0,8629(1)	0,041(1)
Na2	0,3895(1)	0,7599(1)	0,8086(1)	0,047(1)
N1	0,5277(1)	0,3585(1)	0,7368(1)	0,028(1)
N2	0,6622(1)	0,3478(1)	0,8536(1)	0,028(1)
N3	0,2412(1)	0,9969(1)	0,7921(1)	0,032(1)
N4	0,4080(1)	0,9111(1)	0,7229(1)	0,027(1)
C1	0,4714(2)	0,5689(2)	0,8153(2)	0,034(1)
C2	0,4156(2)	0,3866(2)	0,9254(2)	0,040(1)
C3	0,4517(2)	0,3780(2)	0,6598(2)	0,035(1)
C4	0,4941(3)	0,3062(3)	0,5977(2)	0,087(1)
C5	0,3433(2)	0,3704(3)	0,6938(2)	0,064(1)
C6	0,4282(2)	0,4823(2)	0,6096(2)	0,054(1)
C7	0,7485(2)	0,3578(2)	0,9094(1)	0,031(1)
C8	0,8594(2)	0,2879(2)	0,8945(2)	0,056(1)
C9	0,7537(2)	0,4628(2)	0,8889(2)	0,050(1)
C10	0,7237(2)	0,3363(2)	1,0059(2)	0,051(1)
C11	0,7265(2)	0,1792(2)	0,7523(1)	0,030(1)
C12	0,7454(2)	0,1392(2)	0,6741(2)	0,038(1)
C13	0,7827(2)	0,0389(2)	0,6758(2)	0,047(1)

		Anhang		
C14	0,8030(2)	-0,0252(2)	0,7549(2)	0,051(1)
C15	0,7858(2)	0,0108(2)	0,8332(2)	0,048(1)
C16	0,7484(2)	0,1119(2)	0,8314(2)	0,035(1)
C17	0,7443(2)	0,3781(2)	0,6679(1)	0,032(1)
C18	0,7038(2)	0,4796(2)	0,6408(2)	0,042(1)
C19	0,7571(2)	0,5297(2)	0,5835(2)	0,058(1)
C20	0,8529(3)	0,4801(3)	0,5509(2)	0,063(1)
C21	0,8966(2)	0,3806(3)	0,5770(2)	0,060(1)
C22	0,8428(2)	0,3293(2)	0,6356(2)	0,045(1)
C23	0,4460(2)	1,0759(2)	0,8360(2)	0,036(1)
C24	0,4339(2)	0,8727(2)	0,9413(2)	0,040(1)
C25	0,5049(2)	0,8852(2)	0,6707(2)	0,036(1)
C26	0,5321(2)	0,9768(2)	0,6273(2)	0,047(1)
C27	0,4899(2)	0,8307(2)	0,5975(2)	0,057(1)
C28	0,6010(2)	0,8204(2)	0,7325(2)	0,058(1)
C29	0,1411(2)	1,0592(2)	0,8239(2)	0,045(1)
C30	0,1472(3)	1,1607(3)	0,8210(5)	0,145(3)
C31	0,426(2)	1,0685(3)	0,7685(2)	0,072(1)
C32	0,1279(4)	1,0163(5)	0,9175(2)	0,155(3)
C33	0,2184(2)	0,8523(2)	0,6780(1)	0,032(1)
C34	0,1722(2)	0,8067(2)	0,7471(2)	0,043(1)
C35	0,1439(2)	0,7231(2)	0,7394(2)	0,059(1)
C36	0,1615(2)	0,6843(2)	0,6628(2)	0,059(1)
C37	0,2059(2)	0,7278(2)	0,5934(2)	0,051(1)
C38	0,2334(2)	0,8109(2)	0,6010(2)	0,039(1)
C39	0,2190(2)	1,0561(2)	0,5931(1)	0,032(1)
C40	0,2552(2)	1,1371(2)	0,5809(2)	0,052(1)
C41	0,2114(3)	1,2158(2)	0,5135(3)	0,076(1)
C42	0,1302(3)	1,2163(2)	0,4568(2)	0,073(1)
C43	0,918(3)	1,1378(2)	0,4676(2)	0,062(1)
C44	0,1355(2)	1,0588(2)	0,5355(2)	0,045(1)
C45	0,8670(8)	0,7115(5)	0,9128(5)	0,199(4)
C46	0,9347(4)	0,6295(3)	0,8689(3)	0,095(1)
C47	1,0285(5)	0,5637(5)	0,9070(3)	0,124(2)
C48	1,0906(5)	0,4875(7)	0,8725(6)	0,180(5)
C49	1,0552(6)	0,4770(5)	0,7904(6)	0,149(3)
C50	0,9617(5)	0,5419(5)	0,7505(3)	0,103(2)
C51	0,9016(4)	0,6190(4)	0,7880(3)	0,096(1)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Tab. 8.5.2 Ortskoordinaten und äquivalente isotrope	Auslenkungsfaktoren aller Wasserstoffatome von 4.
---	---

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1A	0,397(2)	0,597(2)	0,798(2)	0,046(7)
H1B	0,511(2)	0,597(2)	0,770(2)	0,048(7)
H1C	0,483(2)	0,589(2)	0,872(2)	0,052(8)

		Anhang		
H2A	0,343(3)	0,436(2)	0,916(2)	0,060
H2B	0,436(2)	0,379(2)	0,983(2)	0,060
H2C	0,391(2)	0,333(2)	0,926(2)	0,060
H4A	0,4394	0,3181	0,5499	0,130
H4B	0,5102	0,2390	0,6302	0,130
H4C	0,5604	0,3149	0,5726	0,130
H5A	0,2905	0,3865	0,6438	0,096
H5B	0,3165	0,4165	0,7349	0,096
H5C	0,3537	0,3033	0,7246	0,096
H6A	0,4949	0,4902	0,5848	0,082
H6B	0,4010	0,5289	0,6501	0,082
H6C	0,3734	0,4949	0,5617	0,082
H8A	0,8761	0,3017	0,8324	0,084
H8B	0,8590	0,2200	0,9093	0,084
H8C	0,9145	0,2971	0,9324	0,084
H9A	0,7681	0,4783	0,8265	0,075
H9B	0,8120	0,4681	0,9260	0,075
H9C	0,6844	0,5090	0,9013	0,075
H10A	0,6520	0,3805	1,0157	0,076
H10B	0,7786	0,3464	1,0433	0,076
H10C	0,7245	0,2680	1,0209	0,076
H12	0,7320	0,1822	0,6187	0,045
H13	0,7945	0,0141	0,6219	0,057
H14	0,8286	-0,0941	0,7557	0,062
H15	0,7995	-0,0332	0,8881	0,057
H16	0,7375	0,1358	0,8857	0,042
H18	0,6373	0,5153	0,6625	0,050
H19	0,7273	0,5990	0,5665	0,070
H20	0,8888	0,5146	0,5103	0,076
H21	0,9637	0,3461	0,5553	0,072
H22	0,8741	0,2603	0,6535	0,054
H23A	0,427(2)	1,126(2)	0,789(2)	0,059(8)
H23B	0,522(3)	1,052(2)	0,842(2)	0,056(8)
H23C	0,422(2)	1,101(2)	0,887(2)	0,059(8)
H24A	0,407(2)	0,821(2)	0,958(2)	0,061
H24B	0,411(2)	0,913(2)	0,987(2)	0,061
H24C	0,511(3)	0,844(2)	0,951(2)	0,061
H26A	0,5990	0,9568	0,5959	0,070
H26B	0,5421	1,0133	0,6731	0,070
H26C	0,4727	1,0187	0,5854	0,070
H27A	0,4297	0,8733	0,5565	0,086
H27B	0,4737	0,7711	0,6236	0,086
H27C	0,5565	0,8128	0,5654	0,086
H28A	0,6672	0,8067	0,6995	0,086
H28B	0,5887	0,7585	0,7570	0,086
H28C	0,6090	0,8543	0,7808	0,086
H30A	0,1564	1,1887	0,7600	0,217

		Anhang		
H30B	0,2089	1,1576	0,8589	0,217
H30C	0,0801	1,2021	0,8420	0,217
H31A	0,0494	1,0983	0,7076	0,107
H31B	-0,0220	1,1100	0,7926	0,107
H31C	0,0361	1,0032	0,7691	0,107
H32A	0,1235	0,9501	0,9196	0,233
H32B	0,0613	1,0579	0,9390	0,233
H32C	0,1901	1,0130	0,9549	0,233
H34	0,1597	0,8327	0,8003	0,052
H35	0,1124	0,6932	0,7873	0,070
H36	0,1430	0,6273	0,6581	0,071
H37	0,2177	0,7013	0,5404	0,061
H38	0,2636	0,8406	0,5521	0,047
H40	0,3111	1,1384	0,6197	0,062
H41	0,2378	1,2702	0,5064	0,091
H42	0,1007	1,2705	0,4104	0,088
H43	0,0353	1,1376	0,4287	0,074
H44	0,1077	1,0052	0,5428	0,054
H45A	0,9126	0,7475	0,9315	0,298
H45B	0,8351	0,6842	0,9646	0,298
H45C	0,8091	0,7563	0,8710	0,298
H47	1,0521	0,5723	0,9627	0,149
H48	1,1554	0,4429	0,9025	0,216
H49	1,0964	0,4246	0,7625	0,179
H50	0,9373	0,5334	0,6950	0,124
H51	0,8374	0,6648	0,7581	0,115

Tab. 8.5.3 U_{ij}-Werte [Å²] von 4.

Atom	U ₁₁	U ₂₂	U 33	U ₂₃	U ₁₃	U ₁₂
Si1	0,029(1)	0,022(1)	0,024(1)	-0,006(1)	0,003(1)	-0,008(1)
Si2	0,026(1)	0,025(1)	0,026(1)	-0,004(1)	0,001(1)	-0,010(1)
Al1	0,028(1)	0,020(1)	0,031(1)	-0,007(1)	0,003(1)	-0,006(1)
Al2	0,030(1)	0,024(1)	0,028(1)	-0,005(1)	-0,001(1)	-0,011(1)
Na1	0,046(1)	0,027(1)	0,056(1)	-0,010(1)	0,014(1)	-0,018(1)
Na2	0,055(1)	0,022(1)	0,062(1)	-0,001(1)	-0,012(1)	-0,010(1)
N1	0,032(1)	0,025(1)	0,029(1)	-0,007(1)	-0,001(1)	-0,009(1)
N2	0,028(1)	0,028(1)	0,026(1)	-0,008(1)	0,001(1)	-0,006(1)
N3	0,027(1)	0,039(1)	0,030(1)	-0,011(1)	0,003(1)	-0,009(1)
N4	0,027(1)	0,026(1)	0,031(1)	-0,008(1)	0,004(1)	-0,010(1)
C1	0,039(1)	0,023(1)	0,037(1)	-0,007(1)	0,001(1)	-0,006(1)
C2	0,041(1)	0,036(1)	0,043(1)	-0,008(1)	0,012(1)	-0,011(1)
C3	0,038(1)	0,033(1)	0,034(1)	-0,007(1)	-0,007(1)	-0,010(1)
C4	0,077(2)	0,090(2)	0,075(2)	-0,055(2)	-0,038(2)	0,020(2)
C5	0,047(2)	0,080(2)	0,063(2)	0,009(2)	-0,017(1)	-0,029(2)
C6	0,063(2)	0,054(2)	0,042(1)	0,006(1)	-0,018(1)	-0,020(1)
C7	0,031(1)	0,034(1)	0,029(1)	-0,011(1)	0,000(1)	-0,009(1)
C8	0,033(1)	0,070(2)	0,064(2)	-0,036(2)	-0,009(1)	-0,003(1)

			Anhang			
C9	0,055(2)	0,049(2)	0,053(2)	-0,006(1)	-0,011(1)	-0,026(1)
C10	0,059(2)	0,071(2)	0,032(1)	-0,010(1)	0,000(1)	-0,034(1)
C11	0,029(1)	0,028(1)	0,035(1)	-0,008(1)	0,005(1)	-0,009(1)
C12	0,042(1)	0,034(1)	0,038(1)	-0,014(1)	0,005(1)	-0,010(1)
C13	0,050(1)	0,039(1)	0,057(2)	-0,026(1)	0,005(1)	-0,012(1)
C14	0,052(2)	0,026(1)	0,076(2)	-0,017(1)	0,004(1)	-0,009(1)
C15	0,048(1)	0,031(1)	0,059(2)	0,000(1)	0,002(1)	-0,008(1)
C16	0,034(1)	0,031(1)	0,039(1)	-0,007(1)	0,005(1)	-0,008(1)
C17	0,038(1)	0,039(1)	0,024(1)	-0,007(1)	0,002(1)	-0,019(1)
C18	0,041(1)	0,041(1)	0,045(1)	0,004(1)	-0,003(1)	-0,020(1)
C19	0,056(2)	0,063(2)	0,058(2)	0,019(1)	-0,010(1)	-0,036(1)
C20	0,073(2)	0,091(2)	0,044(2)	0,001(2)	0,006(1)	-0,058(2)
C21	0,054(2)	0,091(2)	0,057(2)	-0,034(2)	0,027(1)	-0,043(2)
C22	0,046(1)	0,052(2)	0,047(1)	-0,022(1)	0,015(1)	-0,024(1)
C23	0,045(1)	0,031(1)	0,039(1)	-0,007(1)	-0,001(1)	-0,019(1)
C24	0,050(1)	0,035(1)	0,038(1)	0,003(1)	-0,006(1)	-0,020(1)
C25	0,030(1)	0,038(1)	0,043(1)	-0,013(1)	0,008(1)	-0,012(1)
C26	0,044(1)	0,056(2)	0,048(1)	-0,012(1)	0,016(1)	-0,026(1)
C27	0,053(2)	0,071(2)	0,067(2)	-0,043(2)	0,030(1)	-0,031(1)
C28	0,032(1)	0,060(2)	0,071(2)	-0,007(1)	0,010(1)	-0,004(1)
C29	0,032(1)	0,060(2)	0,040(1)	-0,020(1)	0,008(1)	-0,007(1)
C30	0,059(2)	0,098(3)	0,312(8)	-0,136(4)	0,067(3)	-0,025(2)
C31	0,032(1)	0,098(3)	0,080(2)	-0,039(2)	0,002(1)	-0,002(1)
C32	0,092(3)	0,232(6)	0,046(2)	0,008(3)	0,034(2)	0,064(4)
C33	0,030(1)	0,028(1)	0,037(1)	0,000(1)	-0,006(1)	-0,012(1)
C34	0,041(1)	0,042(1)	0,047(1)	0,004(1)	-0,001(1)	-0,020(1)
C35	0,050(2)	0,049(2)	0,077(2)	0,016(2)	-0,003(1)	-0,028(1)
C36)	0,054(2)	0,035(1)	0,094(2)	-0,006(1)	-0,020(2)	-0,022(1)
C37	0,051(2)	0,036(1)	0,068(2)	-0,014(1)	-0,015(1)	-0,016(1)
C38	0,042(1)	0,033(1)	0,043(1)	-0,006(1)	-0,009(1)	-0,014(1)
C39	0,037(1)	0,026(1)	0,030(1)	-0,002(1)	0,005(1)	-0,006(1)
C40	0,045(1)	0,038(1)	0,069(2)	0,006(1)	0,010(1)	-0,015(1)
C41	0,063(2)	0,041(2)	0,104(3)	0,026(2)	0,027(2)	-0,007(1)
C42	0,080(2)	0,049(2)	0,050(2)	0,022(1)	0,022(2)	0,020(2)
C43	0,071(2)	0,052(2)	0,036(1)	-0,007(1)	-0,010(1)	0,018(1)
C44	0,053(1)	0,036(1)	0,036(1)	-0,008(1)	-0,008(1)	-0,001(1)
C45	0,330(12)	0,101(5)	0,166(7)	-0,002(4)	0,030(7)	-0,082(6)
C46	0,118(3)	0,100(3)	0,079(3)	0,026(2)	-0,016(2)	-0,073(3)
C47	0,107(4)	0,184(6)	0,093(3)	0,078(4)	-0,063(3)	-0,113(4)
C48	0,068(3)	0,225(9)	0,202(8)	0,120(8)	-0,015(4)	-0,062(4)
C49	0,102(5)	0,132(5)	0,193(7)	0,031(5)	0,063(5)	-0,039(4)
C50	0,105(4)	0,149(5)	0,088(3)	-0,016(3)	0,016(3)	-0,086(4)
C51	0,080(3)	0,133(4)	0,077(3)	0,031(3)	-0,026(2)	-0,062(3)
8.6. Anhang zu 7

Tab. 8.6.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 7.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Al1	0,4684(1)	0,2747(1)	0,6418(1)	0,030(1)
N1	0,3922(2)	0,3270(2)	0,7652(2)	0,030(1)
C1	0,4293(3)	0,3597(2)	0,5161(2)	0,050(1)
C2	0,4603(3)	0,1251(2)	0,6098(2)	0,041(1)
C3	0,4313(2)	0,4391(2)	0,7597(2)	0,038(1)
C4	0,2604(2)	0,3142(2)	0,7837(2)	0,039(1)
C5	0,1785(3)	0,3653(3)	0,6962(3)	0,058(1)
C6	0,2327(3)	0,1977(2)	0,7855(3)	0,049(1)
C7	0,2345(3)	0,3615(3)	0,8885(3)	0,057(1)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Tab. 8.6.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 7.

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1A	0,4905	0,3472	0,4666	0,074
H1B	0,4296	0,4338	0,5352	0,074
H1C	0,3484	0,3403	0,4839	0,074
H2A	0,5197	0,1081	0,5599	0,062
H2B	0,3780	0,1074	0,5794	0,062
H2C	0,4790	0,0849	0,6739	0,062
H3A	0,4189	0,4754	0,8257	0,046
H3B	0,3829	0,4754	0,7021	0,046
H5A	0,2003	0,3391	0,6289	0,088
H5B	0,1898	0,4412	0,6991	0,088
H5C	0,930	0,3485	0,7046	0,088
H6A	0,2480	0,1667	0,7183	0,073
H6B	0,1470	0,1871	0,7981	0,073
H6C	0,2854	0,1642	0,8411	0,073
H7A	0,2483	0,4371	0,8870	0,086
H7B	0,2890	0,3300	0,9440	0,086
H7C	0,1494	0,3477	0,9015	0,086

Tab. 8.6.3 U_{ij}-Werte [Å²] von 7.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Al1	0,032(1)	0,027(1)	0,031(1)	0,001(1)	-0,003(1)	-0,004(1)
N1	0,030(1)	0,023(1)	0,037(1)	-0,001(1)	-0,002(1)	0,002(1)
C1	0,058(2)	0,049(2)	0,040(2)	0,008(1)	-0,008(1)	-0,007(1)
C2	0,045(2)	0,034(1)	0,043(2)	-0,007(1)	-0,001(1)	-0,005(1)
C3	0,041(1)	0,023(1)	0,048(2)	-0,001(1)	-0,006(1)	0,004(1)
C4	0,030(1)	0,039(2)	0,046(2)	-0,002(1)	0,003(1)	0,005(1)
C5	0,033(2)	0,069(2)	0,071(2)	0,013(2)	-0,006(2)	0,007(1)
C6	0,034(1)	0,047(2)	0,066(2)	-0,001(1)	0,009(1)	-0,006(1)

			Anhang			
C7	0.049(2)	0.061(2)	0.063(2)	-0.009(2)	0.015(2)	0.006(2)
	-,(-)	•,•••(=)	-,(-)	•,•••(=)	-,(-)	-,(-)

8.7. Anhang zu 8

Tab. 8.7.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 8.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Al1	0,3370(1)	0	0,1128(1)	0,055(1)
N1	0,1977(2)	0	0,1999(3)	0,069(1)
C1	0,2600(4)	0	-0,1098(5)	0,098(2)
C2	0,4235(3)	0,1501(3)	0,1803(4)	0,102(1)
C3	0,0949(3)	0,0509(4)	0,1053(5)	0,047(1)
C4	0	0	0	0,084(2)
C5	0,2148(3)	0	0,3712(4)	0,063(1)
C6	0,3202(5)	0,0912(5)	0,4532(6)	0,070(2)
C7	0,2364(6)	-0,1133(5)	0,4265(6)	0,078(2)
C8	0,1067(4)	0,0659(5)	0,4051(6)	0,074(2)

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1	0,1771	-0,0775	0,1815	0,083
H1A	0,321(5)	0	-0,157(6)	0,147
H1B	0,215(3)	0,065(3)	-0,150(4)	0,147
H2A	0,4764	0,1646	0,1196	0,154
H2B	0,4692	0,1436	0,2888	0,154
H2C	0,3681	0,2169	0,1663	0,154
H3A	0,127(4)	0,117(4)	0,051(5)	0,056
H3B	0,066(4)	0,099(4)	0,173(5)	0,056
H4A	-0,037(5)	-0,065(5)	0,055(7)	0,101
H6A	0,3941	0,0591	0,4454	0,105
H6B	0,3256	0,1002	0,5613	0,105
H6C	0,3047	0,1696	0,4025	0,105
H7A	0,1660	-0,1625	0,3852	0,117
H7B	0,2581	-0,1117	0,5385	0,117
H7C	0,3009	-0,1477	0,3958	0,117
H8A	0,0343	0,0220	0,3547	0,111
H8B	0,1002	0,1481	0,3656	0,111
H8C	0,1197	0,0677	0,5158	0,111

Tab. 8.7.3 U_{ij}-Werte [Å²] von 8.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Al1	0,042(1)	0,061(1)	0,058(1)	0	0,009(1)	0
N1	0,036(1)	0,117(2)	0,045(2)	0	-0,002(1)	0
C1	0,067(3)	0,163(5)	0,064(3)	0	0,022(2)	0

			Anhang			
C2	0,095(2)	0,088(2)	0,131(3)	-0,016(2)	0,045(2)	-0,029(2)
C3	0,036(2)	0,046(2)	0,046(2)	-0,002(2)	-0,007(2)	0,004(2)
C4	0,036(3)	0,167(7)	0,044(3)	0	0,005(2)	0
C5	0,042(2)	0,095(3)	0,042(2)	0	-0,001(1)	0
C6	0,052(3)	0,089(4)	0,054(3)	-0,014(3)	-0,005(3)	-0,012(3)
C7	0,077(4)	0,083(4)	0,054(3)	0,019(3)	-0,007(3)	-0,007(3)
C8	0,052(3)	0,111(4)	0,056(3)	-0,002(3)	0,013(2)	-0,002(3)

8.8. Anhang zu 9

Tab. 8.8.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 9.

Atom	x/a	y/b	z/c	U(eq) [Ų]
Al1	0,7871(1)	0,3188(1)	0,1983(1)	0,033(1)
Al2	0,6693(1)	0,3628(1)	0,3391(1)	0,030(1)
N1	0,6103(2)	0,3931(1)	0,2122(1)	0,032(1)
N2	0,8740(2)	0,3620(1)	0,3217(1)	0,030(1)
C1	0,8838(3)	0,3794(2)	0,1150(1)	0,051(1)
C2	0,7640(3)	0,1761(2)	0,1735(2)	0,056(1)
C3	0,6224(3)	0,4627(2)	0,4177(2)	0,051(1)
C4	0,6027(2)	0,2331(2)	0,3708(2)	0,048(1)
C5	0,6532(2)	0,4997(2)	0,2024(2)	0,044(1)
C6	0,7882(2)	0,5363(2)	0,2728(2)	0,050(1)
C7	0,9181(2)	0,4684(2)	0,3126(1)	0,042(1)
C8	1,0023(2)	0,3080(2)	0,3858(1)	0,040(1)
C9	1,0153(3)	0,3437(2)	0,4791(1)	0,056(1)
C10	1,1522(3)	0,3247(2)	0,3643(2)	0,064(1)
C11	0,9724(3)	0,1969(2)	0,3823(2)	0,050(1)
C12	0,4507(2)	0,3732(2)	0,1566(1)	0,042(1)
C13	0,4152(3)	0,2640(2)	0,1573(2)	0,077(1)
C14	0,3395(3)	0,4290(2)	0,1942(2)	0,072(1)
C15	0,4293(3)	0,4068(3)	0,0627(2)	0,084(1)

 Tab. 8.8.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 9.

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1A	0,8129	0,3824	0,0581	0,077
H1B	0,9690	0,3402	0,1123	0,077
H1C	0,9167	0,4452	0,1341	0,077
H2A	0,7014	0,1662	0,1149	0,083
H2B	0,7182	0,1453	0,2140	0,083
H2C	0,8611	0,1471	0,1795	0,083
H3A	0,5678	0,5164	0,3837	0,076
H3B	0,7143	0,4873	0,4565	0,076
H3C	0,5621	0,4330	0,4511	0,076

Anhang					
H4A	0,4966	0,2352	0,3650	0,072	
H4B	0,6562	0,2177	0,4302	0,072	
H4C	0,6227	0,1831	0,3327	0,072	
H5A	0,6735	0,5071	0,1462	0,053	
H5B	0,5678	0,5416	0,2019	0,053	
H6A	0,8285	0,5927	0,2490	0,060	
H6B	0,7516	0,5612	0,3202	0,060	
H7A	0,9711	0,4934	0,3701	0,050	
H7B	0,9874	0,4701	0,2769	0,050	
H9A	1,0372	0,4134	0,4833	0,084	
H9B	1,0948	0,3083	0,5197	0,084	
H9C	0,9219	0,3319	0,4926	0,084	
H10A	1,1416	0,3057	0,3048	0,096	
H10B	1,2294	0,2854	0,4027	0,096	
H10C	1,1792	0,3935	0,3719	0,096	
H11A	0,9703	0,1722	0,3255	0,075	
H11B	0,8772	0,1844	0,3933	0,075	
H11C	1,0509	0,1642	0,4259	0,075	
H13A	0,4766	0,2279	0,1282	0,116	
H13B	0,3109	0,2534	0,1274	0,116	
H13C	0,4356	0,2415	0,2166	0,116	
H14A	0,3607	0,4986	0,1953	0,108	
H14B	0,3490	0,4062	0,2526	0,108	
H14C	0,2388	0,4171	0,1584	0,108	
H15A	0,5010	0,3736	0,0391	0,126	
H15B	0,4444	0,4770	0,0616	0,126	
H15C	0,3291	0,3908	0,0283	0,126	

Tab. 8.8.3 U_{ij}-Werte [Å²] von **9**.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Al1	0,033(1)	0,034(1)	0,033(1)	-0,006(1)	0,010(1)	-0,001(1)
AI2	0,029(1)	0,029(1)	0,034(1)	0,001(1)	0,012(1)	-0,001(1)
N1	0,028(1)	0,028(1)	0,037(1)	0,002(1)	0,006(1)	-0,001(1)
N2	0,028(1)	0,030(1)	0,033(1)	-0,003(1)	0,008(1)	-0,002(1)
C1	0,048(1)	0,068(2)	0,042(1)	-0,008(1)	0,020(1)	-0,004(1)
C2	0,068(2)	0,040(1)	0,055(1)	-0,015(1)	0,011(1)	0,004(1)
C3	0,055(1)	0,053(1)	0,052(1)	-0,006(1)	0,027(1)	0,005(1)
C4	0,040(1)	0,044(1)	0,063(1)	0,012(1)	0,017(1)	-0,005(1)
C5	0,048(1)	0,029(1)	0,052(1)	0,008(1)	0,009(1)	0,000(1)
C6	0,046(1)	0,028(1)	0,077(2)	0,001(1)	0,021(1)	-0,006(1)
C7	0,044(1)	0,038(1)	0,042(1)	-0,004(1)	0,008(1)	-0,015(1)
C8	0,028(1)	0,049(1)	0,041(1)	0,001(1)	0,006(1)	0,004(1)
C9	0,051(1)	0,068(2)	0,040(1)	0,001(1)	-0,002(1)	0,004(1)
C10	0,032(1)	0,080(2)	0,080(2)	0,010(2)	0,018(1)	0,006(1)
C11	0,046(1)	0,047(1)	0,053(1)	0,009(1)	0,009(1)	0,015(1)
C12	0,029(1)	0,047(1)	0,045(1)	0,009(1)	0,002(1)	-0,002(1)
C13	0,050(2)	0,051(2)	0,103(2)	-0,04(2)	-0,024(2)	-0,016(1)

			Anhang			
C14	0,035(1)	0,075(2)	0,111(2)	0,03(2)	0,027(1)	-0,003(1)
C15	0,046(2)	0,144(3)	0,049(2)	0,019(2)	-0,006(1)	-0,019(2)

8.9. Anhang zu 10

Tab. 8.9.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 10.

Atom	x/a	y/b	z/c	U(eq) [Ų]
B1	0,5952(4)	0,6246(1)	0,4737(3)	0,036(1)
CI1	0,7676(1)	0,6160(1)	0,3426(1)	0,066(1)
N1	0,5942(3)	0,5920(1)	0,6245(2)	0,040(1)
N2	0,4464(3)	0,6641(1)	0,4386(2)	0,038(1)
C1	0,4478(4)	0,6170(1)	0,7038(3)	0,045(1)
C2	0,3242(4)	0,6513(1)	0,5605(3)	0,046(1)
C3	0,7423(4)	0,5554(1)	0,7313(3)	0,047(1)
C4	0,7987(5)	0,5078(1)	0,6210(5)	0,077(1)
C5	0,6584(6)	0,5245(2)	0,8707(4)	0,080(1)
C6	0,9075(5)	0,5917(2)	0,8113(6)	0,100(2)
C7	0,3623(4)	0,6950(1)	0,2762(3)	0,042(1)
C8	0,5119(5)	0,7317(1)	0,2178(4)	0,069(1)
C9	0,2799(5)	0,6515(1)	0,1377(4)	0,065(1)
C10	0,2076(5)	0,7353(1)	0,3066(4)	0,073(1)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Tab. 8.9.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 10.

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1A	0,5041	0,6423	0,8016	0,054
H1B	0,3736	0,5866	0,7467	0,054
H2A	0,2131	0,6285	0,5038	0,055
H2B	0,2798	0,6872	0,6066	0,055
H4A	0,6862	0,4860	0,5664	0,115
H4B	0,8886	0,4821	0,6939	0,115
H4C	0,8576	0,5246	0,5313	0,115
H5A	0,5460	0,5029	0,8152	0,121
H5B	0,6234	0,5530	0,9499	0,121
H5C	0,7525	0,4981	0,9354	0,121
H6A	0,9585	0,6107	0,7201	0,150
H6B	1,0054	0,5674	0,8804	0,150
H6C	0,8672	0,6208	0,8859	0,150
H8A	0,4531	0,7543	0,1163	0,103
H8B	0,6095	0,7067	0,1879	0,103
H8C	0,5693	0,7576	0,03116	0,103
H9A	0,2211	0,6717	0,0315	0,097
H9B	0,1846	0,6282	0,1779	0,097
H9C	0,3808	0,6265	0,1145	0,097

		Anhang		
H10A	0,1632	0,7585	0,2026	0,109
H10B	0,2574	0,7607	0,4044	0,109
H10C	0,1022	0,7128	0,3323	0,109

Tab. 8.9.3	U _{ij} -Werte [Å ²] von 10 .
------------	--

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
B1	0,035(1)	0,042(1)	0,032(1)	-0,006(1)	0,007(1)	-0,005(1)
CI1	0,050(1)	0,099(1)	0,058(1)	0,012(1)	0,028(1)	0,015(1)
N1	0,039(1)	0,046(1)	0,034(1)	0,002(1)	0,007(1)	0,006(1)
N2	0,042(1)	0,042(1)	0,032(1)	0,003(1)	0,010(1)	0,001(1)
C1	0,051(1)	0,048(1)	0,040(1)	0,006(1)	0,018(1)	0,006(1)
C2	0,048(1)	0,050(1)	0,045(1)	0,008(1)	0,021(1)	0,011(1)
C3	0,046(1)	0,045(1)	0,046(1)	0,005(1)	0,001(1)	0,004(1)
C4	0,079(2)	0,065(2)	0,084(2)	0,003(2)	0,011(2)	0,027(2)
C5	0,096(3)	0,074(2)	0,071(2)	0,030(2)	0,015(2)	0,024(2)
C6	0,073(2)	0,070(2)	0,126(3)	0,018(2)	-0,053(2)	-0,010(2)
C7	0,050(1)	0,040(1)	0,033(1)	0,006(1)	0,006(1)	-0,001(1)
C8	0,079(2)	0,068(2)	0,056(2)	0,022(2)	0,008(2)	-0,018(2)
C9	0,080(2)	0,058(2)	0,044(2)	0,002(1)	-0,014(1)	-0,002(2)
C10	0,093(2)	0,065(2)	0,063(2)	0,024(2)	0,022(2)	0,032(2)

8.10. Anhang zu 12

Tab. 8.10.1 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller "Nichtwasserstoffatome" von 12.

Atom	x/a	y/b	z/c	U(eq) [Ų]
CI1	0,2690(1)	0,5714(1)	0,5332(1)	0,048(1)
CI2	0,3163(1)	0,8434(1)	0,6169(1)	0,044(1)
Al1	0,4586(1)	0,6800(1)	0,6003(1)	0,030(1)
N1	0,6795(4)	0,6958(3)	0,5491(2)	0,028(1)
N2	0,5912(5)	0,6094(3)	0,6718(2)	0,042(1)
C1	0,8354(5)	0,6803(5)	0,6061(2)	0,046(1)
C2	0,7806(6)	0,5856(5)	0,6563(2)	0,052(1)
C3	0,7062(6)	0,7925(4)	0,4950(2)	0,038(1)
C4	0,7431(7)	0,9115(4)	0,5323(3)	0,051(1)
C5	0,5293(6)	0,7965(4)	0,4460(2)	0,049(1)
C6	0,8716(7)	0,7591(4)	0,4551(3)	0,052(1)
C7	0,5290(7)	0,5526(5)	0,7345(2)	0,054(1)
C8	0,6392(10)	0,6020(7)	0,7997(3)	0,079(2)
C9	0,5460(11)	0,4186(6)	0,7317(3)	0,078(2)
C10	0,3255(8)	0,5859(7)	0,7380(3)	0,086(2)

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1	0,681(6)	0,630(4)	0,532(2)	0,027(11)
H1A	0,8600	0,7568	0,6312	0,055
H1B	0,9501	0,6558	0,5859	0,055
H2A	0,7881	0,5054	0,6351	0,062
H2B	0,8661	0,5877	0,6999	0,062
H4A	0,7432	0,9758	0,4977	0,077
H4B	0,8644	0,9087	0,5601	0,077
H4C	0,6457	0,9267	0,5631	0,077
H5A	0,5446	0,8525	0,4079	0,073
H5B	0,4262	0,8230	0,4717	0,073
H5C	0,5021	0,7166	0,4268	0,073
H6A	0,8543	0,6779	0,4364	0,078
H6B	0,9864	0,7624	0,4868	0,078
H6C	0,8800	0,8154	0,4166	0,078
H8A	0,7698	0,5783	0,8002	0,119
H8B	0,5885	0,5702	0,8412	0,119
H8C	0,6303	0,6894	0,7996	0,119
H9A	0,4816	0,3890	0,6878	0,118
H9B	0,4898	0,3832	0,7712	0,118
H9C	0,6777	0,3964	0,7344	0,118
H10A	0,3133	0,6731	0,7390	0,130
H10B	0,2822	0,5520	0,7805	0,130
H10C	0,2503	0,5541	0,6970	0,130

Tab. 8.10.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 12.

Tab. 8.10.3 U_{ij}-Werte [Å²] von 12.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
CI1	0,031(1)	0,042(1)	0,070(1)	-0,017(1)	0,005(1)	0,002(1)
CI2	0,046(1)	0,037(1)	0,050(1)	-0,005(1)	0,015(1)	0,014(1)
AI1	0,027(1)	0,032(1)	0,033(1)	0,003(1)	0,006(1)	0,006(1)
N1	0,030(2)	0,027(2)	0,028(2)	0,000(1)	0,004(1)	0,007(1)
N2	0,037(2)	0,053(2)	0,039(2)	0,014(2)	0,012(2)	0,011(2)
C1	0,026(2)	0,075(3)	0,036(2)	0,010(2)	0,001(2)	0,006(2)
C2	0,043(2)	0,072(3)	0,041(2)	0,023(2)	0,009(2)	0,024(2)
C3	0,042(2)	0,035(2)	0,037(2)	0,008(2)	0,013(2)	0,007(2)
C4	0,055(3)	0,033(2)	0,066(3)	-0,001(2)	0,008(2)	0,000(2)
C5	0,056(3)	0,049(3)	0,041(2)	0,012(2)	0,005(2)	0,013(2)
C6	0,060(3)	0,050(3)	0,052(3)	0,013(2)	0,031(2)	0,010(2)
C7	0,061(2)	0,067(3)	0,038(2)	0,021(2)	0,018(2)	0,013(2)
C8	0,093(4)	0,107(4)	0,039(3)	0,003(3)	0,014(2)	0,002(4)
C9	0,114(4)	0,066(3)	0,058(3)	0,023(2)	0,027(3)	0,006(3)
C10	0,066(3)	0,120(5)	0,080(4)	0,050(4)	0,039(3)	0,018(3)

8.11. Anhang zu 13

Atom	x/a	y/b	z/c	U(eq) [Ų]
CI1	0,3158(1)	0,5882(1)	0,5445(1)	0,044(1)
CI2	0,4378(1)	0,8718(1)	0,6245(1)	0,054(1)
Al1	0,5320(1)	0,6844(1)	0,6124(1)	0,029(1)
N1	0,7137(2)	0,6819(2)	0,5525(1)	0,032(1)
N2	0,6261(2)	0,6017(2)	0,6900(1)	0,041(1)
C1	0,8095(3)	0,5542(2)	0,7032(1)	0,041(1)
C2	0,8804(3)	0,5301(2)	0,6380(1)	0,042(1)
C3	0,8920(3)	0,6465(2)	0,5947(1)	0,044(1)
C4	0,7254(3)	0,7839(2)	0,4980(1)	0,041(1)
C5	0,7957(4)	0,9061(2)	0,5343(1)	0,054(1)
C6	0,5388(3)	0,8013(2)	0,4551(1)	0,050(1)
C7	0,8483(3)	0,7404(3)	0,4498(1)	0,055(1)
C8	0,5329(3)	0,5775(2)	0,7483(1)	0,048(1)
C9	0,5016(5)	0,4365(3)	0,7557(2)	0,075(1)
C10	0,3521(4)	0,6444(4)	0,7354(2)	0,085(1)
C11	0,6392(4)	0,6293(3)	0,8161(1)	0,059(1)

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1	0,678(3)	0,617(2)	0,530(1)	0,037(6)
H1A	0,8144	0,4748	0,7300	0,049
H1B	0,8874	0,6162	0,7320	0,049
H2A	0,8027	0,4676	0,6094	0,051
H2B	1,0005	0,4925	0,6509	0,051
H3A	0,9387	0,7175	0,6255	0,053
H3B	0,9762	0,6308	0,5631	0,053
H5A	0,7940	0,9727	0,4996	0,081
H5B	0,9179	0,8932	0,5594	0,081
H5C	0,7202	0,9307	0,5671	0,081
H6A	0,5423	0,8633	0,4184	0,075
H6B	0,4590	0,8312	0,4851	0,075
H6C	0,4952	0,7206	0,4342	0,075
H7A	0,8426	0,8008	0,4117	0,082
H7B	0,8103	0,6572	0,4309	0,082
H7C	0,9707	0,7353	0,4759	0,082
H9A	0,4390	0,4222	0,7941	0,112
H9B	0,6163	0,3925	0,7652	0,112
H9C	0,4295	0,4041	0,7126	0,112
H10A	0,2864	0,6205	0,7716	0,127
H10B	0,2839	0,6197	0,6899	0,127

		Anhang		
H10C	0,3705	0,7358	0,7364	0,127
H11A	0,5732	0,6150	0,8535	0,088
H11B	0,6584	0,7199	0,8113	0,088
H11C	0,7544	0,5863	0,8272	0,088

Tab. 8.11.3 U_{ij}-Werte [Å²] von **13**.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
CI1	0,029(1)	0,059(1)	0,043(1)	-0,017(1)	0,006(1)	-0,001(1)
CI2	0,070(1)	0,037(1)	0,061(1)	-0,003(1)	0,027(1)	0,012(1)
Al1	0,028(1)	0,033(1)	0,027(1)	-0,001(1)	0,005(1)	0,003(1)
N1	0,033(1)	0,034(1)	0,030(1)	0,001(1)	0,008(1)	0,002(1)
N2	0,032(1)	0,058(1)	0,031(1)	0,010(1)	0,008(1)	0,007(1)
C1	0,037(1)	0,050(1)	0,034(1)	0,008(1)	0,005(1)	0,010(1)
C2	0,039(1)	0,048(1)	0,040(1)	0,005(1)	0,006(1)	0,016(1)
C3	0,030(1)	0,060(1)	0,043(1)	0,011(1)	0,012(1)	0,009(1)
C4	0,046(1)	0,042(1)	0,036(1)	0,008(1)	0,012(1)	0,001(1)
C5	0,062(2)	0,044(1)	0,057(2)	0,007(1)	0,014(1)	-0,009(1)
C6	0,054(1)	0,055(1)	0,040(1)	0,015(1)	0,006(1)	0,007(1)
C7	0,061(1)	0,066(2)	0,044(1)	0,012(1)	0,026(1)	0,003(1)
C8	0,043(1)	0,069(2)	0,034(1)	0,012(1)	0,013(1)	0,006(1)
C9	0,090(2)	0,080(2)	0,063(2)	0,004(2)	0,036(2)	-0,027(2)
C10	0,049(2)	0,154(3)	0,058(2)	0,039(2)	0,028(1)	0,030(2)
C11	0,067(2)	0,073(2)	0,039(1)	-0,001(1)	0,018(1)	0,011(1)

8.12. Anhang zu 14

|--|

Atom	x/a	y/b	z/c	U(eq) [Ų]
F1	0,0832(4)	0,8464(1)	0,4132(1)	0,042(1)
F2	0,0380(4)	0,7324(1)	0,4113(1)	0,049(1)
F3	0,3031(4)	0,7773(1)	0,4685(1)	0,044(1)
F4	0,8041(4)	0,6628(1)	0,2244(1)	0,048(1)
F5	0,5455(4)	0,7040(1)	0,1625(1)	0,052(1)
F6	0,5731(4)	0,5905(1)	0,1765(1)	0,051(1)
B1	0,1824(7)	0,7844(2)	0,4153(2)	0,032(1)
B2	0,6824(7)	0,6507(3)	0,1722(2)	0,037(1)
N1	0,3425(5)	0,7772(2)	0,3585(1)	0,025(1)
N2	0,4797(5)	0,6479(2)	0,3335(2)	0,030(1)
N3	0,8434(5)	0,6473(2)	0,1155(1)	0,027(1)
N4	0,9884(5)	0,7710(2)	0,0741(2)	0,030(1)
C1	0,2476(6)	0,7413(2)	0,3039(2)	0,031(1)
C2	0,2680(6)	0,6643(2)	0,3127(2)	0,036(1)
C3	0,4717(6)	0,8406(2)	0,3413(2)	0,030(1)
C4	0,5539(7)	0,8743(2)	0,4002(2)	0,037(1)

		Anhang		
C5	0,3367(7)	0,8899(2)	0,3042(2)	0,042(1)
C6	0,6610(7)	0,8175(2)	0,3048(2)	0,043(1)
C7	0,5095(6)	0,5806(2)	0,3629(2)	0,036(1)
C8	0,4120(9)	0,5825(3)	0,4265(2)	0,061(1)
C9	0,4145(8)	0,5228(2)	0,3248(2)	0,055(1)
C10	0,7461(7)	0,5713(2)	0,3695(3)	0,055(1)
C11	0,7514(6)	0,6754(2)	0,0568(2)	0,031(1)
C12	0,7744(6)	0,7530(2)	0,0553(2)	0,033(1)
C13	0,9630(6)	0,5798(2)	0,1060(2)	0,029(1)
C14	0,8208(7)	0,5285(2)	0,0729(2)	0,042(1)
C15	1,0350(7)	0,5515(2)	0,1681(2)	0,040(1)
C16	1,1582(7)	0,5952(2)	0,0689(2)	0,038(1)
C17	1,0229(6)	0,8421(2)	0,0954(2)	0,032(1)
C18	1,2595(7)	0,8502(2)	0,1016(2)	0,047(1)
C19	0,9239(8)	0,8504(2)	0,1580(2)	0,048(1)
C20	0,9331(7)	0,8947(2)	0,0503(2)	0,045(1)

Alle äquivalenten isotropen Auslenkungsparamter (U_{eq}) sind definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Atom	x/a	y/b	z/c	U(iso) [Ų]
H1	0,431(6)	0,753(2)	0,368(2)	0,018(10)
H2	0,559(7)	0,652(2)	0,303(2)	0,036(12)
H3	0,954(6)	0,675(2)	0,122(2)	0,020(9)
H4	1,071(6)	0,763(2)	0,046(2)	0,019(9)
H1A	0,3209	0,7554	0,2662	0,038
H1B	0,0978	0,7539	0,2993	0,038
H2A	0,1656	0,6485	0,3433	0,043
H2B	0,2374	0,6406	0,2735	0,043
H4A	0,6384	0,9143	0,3898	0,056
H4B	0,6406	0,8416	0,4232	0,056
H4C	0,4352	0,8884	0,4252	0,056
H5A	0,4159	0,9319	0,2967	0,064
H5B	0,2097	0,9008	0,3270	0,064
H5C	0,2975	0,8689	0,2650	0,064
H6A	0,6131	0,7966	0,2663	0,065
H6B	0,7419	0,7842	0,3288	0,065
H6C	0,7496	0,8571	0,2958	0,065
H8A	0,2610	0,5911	0,4225	0,092
H8B	0,4775	0,6189	0,4509	0,092
H8C	0,4349	0,5385	0,4470	0,092
H9A	0,2621	0,5289	0,3217	0,082
H9B	0,4458	0,4790	0,3446	0,082
H9C	0,4745	0,5234	0,2838	0,082
H10A	0,8078	0,5677	0,3287	0,083
H10B	0,7759	0,5295	0,3927	0,083
H10C	0,8067	0,6105	0,3911	0,083

Tab. 8.12.2 Ortskoordinaten und äquivalente isotrope Auslenkungsfaktoren aller Wasserstoffatome von 14.

		Anhang		
H11A	0,6010	0,6631	0,0537	0,037
H11B	0,8242	0,6552	0,0215	0,037
H12A	0,7453	0,7701	0,0134	0,039
H12B	0,6728	0,7742	0,0834	0,039
H14A	0,7817	0,5464	0,0324	0,062
H14B	0,6940	0,5211	0,0968	0,062
H14C	0,8956	0,4852	0,0681	0,062
H15A	1,1145	0,5093	0,1620	0,060
H15B	0,9123	0,5419	0,1932	0,060
H15C	1,1245	0,5852	0,1889	0,060
H16A	1,1163	0,6100	0,0276	0,057
H16B	1,2447	0,5540	0,0661	0,057
H16C	1,2390	0,6316	0,0890	0,057
H18A	1,3237	0,8438	0,0615	0,071
H18B	1,3149	0,8161	0,1303	0,071
H18C	1,2922	0,8961	0,1169	0,071
H19A	0,7720	0,8435	0,1543	0,071
H19B	0,9524	0,8965	0,1735	0,071
H19C	0,9836	0,8166	0,1864	0,071
H20A	0,9972	0,8883	0,0101	0,068
H20B	0,9637	0,9408	0,0654	0,068
H20C	0,7809	0,8886	0,0465	0,068

Tab. 8.12.3 U_{ij}-Werte [Å²] von 14.

Atom	U ₁₁	U ₂₂	U 33	U ₂₃	U ₁₃	U ₁₂
F1	0,041(1)	0,040(1)	0,047(1)	-0,008(1)	0,010(1)	0,011(1)
F2	0,046(1)	0,049(2)	0,052(2)	-0,006(1)	0,018(1)	-0,013(1)
F3	0,050(2)	0,057(2)	0,026(1)	0,002(1)	0,007(1)	0,004(1)
F4	0,050(2)	0,068(2)	0,027(1)	-0,009(1)	0,006(1)	0,001(1)
F5	0,047(2)	0,061(2)	0,047(2)	0,004(1)	0,016(1)	0,016(1)
F6	0,045(2)	0,057(2)	0,052(2)	0,007(1)	0,012(1)	-0,013(1)
B1	0,032(2)	0,036(2)	0,027(2)	-0,001(2)	0,005(2)	0,001(2)
B2	0,035(2)	0,048(3)	0,028(2)	-0,001(2)	0,08(2)	-0,001(2)
N1	0,027(2)	0,025(2)	0,025(2)	-0,001(1)	-0,001(1)	0,005(1)
N2	0,032(2)	0,027(2)	0,031(2)	-0,002(1)	0,006(2)	0,000(1)
N3	0,028(2)	0,030(2)	0,023(2)	-0,002(1)	-0,001(1)	-0,005(1)
N4	0,030(2)	0,027(2)	0,032(2)	-0,005(1)	0,008(2)	0,001(1)
C1	0,031(2)	0,037(2)	0,026(2)	-0,007(2)	-0,004(2)	0,003(2)
C2	0,035(2)	0,031(2)	0,043(2)	-0,011(2)	-0,004(2)	0,002(2)
C3	0,034(2)	0,029(2)	0,027(2)	0,002(2)	0,004(2)	-0,002(2)
C4	0,038(2)	0,035(2)	0,038(2)	-0,003(2)	-0,001(2)	-0,006(2)
C5	0,057(3)	0,031(2)	0,039(2)	0,005(2)	-0,004(2)	0,003(2)
C6	0,039(2)	0,048(3)	0,042(2)	0,001(2)	0,013(2)	-0,004(2)
C7	0,038(2)	0,030(2)	0,040(2)	0,003(2)	0,000(2)	0,000(2)
C8	0,074(4)	0,065(3)	0,045(3)	0,015(2)	0,007(3)	-0,004(3)
C9	0,061(3)	0,029(2)	0,075(3)	0,001(2)	-0,03(3)	-0,001(2)
C10	0,046(3)	0,038(2)	0,082(4)	0,013(2)	-0,004(3)	0,007(2)

			Anhang			
C11	0,031(2)	0,036(2)	0,026(2)	-0,001(2)	-0,004(2)	-0,002(2)
C12	0,030(2)	0,033(2)	0,035(2)	0,003(2)	-0,001(2)	0,001(2)
C13	0,033(2)	0,025(2)	0,029(2)	-0,004(2)	0,001(2)	-0,001(2)
C14	0,055(3)	0,031(2)	0,038(2)	-0,006(2)	-0,001(2)	-0,09(2)
C15	0,050(3)	0,036(2)	0,033(2)	0,001(2)	0,000(2)	0,004(2)
C16	0,045(2)	0,035(2)	0,034(2)	-0,005(2)	0,007(2)	0,003(2)
C17	0,035(2)	0,026(2)	0,034(2)	-0,003(2)	-0,001(2)	0,004(2)
C18	0,041(2)	0,036(2)	0,066(3)	-0,006(2)	0,000(2)	-0,004(2)
C19	0,055(3)	0,046(3)	0,041(2)	-0,011(2)	0,001(2)	0,0012(2)
C20	0,053(3)	0,031(2)	0,052(3)	0,005(2)	-0,04(2)	0,000(2)

8.13. Verbindungsverzeichnis

в—сі

11

Danksagung

Hiermit möchte ich mich bei Herrn Prof. Dr. Walter Frank für die Themenstellung, den gewährten Freiraum und für die Unterstützung während der Promotion bedanken.

Herrn Prof. Dr. Christian Ganter danke ich für die Anfertigung des Zweitgutachtens.

Mein Dank gilt zudem allen ehemaligen und aktuellen Kollegen im Arbeitskreis. Besonders erwähnen möchte ich meine Bürokollegen Hülya Gün und Stephan Prömper, die mich das ganze Studium begleitet haben. Danke für die schönen und nicht ganz so schönen Momente, für die zahlreichen Diskussionen und für den Spaß. Ohne euch wäre die Zeit nicht halb so schön gewesen.

Außerdem bedanke ich mich ganz herzlich bei allen, die mich während der Anfertigung dieser Arbeit unterstützt haben und bei der Fertigstellung dieser Arbeit geholfen haben.

Zum Schluss gilt ein herzlicher Dank meiner ganzen Familie (insbesondere Mama, Papa, Hannes, Maike und Kristin), meiner Freundin – Christiane– und den Klingelwiesen-Brüdern und deren Familien.

Eidesstattliche Erklärung

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt. Die verwendeten Quellen und Hilfsmittel sind vollständig angegeben. Die Dissertation wurde in der vorliegenden oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keinen erfolglosen Promotionsversuch unternommen.

Düsseldorf, den 04.05.2016

Daniel Buhl