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I 

 

Summary 

Proteins can be assembled into specific complexes especially by scaffold proteins, which 

safeguard as control elements the strength, efficiency, fidelity and specificity of signal 

transduction within the cells. A variety of scaffold proteins, e.g., IQ domain GTPase-activating 

protein 1 (IQGAP1), nucleophosmin (NPM1), and nucleolin (NCL), has been reported to directly 

bind small GTPases of the RAS and RHO family and to control their signaling processes. RHO- and 

RAS-related proteins, which normally act as molecular switches in diverse biological processes, 

are frequently dysregulated in diseases, such as cardiovascular and infectious diseases, 

developmental and neurological disorders, and cancer. Deciphering new functional control 

mechanisms and defining new targets is essential for the rational development of highly selective 

drugs that attenuate signal transduction rather than inhibiting it. An essential prerequisite to 

elucidate the mechanism behind functions of scaffold proteins is the dissection of their individual 

domains and the analysis of their interactions with desired protein partners; and this was the aim 

of the present dissertation. Comprehensive investigation of IQGAP1 interaction with the RHO 

family proteins revealed for the first time that IQGAP1 association with RAC- and CDC42-related 

proteins underlies a two-step mechanism, first a low-affinity, nucleotide-independent binding of 

the GAP-related domain outside the switch regions, and second a high-affinity, GTP-dependent 

binding of the GTPase binding domain to the switch regions of RAC- and CDC42-related proteins. 

These results provide the field with new insights into interaction characteristics of RHO GTPases 

with IQGAP1, which is a critical mechanism in temporal regulation and integration of IQGAP1-

mediated cellular responses. In contrast, a proposed physical interaction of NPM1 and NCL with 

the RAS isoforms (HRAS, NRAS, and KRAS) was not verified in this study but instead new 

interactions of their domains were explored in-depth. NPM1 interactions with HIV-1 Rev and HSV-

1 US11, two functionally homologous viral proteins, in the presence and in the absence of a 

blocking cyclic peptide (CIGB-300), provided unprecedented insights into the key role of NPM1 in 

viral infections that may represent a novel promising target for antiviral therapeutic intervention. 

The identification of a direct interaction between NCL and the fragile X mental retardation protein 

(FMRP) pointed to a novel mechanism underlying a transient nucleocytoplasmic and nucleolar 

translocation and regulating different processes, e.g., ribosome biogenesis.  
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Zusammenfassung 

Proteine können in spezifischen Komplexen durch sog. Adaptor- bzw. Gerüstproteine 
„vernetzt“ werden, die in den Zellen als Kontrollelemente Stärke, Effizienz und Spezifität eines 
Signaltransduktionswegs kontrollieren/regulieren. Verschiedenen Studien zufolge 
regulieren/kontrollieren eine Reihe von Gerüstproteinen, u.a. IQ domain GTPase-activating 
protein 1 (IQGAP1), Nucleophosmin (NPM1), und Nucleolin (NCL) die Signalprozesse kleiner 
GTPasen der RAS- und Rho-Familie, indem sie direkt mit ihnen interagieren. RAS- und RHO-
verwandte Proteine, die als molekulare Schalter normalerweise in diversen biologischen 
Prozessen agieren, sind sehr häufig bei kardiovaskulären und neuronalen Erkrankungen, 
Infektionserkrankungen, Entwicklungsstörungen und Tumorerkrankungen fehlreguliert. Die 
Entschlüsselung neuer funktionaler Kontrollmechanismen und die Definition neuer Targets sind 
essentiell für die rationale Entwicklung hochselektiver Pharmazeutika, welche die 
Signaltransduktion abschwächt, aber nicht vollständig inhibiert. Eine wesentliche Voraussetzung 
zur Aufklärung der Funktion der Gerüstproteine ist ihre Zerlegung in einzelnen Domänen und die 
Untersuchung deren Interaktionen mit den entsprechenden Bindungspartnern, was das Hauptziel 
der vorliegenden Dissertation darstellte. Umfassende Untersuchungen der IQGAP1-Interaktion 
mit den Proteinen der RHO-Familie haben hierbei gezeigt, dass die Assoziation von IQGAP1 mit 
RAC- und CDC42-verwandten Proteinen einem zwei-Schritt Mechanismus unterliegt. Dieser 
umfasst eine niederaffine Nukleotid-unabhängige Bindung an die GAP-verwandte Domäne 
außerhalb der Schalterregionen, gefolgt von einer hochaffinen, GTP-abhängigen Bindung der 
GTPase-Bindungsdomäne an die Schalterregionen von RAC- und CDC42-verwandten Proteinen 
RAC- und CDC42-verwandten Proteinen RAC- und CDC42-verwandten Proteinen. Diese Resultate 
tragen zum besseren Verständnis der Bindungseigenschaften von RHO-GTPasen mit IQGAP1 und 
somit der zeitlichen Regulation und Integration IQGAP1-vermittelter zellulärer Antworten. 
Demgegenüber stehen die Gerüstproteine NPM1 und NCL, deren vorgeschlagenen physikalischen 
Interaktionen mit den RAS-Isoformen (HRAS, NRAS, und KRAS) in dieser Arbeit nicht bestätigt 
werden konnten. Eingehende Untersuchungen einzelner Domänen von NPM1 und NCL 
identifizierten stattdessen neue Interaktionen. Die NPM1-Interaktionen mit HIV1-1 Rev und HSV-1 
US11, zwei funktionell homologe virale Proteine, in der An- und Abwesenheit eines blockierenden 
zyklischen Peptids (CIGB-300), lieferten neue Einblicke in die Schlüsselrolle von NPM1 bei viralen 
Infektionen. Letzteres repräsentiert derzeit eine neue und viel versprechende Zielstruktur für die 
Entwicklung antiviraler Wirkstoffe. Die Charakterisierung der direkten Interaktion zwischen NCL 
und fragile X mental retardation protein (FMRP) weist auf einem wichtigen Mechanismus hin, 
dem eine vorübergehende nukleozytoplasmatische und nukleoläre Translokation von NCL 
zugrunde liegt und hierbei unterschiedliche Prozesse, wie beispielsweise die Ribosomen-
Biogenese, reguliert wird. 
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1 RAS Superfamily 
As of today the RAS superfamily of small guanosine triphosphatases (GTPases) comprise over 

167 human members, which are small proteins between 20-25 kDa in size and classified by a 

conserved structural domain. In the beginning, RAS genes were identified as viral oncogenes 

found in the Harvey murine sarcoma virus (Ha-MuSV) and the Kirsten murine sarcoma virus (Ki-

MuSV), which encode a 21 kDa phosphoprotein and induce tumor formation in new-born rodents 

[1-3]. Shortly after that it was shown that transforming genes are detected in human tumor cell 

lines and these oncogenes originated from genes called HRAS and KRAS [4]. The first human RAS 

gene was identified in human bladder carcinoma cell line and it was shown that bladder cancer 

HRAS gene is activated by a codon 12 mutation [5-7]. In 1982, transforming genes in human 

cancer cell lines identified as HRAS and KRAS sequences and this finding led to beginning of an 

intensive focus on studying biology, biochemistry, and structure of the RAS proteins. Normal 

cellular RAS genes were cloned, sequenced, and it was found very soon that they encode 21 kDa 

proteins, which bind the guanine nucleotides GDP and GTP, have GTPase activity, and are 

localized at the inner leaflet of the plasma membrane [3,8]. Later, it was shown that HRAS C-

terminus, especially Cys186 is required for its posttranslational modification, membrane 

association, and transformation [3]. They show high-affinity binding for GDP and GTP, and have 

low intrinsic nucleotide exchange and GTP hydrolysis reactions. Their GDP/GTP exchange activity 

is controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins 

(GAPs) as regulatory proteins [9]. So, these proteins act as molecular switches, have diverse 

regulatory functions, and control a wide variety of processes within the cell. 

1.1 Classification of RAS Small GTPases 

The human RAS superfamily is divided into five classical subfamilies, including RAS, RHO, RAB, 

RAN, and ARF (Fig. 1) [10-12]. Most of the biological and biochemical processes in the cells are 

accomplished by the crosstalk of different proteins and it is not easy to define the unique function 

of a certain small GTPase family alone [13]. The RAB family is by far the largest family. RAB 

GTPases and their effectors coordinate consecutive stages of transport such as intracellular 

vesicular transport and the protein trafficking between different organelles in the endocytic and 

secretory pathways [14]. There is only one copy of the RAS-like nuclear (RAN) protein in the 

human genome, but it is the most highly expressed protein in human. It functions as a positional 

marker of the genome and regulates the nucleocytoplasmic transport of RNAs and proteins 

through NPC (nuclear pore complex) [15]. The ADP ribosylation factor (ARF) family is by far the 

most diverse and divergent family of the RAS superfamily. ARF family members are also a central 
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role player in the membrane trafficking and phospholipid metabolism pathways of eukaryotic cells 

[16,17], and eventually the RHO proteins, which are the main focus of this thesis, are mostly 

known to direct the reorganization of the actin cytoskeleton at a specific time and site in the cell 

[18,19]. 

Figure 1. RAS superfamily of small G proteins. RAS superfamily consists of 167 human members which is 
divided to five subfamily, including RAS, RHO, RAB, ARF, and RAN. Numbers indicate the orthologues found 
in each subfamily. Modified from [20]. 

1.2  Structural properties of the RAS GTPases 

By comparing the amino acid sequences of RAS proteins from different species, it has been 

shown that these proteins are highly conserved with a homology of 30–55%. Among RAS proteins, 

each protein shares quite high amino acid identity (~50%), while RAB and RHO/RAC/CDC42 

proteins share ~30% amino acid identity with RAS proteins [21,22]. All these proteins share a core 

GDP/GTP-binding (G) domain (RAS residues 5-166; approximately 19 kDa) that has a universal 

structure and carries out the basic functions of nucleotide binding and hydrolysis [11]. This 

domain is the basis for the molecular switch function of almost all RAS-like proteins cycling 

between an active GTP-bound state, and an inactive GDP-bound, which are highly conserved in all 

GTPases [11,23,24]. They share five conserved GDP/GTP-binding (G) motifs. G1 (L1) box or the 

“Walker A motif” with the consensus sequence GX4GKS/T (residues 10-17 in HRAS), is a glycine-

rich phosphate binding (P) loop, which provides the highest contribution to high-affinity binding 

of the nucleotides. This motif comprises three vital residues: codon 12 encoding for Gly12 that is 

the most frequently mutated RAS codon in human tumors [25,26]; Lys16 is responsible for the 

formation of a ring-like structure, which wrap around the β- and γ-phosphate oxygen and 

generate a positively charged environment; Ser17 with its hydroxyl group coordinates the Mg2+ 

ion and the β-phosphate oxygen [27-29]. G2 box or L2 (residues 32-40 in HRAS) also called 

effector binding site or switch I, contains a threonine (Thr35 in HRAS), that is conserved in almost 
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all members of RAS superfamily. Switch I region overlaps with G2 box and locates between α1 

helix and β2 strand. This conserved residue is crucial for sensing the presence of the γ-phosphate 

of GTP and coordinates the magnesium (Mg2+) ion. It is absolutely crucial for the functional 

dynamics of the switch I region, and is therefore essential for the interaction with effector 

proteins [30]. Switch II region comprises part of α2 helix and G3 motif. G3 box, L4 or “Walking B 

motif” is the DX2G motif (residues 53-62 in HRAS), close to “switch II” region with a conserved 

aspartate (Asp 57 in HRAS) in the vicinity of the Mg2+ ion and a Gly (Gly60 in HRAS) that 

coordinates the γ-phosphate by a main chain hydrogen bond, and is a key sensor for the 

conformational change of the switch II region [31]. G4 is the N/TKXD motif (residues 112-119 in 

HRAS), where an aspartate (Asp 119 in HRAS) binds to the nitrogen atoms of the base with two 

hydrogen bonds, and an asparagine and a lysine (116 and 117 in HRAS) contacting the oxygen of 

the purine, which are important in conferring the specificity to the guanine base [10]. G5 box is 

the SAK motif (residues 144-146 in HRAS), where a serine side chain (145 in HRAS) stabilizes the 

neighbor loop in a tight turn, and an alanine (146 in HRAS) that binds the guanine base and is 

another determinant for the guanine-specificity of RAS [10,30,32]. The conformations of switch I 

and switch II largely change when the G domain cycles between the GDP-bound and GTP-bound 

states. The conformational change can best be interpreted as a “loaded spring” mechanism. 

Presence of the GTP γ-phosphate causes the switch I and switch II regions to locate in the position 

close to the nucleotide. Once the γ-phosphate is cleaved off after GTP hydrolysis, the switch 

regions relax into the “open”-GDP specific conformation. Such GTP-induced conformational 

changes are crucial for the function of molecular switch (Fig. 2) [11,33,34].  

In addition, small GTPases belonging to RAS, RHO/RAC/CDC42, and RAB proteins have 

sequences at their carboxyl (C) terminal that undergo posttranslational modifications with lipid, 

such as palmitoyl, geranylgeranyl, farnesyl, methyl moieties, and proteolysis. Indeed the main 

difference between RAS superfamily members comes from the carboxyl (C) terminal 

hypervariable region (HVR; residues 165-185 in HRAS; 173-189 in RHOA; 181-212 in RAB5) [35-

37]. HVR is important for membrane association of small GTPases and probably plays a role in 

selectivity for different binding partners [38]. In the case of RHO GTPases, the HVR is sufficient for 

association of the proteins with the membrane without any posttranslational modification [39].  
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Figure 2. Motifs and structure of the RAS superfamily proteins. (A) Topology diagram for G-domains of the 
RAS superfamily. α-helices are shown in red and β-strands in green, and N and C termini are indicated. (B) 
Three dimensional structure of the G-domain with labeled position of the conserved nucleotide binding 
motifs (same color code like in (a)), P loop is shown in orange [34]. 

2 Small GTPases of the RHO family 

RHO (RAS homologous) family proteins are involved in a variety of cellular processes by 

modulating cytoskeletal organization, cell polarity, transcription, cell cycle progression, and 

hematopoiesis [40,41]. So far, 22 human proteins of the RHO family have been identified, that can 

be divided into six distinct subfamilies based on their sequence homology and biological 

functions: (1) RHO-related group, i.e. RHOA, RHOB, RHOC; (2) the RAC-related group, i.e. RAC1 

(and its splice variant RAC1b), RAC2, RAC3, RHOG; (3) the CDC42-related group, i.e. CDC42 (and its 

brain-specific C-terminal splice variant G25K), TC10, TCL, RHOU/WRCH1, RHOV/CHP; (4) RHOD, 

i.e. RHOD, RIF; (5) RND, i.e. RND1, RND2, RND3; (6) RHOBTB group, i.e. RHOBTB1, RHOBTB2, and 

RHOH/TTF (Fig. 3) [18,40,42,43] (chapter 2).  
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2.1 Biological functions and role in human diseases 

The RHO family GTPases play an important role in diverse cellular processes and progression of 

different diseases, such as cardiovascular diseases, developmental and neurological disorders, 

tumor invasion and metastasis as well as regulating liver regeneration [44-51]. They are main 

regulators of cytoskeletal dynamics and stimulate various cellular processes, including migration, 

neuronal development, morphogenesis, cell polarity, cell division and adhesion, cytokinesis, 

embryonic development, immune response, wound healing, tumor formation, and metastasis 

[40,52-54]. Moreover, they regulate microtubule dynamics, vesicle transport, gene expression, 

and cell cycle progression [54]. Of the RHO GTPase family members, RAC1, RHOA, and CDC42 

have been most extensively studied and characterized. Activation of RAC1 results in the 

membrane ruffling and lamellipodia formation, while CDC42 leads to the formation of filopodia 

[54]. RHOA promotes the formation of actin stress fibers and focal adhesion assembly [55,56]. 

Other RHO GTPases such as TC10 (RHOQ), WRCH1 (RHOU), RIF (RHOF), and RHOD also promote 

filopodia formation [57-59]. RHO GTPases are also implicated in various aspects of neuronal 

development, including neurite extension, axon specification, and axon guidance, hence 

perturbations in RHO GTPase signaling may lead to cognitive disorders [60]. Numbers of 

enzymatic activities which are involved in lipid metabolism or implicated in changes to the actin 

cytoskeleton are also influenced by RHO GTPases [61,62]. It has been shown that RHOA, RAC1, 

and CDC42 contribute to G1 cell cycle progression of fibroblasts and epithelial cells in culture, and 

all of them when expressed in quiescent fibroblasts are able to stimulate entry into G1 and 

progression to S phase [63,64]. Some effects of RHO GTPases on G1 progression, seems to be vital 

for adhesion- or anchorage-dependent signals for cell proliferation. Since one of the hallmarks of 

cancer is loss of anchorage, this motivates many scientists to inspect the possible involvement of 

RHO GTPase pathways dysregulation to tumor progression [65]. RHO-like proteins can potentially 

influence the invasiveness of tumor cells in many different ways [54,66,67].  

In addition, it has been shown that dysregulation or dysfunction of RHO signaling pathways 

results in number of other clinical symptoms such as X-linked genetic diseases, mental 

retardation, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), 

Alzheimer’s disease, Huntington’s disease and Parkinson’s disease as well as human 

immunodeficiency syndrome [66,68-72].   
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Figure 3. Phylogenetic tree of the RHO family proteins. The unrooted phylogentic tree is based on the 
ClustalW alignment of the amino-acid sequences of the 20 RHO GTPase proteins. RHO family can be roughly 
divided into six major groups: RHO-, RAC-, CDC42-, RND-, RHOBTB-, and RHOD-related groups, where RHOH 
cannot assign as a defined group [40]. 

2.2 RHO mutations in tumor progression 

There are different levels of RAS and RHO cross-talks at the levels of GAP or scaffolding 

proteins. While HRAS, NRAS, and KRAS regularly acquire transforming missense mutations in 

human cancer, slight is known of the oncogenic roles of RHO GTPases or the coexistence of RAS 

and RHO mutations in tumors. The mutation in RHOH/TTF has been shown to be involved in 

lymphoma development [73]. In addition to that, recently a mutant form of RAC1 with the amino 

acid substitution N92I beside the NRAS Q61K mutation in a human sarcoma cell line, HT1080, has 

been discovered and have been shown that this mutation renders RAC1 constitutively active and 

highly oncogenic [74]. Further screening for RAC1, RAC2, and RAC3 mutations among cancer cell 

lines as well as public databases, identified additional transforming mutations of RAC1 and RAC2 

including RAC1 P29S, RAC1 C157Y, RAC2 P29L, and RAC2 P29Q [74]. Furthermore, RAC1 P29S 

mutation in melanoma and its possible role in resistance to RAF inhibitors by maintaining 
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activation of the MAPK signaling pathway has been reported [75]. Most recent report of mutation 

in RHO proteins is the RAC2 D63V mutation in Juvenile myelomonocytic leukemia (JMML) [76]. 

Juvenile myelomonocytic leukemia (JMML) is a rare but aggressive form of childhood leukemia 

that results from infiltration of overproduced myelomonocytic cells to organs such as liver, 

spleen, and intestine and exhibits both myelodysplastic and myeloproliferative properties [77]. 

Pathological studies revealed that the JMML initiated by germline or somatic RAS-activating 

mutations [78]. JMML is considered as a unique example of RAS-driven oncogenesis since it is 

thought to be initiated by mutations, usually described as mutually exclusive, in NRAS and KRAS 

genes or RAS-pathway regulators (PTPN11, NF1 or CBL) [79] but genetic profiling of the JMML 

patient with NRAS mutation has shown the second mutation which belongs to RHO GTPase 

(RAC2) [76] (see chapter 3).  

2.3 Structural features of RHO proteins 

RHO proteins are defined by the presence of a RHO-type GTPase-like domain. These proteins 

normally comprise a conserved GDP/GTP-binding domain (called G domain) and a C-terminal 

hypervariable region ending with a consensus sequence known as CAAX (C is cysteine, A is any 

aliphatic amino acid, and X is any amino acid) [11,18]. The G domain of RHO proteins is highly 

conserved among RHO family members and its structure is slightly different from what was 

described above for the RAS superfamily proteins (Fig. 2). One of the main differences between 

RHO family proteins and other small GTPases, which indeed distinguishes these proteins from 

other small GTPases, is an additional 12-amino acid “insert region”, (residues 124-135) in the RHO 

family proteins. This region is located between the fifth β strand and the fourth α helix in G 

domain [80]. All RHO family members have conserved motifs for high affinity binding to GDP and 

GTP. Furthermore, the majority of RHO members undergo post-translational modification such as 

phosphorylation, acetylation, ubiquitination, farnesylation, geranylgeranylation, palmitoylation, 

endoproteolysis, and carboxyl methylation at their C-terminal HRV that facilitates their membrane 

anchorage [18,81].  

2.4 Regulation of RHO proteins activity by nucleotide binding 

As indicated before, similar to other RAS superfamily members, RHO family proteins also share 

a core G domain with five conserved sequence motifs (G1–G5), which are required for nucleotide 

binding and hydrolysis [34]. Membrane-associated RHO GTPases act, with some exceptions [82], 

as molecular switches by cycling between an inactive GDP-bound state and an active GTP-bound 

state (Fig. 4). The role of the RHO family proteins as signaling molecules in controlling a wide 

range of fundamental cellular processes is mostly dependent on this functional molecular switch 
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[83]. This cycle underlies two critical intrinsic functions, the GDP-GTP exchange and GTP hydrolysis 

[82], and is controlled by at least three classes of regulatory proteins: guanine nucleotide 

exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation 

inhibitor (GDI) (Fig. 4) [83,84]. GEFs accelerate the intrinsic nucleotide exchange by several orders 

of magnitude, resulting in the formation of the GTP-bound active state [82,85]. GAPs stimulate 

the intrinsic GTP hydrolysis activity and leading to a rapid inactivation of RHO proteins [84,86,87]. 

GDIs have been suggested to selectively bind to prenylated RHO proteins and to sequestrate the 

RHO proteins from the membrane by binding to the lipid anchor and by creating an inactivated 

cytosolic pool [88,89]. RHO proteins, in their active GTP-bound, associate with and in turn activate 

a wide variety of downstream effector molecules and subsequently activate signaling cascades 

(Fig. 4) [90,91] (more detailed information in chapter 2). 

 

Figure 4. RHO Proteins as molecular switches. Most members of the RHO family act as molecular switches 
by cycling between an inactive, GDP-bound state and an active GTP-bound state. They interact specifically 
with three structurally and functionally unrelated classes of proteins. Guanine nucleotide exchange factors 
(GEFs), which activate the RHO proteins by accelerating the slow intrinsic exchange of GDP for GTP and turn 
on the signal transduction. GTPase-activating proteins (GAPs) negatively regulate the switch by stimulating 
the slow intrinsic GTP hydrolysis activity of the RHO proteins and turn off the signal transduction. Guanine 
nucleotide dissociation inhibitors (GDIs), which solubilize prenylated RHO proteins in cytosol and keep them 
in inactive state. The active GTP-bound RHO proteins interact with, and activate the downstream effectors 
to induce a variety of intracellular responses.  

2.5 RHO GTPases and their effectors  

GTP-bound RHO proteins interact with effector molecules to activate downstream cellular 

responses [92]. The crystal structures of several RHO proteins have revealed that the 

conformational differences between the GTP-bound and the GDP-bound forms are restricted to 

switch regions I and II. Activation of RHO proteins typically induce a conformational change, 
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providing common elements of the switch regions that are specifically recognized by the 

downstream interacting partners, although certain effectors may bind outside of switch regions 

[83,93,94]. In addition to switch regions, other regions are required for specific interaction of RHO 

proteins with distinct binding partners. Each protein may recognize several effectors, and some 

effectors may be recognized by multiple family members. To date more than 30 potential 

effectors for RHO, RAC, and CDC42 have been identified [18,54,90,91]. Many of RAC- and CDC42-

binding proteins such as activated CDC42-associated tyrosine kinase (ACK), and Wiskott–Aldrich-

syndrome protein (WASP) contain the conserved GTPase-binding consensus site, so-called CRIB 

(CDC42/RAC-interactive binding) motif [95]. Binding of RHO to its effector proteins require quite 

different GTPase regions compared to RAC and CDC42. One group of effectors, including protein 

kinase N (PKN)/PRK1 and PRK2, rhotekin and rhophilin, bind to RHO via RHO effector homology 

(REM) domain, which contains three repeats of a leucine-zipper-like motif termed HR1RHO 

effectors [96]. ROCK and kinectin are in another class of RHO effectors so-called ROK-kinectin 

homology proteins (RKH), and finally citron kinase is known as class III of RHO effectors [91,97-

99]. p67phox is one of the first targets of RAC which was identified. p67phox is an essential structural 

component of the phagocyte NADPH oxidase complex [100]. RAC is involved in the assembly and 

activation of NADPH oxidase complex via direct interaction with p67phox and possibly gp91phox 

[101]. The p21-activated kinase (PAK) family of serine/threonine kinases is another well-known 

effector that can be activated by both RAC and CDC42. So far, six members of this family (PAK1–6) 

have been identified and it has been shown that they play critical roles in actin cytoskeleton 

dynamic regulation and gene expression [102,103]. In addition to classical regulators and 

effectors of RHO GTPases, the interaction with other scaffold proteins, like IQGAP1, as a crucial 

interacting partner of RHO family proteins has been investigated in recent years [118,119].  

3 Protein scaffolds 

The spatial and temporal organization of molecules within a cell is critical for coordinating 

many activities carried out by the cell. Signaling molecules interact together to form large 

complexes, which are normally not diffuse in the cytoplasm, but are rather attached to the cell 

membranes. The complex is called signalsome or transducisome. In signalsome, a protein that 

binds to more than one protein and has no enzymatic activity is defined as a scaffold protein or 

adaptor protein [104]. Cells have developed this class of proteins in order to physically assemble 

the relevant molecular components. These proteins simultaneously bind multiple components, 

assemble them into specific complexes, and thereby enhance signaling efficiency and fidelity, 

increase signaling sensitivity, and coordinate different signaling pathways [105].  
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Many scaffold proteins with diverse functions in different signaling pathways have been 

identified. For instance, the importance of scaffold proteins such as IQGAP1 [45,106,107], kinase 

suppressor of RAS (KSR) [108], MEK partner-1 (MP-1) [109], β-arrestins, and similar expression to 

FGF (Sef) [110], are well investigated in mitogen activated protein kinase (MAPK) signaling 

pathways specially MEK/ERK pathway [111]. Galectin-1 (Gal-1), Galectin-3 (Gal-3), nucleophosmin 

(NPM1), and nucleolin (NCL) are other protein scaffolds which participate in facilitating or 

enhancing RAS nanoclusterring [112-115]. Gal-1 increases nanoclusterring of active form of HRAS 

and its level may modulate HRAS signaling activity [115]. In contrast to Gal-1, cytosolic Gal-3 

associates more with GTP bound form of KRAS nanoclusters [114]. NPM1 and NCL are other 

protein scaffolds for KRAS nanoclusters, and the latter is involved in ribosome biogenesis most 

likely in the complex with FMRP (fragile X mental retardation protein). These proteins are 

shuttling proteins between nucleolus and cytoplasm and can interact with KRAS, but not HRAS on 

the plasma membrane [112]. Furthermore, it has been shown that increasing cytosolic NPM1 or 

NCL concentration, stabilizes KRAS localization to the plasma membrane and enhances KRAS 

nanoclustering [112].  

3.1 IQGAPs 

IQ-domain GTPase-activating proteins (IQGAPs) belong to a recently identified protein family, 

which is an evolutionary conserved multidomain protein family in eukaryotes, from 

Saccharomyces cerevisiae to mammals. The multiple domains in IQGAPs interact with wide variety 

of binding partners, regulate numerous signaling pathways, and subsequently playing an 

important role in different biological processes [48,106,116-119]. IQGAPs have high sequences 

similarity to the RAS GAPs and four isoleucine/glutamine-containing domains (IQ), and the name 

"IQGAP" came from these two structural features.  

In mammals, three isoforms of IQGAPs are expressed: IQGAP1, IQGAP2, and IQGAP3 (Fig. 5A). 

These homologues have similar domain compositions but different subcellular localization, tissue 

expression (Fig. 5B), and functions. Among these Isoforms, IQGAP1 is ubiquitously expressed and 

is the most investigated member. IQGAP1 via many different mechanisms coordinate 

communication between binding partners, including serving as a scaffold. IQGAP2 is expressed 

predominantly in the liver and also in stomach and platelet, and has 62% sequence identity to 

IQGAP1. IQGAP3 is enriched in brain and lung tissue [107,120-122]. Recent differential gene and 

protein expression analysis revealed a reciprocal expression of IQGAPs in hepatic stellate cells 

(HSC), with highly expression of IQGAP2 in quiescent HSC and IQGAP1 in activated HSC (chapter 

4), and also in hepatocellular carcinoma (HCC) [123]. In spite of having RASGAP homology domain, 
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none of these three isoforms have GAP activity. In contrast, IQGAP proteins exhibit an inhibitory 

effect on the intrinsic GTPase activity of RHO GTPases CDC42 and RAC1, thereby stabilize them in 

their active GTP-bound form [124,125]. Lack of GAP function is apparently owing to absence of 

arginine finger in their GAP-related domain, which is involved evolutionarily in GAP activity of 

RASGAPs [126,127]. 

IQGAPs participate in many essential cellular activities in different organisms including 

cytokinesis in yeast and Dictyostelium [116], cell–cell adhesion through binding to E-cadherins as 

well as β-catenins [48,128], and regulate cell adhesion via binding to RAP1 [129]. Moreover they 

contribute in cancer cell invasion and metastasis and also as a scaffold for the mitogen-activated 

protein (MAP) kinase pathway by interactions with MAPK/ERK kinase (MEK1/2), B-RAF and 

extracellular signal-regulated kinase 2 (Erk2) [130,131].  

 
Figure 5. IQGAP isoforms and their tissue expression. (A) Schematic representation of the IQGAP proteins. 
IQGAPs contain several domains that mediate protein–protein interactions. They are consisting of five 
distinct domains; calponin homology domain (CHD), the WW domain, the IQ domain (which contains four 
tandem IQ motifs), the GTPase-activating protein (GAP)-related domain (GRD), and the RASGAP-C terminus. 
The amino acid homologies are indicated. (B) The tissue expression pattern of IQGAP family members [117]. 
The plus number reflects the expression level. 
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 IQGAP1 domain organization and interacting partners   3.1.1

IQGAP1 is ubiquitously expressed and best-investigated member of the IQGAP family. It is a large 

multidomain scaffolding protein with 1657 amino acids (190 kDa). Since its discovery 20 years ago 

[132], more than 100 interacting partners have been identified, that some of them are illustrated 

in Figure 6 [118,119]. The N-terminal calponin homology domain (CHD) shares homology with the 

Ca2+ and calmodulin-binding protein calponin. CHD interacts with F-actin [133], also weakly with 

calmodulin and Ca2+ ions [134,135]. This followed by a long coiled-coil (CC) region. So far, only 

Ezrin and adaptor protein ShcA have been identified to bind to a distinct part of this region 

containing six LNEALDEGDAQ consensus sequence repeats [118,135,136]. Whereas the proline 

rich region with two conserved tryptophans (WW) interacts with components of the MAPK 

pathway such as ERK1 and 2 [137]. This domain is followed by IQ motifs comprising Iso/Leu and 

Gln residues that mediate interactions with Ca2+-binding proteins, including calmodulin [45,138] 

and S100 family proteins [139]. RAS GAP-related domain (GRD), and originally called RASGAP C 

terminal domain which we called a GTPase-binding domain (GBD) are known as RAC- and CDC42-

like binding sites. At the very C-terminus, the C domain interacts with CLIP-170 [140], beta-

catenin, E-cadehrin [48,141,142], and the important tumor suppressor protein adenomatous 

polyposis coli (APC) [143].  

 

 Figure 6. Schematic representation of the protein interaction domains of IQGAP1. Functional domain 
organization of IQGAP1 protein and the binding sites of some well-investigated binding partners are shown. 
It encompasses calponin homology domain (CHD), coiled-coil (CC) region, tryptophan-containing proline-
rich (the WW domain), the IQ domain with four tandem IQ motifs, the GTPase-activating protein (GAP)-
related domain (GRD), GTPase-binding domain (GBD), and C-terminal domain (C). Each domain has diverse 
interacting partners. The numbers indicate the N- and C-terminal amino acids of the respective domains.  

 IQGAP1-RHO interaction and regulating cellular functions 3.1.2

Accumulating evidence supports diverse roles for the IQGAP1 interaction with CDC42 [144] and 

RAC1 [145] in vertebrates, including regulation of cell-cell adhesion [146], cell polarity and 

migration , neuronal motility [147], invasion of Salmonella typhimurium [148], and tumor cell 

invasion [149]. IQGAP2 and IQGAP3 are also able to bind RHO proteins [120,125,150]. The 
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interaction with the active, GTP-bound form of CDC42 and RAC1 suggests that IQGAP1 acts as a 

downstream effector [151,152]. However, the nature of such a protein-protein recognition 

process has remained obscure. Physical interaction of IQGAP1 with small GTPases, like RAC1 and 

CDC42, play vital controlling roles in actin polymerization at the leading edge of migrating cells, 

where they localize with IQGAP1 [153,154]. Filamin-A is an actin crosslinking protein, which forms 

a complex with IQGAP1 and activated β1 integrin to recruit RACGAP1. RACGAP1-IQGAP1 

interaction negatively regulates RAC1 and promotes RHOA activation [155,156]. Since depletion 

of filamin-A, IQGAP1 or RACGAP1, caused uncontrolled membrane protrusion and disrupted 

directional cell migration [156], it has been suggested that IQGAP1 regulates cell motility at the 

leading edge [133]. Current evidence indicates that R-spondins (RSPOs)-leucine-rich repeat-

containing G-protein coupled receptor 4 (LGR4) recruits IQGAP1 into the Wnt signaling complex 

and potentiates both the canonical and noncanonical pathways of Wnt signaling [157]. IQGAP1 

also plays a critical role in cell polarity by associating with Wnt/RSPO and activation of the RAC1, 

and CDC42 proteins [157].  

While modulation of the cytoskeletal architecture was initially thought to be the primary 

function of the interaction of IQGAP1 with RHO proteins, it is now clear that they have some 

critical physiological roles beyond the cytoskeleton [119]. Hepatocyte growth factor (HGF) 

enhances barrier function in endothelial cells [158]. It has been reported that IQGAP1 functions as 

a scaffold between microtubules and actin to stimulate enhanced barrier functions downstream 

of HGF [158,159]. CDC42 promotes the interaction of PTPμ with IQGAP1 to stimulate actin 

remodeling and, eventually, neurite outgrowth [160]. The complex of active CDC42, Lis1, and 

CLIP-170 with IQGAP1 seems to be crucial for cerebellar neuronal motility [147]. Another example 

is in the pancreatic β-cells. Analysis of the insulin secretory pathway has shown that IQGAP1 

scaffolds CDC42, RAB27a, and coronin-3 and this complex controls endocytosis of insulin 

secretory membranes [161]. Apart from that, immunoprecipitation studies have recently shown 

that IQGAP1 binds to both RHOA and p190A-RHOGAP to inactivate RHOA and modulates 

contractility of airway smooth muscle cells [162]. Wu et al. also have found RHOC and IQGAP1 in 

immunoprecipitates. This study has shown that isoform-specific interaction of RHO proteins with 

IQGAP1 regulates cancer cell proliferation and reveals that IQGAP1 is a downstream effector of 

RHOC in the regulation of gastric cancer cells migration activity [163,164]. From IQGAP family, 

IQGAP1 has been precisely implicated as a drug target although the molecular mechanism of the 

IQGAP1 functions is unclear. A prerequisite to elucidate the mechanism behind IQGAP1 functions 

is the dissection of its distinct domains and the analysis of their interactions with desired protein 

partners. 
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Work from several laboratories has shown that the C-terminal half of IQGAP1 (GRD-C, aa 863-

1657), including GRD, GBD, and C (Fig. 6), binds physically to active, GTP-bound forms of CDC42 

and RAC1 [150,165,166]. IQGAP1 GRD, which is structurally a homologous but functionally an 

inactive RASGAP [167] also undergoes interaction with RAC1 and CDC42, although with a lower 

affinity than the larger protein fragment, containing GRD, GBD, and C [167]. These works together 

with homology modeling, based on the RHOGAP in complex with RHOA [168] and CDC42 [169], 

provided a structural model of IQGAP1 GRD that contacts the switch regions of the GTP-bound 

CDC42 [167,170,171]. On the contrary, in this study new model was proposed that the C-terminal 

half of IQGAP1 utilize at least three functionally distinct units, including GRD, GBD, and C, to 

achieve the interaction with RAC1- and CDC42-like proteins. GRD undergoes a low-affinity, GDP-

/GTP-independent complex with RAC1 and CDC42 proteins outside their switch regions. GBD only 

binds to the RAC1 and CDC42 proteins if they are active and exist in the GTP-bound forms, and 

the C-terminal region of IQGAP1 may potentiate the IQGAP1 interaction with RAC1 and CDC42 

proteins by probably extending the resident time of the respective proteins complexes (chapter 

4).  

3.2 Nucleophosmin and nucleolin  

Nucleophosmin (NPM1, also known as B23, numatrin, NO38), and nucleolin (NCL, C23), are 

multifunctional phosphoprotein predominately localized in nucleoli, where they play key roles in 

RNA regulatory mechanisms including transcription, ribosome assembly and biogenesis, mRNA 

stability and translation, and microRNA processing [172-175]. They also act as a nucleolar 

chaperon of histones [172,176-178]. Moreover, they have been reported to undergo a large 

variety of posttranslational modifications such as phosphorylation [179,180], ADP-ribosylation 

[181], glycosylation [182], glutamylation, and acetylation [183-185]. Mechanistic relationships 

between differential modifications, localizations, and functions of these proteins are still unclear. 

It is, however, clear that NCL and NPM1 undergo multiple interactions with diverse host proteins 

and microbial effectors in different subcellular compartments.  

 Structural features  3.2.1

NPM1 (294 aa) is a 37 kDa protein that contains an N-terminal oligomerization domain, a 

central histone binding domain, and a C-terminal RNA binding domain (Fig. 7) [186]. It also has 

two nuclear exports signals (NESs) at the N-terminus, two central nuclear localization signals 

(NLSs), and one nucleolar localization signal (NoLS) at the very C-terminus (Fig. 7). NPM1 exists in 

two splicing variants, B23.1 (major form) and B23.2 (minor form). B23.2 is identical to B23.1 but 

contains a C-terminal 35 amino acids extension [177,186].  
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A sequence comparison of NCL (710 aa, 77 kDa) reveals a high degree of identity in the different 

kingdoms. It contains an N-terminal domain (aa 1-284) with four acidic motifs, one nuclear 

localization signal (NLS), a large central region (aa 307-647) containing four RNA recognition 

motifs (RRM 1-4), and a C-terminal arginine-glycine-glycine-rich (RGG, also called glycine-arginine 

rich or GAR) region (aa 645-710) (Fig. 7) [187].  

 

Figure 7. Functional domains organization of nucleophosmin (NPM1), and nucleolin (NCL). NES, nuclear 
export signal; AD, acidic domain; NLS, nuclear localization signal; NoLS, nucleolar localization signal; RRM 
(or RBD), RNA recognition motifs (also called RNA binding domain), and GAR (or RGG), glycine-arginine-
repeat (arginine-glycine-glycine domain).  

 Interacting partners  3.2.2

NCL, and also NPM1, belong to the most abundant non-ribosomal proteins of the nucleolus, but 

are also found in the nucleoplasm and at the nuclear membrane, as well as in the cytoplasm and 

at endomembrane and the plasma membrane [188]. NPM1 and NCL are interacting partners [189] 

and also interact with many other nucleolar and viral proteins. These proteins include the tumor 

suppressors ARF (p19ARF in mouse, p14ARF in human) [190,191], the SUMO1/sentrin/SMT3 

specific peptidases 3 and 5 (SENP3-5) [192], F-box and WD repeat domain containing 7 (Fbw7g) 

[193], p21/WAF/CIP (p21) [194,195], nucleolar cell cycle related protein p120 [189,196], and 

ribosomal protein S9 [197], and some viral proteins which are reported to accumulate in the 

nucleolus by the help of NPM1 [198].  

As it was mentioned before, both NCL and NPM1 bind KRAS and mediates recruitment of KRAS 

into nanoclusters on the inner leaflet of the plasma membrane [112]. Furthermore, it has been 

shown that NPM1 is a negative regulator of the small GTPase RAC1 [199]. It has also been 

identified that ROCK II kinase, an effector of RHO small GTPase, as a protein that localizes to 

centrosomes, physically interacts with NPM1 and this play role in the regulation of centrosome 

duplication [200].  

NCL participates in the dynamic intracellular localization of telomerase complex [201], inhibits 

Mdm2 and thereby leads to p53 stabilization [202]. At the outer leaflet it participates in the 

interaction with lactoferrin [203], Midkine [204], Pleiotrophin [205], and Urokinase-type 

plasminogen activator [206]. Most recently, the direct interaction of the N-terminus of FMRP with 
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the arginine-glycine-glycine (RGG) domain of NCL has also been reported and proposing that the 

transient nucleolar localization of FMRP in a complex with NCL and possibly ribosomes, regulate 

translation of target mRNAs [188] (chapter 6). 

 Role in cell signaling and human diseases 3.2.3

NPM1 and NCL are involved in the regulation of a wide spectrum of cellular processes via 

binding to many partners in distinct cellular compartments, including nucleolar factors, 

transcription factors, nuclear factors, and proteins involved in cell proliferation, mitosis, and the 

response to oncogenic stress.  

NPM1 was first identified as a nucleolar phosphoprotein and was shown to be critical in the 

regulation of proliferation, cell growth, and transformation [178,207]. NPM1 is directly involved in 

human tumorigenesis [178] but its physiological function thereby is controversial as it has been 

shown to have both oncogenic and tumor suppressor functions [208]. The upregulation of NPM1 

occurs in various tumors, and it has been proposed as a marker for gastric [209], colon [210], 

ovarian [211], and prostate [212] carcinomas. Recent studies indicate that about 35% of adult 

acute myeloid leukemia (AML) has mutations in exon 12 of the NPM1 gene [213]. Therefore, 

understanding the function(s) and the mechanism(s) of NPM1 regulation may provide new 

insights into the molecular pathogenesis of human cancer.  

To date, several distinct cellular functions for NPM1 upregulation have been described (Fig. 

8). Following is a brief description of some of these functions. NPM1 has been proposed as a 

nucleolar receptor for PI(3,4,5)P3 in the cells. NPM1 directly interacts caspase-activated DNase 

(CAD) and inhibits active CAD in a PI(3,4,5)P3 dependent manner and leads to antiapoptotic 

actions [214]. Furthermore, NPM1 by binding PI(3,4,5)P3 and suppressing p21WAF1 causes 

inhibition of DNA synthesis and cell proliferation [215]. It also interacts tumor-suppressor ARF 

which leads to inhibition of Mdm2 and to stabilization of p53 transcriptional responses, such as 

apoptosis or cell cycle arrest [216]. Ubiquitin-like protein/sentrin-specific proteases (Ulp/SENPs) 

process all lately synthesized small ubiquitin-like modifer proteins (SUMOs). SENP3 and SENP5 

physically interact with NPM1 and regulate SUMO deconjugation. This may be a main facet of 

NPM1 function that by affecting H3-H4 and Cenp-A and by inhibiting GCN5 and pRb resulting in 

histone acetylation, chromatin assembly, and translation [192]. It has also been reported that 

phosphorylation of NPM1 at Thr199 plays a vital role in the RNF168 and RNF8-dependent DNA 

repair pathway via recruiting to DNA double-strand breaks (DSBs) [217]. It has been suggested 

that balance between SIRT1 and p300 activity is critical for maintaining NPM1 acetylation status in 

the cells. Acetylated NPM1 directly regulates the transcriptional activity of defined genes such as 
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AP2α, NFқB, AR, Miz1, and c-Myc which are associated with oral cancer [218]. NPM1 is also 

important for Bax-mediated cell death. NPM1-Bax interaction increases accumulation of 

mitochondrial Bax, organelle injury, and cell death [219].  

 

Figure 8. Nucleophosmin signaling. NPM1 overexpression in tumor cells or under external stress leads to 
regulation of variety of cellular processes. 

NCL is an abundant nucleolar protein, which is highly expressed in stem cells and cancer cells. 

Similar to NPM1, NCL also contributes widely to RNA regulatory mechanisms and via its different 

RNA modulatory functions and its ability to associate with target RNAs. NCL is increasingly 

involved in pathological processes, especially cancer and viral infection. 

NCL stimulates survival and cell proliferation related carcinogenesis, but the mechanisms are 

not well understood [174,187]. In various tumor cell lines and in activated endothelial cells, 

expression of surface NCL is enhanced [220,221]. Moreover, it has been reported that NCL 

targeting with a specific antibody results in the activation of endothelial cell apoptosis via 

reducing antiapoptotic Bcl-2 mRNA [222]. Apart from its functions at the cell surface, it has been 

shown that NCL has vital role in the apoptotic process which is linked to regulation of proteins like 

p53, Bcl-2, and retinoblastoma [223,224]. Recent studies revealed the potential role of NCL in 

parkinson disease (PD) pathogenesis as well [225].  

 Role in viral infection 3.2.4

NPM1 and NCL have emerged as an essential host factor for multiple aspects of microbial 

infection, adhesion at cell surface, entry, intracellular trafficking, regulation of transcription and 
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translation, and nucleo-cytoplasmic shuttling [172-174,176]. It is increasingly evident that these 

two proteins function as a host-specific target for a large number of viruses and pathogenic 

bacteria which have raised interest in targeting them therapeutically.  

NCL is involved as a pro-viral host target in different processes during infection of many viruses, 

including Herpes simplex virus type 1 (HSV-1), Influenza A viruses (IAV), Cytomegalovirus (CMV), 

and Severe acute respiratory syndrome coronavirus (SARS) [226-231]. NCL is a host component 

that interacts with Hepatitis C virus (HCV) NS5B and is indispensable for HCV replication 

[226,227]. NCL interaction with UL24 of HSV-1 [232,233] and with UL44 and UL83 of CMV 

[228,231] appears to be important for efficient viral DNA replication. A direct interaction of NCL 

with UL24 has not been shown yet. However, it is known that the conserved N-terminal domain of 

UL24 is sufficient to induce the spatial redistribution of NCL [234]. UL12 and US11 binding to NCL 

has been reported to be required for efficient nuclear egress of HSV-1 nucleocapsids in infected 

cells [229,230]. US11 displays striking functional similarities to HIV-1 Rev and human T-cell 

leukemia/lymphoma virus type I (HTLV-I) Rex proteins [235]. Remarkably, it can substitute for Rev 

and Rex and interferes with the life cycle of these retroviruses [230], suggesting a possible role for 

NCL in HIV-1 and HTLV-I replication. NCL is an integral element of internal ribosome entry site-

mediated translation of HCV [236]. The growth factors pleiotrophin and midkine have been 

reported to interfere with HIV infection by competitively associating with C-terminal end of NCL, 

an arginine-glycine-rich (called RGG or GAR) region [204,205]. The GAR domain of surface NCL has 

been suggested to be also involved in the interaction with the elongation factor Tu of Francisella 

tularensis [237,238] and the TNFα-inducing protein (Tipα), which is a secreted protein of 

Helicobacter pylori [239]. This interaction has been implicated to causes a cancer-oriented 

microenvironment that increases the risk of gastric cancer [240]. NCL has been most recently 

reported as the only protein target receptor of human respiratory syncytial virus (RVS) at the 

apical surface of epithelial cells [241]. Similarly, the adhesin intimin-γ of the EHEC pathogen has 

been implicated as a ligand for NCL function as a host cell surface receptor [242]. 

NPM1 appears also to be such a host-directed antimicrobial drug-target protein that acts 

strikingly as an emerging receptor for a multitude of viruses, including Adeno-associated virus 

(AAV) [243], Adenovirus [244,245], Epstein-Barr virus (EBV) [246,247], Hepatitis B virus (HBV) 

[248,249], Hepatitis C virus (HCV) [250], Hepatitis delta virus (HDV) [251], Herpes simplex virus 1 

(HSV-1) [252], Human immunodeficiency virus type 1 (HIV-1) [253-255], Human T-cell leukemia 

virus type 1 (HTLV-1) [256], Japanese encephalitis virus (JEV) [257], Kaposi's sarcoma herpes virus 

(KSHV) [258], and Newcastle disease virus (NDV) [198].  
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NPM1 is a replication protein (Rep) interacting partner which plays a role in Adeno-associated 

virus (AAV) amplification and affecting Rep function and virion assembly [243]. It interacts with 

adenovirus basic core proteins and functions as a chaperone in the viral chromatin assembly 

process in infected cells [244]. Epstein-Barr virus (EBV) is a gamma herpes virus that infects more 

than 95% of the world’s adult population. The EBV EBNA1 protein plays important roles in latent 

infection of this virus. NPM1 is recruited by EBNA1 to the FR element and is required for EBNA1-

mediated transcriptional activation [247]. NPM1 is a host factor that increases HBV capsid 

assembly of Hepatitis B virus (HBV) by interaction with the HBV core protein 149 (Cpl49) via its 

RNA binding domain [248,249]. Furthermore, NPM1 make a complex with Hepatitis C virus core 

protein which this complex formation may describe the pleiotropic effects of core protein on gene 

expression and cellular function in HCV-infected cells [250]. Hepatitis delta virus (HDV) encodes 

two isoforms of delta antigens (HDAgs); the small form and the large form, which they are needed 

for HDV RNA replication and virion assembly, respectively. It has been shown that the association 

of NPM1 and NCL with the small HDAg may characterize an important mechanism for HDV RNA 

replication [251].  

Viral proteins such as HSV-1 UL24 [252], Rex protein of human T-cell leukemia virus [256], Rev 

protein [253], and Tat protein of HIV-1 [255] are reported to accumulate in the nucleolus by 

interaction with NPM1 via their nucleolar localization signals (NoLSs) [198]. After entering the Rev 

to the nucleus, NPM1 facilitates transport of Rev to the nucleolus. It is shown that NPM1 is 

necessary for the Rev nucleolar localization through interaction with its respective basic domain 

[253,259]. However, this interaction is currently not well understood and awaits detailed 

molecular investigations. Along with this line, the direct interaction between Rev and NPM1 

variants has been done in vitro in order to map binding epitope of NPM1 for Rev. It is shown that 

Rev undergoes high-affinity binding to two domains of NPM1, OD and HBD, in an RNA-

independent manner [260] (chapter 5). Furthermore, it has been revealed that proapoptotic 

CIGB-300 pseudopeptide, which specifically interacts NPM1 in vivo [261-263], bound to NPM1 

oligomerization domain in vitro as well, and blocked Rev and US11 association with NPM1. 

Moreover, HIV-1 virus production is significantly reduced in the cells treated with CIGB-300 [260] 

(chapter 5). Rex is the post-transcriptional regulator of human T-cell leukemia virus type I (HTLV-

I). It is suggested that NPM1 functions as a shuttle protein for the import of HTLV-I Rex from the 

cytoplasm to the nucleolus to allow further circles of export of the viral mRNAs containing Rex-

responsive element [256]. Japanese encephalitis virus (JEV) is the arthropod-borne virus which 

causes significant morbidity and mortality in mammals and birds. It is shown that NPM1 plays 

critical role in the JEV replication [257]. Oncogenic Kaposi’s sarcoma herpesvirus (KSHV) is the 
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etiological agent of Kaposi’s sarcoma, Primary effusion lymphoma (PEL) and Multicentric 

castleman disease (MCD). NPM1, via functional interactions with v-cyclin and Latency-associated 

nuclear antigen (LANA), regulates oncogenic Kaposi’s sarcoma herpesvirus (KSHV) latency [258]. 

NPM1 has been reported to interact with Newcastle disease virus (NDV) matrix (M) protein and 

this association represents a direct role for NPM1 in NDV replication [198]. In addition, NMP1 

interaction with UL24 of HSV-1 seems to promote nuclear egress of nucleocapsids during HSV-1 

infection, possibly through effects on nucleoli [252]. Furthermore it has recently been shown that 

NPM1 interacts with HSV-1 US11 in vitro and in the cell, but the biological function of this 

interaction remains to be elucidated yet (chapter 5). As it was mentioned before, in addition to 

UL24, US11 is also shown to interact with NCL [230]. US11 protein acts as an inhibitor of an 

antiviral host defense system. dsRNA and IFN activate the ribosome-associated PKR (protein 

kinase R) which in turn inhibits translation and induces autophagy [264,265]. US11 hijacks dsRNA 

and PKR, and counteracts the host defense.  

3.2.4.1 HIV-1 Rev  

Besides the three common polyproteins (Gag, Pol, and Env) in all retroviruses, the human 

immunodeficiency virus (HIV) genome encodes six more regulatory proteins. Among these 

regulatory proteins, Rev, which is translated from fully spliced viral mRNAs, is one of the crucial 

proteins for viral replication in human cells [253,266,267]. It interposes during the late phase of 

the viral replicative cycle and its posttranscriptional activity permits synthesis of structural and 

enzymatic viral proteins needed for production of infectious viral particles [268,269]. Rev is 

typically 116 amino acids and has RNA binding domains composed of arginine-rich motif (ARM or 

R-rich), which binds to different HIV-1 RNA stem loop structures. The RNA binding domain of Rev 

also functions as a nuclear/nucleolar targeting signal and can deliver cytoplasmic protein to the 

nucleus or nucleolus. Rev is located predominantly in the nucleus of the cells infected with the 

virus and transfected cells but due to the nucleocytoplasmic shuttling, in addition to nucleoplasm 

it localizes in the nucleolus and also to a lesser extent, in the cytoplasm [270,271]. 

3.2.4.2 HSV-1 US11  

Herpes simplex virus type 1 (HSV-1) is a nearly 152 kb double-stranded DNA virus. It encodes at 

least 80 polypeptides which are expressed as three, immediate early (IE), early (E), and late (L), 

classes of genes. The US11 gene of HSV-1 is a so-called nonessential gene, since it is not necessary 

for virus growth in animal models as well as in tissue culture [272-274]. The US11 protein is a 

highly basic phosphoprotein expressed late during infection. HSV-1 has three different strains (F, 

17 and KOS strain) that US11 protein from these strains showed more than 97% identity with 
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different copies of XPR repeats, in the C-terminal half, (F strain: 21; 17 strain: 24; KOS strain: 20), 

where X is most commonly an acidic or uncharged polar amino acid (P; Proline and R; Arginine). 

US11 is a tegument protein and approximately 600 to 1,000 molecules per virion are presented 

[274-276]. It is localized in the nucleus, specially accumulated in the nucleolus, and the cytoplasm 

[277]. US11 can associate strongly with ribosomes and has been found in rRNA and polysome-

containing fractions [274-276]. Although, US11 is unessential for virus growth, but it plays a role in 

cells subjected to thermal stress [278,279] and in the replication of HSV-1 in the adrenal gland, an 

organ vital for viral penetration into the brain and spinal cord [273,280]. US11 shows anti-

apoptotic activity, remarkably against heat-induced apoptosis, which seems to be placed at 

mitochondrial level or upstream signaling [281]. Moreover, it is involved in the antiviral response 

by inhibiting activation of the cellular PKR kinase in response to dsRNA [265]. 

3.3 Fragile X mental retardation (FMRP) 

FMRP is ubiquitously expressed with higher abundance in the brain and testis [282,283]. It 

localizes predominantly in different cellular compartments, including mitochondria and nucleoli 

[188]. FMRP is a regulator of protein translation and associates with the translation machinery 

[284-286]. It is associated with messenger ribonucleoprotein (mRNP) particles and large 

polyribosomal complexes in the cytoplasm of numerous cell types [287-295]. This protein consists 

of an N-terminal dimerization domain [296,297], a central region containing two K homology (KH1 

and KH2) domains [298], and a C-terminus encompassing the arginine-glycine-glycine (RGG) 

region [299]. The N-terminal and central regions of FMRP are highly conserved among the fragile 

X related proteins (FXRPs), while the C-terminal shows significant variability [283,300,301]. FMRP 

is known to play roles in nucleocytoplasmic shuttling of mRNA [288,302,303], which is 

accomplished by a non-canonical nuclear localization signal (NLS) and a nuclear export signal 

(NES) [303-305]. Different mechanisms for the nuclear export of FMRP such as involving 

CRM1/Exportin1 [305] and/or the nuclear export factor family proteins have been suggested 

[303,306].  
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4 Aims of this thesis  
The RHO family of GTPases is known to play an important role in diverse cellular processes and 

progression of different diseases, such as cardiovascular diseases, developmental and 

neurological disorders, and cancer. The formation of the active GTP-bound state of RHO GTPases 

is accompanied by a conformational change in two regions (known as switch I and II) which 

provides a platform for the selective interaction with structurally and functionally diverse 

effectors, e.g. the IQ motif-containing GTPase activating protein 1 (IQGAP1). This class of proteins 

activates a wide variety of downstream signaling cascades thereby regulating many important 

physiological and pathophysiological processes in eukaryotic cells. IQGAP1 is a ubiquitously 

expressed scaffold protein and has been implicated as a drug target although the molecular 

mechanism of the IQGAP1 functions is unclear. A prerequisite to achieve this aim is the dissection 

of its distinct domains and the analysis of their interactions with desired protein partners. Aim of 

this thesis was to better understand the structure and functions of RHO proteins in diseases, to 

comprehensively investigate the structure-function relationship and the mode of interaction of 

the small GTPases of the RHO family with their effector IQGAP1, and to explore the molecular 

mechanism, binding domains and interacting residues. Addressing these issues is of fundamental 

importance and will ultimately advance our knowledge in the field of signal transduction and 

disclose molecular details of dysregulated signaling pathways. 

Nucleophosmin (NPM1) is another multifunctional scaffold protein which is increasingly 

emerged as a potential cellular factor that directly associates with viral proteins in different 

subcellular compartments, although the significance of these interactions in each case is still not 

clear. Another aim of this thesis was to investigate the physical interaction of NPM1 with human 

Human immunodeficiency virus type 1 (HIV-1)-Rev and Herpes simplex virus type 1 (HSV-1)-US11 

proteins in order to perform binding epitope mapping of NMP1 and elucidate their probable 

function in viral infection. Deciphering new functional control mechanisms and defining new 

targets are essential for the rational development of antiviral agents. 
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ABSTRACT 
The scaffolding IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in 

the physical assembly of relevant signaling networks that are responsible for various cellular 

processes, including cell adhesion, polarity and transmigration. Amongst various proteins, RAC1 

and CDC42, have been also proposed to interact with the GAP-related domain (GRD) of IQGAP1, 

however, the exact nature of this interaction process has remained obscure. Here, we 

demonstrate that (i) IQGAP1 associates with six different RAC- and CDC42-related proteins but 

not with other members of the RHO family, including the RHO-and RND-proteins, and (ii) unlike 

published models, IQGAP1 interaction with RAC- and CDC42-related proteins underlies a two-step 

binding mechanism, first a low-affinity, largely nucleotide-independent binding of GRD outside 

the switch regions, and second a high-affinity, GTP-dependent binding of the RHO GTPase binding 

domain (GBD) to the switch region. These data were confirmed by phosphomimetic mutations of 

S1443 in GBD, which resulted in complete abolishment of the IQGAP1 interaction with RAC1 and 

CDC42, clearly indicating that S1443 phosphorylation by protein kinase C is critical for these 

interactions. Taken together, these results provide the field with new insights into interaction 

characteristics of IQGAP1 and highlight the complementary importance of kinetic and equilibrium 

analyses. Therefore, herein, we challenge the paradigm that the ability of IQGAP1 to interact with 

RAC/CDC42 proteins is based on a two-step binding process which is a prerequisite for IQGAP1 

activation and a critical mechanism in temporal regulation and integration of IQGAP1-mediated 

cellular responses. 

 
 
 
 
 
 
 
 
 
Key words: CDC42, GBD, GRD, stopped-flow, fluorescence, polarization, anisotropy, interaction, 

IQGAPs, RAC1, RHOA, RHO family 
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INTRODUCTION 
The RHO family proteins are known to play an important role in diverse cellular processes and 

progression of different diseases, such as cardiovascular diseases, developmental and 
neurological disorders, tumor invasion and metastasis as well as regulating liver regeneration [1-
3]. RHO proteins share two common functional characteristics, membrane anchorage and an 
on/off switch cycle [4]. Subcellular localization of RHO proteins to different cellular membranes is 
known to be critical for their biological activity. This is achieved by a hyper variable region (HVR) 
[5] and a lipid anchor in their C-terminal tail at a distinct cysteine residue in the CAAX motif (C is 
cysteine, A is any aliphatic amino acid, and X is any amino acid) [6]. RHO protein function is 
dependent on the guanine nucleotide-binding (G) domain that contains the principle binding 
center for GDP and GTP and presents depending on its nucleotide-bound state various contact 
sites for regulators and effectors [4]. Thus, membrane-associated RHO proteins act, with some 
exceptions [7], as molecular switches by cycling between an inactive GDP-bound state and an 
active GTP-bound state. This cycle underlies two critical intrinsic functions, the GDP-GTP exchange 
and GTP hydrolysis [7] and is controlled at least three classes of regulatory proteins [4]: (i) 
Guanine nucleotide exchange factors (GEFs) catalyze the exchange of GDP to GTP and activate the 
RHO protein [8,9]; ii) GTPase activating proteins (GAPs) stimulate the GTP hydrolysis and convey 
the RHO protein in its inactive conformation [10,11]; (iii) Guanine nucleotide dissociation 
inhibitors (GDIs) bind to prenylated RHO proteins and extract them from the membranes into the 
cytoplasm [12-15]. The formation of the active GTP-bound state of RHO proteins is accompanied 
by a conformational change in two regions, known as switch I and II [4], which provide a platform 
for the selective interaction with structurally and functionally diverse effectors, e.g. p21-activated 
kinase 1 (PAK1) [16], p67phox a member of the NSDPH oxidase [17], semephorin receptor Plexin B1 
[18,19] as well as the IQ motif-containing GTPase activating proteins (IQGAPs) [20,21].  

In mammals, three isoforms of IQGAPs are expressed: IQGAP1, IQGAP2 and IQGAP3. These 
homologues have similar domain compositions but different subcellular localization, tissue 
expression and functions [20,22]. This class of proteins activates a wide variety of downstream 
signaling cascades [22-25], thereby regulating many important physiological and 
pathophysiological processes in eukaryotic cells [20,26,27]. Among IQGAP isoforms, IQGAP1 is 
ubiquitously expressed and is the most investigated member of IQGAP family, and our 
understanding mainly relies on the evidences from IQGAP1. IQGAP1 is involved in wide spectrum 
of cellular processes, such as adhesion, cell polarity and directional migration [24] and also cancer 
progression [22,28] via binding to RHO protein. The domain organization of IQGAP1 is highly 
conserved in IQGAP family consisting of an N-terminal calponin homology domain (CHD), a coiled-
coil repeat region (CC), a tryptophan-containing proline-rich motif-binding region (WW), four 
isoleucine/glutamine-containing motifs (IQ), a RASGAP-related domain (GRD), an originally called 
RASGAP C-terminal domain (RGTC) [24], which we called a GTPase-binding domain (GBD) in this 
study, and a C-terminal domain (C).  

IQGAP2 and IQGAP3 are also able to bind RHO proteins [29-32]. IQGAP2 has 62% sequence 
identity to IQGAP1 and is expressed predominantly in the liver, but can be detected in stomach, 
prostate, thyroid, testis, kidney, platelets and salivary glands [20,30,31,33,34]. IQGAP3 is enriched 
in brain, testis, lung, small intestine, and colon [31-33,35-37]. Recent differential gene expression 
analysis revealed a reciprocal expression of IQGAPs in Hepatocellular carcinoma (HCC) and 
subsequently opposing functions [38]. Given that IQGAP proteins share a domain structure and 
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have sequence homology, such a paradoxical phenomenon may be due to their protein binding 
partners, subcellular localization and diverse tissue expression.  

Furthermore, in hepatic stellate cells (HSCs) has been shown that Iqgap1 deficiency promotes 
myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of 
paracrine signaling molecules [39]. In spite of having RASGAP homology domain, none of these 
three isoforms have GTPase-activating protein (GAP) activity. GAPs increase the intrinsic activity 
of RHO proteins and inactivate them. By contrast, IQGAP proteins exhibit an inhibitory effect on 
the intrinsic GTPase activity of the RHO family members CDC42 and RAC1, thereby stabilize them 
in their active GTP-bound form [30,40,41]. Apart from RAC1 and CDC42, a multitude of IQGAP 
interacting partners have been reported to date [20,24,25,27,42-44]. From IQGAP family, IQGAP1 
has been implicated as a drug target although the molecular mechanism of the IQGAP1 functions 
is unclear. A prerequisite to achieve these functions is the dissection of its distinct domains and 
the analysis of their interactions with desired protein partners. 

Work from several laboratories has shown that the C-terminal half of IQGAP1 (amino acids 
863-1657), encompassing GRD (amino acids 1025-1238) and RGTC (called GBD in this study; 
amino acids 1451-1583), binds physically to active, GTP-bound forms of CDC42 and RAC1 [29,45-
47]. IQGAP1 GRD, which is structurally a homologous but functionally an inactive RASGAP [48], 
also undergoes interaction with RAC1 and CDC42, although with a lower affinity than the larger 
protein fragment, containing GRD and RGCT [47,48]. These works together with homology 
modeling, based on the RHOGAP in complex with RHOA [49] and CDC42 [50], and RASGAP in 
complex with HRAS [51], provided a structural model of IQGAP1 GRD that contacts the switch 
regions of the GTP-bound CDC42 [47,48,52]. In contrast, another study has shown 
phosphomimetic variants of IQGAP1 at position S1441 and S1443 were significantly impaired in 
interacting with active CDC42 [46]. This strongly indicates that regions downstream of GRD, may 
also be critical in the interaction with RAC1 and CDC42. In an attempt to resolve this controversy, 
we set out to investigate comprehensively the structure-function relationship of IQGAP1 
interaction with the RHO proteins. Detailed characterization of the IQGAP1 interaction with the 
RHO family members, using time-resolved fluorescence spectroscopy, provided unprecedented 
insights into the structure, function, and mechanistic properties of IQGAP1, especially regarding 
its interaction with RAC- and CDC42-like proteins. Obtained data showed that GRD-C associated 
with the RAC- and CDC42-like proteins (RAC1, RAC2, RAC3, RHOG, CDC42, and TC10), but not with 
RHOA, RHOB, RHOC, RHOD, TCL, RND and RIF. Furthermore, GRD1 and GRD2 do not associate 
with RAC1 under this experimental condition. We next investigated the effect of the last 99 amino 
acids of IQGAP1 on RAC1 and CDC42 binding and our results clearly suggest that the very C-
terminal region of IQGAP1 may negatively regulate GBD-RAC1/CDC42 interaction. Moreover, we 
found that point mutations of the PKCα phosphorylation sites (S1441 and S1443) differently affect 
GRD-GBD association with RAC1/CDC42-mantGppNHp. Additionally, equilibrium measurement 
using fluorescence polarization experiments showed that IQGAP1GRD2 also interacts with RAC1 
and CDC42 but with a much lower affinity and in a largely nucleotide-independent manner as 
compared with IQGAP1GRD-C. Results described here clearly suggest that IQGAP1 binds RAC1- 
and CDC42-like proteins at least at two sites by utilizing the GBD domain rather than the GRD 
domain to contact the switch regions. 
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MATERIALS AND METHODS 

Constructs. Different variants of pGEX vectors (pGEX2T, pGEX4T-1, pGEX3) encoding an N-
terminal glutathione S-transferase (GST) fusion protein were used for the overexpression of 
various human IQGAP1 (Acc. no. P46940) variants (aa 863-1345, 962-1345, and 863-1657, 877-
1558, 877-1558 S1443E and S1443A), human Plexin-B1 (Acc. no. O43157) (aa 1724-1903), human 
p67phox (Acc. no. P19878) (aa 1-203), human PAK1 (Acc. No. Q13153) (aa 57-141), murine TIAM1 
DH-PH (Acc. no. Q60610) (aa 1033–1404), human TrioN DH-PH (Acc. no. O75962) (aa 1226–1535), 
and human RHOGDIα (Acc. no. P52565) as well as human RHO-related genes, i.e. RAC1 (Acc. no. 
P63000) (aa 1-179), RAC2 (Acc. no. P15153) (aa 1-192), RAC3 (Acc. no. P60763) (aa 1-192), RHOG 
(Acc. no. P84095) (aa 1-178), RHOA (Acc. no. P61586) (aa 1-181), RHOB (Acc. no. P62745) (aa 1-
181), RHOC (Acc. no. P08134) (aa 1-181), CDC42 (Acc. no. P60953) (aa 1-178), TC10 (Acc. no. 
P17081) (aa 2-193), TCL (Acc. no. Q9H4E5) (aa 2 – 197), RND1 (Acc. no. Q92730) (aa 1-232), RND2 
(Acc. no. P52198) (aa 26-184), RND3 (Acc. no. P61587) (aa, 1-244), RIF (Acc. no. Q9HBH0) (aa 1-
195), and mouse RHOD (Acc. no. P97348) (aa 2-193). pET46 EkLIC vector (Merck, Nottingham, 
United Kingdom) was used for the overexpression of IGQAP1 877-1558 S1441E, S1143D, 
S1441A/S1443A, and S1441E/S1443D mutants as a his tag protein. The Kazusa cDNA clone 
KIAA0051 [53] was used as a template for making mutants.  

Proteins. All proteins were purified according to the protocols described [7,54,55]. Nucleotide-
free RHO proteins were prepared using alkaline phosphatase (Roche) and phosphodiesterase 
(Sigma Aldrich) at 4°C as described [56]. Fuorescent methylanthraniloyl (mant) was used to 
generate mantGDP and mantGppNHp bound RHO proteins, where GppNHp is non hydrolayzable 
analog of GTP. Quality and concentrations of labeled proteins were determined as described [56]. 

Fluorescence measurements. Kinetics measurements were monitored by stopped-flow apparatus 
(Hi-Tech Scientific SF-61 with a mercury xenon light source and TgK Scientific Kinetic Studio 
software), and performed as described [55]. The observed rate constants were fitted single 
exponentially using the GraFit program (Erithacus software). 

Fluorescence polarization. Experiments were performed in a Fluoromax 4 fluorimeter in 
polarization mode as described [57]. The dissociation constant (Kd) were calculated by fitting the 
concentration dependent binding curve using a quadratic ligand binding equation. 

Cell isolation and culture. Livers from male Wistar rats (local animal facility of the Heinrich Heine 
University) were enzymatically digested with collagenase H (Roche, Germany) and protease E 
(Merck, Germany). Primary hepatic stellate cell (HSC) isolation was followed by density gradient 
centrifugation. HSCs were feeded with Dulbecco's Modified Eagle Medium (DMEM) 
supplemented with 15% fetal calf serum and 50 units of penicillin/streptomycin (Gibco® Life 
Technologies). 

Reverse transcriptase polymerase chain reaction. To isolated RNA, cells were lysed by QIAzol 
lysis reagent (QIAGEN, Germany) and proceed with RNeasy plus kit (Qiagen, Germany). To 
eliminate any possible genomic DNA contaminations, isolated RNAs were subjected to DNase with 
the DNA-free™ DNA Removal Kit (Ambion, Life Technologies, Germany). Transcrption of the RNA 
to first strand complementary DNA (cDNA) was followed by using the ImProm-II™ reverse 
transcription system (Promega, Germany). Quantitative polymerase chain reaction (qPCR) was 
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performed using the SYBR Green reagent (Life Technologies, Germany). Primers are listed in Table 
S1. 2-∆Ct method was used to calculate the mRNA levels according to relative endogenous levels of 
the HPRT1. 

Immunoblotting. Cell membranes and nuclei were disturbed with lysis buffer (50 mM Tris-HCl pH 
7.5, 100 mM NaCl, 2 mM MgCl2, 1% Igepal CA-630, 10% glycerol, 20 mM beta-glycerolphosphate, 
1 mM Ortho-Na3VO4, 1 EDTA-free inhibitor tablet). To normalize the amount of the total proteins, 
the Bradford assay applied to measure the protein concentration (Bio-Rad). Primary antibodies to 
mouse γ-tubulin (# T5326) Sigma-Aldrich; mouse RAC1 (05-389) millipore; rabbit CDC42 (2462) 
cell signaling; mouse IQGAP1 (ab56529) and rabbit IQGAP2 (ab181127) abcam were diluted in 5% 
non-fat milk (Merck, Germany)/TBST (Tris-buffered saline, 0.05% Tween 20), and incubated 
overnight in 4˚C. After washing steps, membranes were incubated with horseradish peroxidase-
coupled secondary antibodies for 1 h and signals were visualized by the ECL detection system (GE 
Healthcare) and images were collected using the ChemoCam Imager ECL (INTAS science imaging, 
Germany). 

RESULTS 

IQGAP1GRD-C selectively associates with various RAC- and CDC42-like proteins 
Kinetics of IQGAP1GRD-C (IQGAP1863-1657; Fig. 1) association with different RHO proteins was 

monitored using stopped-flow fluorescence spectroscopic methods established previously [58]. 
MantGppNHp (Fig. 2A) is a fluorescent, non-hydrolysable GTP analog and stopped-flow 
fluorescence is a direct way to monitor the association between two proteins in real-time [56]. 
Rapid mixing of GRD-C with active, mantGppNHp bound RAC1 and CDC42 resulted in change in 
fluorescence (Figs. 2B and 2F green trace), which represents the RAC1/CDC42-IQGAP1 association 
reaction. Under the same conditions, most remarkably, we did not observe any fluorescence 
change when mixing RAC1/CDC42-mantGppNHp with GRD itself (IQGAP1962-1345) (Figs. 2B and 2F 
red trace). This was unexpected because GRD has been generally accepted as the RAC1- and 
CDC42-binding domain of IQGAP1 to date [40,41,46-48,52,59]. Under the same conditions we 
measured kinetics for other members of the RHO family and evaluated the data by single 
exponential fitting to obtain the respective observed rate constants (kobs). Data presented in 
figure 2B-G show that GRD-C associated with various RAC- and CDC42-like proteins (RAC1, RAC2, 
RAC3, RHOG, CDC42 and TC10), but not with RHOA, RHOB, RHOC, RHOD, TCL and RIF. Mixing of 
mantGppNHp-bound form of the latters did not result in a fluorescence change (Fig. 2H). Due to 
instability, fluorescently labeled RND proteins could not be prepared. Therefore, their association 
with GRD-C was measured indirectly by premixing excess amounts of GTP-bound RND proteins 
with GRD-C before measuring its association with RAC1-mantGppNHp. RND1, RND2 and RND3 did 
not interfere with the RAC1-IQGAP1 interaction (Fig. 2I), indicating that IQGAP1 does also not 
associate with RND proteins under these conditions, while Figure 2J shows association 
competition of mantGppNHp·RAC1 with IQGAP1GRD-C in the presence of excess amount of CDC42, 
or vice versa. 

RAC2 showed highest affinity for IQGAP1GRD-C 

In some studies was previously shown that the binding affinity of CDC42 for IQGAP1 was 
considerably higher than that of RAC1 for IQGAP1 (see Table 1) [29,45,60]. Later Owen et al. 
reported that, IQGAP1 has similar affinities for both RAC1 and CDC42 (see Table 1) [47]. Here 
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individual kinetic parameters were determined for the interaction of IQGAP1GRD-C with RAC- and 
CDC42-like proteins under conditions described previously [55]. An incremental increase in 
fluorescence was observed when increasing the concentrations of GRD-C were rapidly mixed with 
RAC1-mantGppNHp (Fig. 3A). Increase in fluorescence was also observed for other RAC- and 
CDC42-like proteins except for CDC42 that the mode of interaction was different and we observed 
decrease in fluorescence (Fig. S3). Association kinetics was then performed for all other RAC- and 
CDC42-like proteins. kobs values obtained by a single exponential fitting were evaluated in a linear 
fashion as a function of the GRD-C concentration (Fig. 3B), which yielded the respective 
association rate constants (kon). The dissociation of GRD-C from its complex with RAC1-
mantGppNHp was measured in a displacement experiment when excess amounts of RAC1-
GppNHp were rapidly mixed with the complex. This led expectedly to fast decrease (for CDC42; 
increase) in fluorescence (Figs. S2 and S4), which was also observed for other RAC- and CDC42-
like proteins (data not shown). Exponential fitting of the curves yielded the dissociation rate 
constants (koff). The dissociation constants (Kd) (Fig. 3D, Green bars), which is the binding affinity 
and defined as the strength of IQGAP-RHO protein interactions was ultimately calculated from the 
ratio of the koff values (Fig. 3D, Orange bars) divided by the kon values (Fig. 3D, Blue bars). 
Accordingly, RAC2 turned out to possess the highest affinity for GRD-C that was between 16- and 
75-fold higher than that of the other RHO proteins (Fig. 4D, Green bars). All individual data are 
summarized in Table 1. 

GBD but not GRD appears to be critical for the IQGAP1 interaction with RAC1 and CDC42 
To further prove the critical role of the more C-terminal domains of IQGAP1 beyond GRD we 

generated various deletion and point mutations of IQGAP1 (Fig. 1). Figures 4A, S1, and S3 clearly 
show that GRD1 and GRD2 do not associate with RAC1 and CDC42 under this experimental 
condition. We next measured the effect of the last 99 amino acids of IQGAP1 on RAC1 and CDC42 
binding and found that GRD-GBD (IQGAP1877-1558), which lacks this region associated 3-fold faster 
with RAC1 as compared to GRD-C. Moreover, we found that point mutations of the PKCα 
phosphorylation sites (S1441 and S1443; Fig. 1) differently affect GRD-GBD association with RAC1-
mantGppNHp. In contrast to GRD-GBD SE (Ser1441 substituted by Glu), GRD-GBD SD (Ser1443 
substituted by Asp), and the double mutations GRD-GBD SE/SD (phosphomimetic substitutions) 
and GRD-GBD SA/SA (neutral substitutions to Ala) completely abolished GRD-GBD association 
with RAC1 and CDC42 (Fig. 4A).  

As it is shown in Figures 4B and 4C, association kinetics were performed for the interaction of 
GRD-C, GRD-GBD, and GRD-GBDSE with RAC1 and CDC42. kobs values gained by a single exponential 
fitting were evaluated in a linear fashion as a function of the GRD-C, GRD-GBD, and GRD-GBDSE 
concentrations, which yielded the respective association rate constants (kon). The kon for all three 
variants was almost similar and the same pattern was observed for RAC1 and CDC42 (Figs. 4B and 
4C). The dissociation of all three proteins from their complex with RAC1-/CDC42-mantGppNHp 
was measured in a displacement experiment in the presence of excess amounts of RAC1- and 
CDC42-GppNHp mixed with the complex (Figs. S2 and S4). Exponential fitting of the curves 
yielded the dissociation rate constants (koff) (Figs. 4B and 4C). The binding affinity (Kd) as the 
strength of IQGAP1-RAC1/CDC42 interactions was calculated from the ratio of the koff values 
divided by the kon values. Our results showed 2 folds lower Kd of GRD-GBDSE compared to GRD-
GBD in the case of RAC1, and Kd for CDC42 was not significantly changed (Figs. 4B and C, Green 
bars). 



     Chapter IV 

73 

 

IQGAP1 possesses at least two RAC/CDC42-binding domains 

To further shed light on the potent interaction of GRD-C versus GRD alone we used a different 
method, fluorescence polarization, that measures the binding affinity of two proteins and provide 
an equilibrium dissociation constant (Kd) of their interaction. As shown in figures 5A-5C, both 
IQGAP1 variants, GRD-C and GRD do in fact interact with mantGppNHp-bound RAC1 and CDC42 
but as expected not with RHOA using fluorescence polarization (equilibrium mode). Evaluated Kd 
values obtained from the measurements showed that GRD-C is a high affinity binder as compared 
to GRD with 10-15-fold lower affinity for mantGppNHp-bound RAC1 and CDC42 (Fig. 5C; Table 1). 
This was not observed using Stopped-flow fluorescence, measuring the kinetics of the association 
in real-time, as is shown in figures 2 and 4A. Furthermore, for GRD-GBD and GRD-GBDSE with 
mantGppNHp-bound RAC1 comparable affinity to GRD-C was observed but GRD-GBDSD showed 5-
8 folds lower affinity (Figs. 5E and 5F; Table 1). The explanation for our observations regarding 
binding of RAC1 to GRD is simple; in direct mode only a change in fluorescence can be observed 
when the associating protein (IQGAP1) binds to close vicinity of the fluorophore (mant group of 
the bound GppNHp) on the surface of RAC1 and CDC42 (Fig. 2). This surface covers the switch 
regions that changes their conformation upon a GDP/GTP exchange [4]. This is of fundamental 
importance because binding effectors (such as IQGAP1) to the switch regions determines the 
specificity of the signal transduction [4,58]. To prove this idea we repeated the measurements by 
using inactive RHO proteins bound to mantGDP. Both GRD-C and GRD were able to interact with 
CDC42-mantGDP although with very low affinities (Fig. 5G-H). This strongly suggests that IQGAP1 
consists of two distinct binding domains, with GBD binding to the switch regions and with GRD 
that binds to other regions of CDC42 beyond the switch regions in a largely nucleotide-
independent manner. 

Differential expression analysis of IQGAPs in hepatic stellate cells 

Each IQGAP isoform possess its specific binding partners and therefore contribute to different 
cellular processes. For instance, IQGAP1 is known as an oncogene where IQGAP2 is a tumor 
suppressor [22,38]. IQGAP2 is shown to express predominantly in liver. We asked the questions, is 
there any isoform preference for IQGAPs in the specific liver cell types called hepatic stellate cells 
and how they could scaffold the RHO proteins in these cells? Hepatic stellate cells (HSCs) reside in 
the Disse space of the liver and during chronic liver injuries become activated and contribute in 
either liver repair or fibrosis [61,62]. It is reported that the IQGAP1 play a role in HSC activation by 
binging to TGF-β receptor II and suppress HSC activation [39]. To investigate the biological 
function of IQGAP isoforms and their responsive target proteins (RAC and CDC42), freshly isolated 
HSCs were cultivated for 8 days that induce spontaneous activation of these cells. Quantitative 
RNA analysis revealed that IQGAP1 and 3 were upregulated during the activation process of HSCs 
where the IQGAP2 was downregulated. RAC2 exhibits the drastic increased in HSC d8, however, 
other RAC isoforms (RAC1 and 3) did not altered. To further investigate the correlation between 
the IQGAP1 regulation of RAC1 and CDC42 mechanisms in HSCs, the protein levels of IQGAP1, 2, 
RAC1, and CDC42 were detected. Consistent with qPCR data, obtained data showed IQGAP1 
increase at proteins levels, where IQGAP2 is downregulated. The RAC1 and CDC42 exist at higher 
levels in activated HSCs (Fig. 6). 
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DISCUSSION 

The interaction with the active, GTP-bound form of RAC1 and CDC42 identified IQGAP1 as a 
putative downstream effector [29,40,45-48,52,63-69]. Subsequent studies have shown that the 
interaction between IQGAP1 and the RHO proteins has significance on variety of biological 
functions. Accumulating evidence supports diverse roles for IQGAP-RHO protein interaction in 
vertebrates. However, the nature of such a protein-protein recognition process has remained 
obscure. While modulation of the cytoskeletal architecture was initially thought to be the primary 
function of the interaction of IQGAP1 with RHO proteins, it is now clear that they have some 
critical physiological roles beyond the cytoskeleton. CDC42 promotes the interaction of PTPl with 
IQGAP1 to stimulate actin remodeling and, eventually, neurite outgrowth [70], and also complex 
of active CDC42, Lis1, and CLIP-170 with IQGAP1 seems to be crucial for cerebellar neuronal 
motility [66]. Another example is in the pancreatic β-cells. Analysis of the insulin secretory 
pathway has shown that IQGAP1 scaffolds CDC42, RAB27A, and coronin-3 and this complex 
controls endocytosis of insulin secretory membranes [71].  

Of the RHO family proteins, RAC1, RHOA, and CDC42 have been most extensively studied and 
characterized [72]. In this study, a comprehensive interaction study of RHO proteins and C-
terminal domain of IQGAP1863-1657 (here called GRD-C) was conducted. Kinetics of GRD-C 
association with different RHO proteins was monitored using stopped-flow fluorescence 
spectroscopic methods (Fig. 2). The results clearly indicate that IQGAP1 binds among RHO 
proteins selectively to RAC- and CDC42-like proteins in the active form and that GRD-C most 
obviously recognizes and binds to the switch regions but however not, as previously proposed by 
several groups [47,48,52], the GRD alone. In contrast to our data, Casteel et al. have shown that 
GRD-C interacts with the active, G14V variant of RHOA and RHOC but not with that of RHOB, 
which were overexpressed in, and immunoprecipitated from human embryonic kidney 293T cell 
lysates [73]. In addition, recent immunoprecipitation studies have shown that IQGAP1 binds to 
both RHOA and p190A-RHOGAP to inactivate RHOA, and to modulate contractility of airway 
smooth muscle cells [74]. Wu et al. have also found RHOC and IQGAP1 in immunoprecipitates. 
This study has shown that an isoform-specific interaction of RHO proteins with IQGAP1 regulates 
cancer cell proliferation, and has been proposed that IQGAP1 is a downstream effector of RHOC in 
the regulation of gastric cancer cell migration [75,76]. In contrast, our study showed no physical 
interaction between GRD-C and the RHO isoforms, including RHOA or RHOC, under cell-free 
conditions using purified proteins. In this context, we think that observed interactions of GRD-C 
with RHOA and RHOC most likely are indirect, mediated by other proteins co-immunoprecipitated 
from cells expressing tagged RHO protein. We also exclude an interaction with other regions of 
RHOA outside switch regions evident from our fluorescence polarization data (Figs. 5A-5C).  

Another striking observation was an increase in fluorescence upon association of GRD-C with 
RAC1, RAC2, RAC3, RHOG, and TC10 but a decrease in fluorescence with CDC42 (Figs. 2, S1 and 
S3). In contrast, we have monitored in an earlier study a fluorescence decrease for the association 
of the CDC42/RAC-interacting binding (CRIB) motif of the Wiskott-Aldrich syndrome protein 
(WASP) with the CDC42, RAC1 and TC10, respectively [58]. This observation indicates that (i) the 
binding mode of CDC42 interaction with IQGAP1 is different from that of TC10 and the RAC-like 
proteins, and (ii) the binding mode of IQGAP1 interaction with these RHO proteins differs from 
that of WASP. Owen et al. have studied GRD-C interaction with a large panel of RAC1 and CDC42 
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variants and have suggested, despite their 71% identity, RAC1 and CDC42 appear to have only 
partially overlapping binding sites on IQGAP1, and each uses different determinants to achieve 
high affinity binding [47]. However, our competition experiment has shown in figure 2J clearly 
indicated that GRD-C competitively associates with an overlapping binding region of RAC1 and 
CDC42.  

The determination of individual kinetics parameters for the interaction of GRD-C with RAC- and 
CDC42-like proteins indicates that GRD-C may utilize a homologous set of associating residues of 
various CDC42-/RAC-like proteins, in spite of differences in the reaction rates (Fig. 3D; Table 1). 
The fact that six members of the RHO family and probably also WRCH1 and Chp/WRCH2 (not 
analyzed in this study), associate with IQGAP1 raises the question of how an interaction specificity 
is achieved in cells. RHOG is due to its high sequence similarity with the RAC proteins classified as 
a RAC-related protein, although it shares with RAC1 overlapping signal transduction pathways 
[77]. TC10 and RHOG interaction with IQGAP1 and IQGAP2, respectively, has been previously 
reported [78,79]. RHOG has been reported that do not bind to effectors such as PAK1, PAK5, 
PAK6, PAR6, IRSp53, WASP, or POSH, but on the other hand it binds in an activated GTP bound 
form to the RAC/CDC42-specific effectors MLK3, PLD1, and IQGAP2 which in turn, stimulates 
some downstream signaling targets of activated RAC1 and CDC42 such as JNK and Akt [78]. 
Although the consequence of TC10-IQGAP1 interaction is not defined, it seems to play a role in 
exocytosis and cell polarity. EXO70, a component of the exocyst complex, has been shown to bind 
to the N-terminal IQGAP1, most likely to the WW motif [77] but probably not to the IQ region 
because Exo70 was not found as binding partner of this region [21]. In mammals, RALA, a member 
of the RAS family, and TC10 have been shown to bind the exocyst [80]. TC10-EXO70 interaction is 
implicated in the tethering of GLUT4 vesicles to the plasma membrane in response to insulin [80-
82], and in promoting neurite outgrowth [83-85]. IQGAP proteins has been shown to be involved 
in both processes [21,31,86]. Data presented in this study, revealed that TC10 has the fastest 
dissociation rate from GRD-C (Fig. 3D), suggesting that the IQGAP-TC10 complex requires 
stabilization by additional binding proteins, for example EXO70. Investigating the protein 
interaction network of the IQGAPs, modulating their function in space and time, remains an open 
and very interesting issue for future studies. 

The highest affinity of RAC2 for GRD-C can most likely be attributed to distinct amino acid 
sequence deviations. The high affinity of RAC2 for IQGAP1 cannot be explained by comparing 
potential residues that may undergo direct interacting contacts in spite of high amino acid 
sequence identity of RAC isoforms. An aspect to be considered is the overall dynamics of the 
protein parts originated from few different amino acids all over the molecule. The lower flexibility 
of the switch I region of RAC2 in comparison to RAC1 and RAC3 may explain the functional 
differences of these proteins as it has been previously proposed to contribute to a higher TIAM1 
activity on RAC2 compared to RAC1 and RAC3 [87].  

Previous studies by other groups have shown that shorter IQGAP1 fragments, encompassing 
the GRD domain, are responsible for the RAC1 and CDC42 interactions. For the first time, Zhang 
and coworkers have shown that activated form of CDC42 is able to bound IQGAP1 GRD-C (aa 864-
1657) [60]. One year later the same group reported that not only CDC42 but also RAC1, although 
with lower affinity, could interact to GRD-C [45]. Afterwards, Nomanbhoy and Cerione, have 
shown that GRD-C interacts tightly to CDC42-mantGTP using fluorescence assay [88]. Owen et al. 
have also reported that a GRD protein (aa 950-1407) was able to tightly bind CDC42(Q61L) with a 
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Kd value of 140 nM but failed to bind RAC1(Q61L) using scintillation proximity assay [47]. In this 
study, GRD-C (aa 864-1657) has shown a much higher affinity for the Q61L mutant of not only 
CDC42 but also RAC1, and yet the GRD was proposed to be the binding domain of IQGAP1 that 
associates with the switch regions of CDC42. Correspondingly, Kurella et al. have reported that 
GRD2 (aa 62-1345) binds CDC42 in a GTP-dependent manner with an affinity of 1300 nM using 
isothermal titration calorimetry [48]. These biochemical data (summarized in Table 1) along with 
homology modeling, based on the RAS-RASGAP structure [51], provided up to date a structural 
model of IQGAP1 GRD contacting the switch regions of the CDC42 which is generally accepted 
[40,41,46-48,52,59]. Contrary to the existing model, we observed a low-affinity, largely 
nucleotide-independent binding of GRD that associates with RAC- and CDC42-like proteins outside 
the switch regions. This was evidenced by kinetic measurements of GRD-GBD and GRD-C 
association, but not GDR, with RAC1 and CDC42 proteins (Figs. 2 and 4; no changes in 
fluorescence were observed with GRD). Conducted equilibrium measurements using fluorescence 
polarization not only substantiated the essential role of IQGAP1 GBD in a GTP-dependent 
interaction with RAC1 and CDC42 in support with our kinetic analysis but also provided striking 
insights into the main feature of IQGAP1 GRD. Our quantitative analysis under equilibrium 
conditions clearly revealed that GRD indeed undergoes a low-affinity, largely nucleotide-
independent interaction with CDC42 and also RAC1 but in contrast to GBD its binding site resides 
outside the critical switch regions (Fig. 5). The significance of GBD (previously called RGTC) as a 
GTP-dependent interacting domain for RAC- and CDC42-like proteins was proved using single 
point mutants of GRD-GBD (e.g. Ser1443 substituted by Asp and Ala but not Ser1441 to Glu and 
Ala, two PKCα phosphorylation sites), which led to the abolishment of a GTP-dependent 
interaction of GRD-GBD while nucleotide-independent association through the GRD was 
unchanged. Grohmanova and coworkers previuosly have shown via GST pull down experiments 
and using MCF10A cell lysate, that in the presence of phosphatase inhibitor there is a significat 
reduction in the interaction between IQGAP1 and CDC42-GTP bound in contrast to CDC42 
nucleotide depleted which bound to phosphorylated IQGAP1 much stronger [89]. In addition, our 
data have clearly demonstrated that the region upstream of GRD2 (aa 863-961) is dispensable for 
the RAC1 and CDC42 interaction. Another interesting issue was the inhibitory effect of the very C-
terminal 99 amino acids (C domain) on the GBD determined through a 3-fold faster association of 
GRD-GBD (lacking the C domain) with RAC1 and CDC42 as compared to GRD-C. This is consistent 
with observations regarding the interaction of GRD and GBD-C domains with each other, favoring 
GTP-dependent binding to CDC42 [89,90].  

Upon HSCs activation, quiescent HSCs develop into the cells that are able to contract and 
migrate. It is reported that IQGAP1 plays a role in HSC activation by binding to TGF-β receptor II 
and suppress HSC activation [39]. These observations raised the questions, which IQGAP isoforms 
are present in HSCs and is there any evidence that IQGAPs actively scaffolds RHO proteins in 
HSCs? To address these questions, first we investigated the expression pattern of IQGAP1, 2, 3, 
RAC1, 2, 3, and CDC42 in quiescent vs. activated HSCs. Our quantitative RNA analysis revealed 
that IQGAP1 and 3 isoforms get upregulated during the activation process of HSCs while IQGAP2 is 
down-regulated. At protein levels, we were able to detect IQGAP2 isoform only in quiescent HSCs 
while IQGAP1 was presented in both states of HSCs, and became upregulated during HSC 
activation. These results are in consistent with what Schmidt and colleagues, have reported 
regarding the reciprocal expression of IQGAP1 and 2 in human hepatocellular carcinomas, where 
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IQGAP1 increased and IQGAP2 decreased [91]. In quiescent HSCs, we speculate that IQGAP2 
exerts its specific functions by scaffolding the distinct signaling components in different protein 
complexes than IQGAP1. Canonical Wnt signaling is very dynamic in quiescent HSCs and it is 
shown in other cells that IQGAP2 can interact with Dishevelled/β-catenin, therefore in qHSCs 
IQGAP2 may modulate Wnt-β-catenin signaling and stimulate GFAP synthesis and cell-cycle arrest 
[92,93]. Another possibility would be, IQGAP2 competes with other scaffolding proteins to 
recruits RHO proteins and may interfere with RHO-dependent cell migration. The functions and 
specific binding partners of IQGAP2 in qHSCs remain to be investigated. aHSCs display the 
elevated levels of PDGF signaling and focal adhesion kinase (FAK), acts downstream of PDGF [94]. 
PDGF induces the IQGAP1-dependent complex formation of focal adhesion proteins (paxillin and 
vinculin) and PDGF receptor β [95]. IQGAP1 also binds to FAK [96], therefore, PDGF-IQGAP1 may 
regulate the focal adhesion assembly in aHSCs that is important for cell motility and migration.  

Elevated levels of the RAC1 and CDC42 correlate with high amount of IQGAP1 in activated 
HSCs; we detected higher levels of RAC1, RAC2 and CDC42 in aHSCs than qHSCs.  On the other 
hand, our biochemical studies demonstrated that RAC1 and CDC42 interact in GTP-bound forms 
with IQGPA1. Therefore, we suggest that IQGAP1 scaffolds RAC1 and CDC42 to regulate cell-
adhesion and migration in these cells. However, the role of IQGAP1 in aHSCs needs to be 
investigated. 

Taken together, our kinetic and equilibrium measurements clearly challenge the paradigm that 
the ability of IQGAP1 to interact with RAC/CDC42 proteins is mainly attributed to its GRD. On the 
contrary, we propose that the C-terminal half of IQGAP1 utilize at least three functionally distinct 
units, including GRD, GBD and C, to achieve the interaction with RAC1- and CDC42-like proteins. 
Keeping this in mind, the switch regions of the RHO family proteins have been previously 
proposed as the first binding site for the downstream effectors and if this first contact is achieved 
then additional contacts outside the switch regions will be required to guarantee effector 
activation [4]. Remarkably, IQGAP1 seems to employ a different strategy to interact with RAC1 
and CDC42 proteins as schematically illustrated in Figure 7: (i) GRD undergoes a low-affinity, GDP-
/GTP-independent complex with RAC1 and CDC42 proteins outside their switch regions in a way 
that is independent of the upstream signals, providing it is structurally accessible and available for 
interactions; (ii) GBD only binds to the RAC1 and CDC42 proteins if they are active and exist in the 
GTP-bound forms; (iii) the C-terminal region of IQGAP1 may potentiate the IQGAP1 interaction 
with RAC1 and CDC42 proteins by probably extending the resident time of the respective proteins 
complexes. Such a sequential association with the RAC1 and CDC42 proteins most likely leads to 
activation of IQGAP1, can be envisaged as conformational changes allowing further IQGAP1 
interaction with its downstream targets depending on both the cell types and the upstream 
signals. We further propose that this is a conserved control mechanism also for IQGAP2 and 
probably also IQGAP3 due to high sequence homology. 
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Table 1. Data summary for the interaction of RHO proteins with IQGAP variants 

Proteinsa Kd (nM)b1 Methodc Reference 
IQGAP1863-1345/RAC1-mantGppNHp no binding FM this study 
IQGAP1863-1345/CDC42-mantGppNHp no binding FM this study 
IQGAP1962-1345/RAC1-mantGppNHp no binding FM this study 
IQGAP1962-1345/CDC42-mantGppNHp no binding FM this study 
IQGAP1863-1657/RAC1-mantGppNHp 1,420 FM this study 
IQGAP1863-1657/CDC42-mantGppNHp 2,000 FM this study 
IQGAP1863-1657/RAC2-mantGppNHp 27 FM this study 
IQGAP1863-1657/RAC3-mantGppNHp 450 FM this study 
IQGAP1863-1657/RHOG-mantGppNHp 490 FM this study 
IQGAP1863-1657/TC10-mantGppNHp 1,530 FM this study 
IQGAP1877-1558/RAC1-mantGppNHp 4,110 FM this study 
IQGAP1877-1558/CDC42-mantGppNHp 4,200 FM this study 
IQGAP1877-1558(S1441E)/RAC1-mantGppNHp 9,960 FM this study 
IQGAP1877-1558(S1441E)/CDC42-mantGppNHp 6,060 FM this study 
IQGAP1877-1558(S1443D)/RAC1-mantGppNHp no binding FM this study 
IQGAP1877-1558(S1443D)/CDC42-mantGppNHp no binding FM this study 
IQGAP1877-1558(SS/AA)/RAC1-mantGppNHp no binding FM this study 
IQGAP1877-1558(SS/AA)/CDC42-mantGppNHp no binding FM this study 
IQGAP1877-1558(SS/ED)/RAC1-mantGppNHp no binding FM this study 
IQGAP1877-1558(SS/ED)/CDC42-mantGppNHp no binding FM this study 
IQGAP1877-1558/CDC42-GTP 1,300 SPR [46] 
IQGAP1877-1558(S1441E)/CDC42-GTP 220,000 SPR [46] 
Proteinsa eKd (nM)b2 Methodc Reference 
IQGAP962-1345/RAC1-mantGppNHp 8,145 FP this study 
IQGAP962-1345/CDC42-mantGDP 184,700 FP this study 
IQGAP863-1657/RAC1-mantGppNHp 5,530 FP this study 
IQGAP863-1657/CDC42-mantGDP 95,100 FP this study 
IQGAP962-1345/CDC42-mantGppNHp 30,200 FP this study 
IQGAP863-1657/CDC42-mantGppNHp 3,400 FP this study 
IQGAP962-1345/RHOA-mantGppNHp no binding FP this study 
IQGAP863-1657/RHOA-mantGppNHp no binding FP this study 
IQGAP1877-1558/RAC1-mantGppNHp 4,570 FP this study 
IQGAP1877-1558(S1441E)/RAC1-mantGppNHp 6,680 FP this study 
IQGAP1877-1558(S1443D)/RAC1-mantGppNHp           288,300 FP this study 
IQGAP1864-1657/CDC42-mantdGTP 28 FA [88] 
IQGAP1864-1657/RAC1Q61L-[3H]GTP 18 SPA [47] 
IQGAP1950-1407/RAC1Q61L-[3H]GTP no binding SPA [47] 
IQGAP1864-1657/CDC42Q61L-[3H]GTP 24 SPA [47] 
IQGAP1950-1407/CDC42Q61L-[3H]GTP 140 SPA [47] 
IQGAP1962-1345/CDC42-GTP 1,300 ITC [48] 
IQGAP1962-1345/CDC42-GDP no binding ITC [48] 
Proteinsa Ki (nM)b3 Methodc Reference 
IQGAP1864-1657/CDC42-GTP 82 PRA [60] 
IQGAP1864-1657/CDC42-GTP 390 PRA [45] 
IQGAP1864-1657/RAC1-GTP 2,130 PRA [45] 
aIQGAP1 proteins; bthe binding affinity of the IQGAP proteins for various RHO proteins has been analyze in different 
ways: b1under kinetic condition that provides the individual association and dissociation rate constant (kon and koff) and 
determines the dissociation constants (Kd) or b2under equilibrium conditions by determining the equilibrium 
dissociation constants (eKd) or b3 under competitive reaction conditions, for example inhibition the intrinsic GTP-
hydrolysis reaction the RHO proteins that determines the equilibrium inhibition constant (Ki); 

c FM, fluorescence 
measurement by stopped flow, FA, fluorescence assay; FP, fluorescence polarization; ITC, isothermal titration 
calorimetry; PRA, Phosphate-release assay; SPA, scintillation proximity assay; SPR, surface plasmon resonance.  
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FIGURE LEGENDS 

Figure 1. Schematic representation of domain organization and various constructs and proteins 
of IQGAP1. (A) Domain organization (color coded) along with the PKCα phosphorylation sites and 
constructs relevant to this project. (B) Coomassie brilliant blue (CBB) stained SDS-PAGE of purified 
IQGAP1 used in this study. 

Figure 2. GRD-C selectively associates with various RAC- and CDC42-like proteins. (A) Chemical 
structure of mantGppNHp, a fluorescently labelled, non-hydrolyzable GTP analog. (B-H) 
Association of GRD-C (2 μM) with mantGppNHp-bound RHO proteins (0.2 μM). B and F also show 
the association of RAC1 and CDC42 with GRD-C (green), but not with GRD (red). (I) Association of 
mantGppNHp-RAC1 (0.2 μM) with IQGAP1GRD-C (2 μM) in the presence of excess amount of RND1, 
RND2 or RND3 (10 μM). (J) Association of RAC1-mantGppNHp (0.2 μM) with IQGAP1GRD-C (2 μM) 
in the presence of excess amount of CDC42-GppNHp (10 μM), and vice versa. 

Figure 3. Kinetic measurements of GRD-C with RAC- and CDC42-like proteins. (A) Association of 
RAC1-mantGppNHp (0.2 μM) with increasing GRD-C concentrations (0.25-8 μM). (B) Association 
rates (kon) of GRD-C binding RHO proteins. (C) Dissociation of GRD-C (2μM) from RAC1-
mantGppNHp (0.2 μM) in the presence of unlabeled RAC1-GppNHp (10μM). (D) Association rates 
(kon), dissociation rates (koff) and dissociation constants (kd) of GRD-C binding RHO proteins. 

Figure 4. Interaction of different C-terminal variants and phosphomimicking mutants of IQGAP1 
with RAC1 and CDC42. (A) Association of different IQGAP1 variants with RAC1/CDC42-
mantGppNHp (0.2 μM) was measured and the observed rate constants (kobs) were plotted against 
the investigated IQGAP1 C-terminal domains. In contrast to GRD-C, GDR-GBD and GRD-GBRSD of 
IQGAP1, which efficiently interact with RAC1 and CDC42, GRD1, GRD2, and GDR-GBD variants (SD, 
SE/SD and SA/SA) were disabled to associate RAC1 and CDC42. (B, C) Kinetic measurements were 
performed to obtain the kon and the koff values, and to calculate the Kd values for the interaction of 
GRD-C, GRD-GBD, and GRD-GBDSE with RAC1 (B) and CDC42 (C). Obtained data show the 
comparable results for RAC1 and CDC42.  

Figure 5. GRD binds RAC-/CDC42 like proteins but outside the switch regions. (A-C) Fluorescence 
polarization experiments were conducted to measure the interaction of mantGppNHp-bound 
RAC1, CDC42 and RHOA (1 μM, respectively) with increasing concentrations of GRD-C (0-20 μM) 
(A), and GRD (0-120 μM) (B). (C) Evaluated data and obtained dissociation constant (Kd) shown in 
the bars illustrates a significant difference in the binding affinities of these two IQGAP1 proteins. 
(D) Binding of mantGppNHp-bound RAC1 protein (1 μM) with increasing concentrations (0-45 μM) 
of GRD-GBD, GRD-GBDSE and GRD-GBDSD. (E) Calculated dissociation constants (kd) shown in the 
bars reveal a significant decrease in the affinities of GRD-GBDSD compared to GRD-GBD and GRD-
GBDSE. (F-G) Fluorescence polarization experiments were conducted under the same conditions as 
in A and B, the only different was that inactive mantGDP-bound CDC42 was used. Calculated Kd 
values were 95 μM for GRD-C and 184 μM for GRD, respectively. 

Figure 6. Reciprocal expression of IQGAP isoforms and RHO proteins in hepatic stellate cells. (A) 
qPCR analysis of IQGAP1, 2, 3, RAC1, 2, 3, and CDC42 in freshly isolated (quiesent, d0) and 
activated HSCs (day 8) revealed that IQGAP1, 3 and RAC2 preferentially expressed in aHSCs where 
IQGAP2 is downregulated. (B) Western blot analysis of RAC1, CDC42, IQGAP1 and 2 were 
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performed at different time points after HSC isolation (d0, d1, d4 and d8). On contrary to IQGAP2 
which was expressed more in qHSCs and lesser in aHSCs, IQGAP1, RAC1, and CDC42 had higher 
levels of expression in aHSCs. γ-tubulin was applied as a inernal contral for western bloting.  

Figure 7. A proposed multi-stage mechanistic model of IQGAP interaction with IQGAP1. Low-
affinity, GDP-/GTP-independent interaction of GRD with RAC1 and CDC42 proteins outside their 
switch regions occurs in a way that is independent of the upstream signals, providing it is 
structurally accessible and available for interactions. GBD only binds to the RAC1 and CDC42 
proteins after GEFs catalyze the exchange of GDP to GTP, and they exist in an active GTP-bound 
forms. The C-terminal domain of IQGAP1 may potentiate the IQGAP1 interaction with RAC1 and 
CDC42 proteins by probably extending the resident time of the respective proteins complexes. 
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Nouri et al., Figure 1 
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Nouri et al., Figure 2 
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Nouri et al., Figure 3 
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Nouri et al., Figure 4 
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Nouri et al., Figure 5 
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Nouri et al., Figure 6 
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Nouri et al., Figure 7 
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Table S1: Primer sequences were obtained from Primer Bank 
(http://pga.mgh.harvard.edu/primerbank) with small modifications match with rat sequences.  
 

Target Primer Source 

IQGAP1 
FW: 5’-GAGAAGACCGTTTTGGAGCTAAT -‘3 
RV: 5’-GGGTGAGGCTATGCTCAGG -‘3 

NM_001 1 08489.1 

IQGAP2 
FW: 5’-GCTGTCAAAACTTCAGCAGAC-‘3 
RV: 5’- AGGTTGTCTACACAGGTCTTGA-‘3 

XM_008760685.1 

IQGAP3 
FW: 5’-AACTTCTGGCTTTCTGCGGTA -‘3 
RV: 5’-AATGCAGTAGATCACCCGAGG-‘3 

NM_001 1 91 709.1 

RAC1 
FW: 5’- ACGGAGCCGTTGGTAAAACC-‘3 
RV: 5’- AGACGGTGGGGATGTACTCTC-‘3 

NM_1 34366.1 

RAC2 
FW: 5’- GACAGTAAACCTGTGAACCTGG-‘3 
RV: 5’- CTGACTAGCGAGAAGCAGATG-‘3 

XM_006242028.1 

RAC3 
FW: 5’- TATCCCCACAGTTTTCGACAAC-‘3 
RV: 5’-GAGAGTGGCCGAAGCCTAT -‘3 

XM_006247966.1 

CDC42 
FW: 5’-GAAAATGTGAAAGAAAAGTGGGTG-‘3 
RV: 5’-TCTGGAGTAATAGGCTTCTGTTTG-‘3 

XM_006239270.1 

HPRT1  FW: 5’-AAG TGT TGG ATA CAG GCC AGA-‘3 
RV: 5’-GGC TTT GTA CTT GGC TTT TCC-‘3 

self-designed 



     Chapter IV 

95 

 

Nouri et al. Figure S1  
 

 
 

Figure S1. IQGAP1GBD is crucial for the interaction with RAC1. Association of RAC1 mantGppNHp 
labeled (0.2 μM) and various IQGAP1 variants (2 μM) were measured. In contrast to GRD-C, GDR-
GBD, and GRD-GBDSE variants of IQGAP1, GRD1, GRD2, and GDR-GBD variants (SD, SE/SD, and 
SA/SA) failed to associate with RAC1. Calculated kobs values for associating IQGAP1 fragments with 
RAC1 are shown in parenthesis.  
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Nouri et al. Figure S2  
 

 
 

Figure S2. Kinetic measurements of GRD-C, GRD-GBD, and GRD-GBDSE association with RAC1. 
Association of mantGppNHp-RAC1 (0.2 μM) with increasing concentrations (2-12 μM) of IQGAP1, 
association rates (kon), and dissociation of IQGAP1 (2μM) from RAC1-mantGppNHp (0.2 μM) in the 
presence of unlabeled RAC1-GppNHp (10μM) are shown for (A-C) GRD-C, (D-F) GRD-GBD, and (G-
I) GRD-GBDSE, respectively. Quantitative data are presented in figure 4B. 
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Nouri et al. Figure S3  
 

 
 
Figure S3. IQGAP1GBD is essential for the CDC42 interaction. Association of different IQGAP1 
variants (2 μM) with CDC42-mantGppNHp (0.2 μM) was measured under the same conditions as 
in S1. CDC42 associates with GRD-C, GDR-GBD, and GRD-GBRSE, but not with GRD1, GRD2, and 
GDR-GBD variants (SD, SE/SD and SA/SA). kobs values are presented in parenthesis in front of each 
associating fragment.  
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Nouri et al. Figure S4 
 

  
 

Figure S4. Kinetic measurements of GRD-C, GRD-GBD, and GRD-GBDSE association with CDC42. 
Kinetic measurements were performed under the same conditions as in S2. Association of 
mantGppNHp-CDC42 (0.2 μM) with increasing concentrations (2-12 μM) of IQGAP1 proteins, 
association rates (kon), and dissociation of IQGAP1 (2μM) from CDC42-mantGppNHp (0.2 μM) in 
the presence of unlabeled CDC42-GppNHp (10μM) are shown for GRD-C (A-C), GRD-GBD (D-F), 
and GRD-GBDSE (G-I), respectively. Corresponding quantitative data are presented in figure 4C. 
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Abstract 
Nucleophosmin (NPM1, also known as B23, numatrin or NO38) is a pentameric RNA-binding 

protein with RNA and protein chaperon functions. NPM1 has increasingly emerged as a potential 
cellular factor that directly associates with viral proteins; however, the significance of these 
interactions in each case is still not clear. In this study, we have investigated the physical 
interaction of NPM1 with both human immunodeficiency virus type 1 (HIV-1) Rev and Herpes Simplex 
virus type 1 (HSV-1) US11, two functionally homologous proteins. Both viral proteins show, in 
mechanistically different modes, high affinity for a binding site on the N-terminal oligomerization 
domain of NPM1. Rev, additionally, exhibits low-affinity for the central histone-binding domain of NPM1. 
We also showed that the proapoptotic cyclic peptide CIGB-300 specifically binds to NPM1 
oligomerization domain and blocks its association with Rev and US11. Moreover, HIV-1 virus 
production was significantly reduced in the cells treated with CIGB-300. Results of this study 
suggest that targeting NPM1 may represent a useful approach for antiviral intervention. 
 
 
 
 
 
 
 
 

Key words: B23, CIGB-300, cyclic peptide, herpes simplex virus, histone-binding domain, HIV-1, HSV-1, 
human immunodeficiency virus, NO38, NPM1, numatrin, oligomerization domain, Rev, US11 
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Introduction 
Nucleophosmin (NPM1, also known as B23, numatrin, NO38) is a multifunctional 

phosphoprotein, predominantly localized in the nucleoli, which participates extensively in RNA 
regulatory mechanisms including transcription, ribosome assembly and biogenesis, mRNA 
stability, translation and microRNA processing [1,2]. NPM1 (294 amino acids; 37 kDa) consists of 
an N-terminal oligomerization domain (OD), a central histone binding domain (HBD) and a C-
terminal RNA-binding domain (RBD) (Fig. 1A) [3]. It also contains nuclear localization signals (NLSs) 
at the N-terminus, central nuclear exports signals (NESs) and a nucleolar localization signal (NoLS) 
at the very C-terminus (Fig. 1A). NPM1 shuttles between the nucleus and cytoplasm and 
accordingly, a proportion of nucleolar NPM1 constantly translocates to the nucleoplasm and inner 
nuclear membrane as well as to the cytoplasm and inner and outer plasma membrane [2,4,5]. 
Due to this ability, NPM1 has been implicated in many stages of viral infection through interaction 
with a multitude of proteins from heterologous viruses (Table 1), including Human 
immunodeficiency virus type 1 (HIV-1) Rev [4], Human T-cell leukemia virus type 1 (HTLV-1) Rex [6] 
and Herpes simplex virus type 1 (HSV-1) UL24 [7]. 

Rev is 116 amino acid long and its RNA-binding domain is composed of an arginine-rich motif 
(ARM), which binds to various HIV-1 RNA stem loop structures [8]. The RNA- binding domain of 
Rev also acts as a nuclear/nucleolar targeting signal, which can deliver cytoplasmic proteins to the 
nucleus or nucleolus [8,9]. Many host proteins including DDX1, DDX3, eIF5A, exportin-1, hRIP/Rab, 
Matrin-3, NPM1, PIMT, and RNA helicase A have been suggested to bind to Rev prior to induction 
of its nuclear translocation [10-13]. NPM1 interaction with Rev appears to be necessary for 
nucleolar localization of Rev [4]. In fact, the HIV-1 Rev response element, a segment of viral RNA, 
represents a nuclear export signal, which triggers, via Rev binding, the nucleocytoplasmic 
shuttling of viral transcripts in infected cells [14]. A similar mechanism is controlled by Rex 
responsive element [15]. Most interestingly, US11, a protein of HSV-1, has the potential of directly 
binding to the Rev and Rex response elements and functionally substituting for Rev and Rex 
functions [4,14]. 

HSV-1 virions have four morphologically separate structures, a DNA core, capsid, tegument, 
and envelope. Tegument proteins fill the space between the capsid and the envelope [16]. US11 is 
a tegument protein and approximately 600 to 1,000 molecules per virion are released in the 
target cell upon virus entry [17]. It is a multifunctional protein involved in posttranscriptional 
regulation of gene expression and in biological processes related to the survival of cells following 
environmental stress [18,19]. US11 is localized in the nucleus and the cytoplasm, but especially 
accumulates in the nucleolus [20,21]. It has been reported that US11 has RNA-binding activity and 
can associate strongly with ribosomes and has also been found in rRNA and polysome containing 
fractions [17,22]. US11 also interacts with several host proteins, including nucleolin [23], 
ubiquitous kinesin heavy chain (uKHC) [24], homeodomain-interacting protein kinases 2 (HIPK2) 
[19], and protein kinase R (PKR) [25], which in turn counteracts the antiviral host defense system. 
Furthermore, although US11 protein is not essential for viral growth in cell cultures, it plays a vital 
role in the cells subjected to thermal stress [26], recovery of protein synthesis and survival in heat 
shock-treated cells [27]. 

In this study we investigated Rev-NPM1 interaction and found that Rev shows high-affinity 
binding to two domains of NPM1, OD and HBD, in an RNA-independent manner. Due to the 
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functional homology of US11 with both HIV-1 Rev and HTLV-1 Rex, it was tempting to examine 
US11 binding to NPM1. The achievements in this study demonstrates, for the first time, a physical 
interaction between the C-terminal domain of US11 and NPM1OD in an RNA-independent manner. 
The Rev and US11 association with NPM1 was prevented by a cyclic peptide, CIGB-300, which also 
bound to NPM1OD but not to the other NPM1 domains. Cell-based experiments revealed a 
significant reduction of HIV-1 virus production in the presence of CIGB-300. Thus, the association 
of nucleolar protein NPM1 with the viral proteins Rev and US11 may advance our understanding 
of HIV and HSV pathology and further implies that NPM1 can be exploited as a therapeutic target 
for infectious diseases. 
 

Materials and Methods 
Constructs 

The coding sequence of NPM1 full-length (NPM1FL, aa 1-294), kindly provided by F. Carrier 
[28]. Oligomerization domain (NPM1OD, aa 1-122), histone and RNA-binding domains (NPM1HRBD, 
aa120-294), histone binding domain (NPM1HBD, aa 120-241), RNA-binding domain (NPM1RBD, aa 
241-294), HSV-1 US11 full-length (US11FL, aa 1-152), Nterm (US11Nterm, aa 1-84) and Cterm 
(US11Cterm, aa 79-152) as well as HIV-1 Rev full-length (RevFL, aa 1-116) were amplified by PCR and 
cloned into pGEX-4T1-Ntev or pET-23b to obtain GST-fusion or His-tagged proteins. The Myc-
tagged HSV-1 US11FL was cloned into pcDNA3.1-Myc for expression in eukaryotic cells. pNL4-3 
was used to produce replication competent HIV-1 [29].  
Cell culture 

COS-7 and HeLa cells were obtained from German Collection of Microorganisms and Cell 
Cultures (Braunschweig, Germany). TZM-bl Cells were from NIH AIDS reagent program and 
HOS.CD4.CXCR4 cells were from CFAR (Centers for AIDS Research). All cells were grown in DMEM 
supplemented with 10% fetal bovine serum (FBS) (Life Technologies) and penicillin/streptomycin 
(Life Technologies) as antibiotics. Cells were grown in a humidified CO2 (5%) atmosphere at 37°C. 
Trypsin/EDTA was from Genaxxon Bioscience GmbH (Ulm, Germany). 
Antibodies and fluorescent probes 

Mouse monoclonal anti-NPM1 (ab10530) recognizing the C-terminal 68-amino acids and rabbit 
monoclonal anti-NPM1 (ab52644) recognizing the N-terminal 122-amino acids were from Abcam 
(Cambridge, United Kingdom), Rabbit monoclonal anti-myc from Cell Signaling Technology, Inc. 
(Boston, USA), Alexa fluor 488 mouse anti-rabbit IgG and Alexa fluor 633, and goat anti-mouse IgG 
from Molecular Probes (Oregon, USA), and normal monoclonal Rabbit IgG (sc-2027) was from 
Santa Cruz Biotechnology, Texas, USA. 
Proteins 

For protein expression the Escherichia coli strains BL21(DE3), pLysS BL21(DE3), CodonPlusRIL, 
or BL21(Rosetta), were transformed and used to purify the respective protein as previously 
described [30,31]. All purified proteins were analyzed by SDS-PAGE (Fig. 1B) and stored as either 
tag-fused or cleaved protein at -80°C. 
Transient transfection 

COS-7 and HeLa cells were transfected using the TurboFect transfection reagent according to 
the manufacturer's instructions (Thermo Scientific) in 24-well plates or 10 cm dishes by using 0.5 
μg or 5 μg plasmid DNA per transfection, respectively. 
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Confocal laser scanning microscopy  
Confocal imaging was performed using a LSM510-Meta confocal microscope (Zeiss, Jena, 

Germany) as previously reported [5]. 
Immunoblotting 

Proteins were heated in Laemmli sample buffer and subjected to SDS-PAGE. The proteins were 
transferred to nitrocellulose membranes (Hybond C, GE Healthcare) using Mini Trans-Blot cell 
(100 volt for 1 h) (BIO-RAD, USA), and immunoblotted using monoclonal primary antibody to 
mouse NPM1 antibody (Abcam), rabbit NPM1 antibody (Abcam), and rabbit myc antibody (Cell 
Signaling) for 1 h. After three washing steps, membranes were incubated with polyclonal 
horseradish peroxidase-coupled secondary antibodies for 1 h and signals were visualized by the 
ECL detection system (GE Healthcare) and images were collected using the ChemoCam Imager ECL 
(INTAS science imaging, Germany). 
Immunoprecipitation 

COS-7 cells were transiently transfected with cDNA encoding Myc-tagged US11. After 48 h, an 
equal number of the cells were lysed in a buffer, containing 30 mM Tris/HCl, pH 7.5, 150 mM 
NaCl, 1 mM EDTA, 1% Triton X-100, 2.5 mM Na-pyrophosphate, 1 mM β-glycerophosphate, 1 mM 
sodium vanadate, and one EDTA-free protease inhibitor cocktail tablet (Roche, Mannheim, 
Germany). Lysates were centrifuged at 12,000×g for 2 min. The supernatant was precleared with 
protein G agarose (Roche, Mannheim, Germany) and divided to three parts for IgG control, beads 
control and IP, and then incubated with an anti-myc antibody (Cell Signaling) overnight at 4°C. 
Afterwards, protein G-Agarose beads were added to the lysate for 1 h before recovering the 
beads by centrifugation at 500×g for 5 min at 4°C. The beads were washed 4-times in the lysis 
buffer, and resuspended in Laemmli sample buffer. Precipitates and total cell lysate were 
subjected to SDS-PAGE, and Western blotting as described above. 
Analytical size exclusion chromatography (aSEC) 

The complex formation of NPM1OD and US11FL was analyzed using a superdex 200 10/30 
column (GE Healthcare, Uppsala, Sweden) and a buffer, containing 30 mM Tris-HCL (pH 7.5), 150 
mM NaCl, 5 mM MgCl2, and 3 mM dithiothreitol. The flow rate was sustained at 0.5 ml/min. 
Fractions were collected at a volume of 0.5 ml and then peak fractions were visualized by 12.5% 
SDS-PAGE gel and staining using coomassie brilliant blue (CBB). 
Pull-down assay 

GST, GST-fused NPM1 and HSV-1 US11 variants as well as HIV-1 Rev were expressed in E. coli 
and purified using standard protocols [30,31]. In order to obtain prey proteins the GST-tag was 
cleaved off with purified tobacco etch virus (tev) protease and removed by reverse GSH affinity 
purification. Pull-down experiments were performed by adding 50 μg purified proteins, e.g. HIV-1 
Rev and HSV US11 variants, or COS-7 cell lysate transfected with pcDNA-mycUS11FL to 25 μg of 
GST-fused NPM1 proteins, immobilized on 100 μl glutathione-conjugated Sepharose 4B beads 
(Macherey-Nagel, Duren, Germany). The mixture was incubated at 4°C for 1 h in a buffer 
containing 30 mM Tris/HCl, pH 7.5, 150 mM NaCl, 5 mM MgCl2, and 3 mM Dithiothreitol. In cases 
of RNase treatments, 70 U RNase A (Qiagen, Hilden, Germany) were added to the same buffer in 
order to determine an RNA dependent interaction between the NPM1 variants and HIV-1 Rev. 
After four washing steps with the same buffer, proteins retained on the beads were heat-
denatured (7 min at 90°C) and analyzed by SDS-PAGE followed by coomassie brilliant blue (CBB) 
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staining or by Western blotting. Mixed samples prior to pull-down (PD) analysis were used as 
input controls. 
Isothermal titration calorimetry (ITC) 

All proteins were prepared in ITC buffer, containing 30 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 
mM MgCl2, and 1 mM Tris (2-carboxyethyl) phosphine (TCEP) on a size exclusion chromatography 
(SEC) column (Superdex 200, 16/60, GE Healthcare, Uppsala, Sweden). ITC measurements were 
performed at 25°C using a VP-ITC system (Microcal, Northampton, MA, USA) as previously 
reported [32]. The final data analysis was carried out using Origin software (Microcal). The 
experimental data were evaluated using Origin 7.0 software (Microcal) to determine the binding 
parameters including association constant (Ka), number of binding sites (n), and enthalpy (ΔH). 
Control measurements were carried out by titrating buffer to the protein. 
Analytical Ultracentrifugation (AUC) 

Sedimentation velocity centrifugation experiments at 50,000 rpm and 20°C were carried out in 
a Beckman Optima XL-A (Beckman-Coulter, Brea, CA, USA), equipped with absorption optics, and 
a four-hole rotor. Samples (volume 400 μL) were filled into standard aluminum double sector cells 
with quartz glass windows. Measurements were performed in absorbance mode at detection 
wavelengths 230 nm. Radial scans were recorded with 30 μm radial resolution at ~1.5 min 
intervals. The software package SEDFIT v 14.1 (www.analyticalultracentrifugation.com) was used 
for data evaluation. After editing time-invariant, noise was calculated and subtracted. In SEDFIT 
continuous sedimentation coefficient distributions c(s) were determined with 0.05 S resolution 
and F-ratio = 0.95. Suitable s-value ranges between 0 and 20 S and f/f0 between 1 and 4 were 
chosen. Buffer density and viscosity had been calculated with SEDNTERP v 20111201 beta 
(bitcwiki.sr.unh.edu) [33]. The partial specific volume of NPM1OD fragment, NPM1FLand US11FL 
were calculated according to the method of Cohn and Edsall [34] as implemented in SEDNTERP. 
NPM1OD was analyzed at 0.25 concentrations in 30 mM Tris-HCl, pH 7.5, 150 mM NaCl, and TCEP 
(1 mM). After equilibrium was reached, concentration profiles were recorded with 10 μm radial 
resolution and averaging of seven single registrations per radial value. Equilibria had been 
established at 14,000, 16,000, 25,000, 42,000 and 50,000 rpm. Data evaluation was performed 
using SEDPHAT. 
Multi angle light scattering (MALS) 

MALS experiments were performed as described [35]. Briefly, light scattering measurement of 
purified NPM1OD alone or combined with US11FL was performed on a MALS instrument 
(miniDAWN™ TREOS). For exact protein mass calculation, UV absorptions at 280 nm (Agilent 
Infinity 1260) and refractive index (RI) signals (OptilabRex, Wyatt Technology) were collected. Raw 
data was analyzed and processed using ASTRA software (Wyatt Technology) to calculate 
molecular mass averages and polydispersity indexes of analyzed protein samples. 
CIGB-300 synthesis 

The CIGB-300 peptide was synthesized at room temperature by manual solid-phase peptide 
synthesis using a Rink Amide resin (0.59 mmol/g loading). Briefly, the resin (200 μmole scale) was 
pre-swollen by suspending in 3 mL of NMP for 10 min and the N-terminal Fmoc-protecting group 
cleaved by treating the resin with 3 mL of a stock solution of 20% piperidine (v/v) in N-methyl-2-
pyrrolidone (NMP) (2 x 5 min). Each amino acid coupling was performed by pre-mixing 2 mL of a 
0.4 M stock solution of O-Benzotriazole-N,N,N',N'-tetramethyluronium-hexafluoro-phosphate 
(HBTU) in NMP with 4 mL of a 0.2 M stock solution of the amino acid building block in NMP, 
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followed by 2 mL of a 1.6 M stock solution of N,N-diisopropylethylamine (DIPEA) stock solution, 
also in NMP. The reaction mixture was added immediately to the resin and the reaction vessel 
agitated at ambient temperature for 30 min. Each amino acid coupling was performed twice. For 
the coupling of the fluorescein isothiocyanate (FITC) dye, an amino acid linker (Fmoc-O1Pen-OH, 
Iris Biotech GmbH) was first coupled to the N-terminus, the Fmoc group deprotected under 
standard conditions, and then the resin was incubated with 7 eq. of FITC and 14 eq. of DIPEA in 
DMSO at RT for 18 h. The linear peptides (with and without FITC dye) were simultaneously 
deprotected and cleaved from the Rink Amide resin using a 92.5/2.5/2.5/2.5 (v/v) mixture of 
trifluoroacetic acid (TFA)/H2O/triisopropylsilane (TIS)/ ethanedithiol (EDT), and then precipitated 
in ice-cold diethyl ether. Finally, disulfide formation was performed by stirring the crude peptide 
in phosphate buffer (pH 7.5) with 1% v/v DMSO at RT for 48 h to afford either CIGB-300 or 
fluoresceinated CIGB-300 after purification by reverse-phase HPLC using an Alltima HP C18 
column (5 μm, length 125 mm, ID: 20 mm) and 0.1% trifluoroacetic acid (TFA) in H2O/MeCN as 
mobile phase. The pure peptides were analyzed by LC-MS using a Shimadzu LC Controller V2.0, 
LCQ Deca XP Mass Spectrometer V2.0, Alltima C18-column 125 x 2.0 mm, Surveyor AS and PDA 
with solvent eluent conditions: CH3CN/H2O/1% TFA. The Rink Amide resin and all amino acid 
building blocks were purchased from Novabiochem®. HBTU, DIPEA, NMP, HPLC-grade CH3CN and 
HPLC-grade TFA were all purchased from Biosolve B.V. Diethyl ether was purchased from Actu-All 
Chemicals. FITC, ethanedithiol, and triisopropylsilane were all purchased from Sigma-Aldrich. H2O 
refers to Millipore-grade distilled water. Summary of LC-MS data (ESI): CIGB-300; [M+5TFA+3H]3+: 
1210.25 (theoretical), 1210.13 (found); [M+6TFA+3H]3+: 1248,26 (theoretical), 1248.20 (found); 
fluoresceinated CIGB-300; [M+5TFA+3H]3+: 1335.61 (theoretical), 1335.73 (found); 
[M+6TFA+3H]3+: 1373.95 (theoretical), 1373,60 (found). 
Fluorescence polarization 

Fluoresceinated CIGB-300 (also referred to as FITC-labelled CIGB-300) was synthesized as 
described above. Increasing amounts of different variants of NPM1, GST-Rev, GST-US11 and GST 
as a negative control were titrated into FITC-labeled CIGB-300 (0.1 μM) in a buffer containing 30 
mM Tris/HCl (pH 7.5), 150 mM NaCl, 5 mM MgCl2, 1 mM tris-(2-carboxyethyl) phosphine and a 
total volume of 200 μl at 25°C using a Fluoromax 4 fluorimeter. Displacement assay was 
performed by titrating increasing amount of Rev and US11 to the complex of NPM1 and FITC-
labelled CIGB-300. The concentration dependent binding curve was fitted using a quadratic ligand 
binding equation. 
Virus production assay 

HOS.CD4.CXCR4 were seeded in a 24 well plate with 2.5x104 cells per well. One part was 
treated with 100 μM CIGB-300 peptide for 30 min at 37°C and one part was left untreated. Cells 
were infected with HIV-1 NL4-3 (MOI 1) and after 6 h cells were washed to remove input virus. 
Cell culture supernatant was collected 48 h and 72 h after infection. Virus titer in the supernatant 
was determined by infection of TZM-bl cells and luciferase measurement three days later using 
the Steady-Glo Luciferase Assay System (Promega). 
Structural bioinformatics 

Model of the complex between NPM1 and CIGB-300 was created in two steps. Tat part of the 
peptide was first docked to the structure of NPM1 (PDB ID: 4N8M) [36] with the help of Haddock 
web portal (http://haddocking.org/). Acidic residues on three subunits were defined as active 
residues for docking while the setup of the Easy interface was used. Docked pose with best score 
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that enables building of cyclic part of the peptide was then used in the second step. Model of the 
cyclic peptide was first generated and then placed with program CHARMm [37] in different 
orientations and positions on the surface of NPM1 in a way that enabled its interaction with the 
Tat portion of the peptide construct. After linking, the geometry of whole complex was optimized 
by energy minimization applying 500 steps of steepest descent method. Complex with lowest 
minimized energy was used as a final mode. 

Results 
HIV-1 Rev directly binds to two distinct regions of NPM1 

Previous reports have shown that NPM1 is co-localized and co-immunoprecipitated with HIV-1 
Rev in cells [4,38]. To investigate a direct interaction between NPM1 and Rev, pull-down 
experiments under cell-free conditions were performed using RevFL and NPM1 variants as GST-
fusion proteins. As indicated in Fig. 2A (upper panel), RevFL interacts with NPM1FL, NPM1OD, 
NPM1HBD and NPM1HRBD, but not with the NPM1RBD, suggesting that two different regions of 
NPM1, namely OD and HBD, have tight physical interaction with the HIV-1 Rev. To show whether 
this interaction is RNA-dependent, the pull-down experiments were performed under the same 
conditions in the presence of RNase A. As shown in Figure 2A (lower panel), RNase treatment had 
no effect on HIV-1 Rev association with NPM1. These results clearly indicate that HIV-1 Rev 
specifically binds to NPM1, and the binding is not RNA-dependent. 

Next, we purified all proteins in high quantities (Fig. 1B), and after cleaving the tag, isothermal 
titration calorimetry (ITC) experiments were conducted in order to examine the stoichiometry of 
binding and to determine the binding affinity of RevFL for the NPM1 variants. Consistent with the 
data obtained by pull-down assay, RevFL revealed variable affinity for the NPM1 variants with 
calculated dissociation constants (Kd) between 18 and 0.013 μM for 1:1 stoichiometry (Figs. 2B, 
S1A-C Fig.; Table 2). No interaction was detected between RevFL and NPMRBD (Fig. 2C) suggesting 
that a low micromolar affinity for the interaction between Rev and NPM1HRBD actually stems from 
the central histone binding domain of NPM1 (NPM1HBD). The obtained dissociation constant (Kd) 
for the RevFL and NPM1HBD interaction was 5.8 μM indicating a stronger affinity for RevFL as 
compared to that of NPMHRBD, which could be due to a binding site that partially masked by the C-
terminal RBD. 

HSV-1 US11 associates with NPM1 in cells 
The fact that Rev physically binds to NPM1 and US11 alone can fulfill Rex and Rev’s function in 

transactivating envelope glycoprotein gene expression [14], led us to examine a potential US11-
NPM1 interaction. We first analyzed the intracellular distribution of endogenous NPM1 and 
overexpressed myc-US11 in HeLa cells using confocal imaging. Figure 3A shows a nucleolar co-
localization of NPM1 and US11 where the overall pattern of these proteins is different. In contrast 
to a predominant nucleolar localization of NPM1, US11 was found in the cytoplasm and also 
accumulated, to certain extent, in the nucleoli. To confirm the association of US11 with NPM1, 
COS-7 cells overexpressing myc-US11 were lysed and endogenous NPM1 was 
immunoprecipitated. Fig. 3B shows that NPM1 co-precipitated with myc-US11 indicating that 
US11 forms a complex with NPM1. We, next, used purified GST-NPM1FL and pulled down myc-
US11, transiently overexpressed in COS-7 cells. As shown in Fig. 3C, the myc-US11FL clearly bound 
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to NPMFL, but not to the GST control, indicating that there may be a direct interaction between 
US11 and NPM1. 

US11 associates with NPM1OD in its oligomeric state 
To clarify whether the interaction observed above is a direct interaction, we used purified, 

RNase A treated NPM1 and US11 variants from E. coli. Fig. 4A shows that NPM1FL and NPM1OD but 
not NPM1HRBD and NPM1RBD, directly interact with US11FL. We repeated the experiments to map 
the NPM1 binding region of US11 by using purified, GST-fused, N-terminal and C-terminal 
fragments of US11. As shown in Fig. 4A, both US11Cterm and US11Nterm bound, with the same 
pattern as US11FL bound to NPM1FL and NPM1OD. However, binding affinities of isolated N- or C-
terminal domains of US11 towards NPM1 seemed markedly reduced compared to the full-length 
protein. In the light of above mentioned, we concludes that NPM1 and US11 physically interact 
with each other via NPM1OD and largely US11Cterm. 

Next, ITC measurement was also performed to determine the binding affinity between NPM1 
and US11 by titrating NPM1FL (1.2 mM) to US11FL solution (60 μM); both proteins were treated 
with RNase A. As shown in Fig. 4B, the association of NPM1FL with US11FL is endothermic (positive 
peaks). As a control experiment, buffer was titrated to 60 μM US11FL under the same 
experimental condition with no calorimetric changes (Fig. 4C). Based on ITC analysis we estimated 
an apparent Kd value of 4 μM. The NPM1OD interaction with US11FL was also analyzed by aSEC 
combined with MALS, after treating the proteins with RNase A. Fig. 4D (lower panel) shows a co-
elution of the RNase-treated NPM1OD and US11FL proteins from the Superdex 200 (10/300) 
column indicating that these proteins form a complex. MALS analysis revealed that NPM1OD 
oligomerized to a pentameric state and formed a 1:1 complex with the monomeric US11FL (Fig. 4D 
upper panel). To further investigate the oligomerization states of US11 and NPM1, AUC 
experiments were performed. Results obtained were consistent with the MALS data, and revealed 
that NPM1FL and NPM1OD are pentameric and globular while US11FL was monomeric and adopts 
an elongated structure (Table 3 and S2 Fig.). Together, the data clearly demonstrates that US11 
selectively binds to the N-terminal oligomerization domain of NPM1 in an RNA-independent 
manner. 

Displacement of the NPM1-CIGB-300 complex by Rev and US11 
Synthetic peptide CIGB-300 (also called p15-Tat; Fig. 5A) has been described as a proapoptotic 

and anti-cancer peptide, which directly targets and antagonizes NPM1 function in cancer cells 
[39,40]. Fluorescence polarization analysis revealed that a FITC-labelled CIGB-300 tightly 
associates with NPM1FL and NPM1OD but not with NPM1HRBD and NPM1RBD (Fig. 5B). Calculated Kd 
values for the FITC-labelled CIGB-300 interaction with NPM1FL and NPM1OD were 1.4 and 6.6 μM, 
respectively. 

We used the NPM1FL- FITC-labelled CIGB-300 complex to further investigate NPM1 interactions 
with Rev and US11. The idea here was that titrating Rev or US11 to the complex may result in 
displacement of NPM1FL from the FITC-labelled CIGB-300. Fig. 5C shows that increasing 
concentrations of US11, but not Rev, significantly displaced NPM1FL from the FITC-labelled CIGB-
300 complex. This result was surprising for two reasons: First, Rev binds NPM1 in a higher 
nanomolar range (Table 2) and should be able to compete with CIGB-300 provided that both bind 
to the same surface of the NPM1 protein. Interestingly, Rev revealed a 30-fold lower affinity for 
NPM1FL as compared to NPM1OD (Table 2), which may explain why Rev did not displace NPM1FL 
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from FITC-labelled CIGB-300. Second, US11, which evidently exhibits an approximately 10-fold 
lower binding affinity for NPM1FL as compared to Rev, is able to displace NPM1FL from its complex 
with the synthetic FITC-labelled CIGB-300 (Fig. 5C). To address this issue we repeated the 
displacement experiments under the same conditions as before but used the FITC-labelled CIGB-
300 complex with NPM1OD instead of NPM1FL. Data obtained revealed that both Rev and US11 
efficiently displace FITC-labelled CIGB-300 by binding to NPM1OD (Fig. 5D), indicating that Rev, 
US11 and FITC-labelled CIGB-300 have overlapping binding sites on NPM1OD. 

To obtain a first structural assessment of NPM1OD site targeted by CIGB-300 we conducted a 
multistage protein-ligand docking approach. Assuming that basic part of CIGB-300 determines the 
binding, its Tat tail was docked in the first step. In the second step, the cyclic part was placed on 
the surface of NPM1OD and linked to the peptide fulfilling geometry and energy criteria. Whole 
peptide contacted three out of five monomeric units of the pentameric NPM1OD, but in a way that 
enables five copies of CIGB-300 to be generated without sterical clashes (Fig. 5E). It is important 
to note that a stoichiometry of 1:1 emerged spontaneously, as the criteria that five peptides 
should bind to NPM1OD pentamer was not applied while generating of the model. The feature that 
CIGB-300 wraps around at least several monomeric units (Fig. 5E, middle panel) points to a 
stabilization effect of bound peptides and is consistent with the model of NPM1 in complex with 
R-rich proteins, such as p19ARF, ARF6, Rev and the ribosomal protein L5 [36]. 

HIV-1 production is influenced in CIGB-300 treated cells 
In order to investigate the possible role of NPM1-Rev interaction for HIV-1 replication, HOS-

CD4.CXCR4 cells were incubated with CIGB-300 for 30 min or left untreated. After removing the 
peptide, cells were infected with HIV-1 (clone NL4.3, MOI 1). Culture supernatants were collected 
48 and 72 h post infection and were quantified by titration on the HIV-1 reporter cells TZM-bl. In 
cells treated with CIGB-300, the virus production was reduced by 63% and 70% after 48 h and 72 
h post infection, respectively (Fig. 6). Thus, CIGB-300 may interfere with an NPM1-Rev interaction 
in cells and affect Rev-dependent gene expression and subsequently HIV infection. 

Discussion 
Since its discovery 34 years ago, intensive research has been performed on NPM1. NPM1 is 

ubiquitously expressed and significantly upregulated in response to cellular stress signals 
[18,19,41,42] leading to the alteration of nucleolar structures and its re-localization to other 
cellular compartments. As a global effector, it has been implicated in maintenance of genomic 
stability, transcriptional gene regulation, ribosome biogenesis, centrosome duplication, DNA 
repair, control of cellular senescence, protection against radiation-induced apoptosis, tumor 
suppression, and has been increasingly emerging as a potential cellular factor for viral infection 
(see Table 1). Most of these functions have hitherto remained obscure and unexplained. 

To shed light on the association of NPM1 with viral proteins, we have investigated its physical 
interaction with HIV-1 protein Rev and HSV-1 protein US11. Based on our results Rev exhibits 
affinity towards two NPM1 binding sites: on the pentameric, N-terminal oligomerization domain 
(NPM1OD) and on the central histone-binding domain (NPM1HBD), while HSV-US11 has only one 
binding site on NPM1OD. We suggest that the different NPM1 domains interact in a 
mechanistically different mode with the Rev and US11 proteins. Rev association with NPM1 is the 
result of presumably an RNA-independent bimodal binding mechanism, according to our data, of 
(i) a low-affinity binding to the histone-binding domain of NPM1 (Kd 5.8 μM) and (ii) a very high-
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affinity binding to oligomerization domain of NPM1 (Kd 0.013 μM), leading to an overall 0.4 μM Kd 
value for the full-length NPM1 (Table 2). In the case of the NPM1-US11 interaction, we observed a 
strong binding of US11 to NPM1OD, which is most probably achieved via its C-terminal RBD 
(US11Cterm; See Figs. 1A and 4A). While the data regarding US11 reports its unprecedented direct 
interaction with NPM1, our measurements with Rev confirm previously obtained observations. It 
has been shown that two different transcripts of NPM1, B23.1 and B23.2, prevent the aggregation 
of Rev via their proposed chaperone activity [43]. B23.1, which was also used in this study, is 
identical to B23.2 but has a 35-amino acid longer C-terminus. As the prevention of Rev 
aggregation by both constructs was nearly identical, this C-terminus was excluded from the 
interaction with Rev [43], which is in agreement with our results from PD and ITC experiments 
(Fig. 2, S1A-C Fig. and Table 2). Our finding of a 1:1 ratio (n≈ 0.84) between NPM1 and Rev 
obtained by ITC (Table 2) is also consistent with earlier studies that have suggested a 
stoichiometric interaction between NPM1 and Rev, and a maximal stimulation of the import of 
Rev into the nucleus by NPM1 at a 1:1 molar ratio [4,43]. This stoichiometric ratio suggests that 
NPM1FL exhibits one binding site for one HIV-1 Rev molecule. Since Rev has the tendency to 
aggregate also under normal physiological conditions [44], it is very likely that NPM1, by acting as 
a molecular chaperone, increases Rev’s solubility and mobility during the import into and 
throughout the nucleus. 

US11 is an abundant HSV-1 protein, which is expressed late during infection [45]. It has been 
reported that US11 functionally substitutes Rev and Rex proteins by stimulating expression of 
glycoproteins required for retroviral envelope synthesis [14]. US11 interaction with cellular 
proteins may, therefore, be required during HSV-1 infection. However, so far, only a few proteins 
including 2'-5'-oligoadenylate synthetase [46], cellular kinesin light-chain-related protein PAT1 
[45], human ubiquitous kinesin heavy chain [24], protein kinase R (PKR) [47], protein activator of 
the interferon-induced protein kinase (PACT) [48], and nucleolin [23] have been reported. NPM1 
and nucleolin are among the most abundant nucleolar proteins [5] with high functional but not 
structural similarities. They are usually found in the granular components and dense fibrillar 
components of nucleoli, have the same distribution as US11 [49], and are re-localized during HSV-
1 infection [7,50]. With NPM1, we have identified in this study a new nucleolar protein partner for 
US11 and characterized the subdomains responsible for their interactions. US11 has two domains 
(Fig. 1A): An N-terminal domain called effector domain (ED) and a C-terminal RNA-binding domain 
(RBD). C-terminal domain consisting of 20–24 XPR (X, any amino acid; P, proline; R, arginine) 
repeats has a polyproline type II helix organization and is usually engaged in interactions with 
other proteins [15]. US11ED is necessary for transactivation of gene expression, transport, and 
mRNA translation [15]. Therefore, we designed two deletion variants of US11 (N- and C- terminus) 
to determine the part involved in the interaction with NPM1. In contrast to nucleolin, which has 
been reported to interact with the C-terminus of US11 [23], our data clearly shows that both 
domains are apparently required for the interaction with NPM1. The C-terminal domain of US11, 
which is involved in the nucleolar localization of US11, binds to NPM1 stronger than the N-
terminal domain (Fig. 4A). Since C-terminus of US11 is rich in arginine, these results support the 
idea that arginine-rich motif (R-rich) mediates the interactions with NPM1 [36]. Synthetic peptide 
CIGB-300 used in our investigation also falls into this category as it is the conjugate of R-rich 
peptide Tat, and the cyclic peptide (hence is called p15-Tat; Fig. 5A). This peptide, which has been 
described as a proapoptotic peptide with antiproliferative activity in vitro and antitumoral activity 
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in vivo [51], has been reported to directly bind to NPM1 [39,40]. We observed in this study that 
only NPM1OD, but not the other domains of NPM1, associates with fCIGB-300. Interestingly, the Kd 
value for the fCIGB-300 interaction with NPM1FL, derived from our polarization measurements 
(Fig. 5B), was indicative of almost 5-fold higher affinity than that of fCIGB-300-NPM1OD 
interaction. This higher affinity can be explained by an avidity effect that originates from core N-
terminal domain and the dynamic flexible tails, similarly to the model proposed for nucleoplasmin 
interaction with histones [52]. NPM1OD is followed by the two highly acidic regions with 
disordered structure and a C-terminal RBD that folds as a three-helix bundle [53]. The biological 
significance of the acidic regions (A1-A3; Fig. 1A) has not been established. The A1 region in 
NPM1OD has been recently shown to play a crucial role in the interaction with R-rich motifs of 
NPM1 binding proteins, such as p19ARF, ARF6, the ribosomal protein L5, and HIV1 Rev [36]. A 
model of the complex between NPM1OD and CIGB-300 provided insights into different sites for the 
association of the CIGB-300 peptide, especially the R-rich motif of the CPPTat contacting negative 
charges of the A1 region of NPM1OD (Figs. 1A and 5E). Additionally, our displacement experiment 
with Rev indicates that CIGB-300 shares the same binding site on NPM1 and may act as an 
inhibitor of NPM1-Rev interaction. Most likely for the same reason, we observed a reduced 
expression of viral production in HIV-1 infected cells treated with the CIGB-300 peptide (Fig. 6).  

Furthermore, our displacement data shows that the NPM1-US11 interaction was also 
modulated by CIGB-300 (Figs. 5C and 5D). Thus, it is tempting to speculate that US11 and Rev, two 
functionally homologous viral proteins, share a similar binding site on NPM1 as suggested in this 
study for CIGB-300. An amino acid sequence analysis revealed clear differences in the R-rich 
motifs between Rev (38RRNRRRRWRARAR48) and US11, which consists of 21 `XPR´ repeat motifs in 
US11Cterm. R-rich motifs act as NLS by binding to the nuclear import receptors in nuclear 
translocation of viral proteins [10,12,54,55]. On the other hand, nucleolar shuttling and 
accumulation of Rev requires interaction with NPM1 [4,12]. US11 is similarly shuttling between 
the nucleus and the cytoplasm in transiently transfected cells and HSV-1-infected cells [20,56]. 
Mutagenesis and modeling studies of the C-terminus of US11, containing XPR repeats, have 
shown that this region is critical for both nucleolar accumulation of US11 and its 
nucleocytoplasmic export [15,57]. As mentioned above, CIGB-300 has the cell penetrating peptide 
Tat with R-rich motif, which corresponds to the presumed nuclear localization signal (NLS). Tat 
moves across the nuclear envelope and consequently drives CIGB-300 to the nucleus. Thus, we 
hypothesize that, (i) R-rich motifs of viral proteins serve as NPM1 binding sites that facilitate their 
nuclear transport analogous to NLS-importin system, and (ii) NPM1 most likely acts as an auxiliary 
factor for R-rich motif-containing viral proteins, such as HIV-1 Rev and HSV-1 US11, and achieves 
their transport into different nuclear compartments and subnuclear domains, leading to nuclear 
egress of infectious viral particles. Thus, NPM1 seems to represent a key protein in viral infections 
that is hijacked by invading pathogens to facilitate infection. As a consequence, NPM1 may 
represent a novel promising target for antiviral therapeutic intervention. 
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Table 1 - Nucleophosmin involvement in multiple viral infections. 
Virusa Partner Domain Effect/observation References 

AAV Rep n.d. Viral assembly [58] 
Adenovirus Core protein V n.d. NPM1 re-localization, Replication, 

Viral assembly 
[59,60]  

Basic core protein n.d. Transcription, Replication [61] 
Core protein V, pre-VII n.d. Replication, chromatin assembly [62,63] 

CHIKV n.d. n.d. n.d. [64] 
EBV EBNA1 HBD Transcription [65,66] 

EBNA2 OD Transcription, latency [67] 
 EBNA3 n.d. Transcription [68] 
EMCV 3BCD n.d. Nuclear transport [69] 
HBV core protein 149 n.d. Capsid assembly [70-72] 

X protein n.d. n.d. [73,74] 
HCV Core protein n.d. Transcription [75] 
HDV Antigen n.d. n.d. [76] 
HIV-1 Rev OD, HBD n.d. [4]; this study 

Tat n.d. NPM1 acetylation, transcription [77-79],  
HRSV Matrix protein n.d. Replication [80] 
HSV-1 UL24 n.d. NPM1 re-localization [7] 

US11 OD n.d. this study 
HTLV-1 Rex HBD n.d. [6] 
JEV Core protein OD Replication [81] 
KSHV LANA n.d. NPM1 phosphorylation (T199), 

latency 
[82] 

NDV Matrix protein M RBD NPM1 re-localization, Replication [83] 
PEDV N protein n.d. Nucleolar co-localization [84] 
a Virus abbreviation: AAS, Adeo-associated virus; EBV, Epstein Barr virus; CHIKV, Chikungunya 
virus; EMCV, Encephalomyocarditis virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; HDV, 
Hepatitis delta virus; HIV-1, Human immunodeficiency virus type 1; HRSV, Human respiratory 
syncytial virus; HSV-1, Herpes simplex virus type 1; HTLV1, Human T-cell leukemia virus type 1; 
JEV, Japanese encephalitis virus; KSHV, Kaposi's sarcoma-associated herpes virus; NDV, Newcastle 
disease virus; PEDV, porcine epidemic diarrhea virus. n.d., not determined. 
 
Table 2 - ITC data for HIV-1 RevFL interaction with NPM1 variants. 
Protein Kd (μM)a ∆H (kcal/mol) T∆S (kcal/mol) n (sites) 

NPM1FL 0.41 -16.50±0.47 -0.66 0.84 
NPM1OD 0.013 -3.79±0.11 -0.58 0.94 
NPM1HRBD 18 -3.23±0.31 -0.27 0.76 
NPM1HBD 5.8 -1.71±0.20 -0.71 0.85 
NPM1RBD no binding - - - 
Ka

, association constant; Kd
, dissociation constant; ΔH, enthalpy; n, binding stoichiometry (number of 

binding sites). HIV-1 RevFL did not show any binding to the RNA-binding domain (RBD) of NPM1. All 
measurements were performed at 25 °C. a Kd values were calculated from Kd = 1/Ka. 
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Table 3 - AUC-SV data for NPM1FL, NPM1OD, and US11FL, respectively. 
Proteins S20,w (S) Std. dev.  f/f0 MW (kDa) 

NPM1FL 6.7 0.52 1.5 146 
NPM1OD 4.5 0.14 1.27 – 1.40 63.3 
US11FL 1.4 0.20 1.4 - 1.7 15.3 
MW, molecular weight; S20,w (S), sedimentation rate at 20 ˚C; f/f0, frictional coefficient. In all three cases 
the values refer to a single, dominant species, which represented more than 90 % of the sample. 
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Figure legends 
Fig. 1. Schematic representation of domain organization, various constructs and proteins of 
NPM1, HSV-1 US11, and HIV-1 Rev. 
(A) Domains and various constructs of NPM1, US11 and Rev. The numbers indicate the N- and C-
terminal amino acids of the respective constructs used in this study. A1-A3, acidic regions 1-3; 
Cterm, C-terminal; ED, effector domain; FL, full-length; HRBD, histone and RNA-binding domains; 
HBD, histone binding domain; NES, nuclear export signal; NLS, nuclear localization signal; NoLS, 
nucleolar localization signal; Nterm, N-terminal; OD, oligomerization domain; RBD, RNA-binding 
domain. (B) Coomassie brilliant blue (CBB) stained SDS-PAGE of purified proteins used in this 
study.  
Fig. 2. Direct NPM1 interaction with HIV-1 Rev. 
(A) Qualitative interaction analysis by GST pull-down assay and subsequent CBB staining. NPM1 
FL, OD and HRBD, but not RBD, displayed a selective interaction with HIV-1 Rev (upper panel), 
which was also observed after an RNase A treatment (lower panel). (B) Quantitative interaction 
analysis by ITC. The binding parameters for the interaction between NPM1FL and Rev were 
obtained using ITC. Titration of NPM1FL (750 μM) to RevFL (35 μM) showed an exothermic 
response (negative peaks) indicating that Rev selectively interacts with NPM1FL. The upper graph 
shows calorimetric changes plotted versus the time and the lower graph represents the changes 
in temperature according to the molar ratio of the interacting proteins. (C) No interaction was 
observed in a control experiments by titrating NPM1RBD (300 μM) to RevFL (30 μM). 
Fig. 3. NPM1 association with HSV-1 US11 in the cell. 
(A) Nucleolar colocalization of endogenous NPM1 with myc-US11. Confocal images of HeLa cells 
transfected with myc-US11 were obtained by staining endogenous NPM1 (Mouse anti-NPM1 
(ab10530)), myc-US11 (anti-myc antibody), and filamentous actin (rhodamine-phalloidin). For 
clarity, a boxed area in the merged panel shows colocalization of NPM1 and US11 in the nucleolus 
as pointed by arrows. Scale bar: 20 μm. (B) Myc-US11 associates with endogenous NPM1 in COS-7 
cells. NPM1 was co-immunoprecipitated with myc-US11 overexpressed in COS-7 cells using anti-
myc antibody. A normal Rabbit IgG and sample without antibody were used as IP controls. Input, 
5% of total cell lysate; IP, immunoprecipitation; IB, immunoblotting. (C) Myc-US11FL displayed an 
interaction with NPM1FL. Myc-US11FL was pulled down with the GST-fusion NPM1FL, but not with 
GST, which was used as a negative control. Samples prior pull-down (PD) analysis were used as 
input control. 
Fig. 4. Physical interaction of HSV-1 US11 with NPM1. 
(A) C-terminal region of US11 largely contributes to NPM1 interaction. Pull-down experiments 
were conducted with purified proteins in the presence of RNase A by using GST-fused US11FL, 
US11Nterm, US11Cterm, and GST as a negative control. For the detection of NPM1 variants two 
different antibodies were used, ab52644 recognized an N-terminal epitope containing in NPM1FL 
and NPM1OD, and ab10530 recognized a C-terminal epitope containing in NPM1HRBD and NPM1RBD. 
The same pattern of interaction was obtained for the N-terminal and the C-terminal parts of 
US11, although the interaction between NPM1FL and NPM1OD with US11Nterm was much weaker 
than with US11Cterm. The exposure time was 1 min for all the blots. (B-C) US11 binds NPM1 with a 
binding constant in the low micromolar range. To measure the binding parameter for the NPM1-
US11 interaction, 1.2 mM NPM1FL (B) and buffer (C) were titrated to 60 μM US11FL. Both NPM1 
and US11 were treated with RNase A. Conditions were the same as described in Fig. 2. US11 
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binding to NPM1 is an endothermic reaction. (D) US11 binds to a pentameric NPM1. aSEC-
MALS/RI analysis of NPM1OD, US11FL, and a mixture of both proteins revealed an oligomeric 
nature of NPM1OD with a molecular weight (MW) of 66.1 kDa corresponding to the pentameric 
form. Obtained MW for US11 was 16.6 kDa, which matches the theoretical MW of 16.7 kDa for a 
monomeric US11 (upper panel). SDS-PAGE and CBB staining of the aSEC (Superdex 200, 10/300) 
elution fractions of NPM1OD, US11Fl, and a mixture of both clearly revealed a NPM1-US11 complex 
formation (lower panel). Both NPM1 and US11 were treated with RNase A. The MW of this 
complex corresponds to 76.6 kDa for a pentameric NPM1OD, and a monomeric US11FL. A MW of 
21.8 kDa was measured that is estimated to an unbound US11FL. 
Fig. 5. The synthetic peptide CIGB-300 competes with Rev and US11 by binding NPM1OD with 
high-affinity. 
(A) CIGB-300 consists of the cyclic P15 (blue) and the Tat (purple) peptides, and labeled with 
fluorescein (green; FITC). (B) Fluorescence polarization experiments conducted by titrating 
increasing amounts of NMP1 variants, Rev, US11, and GST to 0.1 μM FITC-labelled CIGB-300 (f 
CIGB-300). A high affinity interaction with the peptide was only observed for NPM1FL and NPM1OD, 
resulting from an increase of polarization, but not for Rev, US11, GST, and the other NPM1 
variants. (C-D) Contrary to US11, Rev only displaced NPM1OD from its fCIGB-300 complex. 
Displacement experiments were performed by adding increasing amounts of Rev or US11 to the 
NPM1FL-fCIGB-300 complex (C) or to the NPM1OD-fCIGB-300 complex (D). (E) A proposed NPM1OD-
CIGB-300 docking model of pentameric NPM1OD structure in the complex with CIGB-300. Cyclic 
part (blue) and basic part (purple) of the peptide shown as sticks and ribbons wraps around 
several monomeric units of NPM1 represented by surfaces in different colors shown in top view 
(left), rotated orientation (middle), and the bottom view (right). 
Fig. 6. CIGB300 treatment interferes with HIV-1 production. 
CIGB-300 treated or untreated HOS.CD4.CXCR4 cells were infected with NL4.3 virus at an MOI of 
1. Culture supernatant was collected 48 and 72 h post infection and virus titer was determined. 
The figure shows one representative experiment out of four, in which virus quantification was 
performed by TZM-bl cell titration. Values are the means ± S.D. of three measurements. Statistical 
significance (P) was calculated by the Student`s t-test: ***P<0.002; **P<0.02. 
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Supporting Information 
S1 Fig. Physical interaction of HIV-1 Rev with NPM1. 
Quantitative interaction analysis were performed by ITC at 25°C by titrating (A) NPM1OD (450 
μM) to 30 μM HIV-1 Rev, (B) NPM1HBD (350 μM) to 25 μM HIV-1 Rev and (C) NPM1HRBD (800 
μM) to 50 μM HIV-1 Rev, respectively. The upper graph shows calorimetric changes plotted versus 
the time, and the lower graph represents the changes in temperature according to the molar ratio 
of the interacting proteins. 
 
S2 Fig. Analytical ultracentrifugation for the determination of the oligomeric state and 
molecular mass of US11 and NPM1. 
(A) Sedimentation velocity analysis of US11FL and NPM1FL at 35,000 rpm and 20 °C. Graphs show 
the evaluated c(s) distributions obtained by SEDFIT. For presentation, curves had been normalized 
to maximum peak height. Results revealed that NPM1FL and US11FL are pentameric and 
monomeric, respectively. (B) The left panel contains data obtained from the sedimentation 
velocity analysis of NPM1OD, which shows the population of pentamer, and the right panel are 
data obtained from sedimentation equilibrium analysis of 0.25 μM NPM1OD at 14000 (purple), 
16000 (blue), 25000 (cyan), 42000 (green) and 50000 rpm (yellow) at 20°C. Experimentally 
determined concentration profiles were fitted globally with a single species model resulting in a 
molecular mass of 65180 640 Da corresponding to a pentamer of NPM1OD. The experimental 
data together with the fitted concentration profiles are shown on the top, and at the bottom, 
residuals from the fit are documented. 
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Nouri et al., Fig. 2 
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Nouri et al., Fig. 3 
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Nouri et al., Fig. 4 
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Nouri et al., Fig. 5 
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Nouri et al., Fig. 6 
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Nouri et al., Fig. S1 
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Nouri et al., Fig. S2 
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5 Discussion 
 During past two decades a principle has appeared asserting that cells achieve specificity in 

their molecular signaling networks by organizing distinct subsets of proteins in space and time. 

Spatial organization is required to achieve high-fidelity intracellular information transfer. Proteins 

can be assembled into specific complexes via different ways, including membrane localization, 

compartmentalization (organelle targeting), and by the assembly of specific protein complexes by 

scaffold proteins [105,307-309]. These proteins control fidelity and specificity of the information 

flow within a cell by assembling and linking different types of proteins, e.g., activators, effectors, 

enzymes, and substrates into signaling circuits. Scaffolds are extremely diverse proteins and could 

carry out different functions. For instance, the Ste5 and KSR (kinase suppressor of RAS) physically 

assemble individual kinases that control MAPK pathway localization like membrane anchoring. 

They are essential for efficient signaling and they can also sequester MAPK signaling proteins from 

competing inputs [310-312]. Scaffold proteins are not restricted to directing kinase cascades; they 

can organize other classes of molecules, such as pathogens signaling as well. Pathogens normally 

use scaffold proteins for rewiring host signaling pathways to turn off or avoid host defenses. For 

example, the pathogenic bacteria Yersinia pestis produces a scaffold-like protein (YopM) that 

artificially links together two kinases (Rsk1 and Prk2) that do not normally interact [313]. Another 

example is for the human immunodeficiency virus (HIV) that by producing a scaffold protein, Vif, 

which bind both APOBEC3G and cullin-E2, destroys the host APOBEC3G protein which is a cytidine 

deaminase and interferes with viral replication [314]. Another very important and interesting 

group of scaffold proteins are involved in GTPase (RHO and RAS) signaling. For example, the yeast 

protein Bem1 promotes the interaction between the GEF, PAK and GTPase substrate, CDC42 

[315]. Such coordinated GTPase regulation controls defined morphological behaviors like 

polarized budding of yeast cells. Another well investigated protein is IQGAP1, which contains 

several protein-interacting domains that mediate binding to variety of target molecules. This 

diversity of targets suggests that IQGAP1 coordinates a wide variety of signaling pathways and 

cellular functions through the assembly of multiprotein complexes [45,118,119]. For example, a 

ternary complex of CDC42/RAC1 (RHO proteins), IQGAP1 and actin [316], complexes of IQGAP1 

containing RAC1/CDC42 and CLIP-170 [140], CDC42 and calmodulin or RAC1 and calmodulin [45], 

have been described so far. Thus, IQGAP1 play diverse roles in vertebrates, such as nervous 

system, cardiovascular system, pancreas, lung and kidney.  

RAS and RHO proteins such as KRAS, CDC42, and RAC proteins control essential biological 

processes and are frequently dysregulated in diseases, such as cardiovascular diseases, 

developmental and neurological disorders, and cancer. A prerequisite for their signaling is 
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association with and activation of downstream effectors, such as PI3K, B-RAF, WASP, and PAK1. 

While the role of these effectors is well-investigated, the nature of such a protein-protein 

recognition process and the mode of interactions for IQGAP1 remain to be established. This study 

have focused on the interaction of IQGAP1 with the active, GTP-bound form of RHO proteins 

RAC1 and CDC42 and provides new insights into a two-step binding process that is a prerequisite 

for IQGAP1 activation and a critical mechanism in temporal regulation and integration of IQGAP1-

mediated cellular responses. 

From protein scaffolds involved in GTPase signaling, galectin-1 (Gal-1), galectin-3 (Gal-3), 

nucleophosmin (NPM1), and nucleolin (NCL) are also known to participate in facilitating or 

enhancing RAS nanoclusterring [112-115]. Gal-1 and Gal-3 associate with HRAS and KRAS, and 

increase nanoclusterring of active form of HRAS [115] and KRAS [114], respectively. In addition to 

be known that NPM1 is a negative regulator of the small GTPase RAC1, and also interacting with 

ROCK II kinase and playing role in the regulation of centrosome duplication, both NCL and NPM1 

bind KRAS and mediates recruitment of KRAS into nanoclusters on the inner leaflet of the plasma 

membrane [112]. Apart from what is known about the scaffolding role of these two proteins 

regarding small GTPases, NPM1 and NCL have emerged as an essential host factor for multiple 

aspects of microbial infection including adhesion at cell surface, entry, intracellular trafficking, 

regulation of transcription and translation as well as nucleo-cytoplasmic shuttling [172-174,176]. 

It is increasingly evident that these proteins function as a host-specific target for a large number 

of viruses and pathogenic bacteria which has raised interest in targeting them therapeutically. 

While neither direct interaction of NPM1 nor NCL with the RAS isoforms (HRAS, NRAS, and KRAS) 

was detected, various protein domains of NPM1 and NCL has been used in the present thesis to 

investigate their interactions with FMRP and viral proteins (HIV1 Rev and HSV1 US11). 

5.1 Classical RHO proteins and Juvenile myelomonocytic leukemia (JMML) 
In chapter 2 the biochemical properties of the RHO proteins and their regulatory cycles are 

described in detail [317]. As it was mentioned before, dysregulation of RHO proteins has been 

shown to play a vital role in cancer, infectious, cognitive disorders, and cardiovascular diseases. 

But several aspects of RHO proteins signaling have to be considered yet. Of the RHO family 

members only RHOA, RAC1, and CDC42 have been widely studied so far and the functions of the 

other less-characterized members of this protein family await detailed investigation. RHOGDIs 

associate and extract the RHO proteins from the membrane. Despite the intensive research over 

the last two decades, the mechanism of this function is not clear yet and the factors displacing the 

RHO protein from the complex with RHOGDI remain to be elucidated. For the regulation of the 22 

RHO proteins more than 70 and 80 GEF and GAP, respectively exist in the human genome. How 
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these regulators selectively recognize their RHO protein targets is not well understood and 

majority of GEFs and GAPs in human so far remain uncharacterized. Most of the GEFs and GAPs 

themselves need to be regulated and require activation through the relief of autoinhibitory 

elements [318-324]. With a few exceptions [84,325], it is conceptually still unclear how such 

autoregulatory mechanisms are operated. A better understanding of the specificity and the mode 

of action of these regulatory proteins is not only fundamentally important for many aspects of 

biology but also is a master key for the development of drugs against a variety of diseases caused 

by aberrant functions of RHO proteins.  

Another aspect is point mutations in genes related to RHOGTPases, which is very rare. 

Accordingly, chapter 3 describes the genetic profiling and whole-exome sequencing (WES) of a 

large Juvenile myelomonocytic leukemia (JMML) cohort. JMML is a rare and severe 

myelodysplastic and myeloproliferative neoplasm of early childhood initiated by germline or 

somatic RAS-activating mutations [78,326-328]. JMML is considered as a unique example of RAS-

driven oncogenesis since it is thought to be initiated by mutations, usually described as mutually 

exclusive, in RAS genes (NRAS, KRAS) or RAS pathway regulators (PTPN11, NF1 or CBL) [78]. JMML 

can be sporadic or develop in patients displaying syndromic diseases with constitutional RAS over 

activation such as Noonan syndrome (NS), type 1-neurofibromatosis (NF1), and CBL syndrome, 

caused by heterozygous germline mutations in PTPN11, NF1, and CBL respectively [79]. Our study 

has shown that in addition to RAS and RAS regulators mutation, the RHO GTPase RAC2 is also 

mutated in some JMML cases [76]. The coexistence of RAC and RAS/MAPK mutations in some 

tumors and cooperation between oncogenic NRAS and RAC has been previously demonstrated 

[74]. However, the molecular basis for this interrelationship remained unclear. Our investigations 

of RAC2 D63V, which predominantly occurs in its active GTP-loaded state as compared to wild-

type RAC2 and its constitutive variant RAC2 G12V, have revealed a drastic gain-of-function effect. 

Interestingly, the analysis of downstream signaling of RAS has shown that RAC2 D63V activates 

the PI3K/PDK1/AKT and the mTORC2 pathways but has no significant effect on the RAF/MEK/ERK 

pathway [76]. Furthermore, our data have clearly shown a reversed molecular switch function of 

RAC2 D63V leading to an accumulation in its active GTP-bound state and undergoing a tight 

interaction with its effectors, as compared to wild-type RAC2, which may explain its cellular 

activities towards AKT phosphorylation [76]. This is consistent with several lines of evidence 

indicating a strong impact of the PI3K/PDK/AKT pathway on JMML [329], and most likely 

activating the catalytic p110  subunit of PI3K, which promote the effects of SHP2 on GM-CSF 

hypersensitivity [330].  
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In conclusion, these findings suggest that the RAS-RAC pathway represents a significantly 

dysregulted subnetwork in JMML and these findings extend and reinforce the notion that JMML is 

a RASopathy while showing that RAS activation is the major but not the unique player in JMML. 

Such novel insight into the pathogenesis of JMML should provide functional guidance, prognostic 

markers and patient selection criteria for new therapeutic options in this very severe childhood 

leukemia. 

5.2 RHO family GTPases and IQGAP1 interaction 
It was mentioned before that the interaction of RHO proteins and the downstream effectors 

such as PAK and WASP is well investigated but the molecular basis of their interaction with 

another effector, IQGAP1, remains to be elucidated. In chapter 4 the comprehensive interaction 

study of different RHO proteins with IQGAP1 C-terminus (here called GRD-C) is presented. Kinetics 

of these interactions was monitored using stopped-flow fluorescence spectroscopic method. The 

results clearly indicated that IQGAP1 binds among RHO proteins selectively to RAC- and CDC42-

like proteins (RAC1, RAC2, RAC3, RHOG, TC10, and TCL) only in the active GTP form. In contrast to 

our study which showed that there is no physical interaction between GRD-C and the RHO 

isoforms RHOA or RHOC, purified from E. coli, two studies have reported an association of IQGAP1 

with the RHO proteins using immunoprecipitation protocols. Casteel et al. have shown that GRD-C 

interacts with the active, G14V variant of RHOA and RHOC but not with RHOB, in human 

embryonic kidney 293T cells, and suggested IQGAP1 as a downstream of RHOA [331]. 

Bhattacharya et al. have shown that IQGAP1 binds to both RHOA and p190A-RHOGAP leading to 

inactivation of RHOA and modulation of contractility of airway smooth muscle cells [162]. We 

think that observed interaction of IQGAP1 GRD-C with RHOA and RHOC is indirect and may be 

mediated by another protein in cells, because no direct interaction between IQGAP1 and the RHO 

isoforms was monitored in our kinetic and equilibrium measurements. However, we do exclude 

the possibility that other regions at the N-terminal half of IQGAP1 may play a role in the 

interaction with the RHO isoforms. This can only be investigated with the full-length IQGAP1, 

whose expression and purification from the baculovirus-insect cell system needs to be 

established.  

Obtained result from individual kinetic measurements displayed the fastest association with 

RAC2 suggesting that GRD-C-interacting RHO proteins, in spite of tremendous difference in the 

overall binding affinities, may utilize a homologous set of associating residues in the 

neighborhood of the fluorescence reporter group. Another point is that these members of the 

RHO family associate with IQGAP1 more or less in the same time range raising the question 

whether these interactions may selectively take place in the cells and how temporal regulation 
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and integration of IQGAP-mediated cellular responses is achieved. RHOG and TC10 interaction 

with IQGAP2 and IQGAP1, respectively, has been previously reported [57,332]. RHOG has been 

reported to bind in an activated GTP bound form to the RAC/CDC42-specific effectors MLK3, 

PLD1, and IQGAP2 which in turn, stimulates some downstream signaling targets of activated RAC1 

and CDC42 such as JNK and Akt [332]. Although the consequence of TC10-IQGAP1 interaction is 

not defined yet, it may control exocytosis and cell polarity for two reasons. Exo70 has been shown 

to bind to the N-terminal IQGAP1, most likely to the WW motif [333] but probably not to the IQ 

region because Exo70 was not found as binding partner of this region [119]. In mammals, only RAL 

(RALA) and TC10 (RHOQ) GTPases have been shown to bind the exocyst complex [334]. TC10-

Exo70 interaction is implicated in the tethering of GLUT4 vesicles to the plasma membrane in 

response to insulin [334-336] and in promoting neurite outgrowth [337-339]. IQGAP1 proteins 

have been shown to be involved in both processes [119,120,340]. Such a complex interacting 

network circuit of IQGAP1, which modulates its function in space and time, remains an open and 

very interesting issue for future studies. Furthermore, TC10 has the fastest and RAC2 the slowest 

dissociation from GRD-C, respectively, suggesting that an IQGAP1 complex with RAC2 is most 

stable and may contribute to a longer signal transduction as compared to e.g. RAC1, CDC42, 

RHOG, RAC3, and TC10.  

Biochemical analysis along with homology modeling, based on the RAS-RASGAP structure [341], 

provided up to date a structural model of IQGAP1 GRD contacting the switch regions of the GTP-

bound CDC42 [124,141,152,154,166,167,171]. In order to investigate the molecular mechanism of 

this interaction and reveal the binding domains and interacting residues, different deletion 

variants of IQGAP1 were designed. Obtained data clearly have shown that GRD1 and GRD2 do not 

associate with RAC1 and CDC42 under our experimental condition. This was unexpected because 

GRD has been generally accepted in the IQGAP community as the RAC1- and CDC42-binding 

domain of the IQGAP1 [124,141,152,154,166,167,171]. In addition, our data have clearly revealed 

that the region upstream of GRD2 (aa 863-961) is dispensable for the RAC1 and CDC42 

interaction. Another interesting issue was the inhibitory effect of the very C-terminal 99 amino 

acids (C domain) on the GBD determined through a 3-fold faster association of GRD-GBD (lacking 

the C domain) with RAC1 and CDC42 as compared to GRD-C. This is consistent with what it has 

been published regarding interaction of GRD and GBD-C domains with each other, favoring the 

binding to GTP bound CDC42 [342,343]. Moreover, we found that point mutations of the PKCα 

phosphorylation site (S1443) affect GRD-GBD association with RAC1/CDC42-mantGppNHp and 

completely abolished GRD-GBD association with RAC1 and CDC42. This is consistent with what has 

been reported regarding significat reduction in the interaction between IQGAP1 and CDC42-GTP 
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bound in the presence of phosphatase inhibitor and using MCF10A cell lysate [342]. Works from 

several groups have shown that shorter IQGAP1 fragments, encompassing the GRD domain, are 

responsible for RAC1 and CDC42 interaction. However, we did not observe any change in 

fluorescence when we used a similar protein, GRD2, to measure association kinetic with CDC42 

and RAC1 using stopped-flow system. Therefore, to further investigate this point we measured 

these interactions using fluorescence polarization under equilibrium conditions for both GRD and 

GRD-C fragments with mantGppNHp-bound RAC1, CDC42, and RHOA. Interestingly, we found that 

both proteins bind to the GTP-bound state of RAC1 and CDC42 but not to RHOA. Our data have 

shown that GRD2 exhibits weaker binding to CDC42 and RAC1 10- and 15-folds, respectively as 

compared with GRD-C. In addition, the Kd value for GRD-GBD S1443D has significantly decreased. 

Thus, we hypothesised that the binding interface of IQGAP1 interaction with RHO proteins 

extends beyond the minimal GRD. Mutational data also support our hypothesis that propose GBD 

but not GRD as the main domain of IQGAP1 associating the switch regions of RAC- and CDC42-like 

proteins. To prove this proposal, the interaction with GDP-bound state of CDC42 was also 

conducted under the same condition using fluorescence polarization. Our results have shown that 

both domians, GRD and GRD-C, indeed interact also with the GDP-bound form of CDC42 with 

much lower but comparable affinitis. This clearly has proved our hypothesis regarding a 

nucleotide-idependent interaction of GRD outside the switch regions of CDC42.  

In conclusion, the results indicated that IQGAP1 binds among RHO proteins selectively to RAC- 

and CDC42-like proteins only in a GTP-dependent manner. Moreover, obtained results suggested 

that GBD and specifically, serine 1443 phosphorylation is critical for this interaction. Our kinetic 

and equilibrium measurements clearly challenge the paradigm that the ability of IQGAP1 to 

interact with RAC/CDC42 proteins is mainly attributed to its GRD. On the contrary, we proposed 

that the C-terminal half of IQGAP1 utilize at least three functionally distinct units, including GRD, 

GBD and C, to achieve the interaction with RAC1- and CDC42-like proteins. Remarkably, IQGAP1 

seems to employ a different strategy to interact with RAC1 and CDC42 proteins as schematically 

illustrated in Figure 9: (i) GRD undergoes a low-affinity, GDP-/GTP-independent complex with 

RAC1 and CDC42 proteins outside their switch regions in a way that is independent of the 

upstream signals, providing it is structurally accessible and available for interactions; (ii) GBD only 

binds to the RAC1 and CDC42 proteins if they are in an active GTP-bound forms; (iii) the C-

terminal region of IQGAP1 may potentiate the IQGAP1 interaction with RAC1 and CDC42 proteins 

by probably extending the resident time of the respective proteins complexes. Therefore, we 

unraveled a new level of regulation for the interaction of IQGAP1 with RAC and CDC42 like 
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proteins. Such a model is very helpful in understanding the mechanism of IQGAP1 activation in 

the cellular context. 

 
Figure 9. Model for the molecular mechanism of RAC1/CDC42 interaction with IQGAP1 GRD-C. Low-
affinity, GDP-/GTP-independent interaction of GRD with RAC1 and CDC42 proteins outside their switch 
regions. GBD only binds to the RAC1 and CDC42 proteins after GEFs catalyze the exchange of GDP to GTP, 
and they exist in an active GTP-bound forms. The C-terminal domain of IQGAP1 may potentiate the IQGAP1 
interaction with RAC1 and CDC42 proteins by probably extending the resident time of the respective 
proteins complexes. Figure adopted from chapter 4.  

Since a major issue in biology is the isoform specificity, the question to be addressed in the 

future is that, how the cell controls a specific interaction of IQGAP1 with one of the six identified 

RHO GTPases interacting IQGAP1. We propose that scaffold proteins, such as calmodulin, may 

fulfill this function by linking for example RAC1 and IQGAP1 at a distinct area at the plasma 

membrane. This hypothesis is based on independent published data on individual interaction of 

calmodulin with both IQGAP1 and RAC1. These studies could be performed in the presence and 

absence of purified calmodulin and calmodulin/Ca+2. The physical and biochemical investigations 

will ultimately advance our knowledge in the field of scaffolds, e.g., calmodulin, as specificity-

determining components in signal transduction. Another protein which may play role here is 

Ajuba [344,345], which has been shown to be required for RAC activation and maintenance of E-

cadherin adhesion. However, an interaction between Ajuba and IQGAP1 remains to be shown.  

5.3 Nucleophosmin and viral infection 
Nucleophosmin (NPM1) is a multifunctional phosphoprotein which has increasingly emerged as 

a potential cellular factor that directly associates with viral proteins and plays vital role in viral 

infection. Since its discovery 34 years ago, intensive research has been performed on NPM1. It is 

ubiquitously expressed and significantly upregulated in response to cellular stress signals leading 

to the alteration of nucleolar structures and its relocalization to other cellular compartments 

[346-349]. Due to this ability, NPM1 has been implicated in many stages of viral infection by 

interacting with a multitude of proteins from heterologous viruses, including Human 

immunodeficiency virus type 1 (HIV-1) Rev [253], Human T-cell leukemia virus type 1 (HTLV-1) Rex 

[256], and Herpes simplex virus type 1 (HSV-1) UL24 [252], although the significance of these 
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interactions in each case until now remained obscure and unexplained. To shed more lights on 

the association of NPM1 with viral proteins, in chapter 5 we have investigated NPM1 physical 

interaction with HIV-1 protein Rev and HSV-1 protein US11 in order to perform binding epitope 

mapping of NMP1. Rev is 116-amino acids long and its RNA-binding domain is composed of an 

arginine-rich motif, which binds to different HIV-1 RNA stem loop structures [350]. The RNA- 

binding domain of Rev acts also as a nuclear/nucleolar targeting signal and can deliver 

cytoplasmic proteins to the nucleus or nucleolus [271,350]. US11 is an abundant HSV-1 protein, 

which is expressed late during infection [351]. It has been reported that US11 functionally 

substitutes Rev and Rex proteins by stimulating expression of glycoproteins required for retroviral 

envelope synthesis [235]. US11 interaction with cellular proteins is required during HSV-1 

infection. In this study, we have identified NPM1 as a new nucleolar protein partner for US11 and 

characterized the subdomains responsible for their interactions.  

Our data indicate that Rev exhibits two NPM1 binding sites on both the pentameric, N-terminal 

oligomerization domain (NPM1OD) and on the central histone-binding domain (MPM1HBD), while 

HSV-US11 has only one binding site on NPM1OD. We suggested that the different NPM1 domains 

interact in a mechanistically different mode with the Rev and US11 proteins. Rev association with 

NPM1 underlies presumably an RNA-independent bimodal binding mechanism. In the case of the 

NPM1-US11 interaction, we observed a strong binding of US11 to NPM1OD, which is most 

probably achieved via C-terminal RBD of US11 (US11Cterm), containing arginine rich (R-rich) motif. 

The C-terminal domain of US11, which is involved in the nucleolar localization of US11, binds 

NPM1 stronger than the N-terminal domain. Since C-terminus of US11 is rich in arginine, these 

results nicely support the idea that arginine-rich motif mediates the interactions with NPM1 

[352]. While the obtained data regarding US11 report its unprecedented direct interaction with 

NPM1, our measurements with Rev confirm previously obtained observations. The 1:1 

stoichiometric ratio suggests that NPM1FL exhibits one binding site for one HIV-1 Rev molecule. 

Since Rev has the tendency to aggregate also under normal physiological conditions [353], it is 

very likely that NPM1, by acting as a molecular chaperone, increases the Rev solubility and 

mobility during the import into and throughout the nucleus [260].  

Furthermore, the interaction of synthetic peptide CIGB-300 and NPM1 was investigated. This 

peptide has the cell penetrating peptide Tat with R-rich motif. CIGB-300 has been described as a 

proapoptotic peptide with anti-proliferative activity in vitro and anti-tumor activity in vivo [262]. 

We observed in this study that only NPM1OD, and with 5-fold lower affinity compare to NPM1FL, 

associated with fCIGB-300 but not the other domains of NPM1. This higher affinity can be 

explained by an avidity effect that originates from core N-terminal domain and the dynamic 
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flexible tails similarly to the model proposed for nucleoplasmin interaction with histones [354]. 

Afterward, the molecular docking was used to make a model of CIGB-300-NPM1 interaction. 

There is an acidic region (A1) in NPM1OD which has been recently shown to play a crucial role in 

the interaction with R-rich motifs of NPM1 binding proteins, such as p19ARF, ARF6, the ribosomal 

protein L5, and interestingly HIV-1 Rev [352]. A model of the complex between NPM1OD and CIGB-

300 provided insights into different sites for the association of the CIGB-300 peptide, especially 

the R-rich motif of the Tat contacting negative charges of the A1 region of NPM1OD. Additionally, 

our displacement experiment with Rev indicates that CIGB-300 shares the same binding site on 

NPM1 and may act as an inhibitor of NPM1-Rev interaction. Most likely for the same reason we 

observed a reduced expression of viral production in HIV-1 infected cells treated with the CIGB-

300 peptide. In addition, our displacement data have shown that the NPM1-US11 interaction was 

also modulated by CIGB-300. Thus, it is tempting to speculate that US11 and Rev, two functionally 

homologous viral proteins, share a similar binding site on NPM1 as suggested in this study for 

CIGB-300 [260]. 

Rev, US11, and CIGB-300 contain R-rich motif which acts as NLS by binding to the nuclear import 

receptors in nuclear translocation of viral proteins [355-358]. In addition to that, Rev, NPM1, and 

US11 are shuttling between the nucleus and the cytoplasm, and US11 C-terminus is critical for 

both nucleolar accumulations of US11 and its nucleocytoplasmic export [272,359]. On the other 

hand, nucleolar shuttling and accumulation of Rev requires interaction with NPM1 [253,358]. 

Thus, we hypothesize that, (i) R-rich motifs of viral proteins serve as NPM1 binding sites that 

facilitate their nuclear transport analogous to NLS-importin system, and (ii) NPM1 most likely acts 

as an auxiliary factor for R-rich motif-containing viral proteins, such as HIV-1 Rev and HSV-1 US11, 

and achieves their transport into different nuclear compartments and subnuclear domains, 

leading to nuclear egress of infectious viral particles (Fig. 10).  

In conclusion, NPM1 seems to represent a key protein in viral infections that is hijacked by 

invading pathogens to facilitate infection. Unrevealing the association of nucleolar protein NPM1 

with the viral proteins Rev and US11 may advance our understanding of HIV and HSV pathology 

and further imply that NPM1 can be exploited as a therapeutic target for infectious diseases. 

In this study only the interaction of these proteins was investigated. The possible regulatory 

roles and molecular processes in which these proteins are involved during viral infection are still 

needed to be elucidated. 
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Figure 10. Model for the regulation of nuclear export and import of Rev and US11 viral proteins. After 
synthesis in the cytoplasm, Rev and US11 are rapidly transported to the nucleus through an interaction of 
their arginine-rich nuclear localization signal (NLS) with the nuclear import factor importinß. NPM1 may act 
as an auxiliary protein in this process. The same arginine-rich motif in Rev is responsible for binding to the 
Rev response element (RRE). The export of unspliced/partially spliced HIV-1 RNA occurs through a CRM1 
dependent pathway. NPM1/Rev/CRM1/RanGTP complex cooperates with DDX3 RNA helicase for the export 
of unspliced/partially spliced HIV-1 RNAs from the nucleus through the nuclear pores. Unlike to HIV-1, the 
export of HSV-1 RNA is not CRM1 dependent. NCL is required for efficient nuclear egress of HSV-1 
nucleocapsids and US11 is a structural protein which is cotransported with capsids, suggesting that NCL and 
most probably NPM1, through their interactions with US11, could participate in the transport of the viral 
particles. CIGB-300 shares the same binding site on NPM1 as Rev, and act as an inhibitor of NPM1-Rev 
interaction. Consequently, reduced expression of viral production in HIV-1 infected cells treated with the 
CIGB-300 peptide is observed. The question marks show unknown roles of Rev-NPM1 and US11-NPM1 
complexes.  

5.4 Nucleolin and FMRP interaction 
As it was mentioned in introduction, nucleolin (NCL, C23), is multifunctional phosphoprotein 

predominately localized in nucleoli where it plays key roles in mRNA stability and translation, 

transcription, ribosome assembly and biogenesis, and microRNA processing. The prerequisite for 

this multifunctionality is interaction with multitude of other proteins. One of these proteins is the 

fragile X mental retardation protein (FMRP) which belongs to the RNA-binding, fragile X related 

protein (FXRP) family [283,360]. Absence of FMRP causes Fragile X syndrome (FXS) which is one of 

the most common forms of inherited mental retardation, which is associated with various 
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behavioral and physiological abnormalities, including social withdrawal, anxiety, intellectual 

disability, epilepsy, and autism [361-363]. Chapter 6, describes the physical and functional niches 

of FMRP by analyzing the subcellular distribution of endogenous FMRP and its complexes under 

native conditions in HeLa cells. This study demonstrated the presence of FMRP-containing 

complexes in the nucleus and the cytoplasm. These complexes contain nucleolin and other crucial 

factors for RNA processing and translational control. A direct interaction of FMRP with nucleolin 

was identified by RNase digestion experiments and interaction studies using purified proteins. We 

were further able to identify the responsible binding epitopes as the N-terminus of FMRP and the 

RGG domain of nucleolin. All to all, obtained results, (i) provided valuable insights into FMRP 

association with various nuclear and cytosolic fractions of variable molecular weights, (ii) 

uncovered a direct interaction between FMRP N-terminus and the RGG domain of nucleolin, and 

(iii) identified the existence of two functional NoLSs at the C-terminus of FMRP [188]. A potential 

functional role for the FMRP-nucleolin complex formation may be nucleocytoplasmic shuttling of 

nucleolin provided by the presence of functional NLS, NoLSs, and NESs existing in FMRP. These 

data open new perspectives of a possible mechanistic link between nucleolar ribosome 

biogenesis, RNA shuttling, and the cytoplasmic translational machinery that may be dependent on 

distinct functional subsets of FMRP-nucleolin complexes.  

In conclusion, we proposed a novel mechanism by which a transient nucleolar localization of 

FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin 

and possibly ribosomes, in order to regulate translation of its target mRNAs. 
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