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Abstract 

Ecological communities are composed of multiple species. These co-occuring organisms are 

entangled in a complex web of interactions, interdependences and connections, which is the basis 

of ecological and evolutionary dynamics and processes. Thus, many ecosystem functions such as 

pollination, seed dispersal and nutrient cycling as well as community structure and stability depend 

on biotic interactions. Within plant-animal communities, functional plant traits, such as morphology, 

scent or phenology, mediate interactions and consequently affect community structure. This thesis 

explores functional floral traits as mechanistic explanation for flower-visitor community structure, 

with a focus on two topics: Impact of intraspecific floral trait variation in flower-visitor communities 

and floral traits as mechanism underlying alterations in communities due to changes in the species 

assemblage and disturbances, e.g. due to invasive species.  

Within flower-visitor communities, we begin to understand how intraspecific variation in behavioural 

characteristics within an animal species is affecting the dynamics and structures of interactions. 

However, to what extent intraspecific variation in floral traits leads to differences in flower-visitor 

interactions between plant individuals is poorly understood. In a common garden experiment, we 

studied differences between plant individuals in their interactions with flower visitors and the 

correlation of these differences to intraspecific variation in phenotype and reproductive success. 

Therefore, all interactions between arthropods and flowers of 97 Sinapis arvensis individuals 

throughout their lifetime were recorded and linked to plant individuals’ phenotypes. We showed 

that plant individuals significantly differed in their quantitative and qualitative interactions with 

arthropods on flowers. These intraspecific differences remained stable over the entire season and 

thus were time-invariant. Variation in interacting arthropod communities was driven by a marked 

intraspecific variability in the floral phenotype (i.e. phenology, morphology and scent) and resulted 

in differences in reproductive success. Further, this variation may subsequently affect network 

statistics that are commonly used to characterize the structure of interaction networks since these 

statistics classically summarise interactions at species level and neglect intraspecific variation. In a 

resampling approach using the field data complemented with the recordings from the common 

garden experiment described above, we evaluated whether and how intraspecific variation in 

interactions alters commonly used aggregate statistics. Our results show that commonly used 

network statistics are sensitive towards changes in the interaction patterns of one plant species 

within a multi-species network, which may affect the ecological interpretation of the stability of 

communities or other network properties. Our results show that intraspecific variation in functional 

floral traits and interactions of plant species has pronounced effects in community and network 

context, potentially with implications for the persistence of communities and populations, and their 

ability to withstand environmental fluctuations. Further, by challenging the robustness of commonly 

applied network indices our findings have important methodological implications for the 



investigation of community and network structure and especially emphasize the urge for a 

sufficient and representative sampling of interactions.  

The structures and dynamics of a given community can be severely altered by the establishment 

and spread of introduced species (i.e. invasive species). Driven by the strong competitive abilities 

of invasive, native and endemic species often suffer from resource depletion, which may even lead 

to the displacement of these species. We quantified the niche sizes and overlaps of native and 

introduced flower visitor taxa in Hawaii Volcanoes National Park in order to reveal the ecological 

mechanisms underlying competition. We developed and used a novel trait-based approach 

(dynamic range boxes) adopting the concept of n-dimensional hypervolumes. This approach 

improves the concept of multivariate range boxes by accounting for the distribution of the data 

within their range, while still no assumptions on the underlying distributions are needed. Each 

dimension of the hypervolume represents one functional floral trait that affects foraging choices of 

flower visitor species. We could show that on average introduced flower visitor taxa were more 

generalized in resource use (larger niches) than native taxa. Small niche sizes of native taxa partly 

resulted from their specialization on native flowering plant species whereas introduced flower 

visitors interacted with both native and introduced plant species proportional to their abundance. 

Additionally, natives shared a larger proportion of their niches with introduced taxa than vice versa, 

suggesting a higher competitive ability of introduced taxa. Our results showed that the functional 

composition of plant communities as well as the ecological and evolutionary background of 

consumers are important factors in explaining the structure of interaction networks, and help to 

reveal competitive patterns within communities. Predicted range expansion of invasive plant and 

flower visitor species may further reduce the availability of resource for native flower visitors; at the 

same time competition for the remaining resources may increase. Thus, introduced species with a 

strong competition potential can cause severe current and future threats for native species. 

In summary, this thesis analyses the linkage between intraspecific floral trait variation and 

interaction patterns as well as floral trait variation as mechanistic explanation for alterations in 

community structure due to invasive species. This work highlights the importance of intraspecific 

trait variation for interaction patterns within communities and shows how functional traits can 

explain and may predict the impact of alterations within communities. All chapters demonstrate that 

functional traits as an interface of plants and plant-visiting animal species provide a central 

mechanism explaining community structures. Thus, considering functional plant traits at different 

hierarchical levels can improve our knowledge of community structure and dynamics and thereby 

help to generate a general understanding of the fate of communities under global change.   

 



Zusammenfassung 

Ökologische Gemeinschaften bestehen aus zahlreichen Arten. Die Organismen innerhalb einer 

Gemeinschaft bilden ein komplexes Netzwerk aus Interaktionen, Abhängigkeiten und 

Wechselwirkungen, welches die Grundlage für ökologische und evolutionäre Dynamiken ist. 

Folglich sind viele essentielle Ökosystemfunktionen wie Bestäubung, Samenausbreitung und 

Nährstoffkreisläufe, aber auch die Stabilität von ökologischen Gemeinschaften von biotischen 

Interaktionen abhängig. Innerhalb von Pflanze-Tier-Gemeinschaften beeinflussen funktionelle 

Pflanzenmerkmale, wie Morphologie, Duft oder Phänologie, die Interaktionen und somit auch die 

Gemeinschaftsstrukturen. In meiner Dissertation wurde der Einfluss von funktionellen 

Blütenmerkmalen auf die Struktur von Blütenbesuchergemeinschaften untersucht. Der Fokus lag 

dabei auf zwei Themen: Den Auswirkungen von innerartlicher Variation in Blütenmerkmalen auf 

Blütenbesuchergemeinschaften sowie Blütenmerkmale als erklärendem Mechanismus für 

Veränderungen in Gemeinschaften aufgrund von Veränderungen in der Artenzusammensetzung 

und Störungen. 

Während es bekannt ist, dass die innerartliche Variabilität einer Tierart in Verhalten und 

Besuchermustern die Strukturen von Blütenbesuchergemeinschaften stark beeinflussen kann, ist 

es unklar, ob innerartliche Variation einer Pflanzenart ähnliche Effekte auslösen kann. In einem 

„Common Garden“-Experiment wurde untersucht, inwieweit sich Pflanzenindividuen in ihren 

Besuchsmustern unterscheiden und ob diese Unterschiede durch den individuellen Phänotyp 

erklärt werden können oder den individuellen Reproduktionserfolg beeinflussen. In diesem 

Experiment wurden während der gesamten Lebensdauer von 97 Sinapis arvensis-Individuen alle 

Interaktionen mit Blüten aufgenommen und anschließend mit dem individuellen Phänotyp 

korreliert. Es konnte gezeigt werden, dass Pflanzenindividuen sich in ihren quantitativen und 

qualitativen Interaktionen mit Arthropoden auf Blüten unterscheiden. Diese innerartlichen 

Unterschiede waren über die gesamte Lebensdauer der einzelnen Individuen konstant und somit 

unabhängig vom Alter des Pflanzenindividuums. Diese gefundenen Unterschiede sind auf eine 

ausgeprägte innerartliche Variabilität im Blütenphänotyp (Phänologie, Morphologie und Duft) 

zurückzuführen und wirkten sich zudem auf den Reproduktionserfolg der einzelnen Individuen aus. 

Netzwerkstatistiken, die häufig genutzt werden, um die Strukturen von Interaktionsnetzwerken zu 

beschreiben, fassen Interaktionen klassischerweise auf Artniveau zusammen und berücksichtigen 

innerartliche Variabilität nicht. Basierend auf einer Feldstudie und den Resultaten des oben 

beschriebenen „Common Garden“-Experiments wurde mittels eines Resampling-Verfahrens 

untersucht, inwieweit innerartliche Variabilität in Interaktionen oft genutzte Netzwerkstatistiken 

beeinflusst. Unsere Ergebnisse zeigen, dass Netzwerkstatistiken sehr empfindlich auf kleine 

Änderungen in den Besuchsmustern einer Pflanzenart reagierten. Die Schwankungen in den 

Statistiken waren in einem Rahmen, der die ökologische Interpretation in Bezug auf die Stabilität 

von Gemeinschaften und andere Merkmale beeinflussen kann. Diese Ergebnisse zeigten, dass 



innerartliche Variation in funktionellen Blütenmerkmalen und Interaktionen einen starken Einfluss 

im Kontext von Gemeinschaft und Netzwerken ausüben kann. Dies hat möglicherweise 

Auswirkungen auf die Beständigkeit von Gemeinschaften und Populationen sowie deren 

Fähigkeiten, Umweltschwankungen standhalten. Von einem methodischen Standpunkt aus 

betrachtet unterstreichen diese Ergebnisse die Wichtigkeit einer repräsentativen und ausführlichen 

Beprobung. 

In einer Gemeinschaft können sich deren Strukturen und Dynamik durch die Ansiedlung und 

Ausbreitung von gebietsfremden Arten (d.h. invasiven Arten) erheblich verändern. Invasive Arten 

sind häufig sehr konkurrenzstark und folglich in der Lage, Ressourcen vor einheimischen und 

endemischen Arten auszubeuten. Dies kann dazu führen, dass heimische Arten unter 

Ressourcenmangel leiden, was wiederum zum lokalen Aussterben dieser Arten führen kann. Um 

die zugrunde liegenden Mechanismen der Konkurrenz zwischen heimischen und eingeführten 

Arten zu untersuchen, haben wir in einer Feldstudie im Hawaii Volcanoes National Park, USA, die 

Nischengröße und -überlappung von einheimischen und eingeführten Blütenbesuchern 

quantifiziert. Dafür haben wir basierend auf dem Konzept des n-dimensionalen Hypervolumes eine 

neue Methode ‚dynamic range boxes‘ entwickelt und genutzt. In dieser stellt jede Dimension des 

Hypervolumens ein funktionelles Blütenmerkmal dar, welches die Besuchsentscheidung von 

Blütenbesuchern beeinflusst. Grundsätzlich kann diese Methode nicht nur für Pflanzenmerkmale, 

sondern auch in anderen Bereich eingesetzt werden. Zudem verbessert diese bisher existierende 

Methoden wie z.B. ‚multivariate range boxes‘, da unsere Methode die Verteilung der Daten 

berücksichtigt, aber keine bestimmte Verteilung der Daten voraussetzt. Wir konnten zeigen, dass 

eingeführte Blütenbesuchertaxa im Durchschnitt generalisierter in ihrer Ressourcennutzung (= 

größere Nischen) sind als einheimische Taxa. Die kleinere Nischengröße einheimischer Taxa 

beruhte zum Teil darauf, dass diese eher auf einheimische Blüten spezialisiert waren, während 

eingeführte Blütenbesucher einheimische und invasive Pflanzen gemäß ihrer Häufigkeit 

besuchten. Darüber hinaus teilten einheimische Taxa einen größeren Anteil ihrer Nische mit 

eingeführten Taxa als umgekehrt, was auf eine höhere Konkurrenzfähigkeit der eingeführten Taxa 

schließen lässt. Unsere Ergebnisse zeigen, dass die funktionale Zusammensetzung von 

Pflanzengemeinschaften sowie der ökologische und evolutionäre Hintergrund der Blütenbesucher 

wichtige Faktoren sind, die die Gemeinschaftsstrukturen und die Konkurrenz innerhalb von 

Gemeinschaften erklären können. Es wurde prognostiziert, dass invasive Pflanzen- und 

Blütenbesucherarten in Zukunft ihren Verbreitungsbereich auf Hawaii ausweiten werden. Dies 

könnte zu einer Verschlechterung der Ressourcenlage für einheimische Blütenbesucherarten 

führen, wobei gleichzeitig die Konkurrenz durch invasive Blütenbesucherarten zunimmt. Somit 

bedeuten eingeführt Arten eine große Bedrohung für die heimischen, hawaiianischen 

Blütenbesucherarten. 

Zusammenfassend wurde in dieser Dissertation der Einfluss von innerartlicher Variation in 

Blütenmerkmalen auf Interaktionsmuster sowie Blütenmerkmale als mechanistische Erklärung für 



Veränderungen in den Strukturen von Gemeinschaften durch invasive Arten untersucht. Diese 

Arbeiten unterstreichen die Bedeutung innerartlicher Merkmalsvariation für die Interaktionsmuster 

in Pflanze-Tier-Gemeinschaften und zeigen, dass funktionelle Blütenmerkmale die Auswirkungen 

von Veränderungen in Gemeinschaften erklären und möglicherweise auch voraussagen können. 

Die Ergebnisse in allen Kapiteln zeigen, dass funktionelle Merkmale als Schnittstelle von Pflanzen 

und Blütenbesuchern von zentraler Bedeutung für Gemeinschaftsstrukturen sind. Die 

Berücksichtigung von funktionellen Pflanzenmerkmalen auf verschiedenen Hierarchieebenen 

innerhalb von Gemeinschaften (d.h. Individuen, Art und Gemeinschaftsniveau) trägt zu einem 

besseren Verständnis dieser Strukturen und Dynamiken sowie den Veränderungen durch 

Klimawandel und anderer Faktoren bei. 
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General introduction 

An estimated total number of 8.7 million eukaryote species live on earth (Mora et al., 2011). 

A combination of those organisms can be found in (nearly) every area on earth, forming 

communities, which can be defined as “a combination of plant (and fungi), animal, and bacterial 

(microbial) populations, interacting with one and another within an environment, thus forming a 

distinctive living system with its own composition, structure, environmental relations, development 

and function” (Whittaker, 1975). Within communities a single plant species for example can interact 

with over hundreds of other species such as mycorrhizal fungi, endophytes, nitrogen-fixing 

bacteria, plant-pathogens, herbivores and their natural enemies or pollinators (Stam et al., 2014). 

Thus, the combination of all organisms and interactions within a community form a highly complex 

web of interdependencies and connections.  

Difficulties in understanding community structures and dynamics arise from their 

complexity. The structure of a community can be defined as the composition and diversity of 

species and their interaction patterns. Community dynamics refer to changes over time in the 

composition and diversity of species and their interactions. To reduce complexity within 

communities, ecologists mostly focus on manageable subsets and not the whole community itself 

(Morin, 1999). Often used subsets are consumer-resources networks like host-parasite, plant-

herbivore or plant-pollinator networks (Ings et al., 2009). Despite their complexity these networks 

possess identifiable structures and dynamics (Jordano et al., 2003; Petanidou et al., 2008). One of 

the most persuasive mechanistic explanations for these structures and dynamics are functional 

traits (McGill et al., 2006; Violle et al., 2007). Usually a functional trait is defined as measurable 

property of an organism with a strong influence on the organisms’ performances (McGill et al., 

2006). In this thesis, we extended this definition to include traits that influence the behaviour or 

performance of other organisms interacting with it. These interactions of course also influence the 

performance of the organism displaying the trait. In both cases, functional traits can include 

morphological, physiological or life history traits (McGill et al., 2006). For example, floral traits 

influence the performance of the plant (i.e. its reproductive success), but also the 

behaviour/performance of the pollinator (e.g. due to search for specific flowers or higher efficiency 

in foraging) (Morris et al., 2007; Ne’eman et al., 2010).  

The phenotype and trait distribution within a species can change due to multiple 

disturbances, e.g. climate change, habitat alteration or invasive species (Mouillot et al., 2013). The 

changes in functional traits can influence interaction patterns, performance of plants and animals 

and consequently community composition and dynamics. Thus, functional traits cannot only be 

used to investigate the underlying mechanisms of structures and dynamics in species interactions 

and species niches (Violle et al., 2007; Junker et al., 2013), but also of changes induced by 

environmental and anthropogenic alterations (Mouillot et al., 2013).  
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Changes, e.g. the introduction of new species, can severely alter the structure and 

dynamics of these webs and may even have cascading effects beyond the biotic community itself. 

In the Northern American oak forest the invasive gypsy moth (Lycaena dispar) causes increased 

tree mortality as a result of a severe increase in tree defoliation due to herbivory. The increased 

mortality leads to alterations in the tree composition with consequences for the whole faunistic 

community. These changes in community structure can ultimately result in altered ecosystem 

processes such as carbon allocation and nitrogen fixation, which may have further consequences 

such as acidification of stream waters (Lovett et al., 2002, 2006). This example also illustrates the 

different hierarchical levels within a community. At individual level, trees are influenced by 

increased defoliation. The resulting increased tree mortality alters the population dynamics of 

different species (i.e. species/population level) and ultimately leads to changes in the faunisitic 

composition of the community (i.e. community level). As all hierarchical levels are interconnected, 

we need to understand the structure and dynamics at all levels, to fully understand the responses 

and the stability of community in the face of alterations (Hooper et al., 2012; Lefcheck et al., 2015). 

Within this thesis, I explored the structuring role of functional plant traits for plant-insect 

interactions and use functional floral traits to estimate the impact of invasive flower visitors on 

native communities. 

Communities, interactions & functional traits as structuring mechanism 

Interactions & network structure 

Plant-animal interactions (e.g. prey-predator or flower-visitor interactions) influence 

community dynamics and diversity as they play a central role in plant reproduction and life histories 

of animals (Bascompte & Jordano, 2007). To reveal structures within these complex webs of 

interactions (i.e. communities), network approaches are commonly used. These approaches allow 

us to summarize and analyse the complex structure of interaction networks and their role in 

ecosystems (Kaiser-Bunbury & Blüthgen, 2015). An interaction network consists of nodes and 

edges, where each node represents a species and each edge an interaction between two species. 

There is a large number of different network statistics (e.g. interaction evenness, connectance, and 

modularity), which provide a single value derived from the networks’ interaction structure. These 

statistics describe the network structure (Olesen et al., 2007, 2012; Vázquez et al., 2007) and can 

inform on different important properties of the network, e.g. specialization or stability (Blüthgen et 

al., 2006; Hagen et al., 2012; Olesen et al., 2012).  

Within this thesis the focus was on six commonly used indices: connectance (C), interaction 

evenness (IE), complementary specialization (network level: H2’; species level: d’), modularity (M) 

and nestedness (N) (Dormann et al., 2009). C is based on presence/absence data and is the 

realized proportion of possible edges (i.e. interactions) within a network. For example, a network 

with four plant and four animal species has 16 possible edges (each plant species can potentially 
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interact with each animal species). If only five edges are present the connectance would be low (5 / 

(4*4) = 0.3125; full range connectance: 0-1, Fig. 1a). IE is a measure of the homogeneity of the 

interaction frequencies between species within a network. A low IE describes a high variation in 

interaction frequencies between different species pairs (Fig. 1b). d’, H2’, and M describe the 

interaction patterns of each species relative to the other species. d’ is calculated for each species 

within a network and depicts if the interaction frequencies of a species are similar to or different 

from other species (Fig. 1d). H2’ is closely related to the weighted mean d’ of all species in a 

network (weighted by the total number of observations for each species). It describes the 

“exclusiveness” of interaction frequencies within the whole network, e.g. in a network where most 

species interact with different partners the H2’ would be high (Fig. 1c). Thus, species-level index d’ 

can be used to describe the variation within a network and the network-level index H2’ is especially 

useful for comparison of different networks (Blüthgen, 2010). M describes the extent to which 

species are organized in subcommunities within networks. Species within a subcommunity (i.e. 

module) are linked more tightly together than to species in other modules (Fig. 1e, Olesen et al., 

2007). N characterizing the generalist-specialist balance in a network (Lewinsohn et al., 2006). A 

nested network features two properties. First, it has a core of generalist species in which 

generalists (e.g. plants) interact with other generalists (e.g. flower visitors). Second, the 

interactions strength is asymmetric meaning that specialist species only interact with generalists 

but not with other specialists (Fig. 1f). Empirical and theoretical studies have shown that valuable 

information can be derived from these network statistics for the maintenance of biodiversity and 

ecosystem functioning (e.g. Dunne et al., 2002; Kaiser-Bunbury et al., 2010; Junker et al., 2015). 

The ecological interpretations of these network indices are summarized in Figure 1. However, the 

empirical and theoretical evidence for some of these ecological interpretations is ambiguous or 

under debate (e.g. James et al., 2012; Staniczenko et al., 2013; Kaiser-Bunbury & Blüthgen, 2015) 

and some network indices (e.g. IE or C) are susceptible to sampling bias or incompleteness 

(Blüthgen, 2010; Kaiser-Bunbury & Blüthgen, 2015).  

Classically, these indices are used to describe networks at species level, where the mean 

interaction frequency between species pairs is considered. However, each species consists of 

different individuals representing the hierarchical level where interactions actually take place. 

Aggregation on species level thus may mask intraspecific variation and result in a loss of valuable 

information (Ings et al., 2009; Gómez et al., 2011; Tur et al., 2014). The influence of animal 

individuals on the structure and dynamics recently received more attention (Dupont et al., 2011; 

Song & Feldman, 2014; Tur et al., 2014, 2015). Variable behavioural characteristics and 

preferences of individuals can account for part of the structures found within populations and 

communities (Tur et al., 2014). In plant-centred networks, variation in the structure of individual 

networks (Gómez et al., 2011; Gómez & Perfectti, 2012) indicate that intraspecific variability affects 

community structure and ecological dynamics of plants and their interactions partners (Bolnick et 

al., 2011; Violle et al., 2012). However, we are lacking knowledge about driving mechanisms of 
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intraspecific variation in interactions and their influence on plant-centred network structure and 

dynamics.  

Figure 1. Visualization of several common network statistics and overview of their ecological (and 
methodological) interpretation. Bipartite graphs and matrix representations for hypothetical 4x4 or 8x8 
bipartite interaction networks with high and low value of each network statistics. In bipartite graphs, each 
node (black) represents a species and each edge (grey) an interaction. The width of the edges corresponds 
to the interaction frequency between both species. In matrix representation, each black square indicates that 
both species are interacting and each empty square indicates that both species are not interacting. a) – e) 
Network statistics at community level: connectance (C), interaction evenness (IE), complementary 
specialization (H2’), modularity (M), nestedness (N). f) Network statistic at species level: complementary 
specialization (d’). (Junker 2015 Mastermodul „Bestäubungsbiologie von Wild- und Nutzpflanzen”, University 
Salzburg; Bascompte et al., 2003; Olesen et al., 2007; Blüthgen et al., 2008; Bastolla et al., 2009; Kaiser-
Bunbury & Blüthgen, 2015). 

Functional Traits 

Several possibilities, e.g. species’ abundances, body sizes, phenology, traits such as floral 

scent or colour and other factors, have been discussed as explanation for the structure of networks 

in flower-visitor communities (Vázquez et al., 2009). This thesis further explored functional floral 

traits as mechanistic explanation for interaction, niche and community structures in flower-visitor 

communities, with a focus on morphology and scent as functional floral traits, while colour and 

resource quality and quantity can also play an important role (Stang et al., 2006; Lunau et al., 

2011; Junker et al., 2013; Junker & Parachnowitsch, 2015; Larue et al., 2015). These traits are 

displayed by flowers not independently but synchronously and thus they often mediate interactions 
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in combination (Junker & Parachnowitsch, 2015). Globeflowers (Trollius europaeus), for example, 

are pollinated by highly specialized flies. For a successful pollination the combination of floral 

colour and floral scent is required. The visitation rate of these flies is strongly influenced by small 

variations in floral colour, and floral scent plays an important role guiding the flies into the flower as 

well as in long-distance attraction (Ibanez et al., 2010).  

Trait variation can be large between species, but also between different populations of the 

same species (e.g. Junker et al., 2013; Gómez et al., 2014; Junker & Parachnowitsch, 2015). 

Between species variation in floral traits can be driven by selection due to pollinators as well as 

antagonists (e.g. Irwin et al., 2004; Junker & Blüthgen, 2010; Lunau et al., 2011; Van der Niet et 

al., 2014), while between different populations it may be driven by selection due to differences in 

local pollinators assemblages (Johnson, 2010; Gómez et al., 2014). Therefore, variation in floral 

phenotypes may directly translate in variation in visitation patterns between species and 

populations (Herrera, 2005; Ollerton et al., 2011; Gómez et al., 2014). Even within the population 

of one plant species flower visitors are able to discriminate plant individuals of the same species 

based on subtle differences in their floral phenotype (Conner & Rush, 1996; Mothershead & 

Marquis, 2000), which may lead to intraspecific variation in interaction patterns. However, variation 

in floral traits may be constraint if a plant species is pollinated by rather specialized flower visitors. 

In this case a successful pollination often depends on a precise pollen deposition, which is rather 

ensured by an invariant floral phenotype. This may be more relaxed in plant species with a 

generalised pollination system (Armbruster et al., 2004) and in populations confronted with a 

fluctuating environment (e.g. changing pollinator assemblages, Pérez-Barrales et al., 2007). 

Accordingly, in more generalised plant species floral traits like morphology, colour or scent, can 

feature a considerable intraspecific variation (Parachnowitsch et al., 2012). Overall, variation in 

floral traits mediates interactions of plants at individual, population and species level.  

To understand the impact of functional floral traits in structuring networks and communities 

a growing number of studies investigate the microstructure (pairwise interactions) of networks (e.g. 

(Junker & Blüthgen, 2010; Kaiser-Bunbury et al., 2014). For example, it has been shown that scent 

emission promotes the visitation of some flower-visitors, but repels others, which is reflected in the 

interaction strength between plants and insects (Junker & Blüthgen, 2010). Further, by 

experimentally manipulating floral scent the visitation patterns as well as the network structures 

(i.e. network statistics) are altered (Larue et al., 2015). In both studies floral scent provides a 

mechanistic explanation for the flower-visitor interactions. As mentioned above, floral traits are 

displayed in combination, thus using a set of floral traits can lead to a more detailed understanding 

of interaction patterns (Junker et al., 2013).  

Using a set of floral traits, we can define species-specific niches (Junker et al., 2013). The 

niche of a species is often conceptualized as n-dimensional hypervolume (Hutchinson, 1957). In 

the hypervolume each axis (i.e. dimension) represents a factor (e.g. environmental factor) that is 

required by an organism to live and reproduce. Accordingly, each floral trait can be viewed as a 
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niche dimension (i.e. dimension of n-dimensional hypervolume) that determines whether a flower 

visitor is able to exploit the resources offered by flowers (Junker et al., 2013). Thus, the niche 

concept provides a mechanistic explanation for structures within communities and the co-existence 

of species 

Trait-based niches 

 First introduced by Grinnell (1917), over the years the niche concept has been wildly 

debated and changed (e.g. Chase & Leibold, 2003). Commonly, there is a distinction between 

fundamental and realized niches (Hutchinson, 1957; Townsend et al., 2003). Fundamental niches 

are defined as the entirety of abiotic factors (e.g. soil type or temperature), but also biotic factors 

(e.g. interaction partners of other trophic levels) that allow a species to survive and reproduce in a 

given habitat (Townsend et al., 2003). However, in nature species interact and compete with other 

species, which reduces the expansion of the niche resulting in the realized niche (Figure 2a, 

(Townsend et al., 2003; Sargent & Ackerly, 2008).  

Within a community each species inhabits a specific niche. According to niche theory the 

competition potential of two species for e.g. a limiting resource increases with the similarity of their 

ecological niches (Townsend et al., 2003). Thus, if two species share parts of their fundamental 

niches (i.e. overlap) the realized niches of one or both species may largely include the shared part 

of their fundamental niches (Fig. 2b top). In case the fundamental niche of a species is nested 

within the niche of another species or several other species the first species may be displaced as 

the first species cannot shift towards non-shared niche space (Fig. 2b bottom, Funk et al., 2008). 

This is a situation indicated to be especially relevant if a new competitor of the same family or guild 

is introduced to a community (Duyck et al., 2004). Further, the overlap in the realized niche of two 

co-occurring species may even more strongly affect the coexistence of these species than the 

overlap in the fundamental niche as species may not be able to shift to non-shared niche space. 

Accordingly, realized niche overlap may potentially lead to competition with disadvantages for 

those species that share larger proportions of their niches with competitors than species that can 

avoid competition due to exclusive occupancy of parts of their niches (Fig. 2c). Thus, an 

asymmetry in niche overlap may define which species suffers more from competition (Reitz & 

Trumble, 2002). 

Within this thesis, niches of species were based on the observed frequency distribution of a 

species within a niche dimension. This approach inform about current niche sizes and overlaps, 

but not about past patterns. However, the current niche patterns may be a product of past 

alterations due to interspecific competition – “the ghost of competition past” (Connell, 1980). Thus, 

species that do not overlap in their observed niches can potentially compete. Further, whether 

niche overlap between two species indicates competition is dependent on whether the overlapping 

niche dimension is limiting for one of the two species. Nevertheless, overlap in observed niches 
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shows that species can directly interfere with each other and that they exploit the same resources 

(overlap in resources dimensions); both are strong indicator for apparent competition.  

 

 
Figure 2. Conceptualization of niche size and overlap a) Visualization of fundamental (dashed box) and 
realized (solid box) niches as two-dimensional range boxes. b) Two examples for the potential outcome of 
overlap in fundamental niches. Assuming that Sp. I and Sp. IV are strong competitors compared to Sp. II and 
Sp. III, the realized niche of Sp. II shifts to non-shared niche space while Sp. III is displaced as it cannot shift 
to non-shared fundamental niche space c) Potential overlap in realized niches. If two species symmetrically 
overlap both species share the same proportions of their niches (Sp. I and Sp. II). If two species 
asymmetrically overlap one species share larger proportions of their niches with another species than vice 
versa (Sp. II and Sp. III). d) Two-dimensional range boxes based on uniform distribution. Uniform distribution 
implicates the same observed frequency at each point within the species range in a niche dimension. 
However, observed frequencies may follow other distributions (e.g. normal or skewed). Blue curves (curve 
height = observed frequency at a niche dimension) depict different distributions (normal and skewed) that 
indicate shifts in the overlap between species compared to uniform distribution (red) and each other. All 
curves cover the same range in both niche dimensions.  

So far, several methods have been proposed to estimate niche spaces (i.e. n-dimensional 

hypervolumes) and their overlaps. Multivariate range boxes (Hutchinson, 1957) and convex hull 
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(Cornwell et al., 2006; Villéger, 2008) both use the full range of the data in each niche dimension, 

e.g. temperature or moisture. Thus, the distribution (i.e. the observed frequency of a species in 

each dimension) of the data is not considered or a uniform distribution for all data is assumed. The 

distribution, however, may vary between data and also provides important ecological information. 

For example, two normal distributions with the same range may overlap strongly, but two skewed 

(one left, one right) with the same range may have a much smaller overlap (Fig. 2d). Recently, to 

overcome this shortcoming two new approaches have been introduced: multivariate kernel density 

estimation (Blonder et al., 2014) and niche regions (Swanson et al., 2015). Multivariate kernel 

density estimation accounts for each gap in the data (Blonder, 2016), which potentially strongly 

overstates the biological meaning of gaps as they often may be sampling artefacts in multivariate 

data. While niche regions do not overstate gaps in the data, it requires multivariate normal 

distribution of the data. This may be applicable to some biological data, but not to other 

distributions like skewed or bimodal. Thus, despite the long prevalence of the niche concept and its 

explanatory power for structures and dynamics in communities, we still lack a robust and widely 

applicable method for its estimation of niche size and overlap (i.e. the n-dimensional hypervolume). 

Communities, interactions & the impact of invasive species  

In the last 150 years many plant and animal species were introduced into non-native areas 

due to anthropogenic activities (Lockwood et al., 2013). Once established these introduced species 

begin to interact with resident species (Hobbs et al., 2006) and thereby alter the interaction 

patterns within communities (Pyšek et al., 2012; Ricciardi et al., 2013; Simberloff et al., 2013). 

Mostly these alterations are detrimental for native species, e.g. result in population decline, and 

may even lead to their displacement by invasives and thus result in (local) extinctions (Pyšek et al., 

2012; Ricciardi et al., 2013; Simberloff et al., 2013; Traveset & Richardson, 2014). For instance the 

Nile Perch (Lates niloticus) introduced into Lake Victoria, East Africa, wiped out nearly 150 native 

fish species and altered the whole ecosystem (Pringle, 2011). Another example of extreme impact 

is the Burmese python (Python molurus bivittatus) that is massively spreading through the 

Everglades National Park and Southern Florida, USA, and is regarded as primary cause for the 

decline of several regional native mammal species (Dorcas et al., 2012). In Australia, numerous 

introduced animals like rabbits, foxes, cane toads or cats severely impacted native species and 

ecosystems (e.g. Burbidge & Manly, 2002; Shine, 2012). Further, alien flower-visitors like honey 

bees (Apis mellifera) and bumblebees (Bombus terrestris) are now introduced in nearly all parts of 

the world (Goulson, 2003). For example, the African honey bee (Apis mellifera scutellata) was first 

introduced to Brazil in 1956 and from there it colonized South and Central America and parts of the 

southwestern USA together with its hybrids (i.e. Africanized honey bees; hybrids of African and 

European honey bees) in less than 50 years (Schneider et al., 2004; Hall et al., 2014). Africanized 

honeybees receive a lot of attention due to their potential threats for humans, their economic 

impact and their replacement of the European honey bee (Schneider et al., 2004; Hall et al., 2014). 
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Further, they also strongly alter the structure and topology of native flower-visitor communities 

(Santos et al., 2012). 

In general, introduced flower visitors (especially bees) often interact with co-introduced 

plant species (Simberloff & Von Holle, 1999) but can also reach high interaction frequencies with 

native plant species (Junker et al., 2010). This may cause competition with native species that are 

adapted to and potentially specialized on native plants (Bezemer et al., 2014). Competition can 

arise when introduced species deter natives from floral resources (interference competition, e.g. 

Lach, 2008; Hanna et al., 2014) or when they deplete resources (exploitation competition, 

Goulson, 2003; Stout & Morales, 2009). Hence, the floral visitation rate of many native insect 

species decreases when invasive flower visitors are present (Montero-Castaño & Vilà, 2012). 

However, the magnitude of these effects strongly depends on the identity of the native and 

introduced flower visitors as well as other factors such as species densities or resource availability 

(reviewed in Goulson, 2003; Stout & Morales, 2009; Dohzono & Yokoyama, 2010). Furthermore, 

introduced species do not only affect single native species, but their impact can scale up to 

community level and lead to a rearrangement of the interaction patterns within networks. Often 

aliens account for most interactions within a community (Santos et al., 2012; Traveset et al., 2013; 

Albrecht et al., 2014). This monopolization increases the cohesiveness of the network (i.e. most 

plant species share the same generalistic alien visitors) and induces changes in the network 

structure/topology. However, this may not necessarily result in altered network indices (e.g. 

connectance) (Padrón et al., 2009; Kaiser-Bunbury et al., 2011). The alterations induced in 

interaction patterns are largely driven by the competitive ability, a broad resources use (i.e. 

generalist) of introduced species and their ability to rapidly and efficiently exploit resources, factors 

that are also attributed to a successful invasion (Pianka, 1981; Levine et al., 2003; Lach, 2008b; 

Junker et al., 2010; Lockwood et al., 2013). However, our understanding of the underlying 

ecological mechanisms of the strong competition ability, the integration of introduced species into 

native networks and their impact on community structure and dynamics is still limited (Traveset et 

al., 2013). 

Commonly, the niche overlap (i.e. competition potential) between native and invasive flower 

visitors is calculated based on the number of shared plant species used as resources (e.g. 

Goulson et al., 2002; Paini & Roberts, 2005; Lye et al., 2010). However, there is accumulated 

evidence that competitive interactions and potentially replacement or establishment of species are, 

at least partly, driven by the species’ functional traits (Mouillot et al., 2013). Multiple floral traits can 

be used to define the niche of a floral visitor (see paragraphs functional traits & trait-based niches, 

Junker et al., 2013). This approach may provide a more accurate and mechanistic understanding 

of the species-specific niches within communities than using species identities only (Junker et al., 

2013). It especially allows to assess similarity of trait use and functional overlap of two species, 

which are both important predictors for functional similarity of native and invasive species (Baiser & 

Lockwood, 2011). Thus, incorporating functional traits into niche models may allow drawing 
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concise conclusions about the mechanisms that structure communities and determine the effects 

of invasive species on native communities (McGill et al., 2006).  

Hawaii as a natural laboratory for invasion biology 

Communities on oceanic islands feature several conditions that suggest a high 

susceptibility to invasions like a low species and functional group diversity and a disharmonic flora 

and fauna compared to other terrestrial habitats (Denslow, 2003; Krushelnycky & Gillespie, 2010). 

Indeed, invasive species are frequently found in most habitats of the Hawaiian Islands, one of the 

world’s most geographically isolated archipelagos (Vitousek, 1990). Today, it is estimated that 33 

non-indigenous passerine bird species have been established on at least one of the six Hawaiian 

Islands (Moulton et al., 2001) while presumably only 26 of the historical 77 native species 

(including species only known from fossils) are still present in the wild (Lockwood, 2006). Similar 

patterns can be found for plant species where nearly 50 % of the natural occurring species are 

non-native (Wagner et al., 1990). Within flower visiting insects, fourteen bee species including 

honey bees have been introduced, but not all are wide-spreaded (Magnacca, 2007). Besides bees, 

ants (approximately 45 ant species established in Hawaii) and social wasps can also heavily 

interfere with native flowers visitors (Krushelnycky et al., 2005; Traveset & Richardson, 2014). The 

effects may be especially severe in Hawaiian communities as historically such social 

hymenopterans were not present at the Hawaiian Islands (Krushelnycky et al., 2005). Therefore, 

Hawaiian endemic plants often lack adaptations to avoid exploitation of their flowers by ants 

(Junker et al., 2011). In consequence of the strong competition between native and introduced 

flower visitors, which sometimes is accompanied by predatory activities of introduced species (in 

the case of social wasps), the populations of native animals are often in decline (Paini, 2004; 

Traveset & Richardson, 2006; Wilson & Holway, 2010; Hanna et al., 2013). Thus, the increased 

abundances of invasive flower visitors are one reason for the strong decline of pollinators endemic 

to the Hawaiian Islands, especially birds (honeycreepers) and Hylaeus bees (Scott et al., 1988; 

Banko et al., 2002; Magnacca, 2007). In summary, due to its history Hawaii provides excellent 

conditions to investigate the changes induced by introduced flower visitors within the niche and 

interaction structures of native communities and to understand the spread and success of 

introduced species and the associated threat for native species. 

Outlook on thesis 

Within this thesis, I first explored the influence of functional plant traits on interaction 

structure at individual level. Classically, in trait-based as well as community ecology most studies 

summarize traits and interactions at species level (McGill et al., 2006; Violle et al., 2012; Shipley et 

al., 2016). However, interactions as well as traits are not a species but an individual property. 

Thus, we investigated if plant individuals differed in their qualitative and quantitative interaction 
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patterns and if these differences are time-invariant, meaning if they are ecologically relevant and 

not just stochastic effects and mediated by functional traits (Chapter 1). Further, we evaluated if 

the intraspecific variation in visitation patterns of one plant species scales up and influences the 

volatility of commonly used indices (aggregated network statistics) of interaction networks (Chapter 

2). 

Second, I explored the influence of multiple floral traits on interaction structure at species 

level. As described above, multiple functional traits can determine the niche of an interaction 

partner, e.g. flower-visitor can only exploit the resources of a flower with certain trait expression. 

Thus, floral traits can define the resource niche of the flower visitor species. By defining traits as 

niche dimensions, we developed a non-parametric approach to estimate the volume and overlap of 

n-dimensional hypervolumes (i.e. niche space, Chapter 3) and tested several hypotheses 

regarding niche differences of native and invasive flower-visitor species in the Hawaii Volcanoes 

National Park (Chapter 4). In summary, by exploring the interplay of traits, interactions and 

community structure at different hierarchical levels and in the context of multiple traits, this thesis 

aids to fill recent knowledge gaps in functional traits and community ecology. 
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Chapter 1 – Time-invariant differences between plant individuals in 
interactions with arthropods correlate with intraspecific variation in 
plant phenology, morphology and floral scent 

This chapter is published as: 

Kuppler J, Höfers MK, Wiesmann L & Junker RR. Time-invariant differences between plant 

individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, 

morphology and floral scent. New Phytologist (2016) DOI: 10.1111/nph.13858 

ABSTRACT 

• The basic units of ecological and evolutionary processes are individuals. Network studies 

aiming to infer mechanisms from complex systems, however, usually focus on interactions 

between species, not individuals. Accordingly, the structure and underlying mechanisms of 

individual-based interaction networks remain largely unknown. 

• In a common garden, we recorded all interactions on flowers and leaves of 97 Sinapis 

arvensis individuals from seedling stage to fruit set and related interindividual differences in 

interactions to the plant individuals’ phenotypes. 

• The plant individuals significantly differed in their quantitative and qualitative interactions 

with arthropods on flowers and leaves. These differences remained stable over the entire 

season and thus were time-invariant. Variation in interacting arthropod communities could 

be explained by a pronounced intraspecific variability in flowering phenology, morphology 

and flower scent, and translated into variation in reproductive success. Interestingly, plant 

individuals with a similar composition of flower visitors were also visited by a similar 

assemblage of interaction partners at leaves. 

• Our results show that the nonuniformity of plant species has pronounced effects in 

community ecology, potentially with implications for the persistence of communities and 

populations, and their ability to withstand environmental fluctuations. 

INTRODUCTION 

In community ecology, food webs and networks summarizing trophic interactions are 

classically recorded at species level, for example counting interactions between producers and 

consumers. In this species-centric approach where the mean interaction frequency between a 

species pair or the mean phenotype of a species is considered, the intraspecific variability in 

interaction patterns as well as in traits is often regarded as noise rather than as an important 

feature of ecological interactions. However, intraspecific variability in functional traits has long been 



21 
 

recognised in evolutionary (e.g. Newton et al., 1999) but also in ecological studies. Recently, the 

importance of differences between individuals has been re-emphasised and it has been attempted 

to incorporate them into community ecology (Violle et al., 2012). Thus, not accounting for 

intraspecific variability may lead to an underestimation of the functional diversity and complexity of 

communities. 

Between plant populations the qualitative and quantitative visitor composition can vary to a 

large extent (Herrera, 2005; Gómez et al., 2014a) and variation in floral traits between populations 

may be driven by the selection by different local pollinator assemblages (Johnson, 2010; Gómez et 

al., 2014a). However, even within populations, flower visitors have the ability to discriminate 

between conspecific plant individuals based on subtle differences in their floral phenotype (Conner 

& Rush, 1996; Mothershead & Marquis, 2000), which may be the basis for interindividual 

differences in flower visitor patterns. From an animal-centred (top-down) point of view, we began to 

understand how individuality affects the dynamics and structure of flower–visitor interactions within 

communities and populations (Dupont et al., 2011, 2014; Song & Feldman, 2014; Tur et al., 2014, 

2015). These top-down effects imposed by the variable preferences and behavioural 

characteristics of animal species and individuals can account for part of the structured interactions 

within communities and populations (Junker et al., 2013; Tur et al., 2014). Bottom-up effects – that 

is, effects mediated by the plant individuals’ genotype or phenotype – have also been described to 

influence the foraging behaviour of herbivores (e.g. Johnson & Agrawal, 2005; Hersch-Green et al., 

2011; Barbour et al., 2015). Similar effects in flower–visitor interactions have been shown for plant 

genotype (Burkle et al., 2013), but to what extent the intraspecific variation in a set of multiple floral 

traits affects the variability of flower–visitor interaction patterns between plant individuals is still 

poorly understood. 

Intraspecific variation can constitute up to 30% of the total variation in leaf and life-history 

traits within a plant community (Albert et al., 2010). By contrast, for flower traits it has been 

discussed that successful pollination of many plant species depends on precision in pollen 

deposition, which is facilitated by a rather invariant floral morphology – a precondition that may, 

however, be relaxed in plant species with a generalised pollination system (Armbruster et al., 

2004) and in populations confronted with a fluctuating environment (Pérez-Barrales et al., 2007). 

Accordingly, in more generalised plant species floral morphology and other flower traits such as 

scent, colour and phenology are known to feature considerable intraspecific variation 

(Parachnowitsch et al., 2012). Because plant–animal interactions are mediated by functional plant 

traits (Stang et al., 2006; Junker et al., 2013; Larue et al., 2015), intraspecific differences in these 

traits may affect the interaction structure among plant individuals, with potential consequences for 

the plant's reproductive success (Gómez & Perfectti, 2012). The functional position (sensu the 

‘Eltonian niche’) of species within communities is defined by functional traits and trophic 

interactions, a concept that can also be applied to plant individuals of the same species either 

originating from different (Gómez et al., 2008, 2014a; Gómez & Perfectti, 2012) or even the same 
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populations (Gómez et al., 2011). Nonuniform functional positions of plant individuals within 

communities potentially affect community structure and the ecological dynamics of plants and their 

interaction partners (Bolnick et al., 2011; Violle et al., 2012), which is indicated by a variable 

network structure across natural plant populations (Gómez et al., 2011; Gómez & Perfectti, 2012). 

In a common garden setting, we quantitatively recorded all interactions between arthropods 

and flowers and leaves of 97 plant individuals of a highly generalistic plant species (Sinapis 

arvenis, Brassicaceae) throughout their lifetime (i.e. from germination to the end of the flowering 

period and seed set). This setting minimized environmental heterogeneity, allowing a direct 

assessment of the importance of plant intrinsic factors (i.e. traits such as morphology or floral scent 

emission) in controlling the composition and abundance of different interaction partners and 

reproductive success, and thus the functional position of plant individuals within a population. 

Accordingly we tested the following hypotheses. First, plant individuals differ in the quantitative and 

qualitative composition of their interaction partners. Second, these differences are time-invariant, 

that is, plant individuals systematically differ in interaction patterns independent of time and age. 

To test for the time-invariance of interactions, we adopted an approach used in animal behaviour 

research to investigate behavioural differences among animal individuals. Third, the differences in 

interactions are the result of bottom-up effects mediated by intraspecific variation in flower and leaf 

traits. Fourth, intraspecific variability in the plant's phenotype and visitation pattern result in 

differences in the reproductive success. 

MATERIAL AND METHODS 

Study organism and experimental design 

Sinapis arvensis L. (Brassicaceae) is an annual, self-incompatible plant native to southern 

and middle Europe, which attracts a broad taxonomic range of flower visitors, mostly bees and 

hoverflies (Kunin, 1993). We used seeds in equal numbers from two wild populations (one from 

South-Germany, one from South-England, purchased from Templiner Kräutergarten, Germany and 

Herbiseed, England, respectively). Seeds were treated with aqueous gibberlic acid solution 

(1000ppm, Roth, Germany) and remained on wet filter paper in complete darkness at room 

temperature until germination. Seedlings were transferred into 3.5 l pots containing standard soil 

(Einheitserde Classic N:P:K 250:300:400 mg/l, Topferde, Einheitserde Werkverband e.V., 

Germany). Half of the plants from each population were additionally supplemented once with a 

slow release fertilizer (ten pellets Osmocote Exact Standard 3-4M (N:P:K:Mg 16:9:12:2, Osmocote, 

South Africa) to investigate how controlled environmental variation potentially influences the 

phenotype of plant individuals. After one week in a green house, the pots were moved to common 

garden in the Botanical Garden of the University of Salzburg, Austria (47°47'12.4"N, 13°03'32.3"E, 

422 m a.s.l.) in May 2013. In the common garden (11 x 5 m), a total of 97 pots containing one plant 

each (from one of the two populations and either supplemented with fertilizer or not) were arranged 
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in a full-factorial pseudo-randomised block design. Plants were covered in groups of nine or twelve 

individuals with a removable net (Monofil-Gaze, bioform, Germany) to prevent animals from 

interacting with the plants. Pots were recessed into the ground, but were removable for trait 

measurements. Approximately 250 S. arvensis plants surrounded the experimental plants to have 

an arthropod community specific for S. arvensis locally available once the experimental plants 

were made accessible. For further information see Methods S1.  

Plant-arthropod interactions 

Interactions between arthropods and plant individuals were recorded on non-rainy days (in 

total 33 days including 26 days during flowering period) between 8:00 and 16:00 h beginning at 

seedling stage until the end of the flowering period (13th May to 02nd August 2013, start of flowering 

period: 28th May 2013). An interaction was defined as a visit by an arthropod on one or more 

flowers or leaves of one plant individual, i.e. an individual flower visitor that visited several flowers 

of one plant individual consecutively was regarded as one interaction. The sampling was 

conducted by up to three persons within one day and on most days all 97 individuals were 

observed. We aimed to maximize the daily observation time for each plant individual and thus the 

observation time was adjusted depending on weather conditions and interaction frequency of plant 

visitors. Therefore, the observation time of plants differed among days between 10 and up to 295 

minutes and each person simultaneously observed between 4 (high floral abundance and high 

interaction frequency) and 49 (seedling stage and low interaction frequency) plant individuals at a 

given time. On most observation days all observed plant individuals were observed for the same 

amount of time and both in the morning and in the afternoon. The total observation time was 

approximately 45 h per individual. To make sure that all interactions that occurred in the lifetime of 

the plants were recorded, nets were removed only during observation times. All interactions on 

leaves and flowers were recorded and visitor taxa were separated into groups (afterwards referred 

as insect taxa) that were easily recognisable in the field (see Fig. 1, Table S1). Further, a few 

individuals of each group were collected for identification. Flower visitor behaviour has been 

reported to be size-dependent (e.g. Stout, 2000), thus we divided solitary bees and Syrphid flies 

into two size groups (small and large, Table S1).  
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Figure 1. Bipartite individual-based flower-visitor network observed at 97 Sinapis arvensis individuals. The 
network is based on interactions per plant individual per h. Nodes represent plant individuals (left) or flower 
visitor taxa (right). The width of the nodes denotes the proportional interaction frequency of partners. 
Dendrogram illustrates Bray-Curtis dissimilarities between plant individuals. Flower visitor taxa: Coleoptera = 
all Coleoptera excl. Meligethes sp., Diptera = all Diptera that could not be identified further; Syrphidae = all 
Syrphidae excl. Eristalini; Brachycera = all Brachycera excl. Syrphidae & Eristalini; Other solitary bees = all 
solitary bees that could not be identified further; Lepidoptera = all Lepidoptera excl. Pieris sp; Hymenoptera = 
all Hymenoptera that could not be identified further. 
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Traits and reproductive success 

For each plant individual, we measured several vegetative and floral traits including 

morphological and chemical traits (Table S2). Twenty-three traits were quantified once per plant 

(between 10th June and 15th July) and three (number of leaves, number of inflorescences and 

number of flowers per inflorescence) on a weekly basis (between 13th May and 02nd August). For 

the standardised measurements of the 23 traits, three or six haphazardly chosen plant individuals 

per day were carefully transferred to the lab. Each morphological trait was measured on three 

leaves and flowers from a low, middle and high position to avoid position and age effects; the 

mean was used for statistical analyses. Leaf traits (number, length, width, area, number of 

trichomes) were quantified directly on the plant; for the quantification of the floral traits (petal length 

and width, anther length, stamen length, display size, shape) three flowers per plant were removed 

(details see Methods S1, Table S2). 

Dynamic headspace scent samples were collected from one inflorescence per plant. The 

inflorescence was enclosed within a polyester oven bag (Toppits®, Germany) for 10 min and the 

emitted volatiles were then trapped on 1.5 mg Tenax (mesh 60– 80; Supelco, Bellefonte, PA, USA) 

and 1.5 mg Carbotrap B (mesh 20– 40, Supelco) in a quartz vial (Varian Inc.; length 15 mm, inner 

diameter 2 mm) for 2 min using a membrane pump (G12/01 EB, ASF Rietschle-Thomas, 

Puchheim, Germany) with a flow rate of 200 ml min-1. All samples were collected between 8:00 and 

12:00 h. Scent samples were analysed using an automatic thermal desorption system (TD-20, 

Shimadzu, Japan) coupled with a GC–MS (model QP2010 Ultra EI, Shimadzu, Japan) (further 

details see Methods S1). 

Stalks with mature siliques were cut and all siliques from one plant individual were placed in 

separate boxes for after-ripening. Ripe seeds were collected, counted and partly used to quantify 

the germination rate of seeds treated with water or an aqueous gibberlic acid solution (methods 

see above). We used 64 seeds (eight seeds from eight siliques each) per individual for each of the 

two germination assessments, i.e. a total of n = 128 seeds per plant individual. For the first week 

new seedlings were counted and removed on a daily bases. In the following four weeks they were 

checked all three days; afterwards every two weeks for additional ten weeks. We calculated seed 

viability and dormancy following Luzuriaga et al. (2006).  

Degree of intraspecific variation 

To evaluate the degree of intraspecific variation in plant traits (expressed as coefficient of 

variation CV) and interaction patterns (expressed as Bray-Curtis dissimilarity and Whittaker’s beta 

diversity) compared to the interspecific variation, we a) measured several plant traits (height of the 

inflorescences, display size inflorescence, anther and stamen length) as well as the interaction 

patterns of a set of sympatric plant species (co-occurring at the meadow were the common garden 
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was located) and b) extracted these data from a study performed on a grassland in Germany 

(Junker et al., 2013, Notes S1).  

Statistical analyses 

Structure of plant individual-based networks 

We investigated the structure of networks based on plant individuals (flower and leaf) by 

calculating common aggregate statistics characterising the structure of networks: one at individual 

level (complementary specialization d') and three at network level (connectance, interaction 

evenness, complementary specialization H2') (Dormann et al., 2009). The networks were 

constructed using the visitation frequency per hour for each visitor group. To evaluate the 

differences of individual- and species-based networks, we compared the values of these indices to 

values obtained from a number of networks consisting of multiple plant and animal species, which 

were obtained from the bipartite package (Dormann et al., 2008) in R (R Core Team, 2013) and the 

Interaction Web Database (Guimaraes et al., 2012).  

Inter-individual differences in interaction patterns  

In order to test whether differences between plant individuals in their interaction patterns do 

not represent random differences and are invariant over time, we compared independent 

observation events recorded over time. Such an approach is commonly used in behavioural 

ecology to define animal personalities that behaviourally differ from other individuals regardless of 

time, environment or situation (Wolf & Weissing, 2012). This concept is the key feature to 

investigate individual differences as well as the ecological and evolutionary consequences of 

intraspecific variability in behavioural traits (e.g. Gracceva et al., 2011) and is directly transferable 

to study differences in interaction patterns of plant individuals. Thus, we tested whether the ranking 

of plant individuals based on the daily interactions frequency with different insect taxa was 

consistent over the whole growing season. This approach allows detecting time-invariant 

differences between individuals independent of (variable) environments or conditions. For instance, 

the activity of animal taxa interacting with the plants in our study was highly variable over time due 

to variable weather conditions or the animals’ phenology, which affected evenly all plant individuals 

but does not inform about the inter-individual differences between plants. 

For each observation day, the residual number of interactions Ni for each plant individual i 

was calculated (i.e. the deviation of the observed interaction strength from a null model expectation 

Ei assuming an equal number of interactions per individual i per observation time ti; compare to 

Junker et al., 2011). If the interactions are driven by random effects all plant individuals should 

receive the same number of interactions as expected by the null model. However, if other 

structuring mechanisms (i.e. traits and animals’ preferences) are involved the observed number of 

interactions should deviate from the null model expectation. Residual number of interactions Ni per 
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plant individual i was calculated as Ni = Oi ti-1 – Ei with Oi as the number of observed interactions at 

plant individual i and ti as the observation time of individual i. Expected number of interactions Ei is 

defined as Ei = Tt-1 / I with T as the total number of observed interactions with all plant individuals, t 

as the total time of observation and I as the number of plant individuals observed at a day. Based 

on Ni, plant individuals i received a rank ri between 1 and I; subsequently, ri was standardised 

between 0 and 1 as standardised rank Ri = (ri - 1) / (I - 1). Thus, plant individual i with Ri = 1 

received the most interactions at the day under consideration; i with Ri = 0 the least. Ri was 

calculated for each individual for each observation day (n = 10.8 ± 0.27 days for each plant 

individual, mean ± SE) for seven visitor groups: the total interactions at flowers (all visitor taxa), as 

well as the interactions of flowers with honeybees (Apis mellifera), small solitary bees (<10mm), 

large solitary bees (>10mm), Syrphid flies of the tribe Eristalini, Syrphidae (excluding the tribe 

Eristalini), and the total number interactions at leafs (all visitor taxa). The five most abundant visitor 

species or taxa (Apis mellifera, small and large solitary bees, Eristalini, Syrphidae) are known to 

pollinate Sinapis arvensis (Kunin, 1993).  

The effects of plant individual, population and fertilizer treatment on interaction patterns (i.e. 

mean ranks 𝑅i) were analysed using linear mixed-effects models (LMMs) with population and 

treatment as fixed factor and plant individual as random factor and ranks of each observation day 

as response variable using restricted maximum likelihood. To assess the significance of plant 

individuals we followed a model building strategy that uses likelihood ratios tests to compare 

models with and without a given random effect (Pinheiro & Bates, 2000). Further, we estimated the 

relative contribution of the model factors to the variation in interaction patterns by calculating two 

types of R2-values (R2
marginal and R2

conditional) for all LMMs (Nakagawa & Schielzeth, 2013). R2
marginal 

is the relative contribution of all fixed factors (in our case population and fertilizer treatment) to 

variation and R2
conditional is the relative contribution of all fixed and random factors (in our case 

population, treatment and plant individual). Model assumptions were checked visually and if 

necessary data were log-transformed to achieve normal distribution.  

To test whether individual differences can be solely explained by the number of flowers per 

plant individual, which is a proxy for total resource availability, we repeated the rank calculations 

using a second null model expectation based on the number of flower per individual. Here the 

expected number of interactions is defined as Ei = (Tt-1 / F) * Fi with T as the total number of 

observed interactions with all plant individuals, t as the total time of observation, F as the total 

number of flowers open at the observation day and Fi as the number of flowers of individual i. For 

number of flowers values from weekly flower counts were used (Table S2, each observation day 

was in a two day range to the weekly counts). Then, Ei was used to calculate the residual number 

of interactions Ni per plant individual i as described above. 

Additionally, to test for consistency in flower visitor diversity per individual over time we 

calculated the visitor taxa richness, Inverse Simpson index and Hurlbert’s PIE for each plant 

individual for all observation days and compared the mean richness and diversity using LMMs. The 
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inverse Simpson index as well as Hurlbert’s PIE can be used as a surrogate for relative 

generalization in interaction partners per plant individual, but note that Hurlbert’s PIE is corrected 

for species abundance (Lázaro et al., 2010; Gómez et al., 2014b).  

To test whether plant individuals with similar flower visitor communities also have similar 

interactions at leaves, we correlated distances matrices for flower and leaf interactions consisting 

of Bray-Curtis dissimilarities between plant individuals based on number of interactions Oij between 

plant individual i and visitor taxon j (Mantel Test, Pearson's correlation, 9,999 permutations).  

Influence of plant traits on interaction patterns and reproductive success 

To investigate the effect of plant traits on the visitation patterns (i.e. mean ranks 𝑅i) and 

reproductive success (i.e. total number of seeds (seed set), number of seeds per flower, seed 

viability, seed dormancy, and seed size) we correlated (Pearson's product moment correlation) trait 

characteristics of plant individuals i with mean ranks 𝑅i based on visits of all animals and individual 

taxa. To correct for potential effects of sampling date (plant age) on the trait values that have been 

measured only once per plant individual, we used residuals of linear regressions as trait values in 

cases where Pearson’s product moment correlation indicated an age-dependency (Table S2). In 

order to investigate the effect of trait sets (further referred to as phenotype) on the quantitative 

composition of the visitor community (on flowers and leaves, separately) and the reproductive 

success (i.e. number of seeds per flower), we correlated distance matrices based on Bray-Curtis 

(community data) or Euclidean (trait data) distances between plant individuals i based on a set of 

traits, visitors or number of seeds per flower using a Mantel test (Pearson 's correlation, 9,999 

permutations). For this analysis, we used the following trait sets: plants’ morphology (separately for 

floral and vegetative morphology Table S2), floral scent bouquet (Table S3) and phenology (i.e. for 

each observation day the number of flowers Fi for each plant individual i was counted and 

standardised (Fi / max(Fi)). To assess the effects of the fertilizer treatment and the populations on 

plant phenotype (floral & vegetative morphology, scent, phenology; Table S2) we used 

permutational multivariate analysis of variance (PERMANOVA, 9,999 permutations). Further, to 

test for the effects of population and treatment on single plant traits and reproductive success we 

used analysis of variance (ANOVA). Statistical analyses were performed with the statistical 

computing software R (R Core Team, 2013) and the packages vegan (Oksanen et al., 2013), 

bipartite (Dormann et al., 2008), piecewiseSEM (Lefcheck, 2015) and nlme (Pinheiro et al., 2015). 

RESULTS 

Structure of plant individual-based networks 

In total we observed 27,988 interactions (25,730 on flowers and 2,258 on leaves) with an 

average of 265.4 ± 109 (mean ± SD) interactions on flowers and 23.3 ± 11.1 on leaves per plant 
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individual. Both the flower- and leaf- visitor networks revealed a high degree of generalisation (Fig. 

1, Fig. S1, Table 1). The individual-based leaf-visitor network had a higher connectance and a 

lower complementary specialization (H2’) than the individual-based flower-visitor network. Although 

differences in interactions between individuals are mostly due to quantitative shifts in the relative 

composition of visitor taxa and not due to qualitative shifts in visitor taxa composition, mean 

intraspecific dissimilarities between individuals was pronounced (Bray-Curtis dissimilarities: mean 

± SD 0.33 ± 0.15) but, as expected, smaller than inter-specific mean dissimilarities (Salzburg 2015: 

0.87 ± 0.17, Junker et al., 2013: 0.95 ± 0.09; Notes S1). Thus, the network based on plant-

individuals was also less specialised than species-based flower-visitor networks (Table 1). Note, 

that individuals with a similar proportional composition of visitor taxa were not similar in numbers of 

interactions per hour (Mantel Test, Pearson’s product-moment correlation, 9,999 permutations: r = 

0.01, p = 0.36, Fig. S2). 

Inter-individual differences in interaction patterns 

Visitation frequency (i.e. mean ranks 𝑅i) by arthropod taxa differed between plant 

individuals, i.e. plant individuals significantly differed in their mean ranks 𝑅i based on the visits of 

all and individual visitor taxa except for Eristalini and large solitary bees (Table 2; Fig. 2). While 

treatment did not affect the visitation patterns, population had a significant effect on the visitation 

patterns of Apis mellifera, large and small solitary bees (Table 2). However, plant individuals 

explained more variation in interaction patterns than population (Table 2) and the effects of plant 

individuals on visitation patterns were also present within populations (Table S4, Fig. S3). Similar 

patterns were found for the mean ranks 𝑅i using the second null model expectation (number of 

interactions is proportional to the number of flowers) while the visitation frequency of Eristalini and 

large solitary bees also differed significantly (Table S5, Fig. S4). Additionally, mean ranks 𝑅i based 

on the two null model expectations for each taxa and the total number of flowers correlated with 

each other (Pearson’s product-moment correlation: t > 2.1, r > 0.21, p < 0.039) except in the case 

of Apis mellifera (t = 1.79, r = 0.18, p = 0.077, Pearson’s product-moment correlation). This 

indicates that the use of the different null model expectations (equal number of visits and visits 

proportional to number of flowers) did not strongly influence the results and that the individual 

visitation patterns (i.e. mean ranks 𝑅i) are not explainable by varying resource availability across 

individuals, only. Thus, all following results are based on the mean ranks 𝑅i from the first null 

model expectation (equal distribution of visitors) allowing to gauge the relative effects of number of 

flowers or phenology on interaction patterns compared to other traits such as flower morphology 

and scent.  
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Figure 2. Time-invariant differences in visitation frequencies between plant individuals of Sinapis arvensis. a) 
– g): Each plot shows the mean ranks 𝑅i with 95% confidence intervals (CI) of all 97 plant individuals for total 
number of flower/leaf visitors or different visitor taxa. On each observation day, the plant individuals i were 
ranked based on increasing interaction frequencies with arthropod taxa. h): Mean species richness and i) 
mean inverse Simpson index of visitor community was calculated on each observation day, shown is the 
mean ± 95% CI. Mean ranks 𝑅i and means of each plant individual were compared using linear mixed-effect 
models and -likelihood ratio test, significance levels are given as asterisks: *** p < 0.001, ** p < 0.01, * p < 
0.05, ns = not significant. 

Table 1. Aggregate network statistics for individual-based networks based on qualitative flower or leaf 
interactions of Sinapis arvensis and flower-visitor networks considering multiple plant species. Shown are 
connectance, interaction evenness, mean complementary specialisation of the individual plant (d') and 
specialisation of the whole network (H2'). The values for the flower-visitor networks considering multiple plant 
species were calculated based on 25 (binary indices) or 20 (quantitative indices) flower-visitor networks (see 
Material and Methods). For all indices mean ± SE are given.  

Network Connectance 
Interaction 
evenness 

d’  
(mean ± SE) 

H2’ 

Plant individuals     
Flower visitors 0.414 0.735 0.004 ± 0.001 0.092 

Leaf visitors 0.269 0.795 0.002 ± 0.0001 0.21 
Plant species     

Flower visitors 0.18 ± 0.11 0.60 ± 0.10 0.41 ± 0.17 0.51 ± 0.16 
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Table 2. Results of linear mixed-effect models (LMM) testing for differences in interaction patterns between 
plant individuals (Sinapis arvensis). Each model included population (Pop.) and fertilizer treatment (Treat.) as 
fixed factors and plant individual (PlantID) as random factors. The relative contribution to the variation in 
interaction patterns of the three factors was assessed using two types of R2-values: R2

conditional and R2
marginal 

(Nakagawa & Schielzeth, 2013). R2
conditional is the relative contribution of both fixed and random factors, 

R2
marginal is the relative contribution of the fixed factors only. Significant results are highlighted in bold. 

 LMMs PlantID (𝜒12) Pop. (F1,94) Treat. (F1,94) R2
conditional R2

marginal 

Visitor taxa      

 Total flower interactions 25.03*** 3.91 1.36 0.09 0.009 

 Apis mellifera 14.71*** 11.97*** 1.09 0.08 0.02 

 Eristalini 0.21 0.0290 0.74 0.008 0.0008 

 Small solitary bees 25.96*** 19.54*** 0.08 0.13 0.04 

 Large solitary bees 2.02 21.36*** 1.39 0.06 0.03 

 Syrphidae (without Eristalini) 6.93** 0.09 0.003 0.04 0.0001 

 Total leaf interactions 12.75*** 0.87 0.04 0.06 0.002 

Diversity indices      
 Inverse Simpson index 1.58 39.15*** 0.001 0.06 0.04 

 Species richness 8.39** 35.28*** 0.67 0.09 0.05 

 Hurlbert’s PIE 0.13 22.1*** 0.08 0.03 0.02 

* p < 0.05, ** p < 0.01, *** p < 0.001; significance of fixed effects assessed with LMMs, significance of random effect with 

likelihood ratio test 

Plant individuals also showed time-invariant differences in the mean species richness of 

interaction partners (Table 2; Fig. 2h), but did not differ in the diversity measured as inverse 

Simpson index (Fig. 2i) or Hurlbert’s PIE (Table 2). Further, treatment did not affect the diversity of 

visitor either, but population had a significant effect on all diversity measures. Therefore, models 

including plant individual explained the same or a little more of the variation in visitation pattern 

than models including population, only. Overall, these results indicate that plant individuals interact 

with specific flower visitor communities that quantitatively and qualitatively vary in their 

compositions (Fig. S2, Fig. S5) and these plant-individual specific communities are time-invariant 

over the whole flowering period.  
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Figure 3. Heatmap on Pearson's product moment correlation coefficients r between plant traits, visitation 
frequencies (i.e. mean ranks 𝑅i) and reproductive success of plant individuals (Sinapis arvensis). Blue 
squares positive correlations, red squares indicate negative correlations. In the upper right half of the matrix 
only significant correlations (p < 0.05) are shown; asterisks denote correlations remaining significant after 
False discovery rate-correction for multiple comparisons. In the lower half all r-values are shown regardless 
their significance. 

Influence of plant traits on individual interaction patterns and reproductive success 

We found a considerable degree of intraspecific variation of plant traits (coefficient of 

variation CV ranging from 0.127 to 0.22, Notes S1, Table S2, S3), which is up to 70.6 % of the CV 

measured across several plant species (0.323 – 1.04, Notes S1). The intraspecific variation in 

individual traits explained variation in the visitations patterns of plant individuals (i.e. mean 

ranks 𝑅i). The significant correlations between visits and phenotype often were associated with 

traits representing the plant size (inflorescence height, mean number of inflorescences, display 

size of inflorescences, mean number of leafs, leaf length/width/area), phenology as well as anther 

and stamen length. We found no significant correlations between individual scent compounds or 

total scent emission and visitation rates after correcting for multiple tests (false discovery rate, Fig. 
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3). However, large solitary bees showed a trend towards higher visitation frequency on plants that 

had high emission rates of several scents compounds (e.g. ocimene or limonene) compared to 

plants with little emissions of these compounds (Fig. 3). Variation in visitation patterns (𝑅i) and 

plant traits also correlated with reproductive success of plant individuals (Fig. 3). For a multivariate 

visualisation (Co-Inertia analysis) of the association between traits and visitation rate of the 

different animal taxa see Notes S2.  

Individuals from different populations varied in their phenology, seed set, phenotype as well 

as several traits that can be used as surrogate for plant size (Table S6, S7). In contrast, fertilizer 

treatment had little effect on the plants’ phenotype (Table S6, S7) and consequently did not affect 

interactions with arthropods (Table 2).  

Additional to individual traits that explained part of the intraspecific variability in interaction 

patterns, the plant phenotype described by more than one individual trait (i.e. one scent 

compound) was also predictive for interaction structure. Plant individuals that were similar in floral 

scent bouquets, phenology, vegetative and floral morphology (each described by a number of 

individual traits) were also similar in their flower visitor communities (Mantel test, Table 3). 

Furthermore, plant individuals with a similar visitor community had a similar reproductive success 

(i.e. number on seeds per flower, Table 3).  

DISCUSSION 

Plant species occupy specific functional niches in communities that determine the species-

specific composition of their interaction partners (McGill et al., 2006; Junker et al., 2013), which 

results in nonrandom associations of plant and animal species in communities (Ings et al., 2009). 

Our study clearly reveals similar patterns within plant species whereby plant individuals differ in 

their quantitative and qualitative interactions with flower- and leaf-visiting arthropods resulting in 

nonrandom interaction patterns, too. These differences were invariant over time (throughout the 

entire season) and were largely independent of the number of flowers, emphasizing the importance 

of other traits in controlling differences in interactions, such as morphology and floral scent 

emission. The plant individual-specific arthropod assemblages also varied in species richness 

largely independent of the visitor abundance. The constancy in plant individual-specific interaction 

patterns adds complexity to community structure and suggests that plant individuals occupy 

specific functional positions in ecosystems. Thus, plant species may not necessarily be uniform 

entities regarding their ecological function. 

The identity, composition and relative abundance of pollinators can be regarded as 

important components of the niches of plant species (Sargent & Ackerly, 2008; Johnson, 2010). 

These components vary between plant species, but also between different populations of single 

plant species (Herrera, 2005; Gómez et al., 2014a). Recently, Gómez et al. (2014a,c) showed that 

in generalised species the relative visitation frequency of animal species to flowers contributes 
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more to differences between populations than the animal species identity and composition. Even 

minor shifts in relative frequencies of diverse pollinator assemblages across plant populations can 

have major consequences for plant performance (Gómez et al., 2011). In these studies the 

differences between populations may (at least partly) result from top-down effects of local flower 

visitor communities on plant reproduction and population dynamics. Our data clearly indicate a 

bottom-up effect of plant species shaping interactions between plant individuals and specific flower 

visitor assemblages recruited from a shared local species pool. In our common garden study the 

variation in environmental factors and the local arthropod species pool between plant individuals 

was kept to a minimum. Thus, plant intrinsic factors – that is, the phenotype as well as the 

phenology of plant individuals – are the cause for the well-structured intraspecific visitation 

patterns. 

Table 3. Results of mantel statistic testing for correlations between the following distance matrices: plant 
individuals’ visitor communities (flowers, leafs) (Bray-Curtis distance), scent, phenology, vegetative and floral 
morphology, number of seeds per flower as surrogate for the plant individuals’ reproductive success 
(Euclidean distance) of Sinapis arvensis. Significant positive correlations indicate correlating distance 
matrices, e.g. plant individuals with similar interaction patterns on flowers were also similar in interactions on 
leaves. Mantel statistic r-values are given. Significant correlations are highlighted in bold. 

 Flower visitor 
community 

Leaf visitor 
community 

Nr. of seeds 
per flower 

Leaf visitor community 0.086*  0.013 

Flower scent 0.155* -0.01 -0.011 

Phenology 0.345*** 0.029 0.12** 
Vegetative morphology 0.04 0.18*** 0.025 

Floral morphology 0.106** 0.136** -0.017 

Nr. of seeds per flower 0.176** -0.013  

* p < 0.05, ** p < 0.01, *** p < 0.001 

Plant individuals with similar flower visitor communities also had similar leaf visitor 

communities, indicating that interactions at both plant organs may not be independent of each 

other, possibly due to attraction or aversion to the same plant traits. It has been shown that, for 

example, pollinators and herbivores prefer the same trait characteristics (Strauss & Whittall, 2006) 

or that herbivory may alter flower and leaf traits (Strauss et al., 1996; Lucas-Barbosa et al., 2015). 

Thus, several constraints and ecological trade-offs may underlie multitrophic interactions mediated 

by functional traits. We found plant traits to be predictive for the visitation pattern of plant 

individuals, both when tested uni- or multivariately. However, our results suggest that a plant's 

phenotype rather than the characteristics of individual traits is important for the structuring of 

individual interactions. Note that groups of traits were highly integrated, that is, the characteristics 

of several traits (e.g. scent compounds or floral morphology) were strongly correlated, preventing a 

clear identification of individual traits as a cause for visitation frequency of individual animal taxa. 
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Such clusters may have evolved as adaptations to interaction partners (Pigliucci, 2003) or may be 

caused by ontogenetic constraints or pleiotropic effects (Jernigan et al., 1994); our data do not 

allow a differentiation between these effects. However, regardless of their 

evolutionary/physiological causes, these clusters clearly affected ecological processes, for 

example the partitioning of flower visitors within our experimental common garden. Divergences 

and convergences of phenotypes explain interspecific as well as intraspecific differences amongst 

spatially distinct communities in flower–visitor assemblages (Gómez et al., 2014c; Junker et al., 

2015). Here, we show that these quantitative and qualitative shifts in flower–visitor interactions also 

occur within populations mediated by rather small differences in the phenotypes of plant 

individuals. 

Variation in the phenotype and the phenology of plant individuals not only correlated with 

the flower–visitor composition, but also translated into variation in the reproductive success of the 

plants. The phenotype may affect the reproductive success directly (Gómez, 2000; Strauss & 

Whittall, 2006; Lay et al., 2011), for example due to differences in pollen germination or pollen loss 

(Song et al., 2013), or indirectly, for example due to effects on flower visitor communities. 

However, our data do not allow separating direct effects of the plant's phenotype from indirect 

pollinator-mediated effects on individual female fitness (i.e. seed set). Differences between plant 

individuals in the number of flower visits (total and per flower) as well as in the visitor composition 

may lead to differences in the reproductive success due to differences in pollinator efficiency 

across species (Sahli & Conner, 2007; Ne'eman et al., 2010). This variation in pollen deposition 

may lead to differences in seed production whereas other vital functions (i.e. germination rate) 

remain stable (Ashman et al., 2004; Knight et al., 2005). The plant individuals originated from two 

populations that experienced unknown but most likely different flower visitor communities to which 

the plants may have been adapted (Gómez, 2000). Differences in the plants’ phenotypes and 

reproductive success may indicate that one of the populations was better adapted to the local 

flower visitor pool, possibly due to a similar local flower visitor pool at their origin. 

Community stability is facilitated by a high species and functional diversity (Loreau & de 

Mazancourt, 2013; Turnbull et al., 2013). Scaling down to species level, we may assume that a 

high variability in traits across plant individuals and in flower visitor composition also positively 

affect the stability of plant populations (Waser et al., 1996). Furthermore, intraspecific trait variation 

is an important factor in ecological functioning (see Bolnick et al., 2011; Violle et al., 2012 for full 

review) and may help plant populations to cope with environmental change. Variability increases 

the probability that at least some phenotypes are able to reproduce under changing conditions and 

thus stabilises the population (Hooper et al., 2005). In annual self-incompatible plant species such 

as Sinapis arvensis pollinators are crucial for reproduction and thus for the persistence of plant 

populations. Therefore, a high inter-individual variation in traits mediating visitation patterns could 

facilitate the population's ability to buffer changes in the local pollinator pool; which changes both 
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naturally (Herrera, 1988; Basilio et al., 2006) and due to anthropogenic disturbances (e.g. Potts et 

al., 2010). 

Our results demonstrate that intraspecific variation in plant traits can have strong effects on 

interaction patterns, which may also affect community structure and ecosystem processes, and 

these factors need to be tested in future studies. Intraspecific variation as a prerequisite for 

selection has been intensively examined in evolutionary studies (Conner & Hartl, 2004). 

Acknowledging intraspecific variation in floral traits and visitation patterns in an ecological context 

indicates that plant species are not necessarily uniform entities, which leads to the conclusion that 

plant individuals occupy distinctive functional positions within populations and communities. Thus, 

our study clearly suggests that studies considering intraspecific variability in community ecology 

could facilitate a more detailed understanding of the persistence of communities or populations and 

their ability to withstand environmental fluctuations. 
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Chapter 2 – Volatility of network indices as a result of intraspecific 
variation in plant-insect interactions 

This chapter is submitted as: 

Kuppler J, Grasegger T, Peters B, Popp S, Schlager M & Junker RR. Volatility of network indices 

as a result of intraspecific variation in plant-insect interactions.  

ABSTRACT 

Classically the structure of interaction networks is derived from summarizing trophic interactions at 

species level, e.g. counting interactions between plants and flower-visitor species. This approach, 

however, neglects intraspecific variation in the composition and diversity of interaction partners, 

which can be pronounced. Intraspecific variation in interactions may thus affect both quantitative 

and qualitative network indices. In a resampling approach using field data, we evaluated whether 

and how intraspecific variation in interactions alters commonly used aggregate statistics. Our 

results showed that aggregate statistics as well as module structure are sensitive towards changes 

in the interaction patterns of one plant species within a multi-species network, which may affect the 

ecological interpretation of the stability of communities or other network properties. These findings 

challenge the robustness of commonly applied network indices, urge for a sufficient and 

representative sampling of interactions, and emphasize the significance of intraspecific variation in 

the community and network context.  

INTRODUCTION 

Network theory strongly contributed to the understanding about the structure of biotic 

interactions and their importance for community dynamics, function and stability (Heleno et al., 

2014). Classically network statistics summarize trophic interactions at the species level and thus 

consider the mean interaction frequency between species. Although recent studies emphasized 

the pronounced intraspecific variability in interactions in flower-visitor networks (Gómez et al., 

2014a; Tur et al., 2014b; Hoffmeister et al., 2015; Kuppler et al., 2016), it remains unclear whether 

variation among individuals of a single species is relevant at the community level comprising all 

species of a habitat.  

Network structure is commonly described by aggregate statistics such as connectance, 

complementary specialization or modularity (Olesen et al., 2007; Blüthgen et al., 2008). These 

properties may be explained by the abundance distributions of plants and animals, phenology, 

morphological matching and other factors (Vázquez et al., 2009; Junker et al., 2013). Further, 

several of these aggregate statistics appear to be relatively invariant between different species-
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based networks (Jordano et al., 2003; Petanidou et al., 2008). It has been suggested that this 

invariance reflects a general pattern of flower-visitor networks or that it is the result of methodology 

such as sampling at species level (Jordano et al., 2003; Tur et al., 2014b). In this context, it is 

valuable to understand how interactions at the individual level may drive the structure and 

dynamics at the species level (Olesen et al., 2007) and how they affect the robustness of network 

indices and the ecological evaluation of communities. 

We evaluated the sensitivity of aggregate network statistics to differences in visitation 

patterns of plant individuals. Therefore, we resampled the interactions of one plant species from a 

pool of interactions recorded at plant individuals and tested how the (natural) variation in the 

interactions of one plant species affect the properties of a multi-species network. Our simulation 

study aims to improve our understanding about the robustness of network analysis, which has 

implications for the interpretation of the structure and dynamics of species-based interaction 

networks.  

MATERIAL AND METHODS 

Flower-visitor interactions 

Flower-visitor interactions were recorded on a 30 x 30 m meadow plot in the Botanical 

Garden of the University Salzburg, Austria in June 2015. We observed all flowering plant species 

(n = 13 species) and added 20 potted individuals of Sinapis arvensis that were homogenously 

distributed in the plot. To facilitate homogenous monitoring, the plot was divided into four subplots 

(15 x 15 m, each). Flower-visitor interactions were recorded in random walks on four days between 

9:00 and 16:00 h (1 or 2 h in the morning and 1 h in the afternoon) resulting in a total observation 

time of 10 h per subplot (i.e. total observation time = 40 h). All interactions on flowers were 

recorded and visitor taxa were assigned to easily recognisable groups (Kuppler et al., 2016). 

Additional to the sampled flower-visitor interactions we used recordings of flower-arthropod 

interactions of 64 plant individuals of S. arvensis L. (Brassicaceae) that we recorded in a common 

garden setting in 2013 on the same meadow (Kuppler et al., 2016). In the further analysis, we thus 

used the data resulting in a total of 84 individuals.  

Network resampling and statistics  

To test the relative effect of time-invariant intraspecific differences between plant individuals 

on commonly calculated network indices and thus the ecological interpretation of the properties of 

multi-species networks, we generated interaction matrices containing the interactions of the 13 

plant species naturally occurring in the plot and the interactions of one or several (n = 1, 2, 3, ..., 

84) randomly sampled S. arvensis individuals. We resampled 84,000 (84 x 1000) networks N�𝑛𝑘� 

with n = total number of S. arvensis individuals (84) and k = number of included S. arvensis 
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individuals (1, 2, …, 84). For each k we resampled 1000 combinations without replacement. Each 

network consisted of the interaction frequency (per flower per hour) of the 13 plant species and the 

mean interaction frequency of N�84𝑘 � randomly selected S. arvensis individuals (Figure S1). 

Further, as quantitative network statistics are sensitive to differences in interaction frequencies, the 

resampling was repeated with a constant interaction frequency for each S. arvensis individual 

(proportional interaction strength per S. arvensis individual times the mean number of interactions 

of all S. arvensis individuals).  

For each resampled network N�84𝑘 � we calculated common aggregate statistics 

characterising its structure: one at species level (complementary specialization d’) and five at 

network level (complementary specialization H2’, connectance, nestedness (WNODF), interaction 

evenness, and QuanBiMo modularity (Dormann et al., 2008)). The QuanBiMo modularity algorithm 

(Dormann & Strauss, 2014) assigns species to modules based on their similarity in quantitative 

interactions. To test whether the intraspecific differences in interactions in S. arvensis affect the 

assignment of species into modules, we repeatedly (n = 1000) ran the QuanBiMo algorithm (steps 

= 1,000,000) on each of the resampled networks containing one S. arvensis individual N�841 �. For 

each of these resampled networks (n = 84) the plant species’ assignment to modules in the n = 

1000 QuanBiMo runs was compiled in a presence / absence matrix with plant species as rows and 

identified modules as columns (number of columns = sum of modules of all 1000 QuanBiMo runs). 

Based on this matrix we calculated Sørensen distances between plant species (small distances 

between species pairs thus indicate a common co-occurrence in one module). For all resampled 

networks containing two or more S. arvensis individuals N�84𝑘 � (n = 1000) we conducted the same 

calculations. To visualize the plant species’ affiliation to modules relative to the other species, we 

performed a principal coordinate analysis (PCoA). To visualize and quantify the deviation of the 

module composition (represented as PCoA) based on the networks containing the interactions of 

one or several N�84𝑘 � and all S. arvensis individuals �8484� we compared the deviation of the PCoAs 

using Procrustes analysis. Procrustes sum of squares ss were used as measurement for the 

deviation in the module composition. All analyses were performed with the statistical software R 

3.2.2. (R Core Team, 2013) and the packages vegan (Oksanen et al., 2013) and bipartite 

(Dormann et al., 2008). Additional methodological details are available in the electronic 

supplementary material. 
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Figure 1. Variation in commonly applied network statistics as a function of the number of Sinapis arvensis 
individuals included in interaction matrix. a – f) Range of values of network indices calculated for all networks 
N�84𝑘 � with k = S. arvensis individuals included. Insets visualize the raw values. Nonparametric local 
polynomial regression curve or linear regression lines (for nestedness) depict the trends in changes in the 
range of the aggregate network statistics. 

RESULTS 

In total, we observed 5,411 interactions with a mean interaction frequency per hour per 

flower of 1.88 ± 0.65 (SE) per plant species including S. arvensis. Aggregate statistics were 

sensitive to the intraspecific variation in interaction patterns in S. arvensis (figure 1). Their variation 

across different networks was largest for the mean complementary specialization d’, but relatively 

small for connectance, nestedness and interaction evenness. Further, different S. arvensis or 

combinations N�84𝑘 �induced a considerable variability in the species-specific complementary 

specialization d’ of most plant species (networks including one S. arvensis individual N�841 �, each: 

range of d’ for S. arvensis: 0.71; for all other plant species: range between 0 and 0.54;; figure 1f, 

electronic supplementary material, figure S2).  

The modularity analyses clearly showed that plant species that were part of the networks 

including only one S. arvensis individual N�841 � were assigned in variable combinations to different 

modules (figure 2). Further, the deviation in module composition in networks with N�841 � S. arvensis 

individual (measured as Procrustes sum of squares ss) was correlated with differences in the 
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interaction patterns, of each S. arvensis individual to the species mean (measured as Bray-Curtis 

distance, Spearman correlation: S = 68352, p = 0.005, figure 2c). This means that S. arvensis 

individuals that strongly differed in their interactions patterns compared to the species mean also 

more strongly altered the module composition of the network. Similar results were found for the 

resampled networks with a constant interaction frequency for S. arvensis (see electronic 

supplementary material). 

 
Figure 2. Influence of different Sinapis arvensis individuals on module composition. a, b) Procrustes plots 
comparing principal coordinate analyses (PCoA) based on Sørensen distances of plant species based on 
module affiliation for networks including only one S. arvensis individual N�841 � (points) or all individuals N�8484� 
(arrowheads). Procrustes sum of squares ss are shown as measurement for the deviation c) Correlation 
between the deviation in module composition of networks including individuals to network species mean (ss-
values) and the Bray-Curtis distance (based on interaction patterns) of each individual to the species mean. 
Inset shows histogram of the ss–values from each individual deriving from the species mean N�8484�. 

DISCUSSION 

Our simulation study revealed that intraspecific differences in interactions of one plant 

species in a multi-species network can scale up to community level and influence aggregate 

statistics that are commonly used to describe network structure. Complementary specialization and 

module composition were most sensitive towards changes in individual visitation patterns, 

connectance, nestedness and interaction evenness appeared to be more robust. In a previous 
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study, we showed that the intraspecific differences of S. arvensis were time-invariant and driven by 

differences in functional traits, which suggest that plant individuals occupy specific functional 

position within communities (Kuppler et al., 2016). This notion is confirmed by the resampling 

approach where the complementary specialization (d’) of S. arvensis individuals strongly varied. 

This shows that different individuals of one species may appear to be generalized or specialized in 

a community context. Apart from the ecological implication of individual variation, our results show 

that small quantitative intraspecific differences may alter the ecological interpretation of network 

descriptors at community level. For example, modularity is used to address the topological role of 

species within the network and indicate their importance for the integrity of the network structure 

(Kaiser-Bunbury & Blüthgen, 2015). These roles are defined by the module affiliation and the links 

to other modules of each species (Olesen et al., 2007). However, different S. arvensis individuals 

altered the module composition of the entire network and consequently the role of a species. Thus, 

variation in interactions within species may affect modularity to a similar degree as interspecific 

variation. Likewise other aggregate statistics show a similar pattern, which may be even more 

pronounced when including intraspecific variation of several plant species. This emphasizes the 

importance of sufficient and representative sampling (Blüthgen, 2010; Fründ et al., 2015) to get a 

robust estimate of the species mean and thereby a solid ecological interpretation. Further, the 

conclusions derived from aggregated networks statistics as indicators for community stability, 

diversity or impact of environmental change (Hagen et al. 2012, Olesen et al. 2012) should be 

carefully considered.  

In conclusion our study indicated that aggregate networks statistics are sensitive to small 

quantitative changes in the interactions of one plant species within a multi-species network. This 

variation may even alter the ecological conclusions derived from network indices emphasize the 

significance of intraspecific variation in the community and network context. Thus, similar to 

temporal and spatial variation (Olesen et al. 2012), intraspecific variation is both pitfall and 

opportunity for a detailed understanding of community structure using network theory.  
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Chapter 3 – Dynamic range boxes – A robust non-parametric approach 
to quantify size and overlap of n-dimensional hypervolumes 

This chapter is under revision as: 

Junker RR, Kuppler J, Bathke A, Schreyer M & Trutschnig W. Dynamic range boxes – A robust 

non-parametric approach to quantify size and overlap of n-dimensional hypervolumes. Methods in 
Ecology and Evolution 

ABSTRACT 

1. n-dimensional hypervolumes are commonly applied in ecology and evolutionary studies to 

describe and compare niches, trait spaces characterizing phenotypes, or the functional 

composition of communities. Classical ecological surveys, modern analytical tools as well 

as the establishment of online databases will produce large multivariate datasets, which 

demands robust statistical tools to analyze and interpret hypervolumes. 

2. Existing approaches often have weaknesses, e.g. they rely on multivariate normally or 

elliptically distributed data, perform poorly in higher dimensions, or their outputs vary 

arbitrarily with parameter choice. Here we introduce dynamic range boxes as a robust non-

parametric approach to quantify size and overlap of n-dimensional hypervolumes. 

3. Dynamic range boxes (implemented in the R package dynRB) improve the concept of 

multivariate range boxes by accounting for the distribution of the data within their range, 

while still no assumptions on the underlying distributions are needed. In addition to 

calculating the whole n-dimensional hypervolume, the package dynRB also provides 

functions for a coordinate-wise analysis and interpretation of the data. 

4. The concept of dynamic range boxes reliably computes sizes and overlaps of n-

dimensional hypervolumes, which makes dynamic range boxes readily applicable for a 

broad range of datasets to answer questions related to various disciplines.  

INTRODUCTION 

Niche theory is one of the most fundamental concepts in ecology. Since the introduction of 

the term “niche” in an ecological context by Grinnell (1917), the definition of the term and its 

ecological interpretation has been debated (Whittaker, Levin & Root 1973; Leibold 1995). 

Commonly, niches are defined as the range of abiotic conditions (e.g., temperature, precipitation, 

pH) in which a species can survive and reproduce (Leibold 1995; Begon, Harper & Townsend 

1998). This definition of the niche as the “habitat” or “requirements” of a species is complemented 

by the “functional” or “impact” niche definition, which considers the effects of species on their 
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environment, i.e. the functional position of species within a community (Whittaker, Levin & Root 

1973; Leibold 1995). The n-dimensional hypervolume proposed by Hutchinson (1957) represents a 

feasible concept that is broadly applicable for multiple niche definitions, approaches and data sets. 

It represents a space with n dimensions where each axis represents a factor that is required by an 

organism. Likewise, traits (i.e., the phenotype) of organisms can be treated as an n-dimensional 

hypervolume, which is then often referred to as trait space. The possible applications of the n-

dimensional hypervolume are well beyond questions on niche sizes and related topics such as 

competition due to niche overlap (Colwell & Futuyma 1971; Junker et al. 2013), or functional 

diversity of communities (Villeger, Mason & Mouillot 2008; Villeger, Novack-Gottshall & Mouillot 

2011; see Blonder et al. 2014 for examples). For example, in the “omics” era where individuals and 

species are characterized by a myriad of factors (e.g. by primary and secondary metabolites, (see 

e.g. Masclaux-Daubresse et al. 2014), approaches that are able to deal with a high number of 

factors in an n-dimensional space may be particularly useful and a required supplement to 

ordination approaches where the number of dimensions is reduced.  

So far, several approaches quantifying the volume of n-dimensional trait spaces and their 

overlap have been proposed. However, they often have weaknesses, require multivariate normally 

distributed data, or are not suited for higher dimensions (Blonder et al. 2014). For broad 

applicability, an approach to estimate the size and overlap of hypervolumes should a) be 

independent of the distribution of the data (e.g., no multivariate normally or elliptically distributed 

data are required), b) consider the abundance and distribution of observed values, c) be robust 

against outliers, d) yield reproducible results, which do not change arbitrarily when tuning 

parameters for the procedure are chosen differently, e) be applicable for arbitrary dimensions and 

return robust results independent of dimensionality, f) return the n-dimensional size and overlap of 

the hypervolumes, g) provide information on the impact of individual dimensions on overall size 

and overlap, h) return directional values for the overlap of species pairs (or pairs of other units) 

accounting for the asymmetry in the portion of shared n-dimensional hypervolumes, and i) account 

for correlations between values in different dimensions and / or provide an option to inspect the 

data for correlations prior to the calculation of the sizes and overlap of hypervolumes. 

The usage of resources, the ability to survive and reproduce as a function of abiotic factors, 

or the phenotype of a species is usually delimited by the endpoints of the range with a theoretically 

continuous distribution of values in between. However, the density of values within the range can 

deviate from a uniform or normal distribution. That is, skewed, or bimodal / multimodal distributions 

are possible and commonly observed in biological datasets. Furthermore, gaps in univariate or 

holes in multivariate datasets may often constitute sampling artifacts. Thus, any approach to 

quantify the size and overlap of hypervolumes should make no assumptions on the distribution of 

data, while still acknowledging that some values within the full range are more representative for a 

species’ requirements, function or phenotype than others. Multivariate range boxes (Hutchinson 

1957), convex hulls (Cornwell, Schwilk & Ackerly 2006; Villeger, Mason & Mouillot 2008) and the 
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multivariate kernel density estimation (Blonder et al. 2014) represent two extremes where the 

former two fully neglect the distribution of the data within the range, while the latter may overstate 

the biological meaning of holes and gaps in the data. Another method to quantify the size and 

overlap of niches, niche regions as recently introduced by Swanson et al. (2015), considers the 

distribution of the data and does not overrate the meaning of gaps, but it requires a multivariate 

normal distribution. Alternatively, distance-based methods to quantify the functional diversity of 

communities from multiple traits are available (Laliberte & Legendre 2010; Junker et al. 2013). 

These methods have been shown to perform well but do not allow quantifying the overlap of two 

trait-spaces. 

Here we introduce dynamic range boxes (implemented in the R package dynRB, see 

http://cran.r-project.org/web/packages/dynRB/index.html), a novel non-parametric approach to 

quantify size and overlap of n-dimensional hypervolumes and individual dimensions that meets all 

the criteria discussed above and is thus broadly applicable in ecology and beyond. 

METHODS 

Our approach improves the concept of multivariate range boxes that envelop all data per 

dimension within the minimum and the maximum value (Hutchinson 1957). This conservative 

approach is highly susceptible to outliers and does not take into account the distribution of the 

data, often leading to an overestimation of the actual niche sizes and the overlap of trait spaces. In 

order to avoid these disadvantages we introduce dynamic range boxes (Fig. 1). Note that contrary 

to methods for dimensionality reduction such as principal components dynamic range boxes – by 

default – do not correct for correlations between traits. Correlations between trait-values, which are 

often observed e.g. in morphological data sets, may lead to an overestimation of niche sizes and 

thus overlaps. Therefore, we strongly recommend inspecting the data for co-varying traits prior to 

the calculation of niche sizes and overlaps (which is an implemented option in the R package 

introduced here). In cases where strong correlations between traits are observed, we either 

recommend to remove a selection of highly correlated traits from the data set or to replace all the 

measured dimensions with principle components (which is an implemented option in the R 

package introduced here, too).  

Sketch of the method 

Roughly speaking, a number of  nested, standardized range boxes are calculated for 

each species (or other units) under consideration, each box containing a decreasing proportion (1-

) of values per dimension , starting with the interval from 0-quantile (=minimum) to 1-quantile 

(=maximum) in every dimension, and shrinking in  steps to a degenerated interval only 

containing the medians (Fig. 1c). Letting  and  denote the -th range box for the first 

and the second species (A and B) we then calculate their volume and the portion of the second 
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species’ range box that is covered by that of the first species, and vice versa (for every ). In order 

to compensate for boxes shrinking too rapidly (which would result in significant underestimations), 

niche size is corrected (i.e. divided by the volume 1-α of a box formed by the corresponding 

intervals for the uniform distribution see equation (2) below for a concise definition). Notice that the 

correction is not needed when calculating the niche overlap between two species since in this case 

both the numerator and the denominator are shrinking. Calculating the mean of the resulting 

quantities finally yields what we will refer to in the sequel as niche volume vol(A) and overlap 

port(A, B) (of the first in the second species and vice versa). Only working with quantiles yields one 

the main advantages of the proposed approach, namely that no assumptions whatsoever on the 

underlying distributions are needed. Additionally, the approach is quite robust, that is, it is not 

heavily affected by outliers (Fig. 1, see Supporting Information 1).  

Mathematical description 

Step I: Suppose that  and  are matrices with  column vectors 

containing trait data for species A and B. For each dimension  the minimum and 

maximum, i.e. and , are calculated and, based on 

these values, the matrices  and  are linearly transformed (standardized) to 

the -dimensional unit box , resulting in two matrices  and . If more 

than two species are involved in the comparison, minimum and maximum are taken over all 

species.  

Step II: To simplify notation, set . By definition, the -quantile of  is a 

vector , where  denotes the -quantile of the vector  for  (for 

details and mathematical background see Klenke 2007; van der Vaart 2007). For each dimension 

 and  the -range interval  is given by  

 

The -dimensional range box  of level  is then defined as the Cartesian product of the 

intervals , i.e. 

 . 

Proceeding analogously for  yields the box . Notice that the intervals in each dimension 

have been chosen this way in order to assure that (under the independence assumption) the range 

boxes  and  cover % of the data. Note that it is mathematically well-

established (van der Vaart 2007) that the empirical quantile function converges weakly to the true 

quantile function from which, using dominated convergence (Klenke 2007), one directly gets 

consistency of niche overlap, i.e. empirical overlap converges to the true overlap with probability 1. 
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Fig. 1 Graphical overview of the method to calculate the size vol(A) and overlap port(A, B) of dynamic range 
boxes (a-c), as well as results of the calculation (d and e) for a data set. a) 2-dimensional trait spaces of A, B 
and C. b) Marginal histogram of the first dimension of the data for A, B and C. c) Boxplots of dimension 1 of 
the data for A, B and C for different quantile ranges α. Each boxplot depicts median, 25 – 75 %- quantile 
interval and range (the latter being the equivalent to the classical range box) for the respective subset. 
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Boxplots representing the 0 – 100 % quantile interval of original data show size and overlap as represented 
in classical range boxes. The subsequent quantile intervals of original data show size and overlap for 
subsets of original data, thereby acknowledging the distribution of the data. Thus, outliers are not 
overrepresented in the calculation of size vol(A) and overlap port(A, B) of dynamic range boxes. d) Sizes 
vol(A) of trait spaces of A, B and C as returned by the function dynRB_VPa(data). e) Overlaps port(A, B), 
port(B, A), port(A, C), port(C, A), port(B, C), port(C, B) of trait spaces of A, B and C as returned by the 
function dynRB_VPa(data). Note that e.g. port(A, B), which is A in B or the portion of the trait space of B 
that is covered by A (first column, second row in the heatmap), is not the same as port(B, A) because 
overlaps are, by construction, asymmetric. 

Step III: In the following  is a matrix with  column vectors containing the trait 

data for all species. Letting  denote the -dimensional volume (i.e. the product of the side lengths 

of the boxes) our quantities of interest are the average portion of the trait space of B that is 

covered by A, abbreviated A in B, and the average portion of B in A. These quantities are defined 

as 

 

The niche volume of A is defined as the average portion of A in the union distribution U on , 

i.e. it is given by 

 

Thereby the minimum in the integrand makes sure that the quotient can not exceed one. Setting 

 for every , these integrals can both be well approximated using the trapezoidal 

rule. 

The package dynRB also offers two alternatives to the classical volume (i.e. the product 

of the side lengths of the boxes) as aggregation methods, namely mean and geometric mean of 

the side lengths.  

Package dynRB 

In order to allow for cross-platform application of dynamic range boxes, we have written an 

R-package called dynRB, which is available on CRAN, see http://cran.r-

project.org/web/packages/dynRB/index.html. Given datasets of species , the 

package provides functions to calculate niche volumes vol(A1), vol(A2),…, vol(Ak), as well as 

pairwise overlaps of niche volumes between species

.  

Additionally, the package contains three aggregation functions allowing for different ways to 

summarize/aggregate the coordinate-wise (corrected and non-corrected) volumes (interval lengths) 

and portions: The product , defined by , the mean , 

given by , and the geometric mean  , defined as 

. The package uses all three aggregation methods whenever possible, so 
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no additional execution is needed. All functions allow choosing the number  of -values – for 

reliable results  should be chosen (Supporting Information 1), default is set to . For 

more details on the functions we refer to Table 1, to the functions themselves, as well as to the 

help files of the R-package, which also provide examples illustrating how to apply the functions. 

Fig. 1 gives a graphical overview of the methods to calculate size vol(A) and overlap port(A, B) of 

dynamic range boxes, as well as the results using datasets generated for illustration.  

Tab. 1 Overview of the functions provided by the R package dynRB. Examples for the output of the three 
functions can be obtained by running the functions with data(finch2), which is included in the package. Data 
are a data frame, where the first column is a character vector and the other two or more columns are 
numeric vectors. 

Functions and default parameters Description 

  r <- dynRB_VPa(data, steps = 

201, correlogram = FALSE, 

row_col = c(2, 2), pca.corr 

= FALSE, var.thres = 0.9) 

r$result 

Primary function of the package. Returns a data frame containing the niche overlap 

port(A, B) for each pair of objects and dynamic range box sizes vol(A) for each object 

aggregated over all dimensions n by all three methods (i.e. product, mean, geometric 

mean).  

 
r <- dynRB_Pn(data, steps = 

201, correlogram = FALSE, 

row_col = c(2, 2)) 

 

Function returns pairwise overlaps port(A, B) for each pair of objects for each 

dimension n individually.  

r <- dynRB_Vn(data, steps = 

201, correlogram = FALSE, 

row_col = c(2, 2)) 

 

Function returns dynamic range box sizes vol(A) for each object for each dimension n 

individually. 

Prior to the calculation of size vol(A) and overlap port(A, B) of dynamic range boxes, data 

sets should carefully be inspected for correlations between individual dimensions, which is aided 

by the option to plot a correlogram within the main function of the R package dynRB. In cases 

where two or more dimensions are correlated, we recommend to remove one dimension of the 

correlated pair of dimensions and to compare the results between the full and the reduced data 

set. Alternative, we also provide an option in the main function of the R package dynRB to replace 

the original dimensions with principle components, which will be used as dimensions in the 

subsequent calculation. The number of principle components (PCs) included in the subsequent 

calculation can be adjusted by defining the minimum of variance explained by the PCs (default = 

0.9, a minimum of two PCs is included in any case). Note that dynamic range boxes were designed 

to be independent of the distribution of the data, which is obviously not true if PCs are used to 

substitute the original dimensions. If this option is chosen, the same requirements on the data as in 

any PC analysis (PCA) apply. PCA requires multivariate normally or elliptically distributed data. 

Zero-inflated datasets, outliers or a highly skewed distribution may cause misleading results 

(Legendre 2012). 

Evaluation of dynRB and comparison to other methods  
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To evaluate the robustness of the results obtained from the dynamic range box approach, 

we quantified the overlap of two trait spaces as a function of increasing sampling effort ranging 

from three observations per trait space to the full population of observations. We also evaluated 

the effect of the number m of dynamic range boxes (steps) on the sizes and overlap of trait spaces. 

Detailed description of the methods and the results of simulations are given in Supporting 

Information 1. To compare niche-size vol(A) with a distance-based method, we compared vol(A) 

with functional dispersion FDis, which is the mean distance of each sample in a multidimensional 

trait space to the centroid of the whole population of samples (Laliberte & Legendre 2010). Both 

vol(A) and FDis should increase with increasing standard deviation SD in each dimension. Note 

that FDis does not allow quantifying the overlap of two trait spaces. We generated datasets 

containing two trait-spaces defined by two dimensions, each. The data defining the trait-spaces 

had normal distribution (function rnorm implemented in R). Each trait-space contained 100 

observations. Trait space A had a mean of 100, trait space B a mean of 200 in each dimension. 

Normal distributions were generated with increasing standard deviations SD ranging from 0.1 to 

100 (SD = 0.1, 0.2, …1, 2,…10, 20, …, 100). Per SD, 10 trait spaces A and B were generated, 

resulting in a total number of 30 SD times 10 replicates = 300 trait spaces A and B. For each trait 

space, we calculated vol(A) and FDis of trait space A. To calculate FDis, we built a matrix 

containing the standardized distances [distance = (distance – min(distance)) / (max(distance) – 

min(distance))] between all samples of trait spaces A and B and subsequently used the distances 

between the samples of trait space A. Finally, to evaluate whether dynamic range boxes perform 

well independent of the number of dimensions n and to compare these results with other 

approaches, we quantified overlap port(A, B) of trait spaces characterized by two to ten 

dimensions n (for each n we generated 100 datasets). For each dimension n of trait-spaces A and 

B we randomly sampled m = 2000 observations from different distributions (uniform or normal, with 

a defined overlap (= 1, 0.66, 0.33, or 0) allowing to calculate the expected overlap of the n-

dimensional trait-spaces A and B (overlap = on, with o being the overlap per dimension and n the 

number of dimensions). Expected values of overlap were compared to the overlap quantified with 

the R packages dynRB (pca.corr=FALSE and pca.corr=TRUE), hypervolume (Blonder et al. 

2014), and nicheROVER (Swanson et al. 2015). In all packages, we used default parameters to 

calculate overlap. To visualize deviations of calculated overlaps using the three R packages from 

the expected values, we divided the results of the R packages by the expected value (i.e. result / 

expectation = 1 means that the quantified overlap matches the respective expectation). For 

datasets with an expected overlap of zero we directly plotted the results.  

Testing dynamic range boxes on ecological data 

To demonstrate the applicability of dynamic range boxes for ecological data, we used 

existing data sets on trait spaces and quantified their sizes and overlaps. We used a data set on 

morphological measurements of Darwin finches Geospiza sp., which originates from Snodgrass 
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and Heller (1904) and was extracted from the R package hypervolume (Blonder et al. 2014). The 

dataset comprises quantitative measurements of nine traits characterizing five (sub-) species of 

finches, each trait was measured at least in 10 individuals per species.  

As a second example, we used our own data on floral scent emissions by Sinapis arvensis 

(Brassicaceae) individuals (Kuppler et al. 2016). Ninety-seven individuals from two populations 

(Southern Germany and England) were cultivated in a common garden, half of the individuals per 

population (24 ≤ n ≥ 22) were treated with a slow release fertilizer (ten pellets Osmocote Exact 

Standard 3-4M (N:P:K:Mg 16:9:12:2, Osmocote, South Africa). The plants were arranged in a full-

factorial pseudo-randomised block design within an area of 11 x 5 m in the Botanical Garden of the 

University Salzburg, Austria. For floral scent analysis, one inflorescence per plant individual was 

enclosed within a polyester oven bag (Toppits®, Germany) for 10 min and the emitted volatiles 

were then trapped on 1.5 mg Tenax (mesh 60– 80; Supelco, Bellefonte, PA, USA) and 1.5 mg 

Carbotrap B (mesh 20– 40, Supelco) in a quartz vial (Varian Inc.; length 15 mm, inner diameter 2 

mm) for 2 min using a membrane pump (G12/01 EB, ASF Rietschle-Thomas, Puchheim, 

Germany) with a flow rate of 200 ml min-1. All samples were collected between 8:00 and 12:00 h. 

Scent samples were analysed using an automatic thermal desorption system (TD-20, Shimadzu, 

Japan) coupled with a GC–MS (model QP2010 Ultra EI, Shimadzu, Japan). All scent compounds 

were standardized to emission rate per hour per flower (ng/h/flower). For a detailed description of 

the methods see Kuppler et al. (2016). For both datasets we used dynamic range boxes to 

calculate the overlap port(A, B) (and size vol(A) in the case of floral scent bouquets) of the n-

dimensional hypervolumes. Overlaps port(A, B) and sizes vol(A) were calculate with the default 

option dynRB_VPa(data, pca.corr=FALSE) and the option correcting for correlations 

between dimensions dynRB_VPa(data, pca.corr=TRUE). 

All statistical analyses were performed using R (R Development Core Team 2014) and the 

package dynRB.  

RESULTS AND DISCUSSION 

Evaluation of dynRB and comparison to other methods  

Overlaps port(A, B) calculated using subsets of a dataset with an increasing number of 

randomly drawn observations quickly converged to port(A, B) based on all observations (see 

Supporting information 1 for details). Note that dynamic range boxes calculates the realized niche 

size vol(A) and niche overlap port(A, B) based on the data measured and does not estimate 

distributions based on the measured data. The choice of the number m of dynamic range boxes α 

(steps) influences the result but only at very low numbers of steps (m < 50). Step numbers m 

above 100 mostly resulted in stable results (see Supporting information 1 for details). Therefore, 

we recommend using m > 100 steps and set the default to m = 201, which is a good compromise 

between receiving a robust result while keeping computing time relatively short.  



57 
 

Simulated trait spaces characterized by two dimensions containing normally distributed 

observations with mean = 100 and increasing standard deviation SD increased in niche size vol(A) 

and functional dispersion FDis proportionally to the standard deviation SD (Pearson's product-

moment correlation: vol(A): t298 = 58.4, p < 0.001, r2 = 0.92; FDis = t298 = 42.8, p < 0.001, r2 = 0.86, 

Fig. 2). Niche size vol(A) was well predicted by functional dispersion FDis (exponential regression 

model: p < 0.001, r2 = 0.96, Fig. 2). 

 
Fig. 2 Comparison of niche size vol(A) calculated using the R package dynRB with functional dispersion 
FDis using the R package FD (Laliberte & Legendre 2010) of the same simulated trait space. Simulated trait 
spaces were characterized by two dimensions containing normally distributed observations with increasing 
standard deviation SD (color-coded in the figure). 
 

Overlap port(A, B) as returned by the R package dynRB was close to (often identical with) 

the expected values and the magnitude of deviation was largely independent on the number of 

dimensions n characterizing the trait-spaces, demonstrating the robustness of dynamic range 

boxes (Fig. 3, Tab. S2-1). However, note the increase in deviation in higher dimensions in normally 

distributed data. Overlaps calculated with hypervolume (Blonder et al. 2014) and nicheROVER 
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(Swanson et al. 2015) were highly sensitive to the number of dimensions n (Fig. 3, Tab. S2-1) and 

often strongly deviated from the expected values, particularly in higher dimensions (Fig. 3, Tab. 

S2-1). Also note that hypervolume indicates overlaps significantly smaller than 1 in cases where 

the distributions of two hypervolumes were strongly overlapping (i.e. overlap = 1 per definition, Fig. 

3, Tab. S2-1). Likewise, this approach indicated overlaps above 0 although hypervolumes did not 

overlap (i.e. overlap = 0 per definition, Tab. S2-1). Deviations of dynRB using the correction for 

correlated dimensions dynRB_VPa(data, pca.corr=TRUE) were usually larger than results of 

the default option dynRB_VPa(data, pca.corr=FALSE) urging for a careful evaluation 

whether correction should be applied . The data generated to test for the performance of the 

approaches clearly show no correlation between dimensions (Fig. S2-1) suggesting that the option 

dynRB_VPa(data, pca.corr=TRUE) should be used only if the assumption of independence is 

violated.  

Being able to choose parameters (like bandwidth in density estimation required in the R 

package hypervolume, Blonder et al. 2014) may prove useful in many situations where additional 

expert knowledge may reveal further information – nevertheless any applicable approach should 

offer a reasonable default parameter setting (parameters chosen by the software taking the current 

dataset into account) that allows standard users (not willing to study all details) to get reliable 

results without investing too much time. For the usage of dynamic range boxes, no parameters 

need to be chosen to yield reliable results. The only parameter that can be chosen is the number m 

of dynamic range boxes α (steps) to calculate sizes vol(A) and overlap port(A, B) of trait-spaces, 

and our simulation (see Supporting information 1) demonstrated that results are robust with m > 

100 (default is set to m = 201). The results of the simulations thus demonstrate that dynamic range 

boxes yield comparable results as distance-based methods (Fig. 2) and as mathematically 

expected (Fig. 3, supporting information 2), is independent on the distribution of the data 

(Supporting information 1) and outperforms other approaches designed to calculate the niche size 

and overlap in n-dimensional hypervolumes (Fig. 3, supporting information 2).  

Based on the results of the simulations (see also Supporting information 1), we evaluated 

whether dynamic range boxes, hypervolume (Blonder et al. 2014), and nicheROVER (Swanson et 

al. 2015) meet the criteria of well performing approaches to calculate the size and the overlap of n-

dimensional hypervolumes defined in the introduction (Tab. 2). Whereas dynamic range boxes 

meet all the criteria we defined (a correction for correlation between dimensions is optional), the 

other two approaches revealed weaknesses in some of the criteria. Thus, dynamic range boxes is 

readily applicable for a broad range of datasets to answer questions related to various disciplines.  
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Fig. 3 Overlap of trait-spaces characterized by increasing number of dimensions quantified with the R 
packages dynRB (pca.corr=FALSE and pca.corr=TRUE), hypervolume (Blonder et al. 2014), and 
nicheROVER (Swanson et al. 2015). Graphs visualize the deviations of the calculated overlaps (results of 
the four approaches) from the expected values calculated from the overlap per dimension. Result / 
expectation = 1 means that overlaps quantified by one of the four approaches match the expectation, i.e. 
values equal or close to 1 indicate a good performance of the approaches. In cases were the expected 
values are zero (d and h), original values are displays (expectation = 0). Data in examples a-d have a 
uniform distribution, e-h have a normal distribution. Insets in panels visualize the distribution of data in two 
dimensions (dimensions three to ten have the same distributions). Expected values and results are shown in 
Tab. S2-1. 

Testing dynamic range boxes on ecological data 

We tested dynRB on data sets on the morphological trait space of Darwin finches Geospiza 

ssp. and the chemical trait space of Sinapis arvensis flowers and demonstrated the applicability of 

our novel approach. Only two subspecies of G. fortis overlapped in a small fraction of their nine-

dimensional hypervolumes (aggregation = “product” and “gmean”), whereas the other species’ trait 

spaces did not overlap (Fig. 4). Dimension-wise overlap revealed that traits characterizing the 
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morphology of the beaks on average overlapped to a smaller portion than traits characterizing the 

birds’ morphology apart from the beak (Fig. 4, Wilcoxon rank sum test comparing all port(A, B) in 

beak traits with those in body traits: W = 2015, p < 0.001), which is in concordance with the 

assumption that mainly different beak morphologies allow the finches to exploit different resources 

and thus avoid interspecific competition (Begon, Harper & Townsend 1998), whereas selection on 

body morphology may be relaxed.  

Tab. 2 Requirements that we believe are necessary to reliably extract the size and overlap of n-dimensional 
hypervolumes met by the approaches dynamic range boxes, hypervolume (Blonder et al. 2014), and 
nicheROVER (Swanson et al. 2015).  

 
 dynamic range 

boxes  
hypervolume 
Blonder et al. 

(2014) 

nicheROVER    
Swanson et al. 

(2015) 
a) can be used independent on the 
distribution of the data ✓ ✓ ✗ 

    b) considers the abundance and 
distribution of observed values ✓ ✓ ✓ 

    c) robust against outliers ✓ ✓ ✗ 
    d) yields robust results, i.e. 
parameter choice does not affect the 
ecologcial interpretation of the 
results  

✓ ✗1 ✓ 

    e) applicable for arbitrary 
dimensions  ✓2 ✓3 ✓3 

    f) returns the n-dimensional size and 
overlap of the hypervolumes ✓ ✓ ✓ 

    g) provides information on the 
impact of individual dimensions on 
overall size and overlap 

✓ ✗ ✗ 

    h) returns directional values for the 
overlap of species pairs (or pairs of 
other units) accounting for the 
asymmetry in the portion of shared 
n-dimensional hypervolumes 

✓ ✓ ✓ 

     
1) no clear recommendation is given for the choice of bandwidth, which strongly influences results. 
2) deviations of the values calculated using dynRB from the expected values in Fig. 3 a und e result from slightly different ranges of 
the values of each group in each dimension despite the underlying theoretical distributions having the same mean and standard 
deviation (and hence coinciding in case of normality). The small portion of the empirically observed ranges that do not overlap in each 
dimension multiply with increasing dimensionality, which is visible in the data.  
3) approaches can deal with an arbitrary number of dimensions but results inconsistently vary with number of dimensions (Fig. 3, Tab. 
S2-1). 

Floral scent bouquets of Sinapis arvensis individuals originating from two populations and 

that were either supplemented with fertilizer or not were highly similar in the qualitative 

composition, i.e. we found the same compounds in all of the four groups (compare to Kuppler et al. 



61 
 

2016). However, the sizes of trait-spaces occupied by the groups showed remarkable differences 

(Fig. 5), which is a proxy for the variability in the quantitative scent emission across plant 

individuals within the groups. The data support the notion that species or groups with a larger 

expansion in the n-dimensional trait-space also have a larger potential to overlap other species 

(Fig. 5). Dynamic range boxes may thus also be a useful tool in studies investigating the 

metabolome of species, mutants or ecotypes.  

 
Fig. 4 Heatmaps visualizing the overlap port(A, B) of the nine-dimensional hypervolumes as well as of 
individual dimensions defined by the characteristics of nine morphological traits of Darwin finches Geospiza 
ssp. Data are extracted from the R package hypervolume (Blonder et al. 2014) and are included in the 
package dynRB as data(finch). Heatmaps in the upper row show overlaps port(A, B) of nine-dimensional 
hypervolumes aggregated as product, geometric mean and mean as returned by function 
dynRB_VPa(data). Small heatmaps in the upper right corner visualize overlaps port(A, B) of nine-
dimensional hypervolumes corrected for correlations between dimensions using principle components and 
aggregated as “product”, “geometric mean” and “mean” as returned by function dynRB_VPa(data, 
pca.corr=TRUE). Scales of heatmaps showing overlaps port(A, B) corrected for correlations between 
dimensions are the same as for aggregation methods “geometric mean” and “mean”, the scale for 
aggregation method “product” ranges from 0 to 0.4. The nine lower heatmaps show coordinate-wise overlaps 
port(A, B) of individual dimensions as returned by function dynRB_Pn(data). Note that e.g. port(Gff, Gfpla), 
which is Gff in Gfpla or the portion of the trait space of Gfpla that is overlapped by Gff (first column, fourth 
row in the heatmap), is not the same as port(Gfpla, Gff) because overlaps are asymmetric. Also note 
different scales for each heatmap. 
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Fig. 5 Heatmaps visualizing the overlap port(A, B) of the n-dimensional hypervolumes defined by the 
characteristics of floral volatiles emitted by Sinapis arvensis. Heatmaps show overlaps port(A, B) aggregated 
as product, geometric mean and mean as returned by function dynRB_VPa(data). Note different scales for 
each heatmap. Small heatmaps in the upper right corner visualize overlaps port(A, B) of n-dimensional 
hypervolumes corrected for correlations between dimensions using principle components and aggregated as 
“product”, “geometric mean” and “mean” as returned by function dynRB_VPa(data, pca.corr=TRUE). White 
barplots show sizes vol(A) of n-dimensional hypervolumes aggregated as product, geometric mean and 
mean as returned by function dynRB_VPa(data), black barplots show sizes vol(A) as returned by function 
dynRB_VPa(data, pca.corr=TRUE).  

Different aggregation methods facilitated a more detailed interpretation of the patterns. The 

aggregation method “product” measures the overlap port(A, B), which is A in B or the portion of the 

trait space of B that is covered by A, in the n-dimensional hypervolume (sensu Hutchinson 1957) 

and becomes zero, if two trait spaces do not overlap in a single dimension. Often, a complete 

differentiation (i.e. no overlap) in a single trait may be sufficient to avoid competition or to represent 

a completely different phenotype (Fig. 4). However, additional information from the aggregation 

method “mean” may allow evaluating how similar two niches or trait spaces are based on the mean 

overlap of the n dimensions. For instance, Geospiza fortis fortis and Geospiza heliobates occupy 

distinct n-dimensional hypervolumes (Fig. 4, aggregation = “product”), but share characteristics in 

many traits investigated (Fig. 4, aggregation = ”mean” and individual traits). Overlap and niche size 

resulting from the aggregation methods = “product” are highly dependent on the number of 

dimensions investigated, which prevents direct comparisons across studies. Aggregation methods 

“gmean” (geometric mean) and “mean” (arithmetic mean) provide values that facilitate the 
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comparison across studies with different numbers of dimensions. Absolute values for overlaps 

port(A, B) (Fig. 4 and 5) and trait space sizes vol(A) (Fig. 5) differ between the default setting 

dynRB_VPa(data, pca.corr=FALSE) and the option correcting for correlated dimensions 

dynRB_VPa(data, pca.corr=TRUE). However, general patterns remained similar in both 

approaches (Fig. 4 and 5) suggesting applicability and robustness of both approaches for 

ecological and chemical data. Nevertheless, we recommend to carefully check datasets for 

correlations between dimensions as well as to play it safe and analyze the data with both 

approaches. Additionally, in both data sets the asymmetric nature of overlaps becomes apparent, 

i.e. port(A, B) usually is not the same as port(B, A), which bears important information for the 

ecological and evolutionary interpretation of the datasets.  

CAVEATS 

Although dynamic range boxes reliably compute sizes and overlaps of n-dimensional 

hypervolumes, some precautions are required in the interpretation of the results. The significance 

of the outputs of dynamic range boxes is, as in any ecological method, dependent on sampling 

effort. Furthermore, our method does not model the niches of species, but instead calculates the 

space occupied by the available data, which means that dynamic range boxes inform about 

realized but not fundamental niches. Albeit dynamic range boxes consider the abundance and 

distribution of values in the n-dimensional hypervolume, our method represents a simplification, as 

compared to multivariate density estimation. However, it thus also avoids the well-known problems 

associated with multivariate density estimation (choice of bandwidth, convergence rate, curse of 

dimensionality). Often, especially if morphological data are considered, individual traits exhibit a 

strong positive correlation violating the independence assumption underlying dynRB. It is therefore 

recommendable to carefully inspect the data for strong co-variation prior to the analysis and 

interpretation of the results, which is facilitated by the option to display a correlogram (correlogram 

= TRUE) in all of the functions provided in the R package dynRB (Tab. 1). At first glance it might 

seem more natural to avoid independence assumptions and to model the data by multivariate 

normal or elliptical distributions (implying ellipses as contour sets of the densities). Considering, 

however, that calculating volumes of intersections of -dimensional ellipses is a non-trivial 

endeavor, that principal components analysis is highly sensitive to outliers, and that (to the best of 

the authors’ knowledge) there is no (computationally fast) notion of multivariate quantiles (or 

trimming) that allows for (i) an exclusion of  % of the (non-central) data for each , (ii) a 

calculation of the convex hulls (or the smallest enveloping ellipse) containing the remaining 

 % and, most importantly, (iii) the subsequent calculation of the intersection of two such 

convex hulls (or ellipses) and its volume suggests that the dynRB approach offers a good and 

computationally feasible compromise that yields good results in the majority of cases. We remark 

that standard notions of multivariate quantiles and depths functions like described in Chaudhuri 
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(1996) and Serfling and Zuo (2010) and the references therein might manage points (i) and (ii) for 

a sufficiently small number of dimensions (and directions in which the quantiles are calculated), but 

it is unclear, how (iii) should be established in the general setting. Although working with principal 

components has to be done carefully (calculation of principal components jointly for data from 

different populations might yield directions that do not fit to any of the two datasets and exhibit 

other odd behaviour, see Rosenbaum (2010)), we provide the option to replace the original 

dimensions with principle components to avoid dependence in the data.  

CONCLUDING REMARKS 

The term niche is used for various ecological concepts, either to reveal causes for species’ 

distributions or interactions (response component), or to identify consequences of the presence of 

a given species for its biotic and abiotic environment (effect component) (McInerny & Etienne 

2012c; McInerny & Etienne 2012b; McInerny & Etienne 2012a). These concepts are expressed by 

the “requirements” or by the “functional” niche definition, respectively (Whittaker, Levin & Root 

1973; Leibold 1995). While there is no precise or unifying definition of “the niche”, which requires 

each author to clearly define the meaning of niche in a given study ) (McInerny & Etienne 2012c; 

McInerny & Etienne 2012b; McInerny & Etienne 2012a), a common feature of all interpretations 

and applications of niches is that a set of n factors is used to define it. Thus, the unifying feature of 

niches is that they are multivariate constructs. In addition to rather classical approaches, advances 

in analytical methods and the establishment of online databases as well as further developments in 

biological sciences will yield multivariate datasets on the distribution or characteristics of 

genotypes, ecotypes, populations, species, communities, ecosystems and biomes, thus requiring 

robust statistical tools to analyze and interpret the size and the overlap of these multivariate 

constructs.  

Dynamic range boxes provide, as the simulations and examples show, a number of 

analytical tools that are highly suited to evaluate in detail niches, trait spaces, inter- and 

intraspecific variability, and other ecological and evolutionary processes that are based on 

multivariate data. Beyond the calculation of the sizes and overlap of niches and trait spaces, 

dynamic range boxes also allow the deconstruction of niches / trait spaces into individual 

dimensions to evaluate the impact of each trait on overall size and overlap, which is also facilitated 

by different aggregation methods. For instance, in selection studies or in studies testing the effects 

of mutations on the phenotype of organisms, it may be highly relevant to identify those traits that 

differ most between groups. In ecological studies it may be interesting to pinpoint those biotic or 

abiotic factors for which the competition potential is highest, or the traits that differ most in the 

functional composition of communities. 

The concept of dynamic range boxes lines up with various other approaches to quantify the 

size and overlap of n-dimensional hypervolumes (e.g. Blonder et al. 2014; Swanson et al. 2015) 

and it may be advisable to compare results of different approaches and to evaluate the strengths 
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and weaknesses of the approaches for a given dataset. However, the approach presented here 

satisfies all requirements that we believe are necessary to reliably extract the expansion of 

hypervolumes composed of multiple factors, which makes dynamic range boxes readily applicable 

for a broad range of datasets to answer questions related to various disciplines.  
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Chapter 4 – Trait-based quantification of floral niche size and overlap 
reveals mechanisms underlying resource partitioning and competition 
between native and introduced flower visitors 

This chapter is in preparation: 

Kuppler J, Höfers MK, Trutschnig W, Bathke AC, Eiben JA, Daehler CC & Junker RR. Trait-based 

quantification of floral niche size and overlap reveals mechanisms underlying resource partitioning 

and competition between native and introduced flower visitors.  

ABSTRACT 

Invasive species often cause alterations in the dynamics and structures of native species 

interactions. Driven by the strong competitive abilities of invasives, native and endemic species 

often suffer from resource depletion, which may even lead to the displacement of these species. 

Invasions have had particularly severe consequences on isolated islands such as the Hawaiian 

Archipelago where thousands of plant and animal species have been introduced. In this study, we 

quantified the niche sizes and overlaps of native and introduced flower visitor taxa in Hawaii 

Volcanoes National Park in order to reveal the ecological mechanisms underlying competition. We 

used a novel trait-based approach (dynamic range boxes) adopting the concept of n-dimensional 

hypervolumes where each dimension of the hypervolume represents one functional flower trait that 

affects foraging choices of flower visitor species. On average, introduced flower visitor taxa were 

more generalized in resource use (larger niches) than native taxa. Small niche sizes of native taxa 

partly resulted from their specialization on native flowering plant species whereas introduced flower 

visitors interacted with both native and introduced plant species proportional to their abundance. 

Additionally, natives shared a larger proportion of their niches with introduced taxa than vice versa, 

suggesting competitive dominance of introduced taxa. Thus, the functional composition of plant 

communities as well as the ecological and evolutionary background of consumers are important 

factors in explaining the structure of interaction networks, and help to reveal competitive patterns 

within communities. Predicted range expansion of invasive plant and flower visitor species may 

further reduce the availability of resource for native flower visitors, at the same time competition for 

the remaining resources may increase. Thus, the large niche sizes of introduced species as well as 

their strong competition potential pose severe current and future threats for native flower visitor 

species and the Hawaiian ecosystem. 
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INTRODUCTION 

Anthropogenic activities have facilitated the introduction of many plants and animals into 

non-native areas in the last 150 years (Lockwood et al., 2013). Oceanic islands offer particularly 

favorable conditions for the establishment of introduced species as these isolated habitats often 

feature low species and functional group diversity and disharmonic floras and faunas (Denslow, 

2003; Krushelnycky & Gillespie, 2010). Invasional processes and ecological consequences of 

introduced species can be well observed on the Hawaiian Islands, which are among the most 

geographically isolated island groups worldwide, where thousands of introduced plants and 

animals are established (Wagner et al., 1990; Mooney, 2005). Once species become established 

in new habitats, they start to interact with resident species (Hobbs et al., 2006). Resulting 

alterations in the interaction patterns within communities are often detrimental for native species, 

which may even be displaced by invasives (Pyšek et al., 2012; Ricciardi et al., 2013; Simberloff et 

al., 2013; Traveset & Richardson, 2014). Major factors driving these alterations are the competitive 

dominance of invasives, their generalized use of resources, and their ability to efficiently and 

rapidly exploit resources. These factors are also considered as key for the success of invasive 

species (Pianka, 1981; Levine et al., 2003; Lach, 2008b; Junker et al., 2010; Lockwood et al., 

2013). Because these factors commonly cause declines or (local) extinctions of native species, 

identifying effective conservation strategies for native species requires understaning the ecological 

mechanisms underlying the strong competition potential of invasive species and associated 

community-wide alterations of interaction patterns. 

Niche theory predicts that the competition potential between two species (e.g. for 

resources) increases with the similarity of their ecological niches (Townsend et al., 2003). The 

fundamental niche of a species is defined as the entirety of abiotic (e.g. soil type or temperature), 

but also biotic (e.g. interaction partners of other trophic levels) factors that allow this species to 

survive and reproduce in a given habitat, often conceptualized as n-dimensional hypervolumes 

(Hutchinson, 1957). Realized niches are subsets of fundamental niches shaped by interspecific 

competition (Townsend et al., 2003; Sargent & Ackerly, 2008). Hence, an overlap of realized 

niches may impede sympatric coexistence more strongly than an overlap in the fundamental niche 

because alternative resources may not be available. Accordingly, realized niche overlap may 

potentially lead to competition with a disadvantage for those species that share larger proportions 

of their niches with competitors than species that can avoid competition due to exclusive 

occupancy of parts of their niches (asymmetric overlap between species, Reitz and Trumble 2002). 

So far, studies investigating the competition potential of invasive and native flower visitors 

usually focused on the number of shared plant species used as resource as an estimate for niche 

overlap (e.g. Goulson et al., 2002; Paini & Roberts, 2005; Lye et al., 2010). However, whether a 

flower visitor is able to exploit floral resources of a plant species is dependent on functional flower 

traits (e.g. floral morphology, floral scent, or floral colour) displayed by this plant species (Junker et 
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al., 2011b, 2013; Kaiser-Bunbury et al., 2014, Larue et al. 2015). Hence, these traits can be viewed 

as floral niche dimensions that determine whether a flower visitor is able to exploit the resources 

offered by flowers (Junker et al., 2013). Thus, considering functional traits may provide a more 

accurate and mechanistic description of the floral niche than approaches using the plant species 

identities only (Junker et al. 2015a). A species-based approach does not inform about the similarity 

of trait use and functional overlap between two species, which are both important predictors for 

functional similarity of native and invasive species (Baiser & Lockwood, 2011). Thus, incorporating 

functional traits into niche models may allow to draw concise conclusions conclusions about the 

mechanisms that structure communities and determine the effects of invasive species on native 

communities (McGill et al., 2006). 

Introduced flower visitors often interact with co-introduced plant species (Simberloff & Holle, 

1999) but also interact frequently with native plants (Junker et al., 2010). Hence, they compete with 

native animals, which are adapted to and therefore may be more specialized on native plants 

(Bezemer et al., 2014). The negative effects imposed by introduced flower visitors on native flower 

visitors are either the results from interference competition when alien species actively deter 

natives from floral resources (e.g. Lach, 2008; Hanna et al., 2014) or from exploitation competition 

when aliens deplete the resources (Goulson, 2003; Stout & Morales, 2009). Accordingly, a meta-

analysis concluded that the floral visitation rate of many native insect species decreased when 

invasive flower visitors were present (Montero-Castaño & Vilà, 2012). However, the magnitude of 

these effects strongly depends on the identity of native and introduced flower visitors as well as 

others factors such as species densities or resource availability (reviewed in Goulson, 2003; Stout 

& Morales, 2009; Dohzono & Yokoyama, 2010). Although bees are prominent examples for 

invasive and competitive dominant flower visitors, other invasive flower visitors, such as social 

wasps or ants, can also negatively interfere with native flower visitors (Traveset & Richardson, 

2014). These effects are especially severe in Hawaiian communities where social hymenopterans 

had not naturally been present in the species inventory (Krushelnycky et al., 2005). As a 

consequence, Hawaiian endemic plants often lack means to effectively protect their flowers against 

exploitation by ants (Junker et al., 2011a), allowing ants to strongly interfere with native arthropod 

visitations (Lach, 2008b; Junker et al., 2010; Bleil et al., 2011). As a consequence of the strong 

competition between native and introduced flower vistors, which sometimes is complemented by 

predatory activities of introduced species (in the case of social wasps), the populations of native 

animals often decline (Paini, 2004; Traveset & Richardson, 2006; Wilson & Holway, 2010; Hanna 

et al., 2013). Thus, the increased densities of invasive flower visitors are one reason for the strong 

decline of pollinators endemic to the Hawaiian islands, especially birds (Honeycreepers) and 

Hylaeus bees (Scott et al., 1988; Banko et al., 2002; Magnacca, 2007).  

In this study, we quantitatively recorded interactions between native and introduced flower 

visitors and flowering plant species within 33 plant communities in the Hawai’i Volcanoes National 

Park (Hawaii, USA) or adjacent areas and quantified the trait-based niche size and overlap of 
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introduced and native flower visitors. We used dynamic range boxes (Junker et al. 2015b), a novel 

non-parametric approach to quantify size and overlap of n-dimensional hypervolumes. Our study 

will foster a comprehensive functional understanding of the interactions of invasive flower visitors 

within communities, which may support conservation efforts in highly threatened Hawaiian 

ecosystems. 

METHODS AND MATERIAL 

Study sites 

The study was conducted in the Hawai’i Volcanoes National Park (HAVO, Hawai’i, USA) 

between November 2014 and May 2015. Study sites were selected based on their accessibility, 

the availability of flowers and coverage of a broad range of different habitats. Location, altitude, 

size, and age (time since last lava flow) of habitats, as well as the number of native and introduced 

plant species are given in Appendix A: Table A1. In total, 33 sites were selected, 30 within the 

HAVO and three in adjacent areas. The size of each study site was adjusted to the distribution and 

abundance of flowering plants and to represent the given habitat. E.g. young lavaflows generally 

had a low density of plants compared to other habitats, thus these plots were generally larger than 

in other habitats to include a sufficient number of plants for sampling.  

Flower-visitor interactions 

At each study site, flower-visitor interactions were observed on one to four consecutive 

days (between 07:00 – 13:00 h), resulting in 88 observation days and 265 h observation time. For 

each flowering plant species several individuals (n = 3 - 20) were observed for 5 min. All flower 

visitors were recorded and, if possible, caught for identification. Otherwise the lowest taxonomic 

unit of the flower visitor that could be determined in the field was noted. Additionally, on plots 

where birds were present, we surveyed bird-flower interactions using point counts for 30 min in the 

morning and around noon from a spot overviewing the whole study site (Bibby et al., 2000). Animal 

species were first separated into morphospecies and then, if possible, identified to species level 

and categorized as native or introduced to the Hawaiian Islands (Appendix A: Table A2). Flowering 

plant species (Appendix A: Table A3) were identified, categorized as introduced or native (endemic 

or indigenous species) and the total number of flowers of each species per plot was counted. 

Weather conditions (i.e. temperature [°C], humidity [%], wind speed [m/s], and light intensity 

[µmol/m²]) were recorded during observations in one min intervals using a mobile data logger 

(DKS655 “rugged visual”, Driesen-Kern GmbH, Bad Bramstedt, Germany) with an external 

anemometer (WG3400, Driesen-Kern GmbH, Bad Bramstedt, Germany) and an external PAR 

Quantum Sensor (SKP215, Driesen-Kern GmbH, Bad Bramstedt, Germany). Thus, we could 

assign every recorded interaction to a specific weather condition to yield information about the 

activity range of each observed taxon. The data logger recording the temperature and humidity 
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was placed in full shade, the anemometer was mounted on a stick in 1.5 m height, which was in 

the range of the flower heights on each plot, and the PAR Quantum Sensor was fully exposed to 

sunlight.  

Floral morphology  

For all plant species, we obtained nine morphological floral traits that have been shown to 

affect foraging decision and thus specialization of flower visitors (Fenster et al., 2009; Junker et al., 

2013): 1) plant height [cm], 2) flower inclination [°] (the vertical inclination of flowers and if available 

inflorescences), 3) ratio style length to stamen length, 4) number of stamens, 5) stamen 

accessibility [mm] (distance from flower tube entrance to stamen; negative values mean that the 

stamen (and thus pollen bearing anthers) were below the corolla aperture), 6) display size of 

flowers [mm], 7) display size of largest floral unit [mm] (inflorescence or flower), 8) nectar tube 

depth [mm] and 9) nectar tube width [mm]. For further analyses the number of anthers was log-

transformed. The plant height was measured to the nearest one cm using a measure tape, flower 

inclination to the nearest 5° using a triangle ruler. All other plant traits were measured to the 

nearest one mm using a caliper. For common plant species (n = 29) we measured 15-20 

individuals (3-7 flowers per individual) and for rare plant species (n = 11) between 2-10 individuals. 

For a subset of species, nectar volume [µl] and concentration [%] were quantified and the 

flower colour was measured as spectral reflectance of the petals (methodological details see 

Appendix B).  

Volatile collection and analysis 

Dynamicheadspace scent samples were collected from flowers of each plant species (n = 

1-2). First, the flowers were enclosed within a polyester oven bag (Toppits®, Germany), allowing 

the scent to accumulate in the oven bag. Afterwards, the emitted volatiles were trapped on 1.5 mg 

Tenax (mesh 60– 80; Supelco, Bellefonte, PA, USA) and 1.5 mg Carbotrap B (mesh 20– 40, 

Supelco) in a quartz vial (Varian Inc.; length 15 mm, inner diameter 2 mm) for 2 min using a 

membrane pump (G12/01 EB, ASF Rietschle-Thomas, Puchheim, Germany). All samples were 

collected between 8:00 and 12:00 h. For plant species were flowers could not be bagged without 

including green leaves additional samples of only green leaves were taken. Scent samples were 

analyzed using an automatic thermal desorption system (TD-20, Shimadzu, Japan) coupled with a 

GC–MS (model QP2010 Ultra EI, Shimadzu, Japan). The GC-MS was equipped with a ZB-5 fused 

silica column (5% phenyl polysiloxane; 60 m long, inner diameter 0.25 mm, film thickness, 0.25 

μm, Phenomenex) and the column flow (carrier gas: helium) was set to 1.5 ml/min. The GC oven 

temperature started at 40°C (split ratio 1:1), then increased by 6°C per minute to 250°C and held 

constant for 1 minute. The MS interface worked at 250°C. Mass spectra were taken at 70 eV (in EI 

mode) from m/z 30 to 350. The GC/MS data were processed using the GCMSolution package 
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(Version 2.72, Shimadzu Corporation). Compounds were identified by comparison of mass spectra 

and retention times with standard compounds, which are commercially available. Alternatively, 

compounds were identified using the mass spectral libraries Wiley 9, Nist 2011, FFNSC 2, 

Essential oils and Adams 2007 as well as the database available in MassFinder 3. The compounds 

found in the flowers were compared to those found in the blanks (empty oven bags, samples of 

green leaves) to determine the compounds that are specifically emitted by flowers. The total scent 

emission was estimated by comparing peak areas of compounds to the peak area of external 

standards (monoterpenoids, aromatics, sesquiterpenes and alipahtics). The amount of each 

compound emitted was standardized by the dry mass of the sampled flowers and the collection 

time [ng h-1 100mg-1]. In case of two samples per plant species the mean amounts of individual 

substances was used for further analysis. In the sample of Sesbania tomentosa no scent 

compounds were detected (Appendix C: Table C1), thus this sample was excluded. Since most 

substances were emitted by only one or a few plant species, resulting in a zero-inflated matrix and 

thus preventing a meaningful analysis, we grouped the compounds according to their biosynthetic 

origin and their functional groups: aliphatics (A), aromatics (AR), C5-branched pathway (C5), 

irregular terpenes (IT), monoterpenes (MT), sesquiterpenes (ST).  

Flower-visitor interaction network analysis 

In order to investigate whether plant and animal species that share a long evolutionary 

history form interaction networks (based on visits per hour) with properties that differ from networks 

formed by species that just recently settled in Hawaii, we compared properties of networks 

consisting of either native flower visitors and native plant species, introduced flower visitors and 

introduced plant species, introduced flower visitors and native plant species, or native flower 

visitors and introduced plant species, only. Based on these networks we calculated the following 

aggregate statistics: complementary specialization d' of species and four statistics at the network 

level (connectance, interaction evenness, complementary specialization H2' using the R package 

bipartite (Dormann et al., 2009). To assess the potential influence of the spatial distribution of 

native and introduced flower visitor taxa as well as plant species, we performed the same analysis 

for flower-visitor interaction networks and calculations of niche size and overlap (see below) 

including only plots where native and introduced flower visitor taxa and plant species were present 

(n = 11, Appendix A: Table A1)  

Calculation of floral niche size and niche overlap 

To quantify the niche size of flower visitors and overlap of their niches we adopted the 

concept of n-dimensional hypervolumes proposed by (Hutchinson, 1957). In this broadly applicable 

framework, a niche is represented by a space characterized by n dimensions where each 

dimension represents environmental conditions or characteristics of resources. In the context of 
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this study, flower traits that may facilitate or prevent flower visitation by a given visitor (Junker & 

Parachnowitsch, 2015) are considered as niche dimensions. Thus, the n-dimensional 

hypervolume, or floral niche of a flower visitor can be viewed as a trait-space characterized by 

various floral traits (e.g. nectar tube depth, display size, and scent emission of a flower). This is 

based on the assumption that animals with preferences or aversion for the characteristics of some 

traits visit only a subset of available plant species that display a suitable combination of trait 

characteristics. Thus, the floral niche is defined as the hypervolume containing the characteristics 

of floral traits that allow an animal taxon to consume floral resources (Junker et al., 2013).  

Sizes and overlaps of niches were quantified using dynamic range boxes, a novel non-

parametric approach to quantify the sizes as well as the asymmetric overlap of n-dimensonal 

hypervolumes (Junker et al. 2015b, implemented in the R package dynRB, Schreyer et al. 2015). 

The earlier concept of multivariate range boxes (used to estimate an n-dimensional hypervolume) 

involved enveloping all observed data per dimension within the minimum and the maximum value 

(Hutchinson, 1957). This conservative approach is highly susceptible to outliers and does not take 

into account the distribution of the data between the extremes, often leading to an overestimation 

of the actual niche sizes and the overlap of trait spaces. Dynamic range boxes avoid these 

disadvantages: a number of  nested, standardized range boxes are calculated for each species 

under consideration, each box containing a decreasing percentage of values per dimension , 

starting with the interval consisting of the 0-quantile (= minimum) and the 1-quantile (= maximum) 

in every dimension and shrinking in  steps to a degenerated interval only containing the 

medians. Letting  and  denote the -th range box of the first and the second species 

(A and B) respectively, then their volume and the portion of the first in the second and vice versa 

(for every ) are computed. Calculating the product of the resulting quantities finally yields what 

we will refer to in the sequel as niche size vol(A) and overlap port(A,B). Both values can be 

obtained dimension-wise and for the full volume. For a full description of this approach see Junker 

et al. (2015b).  

The niche sizes and pairwise overlaps were calculated for all visitor species with at least 10 

observations at flowers and available information on their origin, i.e. whether the taxa are 

introduced / invasive (n = 18) or native (n = 7, Appendix A: Table A2). First, the size vol(A) and the 

pairwise overlap port(A,B) with other species of the niche including all trait categories of the 

species were calculated. Floral colour as well as nectar properties were not included in this 

analysis due to incomplete sampling (Appendix B). Second, we calculated sizes and overlaps for 

each trait category (weather variables, morphological floral traits, floral scent) and each trait 

separately. Dynamic range boxes require non-degenerated variance in each dimension to quantify 

niche size and overlap. Therefore, we added a small ecologically irrelevant value (0.0001) to some 

data to run the analyses. 

We defined the floral niche of an animal as the n-dimensional trait space occupied by the 

flowers (floral traits) of those plant species visited by the animal weighted by the interaction 
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strength Iij [interactions h-1 flower-1] of animal i at plant species j. Interaction strength Iij was 

transformed by Iij’ = log(Iij . 106 + 1) . 10 and Iij’ was rounded to the nearest integer r(Iij’). For each 

r(Iij’) representing the transformed interaction strength of animal i with plant species j, we randomly 

drew one trait value measured for plant species j for each trait t. Thus, for each animal i and trait t, 

we obtained a vector with the length V = ∑ 𝑟(𝐼ij
′)𝐽

𝑗=1  with J being the total number of plant species 

interacting with animal i describing the characteristics of trait t used by animal i. Thus, the floral 

niche of each animal i was expressed as a matrix with V rows and T columns with T as the total 

number of traits considered.  

Temperature, wind speed and light intensity were used to characterize the weather-

requirement of visitor species. We excluded humidity from the analyses due to the high correlation 

with temperature (Pearson correlation coefficient, R² = -0.83***). Each flower-visitor interaction was 

associated with weather conditions at the time when the interaction was observed. To correct for 

the heterogeneous observation times at different weather conditions, which biases the size and 

overlap of weather niches, we weighted the observations by 1/relative frequency (obtained by 

kernel density estimates, R function density) of specific weather conditions during flower-visitor 

observations. 1/relative frequencies were rounded to the next integer.  

In order to test whether native and introduced flower visitors occupy floral niches of different 

sizes (i.e. whether they exhibit a different degree of specialization / generalization), we used a 

Mann-Whitney U test comparing the niche sizes vol(A) of animals of both origins. Additionally, to 

reveal whether native and introduced flower visitors have an asymmetric competition potential, 

resulting from an asymmetric niche overlap port(A, B) of species pairs, we calculated the effect 

size (log response ratio) of the overlap L = log10(port(A,B) / port(B,A)), with port(A,B) and port(B,A) 

as the portion of the trait space of B (introduced taxon) that is covered by A (native taxon), and vice 

versa. In the rare event that port(A,B) and port(B,A) were 0, zero was replaced by a number close 

to zero and smaller than the smallest measured overlap (10-28) in order to calculate L. Thus, L 

becomes negative if native taxa overlap introduced taxa stronger than vice versa and positive if 

niches of introduced taxa overlap stronger with the niches of natives. To test for a consistent 

asymmetry in the overlap between native and introduced flower visitors (i.e. for an asymmetric 

competition potential), we tested whether L differs from zero (Mann-Whitney U test). 

RESULTS 

Flower-visitor interaction network 

In total, we observed 3747 interactions between 40 plant species (22 introduced and 18 

native species) and 95 flower visitor taxa (32 introduced, 15 native flower visitor taxa, and 48 of 

unknown origin). Eighteen of the introduced visitor taxa and 7 of the native ones were recorded 

more than 10 times. Introduced visitor taxa accounted for most of the interactions (68.1 %), while 
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interactions of native taxa were only recorded 371 times (9.8 %). Visitors with unknown origin 

accounted for 22.1 % of the total interactions. Overall, network structure was relatively 

complementarily specialized, whereas individual taxa ranged from highly generalized to highly 

specialized (Fig. 1a, Tab. 1, Blüthgen et al. 2006). Interestingly, the origin of both the flower visitors 

and the plants strongly affected the pairwise interactions. Native species almost exclusively visited 

native plant species (94.8 % of all interactions of natives). In contrast, 24.5 % of all interactions 

observed from introduced flower visitors occurred on introduced plant species, which is 

proportional to their flower abundance on all plots (26.5 %). Accordingly, interactions of introduced 

flower visitors were more generalized (high interaction eveness, Tab. 1, Fig. 1b, c) than those of 

native flower visitors. The latter appeared to be generalistic in interactions with native plant species 

(Tab. 1, Fig. 1e) but were highly selective in the few flower choices in introduced plant species 

(Tab. 1, Fig. 1d). The same pattern was observed in plots where native and introduced animal and 

plant species co-occurred, indicating that the scarcity of interactions between native flower visitors 

and introduced plant species is not a result of asampling artifact or spatial mismatch of potential 

interactions partners (Appendix D).  

Table 1. Aggregate network statistics for flower-visitor networks. Apart from information regarding the whole 
community observed in the Hawaii Volcanoes National Park, information on network structure considering 
plants and animals of specific origins is given. Network structure was calculated for subsets containing either 
native or introduced flower visitors interacting with either native or introduced plant species. Shown are 
connectance C, interaction evenness E, complementary specialization of the individual plant (d') and 
specialization of the whole network (H2'). For d' mean ± SE across taxa are given.  

Animal and plant group C E d’ H2’ 

whole community 0.11 0.56 0.38 ± 0.24 0.55 

introduced – introduced 0.10 0.51 0.44 ± 0.24 0.65 

introduced – native 0.16 0.51 0.35 ± 0.26 0.45 

native – introduced 0.03 0.27 0.34 ± 0.37 0.88 

native – native 0.14 0.45 0.20 ± 0.26 0.50 

Niche size and niche overlap  

Apis mellifera, Xylocopa sonorina, and a number of ant species, which were the most 

common representatives of the introduced flower visitors clearly occupied larger niches vol(A) than 

the endemic bees Hylaeus difficilis, Hylaeus laetus and the endemic bird Himatione sanguinea, 

prominent representatives of the native flower visitors (Fig. 1). This finding is supported by overall 

significantly larger niche sizes vol(A) of introduced flower visitors compared to natives (Fig. 2a, 

Mann-Whitney U test: W = 97, p = 0.041). When the full niche was deconstructed into different 

parts, i.e. floral morphology and scent as well as weather conditions, the niches of the three most 

common introduced flower visitor taxa exceeded those of the natives in size vol(A) (Fig. 1).  
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Figure 1. Bipartite flower-visitor networks for the whole community of native or introduced flower visitors 
interacting with either native or introduced plant species. The networks are based on interactions per plant 
species per h. Nodes represent plant species (bottom) or flower visitor taxa (top). The width of the nodes 
denotes the proportional interaction frequency of partners. Numbers denote flower visitor taxa and plant 
species (names are shown in Appendix A: Table A1 and A2 in Supporting Information): Introduced flower 
visitors 1 – 33, native flower visitors 34 – 48, introduced plant species 1 – 22, native plant species 23 – 40. 

For instance, while Hylaeus difficilis was mostly active at warm and dry conditions with high light 

intensities, Apis mellifera was additionally active at colder temperatures and low light intensities 

(Appendix D). Larger niche sizes vol(A) also resulted, for example, from the ability of introduced 

Apis mellifera to exploit flowers that offer nectar in deep flower tubes, resources that are 

unavailable for Hylaeus difficilis (Appendix E). This trend was also apparent when considering all 

taxa (Fig. 2b, Appendix D), but only significant for floral scent (Mann-Whitney U test: floral scent: W 

= 99, p = 0.029, weather: W = 94, p = 0.063; floral morphology: W = 89, p = 0.12). Again, the same 
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pattern was observed in plots where native and introduced animal and plant species co-occurred. 

Niche sizes vol(A) regarding floral colour and nectar properties did not differ between native and 

introduced flower visitors (floral colour: W = 89, p = 0.12, nectar properties: W = 57, p = 0.75, 

Appendix B: Figure B1). Detailed information on the contribution of single functional traits to the 

niche size vol(A) is given in Appendix F: Table F1, Figure F1. 

 
Figure 2. Niche size and overlap of the six most prominent flower visitor taxa (three introduced and three 
native) in Hawai’i Volcanoes National Park. Flower visitor taxa represented by silhouetes are, starting at the 
top, Apis mellifera, Xylocopa sonorina, ants (all species pooled), Himatione sanguinea, Hylaeus laetus (2), 
Hylaeus difficilis (1). The former three are introduced flower visitors, the latter three are native. Niche size 
vol(A) and overlap port(A,B) were calculating for different trait categories (full niche, weather, floral 
morphology and floral scent) using dynamic range boxes – a non-parametric approach for quantifying the 
size and overlap of n-dimensional hypervolumes (i.e. niches), where each dimension represents one trait 
(Junker et al. 2015b). Dashed boxes showing the proportion of the niche of native flower visitor taxa covered 
by introduced species. Pointed boxes showing the proportion of the niche of native flower visitor taxa 
covered by introduced species. Pointed and dashed boxes indicate the niche sizes of native and introduced 
flower visitors. Black circles in the lower left heatmap (niche overlap port(A,B)) indicate the percentage of 
overlapping plant species and values next to lower second from left heatmap (niche size vol(A)) indicate 
number of visited plant species).  

Even more pronounced than differences in niche sizes vol(A) between native and 

introduced flower visitors were the differences in niche overlap port(A, B). For instance, a large 

proportion of the niche of native Hylaeus laetus bees was covered by introduced taxa, whereas H. 

laetus covered only a minor part of the niches occupied by the introduced taxa (Fig. 1). In general, 

native and introduced flower visitors showed an asymmetry in their overlap biased towards 
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introduced species that covered a larger proportion of the niches of native species than vice versa 

(Fig. 3, Mann-Whitney U test: Full niche: V = 3536, p < 0.001; floral scent: V = 4935, p < 0.001; 

floral morphology: V = 5225, p < 0.001; weather: V = 5985, p < 0.001). The same pattern was 

found for floral colour (Mann-Whitney U test: V = 5827, p < 0.001), whereas we found no significant 

asymmetry for the nectar properties (Mann-Whitney U test: V = 3650, p = 0.58, Appendix B: Figure 

B2). The same pattern was observed in plots where native and introduced animal and plant 

species co-occurred, too (Appendix D). Detailed information on the contribution of single functional 

traits to the niche overlap port(A, B) is given in Appendix B, Appendix F. As expected, trait-based 

niche overlap port(A, B) was correlated to the percentage of plant species shared by a pair of 

flower visitors (Spearman rank correlation: floral morphology: rho = 0.76, p < 0.001; floral scent: 

rho = 0.60, p < 0.001; Fig. 1 and Fig. 4). However, note that data points of the correlation are 

widely scattered within the plot (Fig. 4) indicating the non-redundant character of both measures of 

niche overlap.  

 
Figure 3. Niche sizes of native and introduced flower visitor species. Niche sizes vol(A) were calculated for 
four different trait categories (full niche, weather, floral morphology and floral scent) using dynamic range 
boxes – a non-parametric approach for quantifying the size and overlap of n-dimensional hypervolumes (i.e. 
niche), where each dimension represents one trait (Junker et al. 2015b). Note that niche size is dependent 
on number of dimensions; as each trait category containes a different number of individual traits 
(morphology: n = 9 traits, scent: n = 6 , weather = 3), niche sizes are not directly comparable between 
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categories. White boxplots show native taxa (n = 7) and grey introduced ones (n = 18). ns = non signficiant, 
*** p < 0.001 (Mann-Whitney U test).  

 
Figure 4. Asymmetric niche overlap between native and introduced flower visitor taxa. Log response ratios L 
describe the asymmetry of the niche overlap between native and introduced flower visitors. Asymmetry is 
expressed as the log of the quotient of the portion of the niche of a native taxon covered by the niche of an 
introduced taxon and the portion of the niche of the introduced taxon covered by the niche of the native 
taxon L = log(port(A, B) / port(B, A)). L > 0 indicates that niches of introduced taxa overlap those of native 
taxa more than vice versa. Boxplots denote range, median and interquantil ranges of log response ratios L 
for four different trait categories (full niche, weather, floral morphology and floral scent). Niche overlaps 
port(A,B) were calculated using dynamic range boxes – a non-parametric approach for quantifying the size 
and overlap of n-dimensional hypervolumes (i.e. niche), where each dimension represents one trait (Junker 
et al. 2015b). *** p < 0.001 (Mann-Whitney U test). 

DISCUSSION 

Our study revealed ecological mechanisms underlying resource partitioning and 

competition between native and introduced flower visitors. Thus our results can help to understand 

the causes of the threat for native species and the fragile Hawaiian ecosystems that are 

increasingly dominated by invasive species. On average, the floral niche sizes of introduced flower 

visitor taxa were larger than those of native flower visitor taxa. Thus, introduced flower visitors 

appear to be more generalized and are able to utilize flowering plant species displaying more 

variable floral traits than native ones. Furthermore, many introduced species were able to forage in 

a broad range of weather conditions, whereas the foraging activity of many native species was 

mostly restricted to warm and sunny conditions. The larger niches of introduced flower visitors 

resulted in an asymmetric niche overlap: native flower visitors shared a larger proportion of their 

niches with introduced flower visitors than vice versa. Apart from the more generalized resource 

use of invasive flower visitors, they were also more abundant and accounted for over two-thirds of 

all flower visits. Interestingly, native flower visitors nearly exclusively visited native plant species, 

whereas introduced species visited both native and introduced plant species proportional to their 
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flower abundance. These findings show that the competition potential between natives and 

introduced species is asymmetric and that introduced animal species are the dominant flower 

visitors of both native and introduced plant species. Consequently, the spread of introduced 

species along with their utilization of nearly the full spectrum of floral resources within the 

ecosystem may represent a severe threat for native flower visitor species. 

 
Figure 5. Relationship between number of shared plant species and trait-based niche overlap of native and 
introduced flower visitor taxa. Niche overlaps port(A, B) were calculated using dynamic range boxes – a non-
parametric approach for quantifying the size and overlap of n-dimensional hypervolumes (i.e. niche), where 
each dimension represents one trait (Junker et al. 2015b). a) Relationship between niche overlap based on 
floral morphology and number of shared plant species (Spearman rank correlation: p < 0.001) b) 
Relationship between niche overlap based on floral scent and number of shared plant species (Spearman 
rank correlation: p < 0.001). 

Native and introduced flower visitors along a specialization / generalization continuum 

Native flower visitor taxa were specialized on certain characteristics of flower traits and 

native plant species and thus are specialized in their resource use. In contrast, invasive flower 
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visitors appeared to be highly generalized allowing them to exploit floral resources from all or most 

plant species available. Generalized species, i.e. those with larger niches, usually have lower 

extinction risks in changing environments (Boulangeat et al., 2012), either because these species 

exhibit a large environmental tolerance (Ackerly, 2003) or because populations have the potential 

to rapidly adapt to different local environmental conditions (Olsson et al., 2009). In contrast, 

species with smaller niches potentially are more vulnerable to environmental change such as shifts 

in abiotic conditions or newly introduced competitors such as invasive species (Slatyer et al., 

2013). 

Functional floral traits (e.g. morphology or secondary metabolites) determine which plants 

can be utilized as resources by different animals (Stang et al., 2006; Junker et al., 2011b, 2013; 

Larue et al., 2015) and thus each functional trait can be viewed as one dimension of the floral 

niche of a flower visitor species. Consequently, an animal species with a larger floral niche size is 

able to exploit a broader range of plants displaying various characteristics of functional traits and 

thus are able to utilize more resources, which may be advantageous if individual plant species offer 

limited resources, only. If plant species that represent the main resources for animals with smaller 

floral niches become scarce or are heavily exploited by (introduced) competitors, these animal 

species may decline (Stout & Morales, 2009). In our study system, native flower visitors occupied 

small floral scent niches suggesting that these species are restricted in their resource use by this 

trait. In contrast, introduced flower visitors were more generalized (larger niche sizes) regarding 

their ability to exploit flowers with different scent bouquets. Floral niches based on morphological 

traits were smaller in native than in introduced flower visitors. For instance, compared to the native 

short-tongued Hylaeus bees the introduced long-tongued bee species (i.e. Apis mellifera and 

Xylocopa sonorina) were able to additionally utilize resources from flowers with deeper nectar-

tubes (e.g. Crotolaria retusa, Fabacaea). While floral morphology often has been considered to 

explain resource partitioning among flower visitors (Stang et al., 2006; Junker et al., 2013; Kaiser-

Bunbury et al., 2014), floral scent was scarcely included into community-wide assessments to 

explain the structure of flower-visitor interactions (But see Junker et al. 2011b, Larue et al. 2015). 

Our results, however, emphasize the importance of scent in structuring the interaction patterns in 

flower-visitor communities.  

Historically, the Hawaiian Islands lacked social hymenopterans as well as other common 

flower-visitors groups and thus possessed a high proportion of plants that are pollinated by native 

nectarivorous birds (Honeycreepers, Lammers & Freeman, 1986; Gardener & Daehler, 2006), 

which may have contributed to a lack of certain floral features (Junker et al. 2011a). Bird-pollinated 

flowers are often red (e.g. Johnson, 2013) and often are lightly scented (e.g. Knudsen et al. 2004), 

while insect-pollinated plants often are strongly scented, which is an important signal for these 

flower visitors (e.g. Raguso, 2008; Dötterl & Vereecken, 2010; Junker & Parachnowitsch, 2015). In 

other habitats not from isolated Hawaii, a high diversity of mutualistic and antagonistic flower 

visitors is considered to be an important driver of the evolution of diverse floral scents, that are 
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known to attract pollinators (e.g. honey bees) and repel antagonistic flower visitors (e.g. ants, 

Raguso 2008, Junker and Blüthgen 2010, Junker et al. 2011a, Schiestl 2015). Thus, the different 

evolutionary background of the Hawaiian flora maybe explain the differences in the floral scent 

niches of native and introduced flower vistiors.  

While functional floral traits determine the interaction partners of flower visitors, weather 

conditions strongly influence their foraging activity, especially in ectothermic insects and thus both 

flower traits and weather conditions are important components of the niches of flower visitor 

species (Kühsel & Blüthgen, 2015). Native Hylaeus bees foraged nearly exclusively at high 

temperatures and light intensity, while most introduced species, especially Apis mellifera, were 

also active at low temperatures and low light intensity (e.g. earlier in the morning). This could lead 

to preemption of flower resources, which can result in a shortage of resources for native species 

contributing to their threatened status (Goulson, 2003; Stout & Morales, 2009).  

Asymmetric competition potential between native and introduced flower visitor taxa 

Niche overlap can be used as an indicator for the competition potential between two 

species (Paini, 2004) and its quantification is a feasible approach for community-wide studies. 

However, niche overlap is a prerequisite for but does not always lead to interspecific competition 

(Colwell & Futuyma, 1971). Competition may be severe if resources within the shared niche are 

short, but may be relaxed if resources are available in sufficient amounts (Pianka, 1974; Glasser & 

Price, 1988). Additionally to shared food sources, similar requirements for habitats and non-food 

resources such as nesting sites also contribute to the competition between two species (e.g. Stout 

& Morales, 2009). Thus, inferring from niche overlap to competition is not trivial and requires a 

detailed knowledge of the ecology of the species under consideration. Nevertheless, strong 

evidence exists that niche overlap and differentiation play important roles in determining the co-

occurrences of species (e.g. Mookerji et al., 2004; Silvertown, 2004; Chu & Adler, 2015). Sizes and 

overlaps of niches based on functional traits have been shown to be particularly predictive for 

interspecific competition and resource partitioning (Adler et al., 2013; Junker et al., 2013). Given 

that ecologically relevant functional traits have been considered, studies that characterize the 

functional niches of potential competitors can improve our ability to understand species 

interactions, co-occurrence and responses to environmental change as well as the relative 

importance of different niche dimensions (Adler et al., 2013; Vannette & Fukami, 2014; Winemiller 

et al., 2015). Our data on trait-based niches show that native flower visitors shared a larger 

proportion of their niches with introduced flower visitors than vice versa. This asymmetric niche 

overlap could be observed when floral traits and weather conditions were considered. Thus, our 

results suggest that native taxa experience a high competitive pressure from introduced taxa. 

Most studies that estimate the niche overlap of flower visitors refer to the proportion of 

shared plant species between flower-visitor species (e.g. Goulson et al., 2002; Paini & Roberts, 

2005). As expected, the proportion of shared plant species predicts the trait-based niche overlap 
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as calculated by dynamic range boxes (Junker et al. 2015b). Nonetheless, the large residuals in 

the relationship between the proportion of shared plant species and the trait-based niche overlap 

port(A, B) demonstrate the non-redundant character of both approaches. While both approaches 

inform about the observed interaction patterns, a trait-based calculation of niche overlaps also 

allows to identify the traits responsible for the observations and thus to reveal ecological 

mechanisms behind the interaction structure. Additionally, a trait-based approach allows making 

assumptions beyond observed interaction partners and thus about the ability of flower visitors to 

utilize resources in different or altered plant communities, e.g. due to introduced or displaced plant 

species. 

Consequences for species and the Hawaiian ecosystem 

Introduced plant species may alter the functional composition, i.e. the abundance, 

distribution, and diversity of traits of a community. In other regions in the world, native flower 

visitors are common visitors on flowers of introduced species (e.g. Chittka & Schürkens, 2001; 

Williams et al., 2010), In contrast, we recorded only very few visits of native Hawaiian flower 

visitors on introduced plant species (see also Miller et al., 2015). Note that the scarcity of these 

interactions is not the result of spatial mismatch as native flower visitors that were observed on 

native plant species also were also observed to ignore introduced plants at the same site. This 

leads to the assumption that natives are not able to utilize the resources offered by introduced 

plant species, suggesting that natives are not adapted to the new chemical or morphological flower 

traits. Introduced flower visitors, however, utilized both native and introduced plants species 

(approximately 25% of the number of flowers in our study area), and thus may avoid competition 

by switching to other resources (Denno et al., 1995). Therefore, considering that introduced animal 

species frequently interact with native plant species, natives experience a strong competition for 

their resources (Traveset & Richardson, 2006). This asymmetry in competition pressure may even 

be intensified if introduced flower visitors are competitively superior over native flower visitors and 

fully deplete the resources of or deter native flower visitors from native plant species (Traveset & 

Richardson, 2006; Stout & Morales, 2009). Consequently, habitats with a high abundance of 

introduced plant and animal species may be unsuitable for native flower visitors (especially 

Hylaeus bees). Currently, abundances of native flower visitors in Hawaii are particularly low at low 

elevations (Banko et al., 2002; Magnacca, 2007, Kuppler, personal observation) where invasive 

plant species are most abundant (Alexander et al., 2011). Furthermore, facilitated by climate 

change it is predicted that invasive species will spread to higher elevations (Vorsino et al., 2014) 

potentially diminishing suitable habitats for native flower visitors and thus, accelerate on-going 

decline of native flower visitors.  

Several of the introduced plants in Hawaii are obligately outcrossing or have a limited 

degree of self-compatibility (Appendix A: Table A3) and thus depend on introduced flower visitors 

that nearly exclusively provided pollination service to them. Therefore, our data suggest that 
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introduced pollinators support the establishment and reproduction of introduced plants, which 

coincides with earlier findings of such positive interactions (Barthell et al., 2001; Stout et al., 2002; 

Goulson & Derwent, 2004; Traveset & Richardson, 2006). This facilitation may further promote the 

spread of introduced species into the Hawaiian ecosystems that are already highly susceptible to 

invasions (Pokorny et al., 2005).  

It has been shown that Apis mellifera is the most important substitute for the pollination of 

wide-spread tree Metrosideros polymorpha in the abscences of the original native pollinators (i.e. 

birds) (Junker et al., 2010). Thus, it is likely that Apis mellifera provides these services for other 

common native plant species as well, but it is unknown if this is also true for rare native plants 

(Hanna et al. 2013). However, while native Hylaeus bees show high levels of floral fidelity for 

native species, Apis mellifera often carries mixed pollen of native and introduced species (Miller et 

al. 2015) indicating differences in pollination efficiency. Overall, we still lacking basic knowledge 

about the Hawaiian pollinator system to understand the impact of introduced flower visitor on 

native plant species. 

Conclusions 

The results of our study show that introduced taxa are able to utilize a broader functional 

range of flowers than native flower visitors and thus may compete severely with the latter. 

Introduced plant species were nearly exclusively visited by introduced flower visitors suggesting 

that introduced plant species benefit from the high densities of introduced pollinators. Our trait-

based approach provided a potential functional explanation for this observation showing that native 

species usually have small floral niches (i.e. are highly specialized), which suggests that native 

animals are not adapted to the traits of introduced species. Thus, the evolutionary background and 

the native trait composition of a community are important components determining the impact of 

introduced species on communities. Integrating functional traits such as flower chemistry and 

morphology into community ecological studies and the quantification of niche sizes and overlap 

allows one to identify the mechanisms underlying resource partitioning and interspecific 

competition, which is particularly important in the context of species invasions. Overall, our results 

contribute to the understanding of the success and spread of introduced species and the 

associated threat to native species that experience novel competitors. The presumed range 

expansion of invasive plant and flower visitor species will further reduce the availability of 

resources for native flower visitors while simultaneously increasing the competition for the same 

resources. This suggests further declines of native pollinator species and thus dramatic 

consequences for the Hawaiian ecosystem. 
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Synopsis 

Functional plant traits have been increasingly used for investigating interaction patterns 

within communities (McGill et al., 2006; Violle et al., 2007; Shipley et al., 2016). As the traits of an 

organism and not its taxonomy determine its survival, dynamics and interactions (Levine, 2015), 

functional plant traits provide a mechanistic explanation for interaction structures and species 

composition within communities (Dıáz & Cabido, 2001; Cornwell & Ackerly, 2009). In plant-animal 

networks, we have currently a general understanding how functional plant traits mediate structures 

in communities. However, there are still gaps in our knowledge: How is intraspecific variation in 

functional plant traits related to interaction structures at different hierarchical levels (i.e. individual, 

species and community level)? Do functional plant traits provide a mechanistic explanation for 

community alterations due to disturbances? Within this thesis, we aimed to fill these gaps and 

foster our understanding of functional plant traits as a mechanistic explanation for community 

structure. We focussed on functional floral traits and flower-visitor interactions that are a central 

part in plant reproduction (e.g. Ollerton et al., 2011) and therefore influence community and 

population dynamics and structure (e.g. Parachnowitsch et al., 2012; Junker et al., 2013; Junker & 

Parachnowitsch, 2015). Specifically, we investigated if intraspecific variation floral traits drive non-

random differences in interaction at plant individual level and the influence of these patterns at 

species level. To quantify the niche size and overlap of n-dimensional hypervolumes (Hutchinson, 

1957) based on functional traits, we developed a novel non-parametric approach ‘dynamic range 

boxes’. By applying this approach we tested hypotheses of invasion biology regarding trait-based 

niche competition of flower visitors. In combination these studies show that functional plant traits 

provide a mechanism to explore community structure and its response to changes or alterations 

within communities. Further, they emphasize the importance of considering intra- and interspecific 

functional trait variation. 

Influence of floral trait variation on interaction structures 

At individual level – Importance of intraspecific variation 

In evolutionary biology, intraspecific variation in functional traits has long been recognized 

as an important driver for evolution (e.g. Newton et al., 1999). In community ecology, classically 

the focus was laid on interspecific variation and species mean values of plants. However, not 

accounting for intraspecific variability may lead to an underestimation of functional plant diversity 

and complexity of communities (Bolnick et al., 2011; Violle et al., 2012). We begin to understand 

the impact and importance of individual difference of animals for the structure of interaction 

networks (Dupont et al., 2011; Song & Feldman, 2014; Tur et al., 2014, 2015), while comparable 

studies for plant species have been scarce. To address the question whether intraspecific variation 
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in functional plant traits mediates non-random interaction patterns of plant individuals, we 

conducted a common garden experiment. Here, we quantitatively recorded all interactions between 

arthropods, flowers and leaves through the lifetime of multiple plant individuals of one species and 

linked these to the individual phenotype. This approach minimized the environmental heterogeneity 

and thereby allowed us to evaluate plant intrinsic factors (i.e. functional traits) as structuring 

mechanisms. We could show that neighbouring plant individuals differed qualitatively and 

quantitatively in their interactions with arthropods. These non-random differences were stable over 

the entire season, i.e. time-invariant (Chapter 1). Figure 3 shows the resulting conceptualised 

niche structure of a flower-visitor community. 

Quantitative variation in interaction patterns was the major differentiating factor as most 

flower visitor species were at least once recorded on nearly all plant individuals of one species. 

Individuals with a similar phenotype received consistently (over the entire season) more visits of a 

certain flower visitor taxa than individuals with different phenotypes (Figure 3, Chapter 1). Whether 

this non-random partitioning is present in a plant species likely depends on the degree of 

intraspecific variation in functional plant traits/phenotype. Plant species harbouring large 

intraspecific variation provide more opportunities for partitioning than plant species with small 

variation. Consequently, large intraspecific variation may allow more flower visitor species to utilize 

the same plant species without excluding each other. This follows the “competitive exclusion 

principle” which stats that out of two species one will be excluded if the trait-use patterns of both 

are too similar (Hardin, 1960; Götzenberger et al., 2012). This is similar to patterns at community 

level where a functionally more diverse plant community promotes a larger diversity of flower 

visitors (Junker et al., 2013, 2015).  

In addition, functionally diverse communities are more stable towards disturbances and 

environmental changes than less diverse communities (Turnbull et al., 2013; Loreau & de 

Mazancourt, 2013). This may also apply for plant species exhibiting a large intraspecific variation. 

Such species have a greater capacity to respond to disturbances or changes by intraspecific trait 

shifts or contain already individuals with a certain trait expression that allows them to reproduce 

under the changing conditions, e.g. raising temperatures. In case of floral traits, species with a high 

intraspecific variability might be more stable against changes in the regional pollinator pool. 

Community stability can be distinguished into stability towards short-term and long-term 

environmental change. To explore the relevance of intraspecific variation as response to 

environmental change, the cause of variation needs to be considered (i.e. phenotypic plasticity and 

genotypic variation) (Ackerly, 2003). If high intraspecific variability arises from phenotypic plasticity 

it is more likely to correlate with stability towards short-term environmental changes. Genotypic 

variation (i.e. higher potential for evolutionary responses) on the other hand is more important with 

regard to long-term environmental changes that select for trait values outside the range of plasticity 

of resident plants (Ackerly, 2003; Ibanez et al., 2016).  
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At individual level, variation in functional plant traits and visitation patterns indicates that 

plant individuals occupy distinguishable functional positions in a community. Thus, incorporating 

intraspecific variation may largely improve our understanding of interactions within community and 

their vulnerability to alterations, e.g. due to global change. .  

 
Figure 3. Conceptualised niches within a flower-visitor community. Axes represent functional plant traits (i.e. 

niche dimensions). Each black box represents the trait space of one plant species with the box size 

corresponding to the degree of intraspecific variation in functional traits. Dotted ellipses depict the full trait 

space utilized by a flower visitor species (different colour indicate different species). Colour gradient within 

ellipses correspond to the interaction frequency of the flower visitor within the trait space. Dark colouration 

indicates high frequencies, light colouration low frequencies. a) Black curves (curve height = observed 

frequency of a trait value within a plant species in one niche dimension) depict distribution of plant individuals 
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(black dots) within the trait space (black box). Dotted, green curves (curve height = observed interaction 

frequency at a trait value in one niche dimension) depict distribution of interactions of flower visitor within the 

trait space. Each black dot represents a flower visitor individual interacting with a certain phenotype and 

black lines indicate the distance of the individual to the centroid of the ellipse. b) Different colouration within 

plant species (i.e. black boxes) depicts different interaction frequency of a flower visitor species. Plant 

individuals with a phenotype closer to centroid of the ellipse may have a higher interaction frequency with the 

flower visitor species than phenotypes more distant from the centroid. In case a plant species (plant sp. II) 

interacts with two (or more) flower visitor species, phenotypes that are closer to one of the centroids may 

receive consistently more visits by this given flower visitor species (compare Chapter 1).  

At species & community level – Consequences of intraspecific variation  

The prevailing differentiations within a plant species may also influence structures at 

species/community level. The structures of multi-species interactions/communities species level 

are commonly described using aggregated networks statistics. These statistics usually use species 

means and do not incorporate intraspecific variation in interaction patterns (Dormann et al., 2009). 

In chapter 1, we could show that plant individuals have distinct non-random interaction patterns, 

which were time-invariant. In this context, it is valuable to understand how interactions at individual 

level may drive interaction patterns and differentiation at higher hierarchical levels and how they 

affect the robustness of network statistics and the ecological assessment of communities. Using a 

resampling approach, we demonstrated that network statistics are sensitive to observed 

intraspecific variation within one plant species (Chapter 2). This volatility of network statistics 

stresses the importance of sufficient and representative sampling (Blüthgen, 2010; Fründ et al., 

2015) to get a robust estimate of the species mean. The sampling effort for plant species with a 

low intraspecific variation in functional plant traits may be lower as individuals may not differ largely 

in their interactions patterns. However, for plant species that show a large variation in functional 

traits the estimated mean interactions of species may strongly depend on the area of the trait 

space and the associated interactions sampled (Figure 3b; plant species II). Insufficient sampling 

of a rather generalized species in terms of interactions patterns may therefore indicate this species 

as specialized in the network. 

Often, networks contain a large number of singletons or doubletons (i.e. species that are 

only observed once or twice) (Olesen et al., 2012). In such cases it is rather unlikely that these 

observations represent a good estimate of the species mean. This is especially problematic as our 

results showed that even small quantitative changes in interactions within a single plant species 

can alter the ecological conclusions derived from network statistics (Chapter 2). Thus, the inclusion 

of one or several unreliable species means may lead to an inaccurate description of the ecological 

properties of a community/network. As nowadays network statistics are increasingly used to 

monitor and explore the ecological impact of global change in communities (e.g. Gray et al., 2014; 

Kaiser-Bunbury & Blüthgen, 2015) such inaccuracies may affect our understanding of these 
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impacts. Consequently, a careful usage of network statistics as indicator for community stability 

and the impact of environmental change on interactions patterns is necessary to fully utilize the 

merit of this approach.  

Overall, we showed that intraspecific variation in functional plant traits drive non-random 

differences in individual interaction patterns (Chapter 1) and that those can influence the structure 

(i.e. network statistics) described at species/community level. Thus, hierarchical levels and their 

interconnections are important to consider in unravelling the structures and dynamics in plant 

communities. Further, taking intraspecific variation into account may improve our understanding of 

community responses towards disturbances and global change.  

At species/community level - Trait-based niche structure in response to introduced species 

Besides network statistics the structures within communities can be investigated by 

comparing the size and overlap of the trait spaces (i.e niches) utilized by different species (Figure 2 

& 3). Within this thesis, we developed a novel non-parametric approach ‘dynamic range boxes’ to 

get a robust quantification of the size and overlap of n-dimensional hypervolumes. This approach is 

robust against outliers, considers the distribution of the data, works in high dimensions (i.e. multiple 

traits) and provides the information of the contribution of each single dimension and thus, 

overcomes the shortcomings and limitations of other methods (Chapter 3).  

Trait-based niche size and overlap between species can be used to investigate the 

alterations within communities induced by disturbances, e.g. the establishment of new plant and/or 

animal species, which can compete and even displace native species (Mouillot et al., 2013; 

Richardson & Ricciardi, 2013; Simberloff et al., 2013). Here, according to niche theory the 

competition potential of two species for e.g. a limiting resource increases with the similarity of their 

ecological niches (Townsend et al., 2003). Using our novel approach ‘dynamic range boxes’ 

(Chapter 3), we investigated the trait-based niche size and overlap of native and introduced flower 

visitor species in the Hawai’i Volcanoes National Park, Hawai’i, USA, (Chapter 4) at 

species/community level.  

Niche sizes and overlaps were used to examine two hypotheses explaining the 

establishment, spread and impact of introduced species: the “superior competitor hypotheses” and 

the “invasional facilitation hypotheses” (Inderjit et al., 2005). The first states that invaders are more 

generalized in their interactions and resource use and also more efficient in obtaining limited 

resources, while the second states that one (or more) invaders positively influence the growth, 

survival or spread of another invader; the invaders may or may not share a co-evolutionary history 

(Inderjit et al., 2005). Our results showed that introduced flower-visitors had larger floral niche sizes 

and overlap the resource niches of native species more strongly than vice versa. While niche size 

and overlap was similar in some floral traits, introduced flower visitors had larger niche size in floral 

scent and certain morphological traits, e.g. nectar tube depth. Further, introduced flower visitors 

were less constraint by weather conditions while native ones mostly forage in warm and sunny 



95 
 

conditions. In contrast to native flower visitors, which rarely visited introduced plant species, 

introduced flower visitor species similarly utilized introduced as well as native species. This may 

indicate that native flower visitors were not adapted to utilize the functional traits or their 

combinations displayed by introduced plant species. In summary, our results revealed functional 

traits as an ecological mechanism underlying resource partitioning and competition between native 

and introduced flower visitors. Therefore, using functional traits we could confirm two longstanding 

hypotheses in invasion biology and provide a mechanistic explanation for both. This adds to the 

growing body of work that uses functional traits to explain basic principles/hypotheses of invasion 

biology as well as the impact of introduced species (e.g. Funk et al., 2008; Lurgi et al., 2014). 

Niche overlap between native and introduced species may not only indicate competition 

potential, but also a certain degree of functional redundancy, i.e. equivalence in trait spaces/niches 

(Traveset & Richardson, 2014, Figure 3). If an introduced species is functional redundant with a 

native one it may not only compete with the native one, but also may have the potential to replace 

it ecologically (Hobbs et al., 2006). In case of flower visitors, introduced species may become novel 

pollinators of native plant species. However, the effective replacement of native pollinators largely 

depends on their pollination efficiency compared to native ones (Miller et al., 2015). In cases where 

introduced species are ecologically equivalent or similar to native ones, they may cause 

detrimental effects on certain native species, but only small effects on ecosystem functioning 

(Hobbs et al., 2006; Traveset & Richardson, 2014; Searcy et al., 2016). Identifying the ecological 

role of introduced species in their new ranges is critical to understand their impact and fate within 

communities and ecosystems (Simberloff et al., 2013; Searcy et al., 2016). Quantifying niche 

structures based on functional traits can not only inform us on their ecological role within 

communities, but also may allow us to predict interactions within new areas. Such information can 

be valuable in recognizing susceptible habitats for the establishment of invasives and also for the 

restoration of highly suitable habitats for desired native species (Funk et al., 2008; Pearse & 

Altermatt, 2013; Ostertag et al., 2015).  

Main conclusion  

Functional plant traits as an interface of plant and plant-visiting animal species provide a 

central mechanism explaining community structures. Intraspecific functional trait variation in plants 

species – similar to animal species – can be an important factor for community structures at 

individual as well as species level. Along with these findings, our results indicated that functional 

traits provide a powerful tool to understand and predict the outcomes and responses of 

communities to global change. Thus, considering functional plant traits at different hierarchical 

level can improve our knowledge of community structure and dynamics and thereby help generate 

a general understanding of the fate of communities under global change. 
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Outlook 

Despite our growing knowledge of the structuring role of functional plant traits in 

communities, we only begin to fully understand the importance of intraspecific trait variation in 

communities and potentially ecosystem functioning. Further, functional traits provide a promising 

avenue to understand and predict the impact and fate of introduced species and environmental 

change. Thus, future research should address the following points to obtain a more comprehensive 

and complete understanding of functional trait variation within communities and as response to 

global change:  

• In Chapter 1, we demonstrated that plant individuals of one species showed non-random 

intraspecific interaction patterns. However, we need to experimentally test if these patterns 

are widespread within plant species and whether these non-random interaction patterns are 

related to the degree of intraspecific variation in floral traits, i.e. if plant species with a small 

intraspecific variation do not or to a lesser extent show these distinct patterns.  

• Intraspecific variation in functional traits may improve our understanding of the response of 

communities towards environmental change (Chapter 1, Violle et al., 2012; Moran et al., 

2015). However, its contribution to community stability is still poorly understood. We need 

carefully designed experiments that further entangle this contribution. In this context, it is 

also valuable to investigate the importance of phenotypic plasticity and genotype as driver 

for intraspecific variation and in response to environmental change.  

• Intraspecific variation in functional traits and/or interaction patterns can be large in flower 

visitor and plant species (e.g. Song & Feldman, 2014; Tur et al., 2014, 2015). However, 

experimentally this has been mostly tested on a single species (Chapter 1, Dupont et al., 

2011; Tur et al., 2014, 2015). Despite the logistic difficulties, a multi-species investigation of 

individual patterns of plants and animals may further improve our understanding of the 

complex structure and dynamics within communities and the influence of individual level 

structures on species level structures.  

• We used a resampling approach to investigate the influence of intraspecific variation on 

networks statistics (Chapter 2). Using observational studies in multi-species networks to 

test for volatility in network statistics to validate our results would greatly improve our 

understanding of the usefulness of network statistics to describe ecological properties of 

communities.  

• Introduced and native flower visitor can overlap largely in their niches (Chapter 4). 

Unfortunately, we were not able to include plots in our study where invasive flower visitor 

species were completely absent. Comparing the niches of native species from such areas 
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with areas were introduced species are present would largely improve our understanding of 

competition between both.  

• The analyses of niche shifts between native and non-native range of a species can provide 

valuable information about the determinants of species distribution and for potential range 

expansion. So far, most studies focus only on climatic niche shifts (Gonzalez-Moreno et al., 

2015). Using our novel approach, the comparison of niches in the native and introduced 

range based on functional traits may yield further insights into these complex and important 

questions.  
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Figure S1. Bipartite networks for leaf community based on individual plants. Plant individual are 
ordered by their IDs in the experimental field (Starting at the left: A1, A2, A3, …, till N7 at the right). 
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Figure S2. Proportional visitation frequency of the different visitor taxa (upper plot; based on 
number of interactions per hour) and total number of interactions per hour (lower plot) for each 
plant individual. The coloured stacked-barplot is ordered by the total number of interactions of all 
visitor taxa per hour (lower plot).  
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Figure S3. a) – d), f) - h): Mean ranks 𝑅i with 95% confidence intervals (CI) for all plant individuals; 
Plants of the German population (Population 1) are shown in blue, plants of the English population 
(Population 2) in red. Graphs for different visitor groups are shown. To check if the Ranks Ri for 
each plant individual i were invariant over the observation days ANOVA was used. e): Species 
richness per day and i) mean inverse Simpson index (upper points) with 95% confidence intervals 
(CI) for all plant individuals. Mean ranks 𝑅i and means of each plant individual was compared 
using ANOVA. Results are given in Table S4. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure S4. Time invariant differences in visitation frequencies between plant individuals. a) – f): 
Each plots shows the mean ranks 𝑅i with 95% confidence intervals (CI) of all 97 plant individuals 
for total number of flower visitors or different visitor taxa. Mean ranks were calculated using null 
model expectation based on number of flowers per individual, number of interaction per individual 
is proportional to number of flowers per individual. On each observation day, the plant individuals i 
were ranked based on increasing interaction frequencies with arthropod taxa. Mean ranks 𝑅i and 
means of each plant individual were compared using linear mixed-effect models and -likelihood 
ratio test, significance levels are given as asterisks: *** p < 0.001, ** p < 0.001. Results are given in 
Table S5. 
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Figure S5. Composition of the flower-visitor communities for each plant individual (A1 – N7). 
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Table S1. Species list of observed flower visitors.  
Family Subfamily Species 
Large solitary bees   
   
Andrenidae Andreninae Andrena agilissima (Scopoli, 1770) 
Andrenidae Andreninae Andrena bicolor (Fabricius, 1775) 
Andrenidae Andreninae Andrena chrysosceles (Kirby, 1802) 
Andrenidae Andreninae Andrena cineraria (Linnaeus, 1758) 
Andrenidae Andreninae Andrena haemorrhoa (Fabricius, 1781) 
Halictidae  Halictinae Lasioglossum calceatum (Scopoli 1763) 
   
Small solitary bees   
   
Andrenidae Andreninae Andrena minutula (Kirby, 1802) 
Andrenidae Andreninae Andrena subopaca (Nylander, 1848) 
Halictidae  Halictinae Halictus tumulorum (Linnaeus, 1758) 
Halictidae  Halictinae Lasioglossum laticeps (Schenk, 1870) 
Halictidae  Halictinae Lasioglossum morio (Fabricius, 1793) 
Halictidae  Halictinae Lasioglossum nitidiusculum (Kirby, 1802) 
Halictidae  Halictinae Lasioglossum pauxillum  (Fabricius, 1793) 
   
Eristalini   
   
Syrphidae Eristalinae Eristalinus aeneus (Scopoli, 1763) 
Syrphidae Eristalinae Eristalis arbustorum (Linnaeus, 1758) 
Syrphidae Eristalinae Eristalis tenax (Linnaeus, 1758) 
Syrphidae Eristalinae Merodon equestris (Fabricius, 1794) 
   Syrphid flies (without Eristalini) 

 
  

   
Syrphidae Syrphinae Chalcosyrphus nemorum (Fabricius, 1805) 
Syrphidae Syrphinae Dasysyrphus albostriatus (Fallén, 1817) 
Syrphidae Syrphinae Episyrphus balteatus (De Geer, 1776) 
Syrphidae Syrphinae Eupeodes corolla (Fabricius, 1794) 
Syrphidae Syrphinae Helophilus pendulus (Linnaeus, 1758) 
Syrphidae Syrphinae Lapposyrphus lapponicus (Zetterstedt, 1838) 
Syrphidae Syrphinae Melanostoma mellinum (Linnaeus, 1758) 
Syrphidae  Syrphinae Melanogaster hirtella (Loew, 1843) 
Syrphidae Syrphinae Neoascia oblique (Coe, 1940) 
Syrphidae Syrphinae Neoascia podagrica (Fabricius, 1775) 
Syrphidae Syrphinae Platycheirus albimanus (Fabricius, 1781) 
Syrphidae Syrphinae Scaeva selenitica (Meigen, 1822) 
Syrphidae Syrphinae Sphaerophoria interrupta (Fabricius, 1805) 
Syrphidae Syrphinae Sphaerophoria scripta (Linnaeus, 1758) 
Syrphidae Syrphinae Syritta pipiens (Linnaeus, 1758) 
Syrphidae Syrphinae Syrphus vitripennis (Meigen, 1822) 
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Table S2. Traits quantitatively measured for each plant individual. Abbreviations, sampling 
methods and mean ± standard error (SE) are given. Mean ± SE for scent compound see 
Table S3  
Trait Sampling method Mean ± SE 
Floral morphology    

Stamen length1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 6.90 ± 1.21 mm 

Short anther length1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 4.53 ± 0.95 mm 

Long anther length1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 7.53 ± 0.87 mm 

Petal width1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 5.72 ± 0.89 mm 

Petal length1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 7.46 ± 0.81 mm 

Flower shape1,2 Photo taken, see Appendix S1 --- 
Display size flower1,2 Caliper rule 1.61 ± 0.205 cm 

Inflorescence height2 Tape measure 86.41 ± 17.50 
cm 

Display size inflorescence1,2 Caliper rule 3.57 ± 0.79 cm 
Mean number of flowers per 
inflorescence3,4 

Mean value of flowers per inflorescence 
(counted, five blooming inflorescences) 5.38 ± 1.06 

Mean number of 
inflorescence3,4 

Mean of number of inflorescence per 
week (counted once per week) 6.62 ± 2.81 

Scent1,2 See Material & Methods and Methods S1 ---- 
   
Vegetative morphology   

Leaf hairiness1,2 Counted number of trichomes on 1cm² in 
the middle of the leaf  10.30 ± 12.298 

Leaf length1,2 Caliper rule 7.33 ± 2.211 cm 
Leaf width1,2 Caliper rule 4.11 ± 1.20 cm 

Leaf area1,2 Photo taken incl. scale, measured with 
Fiji, ImageJ 

25.98 ± 13.62 
cm² 

Mean number of leafs3 Mean of number of leafs per week 
(counted once per week) 10.88 ± 3.02 

Stem Hairiness2 
Counted number of trichome on 1 cm of 
the stem in the middle between the two 
lowest leafs 

70.31 ± 26.51 

   
Silique morphology   
Number of siliques2 Total number of siliques (counted) 128.09 ± 59.62 
Number of seeds per 
siliques2 

Mean number of seeds per silique (10 
siliques per plant) 8.92 ± 1.24 

Silique width2 Caliper rule 2.84 ± 0.389 mm 
Silique length2 Caliper rule 2.97 ± 0.33 cm 
   
Phenology   

Day of first flower Number of days between germination 
and first flower 33.81 ± 6.01 

Flowerperiod Number of days each plant had open 
flowers 13.14 ± 3.11 
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Reproductive success   

Seed set2 Number of silique multiple with mean 
number of seeds per silique 

1162.40 ± 
622.53 

Seed size2 
Mean of the area of 25 seeds per plant. 
Photo taken including scale, measured 
with Fiji, ImageJ 

2.03 ± 0.31 mm² 

Number of seeds per flower2 Number of seeds divided by mean 
numbers of flowers 43.78 ± 18.16 

Seed dormancy2 (Luzuriaga et al. 2006), 64 seeds per 
plant 92.89 ± 11.76 % 

Seed viability2 (Luzuriaga et al. 2006), 64 seeds per 
plant 98.25 ± 3.12 % 

1Residuals from regression over time were used for analyses, 2Traits measured once, 3Traits 
measured weekly, 4If a plant individual started flowering after the weekly counting it was 
counted again.  
 
References 

Luzuriaga A, Escudero A, Perez-Garcia F. 2006. Environmental maternal effects on seed 
morphology and germination in Sinapis arvensis (Cruciferae). Weed Research 46: 163–174. 
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Table S3. Scent bouquet of Sinapis arvensis flowers. For all compounds emission rate 
(mean ± SE) in ng/h/flower and retention index (RI) are given. For mean and SE calculation, 
values were not corrected for sampling date. Asterisks * denote compounds, which were 
identified using standard substances. 
Compound RI Mean ± SE 
Monoterpenes   
   α-Thujene 931 0.48 ± 0.06 
   α-Pinene* 940 31.54 ± 5.01 
   Thuja-2,4(10)-dien 961 0.33 ± 0.06 
   Sabiene* 979 3.51 ± 0.42 
   β-Pinene* 985 4.53 ± 0.43 
   β-Myrcene* 992 9.03 ± 0.74 
   1,5,8-p-menthatriene 1010 2.41 ± 0.30 
   Limonene* 1035 9.69 ± 0.72 
   β-Phellandrene* 1037 7.70 ± 0.69 
   Z-Ocimene* 1038 2.31 ± 0.32 
   β-Ocimene 1050 40.72 ± 5.12 
   neo-allo-Ocimene* 1131 1.03 ± 0.16 
   Verbenone* 1221 6.98 ± 0.77 
   Sesquiterpenes   
   Caryophyllene* 1444 1.64 ± 0.56 
   Aromatics   
   Benzylcyanid* 1144 0.44 ± 0.10 
   Unknown compounds   
   Unknown compound 2 1077 3.28 ± 0.64 
   Unknown compound 1 1134 0.43 ± 0.07 
   Total scent emission  126.05 ± 11.53 
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Table S4. Results for ANOVA for comparison of mean ranks 𝑅i for different visitor groups 
within populations (Population 1 = German population, Population 2 = English population). 
See also Figure S5. Significant results are highlighted in bold. 
Visitor group Population 1 Population 2 
Total flower visitors F47,528 = 2.39*** F48,406 = 1.68** 
Syrphidae F47,514 = 1.47* F48,400 = 1.39* 
Eristalini F47,487 = 1.23 F48,393 = 0.97 
Apis mellifera F47,516 = 2.17*** F48,389 = 1.22 
Small solitary bees F47,510 = 1.57* F48,395 = 2.56*** 
Large solitary bees F47,351 = 0.97 F48,338 = 1.50* 
Leaf visitors F47,400 = 1.41* F48, 404 = 1.76* 
Inverse Simpson index F47,527 = 1.09 F48,404 = 1.19 
Species richness F47,529 = 1.46* F48,406 = 1.52* 
Hurlbert’s PIE F47,529 = 0.85 F48,406 = 1.108 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S5. Results of linear mixed-effect models (LMMs) testing for differences in interaction 
patterns between plant individuals. Interaction patterns were on the null model expectation 
the number of interaction per individual is proportional to number of flowers per individual. 
Each model included population (Pop.) and fertilizer treatment (Treat.) as fixed factors and 
plant individual (PlantID) as random factors. The relative contribution to the variation in 
interaction patterns of the three factors was assessed using two types of R2-values: R2

conditional 
and R2

marginal (Nakagawa & Schielzeth, 2013). R2
conditional is the relative contribution of both 

fixed and random factors, R2
marginal is the relative contribution of the fixed factors only. 

Significant results are highlighted in bold. 
 LMMs PlantID (𝜒12) Pop. (F1,94) Treat. (F1,94) R2

conditional R2
marginal 

Visitor taxa      
 Total flower interactions 41.24*** 14.53*** 0.25 0.13 0.03 

 Apis mellifera 31.05*** 10.9** 0.52 0.11 0.02 

 Eristalini 21.03*** 14.60*** 1.17 0.10 0.02 

 Small solitary bees 23.88*** 40.72*** 0.14 0.14 0.07 

 Large solitary bees 17.36*** 68.77*** 0.04 0.16 0.10 

 Syrphidae (without 

Eristalini) 9.58** 14.36*** 1.00 0.07 0.02 

* p < 0.05, ** p < 0.01, *** p < 0.001; significance of fixed effects assessed with LMMs, significance of 
random effect with likelihood ratio test 
 
References 

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from 
generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142. 
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Table S6. Results of ANOVA comparing plant traits and reproductive success between 
fertilizer treatment and population. Significant results are highlighted in bold. 
Trait Population Fertilizer 
Floral morphology    
Stamen length F1,88 = 1.80 F1,88 = 2.78 
Short anther length F1,88 = 3.57 F1,88 = 1.34 
Long anther length F1,88 = 0.01 F1,88 = 2.62 
Petal width F1,88 = 5.13* F1,88 = 0.45 
Petal length F1,88 = 1.46 F1,88 = 0.43 
Flower shape F1,88 = 3.57 F1,88 = 0.06 
Display size flower F1,88 = 3.74 F1,88 = 1.26 
Inflorescence height F1,93 = 40.36*** F1,93 = 0.003 
Display size inflorescence F1,88 = 7.22** F1,88 = 0.26 
Mean number of flowers per 
inflorescence F1,93 = 3.90 F1,93 = 0.56 

Mean number of inflorescence F1,93 = 7.51** F1,93 = 0.38 
   
Scent   
Monoterpenes   
α-Thujene F1,89 = 0.30 F1,89 = 4.54* 
α-Pinene F1,89 = 1.59 F1,89 = 3.44 
Thuja-2,4(10)-dien F1,89 = 0.22 F1,89 = 4.54* 
Sabiene F1,89 = 0.58 F1,89 = 3.56 
β-Pinene F1,89 = 2.40 F1,89 = 4.93* 
β-Myrcene F1,89 = 6.33* F1,89 = 3.72 
1,5,8-p-menthatriene F1,89 = 0.01 F1,89 = 0.18 
Limonene F1,89 = 5.62* F1,89 = 1.64 
β-Phellandrene F1,89 = 8.10** F1,89 = 3.53 
Z-Ocimene F1,89 = 0.32 F1,89 = 0.83 
β-Ocimene F1,89 = 0.50 F1,89 = 0.33 
neo-allo-Ocimene F1,89 = 1.06 F1,89 = 0.43 
Verbenone F1,89 = 5.13* F1,89 = 3.34 
   
Aromatics   
Benzylcyanid F1,89 = 0.29 F1,89 = 0.65 
   
Sesquiterpenes   
Caryophyllene F1,89 = 0.48 F1,89 = 0.49 
   
Unknown compounds   
Unknown compound 2 F1,89 = 0.86 F1,89 = 0.58 
Unknown compound 1 F1,89 = 0.006 F1,89 = 0.019 
   
Total scent emission F1,89 = 3.02 F1,89 = 3.46 
   
Vegetative morphology   
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Leaf hairiness F1,93 = 0.38 F1,93 = 1.12 
Leaf length F1,93 = 1.29 F1,93 = 0.04 
Leaf width F1,93 = 0.86 F1,93 = 0.02 
Leaf area F1,93 = 2.08 F1,93 = 0.25 
Mean number of leafs F1,93 = 20.10*** F1,93 = 0.12 
Stem hairiness F1,93 = 11.86*** F1,93 = 0.34 
   
Silique morphology   
Number of siliques F1,93 = 9.61** F1,93 = 0.16 
Number of seeds per siliques F1,93 = 2.03 F1,93 = 0.22 
Silique width F1,93 = 14.74*** F1,93 = 1.59 
Silique length F1,93 = 8.98** F1,93 = 1.35 
   
Phenology   
Day of first flower F1,93 = 57.16*** F1,93 = 3.61* 
Flowerperiod F1,93 = 15.94*** F1,93 = 1.20 
   
Reproductive success   
Seed set F1,93 = 10.10** F1,93 = 0.10 
Seed size F1,93 = 14.02*** F1,93 = 0.05 
Number of seeds per flower F1,93 = 20.58*** F1,93 = 0.30 
Seed dormancy F1,93 = 3.09 F1,93 = 0.95 
Seed viability F1,93 = 3.77 F1,93 = 0.99 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table S7. Results of permutational multivariate analysis of variance comparing multiple plant 
traits between fertilizer treatment and population. We compared four trait sets (floral 
morphology, scent, vegetative morphology and phenology, Table S2) using Euclidean 
distances. Significant results are highlighted in bold and were assessed using 999 
permutations. 
Traitset Population Treatment 
Floral morphology F1,88 = 35.28*** F1,88 = 0.01 
Scent F1,88 = 1.28 F1,88 = 2.03 
Vegetative morphology F1,88 = 5.54*** F1,88 = 0.29 
Phenology F1,93 = 45.95*** F1,88 = 2.96 
*** p < 0.001 
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Methods S1 
Design of the experimental field 

 
Design of the experimental field. a) Overview. The experimental field (~55m²) was divided 

into three different areas: two observation units containing the focal plants (grey areas, each 

~9.9 m²), access area to the observation units (area within the dotted lines) and the 

surrounding area (area outside the dotted lines) with approximately 250 additional Sinapis 

arvensis plants. Experimental plants could be accessed from all four sides of the grey areas, 

depending which plant individuals were observed. b) Detailed view of the observation units, 

both units had the same setup. The unit was divided into two subunits containing the potted 

focal plants (grey squares; the left subunit contained 28 plant individuals, the right one 21). 

The pots were 15 cm in diameter and placed ~15 cm apart from each other, so that the 

distance between plant individuals was ~30 cm. Each observation unit (n = 4) was covered 

with a removable insect-net (dashed lines). The nets were ~1.1 m high and the distance from 

the outer pots to the net was ~20 cm. Each row of plants could be observed separately, while 

all rows remained covered with the insect-net when they were not observed.  

 

 
Picture of the experimental field during peak-flowering. 
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One plant individual (I1) had to be excluded and was removed for the experimental field 

since it turned out to be a different plant species after the seedling stage. To test for the 

influence of plant position on traits and visitation pattern, we compared the means of plant 

traits and interaction patterns (i.e. mean ranks 𝑅i) between the four observation units via 

linear mixed-effect models (observation unit as fixed effect and plant individuals as random 

effect) and post-hoc tests were calculated using the R function glht() (package multcomp) if 

necessary. For most traits as well as for most visitor groups (i.e. mean ranks 𝑅i), we found no 

invariant differences between the observation units (Table S2-1). Neighbouring plant 

individuals did not show invariant patterns in their flower visitor composition (Figure S2), 

implying that there were no neighbouring effects. Further, we found no correlation between 

position of the plant individuals (distance to the nearest field edge) and their visitor 

assemblages (Mantel test, Pearson’s correlation, 999 permutations: r = 0.024, p = 0.262) 

indicating that there is no edge effect that influences the visitor assemblages.  

 
Table A. Results of linear mixed effect models (LMMs) for the comparison of observation 
units. Differences in the mean of plant traits, interaction patterns and reproductive success 
are shown. Results of “general linear hypotheses” post-hoc test (glht) are only given for 
significantly different observation units (OU). All other OU pairs did not differ significantly. 
Significant results are highlighted in bold. 

Trait/interaction 
pattern/reproduction 

LMM glht 

Stamen length F3,87 = 0.58  

Short anther length F3,87 = 1.36  

Long anther length F3,87 = 0.90  

Petal width F3,87 = 0.23  

Petal length F3,87 = 1.25  

Flower shape F3,87 = 0.51  

Display size flower F3,87 = 0.63  

Total scent emission F3,87 = 0.17  

Leaf hairiness F3,92 = 0.31  

Leaf length F3,92 = 1.58  

Leaf width F3,92 = 1.68  

Leaf area F3,92 = 1.24  

Inflorescence height F3,92 = 0.72  

Number of leafs F3,92 = 1.33  

Mean number of leafs F3,92 = 0.32  

Stem Hairiness F3,92 = 0.79  
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Display size inflorescence F3,92 = 0.15  

Mean number of inflorescence F3,92 = 2.63  

Mean number of flowers per 

inflorescence 

F3,92 = 
6.49*** 

OU1>OU2, OU3>OU2 

Number of siliques F3,92 = 2.47  

Number of seeds per siliques F3,92 = 1  

Silique width 
F3,92 = 
6.28*** 

OU4>OU1/OU3 

Silique length F3,92 = 3.10* OU3>OU1 

Seedsize F3,92 = 3.61* OU3>OU1 

Day of first flower F3,92 = 0.45  

Flowerperiod F3,92 = 0.57  

Total number of seeds F3,92 = 1.56  

Number of seeds per flower F3,92 = 0.47  

Seed dormancy F3,92 = 2.80* NA 

Seed viability F3,92 = 1.21  

Mean Rank Total Flower visitors F3,92 = 5.38** OU4/OU3>OU2 

Mean Rank Honeybee F3,92 = 2.21  

Mean Rank small solitary bees 
F3,92 = 
20.7*** 

OU3>OU1/OU2, OU4>OU1/OU2 

Mean Rank large solitary bees 
F3,92 = 
9.78*** 

OU4/OU3>OU1, OU4>OU2 

Mean Rank Eristalini 
F3,92 = 
6.49*** 

OU3>OU1 

Mean Rank Syrphidae 
F3,92 = 
11.0*** 

OU3>OU1/OU2/OU4 

Mean Rank Total leaf visitors F3,92 = 5.51** OU4<OU1/OU3 

* p < 0.05, ** p < 0.01, ***p < 0.001, significance levels of LMMs, NA indicates no significant 
differences found with post-hoc tests. 
 

Scent analyses and compound identification 

The GC-MS was equipped with a ZB-5 fused silica column (5% phenyl polysiloxane; 60 m 

long, inner diameter 0.25 mm, film thickness, 0.25 μm, Phenomenex, Aschaffenburg, 

Germany) and the column flow (carrier gas: helium) was set to 1.5 ml/min. The GC oven 

temperature started at 40°C (split ratio 1:1), then increased by 6°C per minute to 250°C and 

held constant for 1 minute. The MS interface worked at 250°C. Mass spectra were taken at 

70 eV (in EI mode) from m/z 30 to 350. The GC/MS data were processed using the 
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GCMSolution package (Version 2.72, Shimadzu Corporation, Kyoto, Japan). Compounds 

were identified by comparison of mass spectra and retention times with standard 

compounds, which are commercially available. Alternatively, compounds were identified 

using the mass spectral libraries Wiley 9, Nist 2011, FFNSC 2, Essential oils and Adams 

2007 as well as the database available in MassFinder 3. The compounds found in the 

flowers were compared to those found in the blanks (empty oven bags, samples of green 

leaves) to determine which compounds were specifically emitted by flowers. The amount of 

each compound emitted was standardized by the number of flowers in the inflorescence 

sampled.  

 

Shape analyses 

Three flowers from each individual were photographed using a digital single-lens reflex 

camera (Nikon D90 with Nikon AF-S Micro-Nikkor 105mm) with the help of a tripod set at a 

180° angle relative to the flowers. A scale bar was included in all photos. These images were 

converted into tps-files using tpsUtil (Rohlf, 2009). Afterwards eight landmarks and four 

curves (one for each petal) with 55 semi landmarks were digitalized in the same order for 

each flower, after setting a scale factor using the software tpsDig (Rohlf, 2006). Semi 

landmarks, which overlapped with landmarks were deleted and slider-files were created 

using tpsUtil. To eliminate variation due to size, position, and orientation all landmarks and 

semi landmarks were superimposed by the least-squares method using tpsRelw (Rohlf, 

2007) which returned a mean shape (=consensus). Partial warps, and following relative 

warps (i.e. the principal components of partial warps scores), analysis were calculated to 

illustrate shape variation between all individuals. The relative warps axis was used as a 

surrogate for shape variation. 

 

 
Figure A. Scheme of the relative warps axis used as surrogate for shape variation. The two 
outer pictures show thin plate spline models representing the shape gradation from the 
negative (left) to the positive (right) end of relative warp axis 1. The small picture (middle) 
shows a thin plate spline model of the mean shape (=consensus).  
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Notes S1 

Comparison of intra- and interspecific trait variation 

To compare the degree of intra- and interspecific trait variation, we used the coefficient of 

variation (CV, standard deviation divided by mean). The CV was calculated for three 

datasets. The dataset from this study was used to assess the magnitude of intraspecific 

variation, while the dataset for Junker et al. (2013) as well as a recently obtained dataset 

from a meadow in the Botanical Garden of the University Salzburg was used for the 

interspecific variation. In June 2015, the third dataset was obtained on the same meadow 

were the experimental field of this study was established in 2013. We measured the following 

five plant traits for all flowering plants species (n = 11, Galium album, Scabiosa columbaria, 

Lathyrus pratensis, Rhinanthus alectorolophus, Vicia sepium, Crepis biennis, Betonica 

officinalis, Ranunculus sp., Lotus corniculatus, Trifolium dubium, Trifolium pratense): 

inflorescence height, anther length, display size of the inflorescence, display size of the 

flower, and stamen length. Please note that all traits were measured following the methods 

described in the main text. 

 
Table B. Coefficient of variation (CV) for five plant plant traits comparing intraspecific and 
interspecific variability. The CVs for intraspecific variation were calculated based on trait 
measurement for 97 Sinapis arvensis individuals. The CVs for interspecific variation were 
calculated for two meadow communities in Germany (Junker et al. 2013, n = 31) and Austria 
(Salzburg, 2015, n = 11).  

Traits CV 
(intraspecific) 

CV (interspecific, 
Junker et al. 2013) 

CV (interspecific, 
Salzburg 2015) 

Height inflorescences 0.228 0.736 0.323 
Display size 
inflorescence 

0.222 0.704 0.620 

Display size flower 0.127 NA 0.767 
Anther length 0.208 1.04 0.482 
Stamen length 0.175 NA 0.523 
‘NA’ indicates that these traits were not measured in the given study.  
 
Comparison of intra- and interspecific variation in interactions 

We compared visitation patterns of the same dataset that were used for the trait variation 

comparison. For the dataset collected in June 2015, we divided the same meadows used in 

2013 in four subplots (15 x 15 m) and conducted transect walks on four days resulting in a 

total observation time of 10 h per subplot. To compare the degree of intra- and interspecific 

variation in interaction patterns, we used Bray-Curtis dissimilarity (quantitative measure) and 

Whittaker’s beta-diversity (qualitative measure). For each of the three flower-visitor networks 

we calculated a distance matrix between all individuals respectively species for both values 

and then compared their mean dissimilarity and beta-diversity using ANOVAs. Both values 
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show how similar species or individuals are within one network.  

Unsurprisingly both indices differed between datasets (ANOVA: Bray-Curtis dissimilarity, 

F2,6298 = 12000, p < 0.001; Whittaker’s beta diversity: F2,6298 = 26579, p < 0.001), but the 

mean intraspecific dissimilarities between individuals was pronounced (Fig. B). As 

Whittaker’s beta diversity only uses presence/absence data, variation between individuals 

was less pronounced than for the quantitative Bray-Curtis dissimilarity. Please note, the 

visitation data obtained from Junker et al. (2013) had a higher taxonomic resolution (species 

level) than our study presented here, which could lead to a higher dissimilarity between 

species than with lower taxonomic resolution. 

 

Figure B. Intra- and interspecific differences in flower-visitor interactions. A) shows 
quantitative differences (Bray-Curtis dissimilarity) in interaction patterns, while B) shows 
qualitative differences (Whittaker’s beta diversity). Both values for interspecific variation were 
calculated for 97 Sinapis arvensis individuals. The values for interspecific variation were 
calculated for two meadow communities in Germany (Junker et al. 2013) and Austria 
(Salzburg, 2015). Boxplots show the median, the first and third quartiles (top and bottom of 
the box) and 1.5 times the interquartile range of the data (dashed lines). 
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Notes S2 
Multivariate visualisation of the association between traits and visitation rate 

To test whether results of the univarite correlation analyses and the Mantel tests are 

supported by a multivariate analysis, we performed co-inertia analyses (Doledec & Chessel, 

1994; Dray et al., 2003). This two-table ordination method is based on a covariance matrix 

(visitor assemblages and plant traits) which projects two separated PCA-analyses (visitor 

assemblages and plant traits) onto the same co-inertia space. To assess the strength of the 

relationship between the two tables the coefficient of variation RV was calculated and its 

significance was tested using a permutation test (999 permutations) implemented in the 

RV.rtest-function in the R package ade4 (Chessel et al., 2004). 

The multivariate visualisation of the association between traits and visitation rates of 

arthropod taxa (Co-inertia analysis, Figure C) also confirmed that the plant individuals’ 

phenotype significantly explains variation in the interactions patterns (permutation test, RV = 

0.193, p = 0.002) and showed comparable patterns as the univariate correlation analysis 

(Figure 3) and Mantel tests. Thus, the univariate and multivariate analyses jointly 

demonstrate that the plant individuals’ phenotype significantly affects flower visitor 

communities and reproductive success.  
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 Figure C. Visualization of the co-inertia analysis of based on a covariance matrix (visitor 

assemblages and plant traits) which projects two separated PCA-analyses (visitor 

assemblages and plant traits) onto the same co-inertia space. Both variables are projected 

on the first factor plane of the co-inertia analysis to facilitate interpretation. Each black arrow 

represents a trait and each blue point a visitor taxa. Correlation coefficient RV between the 

two tables is RV = 0.193 and differed significantly from chance (permutation test, 999 

permutations: p = 0.002). 
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Supplementary Material Chapter 2 

Volatility of network indices as a result of intraspecific variation in plant-insect 
interactions 
Jonas Kuppler, Tobias Grasegger, Birte Peters, Susanne Popp, Martin Schlager & Robert R. 
Junker 

Supplementary Methods 

Overview Experimental Design & Flower-visitor interactions (common garden experiment 

2013) 

Sinapis arvensis L. (Brassicaceae) is an annual, self-incompatible plant native to southern 

and middle Europe, which attracts a broad taxonomic range of flower visitors, mostly bees 

and hoverflies (Kunin, 1993). In the common garden (11 × 5 m), a total of 97 pots containing 

one S. arvensis plant each were arranged in a full-factorial pseudorandomised block design. 

Plants were covered in groups of nine or twelve individuals with a removable net (Monofil-

Gaze; Bioform, Nürnberg, Germany) to prevent animals from interacting with the plants. 

Approximately 250 S. arvensis plants surrounded the experimental plants to support an 

arthropod community specific for S. arvensis that was locally available once the experimental 

plants were made accessible. For observations the nets were removed and all interactions 

between arthropods and plant individuals were recorded on nonrainy days between 08:00 

and 16:00 h. An interaction was defined as a visit by an arthropod on one or more flowers or 

leaves of one plant individual; that is, an individual flower visitor that visited several flowers of 

one plant individual consecutively was regarded as one interaction. For a detailed description 

see Kuppler et al. (2016). 

Variability in module composition induced by module algorithm QuanBiMo 

The QuanBiMo modularity algorithm assigns species to modules based on their similarity in 

quantitative interactions in an iterative process (Dormann & Strauss 2014). To assess the 

degree of variability in module composition caused by this algorithm, we repeatedly (n = 

1000) ran the QuanBiMo algorithm (steps = 1,000,000) for 84 identical network including the 

species mean of Sinapis arvensis N�8484�, The deviation (Procrustes sum of squares) in 

module composition for each network compared to the species mean N�8484� (one reference) 

was calculated as described in the main text.  
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Supplementary Results 

Results for resampled networks with constant interaction frequency for all Sinapis arvensis 

individuals 

Quantitative network statistics can be sensitive to differences in interaction frequencies. To 

assess whether variation in the interaction frequencies among the included Sinapis arvensis 

individuals influence our results, we repeated the resampling with a constant interaction 

frequency for each S. arvensis individual. The constant interaction frequency was calculated 

by multiplying the mean number of interactions of all S. arvensis individuals with the 

proportional interaction strength of each S. arvensis individual. Subsequently, the resampling 

and the analyses were repeated as described in the main text (see material & methods) 

Aggregate statistics were sensitive to the intraspecific variation in interaction patterns in S. 

arvensis with the range of variation across different networks (N�84
𝑘 � with a constant 

interaction frequency for each S. arvensis individual) being considerable for all calculated 

network-specific indices (figure S3). Further, the species-specific complementary 

specialization d’ of most plant species showed a noticeable variability when including 

different S. arvensis individuals or their combinations N�84
𝑘 � (networks including one S. 

arvensis individual N�841 �, each: range of d’ for S. arvensis: 0.74; for all other plant species: 

range between 0 and 0.34; figure S4). The modularity analyses clearly showed that plant 

species that were part of the networks including the visitation-frequencies of only one S. 

arvensis individual N�841 �, were assigned in variable combinations to different modules (figure 

S5), even with the interaction frequency for S. arvensis hold constant.  
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Supplementary Figures

 

Figure S1. Illustration of resampling approach. a) To the species network based on the 
thirteen plant species (“species network mean”) the species mean interaction frequency of S. 
arvensis was added. In case of n = 1 the mean interaction frequency was based on one 
randomly selected S. arvensis individual. For the resulting network (“Species network �841 �”) 
commonly used network indices were calculated. This step was repeated 1000 times. b) To 
the species network based on the thirteen plant species (“species network mean”) the 
species mean interaction frequency of S. arvensis was added. In case of n = 2 the mean 
interaction frequency was based on two randomly selected S. arvensis individual. For the 
resulting network (“Species network �842 �”) commonly used network indices were calculated. 
This step was repeated 1000 times. The steps describe in a) and b) were repeated for n = 1, 
2, 3,…, 84 resulting in 84,000 resampled networks.  
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Figure S2. Results of the complementary specialization d’ of individual plant species for 
resampled networks. Large plots show the range of values calculated for all networks N�84𝑘 � 
for k = 1,2,…,84 included Sinapis arvensis individuals, while insets show the calculated 
values. Solid lines visualize the trends of the range of the calculated values. Lines were 
derived from linear regression or smoothing functions (loess regression). 
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Figure S3. Results for resampling with interaction frequency of all Sinapis arvensis 
individuals held constant: Variation in commonly applied network statistics as a function of 
the number of Sinapis arvensis individuals included in interaction matrix. a – f) Range of 
values calculated for all networks N�84𝑘 � with k = S. arvensis individuals included. Insets 
visualize the raw values. Nonparametric local polynomial regression (LOESS) curve or linear 
regression lines (for WNODF) depict the trends in changes in the range of the aggregate 
network statistics. 
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Figure S4. Results for repeated resampling with interaction frequency of all Sinapis arvensis 
individuals held constant: complementary individual specialization d’ of each plant species. 
Large plots show the range of values calculated for all networks N�84𝑘 � for k = 1,2,…,84 
included Sinapis arvensis individuals, while insets show the calculated values. Solid lines 
visualize the trends of the range of the calculated values. Lines were derived from linear 
regression or smoothing functions (loess regression). 
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FIGURE S5. Results for resampling with interaction frequency of all Sinapis arvensis 
individuals held constant: influence of different Sinapis arvensis individuals on module 
composition. a, b, c) Procrustes plots comparing principal coordinate analyses (PCoA) based 
on Sørensen-distances of plant species based on module affiliation for networks including 
only one S. arvensis individual N�841 � (points) or all individuals N�8484� (arrowheads). 
Procrustes sum of squares ss are shown as measurement for the deviation d) Histogram of 
the deviation in module composition of networks including one S. arvensis individual (n = 84) 
to species mean (ss-values) N�8484�. 
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Figure S6. Influence of the number of Sinapis arvensis individuals on module composition. 
Mean procrustes sum of squares ss for resampled networks (n = 1000) including different 
numbers of Sinapis arvensis individuals (N�84𝑘 � for k = 1,2,…,84) are shown. Procrustes sum 
of squares ss were obtained from comparing principal coordinate analyses (PCoA) based on 
Sørensen distances of plant species based on module affiliation for networks including 
different numbers of S. arvensis individuals N�84𝑘 � (for k = 1,2,…,84 ) and all individuals 
N�8484�. Procrustes sum of squares ss are shown as measurement for the deviation (see also 
figure 2 and figure S5).  
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Figure S7. Influence of different Sinapis arvensis individuals on module composition. 
Histogram shows the deviation in module composition (Procrustes sum of squares). Dark 
grey bars show deviation of networks including one S. arvensis individual (n = 84) to species 
mean (ss-values) N�8484� (figure 2). To assess deviation induced only by the module algorithm 
used, light grey bars show deviation of networks including the species mean N�8484� to species 
mean N�8484�. Inset shows the deviation of networks including the species mean N�8484� to 
species mean N�8484� only. Procrustes sum of squares ss were obtained from comparing 
principal coordinate analyses (PCoA) based on Sørensen distances of plant species based 
on module affiliation for networks including different S. arvensis individuals N�841 � and all 
individuals N�8484�. 
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Supplementary Material Chapter 3 

Dynamic range boxes – A robust non-parametric approach quantifying size and 
overlap of niches and trait-spaces in n-dimensional hypervolumes  
Robert R. Junker, Jonas Kuppler, Arne Bathke, Manuela L. Schreyer, Wolfgang Trutschnig 

 
Supporting Information 1 – Simulations 

Methods 

To evaluate the robustness of the results obtained from the dynamic range box approach, we 

quantified the overlap port(A, B) of two trait-spaces as a function of increasing sampling 

effort ranging from three observations per trait-space to the full population of observations. 

We generated six datasets each containing two trait-spaces defined by two dimensions. The 

data defining the trait-spaces had either a normal, uniform, binomial distribution; one dataset 

contained normally distributed data with outliers, two uniformly distributed datasets varied in 

the degree of their overlap in trait-spaces. Each trait-space contained 100 to 200 

observations. For these datasets we randomly drew  observations ( ranging from 3 to the 

maximum number of observations) and calculated the overlap port(A, B) between the trait-

spaces based on this subset of observations. This approach was repeated 100 times for 

each number of randomly drawn observations to obtain mean and 95% confidence interval. 

Additionally, we evaluated the effect of the number m of dynamic range boxes α (steps) on 

the sizes vol(A) and overlap port(A, B) of trait-spaces. We used the same datasets as 

described above and quantified the sizes vol(A) and overlaps port(A, B) of the trait-spaces 

using an increasing number of steps (5 - 500).  

Results and discussion 

The mean of 100 replicates of calculations on the overlap port(A, B) of trait-spaces consisting 

of  randomly drawn observations from the total population of observations quickly 

approached the overlap that was calculated based on all observations, regardless of the 

distribution of the generated data (Fig. S1-1). However, low sampling efforts resulted in 

larger 95% confidence intervals of the overlap than found in calculations based on a higher 

sampling effort (Fig. S1-1). Thus, as dynamic range boxes precisely calculate sizes vol(A) 

and overlap port(A, B) of niches and trait-spaces the result obtained from a subset of data 

may under- or overestimate values, especially if sampling effort is below 40%.  

The choice of the number m of dynamic range boxes α (steps) influences the result but only 

at very low numbers of steps (m < 50). Step numbers m above 100 mostly resulted in stable 

results (Fig. S1-1). Therefore, we set the default to m = 201, which is a good compromise 

between receiving a robust result while keeping computing time relatively short.  
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Fig. S1-1 Results of simulation. For six datasets with different distributions (left column), the 
overlap port(A, B) ± 95% confidence interval as a function of increasing sample size is shown 
(middle column). Additionally, vol(A), vol(B), port(A, B) and port(B, A) as a function of 
increasing numbers m of α-values are shown (right column). 
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Supporting Information 2 – Overlap of n-dimensional hypervolumes with increasing 
number of dimensions n, comparing dynamic range boxes with other methods 

Additional results  

Tab. S2-1 Overlap of trait-spaces characterized by increasing number of dimensions 
quantified with the R packages dynRB (pca.corr=FALSE and pca.corr=TRUE), hypervolume 
(Blonder et al. 2014), and nicheROVER (Swanson et al. 2015). Data either had a uniform or 
a normal distribution. Given are expected values calculated from the overlap per dimension 
and results of the four approaches (mean ± SD) as a function of a increasing number of 
dimensions.  

 



146 
 

 
Fig. S2-1 Correlations between generated dimensions used to compare expected overlaps 
with results of the four approaches dynRB (pca.corr=FALSE and pca.corr=TRUE), 
hypervolume (Blonder et al. 2014), and nicheROVER (Swanson et al. 2015) (s. Fig. 3 in the 
main text and Tab. S2-1). Data in examples a-d have a uniform distribution, e-h have a 
normal distribution. 
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Supplementary Material Chapter 4 

Article title: Trait-based quantification of floral niche size and overlap reveals 
mechanisms underlying resource partitioning and competition between native and 
introduced flower visitors 

Authors: Jonas Kuppler, Maren Höfers, Wolfgang Trutschnig, Arne C. Bathke, Jesse A. 
Eiben, Curtis C. Daehler & Robert R. Junker 
Article acceptance date: N/A 
The following Supporting Information is available for this article:  
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Appendix A: Plot description, list of plant species and flower visitor taxa 
 
Table A1. Description of study sites. If not otherwise indicated the study sites were located 
within the Hawaii Volcanoes National Park. 

Name Geographic 
coordinates 

Altitude 
[m a.s.l.] Age [y] Size [m²] 

No. animal 
species 

(all/native) 

No. plant 
species 

(all/native) 

N1  
19.4939 N, 

155.3847 W 
2036 1500 750 7 / 5 2 / 2 

N2  
19.3434 N, 

155.2741 W 
985 750 780 10 / 1 4 / 4 

N3  
19.1833 N, 

155.0905 W 
225 400 495 4 / 0 3 / 1 

N51  
19.4051 N, 

155.2050 W 
1595 160 200 5 / 2 4 / 2 

N6 
19.1755 N, 

155.0869 W 
109 41 667 10 / 1 8 / 2 

N72 
19.2641 N, 

155.1155 W 
991 355 800 5 / 0 6 / 1 

N8 
19.2050 N, 

155.1639 W 
986 750 104 8 / 2 3 / 3 

N9 
19.2177 N, 

155.1507 W 
1037 400 138 5 / 0 2 / 2 

N10 
19.2623 N, 

155.1808 W 
1232 200 230 3 / 0 1 / 1 

N11 
19.2627 N, 

155.1808 W 
1215 200 504 8 / 2 6 / 4  

N12 
19.2637 N, 

155.1802 W 
1245 200 430 6 / 2 4 / 3 

N13 
19.2224 N, 

155.1242 W 
1038 41 7550 9 / 3 4 / 4 

N14 
19.1966 N, 

155.1675 W 
923 750 750 8 / 3 5 / 5 

N15 
19.1874 N, 

155.0884 W 
508 41 740 3 / 0 3 / 2 

N163 
19.2129 N, 

154.5921 W 
42 23 1454 7 / 2 10 / 2 

N17 
19.2070 N, 

155.1644 W 
995 1500 617 9 / 3 5 / 5 

N18 
19.1711 N, 

155.0747 W 
52 400 1238 5 / 2 3 / 2 
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N19 
19.2902 N, 

155.2243 W 
1869 1500 336 8 / 3 3 / 2 

N20 
19.3704 N, 

155.2267 W 
1020 36 4410 9 / 3 5 / 3 

N21 
19.2896 N, 

155.1075 W 
29 400 864 8 / 0 7 / 2 

N22 
19.3241 N, 

155.2775 W 
894 750 450 11 / 4 4 / 2 

N23 
19.3726 N, 

155.2349 W 
1021 42 2314 8 / 1 4 / 4  

N24 
19.3076 N, 

155.3050 W 
810 750 4147 12 / 4 9 / 5 

N25 
19.3676 N, 

155.2129 W 
1005 41 2973 13 / 4 5 / 3 

N26 
19.2978 N, 

155.0969 W 
49 400 1003 6 / 0 6 / 4 

N27 
19.3992 N, 

155.2571 W 
1148 41 924 12 / 4 2 / 2 

N28 
19.2440 N, 

155.2136 W 
902 355 553 0 / 0 3 / 3 

N29 
19.4068 N, 

155.2386 W 
1118 400 156 9 / 0  2 / 1 

N30 
19.4017 N, 

155.2546 W 
1142 355 86 5 / 2 3 / 3 

N31 
19.3733 N, 

155.2408 W 
1039 355 578 4 / 0 3 / 3 

N32 
19.4332 N, 

155.2848 W 
1248 400 798 7 / 3 3 / 3 

N33 
19.3146 N, 

155.1514 W 
556 400 1210 6 / 1 3 / 3 

N34 
19.3380 N, 

155.2055 W 
853 41 1644 7 / 4 4 / 4 

1Saddle Road; 2Volcano Village; 3Puna 
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Table A2. Observed native and introduced flower visiting taxa. Taxa names are given as 
species names, morphospecies (M1, M2, etc.) or as genera potentially comprising several 
species. Number in brackets correspond to numbers in figure 1.  

Flower visitor taxa Number of 
observations 

Number of 
visited plant 

species 

Percentage of 
native plant 

species visited 

introduced  
 

      
 Curcolionidae, Coleoptera   

   Cylus formicarus (9) 1 1 100 

 Syrphidae, Diptera   
   Allograpta oblique or exotica (1) 166 19 63 

  Syrphid M1 (23) 1 1 0 

  Syrphid M2 (24) 4 3 0 

  Syrphid M3 (25) 1 1 100 

  Syrphid sp. (26) 162 22 45 

  Toxomerus marginatus (30) 106 19 42 

 Miridae, Hemiptera   
   Lygus elisus (15) 4 2 50 

 Tingidae, Hemiptera   
   Teleonemia scrupulosa (28) 2 1 0 

 Apidae, Hymenoptera   
   Apis mellifera (3) 1182 17 47 

  Ceratina cf. dentipes (7) 23 4 25 

  Ceratina smaragdula (8) 7 2 0 

  Xylocopa sonorina (32) 97 8 63 

 Colletidae, Hymenoptera   
   Hylaeus albonitens (12) 16 3 100 

 Megachilidae, Hymenoptera   
   Megachile sp. (16) 2 1 0 

 Formicidae, Hymenoptera   
   Anoplolepis gracilipes (2) 34 3 67 

  Brachomyrmex obscurior (4) 5 2 50 

  Cardiocondyla emeryi (5) 1 1 0 

  Cardiocondyla kagutsuchi (6) 38 5 60 

  Linepithema humile (14) 318 3 100 

  Ochetellus glaber (17) 78 8 63 

  Paratrechina bourbonica (18) 104 2 100 

  Paratrechina vaga (19) 1 1 100 

  Pheidole megacephala (20) 31 7 43 

  Plagiolepis alluaudi (21) 15 3 67 

  Tapinoma melanocephala (27) 1 1 100 

  
Tetramorium bicarinatum (29) 26 1 100 

 
Vespidae, Hymenoptera 

   
  

Dolichovespula maculata (10) 1 1 100 

  
Polistes olivaceus (22) 16 3 100 

  
Vespula pensylvanica (31) 102 3 100 

 
Orthoptera 
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Ensifera (11) 23 9 56 

 
Zosteropidae, Passeriformes 

   
  

Zosterops japonicus (13) 6 3 67 

native 
   

 
Drosophilidae, Brachycera 

   
  

cf Scaptomyza sp. (35) 39 1 100 

 
Miridae, Hemiptera 

   
  

Orthotylus sophoricola (47) 1 1 100 

 
Lygaeidae, Hemiptera 

   
  

Nysius delectulus (44) 9 2 50 

  
Nysius nemorivagus (45) 2 1 0 

  
Nysius rubescens (46) 12 1 100 

 
Colletidae, Hymenoptera 

   
  

Hylaeus conipes (36) 1 1 100 

  
Hylaeus difficilis (37) 62 8 100 

  
Hylaeus flavipes (38) 3 3 66.6 

  
Hylaeus laetus (39) 15 5 80 

  
Hylaeus pele (40) 1 1 100 

  
Hylaeus rugulosus (41) 5 1 100 

  
Hylaeus sp. (42) 181 15 67 

  
Hylaeus volcanicus (43) 5 2 100 

 
Fringillidae, Passeriformes 

   
  

Hemignathus virens (33) 17 2 100 

  
Himatione sanguinea (34) 18 2 100 

Unknown origin    

  
Brachycera M1 4 1 100 

  
Brachycera M2 1 1 100 

  
Brachycera M3 1 1 100 

  
Brachycera M4 8 1 0 

  
Brachycera M5 1 1 100 

  
Brachycera M6 1 1 100 

  
Brachycera M7 2 2 100 

  
Brachycera M8 1 1 100 

  
Brachycera M9 2 2 50 

  
Brachycera M10 1 1 100 

  
Brachycera M11 222 1 100 

  
Brachycera M12 2 1 0 

  
Brachycera M13 17 5 60 

  
Brachycera M14 1 1 1 

  
Brachycera M15 3 1 0 

  
Brachycera sp. 28 11 73 

  
Caterpillar M1 1 1 100 

  
Caterpillar M2 70 1 100 

  
Coleoptera M1 1 1 0 

  
Coleoptera M2 1 1 0 

  
Coleoptera M3 1 1 100 

  
Coleoptera M4 7 5 80 
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Coleoptera M5 162 1 100 

  
Coleoptera sp. 1 1 100 

  
Diptera sp. 73 9 56 

  
Calchid wasps 86 14 57 

  
Heteroptera sp. 6 4 75 

  
Ichneumonoidea M1 1 1 100 

  
Ichneumonoidea M2 1 1 0 

  
Lepidoptera M1 1 1 100 

  
Lepidoptera M2 5 2 50 

  
Lepidoptera M3 4 3 0 

  
Lepidoptera M4 1 1 100 

  
Lepidoptera M5 2 1 100 

  
Lepidoptera M6 1 1 0 

  
Lepidoptera M7 1 1 100 

  
Lepidoptera sp. 15 8 38 

  
Nematocera M2 1 1 100 

  
Nematocera M3 1 1 100 

  
Nematocera M5 1 1 100 

  
Nymph unknown 1 1 100 

  
Thysanoptera 26 6 67 

  
Unknown  7 5 100 

  
Wasp M1 4 2 50 

  
Wasp M2 1 1 100 

  
Wasp M3 1 1 100 

  
Wasp M5 4 1 100 

    Wasp sp. 18 6 50 
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Table A3. Native and introduced plant species observed in the study. Given are number of 
occurrences on plots, number of floral units (inflorescence or flower) on all plots, and 
reproductive properties of the plant species (V = vegetative reproduction, NV = no vegetative 
reproduction, SC = self-compatible, SI = self-incompatible, X = no information). Numbers in 
brackets are corresponding to numbers in Figure 1.  

Flower visitor taxa Occurence Number of floral 
units 

Reproductive 
properties 

introduced  
 

     

 Asteraceae    

  Ageratina riparia (1) 2 1656 V , X 

  Emilia sp. (9) 2 1499 V , X 

  Hieracium sp. (10) 2 39  

  Pluchea carolensis (17) 2 6623 NV , X 

 Fabaceae    

  Chamaechrista nictitans (3) 10 12537 NV , SC1,2 

  Crotalaria incana (4) 2 421 NV , SI2 

  Crotalaria retusa (5) 3 929 NV , SI2 

  Desmodium incanum (7) 1 95 V , SC&SI1,2 

  Desmodium triflorum (8) 3 2544 V , X 

  Lotus subbiflorus (12) 2 1238  

  Mimosa pudica (14) 2 370 V , SI2 

 Lamiaceae    

  Ajuga reptans (2) 1 160 V , SC3 

 Lythraceae    

  Cuphea hyssopifolia (6) 1 1644 NV , X 

 Onagraceae    

  Oenothera stricta (16) 1 6 X , SC4 

 Rosaceae    

  Prunus sp. (19) 1 139 NV , X 

 
 

Rubus argutus (20) 2 729 V , SI2 

 Rubiaceae    

  Mitracarpus hirtus (15) 1 80 NV , X 

 Scrophulariaceae    

  Torenia glabra (22) 1 29 V , X 

 Sterculiaceae    

  Melochia umbellata (13) 1 733 X , X  

 Polygonaceae    

  Polygonum capitatum (18) 4 6261 V , X 

 Verbenaceae    

  Lantana camara (11) 4 11912 V , SI2 

  Stachytarpheta jamaicensis (21) 1 454 NV , X 

native 
  

 

 Asteraceae 

  
 

 
 

Bidens hawaiensis (24) 3 2006  

 
 

Dubautia ciliolata (26) 1 46  

 
 

Dubautia scabra (27) 5 4677  

 
 

Pseudognaphalium sandwicensium (33) 3 11909  
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 Convolvulaceae 
  

 

  
Ipomoea indica (28) 3 235  

 
Epacridaceae    

  
Styphelia tamemaeiae (37) 15 10105  

 
Ericaceae    

  
Vaccinium reticulatum (38) 9 3402  

 
Fabaceae    

  
Acacia koa (23) 2 5490  

  
Sesbania tomentosa (35) 1 15  

  
Sophora chrysophylla (36) 7 8278  

 
Goodenicaceae    

  
Scaevola kilauea (34) 4 129  

 
Myrtaceae    

  
Metrosideros polymorpha (30) 22 3415  

 
Rosaceae    

  
Osteomeles anthyllidifolia (32) 3 2488  

 
Rubiaceae    

  
Kadua centranthoides (29) 1 206  

  
Morinda citrifolia (31) 2 81  

 
Sapindaceae  

 
 

  
Dodonea viscosa (25) 3 1859  

 
Sterculiaceae  

 
 

  
Waltheria indica (39) 7 5537  

 
Thymelaeaceae  

 
 

    Wikstroemia sp. (40) 3 818  
1hear.org/PIER, 2cabi.org, 3BIOFLOR-database, 4 eFlora.org 
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Appendix B: Methods and Results for floral colour and nectar properties 

Flower reflectance measurement 

Flower colour was measured as the spectral reflectance of petals between 300 – 700 nm, 

using a reflectance spectrometer (Jaz spectrometer, Ocean Optics, Ostfildern, Germany) 

with a standardized light source (Jaz-PX light source, Ocean Optics, Ostfildern, Germany). 

All measurements were taken in an angle of 45° to the surface. White calibration was done 

using a standard (Spectralon®) and black calibration was done covering the turned off light 

source. Flower colour was measured 2 – 10 times for each plant species using flowers from 

different individuals. Due to logistic constrains (availability of the spectrometer) we were only 

able to measure the flower colour of 22 plant species (Appendix A: Table A3). From the 

reflectance spectra we extracted common physical properties of the floral reflectance curve 

as surrogates for the flower colour: brightness (the sum relative reflectance over the entire 

spectra), chroma ((maximum reflectance – minimum reflectance)/ mean brightness) and hue 

(wavelength of the reflectance maximum) (Montgomerie 2006) using the R package pavo 

(Maia et al. 2013). 

Nectar properties 

Nectar volume [µl] and sugar content [%] were quantified early in the morning. Nectar 

samples of 2-10 individuals per species were taken with microcapillary tubes and the volume 

as well as the sugar content (percentage based on mass/mass) were quantified, the later by 

using a handheld refractometer (Eclipse; Bellingham and Stanley, Kent, UK). The value of 

either 0.01 µl (species that do produce nectar) or 0 µl (species that do not produce nectar) 

was assigned to each plant species where we were not able to collect nectar. For nectar 

concentration these plant species were excluded from the analysis.  
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Figure B1. Niche sizes of native and introduced flower visitor. Niche sizes vol(A) were 
calculated for two different trait categories (floral colour and nectar properties) using dynamic 
range boxes – a non-parametric approach for quantifying the size and overlap of n-
dimensional hypervolumes (i.e. niche), where each dimension represents one trait (Junker et 
al. 2015). Note that niche size is dependent on number of dimensions; as each trait category 
containes a different number of individual traits (morphology: n = 9 traits, scent: n = 6), niche 
sizes are not directly comparable between categories. White boxplots show native taxa (n = 
7) and grey introduced ones (n = 18). ns = non-significant (Whitney-Mann U test). 

 

 



157 
 

 
Figure B2. Asymmetric niche overlap between native and introduced flower visitor taxa. Log 
response ratios L describe the asymmetry of the niche overlap between native and 
introduced flower visitors. Asymmetry is expressed as the log of the quotient of the portion of 
the niche of a native taxon covered by the niche of an introduced taxon and the portion of the 
niche of the introduced taxon covered by the niche of the native taxon L = log(port(A, B) / 
port(B, A). L > 0 indicates that niches of introduced taxa overlap those of native taxa more 
than vice versa. Boxplots denote range, median and interquantil ranges of log response 
ratios L for two different trait categories (floral colour and nectar properties). Niche overlaps 
port(A,B) were calculated using dynamic range boxes – a non-parametric approach for 
quantifying the size and overlap of n-dimensional hypervolumes (i.e. niche), where each 
dimension represents one trait (Junker et al. 2015). *** p < 0.001, ns = non-signficiant 
(Whitney-Mann U test). 
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Figure B3. Niche size and overlap of the six most prominent flower visitor taxa (three 
introduced and three native) in Hawai’i Volcanoes National Park. Flower visitor taxa 
represented by silhouetes are, starting at the top, Apis mellifera, Xylocopa sonorina, ants (all 
species pooled), Himatione sanguinea, Hylaeus laetus (2), Hylaeus difficilis (1). The former 
three are introduced flower visitors, the latter three are native. Niche size vol(A) and overlap 
port(A,B) were calculating for different trait categories (floral colour and nectar properties) 
using dynamic range boxes – a non-parametric approach for quantifying the size and overlap 
of n-dimensional hypervolumes (i.e. niches), where each dimension represents one trait 
(Junker et al. 2015). Dashed boxes showing the proportion of the niche of native flower 
visitor taxa covered by introduced species. Pointed boxesshowing the proportion of the niche 
of native flower visitor taxa covered by introduced species. Pointed and dashed boxes 
indicate the niche sizes of native and introduced flower visitors. Black circles in the lower left 
heatmap (niche overlap port(A,B)) indicate the percentage of overlapping plant species and 
values next to lower second from left heatmap (niche size vol(A)) indicate number of visited 
plant species). 
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Figure B4. Asymmetric niche overlap between native and introduced flower visitor taxa. Log 
response ratios L describe the asymmetry of the niche overlap between native and 
introduced flower visitors. Asymmetry is expressed as the log of the quotient of the portion of 
the niche of a native taxon covered by the niche of an introduced taxon and the portion of the 
niche of the introduced taxon covered by the niche of the native taxon L = log(port(A, B) / 
port(B, A). L > 0 indicates that niches of introduced taxa overlap those of native taxa more 
than vice versa. Boxplots denote range, median and interquantil ranges of log response 
ratios L for all single traits comprising the two different trait categories (floral colour and 
nectar properties). Niche overlaps port(A,B) were calculated using dynamic range boxes – a 
non-parametric approach for quantifying the size and overlap of n-dimensional hypervolumes 
(i.e. niche), where each dimension represents one trait (Junker et al. 2015). *** p < 0.001, ns 
=non-signficiant(Whitney-Mann-U-test). 
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Appendix C: Emission rates of native and introduced plant species 

Table C1. Emission rate of volatiles originating from six biochemical pathways in native and 
introduced plant species. For all functional groups emission rate in ng/h/100mg dry mass 
flower are given. Functional groups are aliphatics (A), aromatics (AR), C5-branched pathway 
(C5), irregular terpenes (IT), monoterpenes (MT), sesquiterpenes (ST). 

Plant   A AR C5 IT MT ST 

introduced 
       

 
Ageratina riparia 0 0 0 0.424 0.214 0.035 

 
Ajuga reptans 0.844 0.055 0 0 0 0.531 

 
Chamaechrista nicitians 0 0 0 0 4.953 0 

 
Crotalaria incana 0.1 0.018 0 0.683 0.079 0.093 

 
Crotalaria retusa 0.151 0 0 0.474 0.003 0.068 

 
Cuphea hyssopifolia 0.078 0.137 0 0.113 3.834 0 

 
Desmodium incanum 0 0 0 0 0 0.363 

 
Desmodium triflorum 0 0 0 0 1.566 0 

 
Emilia sp. 0.151 0 0 0.247 0 0.51 

 
Hieracium sp. 0.836 0 0 0 0.228 0.025 

 
Lantana camara 5.998 0.648 0 2.415 187.67 89.852 

 
Lotus subbiflorus 0 0 0 0 614.87 32.873 

 
Melochia umbellata 0 1.508 0 0 1.199 0 

 
Mimosa pudica 0 0.593 0 0 0 0 

 
Mitracarpus hitra 0.055 0 0 0.047 0.02 0 

 
Oenothera stricta 38.947 35.325 0 0 205.82 0 

 
Pluchea carolensis 0.013 0 0 0.284 5.812 0.728 

 
Polygonum capitatum 0 0 0 0 0.085 0 

 
Prunus sp. 0 9.762 0 0 2.049 0 

 
Rubus argutus 0 0.65 0 0.123 0 0 

 
Stachytarpheta jamaicensis 4.746 0 0 0 0 0 

 
Torenia glabra 0 0 0 0 0.862 0 

native  
      

 
Acacia koa 0.319 0.132 0 1.697 0.04 0 

 
Bidens hawaiiensis 3.642 11.174 1.604 3.956 18.301 0.932 

 
Dodonea viscosa 0.121 0.218 0 0 2.869 0 

 
Dubautia ciliolata 0 1.513 0 4.04 1.108 18.094 

 
Dubautia scabra 0 1.021 0 0 30.553 3.739 

 
Ipomoea indica 0.751 0.11 0 0 0.461 21.637 

 
Kadua centranthoides 0 0.142 0 0 1.911 0.046 

 
Metrosideros polymorpha 0.034 0.024 0 0.076 0.137 0.256 

 
Morinda citrifolia 6.231 71.242 0.645 7.725 4.759 6.457 

 
Osteomeles anthyllidifolia 0.082 0.128 0 0 0 0 

 
Pseudognaphalium sandwicensium 2.746 0 0 0.032 3.059 0.797 

 
Scaevola kilauea 0 0 0 0 194.31 0 

 
Sophora chrysophylla 0 0 0 0 0.016 0 

 
Styphelia tamemaeiae 0 0.294 0 0 0.074 0 

 
Vaccinium reticulatum 0.005 0.081 0.017 0.082 2.675 0.151 

 
Waltheria indica 10.971 0 0.862 95.65 98.751 120.46 

  Wikstroemia sp. 0 0 0 0 2.894 0 
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Appendix D: Results for niche size vol(A) and overlap port(A,B) calculations only 
including plots where native and introduced plant species and flower visitor taxa were 
co-occurring. 
 

 

Figure D1. Bipartite flower-visitor networks for native or introduced flower visitors interacting 
with either native or introduced plant species. The networks are based on interactions per 
plant species per h observed on all plots where native and introduced flower visitor taxa and 
plant species were co-occurring (Appendix A: Table A1). Nodes represent plant species 
(bottom) or flower visitor taxa (top). The width of the nodes denotes the proportional 
interaction frequency of partners. Numbers denote flower visitor taxa and plant species 
(names are shown in Appendix A: Table A1 and A2 in Supporting Information): Introduced 
flower visitors 1 – 33, native flower visitors 34 – 48, introduced plant species 1 – 22, native 
plant species 23 – 40. 
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Table D1. Aggregate network statistics for flower visitor-plant networks in the Hawaii 
Volcanoes National Park. Information on network structure considering plants and animals of 
specific origins is given. Network structure was calculated for subsets containing either native 
or introduced flower visitors interacting with either native or introduced plant species. Shown 
are connectance C, weighted nestedness based on overlap and decreasing fills (WNODF), 
interaction evenness E, complementary specialisation of the individual plant (d') and 
specialisation of the whole network (H2'). For d' mean ± SE across taxa are given. 

Animal and plant group C E d’ H2’ 
introduced – introduced 0.11 0.50 0.53 ± 0.24 0.71 

introduced – native 0.17 0.55 0.41 ± 0.20 0.61 
native – introduced 0.04 0.32 0.31 ± 0.37 0.89 

native – native 0.14 0.49 0.42 ± 0.36 0.66 

 

 

Figure D2. Niche sizes of native and introduced flower visitor. Niche sizes vol(A) were 
calculated for two different trait categories (floral scent and floral morphology) using dynamic 
range boxes – a non-parametric approach for quantifying the size and overlap of n-
dimensional hypervolumes (i.e. niche), where each dimension represents one trait (Junker et 
al. 2015). Note that niche size is dependent on number of dimensions; as each trait category 
containes a different number of individual traits (morphology: n = 9 traits, scent: n = 6), niche 
sizes are not directly comparable between categories. White boxplots show native taxa (n = 
7) and grey introduced ones (n = 18). ns = non-significant (Whitney-Mann U test: Scent: W = 
76, p = 0.19; Morphology: W = 78, p = 0.15). 
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Figure D3. Asymmetric niche overlap between native and introduced flower visitor taxa. Log 
response ratios L describe the asymmetry of the niche overlap between native and 
introduced flower visitors. Asymmetry is expressed as the log of the quotient of the portion of 
the niche of a native taxon covered by the niche of an introduced taxon and the portion of the 
niche of the introduced taxon covered by the niche of the native taxon L = log(port(A, B) / 
port(B, A). L > 0 indicates that niches of introduced taxa overlap those of native taxa more 
than vice versa. Boxplots denote range, median and interquantil ranges of log response 
ratios L for two different trait categories (floral morphology and floral scent). Niche overlaps 
port(A,B) were calculated using dynamic range boxes – a non-parametric approach for 
quantifying the size and overlap of n-dimensional hypervolumes (i.e. niche), where each 
dimension represents one trait (Junker et al. 2015). *** p < 0.001 (Whitney-Mann U test: 
Scent: V = 1238, p < 0.001; Morphology: V = 2510, p < 0.001). 
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Appendix E: Distribution of visited trait ranges for three trait categories (floral 
morphology, floral scent and weather)  

 

Figure E1. Trait distribution for all traits from the different trait categories (weather, scent and 
floral morphology) for Apis mellifera, Xylocopa sonorina, Ants (all ant species pooled), 
Hylaeus difficilis, Hylaeus laetus and Himatione sanguinea (Apapane). Distributions are 
weighted for the interaction frequency of each visitor taxa with a given trait.  
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Figure E2. Detailed trait distribution of weather traits for Apis mellifera and Hylaeus difficilis. 

 

 
Figure E3. Detailed trait distribution of four floral morphology traits for Apis mellifera and 
Hylaeus difficilis. 
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Appendix F: Dimension-wise niche size vol(A) and overlap port(A,B) for three trait categories (floral morphology, floral scent, weather) 

Table F1. Size for each niche dimension of native and introduced flower visitor species. Dimension-wise niche size were calculated for all 
measured floral traits, weather conditions and floral scent compounds using dynamic range boxes – a non-parametric approach for quantifying the 
size and overlap of n-dimensional hypervolumes (i.e. niche) (Junker et al. 2015). 

Flower visitor taxa 
Plant 

height 
Flower 

inclination 

Ratio 
style:stamen 

length 

Nr of 
stamens 

Stamen 
accessibility 

Display 
size 

flower 

Display 
size 

inflor. 

Nectar 
tube 

length 

Nectar 
tube 
width 

Aliphatics Aromatics 
C5-

pathway 
Irregular 
terpenes 

Mono-
terpene 

Temperature 
Wind 
speed 

Light 
intensity 

Sesqui-
terpenes 

introduced                   
Allograpta 
oblique or 

exotica 
0.3316 0.7277 0.233 0.091 0.2575 0.5609 0.2651 0.3061 0.3682 0.1741 0.1051 0.1135 0.0163 0.0656 0.5115 0.5414 0.7347 0.061 

Anoplolepis 
gracilipes 0.4278 0.3618 0.1839 0.0071 0.3536 0.1225 0.2321 0.1286 0.0815 0.2318 0.7675 0.5361 0.1169 0.0061 0.4144 0.1953 0.7757 0.0772 

Apis mellifera 0.4426 0.6548 0.2088 0.1113 0.2326 0.5744 0.4453 0.3485 0.4164 0.1587 0.1434 0.1408 0.0117 0.1187 0.606 0.279 0.7627 0.0049 
Brachomyrmex 

obscurior 0.1544 0.2528 0.2196 0.0134 0.1189 0.2043 0.0314 0.1315 0.4378 0.4332 0.0362 6.05E-05 0.1132 0.6624 0.1908 0.1325 0.0868 0.9596 

Cardiocondyla 
kagutsuchi 0.1842 0.5408 0.51 0.0062 0.215 0.0959 0.1889 0.0839 0.0783 0.0006 0.0131 0.0077 0.0017 0.0479 0.4575 0.3047 0.3846 0.0268 

Ceratina cf. 
dentipes 0.264 0.6675 0.1054 0.0022 0.1281 0.153 0.2741 0.1216 0.1214 0.1102 0.4936 0.2731 0.0688 0.0064 0.0596 0.5457 0.3933 0.0642 

Ensifera 0.2494 0.6238 0.2057 0.005 0.1277 0.2634 0.4147 0.2058 0.1083 0.1117 0.0413 0.2041 0.0131 0.0167 0.4982 0.8352 0.7628 0.005 
Hylaeus 

albonitens 0.3422 0.4449 0.7025 0.0086 0.2154 0.6603 0.6545 0.0253 0.0352 0.3063 0.434 0.9925 0.1638 0.1259 0.2098 0.2384 0.404 0.0269 

Linepithema 
humile 0.6613 0.7602 0.2396 0.007 0.6882 0.2629 0.2031 0.2802 0.0706 0.0011 0.0012 0.0131 0.0007 0.0052 0.2323 0.3031 0.6644 0.0022 

Ochetellus 
glaber 0.3445 0.7828 0.263 0.0023 0.2212 0.3698 0.2456 0.3212 0.1228 0.2921 0.3013 0.3119 0.2785 0.1522 0.6814 0.8758 0.6299 0.7173 

Paratrechina 
bourbonica 0.7614 0.9458 0.3807 0.016 0.8291 0.4032 0.3122 0.2104 0.0692 0.0022 0.0024 0.0325 0.0002 0.0125 0.3027 0.4772 0.6867 0.0026 

Pheidole 
megacephala 0.3188 0.5798 0.1922 0.0028 0.2137 0.2762 0.2274 0.2585 0.119 0.3299 0.3429 0.3669 0.2978 0.1723 0.3689 0.8919 0.8785 0.5832 

Plagiolepis 
alluaudi 0.2159 0.7071 0.3661 0.0045 0.2109 0.717 0.2917 0.7658 0.282 0.0815 0.136 0.5808 0.0382 0.0259 0.198 0.7629 0.2254 0.2413 

Polistes 
olivaceus 0.3409 0.9823 0.2362 0.0068 0.4715 0.1692 0.1711 0.1049 0.0927 0.0008 0.0164 0.0132 0.001 0.0576 0.3519 0.3865 0.3238 0.0355 

Syrphid sp. 0.2641 0.5673 0.1937 0.0777 0.2498 0.5236 0.3209 0.3074 0.3398 0.1746 0.1014 0.1 0.0134 0.0637 0.5301 0.5347 0.5804 0.0473 
Tetramorium 
bicarinatum 0.3042 0.9819 0.3371 0.0059 0.4769 0.142 0.1753 0.1349 0.0863 0.0007 0.013 0.0201 0.0009 0.0457 0.2288 0.2232 0.5396 0.0287 

Toxomerus 
marginatus 0.2609 0.5881 0.2046 0.0083 0.2218 0.6554 0.2581 0.3931 0.5088 0.2338 0.146 0.0982 0.0126 0.0778 0.4814 0.2877 0.7623 0.0607 

Vespula 
pensylvanica 0.531 0.5575 0.5006 0.0092 0.5364 0.4108 0.4689 0.0187 0.0914 0.1205 0.2032 0.7293 0.0531 0.0383 0.4575 0.243 0.7096 0.0088 

Xylocopa 
sonorina 0.4025 0.6149 0.22 0.004 0.1975 0.5629 0.3158 0.4547 0.1776 0.1065 0.3585 0.3785 0.0527 0.0161 0.6907 0.6914 0.8747 0.1109 

native                   
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cf. Scaptomyza 
sp. 0.7042 0.4465 0.051 0.0026 0.1279 0.0713 0.0769 0.017 0.0207 2.29E-06 1.25E-06 5.56E-05 9.33E-07 1.45E-07 0.2461 0.1171 0.3199 7.40E-07 

Hemignathus 
virens 0.5134 0.6834 0.0794 0.0108 0.7409 0.0758 0.0948 0.527 0.0494 0.0018 0.0007 7.14E-05 0.0016 0.0004 0.0748 0.1563 0.235 0.0044 

Himatione 
sanguinea 0.5255 0.6351 0.0681 0.0084 0.6751 0.0985 0.0923 0.4326 0.0585 0.0014 0.0005 7.29E-05 0.0013 0.0003 0.1815 0.0745 0.3815 0.0034 

Hylaeus difficilis 0.3598 0.6089 0.2771 0.0074 0.2299 0.4555 0.3781 0.1187 0.1734 0.078 0.0703 0.3308 0.0179 0.0468 0.4628 0.4187 0.4258 0.0181 

Hylaeus laetus 0.3099 0.7771 0.0545 0.0038 0.1754 0.5308 0.1501 0.7337 0.2115 0.0034 0.0025 6.99E-05 0.0004 0.008 0.6142 0.4013 0.7173 0.0011 

Hylaeus sp. 0.2537 0.5825 0.1355 0.0043 0.1853 0.3407 0.311 0.1756 0.2431 0.2504 0.1239 0.1993 0.1494 0.3523 0.8053 0.5052 0.5343 0.2653 
Nysius 

rubescens 0.0556 0.1234 0.0892 0.0003 0.0395 0.0674 0.047 0.041 0.0213 2.96E-06 1.62E-06 7.19E-05 1.21E-06 1.88E-07 0.0898 0.0806 0.4191 9.58E-07 
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Figure F1. Niche sizes of native and introduced flower visitor species. Niche sizes vol(A) were 
calculated for all measured floral traits, weather conditions and floral scent compounds using 
dynamic range boxes – a non-parametric approach for quantifying the size and overlap of n-
dimensional hypervolumes (i.e. niche) (Junker et al. 2015). Grey boxplots show introduced taxa (n 
= 18) and white native ones (n = 7). ns = non-signficiant, *p < 0.05, ** p < 0.01, *** p < 0.001 
(Whitney-Mann U test). 
 
Please see Excel-file: Appendix F Table F2. 
Table F2. Overlap for each niche dimension of native and introduced flower visitor species. 
Dimension-wise niche overlap port(A, B) were calculated for all measured floral traits, weather 
conditions and floral scent compounds using dynamic range boxes – a non-parametric approach 
for quantifying the size and overlap of n-dimensional hypervolumes (i.e. niche) (Junker et al. 2015).  
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Appendix 15 

 
Figure F3. Asymmetric niche overlap between native and introduced flower visitor taxa. Log 
response ratios L describe the asymmetry of the niche overlap between native and introduced 
flower visitors. Asymmetry is expressed as the log of the quotient of the portion of the niche of a 
native taxon covered by the niche of an introduced taxon and the portion of the niche of the 
introduced taxon covered by the niche of the native taxon L = log(port(A, B) / port(B, A). L > 0 
indicates that niches of introduced taxa overlap those of native taxa more than vice versa. Boxplots 
denote range, median and interquantil ranges of log response ratios L for all single traits 
comprising the four different trait categories (full niche, weather, floral morphology and floral scent). 
Niche overlaps port(A,B) were calculated using dynamic range boxes – a non-parametric approach 
for quantifying the size and overlap of n-dimensional hypervolumes (i.e. niche), where each 
dimension represents one trait (Junker et al. 2015). *** p < 0.001, ns = non-signficiant (Whitney-
Mann U test). 
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