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Abstract

Particle accelerators are a fundamental instrument for the under-
standing of fundamental mechanism in nature. The need of always
higher energies for the particle beams requires a huge increase of the
sizes of the accelerators using the actual technology. Moreover the
highest energies are achieved nowadays by circular colliders, not per-
fectly suitable for acceleration of electrons and positrons due to the
radiation losses. In order to overcome this problem a new branch
of physics studying alternative technique for particle acceleration has
been developed.

Among the various alternatives a promising one is the plasma
wakefield acceleration (PWFA), in which a driver bunch interacts with
a cold background plasma, exciting a plasma wave. The electric field
of the plasma wave is then used for the acceleration of a second bunch.
Such a mechanism allows to reach fields strength far beyond currently
available, limited by the dielectric strength of the material. Among
the different driver configurations, a promising one is the use of a
modulated beam, namely a train of bunches, that provides a coherent
interference among the electric fields generated by the single bunches.
Such mechanism is subjected to a renewed interest in view of the
forthcoming AWAKE experiment at CERN in which the long proton
beam produced at the SPS facility is used as a driver. This possibility
is achieved thanks to the onset of the self-modulation instability that
modulates the long beam in a train of approximately 100 bunches. In
order to accelerate the witness bunch to high energies is necessary on
the other hand an efficient exchange of energy from the driver to the
accelerated bunch, as well as a long duration of the driver so that can
propagates for kilometers.

This thesis deals with this two last aspects. The aim of this work
is to provide an optimization for the modulated driver in order to
improve specific features of the PWFA. This work shows the possibility
to achieve an improved efficiency for the energy transfer by properly
controlling the shape of the single bunches composing the driver, as
well as the distance between the bunches. Moreover the work shows
as a fine tuning of the periodicity of the bunches allows the production
of a more stable driver, especially considering the instability arising
from the emittance-driven head erosion.
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Zusammenfassung

Teilchenbeschleuniger sind ein wichtiges Instrument zum Verständnis
fundamentaler Vorgänge in der Natur. Im Rahmen der aktuell zur
Verfügung stehenden Technologie müssen immer größere Beschleu-
niger gebaut werden, um die wachsenden Anforderung an immer höherer
Strahlenergien zu erfüllen. Die höchsten Energien pro Teilchen wer-
den in Zirkularbeschleunigern erreicht, wobei ein hoher Energiever-
lust durch Synchrotronstrahlung (insbes. bei der Beschleunigung von
Elektronen und Positronen) entsteht. Um dieses Problem zu umgehen,
befasst sich ein Teilgebiet der Physik mit der Erforschung alternativer
Beschleunigungsmethoden.

Eine der vielversprechendsten Methode ist die Beschleunigung in
Plasma [plasma wakefield acceleration (PWFA)]. Hier wechselwirkt
ein Treiber mit kaltem Hintergrundplasma, wodurch eine Plasmawelle
angeregt wird. Das elektrische Feld innerhalb der Plasmawelle wird
anschließend genutzt, um einen gefangenen Teilchenstrahl zu beschle-
unigen. Die bei dieser Methode auftretenden Feldstärken sind um
viele Größenordnungen höher, als in herkömmlichen Beschleunigern,
da sie nicht durch einen möglichen Materialzusammenbruch begrenzt
sind. Eine vielversprechende Methode, Plasmawellen anzuregen, ist
die Benutzung eines modulierten , hoch energetischen Teilchenstrahls
als Treiber. Hierbei überlagern sich die elektrischen Felder einer Reihe
von kleineren Strahlen kohärent zu einem großen. Dieser Mechanis-
mus ist besonders interessant, da in naher Zukunft das AWAKE Ex-
periment am CERN durchgeführt werden soll. Hierbei wird ein langer
Protonenstrahl, der in der SPS-Einrichtung vorbeschleunigt wurde, als
ein Treiber genutzt. Die Zerlegung in einzelne kleinere Strahlpakete
(ca. 100 Stück) geschieht anschließend durch die Selbstmodulationsin-
stabilität. Damit ein in der Plasmawelle gefangener Teilchenstrahl auf
hohe Energien beschleunigt werden kann, ist ein effizienter Energieaus-
tausch zwischen Treiber und Strahl, sowie eine lange Lebenszeit des
Treibers notwendig.

Diese Arbeit behandelt die letzten beiden Aspekte der Teilchenbeschle-
unigung in Plasma. Das Ziel der Arbeit ist es, die Modulation des
Treibers zu optimieren und damit spezifische Eigenschaften der PWFA
zu verbessern. Um die Effizienz des Energietransfers zu verbessern,
wird eine Methode vorgestellt, die es erlaubt, die Form und den Ab-
stand der einzelnen Strahlpakete im gesamten Protonenstrahl zu kon-
trollieren. Darüber hinaus zeigt diese Arbeit, wie die Feinabstimmung
der Periodizität der Teilstrahlen die Lebenszeit des Treibers verlängern
kann. Hierbei wird insbesondere auf die durch die Emittanz am Kopf
des Treibers induzierte Instabilität eingegangen.
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1 Introduction

One of the most ambitious achievement in physics in the last decades involved
the acceleration of particles.

The confirmation of the Standard Model has widely relied on the use of
particle accelerator. Some of the discoveries performed using particle accel-
erators are:

• Observation of the antiproton in 1955 at the Bevatron [1];

• Observation of the J/Ψ meson and confirmation of the existence of
the quark charm in 1974 at the Stanford Linear Accelerator Center
(SLAC) [2] and at the Brookhaven National Laboratories (BNL) [3];

• Observation of the τ particle at SLAC in 1975 [4];

• Observation of the gluon at the Deutsches Elektronen-Synchrotron(DESY)
in 1979 [5];

• Observation of the W and Z bosons at European Organization for
Nuclear Research (CERN) in 1983 [6, 7];

• Observation of an Higgs boson-like particle at CERN in 2012 [8–10].

The use of particle accelerators goes beyond the application in experimental
particle physics [11].

Condensed matter experiments relies as well in the synchrotron radiation
produced by bending particles accelerated to relativistic energies (usually
electrons due to their small masses). From Tantalus, developed at the Syn-
chrotron Radiation Center (SRC) in 1968 [12], to the more recent SOLEIL
facility whose first operation dated back to 2006 [13], synchrotron radiation
has been always widely used for spectroscopy.

Not less important are the applications of particle accelerators to medicine.
An example is the hadron therapy for cancer treatment, where accelerated
particles, usually protons, are shot on tumor tissues [14]. Today such tech-
nique is widespread all over the world, with plans for the development of new
facilities [15, 16].

Such a wide application of particle accelerators, as well the promising
results that provide, pushes the construction of new facilities to achieve the
desired energies and beam features to be used in these applications.

Such development on the other hand is a challenge by itself due to the
high cost and huge increase in the facilities dimension in order to reach the
desired characteristics.
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Plans are made for next generation of hadron colliders, such as those
performed by the Future Circular Collider (FCC) studies [17,18]. A proposal
is to build a new accelerator ring using the existing LHC facility as a pre-
accelerator as shown in Fig.1a.

(a)

(b)

(c)

Figure 1: Suggested scheme for future particle accelerators: a)Future Cir-
cular Collider (suggested name Very Large Hadron Collider(VLHC). Picture
taken from Ref. [17]); b) the International Linear Collider (ILC) (Picture
taken from Ref. [19]); c) the Compact Linear Collider (CLIC) (Picture taken
from Ref. [20])

Together with problems related to the cost of the new facilities, remains
the challenge to accelerate electrons and positrons to high energies, a goal
difficult to achieve in circular accelerators due to radiation losses.

The current optimal facilities for the electron/positron colliders are still
the linear accelerators (linac). Plans are ongoing as well for the development
of new machines aimed to reach the TeV threshold for the energy in the
center of mass also for such colliders.
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The International Linear Collider (ILC) [19] uses the already established
concept of the linear collider simply extending its size (Fig.1b). The Compact
Linear Collider (CLIC) [20] plans instead to use an accelerated beam as
generator for the electric fields required to accelerate a second beam as can
be seen in Fig.1c.

The greater size of the facilities, together with the increment in the cost,
opened to the study of alternative ways to accelerate particles to such ener-
gies. One of the promising alternatives for electrons/positrons acceleration
are the Plasma WakeField Accelerators (PWFA), where the particles are
accelerated by the electric field generated by a plasma perturbation.

The concept was first suggested by Tajima and Dawson [21] reaching
nowadays impressive results [22, 23].

In such accelerating scheme a “driver“, either a laser pulse or a particle
beam, is used to generated a Langmuir wave by perturbing a plasma. A
”witness“ bunch, of electrons or positrons, is then injected on the trail of the
driver to be accelerated by the electric field of the plasma wave.

Such concept provides an accelerating gradient up to 100 GeV/m much
higher than those achieved by standard radio frequency(rf) accelerator.

Although great results have been achieved in such a framework, there are
still great challenges to be faced before a possible widespread application as
actual accelerators.

The main problem for laser driven PWFA is represented by the short
accelerating length that can be achieved. This is usually defined by the
smallest among the Rayleigh length, the dephasing length and the pump
depletion length.

The Rayleigh length is the length at which the laser is diffracted. A
laser not focused drives a weaker wave, reducing so the efficiency of the
acceleration. The dephasing length is the length for which the witness bunch
overcome the wave, being no more in the accelerating phase. Lastly, the
pump depletion length is the length for which the laser loses its power.

Due to these difficulties in laser driven PWFA, studies are performed also
for particle driven PWFA.

The main advantage of such configuration is the longer dephasing length
and the high energies of the driver, corresponding to a longer propagation
distance before it loses all its energy. These two features guarantees the
possibility to accelerate the witness bunch eventually for kilometers.

Another promising feature of such technique is the possibility to use ex-
isting accelerating facilities for producing the drivers of the wakefield. One
important project in this direction is the AWAKE [24,25] in which the proton
bunch produced at the Super Proton Synchrotron (SPS) at CERN is used as

3



driver for the wakefield.
In such experiment the long proton bunch is modulated through the self-

modulation instability [26] in a train of approximately 100 bunches that
coherently excite the wave.

In spite of the promising performances expected by such experiment, and
more in general experiments involving a train of bunches, there are still
problems that need to be faced.

In this work we address explicitly two of such problems, namely the ef-
ficiency of energy transfer from the driver to the witness bunch and the
stability of the driver.

The parameter used to study the efficiency of the energy transfer is the
transformer ratio, defined as the ratio between the energy gained by the wit-
ness bunch over the energy deposited by the driver in the plasma. For linear
theories and symmetric drivers such parameter is limited to 2. Nevertheless,
using a train of bunches, it is possible to enhance such limit, improving the
performances of the configuration.

In the present work we study the transformer ratio for a train of Gaus-
sian bunches, extending the previously known results obtained for a train of
flat-top bunches. We find that the scaling holding for the flat-top bunches
parameters that provides an increasing transformer ratio, does not hold for
Gaussian bunches. Therefore we perform a scan on the parameters of the
train of Gaussian bunches in order to obtain the maximum achievable trans-
former ratio for this particular configuration.

The other important issue is the stability of the driver. The driving
beam, especially a long one as in the AWAKE experiment, is subject as well
to the wakefield excited. This leads to a fast deterioration of the driver and
consequently to a smaller acceleration distance.

In this work we study the transverse equilibrium for a modulated beam
with both flat-top and Gaussian density profile, optimizing the configurations
in order to obtain a stable driver.

In particular we look for the effects of the emittance-driven expansion of
the head of the beam on the stability of the whole configuration, observing a
backward shift of the equilibrium structure due to this effect. We try there-
fore to mitigate such instability by reshaping the train of bunches modifying
the periodicity of the structure. This provides a more stable configuration
as well a more intense accelerating field respect to a periodicity of λp.

In the first chapter we provide a brief description of the actual techniques
for particle acceleration involving rf accelerators. In the second chapter an
introduction to plasma physics is provided. In the third chapter we explain
the basic concepts of the PWFA in the 1-dimensional and 2-dimensional case,
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explaining the existing models and describing the main features of this con-
cept. In the fourth chapter we provide a model for describing the transverse
dynamic of the beam. In the fifth chapter we start analyzing the efficiency
of energy transfer from the driver to the witness bunch in the case of a train
of bunches, extending the results to Gaussian bunches. We provide an opti-
mization of the configuration in order to maximize the efficiency. In the sixth
chapter the stability of the driver is studied, providing first an analysis of the
equilibrium configuration achieved by a modulated beam and then studying
the effects of the head expansion driven by the emittance on the stability of
the whole beam. In the last chapter we summarize the results and provide
some conclusion and prospective.
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2 Particle accelerator

Particle physics has been and still is one of the research areas that has been
most developed in the last decades. Starting from the first experiment on
the nature of the atom performed by Rutherford [27,28], until the discovery
of the Higgs boson [8–10], this topic has always seen an increasing interest.

The further development of applications of accelerated particles in out of
fundamental physics research, such as medical applications [29], has brought
additional stimulus to the topic.

The need of high energetic particles for the various range of applica-
tions was achieved through the development of particle accelerators of always
greater performances.

The acceleration of particles is simply achieved by applying an electric
field. The longer the distance the particle is accelerated, the higher the
energy that can be achieved. The direct application of an electrostatic field
is limited by the dielectric strength of the material and does not allow to
reach the high energies required.

To overcome this problem the idea to perform the acceleration in more
than one single stage was developed, with the voltage of the different stages
well below the dielectric strength. This idea involves the use of radio-
frequency (rf) fields, and is the cornerstone of most of the particle accelerators
in use nowadays.

One of this kind of accelerators, and also the first one developed using rf
fields, is the linear accelerator (linac) (Fig.2). In the linac, the particle trav-
els straight through a sequence of accelerating section separated by isolated
structure.

The length of the drift cavities is increasing with the number of the cavity.
This way the time needed to the accelerated particles to pass through the
single cavities is always the same and correspond to the frequency of the rf
field.

The downside of this approach is the increasing size of the accelerator
due to the always longer drift cavities necessary. The Stanford Linear Accel-
erator Center (SLAC), one of the most important linac nowadays, is able to
accelerate electrons and positrons up to 50 GeV in 3 Km.
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Figure 2: Basic scheme of a linear accelerator. A radio frequency electric
field accelerates an injected bunch of particles in the section between the
drift tubes.

One way to reduce the size of the accelerator was introduced with the
concept of the cyclotron (Fig.3).

In the cyclotron an external magnetic field is applied in the drift section of
the accelerator. The Lorenz force arising from the presence of the magnetic
field bends the trajectories of the particles inducing a circular motion with
cyclotron frequency ωc = qB/m. After half of the circle the particles are
out of the drift cavity. By properly setting the frequency of the rf field to
f = 2π/ωc, the particles will be once again in the accelerating phase. The
mechanism will continue up to the point in which the gyroradius is greater
than the area in which the magnetic field is apply. The accelerated particles
will then drift straight with constant velocity.

The main problem of the cyclotron emerges when particles approach rel-
ativistic regime. Becomes in this case the influence of the Lorentz factor on
the mass of the particle m = m0γ with γ = (1 − v2/c2)−

1
2 . It is clear how

in this case the cyclotron frequency is not constant anymore but dependence
by the particle velocity.
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Figure 3: Scheme of a cyclotron (Picture taken from Ref. [30]). The parti-
cles are accelerated in between the section A and B, while a magnetic field
is applied inside the two sections in order to bend the trajectories of the
particles.

To maintain the particles in the accelerating phase of the drift section, it
is therefore necessary either to apply an rf field with a variable frequency (as
in the case of the synchrocyclotron), or a non constant magnetic field that
compensate the increasing Lorentz factor (that is the case of the isochronous
cyclotron).

One of the downside of the cyclotron and the further developments was
the necessity to maintain the magnetic field on the whole surface of the disks
since the gyroradius, also in the case of the isochronous cyclotron, was not
constant but proportional to the velocity of the particle, r = m0γv/qB =
p/qB. The development of the synchrotron aimed to solve this problem.

The main feature of the synchrotron is the use of time-dependent mag-
netic fields (Fig.4). The variation of the magnetic field follows the variation

8



Figure 4: Sketch of a synchrotron (Picture taken from Ref. [31]). The ring
is composed by bending magnets that provide the necessary time-dependent
magnetic field used to bend the beam direction, accelerating sections and
focusing magnet to compress the beam.

of the particles momenta, so that is not only achieved the matching with the
accelerating phase of the rf field, but the gyroradius is constant, reducing the
space in which the magnetic field must be applied.

The main issue of the synchrotron, and more in general of circular accel-
erating machines, is the energy lost by synchrotron radiation, occurring on
relativistic particles moving on a curved path. The energy lost in circular
machines is approximately

ΔW ∝ E4

r2(mc2)4
(1)

therefore light particles suffer more of the loss due to synchrotron radiation
rather then heavy particles. The state of art for synchrotron nowadays is the
Large Hadron Collider (LHC) at CERN, in which protons are accelerated up
to energies of the center of mass

√
s ∝ 7TeV.

The development of accelerators facilities have seen an exponential growth
of the energies achieved in the center of mass (Fig.5), together with an in-
crease of the size of the accelerators.

Nevertheless the actual acceleration techniques, relying always in rf fields,
are still limited by the material breakdown and it is still a great challenge to

9



Figure 5: Livingston plot representing the increasing energy at the center
of mass for the developed accelerating facilities as a function of the years
(Picture taken from Ref. [32]).

brings electrons and positrons to high energies since it is only possible using
linear colliders and so huge accelerating facilities.

A different approach that would allows to reach higher energy than acces-
sible nowadays, together with a reduction of the accelerating structure, could
be the use of plasma-based accelerators, in which particles are accelerated
by the fields developed by a perturbed plasma. A more detailed description
of this approach will be provided in Section 4.
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3 Basic plasma physics

Although plasma is widely present in nature, about 99% of the matter in the
universe is in plasma state, its understanding and control has always been a
great challenge.

This is a consequence of its unique characteristics that can be evinced by
its own definition: a plasma is a quasi neutral gas of charged and neutral
particles which exhibits collective behavior [33].

The quasi neutrality implies that the plasma is able to screen out any
local variation of the charge density at a certain distance L greater than the
scale of the perturbation. The collective behavior instead arises from the
variation in the charge and current densities that lead to the generation of
electromagnetic fields. The long-range nature of these interactions provides
for the plasma non-local attributes.

This interplay between different scales requires specific tools for the de-
scription of the dynamics of the plasma and its interaction with external
sources. This chapter is aimed to review some well known concepts of plasma
physics that formalize what described above and are necessary for a better
understanding of the next sections.

3.1 Plasma dynamics

3.1.1 Kinetic theory

System composed by a large number of particles are described using statis-
tical mechanics, namely tracing the evolution of the average quantities of
the system. The fundamental quantity on which relies such approach is the
distribution function f(t, r,p), where r and p are the generalized coordinates
and momenta characterizing the phase space Γ = (r,p) [34].

The quantity f(t, r,p)dΓ = f(t, r,p)drdp is the mean number of particles
in a given volume element of the phase space.

The dynamics of the distribution function is described by the Boltzmann
equation:

df

dt
=

∂f

∂t
+ v · ∇rf + F · ∇pf = C(f) (2)

where F is any macroscopic force acting on the system and C(f) is the rate
of change of the distribution function due to collisions.

The macroscopic forces F can be either externally induced, or self-generated
by the system itself, as those providing the collision term. The difference be-
tween the two is in the scale at which they change compared to the scale
of the system. Macroscopic forces vary on a scale comparable to that of
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the system while collisions are provided by interactions occurring on a much
smaller scale.

For a collisionless system holds the Liouville’s theorem, providing:

∂f

∂t
+ v · ∇rf + F · ∇pf = 0. (3)

Plasmas as well can be described by such approach, providing a Boltzmann
equation for both electrons and ions. For collisionless plasma this yields:

∂fα
∂t

+ v · ∇rfα +
qα
mα

(
E+

v

c
×B

)
· ∇pfα = 0 (4)

with α = e, i for electrons and ions respectively.
The electric and magnetic fields in the Lorentz force are both the external

ones and those self-generated by the plasma. For a self-consistent description
of the system therefore, it is necessary to couple the Boltzmann equation with
the Maxwell equations for the fields:

∇ · E = 4πρ (5)

∇× E = −1

c

∂B

∂t
(6)

∇ ·B = 0 (7)

∇×B =
4π

c
J+

1

c

∂E

∂t
(8)

where the charge and current densities are related to the distribution function
by the equations:

ρ = e

∫
(Zfi − fe)dp (9)

J = e

∫
v(Zfi − fe)dp. (10)

The full set of equations (4-10) forms the Vlasov equations.
As for gases, the fields generated by the plasma and providing the Lorentz

force, has to be considered as mean fields over the scales of the system,
therefore as macroscopic fields. All the others, whose mean is zero, are
sources of collisions as soon as the scales of the system are comparable with
those of the interactions.

3.1.2 Fluid theory

A macroscopic description of the plasma can be formulated in terms of fluid
equations. The dynamics in this case is described by the equation of motion
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for the average quantities characterizing the plasma, defined as:

nα =

∫
fαdp Particle density (11)

v̄α = uα =
1

nα

∫
vfαdp Average velocity (12)

Πij
α = mα

∫
(v− vi

α)(v− vj
α)fαdp Pressure tensor (13)

(14)

The equations of motion are obtained by taking the moments of Eq.(4),
obtaining:

∂nα

∂t
+∇(nαuα) = 0 Continuity equation (15)

∂uα

∂t
+ (uα · ∇)uα =

qα
mα

(
E+

uα

c
×B

)
− 1

mαnα
∇ ·Pij

α Euler equation.

(16)

In order to close the system it is necessary to obtain an equation of motion for
the second moment of the distribution function. This will relate the pressure
tensor with the energy flux q = mα

2

∫
(v − vα)

2vfαdp. It is nevertheless
possible to truncate the hierarchy by discarding dissipative effects in the
system and setting an equation of state that relates the pressure with the
plasma temperature (and so its energy).

3.2 Fundamental quantities

3.2.1 Plasma frequency

One example of the collective behavior mentioned previously emerges per-
turbing a plasma initially at the equilibrium. For sake of simplicity it is
considered an infinite, homogeneous, cold electron plasma in a neutralizing
background, so the ions motion is discarded. The fluid equations (15-16)
turns therefore into:

∂n

∂t
+∇(nu) = 0 (17)

∂u

∂t
+ (u · ∇)u = − e

m

(
E+

u

c
×B

)
(18)

where the subscript for the species has been dropped since the model includes
only electrons. The electromagnetic fields are only those self-induced by the
plasma and have to be evaluated through the Maxwell equations (5-8).
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Considering a linear perturbation from the equilibrium, it is possible to
expand the quantities as

n = n0 + n1 u = u0 + u1 E = E0 + E1 B = B0 +B1 (19)

where the subscript 0 denotes the equilibrium condition and 1 the linear
perturbation. Replacing the quantities in Eq.(17-18) provides two sets of
equations, one for the equilibrium and one for the perturbation. Without
lacking of entirety, a possible solution for the equilibrium is obtained by set-
ting u0 = E0 = 0. Under these assumptions the dynamics of the perturbation
is described by:

∂n1

∂t
+ n0∇ · u1 = 0 (20)

∂u1

∂t
= − e

m
E1 (21)

∇ · E1 = −4πen1. (22)

Performing a Fourier transformation to the perturbed quantities according
to the prescription f(t, r) =

∫∞
−∞

f̃(ω,k)e−i(ωt−k·r)dωdk provides:

− iωñ1 + n0k · ũ1 = 0 (23)

− iωũ1 = − e

m
Ẽ1 (24)

k · Ẽ1 = −4πeñ1. (25)

The system is fulfilled with the non trivial solution

ω = ωp =

√
4πe2n0

m
(26)

with ωp being the plasma frequency [35].
The physical mechanism ongoing is rather simple but extremely impor-

tant to understand the basic properties of plasmas. A small perturbation of
the plasma electrons, drives an electrostatic force exerted by the ions com-
posing the background, in order to restore the equilibrium conditions. The
small inertia of the electrons induce them to oscillate around the equilib-
rium position, with a frequency equal to ωp. The periodic charge bunching
produces as well a periodic electric field.

It is worth to be mentioned that this behavior has been derived from
the fluid description of the plasma, meaning that is a macroscopic feature
of the system and so involves the collective interaction of a large number of
particles.
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3.2.2 Debye length

Another important example of the collective behavior of the plasma is the
Debye screening, namely the ability of the plasma to macroscopically neu-
tralize local charge perturbations.

This effects clearly emerges considering a single component plasma ini-
tially in equilibrium, perturbed by a single charge [36]. The unbalance charge
induces an electric field that provides a local density perturbation. The total
electrostatic potential is therefore the sum of that of the single charge and
that arising from the density perturbation. The Poisson equation becomes
therefore:

∇2Φ(r) = −4πe(δ(r) + 〈δn(r〉). (27)

Since the perturbation is small it is reasonable to assume a Boltzmann dis-
tribution for the average density perturbation and therefore:

〈δn(r)〉 = n0

(
exp

(
−eΦ(r)

kbT

)
− 1

)
� −n0eΦ(r)

kbT
(28)

where n0 is the equilibrium plasma density, kb is the Boltzmann constant and
T is the plasma temperature. Replacing the result of Eq.(28) in (27) brings
to the solution for the electrostatic potential:

Φ(r) =
e

r
exp

(
−4πn0e

2

kbT
r

)
=

e

r
exp

(
− r

λD

)
(29)

with λD being the Debye length [37].
The behavior of the plasma emerges clearly from Eq.(29). For distances

r � λD the dominant term in the potential Φ(r) is the Coulomb-like one,
meaning that the perturbation has to treated like a single-particle interac-
tion. On the contrary, when r 	 λD, the potential is exponentially screened,
meaning that macroscopically the plasma is not affected by the local pertur-
bation.

A direct comparison between the Debye length and the inverse of the
plasma frequency shows that are related for thermal electrons traveling with
velocity vth = kbT/m.
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4 Plasma wakefield

As explained in Section 2, standard technologies for accelerating particles
involves the use of rf fields. Although the great success achieved in different
fields of physics through this technology, the always higher energies required
for fundamental physics research and the large accelerating facilities needed,
opened to the research of new accelerating techniques. One of the most
promising one is the plasma wakefield acceleration (PWFA).

In the PWFA a driver, either a laser or a particle beam, is used for
perturbing a plasma initially in equilibrium, exciting a plasma wave. The
electric field of the wave is used then for the acceleration of a witness bunch
injected on the trail of the driver [38].

The work of Tajima and Dawson [21], using a laser pulse as a driver, first
suggested the possibility to use plasmas as efficient medium to accelerate
particles. The main reason for such conclusion is the intense accelerating
gradient that can be provided, of the order of the non relativistic wavebreak-
ing field E0 = mecωp/qe.

Shortly after Chen [39], proved the possibility to employ a particle beam
as a driver for the plasma wakefield.

From that pioneering articles, huge progresses have been made (Fig.6)
both theoretical and experimental [22, 23, 40, 41], proving the wide range of
applications for such mechanism, ranging from medical physics [42, 43] to
experimental particle physics [44, 45].

The basic scheme for PWFA involves the use of a single short driver
(Fig.7a). In the case of a short laser pulse, the pondemorative force of the
laser is responsible for the perturbation of the background plasma. This is
provided,in the linear regime, by Fp = −mec

2∇(a2/2) where me is the rest
electron mass, c is the speed of light and |a| = e|A|/mec

2 � 1 is the normal-
ized amplitude of the vector potential of the laser. The wave is resonantly
excited if the pulse duration is approximately τ � ω−1p .

The same considerations applies to the case in which the driver is a short
particle bunch. In this case the space-charge force of the bunch is the per-
turbing source of the plasma wave. This is given by Fsc = −mec

2∇φ where
φ = eΦ/mec

2 is the normalized scalar potential generated by the beam and
plasma perturbation. In the linear regime the motion of the plasma electrons
occurs in order to neutralize the space-charge potential of the bunch.

In order to improve specific features of the PWFA or to overcome limita-
tions provided by the available technologies, different configuration of PWFA
can be performed using different shapes of the drivers or more than a single
ones (Fig.7). Some examples of the possible techniques, different from those
involving a single short driver, are:
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Figure 6: An analogous plot as the Livingston plot for accelerators, show-
ing the progresses of plasma based accelerators in term of reached particle
energies as a function of the years (Picture taken from Ref. [46]).

• Plasma beat-wave accelerator: the drivers of the wave are two long
laser pulses with frequencies ω1 − ω2 � ωp [47–49]. This technique was
first suggested in [21] since short laser pulses where not achievable with
the available technology (Fig.7b);

• Multiple pulses/bunches: the driver is a train of laser pulses (or particle
bunches) who resonantly excite a plasma wave [50, 51]. The intensity
of the resulting accelerating field after the driver is a linear function of
the number of drivers involved (Fig.7c);

• Self-modulated regime: the wakefield is excited by a long driver (either
a laser or a particle beam again). Due to its length the driver is af-
fected by the plasma wave resulting in a modulation of the driver. The
configuration obtained after fully modulated is analogous to a train of
pulses [52, 53] (Fig.7d).

A further improvement of the acceleration performances can be achieved in
the nonlinear regime of plasma wakefield, so called “bubble regime” [54] in
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Figure 7: Possible schemes of generation of a plasma wakefield as presented
in Ref. [38]: a) laser wakefield accelerator (or beam driven plasma wakefield
accelerator as well); plasma beat wave accelerator; c) multiple pulses (or
multiple bunches) accelerator; d) self-modulated laser wakefield accelerator
(or self-modulated beam driven plasma wakefield accelerator)

which the strong pondemorative force of the laser breaks the wave already
after the first oscillation, producing a electron free cavity just behind the
driver. One of the key features of this configuration is the self-trapping of
the plasma electrons in the accelerating phase, removing so the use of a
second witness bunch.

The goal of this chapter is to provide a brief introduction on the physics
of plasma wakefield accelerator. A particular emphasis will be given on
the linear theory of particle driven plasma wakefields, especially in the self-
modulated configuration and in the multiple bunch one, closely related to
the topic of this manuscript.

4.1 Linear theory of PWFA

4.1.1 Quasi-static approximation

The quasi-static approximation is a widely used assumption in the framework
of the plasma wakefield acceleration [55,56]. The approximation relies on the
possibility to describe the interaction of the external driver with the plasma
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taking into account only effects occurring at a specific time scale.
Assuming a driver propagating in the z direction, the dynamics of the

interaction can be described through a coordinates system moving together
with the driver, according to the transformation ξ = βct−z and τ = t, where
β = vb/c with vb being the beam velocity and c the speed of light.

The relevant scales involved in the dynamics are the duration of the driver
τL = vbLd, being Ld the length of the driver, the evolution time of the driver
τE and the inverse of the plasma frequency ω−1p .

If holds the relation τL � τE � ω−1p , then it is reasonable to assume that
the plasma interacts with a non-evolving driver. Therefore, concerning just
the plasma dynamics, it is possible to discard any dependency by the proper
time τ .

It is worth to underline that this assumption is valid only for the response
of the plasma, while the dynamics of the driver explicitly depends by the time
τ and has to be taken into account for a full self-consistent treatment of the
system.

4.1.2 1-dimensional theory

The description of the plasma wakefield relies in the fluid approach presented
in section 3.1.2 and follows steps analogous to those described in section 3.2.1.

Without loss of generality is considered here the interaction with a single
electron bunch. The validity of the model holds assuming the ions as a static
neutralizing background. Moreover, the linear approach demands the beam
density to be much lower than the plasma density nb � np. This allows
to include the beam like an external perturbation whose dynamics can be
discarded. Lastly the quasi-static approximation holds.

In such a framework, the dynamics of the perturbed plasma density is de-
scribed by the equation of a driven harmonic oscillator (for sake of simplicity
the index referring to the first order perturbation is removed):

∂2np

∂ξ2
+ k2

pnp = −k2
pnb (30)

where kp = ωp/vb. The solution for an arbitrary beam density profile is:

np(ξ) = −kp

∫ ξ

0

nb(ξ
′) sin[kp(ξ − ξ′)]dξ′. (31)

The expression of the perturbed electric field can be evaluated by coupling
Eq.(31) with the Poisson equation (5):

Ez(ξ) = 4π

∫ ξ

0

ρb(ξ
′) cos[kp(ξ − ξ′)]dξ′. (32)
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The Green functions of the two perturbed quantities are π/2 out of phase.
Moreover the longitudinal field acts decelerating the driver bunch. This is
expected since the driver is transferring its energy to the plasma(Fig.8).

nb

np

Ez
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Figure 8: Driver density, perturbed plasma density and perturbed electric
field for the 1-dimensional model of PWFA.

The wave generated can be then used for accelerating a second witness
bunch placed in the accelerating phase of the electric field.

The role of the plasma is therefore that of a transformer medium: the
plasma wave takes energy from the driver, depositing it then on the witness
bunch. Ideally the process ends when the driver has given all its energy to
the witness bunch. On the other hand in real experiments other problems
occur such as the dephasing of the witness bunch or the deterioration of the
driver due to the onset of instabilities.
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4.1.3 2-dimensional theory

The equations describing the 2-dimensional dynamics of the plasma wake-
field can be as well obtained from the fluid equations Eq.(15,16) coupled
together with the Maxwell equations Eq.(5-8). The model [57], developed in
a cylindrically symmetry, is based on the assumptions:

• Quasi-static approximation (see Section 4.1.1). The plasma dynamics
occurs on a faster time-scale than that of the driver. The latter can be
therefore considered adiabatically invariant;

• Cold plasma. The plasma temperature is low enough to not play a
relevant role in the dynamics;

• Linear plasma perturbation. Between the driver and plasma density
holds the relation nb < np, therefore the perturbation driven by the
particle bunch can be considered small enough to be treated linearly;

• Azimuthal symmetry. The plasma dynamics does not depend on the
angle (∂θ � 0).

Here are provided the final equations derived from the model. For a complete
evaluation of these equations we refer to Appendix A.

The longitudinal and transverse fields are:

Ez(r, ξ) = −4πk2
p

∫ ∞

0

∫ ξ

0

ρb(r
′, ξ′)r′ I0(kpr<) K0(kpr>) cos[kp(ξ − ξ′)]dξ′dr′

(33)

W (r, ξ) = 4πkp

∫ ∞

0

∫ ξ

0

∂ρb(r
′, ξ′)

∂r′
r′ I1(kpr<) K1(kpr>) sin[kp(ξ − ξ′)]dξ′dr′

(34)

with r</> = min /max(r, r′) and W = r̂(Er − βBθ).
Both the longitudinal and transverse field present a similar structure: a

longitudinal and transverse Green function and a source term. In the case of
the longitudinal field the source is the beam density, while in the transverse
field it is the radial derivative.

While the oscillatory behavior of the longitudinal field is associated with
its accelerating/decelerating phase, in the transverse field is related to focus-
ing/defocussing effects. The plasma wave therefore, together with accelerat-
ing the witness bunch, provides as well a compression.

The interesting difference that emerges is the different phase of the longi-
tudinal Green function between the two fields. This is extremely important
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Figure 9: Sketch of the transverse field excited by a flat-top driver. The
blue boxes are the flat-top bunches, being the leading one the driver of the
wakefield. The wakefield is represented by a yellow section for the inner
part, with r < rb and a red section for the outer part, with r > rb. The field
presents the oscillatory behavior induced by the plasma oscillation in the
direction of propagation of the driver. On the transverse direction it reaches
the maximum on the beam edge, corresponding to the maximum number of
particles contributing to the wakefield, then decreasing outside the beam.

since it means that particles in the accelerating phase (with positive Ez there-
fore) are subjected to a focusing field (with negative W ).

The radial Green function is represented for both the fields by the product
of modified Bessel functions (of different order for the two fields). The differ-
ent behavior of the two Bessel functions describes the quasi-exponential in-
creasing and decreasing of the wakefield inside and outside the driver. Inside
the beam the field intensity increases with the radius due to the increasing
number of particles contributing to the generation of the wave. Once r > rb
the source term disappear and therefore the waves becomes evanescent. A
sketch of the behavior of the transverse field is presented in Fig.9.

The exact characteristic of the fields are presented in Fig.10 can be seen
the longitudinal and transverse field generated by a short and narrow Gaus-
sian bunch. The main features described previously emerge here clearly.

Both the fields are sinusoidal, driven by the plasma oscillation, but as
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(a) (b)

Figure 10: Longitudinal and transverse field excited by a short Gaussian
bunch. a) Driver density, longitudinal electric field and transverse field as a
function of the longitudinal direction for r � 0.2λp; b) longitudinal electric
field and transverse field as a function of the transverse direction at the center
of the bunch.

mentioned previously, they are out of phase.
The radial dependence by the Bessel function implies a rapid decay of the

fields shortly after the center of the bunch in the radial direction.
In Fig.11 are presented the full 2-dimensional wakefields varying both the

longitudinal and the transverse direction. The features depicted previously
appear once again in this figure, with the longitudinal field that has a maxi-
mum on axis (the bunch is centered in r = 0) and the rapidly decays in the
transverse direction.

The transverse field presents a maximum on the bunch radius, when the
whole bunch density contributes to the generation of the wakefield.

Although the model is based on several assumptions it is able to properly
describe the basic dynamics of the plasma wakefield in two dimensions.

It is worth noting that the model does not take into account the dynamics
of the driver explicitly, solving only the fluid equations for the plasma. This
might not be relevant for short particles bunches, but becomes more impor-
tant when the driver length is longer than λp. In this case it is necessary to
study the evolution of the wakefield coupled with the evolution of the driver.
In Section 5 will be provided the tools to properly include the dynamics of
the particle beam as well.
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(a) (b)

Figure 11: 2-dimensional density plot of the longitudinal and transverse fields
excited by a short Gaussian bunch

4.2 Scale ordering in a plasma wakefield

The analysis presented in Section4.1.1 showed the importance of the differ-
ent scales involved in the plasma wakefield in order to develop a simplified
analysis. As well in the previous section we mentioned as the evolution of the
driver can be discarded in the model for the 2-dimensional plasma wakefield
only under the particular conditions of a short driver. We want to present
here a deeper insight to the different relevant scales for beam driven plasma
wakefields [58], so that appears more clearly when the assumptions made are
reasonable.

The three relevant scales in a PWFA are:

• The plasma wavelength λp = c/ωp. This is the shortest scale in such a
framework;

• The focusing/defocussing length Lf � c(γmrb/|Fr|) 1
2 � c/ωβ being Fr

the transverse force acting on the beam and ωβ the betatron frequency.
This is the length over which there is a change in the beam radius;

• The deceleration length of the driver Ld being the length over which
the driver loses half of its energy.
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By assuming Ez � E0 and Fr � eE0 being E0 the wavebreaking limit and
rb � λp the following ordering is obtained:

Ld � γλp 	 Lf � √
γλp 	 λp. (35)

This shows the requirement in order to have the possibility to perform spe-
cific approximations. On the smallest scale λp, it is reasonable to assume a
non evolving beam, a rigid beam, so that its dynamics does not have to be
included on the study of the plasma wakefields.

If the scale analyzed is increased up to the point of being comparable with
the focusing/defocusing length, then the transverse beam dynamics has to be
included as well. The transverse evolution of the beam due to the transverse
fields excited, as well as externally applied, sensibly modifies the wakefields.
This self-consistent treatment has to be included by a proper model for the
beam evolution, such as the envelope one presented in Section5.

On the other hand such scale is still smaller than the decelerating one,
the beam does not lose much of its energy while experiencing a transverse
modulation. It is therefore reasonable to perform a quasi-static analysis in
such conditions.

Finally when the length are even longer, comparable to the decelerating
length, the energy lost by the beam becomes relevant and a full dynamics
description of the physics is needed.

This short analysis proves the importance of a deep understanding of
the physical processes occurring in the interaction between a beam and the
plasma and the importance to distinguish the several scales playing a role in
order to simplify the description of the mechanism.

4.3 Properties of plasma wakefield

4.3.1 Transformer ratio

A relevant aspect of the plasma wakefield accelerators is the efficiency of en-
ergy transfer from the driving beam to the witness one. This is an extremely
important issue especially if the length of the plasma cell, and so the duration
of the interaction between the driver and the plasma, is long.

The parameter that take into account such an issue is the transformer
ratio, defined as:

R =
Δγwitness

Δγdriver
(36)

where Δγwitness is the energy gained by the witness bunch from the plasma
and Δγdriver is the energy deposited by the driver in the plasma.
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If we assume a non evolving bunches we can approximate the energies
loss and gains as Δγdriver ∼ E−L and Δγwitness ∼ E+L where E−/+ are
respectively the peak decelerating field under the driver and the peak accel-
erating field behind the driver and L is the traveled distance. This way the
transformer ratio can be recast as:

R =
E+

E−
. (37)

A major issue related to the transformer ratio and so to the energy transfer is
that the maximum value that can be reached for a linearly perturbed plasma
by symmetric bunches is R = 2. In order to prove this we can rely on a
simple 1-dimensional model employing Eq.(32).

The longitudinal electric field is:

Ez(ξ) = 4π

∫ ξ

0

ρb(ξ
′) cos[kp(ξ − ξ′)]dξ′. (38)

If the driver is short the electric field behind the driver can be rewritten as:

Ez(ξ) = 4π

∫ ∞

−∞

ρb(ξ
′) cos[kp(ξ − ξ′)]dξ′ =

= 4π

(
cos(kpξ)

∫ ∞

−∞

ρb(ξ
′) cos(kpξ

′)dξ′ + sin(kpξ)

∫ ∞

−∞

ρb(ξ
′) sin(kpξ

′)dξ′
)
.

(39)

If the bunches is symmetric, then the second integral is zero because the
integrand is an odd function integrated on a symmetric range. Therefore the
maximum electric field achieved behind the driver is:

|E+| = 4π

∫ ∞

−∞

ρb(ξ
′) cos(kpξ

′)dξ′ � 2|Ez(0)| ≤ 2|E−|. (40)

In the last passage we have used the fact that the electric field in ξ = 0 must
be either equal or smaller to the maximum decelerating field. Therefore we
obtain the limiting relation for the transformer ratio for symmetric bunches
linearly perturbing the plasma R ≤ 2.

26



λ

Figure 12: Dependence of the transformer ratio by the FWHM of a Gaussian
driver.

As an example in Fig.12 is represented the transformer ratio achieved with
a single Gaussian driver by changing its length. The maximum achievable is
as expected R = 2 for a FWHM= 0.4898 λp [59].

4.3.2 Beam loading and energy spread

Reasonably the witness bunch as well is able to excite a plasma wakefield.
Increasing the charge of the witness bunch increases as well the intensity of
the excited wave, up to the point in which becomes as relevant as the wake-
field of the driver, affecting the efficiency of the wakefield. Such a problem
is known as beam loading and is one of the limit occurring in PWFA [60].

The beam loading efficiency is defined as the fractional energy gained by
the witness bunch:

ηb =
Δγin −Δγout

Δγin
(41)

where Δγin/out are the energies of the wake before and after the witness
bunch. In [61] has been evaluated in a simplified model the expression for
the beam loading efficiency:

ηb =
N

Ne

(2− N

Ne

) (42)

where N is the number of particles in the witness bunch and Ne is the beam
loading limit for which the efficiency is maximum. Ne is defined as the
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maximum number of particle for the witness bunch that can be stored in a
small segment l � λp in order to excite a wave that would cancel the one of
the driver. The value evaluated in [61] is:

Ne =
npAb

kp

Ez

E0
(43)

where Ab 	 π/k2
p is the cross-section of the witness beam.

Figure 13: Beam loading and energy spread as a function of the number of
particles in the beam (Picture taken from Ref. [61]).

Although is desirable to load a witness bunch with Ne particles, so that
the whole wakefield energy is deposited in the bunch, for a symmetric un-
shaped bunch this might lead to an high energy spread. In [61] has been
shown that the maximum energy spread is actually achieved when the beam
loading limit is reached. This appears reasonable since in such a simplified
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model, the front of the witness bunch experiences the maximum wave, that
linearly decreases because of the energy deposited, up to the end of the bunch
in which is zero (Fig.13).

Such problems can be nevertheless overcome by using a tailored bunch.
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5 Beam dynamics

In the previous sections the explicit dynamics of the driver has not been taken
into account by considering the wakefield excited by short bunches. This
is not the case in configurations involving the onset of the self-modulation
instability for example [26], in which the driver is much longer than the
plasma wavelength. In such cases the driver is affected as well by the plasma
wave generated that therefore reshape the whole configuration. For a full
description of the dynamics it is therefore necessary to couple the beam
evolution with that of the wave.

In particular, due to the framework depicted previously, the relevant dy-
namics that must be taken into account is the transverse one, occurring on
a faster time scale than the longitudinal one.

It is necessary therefore to develop a model that takes into account the
evolution of the beam including the self-fields generated and the external
one.

5.1 Emittance pressure

Before going in the details of the dynamics of the beam it is worth first to
give a brief description on the nature of the emittance and its effects on the
beam evolution. For the purpose of this work we describe only the transverse
emittance.

The emittance is a parameter related to the “quality” of the beam, taking
into account on the evolution of the transverse projection of the beam driven
by the intrinsic thermal spread [62].

There is not a unique definition for the emittance. Considering a two di-
mensional system with paraxial approximation, vx � vz with z the direction
of propagation, the emittance is defined as [63]:

ε =
1

π

∫
dxdx′ (44)

where x′ = vx/vz. The emittance therefore is related to the area occupied by
the beam particles in the trace-space x − x′ as can be seen in Fig.14. Such
definition nevertheless does not describe appropriately the beam quality in
term of beam degradation since the area in the trace-space remains constant
during the beam evolution for the Liouville theorem. A far better definition
for the emittance that is closely related to the thermal motion of the beam
particles is the rms emittance [62]:

εRMS =
√
< x2 >< x′2 > − < xx′ >2. (45)
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Figure 14: Example of the emittance for a specific distribution of particles
(Picture taken from Ref. [63]).

The downside of such definitions of the emittance it is the reduction induced
by increasing the longitudinal momentum, although eventually there is no
change in the transverse distribution of the beam. In order to avoid this
problem is generally used the normalized emittance εn = βγε. This way the
growth of the emittance is explicitly related to a transverse degradation of
the beam.

The emittance is not only a useful tool for characterizing the quality of
the beam, but since it is related to the transverse velocity spread of the beam
particles, plays a role as well in the dynamics.

Following [63] it is possible to express the force exerted by the emittance
on the beam. A set of assumptions has to be fixed:

• Azimuthal symmetry for a cylindrical beam;

• Beam particles are confined inside a radius R;

• Paraxial approximation for the beam.

Assuming that the emittance would provide an expanding force to the beam,
due to the diffusion-like nature of the force, in order to compensate this
effect a linear force confining the beam has to be applied, specifically F (r) =
−F0(r/R0). If this is the only force acting on the beam particles, these
perform radial oscillations with frequency:

ωr =

√
F0

γmR0
. (46)
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By definition the emittance is related to the transverse displacement as:

ε = R
vr0
vz

= ωr
R2

vz
. (47)

Replacing in the last expression that for the frequency we obtain the neces-
sary radial force to compensate the emittance pressure:

F0

( r

R

)
=

ε2v2zγm

R3
. (48)

This represents an effective force acting on the beam due to the thermal
motion of the beam particles. When evaluating the full dynamics of the
beam, including self-generated fields and external ones, the contribution due
to the emittance has to be taken into account as well.

5.2 Envelope model

It is possible now to set a model for describing the full dynamics of a beam,
including the effects of the self-generated fields as well the external applied
one.

A simple approach is to consider the transverse motion of a single beam
particle according to Newton’s law:

d2

dt2
(γmr) = Frr̂ (49)

where we have assumed the beam propagating along the z direction.
In order to simplify the model we can set a series of assumptions that are

in line with the previous one related to the emittance force and the plasma
wakefield. We can therefore assume an axisymmetric model. Moreover we
consider a beam with constant velocity, therefore γ = const. Under these
assumptions, the equation for the transverse motion turns into:

r̂

(
d2r

dt2
− r

(
dθ

dt

)2
)

+ θ̂

(
2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
=

Fr

mγ
r̂. (50)

Since no forces are applied in the θ̂ direction, we have the conservation of
the angular momentum:

L = r2
dθ

dt
(51)

that replaced in the previous equation considering just the motion in the r̂
direction gives:

d2r

dt2
− L

r3
=

Fr

mγ
. (52)
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The nature of Fr involves both the forces arising from the self-generated fields
of the beam, that have to be included through the Maxwell equations in the
model, both the external fields applied. This equation holds for the single
charged particle composing the beam. A simple extension to the dynamics of
the whole beam can be done by replacing r = rb and including the emittance
pressure in the model:

d2rb
dt2

− L

r3b
− ε2v2z

r3b
=

Fr

mγ
. (53)

It is worth noting that such a procedure is valid only for homogeneous beam
subject to a linear transverse force.

A more accurate procedure to obtain the beam dynamics in term of the
RMS emittance, has been provided by [64] evaluating the equation of motion
for the second moment of the charged particles, but the development of that
model goes beyond the aim of this work.
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6 Transformer ratio enhancement

In section 4.3.1 we have defined the transformer ratio R as the parameter
that describes the efficiency of energy transfer from the driver to the witness
bunch. In linear theory, using symmetric driver, the parameter is limited to
2.

In early experiments of plasma wakefield such limit was not an important
issue due to the short distances the driver used to interact with the plasma,
limiting the amount of energy that was deposited. On the other hand actual
experiments may involve a longer interaction time between the driver and
the plasma, therefore the efficiency of energy transfer becomes a relevant
parameter as well.

There are different ways to improve the transformer ratio in a plasma
wakefield accelerator. A solution consists in exciting nonlinear wakefield
[59, 65]. Another possibility is the use of an asymmetric driver [66, 67], like
a triangular shaped beam density profile. Lastly there is the possibility to
employ a train of bunches with a ramped density profile [68, 69]. The last
two concepts are actually similar each other, the ramped train of bunches
resembling the triangular shaped driver.

In this section we deal with the use of the ramped sequence of bunches
for enhancing the transformer ratio. We first describe the theoretical back-
ground that suggested the possibility to use the ramped sequence of symmet-
ric bunches. The limit of the theoretical description it is the applicability
only to bunches with finite support, such as flat-top bunches.

We then extend therefore the analysis to the case of a driver defined by
a train of realistic Gaussian bunches. This new approach leads to rather
different results compared to the well established case of flat-top bunches.

We develop a different instrument to analyze the new results, being able
this way to properly compare them with the theoretical model and to improve
the final transformer ratio in the new configuration by a proper reshape of
the driver.

The results presented in this section are based on the work [70].

6.1 Transformer ratio of a train of flat-top bunches

A complete analysis of the transformer ratio should involved the 2-dimensional
equations for the wakefield expressed in section 4.1.3. Assuming a non-
evolving driver on the other hand, with fixed radius, it is possible to factorize
the beam density profile:

ρb(r, ξ) = fb(r)gb(ξ). (54)
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This assumption is rather strong since the driver, especially a modulated
one, is affected by the wakefield as well, therefore the radius of the driver
experiences focusing and defocussing forces according to the position ξ inside
the driver. On the other hand this is a reasonable assumption if we look for
the proper initial conditions for the driver in order to improve the transformer
ratio.

Under this assumption the longitudinal field itself can be separated in its
radial and longitudinal component:

Ez(r, ξ) = F (r)

∫ ξ

0

gb(ξ
′) cos[kp(ξ − ξ′)]dξ′. (55)

The expression resembles the one for the 1-dimensional case, with an addi-
tional contribution given by the transverse factor. On the other hand when
evaluating the transformer ratio, the prefactor will be canceled out since does
not depends on the longitudinal position and therefore is the same inside and
outside the driver. It is reasonable so to perform the analysis assuming a 1-
dimensional wakefield as in section 4.1.2.

We look first at the wakefield excited by a train of flat-top bunches with
equal lengths. Such configuration corresponds to a density profile:

gb(ξ) =
M∑

m=1

ρm

[
H(ξ − ξm +

L

2
)−H(ξ − ξm − L

2
)

]
(56)

where ρm is the charge density of the individual bunches, M is the total
number of bunches, ξm is the position of the mth bunch and L is the length
of the bunches.

The total wakefield generated is the sum of the wakefields generated by
every single bunch. We can evaluate the expression analytically for such den-
sity profiles, obtaining so inside and outside the Mth bunch the longitudinal
fields:

Ein(ξ) = −2

M−1∑
j=1

ρj sin

(
kpL

2

)
cos [kp (ξ − ξj)]− ρM sin

[
kp

(
ξ − ξM +

L

2

)]
(57)

Eout(ξ) = −2

M∑
j=1

ρj sin

(
kpL

2

)
cos [kp (ξ − ξj)] . (58)

The value of the longitudinal fields, and as a consequence that of the trans-
former ratio, depends on the choice of the three parameters ρj , L and ξj.
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In order to reduce the number of parameters involved in the analysis we
can assume L = λp/2. This is a reasonable assumption since it provides the
maximum transformer ratio for the case of a single bunch.

The other two parameters has to be set according to the final result
that the configuration should achieve. If the goal is to maximize the final
accelerating field behind the driver, then the density has to be the same for
all the bunches (ρj = ρm = ρ) and the periodicity has to be equal to a plasma
wavelength(or a multiple integer, ξj − ξj−1 = kλp).

Ein(ξ) = − (2M − 1)ρ cos [kp (ξ − ξ1)]) (59)

Eout(ξ) = −2Mρ cos [kp (ξ − ξ1)] . (60)

The downside of such configuration is that it does not bring any improvement
at the transformer ratio. Even worst the transformer ratio decreases with the
number of bunches as R = 2M/(2M − 1).

Such configuration for a train of bunches involves the constructive inter-
ference among the wakefields generated by the single bunches. This guaran-
tees an increasing intensity of the accelerating field behind the driver, but
also an increasing decelerating field under the bunches. The transformer
ratio cannot be improved therefore by such configuration (Fig.15).

The configuration that guarantees instead an improvement in the trans-
former ratio is the train of bunches with a ramped peak density. The cor-
nerstone of such configuration is the same decelerating field generated under
every bunch. This way it is not anymore a function of the number of bunches
as in the previous case.

In order to derive the scaling for the parameters one can simply impose
the desired condition, resulting in the equation:

2
M−1∑
j=1

ρj sin

(
kpL

2

)
cos [kp (ξ − ξj)] + ρM sin

[
kp

(
ξ − ξM +

L

2

)]
=

= ρ1 sin

[
kp

(
ξ − ξ1 +

L

2

)]
. (61)

The equation states that the decelerating field under the Mth bunch has
to be the same as under the first bunch. Assuming again a bunch length
L = λp/2, the solution of the equation provides the scaling for the bunch
densities and periodicity as:

ρj = (2j − 1)ρ1 (62)

ξj = ξj−1 +
3

2
λp. (63)
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Figure 15: Electric field for a train of ten bunches with periodicity λp. The
constructive interference among the electric field generated by the single
bunches enhances both the decelerating and the accelerating fields.

It is worth to be noting that this is just one of the possible solutions for
the previous equation since there are two parameters involved for one single
equation.

Nevertheless this choice of the parameters guarantee a solution of the
Eq.(61) for any longitudinal position. This can be seen easily in the case of
the bunches, for which the equation can be rewritten as:

1 + ρ̃2 (cos[kpΔ] + tan[kp(ξ − ξ1) sin[kpΔ]]) = 0 (64)

where ρ̃2 is the charge density of the second bunch normalized to the density
of the first bunch and Δ = ξ2 − ξ1 is the displacement of the second bunch
respect to the first.

It appears clearly that the only solution independent by the position ξ is
obtained only when sin[kpΔ] = 0, therefore the solution provided previously.

For such choice of the parameters, the resulting electric field behind the
driver turns into:

Eout(ξ) = 2Mρ1 cos [kp(ξ − ξ1)] . (65)

The transformer ratio with such configuration scale as R = 2M since the
accelerating field behind the driver is a linear function of the number of
bunches while the decelerating field is constant.
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(a)

(b)

(c)

Figure 16: Electric field under the second bunch for different values of the
second bunch density. The red line represent the electric field generated
by the first bunch, the green line the electric field generated by the second
bunch and the brown line the combination of the two. a)ρ2 = ρ1, b)ρ2 = 2ρ1,
c)ρ2 = 3ρ1
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In such configuration, contrary to the previous one, a destructive interfer-
ence among the wakefields generated by the single bunches takes place, due
to the separation of half integer of the plasma wavelength (Fig.16). The in-
creasing bunch density is necessary to provide the required decelerating field:
placing bunches with the same density would actually accelerates the next
bunches (Fig.16a), that so would take energy from the system; doubling the
density would compensate the previous wakefield, therefore the next bunches
does not provide energy to the system at all (this is the case in which the
limit for the beam loading is reached as explained in Section 4.3.2(Fig.16b);
the ramped density instead allows to compensate the previous wakefield and
still provides energy to the system (Fig.16c). to the system.

The aspect that might appear surprising is the linear scaling for the ac-
celerating field with the number of bunches, as in the case of a coherent
interference among the wakefields. On the other hand, although the scaling
is the same in the two configurations, in the last one the required density in
order to excite the wakefield is increased since part of the charge is necessary
to compensate the previous longitudinal field.

6.2 Transformer ratio of a train of Gaussian bunches

The framework depicted in the previous section holds for flat-top bunches.
Real experiments on the other hand usually deal with different density pro-
files, for example Gaussian bunches. It is necessary therefore to check if the
same results hold also for different density profiles.

The model used for the analysis of Gaussian bunches is still a 1-dimensional
one, holding the same assumptions made in the previous section on the static
nature of the configuration.

Gaussian bunches are defined as

f(ξ, ξ1, σ) = e−
(ξ−ξ1)

2

2σ2 . (66)

As in the previous case, the field inside the Nth bunch can be considered
as being the sum of an external field provided by the combined wake of the
preceding bunches, and the internal field self-generated by the bunch itself:

E(ξ) = Ein(ξ, ρN , ξN , σN ) +
N−1∑
n=1

Eout(ξ, ρn, ξn, σn). (67)
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Figure 17: Driving beam and associated electric field for a train of a) flat-top
and b) Gaussian profile bunches. In both cases the periodicity and density
scales according to the optimal scaling for flat-top bunches. The dotted black
line marks the maximum decelerating field under the first bunch. The flat-
top profile allows the same decelerating field under every bunch, while the
Gaussian profile does not.

For Gaussian bunches this results in:

Ein = ρ0

√
πσ2

2
e−

σ2

2 Re

(
e−i(ξ−ξ1) erfc

(
−ξ − ξ1 − iσ2

√
2σ2

))
(68)

Eout = ρ0

√
πσ2

2
e−

σ2

2 cos(ξ − ξ1) (69)

where Eout corresponds to the limit ξ − ξ1 	 σ.
Differently from the case of flat-top bunches, only the external field is

sinusoidal for Gaussian bunches. The internal field therefore cannot com-
pensate the external field in the same fashion of flat-top bunches at every
point. In Fig.17 the difference between the two cases appears more clearly.
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For Gaussian bunches the constraint of the same decelerating field under
every bunch is fulfilled only at the bunch center. On the other hand the
rest of the bunch experiences a different decelerating field, eventually greater
than the one at the center. A direct application of the same scaling of
the parameters as for flat-top bunches does not bring the same result using
Gaussian bunches.

Further, we note that the property of having a sinusoidal internal field is
unique to the flat-top profile, with the result that the scaling R ∼ N cannot
be achieved for any other density profile.

6.3 Weighted Transformer Ratio

Since the same scaling of the flat-top profile for the bunch parameters does
not provide an increasing transformer ratio for Gaussian bunches, it is nec-
essary to find a different way to improve the transformer ratio in this case.

First of all it is necessary to reconsider the definition of the transformer
ratio for profiles different from flat-top. For example for Gaussian bunches, is
not well defined the maximum decelerating field “acting on the driver”, since
they does not have a finite support. One possible solution is to consider the
maximum decelerating field within a finite range of the bunch center. This
corresponds to applying an homogeneous weighting to the field, but this is
somewhat arbitrary, as it is expected that higher-density parts of the bunch
contribute more to the wake.

In order to find a better definition for the transformer ratio, we need to
keep in mind the definition of this variable. As shown in Section 4.3.1, the
parameter provides an estimate of the efficiency of energy transfer between
the driver and the witness bunch. The definition as the ratio between the
accelerating and decelerating fields is a consequence of the assumption of
non evolving drivers that generate the same electric field and as well are all
affected in the same way by this one.

In the case of inhomogeneous driver, different slices of the beam provide
different energies to the wakefield, and as well they are subjected in a different
way from the external field.

From these considerations results natural to weight the decelerating elec-
tric field to the relative bunch density, EW (ξ) = E(ξ)f(ξ, ξ1, σ). The weighted
transformer ratio for a single bunch is then

RW =
maxξ |Eout(ξ)|
maxξ |EW (ξ)| , (70)

It is worth noting that the new definition of transformer ratio returns the
same value for flat-top profiles as in the unweighted case, and that the optimal
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transformer ratio for a symmetric pulse is still 2, without any contradiction
to the previous theory.
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Figure 18: a) Weighted electric field, EW , for the train of Gaussian bunches
considered in Fig.17. The periodicity and the density are chosen to match
the optimal scaling for flat-top bunches. The dotted black line represent the
peak decelerating field. b) Weighted transformer ratio, RW , as a function of
number of bunches for the same configuration.

For a train of bunches, the weighted electric field is:

EW (ξ) = max
n

(
f(ξ, ξn, σn)

)
E(ξ). (71)

and therefore the weighted transformer ratio:

RW =
maxξ |

∑
nEout(ξ)|

maxξ |EW (ξ)| . (72)
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Fig.18a shows the weighted electric field for the same configuration of Gaus-
sian bunches considered in Fig.17b. The first three bunches experience the
same maximum decelerating field. On the other hand from the fourth bunch
the decelerating field increases linearly.

As the maximum accelerating field E+ grows linearly, E+ ∼ N , this leads
to the behavior seen in Fig.18b for the transformer ratio: a linear increase
for the first three bunches then decreasing from the fifth bunch.

In order to understand this behavior for the transformer ratio we still
remember that the decelerating field is composed by a sinusoidal component
due to the wakefield excited by the previous bunches, and a non-sinusoidal
perturbation due to the nonlinear wakefield excited by the bunch itself.

The sinusoidal component is constant despite increasing the number of
bunches since it is compensated by the destructive interference of the wake-
field in a similar fashion as for flat-top bunches, providing the same deceler-
ating field at the center of the bunch.

On the other hand, the nonlinear component is not affected by the de-
structive interference in the same way as the sinusoidal component and still
linearly increase as ∼ (2N − 1), until it becomes the dominant term. This
emerges clearly from Fig.18a, where the maximum of the decelerating field
shifts from the center to the side due to the increasing nonlinear contribution
of the decelerating field caused by the increasing bunch density on the front
of the bunch.

6.4 Optimization of the Transformer Ratio

The results of the previous section underline the different behavior, for what
concerns the transformer ratio, between Gaussian and flat-top bunches. Since
we have been able to define a new measure for the transformer ratio that
better fits with a more general condition rather than flat-top bunches, we
can now perform an extended analysis in order to find the proper parameters
to enhance the transformer ratio also for Gaussian bunches.

Due to the nonlinear nature of the wakefield excited inside the bunch,
the optimal parameters must be found by a code developed to scan the
entire parameters space. The maximum accelerating field is obtained from
the expression for Eout in Eq.(69), while the maximum decelerating field is
evaluated numerically from Eqs.(68,69) and (67).

This semi-analytical approach resulted to be faster than the full numerical
evaluation of Eq.(55), with a computation time scaling linearly with the
number of bunches.

First of all we consider a periodic train of bunches. The reason for such
choice is the wide use of this configuration in the experiments and as well
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being the one achieved using the self-modulation technique described in [26].
A parameter scan is carried out over the three independent variables: the

bunch length σn, the periodicity Δξ, such that ξn = nΔξ and the density
scaling, Δρ, such that ρn = 1 + (n− 1)Δρ.

The optimal transformer ratio and the corresponding parameters as a
function of the number of bunches, are shown in Fig.19. The transformer
ratio tends to saturate, reaching RW = 23 for 50 bunches. Although the
result is not comparable to that achieved by flat-top bunches, RW = 100, is
still a remarkable improvement respect to a direct application of the opti-
mal scaling for a flat-top profile to Gaussian bunches that would result in a
transformer ratio RW ∼ 6 as shown in Fig.18b.
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Figure 19: Optimal transformer ratio and the corresponding scaling param-
eters for a periodic bunch train, as a function of total number of bunches.
a)Weighted transformer ratio, RW , b)FWHM bunch length, c)Bunch period-
icity, such that ξn = nΔξ, and d)Density scaling, such that ρn = 1+(n−1)Δρ.
Numerical results for Gaussian bunches are compared to the analytical solu-
tions for the flat-top profile.

An even better result can be reasonably achieved removing the constraint
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on the periodicity of the bunches and performing a full parameter scan. Such
a train of bunches could be achieved experimentally, for example, by using
an electron mask [71] or a photoinjector with a laser pulse shaper [72].

The optimization is performed one bunch at the time, finding the opti-
mal parameters of the last bunch once fixed the previous upstream to the
already evaluated fitting parameters. The results, presented in Fig.20, show
an even better transformer ratio for a fully-optimized bunch train respect to
the previous cases, giving RW = 40 for 50 bunches.
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Figure 20: Optimal transformer ratio and the corresponding scaling parame-
ters for a fully optimized beam. a)Weighted transformer ratio, RW , b)FWHM
bunch length, c)Bunch position, ξn, and d)Bunch density, ρn. Numerical re-
sults for Gaussian bunches are compared to the analytical solutions for the
flat-top profile.

For 50 bunches the transformer ratio in this case does not show yet a full
saturation, leaving margins for a further improvement. On the other hand a
different problem arises when looking on the parameter space increasing the
number of bunches (Fig.21).
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Figure 21: Change in the weighted transformer ratio varying two out of three
parameters for a configuration with a) fourth and b) 10th bunch. The third
parameter is fixed to the optimal value, corresponding to a)Δρ=1.26, FWHM
length=0.403, Δμ=1.46, and b)Δρ=0.790, FWHM length=0.193, Δμ=1.24.
Red areas show an increase in transformer ratio.

Increasing the number of bunches in the configuration, the parameter
space that provides a large transformer ratio becomes smaller and smaller:
for the fourth bunch, a small deviation from the optimal parameters does
not strongly affect the resulting transformer ratio, while for the 10th bunch
there is a much larger reduction by smoothly deviating from the optimal
parameters.

It does not seem reasonable therefore to extend the analysis beyond the
50th bunch since, although the saturation in the transformer ratio is not
yet achieved, the optimal parameters for an increasing number of bunches
become increasingly difficult to achieve experimentally and the fast decay of
the transformer ratio for a small deviation for the matching parameters does
not provide margin for mistakes.

Although the final result in term of transformer ratio is different between
the periodic and fully-optimized case, the behavior of the individual param-
eters can be explained in a similar fashion.

The optimal bunch length (Figs.19c, 20c) becomes shorter for increasing
bunch number. This can be understood from Fig.17 noting, as previously
mentioned, that the maximum decelerating field occurs at the leading edge of
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the bunch. Decreasing the bunch length therefore reduces the bunch exposure
to the maximum decelerating field.

The reduction of the bunch length drives the reduction in the bunch
spacing (Figs.19b, 20b). For Gaussian bunches in fact, as emerges from
Eqs.(68, 69), the phase of the internal field depends on the bunch length.
This is on the other hand not true for the external field, in which it affects
only the amplitude.

Therefore by reducing the bunch length, the internal field is affected by a
phase-shift relative to the bunch center. In order to compensate this effect,
in order to have the absolute maximum of the decelerating and accelerating
field align in the next bunch, the periodicity needs to be tuned as well. This
leads to the decreasing bunch periodicity.

Finally the behavior of the density is related again to the compensation
of the effects driven by the other two parameters.

In the fully-optimized case, shown in Fig.20d, the decreasing density can
be understood from the reduced growth of the external field. While for flat-
top bunches the density has to scale linearly in order to compensate the linear
scaling of the external field, for Gaussian bunches this is not required since
the external field growth is reduced by the modified periodicity. This results
in the end in a lower density required increasing the number of bunches.

A more complex behavior emerges for the density in the periodic case
(Fig.19d). This effect persists increasing the resolution of the parameter
scan, meaning that it depends by the strong nonlinear response of the sys-
tem. Changing the density scaling modifies both the relative weight of the
drive bunches, and so the phase and amplitude of the external field, and the
amplitude of the internal field, leading to a strongly nonlinear dependence of
the transformer ratio on the density.

On the other hand, we note that this dependence is extremely weak for
both the periodic and fully-optimized case. Choosing a fixed density scaling
of Δρ = 2 results in a decrease in RW of < 4% for any number of bunches.

The results presented, although not comparable to those that can be
achieved theoretically with flat-top bunches, are of key importance for the
study of the transformer ratio for PWFA.

The different behavior of a generic density profile, in particular Gaus-
sian, respect to the flat-top one, required an accurate analysis in order to
understand the nature of the differences and a way to mitigate them.

A great improvement of the transformer ratio can now be achieved as
well for bunches with a generic density profile, leading to a more efficient
energy transfer, especially when the driver can interact with the plasma
for long distance. More important, the analysis developed brings a better
understanding of the transformer ratio for a generic density profile.
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On the other hand, the analysis still required strong assumptions, in
particular the non evolving nature of the driver. This is of course not true,
especially in the situations in which the improvement of the transformer ratio
can be important, i.e. interaction for long distances.

In the next section therefore we study the stability of a modulated beam,
analyzing the effects of the wakefield on the driver itself, its equilibrium
configuration and its duration.
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7 Stability of a modulated beam

In the previous section we have assumed a non evolving driver in order to
study the transformer ratio. This is rather a strong assumption, since the
driver while propagating in the plasma is subjected to both the self-generated
fields and the wakefield excited.

It is therefore a key aspects in PWFA is the stability of the driver. In
order to maintain the excited wave for long distances, achieving so a higher
final energy for the the witness bunch, the driver has to be preserved from
the deterioration.

In the case of a single short bunch this is not one of the main problems,
but becomes relevant for configuration with a long driver. This is the case
for example of modulated beams.

A long driver is subject to the wakefield generated by the interaction
with the plasma and would eventually leads to the onset of a various range
of instabilities that can then cause a fast deterioration. The more the driver
deteriorates, the less particles coherently contribute to the wakefield, even-
tually reducing its intensity up to the complete disappearance.

It is of key importance therefore to properly study the stability of the
driver during its propagation in the plasma and find the optimal conditions
that provide a strong wakefield together with a longer driver duration.

The aim of this section is to provide such analysis for a configuration
involving a modulated driver. This approach is achieving greater interest
[24, 73–76] due to the high intensities of the wakefield that can be excited,
together with a freedom in the specific characteristics of the wakefield due to
the tunability of the driver.

This section looks in particular at the transverse stability of the driver a
problem already studied in previous works [58,77–79] and still object of deep
analysis.

It is reasonable to consider just the transverse dynamics due to the dif-
ferent time scale at which the longitudinal and transverse dynamics develop,
being the first much slower than the second.

The analysis is performed using the 2-dimensional model described in
Section 4.1.3 for the wakefields. The equations are self-consistently coupled
with the envelope description of the beam dynamics presented in Section 5.

In the first part of the analysis we deal with the transverse equilibrium
of a train of flat-top bunches. Such configuration is more feasible for an easy
understanding of the physical phenomena occurring, removing some of the
numerical issues that can arise from more complicated bunch shapes.

The results concerning the equilibrium configuration are then extended to
Gaussian bunches, comparing the similarities with the previous configuration.
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Once the equilibrium configuration is defined, the stability of the modu-
lated beam is taken into account. The most relevant aspect that is studied in
this analysis, is the role of the emittance in the driver stability. As explained
in Section 5, the beam is always subject to the emittance-driven pressure.
Due to the coupling between the driver and the plasma, this effect influences
as well the excited wakefield.

A relevant emphasis will be given therefore to the effects on the wakefield
of the emittance-driven expansion of the front of the bunch, the so called
“emittance-driven erosion”.

Once analyzed the problem of the stability, we perform an optimization
of the modulated beam, aimed to mitigate the deterioration caused by the
emittance-driven erosion.

The results of the next sections are based on the works [80, 81].

7.1 Beam envelope model in a plasma wakefield

In the previous sections have been already described the 2-dimensional model
we are going to use for the study of the stability. The main assumptions de-
scribed previously therefore still hold in the actual development, in particular
the azimuthal symmetry of the system.

In this section we briefly review the model, showing the coupling with
the envelope model for the beam.

For sake of clearance we write again the two-dimensional transverse wake-
field generated inside the driver:

W (r, ξ) = 4πkp

∫ ∞

0

∫ ξ

0

∂ρ(r′, ξ′)

∂r′
r′ I1(kpr<) K1(kpr>) sin[kp(ξ − ξ′)]dξ′dr′

(73)

where kp = ωp/c is the plasma wavenumber, ρ(r, ξ) is the bunch charge den-
sity, I1 and K1 are the modified Bessel functions and r</> = min /max(r, r′).

We consider the wakefield excited by a flat-top bunch in the transverse
direction:

ρ(r, ξ) = nbqb

(
r0

rb(ξ)

)2

H(rb(ξ)− r)f(ξ) (74)

where nb is the peak bunch density, qb is the bunch charge, r0 is the initial
bunch radius, rb(ξ) is the radius of the beam-envelope, H is the Heaviside
function and f(ξ) is the longitudinal bunch profile. Although a flat-top
transverse profile might not be feasible for experiments, it is useful for an
easier development of the model, granting a deeper understanding of the
main physical features.
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The wakefield generated by such a distribution can be therefore formu-
lated as:

W (r, ξ) = −4πkpnbqbr
2
0

{
I1(kpr)

∫ ξ

0
f(ξ′)K1(kprb(ξ

′))
rb(ξ′)

sin[kp(ξ − ξ′)]dξ′ for r < rb

K1(kpr)
∫ ξ

0
f(ξ′) I1(kprb(ξ

′))

rb(ξ′)
sin[kp(ξ − ξ′)]dξ′ for r > rb.

(75)

To self-consistently include the transverse dynamics of the driver we couple
the field equations with the beam-envelope equation for the beam radius as
explained in Section 5.

We already mentioned in the previous section that a more rigorous anal-
ysis of the beam dynamics should take into account of the rms radius of the
beam, developing so a statistical description. Nevertheless, for the aim of this
work, we stick to the previous model developed in Section 5, in particular
assuming that the transverse motion of the driver can be described by the
motion of its boundary like in a water-bag model. This is a valid approxima-
tion as long as the force acting inside the beam is approximately linear like in
this analysis. Moreover the assumptions on the basis of the envelope model
so derived, are not in contradiction with that of the 2-dimensional model for
the wakefield.

Denoting with rb = rb(ξ, τ) and with r′b = rb(ξ
′, τ), the resulting equation

for the envelope radius evolution is:

∂2rb
∂τ 2

= F (ξ, τ) =
ε2c2

γ2r3b
+

− 4πkpnbq
2
br

2
0

mbγ

{
I1(kprb)

∫ ξ

0
f(ξ′)

K1(kpr′b)

r′
b

sin[kp(ξ − ξ′)]dξ′ for rb < r′b

K1(kprb)
∫ ξ

0
f(ξ′)

I1(kpr′b)

r′
b

sin[kp(ξ − ξ′)]dξ′ for rb > r′b

(76)

with ε being the normalized beam emittance, γ = 1/
√
1− β2 the beam

relativistic Lorentz factor and mb the mass of the beam particles.
We are dealing with PWFA in overdense plasma nb < np, so the dynamics

described by the model can be readily interpreted as a charge neutralization
of the bunch particles by the oscillating plasma electrons.

The charge neutralization weakens the Coulomb force arising from the
bunch particles and therefore the pinching force generated by the bunch cur-
rent is not anymore balanced. This leads eventually to a periodical focusing
of the bunch. The emittance force is always defocussing, leading so to a
bottom limit on the pinching derived from the neutralization.

It is worth noting that the charge neutralization is not the only require-
ment to obtain the pinching of the driver. It is necessary as well that the
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return plasma current flows outside the beam. If this is not the case, the
magnetic field induced by the plasma current can react to that of the beam
reducing the effect of the pinching. This might happen in wide drivers, having
a radius larger than the plasma skin depth c/ωp.

The periodical focusing of the beam leads to a local increase of the bunch
density providing therefore a stronger wakefield.

7.2 Equilibrium configuration

On the ground of the model presented in the previous section it is possible to
analyze now the transverse equilibrium of a bunch interacting with a plasma.
As previously mentioned, effects occurring in the longitudinal direction are
discarded since they occurs on a slower time scale than the transverse motion
[58].

The equilibrium configuration is first studied for a train of longitudinal
flat-top bunches. Although these bunch shape is common in real experiment,
provides a more clear interpretation of the physical process occurring.

The analysis is then developed as well for Gaussian bunches as well, check-
ing for differences in the behavior between the two configurations.

7.2.1 Equilibrium configuration for flat-top bunches

We study now the equilibrium configuration for a modulated beam with
flat-top longitudinal density profile. Although this is not the common driver
used in experiments, it provides an easier understanding of the physical prob-
lem, removing possible nonlinear effects that can arise using different bunch
shapes.

The density profile is therefore:

f(ξ) = H

(
ξ − ξ0 +

L

2

)
− H

(
ξ − ξ0 − L

2

)
(77)

with ξ0 the center of the bunch and L its length. The parameters used for the
analysis, for both the bunch and the plasma, correspond to the baseline of
the AWAKE experiment [25] with the exception of the bunch length (Table
1).

In a similar fashion as in [58], we look for the equilibrium configuration
starting from a bunch seed that in this case is the flat-top bunch defined above
and then modeling it in order to reach the transverse equilibrium condition.

In the cited approach on the other hand, an optimization of the equi-
librium configuration took place, removing the sections of the bunch in the
defocussing phase or in the accelerated phase of the wakefield. This way
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Table 1: Simulation parameters for plasma and bunch.

Parameter Value
Plasma density (np) 7× 1014 cm−3

Bunch length (L) 1.2 cm
Initial bunch radius (r0) 0.02 cm
Peak bunch density (nb) 4× 1012 cm−3

Bunch relativistic Lorentz factor (γ) 400
Normalized bunch emittance (ε) 3.5 mm mrad

the obtained equilibrium configuration is initially trapped and resonantly
contributes to the constructive interference of the wakefield.

In the present analysis this optimization is not performed. We look at the
transverse equilibrium configuration obtained from the initial long flat-top
bunch, without removing the sections that would not contribute efficiently to
the wakefield. The reason for such difference is in the resulting equilibrium
configuration obtained in our analysis, that resembles the one achievable in
a self-modulated framework.

The transverse equilibrium is achieved when the force exerted by the
wakefield is able to balance the emittance force that is always defocussing,
playing a role similar to a centrifugal force.

Before going in the details of the equilibrium configuration it is worth
mention some features of the dynamics.

As can be seen from Eq.(73), the head of the bunch is not subject to
the wakefield since there is no perturbed plasma ahead. The dynamics of
the front of the bunch therefore is described by only the emittance pres-
sure, providing so a purely expanding front. This mechanism is known as
emittance-driven erosion [82, 83] and we will see in the next sections that
plays an important role in the stability of the driver.

The evolution of the head of the driver, since it is governed by just the
emittance pressure, can be easily solved leading to:

rb(ξ = 0, τ) = rb0(τ) = r0

√
1 +

ε2c2τ 2

r40γ
2
. (78)

Such a dynamics occurs to the whole beam, not only the head, but for the
rest of the bunch the wakefield react to such an expansion.

Nevertheless, according to the initial condition for the bunch, the wake-
field can be too weak for triggering the focusing force immediately after the
front. This might lead to an entire section of bunch that experience a sim-
ilar dynamics as the head, with a slower growth rate due to the increasing
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contribute of the wakefield. On the other hand moving further behind the
front of the bunch more and more particles contribute to the generation of
the wake that therefore becomes more intense and able to focus the bunch.

In the case of flat-top bunches it is possible to obtain an expression for the
pinchiping point ξp, at which the focusing of the bunch first occurs for given
initial conditions. The expression is obtained by setting to zero Eq.(76),
considering a radius independent by ξ, since there is not yet the onset of the
focusing.

This leads to:

ε2c2

γ2r3b (τ)
=

4πkpnbq
2
br

2
0

mbγ
I1(kprb(τ))

∫ ξp

0

K1(kprb(τ))

rb(τ)
sin[kp(ξp − ξ′)]dξ′ (79)

and therefore:

ξp(τ) =
1

kp
arccos

[
1− ε2c2

ω2
br

2
0γ

2r2b (τ) I1(kprb(τ)) K1(kprb(τ))

]
(80)

with ω2
b = 4πnbq

2
b/mbγ. The position of the pinching point is a decreasing

Figure 22: Position of the pinching point ξp as a function of the propagation
distance according to Eq.(80), for the baseline of AWAKE.

function of the bunch density. This is reasonable since a higher density
provides a stronger wakefield that then can rapidly generate the pinching.
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Figure 23: Normalized force Fn = F/mbE0 at ξ = 5.3λp. E0 = mecωp/e is
the wave-breaking field.

The pinching point is as well a decreasing function of the initial radius of
the bunch. This might be counterintuitive since an increasing bunch radius
provides a decreasing bunch density and so a weaker wakefield. On the other
hand the emittance pressure as well is a decreasing function of the bunch
radius. Increasing the initial bunch radius would provide a much weaker
emittance pressure respect to the reduction in the wakefield, resulting in the
end in a faster onset of the pinching.

Since the front of the bunch is always expanding while propagating in
the plasma channel, according to Eq.(78), the non-neutralized section of the
bunch is a decreasing function of the propagating distance in plasma (Fig.22).

The neutralization of the charge provides a focusing force acting on the
bunch once reached the position ξp. This means that the maximum radius
achievable while propagating in the plasma is the one corresponding to the
free expansion in vacuum in Eq.(78) for the same propagation distance. This
reflects the case in which the focusing field is zero.

Another important issue that emerges from the simple model depicted
above, is the presence of multiple roots of the equilibrium equation, i.e. mul-
tiple equilibrium radii for the bunch at the same position ξ. This is a con-
sequence of the piece-wise nature of the wakefield excited by a bunch with
sharp boundaries (Fig.23). This last issue implies a non unique solution for

55



the equilibrium radius therefore additional conditions must be set in order
to fix an equilibrium configuration.

The prescriptions on the equilibrium conditions for the beam radius can
be obtained by the physical properties we want the beam to fulfill.

A first assumption, in view of the focusing nature of the field, is that
the equilibrium radius must be equal or smaller than the radius of the free
expanding bunch rb(ξ) ≤ rb(ξ = 0). Any solution of the equilibrium radius
occurring over this limit has to be discarded.

The second assumption is to consider just stable equilibrium configuration
under small perturbations. This is a reasonable request in view of the aim to
obtain a long-lasting bunch configuration for the whole propagation distance
in the plasma.

These two assumptions alone might not be sufficient to define an equilib-
rium configuration for the whole bunch and an additional one has to be set
according to the physical properties we demand the bunch to posses. A pos-
sible choice consists of an equilibrium solution lying in the global minimum
of the potential for every slice of the bunch, or else in the smaller equilibrium
radius achievable.

In the first case we demand the beam to be more stable. The deeper
the minimum in the potential, the more energy is required to the beam
particles to escape from it while oscillating due to external perturbations.
We can expect in this case therefore a more stable configuration under small
perturbations.

In the second one, taking the smallest of the two solutions, we favor the
intensity of the produced wakefield since a strongly focused driver reach a
higher density and therefore excites a stronger wave.

It might be reasonable actually to think that the smaller the radius, the
more intense the wakefield and therefore the more deeper the potential well,
having so no distinction between the two cases. On the other hand, a larger
radius mean more particles contributing to the wakefield that can actually
provide a deeper trapping potential but without contributing much to the
accelerating field on axis.

We carry the analysis of the equilibrium structure under the previous
assumptions for both the “focused” and “global minimum” cases, comparing
the differences between the two.

As shown in Fig.24 the bunch experiences a periodical focusing force
at which corresponds consequently a modulated equilibrium structure. The
equilibrium configuration achieved is analogous to that obtained after the
onset of the self-modulation instability (Fig.25).

It is possible to see the initial section of the bunch that is not affected
by the modulation. Up to the pinching point the beam does not excite a
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strong enough field to drive the focusing as presented previously. The same
behavior occurs as well in the second and third bunch, up to the point in
which an intense enough wakefield is always obtained and the beam is always
modulated.

The interesting aspect that emerges, is the different final configuration for
the modulated beam for the two choices of the equilibrium radius. The dif-
ference results from the fourth bunch. The difference respect to the previous
bunch is the appearance of the third root inside the range rb(ξ) ≤ rb(ξ = 0)
defined above. The new root guarantees a deeper trapping potential, leading
therefore to a different configuration respect to the one with the minimum
radius.

The shift in the modulation due to the sudden jump to the new equilib-
rium position persists then for the rest of the bunch.

ξ λ

Figure 24: Normalized equilibrium beam radius for the “global minimum
case (continuous line) and “focused” case (dashed line).

As mentioned previously, the different structure for the two cases corre-
sponds to a different behavior of the potential for every slice ξ in the bunch.

For the case of “global minimum” solution the modulation occurs at the
formation of a new global minimum eventually far from the previous one.

In the case in which the focusing of the bunch is favored instead, the
modulation is related to the complete disappearance of the solution corre-
sponding to the smallest radius and consequently jump to the closest possible
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ξ λ

Figure 25: Equilibrium configuration for a modulated beam in the “global
minimum” case (continuous line) and “focused” case (dashed line).

solution.
In both the configurations the peak density of the bunches grows moving

towards the end of the bunch as a consequence of the constructive interference
acting on the transverse field generated by the single bunches.

Nevertheless we can see that the configuration corresponding to the highly
focused case does not provide a higher peak density for the bunches. This
is a result of the phase shift in the transverse field respect to the “global
minimum” case, due to the different lengths of the fourth bunch for the two
configurations.

The total transverse field at every point is a result of the superposition of
the fields generated by the single bunches. The different length of the forth
bunch in the “focusing” configuration provides an imperfect matching of the
phase of the transverse field, resulting in a weaker total focusing force and
therefore in a lower peak density for the bunches.

According to this last result therefore we can carry the rest of the work
just considering the “global minimum” equilibrium configuration since it pro-
vides both a stronger focusing and consequently a higher peak density for
the bunches as well as a more stable configuration.
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7.2.2 Equilibrium configurations for Gaussian bunches

We perform now a similar analysis as that proposed in the previous section
but considering bunches with a Gaussian longitudinal profile. The differ-
ent profile does not provide new interesting features that where not present
as well in the flat-top case, but nevertheless is useful to present since real
experiments usually deal with Gaussian bunches.

Since the defocusing force driven by the emittance does not depend on the
shape of the bunch, we can apply exactly the same model also for Gaussian
bunches represented by the longitudinal density profile:

f(ξ) =
N∑
j=1

e
−

(ξ−ξj )
2

2σ2
j =

N∑
j=1

e−
(ξ−ξ0−jΔ)2

2σ2 (81)

with N being the number of bunches, ξj the center, σj the length and Δ the
periodicity.

The analysis is developed in the same way as the previous one, by solving
numerically, for every bunch slice, Eq.(76) for the desired longitudinal den-
sity profile. Once obtained the transverse field for the specific slice, we then
evaluate the equilibrium radius as the global minimum of the potential pro-
viding Eq.(79), with the prescription rb(ξ, τ) ≤ rb(ξ = 0, τ). The algorithm
is then repeated for every bunch slice.

The complete set of the parameters characterizing both the plasma and
the beam, with the exclusion of the beam length, is based again on the
baseline of the AWAKE project (Table 1).

Although this analysis refers explicitly to the AWAKE experiment, the
mechanism that leads to the modulation can be general. Therefore the same
results hold for both a pre-modulated and a self-modulated beam.

As expected (Fig.26), the interaction with the plasma leads to the fo-
cusing of the modulated beam, increasing the peak density of the bunches
as compared to the case of pure vacuum. The focusing force increases to-
wards the tail of the configuration due to the coherent interference among
the transverse fields generated by the single bunches.

The main difference between the two density profiles is the smaller peak
bunch density obtained in the Gaussian case. This is due to the weaker wake-
field excited initially by the Gaussian bunches due to the rapidly decrease of
the density far from the bunch center. The resulting wakefield is therefore
weaker than for flat-top bunches.

The weaker wakefield excited is also the cause of the delayed onset of the
focusing force respect to flat-top bunches. It emerges clearly the difference
between the initial Gaussian profile of the bunch, as in the vacuum case, and
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Figure 26: Quasi-equilibrium configuration for a modulated Gaussian bunch
with periodicity 2λp in vacuum and in plasma (top) and for different propa-
gation distances in the plasma (bottom).

the pinched section of the bunch as soon as the focusing force becomes strong
enough to compensate the emittance force.

Nevertheless for Gaussian bunches is not possible to obtain an exact
oppression for the position of the pinching point as in the case of flat-top
bunches due to the inhomogeneity of the profile.

7.3 Emittance-driven evolution of the modulated beam

As previously mentioned, the front of the bunch is never able to reach an
equilibrium position since its dynamics is controlled by just the emittance
pressure and not also by the excited wakefield. Therefore the equilibrium
configurations defined previously cannot be stable, subjected at least to an
evolution driven by the expansion of the head of the bunch.

Moreover, since the dynamics at every point in the bunch depends on
the upstream section, the expansion of the head of the beam leads to an
evolution of the equilibrium configuration for the whole driver.

In this section we study the evolution of the equilibrium configuration
due to the emittance-driven head expansion, discarding all other time de-
pendencies.

Analysis involving the emittance erosion of the beam has been already
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performed in [82–84] for beam transport in plasma in the ion-focused regime,
as well in [85,86] for field-ionized plasma in the context of the bubble regime
of PWFA. In these work nevertheless the analysis was devoted on the ero-
sion of the head of the bunch only. The relevant effect taken into account
in this section involves the evolution of the wakefield, and so of the beam
modulation, driven by the erosion.

The effects of the head expansion on the rest of the driver are analyzed
for both the previous configurations, flat-top and Gaussian bunches.

7.3.1 Evolution for longitudinal flat-top bunches

We start studying the emittance-driven evolution for the configuration of
flat-top bunches.

A clear influence of the head expansion on the whole beam configuration
appears immediately in Fig.27 where the potential map for the whole beam
it is shown for three different propagation distances in the plasma.

Φ

ξ λ

Figure 27: Potential surfaces after propagating for 0, 5 and 10 meters in
the plasma. The white lines correspond to the beam radius defined by the
minimum of the potential at every position ξ

Although the only time-dependent mechanism is the head expansion,
there is an evolution of the potential map on the whole bunch size. The po-
tential structure appears to experience a shift toward the back of the bunch.
Moreover the potential wells become deeper.
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Since the equilibrium configuration is defined by the minima of the po-
tential, a backward drift in its structure implies a backward drift as well in
the equilibrium configuration for the train of bunches.

An analogous backward drift of the potential wells has been already ob-
served for the self-modulation instability [79]. In this analysis we are able to
address the emittance force as the responsible mechanism for such a drift,
since it is the only dynamical effect occurring in the beam.

The backward shift appears more evident in Fig.28 where the different
equilibrium configuration obtained for different propagation distances are
presented.

ξ λ

Figure 28: Equilibrium configuration after 0 (continuous line), 5 (dashed
line) and 10 (dotted line) meters of propagation in the plasma. The minimum
densities achieved correspond to the absence of a focusing field and therefore
to a purely-expanding bunch due to the emittance-driven force

The modulated structure is still preserved, with periodicity and length
of the bunches approximately equals the plasma wavelength as for the ini-
tial condition. The whole configuration on the other hand, exhibits a drift
towards the back of the bunch respect to those at previous propagation dis-
tances. Moreover there is as well an increase of the peak densities of the
bunches for increasing propagation distances.

The first bunch appears to behave differently in respect to the rest of the
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configuration. The peak density is in fact decreasing for increasing propa-
gation distances in the plasma. The length as well is not constant but it is
rather increasing.

In order to characterize the evolution of the equilibrium structure and
understand the reason for such a behavior we track the position of the peaks
of the bunches for different propagation distances. The first feature that
emerges from Fig.29 is an approximately equal variation of the bunch po-
sitions respect to their initial one for all the bunches.This means that the
equilibrium configuration rigidly moves backward while propagating in the
plasma and that the period of the modulation therefore does not change.
Moreover the variation is initially a linear function of the propagation dis-
tance, becoming smoother after approximately 7 m.

Δφ
λ

τ

Figure 29: Shift of the 5th, 6th and 7th bunch respect to its initial position
for different propagation distance.

As we pointed previously the divergence of the beam driven by the emit-
tance is the only time-dependent mechanism in this analysis, therefore the
reason for the presence of such a drift has to be found there.

An interesting difference that we mentioned above in the evolving equi-
librium configuration, is the anomalous behavior of the first bunch respect to
the rest of the modulated beam. In particular the length of the first bunch
is increasing while propagating in the plasma.
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There are two main reasons for such phenomenon related each other as
can be seen in Fig.30. The first one, as previously mentioned, is the reces-
sion of the pinching point. The beam rarefaction due to the head expansion
weaken the emittance force that can be therefore compensated by the wake-
field sooner than for previous propagation distances.

The second reason lies in the weaker wakefield that can be excited for dif-
ferent propagation distances due to the decreasing bunch density. Although
the emittance force is more affected by the decreasing density, the wakefield
is as well reduced. This means that for different propagation distances, it is
necessary a longer section of the bunch to generate a wakefield of the same
intensity (more charges are contributing to the wakefield).

This last issue is responsible for a phase shift of the transverse field and
therefore of a longer length of the first bunch.

ξ λ

Figure 30: Bunch density and transverse wakefield at r = r0/2 after 0, 5 and
10 meters of propagation for a short bunch.

This phase shift in the transverse field occurring on the first bunch is the
cause of the backward drift for the entire configuration.

The transverse field is responsible for the modulation of the beam, there-
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fore a change in the phase of the wakefield leads to a change as well of the
equilibrium configuration.

Moreover, although the maximum field inside the first bunch is a de-
creasing function of the propagation distance, the different length results in
an increasing maximum field outside the bunch. This results in a stronger
focusing force and therefore in the increasing peak density of the bunches
observed.

The mechanism, studied in [80], can be summarized as follows: the bunch
experiences an expansion driven by the emittance pressure. The expansion
leads to a reduction of the bunch density and therefore to the intensity of
the wakefield. In order to obtain wakefield of the same intensity for different
propagation distances it is necessary therefore to include a longer section
of the bunch for compensating the reduction of the density. This leads to a
phase shift of the transverse wakefield that is responsible for the focusing and
defocussing of the rest of the beam. The phase shift in the wakefield results
so in a phase-shift in the global equilibrium configuration of the modulated
driver.

7.3.2 Evolution for longitudinal Gaussian bunches

The use of flat-top bunches made easier the understanding of the physical
mechanism that provides the evolution of the equilibrium configuration. We
want to check if the same behavior occurs as well for Gaussian bunches or it
is suppressed by the nonlinear wakefield excited by such density profile.

As can be seen in Fig.31, Gaussian bunches experience a slightly different
behavior respect to flat-top ones.

In order to avoid effects due to the overlapping of the single bunches, the
periodicity of the train of bunches has been set to Δ = 2λp.

The similarity with the previous case is the backward drift experienced
by the equilibrium configuration while propagating in the plasma. The drift
increases as well with the propagation distance as in the previous analysis,
although the displacement appears to be smaller than in the flat-top case.

The difference respect to the previous case is in the peak bunch densities
that is actually decreasing with the propagation distance.

Although such a difference between the two configurations, the mecha-
nism inducing such behavior is actually the same, as can be seen in Fig.32.

Also in the case of a Gaussian bunch the expansion of the bunch induced
by the emittance corresponds to a decreasing bunch density and therefore to a
reduction of the wakefield. This reduction once again has to be compensated
by a larger section of bunch required to obtain the same charge for different
propagation distances. This process delays the onset of the focusing force.
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Figure 31: Drift of the equilibrium configuration for a train of Gaussian
bunches for 0, 5 and 10 m of propagation in the plasma.

The reason for the different amount of drift experienced by the Gaussian
bunches, as can be clearly seen in Fig.32, is the inhomogeneity of the density
profile in this case, with a strong decay moving away from the bunch center.

The lower density of the front excites a weaker wakefield, bringing to a
delay of the onset of the pinching respect to flat-top bunches. Moreover,
while flat-top can easily compensate the density decrease induced by the
emittance pressure, since the density of the bunch is constant, Gaussian
bunches are constrained by the rapid decrease of the density profile. It can
occur that there is not enough density in the rest of the bunch to reach the
same intensity of the transverse field as for previous propagation distances.
This is the reason of the decreasing peak density of the bunches for Gaussian
profile.

This problem can be of course overcome by increasing the length of the
Gaussian bunches.

This is the reason for the quantitative different behavior of the backward
drift for Gaussian bunches respect to flat-top ones, although the mechanism
inducing the drift is still the same. In Fig.33 it is possible to see the different
amount of the drift for the two cases. Nevertheless, the drift is still rigid for
Gaussian bunches as it was for flat-top ones since they are both driven by
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Figure 32: Transverse field excited by a Gaussian bunch for 0, 5 and 10 m of
propagation in the plasma.

the same effect.
This drift caused by the emittance-driven head erosion is qualitatively

analogous to those studied in previous works [82–86]. On the other hand,
the previous analysis focused just on the deterioration of the beam front
driven by the emittance [82–84], without considering its effects on the rest
of the bunch.

In the same way, the works [85, 86] took into account only the drift of
the ionization front and the consequent interaction of the beam with a not
completely ionized plasma.

In the present analysis we look to how this drift affects the phase of
the wakefield and therefore the evolution of a train of bunches initially in
equilibrium.

This might be relevant also in context in which the emittance is never-
theless small enough to not provide any relevant deterioration of the driver
compared to other physical effects [87].

The emittance-driven evolution of the equilibrium configuration implies
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Figure 33: Shift of the 4th, 5th and 6th bunch respect to its initial position
varying the propagation distance in the plasma. The result is compared with
the shift experienced by flat-top bunches.

serious consequences for the stability and the duration of the modulated
beam.

A bunch particle initially in an equilibrium position, will find itself in
an unstable one while propagating in the plasma as a consequence of the
rearrangement of the trapping potential caused by the expansion of the front.

The displacement experienced by the initial bunch radius with respect to
the new equilibrium configuration results in a gain of transverse momenta.
If the displacement is large enough, the bunch particles can even escape the
trapping potential.

The more driver particles are depleted, the lower is the wakefield ampli-
tude, resulting in the lower efficiency of the process.

It is worth underline that this is only one of the mechanism of degradation
of a periodic modulated driver, since full simulations shown that the insta-
bility is caused by the partially slippage of the bunches in the defocussing
phase of the wake [79].
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7.4 Optimization of a train of Gaussian bunches

In the previous section emerged a problem of stability for a modulated beam
caused by the simply expansion of the front of the driver. This might lead
to a serious issue since the evolution of the beam configuration might induce
a deterioration of the driver.

A possible way to ease this problem is to reshape the modulated configu-
ration in order to provide a better stability. There are three parameters that
are tunable in order to obtain a different configuration, the bunch densities,
the bunch length and the distance between the bunches.

It is true indeed that a train of bunches with periodicity Δ = λp provides
an intense accelerating field behind the driver, due to the coherent interfer-
ence among the wakefield generated by the single bunches. Nevertheless, the
simple expansion of the front of the bunch causes its degradation. The more
particles the bunches lose while propagating in the plasma, the weaker is the
final accelerating field.

Might be eventually of more advantage reshape the driver configuration,
moving away from that providing the maximum accelerating field, obtaining
a longer lasting driver that can accelerate the witness bunch with a lower
acceleration gradient but for longer distances.

Although the analysis can be performed on all the three parameters char-
acterizing the configuration, as in Section 6.4, we look only to the proper
position of the single bunches in order to maximize the number of particles
keeping trapped while propagating in the plasma.

We drop therefore the scan on the bunch densities and lengths. This is
due to the more difficulties provided in the control of these two parameters.

The analysis is performed only for bunches with longitudinal Gaussian
density profile, since are more feasible for experiment and the analysis for flat-
top bunches was performed just for an easier understanding of the problem.

This approach has been performed in previous works [58, 87] including
further physical effects in the analysis. We show here that also the phase-
shift of the wakefield caused by the expansion of the head can be mitigated
by finding a new proper configuration of the modulated beam by changing
the periodicity of the bunches.

The trapping of the beam particles is studied between the initial and
final position in the plasma channel. Since the backward shift increases with
the propagation distance, improving the trapping respect to the final stage
guarantees as well an improvement for the whole evolution.

It is worth noting that with such approach we do not take into account
the transverse momenta acquired by the bunch particles at every time step.
Therefore the deterioration might be even worst in a full time-dependent
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Figure 34: Potential surface after 10 m of propagation in the plasma. The
white line corresponds to the equilibrium beam radius at 0 m, while the
black lines are the boundaries for which the particle stay trapped after 10 m
of plasma.

analysis. Nevertheless such approach guarantees the proper initial shape of
the modulated beam in order to mitigate the deterioration driven by the
emittance pressure.

To establish which sections of the bunches are unstable, we compare the
initial radial configuration with that at the end of the propagation. The
bunch particles are lost if the difference between the two is large enough to
provide the necessary transverse momentum to escape the trapping potential.

In Fig.34 we can see an example of the method applied: the trapping
boundaries defined the region of the potential in which the bunch should lies
in order to remain trapped. It appears clearly like some sections of the initial
equilibrium configuration are, at the end of the propagation distance, out of
the trapping region, meaning that those slices of the bunches are lost.

Since the bunches are Gaussian, so inhomogeneous, it is not enough to
look for the section of the bunch lost, but it is necessary to evaluate the exact
number of bunch particles that escape the trapping potential, since the slices
defocussing might be of low density.
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According to this criterion we look for the matching periodicity of the
configuration that guarantees the highest number of particles trapped be-
tween the initial and final step. The analysis is performed one bunch at the
time for all those composing the periodic driver. For every bunch analyzed,
the configuration upstream is fixed to the matching one previously evaluated.

Δ λ

Figure 35: Relative number of particle trapped after 10 m of propagation
varying the position of the last bunch of the configuration.

In Fig.35 we can see the relative number of particle trapped changing the
position of the last bunch of the configuration over a plasma wavelength.

As expected the maximum number of particle trapped is not achieved
with a periodicity Δ = λp. The reason has to be looked in the expression of
the transverse field that guarantees the focusing.

The maximum of the Green function for the transverse field in Eq(74)
lies at Δ = λp/2, so as explained in Section 4.1.3, the accelerating and
focusing fields are out of phase. Moreover, the Gaussian profile induces a
nonlinear shift on the wakefield due to the inhomogeneous density. Another
reason is the additional phase shift induced by the single bunches involved
in the configuration, changing the phase between two bunches. Lastly, the
backward drift driven by the expansion of the front of the bunch causes an
additional shift of the optimal position, the one we are trying to mitigate.

The final position of the maximum of the focusing field, and therefore of
the maximum number of particle trapped, is provided by the sum of all this
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contributes.
Δ

λ

Figure 36: Matching position of every bunch to improve the trapping (top)
and relative number of particle trapped (bottom).

By looking for the matching position that mitigates the deterioration, it
appears immediately like the displacement is not constant for every bunch,
meaning that it is not enough to rigidly move the configuration backward,
but an analysis for every bunch is required (Fig.36). This is as well expected
since placing a bunch on the tail of a previous one provides a shift in the
phase of the wakefield [79].

On the other hand the stability of the configuration, defined as the rel-
ative number of particle trapped, increases with the number of bunches in-
volved. This is a consequence of the increasing total transverse field due to
the superposition of the single ones generated by all the upstream bunches.
The potential well characterizing the trapped particles becomes deeper and
therefore an increasing transverse field is necessary for the bunch particle to
escape.

It is worth noting that the approach performed above provides an in-
creasing final total charge of the beam. This does not necessarily implies as
well an intense accelerating field behind the driver. There is the possibility
that the new position of the bunches lies in the accelerating phase of the
wakefield, therefore the bunches does not deposit coherently the energy in
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the wave.
This can be understood also by looking at Eq.(74), since the Green func-

tion for the longitudinal and transverse fields are π/2 out of phase, meaning
that the maximum of the first will be close to the minimum of the second.

In order to obtain a configuration suitable for particle acceleration, it is
necessary to improve the stability of the train of bunches together with the
final accelerating field behind the driver. It is reasonable to expect that is
not possible to obtain the best of the two conditions at the same time, but
nevertheless we look for a configuration that guarantees a coherent interfer-
ence between the longitudinal fields generated by the single bunches, as well
as a slow deterioration.

Δ λ

Figure 37: Relative number of trapped particle with average accelerating
field behind the driver for a configuration with ten bunches.

To do this we perform an analogous analysis as the previous one, taking
into account this time also the average of the accelerating field behind the
driver over the propagation distance. The analysis is performed again for one
bunch at the time, fixing the configuration upstream to the matching one.
Fig.37 displays clearly the behavior mentioned previously.

The position that guarantees the maximum number of trapped particles
does not correspond to that improving also the longitudinal field behind
the driver. In order to obtain the best of the two behaviors, the matching
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condition is set at the crossing between the lines representing the relative
number of trapped particle and the average accelerating field behind the
driver. The position is highly conditioned by the different effects mentioned
previously and must be evaluated numerically.

D
λ

Figure 38: Matching position of every bunch in order to improve both the
stability of the driver and the final accelerating field. The result is compared
with the previous one in which only the stability was guaranteed.

As can be seen in Fig.38, the needed shift of the initial bunch position
is clearly different comparing the case improving only the stability of the
configuration and that improving as well the final accelerating field. Both of
them on the other hand show a decreasing function of the number of bunches
involved in the configuration, eventually leading to a saturation of the shift
increasing more the number of bunches.

The analysis developed so far is based nevertheless on a simplified model
and does not take into account additional effects that might influence the
stability of the configuration, especially nonlinear effects. The additional
exclusion of a full time-dependent simulation of the dynamics might affect
the final results on the optimal configuration.

In order to confirm the results therefore, we have performed a three di-
mensional PIC simulation using the quasi-static VLPL code [88]. We com-
pare both the bunch densities and the longitudinal electric field for a modula-
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tion of λp and the newly obtained modulation. A more extensive explanation
of the code used will be provided in Appendix B.

Figure 39: Bunch densities after 0, 5 and 10 m of propagations in plasma
for the rigid train of bunch configuration (top) and the optimized configura-
tion (bottom). The new configuration provides an increasing density for the
bunches at the end

As can be seen in Fig.39, the results from the PIC simulations confirm
those obtained by the simplified model. It emerges clearly that the optimized
configuration preserves the bunch densities, obtaining a final charge higher
than that in the periodic case. There is still a deterioration of the driver,
but this was expected since the approach aims to mitigate the effects of the
defocussing forces.

The other main feature desired, a strong accelerating field behind the
driver, is as well obtained.

This characteristic as well provides the behavior expected by the im-
proved configuration as can be seen in Fig.40. Indeed the modulation of λp

guarantees a stronger electric field initially, but on the other hand, the opti-
mized configuration provides an improved focusing field acting on the single
bunches. The focusing force enhances the peak bunch density, providing
therefore a more intense accelerating field. Moreover the improved trapping
allows to sustain such electric field for longer propagation distances respect
to a periodicity of λp in which the deterioration of the driver rapidly reduce
as well the final accelerating field.
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Figure 40: Accelerating field after 0, 5 and 10 m of propagation in plasma for
the rigid train of bunch configuration (top) and the optimized configuration
(bottom). The new configuration provides a more intense accelerating field
for the second half of propagation in plasma.

The difference in the intensity of the longitudinal field can be clearly
observed in Fig.41. The new configuration shows an initial rise of the accel-
erating field due to the focusing force acting on the bunches that increases
their peak density. At that stage, the bunch configuration reach the trans-
verse equilibrium described in the previous sections.

After about 3 meters of propagation in the plasma, the accelerating field
behind the driver becomes stronger in this new configuration due to the
highly focused bunches and to the mitigation of the bunch deterioration.

Finally the deterioration of the driver occurs also in the optimized case,
but nevertheless it is slower than the previous case, still providing an intense
electric field at the end of the propagation.

The analysis developed in this sections has shown the importance of a
properly shaped train of bunches in order to preserve the stability of the
driver and as well improve the final accelerating field.

The simple periodicity of Δ = λp is not anymore satisfactory when
broader effects, beyond the improvement of the initial accelerating field, are
included in the analysis.

Such analysis might suggest further improvement that can be achieved, in
a similar fashion as for the optimization of the transformer ratio, by expand-
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Figure 41: Comparison of the accelerating field behind the driver for the
periodic and optimized case as a function of the propagation distance.

ing the parameter scan to the bunch densities and lengths as well, opening
eventually new regime for the stability of the driver in the linear PWFA.

Another important application of such analysis, might be the effects of
the transverse field on the stability of the witness bunch, as well the even-
tual beam loading and energy spread. The issue of the accelerating field in
this case is not important anymore, but there are other important features
that must be preserved or improved for the witness bunch, features that are
affected as well by the wakefield generated by the newly shaped driver.
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8 Conclusion

We have shown in this work the importance of plasma wakefield accelerator
as a possible alternative to standard rf accelerator. This is not just due to
the high acceleration gradients that the plasma can sustain, but also for the
additional features emerging in such a framework, like the focusing of the
beam by the transverse field excited.

Nevertheless important issues have to be solved in order to substitute
actual accelerator by this technique.

In particular, for what concerns beam driven plasma wakefield, the first
problem to be solved for a kilometer long accelerator is the stability of the
driver. Nowadays one of the severe limit of such mechanism is the deteriora-
tion of the driver due to the interaction with the wakefields generated. The
length scale at which the deterioration occurs is usually shorter than the
depletion length at which the driver has deposit all its energy in the plasma.

It is therefore pointless to use a driver with a large energy stored such as
the 400 GeV proton beam of the SPS for the AWAKE project, if the beam
cannot transfer all its energy to the plasma and then to the witness bunch.

We try therefore to address the problem of the stability of the driver in
this work, in particular the stability of a modulated beam. The reason for
an emphasis to such a driver is due to the promising possibilities that can be
achieved with this configuration. The coherent interference of the wakefields
excited by the single bunches can large improve the final accelerating field.
Moreover, the tunability of the configuration, especially in term of period-
icity of the bunches, allows a better manipulation in order to improve the
performances.

A practical reason is that modulated beams, and in general long driver,
are more subject to instabilities caused by the interaction with the wakefield
generated.

In this work we have first of all characterized the equilibrium configuration
for such a driver. We have seen that there are different choices in order
to obtain a stable equilibrium configuration, that would provide different
features of the wakefield.

Among them we have chosen the one with the best performances and we
have studied the influence of the head expansion due to the emittance in
term of stability of the configuration.

The problem of the emittance-driven erosion of the beam is already a
well known one, being responsible for the drift of the pinching point of the
beam or of the ionization front in the beam-ionized plasma configurations.
Nevertheless this is the first time that the emittance effects are included in
the evolution of the wakefield.
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We have shown that the expansion of the front of the beam leads to a
backward drift of the whole equilibrium configuration due to the phase shift
of the wakefield induced by the reduced density of the beam.

The phase shift induces an instability, since particles that where in an
equilibrium point initially might acquire enough transverse momentum to
escape the trapping potential and so be lost, causing the deterioration of the
driver.

We observed the same behavior, although quantitatively different, for a
train of flat-top bunches as well Gaussian bunches.

We look therefore to a way for mitigate such deterioration for a train of
Gaussian bunches, being more feasible for experimental applications.

We found out that a possible solution consists in removing the constraint
of a series of bunches with fixed periodicty. Properly changing the distance
between each bunch , it is possible to reduce the deterioration of the driver.
Moreover, due to the highest number of particles that remain trapped and so
contribute to the wakefield, the final accelerating field on-axis is enhanced as
well respect to the case of a strictly periodic modulated beam with periodicity
Δ = λp. Such feature shows the importance to improve the quality of the
driver in order to increase as well the performances as accelerator mechanism.

Another important issue in such a framework is the efficiency of the energy
transfer between the driver and the witness bunch. This might be less rele-
vant nowadays due to the short acceleration distances that can be achieved
right now, but becomes an important figure of merit when discussing of kilo-
meters long plasma wakefield accelerators.

The characteristic describing the efficiency in the transfer of energy is
the transformer ratio, the ratio between the energy gained from the witness
bunch over the energy deposit by the driver.

Linear plasma perturbations, using symmetric drivers have the rather
unpleasant limit of R = 2. On the other hand this limit can be overcome
using nonlinear plasma wakefields, asymmetric drivers or a properly shaped
train of bunches.

Dealing with this last configuration, we have shown that the ramped
configuration providing a transformer ratio R = 2N is feasible only using
flat-top bunches. For non homogeneous bunch such behavior is not satisfied
anymore.

Even worst, by applying the same scaling for length, periodicity and peak
density to a configuration of Gaussian bunches we obtained a far smaller
transformer ratio.

Such results required a further analysis for the transformer ratio using a
train of Gaussian bunches. We shown that inhomogeneous bunches require
a different parameter to properly quantify the energy exchange efficiency,
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namely the weighted transformer ratio, that takes into account of the specific
number of particles that are subjected to the wakefield: the more particles
are affected by the wakefields, the more important is that slice of the bunch
(rather than having the same weight as in the case of flat-top bunches).

Using this new parameter that provides the already established result
for flat-top bunches, we performed a parameter scan on the configuration
of Gaussian bunches, in order to find the optimal length, peak density and
periodicity of the single bunches to improve the transformer ratio.

The results are far from being as good as those for flat-top bunches, but
on the other hand are a great improvement respect to a simply application
of the scalings for flat-top bunches to Gaussian ones.

The enhancement of the transformer ratio required, as in the improvement
of the driver stability, a fine tuning of the parameters of the driver, showing
once more the great possibilities that can be obtained by using a modulated
beam as a driver for plasma wakefield.

Although the promising results presented in this work, there are still im-
portant issues to be addressed. In term of the driver stability, for example,
several effects has been discarded in the present analysis that might be im-
portant for mitigating the deterioration of the bunch.

Moreover the quality of the accelerated witness bunch should be also
taken into account. In order to be feasible for applications it should have not
only an high energy, but also a small emittance so to increase the luminosity
of the bunch. These are problems that have to be taken into account as well
for a plasma wakefield accelerator that can replace the actual technologies.

The present work shows the wide possibilities obtained by a fine tuning
of the parameters of a train of bunches used as a driver. Such freedom in
the shape of the driver configuration might be a possible solution to a lot of
problems related to plasma wakefield accelerators.

Another way to improve the characteristic of such framework might be
the tuning of the plasma parameters, not mentioned at all in this work.
Previous analyses have already shown the improvement of the concept by
using a density gradient for the plasma for example. A more accurate study
of the effects of the plasma parameters, in term of density and velocity, might
open additional possibilities to improve the quality of the plasma wakefield.
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A Derivation of the 2-dimensional wakefield

equations

This chapter provides a complete derivation of the 2-dimensional electric and
magnetic fields arising from the interaction of a particle beam with a plasma.
The evaluation greatly relies on the work of Kenigs and Jones [57].

The model considers immobile plasma ions, based on their greater inertia
respect to the electrons. Moreover the sources are azimuthally symmetric,
so that the analysis can be reduced to a 2-dimensional one. Lastly, nb � np,
the plasma is overdense, so it is reasonable to consider a linear response of
the perturbed plasma, discarding higher order terms.

The first step is to evaluate the wave equations for the electric and mag-
netic fields from the Maxwell equations Eq.(5-8).

Taking the curl of the Faraday law Eq.(6) and replacing the Ampere
equation Eq.(8) one obtains:

∇× (∇×E) = −1

c

∂(∇×B)

∂t
= −4π

c2
∂J

∂t
− 1

c2
∂2E

∂t2
. (82)

Using the identity ∇× (∇×A) = ∇(∇·A)−∇2A and the Poisson equation
Eq.(5) in the previous expression provides:

1

c2
∂2E

∂t2
−∇2E = −4π

c2
∂J

∂t
− 4π∇ρ (83)

where the sources providing the electric field are both the plasma and the
particle beam(J = Jp + Jb, ρ = ρp + ρb). An analogous equation can be
obtained in a similar fashion for the magnetic field, by taking the curl of
Eq.(8) and replacing Eq.(6,7) together with the previous operator identity.
The final results is:

1

c2
∂2B

∂t2
−∇2B =

4π

c
∇× J. (84)

To self-consistently close the system the wave equations have to be coupled
with the fluid equations describing the dynamics of the plasma Eq.(16,17).

Assuming that the perturbation is small, it is possible to linearly expand
the quantities involved, discarding second order effects:

np � n0 + n1 (85)

vp � v0 + v1 = v1 (86)

E � E0 + E1 (87)

B � B0 +B1 (88)
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where we have assumed an initially static plasma.
The fluid equations for the perturbed quantities turns therefore into:

∂n1

∂t
+ n0∇ · v1 = 0 (89)

∂v1

∂t
= − e

me
E1 (90)

1

c2
∂2E1

∂t2
−∇2E1 = −4π

c2
∂

∂t
(J1 + Jb)− 4π∇(ρ1 + ρb) (91)

1

c2
∂2B1

∂t2
−∇2B1 =

4π

c
∇× (J1 + Jb). (92)

It is possible to rearrange the expression by explicitly expressing the current
source term in the wave equations. For the equation of the electric field this
turns into:

∂

∂t
(Jb + J1) =

∂Jb

∂t
− en0

∂v1

∂t
=

∂Jb

∂t
+

e2n0

me
E1. (93)

where we have used Eq.(90). Substituting the result in the wave equation
gives:

1

c2
∂2E1

∂t2
−∇2E1 +

ω2
p

c2
E1 = −4π

c2
∂Jb

∂t
− 4π∇(ρ1 + ρb). (94)

Analogously the expansion of the term∇×J1 in the equation for the magnetic
field provides:

1

c2
∂2B1

∂t2
−∇2B1 +

ω2
p

c2
B1 =

4π

c
∇× Jb. (95)

It is worth to be noted that the source term for the magnetic field depends
only by the beam current, meaning that the response of the plasma is purely
electrostatic.

The system described so far is valid under the approximations mentioned
initially. It is further assumed from now on the validity of the quasi-static
approximation described in Section 4.1.1. The change of variable provides
the transformation for the derivatives:{

∂
∂t

= vb
∂
∂ξ

→ ∂2

∂t2
= v2b

∂2

∂ξ2

∂
∂z

= − ∂
∂ξ

→ ∂2

∂z2
= ∂2

∂ξ2
.

(96)

Substituting the derivative in Eq.(94,95):

(β2 − 1)
∂2E1

∂ξ2
−ΔE1 + k2

0E1 = −4πvb
c2

∂Jb

∂ξ
− 4π∇(ρ1 + ρb) (97)

(β2 − 1)
∂2B1

∂ξ2
−ΔB1 + k2

0B1 =
4π

c
∇× Jb (98)
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where β = vb/c, Δ = ∇2 − ∂2/∂z2 and k0 = ωp/c. Describing the system in
cylindrical coordinates, further assuming that the beam is propagating along
the ẑ direction, the field equations can turn into:

− 1

γ2

∂2E1

∂ξ2
−ΔE1 + k2

0E1 = 4π

(
1

γ2

∂ρb
∂ξ

+
∂ρ1
∂ξ

)
ẑ − 4π

∂

∂r
(ρb + ρ1)r̂ (99)

− 1

γ2

∂2B1

∂ξ2
−ΔB1 + k2

0B1 = −4πβ
∂ρb
∂r

θ̂ (100)

where γ2 = (1− β2)−1 is the Lorentz factor.
Since the only external perturbation is provided by the injected particle

beam, it is helpful to express the wakefields in term of just the beam pa-
rameters, namely the beam density and current, using the fluid equations
Eq.(89,90).

By taking the time derivative of the continuity equation and using the Eu-
ler equations one obtains the same equation for a driven harmonic oscillator
as Eq.(30):

∂2n1

∂ξ2
+ k2

pn1 = −k2
pnb (101)

with kp = ωp/vb and having assumed an electron beam.
It is possible to solve the system by performing a Fourier-Hankel trans-

form, defined by:

Ψ̂(k, r) =

∫ ∞

−∞

Ψ(ξ, r)e−ikξdξ (102)

Hν(Ψ̃(r, k), kr) = Ψ̃(k, kr, ν) =

∫ ∞

0

rΨ̂(r, k)Jν(krr)dr. (103)

First applying the Fourier transform to Eq.(101) gives:

n̂1 =
k2
p

k2 − k2
p

n̂b. (104)

and substituting the result in the Fourier transformed Eq.(99,100) provides:

k2

γ2
Ê1 −ΔÊ1 + k2

0Ê1 = −4πik

k2

γ2 − k2
0

k2 − k2
p

ρ̂bẑ − 4π
k2

k2 − k2
p

∂ρ̂b
∂r

r̂ (105)

k2

γ2
B̂1 −ΔB̂1 + k2

0B̂1 = −4πβ
∂ρ̂b
∂r

θ̂. (106)

83



The next step consists in applying the Hankel transform defined by Eq.(103).
It is worth mention the Hankel transform of the cylindrical Laplace operator:

Hν

[(
∂2

∂r2
+

1

r

∂

∂r
− ν

r2

)
Ψ(r), kr

]
= −k2

rΨ̃ν(kr). (107)

Applying the Hankel transform to the Eq.(105,106) gives:(
k2
r + k2

0 +
k2

γ2

)
Ẽr(k, kr, 1) = −4π

k2

k2 − k2
p

H1

(
∂ρ̂b
∂r

, kr

)
(108)(

k2
r + k2

0 +
k2

γ2

)
B̃θ(k, kr, 1) = −4πβH1

(
∂ρ̂b
∂r

, kr

)
(109)

(
k2
r + k2

0 +
k2

γ2

)
Ẽz(k, kr, 0) = −4πik

k2

γ2 + k2
0

k2 − k2
p

H0 (ρ̂b, kr) (110)

where only the components of the fields depending by the external perturba-
tion has been evaluated, the others providing the equations for a cylindrical
ordinary wave propagating in plasma. The explicit expression for the elec-
tromagnetic fields is therefore:

Ẽr(k, kr, 1) = −4π
k2(

k2
r + k2

0 +
k2

γ2

)
(k2 − k2

p)
H1

(
∂ρ̂b
∂r

, kr

)
(111)

B̃θ(k, kr, 1) = −4πβ
1(

k2
r + k2

0 +
k2

γ2

)H1

(
∂ρ̂b
∂r

, kr

)
(112)

Ẽz(k, kr, 0) = −4πik

k2

γ2 + k2
0(

k2
r + k2

0 +
k2

γ2

)
(k2 − k2

p)
H0 (ρ̂b, kr) . (113)

In order to obtain the expression in the co-moving frame for a generic ex-
tended source can be applied the convolution theorem, providing the equa-
tions:

Ez(r, ξ) =

∫ ∞

−∞

∫ ∞

0

ξ J0(krr)H0 (ρ̂b, kr)Gz(kr, ξ − ξ′)dξ′dkr (114)

Er(r, ξ) =

∫ ∞

−∞

∫ ∞

0

ξ J1(krr)H1

(
∂ρ̂b
∂r

, kr

)
Gr(kr, ξ − ξ′)dξ′dkr (115)

Bθ(r, ξ) =

∫ ∞

−∞

∫ ∞

0

ξ J1(krr)H1

(
∂ρ̂b
∂r

, kr

)
Gθ(kr, ξ − ξ′)dξ′dkr (116)
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where

Gz(kr, ξ − ξ′) = −2i

∫ ∞

−∞

k

k2

γ2 + k2
0(

k2
r + k2

0 +
k2

γ2

)
(k2 − k2

p)
e−ik(ξ−ξ

′)dk (117)

Gr(kr, ξ − ξ′) = −2

∫ ∞

−∞

k2(
k2
r + k2

0 +
k2

γ2

)
(k2 − k2

p)
e−ik(ξ−ξ

′)dk (118)

Gθ(kr, ξ − ξ′) = −2β

∫ ∞

−∞

1(
k2
r + k2

0 +
k2

γ2

)e−ik(ξ−ξ′)dk. (119)

are the Green functions.

�kp kp

Γ kp
2 � k0

2

�Γ kp
2 � k0

2

Ξ � Ξ� � 0

Ξ � Ξ� 	 0

Re�k�

Im�k�

Figure 42: Contour of integration and poles for the Green functions of the
wakefields.

The integral involving the Green functions can be solved by using the
residue theorem by properly choosing the closing contour integral according
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to the sign of ξ − ξ′: if ξ − ξ′ > 0 then the closure is on the lower half
plane(LHP), vice versa for ξ′ − ξ > 0 the closure has to be chosen in the
upper half plane (UHP). The poles arising in the integrals are:

k = ±kp (120)

k = ±iγ
√

k2
0 + k2

r . (121)

The scheme of the contour integral is represented in Fig.42. The poles on the
Re[k] axis can be displaced in the LHP according to the Landau prescription.
This way the integral on the UHP provides for the Green function for the z
component:

GUHP
z (kr, ξ−ξ′) = 4πγ2

ke−ik(ξ−ξ
′)
(

k2

γ2 + k2
0

)
(k − kp)(k + kp)(k + iγ

√
k2
0 + k2

r)
|
k=iγ

√
k20+k2r

= −2π
eγ
√

k20+k2r(ξ−ξ
′)k2

r

k2
r + k2

p

.

(122)
Analogously for the LHP:

GLHP
z (kr, ξ − ξ′) =− 4πγ2

ke−ik(ξ−ξ
′)
(

k2

γ2 + k2
0

)
(k2 − k2

p)(k − iγ
√

k2
0 + k2

r))
|
k=−iγ

√
k20+k2r

+

− 4πγ2
ke−ik(ξ−ξ

′)
(

k2

γ2 + k2
0

)
(k − kp)(k2 + γ2(k2

0 + k2
r))

|k=−kp+

− 4πγ2
ke−ik(ξ−ξ

′)
(

k2

γ2 + k2
0

)
(k + kp)(k2 + γ2(k2

0 + k2
r))

|k=kp (123)

providing so:

GLHP
z (kr, ξ − ξ′) = 2π

e−γ
√

k20+k2r(ξ−ξ
′)k2

r

k2
r + k2

p

+ 2π
eikp(ξ−ξ

′)k2
p

k2
r + k2

p

+ 2π
e−ikp(ξ−ξ

′)k2
p

k2
r + k2

p

.

(124)
So the complete solution for the longitudinal Green function is:

Gz(kr, ξ − ξ′) =2π

(
2

k2
p

k2
r + k2

p

cos[kp(ξ − ξ′)] +
k2
r

k2
r + k2

p

e−γ
√

k20+k2r(ξ−ξ
′)

)
Θ(ξ − ξ′)+

− 2π
k2
r

k2
r + k2

p

eγ
√

k20+k2r(ξ−ξ
′)Θ(ξ′ − ξ). (125)

By following the same procedure is possible to evaluate as well the radial and
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poloidal components of the Green function:

Gr(kr, ξ − ξ′) = π
k2
p

k2
r + k2

p

sin[kp(ξ − ξ′)]Θ(ξ − ξ′)− 2πγ
e−γ

√
k20+k2r |ξ−ξ

′|
√
k2
0 + k2

r

k2
r + k2

p

(126)

Gθ(kr, ξ − ξ′) = 2πγβ
e−γ

√
k20+k2r |ξ−ξ

′|√
k2
0 + k2

r

. (127)

The full expression for the fields is so, by replacing the Green functions in
the integrals:

Ez(r, ξ) = 2π

∫ ∞

0

kr
k2
r + k2

p

J0(krr)

(∫ ξ

0

2k2
pH0(ρb(r, ξ

′), kr) cos[kp(ξ − ξ′)]dξ′+

+k2
r

(∫ ξ

−∞

H0(ρb(r, ξ
′), kr)e

−γ
√

k20+k2r(ξ−ξ
′)dξ′ −

∫ ∞

ξ

H0(ρb(r, ξ
′), kr)e

γ
√

k20+k2r(ξ−ξ
′)dξ′

))
dk

(128)

Er(r, ξ) = π

∫ ∞

0

kr
k2
r + k2

p

J1(krr)

(∫ ξ

0

k2
pH1

(
∂ρb(r, ξ

′)

∂r
, kr

)
sin[kp(ξ − ξ′)]dξ′ +

−2γ

∫ ∞

−∞

H1

(
∂ρb(r, ξ

′)

∂r
, kr

)
e−γ

√
k20+k2r |ξ−ξ

′|
√
k2
0 + k2

rdξ
′

)
dkr

(129)

Bθ(r, ξ) = 2πγβ

∫ ∞

−∞

∫ ∞

0

kr J1(krr)H1

(
∂ρb(r, ξ

′)

∂r
, kr

)
e−γ

√
k20+k2r |ξ−ξ

′|√
k2
0 + k2

r

dξ′dkr.

(130)

To finally obtain the expression of the field in the co-moving frame for a
generic beam profile, it is necessary to explicitly express the Hankel transform
of the beam density. This provides integrals in r′ that can be solved using
the relation:∫ ∞

0

kr
k2
r + k2

p

J0(krr) J0(krr
′)dkr =

{
π
2
i J0(ikpr

′) H
(1)
0 (ikpr) = I0(kpr

′) K0(kpr) for r > r′

π
2
i J0(ikpr) H

(1)
0 (ikpr

′) = I0(kpr) K0(kpr
′) for r′ > r

(131)

and∫ ∞

0

kr
k2
r + k2

p

J1(krr) J1(krr
′)dkr =

{
π
2
i J1(ikpr

′) H
(1)
1 (ikpr) = I1(kpr

′) K1(kpr) for r > r′

π
2
i J1(ikpr) H

(1)
1 (ikpr

′) = I1(kpr) K1(kpr
′) for r′ > r

.

(132)
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The two expressions can be summarized as:∫ ∞

0

kr
k2
r + k2

p

Jν(krr>) Jν(krr<)dkr = Iν(kpr<) Kν(kpr>). (133)

The wakefields can be therefore expressed as:

Ez(r, ξ) = 4k2
pπ

∫ ∞

0

∫ ξ

0

ρb(r
′, ξ′)r′ I0(kpr<) K0(kpr>) cos[kp(ξ − ξ′)]dξ′dr′+

+ 2π

∫ ∞

0

k3
r

k2
r + k2

p

J0(krr)

(∫ ξ

−∞

H0(ρb(r, ξ
′), kr)e

−γ
√

k20+k2r(ξ−ξ
′)dξ′+

−
∫ ∞

ξ

H0(ρb(r, ξ
′), kr)e

γ
√

k20+k2r(ξ−ξ
′)dξ′

)
dkr (134)

Er(r, ξ) = k2
pπ

∫ ∞

0

∫ ξ

0

∂ρb(r
′, ξ′)

∂r′
I1(kpr<) K1(kpr>) sin[kp(ξ − ξ′)]dξ′dr′+

− 2γπ

∫ ∞

−∞

∫ ∞

0

kr
k2
r + k2

p

J1(krr)H1

(
∂ρb(r, ξ

′)

∂r
, kr

)
e−γ

√
k20+k2r |ξ−ξ

′|
√
k2
0 + k2

rdξ
′dkr

(135)

Bθ(r, ξ) = 2πγβ

∫ ∞

−∞

∫ ∞

0

kr√
k2
0 + k2

r

J1(krr)H1

(
∂ρb(r, ξ

′)

∂r
, kr

)
e−γ

√
k20+k2r |ξ−ξ

′|dξ′dkr.

(136)

Considering ultra relativistic driver, k0 � kp, and discarding terms of order
higher than γ−1 and exponential decaying factors the fields reduce to:

Ez(r, ξ) = −4k2
pπ

∫ ∞

0

∫ ξ

0

ρb(r
′, ξ′)r′ I0(kpr<) K0(kpr>) cos[kp(ξ − ξ′)]dξ′dr′

(137)

W (r, ξ) = 4πkp

∫ ∞

0

∫ ξ

0

∂ρb(r
′, ξ′)

∂r′
I1(kpr<) K1(kpr>) sin[kp(ξ − ξ′)]dξ′dr′.

(138)

B Particle in Cell and Quasi-static VLPL

In this section is provided a short description of the Particle in Cell (PIC)
approach for the numerical analysis of the plasma dynamics.

PIC codes are widely used for the study of the plasma dynamics [89–
94]. The main advantage of this approach is the lower computational time
required respect to Vlasov codes. A Vlasov code tracks the evolution of
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the distribution function for the plasma particles, therefore the analysis is
performed in a 6-dimensional phase-space, no matter the shape and extent of
the distribution function. In a PIC code instead, the phase-space volume is
sampled properly considering the volume occupied by the plasma particles,
reducing therefore the phase-space volume that has to be taken into account
(Fig.43).

Figure 43: Sampling of the phase-space for a Vlasov code and for a PIC code
(Picture taken from Ref. [88]).

A PIC code studies the dynamics of “numerical particles”, defined as a
phase-space sample of the plasma distribution function. These particles will
evolves on the characteristics of the Vlasov equation, therefore the description
is exactly analogous to that of a many-body analysis. Eventually, by reducing
the size of the sampling, the PIC code can describe the dynamics of the real
plasma particle.

The reason why PIC codes result more efficient is in the limited amount
of phase-space that has to be taken into account for the description of the
system, in contrast with Vlasov codes that has to track the evolution of
the distribution function on the whole phase-space, no matter the portion
occupied by the plasma.

The downside of the method is the numerical noise that goes as N
1
2 where

N are the number of “numerical particles”.
Without going too much in the details of the general approach for PIC

codes, we focus the attention to the particular numerical scheme used in this
work, namely the quasi-static approach.

As previously mentioned, one of the serious issues concerning the study of
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the plasma is the different scales interacting each other. This is of course an
issue as well when try to develop a numerical analysis for the plasma behavior.
In the case of plasma based accelerators the relevant scales involved goes from
the plasma wavelength (or the laser wavelength for laser-driven acceleration)
to the acceleration length and several orders of magnitude can separates the
two scales.

Among the approaches to ease this problem two are the most relevant
ones: changing the reference frame in the co-moving one with the driver (the
boosted frame) [95] or using the quasi-static approximation [96–98].

The last one, used in this work, is based on the assumptions of a slowly
evolving driver respect to the time scale at which occurs the plasma dynamics.
In order to separate the two scales a transformation in the co-moving frame
is performed:

τ = t (139)

ξ = vbt− z. (140)

The scale τ is the slow time scale on which the driver evolves, while the co-
moving variable ξ is the fastest one on which the plasma dynamics occurs.

The general scheme for the evolution of the system in such an approxi-
mation is to first evaluate the fields from the from of the beam up to the end,
moving along the variable ξ, for a fixed time τ . Performing such evaluation
the derivative respect to τ are discarded. Once evaluated the fields and the
plasma distribution the driver is advanced on the next time step τ [88].

The general numerical scheme in quasi-static PIC codes involves first the
deposition of the current and the charge on the grid according to the initial
conditions of the driver. Then a layer of numerical macroparticles moves
along the simulation box starting from the head of the driver up to the end,
updating the plasma density and the fields on the grid while moving. Once
finished, these fields are used to advance the driver on the next time step
τ (Fig.44). Since in our analysis the driver is a particle beam its evolution
is obtained by solving the motion of the particles under the newly updated
fields. The number of operations that can perform the quasi-static PIC
respect to a full PIC is provided by:

NQS � λ2
0

λβλp
NPIC (141)

where λ0 is the laser wavelength, λp is the plasma wavelength and λβ =
2πc/ωβ is the betatron wavelength. Such scale can easily improve the perfor-
mances to six orders of magnitude respect to a full PIC. The downside of the
quasi-static PIC on the other hand is the impossibility to include radiation
emission.

90



Figure 44: Steps in the numerical scheme for a quasi-static PIC code (Picture
taken from Ref. [88]).

C Derivation of the beam envelope model

In Section5 we have introduced the envelope model for describing the trans-
verse beam dynamics. As previously mentioned, the procedure presented is
not accurate since it assume the possibility to describe the transverse beam
dynamics by just considering the dynamics of the radius. Moreover the emit-
tance force has been added “by hand” without a real reason provided by the
model.

Here we present a rigorous derivation of the envelope model for the beam,
describing the transverse dynamics by the behavior of the rms radius, so
providing a statistical description for the beam. The contribute due to the
emittance appear in this case in a natural way, without any need to add it.

The model here presented is derived in [64] and is based on the same
assumptions presented in Section5 that we write here again for completeness:

• Paraxial approximation, i.e. the transverse particle velocity is smaller
than the longitudinal velocity;

• Azimuthal symmetry for beam current density and fields;

• No mass spread whiting a transverse section of the beam;

• Uniform (external) soleinodal field across the beam;

• Small-angle multiple scattering allowed;

• No phase mixing, i.e. the beam slices do not overcome each other in
the direction of propagation;
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• No treatment of radiation losses.

We can start from the dynamics of a single beam charge particle, described
by:

ṗ = q(E+ v ×B) + δF (142)

where p = γmṙ is the relativistic momentum, E and B are the electric and
magnetic fields (both externally applied and self-generated by the beam) and
δF is the rapidly fluctuating force arising from the scattering.

From the previous equation, by taking the scalar product with v, is
possible to derive the equation for the evolution of the relativistic energy
W = γmc2 as:

Ẇ = qv ·E+ v · δF = q(vzEz + v⊥ ·E⊥) + v · δF � qvzEz +
δW

δt
. (143)

We have used here the paraxial approximation for which the transverse term
of the equation can be treated as an higher order correction. The term δW/δt
is again the rate of change of energy due to scattering with the medium.

Taking into account only of the transverse dynamics from Eq.(142) we
obtain:

1

γ
γ̇v⊥ + v̇⊥ =

q

mγ
(E⊥ + vz ẑ ×B⊥ + v⊥ × Bz ẑ) +

δF⊥
γm

. (144)

The expression for the fields can be obtained by the Maxwell equations:

∇ ·B = 0 −→ Br = −r

2

∂Bz

∂z
(since ∂θ = 0) (145)

Eθ = −r

2

∂Bz

∂t
. (146)

This leads to:

1

γ
γ̇v⊥+v̇⊥ =

q

mγ
(Err̂− r

2

∂Bz

∂t
θ̂−vz

r

2

∂Bz

∂z
ẑ×r̂+vzBθẑ×θ̂+v⊥×Bz ẑ)+

δF⊥
γm

.

(147)
By noting that:

∂Bz

∂t
+ vz

∂Bz

∂z
= Ḃz (148)

the equation can be recast as:

1

γ
γ̇v⊥ + v̇⊥ =

q

mγ
((Er − vzBθ)r̂ − 1

2
Ḃz ẑ × r+ v⊥ ×Bz ẑ) +

δF⊥
γm

. (149)
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We can define the relativistic cyclotron and betatron frequencies:

ωc =
qBz

γm
(150)

ω2
β =

q

γm

vzBθ −Er

r
(151)

so that the equation of motion of the charged particle can be rewritten as
(dropping the ⊥):

1

γ
γ̇v + v̇ + ω2

βr+ ωcẑ × v +
1

2γ

d

dt
(γωc) ẑ × r =

1

γm
δF. (152)

So far we have addressed only the dynamics of a single charged particle. This
is far from describing the behavior of the whole beam.

In order to extend the description to the beam dynamics we take the
equations for the second moments of the variables characterizing the single
particle dynamics, namely the velocity, the position and the angular momen-
tum.

By taking the scalar product of Eq.(152) with the velocity we obtain an
equation for the variation of the energy (as shown previously):

1

γ
γ̇v2 +

1

2
v̇2 +

ω2
β

2
ṙ2 +

1

2γ

d

dt
(γωc)l =

1

γm
v · δF (153)

with l = ẑ · (r× v) = rvθ being the ẑ-component of the angular momentum.
Taking instead the scalar product of Eq.(152) with r we obtain the virial

equation:
1

2γ
γ̇ṙ2 +

r̈2

2
− v2 + ω2

βr
2 − ωcl =

1

γm
r · δF. (154)

Finally by taking the cross product of r with Eq.(152) we obtain an equation
for the angular momentum:

1

γ
γ̇l + l̇ + ωc

ṙ2

2
+

1

2γ

d

dt
(γωc)r

2 =
1

γm
ẑ · (r× δF). (155)

We have now the necessary equations for describing the beam dynamics.
Taking the transverse average of the last three equations result in:

1

γ
γ̇V 2 +

V̇ 2

2
+

1

2
ωβ ṙ2 +

1

2γ

d

dt
(γωc)L =

W ′

γm
(156)

1

2γ
γ̇Ṙ2 +

R̈2

2
− V 2 + ω2

βr
2 − ωcL = 0 (157)

1

γ
γ̇L+ L̇+ ωc

Ṙ2

2
+

1

2γ

d

dt
(γωc)R

2 = 0 (158)
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where

R2 =
1

N

N∑
i=1

r2i (159)

V 2 =
1

N

N∑
i=1

v2i (160)

L =
1

N

N∑
i=1

li (161)

W ′ =
1

γN

N∑
i=1

γvi · δF (162)

are the mean squared variables characterizing the particles and W ′ take into
account the energy exchanged by scattering.

The terms involving the product of r with δF do not appear due to the
isotropy of the scattering that so gives zero once taken the average.

The three equations derived can properly described the dynamics of the
beam as a statistical average on the transverse profile of the dynamics of the
single beam particles. It is anyway possible to obtain a single equation for
the rms radius R that can alone describe the evolution of the beam radius
for specific initial conditions and taking into account both the self-generated
and externally applied fields.

In order to achieve this goal it is necessary on the other hand to impose
an additional condition, this time on the shape of the current profile Jb.
Specifically, we demand a self-similar expansion for the current profile that
can be therefore defined as:

Jb =
Ib

2πR2
F
( r

R

)
(163)

with F a generic function and Ib the beam current of the slice.
Such a profile for the beam current leads to:

ω2
βr

2 = U =

∫ ∞

0

drrF
( r

R

)
ω2
βr

2. (164)

The actual value of the self-pinching field depends actually on the conditions
of the system, specifically on the neutralization of the beam and it is left
implicit for now.

Before evaluating the other average terms we can first rewrite the single
particle velocity as:

v =
r

R
Ṙ +

Lr

R2
θ̂ + δv. (165)
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Therefore:

ω2
β ṙ

2 = 2ω2
βr · v = 2ω2

βr ·
rṘ

R
=

2

R
Ṙω2

βr
2 =

U

R2
Ṙ2. (166)

We can now derive the envelope equation from the three equations for the
energy, the virial equation and the angular momentum. Specifically the equa-
tion for the angular momentum leads to the conservation of the canonical
angular momentum:

1

γ
γ̇L+ L̇+ ωc

Ṙ2

2
+

1

2γ

d

dt
(γωc)R

2 =
1

γ

d

dt

(
γL+ γωcR

2
)
=

1

γ
Pθ = 0. (167)

The conservation of the canonical momentum of the beam in obtained due
to the isotropically distributed scattering.

From the virial equation we can obtain an expression for V 2:

V 2 =
1

2γ
γ̇Ṙ2 +

R̈2

2
+ U − ωcL. (168)

Substituting this expression in the equation for the energy:

(
1

γ
γ̇ +

1

2

d

dt

)(
1

2γ
γ̇Ṙ2 +

R̈2

2
+ U − ωcL

)
+

U

2

Ṙ2

R2
+

1

2γ

d

dt
(γωc)L =

W ′

γm
.

(169)
All the terms involving L an be rearrange in order to fulfill the conservation
of the canonical momentum, providing so:(

1

γ
γ̇ +

1

2

d

dt

)
(−ωcL) +

1

2γ

d

dt
(γωc)L = −ωc

2γ

d(γL)

dt
=

= −ωc

2γ

d

dt

(
Pθ − γωcR

2

2

)
=

ωc

4γ

d

dt

(
γωcR

2
)
. (170)

Replacing the expression in the previous equation gives:

(
1

γ
γ̇ +

1

2

d

dt

)(
1

2γ
γ̇Ṙ2 +

R̈2

2
+ U

)
+

U

2

Ṙ2

R2
+

ωc

4γ

d

dt

(
γωcR

2
)
=

W ′

γm
. (171)

Rearranging the previous equation provides:

d

dt

(
γ2R3R̈ + γγ̇ṘR3 + γ2R2U +

1

4
γ2ω2

cR
4

)
=

2γR2W ′

m
. (172)
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Integrating both sides of the equation brings to envelope equation:

R̈ +
γ̇

γ
Ṙ +

U

R
+

ω2
cR

4
− C2

γ2R3
=

1

γ2R3

∫ t

t0

2γR2W ′

m
dt′ (173)

with C being an integration constant related to the initial conditions set at
the injection time t0:

C2 = γ2R3

(
R̈ +

γ̇

γ
Ṙ +

U

R
+

ω2
cR

4

)
|t0 . (174)

A more useful expression for the constant C can be obtained by using the
virial equation, providing:

γ2R3

(
R̈ +

γ̇

γ
Ṙ +

U

R
+

ω2
cR

4

)
=

= γ2R2

(
V 2 − Ṙ2 + ωcL+

ω2
cR

2

4

)
=

= γ2R2

(
V 2 − Ṙ2 − L2

R2

)
+ P 2

θ . (175)

We define the emittance squared as:

ε2 = γ2R2

(
V 2 − Ṙ2 − L2

R2

)
. (176)

The envelope equation can therefore be rewritten as:

R̈ +
γ̇

γ
Ṙ +

U

R
+

ω2
cR

4
− ε2(t0) + P 2

θ

γ2R3
=

1

γ2R3

∫ t

t0

2γR2W ′

m
dt′. (177)

The envelope equation properly describes the transverse evolution of the rms
radius of the beam. Such expression is more accurate of the one evaluated
in Section5 since it takes into account of the statistical nature of the beam.
Looking at the specific terms composing the equation we have:

• γ̇/γṘ is the term accounting for the reduction or increase of the beam
energy;

• U/R is the term associated with the self-generated fields excited by the
beam as well as those generated by the background. These fields are
responsible for the focusing/defocussing of the beam;
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• ω2
cR/4 is the focusing force excited by the external magnetic field ap-

plied on the longitudinal direction ẑ. The azimuthal magnetic field of
the beam can also be included, but according to the assumptions fixed
in this model is a higher order term in the analysis, therefore does not
play a role here;

• P 2
θ /γ

2R3 is the centrifugal force generated my the poloidal motion of
the beam;

• ε2/γ2R3 is the expanding force exerted by the emittance. As we will
see again the emittance force is associated to the thermal motion of the
beam particles;

• (γ2R3)−1
∫ t

t0
(2γR2W ′/m) dt′ is the energy exchange by the scattering

with the background gas.

Assuming a constant beam energy γ = const, absence of an external az-
imuthal magnetic field and absence of scattering, the envelope equation turns
into:

R̈ +
U

R
− ε2(t0) + P 2

θ

γ2R3
= 0 (178)

a similar expression to that obtained in Section5.
The main difference between the two is the nature of the self-generated

force in the expression, being in this case the average over the transverse
profile of the radial forces. The two expression are on the other hand exactly
the same when considering homogeneous density profiles.

Lastly we want to describe few features of the emittance in the way rep-
resented in this model.

First of all we can see that the evolution of the emittance is related to
the energy exchange in the scattering:

ε̈2 =
d2(C2 − P 2

θ )

dt2
=

2γR2W ′

m
(179)

since Pθ = const. Therefore the emittance is conserved in absence of scat-
tering.

A deeper insight on the nature of the emittance can be obtained by rewrit-
ing the V 2 term:

V 2 = v2 = Ṙ2 +
L2

R2
+ δv2 (180)

where δv is the small deviation of the velocity from the flow.
By replacing this term in the emittance expression we obtain:

ε2 = γ2R2δv2. (181)
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It appears clearly how the emittance is related to the effective transverse
phase are occupied by the slice of beam and in particular how it is related to
deviations of the velocity from the mean flow, taking into account a “tem-
perature” of the beam.

The scattering increases the area occupied by increasing the velocity δv
without a compensation in the rms radius.

In absence of scattering the emittance is conserved and therefore is con-
served as well the area in the phase space occupied by the beam (the model
can be cast in a Hamiltonian form).
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