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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Berechnungskomplexität unterschiedlicher Problemstellungen
aus der kooperativen Spieltheorie. Zum einen betrachten wir Existenz und Verifizierung von Stabili-
tätskonzepten in kooperativen Spielen mit übertragbarem Nutzen und in hedonischen Spielen; zum
anderen wenden wir uns der Einflussnahme auf den Ausgang eines Spiels durch Manipulation, Kon-
trolle und Bestechung zu. Wir widmen uns manipulativem Verhalten im Sinne von strategischem
Zusammenschluss von Spielern oder unter Angabe falscher Identitäten sowie struktureller Kontrolle
durch Hinzufügen oder Entfernen von Spielern in gewichteten Wahlspielen. Betrachtete Lösungs-
konzepte hier sind der probabilistische Penrose–Banzhaf-Index und der Shapley–Shubik-Index, die
die Manipulatoren beabsichtigen, zu ihrem Vorteil zu verbessern. Wir zeigen unter anderem für das
Problem, ob ein Zusammenschluss einer gegebenen Koalition in einem gegebenen Spiel vorteilhaft
ist, Vollständigkeit für probabilistische Polynomialzeit. Außerdem verallgemeinern wir ein formales
Modell für Manipulation auf beliebige Klassen von kooperativen Spielen und untersuchen allgemei-
ne Eigenschaften sowie beispielhaft einzelne Klassen wie Einstimmigkeitsspiele.

Darüber hinaus betrachten wir Bestechung in Pfad-Unterbrechungs-Spielen, wobei ein Gegen-
spieler versucht, durch ein Netzwerk von einem Start- zu einem Zielknoten zu gelangen und dabei
ausgewählte Agenten für die Freigabe ihrer Knoten zu bezahlen, sodass es sich für übrige Koalitio-
nen nicht mehr lohnt oder unmöglich ist, alle Wege zu blockieren. Für mehrere Gegenspieler und
Kosten zur Knotenblockierung zeigen wir, dass das Bestechungsproblem vollständig für die zweite
Stufe der Polynomialzeithierarchie ist. Wir erweitern diese Spiele auf ein probabilistisches Modell,
in dem das genaue Ziel des Gegenspielers unbekannt ist, und untersuchen es im Hinblick auf be-
kannte Stabilitätskonzepte wie den Kern. Hier kann beobachtet werden, dass sich der allgemeinere
Fall bezüglich Komplexität nicht anders verhält als der speziellere.

Fragen der Stabilität analysieren wir ebenfalls in hedonischen Spielen. Dabei gehen wir zu-
nächst auf wundervolle Stabilität in feind-orientierten hedonischen Spielen ein. Wir heben die untere
Schranke des Problems, ob es im Graphen eines zugrunde liegenden gegebenen Spiels eine wunder-
voll stabile Aufteilung gibt, auf DP an, also auf die zweite Stufe der booleschen Hierarchie. Auf dem
Weg zur exakten Komplexität zeigen wir, dass coDP-Härte ausreichen würde, um Vollständigkeit für
parallelen Zugriff auf NP zu beweisen. Des Weiteren führen wir ein neues Modell hedonischer Spiele
mit ordinalen Präferenzen und Schwellenwerten ein, in dem Spieler ihre Mitspieler in Freunde, Fein-
de und neutrale Spieler unterteilen und gleichzeitig eine schwache Ordnung über die ersten beiden
Mengen angeben. Erweitert wird diese Relation auf eine Menge möglicher Präferenzen, sodass es
sinnvoll ist, Begriffe der möglichen und notwendigen Stabilität zu definieren. Hierfür prüfen wir die
Komplexität unterschiedlicher Konzepte wie Nash-Stabilität und ermitteln axiomatische Spieleigen-
schaften. Zuletzt stellen wir eine weitere Variante hedonischer Spiele mit altruistischen Einflüssen
vor. Bisher bekannte Darstellungen hedonischer Spiele gehen von eigennützigen Agenten aus, de-
ren Präferenzen nur von ihrer Meinung abhängen. Basierend auf freund-orientierten Erweiterungen,
lassen wir nun Einflüsse von Freunden auf die Präferenzrelation eines Spielers zu, indem wir in drei
Graden der Selbstlosigkeit die durchschnittliche Meinung der Freunde in einer Koalition miteinbe-
ziehen. Auch hier behandeln wir neben sinnvoll hierfür modellierten Eigenschaften die Komplexität
von Stabilitätskonzepten wie strikte Popularität beim direkten Vergleich von Koalitionsstrukturen.
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Abstract

This thesis deals with the computational complexity of various problems from cooperative game
theory. On the one hand we examine the existence and verification of stability concepts in cooperative
games with transferable utility and in hedonic games; on the other hand we look into several forms
of influence on the output of a game via manipulation, control and bribery. We turn to manipulative
action in the sense of strategically merging players or splitting a player into false identities as well as
structural control by adding or deleting players in weighted voting games. In this setting, considered
solution concepts are the probabilistic Penrose–Banzhaf index and the Shapley–Shubik index which
the manipulators intend to improve to their advantage. Amongst others, we show that the problem
of whether merging a given coalition in a given game is beneficial, is complete for probabilistic
polynomial time. Additionally, we generalize a framework for manipulation to arbitrary classes of
cooperative games and reflect on properties in general and examplarily in classes like unanimity
games.

Moreover, we consider bribery in path-disruption games, where an adversary tries to travel from
a source vertex to a target vertex and pays selected agents in order for them to unblock their vertices.
The corruption is successful if it is not profitable or impossible for the remaining coalitions to prevent
the adversary from reaching the target via an open path. For several adversarial players and costs
for blocking a vertex, we show that the bribery problem is complete for the second level of the
polynomial hierarchy. We expand these games to a probabilistic model where the target of the
adversary is uncertain, and inspect them with respect to common stability concepts such as the core.
Here, it can be observed that the more general case does not behave differently from the more special
case in terms of complexity.

Furthermore, we study questions of stability likewise in hedonic games. Firstly, we inquire into
wonderful stability in enemy-oriented hedonic games. We raise the lower bound of the problem
of whether there exists a wonderfully stable partition in the graph of an underlying game, to DP,
that is, to the second level of the Boolean hierarchy. On the way towards its exact complexity,
we show that coDP-hardness would be sufficient to prove completeness for parallel access to NP.
Secondly, we introduce a new model of hedonic games with ordinal preferences and thresholds in
which players partition their co-players into the sets of friends, enemies, and neutral players while
at the same time they specify a weak order over the former two sets. This relation is extended to a
set of possible preferences over coalitions such that it is reasonable to define the notions of possible
and necessary stability. We analyse the complexity of various concepts such as Nash stability and
establish axiomatic properties of these games. Finally, we propose a further variant of hedonic games
with altruistic influences. In representations known in the literature so far, agents are assumed to be
selfish and their preferences only depend on their own opinion. Based on friend-oriented extensions,
we now allow influences of friends on a player’s preference relation by incorporating the average
opinion among friends within a coalition in three degrees of altruism. Besides properties reasonably
modelled for this environment, we investigate the complexity of stability concepts such as strict
popularity when comparing coalition structures.
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1 Introduction

Theoretical computer science has been of interest long before there have been actual com-
puters. Central ideas include those by Turing [Tur36] and Church [Chu36], which again
are based on the theories by Gödel [Göd31]. They ask questions of how to formalize com-
putability and of when a function is computable or a problem decidable. Further topics of
interest are graph structures, algorithmic properties, and axiomatic analyses. The problems
that constitute the studies in this thesis are founded on these formal concepts.

In complexity theory these kinds of questions are addressed. There are many text-
books about different aspects of computational complexity such as the book by Papadim-
itriou [Pap95], and Arora and Barak [AB09]. Important questions here include the classi-
fication of problems and the interrelation of complexity classes and hierarchies. It is not
impossible that problems regarded as hard are solvable in polynomial time, although con-
sidered highly unlikely, see Section 2.1.

Moreover, the interrelation of topics has gained increasing interest in recent decades. In
computational social choice (see [EL06, EG08, CR10, FB12, PW14] as well as [Rot16,
BCE+16, BCE13, RBLR11]), it has become common to study axiomatic and complexity
theoretic questions of issues from different fields such as voting theory (see, e.g., [BR16]),
judgement aggregation (see, e.g., [LP09, End16, BER16]), and resource allocation (see,
e.g., [BT96, LR16]).

Equally, in algorithmic game theory (see, e.g., [NRTV07]), the disciplines of game the-
ory, which already combines mathematical ideas with social sciences and economics, and
computer science are intertwined. Classic game theory (see, e.g., [OR94]) was founded by
von Neumann and Morgenstern [NM44] where the strategic behaviour of selfish players in
a non-cooperative game is formally defined and analysed. The perhaps most famous and
groundbreaking result to be mentioned in this context is by Nash [Nas50, Nas51] that there
always exists an equilibrium in a normal form game. Next to non-cooperative games, coop-
erative games are studied where players are selfish but may gain advantage (for themselves
or their environment) from working together in a coalition (see, e.g., [PS07]). Now, related
disciplines extend to multiagent systems in artificial intelligence (see, e.g., [SL09, Woo02]),
mechanism design [NR01], and logic for games [Ågo14].

Yet another sub-discipline of algorithmic game theory this thesis is settled in is the com-
putational study of cooperative games. See, for instance, the textbook by Chalkiadakis et
al. [CEW11], and the book chapters by Elkind et al. [ERJ13, ER16] for an overview. Main
questions here are the algorithmic properties of coalition formation and payoff division. For
more literature pointers in cooperative game theory and formal definitions relevant to this
thesis, see Section 2.3.
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1 Introduction

Weighted voting games are a class of compactly representable, but not fully expressive
simple cooperative games [TZ99] with a political background on parties with different im-
pact and coalitions with majorities so as to win a decision [BFJL02]. From a complexity
point of view they have been studied intensely, see, e.g., [EGGW09]. In Section 2.3.1 we
also consider other representations of cooperative games with transferable utility.

In coalition formation games, the key question is which coalition structure will form in
a decentralized manner. Drèze and Greenberg [DG80] originally proposed the idea of he-
donic games in which a player’s happiness only depends on the coalitions she is part of.
Formally, these games have been modelled by Banerjee et al. [BKS01] and independently
by Bogomolnaia and Jackson [BJ02]. These games combine ideas from cooperative games
and voting inasmuch as players express their preferences over coalitions containing them.
A central struggle is the trade-off between full expressiveness of arbitrary preferences over
all 2n−1 coalitions for n players, and compact representation, see, e.g., the survey by Woeg-
inger [Woe13a] and the book chapter by Aziz and Savani [AS16], and also Section 2.3.2.

Most commonly, for both, games with transferable and non-transferable utility, questions
of stability are studied. These can refer to different stability concepts and representations of
games. One of the most popular stability concepts is that of the core [Gil59, GW86], where
a coalition structure is considered as stable if no coalition takes advantage from deviating
from the coalition structure. Crucial questions are of how hard it is to verify whether a given
coalition structure satisfies a certain concept in a given game and whether stable coalition
structures for certain concepts always exist. If, for some concept and a game, such a coali-
tion structure fails to exist, we are interested in the computational complexity of existence.

Especially in voting theory, problems of influence are studied with respect to com-
putational complexity. There are three main types of negative influence: Bartholdi et
al. [BTT89] introduced the notion of manipulation of an election, where a voter (or sev-
eral voters [CSL07]) changes her true preference in order to make a distinguished candidate
a winner. In contrast, in a bribery scenario, as presented by Faliszewski et al. [FHH06], an
external player tries to pay voters in order to change their votes such that a certain candidate
becomes a winner. In a third form, control, the chair of an election changes the structure,
e.g., by adding, deleting, or partitioning voters or candidates, with the aim of letting one can-
didate win [BTT92]. Next to this constructive impact, preventing candidates from winning
is also studied [HHR97a]. Many studies of such settings with regard to various voting sys-
tems are known up to now. Similar ideas have been adapted to other fields in computational
social choice like manipulation in preference aggregation [End13] as well as bribery and
control in judgement aggregation [EGP12, BEER15]. In algorithmic game theory influence
has also been studied to some extent, e.g., manipulation via false names in weighted voting
games has been introduced by Elkind et al. [BE08]. The concept here is the famous Shapley
value [Sha53, SS54]. There are initial studies on sybil attacks in hedonic games [VBZB14].

Yielding hardness-results in terms of complexity for a problem of influence is considered
as a shield against this kind of attack, whereas for stability tractability is desirable. For
expressive games and concepts, we are interested in the exact complexity for higher classes,
as natural problems therein are less explored than NP-complete problems.

2



In Chapter 2 we provide an overview of basic notions from computational complexity
theory, graph theory, and cooperative game theory. The main part of the thesis consists of
three parts. Chapter 3 deals with two types of influence in cooperative games, namely, ma-
nipulation and control. Manipulation takes place in form of beneficial merging of players
and the closely related annexation of players as well as false-name manipulation where a
player splits into several false identities. We study these types of manipulation in weighted
voting games as well as in a general setting. Structural control in form of adding or deleting
players is also studied for weighted voting games. The common goal in the scenarios is
to increase certain players’ significance in a game measured by power indices such as the
Shapley–Shubik index. We prove the problem of beneficial merging to be PP-complete for
both the probabilistic Penrose–Banzhaf and the Shapley–Shubik index. Moreover, for the
same indices, we show that the problem of whether splitting is beneficial is PP-hard, and
is even PP-complete whenever the new players’ weights are given. Annexing a coalition of
players is never disadvantageous; nevertheless we show that for both indices, it is NP-hard
to decide whether it is advantageous, and NP-complete for a single player. An overview of
the history of complexity results in this context can be found in Table 3.1. See Table 3.2
for the results of structural control. We propose a general framework for merging and split-
ting functions in classes of cooperative games with transferable utility such that reasonable
properties are satisfied. For example, in unanimity games and for the probabilistic Penrose–
Banzhaf index we show that splitting is always disadvantageous or neutral, whereas merging
is neutral for size-two coalitions, yet advantageous for coalitions of size at least three.

In Chapter 4 we consider a third type of influence in cooperative games, namely bribery.
The setting is a path-disruption game, where an external agent’s goal is to travel from a cer-
tain source to a target in a graph. We generalize this model to a probabilistic one by allowing
uncertainty about the targets. We study this model with respect to its game-theoretic proper-
ties as well as the complexity of problems related to common solution concepts. The com-
putationally challenging aspect of these games lies within the case where costs for blocking
coalitions occur. Table 4.1 summarizes the results for this setting.

In Chapter 5 we analyse various stability concepts in hedonic games. Firstly, we focus on
the concept of wonderful stability in games with friend-and-enemy encoding and enemy-
oriented preferences. For this concept, we show that verification is coNP-complete, and
existence is DP-hard and Θ

p
2-complete if coDP-hardness holds. The developments of re-

lated results can be found in Table 5.1. Secondly, we study a new representation of hedonic
games (games with ordinal preferences and thresholds), and an associated preference exten-
sion principle (generalized Bossong–Schweigert extensions). Since in this model there are
several possible extensions to a hedonic game, we endue the problems of verification and ex-
istence with the notions of possibility and necessity and study their complexity. The results
are specified in Table 5.2. Thirdly, we introduce a novel model for friend-oriented hedonic
games that considers not only a player’s own preferences but also her friends’ preferences
under three degrees of altruism. We examine these hedonic games with altruistic influences,
each of which satisfy a number of desirable properties, under the aspect of stability and their
computational complexity, see Table 5.3. We conclude with Chapter 6.
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2 Preliminaries

To begin with, we provide the basic definitions required in this thesis. The foundations and
employed tools from computational complexity theory can be found in Section 2.1, a short
excursion to graph theory in Section 2.2, and the background of cooperative game theory
in Section 2.3. Moreover, consider the following notions. Let N = {0,1,2, . . .} denote the
set of non-negative integers, and call N� {0} the set of positive integers; Q≥0, R>0, R≥0,
and R the sets of non-negative rational numbers, positive real numbers, non-negative real
numbers, and real numbers, respectively. For a set S, let �S� denote the cardinality of S, and
let P(S) be the power set of S.

By a relation we refer to a collection R ⊆ S× S over a set S. R is called reflexive if
(a,a) ∈ R for each a ∈ S; transitive if (a,b) ∈ R and (b,c) ∈ R imply (a,c) ∈ R for each
a,b,c ∈ S; antisymmetric if (a,b) ∈ R and (b,a) ∈ R imply a = b for each a,b ∈ S; and
total if for each a,b ∈ S, (a,b) ∈ R or (b,a) ∈ R. We consider preference relations � that
are reflexive and transitive but not necessarily total. For two elements a and b, we write
a � b, if (a,b) fulfils the relation, and say a is weakly preferred to b. If a � b but not
b � a, a is (strictly) preferred to b, written a � b. If both, a � b and b � a, we say there is
an indifference between a and b, written a ∼ b. Since a and b can be distinct, a preference
relation does not have to be antisymmetric. A preference relation induces a preference order

over the set. In case of a non-total preference relation we speak of a partial order. If the
order is antisymmetric, it is called strict, otherwise weak.

In terms of propositional logic, we denote the negation of a Boolean variable x by x̄ and of
a set of Boolean variables X by X̄ . A Boolean formula is in conjunctive normal form if it is
a conjunction of clauses which are a disjunction of literals each. It is in disjunctive normal

form if it is a disjunction of implicants which are a conjunction of literals each. Throughout
this thesis we consider predicate logic.

2.1 Computational Complexity Theory

The studies of computational complexity, as they can be found amongst others in the books
by Garey and Johnson [GJ79], Papadimitriou [Pap95], and Rothe [Rot05, Rot08], are based
on the computability concept by Turing [Tur36, Tur37, Tur50]. The deterministic Turing

machine is a theoretical computer model consisting of an alphabet Σ, a tape alphabet Γ ⊇ Σ,
a set of states Z where one is an initial state z0 ∈ Z and others are distinguished as final states
F ⊆ Z, a blank symbol � /∈ Γ, and a transition function δ : (Z�F)×Γ → Z×Γ×{L,N,R}.
Informally, such a machine can be understood as an infinite tape on which an input word x

5



2 Preliminaries

consisting of symbols in Σ (written as x ∈ Σ∗) is written, one symbol in one cell each. The
rest of the tape is filled with blank symbols. The process of the machine is determined via a
head in state z0 that starts reading the first input symbol and changes the state, writes a new
symbol, and moves a cell to the left (L), not at all (N), or to the right (R) according to δ .
We call one such move between two configurations a step. If a configuration is reached
which δ is not defined for, the machine halts. The input is accepted if the machine halts
and is in a final state. Note that so far we have only considered deterministic machines. The
transition function may also be defined in a way that there is a set of possible next steps
from a configuration. In this case we call a Turing machine nondeterministic.

We distinguish decision problems and function problems. A decision problem consists of
a possible instance (an element in a certain subset of Σ∗) and a question that can be answered
with true or false. The set of instances with answer true is synonymous with the problem. A
Turing machine decides a problem, if it accepts an input if and only if it is an element of the
problem. A functional problem consists of a possible instance, and a question that asks for
a certain output. A Turing machine computes a function, if it accepts an input in the domain
of the function and the corresponding output is written on the tape from the head’s position
onwards. We speak of an oracle machine N to a machine M, if M has access to N as a black
box and requires only one step to obtain the answer of N.

The running time of a machine for an input is described by the number of steps needed
from the initial configuration to reach a halt. We measure the running time in dependence on
the input length, denoted by |x| for an input word x. If not indicated otherwise, input num-
bers and sizes are given in unary encoding, while input values are given in binary encoding
with logarithmic input size. The worst-case running time f of a machine is categorized by
an asymptotic running time for almost every input size:

f ∈ O(g) ⇐⇒ (∃c ∈ R>0)(∃ finite N ⊂ N)(∀n ∈ N�N)[ f (n)+1 ≤ c · (g(n)+1)].

We say, for instance, that f is polynomial if f ∈ O(g) for some polynomial function g. The
space required by a machine for an input is the maximum length of a word read or written
on the tape at any configuration. In order to categorize problems into classes, we say that
a problem is decidable in time g (or computable for functional problems) if there exists a
machine that has a worst-case running time in O(g).

Complexity Classes P and NP The most prominent complexity classes are P and NP.
P is the class of all problems that are decidable in polynomial time in the input size. The
class NP consists of all problems that are nondeterministically decidable in polynomial time
in the input size. Obviously, P is contained in NP. The question as to whether the opposite
conclusion also holds is one of the most popular open questions.

The assignment of a decision problem to a class provides an upper bound for its computa-
tional complexity. In order to determine a lower bound, hardness with respect to a complex-
ity class is defined via some reducibility. The most common notion is that of polynomial-
time many-one reducibility. A problem A ⊆ Σ∗ is polynomial-time many-one reducible to a
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problem B ⊆ Σ∗ (we write A ≤
p
m B) if there exists a polynomial-time computable function

f : Σ∗ → Σ∗ such that for each possible instance x ∈ Σ∗ for A,

x ∈ A ⇐⇒ f (x) ∈ B.

A problem B is called hard for class C if A ≤
p
m B for each A ∈ C. Due to transitivity, it

holds that B is hard for C if there exists a problem A that is hard for C such that A ≤
p
m B. In

most cases, we use this properties as a means in the upcoming hardness proofs. Moreover,
B is called complete for C if B is hard for C and contained in it. Completeness yields a
classification of a problem’s computability in comparison to other problems.

Initially, Cook [Coo71] proved the problem SATISFIABILITY (SAT for short) to be NP-
complete. A likewise used variant is 3-SAT, a restriction of SAT to clauses of size three,
which is NP-complete as well [Kar72].

3-SATISFIABILITY (3-SAT)

Given: A set X = {x1, . . . ,xn} of Boolean variables, a collection of clauses C con-
sisting of three literals in X ∪ X̄ each.1

Question: Is there an assignment to the variables in X such that in each c ∈ C at least
one literal is true?

Many decision problems are known to be NP-complete. A substantial collection can be
found, for example, in the book by Garey and Johnson [GJ79]. We will need further well-
known problems as defined in the following. SUBSET SUM (which is a special variant of
the KNAPSACK problem) and the even more restricted problem PARTITION are shown to be
NP-complete by Karp [Kar72].

SUBSET SUM

Given: A set A= {1, . . . ,n}, a value function a : A→N�{0}, i �→ ai, and a positive
integer q.

Question: Is there a subset A� ⊆ A such that ∑i∈A� ai = q?

PARTITION

Given: A set A = {1, . . . ,n} and a value function a : A →N�{0}, i �→ ai, such that
∑

n
i=1 ai is even.

Question: Does a allow a partition into two subsets of equal weight, that is, is there a
subset A� ⊆ A such that ∑i∈A� ai = ∑i∈A�A� ai?

Let (a1, . . . ,an; q) and (a1, . . . ,an) denote SUBSET SUM and PARTITION instances, respec-
tively. EXACT COVER BY 3-SETS is also known to be NP-complete (see, e.g., [Pap95]).

1 This input corresponds to a Boolean formula in 3-conjunctive normal form. The equivalent question then is
of whether this formula is satisfiable.

7



2 Preliminaries

EXACT COVER BY 3-SETS (XC3)

Given: A set B = {1, . . . ,3k}, k > 0, and a collection S = {S1, . . . ,Sn} of subsets
Si ⊆ B with �Si�= 3, 1 ≤ i ≤ n.

Question: Is there an exact cover of B in S , that is, is there a subcollection S � ⊆ S

such that
�

S∈S � S = B and Si ∩S j = /0, for each Si,S j ∈ S �, i �= j?

Given an XC3 instance (B,S ), we may assume that each element of B occurs at most three
times in the sets in S ; in this case the problem remains NP-complete [GJ79].

Counting Classes Additionally to decision problems, we consider counting classes such
as FP, the class of all polynomial-time computable functions, and #P. Valiant [Val79] intro-
duced the latter as the class of functions that output the number of solutions for the instances
of problems in NP. For a problem A ∈ NP, we denote this function by #A. For example, the
function #SAT maps any SAT-instance to the number of satisfying truth assignments.

There are several notions of reducibility for functional problems and, consequently, there
are several types of hardness and completeness for complexity classes of functions. Let f

and g be two functions mapping from Σ∗ to N. Analogously to polynomial-time many-one
reducibility for decision problems, one notion of functional many-one reducibility is: f

many-one-reduces to g if there exist two functions ϕ and ψ in FP such that for each x ∈ Σ∗,
f (x) = ψ(g(ϕ(x))) [Zan91]. The special case where ψ is the identity function yields parsi-
monious reducibility [Sim75], which preserves the number of solutions: We say f parsimo-

niously reduces to g if there exists a polynomial-time computable function ϕ such that for
each input x ∈ Σ∗, f (x) = g(ϕ(x)). See [FH09] for a more detailed discussion on functional
reducibilities, e.g., metric reducibility [Kre88]. A function g is called #P-parsimonious-

hard (#P-many-one-hard, respectively) if every function f ∈ #P parsimoniously (many-
one, respectively) reduces to g. If g is both #P-parsimonious-hard (#P-many-one-hard,
respectively) and in #P, then g is #P-parsimonious-complete (#P-many-one-complete, re-
spectively). It is known that #XC3 is #P-parsimonious-complete (see, e.g., [HMRS98] for
parsimonious reductions from #3-SAT via various restrictions). Likewise, #SUBSETSUM

is #P-parsimonious-complete, as the standard reduction from XC3 to SUBSET SUM (see,
e.g., [Pap95]) is parsimonious. #PARTITION is only known to be #P-many-one-complete
(by the standard reduction [Kar72]). #P is closed under addition and multiplication by 2.

Higher Complexity Classes Above this level we consider a number of other complexity
classes for decision problems between NP and the class of all problems decidable in polyno-
mial space, PSPACE, which are illustrated in Figure 2.1 and defined in the following. None
of the depicted inclusions are known to be strict.

For a class C, let coC denote the class of all complements of problems in C, e.g., coNP
contains all problems A whose complements Ā = {x ∈ Σ∗ possible input | x /∈ A} are in NP.
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Figure 2.1: An overview of complexity classes. Edges illustrate inclusions from left to right.
None of the inclusions are known to be strict.

Boolean Hierarchy The Boolean hierarchy over NP [CGH+88, CGH+89] comprises the
classes BHi(NP) = {A∪B | A ∈ BHi−2(NP) and B ∈ BH2(NP)}, i ≥ 3, where BH2(NP) =
{A ∩ B | A ∈ NP and B ∈ coNP}, BH1(NP) = NP, and BH0(NP) = P. The class DP =
BH2(NP) was introduced by Papadimitriou and Yannakakis [PY84] as the class of differ-
ences of any two NP problems. They present the well-known DP-complete problem SAT-
UNSAT.

SAT-UNSAT

Given: Two 3-SAT instances ϕ1 and ϕ2.

Question: Is it true ϕ1 ∈ 3-SAT and ϕ2 �∈ 3-SAT?

In this thesis, we study a DP-hard problem in Chapter 5 in the context of wonderful stabil-
ity in hedonic games. For further natural complete problems in the levels of the boolean
hierarchy, and especially in DP, see the survey by Riege and Rothe [RR06]. More recently
and in the fields of voting and resource allocation, DP-hardness results have been discov-
ered [RRS14, NNRR14]. The following lemma provides a sufficient condition for proving
lower bounds for DP.

Lemma 2.1 (Wagner [Wag87]). Let A be some NP-hard problem, and let B be any set. If

there exists a function f ∈ FP such that, for any two instances x1 and x2 of A for which x2 ∈A

implies that x1 ∈ A, we have �{i | xi ∈ A}� is odd ⇐⇒ f (x1,x2) ∈ B, then B is DP-hard.

Polynomial Hierarchy The polynomial hierarchy over NP [MS72, Sto76], PH, is the
union of the classes ∆

p
i = PΣ

p
i−1 , Σ

p
i = NPΣ

p
i−1 , and Π

p
i = coΣ

p
i , i ≥ 1, where ∆

p
0 = Σ

p
0 =

Π
p
0 = P. For instance, Σ

p
2 = NPNP is the class of all problems that can be decided in non-

deterministic polynomial time with access to an NP-oracle and Π
p
2 = coNPNP is the class

of all problems whose complements can be decided in Σ
p
2 . Natural complete problems in

9



2 Preliminaries

the levels of the polynomial hierarchy are the quantified variants of SAT; for instance, the
second-level quantified Boolean formula problem is Σ

p
2-complete.

QUANTIFIED BOOLEAN FORMULA 2 (QBF2)

Given: Two sets X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} of Boolean variables, a
collection of implicants C consisting of three literals in X∪X̄∪Y ∪Ȳ each.2

Question: Is there an assignment to the variables in X such that for all assignments to
the variables in Y it holds that in each c ∈ C at least one literal is true?

In this thesis, we study a Σ
p
2-complete problem in Chapter 4 in the context of bribery. The

survey by Schaefer and Umans [SU02a, SU02b] provides an extensive collection of natural
complete problems in the levels of the polynomial hierarchy, and especially in Σ

p
2 . Recent

Σ
p
2-completeness results on core stability in additively separable hedonic games (see also

Section 2.3.2 and Chapter 5) are due to Woeginger [Woe13b] and Peters [Pet15]. Meyer and
Stockmeyer[MS72, Wra77] show a quantifier characterization of the polynomial hierarchy.
For instance, for Σ

p
2 the following characterization holds.

Lemma 2.2 ([MS72]). A problem A is in Σ
p
2 if and only if there exists a set B ∈ P and a

polynomial p such that for each possible input x for A,

x ∈ A ⇐⇒ (∃y ∈ Σ∗)(∀z ∈ Σ∗)[|y|≤ p(|x|) and |z|≤ p(|x|) =⇒ (x,y,z) ∈ B].

Parallel Access to NP In between the Boolean hierarchy and the second level of the
polynomial hierarchy lies Θ

p
2 . It is equivalent to PNP[log] [PZ83], the class of problems that

can be decided in polynomial time by asking O(logn) sequential Turing queries to an NP
oracle. Moreover, it is known as PNP

� , where the access to an NP oracle is restricted to poly-
nomially many queries asked in parallel. Independently, Hemachandra [Hem89] and Köbler
et al. [KSW87] have shown that PNP[log] and PNP

� are equal. We turn to Θ
p
2-hardness in a

challenge in Chapter 5 in the context of wonderful stability in hedonic games. Natural prob-
lems occur in different fields, for instance, for graph and satisfiability problems [Wag87],
winner determination problems [HHR97a, HHR97b, RSV03, HSV05], and, more recently,
covering sets problems [BBF+13]. Similarly to Lemma 2.1, the following lemma provides
a useful tool for proving lower bounds for Θ

p
2 .

Lemma 2.3 ([Wag87]). Let A be some NP-hard problem, and let B be any set. If there exists

a function f ∈ FP such that, for all k ≥ 1 and any 2k instances x1, . . . ,x2k of A for which

x j ∈ A implies that xi ∈ A for i < j, we have �{i | xi ∈ A}� is odd ⇐⇒ f (x1,x2, . . . ,x2k)∈ B,

then B is Θ
p
2-hard.

2 This input corresponds to a Boolean formula in 3-disjunctive normal form.
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Propabilistic Polynomial Time The class PP has been introduced by Gill [Gil74, Gil77]
as the class of all decision problems X for which there exist a function f ∈ #P and a poly-
nomial p such that for all instances x, x ∈ X if and only if f (x)≥ 2p(|x|)−1. PP is considered
to be a class by far larger than NP due to Toda’s theorem [Tod91] saying that PH ⊆ PPP,
i.e., PP is at least as hard (in terms of polynomial-time Turing reductions) as any problem
in the polynomial hierarchy. Also, Θ

p
2 is contained in PP [BHW89]. PP is closed under

complement and union. A typical PP-complete problem is the majority variant of SAT.

MAJORITY SATISFIABILITY (MAJSAT)

Given: A Boolean formula ϕ dependent on n variables in a set X .

Question: Are there at least 2n−1 satisfying assignments for the variables in X?

Note that the related problem of asking whether more than 2n−1 assignments satisfy the for-
mula is also PP-complete, inasmuch as PP can be equally characterized by the conditions
above and f (x)> 2p(|x|)−1 [Ogi93]. In this thesis, we study PP-complete problems in Chap-
ter 3 in the context of manipulation in weighted voting games. Faliszewski and Hemaspaan-
dra [FH09] prove PP-completeness of the problem of comparing a player’s power in two
weighted voting games with respect to the probabilistic Penrose–Banzhaf and the Shapley–
Shubik index (see also Section 2.3.1 and Chapter 3).

The following result is due to Faliszewski and Hemaspaandra [FH09, Lemma 2.3].

Lemma 2.4 ([FH09]). Let F be a #P-parsimonious-complete function. The problem

COMPARE-F = {(x,y) | F(x)> F(y)} is PP-complete.

The following corollaries hold, for instance, since #XC3 and #SUBSET SUM are #P-
parsimonious-complete.

Corollary 2.5. COMPARE-#XC3 is PP-complete.

Corollary 2.6. COMPARE-#SUBSETSUM is PP-complete.

Counting Hierarchy NPPP is the class on the second level of Wagner’s counting hierar-
chy [Wag86] containing all problems solvable by an NP machine with access to a PP oracle.
Littman et al. [LGM98] define an NPPP-complete variant of SAT.

EXISTENTIAL MAJORITY SATISFIABILITY (∃-MAJSAT)

Given: A Boolean formula ϕ dependent on variables x1, . . .xn and a positive integer
k ≤ n.

Question: Does there exist an assignment of x1, . . .xk such that more than 2n−k−1 as-
signments for xk+1, . . .xn satisfy ϕ?

We turn to NPPP in a challenge in Chapter 3 in the context of false-name manipulation
in weighted voting games. Other natural NPPP-complete problems have been identified
by Mundhenk et al. [MGLA00] related to finite-horizon Markov decision processes and
Littman et al. related to probabilistic planning.
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2.2 Graph Theory

A graph is a pair G = (V,E), where V is the set of vertices3 and E the set of either directed
(E ⊆ V ×V ) or undirected (E ⊆ {e ⊆ V | �e� = 2}) edges. In a directed graph an edge is
denoted by (u,v) and is illustrated by a link from vertex u to vertex v. In an undirected graph
an edge is denoted by {u,v} and is illustrated by an edge between vertices u and v. Vertices
and edges can be weighted; in this case a function w : V →R, or w : E →R, respectively, is
given for a graph G = (V,E).

Given an undirected graph G = (V,E), we denote an induced subgraph restricted to a

subset of edges E � ⊆ E by G|E � = (V,E �) and an induced subgraph restricted to a subset

of vertices V � ⊆ V by G|V � = (V �,{{u,v} ∈ E | u ∈ V � and v ∈ V �}). The set of vertices
V �(v) = {u ∈V | {u,v} ∈ E} attached to a vertex v ∈V is called (open) neighbourhood of v,
V �(v)∪{v} is called closed neighbourhood of v.

Properties A clique in an undirected graph G = (V,E) is a subset C ⊆ V such that for
each two distinct vertices u,v ∈ C, u �= v, e = {u,v} is contained in E. For a vertex v ∈ V ,
let ωG(v) denote the clique number of v in G, which is the size of a largest clique in G that
contains v. A maximal clique is one that is not contained in a larger clique. A partition of the
vertex set V is a division of the vertices into subsets Π = {P1, . . . ,Pk} such that

�k
i=1 Pi =V

and Pi∩Pj = /0 for i �= j. We denote the set in Π containing a vertex v by Π(v). An undirected
graph G = (V,E) consists of k independent components G1 = (V1,E1), . . . ,Gk = (Vk,Ek) if
{V1, . . . ,Vk} is a partition of V , that is, Gi = G|Vi

, 1 ≤ i ≤ k, and E =
�k

i=1 Ei.

Definition 2.7 ([Woe13a]). Given a graph G = (V,E), a partition Π of V is called wonder-
fully stable if each P ∈ Π is a clique and �Π(v)�= ωG(v) for each vertex v ∈V .

A clique P ⊆V blocks a partition Π into cliques if there exists a vertex4 v ∈ P with �P�>
�Π(v)�. Consequently, ωG(v)> �Π(v)�. By definition of clique number, ωG(v)≥ �Π(v)�
holds for each v ∈V , since Π(v) is a clique that contains v. These notations are used in the
context of hedonic games, see Sections 2.3.2 and 5.1.

Decision Problems We refer to several well-known problems on graphs. GAP is known
to be in P.5

GRAPH ACCESSIBILITY PROBLEM (GAP)

Given: A directed graph G and two distinguished vertices s (source) and t (target).

Question: Can t be reached from s via the edges in G?

3 We consider graphs with a finite vertex set.
4 Note that it is actually the vertex that blocks the partition, not the whole clique; nevertheless we use this

notion due to parallels to group deviations in hedonic games.
5 Indeed, it is even considered to be decidable much faster than in polynomial time, namely in nondetermin-

istic logarithmic space [Sav73, Jon75].
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Related well-studied graph problems concern maximal connected subgraphs and general-
ized connectivity, see, e.g., [AAA+06, LM14].

CLIQUE and MAXCUT are further well-known NP-complete problems [Kar72].

CLIQUE

Given: An undirected graph G and a positive integer k.

Question: Is there a clique of size k in G?

Note that the problem of whether there exists a partition into a limited number of cliques in
a graph is NP-hard (see, e.g., [GJ79]). If, however, the number of cliques is not limited, a
partition into cliques can easily be found.

MAX CUT

Given: An undirected graph G = (V,E), edge weights w : E → N� {0} and a
positive integer K.

Question: Is there a partition of V into two vertex sets V1 and V2 such that
∑{v1,v2}∈E,v1∈V1,v2∈V2

w({v1,v2})≥ K?

MULTIPAIRCUT WITH VERTEX COSTS is a decision problem mentioned by Bachrach and
Porat [BP10].

MULTIPAIRCUT WITH VERTEX COSTS (MCVC)

Given: A graph G = (V,E), m vertex pairs (s j, t j), 1 ≤ j ≤ m, a weight function
w : V →Q≥0, and a bound K ∈Q≥0.

Question: Does there exist a subset V � ⊆V such that ∑v∈V � w(v)≤ K and the induced
subgraph G|V�V � contains no path linking a pair (s j, t j), 1 ≤ j ≤ m?

It is known that MCVC belongs to P for problem instances with m < 3, yet is NP-complete
for problem instances with m≥ 3. The related optimization problem for m< 3 can be solved
in polynomial time using the same algorithm as the decision problem with a corresponding
output [DJP+94]. Without loss of generality, we can assume that the bound K and the vertex
weights w(v), v ∈V , in an MCVC instance are natural numbers, since in the reduction from
MAXCUT to MULTITERMINALCUT by Dahlhaus et al. [DJP+94, Theorem 3] weights and
bounds are also natural numbers.

We turn to domains on graphs in Chapter 4 in the context of path-disruption games
and in Chapter 5 in the context of network of friends representations of hedonic games.
Further graph theoretic background can be found amongst others in the textbooks [Dis05,
GRRW10].
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2.3 Cooperative Game Theory

The basic domain the problems studied in this thesis are settled in is that of cooperative
games. Basic concepts can be found, e.g., in textbooks by Chalkiadakis et al. [CEW11],
Shoham and Leyton-Brown [SL09], and Peleg and Sudhölter [PS07], and the book chapters
by Elkind et al. [ERJ13], and Elkind and Rothe [ER16]. We differentiate between cooper-
ative games with transferable utility where a coalition of players is assigned a certain value
dividable among the players in the coalition and coalition formation games without such
transferable utility among which we focus on hedonic games.

2.3.1 Cooperative Games with Transferable Utility

A cooperative game with transferable utility G =(N,v) consists of a finite set N = {1, . . . ,n}
of players or agents6, and a coalitional function v : P(N)→R that assigns a value v(C)∈R

to each subset of players C, called a coalition. It is common to assume that v( /0) = 0.
A cooperative game is called monotonic if for any two coalitions B ⊆C ⊆ N it holds that

v(B) ≤ v(C). It is simple if it is monotonic and the coalitional function v : P(N)→ {0,1}
is the characteristic function for success, mapping each coalition C ⊆ N to a value that
indicates whether C is successful or not. We say that C wins if v(C) = 1, and loses if
v(C) = 0. The coalition N is called the grand coalition.

A constant-sum game G = (N,v) is a cooperative game with transferable utility which
satisfies v(C)+ v(N �C) = v(N) for each coalition C ⊆ N. A cooperative game G = (N,v)
is convex if v(C ∪D) ≥ v(C) + v(D)− v(C ∩D) holds for all coalitions C,D ⊆ N. This
implies superadditivity which is satisfied if for all coalitions C,D ⊆ N with C ∩D = /0 it
holds that v(C ∪D) ≥ v(C)+ v(D). Two cooperative games G = (N,v) and G � = (N,v�)
are called strategically equivalent if there exist α > 0 and β : N → R such that v�(C) =
αv(C)+∑i∈C β (i) holds for each C ⊆ N.

Player Properties The following solution concepts and related problems are commonly
defined for simple games. Different players may have different significance in a game. A
player of high importance is a veto player. Player i has the veto property if no coalition wins
without her, in a simple game G = (N,v) that is, due to monotonicity, v(N �{i}) = 0. For
a cooperative game G = (N,v), let

v(C∪{i})− v(C)

be the marginal contribution of a player i ∈ N to a coalition C ⊆ N �{i}. A player of little
significance in G is a dummy player. There are two different interpretations of what that
means and, thus, two main definitions. Firstly, we call a player i ∈ N a null player if adding
her does not change the value of any coalition at all that is, v(C∪ {i})− v(C) = 0 for each
C ⊆N [PS07]. Such a player is also known as a dummy player (see, e.g., [DS79]). Secondly,

6 We use these terms analogously due to applications in both game theory and multiagent systems.
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we call a player j a dummy player if adding him changes the value of each coalition only to
his own value, that is, v(C∪ { j})− v(C) = v({ j}) for each C ⊆ N � { j} (see, e.g., [SL09]
and [Sha53] in the context of superadditive games). The two notions coincide whenever the
coalition consisting of the player considered has value 0. By definition, a player in a simple
game can also be a dummy player if he has value 1, then, he is also a veto player. For simple
games, we focus on the notion of null players. Two players i and j are called symmetric if
they are interchangeable, that is v(C∪ {i})− v(C) = v(C∪ { j})− v(C) for every coalition
C ⊆ N � {i, j}. A more precise measurement of a player’s significance is provided by so
called power indices, see below. Before we define them, we have a look at other concepts at
first.

Payoff and Group Deviations One of the key goals in cooperative game theory is the
question of how to distribute the game’s total payoff among the players. An outcome in a
cooperative game with transferable utility is a coalition structure, that is, a partition of the
player set into coalitions, together with a payoff vector. A payoff vector �q = (q1, . . . ,qn) ∈
Rn
≥0 is a distribution of the value of a coalition to the players within the coalition. In this

thesis, in the context of transferable utility, we focus on questions of stability of the grand
coalition, thus, a payoff vector corresponds to the grand coalition and satisfies ∑

n
i=1 qi ≤

v(N). A pre-imputation is a payoff vector�q = (q1, . . . ,qn) satisfying efficiency, i.e.,
n

∑
i=1

qi = v(N).

An imputation is a pre-imputation additionally satisfying individual rationality, i.e.,

qi ≥ v({i}) for each i ∈ N.

Let q(C) = ∑i∈C qi denote the total payoff of the players in coalition C ⊆ N with respect
to�q.

The core [Gil59] of a game G = (N,v) is the set of all payoff vectors that stabilize the
game with respect to deviating coalitions. A coalition C ⊆ N has an incentive to deviate
from the grand coalition if its value is greater than the payoff of the players in C. The core
of G consists of all payoff vectors�q such that

q(C)≥ v(C) for each C ⊆ N.

Due to its restrictive nature, it might be the case that the core does not contain any elements.
It is known that the core of a simple game is non-empty if and only if there is a veto player
in the game. A weaker form of the core is the ε-core of G , where a deficit not exceeding
a bound ε is allowed. Let v(C)−�q(C) denote the deficit of a coalition. The ε-core of G

consists of all payoff vectors7 �q such that

q(C)≥ v(C)− ε for each C ⊆ N.

7 Note that sometimes only imputations are allowed in the ε-core, e.g., Bachrach and Porat [BP10]. However,
then, there might be trouble with successful singleton coalitions, and there might not exist a finite ε such
that the ε-core is non-empty.
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Maschler et al. [MPS79] introduce the least core of a game as its minimal non-empty ε-core.
Note that the least core of a cooperative game is never empty.

Further concepts include the cost of stability due to Bachrach et al. [BEM+09] or the
stable sets due to von Neumann and Morgenstern [NM44].

Power Indices Other important solution concepts, so called power indices, measure the
significance of a player in a game in different ways. It is common to study these indices
in simple games. Nevertheless, note that they can easily be redefined for a more general
setting. A player i in a simple game G = (N,v) is called pivotal (or crucial or critical) for a
coalition C ⊆ N �{i} if her marginal contribution to C is 1, that is, if C∪{i} is successful,
but C is not.

In this thesis we study two popular indices, the Penrose–Banzhaf index and the Shapley–
Shubik index. For other indices, see, e.g., an early overview by Felsenthal and Ma-
chover [FM05]. Banzhaf [Ban65] rediscovered a notion originally introduced by Pen-
rose [Pen46]. The raw Penrose–Banzhaf power index of player i in G is defined by

PenroseBanzhaf∗(G , i) = ∑
C⊆N�{i}

(v(C∪{i})− v(C)).

This indicates the number of coalitions a player is pivotal for. It is useful to normalize this
value; in fact, two different ways of normalization have been proposed for the Penrose–
Banzhaf index. In the original definition of the normalized Penrose–Banzhaf power index

[Ban65], the raw Penrose–Banzhaf index of a given player is divided by the sum of all
players’ raw indices:

PenroseBanzhaf(G , i) =
PenroseBanzhaf∗(G , i)

∑
n
j=1 PenroseBanzhaf∗(G , j)

,

so that all players’ normalized indices add up to one.8 This index was analysed in detail by
Dubey and Shapley [DS79], who introduced an alternative normalization, which divides the
raw Penrose–Banzhaf index of a given player by the total number of coalitions without that
player, obtaining the probabilistic Penrose–Banzhaf power index:

PenroseBanzhaf(G , i) =
PenroseBanzhaf∗(G , i)

2n−1 .

Intuitively, this index measures the probability that a player is pivotal for any possible
coalition. Here, normalization is done with respect to the number of coalitions, which
makes games with different numbers of players better comparable. Both indices have dif-
ferent advantages resulting from their axiomatic properties. In a nutshell, while the nor-
malized Penrose–Banzhaf index yields an efficient payoff vector and is therefore studied
by Aziz et al. [ABEP11], the probabilistic Penrose–Banzhaf index shows other mathe-
matical advantages. Dubey and Shapley [DS79] comprehensively analyse these two in-
dices comparing various mathematical properties. In particular, for a vector �q(N,v) =

8 Note that for this definition it is necessary to assume that the grand coalition has as positive value.
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(q1(N,v), . . . ,qn(N,v)) ∈ Rn
≥0 of power indices for n players in a game (N,v), they study

four fundamental axioms:

symmetry: Whenever two players i and j are symmetric in a game G , it holds that

qi(N,v) = q j(N,v);

dummy player: If player i is a null player in a game (N,v), then qi(N,v) = v({i});

additivity: For any two games (N,v1) and (N,v2), it holds that qi(N,v1+v2) = qi(N,v1)+
qi(N,v2) for all players i ∈ N, where v1 + v2 is defined via (v1 + v2)(C) = v1(C)+
v2(C) for all coalitions C ⊆ N;

valuation: For any two simple games (N,v1) and (N,v2), it holds that qi(N,v1 ∨ v2) +
qi(N,v1 ∧ v2) = qi(N,v1) + qi(N,v2) for each i ∈ N, where v1 ∨ v2 and v1 ∧ v2 are

defined via (v1∨v2)(C) = max{v1(C),v2(C)}, and (v1∧v2)(C) = min{v1(C),v2(C)}
for all coalitions C ⊆ N.

Amongst others they discover the fact that the probabilistic Penrose–Banzhaf index sat-
isfies all four axioms while the normalized Penrose–Banzhaf index lacks the latter two.
Another evidence in advantage to the probabilistic Penrose–Banzhaf index is that, in con-
trast to the normalized index, it is not subject to the so-called bloc paradox (see [FM95]),
that is, a player can lose power by taking over another player. See Chapter 3, Section 3.1 for
the computational complexity of the annexation problem, the problem of whether a player
gains power by annexing a player. We study the probabilistic index due to its comparability
for two games in the context of manipulation (see, e.g., Remark 3.8). We refer to the work of
Dubey and Shapley [DS79] as well as the work of Felsenthal and Machover [FM05, FM95]
for a careful, detailed discussion on the differences between the two normalizations.

There is a unique pre-imputation satisfying all four axioms mentioned above. Shap-
ley [Sha53] defines the underlying concept for superadditive games as a value satisfying
symmetry, efficiency and additivity. He states that “it is remarkable that no further condi-
tions are required to determine the value uniquely”. This value, known as the Shapley value

is one of the most popular concepts studied in cooperative games, see, e.g., the textbook
by Peleg and Sudhölter [PS07] for further axiomatic characterizations. For a simple game
G = (N,v) the Shapley–Shubik power index [SS54] describes the marginal contributions
of a player to all possible coalitions with respect to the order in which players enter the
coalitions. Let the raw Shapley–Shubik index be characterized9 by

ShapleyShubik∗(G , i) = ∑
C⊆N�{i}

�C�! · (n−1−�C�)! · (v(C∪{i})− v(C)),

and normalized by

ShapleyShubik(G , i) =
ShapleyShubik∗(G , i)

n!
.

9 The original definition considers the sum over all possible permutations and is known to be equivalent to
this one.
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Representations Having defined these concepts, we have to narrow down the setting
we want to study them in. Since the number of coalitions is exponential in the number of
players, representing a cooperative game by listing the values of its coalitional function,
requires exponential space. Hence, for algorithmic purposes, it is essential to find succinct
representations. Succinct representations, however, often enough restrict expressiveness. In
the following we consider weighted voting games as one way of representing simple games
succinctly. For further representations and their succinctness and expressiveness, see, e.g.,
the books and book chapters mentioned at the beginning of this section. We assume a neutral
environment, that is, although we may write players’ weights etc. as lists, there is no order
over players with an influence on a coalitional function.

Weighted Voting Games Weighted voting games (also known as weighted threshold
games) [NM44] are an important class of simple cooperative games that are compactly
representable but not fully expressive.10 Formally, a weighted voting game

G

�

� (w1, . . . ,wn; q)

is represented by weights wi ∈ N, 1 ≤ i ≤ n, where wi is the ith player’s weight, and a
quota q ∈ N.11 A coalition C ⊆ N wins if and only if the sum of the players’ weights
involved in the coalition reaches or exceeds the quota. That is, for each coalition C ⊆ N,
letting w(C) denote ∑i∈C wi, C wins if w(C) ≥ q, and it loses otherwise. Requiring the
quota to satisfy 0 < q ≤ w(N) ensures that the empty coalition loses and the grand coalition
wins. Weighted voting games have been intensely studied from a computational complexity
point of view, see, e.g., the work by Elkind et al. [EGGW09, EGGW07] and the book by
Chalkiadakis et al. [CEW11, Chapter 4] for an overview.

Prasad and Kelly [PK90, Theorem 5] show that for a given weighted voting game, the
computation of the Penrose–Banzhaf index is #P-many-one-complete. For the raw version
of the index their proof implies that its computation in a given weighted voting game for a
given player, is #P-parsimonious-complete [FH09]. Deng and Papadimitriou [DP94, Theo-
rem 9] show that computing the raw Shapley–Shubik power index in a given weighted voting
game of a given player is #P-many-one-complete; Faliszewski and Hemaspaandra [FH09]
show that it is not #P-parsimonious-complete.

A weighted majority game is defined similarly to weighted voting games, except that no
fixed quota q is given; instead, a coalition is successful if and only if the sum of the players’
weights within this coalition is greater than half of the total sum of all players’ weights, that
is, the quota is, dependent on the players’ weights, set to q = �w(N)/2�+1.

10 Full expressiveness for one-dimensional simple games can be gained by so-called vector weighted voting
games, a multi-dimensional game represented by the intersection of several weighted voting games (see,
e.g., [CEW11]).

11 See [CEW11, Theorem 4.2] for why non-negative integer weights and quotas may be assumed.
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Path-Disruption Games Path-disruption games are cooperative games introduced by
Bachrach and Porat [BP10]. Given a graph12 G = (V,E), the set of agents N = {1, . . . ,n}
corresponds to the set of vertices V = {v1, . . . ,vn}. Moreover, there are m adversarial players
who each want to travel from a source vertex s j to a target vertex t j in V , 1 ≤ j ≤ m. We
say a coalition C ⊆ N blocks a path from s j to t j if there is no path from s j to t j in the
induced subgraph G|V�{vi|i∈C} or if s j or t j are not even in V � {vi | i ∈ C}. Four types of
path-disruption games are distinguished: those with a single adversary and with multiple
adversaries, and for both with and without costs. The most general game is the model with
several adversarial players and costs for each vertex to be blocked. Letting c : V →R≥0 be a
function defining a cost for each vertex to be blocked, c(C) = ∑i∈C c(vi) denotes a coalition
C’s cost.

Definition 2.8. We are given an undirected graph G = (V,E) with n = �V� vertices and

with an adversary associated with each of the pairs (s1, t1), . . . ,(sm, tm), s j, t j ∈ V , 1 ≤ j ≤
m, a cost function c : V → R≥0, a reward R ∈ R≥0. A path-disruption game with costs
and multiple adversaries is defined by players N = {1, . . . ,n}, where i is represented by vi,

1 ≤ i ≤ n, and the coalitional function

v(C) =

�

R−µ(C) if µ(C)< ∞

0 otherwise

with

µ(C) =

�

min{c(B) | B ⊆C and ṽ(B) = 1} if ṽ(C) = 1

∞ otherwise,

where

ṽ(C) =

�

1 if C blocks each path from s j to t j, for each j, 1 ≤ j ≤ m

0 otherwise.

Letting m = 1, we have a restriction to a single adversary. Letting c(vi) = 0 for all i,
1 ≤ i ≤ n, R = 1, and, thus, v(C) = ṽ(C), the simple games without costs are defined. We
say a coalition C ⊆ N wins the game if ṽ(C) = 1, and loses it otherwise.

In Definition 2.8 weights and bounds are real numbers; however, to make the problems for
these games suitable for computer processing (and to define their complexity in a reasonable
way), we will henceforth assume that all weights and bounds are rational numbers.

In the simple form of path-disruption games, the value of a coalition can be computed
in polynomial time, however, when costs are included, polynomial-time computability of a
value is only known for a single adversary [BP10]. Path-disruption games with costs are
not monotonic. In Chapter 4 we will generalize path-disruption games to a model with
uncertainty about the targets.

12 In this thesis we consider path-disruption games on undirected graphs, see Chapter 4.
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2.3.2 Hedonic Games

Hedonic games are cooperative games, however not structured as a game with transferable
utility. Here, the central ideas of, on the one hand, cooperative game theory where players
form coalitions in order to cooperate managing certain tasks as teams, and, on the other
hand, voting scenarios (see, e.g., [BF02, BCE13]) where players cast their preferences over
alternatives in order to elect a solution in mutual agreement, are combined. In hedonic
games the players vote on coalitions they are contained in by expressing weak preference
orders. This hedonic model, where a coalition’s happiness only depends on the players
involved in it, is introduced by Drèze and Greenberg [DG80] and formalized by Banerjee et
al. [BKS01] and independently by Bogomolnaia and Jackson [BJ02].

Formally, a hedonic game is a tuple H = (N,�), where N = {1, . . . ,n}, again, denotes
the finite set of players, and �= (�1, . . . ,�n) is a profile of preferences, where �i is a
reflexive, transitive, and total relation over Ni = {C ⊆ N | i ∈ C}. This relation induces a
total weak preference order for player i. For two coalitions A,B ∈ Ni, we say that player i

weakly prefers A to B if A �i B, i (strictly) prefers A to B if A �i B, and i is indifferent

between A and B if A ∼i B. A coalition structure in H is a partition Γ = {C1, . . . ,Ck} of
the players into k ≥ 1 coalitions C1, . . . ,Ck ⊆ N (i.e.,

�k
r=1Cr = N and Cr ∩Cs = /0 for r �= s,

Cr �= /0, 1 ≤ r ≤ k). For a coalition structure Γ, let Γ(i) denote the coalition containing
player i.

Stability Concepts The following solution concepts, or stability concepts, are commonly
studied for hedonic games [BKS01, BJ02, ABS13, ABH13, Woe13a]. A coalition structure
Γ is called

perfect if for each player i ∈ N, Γ(i) is one of her favourite coalitions, that is, i weakly

prefers Γ(i) to every coalition in Ni,

uniquely perfect if Γ is perfect and no other coalition structure is perfect,

individually rational if Γ(i) is acceptable, for each player i ∈ N, that is, i weakly prefers

Γ(i) to being alone in {i}.

While perfection is rather rare, individual rationality is guaranteed by {{i} | i ∈ N}. More
demanding concepts consider deviations of a single player to another (possibly empty) ex-
isting coalition. We say that a coalition structure Γ is called

Nash-stable if for each player i ∈ N, Γ(i)�i C∪{i} holds for each coalition C ∈ Γ∪{ /0},

that is, no player wants to move to another existing or empty coalition,

individually stable if for each player i ∈ N and for each coalition C ∈ Γ∪ { /0}, it holds

that Γ(i) �i C∪ {i} or there exists a player j ∈ C such that C � j C∪ {i}, that is, no

player can move to another preferred coalition without making a player in the new

coalition worse off,

20



2.3 Cooperative Game Theory

contractually individually stable if for each player i ∈ N and for each coalition C ∈ Γ∪
{ /0}, it holds that Γ(i)�i C∪{i}, or there exists a player j ∈C such that C � j C∪{i},

or there exists a player j� ∈ Γ(i)�{i} such that Γ(i)� j� Γ(i)�{i}, that is, no player

can move to another preferred coalition without making a player in the new coalition

or in the old coalition worse off.

Note that Nash stability implies individual stability, which, in turn, implies contractually
individual stability, as the requirements increase: Firstly, no player wants to deviate from
her coalition; then, a player might want to deviate but is not welcome in the new coalition;
and finally, she might be welcome but is contractually bounded to the former coalition.
Moreover, the next two commonly studied concepts deal with group deviation. A coalition
structure Γ is called

core-stable if for each non-empty coalition C ⊆ N, there exists a player i ∈ C such that

Γ(i)�i C, that is, no coalition blocks Γ,

strictly core-stable if for each coalition C ⊆ N, there exists a player i ∈ C such that

Γ(i)�i C or for each player i ∈C, Γ(i)∼i C, that is, no coalition weakly blocks Γ.

Alternatively, other concepts are based on a relation comparing different coalition structures.
A coalition structure Γ is called

Pareto-optimal if for each coalition structure ∆, there exists a player i ∈ N such that

Γ(i)�i ∆(i) or for each player j ∈ N, Γ( j)∼ j ∆( j), that is, no other coalition struc-

ture Pareto-dominates Γ,

popular if for each coalition structure ∆, the number of players i with Γ(i) �i ∆(i) is at

least as large as the number of players j with ∆( j)� j Γ( j).

Popularity implies Pareto optimality, since a popular coalition structure cannot be Pareto-
dominated. We furthermore introduce the notion of strict popularity. A coalition structure
Γ is called strictly popular if it strictly beats each coalition structure ∆ �= Γ in pairwise

comparison,13 that is,

�{i ∈ N | Γ(i)�i ∆(i)}�> �{ j ∈ N | ∆( j)� j Γ( j)}�.

We study these stability concepts in Chapter 5 regarding their guaranteed existence in a
game and their complexity of existence and verification.

The interrelations of these solution concepts follow from their definitions (see,
e.g., [ABS13]), and are depicted in Figure 2.2. As regarding strict popularity, it can be
integrated as follows.

13 This notion is adapted from the voting-theoretic term Condorcet winner where a candidate wins an election
if she beats each other candidate in pairwise comparison.
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Proposition 2.9. Let H = (N,�) be a hedonic game. For a coalition structure Γ in (N,�)
it holds that

1. Γ strictly popular =⇒ Γ popular,

2. Γ uniquely perfect =⇒ Γ strictly popular,

3. Γ non-uniquely perfect =⇒ Γ not strictly popular,

4. If Γ is strictly popular, it is not always individually rational,

5. If Γ is not strictly popular, even if it is not perfect, it might be strictly core-stable or

Nash-stable.

Proof. 1. By definition, �{i∈N | Γ(i)�i ∆(i)}�> �{ j ∈N |∆( j)� j Γ( j)}� =⇒ �{i∈
N | Γ(i)�i ∆(i)}� ≥ �{ j ∈ N | ∆( j)� j Γ( j)}�.

2. If Γ is uniquely perfect, for each other coalition structure ∆ it holds that �{ j ∈ N |
∆( j)� j Γ( j)}�= 0, and �{i ∈ N | Γ(i)�i ∆(i)}�> 0.

3. If there exist two perfect coalition structures Γ and ∆, it holds that �{ j ∈ N | ∆( j)� j

Γ( j)}�= �{i ∈ N | Γ(i)�i ∆(i)}�= 0.

4. Consider the game with three players N = {1,2,3} and preferences as follows. Play-
ers 1 and 2 prefer the grand coalition to every other coalition, player 3 prefers {3}
to {1,2,3} and this to the rest. Coalition structure Γ = {{1,2,3}} is not individually
rational because of player 3, but is strictly popular since at least two players prefer
their position in Γ to any other.

5. If Γ is not strictly popular, but (non-uniquely) perfect, it is, of course, Nash- and
strictly core-stable. If Γ is neither strictly popular nor perfect, it might still be Nash-
stable or strictly core-stable. Consider, for instance, the game with N = {1,2,3} and
preferences as follows.

{1,2}�1 {1,2,3}∼1 {1}�1 {1,3},

{2,3}�2 {1,2,3}∼2 {2}�2 {1,2},

{1,3}�3 {1,2,3}∼3 {3}�3 {2,3}.

Coalition structure Γ = {{1,2,3}} is obviously Nash-stable. It is strictly core-stable,
since it is individually rational, and since size-two coalitions do not block because
of one player each. On the other hand, Γ is not perfect, since {1,2,3} is no one’s
favourite coalition. It is not strictly popular, since the coalition structure consisting of
singletons is equally popular, as well as any coalition structure consisting of a size-two
coalition and a singleton, with a comparison of 1 to 1 each. �
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uniquely perfect perfect

Nash-stable individually stable contractually individually stable

strictly core-stable core-stable individually rational

strictly popular popular Pareto-optimal

Figure 2.2: Interrelations of stability concepts for hedonic games. Edges illustrate implica-
tions from left to right.

Representations Similarly to cooperative games with transferable utility, an entire list
of the players’ preferences of a hedonic game requires n comparisons of 2n−1 coalitions
each, that is, exponential space in the number of players n. Therefore, different representa-
tions for hedonic games are studied. Again, there is a trade-off between succinctness and
expressiveness. Fully expressive representations include hedonic coalition nets [EW09]:
Each agent specifies her utility function over the set of all coalitions via a set of weighted
logical formulae. In case of individually rational encoding [Bal04] each agent ranks only
the coalitions she prefers to being alone. This model is in many cases more compact, but
there are cases that cannot be represented polynomially in the number of players; and it
is not fully expressive, but it expresses all relevant sets in terms of core and individual
stability. Other approaches allow compact representation but cannot describe all possi-
ble hedonic games, although a reasonable selection of natural games that fulfil desirable
properties are represented. Those representations include the following: In the anonymous

encoding [Bal04, DEK+12] each agent specifies a preference relation over the number of
agents in her coalition and coalitions with the same cardinality are, independently from the
identities of the agents, considered as indifferent.

In other representations the game is given by an encoding of a certain form of a profile of
opinions on the players instead of coalitions in a game. Then, a preference extension maps
a player’s opinion14 on the other players to a preference relation over the coalitions in Ni.
We do not only want the encoding of a hedonic game to be compact but also the preference
extension to be computable succinctly: Since we cannot write down the whole preference
order of a player in polynomial time in the number of players, the desired property here is
that for two coalitions their relation can be computable in polynomial time in the number of
players.

If the encoding is a list of functions ui : N →Q, i ∈ N, a preference extension �i is called
additive if C �i D holds for two coalitions C and D and a player i, if ∑ j∈C ui( j)≥∑k∈D ui(k).
A hedonic game H = (N,�) is called additively separable [BJ02] if for each player i ∈ N,
there exists a function ui : N →Q such that ui(i) = 0 and �i is the additive extension of these
functions. The following properties are an excerpt of the concepts we define in [NRR+16]
relevant for this thesis. These properties are inspired by various related topics such as voting
theory [Tid06, End13], fair division [LR16], and ranking sets of objects in general [BBP04].

14 This could have any imaginable form such as the encodings presented in the following.
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A profile of preference extensions � is called anonymous/neutral15 if switching the names
of two players in the encoding does not have an effect on � but a renaming of these two
players in the profile. Let i, j and k be three distinct players. We define symmetry for �
by the following property: If swapping j and k in the encoding does not change the game,
then

�
∀C ∈ Ni � (N j ∪Nk)

�
[C∪{ j}∼i C∪{k}]. An even stronger property would be the

opposite implication. In some cases it might be useful, if � satisfies independence, that is,
A∪C �i B∪C implies A �i B for each A,B ∈ Ni and C ⊆ N � (A∪B) and each i ∈ N. Let
i �= j be two players and A,B ∈ Ni two coalitions with j ∈ A�B. Consider a preference
relation ��

i that results from j ascending in i’s opinion. We say that � is monotonic if it
holds that

(1) if A �i B, then A ��
i B, and

(2) if A ∼i B, then A ��
i B.

In the context of other players’ influences on a player’s preference order and depen-
dent on the underlying model, we define an additional type of monotonicity and a no-
tion of unanimity, see Section 5.3.1. Additively separable hedonic games are studied, e.g.,
in [SD07, SD10, ABS13, Woe13b, Pet15]. They comprise all games that can be encoded
with an additive valuation function: Each agent gives a rational valuation of each agent and
preferences satisfy additive separability, that is, are derived from the values that are, from
the point of view of one player, extended to coalitions by summing up the values of the
agents in the coalition. A recent variant considers subset-additive hedonic games [Suk15].
In fractional hedonic games [ABH14, BBS15, AGG+15] each agent assigns a value to each
other agent (and 0 to herself) and an agent’s utility of a coalition is the average value she
assigns to the members of the coalition. Then, a coalition A is preferred to B if the utility of
A is greater than that of B. In Chapter 5 we consider the following succinct representations:

Network of Friends Dimitrov et al. [DBHS06, SD07] introduce this encoding, a special
variant of additively separable hedonic games. Each agent i ∈ N partitions the set of other
agents into two sets: her friends N+

i ⊆ N � {i} and her enemies N−
i = N � (N+

i ∪ {i}).16

Visually, let the players N = {1, . . . ,n} be represented by vertices V = {v1, . . . ,vn} in a graph
G = (V,E) and let a directed edge (vi,v j) ∈ E denote that j is i’s friend, that is, the open
neighbourhood of vi represents the set of i’s friends N+

i = { j | (vi,v j) ∈ E}. We understand
such a network of players, for example, as a social network, where two friends are able to
communicate with each other but might not like or, more importantly, not know the other
players. Either way, their means of communication with unconnected players is restricted.
In the context of stability it is reasonable to consider undirected edges, that is, symmetric
friendship relations, only [Woe13a]. We will focus on this case.

15 We use both terms here to emphasize that in comparison to an election players here have both, the role of
the voters for which anonymity is required, and of the candidates for which neutrality is essential.

16 Note that in the literature is is also common to denote the set of friends by Fi and the set of enemies by Ei.
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Dimitrov et al. suggest two ways of deriving the players’ preferences from such a net-
work, appreciation of friends and aversion to enemies. Under the friend-oriented preference

extension, �+
i , coalition A is preferred to coalition B by a player i ∈ N if A contains more

friends than B, or as many friends as B but fewer enemies than B:

A �+
i B ⇐⇒�A∩N+

i �> �B∩N+
i � or

(�A∩N+
i �= �B∩N+

i � and �A∩N−
i � ≤ �B∩N−

i �).

Note that friend-oriented preferences can be represented additively, by assigning a value of
n = �N� to a friend and a value of −1 to an enemy [DBHS06]. For any player i ∈ N and
for any coalition A ∈ Ni, let ui(A) = n�A∩N+

i �−�A∩N−
i �. Then, for A,B ∈ Ni, it holds

that A �+
i B ⇐⇒ ui(A) ≥ ui(B). Under the enemy-oriented preference extension, �−

i , for
player i, A is preferred to B if A contains fewer enemies than B, or as many enemies as B

and more friends than B:

A �−
i B ⇐⇒�A∩N−

i �< �B∩N−
i � or

(�A∩N−
i �= �B∩N−

i � and �A∩N+
i � ≥ �B∩N+

i �).

Analogously, enemy-oriented preferences are additively separable, with a value of coalition
A of

ui(A) = �A∩N+
i �−n�A∩N−

i �.

Note that under enemy-oriented preferences, the graph-theoretic concept of wonderful sta-
bility (Definition 2.7) translates to a stability concept that is even more demanding than
strict core stability: A coalition structure is wonderfully stable if each player is part of her
favourite coalition amongst those containing no mutual enemies.

Lemma 2.10. Let G = (V,E) be the graph representing an enemy-oriented hedonic

game H . Let Π be a partition of V and let Γ be the corresponding coalition structure

in H .

1. If Π is wonderfully stable for G, then Γ is strictly core-stable for H .

2. If there exists an integer c ∈N�{0} such that ωG(v) = c for all vertices v ∈V and Γ

is strictly core-stable for H , then Π is wonderfully stable.

Singleton Encoding The singleton encoding as introduced by Cechlárová and Romero-
Medina [CR01] and studied by Cechlárová and Hajduková [CH03, CH04] and Aziz et
al. [AHP12, ABH13] provides for each agent a ranking �i, (originally a strict ranking
�i), of all single agents, and allows two extensions. Under the optimistic extension (B-
preferences), a player prefers coalition A to coalition B if the best agent in A is preferred to
the best agent in B (or in case of indifference, the smaller coalition is preferred). Reversely,
under the pessimistic extension (W -preferences), A is preferred to B if the worst agent in A

is preferred to the worst agent in B.
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2 Preliminaries

Note that for the representations needed later on, namely additively separa-
ble, friend-oriented, and enemy-oriented hedonic games and B- and W -preferences,
anonymity/neutrality, symmetry and the following properties hold.

Proposition 2.11. Additively separable, friend-oriented, and enemy-oriented hedonic

games satisfy independence, while B- and W -preferences don’t. All five extension prin-

ciples are monotonic.

Proof. Let i ∈ N be a player, A,B ∈ Ni and C ∈ N � (A∪B). An additive preference ex-
tension � obviously adds the same value of C to A and B alike, such that A �i B implies
A∪C �i A∪B. Also, if the value of a player j ∈ A�B in increased in ��, the value of A is
increased, but that of B remains the same.

Since both, the friend-oriented and the enemy-oriented extensions, are additive, indepen-
dence and monotonicity are implied.

Let bi(D) denote the best and wi(D) denote the worst player in a coalition D ∈ Ni. For
W -preferences �W

i , consider the following case. Let

wi(A)�i wi(B)�i wi(C).

Thus, A �W
i B, but wi(A∪C) = wi(C) = wi(B∪C) which means that A∪C �W

i B∪C does
not hold. For B-preferences �B

i , additionally assume that �B�< �A� and let

bi(C)�i bi(A)�i bi(B).

Then, A �B
i B, but bi(A∪C) = bi(C) = bi(B∪C). In the case of equality, the cardinal-

ity is compared. Hence, �B∪C� < �A∪C� implies B∪C �B
i A∪C, a contradiction to

independence.
Monotonicity, however, holds in both cases: If wi(A) = j, then either j remain the worst

player and is still better than the worst player in B, or j overtakes a new worst player in A

which cannot be worse than wi(B), otherwise this would have been the worst player in A

before. If j �i wi(A), then the relation remains the same. Similarly, if bi(B) = j, then it is
even better in the new relation. If bi(A) �= j, it may be the case that the best player remains
the same or j becomes an even better best player, then the relation remains the same. It may
also be the case that bi(A) = bi(B), then the cardinality inequality remains the same, or j

becomes the best player in A and therefore, again A is preferred. �

In Chapter 5 we will introduce a new representation that combines the singleton and the
network of friends encodings. Moreover, we will define an extension to a network of friends
considering altruistic influences.

26



3 Weighted Voting Games:

Manipulation and Control

This chapter deals with influence in cooperative games. In Section 3.1 three types of ma-
nipulation in weighted voting games are analysed and extended to a generalized framework
for different classes of games in Section 3.2. Section 3.3 contains studies of structural
control scenarios in weighted voting games. We conclude with ideas for future work in
Section 3.4. If not indicated otherwise, the results of Sections 3.1 and 3.2 can be found in
the article [RR14a], and the conference contribution [RR14b]. The paper [RR16] is based
on the contents of Section 3.3

As a running example consider the following weighted voting game.

Example 3.1. Let G = (N,v) be a weighted voting game with six players in N =
{1,2,3,4,5,6} represented by

(1,2,2,3,4,5; 10).

The players’ probabilistic Penrose–Banzhaf and Shapley–Shubik power indices are dis-

tributed as follows:

player 1 2 3 4 5 6

PenroseBanzhaf 4
32

6
32

6
32

10
32

12
32

18
32

ShapleyShubik 4
60

6
60

6
60

11
60

13
60

20
60

with no player being a dummy player and power weakly increasing with the player’s

weights.

False-name manipulation describes the strategic simulation of false identities in order to
increase a player’s power. More concretely, we study the question as to whether a player
in a cooperative game can increase her significance measured by a power index by splitting
up into several new players. Reversely, beneficial merging is the problem of whether a
coalition of players can pretend to be one single player and thereby gain a higher index in
sum. Relatedly, we consider the problem of beneficial annexation where a single player
takes over other players’ weights and achieves an advantage for herself. The latter problem
is related to the bloc-paradox as described in Section 2.3.1 and studied by, for example,
Felsenthal and Machover [FM95]. Bachrach and Elkind [BE08] were the first to study
false-name manipulation from a computational complexity perspective in weighted voting
games as defined in Section 2.3.
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3 Weighted Voting Games: Manipulation and Control

Table 3.1 provides an overview of the development of the complexity results of beneficial
merging, splitting, and annexation for the two power indices studied here, the probabilistic
Penrose–Banzhaf index and the Shapley–Shubik index.

PI-BENEFICIALMERGE PI-BENEFICIALSPLIT PI-BENEFICIALANNEXATION

• open question ∗

• NP-hard (Shapley–Shubik

index) † ††

• NP-hard (probab.

Penrose–Banzhaf index) �

• NP-hard (Shapley–Shubik

index, m = 2) * ††

• NP-hard (probab.

Penrose–Banzhaf index) �

• never disadv. (Shapley–

Shubik index) ‡ ††

• never disadv. (probab.

Penrose–Banzhaf

index) (Eq. (3.3)) ¶

• in PP (Shapley–Shubik index,

�S�= 2) §

• in P (probab. Penrose–Banzhaf

index, �S�= 2) (Prop. 3.4) �

• in PP (probab. Penrose–Banz-

haf index) �

• in P (probab. Penrose–

Banzhaf index, m = 2)

(Prop. 3.4) �

• NP-complete (player)

(Thm. 3.12, 3.16) ¶

• PP-complete (Thm. 3.7, 3.14) ¶ • PP-hard (Thm. 3.10, 3.15) ¶ • NP-hard (coalition)

(Rem. 3.13, 3.17) ¶

∗ [BE08]
† [AP09]
†† [ABEP11]
‡ [FM95]

§ [FH09]
� [RR14a, RR10a, RR10b]
¶ this thesis ([RR14a, RR14b])

Table 3.1: Overview of the history of complexity results of beneficial merging, splitting, and
annexation for the probabilistic Penrose–Banzhaf index and the Shapley–Shubik
index. Chronologically, the first row describes initial results and lower bounds;
the second row contains the subsequent upper bounds and special cases; and the
third row reports the latest results from this thesis. Key: �S� denotes the size of
a merging coalition and m is the number of players a given player splits into.

In an assembled and extended article of the results by Bachrach and Elkind [BE08] and
Aziz and Paterson [AP09], Aziz et al. [ABEP11] study the problems of beneficial merging,
splitting, and annexation in weighted voting games in terms of the Shapley–Shubik and the
normalized Penrose–Banzhaf index. In [RR10a] this study for the merging and splitting
problems is extended for the probabilistic Penrose–Banzhaf index. These results, however,
provide merely NP-hardness lower bounds (row 1). Aziz et al. note that the problem might
not be NP-complete. Faliszewski and Hemaspaandra [FH09] provide the best known upper
bound for the beneficial merging problem for two players with respect to the Shapley–
Shubik index: It is contained in the class PP, and they conjecture that this problem is PP-
complete. We observe, by the same arguments, the same upper bound for beneficial merging
in terms of the probabilistic Penrose–Banzhaf index. In contrast to the normalized Penrose–
Banzhaf index and the Shapley–Shubik index, for the probabilistic Penrose–Banzhaf index,
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the problems of increasing power by merging or splitting are in P for coalitions of size two
and a split into two players, respectively (row 2).

For the beneficial merging problem, we bridge the gap between the NP-hardness lower
bound and the PP upper bound, for both the Shapley–Shubik and the probabilistic Penrose–
Banzhaf index, resolving the conjecture of PP-completeness in the affirmative. For false-
name manipulation, we also raise the lower bound to PP-hardness. The upper bound, how-
ever, depends on the particular definition of the problem. PP-hardness holds in the case in
which the new players’ weights are given in the problem instance (row 3).

While these problems deal with voluntary actions by a group of players, [FM95] study the
question of whether it is possible for a player to change her power by taking another player’s
weight over without this player’s consent (column 3). Similar to their bloc paradox, stating
that for the normalized Penrose–Banzhaf index it is possible to lose power by annexing
another player’s weight, Aziz et al. [ABEP11] discuss the annexation non-monotonicity

paradox, which says that it sometimes can be more useful for a player to annex another
player of small weight than to annex another player of large weight. Nevertheless, they
show that with respect to the normalized Penrose–Banzhaf index it is always beneficial for a
player to annex another player with a larger weight than her own weight. As annexation can
be disadvantageous for this index, Aziz et al. study the complexity of beneficial annexation
and show that it is NP-hard to decide whether a player can benefit from annexing a coalition
of players. For the Shapley–Shubik index, Felsenthal and Machover show that annexation
is never disadvantageous. Nonetheless, one can still ask the question of whether it is in fact
advantageous. We show that it is NP-complete to decide whether annexing another player
is advantageous for the Shapley–Shubik index, as well as for the probabilistic Penrose–
Banzhaf index. We furthermore show that annexation can never be disadvantageous for the
probabilistic Penrose–Banzhaf index either, which thus behaves like the Shapley–Shubik
index in this regard.

Moreover, we propose a general framework for merging and splitting that can be applied
to different classes and representations of games. Introducing new properties of merging and
splitting functions, consistency and independence, which in particular are satisfied by the
standard merging and splitting functions for weighted voting games, we can generalize the
P results for the probabilistic Penrose–Banzhaf index. As an example of applying this more
general framework to a concrete class of games, we consider threshold network flow games
on hypergraphs, a model adapted here from the threshold network flow games introduced
by Bachrach and Rosenschein [BR09]. In unanimity games and with respect to the proba-
bilistic Penrose–Banzhaf index, we show that splitting is always disadvantageous or neutral,
whereas merging is neutral for size-two coalitions, yet advantageous for coalitions with at
least three players. This strongly contrasts with the results by Aziz et al. [AP09, ABEP11]
showing that merging is always disadvantageous and splitting is always advantageous for
the normalized Penrose–Banzhaf index in unanimity weighted voting games. These are only
two examples of how different properties of a game or restrictions caused by a certain rep-
resentation can lead to different behaviour when considering merging and splitting. Lasisi
and Allan [LA10] study related problems in unanimity weighted voting games as well.
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3 Weighted Voting Games: Manipulation and Control

As has been mentioned in the introduction, a major field in computational social choice is
the complexity analysis of the question whether a certain form of influence is possible in an
election under a certain voting rule. Besides merging, splitting, and annexation other forms
of manipulation have been studied in weighted voting games. Zuckerman et al. [ZFBE12,
ZFBE08] study manipulation of the quota in weighted voting games. Relatedly, Zick et
al. [Zic13, ZSE11] study algorithmic properties of the quota. In dynamic weighted voting
games, as presented by Elkind et al. [EPZ13], the quota is changed as well, this time over
time.

Inspired by the notion of control, where the chair of an election changes the structure
of the election in order to achieve a desired goal [BTT92, HHR07], we consider control
scenarios in weighted voting games. We define problems of whether a chair, or referee of
a game, or supervisor in a real world application of the game can change the structure of
a game in order to achieve a certain goal. Structural changes include adding or deleting
a certain number of players. This could also be viewed as a static change of the players’
participation over time. Goals include increasing or decreasing the power of a distinguished
player, in relation to the player’s power in the original game. Power, again, refers to power
indices like the Penrose–Banzhaf or Shapley-Shubik index. We show, as summed up in
Table 3.2, that the complexity depends on the control type and the goal alike as well as on
whether the parameter of how many players can be added or deleted is fixed or given in the
problem instance.

Control
Goal Type

ADDING PLAYERS DELETING PLAYERS

increase • PP-complete (k fixed) (Thm. 3.27) ¶

• PP-hard (k given) (Thm. 3.25) ¶

• NP-hard (Shapley–Shubik index,

k = 1) (Thm. 3.29) ¶

non-decrease • PP-complete (k fixed) (Thm. 3.27) ¶

• PP-hard (k given) (Thm. 3.25) ¶

decrease • PP-complete (k fixed) (Thm. 3.27) ¶

• PP-hard (k given) (Thm. 3.25) ¶

non-increase • PP-complete (k fixed) (Thm. 3.27) ¶

• PP-hard (k given) (Thm. 3.25) ¶

• coNP-hard (probab. Penrose–Banz-

haf index, k = 1) (Thm. 3.30) ¶

maintain • coNP-hard, PP (k fixed) (Thm. 3.28)¶

• PP-hard (k given) (Thm. 3.25) ¶

• coNP-hard (probab. Penrose–Banz-

haf index, k = 1) (Thm. 3.30) ¶

¶ this thesis ([RR16])

Table 3.2: Overview of complexity results of structural control problems in weighted vot-
ing games for the probabilistic Penrose–Banzhaf index and the Shapley–Shubik
index. Key: k denotes the number of players to be added or deleted, respectively.
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3.1 Beneficial Merging, Splitting, and Annexation

3.1 Beneficial Merging, Splitting, and Annexation

We use the following notation for merging and splitting operations for weighted
voting games as introduced by Aziz et al. [ABEP11]. Given a weighted voting
game G

�

� (w1, . . . ,wn; q) and a non-empty1 coalition S ⊆ {1, . . . ,n}, let G&S

�

�

(w(S),w j1 , . . . ,w jn−�S�
; q) with { j1, . . . , jn−�S�} = N � S denote the new weighted voting

game in which the players in S have been merged into one new player of weight w(S).
Note that the players’ order does not matter, since we are in a neutral environment (see
Section 2.3.1). For a power index PI, the beneficial merging problem is defined as follows.

PI-BENEFICIALMERGE

Given: A weighted voting game G

�

� (w1, . . . ,wn; q) and a non-empty coalition
S ⊆ {1, . . . ,n}.

Question: Is merging of S beneficial, that is, does PI(G&S,1)> ∑i∈S PI(G , i) hold?

Similarly, given a weighted voting game G

�

� (w1, . . . ,wn; q), a player i,
and an integer m ≥ 2, define the set of weighted voting games Gi÷m

�

�

(w1, . . . ,wi−1,wi+1, . . . ,wn,wn+1, . . . ,wn+m; q) in which i with weight wi is split into m new
players n+ 1, . . . ,n+m with weights wn+1, . . . ,wn+m such that ∑

m
j=1 wn+ j = wi. Note that

there is a set of such weighted voting games Gi÷m, since there might be several possibilities
of distributing i’s weight wi to the new players n+1, . . . ,n+m satisfying ∑

m
j=1 wn+ j = wi.

We distinguish between two different splitting problems.2 Firstly, for a power index PI,
consider the problem where a weighted voting game, a player i, and the number m of false
identities i splits into are given in the problem instance, but not the weights of the new
players:

PI-BENEFICIALSPLIT

Given: A weighted voting game G

�

� (w1, . . . ,wn; q), a player i, and an integer
m ≥ 2.

Question: Is it possible to split i into m new players n+ 1, . . . ,n+m with weights
wn+1, . . . ,wn+m satisfying ∑

m
j=1 wn+ j = wi such that in this new weighted

voting game, call it Gi÷m, it holds that ∑
m
j=1 PI(Gi÷m,n+ j)> PI(G , i)?

As mentioned above, for an instance (G , i,m) of PI-BENEFICIALSPLIT, there might be
various ways of distributing i’s weight to her false identities, giving rise to various new
games Gi÷m. In the second (more special) variant of the problem we consider, the new play-
ers’ weights are given explicitly in the problem instance and the number of false identities

1 We omit the empty coalition, since this would slightly change the idea of the problem. We deal with
structural changes in Section 3.3.

2 This distinction would not make sense for beneficial merging or annexation.
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3 Weighted Voting Games: Manipulation and Control

(which is given implicitly) is polynomially bounded by the number of original players. In
this case, there is only one unique new game Gi÷m, and splitting is the inverse function to
merging.

PI-BENEFICIALSPLIT INTO GIVEN WEIGHTS

Given: A weighted voting game G

�

� (w1, . . . ,wn; q), a player i, and integer
weights wn+1, . . . ,wn+m such that ∑

m
j=1 wn+ j = wi and m is polynomially

bounded by n.

Question: Does it hold for the split i into m new players n+1, . . . ,n+m with weights
wn+1, . . . ,wn+m such that in the new weighted voting game Gi÷m, that
∑

m
j=1 PI(Gi÷m,n+ j)> PI(G , i)?

We will explicitly mention it whenever we speak of the latter more restricted variant.
We say that merging (or splitting, respectively) is advantageous if it is beneficial; it is

disadvantageous if it is not beneficial and in the related inequation < holds; and it is neutral

if there is no change in power, that is, in the related inequation equality holds.
Involuntary participation in a manipulative action has been studied by Aziz et

al. [ABEP11] for coalitions instead of a single annexed player. Here, we focus on a sin-
gle annexed player. Let PI be a power index.

PI-BENEFICIALANNEXATION

Given: A weighted voting game G

�

� (w1, . . . ,wn; q) and two players i, j ∈ N,
i �= j.

Question: Does player i benefit from annexing player j, that is, is it true that
PI(G&{i, j},1)> PI(G , i)?

Example 3.2. Consider the weighted voting game G in Example 3.1. Let S = {2,3} be a

coalition that wants to merge together. The resulting weighted voting game is

G&S

�

� (4,1,3,4,5; 10).

It holds that

PenroseBanzhaf(G&{2,3},1) =
6

16

=
6

32
+

6
32

= PenroseBanzhaf(G ,2)+PenroseBanzhaf(G ,3),

that is, no increase of the combined probabilistic Penrose–Banzhaf power index. If player

3 had annexed player 2, there would have been an increase. Regarding the Shapley–Shubik

index, merging is beneficial for players 2 and 3, since

ShapleyShubik(G&{2,3},1) =
14
60

>
6
60

= ShapleyShubik(G ,2)+ShapleyShubik(G ,3).
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3.1 Beneficial Merging, Splitting, and Annexation

As an example for splitting, consider G again and let i = 5 and m = 2. There are two (up

to the order of players which is neglected due to neutrality) possible new games

G5÷2 = (1,2,2,4,5,2,2; 10) or G5÷2 = (1,2,2,4,5,1,3; 10).

In neither case splitting is beneficial for the probabilistic Penrose–Banzhaf index, since

PenroseBanzhaf(G5÷2,6)+PenroseBanzhaf(G5÷2,7) =
12
64

+
12
64

=
12
32

= PenroseBanzhaf(G ,5)

in the first case and 5/64+ 19/64 = 12/32 in the second case. For the Shapley-Shubik index

there is even a decrease of power in both cases:

ShapleyShubik(G5÷2,6)+ShapleyShubik(G5÷2,7) =
41
420

+
41
420

<
91

420
= ShapleyShubik(G ,5)

and, respectively, 17/420+ 73/420 < 91/420.

In this thesis we focus on the complexity classification of these merging, splitting and
annexation problems for both the Shapley–Shubik and the probabilistic Penrose–Banzhaf
index.

Before doing so, since we allow players with zero weight, we state another simple fact
required for the analysis of the beneficial splitting problem (see the proofs of Theorems 3.10
and 3.15).

Lemma 3.3. For both the probabilistic Penrose–Banzhaf index and the Shapley–Shubik

index, given a weighted voting game, adding a player with weight zero does not change the

original players’ power indices, and the new player’s power index is zero.

Proof. Let G1

�

� (w1, . . . ,wn; q) be a weighted voting game. The new player n+ 1 in the
game G2

�

� (w1, . . . ,wn,0; q) does not change the total weight of any coalition by joining
it, that is, v(C ∪ {n + 1}) = v(C) for each C ⊆ N. Therefore, PenroseBanzhaf(G2, i) =
1/2n ∑C⊆N�{i} 2(v(C ∪ {i})− v(C)) = PenroseBanzhaf(G1, i), for each i, 1 ≤ i ≤ n. For
the same reason, player n + 1 is not pivotal for any coalition, thus, it holds that
PenroseBanzhaf(G2,n+1) = 0. �

In this section we prove that beneficial merging and splitting is PP-hard, and we provide
matching upper bounds for beneficial merging and splitting in the variant where the new
players’ weights are given, both for the Shapley–Shubik and the probabilistic Penrose–
Banzhaf index. We start with the latter.
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3 Weighted Voting Games: Manipulation and Control

3.1.1 Complexity Results for the Probabilistic Penrose–Banzhaf

Power Index

Both the beneficial merging problem for a coalition S of size 2 and the beneficial splitting
problem for m = 2 false identities can trivially be decided in polynomial time for the prob-
abilistic Penrose–Banzhaf index, since the sum of power (in terms of this index) of two
players is always equal to the power of the player that is obtained by merging them.

Proposition 3.4 ([RR10a, RR10b, RR14a]). Let G be a weighted voting game and S ⊆
{1, . . . ,n} be a coalition of its players.

1. PenroseBanzhaf-BENEFICIALMERGE is in P for instances (G ,S) with �S�= 2.

2. PenroseBanzhaf-BENEFICIALSPLIT is in P for instances (G , i,2).

Proof. Let G

�

� (w1, . . . ,wn; q) be a weighted voting game. Without loss of generality, let
S = {1,n}. We obtain a new game G&S

�

� (w1 +wn,w2, . . . ,wn−1; q), where the first player
is the new player merging S. Letting vG and vG&S

denote the corresponding coalitional
functions, it holds that

PenroseBanzhaf(G&S,1)− (PenroseBanzhaf(G ,1)+PenroseBanzhaf(G ,n)) = 0.

In the case of splitting, it similarly holds that

PenroseBanzhaf(Gn÷2,n+1)+PenroseBanzhaf(Gn÷2,n+2)−PenroseBanzhaf(G ,n)

= 0

for a weighted voting game G = (N,v), m = 2, and, without loss of generality, player n in
G splitting into players n+1 and n+2 in a new game Gn÷2. �

Although it may seem as if Proposition 3.4 implied that merging (and splitting) were
never beneficial regarding this index, this cannot be generalized to merging (or splitting
into) more than two players, by repeatedly applying the above result to pairs of players
step by step. For example, as soon as two players merge, a third player’s probabilistic
Penrose–Banzhaf index might have already changed in the new game, before merging her
with another player in a subsequent step. Suppose three players in {1,2,3} want to merge
in a game G . Let βi = PenroseBanzhaf(G , i), 1 ≤ i ≤ 3, be their original probabilistic
Penrose–Banzhaf indices. Let β be their common Penrose–Banzhaf index after the merge.
After merging the first two players, let β �

1 and β �
3 be the indices of the new player replacing

{1,2} and of 3, respectively. Then, due to Proposition 3.4, β = β �
1 + β �

3 = β1 + β2 + β �
3.

Hence, β > β1 + β2 + β3 if and only if β �
3 > β3. That is, for the probabilistic Penrose–

Banzhaf index, beneficial merging of three players boils down to comparing the index of
one player in two games—the original game and the one where the other two players have
merged. If these were two arbitrary games, the result for the comparison of power indices
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3.1 Beneficial Merging, Splitting, and Annexation

by Faliszewski and Hemaspaandra [FH09] would have applied. Here, however, the indices
need to be compared in two closely related games; this requires a different proof. Indeed,
next we show that it is by far harder than for two players (unless the polynomial hierarchy
collapses to its first level) to decide whether merging three players is beneficial in terms of
the probabilistic Penrose–Banzhaf index.

Our goal is to provide a ≤
p
m-reduction from the PP-complete problem COMPARE-

#SUBSETSUM (see Corollary 2.6) to PenroseBanzhaf-BENEFICIALMERGE. In order to
make this reduction work, it will be useful to consider two restricted variants of COM-
PARE-#SUBSETSUM, which we denote by COMPARE-#SUBSETSUM-R and COMPARE-
#SUBSETSUM-RR, show their PP-hardness, and then reduce COMPARE-#SUBSETSUM-
RR to PenroseBanzhaf-BENEFICIALMERGE. This will be performed in Lemmas 3.5
and 3.6 and in Theorem 3.7. In all restricted variants of COMPARE-#SUBSETSUM we may
assume, without loss of generality, that the target value q in a related #SUBSETSUM instance
(a1, . . . ,an; q) satisfies 1 ≤ q ≤ α −1, where α = ∑

n
i=1 ai.

COMPARE-#SUBSETSUM-R

Given: A set A = {1, . . . ,n}, a value function a : A → N� {0}, i �→ ai, and two
positive integers q1 and q2 with 1 ≤ q1,q2 ≤ α −1, where α = ∑

n
i=1 ai.

Question: Is the number of subsets of A with values summing up to q1 greater than the
number of subsets of A with values summing up to q2, that is, does it hold
that #SUBSET SUM((a1, . . . ,an; q1))> #SUBSET SUM((a1, . . . ,an; q2))?

Similar to SUBSET SUM, let (a1, . . . ,an; q1, q2) denote an instance of COMPARE-
#SUBSETSUM-R.

Lemma 3.5. COMPARE-#SUBSETSUM ≤
p
m COMPARE-#SUBSETSUM-R.

Proof. Given an instance (X ,Y ) of COMPARE-#SUBSETSUM, X = (x1, . . . ,xm; qx)
and Y = (y1, . . . ,yn; qy), construct the COMPARE-#SUBSETSUM-R instance (x1, . . . ,xm,
2αy1, . . . ,2αyn; qx, 2αqy), where α = ∑

m
i=1 xi. This construction can obviously be achieved

in polynomial time.
It holds that the constructed values can only sum up to qx ≤ α − 1 if they do

not contain multiples of 2α , thus #SUBSET SUM((x1, . . . ,xm,2αy1, . . . ,2αyn; q1)) =
#SUBSET SUM(X). On the other hand, q2 cannot be obtained by adding any of the xi,
since this would yield a non-zero remainder modulo 2α , because ∑

m
i=1 xi = α is too small.

Thus, it holds that #SUBSET SUM((x1, . . . ,xm,2αy1, . . . ,2αyn; q2)) = #SUBSET SUM(Y ).
It follows that (X ,Y ) belongs to COMPARE-#SUBSETSUM if and only if the constructed
instance is in COMPARE-#SUBSETSUM-R. �

In order to perform the next step, we need to ensure that all integers in a COMPARE-
#SUBSETSUM-R instance are divisible by 8. This can easily be achieved, by multiplying
each integer in an instance (a1, . . . ,an; q1, q2) by 8, obtaining (8a1, . . . ,8an; 8q1, 8q2) with-
out changing the number of solutions for both related SUBSETSUM instances. Thus, from
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now on, without loss of generality, we assume that for a given COMPARE-#SUBSETSUM-R
instance (a1, . . . ,an; q1, q2), it holds that ai,q j ≡ 0 mod 8 for 1 ≤ i ≤ n and j ∈ {1,2}.

Now, we consider our even more restricted variant of this problem.

COMPARE-#SUBSETSUM-RR

Given: A set A = {1, . . . ,n} and a value function a : A → N�{0}, i �→ ai.

Question: Is the number of subsets of A with values summing up to (α/2)−2, where
α = ∑

n
i=1 ai, greater than the number of subsets of A with values summing

up to (α/2)−1, i.e., is it true that #SUBSET SUM((a1, . . . ,an; (α/2)−2))>
#SUBSET SUM((a1, . . . ,an; (α/2)−1))?

Again, let (a1, . . . ,an) denote an instance of COMPARE-#SUBSETSUM-RR.

Lemma 3.6. COMPARE-#SUBSETSUM-R ≤
p
m COMPARE-#SUBSETSUM-RR.

Proof. Given an instance X = (a1, . . . ,an; q1, q2) of COMPARE-#SUBSETSUM-R, where
we assume that ai,q j ≡ 0 mod 8 for 1 ≤ i ≤ n and j ∈ {1,2}, we construct an instance B

of COMPARE-#SUBSETSUM-RR as follows. This reduction is inspired by the standard
reduction from SUBSET SUM to PARTITION due to Karp [Kar72]. Letting α = ∑

n
i=1 ai,

define
Y = (a1, . . . ,an,2α −q1,2α +1−q2,2α +3+q1 +q2,3α).

This instance can obviously be constructed in polynomial time. Observe that

T =

�
n

∑
i=1

ai

�

+(2α −q1)+(2α +1−q2)+(2α +3+q1 +q2)+3α = 10α +4,

and therefore, (T/2)−2= 5α and (T/2)−1= 5α+1. We show that X belongs to COMPARE-
#SUBSETSUM-R if and only if Y is in COMPARE-#SUBSETSUM-RR.

Firstly, we examine which values of Y sum up to 5α . Consider two cases.

Case 1: If 3α is added, 2α + 3+ q1 + q2 cannot be added, as it would be too large. Also,
2α +1−q2 cannot be added, leading to an odd sum. So, 2α −q1 has to be added, as
the remaining α are too small. Since 3α +2α −q1 = 5α −q1, 5α can be achieved by
adding some integers ai if and only if there exists a subset A� ⊆ {1, . . . ,n} such that
∑i∈A� ai = q1 (i.e., A� is a solution of the SUBSETSUM instance (a1, . . . ,an; q1)).

Case 2: If 3α is not added, but (a) 2α +3+q1 +q2, an even number can only be achieved
by adding 2α +1−q2, thus, α −4−q1 remains. Hence, 2α −q1 is too large, while no
subset of {1, . . . ,n} has values summing up to α −4−q1, because of the assumption
of divisibility by 8. If (b) neither 3α nor 2α + 3+ q1 + q2 are added, the remaining
5α +1−q1 −q2 are too small.
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Thus, the only possibility to obtain 5α is to find a subsequence of {1, . . . ,n}
with values adding up to q1. Therefore, #SUBSET SUM((a1, . . . ,an; q1)) =
#SUBSET SUM((a1, . . . ,an,2α −q1,2α +1−q2,2α +3+q1 +q2,3α; 5α)).

Secondly, for similar reasons, a sum of 5α+1 can only be achieved by adding 3α+(2α+
1−q2) and a term ∑i∈A� ai, where A� is a subset of {1, . . . ,n} such that ∑i∈A� ai = q2. Hence,
#SUBSET SUM((a1, . . . ,an; q2)) = #SUBSET SUM((a1, . . . ,an,2α − q1,2α + 1− q2,2α +
3+q1 +q2,3α; 5α +1)).

Thus, the relation #SUBSET SUM((a1, . . . ,an; q1)) > #SUBSET SUM((a1, . . . ,an; q2))
holds if and only if #SUBSET SUM((a1, . . . ,an,2α −q1,2α +1−q2,2α +3+q1 +q2,3α;
5α)) > #SUBSET SUM((a1, . . . ,an,2α − q1,2α + 1 − q2,2α + 3 + q1 + q2,3α; 5α + 1)),
which completes the proof. �

We now are ready to prove the main theorem of this section.

Theorem 3.7. PenroseBanzhaf-BENEFICIALMERGE is PP-complete, even if only three

players of equal weight merge.

Proof. Membership of PenroseBanzhaf-BENEFICIALMERGE in PP has already been ob-
served in [RR10a, Theorem 3]. It follows from the fact that the raw Penrose–Banzhaf
index is in #P and that #P is closed under addition and multiplication by two, and, further-
more, since comparing the values of two #P functions on two (possibly different) inputs
reduces to a PP-complete problem. This technique (which was proposed by Faliszewski
and Hemaspaandra [FH09] and applies their Lemma 2.10) works, since PP is closed under
≤

p
m-reducibility.
We show PP-hardness of PenroseBanzhaf-BENEFICIALMERGE by means of a ≤

p
m-

reduction from COMPARE-#SUBSETSUM-RR, which is PP-hard by Corollary 2.6 via Lem-
mas 3.5 and 3.6.

Given an instance (a1, . . . ,an) of COMPARE-#SUBSETSUM-RR, construct the following
instance for PenroseBanzhaf-BENEFICIALMERGE. Let α = ∑

n
i=1 ai. Define the weighted

voting game
G

�

� (2a1, . . . ,2an,1,1,1,1; α)

with n+ 4 players, and let the merging coalition be S = {n+ 2,n+ 3,n+ 4}. Letting A =
{1, . . . ,n}, it holds that PenroseBanzhaf(G ,n+2) =

1
2n+3

�
�
�
�
�

�

C ⊆ {1, . . . ,n+1,n+3,n+4}

�
�
�
�
�
∑
i∈C

wi = α −1

��
�
�
�
�

=
1

2n+3

��
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −1

��
�
�
�
�
+3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

1+ ∑
i∈A�

2ai = α −1

��
�
�
�
�

(3.1)

+3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

2+ ∑
i∈A�

2ai = α −1

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

3+ ∑
i∈A�

2ai = α −1

��
�
�
�
�

�

(3.2)
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=
1

2n+3

�

3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −4

��
�
�
�
�

�

,

since the 2ai can only add up to an even number. The first of the four sets in (3.1) and (3.2)
refers to those coalitions that do not contain any of the players n+ 1, n+ 3, and n+ 4; the
second, third, and fourth set in (3.1) and (3.2) refer to those coalitions containing either one,
two, or three of them, respectively. Since the players in S have the same weight, players
n+3 and n+4 have the same probabilistic Penrose–Banzhaf index as player n+2.

Furthermore, the new game after merging is G&{n+2,n+3,n+4}

�

� (3,2a1, . . .2an,1; α) with
n+2 players, and similarly as above the Penrose–Banzhaf index of the first player is calcu-
lated as follows:

PenroseBanzhaf
�
G&{n+2,n+3,n+4},1

�

=
1

2n+1

�
�
�
�
�

�

C ⊆ {2, . . . ,n+2}

�
�
�
�
�
∑
i∈C

wi ∈ {α −3,α −2,α −1}

��
�
�
�
�

=
1

2n+1

��
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai ∈ {α −3,α −2,α −1}

��
�
�
�
�

+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

1+ ∑
i∈A�

2ai ∈ {α −3,α −2,α −1}

��
�
�
�
�

�

=
1

2n+1

�

2 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −4

��
�
�
�
�

�

.

Altogether, it holds that

PenroseBanzhaf
�
G&{n+2,n+3,n+4},1

�
− ∑

i∈{n+2,n+3,n+4}

PenroseBanzhaf(G , i)

=
1

2n+1

�

2 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −4

��
�
�
�
�

�

−
3

2n+3

�

3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −4

��
�
�
�
�

�

=

�
1

2n+1 ·2−
3

2n+3 ·3
�
�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −2

��
�
�
�
�

+

�
1

2n+1 −
3

2n+3

�
�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

2ai = α −4

��
�
�
�
�

= −
1

2n+3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

ai =
α

2
−1

��
�
�
�
�
+

1
2n+3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

ai =
α

2
−2

��
�
�
�
�
,
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which is greater than zero if and only if
�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

ai =
α

2
−2

��
�
�
�
�

>

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
i∈A�

ai =
α

2
−1

��
�
�
�
�
,

which, in turn, is the case if and only if the original instance (a1, . . . ,an) is in COMPARE-
#SUBSETSUM-RR. �

Remark 3.8. Note that the proof cannot be transferred straightforwardly to the normalized

Penrose–Banzhaf index, since in different games the indices have possibly different denomi-

nators, not only different by a factor of some power of two, as is the case for the probabilistic

Penrose–Banzhaf index.

Analogously to the proof of Theorem 3.7, it can be shown that PenroseBanzhaf-
BENEFICIALSPLIT INTO GIVEN WEIGHTS for at least three false identities is PP-complete.
Note that there is no direct reduction from beneficial merging by an identity function, since
we ask for < instead of ≤. Nevertheless, the instances are comparable as weights of players
in S correspond to the new weights. The same arguments hold for the upper bound; recall
that we can characterize PP with > and ≥ alike.

Corollary 3.9. PenroseBanzhaf-BENEFICIALSPLIT INTO GIVEN WEIGHTS is PP-

complete, even if the given player splits into three players, and the given weights are equal.

However, for the more general beneficial splitting problem where the new players’
weights are not given, a PP upper bound cannot be shown straightforwardly. Yet, it can
be shown that this problem is PP-hard, even for three false identities.

Theorem 3.10. PenroseBanzhaf-BENEFICIALSPLIT is PP-hard, even if the given player

can only split into three players of equal weight.

Proof. In order to show PP-hardness for PenroseBanzhaf-BENEFICIALSPLIT, we use the
same techniques as in Theorem 3.7, appropriately modified. In fact, we will now show
PP-hardness for m = 3 false identities.3

Firstly, we slightly change the definition of COMPARE-#SUBSETSUM-RR by switching
(α/2)−2 and (α/2)−1. The problem, called COMPARE-#SUBSETSUM- RR, of whether the
number of subsequences of a given sequence A of positive integers summing up to (α/2)−1
is greater than the number of subsequences of A summing up to (α/2)−2, is PP-hard by the
same proof as in Lemma 3.6 with the roles of q1 and q2 exchanged.

3 This result can be expanded to all fixed m ≥ 3 by splitting into additional players with weight 0. More
precisely, if m > 3, we consider the same game G as below and split into three players of weight 1 each
and m−3 players of weight 0 each. By Lemma 3.3, the sum of all m new players’ Penrose–Banzhaf power
indices is equal to the combined Penrose–Banzhaf power index of the three players. Thus, PP-hardness will
hold for splitting into fixed m > 3 players by essentially the same arguments as given below for splitting
into three players.
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3 Weighted Voting Games: Manipulation and Control

Now, we reduce this problem to PenroseBanzhaf-BENEFICIALSPLIT by constructing the
following instance of the beneficial splitting problem from an instance (a1, . . . ,an) of COM-
PARE-#SUBSETSUM- RR. Let G

�

� (2a1, . . . ,2an,1,3; α), where α = ∑
n
j=1 a j, and let

i = n+ 2 be the player to be split. G is (apart from the order of players) equivalent to
the game obtained by merging in the proof of Theorem 3.7. Thus, letting A = {1, . . . ,n},
PenroseBanzhaf(G ,n+2) equals

1
2n+1

�

2 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

2a j = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

2a j = α −4

��
�
�
�
�

�

.

Allowing players with weight zero, there are different possibilities to split player n+2 into
three players. By Lemma 3.3, splitting n+ 2 into one player with weight 3 and two others
with weight 0 is not beneficial. Likewise, splitting n+ 2 into two players with weights 1
and 2 and one player with weight 0 is not beneficial, by Lemma 3.3 and since splitting into
two players is not beneficial (by Theorem 3.20.1). Thus, the only possibility left is splitting
n+2 into three players of weight 1 each. This corresponds to the original game in the proof
of Theorem 3.7, Gi÷3

�

� (2a1, . . . ,2an,1,1,1,1; α). Therefore,

PenroseBanzhaf(Gi÷3,n+2)

= PenroseBanzhaf(Gi÷3,n+3) = PenroseBanzhaf(Gi÷3,n+4)

=
1

2n+3

�

3 ·

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

2a j = α −2

��
�
�
�
�
+

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

2a j = α −4

��
�
�
�
�

�

.

Altogether, as in the proof of Theorem 3.7, the sum of the three new players’ probabilistic
Penrose–Banzhaf indices minus the probabilistic Penrose–Banzhaf index of the original
player is greater than zero if and only if

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

a j =
α

2
−1

��
�
�
�
�

>

�
�
�
�
�

�

A� ⊆ A

�
�
�
�
�

∑
j∈A�

a j =
α

2
−2

��
�
�
�
�
,

which is true if and only if (a1, . . . ,an) is in COMPARE-#SUBSETSUM- RR. �

Remark 3.11. As an upper bound for the general beneficial splitting problem, we can only

show membership in NPPP, whenever the number of false identities is given in unary, and

we conjecture that this problem is even complete for this class. When the number m of false

identities but not their weights are given in unary, there are exponentially many possibili-

ties to distribute the split player’s weight among her false identities. Non-deterministically

guessing such a distribution and then, for each distribution guessed, asking an appropriate

PP oracle to check in polynomial time whether their combined Penrose–Banzhaf power in

the new game is greater than the original player’s Penrose–Banzhaf power in the original

game, shows that PenroseBanzhaf-BENEFICIALSPLIT is in NPPP.

Whenever the number of false identities is given in the binary input format, even this

upper bound might no longer be valid.
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For a given weighted voting game G and two players i and j in G , the proof of Proposi-
tion 3.4 implies that

PenroseBanzhaf(G&{i, j},1)−PenroseBanzhaf(G , i) = PenroseBanzhaf(G , j)≥ 0. (3.3)

Therefore, it is never disadvantageous for player i to annex player j. Furthermore, we
have the following result on the complexity of beneficial annexation for the probabilistic
Penrose–Banzhaf index.

Theorem 3.12. PenroseBanzhaf-BENEFICIALANNEXATION is NP-complete.

Proof. By Equation (3.3) above, the question of whether the new player’s probabilistic
Penrose–Banzhaf index is greater than the original player’s probabilistic Penrose–Banzhaf
index is equivalent to the question of whether the annexed player has a positive value in the
original game. This property can be decided in nondeterministic polynomial time and is
NP-hard due to a result by Prasad and Kelly [PK90] (see Section 2.3.1). �

Remark 3.13. For the probabilistic Penrose–Banzhaf index, it holds that while the benefi-

cial annexation problem for a coalition of annexed players inherits NP-hardness from the

special case in Theorem 3.12, the problem’s NP upper bound does not generalize straight-

forwardly.

3.1.2 Complexity Results for the Shapley–Shubik Power Index

In order to prove PP-hardness for the merging and splitting problems with respect to the
Shapley–Shubik index, we need to take a further step back.

Theorem 3.14. ShapleyShubik-BENEFICIALMERGE is PP-complete, even if only two play-

ers of equal weight merge.

Proof. The PP upper bound, which has already been observed for two players by Fal-
iszewski and Hemaspaandra [FH09], can be shown analogously to the upper bound in The-
orem 3.7.

For proving the lower bound, observe that the size of a coalition a player is pivotal
for is crucial for determining the player’s Shapley–Shubik index. Pursuing the tech-
niques by Faliszewski and Hemaspaandra, we examine the problem COMPARE-#XC3,
which is PP-complete by Corollary 2.5. We will apply the following useful proper-
ties of XC3 instances shown by Faliszewski and Hemaspaandra [FH09, Lemma 2.7]:
Every XC3 instance (B�,S �) can be transformed into an XC3 instance (B,S ), where
�B� = 3k and �S � = n, that satisfies k/n = 2/3 without changing the number of solu-
tions, i.e., #XC3(B,S ) = #XC3(B

�,S �). Now, observe, that the parsimonious standard
reduction from XC3 to SUBSETSUM (see, e.g., [Pap95]) does not only preserve the num-
ber of solutions, but also the input size n and the size of each solution k. Hence, we
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can assume that in a given COMPARE-#SUBSET SUM instance each subsequence sum-
ming up to the given integer q is of size 2n/3. Following the track of the reductions from
COMPARE-#SUBSET SUM via COMPARE-#SUBSETSUM-R to COMPARE-#SUBSETSUM-
RR in Lemmas 3.5 and 3.6, a solution A� ⊆ {1, . . . ,n} to a given instance (a1, . . . ,an) of
the latter problem (A� satisfying either ∑i∈A� ai = (α/2)− 2 or ∑i∈A� ai = (α/2)− 1, where
α = ∑

n
i=1 ai) can be assumed to satisfy �A�� = k = (n+2)/3. Under this assumption, we

show PP-hardness of ShapleyShubik-BENEFICIALMERGE via a reduction from COMPARE-
#SUBSET SUM-RR. Given such an instance, we construct the weighted voting game G

�

�

(a1, . . . ,an,1,1; α/2) and consider coalition S = {n+1,n+2}. Let N = {1, . . . ,n} and define
ξ = #SUBSET SUM((a1, . . . ,an; (α/2)−1)) and υ = #SUBSET SUM((a1, . . . ,an; (α/2)−2)).
Then,

ShapleyShubik(G ,n+1) = ShapleyShubik(G ,n+2)

=
1

(n+2)!

















∑
C⊆N,

∑
i∈C

ai=
α
2 −1

�C�!(n+1−�C�)!









+









∑
C⊆N,

∑
i∈C

ai=
α
2 −2

(�C�+1)!(n−�C�)!

















=
1

(n+2)!
(ξ · k!(n+1− k)!+υ · (k+1)!(n− k)!) .

Merging the players in S, we obtain G&S
�

� (2,a1, . . . ,an; α/2). The Shapley–Shubik index
of the new player in G&S is

ShapleyShubik(G&S,1) =
1

(n+1)! ∑
C⊆N,

∑
i∈C

ai∈{α
2 −1,α

2 −2}

�C�!(n−�C�)!

=
1

(n+1)!
(ξ +υ) · k!(n− k)!.

All in all,

ShapleyShubik(G&S,1)− (ShapleyShubik(G ,n+1)+ShapleyShubik(G ,n+2))

=
(ξ +υ) · k!(n− k)!

(n+1)!
−

2(ξ · k!(n+1− k)!+υ · (k+1)!(n− k)!)
(n+2)!

=
k!(n− k)!
(n+2)!

(n−2k)(−ξ +υ). (3.4)

Since we assumed that k = (n+2)/3 and since we can also assume that n > 4 (because we
added four integers in the construction in the proof of Lemma 3.6), it holds that

n−2k =
n−4

3
> 0.
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Thus the term (3.4) is greater than zero if and only if υ is greater than ξ , which is true if
and only if (a1, . . . ,an) is in COMPARE-#SUBSETSUM-RR. �

Analogously to the probabilistic Penrose–Banzhaf index, we can also show for the
Shapley–Shubik index that it is PP-complete to decide if splitting a player into players with
given weights is beneficial. For the more general case where the number of false identities
but no actual weights are given, we can as well raise the previously known lower bound to
PP-hardness. Again, the upper bound of PP cannot be transferred straightforwardly.

Theorem 3.15. ShapleyShubik-BENEFICIALSPLIT is PP-hard, even if the given player can

only split into two players of equal weight.

Proof. PP-hardness can be shown analogously to the proof of Theorem 3.10, appropriately
modified to use the arguments from the proof of Theorem 3.14 instead of those from the
proof of Theorem 3.7. �

An upper bound of NPPP holds due to analogous arguments as in the proof of Re-
mark 3.11, whenever m is given in unary.

Felsenthal and Machover [FM95] have shown that annexation is never disadvantageous
for the Shapley–Shubik index. Still, the question of whether it is advantageous is hard to
decide.

Theorem 3.16. ShapleyShubik-BENEFICIALANNEXATION is NP-complete.

Proof. Let G

�

� (w1, . . . ,wn; q) be a weighted voting game and, without loss of generality,
let player 1 annex player n. It holds that

ShapleyShubik(G&{1,n},1)−ShapleyShubik(G ,1)

=
1
n! ∑

C⊆{2,...,n−1}

((v(C∪{1,n}− v(C∪{1})) ·�C�!(n−1−�C�)!

+(v(C∪{n}− v(C)) · (�C�+1)!(n−2−�C�)!).

Unlike for the probabilistic Penrose–Banzhaf index, this term is in general not equal to
ShapleyShubik(G ,n), but is greater than zero if and only if player n is pivotal for at least
one coalition C ⊆ {1, . . . ,n−1} in the original game. So, analogously to Theorem 3.12, this
property can be decided in nondeterministic polynomial time and is NP-hard by a result due
to Prasad and Kelly [PK90] (see also [DP94]; Section 2.3.1). �

Remark 3.17. Analogously to annexation with respect to the probabilistic Penrose–Banzhaf

index, it holds for the Shapley–Shubik index, that while the beneficial annexation problem

for an annexed coalition immediately inherits NP-hardness from the special case in Theo-

rem 3.16, that problem’s NP upper bound does not generalize straightforwardly.
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3.2 Generalizing Merging and Splitting Functions

We extend the definition of merging and splitting functions from weighted voting games to
general classes G of cooperative games. A class is any set of cooperative games; one may
think of G as being the class of simple games or the family of games that can be repre-
sented as weighted voting games or any representation of simple games such as the vector
weighted voting games [CEW11], or the threshold network flow games due to Bachrach and
Rosenschein [BR09], or even the class of all cooperative games.

A merging function on G,

µG : {G = (N,v) | G ∈G}× (P(N)� /0)→G,

turns a given cooperative game G = (N,v) in suitable representation and a given non-empty
coalition S ⊆ N into a new game µG(G ,S) = (N�,v�). The set N� = {i&S}∪ (N�S) contains
a new player i&S merging S. The function v� : P(N�) → R is the new coalitional function
whose values are to be specified according to the type of games in class G; that is, every
class G is closed under µG. For example, for weighted voting games a possible v� has been
specified in Section 3.1.

Similarly, a splitting function on G,

σG : {G = (N,v) | G ∈G}×N × (N�{0,1})→P(G),

turns a given cooperative game G = (N,v), a given player i ∈ N, and a given integer m ≥ 2
into a set of new games of the form (N�,v�), where player i is split into m players such that
N�= {n+1, . . . ,n+m}∪(N�{i}) and v� :P(N�)→R is the new coalitional function whose
values are to be specified according to the type of games in class G. Again, for weighted
voting games v� has been specified in Section 3.1, and for other classes of cooperative games,
v� needs to be suitably defined.

For example, if G is the class of monotonic cooperative games, v� must be defined such
that monotonicity is maintained, and since there are various possibilities of doing so, various
distinct splitting functions can be defined for this class of games. As a second example, let
µwvg and σwvg denote the merging and splitting functions for weighted voting games as
defined in Section 3.1. That is, for a weighted voting game G

�

� (w1, . . . ,wn; q) and a
coalition S ⊆ N = {1, . . . ,n}, define µwvg(G ,S) = G&S, and given a weighted voting game
G

�

� (w1, . . . ,wn; q), a player i ∈ N, and an integer m ≥ 2, define σwvg(G , i,m) to be the set
of weighted voting games Gi÷m.

We define the following properties of merging and splitting functions.

Definition 3.18. Let G be a class of cooperative games and let µG be a merging function

on G and σG be a splitting function on G.

1. We say µG satisfies consistency if for each G = (N,v) ∈ G and for each coalition

S ⊆ N, if µG(G ,S) = (N�,v�) then v(C∪ S) = v�(C∪ {i&S}) holds for each coalition

C ⊆ N �S.
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2. We say µG satisfies independence if for each G = (N,v) ∈ G and for each coalition

S ⊆ N, if µG(G ,S) = (N�,v�) then v(C) = v�(C) holds for each coalition C ⊆ N �S.

3. We say σG satisfies consistency if for each G = (N,v) ∈ G, for each player i ∈ N,

and for each integer m ≥ 2, if (N�,v�) ∈ σG(G , i,m) then v(C ∪ {i}) = v�(C ∪ {n+
1, . . . ,n+m}) for each coalition C ⊆ N �{i}.

4. We say σG satisfies independence if for each G = (N,v) ∈ G, for each player i ∈
N, and for each integer m ≥ 2, if (N�,v�) ∈ σG(G , i,m) then v(C) = v�(C) for each

coalition C ⊆ N �{i}.

Intuitively, consistency means that the value of a coalition subject to merging or splitting
should be the same before and after these operations. Independence means that the value of
a coalition not affected by merging or splitting should remain the same in the new game, i.e.,
it depends only on the players in this coalition. In weighted voting games, both µwvg and
σwvg satisfy consistency and independence, since the weight of the new player in µG(G ,S)
equals ∑i∈S wi for merging, and since ∑

m
j=1 wn+ j = wi for splitting.

The following example presents a merging function for the class of weighted majority
games such that neither consistency nor independence is satisfied.

Example 3.19. Let µwmg be the merging function that maps a given weighted majority game

G = (w1, . . . ,wn) and a given coalition S ⊆ N to a new weighted majority game, where

each player not in S keeps her weight, and the new player i&S merging S receives weight

wi&S
= ∏i∈S wi.

Consider the game G = (2,3,4,4) and the coalition S = {1,3}. Then, the game

µwmg(G ,S) = (8,3,4) is formed. The value of the merged player in the new game is

v�({i&S}) = 1, whereas the value of S in the original game is v(S) = 0. Thus, µwmg is

not consistent. On the other hand, the value of the coalition of the other players ({2,4} in

G and {2,3} in µwmg(G ,S)) decreases from 1 to 0. Thus, µwmg is not independent.

A similar example is obtained by using, e.g., the maximum or minimum weight of the
coalition’s players instead of the product of their weights, or any other function that is not
additive. One could consider any class of cooperative games with transferable utility, that
have, for instance, a certain property in common. An important property of cooperative
games is being a constant-sum game (see Section 2.3.1). Any merging function µcsg on the
class of constant-sum games is neither consistent nor independent whenever for G = (N,v),
some coalition S ⊆ N, and µcsg(G ,S) = (N�,v�), it holds that v(S) �= v�({i&S}) and v(N) =
v�(N�), since then v(N �S) �= v�(N �{i&S}). See Section 3.4 for further applications.

We can now define the beneficial merging and splitting problems in general. Let µG be a
merging function and σG be a splitting function on a class G of cooperative games and let
PI be a power index.
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µG-PI-BENEFICIALMERGE

Given: A game G = (N,v) in G and a non-empty coalition S ⊆ N.

Question: Is merging of S beneficial, that is, does PI(µG(G ,S), i&S) > ∑i∈S PI(G , i)
hold, where µG(G ,S) = (N�,v�) with N� = {i&S}∪ (N �S)?

Intuitively, µG-PI-BENEFICIALMERGE is the problem of whether a coalition of players
can benefit from merging via µG by raising their power in terms of PI. Similarly, σG-
PI-BENEFICIALSPLIT is the problem of whether a player can benefit from splitting into a
number of new players via σG by raising her power in terms of PI.

σG-PI-BENEFICIALSPLIT

Given: A game G = (N,v) in G, N = {1, . . . ,n}, a player i ∈ N, and an integer
m ≥ 2.

Question: Is a beneficial split possible, that is, is there a game G � =
(N�,v�) ∈ σG(G , i,m) with N� = {n+ 1, . . . ,n+m}∪ (N � {i}) such that
∑

m
j=1 PI(G �,n+ j)> PI(G , i)?

Generalizing Proposition 3.4, if consistency and independence are satisfied by the merg-
ing function, a coalition of two players cannot benefit from merging nor can a player benefit
from splitting into two players considering the probabilistic Penrose–Banzhaf index.

Theorem 3.20. Let µG be a merging function and let σG be a splitting function, both satis-

fying consistency and independence.

1. µG-PenroseBanzhaf-BENEFICIALMERGE is in P for instances (G ,S) with �S�= 2.

2. σG-PenroseBanzhaf-BENEFICIALSPLIT is in P for instances (G , i,2).

Proof. Let G = (N,v) be a cooperative game and let µG be a consistent and independent
merging function. Without loss of generality (see Section 2.3.1 for the assumption of neu-
trality), let S = {n−1,n}. We obtain a new game µG(G ,S) = ({1, . . . ,n−1},v�), where n�

is the new (n+1)st player merging S in G . It holds that

PenroseBanzhaf(µG(G ,S),n�)− (PenroseBanzhaf(G ,n−1)+PenroseBanzhaf(G ,n))

=
1

2n−1




 ∑

C⊆{1,...,n−2}

2(v�(C∪{n�})− v�(C))

− ∑
C⊆N�{n−1,n}

(v(C∪{n−1})− v(C)) − ∑
C⊆N�{n−1},

n∈C

(v(C∪{n−1})− v(C))

− ∑
C⊆N�{n,n−1}

(v(C∪{n})− v(C)) − ∑
C⊆N�{n},

n−1∈C

(v(C∪{n})− v(C))
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=
1

2n−1




 ∑

C⊆{1,...,n−2}




2v�(C∪{n�})−2v(C∪{n−1,n})
� �� �

= 0 (by consistency)

+ 2v(C)−2v�(C)
� �� �

= 0 (by independence)









 = 0.

In the case of splitting, consider a game G = (N,v) with n players, a consistent and
independent splitting function σG, and, without loss of generality, player n in G splitting
into players n+1 and n+2, which results in a new game G � ∈ σG(G ,n,2). Now, it similarly
holds that

PenroseBanzhaf(G �,n+1)+PenroseBanzhaf(G �,n+2)−PenroseBanzhaf(G ,n) = 0,

as claimed. �

Note that this immediately implies Proposition 3.4 for µwvg and σwvg.

Threshold Network Flow Games on Hypergraphs As another example, we briefly
consider threshold network flow games on hypergraphs, a class of compactly representable
simple cooperative games. Bachrach and Rosenschein [BR09] (see also the earlier work of
Kalai and Zemel [KZ82a, KZ82b]) analysed threshold network flow games on graphs. A
threshold network flow game is defined on an edge-weighted graph with n agents that each
control one edge, a source vertex s ∈V and a target vertex t ∈V , and a threshold k ∈R. The
coalitional function is the characteristic function, where a coalition of agents is successful

if and only if data of size k can be sent from s to t over paths on edges represented by the
agents in the coalition. Here, a flow of data of size k means that data can be split up on paths
each of which allows a flow of its smallest edge weight k�, while the sum of those k� over all
paths cannot be exceeded by k.

How can merging and splitting be defined in this setting? The approach to assign a merg-
ing coalition to the union of sets of edges controlled by players in the coalition of the original
game, does not apply here, since agents control single edges: Merging two or more agents
would yield one new agent who controls more than one edge and so would be qualitatively
different from the remaining agents; Similarly, splitting an agent into several subagents
would mean to “split” the original agent’s edge, and it is unclear how to do that. Our ap-
proach for solving this issue is to consider threshold network flow games on hypergraphs
rather than on graphs. A hyperedge in a hypergraph is any subset of the vertex set (so a graph
is the special case of a hypergraph with hyperedges of size two only). Of course, agents in a
hypergraph can have control over hyperedges of different sizes, but that is merely a quantita-
tive difference. Kalai and Zemel’s model is different from ours, because agents control sets
in the first place and cannot overlap. Deng and Papadimitriou [DP94] study a representation
of games by weighted hypergraphs and extend the Shapley value to this model.

Definition 3.21. A threshold hypergraph network flow game G = (N,v) is set on a weighted

hypergraph H = (V,E) with vertex set V and a set E = {e1, . . . ,en} of n weighted hyperedges

(where agent i represents hyperedge ei), a weight function w : E → N (represented as a list
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(w1, . . . ,wn) with wi =w(ei)), a source vertex s∈V and a target vertex t ∈V , and a threshold

k ∈ R. The coalitional function v : P(N)→ {0,1} is defined by v(C) = 1 if a data flow of

size k from s to t is possible in H|C, the subhypergraph of H induced by the hyperedge set

{ei | i ∈C}, and v(C) = 0 otherwise.

For threshold network flow games, determining the raw Penrose–Banzhaf index is #P-
many-one-complete, while the Shapley–Shubik index is only known to be at least as hard
as problems in NP [BR09]. For threshold network flow games on hypergraphs the problem
simply reduces from the corresponding problem for weighted voting games by mapping a
given weighted voting game G

�

� (w1, . . . ,wn, q) to the game

G
� �

� (({v0,v1, . . . ,vn+1},{e1, . . .en}),v0,vn+1,(w1, . . . ,wn),q),

where ei = {v0,vi,vn+1} for each i, 1 ≤ i ≤ n, with the same weights and thresh-
old. Since the value of each coalition C in G equals the value of C in G �,
we have PenroseBanzhaf∗(G , i) = PenroseBanzhaf∗(G �, i) and ShapleyShubik∗(G , i) =
ShapleyShubik∗(G �, i) for each player i. This reduction is obviously parsimonious; there-
fore, #P-parsimonious-hardness of PenroseBanzhaf∗ for threshold hypergraph network flow
games is inherited from that for weighted voting games, and #P-many-one-hardness of
ShapleyShubik∗ for threshold hypergraph network flow games is inherited from that for
weighted voting games.

Proposition 3.22. In threshold hypergraph network flow games computing the raw Penrose–

Banzhaf power index is #P-parsimonious-complete, while computing the raw Shapley–

Shubik power index is #P-many-one-complete.

Similarly, an analogon to the power compare problem as studied by Faliszewski and
Hemaspaandra [FH09] for weighted voting games, can be defined for and reduced to thresh-
old hypergraph network flow games. The question of whether, given two threshold hyper-
graph network flow games G and G � and a player i occurring in both games, the power of i

in G is greater than in G �, is PP-complete due to analogous argumentation.
The use of hyperedges makes it possible that, in threshold hypergraph network flow

games, a coalition of agents can be merged into a single new agent who controls the hyper-
edge that corresponds to the union of vertices belonging to the hyperedges of the coalition’s
original agents.

Similarly, it is possible for an agent in such a setting to split into several subagents by
partitioning this agent’s hyperedge into subsets that each are controlled by one of the new
subagents. We define the merging function and the splitting function for threshold hyper-
graph network flow games as follows:

• The merging function µthnfg on threshold hypergraph network flow games maps a
given threshold hypergraph network flow game G

�

� (H,s, t,w,k), with hypergraph
H = (V,E), and a given coalition S of agents to the new game µthnfg(G ,S) �

�

(H&S,s, t,w&S,k), where the new hypergraph is H&S = (V,E&S) with the new set of
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hyperedges E&S = (E � {ei | i ∈ S})∪ {e&S}, and the new agent i&S controls hyper-
edge e&S =

�

i∈S ei. The new weight function w&S is given by w&S(ei) = wi for i �∈ S,
and w&S(e&S) = ∑i∈S wi.

• The splitting function σthnfg on threshold hypergraph network flow games maps a
given game G

�

� (H,s, t,w,k), with hypergraph H = (V,E), a given agent i, and a
given integer m ≥ 2 to the new game σthnfg(G , i,m) �

� (Hi÷m,s, t,wi÷m,k), where
the new hypergraph is Hi÷m = (V,Ei÷m) with Ei÷m = (E � {ei})∪ {en+1, . . . ,en+m}.
Agent i is split into m agents n+1, . . . ,n+m such that

�m
j=1 en+ j = ei and en+ j∩e�= /0

for � ∈ {1, . . . ,n}�{i}. The new weight function wi÷m is given by wi÷m(e�) = w� for
� �= i, and the new agents’ weights wn+ j =wi÷m(en+ j), 1≤ j ≤m, satisfy ∑

m
j=1 wn+ j =

wi.

In contrast to weighted voting games, consistency is not satisfied in general for threshold
hypergraph network flow games, neither by µthnfg nor by σthnfg. On the one hand, merging
two agents via µthnfg can create new connections between vertices and thus allows new data
flows to emerge. On the other hand, existing connections can get lost by splitting an agent
via σthnfg (i.e., splitting the corresponding hyperedge). Therefore, merging and splitting by
µthnfg and σthnfg might be advantageous for the probabilistic Penrose–Banzhaf index, even
for size-two coalitions or a split into two players.

However, just as µwvg and σwvg for weighted voting games, both µthnfg and σthnfg satisfy
independence for threshold hypergraph network flow games: The value of a coalition only
depends on the hyperedges of the agents within the coalition, not on other hyperedges that
might have been merged or split.

Unanimity Games Aziz et al. [ABEP11] study merging and splitting in unanimity
weighted voting games with respect to the Shapley-Shubik index and the normalized
Penrose–Banzhaf index. They show that for the normalized Penrose–Banzhaf index, merg-
ing is always disadvantageous, whereas splitting is always advantageous. Here, we extend
the result for the Shapley-Shubik index to the class of general unanimity games and add
a result for the probabilistic Penrose–Banzhaf index. In strong contrast to the normalized
index, we show that in unanimity games with respect to the probabilistic Penrose–Banzhaf
index, splitting is always disadvantageous or neutral, whereas merging is neutral for size-
two coalitions, yet advantageous for coalitions with at least three players. This additionally
underlines the differences between the two Penrose–Banzhaf indices.

A simple game G = (N,v) is called a unanimity game if only the grand coalition wins,
i.e., v(C) = 1 if C = N, and v(C) = 0 if C � N. Considering the example of a weighted
game, a game represented by = (w1, . . . ,wn; q) is a unanimity weighted voting game if and
only if ∑

n
i=1 wi −mini∈N wi < q ≤ ∑

n
i=1 wi.

There is only one possible merging function for unanimity games. Let G be a unanimity
game and let S ⊆ N be a coalition. Define µug(G ,S) = (N�,v�) by N� = {i&S}∪ (N � S)
and v�(C) = 1 if C = N�, and v�(C) = 0 if C � N�. Obviously, µug satisfies consistency and
independence.
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Theorem 3.23. Let G be a unanimity game with player set N.

1. (G ,S) �∈ µug-PenroseBanzhaf-BENEFICIALMERGE for each S ⊆ N with �S�= 2,

2. (G ,S) ∈ µug-PenroseBanzhaf-BENEFICIALMERGE for each S ⊆ N with �S� ≥ 3.

3. (G , i,m) �∈ σug-PenroseBanzhaf-BENEFICIALSPLIT for each i ∈ N and m ≥ 2.

Proof. The first statement follows immediately from Theorem 3.20.
In order to prove the second statement, note that in a unanimity game, any player i

can be pivotal only for the coalition S = N � {i}, and i is always pivotal for this coali-
tion. Thus the raw Penrose–Banzhaf index of each i is always equal to one. It fol-
lows that PenroseBanzhaf(G , i) = 1/2n−1 for each player i ∈ N. If an arbitrary coali-
tion S merges, the Penrose–Banzhaf index of a player i in the new game µug(G ,S) is
PenroseBanzhaf(µug(G ,S), i) = 1/2n−�S�. Since �S� ≥ 3, we obtain

PenroseBanzhaf(µug(G ,S), i&S)−∑
i∈S

PenroseBanzhaf(G , i) =
2�S�−1 −�S�

2n−1 > 0.

The third statement can be shown by similar arguments. In particular, for any possible
split into players with integer weights, we have for each m ≥ 2,

−PenroseBanzhaf(G , i)+
m

∑
j=1

PenroseBanzhaf(σug(G , i,m),n+ j) =
m−2m−1

2n+m−2 ≤ 0. �

3.3 Structural Control

In this section we define several control problems for weighted voting games. Doing so, we
differentiate between adding and deleting players, two types of control. For each type, we
define several possible goals, increasing or decreasing the power of a distinguished player,
in relation to the player’s power in the original game. In order to define these problems
properly, we first have to define, how adding and deleting a player effects the coalitional
function for weighted voting games.

In the case of adding players, we are given a set of unregistered possible new players
and obtain a new game by adding a subset of the possible new players. Given a weighted
voting game G = (N,v) �

� (w1, . . . ,wn; q) and a set of players M we want to add, M ∩
N = /0, with weights wn+1, . . . ,wn+m for M = {n+ 1, . . . ,n+m}, �M� = m, we denote the
new game by G∪M = (N ∪M,v∪M), represented by (w1, . . . ,wn+m; q). Inversely, deleting
a subset of players M ⊆ N from a weighted voting game G = (N,v) �

� (w1, . . . ,wn; q),
yields a weighted voting game G�M = (N �M,v�M) represented by (w j1 , . . .w jn−m

; q) with
{ j1, . . . , jn−m}= N �M, �M�= m. For different approaches that might also be reasonable
here, see Section 3.4.

We first define the problems of adding and deleting players with goals in relation to the
old game. By way of example, we present the following decision problem for a power
index PI.
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STRUCTURAL CONTROL BY ADDING PLAYERS TO INCREASE PI

Given: A weighted voting game G = (N,v), a set M of unregistered possible new
players, M∩N = /0, their weights (wn+1, . . . ,wn+m), a distinguished player
a ∈ N, and a positive integer k.

Question: Can at most k players M� ⊆ M be added to G such that in the new game
G∪M� it holds that PI(G∪M� ,a)> PI(G ,a)?

Analogously, we can ask whether the game can be controlled in order to gain the opposite
effect, and non-increase a certain player’s index, or to decrease, or non-decrease it. Here
hardness in terms of complexity can be seen as a shield to prevent a game from being con-
trolled to improve a player’s significance or to worsen a player’s significance. In contrast,
we could consider the following control question: Is it possible to add a player to a game
without changing the distribution of power among the original players? We can ask analo-
gous questions with the same aims for removing players from the game. For instance, we
define the following decision problem for a power index PI.

STRUCTURAL CONTROL BY DELETING PLAYERS TO INCREASE PI

Given: A weighted voting game G = (N,v), a distinguished player a ∈ N, and a
positive integer k < �N�.

Question: Can at most k players M� ⊆ N�{a} be deleted from G such that in the new
game G�M� it holds that PI(G�M� ,a)> PI(G ,a)?

Example 3.24. Again, consider the weighted voting game G in Example 3.1. Let k = 1, that

is a chair is able to remove one player from the game. Consider the Penrose–Banzhaf index.

Player 1, 4, and 5 cannot improve from any other player being deleted. Players 2 and 3 can

benefit from the other one being removed. Player 6 gains power if 1 is deleted.

For the Shapley–Shubik index, due to normalization over the permutations of participat-

ing players, an increase of power is expected when deleting a player. However, players can

also have a disadvantage, if a player leaves the game. For instance, player 1 loses power

if 5 is deleted, 2 and 3 lose power if 4 is deleted, 4 loses power if 2 or 3 are deleted, and

5 loses power if 1 is deleted. This suggests a symmetric dependence of the players. In the

same way, the power of players 2 and 3 maintains if 6 is removed and the other way around.

From the opposite view, consider the weighted voting game represented by (2,3,4,5; 10),
two unregistered players with weights 1 and 2, and k = 2. Note that adding them both, ends

up in G . Here, the four players have probabilistic Penrose–Banzhaf indices of 1/4, 1/4, 1/4,

and 1/2. The first player (with weight 2) cannot improve by adding any of the two players.

The player with weight 3 can take advantage from adding both players or only the one with

weight 2. The player with weight 4 improves in every situation adding one or two players.

Finally, the player with weight 5 can only benefit if the player with weight 2 is added.

The first and fourth player cannot benefit from adding with respect to the Shapley–Shubik

index. The other two can take advantage in the same cases as for the probabilistic Penrose–

Banzhaf index.
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3 Weighted Voting Games: Manipulation and Control

Next to goals in relation to the old game, we can also compare an index either in relation
to the other players’ power, or in relation to a constant number. See Section 3.4 for initial
results for this idea.

3.3.1 Complexity Results for Adding Players

We distinguish the cases where an upper bound of new players is given as defined above,
and where the number of new players is fixed. Also note that the problem of whether it is
possible to maintain an index, would be trivial if adding no player at all were allowed.

Theorem 3.25. Control by adding a given number of players in order to increase (decrease,

non-increase, non-decrease, maintain) a distinguished player’s probabilistic Penrose–

Banzhaf index or Shapley-Shubik index in a weighted voting game is PP-hard.

Proof. We show PP-hardness via similar methods to those in the proof of Theorem 3.7.
Reducing from COMPARE-#SUBSETSUM-RR, we map an instance (a1, . . . ,an) with α =

∑
n
i=1 ai to a weighted voting game G

�

� (1,a1, . . . ,an; α/2), an unregistered player with
weight wn+2 = 1, k = 1, and a = 1. There is one possible new game obtained by adding the
unregistered player to the game G∪{n+2}. We show that

PenroseBanzhaf(G∪{n+2},1)−PenroseBanzhaf(G ,1)> 0

⇐⇒ #SUBSET SUM((a1, . . . ,an; α/2−2))> #SUBSET SUM((a1, . . . ,an; α/2−1)).

It holds that

PenroseBanzhaf(G∪{n+1},1)−PenroseBanzhaf(G ,1) (3.5)

= 1/2n(�{C ⊆ {2, . . . ,n+1} | v(C∪{n+2,1}) = 1,v(C∪{n+2}) = 0,v(C∪{1}) = 0}�

−�{C ⊆ {2, . . . ,n+1} | v(C∪{n+2}) = 1,v(C∪{1}) = 1,v(C) = 0}�)

= 1/2n(�{C ⊆ {2, . . . ,n+1} | 2+∑i∈C ai−1 ≥ α/2, 1+∑i∈C ai−1 < α/2}� (3.6)

−�{C ⊆ {2, . . . ,n+1} | 1+∑i∈C ai−1 ≥ α/2, ∑i∈C ai−1 < α/2}�). (3.7)

If for some C ⊆ {2, . . . ,n+ 1}, it holds that ∑i∈C ai−1 < α/2, but 1+∑i∈C ai−1 ≥ α/2 (in
set in (3.7)), it holds that α/2−1 = ∑i∈C ai−1, since the weights and the quota are integers.
If for some C ⊆ {2, . . . ,n+ 1} the conditions of the set in (3.6) are satisfied, it holds that
α/2− 2 = ∑i∈C ai−1. Therefore, the term in (3.5) is positive if and only if the number of
solutions that sum up to α/2−2 is greater than α/2−1. Thus, verifying whether control by
adding players in order to increase the Penrose–Banzhaf index of a player, is PP-hard.

Since PP is closed under complement, the same result holds for the goal of non-increasing
an index.

Analogously, we can reduce from COMPARE-#SUBSETSUM- RR as in the proof of The-
orem 3.10 for the goal of decreasing an index, and, by the complement for non-decreasing
an index.

Likewise with the methods of the proofs of Theorems 3.14 and 3.15, these results can be
adapted to the Shapley–Shubik index. �
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3.3 Structural Control

Remark 3.26. An upper bound of NPPP can be established for structural control by adding

players. We can guess the subset of new players to be added non-deterministically. Verifying

whether the different goals are satisfied is encoded in the PP-oracle.

Theorem 3.27. Control by adding a fixed number of players in order to increase (decrease,

non-increase, non-decrease) a distinguished player’s probabilistic Penrose–Banzhaf index

or Shapley-Shubik index in a weighted voting game is PP-complete.

Proof. Since the number of players to be added is fixed, there are polynomially many
combinations to be added. Therefore we have polynomially many comparisons of power
indices. No matter which goal we consider, the comparison can be done in PP by Lemma 2.4
and by the fact that #P is closed under addition and PP under complement. The problem
belongs to PP, since PP is closed under union.

Hardness is implied by the case of k = 1 player to be added in the proof of Theorem 3.25.
By Lemma 3.3, this also holds for any other fixed number of players to be added. �

Theorem 3.28. Control by adding a fixed number of players in order to maintain a

distinguished player’s probabilistic Penrose–Banzhaf index or Shapley-Shubik index in a

weighted voting game is coNP-hard and in PP.

Proof. The upper bound holds by the same argument as in Theorem 3.27. We show coNP-
hardness with help of a reduction from PARTITION.

Let (a1, . . . ,an) be a partition instance with α = ∑
n
i=1 ai > 2.4 Consider the

weighted voting game G
�

� (1,2a1, . . . ,2an; α +2), an additional unregistered player with
weight wn+2 = 1, and k = 1. The agent that is supposed to be promoted is 1. Observe that
since all other weights in G are even, 1 is a null player with

ShapleyShubik(G ,1) = PenroseBanzhaf(G ,1) = 0.

We obtain in the only possible new game G∪{n+2}

�

� (1,2a1, . . . ,2an,1; α +2) that

ShapleyShubik(G∪{n+2},1)> 0 ⇐⇒ PenroseBanzhaf(G∪{n+2},1)> 0

if and only if there exists a coalition C ⊆ {2, . . . ,n+ 2} with ∑i∈C wi = α + 1 which is the
case if and only if n+2 ∈C because this is the only player with an odd weight, and

∑
i∈C�{n+2}

wi = α ⇐⇒ ∑
i∈C�{n+2}

2ai−1 = α ⇐⇒ ∑
i∈C�{n+2}

ai−1 =
α

2
.

The latter is the case if and only if (a1, . . . ,an) is in PARTITION. To sum up, for both
considered indices, the first player’s index remains the same if and only if (a1, . . . ,an) is not
in PARTITION. Therefore, deciding whether adding one unregistered player can be added
in order to maintain a player’s index is coNP-hard. By Lemma 3.3, this also holds for any
other fixed number of players to be added. �

4 If α > 2 is not satisfied we can easily decide if the instance is in PARTITION or not, and we can construct a
trivial instance.
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3 Weighted Voting Games: Manipulation and Control

3.3.2 Complexity Results for Deleting Players

Note that the problem of deleting one player in order to increase an index is not the com-
plement of the problem of adding one player in order to non-increase the same index. This
is due to the fact that in the case of adding a player there are some players next to the dis-
tinguished player that are guaranteed to be part of the game before and after the structural
change. However, if players can be deleted, each player except the distinguished one can be
removed from the game.

Initially, we obtain the following two results.

Theorem 3.29. Control by deleting one player in order to increase a distinguished player’s

Shapley-Shubik index in a weighted voting game is NP-hard (even if only one player can be

deleted).

Proof. We show NP-hardness by means of a reduction from SUBSET SUM. In the proof
of Theorem 3.14 we have seen that we can assume that the satisfying solutions all have the
same size � with m > �. Let (a1, . . . ,an; q) be a SUBSET SUM instance and consider the
weighted voting game G

�

� (1,a1, . . . ,am,q+ 1; q+ 1) and player 1 as our distinguished
player. Let k = 1 and let ξ = #SUBSET SUM((a1, . . . ,an; q)) denote the number of solutions
for the SUBSET SUM instance. Then, for the raw Shapley–Shubik index it holds that ξ ≥ 1
if and only if deleting some player but 1 can lead to an increase of 1’s index.

If: Assume that ξ = 0. Then, ShapleyShubik∗(G ,1) = 0 and remains 0 whichever other
player is deleted.

Only if: Assume that ξ ≥ 1. Then,

ShapleyShubik∗(G ,1) =
ξ

2
· �!(n+1− �)!+

ξ

2
· (n− �)!(�+1)!

If player n+2 is deleted, player 1’s new raw index is

ShapleyShubik∗(G�{n+2},1) = ξ · �!(n− �)!

This leads to

ShapleyShubik(G�{n+2},1)−ShapleyShubik(G ,1)

=
1

(n+1)!
·ξ · �!(n− �)! ·

2
2
−

1
(n+2)!

·
ξ

2
· �!(n− �)!(n+1− �+ �+1)

=
1

(n+1)!
·

ξ

2
(2−1)�!(n− �)!

which is greater than 0, because �! and (n− �)! are positive. �

Theorem 3.30. Control by deleting one player in order to non-increase or maintain a distin-

guished player’s probabilistic Penrose–Banzhaf index in a weighted voting game is coNP-

hard (even if only one player can be deleted).
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Proof. Again, we show coNP-hardness by means of a reduction from PARTITION. Let-
ting (a1, . . . ,an) be a PARTITION instance with α = ∑

n
i=1 ai, we construct the game G

�

�

(1,a1, . . . ,am,α/2,α/2; α/2+1) and consider player 1 as our distinguished player. Let k = 1
and let ξ = #PARTITION((a1, . . . ,an)) denote the number of solutions for the PARTITION

instance. Then, for the raw Penrose–Banzhaf it holds that ξ ≥ 1 if and only if deleting any
player but 1 does not maintain the index of player 1.

If: Assume that ξ = 0. Then, PenroseBanzhaf∗(G ,1) = 2. If player n+2 with weight
α/2 is deleted, the raw index of player 1 is PenroseBanzhaf∗(G�{n+2},1) = 1, which ends up
in the same probabilistic index. The factor of 2 is due to the fact that the raw index is twice
as significant in the new game with one player less than before as in the old game.

Only if: Assume that ξ ≥ 1. Then, PenroseBanzhaf∗(G ,1) = ξ + 2. If player n+ 2 or
n+3 is deleted, player 1’s new raw index is ξ +1. This leads to a higher index since ξ +2<
2(ξ +1). Deleting player j, 2 ≤ j ≤ n+1 leads to a raw index of ξ/2+2 which means that
in comparison to the old game, the player 1’s index is increased: ξ +2 < 2(ξ/2+2) = ξ +4.

Especially, if ξ ≥ 1, deleting any player, cannot lead to a non-increase. Therefore, it also
holds that ξ ≥ 1 if and only if deleting any player but 1 does not non-increase the index of
player 1.

Hence, the problems of whether it is possible to maintain or to non-increase a player’s
probabilistic Penrose–Banzhaf index are coNP-hard. �

Observe that from these two constructions (and some values therein that are not calcu-
lated here) we cannot draw further conclusion about the complexity of structural control
by deleting players. Finding similar or even different techniques for further results are an
interesting task for future work. Other challenges follow in the next section.

3.4 Challenges and Future Work

We have analysed the problems of manipulation by a coalition of players that merge together
to a single player, by a player annexing other players, or by a player that splits into several
players in order to increase power in weighted voting games, in terms of their complexity. In
a related setting, we have defined and analysed structural control scenarios. By considering
the probabilistic Penrose–Banzhaf power index, and closing a gap between a lower and
an upper bound, our results complement previous work. Most remarkably, we were able
to pinpoint the exact complexity of the beneficial merging problem by showing its PP-
completeness. Differences between complexity can be observed due to distinctions between
given weights and several possible weights, and between input numbers given in unary and
binary. It can be seen that beneficial annexation is easier to detect than beneficial merging.
We have, furthermore, proposed a general framework for merging and splitting that can be
applied to various classes of cooperative games with transferable utility.
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3 Weighted Voting Games: Manipulation and Control

Thoughts on a PP-oracle For the beneficial splitting problem, so far, we were able to
raise the lower bound to PP-hardness, the exact complexity is yet to be determined. For a
unary given number of false identities, but unknown weights, we have identified an upper
bound of NPPP. Still, it remains open whether it can be shown to be complete for PP, NPPP

or something in between.
The class NPPP is a huge complexity that contains PPP and therefore, by Toda’s theo-

rem [Tod91] the entire polynomial hierarchy. NPPP is an interesting class, but somewhat
sparse in natural complete problems. The only (natural) NPPP-completeness results we are
aware of are due to Littman et al. [LGM98] who analyse questions related to probabilistic
planning, and due to Mundhenk et al. [MGLA00] who study problems related to finite-
horizon Markov decision processes. Littman et al. also define ∃-MAJSAT (see Section 2.1).
Now, we are interested in a further understanding of natural problems complete for this
class.

On our way towards the exact complexity of beneficial merging and control by adding
players, we have so far managed to show PP-completeness for the following existential
threshold variant of SUBSET SUM.

EXISTENTIAL SUBSET OF SUM (∃-SUBSETSUM)

Given: A set A = {1, . . . ,n}, a value function a : A → N� {0}, i → ai, a positive
integer q, and two further positive integers k, t.

Question: Does there exist a selection A� of the first k elements in {1, . . . ,k} such that
more than t of the remaining combinations of values ak+1, . . . ,an sum up to
q−∑i∈A� ai?

This problem obviously belongs to NPPP, as the set A� can be chosen nondeterministically,
and can verify for the remaining values whether

#SUBSET SUM((ak+1, . . . ,an; q− ∑
i∈A�

ai))> t

with help of an oracle that simulated decisions in probabilistic polynomial time.
The lower bound requires a number of steps, since we have to guarantee the numbers

t to remain in the same relation in the reduction. In order to do so, we have travelled
through several restrictions on SAT(see, e.g., [Sch78]), following the path of parsimonious
reductions by Hunt et al. [HMRS98].

To begin with, we reduce from ∃-MAJSAT with the parameter t = 2n�−k−1: 2n�−k for
the remaining assignments, and a divisor of 2 for the half of them to be satisfied. In
the next steps, we follow the parameter through the reduction transforming the general
Boolean formula to a 3-SAT instance [Kar72], over existential versions of 1-EX3SAT, 1-
EX3MONOSAT [HMRS98], and finally over XC3 to SUBSET SUM. We obtain a parameter
of t = 2� with, �< n− k. All in all, we have shown the following.

Theorem 3.31. ∃-SubsetSum is NPPP-complete.
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Similarly, we next intend to find an existential variant of the COMPARE-#SUBSET SUM

problem in order to tackle the open manipulation and control problems stated above.
We conjecture that the following statements hold.

Conjecture 3.32. For weighted voting games, and for both, the Shapley–Shubik and the

Penrose–Banzhaf index, we suppose that

1. PenroseBanzhaf-BENEFICIALSPLIT with the number of false identities given in unary

and

2. STRUCTURAL CONTROL BY ADDING PLAYERS TO INCREASE PI

are NPPP-complete.

Open Questions and Generalizations Let alone the questions initiated here, the fol-
lowing problems remain open. A straightforward completion of our results would be to find
out whether they can be transferred to other power indices like the normalized Penrose–
Banzhaf index. Due to the structure of this index, we claim that other techniques will be
needed to solve these problems. The exact placement of most structural control problems in
terms of their complexity is also left open.

An interesting task for future research is to study useful properties of merging and split-
ting functions, such as consistency and independence, in general and when applied to par-
ticular classes of games. Natural such functions may, for example, exist in other important
classes of cooperative games with transferable utility where each player posesses a certain
amount of a divisible resource, such as fractional matching games, bankruptcy games, or
market games (see, e.g., [SL09]), or path-disruption games as studied in the next chapter.
where merging any two unconnected vertices might influence the value of a coalition of
other players. On the one hand, these properties are desirable for the design of a merging
or splitting function; on the other hand, they are an approach for an axiomatic evaluation of
such functions. The analysis of further properties are an interesting task for future work.

A related question that has arisen in a review was of how to naturally extend the idea of
merging to classes of games where players control several resources. Which properties do
we want to hold in that case? Can a merging function that satisfies independence and con-
sistence be unique for a certain class of games? For unanimity games we have observed that
there is only one possible merging function that guarantees unanimity. For weighted vot-
ing games, however, such a uniqueness result does not hold, since there are different ways
to distribute the player’s weights that lead to the same coalitional function. For instance,
the games (1,3,4; 8) and (2,3,4; 8) are semantically the same, even if players merge. Re-
stricting to other classes or requiring other properties might imply uniqueness. Although
consistency seems to be an essential property for a merging or splitting function, we have
seen a natural merging function on threshold hypergraph network flow games that does not
satisfy this property, and we made similar observations for other classes of games.
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3 Weighted Voting Games: Manipulation and Control

Regarding structural control, so far we have only yielded results for goals in relation to the

former game. Alternatively, one might think of a situation where a chair wants to increase
a player’s significance in comparison to the other players, which can also be achieved if
players are added or deleted, the certain player’s index remains the same, but all remaining
players’ indices are distributed in a way that they are below this value.

Besides this, we can also model a scenario, where a player is demanded to exceed a
certain constant index, and we ask whether it is possible to control a game by adding or
deleting a player in order to reach this index. So far, we can tell that if the number of given
players to be added or deleted is k = 0, our value is 1/2, and the considered index is the
Penrose–Banzhaf power index, the problem is PP-complete. This might change if k > 0 is
required. We might also study the exact variant of obtaining an exact value.

There seems to be a close connection to the notion of synergies in cooperative games, see,
e.g. [RMW14]. We may want to have a closer look at related results here.

Next to weighted voting games, of course, other classes of cooperative games with trans-
ferable utility might be effected by control scenarios. Then, adding and deleting a player has
to be well-defined. Let us consider general (weighted) majority games. Let G be a majority
game with representation (w1,w2, . . . ,wn; α(n)), that is, v(C) = 1 if ∑i∈C wi ≥ �α(n)�+1,
and v(C) = 0 otherwise, for each C ⊆ N. Now, if a player is deleted, the number of play-
ers n is decremented, such that the threshold α(n) is changed. The new coalitional function
is computed as above. Adding a player requires a set of unregistered players, given by
their weights and n is increased. As we have seen, for (weighted) threshold games, the new
coalitional function is determined similarly, with the only difference that the threshold does
not change. One could alternatively think of weights as percentage, and change weights
of remaining players proportionally. Thus, the new game G∪M is defined differently, by
normalizing the sum of weights to the original value. Similar to majority games, here play-
ers do not have an absolute but a relative contribution to the game. From a different point
of view, adding and deleting players can be viewed in sense of a change over time, as is
analysed so far for changing the quota over time [EPZ13]. Similarly, studying a change of
players dynamically over time is an interesting task for future work.

Other games that can be interesting to study include games in which the Shapley–Shubik
index is easy to compute such as weighted graph games [DP94]. In such games, two indices
in two games can be compared in polynomial time, and therefore, if, on the one hand, the
coalition that is added to or removed from a game is known, the possibility of control is easy
to detect. If, on the other hand, there are possible coalitions to be added, this problem might
become interesting again. Eventually, if players correspond to an edge in a game, deleting
an edge may be interesting in context of Braess’s paradox for non-cooperative congestion
games (see, e.g., [NRTV07, pp. 464–465]) where, informally, an extra fast lane might lead
to congestion, whereas without this lane traffic may split up to equally slower paths. Can
we find a connection to control by deleting a player in a cooperative game with transferable
utility?
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4 Uncertain Targets in

Path-Disruption Games: Bribery

and Stability

The contents of this chapter are published in the conference contributions [MRR14] and
[RR12]. For completeness, we also briefly mention related results as published in the con-
ference paper [RR11]. The assembled and extended article [RRM16] is to appear. We model
and study questions of bribery and stability in probabilistic path-disruption games.

Example 4.1. Consider the game illustrated in Figure 4.1.

v1s

4

v2

1

v3

2

v4 t

3
v5

2

Figure 4.1: Example of a path-disruption game. Costs are written below the vertices. Let
the reward be R = 4.

Observe that coalition {2,3} is successful and has a positive value of 1, and so does

each coalition containing 2 and 3, too. The same holds for the coalition consisting only of

player 4 as well as the grand coalition.

Suppose, an adversary in a path-disruption game as defined in Section 2.3 is located
on a certain source vertex; however, her target vertex is unknown. In this chapter we ex-
pand the original model [BP10] by allowing uncertainty about the targets: In probabilistic
path-disruption games, each vertex is a potential target, assigned with the probability that
an adversary wants to reach it. We formally define these games and study the computa-
tional complexity of problems related to solution concepts and other properties. Settings
like these also have a background in non-cooperative game theory such as zero-sum secu-
rity games [JKV+11], and other network security games [SL08, WW95]. The matter of
uncertainty has been studied in strategic games with regard to noise on both the intruder and
the defender side [YJTO11].
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4 Uncertain Targets in Path-Disruption Games: Bribery and Stability

Moreover, inspired by bribery in the context of voting (see, e.g., [FHH09, FHHR09,
FR16]). We have introduced the notion of bribery for path-disruption games with
costs [RR11] where adversaries break into the setting and try to change the outcome to
their advantage by bribing some of the players. Now that the agents collaborate while, at
the same time, they want to win against their adversaries who can actively interfere with the
situation in order to achieve their individual goals in opposition to the agents, the game com-
bines aspects of both cooperative and non-cooperative game theory. Relatedly, Bachrach et
al. [BMFT11, BS13] study the reliability of players in cooperative games. We analyse the
question as to how hard it is to decide whether the adversaries in a (probabilistic) path-
disruption game with costs can bribe some of the agents not exceeding their budget, such
that no blocking coalition will form that prevents the adversaries from reaching their targets.

Table 4.1 summarizes the complexity results for various stability concepts and problems
in probabilistic path-disruption games. Note that the probabilistic model is not used in
the papers [BP10] or [RR11]. However, we refer to their work in Table 4.1 whenever the
statements can be implied by their proof immediately.

Probabilistic path-disruption games without costs

single player multiple players

• monotonic (Prop. 4.4) ¶

• not simple, constant-sum, convex, or superad-
ditive (Prop. 4.5) ¶

• value computation in pol. time (Cor. 4.8)

• dummy player verif. coNP-c. (Prop. 4.14) †

• core verif. and existence in P (Prop. 4.15) ¶

• core computation in pol. time (Prop. 4.15) ¶

• monotonic (Prop. 4.4) ¶

• not simple, constant-sum, convex, or superad-
ditive (Prop. 4.5) ¶

• value computation in pol. time (Cor. 4.8)

• dummy player verif. coNP-c. (Prop. 4.14) †

• ε-core verification coNP-c. (Prop. 4.17) † �

Probabilistic path-disruption games with costs

single player multiple players

• not monotonic, simple, constant-sum, convex,
or superadditive (Prop. 4.4,4.5) ¶

• value computation in pol. time (Prop. 4.7) ¶

• dummy player verification coNP-complete

• core verification in coNP (Prop. 4.16) ¶

• not monotonic, simple, constant-sum, convex,
or superadditive (Prop. 4.4,4.5) ¶

• value verification NP-hard (Cor. 4.8) †

• dummy player verification coNP-hard

• core verification in coNP (Prop. 4.16) ¶

• ε-core verification coNP-c. (Prop. 4.17) �

• BRIBERY NP-compl. (Thm. 4.10, Cor. 4.11) ‡ • BRIBERY Σ
p
2 -compl. (Thm. 4.12, Cor. 4.13) § ¶

† [BP10]
‡ [RRM16, RR11]
§ [RRM16, MRR14]

� [RRM16, RR12]
¶ this thesis ([RRM16, MRR14, RR12])

Table 4.1: Overview of complexity results of stability and bribery problems in probabilistic
path-disruption games. Key: c. stands for complete, verif. for verification.
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4.1 Probabilistic Path-Disruption Games and Bribery

For path-disruption games in the original model, Bachrach and Porat [BP10] study var-
ious problems related to game-theoretic notions. They show that without costs the games
are monotonic, that it is possible to compute the core in polynomial time and that verifying
whether an imputation is in an ε-core is related to finding a minimal vertex cut. Test-
ing whether an agent is a null player is coNP-complete and consequently, computing the
probabilistic Banzhaf index is #P-many-one-complete. In the case of costs, they show that
computing the value of a coalition is also related to finding a minimal vertex cut and there-
fore intractable for several adversaries in general. Moreover, they study the special case of
path-disruption games on trees; see also Section 4.2 for an excursion on restrictions to graph
classes. For further related results, see also [AS11].

The analogous problems for probabilistic path-disruption games are more general, so any
lower bound for the more special variant of a problem immediately is inherited by its gen-
eralized variant. On the other hand, upper bounds known for problems on non-probabilistic
path-disruption games may be invalid for their more general analogues, or if they are valid,
they might be harder to prove. Moreover, we analyse probabilistic path-disruption games on
undirected graphs, as this is the more demanding case regarding the computational hardness
results. Given an undirected graph, we can simply reduce the problem to the more general
case of a directed graph by substituting each undirected edge {x,y} by the two directed
edges (x,y) and (y,x).

4.1 Probabilistic Path-Disruption Games and Bribery

In path-disruption games as defined in Section 2.3.1, it is assumed that an adversary has one
certain target. More generally, we consider the case where the actual target is unknown,
though we have probabilities that indicate where the intruder might go. Let us define the
notion of probabilistic path-disruption games in its most general variant, with costs and

multiple adversaries.

Definition 4.2. Let G = (V,E) be an undirected graph with n vertices and m adversaries,

each sitting on a given vertex s j ∈ V , 1 ≤ j ≤ m. Moreover, consider every vertex vi in

V = {v1, . . . ,vn} as a potential target and let p j,i be the probability that adversary j (situated

on s j) wants to reach vi, where ∑
n
i=1 p j,i = 1 for each j, 1 ≤ j ≤ m. Furthermore, we

are given a cost function c : V → R≥0, and a reward R. Using this domain, we define

a probabilistic path-disruption game with costs and multiple adversaries as follows. Let

N = {1, . . . ,n} be the set of agents, where vi represents player i, and define the coalitional

function v via

v(C) = ṽ(C) · (R−µ(C))

with the minimal costs m(C) defined as
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4 Uncertain Targets in Path-Disruption Games: Bribery and Stability

µ(C) =

�

min{c(B) | B ⊆C and ṽ(B) = ṽ(C)} if ṽ(C)> 0,

−1 otherwise,

where

ṽ(C) =
m

∏
j=1

n

∑
i=1

p j,i ·w(C, j, i)

and

w(C, j, i) =

�

1 if C blocks each path from s j to vi,

0 otherwise.

Note that if ṽ(C) = 0 then the minimal costs do not influence v(C), so they can be any
number. If for each j, 1 ≤ j ≤ m, there exists exactly one i, 1 ≤ i ≤ n, such that p j,i = 1
(and we thus have p j,k = 0 for all k �= i), we obtain path-disruption games by Bachrach
and Porat [BP10] as defined in Definition 2.8. The probabilistic analogues of their other
variants of path-disruption games are defined as follows. A probabilistic path-disruption

game with multiple adversaries and without costs is defined as above, except that neither a
cost function nor a reward is given and the coalitional function itself is defined by

v(C) =
m

∏
j=1

n

∑
i=1

p j,i ·w(C, j, i).

The models with single adversaries with or without costs are obtained from the above two
variants by setting m = 1.

Example 4.3. Consider the game illustrated in Figure 4.2 as a variant to Example 4.1. Now

the adversary’s target is uncertain. We only know that remaining at the source or moving to

the destination v2 is impossible (i.e., has probability 0), moving to v4 is most likely (with a

probability of 0.5), and the other two vertices are equally likely targets (with a probability

of 0.25 each).

v1s

4

v2

1

v3

2

1
4

v4 1
2

3
v5

2

1
4

Figure 4.2: Example of a probabilistic path-disruption game with target probabilities written
on the right of the vertices. Costs and reward are the same as in Example 4.1.

Now, player 5, e.g., has a more central role with v({5}) = 1/4 · (4−2) = 1/2. The values

of {1} and {2,3} remain zero and one. Coalition {3,4} even has a negative value.
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4.1 Probabilistic Path-Disruption Games and Bribery

Next, we analyse this new type of game’s basic game-theoretic properties. Probabilistic
path-disruption games (even without costs) are not simple, as soon as one of the given
probabilities p j,i is strictly between 0 and 1. In every other aspect studied below they behave
like their restricted predecessor.

Proposition 4.4. Probabilistic path-disruption games without costs are monotonic, whereas

in general they are not.

Proof. In a given probabilistic path-disruption game without costs, for all agents i, 1 ≤
i ≤ n, for all adversaries j, 1 ≤ j ≤ m, and for all coalitions A and B, A ⊆ B ⊆ N, it holds
that w(A, j, i)≤ w(B, j, i), since a coalition can never block fewer paths than a subcoalition.
Thus,

v(A) =
m

∏
j=1

n

∑
i=1

p j,i ·w(A, j, i)≤
m

∏
j=1

n

∑
i=1

p j,i ·w(B, j, i) = v(B).

Non-monotonicity of the cost-case can be shown by the following single adversary example.
Let G = ({v1, . . . ,v4},{{v1,v2},{v2,v3},{v3,v4},{v4,v1}}), s = v1, p1,4 = 1, c(vi) = 1 for
all i, 1≤ i≤ 4, and R= 1. Although {2}⊆ {2,3}, it holds that v({2}) = 0>−1= v({2,3}).

�

Proposition 4.5. Probabilistic path-disruption games are not simple, constant-sum, convex,

or superadditive.

Proof. Obviously, even for the monotonic model without costs, coalitions can have values
other than 0 and 1.

By the following counterexample, even without costs, a probabilistic path-disruption
game is not a constant-sum game. Consider the graph given in Figure 4.3a, and the game
on that graph with six players, without costs, with a reward of 1 and with an adversary trav-
elling from s to t with a probability of 1. Observe that v(C) = 1, but also v(N) = 1, and
v(N �C) = 1.

Finally, by the same counterexample, it holds that C∩D = /0 and

v(C∪D) = 1 < 1+1 = v(C)+ v(D).

Hence, probabilistic path-disruption games are not superadditive, and thus, not convex. �

The following proposition underlines that despite these unfortunate properties, proba-
bilistic path-disruption games are a reasonable model, as they do extend to the original
path-disruption games.

Proposition 4.6. There exists a probabilistic path-disruption game without costs and a sin-

gle adversary that is not strategically equivalent to any non-probabilistic path-disruption

game (with the same number of players and without costs and a single adversary).

Proof. Consider the game G = (N,v) with three players played on the graph in Figure 4.3b
without costs and a reward of 1. The coalitional function of this game is
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s t

C D

(a) Not a constant sum game

s

v2 1
2

v3 1
2

(b) No strategic equivalent

Figure 4.3: Counterexamples of probabilistic path-disruption games

C /0 {1} {2} {1,2} {3} {1,3} {2,3} {1,2,3}
v(C) 0 1 1

2 1 1
2 1 1 1

with 2 and 3 being symmetric players. Assume there exists a non-probabilistic path-
disruption game G � = (N,v�) without costs and a single adversary such that G � and G

are strategically equivalent. Then, there exist α > 0 and β : N → R such that v(C) =
αv(C)+∑i∈C β (i) holds for each C ⊆ N. Consider two cases.

Case 1: Let s = v1 be the same starting point of the adversary. The coalitional function
then is

C /0 {1} {2} {1,2} {3} {1,3} {2,3} {1,2,3}
v�(C) 0 1 a 1 b 1 c 1

with a,b,c ∈ {0,1} and c ≥ a,b by monotonicity. The equations 1 = α · 1+ β (1), 1 =
α · 1+β (1)+β (2), and 1 = α · 1+β (1)+β (3) imply that β (2) = β (3) = 0. Therefore,
we obtain a = b = c = 1 and α = 0. This, however, contradicts 1 = α ·1+β (2)+β (3).

Case 2: Let the adversary start at a different vertex, without loss of generality, s = v2. In
this case the coalitional function is

C /0 {1} {2} {1,2} {3} {1,3} {2,3} {1,2,3}
v�(C) 0 a 1 1 b c 1 1

with a,b,c ∈ {0,1} and c ≥ a,b by monotonicity. By 1/2 = α · 1+ β (2) and 1 = α · 1+
β (1)+β (2), we obtain β (1) = 1/2. Therefore, we have a contraction in 1 = α ·1+β (2)+
β (3) and 1 = α ·1+ 1/2+β (2)+β (3). �

Another important property of a game representation is that a coalition’s value should be
tractable. Here, the probabilistic model behaves like the original one. Although the model is
more general, we can reduce this problem to that in the original (non-probabilistic) setting
in polynomial time. The most challenging case here concerns costs and a single adversary
where rather unexpectedly polynomial-time computability still holds.

Proposition 4.7. Given a probabilistic path-disruption game with costs and a single adver-

sary, and a coalition, its value can be computed in polynomial time.
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4.1 Probabilistic Path-Disruption Games and Bribery

Proof. Given a probabilistic path-disruption game G with costs and a single adversary,
consisting of G = (V,E), s ∈ V , c : V → Q≥0, R ∈ Q≥0, and p1,i, 1 ≤ i ≤ n, and given
a coalition C ⊆ N, computing ṽ(C) involves at most n computations of w(C,1, i) which, in
turn, can be determined in polynomial time using a graph accessibility algorithm (remember
that GAP can even be decided in nondeterministic logarithmic space). Either ṽ(C) = 0, then
we can return 0 as the value of C; or, ṽ(C) > 0. Then we consider the graph G� = (V �,E �)
with V � =V ∪{vn+1} and

E � = E ∪{{vi,vn+1} | 1 ≤ i ≤ n with p1,i > 0 and w(C,1, i) = 1}.

Let t = vn+1. Define a new cost function c� : V →Q≥0, by setting c�(vi) = c(vi) if i ∈C, and
c�(vi) = 1+∑i∈C c(vi) otherwise. Now, we determine the minimal costs κ (regarding the
cost function c�) needed to disrupt all paths from s to t in G�. This can be done in polynomial
time using the algorithm for MCVC.

In order to calculate v(C) = ṽ(C) · (R−κ), we now show that κ = µ(C). By construction
of G�, C blocks all paths from s to t. Since all other vertices have greater costs, the vertices
with minimal costs κ correspond to the players in C. It holds that

µ(C) = min{c(B) | B ⊆C and ṽ(B) = ṽ(C)},

which is equal to the minimum costs of a coalition B ⊆ C that blocks the same possible
targets (that is, vertices with a positive probability of being a target) as C. Since t is only
connected to the possible targets blocked by C, this is equal to

min{c(B) | B ⊆C and B blocks all paths from s to t in G�},

which, in turn, is equal to κ by definition. �

Using Proposition 4.7, the fact that ṽ(C) can be computed in polynomial time for a coali-
tion C even for multiple adversaries, and a corresponding result for path-disruption games
with costs and multiple players by Bachrach and Porat, we obtain the following.

Corollary 4.8. In a probabilistic path-disruption game without costs, a coalition’s value

can be determined in polynomial time, but it is NP-hard to decide whether the value of a

coalition is greater than a given value, for multiple adversaries and costs.

In the next section, we study the complexity of various problems related to stability con-
cepts in probabilistic path-disruption games. Note, that for this purpose, some concepts have
to be redefined that have only been defined for simple games previously, see Section 2.3.
Mainly, for a stability concept we ask the questions of verification, whether a given player
or payoff vector satisfies the stability concept in a given game, and existence, whether a
given game allows stability with respect to a certain concept.

Moreover, we consider another type of influence, namely bribery. The question we ask
here is, given a path-disruption game with costs, can the adversaries bribe a coalition B ⊆ N

of agents such that no coalition C ⊆ N will be formed that blocks each path from s to t.
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4 Uncertain Targets in Path-Disruption Games: Bribery and Stability

For the no-cost case, this problem is well-studied. Considering the simplest form of path-
disruption game, single adversary, without costs, and with constant prices for each agent
and an infinite budget for the adversary, the answer is yes if and only if (G,s, t) ∈ GAP,
the graph accessibility problem, see Section 2.2: Given a graph G and two distinct vertices,
a source vertex s and a target vertex t, can t be reached via a path from s? This problem
can be solved in nondeterministic logarithmic space (and thus in deterministic polynomial
time). The equivalence holds, since bribery of all agents on a path from s to t will guarantee
the adversary a safe travel. If, on the other hand, the number of agents the adversary can
bribe is limited by a number k, bribery is possible if and only if there is a path from s to t

with length at most k, which is decidable in polynomial time. This problem is also related
to generalized connectivity problems, see Section 2.2.

In the following we consider bribery on path-disruption games with costs, at first in the
original model, then for the probabilistic model. Here, in contrast to the no-cost case, even if
a limited budget may not allow bribing the players on each vertex in any path from the source
to the target, successful bribery might still be possible, since for all remaining blocking
coalitions the involved costs are too high.

Let PDG be a type of path-disruption game; in particular, distinguish the original non-
probabilistic model and the probabilistic model as well as single and multiple adversaries.
We focus on the cost-case for the following definition.

PDG-BRIBERY

Given: A path-disruption game (of a certain type) inducing G = (N,v), a price
function π : V →Q≥0, and a budget K ∈Q≥0.

Question: Is there a coalition B ⊆ N such that ∑i∈B π(vi) ≤ K, and no coalition C ⊆
N �B has a value v(C)> 0?

Example 4.9. Consider the same graph, adversary, and costs as in Example 4.1. More-

over, let π(u1) = 3 and π(u2) = π(u3) = π(u4) = π(u5) = 1 be the vertices’ prices and

K = 1 the briber’s budget. Vertices corresponding to bribable agents are diamond-shaped

in Figure 4.4.

v1s

4

v2

1

v3

2

v4 t

3
v5

2

Figure 4.4: Example of bribery in a path-disruption game. Costs and reward R = 4 are the
same as in Example 4.1.
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4.1 Probabilistic Path-Disruption Games and Bribery

In this example, bribery is not possible, since every coalition of size at least 2 or con-

taining players 1 cannot be bribed, as its price exceeds the budget. Bribery of B = {2},

B = {3}, or B = {5} is not successful either, since C = {4} has a positive value. Bribery of

B = {4}, in turn, is not possible since v({2,3}) = 1.

If K = 2 and the prices are the same, however, bribery is possible, e.g., for the coalition

{2,4}. The remaining coalitions are subsets of {1,3,5}. Without player 1 a coalition is

not successful. With player 1, however, the costs are as high as the reward, therefore, the

coalition will not form to block all paths from v1 to v4.

4.1.1 Complexity of Bribery

The bribery problem for path-disruption games with costs in the original model of path-
disruption games with costs is NP-complete for a single adversary [RR11] and Σ

p
2-complete

for multiple adversaries [MRR14]. We sketch the proof of the former in Theorem 4.10 and
present the latter in Theorem 4.12 for completion. In this thesis, we focus on the proba-
bilistic model, for which the same complexity classification holds, see Corollaries 4.11 and
4.13.

Theorem 4.10 ([RR11]). For path-disruption games with costs and a single adversary,

PDG-BRIBERY is NP-complete.

Proof Sketch. Firstly, the problem is in NP for the following reasons. Given a path-
disruption game with costs consisting of a graph G = (V,E), a cost function c : V → Q≥0,
a reward R ∈ Q≥0, a source and a target vertex, s, t ∈ V , inducing G = (N,v), and given a
price function π : V → Q≥0, and a bound K ∈ Q≥0, we can nondeterministically guess a
coalition B ⊆ N. Obviously, it can be tested in polynomial time whether ∑i∈B π(vi)≤ K. If
this inequality fails to hold, bribery of B is not possible. Otherwise, we can verify whether
all coalitions C ⊆ N � B satisfy v(C) ≤ 0 (which is the case if and only if ṽ(C) = 0 or
R ≤ µ(C)< ∞) in polynomial time by the following algorithm: Let c� : V →Q≥0 be a new
cost function with c�(vi) = c(vi) if i /∈ B and c�(vi) = R of i ∈ B. Determine the minimal
cost κ needed to separate s from t regarding c� with help of the algorithm solving MCVC
for m = 1. It can be shown that if κ ≥ R, we have that for all C ⊆ N �B, the coalitional
function is at most 0 and bribery is possible. If, on the other hand, κ < R, it can be seen that
there exists a minimal winning coalition C ⊆ N �B with µ(C) = κ and v(C) = R−κ > 0,
thus, bribery is not possible.

Secondly, the problem is NP-hard. This can be shown by means of a polynomial-time
many-one reduction from PARTITION based on the reduction PARTITION ≤

p
m MAXCUT by

Karp [Kar72]: Given an instance (a1, . . . ,an), we obtain the MAXCUT instance consisting
of the complete graph G� = (V �,E �) and the edge weight function w : E � → N� {0} with
w({vi,v j}) = ai · a j, and K = S2/4 with S = ∑

n
i=1 ai. Obviously, the MAXCUT property

is satisfied if and only if A belongs to PARTITION. Next, given A and G�, we create the
following instance X of PDG-BRIBERY in polynomial time. The path-disruption game
consists of graph G = (V,E), where V =V �∪{vn+1,vn+2}∪{vn+2+i,v2n+2+i | 1 ≤ i ≤ n}∪
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4 Uncertain Targets in Path-Disruption Games: Bribery and Stability

�
v3n+2+ j | e j ∈ E �,1 ≤ j ≤ n(n−1)/2

�
, E = {{u,v3n+2+ j},{v3n+2+ j,v} | {u,v}= e j ∈ E �}∪

{{vn+1,vn+2+i},{vn+2+i,vi} | 1 ≤ i ≤ n}∪ {{vi,v2n+2+i},{v2n+2+i,vn+2} | 1 ≤ i ≤ n} and
furthermore of source vertex s = vn+1, target vertex t = vn+2, reward R =

�
S2/2

�
+ S, and

cost function c : V →Q≥0, defined by

c(vi) =







R if 1 ≤ i ≤ n+2

a j if n+3 ≤ i ≤ 2n+2, i = n+2+ j

a j ·
�

S
2 +1

�
if 2n+3 ≤ i ≤ 3n+2, i = 2n+2+ j

w(e j) if 3n+3 ≤ i ≤ n�, i = 3n+2+ j

with n� = 3n+2+ n(n−1)/2. Moreover, let K = S/2 and let the price function π : V →Q≥0 be
defined by

π(vi) =







K +1 if 1 ≤ i ≤ n+2

a j if n+3 ≤ i ≤ 2n+2, i = n+2+ j

K +1 if 2n+3 ≤ i ≤ n�.

We briefly describe how the equivalence (a1, . . . ,an) is in PARTITION if and only if
bribery is possible in X is shown.

Only if: Suppose there is a subset A� ⊆ {1, . . . ,n} with ∑i∈A� ai = S/2. Then bribery
is possible for coalition B = {m + 2 + i | i ∈ A�} ⊆ N = {1, . . . ,n�}: Note that
∑m+2+i∈B π(vm+2+i) = K. The fact that v(C)≤ 0 holds for each coalition C ⊆ N �B can be
shown by a careful case-distinction. If ṽ(C) = 0, then v(C) = 0 by definition. Otherwise, C

contains a minimal winning subcoalition C� ⊆ C with ṽ(C�) = 1 and µ(C) = ∑i∈C� c(vi). It
turns out that in every case µ(C)≥ R, thus, bribery is possible.

If: Suppose that there exists a coalition B ⊆ N with ∑i∈B π(vi)≤ K and for all coalitions
C ⊆ N �B, either ṽ(C) = 0 or µ(C) ≥ R holds. Ruling out the elements of B logically, we
end up with two main cases for B � {n+3, . . . ,2n+2}: If ∑i∈B π(vi)< K, then we obtain a
contradiction; if ∑i∈B π(vi) = K, a partition into A� = {i | n+2+ i ∈ B} and {1, . . . ,n}�A�

exists. �

For probabilistic path-disruption games with costs and a single adversary the NP-hardness
lower bound is implied by the special case in Theorem 4.10. Since the verification can be
done in polynomial time for a single adversary for each target with a positive probability,
NP-membership holds for the single-adversary case.

Corollary 4.11. For probabilistic path-disruption games with costs and a single adversary,

PDG-BRIBERY is NP-complete.

Theorem 4.12. For path-disruption games with costs and multiple adversaries, PDG-
BRIBERY is Σ

p
2-complete.

Proof. The problem belongs to Σ
p
2 , since it can be written in the corresponding quantifier

characterization, see Lemma 2.2: An instance consisting of a path-disruption game G =
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4.1 Probabilistic Path-Disruption Games and Bribery

(N,v) with multiple adversaries and cost function c, and a reward R, as well as π , and K,
belongs to PDG-BRIBERY if and only if

(∃B ⊆ N)(∀D ⊆ N �B)

�

∑
i∈B

π(ui)≤ K and

�

ṽ(D) = 0 or ∑
i∈D

c(ui)≥ R

��

.

The property in brackets can obviously be tested in polynomial time.
In order to show Σ

p
2-hardness, we reduce from QBF2. Corresponding to the input we are

given a formula F = (∃X)(∀Y ) f (X ,Y ), f (X ,Y ) =
�k

i=1(ui ∧ vi ∧wi), where each impli-
cant i, 1 ≤ i ≤ k, has exactly three literals ui, vi, and wi over X ∪Y . The graph G for the
path-disruption game with multiple adversaries and costs that is part of the PDG-BRIBERY

instance to be constructed from F , is built from the three graphs, G1, G2, and G3, shown in
Figure 4.5.

s1

x1

x̄1

x2

x̄2

. . .

xp

x̄p

d1

d2k

... t1

s2

y1 y2 yq

ȳ1 ȳ2 ȳq

t2

. . .

(a) Graphs G1 and G2 for X and Y variables

s3

s4

s5

s6

s7

ai

bi

ci

ui

vi

wi

a�i

b�i

c�i

t3

t4

t5

t6

t7

(b) Graph G3 for implicant (ui ∧ vi ∧wi) in f

Figure 4.5: Three graphs for reduction proving Theorem 4.12

In particular, G is constructed from G1, G2, and G3 by identifying, for each occurrence of
a literal ui, vi, or wi in f , the vertex in G3 representing this literal with the vertex representing
the corresponding variable (x ∈ X or y ∈ Y ) or its negation (x̄ or ȳ) in G1 or G2. Intuitively,
the purpose of graph G1 in Figure 4.5a is to enforce consistency on the part of the briber,
the purpose of G2 in Figure 4.5a is consistency of the coalition, and the purpose of G3 in
Figure 4.5b is to enforce the implicants. The players on vertices in G1 labelled with X

variables or their negations (diamond shape) are bribable for a price of 1 but have 0 cost,
sources s j and targets t j (rectangle shape) have a cost of 6k+q+1 and a price of p+1, and
all other vertices (circle shape) have cost 1 and a price of p+ 1. Let K = p be the briber’s
budget and R = 6k+q+1 be the reward. We show that bribery is possible if and only if the
original quantified Boolean formula F is valid.

If: Assume that F is valid, that is, there exists an assignment of the variables in X such
that for each assignment of Y there exists an implicant such that each literal is satisfied.
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4 Uncertain Targets in Path-Disruption Games: Bribery and Stability

Then, bribery is successful if those players corresponding to x if x is true, and x̄ if x is false,
are payed: The price limit is met, since p players are bribed. A coalition C can only have a
positive value if it contains a successful subcoalition with at most 6k+q players other than
those on vertices labelled x ∈ X or x̄ that are not bribed, and with no player on a source or
target vertex, as their costs are too high to allow µ(C)< R. Since for each x ∈ X , either the
player corresponding to x or to x̄ is bribed. The other one is free to participate in C. The
coalition must include all players on vertices di, 1 ≤ i ≤ 2k; otherwise, there would be a
path from s1 to t1. Note that, by construction, for all i, 1 ≤ i ≤ k, at least two players on
vertices in {ai,bi,ci} must be part of the blocking coalition, since otherwise there is either
a path from s4 to t4 or from s5 to t5. Likewise, at least two players on vertices in {a�i,b

�
i,c

�
i}

must participate in C due to paths from s6 to t6 or s7 to t7. Also notice that if the player on
ai is not in the blocking coalition, the ones on b�i and c�i must be because of paths from s3
to t3 (and again symmetric statements can be made for a�i, bi, etc.). Furthermore, for each
y ∈ Y , either the player on y or ȳ must be part of the blocking coalition; otherwise, there is
a path from s2 to t2. Altogether, C includes 6k+q vertices with cost 1 each (circle-shaped),
leaving for each i, 1 ≤ k, two players on one of {ai,a

�
i}, {bi,b

�
i}, or {ci,c

�
i} out of C, and

for each y ∈ Y , a player on one of y or ȳ out as well. Therefore, C represents a consistent
assignment to the variables in Y , namely the y or ȳ labels of vertices not blocked by C. For
each implicant, one path from s3 to t3 over either ui, vi, or wi is left to be blocked, which
is identified with one x ∈ X or x̄. However, since there is one implicant such that all three
literals are satisfied, C cannot succeed. Therefore, bribery is possible.

Only if: Assume that bribery is possible. The briber can bribe up to p players having
price 1 (note that all other players not on diamond-shaped vertices are to expensive to bribe).
Consider the case where the briber does not play consistently, i.e., either plays (a) neither x

nor x̄ or (b) both x and x̄, for an x ∈ X . In case (b), since the number of bribable players is
limited by p, there is some other x� ∈ X such that case (a) holds. In case (a), a coalition C

consisting of the players corresponding to x and x̄, to any consistent assignment to the vari-
ables in Y , and to vertices ai, a�i, bi, b�i, ci, and c�i for all i, 1 ≤ i ≤ k, can form to block all
paths from s j to t j for 1 ≤ j ≤ 7. Since this sums up to µ(C) = 6k+q < R (i.e., v(C)> 0),
inconsistent bribery must fail.

Now assume that the briber plays consistently. In this case, suppose that F was not
valid. Then for each assignment to the variables in X (corresponding to the possible bribed
players), there exists an assignment to the variables in Y such that for each implicant there
exists a literal that is not satisfied. Let, without loss of generality, ui be that literal. Then,
the coalition consisting of those players corresponding to variables or their negations in X

that are not bribed, of those players corresponding to variables or their negations in Y that
are false, and of those players corresponding to bi, b�i, ci, and c�i for each i, 1 ≤ i ≤ k, blocks
each path from s j to t j for 1 ≤ j ≤ 7. This would be a contraction to successful bribery,
therefore, F is valid. �

In the probabilistic case, again, Theorem 4.12 implies the lower bound immediately. The
Σ

p
2 upper bound holds obviously by the characterization that a given instance belongs to
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PPDGC-MULTIPLE-BRIBERY if and only if

(∃B ⊆ N)(∀D ⊆ N �B)

�

∑
i∈B

π(ui)≤ K and (ṽ(D) = 0 or c(D)≥ R)

�

by similar arguments as in the previous proof.

Corollary 4.13. For probabilistic path-disruption games with costs and multiple adver-

saries, PDG-BRIBERY is Σ
p
2-complete.

4.1.2 Complexity of Stability

Player Properties In a non-simple setting the veto property translates to: a player is a
veto player if no coalition has a positive value without it. Nevertheless in the following we
will see that in the context of veto players and core stability a probabilistic path-disruption
game behaves just like a simple game. We are interested in the questions of verification
and existence of veto players as well as the counting problem of how many veto players
there are, and the corresponding search problem where the task is to find the veto players.
Note that in a probabilistic path-disruption game without costs, a player i is a veto player
if and only if it is placed on a vertex with p j,i = 1. If at least two vertices have a positive
probability of being a target, a player on any of these vertices can be part of a coalition
that has a positive value without the other players necessarily being contained. Thus, we
can decide in polynomial time whether a given player in a given PPDG without costs is a
veto player; testing this property for each of the n players solves the decision of existence in
polynomial time, and hence, all veto players can be found and counted in polynomial time.
The role of the players placed on the adversaries’ source vertices is similar to that of a veto
player in a simple game: Every coalition C ⊆ N that contains all players sitting on source
vertices has value v(C) = 1. For each j, 1 ≤ j ≤ m, it holds that v(N �{s j}) = 1− p j, j.
The general model does not yield a higher complexity than the original model. In the cost
case, these problems are most likely less efficient to solve, since monotonicity cannot be
utilized here. Deciding whether a given player is a veto player is in coNP in this case.

For both notions of a null and a dummy player, the verification problem is coNP-complete
for probabilistic path-disruption games without costs. The lower bound is inherited by the
same result for the non-probabilistic case. The corresponding upper bound holds straight-
forwardly.

Proposition 4.14. For both, a null and a dummy player, the problem of whether a given

player in a given probabilistic path-disruption game without costs is such a player, is coNP-

complete.

Regarding the first notion, null-players, it holds that the Shapley value is 0 if and only if
a player is a null player. Hence, the decision whether a given player in a given probabilistic
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path-disruption game without costs has a positive Shapley value is NP-complete. The hard-
ness proof, of course, also implies coNP-hardness for this problem in the cost case. The
best known upper bound for the cost case is Π

p
2 . The technique that will be useful for the

core in order to gain the first instead of the second level of the polynomial hierarchy cannot
be adapted straightforwardly to apply here.

Group Deviation The complexity of problems connected to the core is closely related to
those connected to veto players, see Section 2.3.1.

Proposition 4.15. For a probabilistic path-disruption game with a single adversary and

without costs, core verification, core existence, as well as core computation can be solved

in polynomial time.

Proof. Observe that the core of a probabilistic path-disruption game with a single adver-
sary and without costs is non-empty if and only if an agent placed on a vertex with target
probability 1. Moreover, in this case, the core consists of only one element. If there is a
small probability for at least two targets, the core is empty. Hence, the core can be com-
puted in polynomial time, and it thus can be decided in polynomial time whether the core is
non-empty, and also whether a given payoff vector belongs to it. �

In respect thereof, the probabilistic model of path-disruption games behaves like a simple
game, even though in general it is not. In the multiple-adversary and no-costs case, for a
fixed number m of adversaries, deciding whether a payoff vector is in the core of a given
game can also be done in polynomial time. On the other hand, if m is not fixed, this cannot
be shown straightforwardly. In contrast to the original (non-probabilistic) model of path-
disruption games, we suspect this problem (in the no-cost and multiple adversary case) to
be coNP-complete. Even with costs the upper bound holds, instead of the second level of
the polynomial hierarchy.

Proposition 4.16. The problem of deciding whether a given payoff vector is in the core of a

given probabilistic path-disruption game with costs is in coNP.

Proof. Let �q be a given payoff vector, and let a probabilistic path-disruption game with
costs be given by a graph G = (V,E), adversaries s1, . . . ,sm with target probabilities p j,i,
1 ≤ j ≤ m, 1 ≤ i ≤ n, a cost function c : V → Q≥0, and a reward R ∈ Q≥0. Note that for
each coalition C ⊆ N, there exists a coalition C� ⊆ C with µ(C) = µ(C�) = c(C�) ≤ c(C).
Therefore,

R− c(C) ≤ R−µ(C) = R− c(C�) = v(C�) and

�q(C�) ≤ �q(C).

Consequently,�q is in the core of the game implies that

R− c(C)≤ R−µ(C) = v(C)≤�q(C),
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for each C ⊆ N. If �q is not in the core of the game, there exists a coalition C ⊆ N with
v(C)>�q(C). For the corresponding C� ⊆ N it holds that

R− c(C�) = R−µ(C) = v(C)>�q(C)≥�q(C�).

Thus, we only need to test whether R− c(C)≤�q(C) for all coalitions C ⊆ N, which can be
done in coNP. �

For the ε-core we study the same question; Given a game G , a payoff vector �q and a
rational bound ε , is the maximal deficit at most ε , or, equivalently, is �q in the ε-core of G ?
If only imputations are allowed in the ε-core (as, e.g., Bachrach and Porat require in their
definition of the least core), then the least core of a probabilistic path-disruption game with
a single adversary and without costs is equal to its core, and thus computable in polynomial
time. In general, this does not hold. The following proof extends the analogous proof for
the non-probabilistic case [BP10].

Proposition 4.17. For multiple adversaries and with or without costs, it is coNP-complete to

decide whether a given payoff vector is in the ε-core of a given probabilistic path-disruption

game for a given ε .

Proof Sketch. Testing whether maxC⊆N(v(C)−�q(C))≤ ε is equivalent to testing whether
for every coalition C ⊆ N it holds that�q(C)≥ v(C)− ε . Thus, in order to solve the comple-
ment of our problem in NP, we can guess a coalition C ⊆ N nondeterministically and test
in polynomial time (see Proposition 4.7 and Corollary 4.8) whether �q(C) < v(C)− ε . We
prove coNP-hardness by means of a reduction from the complement of MCVC. Given an
MCVC instance X consisting of a graph G = (V,E) and m vertex pairs (s j, t j), s j, t j ∈ V ,
weight function w : V → N�{0}, and a bound K ∈ N�{0}, we construct an instance with
the same graph G, adversaries sitting on s j, 1 ≤ j ≤ m, and probabilities p j,i = 1 if vi = t j

for 1 ≤ j ≤ m and vi ∈V , and p j,i = 0 otherwise. Moreover, we have

�q =

�
w(v1)

∑
n
i=1 w(vi)

, . . . ,
w(vn)

∑
n
i=1 w(vi)

�

and ε = 1−
2K +1

2∑
n
i=1 w(vi)

.

Obviously, this construction can be done in polynomial time. Note that�q is a pre-imputation.
We now verify that the given instance X is not in MCVC if and only if �q belongs to the
ε-core of the constructed game.

Only if: Suppose that the given instance does not belong to MCVC, that is, for all
subsets V � ⊆ V blocking all paths from s j to t j, 1 ≤ j ≤ m, it holds that ∑v�∈V � w(v�) > K.
By construction and the condition that all weights and K are natural numbers, it follows that
∑v�∈V � w(v�)> K+ 1/2. Thus, for all coalitions C ⊆ N with a positive value (that is, for each
adversary j, 1 ≤ j ≤ m, C blocks each path from s j to the only possible target), it holds that

∑
�∈C

q� =
1

∑
n
i=1 w(vi)

∑
�∈C

w(v�) >
2K +1

2∑
n
i=1 w(vi)

= 1− ε.
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This means that
v(C)−�q(C) = 1− ∑

�∈C

q� < 1− (1− ε) = ε.

Since the grand coalition N with e(N) = 0 has a positive value and each coalition that cannot
disrupt all adversaries’ paths has a deficit at most 0, the maximal deficit is less than ε , thus
in the constructed instance�q belongs to the ε-core, as desired.

If: Let the maximal deficit of a coalition in the game be at most ε , that is, for all coali-
tions C ⊆ N it holds that v(C)−�q(C) ≤ ε . In particular, for each coalition with a positive
value, we have v(C)−�q(C) = 1−�q(C)≤ ε . Thus, for all subsets of vertices V � ⊆V blocking
each path from s j to t j, 1 ≤ j ≤ m, we have ∑v�∈V � q� ≥ 1− ε , which implies

∑
v�∈V �

w(v�)

∑
n
i=1 w(vi)

≥ 1−
�

1−
2K +1

2∑
n
i=1 w(vi)

�

=
2K +1

2∑
n
i=1 w(vi)

,

which, in turn, implies ∑v�∈V � w(v�) ≥ K + 1/2 > K. Thus, there is no subset of vertices
satisfying the conditions of MCVC.

For the case with costs, note that the coNP lower bound is trivially inherited from the case
without costs. On the other hand, the coNP upper bound can be shown similarly as in the
proof of Proposition 4.16. �

4.2 Challenges and Future Work

We have expanded the notion of path-disruption games by allowing uncertainty about the ad-
versaries’ targets and have discussed the complexity of problems related to various solution
concepts and other properties of these more general games. As we have seen, although more
general (and perhaps, in some situations, somewhat more realistic), these games behave like
their restricted variants in terms of complexity of stability problems. Certain problems can
still be be solved efficiently, while others are as hard as (yet no harder than) for the original
model of path-disruption games.

In addition, we have studied the complexity of a model of bribery in path-disruption
games. While bribery without costs is easy, and can be traced back to questions of connec-
tivity, we have shown that bribery with costs in path-disruption games is NP-complete in
the single-adversary case and is Σ

p
2-complete in the multiple-adversary case.

Special Graph Classes In contrast to problems concerning negative influences, for sta-
bility verification or existence, a lower complexity is rather desirable. In natural settings,
input graphs often have certain properties. From an algorithmic point of view it might be
interesting to analyse whether there are special instances that are tractable. Therefore, fu-
ture work might want to investigate path-disruption games on special classes of graphs. For
example, Bachrach and Porat [BP10] already analyse path-disruption games on trees with
the result that very often problems that are hard in general become solvable in polynomial
time for trees. For the probabilistic variant we obtain similar results.
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Proposition 4.18. • For probabilistic path-disruption games without costs on trees and

on complete graphs, dummy player verification becomes solvable in polynomial time.

Similarly null player verification and the problem of determining the Shapley value

and a non-simple version of the Penrose–Banzhaf index are easy for this restriction.

• The problem of ε-core verification in probabilistic path-disruption games becomes

solvable in polynomial time if there are no costs and the game’s domain is restricted

to be a complete graph.

Additionally to trees and complete graphs, planar graphs might be worth studying or
graph properties that can often be found in real life networks, like small worlds [WS98]. We
suspect that PDGC-MULTIPLE-BRIBERY is NP-complete when restricted to planar graphs,
in contrast to the general problem for which we showed Σ

p
2-completeness in Theorem 4.12.

Still, this would mean the problem is computationally intractable.

Open Questions For future work, it might be interesting to determine the complexity of
problems not settled yet as defined in this section and to consider other problems related to
solution concepts for path-disruption games and probabilistic path-disruption games.

Moreover, one might want to vary the model of bribery and to study the resulting prob-
lems in terms of their complexity. Even without costs, if the cardinality of a blocking coali-
tion is limited, a bribery problem might become harder again. In the context of voting, vari-
ations of bribery in elections are, e.g., the following. In microbribery [FHH09, FHHR09],
a briber can bribe single positions in a vote selectively instead of the whole vote. Here
a coalition might have different prices within the coalition for different reactions to cer-
tain probabilities of a vertex to be unblocked. In swap bribery [EFS09] and similarly shift

bribery [BFNT15, BCF+14b], selected positions in a vote can be switched or selected can-
didates shifted to another position. Here, a restriction might be that a coalition is only
bribable for a certain combination of vertices to be unblocked at once. Moreover, there
are various versions of campaign management [SFE11, FRRS15, FR16]. In these scenar-
ios bribery does not have a bad taste only; resources can be used reasonably to subsidize
a generally accepted outcome. Here, the adversary might, for instance not be a malicious
intruder, but rather an antidote that is carried through a network in which it costs different
effort to oppose a virus. In the context of path-disruption games, another variation might
be to consider multiple, independently concurring bribes; another one to define the costs of
blocking a vertex in a graph and the prices for bribing the corresponding agents in relation
to each other. This might be analysed in connection with the stability of the game and might
lead to a new perspective on the topic.
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Properties and Stability

In this chapter, we study different representations of hedonic games. Section 5.1 deals with
wonderful stability in enemy-oriented hedonic games, joint work with Rothe, Schadrack,
and Schend [RRSS16, RRSS14]. Section 5.2 covers the study of possible and necessary
verification and existence in hedonic games with ordinal preferences and thresholds as
introduced jointly with Lang, Rothe, Schadrack, and Schend [LRR+15]. In Section 5.3
altruistic hedonic games as recently introduced jointly with Nguyen, Rey, Rothe, and
Schend [NRR+16] are presented. Concluding, Section 5.4 contains challenges of all three
topics as developed with the same co-authors, respectively. As an illustration, consider the
following hedonic game as defined in Section 2.3.2.

Example 5.1. Let there be five players in N = {1, . . . ,5} and consider the following profile

of preferences as presented here partially. For each i ∈ N, the dots may be filled in by an

arbitrary weak order of the remaining coalitions in Ni.

�1: {1,2,3}�1 . . . ,

�2: {1,2,3,5}�2 {1,2,3}∼2 {1,2,5}∼2 {2,3,5}�2 . . . ,

�3: {1,2,3,4}�3 {1,2,3}∼3 {1,3,4}∼3 {2,3,4}�3 . . . ,

�4: {2,4,5}�4 {3,4}∼4 {4,5}�4 . . . ,

�5: {2,4,5}�5 {2,5}∼5 {4,5}�5 . . . .

In the following we investigate different types of encoding such a preference profile suc-
cinctly. The common structure of decision problems is the following.

CORE STABILITY VERIFICATION (CSV) and STRICT CORE STABILITY VERIFICATION

(SCSV) are the problems of whether a given coalition structure Γ in a given hedonic game
is core-stable (strictly core-stable, respectively), that is whether no coalition is (weakly)
blocking Γ. In the literature it is also common to ask the complement question as to whether
there exists a (weakly) blocking coalition under the same problem name. We carefully
distinguish both notations and use the positive problem naming.

CORE STABILITY EXISTENCE (CSE) and STRICT CORE STABILITY EXISTENCE

(SCSE) contain each instance of a hedonic game that allows a (strictly) core-stable coalition
structure.

Example 5.2. For the game in Example 5.1, there exists a core-stable coalition structure,

namely {{1,2,3},{4,5}}.
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It may be the case that such a stable coalition structure always exists for a certain rep-
resentation of hedonic games. If not, we are interested in the computational complexity of
this decision problem. By definition core-stable verification is a problem in coNP, since
the complement problem can be decided in nondeterministic polynomial time by choos-
ing a coalition and verifying whether this coalition blocks the given coalition structure in
polynomial time. The corresponding existence problem can be written with an existential
quantifier (does there exist a coalition structure) followed by an universal quantifier (such
that all coalitions) and a question decidable in polynomial time (do not block the coalition
structure), which satisfies the quantifier characterization of Σ

p
2 (Lemma 2.2). Therefore, by

its nature, CORE STABILITY EXISTENCE belongs to Σ
p
2 . Table 5.1 provides an overview of

the history of complexity results of six stability problems in three types of hedonic games.

FRIEND-ORIENTED ENEMY-ORIENTED ADDITIVELY SEPARABLE

CSV • in coNP • coNP-complete † § • coNP-complete †

CSE • in P (always exists) ∗ • in P (always exists) ∗
• NP-hard ††

• NP-h. (symmetric) ‡

• Σ
p
2 -complete §§

SCSV • in coNP • coNP-complete † § • coNP-complete †

SCSE • in P (always exists) ∗ § • in Σ
p
2 , NP-hard §

• DP-hard (Thm. 5.12) ¶

• coDP-h.⇒Θ
p
2 -h. (Cor. 5.63)¶

• NP-hard ††

• in Σ
p
2

§

• Σ
p
2 -complete �

WSV • coNP-complete (Thm. 5.7) ¶

WSE • in Θ
p
2

§

• DP-hard (Thm. 5.10) ¶

• coDP-h. ⇒ Θ
p
2 -c. (Thm. 5.62) ¶

∗ [DBHS06]
† [SD07]
†† [SD10]
‡ [ABS13]

§ [Woe13a]
§§ [Woe13b]
� [Pet15]
¶ this thesis ([RRSS14])

Table 5.1: Overview of the history of complexity results of core, strict core, and wonder-
ful stability in friend-based, enemy-oriented, and additively separable hedonic
games. Key: hardness is abbreviated by h. and completeness by c., a grey entry
signalizes that only trivial lower and upper bounds are known.

For additively separable hedonic games these problems have been studied intensely: Sung
and Dimitrov show that CSV and SCSV are coNP-complete [SD07] and CSE and SCSE are
NP-hard [SD10]. Aziz et al. [ABS13] confirm this result for the restriction to symmetric
values and finally Woeginger [Woe13b] pinpoints the complexity of CSE by showing Σ

p
2-
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completeness. The strict variant SCSE has been settled very recently by Peters [Pet15] who
shows Σ

p
2-completeness for this problem as well. While in friend-oriented hedonic games

a strictly core-stable and in enemy-oriented hedonic games a core-stable coalition structure
always exist [DBHS06, Woe13a], SCSE under enemy-oriented preferences is intractable.
Woeginger [Woe13a] shows that this problem is NP-hard and contained in Σ

p
2 . He, more-

over, introduces the notion of wonderful stability (Definition 2.7) as a desirable concept
for enemy-oriented hedonic games and presents complexity of its existence problem as a
challenging open question. So far, there has been a gap between NP-hardness and Θ

p
2-

membership [Woe13a]. We do not close this gap completely, but raise the lower bound to
DP-hardness and show that coDP-hardness would be sufficient to prove Θ

p
2-completeness.

In Section 5.1 we will elaborate on these complexity results of wonderful stability verifica-
tion and existence, summarized in the third part of the table, and sketch the related hardness
proofs for strict core stability existence.

Additionally to questions of group deviations, we consider the verification and existence
problems of other stability concepts such as stability due to no deviations by single players
and coalitions structures that stand out in direct comparison to others, as defined in Sec-
tion 2.3.2.

Example 5.3. For the game in Example 5.1, the coalition structure {{1,2,3},{4,5}} is also

Nash-stable and strictly popular. Indeed, it satisfies every concept with one exception, it is

not perfect. There is no perfect coalition structure in this game.

Next to networks of friends, we are also interested in a refinement where players are
ranked. For the singleton encoding, Cechlárová and Romero-Medina [CR01] introduce B-
and W -preferences. For B-preferences, they show that if rankings are strict, a strict core-
stable coalition structure always exists. In contrast to that, if weak rankings are allowed, the
existence problem is NP-complete [CH03]. Cechlárová and Hajduková also show that the
corresponding verification problems are in P. For W -preferences, Cechlárová and Romero-
Medina show that there are similarities to stable roommate problems [Cec02]; in the strict
case, the existence problems for the core and the strict core are tractable, however core exis-
tence is NP-complete in general [CH04]. The strict-core case is open. Aziz et al. [AHP12]
study single player deviations for both extensions amongst others. They show that the exis-
tence and verification problems for Nash stability are NP-complete for both strict and weak
rankings in the case of B-preferences. For individual stability this only holds in general,
but not in the strict case, which is left open. For W -preferences Nash stability existence
can be decided in polynomial time for the strict case and is open in general. In all other
cases, individually and contractually individually stable coalition structures always exist.
Pareto-optimality has been studied by Aziz et al. [ABH13] who show that existence and
verification are tractable for W -preferences and intractable for B-preferences.

Combining these two encodings, we propose representing players’ preferences ordinally
and with a double threshold dividing co-players into friends, enemies and neutral players.
In order to derive preferences over coalitions, we suggest generalizing Bossong-Schweigert
extensions [BS06] to rankings of friends and enemies. Leaving some players but those
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at the top and the bottom unranked is also inspired by truncated ballots in a voting con-
text [BFLR12]. A related model can be found in the context of matching theory: Responsive
preferences are studied in bipartite many-to-one matching markets and consider the compo-
sition of one participant to another, although not in distinction of friends or enemies (see,
e.g., [Rot85, RS92, Sot12]). In this context of many-to-one matching markets an agent on
the one side has responsive preferences over assignments of the agents on the other side, if
for any two assignments that differ in only one agent, the assignment containing the most
preferred agent is preferred.

Since the generalized Bossong-Schweigert extension allows uncertainties between coali-
tions from a player’s point of view, we introduce the notions of possibility and necessity
to stability concepts. Computational complexity results for possible and necessary stability
verification and existence are summarized in Table 5.2. We define the new representation of
games with ordinal preferences and thresholds in Section 5.2 and elaborate on the complex-
ity results in Sections 5.2.1 to 5.2.4.

VERIFICATION EXISTENCE

γ POSSIBLE NECESSARY POSSIBLE CERTAIN NECESSARY

perfection in P (Prop. 5.32) in P (Prop. 5.32) in P (Prop. 5.32) in P (Prop. 5.32) in P (Prop. 5.32)
ind. rationality in P (Prop. 5.33) in P (Prop. 5.33) in P (Obs. 5.27) in P (Obs. 5.27) in P (Obs. 5.27)

contr. ind. stability in NP in P (Thm. 5.34) in NP in Π
p
2 in NP

ind. stability in NP in P (Thm. 5.34) in NP in Π
p
2 in NP

Nash stability in NP in P (Thm. 5.34) NP-complete
(Thm. 5.35)

NP-hard, in
Π

p
2 (Cor. 5.37)

NP-complete
(Thm. 5.36)

core stability coNP-hard, in
Σ

p
2 (Thm. 5.38)

in coNP in Σ
p
2 in Π

p
3 in Σ

p
2

str. core stability coNP-hard, in
Σ

p
2 (Thm. 5.38)

in coNP in Σ
p
2 in Π

p
3 in Σ

p
2

Pareto optimality coNP-hard, in
Σ

p
2 (Thm. 5.41)

coNP-complete
(Thm. 5.41)

in P (Obs. 5.27) in P (Obs. 5.27) in Σ
p
2

popularity coNP-hard, in
Σ

p
2 (Thm. 5.39)

coNP-complete
(Thm. 5.39)

in Σ
p
2 in Π

p
3 in Σ

p
2

str. popularity coNP-hard, in
Σ

p
2 (Thm. 5.39)

coNP-complete
(Thm. 5.39)

coNP-hard, in
Σ

p
2 (Thm. 5.40)

coNP-hard, in
Π

p
3 (Thm. 5.40)

coNP-hard, in
Σ

p
2 (Thm. 5.40)

Table 5.2: Overview of complexity results of possible and necessary stability verification
and existence problems in hedonic games with ordinal preferences and thresh-
olds. A grey entry signalizes that only trivial lower and upper bounds are known.
All results are part of this thesis and published in [LRR+15].

In particular, for Nash-stability and despite exponentially many possible extensions in the
number of players, verification and existence are not harder than the more restricted models.
We also obtain (rather) low completeness results of the verification problems for necessary
stability in coalition comparison. We present various lower bounds and put up a number of
new questions open to be specified.
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All models of representing hedonic games studied in the literature so far are based
upon selfish players only. Inspired by the notion of altruism in non-cooperative games
(see, e.g., [HS09, CKKS11, AS12, RS13a]), measures of influence in social networks (see,
e.g., [RBSG11]), as well as preference extensions and influence in decision making pro-
cesses (see, e.g., [SB14, GLP15, GVQ15]), we introduce hedonic games with altruistic
influences. The underlying encoding is a network of friends as defined in Section 2.3.2 with
symmetric friendship relations for stability reasons.

Example 5.4. Consider the example of four players, 1, 2, 3, and 4, and let 1 be friends

with 2, but neither with 3 nor with 4, while 2 and 3 are friends with each other, but not

with 4. The corresponding network is displayed in Figure 5.1. Now, in the friend-oriented

1 2 3 4

Figure 5.1: Example of a network of friends

extension model player 2 prefers teaming up with 1 and 3 to forming a coalition with 1 and 4.

Player 1, on the other hand, is indifferent between coalitions {1,2,3} and {1,2,4}, because

they both contain the same number of 1’s friends and the same number of 1’s enemies.

Intuitively, however, 1 would have an advantage from being in a coalition with 2 and 3,

since 2 and 3—being friends—can be expected to cooperate better than 2 and 4. Also, 1 can

be expected to care about her friend 2’s interests and thus might prefer a coalition in which

2 is satisfied ({1,2,3}) to one in which 2 is less satisfied ({1,2,4}).

Since such an advantage as expressed in this example cannot be expressed by friend-
oriented preferences, we propose to refine friend-oriented hedonic games, in which this idea
of players caring about their friends’ preferences is taken into account. We define degrees
of altruism, from being selfish at first, over aggregating opinions of a player and her friends
equally, to altruistically letting one’s friends decide first. The latter is the most altruistic
case, as we assume that from a player’s perspective only friends can be consulted, while
agents further away cannot be communicated with or cannot be trusted. In a social network,
for example, the whole set of players other than friends might not even be known, rather
than being enemies.

Taking friends’ opinions into account does not contradict the idea of hedonic games;
on the contrary: In hedonic games player i’s happiness depends only on the coalition that
contains i. Here, only the notion of happiness is redefined; as i is also interested in her
friends’ satisfaction (with varying degrees), this idea is now part of i’s utility. Still, this
utility only depends on the coalition containing i by only considering friends’ opinions
within that same coalition.

The proposed games satisfy a number of desirable properties. They are compactly repre-
sentable but not fully expressive. However, they can express different hedonic games than
those representable by popular compact models in the literature (see Section 2.3.2).
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5 Hedonic Games: Axiomatic Properties and Stability

Once more, we study the complexity of verification and existence problems for several
stability concepts. Related work for friend-oriented hedonic games has been described
above in the context of hedonic games with ordinal preferences and thresholds. Our com-
plexity results for the selfish-first, equally treated, and altruistic preferences can be found in
Table 5.3.

VERIFICATION EXISTENCE

γ SF EQ AL SF EQ AL

perfection ¶ in P in P
ind. rationality ¶ in P in P in P in P in P in P

contr. ind. stability ¶

ind. stability ¶ in P (always exist, Cor. 5.55)

Nash stability ¶

in P (Prop. 5.53)

in P (always exist, Thm. 5.54)

core stability
str. core stability

in coNP in P
(5.56) in Σ

p
2

Pareto optimality in P in P in P
popularity
str. popularity

(Thm. 5.58) ¶
coNP-
complete

in coNP coNP-
hard, in Σ

p
2

in Σ
p
2

¶ this thesis ([NRR+16])

Table 5.3: Overview of complexity results of stability verification and existence problems in
hedonic games with altruistic influences. A grey entry signalizes that only trivial
lower and upper bounds are known.

5.1 Complexity of Wonderful Stability in

Enemy-Oriented Hedonic Games

The following analysis has been worked on in collaboration with Rothe, Schadrack, and
Schend [RRSS16, RRSS14]. In this thesis, we will address the problems related to wonder-
ful stability as well as sketch associated results for strict core stability.

The problems of (strict) core stability verification and existence translate to the analogous
questions for a wonderfully stable coalition structure in an enemy-oriented hedonic game
represented by an undirected graph. Undirected edges signify that friendship relations are
symmetric. Note that we can make use of this restriction without loss of generality, since,
in the context of stability, a single directed friendship is equivalent to no friendship relation
at all between two players (see, e.g., [Woe13a]).

WONDERFUL STABILITY VERIFICATION (WSV)

Given: An undirected graph (V,E) and a partition into cliques Π of V .

Question: Is Π wonderfully stable?
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WONDERFUL STABILITY EXISTENCE (WSE)

Given: An undirected graph (V,E).

Question: Does (V,E) allow a wonderfully stable partition?

Example 5.5. Consider the players from Example 5.1 who are part of the following network

of games1. Extending preferences in an enemy-oriented way, we obtain a corresponding

profile.

1

2

3 4

5

Figure 5.2: Example of a wonderfully stable partition in a graph corresponding to an enemy-
oriented hedonic game

It can be observed that the strictly core-stable coalition structure {{1,2,3},{4,5}} (Ex-

ample 5.2) even corresponds to a wonderfully stable partition in this graph.

The following useful property holds for graphs consisting of several independent compo-
nents by definition.

Property 5.6. Let G be an undirected graph consisting of k independent components Gi

1 ≤ i ≤ k. There exists a wonderfully stable partition Π for G if and only if there exist

wonderfully stable partitions Πi for all components Gi, 1 ≤ i ≤ k. In particular, in that case

it holds that Π =
�k

i=1 Πi.

In order to establish the complexity of WONDERFUL STABILITY VERIFICATION, we
make use of the same proof technique that Sung and Dimitrov [SD07] used for the core
stability problem in hedonic games with enemy-oriented preferences.

Theorem 5.7. WONDERFUL STABILITY VERIFICATION is coNP-complete.

Proof. Just as for core stability, the verification problem for wonderfully stable partitions
belongs to coNP due to the characterization that a given partition into cliques Π of the
vertices in a given graph is not wonderfully stable if and only if there exists a clique in the
graph that blocks Π. In contrast to core stability, here, blocking only depends on a single

1 Note that in figures of networks we use player names instead of vertex names for a better readability.
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5 Hedonic Games: Axiomatic Properties and Stability

vertex. Hence, for a clique P in the graph it can be verified in polynomial time whether its
cardinality is greater than the size of the current clique in Π of any vertex in P.

Hardness for coNP is shown via a reduction from CLIQUE as in [SD07]. Given an in-
stance of CLIQUE (which, for an undirected graph G = (V,E) and a positive integer k, asks
whether G has a clique of size at least k), we construct the following graph G� = (V �,E �).
The vertex set V � is obtained from V by adding, for each v ∈V , k−2 vertices. We connect
each of the k−2 new vertices and v to form a clique of size k−1, for each v ∈V . The edge
set E � consists of these new edges and all edges in E. Let Π be the partition into �V� cliques
such that each (k− 1)-clique as constructed above forms one part. This can obviously be
achieved in polynomial time. We claim that there is a clique of size k in G if and only if
there exists a clique P ⊆V � that blocks Π in G�, namely, Π is not wonderfully stable.

Only if: If there is a clique P of size k in G, the same clique can be found in G�. The
vertices v ∈ P thus have a clique number ωG�(v) of at least k. Since the size of all cliques
in Π is k−1, there exists a vertex v in the clique P with ωG�(v)≥ k > �Π(v)�; therefore, P

blocks Π in G�.
If: If there is no clique of size k in G, there is no clique of size k in G�, either, and

ωG�(v) = k−1 holds for each v ∈V �. Furthermore, �Π(v)�= k−1, for each v ∈V �. Thus,
there is no blocking clique for Π in G�. �

Woeginger [Woe13a] studies WONDERFUL STABILITY EXISTENCE and describes the
gap between the lower bound of NP-hardness and an upper bound of Θ

p
2 as a challenging

question. He conjectures that WSE is Θ
p
2-complete.

We improve the lower bound by showing DP-hardness in three steps. Firstly, we show
coNP-hardness.

Theorem 5.8. WONDERFUL STABILITY EXISTENCE is coNP-hard.

Proof. Again, we reduce from CLIQUE to the complement of WSE. Given an instance
(G,k) of CLIQUE, we construct the same graph G� as in the proof of Theorem 5.7 as an
instance for the complement of WSE. We may assume that k ≥ 3; otherwise, we would test
in polynomial time whether E is empty or not and reduce to an appropriate trivial instance.
We now show that there is a clique of size k in G if and only if there is no wonderfully stable
partition for G�.

Only if: If there is a clique P of size k in G, the same clique can be found in G�. As
in the proof of Theorem 5.7, P blocks the partition that consists of the �V� cliques of size
k− 1 constructed in the reduction or any other partition. On the other hand, if a partition
contains P, then each of the (k−1)-cliques mentioned above blocks this partition, since the
new vertices are now in a clique of size at most k−2, but their clique number is k−1.

If: If there is no clique of size k in G, the partition as in the proof of Theorem 5.7 is
wonderfully stable, since there is no blocking clique. �

Secondly, we show that the problem is also NP-hard, a fact already mentioned without
proof by Woeginger [Woe13a]. Combining the two results, it can be implied, that WSE is
unlikely to be in either NP or coNP, unless the polynomial hierarchy collapses.
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Theorem 5.9 ([Woe13a]). WONDERFUL STABILITY EXISTENCE is NP-hard.

Proof. We show NP-hardness via a reduction from XC3 in the restricted variant where
each element in B occurs at most three times, for any instance (B,S ). Furthermore, we
can assume that each element occurs at least once; otherwise, we would reduce to a trivial
no-instance of WSE.

Given such an instance, we construct the following graph G = (V,E). For each Si ∈ S ,
add three vertices to V that are connected to each other as a 3-clique. Label the three vertices
with the three elements of Si. For each element b ∈ B, consider the following three cases.
Firstly, if b occurs only once in a set of S , no changes are made. Secondly, if b occurs
twice, the subgraph in Figure 5.3a is inserted between the two vertices labelled with b.
Third, if b occurs three times, the subgraph in Figure 5.3b is inserted between the three
vertices labelled with b. Since it is easy to determine how often an element of B occurs
in a set of S and the number of new vertices is limited by 7�B�, G can be constructed in
polynomial time.

b b

(a) Two vertices

b b

b

(b) Three vertices

Figure 5.3: Construction between vertices labelled b ∈ B for the proof of Theorem 5.9

We now show that there is an exact cover of B by sets in S if and only if there is a
wonderfully stable partition for G.

Only if: If there exists an exact cover of B by k = �B�/3 sets in S , we include the 3-
cliques corresponding to these sets into the partition Π that shall be wonderfully stable. The
remaining vertices (those from the inserted connecting subgraphs, and those corresponding
to the Si that are not part of the exact cover) are distributed as follows. Again, consider the
three cases of occurrence: If an element b occurs only once, the only vertex labelled with
b is already in a clique in Π. If an element b occurs twice, one vertex labelled b remains.
This vertex forms a 3-clique with the two connecting vertices as in Figure 5.3a. In this
case, we put this 3-clique into Π. If an element b occurs three times, two vertices with the
same label remain. From the structure of the connecting subgraph as in Figure 5.3b, the
two vertices connected to the vertex that is already in a part of the partition, form a 3-clique
with the vertex in the middle. The other two pairs of vertices again form 3-cliques with the
remaining vertices labelled b. If these 3-cliques are added to Π, the partition is complete. It
remains to show that Π is wonderfully stable. Since each part of Π is a clique of size 3 and
each vertex in G has a clique number of 3, the conditions for a wonderfully stable partition
are satisfied.
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5 Hedonic Games: Axiomatic Properties and Stability

If: If there exists a wonderfully stable partition Π in G, all cliques in Π have size 3, since
by construction each vertex v ∈ V has a clique number ωG(v) = 3. Since the connecting
subgraphs from Figures 5.3a and 5.3b are constructed such that exactly one labelled vertex
is not part of a 3-clique, we have that, for each element b ∈ B, the one corresponding vertex
has to be part of another 3-clique that does not contain an unlabelled vertex. Thus, there
exist exactly �B�/3 cliques that consist of three labelled vertices, corresponding to sets in S

in which each element of B occurs exactly once. That is, there exists an exact cover of B in
S . �

Thirdly, we combine the two latter results to prove DP-hardness of WSE with help of
Wagner’s Lemma 2.1.

Theorem 5.10. WONDERFUL STABILITY EXISTENCE is DP-hard.

Proof. Again, consider the NP-hard problem XC3. Given two instances of XC3, (B1,S1)
and (B2,S2), where (B2,S2) ∈ XC3 implies (B1,S1) ∈ XC3, we construct the follow-
ing graph G = (V,E). G consists of two disconnected subgraphs G1 = (V1,E1) and
G2 = (V2,E2), that is, G = (V1 ∪V2,E1 ∪E2). G1 is obtained from (B1,S1) by the con-
struction given in the proof of Theorem 5.9. G2 is built in two steps. In the first step, the
XC3 instance (B2,S2) is transformed into an instance of CLIQUE: For each set Si ∈ S ,
create a vertex vi. If two sets Si and S j are disjoint, connect the corresponding vertices by an
edge {vi,v j}. Let k = �B2�/3. In the second step, add, for each v ∈V , k−2 vertices and edges
as in the proof of Theorem 5.8. This construction can obviously be done in polynomial time.
Note that, again, the proof only works for k ≥ 3. If k ≤ 2, reduce to an appropriate trivial
WSE instance. We claim that (B1,S1) ∈ XC3 and (B2,S2) /∈ XC3 if and only if there
exists a wonderfully stable partition for G. Note that by the conditions stated above and by
Lemma 2.1 this equivalence implies DP-hardness of WSE.

Only if: Suppose it holds that (B1,S1)∈ XC3 and (B2,S2) /∈ XC3. Since (B1,S1) is in
XC3, G1 has a wonderfully stable partition by the proof of Theorem 5.9. Since additionally
(B2,S2) is not in XC3, there are no k = �B�/3 pairwise disjoint sets in S , thus there is no
clique of size k in G. By the proof of Theorem 5.8, G2 then also has a wonderfully stable
partition. Since G1 and G2 are not connected, that is, the clique number of each vertex
remains unchanged (ωG(v) = ωG1(v) if v ∈ V1, and ωG(v) = ωG2(v) if v ∈ V2), and since
there are no additional vertices in G, G has a wonderfully stable partition as well (see also
Property 5.6).

If: Suppose it holds that (B1,S1) /∈ XC3 or (B2,S2) ∈ XC3. If (B1,S1) /∈ XC3, then
by the proof of Theorem 5.9, there is no wonderfully stable partition for G1. Thus, by
Property 5.6, there is no wonderfully stable partition for G. On the other hand, if (B2,S2)∈
XC3, there exists an exact cover of B in S , that is, there are k = �B�/3 pairwise disjoint sets
in S . By construction, these sets are represented by k vertices in G2, each connected to one
another, thus forming a k-clique. By the proof of Theorem 5.8, it follows that there is no
wonderfully stable partition for G2. Again, by Property 5.6, there is no wonderfully stable
partition for G either. �
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The following examples illustrates the construction from the proof of Theorem 5.10.

Example 5.11. B1 = {1,2,3,4,5,6}, S1 = {{1,2,3},{1,2,4},{4,5,6},{2,4,6}},

B2 = {1,2,3,4,5,6,7,8,9}, S2 = {{1,2,3},{4,5,6},{6,7,8},{3,7,9}}.

Figure 5.4 shows the graph G that is constructed from these two instances. The thick

edges show a wonderfully stable partition. In G1 there are no blocking 3-cliques, since

each vertex takes part in a 3-clique. In G2 there is no 3-clique, thus the outer 2-cliques are

wonderfully stable.

G1

1
2

3
4

5

6

1

2

4

2

4

6

G2

1,2,31
2 3 4,5,64

5 6

6,7,86
7 8 3,7,93

7 9

Figure 5.4: Example of DP-hardness construction in proof of Theorem 5.10

Similarly, it can be shown that STRICT CORE STABILITY EXISTENCE for hedonic games
with enemy-oriented preferences is DP-hard. This demagnifies the gap between the lower
bound and the known Σ

p
2 upper bound, but still leaves it open.

Theorem 5.12 ([RRSS14]). Under enemy-oriented preferences, STRICT CORE STABILITY

EXISTENCE is DP-hard.

Proof Sketch. As for WSE, coNP-hardness is shown by a reduction from CLIQUE to the
complement of SCSE.

Let (G,k) be a CLIQUE instance with a graph G = (V,E) and an integer k ≥ 4. We
construct an SCSE instance represented by the graph G� = (V �,E �). Let V � = V ∪V1 ∪V2,
where V1 contains k− 2 new vertices for each of the vertices v ∈ V and V2 contains k− 3
new vertices for each v ∈ V , such that �V �� = �V�+ �V�(2k− 5). Every vertex v ∈ V is
connected to its k− 2 associated vertices from V1, any two of which are also connected by
an edge, thus forming a (k−1)-clique with the corresponding vertex v. Moreover, the k−3
vertices from V2 associated with any v ∈ V are connected to one of the vertices from V1 in
the (k−1)-clique containing v, and they are also connected among each other, thus forming
a (k−2)-clique with the single vertex v� from V1 they are connected to. E � contains all edges
from E and the additional edges described above. See Figure 5.5 for an illustration.

It can be seen that G has a clique of size at least k if and only if there is no strictly
core-stable coalition structure in the game H � represented by G�.

Recalling Lemma 2.10, we know that in graphs where all vertices have the same fixed
clique number, every wonderfully stable partition Π of G corresponds also to a strictly core-
stable coalition structure in the game represented by G, and vice versa. Hence, NP-hardness
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v v�

Figure 5.5: Construction for proof of Theorem 5.12: Connecting vertices from V1 and V2 to
v ∈V for k = 5

for SCSE follows straightforwardly from the NP-hardness proof for WSE, see the proof of
Theorem 5.9.

DP-hardness of SCSE then follows, analogously to the proof of Theorem 5.10, with the
help of Wagner’s Lemma 2.1. �

Consider the class of graphs where all vertices have the same fixed clique number k.
We can show NP-membership of WSE restricted to instances of this graph class (denoted
by k-WSE). Together with a lower bound that follows from the construction for proving
Theorem 5.9, this implies NP-completeness.

Theorem 5.13. For k ≥ 3, k-WSE is NP-complete.

Proof. By assumption, all vertices in the given graph G have the same clique number k.
The graph has to have � ·k vertices for some � ∈N; otherwise, a wonderfully stable partition
could never be found. Thus, the problem of deciding whether G has a wonderfully stable
partition is equivalent to the problem of deciding whether there is a clique cover of size �

for G, which is an NP-complete problem, see Section 2.2. That means, k-WSE belongs
to NP, since a partition of the vertices into � sets can be guessed non-deterministically and
tested for whether each set is a clique.

For the lower bound, it follows from Theorem 5.9 that WSE on graphs with a fixed clique
number of k = 3 is NP-hard. We can extend this NP-hardness to any fixed clique number
k ≥ 3 by reducing k-WSE to (k+1)-WSE. We may assume that an instance for k-WSE has
� ·k vertices (otherwise, we reduce to a trivial no-instance). Given such a graph, we construct
an instance of (k+1)-WSE by adding � vertices to the original graph. We connect each new
vertex to each original vertex and leave the new vertices unconnected among each other. It
is easy to see that there is a wonderfully stable partition into � k-cliques in the original graph
if and only if there is a wonderfully stable partition into � cliques of size (k+1) each in the
constructed graph. �

Since by Lemma 2.10 the problems WSE and SCSE are equivalent for graphs in this
class, NP-completeness also holds for the analogously restricted variant of SCSE to games
on graphs with a fixed clique number of at least 3.
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5.2 Representing Hedonic Games with Ordinal

Preferences and Thresholds

The following model is introduced in a conference contribution jointly with Lang, Rothe,
Schadrack, and Schend [LRR+15]. We suggest the following representation combining
ideas from the friends-and-enemies encoding and the singleton encoding (see Section 2.3.2).
Each player partitions the other players into three sets: friends, enemies, and other players
she considers as neutral, does not know, or care about. For further refinements, additionally,
a weak ranking over the set of friends and the set of enemies is expressed.

Definition 5.14. Let N = {1, . . . ,n} be a set of agents. For each i ∈ N, a weak ranking with
double threshold for agent i, denoted by �

+0−
i , consists of a partition of N �{i} into three

sets:

• N+
i (i’s friends), together with a weak order �

+
i over N+

i ,

• N−
i (i’s enemies), together with a weak order �

−
i over N−

i , and

• N0
i (the neutral agents for i).

We also write �
+0−
i in the form (�+

i | N0
i | �

−
i ).

If player i is indifferent between a subset of friends or a subset of enemies X =
{a1,a2, . . . ,ax}, let X∼ denote a1 ∼i a2 ∼i · · ·∼i ax in i’s weak ranking with double thresh-
old. For each player i, the neutral agents are not ordered which signifies indifference among
them; all friends are preferred to neutral agents, and those to all enemies. This induces a
weak order induced by �

+0−
i defined via f �i j, for each f ∈ N+

i and j ∈ N0
i , j ∼i k, for

each j,k ∈ N0
i . and j �i e, for each j ∈ N0

i and e ∈ N−
i .

Example 5.15. Consider the set of players N = {1, . . . ,10}. An example of a weak ranking

with double threshold for agent 1 is

�
+0−
1 = (2�1 3 ∼1 6 | {4,7,10} | 5�1 8 ∼1 9).

In other words, player 1 likes 2, 3, and 6 of which she prefers 2 and is indifferent between

the other two; 1 does not like 5, 8 and 9 of which the latter two are equally worse than 5;

and 1 does not know or care about the other three players. The induced weak order is

2�1 3 ∼1 6�1 7 ∼1 4 ∼1 10�1 5�1 8 ∼1 9.

Generalizing the Bossong–Schweigert extension principle [BS06], we can extend the
given preferences of the players to a preference over the relevant coalitions. Note that
this preference over coalitions might be incomplete; there may be coalitions that remain
incomparable.
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Definition 5.16. Let �
+0−
i be a weak ranking with double threshold for agent i. The ex-

tended order �+0−
i is defined as follows: For every C,D ⊆ N, C �+0−

i D holds if and only

if the following two conditions hold:

1. There is an injective function σ : D∩N+
i →C∩N+

i such that each y∈D∩N+
i satisfies

σ(y)�i y.

2. There is an injective function θ : C∩N−
i → D∩N−

i such that each x ∈C∩N−
i satisfies

x�i θ(x).

Finally, C �+0−
i D holds if and only if C �+0−

i D and not (D �+0−
i C) hold.

Intuitively, for a player i, the best coalitions are the ones containing all friends of i’s and
no enemies, the worst containing all enemies and no friends, and in between more and better
friends as well as fewer and less unpopular enemies implicate an improvement.

Example 5.17. Consider N = {1,2,3,4,5,6} and the first players’ weak ranking with dou-

ble threshold �
+0−
1 = (2 �1 3 ∼1 6 | {4} | 5). Figure 5.6 illustrates the just presented

extension principle.

{1,2,3,6}{1,2,3,4,6}∼

{1,2,3}∼ {1,2,6}{1,2,3,4}∼ ∼ {1,2,4,6}

{1,2}{1,2,4}∼

{1,3}∼ {1,6}{1,3,4}∼ ∼ {1,4,6}

{1}{1,4}∼

{1,2,3,5,6}∼ {1,2,3,4,5,6}

{1,2,3,5}∼ {1,2,5,6}∼ {1,2,4,5,6}{1,2,3,4,5}∼

{1,2,5}{1,2,4,5}∼ {1,3,5,6}∼ {1,3,4,5,6}

{1,3,5}∼ {1,5,6}∼ {1,4,5,6}{1,3,4,5}∼

{1,5}∼ {1,4,5}

{1,3,6}∼ {1,3,4,6}

Figure 5.6: Example of the generalized Bossong-Schweigert extension of preference
�

+0−
1 = (2 �1 3 ∼1 6 | {4} | 5). A downward arc means player 1 prefers the

upper coalition to the lower one according to �+0−
1 . Transitivity is implied.

It can be seen, that in a symmetric way, coalitions with better friends are preferred to

less good friends, more friends are preferred to fewer friends, but there is no comparison in

between, e.g., {1,2} and {1,3,6}. Also, a coalition is preferred without the enemy, but we

cannot compare a coalition to one with more friends and more enemies at the same time,

e.g., {1} and {1,3,5}. Adding the neutral player does not make any difference.
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The exact relation between two coalitions C and D (C �i D, D �i C, C ∼i D, or unde-
cided) from player i’s point of view can be determined in polynomial time in the number of
players by the following characterizations. These propositions are inspired by Bouveret et
al. [BEL10] who characterize the original Bossong–Schweigert order in the context of fair
division.

Proposition 5.18. 1. Let �
+0−
i be a weak ranking with double threshold for agent i, and

let C and D be two coalitions containing i. Consider the orders f1 �i f2 �i · · ·�i fµ

with { f1, f2, . . . , fµ} = C∩N+
i and f �1 �i f �2 �i · · ·�i f �

µ � with { f �1, f �2, . . . , f �
µ �} = D∩

N+
i , as well as e1 �i e2 �i · · ·�i eν with {e1,e2, . . . ,eν}=C∩N−

i and e�1 �i e�2 �i · · ·�i

e�ν � with {e�1,e
�
2, . . . ,e

�
ν �}= D∩N−

i . Then, C �+0−
i D if and only if

a) µ ≥ µ
� and ν ≤ ν �,

b) for each k, 1 ≤ k ≤ µ
�, it holds that fk �i f �k, and

c) for each �, 1 ≤ �≤ ν , it holds that eν−�+1 �i e�ν �−�+1.

2. Let wi : N → R be compatible with �
+0−
i if and only if

• for each j ∈ N+
i , we have wi( j)> 0;

• for each j ∈ N−
i , we have wi( j)< 0;

• for each j ∈ N0
i , we have wi( j) = 0; and

• for all j,k ∈ N+
i ∪N−

i , we have j �i k if and only if wi( j)> wi(k).

Then, C �+0−
i D holds if and only if any wi compatible with �

+0−
i satisfies

∑ j∈C wi( j)≥ ∑ j�∈D wi( j�).

Proof. Each of these two characterizations show polynomial computability of �+0−
i :

1. Obviously, if (a) to (c) hold, the two injective functions σ : D∩N+
i → C∩N+

i , and
θ : C∩N−

i → D∩N−
i mapping f �k �→ fk for each k, 1 ≤ k ≤ µ

�, and eν−�+1 �→ e�ν �−�+1
for each �, 1 ≤ � ≤ ν , satisfy σ( f �k)�i f �k and eν−�+1 �i θ(eν−�+1), for the same
range of k and �. On the other hand, if there are two injective functions with the
desired requirements, (a) holds. If there was a k with f �k �i fk (or an � with e�ν �−�+1 �i

eν−�+1), this would imply σ( f �k) = f j for a j < k (or θ(eν−�+1) = e�ν− j+1 with j > �,
respectively). This, however, implies that either a requirement is violated for f �1 (or
eν ), or that σ (or θ ) is not injective, a contradiction.

2. Assume that C �+0−
i D. For the set of friends N+

i we obtain an injective function
σ : D∩N+

i → C∩N+
i such that for each y ∈ D∩N+

i , we have σ(y)�i y. Hence, for
each compatible wi, wi(σ(y))≥ wi(y) holds. Thus, since σ is injective,

∑
j∈C∩N+

i

wi( j) ≥ ∑
j∈σ(D∩N+

i )⊆C∩N+
i

wi( j) = ∑
j�∈D∩N+

i

wi(σ( j�)) ≥ ∑
j�∈D∩N+

i

wi( j�).
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Similarly, for N−
i , and θ : C∩N−

i → D∩N−
i injective, it holds that

0 ≥ ∑
j∈C∩N−

i

wi( j) ≥ ∑
j∈C∩N−

i

wi(θ( j)) = ∑
j�∈θ(C∩N−

i )⊆D∩N−
i

wi( j�) ≥ ∑
j�∈D∩N−

i

wi( j�).

For each player j ∈ N0
i , we have wi( j) = 0; therefore, in total,

∑
j∈C

wi( j) ≥ ∑
j�∈D

wi( j�). (5.1)

Now assume that for each compatible wi, (5.1) holds. Thus,

∑
j∈C∩N+

i

wi( j) − ∑
j�∈D∩N−

i

wi( j�) ≥ ∑
j�∈D∩N+

i

wi( j�) − ∑
j∈C∩N−

i

wi( j).

Assume there were no injective function mapping from each summand from the right-
hand side to one at least as large on the left hand side; then, there exists an assignment
to the values of wi compatible with �

+0−
i that does not satisfy the inequality, a con-

tradiction. �

As we have seen above, the generalized Bossong–Schweigert extension can leave uncer-
tainties between two coalitions in a player’s preference order. As one possibility to deal
with these incomparabilities, in [LRR+15] it is suggested to determine the relation between
incomparable coalitions by adapting scoring vectors such as the Borda scoring rule, which
is well-known from voting theory (see, e.g., [BR16]). By this rule for each player i ∈ N,
a function f i

Borda is defined that assigns values to other players depending on the position
in i’s weak ranking with double threshold and on the interpretation whether friends and
enemies are evaluated optimistically or pessimistically, compatible with �+0−

i in the sense
of Proposition 5.18.2. This function f i

Borda induces a relation �i∈ Ext(�+0−
i ) as defined

next in Definition 5.19. Moreover, observe that a hedonic game induced by a Borda-like
comparability function is additively separable. Therefore, with regard to verification and
existence problems of stability concepts, known upper bounds for additively separable he-
donic games (see, e.g., [ABS13]) are inherited. Lower bounds may remain valid, depending
on the input and the scoring function used. In some cases, the setting might be a special case
of additively separable hedonic games such that hard problems in those games are tractable
here. A careful revision of known hardness results adapted to this setting leads to the results
shown in [LRR+15] and summed up in Table 5.4.

In this thesis we leave incomparabilities open and consider every possible extension that
does not conflict with transitivity.

Definition 5.19. Let i be a player in a set N. A complete preference relation �i over all

coalitions containing i extends �+0−
i if and only if it contains it; that is, if C �+0−

i D implies

C �i D, for all coalitions C,D ⊆ Ni. Let Ext(�+0−
i ) be the set of all complete preference

relations extending �+0−
i .
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VERIFICATION EXISTENCE

perfection, ind. rationality in P in P
single player deviation in P NP-complete (sp,so) for ind. stability;

(sp,{so,o,sp,p}) for Nash stability
group deviation coNP-complete Σ

p
2-complete (sp,{sp,p}) for core stabil-

ity; coNP-hard, in Σ
p
2 for str. core stability

Pareto optimality in NP in P

Table 5.4: Complexity results of verification and existence problems in hedonic games in-
duced by Borda-like comparability functions [LRR+15]. In brackets the scoring
function for friends and enemies is specified, from pessimistic (o) to optimistic
(p) over strong (s) variants.

On this background we define games in which each player i has friends, enemies, and
neutral co-players, and preferences �

+0−
i over the former two sets such that i’s preference

relation �+0−
i over coalitions can be derived by the generalized Bossong–Schweigert ex-

tension and completed by all possible extensions �i ∈ Ext(�+0−
i ).

Definition 5.20. A hedonic game with ordinal preferences and thresholds2 is a tuple

H = �N,�+0−
1 , . . . ,�+0−

n �, where N = {1, . . . ,n} is a set of players, and �
+0−
i denotes

the ordinal preferences with thresholds for player i ∈ N as defined in Definition 5.14.

Example 5.21. Let A = {1,2,3}, �
+0−
1 = (2�1 3 | /0 | ), �

+0−
2 = (3 | /0 | 1), and �

+0−
3 =

(1 | {2} | ). The generalized Bossong–Schweigert orders are

{1,2,3}�+0−
1 {1,2}�+0−

1 {1,3}�+0−
1 {1}

for player 1,

{2,3}

{2}
�+0−

2
{1,2,3}
�+0−

2

{1,2}
�+0−

2 �+0−
2

for player 2, and for player 3

{1,3}∼+0−
3 {1,2,3}�+0−

3 {3}∼+0−
3 {2,3}.

So, two preferences are already complete, and there are three complete preferences extend-

ing �+0−
2 , one setting {2}�2 {1,2,3}, another setting {2}∼2 {1,2,3}, and the third setting

{1,2,3}�2 {2}, leaving all other relations the same.

2 Note that in [LRR+15] this game is denoted by FEN-hedonic game, for friends, enemies, and neutral play-

ers.
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The possible extensions in a hedonic game with ordinal preferences and thresholds are
anonymous and symmetric. Moreover, we obtain the following properties.

Proposition 5.22. The extensions in a hedonic game with ordinal preferences and thresh-

olds are necessarily monotonic. For each hedonic game with ordinal preferences and thresh-

olds there exists an extension that is independent and for some one that is not.

Proof Sketch. If A �i B holds for each extension of a hedonic game with ordinal pref-
erences and thresholds, then A �+0−

i B. By definition there exist two injective functions
σ : B∩N+

i → A∩N+
i and θ : A∩N−

i → B∩N−
i . Now, if a player j �= i ascends in i’s

ranking, it holds for each k ∈ N �{i, j} with j �i k, that j �+0−�

i k in the new weak ranking
with double threshold �+0−�

i , and there exists an � ∈ N � {i, j} with ��i j and j �+0−�

i k.
Since j is in A but not in B, the following cases can occur: Player j is added to the im-
age set of σ , then the function remains injective. Player j is already in the image of
σ , then if j = σ(y)�

+0−
i y, for some y ∈ B ∩ N+

i , it still holds that σ(y)�
+0−�

i y (and
∼+0−

i =⇒ �
+0−�

i ). Player j is in the domain of θ , then if j �+0−
i θ( j), then it still holds

that j �+0−�

i θ( j) (and ∼+0−
i =⇒ �

+0−�

i ). Player j is removed from the domain of θ , then
the function remains injective. Therefore, A �+0−

i B implies A �+0−�

i B, and A ∼+0−
i B

implies A �+0−�

i B. Which means that for all extensions the relation maintains or even
increases.

An extension of a hedonic game with ordinal preferences and thresholds is not necessarily
independent. Consider the generalized Bossong–Schweigert extension of player 1’s prefer-
ence in Example 5.17. The relation between coalitions {1} and {1,3,5} and that between
{1,2} and {1,2,3,5} is open. They can be dissolved differently in an extension violating
independence. On the other hand all these indifferences can be dissolved in a way that the
extension is independent: Define for each player i a function wi : N → R that is compatible
with �

+0−
i as defined in Proposition 5.18.2. Then, extend the preferences additively. Since

this is a proper extension by this proposition, and since additively separable hedonic games
satisfy independence, we have found the independent extension. �

Remark 5.23. Consider, as an example in an additively separable hedonic game, a coalition

{i, f ,e} where player i has a positive value for f , and a negative value for e. In comparison

to {i} this coalition is preferred by player i if f has a greater absolute value than e in

the additively separable representation, is considered indifferent if f and e have the same

absolute value, and is less preferred otherwise. If we do not provide values but ordinal

preferences and thresholds and consider f as a friend and e as an enemy of i’s, {i, f ,e}
and {i} are incomparable from i’s perspective; thus, all three scenarios are possible in an

extension of a hedonic game with ordinal preferences and thresholds.

Proposition 5.24. There exists an extension of a hedonic game with ordinal preferences and

thresholds that is not additive. For each additively separable hedonic game (N,�), there

exists a hedonic game with ordinal preferences and thresholds and an extension such that

(N,�) is represented.
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5.2 Representing Hedonic Games with Ordinal Preferences and Thresholds

Proof. From Proposition 5.22 we know that there exists an extension that is not indepen-
dent. Since all additively separable hedonic games are independent, the first statement holds.
Secondly, consider an additively separable hedonic game with a player’s values ui( j) for
each player j ∈ N with ui(i) = 0. Then define the weak ranking with double threshold
for i by N+

i = { j | ui( j) > 0}, N0
i = /0, N−

i = { j | ui( j) < 0}, and j �+0−
i k if ui( j) ≥ ui(k)

for each j,k ∈ N+
i or j,k ∈ N−

i . Note that now ui is compatible with �
+0−
i as defined in

Proposition 5.18.2. By this the characterization in this proposition the additive extension of
the values is an equivalent to a proper extension of the just constructed hedonic game with
ordinal preferences and thresholds. �

Consequently, we obtain the following corollary that distinguishes hedonic games with
ordinal preferences and thresholds from the representations it is based on.

Corollary 5.25. There exists an extension of a hedonic game with ordinal preferences

and thresholds that cannot be represented as a friend-oriented hedonic game or by W -

preferences.

In order to study the existence and verification of stability concepts as defined in Sec-
tion 2.3.2, we define the notions of possible and necessary stability.

Definition 5.26. Let γ be a stability concept for hedonic games, �N,�+0−
1 , . . . ,�+0−

n � be

a hedonic game with ordinal preferences and thresholds, and Γ be a coalition structure.

Γ satisfies possible γ if and only if there exists a profile ��1, . . . ,�n� ∈×n
i=1 Ext(�+0−

i )
such that Γ satisfies γ in �N,�1, . . . ,�n�. Γ satisfies necessary γ if and only if for each

��1, . . . ,�n� ∈×n
i=1 Ext(�+0−

i ), Γ satisfies γ in �N,�1, . . . ,�n�.

Observation 5.27. A possibly perfect coalition structure in a hedonic game with ordinal

preferences and thresholds is always necessarily perfect. It may, however, be non-unique

due to neutral players. Furthermore, note that there always exists a necessarily individual

rational coalition structure (namely, the coalition structure where every agent is alone) and

there always certainly exists a Pareto-optimal coalition structure (perhaps a different one

for different extensions).

Proposition 5.28. Consider a hedonic game with ordinal preferences and thresholds

�N,�+0−
1 , . . . ,�+0−

n �.

1. A coalition structure Γ is (necessarily and possibly) perfect if and only if for each

player i, N+
i ⊆ Γ(i) and N−

i ∩Γ(i) = /0.

2. A coalition structure Γ is possibly individually rational if and only if for each i ∈ N,

Γ(i) contains at least a friend of i’s or only neutral agents.

3. A coalition structure Γ is necessarily individually rational if and only if for each i∈N,

Γ(i) does not contain any enemies of i’s.
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4. A coalition structure Γ is necessarily individually stable if and only if it is necessarily

individually rational and no player i can join a coalition that she would possibly

prefer and the members of which do not see her as an enemy.

5. A coalition structure Γ is necessarily contractually individually stable if and only if

it is necessarily individually rational, no player i can join a coalition that she would

possibly prefer and the members of which do not see her as an enemy, and at the same

time no j in Γ(i) considers i as a friend.

Proof. 1. A coalition structure is perfect if and only if each player is in one of her
favourite coalitions, that is, each player is together with all her friends and no enemies.

2. For each i ∈ N, i necessarily prefers {i} to Γ(i) if and only if Γ(i) contains no friend
and at least one enemy of i’s.

3. For each i ∈ N, i possibly prefers {i} to Γ(i) if and only if Γ(i) contains an enemy of
i’s.

4. Note that a player j possibly prefers a coalition C to C∪{i} if and only if j necessarily
prefers C to C∪ {i} if and only if i is an enemy of j’s. Assume that Γ is necessarily
individually stable. Then, for each i ∈ N , if i prefers to move to another (possibly
empty) coalition C in Γ, there is a player in C that prefers player i not being in the
coalition. If C is empty, there is no such player, thus, Γ has to be individually rational.
Hence, C is non-empty and there has to be a player in C that sees i as an enemy. Now
assume that Γ is not individually stable, that is, there is a player i and a coalition
C ∈ Γ∪ { /0} such that i prefers C ∪ {i} to Γ(i) and, for each j ∈ C, C ∪ {i} � j C.
If C = /0, then Γ is not individually rational. Otherwise, each j does not see i as an
enemy.

5. Additionally to the conditions of individual stability, contractually individual stability
is violated if every member of Γ(i) agrees to i’s departure, which is the case if and
only if no j in Γ(i) considers i as a friend. �

Observe the following relations between possible and necessary stability concepts (see
Figure 2.2 for a comparison to the general case).

Observation 5.29. If there exists a necessarily strictly popular coalition structure, it is

unique, whereas there can be more than one possibly strictly popular coalition structure.

If there exists a necessarily strictly popular coalition structure, it is necessarily Pareto op-

timal. If there exist possibly strictly popular coalition structures, each of them is possibly

Pareto-optimal. A necessarily strictly popular coalition structure does not need to be pos-

sibly individually rational. Even if the possible core is non-empty, a necessarily strictly

popular coalition structure does not need to be possibly core-stable. The same holds for the

concepts of Nash stability, individual stability, contractual individual stability, and strict
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core stability. If there exists a unique perfect partition, it is necessarily the unique neces-

sarily strictly popular coalition structure.

Example 5.30. Consider the hedonic game with ordinal preferences and thresholds from

Example 5.21. Observe that there does not exist a (possibly) perfect coalition structure.

While {{1,2,3}} is possibly Nash-stable, there does not exist a necessarily Nash-stable

coalition structure, as in each of five cases, player 1 or player 2, at least possibly, wants to

move to another coalition. Coalition structure {{1,2,3}} is possibly individually rational,

but not necessarily due to player 2; {{1,2},{3}} is not possibly individually rational; the

other three coalition structures are necessarily individual rational.

For {{1,3},{2}} it holds that player 2 possibly wants to move to {1,3} and 1 and 3 do

not see 2 as an enemy, thus necessary individual stability is not satisfied. Also, since in

{2} there is no other player who considers 2 a friend, contractually individual stability is

not satisfied either. Observe that this coalition structure is, however, possibly individually

stable.

Coalition structure {{1},{2,3}} is not necessarily individually stable, as player 3 wants

to move to {1,3} where 1 welcomes him. Player 2, however, considers 3 a friend, thus, as

2 does not want to move, and 1 is considered an enemy by 2 when moving to {2,3}, this

coalition structure is necessarily contractually individually stable.

We are interested in axiomatic properties and characterizations of stability concepts in
hedonic games with ordinal preferences and thresholds. However, for some concepts no
general statements can be made as to whether there exists a coalition structure satisfying a
stability concept γ (possibly or necessarily). In these cases we ask how hard it is to decide
whether for a given hedonic game with ordinal preferences and thresholds, a given coalition
structure possibly or necessarily satisfies γ , and to decide whether there exists a coalition
structure in a given hedonic game with ordinal preferences and thresholds that possibly or
necessarily satisfies γ .

Here, we redefine the verification and existence problems of stable coalition structures to
the notions of possible and necessary verification and existence. Again, let γ be one of the
previously defined stability concepts for hedonic games.

POSSIBLE γ VERIFICATION

Given: A hedonic game with ordinal preferences and thresholds and a coalition
structure Γ.

Question: Does Γ satisfy possible γ?

NECESSARY γ VERIFICATION

Given: A hedonic game with ordinal preferences and thresholds and a coalition
structure Γ.

Question: Does Γ satisfy necessary γ?
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For example, POSSIBLE CORE STABILITY VERIFICATION thus asks the following:
Given a hedonic game with ordinal preferences and thresholds and a coalition structure Γ,
is Γ possibly core-stable, or equivalently, is Γ not necessarily blocked by a coalition? In
detail that is, does there exist a profile of preferences extending the generalized Bossong–
Schweigert extension such that each coalition does not block Γ? Contrarily, NECESSARY

CORE STABILITY VERIFICATION asks for an equal instance, is Γ necessarily core-stable,
that is, is Γ not possibly blocked by any coalition? In detail we have, for each profile of pref-
erences extending the generalized Bossong–Schweigert extension, does each coalition not
block Γ? Due to the quantifier characterization (Lemma 2.2) the former problem belongs
to Σ

p
2 , while the latter belongs to coNP, since two universal quantifiers can be combined to

one nondeterministic path.
Note that two interpretations of necessary existence can be distinguished, the first one

asking whether there always exists a coalition structure that satisfies γ , while the second one
is asking whether a particular coalition structure necessarily satisfies γ . Intuitively this dis-
tinction makes sense, since in the first case the setting might provide a central authority with
partial knowledge of the agents’ preferences and requires the knowledge that whatever the
possible preferences are, there is always some coalition structure satisfying γ; in the second
case, the choice of coalition structure is independent of the agents’ possible preferences.

CERTAIN γ EXISTENCE

Given: A game in the representation with ordinal preferences and thresholds.

Question: Is there necessarily a coalition structure satisfying γ , that is, for all profiles
of preferences extending the generalized Bossong–Schweigert extension,
does there exist a coalition structure satisfying γ?

NECESSARY γ EXISTENCE

Given: A game in the representation with ordinal preferences and thresholds.

Question: Is there a necessarily γ coalition structure, that is, is there a coalition struc-
ture that satisfies γ in all profiles of preferences extending the generalized
Bossong–Schweigert extension?

Note that an instance for the first problem is also one for the latter one; however, no
generalizations about a dependence in complexity can be made.

Example 5.31. For example, consider the following game with three players, A = {1,2,3},

with �
+0−
1 = (2 | {3} | ), �

+0−
2 = (1 | {3} | ), and �

+0−
3 = (1 | /0 | 2). We obtain the

following generalized Bossong–Schweigert orders: {1,2} ∼+0−
1 {1,2,3} �+0−

1 {1} ∼+0−
1

{1,3}, {1,2}∼+0−
2 {1,2,3}�+0−

2 {2}∼+0−
2 {2,3}, and {1,3}�+0−

3 {3}�+0−
3 {2,3} and

{1,3} �+0−
3 {1,2,3} �+0−

3 {2,3}, while 3 is undecided between {3} and {1,2,3}. Any

coalition structure in which players 1 and 2 are not in the same coalition cannot possibly
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be Nash-stable. On the one hand, {{1,2},{3}} is Nash-stable if and only if an exten-

sion provides {3} �3 {1,2,3}. On the other hand, {{1,2,3}} is Nash-stable if and only if

{1,2,3} �3 {3} in an extension. Thus, for every extension, there certainly exists a Nash-

stable coalition structure. However, there is no necessarily Nash-stable coalition structure.

Here, we focus on the second interpretation. Possible existence is unambiguous, asking
whether there is some coalition structure satisfying γ for some extension.

POSSIBLE γ EXISTENCE

Given: A game in the representation with ordinal preferences and thresholds.

Question: Is there a coalition structure that satisfies possible γ?

For example, CERTAIN CORE STABILITY EXISTENCE asks: Is there necessarily a core-
stable coalition structure, that is, for all profiles of preferences extending the generalized
Bossong–Schweigert extension, does there exist a coalition structure that is not blocked by
any coalition?

NECESSARY CORE STABILITY EXISTENCE asks: Is there a necessarily core-stable coali-
tion structure, that is, does there exist a coalition structure Γ such that for each profile of
preferences extending the generalized Bossong–Schweigert extension, Γ is not blocked by
any coalition?

POSSIBLE CORE STABILITY EXISTENCE asks: Is there a possibly core-stable coali-
tion structure, that is, does there exist a profile of preferences extending the generalized
Bossong–Schweigert extension and does there exist a coalition structure that is not blocked
by any coalition? Due the structure of quantifiers, the first problem belongs to Π

p
3 , while the

latter two problems belong to Σ
p
2 (see Lemma 2.2).

5.2.1 Complexity of Possible and Necessary Stability

Computational Complexity results for possible and necessary stability verification and ex-
istence are summarized in Table 5.2.

Proposition 5.32. All variants of verification and existence problems regarding perfection

are in P.

Proof. Verification of whether a coalition structure is possibly and necessarily perfect is
easy by Proposition 5.28.

Existence can be decided by, e.g., the following algorithm: Start with player 1 and let
Γ(1) := {1}∪N+

1 . Sequentially, for each i ∈ Γ(1), add N+
i to Γ(1) until there are no further

possible changes. Check whether, for each i ∈ Γ(1), N−
i ∩Γ(1) = /0. If not, output “there

is no perfect coalition structure”; if so, start over with N �Γ(1). It might be the case that
a friend cannot be added, because he is already assigned to another coalition. If he is on
his own, add him anyway; otherwise, output “there is no perfect coalition structure.” Con-
tinue until each player is allocated to a coalition. Then, output “there is a perfect coalition
structure.” Note that this algorithm works in polynomial time. �
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All problems regarding individual rationality are in P as well by the characterizations in
Proposition 5.28 and Observation 5.27.

Proposition 5.33. POSSIBLE INDIVIDUAL RATIONALITY VERIFICATION and NECES-
SARY INDIVIDUAL RATIONALITY VERIFICATION are in P.

Proof. Given a hedonic game with ordinal preferences and thresholds and a coalition struc-
ture Γ, it can be decided whether Γ is necessarily or only possibly or not at all individually
rational in polynomial time: For each i ∈ N, test the following cases:

• If i has an enemy and no friends in Γ(i), output “Γ is not possibly individually ratio-
nal”;

• if i has both a friend and an enemy in Γ(i), set a boolean value p to true.

Now, if p is true, at least one player i is undecided between Γ(i) and {i}, thus, output “Γ is
possibly, but not necessarily individually rational”. Otherwise, each player has only friends
or neutral players in Γ(i), thus, output “Γ is necessarily individually rational”. �

5.2.2 Complexity of Nash, Individual, and Contractually Individual

Stability

Proposition 5.28 does not provide a characterization of Nash stability. Nevertheless, it can
be verified in polynomial time whether a given coalition structure in a given hedonic game
with ordinal preferences and thresholds is necessarily Nash-stable.

Theorem 5.34. NECESSARY NASH STABILITY VERIFICATION, NECESSARY INDIVID-
UAL STABILITY VERIFICATION, and NECESSARY CONTRACTUALLY INDIVIDUAL STA-
BILITY VERIFICATION, are in P.

Proof. Given a hedonic game with ordinal preferences and thresholds and a coalition
structure Γ, verify the following steps for each i ∈ N: For each (of at most n coalitions)
C ∈ Γ∪ { /0}, C �= Γ(i), determine the relation between Γ(i) and C∪ {i}. This can be done
in polynomial time by Proposition 5.18. If C∪ {i} �i Γ(i), output “Γ is not Nash-stable.”
If the relation is undecided, output “Γ is possibly not Nash-stable.” Otherwise, if this is not
true for any player or coalition in Γ∪{ /0}, output “Γ is necessarily Nash-stable.”

Similar algorithms work for individual and contractually individual stability. In particular,
the characterizations in Proposition 5.28 can be verified in polynomial time. �

Note that this cannot easily be transferred to the possible variants since resolving an
undecided relation might influence another relation for the same player.

Theorem 5.35. POSSIBLE NASH STABILITY EXISTENCE is NP-complete.
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5.2 Representing Hedonic Games with Ordinal Preferences and Thresholds

Proof. The problem belongs to NP, since it is enough to decide whether there exist a
coalition structure of N and a profile of preferences extending the generalized Bossong–
Schweigert extension such that for each player i ∈ N and each coalition C ∈ Γ ∪ { /0},
Γ(i) �i C ∪ {i}. The latter can be tested in polynomial time in n = �N�, since there are
at most n coalitions in Γ and the relation between two coalitions from a common player’s
perspective can be decided in polynomial time by Proposition 5.18.

NP-hardness can be shown via a polynomial-time many-one reduction from XC3. Given
a set B with 3k elements and a family S of subsets S ⊆ B with �S� = 3, is there an exact
cover of B in S , that is, is there a subset S � ⊆ S such that ∪S∈S �S = B and �S �� = k?
Without loss of generality it can be assumed that k ≥ 2 (otherwise, we reduce to a trivial
instance) and each element in B occurs at most three times in a set in S (see Chapter 2).
Given such an XC3 instance, we construct the following game. This construction is inspired
by the construction of the proof that it is NP-hard to decide whether there exists a Nash-
stable coalition structure in an additively separable hedonic game [SD10, Theorem 3]. Here,
however, several adjustments had to be made in order to guarantee necessary preferences
over coalitions (see Remark 5.23). Let

N = {αi | 1 ≤ i ≤ 3k−1}∪{βr | r ∈ B}∪{ζS,� | S ∈ S ,1 ≤ �≤ 3k−2}

and let the player’s preferences be defined as follows.

• �+0−
αi

=
�
αi+1

�
� {α j : i �= j �= i+1}

�
� {other players}∼

�
, for each i, 1 ≤ i ≤ 3k−2,

�+0−
α3k−1

=
� �
� {α j : j �= 3k−1}

�
� {other players}∼

�
,

• �
+0−
βr

=
�
{αi : 1 ≤ i ≤ 3k−1}∼ �βr

�

r∈S QS∼ �βr
{βr� : r� �= r}∼

�
� /0

�
� {other

players}∼), for each r ∈ B,

• �
+0−
ζS,�

=
�
ζS,�+1

�
� {ζS,�� : � �= �

� �= �+1}∪{βr : r ∈ S}
�
� {other players}∼

�
, for each

S ∈ S , and �, 1 ≤ �≤ 3k−3,

�
+0−
ζS,3k−2

=
� �
� {ζS,�� : �� �= 3k−2}∪{βr : r ∈ S}

�
� {other players}∼

�
, for each S ∈S ,

where QS = {ζS,� | 1 ≤ � ≤ 3k− 2} for each S ∈ S . Moreover, let PS = {βr | r ∈ S}∪QS.
This profile can be constructed in polynomial time, since there are n≤ 3k+3k+3k ·(3k−2)
players, and a each player’s preference can be written in linear time in n. This profile is
visualized in Figure 5.7.3

3 Note that in figures of networks we relax the distinction of player names and vertex names for the sake of
readability.
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β1

...

βr

...

β3k (3rd)

α1

α2

...

α3k−1

(1st)

. . .
QS1

...

ζS,1 ζS,2 . . . ζS,3k−2

QS
(2nd)

r ∈ S

r ∈ S

...

. . .
QS�S �

Figure 5.7: Network of friends for construction in proof of Theorem 5.35. A solid line
represents a friendship-relation (with priorities if required) a dashed line stands
for an at least neutral relation.

We show that (B,S ) is a positive instance for XC3 if and only if there exists a possibly
Nash-stable coalition structure in the generalized Bossong–Schweigert extension of the
constructed game.

Only if: Assume there exists a solution S � for (B,S ). Consider the coalition structure

Γ = {{αi | 1 ≤ i ≤ 3k−1}}∪{PS | S ∈ S
�}∪{QS | S /∈ S

�}.

No αi, 1≤ i≤ 3k−1, wants to move, since all of them are in one of their favourite coalitions
(all their friends, and no enemies). No ζS,�, S ∈ S , 1 ≤ �≤ 3k−2, wants to move, since all
of them are also in one of their favourite coalitions and they are indifferent between any βr,
r ∈ S, being in the coalition or not.

Since PS only contains friends of βr’s, moving to the empty set is out of the question for
βr. Moving to any QS� with r /∈ S�, (or QS� with r ∈ S�, S� �= S, if such a coalition exists)
would mean a loss of friends and in the first case an increase of enemies. For any PS� ,
r /∈ S�, it holds that PS �+0−

βr
PS� ∪ {βr}, since the second contains three friends (βr� , βr�� ,

and βr���), two of which are interchangeable, and the third less liked than a friend ζS,1 in PS.
Additionally there are no enemies in PS but in PS� ∪{βr}. Observe that, since S � is an exact
cover of B, there is no PS� ∈ Γ with r ∈ S�, S� �= S.

The remaining coalition a βr, r ∈ B, with Γ(βr) = PS, might want to move to is
C = {αi | 1 ≤ i ≤ 3k − 1}. PS and C ∪ {βr} are incomparable for βr. There are more
(3k > 3k−1) friends in PS than in C∪{βr}, but each friend in C∪{βr} is preferred to one
in PS. A single incomparability, however, implies that there is a possible extension in which
βr does not prefer C∪{βr} to PS. All in all, Γ is possibly Nash-stable.

If: Assume there is a possibly Nash-stable coalition structure Γ. Γ cannot contain any
coalition that contains a strict subset of C := {α1, . . . ,α3k−1} by the following arguments.
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5.2 Representing Hedonic Games with Ordinal Preferences and Thresholds

As player α3k−2’s only friend is α3k−1, he will always want to move to the coalition α3k−1 is
contained in. Hence any coalition structure dividing these two players into different coali-
tions is not possibly Nash-stable. For the same reasons, α3k−3 will always follow α3k−2
and so on; thus, any coalition structure Γ� with Γ�(i) �= Γ�(i+ 1), 1 ≤ i ≤ 3k − 2, is not
possibly Nash-stable. Also, as soon as there is another player x /∈ C in a coalition C� with
C∪ {x} ⊆ C�, player α3k−1 necessarily prefers being alone. Thus, Γ does not contain any
strict superset of C. However, no player wants to deviate from C itself, as there are no
enemies in this coalition, and everyone’s friends. Therefore, it holds that

C ∈ Γ. (5.2)

Analogously, all ζS,�, 1 ≤ �≤ 3k−2, have to be together in one coalition in Γ, separately
for each S ∈ S . More precisely, for S ∈ S , each ζS,� follows ζS,�+1 sequentially, for �,
3k− 3 ≥ � ≥ 1, to a superset DS of QS. DS cannot contain any ζS�,�� with S� �= S, 1 ≤ �� ≤
3k−2, nor any βr with r /∈ S, since ζS,3k−2 is indifferent between everything but her enemies
and will deviate.

This leaves us the following combinations to consider: For each S ∈ S , Γ contains

DS = QS ∪RS, (5.3)

where RS ⊆ {βr | r ∈ S}. If RS contained one or two elements βr and βr� , βr would necessar-
ily prefer C∪{βr} to DS, since both coalitions contain 3k−1 friends (or DS even less in the
first case) and no enemies, and each friend in the first coalition is ranked higher than one in
the latter. Hence,

DS = QS or DS = PS.

If a βr was alone with other βr�s not in a PS, he would be with at most 3k− 1 friends, and
would rather move to C with the same number of, but higher ranked, friends. This implies
that for each r ∈ B, there exists an S ∈ S such that Γ(βr) = PS, which means that there is
an exact cover of B in S . �

Theorem 5.36. NECESSARY NASH STABILITY EXISTENCE is NP-complete.

Note that the following proof as well as those in Subsection 5.2.4 cannot be found in the
conference contribution [LRR+15].

Proof. The problem belongs to NP, since it can be verified in polynomial time in the
number of players whether a nondeterministically chosen coalition structure is necessarily
Nash-stable by Theorem 5.34.

NP-hardness can be shown similarly to the proof of Theorem 5.35. We add a player α3k

and change the order of friends for each βr and obtain the following game as constructed
from a given XC3-instance (B,S ) using the same denotations as previously:

N = {αi | 1 ≤ i ≤ 3k}∪{βr | r ∈ B}∪{ζS,� | S ∈ S ,1 ≤ �≤ 3k−2}

and
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• �+0−
αi

=
�
αi+1

�
� {α j : i �= j �= i+1}

�
� {other players}∼

�
, for each i, 1 ≤ i ≤ 3k−1,

�+0−
α3k

=
� �
� {α j : j �= 3k}

�
� {other players}∼

�
,

• �
+0−
βr

=
��

r∈S QS∼ �βr
{βr� : r� �= r}∼ �βr

{αi : 1 ≤ i ≤ 3k}∼
�
� /0

�
� {other play-

ers}∼), for each r ∈ B,

• �
+0−
ζS,�

=
�
ζS,�+1

�
� {ζS,�� : � �= �� �= �+1}∪{βr : r ∈ S}

�
� {other players}∼

�
, for each

S ∈ S , and �, 1 ≤ �≤ 3k−3,

�
+0−
ζS,3k−2

=
� �
� {ζS,�� : �� �= 3k−2}∪{βr : r ∈ S}

�
� {other players}∼

�
, for each S ∈S .

It holds that (B,S ) is a positive XC3 instance if and only if there exists a necessarily
Nash-stable coalition structure in the generalized Bossong–Schweigert extension of the
constructed game.

Only if: Assume, S � is a solution for (B,S ). Let C := {α1, . . . ,α3k} and consider
Γ = {C}∪{PS | S ∈ S �}∪{QS | S /∈ S �}.

Analogously to above, it holds that no αi, 1 ≤ i ≤ 3k, and no ζS,�, S ∈ S , 1 ≤ � ≤ k,
wants to move. Each βr, r ∈ B, now necessarily prefers PS to joining any other existing or
empty coalition. Thus, Γ is necessarily Nash-stable.

If: Let Γ be a necessarily Nash-stable coalition structure. Analogously to above, C ∈ Γ

(see Equation (5.2)), because of players αi, 1 ≤ i ≤ 3k and DS = QS ∪RS ∈ Γ (see Equa-
tion (5.3)), because of players ζS,�, S∈S , 1≤ �≤ k. RS cannot contain one or two elements;
otherwise, βr ∈RS would possibly prefer moving to C∪{βr}, which would lead to a not nec-
essarily Nash-stable Γ. Consequently, DS = QS or DS = PS. A βr outside of PS in Γ would
also imply a possible deviation to C∪ {βr}. Thus, all βr, r ∈ B, are covered by disjoint PS

in Γ; hence {S | PS ∈ Γ} is a solution for the XC3 instance (B,S ). �

Note that the same construction can be used in order to show NP-hardness for certainty of
a Nash-stable coalition structure: If, there exists a Γ that is Nash-stable for every extension,
it also holds that, for every extension, there exists a an adequate Γ. On the other hand,
since in the proof above (now assuming that, for every extension, there exists a Nash-stable
coalition structure Γ that might depend on the extension) C ∪ {βr} is possibly preferred
by βr to DS (which, in turn, is preferred to a coalition R without any ζS,�), there exists an
extension which does not allow DS (nor R) to be in Γ. Regarding this extension, Γ(βr) = PS,
for each r ∈ B; thus, there is a solution for (B,S ).

Corollary 5.37. CERTAIN NASH STABILITY EXISTENCE is NP-hard.
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5.2 Representing Hedonic Games with Ordinal Preferences and Thresholds

5.2.3 Complexity of Core Stability

So far we have focused on single-player deviations. In this subsection we turn to group
deviations.

Theorem 5.38. POSSIBLE CORE STABILITY VERIFICATION and POSSIBLE STRICT

CORE STABILITY VERIFICATION are coNP-hard.

Proof. Hardness for coNP of both problems can be shown with help of the reduction from
CLIQUE to the complement of the core stability verification problem in the enemy-based
representation [SD07]. Note that the representation is a special case of the representation
with ordinal preferences and thresholds, where there are no neutral agents and only indif-
ferences between all friends and between all enemies in a player’s preference. Furthermore,
note that the enemy-based-extension [DBHS06] is a possible extension in×n

i=1 Ext(�+0−
i ).

While a “clique” of friends is necessarily preferred by all members to a coalition contain-
ing fewer friends or even more enemies, there is not necessarily a blocking coalition in the
construction if there is no such clique (for example, there is no blocking coalition in the
enemy-based extension). �

5.2.4 Complexity of Pareto Optimality and Popularity

With techniques related to those in the proof of Theorem 5.35, we can show that the ques-
tions of whether a given coalition structure is possibly strictly popular or popular or Pareto-
optimal are coNP-hard, necessarily strictly popular or popular or Pareto-optimal are coNP-
complete, and it is coNP-hard to decide whether there exists a strictly popular coalition
structure, for both, the possible and the necessary case.

Theorem 5.39. POSSIBLE STRICT POPULARITY VERIFICATION and POSSIBLE POPU-
LARITY VERIFICATION are coNP-hard; NECESSARY STRICT POPULARITY VERIFICA-
TION and NECESSARY POPULARITY VERIFICATION are coNP-complete.

Proof. Influenced by the previously mentioned proof [SD10, Theorem 3] and based on
ideas in the proof of Theorem 5.35 we show coNP-hardness of these problems by means of
a reduction from XC3 with slight variance for the four cases.

To begin with, given an XC3 instance (B,S ), we construct the following game:

N = {αr,i | r ∈ B,1 ≤ i ≤ 3k+3}∪{βr | r ∈ B}∪{ζS,� | S ∈ S ,1 ≤ �≤ 3k+1}

and

• �+0−
αr,1

=
�
βr ∼αr,1 {αr, j : j �= 1}∼

�
� /0

�
� {other players}∼

�
, for each r ∈ B,

�+0−
αr,i

=
�
{αr, j : j �= i}∼

�
� {βr}

�
� {other players}∼

�
, for each r ∈ B, and each i,

2 ≤ i ≤ 3k+3,
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• �
+0−
βr

=
��

r∈S QS∼ �βr
{βr� : r� �= r}∼ �βr

Cr∼

�
� /0

�
� {other players}∼

�
, for each

r ∈ B,

• �
+0−
ζS,�

=
�
{ζS,�� : �� �= �}∼

�
� {βr : r ∈ S}

�
� {other players}∼

�
, for each S ∈S , and �,

1 ≤ �≤ 3k+1,

where, again, QS = {ζS,� | 1 ≤ �≤ 3k+1} and PS = {βr | r ∈ S}∪QS, for each S ∈ S , and
Cr = {αr,i | 1 ≤ i ≤ 3k+3}, for each r ∈ B. Furthermore, let

Γ = {Cr ∪{βr} | r ∈ B}∪{QS | S ∈ S
�}

be the coalition structure of interest. This construction is polynomial in k (as are the variants
below). This profile is visualized in Figure 5.8.

β1

...

βr

...

β3k (2nd)

. . .
C1

(3rd)
...

αr,1αr,2. . .αr,3k+3

Cr

(3rd)...

. . .
C3k

(3rd)

. . .
QS1

...

ζS,1 ζS,2 . . . ζS,3k+1

QS

(1st)

r ∈ S

r ∈ S

...

. . .
QS�S �

Figure 5.8: Network of friends for construction in proof of Theorem 5.39. A solid line
represents a friendship-relation (with priorities if required) a dashed line stands
for an at least neutral relation.

We show that Γ is possibly strictly popular if and only if there is no solution for (B,S ).

Only if: Assuming (B,S ) has a solution S �, we consider the coalition structure
Γ� = {Cr | r ∈ B}∪ {PS | S ∈ S �}∪ {QS | S /∈ S �}. There are 3k players, αr,1, r ∈ B, that
necessarily prefer Γ(αr,1) to Γ�(αr,1), and 3k players, βr, r ∈ B, that necessarily prefer
Γ�(βr) to Γ(βr). All other players are indifferent between their coalitions in Γ and Γ�. Thus,
Γ is necessarily prevented from being strictly popular.

If: Assume Γ is not possibly strictly popular, that is, for each extension, there exists
another coalition structure Γ� that beats Γ in pairwise comparison. All players αr,i, r ∈ B,
1 ≤ i ≤ 3k+3, and ζS,�, S ∈ S , 1 ≤ S ≤ 3k+1, are in one of their favourite coalitions in Γ;
hence, cannot improve in Γ�. Therefore, there are at most 3k players, namely of the form βr,
r ∈ B, that vote in favour of Γ�.
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If, for some r ∈ B, not all players αr,i, 1 ≤ i ≤ 3k+3, are together, they are all worse off
in comparison to Γ. This cannot be counterbalanced by 3k players; consequently, they have
to be in one coalition in Γ�. For the same reason, for each S ∈ S , the 3k+1 players in QS

cannot be separated in Γ�.
If some βr, r ∈ B wants to improve by adding friends to Cr ∪ {βr}, all 3k+ 3 players in

Cr will disapprove; hence, this can also not be the case in Γ�.
Thus, for each r ∈ B, αr,1 is separated from βr, which sums up in a number

of 3k players in favour of Γ in comparison to Γ�. That means, in order for Γ�

to be successful, each βr has to prefer Γ�(βr) to Γ(βr). It necessarily holds that
QS ∪ {βr,βr�} �βr

QS ∪ {βr | r ∈ S} �βr
{βr� | r ∈ B}, for a player βr� with r,r� ∈ S,r �= r�,

but Cr ∪ {βr} and QS ∪ {βr,βr�} are indifferent. However, there exists an extension in
which this indifference is solved by favour of Γ(βr), thus for this extension, QS ∪ {βr,βr�}
cannot be in Γ, (nor any less preferred coalition by βr). Also, there cannot be any enemies
of players QS in the same coalition, since otherwise there would be at least 3k + 1 more
players that disapprove. This leaves only one possibility: There is a coalition structure,
such that all players βr are in a coalition PS with r ∈ S. Consequently, there is an exact
cover of B by sets in S .

Thus, POSSIBLE STRICT POPULARITY VERIFICATION is coNP-hard. For POSSIBLE

POPULARITY VERIFICATION we consider the following modification:

�
+0−
α3k,1

=
�
{α3k, j : j �= 1}∼

�
� {β3k}

�
� {other players}∼

�
.

Everything else remains the same. Note that now, we need Γ� to strictly defeat Γ, in order
to obtain that Γ is not possibly popular. The argumentation is analogous to above, except
that now only 3k− 1 players of the form αr,1, r ∈ B, dislike being in a different coalition
than βr. Then, for each extension, there is such a Γ� if and only if all players βr, r ∈ B, can
be placed in a PS, r ∈ S. Thus, it holds that Γ is possibly popular if and only if there is no
solution for (B,S ).

Next, we consider a modification where, for each r ∈ B, there are only 3k + 2 play-
ers αr,i, where α3k,1’s preferences depend on the strict or not strict case, and �

+0−
βr

=
�
Cr∼ �βr

�

r∈S QS∼ �βr
{βr� : r� �= r}∼

�
� /0

�
� {other players}∼

�
. This has the consequence

that possibly
PS �βr

Cr ∪{βr}

and necessarily
Cr ∪{βr}�βr

QS ∪RS �βr
{βr� | r ∈ B},

for each r ∈ B.
Similar to previous argumentation, it can be shown that in the game where α3k,1 has β3k

as a friend, it holds that Γ is necessarily strictly popular if and only if there is no solution
for (B,S ).
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Analogously to the third and second cases, it can be shown that if β3k is neutral for α3k,1,
it holds that Γ is necessarily popular if and only if there is no solution for (B,S ).

Finally, the coNP upper bound for the latter two problems holds, since both, an extension
and a coalition structure Γ� can be chosen nondeterministically, and it can be verified in
polynomial time whether Γ� violates the conditions for the input coalition structure to be
popular or strictly popular, respectively. �

Theorem 5.40. For strict popularity, all three existence problems are coNP-hard.

Proof. For the question of existence, we choose the same constructions as the first and the
third one in the proof of Theorem 5.39, without fixing Γ.

We have seen that, for the first construction, if there is no solution for the given XC3 in-
stance there exists a possibly strictly popular coalition structure (namely, Γ, that was given
in the verification problem). Now we show that, if there is a solution, not only Γ is beaten in
pairwise comparison, but also there is no other strictly popular coalition structure. Observe
that Γ and Γ� (the coalition structure related to the XC3 solution) tie up in pairwise compari-
son with the maximal amount of positive votes each (3k). Thus, these two cannot be strictly
popular. Any other coalition structure can also only possibly gain at most 3k positive votes;
hence, there is no coalition structure that beats every other one in pairwise comparison.

For the third construction, we have seen that Γ is necessarily strictly popular, thus, there
exists a necessarily strictly popular coalition structure, and at the same time there certainly
exists a strictly popular coalition structure. By analogous arguments to above, where all
other coalition structures than Γ and Γ� are even necessarily worse off, it can be seen that,
if there is a solution for the original XC3 instance, there is no necessarily strictly popular
coalition structure at all. �

Theorem 5.41. POSSIBLE PARETO OPTIMALITY VERIFICATION is coNP-hard and NEC-
ESSARY PARETO OPTIMALITY VERIFICATION is coNP-complete.

Proof. Consider a similar, but even simpler reduction from XC3 than previously. Letting
(B,S ) with �B�= 3k be a given XC3 instance, we construct the following game: N = {βr |
r ∈ B}∪{ζS,� | S ∈ S �,1 ≤ �≤ 3k−3} and

• �
+0−
βr

=
��

r∈S QS∼ �βr
{βr� : r� �= r}∼

�
� /0

�
� {other players}∼

�
, for each r ∈ B,

• �
+0−
ζS,�

=
�
ζS,�+1

�
� {ζS,�� : � �= �

� �= �+1}∪{βr : r ∈ S}
�
� {other players}∼

�
, for each

S ∈ S , and �, 1 ≤ �≤ 3k−4,

�
+0−
ζS,3k−3

=
� �
� {ζS,�� : �� �= 3k−3}∪{βr : r ∈ S}

�
� {other players}∼

�
, for each S ∈S ,

where QS and PS are defined as above. Moreover, let Γ = {{βr | r ∈ B}}∪ {QS | S ∈ S �}.
This profile can be determined in polynomial time and is visualized in Figure 5.9.
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Figure 5.9: Network of friends for construction in proof of Theorem 5.41. A solid line
represents a friendship-relation (with priorities if required) a dashed line stands
for an at least neutral relation.

It holds that (B,S ) belongs to XC3 if and only if Γ is not possibly Pareto-optimal.
Only if: Consider a solution S � for (B,S ), assuming there is one, coalition structure

Γ�= {PS | S∈S �}∪{QS | S /∈S �} necessarily Pareto dominates Γ: Each player ζS,�, S∈S ,
1 ≤ �≤ 3k−3, is indifferent between QS and PS, as β is considered as neutral. Furthermore,
each βr, r ∈ B, necessarily strictly prefers PS to Γ(βr), since two friends can be mapped to
two indifferent friends, and 3k−3 players can be mapped to higher ranked players, and βr

has got no enemies in either coalition.
If: Assume there exists a coalition structure Γ� that necessarily Pareto dominates Γ,

that is, for each player i, Γ�(i) �i Γ(i) and for at least one player j, Γ�( j) � j Γ( j). From
the point of view of players ζS,�, S ∈ S , 1 ≤ � ≤ 3k − 3, the players in QS have to be
together in one coalition in Γ� and without any enemies. A player βr necessarily prefers
PS to {βr� | r� ∈ B} and the latter possibly to every other coalition containing βr. Since Γ�

necessarily Pareto dominates Γ, there is an extension, for which the only possible Γ� assigns
each βr, r ∈ B, to a PS which implies that there is an exact cover of B in S .

For the second case, NECESSARY PARETO OPTIMALITY VERIFICATION, we slightly
change the construction: Now there are only 3k− 2 players ζS,� for each S ∈ S and each
βr, r ∈ B, prefers each βr� , r �= r� to ζS,�, r ∈ S, 1 ≤ �≤ 3k−2. Observe that with analogous
argumentation, changing the relations of possible and necessary preferences, (B,S ) is a
positive instance if and only if Γ is possibly not Pareto-optimal.

The fact that we can verify, for a nondeterministically chosen extension and coalition
structure, whether it Pareto dominates a given coalition structure, in polynomial time, com-
pletes the proof. �

Questions left open and approaches of how to tackle them can be found in Section 5.4.
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5 Hedonic Games: Axiomatic Properties and Stability

5.3 Altruistic Hedonic Games

The following model is accepted as a conference contribution jointly with Nguyen, Rey,
Rothe, and Schend [NRR+16]. We propose the idea of expanding preference extensions in
hedonic games from single players’ decisions to altruistic influences. Our model is based
on friend-oriented hedonic games.

In order to compare two coalitions A and B under consideration of friends’ opinions it
would be an intuitive idea to collect the preference relations between A and B of all friends
in the intersection of A and B, and decide which one is preferred according to majority or
a similar evaluation method. A weak point of this idea, however, is the fact that we can
indeed compare two coalitions easily, but may have trouble with comparing three or more
coalitions. Assume, for example, that coalitions A and B have a common friend who prefers
A to B; B and a third coalition C have another common friend who prefers B to C; and C

and A have a third common friend who prefers C to A. Such a scenario exists even in rather
small (seven vertices) and symmetric networks, as shown in [NRR+16], and leads to an
irrational aggregated opinion among friends. If the player whose preference order we study
is indifferent between A, B, and C, we obtain an intransitive order whichever positive impact
the friends’ opinion has on our player.

Alternatively, we could detect all those cycles in the aggregated friends’ opinion, and
dissolve it into indifference. This, however, might lead to the need of a comparison of an
exponential number of coalitions in the number of players in order to compare two coali-
tions. Hence, we would have a conflict with the compact representation of our model, and
it would have been easier to specify an arbitrary preference as an input in the first place.

Furthermore, if we asked other friends than those concerned directly, we would lose the
hedonic aspect of the game, as the happiness of a player would depend on other coali-
tions. Nevertheless, we can consider a friend’s opinion on a single coalition A, regardless
of whether he is contained in B, and compare two separate assimilable values for the two
coalitions. This idea leads us to the following modelling.

From a player i’s point of view, the utility for a coalition A in the game is on the one
hand determined by i’s own evaluation of A and on the other hand by the average value of
i’s friends. Based on the friend-oriented extension principle (see Section 2.3.2), we obtain
a friend j’s opinion on a coalition containing both player i and j, by the value u j(A) =
n�A∩N+

j �−�A∩N−
j �. This can have an influence on i’s utility on a coalition and thus on

her preference relation in the following ways.
Considering friends to be equally important and focussing on the average valuation, three

main cases turn out to be reasonable to be distinguished. These three cases correspond to
different degrees of altruism: A player may be selfish at first and ask her friends only in
case of indifference, treat her friends and herself equally, or be truly altruistic by asking
her friends first and deciding herself only in case of indifference. By assigning a weight to
player i’s own contribution in comparison to her friends’ influence on her preference, we
obtain these priorities.
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Definition 5.42. Let i be a player in a network of friends. Her extended preferences are

selfish first if i initially decides upon her preference over two coalitions friend-orientedly

(see Section 2.3.2) and, if and only if she is indifferent between them, she asks her

friends for a vote. For M > n5, we define:

A �+sf
i B ⇐⇒ M(n�A∩N+

i �−�A∩N−
i �)+ ∑

a∈A∩N+
i

n�A∩N+
a �−�A∩N−

a �

�A∩N+
i �

≥ M(n�B∩N+
i �−�B∩N−

i �)+ ∑
b∈B∩N+

i

n�B∩N+
b �−�B∩N−

b �

�B∩N+
i �

.

equally treated if i and her friends “vote” friend-orientedly at the same time, equally

taking part in the decision. Formally, we define:

A �+eq
i B ⇐⇒ ∑

a∈A∩(N+
i ∪{i})

n�A∩N+
a �−�A∩N−

a �

�A∩ (N+
i ∪{i})�

≥ ∑
b∈B∩(N+

i ∪{i})

n�B∩N+
b �−�B∩N−

b �

�B∩ (N+
i ∪{i})�

.

altruistic if i first asks her friends for their opinion on a coalition they are contained in and

adopts their average opinion; if and only if the consensus is indifference, the player

decides for herself. For M > n5, we define:

A �+al
i B ⇐⇒ n�A∩N+

i �−�A∩N−
i �+M ∑

a∈A∩N+
i

n�A∩N+
a �−�A∩N−

a �

�A∩N+
i �

≥ n�B∩N+
i �−�B∩N−

i �+M ∑
b∈B∩N+

i

n�B∩N+
b �−�B∩N−

b �

�B∩N+
i �

.

In [NRR+16] it is shown that M > n5 is sufficient for the intuitive priorities and for the
definitions to be equivalent.

In all three cases, we normalize by the number of friends whose opinion is considered,
to obtain a true comparability between two coalitions from the friends’ points of view, and
not prefer a coalition merely because it contains more friends (which would only repeat the
friend-based nature of the model).

The following network of friends provides an example of the three variants and how they
are distinct and gradually represent the three different approaches to altruism in hedonic
games.
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1

2

3 4

5

Figure 5.10: A network of friends illustrating the distinct degrees of altruism in Exam-
ple 5.43

Example 5.43. Consider the game with five players N = {1,2,3,4,5} and friendship rela-

tions represented by the network in Figure 5.10.

Player 1’s extended preferences depend on the degree of altruism. The following table

lists the related positive utilities of coalitions in the friend-oriented order. The utilities for

non-acceptable coalitions are not mentioned, since the preferences over those coalitions are

the same in all models considered, as they do not contain any friends.

friend-oriented, C: {
1,

2,
3}

{
1,

2,
3,

4}

{
1,

2,
3,

5}

N {
1,

2}

{
1,

3}

{
1,

2,
4}

{
1,

2,
5}

{
1,

3,
4}

{
1,

3,
5}

{
1,

2,
4,

5}

{
1,

3,
4,

5}

u1(C) 10 9 9 8 5 5 4 4 4 4 3 3
u2(C) 4 3 9 8 5 − 4 10 − − 9 −
u3(C) 4 9 3 8 − 5 − − 10 4 − 9

selfish-first 6 6 5 5 4 10 10 4 9 9
equally-treated 6 7 7 8 5 5 4 7 7 4 6 6
altruistic 4 6 6 8 5 5 4 10 10 4 9 9

Table 5.5: A player’s utilities in a hedonic game with different altruistic influences

One can see that all four weak preference orders are different: Under the friend-oriented

preference extension, player 1’s weak preference order is the one given in the first line ac-

cording to the values of u1. For the selfish-first extension, the main order remains the same;

however, indifferences can be dissolved, as is the case here with {1,2,5} �+sf
1 {1,2,4}.

Therefore, values in cells left blank are irrelevant, while a dash indicates that a value does

not exist. Under equally-treated preferences, the grand coalition is the most preferred one.

Intuitively, this is the case because all friends have a large number of friends at the same

time. Finally, under altruistic preferences, player 1’s friends consider {1,2,5} and {1,3,4}
the best coalition. Since they agree on that, player 1 altruistically adopts this opinion with-

out considering her own opinion.

The utility of a coalition from player i’s point of view can also be deduced from the
corresponding network of friends itself.
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Proposition 5.44. Let G be a network of friends. Moreover, let λ denote the number of

edges in {{vi,v j} | j ∈ C ∩N+
i }, that is, the number of friends �C ∩N+

i �. Let µ denote

the number of edges between friends of i’s, that is, �{{v j,vk} | j,k ∈ C ∩N+
i }�, and let

ν = �{{v j,vk} | j ∈C∩N+
i ,k ∈C∩N+

j ,k /∈C∩N+
i }�. Then, i’s utility of a coalition C ∈Ni

under selfish-first preferences is

M ·λ (n+1)+M+n+2− (M+1)�C�+
(n+1)(2µ +ν)

λ
;

under equal-treatment
(2λ +2µ +ν)(n+1)

λ +1
−�C�+1;

and under altruistic-treatment preferences

M(n+2)+λ (n+1)+1− (M+1)�C�+
M(n+1)(2µ +ν)

λ
.

5.3.1 Axiomatic Analysis

We study hedonic games with altruistic influences with regard to their axiomatic properties.
We formulate several properties (see also Section 2.3.2) as adapted from decision making lit-
erature [Tid06, End13, BBP04, LR16] and analyse hedonic games with altruistic influences
with respect to them. Notably, all three relations in Definition 5.42 are reflexive, transitive,
and total, therefore indeed preference extensions. They are also anonymous/neutral.

A player’s value of a coalition and therefore a player’s utility can be computed in poly-
nomial time. Hence, the following property holds.

Proposition 5.45. For a network of friends and under all three degrees of altruism, the rela-

tion of two coalitions containing a player from this player’s point of view, can be determined

in polynomial time.

It is our purpose of friend’s influence that independence is not satisfied. On the contrary,
we want to encourage the idea of two coalitions being evaluated differently depending on a
new player added who might be friends with varied players in the two coalitions. Consider
the introducing example shown in Figure 5.1. For all three degrees of altruism, player 1
is indifferent between {1,3} and {1,4}, but prefers {1,2,3} to {1,2,4}. Monotonicity
is satisfied for selfish-first preferences, but not always for more altruistic extensions. It
might be the case that two players i and j become friends; however, there are two coalitions
A,B ∈ Ni of which i has preferred A before, but now prefers B because j does not have
any friends in A besides i. In this case the average value in A can be decreased while it is
increased if j is popular in A. What is more, we define the following type of monotonicity.
Let i ∈ N be a player in a network of friends. Here the only possibility for player j �= i to
advance in i’s opinion is to turn from being an enemy to being a friend (i.e., adding an edge
{vi,v j} in the corresponding network). In terms of influences of friends on the preference,
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5 Hedonic Games: Axiomatic Properties and Stability

we say that � is type-I-monotonic4 if for two coalitions A,B ∈ Ni with j ∈ A∩B, it holds
that (1) if A �i B and A �+

j B, then A ��
i B, and (2) if A ∼i B and A �+

j B, then A ��
i B.

For a network of friends and a preference extension under altruistic influences based
on friend-orientation, we define friend-oriented unanimity: Let i ∈ N be a player in the
network. Let A,B ∈ Ni be coalitions with A∩N+

i = B∩N+
i . We say that �i is friend-

orientedly unanimous if A �+
j B for each j ∈ (N+

i ∪{i})∩A implies that A �i B. Note that
the definition of friend-oriented unanimity covers all cases where the same subset of friends
is consulted and they all have a unanimous opinion in terms of friend-oriented preferences,
in particular the case where all friends’ opinions are considered: N+

i ⊆ A∩B. For the notion
of symmetry, the game is not changed if two players are swapped, here corresponds to
swapping two vertices is an automorphism.

Having defined and inspected these properties, we obtain the following proposition.

Proposition 5.46 ([NRR+16]). For all three degrees of altruism, friend-oriented unanimity

and symmetry are satisfied. For selfish-first preferences, type-I-monotonicity holds.

Note that the opposite implication of symmetry only holds if the interchangeable players
have a distance of at most two. Furthermore, note that an even stronger graph-theoretic
property holds: Two coalitions C and D are interchangeable (have the same value) from
player i’s point of view if they have the same graph structure from player i’s point of view.
That is, there exists an automorphism π of G with π(i) = i, π( j) = k and π(k) = j for j ∈C

and k ∈ D, and π(�) = � for � /∈C∪D.

Proposition 5.47 ([NRR+16]). Hedonic games with altruistic influences express different

hedonic games than friend-oriented and additively separable hedonic games.

Proof Sketch. On the one hand, there exists a hedonic game with altruistic influences that
is not additively separable: We have seen that the game in Figure 5.1 is not extended inde-
pendently for all three degrees of altruism. Therefore the game is not additively separable.
This, in turn, implies that it cannot be represented by a friend-oriented hedonic game.

On the other hand, for each friend-oriented hedonic game H = (N,�), it is the case that
from the point of view of one player i, there exists a network that extends to the same pref-
erence order. However, in this network, all of i’s friends cannot have any other friends but i.
This means that an arbitrary friend-oriented preference order of a friend of i’s cannot be rep-
resented. As a consequence, not all additively separable hedonic games can be represented
by a hedonic game with altruistic influences. �

5.3.2 Complexity Results

In this section, we study questions of verification and existence of stable coalition structures
in our model. If, for some concept, such a coalition structure does not always exist, we
are interested in the computational complexity of deciding whether or not such a coalition
structure exists in a given game. These results are encapsulated in Table 5.3.

4 In [NRR+16] we denote the former variant as type-II-monotonic.
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Observation 5.48. A coalition structure Γ is individually rational under all three degrees

of altruism (Definition 5.42) if and only if for each i ∈ N, Γ(i)∩N+
i �= /0 or Γ(i) = {i}.

Under selfish-first preferences, it is easy to figure out which coalition is the most preferred
one for each player, namely, the unique coalition of i and all her friends. Thus, it is also
easy to find out whether there exists a perfect coalition structure, which is the rare case if
and only if each connected component in the underlying graph is a clique.

In order to study equal treatment and altruism consider the following lemmas.

Lemma 5.49. Let �N,�� be a hedonic game represented as a network of friends and with

preferences under any of the three degrees of altruism.

1. For each player i, each of her friends j ∈ N+
i assigns a positive value to any coalition

C ∈ Ni ∩N j.

2. If a player has at least one friend, her favourite coalition contains at least one friend.

Proof. 1. Due to symmetric friendship relationships, a friend always has at least one
friend in a coalition she is asked to evaluate. Therefore, if a valuation of a friend is
considered to influence a preference, it is always positive.

2. Suppose a coalition contains player i and none of her friends, than the overall value is
at most zero. If there is at least one friend, the value is positive by the first statement
of this lemma. �

Lemma 5.50. Let �N,�� be a hedonic game represented as a network of friends and pref-

erences under equal treatment of friends. Let C be player i’s most preferred coalition. If a

friend j is in N+
i ∩C, then N+

j �N+
i ⊆C.

Proof. Assume there is a player k ∈ N+
j �N+

i with k /∈ C. Then, C∪ {k} �+eq
i C, since i

asks the same number of friends and the value of C ∪ {k} increases by n for at least one
player and decreases by 1 for at most n−2 players:

∑a∈(N+
i ∪{i})∩(C∪{k}) ua(C∪{k})

�(N+
i ∪{i})∩ (C∪{k})�

−
∑a∈C∩(N+

i ∪{i}) ua(C)

�(N+
i ∪{i})∩C�

=
∑a∈C∩(N+

i ∪{i})(ua(C∪{k})−ua(C))

�N+
i ∩C�+1

=
∑a∈C∩(N+

i ∪{i})∩N+
k
(n)−∑a∈C∩(N+

i ∪{i})�N+
k
(1)

�N+
i ∩C�+1

≥
n− (n−2)

�N+
i ∩C�+1

> 0. �

As a necessary condition for a perfect coalition structure under equal treatment, we can
state the following proposition.

Proposition 5.51. Whenever there exists a perfect coalition structure under equal prefer-

ences, it is unique and consists of all connected components.
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Proof. Let C be a coalition in a perfect coalition. Due to Lemma 5.49.2, C is connected.
Suppose C is a proper subset of a connected component. Then, there exists an edge {vk,v�}
with k ∈C and � /∈C. By Lemma 5.49.2, there exists another friend j of k’s in C.

Case 1: Assume there exists a player j with � /∈ N+
j . Then, by Lemma 5.50 this is a

contradiction to C being j’s favourite coalition, because C∪{�}�+eq
j C.

Case 2: Therefore, for each j ∈ N+
k ∩C, it holds that � ∈ N+

j (and j ∈ N+
�

by symmetry).
(a) Assume there exists another player x ∈C with � /∈ N+

x . By Lemma 5.49.2, there exists
a player j ∈ N+

k with x ∈ N+
j (and j ∈ N+

x ). Again, with � ∈ N+
j this is a contradiction to C

being x’s most preferred coalition by Lemma 5.50.
(b) Finally, for each player x ∈ C, {vx,v�} is an edge in the network graph. This implies

that u�(C∪{�}) = n ·�C�−0. Thus, comparing coalitions C∪{�} and C from k’s point of
view, and letting f denote �N+

k ∩C� we obtain:

uk(C∪{�})+∑ j∈N+
k
∩C u j(C∪{�})+u�(C∪{�})

1+ f +1
−

uk(C)+∑ j∈N+
k
∩C u j(C)

1+ f

=
(1+ f )(uk(C)+n+∑ j∈N+

k
∩C(u j(C)+n)+n ·�C�)− (2+ f )(uk(C)+∑ j∈N+

k
∩C u j(C))

(2+ f )(1+ f )

=
(1+ f )n−uk(C)+ f (1+ f )n−∑ j∈N+

k
∩C u j(C)+(1+ f )(n ·�C�)

(2+ f )(1+ f )

=
(1+ f )n−n · f +�N−

k ∩C�+ f (1+ f )n−∑ j∈N+
k
∩C u j(C)+(1+ f )(n ·�C�)

(2+ f )(1+ f )

≥
n+�N−

k ∩C�+ f (1+ f )n− f�C�n+(1+ f )(n ·�C�)

(2+ f )(1+ f )

=
n+�N−

k ∩C�+ f (1+ f )n+n ·�C�

(2+ f )(1+ f )
> 0.

Therefore, C∪ {�} �+eq
k C holds, which means that C has to be the whole connected com-

ponent. �

Corollary 5.52. If there exists a perfect coalition structure, all connected components have

a diameter of at most two.

Next, we show the polynomial-time decidability of the verification problems for single-
player deviations under selfish-first preference extensions.

Proposition 5.53. For all three degrees of altruism, it can be tested in polynomial time

whether a given coalition structure in a given game is Nash-stable, individually stable, or

contractually individually stable.

Proof. Let Γ be a coalition structure. By definition, we need to check if for each player
i ∈ N and for each existing coalition C in Γ or for the empty coalition, i prefers Γ(i) to
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being added to C. For n players, there are at most n+1 such coalitions, and the preference
relation can be verified in polynomial time by Proposition 5.45. Analogous arguments hold
for individual and contractually individual stability. �

Theorem 5.54. For all three degrees of altruism, a Nash-stable coalition structure always

exist.

Proof. Let E = {i | N+
i = /0} be the set of players without friends. The coalition structure

{{i} | i ∈ E}∪ {N �E} is Nash-stable. For each i ∈ E, ui(N �E) < 0, since there are no
friends to be evaluated positively nor to be asked for their valuation. Therefore, they would
rather stay alone. For each i /∈ E, ui(N �E)> 0, since there is at least one friend who leads
to a positive value and i herself contributes a positive value by Lemma 5.49.1. Thus i would
rather like to stay in N �E than to move alone to the empty coalition or to an enemy. �

Since Nash stability implies individual stability, which, in turn, implies contractually
individual stability, the following corollary holds.

Corollary 5.55. Individually and contractually individually stable coalition structures al-

ways exist.

Similarly, a (strictly) core-stable coalition structure always exists for selfish-first prefer-
ences.

Theorem 5.56 ([NRR+16]). In hedonic games with selfish-first preferences, the coalition

structure consisting of the connected components is always strictly core-stable.

A Pareto-optimal coalition structure, of course, always exists. On the other hand, for
all three degrees of altruism, there exists a game such that no coalition structure is strictly
popular.

Example 5.57. Consider the game given in Example 5.43.

1. Under selfish-first preferences, coalition structures {{1,2,5},{3,4}} and

{{1,3,4},{2,5}} are more popular than all other coalition structures, but are

in a tie.

2. For equally treated preferences, even three coalition structures are in a tie:

{{1,2,3,4},{5}}, {{1,2,3,5},{4}}, and the one consisting of only the grand coali-

tion, {{1,2,3,4,5}}.

3. Under altruistic preferences, {{1,3,4},{2,5}} is more popular than

{{1,2,3,4},{5}}, which, in turn, is more popular than {{1,2,3,4,5}}. How-

ever, the number of players who prefer {{1,2,3,4,5}} to {{1,3,4},{2,5}} is equal

to the number of players who prefer, vice versa, {{1,3,4},{2,5}} to {{1,2,3,4,5}}.

Furthermore, {{1,2,5},{3,4}} is more popular than {{1,2,3,5},{4}}; the two

coalition structures behave analogously due to symmetries. There is no other coali-

tion structure that is not beaten by any of the above-mentioned coalition structures.

Hence, no coalition structure is strictly popular.
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Theorem 5.58. 1. The question as to whether a given coalition structure in a given game

with selfish-first preferences is strictly popular is coNP-complete;

2. the question of whether there exists a strictly popular coalition structure in a given

game under selfish-first preferences is coNP-hard.

Proof. 1. The problem belongs to coNP, since the complementary problem can be
decided by nondeterministically choosing another coalition structure and verifying
whether a larger number of players prefer the latter to the former than the other way
around. This verification can be done in polynomial time by Proposition 5.45.

We show coNP-hardness by means of a polynomial-time many-one reduction from
XC3 to the complement of our problem. For a given XC3 instance consisting of sets
B = {1, . . . ,3k} and a family S of subsets S ⊆ B with �S�= 3 we, again, may assume
that each b ∈ B occurs at most three times in the sets within S [GJ79]. The following
construction is, once again, inspired by methods used by Sung and Dimitrov [SD10]
which are adopted in a non-trivial way, though, and in a different way than in Sec-
tion 5.2. Given such an XC3 instance (B,S ), we consider the set of players

N = {βb | b ∈ B}∪{ζS,� | S ∈ S ,1 ≤ �≤ 3k}∪{ηS, j | S ∈ S ,1 ≤ j ≤ 3k+3}.

The network of friends5 as displayed in Figure 5.11 is the following:

• all players in {βb | b ∈ B} are friends with each other,

• βb and ζS,� are each others’ friends if b ∈ S, for each S ∈ S , 1 ≤ �≤ 3k,

• for each S ∈ S , all players in QS = {ζS,�,ηS, j | 1 ≤ �≤ 3k,1 ≤ j ≤ 3k+3} are
each others’ friends, and

• there are no other friendship relations.

β1

...

βb

...

β3k

. . .

ζS,1

...

ζS,3k

b ∈ S

ηS,1

...

ηS,3k+3

. . .

Figure 5.11: Network of friends for construction in proof of Theorem 5.58

5 Note again that for the sake of readability player names rather than vertex names are specified in figures.
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Moreover, define the coalition structure

Γ = {{βb | b ∈ B}}∪{QS | S ∈ S }.

We show that Γ is strictly popular if and only if there exists no exact cover of B in S .

Only if: Assume there exists an exact cover S � ⊆ S such that
�

S∈S � S = B and
�S ��= k. Then, for the coalition structure

∆ = {{βb | b ∈ S}∪QS | S ∈ S
�}∪{QS | S ∈ S �S

�},

it holds that

�{i | ∆(i)�+sf
i Γ(i)}�= 3k+ k ·3k = k(3k+3) = �{ j | Γ( j)�+sf

j ∆( j)}�.

Hence, Γ cannot be strictly popular.

If: If, on the other hand, Γ is not strictly popular, there exists some coalition struc-
ture ∆ that is preferred to Γ by at least as many players as the number of those who
prefer Γ to ∆.

Consider the following cases.

• If for an S ∈ S , the players ηS, j, 1 ≤ j ≤ 3k + 3, do not play together in QS

or as soon as another player βb, b ∈ B, is added to their clique, there are 3k+3
dissatisfied players.

• If the players βb, b ∈ B, do not join some QS, b ∈ S, their best choice is teaming
up, which leads to coalition structure Γ.

• Consequently, at least one QS is changed in ∆. The 3k+ 3 negative votes can
only be balanced if at least as many other players prefer their coalition in ∆.

• 3k votes can be compensated by players ζS,�, 1 ≤ � ≤ 3k. As soon as there are
more players from this type, another QS� is altered. The only way to improve the
situation for such a player is to invite some extra players βb, b ∈ S. One extra
player βb, b ∈ S would be the same as two such extra players and one player
of the form ηS,k less from a selfish point of view. However, then the friend’s
influences would be employed, in favour of the full clique QS.

• The remaining three negative votes have to be settled by players βb, b ∈ B. They
only improve their situation if they join some QS, b ∈ S; and if they do so, all at
once. Otherwise, they would be dissatisfied in comparison to their coalition in
Γ. Indifference is not possible.

• If more than k sets QS, say x > k, are altered by this, there are 3k+x ·3k positive
votes and x · (3k+ 3) negative votes, which means that Γ is more popular by a
difference of 3(x− k) votes. Therefore, the players βb, b ∈ B, cannot make up
for negative votes if they move alone or in pairs to a total of more than k sets QS.
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Having eliminated all other possibilities, the one which remains is a coalition struc-
ture ∆ where for each b ∈ B, there exists a set S ∈ S such that ∆(βb) = {βb� | b� ∈
S}∪QS. As a consequence, there exists an exact cover S � = {S ∈ S | ∆(ζS,1) =
{βb� | b� ∈ S}∪QS} of B in S .

2. Consider the same reduction as above, except that Γ is not given. If, on the one hand,
there is no exact cover of B in S , a strictly popular coalition structure exists, namely,
Γ as considered above. If, on the other hand, there is an exact cover of B in S , note
that Γ beats every other coalition structure in pairwise comparison, but is in a tie in
comparison to ∆ as defined above. Therefore, Γ as well as any other coalition structure
cannot be strictly popular. �

5.4 Challenges and Future Work

We have studied three representations of hedonic games with respect to their axiomatic
consistency. Next to enemy-oriented preference extensions, we have designed two new
preference extension schemes, namely the generalized Bossong-Schweigert principle leav-
ing a set of possible full extensions open, and preferences with three degrees of altruism.
Both models are original and allow the expression of opinions that are not possible as yet in
other compact representations. Particularly, the generalized Bossong–Schweigert extension
principle is novel not only in the context of hedonic games. We have adapted several no-
tions of stability to possibly and necessarily stable coalition structures and have presented
characterizations of stability concepts when appropriate.

We have seen, for these representations, that coalition structures considered as stable
might not be guaranteed to exist. Deciding whether they exist as well as identifying them
might be possible only at great cost in terms of complexity.

For all encodings and preference extensions studied many questions and directions of fu-
ture work have been left open and arise newly. In the context of enemy-oriented hedonic
games, we provide a next step towards Θ

p
2-hardness of wonderful stability existence. More-

over, we will have a closer look at meta-theorems that help to determine the complexity of
stability problems due to similar structures in hedonic games.

Bridging A Gap Chang and Kadin [CK95] define the following property: A problem
A has ANDω functions6 if for all n ∈ N� {0} there exists an f ∈ FP such that for all
possible input parameters x1, . . . ,xn, it holds that for all i, 1 ≤ i ≤ n, xi ∈ A if and only if
f (x1,x2, . . . ,xn) ∈ A.

Lemma 5.59 ([CK95]). 1. If a problem is NP-complete, it has ANDω functions.

2. If a problem is DP-complete, it has ANDω functions.

6 Note that this is a different ω than the clique number, used here for consistency with the literature. Which
ω is meant will always be clear from the context.
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3. If a problem is complete for any class of the Boolean hierarchy higher than the second

level, it cannot have ANDω functions, unless the Boolean hierarchy collapses to the

second level.

4. If a problem is Θ
p
2-complete, it has ANDω functions.

Note that WSE has ANDω functions by Property 5.6. By Lemma 5.59, we thus can
conclude that WSE cannot be contained in any level of the Boolean hierarchy if it is not
also contained in the second level: WSE is either complete for DP or Θ

p
2 (or something

completely different). Here, we discuss an approach for showing the conjecture that WSE
is Θ

p
2-hard.

In order to apply Wagner’s Lemma 2.3, the idea would be to generalize the construction
for showing DP-hardness of WSE (see the proof of Theorem 5.10). From 2k given instances
x1, . . . ,x2k of some NP-hard problem A, we construct a WSE instance as a graph G with
k+ 1 independent components Gi, 1 ≤ i ≤ k+ 1, in polynomial time. Then again, we can
use Property 5.6 to deduce that G has a wonderfully stable partition if and only if each
Gi, 1 ≤ i ≤ k + 1, has one. The single components Gi are constructed as illustrated in
Figure 5.12: x1 maps to Gi, x2k maps to Gk+1, and the remaining k − 1 components Gi,
2 ≤ i ≤ k, are constructed from pairs (x2i−2,x2i−1) such that Property 5.60 holds.

s odd: x1

∈ A

G1

ws

x2,x3

∈ A ∈ A

G2

ws

. . . xs−1,xs

∈ A ∈ A

G s+1
2

ws

xs+1,xs+2

/∈ A /∈ A

G s+3
2

ws

. . . x2k−2,x2k−1

/∈ A /∈ A

Gk

ws

x2k

/∈ A

Gk+1

ws

s even: x1

∈ A

G1

ws

. . . xs,xs+1

∈ A /∈ A

G s+2
2

ws

. . . x2k

/∈ A

Gk+1

ws

Figure 5.12: Illustration of a construction towards complexity of wonderful stability exis-
tence using Lemma 2.3. Here, ws is short for wonderfully stable.

Property 5.60. Let x1, . . . ,x2k be given instances of an NP-hard problem A. Let

G1, . . . ,Gk+1 be constructed graphs that satisfy:

1. x1 ∈ A ⇐⇒ G1 ∈ WSE,

2. x2k ∈ A ⇐⇒ Gk+1 /∈ WSE, and

3. for each i, 2 ≤ i ≤ k, (x2i−2,x2i−1 ∈ A) or (x2i−2,x2i−1 /∈ A) ⇐⇒ Gi ∈ WSE.
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Then, we can conclude a sufficient condition for Θ
p
2-hardness of WSE.

Proposition 5.61. Let A be an NP-hard problem and let x1, . . . ,x2k be any 2k instances of A

such that x j ∈ A implies xi ∈ A for i < j. If G1, . . . ,Gk+1 are graphs that can be constructed

from x1, . . . ,x2k in polynomial time such that Property 5.60 is satisfied, then WSE is Θ
p
2-

hard.

Proof. Let f be a polynomial-time computable function such that f (x1, . . . ,x2k)=G, where
G is the graph consisting of k+ 1 independent components G1, . . . ,Gk+1 that satisfy Prop-
erty 5.60. In order to apply Lemma 2.3, we have to show:

�{xi | xi ∈ A,1 ≤ i ≤ 2k}� is odd ⇐⇒ G ∈ WSE.

Only if: Assume that �{xi | xi ∈ A,1 ≤ i ≤ 2k}� is odd. Since x j ∈ A implies that xi ∈ A

for i < j, neither x1 /∈ A nor x2k ∈ A can hold. By Property 5.60, both G1 and Gk+1 have
a wonderfully stable partition. Furthermore, there exists an index s, 1 < s < 2k, such that
xi ∈ A for i ≤ s, and xi /∈ A for i > s. Again, due to the relation between the instances xi

only three cases can occur for each pair (x2i−2,x2i−1) of the remaining instances: (1) both
x2i−2 and x2i−1 are in A; (2) neither x2i−2 nor x2i−1 are in A; or (3) x2i−2 is in A, yet x2i−1
is not. The latter case implies that s is of the form s = 2i− 2 for some i which leads to a
contradiction to s being odd. Therefore, all pairs have to be of the form stated in the first two
cases. By Property 5.60, each component Gi, 2 ≤ i ≤ k, has a wonderfully stable partition
and so does G by Property 5.6.

If: Assume that there exists a wonderfully stable partition in G. This implies that every
component Gi, 1 ≤ i ≤ k+1, does as well. By Property 5.60, it holds that x1 ∈ A, x2k /∈ A,
and for all pairs (x2i−2,x2i−1), 2 ≤ i ≤ k, either both x2i−2 and x2i−1 are in A, or neither x2i−2
nor x2i−1 are in A. In total, we have an odd number of instances in A among x1, . . . ,x2k. �

With the reduction presented in the DP-hardness proof for WSE (see Theorem 5.10), the
subgraphs G1 and Gk+1 can be constructed from given XC3 instances such that the desired
first two statements of Property 5.60 hold. In order to complete the Θ

p
2-hardness proof with

the help of Proposition 5.61, we would have to construct the remaining subgraphs G2, . . . ,Gk

so as to satisfy the third property of Property 5.60. Looking closely at this property and
letting the NP-complete set A be 3-SAT, we are searching for a polynomial-time reduction
f such that for two given 3-SAT instances, ϕ1 and ϕ2, it holds that:

(ϕ1,ϕ2 ∈ 3-SAT) or (ϕ1,ϕ2 /∈ 3-SAT) ⇐⇒ f (ϕ1,ϕ2) ∈ WSE. (5.4)

Now, it seems reasonable to consider the DP-complete problem SAT-UNSAT, where
we may assume that ϕ2 ∈ 3-SAT implies ϕ1 ∈ 3-SAT. By Lemma 2.1, this restriction of
SAT-UNSAT is also DP-complete. Then Equivalence (5.4) simplifies to:

(ϕ1,ϕ2) �∈ SAT-UNSAT ⇐⇒ f (ϕ1,ϕ2) ∈ WSE (5.5)

It follows that in order to prove Θ
p
2-hardness—and thus Θ

p
2-completeness—of WSE, it suf-

fices to show coDP-hardness of WSE. By definition Θ
p
2-hardness implies coDP-hardness.

To summarize, we have shown the following result.
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Theorem 5.62. WSE is Θ
p
2-complete if and only if it is coDP-hard.

A similar statement to Proposition 5.61 applies to the existence problem of a strict core
coalition structure. Hence, essentially the same argument works for SCSE as well: In order
to prove a Θ

p
2-hardness lower bound, it would suffice to establish a coDP-hardness lower

bound.

Corollary 5.63. SCSE is Θ
p
2-hard if and only if it is coDP-hard.

In this case this would, however, still leave an open gap between Θ
p
2-hardness and Σ

p
2-

membership. Whether or not coDP-hardness holds for WSE or SCSE is left as an open
problem.

Meta-Theorems Recently, Peters and Elkind [PE15] have presented a number of meta-
theorems that imply NP-hardness results for existence problems for several representations
of hedonic games and several stability concepts. We present approaches to adapt these
theorems to the classes of hedonic games, we study. A class of hedonic games can be
considered as a set of hedonic games with similar properties such as games that are induced
by a certain representation. We, again, begin with single player deviations.

Theorem 5.64 ([PE15]). For a class of hedonic games, NASH STABILITY EXISTENCE and

INDIVIDUAL STABILITY EXISTENCE are NP-complete if this class satisfies the following

properties:

1. The games in this class induce for each player i ∈ N, a weak preference order �i over

the set of players N which divides the set of players into friends Fi = { j �= i | j �i i}
and enemies Ei = { j | i�i j} and allows each player to express an arbitrary order of

coalitions of size two. We refer to this property as arbitrary ordering of agents.

2. For each player set N and each n-tuple of orderings (�1, . . . ,�n), the class contains

a corresponding game such that:

(a) the game is consistent on pairs, that is, for each i ∈ N and for two players j,k ∈
Fi ∪{i}, {i, j}�i {i,k} holds if and only if j �i k;

(b) the game is strictly 0-1-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 0 and �S∩Ei� ≥ 1 implies {i}�i S;

(c) the game is strictly 1-1-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 1 and �S∩Ei� ≥ 1 implies {i}�i S;

(d) the game is strictly 2-2-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 2 and �S∩Ei� ≥ 2 implies {i}�i S; and

(e) the game is not triangle-hating, that is, for each i∈N and for two friends j�i k ∈
Fi, it holds that {i, j,k}�i {i,k}.
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Remark 5.65. Note that the first property is neither satisfied for the enemy-oriented pref-

erence extension, nor for the friend-oriented preference extension, nor for their altruistic

modifications (irrespective of symmetric friendship relations); therefore, the problems stud-

ied in Sections 5.1 and 5.3 cannot be solved with this theorem.

Nevertheless, it would be an interesting aspect for future work to formulate similar results
for classes of games that do not satisfy this property. For hedonic games with ordinal pref-
erences and thresholds (Section 5.2), we have to study the class of all possible extensions.

Lemma 5.66. The class of all possible extensions to hedonic games with ordinal preferences

and thresholds allows arbitrary ordering of agents as defined in Theorem 5.64.1.

Proof. The well-defined ordering �i is induced by j �i k for two players j,k ∈ N if

• j,k ∈ N+
i and j �+

i k,

• j ∈ N+
i and k ∈ N0

i ,

• j ∈ N0
i and k = i or j = i and k ∈ N0

i ,

• j,k ∈ N0
i ,

• j ∈ N0
i and k ∈ N−

i , or

• j,k ∈ N−
i and j �−

i k

and its transitive closure. That means we consider the set of neutral players as part of the
set of friends Fi. The set of coalitions of size two can be ordered arbitrarily, as the set of
players N �{i} can be ordered arbitrarily in a weak ranking with double threshold. �

Lemma 5.67. The class of all possible extensions to hedonic games of hedonic games with

ordinal preferences and thresholds satisfies Properties (a), (b), and (e) as defined in Theo-

rem 5.64.2.

Proof. For �+0−, and therefore, for each possible extension, (a) holds due to

σ : {k}∩Fi → { j} with k �→ j if k ∈ Fi;

(b) holds via θ : /0 → S� ({i}∪N0
i ); and (e) holds via σ : {k}∩Fi → { j,k} with k �→ k. �

Lemma 5.68. For each hedonic game with ordinal preferences and thresholds

�N,�+0−
1 , . . . ,�+0−

n � there exists an extension ��1, . . . ,�n� ∈×n
i=1 Ext(�+0−

i ) that sat-

isfies Properties (c) and (d) as defined in Theorem 5.64.2 and one that does not.

Proof. For S = {i, j,e} and T = {i, j,k,d,e} with j,k ∈ N+
i and d,e ∈ N−

i the relation
between S and {i} as well as between T and {i} is undecided in �+0−

i . Therefore, for (c)
and (d), there exists an extension such that the properties holds, and one such that they do
not hold. �

Theorem 5.69. For the class of possible extensions that satisfy Properties (c) and (d) as de-

fined in Theorem 5.64.2 (and for each hedonic game with ordinal preferences and thresholds

there is one such extension), NASH STABILITY and INDIVIDUAL STABILITY EXISTENCE

are NP-complete.
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Proof. By Lemma 5.66 the first point of Theorem 5.64 holds for all extensions of a hedonic
game with ordinal preferences and thresholds. From the second point of Theorem 5.64
Properties (a), (b), and (e) are satisfied for all extensions of a hedonic game with ordinal
preferences and thresholds by Lemma 5.67. Properties (c) and (d) hold for at least one
extension by Lemma 5.68. By Theorem 5.64 for the class of all those extensions, NASH

STABILITY EXISTENCE and INDIVIDUAL STABILITY EXISTENCE are NP-complete. �

Remark 5.70. Note that this result does not imply NP-completeness of POSSIBLE INDI-
VIDUAL STABILITY EXISTENCE, yet.

Next, we consider group deviations.

Theorem 5.71 ([PE15]). For a class of hedonic games, CORE STABILITY EXISTENCE is

NP-hard if this class satisfies the following properties:

1. The games in this class induce for each player i ∈ N, a weak preference order �i over

the set of players N as described in Theorem 5.64.1.

2. For each player set N and each n-tuple of orderings (�1, . . . ,�n), the class contains

a corresponding game such that:

(a) the game is consistent on pairs;

(b) the game is strictly 0-1-toxic;

(f) the game is weakly 1-1-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 1 and �S∩Ei� ≥ 1 implies {i, j}�i S for each j ∈ Fi;

(g) the game is weakly 2-2-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 2 and �S∩Ei� ≥ 2 implies {i, j}�i S for each j ∈ Fi;

(h) the game is weakly 3-4-toxic, that is, for each i ∈ N and each coalition S ∈ Ni,

�S∩Fi�= 3 and �S∩Ei� ≥ 4 implies {i, j}�i S for each j ∈ Fi;

STRICT CORE STABILITY EXISTENCE is NP-hard, if in 2. instead of (f) weakly 1-1-toxic,

the game is (i) 1-1-toxic, that is, for each i ∈ N and each coalition S ∈ Ni, �S∩Fi�= 1 and

�S∩Ei� ≥ 1 implies {i}�i S.

Theorem 5.72. For the class of possible extensions that satisfy Properties (f), (g), (h) and

(i) as defined in Theorem 5.71.2 (and for each hedonic game with ordinal preferences and

thresholds there is one such extension), CORE STABILITY EXISTENCE and STRICT CORE

STABILITY EXISTENCE is NP-hard.

Proof. Again, by Lemma 5.66, the first point holds. Properties (a) and (b) hold for all
extensions by Lemma 5.67. With arguments analogous to the proof of Lemma 5.68 it can be
seen that the relation between the coalitions {i, j} and {i,k,e}, {i, j} and {i, j,k,d,e}, {i, j}
and {i, j,k,�,c,d,e}, as well as {i} and {i, j,e}, for j,k,� ∈ N+

i with k�i j and c,d,e ∈ N−
x ,

is undecided. Therefore there exists at least one extension such that (f), (g), (h) and (i)
are satisfied. For the class of those extensions, CORE STABILITY EXISTENCE and STRICT

CORE STABILITY EXISTENCE are NP-hard by Theorem 5.71. �
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Remark 5.73. Note that, again, this does not show NP-hardness of POSSIBLE CORE STA-
BILITY EXISTENCE or POSSIBLE STRICT CORE STABILITY EXISTENCE.

An adaption to this meta-theorem is also an interesting task for future work. Since the
upper bounds for the core stability existence problems are higher classes in the polynomial
hierarchy, it is also a challenging question to find meta-theorems for these classes.

The other two meta-theorems in [PE15] lead with an analogous study to the same results.

Open Questions and Future Directions This leaves the following problems open for
hedonic games with ordinal preferences and thresholds, where the results and ideas from
above are not immediately applicable (see Table 5.2): The complexity of possible veri-
fication problems for single player deviations and existence problems for individual and
contractually individual stability remain open. Most problems for core stability (only the
lower bound for possible verification for both, the core and the strict core, has been raised to
coNP-hardness) are open regarding their complexity. There is a gap between coNP-hardness
and Σ

p
2 for possible verification of coalition structure comparison problems. The complexity

of necessary Pareto optimality existence as well as of the existence problems for popularity
are open as well. The exact complexity of the existence problems for strict popularity is
also unknown up to now, although coNP-hardness has been shown as a lower bound. For
altruistic hedonic games the perhaps most important open question is of how to characterize
a perfect coalition structure and how hard it is to verify it for equally treated or altruis-
tic influences. However, besides the necessary conditions presented, this question remains
unsettled. Other questions, for instance, concerning group deviations are also open.

Apart from completing this analysis or considering other solution concepts in the new
settings, we suggest introducing the notion of partition correspondences with the purpose
to identify good coalition structures as an output for future work. As a first approach we
propose defining partition functions using an adaption of a voting rule [BF02] or a similar
mechanism that satisfies desirable properties [Tid06] reasonably redefined for this context.
Stable outcomes (existential or universal) may be conditions for such correspondences. In
contrast to the original idea of hedonic games where coalitions form in a decentralized
manner, here a central correspondence is used, in order to decide which coalitions will work
together. This might, for example, be the case in a setting where the head of a department
has to divide a group of employees into teams. The teams should be stable, in the sense
that the team members are as happy as possible with their group to create a good working
atmosphere.

In the context of altruistic influences, one might think of redefining a player’s happiness
from not only taking friends’ opinions into account, but also extending altruism to enemies’
opinions, or, contrarily, acting selfishly against the enemies’ will. However, this would
contradict our view on a network, where communication is restricted to friends, and players
further away are rather unknown than true enemies. Of course, we could ask for opinions,
recursively, where friend’s opinions also depend on their friends and so on, on more than one
level. A question that occurs is of how much time it takes to determine a relation between
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two coalitions according to a player’s preference; is this still possible in polynomial time in
the number of players? Also, the model can be extended to edge-weighted graphs, or other
encodings such as rankings of friends.

As one suggestion, we might extend the model and normalize by the size of the coalition,
which can be compared to a friend-oriented restriction of a fractional hedonic game (see
Section 2.3.2). For equally-treated influences, one could define for a player i in a network
of friends and two coalitions A and B, i is contained in,

A �eq
i B ⇐⇒ ∑

a∈A∩(N+
i ∪{i})

n�A∩N+
a �−�A∩N−

a �

�A� ·�A∩ (N+
i ∪{i})�

≥ ∑
b∈B∩(N+

i ∪{i})

n�B∩N+
b �−�B∩N−

b �

�B� ·�B∩ (N+
i ∪{i})�

.

It can be observed that in the selfish-first case only coalitions with the same cardinality are
directly compared; therefore, the fractional variant results in the same weak order. The other
two variants provide different preference extensions.

Example 5.74. Consider the network of friends in Example 5.43

friend-oriented, C: {
1,

2,
3}

{
1,

2,
3,

4}

{
1,

2,
3,

5}

N {
1,

2}

{
1,

3}

{
1,

2,
4}

{
1,

2,
5}

{
1,

3,
4}

{
1,

3,
5}

{
1,

2,
4,

5}

{
1,

3,
4,

5}

u1(C) 10 9 9 8 5 5 4 4 4 4 3 3
fractional 10/3 9/4 5/2

u2(C) 4 3 9 8 5 − 4 10 − − 9 −
u3(C) 4 9 3 8 − 5 − − 10 4 − 9

equally treated 6 7 7 8 5 5 4 7 7 4 6 6

fractional 120
60

105
60

105
60

96
60

150
60

150
60

80
60

140
60

140
60

80
60

90
60

90
60

altruistic 4 6 6 8 5 5 4 10 10 4 9 9

fractional 80
60

80
60

80
60

102
60

150
60

150
60

80
60

200
60

200
60

80
60

135
60

135
60

Table 5.6: A player’s utilities in a hedonic game with different altruistic influences based on
a fractional friend-oriented preference extension

Combining friend-orientedness with the fractional approach, {1,2} is preferred to

{1,2,3,4} as an example. For selfish-first preferences, it can be observed that only coali-

tions with the same cardinality are directly compared; therefore, the fractional variant re-

sults in the same weak order. Under the fractional approach related to equally treated pref-

erences, the most preferred coalitions are {1,2} and {1,3}. Differences to the fractional
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variant of altruistic preferences occur, as both friends agree on {1,2,3,4} being better than

{1,2,3} without the normalization; whereas they are indifferent between these coalitions

when dividing by the coalition size, which means that player 1 dissolves this by her own

valuation, preferring {1,2,3}.

Note that some properties, such as a fractional-based variant of unanimity, would have to
be redefined.

In addition, allowing different degrees of altruism for different players could be a natural
and challenging extension. It may be interesting to study games with restricted inputs such
as special graph classes that occur and for which, for example, verification of a strictly
popular coalition structure would be tractable.

As a further interesting issue for future work, we finally suggest studying problems of
strategic influence. A player might misreport his opinion to a friend in order to gain an
advantage, might pretend to be a friend to achieve a goal if possible, or an external party
might have a possibility to control the game from a bird’s view.
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6 Conclusions

All in all, this thesis deals with the computational complexity analysis of problems on the
basis of cooperative game theory. These comprise known challenging problems from the
computational social choice literature, such as false-name manipulation in weighted voting
domains and wonderful stability existence in hedonic games with enemy-oriented prefer-
ence extensions, as well as newly modelled related settings and their axiomatic evaluation.
For instance, we propose a framework for beneficial merging and splitting in cooperative
games in general, and structural control scenarios and bribery in particular settings. For
hedonic games two new natural compact representations satisfying desirable properties are
introduced, one an encoding open to a set of possible preference extensions and the other
judging on coalitions with three degrees of altruistic influence.

Key results include the precise computational complexity, namely completeness for PP,
likewise for the Shapley–Shubik and the probabilistic Penrose–Banzhaf index, of beneficial
merging in weighted voting games, which solves previous conjectures in the affirmative.
Next to that bribery in multiple-adversary path-disruption games with costs is Σ

p
2-complete.

Other main results are settled in the context of hedonic games. We show that the challenging
problem of wonderful stability existence in enemy-oriented games is DP-hard and tackle the
question of its exact complexity by showing that coDP-hardness implies Θ

p
2-completeness.

Relatedly, for hedonic games with ordinal preferences and thresholds, the possible Nash-
stable existence problem is NP-complete. Altruistic hedonic games have the advantage that
there always exist single player deviations and which are easy to detect. Strict popularity is,
unfortunately, for hedonic games with preferences with selfish-first influences, NP-hard to
verify. Interestingly enough, we see that some problems behave like their restricted variants
when generalized to, e.g., uncertain targets in path-disruption games, two-player merging
under desirable conditions, or when considering unanimity games in general.

Yet, a number of interesting questions of influence and stability remain open or emphasi-
ze anew as demanding for future work and will be summarized in the following.

On the one hand, our results are interesting in itself from a theoretical point of view.
The studies complete some pictures in that we were able to show completeness results for
NP, Σ

p
2 , and PP as well as hardness results for NP, DP, and PP, while they bring up other

interesting questions in challenging known or new settings. On the other hand, hardness
results of natural problems from game theory for DP, Σ

p
2 , and PP are by far rarer than for

NP in this area.
Since merging, splitting, and annexation can be seen as manipulative behaviour, a high

complexity can be interpreted as a protection shield against such strategic interference.
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6 Conclusions

Equally, computational hardness may protect against undesired influences via bribery at-
tacks and control scenarios in cooperative games. In often cases, even if NP-hardness of a
problem is already known, it might be interesting to provide deeper insight into the compu-
tational complexity and therefore a better complexity shield. As pointed out by Woeginger,
Σ

p
2-hardness indeed provides a much better security than mere NP-hardness. This holds due

to the fact that while there are several common methods to circumvent NP-hardness such as
approximation, fixed-parameter tractability, typical case analyses [Woe03], such methods
are less applicable to circumvent hardness for higher complexity classes. For instance, there
are good approximation schemes and dynamic methods known for computing the Shapley–
Shubik index (see, e.g., [BMR+10, FWJ08, KW05, BFJL00, MM00]). For parameterized
complexity, see, e.g., [FN15, EHS15, EH15, BCF+14a, Nie06, DF99]. For typical case
studies applied to NP-hard voting problems, see, e.g., the survey [RS13b]. Other methods
include a recent algebraic approach [BS14]. The distinction of slight differences in the defi-
nition of a decision problem is interesting and obligatory when studying their consequences
for differences in complexity classes, see, e.g., [BF12].

In the same manner, it may be considered a positive result if a problem in some rather
expressive setting, is only NP-complete instead of hard for a higher class that an intuitive
algorithm would suggest.

Key ideas for future work cover, next to answering questions studied above that are not
settled yet, such as conjectures of NPPP- and Θ

p
2-completeness, the following issues. Details

can be found in Sections 3.4, 4.2, and 5.4. New and existing models alike can be analysed
with respect to further axioms; verification and existence problems studied for other stability
concepts and for different representations of games. One may want to vary or refine mod-
els such as admitting external agents to bribe more selectively or distinguishing different
player types, e.g., with different degrees of altruism within the same game. In the same way
restrictions to, for example, special graph classes might give new insights into a problem’s
nature.

In any case finding interdisciplinary connections between topics provides promising re-
search approaches for future work. On the subject of this, we are interested in axioms that
may be transferred from one discipline to another, partition correspondences using aggre-
gation methods known in other fields, and strategic influences in altruistic hedonic games.
Perhaps impossibility results for certain scenarios not free from negative influences, like
the famous Gibbard–Satterthwaite theorem [Gib73, Sat75] in the context of voting, can be
found, in order to underline the advantage of a high complexity shield. If on the other hand
cooperative games can be identified as immune against undesired side-effects, we may want
to study their properties, both computational and axiomatic. Above all, challenging tasks
are to translate concepts to abstract structures, especially to investigate manipulation more
deeply, control scenarios in general and bribery in other representations, as well as to ex-
plore further meta-theorems that help to prove complexity results due to universal parallels
in the composition of cooperative games.
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