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Summary

Hepatic stellate cells (HSCs) are non-parenchymal liver resident cells in the space of Dissé,
which are central to metabolism and storage of retinoids in the body and are involved in liver
development, immunoregulation, homeostasis, regeneration, and fibrosis. In healthy liver,
HSCs are in a state referred as quiescent. After liver injury, HSCs develop into activated HSCs,
which are then able to proliferate, migrate, contract, and differentiate to other liver cell types
and, in this way, contribute to liver regeneration. However, during sustained liver injury HSCs
promote liver fibrosis via excessive extracellular matrix production. The key signaling
networks, which maintain quiescent of HSCs or orchestrate their plasticity toward liver
regeneration or fibrosis need further investigation. The RAS family is central in a network
controlling intracellular signaling pathways, which adopt the cellular responses upon
integration of external stimuli from the neighboring cells and the microenvironment. The
functions and activity of RAS dependent signaling pathways in the fate of HSCs are poorly
understood. This doctoral thesis provides new insights into the expression pattern, isoform
specificity, activity and networking of RAS family members and their signaling components in
both quiescent and activated HSCs. The obtained data revealed a differential expression
pattern for RAS isoforms, where embryonic stem cell-expressed RAS (ERAS) is specifically
expressed in quiescent HSCs and becomes drastically down-regulated after HSC activation. In
contrast to ERAS, other members of the RAS family, e.g., MRAS, RRAS, RALA, and RAP2A were
rather up-regulated upon HSC activation. Comprehensive biochemical studies identified ERAS
as a unique member of the RAS family with remarkable sequence deviations, additional motifs,
and an extended N-terminal region. The latter appears to be important for the signaling
activity of ERAS. Most remarkably, ERAS revealed a different mode of effector interaction as
compared to classical HRAS signaling, thereby, correlating with deviations in the effector-
binding site of ERAS. Hence, ERAS signals maintain the HSC quiescent by the inhibition of both
proliferation and apoptosis via various pathways, such as JAK-STAT3, AKT-mTORC1-FOXO1,
mTORC2-AKT, and RASSF5-HIPPO. In contrast, activated HSCs exhibited YAP-CTGF/NOTCH2
and RAS-RAF-MEK-ERK activity, which are involved in HSC proliferation and development.



Zusammenfassung

Hepatische Sternzellen (HSCs) sind nicht-parenchymale, im Dissé'schen Raum der Leber
ansassige Zellen, welche fir den Metabolismus und die Speicherung von Retinoiden im Korper
von zentraler Bedeutung sind. HSCs sind wesentlich an der Entwicklung, Immunregulation,
Homoostase, Regeneration, sowie an der Fibrose der Leber beteiligt. In gesundem
Lebergewebe befinden die HSCs sich in einem ruhenden Zustand. Nach einer Leberschadigung
werden sie zu aktivierten HSCs (aHSCs) umprogrammiert und gewinnen dadurch die Fahigkeit
zur Proliferation, Migration, Kontraktion, sowie Differenzierung in andere hepatische
Zelltypen. Somit tragen HSCs wesentlich zur Regeneration der Leber bei. Bei einer anhaltenden
Leberschadigung beglinstigen HSCs jedoch durch eine (bermaRige Produktion an
extrazellularer ~ Matrix die  Entstehung einer  Fibrose. Die zugrundeligenden
(patho)biochemischen Signalkaskaden, welche fiir die Aufrechterhaltung ruhender HSCs und
deren Aktivierung im Rahmen regenerativer und fibrotischer Prozesse in der Leber
ausschlaggebend sind, waren zu Beginn dieser Arbeit weitestgehend unklar. Die RAS-
Proteinfamilie spielt eine zentrale Rolle fur die Kontrolle intrazellularer Signalwege, welche
zelluldre Reaktionen entsprechend &duRerer Reize benachbarter Zellen wund der
Mikroumgebung vermitteln. Die Analysen der Funktionen und die Aktivitdt RAS-abhangiger
Signalwege in ruhenden vs. aktivierten HSCs war das Hauptziel dieser Doktorarbeit, die neue
Einblicke in die Expressionsdanderung, Isoform-Spezifizat, Aktivitdt und die Signalnetzwerke von
Mitgliedern der RAS Proteinfamilie und deren Komponente, sowohl in qHSCs, als auch in
aHSCs, charakterisiert. Hierbei konnte gezeigt werden dass die bisher nur wenig
charakterisierte RAS Isoform ERAS (embryonic stem cell-expressed RAS) spezifisch in qHSCs
exprimiert wird und nach deren Aktivierung im Gegensatz zu allen anderen RAS-Isoformen
drastisch runterreguliert wird. MRAS, RRAS, RALA und RAP2A wurden dagegen nach HSC-
Aktivierung hochreguliert. In umfangreichen biochemischen Analysen wurde ERAS als
einzigartiges Mitglied der RAS Familie identifiziert, gekennzeichnet durch deutliche
Sequenzunterschiede, zusatzliche Motive, sowie einen verlangerten N-Terminus. Letzterer
scheint eine Rolle in der ERAS vermittelten Signaltransduktion einzunehmen.
Interessanterweise zeigen ERAS und HRAS eine groBtenteils nicht lberlappende Interaktion
mit  Effektoren. Dieser  Unterschied korreliert mit  Abweichungen in den
Effektorbindungsstellen von ERAS. ERAS-Signale erhalten demzufolge die Quieszenz ruhender
HSC durch die Inhibition von sowohl Proliferation als auch Apoptose via verschiedener
Signalwege, wie JAK-STAT3, AKT-mTORC1-FOXO1, mTORC2-AKT, und RASSF5-HIPPO. Im
Gegensatz dazu zeigen die aktivierten HSCs YAP-CTGF/NOTCH2- und RAS-RAF-MEK-ERK-
Aktivitat, die an der Proliferation und Entwicklung von HSCs beteiligt sind.
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Chapter I

Anatomical units and resident cells of the liver

Liver is located in the upper-right quadrant of the abdominal cavity below the diaphragm.
It acts as a unique organ in the body with wide range of physiological functions and plays a
central role in the metabolic homeostasis, glycogen storage, bile secretion, detoxification,
serum protein production, e.g., albumin and acute-phase proteins (Lefkowitch, 2011). The liver
represents a largest organ in the body and weights around 1200-1500 g in adults and its size
and weight is correlated with age and gender (Chouker et al., 2004). Liver receives the blood
from two sources: First, the portal vein carries nutrient rich and oxygen poor blood 70% (40%
oxygen) from spleen, pancreas and intestine. Second, hepatic artery supplies 30% oxygen rich
(60% oxygen) and nutrient poor blood from the celiac trunk (Burt and Day, 2003).

Microanatomy of the liver
Functional units

Based on anatomical aspects on pig dissections, Kiernan in 1833 described anatomically
units of the liver as hexagonal structures named classic lobules (Fig. 1A) (Kiernan, 1833). Each
lobule, periphery recognizes with around six portal triads containing terminal branches of
portal vein, hepatic artery and bile duct (Fig. 1A). At the central of liver lobules placed the
center vein that collects the blood from the whole lobule and drains to hepatic vein. In
addition, Rappaport introduced alternative functional liver units, liver acinus, which are
important for liver physiology and pathology. It lies between two classical lobules in diamond
shape and involves two portal triads and two central veins in periphery (Fig. 1A). At the level of
acinus, hepatocytes are grouped into three zones based on their distance from oxygen-rich
portal triads and are numbered to direction of blood flow from 1 to 3 (Fig. 1A) (Rappaport et
al., 1954).

Microscopy structure of liver lobules composed of four major parts; 1) Parenchyma, a line
of organized hepatocytes; Il) Connective tissues, i.e. vessels, ducts and nerve system. lll)
Hepatic capillaries which are known as sinusoids, located between planes of parenchymal cells
and lined with endothelial cells, where the supplied blood from peripheral branches of hepatic
artery and portal vein are combined and drained towards central vein. IV) Space of Dissé
(perisinusoidal space), a narrow area between basal surface of hepatocytes and endothelial
cells (Fig. 1B) (Lachman and Pawlina, 2010).

Liver specific resident cells and their functions

Hepatocytes comprise 80 % of liver cell population and are the most prominent cells of
the liver according to their functions. Hepatocytes are structurally and functionally
heterogenic cells depending on their position. The major functions of periportal hepatocytes
(zone 1, Fig. 1A) consisting: gluconeogenesis, B-Oxidation of fatty acids, amino acid catabolism,
bile secretion and, cholesterol, glycogen and urea synthesis. Whereas periventricular
hepatocytes are involved on glycolysis, lipogenesis, ammonia removal, detoxifications,
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Chapter I

ketogenesis, glycogen and bile acid synthesis (Haussinger et al., 1985; Lamers et al., 1989;
Gumucio, 1989; Jungermann, 1988). Hepatocytes are polarized cells; the basal surface faces
the sinusoidal space that covered with microvilli and apical surface form the canaliculus (Fig.
1B) (Gissen and Arias, 2015).

Cholangiocytes are epithelial cells, which line the bile duct. Bile flows from the canaliculi
into the bile ducts (named bile ductules) and cholangiocytes modify and secret bile derived
(Fig. 1B, green arrow) (Kanno et al., 2000).

Kupffer cells are liver resident macrophages that are associated with endothelial cells in
the lumen side of sinusoid. They contribute for removal of bacteria, viruses, parasites, dead
cells and tumor cells from the liver. Moreover, they are an important source of cytokines
secretion (Dixon et al., 2013).

Endothelial cells are elongated fenestrae cells, line sinusoidal space. They act as sieve and
allow transport of macromolecules between blood sinusoids and plasma within Dissé space
with the size of up to 0.2 um through their pores. In addition, they possess high capacity for
receptor-mediated endocytosis. Together, with these two features, they provide the
hepatocytes their substrates and via selective endocytosis protect hepatocytes from several
harmful components (Smedsrod et al., 1990; Braet et al., 2009).

Hepatic stellate cells (HSCs; also called Ito cells, lipocytes, fat storing cells, or
perisinusoidal cells) contribute to 5-8% of total liver-resident cells and are located between the
basolateral surface of hepatocytes and sinusoidal endothelial cells in the space of Dissé in the
liver (Fig. 1B) (Kordes and Haussinger, 2013a).

The focus of present study is to provide a better understanding about the function and
regulation of HSCs within the liver and after liver injury, therefore in following parts HSCs will
be viewed in more detail.

Hallmarks and roles of hepatic stellate cells

Quiescent HSC (gqHSC) in the normal liver
Characteristics

HSCs reside in the Disse space of liver in close proximity to other liver cells, i. e.,
hepatocytes, sinusoidal endothelial cells and Kupffer cells (Fig. 1B). In a healthy liver, stellate
cells remain in quiescent state and are characterized by high content of vitamin A storage
(mainly retinyl palmitate) as cytoplasmic lipid vesicles and expression of neural and
mesodermal markers, i.e., glial fibrillary acidic protein (GFAP) and desmin (Wake, 1971; Yokoi
et al., 1984; Gard et al., 1985) (see Fig . 1B and C). Under excitation by UV light, lipid-
containing vesicles reflect the blue-green light due to their autofluorescence property (Blaner
et al., 2009; Sauvant et al., 2011).
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Figure 1. Microanatomy of the liver and liver resident cells. (A) lllustration of liver three lobules and
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Hering and blood vessels [adopted from (Kordes and Haussinger, 2013a)]. (C) Quiescent HSC. (D)
Activated HSC in regeneration. (E) Activated HSC in fibrosis.
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Functions

Development and organogenesis—HSCs originate from the mesodermal cells of septum
transversum (Asahina et al., 2011) and during embryogenesis, they contribute to liver
development and organogenesis through: 1) Progenitor proliferation, HSCs have profound
impact on proliferation of hepatoblasts (epithelial progenitors of hepatocytes and
cholangiocytes) by releasing the mitogen factors such as fibroblast growth factor 10 (FGF10)
(Berg et al., 2007), hepatocyte growth factor (HGF) (Schirmacher et al., 1992; Delgado et al.,
2009) and WNT (Matsumoto et al., 2008). IlI) Cell fate decision and differentiation, HSCs
through extracellular matrix (ECM) protein production and NOTCH signaling control the
hepatoblasts differentiation towards, either hepatocytes or cholangiocytes, respectively (Nagai
et al., 2002; Sawitza et al., 2009; Yanai et al., 2008; Zong et al., 2009). 1ll) Chemotaxis and
homing, HSCs by providing the stromal cell-derived factor o (SDF1a or CXCL12) chemokine,
recruit hematopoietic stem cells and endothelial cells that express its receptor CXCR4 into the
fetal liver (Wright et al., 2002; Kubota et al., 2007). IV) Hematopoiesis, recently it is
demonstrated that HSCs similar to bone marrow mesenchymal stem cells (MSCs), have a
positive influence on hematopoiesis by supporting hematopoietic stem cells and are
introduced as liver-resident MSCs (Castilho-Fernandes et al., 2011; Kordes et al., 2013; Kordes
et al., 2014).

In normal liver—gHSCs are viewed for their contribution in two main processes; |)
Retinoid storage and mobilization in the liver (Wake, 1971). The majority of the retinoids in the
body are stored in the lipid droplets of the qHSCs. Retinoids (retinyl ester, retinol, retinal and
retinoic acid), are engaged in large spectrum of the physiological processes, e.g. development,
organogenesis, differentiation, vision, reproduction and immunity (Duester, 2008; Blaner et
al., 2009; Clagett-Dame and Knutson, 2011; Zhou et al., 2012; Markgraf et al., 2014). The
active metabolite of retinol is retinoic acid and through binding to the nuclear receptors
modulates the expression of variety of the genes, including the genes which are controlling the
cell growth, differentiation and cellular metabolism (Di Masi et al., 2015; Zhang et al., 2015). Il)
Maintenance and homeostasis of stem cell niche in the liver. Stem cell microenvironment or
niche provides the soluble factors and cell-cell contacts, which are critical factors for stem cells
maintenance and self-renewal. qHSCs reside in the Dissé space that represents the stem cell
niche within the liver. HSCs are the main source of HGF secretion that is essential for
hepatocytes homeostasis (Ramadori et al., 1992; Schirmacher et al., 1992). Moreover, they are
involved in signaling pathways such as WNT and NOTCH, which required for maintenance of
stem cell niche (Kordes et al., 2008a; Sawitza et al., 2009; Kordes and H&ussinger, 2013a). The
most exciting prospects of HSCs are that in addition to their supportive roles in stem cell niche,
they also possess characteristics of stem cells, like the expression of OCT4 and CD133 genes,
and react as a multipotent cells with potency to differentiate into other cell lineages, such as
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Chapter I

hepatocytes, endothelial cells, adipocytes and osteocytes (Kordes et al., 2007; Kordes et al.,
2013; Kordes et al., 2014; Sawitza et al., 2015).

Activated HSC (aHSC) after liver injury

Transition to myofibroblast-like cells—Following chronic liver injury, apoptotic/necrotic
hepatocytes release factors which activate HSCs and trigger their transdifferentiation into
contractile, proliferative and migrating cells, so-called activated HSCs. During activation, aHSCs
release their vitamin A, up-regulate various genes, including a-smooth muscle actin (a-SMA)
and collagen type |, and down-regulate GFAP (Figs. 1D and E). In addition to in vivo activation
of HSCs during the chronic liver injury, by culturing the freshly isolated HSCs on the plastic
dishes, they undergo spontaneous activation and provide an in vitro model to study the
activated HSCs which are from different aspects very close to the in vivo models (De Minicis et
al., 2007; Mannaerts et al., 2015).

Physiologically, HSCs represent well-known extracellular matrix (ECM) producing cells.
ECM production is important for maintenance of the tissue structure and function (Jones et al.,
1993; Wang et al., 2004). In acute liver infection, HSCs protect hepatocytes against toxin
products of ectopic pathogens by releasing type | collagen and contributing to scar tissue
formation (Friedman, 2008; Bourbonnais et al., 2012). However, apart from the protective
function of scar tissue, in chronic liver injuries, dysregulation of fibrosis can occur and
excessive scar formation interferes with normal liver function. In some pathophysiological
conditions, last long activation of HSCs causes the accumulation of ECM in the liver and initiate
the liver diseases like, fibrosis, cirrhosis and hepatocellular carcinoma (HCC) (Dechene et al.,
2010; Pellicoro et al., 2014).

Matrix remodeling and controlling ECM composition—Matrix remodeling occurs via a
balance between matrix-metalloproteinases (MMPs or matrixins) and their inhibitors, tissue
inhibitors of metalloproteinases (TIMPs) and this process is important for normal function of
organs. MMPs hydrolyze the ECM components and are regulated at transcriptional levels and
locally via their specific inhibitors, TIMPs. They are zinc-calcium dependent proteinases (Werb,
1997; Parks, 1999; Sternlicht and Werb, 2001) and based on their substrate categorized in five
groups; ) Collagenases, MMP-1, MMP-8, MMP-13, and MMP-18 that cleave collagens |, Il, and
ll. 1) Gelatinases, MMP-2 and MMP-9. IlI) Stromelysins, MMP-3, -10 and -11. IV) Matrilysins,
MMP-7 and MMP-26. V) Membrane-type, MMP-14, -15, -16, -17, -24, -25 (Visse, 2003).
Activated HSCs play profound roles in matrix remodeling by up-regulation and secretion of
MMP-2 (Arthur et al., 1992), MMP-9 (Han et al., 2007), MMP-13 (Schaefer et al., 2003) and
stromelysin (Vyas et al., 1995; Benyon and Arthur, 2001; Friedman, 2008) (Fig. 1E).

Liver regeneration after partial hematectomy—Liver is a unique solid organ in the body
with high capacity of regeneration. After surgical removal of two/thirds of the liver (termed
partial hepatectomy or PHx), the remaining parts of the liver grow and enlarge until the liver
mass reach to its normal size, this phenomenon is called liver regeneration (Taub, 2004;
Michalopoulos, 2010). This is mainly proposed as a result of hepatocytes reentry to the cell
cycle (from GO to G1) and their proliferation (Miyaoka et al., 2012). Notably, there are growing
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numbers of evidences indicating the pivotal contribution of other liver cell types especially
HSCs in supporting hepatocytes upon liver regeneration, by providing the high levels of growth
factors (HGF), cytokines, chemokines, NOTCH signaling activity and modulation the ECM
composition (Geffers et al., 2007; Roskams, 2008; Sawitza et al., 2009; Friedman, 2008; Yin et
al., 2013b).

Stem cell-mediated liver regeneration—Under some pathological conditions, when the
hepatocytes proliferation compromised, liver regeneration mediated through the progenitor
cells activation, proliferation and differentiation. The liver progenitor/stem cells emerge when
the hepatocytes proliferation is impaired and there are two candidate cell lineages, which are
introduced as liver stem cells; I) Oval cells in the rodents appear around the canal of Hering
(Fig. 1B). These cells exhibit the immature oval-shaped cells with bipotent capacity to
differentiate into hepatocytes and cholangiocytes (Miyajima et al., 2014). 1I) HSCs are the
second candidate for liver stem cells and Dissé space serves as a stem cell niche by providing
the soluble factors and appropriates microenvironment for cell-cell communication (Sawitza et
al., 2009; Kordes and Haussinger, 2013a; Kordes et al., 2014). Similar to oval cells, they are
multipotent cells and emit the stem cells properties (Yang et al., 2008). Noteworthy, recent
study demonstrated the transdifferentiation of transplanted HSCs into the progenitor cell
population of the host animal during liver regeneration and their contribution to the
hepatocytes and bile duct formation (Kordes et al., 2014) (Fig. 1D).

In the previous part, we had a short introduction about HSCs and a view of their
functions, in both quiescent and activated states. The most exciting aspects of HSCs are their
bilateral roles during physiological and pathophysiological situations as positive or negative
players. Therefore, there is a pivotal need to further understand the molecular mechanisms
that govern the fate and contribution of HSCs in different cellular circumstances. In the next
section, we will get more detailed information about the candidate pathways that may be the
driven force on HSC fate decisions.

Postulated signaling mechanisms in hepatic stellate cells

To date, several studies reported the candidate pathways that regulate the plasticity of
HSCs during different circumstances including liver development, hemostasis, repair and
fibrosis; such as RAS-MAPK, PI3K-AKT, JAK-STAT3, HIPPO-YAP, NOTCH, WNT, Hedgehog, and
importance of growth factors, like platelet-derived growth factor (PDGF), transforming growth
factor beta (TGFB) and insulin-like growth factor (IGF) (Reimann et al., 1997; Carloni et al.,
2002; Kordes et al., 2008a; Lakner, 2010; Xie et al., 2013; de Souza et al., 2015; Mannaerts et
al., 2015). Among these pathways, RAS signaling is one of the earliest, which was identified to
plays a role in HSC activation (Parola et al., 1998). However, how the cross-talking between
different RAS dependent signaling pathways modulates the HSC fate decisions, remains to be
manifested. In this section, we will have an introduction to RAS superfamily of monomeric
GTPases; the cellular outcomes, subgrouping, sequence highlights, lipid modification, and
regulation. Then, we will take the signaling networks of two major families of RAS and RHO
into consideration.
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RAS superfamily at a glance

Cellular functions—Small GTPases of the RAS superfamily normally act as molecular
switches within the cell, cycling between a GTP-bound (active) and a GDP-bound (inactive)
states (Fig. 2) (Wittinghofer and Vetter, 2011). According to the sequence and function
similarly, they fall into seven major subfamilies: RAS, RHO, RAB, RAN, RAD, RAG and ARF
(Fig. 3). In 1979, the RAS protein, prototype of RAS superfamily, was first described as a
phospho-protein (p) 21 kDa and later RAS term was used as a prototype of a superfamily (Fig.
3) (Shih et al., 1979). These molecules trigger intracellular responses by sensing the
extracellular signals through their interacting receptors or intermediate proteins and passing
the signal to downstream targets (Fig. 2). Therefore, they play a key role in various cellular
processes, including gene expression, metabolism, cell cycle progression, proliferation,
survival, differentiation, vesicular transport, cytoskeleton organization, migration, cell motility,
endocytosis, contraction and nuclear transport (Coleman et al., 2004; Wennerberg, 2005;
Sorkin and von Zastrow, 2009; Amin et al., 2013). In pathological situations, the somatic or
germline mutations in genes related to members of the RAS superfamily or their regulators are
commonly associated with cancer progression or developmental disorders (Ahmadian et al.,
2002; Gremer et al., 2011; Karnoub and Weinberg, 2008; Pylayeva-Gupta et al., 2011; Tidyman
and Rauen, 2009; Flex et al., 2014; Cirstea et al., 2013).
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Figure 2. Schematic view of the RAS-GDP/GTP cycle and downstream signaling pathways of RAS
proteins. As it is written at the top left, RAS proteins are cycling between GDP/GTP bound forms by the
actions of two main regulatory proteins, GEF, and GAP. They can only exert their cellular functions when
they are anchored to the membrane via posttranslational lipid modifications (see text for more
information). Effector proteins downstream of RAS-GTP are depicted with green letters and the cellular
targets of effectors in black. Through the interaction with these effectors and switching on the
downstream pathways, RAS proteins emit their cellular functions, bottom in gray. DAG, diacylglycerol;
ERK, extracellular regulated kinase; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange
factor; MEK, MAP/ERK kinase; MST, mammalian sterile 20-like kinase; PDK1, 3-phosphoinositide-
dependent protein kinase; PI3K, phosphoinositide 3-kinase; PIP3, phosphoinositide 3,4,5-trisphosphate;
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PKC, protein kinase C; PLC, phospholipase C; RALBP1, RALA binding protein 1; RALGDS, guanine
nucleotide dissociation stimulator; RAS, rat sarcoma; RASSF5, Ras-association domain family.

Sequence highlights of RAS superfamily—RAS proteins share a highly conserved GTP-
binding (G) domain with five essential motifs, termed G1-G5 (Fig. 4) (Bourne et al., 1990;
Bourne et al., 1991). G1 or P-loop (*°GxxxxGKS/T*; HRAS numbering) binds the beta and
gamma phosphates of GTP (Saraste et al., 1990). Substitution of glycine 12 to any other amino
acids (except for proline) is most frequently found in human cancers. These mutations render
RAS protein GAP-insensitive and consequently hyperactive (Bos, 1989; Tidyman and Rauen,
2009). G2 and G3, also are referred as switch | and switch Il, respectively, are dynamic regions
that sense the nucleotide state and provide the regulator and effector binding sites (Vetter,
2001; Herrmann, 2003). G4 and G5 are important for determining the guanine base-binding
specificity of G domain (Schmidt et al., 1996; Wittinghofer and Vetter, 2011) (Fig. 4).
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Figure 3. RAS superfamily, family members and subgroups [adopted from (Kennedy et al., 2005)]. RAS
superfamily consist of seven family (first row), RAS, RAB, RAN, ARF, RAG, RAD and RHO. Each family is
subdivided in different subgroups, here we only depicted RAS and RHO dependent subgroups; RAS
subgroups, p21 RAS, ERAS, RHEB, RAP, RRAS and RAL. RHO subgroups, RHO, RAC, CDC42, RHOH, RND
and RHOD. Two last rows highlight the members of each RAS subgroups in the same colors as used for
the subgoups (see the text for further information).

Lipid modifications and membrane targeting— Association of RAS proteins with cellular
membranes are mediated through posttranslational (PTM) modification in their very C-
terminal end, termed hypervariable region (HVR) (Figs. 2 and 4). The plasma membrane
localization of RAS proteins is essential for their functionality where they physically can
interact with their regulators and effector proteins (Willumsen et al., 1984; Ahearn et al.,
2011; Schmick et al., 2014). They undergo two lipid modifications; I) Prenylation, the RAS and
RHO family members, mainly terminated with CAAX sequence (C is cysteine, A is any aliphatic
amino acid, and X is any amino acid) (Seabra et al., 1991) (Fig. 4). CAAX motif serves as
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substrate for two prenyl transferases, depending on the X amino acid; If CAAX terminates with
Leu at the X position, which is more prominent in RHO family, polyisoprene lipid (20 carbon
length) will be bond irreversibly to the Cys residues of CAAX motif through geranylgeranyl
transferase type | (GGTase I) enzyme. On the other hand, if X residue is not Leu (in almost all
RASs) another lipid anchor with 15-carbon farnesyl will be added to the Cys by farnesyl
transferase (FTase) activity (Reid et al., 2004). Although the prenylation modification is needed
for plasma membrane localization but it is not sufficient, and second signal is required for
plasma membrane targeting; Il) Palmitoylation modification occurs at the one or two Cys
residues upstream of CAAX motif in HVR. The fatty acid chain (mainly 14-carbon myristoyl or
16-carbon palmitoyl) attachment occurs through the function of palmitoyl acyl transferase
(PAT) enzyme (Buss and Sefton, 1986; Hancock et al., 1989; Resh, 1999).
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Figure 4. Overall sequence comparison of ERAS protein with classical RAS proteins. ERAS contains an
extended N-terminus (aa 1-38), missing in H, K, and NRAS, with a putative SH3-binging motif (PxxP). G1
to G5 boxes indicate the presence of five essential GDP/GTP binding (G) motifs. The P-loop (G1) of ERAS
contains a serine instead of a glycine (codon 12, HRAS numbering), a frequently mutated site within RAS
genes in human cancer (Fasano et al., 1984). Several residues in switch | (G2) and switch Il (G2) regions
that are responsible for effector recognition are different between ERAS and HRAS (bold letters). ERAS
contains, like HRAS, a CAAX motif and two cysteines at the C-terminal hypervariable region (HVR), which
are the sites for PTMs by farnesylation and palmitoylation, respectively.

Biochemical aspects and regulation—RAS proteins are inefficient GTP-hydrolyzing
enzymes. Such an intrinsic GTPase reaction requires stimulation through GTPase-activating
proteins (GAPs) by orders of magnitude (Scheffzek et al., 1997; Ahmadian et al., 1997a;
Ahmadian et al., 1997b) (Fig. 2). On the other hand, GDP dissociation is also a very slow
reaction that needs acceleration by guanine nucleotide exchange factors (GEFs) (Lenzen et al.,
1998; Buday and Downward, 2008). As mentioned before, RHO protein function requires
permanent posttranslational modification by isoprenyl groups. Therefore, RHO proteins
underlie a third control mechanism that is achieved by the function of guanine nucleotide
dissociation inhibitors (GDIs), which binds selectively to prenylated RHO proteins and control
their cycle between cytosol and membrane (Ismail et al., 2011; Zhang et al., 2014b) (chapter
V).

RAS family GTPases

Family members—The RAS sarcoma (RAS) proteins can be activated through the action of
GEF proteins and activated RASs (GTP-loaded) act as nodes in modulating intracellular
signaling pathways (Fig. 2). They control the wide range of cellular functions by integrating
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with distinct downstream effector proteins. Rojas and colleagues, reported 39 members of
human RAS family (http://www.cbbio.es/GTPases/), including HRAS, KRAS, NRAS, RAP1A/B,
RAP2A/B/C, RALA/B, RRAS subgroup (RRAS, TC21 and MRAS), RHEB, DiRAS (RIG), RASD
(AGS1/DEXRAS), RASL10, ERAS, NKiRAS, and RIT (Rojas and Valencia, 2014) (Fig. 3).

Functions—Best investigated RAS proteins are HRAS, NRAS and KRAS4B, share
overlapping functions, including cell proliferation, differentiation and apoptosis (Castellano
and Santos, 2011; Ichise et al., 2010; Omerovic et al., 2007; Potenza et al., 2005). However,
different RAS isoforms exhibit a particular pattern of expression, different regulators and
specific microdomains or subcellular localization, indicating their functional specificity as well
as redundant roles (Leon et al., 1987; Johnson et al., 1997; Potenza et al., 2005; Omerovic et
al., 2007; Nakamura et al., 2008; Ichise et al., 2010; Castellano and Santos, 2011; Lau and
Haigis, 2009). The individual roles of other members of the RAS family, such as RRAS, TC21,
MRAS, RAP2A, RASD, or the embryonic stem cell-expressed RAS (ERAS) have not been fully
described. In this part, we will have a brief description of these RAS family members, ERAS,
RRAS, MRAS and RAP2A.

ERAS novel members of RAS family

ERAS expression ranging from embryonic stem cells to tumors—The ERAS expression has
been reported to date in embryonic stem cells and some tumor cell lines but not in the normal
cells of the body. For the first time, Yamanaka and colleagues introduced ERAS in 2003 as a
novel member of RAS family, specifically expressed in undifferentiated mouse embryonic stem
cells to be critical for maintenance of growth and tumor-like properties in these cells
(Takahashi et al., 2003). Later, the ERAS expression was detected in different types of
colorectal carcinoma cells (HCT116, DLD1, LS174T and HT29), pancreatic carcinomas (RWP-1
and MIAPaCa-2), breast carcinoma (AMB-231) (Yasuda et al., 2007) and gastric cancer (e.g.,
GClY, NUGC-4 and MKN-45) cell lines (Kubota et al., 2010). Kaizaki and colleagues reported the
ERAS expression in 45% of gastric cancer tissues and found coloration between ERAS-negative
patients recognized with poorer diagnosis (Kaizaki et al., 2009). In addition, ERAS expression
was also found in various neuroblastoma cell lines that has been suggested to promote
transforming activity and resistance to chemotherapy (Aoyama et al., 2010).

Hallmarks of ERAS. ERAS harbors, despite a conserved G domain with all essential motifs
for a high-affinity binding of GTP, significant amino acid deviation as compared to other RAS
proteins (Fig. 4); 1) Its phosphate binding loop containing a serine (S50) instead of a glycine
that is critical for the GTP hydrolysis reaction (Scheffzek et al., 1997) and responsible for ERAS
makes it GAP insensitivity (Nakhaei-Rad et al., 2015). Substitution of G12 for any other amino
acids in RAS isoforms is frequently associated with tumor formation (Tidyman and Rauen,
2009; Bos, 1989); IlI) ERAS contains different amino acids in the effector binding sites in
comparison to other members of the RAS family; Ill) ERAS has a unique extended, evolutionally
conserved N-terminus (Nakhaei-Rad et al., 2015) (chapter Il).
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Sequence deviations in effector binding regions of ERAS—HRAS, NRAS and KRAS4B share
an identical effector binding regions suggesting that they may share the same downstream
effectors. In contrast, ERAS revealed significant differences in the effector binding regions. This
implicates that it may utilize other effectors as compared to known HRAS effectors and may
consequently have different cellular functions. However, the downstream effectors selective
for ERAS are not fully identified yet. A known HRAS effector is phosphoinositide 3-kinase (PI13K)
that has also been reported to be activated by ERAS (Fig. 2) (Takahashi et al., 2003; Takahashi
et al., 2005; Yu et al., 2014) (chapter Il and Ill).

N-terminal extension—ERAS is distinguished from the classical RAS isoforms due to its
unique extended N-terminus. This may provide a putative interaction site for a new group of
proteins, which may determine its subcellular localization. For instance, it contains a PxxP
motif that may serve as a putative binding motif for interaction with SH3-containing proteins
(Fig. 4) (Nakhaei-Rad et al., 2015) (chapter ).

RRAS subfamily of RAS proteins

RRAS shares particular cellular functions with other RASs, such as cell proliferation and
transformation (Shang et al., 2011; Yu and Feig, 2002; Flex et al., 2014). However, RRAS has
been implicated in specific biological processes, i.e., integrin-dependent cell adhesion, cell
spreading, migration and membrane ruffling (Kinbara et al., 2003; Ada-Nguema et al., 2006;
Goldfinger, 2006; Holly et al., 2005). In comparison with HRAS, RRAS can interact with a set of
HRAS effectors like, PI3Ka/y, CRAF, RASSF5 and PLCe (Marte et al., 1997; Rey et al., 1994;
Vavvas et al., 1998; Ada-Nguema et al., 2006), however, it has its own specific effector, RLIP76
(RALBP1) that has mediated cell-adhesion dependent RAC activation (Goldfinger, 2006).
Interestingly, in endothelial cells the RRAS-RIN2-RABS5 axis stimulates endocytosis of B, integrin
in a RAC1-dependent manner (Sandri et al., 2012). Moreover, sequence analysis revealed
similar to ERAS, RRAS harbors extended N-terminus (26 amino acid length), which modulates
RRAS specific functions but revealed no impact in cellular localization (Holly et al., 2005).
Therefore, RRAS carries out its specific function in the cells through its unique N-terminus and
individual effector protein.

Muscle RAS oncogene homolog (MRAS) is a RRAS-related protein that involved in different
cellular processes such as cell growth and differentiation (Kimmelman et al., 1997; Watanabe-
Takano et al., 2010). Bone morphogenetic protein-2 (BMP-2) treatment on skeletal muscle
myoblasts during their transdifferentiation towards osteoblasts, results in an increased
expression of MRAS at mRNA and protein levels as well as its activation (Watanabe-Takano et
al., 2010). Among the different members of RAS family, only MRAS can interact with SHOC2 in
ternary complex with protein phosphatase 1 (PP1), which dephosphorylates autoinhibited
CRAF and activate the CRAF-MEK-ERK axis (Rodriguez-Viciana et al., 2006). Similar to RRAS,
MRAS can stimulate the cell migration when it is overexpressed (Young et al., 2013).
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RAP subfamily of RAS proteins

In mammalian RAP subfamily is composed of five isoforms, RAP1 (A, B) and RAP2 (A, B
and C) with 60% sequence homology. The switch I/Il regions, where interact with effector
proteins, have amino acid deviations between isoform RAP1 and RAP2 which specify their
signaling towards different pathways (Gloerich and Bos, 2011). They are involved in different
cellular processes and play pivotal roles in cell motility, endothelial barrier functions, polarity
and cell adhesion (Torti and Lapetina, 1994; Paganini et al., 2006; Frische and Zwartkruis,
2010; Pannekoek et al., 2013). RAP2A, is reported to be involved in the polarity of intestine
cells. Apical localization of PDZ-GEF activates RAP2A and GTP-bound RAP2A interacts with its
effector, TNIK, and switchs on the TNIK-MST4-Ezrin axis that consequently results in actin
remodeling (Gloerich et al., 2012). Recently, it has been shown RAP2A as a novel target gene
of p53 and as a regulator of cancer cell migration (Wu et al., 2015). Moreover, expression of
RAP2A in cancer cells results in secretion of two matrix metalloproteinases (MMP2 and 9) and
AKT phosphorylation at Ser473 that promotes tumor invasion (Wu et al., 2015).

Effectors and signaling of RAS proteins

The RAS effectors carry either RAS biding (RBD) or RAS association (RA) domain and they
are interacting with GTP-bound forms of RAS proteins in switch | and switch Il regions. Through
the interaction with effector proteins, RAS proteins are able to exert their biological functions,
and depending on which target effectors get activated the cellular outcomes various (Fig. 2)
(Wittinghofer and Vetter, 2011; Karnoub and Weinberg, 2008). Herein, we will have an
overview about a set of well-annotated RAS effectors and their signaling cascades; RAF kinase,
RALGDS, PLCe, RASSFs and PI3K.

Mitogen —activated protein kinase signaling

RAF kinase (MAPKKK)—RAF family members are serine/threonine protein kinase with
three RAF isoforms in mammalian, CRAF (RAF1), ARAF and BRAF. All carry an N-terminal RBD
and C-terminal serine/threonine kinase domain. It is proposed that binding of RAS-GTP to N-
terminal RBD of RAF kinase, relieves the auto-inhibitory effects of their N-terminus and brings
the RAF on the plasma membrane, however, still the underling mechanism that RAS can
activate RAF is not fully investigated (Lavoie and Therrien, 2015). Three RAF isoforms act as an
RAS effector, are direct activator of MEK1/2 and consequently ERK1/2. However, BRAF was
introduced as the best activator of MEK1/2 and its mutations are association with several
human cancers (Karasarides et al., 2004; Cantwell-Dorris et al., 2011; Barras, 2015). On the
other hand, ARAF mutation is not reported in cancer and it is proposed that ARAF is not
strongly activated via RAS (Rodriguez-Viciana et al., 2004; Matallanas et al., 2011). RAF-
MEK1/2-ERK1/2 axis contributes in different cellular processes such as cell proliferation,
differentiation and apoptosis (Leicht et al., 2007). Knockout studies have revealed all RAF
isoforms are required for normal embryogenesis (Pritchard et al., 1996; Wojnowski et al.,
1997; Wojnowski et al., 1998).
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MAP/ERK kinase (MAPKK)—MEK1 and MEK2 are serine/threonine/tyrosine kinases that
phosphorylate position T202/Y204 ERK1 and T185/Y187 ERK2. RAF kinases phosphorylate
$218/S222 and S222/S226 MEK1/MEK2, respectively (Hayes and Der, 2014). Beside, RAF
kinase, two other serine/threonine kinases, COT (Tp12) and MOS also serve as upstream
activators of MEKs (Hagemann et al., 1999; Johannessen et al., 2010).

ERK kinase (MAPK)—ERK1/2 are the end kinases downstream of cascade flow which are
triggered from RAS-GTP bound and are substrate of MEK1/2. There are growing number of
evidences, indicating the distinct biological functions of ERK1 and ERK2 (Yoon and Seger, 2006;
Shin et al., 2010; Shin et al., 2015; Woodson and Kedes, 2012; Krens et al., 2008). Unlike, RAF
kinase and MEK which have a highly imitated number of substrates, collectively, ERK1/2
possess around 200 cytoplasmic or nuclear targets (Yoon and Seger, 2006).

RAL guanine nucleotide dissociation stimulator

RAS proteins interact with a wide range of proteins, and beside activation of their specific
signaling cascades, are able to regulate the parallel pathways as well. A cross-talking between
RAS family members can occur by proteins which carry both RBD/RA domain and GEF catalytic
domain (CDC25 homology domain), therefore first as RAS effector bind to RAS and then serve
as GEF to activated another RAS family members (Quilliam et al., 2002; Ferro and Trabalzini,
2010). For instance, RALGDS family consists of RALGDS, RGL (RALGDS like), RGL2 (RIF) and
RGL3, they harbor RA domain that interact with GTP-bound RAS (e.g., HRAS, KRAS, RAP1,
RRAS, MRAS and RIT) and after activation serve as a GEF to activate RAL subfamily of small-
GTPases (Spaargaren and Bischoff, 1994; Wolthuis et al., 1996; Peterson et al., 1996; Shao and
Andres, 2000; Nakhaei-Rad et al., 2015). It is reported that RAS interaction with RALGDS does
not influence its GEF activity and translocates it close to membrane where can bind to its
substrate, RAL (Wolthuis et al., 1997; Matsubara et al., 1999). Activated RAL (GTP-loaded)
emits its cellular functions through interaction with its specific effectors; RALA binding protein
1 (RALBP1/RLIP76), ZO-1 associated nucleic acid-binding protein (ZONAB), exocyst complex
subunits (SEC5/EX084) and phospholipase D1 (Bodemann and White, 2014). For instance,
RALBP1 plays roles in cellular processes like, mitochondrial fission, clatherin-mediated
endocytosis, and cell cycle progression (Jullien-Flores et al., 2000; Kashatus et al., 2011; Tazat
et al., 2013).

Phospholipase C enzymes

PLC enzymes, are composed of six families, PLCB ,y ,0 , €, { and n (Katan, 2005). These
enzymes hydrolyze the phosphatidylinositol 4,5-bisphosphate (PIP,) and generate two second
messengers that stimulate different intracellular responses: inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG) (Bunney and Katan, 2011). Among PLC families, PLCe is unique in
regulation and function because of its prominent sequence fingerprints; 1) N-terminal CDC25
domain, which serves as a GEF for RAP1 (Bunney and Katan, 2006); II) Two C-terminal RA
domains (RA1/RA2) that only RA2 interacts with small-GTPase of RAS family. Therefore, PLCg
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acts as both effector and regulator of RAS family, similar to RALGDS (Kelley et al., 2004;
Bunney et al., 2006); Ill) It has an insertion of 65 aa within Y part of its catalytic domain, where
RHO proteins can bind and regulate PLCe activity (Wing et al., 2003).

RAS-association domain family

RAS-association domain family (RASSF) proteins compose ten members: RASSF1A/B, 2, 3,
4, 5A/B/C (NORE1), 6A/B, 7, 8, 9 and 10 which share RA domain, however, two additional
domains, are not universal; 'C1 domain (RASSF1 and 5A/B) and SARAH domain (Salvador-
RASSF-HIPPO) (RASSF1-6). Two well-characterized isoforms of RASSF1/5A proteins are
recognized as unique RAS effectors which in contrast to other RAS effectors, are tumor
suppressor and emerge an pro-apoptotic effects and their loss of function mutations are
associated with tumors (Vavvas et al., 1998; van der Weyden and Adams, 2007). MST
(Drosophila orthologues of HIPPO) is a STE-20 family protein kinase, which interacts, and forms
a heterodimer with RASSF1/5A and WW45 (salvador) through their SARAH domain (Scheel and
Hofmann, 2003). This complex phosphorylates and activates LATS1/2, which in turn promotes
phosphorylation and sequestration and proteasomal degradation of YAP in cytoplasm (Ramos
and Camargo, 2012a; Oka et al., 2008; Zhao et al., 2007; Pfeifer et al., 2010; Hwang et al.,
2014; Rawat and Chernoff, 2015). YAP is a transcription co-activator that promotes
transcription of the genes, like CTGF and NOTCHZ2, which are involved in cell development and
differentiation (Camargo et al., 2007; Avruch et al., 2010; Lu et al.,, 2010; Yimlamai et al.,
2014). It has been shown that HIPPO-YAP pathway plays distinct roles in differentiated
parenchymal cells and liver progenitor cells, respectively. Where MST1/2 activity plays a role in
maintenance of differentiated state of parenchymal cells and YAP activity dedifferentiates the
cells and induces cell proliferation (Yimlamai et al., 2014). A switch between activities of two
RAS effectors with opposite functions, CRAF and RASSF, which stimulate cell proliferation and
apoptosis, can determine the biological outcomes of RAS signaling in different circumstances
(Romano et al., 2014).

Phosphatidylinositol 3-kinase signaling

PI3K isoforms—PI3Ks are the intracellular lipid kinases that phosphorylate
phosphatidylinositol and phosphoinositides. Based on sequence homology and lipid substrates
they fall into three groups: class I, Il and Ill. Upstream regulators of PI3K, mainly consist,
receptor tyrosine kinases, RAS proteins and G protein-coupled receptors (Vanhaesebroeck et
al., 2010). In mammalian, class | PI3K contains four isoforms that are heterodimer proteins
compose of two subunits: catalytic and regulatory subunit. According to the regulatory
subunit, class | PI3K further subdivided in two subgroups; class IA p110a, p110B and p1106&
accompany with p85-like regulatory subunit (p85a/B, p50a and p55a/y). Class IB has single
member pl110y and makes a heterodimer with pl101 and p84 regulatory subunits
(Vanhaesebroeck et al., 2010; Vadas et al., 2011; Jean and Kiger, 2014). p110a and B are

! putative diacylglycerol binding site
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reported to be ubiquitously expressed but the presence of p110y and 6 is restricted to specific
cell types or tissues, mainly hematopoietic cells (Vanhaesebroeck et al., 2005; Kok et al., 2009;
Fritsch et al., 2013; Fritsch and Downward, 2013). Class | PI3K phosphorylates 3-hydroxyle of
the phosphoinositide (4,5) bisphosphate (PIP,) and generates the second messenger of
phosphoinositide (3,4,5) trisphosphate (PIP3) that recruits the wide range of protein effectors
through their pleckstrin homology (PH) domain to the membrane. Target proteins, could be
kinases (e.g. AKT and PDK1), adaptor proteins, GEFs or GAPs that regulate different cellular
processes (Vanhaesebroeck et al., 2001).

AKT serine/threonine kinase—AKT or protein kinase B (PKB) belongs to AGC subfamily of
protein kinases. AKT is one of the key proteins downstream of PI3K-PIP3 and involves in wide
range of the cellular processes, such as cell proliferation, metabolism, growth, autophagy
inhibition, and survival (Pearce et al., 2010; Hers et al., 2011). AKT functions depend on its
phosphorylation at two critical positions, T308 and S473 (Andjelkovic et al., 1997). Upon
extracellular stimuli and the tyrosine receptor activation, class | PI3K generates the PIP3 that
engages both PDK1 and AKT through PH domain to the plasma membrane. PDK1
phosphorylates the AKT at position T308 (here after p-AKT308) that is located on the catalytic
domain of AKT (Alessi et al., 1997). This phosphorylation triggers the inhibitory
phosphorylation of tuberous sclerosis 1/2 (TSC1/2) that is a well-known GAP for RHEB protein
of RAS family. Phosphorylation of TSC1/2 suppresses its inhibitory effect on mammalian target
of rapamycin (mTOR) complex 1 (Fig. 5) (Inoki et al., 2002; Inoki et al., 2003). Second key
phosphorylation site positions on the hydrophobic motifs of AKT S473 (here after p-AKT*”)
and occurs through the second mTOR complex (mTORC2) (see below for further information).

Organization of mammalian target of rapamycin (mTOR) complex 1 and 2—mTOR kinase
is the catalytic domain of two multiprotein complexes; mTORC1 and mTORC2 (Zoncu et al.,
2010). These complexes are discriminated mainly based on the specific accessory proteins, in
the case of mTORC1 it is called regulatory-associated protein of mTOR (RAPTOR) (Hara et al.,
2002) and for mTORC2 it is called rapamycin-insensitive companion of mTOR (RICTOR)
(Sarbassov et al., 2004) (Fig 5). In addition, they harbor unique regulatory subunits, 40 kDa
Pro-rich AKT substrate (PRAS40; mTORC1), mammalian stress-activated MAP kinase-
interacting protein 1 (mSIN1/MAPKAP1; mTORC2) and protein observed with RICTOR
(PROTOR; mTORC2) (Sancak et al., 2007; Pearce et al., 2007; Frias et al., 2006; Yang et al.,
2006). However, mTORC complexes share some negative and positive regulatory proteins, DEP
domain-containing mTOR-interacting protein (DEPTOR) and mammalian lethal with SEC13
protein 8 (mLST8), respectively (Peterson et al., 2009; Loewith et al., 2002).

Upstream regulators and substrates of the mTOR complexes—Signal integration towards
mMTORC1 occurs through TSC1/2 and at the lysosome level via RAG GTPases (Huang and
Manning, 2008; Sancak et al., 2008). TSC1/2 is regulated negatively by AKT (phosphorylated at
position T308) and ERK1/2 (Alessi et al., 1997; Ma et al., 2005), whereas GSK3[, Hypoxia and
AMPK are the positive regulators (Castilho et al., 2009; Inoki et al., 2006; DeYoung et al.,
2008). AKT activity (p-T308) results in inhibitory phosphorylation of TSC1/2 which is the RHEB-

16



Chapter I

GAP (Tee et al., 2003) (Fig. 5). In physiological conditions, RHEB and RAG GTPases reside on the
lysosome/endosome surface. Upon the growth factor stimuli, RHEB switches to active form
(GTP-loaded) and interacts with mTORC1 which activates catalytic function of mTOR and its
substrate interactions through RAPTOR (Inoki et al., 2003; Avruch et al., 2009; Zoncu et al.,
2010). One essential requirement of RHEB-mTORC1 interaction is the endomembrane
translocation of the mMTORC1. Amino acid stimulation of RAG GTPases results in
endomembrane localization of mTORC1 (Sancak et al., 2008). Therefore, both growth factors
and amino acids inputs are needed for mTORC1 activity (Zoncu et al., 2010). mTORC1
phosphorylates wide range of substrates and regulates the ribosome biogenesis, mRNA
translation, lipid synthesis and autophagy (Fig. 5) (Kim and Chen, 2004; Porstmann et al., 2008;
Yu et al., 2010; ladevaia et al., 2012; Gentilella et al., 2015). S6 kinase 1 (S6K1) is the most
prominent kinase downstream of mTORC1 and phosphorylates mTOR itself at position 52448,
ribosomal protein S6, eukaryotic elongation factor 2 kinase (eEF2) kinase and elF4B (Hara et
al., 1997; Wang et al., 2001; Ma et al., 2008; Ma and Blenis, 2009). The upstream regulators of
the mTORC2 are poorly understood and growth factor signaling and its association with
ribosome are indicated to control mTORC2 signaling activity (Zinzalla et al., 2011). Recently, a
possible cross-talk between mTORC1 and mTORC2 is reported that S6K phosphorylates a
regulatory subunit of mMTORC2 is called mSIN1 at two positions which is critical for the integrity
and substrate recruitment (e.g. AKT) of the mTORC2 (Fig. 5) (Liu et al., 2013b; Xie and Proud,
2013; Liu et al., 2014b). Furthermore, upon stimulation mTORC1 exerts a negative feedback
regulatory through phosphorylation of the insulin receptor substrate-1 (IRS-1) and adaptor
protein Grb10 which suppress the growth factor induced signaling (Um et al., 2004; Hsu et al.,
2011). mTORC2 phosphorylates AGC kinases, AKT (p-AKT473), serum and
glucocorticoid-regulated kinase (SGK) and protein kinase C (PKC) (Sarbassov, 2005; Garcia-
Martinez and Alessi, 2008; Ikenoue et al., 2008; Su and Jacinto, 2011). AKT phosphorylation at
the hydrophobic motifs (S473) results in full activation of AKT for special substrates, such as
FOXO01 and 3. Inhibitory phosphorylation of FOX01/3 by AKT sequestrates it in the cytoplasm
and impairs its translocation to the nucleus where it binds to gene promoters and induces
apoptosis, therefore favorites the cell survival (Wang et al., 2014). Collectively, mTORC2
regulates cell cycle progression, survival, anabolism and actin cytoskeleton organization
(Jacinto et al., 2004).

17



Chapter I

Growth factors Wnt ligand
PI3K RAS Frizzled
I ¥ ¥
RAF Dishevelled
PIP3 l
| MEK1/2
PDK1 ! o
v = _J'Tana 1 /
e :-:' mTORCE 4TS ? 4 TR
2 o | — @ g g TSC2T RHEB
il \\ RHEB-GAP
| Lysosome
mLETE. mTOR PEFTOR mTOREY poasss
E: . Transdocase mTORCH A GTP
a i o lysodoime's RAG
l‘ l‘ H misTE i TOR berros T
S -F/ l‘ - J l \ o Amino acids
ERAF  FbwT ¥ / . o - 4
l LTI SEMT®  4E-BPY o ATGID B £
disasaembly ULkt ATGAGN ap B T Fail
NICD1 pm:\mes il L}L':yﬂle _‘Im:ms . = Aciivahon
.- APy . — Inhibition
Call Eere!lT;-mpgm!:sm mRNA transtation 4 i Inhibition = Aclivating phosphony|abon
AnabolEsm L Autophagy Lipid synihesis = Inhibilory phosphondation
Call survival Profifaraton Change in bound nuclaotde

Actin cytoskeletal organization

Figure 5. Schematic view of signaling pathway of the mammalian target of rapamycin (mTOR)
complexes. Complexes composition, stimulation, regulation, substrates and cellular outcomes are
illustrated. DEPTOR, DEP domain-containing mTOR-interacting protein; ERK, extracellular regulated
kinase; Fow7, F-box and WD repeat domain containing 7; FIP200, FAK family kinase-interacting protein
of 200 kDa; 4E-BP1, eukaryotic translation initiation factor 4E binding protein 1; FOXO1, forkhead
transcription factor; IRS1, insulin receptor substrate 1; GAP, GTPase activating protein; GSK3B, glycogen
synthase kinase 3 beta; MEK, MAP/ERK kinase; mLST8, mammalian lethal with SEC13 protein 8; mSIN1,
mammalian stress-activated MAP kinase-interacting protein 1; mTORC, mammalian target of rapamycin;
NICD1, Notch intracellular domain; PDK1, 3-phosphoinositide-dependent protein kinase; PI3K,
phosphoinositide 3-kinase; PKC, protein kinase C; PPARy, peroxisome proliferator-activated receptor y;
PRAS40, 40 kDa Pro-rich AKT substrate; PROTOR, protein observed with RICTOR; RAPTOR, regulatory-
associated protein of mTOR; RAS, rat sarcoma; RHEB, RAS homologue enriched in brain; RICTOR,
mTORC2 rapamycin-insensitive companion of mTOR; SGK, serum and glucocorticoid-regulated kinase;
SREBP, sterol regulatory element-binding proteins; TSC, tuberous sclerosis; ULK, Unc-51 like autophagy
activating kinase 1.

In the previous section, we had an overall view about the members, functions, target
proteins and signaling activities of the RAS family of the small GTPases. In following section,
we will consider second largest family of small GTPases is named RHO (RAS homologous) and
the cross-talking between RAS and RHO proteins to orchestrate different cellular responses.
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RHO family GTPases

RHO Family members, functions and regulation— RHO family GTPases have key functions
in cytoskeletal organization, migration, adhesion, survival and cell cycle progression (Heasman
and Ridley, 2008b). To date, 20 members of the RHO family have been reported, which further
are subdivided into six subfamilies based on their sequence homology: I) RHO (RHOA, RHOB,
RHOC); 11) RAC (RAC1, RAC1b, RAC2, RAC3, RHOG); Ill) CDC42 (CDC42, G25K, TC10, TCL,
RHOU/Wrch1, RHOV/Chp); IV) RHOD (RHOD, Rif); V) RND (RND1, RND, RND3); VI) RHOH/TTF
(Fig. 3). The GDP/GTP exchange and the GTP hydrolysis of typical RHO proteins (Jaiswal et al.,
2013b), are regulated by RHOGEF and RHOGAP proteins, respectively. However, in comparison
with RAS family, RHO proteins underlie a third control mechanism, which is achieved by the
function of guanine nucleotide dissociation inhibitors (GDIs) and bind selectively to prenylated
RHO proteins and control their cycle between cytosol and membrane (see chapter V).
Activation of RHO proteins results in their association with effector molecules that
subsequently activate a wide variety of downstream signaling cascades (Bishop and Hall 2000;
Burridge and Wennerberg 2004).

RHO subfamily

In mammalian, there are three RHO isoforms, RHOA, RHOB and RHOC with well-known
function in stress fiber formation (Wheeler and Ridley, 2004). RHOA plays roles in cell
migration, cytokinesis and cell cycle progression (Vega and Ridley, 2008). On the other hand,
RHOB introduced as a tumor suppressor, which its down-regulation was reported in a set of
tumors (Huang and Prendergast, 2006). RHOB regulates the trafficking of the cellular receptors
that limits the growth factors signaling (Huang et al., 2007), and by internalization of E-
cadherin, and integrin, modulates the cell-cell adhesion and migration speed (Wheeler and
Ridley, 2007; Vega et al., 2015). RHOC isoform was reported to promote tumor metastasis and
invasion (Pille et al., 2005). Similar to other GTPases, RHO subfamily emerges its cellular
functions by binding to a set of scaffolding: Rhotekin, Rhophilin, mammalian diaphanous
(mDia) and PLC or kinase effector proteins: RHO-associated coiled-coil kinases I/1l (ROCKI/lI),
protein kinase C-related kinase (PKR) and Citron (Reid et al., 1996; Thumkeo et al., 2013; Amin
et al., 2013).

CDC42 GTPase

CDC42 functions implicate in cellular control of cytoskeleton dynamic, cellular polarity,
migration, adhesion, intracellular trafficking and proliferation (Aznar and Lacal, 2001; Cerione,
2004). CDC42 is famous for its contribution in formation of cell protrusions is called filopodia.
Filopodia is the finger-shape structure that consists of parallel bundles of actin filaments and
acts as antenna to sense the cellular microenvironment and plays important roles in cell
migration and neuronal outgrowth (Gupton and Gertler, 2007; Mattila and Lappalainen, 2008).
Activated CDC42 targets a set of effectors: p21l-activated kinase (PAK), insulin receptor
substrate p53 (IRSp53), mammalian diaphanous (mDia), Wiskott-Aldrich syndrome protein
(WASP) (Hemsath et al., 2005) and IQ motif-containing GTPase-activating protein (IQGAP)
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(Cerione, 2004; Sinha and Yang, 2008). CDC42 interaction with WASP and IRSp53 activates the
actin related protein 2/3 (ARP2/3) that mediates the filopodia formation (Hufner et al., 2002;
Lim et al., 2008). mDia was known as a third effector of CDC42 which contributes in filopodia
formation (Peng et al, 2003). Upon CDC42 binding to PAK1 and LIM kinase (LIMK)
phosphorylation, LIMK phosphorylates and inhibits actin depolymerization through cofilin
(Edwards et al., 1999).

RAC subfamily

Based on the sequence homology, RAC subgroup of RHO GTPases consists of five
members: RAC1, RAC1b, RAC2, RAC3, RHOG. RAC proteins involve on lamellipodium formation
and membrane rufflling, which are required for the maintenance of cell morphology and
migration (Kurokawa et al., 2004). RAC isoforms exhibit the individual pattern of gene
expression and they have non-overlapping functions (Didsbury et al., 1989; Shirsat et al., 1990;
Bolis et al., 2003). RAC1b is alternative splice variant of RAC1 with 19 amino acid insertion near
the switch Il region that renders RAClb in active GTP-bound form with impaired GTP
hydrolysis (Fiegen et al., 2004). RAC shares some effectors with CDC42 like, mDia2 and PAK,
however has its specific effectors, such as WASP-family verprolin-homologous protein (WAVE),
specifically RAC1-associated protein-1 (SRA1) and p67PHOX (Kobayashi et al., 1998; Koronakis
et al., 2011; Diebold et al., 2004). Upon RAC1 activation and binding to WAVE, mDia and PAK,
actin polymerization and turn over will be regulated by RAC1 and results in lamellipodia
formation (Jaffe and Hall, 2005; Takenawa and Suetsugu, 2007).

Signaling cross-talk between RHO and RAS GTPases

GTPase-activating proteins (GAPs) link the RAS and RHO signaling—The GAP proteins
were identified to interconnect the RAS and RHO signaling, which is known to be required for
cell transformation by oncogenic RAS and, cell cycle progression and proliferation by RHO
proteins (Khosravi-Far et al., 1998; Coleman et al., 2004). Emerging evidence suggests that the
GAPs, in particular p120RASGAP and the RHO-specific p190ARHOGAP, p200RHOGAP and
deleted in liver cancer 1 (DLC1), act as a linker to coordinate the RAS and RHO signaling
pathways (Shang et al., 2007; Yang et al., 2009; Asnaghi et al., 2010). Frequent loss of DLC1
gene expression was first described in liver (Yuan et al.,, 1998). DLCIRHOGAP function is
required for the maintenance of cell morphology and the coordination of cell migration (Kim et
al., 2008). p120 contains multiple domains with different functions (Pamonsinlapatham et al.,
2009). While the C-terminus of p120 with the catalytic GAP activity is responsible for RAS
inactivation (Ahmadian et al., 1997a), its N-terminal Src homology 2 and 3 (SH2 and SH3)
domains have been suggested to possess effector function (Chan and Chen, 2012). p120
functionally modulates RHO signaling by directly binding to two RHO-specific GAPs, p190 and
DLC1 (Yang et al., 2009; Asnaghi et al., 2010). The association of p120 with the tyrosine
phosphorylated p190 via its SH2 domain promotes RHO inactivation (Hu and Settleman, 1997;
Herbrand and Ahmadian, 2006). Thus, p120 positively regulates the RHOGAP function of p190.
Another mechanism, which connects the RAS and RHO pathways and regulates the actin
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cytoskeleton, is dependent on p120 SH3 domain function and controls RHO activation (Leblanc
et al., 1998). This mechanism was later revealed to involve DLC1 but not p190. The p120 SH3
domain (called p120SH3) binds to the RHOGAP domain of DLC1 (called DLC1GAP) and inhibits
the DLC1-dependent RHO inactivation (Yang et al., 2009). Therefore, p120 acts as a negative
regulator not only for RAS but also for the GAP activity of DLC1 (chapter V).

Scaffolding proteins cross-link the RAS/RHO signaling components—Scaffolding proteins
are multidomain proteins, which are able to interact with plethora of substrates and control
the spatial and temporal assembling of signaling partners. Thereby, through the tethering
mechanism, they organize the discrete components of signaling pathways in place and time,
(e.g., activators, enzymes and effectors) to increase their interaction efficiency (Scott and
Pawson, 2009; Good et al., 2011). IQGAP proteins emerge diverse cellular functions such as
cell migration, adhesion, cytoskeletal dynamic and cytokinesis (Noritake et al., 2005; White et
al., 2012). By acting as scaffold proteins, IQGAPs organize the signaling partner into close
proximity to enable their interaction/activation and in some cases act as a bridge to connect
distinct signaling pathways (Brown and Sacks, 2006). IQGAP family composes of three
isoforms, IQGAP1, 2 and 3, which are differentially expressed in distinct tissues. In addition to
share a set of binding partners, each isoform possesses its specific binding partners and
therefore contributes to different cellular processes (Weissbach et al., 1994; Brill et al., 1996;
Wang et al., 2007). For instance, IQGAP1 was recognized as an oncogene where IQGAP2 is a
tumor suppressor (White et al., 2009b; White et al., 2010b). IQGAP1 can interact with
different signaling components of MAPK pathway, RTKs, KRAS, BRAF/CRAF, MEK1/2 and
ERK1/2, and directs the information flow from the EGF to ERK1/2 phosphorylation (Roy et al.,
2004; Roy et al., 2005; Ren et al., 2007). In addition to scaffold the RAS signaling components,
IQGAP1 was identified to interact with RHO family GTPase, RAC1 and CDC42, and promotes
the cell migration (Mataraza et al.,, 2003a). Upon hyaluronan (HA) stimulation of CD44
receptor, IQGAP1 anchors the CDC42 and ERK2 to CD44 and F-actin that results in
phosphorylation of ERK2. Therefore, it bridges the MAPK pathways to cytoskeleton
organization machinery (Bourguignon et al., 2005) (chapter VI).

Disease models indicate the coordination of RAS and RHO mutations in tumor
progression—As we discussed earlier there are different levels of RAS and RHO cross-talking:
at the levels of GAP or scaffolding proteins. However, there are emerging lanes of evidences
that indicate the coexistence of RAS and RHO mutations in tumors. Mano and colleagues,
reported that the oncogenic mutation of RAC1"*? beside the NRAS®™ mutation drives the
growth of human sarcoma cell line, HT1080 (Kawazu et al., 2013). Juvenile myelomonocytic
leukemia (JMML) is a rare and early childhood severe myeloproliferative neoplasm that is
resulted from infiltration of overproduced myelomonocytic cells to organs, such as liver,
spleen and intestine. Pathological studies revealed that the JMML is initiated by germline or
somatic RAS-activating mutations (Chang et al., 2014). JMML is considered a unique example
of RAS-driven oncogenesis since it is thought to be initiated by mutations, usually described as
mutually exclusive, in RAS genes (NRAS, KRAS) or RAS-pathway regulators (PTPN11, NF1 or
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CBL) (Niemeyer, 2014). Genetic profiling of the JMML patient with NRAS mutation depicted
the second mutation which belongs to RHO GTPase (RAC2) (Caye et al., 2015). However, the
mechanisms that RAC2 mutation coordinates with NRAS transformation need further
investigation (chapter VII).
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Aims and objectives

Hepatic stellate cells (HSCs) play pivotal roles in liver development, immunoregulation,
homeostasis, regeneration, and pathology. In addition, they emit a remarkable plasticity in
their phenotype, expression profile and function. HSCs are able to develop to cells that
contribute in liver regeneration or in pathological situations promote scar formation and liver
fibrosis (see Figs. 1C, D and E). However, little is known about the intracellular signaling
networks, which orchestrate HSCs plasticity and their bilateral functions as positive and
negative regulators of liver damage responses. Therefore, it is noteworthy to reconsider the
impact of different signaling pathways on HSC fate decision and obtained information will lead
future studies to find pharmacological drugs that target HSC activation and shift them to
participate in liver regeneration. In this study, we set out to cover the activities and functions
of RAS dependent signaling pathways in both quiescent HSC (qHSC) and activated HSC (aHSC)
and generate a new model that will help to a better understanding of signaling networks of
HSC (Fig. 8). This will provide hope for the patients with liver problems to restore their liver
regeneration responses.

At the first, we tried to get an overview about which RAS isoforms are mostly influenced by
the HSC activation processes. Therefore, by the aim of isoform specific gPCR primers, we
sought for the expressional changes of different RAS family members and their signaling
compartments during the HSC activation. We found a novel member of RAS family, ERAS,
specifically expressed in gHSC not aHSC where other RAS isoforms did not show significant
changes or get up-regulated. The molecular properties, regulation and function of this new
RAS member is poorly understood. Therefore, we comprehensively investigated biochemical
and structural characteristics of exogenous ERAS to get an overview of the physiological
functions of ERAS (see chapter ).

Second, we aimed to detect and analyze ERAS protein in HSC. Therefore, we generated an
anti-rat ERAS antibody that specifically recognized ERAS not other RAS proteins. With this
study, we reported for the first time, the endogenous expression of ERAS in non-malignant and
normal cells of the body. Therefore, it was noteworthy to reinvestigate our obtained data from
overexpressed ERAS in endogenous system and find out the signaling networking of ERAS in
gHSC as well as monitor signaling activity of RAS proteins in aHSC (chapter ).

Activated HSCs are enabling to contract and migrate as a consequent of RHO signaling
activity. We extended and shared our knowledge about molecular properties and regulation of
RHO GTPases as a book chapter (chapter IV). Next, we aimed to find a possible cross-talk
between RHO and RAS GTPases in two distinct levels; 1) GTPase activation proteins of p120,
p190 and DLC1 (deleted in liver cancerl) (chapter V). ll) Scaffolding proteins such as IQGAP
isoforms (chapter VI). Through conducting these studies to cell based analysis in HSCs, we
revealed interesting aspect of scaffolding and cross-linking between RAS and RHO proteins. At
the end, we tried to find a link between RHO and RAS mutations in disease progression with
the aid of whole genomic sequencing of the juvenile myelomonocytic leukemia (JMML)
patients (chapter VII).
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The function of embryonic stem cell-expressed RAS (ERAS), a
unique RAS family member, correlates with its additional
motifs and its structural properties
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Background: E-RAS contains additional motifs and regions with unknown functions.

Results: Biochemical analysis reveals that effector selection of E-RAS significantly differs from H-RAS.

Conclusion: E-RAS selectivity and consequently cellular outcomes depend on its unique switch and interswitch regions.
Significance: E-RAS possesses specific sequence fingerprints and therefore no overlapping function with H-RAS.

E-RAS is a member of the RAS family specifically expressed in
embryonic stem cells, gastric tumors, and hepatic stellate cells.
Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS
has, in addition to striking and remarkable sequence deviations,
an extended 38-amino acid-long unique N-terminal region with
still unknown functions. We investigated the molecular mecha-
nism of E-RAS regulation and function with respect to its
sequence and structural features. We found that N-terminal
extension of E-RAS is important for E-RAS signaling activity.
E-RAS protein most remarkably revealed a different mode of
effector interaction as compared with H-RAS, which correlates
with deviations in the effector-binding site of E-RAS. Of all these
residues, tryptophan 79 (arginine 41 in H-RAS), in the inter-
switch region, modulates the effector selectivity of RAS proteins
from H-RAS to E-RAS features.

Small GTPases of the RAS family act as molecular switches
within the cell, cycling between a GTP-bound (active) and a
GDP-bound (inactive) state (1, 2). These molecules trigger
intracellular responses by sensing the extracellular signals
through their interacting receptors or intermediate proteins
and passing the signal to downstream targets. Therefore, they
play a key role in various cellular processes, including gene
expression, metabolism, cell cycle progression, proliferation,
survival, and differentiation. Somatic or germ line mutations in
genes related to members of the RAS family or their regulators
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are commonly associated with cancer progression or develop-
mental disorders (3-9).

The best investigated RAS proteins are H-, N-, and K-RAS4B,
which share overlapping functions, including cell proliferation,
differentiation, and apoptosis (10 -13). However, different RAS
isoforms exhibit a particular pattern of expression, different
regulators, and specific microdomains or subcellular localiza-
tion, indicating their functional specificity as well as redundant
roles (10-17). The individual roles of other members of the
RAS family, such as R-RAS, TC21, M-RAS, AGS-1, or the embry-
onic stem cell-expressed RAS (E-RAS), have not been fully
described. E-RAS was identified in 2003 as a new member of the
RAS family, which is specifically expressed in undifferentiated
mouse embryonic stem cells (18). In addition to stem cells, E-RAS
has been detected in the several adult cynomolgus tissues (19) and
in gastric cancer and neuroblastoma cell lines (20, 21).

Plasma membrane localization of the classical RAS isoforms
(H-, N-, and K-RAS4B) has been shown to be critical for their
functionality (22-24). The membrane association is achieved
by post-translational modifications (PTMs)” at the C terminus
of RAS proteins. H-RAS and N-RAS undergo two types of
PTMs, farnesylation at a cysteine residue in CAAX (where Cis
cysteine, A is any aliphatic amino acid, and X is any amino acid)
motifs and palmitoylation of one or two cysteine residues in the
hypervariable region (HVR) (23, 25-27). K-RAS4B lacks the
cysteine residues in its HVR; instead it has a basic sequence of
six lysines that maintains its strong association with the plasma
membrane (24, 28, 29).

RAS proteins are inefficient GTP-hydrolyzing enzymes.
Such an intrinsic GTPase reaction requires stimulation
through GTPase-activating proteins (GAPs) by orders of mag-
nitude (30 -32). However, GDP dissociation is also a very slow

?The abbreviations used are: PTM, post-translational modification; RBD, RAS-
binding domain; aa, amino acid; GEF, guanine nucleotide exchange factor;
PLC, phospholipase C; PDB, Protein Data Bank; MDCK, Madin-Darby canine
kidney cell; HVR, hypervariable region; PIP,, phosphoinositide 3,4,5-tris-
phosphate; RA, RAS association; GAP, GTPase-activating protein; EYFP,
enhanced YFP.
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reaction that needs acceleration by guanine nucleotide
exchange factors (GEFs) (33, 34). RAS proteins share a highly
conserved GTP-binding (G) domain with five essential motifs,
termed G1 to G5 (supplemental Fig. S1) (35, 36). G1 or the
P-loop ("°GXXXXGK(S/T)'"; H-RAS numbering) binds the -
and y-phosphates of GTP (37). Substitution of glycine 12 to any
other amino acid (except for proline) is most frequently found
in human cancers. These mutations render RAS protein GAP-
insensitive and consequently hyperactive (7, 38). G2 and G3,
also referred to as switch 1 and switch II, respectively, are
dynamic regions that sense the nucleotide state and provide the
regulator and effector-binding sites (1, 39). G4 and G5 are
important for determining the guanine base-binding specificity
of the G domain (40, 41). Sequence analysis revealed that E-RAS
contains a G domain with five fingerprint sequence motifs
almost identical to classical RAS proteins indicating that it is a
functional GTP-binding protein (supplemental Fig. S1). How-
ever, E-RAS contains a serine instead of glycine 12 (H-RAS
numbering), making it GAP-insensitive (18).

H-, N-, and K-RAS4B share an identical effector binding
regions (switch I and 1I; supplemental Fig. S1), suggesting that
they may share the same downstream effectors. In contrast,
E-RAS revealed significant differences in the effector binding
regions (supplemental Fig. S1). This implicates that it may uti-
lize other effectors as compared with known H-RAS effectors
and may consequently have different cellular functions. How-
ever, the downstream effectors selective for E-RAS are not fully
identified yet. A known H-RAS effector is phosphoinositide
3-kinase (PI3K) that has also been reported to be activated by
E-RAS (18, 27, 42).

In addition to effector binding regions, E-RAS is distin-
guished from the classical RAS isoforms due to its unique
extended N terminus (Fig. 1A and supplemental Fig. S1). This
may provide a putative interaction site for a new group of pro-
teins, which may determine its subcellular localization. For
instance, it contains a PXXP motif that may serve as a putative
binding motif for interaction with Src homology 3-containing
proteins. In this study, we comprehensively investigated human
E-RAS and its variants regarding their cellular localization and
functional and structural properties in direct comparison with
H-RAS wild-type and its G12V hyperactive variant. We found
that N-terminal extension of E-RAS is important for E-RAS
signaling activity. E-RAS protein most remarkably revealed dif-
ferent effector selectivity as compared with H-RAS, which is
influenced by deviations in the effector-binding site of E-RAS.
Data presented in this study implicate that in addition to switch
regions, the interswitch region of E-RAS also contributes to high
affinity binding to PI3Ka and low affinity to other RAS effectors,
including RASSF5/Norel, RAF1, Ral guanine nucleotide dissocia-
tion stimulator (RalGDS), and phospholipase Ce (PLCe).

Materials and Methods

Constructs—Human E-RAS ¢DNA was obtained from
pCMV6-AC-hsE-RAS (Origene). Human H-RAS was obtained
from ptacH-RAS (43). H-RASY#"12, [E-RA§Ser-226/5er-228
E-RAS*"7, and E-RASMa-31/Ala-32/Ala33 wwere generated by
PCR-based site-directed mutagenesis as described (32). The
E-RAS with the N-terminal deletion, lacking the first 38 amino
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acids (aa) (E-RAS*V), was designed using primers to amplify
E-RAS ¢DNA starting from aa 39 and ending with aa 233 (sup-
plemental Fig. S1). The same primers were used to generate
E-RASAN/Ser-226/5er-228 (halmitoylation-dead variant of E-RAS
lacking the N terminus) using E-RASS"226/5¢228 45 template.
To generate E-RAS constructs with mutations in their effector
binding regions, we used E-RAS WT ¢DNA as template. First,
E-RAS™ (H70Y/Q75E; Tyr-32 and Glu-37 in H-RAS),
E-RAS"™® 7% (W79R; Arg-41 in H-RAS), and E-RAS™" (A100E/
[101E/H102Y/R103S; Glu-62, Glu-63, Tyr-64, and Ser-65 in
H-RAS) were generated. These constructs were used to gener-
ate E_M‘S\‘?ivf/ﬂ rg-?“)' E_RAS\'H'J'/SII'J'JI E_MSH!?-?‘){SW”, and
E-RASSWAre 795wl vespectively, All cDNAs were amplified via
PCR and subcloned via BamHI/Xhol in pcDNA 3.1 vector with
an N-terminal FLAG tag or EcoRI/BamHI in pEYFP-C1.

Cell Culture and Transfection—MDCK 11 and COS-7 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal calf serum (FCS) and 50 units of
penicillin/streptomycin  (Gibco® Life Technologies, Inc.).
Transfection was performed by using TurboFect transfection
reagent, according to manufacturer’s protocol (Life Technolo-
gies, Inc.).

Immunostaining—Cells were fixed with 4% paraformalde-
hyde for 20 min at room temperature. After washing with PBS,
the cells were permeabilized with 0.25% Triton X-100/PBS for 5
min and washed again. For blocking, the cells were treated 1 h
with PBS containing 0.25% Triton X-100 and 3% bovine serum
albumin (BSA, Merck) at room temperature, then incubated
with primary antibodies for 1 h, then washed three times, fol-
lowed by incubation with secondary antibodies for 2 h at room
temperature. The coverslips were mounted using ProLong®
Gold antifade reagent contained DAPI dye (Life Technologies,
Inc.). Primary antibodies were rabbit anti-FLAG (1:700, catalog
no. F7425 Sigma) and mouse anti-Na " /K" -ATPase (1:100, cat-
alog no. A275 Sigma), and secondary antibodies Alexa 488-
conjugated goat anti-rabbit IgG (1:500, catalog no. A11008, Life
Technologies, Inc.) and Alexa 546-conjugated goat anti-mouse
IgG (1:500, catalog no. A11003, Life Technologies, Inc.). The
images were taken by using an LSM 510-Meta microscope
(Zeiss) at excitation wavelengths of 364, 488, and 546 nm.

Live Cell Imaging—MDCK II cells were seeded on Permanox
8-well chambered slides (Lab-Tek, Nunc). LSM 510-Meta
microscope (Zeiss) was equipped with X63 immersion objec-
tive, and fluorescent fusion proteins were excited using lasers
with 504 nm (YFP) wavelength. An environmental chamber
holds the temperature at 37 °C, and the cells were maintained in
imaging medium.

Pulldown Assay and Immunoblotting—The RAS-binding
domain (RBD) of RAF1 (aa 51-131), the RAS association (RA)
domain of RalGDS (aa 777—-872), the RA domain of PLCe (aa
2130-2240), the RBD of p110a (aa 127-314), the catalytic sub-
unit of PI3Kea, and the RA domain of RASSF5 (aa 200-358)
were inserted in pGEX-4T vector and expressed in Escherichia
coli to obtain GST-fused proteins. Bacterial lysates were used to
pulldown GTP-bound RAS proteins from total cell lysates. GST
pulldown and immunoblotting using rabbit anti-FLAG (1:5000,
catalog no. F7425 Sigma) and rat anti-a-tubulin (1:2000, SM
568, Acris) were carried out as described previously (44). In
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E-Ras= H-FRag=

E-Rpsissein

E-Ras*™

FIGURE 1. Human E-RAS is largely associated with plasma membrane and some regions of E-RAS mm:lu!ltlng its :lllullr]m:ahz.u'lmn A different E-RAS
variants used in this study, -n-:ll.ldlng MN-terminal truncated E-RAS™™ [aa 39-233), palmi tnylatlon delu:l-:nt E-RAS™" 455025 (3 1-233), N-terminal putative
PXXP motif mutant E-RAS™ 7 {aa 1-233), and an N-terminal triple arginine mot if variant E- FIM eI (g 1-233). Band C. confoc: 1> live images of
transiently transfected MDCK 1l cells with EYFP-tagged E-RAS™, H-RAS™, E-RAS™ ™ 1085228 Epasah E-RAS™"T, and E-RASMS MR8 confocal
imaging was performed using transiently transfected MDCK I ceils with E-RAS and H-RAS. FLAG-tagged E- RAS co- Iocallzed with Na* /K" -ATPase to the plasma
membrane, very similar to H-RAS, which was used as a control. Scale bar, 10 um.

E-Ras™ flag-E-Ras MNa'/ K" ATPasa

Na'i K ATRase

E-Ragirisassn Nag-H-Fas

parallel, the cell lysates were used to visualize phospho-
MEK1/2, phospho-ERK1/2, and phospho-AKT proteins states,
respectively, using antibodies against MEK1/2 (Cell Signal-
ing"-'“). ERK1/2 (Cell Signaiing"-’“}, AKT (Cell Sigilalillg“l},
phospho-MEK1/2 (Ser-217/5221, Cell Signaling"™'), phospho-
ERK1/2 (Thr-202/Thr-204, Cell Signaling'r'\'}, and phospho-
AKT (Ser-473 and Thr-308, Cell Signaling) in immunoblotting.
All antibodies were diluted in 5% nonfat milk (Carl Roth
GmbH).

Structural Methods—The structures of H-RAS were used in
our study because no E-RAS structure was available to date.
The G domains of H-RAS and E-RAS share 48% identity and
were originally described to be structurally very similar, if not
identical (18). The interactions with potential binding partners
were analyzed on the basis of the structures of H-RAS in com-
plexes with pI120RASGAP (PDB code 1WQ1) (30), the RASGEF
SOS1 (PDB codes INVV (45) and 4NY1), and the downstream
effectors RAF1-RBD (PDB codes 1C1Y and 3KUD) (46, 47), PI3Ky
(PDB code 1HES) (48), BYR2-RBD (PDB code 1K8R) (49), RalGDS
(PDB code 1LFD) (50), PLC1 (PDB code 2C5L) (51), Grb14 (PDB
code 4K81) (52), and RASSF5 (PDB code 3DDCS) (53).

Results

N Terminus Is an Important Factor for E-RAS Function—The
cellular localizations of FLAG-tagged and EYFP-tagged wild-
type E-RAS (E-RAS™T) were investigated in direct comparison
with H-RAS™T in MDCK II cells. Confocal imaging revealed
that E-RAS, very similar to H-RAS, is mainly associated with the
plasma membrane (Fig. 18) as it is co-localized with the basolateral
membrane marker of sodium/potassium-ATPase (Fig. 1D). This
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result clearly suggests that E-RAS undergoes post-translational
modifications, e,g. farnesylation and palmitoylation, at the very
C-terminal cysteines (supplemental Fig. S1). Accordingly, a palmi-
toylation-deficient E-RAS™* #2228 yarjant clearly exhibited a
cytoplasmic accumulation, which supports the notion that E-RAS
also underlies a palmitoylation/depalmitoylation mechanism as
was shown previously for H-RAS (Fig. 1C) (25).

Another question addressed in this study was the role of the
38-amino acid unique N-terminal extension in E-RAS, which
does not exist in other RAS proteins (Supplemental Fig. S1).
This extension contains motifs, which may act either as a PXXP
motif-binding site for specific Src homology 3-containing pro-
teins or as an electrostatic interaction site (RRR motif) with a neg-
atively charged region of proteins or with a lipid membrane. Thus,
one function of the N-terminal extension and its motifs could be
providing an additional signal for subcellular localization of
E-RAS. Hence, we generated the N-terminal truncated E-RASAN
(aa 39-233), putative PXXP motif variant E-RAS™" 7 (aa 1-233),
and a triple arginine motif variant E-RASM-31/Al-82/AIS3 (4,
1-233) (Fig. 1A4), and we investigated their localization in tran-
siently transfected MDCK I cells. Confocal imaging of the EYFP-
fused E-RAS variants revealed that the N terminus of E-RAS has a
slight effect on the E-RAS localization as we observed for the trun-
cated N-terminal variant E-RAS™Y, putative PXXP motif variant
E-RAS®™7, and E-RASA-31/AlS2/A133 |ogq plasma membrane
localization (Fig. 1C) but not significant differences.

Effector Selection of E-RAS Significantly Differs from H-RAS—
Before investigating the specific function of E-RAS in cells, it
was important to gain insights into the E-RAS effector selectiv-
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FIGURE 2. Different effector selection of E-RAS and H-RAS. A, effector-binding residues of H-RAS, obtained from variouws crystal structures. are highlighted
with bie fetters and yeflow backgrownd, RAF1 (PDE code 1C1Y), PLCe (PDB code 2C5L), RalGDS (PDB code 1LFD], PIKy [PDB code 1THEA), and RASSFS (PDE code
3D0C). B effector binding regions (in yellow and orange) of H-RAS and E-RAS were structurally analyzed on the basis of the H-RAS structure in complexes with
p120RASGAP (PDB code TWQ1). The orange amino acids indicate the sequence deviation between H-RAS and E-RAS. €, schematic view of RAS effector
pathways and their cellular functions. D, E-RAS and H-RAS pulldown (PD) with various RAS effectors using COS-7 cell lysates transiently transfected with
FLAG-tagged E-RAS™", H-RAS"", and H-RAS¥""'? using GST-fused effector proteins, such as RAF1-RBD, RalGDS-RA, PLCe-RA, PI3Ka-RBD, and RASSF5-RA. RAS
proteins were analysis by immunoblot using an anti-FLAG antibody. Immunaoblots (/B) of total cell lysates were used as a control to detect FLAG-RAS. Exp. time
stands for exposure time. RAF, rapidly accelerated fibrosarcoma; MEK, mitogen-activated protein kinase/ERK kinase; ERK, extracellular signal-regulated kinase;
PLCe, phospholipase Ce; PKC, protein kinase C; RalGDS, Ral GDP dissociation stimulator; RLIP76, Ral-interacting protein 76 kDa; PI3K, phosphoinositide 3-kinase;
PIP,, phosphoinositide 3,4,5-trisphosphate; MST1/2, mammalian Ste20-like kinases 1.

ity. Effector interactions with H-RAS have been investigated
both biochemically and structurally in great detail. Various
amino acids of H-RAS undergo selective contacts with the
effectors, including RAF1, RalGDS, RASSF5, and PLCe (Fig. 24,
blue residues with yellow background). These residues, mainly
switch I, interswitch, and partially in the switch II region, are
conserved among common RAS proteins but vary in E-RAS
proteins (supplemental Fig. S1). This suggests that classical
RAS family members, except the E-RAS, are in principle able to
recognize and activate various effectors. Importantly, these
effector-binding residues are highly variable between H-RAS
and E-RAS (supplemental Fig. S1; Fig. 24). Structural analysis
of the effector binding regions of E-RAS was performed accord-
ing to H-RAS complexes with pl20RASGAP (PDB code
1WQI1). In comparison with H-RAS, the exposed residues
along the effector-binding surface of E-RAS revealed significant
sequence deviations (Fig. 2B). This strongly indicates a differ-
ential effector selectivity of the RAS proteins.

The members of the RAS family are known to interact with a
wide range of effectors (5, 54 - 61) and therefore stimulate var-
ious cellular responses. Regarding their physical interaction
with E-RAS and H-RAS proteins, five RAS effectors (RAFI,
RalGDS, PLCe, PI3Kw, and RASSF5), with defined cellular
functions (Fig. 2C), were investigated in this study. In pulldown
experiments, GST-fused RAS-binding domain of RAF1 (RAF1-
RBD), the RAS association domain of RalGDS (RalGDS-RA),
PLCe-RA, PI3Ka-RBD, and RASSF5-RA were used as baits to
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pulldown FLAG-tagged E-RAS™", H-RAS™", and H-RASY*" 1
overexpressed in COS-7 cells. We found that H-RAS™" and
H-RASY™"'? strongly bind RAF1 and weakly bind to PI3Ka.
Importantly, E-RAS™" clearly showed an opposite pattern of
these interactions, where it binds very tightly to PI3Ka and very
weakly to RAF1, RalGDS, PLCe, and RASSF5 (Fig. 2D). These
data confirm that the amino acid deviations in effector-binding
sites (Fig. 2, A and B) make E-RAS a unique member of the RAS
family and a potent activator of the PI3K-PIP,-signaling
pathways.

Effector Selection by E-RAS Is Largely Determined by Trypto-
phan 79—To identify the residues determining the specificity
for effector binding and activation, we next analyzed the impact
of deviating residues in E-RAS on its interaction with different
effectors by replacing the E-RAS residues in switch I (His-70
and GIn-75, collectively named here Swl), interswitch (Arg-79),
and switch II (Ala-100, Ile-101, His-102, and Arg-103, collec-
tively named here Swll) for the equivalent residues in H-RAS
(supplemental Fig. S1). The corresponding variants, E-RAS®!,
E_RAsAl'g-'?')’ E_RAsswlll E_RAsswl.l'Arg“?‘Jl E_RAsArgJ").l'SwII‘
RAS™SI and E-RAS!/A 725w (Fig. 34), were analyzed
for their interaction abilities with different effectors using
E-RASYT and the constitutive active variant of H-RAS™,
H-RASY™12, as controls. These constructs were transiently
transfected in COS-7 cells, and the GTP-bound forms of these
RAS variants were pulled down using GST-fused effector pro-
teins under the same conditions as described above. Data
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FIGURE 3. Speciﬁatyvdeterrninmg residues in E-RAS-effector interaction. A, display of different effector binding mutations in E-RAS: E-RAS™™, H70Y/Q75E
(Tyr-32 and Gslu-37 in H-RAS); E-RAS"™7°, W79R (Arg-41 in H-RAS); E- RASS™!. A100E/I101E/H102Y/R1035 (Glu-62, Glu-63, Tyr-64, and Ser-65 in H-RAS);
E-RAS®A'979 H70Y/Q75E/W79R; E- Fhf\S‘““3 7ersvll \W79R/A100E/1101E/H102Y/R103S; RAS™/*"!, H70Y/Q75E/A100E/1101E/H102Y/R1035, and E-RASS*/Ara79/5ul]
H?OY!Q?SE.W?QRM'IOOEFIIO? E/H102Y/R103S. For details about the amino acid sequences, see supplemental Fig. 51. B, pulldown assay of FLAG-fused E-| RAS
variants carried out with RBD or RA domain of GST-fused effector proteins, including RAF1-RED, RalGDS-RA, PLCe-RA, PI3Ka-RBD, and RASSF5-RA. The results
were analyzed by immunoblot using an anti-FLAG antibody. Exp. time stands for exposure time. C, total cell lysates were used to monitor the level of
phosphorylated AKT (pAKT™*°® and pAKT**"?), MEK1/2 (pMEK1/2), and ERK1/2 (pERK1/2) proteins.

obtained revealed that substitution of Trp-79 for arginine in
E-RAS (E-RAS*®7%) rescued the low affinity of E-RAS for
PLCe, RAF1, and RalGDS, and no effect was observed on
RASSF5 binding (Fig. 3B). In contrast, W79R-containing vari-
ants (E-RASA'87%, E-RASSW/A®T? E_RASME7TYSWIL - and
E-RASSWHAE79/5wIl \when compared with E-RASY™T, exhib-
ited a significant reduction of binding affinity for PI3K«, which
is comparable with the levels with H-RASY*'"'2, Collectively, all
mutations in three regions, especially W79R, affected E-RAS
interaction for PI3K« (Fig. 3B). Mutations in the switch [ region
(E_RAsﬁwl, E_RAs.‘iwIH\rgJ':), RASSW”SW", and E_RAs.‘iwl.U\rg—T':HSwll}
exclusively compromised E-RAS interaction with RASSF5.
However, switch II variants (E-RAS™, E-RAS*&79/5%1 and
RAS®™5!) more strongly diminished affinity for RalGDS and
RAF1 (Fig. 38).

These results raised the following question. How does the
Trp-79 interaction with effectors affect the binding affinity of
E-RAS for these proteins? To address this question, we
inspected available H-RAS structures in complexes with inves-
tigated effector proteins and created corresponding structural
models of E-RAS with particular focus on Trp-79 in E-RAS
(Arg-41 in H-RAS). Data obtained pointed to an unexpected
and potentially significant role of Glu-3 (Glu-41 in E-RAS) in
effector selection by RAS proteins (Fig. 4; supplemental Fig. S1).
Arg-41 is stabilized by intramolecular interactions with Glu-3
(Glu-41 in E-RAS) and side-chain contacts directly at Lys-65 of
RAF1 among the analyzed H-RAS effector complexes but not

15896 JOURNAL OF BIOLOGICAL CHEMISTRY

PI3K. Tryptophan replacing Arg-41 in E-RAS would, because of
its hydrophobic nature, be expelled from Glu-41, Glu-54, and
Asn-92, This generates new conformation in the effector region
of E-RAS and accounts for a shift in effector selectivity. The
highest probability for such adopting provides an empty space
around the Arg-41 in the case of the PI3K complex thus yielding
higher affinity of PI3K to E-RAS™'., Trp-79 interacts best in a
hydrophobic environment with PI3K as compared with RAF1.
Reciprocal scenario applies in the case of RAF1 and PLCe caus-
ing lower affinity of these effectors to E-RAS™", One example is
the repulsion of Lys-65 of RAF1 by the W79R mutation that
might be responsible for a weak reconstitution of E-RAS*™#7?
binding to RAF1.

We next examined the consequences of the affected effector
interaction of the E-RAS variants regarding activation of the
corresponding downstream cascades (see Fig. 3C). Interest-
ingly, impaired PI3Ka binding of E-RAS variants, particularly
W79R and Swll, also strongly influenced downstream signals of
PI3K monitored by pAKT levels but not that of RAF1 analyzed
by pMEK/pERK levels (Fig. 3C). Remarkably, AKT phosphory-
lation at both sides, Thr-308 (PDK1) and Ser-473 (mTORC2),
were impaired (see below). The E-RAS**7? varijant lost its abil-
ity to signal via the PI3K/AKT cascade almost completely, indi-
cating a key role of tryptophan 79 in E-RAS and E-RAS-like
proteins in effector association and activation. An interesting
observation is that a gain of RAF1 binding to E-RAS variants,
especially Swl and W79R, did not result in RAF1 activation and
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FIGURE 4. Glutamate 41 function and its role in effector selection is discharged in E-RAS. A, in H-RAS-GTP, Arg-41 (Trp-79 In E-RAS) is intramabecularly
stabilized by Glu-3 (Glu-41 in E-RAS), attracted by backbone oxygen of Asn-64, and repulsed by Lys-65 in RAF1. 8, in E-RAS, Trp-79 ks expeiled from Glu-41 and
cannot adopt favarabile conformation because of thee close presence of Asn-64 and Lys-65 of RAF1. The conformation of anginine at the place of Trp-79in
E-RAS™™ ™ would be restored due to its interaction with Glu-41 similarly to H-RAS, thus increasing the binding affinity of RAF1, C, PI3K does not contact E-RAS
tightly in the vicinity of Trp-79 leaving enough space for proper reonentation of tryptophan side chain expelled from Glu-41 and not disfavering the affinity of
their complex, Moreaver, orientation of Thr-228 enables tight hydrophobic contact with Trp=79. In E-RAS™" ™, arginine attracted by Glu-<41 would not
contribute to the interaction with Pi3K weakening its affinity to E-RAS™™ ™, D, selectivity-determining amino ackds in RAS effectors. Multiple amino acid
sequence alignments of the RED of human RAF isoforms and the catalytic subunits of human PI3K isoforms are illustrated with major focus on the some
RAS-binding residues. The comesponding sequences ane RAF-1 [PO4049; aa 51-131), A-RAF [P10398; aa 14 -91), B-RAF (P15056; aa 105-227), PI3Ka (P42336;2a
184 -276), PI3K[F (P42338; aa 191-272), PI3Ky (P48736; aa 214 -296), and PI3KS (D00329; aa 184 -226). X highlights residues interacting in {3 manner with
switch | & highlights additional residuwes interacting with switch L@ shows residues interacting with Tyr-64 in switch 1, * shows residues close to Arg-41 in H-RAS

or Trp-79 in E-RAS.

in turn phosphorylation of MEK1/2 and ERK1/2 (Fig. 3, B and
C).

Distinct Downstream Signaling Pathways of E-RAS via
PI3K—The data presented above shed light on the specificity
determining residues for direct E-RAS-effector interaction and
the consequent activation of downstream pathways. The next
question we addressed was to understand the role of additional
motifs within the N-terminal extension and HVR of E-RAS (see
Fig. 14) as potential molecular and cellular determinants
required for signal transduction through PI3K-AKT-mTORC
and RAF1-MEKI1/2-ERK1/2. Therefore, we first investigated
the ability of E-RAS variants to directly interact with PI3Ka and
RAF1. In this experiment, FLAG-tagged E-RAS variants,
H-RAS™" and H-RASY*"'?, transiently transfected in COS-7
cells, were pulled down with GST-fused PI3Ka-RBD and
RAF1-RBD from the cell lysates (Fig. 54). Similar to E-RAS™™,
the interactions of E-RAS variants were much stronger with
PI3Ka-RBD as compared with RAF1-RBD, although hyperac-
tive H-RASY™"'? mainly bound to RAF1-RBD. Moreover, this
assay was used to visualize the amounts of the GTP-bound state
of the E-RAS variants. Fig. 54 shows that all E-RAS variants
exist in the active, GTP-bound forms.

To provide further insights to the downstream signaling
activity of the above-mentioned E-RAS variants, we investi-
gated the phosphorylation status of AKT (Thr-308 and Ser-
473), MEK1/2 (Ser-217/Ser-221), and ERK1/2 (Thr-202/Thr-
204), which are representative cellular targets of PI3K and
RAFI (Fig. 5B). Although the pulldown showed almost no sig-
nificant difference between E-RAS variants in binding to RAS
effectors, we found E-RAS*Y, E-RASSc220/8er228  and
E-RAGAN/Ser-226/5er-228 ware strongly impaired in the activation
of the PIBK-AKT-mTORC axis and clearly exhibited lower
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phosphorylation levels for AKT, especially at Thr-308. All
E-RAS variants, including E-RAS*™, were inefficient in stimu-
lation of MEK1/2 and ERK1/2 phosphorylation in comparison
with H-RAS™™ and H-RASV"1? that actively contributed to
activation of the RAF1-MEK1/2-ERK1/2 axis.

Next, we aimed to determine the cellular co-localization of
E-RAS with PI3Ka and RAF1. Transiently transfected MDCK 11
cells with FLAG-tagged E-RAS and H-RAS were incubated
with recombinant GST-fused RBDs of PI3Ka and RAF1 and
stained with antibodies against GST and FLAG, respectively.
We observed that PI3Ka but not RAFI1 localized with E-RAS
mainly at the plasma membrane (Fig. 64). In contrast, RAFI,
and to a lower extent also PI3Ka, co-localized with H-RAS at
the plasma membrane (Fig. 6B). These data suggest that both
the N-terminal extension of E-RAS and its palmitoylation are
essential and critical for the cellular activation of the PI3K-
AKT-mTORC cascade, although the formation of the GTP-
bound state and the interaction with PI3K were not affected.

Discussion

In this study, we have investigated cellular localization and
the signaling activity of human E-RAS regarding its physical
interaction with RAS effectors and the roles of both its unique
features, the N terminus and PTM by palmitoylation in direct
comparison with human H-RAS. The structure-function rela-
tionship of the effector interaction sites of E-RAS resulted in
the identification of tryptophan 79 as a specificity-determining
amino acid of E-RAS, which is critical for its strong association
with PI3K. In the cell, this interaction additionally requires the
presence of both a functional N-terminal extension and palmi-
toylation at cysteines 226 and 228 that collectively lead to the
precise activation of the PI3K-AKT-mTORC pathway.
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FIGURE 5, E-RAS signaling activities in COS-7 cells. Pulldown (PD} experiments and immunoblot (18] analysis of total cell lysates were derived from trans-
fected COS-7 cells with FLAG-tagged E-RAS variants H-AAS™" and H-AAS™ "4 pulldown analysis revealed that E-RAS variants like E-RAS™" maost strongly bind
1o GST-fused PI3Ka-RED than RAF1-RED, whereas hyperactive H-RAS™ " mainly bound to G5T-fused RAF1-RED. In addition, PI3Ka-RED PD showed that all
E-RAS variants are in the GTP-bound state and consequently in their activated forms. Total amounts of the RAS proteins were detected as a control using
anti-FLAG antibody. B, schematic view of MAPK and PI3K-AKT cascades. C, total cell lysates were analyzed for the phosphorylation level of AKT (pAKT308 and
pAKT473), MEK1/2 (pMEK1/2) and ERK1/2 (pERK1/2). Total amounts of AKT, MEK1/2, and ERK1/2 were applied as loading controls.

Palmitoylation Modification and E-RAS Trafficking—To
transduce signals, RAS proteins should be associated with the
lipid membranes. They are compartmentalized by PTMs at
their C terminus, with the CAAX motif at the farnesylation site,
and additional upstream cysteine residues at the palmitoylation
site(s) in the case of H- and N-RAS (supplemental Fig. 51) (23—
25,29). We found that like the mouse E-RAS (42), substitution
of two cysteine residues Cys-226/Cys-228 in HVR of human
E-RAS with serines clearly impaired the plasma membrane
localization of protein. This is a strong indication that human
E-RAS undergoes palmitoylation at these sites, as described for
the first time for H-RAS (62). Yamanaka and co-workers (42)
reported that these cysteine residues are important for endo-
membrane localization of mouse E-RAS and only signals if
HVR of H-RAS can rescue endomembrane localization of
E-RASSr226/5¢r228 Our confocal microscopy data revealed
that in contrast to plasma membrane localization of E-RASWT,
palmitoylation-deficient E-RASS"22/5¢r-228 g mainly local-
ized, with a clear pattern, in cytoplasm and also in endomem-
branes. Our data clearly support proposed reports demonstrat-
ing that H-RAS and N-RAS cycle between Golgi and the plasma
membrane via reversible and dynamic palmitoylation-depalmi-
toylation reactions (25, 63, 64).

N-terminal Extension and C-terminal Insertion of E-RAS—A
sequence comparison between E-RAS and other RAS isoforms
highlighted additional regions and motifs, such as the unique N
terminus of E-RAS that is not present in other RAS-like pro-
teins. We propose that the N-terminal extension of E-RAS
might modulate its localization through interaction with
potential adaptor/scaffold proteins via putative PXXP and RRR
motifs. With our co-localization studies, we did not observe

15898 JOURNAL OF BIOLOGICAL CHEMISTRY

significant differences in localization of the N-terminal
mutants of E-RAS. However, considering our results, we cannot
exclude the role of the E-RAS N terminus as a putative protein
interaction site, because E-RAS is not expressed endogenously
in the MDCK 11 cells, and therefore its binding partner may not
beavailable in this cell line. To confirm our hypothesis, we need
to study a different cell line, like embryonic stem cells (42),
gastric tumors (65), neuroblastoma cells (20), and also hepatic
stellate cells,” where E-RAS is endogenously expressed (unpub-
lished data).

Imaging methods used in this study did not allow visualizing
microdomain localization of E-RAS variants. The plasma mem-
brane is not a homogeneous lipid bilayer and includes a set of
microdomains, such as lipid raft and caveolae (66, 67). The
HVR at the C-terminal end of RAS proteins is critical for lateral
sorting and is divided into two separate domains, membrane-
targeting domain and linker domain (68). Membrane targeting
domain contains a CAAX box and one or two upstream cys-
teines that are palmitoylation sites. Palmitoylated proteins can
be targeted to lipid rafts. Because H-, N-, and K-RAS are
dipalmitoylated, monopalmitoylated, and nonpalmitoylated,
respectively, they exhibit different lateral segregation across the
plasma membrane microdomains (69). GDP-bound H-RAS is
associated with the lipid raft, but when it is activated and GTP-
loaded, it moves laterally to nonlipid raft regions (68, 70, 71).
E-RAS, like H-RAS, is dipalmitoylated suggesting that it may
favor the lipid rafts. On the contrary, E-RAS is mainly GTP-

S, Nakhaei-Rad, C. Kordes, H. Nakhaeizadeh, R. Dvorsky, I. C. Cirstea, I.
Sawitza, 5. Gotze, Ro. P. Piekorz, B. Gorg, D. Haussinger, and M. R. Ahma-
dian, unpublished data.
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FIGLIRE &, Co-localization of E-RAS with PI3Ka. Transfected MDCKI cells with FLAG-tagged E-RAS were incubated with bactenal lysates. containing G5T-RBDs
of Pi3Ko and RAF1 proteins and stained with antibodies raised against G5T and FLAG to investigate their co-localization with GTP-bound H-RAS and E-RAS

proteing, E-RAS co-localized with PI3Kqa, Scale bar, 10 um,

loaded, which makes it difficult to compare it with wild-type
H-RAS. It is reported that the active GTP-loaded H-RASY™'*
variant occupies the nonlipid rafts so the constitutively active
E-RAS may also be clustered in this region, The second domain
in HVR, termed linker domain, releases GTP-loaded H-RAS
from the lipid rafts. Linker domain can be divided in N- and
C-terminal regions in a way that the C-terminal region is a
spacer, which seems not to be important (68). Human E-RAS
has an insertion in this C-terminal spacer (aa 173-179, H-RAS
numbering) that may also affect microdomain migration of
E-RAS. Taken together, we propose that three factors most
likely modulate the microdomain targeting of E-RAS, such as
an extended N terminus, a C-terminal insertion, and the GTP-
loaded state due to a prominent deviation at position Ser-50
(Gly-12 in H-RAS).

Our cell-based studies revealed that the N-terminal exten-
sion of E-RAS is critical for PI3K-AKT-mTORC activation,
and N-terminal truncated E-RAS variants (E-RAS*™ and
E-RASAN/Ser-226/Ser-228) ramarkably had a lower signaling
activity. One explanation may be the role of the unique N ter-
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minus in the lateral segregation of E-RAS across the membrane
that consequently specifies association with and activation of
its effectors in a manner reminiscent to microdomain localiza
tion of H-RAS that regulates its interaction with effector pro-
teins of RAF1 and PI3K (68). In addition, E-RAS was found in
membrane ruffles (data not shown), which may be induced by
Racl activated by the E-RAS-PI3K-PIP,-RacGEF axis (72-74).
Such a scenario has been reported for the R-RAS N-terminal
26-amino acid extension, which has been proposed to positively
regulate Rac activation and cell spreading (75).
Constitutively Active Form—GAPsaccelerate the GTP hydro-
lysis reaction of RAS proteins by orders of magnitude by sup-
plying a highly conserved, catalytic arginine finger (31, 32).
H-RAS glycine 12 mutations to any other amino acid interfere
with insertion of arginine finger in the GTPase active site and
therefore make the enzyme GAP-insensitive (30). Interestingly,
E-RAS hasadeviation in the corresponding position and carries
a serine instead of a glycine indicating that E-RAS is hyperactive
and GAP-insensitive. Our stopped-flow data revealed that
p120RASGAP was not able to accelerate the GTP hydrolysis
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reaction of E-RAS, although it can act on H-RAS and convert it
to the GDP-bound inactive form (data not shown). We have
shown that all E-RAS variants exist mostly in GTP-bound
forms as shown by a pulldown experiment with PI3K and RAF1.
This and the fact that E-RAS is GAP-insensitive suggest that
E-RAS may underlie a different and yet undefined control
mechanism that negatively regulates E-RAS activity and thus its
signal transduction.

It seems that expression of E-RAS is highly regulated at the
transcriptional levels and rather limited to special cell types,
such as embryonic stem cells (42), gastric tumors (65), neuro-
blastoma cells (20), and also hepatic stellate cells.” Moreover,
the unique N terminus of E-RAS may provide specialized pro-
tein-protein interaction sites resulting in E-RAS sequestration,
degradation, or membrane microdomain localization as shown
for R-RAS (75, 76). E-RAS could interact with specific scaffold-
ing proteins that bring it close to its effectors and regulate its
activities. It is tempting to speculate that E-RAS may underlie a
similar mechanism via serine/threonine phosphorylation and
14-3-3 binding as described for Rnd3 (75, 76), a constitutively
active member of the Rho protein family (77). However, there is
as yet no evidence for an E-RAS phosphorylation particularly at
its N terminus that contains 4 threonines and 2 serines (supple-
mental Fig. S1).

Effector Binding Regions—RAS proteins transduce extracel-
lular signals to a variety of intracellular signaling pathways
through the interaction with a wide spectrum of effector pro-
teins. Upon GDP to GTP exchange, RAS proteins undergo con-
formational changes in two critical regions, switch [ and switch
IL. Notably, the GTP-bound form of RAS interacts with their
target effectors through switch regions and thereby activates
various pathways (5). A detailed study of structure-sequence
relationships revealed a distinctive effector binding region for
E-RAS in comparison with RAS isoforms (H-, N-, and K-RAS).
Subsequent interaction analysis with five different RAS effec-
tors revealed that effector binding profile of E-RAS significantly
differs from H-RAS. E-RAS™" tightly bound to PI3Ka and
revealed very low affinity for other RAS effectors. In contrast,
H-RAS showed an opposite pattern with the highest affinity for
RAF1. These data were confirmed by investigating the respec-
tive downstream signaling cascades (PI3K-AKT-mTORC and
RAF1-MEK1/2-ERK1/2) at the level of phosphorylated AKT,
MEK1/2, and ERK1/2. Our results are consistent with a previ-
ous study of Yamanaka and co-workers (18), who applied
another PI3K isoform (PI3K&) and observed differences
between H-RAS and E-RAS. It seems probable that E-RAS and
H-RAS possess a different affinity for distinct PI3K isoforms, a,
B, v, and 8, and this may account for their specific biological
outputs (78). Consistently, the catalytic subunit of the PI3Ky
isoform, PI3Ky, interacts with switch 1 of H-RAS in anti-paral-
lel B-sheet fashion (48), also approaching RAS-conserved
Asp-33 by two lysines. Residues in H-RAS contacting B-strand
of PI3K+y and preceding amino acids differ significantly among
the PI3K isoforms regarding the primary structures (Fig. 4D).
Although PI3K+y has four hydroxyl-containing amino acid side
chains at this place, PI3KB possesses one and PI3Ké isoform
two negatively charged residues whereby both have in addition
two amino acid insertions. In contrast, the PI3Ka isoform has
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insertion of six residues, and the hydroxyl-containing amino
acids are replaced by one asparagine and two lysines (Fig. 4D).
We hypothesize that these differences in PI3K isoforms are of
particular importance due to the stabilization of intermolecular
B-sheet interaction and especially because the contact site of
the crucial Trp-79 in E-RAS (Arg-41 in H-RAS) is highly vari-
able (Lys, Gln, Thr, and Glu; see Fig, 4D).

Substitutions for E-RAS residues in the switch I and II and
interswitch regions with corresponding residues in H-RAS pro-
vided several interesting aspects and new insights (Fig. 3). One
isa shift in effector selection. Strikingly, and in contrast to other
investigated effectors, RAF1-RBD undergoes contacts with the
switch I and the interswitch regions (Fig. 24) (46, 47). However,
E-RAS®!, which has an almost identical switch I when com-
pared with H-RAS, showed a reduced binding to RAF1 that was
clearly elevated when this was combined with the interswitch
mutation W79R (E-RASSVA'57%) (Fig. 3B). Consistently, the
major difference was observed with E-RAS*™7?, where a tryp-
tophan was replaced by an arginine (Arg-41 in H-RAS). This
variant led to increase in RAF1 binding and partly rescued the
low affinity of the wild type and the switch variants (E-
RASSWHAIETY and E-RASSWIAR79SWIN A ccording to the crys-
tal structure (46), Arg-41 in H-RAS (Trp-79 in E-RAS) interest-
ingly forms a hydrogen bond with the backbone oxygen of
Asn-64 in RAF1-RBD that very likely enabled E-RAS**7? to
make additional electrostatic contacts with RAF1 (Fig. 4, A and
B). In addition, E-RAS shares a glutamate (Glu-41) with H-RAS
(Glu-3) (supplemental Fig. 51). Glu-3 interacts in intermolecu-
lar fashion with Arg-41 and stabilizes the H-RAS-RAF1 com-
plex formation (Fig. 44). Accordingly, mutation of W79R in
E-RAS reconstitutes such intermolecular interaction between
Glu-41 and Arg-79, thus increasing significantly the interaction
between E-RAS™®7? and RAF1 (Fig. 3B). Another important
contribution to effector binding concerning Trp-79 originates
very likely in its expulsion from the above-mentioned Glu-41
and the ability of bound effector protein to accommodate
altered conformation of Trp-79. As mentioned before, Arg-41
of H-RAS is contacted by RAF1 in its complex structure. The
space where the tryptophan can be accommodated and hydro-
phobically interact with the effector is thus limited resulting in
diminished affinity of these effectors to E-RASYT. Moreover,
switch II quadruple mutation of E-RAS (E-RAS®*!; see Fig. 34)
showed the largest impairment in RAF1 binding. This was not
expected especially because the structural data, reported previ-
ously (46, 47), have shown that RAF1-RBD does not physically
contact the switch IT of RAS. Again, E-RASAME795WI partially
restored the loss of RAF1 binding but most remarkably not the
E-RAS®™S*! yariant that actually is almost identical to H-RAS
regarding the amino acid sequence of its switch I and I regions
(see Fig. 34). Even though E-RAS**7 binds more tightly to
RAF1, it still does not activate the MAPK pathway like
E-RAS™T. Note that there was no increase in MEK and ERK
phosphorylation, and we detected even the opposite, namely a
significant decrease in pMEK1/2 and pERK1/2 as compared
with the vector control (Fig. 3C; see E-RAS" " and E-RAS™ 7
lanes). An explanation for the absence of E-RAS*"*7? signaling
toward the MAPK pathway is that most probably the additional
component, including scaffold proteins such as SHOC2 (79—
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81), may not exist in the E-RAS**7*RAF1 complex. This pro-
vides the assumption that E-RAS localizes to a different mem-
brane region then, for example, the H-RAS, RAF1, and the
components of the MAPK pathway.

PLCe contains two RAS association domains, RA1 and RA2.
RA2 forms a complex with H-RAS ina GTP-dependent manner
by contacting nine different residues of the switch I and II
regions, and also GIn-25 and Arg-41 (51), from which four
(Glu-37, Arg-41, Glu-63, and Tyr-63) deviate in E-RAS (Fig.
3A). This explains why we observed an extremely weak E-RAS-
PLCe interaction as compared with H-RASY™""'%, Most inter-
estingly, the W79R mutation of E-RAS resulted in a strong gain
of binding activity (Fig. 3B; see E-RAS WT and E-RASA«7
lanes). Notably, this effect was not so strong in the case of the
switch II mutation (E-RAS®*"), and the switch 1 mutation
(E-RAS™™!) did not show any change in the E-RAS association
with PLCe. A combination of the mutations (E-RAS™!5*)
was hardly detectable and the combinations with W79R
(E_RAsArg-'?Of.‘iwll E_RAsArgJ“)L‘iwll’ and RAs.‘%wlFAl'g-'ﬂH.‘%wll)
rather counteracted the gain of binding activity of RAS*"77,
On a molecular level, Trp-79 in wild-type E-RAS can be hydro-
phobically attracted to Pro-2149 of PLCe but not intramolecu-
larly to Glu-41 (data not shown), and the space for its confor-
mational relaxation is limited similarly to RAF1 as mentioned
above. We propose that W79R mutation generates stronger
intramolecular contact between Glu-41 and Arg-79 and conse-
quently stabilizes the protein complex with PLCe. Katan and
co-workers (51) have discussed that the H-RAS residues Tyr-
64, lle-36, and Met-67 (His-102, Ile-74, and Leu-105 in E-RAS)
in combination with Phe-2138 and Val-2152 from PLCe-RA2,
provide a hydrophobic clusters. Introduction of another hydro-
phobic residue in E-RAS as demonstrated with a single point
mutation at Trp-79 (E-RAS*®7") has obviously created an
additional and distinct binding site for RAS association
domains, such as RA2 of PLCe and most likely also RA of Ral-
GDS. The latter, a GEF for Ral, links two RAS family members,
RAS and Ral (82). Although the crystal structure of H-RAS/
RalGDS-RA has not reported an involvement of Arg-41 (50),
our structural analysis predicted a close hydrophobic contact of
Arg-41 with Met-819 of RalGDS (3.2 A). Notably, data obtained
from the interaction of RalGDS and RAF1 with E-RAS variants
appear similar as compared with that for PLCe.

PI3K is a well known effector of classical RAS proteins and
promotes cellular survival (78). In comparison with H-RAS,
E-RAS interacts more strongly with PI3Ka-RBD and activates
the PI3K-AKT-mTORC cascade. Mutagenesis at switch and
interswitch regions (E-RAS®™!, E-RAS**7?, and E-RAS™),
attenuated binding of E-RAS to PI3Ka-RBD, demonstrating
the role of critical E-RAS residues at effector binding regions.
These data are consistent with a previous study that has shown
that PI3Ky-RBD contacts both switch I and switch II regions of
H-RAS (48). Interestingly, W79R mutation of E-RAS (Arg-41
H-RAS), which has increased binding to RAF1, PLCe, and Ral-
GDS, dramatically reduced the binding to PI3Kea. The affinity
of this E-RAS mutant (E-RAS*®7?) for PI3Ka-RBD appears
similar to that of H-RASY*""'? (Fig. 3B; see H-RAS"*"'? and
E-RAS* ™7 lanes). We think that the strong interaction
between E-RAS and PI3K stems from the ability of structure to
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accommodate altered conformation of Trp-79 and from its
hydrophobic contact to PI3K (Fig. 4C). In contrast, W79R
mutation in E-RAS enables Glu-41 to attract Arg-79 and to
interfere with this hydrophobic interaction, resulting in a sig-
nificant reduction of the binding affinity between PI3K and
E-RAS (Fig. 4C). In the same line of evidence, we also observed
E-RAS7? deficient at the activation of RAS-PI3K-AKT-
mTORC2 pathway (9) as monitored with Ser-473 phosphory-
lation of AKT (see result Fig. 3C). Thus, Trp-79 in E-RAS rep-
resents a specificity-determining residue for the proper binding
to and activation of PI3K.

RASSF members are known as a RAS effector with tumor
suppressor functions. RASSF5 have two splice variants
NOREIA and RAPL, which share same RBD (53). We applied
the RASSF5-RA domain to analyze the interaction of E-RAS
variants with this RAS effector. As shown for RAF1 and Ral-
GDS, switch I H70Y/Q75E mutation of E-RAS (E-RAS™') also
attenuated the binding to RASSF5, and this was the case for all
E-RAS variants harboring switch [ mutations (E-RAS™/ A7,
E-RASSV/SWIL and E-RASSW/ArE79/5wIh Gyitch 1T and W79R
mutations did not affect the binding affinity for RASSF5,
emphasizing the importance of the more conserved switch 1
region in the complex formation of the RAS proteins with
RASSF5 (53). It remains to be investigated whether E-RAS is an
activator of RASSF5 and thus a regulator of the Hippo pathway.

In summary, we conclude that switch regions of E-RAS act as
core effector binding regions that form an E-RAS-specific
interaction interface for its effectors, such as PI3K. The PI3K
isoform specificity in E-RAS-expressing cells remains to be
investigated. Trp-79 of E-RAS appears to determine the effec-
tor selectivity. E-RAS binding to other RAS effectors, such as
RASSF5, RalGDS, and RAF1, is weak but may still be of physi-
ological relevance. Improvement of the interaction with RAF1
by mutagenesis, for example, rather exhibited an inhibitory
impact on the MAPK pathway. It remains unclear whether pro-
tein phosphatases specific for MAPKs were activated. The N
terminus of E-RAS is unique and may play a critical role in the
interaction with its accessory proteins for positioning E-RAS to
subcellular microdomains of the plasma membrane.
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Note Added in Proof—Supplemental Fig. 1 comparing mammalian
E-RAS and classical RAS sequences was inadvertently omitted from
the version of this article that was published May 4, 2015 as a Paperin
Press. Supplemental Fig. 1 is now available on line.
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The function of embryonic stem cell-expressed Ras (E-Ras), a unique Ras family member,
correlates with its additional motifs and its structural properties
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Supplementary FIGURE S1. Overall sequence comparison of mammalian E-Ras proteins with
classical Ras proteins. E-Ras contains an extended N-terminus (aa 1-38), missing in H-, K-, and M-
Ras, with a putative SH3-binging motif (PxxP). G1 1w G5 boxes indicate the presence of five essential
GDP/GTP binding (G) motifs. The P-loop (G 1) of E-Ras contains a serine instead of a glycine (codon
12, H-Ras numbering), a frequently mutated site within R4S genes in human cancer (Fasano ¢f af.,
1984). Several residues in switch 1 {G2) and switch 11 ((G2) regions that are responsible for effector
recognition are different between E-Ras and H-Ras (bold letters). E-Ras contains, like H-Ras, a
CAAX motif and two cysteines at the C-terminal hypervariable region (HVR), which is the sites for
PTMs by farnesylation and palmitoylation, respectively. The incomplete, N-terminal sequence of
Heterocephalus glaber E-Ras is shown by X letters. The secondary structure elements, the o helices
(orange) and P sheets (green), of the G domain were deduced from the H-Ras crystal structure (Pai et
al., 1990) (PDB code: 5p21). The mutation sites of E-Ras variants, which are used in this study, are
highlighted by arrowheads below and asterisk above the sequence.
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Hepatic stellate cells (HSCs) were recently identified as liver-
resident mesenchymal stem cells. HSCs are activated after liver
injury and involved in pivotal processes, such as liver develop-
ment, immunoregulation, regeneration, and also fibrogenesis.
To date, several studies have reported candidate pathways that
regulate the plasticity of HSCs during physiological and patho-
physiological processes. Here we analyzed the expression
changes and activity of the RAS family GTPases and thereby
investigated the signaling networks of quiescent HSCs versus
activated HSCs. For the first time, we report that embryonic
stem cell-expressed RAS (ERAS) is specifically expressed in qui-
escent HSCs and down-regulated during HSC activation via
promoter DNA methylation. Notably, in quiescent HSCs, the
high level of ERAS protein correlates with the activation of AKT,
STAT3, mTORCZ2, and HIPPO signaling pathways and inactiva-
tion of FOXO1 and YAP. Our data strongly indicate that in qui-
escent HSCs, ERAS targets AKT via two distinct pathways
driven by PI3Ka/6 and mTORC?2, whereas in activated HSCs,
RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the
reported role of ERAS in tumor cells associated with cell prolif-
eration, our findings indicate that ERAS is important to main-
tain quiescence in HSCs.

Hepatic stellate cells (HSCs?; also called Ito cells, lipocytes,
fat storing cells, or perisinusoidal cells) contribute 5-8% of
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total liver-resident cells and are located between sinusoidal
endothelial cells and hepatocytes in the space of Dissé (1, 2).
HSCs play pivotal roles in liver development, immunoregula-
tion, regeneration, and pathology. They exhibit a remarkable
plasticity in their phenotype, gene expression profile, and cel-
lular function (3). In healthy liver, HSCs remain in a quiescent
state and store vitamin A mainly as retinyl palmitate in cyto-
plasmic membrane-coated vesicles. Moreover, HSCs typically
express neural and mesodermal markers (ie. glial fibrillary
acidic protein (GFAP) and desmin). They possess characteris-
tics of stem cells, like the expression of Wnt and NOTCH,
which are required for developmental fate decisions. Activated
HSCs display an expression profile highly reminiscent of mes-
enchymal stem cells. Due to typical functions of mesenchymal
stem cells, such as differentiation into adipocytes and osteo-
cytes as well as support of hematopoietic stem cells, HSCs were
identified as liver-resident mesenchymal stem cells (4).
Following liver injury, HSCs become activated and exhibit
properties of myofibroblast-like cells. During activation, HSCs
release vitamin A, up-regulate various genes, including
a-smooth muscle actin and collagen type I, and down-regulate
GFAP (2). Activated HSCs are multipotent cells, and recent
studies revealed a new aspect of HSCs plasticity (i.e. their dif-
ferentiation into liver progenitor cells during liver regenera-
tion) (5, 6). Physiologically, HSCs represent well known extra-
cellular matrix-producing cells. In some pathophysiological
conditions, sustained activation of HSCs causes the accumula-
tion of extracellular matrix in the liver and initiates liver dis-
eases, such as fibrosis, cirrhosis, and hepatocellular carcinoma.
Therefore, it is worthwhile to reconsider the impact of different
signaling pathways on HSC fate decisions in order to be able to
modulate them so that activated HSCs contribute to liver
regeneration but not fibrosis. To date, several growth factors
(PDGF, TGFB, and insulin-like growth factor) and signaling
pathways have been described to control HSC activation
through effector pathways, including Wnt, Hedgehog,
NOTCH, RAS-MAPK, PI3K-AKT, JAK-STATS3, and HIPPO-
YAP (7-13). However, there is a need to further identify key
players that orchestrate HSC activity and to find out how they
control as positive and negative regulators HSC activation in

sterol regulatory element-binding protein; TSC, tuberous sclerosis; YAP,
Yes-associated protein; gPCR, quantitative PCR; 5-AZA, 5-aza-2'-deoxycy-
tidine; LIF, leukemia inhibitory factor; miRNA, microRNA; d, day; p-,
phosphorylated.
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response to liver injury. Among these pathways, RAS signaling
is one of the earliest that was identified to play a role in HSC
activation (14) and to act as a node of intracellular signal trans-
duction networking. Therefore, RAS-dependent signaling
pathways were the focus of the present study.

Small GTPases of the RAS family are involved in a variety of
cellular processes ranging from intracellular metabolisms to
proliferation, migration, and differentiation as well as embryo-
genesis and normal development (15-17). RAS proteins
respond to extracellular signals and transform them into intra-
cellular responses through interaction with effector proteins.
The activity of RAS proteins is highly controlled through two
sets of specific regulators with opposite functions, the guanine
nucleotide exchange factors and the GTPase-activating pro-
teins (GAPs), as activators and inactivators of RAS signaling,
respectively (18). In the present study, we analyzed the expres-
sion profile of different Ras isoforms in HSCs and found embry-
onic stem cell-expressed RAS (ERas) specifically expressed in
quiescent HSCs. To date, ERAS expression has been reported in
undifferentiated embryonic stem cells and in colorectal, pan-
creatic, breast, gastric, and neuroblastoma cancer cell lines
(19-22). Recently, we demonstrated that ERAS represents a
unique member of the RAS family with remarkable character-
istics. The most profound features of ERAS include its GAP
insensitivity (i.e. constitutive activity), its unique N terminus
among all RAS isoforms, its distinct effector selection proper-
ties, and the posttranslational modification site at its C termi-
nus (23).

Here, we investigated in detail the expression, localization,
and signaling network of ERAS in quiescent and culture-acti-
vated HSCs. During ex vivo culture-induced activation of HSCs,
the expression of ERAS was significantly down-regulated at the
mRNA and protein level, probably due to an increase in pro-
moter DNA methylation. We examined possible interactions
and signaling of ERAS via various RAS effectors in HSCs. We
found that the PI3Ka/8-AKT, mTORC2-AKT, and RASSF5
(RAS association domain family)-HIPPO-YAP axis can be con-
sidered as downstream targets of ERAS in quiescent HSCs. In
contrast, MRAS, RRAS, and RAP2A and also the RAS-RAF-
MEK-ERK cascade may control proliferation and differentia-
tion in activated HSCs.

Materials and Methods

Cell Isolation and Culture—Male Wistar rats (500—600 g)
were obtained from the local animal facility of Heinrich Heine
University (Diisseldorf, Germany). The livers were used for iso-
lation of HSCs as described previously (24). Briefly, rat livers
were enzymatically digested with collagenase H (Roche Applied
Science) and protease E (Merck) and subjected to density gra-
dient centrifugation to obtain primary cultures of HSCs. Puri-
fied HSCs were cultured in Dulbecco’s modified Eagle's
medium (DMEM) supplemented with 15% fetal calf serum and
50 units of penicillin/streptomycin (Gibco Life Technologies).
Other liver cells, such as parenchymal cells, Kupffer cells, and
sinusoidal liver endothelial cells were isolated and cultivated as
described earlier (25). MDCKII and COS-7 cells were cultured
in DMEM supplemented with 10% fetal calf serum. TurboFect
transfection reagent (Life Technologies) was used to transfect
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MDCKII and COS-7 cells according to the manufacturer's
protocol.

DNA Methyltransferase and Histone Deacetylase Inhibitor
Treatment—Primary rat HSCs at day 3 were treated with 10 pm
5-aza-2'-deoxycytidine (5-AZA) (Decitabine, Sigma catalog no.
A3656), a specific DNA methyltransferase inhibitor, for 4 suc-
cessive days. In parallel, rat HSCs were treated with a 5 um
concentration of the histone deacetylase inhibitor suberoylani-
lide hydroxamic acid (Vorinostat, Cayman Chemicals catalog
no. 10009929) under the same conditions. The control cells
were treated with DMSO only. Cells were lysed at day 8 for RNA
isolation and quantitative real-time reverse transcriptase poly-
merase chain reaction (QPCR) analysis.

Reverse Transcriptase Polymerase Chain Reaction—Cells
were disrupted by QIAzol lysis reagent (Qiagen, Germany), and
total RNA was extracted via the RNeasy Plus kit (Qiagen, Ger-
many) according to the manufacturer’s protocol. The quality
and quantity of isolated RNA samples were analyzed on 1%
agarose gels and using a Nanodrop spectrophotometer, respec-
tively. Possible genomic DNA contaminations were removed
using the DNA-free™ DNA removal kit (Ambion, Life Tech-
nologies). DNase-treated RNA was transcribed into comple-
mentary DNA (¢cDNA) using the ImProm-11"™ reverse tran-
scription system (Promega, Germany). qPCR was performed
using TagMan probes or SYBR Green reagent (Life Technolo-
gies). Probes/primers used for qPCR in the Tagman system,
including Rn02098893_s1 for ERas and Rn01527840_m1 for
HPRT1, were purchased from Applied Biosystems (Life Tech-
nologies). Primer sequences are listed in supplemental Table
S1. The 27 **“ method was employed for estimating the rela-
tive mRNA expression levels and 27**" for mRNA levels.
HPRT1 was used for normalization.

Immunostaining—Immunostaining was performed as de-
scribed previously (23). Briefly, cells were washed twice with
ice-cold PBS containing magnesium/calcium and fixed with 4%
formaldehyde (Merck) for 20 min at room temperature. To
permeabilize cell membranes, cells were incubated in 0.25%
Triton X-100/PBS for 5 min. Blocking was done with 3% bovine
serum albumin (BSA; Merck) and 2% goat serum diluted in PBS
containing 0.25% Triton X-100 for 1 h at room temperature.
Incubation with primary antibodies was performed overnight
at 4 °C followed by staining at room temperature for 2 h, Cells
were washed three times for 10 min with PBS and incubated
with secondary antibodies for 2 h at room temperature. Slides
were washed three times, and the ProLong® Gold antifade
mountant with 4',6-diamidino-2-phenylindole (DAPI) (Life
Technologies) was applied to mount the coverslips. Primary
antibodies included rabbit anti-FLAG (catalog no. F7425, Sig-
ma-Aldrich), ERAS clone 6.5.2, and GFAP (catalog no. Z0334,
Dako). Secondary antibodies included Alexa488-conjugated
goat anti-rabbit IgG (catalog no. A11034), Alexa546-conju-
gated goat anti-mouse IgG (catalog nos. A11003 and A11008),
Alexa633-conjugated goat anti-rabbit IgG (catalog no. A4671),
and Alexa488-conjugated goat anti-mouse IgG (catalog no.
A11029) (all from Life Technologies). Confocal images were
obtained using an LSM 510-Meta microscope (Zeiss, Jena,
Germany).
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Constructs—Rat ERas cDNA was amplified by PCR from a
¢DNA library of freshly isolated rat hepatic stellate cells and
subsequently cloned into pcDNA.3.1 and pEYFP-C1 vectors via
the BamHI/Xhol and EcoRI/BamHI restriction sites, respec-
tively. Mutations of G12V in HRAS (HRAS'"?) and C220S/
C2228 in ERas (ERas*®) were introduced by PCR-based site-
directed mutagenesis as described earlier (26). To generate the
N-terminal truncated ERas variants (ERas*" and ERas*V"*%),
ERas*" and ERas™* cDNA was PCR-amplified from amino acid
(aa) 39 to 227 and from aa 1 to 227, respectively. Human HRAS,
KRAS, NRAS, TC21, MRAS, and ERAS as well as rat ERas were
cloned in pGEX vectors and used for protein purification for
Escherichia coli as described previously (27).

Pull-down Assay—FLAG-tagged rat ERas and human HRAS
cDNAs were cloned into pcDNA3.1 vector and overexpressed
in COS-7 cells. The RAS-binding/association domains of effec-
tor proteins, including CRAF-RBD (aa 51-131), RALGDS-RA
(aa 777-872), PLCe-RA (aa 2130-2240), p110a-RBD (aa 127~
314), and RASSF5-RA (aa 200-358), were constructed as GST
fusions in pGEX-4T and transformed in E. coli. GST-fused pro-
teins were isolated from total bacterial lysates using glutathi-
one-Sepharose beads. GTP-bound RAS proteins were pulled
down from total cell lysates and heated in Laemmli buffer for 10
min at 95 °C.

Immunoblotting—Cell lysates were made with lysis buffer
(50 mm Tris-HCI, pH 7.5, 100 mm NaCl, 2 mm MgCl,, 1% Igepal
CA-630,10% glycerol, 20 mm B-glycerolphosphate, 1 mwm ortho-
Na,VO,, EDTA-free protease inhibitor (Roche Applied Sci-
ence)), and protein concentrations were determined with a
Bradford assay (Bio-Rad). Equal amounts of cell lysates (ERAS,
120 pg; FOXO1/p-FOXOL, 50 pg; remaining proteins, 15 pg),
were subjected to SDS-PAGE. Following electrophoresis, the
proteins were transferred to a nitrocellulose membrane by elec-
troblotting and probed with primary antibodies overnight at
4.°C. All antibodies from Santa Cruz Biotechnology, Inc. were
diluted 1:200 in 5% nonfat milk (Merck)/TBST (Tris-buffered
saline, 0.05% Tween 20), and remaining antibodies were diluted
1:1000. The following antibodies were applied for immunoblot-
ting: rabbit anti-FLAG (catalog no. F7425) and mouse y-tubulin
(catalog no. T5326) from Sigma-Aldrich; rabbit MEK1/2 (cata-
log no. 9126), rabbit ERK1/2 (catalog no. 9102), rabbit AKT
(catalog no. 9272), rabbit phospho-MEK1/2 (Ser-217/Ser-221,
catalog no. 9154), rabbit phospho-ERK1/2 (Thr-202/Thr-204,
catalog no. 9106), rabbit phospho-AKT (Ser-473, catalog no.
4060; Thr-308, catalog no. 2965), rabbit p110«a (catalog no.
4249), mouse STAT3 (catalog no. 9139S), rabbit phospho-
STATS3 (catalog no. 9145S), rabbit FOXO1 (catalog no. 2880),
and rabbit phospho-FOXO1 (catalog no. 9461) all from Cell
Signaling; and antibodies to rabbit p110f (catalog no. sc-602),
pl10vy (catalog no. sc-7177), and p1108 (catalog no. sc-7176)
from Santa Cruz Biotechnology. Mouse a-actin antibody (cat-
alog no. MAB1510) was obtained from Millipore. Membranes
were stained with horseradish peroxidase (HRP)-conjugated
secondary antibodies (1:5000 dilution). Signals were visualized
using ECL (enhanced chemiluminescence) reagent (GE
Healthcare).
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Expression and Purification of GBD-Nanotrap Beads and
Co-immunoprecipitation—For immunoprecipitation studies of
overexpressed EYFP-fused HRAS and ERAS in COS-7 cells, we
applied a GFP-binding protein coupled to Sepharose beads.
The GFP-binding protein used for Nanotrap experiments was
designed as described previously (28). Briefly, the GFP-binding
VyH domain was cloned into pET23a-PelB vector adding
C-terminal Myc and histidine (His,) tags and transformed in
E. coli BL21. An overnight 50-ml E. coli preculture with the
antibiotic ampicillin was used to inoculate 2000 ml of medium
to an Ay, of 0.8. The expression of recombinant genes was
induced with 1 mwm isopropyl B-p-1-thiogalactopyranoside
overnight at 30 °C. Cells were harvested by centrifugation (2 h,
4°C, 4000 rpm), and the supernatant was stored at —80 °C. For
purification, the supernatant was filtered through a 0.45-pum
SFCA NALGENE®Rapid-Flow™ Bottle Top Filter (Thermo
Scientific, Waltham, MA) to remove cell debris. Flow-through
was mixed 1:1 with PP buffer (500 mm NaCl, 50 mm Na,HPO,/
NaH,PO,, pH 7.4) and loaded on a pre-equilibrated nickel-
nitrilotriacetic acid column (GE Healthcare) and purified. His-
tagged protein was eluted by PP buffer containing 500 mm
imidazole. The protein was concentrated, and imidazole was
removed by using Amicon® Ultra-15 10K centrifugal filter
devices (Merck Millipore Ltd., Tullagreen, Ireland). To perform
pull-down of proteins by the GBD-nanotrap technique, 1 mg of
purified protein was covalently coupled to 2 ml of NHS-acti-
vated Sepharose 4 Fast Flow (GE Healthcare), according to the
manufacturer's instructions. Thereafter, beads were washed
three times in ice-cold 1 mm HCI (2 min, 5400 rpm, 4 °C), added
to the purified protein, and mixed for 2 h at room temperature
under constant agitation. Subsequently, free binding sites of the
beads were blocked by adding blocking buffer (0.5 m ethanol-
amine, 0.5 m NaCl, pH 8.3) for 2 h. Finally, beads were washed
twice in 0.1 M Tris-HCI (pH 8). Beads were stored in 20% etha-
nol. For co-immunoprecipitation, cells were lysed in immuno-
precipitation buffer (20 mm Tris-HCI, pH 7.4, 150 mm NaCl,
5 mm MgCl,, 0.5% Nonidet P-40, 10 mm S-glycerolphosphate,
0.5 mm Na,VO,, 10% glycerol, EDTA-free protease inhibitor).
Immunoprecipitation from total cell lysates was carried out for
2 hat 4 °C with GFP-fused nanobeads. The beads were washed
five times with immunoprecipitation buffer lacking Nonidet
P-40, and eluted proteins were finally heated in SDS-Laemmli
buffer at 95 °C and analyzed by immunaoblotting.

RAS Proteins and Monoclonal Antibody against ERAS—AIl
RAS-like proteins, including ERAS, were purified following the
same protocol as described (29). The monoclonal anti-ERAS
antibody was custom-generated (Biogenes, Berlin, Germany)
via immunization of mice with a purified N-terminal peptide of
rat ERAS and thereafter purified from the supernatant of the
respective hybridoma cell line by a protein A column (GE
Healthcare). The concentrated antibody solution (~3 mg/ml)
was supplemented with 10% glycerol and stored at —20 °C.

Subcellular Fractionation of HSCs by Differential Centri-
Jugation—A differential centrifugation protocol according to
Taha et al. (30) was used in this study to fractionate HSCs.

DNA Methylation Analysis of ERAS Promoter—A genome-
wide DNA methylation analysis from quiescent and early acti-
vated HSCs was used to analyze DNA methylation changes dur-
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FIGURE 1. Differential transcription of genes related to the RAS family in
quiescent versus activated H5Cs in primary culture. qPCR analysis of RAS-
related genes in freshly isolated HSCs from rat liver (d0) and after ex vivo

cultivation for 8 days (d8) (n = 3, ttest; *, p < 0.05; **, p < 0.001). Error bars, S.E.

ing HSC activation (31). The methylation data were visualized
using the UCSC genome browser (University of California,
Santa Cruz, CA). Verification of DNA methylation changes was
performed by direct bisulfite sequencing. DNA from freshly
isolated and cultured HSCs was isolated using the DNeasy
blood and tissue kit (Qiagen) and subjected to bisulfite conver-
sion by the EpiTect bisulfite kit (Qiagen). Bisulfite primers for
ERas were designed using the MethPrimer online tool (32) cov-
ering a part of the promoter region (ERas 328 bp forward,
5'-GTTGGG GGT AGG GAGTAT TTT AAT-3"; ERas 328 bp
reverse, 5'-CTC AAA ATT AAA AAA AAA AAA AAA TAA
CC-3'). Bisulfite PCR was performed using the Maxima Hot
Start PCR Master Mix (Thermo Scientific) together with 20 ng
of bisulfite-modified DNA and 0.6 pmol/liter primer. After
activation at 95 °C, a PCR protocol with denaturation at 95 °C,
annealing at 55 °C, and elongation at 72 °C was used for 40
cycles. The PCR products were purified and sequenced at the
DNA sequencing facility of Heinrich-Heine University. DNA
methylation was quantified by the Mquant method as described
(33). The height of the thymine peak at a CpG dinucleotide was
subtracted from the average signal of 10 surrounding thymine
peaks to quantify DNA methylation at this site. For the ERas
methylation analysis, we calculated the mean DNA methylation
of five CpG sites in the ERas promoter region.

Results

Expression of ERAS in Quiescent but Not Activated HSCs—To
investigate the impact of RAS proteins on HSCs, we first inves-
tigated the expression profile of various members of the Ras
family in quiescent versus activated rat HSCs by qPCR. Freshly
isolated primary HSCs were cultivated on plastic dishes for up
to 8 days, where they become activated upon ex vivo culture and
undergo myofibroblast transition (4). HSCs were analyzed at
day 8 (d8) in comparison with unseeded HSCs (d0) as represen-
tative of the activated and quiescent state, respectively. Inter-
estingly, among the different members of the Ras family, ERas
was specifically expressed in quiescent HSCs and strongly
down-regulated during HSC activation (Fig. 1). In addition, we
applied a probe based TagMan real-time PCR to monitor ERas
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expression at the different time points of H5C cultivation
(do, d1, d2, d4, and d8) and obtained comparable results
(supplemental Fig. 51). In contrast, HRas expression decreased
only slightly in HSCs (d8). In contrast, the gene expressions of
MRas, RRas, RalA, and Rap2A were up-regulated in activated
HSCs, whereas other genes, including KRas and NRas, were
expressed but did not significantly differ between day 0.and day
8(Fig. 1}. Collectively, these data indicate a switch from ERas to
MBRBas, RBas, RalA, and Rap2A expression during HSC
activation,

Generation and Validation of Specific Monoclonal Antibod-
ies against Rat ERAS—ERAS contains an N-terminal extension
upstream of its GTP-/GDP-hinding (G) domain that is unigue
among the RAS family (23). As depicted in Fig. 24, there is a
significant difference between Howo sapiens (his) and Rartus
norvegicus (rn) ERAS proteins regarding their N terminus (Fig,
2A). Therefore, we purified the N terminus of R. norvegicus
ERAS and generated antibodies against this unique ERAS
region. Four clones of monoclonal antibodies (mAbs) were
obtained and examined for anti-ERAS specificity. Immunoblot
analysis of RAS proteins overexpressed in and purified from
E. coli showed that clone mAb 6.5.2 clearly detected rat ERAS
but none of the other members of the RAS family (Fig. 2B). The
selectivity of mAb 6.5.2 against H. sapiens ERAS and R. norve-
gicus ERAS proteins was tested by using COS-7 and MDCKII
cell lysates overexpressing H. sapiens ERAS and R. norvegicus
ERAS as EYFP fusion proteins, respectively. As shown in Fig.
2C, mAb 6.5.2 only recognized rat ERAS (Fig. 24). We next
tested mAb 6.5.2 in confocal immunofluorescence analysis by
overexpressing EYFP- and FLAG-tagged ERAS variants in
MDCKII cells. As depicted in Fig. 2D, mAb 6.5.2 shows a clear
specificity against full-length rat ERAS and recognized neither
H. sapiens ERAS nor R. norvegicus ERAS lacking the N-termi-
nal extension (rnERAS*™). Taken together, mAb 6.5.2 was val-
idated as a rat-specific anti-ERAS antibody suitable for both
immunoblotting and immunofluorescence analysis.

Among Various Rat Liver Cell Types, ERAS Protein Is Only
Expressed in Quiescent HSCs—The mAb 6.5.2 was used to ana-
lyze the presence of ERAS protein in typical liver cell popula-
tions. Therefore, total cell lysates of freshly isolated HSCs,
parenchymal cells, Kupffer cells, and sinusoidal liver endothe-
lial cells from rat liver were used for immunoblot analysis.
Interestingly, ERAS was detected as a 25 kDa band in HSCs but
notin other liver cell types (Fig. 34). Consistent with the mRNA
expression data (Fig. 1), the amount of ERAS protein was dras-
tically reduced during the activation process of HSCs, thereby
correlating with the loss of GFAP (Fig. 3B), which marks quies-
cent HSCs. In contrast, the myofibroblast marker a-smooth
muscle actin became detectable in cultured HSCs from day 4.
Moreover, confocal imaging of HSCs revealed that ERAS was
mainly cytosolic, which was, in contrast to GFAP, still detecta-
ble in cultivated HSCs, although at much lower amounts as
compared with day 0 (Fig. 3C). Noteworthy, in subcellular frac-
tions of HSCs (d0), ERAS was predominantly found in the light
membrane fraction (Golgi apparatus, smooth endoplasmic
reticulum, and various organelles) and to a minor extent in the
heavy membrane fraction (plasma membrane and rough endo-
plasmic reticulum) and in the nucleus (Fig. 3D). Collectively,
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ERAS was detectable in quiescent HSCs, and its protein levels
diminished remarkably during HSC activation.

Protein-Protein Interaction Profiling Identifies PI3Ka as a
Specific Effector of Rat ERAS—Members of the RAS family
GTP-binding proteins act as molecular switches that transduce
extracellular signals to intracellular responses via activation of
effector proteins. To gain insights into the effector binding
specificity downstream of rat ERAS, FLAG-tagged constructs
of HRAS and ERAS were overexpressed in COS-7 cells, and
total cell lysates were used for pull-down experiments. For pull-
down analysis, five major RAS effector proteins were employed
(i.e. CRAF-RBD, RALGDS-RA, PLCe-RA, PI3Ka-RBD, and
RASSF5-RA) (23), which were all produced in E. coli as GST
fusion proteins. Interestingly, we found that ERAS, in compar-
ison with HRAS, preferentially and most strongly bound to
PI3Ka, whereas only a modest interaction was observed with
RASSF5 and CRAF (Fig. 44). Unlike HRAS, no ERAS associa-
tion with RALGDS and PLCe was detectable (Fig. 4A). Thus,
ERAS and HRAS interact with and probably activate a specifi-
cally non-overlapping set of effector proteins.

Similar to HRAS and NRAS, ERAS contains conserved C-ter-
minal motifs for posttranslational modifications, a farnesyla-
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tion- and palmitoylation-like HRAS (23). ERAS has an N-ter-
minal extension with various motifs and shows a critical amino
acid deviation, a serine at position 50 instead of a glycine
(Gly-12 in HRAS), which makes ERAS GAP-insensitive (23).
These properties may influence physical interaction of ERAS
with PI3K and its downstream signaling. Therefore, we gener-
ated and analyzed different ERAS variants, lacking either the N
terminus (ERAS*Y) or conserved cysteines for palmitoylation
(ERAS®®) or both (ERAS*™5'%) (Fig. 4B). First, we investigated
binding of ERAS variants to the catalytic subunit of PI3K«. The
obtained data revealed that all ERAS variants were able to asso-
ciate with PI3Ka-RBD (Fig. 4C, top). This suggests that the N
terminus of ERAS and its C-terminal modification by palmitoy-
lation are not essential for the association of PI3Ka-RBD with
the G domain of ERAS.

To examine the signaling activity of ERAS variants toward
AKT via PI3K and mTORC2 pathways, we next monitored the
phosphorylation states of AKT using specific anti-phospho-
AKT (threonine 308 and serine 473) antibodies. It is notewor-
thy that ERAS strongly activated AKT and induced its phos-
phorylation at two distinct sites (i.e. at Thr-308 by PI3K-PDK1
(p-AKT™3%%) and at Ser-473 by mTORC2 (p-AKT®'"3; Fig. 4C,
8403
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bottom)). Interestingly, in comparison with ERAS wild type
(WT), the ERAS variants, most notably the truncated N termi-
nus (ERAS*M), the palmitoylation-deficient variants with two
cysteines 220 and 222 replaced with serines (ERAS*®), and a
combination of both variants (ERAS*™55), elicited a signifi-
cantly reduced AKT phosphorylation, especially of p-AKT>*7,
which is indicative of mTORC2 activity. These data indicate
that both the ERAS N terminus and its plasma membrane
anchorage via palmitoylation are essential and critical for AKT
activation via the PI3K and mTORC?2 axis, although the forma-
tion of the GTP-bound state and the interaction with PI3K were
not affected.

ERAS-PI3Ka/8-AKT and mTORC2-AKT Axis Are Highly
Activated in Quiescent HSCs—Our findings suggest that the
catalytic subunit of PI3K is a candidate effector downstream of
ERAS. There are four isoforms of the p110 catalytic subunit of
PI3K, p110a, p110B, p1107y, and p1108, raising a question about
the p110 isoform specificity in ERAS-PI3K interaction in HSCs.
mRNA expression analysis data revealed that the « isoform of
PI3K did not change remarkably between quiescent and acti-
vated HSCs, whereas the mRNA levels of the 8 and & isoforms
increased in the course of the HSC activation (Fig. 4D). At the
protein level, however, a and vy isoforms were found at clearly
higher levels in quiescent HSCs as compared with the 8 isoform
(Fig. 4E). Upon HSC activation, the protein levels of 8 isoforms
and, to a certain extent, also & isoforms increased, whereas a
decrease in o and vy isoforms was observed (Fig. 4E). Next, we
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investigated the interaction of ERAS with the four PI3K iso-
forms in co-immunoprecipitation experiments using ERAS
overexpression in COS-7 cells. Wild type and a constitutive
active variant of HRAS (HRASY" and HRASY'?) were used as
controls. Data shown in Fig. 4F demonstrated that not only
PI3Ke, but also the & isoform, co-immunoprecipitated with
ERAS. Notably, PI3K8 appeared to strongly bind HRASY'? (Fig.
4F). Thus, cell-based investigations confirmed the interaction
between ERAS and PI3Ka, which is consistent with our data
obtained under cell-free conditions (Fig. 44).

In the next step, we monitored the AKT phosphorylation
states and found that quiescent HSCs at day 0 and, to a certain
extent, at day 1, as compared with activated HSCs, exhibited
much higher p-AKT**"* and p-AKT" levels, representing
mTORC2 and PI3K-PDK1 activity, respectively (Fig. 4G). In
addition, we also analyzed the phosphorylation states of
FOXOI and STAT3, two other signaling molecules that have
been suggested to be downstream of ERAS (34). Interestingly,
in ERAS-expressing quiescent HSCs, we observed high levels of
STATS3 phosphorylation at Tyr-705 and of FOXO1 phosphor-
ylation at Ser-256 (Fig. 4G). Thus, it is obvious that ERAS sig-
naling toward PI3K-PDKI and mTORC?2 pathways activates
AKT and maybe also STAT3 but inactivates FOXO1 in order to
maintain HSCs in their quiescent state.

ERAS Does Not Actively Impact the MAPK Pathway—In the
next step, we investigated the interaction of ERAS with CRAF-
RBD and the MAPK pathway in quiescent versus activated
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HSCs. Both wild-type ERAS and its palmitoylation-deficient
variant (ERAS®®) strongly bound to CRAF-RBD, although with
considerably lower affinity as compared with the constitutive
active HRASY'? variant (Fig. 54). This binding was, however,
weaker for ERAS*™ and ERAS*™*'% both lacking the N-termi-
nal extension. It is important to note that the latter variants are
efficiently expressed and also exist in GTP-bound forms (Fig.
4C). The same is true for HRAS™™, which was expressed to a
similar level as HRASY'? (Fig. 4C). However, its GTP-bound
level was much lower due to its ability to hydrolyze GTP nor-
mally, therefore resulting in low amounts of HRAS™" in the
CRAF-RBD pull-down experiment (Fig. 54). Most remarkably,
expression of ERASY" in COS-7 cells clearly led to a strong
reduction of p-MEK1/2 and p-ERK1/2 levels that were far
below those obtained with vector control and the HRAS vari-
ants (Fig. 54). Notably, similar effects were observed for all
ERAS variants analyzed (ERAS™™, ERAS®'S, and ERASN/5/5),

In addition, we analyzed the binding property of rat ERAS to
cellular RAF isoforms (ARAF, BRAF, and CRAF) by overex-
pressing and immunoprecipitating EYFP-tagged ERAS from
COS-7 total cell lysates. As controls, we used HRASYT and
HRASY'?, Fig, 5B shows that ERAS, compared with HRASY"?,
bound weakly only to ARAF and CRAF, which is consistent
with the data obtained with CRAF-RBD in pull-down experi-
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ments (Fig. 54). Thus, we conclude that ERAS can be excluded
as an activator of RAF proteins and thus of the MAPK pathway.

The MAPK Pathway Is Highly Dynamic in Activated HSCs—
Our data showed that ERAS is endogenously expressed in qui-
escent HSCs and does not seem to be an activator of the MAPK
pathway under overexpression conditions in COS-7 cells.
Therefore, we analyzed the activity of the MAPK pathway in
HSCs following their activation. First, we analyzed the expres-
sion of Raf, MEK, and ERK isoforms in quiescent versus acti-
vated HSCs by qPCR. As indicated in the legend to Fig. 5C, the
overall mRNA levels were very similar except for the low
expression of BRaf in both quiescent and activated HSCs (Fig.
5C). For further examination of the role of the MAPK pathway
in HSC activation, we looked at the protein levels of phosphor-
ylated (i.e. activated) versus total MEK1/2 and ERK1/2. As
shown in Fig. 5D, expression of MEK1/2 increased strongly in
the course of the HSC activation as compared with the rela-
tively constant amounts of ERK1/2. The level of ERK1 (44 kDa)
was much higher than ERK2 (42 kDa). In contrast, the amounts
of the RAF isoforms and total RAS were highest in quiescent
HSCs (day 0) and decreased during HSCs activation (Fig. 5D).
Most remarkably, we observed an increase in p-MEK1/2 and
p-ERK1/2, especially p-ERK2, suggesting increased activation
of the MAPK pathway in activated HSCs (Fig. 5D). In contrast,
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and ERK1/2 as well a3 ytubulin served as loading controls.

the amounts of the RAF isoforms and total RAS were the high-
est in quiescent HSCs (day 0) and subsequently decreased dur-
ing HSC activation (Fig. 50). Taken together, it seems that
HSCs reciprocally utilize distinct pathways downstream of
ERAS to maintain their fate (fe PI3K-PDK1 and mTORC2
pathways could be activated by ERAS in quiescent HSCs, and
the MAPK pathway could be activated by RAS in activated
HSCs).

ERAS Contributes fo Repression of YAP Activity and Thus
May Counteract Activation of Quiescent HSCs—In vitra pro-
tein-protein interaction studies revealed that ERAS, like HRAS,
directly interacts with RASSF5 (Figs. 44 and 6A4). It has been
reported that RASSES enables the HIPPO pathway (via MST2/
STK3) to respond to and integrate diverse cellular signals by
acting as a positive regulator of MST2/STK3 (35). A recent
study revealed a role of YAP, the central effector of the HIPPO
pathway during H5C activation (13}; thus, we analyzed whether
ERAS activates the HIPPO pathway, which may lead to phos-
phorylation and proteolytic degradation of YAP (supplemental
Figs. S2and S3 A). We further investigated whether YAP and its
target genes are expressed in activated rat HSCs. To address the
first question, we used COS-7 cells, which normally contain
significant amounts of YAP and its phosphorylated form
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(p-YAP®'?7; Fig. 6B; see vector control). Interestingly,

p-YAP®* and YAP levels were considerably reduced when rat
ERAS was overexpressed (Fig. 68 and supplemental Fig. 52),
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Error bars, S.E.

strongly indicating that ERAS activated the HIPPO pathway in
COS-7 cells. Similar results were obtained with the HRAS vari-
ants (Fig. 6B8). Importantly, we next probed YAP and p-YAP*'?”
in HSC lysates and detected them in activated HSCs (day 8) but
not in quiescent HSCs (Fig. 6C). Consistently, mRNA analysis
further revealed that Mstl/2 (mammalian orthologues of
Hippo) isoforms were expressed in both states but with more
elevated levels of Mstl as compared with Mst2. Yap and its
target genes, Ctgf (connective tissue growth factor) and Notch2,
exhibited a distinct increase in their expression levels after HSC
activation (Fig. 6D). Moreover, the effector binding domain
(switch regions) of ERAS differs considerably from those of
HRAS in critical residues, which may determine the specificity
of ERAS binding to its effectors (23) (supplemental Fig. S3B).
Interestingly, we found that mutation of two surface-exposed
residues (H70Y/Q75E) in the effector binding region of ERAS
(ERAS®™) abolishes the binding affinity for RASSF5 as com-
pared with wild-type ERAS (supplemental Fig. S3C). These
findings indicate that ERAS needs specific residues that are not
conserved within HRAS to interact with RASSF5. To monitor
the activity of the ERAS-RASSF5-MST1/2-LATS1/2-YAP cas-
cade downstream of mutated ERAS, we next analyzed the levels
of YAP protein in total cell lysates. Consistently, we detected
larger amounts of YAP under conditions when the RASSF5
binding-deficient ERAS mutant (ERAS®™") was overexpressed
(supplemental Fig. S3, D and E). These data further support the
idea that ERAS is upstream of the HIPPO-YAP pathway. Col-
lectively, activation of the HIPPO pathway appears to keep
HSCs in their quiescent state, whereas YAP clearly may play a
role in the activation and eventually further development of
HSCs. YAP is obviously repressed in quiescent HSCs poten-
tially mediated through ERAS-RASSF5 signaling.
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Increased DNA Methylation of the ERAS Locus Is Associated
with ERAS Gene Silencing in Activated HSCs—To characterize
possible mechanisms responsible for the down-regulation of
ERas expression in activated HSCs, epigenetic analysis of the
promoter region of the rat ERas gene was conducted. Evalua-
tion of a previously performed genome-wide DNA methylation
analysis showed an increase of CpG methylation at the ERas
promoter of ~18% during early HSC activation (Fig. 74). More
detailed bisulfite-sequencing analysis during in vitro HSC acti-
vation revealed a significant increase in promoter DNA meth-
ylation, which correlates with the drastic decrease in ERas
expression in HSCs during their activation (Figs. 1 and 78 and
supplemental Fig. S1). Of note, the overall degree of promoter
DNA methylation increased from 65.5 to ~80% at day 7 of HSC
culture. To investigate the functional impact of ERas promoter
methylation, we examined whether the DNA methyltransferase
inhibitor 5-AZA could restore ERAS expression in activated
HSC. Therefore, we cultivated primary rat HSC for 3 days,
such that the levels of ERas mRNA were down-regulated
(supplemental Fig. S1). Atday 8 of HSC activation (and 4 days of
5-AZA treatment), we analyzed ERAS expression. As indicated
in Fig. 7C, 5-AZA treatment restored ERas expression by
~4-fold in activated HSC. To test whether ERas expression is
also regulated via histone modifications, such as histone acety-
lation, we treated HSCs with 5 um suberoylanilide hydroxamic
acid (histone deacetylase inhibitor). As indicated in Fig. 7C,
suberoylanilide hydroxamic acid treatment alone was not suf-
ficient to rescue ERas expression. Taken together, our data
indicate that the profound decrease of ERas expression but not
NRas and other Ras-related genes, such as RRas and Rap2A
(data not shown), during HSC activation may be caused by epi-
genetic gene silencing,

JOURNAL OF BIOLOGICAL CHEMISTRY 8407

47



Chapter III

The Role of ERAS in Quiescent Hepatic Stellate Cells

Quiescent " Activation / Differentiation Activated
. . . HSCs
HGF LIF1 ERAS RAS RAS +— +—PDGFNGF1
| T _ } T | SATB
¥
cMET | mSINT PI3Kaw/d F{A?EFE CFiAFI -SPRY1  CRAF RASSF5
! mTORC2  PDK1  MST1/2  p-MEK1/2 p-MEK1/2  MST1/2 AKT
| | mTOR
B i ! ! ! ¥
s JAK p—A‘I-il'I""" p-AKT™  LATS1/2 p-EEle p-EEinz LATS1/2
|
p-STAT3 p-FOX0O1 mTORC1  p-YAP™™ ELK1 ELK1 YAP
| Survival | | Transiation | | GO arrest | | Proliferation, Development |
Lipid synthesis

| Vitamin A storage, Maintanance of the stem cell niche, Immunregulatory functions|

Liver regeneration
Liver Injury responses

FIGURE B. Schematic view of the proposed model on reciprocal ERAS/RAS-dependent signaling pathways in quiescent versus activated H5Cs (for
details, see “Discussion”). ECM, extracellular matrix; iGF, insulin-like growth factor; LIFT, leukemia inhibitory factor; TSC, tuberous sclerosis

Discussion

In this study, we found ERAS specifically expressed in one
type of liver-resident cells, HSCs. The presence of ERas mRNA
was detected in quiescent HSCs but not in activated HSCs. In
contrast, other RAS-related genes, such as RRas, MRas, RalA,
and Rap2A, were up-regulated during HSC activation. ERAS
protein was detected in quiescent HSCs but not in other liver
cell types, and ERAS was considerably down-regulated dur-
ing HSC activation (d4 and d8). To elucidate the functions of
ERAS in quiescent HSCs, we sought ERAS-specific effectors
and the corresponding downstream pathways. Interaction
analyses with a set of RAS effectors showed that ERAS pref-
erentially interacts with PI3Ka and activates the PI3K-
PDKI1-AKT axis. The prominent AKT phosphorylation by
mTORC2 in quiescent HSCs suggests that mTORC2-AKT
acts as a candidate pathway mediates signaling downstream
of ERAS. Interestingly, in quiescent HSCs, ERAS does not
show any activity toward the MAPK cascade, which is the
opposite in activated HSCs. The MST1/2-LATS1/2-YAP
(HIPPO pathway) results in inactivation and proteosomal
degradation of YAP if activated, for example, by RAS and
RASSFs. The fact that YAP was hardly detectable in quies-
cent HSCs and also in COS-7 cells expressing ERAS, as well
as the interaction between ERAS and RASSF5, suggests that
ERAS may act as an activator of the HIPPO pathway in qui-
escent HSCs. Consistently, we detected both YAP protein
and its up-regulated target genes in activated HSCs.

Role of the PI3K-AKT-mTORC1 Activity in Quiescent HSCs—
Transient expression of ERAS in COS-7 cells and endogenous
ERAS expression in quiescent HSCs strongly correlate with
high levels of AKT phosphorylated at Thr-308 and Ser-473
through PDK1 and mTORC2, respectively. Protein interaction
and immunoprecipitation analysis further revealed that ERAS
physically interacts with PI3K« and also PI3K4 (Fig. 4, Cand F).
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Thus, in quiescent HSCs, we propose ERAS as a regulator of the
PI3K-PDK1-AKT-mTORCI axis. This axis is involved in vari-
ous processes, including cell cycle progression, autophagy, apo-
ptosis, lipid synthesis, and translation (36-40). The latter is
controlled by mTOR-mediated activation of S6 kinase, which in
turn phosphorylates different substrates, such as ribosomal
protein S6, mTOR itself at Ser-2448, and mSIN1 at Thr-86, an
upstream component of mTORC2 (Fig. 8) (41-43). Previous
studies have shown that quiescent HSCs produce and secrete a
significant amount of HGF (44, 45), which is known to regulate
hepatocyte survival (46). HGF production and secretion is
modulated by the mTORCI1-56 kinase pathway (47). Apart
from the retinoid transport from hepatocyte to HSCs, the
mTORCI activity may influence de nove lipid synthesis in
HSCs. mTORCI might promote lipid synthesis in HSCs
through sterol regulatory element-binding protein (SREBP)
and peroxisome proliferative-activator receptor-y (PPARY)
(48). In this regard, it has been shown that curcumin inhibits
SREBP expression in cultured HSCs by modulating the activi-
ties of PPARy and the specificity protein-1 (SP1), thereby
repressing LDLR expression, which blocks a proposed LDL-
induced HSC activation (49). Thus, the AKT-mTORCI-
SREBP/PPARvy pathway appears to play a critical role in lipid
metabolism that is obviously required together with other path-
ways to regulate HSC fate.

Recently, Kwon et al. (50) have shown that in mouse embry-
onic stem cells overexpression of ERAS induces SP1 activation
through the JNK pathways. However, it remains to be
addressed whether INK-SP1 signaling is also a downstream tar-
get of endogenous ERAS in HSC.

Activity of the mTORC2-AKT-FOXO1 Axis in Quiescent
HSCs—In comparison with mTORCI, the regulation of
mTORC2 is less understood (51). For example, the TSC1-TSC2
complex can physically associate with mTORC2 but not with
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mTORCI, which has been suggested to promote mTORC2
activity (52). Our findings indicate that ERAS may act as an
activator of the mTORC?2 pathway. Exogenous ERAS has been
shown to promote phosphorylation of both AKT (Ser-473) and
FOXOI (Ser-256) in induced pluripotent stem cells generated
from mouse embryonic fibroblasts (34). Thus, ERAS-AKT-
FOXOL1 signaling may be important for somatic cell repro-
gramming. We detected high levels of p-AKT*"? and
p-FOXO1%**® in quiescent HSCs endogenously expressing
ERAS (Fig. 4G). Phosphorylated FOXOI, sequestrated in the
cytoplasm, cannot translocate to the nucleus, where it binds to
gene promoters and induces apoptosis (53). Interestingly, a
possible link between ERAS and mTORC2 may be mSINI,
which appears to be an upstream component and modulator of
mTORC2 activity (54). It has been reported that mSIN1 con-
tains a RAS-binding domain with some homology to that of
CRAF (55). Taken together, the ERAS-mTORC2-AKT-
FOXO1 axis may ensure the survival of HSCs in the space of
Dissé by interfering with programmed cell death (Fig. 8).

Role of the HGF-JAK-STAT3 Axis in Quiescent HSCs—
Ectopic expression of ERAS stimulates phosphorylation of
STAT3 probably downstream of leukemia inhibitory factor
(LIF) (34). ERAS may compensate for lack of LIF to support the
induced pluripotent stem cell generation (34). Moreover, the
LIF-STAT3 axis is essential for keeping mouse stem cells undif-
ferentiated in cultures and regulates self-renewal and pluripo-
tency of embryonic stem cells (56). Phosphorylated STAT3
(p-STATS3) has been shown to directly interact with FOXO1/3
transcription factors and regulates their translocation into the
nucleus (57). Consistently, we detected high levels of p-STAT3
and p-FOXOI1 in quiescent HSCs (Fig. 4G), which may control
survival, self-renewal, and multipotency of quiescent HSCs. In
addition, stimulation of the HGF receptor (c-MET), which is
expressed in HSCs, results in JAK activation and phosphoryla-
tion of STAT3 (1, 58). Interestingly, HGF is a target gene of
IL6-STAT3 signaling (59, 60). Therefore, an autocrine HGF-
JAK-STATS3 signaling may also account for STAT3 phosphor-
ylation in quiescent HSCs (Fig. 8). However, determination of
the presence and activity of a LIF-STAT3 axis in HSCs requires
further investigation.

Quiescent HSCs Display a Locked RAS-MAPK Signaling
Pathway—In quiescent HSCs, only basal levels of activated
(phosphorylated) MEK and ERK could be observed, although
all components of the RAS-RAF-MEK-ERK axis were
expressed (Figs. 1 and 5 (C and D)). There are several explana-
tions for the strongly reduced activity of RAS-MAPK signaling
in quiescent HSCs (Fig. 8). (i) External stimuli, such as PDGFA
and TGFpI1, are absent in healthy liver. These growth factors
are strong activators of the MAPK pathway in activated HSCs
(7,8). (ii) An intracellular inhibitor, like special AT-rich binding
protein 1 (SATB1), which is specifically expressed in quiescent
HSCs and down-regulated during HSC activation (61), is pres-
ent. Interestingly, SATB1 has been shown to be a strong inhib-
itor of the RAS-MAPK pathway that may block this signaling in
quiescent HSCs (61). (iii) MicroRNAs (miRNAs), especially
miRNA-21, may play a role in the reciprocal regulation of the
RAS-MAPK pathway in quiescent versus activated HSCs. Up-
regulated miRNA-21 in activated HSCs results in MAPK acti-
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vation, which is based on depletion of SPRY1 (sprouty homolog
1), a target gene of miRNA-21 (62) and a negative regulator of
the RAS-MAPK pathway (63).

Biological Functions of PI3K-AKT Pathway Regarding Differ-
ent pl110 Isoforms—The catalytic PI3K isoforms p110« and -8
are reported to be ubiquitously expressed, whereas the pres-
ence of p110y and -8 is restricted mainly to hematopoietic cell
types (64—67). We identified ERAS as an activator of AKT by
interacting with p110a and moderately also with p1106 (Fig.
4F). Our RNA and protein analyses indicated high levels of
pl10aly in quiescent HSCs and elevated levels of p110B/8 in
activated HSCs (Fig. 4, D and E). Wetzker and colleagues (68)
reported that retinoic acid treatment can stimulate expression
of p110+y, but not p110/8, in U937 cells, a myelomonocytic cell
line. Quiescent HSCs store high levels of retinoid acids as retinol
esters in their lipid droplets, which may elicit the same function in
HSCs by up-regulation of p110y. Khadem et al. (69) have shown
that HSCs also express the p1106 isoform and that p1105 defi-
ciency in HSCs prevents their activation and their supportive roles
in T, expansion in mice infected with visceral leishmaniasis.
Therefore, the high level of the p1108 isoform in activated HSCs
may correlate with its immunoregulatory functions.

Epigenetic Regulation of ERAS Expression in HSCs—Unlike
other RAS proteins, ERAS is GAP-insensitive and refractory to
inactivation by RASGAP proteins (21, 23). This raises the ques-
tion about the potential mode(s) of ERAS regulation. Because
ERAS is not ubiquitously expressed and seems to be limited to a
few cell types, we proposed that ERAS is mainly regulated at the
transcriptional level as described before for gastric cancers (70).
Our epigenetic studies of the ERas promoter revealed that its
DNA methylation increases (up to 18%) during HSC activation
(Fig. 7, A and B). Moreover, treatment with DNA methyltrans-
ferase inhibitor induced re-expression of ERas in culture-acti-
vated HSCs (Fig. 7C). Consistently, ERas expression was also
induced in certain gastric cell lines by the DNA methyltrans-
ferase inhibitor (70). Collectively, our findings clearly indicate
that DNA methylation is one of the mechanisms suppressing
expression of ERas during activation of HSCs. Conceivably,
ERas-specific microRNAs may also control mRNA degradation
and translation of ERas when HSC activation is induced.

Cellular Signaling Signature of Activated HSCs—In vitro cul-
turing of hepatic stellate cells changes their gene expression
profile and cellular properties, thereby stimulating the activa-
tion of HSCs (1, 31, 71, 72). HSCs typically lose their lipid drop-
lets and expression of GFAP and elicit the synthesis of colla-
gens, matrix metalloproteinases (MMP2, -9, and -13), and
a-smooth muscle actin as important differentiation markers (2,
11). Collectively, during this process, HSCs alter their quiescent
characteristics and develop into myofibroblast-like cells, which
are recognized as proliferative, multipotent, and migratory cells
(6,73, 74). Comprehensive mRNA analysis of various RAS family
members revealed that RRas, MRas, RalA, and Rap2A were up-
regulated during HSC activation (Fig. 1). These genes may also
play a role in the coordination of cellular processes, which are
required for activation and differentiation of HSCs, such as polar-
ity, motility, adhesion, and migration. Interestingly, RRAS has
been implicated in integrin-dependent cell adhesion (75). Of note,
in endothelial cells, the RRAS-RIN2-RABS5 axis stimulates endo-
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cytosis of B, integrin in a RAC1-dependent manner (76). On the
other hand, the muscle RAS oncogene homolog (MRas), an RRAS-
related protein, is up-regulated during HSC activation. Among the
different members of the RAS family, only MRAS can interact with
SHOC?2 in a ternary complex with protein phosphatase 1, which
dephosphorylates autoinhibited CRAF and thereby activates the
CRAF-MEK-ERK cascade (77). These findings and data obtained
in this study suggest that MRAS may be responsible for the high
levels of p-MEK and p-ERK in activated HSCs due to RAF kinase
activation. RAP proteins, including RAP2A, are involved in differ-
ent cellular processes and play pivotal roles in cell motility and cell
adhesion (78, 79). Recently, it has been shown that RAP2A repre-
sents a novel target gene of p53 and a regulator of cancer cell
migration (80). Moreover, expression of RAP2A in cancer cells
results in secretion of two matrix metalloproteinases (MMP2 and
-9) and AKT phosphorylation at Ser-473, which promotes tumor
invasion (80). Notably, p53 is up-regulated in activated HSCs (81).
Thus, we speculate that binding of p53 to RAP2A promoter may
result in transcription of RAP2A in activated HSCs and may stim-
ulate secretion of MMPs, which remodels the extracellular matrix
and facilitates migration of HSCs in the space of Dissé.
Proliferation, Growth, and Differentiation of Activated
HSCs—In comparison with quiescent HSCs, activated HSCs
are proliferative cells and can pass through cellular checkpoints
(82). One of the candidate pathways is the RAF-MEK-ERK cas-
cade that can be stimulated via different growth factors. Con-
sistent with previous studies, we detected high levels of p-MEK
and p-ERK in culture-activated HSCs (7, 83). Three scenarios
may explain the elevated RAF-MEK-ERK activity in activated
HSCs. (i) As discussed above, MRAS with SHOC?2 and protein
phosphatase 1 is able to activate the CRAF-MEK-ERK pathway
(80). Phospho-ERK translocates to the nucleus and phosphor-
ylates different transcriptional factors, including Etsl and
c-Myc, thereby eliciting cell cycle progression and prolifera-
tion. The cytoplasmic p-ERK alternatively phosphorylates
Mnk1 and p90RSK and thereby promotes protein synthesis and
cell growth (84, 85). (ii) PDGF and insulin-like growth factor 1
are the most potent mitogens for activated HSCs and induce
activation of MAPK pathways (7, 86). (iii) The expression of
SATBI, a cellular inhibitor of the RAS-RAF-MEK-ERK path-
way, significantly declines during HSC activation (61).
Putative Role of the ERAS-RASSF5-MST1/2-LATS1/2-YAP
Axis in HSCs—We observed a moderate interaction between
ERAS and RA of RASSF5A (Fig. 64). Previously, we showed
that the switch I region of ERAS is important for ERAS-RASSF5
interaction, and mutation in this region impairs ERAS binding
to RASSF5 (23). RASSF proteins are recognized as specific RAS
effectors with tumor suppressor function (87, 88). MST1/2,
which are expressed in HSCs, interact with and form het-
erodimers with RASSF1/5A and W45 through their SARAH
(SAV/RASSF/HPO) domain (89). This complex phosphory-
lates and activates LATS1/2, which in turn promotes phos-
phorylation, sequestration, and proteasomal degradation of
YAP in the cytoplasm (supplemental Fig. S34) (90,91). YAPisa
transcriptional co-activator that promotes transcription of Ctgf
and Notch2, which are involved in cell development and differ-
entiation (92-95). It has been shown that the HIPPO-YAP
pathway plays a distinct role in differentiated parenchymal and
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undifferentiated liver progenitor cells, respectively. Most
recently, van Grunsven and colleagues (13) reported that the
transcriptional co-activator of YAP controls in vitro and in vivo
activation of HSCs. Consistent with this study, we observed
hardly any YAP protein in quiescent HSCs in comparison with
activated HSCs (Fig. 6C). Thus, our data suggest that YAP deg-
radation through RASSF5-MST1/2-LATS1/2 may be triggered
by binding and recruitment of RASSF5 to the plasma mem-
brane via ERAS-GTP (Figs. 6B and 8).

Cell Survival and Anti-apoptotic Pathways—One of the most
important features of activated HSCs is their survival and anti-
apoptotic response during liver injury and regeneration (96).
Here, we demonstrated elevated p-AKT levels not only in qui-
escent but also in activated HSCs, the latter leading to pro-
survival responses, such as phosphorylation of FOXO1 (Fig.
4G). Additionally, we detected moderate levels of p-STATS3,
implying that the JAKI-STAT3-50CS3 axis may control the
anti-apoptotic pathway in activated HSCs.

Last, the high levels of YAP transcriptional activity in acti-
vated HSCs, which might result from the inhibitory activities of
AKT and mTOR on MST1/2 (97), may contribute to increased
cell survival, proliferation, and development of activated HSCs
(13) by causing antagonistic effects to the pro-apoptotic RAS-
RASSF5-MST1/2-LATS1/2 pathway (Fig. 8).

Functional Similarity between Human and Rat ERAS—We
observed sequence deviations between human and rat ERAS,
especially at their extended N termini (Fig. 24). Therefore, we
compared the signaling activity of different human and rat
ERAS variants. However, so far, we did not observe remarkable
functional differences (Fig. 4 and supplemental Fig. S4). ERAS
function in human diseases is poorly understood. Its expression
profile ranges from embryonic stem cells to tumors (20, 21).
Yamanaka and colleagues (21) have introduced ERAS as a crit-
ical factor for the maintenance of growth of embryonic stem
cells. Kaizaki et al. (20) reported ERAS expression in 45% of
gastric cancer tissues and observed a correlation between
ERAS-negative patients and poorer prognosis. In addition,
ERAS may promote transforming activity and chemoresistance
in neuroblastoma patients (19).

In summary, expression analysis revealed a different pattern
of RAS and RAS-signaling components in quiescent versus acti-
vated HSCs. Among different RAS family members, we identi-
fied ERas, p110a, and p110y to be mainly expressed in quies-
cent HSCs and MRas, RRas, Rap2A, RalA, p110B, p1108, Yap,
Ctgf, and Notch2 expressed in activated HSCs. Our data suggest
an increased activity via PI3BK-AKT-mTORCI and HIPPO sig-
naling in quiescent HSCs. Therefore, this study adds ERAS sig-
naling to the remarkable features of quiescent HSCs, and the
cellular outcome of these signaling pathways would maintain
the quiescent state of HSCs via inhibition of proliferation
(HIPPO pathways, G,, arrest) and apoptosis (PI3K-PDK1 and
mTORC2) (see Fig. 8). On the other hand, activated HSCs
exhibit YAP-CTGF/NOTCH2 and RAS-RAF-MEK-ERK activ-
ity, which are both involved in HSC proliferation and develop-
ment (Fig. 8). Finally, we would like to point out that our study
is based on the ex vive activation of HSCs, which is a known
model for the in vivo activation process (13, 72). However, there
may be some aspects that could be different in the ex vivo model
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and the in vivo situation. Therefore, future studies should also
address the ERAS networking in an in vivo model of liver injury.
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Supplementary TABLE S1. Primer sequences (5" to 37) for gPCR using the SYBR Green system obtained from

PrimerBank (http://pga.mgh.harvard.edu/primerbank) and modified to match with rat sequences.

Genes Forward primers Reverse primers

ARAF CCTCCTGCTAGTGGGGCT GAGTCATAGACACTCATGCCATCC
BRAF TTTCCTGGCTTACTGGAGAGG GAAGTTGTGGGTTGTCAGAGG
CRAF GATGGCAAACTCACGGATTCTT TGCAAGCTCATCCCATTCCG
CTGF GACCCAACTATGATGCGAGCC CCCATCCCACAGGTCTTAGAAC
ERAS CCTTGCCAACAAAGTCTAGCATC GCCAGCATCTTTGCATTGTGC
ERK1 ACCACATTCTAGGTATACTGGGT AGTTTCGGGCCTTCATGTTAAT
ERK2 GGTTGTTCCCAAACGCTGACT CAACTTCAATCCTCTTGTGAGGG
HPRTI AAGTGTTGGATACAGGCCAGA GGCTTTGTACTTGGCTTTTCC
HRAS CGTGAGATTCGGCAGCATAAA GACAGCACACACTTGCAGCT
KRAS CAAGAGTGCCTTGACGATACA CCAAGAGACAGGTTTCTCCATC
MEK1 AATGGTGGAGTGGTGTTCAAG CGGATTGCGGGTTTGATCTC
MEK2 GTTACCGGCACTCACCATCAAC CCTCCAGCCGCTTCCTCTG
MRAS TGTTCCCAGTGACAACCTTCCC GGGTCGTAGTCAGGCACGAA
MST1 CAGTGATAGGGACACCGTTTTG GGGCTTTCCTTCAGCCATTTC
MST2 CCGGCGCCCAAGAGTAAG GCAACAACTTGACCAGATTCCT
NOTCH2 GAGAAGAACCGCTGTCAGAATGG GGTCGAGTATTGGCAGTCCTC
NRAS ACTGAGTACAAACTGGTGGTGG TCGGTAAGAATCCTCTATGGTGG
PIK3CA pl10a CCACGACCATCTTCGGGTG ACGGAGGCATTCTAAAGTCACT
PIK3CA pl10p CTATGGCAGACACCCTTGACAT CTTCCCGGGGTACTTCCAACT
PIK3CA pl10y CACTGGAGTCACCGGCTAC GACACTGTGAAAACGCTCTCG
PIK3CA p110& GTAAACGACTTCCGCACTAAGA GCTGACATGCAATAAGCCA
RALA AGGAAGACTACGCTGCAATTAGA GTAGCTGCAAAGGACTCCATC
RALB AGCCCTGACGCTCCAGTTC GGCTGTGTCCAGGATGTCTATCT
RAPIA ATGCGTGAGTACAAGCTAGTG AATCTACTTCGACTTGCTTTCTGT
RAP2A ATGCGCGAGTACAAAGTGGT GCGACGAGTCCACCTCGAT
RHEB AAGTCCCGGAAGATCGCCA GGTTGGATCGTAGGAATCAACAA
RRAS GACCCCACCATTGAGGATTCC CTGTCGTTAATGGCAAACACCA
TC21 TGTGACGGACTATGATCCAACC ACTGCTCTCTCATGGCTCCAA
YAP TGAGATCCCTGATGATGTACCAT ATGTTGTTGTCTGATCATTGTGATT
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Supplementary FIGURE S1. ERAS re-expression in culture-activated hepatic stellate cells. Ex-vive
cultivation of HSCs resulted in a strong decrease in ERAS expression,
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Supplementary FIGURE 52, ERAS and HRAS overexpression led to an overall reduction of the YAP
protein. Densitometric quantification (Image) software) of Y AP immunoblots (Fig, 6B) showed that ERAS
expression resulted in a significant reduction of the YAP protein level in the same extend as observed for
wild-type HRAS.
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Supplementary FIGURE 53. ERAS-mediated activation of the HIPPO pathway may be mediated by
its physical interaction with RASSFS. (A) Schematic view of the ERAS-RASSF5-MST1/2-LATS1/2-
YAP pathway. (B) Sequence deviations and generated mutations (arrow heads) in the switch | and the
interswitch regions of ERAS and HRAS, (C) Densitometric evaluations (Image] software) of the pull-down
experiment of the ERAS™, ERAS>! and ERAS®” by the RAS association domain of RASSF5 (Fig. 6A)
revealed that the mutations in ERAS switch I region affects its interaction with RASSF5. (D)
Overexpression of the ERAS and the HRAS variants in COS-7 cells differentially affect YAP degradation.
(E) Densitometric evaluations (Imagel software) of YAP immunoblot (Fig. S3D) revealed the weaker

impact of the switch 1 mutations on the YAP protein degradation where more Y AP protein (i.e., less HIPPO
activity) was observed.
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Supplementary FIGURE 54. Comparison of the signaling activity of human and rat ERAS variants.
Immunoblot analysis of total cell lysates were derived from transfected COS-7 cells with FLAG-tagged
human and rat ERAS variants, HRASYT and HRASY¥'2, Total cell lysates were analyzed for the
phosphorylation level of AKT (p-AKTT*® and p-AKT%*"), MEK1/2 (p-MEK1/2) and ERK1/2 (p-
ERK1/2). Total amounts of AKT, MEKI1/2, and ERK1/2 were applied as loading controls. (B)
Densitometry analysis (Imagel software) revealed that N-terminal truncated and palmitoylation-dead
variants of rat and human ERAS showed lower levels of p-AKT"™" and p-AK TS,
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Chapter 14
Classical Rho Proteins: Biochemistry
of Molecular Switch Function and Regulation

Si-Cai Zhang, Kazem Nouri, Ehsan Amin, Mohamed S. Taha,
Hossein Nakhaeizadeh, Saeideh Nakhaei-Rad, Radovan Dvorsky,
and Mohammad Reza Ahmadian

Abstract Rho family proteins are involved in an array of cellular processes by
modulating cytoskeletal organization, transcription, and cell cycle progression. The
signaling functions of Rho family proteins are based on the formation of distinctive
protein—protein complexes with their regulators and effectors. A necessary precon-
dition for such differential interactions is an intact molecular switch function,
which is a hallmark of most members of the Rho family. Such classical Rho
proteins cycle between an inactive GDP-bound state and an active GTP-bound
state. They specifically interact via a consensus-binding sites called switch I and I1
with three structurally and functionally unrelated classes of regulatory proteins,
such as guanine nucleotide dissociation inhibitors (GDIs), guanine nucleotide
exchange factors (GEFs), and GTPase-activating proteins (GAPs). Extensive stud-
ies in the last 25 years have provided invaluable insights into the molecular
mechanisms underlying regulation and signal transduction of the Rho family pro-
teins. In this chapter, we will review common features of Rho protein regulations
and highlight specific aspects of their structure—function relationships.

Keywords Effector « GAP « GDI « GEF » Rho GTPase * Switch region
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Dbl Diffuse B-cell lymphoma

DH Dbl homology domain

DHR1&2 DOCK-homology regions 1 and 2

ERM Ezrin/radixin/moesin

GAPs GTPase-activating proteins

GDIs Guanine nucleotide dissociation inhibitors
GDP Guanosine diphosphate

GEFs Guanine nucleotide exchange factors

GIn Glutamine

Gly Glycine

GTP Guanosine triphosphate

p75NTR Neurotrophin receptor p75

PAKI1 p21-activated kinase 1

PH Pleckstrin homology domain

PKA Protein kinase A

PKC Protein kinase C

P-loop Phosphate-binding loop

X Any amino acid

14.1 General Introduction

The role of the Rho family proteins as signaling molecules in controlling a large
number of fundamental cellular processes is largely dependent on a functional
molecular switch between a GDP-bound, inactive state and a GTP-bound, active
state (Dvorsky and Ahmadian 2004). This function underlies a so-called GTPase
cycle consisting of two different, slow biochemical reactions, the GDP/GTP
exchange and the GTP hydrolysis. The cellular regulation of this cycle involves
guanine nucleotide exchange factors (GEFs), which accelerate the intrinsic nucle-
otide exchange, and GTPase-activating proteins (GAPs), which stimulate the
intrinsic GTP hydrolysis activity (Cherfils and Zeghouf 2013). Rho protein function
requires both posttranslational modification by isoprenyl groups and membrane
association. Therefore, Rho proteins underlie a third control mechanism that directs
their membrane targeting to specific subcellular sites. This mechanism is achieved
by the function of guanine nucleotide dissociation inhibitors (GDIs), which bind
selectively to prenylated Rho proteins and control their cycle between cytosol and
membrane. Activation of Rho proteins results in their association with effector
molecules that subsequently activate a wide variety of downstream signaling
cascades (Bishop and Hall 2000; Burridge and Wennerberg 2004), thereby regu-
lating many important physiological and pathophysiological processes in eukary-
otic cells (Etienne-Manneville and Hall 2002; Heasman and Ridley 2008) (see
Chap. 16). In the following, the biochemical properties of the Rho proteins and
their regulatory cycles will be described in detail. Figure 14.1 schematically

summarizes the regulatory mechanism of the Rho proteins. €0
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downstream
signal tranduction

G domain G domain
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Fig. 14.1 Molecular principles of regulation and signaling of Rho Proteins. Most members of the
Rho family act as molecular switches by cycling between an inactive, GDP-bound state and an
active GTP-bound state. They interact specifically with four structurally and functionally unrelated
classes of proteins: (a) In resting cells, guanine nucleotide dissociation inhibitors (GDIs) seques-
trate the Rho proteins from the membrane by binding to the lipid anchor and create an inactivated
cytosolic pool. (b) In stimulated cells, different classes of membrane receptors activate guanine
nucleotide exchange factors (GEFs), which in turn activate their substrate Rho proteins by
accelerating the slow intrinsic exchange of GDP for GTP and turn on the signal transduction. (c)
The active GTP-bound Rho proteins interact with and activate their targets (the downstream
effectors) to evoke a variety of intracellular responses. (d) GTPase-activating proteins (GAPs)
negatively regulate the switch by stimulating the slow intrinsic GTP hydrolysis activity of the Rho
proteins and turn off the signal transduction

14.2 Rho Family and the Molecular Switch Mechanism

Members of the GTP-binding proteins of the Rho family have emerged as key
regulatory molecules that couple changes in the extracellular environment to
intracellular signal transduction pathways. So far, 20 human members of the Rho
family have been identified, which can be divided into six distinct subfamilies
based on their sequence homology: (1) Rho (RhoA, RhoB, RhoC); (2) Rac (Racl,
Raclb, Rac2, Rac3, RhoG); (3) Cdc42 (Cdc42, G25K, TC10, TCL, RhoU/Wrchl,
RhoV/Chp); (4) RhoD (RhoD, Rif); (5) Rnd (Rndl, Rnd2, Rnd3); (6) RhoH/TTF
(Boureux et al. 2007; Jaiswal et al. 2013a, b; Wennerberg and Der 2004).

Rho family proteins are approximately 21-25 kDa in size typically containing a
conserved GDP/GTP-binding domain (called G domain) and a C-terminal hyper-
variable region ending with a consensus sequence known as CAAX (C is cysteine,
A is any aliphatic amino acid, and X is any amino acid). The G domain consists of

five conserved sequence motifs (G1-G5) that are involved in nucleotide binding and 61
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hydrolysis (Wittinghofer and Vetter 2011). In the cycle between the inactive and
active states at least two regions of the protein, switch I (G2) and Switch II (G3),
undergo structural rearrangements and transmit the “OFF” to “ON” signal to
downstream effectors (Fig. 14.1) (Dvorsky and Ahmadian 2004). Subcellular
localization of Rho proteins at different cellular membranes, that is known to be
critical for their biological activity, is achieved by a series of posttranslational
modifications at a cysteine residue in the CAAX motif, including isoprenylation
(geranylgeranyl or farnesyl), endoproteolysis, and carboxyl methylation (Roberts
et al. 2008).

A characteristic region of Rho family GTPases is the insert helix (amino acids
124-136, RhoA numbering) that may play a role in effector activation and down-
stream process (Thapar et al. 2002). Although the function of the insert helix has not
been elucidated yet, it has been reported to be involved in the Rho-dependent
activation of ROCK (Zong et al. 2001), phospholipase D (Walker and Brown
2002) and mDia (Lammers et al. 2008; Rose et al. 2005), and in the
Rac-dependent activation of p67phox (Joneson and Bar-Sagi 1997; Karnoub
et al. 2001; Nisimoto et al. 1997) and Plexin B1 (Bouguet-Bonnet and Buck 2008).

Although the majority of the Rho family proteins are remarkably inefficient GTP
hydrolyzing enzymes, in quiescent cells they rest in an inactive state because the
GTP hydrolysis is in average two orders of magnitude faster than the GDP/GTP
exchange (Jaiswal et al. 2013a, b). Such different intrinsic activities provide the
basis for a two-state molecular switch mechanism, which highly depends on the
regulatory functions of GEFs and GAPs that directly control ON and OFF states of
classical type of Rho proteins (Fig. 14.1). Eleven out of twenty members of the Rho
family belong to these classical molecular switches, namely RhoA, RhoB, RhoC,
Racl, Rac2, Rac3, RhoG, Cdc42, G25K, TC10, and TCL (Jaiswal et al. 2013a, b).

The atypical Rho family members, including Rnd1, Rnd2, Rnd3, Rac1b, RhoH/
TTF, Wrchl, RhoD, and Rif, have been proposed to accumulate in the GTP-bound
form in cells due to various biochemical properties (Jaiswal et al. 2013a, b). Rndl1,
Rnd2, Rnd3, and RhoH/TTF represent a completely distinct group of proteins
within the Rho family (Riou et al. 2010; Troeger et al. 2013), as they do not
share several conserved and essential amino acids, including Gly-12 (Racl num-
bering) in the G1 motif (also called phosphate-binding loop or P-loop) and GIn-61
(Racl numbering) in the G3 motif or switch II region. The role of these residues in
GTP hydrolysis is well described for Ras oncogene in human cancers (Chaps. 6 and
7). Thus, they can be considered as GTPase-deficient Rho-related GTP-binding
proteins (Fiegen et al. 2002; Garavini et al. 2002; Gu et al. 2005; Li et al. 2002) (see
also Chap. 15). Another example is Rac1b, which is an alternative splice variant of
Racl and contains a 19-amino acid insertion next to the switch II region (Jordan
et al. 1999). Raclb exhibits different biochemical properties as compared to the
other Rac isoforms (Fiegen et al. 2004; Haeusler et al. 2006), including an accel-
erated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis
(Fiegen et al. 2004). RhoD and Rif are involved in the regulation of actin dynamics
(Fan and Mellor 2012; Gad and Aspenstrom 2010) and exhibit a strikingly faster

nucleotide exchange than GTP hydrolysis similarly to Raclb and thus persist 6
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mainly in the active state under resting conditions (Jaiswal et al. 2013a, b). Wrchl,
a Cdc42-like protein that has been reported to be a fast cycling protein (Shutes
et al. 2006), resembles in this context Raclb, RhoD, and Rif (Jaiswal et al. 2013a,
b). These atypical members of the Rho family with their distinctive biochemical
features do not follow the classical switch mechanism and may thus require
additional forms of regulation.

14.3 Guanine Nucleotide Dissociation Inhibitors

Multiple functions have been originally described for the Rho-specific GDIs,
including the inhibition of the GDP/GTP exchange (Hiraoka et al. 1992; Ohga
et al. 1989), the intrinsic and GAP-stimulated GTP hydrolysis (Chuang et al. 1993;
Hancock and Hall 1993; Hart et al. 1992), and the interaction with the downstream
effectors (Pick et al. 1993). However, it is generally accepted that in resting cells,
RhoGDIs target the isoprenyl anchor and sequester Rho proteins from their site of
action at the membrane in the cytosol (Boulter and Garcia-Mata 2010; Garcia-Mata
et al. 2011).

RhoGDIs undergo a high affinity interaction with the Rho proteins using an
N-terminal regulatory arm contacting the switch regions and a C-terminal domain
binding the isoprenyl group (Tnimov et al. 2012). In contrast to the large number of
RhoGEFs and RhoGAPs, there are only three known RhoGDIs in human
(DerMardirossian and Bokoch 2005). RhoGDI-1 (also called RhoGDlIa) is ubiqui-
tously expressed (Fukumoto et al. 1990), whereas RhoGDI-2 (also called RhoGDI,
LyGDI, or D4GDI) is predominantly found in hematopoietic tissues and lympho-
cytes (Leonard et al. 1992; Scherle et al. 1993) and RhoGDI-3 (also called
RhoGDIy) in lung, brain, and testis (Adra et al. 1997; Zalcman et al. 1996).

Despite intensive research over the last two decades, the molecular basis by
which GDI proteins associate and extract the Rho GTPases from the membrane
remains to be investigated. The neurotrophin receptor p75 (p75° %) and ezrin/
radixin/moesin (ERM) proteins have been proposed to displace the Rho proteins
from the RhoGDI complex resulting in reassociation with the cell membrane
(Takahashi et al. 1997; Yamashita and Tohyama 2003). Another regulatory mech-
anism is RhoGDI phosphorylation. RhoGDI has been shown to be phosphorylated
by serine/threonine p2l-activated kinase 1 (PAKI1), protein kinase A (PKA),
protein kinase C (PKC), and the tyrosine kinase Src, thereby decreasing the ability
of RhoGDI to form a complex with the Rho proteins, including RhoA, Racl, and
Cdc42 (DerMardirossian et al. 2004, 2006).
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14.4 Guanine Nucleotide Exchange Factors

GEFs are able to selectively bind to their respective Rho proteins and accelerate the
exchange of tightly bound GDP for GTP. A common mechanism utilized by GEFs
is to strongly reduce the affinity of the bound GDP, leading to its displacement and
the subsequent association with GTP (Cherfils and Chardin 1999; Guo et al. 2005).
This reaction involves several stages, including an intermediate state of the GEF in
the complex with the nucleotide-free Rho protein. This intermediate does not
accumulate in the cell and rapidly dissociates because of the high intracellular
GTP concentration leading to the formation of the active Rho-GTP complex. The
main reason therefore is that the binding affinity of nucleotide-free Rho protein is
significantly higher for GTP than for the GEF proteins (Cherfils and Chardin 1999;
Hutchinson and Eccleston 2000). Cellular activation of the Rho proteins and their
cellular signaling can be selectively uncoupled from the GEFs by overexpressing
dominant negative mutants of the Rho proteins (e.g., threonine 17 in Racl and
Cdc42 or threonine 19 in RhoA to asparagine) (Heasman and Ridley 2008). Such
mutations decrease the affinity of the Rho protein to nucleotide resulting in a
so-called dominant negative behavior (Rossman et al. 2002). As a consequence,
dominant negative mutants form a tight complex with their cognate GEFs and thus
prevent them from activating the endogenous Rho proteins.

RhoGEFs of the diffuse B-cell lymphoma (Dbl) family directly activate the
proteins of the Rho family (Cook et al. 2013; Jaiswal et al. 2013a, b). The prototype
of this GEF family is the Dbl protein, which was isolated as an oncogenic product
from diffuse B-cell lymphoma cells in an oncogene screen (Eva et al. 1988;
Srivastava et al. 1986), and has been later reported to act on Cdc42 (Hart
et al. 1991). The Dbl family consists of 74 members in human (Jaiswal
et al. 2013a, b) with evolutionary conserved orthologs in fly (23 members), yeast
(6 members), worm (18 members) (Schmidt and Hall 2002; Venter et al. 2001), and
slime mold (45 members) (Vlahou and Rivero 2006). Human Dbl family proteins
have recently been grouped into functionally distinct categories based on both their
catalytic efficiencies and their sequence—structure relationship (Jaiswal et al. 2013a,
b). The members of the Dbl family are characterized by a unique Dbl homology
(DH) domain (Aittaleb et al. 2010; Erickson and Cerione 2004; Hoffman and
Cerione 2002; Jaiswal et al. 2011; Viaud et al. 2012). The DH domain is a highly
efficient catalytic machine (Rossman et al. 2005) that is able to accelerate the
nucleotide exchange of Rho proteins up to 10’-fold (Jaiswal et al. 2011, 2013a,
b), as efficiently as the RanGEF RCCI1 (Klebe et al. 1995) and Salmonella
typhimurium effector SopE (see below) (Bulgin et al. 2010; Rudolph et al. 1999).
The DH domain is often preceded by a pleckstrin homology (PH) domain indicating
an essential and conserved function. A model for PH domain-assisted nucleotide
exchange has been proposed for some GEFs, such as Dbl, Dbs, and Trio (Rossman
et al. 2005). Herein the PH domain serves multiple roles in signaling events

anchoring GEFs to the membrane (via phosphoinositides) and directing them N
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towards their interacting GTPases which are already localized to the membrane
(Rossman et al. 2005).

In addition to the DH-PH tandem, Dbl family proteins are highly diverse and
contain additional domains with different functions, including SH2, SH3, CH,
RGS, PDZ, and 1Q domains for interaction with other proteins; BAR, PH FYVE,
C1, and C2 domains for interaction with membrane lipids; and other functional
domains like Ser/Thr kinase, RasGEF, RhoGAP, and RanGEF (Cook et al. 2013).
These additional domains have been implicated in autoregulation, subcellular
localization, and connection to upstream signals (Dubash et al. 2007; Rossman
et al. 2005). Spatiotemporal regulation of the Dbl proteins has been implicated to
specifically initiate activation of substrate Rho proteins (Jaiswal et al. 2013a, b) and
to control a broad spectrum of normal and pathological cellular functions (Dubash
et al. 2007; Hall and Lalli 2010; Mulinari and Hacker 2010; Mulloy et al. 2010;
Schmidt and Hall 2002). Thus, it is evident that members of the Dbl protein family
are attractive therapeutic targets for a variety of diseases (Bos et al. 2007; Loirand
et al. 2008; Vigil et al. 2010).

Apart from conventional Dbl family RhoGEFs there are two additional proteins
families, which do not share any sequence and structural similarity with each other.
The dedicator of cytokinesis (DOCK) or CDM-zizimin homology (CZH) family
RhoGEFs are characterized by two conserved regions, known as the DOCK-
homology regions 1 and 2 (DHRI and DHR2) domains (Meller et al. 2005;
Rittinger 2009). This type of GEFs employs their DHR2 domain to activate
specially Rac and Cdc42 proteins (Meller et al. 2005). Another Rho protein-
specific GEF family, represented by the SopE/WxxxE-type exchange factors, is
classified as type III effector proteins of bacterial pathogens (Bulgin et al. 2010).
They mimic functionally, but not structurally, eukaryotic GEFs by efficiently
activating Racl and Cdc42 and thus induce “the trigger mechanism of cell entry”
(see Chap. 4) (Bulgin et al. 2010; Rudolph et al. 1999).

14.5 GTPase-Activating Proteins

Hydrolysis of the bound GTP is the timing mechanism that terminates signal
transduction of the Rho family proteins and returns them to their GDP-bound
inactive state (Jaiswal et al. 2012). The intrinsic GTP hydrolysis (GTPase) reaction
is usually slow, but can be stimulated by several orders of magnitude through
interaction with Rho-specific GAPs (Eberth et al. 2005; Fidyk and Cerione 2002;
Zhang and Zheng 1998). The RhoGAP family is defined by the presence of a
conserved catalytic GAP domain which is sufficient for the interaction with Rho
proteins and mediating accelerated catalysis (Scheffzek and Ahmadian 2005). The
GAP domain supplies a conserved arginine residue, termed “arginine finger”, into
the GTP-binding site of the cognate Rho protein, in order to stabilize the transition
state and catalyze the GTP hydrolysis reaction (Nassar et al. 1998; Rittinger

et al. 1997). A similar mechanism is utilized by other small GTP-binding proteins -
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(Scheffzek and Ahmadian 2005), including Ras, Rab, and Arf, although the
sequence and folding of the respective GAP families are different (Ismail
et al. 2010; Pan et al. 2006; Scheffzek et al. 1997). Masking the catalytic arginine
finger is an elegant mechanism for the inhibition of the GAP activity. This has been
recently shown for the tumor suppressor protein DLCI, a RhoGAP, which is
competitively and selectively inhibited by the SH3 domain of pl120RasGAP
(Jaiswal et al. 2014),

RhoGAP insensitivity can be achieved by the substitution of either the catalytic
arginine of the GAP domain (Fidyk and Cerione 2002; Graham et al. 1999) or
amino acids critical for the GTP hydrolysis in Rho proteins, e.g., Glycine 12 and
Glutamine 61 in Racl and Cdc42 or Glycine 14 and Glutamine 63 in RhoA, which
are known as the constitutive active mutants (Ahmadian et al. 1997; Graham
et al. 1999). Most remarkably, a similar mechanistic strategy has been mimicked
by bacterial GAPs (see Chap. 4), such as the Salmonella typhimurium virulence
factor SptP, the Pseudomonas aeruginosa cytotoxin ExoS, and Yersinia pestis
YopE, even though they do not share any sequence or structural similarity to
eukaryotic RhoGAP domains (Evdokimov et al. 2002; Stebbins and Galan 2000;
Waurtele et al. 2001).

The first RhoGAP, pSORhoGAP, was identified by biochemical analysis of
human spleen cell extracts in the presence of recombinant RhoA (Garrett
et al. 1989). Since then more than 80 RhoGAP containing proteins have been
identified in cukaryotes, ranging from yeast to human (Lancaster et al. 1994;
Moon and Zheng 2003). The RhoGAP domain (also known as Bcr-homology,
BH domain) containing proteins are present throughout the genome and rarely
cluster in specific chromosomal regions (Peck et al. 2002). The majority of the
RhoGAP family members are frequently accompanied by several other functional
domains and motifs implicated in tight regulation and membrane targeting (Eberth
et al. 2009; Moon and Zheng 2003; Tcherkezian and Lamarche-Vane 2007).
Numerous mechanisms have been shown to affect the specificity and the catalytic
activity of the RhoGAPs, e.g., intramolecular autoinhibition (Eberth et al. 2009),
posttranslational modification (Minoshima et al. 2003), and regulation by interac-
tion with lipid membrane (Ligeti et al. 2004) and proteins (Yang et al. 2009).

14.6 Conclusions

Abnormal activation of Rho proteins has been shown to play a crucial role in
cancer, infectious and cognitive disorders, and cardiovascular diseases. However,
several tasks have to be yet accomplished in order to understand the complexity of
Rho proteins signaling: (1) The Rho family comprises of 20 signaling proteins, of
which only RhoA, Racl, and Cdc42 have been comprehensively studied so far. The
functions of the other less-characterized members of this protein family await
detailed investigation. (2) Despite intensive research over the last two decades,

the mechanisms by which RhoGDIs associate and extract the Rho proteins from the 66
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membrane and the factors displacing the Rho protein from the complex with
RhoGDI remain to be elucidated. (3) For the regulation of the 22 Rho proteins, a
tremendous number of their regulatory proteins (>74 GEFs and >80 GAPs) exist in
the human genome. How these regulators selectively recognize their Rho protein
targets is not well understood and majority of GEFs and GAPs in humans so far
remain uncharacterized. (4) Most of the GEFs and GAPs themselves need to be
regulated and require activation through the relief of autoinhibitory elements
(Chow et al. 2013; Eberth et al. 2009; Jaiswal et al. 2011; Mitin et al. 2007; Moskwa
et al. 2005; Rojas et al. 2007; Yohe et al. 2008). With a few exceptions (Cherfils and
Zeghouf 2013; Mayer et al. 2013), it is conceptually still unclear how such
autoregulatory mechanisms are operated. A better understanding of the specificity
and the mode of action of these regulatory proteins is not only fundamentally
important for many aspects of biology but is also a master key for the development
of drugs against a variety of diseases caused by aberrant functions of Rho proteins.
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Functional Cross-talk between Ras and Rho Pathways

A Ras-SPECIFIC GTPase-ACTIVATING PROTEIN (p120RasGAP) COMPETITIVELY INHIBITS
THE RhoGAP ACTIVITY OF DELETED IN LIVER CANCER (DLC) TUMOR SUPPRESSOR BY

MASKING THE CATALYTIC ARGININE FINGER™
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Background: The regulatory mechanism of the DLC1 tumor suppressor protein is unclear,
Results: Structure-function analysis revealed determinants for the selectivity, activity, and inhibition of DLC1 RhoGAP

function.

Conclusion: p120RasGAP competitively and selectively inhibits DLC1 by targeting its catalytic arginine finger.
Significance: This mechanistic study emphasizes the importance of the functional inter-relationships of GTPase-activating
proteins mediating cross-talk between the Ras and Rho pathways.

The three deleted in liver cancer genes (DLC1-3) encode
Rho-specific GTPase-activating proteins (RhoGAPs). Their
expression is frequently silenced in a variety of cancers. The
RhoGAP activity, which is required for full DLC-dependent
tumor suppressor activity, can be inhibited by the Src homology
3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we
comprehensively investigated the molecular mechanism under-
lying cross-talk between two distinct regulators of small GTP-
binding proteins using structural and biochemical methods. We
demonstrate that only the SH3 domain of p120 selectively inhib-
its the RhoGAP activity of all three DLC isoforms as compared
with a large set of other representative SH3 or RhoGAP proteins.
Structural and mutational analyses provide new insights into a
putative interaction mode of the p120 SH3 domain with the
DLC1 RhoGAP domain that is atypical and does not follow the
classical PXXP-directed interaction. Hence, p120 associates
with the DLC1 RhoGAP domain by targeting the catalytic argi-
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nine finger and thus by competitively and very potently inhibit-
ing RhoGAP activity. The novel findings of this study shed light
on the molecular mechanisms underlying the DLC inhibitory
effects of p120 and suggest a functional cross-talk between Ras
and Rho proteins at the level of regulatory proteins.

The Ras and Rho families of small GTP-binding proteins are
key transducers of a variety of cellular processes ranging from
reorganization of the cytoskeleton to transcriptional regulation
and control of cell growth and survival (1). Loss of the control
mechanisms and aberrant activation of Ras and Rho proteins
are one of the most common molecular alterations found in
cancer cells promoting tumor growth and metastasis (2-5).
Ras signaling stimulates diverse pathways and signals toward
Rho proteins, which are known to be required for cell trans-
formation by oncogenic Ras (6 —8). Emerging evidence sug-
gests that the GTPase-activating proteins (GAPs),” in partic-
ular p120RasGAP (also known as RAS p21 protein activator 1 or
RASAL; here called p120) and the Rho-specific p190ARhoGAP
(also known as ARHGAP35; here called p190), p200RhoGAP
(also known as ARHGAP32, p250GAP, GC-GAP, Rics, or Grit)
and deleted in liver cancer 1 (DLC1; also known as ARHGAP?7,
p122RhoGAP, or STARDI12), act as a linker between Ras and
Rho signaling pathways (9-11). GAPs are multifaceted and
multifunctional molecules (12, 13) and are the principal inacti-
vators of Ras and Rho signaling. They utilize a catalytic “argi-
nine finger” to stimulate the inefficient intrinsic GTP hydrolysis
reaction of these small GTP-binding proteins by several orders
of magnitude (14).

> The abbreviations used are: GAP, GTPase-activating protein; DLC, deleted in
liver cancer; SH, Src homology; SAM, sterile a motif; START, steroidogenic
acute regulatory related lipid transfer; aa, amino acids; tamra, tetrameth-
ylrhodamine; aSEC, analytical size exclusion chromatography; ITC, isother-
mal titration calorimetry.
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p120RasGAP Competitively Inhibits DLC RhoGAP

Frequent loss of DLCI gene expression was first described in
liver cancer (15) and later in breast, colon, gastric, prostate,
cervical, esophageal, and other cancers (16-18). DLCI1
RhoGAP function is required for the maintenance of cell mor-
phology and the coordination of cell migration (11, 19-21).
DLCI and its isoforms DLC2 (also known as ARHGAP37 or
STARD13) and DLC3 (also known as ARHGAP38 or STARDS)
consist of an N-terminal sterile & motif (SAM) domain, a cen-
tral phosphorylation region followed by the catalytic RhoGAP
domain, and a C-terminal steroidogenic acute regulatory
related lipid transfer (START) domain (see Fig. 14) (22, 23).
The SAM and GAP domains are linked by a serine-containing
region, which contains a recognition motif for the phosphoser-
ine/phosphothreonine-binding 14-3-3 adaptor proteins (22).
DLC1 has been reported to interact with tensin, talin, focal
adhesion kinase, and a-catenin (22, 24 —29) and with lipids (30).
However, the precise mechanism of DLCI regulation remains
unclear.

An emerging theme is that RhoGAPs, such as the OPHNI1
and GRAF1 (31, 32) and p50RhoGAP (33-36), require activa-
tion through the relief of autoinhibitory elements. These ele-
ments are collectively membrane-binding modules, including
BAR (Bin/Amphiphysin/Rvs), PH (pleckstrin homology), C1,
and Sec14 domains (31-33, 36). The SAM domain of DLC1 has
been suggested to act as an autoinhibitory domain of DLC1
RhoGAP activity in vitro and in vivo. SAM domain-deleted
DLC1 displayed enhanced catalytic activity for RhoA (20).
However, it is still unclear how such an autoregulatory mecha-
nism of DLC1 may operate.

p120 contains multiple domains with different functions (see
Fig. 1B) (37). Whereas the C terminus of p120 with the catalytic
GAP activity is responsible for Ras inactivation (38 -40), its
N-terminal Src homology 2 and 3 (SH2 and SH3) domains have
been suggested to possess an effector function (41-44). p120
functionally modulates Rho signaling by direct binding to two
Rho-specific GAPs, p190 and DLCI (9, 11, 45). The association
of p120 with the tyrosine phosphorylated p190 via its SH2
domain promotes Rho inactivation (45—47). Thus, p120 posi-
tively regulates the RhoGAP function of p190. Another mech-
anism, which connects the Ras and Rho pathways and regulates
the actin cytoskeleton, is dependent on the p120 SH3 domain
and controls Rho activation (41). This mechanism was later
revealed to involve DLC1 but not p190 (11). Here, the p120 SH3
domain (called p120°"*?) binds to the RhoGAP domain of DLC1
(called DLC19*") and inhibits the DLC1-dependent Rho inac-
tivation (11). Hereby, p120 acts as a negative regulator not only
for Ras but also for the GAP activity of DLC1. However, the
molecular mechanisms underlying these cross-talk phenomena
have not yet been elucidated.

In this study, we have explored the regulatory mechanism of
DLC1 at the molecular level, in particular its trans-inhibition by
p120°"?, We have characterized the selectivity of the interac-
tion between the DLC19*" and p120°"*? using a large number
of purified SH3 and RhoGAP proteins and identified structural
and functional determinants for the DLC1-p120 interaction.
This study provides deep insights into the underlying regula-
tory cross-talk between the Rho and Ras family of small GTP-
binding proteins.

6840 JOURNAL OF BIOLOGICAL CHEMISTRY

EXPERIMENTAL PROCEDURES

Constructs—Human Abr®*Y (aa 559-822), DLC1" (aa
1-1091), DLC1%*" (aa 609-878), DLC1®*™ (aa 1-96),
DLCI1%"*®T (aa 880-1079), DLC2*" (aa 644 -916), DLC3°A"
(aa 620 - 890), GRAF1°*" (aa 383-583), MgcRac“*" (aa 343—
620), Nadrin®*" (aa 245-499), OPHNI®*" (aa 375-583),
p50SAT (aa 198-439), p190“" (aa 1250-1513), N-terminal
truncated p120°"'?* (aa 129-1047); SH2-SH3-SH2-encoding
pl1205H232 (aa 129-447), p120°"? (aa 275-350), Src®'? (aa
77-140), and human RhoA (aa 1-181), Cdc42 (aa 1-178), and
Racl (aa 1-184) were amplified by standard PCR and cloned in
pGEX-4T1 and pGEX-4T1-NTEV, respectively. Constructs of
SH3 domain of Crk1®"® (aa 131-191), Grb25"*! (aa 1-55),
Grb25"32 (aa 159-217), Nck1®"'*! (aa 5-60), Nck1°'"%2 (aa
109-163), and Nck1%"?? (aa 173-262) were created as
described previously (48).

Site-directed Mutagenesis—Point mutations N311R; L313A;
W319G; and N311R,L313A,W319G in p120°""* and R677A in
DLCI9*" were generated using the QuikChange™ site-di-
rected mutagenesis kit (Stratagene) and confirmed by DNA
sequencing,.

Proteins—Escherichia coli BL21(DE3) pLysS, BL21(DE3)
CodonPlus-RIL, and Rosetta(DE3) strains containing the
respective plasmids (see constructs) were grown to an A, of
0.7 (37 °C at 140 rpm) and induced with 0.1 mm isopropyl -p-
thiogalactopyranoside overnight at 25 °C as described before
(49, 50). All proteins were isolated in a first step as glutathione
S-transferase (GST) fusion proteins by affinity chromatography
on a GSH-agarose column and in a second step by size exclu-
sion chromatography (Superdex S75 or S200) after proteolytic
cleavage of GST. GTP-binding proteins without nucleotide
(nucleotide-free form) or with tetramethylrhodamine-conju-
gated GTP (tamraGTP) were prepared as described before (49,
50). Concentrations of proteins were determined by Bradford
assay or absorbance at 280 nm using the extinction coefficient
deduced from the protein sequence. Purified proteins were
snap frozen in liquid nitrogen and stored at —80 °C.

Analytical Size Exclusion Chromatography (aSEC)—aSEC
for the detection of complex formation was performed for
DLC19*" and p120°"** on a Superdex 75 column (10/300) using
buffer containing 30 mm HEPES, pH 7.6, 5 mm MgCl,, 150 mm
NaCl, and 3 mm DTT. 10 um DLC1%*" was incubated with 15
M pl1205 for 5 min at 4 °C in the same buffer in a total vol-
ume of 150 pl. Before loading to an aSEC column, samples were
spun at 13,000 rpm at 4 °C to remove any particulate impurities.
The flow rate was maintained at 0.5 ml/min, and 500-pl frac-
tions were collected. Peak fractions were visualized by 15%
SDS-PAGE and subsequent Coomassie Blue staining,

Kinetics Measurements—All fluorescence measurements
were performed at 25 °C in a buffer containing 30 mm Tris-HCl,
pH 7.5, 10 mm K,HPO,/KH,PO,, pH 7.4, 10 mm MgCl,, and 3
mum DTT. The tamraGTP hydrolysis of Rho proteins (0.2 p1m)
was measured in the absence and presence of different amounts
of respective GAP proteins as described previously (49, 52). Fast
kinetics (<1000 s) were performed with a Hi-Tech Scientific
SF-61 stopped-flow instrument with a mercury xenon light
source and TgK Scientific Kinetic Studio software (version
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2.19). An excitation wavelength of 545 nm was used for tamra.
Emission was detected through a cutoff filter of 570 nm. Slow
kinetics (>1000 s) were measured on a PerkinElmer Life Sci-
ences spectrofluorometer (LS50B) using an excitation wave-
length of 545 nm and an emission wavelength of 583 nm. Data
were evaluated by single exponential fitting with the GraFit
program to obtain the observed rate constant (k) for the
respective reaction as described before (49, 52).

Isothermal Titration Calorimetry (ITC) Measurements—The
interaction of DLC19*" and p120°""* and analysis of DLC194"
variant and different p120°""* variants were studied by ITC
(MicroCal™ VP-1TC microcalorimeter) as described (48). All
measurements were carried out in 30 mum Tris-HCI, pH 7.5, 150
mum NaCl, 5 mm MgCl,, and 1 mwm tris(2-carboxyethyl)phos-
phine hydrochloride. The data were analyzed using Origin 7.0
software provided by the manufacturer.

Structural Analysis—To obtain insight into the residues
responsible for the binding of the SH3 domain of p120 and
RhoGAP domain of DLCI, docking of their corresponding
structures (Protein Data Bank code 2J05 (53) and Protein Data
Bank code 3KUQ, respectively), was performed with the pro-
gram PatchDock (54). From the 20 best scored models, we
selected the lowest energy model, which also has the Arg finger
Arg-677 at the interface, and used it for further refinement with
the program CHARMM (55). As the arginine finger is assumed
to be crucial for the formation of the complex, we thoroughly
explored its conformation in the course of refinement. Torsion
angles of its side chain were additionally set up according to the
Dynameomics rotamer library (56), and the energy of each
complex was minimized by 2000 steps using the adapted basis
Newton-Raphson method.

RESULTS

Low GAP Activities of the DLC Isoforms—Real time kinetic
measurements of the RhoGAP activities of the DLC isoforms
toward Cdc42, Racl, and RhoA were performed using purified
RhoGAP domains of the DLC proteins (Fig. 1) and fluorescent
tamraGTP. This GTP analog is sensitive toward conforma-
tional changes induced by GTP hydrolysis (52). As shown in
Fig. 2A, the very slow intrinsic tamraGTP hydrolysis of Cdc42
(inset) was markedly increased in the presence of the RhoGAP
domain of DLC1 (DLC19*"). Similar experiments were per-
formed under the same conditions with Racl and RhoA (Fig.
2B). Observed rate constants (k) of respective DLC154"
activities are presented in comparison with intrinsic hydro-
lysis rates as bars in Fig. 2B. DLC19" exhibited the highest
activity for RhoA (1,650-fold) and Cdc42 (332-fold) and the
lowest activity for Racl (75-fold). We next focused on the
differences among the DLC isoforms and measured the activ-
ities of DLC2 and DLC3 for Cdc42 (Fig. 2C). Obtained data
show that DLC2 and DLC3 exhibit 78- and 11-fold lower GAP
activities, respectively, as compared with that of DLCI1. Our
results indicate that the DLC family members are inefficient
GADPs, at least in vitro, with catalytic activities that are several
orders of magnitude lower than the activities of the RhoGAPs
p50and p190 (Fig. 2C) or other highly efficient RhoGAPs, such
as GRAF1 or OPHNI1 (32).
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A comparison of the obtained data on the DLC isoforms with
those of other RhoGAP family members raised the question of
whether the extremely low GAP activities of DLC proteins stem
from effects on either binding affinity (K,) or catalytic activity
(k..). Therefore, we measured the kinetics of tamraGTP
hydrolysis of Cdc42 at increasing concentrations of DLC194"
and GRAF1°*". The rate constants (k) of the fitted single
exponential decays increased in a hyperbolic manner as a func-
tion of GAP concentrations as described previously (52, 57).
We used Cdc4?2 in most experiments because of a large change
in fluorescence upon tamraGTP hydrolysis as compared with
Racl and RhoA. Fitting a hyperbolic curve to the points accord-
ing to Equation 1 led to the corresponding kinetic parameters

K, and k., (Fig. 2D).

kcat

Kq
' [oLar]

kobs = (Eq. 1)

Unlike the relatively similar K, values, there was a large differ-
ence in the k,,, values for the GTP hydrolysis reaction: 6.26 s~
for DLC1*"compared with 289 s~ ' for the highly efficient
GRAF19*", These data clearly indicate that the very low GAP
activity of the DLC proteins relies more on the catalytic activity
than on the binding affinity to Cdc42.

Insights into cis-Regulatory Modules of DLCI Function—To
examine the influence of other domains of DLC1 (Fig. 14) on its
GAP activity, we further measured tamraGTP hydrolysis of
Cdc42 stimulated by full-length DLC1 (DLC1"). As shown in
Fig. 34, DLC1" exhibited a strongly reduced GAP activity as
compared with the isolated DLC1*". The k,,,, values obtained
from single turnover kinetic data were 0.02 and 0.47 s~ s
respectively, and reveal that the DLC1" activity was 23.5-fold
lower than that of DLC19*" (Fig. 3B). This result strongly sup-
ports the previous notion that other regions of DLCI, such as
the SAM domain (20), may undergo an intramolecular interac-
tion with the GAP domain and thus contribute to its autoinhi-
bition in a cis-inhibitory manner.

To analyze whether the autoinhibitory effect is caused by N-
and C-terminal SAM and/or START domains of DLC1 (Fig.
1A4), we purified these domains and measured their effects on
the DLC19" activity in vitro. Using high concentrations of
SAM, START, or both (up to a 100-fold molar excess above the
GAP domain), we did not observe any significant inhibition of
the DLC1*" activity using tamraGTP hydrolysis of Cdc42
(Fig. 3C). The fact that the isolated SAM and START domains
did not reveal any GAP-inhibitory activity strongly suggests
that the autoinhibitory mechanism of DLC1 may require addi-
tional regions of the full-length protein. One possibility is the
serine-rich 14-3-3 binding region between the SAM and the
GAP domains (Fig. 14).

p120 SH3 as a Potent trans-Inhibitory Factor of the DLCI“*"
Activity—The SH3 domain of p120 has been reported as a novel
binding partner of DLC1 with GAP-inhibitory and growth sup-
pression activity (11). To monitor this effect in real time,
DLC19*" activity was measured in the absence and presence of
purified p120°""* under the same conditions as in the experi-
ments described above (Fig. 2). As shown in Fig. 44, DLC194"-
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FIGLRE 1. Schematic representation of domain organization and designed fragments of GAP (A} and 5H3 domain-containing proteins (8] used in this
study. The numbers indicate the N and C termini of the amino acids of the respective fragments. BAR, Binfdmphiphysin/Rvs; C1, cysteine-rich region; CC, cofled
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regulator of G-protein signaling; Sec 74, secretion and cell surface growth 14,

stimulated tamraGTP hydrolysis of Cded2 was drastically
reduced using a 10-fold excess of p120™"" over the DLC1%*
concentration. The respective k. value of 0.63 for DLC194
activity was reduced by 83-fold in the presence of p120°"** to
0.0076 s ! (Fig. 4B), which is close to the intrinsic tamraGTP
hydrolysis of Cdc42 (0.02 s '). These measurements were also
performed for RhoA and Racl using the same conditions as for
Cdc42 (Fig. 4B). Similarly, 247- and 15.5-fold reductions of the
DLC19*" activity for RhoA and Racl, respectively, were deter-
mined in the presence of a 10-fold molar excess of p1205"%, An
explanation for this large variation may be the significant dif-
ferences in DLC19" binding affinity for the three members of
the Rho family.

In the next step, we analyzed the inhibitory effect of p120°*
on the GAP activity of DLC2 and DLC3 toward Cdc42. Fig. 4C
shows that the catalytic GAP activity of purified DLC2%*" and
DLC3% was also inhibited in the presence of p120°""* but not

6842 JOURNAL OF BIOLOGICAL CHEMISTRY

as drastically as in the case of DLC19Y, The next question we

addressed was whether the 5H3 domain is freely accessible to
exert its inhibitory effect or whether other domains of p120 also
play a role in the inhibition of DLC GAP activity (Fig. 1). There-
fore, we purified the SH2-SH3-SH2-encompassing p1205H2-32
and N-terminal truncated p120*"'** proteins and analyzed their
DLC19*" inhibitory effects in direct comparison with isolated
p120°"%, Larger p120 fragments inhibited the DLC19" activity
but to a 19- and 10-fold lower extent than p120°** (Fig. 4D).

Taken together, our in vitro data demonstrate that (i)
pl20°" acts as a potent trans-inhibitory factor of the GAP
activity of the DLC isoforms and (ii) the SH3 domain of p120 is
not completely unmasked (freely accessible) in the presence of
other p120 domains, especially the adjacent SH2 domains.
Whether the N-terminal 128 amino acids play a role in this
regard remains unclear. Full-length p120 could not be purified
due to its instability.
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FIGURE 2_ Ineffichent GAP activities of the DLC isoforms. A, CdeaZ-tameaGTP (0.2 pu) was rapidly mixed with 5 g DL 1o monitor the GAP-stimulated
tamraG TP hydrolysis reaction of Cdoa2 in real time. Note the very tlow Intrinsic GTPase reaction of Cded 2 (inser) that was measured in the absence of GAP, Rate
constants (k.. ) were ohtained by single exponential fitting of the data. 8, the k_, _ values of GTP hydrolysis of Rho proteins (0.2 pm) measured in the presence
of DLC 1™ {5 uw) are reprasented as a column chart. Caleulatied -fold activation values were obtained by dividing the k. values of GAP-stimulated reactions by the
k:a wabues of the intrinsic reactions of respective GTPases. For convenience, the k., values are given above the bar charts. C, measured GAP activities of DL, DLCZ,
and DLC3 5w, respectively) toward Cded2 (0.2 s wene very low as compared with p1 50 and p190, D, the GTP hydrolysis of Cded2 (0,2 g was measured in the

esence of increasing concentrations of the msﬁth\ew domaine of DLCT and GRAF] [fnset). The dependence of the k., values of the GAP-stimulated GTP
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FIGURE 3. efs-Acting regulation of DLC15*" activity. A kinetics of the tamraGTP hydrolysis reaction of Cdhed 2 (0.2 ) stimulated by DLC1" (S juw) was much
shower (fser) than that stimulated by DUC™ (5 ), 8, the k., values, illustrated as a bar chart, showed that the GAP activity of DLCT" is reduced by 23.5-fold
as compared with that of the DLC1™™ but not compiletely inhibited as compared with the intrinsic GTPase reaction. For convenience, the k. values are given
above the bar cheavrts, €, the activity of DLCT%* (10 us) on tamraGTP hydrolysis of Cded2 (0.2 pw) was not significantly changed in the presence of a 100-fold
excess of SAM, START, or both domains |1 miw, respectively).
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FIGURE 4. p120*** as a potent inhibitor of the DLC GAP function. 4, kinetics of the tamraGTP hydrolysis reaction of Cded2 (02 po) stimulated by DLCS
(5 um) was reduced in the presence of a 10-fold excess of p120***? (50 um). The complete reaction is shown in the inset. B, DLC1**" activities toward Cdc42, RhoA,
and Rac1, measured under the same conditions as in A, are strongly inhibited by p120°*2, For convenience, the k,,,, values are given above the bar charts. C,
DLC3%* (5 um) was not inhibited by p120*"* (50 and 500 uwm) as efficiently as DLC1"" and DLC2%*" (5 um, respectively). D, p120°2*2 and p120*™'?% (40 um)
inhibited the activity of DLC®*" (10 um) but not as efficiently as p120°™ (40 pm).

Highly Selective Interaction between p120°"" and DLCI“*"— RhoGAP and SH3 domains of other proteins (Fig. 1). We mea-
The next issue we addressed was the selectivity of the p1205""*  sured the effect of p120°"" on the GAP activity of Abr, GRAF1,
toward DLC1%%". Therefore, we purified seven additional MgcRacGAP, Nadrin, OPHNI, p50, and p190 on the one hand
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FIGURE 5. Highly selective interaction between p120** and DLC12*", 4, p1 20% %inhibiting effect on seven additional RheGAPs (2 jw, respectively] was
measured using the tamraGTP hydrolysis reaction of Cded2 (0.2 s and p1 207 (20 and 200 s, respectively), pl120%7 inhibited only DLC1™ but not the

other RhohAPs, For convenience, the k., values are g"m:n above the bar ch
Imhibiting DLCT*" (10 us) was measured, Only p120™" inhibited DLC1T™ byl

and the effects of the SH3 domains of Crk1, c-Src, Grb2 (N- and
C-terminal SH3 domains), and Nckl (all three SH3 domains)
on the DLC19*" activity on the other hand. As summarized in
Fig. 5, neither did p120°"* inhibit the activity of other GAPs of
the Rho family (Fig. 54) nor was the DLC194" activity affected
by the presence of other SH3 domains (Fig. 5B). These data
clearly demonstrate that the p120°"*-mediated trans-inhibi-
tion of DLC isoforms is highly selective.

Potent DLCI Inhibition Due to High Affinity p120°3-
DLCI19" Complex Formation—In the next step, we character-
ized in more detail the interaction between pl120°"? and
DLC1%" as well as the inhibition of the DLC1%*" activity
induced by p120°""* using different qualitative and quantitative
biophysical and biochemical methods. aSEC is an accurate and
simple method to visualize high affinity protein-protein inter-
actions. p120°"* (9 kDa) and DLC1°*" (31 kDa) alone and a
mixture of both proteins were loaded on a Superdex 75 (10/300)
column, and eluted peak fractions were analyzed by SDS-
PAGE. Data summarized in Fig. 6A clearly illustrate that a mix-
ture of p120°"'* and DLC19*" shift the elution profile of the
respective protein domains to an elution volume of 10.5 ml,
indicating the formation of a complex between both proteins.
We next determined the inhibitory potency of p120°"* by
measuring DLC19*" activity at increasing concentrations of
p120°"%, An inhibitory constant (K;) of 0.61 pm was calculated
by fitting the Morrison equation for a tight binding inhibitor
(58) to individual k,, values plotted against different p1205*
concentrations (Fig. 6B). Furthermore, we measured the disso-
ciation constant of the p120°"*-DLC19*" interaction using
ITC. The results shown in Fig. 6C allowed the determination of
a stoichiometry of 1:1 and a dissociation constant (K,) of 0.6 pm
for the binding of p120°"* to DLC1°*" (Fig. 6C); this value
nicely resembles the K, value obtained from inhibition kinetics
(Fig. 6B). This binding affinity is remarkably high and unex-
pected considering the low micromolar range affinities of SH3
domains for their PXXP-containing proteins (59). Taken
together, these data strongly suggest that the mode of the
p120°"*-DLC19*" interaction most likely differs from the con-
ventional SH3 interaction with PXXP loop motifs as recently
published (48).
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arts. B, the effect of seven additional SH3 proteins (100 . respectively) on
t not the other SH3 domains.

Structural Insight into a Putative Binding Mode between
p120°" and DLCI“*"—The high nanomolar affinity of
p120°" for DLC19*" and the absence of a PXXP motif in
DLC194" strongly support the notion that the pl120°*-
DLC19*" interaction is mediated via a novel binding mecha-
nism. To gain insight into the structural basis of this interac-
tion, we first performed protein-protein docking of available
crystal structures of p120°"* (Protein Data Bank code 2J05) (53)
and DLC19*" (Protein Data Bank code 3KUQ) using the Patch-
Dock program (54). The model of the complex ranked as the
first among 20 resulting models fulfilled the criteria for a close
proximity of p120°"? to the catalytic arginine finger (Arg-677)
of the DLC19*" domain and was thus selected for refinement
by molecular modeling methods. Inspecting the refined model,
we identified three potential DLC19*" binding residues of
p120°"* (Asn-311, Leu-313, and Trp-319) that were closest to
the catalytic Arg-677 of DLC19*" (Fig. 74). We proposed that
mutation of these residues may impair binding of the SH3
domain, which otherwise masks the arginine finger of
DLC19*", Catalytic arginine is known to stabilize the transition
intermediate state of the hydrolysis reaction in the active center
of Rho proteins (Fig. 7B) (14, 60). This assumption also suggests
that p120 competitively inhibits DLC1 GAP function.

To validate our assumption, we performed mutational anal-
ysis of the above mentioned key residues at the p120°-
DLC1°*" interface: N311R, L313A, and W319G in p120°'"*
(single, double, and triple single point mutations) and R677A in
DLC1%*F, Expectedly, DLC19*" with the catalytic arginine
finger substituted to alanine was deficient in stimulating
tamraGTP hydrolysis of Cdc42 (data not shown) and most remark-
ably in associating with p120°""? (Fig. 8, A and B). The latter was
examined using two independent methods, ITC and aSEC.
Reciprocally, p1203H3MN3HRISIZANWIING) yag almost disabled
in inhibiting DLC1*" activity (Fig. 8E), most probably due to
its inability to bind to DLCI%AR (Fig. 8, Cand D). The analysis of
the single point mutations revealed that W319G substitution
had a minor effect on the association with (data not shown) and
on the inhibition of DLCS*" (Fig. 8F). p1205H3(N3URLIIIA) o the
other hand significantly abolished both the inhibitory effect of
p120°"* (Fig. 8F) and the complex formation with DLC19" (data
not shown) as compared with wild-type p120°"". Taken together,
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FIGURE 6. High affinity interaction between p120°"* and DLCT15*", 4, co-elution of a mixture of DLCT®* (10 i and p120°* (15 uw) (open circles) from a
Superdex 75 (10/300) as shown by SD5-PAGE [15%]) and Coomassie Brilllant Blue (CBE) staining (inset] indicates their complex formation. B, the activity of
CLCT™ (20 ) toward Cded? (0.2 ) was measured a1 increasing concentrations of p120™, and the obtained k., values were plotted against increasing
concentrations of the inhibitar p1 20°*. The K, value was obtained by non-linear regression based on the Morrison equation for tight binding inhibitors (58],
C,ITC analysis was performed by titrating DLCT™*" (20 ) with p120™7 (400 v, K, is the dissociation constant, and n is the stolchiornetry,
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FIGURE 7. Structural insight into & Putﬂhu binding mode between p120*"" and DLC1%*, A, molecular docking analyses were performed betwesn the
available crystal structures of p1 20°"" (Protein Data Bank code 2005} (53) and DLC V™ (Protein Data Bank code IKUQ) using the e PatchDock (54). In the
best ranked and refined model, p1 20°""" was located in close proximity of the catalytic arginine finger [Arg-677; magenta) of DLC1™Y. In this model, p1 20"
supplied three amino acids (Asn-311, Lew-313, and Trp-219) to directly contact the catalytic core of DLC1 ™, especially Arg-677, and mask its accessibility to the
Rha proteins. B, p50GAP provides an arginine finger (Ang-282; red) in the active site of RhoA to stabilize the transition state of the GTP hydrolysis reaction

(Provein Data Bank code 1TX4) (B0). GDP-AIF, mimics the transition state of the GTP hydrodysis reaction,

our mutational and biochemical analyses support the in silico
structural model (Fig. 74) and provide new insight into how
p120°""* may bind and inhibit the catalytic activity of DLC14",

DISCUSSION

In this study, we have elucidated the molecular mechanism of
how the RasGAP p120 selectively acts as a negative regulator of
the RhoGAP activity of DLC1. We have shown that p120°""%, by
utilizing a novel binding mode, selectively undergoes a high
affinity interaction with the RhoGAP domain of DLC1 and
effectively inhibits its GAP activity by targeting its catalytic
arginine finger. Interestingly, p120°™* acts on the DLC iso-
forms but not on seven other representative members of the
RhoGAP family. Our data together support the notion of a
functional cross-talk between Ras and Rho proteins at the level
of regulatory proteins (11, 45).

In contrast to the molecular mechanism of Rho protein inac-
tivation by GAPs, which is well established (14, 61), it is still
unclear how GAPs themselves are regulated. Different mecha-
nisms are implicated in the regulation of GAPs, such as regulation
by protein phosphorylation, proteolytic degradation, intramolec-
ular autoinhibition, and changes in subcellular localization or pro-
tein complex formation (62, 63). “Intramolecular inhibition”
(also called "autoinhibition,” “cis-inhibition,” “autoinhibitory

ACEEVEN

MARCH 7, 2014 +VOLUME 289+-NUMBER 10

loop,” “autoregulation,” and "bistable switch”) of biological
molecules is a fundamental control mechanism in nature and is
an emerging theme in the regulation of different kinds of pro-
teins, including the regulators of small GTP-binding proteins
themselves. Besides the guanine nucleotide exchange factors
(64 —69), GAPs also have been reported to require activation
through the relief of autoinhibitory elements (20, 31-33, 35,
36). Kim et al. (20) have shown that DLC1" has a reduced GAP
activity and have proposed that the N-terminal SAM domain
may be a cis-inhibitory element contributing to DLCI autoin-
hibition. Our real time kinetic experiments, however, have
shown that neither isolated SAM or START alone nor both
domains in combination are directly responsible for the
observed DLC1" autoinhibition in a cell-free system (Fig. 3).
Taken together, it rather seems plausible that other regions,
probably together with SAM and START domains, are involved
in the autoinhibition of DLCI. In addition, it is important to
note that release of the autoinhibitory loop of DLC1 is most
likely subjected to posttranslational modifications (21, 70) and
interactions with other proteins (16, 28, 34) along with changes
in subcellular localization (30), collectively contribute to the
regulation of DLC1I GAP activity in intact cells. In this context,
PKD-mediated phosphorylation (70) and 14-3-3 binding and
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FIGURE 8. Loss of p120-DLC1 interaction by mutational analysis. No interaction was observed between DLCT=*""™ "™ and p120™"™" {4 and &) and
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the p120°"*WT_DLC1 " ™WT interaction shown in Fig. 6. £, the activity of DLC1%*" (25 um) in stimulating tamraGTP hydrolysis of Cdc42 (0.2 um) was measured
in the presence of p120°" variants (125 um), respectively. For convenience, the k., values are given above the bar charts.

cytosolic sequestration (22) are good examples for the regula-
tion DLCI1 function.

Functional characterization and structural elucidation of the
trans-inhibitory mechanism of DLC1 mediated by the Ras-spe-
cific GAP p120 protein (11) was the central theme of this study.
Our data clearly revealed that the GAP activity of not only
DLC1 but also that of DLC2 and DLC3 was almost completely
abolished in the presence of the SH3 domain of p120 (Fig. 4).
We showed that larger fragments of p120, such as p12057232
and the almost full-length p120*"'?*, inhibit the DLC GAP
function but strikingly not to the same extent as seen for the
isolated SH3 domain (Fig. 4D). These data indicate that only a
freely accessible and exposed SH3 domain of p120, most prob-
ably following an upstream signal and in a defined subcellular
environment (11, 37), is able to potently inhibit DLC proteins,
One of the p120 binding partners is p190, which has been pro-
posed to induce a conformational change in p120 by binding to
its SH2 domains and exposing the adjacent SH3 domain for
additional protein interactions with additional proteins (47),
one of which is most likely DLCI.

Several studies have shown that DLCI is able to inactivate
Cdc42 and the Rho isoforms (RhoA, RhoB, and RhoC) but not
Racl in vitro (20, 71-73). DLC19*" activity toward other mem-
bers of the Rho family has not yet been published. Our preliminary
data showed that the DLC proteins are active in vitro on almost all
members of the Rho family that are able to hydrolyze GTP.”

® M. Jaiswal, E. Amin, and R. Dvorsky, unpublished data.
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Chan et al. (74) have shown an increased level of RhoA-GTP
in DLC2-null mice but not in samples from control mice. Con-
sistently, the overexpression of DLC isoforms has been shown
to lead to inactivation of RhoA and to the reduction of actin
stress fiber formation (75, 76), suggesting that DLC proteins are
Rho-selective GAPs and the role of the DLC frans-inhibitory
protein pl20 is to retain Rho proteins in their active GTP-
bound states. Contrary to DLC proteins, p120 binding is part of
the p190 activation process that controls inactivation of Rho-
type proteins (45, 47, 77). A prerequisite for this interaction is
phosphorylation of p190 at tyrosine 1105, which is a target of
the p120 SH2 domains (77). In this regard, p120 oppositely
controls the activities of two different RhoGAPs and obviously
two different Rho/Rho effector systems; one is left activated,
and the other is switched off.

SH3 domain-containing cellular signaling proteins mediate
interactions via specific proline-containing peptides. The SH3
domain of p120 has been discussed recently to interact with
other proteins in a PXXP motif-independent manner (48). In
silico analysis revealed that the GAP domain of DLC1 does not
possess a proline-rich region and therefore, unlike classical
PXXP motif-recognizing SH3 domains, the interaction mode of
the p120 SH3 domain is atypical and utilizes different amino
acids to bind and mask the catalytic arginine finger of the GAP
domain of DLCI. The Ser/Thr kinases Aurora A and Aurora B
are other examples in addition to DLCI for negative modula-
tion of biological processes by p120 (78). The SH3 domain of
p120 binds to the catalytic domain of Aurora kinases that inhib-
its their kinase activity. These interactions also do not involve a
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proline-rich consensus sequence. Two accessible hydrophobic
regions of p120 SH3 have been suggested to function as binding
sites for protein interaction (79). Our study supports this
notion as we have shown that mutation of three amino acids
close to one of these proposed binding sites indeed diminished
the DLC19*" binding and inhibiting ability of p120 SH3.

We demonstrated that the interaction between p120°"* and
DLCIS displays at least three remarkable characteristics,
namely high affinity, high selectively, and a non-canonical
binding mode. The high affinity interaction of 0.6 pm is striking
because the binding constants of SH3 domains for proline-rich
motifs in their target proteins are mostly in the micromolar
range (48, 59). The very few examples of high affinity binding of
SH3 domains are those between Mona/Gads and SLP-76 (80),
C3G and ¢-Crk (51), and Grb2 and Wrch1 (48).

CONCLUSION

Mechanistic and structural insights into selectivity, activity,
and regulation of DLC1 presented in this study shed light on the
role of the multifunctional, regulatory signaling molecule
p120RasGAP. It is evident that p120 acts in addition to its
RasGAP domain, which is required to switch off Ras signal
transduction, as an “effector” conversely controlling, via its SH2
domains and a non-canonical SH3 domain, the RhoGAP activ-
ities of the DLC and p190 proteins and hence Rho signal trans-
duction. Interestingly, p120 interacts, in addition to DLC1 and
p190, with a third RhoGAP, called p200RhoGAP. In contrast to
p190 and DLC1, which are downstream of p120, p200RhoGAP
has been proposed to bind to the p120 SH3 domain via its very
C-terminal proline-rich region and to sequestrate its RasGAP
function from inactivating Ras (10). These examples nicely
illustrate the interdependence of the Ras and Rho signaling
pathways and underline the multifunctional and multifaceted
nature of regulatory proteins beyond their critical GAP
functions.
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ABSTRACT

The scaffolding 1Q motif-containing GTPase activating protein 1 (IQGAP1) plays a central role
in the physical assembly of relevant signaling networks that are responsible for various cellular
processes, including cell adhesion, polarity and transmigration. Amongst various proteins, RAC1
and CDC42, have been also proposed to interact with the GAP-related domain (GRD) of IQGAP1,
however, the exact nature of this interaction process has remained obscure. Here, we
demonstrate that (i) IQGAP1 associates with six different RAC- and CDC42-related proteins but
not with other members of the RHO family, including the RHO-and RND-proteins, and (ii) unlike
published models, IQGAP1 interaction with RAC- and CDC42-related proteins underlies a two-
step binding mechanism, first a low-affinity, largely nucleotide-independent binding of GRD
outside the switch regions, and second a high-affinity, GTP-dependent binding of the RHO
GTPase binding domain (GBD) to the switch region. These data were confirmed by
phosphomimetic mutations of S1443 in GBD, which resulted in complete abolishment of the
IQGAP1 interaction with RAC1 and CDC42, clearly indicating that S1443 phosphorylation by
protein kinase C is critical for these interactions. Taken together, these results provide the field
with new insights into interaction characteristics of IQGAP1 and highlight the complementary
importance of kinetic and equilibrium analyses. Therefore, herein, we challenge the paradigm
that the ability of IQGAP1 to interact with RAC/CDC42 proteins is based on a two-step binding
process which is a prerequisite for IQGAP1 activation and a critical mechanism in temporal
regulation and integration of IQGAP1-mediated cellular responses.

Key words: CDC42, GBD, GRD, stopped-flow, fluorescence, polarization, anisotropy, interaction,
IQGAPs, RAC1, RHOA, RHO family
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INTRODUCTION

The RHO family proteins are known to play an important role in diverse cellular processes and
progression of different diseases, such as cardiovascular diseases, developmental and
neurological disorders, tumor invasion and metastasis as well as regulating liver regeneration
(Yuan et al., 2009; Fukata et al., 2003; Hall, 2012). RHO proteins share two common functional
characteristics, membrane anchorage and an on/off switch cycle (Dvorsky and Ahmadian, 2004).
Subcellular localization of RHO proteins to different cellular membranes is known to be critical
for their biological activity. This is achieved by a hyper variable region (HVR) (Lam and Hordijk,
2013) and a lipid anchor in their C-terminal tail at a distinct cysteine residue in the CAAX motif (C
is cysteine, A is any aliphatic amino acid, and X is any amino acid) (Wennerberg and Der, 2004).
RHO protein function is dependent on the guanine nucleotide-binding (G) domain that contains
the principle binding center for GDP and GTP and presents depending on its nucleotide-bound
state various contact sites for regulators and effectors (Dvorsky and Ahmadian, 2004). Thus,
membrane-associated RHO proteins act, with some exceptions (Jaiswal et al, 2013b), as
molecular switches by cycling between an inactive GDP-bound state and an active GTP-bound
state. This cycle underlies two critical intrinsic functions, the GDP-GTP exchange and GTP
hydrolysis (Jaiswal et al., 2013b) and is controlled at least three classes of regulatory proteins
(Dvorsky and Ahmadian, 2004): (i) Guanine nucleotide exchange factors (GEFs) catalyze the
exchange of GDP to GTP and activate the RHO protein (Jaiswal et al., 2013a; Rossman et al.,
2005); ii) GTPase activating proteins (GAPs) stimulate the GTP hydrolysis and convey the RHO
protein in its inactive conformation (Tcherkezian and Lamarche-Vane, 2007; Jaiswal et al., 2014);
(iii) Guanine nucleotide dissociation inhibitors (GDIs) bind to prenylated RHO proteins and
extract them from the membranes into the cytoplasm (DerMardirossian and Bokoch, 2005;
Garcia-Mata et al., 2011; Tnimov et al., 2012; Zhang et al., 2014a). The formation of the active
GTP-bound state of RHO proteins is accompanied by a conformational change in two regions,
known as switch | and Il (Dvorsky and Ahmadian, 2004), which provide a platform for the
selective interaction with structurally and functionally diverse effectors, e.g. p21-activated kinase
1 (PAK1) (Lei et al., 2000), p67°"* a member of the NSDPH oxidase (Lapouge et al., 2000),
semephorin receptor Plexin B1 (Fansa et al., 2013; Hota and Buck, 2012) as well as the IQ motif-
containing GTPase activating proteins (IQGAPs) (Watanabe et al., 2015; Hedman et al., 2015).

In mammals, three isoforms of IQGAPs are expressed: IQGAP1, IQGAP2 and IQGAP3. These
homologues have similar domain compositions but different subcellular localization, tissue
expression and functions (White et al., 2009a; Watanabe et al., 2015). This class of proteins
activates a wide variety of downstream signaling cascades (Bishop and Hall, 2000; White et al.,
2012; White et al., 2009a; Abel et al., 2015), thereby regulating many important physiological
and pathophysiological processes in eukaryotic cells (Heasman and Ridley, 2008a; Watanabe et
al., 2015; Smith et al., 2015b). Among IQGAP isoforms, IQGAP1 is ubiquitously expressed and is
the most investigated member of IQGAP family, and our understanding mainly relies on the
evidences from IQGAP1. IQGAP1 is involved in wide spectrum of cellular processes, such as
adhesion, cell polarity and directional migration (White et al., 2012) and also cancer progression
(White et al., 2009a; Johnson et al., 2009) via binding to RHO protein. The domain organization
of IQGAP1 is highly conserved in IQGAP family consisting of an N-terminal calponin homology
domain (CHD), a coiled-coil repeat region (CC), a tryptophan-containing proline-rich motif-
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binding region (WW), four isoleucine/glutamine-containing motifs (1Q), a RASGAP-related
domain (GRD), an originally called RASGAP C-terminal domain (RGTC) (White et al., 2012), which
we called a GTPase-binding domain (GBD) in this study, and a C-terminal domain (C).

IQGAP2 and IQGAP3 are also able to bind RHO proteins (McCallum et al., 1996; Brill et al.,
1996; Wang et al., 2007; Nojima et al., 2008). IQGAP2 has 62% sequence identity to IQGAP1 and
is expressed predominantly in the liver, but can be detected in stomach, prostate, thyroid, testis,
kidney, platelets and salivary glands (Watanabe et al., 2015; Brill et al., 1996; Wang et al., 2007;
Schmidt et al., 2003; Cupit et al., 2004). IQGAP3 is enriched in brain, testis, lung, small intestine,
and colon (Mateer et al., 2003; Wang et al., 2007; Brandt and Grosse, 2007; Smith et al., 2015a;
Schmidt et al., 2003; Nojima et al., 2008). Recent differential gene expression analysis revealed a
reciprocal expression of IQGAPs in Hepatocellular carcinoma (HCC) and subsequently opposing
functions (White et al., 2010a). Given that IQGAP proteins share a domain structure and have
sequence homology, such a paradoxical phenomenon may be due to their protein binding
partners, subcellular localization and diverse tissue expression.

Furthermore, in hepatic stellate cells (HSCs) has been shown that Iggap1 deficiency promotes
myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of
paracrine signaling molecules (Liu et al., 2013a). In spite of having RASGAP homology domain,
none of these three isoforms have GTPase-activating protein (GAP) activity. GAPs increase the
intrinsic activity of RHO proteins and inactivate them. By contrast, IQGAP proteins exhibit an
inhibitory effect on the intrinsic GTPase activity of the RHO family members CDC42 and RAC1,
thereby stabilize them in their active GTP-bound form (Hart et al., 1996; Ho et al., 1999; Brill et
al., 1996). Apart from RAC1 and CDC42, a multitude of IQGAP interacting partners have been
reported to date (White et al., 2012; Malarkannan et al., 2012; Liu et al., 2014a; Pathmanathan
et al., 2011; Abel et al., 2015; Smith et al., 2015b; Watanabe et al., 2015). From IQGAP family,
IQGAP1 has been implicated as a drug target although the molecular mechanism of the IQGAP1
functions is unclear. A prerequisite to achieve these functions is the dissection of its distinct
domains and the analysis of their interactions with desired protein partners.

Work from several laboratories has shown that the C-terminal half of IQGAP1 (amino acids
863-1657), encompassing GRD (amino acids 1025-1238) and RGTC (called GBD in this study;
amino acids 1451-1583), binds physically to active, GTP-bound forms of CDC42 and RAC1
(McCallum et al., 1996; Zhang et al., 1998; Elliott et al., 2012; Owen et al., 2008). IQGAP1 GRD,
which is structurally a homologous but functionally an inactive RASGAP (Kurella et al., 2009), also
undergoes interaction with RAC1 and CDC42, although with a lower affinity than the larger
protein fragment, containing GRD and RGCT (Owen et al., 2008; Kurella et al., 2009). These
works together with homology modeling, based on the RHOGAP in complex with RHOA (Rittinger
et al., 1997) and CDC42 (Nassar et al., 1998), and RASGAP in complex with HRAS (Scheffzek et al.,
1997), provided a structural model of IQGAP1 GRD that contacts the switch regions of the GTP-
bound CDC42 (Mataraza et al., 2003b; Owen et al., 2008; Kurella et al., 2009). In contrast,
another study has shown phosphomimetic variants of IQGAP1 at position S1441 and S1443 were
significantly impaired in interacting with active CDC42 (Elliott et al., 2012). This strongly indicates
that regions downstream of GRD, may also be critical in the interaction with RAC1 and CDC42. In
an attempt to resolve this controversy, we set out to investigate comprehensively the structure-
function relationship of IQGAP1 interaction with the RHO proteins. Detailed characterization of
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the IQGAP1 interaction with the RHO family members, using time-resolved fluorescence
spectroscopy, provided unprecedented insights into the structure, function, and mechanistic
properties of IQGAP1, especially regarding its interaction with RAC- and CDC42-like proteins.
Obtained data showed that GRD-C associated with the RAC- and CDC42-like proteins (RAC1,
RAC2, RAC3, RHOG, CDC42, and TC10), but not with RHOA, RHOB, RHOC, RHOD, TCL, RND and
RIF. Furthermore, GRD1 and GRD2 do not associate with RAC1 under this experimental
condition. We next investigated the effect of the last 99 amino acids of IQGAP1 on RAC1 and
CDC42 binding and our results clearly suggest that the very C-terminal region of IQGAP1 may
negatively regulate GBD-RAC1/CDC42 interaction. Moreover, we found that point mutations of
the PKCa phosphorylation sites (51441 and S1443) differently affect GRD-GBD association with
RAC1/CDC42-mantGppNHp. Additionally, equilibrium measurement using fluorescence
polarization experiments showed that IQGAP1GRD?2 also interacts with RAC1 and CDC42 but with
a much lower affinity and in a largely nucleotide-independent manner as compared with
IQGAP1GRD-C. Results described here clearly suggest that IQGAP1 binds RAC1- and CDC42-like
proteins at least at two sites by utilizing the GBD domain rather than the GRD domain to contact
the switch regions.

MATERIALS AND METHODS

Constructs. Different variants of pGEX vectors (pGEX2T, pGEX4T-1, pGEX3) encoding an N-
terminal glutathione S-transferase (GST) fusion protein were used for the overexpression of
various human IQGAP1 (Acc. no. P46940) variants (aa 863-1345, 962-1345, and 863-1657, 877-
1558, 877-1558 S1443E and S1443A), human Plexin-B1 (Acc. no. 043157) (aa 1724-1903), human
p67°"° (Acc. no. P19878) (aa 1-203), human PAK1 (Acc. No. Q13153) (aa 57-141), murine TIAM1
DH-PH (Acc. no. Q60610) (aa 1033—1404), human TrioN DH-PH (Acc. no. 075962) (aa 1226—
1535), and human RHOGDIa (Acc. no. P52565) as well as human RHO-related genes, i.e. RAC1
(Acc. no. P63000) (aa 1-179), RAC2 (Acc. no. P15153) (aa 1-192), RAC3 (Acc. no. P60763) (aa 1-
192), RHOG (Acc. no. P84095) (aa 1-178), RHOA (Acc. no. P61586) (aa 1-181), RHOB (Acc. no.
P62745) (aa 1-181), RHOC (Acc. no. P08134) (aa 1-181), CDC42 (Acc. no. P60953) (aa 1-178),
TC10 (Acc. no. P17081) (aa 2-193), TCL (Acc. no. Q9H4ES5) (aa 2 — 197), RND1 (Acc. no. Q92730)
(aa 1-232), RND2 (Acc. no. P52198) (aa 26-184), RND3 (Acc. no. P61587) (aa, 1-244), RIF (Acc. no.
Q9HBHO) (aa 1-195), and mouse RHOD (Acc. no. P97348) (aa 2-193). pET46 EKLIC vector (Merck,
Nottingham, United Kingdom) was used for the overexpression of IGQAP1 877-1558 S1441E,
S1143D, S1441A/S1443A, and S1441E/S1443D mutants as a his tag protein. The Kazusa cDNA
clone KIAAOO51 (Suyama et al., 1999) was used as a template for making mutants.

Proteins. All proteins were purified according to the protocols described (Fiegen et al., 2002;
Hemsath and Ahmadian, 2005; Jaiswal et al., 2013b). Nucleotide-free RHO proteins were
prepared using alkaline phosphatase (Roche) and phosphodiesterase (Sigma Aldrich) at 4°C as
described (Jaiswal et al., 2012). Fuorescent methylanthraniloyl (mant) was used to generate
mantGDP and mantGppNHp bound RHO proteins, where GppNHp is non hydrolayzable analog of
GTP. Quality and concentrations of labeled proteins were determined as described (Jaiswal et al.,
2012).
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Fluorescence measurements. Kinetics measurements were monitored by stopped-flow
apparatus (Hi-Tech Scientific SF-61 with a mercury xenon light source and TgK Scientific Kinetic
Studio software), and performed as described (Hemsath and Ahmadian, 2005). The observed
rate constants were fitted single exponentially using the GraFit program (Erithacus software).

Fluorescence polarization. Experiments were performed in a Fluoromax 4 fluorimeter in
polarization mode as described (Nouri et al., 2015). The dissociation constant (K;) were
calculated by fitting the concentration dependent binding curve using a quadratic ligand binding
equation.

Cell isolation and culture. Livers from male Wistar rats (local animal facility of the Heinrich Heine
University) were enzymatically digested with collagenase H (Roche, Germany) and protease E
(Merck, Germany). Primary hepatic stellate cell (HSC) isolation was followed by density gradient
centrifugation. HSCs were feeded with Dulbecco's Modified Eagle Medium (DMEM)
supplemented with 15% fetal calf serum and 50 units of penicillin/streptomycin (Gibco® Life
Technologies).

Reverse transcriptase polymerase chain reaction. To isolated RNA, cells were lysed by QlAzol
lysis reagent (QIAGEN, Germany) and proceed with RNeasy plus kit (Qiagen, Germany). To
eliminate any possible genomic DNA contaminations, isolated RNAs were subjected to DNase
with the DNA-free™ DNA Removal Kit (Ambion, Life Technologies, Germany). Transcrption of the
RNA to first strand complementary DNA (cDNA) was followed by using the ImProm-II™ reverse
transcription system (Promega, Germany). Quantitative polymerase chain reaction (qPCR) was
performed using the SYBR Green reagent (Life Technologies, Germany). Primers are listed in
Table S1. 2 method was used to calculate the mRNA levels according to relative endogenous
levels of the HPRTL1.

Immunoblotting. Cell membranes and nuclei were disturbed with lysis buffer (50 mM Tris-HCI
pH 7.5, 100 mM NaCl, 2 mM MgCl,, 1% lIgepal CA-630, 10% glycerol, 20 mM beta-
glycerolphosphate, 1 mM Ortho-NasVO,, 1 EDTA-free inhibitor tablet). To normalize the amount
of the total proteins, the Bradford assay applied to measure the protein concentration (Bio-Rad).
Primary antibodies to mouse y-tubulin (# T5326) Sigma-Aldrich; mouse RAC1 (05-389) millipore;
rabbit CDC42 (2462) cell signaling; mouse IQGAP1 (ab56529) and rabbit IQGAP2 (ab181127)
abcam were diluted in 5% non-fat milk (Merck, Germany)/TBST (Tris-buffered saline, 0.05%
Tween 20), and incubated overnight in 4°C. After washing steps, membranes were incubated
with horseradish peroxidase-coupled secondary antibodies for 1 h and signals were visualized by
the ECL detection system (GE Healthcare) and images were collected using the ChemoCam
Imager ECL (INTAS science imaging, Germany).

RESULTS

IQGAP1%"° € selectively associates with various RAC- and CDC42-like proteins

Kinetics of IQGAP1%"" (IQGAP1%%*'%*; Fig. 1) association with different RHO proteins was
monitored using stopped-flow fluorescence spectroscopic methods established previously
(Hemsath et al., 2005). MantGppNHp (Fig. 2A) is a fluorescent, non-hydrolysable GTP analog and
stopped-flow fluorescence is a direct way to monitor the association between two proteins in
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real-time (Jaiswal et al., 2012). Rapid mixing of GRD-C with active, mantGppNHp bound RAC1
and CDC42 resulted in change in fluorescence (Figs. 2B and 2F green trace), which represents the
RAC1/CDC42-IQGAP1 association reaction. Under the same conditions, most remarkably, we did
not observe any fluorescence change when mixing RAC1/CDC42-mantGppNHp with GRD itself
(IQGAP1%%*"3%) (Figs. 2B and 2F red trace). This was unexpected because GRD has been generally
accepted as the RAC1- and CDC42-binding domain of IQGAP1 to date (Owen et al., 2008; Kurella
et al., 2009; Elliott et al., 2012; Hart et al., 1996; Ho et al., 1999; Kuroda et al., 1998; Mataraza et
al., 2003b). Under the same conditions we measured kinetics for other members of the RHO
family and evaluated the data by single exponential fitting to obtain the respective observed rate
constants (kops). Data presented in figure 2B-G show that GRD-C associated with various RAC-
and CDC42-like proteins (RAC1, RAC2, RAC3, RHOG, CDC42 and TC10), but not with RHOA, RHOB,
RHOC, RHOD, TCL and RIF. Mixing of mantGppNHp-bound form of the latters did not result in a
fluorescence change (Fig. 2H). Due to instability, fluorescently labeled RND proteins could not be
prepared. Therefore, their association with GRD-C was measured indirectly by premixing excess
amounts of GTP-bound RND proteins with GRD-C before measuring its association with RAC1-
mantGppNHp. RND1, RND2 and RND3 did not interfere with the RAC1-IQGAP1 interaction (Fig.
2l1), indicating that IQGAP1 does also not associate with RND proteins under these conditions,
while Figure 2J shows association competition of mantGppNHp-RAC1 with IQGAP1°*°€ in the
presence of excess amount of CDC42, or vice versa.

RAC2 showed highest affinity for IQGAP1°%*°€
In some studies was previously shown that the binding affinity of CDC42 for IQGAP1 was
considerably higher than that of RAC1 for IQGAP1 (see Table 1) (Zhang et al., 1998; McCallum et
al., 1996; Zhang et al., 1997). Later Owen et al. reported that, IQGAP1 has similar affinities for
both RAC1 and CDC42 (see Table 1) (Owen et al., 2008). Here individual kinetic parameters were
determined for the interaction of IQGAP1°*°C with RAC- and CDCA42-like proteins under
conditions described previously (Hemsath and Ahmadian, 2005). An incremental increase in
fluorescence was observed when increasing the concentrations of GRD-C were rapidly mixed
with RAC1-mantGppNHp (Fig. 3A). Increase in fluorescence was also observed for other RAC- and
CDC42-like proteins except for CDC42 that the mode of interaction was different and we
observed decrease in fluorescence (Fig. $3). Association kinetics was then performed for all
other RAC- and CDC42-like proteins. ks values obtained by a single exponential fitting were
evaluated in a linear fashion as a function of the GRD-C concentration (Fig. 3B), which yielded
the respective association rate constants (k). The dissociation of GRD-C from its complex with
RAC1-mantGppNHp was measured in a displacement experiment when excess amounts of RAC1-
GppNHp were rapidly mixed with the complex. This led expectedly to fast decrease (for CDC42;
increase) in fluorescence (Figs. S2 and S4), which was also observed for other RAC- and CDC42-
like proteins (data not shown). Exponential fitting of the curves yielded the dissociation rate
constants (ko). The dissociation constants (Ky) (Fig. 3D, Green bars), which is the binding affinity
and defined as the strength of IQGAP-RHO protein interactions was ultimately calculated from
the ratio of the k. values (Fig. 3D, Orange bars) divided by the k., values (Fig. 3D, Blue bars).
Accordingly, RAC2 turned out to possess the highest affinity for GRD-C that was between 16- and
75-fold higher than that of the other RHO proteins (Fig. 4D, Green bars). All individual data are
summarized in Table 1.
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GBD but not GRD appears to be critical for the IQGAP1 interaction with RAC1 and CDC42

To further prove the critical role of the more C-terminal domains of IQGAP1 beyond GRD we
generated various deletion and point mutations of IQGAP1 (Fig. 1). Figures 4A, S1, and S3 clearly
show that GRD1 and GRD2 do not associate with RAC1 and CDC42 under this experimental
condition. We next measured the effect of the last 99 amino acids of IQGAP1 on RAC1 and
CDC42 binding and found that GRD-GBD (IQGAP1%7%>°%) which lacks this region associated 3-
fold faster with RAC1 as compared to GRD-C. Moreover, we found that point mutations of the
PKCa phosphorylation sites (51441 and S1443; Fig. 1) differently affect GRD-GBD association with
RAC1-mantGppNHp. In contrast to GRD-GBD ** (Ser1441 substituted by Glu), GRD-GBD *°
(Ser1443 substituted by Asp), and the double mutations GRD-GBD SE/SD (phosphomimetic
substitutions) and GRD-GBD SA/SA (neutral substitutions to Ala) completely abolished GRD-GBD
association with RAC1 and CDC42 (Fig. 4A).

As it is shown in Figures 4B and 4C, association kinetics were performed for the interaction of
GRD-C, GRD-GBD, and GRD-GBD*® with RAC1 and CDC42. k.. values gained by a single
exponential fitting were evaluated in a linear fashion as a function of the GRD-C, GRD-GBD, and
GRD-GBD*® concentrations, which yielded the respective association rate constants (ko,). The ko,
for all three variants was almost similar and the same pattern was observed for RAC1 and CDC42
(Figs. 4B and 4C). The dissociation of all three proteins from their complex with RAC1-/CDC42-
mantGppNHp was measured in a displacement experiment in the presence of excess amounts of
RAC1- and CDC42-GppNHp mixed with the complex (Figs. S2 and S4). Exponential fitting of the
curves yielded the dissociation rate constants (ko) (Figs. 4B and 4C). The binding affinity (Ky) as
the strength of IQGAP1-RAC1/CDC42 interactions was calculated from the ratio of the ks values
divided by the ko, values. Our results showed 2 folds lower K4 of GRD-GBD*f compared to GRD-
GBD in the case of RAC1, and Ky for CDC42 was not significantly changed (Figs. 4B and C, Green
bars).

IQGAP1 possesses at least two RAC/CDC42-binding domains

To further shed light on the potent interaction of GRD-C versus GRD alone we used a different
method, fluorescence polarization, that measures the binding affinity of two proteins and
provide an equilibrium dissociation constant (Ky) of their interaction. As shown in figures 5A-5C,
both IQGAP1 variants, GRD-C and GRD do in fact interact with mantGppNHp-bound RAC1 and
CDC42 but as expected not with RHOA using fluorescence polarization (equilibrium mode).
Evaluated K4 values obtained from the measurements showed that GRD-C is a high affinity binder
as compared to GRD with 10-15-fold lower affinity for mantGppNHp-bound RAC1 and CDC42
(Fig. 5C; Table 1). This was not observed using Stopped-flow fluorescence, measuring the kinetics
of the association in real-time, as is shown in figures 2 and 4A. Furthermore, for GRD-GBD and
GRD-GBD®* with mantGppNHp-bound RAC1 comparable affinity to GRD-C was observed but GRD-
GBD*® showed 5-8 folds lower affinity (Figs. 5 and SF; Table 1). The explanation for our
observations regarding binding of RAC1 to GRD is simple; in direct mode only a change in
fluorescence can be observed when the associating protein (IQGAP1) binds to close vicinity of
the fluorophore (mant group of the bound GppNHp) on the surface of RAC1 and CDC42 (Fig. 2).
This surface covers the switch regions that changes their conformation upon a GDP/GTP
exchange (Dvorsky and Ahmadian, 2004). This is of fundamental importance because binding

93



Chapter VI

effectors (such as IQGAP1) to the switch regions determines the specificity of the signal
transduction (Dvorsky and Ahmadian, 2004; Hemsath et al., 2005). To prove this idea we
repeated the measurements by using inactive RHO proteins bound to mantGDP. Both GRD-C and
GRD were able to interact with CDC42-mantGDP although with very low affinities (Fig. 5G-H).
This strongly suggests that IQGAP1 consists of two distinct binding domains, with GBD binding to
the switch regions and with GRD that binds to other regions of CDC42 beyond the switch regions
in a largely nucleotide-independent manner.

Differential expression analysis of IQGAPs in hepatic stellate cells

Each IQGAP isoform possess its specific binding partners and therefore contribute to different
cellular processes. For instance, IQGAP1 is known as an oncogene where IQGAP2 is a tumor
suppressor (White et al., 2009a; White et al., 2010a). IQGAP2 is shown to express predominantly
in liver. We asked the questions, is there any isoform preference for IQGAPs in the specific liver
cell types called hepatic stellate cells and how they could scaffold the RHO proteins in these
cells? Hepatic stellate cells (HSCs) reside in the Disse space of the liver and during chronic liver
injuries become activated and contribute in either liver repair or fibrosis (Kordes and Haussinger,
2013b; Yin et al., 2013a). It is reported that the IQGAP1 play a role in HSC activation by binging to
TGF-B receptor Il and suppress HSC activation (Liu et al., 2013a). To investigate the biological
function of IQGAP isoforms and their responsive target proteins (RAC and CDC42), freshly
isolated HSCs were cultivated for 8 days that induce spontaneous activation of these cells.
Quantitative RNA analysis revealed that IQGAP1 and 3 were upregulated during the activation
process of HSCs where the IQGAP2 was downregulated. RAC2 exhibits the drastic increased in
HSC d8, however, other RAC isoforms (RAC1 and 3) did not altered. To further investigate the
correlation between the IQGAP1 regulation of RAC1 and CDC42 mechanisms in HSCs, the protein
levels of IQGAP1, 2, RAC1, and CDC42 were detected. Consistent with qPCR data, obtained data
showed IQGAP1 increase at proteins levels, where IQGAP2 is downregulated. The RAC1 and
CDC42 exist at higher levels in activated HSCs (Fig. 6).

DISCUSSION

The interaction with the active, GTP-bound form of RAC1 and CDC42 identified IQGAP1 as a
putative downstream effector (Mataraza et al., 2003b; Hart et al., 1996; Kuroda et al., 1999;
lzumi et al., 2004; Watanabe et al., 2004; Kholmanskikh et al., 2006; Brown et al., 2007; Sakurai-
Yageta et al., 2008; McCallum et al., 1996; Zhang et al., 1998; Owen et al., 2008; Elliott et al.,
2012; Kurella et al., 2009; Noritake et al., 2005). Subsequent studies have shown that the
interaction between IQGAP1 and the RHO proteins has significance on variety of biological
functions. Accumulating evidence supports diverse roles for IQGAP-RHO protein interaction in
vertebrates. However, the nature of such a protein-protein recognition process has remained
obscure. While modulation of the cytoskeletal architecture was initially thought to be the
primary function of the interaction of IQGAP1 with RHO proteins, it is now clear that they have
some critical physiological roles beyond the cytoskeleton. CDC42 promotes the interaction of
PTPI with IQGAP1 to stimulate actin remodeling and, eventually, neurite outgrowth (Li et al.,
2005), and also complex of active CDC42, Lis1, and CLIP-170 with IQGAP1 seems to be crucial for
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cerebellar neuronal motility (Kholmanskikh et al., 2006). Another example is in the pancreatic -
cells. Analysis of the insulin secretory pathway has shown that IQGAP1 scaffolds CDC42, RAB27A,
and coronin-3 and this complex controls endocytosis of insulin secretory membranes (Kimura et
al., 2013).

Of the RHO family proteins, RAC1, RHOA, and CDC42 have been most extensively studied and
characterized (Etienne-Manneville and Hall, 2002). In this study, a comprehensive interaction
study of RHO proteins and C-terminal domain of IQGAP1%**®*” (here called GRD-C) was
conducted. Kinetics of GRD-C association with different RHO proteins was monitored using
stopped-flow fluorescence spectroscopic methods (Fig. 2). The results clearly indicate that
IQGAP1 binds among RHO proteins selectively to RAC- and CDC42-like proteins in the active form
and that GRD-C most obviously recognizes and binds to the switch regions but however not, as
previously proposed by several groups (Mataraza et al., 2003b; Owen et al., 2008; Kurella et al.,
2009), the GRD alone. In contrast to our data, Casteel et al. have shown that GRD-C interacts
with the active, G14V variant of RHOA and RHOC but not with that of RHOB, which were
overexpressed in, and immunoprecipitated from human embryonic kidney 293T cell lysates
(Casteel et al., 2012). In addition, recent immunoprecipitation studies have shown that IQGAP1
binds to both RHOA and p190A-RHOGAP to inactivate RHOA, and to modulate contractility of
airway smooth muscle cells (Bhattacharya et al., 2014). Wu et al. have also found RHOC and
IQGAP1 in immunoprecipitates. This study has shown that an isoform-specific interaction of RHO
proteins with IQGAP1 regulates cancer cell proliferation, and has been proposed that IQGAP1 is a
downstream effector of RHOC in the regulation of gastric cancer cell migration (Wu et al., 2012;
Clark et al., 2000). In contrast, our study showed no physical interaction between GRD-C and the
RHO isoforms, including RHOA or RHOC, under cell-free conditions using purified proteins. In this
context, we think that observed interactions of GRD-C with RHOA and RHOC most likely are
indirect, mediated by other proteins co-immunoprecipitated from cells expressing tagged RHO
protein. We also exclude an interaction with other regions of RHOA outside switch regions
evident from our fluorescence polarization data (Figs. 5A-5C).

Another striking observation was an increase in fluorescence upon association of GRD-C with
RAC1, RAC2, RAC3, RHOG, and TC10 but a decrease in fluorescence with CDC42 (Figs. 2, S1 and
S3). In contrast, we have monitored in an earlier study a fluorescence decrease for the
association of the CDC42/RAC-interacting binding (CRIB) motif of the Wiskott-Aldrich syndrome
protein (WASP) with the CDC42, RAC1 and TC10, respectively (Hemsath et al., 2005). This
observation indicates that (i) the binding mode of CDC42 interaction with IQGAP1 is different
from that of TC10 and the RAC-like proteins, and (ii) the binding mode of IQGAP1 interaction
with these RHO proteins differs from that of WASP. Owen et al. have studied GRD-C interaction
with a large panel of RAC1 and CDC42 variants and have suggested, despite their 71% identity,
RAC1 and CDC42 appear to have only partially overlapping binding sites on IQGAP1, and each
uses different determinants to achieve high affinity binding (Owen et al., 2008). However, our
competition experiment has shown in figure 2J clearly indicated that GRD-C competitively
associates with an overlapping binding region of RAC1 and CDC42.

The determination of individual kinetics parameters for the interaction of GRD-C with RAC-
and CDC42-like proteins indicates that GRD-C may utilize a homologous set of associating
residues of various CDC42-/RAC-like proteins, in spite of differences in the reaction rates (Fig.
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3D; Table 1). The fact that six members of the RHO family and probably also WRCH1 and
Chp/WRCH2 (not analyzed in this study), associate with IQGAP1 raises the question of how an
interaction specificity is achieved in cells. RHOG is due to its high sequence similarity with the
RAC proteins classified as a RAC-related protein, although it shares with RAC1 overlapping signal
transduction pathways (Prieto-Sanchez and Bustelo, 2003). TC10 and RHOG interaction with
IQGAP1 and IQGAP2, respectively, has been previously reported (Wennerberg et al., 2002;
Neudauer et al., 1998). RHOG has been reported that do not bind to effectors such as PAK1,
PAKS5, PAK6, PAR6, IRSp53, WASP, or POSH, but on the other hand it binds in an activated GTP
bound form to the RAC/CDC42-specific effectors MLK3, PLD1, and IQGAP2 which in turn,
stimulates some downstream signaling targets of activated RAC1 and CDC42 such as JNK and Akt
(Wennerberg et al., 2002). Although the consequence of TC10-IQGAP1 interaction is not defined,
it seems to play a role in exocytosis and cell polarity. EXO70, a component of the exocyst
complex, has been shown to bind to the N-terminal IQGAP1, most likely to the WW motif (Prieto-
Sanchez and Bustelo, 2003) but probably not to the 1Q region because Exo70 was not found as
binding partner of this region (Hedman et al., 2015). In mammals, RALA, a member of the RAS
family, and TC10 have been shown to bind the exocyst (Inoue et al.,, 2003). TC10-EXO70
interaction is implicated in the tethering of GLUT4 vesicles to the plasma membrane in response
to insulin (Inoue et al., 2003; Inoue et al., 2006; Chiang et al., 2006), and in promoting neurite
outgrowth (Pommereit and Wouters, 2007; Dupraz et al., 2009; Fujita et al., 2013). IQGAP
proteins has been shown to be involved in both processes (Ory and Gasman, 2011; Wang et al.,
2007; Hedman et al., 2015). Data presented in this study, revealed that TC10 has the fastest
dissociation rate from GRD-C (Fig. 3D), suggesting that the IQGAP-TC10 complex requires
stabilization by additional binding proteins, for example EXO70. Investigating the protein
interaction network of the IQGAPs, modulating their function in space and time, remains an
open and very interesting issue for future studies.

The highest affinity of RAC2 for GRD-C can most likely be attributed to distinct amino acid
sequence deviations. The high affinity of RAC2 for IQGAP1 cannot be explained by comparing
potential residues that may undergo direct interacting contacts in spite of high amino acid
sequence identity of RAC isoforms. An aspect to be considered is the overall dynamics of the
protein parts originated from few different amino acids all over the molecule. The lower
flexibility of the switch | region of RAC2 in comparison to RAC1 and RAC3 may explain the
functional differences of these proteins as it has been previously proposed to contribute to a
higher TIAM1 activity on RAC2 compared to RAC1 and RAC3 (Haeusler et al., 2003).

Previous studies by other groups have shown that shorter IQGAP1 fragments, encompassing
the GRD domain, are responsible for the RAC1 and CDC42 interactions. For the first time, Zhang
and coworkers have shown that activated form of CDC42 is able to bound IQGAP1 GRD-C (aa
864-1657) (Zhang et al., 1997). One year later the same group reported that not only CDC42 but
also RAC1, although with lower affinity, could interact to GRD-C (Zhang et al., 1998). Afterwards,
Nomanbhoy and Cerione, have shown that GRD-C interacts tightly to CDC42-mantGTP using
fluorescence assay (Nomanbhoy and Cerione, 1999). Owen et al. have also reported that a GRD
protein (aa 950-1407) was able to tightly bind CDC42(Q61L) with a Ky value of 140 nM but failed
to bind RAC1(Q61L) using scintillation proximity assay (Owen et al., 2008). In this study, GRD-C
(aa 864-1657) has shown a much higher affinity for the Q61L mutant of not only CDC42 but also
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RAC1, and yet the GRD was proposed to be the binding domain of IQGAP1 that associates with
the switch regions of CDC42. Correspondingly, Kurella et al. have reported that GRD2 (aa 62-
1345) binds CDC42 in a GTP-dependent manner with an affinity of 1300 nM using isothermal
titration calorimetry (Kurella et al., 2009). These biochemical data (summarized in Table 1) along
with homology modeling, based on the RAS-RASGAP structure (Scheffzek et al., 1997), provided
up to date a structural model of IQGAP1 GRD contacting the switch regions of the CDC42 which
is generally accepted (Kurella et al., 2009; Owen et al., 2008; Elliott et al., 2012; Hart et al., 1996;
Ho et al., 1999; Kuroda et al., 1998; Mataraza et al., 2003b). Contrary to the existing model, we
observed a low-affinity, largely nucleotide-independent binding of GRD that associates with RAC-
and CDC42-like proteins outside the switch regions. This was evidenced by kinetic measurements
of GRD-GBD and GRD-C association, but not GDR, with RAC1 and CDC42 proteins (Figs. 2 and 4;
no changes in fluorescence were observed with GRD). Conducted equilibrium measurements
using fluorescence polarization not only substantiated the essential role of IQGAP1 GBD in a GTP-
dependent interaction with RAC1 and CDC42 in support with our kinetic analysis but also
provided striking insights into the main feature of IQGAP1 GRD. Our quantitative analysis under
equilibrium conditions clearly revealed that GRD indeed undergoes a low-affinity, largely
nucleotide-independent interaction with CDC42 and also RAC1 but in contrast to GBD its binding
site resides outside the critical switch regions (Fig. 5). The significance of GBD (previously called
RGTC) as a GTP-dependent interacting domain for RAC- and CDC42-like proteins was proved
using single point mutants of GRD-GBD (e.g. Ser1443 substituted by Asp and Ala but not Ser1441
to Glu and Ala, two PKCa phosphorylation sites), which led to the abolishment of a GTP-
dependent interaction of GRD-GBD while nucleotide-independent association through the GRD
was unchanged. Grohmanova and coworkers previuosly have shown via GST pull down
experiments and using MCF10A cell lysate, that in the presence of phosphatase inhibitor there is
a significat reduction in the interaction between IQGAP1 and CDC42-GTP bound in contrast to
CDC42 nucleotide depleted which bound to phosphorylated IQGAP1 much stronger
(Grohmanova et al., 2004). In addition, our data have clearly demonstrated that the region
upstream of GRD2 (aa 863-961) is dispensable for the RAC1 and CDC42 interaction. Another
interesting issue was the inhibitory effect of the very C-terminal 99 amino acids (C domain) on
the GBD determined through a 3-fold faster association of GRD-GBD (lacking the C domain) with
RAC1 and CDC42 as compared to GRD-C. This is consistent with observations regarding the
interaction of GRD and GBD-C domains with each other, favoring GTP-dependent binding to
CDC42 (Grohmanova et al., 2004; Le Clainche et al., 2007).

Upon HSCs activation, quiescent HSCs develop into the cells that are able to contract and
migrate. It is reported that IQGAP1 plays a role in HSC activation by binding to TGF-f receptor Il
and suppress HSC activation (Liu et al., 2013a). These observations raised the questions, which
IQGAP isoforms are present in HSCs and is there any evidence that IQGAPs actively scaffolds RHO
proteins in HSCs? To address these questions, first we investigated the expression pattern of
IQGAP1, 2, 3, RAC1, 2, 3, and CDC42 in quiescent vs. activated HSCs. Our quantitative RNA
analysis revealed that IQGAP1 and 3 isoforms get upregulated during the activation process of
HSCs while IQGAP2 is down-regulated. At protein levels, we were able to detect IQGAP2 isoform
only in quiescent HSCs while IQGAP1 was presented in both states of HSCs, and became
upregulated during HSC activation. These results are in consistent with what Schmidt and
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colleagues, have reported regarding the reciprocal expression of IQGAP1 and 2 in human
hepatocellular carcinomas, where IQGAP1 increased and IQGAP2 decreased (White et al.,
2010b). In quiescent HSCs, we speculate that IQGAP2 exerts its specific functions by scaffolding
the distinct signaling components in different protein complexes than IQGAP1. Canonical Wnt
signaling is very dynamic in quiescent HSCs and it is shown in other cells that IQGAP2 can interact
with Dishevelled/B-catenin, therefore in gHSCs IQGAP2 may modulate Wnt-B-catenin signaling
and stimulate GFAP synthesis and cell-cycle arrest (Kordes et al., 2008b; Schmidt et al., 2008).
Another possibility would be, IQGAP2 competes with other scaffolding proteins to recruits RHO
proteins and may interfere with RHO-dependent cell migration. The functions and specific
binding partners of IQGAP2 in gHSCs remain to be investigated. aHSCs display the elevated levels
of PDGF signaling and focal adhesion kinase (FAK), acts downstream of PDGF (Carloni et al.,
2000). PDGF induces the IQGAP1-dependent complex formation of focal adhesion proteins
(paxillin and vinculin) and PDGF receptor B (Kohno et al., 2013). IQGAP1 also binds to FAK
(Cheung et al., 2013), therefore, PDGF-IQGAP1 may regulate the focal adhesion assembly in
aHSCs that is important for cell motility and migration.

Elevated levels of the RAC1 and CDC42 correlate with high amount of IQGAP1 in activated
HSCs; we detected higher levels of RAC1, RAC2 and CDC42 in aHSCs than gHSCs. On the other
hand, our biochemical studies demonstrated that RAC1 and CDC42 interact in GTP-bound forms
with IQGPA1. Therefore, we suggest that IQGAP1 scaffolds RAC1 and CDC42 to regulate cell-
adhesion and migration in these cells. However, the role of IQGAP1 in aHSCs needs to be
investigated.

Taken together, our kinetic and equilibrium measurements clearly challenge the paradigm
that the ability of IQGAP1 to interact with RAC/CDC42 proteins is mainly attributed to its GRD.
On the contrary, we propose that the C-terminal half of IQGAP1 utilize at least three functionally
distinct units, including GRD, GBD and C, to achieve the interaction with RAC1- and CDC42-like
proteins. Keeping this in mind, the switch regions of the RHO family proteins have been
previously proposed as the first binding site for the downstream effectors and if this first contact
is achieved then additional contacts outside the switch regions will be required to guarantee
effector activation (Dvorsky and Ahmadian, 2004). Remarkably, IQGAP1 seems to employ a
different strategy to interact with RAC1 and CDC42 proteins as schematically illustrated in Figure
7: (i) GRD undergoes a low-affinity, GDP-/GTP-independent complex with RAC1 and CDC42
proteins outside their switch regions in a way that is independent of the upstream signals,
providing it is structurally accessible and available for interactions; (ii) GBD only binds to the
RAC1 and CDC42 proteins if they are active and exist in the GTP-bound formes; (iii) the C-terminal
region of IQGAP1 may potentiate the IQGAP1 interaction with RAC1 and CDC42 proteins by
probably extending the resident time of the respective proteins complexes. Such a sequential
association with the RAC1 and CDC42 proteins most likely leads to activation of IQGAP1, can be
envisaged as conformational changes allowing further IQGAP1 interaction with its downstream
targets depending on both the cell types and the upstream signals. We further propose that this
is a conserved control mechanism also for IQGAP2 and probably also IQGAP3 due to high
sequence homology.
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The RHO family proteins are known to play an important role in diverse cellular processes and

Table 1. Data summary for the interaction of RHO proteins with IQGAP variants

Proteins® Kg (NM)™ Method® Reference
IQGAP1863'1345/RAC1-mantGppNHp no binding FM this study
IQGAP1%****/cDC42-mantGppNHp no binding FM this study
IQGAP1%%**/RAC1-mantGppNHp no binding FM this study
IQGAP1962'1345/CDC42—mantGppNHp no binding FM this study
IQGAP1%"®7/RAC1-mantGppNHp 1,420 FM this study
IQGAP1%"®7/CDC42-mantGppNHp 2,000 FM this study
IQGAP1%%*%°7 /RAC2-mantGppNHp 27 FM this study
IQGAP1%%*%°7 /RAC3-mantGppNHp 450 FM this study
IQGAP1%'®*7 /RHOG-mantGppNHp 490 FM this study
IQGAP1%*'%*7/TC10-mantGppNHp 1,530 FM this study
IQGAP1¥7">°8 /RAC1-mantGppNHp 4,110 FM this study
IQGAP1¥7>°%/CDC42-mantGppNHp 4,200 FM this study
IQGAP1%71>%8514418) )R A C1-mantGppNHp 9,960 FM this study
IQGAP1%71>%8514418) ) 042 -mantGppNHp 6,060 FM this study
IQGAP1877'1558(51443D)/RAC1-mantGppNHp no binding FM this study
IQGAP1877'1558(51443D)/CDC42—mantGppNHp no binding FM this study
IQGAP1877'1558(SS/AA)/RAC1—mantGppNHp no binding FM this study
IQGAP1877'1558(SS/AA)/CDC42-mantGppNHp no binding FM this study
IQGAP1877'1558(SS/ED)/RAC1-mantGppNHp no binding FM this study
IQGAP1%7>>855E0) /e 42 -mantGppNHp no binding FM this study
IQGAP1¥""°%/cDC42-GTP 1,300 SPR (Elliott et al.,
2012)
IQGAP1%7 1238514418 ;e pcq 2 -GTP 220,000 SPR (Elliott et al.,
2012)
Proteins® eKy (nM)*? Method® Reference
IQGAP™***** /RAC1-mantGppNHp 8,145 FP this study
IQGAP******/CcDC42-mantGDP 184,700 FP this study
IQGAP®** %7 /RAC1-mantGppNHp 5,530 FP this study
IQGAP®***'**’/cDC42-mantGDP 95,100 FP this study
IQGAP******/CcDC42-mantGppNHp 30,200 FP this study
IQGAP®* %7 /cDC42-mantGppNHp 3,400 FP this study
IQGAP****** /JRHOA-mantGppNHp no binding FP this study
IQGAP*** %’ JRHOA-mantGppNHp no binding FP this study
IQGAP1%¥7">°8 /RAC1-mantGppNHp 4,570 FP this study
IQGAP1%771558514418) ) A C1-mantGppNHp 6,680 FP this study
IQGAP1%77 1258514430 )R A 1 _mantGppNHp 288,300 FP this study
IQGAP1%*"®7/CDC42-mantdGTP 28 FA (Nomanbhoy ani
Cerione, 1999)
IQGAP1%** %7 /RAC1%™-PH]GTP 18 SPA (Owen et al.,
2008)
1QGAP17* M7 /RAC1I®™-[PH]GTP no binding SPA (Owen et al.,
2008)
IQGAP1%*"*7/cDC42%™-[PH]GTP 24 SPA (Owen et al.,
2008)
IQGAP1%° 7 /cDC42%™-PH]GTP 140 SPA (Owen et al.,
2008)
IQGAP1°°***/CDC42-GTP 1,300 ITC (Kurella et al.,
2009)
IQGAP1%°*™*/CcDC42-GDP no binding ITC (Kurella et al.,
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2009)
Proteins® K (nM)>3 Method® Reference
IQGAP1***'%*7/cDC42-GTP 82 PRA (zhang et al.,
1997)
IQGAP1%**'%*7/cDC42-GTP 390 PRA (zhang et al.,
1998)
IQGAP1%**7/RAC1-GTP 2,130 PRA (Zhang et al.,
1998)

°lQGAP1 proteins; Pthe binding affinity of the IQGAP proteins for various RHO proteins has been analyze in
different ways: ®lunder kinetic condition that provides the individual association and dissociation rate
constant (ko, and ko) and determines the dissociation constants (K4) or *2under equilibrium conditions by
determining the equilibrium dissociation constants (eKgy) or ®3 Under competitive reaction conditions, for
example inhibition the intrinsic GTP-hydrolysis reaction the RHO proteins that determines the equilibrium
inhibition constant (K;); © FM, fluorescence measurement by stopped flow, FA, fluorescence assay; FP,
fluorescence polarization; ITC, isothermal titration calorimetry; PRA, Phosphate-release assay; SPA,
scintillation proximity assay; SPR, surface plasmon resonance.
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FIGURE LEGENDS

Figure 1. Schematic representation of domain organization and various constructs and proteins
of IQGAP1. (A) Domain organization (color coded) along with the PKCa phosphorylation sites and
constructs relevant to this project. (B) Coomassie brilliant blue (CBB) stained SDS-PAGE of
purified IQGAP1 used in this study.

Figure 2. GRD-C selectively associates with various RAC- and CDC42-like proteins. (A) Chemical
structure of mantGppNHp, a fluorescently labelled, non-hydrolyzable GTP analog. (B-H)
Association of GRD-C (2 puM) with mantGppNHp-bound RHO proteins (0.2 uM). B and F also show
the association of RAC1 and CDC42 with GRD-C (green), but not with GRD (red). (I) Association of
mantGppNHp-RAC1 (0.2 uM) with IQGAP1°%%€ (2 uM) in the presence of excess amount of RND1,
RND2 or RND3 (10 uM). (J) Association of RAC1-mantGppNHp (0.2 uM) with IQGAP1GRD-C (2
uM) in the presence of excess amount of CDC42-GppNHp (10 uM), and vice versa.

Figure 3. Kinetic measurements of GRD-C with RAC- and CDC42-like proteins. (A) Association of
RAC1-mantGppNHp (0.2 uM) with increasing GRD-C concentrations (0.25-8 uM). (B) Association
rates (k.n) of GRD-C binding RHO proteins. (C) Dissociation of GRD-C (2uM) from RAC1-
mantGppNHp (0.2 uM) in the presence of unlabeled RAC1-GppNHp (10uM). (D) Association rates
(kon), dissociation rates (ko) and dissociation constants (kq) of GRD-C binding RHO proteins.

Figure 4. Interaction of different C-terminal variants and phosphomimicking mutants of
IQGAP1 with RAC1 and CDC42. (A) Association of different IQGAP1 variants with RAC1/CDC42-
mantGppNHp (0.2 uM) was measured and the observed rate constants (k.ps) were plotted
against the investigated IQGAP1 C-terminal domains. In contrast to GRD-C, GDR-GBD and GRD-
GBR®® of IQGAP1, which efficiently interact with RAC1 and CDC42, GRD1, GRD2, and GDR-GBD
variants (SD, SE/SD and SA/SA) were disabled to associate RAC1 and CDC42. (B, C) Kinetic
measurements were performed to obtain the k,, and the ky; values, and to calculate the Ky
values for the interaction of GRD-C, GRD-GBD, and GRD-GBD** with RAC1 (B) and CDC42 (C).
Obtained data show the comparable results for RAC1 and CDC42.

Figure 5. GRD binds RAC-/CDC42 like proteins but outside the switch regions. (A-C)
Fluorescence polarization experiments were conducted to measure the interaction of
mantGppNHp-bound RAC1, CDC42 and RHOA (1 uM, respectively) with increasing concentrations
of GRD-C (0-20 uM) (A), and GRD (0-120 uM) (B). (C) Evaluated data and obtained dissociation
constant (K4) shown in the bars illustrates a significant difference in the binding affinities of these
two IQGAP1 proteins. (D) Binding of mantGppNHp-bound RAC1 protein (1 uM) with increasing
concentrations (0-45 pM) of GRD-GBD, GRD-GBD>* and GRD-GBD®®. (E) Calculated dissociation
constants (kg) shown in the bars reveal a significant decrease in the affinities of GRD-GBD*®
compared to GRD-GBD and GRD-GBD*". (F-G) Fluorescence polarization experiments were
conducted under the same conditions as in A and B, the only different was that inactive
mantGDP-bound CDC42 was used. Calculated Ky values were 95 uM for GRD-C and 184 uM for
GRD, respectively.
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Figure 6. Reciprocal expression of IQGAP isoforms and RHO proteins in hepatic stellate cells.
(A) qPCR analysis of IQGAP1, 2, 3, RAC1, 2, 3, and CDC42 in freshly isolated (quiescent, d0) and
activated HSCs (day 8) revealed that IQGAP1, 3 and RAC2 preferentially expressed in aHSCs
where IQGAP2 is downregulated. (B) Western blot analysis of RAC1, CDC42, IQGAP1 and 2 were
performed at different time points after HSC isolation (d0, d1, d4 and d8). On contrary to IQGAP2
which was expressed more in gHSCs and lesser in aHSCs, IQGAP1, RAC1, and CDC42 had higher
levels of expression in aHSCs. y-tubulin was applied as a inernal contral for western bloting.

Figure 7. A proposed multi-stage mechanistic model of IQGAP interaction with IQGAP1. Low-
affinity, GDP-/GTP-independent interaction of GRD with RAC1 and CDC42 proteins outside their
switch regions occurs in a way that is independent of the upstream signals, providing it is
structurally accessible and available for interactions. GBD only binds to the RAC1 and CDC42
proteins after GEFs catalyze the exchange of GDP to GTP, and they exist in an active GTP-bound
forms. The C-terminal domain of IQGAP1 may potentiate the IQGAP1 interaction with RAC1 and
CDC42 proteins by probably extending the resident time of the respective proteins complexes.
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Nouri et al., Figure 1
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Nouri et al., Figure 3
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Nouri et al., Figure 7
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SUPPORTING INFORMATION

IQGAP1 interaction with RHO family proteins revisited:

kinetic and equilibrium evidence for two distinct binding sites*

Kazem Nouri*, Eyad K. Fansa'®, Ensan Amin®, Saeideh Nakhaei-Rad', Radovan Dvorsky®, Lothar

Gremer?, David J. Timson®, Lutz Schmitt®, Dieter Héussingers, and Mohammad R. Ahmadian'®

Ynstitute of Biochemistry and Molecular Biology Il, Medical faculty of the Heinrich-Heine University, 40225

Disseldorf, Germany

’Institute of Physical Biology, Heinrich-Heine University, Diisseldorf, Germany

*School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road,
Brighton BN2 4GJ, United Kingdom

*Institute of Biochemistry, Heinrich-Heine University, Diisseldorf, Germany

>Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich-Heine

University, Diisseldorf, Germany

Table S1: Primer sequences were obtained from Primer Bank

(http://pga.mgh.harvard.edu/primerbank) with small modifications match with rat sequences.

Target Primer Source

FW: 5’-GAGAAGACCGTTTTGGAGCTAAT -‘3

IQGAP1 NM_001 1 08489.1
RV: 5-GGGTGAGGCTATGCTCAGG -3
FW: 5’-GCTGTCAAAACTTCAGCAGAC-3

IQGAP2 XM_008760685.1
RV: 5'- AGGTTGTCTACACAGGTCTTGA-'3
FW: 5’-AACTTCTGGCTTTCTGCGGTA -‘3

IQGAP3 NM_001191709.1
RV: 5’-AATGCAGTAGATCACCCGAGG-3
FW: 5’- ACGGAGCCGTTGGTAAAACC-‘3

RAC1 NM_134366.1
RV: 5’- AGACGGTGGGGATGTACTCTC-'3 -
FW: 5’- GACAGTAAACCTGTGAACCTGG-3

RAC2 XM_006242028.1
RV: 5’- CTGACTAGCGAGAAGCAGATG-3 -
FW: 5’- TATCCCCACAGTTTTCGACAAC-3

RAC3 XM_006247966.1
RV: 5'-GAGAGTGGCCGAAGCCTAT -‘3 -
FW: 5’-GAAAATGTGAAAGAAAAGTGGGTG-3

CDC42 XM_006239270.1
RV: 5'-TCTGGAGTAATAGGCTTCTGTTTG-‘3 -

HPRT1 FW:5’-AAG TGT TGG ATA CAG GCC AGA-‘3 .

self-designed

RV:5-GGC TTT GTACTT GGC TTT TCC-‘3
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Figure S1. IQGAP1°®® is crucial for the interaction with RAC1. Association of RAC1 mantGppNHp
labeled (0.2 pM) and various IQGAP1 variants (2 uM) were measured. In contrast to GRD-C, GDR-
GBD, and GRD-GBD*" variants of IQGAP1, GRD1, GRD2, and GDR-GBD variants (SD, SE/SD, and
SA/SA) failed to associate with RAC1. Calculated keps values for associating IQGAP1 fragments
with RAC1 are shown in parenthesis.

113



Chapter VI

Nouri et al. Figure S2

B 5
a Y - —
< & £ 19
8 8
ﬁ b
c 1 o 4 Eu.ga
2"y 3 2
2 4 2 2096
= i —ZuM =
= ; GRD-C 3
[T ]
: : : : 0 ' . . '
1] 02 04 0B OB 1 2 4 B B8 10 12 D'Nn n 4 B 8 10
time (s) GRD-C (pM) time (s)
D E F
12 1
8 o 8
§ 104 E
0 — 8 " gn.na
5 ) 5
2 j © )
"4
@ 4 2096
= crocep| 2 =
— ul i E
e ] ol S “ 0941
0 02 04 0B 0B 1 2 4 6 8 10 12 Q 1 2 3
time: (s) H GRD-GBD (pM) ] time (s)
el
8 6 2
] b
g Jn, Ppog
E i :
= g =
@ 2098
2 21 =
m 1]
g . ; 04— — . oot el |
0 02 04 0B 08 1 2 4 65 B 10 12 0 1 2 3
time (s) GRD-GBD™ (uM) time (s)

Figure S2. Kinetic measurements of GRD-C, GRD-GBD, and GRD-GBD*® association with RAC1.
Association of mantGppNHp-RAC1 (0.2 uM) with increasing concentrations (2-12 uM) of IQGAP1,
association rates (kon), and dissociation of IQGAP1 (2uM) from RAC1-mantGppNHp (0.2 uM) in
the presence of unlabeled RAC1-GppNHp (10uM) are shown for (A-C) GRD-C, (D-F) GRD-GBD,
and (G-1) GRD-GBD*, respectively. Quantitative data are presented in figure 4B
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Nouri et al. Figure S3
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Figure S3. IQGAP1°®® is essential for the CDC42 interaction. Association of different IQGAP1
variants (2 uM) with CDC42-mantGppNHp (0.2 uM) was measured under the same conditions as
in S1. CDC42 associates with GRD-C, GDR-GBD, and GRD-GBR**, but not with GRD1, GRD2, and
GDR-GBD variants (SD, SE/SD and SA/SA). ke, values are presented in parenthesis in front of
each associating fragment.
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Nouri et al. Figure S4
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Figure S4. Kinetic measurements of GRD-C, GRD-GBD, and GRD-GBD** association with CDC42.
Kinetic measurements were performed under the same conditions as in S2. Association of
mantGppNHp-CDC42 (0.2 uM) with increasing concentrations (2-12 uM) of IQGAP1 proteins,
association rates (kon), and dissociation of IQGAP1 (2uM) from CDC42-mantGppNHp (0.2 uM) in
the presence of unlabeled CDC42-GppNHp (10uM) are shown for GRD-C (A-C), GRD-GBD (D-F),
and GRD-GBD** (G-1), respectively. Corresponding quantitative data are presented in figure 4C.
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Juvenile myelomonocytic leukemia displays mutations in
components of the RAS pathway and the PRC2 network
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Juvenile myelomonocytic leukemia displays mutations in
components of the RAS pathway and the PRC2 network

Aurélie Caye!~3, Marion Strullu'?, Fabien Guidez!, Bruno Cassinat!4, Steven Gazal>%, Odile Fenneteau’,

Elodie Lainey"?7, Kazem Nouri®, Saeideh Nakhaei-Rad®, Radovan Dvorsky?®, Julie Lachenaud'3,

Sabrina Pereira?, Jocelyne Vivent"3, Emmanuelle Verger!#, Dominique Vidaud®!9, Claire Galambrun'!,
Capucine Picard'>-4, Arnaud Petit!3, Audrey Contet!6, Marilyne Poirée!7, Nicolas Sirvent!$,

Francoise Méchinaud'?, Dalila Adjaoud??, Catherine Paillard?!, Brigitte Nelken?2, Yves Reguerre??,

Yves Bertrand?, Dieter Hiussinger?’, Jean-Hugues Dalle?2%, Mohammad Reza Ahmadian®, André Baruchel?26,

Christine Chomienne'>* & Héleéne Cavé! -3

Juvenile myelomonocytic leukemia (JMML) is a rare and
severe myelodysplastic and myeloproliferative neoplasm of
early childhood initiated by germline or somatic RAS-activating
mutations'-3, Genetic profiling and whole-exome sequencing
of a large JMML cohort (118 and 30 cases, respectively)
uncovered additional genetic abnormalities in 56 cases (47 %).
Somatic events were rare (0.38 events/Mb/case) and restricted
to sporadic (49/78; 63 %) or neurofibromatosis type 1 (NF1)-
associated (8/8; 100%) JMML cases. Multiple concomitant
genetic hits targeting the RAS pathway were identified in 13 of
78 cases (17 %), disproving the concept of mutually exclusive
RAS pathway mutations and defining new pathways activated
in JMML involving phosphoinositide 3-kinase (PI3K) and the
mTORC2 complex through RAC2 mutation. Furthermore, this
study highlights PRC2 loss (26/78; 33% of sporadic ]JMML
cases) that switches the methylation/acetylation status of
lysine 27 of histone H3 in JMML cases with altered RAS

and PRC2 pathways. Finally, the association between JMML
outcome and mutational profile suggests a dose-dependent
effect for RAS pathway activation, distinguishing very aggressive
JMML rapidly progressing to acute myeloid leukemia.

JMML is considered a unique example of RAS-driven oncogenesis
because it is thought to be initiated by mutations, usually described
as mutually exclusive, in RAS genes (NRAS or KRAS) or RAS pathway
regulators (PTPN11, NF1 or CBL)'. JMML can be sporadic or develop
in patients displaying syndromic diseases with constitutional RAS
overactivation such as Noonan syndrome, NFI and CBL syndrome,
which are caused by heterozygous germline mutations in PTPN11,
NFI and CBL, respectively?.

We first explored the somatic mutation landscape of 30 patients
with syndromic (n = 8) or sporadic (n = 22) JMML by combining
genome-wide DNA array analysis, whole-exome sequencing and
targeted sequencing in paired germline and tumoral samples

A full list of author affiliations appears at the end of the paper.
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(Supplementary Table 1). In total, 85 somatically acquired genetic
alterations were found in 25 of 30 (83%) patients in this subcohort
(Supplementary Fig. 1 and Supplementary Tables 2 and 3). The
low rate of somatic events (0.38 events/Mb/case versus 0.61 events/
Mb/case on average in childhood cancer)® confirms the paucity of
oncogenic events required for JMML nncngencsis".

Genes containing somatic variations detected by whole-
exome sequencing or previously reported to be mutated in JMML
(Supplementary Table 4) were then sequenced in the full cohort
of 118 JMML cases (Supplementary Figs. 2 and 3). In total,
122 secondary clonal abnormalities in addition to initiating RAS
pathway mutations were uncovered in 58 of the 118 (49%) patients
(Fig. 1 and Supplementary Tables 2, 5 and 6). Interestingly, almost no
additional mutations were detected in patients with CBL syndrome or
Noonan syndrome. In line with phenotype-genotype correlations”?,
this observation supports an endogenous role for germline PTPN11
and CBL mutations in the occurrence of myeloproliferative neoplasms
and suggests that parameters other than additional somatic gene
mutations, such as, for instance, a mutated hematopoietic microen-
vironment, might be involved in supporting leukemogenesis.

In contrast, at least one additional somatic hit was found in eight of
eight (100%) NF1-associated JIMML cases and 49 of 78 (63%) sporadic
JMML cases. The percentage of sporadic JMML cases with secondary
genetic alterations was similar in all subgroups, but the pattern of
mutations varied substantially depending on the initiating lesion.
JMML cases with an initiating KRAS lesion (KRAS-]JMML) mostly
displayed chromosomal abnormalities, including del7 or del7q in 56%
of cases, unlike other genetic subgroups that mostly had point muta-
tions (Supplementary Fig. 4 and Supplementary Table 5). Further
studies are required to understand why RAS-driven oncogenesis
proceeds through the acquisition of various patterns of secondary
mutation that depend on the initiating lesion.

The secondary somatic mutations targeted genes known to be
involved in myeloproliferative neoplasms, albeit with a much lower

10.1038/ng.3420
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Figure 1 Combinations af multiple hits targeting the RAS pathway and
PRECZ network. [a) Circos plat repeesenting CNYs in 118 JMML cases.
Copy number profiles are shown in red [somathc gain) or blue {somatic loss),
AUPD regions are shown In arange and germiing sneuploldies are shown
in black. A question mark indicates untdetermined boundaries. Rolevani
genes in the RAS pathway and PRCZ network aro indicated in pink and
blue, respectively. All alIPD events {n = 16} resulted in the duplication
of pncogenic RAS-related variants. An aUPD region encompassad the
second allele of NFI {n = 3) and CEL (n= 10} in patients with germiine
mutations of these genes or somatically acguired oncogenic FTPNIL
[n= 1) or NRAS (n = 2) mutations in sporadic JMML cases. Deletions
targeted varous PROZ components. ESHE was haploinsullicient in
patignis with del¥ or delTq. AEEFT was deloled in one patient with
dell2p. A &p delation encompassed COVL (Bp25.1) in three patients,
with co-deletion of JARIDZ (6p22.3) in two of tham. (b] Yenn diagram
showing the coexistence ol multiple RAS-targeting hits in JMML. Both
getmiine and somatically scquired mutations of canonical RAS pathway
genes and orthologs are represented, Each colored segment corresponds
e o different gene. In three cases (two NRAS-JMML and one PTPN] |-
JMBL), represented by darker circles embedded in the segment of the
altered gene, RAS double mutation corespondaed te LOM of the ancoganic
mutation. RRAS mutations ane represenied by a gray circle embedded in
the NRAS segment, as the two RRAS mutations were found in patients
with concomitant NRAS mutation,

prevalence than in adult diseases™ '™ (Fig. 2}, SETBPI was mutated
in ten of the 118 (9%) cases, and the spliccosome gene ZRSAY was
mutated in three cases. In contrast with a previous report, JAK3
mutations were found in only four IMML cases®, The acquisition
of SETBPI, ASXLI, JAK3 and other somatic alterations, incleding
monosomy 7, consistently appeared secondary to the RAS pathway
mutation, usually following a linedar pattern, except in two patients
(Fig. 3). An active role for the variants in leukemogenesis is supported
by the high proportion predicted to be deleterious (Supplementary
Fig. 5) and, most notably, by their striking enrichment in RAS path-
way and Polycomb repressive complex 2 (PRC2) network components
(Fig. 1 and Supplementary Table 6).

Surprisingly, a second hit targeting the RAS pathway was observed
in 13 of 78 (17%) sporadic IMML cases and two of eight (25%)
NFl1-associated JMML cases (Fig. 1b and Supplementary Table 5),
hereafter termed ‘RAS double mutants’ Duplication of the oncogenic
mutation due to acquired uniparental disomy (aUPD) was observed
in three patients. Various combinations of mutations activating the
canonical RAS pathway were also found, with the most frequent being
NF1 haploinsufficiency in six sporadic JMML cases with an initiating
lesion in PTPN11 (PTPN11-]MML) (Supplementary Fig. 6).

Mutations in RAS regulators were also found. PDESA, mutated
in one PTPN11-JMML case, protects RAF1 from inhibitory phos-
phorylation by protein kinase A (PKA), enhancing its activity'!,
Two JMML cases with initiating lesions in NRAS (NRAS-JMML)
had mutations in RRAS, an inducer of RAS-mitogen-activated
protein kinase (MAPK) activation'? and upstream regulator of RAC
in hematopoietic stem cells'?, and another had a mutation in the RHO
GTPase RAC2. The coexistence of RAC and RAS-MAPK mutations in
some tumors and cooperation between oncogenic NRAS and RAC has
previously been demonstrated'*. Investigations into the functional
and structural properties of the Asp63Val RAC2 mutant, which
predominantly occurred in its active, GTP-loaded form, as compared
to wild-type RAC2 and the constitutively active Gly12Val RAC2 variant
demonstrated a drastic gain-of-function effect (Fig. 4). Interestingly,
an analysis of signaling downstream of RAS showed that Asp63Val
RAC2 activated the PI3K-PDK1-AKT and mTORC2 pathways but did
not have a significant effect on the RAF-MEK-ERK pathway (Fig. 4
and Supplementary Fig. 7). This finding is consistent with several
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lines of evidence indicating a strong impact of the PI3K-PDK-AKT
pathway on JMML'3, and activating the catalytic p1108 subunit of
PI3K has recently been shown to promote the effects of Shp2 on
granulocyte-macrophage colony-stimulating factor (GM-CSF) hyper-
sensitivity!®. Plexins catalyze RRAS inactivation via their GTPase-
activating protein (GAP) domain'7, and PLXNB2 was mutated in one
PTPNI11-JMML case. Finally, ABII, belonging to a multimolecular
complex required for SOS-mediated RAC activation'®!?, was mutated
in one case. Together, these findings suggest that the RRAS-RAC
pathway represents a meaningful mutated subnetwork in JMML.

Although no KRAS-JMML case was a RAS double mutant at
diagnosis, loss of heterozygosity (LOH) for oncogenic KRAS during
disease progression in one patient suggests that this could occur
(Supplementary Fig. 8).

Sequencing of isolated myeloid colonies demonstrated the coexist-
ence of multiple RAS hits in the same myeloid progenitors in three
JMML cases tested (Supplementary Table 7). With the exception of
NFI mutations, which were subclonal in four of six cases, consistent
with their late acquisition (Supplementary Fig. 6), RAS mutations
could not be temporally hierarchized at diagnosis, despite extensive
colony screening. This suggests a role for mutational combinations in
the early stages of the disease and a strong selective benefit for double
mutants, Surprisingly, however, in one patient with both an NRAS and
RRAS mutation at diagnosis, the NRAS mutation was lost after inten-
sive chemotherapy whereas the RRAS mutation was still detected.
This finding strongly suggests that RRAS mutations may initiate JMML
(Fig. 3), a hypothesis consistent with the recent report of a myeloid
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Figure 2 Alteration profiles in individual JMML cases. Germline and somatically acquired alterations with recurring hits in the RAS pathway and PRC2 network
are shown for 118 patients with JMML who underwent detailed genetic analysis. Blast excess was defined as a blast count 210% but <20% of nucleated
cells in the bone marrow at diagnosis. Blast crisis was defined as a blast count 220% of nucleated cells in the bone marrow. NS, Noonan syndrome.

hemopathy in a patient harboring a germline RRAS mutation!?,
Our findings challenge the dogma of the mutual exclusivity of RAS
pathway mutations, supporting a dose-dependent effect for onco-
genic RAS. The cooperative effects of RAS-activating events that were
previously viewed as functionally equivalent have been evidenced in
several mouse models?-22. NfI and Kras double-mutant mice have
been shown to develop myeloid malignancies with reduced latency
and increased severily in comparison to mice with only one of the
two defects. More recently, the role of oncogene dosage has been dem-
onstrated in the context of Nras-driven myeloid transformation®!+,
Our findings based on patient samples provide evidence that these
models are fully relevant to human disease.

Another major group of genes targeted in JMML belonged to the
PRC2 complex, involved in the transcriptional repression of target
genes via methylation at lysine 27 of histone H3 (H3K27me3). In
our cohort, copy number variations (CNVs) frequently resulted in
haploinsufficiency for PRC2 core subunits (SUZ12 or EZH2) or PRC2-
associated factors necessary for optimal PRC2 activity (AEBP2, CDYL
or JARID2) (Fig. 1a). In two patients, an EZH2 point mutation became
hemizygous by loss of the copy of chromosome 7 bearing the wild-type
EZH2 allele. EZH2 haploinsufficiency induced by del7 or del7q reduces
H3K27me3 levels at specific loci?. JARID2 is involved in the recruit-
ment of the PRC2 complex to its target genes in hematopoietic stem
cells**?3, and A2BP2 is an evolutionarily conserved PRC2 cofactor?®,

Hemizygous JARID2 and AEBP2 deletions have been described in the
clonal evolution of myeloproliferative neoplasms®”. CDYL, for which
three of our patients were haploinsufficient, encodes a transcriptional
corepressor that recruits PRC2 to the chromatin substrate®® but has
not been demonstrated to undergo alteration in myeloid malignancies
before now. Finally, inactivating mutations in the Polycomb-associated
gene ASXLI were observed in eight of 118 (7%) JMML cases, all
sporadic. ASXLI silencing reduces H3K27me3 levels through the
inhibition of PRC2 recruitment to specific oncogenic target loci and
collaborates with NRAS mutation encoding p.Glyl12Asp in vivo to
promote myeloid leukemogenesis®**". Thus, non-mutually exclusive
genetic alterations impairing PRC2 function occurred in 26 of 78
(33%) sporadic IMML cases and five of eight (63%) NF1-associated
JMML cases. Interestingly, hemizygous spliceosomal mutations
similar to those found in three of our patients have recently been
shown to induce nonsense-mediated decay of EZH2, reducing
its expression to levels observed with hemizygous deletion®*3! and
possibly further increasing the rate of PRC2 alterations in [IMML.
Our findings extend a previous observation that components of
epigenetic regulation are mutated at high frequencies in a subset of
pediatric cancers*. Moreover, recent data show that haploinsufficien-
cies for multiple genes that regulate PRC2 function can cooperate in
myeloid transformation®*** and result in an antagonistic methylation-
to-acetylation switch at H3K27, with the transcriptional activation of
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Figure 3 Clonal evolution of JMML. Clonal JMML_92 JMML_113
architecture was investigated by sequencing
isolated colonies (colony forming unit monocyte
(CFU-M) or colony forming unit granulocyte-
monocyte (CFU-GM)) obtained by culturing
patient-derived myeloid progenitors in vitro and
calculating the variant allele frequency (VAF)

of each variant by next-generation sequencing
(Supplementary Table 6). The clonal architecture
of three NRAS-JMML cases, including the two
cases displaying a nonlinear clonal architecture
(JMML_92 and JMML_113), is represented.
Each circle represents a cione. Dashed lines

o H JMML_37

indicate clones whose presence was not directly

assessed but was deduced from axperimental AAAS faon 1 NAAS gmon 2 EIMZ awon 14 SETEET
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anpiher clone presenting bialkalic NF] mutations,
In JMML_37, the NRAS mutation was lost in

a follow-up sample collected after intensive chemotherapy for blast crisis, whereas a subclonal RRAS mutation was still detected. This suggests that the RRAS
and nod the NRAS mutation initiated the JIMML The aliglic imbalance of the EZH2 mutation indicates that ([t preceded the loss of chromosoms 7,

PRC2 target genes*. Concordantly, using antibodies to H3K27me3  decrease in H3K27 trimethylation with a concomitant increase in
and H3K27ac, we found that primary JMML samples with decreased  acetylation (Fig. 5). The identification of recurrently affected bio-
PRC2 activity due to ASXL1 mutation or monosomy 7 showed a global  logical pathways is a strong and powerful indication that mutations

Figure 4 The p.Asp63Val substitution in RAC2 a

results in a gain-of-function effect associated

with an increase in effector binding and a _PD: GST-PAK1
massive decrease in GAP function, leading to 8
AKT activation via two distinct pathways. g 2 g
{a.b) Aralysis of active, GTP-bound RAC2 [ §
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nor any other genetic lesion can drive JMML
in the absence of preexisting RAS pathway deregulation. Most inter-
estingly, a cooperative effect from RAS activation and PRC2 impair-
ment has recently been reported in NF1-associated cancers®®-38, where
PRC2 component haploinsufficiency exerts a disproportionately sup-
pressive effect on methylation at H3K27, augmenting acetylation and
further elevating the transcription of RAS-regulated genes®. Our data
suggest that this molecular mechanism is also relevant in JMML.
Other additional mutations had unknown functions and/or
affected single individuals. However, considering both our selective
mutation filters, which included germline DNA screening, and the
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extremely low frequency of clonal mosaicism in peripheral blood from
¥-42 most somatic variants detected in our patients
are also likely to drive clonal selection.

Most IMML cases are severe, with the only curative treatment being
hematopoietic stem cell transplantation (HSCT)>*43
evolution is heterogeneous, with transformation to acute myeloid
leukemia (AML) in one of three cases and fi
HSCT, whereas some rare ‘long-term survivors’ experience sponta-
neous remission and survive without treatment®#44>, The manage-
ment of patients with JMML urgently requires parameters to help
in patient risk stratification. Unfortunately, the initiating RAS path-
way lesion incompletely predicts outcome (Supplementary Fig. 9).
We thus asked whether the newly identified alterations could improve

normal children

. However, clinical

*quent relapses after

the prediction of IMML outcome. Secondary alterations accumulated
in a limited number of patients (Fig. 2 and Supplementary Table 5)
and were associated with a poorer outcome, with a 3-year overs
vival of 61% as compared with 85% in other patients (P = 0.028) (Fig. 6).
Yet, it was possible to see that RAS double-mutant JMML had the most
severe presentation, with an increase in the number of blasts in the
bone marrow (210%) in nine of 13 (69%) double-mutant cases versus

| sur-

Figure 6 Overall survival of patients with sporadic JMML according to
the presence and type of additional somatic mutations. Kaplan-Meier
representations of overall survival are shown for 96 patients with JMML
having clinical follow-up infarmation available. Patients with Noonan
syndrome were excluded from the analysis because non-hematological
comorbidities may have jeopardized their survival’. As in Supplementary
Table 5, additional somatic alterations were defined as somatically
acquired mutations other than the somatic RAS pathway mutations
assumed to be either the initiating event or part of the classical
mechanism of leukemogenesis, such as hits targeting the wild-type NFI or
CBL allele in germline-mutated patients®248, (a,b) The presence of any
additional somatic alterations (a) together with RAS double mutations (b)
allowed us to distinguish patients with a significantly poorer outcome.

w

122



Chapter VII

@ © 2015 Nature America, Inc. All rights reserved.

LETTERS

11 of 64 (17%) other cases (P < 0.001) and rapid evolution to AML with
myelodysplasia-related changes (AML-MRC), in line with previous
single-case reports'>1%47 (Fig, 6). The outcome of RAS double-mutant
cases was thus significantly poorer than that of other JMML cases,
with a 3-year overall survival rate of 37% versus rates of 85% and 70%
in patients with no or one other secondary alteration, respectively
(P=0.001) (Fig. 6). In NRAS-]MML cases, which display the greatest
clinical diversity*!, three long-term survivors were observed; none
of these patients had secondary abnormalities. In contrast, ten of
11 (91%) patients with aggressive disease, as assessed by blast excess
at diagnosis or blast crisis before HSCT, had additional abnormalities,
including double mutation of RAS pathway components in five
cases. These findings suggest that oncogenic NRAS proteins require
additional transforming hits to give rise to aggressive JMML and
provide a useful prognostic tool to differentiate patients with NRAS-
associated IMML who require HSCT from those who could benefit
from a ‘wait-and-see’ approach.

In conclusion, our study shows for the first time, to our knowl-
edge, that concomitant mutations in JMML target a small number of
interacting networks, with a striking enrichment in components of
the RAS and PRC2 networks. These findings extend and reinforce the
notion that JMML is a RASopathy while showing that RAS activation
is the major but not the only player in JMML. Such new information
on the pathogenesis of JMML should provide functional guidance,
prognostic markers and patient selection criteria for new therapeutic
options in this very severe childhood leukemia.

URLs. UCSC Genome Browser, http://www.genome.ucsc.edu/;
dbSNP137, http://www.ncbi.nlm.nih.gov/projects/SNP/; HapMap,
http://hapmap.ncbi.nlm.nih.gov/; 1000 Genomes Project, http://
www.1000genomes.org/; Catalogue of Somatic Mutations in Cancer
(COSMIC), http://cancer.sanger.ac.uk/cancergenome/projects/
cosmic/; SIFT, http://sift.jevi.org/; PolyPhen-2, http://genetics.bwh.
harvard.edu/pph2/; MutationTaster, http://www.mutationtaster.org/;
Leiden Open Variation Database (LOVD), http://www.lovd.nl/3.0/;
R survival library, http://CRAN.R-project.org/package=survival;
ArrayExpress database, http://www.ebi.ac.uk/arrayexpress; European
Genome-phenome Archive (EGA) database, https://www.ebi.ac.uk/ega/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. SNP array data have been deposited in the
ArrayExpress database under accessions E-MTAB-3399 and E-MTAB-
3729, Targeted sequencing data have been deposited in the European
Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute (EBI), under accession EGAS00001001324,

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Patients. The study included 118 patients with IMML consecutively referred to
our laboratory between 1995 and 2014, for whom a RAS-activating mutation was
identified as part of the routine diagnostic workup (Supplementary Note).

All patients fulfilled the consensus IMML criteria reported recently by Chan
et al ¥, Centralized cytomorphological review was performed on bone marrow
and blood samples. Measurement of fetal hemoglobin (HbF) dosage and
karyotyping were systematically performed using standard procedures.

Diagnosis with IMML was based on clinical and hematological findings,
cytomorphological examination of blood and bone marrow smears, in vitro
growth of myeloid progenitors and mutation screening of DNA obtained from
the leukemia sample,

A somatically acquired RAS-activating mutation was identified at diagnosis in
78 of 118 (66%) patients in the following genes: PTPN11 (11 =38), KRAS (n=18)
and NRAS (n = 22). IMML cases were classified according to these initial
lesions as PTPN11-JMML, KRAS-JMML and NRAS-JMML, respectively.
In 40 of 118 (34%) cases, IMML was syndromic with a germline PTPN11
mutation consistent with Noonan syndrome features (n = 22), a germline CBL
mutation consistent with CBL syndrome (n = 11) or molecularly confirmed
NF1 (n = 8) (Supplementary Fig. 3 and Supplementary Table 5). The sex
ratio (males/females) was 2.1. The median age at diagnosis was 18 months.
Seventy-eight of 118 (66%) patients received bone marrow transplantation.
Blast excess was defined as a blast count 210% but <20% in the bone marrow
at diagnosis. Blast crisis was defined as a blast count 220% in the bone marrow.
Two patients with sporadic IMML were lost to follow-up.

Samples. Peripheral blood and/or bone marrow aspirates were collected
on EDTA at diagnosis. Non-hematopoietic tissues (fibroblasts, nails or hair
follicles) were also collected. Genomic DNA was extracted using a Qiagen
Mini or Midi kit.

To use minimal amounts of native DNA, all diagnostic DNA samples under-
went whole-genome amplification using the RepliG Midi kit (Qiagen) accord-
ing to the manufacturer’s instructions,

Diagnostic workup. Mutational screening using bidirectional Sanger sequenc-
ing of exons and their flanking intron-exon boundaries was performed
on genomic DNA as part of the classic diagnostic workup for ]IMML and
included analysis of NRAS exons 2 and 3 (NM_002524.4), KRAS exons 2 and
3(NM_033360.3), PTPN11 exons 3and 13 (NM_002834.3) and CBL exons 8 and
9 (NM_0D05188.3). Genes recently shown to be involved in JIMML (ASXL1
exon 14 (NM_015338.5) and the SETBP! sequence in exon 6 encoding the
SKI-homologous region (NM_015559.2)) were also systematically screened
by Sanger sequencing as previously described®. The germline origin of muta-
tions was tested using constitutional DNA. Microsatellite analysis of the 17p
region encompassing NFI was performed as previously described®’. Primer
sequences are given in Supplementary Table 8.

Genome-wide DNA array analysis. Genomic DNA from 78 leukemia samples
was analyzed by SNP array technologies using the Genome-Wide GeneChip
Human SNP Array 6.0 (Affymetrix) (1 = 63) and/or by high-density array
comparative genomic hybridization (CGH) technologies using the 4x180M
Microarray SurePrint G3 Catalog (Agilent Technologies) (n = 16), according
to the manufacturers’ recommendations. Analyses were performed using
CytoGenomics (Agilent Technologies) for array CGH data and Genomic
Suite 6.5 software (Partek) and the hidden Markov model and segmentation
algorithms for the analysis of both CNVs and LOH. The final abnormali-
ties retained were validated by visual analysis, considering the sizes and log,
(ratios) of the abnormalities with respect to the individual background noise of
each array at each particular chromosomal location. Polymorphic CNVs were
excluded using the Database of Genomic Variants track in the UCSC Genome

Browser in Cartagenia Bench Lab CNV software. Human genome ¥

Exon v4+UTRs (Agilent Technologies), and sequencing was performed with
a HiSeq 2000 instrument (Illumina). Image analysis and base calling were
performed using the Real-Time Analysis (RTA) pipeline, v. 1.14 (Illumina).
Alignment of paired-end reads to the reference human genome (UCSC
GRCh37/hgl9), variant calling and generation of quality scores for variants
were carried out using the CASAVA v.1.8 pipeline (Illumina).

Variant annotation, SNP filtering and patient-matched germline variant
filtering were achieved using an in-house pipeline by IntegraGen. Gene and
transcript names, strand and position (intron, 5 UTR, 3" UTR, etc.) were
reported for each variant. Nucleotide, codon and amino acid changes as well
as functional class (synonymous, missense, nonsense, splice site, etc.) were
reported for coding variants. Annotation content was compiled from several
sources: 1000 Genomes Project, dbSNP rsID and frequencies from the
IntegraGen Exome Database, which comprises 200 reference exomes. Finally,
germline and tumoral genotypes were compared to determine the somatic
nature of each variant. Only positions that were present in both files and met
the minimum coverage requirement (26x) were compared. The significance
of the allele frequency difference (as a P value) was calculated by Fisher’s exact
test for each variant, taking into account the counts of the mutated allele in
both samples. A somatic score was calculated for each variant (from 1 to 30,
with 30 indicating the highest confidence). The somatic variant caller handled
indels similarly, determining the number of alignments covering a given posi-
tion thatincluded a particular indel (variant count) versus the overall coverage
at that position. Yield per exome ranged between 3.64 and 7.17 Mb (mean of
4.78 Mb). Mean coverage per sample is given in Supplementary Figure 10.

Known polymorphisms reported at a frequency >0.1% in at least one of the
above-mentioned databases, low-coverage variants (<10 reads in germline
and/or tumoral samples) and low-quality variants (Q variant score from
IntegraGen <30) were systematically excluded. Only variants with a probable
impact at the protein level (nonsynonymous exonic variants and abnormali-
ties located at intron-exon junctions) were considered for further analysis.
All putative somatic events (absent in the germline sample but acquired in
tumoral DNA or heterozygous in the germline sample but homozygous in
the tumoral sample) were verified by conventional Sanger sequencing and
searched for in constitutional DNA, when available.

The previous involvement of confirmed somatic variants in cancer was veri-
fied by consulting the Catalogue of Somatic Mutations in Cancer (COSMIC).
Prediction of the effects of amino acid substitutions on the function and
structure of proteins was achieved using dedicated prediction software: Scale-
Invariant Feature Transform (SIFT), MutationTaster and PolyPhen-2. Final
validated data are provided in Supplementary Table 2.

High-throughput targeted ing. High-throughput targeted sequencing
by multiplex PCR was performed on whole genome-amplified tumoral DNA
diluted 1:5. The coding regions of 38 genes were targeted. The complete list of
targeted genes and their corresponding sequencing performance are available
in Supplementary Figure 11 and Supplementary Table 4. Primer pairs were
designed with the IntegraGen internal pipeline (Supplementary Table 8).
DNA samples were amplified on an Access Array system (Fluidigm) and sub-
jected to six additional PCR cycles to add specific barcodes and P5 and P7
adaptors. An equimolar pool of all PCR products was sequenced on the MiSeq
instrument (Ilumina), with MiSeq Reagent Kit V2 cycles and paired-end
2% 150 bases. Image analysis and base calling, alignment of reads to the reference
human genome, variant calling, variant annotation and subsequent mutational
analysis were performed as for whole-exome sequencing. All identified
variants were verified in native tumoral DNA and searched for by Sanger
sequencing in constitutional DNA, when available.

Sanger sequencing. PCR was performed using the GoTag DNA Polymerase
kit (Promega) or the FastStart Tag DNA Polymerase kit (Roche) according
to the

GRCh37/hgl9 was used as a reference. Final validated data are provided in
Supplementary Table 3.

Whole-exome sequencing. Targeted enrichment and massively parallel
sequencing were performed on paired genomic DNA samples from leukocytes
and fibroblasts, Exome capture was carried out using SureSelect Human All

facturer’s instructions. Primer sequences for Sanger sequencing
performed in the whole IMML cohort are provided in Supplementary Table 8.
Primer sequences used for control variants found by whole-exome sequencing
and high-throughput targeted sequencing are available on request. PCR prod-
ucts were purified using the Hlustra ExoStar 1-5tep kit (GE Healthcare, Life
Sciences), and direct sequencing was performed using the BigDye Terminator
Ready Reaction Cycle Sequencing kit (Applied Biosystems). Reaction products

NATURE GENETICS

doi:10.1038/ng. 3420

125



Chapter VII

@ © 2015 Nature America, Inc. All rights reserved.

were run on an automated capillary sequencer (ABI 3130 Genetic Analyzer,
Applied Biosystems). Sequences were aligned using Seqscape analysis software
(Applied Biosystems) or visualized on Chromas software (Technelysium) and
were compared with the reference sequences for genomic DNA.

Myeloid progenitor cell growth and genetic testing. In vitro growth assays
of myeloid progenitors were performed by plating bone marrow and/or
peripheral blood mononucleated cells in semisolid methylcellulose with or
without leukocyte-conditioned medium (cytokine medium, LCM, Stemcell
Technologies), as previously described™. Colonies (aggregates containing >50
cells) were scored on days 11 and 14 after plating,

Targeted ing of isolated colonies. Colonies obtained from the
in vitro growth of myeloid progenitors were picked and resuspended in 100 pl
of sterile water. Isolated colonies were lysed with proteinase K (10 pg) in 50 pl
of lysis buffer (50 mM KCI, 10 mM Tris-HCI, pH 8, 2.5 mM MgCl,, 0.45%
NP-40 and 0.45% Tween-20). Sanger direct sequencing was performed as
described above. Genetic screening was restricted to colonies obtained from
IMML cases displaying at least two somatically acquired genetic lesions (n =6,
with 8-93 colonies successfully screened per patient).

RAC2 constructs, Different variants of the pGEX vector (pGEX2T and
pGEX4T-1) encoding N-terminal GST were used for the overexpression of
wild-type RAC2, Asp63Val RAC2, the GBD of PAK1 (amino acids 57-141),
the catalytic domains of TIAM1 (DH-PH; amino acids 1033-1404) and p5054F
(a GAP; amino acids 198-439). To generate RAC2 constructs with mutation,
wild-type RAC2 in pGEX4T-1 and pcDNA3.1 vectors was used as the template
and the mutation encoding p.Asp63Val was generated by PCR-based site-
directed mutagenesis as described®.

Proteins. All proteins were purified as GST fusion proteins from Escherichia
coli as previously described™-%, The GST tag was cleaved off with purified
tobacco etch virus (Tev) protease and removed by reverse glutathione affin-
ity purification in the case of the RAC2 proteins. Nucleotide-free RAC2
proteins were prepared using alkaline phosphatase (Roche) and phosphodiesterase
(Sigma-Aldrich) at 4 °C, as described®. Fluorescent methylanthraniloyl
(mant) and tetramethylrhodamine (tamra) were used to generate fluorescent
mantGDP-, mantGppNHp- and tamraGTP-bound RAC2 proteins.

Fluorescence polarization. Experiments were performed in a Fluoromax 4
fluorometer in polarization mode as previously described™”. Briefly, an increas-
ing amount of GST-PAK GBD was titrated into mantGppNHp-bound wild-
type and Asp63Val RAC2 (1 uM) in a buffer containing 30 mM Tris-HCI,
pH 7.5, 150 mM NaCl, 5 mM MgCl, and 1| mM Tris-(2-carboxyethyl) phos-
phine (TCEP) in a total volume of 200 pl at 25 °C. The dissociation constant
(Ky) was calculated by fitting the concentration-dependent binding curve
using a quadratic ligand-binding equation.

Fluorescence measurements. Kinetic measurements of intrinsic and GEF-
catalyzed nucleotide exchange and of intrinsic and GAP-stimulated GTP
hydrolysis for wild-type and Asp63Val RAC2 were monitored by stopped-
flow apparatus (Hi-Tech Scientific 5F-61 with a mercury xenon light source
and TgK Scientific Kinetic Studio software) and performed as described2-34,
The observed rate constants (Kp,,) were fitted single exponentially using the
GraFit program (Erithacus software )2,

Pulldown assays and immunoblotting. Sequences encoding human wile-
type, Glyl12Val and Asp63Val RAC2, Gly12Val NRAS, Gly12Val HRAS and
Gly12Val KRAS were cloned into pcDNA3.1, and constructs were overex-
pressed in COS-7 cells (ACC-60, Deutsche Sammlung von Mikroorganismen
und Zellkulturen (DSMZ); cells were tested for mycoplasma by the DSMZ
and used freshly) for 48 h. Cells were lysed with fish buffer (50 mM Tris-HCI,
pH 7.5, 100 mM NaCl, 2 mM MgCl,, 1% Igepal CA-630, 10% glycerol, 20 mM
B-glycerophosphate, 1 mM sodium orthovanadate and one EDTA-free inhibi-
tor tablet). GST-fused PAK] GBD (amino acids 57-141) was expressed in
E. coli for 4 h at 37 °C, and total bacterial proteins were released by sonication.

The bacterial lysates were incubated with glutathione-conjugated beads for
30 min, and beads were washed three times with fish buffer. The total cell
lysates from COS-7 cells were divided into two parts. One part was added to
the GST-PAK1 GBD/glutathione-conjugated bead complex for 30 min, and
beads were washed three times with fish buffer. The second part was used
to check the activity of the PI3K-AKT-mTORC and RAF-MEK1/2-ERK1/2
cascades in transfected cells by immunoblotting. Immunoblotting was carried
out using rabbit antibody to FLAG (F7425, Sigma-Aldrich), mouse antibody to
ot-actin (MAB1510), and rabbit antibodies to MEK1/2 (9126), phosphorylated
MEK1/2 (Ser217/Ser221, 9154), ERK1/2 (9102), phosphorylated ERK1/2
(Thr202/Thr204, 9106), AKT (9272) and phosphorylated AKT (Ser473, 4060
and Thr308, 2965) from Cell Signaling Technology as described®®,

Structural analysis. Interaction interfaces for RAC GTPases were analyzed
on base RACI structures for RACI1 in complex with TIAM1 (ref. 59; Protein
Data Bank (PDB) 1FOE) and with PAKI (ref. 60). As there is no complex
structure for any RAC GTPase interacting with a GAP, the corresponding
interaction interface was deduced from the structure of Cdc42 in complex with
Cdc42GAP!, Interacting residues were considered to be amino acids from
GTPases that had at least one atom within 4.0 A of the interacting protein.
Individual as well as overlapping interaction surfaces were finally pro-
jected onto the molecular surface of RACL in the active, GTP-bound state
using the program PyMOL (PyMOL Molecular Graphics System, version
1.7.4, Schridinger).

Immunofluorescence and confocal microscopy. Cells were cytospun onto
polylysine-coated slides, fixed in 4% paraformaldehyde for 15 min at room
temperature and permeabilized with 0.3% Triton in PBS for 15 min at room
temperature, washed twice for 3 min each wash in PBS and incubated in
blocking buffer (1% BSA in PBS) for 1 h at room temperature. Cells were
then incubated with mouse monoclonal antibody to histone H3 (H3K27me3,
Abcam, 6002; following the manufacturer’s instructions) for 1 h at room
temperature, followed by three 5-min washes in PBS. Secondary Alexa Fluor
488-conjugated goat anti-mouse IgG (Life Technologies, A11001) was then
applied for 1 h. The second incubation was identical to the first one, using as
primary antibody rabbit polyclonal antibody to histone H3 (H3K27ac, Abcam,
Ab4729) and as secondary antibody Alexa Fluor 594-conjugated goat anti-
rabbit IgG (Life Technologies, A11012). Cells were subsequently washed three
times for 5 min each wash in PBS and were then mounted in SlowFade Gold
Antifade Reagent with DAPI (Life Technologies, $36939), coverslips were
sealed with nail varnish and slides were visualized using the Zeiss LSM 510
confocal system. The SKM-1 and K562 myeloid cell lines were purchased
from DSMZ and the American Type Culture Collection (ATCC), respectively.
The presence of an EZH2 mutation encoding p.Tyr646Cys (COSMIC,
37032) was checked, with the mutation found to be homozygous, by Sanger
sequencing (data not shown).

Statistical methods. Statistical analyses were performed with R version 3.1.2.
Fisher's exact test was used to determine whether different groups of cases
were significantly different with respect to the number of individuals with
somatic alterations. Overall survival was calculated from the date of diag-
nosis to the date of death. Distribution of overall survival in the different
groups of cases was estimated by the Kaplan-Meier technique implemented
in the survival library of R. Tabular data for survival curves are given in
Supplementary Table 9.

The differences between the Kaplan-Meier curves for different groups of
cases were tested using the two-tailed Mantel-Haenszel log-rank test.
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Supplementary Figure 1

Spectrum of somatically acquired mutations identified by combining WES and genome-wide DNA array analysis in the
discovery cohort of 30 JMML cases.

A total of 85 somatically acquired alterations were found, including 64 nonsynonymous point mutations or small insertion-deletions
(indels) identified in the coding regions of these tumors by WES and 21 somatic cytogenetic alterations evidenced by SNP/CGH array,
WES and/or metaphase cytogenetics.
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Supplementary Figure 2
Graphical representation of the type of data obtained by sample in a cohort of 118 patients with JMML.

Both the discovery cohort (top; n = 30) and validation cohort (bottom; n = 88) are represented.
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Supplementary Figure 3

Distribution of RAS-related mutations in a cohort of 118 patients with JMML as detected by routine workup.

Distribution of RAS-related mutations in 118 consecutively diagnosed JMML cases as detected by routine workup and detailed
spectrum of KRAS (n = 18) and NRAS (n = 22) mutations.
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Supplementary Figure 4
Histogram showing the type and number of additional somatic mutations per patient with JMML, according to genetic
subgroup.

Nature Genetics: doi:10.1038/ng.3420

131



Chapter VII

00 |
90% |
pr|
oM . Benign by 3 algorthms
=] Deleterious by 1/3 algorithms
ol
N Deleterious by 213 algorithms
a1
B Deleterious by 3 algorithms
som 4
3% 7
B0 4
(e
All missense Initiating Secondary
Variants Mutations mutations
N =152 N =106 N =46
Supplementary Figure 5

Proportion of mutations predicted to be deleterious versus non-pathogenic substitutions.

The pathogenicity of somatic nonsynonymous exonic missense variants with respect to gene function was predicted using the SIFT,
PolyPhen-2 and MutationTaster algorithms (Supplementary Table 6). A total of 91% of all missense mutations were predicted to result
in functionally relevant alterations by at least two of the three methods used for functional prediction. This percentage was similar when
considering only initiating mutations, known to be deleterious in all cases (92%), as well as secondary mutations (89%).
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Supplementary Figure 6

Sequence electrophoregram showing the pr of three itant mutations targeting the RAS pathway at diagnosis of
JMML_89.

Mutated nucleotides are indicated by a red arrow. The subclonal pattern of NF1 mutation is consistent with late acquisition. NF1
haploinsufficiency was due to a recurrent ¢.2033delG mutation of a G homopolymer within the NF1 coding region (exon 18). The
frequency of this mutation appeared strikingly higher among somatic variants (5/6 cases with a secondary NF1 mutation) than among
germline variants (Leiden Open Variation Database, LOVD).
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Hyperactive RAC2 Asp63Val contributes to AKT activation via both the PI3K-PDK1 and mTORC2 cascades.

Pull-down experiments (a,b) and immunoblot (IB) analysis were conducted using total cell lysates (c—g) derived from transfected COS-
7 cells with FLAG-tagged RAC2 and RAS variants. The GTPase-binding domain (GBD) of the RAC effector PAK1 was used as a GST
fusion protein for the pulldown experiment. All experiments were performed three times. (a) Pulldown analysis showed that RAC2
AspB3Val largely exists in an active, GTP-bound state as compared to wild-type RAC2 (RAC2 WT), but activation is not as strong as for
constitutively active RAC2 Gly12Val. Total RAC2 and RAS proteins were detected using antibody to FLAG and pan-RAS antibody to
show the total amounts of the transfected FLAG-tagged RAC2 and RAS variants. (b) The RACZ2 protein bands in a were
densitometrically quantified (depicted as numbers and bars) as the amount of the GTP-bound RAC2 protein relative to wild-type RAC2.
Coexpression of constitutively active NRAS Gly12Val, HRAS Gly12Val and KRAS Gly12Val did not change the level of GTP-bound
RAC2 AspB3Val. (c) Total cell lysates were analyzed for the phosphorylation levels of AKT (pAKT 308 and pAKT 473), MEK1/2
(pPMEK1/2) and ERK1/2 (pERK1/2). Total amounts of these kinases were used as loading controls. AKT is phosphorylated at Thr308 by
the PI3K-PDK1 pathway, whereas the mTORC2 complex phosphorylates AKT at Ser473. (d—g) The protein bands in ¢ were
densitometrically quantified (depicted as numbers and bars), clearly showing that the presence of RAC2 AspB3Val resulted in strong
AKT phosphorylation and slight MEK phosphorylation but no ERK phosphorylation. Interestingly, a comparison of RAC2 Asp63Val and
RAC2Z Gly12Val showed that the relative amount of phosphorylated protein was proportional to the amount of the GTP-bound protein.
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Supplementary Figure 8

Sequence electrophoregram showing progressive LOH of the KRAS locus with an allelic imbalance in favor of the oncogenic
allele in JMML_24.

Wild-type (WT) and mutated nucleotides are indicated by black and red arrows, respectively.

Nature Genetics: doi:10.1038/ng.3420

135



Chapter VII

2 CBL(n=11)

KRAS (n = 18)
—_— @ NRAS (n = 22)
£ &1
o E
o] ] ETPN11 somaticin= 3T
B g
& =l

=' NF1in=8)

- Logrank test, p: 0.001

=

] 1 2 3 4 5 § 1
years
Supplementary Figure 9

Overall survival in sporadic JMML according to initiating RAS-activating lesion.

Kaplan-Meier representation of the overall survival (%) in 96 patients with JMML evaluable for follow-up. Patients with Noonan

syndrome were excluded from the analysis.
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Supplementary Figure 10

Mean coverage of whole-exome sequencing in 30 paired JMML and germline DNA samples.
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Supplementary Figure 11

Performances of PCR-based targeted deep sequencing in 75 JMML samples.
(a) The mean coverage of the coding regions is plotted for each gene by 25x descending order. (b) The mean depth of sequencing is
plotted for each gene on a logarithmic scale, by descending order.
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Supplementary Table 1: Characteristics of 30 patients with JMML subjected to whole exome sequencing

Ageat  Underying FB BM X Leukemia Gemnine

Gender  onset genetic  blasis  blasts Karyotype RAS pathway mutation ASKLY SETEP1 ‘sample control
(yrs) condiion (%) %) sample
IMML_11 M T2 - 08 T 46.XY del (12)(p?13)[11)46.X¥[9] NRAS (p.G12D) Somatic p.GE4SVIS'SE p.GETOS BM Hair follicles
IMML_18 M 0.3 NF1 3 16 46.0Y[33] NF1(pR1241X) Germline/somatic - - EM Fibeoblasts
IMML_20 F 0.0 NS 2 8 46,50120] PTRNT (p.GS03R) Germiine B - P Fitecbiasts
AMML_27 F 0.9 _ o [ 46.XY[25] PTPN11 (p ETGA) Sernatic - . EM Fibeoblasts
IMML_28 F 11 N 0 ] 46.X0420) KRAS (p.G13C) Soratic - - BM Fitecblasts
IMML_26 M 07 NS 4 7 46.0Y[20] PTPNTI (p.GSO3R) Germline . . EM Fibroblasts
JMML_37 F 98 — 4 14 45,206 T[ 20146, 200 1] NRAS (p.QB1R) ‘Sornatic - Pp.DAGEN BM Fitroblasts
JMML_43 M o0 NS 4 8 46.X¥[22] PTPN11 {p DE1H) Germiine - - FB Fiteoblasts
IMML_AT M 05 ~ 3 55 45,37 -T(19)/46, (1] PTPN11 (p.DB1Y) Somatic 5 - M Fibroblasts
JMML_50 F 0.7 _ 15 H 46.0420) PTPNT1 (p.DE1V) Somatic - - BM Fibeoblasts
IMMLE2Z M 22 _ 0 46.X¥[20] PTPN11 (p ETEK) Somatic o - M Fibroblasts
IMML_53 ] 22 ‘_ 3 46, X0V[15)45, X.-¥[12] PTPNT (p.GS03A) Sernati - - BM Fibeblasts
IMML_S5 F 1.1 CBLS 05 85 46,0920 CBL (p.Y371H) Germiine/somatic - - PE Fibroblasts
JMML_S% M 01 NS 1 2 46.X¥[20] PTPNTT ip.DETH) Germiine - - BM Fitroblasts
IMMLET M 22 N o) 2 :g;{ﬁ;&x‘ﬂgz}z‘ﬂ?ﬁm?ﬂ PTPN11 (p.ETEG) Sernatic . p.D8GEN BM Fibreblasts
IMML_62 F 07 ~ 3 3 46.030) PTPNI1 (p.D61Y) Somatic . E &M Fibroblasts
IMML_66 F 24 _ 2 10 46.025) KRAS (p.QE1P) Somatic pLITSX - M Fibroblasts
JMML_T3 M 42 - 2 k- ABX0Y[20] NRAS (p.G120) Sornatic - - BM Fibroblasts
AMML_TE M o3 - o 4 AEXY[20] KRAS (p.G13C) Somatic = : BM Fibroblasts
JMML_B1 M 03 - 4 H AG0A[25] KRAS ip.G120) Somatic - - BEM Fiteoblasts
JMML_B4 M 0.1 [ [ 46.XY[25] PTPN11 (p.ETEK) Somatic - - PE Nermal HC
JMML_BS M 06 NS o7 2 Failure PTPNTT ip AT2G) Germiine - - BM Fitroblasts
JMML_8T M 00 NS ND <5% AT 00 c[ 120046 XY[T) PTPN11 {p AT2G) Germiine B B [4:3 Fitroblasts
JMML_BS M 28 - 2 35 48.2¥[20] PTANTI (p.ETEV) Somatic - - BMm Fiteoblasts
IMML_81 F 28 - il k. 4820 delBN22] ID.MJ:._R:E59¢-IP] Somatic p.EBISRTs"5 - BM Fitroblasts
JMML_52 F 4.5 1 135 48200 del( THOET5q3TE2pEE0017) NRAS (p.G120) Somatic - B BM Fibroblasts
IMML_s3 M 25 - 3 5 48.X¥[20] PTPN11 (p. D81V} Somatic = P.GETOS FB Fitroblasts
JMML_107 F 37 . 13 0 A500-7[24] PTPN11 (p.GEOR) Somatic - BM Fibeoblasts
JMML_108 F 133 — 10.5 19 A5 -T[20] NRAS (p.G120) Somatic P.GEAEWE12 :5:‘6:: [x:3 Skin Biopsy
IMML_124 ] 15 _ 1 2 A6.XY[20] NRAS (p.G12A) Somatic - p.D8GEN BM Fibeoblasts
M: male; F: female; BM: bane marrow ; FB : peripheral blood ; yrs: years; N5: Noonan synd ; CBLS: CBL synd) : NF1: type 1 il is; HC: b ietic cells;
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Supplementary Table 4: Gene panel for targeted sequencing and NGS performances

s?rrenr:::l method Target region (bp) d eh;fi:?)() Rational for sequencing
ASXL1 NGS whole coding region 5 067 626 Mutations reported in JMML
ASXL2 NGS whole coding region 4 676 565 ASXL1-related
ASXL3 NGS whole coding region 7239 345 ASXL1-related
BAP1 NGS5 whole coding region 2887 83 ASXL1-related
BCORL1 NGS whole coding region 5628 190 Mutations reported in JMML
CBL NGS whole coding region 3377 499 Mutations reported in JMML
CHD7 NGS whole coding region 10 511 491 Mutated in a NS-AML with RRAS germline mutation
DYNC1H1 NGS whole coding region 17 139 314 Mutation(s) found by WES in our cohort of JMML
EZH2 NGS whole coding region 3035 466 PRC2-related
GATA2 NGS whole coding region 1648 47 Mutated in a NS-AMLwith RRAS germline mutation
GATA3 NGS whole coding region 1540 183 GATAZ-related
GRHL3 NGS whole coding region 2766 123 Mutated in a NS-AML with RRAS germline mutation
IL33 NGS whole coding region 1100 710 Mutation(s) found by WES in our cohort of JMML
ITPR3 NGS whole coding region 10 394 62 Mutation(s) found by WES in our cohort of JMML
JAK1 NGS whole coding region 4449 524 JAK3-related
JAK2 NGS whole coding region 4342 677 JAK3-related
JAK3 NGS whole coding region 4318 91 Mutations reported in JMML
KRAS NGS whole coding region 892 466 Mutations reported in JMML
KRT1 NGS whole coding region 2 304 484 Mutation(s) found by WES in our cohort of JMML
MRGPRX2 NGS whole coding region 1034 1028 Mutation(s) found by WES in our cohort of JMML
NF1 NGS5 whole coding region 10 524 496 Mutations reported in JMML
NRAS NGS whole coding region 734 642 Mutations reported in JMML
PDESA NGS whole coding region 3392 495 Mutation(s) found by WES in our cohort of JMML
PLXNB2 NGS whole coding region 6 952 10 Mutation(s) found by WES in our cohort of JMML
PTPN11 NGS whole coding region 240 612 Mutations reported in JMML
RRAS NGS whole coding region 903 23 RAS-related
SETBP1 NGS whole coding region 5226 435 Mutations reported in JMML
SF3B1 NGS whole coding region 5001 446 Mutations reported in JMML
SH3BP1 NGS whole coding region 2 844 10 Mutations reported in JMML
SPRED1 NGS whole coding region 1622 734 related to NF1
SRC NG5S whole coding region 1771 149 RAS-related
SRSF2 NGS whole coding region 748 135 Mutations reported in JMML (spliceosome)
suz12 NGS whole coding region 2182 361 PRC2 component
TCIRG1 NGS whole coding region 3272 19 Osteopetrosis-related
TMTCAH NGS whole coding region 3387 310 Mutation(s) found by WES in our cohort of JMML
U2AF1 NGS whole coding region 1159 259 Mutations reported in JMML (spliceosome)
WT1 NGS whole coding region 2015 352 Mutated in a NS-AML with RRAS germline mutation
ZNF565 NGS whole coding region 1 664 423 Mutated in a NS-AML with RRAS germline mutation
ZRSR2 NGS whole coding region 1900 313 Spliceosome-related
CDYL Sanger NM_004824.3 (ex 7b-12) NA NA Deletion found in our cohort of JMML
RRAS Sanger NM_006270.3 (ex 1-6) NA NA RAS-related
RAC2 Sanger NM_002872.4 (1-3) NA NA RAS-related
NF1 Sanger NM_001042492.2 (ex 18) NA NA RAS-related
JAK3 Sanger NM_000215.3 (ex 15) NA NA Mutations reported in JMML
SH3BP1 Sanger NM_018957.3 (ex 10; 11) NA NA Mutations reported in JMML
GATA2 Sanger NM_032638.4 (ex 2-6) NA NA Mutations reported in JMML
SETEP1 Sanger NM_015559.2 (ex 6 part) NA NA Diagnostic workup
ASXL1 Sanger NM_015338.5 (ex 14) NA NA Diagnostic workup
PTPN11 Sanger NM_002834.3 (ex 3;13) NA NA Diagnostic workup
CBL Sanger NM_005188.3 (ex 7:8:9) NA NA Diagnostic workup
KRAS Sanger NM_033360.3 (ex 2; 3) NA NA Diagnostic workup
NRAS Sanger NM_002524.4 (ex 2; 3) NA NA Diagnostic workup

bp: base pairs: NA: not applicable
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Supplementary Table 5: General features of 118 JMML cases, additional ti tati and ding to genetic status. The
number of additional i i was by disregarding tic RAS-path i d to be either the initiating event or part of the
classic mechanism of leukemogenesis, such as hits targeting the wild-type NF1 or CBL allele in germline-mutated pal'-enls“""". Despite a trend toward more
cytogenetic alterations and fewer point mutations in the KRAS-JMML group, no significant difference was found in the total number of additional somatic alterations.

(p = 0.683), cytogenetic alterations (p = 0.103) or point mutations (p = 0.242) b ically-defined dic JMML groups. However, del7/7Tq was
significantly more frequent in KRAS-JMML (p = 0.004), whereas no difference was observed for aUPD (p = 0.433), CNV (0.431) and other aneuploidies (0.134)
between groups.”
SOMATIC (sporadic JMML) GERMLINE {syndromic JMML) TOTAL

Genetic group PTPNI1 NRAS KRAS Total NF1 PTPN11 CcBL |
Number of cases k] 22 18 78 8 21 11 118
MIF sox ratio 3008 (3T) 1210(1.2) 1206 (20) 54125 (2.2) a0 1477 (2.0) 4T (0.6) 79138 (2.1)
Median age at onset (yrs) 27 27 1.1 22 30 01 1.3 16

[0.1-81) (0.2 -13.3) [03-30] [01-133) [0.3-157] [0-0.8] [0.2-51] [0-13.3]

WBC counts, median [10]. x10%/L 244 268 208 247 208 375 267 283
[1.7-1080] [T4-867] [40-1678) [M.7-167.8] [116-830]  [9.2-700) [84-78.0]  [1.7-167.8)
Platelet counts, median 1G], x10°L 330 128.5 50.0 54.5 146.5 680 130.0 60.5
[30-2520] [23.0-2380] [30-1530] [3.0-2920] [150-3020] ([40-2810] [6.0-2860]  [3.0-3020]

Myeloid precursors in peripheral blood, no. of patients (%) 35 (82) 20 (91) 17 (84) T (92) 7 (88) 20 (85) (82) 108 (91)
Circulating blasts 210%, no. of patients (%) 7 (18) B(27) 317 16 {21) 3{37) om o0y 19 (16)
Myelodysplastic features, no. of patients (%) 24 (83) 1150} 14 (78) 49 (83) B(75) 11(52) 6(55) 72(61)
HbF elevated for age, no. of patients (%)* | 21435 (6O} 5118 (26) 315 (20) 269 (42) 518 (62) 1114 (18) 210 {20%) 37H01 (37)
Additional somatic alterations®
No. of patints with 2§ addional somatic. aherstion nen)  eee o ey | sum 16 oo 49
iWiax. no. of aiteraiions per patient) 5 iz i iz isi ifi - iz
No. of additional somatic alterations 45 43 186 104 19 1 0 124
No. of patients with 2 1 cytogenetic alteration 14 (37) 11(50) 11 (81) 36 (46) 5 (63) 1(5) 0(0) 42 38)
[Max. no. of alterations per patient] 13 2] 121 @ 141 1 m 4
No. of cytogenetic alterations 19 14 12 45 12¢ 1 of 58
Translocation, no. of patients (%) - - 1 1 2 - - 3
Del7iTq, no. of patients (%) 6 {16} 3(14) 10 (56) 19 (25) 1{13) - - 20 (17)
Other aneuploidies, no. of patients (%) 7(18) 2(9) - 9(12) 3(38) 1(5) - 12 (10)
CNV, no. of patients (%) 3(8) 4(18) 1(8) 8(10) 2'(25) - - 10 (&)
aUPD, no. of patients (%) 1(3) 2(8) 0(0) 34 of {0) - - 3(3)
No. of patients with 2 1 point mutation 14 (37) 9 (41) 3(18) 6 (33) 4(50) - - 30 (25)
[Max no. of alterations per patient] 14 1 [t]] [ 12 [
No. of point mutations g 29 4 60 7 - - 67
20 ) )
SOMATIC (sporadic JMML) GERMLINE {syndromic JMML) TOTAL
Genetic group . PTPHN11 NRAS KRAS Total NF1 PTPN11 CBL |
Additional RAS-related mutations, no. of patients (%) [Max. a82n 5(23) oo 13(18) 2(25) - - 15(13)
no. of alterations per patient] 2 1]
2 1 2]
PRCZ-related mutations, no. of patients (%) without del7iTgq 38 7 (32} 2{11) 12(15) 5183) - - 18 (15)
[Max. no. of alterations per patient] 2] &) [2] 3] 1
31
PRC2-related mutations, no. of patients (%) including a2 8 (36) 10 {56) 26 (33) 5 (63) - - 31 (26)
del7iTg [Max. no. of alterations per patient] | 12] [3 [kl (] 2} 3
Outcome
Blast crisis before HSCT, no. of patients (%) | 13(34) 8 (41) 4(22) 26 (33) 5 (62) 1(5) 040) 32 (27)
HSCT, no. of patients (%) 24 (76) 15 (68) 18 (100) 62(79) 5(82) a4 6 (55) 76 (64)
Autologous reconstitution, no. of patients (% of HSCT) 1(3) 2(13) 3017 6 {10} a0 [ {e)] 3 (500 2{12)
Relapse | disease progression , no. of patients (% HSCT) 6{21) 2(13) 37 11 (18) 2 (40) o0 09(0) 13{17)
Death, no. of patients (%) 16 (42) 6(27) 4(22) 26 (33) 8(75) 12 (57) 0(0) 44 (37)
) ;i ile range; CNV: copy by il aUPD: acquired uniparental disomy; HSCT: h ietic stem cell

© the number of patients who were evaluated & indicated

*In patients with NF1 and CBL syndrome, events targeting the second allele of NFT and CBL were not considered as additional events since the loss of the wild-type allele is part of the classic
mechanism of leukemogenesis in these settings. 10/11 patients with germline CBL ions had an aUPD CBL whereas 5/8 patients with neurofibromatosis had a somatically acquired
event targeting NF1 (including 3 aUPDs).

"One patient had a germline codeletion of SUZ12
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General discussion

Hepatic stellate cells (HSCs) are central to metabolism and storage of retinoids in the body
and are involved in liver development, immunoregulation, homeostasis, regeneration and
fibrosis (Winau et al., 2008; Blaner et al., 2009; Yin et al., 2013; Kordes et al., 2014). In healthy
liver HSCs are in a state referred as quiescent (G0). Quiescent HSCs (qHSCs) are multipotent cells
that after activation could differentiate to other liver cell types (Kordes et al., 2007; Kordes et al.,
2008; Sawitza et al., 2009b; Kordes et al., 2013; Sawitza et al., 2015). Throughout activation,
HSCs alter their quiescent characteristics and adopt into the cells, which are recognized as
proliferative, multipotent, contractile and migratory cells (Kordes et al., 2014; Bitencourt et al.,
2014; Dong et al., 2015) (chapter I, hallmarks and roles of hepatic stellate cells). In some
pathophysiological conditions, sustained activation of HSC causes the accumulation of
extracellular matrix (ECM) in the liver and initiates the liver diseases, such as fibrosis, cirrhosis
and hepatocellular carcinoma (HCC) (Yin et al., 2013b). The molecular mechanisms that maintain
the quiescent of HSC and trigger HSC activation and differentiation are poorly understood and
needs further investigation. Therefore, it is noteworthy to search for key signaling pathways that
govern HSCs fate decision and modulate them in a way that activated HSC (aHSC) contributes
into liver regenerative not fibrosis. RAS molecular switches are nodes of intracellular signaling
pathways. RAS superfamily is composed of different families (RAS, RHO, RAN, RAD, RAG, RAB and
ARF) with specific mode of regulation, expression, effector proteins and subcellular localization,
which through the activation of individual signaling pathways exert their cellular functions. RAS
and RHO family GTPases are well-recognized for their involvement in the wide spectrum of
cellular responses, such as cell growth, proliferation, survival, differentiation, adhesion,
contraction, motility and migration (Karnoub and Weinberg, 2008; Heasman and Ridley, 2008b).
These families are subdivided farther to the different subgroups and isoforms with individual
functions (chapter I, RAS/RHO family GTPases sections). The focus of this study was to consider
the RAS GTPases activity, networking, cross-talking and biological functions in modulating the
HSC activation processes and fate cell decisions.

This doctoral thesis provided new insights into the expression pattern, isoform specificity,
activity and networking of RAS family members and their signaling components in both quiescent
(here after, d0) and activated (d8) HSCs. Obtained data revealed differential expression pattern
for RAS isoforms, where embryonic stem cell-expressed RAS (ERAS) specifically expressed in
quiescent HSCs and drastically down-regulated after activation. ERAS was identified in 2003 as a
new member of the RAS family, which is specifically expressed in undifferentiated mouse
embryonic stem cells (Takahashi et al., 2003). In addition to stem cells, ERAS has been detected
in the several adult cynomolgus tissues (Tanaka et al., 2009), and in gastric cancer and
neuroblastoma cell lines (Aoyama et al., 2010; Kubota et al., 2010). Still the individual roles of
ERAS have not been fully described. This raised the question, what would be the function of
ERAS in quiescent and non-proliferative cells? To address this question, first we investigated the
biochemical and molecular features of ERAS with generating different ERAS mutants and
analyzed the cellular outcomes in overexpressed system (chapter Il). Second, we monitored the
signaling networking of the endogenous ERAS/RAS in quiescent HSC vs. activated HSC (chapter
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). Third, we aimed to investigate the cross-talking between the RAS-RHO signaling in both in
vitro and disease progression (chapter V-VII).

Biochemical characteristic of embryonic stem cell-expressed RAS (ERAS)

Comprehensive sequence and structural analysis between ERAS and other Ras isoforms,
revealed ERAS harbors additional motifs, regions and sequence deviations (in critical locations of
G1, G2 and G3, see figure 6) which are not present in classical members of RAS family (HRAS,
NRAS and KRAS). Therefore, we generated different ERAS variants with mutations and deletion
of these motifs and region and investigated their impact on ERAS specific function and
localization. These ERAS variants included ERAS*, ERAS®’, ERasAgl/ASZ/A”, ERASSZZ6/5228, ERAS™!
ERAS™ ERAS™/SW! ERASR® ERAS™/R7® ERASMS™! and ERASS/R7®/S"!I We depicted the place of
these mutations in the predicted structure of ERAS with colors in the figure 6. Here we will
discuss the new findings about each of this sequence fingerprints (chapter Il) (Nakhaei-Rad et al.,
2015).

C-terminus (HVR)
1

C226/C228

Figure 6. Predicted structure of full-length ERAS and exhibits of the three-dimensional places of studied
ERAS mutants. In contrast to the G domain as well as N- and C-terminus of ERAS appear as
disordered/unstructured regions. P7 and RRR motifs are shown in purple, W79 in deep purple, mutations
in switch | in yellow, mutations in switch Il in brown, C226/C228 at the very C-terminus in cyan. HVR,
hypervariable region; SWI, switch I; SWII, switch Il.

N-terminal extension of ERAS—We proposed that N-terminal extension of ERAS might
modulate its localization through interaction with potential adaptor/scaffold proteins via
putative PxxP and RRR motifs. With our co-localization studies we did not observed significant
differences in localization of the N-terminus mutants of ERAS (ERAS*", ERAS*” and ERasASl/A32/A33).
However, considering our results we cannot exclude the role of ERAS N-terminus as a putative
protein interaction site, since ERAS is not expressed endogenously in the MDCK Il cells (used for
confocal studies) and therefore its binding partner may not be available in this cell line. To
confirm our hypothesis we need to study ERAS localization in the cells that endogenously express
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ERAS such as hepatic stellate cells (chapter Ill). However, our cell-based studies revealed that the
N-terminal extension of ERAS is critical for PI3K-AKT-mTORC activation and N-terminal truncated
ERAS variants (ERAS*™ and ERASAN/5226/5228) remarkably had a lower signaling activity. One
explanation maybe the role of the unique N-terminus in lateral segregation of ERAS across the
membrane that consequently specifies association with and activation of its effectors in a
manner reminiscent to microdomain localization of HRAS that regulates its interaction with
effector proteins of CRAF and PI3K (Jaumot et al., 2002). In addition, ERAS was found in
membrane ruffles (data not shown) maybe induced by RAC1, which can be activated by the
ERAS-PI3K-PIP3-RACGEF axis (Innocenti et al., 2003; Inabe et al., 2002; Dillon et al., 2014). Such a
scenario has been reported for the RRAS N-terminal 26 amino acid extension, which has been
proposed to positively regulation RAC activation and cell spreading (Holly et al., 2005). Similar to
ERAS, RRAS N-terminus modulates its specific functions but revealed no impact in cellular
localization (Holly et al., 2005).

Palmitoylation modification and ERAS trafficking—RAS proteins are compartmentalized by PTMs
at their C-terminus, with the CAAX motif as the farnesylation site and additional upstream
cysteine residues as the palmitoylation site(s) in the case of H, and NRAS (Ahearn et al., 2011,
Apolloni et al., 2000; Rocks et al., 2005; Schmick et al., 2014). We found substitution of two
cysteine residues C226/C228 in HVR of ERAS with serines clearly impaired the plasma membrane
localization of protein. In addition, our confocal microscopy data revealed that in contrast to

$226/5228 is main Iy

plasma membrane localization of ERASY', palmitoylation-deficient ERAS
localized, with clear pattern, in cytoplasm and also in endomembrane. These data, support
proposed reports demonstrating that HRAS and NRAS cycle between Golgi and the plasma
membrane via reversible and dynamic palmitoylation-depalmitoylation reactions (Matallanas et

al., 2006; Rocks et al., 2005; Goodwin et al., 2005).

Effector binding regions—A detailed study of structure—sequence relationships revealed a
distinctive effector binding regions for ERAS in comparison with RAS isoforms (H, N, and KRAS).
Subsequent interaction analysis with five different RAS effectors revealed that effector binding
profile of ERAS significantly differs from HRAS. ERAS tightly bounds to PI3Ka and revealed very
low affinity for other RAS effectors. In contrast, HRAS showed an opposite pattern with highest
affinity for CRAF. These data were confirmed by investigating the respective downstream
signaling cascades (PI3K-AKT-mTORC and CRAF-MEK1/2-ERK1/2) at the level of phosphorylated
AKT, MEK1/2 and ERK1/2.

ERAS-CRAF interaction—Substitutions for corresponding residues in HRAS of deviating
residues in switch I, Il and interswitch regions of ERAS for corresponding residues in HRAS
provided several interesting and new insights. One is a large shift in effector binding affinity of
ERAS gain of CRAF binding. The major difference was observed with ERAS®”?, where a tryptophan
was replaced by an arginine (R41 in HRAS). This variant led to a significant increase of CRAF
binding and partly rescued the low affinity of the switch variants (ERAS™/*® and ERAS™"/R79/5wl)
According to the crystal structure (Nassar et al., 1996), R41 (W79 in ERAS) forms hydrogen bonds
with Q66 and N64 of CRAF-RBD, which enables ERAS?” to make additional electrostatic contacts
with CRAF and to bind tighter.
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ERAS-PI3K interaction —In comparison with HRAS, ERAS interacts much strongly with PI3Ka-
RBD and activates PI3K-AKT-mTORC cascade. Mutagenesis at switch and interswitch regions
(ERAS™, ERAS?® and ERAS™"), attenuated binding of ERAS to PI3Ka-RBD, demonstrating the role
of critical ERAS residues at effector binding regions. These data are consistent with previous
study that has shown PI3Ky-RBD contacts both switch | and switch Il regions of HRAS (Pacold et
al., 2000). Interestingly, W79R mutation of ERAS (R41 HRAS), which has increased binding to
CRAF, PLCg, and RALGDS, dramatically reduced the binding to PI3Ka. The affinity of this ERAS
mutant (ERAS*®) for PI3Ka-RBD appears similar to that of HRAS'*%. In the same line of evidence,
we observed ERASY® also was deficient at activation of RAS-PI3K-AKT-mTORC2 pathway as
monitored with S473 phosphorylation of AKT. Thus, W79 in ERAS, represents a specificity-
determining residue for the proper binding to and activation of PI3K.

ERAS-RASSF5 interaction—RASSF members are known as a RAS effector with tumor
suppressor functions. RASSF5, have two splice variants NORE1A and RAPL, which share same
RBD (Stieglitz et al., 2008). We applied RASSF5-RBD domain to analyze the interaction of ERAS
variants with this RAS effector. Switch | H70Y/Q75E mutation of ERAS (ERAS™™') attenuated the
binding to RASSF5 and this was the case for all ERAS variant harboring switch | mutations
(ERAS*™/R7®  ERAS™/™! and ERASSW/R79/S"IY switch Il and W79R mutations did not affect the
binding affinity for RASSF5, emphasizing the importance of the more conserved switch | region in
the complex formation of the RAS proteins with RASSF5 (Stieglitz et al., 2008). It remains to be
investigated whether ERAS is an activator of RASSF5 and thus a regulator of HIPPO pathway.

With the aim of this study, we shed light on the sequence fingerprint and cellular targets of
ERAS and intruded ERAS as a unique member of RAS family with its own mode of regulation and
function. N-terminal of ERAS is important for its cellular functions and probably not for its
localization. We found that switch regions of ERAS act as core effector binding regions that form
an ERAS specific interaction interface for its effectors such as PI3Ka. ERAS binding to other RAS
effectors, such as RASSF5, RALGDS and CRAF, is weak but may still be of physiologically
relevance. W79 of ERAS appears to determine the effector selectivity.

However, this study raised several questions. What is the function of endogenous ERAS in
normal cells of the body? Which isoform of PI3K is the main target of ERAS? Which signaling
pathways are downstream of endogenous ERAS? We identified that one of the liver cell types, is
called hepatic stellate cells, which endogenously express ERAS. To address these questions, we,
therefore, investigated the ERAS regulation, downstream pathways and functions in hepatic
stellate cells (chapter Il1).

Signaling network and proposed function of endogenous ERAS in HSC

In this study, we found embryonic stem cell-expressed RAS (ERAS) expressed in hepatic
stellate cells (HSCs). The presence of ERAS mRNA was detected in quiescent HSCs but not in
activated HSCs where other RAS-related genes, such as RRAS, MRAS, RALA and RAP2A, were
upregulated during HSC activation. This observation raised the questions, what would be the
function of ERAS in quiescent (GO) cells and why do we need a reciprocal expression of these RAS
isoforms in quiescent vs. activated HSC? To address these questions, first we investigated the
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presence of ERAS protein with our monoclonal antibody against rat ERAS in different liver cells
and checked the activity and isoform specificity of RAS and their signaling components in
quiescent and activated HSC (chapter IIl).

Obtained data, revealed ERAS protein in quiescent HSC but not in other liver cell types, and
ERAS was considerably reduced during HSC activation (d4 and d8). To elucidate the ERAS
functions in quiescent HSCs, we sought for ERAS specific effectors and the corresponding
downstream pathways.

Role of the ERAS-PI3K-AKT-mTORC1 activity in quiescent HSCs—Endogenous ERAS
expression in quiescent HSCs strongly correlates with high levels of AKT phosphorylated at T308
and S473 through PDK1 and mTORC2, respectively. Protein interaction and immunoprecipitation
analysis further revealed that ERAS physically interacts with PI3Ka/d. Thus, we propose ERAS as a
regulator of the PI3K-PDK1-AKT-mTORC1 axis in quiescent HSCs. This axis controls various
processes including cell cycle progress, autophagy, apoptosis, lipid synthesis and translation (Kim
and Spiegelman, 1996; Kim et al., 1998; Wang et al., 2012; Tzivion et al., 2011; Prasad et al.,
2015). The latter is controlled by mTOR mediated activation of S6 kinase, which in turn
phosphorylates different substrates, such as ribosomal protein S6, mTOR itself at $2448 and
mSIN1 at T86, which is an upstream component of mMTORC2 (Fig. 5) (Chiang and Abraham, 2005;
Liu et al., 2014b; Ma et al., 2008). Previous studies have shown that quiescent HSCs produce and
secrete a significant amount of HGF (Schirmacher et al., 1992; Maher, 1993), which is modulated
by the mTORC1-S6 kinase pathway (Tomiya et al., 2007) and is known to regulate hepatocyte
survival (Wang et al., 2002).

Activity of the mTORC2-AKT-FOXO1 axis in quiescent HSCs. In comparison with mTORC]1, the
regulation of mTORC2 is less understood (Oh and Jacinto, 2011). Our findings indicate that ERAS
may act as an activator of the mTORC2 pathway. Retrovirally expressed ERAS has been shown to
promote phosphorylation of both AKT (S473) and FOXO1 (S256) in induced pluripotent stem cells
(iPSCs) generated from mouse embryonic fibroblasts (Yu et al., 2014). Thus, ERAS-AKT-FOX01
signaling has been suggested to be important for somatic cell reprogramming. We detected high
levels of p-AKT**”® and p-FOX01°*® in quiescent HSCs endogenously expressing ERAS.
Phosphorylated FOXO1 is sequestrated in the cytoplasm and cannot translocate to the nucleus
where it binds to gene promoters and induces apoptosis (Fig. 7) (Wang et al., 2014).
Interestingly, a possible link between ERAS and mTORC2 may be mSIN1, which appears to be an
upstream component and modulator of mTORC2 activity (Huang and Fingar, 2014). It has been
reported that mSIN1 contains a RAS-binding domain with some homology to that of CRAF
(Schroder et al., 2007). Taken together, ERAS-mTORC2-AKT-FOXO1 axis may insure the survival
of HSCs in the space of Disse by interfering with the programed cell death (Fig. 7B).

Role of the HGF-JAK-STAT3 axis in quiescent HSCs—Ectopic expression of ERAS stimulates
phosphorylation of STAT3 likely downstream of leukemia inhibitory factor (LIF) (Yu et al., 2014).
ERAS may compensate for lack of LIF in support of iPSC generation (Yu et al., 2014). Moreover,
the LIF-STAT3 axis is essential for keeping mouse stem cells undifferentiated in cultures and
regulates self-renewal and pluripotency of embryonic stem cells (Stuhlmann-Laeisz et al., 2006).
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Consistently, we detected high levels of p-STAT3 and p-FOXO1 in quiescent HSCs, which may
control survival, self-renewal, and multipotency of quiescent HSCs. In addition, stimulation of the
HGF receptor (c-MET) that is expressed in HSCs results in JAK activation and phosphorylation of
STAT3 (Boccaccio et al., 1998; Friedman, 2008). However, the presence and activity of LIF-STAT3
axis in HSCs needs further investigations.

Quiescent HSCs display a locked RAS-MAPK signaling pathway—In quiescent HSCs only basal
levels of activated (phosphorylated) MEK and ERK could be observed although all components of
the RAS-RAF-MEK-ERK axis were expressed. There are several explanations for the strongly
reduced activity of RAS-MAPK signaling in quiescent HSCs (Fig. 7B); 1) Absence of external stimuli,
such as PDGF1 and TGFB1 in healthy liver. These growth factors are strong activators of the
MAPK pathway in activated HSCs (Reimann et al., 1997; Carloni et al., 2002); IlI) Presence of an
intracellular inhibitor, like special AT-rich binding protein 1 (SATB1), which is specifically
expressed in quiescent HSCs and down-regulated during HSC activation (He et al., 2015).
Interestingly, SATB1 has been shown to be a strong inhibitor of RAS-MAPK pathway that may
lock this signaling in quiescent HSCs (He et al., 2015); lll) MicroRNAs (miRNAs), especially miRNA-
21, may play a role in the reciprocal regulation of the RAS-MAPK pathway in quiescent vs.
activated HSCs. Upregulated miRNA-21 in activated HSCs results in MAPK activation, which is
based on depletion of sprouty homolog 1 (SPRY1), a target gene of miRNA-21 (Coll et al., 2015)
and negative regulator of the RAS-MAPK pathway (Mason et al., 2006).

Up-regulation of individual RAS isoforms in activated HSCs—Comprehensive mRNA analysis
of various RAS family members revealed that RRAS, MRAS, RALA and RAP2A were upregulated
during HSC activation. These genes may also play a role in the coordination of the cellular
processes, required for activation and differentiation of HSCs, such as polarity, motility, adhesion
and migration. Interestingly, RRAS has been implicated in integrin-dependent cell adhesion
(Kinbara et al., 2003). Of note, in endothelial cells the RRAS-RIN2-RAB5 axis stimulates
endocytosis of B, integrin in a RAC1-dependent manner (Sandri et al., 2012). On the other hand,
the muscle RAS oncogene homolog (MRAS), a RRAS-related protein, is upregulated during HSC
activation. Among the different members of RAS family, only MRAS can interact with SHOC2 in
ternary complex with protein phosphatase 1 (PP1), which dephosphorylates autoinhibited CRAF
and activates the CRAF-MEK-ERK axis (Rodriguez-Viciana et al., 2006). These findings and data
obtained in this study suggest that MRAS may be responsible for high level of p-MEK and p-ERK
in activated HSCs due to the RAF kinase activation. RAP proteins, including RAP2A, are involved
in different cellular processes and play pivotal roles in cell motility and cell adhesion (Torti and
Lapetina, 1994; Paganini et al., 2006). Recently, it has been shown RAP2A is a novel target gene
of p53 and a regulator of cancer cell migration (Wu et al., 2015). Moreover, expression of RAP2A
in cancer cells results in secretion of two matrix metalloproteinases (MMP2 and 9) and AKT
phosphorylation at Ser473, which promotes tumor invasion (Wu et al., 2015). Notably, p53 is
unregulated in activated HSCs (Saile et al., 2001). Thus, we speculate the binding of p53 to
RAP2A promoter may results in transcription of RAP2A in activated HSCs and stimulates
secretion of MMPs, which remodels the extracellular matrix and facilitate the migration of HSCs
in the space or Dissé.

148



Chapter VIII

A activated HSC  yras  vap
>——- RRAS CTGF
i /4 RAP2A NOTCH2
= e RALA  |QGAP1
ERAS quiescent HSC p11iop  RACI
p110a pi1os  RACZ
o0y : CDC42
IQGAP2
DLCH
B IQGAPZ
Wnt ligand HGF LIFY ERAS RAS
1 x . | —
Frizzied 1 ? ‘ : -* A
cMET mSiNg Pi3Kw's RASSF5 CRAF--SPRY1
: l ! } :
Dushaivelled mTORES2 PDK1 MST1/2 p-MEK1/2
! } ) | | )
GSK3p . JAK p-AKT*"  p.AKT™  LATS1/2  p-ERK1/2
l | | |
f-catenin , STAT3  p-FOXO1 mTORC1 p-YAP™ ELX
GFAP synthesis 1
GO arrest Survival | | Transtation Sl

| Lipid synthesis |

Vitamin A storage, Maintanance of the stem cell niche, Immunregulatory funclions

C E IQGAP :
RASRHO -t o pl120RASGAP
POGF1MGF1 —= — RAS e RAC2Z CDCA42 | RASRHOD eross-talk
i 1 " X J’ - ' | = DLC1RHOGAP
RASSFS CRAF v "’J:" E WASP- = l
2 | 5 A
} 4 ' 5 RHOA
AKT | MST1Z  p-MEK1/2-| “ ARP2/3 |
mTOR difek
3 } i ROCK
LATS1/Z  p-ERK1/2 Actin palymerization l
' | | MLC
YAP ELK1 Lamellipodia  Filopodia  Siress fiber formation
|_ Proliferation, Development | Maotility, Contracfion, Migration

! Liver regenaration, Liver injury responsas |

Figure 7. Schematic view of the proposed model of HSC signaling networking and gene expressional
changes. (A) The expressional changes of investigated genes that are involved in RAS-dependent signaling
in qHSC vs. aHSC. (B,C) A reciprocal ERAS/RAS/RHO dependent signaling pathways in qHSC (B) vs. aHSC (C).
ARP2/3, actin related protein 2/3; DLC1, deleted in liver cancer; ERAS, embryonic stem cell-expressed RAS;
ERK, extracellular regulated kinase; FOXO1, forkhead transcription factor; GAP, GTPase activating protein;
GFAP, glial fibrillary acidic protein; GSK3B, glycogen synthase kinase 3 beta; HGF, hepatocyte growth
factor; HSC, hepatic stellate cell; IGF, insulin-like growth factor; IQGAP, IQ motif-containing GTPase-
activating protein; JAK1, Janus kinase 1; LIF1, Leukemia inhibitory factor 1; MEK, MAP/ERK kinase; MMP,
matrix metalloproteinases; mSIN1, mammalian stress-activated MAP kinase-interacting protein 1; MST,
mammalian sterile 20-like kinase; mTORC, mammalian target of rapamycin; PDGF, platelet-derived growth
factor; PDK1, 3-phosphoinositide-dependent protein kinase 1; PI3K, phosphoinositide 3-kinase; RAS, rat
sarcoma; RASSF5, RAS-association domain family 5; ROCK; RHO-associated coiled-coil kinases; SATB1,
special AT-rich binding protein 1; SPRY1, sprouty homolog 1; STAT3, signal transducer and activator of
transcription 3; WASP, wiskott—aldrich syndrome protein; WAVE; WASP-family verprolin-homologous
protein; YAP, Yes-associated protein (for details see discussion).

Proliferation and differentiation of activated HSCs—In comparison with quiescent HSCs,
activated HSCs are proliferative cells and can pass through cellular checkpoints (Soliman et al.,
2009). One of the candidate pathways is the RAF-MEK-ERK cascade that can be stimulated via
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different growth factors. Consist with previous studies, we detected high levels of p-MEK and p-
ERK in culture-activated HSCs (Reimann et al., 1997; Gu et al., 2013). Three scenarios may explain
the elevated RAF-MEK-ERK activity in activated HSCs: 1) As discussed above, MRAS in the complex
with SHOC2 and PP1 is able to activate the CRAF-MEK-ERK pathway (Wu et al., 2015). p-ERK
translocates to the nucleus and phosphorylates different transcriptional factors, including Ets1
and c-Myc thereby eliciting cell cycle progression and proliferation. The cytoplasmic p-ERK
alternatively phosphorylates Mnk1 and p90RSK and thereby promotes protein synthesis and cell
growth (Fukunaga and Hunter, 1997; Pereira et al., 2013) I1l) PDGF and IGF1 are the most potent
mitogens for activated HSCs and induce activation of MAPK pathways (Reimann et al., 1997;
Iwamoto et al., 2000). Ill) The expression of SATB1, a cellular inhibitor of the RAS-RAF-MEK-ERK
pathway, significantly declines during HSC activation (He et al., 2015).

YAP controls cell cycle arrest vs. proliferation of HSCs—We observed a moderate interaction
between ERAS and RAS-association domain (RA) of RASSF5A. Previously, we showed that switch |
of ERAS is important for ERAS-RASSF5 interaction and mutation in this region impairs ERAS
binding to RASSF5 (Nakhaei-Rad et al., 2015). RASSF5-MST1/2-LATS1/2 activity promotes
phosphorylation, and therefore sequestration and proteasomal degradation of YAP in cytoplasm
(Ramos and Camargo, 2012b; Rawat and Chernoff, 2015). YAP is a transcriptional co-activator
that promotes transcription of CTGF and NOTCH2, which are involved in cell development and
differentiation (Camargo et al., 2007; Avruch et al., 2010; Lu et al., 2010; Yimlamai et al., 2014).
Recently, van Grunsven and colleagues reported that transcriptional co-activator of YAP controls
in vitro and in vivo activation of HSCs (Mannaerts et al., 2015). Consistent with this study we
observed hardly any YAP protein in quiescent HSCs in comparison to activated HSCs. Thus, our
data suggest that YAP degradation through RASSF5-MST1/2-LATS1/2 may be triggered by binding
and recruitment of RASSF5 to the plasma membrane via ERAS-GTP. High levels of YAP
transcriptional activity in activated HSCs, may be due to the inhibitory activities of AKT and mTOR
on MST1/2 (Chiang and Martinez-Agosto, 2012) and may thus cause opposite effects of the pro-
apoptotic RAS-RASSF5-MST1/2-LATS1/2 pathway (Fig. 7C), leading to increased cell survival,
proliferation and development of activated HSCs (Mannaerts et al., 2015).

Overexpression and endogenous studies of ERAS (chapter Il and Ill), demonstrate that ERAS
preferentially interact with PI3Ka/d and RASS5A, is able to signal through the PI3K-PDK1-AKT-
MTORC and RASSF5-MST1/2-LATS1/2 axis. Therefore, this study adds ERAS signaling to the
remarkable features of quiescent HSCs and the cellular outcome of these signaling pathways
would maintain quiescent state of HSCs by the inhibition of proliferation (HIPPO pathways, GO
arrest) and apoptosis (PI3K-PDK1 and mTORC2) (see Fig. 7B). On the other hand, activated HSCs
exhibit YAP-CTGF/NOTCH2 and RAS-RAF-MEK-ERK activity, which are involved in HSC
proliferation and development (Fig. 7C). This information helps us to get one-step closer to the
RAS dependent signaling pathways, which maintain quiescent and modulate activation of HSCs.

Functional cross-talk between RAS and RHO pathways

One of the important features of activated HSC is their ability to contract and migrate,
which should be controlled by RHO family GTPases (chapter 1V). There are growing numbers of
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evidences that show RAS signaling controls RHO activity and vice versa (Shang et al., 2007; Yang
et al., 2009; Asnaghi et al., 2010). We asked the question, does RAS family actively influence HSC
migration through RHO proteins or not? To approach this question, it is noteworthy to
investigate the intracellular communication of RAS and RHO families. In following sections, we
will discuss our finding that shed light on the RAS and RHO cross-talk in two levels, GAP (chapter
V) and scaffolding proteins (chapter VI) and how these connection modulates disease
progression (chapter VII).

p120GAP links RAS and RHO pathways via p190GAP and DLC1

p120 is a GTPase activating proteins (GAPs) for RAS family GTPases that contains several
domains (Fig. 8). Through its C-terminal GAP domain, interacts with switch regions of RAS
proteins where accelerates GTP to GDP hydrolysis (Ahmadian et al., 1997a). p120 contains an N-
terminal Src homology domain 2 and 3 (SH2? and SH3?) that enable its intracellular protein-
protein interactions with other regulatory proteins. In addition to GAP function, p120 can be
viewed as a RAS effector that binds to GTP-bound RAS and signals to other pathways (Chan and
Chen, 2012). p120 controls RHO activity by interacting with RHOGAPs, p190 and deleted in liver
cancer 1 (DLC1). DLC1 is frequently silenced in a variety of human cancers (Yuan et al., 1998) and
acts as a linker that coordinates the RAS and RHO signaling pathways (Shang et al., 2007; Yang et
al., 2009; Asnaghi et al., 2010). DLC1 RHOGAP function is required for the maintenance of cell
morphology and the coordination of cell migration (Kim et al., 2008). The preliminary data,
revealed the elevated levels of DLCI mRNA in quiescent HSC vs. activated HSC and in gHSC we
detected more DLCI than p120 (data not shown). These observations raised the question, how
RHO activity could be controlled via cross-link between p120GAP and DLC1 that may impair the
RHO-dependent cell migration of gHSC. Therefore, we mechanistically and structurally analyzed
the p120 interaction with DLC1 (chapter V) (Jaiswal et al., 2014).
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Figure 8. p120 interacts through SH3 domain with DLC1 and regulates RAS and RHO signaling. (A)
Representation of p120 and DLC1 domain organization and interaction via SH3-GAP domain. (B) Schematic
view of the p120 controlling RAS and RHO proteins. DLC1, deleted in liver cancer; PH, pleckstrin homology;
SAM, sterile a motif; SH, Src homology; START, steroidogenic acute regulatory related lipid transfer.

GAPs function as a negative regulator of small GTPases, however the mechanisms which
control GAP activity are poorly understood. To date, two mechanisms are proposed for DLC1GAP
regulation; First, through cis-inhibition or autoinhibition, for instance, Kim and colleagues

? sequence-specific phosphotyrosine-binding module
3 recognition of proline-rich sequences
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reported SAM domain of DLC1 acts as an autoinhibitor of this GAP (Kim et al., 2008); Second,
trans-inhibition of DLC1 through a RASGAP protein, p120 (Yang et al., 2009).

p120 binds through SH3 domain to DLC1 and inhibits DLC1 in PxxP independent manner—
Our in silico analysis revealed that the GAP domain of DLC1 does not possess a proline-rich
region. Therefore, unlike classical PxxP motif-recognizing SH3 domains, the interaction mode of
the p120 SH3 domain is atypical, utilizes different amino acids to bind, and masks the catalytic
arginine finger of the GAP domain of DLC1. The Ser/Thr kinases Aurora A and Aurora B are other
examples in addition to DLC1 for negative modulation of biological processes by p120 (Gigoux et
al., 2002). The SH3 domain of p120 binds to the catalytic domain of Aurora kinases that inhibits
their kinase activity. These interactions also do not involve a proline-rich consensus sequence.
Two accessible hydrophobic regions of p120 SH3 have been suggested to function as binding
sites for protein interaction (Yang et al., 1994).

Collectively, SH3 domain of p120 inhibits specifically DLC1GAP activity where p120 activated
p190, through its SH2 domain (Fig. 8A and B). Our gPCR analysis showed that quiescent HSC
harbors elevated levels of DLCI that were more than p120 and p190 levels. The overexpression
of DLC isoforms has been shown to lead to inactivation of RHOA and to the reduction of actin
stress-fiber formation (Leung et al., 2005; Kawai et al., 2007). On the other hand, RHOA controls
the contraction and migration of activated HSC (Li et al., 2012; Sohail et al., 2009). Therefore, we
speculated that a high level of DLC1 might inhibit the stress-fiber formation in quiescent HSC,
where down-regulation of DLC1 in activated HSC results in increased RHOA activity and HSC
contraction (Fig. 7C).

Scaffolding protein IQGAP modulates RHO and RAS signaling

Upon HSCs activation, quiescent HSCs develop into the cells that are able to contract and
migrate. As we discussed earlier, our signaling analysis revealed the high levels of RAS-
dependent signaling activity in activated HSCs (chapter lll). Besides GAP proteins, scaffold
proteins can cross-link RAS to RHO signaling. It is shown that IQGAPs scaffold different
components of RAS-MAPK pathways as well as RHO GTPases, such as CDC42 and RAC proteins
(Mataraza et al., 2003a; Roy et al., 2004; Roy et al., 2005; Ren et al., 2007); therefore, they may
connect RAS signaling to RHO proteins and modulate the cell-adhesion and migration. Moreover,
it is reported that the IQGAP1 plays a role in HSC activation by binging to TGF-p receptor Il and
suppresses HSC activation (Liu et al., 2013a). These observations raised the questions; are there
any evidences that IQGAPs actively scaffolds RHO proteins in HSCs? Which IQGAP isoforms are
present in HSCs? Which regions of IQGAP determine the interaction specificity for RHO proteins?
To address these questions, first, we generated varies IQGAP1 constructs and with the aim of
biochemical studies of IQGAP1 interaction with different RHO family members, we identified the
C-terminal region of IQGAP1%¢**®7 (here after called GRD-C) is responsible for high affinity of
IQGAP1 to interact with GTP-loaded RAC and CDC42 proteins but not RHO subgroup. Second, we
investigated the expression pattern of IQGAP1/2/3, RAC1/2/3 and CDC42 in quiescent vs.
activated HSC.
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GBD domain (1345-1563) of IQGAP1 tightly binds to RAC and CDC42 in GTP-dependent
fashion—In this study, a comprehensive interaction study of RHO GTPases and C-terminal
domain of IQGAP1%%***’ (here called GRD-C) was conducted. Kinetics of GRD-C association with
fourteen different RHO proteins was monitored using stopped-flow fluorescence spectroscopic
methods. The results clearly indicate that IQGAP1 binds among RHO proteins selectively to RAC-
and CDC42-like proteins only in the active form and that GRD-C containing IQGAP1**'®*" most
probably recognizes and binds to the switch regions but however not, as previously proposed by
several groups (Mataraza et al., 2003b; Owen et al., 2008; Kurella et al., 2009), the GRD-
containing IQGAP** 3%,

Reciprocal expression of IQGAP isoforms during activation of the hepatic stellate cells—
IQGAP family composes of three isoforms, IQGAP1, 2 and 3, which are differentially expressed in
distinct tissues. In addition to share a set of binding partners, each isoforms possess its specific
binding partners and therefore contribute to different cellular processes (Weissbach et al., 1994;
Brill et al., 1996; Wang et al., 2007). For instance, IQGAP1 is recognized as an oncogene where
IQGAP2 is a tumor suppressor (White et al., 2009b; White et al., 2010b). IQGAP2 is shown to be
expressed predominantly in liver. We asked the question, is there any isoform preference for
IQGAPs during HSC activation? Our quantitative RNA analysis revealed that /IQGAP1 and 3
isoforms, get upregulated during the activation process of HSC where the IQGAP2 down-
regulated. At protein levels, we were able to detect IQGAP2 isoform only in quiescent HSC where
IQGAP1 presented in both states of HSC and became up-regulated during HSC activation.
Consistently, Schmidt and colleagues, reported the reciprocal expression of IQGAP1 and 2 in
human hepatocellular carcinomas where IQGAP1 increased and IQGAP2 decreased (White et al.,
2010b). Domain organization of IQGAP1 and 2 are similar, and both are reported to interact with
GTP-loaded CDC42 and RAC1 (Smith et al., 2015c). In quiescent HSC, we speculate that IQGAP2
exerts its specific functions by scaffolding the distinct signaling components in different protein
complexes than IQGAP1. Canonical Wnt signaling is very dynamic in quiescent HSC and it is
shown in other cells, IQGAP2 can interact with Dishevelled/B-catenin, therefore in gHSC IQGAP2
may modulate Wnt-B-catenin signaling and stimulate GFAP synthesis and cell-cycle arrest
(Kordes et al., 2008a; Schmidt et al., 2008). Another possibility would be, IQGAP2 competes with
other scaffolding proteins to recruits RHO proteins and may interfere with RHO dependent-cell
migration (Fig. 7B). The functions and specific binding partners of IQGAP2 in gHSC remain to be
investigated. aHSCs display the elevated levels of PDGF signaling and focal adhesion kinase (FAK)
acts downstream of PDGF (Carloni et al., 2000). PDGF induces the IQGAP1-dependent complex
formation of focal adhesion proteins (paxillin and vinculin) and PDGF receptor B (Kohno et al.,
2013). IQGAP1 also binds to FAK (Cheung et al., 2013), therefore, PDGF-IQGAP1 may regulate the
focal adhesion assembly in aHSCs that is important for cell motility and migration.

Elevated levels of the RAC and CDC42 correlate with high amount of IQGAP1 in activated
HSC—We detected higher levels of RAC1, RAC2 and CDC42 in aHSCs than gHSC. On the other
hand, our biochemical studies demonstrated that RAC1 and CDC42 interact in GTP-bound forms
with IQGAP1-GBD. Therefore, we suggest that IQGAP1 scaffolds RAC1/2 and CDC42 to regulate
cell-adhesion and migration in these cells. However, the role of IQGAP1 in aHSC needs to be
investigated.
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IQGAP1 exhibits the highest affinity for RAC2 isoform—qPCR data reveals in hepatic stellate
cells, RAC2 drastically increased in activated state. In addition, the interaction of IQGAP1%""¢
with RAC- and CDC42-like proteins revealed the fastest association with RAC2, which is 2-9 fold
higher than others. The highest affinity of RAC2 for GRD-C can most likely be attributed to
distinct amino acid sequence deviations. The high affinity of RAC2 for IQGAP1 cannot be
explained by comparing potential residues that may undergo direct interacting contacts in spite
of high amino acid sequence identity. Another aspect to be considered is the overall dynamics of
the G domain, which has been previously proposed to contribute to a higher affinity, in the case
of RAC2 compared to RAC1 and RAC3 (Haeusler et al., 2003). Due to the highest affinity of
IQGAP1 for RAC2 and up-regulation of RAC2/IQGAP1 in activated HSCs, we suggest that IQGAP1
might associate RAC2 with its specific protein complex to accelerate their interaction (Fig. 7C).

Cross-link between RAS-MAPK and RHO pathways—In addition to scaffold the RHO signaling
components (RAC and CDC42), IQGAP1 identified to interact with different signaling components
of RAS-MAPK pathway, RTKs, KRAS, BRAF/CRAF, MEK1/2 and ERK1/2, and directs the
information flow from the EGF to ERK1/2 phosphorylation (Roy et al., 2004; Roy et al., 2005; Ren
et al., 2007) (Fig. 7C). It is reported upon hyaluronan (HA) stimulation of CD44 receptor, IQGAP1
anchors the CDC42 and ERK2 to CD44 and F-actin that results in phosphorylation of ERK2.
Moreover, at the level of focal adhesions, it is reported that RAS proteins mediate the Tyrosine
phosphorylation of FAK via PDGF receptor in activated HSC (Carloni et al., 2000) that most
probably this complex can form through the IQGAP1. Therefore, IQGAP1 may bridge the MAPK
pathways to cytoskeleton organization machinery in hepatic stellate cells. On the other hand,
our genetic screening of JMML patients revealed a correlation between RAC2 and NRAS double
mutants in one patient which RAC2 mutation drives the PI3K-AKT-mTORC pathway in parallel to
NRAS mutation (chapter VII) (see below).

The coordination of RAS (NRAS) and RHO (RAC2) mutations in tumor
progression

In pathological conditions, the aberrant activation of RAS proteins due to the somatic or
germline mutations in the critical residues of RAS proteins (G12, G13 or Q61; HRAS numbering)
or their regulators are very common in a wide spectrum of human cancers and genetic disorders
(Ratner and Miller, 2015). Juvenile myelomonocytic leukemia (JMML) is a rare and severe
myelodysplastic and myeloproliferative neoplasm of early childhood is initiated by germline or
somatic RAS-activating mutations (Chang et al., 2014). IMML is considered a unique example of
RAS-driven oncogenesis since it is thought to be initiated by mutations, usually described as
mutually exclusive, in RAS genes (NRAS, KRAS) or RAS-pathway regulators (PTPN11, NF1 or CBL).
JMML can be sporadic or develop in patients displaying syndromic diseases with constitutional
RAS overactivation such as Noonan syndrome (NS), type 1-neurofibromatosis (NF1) and CBL
syndrome, caused by heterozygous germline mutations in PTPN11, NF1 and CBL, respectively
(Niemeyer, 2014). In this study, multiple concomitant genetic hits targeting the RAS-pathway
were identified in 13/78 cases (17%), disproving the concept of exclusive RAS mutations and
defining novel activated JMML pathways involving PI3K and the mTORC2 complex through RAC2
mutation (chapter VII) (Caye et al., 2015).
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JMML pathways involving PI3K and the mTORC2 complex through RAC2 mutation— Multiple
concomitant genetic hits targeting the RAS pathway in JMML patients, identified mutations in
RAS genes. Two NRAS-JMML patients had mutations in RRAS, an inducer of RAS/MAPK activation
(Flex et al., 2014) and upstream regulator of RAC in hematopoietic stem cells (Shang et al., 2011),
and another had a mutation in the RHO GTPase RAC2 "°. The coexistence of RAC and RAS/MAPK
mutations in some tumors and cooperation between oncogenic NRAS and RAC has been
previously demonstrated (Kawazu et al., 2013). Investigations into the functional and structural

V63

properties of RAC2"°, which predominantly occurs in its active, GTP-loaded state as compared to

wild-type RAC2 and the constitutive variant RAC2'", have revealed a drastic gain-of-function
effect. Interestingly, an analysis of signaling downstream to RAS has shown that RAC2'®
activates the PI3K-PDK1-AKT and the mTORC2 pathways but has no significant effect on the RAF-
MEK-ERK pathway. This is consistent with several lines of evidence indicating a strong impact of
the PI3K-PDK-AKT pathway on JMML (Emanuel, 2014), and activating the catalytic p110y subunit
of PI3K has recently been shown to promote the effects of Shp2 on GM-CSF hypersensitivity

(Goodwin et al., 2014).

This study sheds light on the intercommunication of RAC2-GTP with NRAS-GTP to induce the
mTORC2 and PI3K pathways and provides evidence for in vivo RHO and RAS cross-talk in disease
model. On the other hand, we detected high levels of RAC2 in aHSC that may also signal towards
the PI3K-mTORC2 and MAPK therefore promotes cell survival, proliferation, which needs further
investigations (Fig. 7C).

Concluding remarks

Collectively, with aim of this doctoral thesis, we shed light on the RAS-dependent
intracellular signaling pathways that drive the fate decisions of HSC and maintain the quiescence
of HSC or induce HSC activation, proliferation, contraction and migration (Fig. 7). We identified
ERAS, p110a, p110y, IQGAP2 and DLC1 expressed mainly in gHSCs, and MRAS, RRAS, RAP2A,
RALA, p1108, p1106, YAP, CTGF, NOTCH2, IQGAP1, RAC1, RAC2 and CDC42 in aHSCs (Fig. 7A).
Obtained data suggested elevated ERAS-dependent signaling pathway activity via PI3K-AKT-
MTORC1, mSIN1-mTORC2-AKT-FOXO1, LIF-STAT3, and HIPPO signaling in gHSCs (Fig. 7B).
However, we detected high levels of RAS-MAPK and YAP-NOTCH2/CTGF in aHSCs. Moreover, our
cell-based studies were combined with biochemical and mechanistic studies of highlighted
molecules in qHSC and aHSC that provided detailed information about the mode of regulation
and networking of these molecules. Biochemical analysis demonstrated that effector selection of
ERAS significantly differs from HRAS (chapter IlI). ERAS specificity and consequently cellular
outcomes depend on its unique switch and interswitch regions and W79 of ERAS appears to
determine the effector selectivity. Expressional analysis reveals a different expression pattern of
RAS and RAS-signaling components in gHSCs vs. aHSCs. Among the RHO regulators, we observed
more DLC1IRHOGAP in qHSC than aHSC, which were higher than p120RASGAP in both state. On
the other hand, our mechanistic and structural studies of DLCIRHOGAP and p120RASGAP
revealed interesting aspects of RHO regulations via a well-known RAS regulator (chapter V). We
found p120RASGAP competitively and selectively inhibits DLC1 by targeting its catalytic arginine
finger that is mediated through p120 SH3 and DLC1 RHOGAP domain interaction (Fig. 8A).
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Therefore, herein, we emphasize the functional inter-relationships of GAPs that mediate a cross-
talk between the RAS and RHO pathways. Beside GAPs, scaffolding proteins, such as IQGAPs, link
RAS to RHO signaling. We observed reciprocal expression of IQGAP isoforms and RHO proteins in
hepatic stellate cells; IQGAP1/3, RAC2 and CDC42 are upregulated during the activation process
of HSCs while IQGAP2 is down-regulated. Amongst different RHO proteins, our kinetic and
equilibrium measurements implicated that IQGAP1 selectively interacts in a GTP-dependent
manner with RAC and CDC42 (chapter VI). We showed that these interactions are mediated
through the C-terminal half of IQGAP1 composing three functionally distinct units, including GRD,
GBD and C-terminus. GBD only binds to the RAC1 and CDC42 proteins if they are active and exist
in the GTP-bound forms, where GRD undergoes a low-affinity, GDP-/GTP-independent complex
with these proteins. Consistent with our data on GAP and IQGAP proteins, which may link signal
transduction of RAS to RHO, we found a functional cross-talk between RHO and RAS mutations in
disease progression with the aid of whole genomic sequencing of the juvenile myelomonocytic
leukemia (JMML) patients (chapter VII). Genetic profiling and whole-exome sequencing of a large
JMML cohort, showed for the first time that concomitant mutations in JMML target a small
number of interacting networks, with a striking enrichment in components of the RAS and PRC2
networks. This study sheds light on the inter-communication of RAC2 with NRAS to activate the
mTORC2 and PI3K pathways. Consistent with data from JMML patient, high levels of RAC2 in
aHSC may also signal towards the PI3K-mTORC2 and MAPK, therefore, promotes cell survival,
proliferation (Fig. 7C). Collectively, with the aim of cell biological and biochemical studies, we
suggest a possible ERAS/RAS signaling networks in gHSC vs. aHSC and propose a model that links
RAS and RHO signaling in order to regulate cellular processes, such as cell migration (Fig. 7).
Therefore, this study adds additional clues to the remarkable signaling features of gHSC and how
the cellular outcome of these signaling pathways would maintain quiescent state of gHSC by the
inhibition of proliferation (HIPPO pathways, GO arrest) and apoptosis (PI3K-PDK1 and mTORC2)
(see Fig. 7B). Where, in aHSC the activity of YAP-CTGF/NOTCH2, RAS-RAF-MEK-ERK, RAC2, CDC42
and RHOA may contribute to the HSC proliferation, development and migration (Fig. 7C).
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