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Introduction 

Collaboration and communication are the basis of a researcher’s scientific craft. 
During a scientific career a scientist’s peer network grows – he or she gets to 
know other researchers, with whom they exchange interests and work on 
common projects. Often, new contacts are established through already known 
peers, like one’s advisor or local colleagues. A researcher’s network is 
influenced by his or her existing environment. Without exchange between 
researchers, research would not be possible. Interaction processes between 
scientists foster knowledge creation and sharing (see Suorsa & Huotari, 2014). 
But closed environments – in most cases they are unintended – can hinder 
research development. The challenge is to be open to enable new connections to 
foster one’s own and other’s research. However, openness can best be practiced 
if a researcher notices his or her opportunities within research networks.   

New developments and techniques seem to make collaboration and 
communication easier. The Web 2.0 (O'Reilly, 2005) offers new opportunities 
to share and exchange resources. But these do not come as a matter of course. A 
big challenge is the problem of information overload (e.g. Borchers, Herlocker, 
Konstan, & Reidl, 1998). Here, support is needed to facilitate collaboration and 
communication, which drive scientific craft and innovation. Information 
overload hides collaboration and communication options. Therefore, it is 
important to show researchers relevant resources and potential relations. New 
approaches like recommender systems offer solutions for this support.    

Seeking for recommendations is natural among human beings. If one needs 
advice, a good friend and trustful person may give recommendation and helps 
making the right decision (e.g. Resnick & Varian, 1997; Gärtner, 2012). 
Recommendation systems pursue the same goal: To help finding the right 
resources and to help deciding between diverse resources – were challenges 
have minor, but not less relevant differences depending on a concrete task and a 
system’s environment (see Ricci, Rokach, & Shapira, 2011). These systems 
need to have the right information about the user to be able to support him or 
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her. Using the right information, filtering it and applying it depending on a 
researcher’s need is within the scope of this work, which concentrates on the 
task to find relevant peers in the academic field – not just any who happen to be 
available but the “right” ones. It investigates the scientific environment and 
relations between researchers to support scientists in finding their peers and 
foster communication and collaboration.  

State of Research 

Recommender system research began in the 1980s (Klahold, 2009). One aim of 
these systems is to order and filter the huge amount of user-generated data that 
arose alongside new developments in Web 2.0 (O'Reilly, 2005; Peters, 2009). 
Research on recommender systems adapts methods applied in information 
retrieval and filtering systems. However, the purpose of  recommender systems 
lies in automated personalized recommendation (Ricci et al., 2011). Another 
focus is on the recommendation of new and unknown items. A retrieval system 
aims to give good results based on users’ information needs. Thus, such a 
system “has to translate their information need into a query” (Baeza-Yates & 
Ribeiro-Neto, 2011). However, here is a major point of concern, as all searches 
begin with a user. A formulation of an information need – especially if it is 
problem-oriented and not clearly definable – can be difficult for a user: “To 
formulate clearly and precisely, one would have to know what one does not 
know” (Stock & Stock, 2013, p. 107). If a user knows what to search for, he or 
she still searches on the basis of their pre-knowledge and skills. Other 
perspectives are not considered. A recommendation system tries to help users in 
this way, as it takes historic user data and from this, tries to derive potential user 
interests and needs. The idea is to make users aware of things that they would 
not have found on their own. The second aspects is that such services aim to 
overcome information overload. “[Recommender systems] are primarily 
directed towards individuals who lack sufficient personal experience or 
competence to evaluate the potentially overwhelming number of alternative 
item[…]” (Ricci et al., 2011, pp. 1–2). Such a system for the academic sphere 
could help researchers find relevant resources and experts. Approaches are 
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based on relations between objects, which are implicit for the users, and make 
them explicit and visible. The approaches applied and techniques used are 
manifold and concentrate on diverse user needs. Recommendations for the 
academic field concentrate on literature recommendation, where there are 
various approaches. Approaches towards finding experts, for example, combine 
text retrieval models with citation analysis and therefore use online databases 
like DBLP1 (Deng, King, & Lyu, 2008) (see also Renugadevi, Geetha, 
Gayathiri, Prathyusha, and Kaviya (2014). These approaches are derived from 
the field of expertise retrieval (Balog, 2012), which has a slightly different focus 
(see chapter 3). Furthermore, there exists research considering user-generated 
data from collaborative information services such as bookmarking services (Au 
Yeung, Noll, Gibbins, Meinel, & Shadbolt, 2009) and Twitter2 (Saito & 
Yukawa, 2011). Bogers (2009), who discusses recommender systems based on 
social bookmarking data, aims at recommending relevant scientific literature to 
users (see also Bogers and Van den Bosch (2008)). McNee (2006) proposes 
literature recommendation based on citation data by researchers. His focus lies 
on users’ acceptance of recommendations, which are evaluated via a survey, and 
on different algorithmic comparisons. The first aspect is also a focus of this 
work, while the comparisons of diverse algorithms for similarity measurement 
are not discussed. This work consults professional information services for 
measurements on citation data. In addition, it draws on another scientometric 
approach that is adapted for a recommender system.   

An important aspect in providing researchers with valuable recommendations is 
reputation. Recommendations of potential collaborators rely on accurate 
information about them. In their study concerning collaboration in a scientific 
environment, Hara, Solomon, Kim, and Sonnenwald (2003, p. 957) find that 
“respondents typically considered acceptance as a scientist and intrinsic 
recognition that one’s knowledge is valued as prerequisites for collaboration.” 

                                                           

1 http://dblp.uni-trier.de 
2 https://twitter.com/ 
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One valuable source of information about researchers are their publication and 
citation data. In another study, Farooq, Ganoe, Carroll, and Giles (2007) suggest 
support strategies to enhance collaboration in online communities. They 
conducted a survey asking users with whom they would prefer to collaborate. 
Co- citation and references were important aspects for the users. Another good 
indicator that someone may be an appropriate collaborator is if they search for 
and read similar papers. Farooq et al. (2007, p. 3)conclude: “potential 
collaborators can share common ideas that focus on the papers they look for or 
cite.” Both aspects are picked up on in this work. On the one hand, citation data 
is gathered, while the aspect of reader similarity is considered via users’ 
bookmarking behavior. Farooq et al. (2007) propose detecting relations based 
on social network analysis and weak ties. This work regards diverse 
perspectives for detecting new and hidden researcher relations to foster 
collaboration.   

The field of scientometrics concentrates on scientific information analyses such 
as productivity (published documents), paper topics (word and co-word 
analyses), and reader reception and formal communication (via references and 
citations) (Stock, p. 447). Diverse metrics such as co-authorship, citation, co-
citation and bibliographic coupling  analysis are applied to map-scientific fields 
(Cronin, Shaw, & La Barre, 2003; Leydesdorff, 1998; Schneider & Borlund, 
2007a, 2007b). Analysis should provide a picture of actual patterns of researcher 
collaboration and communication (Ardanuy, 2012; Gazni, Sugimoto, & 
Didegah, 2012; Velden, Haque, & Lagoze, 2010) and of how a research field 
develops over time, based on researchers’ activities in terms of publication and 
citation. Scientometrics also discusses similarities between papers and authors 
(Leydesdorff, 2005, 2008), but there are few examples (Blazek, 2007; Guns & 
Rousseau, 2013, 2014) where such data is used for recommendations. The aim 
of mapping scientific fields is to give a realistic picture – more specifically, the 
true picture – of scientific communication and field development (Price, 1986; 
Small & Sweeney, 1985; Small, Sweeney, & Greenlee, 1985). Expert 
recommendation aims at personalized partner suggestions for a target researcher 
as these have the greatest value. Similarity measurements that apply data from a 
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large scientific field cannot show relations of personal relevance for a 
researcher. Recent discussions consider different perspectives on standard 
metrics. So-called “altmetrics”, or alternative metrics, are applied to measure the 
impact of researchers and journals (Priem & Hemminger, 2010), for instance. 
One approach is to base a journal’s impact not only on a single factor (such as 
the impact factor), but to consider user-generated data from bookmarking 
services (Haustein, 2012; Haustein & Siebenlist, 2011). This work goes in a 
similar direction, but uses scientometric approaches to expand the scope of 
vision of a target researcher with regard to his scientific collaboration network.  

The need to recommend potential new collaborators does not derive from the 
fact that researchers do not collaborate. In fact, collaboration has grown 
immensely over the last decades (Cronin et al., 2003; Luukkonen, Persson, & 
Sivertsen, 1992; Persson, Glänzel, & Danell, 2004). The need to recommend 
collaborators derives from the fact that a researcher’s scientific craft depends on 
interaction with colleagues and can best unfold in realms where communities of 
practice are able to develop (Wenger, 2008). When researchers become aware of 
interaction potentials, they are able to participate and engage in their community 
and develop their own scientific work as well as the work of their colleagues. 
The purpose of a recommender system is to suggest new and as-yet undetected 
aspects that they would not have noticed themselves. “The task is to identify 
such groups and help them come together as communities of practice” (Wenger 
& Snyder, 2000, p. 144). Thus it is proposed to use such a system to make 
researchers aware of their colleagues in order to foster scientific collaboration. 
This work considers three different perspectives of expanding a researcher’s 
own view on his potentials.   

Scope and Research Questions of this Work 

Finding research partners for collaboration is a common task for any scientist. 
When a researcher has found the right scientific community, he or she interacts 
with fellow scientists in developing his or her research. It can be said that 
researchers act in communities of practice (Wenger, 2008) that offer a realm for 
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their scientific craft. However, collaboration is not as easy as it may seem (Hara 
et al., 2003). First and foremost, researchers need to be aware that their 
communities exist. It would seem that more collaboration would be possible if 
there were services for detecting such communities. Nowak and Wurst (2004, 
p. 244) speak of “reflective awareness”, which builds on a basis of previously 
existing information to facilitate the detection of new information to be used by 
all members.  

The aim of this work is to analyze and evaluate a proposal for an expert 
recommender system for researchers, while taking into consideration 
scientometric and alternative approaches (figure 1.1). The focus here lies on the 
usage of appropriate data and the application of new expert recommender 
models. The evaluation analyzes the usefulness of the models based on target 
user feedback. The work will address neither aspects concerning the 
implementation of an operative recommender system, nor technical issues with 
regard to the automation of the proposed model. It concentrates on the 
evaluation of the results derived from the experimental model and suggests 
aspects to be considered for future implementation.     

Regarding the need to develop further approaches to recommend research 
experts, this work addresses the following research questions: 

1. Can researchers be supported in finding relevant experts for 
collaboration with the help of expert recommendation on the basis of 

Figure 0.1. The need for expert recommendation in the academic sphere. 
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scientometric and alternative approaches?  
2. Is professionally indexed data from information services, based on 

scientometric approaches, appropriate for use in expert 
recommendation? 

3. Is user-generated data from social bookmarking services, based on 
collaborative filtering models, appropriate for use in expert 
recommendation?   

4. Are there any differences in outcome relative to the approaches and the 
datasets?   

Research Methodology 

To answer these research questions, an evaluation is conducted based on 
qualitative interviews. The focus lies on a target researcher who is looking to 
receive valuable results. Personal opinions and relevance feedback can only be 
derived from direct user statements (Berendsen, De Rijke, Balog, Bogers, & 
Van den Bosch, 2013; McNee, 2006). The focus on a target researcher implies 
that correct data is available for him or her. Thus, different datasets are 
manually derived from three sources in order to base the resulting approaches 
on the most accurate data possible. The evaluation outcomes incorporated as 
direct researcher feedback in the results on expert recommendations is gained 
via the evaluation interviews.  

The work emphasizes a qualitative user study in which expert recommendations 
and data construction are based on data for target researchers. To this end, the 
evaluation was conducted in collaboration with scientists from 
Forschungszentrum Jülich. Ten physicists participated in the main study and 
evaluated their personal recommendations in qualitative semi-structured 
interviews. The focus of the evaluation lies on the usefulness gleaned from the 
recommendations and their representation.                   

Outline of this Work 

The work is organized in four main chapters:  

Chapter 1  
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This chapter discusses the general perception of collaboration and 
communication among researchers and introduces a broader view on this aspect. 
The change of collaboration among researchers is discussed, as well as the main 
reasons for collaborating and the direct advantages for scientists. Many 
activities of a researcher depend on communication and exchange with others. 
Collaboration and communication lead to rewarding benefits for science, and 
thus for researchers. The synergy of these will be described with the principle of 
communities of practice, which offer a realm where collaboration and 
communication gets possible. Next, the concept of academic knowledge 
creation as a researcher’s scientific craft will be introduced to understand the 
need to cultivate communities of practice as a creative realm for scientific 
collaboration.  

Chapter 2 

Considering the cultivation of communities of practice, this chapter discusses 
the expansion of a researcher’s perspectives regarding his or her scientific 
network. Expanding perspectives is essential to foster broader collaboration as it 
offers new opportunities for researchers to find appropriate peers. The chapter 
introduces the main social information services, which contain citation data 
revealing researcher relations, as well as bookmarking systems, which offer new 
data based on user-generated content. Citation and user-generated data are 
discussed to be able to detect implicit and explicit relations between scientists 
and thus help expanding a researcher’s perspective. The introduced perspectives 
based on researcher relations are discussed regarding possible recommendation 
approaches that serve as foundation of the conducted case studies in chapter 4.  

Chapter 3 

This chapter introduces the recommender system task and gives an overview of 
recommender approaches with a focus on collaborative filtering concepts and 
expert recommendation in tagging systems. Recommender systems established 
to help people find the right resources based on personalized interests and 
perceptions. Depending on the task, information about users and resources is 
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needed to satisfy a target user and offer him the right recommendations. 
Recommender system research distinguishes three main recommender 
approaches, which will be introduced and compared, focusing on the principles 
of collaborative filtering as these are adapted for recommendation in the 
academic field. Explicit and implicit user ratings regarding their meaning and 
relevance as well as tag-based approaches are also introduced. After this 
overview, the focus lies on approaches that concentrate on expert 
recommendation and expert retrieval. The chapter concludes with principles of 
recommender system evaluation discussing user- and system-based approaches.          

Chapter 4  

This chapter focuses on the case studies. The main study, in section 4.3, is 
preceded by two pre-studies analyzing social bookmarking data structure as well 
as similarity metrics, and conducting first evaluation cases. The first pre-study 
discusses the structure of bookmarking data and the difference of similarity 
metrics regarding user recommendation. The second pre-study includes a first 
user evaluation of researcher recommendations based in first approaches on 
social information about researchers. Finally, the findings in these studies are 
then brought together in the main case study, which carries out the model for 
expert recommendation proposed in this work. The evaluation, done by 
physicists who received personalized recommendations, focuses on the 
relevance of recommended expert lists as well as visualized networks that show 
relations between scientists. The last part discusses possible combinations of the 
proposed approaches.   
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Formal Remarks 

In the following work, the term “scientometric approach” refers to approaches 
conducted for similarity measurements, which are common standards in the 
field of scientometrics. Alternative approaches refer to methods that use 
alternative metrics with regard to researcher similarity. Thus, new collaborative 
filtering approaches are seen as alternative approaches to standard scientometric 
models. Collaborative filtering is understood as one of many models that are 
applied in recommender system research (Resnick & Varian, 1997). 
Additionally, this work has a focus on expert recommendation for researchers in 
the academic field, where academic researchers are defined as researchers who 
publish their scientific work. They may work in scientific institutions or 
universities, or in knowledge-intensive companies. Researchers who do not 
publish their work cannot be considered in the proposed model as 
recommendations exclusively rely on a scientist’s publications. The term 
“expert” and “expertise” is used throughout the work in reference to the diverse 
approaches described and their definition of the terms. Similarly, the proposed 
model defines “expertise” with reference to a researcher.        

All parts of this work have their own list of references. If not indicated 
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1 Scientific Collaboration and Communities  

1.1 Collaboration between Scientists 

An important task for researchers in academic settings and in knowledge-
intensive companies is to find the “right” people who can work together to 
successfully solve a scientific or technological problem. During their professional 
life, researchers establish and expand their social professional network to include 
colleagues with similar and complementary research interests. Due to the fact that 
scientists require other people’s research labor to substantiate and defend their 
own work, they have to deal with the works of other colleagues. But this is not 
the only reason for collaboration. Further contact to other scientists is essential 
for one’s personal career and for science per se (Price, 1986), as Price and Beaver 
(1966, p. 1014) concluded in the 1960s: “The most prolific man is also by far the 
most collaborating […].” 

Research collaborations offer a scientific worker the option to improve his own 
scientific achievements and reputation, which is explicitly apparent in a 
researcher’s number of publications and citations. Collaboration is, in some cases, 
a predictor for a researcher’s productivity (Lee & Bozeman, 2005). Studies show 
that collaborations have a positive effect on a researcher’s or a research 
institution’s reputation. Guerrero Bote, Olmeda-Gómez, and De Moya-Anegón 
(2013) analyzed the reputation of scientific publications by examining the number 
of citations of scientific articles and the internationality of their authors based on 
author country information. The impact of a country is calculated via the number 
of citations of its publications, applying normalized citation weights to consider 
different citation behaviors in diverse scientific disciplines. The researchers 
conclude “[...] that international collaboration increases the impact of a country’s 
scientific production […]” (Guerrero Bote et al., 2013, p. 402), independently of 
any national bias (see also Lancho Barrantes, Guerrero Bote, Rodríguez, & De 
Moya-Anegón, 2012). Further studies confirm that influential research centers 
with a high impact have more collaborations with researchers from other 
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institutions (Gazni, Sugimoto, & Didegah, 2012).  

Besides this explicit factor, researchers gain more benefits from collaborations. 
Lee and Bozeman (2005, p. 693) talk of “spillovers beyond the publication of 
papers.” In fact, collaboration tends to be a factor that promotes and transmits 
“scientific and technical human capital” (Bozeman & Corley, 2004, p. 599). 
Collaboration bundles scientific competencies and resources as well as relevant 
knowledge (Stevens & Campion, 1994). This leads to enormous benefits for 
researchers, as they can exchange competencies with others and complement their 
own ones. It is not possible for a single scientist to hold all relevant resources and 
knowledge – he or she needs support from others. Explicit relevant resources to 
be exchanged among researchers are, for example, literature (including gray 
literature), data gleaned via experiments, laboratory samples, and technical 
equipment. The researcher him- or herself will profit from this collaboration, and 
finally their scientific work and science as a whole (Finholt, 1999; Kling & 
McKim, 2000) – of course one essential pre-condition being that these 
collaborations are fruitful. Hence, it is obvious for most researchers that 
collaborations with colleagues are part of their scientific working life. 
Additionally, and especially for young scientists like MA and PhD students, 
collaborations are an important step into the scientific community. These 
collaborations are also a confirmation for newcomers that they are accepted in 
this community (Hara, Solomon, Kim, & Sonnenwald, 2003).      

Collaboration can be defined in different ways (see for example Kagan, 1991; 
Schrage, 1995). Mattessich and Monsey (1992, p. 11) define collaboration as a 
“mutually beneficial and well-defined relationship entered into by two or more 
organizations to achieve common goals.” The authors also distinguish between 
collaboration, cooperation, and coordination, which are often used as synonyms. 
Cooperation is a kind of informal relationship that aims at sharing information. 
However, it does not focus on a common mutual mission. Coordination is similar, 
but includes the latter aspect of common mission. In contrast, collaboration aims 
at a more “durable and pervasive relationship” (Mattessich & Monsey, 1992, 
p. 42) with a strong focus on personal commitment as well as shared and new 
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goals both parties are willing to reach together. Thus, collaboration requires a 
stronger commitment, which is more difficult to establish, but leads to results that 
are more valuable. Two crucial elements found in definitions of collaboration are 
the “working together for a common goal” and the “sharing of knowledge” (Hara 
et al., 2003, p. 953).               

The number of collaborations between researchers has grown in recent years 
(Cronin, Shaw, & La Barre, 2003; Luukkonen, Persson, & Sivertsen, 1992; 
Persson, Glänzel, & Danell, 2004; Price & Beaver, 1966). This trend is 
determined by the numbers of co-authored published articles. However, Cronin 
et al. (2003) emphasize that there are major differences between disciplines. Their 
study analyzing co-authorships in psychology and philosophy showed that the 
latter discipline’s trend towards collaboration is far less distinct, even 
unobservable (Cronin et al., 2003). With these few exceptions, researchers in 
academic settings and in knowledge-intensive companies search for the “right” 
people with whom they can work together to successfully solve any scientific 
problem. The reasons for searching these partners are manifold. Scientists search 
relevant colleagues to 

 advance the solution of a research problem,  
 advance investigations in an upcoming research field, 
 establish a (formal) working group in a large university department or 

company, 
 bring together researchers to prepare a project proposal for a research 

grant (within and outside of the department and company), 
 form a community of practice, independently of any affiliation or 

institution, following only shared interests (Wenger, 2008), 
 accredit colleagues in preparation of a congress, a panel or a workshop, 
 ask colleagues for contributions to a textbook or specialized journal 

issue, 
 find appropriate co-authors for any scientific publication. 

Researchers get to know each other in different ways. The interviewed scientists 
who participated in this work’s experimental studies stated that they met future 
collaborators at scientific conferences, through colleagues working in the same 
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institute as well as by contacting people who were already in the community 
network of their boss or PhD supervisor (Heck, 2012a). However, it is difficult – 
for young researchers as well as for experienced ones – to find collaborators for 
a specific purpose. This is the case with temporary tasks, like the preparation of a 
panel for a conference with a fixed submission deadline. Especially researchers 
with no experience do not find it easy to find an appropriate collaborator. Blazek 
(2007) calls them “domain-novice researchers”, who can be young or older, and 
are trying to dig into a specific research field for the first time. The former are 
simply too young to know their future scientific network. The latter are the 
established researchers, who are already integrated in a community. However, 
they might choose to change their core field of interest and thus have to negotiate 
their way in a new community. Besides this fact, established researchers look for 
new collaborations, especially interdisciplinary ones, to expand their scientific 
network.                

As shown above, researchers do not only search for partners with the aim of co-
writing scientific papers. Collaboration leads to benefits that are more fruitful and 
essential for science. The synergy of these can best be described via the principle 
of communities of practice and the concept of knowledge creation (Hara et al., 
2003), to be introduced in the next section. 

1.2 Communities of Practice for Academic Purposes  

Communities of practice are groups of people who share the same interests, 
exchange information and knowledge, and collaborate with one another (Wenger, 
2000). Three aspects are of importance: Firstly, members of communities of 
practice have a joint enterprise of what their community is about. Secondly, the 
community is built on mutual engagement, and thirdly, the members produce a 
shared repertoire of resources.  

Research on communities of practice is manifold (Wenger, 2010). Bolisani and 
Scarso (2014), who review research on communities of practice in the field of 
knowledge management, state that this field is mostly concerned with Wenger’s 
concept, including aspects of organizational learning and knowledge creation in 
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companies (Bertels, Kleinschmidt, & Koen, 2011; Brown & Duguid, 1991; 
Corso, Giacobbe, & Martini, 2009; Davenport & Hall, 2002; Huysman, 2002; 
Huysman & Wit, 2002; Lesser & Storck, 2001; Pattinson & Preece, 2014; 
Ramchand & Pan, 2012; Swan, Scarbrough, & Robertson, 2002). Additionally, 
case studies are concerned with community building and fostering, while 
analyzing specific fields of employment, such as nursing (Valaitis, Akhtar-
Danesh, Brooks, Binks, & Semogas, 2011), caregiving (Fenton et al., 2007), 
diverse other public health services (Mabery, Gibbs-Scharf, & Bara, 2013), digital 
humanities (Green, 2014) and librarianship (Henrich & Attebury, 2010). Hara 
(2009) intensively studied knowledge sharing and communication between public 
defense attorneys. His main concern was the exchange of knowledge and junior 
professionals’ occupational learning. The learning and integration of apprentices 
was also one of Lave’s and Wenger’s (Lave & Wenger, 1991) starting points for 
the development of their concept of peripheral legitimate learning and, later, for 
the concept of communities of practice. Related to this is the notion of tacit and 
explicit knowledge (Nonaka & Takeuchi, 1995; Polanyi, 1967), which will be 
discussed later in this work. Hara (2009) points to the importance of the 
interaction between newcomers and oldtimers within a community that entails the 
gathering and sharing of knowledge.  

Current approaches analyze the value of technical support for communities of 
practice, such as specific applications to facilitate communication and knowledge 
exchange (Fenton et al., 2007; Pan & Leidner, 2003). Some studies show that a 
high usage of IT alone does not strengthen a community, which is mainly due to 
a lack of identity formation of its members (Hara, 2007; Hara & Kling, 2002). 
However, changes in working and everyday life as well as new technologies like 
mobile solutions might offer new ways of community development (Kietzmann 
et al., 2013). 

The interpretation of a community of practice might have changed over the years, 
as community structures are interpreted differently, which also depends on the 
respective field of research and a community’s environment (see Cox (2005) and 
Murillo (2011) for  detailed discussions). However, research in most cases 
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analyzes the main claims of Wenger’s original concept. In the following, this 
concept is discussed with regard to academic communities of practice (mainly 
groups in schools and universities) and the most important aspects are 
summarized.       

1.2.1 Principles of Communities of Practice 

The principle of communities of practice was introduced by Etienne Wenger and 
Jean Lave 1991 while discussing the concept of “legitimate peripheral 
participation” (Lave & Wenger, 1991). The aim was to analyze and characterize 
the dynamic in an apprenticeship and the relations between masters and 
apprentices, or students. The researchers claim that learning is an integral and 
inseparable part of social practice. Questions involved the learning process and 
transmission of knowledge between masters and students. Legitimate peripheral 
participation indicates the process of entering a community of practice. 
‘Peripheral’ here “[…] suggests an opening, a way of gaining access to sources 
for understanding through growing involvement” (Lave & Wenger, 1991, p. 37). 
It guarantees full participation. ‘Legitimacy’ suggests that new members are 
accepted in a community and that they get the chance to participate actively. 
Wenger (2008, p. 101) gives an example of legitimacy referring to academics: 

“Today, doctoral students have professors who give them entry into academic 
communities. Granting the newcomers legitimacy is important because they are 
likely to come short of what the community regards as competent engagement.”   

A community of practice should therefore create situations in which legitimate 
peripheral learning is possible. Referring to academic communities, legitimate 
peripheral learning as a process means the entry and future acceptance of 
researchers in their scientific community. Practice is here seen as a learning 
process that changes constantly and has continuities and discontinuities (Wenger, 
2008, p. 49). Its history includes three main characteristics (figure 1.1) (Wenger, 
2000; Wenger, 2008; Wenger, McDermott, & Snyder, 2002).      

The first characteristic is mutual engagement. It should not be understood as a 
harmonic coexistence – rather, the opposite is the case. Wenger (2008, p. 75) 
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emphasizes that diversity often generates engagement in practice and even 
facilitates it in the first place. The social complexity of this characteristic is 
unlimited. Nevertheless, it strives for community maintenance. Concerning 
academic communities, this may be the most crucial characteristic. Scientific 
communities would not exist without diverse forms of engagement. Researchers 
develop new theories, prove and refute existing perceptions, and engage in the 
creation of new knowledge. Via mutual shared engagement, researchers push 
forward their scientific field.    

The second characteristic of practice is joint enterprise, which is a result of mutual 
engagement. Joint enterprise is not to be seen as a number of fixed goals, but 
rather as an agreement to reach mutual accountability. It can be defined on the 
basis of mutual engagement in practice. The development of a joint enterprise lies 
in the hands of its members. They develop and determine conditions and 
constraints, which are either explicit or implicit. The idea of a community in a 
specific research field also includes a joint enterprise. The characteristics are 
different for each community. Common objectives may include their agreement 
to push forward their scientific field, or their agreement upon research topics 
included in this field.           

The third characteristic is a shared repertoire, which is the source of a community 

Figure 1.1. Characteristics of a community of practice. Figure adapted from Wenger (2008, p. 73). 
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and is used in its practice. ‘Repertoire’ refers to all actions performed in practice, 
including language, symbols, concepts, and tools (Wenger, 2008, p. 83). For an 
academic community, examples include terminology, evaluation techniques, 
associations, and conferences. The repertoire can be regarded as the most visible 
characteristic of a community for non-members.       

Members in communities of practice engage on various levels. A community has 
a coordinator at the head of a central core group, a small active group, many 
members on the periphery, and outsiders who are not direct members (Wenger et 
al., 2002). The level corresponds to a member’s activities within the community. 
The participation level of each member changes and there are no fixed borders 
between those levels. For example, if the focus of a community changes, core 
members shift to the periphery and other members take their place.  

Furthermore, communities of practice have no fixed structures. As members and 
their activities change constantly (Brown & Duguid, 1991), the community itself 
goes through various stages (figure 1.2). If there is potential, the community starts 
to develop, and generally, loose networks of people evolve into more connected 
ones. Members begin to share and develop common knowledge. The group’s 
energy level grows, as does its visibility, while more members participate and 

Figure 1.2. Stages of community development. Figure from Wenger, McDermott, and Snyder 
(2002, p. 69). 
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more knowledge is created (coalescing and maturing stage). However, a 
community does not rest its development at this stage. Even well-established 
communities go through critical changes and tensions. In the end, the community 
might either die or radically transform itself. According to Wenger et al. (2002), 
this is a natural process, but does not come without an emotional component. 
However, the fading of a community can be a chance to relive the same process 
and activate its engagement.              

Communities of practice exist in many places. According to Wenger, each 
individual is a part of one or more communities. People form their identity via 
engagement in a community of practice, and even non-participation shows a form 
of identity (Wenger, 2008, p. 164). Participation is related to the concept of 
reification, which Wenger defines as a complement of participation. The border 
between both elements is fluid and often not explicitly distinguishable by the 
members, with both elements influencing the negotiation of meaning. More 
concretely, participation contextualizes meaning (Wenger, 2008, p. 63), which 
then flows into a reification process. A community’s shared repertoire is part of 
its reification, which includes documents, instruments, and forms (figure 1.3). 
Both elements eliminate the other’s misleading negotiations. Reification tries to 

Figure 1.3. The duality of participation and reification. Figure adapted from Wenger (2008, p. 63). 
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make meaning tangible, but may have flaws. For example, written law 
(reification) is interpretable (done via participation), similarly to scientific work. 
That is why scientists not only publish articles, but also participate in conferences 
to make their written work clearer. Participation is needed to repair reification 
failures, which leads, for instance, to the adaptation of scientific models or even 
the adoption of new models. Conversely, reification is needed to make 
participation possible because it establishes a shared repertoire and makes 
processes tangible. Thus, participation and reification enable community 
members to interact with each other.       

With these preconditions, communities of practice act as social constructs that 
foster learning and knowledge exchange and allow people to engage with one 
another (Wenger, 2008). Engagement occurs to different degrees and means 
collaboration in its widest sense. Community members develop a form of identity 
and a sense of belonging to their group. Identity is formed not only through 
individual preferences, but also through community participation and interaction 
in practice. While doing research, a scientist automatically interacts with his 
community, for example by citing other researchers or discussing at conferences 
– and all these activities form his own identity process and, finally, his work. His 
active participation contributes to and forms the community of practice and thus 
its knowledge, which becomes shared practice for all other members. More 
concretely put, participation enables the creation of knowledge (Lave & Wenger, 
1991; Tobbell, O’Donnell, & Zammit, 2010). Knowledge of a community of 
practice becomes tangible via objects, more concretely, the processes of 
participation and reification in the practice within communities “leave a historical 
trace of artifacts – physical, linguistic, and symbolic – and of social structures, 
which constitute and reconstitute the practice over time” (Lave & Wenger, 1991, 
p. 58). Nistor and Fischer (2012) talk of domain knowledge within a community, 
including members’ knowledge about academic research, publications, 
fundraising, teaching, collaboration and young researcher support. The scope of 
domain knowledge depends on the community and its objectives. The aim of a 
community here is to make its knowledge accessible to all members, through what 
Lave and Wenger call “legitimate peripheral participation”. New members, or 
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novice researchers, need to achieve this status of full participation, in order to 
become community experts. This suggests that participation and expertise may 
be interconnected and depend on one another (Nistor & Fischer, 2012; Tobbell et 
al., 2010). However, even newcomers can have expert knowledge and enrich a 
community (Fuller, Unwin, Felstead, Jewson, & Kakavelakis, 2007, 2012), 
although early assumptions by Lave and Wenger (1991) suggest that expertise is 
only gained in a community of practice, with new members learning from 
established ones as implicit knowledge is turned into explicit knowledge. Other 
researchers claim that participation in an academic community of practice is only 
possible with a minimum of domain knowledge (Brown, 2001; Tobbell et al., 
2010).  

Nevertheless, in both cases participation and expertise seem to be connected. 
Nistor and Fischer (2012) used a quantitative model to measure the correlation 
between expertise and participation. In their surveys, individuals working at two 
universitary institutions (scientists as well as technical and administrative staff) 
were asked about aspects of domain knowledge, participation, and contribution 
to “artifact development” (defined as assigning information to researcher profiles 
on the university’s web pages, such as publications). Results show that knowledge 
depends on participation and the individual’s expert status (as evaluated by other 
community members) is influenced by his expertise and participation. However, 
a high expert status does not mean high expertise. The expert status suggests that 
a person is well integrated into a community, while the expertise level gives 
insight into a person’s domain expertise. If there are discrepancies regarding both 
aspects, Nistor and Fischer (2012) suggest fostering knowledge sharing and 
interaction to better integrate persons with high expertise and a low expert status. 
Furthermore, results reveal that novice persons have a much lower expert status 
and participate less than experts, although their level of experience (measured in 
years) is similar to that of the experts. Thus, domain knowledge, expertise and 
participation depend on one another and influence the “artefact development” of 
an institution. The crucial point is to allow each member of a community to reach 
full participation in order to improve their expertise, and attain expert status. 
Wenger et al. (2002) speak of cultivating communities of practice relative to their 



26 Scientific Collaboration and Communities
  
specific stages (figure 1.2). They name seven main principles of cultivation. The 
most important point for academic communities is to “open a dialogue between 
inside and outside perspectives” (Wenger et al., 2002, p. 54). This aspect 
emphasizes the notion of communities of practice as open social structures that 
are distinct from time-limited cooperation teams as seen in co-authorships, for 
instance. The full value of communities of practice evolves through long-term 
participation and interaction among their members. With their cultivating 
principle, Wenger et al. (2002) stress the importance of open groups, which are 
provided with new insights by outsiders and start a dialogue with them to foster 
the advancement of a community and the creation of new knowledge.       

Communities of practice consist of intra- and extra-departmental employees of a 
company or institute, individuals who work at the same location or in different 
places or even people who do not belong to the same company. The important 
factor is that communities of practice establish and organize themselves. 
Members meet willingly and are not compelled by authority, as enforcement 
could lead to a refusal of collaboration (Blair, 2002). That is the main difference 
between such communities and teams established by company managers (Wenger 
& Snyder, 2000). In research environments, social academic communities start 
developing at research-intensive “hubs” like universities or research institutes 
(Tian, Nakamori, & Wierzbicki, 2009). In the best case, these small communities 
expand and open up to include people from different communities. Such 
communities and their interaction within the group and between diverse groups 
are vital for science, as these environments facilitate the exchange of existing 
knowledge and the creation of new knowledge. Thus, small social academic 
communities need to connect, or rather interact, with other scientific groups, both 
within their own research field and beyond, for the purpose of interdisciplinary 
exchange. The small communities evolve into bigger international communities 
of practice, which share a mutual engagement. Wenger et al. (2002) emphasize 
that those distributed communities have to overcome various boundaries. There 
are hard boundaries, such as geographical distances and different time zones, but 
also social boundaries, like different languages and cultural differences, which 
also occur within a single institution. Distributed communities tend to be less 
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present for their members (Wenger et al., 2002, p. 116), and are slightly invisible. 
Boundaries such as language differences increase this effect. Distributed and 
virtual online communities (Cassidy, 2011; Cheung, Lee, & Lee, 2013; 
Davenport, 2001; Hara, Shachaf, & Stoerger, 2009; Rosenbaum & Shachaf, 2010) 
differ from “face-to-face” communities as knowledge sharing might be more 
difficult and the exchange of implicit knowledge is not possible in the former. 
“Virtual meetings” might not be enough to replace face-to-face meetings between 
community members (Gust von Loh, 2009). As research on collaboration shows 
that academic communities gain value from collaborating internationally, 
problems arising from distributed communities hinder the exchange of 
knowledge, and thus academic knowledge creation (Bos et al., 2007), which is a 
researcher’s scientific craft.  

1.2.2 Academic Knowledge Creation 

Academic knowledge creation is a part of a scientist’s work, but more generally, 
knowledge creation is a part of what every human being does. The discussion of 
all facets of knowledge creation goes beyond this work, but it will briefly 
introduce the basic elements for academic knowledge creation.  

Suorsa and Huotari (2014) give an overview of topics related to knowledge 
creation, including technology-based support, economic value and the huge field 
of knowledge management within companies. Important perspectives concerning 
a researcher’s activities and the meaning of collaboration for knowledge creation 
are derived from research, which discusses knowledge creation in relation to 
interactive processes. Knowledge creation come about via a process of interaction 
within communities (Jakubik, 2008, 2011; Nonaka & Takeuchi, 1995; Tsoukas, 
2009). Research aims at a better understanding of concrete processes of 
knowledge creation with a consideration of the human factor and the structure of 
communities. Suorsa and Huotari’s hermeneutic discussion demonstrates a 
theoretical concept to further examine interactive processes as well as knowledge 
creation and sharing, which can serve as the basis for a deeper understanding of 
communities of practice (Suorsa & Huotari, 2014).   
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Interactions as a basis for knowledge creation are supposed to be enhanced in a 
community of practice. Lave and Wenger (1991, p. 34) state: “The generality of 
any form of knowledge always lies in the power of renegotiate the meaning of the 
past and future in constructing the meaning of present circumstances.” Lave and 
Wenger talk of “situated learning”, in which a human being creates knowledge in 
his specific context. An important aspect here is interaction between experience 
and competence (Wenger, 2008), which opens new ways for further development: 

“On the one hand, a community of practice is a living context that 
can give newcomers access to competence and also invite a 
personal experience of engagement by which to incorporate that 
competence into an identity of participation. […] On the other 
hand, a well-functioning community of practice is a good context 
to explore radically new insights without becoming fools or stuck 
in some dead end.” (Wenger, 2008, p. 214).             

Conditions for establishing these realms are the tension between experience and 
competence as well as a respect for experience and a strong anchor of mutual 
engagement. This is the realm in which the acquisition and creation of knowledge 
can occur. Thus communities of practice, with their potential to develop 
knowledge (Choi, 2006), “provide the social context for individual interactions” 
(Jakubik, 2008, p. 6).    

Academic knowledge creation, described in a simplified way, includes three basic 
elements: Hermeneutics, debate and experimentation (Wierzbicki & Nakamori, 
2006a, 2006b). Wierzbicki and Nakamori discuss and combine diverse models of 
academic knowledge creation processes. Another famous model that shows 
knowledge creation and distribution is that of Nonaka and Takeuchi (1995) (also 
Nonaka, 1994), who propose the SECI model (socialization, externalization, 
combination and internalization) to describe the flow of tacit and explicit 
knowledge between individuals and groups. Wierzbicki and Nakamori (2006b) 
(see also (Wierzbicki & Nakamori, 2005) introduce what they call the “creative 
space model”, a kind of meta-model, which expands the SECI model. 
Hermeneutics, debate and experimentation as the three basic elements are 
summarized in the “triple helix” (Wierzbicki & Nakamori, 2006a) and form the 



 Communities of Practice for Academic Purposes 29 
 
basis of knowledge creation in normal science (as defined by Kuhn, 1996). 
Hermeneutics includes all processes that are crucial to the development of new 
ideas, like searching, analyzing, comparing, and reflecting on results, while 
referring to scientific literature. Gadamer (1975) defines hermeneutics (not only 
relating to science) and stresses the essence of being aware that “the virtue of 
H(ermeneutics) always fundamentally consists in transposing a complex meaning 
from another “world” into one’s own” (Gadamer, 1974, p. 1061; translation from 
Stock & Stock, 2013, p. 50). The theory explains the complex interrelations 
between a human being and the world and the resulting conditions concerning 
knowledge creation and knowledge exchange. One explicit phenomenon is the 
individual use of language and the development of personal concepts, which is 
crucial for information science research (Stock & Stock, 2013). Stock and Stock 
(2013) show the complex interrelation between a human being and his world with 
reference to a holistic perspective on information science (figure 1.4). They also 
include aspects of commitment, which is likewise discussed in the concept of 
communities of practice (Wenger (2008) emphasizes ‘identification’ as a more 
fundamental process) and their members’ engagement (see for example McLure 
Wasko and Faraj (2000) and Wasko and Faraj (2005)).             

Experimentation, or experimental testing in the “triple helix”, includes all 
processes concerned with the interpretation of results and their selection to 
develop new ideas (related in figure 1.4 to the cluster of “understanding 
documents”). Finally, debate includes all processes concerned with discussions 
on ideas in researcher groups, the advancement of results and options for 
developing new ideas on the basis of these group discussions (Wierzbicki 
& Nakamori, 2006b). The purpose of these models is to understand the processes 
a researcher goes through and his needs during these processes in order to be able 
to support his creative development. Wierzbicki and Nakamori (2006b) refer to 
computerized decision support systems. Recommendation systems also help users 
in making decisions and supporting them, for example in finding literature or 
experts, where both processes belong to either the hermeneutical or the debate 
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part of a researcher’s knowledge creation process1.  

Studies show that researchers, especially novice researchers, have difficulties in 
some tasks concerning knowledge creation. Tian et al. (2009) conducted two 
surveys with novice researchers (master and doctoral students, post-docs and 
research assistants) asking them about their academic knowledge management 
and some of their most difficult tasks. The researchers aim to improve the creative 
environment in order to help people with their knowledge management tasks. 
Besides difficulties in seeking information, finding new ideas, and applying 
supportive IT tools, the participating students from a Japanese institute stated that 
they concentrate on self-study instead of collaborations with other researchers. 
The second survey, asking about any improvement the participants whished for 
in relation to their work, revealed that language differences impedes 
communication with international colleagues and tacit knowledge is hardly 
shared amongst them at all. The most crucial point for the students is the guidance 

                                                           

1 Note that research generally distinguishes between recommender and classic 
decision support systems, although both fields overlap (see for example Liang 
(2008); Malinowski, Weitzel, and Keim (2008)).     

Figure 1.4. Interrelations between human characteristics. Figure from Stock and Stock (2013, 
p. 52). 
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from a supervisor and frequent communication within a research group, which 
they rarely experienced during their work. To summarize this result: 

“[…] a lot of responders work alone and also get much less timely encouragement 
and help from others at the same time; there is not good enough critical feedback, 
questions and suggestions in group discussions, and so on. […] [But] for 
individual researchers, communication is not enough; they have to check their 
ideas through debate” (Tian et al., 2009, p. 87).  

An important aspect here is knowledge sharing, which is supposed to be improved 
(Tian et al., 2009). However, not all knowledge is easy to share. Nonaka and 
Takeuchi (1995) speak of implicit (or tacit, see also Polanyi, 1967) and explicit 
knowledge while discussing their model of knowledge management. In their 
approach of explaining the sharing of knowledge within a company community, 
they introduce the four steps of socialization, externalization, combination and 
internalization. In these successive steps, knowledge changes and evolves from 
implicit to explicit and back again to implicit knowledge while it is shared 
amongst employees. Polanyi (1967, p. 8) coined the statement “one can know 
more than one can tell”, and refers to the fact that humans cannot express certain 
knowledge explicitly, but only have some notion of it that derives from one’s 
awareness of related factors. Thus tacit knowledge is not tangible, but crucially, 
it is the starting point for a human being creating knowledge. Polanyi (1967, p. 21) 
gives an example: “Therefore: a mathematical theory can be constructed only by 
relying on prior tacit knowing and can function as a theory only within an act of 
tacit knowing, which consists in our attending from it to the previously established 
experience on which it bears.” This also leads to the fact that a kind of objective 
knowledge cannot exist, but knowledge is always interrelated with personal 
commitment (Polanyi, 1982). For science itself, Polanyi (1967, p. 25) concludes: 
“To accept the pursuit of science as a reasonable and successful enterprise is to 
share the kind of commitments on which scientists enter by undertaking this 
enterprise”. The notion of Polanyi’s aspects, as well as Wenger’s and Lave’s 
theory of situated learning (Lave & Wenger, 1991), provide an understanding of 
the importance of knowledge sharing as the core basis for further knowledge 
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creation and the development of the validity of scientific knowledge. Considering 
the notion of tacit knowledge, knowledge sharing might not be an easy task and 
could be more complex than just sharing written scientific papers. That is why 
Nonaka and Takeuchi (1995) stress the importance of making implicit knowledge 
explicit in order to be shared amongst individuals. Only then is new knowledge 
created, as it is also grounded in the assumptions of academic knowledge creation 
(Wierzbicki & Nakamori, 2006b). Therefore, the crucial task is to make the 
process of knowledge exchange between people flow and support the sharing of 
knowledge, while establishing practice environments to foster this flow (Brown 
& Duguid, 2002).  

Besides the concept of communities of practice, which aim to develop such 
environments, research discusses the meaning of “ba” (Nonaka & Konno, 1998; 
Nonaka, Toyama, & Konno, 2000). “Ba” can be understood as a “place” of 
“shared context” for interaction and knowledge creation similar to the concept of 
situated learning. A core aspect here is that the creation of knowledge is connected 
to a specific context, as it is in situated learning. One research focus is on 
analyzing scientific behavior and a scientist’s view of his work and community 
in order to foster “ba” (Hautala, 2011). Hautala (2011, p. 13) sums up “ba” by 
saying that “although it is not possible to plan discourse and interaction, certain 
aspects of ba can be planned.” Thus both models aim to offer a realm for 
knowledge creation. However, Wenger stresses that communities of practice 
cannot be created or explicitly planned, but only cultivated (Wenger, 2008; 
Wenger et al., 2002). The understanding of knowledge, its sharing, and its 
transmission between two persons is central for any collaboration. Tian et al. 
(2009) recognize that their students miss collaborations between their peers and 
propose diverse strategies to foster a creative environment supporting 
collaboration and knowledge sharing. Here they refer to “hard environments”, 
which also include a proper working place for researchers to meet in for the 
purposes of sharing and discussion. Communities of practice, according to 
Wenger (Wenger, 2008), focus on a more social, structured environment. 
Nevertheless, the intentions of both approaches are equal. A study by Hara et al. 
(2003) aimed at analyzing researchers’ views on collaboration via interviews. The 
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results show that participants value the importance of collaboration, although 
their opinions differ. Undergraduate students are not seen as collaborators, with 
senior researchers seeing their relations to the former on a rather educational 
level. However, Hara et al. (2003) stress that the exchange and collaboration 
amongst junior and senior researchers is crucial, and that the “learners” also 
contribute to the development of the research community. They refer to the 
process of learning in a community of practice and propose a model showing 
diverse forms of interaction levels between scientists. This concept is quite similar 
to Wenger et al. (2002), who describe a community of practice’s engagement 
levels regarding a core group and a peripheral group, as well as external persons. 
Hara et al. (2003) further distinguish between different levels of awareness of 
these engagement types on the part of community members who see a 
collaboration either on a more complementary level (project divided into separate 
units) or on a more integrative level (shared project). They conclude that 
integrative collaboration needs time to emerge and collaboration among members 
must be enhanced, especially regarding the political trend toward supporting 
collaboration (for example, National Research Council, 1993; 

ClusterCollaboration2; Cordis3).  

Not only novice researchers have difficulties in finding the right community and 
sharing knowledge, as Tian et al. (2009) showed. Bos et al. (2007) define three 
barriers that scientists face in their work (for recurring barriers see also Allen-
Meares & Pugach, 1982; Cooley, 1994), namely the aggregation of knowledge, a 
scientist’s preference for working independently, and institutional restrictions. 
The first refers to the difficulty of disseminating tacit knowledge, as stated above. 
The second barrier relates to the fact that in most cases, a researcher understands 
his work as independent, which makes the establishment of mutual communities 
and common goals more difficult than in other environments. The third barrier 
refers to external restrictions a researcher has to cope with, as, for example, 

                                                           

2 www.clustercollaboration.eu  
3 www.cordis.europa.eu 
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funding regulations that hinder collaborations (see also Hara et al., 2003, for 
factors influencing collaboration on various levels). In their study, Bos et al. 
(2007) try to define types of scientific collaboration environments so as to give 
advice on how these environments work and should be established with a view to 
these barriers. The examples name best practices, such as establishing a virtual 
community of practice and showing a need to develop environments to foster 
community building and knowledge sharing.  

1.2.3 Survey: Usage of Academic Services and Communities of Practice 

Before approaching an academic recommender system, a survey was conducted 
to explore researchers’ collaboration behaviors and their searching for new 
collaborators (Heck & Peters, 2010). Additionally, the participants were asked 
about their usage of collaborative management systems such as social 
bookmarking systems, which are considered for the academic recommendation 
model. Thus, the survey gives a first impression of the usage and understanding 
of social bookmarking systems and academic communities of practice.  

The link to the online questionnaire was sent to researchers working at the 
Forschungszentrum Jülich, Germany, which agreed to collaborate with the 

study4. The survey was sent to 363 employees in the field of solid-state physics, 
of which 43 (11.85 %, 25-62 years old) participated in the survey. The results of 
the questions concerning social bookmarking systems were appalling, but also 
revealing: Only one participant actually uses one single bookmarking system 

(Del.icio.us5). Being asked why they do not use collaborative bookmarking 
systems, one exemplary answer was: “For me, search engines, normal bookmarks 
and literature databases like JabRef work fine.” It seems that several systems for 
academic information management and retrieval have become established, and 
new web services have difficulties convincing users of their advantage. Seven 

                                                           

4 The same participants also evaluated the experimental approaches in Chapter 4. 
5 www.delicious.com 
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respondents thought that bookmarking systems are “less important”, while 
fourteen stated that they are “not important”.  

Two out of 27 participants said that they work in an academic community of 
practice (Heck & Peters, 2010). One community was established via “contact 
through a conference or a colleague”, the other “through connections by people 
formerly working at the same institute.” This shows that communities of practice, 
although not generally common between researchers, have found their way into 
the scientific workplace. 8 % (n=25) said that communities of practice and 
working groups make their work a lot easier, 16 % said that they make them 

easier. Asked about bookmarking systems and their help in socializing with 
other colleagues and researchers to establish working groups, four 
out of twelve participants gave a positive feedback. One comment 
was that the “communication is made easier.” 35 % (n=28) thought 
that a recommendation system that points out scientists with shared 
interests for possible collaboration could be helpful. Comments on 
these questions show that most participants consider personal 
contact to be the most important factor for collaboration. However, 
a “seriously structured” recommendation system could support 
researchers’ work, “especially for younger scientists” (Heck & Peters, 
2010).  

In addition to the survey from Heck and Peters (2010), researchers from Jülich, 
who evaluated the expert recommender system (n=10), participated in a general 
survey as part of the approach’s evaluation (Heck, 2012b, 2013). This survey 
consisted of a semi-structured interview regarding questions about the scientist’s 
research behavior and his purchases of relevant literature, as well as working 
behavior – for instance, do they work in teams, and if so, with whom do they 
collaborate? 

The results show that most of the physicists work in research teams (in groups 
generally no larger than five people). Regular face-to-face meetings are 
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important, although difficult if international partners are involved. Novice 
researchers, such as PhDs or newcomers in a field, often come into contact with 
new potential collaborators at meetings such as scientific conferences and 
workshops, or get introduced to them via senior colleagues. However, it is more 
difficult for novice researchers to find new relevant collaborators as they have not 
yet established their social scientific network. The researchers’ choice of possible 
collaborators highly depends on their research interests. On the one hand, there 
must be a high thematic overlap. On the other hand, an overlap that is too high 
could be disadvantageous. It is more valuable if scientific interests complement 
each other. This aspect is important when it comes to author similarity detection, 
as discussed further on. Moreover, a scientist’s professionalism is important. The 
interviewees stated that a “professional collaboration” is crucial and a colleague’s 
“style of work” and motivation must fit their own expectations and preferences. 
Furthermore, collaboration is difficult if people who do not know each other are 
“stuck together” in a team. In contrast, personal relations and mutual interests 
facilitate collaboration. If a collaboration team exists, most researchers claim that 
face-to-face meetings are more fruitful than video conferences or purely digital 
exchange, which confirms studies on distributed and virtual communities.  

The interviewees regard collaborations with international institutions as desirable. 
However, institutions may also hinder further collaborations, either consciously 
or unconsciously. Some collaborations between institutions have a long tradition 
or have developed historically. They are durable, but may prevent other valuable 
collaborations between institutions. These statements from the interviews confirm 
past studies (Bos et al., 2007; Stokols et al., 2003; Stokols, Harvey, Gress, Fuqua, 
& Phillips, 2005). Concerning academic knowledge management and search 
behavior, the physicists showed similar preferences. No-one used a social tagging 

system. However, one participant uses Endnote6, which enables them to share 
stored literature with a team or other Endnote users. When searching for literature, 
researchers apply diverse strategies. A classic method involves using information 

                                                           

6 www.endnote.com 
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services like Web of Science7, PubMed8 or Google Scholar9. When citation and 
reference information is available, scientists do not only rank publications by their 
number of citations to find relevant literature, but they also look at publications 
that cite themselves to gain new insights. Some researchers have a fixed number 
of journals (generally about four or five) important to their field, which they read 
regularly to find new relevant literature. Additionally, they set literature alerts to 
get new information. To assess the relevance of a publication, one interviewee 
stressed the importance of the author’s name. Only if he or she does not know the 
author, the scientist will read the abstract and further text passages of a publication 
to get an impression of the relevance of author and paper.      

The interviews showed that collaboration and engagement in communities of 
practice is not the standard among researchers. Although some scientists stated 
that finding collaborators is not difficult, and that relevant partners are met at 
conferences or via other colleagues, other participants claimed that collaboration 
could be improved. Especially during their first year as novice PhDs, they did not 
know their community very well and did not have many collaborators. 
Collaboration opportunities developed through interaction with their local 
colleagues and their further integration into the research community. This 
scenario corresponds to Lave and Wenger’s (1991) concept of situated learning 
and Wenger’s (2008) idea of communities of practice. Nevertheless, integration 
into a network and full participation must be fostered. Furthermore, academic 
knowledge creation requires elements that thrive through more interaction with 
other researchers and an openness toward existing knowledge in the academic 
field.  Thus, collaboration beyond local communities is needed.       

To summarize, communities of practice offer a realm – held together by mutual 
engagement, joint enterprise and a shared repertoire – where members share, 
exchange and create knowledge. This condition is important for researchers to 

                                                           

7 http://apps.webofknowledge.com 
8 http://www.ncbi.nlm.nih.gov/pubmed 
9 https://scholar.google.de 
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Figure 1.5. Relations in the academic environment and support through community awareness.   
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unfold their knowledge creation in the best possible way. Figure 1.5 shows the 
relation between the concept of a community of practice and knowledge creation. 
For a researcher, communities of practice are spaces in which to develop and 
advance scientific work through engagement, participation and interaction. This 
valuable environment leads to research collaborations, which are crucial for 
science per se and for the development of a researcher’s knowledge creation with 
regard to the underlying theories of knowledge creation and knowledge exchange. 
However, as Hara et al. (2003, p. 953) state: “Collaboration is neither easily 
achieved nor guaranteed to succeed even though the nature of scientific work 
requires working together for a common goal and sharing of knowledge.” Thus, 
the question now is which support can be provided in order to enhance those 
environments that foster communities of practice and interaction among 
researchers? How can the process of establishing communities of practice for 
academics be supported and initiated? How can services introduce researchers to 
each other to support scientific collaboration? A first step is to make scientists 
aware of their environments and of the potential for future communities. Only 
then can researchers fully participate in and support fledgling communities of 
practice in order to contribute to their own knowledge creation and the 
development of science. Wenger claims: “The task is to identify such groups and 
help them come together as communities of practice” (Wenger & Snyder, 2000, 
p. 144). Taking into account the sense of cultivating communities of practice, new 
technologies and web data might foster this awareness of future communities and 
help to detect them.    
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2 Detection of Scientific Communities 

Support in finding relevant collaboration partners is offered by diverse services. 
Cordis1, for example, is a research partner database by the European Union that 
enables to create a profile and add information about European-funded projects. 
Via a search mask, it is possible to search for potential partners, or inversely, a 
researcher can search for projects and suggest him- or herself as a potential 
partner. Currently (June 2016), Cordis includes 11,513 partner profiles (figure 
2.1) (numbers from May 2015 showed 4,685 partner profiles). 364 German 
partnership requests and partners are included in the database. The number is 
growing steadily, as in May 2014 only 89 potential German collaborators were 
found, and in May 2015 there were 352. However, only individuals who have 
created a profile in Cordis can be found, of course. Other potential partners will 
remain invisible, and relevant future collaboration unfulfilled.  

Other expert search services, like Microsoft Academic Search2 or ArnetMiner3 
(Tang et al., 2008), are more elaborate. They try to gather all information about 
researchers, from their institutional and private webpages to data gleaned from 
information services, including publication and citation data. A scientist does 
not need to be active to be listed in those services, which is an advantage over 
offers such as Cordis. On expert search sites, a user is given the opportunity to 
search for topics or conferences via terms contained in the description, or for 
researchers via their names. If a user can formulate his or her information need 
and search query, these services can represent a viable option for finding 
experts. However, many users are unable to formulate their need. More  
importantly, however, results in those services depend on the user’s perspective. 
The following section will discuss the need to expand this perspective. 
Furthermore, these services do not recommend personalized results based on a 

                                                           

1 http://cordis.europa.eu/ 
2 http://academic.research.microsoft.com 
3 http://aminer.org 
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target person (figure 2.2). In the best case, they show similar researchers when a 
target person searches for their own profile, but those results are based on 
explicit relations such as co-authorship or topical overlap via terms including 
author keywords. In ArnetMiner, novice researchers do not get 
recommendations based on “similar authors”, likely because the system does not 
have enough researcher information and there is a set threshold.               

In addition to retrieval services or person databases, expert recommender 
systems that focus on personalized recommendations include tasks such as 
“designing for a network” (Reichling, Veith, & Wulf, 2007, p. 431) or “mining 
social networks” (Alguliev, Aliguliyev, & Ganjaliyev, 2011, p. 229) for  
collaboration. The starting point of an expert recommendation system in this 
work is social information concerning researchers. The main question here is: 
which information must be determined regarding its relevance in order to find 
the “right” collaborator?   

Figure 2.1. CORDIS research partner search, retrieved 06/21/2016 from 
https://cordis.europa.eu/partners/web/guest. 
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2.1 Implicit Relations via Bibliographic Coupling and Co-Citation  

A critical aspect for choosing the right collaborator is reliability. If a person 
needs advice or is searching for something, he or she will ask reliable people, 
like his best friends. Depending on the individual need, the reliability of the 
people in one’s environment changes. For example, a person searching for 
medical advice will trust a physician over his or her best friend, but will ask a 
friend for advice concerning financial issues if that friend works at a bank. Thus, 
reliability depends on specific needs in a concrete situation. A person (or any 
other source) must be credible to the person receiving information from them. In 
respect to computer services, such as recommender systems, credibility can be 
seen as a “judgement made by a message receiver concerning the believability 
of a communicator” ((Yoo & Gretzel, 2011, p. 457), see also Fogg, Lee, and 
Marshall (2002)). Among other factors, credibility includes trustworthiness and 
expertise (Fogg, 2002). The idea is to make services more credible for users and 
thus increase their usage (Yoo & Gretzel, 2011) (see also aspects of trust in 
chapter 3). People generally trust other people who have expertise or 

Figure 2.2. ArnetMiner/AMiner. The service offers a search for scientists and shows similar 
authors. Users have to sign up. Retrieved 06/21/2016 from https://aminer.org/profile/tamara-
heck/53f31a07dabfae9a8442f298 
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proficiency in a specific field. A person can gain expert status by claiming that 
status for him- or herself, but others will not trust them on that basis alone. To 
the contrary, a person gains expert status by being labeled as such by other 
people. Thus, it is important to achieve a good reputation within a community.  

Jøsang, Ismail, and Boyd (2007) discuss the differences between trust and 
reputation with regard to the task of reputation systems: 

“Trust is the subjective probability by which an individual, A, 
expects that another individual, B, performs a given action on 
which its welfare depends” (Jøsang et al., 2007, p. 619) (compare 
Gambetta, 1988).   

“Reputation is what is generally said or believed about a person’s 
or thing’s character or standing. […][It] is a quantity derived from 
the underlying social network which is globally visible to all 
members of the network” (Jøsang et al., 2007, p. 620). 

The authors provide an example to make the differences between both elements 
clear: a person can trust another person because of their good reputation. On the 
other hand, a person can trust another person despite their reputation. This 
means that the concept of trust involves a strong subjective component. A 
person decides whether or not to trust another person on the basis of their 
experience and relationship with that person (Jøsang et al., 2007). Other 
influences derive from a human being’s interaction with his or her environment 
(see figure 2.4). However, if a person’s interpretation repertoire (knowledge, 
prejudices, assumptions, beliefs) is not sufficient to make a clear decision and if 
no experience can be consulted, a decision about trust or non-trust is then based 
on external sources such as reputation, which reflects the opinions of others. 
Reputation becomes crucial wherever personal relationships do not exist, as in 
virtual communities found in web forums, online shops, blogging portals etc. 
Reputation-aware systems try to generate trust among the users of those 
communities, for instance by applying techniques to show a user another user’s 
reputation level. A simple model would be an evaluation system where users 
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can state if they trust other users, as on Amazon4, for example. Here, if a user 
reviews a product other users can state if their comment was helpful or not. 
Users who write helpful reviews get a better reputation. Amazon lists their 
statements under “the most helpful reviews” at the top of a review list. In a 
recommender system, recommendation for a target user should be based on 
trustworthy users. Cruz, Motta, Claudia, L. R., Santoro, and Elia (2009) suggest 
implementing reputation mechanisms on a platform to support virtual 
communities of practice for students, practitioners and researchers working at a 
university. They refer to the idea, discussed by Wenger (2008), that a newcomer 
first has to gain a reputation within a community to be accepted. Thus a user’s 
profile, which includes publications and information about participation in 
projects, is analyzed and a ranking implemented that identifies a user as a 
“beginner”, “intermediate” or “expert”. Furthermore, the system analyzes a 
user’s posts and their reviews by other users based on three dimensions 
(agreement to a post, usefulness and post relevance for the community). Giving 
users information about other users’ reputation raises credibility and should lead 
to more interaction among users. Recommendations of publications within the 
system are based on a target user’s personal trust network, which he or she can 
actively change in the case study by Cruz et al. (2009). This user network 
should guarantee trustworthy recommendations for a target user and lead to 
greater system acceptance. Ziegler and Lausen (2004) analyzed the correlation 
between trust and user similarity for decentralized recommender systems, which 
means systems that refer to diverse types of sources to overcome data sparsity. 
Although the authors had to conduct two studies due to data biases derived from 
the service they used, the final results showed that similarity between users who 
trust each other, is higher than between users who do not (explicit trust 
statements were available). For recommendation systems, this means that trust 
can be derived from user similarity (Montaner, López, & de la Rosa, 2002). 
Thus, similarity between two people must be defined appropriately in order to 
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lead to more valuable recommendations.          

Trust-aware recommender systems should therefore base their decisions on 
trustworthy sources. This aspect becomes crucial for expert recommendations 
that aim to suggest the “right” collaboration partners. In an academic 
environment, these partners should be reliable researchers and models to find 
them should therefore rely on trustworthy sources. A researcher’s 
trustworthiness and reputation depends on their scientific craft, which is shown 
by their publications. These publications have references and citations, and the 
relations between them display diverse perspectives that allow one to make 
statements about their reputation and appropriateness as a collaboration partner. 
Considering this social information about a researcher leads to the first models 
that can be used for expert recommendation. 

Citation and publication information contain statements about a researcher’s 
reputation. Generally, it is stated that a researcher’s reputation grows with the 
number of their publications and citations. Cronin (1984) describes the 
development of the meaning and position of citations within science. He says 
that citations have become established as quality indicators: “The most common 
means of bestowing credit and recognition in science is via citations” (Cronin, 
1984, p. 2). However, Cronin warns, the research community must be aware of 
pitfalls as it is difficult to accurately interpret citations and quantitative numbers 
do not explicitly refer to qualitative aspects. Researcher citation behavior 
depends on external restrictions and constraints. One example is formatting and 
editor rules that may lead scientists to leave out any references. Furthermore, 
researchers are not always aware of their own citation behavior and the meaning 
of the citation process for science: “To put it another way: authors may not be 
clear in their own minds why it is that they cite the way they do” (Cronin, 1984, 
p. 5). Apart from these epistemological aspects, which should be kept in mind 
while discussing the meaning of citations, the citing of other scientific work is 
one of a researcher’s obligations and forms part of their knowledge creation 
process (see chapter 1). A researcher makes statements about his or her work 
and research field via their publications and the references therein. This 
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information directly pertains to their scientific craft and interests as a researcher. 
The assumption is that such social information about a researcher points to 
relations to other scientists with similar interests. Additionally, scientists cite 
other works and build up more relations among their colleagues. To point out 
such relations would support community building among those similar 
researchers.  

Between any two authors there are four relations with regard to their 
publications, references and citations, respectively: co-authorship, direct 
citation, bibliographic coupling of authors, and author co-citation. From a target 
researcher’s point of view, co-authorship and citations are direct connections 
(Stock & Stock, 2013, p. 751). That means the target person is aware of the 
relations because he or she knows an author with whom they have published a 
document, and knows the authors he or she has cited in a publication or who 
have cited him or her (see interviewee statement in chapter 1). Hence, 
recommendations based on these relations might lead to relevant results, but 
these results are too explicit and a researcher will be able to find them without 
the support of a system. For example, a recommender system based on co-
authorship would suggest a co-author of a researcher’s co-author as a potential 
relevant collaborator. However, it is highly probable that a researcher already 
knows their co-authors’ networks and other authors with whom they have 
collaborated. Furthermore, co-authors themselves act as recommenders for these 
suggestions. In contrast to co-authorship and citations, relations via 
bibliographic coupling and author co-citation are undirected connections (Stock 
& Stock, 2013, p. 751) and more implicit for a target researcher.  

Bibliographic coupling (Kessler, 1963) means that two scientific papers are 
linked if they include the same references. If they have many references in 
common, the probability that they refer to similar scientific topics increases. 
Hence, common references point to similarity, allowing a user to find related 
papers that are important for his or her research (Stock & Stock, 2013, p. 753). 
If this assumption is aggregated to the author level, it means that two authors are 
similar if they have many shared citations in their respective papers. Here we 
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must consider one crucial aspect: either the total number of shared references is 
important or the number of shared references per publication is important. For 
example, let author a have six references in common with authors b and c. 
These six shared references are found in two unique documents by author a and 
author b, respectively, but for author c they are distributed across six individual 
documents. Counting the total number of shared references results in author a 
having the same degree of similarity with authors b and c. If the number of 
shared references per document is counted, authors a and b are more similar to 
one another than authors a and c, as the reference lists of a’s and b’s documents 
are more similar. In the first case, similarity would be based on false 
assumptions. The number of total shared references might show similarity 
between two authors who, for instance, refer to a scientific method they both 
used in diverse cases. Instead, a high level of shared references per paper is 
more significant to show author similarity and common interests.  

In co-citation analysis (Leydesdorff, 2005; Marshakova, 1973; Schneider & 
Borlund, 2007a, 2007b; Small, 1973; White & Griffith, 1981, 1982), two 
scientific papers are regarded as linked when they are cited by the same 
document. This assumes that both papers contain similar topics because another 
document related to a specific topic refers to them. These co-cited works “form 
classes of similar works” (Stock & Stock, 2013, p. 753). Aggregating this 
assumption to the author level, if a third author cites two authors in the same 
paper, these authors might be similar in their scientific work because the third 
author names them in one and the same publication. Thus, co-citations point to 
similarity. This assumption is also valid for all co-authors, which means that all 
co-authors are similar to another author if all are cited in the same paper 
(Persson, 2001; Zhao & Strotmann, 2007).  

Citation Information Services 

For citation indexing and the measurement of similarities between researchers, 
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publication and citation data is required. The two largest scientific information 
services are hosted by Elsevier5 and Thomson Reuters6, namely Scopus7 and 
Web of Science. Web of Science (figure 2.3, formerly named Web of 
Knowledge) includes diverse databases that are a primary source for 
scientometric analyses (Cronin & Atkins, 2000; Stock & Stock, 2013). The 
main database is the Web of Science Core Collection (hereafter referred to as 
Web of Science), which includes the most important periodicals for a scientific 
field based on diverse indices (Garfield, 1955; Thomson Reuters, 2016). These 
indices, which measure a journal’s impact and decide whether a periodical is 
recorded in Web of Science, are necessary as it is practically impossible to 
analyze citation data for all existing academic journals (Garfield & Stock, 2002; 
Linde & Stock, 2011). According to Thomson Reuters, Web of Science 
currently includes 12,000 analyzed journals (Thomson Reuters, 2016). Scopus 
(figure 2.4) is a database offered by Elsevier and currently includes, among 
other publications, articles from 21,500 peer-reviewed journals (Elsevier, 2016).  

Both services offer searches for citations, co-citations and common references. 

                                                           

5 http://www.elsevier.com 
6 http://thomsonreuters.com 
7 http://www.scopus.com 

Figure 2.3. Single view of a surrogate in Web of Science with links to citations and related records. 
Retrieved 06/21/2016 from http://apps.webofknowledge.com/ 
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In Scopus, relations of bibliographic coupling, or co-citations, can be retrieved 
by selecting the results and viewing their references, and then viewing the 
citations of those references (figure 2.4). In Web of Science, the direct link 
called “related records” (figure 2.3) shows similar publications based on 
common references (Cawkell, 2000; Stock, 1999). Thus the numbers of those 
relations available for single publications are directly available to users. Co-
citations cannot be found via direct link in Web of Science.   

Scopus and Web of Science include author IDs to identify unique authors and to 
reduce author ambiguity, which is a great concern in research studies that 
compile data related to scientific authors. However, as data analysis in the case 
study in chapter 4 shows, author IDs are not always correct. Web of Science 
cooperates with ResearcherID8, a service that provides it with unique author 
information. However, a researcher first has to sign in to ResearcherID to get a 
unique number. If an author has not created a profile, no ID will be available in 
Web of Science.  

Another shortcoming is that data in both services is not complete.  With regard 
to reference and citation data, this issue leads to incomplete relations between 
authors and thus to inconsistent recommendation. The case study in section 5.3 
shows an exemplary analysis of missing author information. Besides author 
information, there are two other aspects in favor of applying either Scopus or 

                                                           

8 http://www.researcherid.com 

Figure 2.4. Scopus search results page with links to citations and references. Indirect relations are 
searchable by selecting items in the results list.     
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Web of Science for citation and reference analysis. The aim of author co-
citation is to consider all authors of a publication. In Web of Science, only the 
first author of any cited document was listed in the reference section of its 
bibliographic entries (Zhao & Strotmann, 2011) at the time the case study in 5.3 
was conducted (2011-2012). This leads to the loss of all secondary and tertiary 
authors of a publication, who will then not be considered for recommendation. It 
also means that if a target author is only the secondary author, their publication 
will not be assigned to them. Thus Web of Science was not an appropriate 
source of data for co-citation analysis at that time. However, Scopus named all 
authors in a publication’s reference list and was thus considered for gathering 
co-citation data.  

However, bibliographic coupling in Scopus appeared difficult for several 
reasons. The reference strings in the Excel files, which were downloaded for 
reference analysis, were not identical, for one, as the same reference can have 
diverse strings (see figure 2.5). Thus it is difficult to detect unique references. It 
seems that Scopus directly adopts reference strings from publications. 
Depending on the format of an article’s reference list, unique references are 
cited differently. As there is no identical format, or any consistency of form to 
detect unique reference strings, Scopus was not used for bibliographic coupling 
analysis.  

Figure 2.5. Scopus reference view: Same reference, formatted differently in the reference lists of 
two articles (doi:10.1515/libri-2013-0024 // doi: ). Retrieved 06/21/2016 from 
https://www.scopus.com/ 
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Although data in Web of Science and Scopus includes some mistakes, both 
services seem to offer the most complete citation sets (compare, for example, 
Chadegani et al. (2013) and Li, Burnham, Lemley, and Britton (2010)). In 
contrast to these two, other services such as CiteSeer9 (Bollacker, Giles, & 
Lawrence, 1998) and ResearchIndex10 apply automated citation indexing. The 
latter was the basis of McNee’s (2006) work on paper recommendation, in 
which he also applied co-citation analysis. This work uses professional 
information databases and asks whether datasets derived from those services are 
appropriate for expert recommendation.           

2.2 Expanding Perspectives for Enhancing Academic Networks 

Both bibliometric methods introduced above refer to implicit relations between 
researchers, which a recommender system could apply to make researcher 
relations explicit and present a target researcher with as-yet undetected 
collaborators in order to foster community building and interaction. Publication 
and citation data relates to a researcher’s reputation, which is important for the 
aspects of credibility and trust in recommender systems. With respect to the 
results of research literature, the best performance in terms of representing 
research activities is achieved by combining bibliographic coupling and co-
citation analysis (Boyack & Klavans, 2010; Gmür, 2003). However, 
bibliographic coupling and author co-citation limit the perspective on scientific 
work and its relations.   

Relations of bibliographic coupling represent an author’s perspective on social 
relations. He or she decides which papers to cite, and with this choice, 
influences his or her social relations to other researchers. On the other hand, 
author co-citation data takes into account a third party. A third author brings two 
researchers together when citing them. With the choice of papers to be cited, he 
or she influences social relations among researchers, and thus potential 
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10 http://www.researchindex.org 
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recommendations. To summarize, using co-citation and reference data to build 
author networks takes into account the researchers’ perspective: whom do they 
cite, by whom are they cited and who is co-cited? 

However, to look only at common references or co-citations might be 
inappropriate, as data may also be sparse for some researchers. This is 
especially the case for new researchers who have just started their academic 
career and have little scientific reputation to be measured. Blazek (2007) calls 
them “domain-novice researchers”, or academics who enter a new domain (see 
chapter 1). Those newcomers suffer from the cold-start problem: citation 
analysis can hardly be applied to novice researchers as long as there are no or 
only few references and citations. Furthermore, there is a time delay when 
measuring citations and author co-citations because an author’s article will be 
cited several months after the publication at the earliest, with differences in time 
span varying between scientific disciplines. This means that a researcher who 
has published a recent article and would be a good collaborator may not be 
considered by a recommender system based on author co-citation analysis. 

To overcome the limitations of data scarcity, further social information from the 
web can be used to make better decisions about the right collaboration partners. 
In collaborative services, users contribute to the system’s data (Peters, 2009). 
They get involved in the data collection of a system and are able to add content. 
On social networking services, users add personal information. The amount of 
information in general grows with the amount of users in the system (Kipp, 
2006b, 2011a). Using this information has advantages compared to data found 
in information services such as Web of Science and Scopus:  

1. There is a greater variety of data available  
2. The users’ perspective is taken into consideration 

Social information about researchers gleaned from web services takes into 
account the users’ perspective because it is based on the content they have 
contributed. Many users’ perspectives are being considered: for instance, if a lot 
of users refer to works by two authors, this might be a hint that these authors 
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are similar and have similar research interests, and thus are potential 
collaboration partners. This social aspect is similar to author co-citation 
(McNee, 2006), where a third author co-cites two other authors, who might 
therefore be similar to each other. Therefore, the method of author co-citation 
analysis is aggregated to collaborative services. The difference is that the users 
of such services are not necessarily scientific authors, but users of the social 
web. Hence, considering web users not only includes the opinions of more 
people but leads to new relations between researchers and expands the view of 
a researcher’s known social network. Here the focus lies not only on novice 
researchers, but also on senior scientists who have established their community 
network, as they also benefit from new ways of generating social information 
relations to point out new collaborators.  

The following issue is related to this discussion: recommender systems not only 
help users filter information, but also aim to point out new relevant resources 
that the users would not have found by themselves (Ricci, Rokach, & Shapira, 
2011, p. 5). This means that a user is given resources outside of their own 
individualized realm, for instance when a recommender system takes into 
account the web users’ perspective. This counteracts the phenomenon of the 
“filter bubble”, a term discussed by Pariser. Pariser refers to the personalization 
of retrieval systems, such as the search engine Google, and the danger of such 
systems influencing a user who is not aware of this influence. When this 
happens, a user becomes imprisoned in their own filter bubble, which means 
that they start to live in their own world and develop a limited view of the 
outside (Pariser, 2011). “Your filter bubble is your own personal unique 
universe of information that you live in online”, says Pariser (Bosker, 
25.05.2011). A recommender system has options to overcome or at least work 
against this filter bubble, for instance by considering other users’ perspectives 
in collaborative filtering systems.  

Figure 2.6 summarizes a proposal for expert recommendation based on diverse 
perspectives. Author co-citation only takes into account the perspective of a 
third author citing two authors. Bibliographic coupling only considers the 
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perspective of a target researcher, which is marked in their choice of references. 
Collaborative filtering based on the content of web users considers the users’ 
perspective, which stands outside the “citation game” (compare Cronin (1984)).   

Thus, regarding the users’ perspective in an expert recommender system would 
be one option for expanding a target researcher’s view of their work and 
network. For example, a user in an academic bookmarking system (introduced 
further on) – who might be a researcher or only a general reader (Haustein, 
2012) – generates different relations between researchers by using other tags, 
and bookmarking other publications, than a target researcher would. These new 
relations lead to new recommendations for the target, who is made aware of new 
possible research partners and networks, out of which communities of practice 
can develop. Researchers who become aware of new connections have the 
chance to then participate and interact with their colleagues.   

Figure 2.6. Source for determining implicit social information about a target researcher. 
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Figure 2.7 shows the various relations between two researchers based on social 
information. On the right-hand side, there is data from information services that 
deal with scientific publications, references, and citations. On the left-hand 
side, there is information from an academic social bookmarking system. Since 
authors are directly related to their publications, their bookmarked works 
establish indirect connections between their respective authors and the tags 
assigned to their publications, as well as the users who have bookmarked them. 
Third authors and references directly related to authors’ publications establish 

Figure 2.7. Relations between two authors considered for expert recommendation. 
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an indirect connection between two authors. The direct relations between 
authors, references and citations on the one hand, and bookmarks, users and 
tags on the other hand, lead to information about indirect, implicit relations 
between two authors that both are not yet aware of. Similarities can thus be 
based on common references, co-citations, users and tags.  

Other studies consider diverse social information data, such as researchers’ 
attendance of past conferences (Hornick & Tamayo, 2012). Ben Jabeur, Tamine, 
and Boughanem (2010) designate co-authorship and friendship as two additional 
social relations among researchers (see also Cabanac (2011)). However, both of 
these are direct relations that are explicit to a researcher. Recommendations 
based on these relations would probably suffer from over-specialization (Lops, 
Gemmis, & Semeraro, 2011; see also chapter 3). Furthermore, these relations do 
not build on collaborative filtering. The relations in figure 2.7 rely on the 
expanded perspectives introduced above, which are based on aspects of trust 
concerning researchers’ reputations. Therefore, reference and citation data as 
well as the corresponding social information contributed by web users in 
bookmarking systems is applied. The latter set is derived from implicit relations 
on the internet that build on the concept of collaborative filtering.    

2.3 Implicit Relations via Collaborative Filtering 

Using information generated by web users draws on the principle of the 
“wisdom of the crowds” or “collective intelligence” (Surowiecki, 2005; Weiss, 
2005). O'Reilly (2005) summarizes: “The central principle behind the success 
of the giants born in the Web 1.0 era who have survived to lead the Web 2.0 era 
appears to be this, that they have embraced the power of the web to harness 
collective intelligence.” The assumption is that if many users, or a large user 
community, share one single opinion, this opinion is likely to be right. A crucial 
characteristic of this user community is that it does not have to share common 
goals, or any knowledge, but is smarter than any one individual (McFedries, 
2006). Galton, who speaks of “vox populi”, conducted the first experiment on 
this concept (Galton, 1907). Peters (2009) indicates that general aspects of 
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earlier assumptions about collective intelligence are discussed in research and 
adapted to new Web 2.0 environments (see, for example, Weiss (2005) for 
further discussions). Thus, one can also speak of “collaborative intelligence” 
((Peters, 2009, p. 167), compare also Vander Wal (2008)).  

Kozinets, Hemetsberger, and Schau (2008) speak of collective and individual 
creativity, whereas collective user creativity is distinct as it derives from “social 
interaction”, which offers new interpretations and discoveries. “We can say that 
collective creativity has occurred when social interactions between individuals 
trigger new interpretations and new discoveries of distant analogies that the 
individuals involved, thinking alone, could not have generated” (Hargadon & 
Bechky, 2006, p. 489). Web 2.0 environments allow users to participate: They 
can post comments, bookmark and tag resources, and rate resources (and users). 
Via these social interactions, users generate value for a Web 2.0 service as this 
service can then apply user data, for example to make recommendations. 
Furthermore, users collaboratively filter relevant information under the aspect 
of collective intelligence via their social interactions.   

“Collaborative filtering simply means that people collaborate to help one 
another perform filtering by recording their reactions to documents they read” 
(Goldberg, Nichols, Oki, & Terry, 1992). The term is related to information 
filtering, with both concepts aiming at filtering on the basis of relevance. 
Information filtering in knowledge representation is concerned with 
determining terms (information filters) for indexing via a knowledge 
organization system (Stock & Stock, 2013, p. 527). In information retrieval, 
users set filters to receive information in a database, for example via selective 
dissemination of information (SDI) or really simple syndication (RSS). Thus, a 
user only receives the information on which the filters have been set. Belkin 
and Croft (1992) emphasize that this process can lead to drawbacks, as users 
tend to become passive in their information seeking behavior. Furthermore, the 
process of information filtering depends on a user’s settings. If these are 
inappropriate, the user will not find the information needed (Belkin, 1980). 
Here, collaborative filtering sets a counterexample because users are helped by 
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other people who collaboratively engage in the filtering process, for example by 
assigning tags.  

The notion of collaborative filtering is based on the idea of a referral chain, in 
which a user requires his or her relations and contacts to obtain relevant 
information or find an expert in order to solve a problem. These relations can be 
found via similarity values. Kautz, Selman, and Shah (1997) mention a great 
advantage of collaborative filtering systems: “A user is only aware of a portion 
of the social network to which he or she belongs. By instantiating the larger 
community, the user can discover connections to people and information that 
would otherwise lay hidden over the horizon.” The same argument is true for 
researcher networks. Svensson, Laaksolahti, Höök, and Waern (2000) state: 
“By making other users’ action visible we can take advantage of the work they 
have done to find their way around and to solve problems.” Collaborative 
information systems show an inherent networking structure (Peters, 2009), 
which allows the discovery of such connections. They can be used to detect 
new relations and make people aware of them to expand their view – and, in the 
academic field to expand their network and be aware of new potential 
collaborators. The general claim for such approaches is: More like me – find 
trustworthy users who are similar to me so that I may get relevant information 
from them (Heck & Peters, 2010a, 2010b; Peters, 2009; Smith, Barash, Getoor, 
& Lauw, 2008). For a researcher recommender system, this principle is adapted 
to: More like me – find trustworthy potential collaborators based on the 
opinions of web user communities.  

Social Bookmarking Systems and Folksonomies 

Web 2.0 offers a realm where “services especially focalize communication and 
exchange of resources between users” (Peters, 2009, p. 14). This focus enables 
users to contribute to the development of services on the web while generating 
user data. Users increase the value of information in Web 2.0 services, either 
directly or indirectly (Tredinnick, 2006). Examples of the latter are analyzed to 
detect new implicit relations (see figure 2.7). Collaborative information systems 
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are particularly noteworthy among Web 2.0 services. Peters (2009) states that 
these services focus on resource management and allow personal as well as 
collaborative information creation. She further distinguishes sharing and social 
bookmarking offers, where the latter include any e-commerce and recommender 
services. A broader definition of collaborative information services considers 
the idea of collaborative filtering and includes all services from which 
collaborative filtering models can be derived. All recommendations systems 
containing user-generated data (with or without tags) belong to these services.        

Social bookmarking systems offer platforms on which users can archive their 
references in order to have access to and manage them from any web-accessible 
device. Systems focus on specific purposes and user groups. Services like 
del.icio.us11 offer a platform on which users can share links to interesting and 
relevant web pages and online resources. Besides these services, bookmarking 
systems for academic purposes established, as for example BibSonomy12 
(Hotho, Jäschke, Schmitz, & Stumme, 2006a, 2006b; Jäschke et al., 2007; 
Regulski, 2007; Schmitz, Hotho, Jäschke, & Stumme, 2006), CiteULike13 
(Capocci & Caldarelli, 2008; Kipp, 2011a, 2011), and Mendeley14 (Lo Russo, 
Spolveri, Ciancio, & Mori, 2013; Reiswig, 2010). Connotea15 is another service 
analyzed in the case study in section 5.1. Unfortunately, this service was 
discontinued in 2013. Academic bookmarking services focus on the 
management of scientific literature. All systems rely on the aspects of 
collaborative filtering. In a bookmarking system, users bookmark references and 
are able to assign keywords (tags) to those references. Information stored in a 
bookmark varies according to the resource in question. For scientific literature, 
including articles, a bookmark contains the bibliographic data of a contribution 
(title, author names, journal, volume, issue etc.). Thus a user is provided with a 
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bookmark list for resources he or she has bookmarked. There is also a tag list, or 
tag cloud, containing tags previously used. The collaborative aspect means that 
all users’ bookmarks and tags are available to all others. Users can search for 
bookmarks by others in order to find relevant literature, and they can add 
bookmarks by others to their own reference lists (also referred to as posts) and 
assign tags to them. Thus a bookmarking system becomes social, and is not only 
a reference management system for an individual but a collaborative system in 
which community users act via combined resources. They help to organize their 
own literature database. Hence, bookmarking systems exploit the main features 
of social networking (John & Seligmann, 2006).  

title issn 

journal isbn 

abstract publisher 

username year 

tag notes 

surname (prefer author) ownpub 

author bibkey 

journal doi possible 

booktitle PubMed ID possible 

Table 2.1. Search fields in CiteULike. Retrieved 06/21/2016 from www.citeulike.org/search_help  

Figure 2.8 shows the CiteULike bookmarking system, which was founded by 
Richard Cameron in 200416. The profile of a user contains their bookmarks and 
tags. The user also sees which other users bookmarked the same literature, and 
which tags they used. The service allows a general search for bookmarks, but 
search fields can also be used (see table 2.1). CiteULike is constantly updating 
its search fields to not only offer a literature management system, but also 
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search functions comparable to a classic information service (Kipp, 2011a). 
However, detailed search field descriptions are not available yet. CiteULike also 
allows search via Boolean operators and wildcards. Currently, the service claims 
to have stored eight million articles (June 2015). The service Mendeley has 
recently become quite popular. It also offers a desktop application for diverse 
operation systems. In bookmarking services, users are able to establish groups in 
order to be able to find relevant literature via input from similarly interested 
peers. For their users, bookmarking systems replace the traditional offline 
reference management system that does not allow any collaborative action. 
Today, Mendeley and CiteULike cooperate with huge publishers, namely 
Elsevier (Mendeley) and Springer (CiteULike), respectively. Bookmarking 
services offer other diverse functions to their users. Peters (2009) describes 
various services in more detail, introducing BibSonomy as an example of a 
bookmarking system for storage of scientific literature.    

Figure 2.8. CiteULike user profile with bookmarks and tags (top). The bottom screenshot shows 
related articles (plus tags and other users) found via a user’s tag.   
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Collaborative database organization and analysis of relations, direct or indirect, 
are made possible by bookmarking systems’ inclusion of a folksonomy 
structure. A folksonomy structure develops via user activities, although users do 
not explicitly have to interact with each other. Spiteri (2007) emphasizes “that 
folksonomies are created in an environment where, although people may not 
actively collaborate in their creation and assignment of tags, they may certainly 
access and use tags assigned by others.” This aspect stresses the importance of 
the user perspective (figure 2.6), as users do not have any specific intentions 
concerning collaboration, as may be the case when using references and 
citations. In fact, users bookmark resources for personal knowledge 
management first and foremost (Marlow, Naaman, Boyd, & Davis, 2006a, 
2006b).  Sinha (2006) states that “[…] tagging captures our individual 
conceptual associations, but does not force us to categorize. It enables loose 
coordination, but does not enforce the same interpretation of a concept.” 
Although this fact leads to some difficulties concerning the detection of tagging 
similarity (see chapter 3), tagging represents the opinions of users.  

Peters (2009, p. 155) defines a folksonomy as consisting of “freely selectable 
keywords, or tags, which can be liberally attached to any information source.” 
Similarly, Golder and Hubermann (2006, p. 198) state that “collaborative 
tagging describes the process by which many users add metadata in the form of 
keywords to shared content.” Thus a folksonomy includes user-generated data. 
Collaborative filtering models for recommender systems use the relations 
between this data, including users, resources (also referred to as items) and tags, 
to measure similarity between them. For example, the relational structure of 
users, items and tags can be represented in a graph (Balby Marinho et al., 2012), 
where the nodes are users, items, or tags and the edges represent relations. 
‘User-item relation’ means that a user has bookmarked or purchased an item, 
‘tag-item relation’ means that a tag was assigned to an item, and so on. Thus a 
folksonomy – or, more specifically, a dataset based on a folksonomy structure – 
can be defined as a tuple F: = (U, T, R, Y), where U, T and R are finite sets with 
the elements of ‘user name’, ‘tag’ and ‘resource’,' and Y is a ternary relation 
between them: Y  U x T x R, with the elements being called ‘tag actions’ or 



 Implicit Relations via Collaborative Filtering 71 
 
‘assignments’ (Balby Marinho et al., 2011; Jäschke, Marinho, Hotho, Schmidt-
Thieme, & Stumme, 2007). In the case study in chapter 4.3, the folksonomy 
tuple is expanded to use the structure for expert recommendation.  

Relations between all elements are possible and can by analyzed (see chapter 
3). Here the tags of a folksonomy play an important role because they deliver 
more content to resources. Tags can be categorized according to users’ needs 
and tagging behavior. Categorization happens retroactively and is not chosen by 
users during the tagging process (Peters, 2009). Peters (2009, pp. 196–203), 
giving a detailed description of diverse categorization proposals, suggests using 
the most frequently recognized categories from tag analysis studies on diverse 
platforms, such as people, things, and events. However, the main issue in using 
tag relations between users and items is finding out what a tag means. A 
twofold distinction of tags is possible, where one class refers to a resource’s 
aboutness – similarly to the document aboutness discussed in knowledge 
representation (Stock & Stock, 2013, p. 519) – and the other class exists 
independently from this issue. “Aboutness tags” (Peters, 2009) describe a 
resource and its content. Pluzhenskaia (2006) (see also Kipp, 2006a) 
emphasizes that these tags are independent from a single user’s context and 
thus understandable by all other users.  Individual tags like “interesting”, 
“funny” or “toread” do not have any shared meaning and are strongly user-
centric (Brooks & Montanez, 2006; Kipp, 2006a). Kipp (2006a) also speaks of 
‘affective’ or ‘emotional’ tags by individual users. In contrast, tags describing a 
resource’s aboutness can act as additional indexing terms for resources. These 
tags are able to show topical relations between two resources.  

Figure 2.9 shows three main diverse tag types according to the tag categories 
proposed by Sen et al. (2006) (see also Al-Khalifa & Davis, 2007). The first 
type is unsuitable for detecting topical relations. The second type shows a 
user’s opinion. This type is quite similar to a user’s rating as regarded in 
recommender systems. Such tags could therefore be used as a sort of rating in a 
collaborative filtering approach (see chapter 3). The latter is the most important 
type concerning the detection of resource topics and similar user interests.   
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This means that if two resources share the same tags, they are probably quite 
similar with regard to their content. Such topical relations can then be used for 
recommendation (Capocci & Caldarelli, 2008; Kammergruber, Viermetz, & 
Ziegler, 2009). For knowledge representation, Peters (2009) discusses the use 
of such tags in order to complement classic indexing with concepts. Several 
studies explored approaches to creating knowledge organization systems from 
folksonomies or expanding other systems to make them more acceptable to 
common users.   

However, such topical relations based on common tags are only possible in 
broad folksonomy structures (Vander Wal, 2005a, 2005b). Broad folksonomies 
allow users to assign a common tag to one single resource several times over. 
Hence, the importance of a tag for a resource can be measured with regard to its 
frequency of assignment by diverse users (Marlow et al., 2006a), and tag 
distributions are possible (Peters, 2012). In narrow folksonomies, on the other 
hand, a tag can be assigned only once by one single user. Other users can see 
that tag, but are not able to assign it to the same resource. A resource 
folksonomy then includes diverse individual tags, but does not reflect the users’ 

Figure 2.9. Distinction between diverse tag types adapted from Sen et al. (2006). 
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choice and tagging behavior. Hence, Smith (2008, p. 62) states that only broad 
folksonomy structures refer to “collaborative tagging”, while narrow 
folksonomies allow “simple tagging”. Quintarelli  summarizes the potential of 
broad folksonomies for the detection of topical relations: “The power of 
folksonomies is connected to the act of aggregating, not simply to the creation 
of tags. […] The term-significance relationship emerges by means of an 
implicit contract between the users”. The academic bookmarking systems 
named allow multiple tagging and have broad folksonomies. However, services 
such as CiteULike also allow users to assign private tags to resources that are 
not searchable for others.     

Tag categories and user behavior depend on the collaborative system’s 
environment (Golbeck, Koepfler, & Emmerling, 2011). Studies show 
differences within the scientific field, for example. Heckner, Mühlbacher, and 
Wolff (2008) analyzed tags from Connotea and state that 92% of the tags refer 
to a resource’s aboutness or describe the resource type (such as article, or 
book). Thus, the different tagging behaviors for scientific resources mean that 
tags in academic social bookmarking systems are appropriate for the detection 
of topical relations. In her study, Kipp (2011a) compared author keywords and 
descriptor terms derived from PubMed with tags assigned to the same article in 
CiteULike. She concludes that many author keywords and terms are equivalent, 
but that tags also include terms that were not found in the author keyword 
collection. The latter tags include additional information beyond the authors’ 
perspectives. These results hold true for the consideration of the web users’ 
perspective (figure 2.6).          

To summarize the findings, the generation of scientific networks to detect 
collaborators should take into account a researcher’s reputation with regard to 
the aspect of trust. Furthermore, it should focus on the detection of implicit 
relations with regard to expanding a researcher’s network and foster the 
establishment of new communities of practice. Expansion requires diverse 
perspectives to be considered – a target researcher, their colleagues, and web 
users. Sources for gathering this data are professional information services, 
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which offer valuable and valid citation data, as well as social bookmarking 
services, which correspond to classic citation structure, but take into account 
the concept of the “wisdom of the crowd”.         

Based on the concept of collective intelligence and the notions of similarity 
relations between users, items and tags, diverse collaborative filtering models 
established in the context of recommender systems. In chapter 3, collaborative 
filtering is discussed as one basic approach to designing a recommendation 
system17. Recommender systems aim at suggesting personalized 
recommendations based on historic user data. Social information about 
researchers is historic data, either generated by researchers (references and 
citation) or web users (bookmarks and tags). Thus the concept of recommender 
systems is suitable and adaptable for expert recommendation.         
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3 Introduction to Recommender Systems  

The idea of recommendations is to support individuals in their decision-making.  
People often solicit recommendations or advice from others in order to have a 
basis for action. “Recommender systems assist and augment this natural social 
process” (Resnick & Varian, 1997, pp. 56–58). The simplest means of defining 
a recommender or recommendation system is to say that it recommends 
something. According to this description, a system is a recommender system 
when it recommends something, independently of the technique it uses or the 
source from which the recommendation is generated. A person can recommend 
a book to a friend, for instance, or create a movie recommendation list including 
all of their favorite films, assuming that others may also like these movies 
because he likes them. These kinds of recommendations are based on a personal 
assessment and valuation, and have always existed. Gärtner (2012) names them 
“classical” recommendations and “mouth-to-mouth recommendations”. Other 
terms used are “word of mouth” (Ahrens, 2011; Shardanand & Maes, 1995), a 
term also used in the marketing field and discussed as persuasive non-
commercial consumer communication (Ahrens, 2011).      

Recommendations can be personalized or non-personalized. Mouth-to-mouth 
recommendations may be personalized if the individual giving the 
recommendation is aware of the preferences the person receiving the 
recommendation might have. However, if the person giving the 
recommendations has no specific receiver in mind, the recommendations will be 
non-personalized. Taking the above example of movies, the person making this 
list may think that their list might be interesting for other people in general, not 
just one specific person. Other examples of non-personalized recommendations 
include lists of bestselling books such as the Spiegel Bestseller List1, or a list of 
“most read articles” on the website of a newspaper. 

                                                           

1 http://www.spiegel.de/kultur/bestseller-buecher-belletristik-sachbuch-auf-
spiegel-liste-a-458623.html 
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By contrast, recommender system research is mainly concerned with 
personalized recommendations based on automatic or semi-automatic processes 
(Ricci, Rokach, & Shapira, 2011). To give personalized recommendations, it is 
essential that the recommender system have access to information about the user 
or user group receiving the recommendations. Herein lies the challenge in 
recommender system research.  

Recommender system research derives from the field of information retrieval 
(Jannach, Zanker, Felfernig, & Friedrich, 2011). Both research fields aim to 
help users in finding relevant resources in a satisfying and best supportive way 
(Ricci, Rokach, Shapira, & Kantor, 2011, p. 1). Chronologically, recommender 
or recommendation systems developed after the first retrieval systems. 
According to Klahold (2009), the first work to describe the function of a 
recommender system is Luhn’s “A business intelligence system” (Luhn, 1958). 
Although Luhn himself did not name his system a recommender system, he 
(1958, p. 316) describes the “selective dissemination of new information”, 
which means that information should be distributed to specific points in a 
system. Profiles and documents are thus compared on the basis of their 
similarity or concordance. This process is very similar to today’s recommender 
systems (Klahold, 2009). However, Luhn calls his system a retrieval system, 
and considering the current state of research, recommender and retrieval system 
research focus on slightly different intentions, respectively. Recommender 
system research has developed its own field since the 1990s, where diverse 
recommender systems were developed (Ricci et al., 2011). The system 
“Tapestry” (Goldberg, Nichols, Oki, & Terry, 1992), an early example of an 
information filtering system, tries to recommend only relevant documents to a 
target user based on the principle of collaborative filtering. “GroupLens” 
(Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994) is another popular 
example of a collaborative filtering system for news articles, while the early 
content-based filtering system “The Information Lens” tries to filter mail 
messages (Malone, Grant, & Turbak, 1986). (Klahold, 2009) shows a timeline 
providing an overview of recommender systems developed between 1986 and 
2004. Outside of this research field, new sub-areas have developed in 
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information retrieval, such as expertise retrieval, which is discussed further on. 
Expertise retrieval and expert recommendation share the same intentions, 
although the models and techniques differ.    

What both retrieval as well as recommender systems have in common is that 
they aim to help users find relevant resources. Due to the steadily growing web 
and increasing amount of resources available, this goal appears to be the most 
relevant and important. However, recommender systems concentrate on 
different aspects than classical retrieval systems do in order to satisfy user needs 
and solve the task of overcoming information overload. While the focus of 
recommender systems lies on personalized recommendations, there is also a 
trend towards personalized search results in retrieval systems such as search 
engines (Das et al., 2007). Hence, retrieval systems and recommender systems 
might adjust to one another (compare Jannach et al., 2011, p. 63) in future.   

On the one hand, there are web users who search for specific content to satisfy 
their user needs and are experiencing difficulties. For example, a user may want 
to learn about different types of strawberries, and thus searches for relevant and 
adequate information on this topic. Offering relevant information of this kind is 
a task for information retrieval research. On the other hand, there are users 
looking for inspiration without knowing exactly what their needs are. A user 
who loves reading thrillers may want to find new books in this genre for future 
reading, but does not have any specific book titles in mind. The user’s problem 
might be how to formulate an appropriate search question that results in titles of 
previously unknown thrillers. A search for “thriller AND book” might lead to 
some good results, but retrieval precision will surely suffer from such an 
imprecise search question. Another option for the user would be to use the 
classification system in an online bookshop and look under the category 
“thriller”. However, this will also retrieve previously read books.   

Offering users relevant new books they have not yet read and would prefer to 
read, is a typical task for a recommender system. The scenarios described above 
are similar because they share the goal of helping users get relevant information. 
The difference lies in the respective approaches of retrieval and recommender 
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systems and the resulting consequences. That means the information a user gets 
from a recommender system is not general relevant content (as is the case for 
most search engines), but must be adjusted to an individual user’s needs and 
expectations. To offer adjusted information to a single user, the recommender 
system tries to predict what this user will like. Therefore, in contrast to a 
retrieval system, a recommender system needs to know a priori information 
about its users. In return, users will be offered relevant resources without 
explicitly searching for them. A recommender system uses no text or terms from 
user queries to find relevant items, but historical data showing users’ 
preferences. This data can include any kind of user activity online, such as 
information about purchased products, clicked websites, watched videos, or 
liked or bookmarked items. One advantage here is that the user does not need to 
be active, for instance by formulating a query for getting relevant resources, 
because recommender systems use data already available from the user’s past 
activities.  

Retrieval and recommender systems both have their benefits. Retrieval systems 
can respond to current user needs more appropriately because a user formulates 
a query corresponding to a particular information need, sends it to the system, 
and is given relevant results in return. Simply put, one of the bottom lines for a 
retrieval system is to get a good query from a user to be able to offer relevant 
results. In practice, of course, the retrieval process is more complicated and it is 
difficult for a user to find relevant resources based on his or her information 
need. A user is not always aware of their precise information need, and even if 
so, he or she may not be able to formulate a good query that corresponds to it 
(Belkin, 1980; Kuhlthau, 2004; Taylor, 1968). Research on information retrieval 
discusses such aspects and problems (see for example Cole (2012) and Stock 
and Stock (2013) for an overview on these aspects). Another distinctive aspect 
for retrieval systems is that a user must actively be becoming aware of his or her 
information need, formulate a question, and type in a query – an important 
difference to recommender systems that will be discussed in the section on 
recommender system acceptance and usage.  
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A recommender system draws on historical data from users. The critical point 
here is that there must be enough historical data available about a user. This can 
be any data about a user’s activities on the web or in information services. Only 
if this data is available and, more importantly, relevant, can the recommender 
system make good recommendations. If this is the case, the user will 
automatically be given recommendations without having to do anything more. 
This issue is especially appreciated in e-commerce, as it helps shop providers 
sell their items and products. The idea is that if a user is recommended new and 
interesting products, he or she might buy them without having actively searched 
for them (Ricci et al., 2011). This boosts sales volumes. Besides e-commerce, 
recommender systems have also become established on the non-commercial 
web. The idea is to help users filter out information where there is too much of 
it. Additionally, there is the issue of the “lazy user”, meaning that many users 
are lazy in terms of searching appropriately and using the right query terms. 
Furthermore, many users do not know how to search well. A recommender 
system supports them while recommending information based on historical user 
and item data. 

3.1 The Task of Recommender Systems 

Recommender systems filter information in order to counteract information 
overload and help users find relevant and new items (or resources). In general, 
systems focus on personalized predictions about a user’s preferences. A 
generally accepted division between relevant and irrelevant items plays a minor 
role, as the definition of relevance and irrelevance is highly subjective. As one 
user may like a movie that another user hates, it is impossible to trace a clear 
line between relevant and irrelevant items that satisfies all users. A 
recommender system that does not focus on personalization may not fulfill the 
tasks named above, but is still able to make general recommendations. In this 
work, the focus lies on a target user, who is given recommendations that are 
relevant specifically for him (or her) and thus derives a benefit from using the 
recommender service.    
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A recommender system can help to satisfy diverse user needs. Depending on the 
system’s environment and the user community active in it, these needs may 
differ, change over time, and not always be relevant for every single user. 
Nevertheless, the users may accept a recommender system supporting these 
needs, which guarantees the system’s success. In general, recommender 
systems’ tasks can be divided into two groups: Systems that try to find out if a 
user likes a specific resource (the prediction problem), and systems that try to 
provide a list of items which a user might possibly like (top-N recommendation 
problem) (Deshpande & Karypis, 2004; Jannach et al., 2011). The first takes a 
specific resource, such as a movie, and tries to guess the likeliness rating a user 
would give assign to it. If the rating is positive and indicates that the user will 
like the movie, a recommendation is given to the user. The top-N recommender 
system tries to recommend movies from the database that the user does not yet 
know but will probably like. Depending on the task, the system is based on 
diverse methods and algorithms.     

Both tasks named above can be split into more concrete sub-tasks, depending on 
the recommender system’s context and application. Herlocker, Konstan, 
Terveen, and Riedl (2004) describe several tasks a recommender system can 
support (table 3.1; see also Ricci et al., 2011). It is useful that a recommender 
system concentrates on specific tasks and that these tasks are based on the needs 
of target users who must be provided with an additional benefit from using the 
system.   

1. Find good items 
Showing the user a list of unknown resources that might 
be relevant (top-N recommendation); predicted ratings a 
user would likely assign to an item may also be showed.  

2. Find all good 

items 

Similar to task 1, with the difference that it is essential to 
find all relevant items for a user. This may be crucial for 
some recommended resources. Ricci et al. (2011) name  
the example of recommendations concerning medical or 
financial information. Here the ranking of the items in the 
list is also more important than in task 1.     
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3. Improve the 

profile 

This task is essential for providing personalized 
recommendations. A user should be able to update his or 
her profile because the recommender system builds its 
recommendations on this specific user information. 
Different scenarios are possible: A user may actively 
update their profile, for example via resource ratings, or 
the system works with user information that is available on 
the web, for example.  

4. Annotation in 

context 

A recommender system is also applied in existing retrieval 
systems or already structured databases annotating 
resources that are predicted to be of interest to a target 
user.  The early systems Tapestry (Goldberg et al., 1992) 
and GroupLens (Resnick et al., 1994) concentrated on this 
task (Herlocker et al., 2004).   

5. Recommend a 

sequence or a 

bundle 

Concentrating on the recommendation of a bundle of 
resources, not only on single resources. Herlocker et al. 
(2004) name the recommendation of a music playlist. Or a 
bundle of research papers is also recommended in order to 
gain an introduction to a specific topic (Ricci et al., 2011).   

6. Just browsing 

Focusing on target users who have no concrete 
information need. Here the recommender system tries to 
lead the user to possibly interesting resources. Brusilovsky 
(1996) tried to solve this task in an adaptive hypermedia 
system.  

7. Find credible 

recommender 

This might not be a major task, but it is important for 
establishing user trust: Some users challenge the system to 
test if the recommendations are relevant. Functions that 
allow the testing might be important to some target users, 
especially for recommender systems with critical resource 
recommendation, such as medical or financial information 
resources.   

8. Express self 

A task that fulfills the needs of users who are not 
interested in recommendations but in giving feedback to 
resources and expressing their opinion. One example is the 
feedback function on Amazon. These users may not be the 
main target users, but, as Herlocker et al. (2004) stress, 
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with their input they provide data that improves the 
system’s recommendations, for example in collaborative 
filtering systems.  

9. Help others or 

influence 

others 

Similarly to task 8, users provide feedback to help other 
users in their decision-making while not requiring any 
recommendations themselves. Again, such users bring new 
data into the system and should be encouraged to give 
feedback, such as resource ratings. In contrast to users 
who want to help others, those who try to influence others 
often end up harming the system. A recommender 
system’s task should be to eliminate those malicious users 
or to build system defenses to prevent users from acting in 
this way. 

Table 3.1. Tasks of recommender systems, adapted from Herlocker et al. (2004) and Ricci et al. 
(2011).  

3.2  Types of Recommender Systems 

Three main types of recommender systems can be distinguished – namely, 
content-based approaches, knowledge-based approaches and collaborative 
filtering approaches (Jannach et al., 2011). However, there are various 
differences between recommender systems, and some researchers do not 
distinguish between content- and knowledge-based approaches (Jannach et al., 
2011). Ricci et al. (2011) also name demographic and community-based 
approaches. In addition to these, there also exist several hybrid systems that 
combine diverse methods. Collaborative filtering approaches are the most 
important among them in the context of this work. The following section 
introduces the three main approaches, with a focus on collaborative filtering. 
Other types are summarized in “hybrid system approaches”. 

3.2.1 Content-Based Approaches 

Content-based approaches (Lops, Gemmis, & Semeraro, 2011) attempt to solve 
the task of recommending items that are similar to those the user has liked in the 
past (figure 3.1). Content-based predictions rely on two facts: firstly, 
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information about some of the items’ characteristics should be available, and 
secondly, additional information should be gathered about the user’s likes and 
interests, for example through a user profile or list of items purchased by the 
user (Jannach et al., 2011). Thus, a classical content-based recommender system 
knows the target user and the items he or she has rated. It takes the best-rated 
items by a target user (all items rated positively and liked by the user in the past) 
and then recommends similar items the target user does not know yet. Similarity 
can have different meanings, as discussed in chapter 2. It also depends on the 
data used for similarity measurement. In a content-based approach, this data is 
content-based, as the name of the approach indicates. Content, in this case, also 
includes metadata about items, meaning that information about some of the 
characteristics or content of the items to be recommended must be known. 
Characteristics about items are either described in an item’s metadata or 
extracted via text retrieval methods. Additionally, metadata is resource-

Figure 3.1. The principle of content-based filtering, where a target user gets recommendations of 
items that have similar content features.  
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dependent, meaning that metadata about a scientific article is different to 
metadata about any other product. Taking the example of recommending 
scientific papers, a target user could have saved several papers in his or her 
profile. The system could take keyword metadata and recommend various other 
papers to which the same keywords have been assigned. Hence it is important 
that metadata is not only available, but also complete. Incomplete metadata 
excludes resources from recommendation, leading resources with incomplete 
metadata, or none at all, to be excluded from recommendations even though 
they might be relevant. Thus the quality and quantity of metadata is of critical 
importance (Picault, Ribière, Bonnefoy, & Mercerm, 2011). If no metadata is 
available, text retrieval methods can be an option. Examples of text retrieval 
methods will be described in the following.  

3.2.1.1 Examples of Content-Based Text Retrieval Methods 

The vector space model (Salton, 1971; Salton, Wong, & Yang, 1975), combined 
with text statistics like TF*IDF (see Stock and Stock (2013) for an overview), is 
often used for similarity measurement in recommender systems. In a content-
based recommender system, the vector space model compares terms in 
resources such as scientific papers with terms in a target user’s profile. The 
terms from the profile might be terms derived from papers the user has liked in 
the past (indicated, for example, via a rating), or a list of keywords the user has 
generated as his or her interest list. The TF*IDF (term frequency*inverse 
document frequency) approach (there are several variants of this weight: Baeza-
Yates & Ribeiro-Neto, 2011) weights the resource terms according to their 
appearance. Such a weighting algorithm is important because not all terms have 
the same significance. The idea is that significant terms have a higher relevance 
for resource description and thus should be assigned a higher weight. Words in a 
text follow Zipf’s law (Zipf, 1949), which means that the distribution of the 
words is skewed towards a select few words that appear very often and many 
words that appear just a few times. According to Luhn (1958), terms with a high 
frequency tend to have less meaning (for example stop-words like “the”, “and”, 
etc.), while terms with a lower frequency (but not too low) carry relevant 
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meaning and have enough discriminative power to determine a text’s content. 
Additionally, it can be said that terms that appear less often in a database are 
also discriminating (Robertson, 2004), thus inverse term frequency (IDF) 
weighting should be applied (Sparck Jones, 1973). The TF*IDF value (or some 
of its variants) gives credit to these research findings (see Stock and Stock 
(2013) for a further discussion). As text retrieval methods applied in content-
based recommender systems are based on terms found in resources, TF*IDF is 
applied to give relevant terms a higher significance. An item is represented as a 
vector of all its TF*IDF weights for all terms. Some approaches experiment 
with models that only include “informative” terms in a resource’s vector 
representation (Jannach et al., 2011). These most “informative” terms can be 
filtered by simply cutting off the most n “informative” words (Pazzani & 
Billsus, 2007). The model by Billsus and Pazzani (1999), for instance, includes 
a learning-based approach in which the system learns to recognize the most 
informative terms. Excluding stop-words and applying stemming approaches are 
also helpful towards improving TF*IDF measurements.  

When an item’s content in the vector space model is measured via TF*IDF, the 
similarity between the content of these resources needs to be measured. The 
cosine coefficient is a common measurement. If a content-based system has 
assessed the content of the resources and their similarity, it will need to 
determine whether a target user might like these resources. This decision is 
based on the essential information available about a user, that is to say his or her 
historical profile – as mentioned before, this can be resources purchased by the 
user, or, ideally, user ratings showing whether the user likes a certain resource 
or not. When the system wants to know whether the user will like a resource not 
featured in his or her profile, it compares its similarity to resources from the 
user’s profile that he or she has liked. Here again, the meaning of “to like” 
depends on the system’s definition. The choice of the resources to be compared 
with the resource whose relevance is to be predicted depends on the 
understanding of a user’s ratings, which are case-dependent and described in the 
section concerning implicit and explicit ratings.   
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3.2.1.2 Limitations of Content-Based Approaches 

Researchers see limitations of content-based recommender system in several 
aspects, the most obvious being that content-based measurements can only be 
performed if a text is available that characterizes an item. Content-based 
approaches are hard to apply in domains that include multimedia items such as 
images, videos, movies, music, or products (in e-commerce, for instance). Such 
items need to be described via metadata, that is to say by using specific 
keywords characterizing them. Only then does text analysis become possible. 
The quality of this data strongly influences recommendation. Text sequences or 
keywords for item descriptions are rather short, which might lead to 
inappropriate similarity results. Furthermore, generating additional content such 
as item descriptions is time-consuming, complex and expensive (Jannach et al., 
2011, pp. 75–76). One way to overcome this problem is to use tags that are 
generated by Web 2.0 users to describe items, in which the users act as content 
providers (Jannach et al., 2011, p. 76). For example, a music recommender 
system might ask its users to complete information about an album. One way to 
motivate users to help complete a system’s data might be to offer free songs to 
download. If a system does not want to have to rely on its users, the automatic 
extraction of metadata is another option. For example, Li, Ogihara, and Li 
(2003) tried to detect music genres automatically, and Shen, Cui, Shepherd, and 
Tan (2006) attempted to identify singers.  

Outside of this essential aspect, pure text or term analysis may not be enough to 
capture resource quality.  (1997, p. 67) state that 
content-based approaches are only able to perform a “very shallow analysis of 
certain kinds of content”. Concerning a webpage for example, aspects such as 
aesthetics or usability may also be important in allowing a user to characterize 
the quality of a web page  Shoham, 1997). This means that 
applying content-based analysis in order to represent a web page’s content 
might not be sufficient to recommend qualitatively good web pages to a user. 
Furthermore, purely text-based methods do not differ between well-written and 
badly written texts. A well-written article and a poorly written article whose 
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respective authors both use the same words might be recommended in the same 
way if only words are considered for recommendation (Shardanand & Maes, 
1995). Thus, no quality distinction can be made on the basis of the words used 
in the articles. Furthermore, pure content-based recommendations are based on 
similarities in the content of different items (Jannach et al., 2011, p. 75). If item 
content (more precisely: the texts) is not enough, as might be the case with jokes 
or poems, no appropriate discriminating features can be detected (Pazzani 
& Billsus, 2007). Thus, distinction between good and poor recommendations 
becomes difficult.  

3.2.2 Knowledge-Based Approaches 

Knowledge-based systems (Burke, 2000; Felfernig & Burke, 2008) are often 
distinguished from collaborative filtering and content-based systems because 
they can be used when no historic user information is available. More 
specifically, recommendation in purely knowledge-based systems does not 
require any a priori user information such as ratings or data about purchased 
items. Such systems are therefore helpful in environments where no or not 
enough user information is available. This is the case when a service has many 
one-time buyers, as, for example, an online shop that offers cameras or 
computers (Jannach et al., 2011, p. 81). A general user buys one camera or one 
computer, including the proper equipment, but does not need two similar 
products. In other words, a user profile in such online shops offers less 
information about a user’s preferences and likes, meaning that recommendations 
might be inappropriate in such a case. Another example is when a user buys 
specific products infrequently (Felfernig & Burke, 2008), making it unlikely 
that he or she will buy a new camera each month. Additionally, user information 
might be too old and thus lead to false recommendations. Here Jannach et al. 
(2011) argue that in some cases, user preferences might change enormously. 
One example is a car recommender. On the one hand, a user’s profile will have 
little data unless he or she has really bought several cars within a short time 
period. On the other hand, a user might currently need a family van instead of a 
two-seater cabriolet such as the one bought five years ago. Thus with some 
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products, users have the tendency to develop diverse needs over time. Content-
based recommender systems that rely on the comparison of product features 
such as “car type”, might be less successful. Recommendations based on 
collaborative filtering might also be less fruitful due to the sparse user profile 
lacking in information (Jannach et al., 2011, pp. 81–82).  

To summarize the principle, knowledge-based systems require additional user 
information not based on content or community filtering models. Without 
further information, the recommender system would be a type of retrieval 
system that offers the same results to all users who request common features. To 
get further information, such a system involves a high degree of user-system 
interaction. A user needs to give information to the system during his or her 
search process. The system itself is concerned with the task of recommending 
products that meet a user’s requirements (Burke, 2000) and tries to guide the 
user through the search process (Mandl, Felfernig, Teppan, & Schubert, 2011). 
One example is the car recommender service “myproductadvisor”2. Here a user 
can choose between different car characteristics and assign preferences to them 
(figure 3.2). For example, he or she can state that the car type is important, 
while the brand is rather unimportant. The system will consequently lend more 
weight to the car type and adapt its recommendations. Given user information – 
that is, user requirements or preferences – a knowledge-based system either 
applies explicit recommendation rules based on product features or focuses on 
the measurement of similarities between user requirements and resources 
(Jannach et al., 2011, p. 82). Thus we can distinguish between two types of 
knowledge-based systems, one constraint-based and the other case-based, which 
concentrate on diverse tasks, respectively (Felfernig & Burke, 2008; Jannach et 
al., 2011, p. 82).  

Constraint-based systems explicitly ask a user about his or her preferences and 
work with a tuple of variables or features. Here a distinction is made between 

                                                           

2 http://www.myproductadvisor.com/ 
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customer features and product features. Customer features can be selected by a 
user, for instance by selecting a maximum prize for a product. Product features 
describe a product, such as the car type or horsepower (Jannach et al., 2011). If 
a user wants to buy a car, a constraint-based system might ask him or her 
questions about specific product features: How much horsepower should the car 
have? How many people will sit in the car regularly? Which price does the user 
want to pay? Depending on these questions, the system will recommend 
appropriate cars. The customer and product variables need to be adapted to each 
other, which is done via compatibility constraints and explicit recommendation 
rules. Compatibility constraints depend on the recommended products. One 
example for such a constraint is a camera’s resolution and its prize: A camera 
capable of making large print photos requires a price higher than €200 (Jannach 
et al., 2011), for instance. These constraint rules, which of course also depend 
on the database of the recommender system, must be defined externally, either 
via an expert list or via the dataset itself. In the latter case, filtering methods and 

Figure 3.2. Car recommender system “myproductadvisor”, in which users are able to determine 
preferred characteristics as a basis for recommendations. Retrieved 06/21/2016 from 
http://www.myproductadvisor.com 



 Types of Recommender Systems 99 
 
thresholds are applied. If a user wants to buy a camera that enables large prints, 
the system will recommend cameras with a high resolution or with a price 
higher than a specific threshold. A formal description of the constraint-based 
method is shown in Jannach et al. (2011).  

The advantage of constraint-based systems– besides the fact that no historic user 
data is needed – is that these systems can guide users that are not experts 
through the process of buying a product.  If a user wants to buy a car for his or 
her family, he or she will state that the desired car must be large enough for four 
people. If it is also stated that the price should be below €10,000, the system can 
suggest that the user increase the price in order to get more recommendations, 
because it knows that most family vans are more expensive than that. These 
hints given by the system are helpful, especially when a user wants to buy 
complex products and does not know all the technical requirements to be 
considered (Felfernig & Burke, 2008).          

In case-based systems, users do not have to specify their needs beforehand, but 
choose between specific requirements or feature options during their search 
process. Case-based systems concentrate on offering the best choices to a user 
on the basis of the situation the user is currently in (Burke, 2000). Such 
approaches try to adapt to user cases, which will differ relative to the purpose of 
the recommender system in question. The starting point is a user search, and the 
main task is to find resources similar to those the user searches for. Burke et al. 
(Burke, 2000; Burke, Hammond, & Yound, 1997) developed the restaurant 
recommender Entree, which recommends restaurants in Chicago that are similar 
to a given restaurant in Chicago or another US city. A Chicago visitor may enter 
a familiar restaurant and the system will recommend restaurants similar to the 
user’s entry, where similarity is case-dependent. In the case of restaurant 
recommendation, the feature “cuisine” is quite important, meaning that when 
the user enters the name of an Asian restaurant, the system might recommend 
Asian restaurants in Chicago. Optionally, instead of entering a restaurant name, 
a user can set requirements for preferred restaurant types on the basis of 
categories like “price” and “cuisine”. If the user is not satisfied with the 
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recommendations, a case-based system offers further choices to select. For 
example, it may ask the user whether the next recommendation should be a 
cheaper restaurant than the first. The user may click on the “less price” button 
and get a new recommendation. The system guides the user through the search 
process and the user may change his or her search requirements depending on 
the case-based choices offered by the system. This approach is helpful if a user 
wants to purchase a product and has preferences in mind, but these preferences 
are not specific - for example, if he or she wants to buy a camera with a high 
resolution but cannot name an exact number of pixels the camera should have at 
minimum. In a case-based approach, the user could now assign a high 
importance to the feature “resolution” or ask for a new recommendation with 
“higher resolution” without having to state explicit values for this feature 
(Jannach et al., 2011). Nevertheless, this approach requires the right choice of 
resource features that users can select, as well as the right order of importance. 
If a user searches for an Asian restaurant with a modern atmosphere and wishes 
to get a restaurant recommendation cheaper than the first one, the feature 
“cheaper” will be lent the highest relevance. The system might then recommend 
a cheaper restaurant, but this restaurant might not have a modern atmosphere. 
This means that the choice of the feature “cheaper” allows the user to set new 
preferences, which the system then adapts, while another preference, the feature 
“modern atmosphere”, is lost. Burke (2000, p. 186) summarizes this principle by 
stating that such knowledge-based systems focus on “high-level responses to 
particular examples, rather than on retrieval based on fine-grained details”.                  

3.2.2.1 Limitations of Knowledge-Based Systems 

The main difference between content-based and collaborative filtering 
approaches on the one hand and knowledge-based systems on the other is that 
the latter lead to a higher user-system interaction. The system forces a user to be 
active during their search process and to make additional decisions. Either he or 
she enters a specific resource and the system tries to find similar 
recommendations, or the user sets requirements that the system uses in order to 
find appropriate recommendations. These procedures might be disturbing for 
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some users. If they are asked to set requirements at the beginning of the search, 
or are asked to change the requirements during the process, they might be 
overstrained (Jannach et al., 2011). For example, if a user wants to buy a camera 
and is asked to specify the resolution, he or she might not know which 
resolution fits his or her needs and which types are currently on the market. 
What a system can do is provide further information to help the user in making 
such a decision. Another option is to set defaults (Jannach et al., 2011), for 
example ones that take into account current market situations. If half of the 
cameras have a resolution of 14 million pixels, this value will be used as the 
default for the feature “camera resolution”. This requires the system to update 
its default settings regularly. Constraint rules or recommendation rules as 
described above may also determine default settings. If a user wants to print his 
or her picture in a large format, the system may automatically choose a camera 
resolution of 10 million pixels. The danger here is that a user can be 
manipulated into buying a specific product (Jannach et al., 2011; Herrmann, 
Heitmann, & Polak, 2007). For this reason, a knowledge-based system and its 
rules need to be constructed carefully.             

In addition to recommendation rules, a knowledge-based system should pay 
close attention to the product features that are used to describe the products and 
to measure similarity. It is important that “similarity metrics must reflect 
buyers’ understanding of the product space” (Burke, 2002b). In the example of 
the restaurant recommender Entree, the user has the option to change his or her 
requirements to get a new recommendation. They can choose new features, such 
as “nicer”, to tell the system to recommend “a restaurant which is nicer than the 
first recommended one”. This “nicer” must be understood by the system in order 
to give a user an appropriate recommendation. In some cases, features and 
product data may be equal and the system can directly match both. But product 
data, that is to say product descriptions in a database, may also differ from 
general features used in the recommender system. A restaurant might be 
described with “has modern furnishing” or “has romantic atmosphere”. In such 
cases the system must be able to refer these descriptions to the feature “nice” in 
order to make appropriate similarity measurements, and thus good 
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recommendations. Furthermore, a user’s concept of “nice” and the system’s 
understanding of this term must also be equal, otherwise the application will not 
be successful and give false recommendations. If a user thinks a restaurant with 
modern furnishing is not a nice one, he or she might not be satisfied with this 
recommendation. The process of feature selection and similarity settings thus 
requires careful consideration.      

3.2.3 Collaborative Filtering Approaches 

The term ‘collaborative filtering’ was coined by Goldberg et al. (1992). 
Goldberg describes the principle in this way: “Collaborative filtering simply 
means that people collaborate to help one another perform filtering by recording 
their reactions to documents they read” (Goldberg et al., 1992, p. 61). The 
method is thus based on historical information – specifically, by users. The idea 
is to rely on the opinion of a user community. It can be said that the approach is 
based on social information filtering (Shardanand & Maes, 1995) and the 
behavior of a user community, which is different from content-based 
approaches, where the focus lies on information about resources. Therefore, 
collaborative filtering is also called the “word-of-mouth” recommendation 
(Shardanand & Maes, 1995). Systems are also named social recommender 
systems because recommendations rely on user content and relations between 
users (Victor, De Cock, & Cornelis, 2011). The principle can be summarized 
with the statement “more like me”, which means that a user wants to be given 
recommendations based on other users who have similar behaviors and 
preferences to their own. This aspect is not so different from an everyday-life 
scenario: If a user needs information about a specific issue, he or she first tries 
to solve the problem on their own and then searches advice from friends and 
reliable acquaintances. These behaviors are meant to overcome not only a lack 
of information, but also information overload. Say, for example, that a user 
finishes reading a book and would like to start a new one, but does not have any 
suitable title in mind. Furthermore, he or she is overwhelmed by the sheer 
amount of possible good novels, and can thus hardly decide which to pick. 
Hence, he or she may ask friends who read similar novels as they do. This will 
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result in a limited amount of recommendations of books the user could read, 
reducing the difficulty of choice.    

There are three requirements for a recommender system based on collaborative 
filtering (see e.g. Jannach et al., 2011, pp. 13–16): 

1. Defining a user profile, which includes a user’s likes and dislikes. 
These can be saved as item ratings, but also in binary form. The latter 
may consider, for example, a user’s purchased products.  

2. Finding similar pairs, based on either users, items/resources or tags. 
Methods are user-based, item-based or tag-based, and define similarity 
via relations (also called “item-to-item correlation” or “user-to-user 
correlation”: Schafer, Konstan, & Riedl, 2001, p. 137; see also Breese, 
Heckerman, & Kadie, 1998).       

3. Recommending users, items or tags. Diverse measurements are applied 
and preference predictions are given either for users, items or tags.  

Collaborative filtering approaches are often applied when very little or no 
metadata about items is available (Jannach et al., 2011; Koren & Bell, 2011; 
Schafer, Frankowski, Herlocker, & Sen, 2007). In this case, the system relies on 
its users. ‘Collaborative’ means that all users of a system are involved in the 
recommendation process. The recommendations are shaped by the behavior of 
all users. The idea of working collaboratively is to filter items to make sure that 
only good recommendations are made. Thus the community contributes to the 
filtering process and each single user benefits from it by getting better 
recommendations (Heck & Peters, 2010). One of the first recommendation 
systems based on collaborative filtering was GroupLense by Resnick et al. 
(1994), a recommender system for news articles. Since then, collaborative 
filtering has become quite popular (Balby Marinho et al., 2011; Ricci et al., 
2011). Web 2.0 services contribute to this success, as more and more online 
services arise that allow users to actively take part in and contribute to the 
services, such as bookmarking systems.       

3.2.3.1 User-Based and Item-Based Approaches 

A collaborative filtering system concentrates on user-based (Breese et al., 1998; 
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Konstan et al., 1997; Resnick et al., 1994; Sarwar, Karypis, Konstan, & Riedl, 
2000; Shardanand & Maes, 1995) or item-based approaches (Deshpande 
& Karypis, 2004; Linden, Smith, & York, 2003; Sarwar, Karypis, Konstan, & 
Riedl, 2001). In both cases, a target user is meant to be provided with 
appropriate recommendations. The approaches differ in that it is either the 
similarity between users that is measured in order to get recommendations (user-
based) or the similarity between items (item-based). A user-based system works 
on the principle that a user might like resources that similar people also liked. It 
takes all rated items by a target user and finds other users who rated the same 
items similarly (Klahold, 2009). These similar users are also called ‘nearest 
neighbors’ (Desrosiers & Karypis, 2011; Herlocker, Konstan, & Riedl, 2002; 
Jannach et al., 2011). When the nearest neighbors are determined, the system 
takes their ratings to predict a rating by the target user. For example, if all 
nearest neighbors liked an item that the target user has not yet rated, this item 
will be recommended to the target user. If the nearest neighbors disliked an 
item, on the other hand, it will not be put on the target user’s recommendation 
list. In the example in figure 3.3, a neighbor shares at least two common 
products (shoes and camera) with the target user. The neighbors’ products that 
the target user has not yet purchased (here: the printer) are then recommended. 
An overview of user-based systems applying diverse measurement algorithms is 
given by Breese et al. (1998), Herlocker, Konstan, Borchers, and Riedl (1999), 
and Sarwar et al. (2000).   

An item-based system works on the principle that a user might like resources 
that are similar to those he or she has liked in the past (Deshpande & Karypis, 
2004). The system takes all positively rated items of a target user and then 
searches for similar items (Klahold, 2009). ‘Similar’, in this case, means that 
items have similar ratings based on all users. If no ratings are available, 
common purchases will be considered. In the example in figure 3.4, products 
similar to the target user’s purchased products (shoes or camera) share at least 
two users who have rated both products similarly or purchased them. Again, the 
collaborative aspect is taken into consideration. The printer shares two users 
with the shoes and is thus recommended; additionally, the jacket shares two 
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users with the camera and is also recommended. Comparing the simple 
examples in figures 3.3 and 3.4, where all relations between users and products 
are equal, the target user would get more recommendations with the item-based 
approach (top-N recommendation).      

Besides the general distinction between user- and item-based approaches, 
collaborative filtering systems are classified according to computing techniques. 
A running recommender system can either use pre-processed data (model-
based) or measure all similarities during an ongoing recommendation process 
(memory-based) (Breese et al., 1998; Jannach et al., 2011). While user-based 
approaches are said to be memory-based, item-based approaches are often 
model-based, which means that pre-computed processes are applied and the 
system uses a model to give recommendations (Jannach et al., 2011). Pre-
processing data has the advantage that the recommendation process is faster, 
which is an important factor for customers’ decision to use the system. Due to 
this time advantage, therefore, model-based recommenders are quite popular. 

Figure 3.3. The principle of user-based collaborative filtering, where a target user gets 
recommendations for unknown items from nearest neighbors who have purchased the same 
products. 
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However, pre-processing data might be not as precise as data might no longer be 
up-to-date, which influences recommendation. Furthermore, it takes longer to 
apply models to a system (Deshpande & Karypis, 2004). In contrast, memory-
based approaches might be more precise, but scalability is more difficult and 
thus leads to computational complexity (Deshpande & Karypis, 2004; Jannach 
et al., 2011). Services with high numbers of users and items face these 
problems. A user-based approach in this case might not lead to good 
recommendations, especially if a database has millions of users, who exceed the 
number of items, and neighbor networks are huge. It is said that user profiles 
change permanently, and this influences similarity between users. By contrast, 
item-to-item similarities are said to be more stable, meaning that pre-
computation is more appropriate in item-based approaches. If pre-computation 
is applied in user-based approaches, the system will not be able to react 
immediately to changes in user similarity. Pre-computed item-based approaches 
are thus more precise (Deshpande & Karypis, 2004; Jannach et al., 2011), and 
they generally need less memory space if the number of items in a database is 
lower than the number of users. However, considering the time needed to 

Figure 3.4. The principle of item-based collaborative filtering, where a target user gets 
recommendations for unknown items that are similar to those he or she already knows.  
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compute recommendations in a live process might be the same for both systems 
(Desrosiers & Karypis, 2011). Concerning user-based systems, clustering may 
be one option to overcome scalability problems. Users are first clustered into 
smaller groups before their nearest neighbors are measured (Deshpande 
& Karypis, 2004; Mobasher, Dai, Luo, & Nakagawa, 2002; Ungar & Foster, 
1998). The danger here is that a user may get fewer personal recommendations, 
or none at all (Sarwar et al., 2001).  

To overcome shortages within recommender systems, diverse similarity 
measurements are tested in addition to the classical user- and item-based 
approaches, such as, for example, graph-based collaborative filtering models 
(Aggarwal, Wolf, Wu, & Yu, 1999; Huang, Chen, & Zeng, 2004). An advantage 
here is that graphs, compared to classic user- and item-based approaches, do 
take into consideration transitive relations between users. The principle is that a 
user will also be given recommendations on the part of a friend’s friend. 
Suppose that user a and user b liked the same restaurant, and user b and user c 
share a common preference for another restaurant. User c would not be 
considered as the nearest neighbor of user a in a pure user-based approach. 
However, as both have a common nearest neighbor, that is user b, a graph-based 
system regarding this indirect relation would recognize the connection between 
user a and user c. Thus, graph-based approaches may handle sparsity – the 
problem that a database has too few user-item relations to make appropriate 
recommendations – in a better way (Huang et al., 2004). Probabilistic 
approaches like Bayesian networks (Breese et al., 1998; Li, Li, Wen, & Liao, 
2012) and dependency networks (Heckerman, Chickering, Meek, Rounthwaite, 
& Kadie, 2001), as well as association rules models (
Swami, 1993; Agrawal & Srikant, 1994; Mobasher, Dai, Luo, & Nakagawa, 
2001; Srikant & Agrawal, 1995; Srikant & Agrawal, 1997), are other options to 
give recommendations based on user and item relationships. For an overview of 
these approaches, see for example Amatriain, Jaimes, Oliver, and Pujol (2011) 
and Jannach et al. (2011).   
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3.2.3.2 Limitations of Collaborative Filtering Systems 

Collaborative filtering systems recommend items to a user based on other user 
ratings or on tags in social tagging systems. The assumption is that what other 
people liked will also be liked by a target user. The requirement for receiving 
recommendations is that the target user needs to be active. He or she must have 
a profile containing saved historic data, such as purchased or rated items. If a 
target user uses a recommender service for the first time, he or she will face the 
cold start problem. That means the system has to recommend possible liked 
items but does not know which items the target user liked in the past. Due to this 
data sparsity, neither nearest neighbors nor similar items can be analyzed to 
recommend appropriate items (Massa & Avesani, 2009; Victor et al., 2011). 
Cold start is a major problem in operating recommender systems:  

“Considering that the average number of purchases per 
user in a single Internet shopping mall, even over a long 
period, is usually very limited and that there are always 
significant portion of new users or less-active users in 
every Internet store, the new user coldstart problem is a 
very serious issue for most real-world e-retailers.” (Ahn, 
2008, p. 40). 

A solution to cold start problems is to use more data relations than classical 
user- and item-based methods. For example, instead of only using user-item 
relations or co-occurrences in a folksonomy, item-tag relations can also be 
considered. Said, Wetzker, Umbrath, and Hennig (2009) apply this method and 
use probabilistic latent semantic indexing to recommend appropriate items. 
Additionally, hybrid systems exist that further apply content-based methods to 
overcome sparse collaborative user data (Salter & Antonopoulos, 2006). 
Another option to overcome sparsity is the aforementioned graph-based model 
by Huang et al. (2004).    

A more direct way of getting more information about a user who has no profile 
containing historic data is to let him or her rate or bookmark items. For 
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example, services like CiteULike inform their users that they will get 
recommendations when they have at least bookmarked 20 resources. Otherwise, 
no appropriate recommendations can be made (figure 3.5). After having 
bookmarked 20 resources, a user can decide which recommender algorithm he 
or she prefers – item- or user-based. If there is no historic data available and a 
collaborative filtering system wants to make recommendations without applying 
any of the models mentioned above, it could recommend items based on user 
community preferences. However, in this case a target user will not receive 
personal recommendations based on their interests. The system will then only 
recommend the most-purchased or best-rated items. As a recommender system 
is intended to make personal recommendations (Ricci et al., 2011), the latter 
solution should preferably not be applied.  

3.3 Comparison of the Approaches 

The application of content-based, knowledge-based and collaborative filtering 
approaches mainly depends on the system’s tasks and the data (that is items, 
item metadata, user profiles, and user feedback) that is available or is meant to 

Figure 3.5. A personal recommendation page on CiteULike. A user needs 20 bookmarks as a basis 
for any recommendations. He or she is able to select item- or user-based recommendations. 
http://www.citeulike.org/profile/tamarah/recommendations  
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be generated. However, all approaches come with advantages and disadvantages 
that must be considered before implementing the system. Some limitations of 
each of the three recommender system approaches have been mentioned above. 
This section compares the approaches and their shortcomings in order to 
summarize the main differences.  

Collaborative filtering techniques are a kind of counterpart to content-based 
systems. These systems do not require any information about items and thus do 
not have to rely on appropriate content to be analyzed. However, the advantage 
of content-based approaches is that such systems do not need any user ratings or 
large user groups who actively use the system. A content-based recommender 
system is built on information about items that is attributes describing the items’ 
content, which are then used for similarity measurement. Thus the system is 
able to recommend new items immediately, provided that item attributes are 
available. A collaborative filtering approach first needs at least one user who 
rates or purchases an item before it can recommend this item to any other user. 
This means that new and likely relevant items are not recommended in a 
collaborative filtering system. A problem here is data sparsity and cold start. In 
many databases, individual users only rate a few items, which lowers the 
system’s potential of recommending items (Jannach et al., 2011).      

Nevertheless, content-based models need metadata about items to measure item-
to-item similarity and recommend similar items to a user. Generating and 
analyzing such data is expensive and time-intensive, and it is difficult to 
guarantee its completeness.  Despite possible limitations concerning data 
content, these approaches are unable to recommend “surprising” items. The 
model’s scope of recommendations is limited (Victor et al., 2011). For example, 
if a user liked novels by their favorite author Henry James, a content-based 
system would quite possibly recommend other novels by James the target user 
has not yet rated or purchased. Recommender system research speaks of the 
serendipity problem (Lops et al., 2011, McNee, Kapoor, & Konstan, 2006; 
Shardanand & Maes, 1995). A content-based recommender is able to 
recommend new or novel items a user does not know (novelty degree of a 
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system). However, it suffers from recommending items that are too similar to 
those the user already knows (degree of serendipity) (Lops et al., 2011; Victor et 
al., 2011). However, some users appreciate serendipitous items and want to get 
surprising recommendations they would not have found on their own. Herlocker 
et al. (2004, p. 42) speak of “recommendations that fail the obviousness test”. If 
too obvious items are recommended, a user may not use the recommender 
system because he or she does not see any additional benefit in it (Herlocker et 
al., 2004). Victor et al. (2011) name this shortcoming of content-based systems 
“over-specialization”, referring to the fact that these systems only recommend 
items that are very similar to those a user already knows. One way of 
overcoming overspecialization is to set an upper threshold, as described by 
Billsus and Pazzani (1999). They propose not only to exclude items whose non-
similarity is too high from recommendation, but also to exclude too-similar 
items in order to offer a more appropriate variety in their recommendations 
(Billsus & Pazzani, 1999). By contrast, collaborative filtering approaches 
consider the opinions of other users in recommending items to a target user. 
Thus, these models have the “potential for serendipitous recommendations” 
(Herlocker et al., 2004, p. 43). 

Another shortcoming of content-based approaches is that they do not consider 
item quality. For example, a user who liked a specific novel by Henry James in 
the past might not like James’ novels in general. Thus the product 
characteristics, here for example the item feature “author = Henry James”, may 
not always be significant in deciding whether a user likes an item or not. User 
likes might be very subjective and not subject to representation by single item 
features (Jannach et al., 2011). Collaborative filtering approaches rely on user 
communities to “measure” an item’s quality. If many users rate an item 
positively, the system will recommend it to a target user. In pure content-based 
approaches, user data is not considered. However, user ratings might also be 
inappropriate for clear quality statements. A target user has to trust the “wisdom 
of the crowd”.    

In addition to an item’s quality, one question for a target user is whether he or 
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she can really trust recommendations. If a user does not trust a recommender 
system to offer appropriate suggestions, he or she will not use it. Trust and 
transparency are very important, even for content-based systems. As 
collaborative filtering approaches rely on other user ratings, however, trust-
based models in recommender system research generally refer to collaborative 
filtering approaches. Here a target user asks if he or she can trust their nearest 
neighbors on whom the recommendations are based. Sinha and Swearingen 
(2002) found out that users want to know why a system recommends items, they 
want the system to be transparent and to justify its suggestions. If a system is 
not transparent, it may not be used (Herlocker, Konstan, & Riedl, 2000). One 
factor on which a user evaluates a system’s trustworthiness are items a user 
already knows and liked before. Swearingen and Sinha (2001) distinguish 
between good recommendations that a user does not know and good 
recommendations that a user knows and has already experienced. The latter 
recommendations are called “trust-generating” (Swearingen & Sinha, 2001). 
The researchers claim that these recommendations are not useful in a traditional 
sense because recommender systems should suggest items a user does not know 
yet. However, such items may generate trust because a user directly sees that the 
system knows his or her preferences. Additionally, the potential of a 
recommender system to suggest new and surprising items (serendipity aspect) 
was also rated positively. Thus research studies assume that a mixture of good 
known and good new items is preferable for a user (Sinha & Swearingen, 2001, 
2002; Swearingen & Sinha, 2001).  

Additionally, Sinha and Swearingen (2001) found that users tend to trust their 
friends over a recommender system. Therefore, trust-based recommenders try to 
establish a kind of social network within the system, which shows how much a 
user may trust other users. In general, all systems that show any implicit or 
explicit relations could claim to establish a kind of trust factor for users (Victor 
et al., 2011). For example, collaborative filtering relies on similar users, which 
automatically makes it more trustworthy than systems relying on all users as 
similar people might lead to better recommendations for a target user. However, 
we must point out that similarity has different meanings for each user and that a 



 Comparison of the Approaches 113 
 
system’s understanding of how to measure similarity might not reflect that of a 
user. Furthermore, a friend of a friend might also be more trustworthy to a user 
than any other unknown person. This means that trust can propagate among user 
networks. Trust propagation models apply steps similar to the models of co-
citation and bibliographic coupling (Guha, Kumar, Raghavan, & Tomkins, 
2004). On the other hand, trust can also aggregate, which leads to a second type 
of trust-based system (Victor et al., 2011). In a user network, several paths may 
connect two indirectly related users. Trust value between these two users is 
aggregated on the basis of the different paths.  Trust models also attempt to 
solve the cold start problem, for example by referring to more implicit relations 
between users (Huang et al., 2004). Victor et al. (2011) give an overview of 
trust-based systems and their possible differentiation. Trust-based systems, 
which directly ask users about their trust experience, form an interesting 
counterpart to classic recommender types. In their studies, Massa and Avesani 
allowed a user to directly evaluate other users regarding their trustworthiness 
(Massa & Avesani, 2004, 2009). These “trust statements” are considered for 
recommendation while giving each user a trust weight. In addition to these trust 
models, research also discusses the aspect of distrust as a related counterpart to 
trust (Guha et al., 2004; Victor, Cornelis, De Cock, & Da Silva, 2009).     

Compared to content-based systems and collaborative filtering approaches, 
knowledge-based recommenders rely on a higher degree of user-system 
interaction. A user is asked to state his or her needs more concretely, either 
before or during the retrieval process. Therefore, a user does not need to trust 
anybody else, but simply needs to be clear about his or her needs. If users are 
able to clearly state their requirements, a knowledge-based system will generally 
be able to give more precise recommendations than those generated by other 
recommender approaches. However, user interactions must be understandable to 
a user and represent his or her needs. Getting direct user feedback is helpful 
when a user’s historic profile data is not sufficient to give good 
recommendations. This is the case when the items to be recommended are ones 
that users do not buy regularly (Jannach et al., 2011, p. 81). Furthermore, 
content-based and collaborative filtering models might rely on ratings by users 
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who do not always show accurate and consistent rating behavior (see the next 
section). However, user-system interaction requires a user to be active, which is 
disturbing to some users and might overly tax them, especially if they are no 
experts concerning the items to be recommended.    

Hybrid Approaches 

To overcome the shortcomings of the three recommender system approaches, 
hybrid systems are constructed that try to use the strengths of all three models 
(Beliakov, Calvo, & James, 2011). Research distinguishes between diverse 
types of hybridization regarding a system’s hybrid principle. Jannach et al. 
(2011) name three different principle types. A monolithic hybridization 
approach considers aspects from diverse recommender system types and 
implements them in one system. Such a system might draw on content-based 
similarities between items and collaborative filtering user-based similarities 
between users to recommend appropriate items to a target user. Similarity 
algorithms are merged in one implementation.  

Parallelized hybridization approaches (or mixed approaches (Burke, 2002a)) 
also consider diverse recommender system types, but the systems’ specific 
algorithmic measurements are applied separately and in parallel to each other. In 
a hybridization step, further measurements are applied to give final 
recommendations. This means, for example, that content-based and 
collaborative filtering user-based similarities are measured separately. 
Afterwards the system may either present results from both measurements 
(mixed hybrid), present results from only one measurement depending on a 
target user’s current situation (switching hybrid), or combine both result lists 
using a weighting approach (weighted hybrid) (Burke, 2002a). Weighting the 
results of different recommenders is quite common. One simple method is to 
rank recommendations according to their ranking scores (Jannach et al., 2011).  
For example, let one item have a ranking score of 0.2 in the collaborative 
filtering approach and a ranking score of 0.6 in the content-based approach. 
Giving both approaches the same relevance, an equal weighting of 0.5, the 
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item’s scores are summed up and the result divided by two. As a result, the item 
will have a ranking score of 0.4 in the final recommendation list offered to a 
target user. Here it should be kept in mind that the ranking scores of both 
approaches are comparable and scales do not differ significantly. In most other 
cases, final recommendation rankings do not reflect the rankings of the applied 
approaches (Jannach et al., 2011).       

The third principle of pipelined hybridization applies metrics successively, with 
the results from the first approach being then used by the second approach. 
Burke further classifies this principle in three specific methods in order to 
distinguish them more precisely (Burke, 2002a; Burke, 2007). One method is a 
cascading hybrid system, in which one approach refines the recommendation 
results of another approach. An example for this is the Entree restaurant 
recommender described above (Burke et al., 1997). Burke (2002a) improved the 
system’s performance while refining the simple knowledge-based approach with 
a collaborative filtering method. The first restaurant suggestions resulting from 
the knowledge-based model are revised on the basis of former user choices from 
the system’s historic database. However, cascading pipelined hybridization has 
the disadvantage that if the first approach does not include an item, neither will 
all subsequent approaches. In a basic pipelined design, successive approaches 
cannot introduce new items. That means that these designs decrease the 
recommendation set of items, which may lead to an insufficient number of 
recommendations (Jannach et al., 2011). A possible solution is to switch the 
order of the applied approaches and to set an additional threshold, which 
switches between the approaches when not enough recommendations are given 
(Zanker & Jessenitschnig, 2009).  

In general, it can be said that hybridizations try to overcome the shortcomings of 
individual recommender system approaches. However, their tasks strongly 
depend on the items to be recommended and on the data available for 
recommendation. If a system does not have access to historic user data or item 
metadata, it can benefit neither from collaborative filtering nor from content-
based similarities. Functioning recommender systems that aggregate data from 
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diverse sources in order to be able to apply several approaches are rare due to 
the problems associated with aggregation, data incompleteness, and data usage 
restrictions (Jannach et al., 2011, p. 141). However, when more and more data 
becomes available, especially in Web 2.0, chances increase to build better 
(hybrid) systems, which are capable of providing target users with better 
recommendations as they consider more data sources and can thus retrieve more 
data relations (Jannach et al., 2011, p. 301).           

3.4 Explicit and Implicit User Ratings 

Content-based and collaborative filtering recommender systems rely on historic 
user data in order to give their recommendations. Any data showing a user’s 
interests is necessary here. The system needs statements from a user – that is, 
any rating about his or her item likes or dislikes – because it aims to predict 
likes the user has not stated yet. Thus in the following, “user rating” – also 
called “user-item response” (Desrosiers & Karypis, 2011) – refers to any kind of 
user statement a system can draw on for predicting items likely to be liked.  

User ratings are either explicit or implicit (Jannach et al., 2011). If a user states 
an explicit rating, he or she consciously reveals an opinion about an item. It is 
assumed that users know when they have rated an item. Explicit ratings are, for 
instance, ratings on a rating scale: a user is able to give between one and five 
stars to an item, where one star expresses a dislike of the item and five stars a 
strong preference. Here a user is aware of rating an item. He or she states: “I 
like this item and thus rate it with five stars”. Implicit user ratings of an item are 
ratings where a user does not consciously show an opinion, which means that in 
most cases he or she is not aware of making a value judgment with regard to an 
item. There is not conscious statement such as “I like this item and rate it 
positively”. Instead, the user shows some behaviors or interactions within the 
system – for instance, bookmarking an article – with the system interpreting this 
behavior as an item rating. Schafer et al. (2007, p. 305) describe this as a system 
using “observations of user behavior from which preference can be inferred”.  

Besides the distinction between explicit and implicit ratings, there are three 
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rating types that influence the options of analyzing user-item responses. A scalar 
rating includes a scale, which is either numerical or ordinal and which has 
different appearances depending on the recommender system’s design. Typical 
numerical scalar ratings are scales that show one to five stars or points, or 
ordinal scales that may show options like “strongly like”, “like”, “neutral”, and 
“dislike”. Binary ratings only offer two options for a user, such as “like” or 
“dislike”, “agree” or disagree”. Within these types, a user explicitly expresses 
an opinion. By contrast, unary rating types are either implicit or explicit. In 
explicit unary rating systems, a user can only state whether he or she likes an 
item. There is no option, as there is in binary systems, of disliking an item 
(Schafer et al., 2007). Implicit unary ratings draw on any user-item response to 
identify a user’s preferences (Desrosiers & Karypis, 2011). For example, if a 
user purchased an item, the system sees this activity as a positive user-item 
response, which means that the user “likes” the item. The same applies to a user 
who bookmarks an article in a bookmarking system, or a user who watches a 
movie or listens to a song on a music website. Recommender systems using 
unary ratings, regardless of whether they are implicit or explicit, can only 
analyze whether a user-item response exists or not. Scalar and binary ratings 
offer more options and are able to distinguish between user preferences with a 
finer granularity.  

To distinguish user preferences in unary implicit systems more precisely, other 
data is analyzed. For example, a system can measure the time a user spends on a 
product website, or listening to a song, to make fine distinctions between higher 
and lower preferences (Oard & Kim, 1998; Schafer et al., 2007). Nichols (1997) 
gives an overview of different implicit rating types, such as purchasing a 
product, marking or saving a document, referring to a document (which includes 
citing or mentioning it in any way), or recommending an item to a friend. The 
more information a system gathers from a user, the more specific the implicit 
ratings are. However, more information might not always lead to a more 
accurate interpretation of user behavior. The challenge is to interpret user-item 
response in the right way.  
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Implicit ratings do not contain explicit user feedback, but must be interpreted as 
such. The question is, what do user-item responses mean? If a user purchases a 
product, does he or she really like it, or prefer it? Maybe it was meant as a gift 
for some relative, and he or she would never personally use the product. Such 
scenarios are possible, and there are many examples. Research states that if the 
number of ratings in a system is high, the high number of cases that are 
interpreted correctly outnumbers such “false” cases (Jannach et al., 2011; 
Schafer et al., 2007). However, the danger of misinterpreting user-item 
responses is real. By contrast, explicit ratings do not suffer from false 
interpretation as users state their preferences explicitly, which makes them more 
accurate. Nevertheless, some other aspects should be considered. Explicit rating 
systems are limited in their representation. Their scales are fixed, and the system 
only distinguishes user tastes based on these fixed scales. For example, a system 
distinguishes if a user rates a song with one star or five stars. An implicit rating 
system may count how often a user listens to a song and use this number to 
distinguish between diverse song preferences even more accurately, because the 
counting of played songs is not limited to a five-point scale (Schafer et al., 
2007). Assuming that the system correctly interprets implicit ratings – in this 
example, listening to a song means that a user likes this song – the general 
assumption that explicit ratings are more accurate is not verified. Another 
question is whether a user him- or herself interprets explicit ratings correctly. 
Users might have diverse views on items and have different aspects in mind 
when they state that they like or dislike an item. For example, a user might like 
a movie because he or she likes the main actor. Another user might like the 
same movie for its plot. The latter might not like movies starring the same actor, 
rather disliking them. However, a content-based recommender system might 
suggest movies with the same actor. It is not clear, therefore, what exactly a user 
rates when liking an item. It also might be unclear to the user what to rate. In the 
online shop Amazon, many users rate delivery service. If delivery takes too 
long, they will rate the purchased product more negatively, although in fact they 
do not refer to the product itself. Furthermore, users might not be consistent in 
their ratings, meaning that they rate the same item differently at different points 
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in time, especially when rating scales offer a fine granularity (Schafer et al., 
2007). In that case, user ratings are not accurate anymore because users make 
diverse statements with regard to their preferences. Thus, explicit ratings might 
not be any more accurate than implicit ratings. Advantages and shortcomings of 
both types of ratings strongly depend on the user community, the purpose of the 
recommender system, and the items which are recommended. More research is 
needed concerning users’ intention to rate, their rating behavior, their own 
interpretation of ratings, and the influence of the representation of rating 
systems (Gena, Brogi, Cena, & Vernero, 2011; Zhao, Qian, & Xie, 2016).  

Concerning user ratings, we must note the aspect of item quality (Adomavicius 
& Tuzhilin, 2005). As mentioned above, a user rates an item on the basis of his 
or her individual feelings at a certain point in time. He or she might rate the 
quality of an item, but the ratings might also refer to other facets. Thus a user’s 
ratings should be seen as preferences, likes, or tastes regarding an item, and not 
as a statement about its quality. The concept of ‘quality’ varies from person to 
person. In other words, an item’s quality is not fixed simply because many users 
have purchased it or gave it a good rating. These factors might be an indicator of 
some kind of quality, but what users actually rate is their personal preference in 
favor of, or against, an item. Adomavicius and Tuzhilin (2005) formally 
describe this recommendation problem: The main goal is to predict the utility of 
an item in a specific context, because an item’s utility is not universal; rather, it 
is highly related to a specific context, or the target user’s current environment. 
Recommender systems should take care to acknowledge this aspect. 
Furthermore, this issue becomes important when it comes to explaining a 
system. Herlocker et al. (2000) emphasize the importance of a system’s 
explanation to its users. If a user knows how a system works and why it 
recommends what it recommends, the user’s acceptance of the system will 
increase. Thus, users should know what ratings mean in the system’s 
environment and how they should be interpreted. For example, if a user thinks 
recommendations are content-based and expects to receive unknown movies 
starring their favorite actor, but instead is recommended diverse movies liked by 
his or her similar collaborative neighbors, the user will be disappointed and lose 
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trust in the system. In a people recommender system, the effect might be more 
intense because here, personal feelings are involved. If a user gets a 
recommendation of a potential collaboration partner, but does not like them, he 
or she will feel personally affected because the system states that the two will be 
a good match without explaining its decision. If the user understands on which 
similarity relation this recommendation is based, he or she will not judge the 
system for giving false recommendations but may only think that the established 
method the system uses might not be appropriate for his or her individual needs. 
To make ratings more understandable, a system can use multiple explicit 
ratings, such as a rating scale for services and a separate rating scale for 
products. However, more rating options mean more time-consuming work for 
the users, which might restrain many from leaving feedback. In implicit rating 
systems, explanation is even more important. The user needs to understand on 
which basis a system measures similarity and gives recommendations. This 
creates user trust in a system. On Amazon, users know they get 
recommendations because “other users who bought this product also bought the 
following products”. Herlocker et al. (2000) tested several explanation 
interfaces in their study, with each giving additional explanatory information 
about the recommended movies. Tested interfaces showed, for example, the 
settings of a user’s neighbors ratings, which explained that the recommended 
movie contained a user’s favorite actor, or said with what degree of confidence 
the system made a certain recommendation. Results showed that explanations 
are valuable for users, simpler explanation interfaces were more useful than 
more complex ones, and explanatory information – a special case in the example 
of this movie recommender was the aspect of the same actor – is dependent on 
the user community (Adomavicius & Tuzhilin, 2005). The latter outcome 
showed significant differences in users’ perceptions, with the authors 
concluding that specific content features are important for system explanation. 
For some users, the cast was an important criterion for evaluating movies, while 
others seemed not to care about this.   
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3.4.1 Tag-Based Approaches  

In addition to explicit and implicit ratings, recommender systems use assigned 
user tags for similarity measurement and recommendation. Tags are assigned to 
items by users and have different functions (see chapter 2). As a user becomes 
active in explicitly assigning tags to items, tags can be seen as explicit user 
activity, and thus in some cases as explicit user ratings. For example, a user 
might tag a resource with “interesting” or “very good”, which expresses a kind 
of preference, and thus an explicit rating. The advantage of tags is that they 
show user interests more concretely than “pure” ratings because a tag term 
expresses the semantic concept a user has in mind when referring to a 
bookmarked item. The user is not bound to a limited rating scale. Additionally, 
tags are not subject to any restrictions and a user may choose precisely those tag 
terms he or she thinks represent the bookmarked resource in the best way. 
However, this aspect is also a shortcoming for recommender systems that apply 
similar tags for recommendation. 

Another difference between tags and explicit scale ratings is that tag terms, 
when assigned appropriately, describe the content of their resource. Through 
these tags, topical similarity between resources is detected and used for 
similarity measurement. The crux is that tag terms showing an explicit rating by 
a user are, in most cases, not usable for these measurements because they do not 
show topical similarity. Hence, it is more useful for tag-based recommender 
systems to work with descriptions of tags rather than ratings. For example, a 
user may tag a bookmark of a scientific article as “interesting”. This information 
is useful for the current user, but not for others because they do not know why 
the former thinks this article is interesting. The user’s intention in assigning 
“interesting” is not clear. On the other hand, when a user tags a bookmarked 
article with “information retrieval”, this adds further useful metadata to the 
article, which can then be used in a recommender system to build relations 
between bookmarks with topical similarity. Another user, also interested in 
“information retrieval”, may get recommendations of all articles that are not in 
his or her bookmarking list and have the tag “information retrieval”.      



122 Introduction to Recommender Systems
  
Tags describing the content of bookmarked resources are part of folksonomies 
(Peters, 2009) in bookmarking systems and are used in social tagging 
recommender systems (Balby Marinho et al., 2011; Balby Marinho et al., 2012), 
also called tag-based recommender systems (Durao & Dolog, 2009). As 
folksonomies include information about users, resources, tags and their 
relations, three different kinds of recommendations are possible (figure 3.6). 
Tag-based systems recommend either resources, tags, users or all three of them. 
Thus, the basis for recommendations also varies. For example, tags can be 
similar due to the number of resources, and resources can be similar due to the 
number of users or tags. Systems recommending resources show users new and 
interesting items they might like or find helpful. Systems recommending users 
show users new and potential partners, for example for collaboration or to 
discuss personal or commercial interests. There can be many different purposes. 
Systems that recommend tags to users also have diverse aims. They might want 

Figure 3.6. Recommendation variants in a tagging system. Figure adapted from Balby Marinho et al. 
(2012, p. 9). 
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to help a target user find appropriate tags for his or her resource. Another aspect 
to be noted here is that a tagging system will increase its chances to get its 
resources annotated. Additionally, systems want to clean folksonomies and 
unify tag collections so as to make better recommendations (Jäschke, Marinho, 
Hotho, Schmidt-Thieme, & Stumme, 2007). If a system recommends tags 
already used by other users, a target user will likely not assign any tag that has 
not yet been used in the system. Thus a tag collection includes a small and 
specific collection of tags instead of a broad term collection in which unique 
concepts are represented by several different tag terms.  

This issue leads to the approach of unifying tag terms by applying specific 
linguistic and non-linguistic techniques. There are no rules governing tag 
assignment, and tag collections include linguistically diverse forms such as 
spelling errors, diverse tag syntactic forms such as nouns or verbs, diverse 
grammatical categories like singular and plural, diverse spelling conventions 
such as words with or without hyphen, as well as homonyms and synonyms. 
Recommender systems can help unify tag collections and recommend common 
tag forms to users who want to assign tags to their bookmarks (Jannach et al., 
2011). Peters and Weller (2008) for example propose “tag gardening” to format, 
recommend and control tag vocabulary (see also Peters, 2009, pp. 235–247 and 
Stock & Stock, 2013, pp. 621–623). The idea of their system “TagCare” is to 
offer users the option to structure their tag collection, and further to use those 
collections and enhance professional knowledge organization systems. 
Regarding the recommendation aspect, if a user wants to use the tag 
“information systems”, the system might propose the singular form 
“information system”. Uniformed tag collections help a user order his or her 
bookmark collection and to find all similar bookmarks assigned via common 
tags. Furthermore, they help a user community by making the retrieval of new 
resources via tags easier. However, false tag relations and incorrect 
interpretations of a tag‘s meaning will lead to inappropriate tag 
recommendations, and thus to inappropriate user and item recommendations in a 
tag-based system. Shepitsen, Gemmell, Mobasher, and Burke (2008, pp. 259–
260) summarize the problems occurring in tag-based recommender systems: 
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“Redundant tags can hinder algorithms that depend on identifying similarities 
between resources. On the other hand, tag ambiguity, in which a single tag has 
many meanings, can falsely give the impression that resources are similar when 
they are in fact unrelated”.     

Besides these issues, Peters (2009) discusses the aim of tag recommender 
systems based on the core idea of folksonomies. She distinguishes between 
three sorts of tag recommendations: On the one hand, a system can make users 
aware of any spelling mistakes within their tags and suggest a tag variant – for 
example, the singular instead of plural form. Alternatively, it can suggest tags 
that users have previously assigned in the past in order to provide them with a 
consistent personal tag collection in their bookmarking management (Muller, 
2007; Sinclair & Cardew-Hall, 2007). Thus a user’s personomy is their own 
controlled vocabulary (Peters, 2009, p. 204; see also Neal, 2007). By contrast to 
those tag recommenders, a system may also suggest tags assigned by other 
users, either the ones most frequently assigned on the basis of the system’s data 
or those already assigned to a specific resource (Sigurbjörnsson & Van Zwol, 
2008). Here, Peters (2009) alludes to the positive feedback loop problem: 
“There are obvious dangers in establishing a positive feedback loop where 
potentially unsuitable tags may be reused due to the tag's initial popularity and 
subsequent exposure as a tag recommendation” (Guy & Tonkin, 2006). In other 
words, tags used more frequently are recommended more often, and thence are 
used even more frequently. “After all, this sort of recommender system 
artificially generates the implicit user agreement on certain behavior. Hence we 
can no longer speak of a reflection of authentic user behavior” (Peters, 2009, 
p. 205). The idea of a folksonomy designed to reflect user behavior gets lost. 
Furthermore, there arises a danger of not having enough discriminating tags, 
which influences good recommendations (Kipp, 2006; Muller, 2007; Paolillo & 
Penumarthy, 2007; see also Peters (2009) for further discussion on this topic).                 

In addition to these issues, which should be kept in mind, there are several 
approaches derived from information retrieval research which generate relations 
among tags and try to reduce errors in tag collections (Stock & Stock, 2013, 
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pp. 621–628). Relations between tags can be generated either statistically or on 
the basis of natural language processing. Statistical approaches use tag co-
occurrences in documents or in user tag collections to measure relations 
between tags that are used to make recommendations. In pure statistical 
approaches, tags are not modified linguistically. Both approaches can be 
combined, of course; for example, natural language processing is applied prior 
to statistical measures.         

Sanderson and Croft (1999) suggest automatically detecting hierarchical 
relations between terms by applying “subsumption” rules based on term co-
occurrences in documents. For example, term a is a hierarchical parent, a 
superordinate concept, of term b, if the documents including term b are a subset 
of the documents including term a (Sanderson & Croft, 1999). Thus, a hierarchy 
relation can be generated. This structure can be used for recommendation, for 
example by recommending the subordinate terms of a used tag to a target user in 
order to help him or her describe the resource more precisely. Schmitz (2006) 
adapted this approach to a Flickr database in order to generate parent-child 
relationships between tags, considering not only the co-occurrences of two tags 
in the image descriptions, but also the number of users who assigned both tags. 
Both values function as thresholds, which were adapted on the basis of 
experimental results. Even though the results show some noise (personal 
idiosyncratic tags such as abbreviations or spelling mistakes) and incorrect 
relations, 51% of the relations are correct (Schmitz, 2006). Most of these 
relations seem not to be generic or partitive hierarchical relations, but instance 
relations (individual concepts) (Stock & Stock, 2013, pp. 552–558), like “is-
part-of” relations showing geographic belonging: “Golden Gate bridge”, for 
instance, is a child tag of “San Francisco” (Schmitz, 2006). A similar method is 
proposed by De Meo, Quattrone, and Ursino (2009), who also measured tag 
similarity based on the number of common resources. They consider diverse 
user needs and adapt the similarity techniques according to these needs. For 
example, if a user is no expert in a specific domain, he or she probably needs 
more tag recommendations to search or label resources. Therefore, tag similarity 
is measured more “loosely”. Tags are clustered in a neighborhood set. A more 
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loosely clustering strategy is the or-like strategy, where a tag is assigned to a 
cluster if it is close to at least one tag within the cluster. In the and-strategy, a 
tag is included in a cluster if it is close to all other tags (De Meo et al., 2009).                    

Another approach is tag clustering, where clusters with similar tags showing 
topical relations are generated via diverse techniques (Knautz, 2008; Shepitsen 
et al., 2008). Similar tags can be recommended on the basis of these clusters, but 
in most cases the clusters serve as a pre-step for further user or resource 
recommendation. Shepitsen et al. (2008) compare diverse clustering methods of 
recommending resources to target users. Tags are clustered on the basis of their 
co-appearance in resources (see also Begelman, Grigory, Keller, & Smadja, 
2006). Tag frequency based on a resource as well as on a tag-based form of 
TF*IDF (number of times a tag was assigned to a resource multiplied by IDF: 
ratio between the number of all resources and the number of resources a tag was 
assigned) is used (Shepitsen et al., 2008)., Diverse approaches are possible to 
generate clusters, such as maximal complete link and k-means (see examples in 
Gemmell, Shepitsen, Mobasher, & Burke, 2008a, 2008b) or different variants of 
hierarchical agglomerative clustering (Shepitsen et al., 2008). Brandes, Gaertler, 
and Wagner (2003) give an overview of clustering approaches.    

While “subsumption” and clustering approaches try to detect related tags to give 
better recommendations of any resources, users or tags, natural language 
processing approaches generate equivalent clusters of tags designed to represent 
a common concept. Here tag forms are changed in order to give more 
appropriate recommendations. Stemming (non-linguistic) and lemmatization 
(linguistic) are two techniques applied to conflate terms (Galvez, De Moya-
Anegón, & Solana, 2005). Lemmatization considers morphological principles to 
generate linguistically correct lemmas. They are formed either on the basis of 
defined rules or with the help of dictionaries (Stock & Stock, 2013, p. 187). One 
simple example is the “S-Lemmatizer” for the English language, which 
conflates singular and plural forms while applying four rules (Harman, 1991):  

 words with 1-3 letters are not lemmatized, 
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 “ies” at a word’s end is replaced with “y”, except in words ending with 
“eies” and ”aies”, 

 “es” at a word’s end is replaced with “e”, except in words ending with 
“aes”, “ees” and “oes”, 

  “s” at a word’s end is deleted, except in words ending with “us” and 
“ss”.                

Such rules can be expanded to cover the conflation of more word forms (see for 
example Kuhlen, 1977). Automated approaches, which learn lemmatization 
rules, are also applied ( ; Plisson, 

). 

The difficulty when it comes to dictionaries lies in the immense workload 
involved, as a dictionary must include entries for each single term in a language, 
including all morphosyntactic characteristics and lemmatization forms for 
semantic analysis. The latter can also be used to detect paradigmatic term 
relations such as hierarchy or associative relations (Stock & Stock, 2013, 
p. 188). For the English language, the database WordNet3 is available 
(Fellbaum, 2005). WordNet mainly takes into account equivalent relations and 
group synonyms, which have the same conceptual meaning, in so-called 
“synsets”. Hierarchical relations, or super-subordinate relations, as well as part 
of speech relations that link words with the same stem, are also included. 
However, studies evaluating automatic query expansion via WordNet for 
information systems show negative results (Voorhees, 1998). It was not possible 
to clearly distinguish between different meanings or query terms. As tags mostly 
consist of single terms and not of compound terms, word sensing appears 
difficult.                

Tag-based recommender systems use tags to analyze similarities and 
recommend unknown resources, users or tags to a target user. These systems use 
collaborative filtering methods as the basis of their recommendations. With 
regard to topical relationships, which tags are able to show, it can be said that 

                                                           

3 https://wordnet.princeton.edu/ 
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tag-based approaches are similar to content-based approaches in that both try to 
generate an item’s content for recommendation (Jannach et al., 2011). However, 
the method is collaborative filtering. Furthermore, the major difference between 
tags and metadata used in content-based approaches is that tags are generated by 
a user community. A tag is always related to a user. Comparable to item-based 
collaborative filtering approaches, tag-based approaches might not consider all 
items that have similar user ratings, but items that have been assigned common 
tags (Durao & Dolog, 2009; Zhao et al., 2008). This means that all items with 
common tags are ideally similar and will thus be recommended to a target user 
if he or she has not yet bookmarked those items. In a scientific bookmarking 
system, two bookmarked articles with a common tag, for example “communities 
of practice”, might quite possibly deal with a very similar topic. Therefore, a 
user who is interested in this topic and has already bookmarked one of the 
articles might also be interested in the second article. A tag-based model would 
recommend this one. 

Tag-based approaches are further divided – like classical collaborative filtering 
methods – into user- and item-based approaches, with similarity being based in 
both cases on tags instead of ratings. User-based methods assume that users who 
use common tags to describe their resources are interested in common topics. 
Hence, unknown resources from similar users might be of interest to a target 
user. Item-based approaches assume that all items with common tags are 
similar. A target user gets recommendations of items he or she has not 
bookmarked yet and that share common tags with their already bookmarked 
items.  

Additionally, if user ratings are available, tags are applied to predict user ratings 
for resources. Szomszor et al. (2007) suggest predicting a user’s rating for an 
unknown item by comparing a user’s tag clouds for rated items and the tag 
cloud for the unknown item in question. The user tag cloud most similar to the 
item’s tag cloud shows the most probable ratings for the unknown item. For 
example, say a target user rated the movie “Emma” with five stars. The system 
now wants to predict the user’s rating for the movie “Northanger Abbey”. If the 
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tag cloud for “Emma”, generated from the target user’s assigned tags, is very 
similar to the tag cloud for “Northanger Abbey”, generated from all users’ tags, 
then the system predicts that the target user would rate “Northanger Abbey” 
with five stars and consequently make a recommendation of the movie. If the 
tag cloud of “Northanger Abbey” is similar to the target user’s tag cloud for 
“Pride and Prejudice”, and he or she rated that movie with only one star, the 
system would predict a rating value of one for “Northanger Abbey” and not 
recommend it. A more elaborate method, suggested by Szomszor et al. (2007), 
is the weighed approach, where the frequency of tags is considered similar to 
the TF*IDF weighting. The results within a Netflix dataset show that the 
weighted approach performs better than the unweighted approach and a simple 
rating prediction method based on the average rating of a movie (Szomszor et 
al., 2007). Therefore, if systems are able to apply tag information in addition to 
user, item and rating information, recommendation will improve. If additional 
data about users is available, user profiles will contain more information, which 
may work against the data sparsity problem. However, most social bookmarking 
systems do not contain any rating information. Studies and approaches on 
classic tag-based recommender systems predominate.                

The assumptions in tag-based systems described above lead to different 
implementation techniques, including hybrid approaches that apply a 
combination of user- and item-based techniques. Studies apply diverse methods 
and algorithms, such as probabilistic models (Lee, Lee, & Kim, 2011), 
clustering approaches (Popescul, Flake, Lawrence, Ungar, & Giles, 2000; Ungar 
& Foster, 1998), graph- and network-based (Wetzker, 2012) or diffusion-based 
models (Zhang, Zhou, & Zhang, 2010; Zhou, Ren, Medo, & Zhang, 2007). This 
work will not present a comparison of these diverse models. Its focus lies on 
examples of expert recommendation, especially for academic purposes, which 
will be discussed in the next section. 

3.5 Expert Recommendations 

The field of expert recommendation has developed in two different directions, 
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namely expert recommendation systems and expert retrieval systems. Both 
fields have a shared goal, which is to find relevant experts for users in diverse 
environments, such as academic institutions (Guns & Rousseau, 2013, 2014), 
companies (Reichling, Veith, & Wulf, 2007), or more generally in social 
collaborative networks (Kautz, Selman, & Shah, 1997). The difference between 
the two fields lies in the application of methods to find those experts as well as 
in the networks where the approaches are applied. Expertise retrieval (Balog, 
2012) concentrates on finding relevant people for diverse purposes, whereas 
expert recommendation systems have mainly developed within specific services 
that also focus on other areas, such as resource or tag recommendation (Deng, 
King, & Lyu, 2008; Liu, Curson, & Dew, 2005; Renugadevi, Geetha, Gayathiri, 
Prathyusha, & Kaviya, 2014). Recommendation and retrieval techniques differ, 
therefore. Nevertheless, both fields concentrate on defining expertise in a 
specific environment as well as on “translating” this definition into appropriate 
measurements that show this expertise and help users find their required experts.  

3.5.1 General Approaches in Expert Recommendation 

It seems that besides the recommendation of similar resources, recommendation 
of similar or relevant users is more important, especially in a social tagging 
system (Diederich & Iofciu, 2006). Panke and Gaiser (2008) (see also Panke & 
Gaiser, 2009) interviewed approximately 200 users about their tagging 
behavior: two thirds of them said they use tags to socialize with other users. 
Schaer, Mayr, and Lüke (2012) conducted a query log analysis of users in the 
social science database Sowiport4. The results showed that about one third of 
user queries relate to a person and that users explicitly searched for them. As 
interview statements show (chapter 1), scientists search for known colleagues in 
order to be up-to-date with current relevant literature. Thus the detection of 
user-user relations is sufficient to meet users’ requests. In general, recommender 
systems are embedded in other services such as retrieval systems, shopping 

                                                           

4 http://sowiport.gesis.org/ 
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services (Amazon5) or movie and streaming services (Netflix6). The main data 
sources come from these services; in some cases, external data is included. Data 
sources include social information about persons, such as publications, citations 
and references of researchers or bookmarks of web users. This information is 
produced by the users themselves. Users may also be able to give direct 
feedback to recommender systems, for example in knowledge-based services. 
Concerning expertise knowledge, we must distinguish between two kinds of 
user information. On the one hand, a user produces indirect expertise 
information of which he or she is not aware. For example, if a researcher assigns 
tags to articles in a bookmarking system, they mainly do so in order to manage 
and index their literature list. However, the system may use these tags to analyze 
the researcher’s interests and fields of expertise, for example to recommend 
them to other users. Hence, the system defines a user’s expertise status and 
generates expertise. On the other hand, a user him- or herself may be able to 
state their own expertise, for example while adding free or predefined 
knowledge areas to their profile (Berendsen, De Rijke, Balog, Bogers, & Van 
den Bosch, 2013). As discussed in chapter 2, this difference is important for 
researcher recommendation.  

There are several studies investigating expert recommendation with variable 
expertise definition, for example for commercial enterprises (Cai et al., 2011; 
Reichling & Wulf, 2009). Petry, Tedesco, Vieira, and Salgado (2008), for 
instance, have developed the expert recommendation system ICARE, designed 
to recommend experts within an organization. In this system, the focus does not 
lie on author publications and citations, but rather on individuals’ organizational 
level, availability, and reputation, among other aspects. Following a field study 
and interviews with employees, Reichling and Wulf (2009) explored a 
recommender system’s capacity to support knowledge management. In this 
system, experts are defined via their collection of written documents that have 

                                                           

5 http://amazon.com 
6 https://www.netflix.com/ 
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been analyzed automatically. The authors also used a post-integrated user 
profile with information about each person’s background and job description. 
Using additional social information from author profiles – besides citation, 
reference and bookmarking information – might improve the effectiveness of 
author recommendation. A similar method to conduct expertise is proposed by 
Seo and Croft (2009), who defined expertise in the Apple discussion forum7 on 
the basis of authorship of relevant posts regarding a specific query. Similarly, 
academic researcher profiles can be generated from scientific publications. A 
researcher’s expertise is then defined through his or her publications. Each 
publication is assigned to a specific topic, where the topics define the author 
expertise fields. Elaborate models learn to generate author-topic models, for 
example by applying Bayesian measurements (Steyvers, Smyth, Rosen-Zvi, & 
Griffiths, 2004). Based on these models, the system can propose relevant 
publications and authors for a specific academic field.  

Datta, Yong, and Braghin (2014) propose a team recommender system using 
diverse data sources including authors, their publications, and co-authorships, 
where co-authors are defined as collaborating teams. Instead of using citation 
data, the researchers suggest determining an author’s expertise via his or her 
publications by applying topic extraction techniques. The usage of diverse data 
sources appears promising, but the study only includes evaluation on a running 
user interface system, not any evaluation of the recommendations’ relevance. 
Expert recommenders for academics may also concentrate on expert retrieval 
and are integrated in a search environment. Mutschke, Mayr, Schaer, and Sure 
(2011) propose showing author networks, created on the basis of author 
centrality, as complementary sources for finding relevant search results. For 
instance, a user will perform a search in a database (in this case Sowiport) and 
get diverse options in order to retrieve his or her results. The author network is 
one option, showing important authors on the basis of the user query and author 
centrality analysis in the retrieved results. As a result, the author network shows 

                                                           

7 https://discussions.apple.com/ 



 Expert Recommendations 133 
 
relevant and potential partners for a specific field defined by query terms and 
additionally gives new relevance weights to the retrieved documents. This 
opportunity makes users aware of new relevant information, as generally they 
will only be presented with a document rank list based on term weights and are 
aware of the top 10 retrieved results. However, recommended authors depend on 
a user query, which might be inappropriate, and results are not personalized to 
refer to any specific information about the user except the query terms at hand.           
Expert recommendation based on bibliometric data – as applied in the approach 
outline in this work – is a new field, but some studies show first results. For 
example, future collaborations can be seen to be generating co-authorship 
networks. Guns and Rousseau (2013; 2014) recommend this method to suggest 
future partners from different international cities. They generated co-authorship 
networks (more specifically: based on the city where an author is based 
professionally) from data in Web of Science. To predict good collaborations, the 
researchers tested diverse measurements, for example common neighbors and 
weighted graph distance (Egghe & Rousseau, 2003; Newman, 2001). To train 
the model and evaluate the results, data was split into three time periods. The 
later time period was used to evaluate the precision of the results. The 
researchers claim that good collaborations can be predicted this way and that the 
accuracy of recommendations is quite high (Guns & Rousseau, 2013, 2014). 
However, the papers do not discuss whether recommendations are serendipitous 
or rather obvious. Recommended collaborations often include pairs of cities 
from the same country. Furthermore, co-occurrence measuring on the city level 
(based on affiliation information in a publication’s metadata) may lead to biased 
results as authors may change their institutions and work in different places, 
especially within their native country. Thus new collaborations do not arise 
from new interactions between two authors who did not know each other 
previously, but rather from colleagues who have collaborated in the past (albeit 
in different cities).                             

3.5.2 Expert Recommendation in Social Tagging Systems  

Research into expert recommendation based on social information in tagging 
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systems applies variants of collaborative filtering methods to expert 
recommendation. Approaches concentrate on Web 2.0 users and academics (De 
Meo, Nocera, Terracina, & Ursino, 2011; Deng et al., 2008). Au Yeung, Noll, 
Gibbins, Meinel, and Shadbolt (2009) discuss the non-academic bookmarking 
system Del.icio.us. They define an expert user as someone who has deposited 
high-quality documents in their bookmark collection (said documents being 
defined by the number of their users with high-level expertise) and who tends to 
recognize useful documents before others do (as seen in the timestamps on 
users’ bookmarks). Comparatively, the “high-quality documents” in the 
approach outlined in chapter 4 are the publications of the researcher meant to be 
recommended collaboration partners. Hence, it is vital for the purposes of 
recommendation that users bookmark at least one of the target researcher’s 
publications. Ben Jabeur, Tamine, and Boughanem (2010) use social clues like 
connectivity between researchers and opportunities to meet in person, for 
example at scientific conferences, to improve the performance of their 
recommendation system. Nocera and Ursino (2011) focus on “social 
folksonomy”, using information about user friendships and semantic 
information in tags for their recommendations. However, friendship relations 
are explicit relations between two individuals. A recommender system does not 
need to suggest known friends for any purpose. The researchers claim that other 
social relations besides friendship could be included in their system. The first 
approach aims at recommending tags or resources based on friends’ opinion, but 
a focus for further research lies in the detection of unknown possible users “who 
share the same interests and needs” (Nocera & Ursino, 2011, p. 1280). To do so, 
the approach concentrates on finding reliable users (as well as relevant 
resources) in different social networks (De Meo, Nocera, Quattrone, Rosaci, & 
Ursino, 2009; De Meo, Nocera, Rosaci, & Ursino, 2011). In other words, a user 
is given recommendations of users from his or her own network or others. 
Diverse methods are applied in order to find relations based on user interactions 
(interactions between two users from different networks are measured by using 
fictitious users as representing a network’s content), user comments, and 
resources. Two important aspects are trust and reputation. The latter is a kind of 
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collaborative opinion that all users share about a specific user. Trust between 
two users regarding a user’s evaluations of another user’s opinions within the 
network must be specified. As discussed above, trust is a kind of crucial factor 
for users in a recommendation service. The approaches propose good options 
for recommendations of new and unknown users. However, the users have to be 
highly active by posting opinions and resources as well as evaluating them. 
Recommendations are based on users’ interactions. Therefore, an inactive or not 
especially active user will suffer from fewer and less valuable 
recommendations, as they are based on a small set of user information. 
Unfortunately, neither approach discusses the problems of user names. For 
example, a unique user could be a member in two or more networks using 
diverse nicknames. In a recommendation list, this user could appear several 
times, which would be inappropriate.                 

Another proposal is the “FolkRank” designed to recommend users, items or tags 
to a target user (Hotho, Jäschke, Schmitz, & Stumme, 2006b; Hotho, Jäschke, 
Schmitz, & Stumme, 2006a; Jäschke et al., 2007). The idea is to apply the 
principle of the PageRank (Brin & Page, 1998) to folksonomies. A first 
approach based on the PageRank principle only recommended those tags that 
were assigned most often in the community (Hotho et al., 2006b). This confirms 
the feedback loop problem discussed above (Peters, 2009). Thus, Hotho et al. 
(2006a) modified this “GlobalRank” (Balby Marinho et al., 2012, p. 59) while 
subtracting its probability distribution from a distribution starting from a fixed 
user-item pair. This results in a final weight: the FolkRank. The FolkRank thus 
considers a user’s preference while starting graph computation from a specific 
user-item pair. Results show that a target user is recommended more personal 
tags, items and users (Hotho et al., 2006b).  

To summarize the findings, recommender systems aim to help users find 
relevant and new items; these can be any items, such as products and scientific 
articles, tags, and even users. The focus lies on personalized recommendation, 
which means that recommendations should be adapted to the preferences and 
purposes of a unique target user. Expert recommendation or expert retrieval 
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focuses on finding the “right” people for a target user. Intentions in finding 
relevant people differ relative to a system’s purpose and, of course, a user’s 
needs. Models to find experts were tested successfully in diverse studies. A 
main concern here is the significance of the results, as these are system- and 
user-dependent. Thus the evaluation of those systems is a critical aspect and will 
be discussed in the following.  

3.6 Evaluation of Recommender Systems 

The evaluation of recommender systems takes into account several factors. On 
the one hand, quantitative metrics are applied. On the other hand, user studies 
are conducted. Concerning quantitative metrics to measure a system’s 
performance, the most important metrics are accuracy and coverage. Accuracy 
is a precision factor, where algorithmic variants differ slightly. The use of 
diverse metrics mainly depends on the purpose of the system in question. A 
recommender system may try to predict a rating for a target user concerning a 
specific item. Alternatively, it may recommend a list of new items to a target 
user who does not yet know these items. In the latter case, precision metrics 
adapted from the information retrieval field can be applied for accuracy 
measurement (Shani & Gunawardana, 2011; Stock & Stock, 2013, p. 114).  

The precision value shows how often relevant items (positive user-item 
responses) are recommended relative to the number of non-relevant 
recommended items (equation 3.1).  = | || | + | | 
Equation 3.1. Precision metric, where Rr is the number of relevant recommended items, and Rrn the 
number of non-relevant recommended items. 

The recall metric is another factor of a system’s effectiveness in addition to 
precision.. It shows how often relevant items are recommended relative to all 
relevant items (equation 3.2). Generally, precision decreases when recall rises. 
When a recommender system suggests a fixed number of items, precision value 
is the most important.        
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Equation 3.2. Recall metric, where Rr is the number of relevant recommended items, and NRr the 
number of non-recommended relevant items. 

Another value is the false positive rate (Shani & Gunawardana, 2011) (or fallout 
ratio, also used in information retrieval (Cleverdon, 1967)), which shows the 
ratio between recommended non-relevant items to non-recommended non-
relevant items (equation 3.3). All three metrics belong to the field of accuracy 
metrics for recommendation systems, which include other algorithmic variants 
of measuring a system’s prediction performance, including mean absolute error 
and root mean squared error (see Shani and Gunawardana (2011) for further 
discussion).     = | || | + | | 
Equation 3.3. False positive metric, where Rnr is the number of recommended non-relevant items, 
and NRnr the number of non-recommended non-relevant items.  

The choice between the various metrics should be based on the recommender 
system’s goals. For example, a user in a movie recommender wants to be 
recommended relevant movies, which means that precision should be high. This 
user is probably not interested in whether the number of recommended 
irrelevant movies (false positives) is high compared to that of irrelevant movies 
that are not recommended. In the case of a company that wants to recommend 
products and ship them to potential buyers as offers for sale, the number of all 
potential sales might be of interest (Shani & Gunawardana, 2011).  

It must be noted that, in contrast to retrieval system evaluation, where user 
relevance feedback is available (classic scenarios use pre-determined evaluation 
test collections (Sanderson, 2010)) recommender system evaluation can refer to 
user feedback only if explicit ratings are available. If that is the case, a system 
will know explicitly what a user likes and does not like. Training and test sets 
are applied for the purposes of evaluation. Both sets are derived from a service’s 
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historic user data, which includes information about users and their rated or 
bookmarked items. This data is divided into training and test sets. In a typical 
split, 80% of the data is used for training and 20% for testing. User ratings in the 
test set are deleted and the system then tries to predict them after it developed its 
model on the basis of the training set. 

If no rating data is available, as in most tagging systems, a system will only 
know which items a user has bookmarked, purchased or used. However, without 
any user-item relation – in the absence, that is, of a clear user statement – the 
system will not know what a user thinks about the item. He or she might like the 
unknown item or not. No explicit relevance is stated unless other information, 
such as ratings or any other feedback data, is available. If ratings are available, a 
system can then define positive and negative ratings, for example via thresholds, 
to distinguish between a positive and negative user-item relation. In a binary 
system, as in bookmarking services, this option is not available. For that reason, 
the general assumption needs to be applied that items to which a user has no 
relation are not relevant, and will therefore be deemed disliked by default. This 
scenario leads to the following four cases (figure 3.7): All items for which a 
positive user-item relation exists are seen as relevant. A system is either able to 
recommend them (correct predictions) or fails to do so (false negatives). All 
items for which no user-item relation exists are seen as irrelevant. They are 
either recommended (false positives), or they are not (correct omissions).   

The last case leads to false measurements because the pre-decided assumption is 
incorrect. Possibly a user was simply unaware of the item and therefore did not 
use or bookmark it. To generally assume that a user does not like an item 
because he or she has not used it is incorrect. An evaluation based on this 
scenario would punish a recommender system if it suggests those unknown 
items (false positives), although a user might, in fact, like them. Jannach et al. 
(2011, p. 172) conclude that an ideal evaluation of a recommender system 
should be based on historical user data, where all users have rated all items. Of 
course this is not realistic, and such a scenario would make a recommendation 
system unnecessary.       
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In real user data sets, for example in bookmarking services, users only 
bookmark a small number of items and a system includes many negative user-
item relations. To overcome the incorrect assumption of correct omissions, all 
non-existing user-item relations could be deleted before any recommendations 
are measured and evaluated. In a social tagging system, Rendle, Marinho, 
Nanopoulos, and Schmidt-Thieme (2009) suggest distinguishing between 
positive, negative, and missing user-item relations. In this case, relations in a 
folksonomy are described as tensors and user-item relations defined via tags 
(Balby Marinho et al., 2012). Positive values are determined if a user has 
assigned a tag to a resource. Negative values are set if a user did not assign a 
specific tag to a resource, but used other tags to assign the same resource. 

Figure 3.7. Types of recommender system predictions in evaluation processes. Figure adapted from 
Jannach et al. (2011, p. 171). 
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Missing values are those where a user did not assign any tag to a resource. 
Instead of having zero user-item relations each time a user did not assign a 
specific tag (and only distinguishing between 0 and 1 in a binary approach 
(Symeonidis, Nanopoulos, & Manolopoulos, 2008)), only those relations are 
negative where a user did not tag a resource at all. Hence, there are positive (+), 
negative (-), and zero values. This also leads to a data set which is less sparse 
because negative values are being counted.      

Other recommender evaluation metrics besides recall, precision and fallout ratio 
concentrate on diverse system qualities. Coverage algorithms measure the 
ability of a system to recommend a huge amount of stored items. For example, 
resources in a bookmarking system that are not bookmarked by users, or have 
no tags, cannot be recommended in a user- or item-based collaborative filtering 
approach. Other quality values are novelty and serendipity (Baeza-Yates 
& Ribeiro-Neto, 2011; Herlocker et al., 2004; Lops et al., 2011; Victor et al., 
2011). Novel recommended items are those the user was previously unfamiliar 
with. This quality is one of the most important, because a recommender system 
would not be of any help to a user if it only suggested items he or she already 
knew. Serendipity focuses on surprising recommendations that a user would not 
have found on their own. For example, if user likes Stephen King, and a system 
recommends books by King the user has not purchased yet, these would be 
helpful recommendations. However, it is very likely that the user would have 
found these books without the help of the recommender system. The same holds 
true for a system’s trust value (Victor et al., 2011). As discussed in section 4.3, a 
user evaluates a system’s trustworthiness by reference to items he or she already 
knows and has liked before. Thus a system that suggests only novel unknown 
items would likely not be trusted. The same goes for serendipitous items if a 
user does not see any trust-creating sense in these recommendations8.  

                                                           

8 For an overview of metric algorithms and other important evaluation metrics, 
especially for an operating recommender system, see Shani and Gunawardana 
(2011), Jannach et al. (2011, pp. 166–188) and Herlocker, Konstan, Terveen, 
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Nevertheless, the evaluation metrics named have some shortcomings. 
Evaluation based on historical user data is neither capable of making any 
statements about missing user-item relations, nor can it analyze direct user 
feedback. The problem can be overcome via user evaluation, where users are 
asked directly whether an item is relevant or not (Jannach et al., 2011). There 
are several user evaluation studies available, concentrating on diverse questions 
(Cosley, Lam, Albert, Konstan, & Riedl, 2003; Das, Datar, Garg, & Rajaram, 
2007; Herlocker et al., 2000; Lee, Smeaton, O'Connor, & Smyth, 2006; 
Mahmood & Ricci, 2009; Sinha & Swearingen, 2001, 2002; Swearingen 
& Sinha, 2001). Nevertheless, evaluation on historical data prevails because 
such data sets are easily available via recommender services such as 
MovieLens9, Netflix, or Entree.  

Ma, Pant, and Liu Sheng (2007) propose improving searches via personalized 
categories that are conducted on the basis of a user’s interest taxonomy, 
considering diverse personal information, for example deriving from a user’s 
profile. In addition to using log-file information, they developed a questionnaire 
consisting of statements with which participants had to disagree or agree on a 
seven-point Likert scale. This allowed the authors to directly find out whether a 
system helped a user identify relevant documents more easily and more quickly, 
for example. Middleton, Shadbolt, and De Roure (2004) built a running 
recommender system for a computer scientist database in order to suggest 
relevant papers. They evaluated their system by recording users’ web browsing 
activity and log-files. Additionally, users could give feedback to the 
recommendations. The authors stress that their long-time study is important for 
analyzing realistic user behavior and increasing the effectiveness of measuring a 
system’s performance. They complain of a lack of experimental results with real 
people in recommender system research, but state that their results show system 

                                                                                                                                  

and Riedl (2004); Herlocker et al. (2004). As the experimental approaches in 
this work focus on qualitative user surveys and do not include historical data 
from an active target user, other metric evaluations will not be considered.  
9 http://grouplens.org/datasets/movielens/ 
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performance on a more realistic level than offline experimental evaluations. 
Similarly, McNee, Riedl, and Konstan (2006) make researchers aware of 
standard evaluation metrics such as accuracy and serendipity as well as their 
potential pitfalls.  

The evaluation model in De Meo et al. (2009) and De Meo et al. (2011) is 
similar to the method applied in this work in chapter 4. To evaluate their results, 
the authors conducted recommendation lists for each target user. These users 
manually decided which of the suggested persons is reliable for them 
(respectively, which resources are relevant to them). This information was used 
to create lists of reliable users (and relevant resources) for a target user, with 
these reliable users being further subdivided into unknown and known users 
(users with any relation at all to a target user, for example direct contact in a 
network). Novelty (recommending unknown users) and correctness 
(recommending reliable users) are measured according to these lists.  
Furthermore, there are differences in user notions concerning self-selected 
expertise. Berendsen et al. (2013) conducted an interesting study testing self-
selected expertise against expertise generated by the system. In the first case, 
participants selected expert areas from a pre-defined list and added them to their 
profile. In the second case, participants evaluated expert areas that had been 
recommended by the system. The results show that system-generated profiles 
are more complete, and participants add more expert areas to their profile, if 
recommendations make them aware of these. The reason may be that users were 
unaware of further knowledge areas, or that stating expertise level for all 
knowledge areas in the system (up to 100 in the approach) simply appeared too 
time-consuming. Assessing one’s own expertise might be difficult without any 
help, after all, or users simply are not in the habit of doing so. In both cases, it 
leads to different evaluation results. Hence, the authors suggest using system-
generated profiles for system evaluation, as these are more complete (Berendsen 
et al., 2013). Approaches in chapter 4 will also conduct user studies in which 
participants evaluate the system via semi-structured interviews. Here the survey 
includes questions to be answered on rating scales focusing on the approaches’ 
research questions. The results are designed to give a more detailed view of the 
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target users’ opinions that can barely be measured via any quantitative metric. 
Furthermore, the results of this user evaluation are based on system-generated as 
well as on user-selected features.                

To summarize chapter 3, recommender systems aim to help users find relevant 
and new items, users and tags. Good recommender systems make it easier and 
faster for a user to find what he or she is looking for. Additionally, systems like 
these can help users detect new things that they might have missed without any 
help. As valuable scientific collaboration comes not only from previously 
existing networks and properly linked researcher communities, but often derives 
from new and unexpected relations, and as new young researchers constantly 
enter the scientific community without having strong colleague relationships, 
the assumption is that recommendation systems are qualified to support 
researchers’ needs. Chapter 4 shows experimental approaches toward a 
recommender model based on the aspects of research collaboration and social 
information. The question is: how can these aspects be considered in a 
recommendation system that has the purpose of showing relevant experts to a 
target scientist?     
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4 Case studies on Expert Recommendation 

With regard to the research questions, the following approaches conduct studies 
on expert recommendation for researchers while analyzing relations based on 
social information about researchers. Recommendation networks should make 
researchers aware of potential collaborators for the purposes of community 
building and scientific knowledge creation.   

The research questions are: 

1. Are scientometric and altmetric methods appropriate for determining 
relevant new collaboration structures for scientific purposes? 

2. Are databases and services containing bibliometric and altmetric data 
structures appropriate sources for detecting relations between 
researchers?   

3. Can bibliometric and altmetric methods be used to establish a 
recommender system for scientific purposes? 

The final idea of suggesting scientific collaborators is explored in the third 
approach (section 4.3). Sections 4.1 and 4.2 introduce pre-studies, which regard 
relevant aspects for the construction of expert recommendation in section 4.3. 
The pre-studies (Heck, 2011; Heck & Peters, 2010a, 2010b, 2010c) show some 
initial results concerning bookmarking data and similarity relations. The first 
study analyzes the structure of bookmarking data compiled from three different 
services and gives an overview of the data structure of folksonomy-based 
bookmarking systems. Furthermore, the three standard similarity algorithms are 
compared in order to choose the most appropriate one for further measurements.  

The second study simulates a recommender system, which recommends similar 
users to a target researcher on the basis of social information gleaned from a 
social bookmarking service. The evaluation gives initial insights into the 
appropriateness of bookmarking data for finding relevant research partners. 
Both studies served as a preparation for conducting the final experimental 
approach and provided relevant results for improving the proposed model 
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(Heck, 2012a, 2012b, 2012c, 2013; Heck, Hanraths, & Stock, 2011; Heck, 
Peters, & Stock, 2011).              

4.1 Structure of Bookmarking Data and Similarity Metrics 

This first study aims to analyze data from three social bookmarking services in 
light of the following questions: 

 How is data structured in folksonomy-based services?  
 Which similarity metric is appropriate for expert recommendations?    

The results give an overview of user bookmarking behavior concerning a 
specific research discipline, which will also be considered for the following 
studies. The comparison of three diverse similarity metrics shows differences in 
the results of user-user relations, which should be considered for further 
recommendation approaches.     

4.1.1 Data Set 

The model analyzes bookmarking data from three services, namely BibSonomy, 
CiteULike and Connotea1. In all services, users are able to bookmark scientific 
publications such as articles, contributions to proceedings, and books. In order 
to aggregate data from those services in a logical manner, data is limited to a 
scientific discipline. One reason for this is to obtain correct data about scientific 
publications, because bookmarking services include noisy data and bookmarks 
that do not refer to scientific publications. The second reason is that researchers 
from this scientific discipline participated in the further studies, and data from 
their field is more revealing for further discussions on the appropriateness of 
this data for partner recommendation.  

As a result, 45 relevant journals from the field of solid-state physics were 
chosen (table 4.1). The choice of these journals is described in more detail in the 

                                                           
1 Note: Connotea was discontinued in 2013. Mendeley was not considered at the 
time of this study because the service did not offer any bookmarking data. 
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work by Haustein (2012), who analyzed the journals’ impact while including 
not only classical journal impact factors, but also information from 
bookmarking services. All three services searched the bookmarks of all articles 
published in the 45 periodicals between 2004 and 2008. The DOI (digital object 
identifier2), ISSN numbers and UT code from Web of Science were used for the 
search in order to determine the correct bookmark and identify unique articles.  

Act Cryst A J Phys A  Phys Rev A  
Act Cryst B  J Phys Condens Matter  Phys Rev E  
Ann Phys  J Phys D  Phys Scr  
Appl Phys A  J Rheol  Phys Solid State  
Appl Phys Let  J Stat Mech  Phys Stat Sol A  
Comput Mater Sci  J Stat Phys  Phys Stat Sol B  
EPL  J Vac Sci Technol A Phys Today  
Eur Phys J B  JETP Lett  Physica B  
Eur Phys J E  Nanotechnol  Physica C  
Hyperfine Interact  New J Phys  Pramana  
IEEE Nanotechnol  Nucl Instrum Meth A  Rep Prog Phys  
Int J Thermophys  Nucl Instrum Meth B  Rev Mod Phys  
J Appl Phys  Phys Fluids  Soft Matter  
J Low Temp Phys  Phys Lett A  Solid State Ion  
J Magn Magn Mater  Phys Rep  Supercond Sci Technol 

Table 4.1. Chosen journals (abbreviations) for the data set. 

Vague bookmarking data was determined manually and either corrected or 
deleted if the bookmarks did not refer to the determined articles. For each of the 
correct bookmarks retrieved, all bibliographic data as well as related user and 
tag information was collected. Data from all three services was merged into one 
database and relations were specified between bookmarks from diverse services 
that refer to the same article. Bookmarks that refer to a unique article were 
identified via DOIs and verified via the UT-code. Hence, the number of false 

                                                           
2 http://www.doi.org/ 
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relations is diminished and almost entirely eliminated. Unique users were also 
determined manually. Upper- and lower-case letters were ignored, and user 
names that varied only in this regard were attributed to a unique user. In the data 
set, there are four cases (unique users) in which user names were the same 
except for their upper- and lower-case forms (mostly, the first letter differed in 
this regard). In four more cases, user names were adjusted manually and added 
to a unique user as the names differed only slightly. For example, 
“paul_hopkins” was adjusted to “paulhopkins”. This folksonomy-based sub-set 
is the basis for the following analyses. 

4.1.2 Data Structure 

Generating the data set leads to the following basic numbers: 2,437 unique users 
bookmarked 10,280 unique articles from the 45 periodicals. The total number of 
all bookmarks was 13,608. The analysis of user names shows that 74 users have 
a profile in more than one bookmarking system. Only one user is found across 
all three services.  

 bibsonomy citeulike connotea all services3  

#bookmarks 10640 2028 940 13608 

#unique 
users 

145 2054 313 24373 

#tags 3152 27806 5772 36230 

Table 4.2. Number of bookmarks and users for all three bookmarking services. 

A comparison of the three bookmarking services leads to distinct results in the 

                                                           
3 Note: The difference in the sum of unique users between the services derives 
from the fact that 74 users are active in two services and one user in all three 
services. 
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case of bookmarked publications from the domain of physics (table 4.2). 
CiteULike has the most users, but BibSonomy users have bookmarked more 
articles. Of these users, a relatively small number added a huge amount of 
bookmarks. The ten most active users had 99-322 bookmarks, while 80 users 
had 30 or more bookmarks. This confirms former studies on collaborative 
systems, which show that a few active users are responsible for the majority of 
bookmarks (see the power law distribution in figure 4.1). This fact leads to 
sparsity and cold start problems, which might work against appropriate 
recommendations for less active users (Breese, Heckerman, & Kadie, 1998; 
Huang, Chen, & Zeng, 2004; Schein, Popescul, Ungar, & Pennock, 2002). 

In the generated data set, users assigned 36,230 tags. Interestingly, the number 
of tags compared to the number of bookmarks in the three services differs 
immensely. BibSonomy, the service with the most bookmarks, has only 145 
users, who assigned 3,152 tags. By contrast, CiteUlike has only a small amount 
of bookmarks, but 2,054 users assigned 27,806 tags to them. Hence, the latter 
user community seems to be more tag-active. As tags are able to show topical 
relations, and those relations are applied in tag-based recommender systems in 

Figure 4.1. Power law distribution of bookmarks (n=13,608) (y-axis) per user (unique users: 2,437). 
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order to detect similar interests, the data distributions in CiteULike are more 
appropriate for measuring similarity in tag-based relations. However, only 1,949 
users assigned tags to their bookmarks, while 1,579 bookmarks remained 
untagged.  

Tag assignment is not subject to any restrictive rules, and some of the 
approaches discussed in chapter 3 contain methods of adjusting tags. For 
example,  (2010) propose an automatic 
approach toward learning lemmatization rules while measuring the similarity of 
words via the length of their suffixes. With regard to tag collection, such 
adjustments may improve user-item-tag relations in a folksonomy and thus lead 
to better recommendations. However, it must be noted that manipulated tag 
terms do not represent authentic user behavior anymore (Peters, 2009). Thus 
only minor adjustments were considered in order to exclude obvious tag 
“errors” and inappropriate tags. The original tag set includes 11,507 unique tags 
(not taking into consideration capitalization). In one case, tag adjustments leads 
to 9,661 unique tags (tag set one). Here the system considers all signs from [a-
z,A-Z,0-9,-, ,_], deletes all other signs and adjusts all tags to the lower case. In 
tag set two, 8,454 unique tags are derived by applying the following method: 
The system considers all signs from [a-z,A-Z,0-9, ,_]. Hyphens are deleted 
because manual analysis shows that many tags are similar except for the 
presence or absence of hyphens. All signs are set to the lower case, and the 
underscore is replaced by a blank space (also on the basis of manual analysis). 
Additionally, Porter stemmer4 is applied, where both terms in two-term tags are 
considered for stemming. For both tag sets, fiugre system deletes typical stop 
tags, which are “import”, “imported”, “jabref” (upload from jabref reference 
manager) and “upload”. Bookmarking services assign these tags automatically 
when users upload or import bookmarking data. The differences in the number 
of unique tags are not too significant, but user-user relations would increase 
from more common tags, and the number of possible recommendations for each 

                                                           
4 https://pypi.python.org/pypi/stemming/1.0 
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target user would grow slightly.  

However, earlier studies proved that relevance measurement is hardly affected 
at all by these adjustments. Peters, Schumann, Terliesner, and Stock (2011) 
analyzed tags from Del.icio.us5 to find out whether power tags (Peters, 2012; 
Peters & Stock, 2010) and Luhn tags (Luhn, 1958) enhance retrieval 
effectiveness. Analyses based on a retrieval test with test sets and expert 
relevance data showed that recall and precision are affected in different ways. 
The Usage of power tags improved precision for one-word queries. Moderately 
used tags, as favored by Luhn’s thesis, did not lead to more relevant results. 
Instead, the combination of power and Luhn tags worked well for recall values, 
but not for precision values (i.e. for one-word queries). All analyses were 
conducted via three diverse tag sets: Original tag, unified tags with lower-case 
digits and without any special characters, and unified and stemmed tags. These 
adjustments proved inappropriate. Peters et al. (2011) conclude: “The 
unification and stemming of tags do not enhance precision of results.”   

Due to these findings and the numbers of tag sets generated, it was decided to 
analyze further measurements on the basis of tag set one, which considers the 
most common signs and deletes automatic tag assignments. Based on this data, 
initial user similarity measurements showed differences in the recommended 
ranking lists, concerning, on the one hand, variances between bookmarks and 
tags, and on the other hand, variances between the standard similarity metrics in 
information science. 

4.1.3 Differences Between Similarity Models and Coefficients 

Similarity proceeds on the assumption that two users behave in a similar way in 
a specific environment. In a social tagging system, the following assumptions 
can be applied (Balby Marinho et al., 2012):     

                                                           
5 http://del.icio.us.com: Service discontinued. 
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 If users bookmark common articles, they are interested in the same 

items. As a result, they are assumed to be similar and a relation 
between them is measured with regard to the bookmarks (referring to a 
unique article) both users have in their bookmarking list.  

 If users use common tags, they are interested in the same topics. 
Hence, they are assumed to be similar and a relation between them is 
measured with regard to the tags both users have assigned to their 
bookmarks. 

Users with only one bookmark were not considered for similarity measurement 
because they would highly distort the results. User-user pairs with one 
bookmark in common, where that bookmark is the only one both have assigned, 
would result in a similarity of 1, which means that both users are identical in 
their behavior. However, proving this assumption on only one bookmark is not 
appropriate. It would be important for a user recommender system to set a 
threshold: either a user should have a minimum of bookmarks, and/or a 
minimum of similar bookmarks to another user’s, before this user is 

Figure 4.2. Distribution of common bookmarks (y-axis) for the 6,491 user-user pairs. 
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recommended to him or her. Another option is to let the user decide. For 
example, a user can adjust a slider to regulate which users, or what number of 
users, are recommended (see Knautz, Soubusta, & Stock, 2010 for resource 
recommendation and a system with slider functions). CiteULike has a minimum 
of 20 resources a user must have in his or her online library before resources are 
recommended (see chapter 3). Leaving out all users with fewer than two 
bookmarks, the data set showed 6,491 user-user pairs (897 unique users)6 who 
share at least one bookmark, instead of 11,007 pairs. Again, the number of 
shared bookmarks in the user-user pair data set shows a power law distribution 
in which only 12 user-user pairs share 10 or more bookmarks (figure 4.2).   

For similarity analyses, we applied Jaccard-Sneath (Jaccard, 1901; Sneath, 
1957), Dice (Dice, 1945) and the cosine coefficient (Salton, Wong, & Yang, 
1975), the most common coefficients in information science (Stock & Stock, 
2013, p. 116):  ( , ) = 2 (| |)| | + | |           

 ( , ) =   | || | + | | (| |)          
 ( , ) =  |  || | | |  

Equation 4.1. Similarity metrics Dice, Jaccard-Sneath, and cosine coefficient, where Ba, respectively 
Bb, is the number of bookmarks of user a, respectively b. The same goes for similarity based on 
common tags, where |Ba| is replaced by |Ta|, respectively |Tb|. 

Rasmussen (1992, p. 422) claims that “Dice, Jaccard and cosine coefficients 
have the attractions of simplicity and normalization and have often been used 

                                                           
6 Note: Unique users were determined as described above (with user names that 
occurred twice being merged), but user-user pairs may include double pairs 
relating to users who are featured in two or three services.  



168 Case studies on Expert Recommendation 

 
for document clustering.” According to Van Eck and Waltman (2008), a 
similarity measurement should fulfill two conditions:  

1. The similarity between two users should be maximal if the “profiles 
differ by at most a multiplicative constant” (p.1654).  

2. There should be no similarity if the authors have nothing in common, 
i.e. co-citations or, in our case, bookmarks or tags. 

All three coefficients meet these conditions. The normalized metrics show 
values between 0 and 1, where 0 means that two objects are not similar at all 
and 1 that both have the highest similarity possible. Van Eck and Waltman 
(2009) claim that the most popular similarity measurements are association 
strength, cosine coefficient, the inclusion index and the Jaccard index. In the 
Pearson correlation (Pearson, 1895), which is also often used for similarity 
measurement, they identify some shortcomings (Van Eck & Waltman, 2008). 
Pearson labels objects as similar even though they do not have any features in 
common, and shows negative values for objects that are considered to be quite 
similar. To clarify, consider the following example by Van Eck and Waltman 
(2008): Two authors are compared, via the Pearson correlation, on the basis of 
co-citations they have in common with other authors (here n=4). If the profile of 
author 1 is [1 2 3 4] and that of author 2 is [10 20 30 40], both authors have a 
similarity value of 1 (totally similar) because author 1 has 1 co-citation with 
author 3 (respectively, author 2 has 10 with author 3), 2 co-citations with author 
4 (respectively, author 2 has 20), 3 co-citations with author 5 (respectively, 
author 2 has 30), and 4 co-citations with author 6 (respectively, author 2 has 40). 
The total number of co-citations is not considered, but only the relative 
frequency with regard to the other authors. If the profile of author 1 is [11 12 13 
14] and author 2’s is [14 13 12 11], the resulting Pearson correlation values 
would be -1 (no similarity at all), although both authors have almost the same 
number of co-citations with the other four authors. If both authors have the 
profiles [10 1 0 0] and [0 0 1 10], but have no common author by whom they 
have been co-cited, the correlation value will still be -0.43. Thus, Van Eck and 
Waltman (2008) conclude that the Pearson correlation is not a satisfying 
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similarity measurement for their co-citation analysis. Ahlgren, Jarneving, and 
Rousseau (2003) also showed that the Pearson correlation, used for co-citation 
analysis, has shortcomings when expanding the data sample, even if only zero-
vector values are added.  

Similarity is based either on common bookmarks or on common tags. In both 
models, Dice and Jaccard-Sneath showed similar results, as both metrics are 
quite similar (Egghe, 2010). The latter generally shows minor similarity values. 
By contrast, the cosine coefficient leads to different ranking results while 
showing higher similarity values for user-user pairs, both for common 
bookmarks and common tags (compare also Hamers, Hemeryck, Herweyers, & 
Janssen, 1989 for an analysis of the cosine coefficient). Dice and Jaccard-Sneath 
tend to punish two users whose total numbers of bookmarks, respectively tags, 
differ largely (figure 4.3). Thus the question arises: which ranking of similar 
users best serves the target user and his or her needs?  Consider the following 
example: Table 4.3 shows similar users for target user “dchen”, who has 212 
bookmarks. According to Dice, the most similar users also have the most 
bookmarks in common with “dchen”. Hence, the most similar user “weeks”, 

Figure 4.3. Distribution of similarity values for all 6,491 user-user pairs, ordered by Dice. 
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with 17 common bookmarks, is ranked first. Users “katiehumphry” and 
“rodney” both share five bookmarks with “dchen”. However, “katiehumphry” is 
on number five, whereas “rodney” comes in eighth place. For target user 
“dchen”, the relevance of the different rankings depends on his or her needs. If 
“dchen” were to search for relevant users to get more relevant literature, 
“rodney” would be better than “katiehumphry” because he has more bookmarks 
unknown to “dchen”, which offer potentially interesting literature.   

However, in the case of expert search, “katiehumphry” would be a possible 
candidate because she shares a higher percentage of her bookmarks with 
“dchen” than “rodney” does. As user networks showing user-user relations 
based on common bookmarks or tags are undirected, it is more appropriate to 
lend a greater weight to the percentage of features shared by both the target user 
and the other. All three similarity metrics consider this aspect.  

However, differences arise between Dice (or Jaccard-Sneath) and the cosine 
coefficient. The latter ranks users in a slightly different way. Applying the 
cosine coefficient, “rodney” is ranked 16th, while “jeevanjyoti” is listed higher. 
Both users may be potential partners, but Dice considers “rodney” better 
because of the five common bookmarks. The cosine coefficient takes into 
account the fact that “jeevanjyoti” only has 14 bookmarks in total. As two 
common bookmarks out of 14 are slightly better than five out of 103, 
“jeevanjyoti” has a better cosine value than “rodney”.   

Another, more important aspect when comparing Dice and the cosine coefficient 
is the fact that the latter makes more obvious distinctions between user 
similarities, which means that cosine values have a greater range. Consider, for 
example, users “knordstr” and “peteryunker”. Both share two bookmarks with 
“dchen”, and “peteryunker” has three times more bookmarks than “knordstr”. 
With 0.0186 and 0.0181, the Dice values for both users only differ in the fourth 
decimal place. By contrast, the cosine values for both users are 0.0793 and 
0.0458, respectively. In social bookmarking systems, where users generally 
have low numbers of shared features such as bookmarks and tags, more 
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distinguishable values between users are more helpful. In the data set at hand, 
the highest amount of common bookmarks is 21. Figure 4.3 shows the power 
law distribution of shared bookmarks by all 6,491 user-user pairs. 

user a user b #|Ba| #|Bb| #|Ba  Bb| Dice Cosine 
dchen weeks 212 57 17 0.1264 0.1546 
dchen ghunter 212 57 16 0.1190 0.1456 
dchen kdesmond 212 50 10 0.0763 0.0971 
dchen kkims 212 66 7 0.0504 0.0592 
dchen katiehumphry 212 22 5 0.0427 0.0732 
dchen kedmond 212 25 5 0.0422 0.0687 
dchen tathabhatt 212 15 4 0.0352 0.0709 
dchen rodney 212 103 5 0.0317 0.0338 
dchen waitonhill 212 8 3 0.0273 0.0728 
dchen caortiz 212 2 2 0.0187 0.0971 
dchen knordstr 212 3 2 0.0186 0.0793 
dchen peteryunker 212 9 2 0.0181 0.0458 
dchen jeevanjyoti 212 14 2 0.0177 0.0367 
dchen softsimu 212 88 2 0.0133 0.0146 
dchen lgolick 212 3 1 0.0093 0.0397 
dchen whitead 212 3 1 0.0093 0.0397 
dchen ccthomas 212 4 1 0.0093 0.0343 
dchen devries 212 5 1 0.0092 0.0307 
dchen governmentmen 212 5 1 0.0092 0.0307 
dchen LGNR 212 5 1 0.0092 0.0307 
dchen mazlans2 212 7 1 0.0091 0.0260 
dchen kopelman 212 10 1 0.0090 0.0217 
dchen kdaniel 212 14 1 0.0088 0.0184 
dchen dhbook 212 15 1 0.0088 0.0177 
dchen forgoston 212 15 1 0.0088 0.0177 
dchen kubyaddi 212 19 1 0.0087 0.0158 
dchen kaigrass 212 30 1 0.0083 0.0125 
dchen 6rheology 212 42 1 0.0079 0.0106 
dchen sobolevnrm 212 51 1 0.0076 0.0096 
dchen chiufanlee 212 60 1 0.0074 0.0089 

Table 4.3. Similarity between target user “dchen” and 30 similar users, based on shared bookmarks, 
ordered by Dice coefficient. 
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Figure 4.4. Similar users for “dchen” based on Dice (above) and on cosine coefficient (below). 
Graph generated with Gephi, algorithm: Force Atlas (see section 4.3).  
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21 users only have two or one bookmarks in common with “dchen”. The Dice 
values for these users range from 0.0187 to 0.0074 (with a difference of 0.0113), 
whereas the cosine coefficient values range from 0.0971 to 0.0089 (difference: 
0.0882). More refined differences between user similarities might be more 
helpful for a target user. Especially in a visualized user network, more 
distinctive similarity values are desirable because they help a target user 
distinguish between similar users in a better way. With the cosine coefficient, 
visualized networks show distinctive user groups more clearly (figure 4.4).     

Apart from similarity algorithms, there are differences regarding the basis for 
these measurements, which are common bookmarks and tags. User-user 
relations based on common tags lead to different recommendatiton results. 
Again, users with only one tag were deleted, which leads to 63,687 user-user 
pairs (1,543 unique users) with at least one common tag, instead of 66,307 pairs. 
This number is almost ten times higher than that of pairs based on common 
bookmarks. This is also reflected in the distribution of common tags for user-

Figure 4.5. Distribution of common tags for the first 1,000 user-user pairs. 
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user pairs (figure 4.5), which still shows a power law, but the number of 
common tags is higher than the number of common bookmarks.  

user a user b #|Ta| #|Tb| #|Ta  Tb| Dice Cosine 
dchen weeks 181 62 25 0,2058 0,2360 
dchen ghunter 181 69 21 0,1680 0,1879 
dchen kedmond 181 30 17 0,1611 0,2307 
dchen kkims 181 35 16 0,1481 0,2010 
dchen rodney 181 263 30 0,1351 0,1375 
dchen andreab 181 110 19 0,1306 0,1347 
dchen michaelbussmann 181 579 49 0,1289 0,1514 
dchen paulschlesinger 181 109 17 0,1172 0,1210 
dchen chiufanlee 181 113 15 0,1020 0,1049 
dchen bronckobuster 181 187 17 0,0924 0,0924 
dchen cgguido 181 15 9 0,0918 0,1727 
dchen kdesmond 181 42 9 0,0807 0,1032 
dchen ddahlem 181 33 8 0,0748 0,1035 
dchen pbuczek 181 63 9 0,0738 0,0843 
dchen jaeseung 181 39 8 0,0727 0,0952 
dchen barrat 181 44 8 0,0711 0,0896 
dchen kaigrass 181 16 7 0,0711 0,1301 
dchen gdurin 181 78 9 0,0695 0,0757 
dchen Tomste 181 21 7 0,0693 0,1135 
dchen nurban 181 28 7 0,0670 0,0983 
dchen hendysh 181 29 7 0,0667 0,0966 
dchen kevina 181 120 10 0,0664 0,0679 
dchen andreapuglisi 181 31 7 0,0660 0,0934 
dchen andrewsun 181 33 7 0,0654 0,0906 
dchen 6rheology 181 45 7 0,0619 0,0776 
dchen CDivin 181 50 7 0,0606 0,0736 
dchen georgwachter 181 86 8 0,0599 0,0641 
dchen kristgy 181 95 8 0,0580 0,0610 
dchen l-alex 181 77 7 0,0543 0,0593 
dchen itmeson 181 78 7 0,0541 0,0589 

Table 4.4. Similarity between target user “dchen” and the 30 most similar users, based on common 
tags, ordered by Dice. 

Whereas there are 30 users with common bookmarks for user “dchen”, he or she 
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shares tags with 639 users, of which 154 share more than two tags. Table 4.4 
shows the 30 most similar users with tag co-occurrences, where users who are 
not found via common bookmarks have been marked. If more user-user 
relations are found, the number of recommendations may rise. However, as 
table 4.4 shows, users who bookmark a lot are also potential candidates for 
tagging. The first five users were found via common bookmarks and tags, all 
five having quite high similarity values with “dchen”. In fact, the Pearson 
correlation value between the number of bookmarks and the number of tags per 
user is 0.689 (with 2,035 users sharing at least one bookmark or tag with 
another user). However, there is a lower correlation between the number of 
common bookmarks and common tags of user-user pairs. Thus a user-user pair 
with many common bookmarks does not generally share many common tags. 
The Pearson correlation value is only 0.383 (between all user-user pairs that 
share at least one bookmark) and 0.255 (between all user-user pairs that share at 
least one common tag). Figure 4.6 shows the distribution of common bookmarks 

Figure 4.6. Distribution of common bookmarks and common tags for all the top 141 user-user pairs 
who have the most bookmarks in common. 
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compared to the number of common tags for the 141 user-user pairs that share at 
least 4 bookmarks.    

Concerning the numbers of shared tags and their similarity values, which are 
higher than the values based on common bookmarks, common tags seem more 
promising than common bookmarks as a basis of generating a data set for user 
similarity measurement and recommendations. There are more diverse users 
who would not be found via shared bookmarks. Additionally, tags are able to 
inform a target user in which context other users assign their bookmarks (Peters, 
2009; Szomszor et al., 2007). If “dchen” searches for project partners, the tags 
can give him or her an impression of a bookmarked article’s content. This 
provides a glimpse of other users’ research field. The precondition is that a 
recommender system must show the tags assigned by the recommended users in 
an adaptation of the idea of multiple features recommendation (see figure 3.6 in 
chapter 3 by Balby Marinho et al. (2012)).  

To sum up the findings, we gain two important insights for further models 
regarding the two research questions about data structure and similarity metrics. 
Concerning the three standard similarity metrics, the cosine coefficient has some 
advantages over Dice and Jaccard-Sneath. On the one hand, the degree of shared 
features (bookmarks and tags) between users is considered in a more efficient 
way. User-user pairs are not punished for having unequal numbers of 
bookmarks or tags. On the other hand, the cosine coefficient is more precise in 
terms of clarifying user-user similarity, which supports data structure in social 
bookmarking systems, especially for visualization purposes. Furthermore, 
analysis of the folksonomy-based data structures showed that similarity based 
on common tags leads to more results, i.e. to more user-user relations. The 
number of common tags is also higher than the number of common bookmarks. 
Therefore, data set generation for recommendation purposes should be based on 
common tags rather than on common bookmarks. These findings are considered 
for expert recommendation in section 4.3. Prior to this study, a user evaluation 
involving researchers provides first insights into the value of a collaborator 
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recommender as well as the relevance of the results. 

4.2 Qualitative Evaluation of Recommendations for Researchers 

For initial studies on expert recommendation, it was decided to propose a simple 
model and to evaluate the results via qualitative interviews with researchers. 
Hence, direct user feedbacks should answer the question: Does social researcher 
information from bookmarking services lead to relevant recommendation results 
concerning relevant literature and users? Direct user feedback leads to first 
insights into the appropriateness of recommendation results and is able to show 
more concrete user concerns by “real” researchers (compare discussions in 
section 4.6, for example in Ma, Pant, and Liu Sheng (2007)).   

For this case study, three scientists working at Forschungszentrum Jülich 

Figure 4.7. Single-link cluster for target researcher a, with a cosine coefficient threshold of <0.1. 
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participated in the evaluation. The same scientists also took part in the survey 
about social bookmarking systems and communities of practice (see chapter 1). 
The first recommendation model aimed to gather a researcher’s bookmarks from 
a bookmarking service and to determine their similarity to other users. As no 
participating target researcher used any of the considered bookmarking systems, 
the model was modified. A “fictive user” served as a target researcher for whom 
recommendations were to be made. The fictive user’s profile represents a target 
researcher who bookmarked their own articles. The researcher’s articles taken 
into consideration are those which were bookmarked by real users of a service. 
Hence, all bookmarked articles that were published by a target researcher are 
added to the fictive user’s profile.    

Figure 4.8. Complete-link cluster of target researcher a, with a cosine coefficient threshold of <0.1. 
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4.2.1 Data Set and Recommendation Network Model            

The bookmarking service CiteULike was chosen, for the reason that its 
coverage of bookmarks related to the field of physics is appropriate (Reher & 
Haustein, 2010). Bookmarking data from the target researchers’ publications 
were gathered via the CiteULike website, again using DOI, ISSN, as well as 
author and title information to obtain the right resources. For all bookmarks, 
user information was gathered using CiteULike article IDs. Similarity 
measurement via the cosine coefficient was based on common bookmarks 
(equation 4.1). Tag similarity was not given preference in this case as a 
researcher’s publications were defined as the bookmarks on the basis of which 
the data set was generated. The researcher himself did not assign any tags 
because he did not use the bookmarking service. Tags for his bookmarked 
articles were only available from other CiteULike users (this model is applied in 
the next study in section 4.3). An option for modeling tags for non-active or 
fictive users is to take, for example, title terms or keywords from bookmarked 
publications. The title terms are then defined as “fictive user tags”. Landia et al. 
(2012) propose such a model to extend the basic model of the FolkRank (Hotho, 
Jäschke, Schmitz, & Stumme, 2006).     

Similarity between a target researcher and CiteULike users based on common 
bookmarks is visualized as simple user networks showing user-user relations. 
Because the approach aims at detecting researcher networks, the best way of 
evaluating the approach was by showing the participants visualized graphs. As 
discussed in chapter 3, cluster methods are one way of finding appropriate 
recommendations. To generate expert networks in this case, single-link (nearest 
neighbor) and complete-link (farthest neighbor) clusters were generated 
(Gemmell, Shepitsen, Mobasher, & Burke, 2008; Knautz et al., 2010). The size 
of the clusters was regulated by cosine coefficient threshold. All users whose 
similarity lay above this threshold were featured in the single-link cluster, with 
the starting point being the target researcher. In the complete-link clusters, all 
users had to be related to each other and needed to have a greater similarity than 
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the set threshold. To give  an example, the two generated clusters for a target 
researcher a are shown in figures 4.7 and 4.8, where the size of the edges refers 
to the similarity between the users based on the cosine coefficient. The search 
for researcher a’s publications in CiteULike resulted in 142 bookmarks posted 
by 197 users. The relatively small size of the data set for each scientist caused a 
low cosine coefficient threshold being set, at < 0.1.     

4.2.2 Evaluation and Discussion 

The evaluation conducted in a semi-structured interview aimed to answer the 
following questions: 

1. Are the representations of user networks showing relations between 
oneself (the target researcher) and other persons helpful? Would they 
be helpful for finding relevant partners? 

2. How valuable are these recommendations, which are based on 
CiteULike users and their bookmarks?  

The three target researchers stated that visualized networks are sufficient for 
user recommendation. They rated the usefulness of such networks for finding 
potential research partners positively. However, the scientists tended to prefer 
small clusters as recommended networks, as the complete-link clusters – which 
show a small part of the associated single-link clusters – were seen to be 
arranged more clearly. The interviewed researchers considered these smaller 
networks to be sufficient for an expert recommender system. The reasons for 
this preference were, on the one hand, that the respective numbers of 
recommended users and their bookmarked literature was more manageable and 
reduced information overload. On the other hand, a researcher can only 
collaborate effectively with a rather small number of colleagues. Hence, the 
interviewed physicists did not prefer recommendations of huge partner 
networks.             

Besides the clusters, the target researchers evaluated the similar users’ 
bookmarked publications that they had not known before. The resources 
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appeared reasonable and appropriate at first sight. The scientists were surprised 
to find interesting resources, which, they assumed, would not have been 
retrieved via their regular literature search. All three physicists said that they 
almost exclusively search for literature on the webpages of their preferred 
journals. In other words, they always limit their search to preferred sources. The 
participants stated that this was the easiest way of filtering for relevant literature 
needed for research. However, limiting searches to a few chosen journals causes 
the scientists to miss out on interesting publications by other sources. The 
researchers stated that a recommendation system for finding these publications 
would be helpful. This system would be a source in addition to their already-
used sources and preferred search strategies.      

Another advantage of a running expert recommender system applying 
folksonomy-based data is that the existing user-item-tag relations allow direct 
reference to any of these nodes. When a target researcher gets expert 
recommendations, existing user-item links directly lead him or her to resources 
of potential relevant literature; or, on the other hand, item-tag relations lead to 
tags describing resource content. Such a system may offer multiple 
recommendations of either users, resources, or tags (Bogers, 2009). Depending 
on which model is applied, systems can easily switch between diverse 
recommendations and consider up-to-date user needs. For example, Hotho et al. 
(2006) propose a model in which nodes on a graph-based approach are 
represented by all three different entities. Hence, a recommendation system is an 
appropriate tool for the establishment of academic communities of practice 
because not only are community members related, but so is their shared 
repertoire – that is to say, resources referring to a community’s practice and tags 
representing a community’s shared language.             

To sum up the findings, using social information in bookmarking services to 
recommend potential researchers as well as their work leads to appropriate 
results. Through the user community, new relations are detected that show 
recommendations beyond a researcher’s traditional network and search 
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behavior. However, a running recommendation system should offer more 
information about recommended authors that a target user can use to evaluate 
the recommendation. As an author’s reputation and scientific work is defined by 
their publications, this information is relevant for a target user’s decision of 
which author has the potential to be a future partner. Two problems arise in this 
study. Firstly, all users in a social bookmarking system are mostly anonymous. 
Some users choose their real name as their user name, and a system might be 
able to link a user name to a real author name, but not without severe difficulties 
concerning, for example, ambiguous names. Here, further approaches must be 
applied in order to obtain appropriate results (Demaine, 2011; Wooding, 
Wilcox-Jay, Lewison, & Grant, 2006). Nevertheless, most users have 
nicknames, which makes it impossible for a user to find out an author’s real 
name. The only option for a target user is to look at another user’s profile, which 
must then include information about this user’s real name and their own 
publications. Recently, new services like ResearcherID7 and Orcid8 have 
appeared, in which scientific authors are assigned a unique identifying ID and 
are able to edit their profile with information about their research area and links 
to their publications. What is needed for a collaborative filtering recommender 
system are tags or bookmarked articles for each user. In order to use 
bibliometric data, a link to a citation database is needed. For example, Web of 
Science and ResearcherID are connected. To date, Thomson Reuters mainly 
uses researcher IDs to disambiguate author names. A closer cooperation could 
include an exchange of data on both sides. Then it would be possible to have a 
target scientist defined by ResearcherID and recommend articles or researchers 
to them on the basis of their publications, citations and co-citations gleaned 
from Web of Science.  The advantage of researcher services is their generation 
of unique author IDs, which solves the problem of author name ambiguities.  

Another challenge besides the problem of anonymous users is that a target user 

                                                           
7 http://www.researcherid.com/ 
8 http://orcid.org/ 
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needs to be active in a bookmarking system in order to get any 
recommendations. The number of his or her bookmarks and tags strongly 
influences recommendations in item- or user-based collaborative filtering 
systems. Less active users encounter cold start problems in the recommendation 
process (Herlocker, Konstan, Terveen, & Riedl, 2004). Some solutions for cold 
start problems in recommender systems exist, but then further user data must be 
collected, for instance social information from diverse networks (Sedhain, 
Sanner, Braziunas, Xie, & Christensen, 2014). Both these shortcomings are 
overcome, at least to a great extent, within the final approach proposed for 
expert recommendation. By considering the Web user’s perspective, any 
problems with inactive researchers and anonymous users can be solved.                           

4.3 Recommending Authors Using Multiple Kinds of Social Information 

The main case study (parts are published in (Heck, 2012a, 2012b, 2012b, 2012c, 
2013; Heck et al., 2011)) addresses the primary research questions of this work 
and proposes the final model for expert recommendation. Its purpose is to detect 
implicit relations between researchers and to make scientists aware of them so 
as to foster areas of community and knowledge creation. To consider implicit 
new relations, it is crucial to take into account different perspectives with regard 
to the academic environment. Most researchers are aware of their explicit 
relations to other colleagues (see the survey in chapter 1). Hence, a 
recommender system should focus on new and unknown or hidden relations, 
also known as implicit relations. Implicit relations are based on diverse kinds of 
social information about researchers derived from different perspectives. The 
following approach considers three perspectives (third-party, target researcher, 
web user) introduced in chapter 2, and detects implicit relations on that basis. 

The proposed model is shown in figure 4.9. The target user is a scientist who is 
meant to be made aware of colleagues belonging to the same academic 
community who could be potential collaborators for any academic purpose 
(information request). A recommender system is not interested in showing the 
user a network within their research field, but a network based on their personal 
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Figure 4.9. Concept of author recommendation based on different sources of social information. 
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social information. Thus, in contrast to most expert portals, a recommender 
system focuses on personalized recommendations. Social information is 
generated by people representing different perspectives on scientific work and 
reputation. This information is found in diverse sources. Expert 
recommendations are generated by applying bibliometric and altmetric 
measurements.          

4.3.1 Data Set for Implicit Relations Based on Bibliometric Data 

As the focus of the approach lies on implicit author-author relations, two 
methods based on co-citation and bibliographic coupling are applied. Both 
methods are aggregated from the document level to the author level. Thus 
author co-citation refers to two authors who are both cited by a third author. 
Bibliographic coupling refers to two authors who both cite the same references 
in their publications. For both methods, a database with citation data is required. 
The two largest scientific information services are Scopus9 and Web of Science. 
The approach first aims to use one of the two services. Both Scopus and Web of 
Science offer search functionalities for references and co-citations. However, 
neither the database in Scopus nor that in Web of Science offer sufficient 
options for generating both data sets for co-citation and bibliographic coupling 
analysis (see chapter 2).  

On the basis of availability and technical feasibility, therefore, it was decided to 
draw on the usage levels of both information databases. One shortcoming here is 
that publications differ between both services, i.e. one target author may have 
four articles in Scopus, but three different ones in Web of Science. This issue 
must be noted as similarity measurements and recommendations depend on the 
generated data. Table 4.5 shows a summary of the target author’s publications 
and their respective occurrences in Scopus and Web of Science. After analyzing 
both services, the following data was generated for co-citation and bibliographic 
coupling analyses in the case study.            

In Scopus, all documents that cite at least one of a target author’s articles were 
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searched. All references featured in these documents are needed to find authors 
who are co-cited with a target researcher. The concrete search was mainly done 
manually and involved the following steps: 

1. Search for all publications of a target author via title and author search 
fields. An up-to-date publication list was requested from the target 
author. 

2. Search the citing resources for all publications of the target author via 
the link button “cited by”. 

3. Export all citing resources containing resource metadata, including all 
references, and save export in a csv file (figure 4.10).    

4. Import data from csv file to database, determine author names per 
citing resource, and generate Excel file with author names and number 
of shared citing resources.  

5. Manual correction: unify all unique author names from step 4 and sum 
up citing resources. Correct database entries. 

6. Take authors with most common resources (number of authors taken 
depends on target author) and search their number of “times cited” in 
Scopus author profiles.  

7. Add ‘times cited’ information to database. Format author names.   

Scopus/Web of 
Science data 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

# pub 2006-2011/2012 10 24 8 16 5 20 13 10 10 16 
# pub in Scopus 10 21 8 16 5 16 12 7 9 13 
# pub in Web of 
Science 8 16 7 15 5 17 12 7 10 12 
# citing documents in 
Scopus  

33 65 63 76 15 103 95 71 60 39 

# citations in Scopus 
data set (csv) 

32 65 58 64 15 94 95 64 35 36 

Table 4.5. Basis for generated data sets: numbers of publications from 2006-2011/2012 per target 
author, numbers of their surrogates found in Scopus and Web of Science, numbers of citing 
resources in Scopus, and numbers of citations derived via Scopus csv files. 

As author ambiguity is a great concern, the number of citations per author in 
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Scopus was gathered manually in step 6. This puts the emphasis on quality 
above quantity. As a result, not all co-cited authors were considered for analysis, 
and the number was limited. However, most of the similar authors were 
identified and it can be assumed that authors in the long tail, who only have a 
few citations in common with a target author, are less relevant. Those authors 
would have a negligible cosine value and would not be ranked high up in the 
recommendation list for a target author. However, with regard to author 
networks represented in a graph, which is discussed further on, the missing 
authors would change those network structures.    

Author limitation was conducted as follows: initially, authors were ranked 

Figure 4.10. Scopus export of citing resources, including references that cite at least one of the target 
author’s publications. www.scopus.com 
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according to their total number of co-citations with a target researcher. In the 
next step, those authors with a minimum number of x co-citations were taken, 
where x determined the cut-off point of the ranking. This number of co-citations 
may vary for each target scientist, but it will be at least x >= 3. Using this 
procedure, different numbers of authors are considered for similarity 
measurement for each target researcher. The minimum of authors considered per 
target researcher is 34, the maximum is 69.  

In the best case, authors are identified via the Scopus unique author ID, which 
was used in our approach. Nevertheless, it must be noted that author details in 
Scopus are not always correct. If incorrect data was detected, for example when 
Scopus included two author IDs belonging to the same author, these were 
corrected manually. Where two identical author names were found, the correct 
unique author was identified via their co-authors and the document titles 
collected from the csv file.      

In Web of Science, a search was conducted for all related documents that share 
at least n references with any of the publications of a target author, where n may 
vary for each target scientist. The authors of these documents were considered 
for bibliographic coupling analysis. These were the concrete steps taken to 
generate the data set: 

1. Search for all publications of a target author via the title and author 
search fields, again using the author’s current publication list.  

2. For each individual publication, determine the list of “related records” 
via the Web of Science link button.  

3. All publications that have n shared references are considered. Export 
those publications in a csv file and add the number of ‘shared 
references’ to the individual publications. 

4. Aggregate lists from step three – one list per publication by target 
author –and determine unique authors via author names. 

5. Take authors with most shared references (number of authors 
considered depends on target author) and search their publications 
manually in Web of Science.  

6. Count all references from the publications in step 5 and insert number 
into database. Format author names.   
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To improve the quality of the data set, authors with references in common were 
searched manually in Web of Science, as was also done for Scopus. First and 
foremost, this is designed to address challenges posed by author names. All 
authors from the publication list exported in step 3 were considered. Author 
disambiguation and the merging of unique authors was performed manually. As 
there is no author ID in Web of Science, author names were verified by 
checking their document list and, if necessary, correct it on the basis of the 
articles’ subject area (compare Persson (2001)). The number of shared 
references per unique authors was then summed up (step 4). This led to a list of 
authors with a minimum number of n common references, where n determined 
the cut-off point of the ranking. This number of common references may vary 
for each target scientist, where in all cases n >= 4. By applying this procedure, 
different numbers of authors were considered for similarity measurement for 
each of the target researchers, where the minimum was 22 authors and the 
maximum was 53 authors.  

In terms of editing the author lists, both for co-citation and bibliographic 
coupling analysis, two options were possible. In both cases the number of 
citations of similar authors (|Cb|), respectively the number of references (|Rb|) – 
each of which is needed for similarity measurement – had to be determined from 
the full database. If only citations, respectively references, of authors from the 
downloaded data sets had been used, cosine values would have been biased 
toward greater similarity with the target author. Therefore, |Cb| and |Rb| were 
retrieved manually, which led to a limitation of the number of authors taken into 
consideration. Two options were possible: either an equal number of authors 
could be considered for each target author, or author lists could be ranked 
according to the number of co-citations or common references, respectively, and 
cut at n, where n is the amount of instances of both similarity features. The latter 
option was applied, as it seemed more logical. If the ranking lists had an equal 
number of ranks, for example the first 20 authors with the most shared 
references, then the lists would be cut between two rankings, each with the same 
amount of instances of a common feature. For example, author Maier has 6 
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common references, which puts him at position 20 of the Web of Science list for 
a target author. Author Schneider also has 6 common references with the target 
author, but he ranked 21st and thus will not be considered for further 
recommendation measurements. One critical aspect is the way such a list is 
arranged: if Schneider were instead called Köhler, Köhler would come before 
Maier in an alphabetical ranking. This would lead to a final choice, which does 
not depend on the similarity feature “common references” or “co-citations”, but 
on ranking position and author names. Hence, the choice was made to cut the 
lists at n common similarity features. It follows that a different number of 
authors were selected for recommendation for each target author. Additionally, 
the variable n was not the same for each target scientist because numbers of co-
citations and common references varied strongly. Depending on the researcher’s 
scientific work, i.e. their number of publications over the last five years, the 
number of references and citations is higher or lower and influences their 
similarity features with other authors. Thus n was chosen according to a target 
author’s characteristic numbers and relative to the determination of relatively 
similar numbers of possible recommendations for all authors. In sum, this means 
that n for all researchers meant at least three co-citations and four common 
references, where the maximum of n varied. 

Deficiencies in Scopus and Web of Science Data 

A recommendation system highly depends upon the source data set. Various 
problems arise when generating data in Scopus and Web of Science. The 
difficulty of identifying unique authors via author names has already been 
addressed. In this study, authors could best be identified via unique author IDs 
in Scopus and via ResearcherIDs in Web of Science. Nevertheless, author 
details in Scopus are not always correct. The service may run into problems 
when two or more authors with the same name are allocated to the same 
research field and change their workplace several times. Unfortunately, only a 
few potential collaborators in Web of Science had a ResearcherID. Hence, the 
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greatest difficulties concerning author identification arose in Web of Science. 
Although author search is available and suggests unique authors, including 
information about their affiliation and research field, it is difficult to make 
distinctions between two authors with the same name. Asian author names in 
particular lead to problems. Thus reference data (not common references, as 
these were gathered via explicit lists of “shared references”, including titles and 
co-authors) for these authors might include mistakes.               

In Scopus, as mentioned above, a unique resource may appear in several formats 
in other resource reference lists. Thus some references are incomplete, which 
also concerns author names. For this study, data generated via Scopus was 
incomplete. Some authors are not included in the csv files that formed the basis 
for co-citation analysis. Those authors, then, could not be considered for co-
citation similarity measurement. Table 4.5 shows the data generated via Scopus. 
The number of citing articles per target author could easily be generated. These 
articles (including their references) define the data set, thus a target author 
should have at least as many citations as there are articles that cite them9. 
However, citations per author are missing (see table 4.5 “citations in Scopus 
data set”). The completeness of reference data in Scopus varies considerably. In 
a random sample, where test data from the website was adjusted manually so as 
to exclude general errors in the Scopus database, 5 of 14 authors have complete 
coverage, 3 have a coverage between 70% and 90%, 5 between 55% and 70%, 
and one author is only covered at about 33%. The Scopus database includes the 
correct number of author citations (it must be assumed to be correct because it 
cannot be proven so), but the file including exactly the same data shows 
different citation values. One explanation may be that Scopus generates its 
references directly from a resource, adopting any citation style. This would also 
explain the phenomenon of different reference strings for the same resource. If a 

                                                           
9 Note that for cosine similarity measurement, one citation is counted per 
resource regardless of whether a resource might have cited the same document 
twice. 
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citation style cuts author names in a publication by multiple authors, these 
authors might not be found in the reference lists (at least not in the export list). 
Concerning the target researchers participating in the approach, the differences 
in citation numbers are not too high, except for authors a3 and a9, where the 
difference is higher than 10. As the number of lost citations of the authors to be 
compared could not be determined, wrong citation numbers were not corrected. 
All author citation numbers were derived from the exported data in step three 
(except the numbers of |Cb|).  

4.3.2 Data Set for Implicit Relations Based on User-Generated Data 

The goal of this case study was to provide scientific target authors with 
recommendations of potential partners, with the similarities based on the Web 
users’ perspective. The importance of this perspective is discussed in chapter 2. 
The Web user perspective also solves two recommender problems. Firstly, the 
problem of anonymous users in a bookmarking system is solved because a 
target researcher will not be given user recommendations but author 
recommendations. Web users only generate relations between the authors of 
bookmarked articles. Secondly, the cold start problem of an inactive researcher 
is solved. A researcher does not have to use a bookmarking system to get 
recommendations based on its users. Of course, if there are no users who 
bookmark a researcher’s articles, cold start issues do exist. But in this study, 
where the participants were physicists from Jülich who do not use bookmarking 
systems, the approach does not suffer from their inactivity.         

In contrast to other collaborative filtering approaches, the following method 
does not recommend any users, resources, or tags, but authors from publications 
that are bookmarked in CiteULike. It is thus not CiteULike users themselves 
who are the target users, as they only deliver social information about the 
“external” target researchers while they bookmark their publications and assign 
tags to them. This model is also different to the “fictive user” model in section 
4.2 and leads to different results. It considers the perspective of all CiteULike 
users. In the previous model, collaborative user opinion is not considered to the 
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same extent as in the following approach. In section 4.2, similar users to a 
fictive user are those who share a lot of common bookmarks with the former. 
Thus a user needs to bookmark many articles by the target researcher in order 
for their own bookmarks to be recommended. The collaborative opinion of other 
users is not considered unless other users also bookmark a researcher’s articles. 
In the following model, recommendations are based on common users, meaning 
that if a researcher’s bookmarked article shares many users with another article, 
the authors of both articles are considered to be similar. In this case, author 
similarity is determined by all users, as their number is counted and weighed. 
However, to generate the data set, common tags are crucial.    

The basis for the following steps is the folksonomy of CiteULike, defined as a 
tuple F: = (U, T, R, Y), where U, T and R are finite sets consisting of the 
elements ‘user name’, ‘tag’ and ‘resource’, and Y is a ternary relation between 
them: Y  U x T x R with the elements being ‘tag actions’ and ‘assignments’ 
(Balby Marinho et al., 2011; Peters, 2009). To use this information for the 
following study, the folksonomy is expanded to FE:=(U, T, R, A, Y), where A is 
added as the finite set with the element ‘authors’ and Y  U x T x R x A is their 
relation. Two options for setting the database for author similarity measurement 
are possible:  

1. Searching for all users u  U who have at least one article s  R by 
target author a  A in their CiteULike bookmark list.  

2. Searching for all resources r  R who have tags t  T in common with 
one bookmarked article s  R by target author a  A.  

The disadvantage of option one in this case lies in the small number of users 
who bookmark a resource compared to the number of tags, which is generally 
higher. Relying only on users may not be enough to identify similarity (Lee & 
Brusilovsky, 2010). Data analysis in the study in section 4.2 showed that the 
number of tags is quite high compared to the numbers of bookmarks and users, 
and the number of common tags is higher than the number of common 
bookmarks. Additionally, the data included many users who did not share 
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common bookmarks or tags with others. Out of 2,437 users, only 897 shared at 
least two bookmarks, and only 1,543 users shared at least two tags. All other 
users without these relations are not valuable for similarity measurement 
because in the following approach this would lead to similarity based on only 
one user (namely the user without common features). Such a user would have 
bookmarked a researcher’s article and other publications, but all these 
publications would not have any other users. Otherwise, this user would share 
common bookmarks with any other person.  

However, it must be noted that applying the second option might lead to users 
who have bookmarked a resource by a target author but not tagged it might get 
lost and not be in the data set. Table 4.6 shows the bookmarks of the target 
authors’ publications found in CiteULike as well as the number of tags assigned 
to them (all tags and unique tags) as well as the number of users (all users and 
number of unique users) who bookmarked them. As the number of tags is 
sufficiently higher, the second option was applied to generate a data set for 
further similarity measurement. This means that resources (here: scientific 
papers by a target researcher) are deemed to be similar if common tags have 
been assigned to them. This further leads to the assumption that the authors of 
these resources are also similar. As tags point to topical relations, authors 
connected via such relations regarding their research fields can be potential 
collaboration partners. Additionally, the more tags are shared by two resources, 
the more similar they are. In some cases, target author resources were labeled 
with very general tags, such as “nanotube” and “spectroscopy”. Therefore, a 
minimum of 2 unique tags was set: a resource must have two tags in common 
with at least one of a target author’s resources in order to be considered in the 
data set. This data set forms the basis for further measurements distinguishing 
two collaborative filtering models. Again, to assure better data quality, one sub-
set from CiteULike was derived and author name corrections performed 
manually. This step was important, especially for CiteULike data, because the 
service contains diverse spellings of the same names. 
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The options chosen lead to the following steps for generating the data set in 
CiteULike: 

1. Request database dump from CiteULike (for each part of the study the 
current dump was used).  

2. Find publications by target author via search fields “DOI” (if DOI of 
publication was available), “author”, “title”. Determine all CiteULike 
bookmark IDs for each publication retrieved. 

3. Search for bookmark IDs within database dump and determine all tags 
assigned to IDs.  

4. Get all bookmarked resources that have at least two shared tags with a 
target author resource. Determine the resources with at least n common 
tags, where the number of tags depends on a target author.  

5. For all resources determined in step 4, derive all authors from the 
CiteULike website via the unique CiteULike bookmark ID (example: 
www.citeulike.org/article/3182948) (because author information was 
not included in database dump).      

6. Prove and unify unique author names and correct database entries. 
Format author names. 

CiteULike data a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 
# pub found 5 13 2 1 5 1 6 4 2 10 
# pub bookmarked by 
users 

4 11 2 0 3 1 6 1 1 4 

# tags assigned 17 73 11 0 12 3 25 0 4 12 
# unique tags assigned 15 45 11 0 13 3 21 0 4 12 
# users who 
bookmarked 

5 17 4 0 4 1 8 1 1 4 

# unique users who 
bookmarked 

5 6 4 0 4 1 5 1 1 4 

Table 4.6. Basis for generated data set in CiteULike: number of publications found, number of 
bookmarked publications, number of tags (all tags and unique tags) assigned to target authors’ 
publications, number of users (all users and unique users) who bookmarked. 

The number of tags a resource should have in common with any target 
researcher’s publication was adapted via methods similar to those already 
discussed for the Scopus and Web of Science data sets. The aim was to have 
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nearly equally large data sets for all researchers in order to make 
recommendations comparable. Furthermore, scientists claimed to prefer rather 
small author networks (section 4.2). Hence, when a target researcher’s 
publications shared two or more common tags with many other publications, 
this list was cut at the number of n tags. In three cases, 2 common tags were 
considered, in four cases 3 and in one case 4.      

Despite these settings, exceptions were made in generating the CiteULike data 
set. One of the 10 authors (a4) did not have any users who bookmarked his 
articles in CiteULike. Some resources were found but they had been adjusted to 
the system by the CiteULike operators (authenticated articles), and not by any 
user. Thus no CiteULike data set could be generated for this scientist. Another 
researcher’s resources were bookmarked but not tagged. In this case, option two 
for data set generation could not be applied. As the researcher had one 
bookmarked resource by a single user – an article published in 2000 – this 
bookmark was considered, even despite the general publication date restriction. 
In the latter case, the data set was not generated via tags but via resources 
bookmarked by the same single user. This means that a kind of user-based 
collaborative filtering was applied for this researcher (a8). All authors who were 
represented at least six times in the single user’s bookmark list were considered. 
Author similarity in this case was measured via the total number of author 
occurrences. Applying the cosine coefficient would not make sense here as the 
common feature would only be one single user. Furthermore, researcher a10 
was given different restrictions regarding the publications considered in 
CiteULike. As only one bookmarked resource was found referring to an article 
from 2007, the search was expanded to bookmarked resources published earlier 
than 2006. Ten additional publications were found, and three of them were 
bookmarked.  In the end, the four bookmarked resources were considered.  

Generating the data sets is a critical precondition for recommendation purposes. 
Data completeness, limitations, and thresholds of values and data correctness 
influence further measurements and results. The focus in the current approach 
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lies on the quality of the data, which meant that many steps were processed 
manually. A running recommender system should therefore apply further 
techniques, aiming for example to lower author ambiguity or incorrectness in 
resource data. The challenges in a running system will not be discussed further 
at this point, as the current model concentrates on the first results of the applied 
models and their evaluation. Picault, Ribière, Bonnefoy, and Mercerm (2011) 
discuss a possible model for establishing a running recommender system and 
indicate critical aspects to be considered.     

4.3.3 Recommendation Models and Evaluation Method 

Models and Similarity Algorithm 

There are many different similarity algorithms and models for generating 
recommendations. Their application is based on recommender system types 
such as content-based recommenders or collaborative filtering recommenders 
(Adomavicius & Tuzhilin, 2005). Some studies show that simpler measurement 
techniques are not always the worst (see for example Linden, Smith, & York, 
2003). Jannach, Zanker, Felfernig, and Friedrich (2011) point out that more 
complex techniques are currently in favor (pp. 47-49). However, practical 
examples show that complex algorithmic models are probably not required, as 
seen in the example of Amazon, which uses a simple item-based collaborative 
filtering technique. Furthermore, as the focus of this approach shows, research 
in model combinations is promising: “[…] recommendation algorithms that 
exploit additional information about items or users and combine different 
techniques can achieve significantly better recommendation results than purely 
collaborative filtering approaches can” (Jannach et al., 2011, p. 48). Researchers 
refer to new hybrid models (see chapter 3) or fusion models (Tso-Sutter, 
Marinho, & Schmidt-Thieme, 2008; Wang, de Vries, & Reinders, 2006). The 
model described in this study also questions whether combined social 
information from different sources leads to better recommendations. However, 
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different models are not combined in a fusion approach. A similarity algorithm 
applies the cosine coefficient, which is an established standard in recommender 
system research (Jannach et al., 2011, p. 19) and is also common in information 
science research (Stock & Stock, 2013, p. 115).  

As showed in the previous chapter, the cosine coefficient best reflects 
recommendation results based on bookmarking data. Furthermore, it is more 
appropriate for visualizing user networks. Similarity determined via the cosine 
coefficient directly reflects any of the three proposed principles, which are 
author co-citation, bibliographic coupling and collaborative filtering. As the data 
sets themselves were generated according to these principles and data was 
filtered on the basis of these assumptions, further filtering methods were not 
applied. For evaluation purposes, the k-nearest neighbors based on the cosine 
values are considered. The cosine coefficient (equation 4.1) was applied for all 
data sets and similarity features, inserting |Ca| as the number of citations author 
a received, |Ra| as the number of all references author a used, |Ta| as the number 
of tags assigned to bookmarks with a as the author, and |Ua| as the number of 
users who bookmarked resources where a is the author. Respectively, the same 
was applied for author b. 

The applied collaborative filtering models should be distinguished from the 
classic ones described in chapter 3. Firstly, no user from a bookmarking service 
is considered as the target user or recommended to another target user in this 
case. The focus lies on authors of bookmarked publications. Secondly, 
collaborative filtering models mostly pre-process data to determine the 
similarity of items or users. In a further step, these similarity measures are 
applied to a specific case, i.e. a target user and their specific preferences. 
Because the target researchers in this study do not have preferences in 
CiteULike, due to the fact that they are not users of the service, collaborative 
filtering is adapted to the current model. Assumptions about Web user 
similarities are aggregated to authors of bookmarked articles. Compared to 
collaborative filtering in tagging systems, the core of the similarity assumptions 
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is the same:  

1a) Collaborative filtering, user-based: users (nearest neighbors) who share 
“common items” or “common tags” are similar and appropriate for 
recommendation of further resources or tags. Likewise, items with 
many “common users” or “common tags” are similar (Balby Marinho 
et al., 2012). 

2a) Adapted model, user-based: authors who share many “common users” 
are similar to each other and thus potential collaboration partners.  

Figure 4.11. Author network based on bibliographic coupling (BICO) in Web of Science for scientist 
“R. Zorn” (a10), cosine coefficient threshold 0.2. 
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1b) Collaborative filtering, tag-based: Items and users that share “common 

tags” are similar and appropriate for recommendation of further items 
or tags (Durao & Dolog, 2009; Hung, Huang, Hsu, & Wu, 2008).  

2b) Adapted model, tag-based: Authors whose bookmarked publications 
share “common tags” are similar and potential collaboration partners.      

Author Networks and Visualization Graphs 

Using the three generated data sets, and applying the proposed four similarity 
models, each target scientist has four different networks showing potentially 

Figure 4.12. Author network based on author co-citation (ACC) network of author “Zorn”, cosine 
coefficient threshold 0.05.  
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similar authors. One network is based on bibliographic coupling (BICO 
network) generated from Web of Science, one is based on author co-citation 
(ACC network) generated from Scopus, one is based on user-based 
collaborative filtering in CiteULike (CULU-network), and the fourth is based on 
tag-based collaborative filtering in CiteULike (CULT-network). In all models, 
author similarity is measured via the cosine coefficient. The most similar 
authors are considered for evaluation. Additionally, cosine values for all author-
author pairs are measured for the four similarity approaches in order to create 
visualized graphs of those author networks10. No clustering methods (as in 4.2) 
were used.  

                                                           
10 Note: Only data from the data sets generated was applied. No new author 
citations, references, bookmarks or tags were searched in the services. Thus co-
citation data for author b is not complete.     
Figure 4.13. Author network based on CiteULike common users (CULU) for researcher “Zorn”, 
cosine coefficient threshold 0.49-0.99. 
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Single-linkage and complete linkage clustering would have led to very small 
clusters as no relation data – based on common features (like co-citations) for all 
authors except the target authors – was collected from the databases in Scopus 
and Web of Science. Figures 4.11-4.14 show the four author networks that were 
created for researcher “R. Zorn” (a10) based on his publications11. The software 
Gephi12 (Bastian, Heymann, & Jacomy, 2009) was used to create the graphs. 

                                                           
11 The networks of all other target researchers are available on request. 
12 www.gephi.org 

Figure 4.14. Author network based on common tags in CiteULike (CULT) for researcher “R. Zorn” 
(a10), cosine coefficient threshold 0.49-0.99.  
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The network visualization software offers multiple functions to analyze and 
configure networks. Author networks were created using the algorithm “Force 
Atlas”13. The force-based algorithm (Tutte, 1963) focuses on showing 
complementary nodes. Repulsion strength and gravity (both influence network 
size) were adapted for each network in order to create clear graph arrangements 
for the evaluation process, as each graph was printed on a DIN A3 sheet of 
paper. This includes limitations for some networks where the graph was 
restricted to edges with a specific cosine coefficient threshold. Most of these 
cases concerned the larger CiteULike networks. As the entire CiteULike 
database was available for use, author limitations – as was the case with Web of 
Science and Scopus’ data sets when limiting the list of authors considered for 
similarity measurement  – were not needed.  Thus all CiteULike networks 
include many more authors than ACC or BICO networks. In most cases, a minor 
cosine coefficient threshold was set. This makes the network smaller and author 
names readable on a DIN A3 sheet. Additionally, for CiteULike networks all 
edges with similarity values of 1 were left out because analyses showed that 
most of these author-author relations are based on only one common feature 
(bookmark or tag). If both authors only have one bookmark or tag each and they 
share it, the similarity between these persons is 1, which leads to biased results 
equal to those discussed in the pre-studies (section 4.1). Besides adaptations 
designed to make the network and its author names printable and readable, all 
graphs were left unmodified for evaluation.   

Evaluation Method 

The evaluation consisted of three parts: a) questions concerning a researcher’s 
work and information management behavior (results in chapter 1), b) evaluation 
of recommended authors, c) evaluation of the visualized author networks. The 
survey was conducted in semi-structured interviews with the target scientists, 

                                                           
13 http://de.slideshare.net/gephi/gephi-tutorial-layouts 
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each of whom were guided through the questions and received assistance if any 
parts of the evaluation were unclear. Thus the evaluators were able to ask 
questions concerning the correct meaning of individual parts of the evaluation. 
The conversation with each interviewee was noted and is considered for the 
analysis of the results. Each interview took about two to three hours. 

The focus of the evaluation lies on the researcher’s perceived usefulness 
(McNee, 2006; Stock & Stock, 2013, pp. 485–486). The main question is 
whether a recommended author is relevant for the evaluator’s current research 
and if he or she could be a good collaborator. One pre-condition here is that the 
target researcher must know the recommended author. In the case of scientific 
researchers, this means that the evaluator knows an author’s reputation and 
work in their scientific community and thus is able to estimate the author’s 
relevance. This aspect means that a target researcher can only make statements 
about known recommended authors. Consequently, if a target researcher is 
unable to evaluate an author because he or she does not know them, this does 
not mean that this author is not relevant, as was discussed in the prior chapter 
(see also figure 3.7). In this study, there are two main reasons for collecting 
relevance feedback for known authors and not for unknown authors, as was 
done for unknown users in the pre-study (section 4.2). Relevance feedback for 
unknown users based on their bookmarked articles, respectively of unknown 
authors based on their publications, is quite difficult. An evaluating person 
cannot immediately decide whether a person would be a good collaborator as 
long as he or she has no concrete information about this person. An author’s 
publications are first pointers to their scientific reputation. However, evaluators 
in the pre-study only indicated a tendency regarding their estimated relevance; 
clear statements about author relevance were preferred. This relevance can only 
be given for already known authors. Thus we adapted the evaluation model of 
De Meo, Nocera, Quattrone, Rosaci, and Ursino (2009) and De Meo, Nocera, 
Rosaci, and Ursino (2011). Evaluators are asked to state which of the 
recommended authors they know and which of them are relevant. 
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# Questions for evaluation part b): top recommended authors  

1. 
Do you know this author? Please mark <y> for know author name, <n> 
for do not know author or <p> for know author personally. 

2. If you know the author: Have you ever collaborated with him or her?  

3. 
Do you think the known authors are similar to you with regard to your 
current research?  

4. 
Please state the relevance of each known author regarding your current 
research needs on a scale from 1 (not relevant) to 10 (highly relevant).  

5. 
Would you collaborate with any of these authors? Please mark <y> for 
yes or <n> for no. 

6. Please state reasons for your non-collaboration decisions.  

7. 
Do you miss any relevant author in the recommendation list? Please write 
down all relevant author names. 

Table 4.7. Questions concerning the top recommended authors in evaluation part b) (original 
questions in German). 

Even with known authors, it is sometimes difficult to give relevance feedback, 
as indicated during the evaluation process. Some interviewees had difficulties 
answering question #5 (table 4.7), stating that they do not know the considered 
author well enough to clearly estimate their current relevance. A further issue 
was that some participants knew that the considered author’s research focus had 
changed, leaving them unsure whether this new focus fits their current needs. 
Such vague cases were noted and left out of consideration for the subsequent 
results. Another reason for considering the evaluation of known authors is that 
these results allow for conclusions about the relevance of the conducted models 
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and their data sets.  

The evaluation gives the number of relevant authors who are potential 
collaboration partners. With this list, clear statements can be made concerning 
the appropriateness of the recommendations and a precision value can be 
measured. Furthermore, these results are not based on historic user data, but on 
direct user feedback (see Ma et al. (2007) for a statement on this issue).  

# Questions for evaluation part c): author networks  

1. According to your personal valuation, does the author distribution 
accurately reflect the reality of author collaboration in the research 
community? Please state any peculiarities. 

2. Do the network graphs show researcher/author communities in the right 
way? Please compare the networks according to your personal valuation.  

3. Would the network recommending similar authors be of use to you, for 
example in organizing a workshop or finding collaboration partners? 

4. Relating to question 3: how relevant do you consider the shown 
networks? Please rate on a scale from 1 (not relevant) to 10 (highly 
relevant) and explain your decision. 

Table 4.8. Questions concerning the visualized author graphs in evaluation part c) (original 
questions in German). 

For feedback on recommended authors, the most similar authors (author names) 
from all four applied models were taken and ranked in alphabetical order. Co-
authors identified via a researcher’s publication list were not considered as it 
was assumed that co-authors are automatically relevant and do not need 
additional relevance feedback by the target scientist. The number of authors to 
be recommended was limited in order to keep the interview time acceptable for 
the participants. For the first part of the study, in 2011, the top ten authors in 
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each network (ACC, BICO, CULU and CULT) based on cosine values were 
considered. As co-authors were deleted, the number of recommended authors 
differs for each target scientist. Proceeding in 2012, co-authors in each set were 
“replaced” by non-co-authors until the list featured 40 recommended authors. 
Two exceptions were made: in the case where no tag information was available 
and the data set from CiteULike was compiled on the basis of a single user (a8, 
see section 4.3.2), all 26 derived authors were considered. As 20 authors would 
thus be taken for the CiteULike data set (as is the case for all other target 
researchers that have ten authors from CULU and ten from CULT), the latter six 
below the cut off point were also considered because the number of author co-
occurrences was the same. In another case (a9), the author list gathered via the 
CULU network contained similar users with a cosine value of 1. As the first 20 
authors had the same similarity, all these persons were put on the 
recommendation list.  The cosine values for each recommended author were not 
shown, as they were likely to influence an interviewee’s decision regarding the 
relevance of the recommended authors. Table 4.7 shows the evaluation 
questions concerning this recommended author list. The questions were asked 
successively for each author on the list, except question 7, which was answered 
at the end. The rating scale from 1 to 10 was chosen to give the evaluators a 
chance to make more granulated distinctions between author relevance. In 
general, seven point rating scales are common.     

Evaluation part c) was concerned with the visualized author networks. The 
networks needed to be examined according to the correct distribution of authors 
and their relations to each other. Therefore, all networks were printed on a DIN 
A3 sheet of paper. Table 4.8 shows the questions regarding these aspects. Each 
network was first shown separately, in the following order: ACC, BICO, CULU, 
CULT. The target researchers were able to mark the networks on the printouts. 
For the ratings, the interviewees saw all four printed networks and were able to 
compare them.  
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4.3.4 Results and Discussion I: Relevance of Recommended Authors 

Before discussing the results of part b) in detail, we need to address some 
aspects with regard to the evaluation method. As already discussed above, some 
target researchers had difficulties judging some authors’ appropriateness as 
collaborators. Similarly, it was not easy for some interviewees to rate 
recommended colleagues. Some researchers did make clear distinctions, using 
almost all rating values from 1 to 10, while other scientists preferred a binary 
distinction, rating an author as either relevant or irrelevant. In the latter case, the 
line separating relevance and irrelevance was drawn at the rating score of 5. 
Asked about the meaning of rating score 5, the researchers stated that this score 
is positive, while 4 means that an author is not very relevant. The evaluation 
process showed that a binary rating seems more appropriate for person ratings, 
at least to some researchers. The decision to consider a person relevant 
(independently of the purposes for which the person is evaluated) is quite 
complex, as shown by the interviews. Distinguishing the relevance of colleagues 
and assigning a kind of rating to them might feel wrong to some people. In that 
case, a simple binary rating would likely be preferable. Assigning proper weight 
to the target researchers’ rating behavior, all recommended authors rated 5 or 
higher are seen as relevant authors.  

The evaluation leads to the following author groups that can be distinguished: 
unknown authors, relevant known authors, and irrelevant known authors. This 
allows us to make a statement about the novelty factor of the approach with 
regard to the recommendation list. In almost all cases (except for three target 
researchers), the number of unknown authors is higher than the number of 
known authors. Counting the number for all interviewees, they knew 212 
recommended authors, while 165 recommended authors were unknown to the 
target researchers. Experienced scientists (based on their active research years, 
for example a8 and a10) already have a huge collaboration network because 
they know many authors personally. Figure 4.15 shows these numbers for each 
researcher, distinguishing between known relevant and known non-relevant 
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collaborators who were asked for in question #5 (excluding relevant authors 
determined via question #7, table 4.7). The average novelty factor based on all 
researchers is 0.46, where novelty is defined by the simple relation of unknown 
recommended authors to all recommended authors. In a slight deviation from 
this definition, De Meo et al. (2011) considered all users deemed reliable and 
divided them into known (user-user contact within a network) and unknown. 
Their evaluators appear to make statements about user reliability even for 
unknown individuals. Baeza-Yates and Ribeiro-Neto (2011) proposes an equal 
novelty ratio. However, in the case at hand, data about relevant unknown 
researchers is not available with regard to the aspects discussed above.    

The relatively high number of unknown authors seems to be an appropriate 
result for recommendations of new potential collaborators. However, 
researchers are skeptical concerning the meaning of novelty (or serendipity) 
values, as it is difficult to design metrics for measuring novelty and serendipity 

Figure 4.15. Number of recommended authors and their valuation of each target researcher, where 
the number shown along the x-axis legend is the total number of recommended authors per target 
researcher. 
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(Herlocker et al., 2004). Both aspects involve finding not only new items, but 
those which users would not have found without the help of a recommendation 
system (Lops, Gemmis, & Semeraro, 2011). However, in this scenario the 
novelty factor allows us to measure the respective proportions of new 
(unknown) and known people, which is important for the “credible 
recommender task”.      

The participating physicists stated that they are interested in new collaboration 
partners, but would prefer, at the very least, people whose scientific work and 
community affiliation they know. Personal familiarity has a great influence on 
the decision of whether a person is interesting as a collaboration partner or not. 
This aspect was expected, as discussed above. Therefore, a network only 
showing unknown authors would recommend new authors, but would not be 
helpful to the scientists. Furthermore, the presence of known individuals creates 
trust. A system recommending known users or items fails to fulfill its task of 
detecting new resources, but familiar resources “increase user confidence” 
(Herlocker et al., 2004, p. 42), as is shown in diverse studies (Sinha & 
Swearingen, 2001, 2002). While showing participants their author 
recommendation lists, the researchers explained a known author’s relevance 
with reference to his or her research focus and ties or position within the 
community. This means that research colleagues are arranged into research 
groups and sub-groups within a scientific community, an arrangement that 
represents one factor of evaluating an author’s relevance. Hence, it is assumed 
that identified relevant authors can serve as a reference for estimating the 
relevance of unknown authors. This aspect becomes clearer when we analyze 
the results for the visualized networks in the next section. 

Concerning questions five (“Would you collaborate with any of these authors?”) 
and six (what are the reasons for non-collaboration?”), the results are distinctive. 
138 of the 162 recommended relevant authors are appropriate for potential 
collaboration. For those not deemed appropriate, diverse reasons were stated. In 
most cases, it was either a case of low topical overlap between the researcher’s 
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and the recommended author’s work, or the recommended author was a 
competitor rather than a collaborator. In the first case, the interviewees regarded 
an author as relevant because his or her research results were important for their 
own studies, but only a small part of this research was required. To name one 
example, a target researcher who conducts experimental studies only referred to 
theorists for theoretical background and would rather collaborate with another 
practical physicist than with a theorist. Additionally, he knew that some 
colleagues doing theoretical work are themselves not interested in practical 
research. However, it must be noted that this is only one example. Other 
researchers need colleagues who complement their own skills. The case study  
shows that such people can be found by using social information from various 
sources.  

Regarding the other reason for non-collaboration – where an author is seen as a 
competitor – the target scientists stated that some institutional conventions 
sometimes limit the potential for collaboration. However, this fact did not 
always include a negative facet from the target researchers’ point of view. They 
could not (or would not) give clear reasons for non-collaboration with other 
institutes. Some guessed that these situations just developed naturally over time. 
As the survey in chapter 1 showed, collaborations often develop through the 
network of one’s superior or colleagues. Thus in some cases, there is simply no 
tangible reason for non-collaboration. However, the five recommended authors 
who are seen as collaborators are highly relevant (one received a rating of 7, the 
others 10). An expert recommendation system does not focus exclusively on 
showing potential partners, but is also there to provide insight into the scientific 
community. Furthermore, collaboration within a community of practice is 
diverse and a community does not only consist of exactly like-minded people 
(remember Wenger’s (2008) characterization of diversity as a fruitful factor in 
mutual engagement). For example, if a researcher is planning a workshop, it is 
not devious to invite research competitors to gain new insights for one’s own 
research field.  
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Besides these justifications for non-collaboration, the researchers knew that 
some recommended authors had already retired or changed their research field. 
In only two cases, scientists named personal biases as their reason for non-
collaboration. Two further scientists saw two, respectively three, recommended 
authors as competitors with whom they would not collaborate closely.  

In addition to the relevant authors who were rated at five and higher in question 
#5 (table 4.8), the interviewees were able to name relevant authors who were not 
on the recommendation list (question #7 in table 4.8). These authors are also 
considered as relevant for the following analyses. This evaluation method is 
comparable with those of Berendsen, De Rijke, Balog, Bogers, and Van den 
Bosch (2013), who analyzed self-selected and system-generated data for 
evaluation. In their study they looked at recommended expertise generated by 
the system (such as the author recommendation list applied in this study) as well 
as expertise added by the users themselves. Here the target researchers also 
added additional expertise information concerning colleagues. In many cases, 
co-authors were named. Counting these numbers, the target authors named 
between 18 and 55 people they regarded as relevant for their current scientific 
work. The term “current” is important and was pointed out to the interviewees. 
For example, one target author had changed his research field. Some known 
recommended authors would have been relevant collaborators in the past, but 
were not appropriate for current research. Hence, a recommendation system 
considering an author’s last publications might suggest persons who are not 
currently relevant to the target researcher. A scientist could help correct this 
flaw in the choices he or she makes regarding those of his or her publications 
that a recommender system should consider for personalized expert suggestions. 
In other words, a researcher needs to deposit a publication list in their profile. 
Such a system could apply knowledge-based models in order to adapt the 
recommendations according to a user’s current needs (Burke, 2000). Here, 
aspects concerning user decision-making are important for building a system 
that satisfies user needs and is accepted by the users (Felfernig, Isak, & Russ, 
2006; Mandl, Felfernig, Teppan, & Schubert, 2011).  
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The general distribution of relevant authors relative to the data sets derived from 
the three services is shown in figure 4.16. All three data sets yielded almost the 
same number of relevant authors, but the overlap between them is low, as only 
35 authors are found across all three services. This means that different relevant 
scientists are found using the diverse methods of gathering social information 
data in Web of Science, Scopus, and CiteULike, respectively. Furthermore, it is 
interesting to take a look at the important authors who were only found via data 
from CiteULike: For example, 7 out of 35 important authors for target author a2 
are only found in CiteULike, and 6 out of 29 important authors for a3. Thus a 
system can recommend more relevant authors by analyzing different social 

Figure 4.16. Distribution of relevant authors for all scientists for the three services Web of Science 
(WoS), Scopus and CiteULike, respectively. 
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information sources. Figure 4.17 shows the coverage of found relevant authors 
relative to the number of all named relevant authors. Note that author a8 did not 
have any assigned tags and may have received biased results via a different 
method used to compile the CiteULike data set. Furthermore, author a4 did not 
have any publications in CiteULike at all. In figure 4.17, both CiteULike 
networks – that based on common users and that based on common tags – are 
distinguished. In four cases, the network based on bibliographic coupling was 
deemed best, leading to coverage of 55.56% (a4), 57.78% (a1), 70% (a5) and 
75% (a6), respectively. Target author a6 in particular had a good BICO network 
compared to his other networks. All other networks were better in two cases 
each, which means that a CiteULike network (CULU or CULT) is best in a total 
of four cases. The results are positive for CiteULike because in this service, not 
all of the target authors’ publications were bookmarked. In Scopus and Web of 

Science, almost all articles were retrieved (see table 4.6). Despite this fact, a 
high number of relevant authors was found in the bookmarking system for 

Figure 4.17. Coverage of relevant authors per target scientist (a1-a10), where the number shown on 
the x-axis is the total number of relevant authors named by the target researchers. 
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which a tag-based approach was applied in order to compile the data set.  

In addition to the coverage of relevant authors for a whole network, the 
accuracy of the top 20 rankings is analyzed. The top 20 lists are taken (instead 
of the top 10) so as not only to consider those authors listed for evaluation. 
Concerning the coverage of the recommended authors in the top 20 list, ranked 
by the cosine coefficient, the BICO networks have the best results once again. 
For eight target researchers, the most relevant authors are found in the top 20 
BICO list (figure 4.18). For the other two scientists, the CULU networks proved 
best, with author a8 showing exceptional results. Remember that he was 
recommended 26 authors from the CiteULike network based on author 
occurrences in one user’s bookmarking list. He claimed that all authors were 
relevant, leading to 100% coverage. It is remarkable that the sparse data set 
delivered such results. However, these results might be biased due to the 
personal valuations of the target researcher, who preferred to give positive 
relevance ratings to his colleagues.  

Figure 4.18. Coverage (similar to precision) of relevant authors per target scientist (a1-a10) for the 
top 20 recommended authors according to the cosine coefficient. 



216 Case studies on Expert Recommendation 

 
For the coverage of relevant authors for the top 20 lists, recall (similar to the 
coverage ratio of Baeza-Yates and Ribeiro-Neto (2011, p. 145)) and precision 
values can also be measured because the number of relevant authors (system-
generated and user-selected) is known. The values show a recommender 
system’s appropriateness in terms of suggesting relevant partners. In the current 
study, they offer a kind of counter-value to the novelty factor, as all relevant 
authors taken into consideration are also known and not novel. Regarding user 
trust aspects, it is useful for all values to show positive, but not too positive 
results. If recall and precision were high, a system would only recommend 
researchers the target scientists are already aware of. When the novelty value is 
high, the system recommends new partners, but the target scientists neither trust 
the system nor are able to evaluate the suggestions.  

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

 
average 
novelty           

  0.46 0.51 0.35 0.54 0.75 0.65 0.55 0.35 0.00 0.54 0.37 
            

 

average 
recall 
top 20           

ACC 0.56 0.65 0.54 0.55 0.50 0.85 0.27 0.50 0.80 0.42 0.53 
BICO 0.79 0.65 0.92 1.00 0.60 0.93 0.56 0.56 0.73 1.00 0.92 
CULU 0.41 0.50 0.50 0.40 0.00 0.29 0.60 0.33 0.73 0.63 0.09 
CULT 0.35 0.57 0.64 0.33 0.00 0.36 0.60 0.32 0.00 0.13 0.54 

 

average 
precision 

top 20           

ACC 0.36 0.65 0.35 0.30 0.05 0.55 0.15 0.25 0.60 0.25 0.40 
BICO 0.51 0.85 0.55 0.25 0.30 0.65 0.50 0.50 0.55 0.35 0.60 
CULU 0.29 0.35 0.25 0.30 0.00 0.10 0.30 0.30 1.00 0.25 0.05 
CULT 0.23 0.40 0.45 0.25 0.00 0.20 0.30 0.30 0.00 0.05 0.35 
Table 4.9. Evaluation values: novelty based on recommended author lists. Recall and precision 
values (based on named relevant authors who are appropriate collaborators) are measured according 
to the top 20 list ranked by cosine coefficient.  

Table 4.9 shows the metric values per target researcher. The average novelty 
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value based on the recommended lists is 0.46. Average recall (equation 3.2.) 
ranges from 0.35 to 0.79, whereas average precision (equation 3.1) ranges from 
0.23 to 0.5114. The average values are better for BICO and ACC networks, with 
BICO being the best. However, values for the CiteULike networks of some 
target researchers are better. Author a8 has a precision of 1 and recall of 0.73. 
Both of author a6’s recall values, CULT and CULU, are better than the values 
for ACC and BICO, thus there is no distinct proof that any of the applied 
approaches is better than the others. Bibliographic coupling leads to slightly 
better results. Nevertheless, the number of found relevant authors per data set 
and the high recall and precision values of single target researchers support the 
assumption that bibliometric and altmetric approaches complement each other. 
Comparing the values for recall, precision and novelty, it can be said that all 
networks show relatively average results, with values being neither too low nor 
too high. Hence, the ratio between new unknown authors and relevant known 
authors is balanced. The appropriateness of these results for an expert 
recommendation system is dependent on a target researcher’s needs and 
preferences. 

The analyses of relevant authors allow us to draw some first conclusions. More 
diverse relevant authors are found by using different approaches (and social 
information) to measure similarity between scientists. Bibliographic coupling 
analysis retrieves the most relevant authors. However, collaborative filtering in 
CiteULike delivers the second-best results. Figure 4.16 shows that the number 
of relevant authors in all three data sets is similar. However, the crucial factor is 
the number of relevant authors found across all three data sets, which is quite 
low. It seems that the diverse methods and data sets complement each other. The 
next section will discuss the relevance of the visualized networks.                     

4.3.5 Results and Discussion II: Relevance of Visualized Graphs 

Regarding the statements made by the evaluators, it is assumed that a network 

                                                           
14 Note: Both metrics consider relevant authors named in question #7, table 4.7. 
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that shows relations between known relevant authors and new unknown authors 
would help a target researcher estimate the relevance of the unknown 
individuals. This assumption will become clearer when looking at the evaluation 
results for the visualized networks for each applied model, i.e. ACC, BICO, 
CULU and CULT. The evaluation questions (table 4.8) focus on the 
representation of correct author communities and the appropriateness of the 
networks for the purposes of collaboration. The average ratings (1 to 10) for the 
visualized networks are:  

 BICO network: 7.95  
 ACC network:  6.35  
 CULT network: 4.81  
 CULU network: 3.75  

Six of the target authors claimed that the BICO network is the best one, while 
author a2 rated both BICO and ACC with nine (figure 4.19). This ranking is not 
surprising, since the interviewees stated that they found good collaborators 
among the recommended known authors. Additionally, bibliographic coupling 
in Web of Science retrieved the most important authors. Two authors preferred 
the ACC network, another one the CULT network. The CULU networks were 

Figure 4.19. Relevance feedback (rating of 1-10) of visualized author networks. 



 Recommending Authors Using Multiple Kinds of Social Information 219 

 
not preferred by any of the interviewees. In many cases, the authors complained 
of the size of the network and its unclear arrangement. Both the CULU and 
CULT networks are larger because the size of the data sets is larger. As the 
numbers for |Ub| and |Tb| did not have to be searched and verified manually (as 
was the case for the Scopus and Web of Science data sets), there was no need to 
limit the author sets considered for recommendation. Another critical concern 
regarding the CiteULike networks are the low numbers of common users and 
tags – an aspect already discussed in the pre-studies (section 4.1). It means that 
similarity values between author-author pairs are quite high and only minor 
distinctions can be made between these authors. Here, user-based similarity is 
lower because the target researchers share between 1 and 6 common users. The 
amount of common tags is higher, ranging from 3 to 19, except for 41 common 
tags for target researcher a2. Nevertheless, author a2 rated the CULT network at 
a mere 1.5, stating that the distribution of authors was not meaningful to him 
and that no relevant author was clustered around his own node. Author a6, who 
rated the CULT network at 8, only shares a maximum three common tags with 
29 other authors. In his case, the CiteULike networks are not too large, which 
might have influenced the rating. Some CULU and CULT networks were 
already narrowed down on the basis of cosine coefficient values. Nevertheless, 
the target scientists had difficulties orienting themselves in large networks. This 
explains why the target scientists preferred the CULT networks instead of the 
CULU networks, as the number of common tags is higher than the number of 
common users.  

In addition to users and tags, the number of bookmarked publications by 
researchers also influences the network structure, and thus the network rating.  
We assumed that novice researchers suffer from the cold start problem, meaning 
that none of their publications are found in the bookmarking service. In fact, this 
is also a problem for senior researchers. Coverage of the researchers’ articles 
differs between Web of Science, Scopus, and CiteULike, and this data 
influences the construction of network graphs. However, it is surprising that 
CiteULike seems to feature more and more recent articles by novice researchers 
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(such as a2 and a5, who were 36 and 30 years old at the time of evaluation). For 
a well-structured network visualization, the target authors’ articles need to be 
bookmarked by users and to have appropriate tags assigned to them. If this is 
not the case, large CiteULike networks become very unstructured and are not 
useful for detecting collaborators and relationships among authors. Where a 
network had a clear structure showing author communities and separate small 
groups, the researchers deemed the graph helpful for detecting author “hubs” as 
well as finding new known and unknown collaborators. As a result, the target 
scientists were able to identify relevant authors. Figure 4.20 shows the CULT 
network of author a3, who rated this cluster at 9. The researcher suggested 
combining the CULT network with either the BICO or the ACC network. 
Where the graph was not well-structured, and only a few tags were assigned to 
the target researcher’s articles in CiteULike, it was difficult to identify relevant 
authors and groups. In such cases, the interviewees regarded the graph as 
unhelpful in finding collaborators. This was the case for author a7, who rated 
the CULT network at 1 (figure 4.21).  

Apart from the difficulties with regard to clear network arrangement, the 
scientists found author networks more helpful than pure lists of author names. 
They stated that “it is helpful because I can see whom I know and which relation 
I could intensify” (a3). Furthermore, networks help out with the tasks of finding 
out if “I overlooked an important research area” or  “whom I could cite if I have 
to familiarize myself with a new topic” (a3). The researchers suggested 
combining the BICO and the CULT networks in order to be yielded all relevant 
authors and research communities. The reason for this is that the BICO network 
was deemed to show the main relevant authors “whom you find on your own” 
and “the usual suspects, [making it] a rather conservative network” (a10). 
Instead, the CULT network was deemed to reveal relations between authors of 
whom the target scientists were not aware beforehand, or “whose names were 
not available anymore” (a3). In the networks, the subjects also detected further 
important authors – relevant for possible collaboration – whom they forgot to 
name in the evaluation part b). This last point is quite crucial for the relevance 
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of expert recommendation systems: they help make people aware of not only 
implicit unknown relations, but also of explicit relevant relations whom they 
had forgotten. 

Figure 4.20. Author network of author a3 based on common tags in CiteULike (CULT) (extract of 
main cluster), cosine coefficient threshold 0.45-0.99, network rating = 9. 
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According to the statements of the researchers, two main aspects influence the 
relevance of a visualized network. One is the need for author recommendation. 
To organize a conference or workshop, the scientists preferred bigger networks 
with more unknown people. Hence, CiteULike networks were better at helping 

Figure 4.21. Author network of author a7 on the basis of common tags in CiteULike (CULT), 
network rating = 1. 
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them find unrecognized scientists to invite. Another argument in favor of 
preferring CiteULike networks over BICO or ACC networks was that the 
former cover more diverse research fields: “It is more appropriate for finding 
people who belong to your field in a wider sense” (a1, who preferred his BICO 
network in this case). Two other researchers stated that they are working in 
multidisciplinary research fields, and that none of the BICO and ACC networks 
covered all of them. These scientists preferred the CiteULike networks.  

For BICO and ACC networks, most of the interviewees stated that the authors in 
these two networks were too obvious to be similar and said that they were 
interested in bigger networks including more potential collaborators. Networks 
that only show relevant but previously known authors might not be appropriate 
for recommendation if there is a need for more unknown researchers in order to 
find new collaborators. However, some interviewees said that a small network 
would be sufficient for them because they preferred to have a clear structure. 
This answer was given when the researcher did a lot of work on their own and 
currently did not need many new collaborators, or when the researcher preferred 
known scientists as collaborators and thought that he or she had already built up 
a sufficiently large network. A running recommendation system could enable 
users to choose whether they want to be shown smaller or larger networks. 
Users could then decide either to stick to a smaller group of more familiar 
people or to extend their network to find new collaborators. Again, such systems 
can apply knowledge-based scenarios that allow for user interference. However, 
as studies show (see chapter 3), users might be lazy and not want to actively 
seek any recommendations. This fact should also be considered.                                                                                 

In any case, the advantage of a visualized network is that it shows the relations 
between authors, which helps a target scientist recognize the relevance of a 
person (“many authors are unknown, but there are also many familiar ones in 
the network” (a2)). A simple list of recommended authors cannot fulfill this 
task. Hence, it is important for a visualized network to include known persons, 
such as co-authors, and not exclude them. The researchers stated that these 
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people work as a kind of mediator between a target scientist and his or her 
unknown colleagues. In other words, the relevance of an unknown person can 
be estimated according to their relationships with known persons. The 
researchers said that the distribution of researchers and researcher communities 
was shown correctly in almost all networks. It is likely, albeit not explicitly 
proven, that any unknown scientist would also be allocated correctly within the 
graph. Hence, it is assumed that if an unknown person is shown to be clearly 

Figure 4.22. Author network for author a6 on the basis of author co-citations (ACC) (extract of main 
cluster), with keywords assigned by a6 during the evaluation.  
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connected to a known relevant research group, he or she probably does similarly 
relevant work.  

Of course, in order to make a clear statement about the appropriateness of 
unknown authors, a target scientist needs to know more about these persons. 
Besides showing author-author relations, a folksonomy-based structure offers 
more information to be used for relevance valuation. Further categorization via 
tags helps to classify the scientists’ work and gives less-than-clear user 
distributions in a graph more meaning. During the network evaluation, the 
researchers already arranged author groups within the networks with the help of 
keywords (see figure 4.22 for a6). Author a6 identified different researcher 
groups, tagging them with the terms “chemistry/polymer group”, “neutrons 
group”, and “colloid group”. The users in CiteULike assigned the tags 
“colloids”, “md_p02_015_soft”, and “soft_matter” (to wit, polymer research 
belongs to soft matter) to his bookmarked publications. This shows that the tags 
assigned to the target authors’ articles are quite appropriate and helpful for 

Figure 4.23. Tag cloud containing all tags assigned to the target researchers’ bookmarked 
publications in CiteULike. 
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detecting such author groups. Figure 4.23 shows a tag cloud of the terms 
assigned to the target authors’ articles in CiteULike (where tag size corresponds 
to frequency). For example, physicist a2 described his current work with the 
terms “modeling blood flow”, “viscosity”, and “simulation”. The users assigned 
the same tags “blood-flow”, “modeling”, and “viscosity” to his articles.  

To sum up the findings from the visualized network evaluation, BICO and ACC 
networks show a high number of potential collaborators, which the target 
researchers found helpful. The scientists stated that these graphs cover the core 
of their research fields and showed many familiar people. However, the larger 
CiteULike networks offered a better overview of related research fields and 
their authors. CULU and CULT networks were considered more helpful for a 
researcher searching for many new collaborators, for example to organize a 
conference, or for a researcher who has diverse research fields that should be 
covered in a network. Two target authors stated that they are working in 
multidisciplinary research fields and that neither the BICO nor the ACC 
network covered all of them. These latter preferred the CiteULike networks. 

4.3.6 Combination of Applied Models 

The applied approaches discussed above are shown to complement one another 
with regard to the task of finding potential collaborators. Hence, a 
recommendation system combining diverse methods could be designed on the 
basis of these findings. In chapter 3, different hybrid approaches are discussed. 
Monolithic hybridization systems work with a single implementation that 
considers aspects from diverse models. For example, the similarity between two 
users is measured on the basis of a common purchasing history and their 
navigation across item pages. Another method is to regard information about 
item content in order to recommend items to a target user  in addition to 
opinions by neighboring users in a collaborative filtering system (Jannach et al., 
2011). Jannach et al. (2011) further suggest exploiting constraint user feedback 
familiar from knowledge-based systems. In the suggested model, such a 
monolithic hybridization system is difficult, as author similarity is based on four 
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diverse models regarding data from diverse services. The diverse similarity 
assumptions must be combined before any measurement can be performed. The 
relevant aspects concerning similarity statements discussed in chapter 2 would 
get lost otherwise. Similarly, a pipelined design (Burke, 2002, 2007) would not 
make sense.          

Important 
authors 

mod 
Cos 

rank 
mod 
Cos 

cos 
ACC 

rank 
ACC 

cos  
BC 

rank 
BC 

cos 
CULU 

rank 
CULU 

cos 
CULT 

rank 
CULT 

Wales DJ 3.20 1 0.39 2 0.37 1 0.46 36 0.59 1 
Wenzel W 1.92 3     0.02 47 0.87 2 0.51 3 
Klenin K 1.86 4         0.87 1 0.51 2 
Carr JM 1.83 5     0.22 2 0.71 3 0.24 89 
Stock G 1.62 7 0.09 26 0.18 3 0.33 61 0.36 17 

Derreumaux P 1.51 8 0.15 9 0.15 4 0.29 67 0.30 28 
Klimov DK 1.48 9     0.09 30 0.50 11 0.39 7 
Johnston RL 1.32 10         0.71 4 0.30 38 
Nguyen PH 1.31 14 0.09 22     0.38 42 0.42 5 
Miller MA 1.25 16         0.71 5 0.25 66 
Caflisch A 1.15 25 0.05 59 0.12 9 0.22 124 0.29 44 
Pande VS 1.12 30     0.13 7 0.32 64 0.24 93 

Scheraga HA 1.00 44     0.09 32 0.26 99 0.27 47 
Mu Y 0.84 62         0.35 47 0.25 67 

Karplus M 0.82 64     0.10 21 0.17 191 0.21 143 
Brooks CL 0.77 72     0.10 17 0.11 249 0.22 133 

Table 4.10. Comparison: modified cosine and cosine values and ranks for the 16 important authors 
for a7. 

To wit, a system would consider all authors with high similarity on the basis of 
common references, and then measure the similarity of these authors based on 
common citations, and so on. New authors would not be included in further 
steps. Hence, all relevant authors who were found via author co-citation and 
collaborative filtering analyses would be lost and the complementary aspect of 
the approaches could not be used anymore.  

Then there is parallelized hybridization, which considers diverse approaches 
side by side and combines them in a final step. In the proposed study, this 
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design would call for unified author names and author disambiguation across all 
services, after which author similarity could be measured according to the 
cosine coefficients. The assumption is that authors who have high similarity 
values with a target researcher across all four models (common citation and 
references as well as common users and tags) are most alike, and thus highly 
relevant. More concretely, if the perspectives of a target author, other authors, 
and Web users bring together two authors via implicit relations, this indicates a 
high similarity between both. Thus the more implicit relations two authors have, 
the more similar they are.  

A simple model involves summing up the values for each author-author pair 
from all four networks. However, there are great differences concerning the 
cosine values. In general, cosine values in the BICO network are very low 
compared to ACC as well as to similarity measurements based on collaborative 
filtering methods. The highest cosine value for similarity based on bibliographic 
coupling is 0.68, where value intervals between 0.3 and 0.01 are the most 
common. The high number of references the authors assigned to their 
publications minimizes similarity values between two authors. Additionally, 
similarity is comparatively high for collaborative filtering measurements in 
CiteULike because the number of common users and assigned tags is quite low. 
Here, the maximum cosine value is 1. If results are meant to be combined into 
one recommendation list for a target researcher, any summation and ranking 
regarding these cosine values will not be appropriate. Therefore, cosine values 
must be normalized. In the example in table 4.10, the important authors received 
relatively good ranking lists via the normalized and summarized cosine values. 
However, many relevant authors in the current study are found in only one 
network. The disadvantage of combining the data sets in a hybrid system is that 
these relevant authors would have a low chance of reaching a good ranking. If a 
researcher gets an author recommendation list, he or she will probably not pay 
any attention to the lower-ranked authors.  

Concerning a visualized network for a hybrid approach, combined cosine values 
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would lead to different author relations and thus to enormously different 
networks. This would influence the perception of a target author concerning 
relevant persons and researcher groups. Another great issue that should be 
considered when combining the networks is the problem of author ambiguity, 
which would be tough to handle when using different services with diverse 
spelling preferences. Thus it is doubtful whether the combination of the methods 
leads to any new advantages for a target author. Evaluation showed that target 
researchers have clear preferences for BICO and ACC networks on the one hand 
(search for partners in one’s close network), and larger CULU and CULT 
networks on the other (detection of new fields or finding people to invite to a 
conference). In a combined network, these preferences are not considered.   
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Conclusion 

The aim of this work was to analyze and evaluate a proposal for an expert 
recommender system for researchers, while concurrently looking at 
scientometric and alternative approaches. The focus was placed on the 
usefulness of the models and data applied with regard to the opinions of 
physicists who were given personalized recommendations based on their current 
publications.  

There is a need for collaboration and the expansion of researchers’ networks. 
These issues are important, on the one hand, because of extrinsic intentions, as 
collaborations with research colleagues lead to higher levels of reputation for 
institutions as well as for individual scientists. On the other hand, they are also 
crucial because of intrinsic needs – for novices as well as for senior researchers 
– because scientific knowledge creation and the development of new knowledge 
require further interaction between researchers. New collaborations are possible 
if environments are established in which academic communities of practice can 
evolve. These communities and their nature of mutual engagement and 
interactive participation support the process of academic knowledge creation by 
researchers. Thus we concluded that support should be provided to foster the 
detection of such communities. There are new ways of detecting relations 
between researchers that are not found directly and of which most researchers 
are unaware. On the one hand, scientometric models that look at indirect author 
relations are appropriate because their data directly refers to a researcher’s 
reputation. On the other hand, further social information from user-generated 
data is relevant because it introduces a new perspective and further considers the 
opinions of readers in a social bookmarking system. Relations within these 
systems are comparable to co-citation relations and thus may be used in 
conjunction with scientometric data. Considering the concept of collective 
intelligence, this type of data can expand a researcher’s perspective. Hence, a 
model is proposed which considers three diverse perspectives – target 
researcher, third author, users – in order to derive multiple views on scientific 
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relations. The intention of an expert recommender system is to consider those 
views in order to help researchers find new collaborators. The idea of the 
“wisdom of crowds” is applied via collaborative filtering models, which gather 
historic user data to detect similarities between elements and to give 
personalized recommendations. Collaborative filtering models in bookmarking 
services are adapted to the academic field and used as alternative metrics in 
conjunction with scientometric models so as to establish expert 
recommendations for researchers. The case studies in chapter 5 conducted 
experiments for these recommendations and answered the work’s research 
questions:       

1. Can researchers be helped to find relevant experts for collaboration via 
expert recommendation on the basis of scientometric and alternative 
approaches?  

The evaluation results showed that relevant researchers for collaboration can be 
found via the four applied models. Novelty as well as recall and precision 
factors allow for the calculation of mean values. In other words, the applied 
models retrieve known and relevant authors as well as unknown authors. This 
mixture seems appropriate. A recommendation system should be able to suggest 
novel elements; otherwise it is no help to a user. However, research shows that 
systems suggesting known elements are trusted, which is a crucial factor for a 
person’s decision to use a system. These findings were also confirmed in the 
case study. The evaluation of the author lists showed that researchers tend to 
“think in networks”. They evaluated their peers by referring to their reputations 
and connections to other researchers. The evaluation of the author networks 
painted a clearer picture. Researchers who found known colleagues in the author 
networks referred to unknown authors via their connections to known authors. 
The participants stated that known colleagues can act as a mediator, and that the 
relevance of unknown researchers can be estimated via their connections to 
known peers. These connections provide a first hint toward the appropriateness 
of a colleague with regard to future collaboration. However, it must be noted 
that the correct relevance of an unknown author cannot not be stated ad hoc 
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without further investigation. In a running recommender system, though, links 
to an author’s papers can be made that facilitate relevance estimates. 
Furthermore, aboutness tags (Peters, 2009) can deliver information because they 
show topical relations between researchers. The evaluation shows that terms 
used by the interviewees and tags assigned by users are quite similar to one 
another. 

Concerning the representation of author recommendations, there is a clear 
preference for visualized networks because they have one great advantage. 
Known authors within the networks are connectors between a target researcher 
and unknown authors. Additionally, the participants stated that these networks 
include more valuable information because researcher groups and their 
connections could be detected. In these networks, potential collaborators were 
found whom researchers were not aware of before.  

2. Is professionally indexed data from information services, based on 
scientometric approaches, appropriate for use in expert 
recommendation? 

Retrieving data from Scopus and Web of Science is sometimes difficult because 
it must be conducted manually. McNee (2006) applied automatic approaches 
with data from an online service that also collects citation data based on 
automatic approaches. His results show that co-citation does not deliver good 
results compared to other approaches. Although the work at hand did not 
compare diverse algorithmic measurements, we can say that data based on co-
citation analysis does lead to appropriate results concerning the relevance of 
recommended authors. Similar approaches using co-citation analysis also lead to 
positive results (Guns & Rousseau, 2013, 2014). The number of found 
publications by the participants was quite high for both services, namely Scopus 
and Web of Science. These numbers appear sufficient. Improvements have to be 
made with regard to author disambiguation.    

3. Is user-generated data from social bookmarking services, based on 
collaborative filtering models, appropriate for use in expert 
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recommendation?   

Despite low coverage of target researcher publications, data from CiteULike 
delivered a high number of relevant authors, even for novice researchers (figure 
5.16). Furthermore, different relevant authors were found compared to those 
retrieved via co-citation and bibliographic analysis. As other studies previously 
suggested (Lee & Brusilovsky, 2010), similarity based on tags is more 
appropriate because the number of common tags is higher than the number of 
common users. Participants preferred the CULT network to the CULU network. 
User-generated data contains more information. Besides only showing author-
author relations, a folksonomy-based structure delivers tags that show topical 
relations between researchers. As this study and other works (Heckner, 
Mühlbacher, & Wolff, 2008) show, tags are useful for navigating a researcher’s 
field. This advantage can be used in a running recommender system and helps 
users to evaluate the suggested recommendations.  

4. Are there any differences in the outcomes concerning the approaches 
and the data sets?   

The comparison of the diverse models leads to two major findings. 
Scientometric as well as collaborative filtering approaches lead to similar 
numbers of relevant authors being found, whereas bibliographic coupling leads 
to the highest-quality results. The crucial factor is that only a few authors are 
found by all three services, although all models refer to a target researcher’s 
current publications. Hence, if only one model or source is chosen for author 
recommendation, relevant authors will be lost. The case study shows clearly that 
diverse models should be applied, using different sources. In this case, user-
generated data complements classic scientometric models. Despite a lower 
coverage of researcher publications, an appropriate number of relevant authors 
was found in CiteULike. Researchers also stated that the BICO and ACC 
networks did not show surprising new authors. Authors in these networks were 
the usual suspects. Participants who were more open to other research fields 
preferred CiteULike networks because they show more diverse author groups 
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from research fields connected to the participants’. Interviewees said that CULT 
networks in particular include researcher groups concerned with topics that do 
not belong to their immediate purview. Therefore, one argument for preferring 
CiteULike networks instead of BICO or ACC networks was that these networks 
cover more diverse research fields: “It is more appropriate for finding people 
who belong to your field in a wider sense”. Depending on the purpose of 
collaboration, for example planning a conference or learning about neighboring 
research fields, participants deemed those networks to be more appropriate. 
Other researchers preferred the BICO networks, which were rated the best.  

To summarize the findings, expert recommendations for the academic sphere 
should consider diverse social information about researchers and apply diverse 
models in order to give relevant recommendations. User-generated data and 
collaborative filtering confirm that the user perspective can expand a scientist’s 
network and suggest further possible collaboration. However, a target author’s 
need is crucial in this respect. To implement a running recommender system, it 
must be kept in mind that researcher needs and preferences differ. Hence, a 
system should be able to adapt to these circumstances. Jannach, Zanker, 
Felfernig, and Friedrich (2011) suggest further exploiting constraint user 
feedback known from knowledge-based systems. “Knowledge-based 
recommendation paradigms have a clear advantage in utilizing explicit user 
input and transforming it into recommendations” (Zanker & Jessenitschnig, 
2009, p. 161).   However, a recommendation process that overcomes the 
narrowness of a researcher’s perspective is highly desirable. Therefore, systems 
that react to current researcher needs and simultaneously suggest new and 
previously unknown elements are suitable for the academic field. A good 
example for such a model is the database Sowiport (Mutschke, Mayr, Schaer, & 
Sure, 2011) (see also chapter 4), which does not favor a combination of diverse 
models, but aims to represent them simultaneously. A user gets different ranking 
results based on diverse metrics and is free to choose based on his or her 
preference. He or she is encouraged to look at the results from different 
perspectives, but is not forced to stick to a choice pre-defined by the system. 
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The researcher has to trust the system, which should not make any strict 
prescriptions concerning ideal collaborators. Only then can a system foster 
community building and knowledge creation beyond restricted perspectives.  
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