
Graph Connectivity with
Respect to Wireless Ad-Hoc

Sensor Networks

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Stefan Hoffmann

aus Mönchengladbach

Düsseldorf, Mai 2016



aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Egon Wanke

Korreferent: Prof. Dr. Jörg Rothe

Tag der mündlichen Prüfung: 15. Juli 2016
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Zusammenhangsproblemen, die aus der Be-
trachtung von Funknetzwerken resultieren. Es wird u.a. die Frage beantwortet
wie eine Nachricht an alle Nachbarn eines Knotens v verteilt werden kann,
unter der Annahme, dass v nicht zur Erfüllung dieser Aufgabe beiträgt. Dieses
Problem tritt z.B. bei der Reparatur von Routingwegen oder der gemeinsamen
Entscheidungsfindung auf und wird durch Angabe des sog. k-HBF Protokolls
mit Parameter k ∈ N gelöst. Es wird bewiesen, dass das Protokoll erfolgreich
die Nachricht verteilt, wenn k ≥ 2d−1 gilt und v d-lokal zusammenhängend ist,
d.h. dass die d-Hop Nachbarschaft von v einen zusammenhängenden Graphen
induziert. Es wird auch gezeigt, dass k-HBF bzgl. der verwendeten Knoten
optimal ist: Jeder beteiligte Knoten muss von jedem Protokoll verwendet
werden, das die Verteilung garantiert und auf die gleichen Topologieinfor-
mationen beschränkt ist. Empirische Auswertungen zeigen zudem hohe Er-
folgsraten für kleine Werte von k. Außerdem wird untersucht wie sich die
kleinste Zahl d, so dass ein gegebener Knoten d-lokal zusammenhängend ist,
in Linearzeit bestimmen lässt und wie dieses Verfahren verteilt implemen-
tiert werden kann. Ausgehend von dieser Verbindung zum lokalen Zusam-
menhang werden anschließend graphentheoretische Probleme analysiert, mit
Hilfe derer diese Eigenschaft durch Topologiekontrolle beeinflusst werden kann.
Besondere Beachtung erhält dabei die Frage wie viele zusätzliche Kanten
eingefügt werden müssen, damit die 1-Hop Nachbarschaft jedes Knotens einen
zusammenhängenden Teilgraphen induziert, wobei sich zwei Varianten dieses
Augmentierungsproblems ergeben: In der starken Version werden die Nach-
barschaften im erweiterten Graphen betrachtet, in der schwachen Version die
Nachbarschaften im ursprünglichen Graphen. Es wird gezeigt, dass beide Vari-
anten NP-vollständig sind und wie die schwache Version mit einem Faktor von
1 + ln(∆) approximiert werden kann, wobei ∆ den maximalen Knotengrad
bezeichnet. Ebenfalls NP-vollständig sind die Frage nach dem größten zusam-
menhängenden induzierten Teilgraphen, in dem alle Knoten 1-lokal zusam-
menhängend sind und die Frage, wie viele Kanten entfernt werden können
ohne diese Eigenschaft zu verletzen - letzteres wieder in zwei Varianten. Ab-
schließend werden Funknetzwerke mit zwei Sendestärken betrachtet. Die An-
nahme jeder Knoten könne durch Erhöhung der Sendeleistung zusätzliche
Nachbarn erreichen, wirft die Frage auf, wie viele Knoten mit höherer Leis-
tung senden müssen, damit ein zusammenhängendes Netzwerk entsteht. Für
dieses NP-vollständige Problem wird ein parametrisierter Approximationsal-
gorithmus vorgestellt, der eine schrittweise Erhöhung der Approximationsgüte
auf Kosten zusätzlicher Rechenleistung ermöglicht.
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Abstract

This thesis deals with problems that are related to graph connectivity and
emerge from wireless ad-hoc multi-hop networks. The so-called Neighbor-
hood Broadcast problem describes the task of distributing a message across
the neighborhood of a node v under the assumption that v will not contribute
to the solution. This routing problem occurs during route repair and collabo-
rative decision making and is solved by presenting the k-HBF protocol for a
positive integer k. It is proven that the protocol is successful, if k ≥ 2d−1 and
v is d-locally connected, meaning that the d-hop neighborhood of v induces a
connected subgraph. It is also shown that the set of nodes participating in the
execution is optimal under all protocols that are restricted to the same topol-
ogy information, i.e. that every participating node also has to participate in
every protocol that guarantees delivery. Simulations based on commonly used
wireless network graph models demonstrate a high success rate for low values
of k. The question of how to determine, in linear time, the minimum integer d
such that a vertex in a given graph is d-locally connected is also answered and
it is discussed how this algorithm can be implemented in a distributed envi-
ronment. Due to the relationship to local connectivity, several graph theoretic
problems related to topology control are considered to investigate possibilities
for increasing local connectivity during network design. Special attention is
given to graph augmentation in this context, i.e. the question of how many
edges have to be added to a given graph in order to make the 1-hop neighbor-
hood of every vertex induce a connected subgraph, a problem that is split into
two different versions: The strong augmentation problem considers the neigh-
borhoods of the augmented graph, while the weak augmentation problem is
concerned with the original neighborhoods of the given graph. It is shown that
the corresponding decision problems for both versions are NP-complete and
an algorithm is developed and analyzed that approximates the weak augmen-
tation problem within a factor of 1 + ln(∆), where ∆ denotes the maximum
vertex degree of the graph. It is also shown that computing the maximum
connected induced subgraph, in which every vertex is 1-locally connected, is
NP-complete and that the same result holds for deleting a maximum number
of edges while preserving the 1-locally connected property. Finally, wireless
networks with two distinct power levels are considered. Assuming that each
node can increase transmission power to reach an additional set of neighbors
yields the question of how many nodes have to use increased power to achieve
connectivity of the network. This thesis presents a family of approximation
algorithms for this NP-complete problem that allows gradually incrementing
approximation quality by providing increased computational power.
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Introduction

This thesis deals with questions that arise from self-organizing, wireless com-
puter networks, so called wireless sensor networks (WSN) or mobile ad-hoc
networks (MANET). One of the main characteristics of these networks is that
they consist of many autonomous devices, so-called nodes, that need to collab-
orate to perform a certain task. For this purpose they exchange information
with each other via radio transmissions. The communication structure of such
a network is commonly modeled as a graph and therefore this topic is closely
related to graph theory. This thesis focuses on the complexity and approx-
imability of problems related to the graph theoretic concept of connectivity
that emerge from these wireless network. Additionally, the obtained theoretic
results are applied to computer networks by developing distributed protocols
for certain problems that occur in practical deployments.

The motivation and possible applications for the individual topics as well
as references to related work are given throughout the thesis in the beginning
of the respective chapters and sections, which are organized as follows:

Chapter 1 is concerned with definitions, notations and algorithms from
graph theory, complexity theory and wireless networking as these basics are
used several times in the remainder of this work.

Chapter 2 introduces the so-called Neighborhood Broadcast, the task
of distributing a message among the neighbors of a given node under the as-
sumption that this particular node will not contribute to the solution. While
this problem implicitly occurs in literature, it has not yet been studied on
its own to a sufficient extent. This thesis provides a practical solution includ-
ing thorough theoretical and experimental analysis. One of the results that
is discovered during the analysis is that the possibility to perform a Neigh-
borhood Broadcast depends on a graph property called local connectivity,
which describes the connectivity of the subgraphs induced by the neighbor-
hoods of the nodes in the network.

Chapter 3 therefore examines topology control approaches with respect to
local connectivity, most of which aim for increasing local connectivity by al-
tering the communication structure of the network. A second type of topology
control that preserves existing local connectivity while decreasing necessary
maintenance by removing redundant communication links is also considered
in this part.

Chapter 4 analyses networks in which the nodes can choose between two
transmission power levels and examines the most basic topology control prob-
lem in this scenario: The question of which nodes have to use the higher
transmission power in order to obtain a connected communication graph.
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1. Basic Terminology

Chapter 5 then concludes the thesis and discusses open problems and pos-
sible extensions that are suitable for future work.

1 Basic Terminology

This chapter provides an overview of basic definitions and notations that are
used throughout the thesis. The reader is assumed to have some familiarity
with graph theory, complexity theory and approximation algorithms as well
as a basic understanding of computer networks.

1.1 Graph Theory

A pair (V,E) is an undirected graph with vertex set V and edge set E, if V is a
finite set and E ⊆ {{u, v} | u, v ∈ V, u 6= v}. A pair (V,E) is a directed graph
with vertex set V and edge set E, if V is a finite set and E ⊆ V × V .

For an undirected graph G = (V,E), an edge e ∈ E is incident to a vertex
v ∈ V , if v ∈ e and two vertices u, v ∈ V are adjacent, if {u, v} ∈ E. The
degree of v, denoted by ∆(v), is the number of edges incident to v, a vertex
v ∈ V is called isolated, if ∆(v) = 0 and the maximum vertex degree of G is
defined as ∆(G) := max{∆(u) | u ∈ V }.

A path of length k ∈ N between two vertices v1 and vk+1 in a directed
(undirected) graph G = (V,E) is a sequence of vertices v1, . . . , vk+1 such that
∀i ∈ {1, . . . , k} : (vi, vi+1) ∈ E ({vi, vi+1} ∈ E). The length of a path p is
denoted by L(p). A path p is called simple, if all vertices on p are pairwise
distinct.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E), if V ′ ⊆ V
and E′ ⊆ E. For a subset of vertices U ⊆ V of a directed (undirected) graph
G = (V,E) the graph G|U = (U,E|U ), E|U := {(u, v) ∈ E | u, v ∈ U}
(E|U := {{u, v} ∈ E | u, v ∈ U}) is called the subgraph of G induced by U .

Graph G = (V,E) is connected, if there is a path between every pair of
vertices. A connected component of G is a maximal induced subgraph of G that
is connected. The set of vertex sets of the connected components is denoted by
CC(G). A vertex v ∈ V is a called a separation vertex, if G|V \{v} consists of
more connected components than G. A subset U ⊆ V of vertices is connected,
if G|U is connected. For a positive integer k ∈ N, G is k-connected if and only
if V \ U is connected for all vertex sets U ⊆ V with |U | ≤ k − 1.

Theorem 1. An undirected graph G = (V,E) is k-connected for a positive
integer k ∈ N if and only if there are k internally vertex disjoint paths between
every pair of vertices. [73]
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1. Basic Terminology

A path u1, . . . , uk, k ≥ 3 in an undirected graph G = (V,E) is a cycle if
{uk, u1} ∈ E. An undirected graph without cycles is a forest and a connected
forest is a tree.

A directed graph G = (V,E) is strongly connected, if there is a path be-
tween every pair of vertices. A strongly connected component of G is a maximal
induced subgraph of G that is strongly connected.

Let G = (V,E) be a connected graph. The distance dG(u, v) between two
vertices u, v ∈ V is the smallest integer d for which there is a path of length d
between u and v. The set Nd

G(v) := {u ∈ V | dG(u, v) = d} is called the d-hop
neighborhood of a vertex v ∈ V and Nd

G[v] := ∪d
i=1N

i
G(v) is the set of vertices

with distance at most d to v. If the graph G is obvious from the context, the
notations d(u, v), Nd(v) and Nd[v] are also used instead of dG(u, v), N

d
G(v)

and Nd
G[v].

The diameter of a graph G = (V,E), denoted by ∅(G), is the largest
positive integer such that there is a pair of vertices u, v ∈ V with d(u, v) =
∅(G).

Let E := (V × V ) \E denote the complementary edges of a directed graph
(V,E) and analogously for undirected graphs.

Unit Disk Graphs

A special class of graphs that can be embedded into the euclidean plane such
that there is an edge between two vertices if and only if the euclidean distance
between their positions is at most 1 is called unit disk graphs.

Let ‖x‖2 :=
√

x21 + x22 denote the euclidean norm of x = (x1, x2) ∈ R
2.

Definition 1. An undirected graph G = (V,E) is a unit disk graph (UDG) if
there is a UDG embedding ρ : V → R

2 such that:

1. ∀u, v ∈ V : (u 6= v) ⇒ (ρ(u) 6= ρ(v))
2. ∀u, v ∈ V : (u 6= v) ⇒ ( {u, v} ∈ E ⇔ ‖ρ(u)− ρ(v)‖2 ≤ 1 )

Obviously every UDG embedding ρ for a UDG G = (V,E) can be scaled
to construct an embedding ρr for an arbitrary radius r ∈ R, r > 0, such that
∀v, u ∈ V ‖ρ(u)− ρ(v)‖2 ≤ 1 ⇔ ‖ρr(u)− ρr(v)‖2 ≤ r.

There are undirected graphs that are not unit disk graphs, the smallest
one with respect to the number of vertices being the complete bipartite graph
K2,3 as mentioned in [31]. This particular graph not having a unit disk graph
embedding will be an important observation for an algorithm developed in a
later chapter, therefore this section presents a simple proof for this statement.

3



1. Basic Terminology

Definition 2. For a finite set of points P ⊂ R
2 and a positive radius r ∈ R

define the corresponding unit disk graph UDG(P ) := (P,EP ), where
EP := {{x, y} | x, y ∈ P ∧ x 6= y ∧ ‖x− y‖2 ≤ r}.

Definition 3. For m ∈ R
2 define the unit disk with center m as

B(m) := {x ∈ R
2 | ‖x−m‖2 ≤ 1}.

Lemma 1. The complete bipartite graph K2,3 := (V,E),
V := {v1, v2, u1, u2, u3}, E := {{vi, uj} | 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 3} is not a unit
disk graph.

Proof. Assume that there is a UDG embedding ρ : V → R
2 for the graph

K2,3. Then {v1, v2} 6∈ E implies that ‖ρ(v1) − ρ(v2)‖2 > 1. Without loss of
generality let ρ(v1) := (0, 0) and ρ(v2) := (1 + ǫ, 0) for some ǫ > 0.

Since {ui, vj} ∈ E for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2, it follows that, for all
u ∈ {u1, u2, u3}, ρ(u) ∈ Lǫ := B((0, 0)) ∩ B((1 + ǫ, 0)). Furthermore ‖ρ(ui) −
ρ(uj)‖2 > 1 for all i 6= j, because {ui, uj} 6∈ E. But Lǫ ⊂ L0 for all ǫ > 0 and
there are no three points p1, p2, p3 ∈ L0 such that ‖pi − pj‖2 > 1 for all i 6= j:
Let L− := {(x, y) ∈ L0 | y < 0} and L+ := {(x, y) ∈ L0 | y ≥ 0}, see Figure 1.
It obviously holds that, for all p ∈ L−, L− ⊂ B(p) and analogously L+ ⊂ B(p)
for all p ∈ L+. Therefore L0\(B(p1)∪B(p2)) = (L+∪L−)\(B(p1)∪B(p2)) = ∅
for all p1 ∈ L+ and p2 ∈ L−, which means that there is no third point p3 ∈ L0

that has euclidean distance greater 1 to both p1 and p2. ⊓⊔

L
+

L
−

(1,0)(0,0)

Fig. 1. Intersection of two unit disks with centers (0, 0) and (1, 0)
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1. Basic Terminology

Corollary 1. If an undirected graph G = (V,E) contains a set of vertices
U ⊆ V such that G|U is isomorphic to K2,3, then G is not a unit disk graph.

Proof. Any UDG embedding ρ : V → R
2 for G would yield a UDG embedding

ρ|U for G|U = K2,3, which contradicts Lemma 1. ⊓⊔

An extension of the unit disk graph model, the d-quasi unit disk graph for
a real number 0 ≤ d ≤ 1, has been introduced in [63] to provide a less idealized
graph model.

Definition 4. Let G = (V,E) be an undirected graph and d ∈ R be a real
number, 0 ≤ d ≤ 1. G is a d-quasi unit disk graph, if there is an embedding
ρ : V → R

2 such that

1. ∀u, v ∈ V, u 6= v : ‖ρ(u)− ρ(v)‖2 ≤ d ⇒ {u, v} ∈ E
2. ∀u, v ∈ V, u 6= v : ‖ρ(u)− ρ(v)‖2 > 1 ⇒ {u, v} 6∈ E

An extension of the basic concept used in Lemma 1 suggests the following
relation between d-quasi unit disk graphs and the complete bipartite graph
K2,4, which is not formally proven at this point and therefore formulated as a
conjecture.

Conjecture 1. The complete bipartite graph K2,4 := (V,E),
V := {v1, v2, u1, u2, u3, u4}, E := {{vi, uj} | 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 4} is not a
d-quasi unit disk graph for any d ≥

√
3− 1.

1.2 Complexity Theory

This section contains some NP-complete problems that are used in the fol-
lowing chapters to prove the NP-completeness of several problems regarding
connectivity in graphs.

For the basic definitions and concepts of complexity theory, especially the
theory of Turing machines, decision problems and NP-completeness, the reader
is referred to suitable literature such as [35].

Satisfiability

Let X = {x1, . . . , xn} be a set of boolean variables. A truth assignment for X
is a function T : X → {0, 1}. If T (xi) = 1, then variable xi is true under T ; if
T (xi) = 0, then variable xi is false under T . For every variable xi ∈ X there
are two literals, the positive literal xi and the negative literal xi. The positive
literal xi is true under T if and only if variable xi is true under T ; negative
literal xi is true under T if and only if variable xi is false under T .

5



1. Basic Terminology

A clause c over X is a set of literals over X. It represents the disjunction
of literals which is satisfied by a truth assignment T if and only if at least one
of the literals in c is true under T . A set C of clauses over X is satisfiable if
and only if there is a truth assignment T that satisfies all clauses of C.

Satisfiability

Given: A set of variables X and a set of clauses C over X.
Question: Is there a satisfying truth assignment for C?

Theorem 2. Satisfiability is NP-complete. [24]

Connected Sat

A restriction to the Satisfiability problem, so-called Connected Sat, is
now introduced as it is closely related to graph connectivity.

Definition 5. Let X be a set of boolean variables and C be a set of clauses
over X. The clause variable graph G(X,C) consists of a vertex x for every
variable x ∈ X and a vertex c for every clause c ∈ C. There is an edge {x, c}
between variable vertex x and clause vertex c if and only if c contains literal
x or x.

Connected Sat

Given: A set of variables X and a set of clauses C over X, such that
the clause variable graph G(X,C) is connected.

Question: Is there a satisfying truth assignment for C?

Lemma 2. Connected Sat is NP-complete.

Proof. Obviously Connected Sat is in NP. The NP-hardness is shown by
the following polynomial time reduction from Satisfiability that transforms
an instance (X, C) into another, logically equivalent, instance (X ′, C′) by suc-
cessively adding new variables and clauses to merge connected components of
the clause variable graph with each other.

Let G1 and G2 be two connected components in G(X,C) and c1 (c2) an
arbitrary clause vertex in G1 (G2). Add a new variable h and replace c1 (c2)
with the two clauses c1∪{h} and c1∪{h} (c2∪{h} and c2∪{h}). Applying this

6



1. Basic Terminology

replacement iteratively until the clause variable graph in connected yields an
instance (X ′, C′) that is satisfiable if and only if (X, C) is satisfiable: If (X, C)
is satisfiable, then (X ′, C′) is satisfiable, because every clause in C′ is a superset
of a clause in C. On the other hand, if (X ′, C′) is satisfiable, then (X, C) is also
satisfiable, because for every truth assignment T ′ of X ′ and every clause c ∈ C
there is a clause c′ ∈ C′ such that c ⊆ c′ and none of the literals in c′ \ c is true
under T ′. ⊓⊔

Directed Hamiltonian Path

Definition 6. Let G = (V,E) be a directed graph and n := |V |. A path p :=
v1, . . . , vn of length n− 1 is called a Hamiltonian path, if all vertices on p are
pairwise distinct, i.e. vi 6= vj for all i, j ∈ {1, . . . , n}, i 6= j.

Directed Hamiltonian Path (DHP)

Given: A directed graph G = (V,E)
Question: Does G contain a Hamiltonian path?

Theorem 3. Directed Hamiltonian Path is NP-complete. [35]

1.3 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a large number of small devices
that are deployed across a geographic area to monitor certain aspects of the
environment. Typical examples include monitoring of temperature or radia-
tion for disaster detection and warning as well as humidity for agricultural
purposes and (ultra-)sonic vibrations or radio waves for object tracking and
surveillance. These small devices, the so-called sensor nodes, are able to com-
municate with each other through a wireless communication channel. As a
result of their size the resources of the sensor nodes are strongly limited in
terms of computational power, storage space and available energy. This also
leads to a very limited range of the radio transmitters which therefore only al-
low direct communication between sensor nodes that are positioned sufficiently
close to each other.

The communication structure of a WSN is typically modeled as either
an undirected or a directed graph, in which the vertices represent the sensor
nodes and the edges correspond to viable radio links. From a technical point of
view, modeling a WSN as a directed graph is closer to reality, because physical

7
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radio links are not necessarily symmetric [15, 61]. However, most researchers
use undirected graphs instead, which is well justified by the observation that
low-level communication protocols for wireless transmissions currently in use,
such as IEEE 802.11 [49] or Bluetooth, require symmetry for reliable data
transmission via acknowledgements.

For the remainder of this thesis a sensor network is modeled as an undi-
rected graph G = (V,E), unless otherwise noted. The terms (sensor) node and
vertex are used interchangeably with node referring to a physical instance of
a sensor node, while vertex refers to the mathematical counterpart within the
graph model. In conformity with common practice it is also assumed that the
nodes have unique identifiers, modeled as a bijection id : V → {1, . . . , |V |}.

All communication and data transmission between non-adjacent nodes has
to be carried out by multi-hop routing, a technique that requires multiple sen-
sor nodes to work together in order to successfully transmit messages through
the network. To achieve this goal the intermediate nodes on a routing path relay
the message to reach further nodes that are outside the communication range
of the node the message originated from. The question of which node should
forward a message such that the destination nodes are eventually reached is
subject to a routing protocol.

The general area of routing tasks is subdivided into several more specific
problems:

– Unicast describes the task of transmitting a message from a single source
s ∈ V to a single target t ∈ V .

– Multicast requires that a message from a single source s ∈ V is sent to all
target nodes in a set T ⊆ V , which separates it from

– Anycast, where it is sufficient to deliver a message from a single source
s ∈ V to one arbitrary node t ∈ T for a given set T ⊆ V .

– Broadcast is a special case of multicast with T = V , meaning that a message
is distributed throughout the entire network. The inverse task of broadcast
is also known as

– Convergecast, where messages from all nodes v ∈ V are collected at a single
target t ∈ V .

Every routing protocol that fulfills one of these tasks can also be used for
all other tasks, if executed the correct number of times with the correct argu-
ments. However, this can obviously generate a tremendous amount of overhead
in comparison to specialized protocols and therefore research has been con-
ducted on all of these problems.

The next sections present an overview of basic routing strategies for the
broadcast, multicast and unicast problems.
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Broadcast

The easiest way to distribute a message across a WSN is the so-called flooding
protocol, which will be used to derive a specialized multicast algorithm in
section 2.3.

The flooding protocol, initiated by a node s ∈ V , distributes a message
M to all nodes of the WSN by forwarding M to all neighbors of s, which
then also forward M to all of there neighbors and so forth. To ensure that
this algorithm eventually terminates, it is necessary to introduce some kind
of exit condition. For example, the flooding will obviously terminate if every
node v forwards M at most once, which can be implemented either by keeping
state at each node for every message or by managing a list of nodes in the
message itself. Both approaches have the disadvantage of linearly increasing
storage space requirement for an increasing number of messages or network
nodes, respectively.

A simple solution to this problem is the introduction of a transmission
counter it, carried in the message header, that keeps track of how many times
this particular copy of the message has been forwarded. Utilizing this infor-
mation the forwarding of a message can be stopped as soon as it exceeds the
diameter of the network ∅(G). Naturally, this requires the knowledge of ∅(G)
(or an upper bound for ∅(G), such as |V |) at every node, but it reduces the
required storage space to log(∅(G)) (or log(|V |), respectively). This technique
can also be used to restrict the message dissemination to nodes with distance
at most d to the node that initiated the execution by not forwarding any
messages with it ≥ d. This restriction is called limited range flooding.

However, there is another problem caused by this protocol, the so-called
Broadcast Storm Problem, which describes the effects of massively redun-
dant transmissions generated by flooding a WSN or Mobile Ad-Hoc Network
(MANET) such as network contention and wireless medium access collisions
[74]. This problem has been studied intensively and there are several proposals
for more sophisticated flooding protocols. [4, 74, 84, 87]

Multicast

The general multicast problem in wireless ad hoc networks, i.e. the task of
distributing message to a known set of nodes T , has received tremendous
attention in the scientific community and several proposals for protocols have
been made. Therefore the reader is referred to [5, 56] for an overview on this
topic. The following chapter is dedicated to a special type of the multicast
routing, where the main difference to this general multicast task is given by
the fact that none of the nodes in the network is aware of the set of target
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nodes T , because T is defined by the neighborhood of a given node that does
not participate in any of the implemented network protocols.

Unicast

The ability to transmit messages from a single source node to a single tar-
get is one of the basic problems that occur in WSNs and although this task
can also be accomplished by the flooding algorithm above, it is not desirable
to distribute every message across the entire network due to the tremendous
transmission overhead. Therefore many researchers considered more efficient
solutions for this routing problem and there have been countless proposals for
multi-hop routing protocols in dynamic ad-hoc wireless networks and subse-
quent optimizations thereof, for example [7, 10, 14, 28, 36, 30, 32, 53, 54, 62, 65,
78, 81, 90], as well as competitive theoretical studies and experimental evalua-
tions such as [2, 39, 57, 69, 70, 79, 93, 96].

The proposed routing protocols base their forwarding decisions on informa-
tion about the network topology that is acquired either proactively during an
initialization phase of the network or reactively based on route discovery mech-
anisms that are initiated once a payload is supposed to be delivered. Almost
all of the protocols use one of the following techniques to store information
about routing paths within the network:

1. The entire routing path is explicitly contained in the message header.
2. Each node in the network maintains a routing table, which is used to

determine the next hop of a message.
3. Some sort of virtual address is assigned to each node v, spread across its

neighborhood N(v) and the decision about the next hop for a message is
based on the addresses of available neighbors.

Many protocols use the third option such as Compass Routing [62], Beacon
Vector Routing (BVR) [32], GLIDER [30], ABVCap [90] or HBR [36] based
on different strategies to generate virtual addresses. However, several of these
protocols use the lengths of shortest paths to a specified subset of vertices
to compute these addresses, which leads to a problem commonly known as
Metric Dimension. The goal is to determine a minimum set of nodes that
yields a unique virtual addressing, if these addresses are built as tuples of
distances to the selected nodes.

Definition 7. An undirected graph G = (V,E) has metric dimension at most
k, if there is a vertex set U ⊆ V such that |U | ≤ k and ∀u, v ∈ V , u 6= v, there
is a vertex w ∈ U such that dG(w, u) 6= dG(w, v). The metric dimension of G
is the smallest integer k such that G has metric dimension at most k.
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The metric dimension was independently introduced by Harary and Melter
[38] and Slater [88].

Metric Dimension

Given: An undirected graph G = (V,E) and a positive integer k ∈ N

Question: Does G have metric dimension at most k?

Determining the metric dimension of a graph is a problem that also has an
impact on other research fields such as chemistry [17], robotics [59] and combi-
natorial optimization [85]. Metric Dimension is known to be NP-complete
for general graphs [35], planar graphs [26], and even Gabriel unit disk graphs
[46].

There are several algorithms for computing the metric dimension in poly-
nomial time for special classes of graphs, as for example for trees [17, 59],
wheels [41, 86], grid graphs [72], k-regular bipartite graphs [83], amalgamation
of cycles [50], outerplanar graphs [26] and cactus block graphs [42]. The ap-
proximability of the metric dimension has been studied for bounded degree,
dense, and general graphs in [40]. Upper and lower bounds on the metric di-
mension are considered in [16, 19] for further classes of graphs. Recently we
have developed an algorithm based on dynamic programming to efficiently
compute the metric dimension of special graph classes by decomposition tech-
niques. [44]
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2 Neighborhood Broadcast

A task that arises naturally in WSNs is the following special case of the mul-
ticast problem, which is called Neighborhood Broadcast:

Neighborhood Broadcast

Given: A WSN with undirected communication graph G = (V,E) and
two nodes v ∈ V and s ∈ N1

G(v).
Task: Distribute a message originating at node s to all nodes in N1

G(v)
under the assumption that v does not obey any of the implemented
protocols.

Although this problem implicitly occurs in several areas of ad-hoc network-
ing, it has, to the best of my knowledge, never been explicitly considered in
literature.

In [91] the authors focus on building data aggregation trees that span the
neighborhood of a sensor node v. To discover and initially contact all neighbors
of v they implicitly try to perform a Neighborhood Broadcast by briefly
describing the usage of limited range flooding. However, sending a message
with the technique they mention is only guaranteed to reach all neighbors of
v, if the flooding range is high enough to flood the entire network - even in
cases where it is not necessary to do so.

The Neighborhood Broadcast problem generally occurs during col-
laborative fault detection [91], when the neighbors of a sensor node v want to
exchange their observations in order to decide whether v should be excluded
from the network due to faults or misbehavior. It is also required during the
exclusion of a misbehaving or faulty sensor node v from the network, because
every neighbor of v has to be instructed not to communicate with v anymore
and it can be applied, for example, to the detection algorithm presented in
[23].

A practical Neighborhood Broadcast algorithm also has applications
in reactively repairing unicast routing paths or multicast routing structures
after node failures: Regardless of the routing protocol in use, the collected
information about a specific routing path might be outdated due to node fail-
ures as soon as the actual payload reaches a particular interior node of the
computed routing path. In this case the initially discovered routing path is no
longer available. And while it is possible to reinitialize the network or perform
a new route discovery in this case, these approaches are usually expensive
in terms of energy consumption and introduce considerable time delay until
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the message reaches its destination. Therefore it would be advantageous to
have a simple repair mechanism for these cases that allows messages to reach
their destination without reinitialization of the network or additional route
discovery queries. Assuming that there is sufficiently redundant routing infor-
mation to identify the successor of a failed node on the original routing path a
message was supposed to take, this route repair mechanism has to perform a
Neighborhood Broadcast in order to guarantee that the message reaches
its successor, who can then resume normal routing operation.

For the most commonly used techniques of routing protocols the required
redundancy is either automatically fulfilled or at least trivially achievable:

– For routing protocols that store the computed routing path in the message
header, for example Dynamic Source Routing (DSR) [54], the message it-
self contains enough information and there is no need for additional data
replication.

– For all routing protocols that base their decisions on precomputed routing
tables, for example Ad-Hoc On-demand Distance Vector Routing (AODV)
[78] or Hierarchical Bipartition Routing (HBR) [36], it is sufficient that
each node v replicates its routing table within the 1-hop neighborhood
N1(v).

– Routing protocols that base their forwarding decisions on some sort of
(virtual) addressing of neighboring nodes, such as Compass Routing [62],
Beacon Vector Routing (BVR) [32], GLIDER [30] or ABVCap [90], the
desired property can be achieved by collecting all addresses from the 2-
hop neighborhood N2(v) at every node v.

Known protocols for the general multicast problem are theoretically suit-
able for the Neighborhood Broadcast problem. However, they would re-
quire the initiating node to know the neighborhood in which the message is
supposed to be distributed and this requires constant maintenance, especially
when the network topology is subjected to frequent changes. And of course the
mentioned flooding protocols are also applicable for this task, but introduce a
considerable transmission overhead.

Whether it is possible to perform a Neighborhood Broadcast obvi-
ously depends on the structure of the communication graph and especially on
the neighborhood of node v: If v is a separation vertex of the communication
graph, it is impossible to distribute a message across N1(v) without the help
of v itself.

But even if v is not a separation vertex, it might be necessary to broadcast
a message M across the entire network in order to distribute it to all neighbors
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N1(v): Consider the cycle Cn with n vertices as a network topology:

Cn := ({v1, . . . , vn}, {{vi, vi+1 | 1 ≤ i < n}} ∪ {vn, v1})

If any one of the nodes v1, . . . , vn does not obey implemented network pro-
tocols, for example vi, then the only remaining path between both neighbors
in N1(vi) = {vi−1, vi+1} traverses all other nodes and therefore every multi-
cast algorithm has to distribute M to all nodes. However, theoretical worst
cases like this are rather unlikely in a real sensor network and therefore a spe-
cialized protocol with a better performance than flooding the entire network
is desirable for this scenario and will be developed in the remainder of this
chapter.

Since it is assumed that the node v does not participate in any protocol,
the subgraph induced by the neighborhood of v, without v itself, is relevant
to the design of a Neighborhood Broadcast protocol. This relates to the
graph theoretic concept of local connectivity, that was originally introduced
by Chartrand and Pippert in [18] and will be extended in the next section.

2.1 Local Connectivity

Definition 8. For an undirected graph G = (V,E) and positive integers k, d ∈
N a vertex v ∈ V is called d-locally k-connected in G, if G|Nd[v] is k-connected.
A subset U ⊆ V of the vertices is called a d-locally k-connected vertex set,
if every vertex in G|U is d-locally k-connected. The graph G is d-locally k-
connected, if V is a d-locally k-connected vertex set.

Note that the parameters d and k may be omitted, if they are equal to 1. For
example 1-locally 1-connected can also be noted as locally connected, 1-locally
2-connected as locally 2-connected and so on.

Definition 9. In an undirected graph H = (V,E) a Local Connectivity Com-
ponent (LCC) is a pair (v, C) consisting of a vertex v ∈ V and a subset of
vertices C ⊆ NH(v) such that H|C is a connected component of H|NH(v). Let
LCC(H) denote the set of all local connectivity components of H.

This definition is now extended further such that the neighborhoods de-
pend only on a subset of the given edges. Also see Figure 2 for an example.

Definition 10. For an undirected graph H = (V,E) and a subgraph G =
(V,E′) of H a Local Connectivity Component (LCC) of H with respect to G
is a pair (v, C) consisting of a vertex v ∈ V and a subset of vertices C ⊆ NG(v)
such that H|C is a connected component of H|NG(v). Let LCCG(H) denote the
set of all local connectivity components of H with respect to G.
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Fig. 2. The set LCCG(G) consists of the local connectivity components (a, {b, c}), (b, {a, c}),
(c, {a, b}), (c, {d}), (c, {f}), (d, {e}), (d, {c}), (f, {e}), (f, {c}), (e, {d}) and (e, {f}), while
the set LCCG(H) consists of (a, {b, c}), (b, {a, c}), (c, {a, b}), (c, {d}), (c, {f}), (d, {c, e}),
(f, {c, e}), (e, {d}) and (e, {f}).
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Fig. 3. Graph G = (V,E): Vertex v is locally connected, because NG(v) (blue vertices)
induces a connected subgraph of G due to the fact that every vertex in NG(v) is also adjacent
to vertex u (Lemma 3). The vertices e and g are true twins (Definition 11).

The local connectivity of graphs is analyzed several times throughout the
thesis and the following definition, lemma and corollary provide powerful tools
for this purpose.

Definition 11. Let G = (V,E) be an undirected graph and u, v ∈ V , u 6= v.
The vertices u and v are called true twins, if

1. {u, v} ∈ E and
2. N1(u) \ {v} = N1(v) \ {u}.
See Figure 3 for an example.

Lemma 3. Let G = (V,E) be an undirected graph and u, v ∈ V , {u, v} ∈ E.
If N1

G(v) \ {u} ⊂ N1
G(u), then vertex v is locally connected.
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Proof. Let v1, v2 ∈ N1
G(v) be two vertices adjacent to v. If either v1 or v2

is the vertex u, then there is a path between v1 and v2 in G|N1
G
(v), because

{v1, v2} ∈ E due to the fact that {v1, v2} \ {u} ⊂ N1
G(u). Otherwise v1, u, v2

is a path between v1 and v2 in G|N1
G
(v), because {v1, v2} ⊂ N1

G(u). Also see
Figure 3 for an example. ⊓⊔
Corollary 2. Let G = (V,E) be an undirected graph and u, v ∈ V true twins.
Then both vertices u and v are locally connected in G.

The possibility to perform a Neighborhood Broadcast depends on the
smallest integer d for which the vertex v is d-locally connected.

Definition 12. Let G = (V,E) be an undirected graph and v ∈ V a vertex.
The smallest positive integer dmin ∈ N, such that v is dmin-locally connected
in G, is called the local connectivity distance of v in G. If none such integer
exists, the local connectivity distance is said to be ∞.

Observation 1 The local connectivity distance of a vertex v in an undirected
graph G is ∞ if and only if v is a separation vertex.

2.2 Computing the Local Connectivity Distance

This section investigates how to algorithmically determine the local connec-
tivity distance of a vertex v in a given undirected graph G = (V,E). Formally,
the following construction problem is considered:

Local Connectivity Distance (LCD)

Given: An undirected graph G = (V,E) and a vertex v ∈ V .
Task: Compute the local connectivity distance of v in G.

The LCD problem can be solved in polynomial time by utilizing stan-
dard methods from graph theory as follows: For a positive integer i ∈ N the
neighborhood N i[v] =

⋃i
j=1N

j(v) can be determined in time O(|V |+ |E|) by
a breadth first search, started at vertex v, that keeps track of the distance
d(v, u) for every vertex u ∈ V . Afterwards the induced subgraph G|N i[v] can
be constructed in time O(|V | + |E|) and tested for connectivity using, for
example, another breadth first search.

The local connectivity distance can be determined by performing this test
consecutively for all i ∈ {1, . . . , |V |} in ascending order until the first connec-
tivity test yields a positive result. The overall running time of this straightfor-
ward solution is obviously bounded by O(|V | ·(|V |+ |E|)) = O(|V |2+ |V | · |E|).
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The remainder of this section is dedicated to a more efficient solution for
the LCD problem that additionally provides the possibility for a distributed
implementation in a WSN. The algorithmic idea is based on the following
Theorem that is formulated using the terminology introduced in the next
definition.

Definition 13. Let G = (V,E) be an undirected graph and s ∈ V a vertex.
A shortest path tree for G at root s is a tree T = (V,ET ), ET ⊆ E such that
dG(s, v) = dT (s, v) for all vertices v ∈ V .

A tree T ′ = (V ′, E′) of forest T |V \{s} is called a branch of T . The root of
branch T ′ is the (uniquely determined) vertex v′ ∈ N1

G(s) that belongs to T ′,
i.e. v′ ∈ V ′. For all vertices v ∈ V \ {s} let r(v) denote the root of the branch
of T that contains v.

Furthermore, an edge e = {u, v} ∈ E is called

– tree edge with respect to T , if e ∈ ET ,
– bridge with respect to T , if u and v belong to different branches of T and
– shortcut with respect to T , if u and v belong to the same branch of T and

e 6∈ ET .

Also see Figure 4 for an example of the notations introduced in this defi-
nition.
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Fig. 4. Example for Definition 13: Left: Graph G = (V,E) with a shortest path tree T =
(V,ET ) at root s (black edges). The dashed red edges are bridges with respect to T , the light
blue edges are shortcuts with respect to T . Right: Forest T |V \{s} that defines four branches
of T , induced by the vertex sets {a, e, f, i}, {b}, {c, g, k, l} and {d, h}. The root r(e) of e is
vertex a, the root r(b) of b is vertex b, the root r(k) of k is vertex c etc.
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Theorem 4. Let G = (V,E) be an undirected graph, s ∈ V a vertex and T a
shortest path tree for G at root s. Furthermore let d ∈ N be a positive integer
and B ⊂ E the set of bridges with respect to T .

Every edge e ∈ B is given a positive integer weight representing the max-
imum distance from s to one of the vertices incident to e. Formally, define a
mapping f : B → N by

f({u, v}) := max{dT (s, u), dT (s, v)}.

Additionally, define a set of edges E1 between neighbors of s with positive
integer weights w : E1 → N based on the bridges B and their weights f as
follows:

E1 := {{r(u), r(v)} | {u, v} ∈ B}
w({u, v}) := min{f({u′, v′}) | {u′, v′} ∈ B ∧ r(u′) = u ∧ r(v′) = v}

Then vertex s is d-locally connected, if there is a subset E′ ⊆ E1 such that

1. the graph (N1
G(s), E

′) is connected and
2. ∀e ∈ E′ : w(e) ≤ d.

Proof. Let E′ ⊆ E1 be a set of edges that satisfies the properties 1. and 2.
above and w,w′ ∈ N1

G(s), w 6= w′ two arbitrary neighbors of s. Then we can
construct a path w1, . . . , wk in G for some positive integer k ∈ N such that
w1 = w, wk = w′ and ∀i ∈ {1, . . . , k} : dG(s, wi) ≤ d as follows, meaning that
s is d-locally connected in G:

Since the graph (N1
G(s), E

′) is connected, there is a path between w and
w′ in (N1

G(s), E
′), i.e. there is a sequence {v1, v′1}, . . . , {vl, v′l} of edges of

E′ for some positive integer l ∈ N such that v1 = w, v′l = w′ and ∀i ∈
{1, . . . , l−1} : v′i = vi+1. By definition of E1, which is a superset of E′, in con-
junction with property 2. this means that there also is a sequence of bridges
{u1, u′1}, . . . , {ul, u′l} satisfying the following properties:

a) ∀i ∈ {1, . . . , l} : {ui, u′i} ∈ B
b) ∀i ∈ {1, . . . , l − 1} : r(u′i) = r(ui+1)
c) r(u1) = w
d) r(ul) = w′

e) ∀i ∈ {1, . . . , l} : w({ui, u′i}) ≤ d

Therefore it is sufficient to prove that, for every pair v, v′ of two distinct
vertices with r(v) = r(v′), there is a path p between v and v′ in G such that
every vertex u in p satisfies dG(s, u) ≤ max{dG(s, v), dG(s, v′)}. Let p be the
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(unique) path between v and v′ in T |V \{s}. Such a path exists, because v and v′

belong to the same branch of T due to r(v) = r(v′). Additionally, every vertex
u in p satisfies dG(s, u) ≤ max{dG(s, v), dG(s, v′)}, because T is a shortest
path tree for G at root s and of course p also is a path in G, because T is a
subgraph of G. ⊓⊔

Based on Theorem 2.2 the LCD problem can be solved by computing the
smallest positive integer d ∈ N for which there is a set of edges E′ ⊆ E1 such
that the conditions 1 and 2 hold. It is now shown that this computation can
be achieved by solving the following Minimum Spanning Tree problem on
the graph (N1

G(s), E1) with edge weights w as defined in Theorem 2.2.

Definition 14. Let G = (V,E) be an undirected graph with positive edge
weights w : E → N. A subgraph (V,E′) of G is a minimum spanning tree
for G, if (V,E′) is connected and

∀E′′ ⊆ E

(
(V,E′′) is connected ⇒

∑

e∈E′′

w(e) ≥
∑

e∈E′

w(e)

)
.

Minimum Spanning Tree (MST)

Given: An undirected graph G = (V,E) with edge weights w : E → N

Task: Compute a minimum spanning tree for G.

Although the MST problem asks for an edge set in which the sum of
all weights is minimal while maintaining connectivity, it can also be used to
compute the maximum weight necessary for achieving connectivity, because
the maximum weight of an edge in a minimum spanning tree is independent
of the tree itself as shown in the following Lemma.

Lemma 4. Let G = (V,E) be an undirected graph with positive edge weights
w : E → N and T1 = (V,E′), T2 = (V,E′′) two minimum spanning trees for
G. Then max{w(e) | e ∈ E′} = max{w(e) | e ∈ E′′}.

Proof. Let m1 := max{w(e) | e ∈ E′}, m2 := max{w(e) | e ∈ E′′} and let
e1 ∈ E′ be an edge with w(e1) = m1. Assume that m1 6= m2 and, without
loss of generality, let m1 > m2. Then the subgraph (V,E′ \ {e1}) consists of
exactly two connected components induced by vertex sets V1 and V2. Obviously
V1 ∪ V2 = V and since (V,E′′) is connected there is an edge {v1, v2} ∈ E′′

with v1 ∈ V1 and v2 ∈ V2. Additionally w({v1, v2}) ≤ m2 < m1 = w(e1)
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and therefore T1 is not a minimum spanning tree, because (V, (E′ \ {e1}) ∪
{{v1, v2}}) is connected and

∑

e∈E′

w(e) > w({v1, v2})− w(e1) +
∑

e∈E′

w(e).

⊓⊔

According to Theorem 2.2 and Lemma 4 the LCD problem can be solved
by the following algorithm:

1. Compute a shortest path tree T for G at root s.

2. Determine edge set E1 and the weights w as defined in Theorem 2.2.

3. Solve the MST problem on the graph (N1
G(s), E1) with weights w.

4. Return the maximum edge weight that occurs in the computed minimum
spanning tree.

In a centralized algorithm these steps can be implemented as follows:

1. The shortest path tree T at root s as defined in Definition 13 (where
the length of a path equals the number of edges) can be computed in
time O(|V |+ |E|) by running a breadth first search on vertex s. A simple
extension of this breadth first search allows the simultaneous computation
of the distance dG(s, v) and the root r(v) for every vertex v ∈ V , which is
saved at vertex v.

2. Using the information collected in the previous step, one iteration over
the edge set E is sufficient to decide whether an edge e ∈ E is a bridge
and to compute the weight f(e) for all of these bridges. Let L be a list
of all bridges and for a vertex w ∈ N1

G(s) let p(s) be the position of w
in the adjacency list of s. Now assign to every bridge {u, v} in list L a
key (p(r(u)), p(r(v))) with p(r(u)) < p(r(v)), which is then used to sort
L in linear time with bucket sort. Afterwards the edge set E1 and their
weights w can be easily constructed by iterating the sorted list once more.
Therefore the overall running time for this step is O(|V |+ |E|).

3. The MST problem as defined above with integer edge weights can the-
oretically be solved in linear time using the trans-dichotomous minimum
spanning tree algorithm presented in [34].

4. This step can obviously be done in linear time.

The discussion above establishes the following Theorem.

Theorem 5. The LCD problem can be solved in linear time.
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However, the linear time algorithm for computing integer weight minimum
spanning trees in [34] is purely theoretical and not applicable in practice. If,
for example, Prim’s algorithm [80] is used for step 3, then the overall running
of the algorithm above is in

O(|V |+ |E|+∆(G) · log(∆(G))).

Additional to the theoretically achievable linear time implementation based
on global topology knowledge, this approach is suitable for a distributed im-
plementation in a WSN: If a node r wants to determine the minimum distance
d such that the d-hop neighborhood Nd

G[r] is connected, the network needs to
cooperate in order to determine the edge set E1 and the weights w. Once this
is done and the collected data has been transmitted to node r, the steps 3 and
4 can be solved locally by r itself.

The shortest path tree T at root r can be built by a modified flooding
algorithm, started at node r: Every transmitted message M contains a hop-
counter i that is incremented after each transmission and keeps track of the
distance to r. Every node v receiving such a message M updates a parent
pointer to identify its parent p in the tree and notifies p that v is a child of
p, if i is lower than the currently saved distance to r. Additionally M also
contains the neighbor u ∈ N1(r) that originally transmitted the message,
allowing every node v to identify the root r(v) of its own branch. Based on
this information it is possible to compute all bridges e ∈ B and their weights
f(e) after T has been built by having every node v exchange the collected
distance and branch information with all neighbors in N1(v).

Afterwards T can be used as a data aggregation tree to transmit the col-
lected information to r while simultaneously computing the minimum weight
w(e) for every edge e ∈ E1: Starting at the leafs of T the nodes send a list of
edges in E1 that result from their incident bridges to their respective parent
in T . Every node that is not a leaf in T waits until it received these lists from
its children in T , merges all lists including its own one by computing the min-
imum weight for every edge that is contained in one of the lists and sends the
resulting list to its parent.

To avoid flooding the entire network, it is possible to use limited range
flooding with increasing ranges to successively build larger subgraphs of T
until r discovers connectivity within the considered neighborhood.

2.3 The d-Hop Bouncing Flood Protocol

In this section a practical algorithm for the Neighborhood Broadcast
problem is presented and analyzed.
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General Idea

The k-Hop Bouncing Flood (k-HBF) protocol uses the idea of carrying a trans-
mission counter it in the message header that restricts the number of retrans-
missions for each message: The forwarding is stopped as soon as it reaches
the given parameter k ∈ N. This disseminates the message to all nodes of
distance at most k to the node s, who initiated the protocol. This range lim-
itation of the flooding process reduces the number of nodes transmitting the
message, but the protocol is no longer guaranteed to deliver the message to all
targets, as discussed above. Utilizing only information already present at the
individual sensor nodes, the success probability can be increased considerably
by resetting it to 0 at every node that is adjacent to v, which leads to M
“bouncing” along the neighbors of v, see Figure 5 for an example. The idea
is to distribute M not only to all nodes of distance at most k to s, but to all
nodes with distance at most k to any neighbor of v or, equivalently, to every
node with distance at most k + 1 to v. To achieve this it is not sufficient to
reset it at every neighbor of v:

For example the node r in Figure 5: Before w resets the transmission
counter to 0 and sends the message to its neighbors, node r already received
M with counter value 2 from s, but r is required to relay the message from w
again in order to deliver it to the yellow nodes.

Unlike conventional flooding it is therefore necessary that nodes can relay
messages multiple times and simply marking a message M as “already seen”
by a particular node to prevent infinite transmission loops by not relaying M
again based on this mark is not sufficient anymore. In the k-HBF protocol,
each node r that received M keeps track of the minimum imin,r of all trans-
mission counter values contained in copies of M that reached r. Node r then
relays M again at a later time, if and only if the new transmission counter is
strictly lower than imin,r, because in this case it might reach additional nodes.
This modification guarantees that every node within the k-hop neighborhood
of a node that performed a transmission counter reset will eventually receive
the message, while ensuring that the transmissions terminate due to the ob-
servation that every node can transmit a message at most k times, before the
minimum transmission counter for this node reaches 0.

Distributed Implementation

One of the biggest challenges remaining for real world deployment of sensor
networks is testing and debugging of implemented algorithms in a realistic
environment, which introduces additional problems that are usually not con-
sidered during simulation. In recent history there have been several real world
experiments that demonstrated this issue [20, 25, 64, 75] and there has also
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Fig. 5. 2-HBF example on G = (V,E): Node u initiates the protocol for its neighbor v to
distribute M to N1

G(v) = {u, x, y, w, z}. The green nodes receive M due to their distance to
u being at most 2 in G|V \{v}, the blue nodes receive M due to x resetting the transmission
counter it, the magenta nodes due to the reset at y and the yellow nodes due to the reset at
w.

been intensive work on testbed environments suitable to tackle this problem
[51, 52, 68, 71, 95].

From this point of view, the d-HBF protocol offers the advantage of an
easy and straightforward distributed implementation, which is demonstrated
by the pseudo code given in Algorithm 1 for the main part of the protocol.

To guarantee termination this implementation uses the strategy of keeping
the minimum transmission counter of a protocol invocation at each node, as
discussed above.

Packets sent by the algorithm wrap around a given message M and add
additional header fields required for the protocol itself in the format
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2. Neighborhood Broadcast

Algorithm 1 k-HBF protocol: Distributed implementation at node u
1: m← 1 ⊲ Counter for message ids
2: h← HashMap ⊲ h : ID ×NODE → N

3: procedure SendPacket(m, s, v, k, it,M, T )
4: Pass data to link layer:
5: Send (m, s, v, k, it,M) to all nodes in T ⊆ N1(u)
6: end procedure

7: procedure StartHBF(k, v,M)
8: m← m+ 1
9: SendPacket(m,u, v, k, 0,M,N1(u))
10: end procedure

11: procedure ReceivePacket(m, s, v, k, it,M)
12: imin,u ←∞
13: if h contains (m, s) then
14: imin,u ← h((m, s))
15: end if

16: if it < imin,u then

17: if v ∈ N1(u) then ⊲ neighbor resets it
18: SendPacket(m, s, v, k, 0,M,N1(u))
19: h((m, s))← −∞
20: return

21: end if

22: if it < k then

23: SendPacket(m, s, v, k, it + 1,M,N1(u))
24: h((m, s))← it
25: end if

26: end if

27: end procedure

(message id, initiator s, target v, k, it, M),
where the message idm is unique for each node s, meaning that (m, s) provides
a unique message identifier throughout the network. The message header also
contains the node v for which the protocol was initiated as well as the distance
parameter k and the transmission counter it.

Several extensions of protocol arise from techniques commonly used in
computer networks:

To ensure long-term stability of the network, the data structure used to
organize the mapping between message identifiers and minimum transmission
counters at each node should be implemented based on a soft-state approach
in the sense that the entries are deleted after a reasonable amount of time to
avoid memory leaks.

In the next section it is shown that k-HBF is guaranteed to deliver M to all
neighbors of v, if k ≥ 2d−1 and v is d-locally connected. Therefore the optimal
choice of k depends on the local connectivity distance of v, which is usually
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unknown. If the application is able to decide whether a broadcast attempt was
successful (which is possible via acknowledgements, for example, if |N1(v)| is
known or the target is one particular neighbor of v as in the case of unicast
route repair), the protocol can obviously be extended by successively increasing
the distance parameter k as long as the previous attempt was unsuccessful.
According to common practice one would double k after each failed attempt
to achieve exponential growth of the search area, which compensates for a
potentially fast changing network topology.

It is noteworthy that the k-HBF protocol can also be used to determine the
local connectivity distance of a node v, if the network is able to decide whether
an execution of the protocol was successful. While the distributed approach
in section 2.2 is very efficient in terms of transmitted messages, it has to be
performed proactively, because in order to determine the local connectivity
distance of a node v the node itself has to participate in the computation. If
this is not viable, it is also possible to determine the local connectivity distance
of a node v without its participation by using the k-HBF protocol as follows:

An additional counter imax in the transmitted messages can keep track of
the maximum value that the counter it ever reached before it has been reset.
If every neighbor u ∈ N1(v) computes the minimum value kmin(u) of the
imax counters of all messages u received and transmits the result back to the
initiating node s, then s is capable of determining the minimum value kmin

(and therefore the local connectivity distance of v) such that the kmin-HBF
protocol succeeds via

kmin = max{kmin(u) | u ∈ N1(v) \ {s}}.

This extension can also be used to provide increased performance during
future executions for the same node v by distributing the value kmin to all
nodes in N1(v).

Theoretical Analysis

This section evaluates the k-HBF protocol in terms of message complexity
and success guarantee. It is shown that the number of messages transmitted
by an invocation of k-HBF in a WSN with communication graph G is at most
k · ∆(G)k+1. Furthermore a sufficient condition for the delivery guarantee is
proven: k-HBF is guaranteed to deliverM to all neighbors of v, if k ≥ 2d−1 and
v is d-locally connected in G. Finally, it is also proven that the set of nodes
participating in the k-HBF protocol is optimal with respect to all possible
protocols for the Neighborhood Broadcast task that are restricted to the
same topology information, i.e. every participating node also has to participate
in every protocol that guarantees delivery.
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Theorem 6. Let G = (V,E) be an undirected graph and k ∈ N a positive
integer. The k-HBF protocol, initiated by a neighbor s ∈ N1(v) for a node
v ∈ V and a message M , transmits at most k ·∆(G)k+1 messages.

Proof. Every neighbor u ∈ N1(v) performs a limited range flooding of M with
range k and therefore at most ∆(G)k nodes receive the message due to the hop
counter reset at node u. Furthermore v has at most ∆(G) neighbors, which
means that at most ∆(G)k+1 nodes receive M during the execution of the
k-HBF protocol. Finally, every node w can relay M at most k times, because
afterwards the minimum transmission counter imin,w is either 0 or −∞. In
conjunction it follows that k ·∆(G)k+1 is an upper bound for the number of
transmitted messages.

The Theorem above demonstrates a theoretical worst case for number of
messages transmitted the k-HBF protocol, assuming that every node in the
considered part of the network actually has the maximum vertex degree ∆(G).
Furthermore it assumes that the sets of nodes reached by each neighbor of v
are pairwise disjoint, which is not possible, if v has more than one neighbor.
Therefore the average number of transmitted messages in any real world ap-
plication should be considerably lower than the presented upper bound. Of
course the number of transmitted packets can be higher due to retransmis-
sions, acknowledgements etc.

The following Lemma and the subsequent Theorem are used to establish
the connection between the k-HBF protocol and the local connectivity distance
of the node v it is executed for.

Lemma 5. Let G = (V,E) be an undirected graph and d ∈ N a positive
integer. Let v ∈ V be a vertex that is d-locally connected in G. Then, for
every pair of vertices s, t ∈ N1(v), there is a path p = w1, . . . , wk in G|V \{v}

between w1 = s and wk = t such that for all i ∈ {1, . . . , k − 2d + 1} the path
wi, wi+1, . . . , wi+2d−1 of length 2d− 1 contains at least one vertex of N1(v).

Proof. Let p′ = u0, . . . , um be a shortest path between u0 = s and um = t in
H := G|Nd[v]. Since v ∈ V is d-locally connected such a path exists and we
also know that for every vertex u on p′ the distance dG(u, v) is at most d.

Path p′ will now be altered successively to fulfill the required condition as
follows: Let l be the minimum index such that the path ul, . . . , ul+2d−1 does
not contain a vertex adjacent to v. Now replace ul, . . . , ul+2d−1 with a path
ul, . . . , s

′, . . . , ul+2d−1 for a vertex s′ ∈ N1(v) such that both paths ul, . . . , s
′

and s′, . . . , ul+2d−1 have length at most 2d − 1 as follows. This proves the
Lemma, because during each iteration the length of a consecutive subsequence
of the current path that violates the required condition is strictly shortened.
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Let dl, . . . , dl+2d−1 be the sequence D of distances to vertex v as defined
by di := dG(v, ui) for i ∈ {l, . . . , l+2d− 1}. Furthermore let j ∈ {l+1, . . . , l+
2d − 1} be the minimum index such that dj is the second occurrence of this
particular distance in D, meaning that there is an index j′ < j with dj′ = dj .
Since all distances di are between 2 and d by definition of p′ it follows that
j ≤ l + d− 1.

Now let v, s′, q2, . . . , qdj−1, uj be a shortest path between v and uj in G.
Note that p′ does not contain vertex s′, because p′ contains a shortest path p′′

between ul−1 and uj such that p′′ contains vertex uj′ . Therefore dH(s′, uj) =
dj − 1 < dH(ul−1, uj). Then it holds that the length L(q) of the path

q = ul, . . . , uj , qdj−1, . . . , q2, s
′

is at most 2d− 2, because

L(q) = L(ul, . . . , uj) + L(uj , qdj−1, . . . , q2, s
′)

≤ L(ul, . . . , ul+d−1) + dj − 1

≤ d− 1 + dj − 1 ≤ 2d− 2.

Furthermore it also holds that L(q′) for

q′ = s′, q2, . . . , qdj−1, uj , uj+1, . . . ul+2d−1

is at most 2d− 1, because

L(q′) = L(s′, q2, . . . , qdj−1, uj)

+ L(uj , uj+1, . . . ul+2d−1)

< L(ul−1, ul, . . . , uj)

+ L(uj , uj+1, . . . , ul+2d−1)

= L(ul−1, ul, . . . , ul+2d−1) = 2d.

⊓⊔

Theorem 7. Let d ∈ N be a positive integer and v ∈ V a vertex with local
connectivity distance d in an undirected graph G = (V,E) that represents a
WSN. Then the (2d− 1)-HBF protocol, initiated by a neighbor s ∈ N1

G(v) for
node v and a message M , distributes M to all nodes in N2d

G (v) even if v itself
does not relay any messages.

Proof. Let t ∈ N1
G(v) be an arbitrary neighbor of v. According to Lemma 5

there is a path p between s and t in G|V \{v} such that every sub-path of length
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Fig. 6. Proof of Lemma 5: The dashed lines represent paths of the noted lengths

2d − 1 contains at least one neighbor of v. Therefore the message sent by s
is relayed along p, because the transmission counter it is reset after at most
2d − 1 transmissions and hence t receives M . And since every neighbor of v
receives M and resets the transmission counter once, M is distributed to all
nodes with hop-distance at most 2d− 1 to any neighbor of v, i.e. to all nodes
with hop-distance at most 2d to v.

Although the d-hop neighborhood of v is connected, it is necessary to
distribute the message across the 2d-hop neighborhood of v, unless there is
additional information about the network topology available. This is shown in
the next Theorem.

Theorem 8. Let G = (V,E) be an undirected graph that represents a WSN,
d ∈ N a positive integer and v ∈ V a vertex with local connectivity distance d.

Furthermore let P be a distributed algorithm with the following properties:

1. P is initiated by a single node s ∈ N1
G(v) to distribute a message M .

2. P does not run on node v.
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3. P is not randomized and the only information P utilizes about the network
topology is the integer d and the knowledge about the 1-hop neighborhood
N1

G(u) at each node u.
4. P terminates after a finite amount of steps and at that point every node

in N1
G(v) received M .

Then P transmits at least one message to every node in

N2d
G [v] =

2d⋃

i=1

N i
G(v).

Proof. It is first shown that every node u ∈ N2d
G (v) has to receive at least one

message.
Let H := G|V \{v} be the induced subgraph of G that does not contain v

and consider the graph

G′ := (V,E ∪ {u, v}).

Vertex v is d-locally connected in G′: Since

N2d
G (v) =

⋃

s′∈N1
G
(v)

N2d−1
G (s′) =

⋃

s′∈N1
G
(v)

N2d−1
H (s′),

there is a path w1, . . . , w2d between w1 = s′ for some vertex s′ ∈ N1
G(v)

and w2d = u in H. And for all 1 ≤ i ≤ 2d it holds that dG′(v, wi) ≤ d,
because dH(s′, wj) ≤ d − 1 for j ∈ {1, . . . , d} and dH(u,wj) ≤ d − 1 for
j ∈ {d+ 1, . . . , 2d}.

Vertex v is not (d − 1)-locally connected in G′: Every vertex s′ ∈ N1
G(v)

satisfies dH(s′, u) ≥ 2d − 1, because dG(v, u) = 2d. Therefore every path
w1, . . . , wl between w1 = s′ for some s′ ∈ N1

G(v) and wl = u in H satisfies
l ≥ 2d and thus it holds that dH(wd, s

′) ≥ d − 1 and dH(wd, u) ≥ d − 1.
But then there is no path between neighbor u ∈ N1

G′(v) and any neighbor
s′ ∈ N1

G(v) in G′|
Nd−1

G′ (v), meaning that v is not (d − 1)-locally connected in

G′.
We will now compare the execution of P initiated at node s in G to the

execution of P initiated at node s in G′: Since v is d-locally connected and
not (d − 1)-locally connected both in G and G′, the integer d is identical in
both executions of P and by property 3 these two processes can only differ
from each other due to a difference in the 1-hop neighborhood information at
some node. However, the 1-hop neighborhood in G and G′ is identical at all
nodes except for v and u and P does not have access to the information at
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node v by property 2. Therefore both executions are identical until P sends
a message to node u in G′, which happens because of property 4, and thus u
also receives a message in G.

Knowing that every node in N2d
G (v) has to receive at least one message, it

follows that every node in N2d
G [v] has to receive at least one message, because

it is possible to generate a network topology G′′ that satisfies the preconditions
of the Theorem while forcing every node in N2d−1

G′′ [v] to relay (and therefore
receive) at least one message in order to reach all nodes in N2d

G′′(v): G′′ contains
all vertices and edges from G and for every vertex w ∈ N2d−1

G [v] with distance
x := dG(v, w) one additional vertex w′ that is connected to w via a path of
length 2d − x. Then w′ ∈ N2d

G′′(v) and therefore w has to receive at least one
message, which implies that w and all nodes on the path between w and w′

have to relay that message. ⊓⊔

Experimental Analysis

Based on the theoretical analysis in the previous section, the experimental
analysis of the k-HBF protocol is performed by solving the LCD problem
rather than simulating the protocol itself. The computations are done on ran-
domly generated graphs, using different graph models that are commonly used
for simulations in the wireless network research community. The simulation
software has been implemented in Java and executed in the Java Runtime
Environment at version 8u74 on a system running the Kubuntu 12.04 LTS op-
erating system, whose NativePRNG was used for random number generation.

For every set of parameters the results are computed for 100 graphs that
are generated as follows:

1. 9000 vertices are placed randomly in a 3000× 3000 square.

2. Edges are added according to one of the graph models described below.

3. The connected component containing the maximum number of vertices is
determined and used for the simulation.

To generate edges the following models are used:

1. Unit Disk Graph (UDG) with radius r ∈ R: An edge between two vertices
is generated if and only if their euclidean is at most r. It is well known
that this graph model is unrealistic for real life wireless networks and yet
it is still used by many researchers for simulations. We use this model as a
point of reference.

2. Waxman with parameters α ∈ [0, 1] and r ∈ R: The random graph model
introduced by Waxman in [92] captures important effects that occur in real
life networks. Unlike the UDG model it does not guarantee the existence
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of edges between vertices that are positioned close to each other and it also
generates “long” edges. The Waxman model is often used by researchers,
because it is implemented in the BRITE topology generator that can easily
be used in conjunction with the ns-3 network simulator. In this model an
edge between two vertices u, v is added to the graph with probability

P (u, v) = α · exp
( −d(u, v)

0.5 ·
√
2 · r

)

where d(u, v) denotes the euclidean distance between u and v. The scaling
factor of 0.5 ·

√
2 has been chosen such that, for α = 1 and the values used

for r, the average vertex degree of the generated graphs is similar to the
UDG model with the same parameter r.

3. Locality with parameter r ∈ R: The locality model that is mentioned in
[94] and also implemented in the BRITE topology generator partitions the
euclidean distances between two vertices into a finite amount of categories
and assigns different, constant probabilities to each category. Based on the
parameter r and the euclidean distance d(u, v) between u and v, the edge
{u, v} is added with probability

P (u, v) = 0.8− 0.1 · (i− 1),

if r · i−1
4 < d(u, v) ≤ r · i4 for i ∈ {1, . . . , 8}. Edges between vertex pairs u, v

with d(u, v) > 2r are not added. Unlike the UDG model, edges between
vertices that are positioned close to each other are not guaranteed while
there still is an upper bound for the distance between adjacent vertices
and in contrast to the Waxman model the probability does not decrease
exponentially with the distance.

For every set of parameters, the average vertex degree δ and the average
graph diameter ∅ are determined for comparability. Then, for every distance
dmin, it is computed how many of the n vertices are dmin-locally connected,
but not (dmin−1)-locally connected, i.e. have local connectivity distance dmin.

Two special cases are noted separately in the following tables: The number
of separation vertices is given in row dmin = ∞, because these vertices are
obviously never d-locally connected and it is not possible to perform a Neigh-
borhood Broadcast for them. Also the number ∆1 of vertices with vertex
degree 1 is given separately due to the fact that they are trivially 1-locally con-
nected and that their neighbor always is a separation vertex. The ∆1 vertices
are also contained in the number given for dmin = 1.

Since the existence of edges between vertices that are positioned close to
each other are guaranteed and the fact that the maximum length of any edge
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Table 1. Waxman α = 1

r 50
n 899170
δ 7.63
∅ 37.38
∆1 4556

dmin #vertices (%)
1 34228 (3.80)
2 797634 (88.7)
3 61867 (6.88)
4 777 (0.09)
5− 6 4 (0.00)
∞ 4660 (0.52)

r 70
n 899987
δ 14.75
∅ 22.07
∆1 70

dmin #vertices (%)
1 41529 (4.61)
2 854816 (94.98)
3 3569 (0.40)
4 2 (0.00)
∞ 71 (0.01)

Table 2. Waxman α = 1

r 90
n 900000
δ 24.09
∅ 15.8
∆1 1

dmin #vertices (%)
1 60066 (6.67)
2 839379 (93.26)
3 554 (0.06)
∞ 1 (0.00)

r 110
n 900000
δ 35.54
∅ 12.14
∆1 0

dmin #vertices (%)
1 81543 (9.10)
2 818301 (90.92)
3 156 (0.02)
∞ 0 (0.00)
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Table 3. Waxman α = 0.75

r 50
n 895888
δ 5.74
∅ 42.2
∆1 18821

dmin #vertices (%)
1 20015 (2.23)
2 657711 (73.41)
3 189849 (21.19)
4 8373 (0.93)
5 331 (0.04)
6 28 (0.00)
∞ 19581 (2.19)

r 70
n 899928
δ 11.06
∅ 24.18
∆1 578

dmin #vertices (%)
1 12104 (1.34)
2 872618 (96.97)
3 14594 (1.62)
4 30 (0.00)
∞ 582 (0.06)

Table 4. Waxman α = 0.75

r 90
n 899997
δ 18.07
∅ 16.98
∆1 30

dmin #vertices (%)
1 16325 (1.81)
2 881550 (97.95)
3 2092 (0.23)
∞ 30 (0.00)

r 110
n 900000
δ 26.66
∅ 13.06
∆1 0

dmin #vertices (%)
1 25332 (2.81)
2 874132 (97.13)
3 536 (0.06)
∞ 0 (0.00)
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2. Neighborhood Broadcast

Table 5. Waxman α = 0.5

r 50
n 874040
δ 3.92
∅ 51.83
∆1 74781

dmin #vertices (%)
1 16385 (1.87)
2 352649 (40.35)
3 328613 (37.60)
4 80075 (9.16)
5 12783 (1.46)
6− 9 2326 (0.27)
∞ 81209 (9.29)

r 70
n 898911
δ 7.38
∅ 28.04
∆1 5940

dmin #vertices (%)
1 4847 (0.54)
2 770761 (85.74)
3 116337 (12.94)
4 906 (0.10)
5 23 (0.00)
∞ 6037 (0.67)

Table 6. Waxman α = 0.5

r 90
n 899944
δ 12.03
∅ 19.1
∆1 377

dmin #vertices (%)
1 2012 (0.22)
2 883397 (98.16)
3 14144 (1.57)
4 8 (0.00)
∞ 383 (0.04)

r 110
n 899996
δ 17.78
∅ 14.56
∆1 31

dmin #vertices (%)
1 2103 (0.23)
2 894926 (99.44)
3 2934 (0.33)
∞ 33 (0.00)
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Table 7. Unit Disk Graph

r 40
n 784287
δ 5.13
∅ 222.63
∆1 20140

dmin #vertices (%)
1 531542 (67.78)
2 71115 (9.07)
3− 6 67179 (8.57)
7− 20 36789 (4.69)
21− 50 9104 (1.16)
51− 80 1568 (0.20)
81− 121 389 (0.05)
∞ 66601 (8.49)

r 50
n 897819
δ 7.76
∅ 118.13
∆1 3307

dmin #vertices (%)
1 750717 (83.62)
2 67635 (7.53)
3 32973 (3.67)
4 17447 (1.94)
5 9494 (1.06)
6− 10 12118 (1.35)
11− 21 840 (0.09)
∞ 6595 (0.73)

Table 8. Unit Disk Graph

r 60
n 899868
δ 11.12
∅ 89.56
∆1 320

dmin #vertices (%)
1 847605 (94.19)
2 36412 (4.05)
3 10895 (1.21)
4 3153 (0.35)
5− 11 1254 (0.14)
∞ 549 (0.06)

r 70
n 899983
δ 15.10
∅ 73.37
∆1 39

dmin #vertices (%)
1 886854 (98.54)
2 11383 (1.26)
3 1470 (0.16)
4 163 (0.02)
5− 6 51 (0.01)
∞ 62 (0.01)
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Table 9. Locality Model

r 30
n 790951
δ 3.75
∅ 190.64
∆1 69865

dmin #vertices (%)
1 171022 (21.62)
2 365517 (46.21)
3 56484 (7.14)
4− 10 65442 (8.27)
11− 40 20853 (2.64)
41− 70 1586 (0.2)
71− 102 275 (0.03)
∞ 109772 (13.88)

r 50
n 899844
δ 9.79
∅ 61.59
∆1 933

dmin #vertices (%)
1 407176 (45.25)
2 487215 (54.14)
3 4190 (0.47)
4 268 (0.03)
5 12 (0.00)
6 7 (0.00)
∞ 976 (0.11)

Table 10. Locality Model

r 70
n 899996
δ 19.00
∅ 39.14
∆1 10

dmin #vertices (%)
1 722197 (80.24)
2 177787 (19.75)
3 2 (0.00)
∞ 10 (0.00)

r 90
n 900000
δ 31.16
∅ 28.91
∆1 0

dmin #vertices (%)
1 861893 (95.77)
2 38107 (4.23)
∞ 0 (0.00)
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2. Neighborhood Broadcast

is bounded in the purely theoretical unit disk graph model, the Tables 7 and
8 exhibit that the majority of vertices in this model is 1-locally connected,
even in very sparse graphs. All graphs generated based on the Waxman model
contain a significantly lower rate of 1-locally connected vertices and the number
of vertices clearly spikes at local connectivity distance 2. In the locality model
on the other hand, the spike gradually shifts from local connectivity distance
2 to local connectivity distance 1 with increasing vertex degree, presumably
due to the still existing maximum edge length in this model.

Measuring the success rate of the k-HBF protocol as a percentage of non-
separation vertices, the conducted simulations indicate a success rate of more
than 80% across all considered graph models for the 5-HBF protocol, the
minimum being defined by the very sparse graphs with an average vertex
degree below 6. Restricted to graphs with an average vertex degree of at least
7, the success rate of the 5-HBF protocol is above 95% and the success rate
of the 3-HBF protocol is still above 85%.

While one might intuitively presume that most of the vertices with higher
local connectivity distance are close to the border of the geometric region that
graph is placed across, the sample graphs taken during the simulation do not
verify this conjecture: Typically these vertices offer some sort of “shortcut”
through an otherwise sparse region of the graph, see Figure 7 for an example.
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r

r

r

Fig. 7. An induced subgraph of a unit disk graph with radius r = 50: The red (r) vertices
have local connectivity distance 5 due to their position between two “holes”. Other distances
are blue (dmin = 1), green (dmin = 2), yellow (dmin = 3) and black (dmin > 5). Note that
the local connectivity distance of some vertices at the border is not verifiable based on this
image, because some incident edges have been removed.
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3. Topology Control with Respect to Local Connectivity

3 Topology Control with Respect to Local Connectivity

Since the success rate of the d-HBF protocol and the overall capability to
perform a Neighborhood Broadcast depends on the local connectivity
of the WSN, it would be desirable to achieve local connectivity through the
means of topology control, if the initial network is not locally connected. The
following sections examine several approaches to this kind of topology control
and investigate the computational complexity of the corresponding decision
problems for graphs.

3.1 Maximum Locally k-Connected Vertex Set

The first problem asks for an induced subgraph with a maximum number of
vertices that is locally k-connected as well as connected. In terms of sensor
networks this problem corresponds to identifying a more reliable subnetwork
and this information could be used, for example, as a criteria for energy saving
mechanisms: Sensor nodes belonging to the identified subset might get prior-
itized when it comes to energy saving to keep a reliable backbone network
operational as long as possible.

Determining maximum connected induced subgraphs G|U of a given graph
G such that a specific graph property Π holds for G|U has been examined in
great detail and it is known that these problems are NP-complete for many
graph propertiesΠ, which is shown in [35]. Note that this general result cannot
be applied to the Maximum Locally k-Connected Vertex Set problem
below, because the graph property “is locally connected” is not hereditary, i.e.
it does not hold for all induced subgraphs of a graph G whenever it holds for
G.

Maximum Locally k-Connected Vertex Set

Given: An undirected graph G = (V,E) and a positive integer m ∈ N

Question: Is there a vertex set U ⊆ V of cardinality |U | ≥ m, such that
G|U is connected and locally k-connected?

Theorem 9. The Maximum Locally 1-Connected Vertex Set problem
is NP-complete.

Maximum Locally k-Connected Vertex Set is in NP for all positive
integers k ∈ N, because for a given set of vertices U ⊆ V a deterministic
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3. Topology Control with Respect to Local Connectivity

algorithm can decide in polynomial time whether every vertex u ∈ U is lo-
cally k-connected in G|U by using network flow techniques to determine the
connectivity of G|N1(u) [29].

The NP-hardness of Maximum Locally 1-Connected Vertex Set is
shown by the following polynomial time reduction from Satisfiability that
constructs a graph G and an integer m from an arbitrary instance (X, C) for
Satisfiability such that (X, C) is satisfiable if and only if there is a connected,
locally connected vertex set of cardinality at least m in G.

Let (X, C) be an instance for Satisfiability with variable set X and
clause set C. Assume w.l.o.g. that there is no clause c ∈ C such that c contains
the positive literal x and the negative literal x for a variable x ∈ X (if such
clauses exist they can be removed from C, because they are satisfied for every
truth assignment of X). Also assume that for every variable x ∈ X there is at
least one clause c ∈ C that contains either the literal x or the literal x.

Define m := 2 + 2 · |X| + 4 · |C| and construct G by adding a copy of a
graph for every variable in X and for every clause in C as follows.
For every variable xi ∈ X add a cycle Hi := (Vi, Ei) with 4 vertices, that is

Vi := {xi,1, xi,2, xi,1, xi,2}
Ei := {{xi,1, xi,2}, {xi,1, xi,2}, {xi,1, xi,1}, {xi,2, xi,2}}

For every clause cj ∈ C add a path Pj := (V ′
j , E

′
j) with 4 vertices, that is

V ′
j := {cj,1, cj,2, cj,3, cj,4}

E′
j := {{cj,1, cj,2}, {cj,2, cj,3}, {cj,3, cj,4}}

These variable gadgets Ci = (Vi, Ei) and clause gadgets Pj = (V ′
j , E

′
j) are

connected to each other by adding the following edges. Let xi ∈ X be a variable
and cj ∈ C a clause. If cj contains the positive literal xi, the edges {xi,1, cj,1},
{xi,1, cj,2}, {xi,2, cj,2}, {xi,2, cj,3} and {xi,2, cj,4} are added. If cj contains the
negative literal xi, the edges {xi,1, cj,1}, {xi,1, cj,2}, {xi,2, cj,2}, {xi,2, cj,3} and
{xi,2, cj,4} are added. Also see Figure 8 for an example.

Additionally, the graph G contains two vertices w1 and w2, the edge
{w1, w2} as well as all edges {w, cj,3}, {w, cj,4} for w ∈ {w1, w2} and cj ∈ C.
The vertices w1 and w2 serve as a connection between all clause gadgets and
thereby guarantee that the induced subgraph G|U will be connected.

Lemma 6. Let U ⊆ V and cj ∈ C be a clause such that the corresponding
vertices {cj,1, cj,2, cj,3, cj,4} are in U , i.e. V ′

j ⊆ U . Then all vertices in V ′
j are

locally connected in G|U if and only if there is a variable xi ∈ X such that
either xi ∈ cj and {xi,1, xi,2} ⊂ U or xi ∈ cj and {xi,1, xi,2} ⊂ U .
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Fig. 8. Graph G constructed from instance ({x1, x2, x3, x4}, {c1, c2}), c1 = {x1, x2, x4},
c2 = {x2, x3, x4}. Edges between vertices from clause gadget H1 and vertices from vari-
ables gadgets P1, P2, P4 are colored blue and edges between vertices from clause gadget H2

and vertices from variables gadgets P2, P3, P4 are colored green.

Proof. ⇒: Vertex cj,2 is locally connected, so there is at least one simple path
p = cj,1, v1, · · · , vl, cj,3 in G|N1(cj,2). Due to the construction of G, v1 has
to be either xi1,1 or xi1,1 for some i1 and vl has to be either xi2,2 or xi2,2
for some i2. Additionally, every path between vertices from different variable
gadgets contains at least one vertex from a clause gadget. But since the path
v1, · · · , vl is simple, it contains neither cj,1 nor cj,3 and those are the only
vertices from clause gadgets that are adjacent to cj,2, meaning that G|N1(cj,2)

does not contain any other vertices from clause gadgets. Therefore i1 = i2 =: i
and because cj does not contain both literals xi and xi, it follows that either
xi ∈ cj and {xi,1, xi,2} ⊂ U or xi ∈ cj and {xi,1, xi,2} ⊂ U .
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3. Topology Control with Respect to Local Connectivity

⇐: The vertex cj,1 is locally connected due to Lemma 3, because the edge
{cj,1, cj,2} is in E|U and N1

G|U
(cj,1) \ {cj,2} ⊂ N1

G|U
(cj,2). Similarly, the vertex

cj,4 is locally connected, because {cj,3, cj,4} ∈ E|U and N1
G|U

(cj,4) \ {cj,3} ⊂
N1

G|U
(cj,3). Without loss of generality, let there be a variable xi ∈ X such that

xi ∈ cj and {xi,1, xi,2} ⊂ U (analogous argumentation for the case xi ∈ cj).
Then vertex cj,3 is locally connected, because cj,2, xi,2, cj,4 is a path in the
subgraph induced by N1

G|U
(cj,3) and the fact that every vertex from a variable

gadget that is adjacent to cj,3, as well as the vertices w1 and w2, is also adjacent
to cj,4. Finally, the vertex cj,2 is locally connected, because cj,1, xi,1, xi,2, cj,3 is
a path in the subgraph induced by N1

G|U
(cj,2) and the fact that every vertex

from a variable gadget that is adjacent to cj,2 is also adjacent to either cj,1 or
cj,3, see Figure 9. ⊓⊔

x
1,1

x
1,2

x
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j,3

c
j,2

c
j,1

x
i,1

x
i,2

x
a,1

Fig. 9. A connected subgraph G′ of the induced subgraph G|N1(cj,2)
for arbitrary numbers

a, b ∈ N of neighbors inside adjacent variable gadgets. The blue vertex cj,2 itself does not
belong to G′.

Lemma 7. Every locally connected vertex set U ⊂ V contains at most two
vertices from every variable gadget.
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3. Topology Control with Respect to Local Connectivity

Proof. Assume that U contains more than two vertices from a variable gadget
(Vi, Ei). Without loss of generality, let xi,1, xi,2 and xi,1 be in U (analogous
argumentation for all other cases due to symmetry). Then xi,1 is not locally
connected, which contradicts the assumption that U is a locally connected
vertex set: Since there is no clause that contains both literals xi and xi, there
is no vertex from a clause gadget that is adjacent to both xi,1 and xi,1. However,
these two vertices are also not adjacent to w1 or w2 in G, which means that
N1

G|U
(xi,1) ∩N1

G|U
(xi,1) = ∅. Therefore there is no path between xi,1 and xi,2

in the subgraph induced by N1
G|U

(xi,1). ⊓⊔

The proof of Theorem 9 is now concluded by showing that (X, C) is satisfi-
able if and only if there is a locally connected vertex set U ⊂ V of cardinality
|U | ≥ m = 2 + 2 · |X|+ 4 · |C| in G = (V,E) such that G|U is connected.

⇒: Let T : X → {0, 1} be a satisfying truth assignment for C. For every
literal l over X define the set of clauses that contain l as L(l) := {c ∈ C | l ∈ c}.
Now set U := {w1, w2} ∪ V⊕ ∪ V⊖ ∪ Vc where

– Vc :=
⋃

cj∈C
{cj,1, cj,2, cj,3, cj,4},

– V⊕ := {xi,1, xi,2 | (T (xi) = 1 ∧ L(xi) 6= ∅) ∨ (T (xi) = 0 ∧ L(xi) = ∅)},
– V⊖ := {xi,1, xi,2 | (T (xi) = 0 ∧ L(xi) 6= ∅) ∨ (T (xi) = 1 ∧ L(xi) = ∅)}.

Then U contains exactly 2+2 · |X|+4 · |C| vertices and U is a locally connected
vertex set: Because T satisfies C, there is a variable xi for every cj ∈ C such
that either xi ∈ cj and T (xi) = 1 or xi ∈ cj and T (xi) = 0. In the former
case it holds that xi,1, xi,2 ∈ U and in the latter case xi,1, xi,2 ∈ U . Thus all
vertices cj,1, cj,2, cj,3, cj,4 are locally connected in G|U according to Lemma 6.
Furthermore the vertices xi,1 and xi,2 for all xi ∈ X are locally connected in
G|U : The only neighbors of xi,1 in G|U are xi,2 and N1 := {cj′,1, cj′,2 | xi ∈ cj′}.
Since xi,2 is also adjacent to all vertices cj′,2 ∈ N1, there is a path cj′,2, xi,2, cj′′,2
in G|U∩N1(xi,1) for all cj′,2, cj′′,2 ∈ N1. Additionally {cj′,1, cj′,2} ∈ E|U∩N1(xi,1),
so there is a path between all pairs of vertices inG|U∩N1(xi,1), also see Figure 10.
A similar argument demonstrates that xi,2 is locally connected: There is a path
cj′,2, xi,1, cj′′,2 in G|U∩N1(xi,2) for all cj′,2, cj′′,2 ∈ N2 := {cj′,2, cj′,3, cj′,4 | xi ∈
cj′} and the edges {cj′,2, cj′,3} and {cj′,3, cj′,4} are in E|U∩N1(xi,2). Analogous
arguments apply for xi,1 and xi,2. Finally, the two vertices w1 and w2 are locally
connected, because they are true twins (see Corollary 2). G|U is connected due
to the vertices w1 and w2, because these vertices are adjacent to a vertex from
every clause gadget and the fact that every vertex from a variable gadget is
adjacent to a vertex from a clause gadget.

⇐: Let U be a locally connected vertex set of cardinality at least 2 + 2 ·
|X| + 4 · |C|. According to Lemma 7, U contains at most two vertices from
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Fig. 10. The vertex sets N1(xi,1) (left, without the blue vertex) and N1(xi,2) (right, without
the blue vertex) induce connected subgraphs for an arbitrary number of adjacent clause
gadgets.

every variable gadget. Therefore U must contain all vertices cj,1, cj,2, cj,3, cj,4
of every clause gadget as well as the vertices w1 and w2.

Define a truth assignment T : X → {0, 1} as follows: If U contains both
vertices xi,1 and xi,2, set T (xi) = 1, otherwise set T (xi) = 0. Then T satisfies
C: Let cj ∈ C be a clause. Since {cj,1, cj,2, cj,3, cj,4} is a locally connected vertex
set, there is a variable xi ∈ X such that either xi ∈ cj and xi,1, xi,2 ∈ U or
xi ∈ cj and xi,1, xi,2 ∈ U as shown in Lemma 6. In the former case T (xi) has
been set to 1 and in the latter case T (xi) has been set to 0 and therefore cj is
satisfied. ⊓⊔

3.2 Augmentation Problems

The term augmentation problem generally describes a problem regarding the
question of how to achieve a desired graph property by adding additional edges
to a given graph. The following subsections investigate which complementary
edges E′ ⊆ E have to be added to an undirected graph G = (V,E) in order
to attain connectivity in the subgraphs induced by certain neighborhoods.
The nature of this question yields two different versions for each problem:
The Weak version of this augmentation problem considers the neighborhoods
defined by the original graph G, while the corresponding Strong version
considers the altered neighborhoods defined by (V,E ∪ E′). This section is
concerned with proving the NP-completeness of both versions and presents a
greedy algorithm for the Weak augmentation problem having a tight quality
bound of 3/2 for graphs without inducedK2,3 and a tight quality bound of 11/6
for graphs without induced K2,4. Recall that unit disk graphs never contain
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the K2,3 as an induced subgraph (Corollary 1) and therefore the presented
algorithm is a constant factor approximation for unit disk graphs. Furthermore
Conjecture 1 implies that it also is a constant factor approximation for d-quasi
unit disk graphs with d ≥

√
3−1. The presented greedy algorithm also provides

an approximation factor of 1+ln(|V |) for the general case and it is conjectured
that this bound is also tight.

In terms of sensor networks the task is to achieve locally connected graphs
by adding additional communication links, which can be accomplished in sev-
eral ways, depending on the prerequisites. For example:

– The sensor nodes might be capable of adjusting transmission power levels
to establish additional radio links. This model will be defined in more detail
in Chapter 4.

– The sensor nodes might also possess the limited ability to use arbitrary
point to point transmissions via an additional internet uplink based on
UMTS / LTE or similar techniques. Limitations to this approach are ad-
ditional energy costs for these protocols and/or necessary financial invest-
ment for each data transmission. Local connectivity augmentation is still
desirable in this scenario for repairing multicast routing structures.

– It is also possible to establish virtual communication links for this purpose
based on suitable, predetermined routing paths.

Network design and graph augmentation problems related to connectivity
have been studied extensively: The basic graph theoretic edge augmentation,
i.e. adding a minimum number of additional edges to a k-connected graph in
order to achieve (k + 1)-connectivity, is considered in [55], where an approx-
imation algorithm is presented. In the context of communication networks,
connectivity - or more precisely the number of either vertex or edge disjoint
paths between given pairs of vertices - is commonly used as a metric for sur-
vivability, reliability and fault tolerance. Balakrishnan and Altinkemerin intro-
duced hop constraints limiting the lengths of viable paths in [8], a technique
that was subsequently considered in conjunction with edge or vertex disjoint
paths for undirected as well as directed networks [11, 77]. We refer the reader
to [58] for a more extensive overview on this topic.

The augmentation problems are formulated such that all complementary
edges of the given graph are available for augmentation. It is noteworthy
that the presented results also hold for the case that only a subset Ẽ ⊆ E
of the complementary edges is available for augmentation, because the NP-
completeness is proven for the special case Ẽ = E. As for the greedy ap-
proach, the algorithm does not depend on the existence of specific edges and
a restriction to this edge set also applies to any optimal solution.
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Locally k-Connected Weak Augmentation

Locally k-Connected Weak Augmentation

Given: An undirected graph G = (V,E) and a positive integer m ∈ N.

Question: Is there a set E′ ⊆ E of cardinality |E′| ≤ m such that, for every
vertex v ∈ V , the neighborhood N1

G(v) induces a k-connected
subgraph of (V,E ∪ E′)?

Theorem 10. The Locally 1-Connected Weak Augmentation prob-
lem is NP-complete.

Proof. Locally k-Connected Weak Augmentation is in NP for all pos-
itive integers k ∈ N, because for a given set E′ of complementary edges a
deterministic algorithm can decide in polynomial time whether the vertex sets
N1

G(v) induce k-connected subgraphs in (V,E ∪ E′) for all vertices v ∈ V .
The NP-hardness of Locally 1-Connected Weak Augmentation is

shown by the following polynomial time reduction from Satisfiability that
constructs an undirected graph G and an integer m from an arbitrary instance
(X, C) of Satisfiability with the following property: (X, C) is satisfiable if
and only if there is a set of complementary edges E′ of cardinality |E′| ≤ m
such that, for all vertices v ∈ V , N1

G(v) induces a connected subgraph of
(V,E ∪ E′). The integer m is set to |X| and G is constructed as follows, also
see Figure 11 for an example:

For every variable xi ∈ X the graph G contains a copy of the graph (Vi, Ei),
with vertex set Vi := {xi, ui, u′i, fi, ti} and edge set
Ei := {{ui, u′i}, {fi, ti}, {xi, ui}, {xi, u′i}, {xi, fi}, {xi, ti}}.

For every clause cj ∈ C the graph G contains two vertices cj and c′j and
the edge {cj , c′j}.

Furthermore G also contains two vertices b1 and b2 as well as the following
edges:

1. {b1, b2}
2. {{b1, fi}, {b2, fi}, {b1, ti}, {b2, ti} | xi ∈ X}
3. {{b1, cj}, {b2, cj} | cj ∈ C}
4. {{cj , ui}, {cj , u′i}, {c′j , ui}, {c′j , u′i} | cj ∈ C ∧ (xi ∈ cj ∨ xi ∈ cj)}
5. {{cj , ti} | cj ∈ C ∧ xi ∈ cj}
6. {{cj , fi} | cj ∈ C ∧ xi ∈ cj}

By construction, the neighborhood of all vertices except for the vertices xi
and cj induce a connected subgraph of G and therefore also induce a connected
subgraph of (V,E ∪ E′) for all sets E′:
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Fig. 11. Graph G constructed from instance ({x1, x2, x3}, {c1, c2}) with c1 = {x1, x2} and
c2 = {x2, x3}

– The vertices b1 and b2 are true twins and therefore locally connected in G,
see Corollary 2.

– For all i, the vertices ui and u′i are true twins and therefore locally con-
nected in G, see Corollary 2.

– For all j, the vertex c′j is locally connected in G, because {cj , c′j} ∈ E and

N1
G(c

′
j) \ {cj} ⊂ N1

G(cj), see Lemma 3.
– For all i, the vertices ti and fi are true twins in the subgraph of G that

does not contain the edges from 5 and 6 and every vertex that is adjacent
to ti or fi due to those edges is also adjacent to their neighbor b1.

We will now show that (X, C) is satisfiable if and only if there is a set
of complementary edges E′ ⊆ E of cardinality at most m = |X| such that,
for all i, j, the vertex sets N1

G(xi) and N1
G(cj) induce connected subgraphs of

(V,E ∪ E′).
⇒: Let T : X → {0, 1} be a satisfying truth assignment for (X, C).

E′ := {{u′i, ti} | xi ∈ X ∧ T (xi) = 1} ∪ {{ui, fi} | xi ∈ X ∧ T (xi) = 0}

Then |E′| = m = |X| and the neighborhood N1
G(v) of all vertices v ∈ V

induces a connected subgraph of (V,E ∪ E′), which only remains to show for
the vertices xi and cj for the corresponding variables xi ∈ X and clauses
cj ∈ C:
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For every variable xi ∈ X the neighborhood N1
G(xi) = {ui, u′i, ti, fi} of

vertex xi induces a connected subgraph of (V,E ∪ E′), because E′ contains
either {u′i, ti} or {ui, fi}, both of which merge the two connected components
G|{ui,u

′
i}

and G|{ti,fi} of G|N1
G
(xi)

.
Let xπ(j) be a variable that satisfies clause cj under T . There is at least

one such variable for each clause, because T satisfies (X, C). Then the two
connected components of G|N1

G
(cj)

are merged in (V,E ∪ E′), because either

{uπ(j), fπ(j)} ∈ E′ and {cj , fπ(j)} ∈ E or {u′
π(j), tπ(j)} ∈ E′ and {cj , tπ(j)} ∈ E.

⇐: Let E′ be a set of complementary edges with |E′| ≤ m such that
the neighborhood of every vertex v ∈ V induces a connected subgraph of
(V,E∪E′). N1

G(xi) inducing a connected subgraph of (V,E∪E′) for all vertices
xi implies that |E′| ≥ m, because for all i, E′ contains at least one of the
following edges: {ui, fi}, {ui, ti}, {u′i, fi}, {u′i, ti}. Therefore we know that
|E′| = m, meaning that E′ contains exactly one of these edges for every index
i. Define a truth assignment T by setting T (xi) = 1 if E′ contains an edge
incident to ti and T (xi) = 0 if E′ contains an edge incident to fi. Then T
satisfies (X, C): Since N1

G(cj) induces a connected subgraph of (V,E ∪E′) for
all clauses cj and E′ contains only edges of the above form, it follows that
there is at least one variable xπ(j) for each cj such that

– xπ(j) ∈ cj and {{uπ(j), tπ(j)}, {u′π(j), tπ(j)}} ∩ E′ 6= ∅ or

– xπ(j) ∈ cj and {{uπ(j), fπ(j)}, {u′π(j), fπ(j)}} ∩ E′ 6= ∅.
Therefore, for every clause cj , there is at least one variable xπ(j) that satisfies
cj under T , meaning that T is a satisfying truth assignment. ⊓⊔

Greedy Algorithm for LCWA

This section presents and evaluates a greedy approach to the construction
version of the Locally k-Connected Weak Augmentation problem, re-
stricted to k = 1, that is defined as follows.

Locally Connected Weak Augmentation (LCWA)

Given: An undirected graph G = (V,E) without isolated vertices.

Task: Compute a set E′ ⊆ E of minimum cardinality such that for all
v ∈ V the neighborhood N1

G(v) induces a connected subgraph of
(V,E ∪ E′).

The general idea behind Algorithm 2 is to greedily choose an edge e that
reduces the number of local connectivity components as much as possible in
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Algorithm 2 Greedy algorithm for LCWA
1: function AugmentationValue(V,E,E′, {x, y})
2: m← 0
3: L← LCC(V,E)((V,E ∪ E′))
4: for all v ∈ N(V,E)(x) ∩N(V,E)(y) do
5: if ¬∃(v, C) ∈ L : x ∈ C ∧ y ∈ C then

6: m← m+ 1
7: end if

8: end for

9: return m

10: end function

11: function GreedyWeakAugmentation(V,E)
12: E′ ← ∅
13: r ← |LCCG(G)| − |V |
14: while r > 0 do

15: mmax ← 0
16: for all e ∈ E do ⊲ search emax with max. value
17: m←AugmentationValue(V,E,E′, e)
18: if m > mmax then

19: mmax ← m

20: emax ← e

21: end if

22: end for

23: E′ ← E′ ∪ {emax} ⊲ greedily add emax to the solution
24: r ← r −mmax ⊲ update the number of LCCs
25: end while

26: return E′

27: end function

every step. For this purpose we call e m-valuable, if the addition of e to the
current graph reduces the number of LCCs by m, formally noted in the next
definition. Although the given implementation obviously has a low polynomial
running time, it is optimized for clarity rather than efficiency. Utilizing suitable
data structures to continuously update the values of all complementary edges
after an initialization phase allows the reduction of the running time to an
even lower polynomial function.

Definition 15. For a positive integer m ∈ N, a complementary edge e ∈ E
of an undirected graph H = (V,E) is m-valuable with respect to a subgraph
G = (V,E′) of H (equivalently: has value m with respect to G), if

m = LCCG(H)− LCCG((V,E ∪ {e})).

Definition 16. For a positive integer m ∈ N, a complementary edge e ∈ E
of an undirected graph H = (V,E) is m-valuable with respect to a subgraph
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G = (V,E′) of H (equivalently: has value m with respect to G), if

m = |LCCG(H)| − |LCCG((V,E ∪ {e}))|.

Also see Figure 12 for an example.

Theorem 11. Let m ∈ N be a positive integer and G = (V,E) an undirected
graph without isolated vertices such that every complementary edge e ∈ E is
at most m-valuable with respect to G. Furthermore let EA ⊆ E be the solution
computed by Algorithm 2 for instance G and EOPT ⊆ E be an optimal solution
for LCWA. Then

|EA| ≤
m∑

j=1

1

j
· |EOPT |.

Proof. Let e1, . . . , e|EA| be the sequence of edges chosen by Algorithm 2 and
Gi := (V,E ∪ {e1, . . . ei−1}) the partially augmented graph after the insertion
of the first i− 1 edges. The current value of e ∈ E is denoted by fGi

(e), i.e.

fGi
(e) = m′ ⇔ e is m′-valuable in Gi with respect to G

Algorithm 2 computed a solution for LCWA and terminates as soon as the
current graph Gi has exactly |V | local connectivity components with respect
to G. The number of LCCs that remain to be merged is denoted as di and
given by:

d0 := |LCCG(G)| − |V |
di := di−1 − fGi

(ei) (1)

Furthermore let ki ∈ Z be the largest integer that satisfies

di > ki · |EOPT | (2)

Obviously k0 < m, because there is a solution with |EOPT | edges, each of
which has value at most m. For all intermediate steps it holds that there is
at least one edge e ∈ EOPT of value fGi

(e) > ki, because otherwise |EOPT |
would not be enough to merge all remaining LCCs. Due to the greedy selection
process of Algorithm 2, it follows that the next edge chosen has at least the
value ki + 1, i.e.

fGi
(ei) ≥ fGi

(e) ≥ ki + 1 (3)

For li := |EOPT |/(ki + 1) it holds that ki+li < ki which is proven by contra-
diction as follows. Assume that

ki+li ≥ ki, (4)
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Fig. 12. Edge value deterioration example (all values with respect to G1): One optimal
solution for the LCWA instance G1 is EOPT = {{a, e}, {a, c}, {c, e}, {b, v}, {d, v}}. While all
of these edges have value 2 in G1, edge {a, e} has value 1 in G3, G4 and G5. Furthermore
edge {f, v} has value 2 in G1, G2 and G3, value 1 in G4 and value 0 in G5 and G6.
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Table 11. Upper bounds for ki

i ki

0 ≤ m− 1
|EOPT |

m ≤ m− 2
|EOPT |

m + |EOPT |
m−1 ≤ m− 3

|EOPT |
m + |EOPT |

m−1 + |EOPT |
m−2 ≤ m− 4

. . . . . .
∑m

j=2
|EOPT |

j ≤ 0
∑m

j=1
|EOPT |

j ≤ −1

then

ki · |EOPT |
(4)

≤ ki+li · |EOPT |
(2)
< di+li

(1)
= di −

i+li∑

j=i+1

fGj
(ej)

(3),(4)

≤ di − li(ki + 1)

= di − |EOPT |
⇒ di > (ki + 1) · |EOPT |

However, this contradicts the maximality of ki and therefore it follows that
ki+li < ki. Starting from k0 < m the repeated application of this inequality
yields upper bounds for the values ki as given in Table 11. Since ks < 0 for
s := |EOPT | ·

∑m
j=1

1
j
, the number ds of LCCs that remain to be merged after

the addition of at most s edges equals 0 and Algorithm 2 terminates. ⊓⊔

Lemma 8. Let m ≥ 2 be a positive integer and G = (V,E) an undirected
graph without induced K2,m, i.e. there is no subset U ⊆ V such that G|U is
isomorphic to the complete bipartite graph K2,m. Then every complementary
edge e ∈ E is at most (m− 1)-valuable.

Proof. Assume that there is a m-valuable complementary edge
e := {x1, x2} ∈ E. Let

(w1, C1), . . . , (wm, Cm) ∈ LCCG(G) \ LCCG((V,E ∪ {e}))
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be m LCCs in G that vanish by adding the edge {x1, x2} such that all vertices
wi, 1 ≤ i ≤ m are pairwise distinct. These local connectivity components exist,
because within the neighborhood of one vertex every edge can merge at most
two connected components together. Then G|U for U := {x1, x2, w1, . . . wm}
is isomorphic to K2,m:

1. x1, x2, w1, . . . wm are pairwise distinct,
2. {x1, x2} 6∈ E,
3. ∀1 ≤ j ≤ m ∀1 ≤ i ≤ 2 : {xi, wj} ∈ E and
4. ∀1 ≤ j ≤ m ∀1 ≤ i ≤ m : {wi, wj} 6∈ E

While the first three properties are obvious due to the definition of the xi
and wj vertices, the forth property emerges from the following observation:

Assume that {wi, wj} ∈ E for some indices i 6= j. Then there is a local
connectivity component (wj , C) ∈ LCCG(G) such that x1, x2, wi ∈ C and
thus (wj , C) ∈ LCCG((V,E ∪ {{x1, x2}})). On the other hand x1, x2 ∈ Cj

by definition of (wj , Cj), which implies C = Cj and therefore contradicts the
existence of (wj , Cj). ⊓⊔

xx

wi

1 2

wj

Fig. 13. Lemma 8: None of the edges {wi, wj} is in E, because otherwise edge {x1, x2} would
not reduce the number of connected components within the neighborhoods of wi and wj .

Corollary 3. Theorem 11 and Lemma 8 imply that Algorithm 2 is a con-
stant factor approximation algorithm for the LCWA problem with instances
restricted to undirected graphs that do not contain the K2,m+1 as an induced
subgraph for any constant positive integer m ∈ N, which, for example, is the
case for graphs with a constant maximum vertex degree. For m = 2, which
holds for UDGs according to Lemma 1, the approximation factor is 3/2 and
for m = 3 the approximation factor is 11/6.

It is well known that the topology of real life wireless networks does not
strictly obey the theoretical unit disk graph model [61] and therefore real
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networks might in fact contain the complete bipartite graphK2,3 as an induced
subgraph. However, the UDG model at least provides some indication that
networks whose topology emerges from range assignments to points in the
euclidean space are unlikely to contain the K2,m for arbitrarily large positive
integers m ∈ N.

Theorem 12. Algorithm 2 is a 1+ ln(∆(G)) factor approximation algorithm
for the general LCWA problem.

Proof. The maximum value of any complementary edge is bounded by the
maximum vertex degree ∆(G) due to Lemma 8 and based on the upper bound
shown in Theorem 11 the claim is proven by the following inequality.

∆(G)∑

i=1

1

i
< 1 +

∫ ∆(G)

1

1

x
dx = 1 + ln(∆(G))

⊓⊔

Theorem 13. The upper bound of 3/2 given in Theorem 11 for m = 2 is
tight.

Proof. Consider the graph G = (V,E) given in Figure 14. For this example we
have |V | = 16 and |LCC(G)| = 20, because the neighborhood of the vertices
u, v, w, x induces two connected components each, while the neighborhood
of all other vertices induces a connected subgraph. Any optimal solution for
instance G of LCWA contains two edges, for example the 2-valuable edges
{a, d} and {c, f}. On the other hand, the edge {b, e} is also 2-valuable in G
and might therefore be chosen first by Algorithm 2. In this case the values of
{a, d} and {c, f} decrease by one and there are no 2-valuable edges left, because
there are no vertices adjacent to both u and x. Therefore the algorithm has
to chose two more edges, which leads to |EA| = 3, while |EOPT | = 2. ⊓⊔

Analogously to the former case for m = 2, the upper bound for m = 3
is also tight as shown in the following Theorem. The presented worst case
example is based on a very specific induced subgraph consisting of 62 vertices,
making it highly unlikely to occur in real life networks.

Theorem 14. The upper bound of 3/2 given in Theorem 11 for m = 3 is
tight.

Proof. Consider the graph G = (V,E) described in Figure 15. Analogously to
the former example, the vertices a′i and b′j provide local connectivity for all

54



3. Topology Control with Respect to Local Connectivity

ca b

xwvu

d e f

Fig. 14. Graph G, example for Theorem 13

vertices in G except the ck vertices. Furthermore, for all k ∈ {1, . . . 18}, the
neighborhood NG(ck) induces exactly two connected components of G.

One optimal solution for this instance of the LCWA problem is the fol-
lowing subset EOPT ⊂ E of 3-valuable edges:

EOPT := {{a2, b2}, {a4, b4}, {a5, b5}, {a7, b7}, {a8, b8}, {a10, b10}}

On the other hand, Algorithm 2 might choose edges as follows:

1. {a3, b3}, decreasing the values of {a2, b2},{a4, b4} and {a7, b7} to 2,
2. {a9, b9}, decreasing the values of {a5, b5},{a8, b8} and {a10, b10} to 2,
3. {a1, b1}, decreasing the values of {a2, b2} and {a4, b4} to 1,
4. {a6, b6}, decreasing the values of {a5, b5} and {a7, b7} to 1,
5. {a11, b11}, decreasing the values of {a8, b8} and {a10, b10} to 1.

Afterwards there are no more 2-valuable edges left and Algorithm 2 has to
choose 6 more edges, for example the entire set EOPT , which leads to a solution
of cardinality 11, while the optimal solution given above has cardinality 6. ⊓⊔

The idea of the proofs for the Theorems 13 and 14 is based on the obser-
vation that the worst case examples for the following combinatorial problem
provide a lower bound for the number of edges chosen by Algorithm 2:
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Given a sequence a0,1, . . . , a0,k of k ∈ N non-negative integers, what is the
largest integer l ∈ N such that there is an elimination sequence of length l, i.e.
a sequence of l sequences satisfying the following properties?

1. ∀1 ≤ j ≤ k ∀1 ≤ i ≤ l : 0 ≤ ai,j ≤ ai−1,j

2. ∀1 ≤ i ≤ l :∑k
j=1 ai,j ≤

∑k
j=1 ai−1,j −max{ai−1,j | 1 ≤ j ≤ k}

3. ∃1 ≤ j ≤ k al−1,j > 0
4. ∀1 ≤ j ≤ k al,j = 0

With respect to the algorithm, the initial sequence a0,1, . . . , a0,k is given
by arbitrarily ordering the edges of an optimal solution e1, . . . , ek and defining
a0,i to be the value of ei in the graph (V,E∪{e1, . . . , ei−1}) with respect to G.
It directly follows that the maximum of this sequence is at most the maximum
value of any edge in the given graph and also that

∑k
i=1 a0,i = |LCCG(G)|−|V |.

Each time Algorithm 2 chooses an edge e′j the current value of e
′
j is subtracted

from
∑k

i=1 aj−1,i, because the addition of e′j to the current graph reduces the
number of local connectivity components by this value, which also reduces the
overall values of e1, . . . , ek, thereby defining the next sequence aj,1, . . . , aj,k.
Furthermore, the value of the next edge chosen by the algorithm is at least
the maximum of the sequence aj−1,1, . . . , aj−1,k due to the greedy property.
Finally, the algorithm computed a solution and terminates after having chosen
l edges as soon as al,j = 0 for all 1 ≤ j ≤ k.

There are instances for this combinatorial problem having

l =

(
m∑

i=1

1

i

)
· k

with m being the maximum of the sequence a0,1, . . . , a0,k, see Table 12 for
an example with m = 4 and k = 12. With respect to graphs, the worst case
example given in Theorem 13 for m = 2 and the example of Theorem 14 for
m = 3 correspond exactly to the analogous elimination sequences for k = 2
and k = 6, respectively.

Extrapolation of this concept in conjunction with Lemma 8 and the upper
bound proven in Theorem 11 suggests the following conjecture.

Conjecture 2. Algorithm 2 has a tight quality bound of

m∑

i=1

1

i

for undirected graphs G in which m ∈ N is the largest positive integer such
that G contains the complete bipartite graph K2,m as an induced subgraph.
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Table 12. Worst case example with maximum 4

a0,1, . . . , a0,12 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

a1,1, . . . , a1,12 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4

a2,1, . . . , a2,12 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4

a3,1, . . . , a3,12 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

a4,1, . . . , a4,12 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3

a5,1, . . . , a5,12 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3

a6,1, . . . , a6,12 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3

a7,1, . . . , a7,12 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

a8,1, . . . , a8,12 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

a9,1, . . . , a9,12 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2

a10,1, . . . , a10,12 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2

a11,1, . . . , a11,12 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2

a12,1, . . . , a12,12 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2

a13,1, . . . , a13,12 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

a14,1, . . . , a14,12 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

. . . . . .

a25,1, . . . , a25,12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Conjecture 2 is not formally proven at this point because of the rapidly
increasing size and complexity of the necessary graphs for larger values of m.
This results from the fact that the worst case example graph that has to be
constructed for a specific value of m inevitably has to contain several copies
of the worst case example for m − 1. Based on this observation it should
theoretically be possible to proof the conjecture using an inductive argument.
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Fig. 15. Induced subgraph H used in the proof of Theorem 14: The entire graph G addition-
ally contains, for every vertex ai, one vertex a′

i that is adjacent to ai as well as all vertices
in NH(ai) and for every vertex bi, one vertex b′i that is adjacent to bi as well as all vertices
in NH(bi). Finally the vertex sets {a′

1, . . . , a
′
11} and {b

′
1, . . . , b

′
11} induce complete subgraphs

of G.
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Locally k-Connected Strong Augmentation

In terms of sensor networks it is usually desirable to only utilize the additional
communication links in case of a failure, because their usage is generally ex-
pensive in terms of power or others resources. This scenario is best represented
by the LCWA problem above as it allows to utilize the additional edges for
connectivity while providing the option to exclude them from other algorithms
such as beaconing or watchdog protocols. On the other hand, if one insists on
treating the additional edges as normal communication links for all algorithms
in question, the following LCSA version is the more natural description of the
problem.

Locally k-Connected Strong Augmentation

Given: An undirected graph G = (V,E) and a positive integer m ∈ N

Question: Is there a set of complementary edges E′ ⊆ E with |E′| ≤ m
such that (V,E ∪ E′) is locally k-connected?

Theorem 15. The Locally 1-Connected Strong Augmentation prob-
lem is NP-complete.

Proof. Locally k-Connected Strong Augmentation is in NP for all
positive integern k ∈ N, because for a given set of complementary edges E′ ⊆
E a deterministic algorithm can decide in polynomial time whether H :=
(V,E ∪ E′) is locally k-connected by determining the connectivity of G|N1

H
(v)

for each vertex v ∈ V .
The NP-hardness of Locally 1-Connected Strong Augmentation is

shown by the following polynomial time reduction that constructs a graph G
and an integer m from an arbitrary instance (X, C) of Satisfiability such
that (X, C) is satisfiable if and only if there is a set of complementary edges
E′ ⊆ E of cardinality |E′| ≤ m for which (V,E ∪ E′) is locally connected.

Let (X, C) be an instance for Satisfiability with the set of variables X
and the set of clauses C. Define m := |X| and construct G by adding a copy
of a graph for every variable in X and every clause in C:

For every variable xi ∈ X insert a circle with 4 vertices (Vi, Ei) with vertex
set Vi := {xi,1, xi,2, xi,1, xi,2} and edge set

Ei := {{xi,1, xi,1}, {xi,1, xi,2}, {xi,2, xi,1}, {xi,2, xi,2}}.

For every clause cj ∈ C insert a path with three vertices (V ′
j , E

′
j) having

V ′
j := {cj,1, cj,2, cj,3} and E′

i := {{ci,1, ci,2}, {ci,2, ci,3}}}.
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3. Topology Control with Respect to Local Connectivity

These variable gadgets and clause gadgets are connected to each other by
adding edges as follows: If clause cj ∈ C contains literal xi add {cj,2, xi,1} and
{cj,2, xi,2}, if cj contains literal xi add {cj,2, xi,1} and {cj,2, xi,2}. In both cases
add all edges {cj,1, xi,1}, {cj,1, xi,1}, {cj,3, xi,2}, {cj,3, xi,2}, see Figure 16 for
an example.
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Fig. 16. Graph G constructed from instance (X, C) with X = {x1, x2, x3, x4} and C =
{{x1}, {x1, x2}, {x1, x2, x3}, {x3, x4}}

Lemma 9. Let H = (VH , EH) be an undirected graph and E′
H ⊆ EH a set of

complementary edges such that (VH , EH ∪ E′
H) is locally connected. Further-

more let c ∈ VH be a vertex that is not locally connected in H and (c, {v}) a
local connectivity component. Then there is at least one edge e ∈ E′

H such that
e ∩ {c, v} 6= ∅.

Proof. Since c is locally connected in (VH , EH∪E′
H) and not locally connected

in H, there is a second LCC (c, C), C 6= {v} in H, but only one LCC (c, C ′) in
(VH , EH ∪ E′

H) having C ∪ {v} ⊆ C ′. Therefore E′
H contains either one edge

e ∈ E′
H incident to v, connecting v to any vertex in N1

(VH ,EH∪E′
H
)(c) \ {v} or

one edge e ∈ E′
H incident to c, extending the neighborhood of vertex c by a

vertex v′ for which {v, v′} ∈ EH . ⊓⊔

The application of Lemma 9 to the graph G constructed for Theorem 15
provides the following Lemma which is used to conclude the proof:

Lemma 10. Every complementary edge set E′ for G of cardinality at most
|X| such that (V,E ∪ E′) is locally connected contains either {xi,1, xi,2} or
{xi,1, xi,2} for every variable gadget generated for variable xi ∈ X.

60



3. Topology Control with Respect to Local Connectivity

Proof. By the construction of G it follows, for every variable xi ∈ X, that
(xi,1, {xi,2}) as well as (xi,1, {xi,2}) are local connectivity components. Now
Lemma 9 implies that E′ contains at least one complementary edge incident
to either xi,1 or xi,2 and at least one complementary edge incident to either
xi,1 or xi,2. In conjunction with the bounded size |E′| ≤ |X| it follows that
E′ contains exactly one complementary edge incident to either xi,1 or xi,2
and exactly one complementary edge incident to either xi,1 or xi,2. Therefore
we also know that E′ does not contain any edges incident to vertices other
than xi,1, xi,2, xi,1 and xi,2. It remains to show that E′ does not contain
any complementary edge e between vertices from different variable gadgets,
which is shown by contradiction as follows: Due to symmetry we can assume
without loss of generality that e = {xi,1, xj,1} for two variables xi 6= xj . Since
neither xi,1 nor xi,2 is contained in another edge e′ ∈ E′, e′ 6= e it follows
that (xi,1, {xi,2}) is a local connectivity component in (V,E∪E′), because xi,1
obviously has more than one neighbor in (V,E∪E′). This however contradicts
the assumption that (V,E ∪ E′) is locally connected. ⊓⊔

The proof of Theorem 15 is now concluded by showing that (X, C) is sat-
isfiable if and only if there is a set of complementary edges E′ ⊆ E with
|E′| ≤ m := |X| such that (V,E ∪ E′) is locally connected.

⇒: Let T : X → {0, 1} be a satisfying truth assignment for C. Define E′ by
adding one edge for every variable xi ∈ X. If T (xi) = 1, add {xi,1, xi,2} and
if T (xi) = 0, add {xi,1, xi,2}. Then (V,E ∪ E′) is locally connected: For every
variable gadget (Vi, Ei) there is one edge e ∈ E′ between two vertices in Vi

that are not adjacent in G. It is easy to verify that all vertices in Vi are locally
connected due to e. Furthermore all vertices cj,1 and cj,3 are already locally
connected in G and all vertices cj,2 are locally connected, because T satisfies
all clauses cj ∈ C: For every vertex cj,2 the neighborhood N1(cj,2) induces a
graph consisting of two connected components C and C ′. C contains vertex cj,1
as well as the vertices xi,1 (xi,1) for all xi ∈ cj (xi ∈ cj) and C ′ contains vertex
cj,3 as well as the vertices xi,2 (xi,2) for all xi ∈ cj (xi ∈ cj). Since T satisfies
cj , there is at least one i such that xi ∈ cj and {xi,1, xi,2} ∈ E′ or xi ∈ cj and
{xi,1, xi,2} ∈ E′ and therefore there is an edge e ∈ E′ such that e∩C 6= ∅ and
e ∩ C ′ 6= ∅, meaning that (cj,2, C ∪ C ′) is a local connectivity component in
(V,E ∪ E′), which implies that cj,2 is locally connected in (V,E ∪ E′).

⇐: Let E′ be a set of complementary edges set of cardinality at most |X|
such that (V,E∪E′) is locally connected. According to Lemma 10, E′ consists
of either {xi,1, xi,2} or {xi,1, xi,2} for every variable xi ∈ X and no other edges.

Define a truth assignment T : X → {0, 1} by setting T (xi) = 1, if
{xi,1, xi,2} ∈ E′ and T (xi) = 0, if {xi,1, xi,2} ∈ E′. Then T satisfies C: Be-
cause (V,E ∪ E′) is locally connected, the vertex cj,2 is locally connected for
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all clauses cj ∈ C, which implies that, for every vertex cj,2, there is an index
i such that either {xi,1, xi,2} ∈ E′ and xi,1, xi,2 ∈ N1(cj,2) or {xi,1, xi,2} ∈ E′

and xi,1, xi,2 ∈ N1(cj,2). In the former case xi ∈ cj and T (xi) has been set to
1 and in the latter case xi ∈ cj and T (xi) has been set to 0, thus T satisfies
cj . ⊓⊔

Locally k-Connected Weak Vertex Augmentation

In contrast to the former augmentation problems, the next two problems aim
for connectivity of the subgraph induced by the neighborhood of a single vertex
v ∈ V instead of connectivity of the subgraphs induced by the neighborhoods
of all vertices. Analogously to the former problems, there is a Weak and a
Strong version of this Vertex Augmentation problem.

Locally k-Connected Weak Vertex Augmentation

Given: An undirected graph G = (V,E), a vertex v ∈ V and a positive
integer m ∈ N

Question: Is there a set E′ ⊆ E of cardinality |E′| ≤ m such that N1
G(v)

induces a connected subgraph of (V,E ∪ E′)?

Theorem 16. The Locally 1-Connected Weak Vertex Augmenta-
tion problem is solvable in linear time.

Proof. If G|N1
G
(v) consists of more than one connected component, the only

possibility to achieve connectivity in the Weak model is the addition of com-
plementary edges between vertices from different connected components.

Let n be the number of connected components in G|N1
G
(v), which can be

determined in time O(|V |+|E|) by a depth first search. Let H be the complete
graph (e.g. the graph that contains all possible edges) that consists of one
vertex for every connected component of G|N1

G
(v) and T be a spanning tree

for H. The number of edges in T in the minimum number of complementary
edges that have to be added to the graph such that the neighborhood N1

G(v)
induces a connected subgraph. And because a tree with n vertices contains
exactly n − 1 edges, the instance can be accepted if m ≥ n − 1 and rejected
otherwise. ⊓⊔
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Locally k-Connected Strong Vertex Augmentation

Locally k-Connected Strong Vertex Augmentation

Given: An undirected graph G = (V,E), a vertex v ∈ V and a positive
integer m ∈ N

Question: Is there a set E′ ⊆ E of cardinality |E′| ≤ m such that v is
locally k-connected in (V,E ∪ E′)?

Theorem 17. The Locally 1-Connected Strong Vertex Augmenta-
tion problem is NP-complete.

Proof. Locally k-Connected Strong Vertex Augmentation is in NP
for all k ∈ N, because for a given set of complementary edges E′ ⊆ E a
deterministic algorithm can decide in polynomial time whether v is locally
k-connected in (V,E ∪ E′).

The NP-hardness is shown by the following polynomial time reduction that
transforms an instance (X, C) of Satisfiability into an undirected graph G =
(V,E) with a designated vertex v ∈ V and a positive integer m := |X| such
that (X, C) is satisfiable if and only if there is a subset E′ ⊆ E of cardinality
|E′| ≤ m = |X| for which v is locally connected in (V,E ∪ E′).

G contains two vertices s and v and the edge {s, v} as well as one copy of
the graph

Gx := ({x, x̂, x}, {{x, x̂}, {x̂, x}})
and the edges {s, x}, {s, x}, {v, x̂} for every variable x ∈ X. G also contains a
vertex c for every clause c ∈ C and the edges {{c, x} | x ∈ c}, {{c, x} | x ∈ c}.
See Figure 17 for an example. Formally, G is defined by the following sets.

V := {s, v} ∪ {x, x̂, x | x ∈ X} ∪ C
E := {{s, v}} ∪ {{s, x}, {s, x} | x ∈ X}

∪ {{x̂, x}, {x̂, x} | x ∈ X} ∪ {{v, x̂} | x ∈ X}
∪ {{c, x} | x ∈ X ∧ x ∈ c} ∪ {{c, x} | x ∈ X ∧ x ∈ c}

Then (X, C) is satisfiable if and only if there is a set E′ ⊆ E containing
at most m = |X| complementary edges such that v is locally connected in
H := (V,E ∪ E′):

⇒: Let T : X → {0, 1} be a satisfying truth assignment for C. Define

E′ := {{v, x} | T (x) = 1} ∪ {{v, x} | T (x) = 0}.
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Fig. 17. Graph G constructed from instance (X, C) with X = {x, y, z} and C =
{c1, c2, c3, c4}, c1 = {x, y}, c2 = {x, y}, c3 = {x, y, z}, c4 = {y, z}.

Then v is locally connected in H, because for every vertex w ∈ N1
H(v) there is

a path pw between w and s that only contains vertices from N1
H(v): If w = x̂

for some variable x ∈ X, then either x ∈ N1
H(v) or x ∈ N1

H(v) and thus either
pw = w, x, s or pw = w, x, s. If w = c for some clause c ∈ C, then there is a
literal l ∈ c such that {v, l} ∈ E′, because T satisfies c and thus pw = w, l, s.
Finally, for w = x or w = x, pw = w, s, because {w, s} ∈ E.

⇐: Let E′ ⊆ E be a set of complementary edges of cardinality |E′| ≤ m =
|X| such that v is locally connected in (V,E ∪ E′).

It can be assumed without loss of generality that E′ does not contain any
edge {x̂, ŷ} for two variables x, y ∈ X: If {x̂, ŷ} ∈ E′ for two distinct variables
x, y ∈ X and v is not locally connected in J := (V,E ∪ E′ \ {{x̂, ŷ}}), then
J |N1

J
(v) consists of exactly two connected components. Let Cx and Cy be the

two connected components of J |N1
J
(v) that contain vertex x̂ and ŷ, respectively.

Without loss of generality let Cx be the connected component that contains
vertex s. Then there is no path between ŷ and s in J |N1

J
(v), meaning that E′

contains neither {v, y} nor {v, y}. Then E′′ := (E′ \ {{x̂, ŷ}}) ∪ {{v, y}} is a
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set of complementary edges such that |E′′| = |E′| and v is locally connected
in (V,E ∪ E′′).

H|N1
H
(v) is connected, therefore there is a path between x̂ and s in H|N1

H
(v)

for all variables x ∈ X. Since {x̂, ŷ} 6∈ E′ for all x, y ∈ X, it follows that for
every variable x ∈ X at least one of the following three conditions holds true.

1. {v, x} ∈ E′ ⇔ x ∈ N1
H(v)

2. {v, x} ∈ E′ ⇔ x ∈ N1
H(v)

3. {x̂, u} ∈ E′ for some vertex u ∈ V : ∀y ∈ X : u 6= ŷ

Utilizing an argument similar to the one before we can now assume without loss
of generality that there is no variable x ∈ X for which the third condition holds:
If {x̂, u} ∈ E′ for some variable x ∈ X, then E′′ := (E′ \{{x̂, u}})∪{{v, x}} is
a set of complementary edges such that |E′′| = |E′| and v is locally connected
in (V,E ∪ E′′).

In conjunction with the fact that |E′| ≤ |X| this implies that for every
variable x ∈ X either the first or the second condition holds true, which means
that |E′| = |X|. This allows the definition of a satisfying truth assignment T
as follows:

Define T : X → {0, 1} by setting T (x) = 1 if {v, x} ∈ E′ and T (x) = 0
otherwise. Then T satisfies all clauses c ∈ C: Because H|N1

H
(v) is connected,

there is a path c, l, . . . , s between vertex c and vertex s. Since E′ does not
contain any edges incident to c, vertex l has to be a vertex corresponding to
a literal that occurs in c and thus {v, l} ∈ E′. If l = x is the positive literal of
a variable x ∈ X, then T (x) has been set to 1, otherwise T (x) has been set to
0 and therefore T satisfies c. ⊓⊔

3.3 Edge Removal Problems

After having considered topology control problems that aim to achieve local
connectivity, this section is concerned with a type of problems that try to pre-
serve local connectivity while removing as many edges as possible from a given
graph to reduce the number of communication links that the individual sensor
nodes have to maintain. Removing edges from the communication graph of
a wireless network while preserving a specific graph property has been con-
sidered for several graph properties such as planarity or a specified minimum
vertex degree, see for example [66, 82] for an overview of this topic. Due to the
nature of local connectivity, there are two versions of the problem just as in
the case of graph augmentation: While the Weak version of this graph thin-
ning approach aims for connectivity in the subgraphs induced by the original
neighborhoods of each vertex, the Strong version asks for a set of edges such
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that the remaining graph is locally connected. Note that in the strong version
of the problem the remaining graph is additionally required to be connected,
because otherwise it would theoretically be possible to remove all edges based
on the observation that isolated vertices are locally connected. It will be shown
that both versions of this Graph Thinning problem are NP-complete. Since
removing edges from a graph is a somewhat opposite task of adding edges
to a graph, these problems are closely related to the augmentation problems
considered above and therefore the NP-hardness can be proven by making
suitable modifications to the polynomial time reduction from Theorem 10.

Locally k-Connected Weak Graph Thinning

Locally k-Connected Weak Graph Thinning

Given: A locally k-connected graph G = (V,E) and a positive integer
m ∈ N.

Question: Is there a set E′ ⊆ E of cardinality |E′| ≥ m such that, for every
vertex v ∈ V , the neighborhood N1

G(v) induces a k-connected
subgraph of (V,E \ E′)?

Theorem 18. The Locally 1-Connected Weak Graph Thinning prob-
lem is NP-complete.

Proof. Locally k-Connected Weak Graph Thinning is in NP for all
k ∈ N, because for a given set of edges E′ ⊆ E a deterministic algorithm
can decide in polynomial time whether the neighborhood N1

G(v) induces a
k-connected subgraph of (V,E \ E′) for all vertices v ∈ V .

The NP-hardness of Locally 1-Connected Weak Graph Thinning is
shown by a polynomial time reduction from Satisfiability that transforms
an instance (X, C) into a locally connected graph G = (V,E) and a positive
integer m ∈ N such that (X, C) is satisfiable if and only if there is a set E′ ⊆ E
of cardinality |E′| ≥ m such that, for every vertex v ∈ V , the neighborhood
N1

G(v) induces a connected subgraph of (V,E \ E′).

For this purpose the reduction from Theorem 10 is extended as follows:
Let H = (VH , EH) be the graph that is constructed in the proof of Theorem
10 for instance (X, C). Define G = (V,E) by V := VH ∪ {ve | e ∈ EH} and
E := EH ∪ {{ve, w1}, {ve, w2} | e = {w1, w2} ∈ EH} ∪ {{ui, fi}, {u′i, ti} | xi ∈
X}. In other words, an additional vertex ve is generated for every edge e ∈ EH

and connected to both end vertices of e. Afterwards all edges of type {ui, fi}
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and {u′i, ti} are added to G. Integer m is set to the number of variables |X|
just as in Theorem 10.

It directly follows from the proof of Theorem 10 and the following two
observations that G is locally connected:

1. All newly added vertices are obviously locally connected and they are only
adjacent to two vertices, which are also adjacent to each other. Therefore
the vertices ve do not generate additional connected components within
the neighborhood of any vertex.

2. The inclusion of the {ui, fi} and {u′i, ti} edges alters the neighborhood of
their incident vertices, but does not introduce any new connected compo-
nents, because all of these vertices are also adjacent to the respective xi
vertex.

The proof is now concluded by showing that (X, C) is satisfiable if and only
if there is a set E′ ⊆ E of cardinality |E′| ≥ m such that, for every vertex
v ∈ V , the neighborhood N1

G(v) induces a connected subgraph of (V,E \ E′):
⇒: Let T : X → {0, 1} be a satisfying truth assignment for (X, C). Set

E′ := {{ui, fi} | xi ∈ X ∧ T (xi) = 1} ∪ {{u′i, ti} | xi ∈ X ∧ T (xi) = 0}.
Obviously, |E′| = |X| = m and, for every vertex v ∈ V , the neighborhood
N1

G(v) induces a connected subgraph of (V,E \E′) due to the same arguments
as in the proof of Theorem 10.

⇐: Let E′ be a set of edges with |E′| ≥ m, such that, for every vertex
v ∈ V , the neighborhood N1

G(v) induces a connected subgraph of (V,E \ E′).
First, we can observe that E′ does not contain any edge e ∈ EH , because
otherwise (V,E \E′)|N1

G
(ve) would not be connected. Furthermore we can also

observe that E′ does not contain any of the edges {ve, w1} or {ve, w2} that are
generated for an edge e = {w1, w2} ∈ EH : If {ve, w1} ∈ E′ for any edge e ∈ EH ,
then the graph (V,E \ E′)|N1

G
(w2) is not connected (analogous argument for

{ve, w2}). Therefore E′ only contains edges of type {ui, fi} or {u′i, ti} and
because (V,E \E′)|N1

G
(xi)

is connected for all vertices xi, it follows that |E′| =
|X| = m and that E′ contains exactly one of the edges {ui, fi} or {u′i, ti} for all
xi ∈ X. Due to the same arguments as in the proof of Theorem 10, this implies
the satisfiability of (X, C), because for all clauses cj ∈ C the neighborhood of
vertex cj induces a connected subgraph of (V,E \ E′). ⊓⊔
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Locally k-Connected Strong Graph Thinning

Locally k-Connected Strong Graph Thinning

Given: A connected, locally k-connected graph G = (V,E) and a pos-
itive integer m ∈ N.

Question: Is there a set E′ ⊆ E of cardinality |E′| ≥ m such that (V,E \
E′) is connected and locally k-connected?

Theorem 19. The Locally 1-Connected Strong Graph Thinning
problem is NP-complete.

Proof. Locally k-Connected Strong Graph Thinning obviously be-
longs to NP for all positive integers k ∈ N due to the same arguments as
in the former theorems. As for the NP-hardness, the reduction of Theorem 18
can be used.

Let G = (V,E) be the graph generated for instance (X, C). Obviously G is
connected, because the vertices b1 and b2 are adjacent to at least one vertex
from each of the subgraphs created for the variables and clauses in (X, C).
Then (X, C) is satisfiable if and only if there is a set E′ ⊆ E of cardinality
|E′| ≥ m := |X| such that (V,E \ E′) is connected and locally connected:

⇒: Analogous to the proof of Theorem 18 due to the following observation:
The alteration of the neighborhoods due to the removal of an edge {ui, fi} or
{u′i, ti} generated for a variable xi ∈ X is irrelevant for the local connectivity,
because of the corresponding xi vertex that is adjacent to both end vertices
of the edge.

⇐: Let E′ ⊆ E be a set of cardinality |E′| ≥ m = |X| such that (V,E \E′)
is connected and locally connected. Utilizing the observation above we already
know from the proof of Theorem 18 that (X, C) is satisfiable, if there are m =
|X| edges of the type {ui, fi} or {u′i, ti} whose removal will result in a locally
connected graph and it is also easy to verfiy that this graph is connected.
Therefore it only remains to show that E′ cannot contain any edges other
than {ui, fi} or {u′i, ti} for a variable xi ∈ X to proof the theorem.

This will be proven by contradiction. Let e ∈ E′ be an edge such that
∀i ∈ {1, . . . , |X|} : e 6∈ {{ui, fi}, {u′i, ti}}. Then one of the following two cases
applies.

Case 1. A vertex of degree 2 that is adjacent to both vertices in e has been
generated, meaning that ∃ve ∈ V : N1

G(ve) = e. Let u and v be the two vertices
incident to e, i.e. e = {u, v}. Now it follows that either {ve, u} ∈ E′ or {ve, v} ∈
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E′, because otherwise ve would not be locally connected in (V,E\E′). Without
loss of generality let {ve, v} ∈ E′. If it also holds that {ve, u} ∈ E′, then ve
is isolated in (V,E \ E′), which contradicts the connectivity of (V,E \ E′).
Therefore {ve, u} 6∈ E′ which leads to (u, {ve}) being a local connectivity
component of (V,E\E′). In conjunction with (V,E\E′) being locally connected
we know that ve is the only connected component induced by the neighborhood
N1

(V,E\E′)(u) of u, implying that E′ contains all edges incident to u except for

{u, ve}. Again, this contradicts the assumption that (V,E \ E′) is connected.

Case 2. Edge e is incident to a vertex ve′ of degree 2 that has been generated
for an edge e′ and N1

G(ve′) = e′. Let u and v be the two vertices incident to e′

and without loss of generality let e = {ve′ , v}. Then {ve′ , u} 6∈ E′, because ve′

is not isolated in (V,E \E′). But then e′ ∈ E′, because u is locally connected
in (V,E \ E′). Therefore Case 1 is applicable to edge e′.

⊓⊔

3.4 Complexity Results for k-Connectivity

In this section it is briefly discussed how all of the NP-hardness results from
the sections 3.1 and 3.2 for k = 1 can be extended to arbitrary k using the
same basic idea:

Adding an additional vertex v to the graph that is adjacent to all other
vertices yields a polynomial time reduction

k −Π ≤p (k + 1)−Π,

assuming that the following condition holds:
(⋆) Every solution for the construction version of k−Π results in a (k+1)-

connected graph.
This ⋆-condition is mandatory to ensure that the required local connectiv-

ity condition automatically holds for the newly added vertex v. The correctness
of these reductions is then given by the following observation.

Definition 17. For an undirected graph G = (V,E) let γ(G) be the connectiv-
ity of G, meaning the largest positive integer k ∈ N such that G is k-connected.

Observation 2 Let G = (V,E) be an undirected graph and

G+ := (V ∪ {v}, E ∪ {{v, u} | u ∈ V })

the graph with one additional vertex v that is adjacent to all other vertices.
Then, for every subset of vertices U ⊆ V ,

γ(G+|U∪{v}) = γ(G|U ) + 1.
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Using the NP-hardness results for k = 1 above as starting points for in-
ductive arguments, Observation 2 also provides validity of the ⋆-condition for
arbitrary k, if it holds for k = 1. Therefore the only thing that remains to
show is that the ⋆-condition holds for k = 1. For the Maximum Locally
k-Connected Vertex Set problem this is given by the following lemma.

Lemma 11. Let G = (V,E) be an undirected, connected graph that is locally
connected. Then G is 2-connected.

Proof. Assume that G is not 2-connected. Then there is a separation vertex
w ∈ V , meaning that G|V \{w} is not connected. Let u, v ∈ V be a pair of
vertices for which there is no path in G|V \{w}. Since G is connected there is
path u, . . . , u′, w, v′, . . . v in G. Because w is locally connected there is a path
p between u′ and v′ in G|N1(w) (which is a subgraph of G|V \{w}) and thus
u, . . . , p, . . . , v is a path between u and v in G|V \{w}. ⊓⊔

For the augmentation problems in section 3.2 it is sufficient to show that
the problem remains NP-hard when the instances are restricted to 2-connected
graphs, because augmenting a graph G by adding additional edges does not
reduce the connectivity of G. For all presented reductions it is easy to verify
that the constructed graph is 2-connected, if the reduction is started from
Connected Sat.

4 Connectivity of Networks with Two Power Levels

Wireless networks with adjustable transmission power levels have received
considerable attention in literature as it is related energy management and
therefore has direct impact on the lifetime of the network, because the re-
placement of batteries in a large scale network is practically difficult or even
impossible.

There are several studies on the so-calledRange Assignment (RA) prob-
lem with different preliminaries, for example [21, 37]The RA problem is typi-
cally defined as computing a range assignment f : P → R

+ for a set of points
P ⊂ R

n (1 ≤ n ≤ 3), representing the nodes in the network, such that the
total energy

∑
p∈P c(f(p)) is minimal (c being a cost function according to a

radio wave propagation model) under the constraint that the graph (P,E),
E := {(p, q) ∈ P 2 | ‖p − q‖2 ≤ f(p)} is strongly connected, where ‖p − q‖2
denotes the Euclidean distance between p and q. It is well known that the
corresponding decision problem is NP-hard for both the 2- and 3-dimensional
euclidean space [60, 22]. Variations of the problem include requiring connec-
tivity of the resulting undirected graph (where an edge {u, v} is present if
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and only if both directed edges (u, v) and (v, u) are present) instead of strong
connectivity [9, 12] and restricting the possible power level values from real
number to a discrete space [27] or limiting the number of power levels to two
[13]. Most recently we introduced a range assignment problem that demands
a minimum node degree for all nodes in the network [43].

The connectivity problem considered in this chapter is motivated by wire-
less sensor networks in which the nodes have two transmission power levels,
a min-power and a max-power level. Such networks are usually represented as
directed graphs in that the directed edges represent connections from source
nodes to target nodes. Again, since almost all communication protocols are
based on symmetric connections, we are mainly interested in the underlying
symmetric networks that are represented by undirected graphs.

Our goal is to find a minimum number k of nodes such that if these k nodes
use max-power and the remaining nodes use min-power then the resulting
underlying symmetric network is connected.

4.1 2-Level Symmetric Range Assignment

The problem is now defined more formally for both the symmetric and the
asymmetric case. For a node u ∈ V , let dmin(u) ⊆ V and dmax(u) ⊆ V be
the set of nodes reachable from u with min-power or max-power, respectively.
That is, dmin and dmax can be considered as mappings from V to the power
set P(V ) of V , i.e., to the set of all subsets of V .

Definition 18. For a finite set V , a subset U ⊆ V and two mappings dmin :
V → P(V ), dmax : V → P(V ) with dmin(v) ⊆ dmax(v) ∀v ∈ V the set of
symmetric min-power edges is defined by

Emin(U) := {{u, v} | u, v ∈ U ∧ u 6= v ∧ v ∈ dmin(u) ∧ u ∈ dmin(v)},

and the set of symmetric max-power edges by

Emax(U) := {{u, v} | u, v ∈ U ∧ u 6= v ∧ v ∈ dmax(u) ∧ u ∈ dmax(v)}.

Furthermore define the min-max-power graph

G(V, dmin, U, dmax) := (V,Emin(V ) ∪ Emax(U)).

For the asymmetric case define the set of directed min-power edges as

E+
min(U) := {(u, v) | u ∈ U ∧ v ∈ dmin(u) ∧ u 6= v},
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the set of directed max-power edges as

E+
max(U) := {(u, v) | u ∈ U ∧ v ∈ dmax(u) ∧ u 6= v}

and the directed min-max-power graph

G+(V, dmin, U, dmax) := (V,E+
min(V ) ∪ E+

max(U)).

The min-max-power graph G(V, dmin, U, dmax) is also denoted by G(U) if
V , dmin, and dmax are known from the context. Graph G(∅) is also called
the min-power graph whereas graph G(V ) is also called the max-power graph.
Analogously the directed min-max-power graph G+(V, dmin, U, dmax) is also
denoted by G+(U).

If the min-power mapping dmin is symmetric, meaning that ∀u, v ∈ V :
v ∈ dmin(u) ⇔ u ∈ dmin(v), the min-max-power graph G(U) represents the
underlying symmetric network for the case that the nodes of U use max-power
and the remaining nodes of V \ U use min-power. This kind of symmetry
is automatically given, for example, if the mapping dmin corresponds to the
vertex adjacency given by the UDG model for a given range as described in
the following definition.

Definition 19. For a finite set P ⊂ R and a real number r ∈ R define

dr(v) := {u ∈ P \ {v} | ‖v − u‖2 ≤ r}.

The definition of the min-max-power graph is used to define the 2-Level
Symmetric Range Assignment problem as follows.

2-Level Symmetric Range Assignment (2LSRA)

Given: A node set V and two mappings dmin : V → P(V ) and dmax : V →
P(V ) such that the max-power graph G(V ) is connected.

Task: Compute a set U ⊆ V of minimum cardinality such that the min-
max-power graph G(U) is connected.

While formulated in an entirely different way, the 2LSRA problem is basi-
cally equivalent to the problem called Max Power Users given in [67], which
was renamed to {0, 1}-MPST by the authors of [76]. And although this work
has been conducted independently of [67], the concept used for an approxima-
tion algorithm is remarkably similar: In this chapter a family of approximation
algorithms, called Approx2LSRAk and based on a positive integer k ∈ N,
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is developed and analyzed. The authors of [67] introduce two approximation
algorithms which are in fact equivalent to our special cases Approx2LSRA3

and Approx2LSRA4. However, the best known approximation ratio possibly
for this problem is given in [76] where the authors prove that the algorithm
presented in [3] for the more general problem of arbitrary power levels achieves
an approximation ratio of 3/2 for the special case of two power levels. It is
noteworthy that the algorithm given in [3] is based on a rather complex ap-
proximation scheme for the classical Steiner Tree problem, while the idea
used in this chapter and in [67] is a simple, fast and easy to implement greedy
approach.

We will start by proving the NP-completeness in the following section,
before a family of approximation algorithm called Approx2LSRAk based on
a positive integer k ∈ N is introduced and analyzed.

4.2 NP-Completeness

The decision problem that corresponds to 2LSRA, i.e. the problem of finding
a vertex set U of size at most k, for an additionally given integer k, such that
G(U) is connected, is NP-complete. The problem obviously is in NP, because
deciding whether the min-max-power graph G(U) is connected for a given set
U can be accomplished by a depth first search on the graph G(U) in linear
time. The NP-hardness will be shown in this section by demonstrating that
the following restriction to the problem already is NP-hard. In this euclidean
version of the two level range assignment problem the mappings dmin and dmax

are not arbitrary, but implicitly given by the pairwise distances between vertex
positions in the 2-dimensional euclidean space as given in Definition 19. One
can think of this model as an extension to the UDG model in which a second

orbit

orbit orbit

orbit

central component

Fig. 18. 2LERAS: Several orbit components around one central component yield a star
topology. The arrows indicate possible directed max-power edges.
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max-power radius is given. The 2LSERA problem then asks for a minimum
number of points from a given set for which the larger radius has to be used
in order to obtain a connected graph.

2-Level Symmetric Euclidean Range Assignment (2LSERA)

Given: A finite set P ⊂ R
2, a positive integer k ∈ N and two ranges

r1, r2 ∈ R, r1 < r2 such that the max-power graph G(P ) is
connected for the mappings dmin = dr1 and dmax = dr2 .

Question: Is there a set U ⊆ P of cardinality |U | ≤ k such that the
min-max-power graph G(U) is connected?

The main part on this proof is given in the proof of Theorem 6.1 of [13],
where the authors show that the following 2LERAS problem is NP-complete.
2LERAS basically is the asymmetric version of the 2LSERA problem above
with an additional restriction to star topologies, meaning that the strongly
connected components of the directed min-power graph (P,E+

min(P )) consist
of one central component induced by a vertex set C and m ∈ N so-called
orbit components induced by vertex sets V1, . . . , Vm satisfying the following
property:

For all directed max-power edges (s, t) (that are not directed min-power
edges) with source vertex s in one of the m orbit components, the target vertex
t belongs either to the same orbit component or the central component, see
Figure 18 for an illustration. Due to this property strong connectivity can only
be achieved by attaching single orbit components to the central component,
which results in a star-like topology.

2-Level Euclidean Range Assignment for Stars (2LERAS)

Given: A finite set P ⊂ R
2, a positive integer k ∈ N and two ranges

r1, r2 ∈ R, r1 < r2 such that the graph (P,E+
min(P )∪E+

max(P ))
is strongly connected for the mappings dmin = dr1 and dmax =
dr2 and that the following condition holds:
Let C, V1, . . . , Vm be the vertex sets of the strongly connected
components of (P,E+

min(P )). Then, for all (u, v) ∈ E+
max \E+

min

and for all 1 ≤ i ≤ m it holds that
(u ∈ Vi ⇒ v ∈ Vi ∨ v ∈ C).

Question: Is there a set U ⊆ P of cardinality |U | ≤ k such that the graph
(P,E+

min(P ) ∪ E+
max(U)) is strongly connected?
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Theorem 20. 2LSERA is NP-complete.

Proof. Obviously 2LSERA ∈ NP, because a deterministic algorithm can de-
cide in polynomial time whether the min-max-power graph G(U) is connected
for a given subset of the vertices U .

Since every instance (P, k, r1, r2) for 2LERAS can also be considered as
an instance for 2LSERA, it only remains to show that the following holds
true:

There is a subset Q ⊆ P of cardinality |Q| ≤ k such that the graph
G+(Q) := (P,E+

min(P )∪E+
max(Q)) is strongly connected if and only if there is

a set U ⊆ P of cardinality |U | ≤ k such that the min-max-power graph G(U)
is connected.

First, we can observe that the vertex sets C, V1, . . . , Vm of the strongly
connected components of G+(∅) are also the vertex sets of the connected com-
ponents of G(∅), because the mapping dmin emerges from euclidean distances
and therefore is symmetric.

⇒: Let Q be a subset of the vertices with |Q| ≤ k such that G+(Q) is
strongly connected. We can assume without loss of generality that Q contains
exactly one vertex from each of the sets V1, . . . , Vm, because having two ver-
tices from the same orbit component is completely redundant with respect to
strong connectivity and can therefore be avoided: Due to the restriction that
all directed max-power edges for which the source vertex belongs to one of
the orbit components have a target vertex either in the same orbit or in the
central component, it is sufficient to include one source vertex with an incident
edge towards the central component in any solution. Let QC := Q ∩C be the
subset of vertices that belong to the central component. Then the cardinality
of QC is given by |QC | = |Q| − m. Graph G+(Q) being strongly connected
implies that the set

TQ := {t ∈ V1 ∪ · · · ∪ Vm | ∃s ∈ QC : t ∈ dr2(s)}

contains at least one vertex from each of the sets V1, . . . , Vm. Let T ⊆ TQ be
an arbitrary subset that contains exactly one vertex from each Vi, 1 ≤ i ≤ m.
Then the set U := QC ∪ T has cardinality |U | = |Q| −m+ |T | = |Q| ≤ k and
the min-max-power graph G(U) is connected, because for every pair (C, Vi)
of vertex sets that induce connected components of G(∅) the set U contains
two vertices ui ∈ C, vi ∈ Vi such that vi ∈ dmax(ui) and ui ∈ dmax(vi), which
implies that {ui, vi} ∈ Emax(U).

⇐: Let U be a subset of the vertices with |U | ≤ k such that G(U) is
connected. Due to the symmetry of the mapping dmax it is obvious that the
set U itself satisfies the required property. ⊓⊔
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Corollary 4. 2LSRA is NP-complete.

4.3 A family of Approximation Algorithms

If the min-max-power graph G(U) is connected for some set U ⊆ V then U
contains at least one vertex from the vertex set of each connected component
of the min-power graph G(∅). That is, the number |CC(G(∅))| of connected
components of G(∅) is a lower bound for the cardinality of U . On the other
hand, it is easy to find a set U ⊆ V with at most 2(|CC(G(∅))| − 1) ver-
tices such that G(U) is connected. Such a set can be determined by a simple
spanning tree algorithm as follows: Let H be the graph that contains a ver-
tex for every connected component of G(∅) and an edge between two vertices
C,C ′ ∈ CC(G(∅)) if there are vertices u ∈ C, u′ ∈ C ′ such that u′ ∈ dmax(u)
and u ∈ dmax(u

′). Let T be a spanning tree for H. Then for every edge {C,C ′}
of T we can select two vertices u ∈ C, v ∈ C ′ from different connected compo-
nents of G(∅). Let UT be the set of all these vertices selected for T . Then the
min-max-power graph G(U) is obviously connected and UT contains at most
2(|CC(G(∅))| − 1) vertices.

Observation 3 Any minimal solution for an instance of 2LSRA contains
between |CC(G(∅))| and 2(|CC(G(∅))| − 1) vertices.

The algorithm starts with the min-power graph (V,E0) := G(∅) and an
empty vertex set U0 := ∅ that is successively extended to vertex sets Ui :=
Ui−1∪Mi by adding vertex sets Mi such that (V,Ei) has less connected compo-
nents than (V,Ei−1), where Ei := Ei−1 ∪Emax(Mi). This is done until (V,Ei)
is connected, which implies that G(Ui) is connected, because (V,Ei) is a sub-
graph of G(Ui). To achieve a good result with this approach it seems natural
to choose these vertex sets Mi in a greedy fashion by maximizing the ratio

|CC((V,Ei−1))| − |CC((V,Ei))|
|Mi|

.

For example, if each Mi consists of two vertices and the number of connected
components is reduced by one at each extension, then the algorithm computes
a solution of size at most 2(|CC(G(∅))| − 1). This is equivalent to a spanning
tree solution. If each Mi consists of three vertices and the number of connected
components is reduced by two at each extension, then the algorithm computes
a solution of size at most 3

2(|CC(G(∅))| − 1).

Definition 20. A set of vertices M ⊆ V of cardinality |M | = k is called a
k-merging for a graph G = (V,E) and a mapping dmax : V → P(V ), if
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1. the graph (M,Emax(M)) is connected, and
2. the k vertices of M are in k different connected components of G.

If a k-merging Mi is added to vertex set Ui−1, then

|CC((V,Ei−1))| − |CC((V,Ei))|
|Mi|

=
k − 1

k
.

The approximation algorithm Approx2LSRAk shown in Figure 3 has a fixed
parameter k ≥ 2. Starting with k′ = k, it successively gathers k′-mergings as
long as possible. Afterwards k′ is decremented and the algorithm proceeds in
the same way until (V,Ei) is connected, which will occur at the latest during
the iteration for k′ = 2, where all remaining 2-mergings are considered.

Observation 4 Algorithm Approx2LSRAk always finds a solution for an
instance (V, dmin, dmax) of 2LSRA.

For every positive integer k ∈ N the algorithm Approx2LSRAk listed in
Figure 3 can be implemented such that its running time is polynomial in |V |
and |E|, because the running time is dominated by the computation of all
subsets M ⊆ V with |M | = k in line 7. Therefore we get a polynomial time
algorithm for every constant integer k.

Algorithm 3 Algorithm Approx2LSRAk for a fixed integer k ≥ 2
1: function Approx2LSRAk(V, dmin, dmax)
2: k′ ← k

3: i← 0
4: U0 ← ∅
5: E0 ← Emin(V )
6: while (V,Ei) is not connected do

7: while there is a k′-merging Mi ⊆ V for (V,Ei) do
8: Ui+1 ← Ui ∪Mi

9: Ei+1 ← Ei ∪ Emax(Mi)
10: i← i+ 1
11: end while

12: k′ ← k′ − 1
13: end while

14: return Ui

15: end function

Upper Bounds on the Quality of Approx2LSRAk

Let UOPT (I) be an optimal solution for an instance I = (V, dmin, dmax) of
2LSRA. We show that Approx2LSRAk for a positive integer k ≥ 2 computes
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a solution Uk(I) such that

|Uk(I)|
|UOPT (I)|

≤ 1

k − 1
+

k−1∑

i=1

1

i2
.

Lemma 12. Let F0 = (V,E0) be a forest with n = |V | vertices and m = |E0|
edges and let p ∈ N, 1 ≤ p ≤ n− 1 and l ∈ N be positive integers.
Furthermore let Fi = (V,Ei), 1 ≤ i ≤ l, be a sequence of forests such that Fl

contains only trees with less than p edges and Ei ⊆ Ei−1, |Ei| = |Ei−1| − p.

If m > n·(p−1)
p

then

1. F0 contains a tree with at least p edges,
2. each forest Fi,

i <
1

p
·
(
m− n · (p− 1)

p

)
,

contains a tree with at least p edges and
3.

l ≥
⌈
1

p
·
(
m− n · (p− 1)

p

)⌉
.

Proof.

1. Forest F0 consists of n−m trees. If m > (n−m) · (p−1), then at least one
of these n−m trees has more than p− 1 edges and thus at least p edges.

m > (n−m) · (p− 1) ⇔ m >
n · (p− 1)

p

2. Forest Fi has m− i · p edges. If

i <
1

p
·
(
m− n · (p− 1)

p

)

then Fi has more than m − 1
p
·
(
m− n·(p−1)

p

)
· p = n·(p−1)

p
edges and by

Lemma 12.1. at least one tree with p edges.
3. Follows from 2. and the fact that we still can remove at least p more edges

if there is a tree with p edges.
⊓⊔

Lemma 13. Let k ∈ N, k ≥ 3 be a positive integer and UOPT an optimal
solution for an instance of 2LSRA. Then Approx2LSRAk always finds at
least ⌈

1

k − 1
·
(
(|CC(G(∅))| − 1)− |UOPT| · (k − 2)

k − 1

)⌉

k-mergings.
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Proof. Let M0, . . . ,Ml−1 be the k-mergings chosen by Approx2LSRAk in
Line 7 for a given instance V, dmin, dmax of 2LSRA and E1, . . . , El the edge
sets computed in line 9 starting with edge set E0 of the min-power graph G(∅).

Let H = (CC(G(∅)), EH) be the undirected graph that has a vertex for
every connected component of G(∅) and an edge {C1, C2} if and only if there is
an edge {u, v} in the min-max-power graph G(UOPT) with u ∈ C1 and v ∈ C2.

For i = 0, . . . , l we define a tree Ti and a forest Fi = (UOPT, E
′
i) that

satisfies the following invariant:

(I1) The vertex set R of every tree of forest Fi, 0 ≤ i ≤ l, is a |R|-
merging for graph (V,Ei).

Let T0 = (CC(G(∅)), ET ) be a spanning tree of H and F0 be a forest that
contains for every edge {C1, C2} ∈ ET exactly one edge {u, v} of G(UOPT)
with u ∈ C1 and v ∈ C2. Invariant (I1) above obviously holds true for F0.

For every k-merging Mi = {u1, . . . , uk}, 0 ≤ i < l, we successively define
trees Ti,1, . . . , Ti,k and forests Fi,1, . . . , Fi,k starting with Ti,1 := Ti and Fi,1 :=
Fi such that Ti+1 := Ti,k and Fi+1 := Fi,k.

For j = 2, . . . , k, tree Ti,j and forest Fi,j are defined by merging two vertices
of tree Ti,j−1 and removing one edge from forest Fi,j−1, respectively.

Let C∗ be the vertex of Ti,j−1 that contains the vertices u1, . . . , uj−1 and
let C be the vertex of Ti,j−1 that contains uj . Choose any edge {C ′, C ′′} from
the path between C∗ and C in Ti,j−1, replace the two vertices C∗, C by one
new vertex C∗ ∪ C in Ti,j−1, and remove edge {u, v} with u ∈ C ′ and v ∈ C ′′

from Fi,j−1.
If Invariant (I1) holds true for Fi, then it holds true for Fi+1, because

the construction above guarantees that for every simple path v1, . . . , vm in
Fi+1 the vertices vi, 1 ≤ i ≤ m, are in m different connected components of
(V,Ei+1).

Since forest F0 has |UOPT| vertices and |CC(G(∅))| − 1 edges, by Lemma
12.3, algorithm Approx2LSRAk finds at least

⌈
1

k − 1
·
(
(|CC(G(∅))| − 1)− |UOPT| · (k − 2)

k − 1

)⌉

k mergings. ⊓⊔
Theorem 21. Let I = (V, dmin, dmax) be an instance of 2LSRA and UOPT (I)
an optimal solution. Algorithm Approx2LSRAk, for a fixed integer k ≥ 2,
computes a solution Uk(I) such that

|Uk(I)|
|UOPT (I)|

≤ 1

k − 1
+

k−1∑

i=1

1

i2
.
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Proof. Let li for 3 ≤ i ≤ k denote the number of i-mergings chosen by
Approx2LSRAk. Furthermore, let ck := |CC(G(∅))| be the number of con-
nected components of the min-power graph and let ci for 2 ≤ i ≤ k − 1
be the number of connected components before Approx2LSRAk searches
for i-mergings for the first time, that is ci := |CC((V,Es(i)))| with s(i) :=∑k

j=i+1 lj = lk + . . .+ li+1. Then we know for 3 ≤ i ≤ k that

ci−1 = ci − (i− 1)li ⇔ li =
ci − ci−1

i− 1
. (5)

Let dmin,s(i) : V → P(V ) be defined by u ∈ dmin,s(i)(v) if and only if {u, v} ∈
Es(i) for all u, v ∈ V . Then (V,Es(i)) is the min-power graph of instance
Is(i) := (V, dmin,s(i), dmax). Now we can apply Lemma 13 for k = i on instance
Is(i) and get

ci − ci−1

i− 1
≥ 1

i− 1

(
ci − 1− i− 2

i− 1
· |UOPT (Is(i))|

)

⇔ ci−1 − 1 ≤ i− 2

i− 1
· |UOPT (Is(i))| ≤ i− 2

i− 1
· |UOPT (I)|, (6)

because |UOPT (Is(i))| ≤ |UOPT (I)|. We can derive an upper bound for |Uk(I)|
as follows.

|Uk(I)|

≤
k∑

i=3

i · li + 2(c2 − 1)
(5)
=

k∑

i=3

i · li + 2

(
ck − 1−

k∑

i=3

(i− 1)li

)

= 2(ck − 1)−
k∑

i=3

(i− 2)li
(5)
= 2(ck − 1)−

k∑

i=3

i− 2

i− 1
(ci − ci−1)

= 2(ck − 1) +

k∑

i=3

i− 2

i− 1
(ci−1 − 1)−

k∑

i=3

i− 2

i− 1
(ci − 1)

= 2(ck − 1) +
c2 − 1

2
− (k − 2)(ck − 1)

k − 1
+

k−1∑

i=3

(
i− 1

i
− i− 2

i− 1

)
(ci − 1)

=

(
2− k − 2

k − 1

)
· (ck − 1) +

c2 − 1

2
+

k−1∑

i=3

ci − 1

i(i− 1)

(6)

≤
(
2− k − 2

k − 1

)
· (ck − 1) +

|UOPT (I)|
4

+

k−1∑

i=3

|UOPT (I)|
i2
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Since ck − 1 < |UOPT (I)|, see Observation 3, we get

|Uk(I)| <

(
2− k − 2

k − 1
+

1

4
+

k−1∑

i=3

1

i2

)
· |UOPT (I)|

=

(
1

k − 1
+

k−1∑

i=1

1

i2

)
· |UOPT (I)|.

⊓⊔

Corollary 5. Approx2LSRA3 is a 7/4 factor approximation for 2LSRA.

Observation 5 The upper bound in Theorem 21 tends to π2

6 for k → ∞. [6]

Lower Bounds on the Quality of Approx2LSRAk

This section presents worst cases for the algorithms Approx2LSRAk and
derives lower bounds on their quality. For k = 3 we demonstrate that the
upper bound of 7/4 obtained in section 4.3 is tight.

Theorem 22. Let k ∈ N, k ≥ 3 be a positive integer. For an instance I of
2LSRA let Uk(I) be the solution computed by Approx2LSRAk and UOPT (I)
an optimal solution. For all ǫ > 0 there is an instance I such that

|Uk(I)|
|UOPT (I)|

>
3k − 2

2k − 2
− ǫ.

Proof. For a positive integer t ∈ N let It be the instance for 2LSRA defined
as follows, also see Figure 19.

V :={(0, 0, 0)} ∪ {(d, 3, 0) | 1 ≤ d ≤ t}
∪ {(d, r, c) | 1 ≤ d ≤ t, 1 ≤ r ≤ 3, 1 ≤ c < k}

Emin(V ) :={{(0, 0, 0), (d, 3, 0)} | 1 ≤ d ≤ t}
∪ {{(d, 2, c), (d, 3, c)} | 1 ≤ d ≤ t, 1 ≤ c < k}

Emax(V ) :=Emin(V ) ∪ {{(0, 0, 0), (d, 2, 1)} | 1 ≤ d ≤ t}
∪ {{(d, r, c), (d, r, c+ 1)} | 1 ≤ d ≤ t, r ∈ {2, 3}, 1 ≤ c < k − 1}
∪ {{(d, 3, 0), (d, 3, 1)} | 1 ≤ d ≤ t}
∪ {{(d, 1, c), (d, 2, c)} | 1 ≤ d ≤ t, 1 ≤ c < k}

The (unique) optimal solution for It is

UOPT (It) = {(0, 0, 0)} ∪ {(d, r, c) | 1 ≤ d ≤ t, r ∈ {1, 2}, 1 ≤ c < k},
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meaning that |UOPT (It)| = 1 + 2(k − 1)t. Algorithm Approx2LSRAk, in
the worst case, successively gathers all k-mergings {(d, 3, c) | 0 ≤ c < k} for
1 ≤ d ≤ t first, followed by the remaining 2-mergings {(d, 1, c), (d, 2, c)} for
1 ≤ d ≤ t and 1 ≤ c < k. Thus we get

q(k, t) :=
|Uk(It)|

|UOPT (It)|
=

kt+ 2(k − 1)t

1 + 2(k − 1)t
=

k + 2(k − 1)
1
t
+ 2(k − 1)

=
3k − 2

1
t
+ 2k − 2

and limt→∞(q(k, t)) = 3k−2
2k−2 , which implies the existence of a positive integer

tǫ ∈ N such that q(k, tǫ) >
3k−2
2k−2 − ǫ. ⊓⊔

Corollary 6. The upper bound of 7/4 on the quality of Approx2LSRA3 is
tight.
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Fig. 19. Instance It of Theorem 22: The min-power edges Emin(V ) are drawn as thick blue
lines, the max-power edges Emax(V ) are drawn as thin black lines and the connected com-
ponents of the min-power graph G(∅) are enclosed by dashed boxes.

Efficient Implementation of Approx2LSRA3

For k = 3 the algorithm can be implemented in almost linear time using
a union-find data structure D to organize the vertex sets of the connected
components of (V,Ei).

Assume that the mappings dmin and dmax are explicitly given as relations
dmin ⊂ V × P(V ) and dmax ⊂ V × P(V ) of size smin := |V | +∑v∈V |dmin(v)|
and smax := |V |+∑v∈V |dmax(v)|, respectively. The implementation is based
on the following three steps.

1. Initialization: Generate the set of min-power edges Emin(V ) and the set of
max-power edges Emax(V ). This can be done in time O(smin) and O(smax),
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respectively. Afterwards D can be initialized with the connected compo-
nents of G(∅) during one iteration over the min-power edges by performing
two find operations u′ = find(u), v′ = find(v) as well as one union oper-
ation union(u′, v′) for each edge {u, v} ∈ Emin(V ).

The total number of find and union operations for this step is linear in
|V | and |Emin(V )| and therefore also linear in smin.

2. Finding 3-mergings (also see Algorithm 4): For every vertex v ∈ V ex-
amine all incident edges {v, u} ∈ Emax(V ) after identifying the connected
component of v via Cv = find(v). If Cu := find(u) 6= Cv, vertex u and its
component Cu are temporarily saved until a second vertex u′ adjacent to v
is found, such that Cv 6= Cu′ and Cu 6= Cu′ . Then {v, u, u′} is a 3-merging
that is added to the solution and the three connected components Cv, Cu

and Cu′ are merged via two union operations.

Since every edge in Emax(V ) has to be considered only twice, the total
number of find and union operations for this step is linear in |V | and
|Emax(V )| and therefore also linear in smax.

3. Finding 2-mergings: For every edge {u, v} ∈ Emax(V ) add {u, v} to the so-
lution and call union(u, v), if find(u) 6= find(v). Again, the total number
of find and union operations for this step is linear in smax.

Theorem 23. Approx2LSRA3 can be implemented such that the running
time is in O(f(smin, smax) · α(f(smin, smax), |V |)) where α is the inverse Ack-
ermann function and f ∈ O(smin + smax).

Proof. The total number of union and find operations f(smin, smax) is linear
in smin and smax as discussed above. Tarjan and Leeuwen show in [89] that any
sequence of m ∈ N union and find operations on a union-find data structure
saving n ∈ N elements can be performed in time O(m ·α(m,n)). Fredman and
Saks show in [33] that this bound in tight. ⊓⊔

4.4 Maximum Merging

Observation 6 For a 2LSRA instance there is not necessarily an optimal
solution that contains a merging of maximum size, see Figure 20. Furthermore,
computing a merging of maximum size is not feasible for the design of an
approximation algorithm due to the following Theorem 24.
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Algorithm 4 Determining a maximal number 3-mergings utilizing a union-
find data structure for the vertex sets of the connected components. In this
implementation V is an array of all vertices and V [i].N denotes a vertex set
containing all neighbors that are adjacent to V [i] via the max-power edges
Emax(V ) \ Emin(V )
1: procedure Find-3-Mergings
2: for i = 0 ; i < |V | ; i++ do

3: y ← z ← ∅
4: x← find(V [i])
5: for u ∈ V [i].N do

6: if y == ∅ then
7: w ← u

8: y ← find(u)
9: if x == y then

10: y ← ∅
11: end if

12: else

13: z ← find(u)
14: if (x 6= z) ∧ (y 6= z) then ⊲ {V [i], w, u} is a 3-merging
15: union(x, y)
16: union(x, z)
17: V [i].N ← V [i].N \ {u,w} ⊲ Do not consider u,w multiple times
18: i← i− 1 ⊲ V [i] might be part of another 3-merging
19: break ⊲ Restart outer loop for V [i]
20: end if

21: end if

22: end for

23: end for

24: end procedure

Maximum Merging

Given: An undirected min-power graph G = (V,E), a mapping
dmax : V → P(V ) and a positive integer k ∈ N.

Question: Is there a merging U of cardinality |U | ≥ k in G?

Theorem 24. Maximum Merging in NP-complete.

Proof. Maximum Merging is obviously in NP, because it can be verified in
polynomial time whether a given subset U ⊆ V of the vertices is a merging
by computing the connected components of G and (U,Emax(U)). The NP-
hardness is now shown by giving a polynomial time reduction from Directed
Hamiltonian Path (DHP) that transforms a directed graph H = (VH , EH)
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Fig. 20. An instance of 2LSRA: The min-power edges are drawn as thick blue lines, the
max-power edges are drawn as black lines and the connected components of the min-power
graph are enclosed by dashed boxes. The (unique) optimal solution is {1, 2, 3, 4, 5, 6, 7, 8, 9}
while the merging of maximum size is {10, 11, 12, 13}.

into an undirected graph G = (V,E), a mapping dmax : V → P(V ) and a
positive integer k := 2|VH | such that there is a simple path across all vertices
in H if and only if there is merging U of cardinality |U | ≥ k in G.

The reduction generates exactly two connected components for every ver-
tex v ∈ VH , one of which contains a vertex tv as well as a vertex t(u,v) for
every edge (u, v) ∈ EH while the other one contains a vertex sv as well as a
vertex s(v,u) for every edge (v, u) ∈ EH . The set Emax(V ) consists of all edges
between these type t and type s vertices inserted for a vertex v ∈ VH as well
as one edge {se, te} for every edge e ∈ EH (see Figure 21). Formally,

V :=
⋃

e∈EH

{se, te} ∪
⋃

v∈VH

{sv, tv}

E :=
{
{sv, s(v,u)} | v ∈ VH ∧ (v, u) ∈ EH

}

∪
{
{tv, t(u,v)} | v ∈ VH ∧ (u, v) ∈ EH

}
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and dmax : V → P(V ) is a mapping that results in the following set of max-
power edges:

Emax(V ) = {{se, te} | e ∈ EH}
∪

{
{t(u,v), s(v,w)} | (u, v) ∈ EH ∧ (v, w) ∈ EH

}

∪
{
{tv, s(v,w)} | v ∈ VH ∧ (v, w) ∈ EH

}

∪
{
{t(u,v), sv} | v ∈ VH ∧ (u, v) ∈ EH

}
.

tv s
v

ta

tb

s
c

s
d

s
e

v

a

b

c

e

d

Fig. 21. Reduction of Theorem 24: Every vertex v ∈ VH of the instance H = (VH , EH)
for DHP is transformed into two connected components. The min-power edges are drawn as
thick blue lines, the max-power edges are drawn as black lines and the connected components
of the min-power graph are enclosed by dashed boxes.

The proof is now completed by showing that there is a Hamiltonian path
in H if and only if there is merging U of cardinality |U | ≥ k in G:

⇒: Let p := (v1, v2, . . . , vn) be a Hamiltonian path in H. Then

U := {tv1 , svn} ∪ {se, te | e = (vi, vi+1), 1 ≤ i < n}

is a merging of cardinality k = 2|VH |: U contains exactly one vertex from each
of the 2|VH | connected component in G, because p is a simple path. Also, the
graph (U,Emax(U)) is connected, because {se, te} ∈ Emax(V ) for all e ∈ EH

and {se, te} ⊆ U for all e ∈ {(vi, vi+1) | 1 ≤ i < n}.
⇐: Let U be a merging of cardinality |U | ≥ 2|VH | in G. G contains ex-

actly 2|VH | connected components, therefore |U | = 2|VH |. It also follows that
|Emax(U)| ≥ |U | − 1, because (U,Emax(U)) is connected. By construction of
G, every vertex of U has degree at most 2 in (U,Emax(U)), meaning that

|Emax(U)| =
1

2

∑

u∈U

deg(u) ≤ |U |,
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which implies that the connected graph (U,Emax(U)) is either a path or a
cycle. Additionally, the sequence of vertices representing this path (or cycle)
alternates between type s and type t vertices due to the construction of G
and every other edge is of the form {se, te} for some edge e ∈ EH while the
remaining edges are between the two connected components generated for one
vertex v ∈ VH . Therefore H contains a Hamiltonian path. ⊓⊔
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5 Conclusion

Wireless ad-hoc sensor networks consist of devices that commonly operate
without a central control authority and therefore each node has to make de-
cisions autonomously based on information that is locally available. Complex
tasks require the nodes to exchange information with each other and reach a
consensus about how a goal can be achieved. Hence successful message delivery
by routing protocols is one of the most basic building blocks for any network.
We have seen that a special case of multicast routing, the Neighborhood
Broadcast, naturally occurs when trying to provide reliability of routing
protocols in the present of node failures and that it also is an important part
of security and intrusion detection when sensor nodes want to detect and ex-
clude misbehaving nodes from the network. The presented k-HBF network
protocol, parameterized with a positive integer k ∈ N, successfully solves this
problem in an optimal manner, if the parameter k is chosen according to the
local connectivity distance of the node in question. The problem of how to de-
termine the local connectivity distance of a node in a distributed environment
was also addressed and it has been discussed how the k-HBF protocol can be
used in cases where it is not viable to compute the local connectivity distance
in advance. Finally, simulations conducted on state of the art random graph
models for wireless network topology generation suggest a very high success
rate of the protocol for very small values of k in real world environment. This
empirical analysis assumes a static network and it would be a suitable topic
for future research to analyze the protocol in networks that are subjected to
frequent changes, for example due to mobile nodes.

While network topologies in which the nodes have a low local connectiv-
ity distance would be advantageous for performing neighborhood broadcasts,
aiming for local connectivity distance 1 via topology control has been proven
to be computationally difficult: Adding a minimum number of edges to a given
graph in order to achieve local connectivity distance 1 for all nodes - and in
the strong model even for a single node - is NP-complete. The same holds true
for computing the maximum connected induced subgraph of a given commu-
nication graph and also for removing as many edges as possible from a locally
connected network while preserving connectivity and local connectivity. We
have also seen that most of the NP-completeness results presented in this
thesis are easily transferable to the case where k-connectivity of the neighbor-
hoods in question is required instead of 1-connectivity. However, it remains
open whether these topology control problems also remain NP-complete, if
they are extended to consider d-hop neighborhoods for an arbitrary constant
distance d > 1. While this intuitively seems likely, it is not a direct implication
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of the presented results for the special case d = 1, if the distance parameter d
is not given in the instance of the problem.

Fortunately, one of the most practical topology control problems for sup-
porting neighborhood broadcasts, the LCWA problem, can be approximated
within a factor of 1+ln(∆(G)) by a greedy algorithm. It is noteworthy that this
greedy algorithm does not require global topology knowledge and therefore can
theoretically be implemented in a distributed environment. An efficient and
practical network protocol that realizes this algorithm in a sensor network is
a suitable topic for future research.

Regarding the symmetric connectivity of wireless networks with two power
levels, we have seen that the previously known greedy approximation algorithm
for computing a set of nodes that have to use max-power can be extended to
provide better results at the cost of higher polynomial computation time. How-
ever, the presented lower bounds for this family of algorithms also demonstrate
that this technique is not capable of outperforming the best known approxi-
mation algorithm for this problem that is based on approximating the classical
Steiner Tree problem.
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12. G. Călinescu, I. Măndoiu, and A. Zelikovsky. Symmetric connectivity with minimum
power consumption in radio networks. In Foundations of Information Technology in the
Era of Network and Mobile Computing, pages 119–130. Springer, 2002.

13. P. Carmi and M.J. Katz. Power assignment in radio networks with two power levels.
Algorithmica, 47(2):183–201, 2007.

14. A. Caruso, S. Chessa, S. De, and A. Urpi. Gps free coordinate assignment and routing
in wireless sensor networks. In INFOCOM [1], pages 150–160.

15. A. Cerpa, J. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical model of lossy
links in wireless sensor networks. In IPSN, pages 81–88. IEEE, 2005.

16. G.G. Chappell, J.G. Gimbel, and C. Hartman. Bounds on the metric and partition
dimensions of a graph. Ars Comb., 88, 2008.

17. G. Chartrand, L. Eroh, M.A. Johnson, and O. Oellermann. Resolvability in graphs and
the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3):99–113, 2000.

18. G. Chartrand and R.E. Pippert. Locally connected graphs. Casopis Pest. Mat, 99:158–
163, 1974.

19. G. Chartrand, C. Poisson, and P. Zhang. Resolvability and the upper dimension of
graphs. Computers and Mathematics with Applications, 39(12):19–28, 2000.

90



20. K. Chin, J. Judge, A. Williams, and R. Kermode. Implementation experience with
MANET routing protocols. Computer Communication Review, 32(5):49–59, 2002.

21. A. Clementi, A. Ferreira, P. Penna, S. Perennes, and R. Silvestri. The minimum range
assignment problem on linear radio networks. In Algorithms-ESA 2000, pages 143–154.
Springer, 2000.

22. A. Clementi, P. Penna, and R. Silvestri. Hardness results for the power range assignment
problem in packet radio networks. In Randomization, Approximation, and Combinatorial
Optimization. Algorithms and Techniques, pages 197–208. Springer, 1999.

23. J. Clulow and T. Moore. Suicide for the common good: A new strategy for credential
revocation in self-organizing systems. SIGOPS Oper. Syst. Rev., 40(3):18–21, July 2006.

24. S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York,
NY, USA, 1971. ACM.

25. S. Desilva and S. Das. Experimental evaluation of a wireless ad hoc network. In Ton Eng-
bersen and E. K. Park, editors, Proceedings Ninth International Conference on Computer
Communications and Networks, ICCCN 2000, 16-18 October 2000, Las Vegas, Nevada,
USA, pages 528–534. IEEE, 2000.

26. J. Diaz, O.M. Pottonen, M. Serna, and E.J. van Leeuwen. On the complexity of metric
dimension. http://arxiv.org/pdf/1107.2256, 2012.

27. H. Du, J. Xiaohua, and X. Hu. Energy efficient multicast routing in ad hoc wireless
networks with discrete levels of transmission power. In Communications, Circuits and
Systems, 2005. Proceedings. 2005 International Conference on, volume 1, pages 319–323
Vol. 1, May 2005.

28. E. H. Elhafsi, N. Mitton, and D. Simplot-Ryl. Cost over progress based energy efficient
routing over virtual coordinates in wireless sensor networks. In WOWMOM, pages 1–6.
IEEE, 2007.

29. S. Even and R. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput.,
4(4):507–518, 1975.

30. Q. Fang, J. Gao, L.J. Guibas, V. de Silva, and L. Zhang. GLIDER: gradient landmark-
based distributed routing for sensor networks. In INFOCOM [1], pages 339–350.

31. G. Fonseca, V. Pereira de Sa, R. Machado, and C. Figueiredo. On the recognition
of unit disk graphs and the distance geometry problem with ranges. Discrete Applied
Mathematics, (0):–, 2014.

32. R. Fonseca, S. Ratnasamy, J. Zhao, C.T. Ee, D.E. Culler, S. Shenker, and I. Stoica.
Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In NSDI.
USENIX, 2005.

33. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Pro-
ceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC
’89, pages 345–354, New York, NY, USA, 1989. ACM.

34. M. Fredman and D. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Journal of Computer and System Sciences, 48(3):533 – 551, 1994.

35. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

36. D. Gaußmann, S. Hoffmann, and E. Wanke. Hierarchical bipartition routing for delivery
guarantee in sparse wireless ad hoc sensor networks with obstacles. In ICWN, pages
3–9. CSREA Press, 2012.

37. J. Gomez and A. Campbell. A case for variable-range transmission power control in
wireless multihop networks. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 2, pages 1425–1436 vol.2,
March 2004.

91



38. F. Harary and R.A. Melter. On the metric dimension of a graph. Ars Combinatoria,
2:191–195, 1976.

39. D. Hasenfratz, A. Meier, C. Moser, J.J. Chen, and L. Thiele. Analysis, comparison,
and optimization of routing protocols for energy harvesting wireless sensor networks.
In IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing, SUTC 2010 and IEEE International Workshop on Ubiquitous and Mobile
Computing, UMC 2010, 7-9 June 2010, Newport Beach, California, USA, pages 19–26.
IEEE Computer Society, 2010.

40. M. Hauptmann, R. Schmied, and C. Viehmann. On approximation complexity of metric
dimension problem. In Proceedings of the 21st international conference on Combinatorial
algorithms, IWOCA’10, pages 136–139, Berlin, Heidelberg, 2011. Springer-Verlag.

41. M.C. Hernando, M. Mora, I.M. Pelayo, C. Seara, J. Cáceres, and M.L. Puertas. On the
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