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Abstract

Operator semistable Lévy processes are stochastic processes with a selfsimilarity property
on a discrete scale. They generalize the better known class of (operator) stable Lévy pro-
cesses, which have a continuous scaling property. Stochastic processes with certain scaling
and selfsimilarity properties have applications in different scientific areas. In particular,
they prove to be a useful tool for developing adequate mathematical models. They are
applied, for instance, in order to describe natural dynamic processes in physics or pricing
formulas in financial mathematics. In the latter case, selfsimilar processes can be seen as
an improvement compared to well established models such as the Black-Scholes model,
as they allow taking large jumps and long-term dependencies into account. In literature
one can find numerous examples for the determination of the Hausdorff and other fractal
dimensions for deterministic selfsimilar sets (on a discrete scale), e.g. for Cantor sets or
Sierpinski gaskets. However, there do not exist many results on dimension properties for
Lévy processes with a scaling or selfsimilarity property on a discrete scale yet.

This cumulative thesis examines dimension properties of operator semistable Lévy pro-
cesses X = {X(t) : t > 0} in R? with exponent F, where E is an invertible linear operator
on R%. The thesis consists of three manuscripts on the subject. In the first manuscript, the
Hausdorff dimension of the range and the graph of a stochastic process generated by the
limit distribution of the cumulative gains in a series of St. Petersburg games is calculated
over the time interval [3,1]. This distribution can be defined as a continuous transfor-
mation of a non-strictly, semistable distribution. Furthermore, the Hausdorff dimension
dimy Grx (B) for the graph of an arbitrary operator semistable Lévy process X in R¢ and
any Borel set B C R, is calculated in the second manuscript by interpreting the graph
Grx(B) = {(t,X(t)) : t € B} as a semi-selfsimilar process in R whose distribution is
not full. The Hausdorff dimension is expressed in terms of the real parts of the eigenvalues
of the exponent F and the Hausdorff dimension of B. In the third manuscript, the results
on the path behavior of certain operator semistable Lévy processes are refined by the in-
vestigation of exact Hausdorff measure functions. In particular, for the range of certain
operator semistable Lévy processes with a partially diagonal exponent exact Hausdorff

measure functions are calculated over the time interval [0, 1].



Zusammenfassung

Operator-semistabile Lévy-Prozesse sind stochastische Prozesse mit einer Selbstédhnlich-
keitseigenschaft auf einer diskreten Skala. Sie stellen eine Verallgemeinerung der besser
bekannten Klasse der operator-stabilen Lévy-Prozesse dar. Stochastische Prozesse mit
gewissen Skalierungs- und Selbstéhnlichkeitseigenschaften finden Anwendung in verschiede-
nen wissenschaftlichen Bereichen. Insbesondere haben sie sich als ein niitzliches Werkzeug
bei der Entwicklung von addquaten mathematischen Modellen erwiesen. Sie werden bei-
spielsweise verwendet, um natiirliche dynamische Prozesse in der Physik oder Preismodelle
in der Finanzmathematik zu beschreiben. Im letzteren Fall kann die Verwendung selbstdhn-
licher Prozesse als eine Verbesserung etablierter Methoden wie des Black-Scholes-Modells
gesehen werden, da sie es ermoglichen, langfristige Abhéngigkeiten und grofse Spriinge
zu beriicksichtigen. In der Literatur finden sich zahlreiche Beispiele fiir die Bestimmung
der Hausdorff- und anderer frakataler Dimensionen von deterministischen selbstéhnlichen
Mengen, wie beispielsweise die der Cantor-Menge oder des Sierpinski-Dreiecks. Bis heute
existieren jedoch wenige Resultate zu Dimensionseigenschaften von Lévy-Prozessen mit
einer Skalierungs- oder Selbstédhnlichkeitseigenschaft auf einer diskreten Skala.

Die vorliegende kumulative Dissertation untersucht Dimensionseigenschaften von operator-
semistabilen Lévy-Prozessen X = {X(t) : ¢ > 0} in R? mit Exponent E, wobei es
sich bei E um einen invertierbaren linearen Operator auf R? handelt. Die Dissertation
enthdlt drei Manuskripte zu diesem Thema. Im ersten Manuskript wird die Hausdorff-
Dimension des Bildes und des Graphen eines stochastischen Prozesses iiber dem Zeit-
interval [%, 1] berechnet, der von der Grenzverteilung der kumulierten Gewinne in einer
Reihe von St. Petersburg-Spielen generiert wird. Diese Verteilung kann als kontinuierliche
Transformation einer nicht-strikten, semistabilen Verteilung definiert werden. Zudem wird
im zweiten Manuskript eine allgemeine Formel fiir die Hausdorff-Dimension dimy Grx (B)
des Graphen eines operator-semistabilen Lévy-Prozesses fiir eine beliebige Borel-Menge
B C Ry aufgestellt. Dies wird erreicht, indem der Graph Grx(B) = {(¢,X(¢)) : t € B}
als semi-selbstédhnlicher Prozess definiert wird, dessen Verteilung jedoch nicht voll ist. Die
Hausdorff-Dimension wird in Abhéngigkeit der Realteile der Eigenwerte des Exponenten
FE und der Hausdorff-Dimension von B ausgedriickt. Im dritten Manuskript werden exak-
te Hausdorff-Mafi-Funktionen fiir gewisse operator-semistabile Lévy-Prozesse mit teilweise

diagonalem Exponenten F tiber dem Zeitintervall [0, 1] ermittelt.
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Chapter 1

Introduction
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1.1 General information

Stochastic processes with certain scaling and selfsimilarity properties have applications
in different scientific fields. In particular, they prove to be a useful tool for developing
adequate mathematical models. They are applied, for instance, in order to describe natural
dynamic processes in physics or pricing formulas in financial mathematics. In the latter
case, selfsimilar processes can be seen as an improvement compared to well established
models such as the Black-Scholes model, as they allow taking large jumps and long-term
dependencies into account.

In this thesis, I examine a certain class of selfsimilar stochastic processes, the so called
operator semistable Lévy processes, in terms of their fractal properties. More precisely, the
stochastic processes under consideration are selfsimilar on a discrete scale. In the literature,
one can find numerous examples for the determination of the Hausdorff and other fractal
dimensions for deterministic selfsimilar sets (on a discrete scale), e.g. for Cantor sets or
Sierpinski gaskets. However, until now, there do not exist many results on dimension
properties for Lévy processes with a scaling or selfsimilarity property on a discrete scale.
For this reason, the aim of the present thesis is to close some of these gaps and generalize
already existing results for other classes of Lévy processes on operator semistable processes.
In particular, this thesis focuses on the determination of the Hausdorff dimension for the
graph of an arbitrary operator semistable Lévy process as well as the calculation of formulas
for exact Hausdorff measure functions for the range of a certain class of operator semistable
Lévy processes.

A Lévy process X in R? is a stochastically continuous process with cadlag paths and
stationary and independent increments which starts in X(0) = 0 almost surely. The
distribution of X is then uniquely determined by the distribution of X (1). The Lévy
process X is called (¢, c)-operator semistable if the distribution of X (1) is full, i.e. not
supported on any lower dimensional hyperplane, and there exists a linear operator E on

R and some ¢ > 1 such that
fd
{X(Ct)}tzt) = {CEX(t)}tZO ’ (11)

where @ denotes the equality of all finite-dimensional distributions and

o0

CE . Z (logc) E".
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The linear operator E is referred to as the exponent of the operator semistable Lévy process
X. In case the exponent FE is a multiple of the identity, i.e. £ = é - I for some « € (0, 2],
the process X is called (c!/®, ¢)-semistable. If (1.1) holds for all ¢ > 0, the Lévy process is
called operator stable. For a comprehensive overview on operator semistable distributions,
I refer to the monographs [45] and [50].

This thesis is structured as follows: Section 1.2 contains general definitions and known
results that will be useful throughout this thesis. Namely, it states definitions for the
Hausdorff and box-counting dimension and introduces exact Hausdorff measure functions
for arbitrary Borel sets F C R%. 1 also recall spectral decomposition results from [45]
which make it possible to decompose an operator semistable Lévy process according to the
distinct real parts of the eigenvalues of the exponent . The section further contains certain
uniformity results for the density functions of an operator semistable Lévy process and gives
a definition for the expected sojourn times. Section 1.3 contains an overview on existing
dimension results for operator stable and semistable Lévy processes and summarizes the
results of this thesis. The next chapters contain these results in the form of three enclosed
manuscripts titled "Dimension results related to the St. Petersburg game'", "Hausdorff
dimension of the graph of an operator semistable Lévy process”" and "On exact Hausdorff
measure functions of operator semistable Lévy processes", respectively. Finally, Chapter

5 concludes this thesis and gives an outlook on possible future lines of research.

1.2 Preliminaries

1.2.1 Fractal dimensions

Of the many existing fractal dimensions the Hausdorff dimension is probably one of the
oldest and most important ones. For an arbitrary subset F of R% the s-dimensional Haus-
dorff measure H*(F) is defined as

o0 oo
#H*(F) = lim inf {Z |F|¢: |F;] <6 and F C U F} ,
i=1 =1
where |F| = sup{||z — y|| : #,y € F} denotes the diameter of a subset /' C R? and | - ||
is the Euclidean norm. It can be shown that the value dimy F = inf {s : H*(F) =0} =
sup {s : H*(F) = oo} exists and is unique for all F C RY. The critical value dimg F is
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called the Hausdorff dimension of F'. For more details on the Hausdorff dimension compare
[20] and [43].

Furthermore, a function ¢ belongs to the class ® if there exists a constant § > 0 such that
¢ is right continuous and increasing on the open interval (0,9), ¢(0+) = 0 and fulfills the
doubling property. More precisely, there exists a constant K > 0 such that

¢(2s)
¢(s)

For an arbitrary Borel set F C R? and a function ¢ € ® the ¢-Hausdorff measure is then
defined as

1
<K forall<s< 55. (1.2)

6~ m(F) = limin {; Rl F < FolFil < (1.3)
The function ¢ € ® is called an exact Hausdorff measure function for F C R? if 0 <
¢ —m(F) < 0.

As mentioned before, the Hausdorff dimension is just one of the many fractal dimensions
which are frequently used. An alternative is the so called box-counting dimension (for more
details, see [20]). For an arbitrary subset F' C R? denote by Ns(F) the smallest number
of closed balls of radius § > 0 that cover F'. Then, the lower and the upper box-counting
dimension of F' are given by

log Ns(F' S log Ns(F
dimp F' = lim inf Lé() and dimpg F = limsup LJ()
6—»0 —logd 50 —logé

and the box-counting dimension is defined as

log Ns(F
dimp F = lim 28 Ne(F)
6—»0 —logd

provided that this limit exists. The fractal dimensions defined in this section are related

as follows:
dimpg F < dimp F < dimg F < d.

Note that there are many known examples for which the above inequalities are strict.

1.2.2 Spectral decomposition

Let X be a (c¥,c)-operator semistable Lévy process. You can now factor the minimal

polynomial of E into gi(x) - ... - gp(z) where all roots of ¢; have real parts equal to a;
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and a; # a; for i # j. Without loss of generality, one can additionally assume that
a; < aj for i < j. Note that by Theorem 7.1.10 in [45] a; > % for all j € {1,...p}.
Define V; = Ker(g;(E)). According to Theorem 2.1.14 in [45] Vi @ - -- @V, is a direct sum
decomposition of R? into E invariant subspaces. In an appropriate basis, E is then block-
diagonal and we may write & = K1 @ --- @ k), where Ij : V; — V; and every eigenvalue
of F; has real part equal to aj. Additionally, every V; is an Ej-invariant subspace of
dimension d; = dimV; and d = dy + ... + d,. Write X(t) = XU (¢) + ... + XP)(¢) with
respect to this direct sum decomposition, where by Lemma 7.1.17 in [45], {X)(¢),t > 0}
is a (c¥, c)-operator semistable Lévy process in V;. Additionally, we can now choose an
inner product (-,-) on R? such that the V},j € {1,...,p}, are mutually orthogonal.
Throughout this thesis, we will denote by a;; = 1/a; the reciprocals of the real parts of the
eigenvalues of the exponent E with 0 < o), < ... < a1 < 2.

1.2.3 Properties of the density functions

In the calculations of this thesis, certain uniformity results for the density functions of a
(c®, c)-operator semistable Lévy process X = {X(t) : t > 0} are needed. For this purpose,
let g¢ denote the corresponding density function of X (¢) for ¢ > 0. According to Proposition
28.1 in [50], the random vector X (¢) has a continuous and bounded Lebesgue density for
every t > 0. In their article, Kern and Wedrich [36] refined this result and showed that the
mapping (t,z) — g;(z) is continuous on (0, 00) x R? and that

til[lli) xsgﬂi)d lg:(x)| < 0. (1.4)
Inequality (1.4) directly leads to the following uniformity result for the existence of negative
moments (compare Lemma 2.3 in [36]): For an operator semistable Lévy process X =
{X(t):t >0} in R and any 6 > 0 we have

sup E [\|X(t)||ﬂ < .
te[l,c)

Furthermore, the following lemma states a positivity result for the density functions:

Lemma 1.1 (cf. Lemma 2.4 in [36])
Let {X (t)}+>0 be an operator semistable Lévy process with oy > 1, dy = 1 and with density
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gt as above. Then there exist constants K > 0, v > 0 and uniformly bounded Borel sets

JCRITL =2V @V, fort € [1,c) such that
g(z1,...,xp) > K >0 forall (z1,...,2p) € [-1,7] X J4.

Further, we can choose {Ji}e(1,) such that N=1(J) > R > 0 for every t € [1,¢). Note
that the constants K,r and R do not depend on t € [1,c¢).

Note that for an operator stable Lévy process it is sufficient to validate the above properties
for the case that ¢ = 1 as the self-similarity property of the process then ensures the

transferability of the result to all ¢ > 0.

1.2.4 Expected sojourn times

For a Lévy process X = {X(¢t) : t > 0} let

T(a,s) = /0 L0 (X(0))dt

be the sojourn time up to time s > 0 in the closed ball B(0,a) with radius a > 0. Here,
1p(z) denotes the indicator function that equals 1 if x € F and 0 if x ¢ F. Furthermore,
let K7 > 0 be a fixed constant. A family A(a) of cubes of side a in R? is called K;-nested
if no ball of radius @ in R? can intersect more than K cubes of A(a). Below, I choose A(a)
to be the family of cubes in R? of the form [k1a, (k1 + 1)a] X ... x [kqa, (kq + 1)a] where
(k1,...,kq) € Z%. One can easily see that the above defined family A(a) is 3%-nested.

The definition given in Section 1.2.1 of this thesis makes it clear that in order to calculate
the Hausdorff dimension it is essential to find a suitable sequence of coverings. For this
purpose, Pruitt and Taylor [48] analyzed the connection to the expected sojourn times and

proved the following remarkable covering lemma (see Lemma 6.1 in [48]):

Lemma 1.2

Let X = {X(t)}s>0 be a Lévy process in R? and let A(a) be a fived Ky-nested family of
cubes in RY of side a with 0 < a < 1. For any u > 0 let M,(a,s) be the number of cubes
in A(a) hit by X (t) at some time t € [u,u + s]. Then

E[M,(a,s)] <2Kzs- (E[T(%,5)])".
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Generating results for the Hausdorff dimension and exact Hausdorff measure functions
for operator semistable Lévy processes can now in parts be transferred to analyzing the

asymptotic behavior of the expected sojourn times E[T'(a, s)].

1.3 Overview

In the past, efforts have been made to generate dimension results for Lévy processes with
certain self-similarity properties. An overview on existing results can be found in [38§]
and [59]. For an a-stable Lévy process X in R? i.e. an operator stable Lévy process
with exponent E = 1.7, and o € (0,2], Blumenthal and Getoor [3] examined the range
X([0,1]) = {X(t) : t € [0,1]} over the time interval [0,1] and showed that in this case
the Hausdorff dimension is dimg X ([0, 1]) = min(«, d) almost surely. Subsequently, Pruitt
and Taylor [48] calculated dimg X ([0,1]) in case that X is a Lévy process in RY with
independent stable marginals of index a1 > ... > «ag4. In 2005, Meerschaert and Xiao
|46| generated a formula for the Hausdorff dimension dimpy X (B) of an operator stable
Lévy process X in R? and an arbitrary Borel set B C R,. Their result is based on the
work of Becker-Kern, Meerschaert and Scheffler [2] who calculated the Hausdorff dimension
dimg X ([0, 1]) for an operator stable Lévy process in R? under the additional assumption
that for a; > min(1, d) the density of X (1) is positive at the origin.

Starting point of the calculations of this thesis is the work from Kern and Wedrich [36] who
generalized the dimension result in [46] and calculated the Hausdorff dimension dimy X (B)
for the range of an operator semistable Lévy process X in R? over an arbitrary Borel set
B CR,. For d > 2 they showed that

a1 dlmH B if (65} dlmH B S dl,
dimy X (B) =
1+ as <dimHB - i) if ay dimy B > dy

almost surely (see Theorem 3.1 in [36]). In case that the process X is one-dimensional the

dimension formula reads as follows (compare Theorem 3.3 in [36]):
dimyg X (B) = min(adimyg B,1) almost surely.

Note that the Hausdorff dimension only depends on the real parts of the eigenvalues of

the exponent E of the process X and the Hausdorff dimension dimg B of the Borel set
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B C R4. The proofs of the results above are split into two parts validating dimpg X (B) > vy
and dimyg X (B) < 7 for some v > 0, respectively. To obtain the upper bound a suitable
sequence of coverings for X (B) is chosen. This method goes back to Hendricks [28] and
Pruitt and Taylor [48]. The proof of the lower bound uses standard capacity arguments
applying Frostman’s lemma and utilizing the relationship between the Hausdorff dimension
and the capacitary dimension as stated in Frostman’s theorem |34, 43]. The methods
described here will, in parts, be useful in the proofs of the results in this thesis, where they

are generalized, where needed, and adapted to the specific requirements.

The first manuscript in Chapter 2, which was published in Probability and Mathematical
Statistics [37], contains an examination of the fractal properties of a process with a specific
semistable and non-stable distribution. More specifically, the manuscript deals with the
limit distribution of the cumulative gains in a series of St. Petersburg games. By [11],
the corresponding process (Y(t))te[ 1) can be defined as a continuous transformation of a

non-strictly semistable Lévy process (X (¢))¢>0 which fulfills
X(2F) L 2k (X () + kt)

for every k € Z and t > 0. Note that, due to the shift term, the so defined process is
not operator semistable in the sense of the definition in Section 1.1. In Chapter 2, the
Hausdorff and the box-counting dimension of the range and the graph of this particular
semistable process are calculated over the time interval [%, 1]. Furthermore, the results are
compared to the fractal dimension of the corresponding limiting objects when the gains

are given by a deterministic sequence initiated by Hugo Steinhaus [51].

In the manuscript in Chapter 3, which is accepted for publication in the Journal of Fractal
Geometry [56], the methods applied to the particular semistable Lévy process in the fore-
going chapter are generalized in order to calculate the Hausdorff dimension dimgy Grx (B)
of the graph of an arbitrary operator semistable Lévy process X in R? and any Borel set
B C Ry. To do so, the process Z = {Z(t) : t > 0}, defined by Z(t) := (¢t,X(t)) for
all £ > 0, is introduced. Consequently, this gives us dimy Grx(B) = dimy Z(B). The
process Z is again a Lévy process which fulfills the scaling property (1.1) of an operator
semistable process but is itself not operator semistable in the sense of the definition given

in the introduction as the distribution of Z(1) is not full. Nevertheless, for the reasons
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mentioned above, one is now able to use the parts of the results and the corresponding
proofs in the paper of Kern and Wedrich [36] where fullness of the process was not required.
All other parts, however, have to be calculated with enhanced methods. The method of
generating dimension results for a class of Lévy processes in R? by interpreting the graph

as a (d + 1)-dimensional Lévy process can also be found in Manstavicius [41].

The manuscript in Chapter 4 was submitted for publication to the Electronic Journal of
Probability in April 2016 and offers a refinement of the results on the fractal properties of an
operator semistable Lévy process as stated in Chapter 3 by dealing with the subject of exact
Hausdorff measure functions. For the range of an a-stable Lévy process an exact Hausdorff
measure function was formulated by Taylor in [53]. Furthermore, Pruitt and Taylor [48]
studied sample path properties of Lévy processes with independent stable components.
Based on their work, Hou and Ying [30] determined exact Hausdorff measure functions
for the range of an operator stable Lévy process with diagonal exponent E over the time
interval [0,1]. In the third manuscript, exact Hausdorff measure functions for certain
operator semistable Lévy processes with a1 < d; and diagonal principal exponent, i.e.
E = al_l - I% where I denotes the identity operator on the di-dimensional subspace
Vi (compare Section 1.2.2), are calculated. In the proofs a distinction must be made
whether the process is of Taylor type A or B (see [53] for details). A Lévy process is said
to be of type A if the continuous density function g; of X (1) is strictly positive in zero
and of type B, otherwise. The distinction between the two different types is necessary,
because the respective Lévy processes display different asymptotic behavior concerning
their sojourn times as defined in Section 1.2.4. Furthermore, in order to determine exact
Hausdorff measure functions, sharp upper and lower bounds for the expected sojourn times
are needed. The proofs follow the outline given in [30]. Nevertheless, the applied methods

in the third manuscript go beyond simple adjustments of the arguments given there.
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Manuscript 1
Dimension results related to the St.

Petersburg game
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2.1 Introduction

The famous St. Petersburg game is easily formulated as a simple coin tossing game. The
player’s gain Y = 27 in a single game can be expressed by means of the stopping time
T = inf{n € N: X,, = 1} of repeated independent tosses (X, )nen of a fair coin until it
first lands heads. For a sequence of gains (Y},),en in independent St. Petersburg games
the partial sum S, = > }_, Y}, denotes the total gain in the first n games. To find a
fair entrance fee for playing the game is commonly called the St. Petersburg problem,
frequently raised to the status of a paradox. Since the expectation E[Y] = oo is infinite,
a fair premium cannot be constructed by the help of the usual law of large numbers. We
refer to Jorland [33] and Dutka [16] for the history of the St. Petersburg game and for early
solutions of the 300 year old problem.

The first step towards a mathematically satisfactory solution has been achieved by Feller
[24, 25] who showed that a premium depending on the number n of games can fulfill a
certain weak law of large numbers

Sn

nlogyn

— 1 in probability,

where log, denotes logarithm to the base 2. However, Feller’s result does not tell if the
game is dis- or advantageous for the player, i.e. if S, — nlogyn is likely to be negative
or positive. This question can only be answered by a weak limit theorem and the first
theorem of this kind has been shown by Martin-Lof [42] for the subsequence k(n) = 2"

Sk(n) — k(n)logy k(n)

— X in distribution. (2.1)

The limit X is infinitely divisible with characteristic function exp(¢(y)), where
o0 .
U(y) = / eVt — 1 —iyz - 1{z<1y do(2)
0+

and the Lévy measure ¢ is concentrated on 2% with ¢({2%}) = 27% for k € Z. Hence X is a
semistable random variable and the corresponding Lévy process { X (¢) }+>0 with X (1) 4x

is a (non-strictly) semistable Lévy process fulfilling the semi-selfsimilarity condition

X (2F) L 2%(X (t) + kt) for every k € Z and ¢ > 0. (2.2)
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For details on semistable random variables and Lévy processes we refer to the monographs
[45, 50]. For a semistable setup in general there exists a continuum of possible limit distri-
butions by variation of the subsequence k(n) — oo in (2.1). The possible limit distributions
for the St. Petersburg game have been characterized by Csorgé and Dodunekova [11] as

follows. For n € N let us introduce the quantity
A =mn -2 To827] ¢ (%’ 1], (2.3)

which determines the relative position of n € N between its nearest consecutive powers of
2. If k(n) — oo is a subsequence such that 7y, —t € 3, 1] Csorgs and Dodunekova [11]
have shown that

Sk(n) — k(n)logy k(n) R

Y (t) ==t X (t) — tlogyt) (2.4)
in distribution, where Y(3) 4 Y(1) 4 X due to (2.2); cf. also [54]. In fact in Theorem
2.2 of [11] the necessary and sufficient condition for convergence in distribution of the
normalized and centralized sums S, along the subsequence k(n) — oo should be stated in
terms of the so-called circular convergence of v;,; for details we refer to page 301 in [9]
or page 241 in [10]. It is also possible to interpret (2.4) as convergence in distribution of
stochastic processes on the space D[%, 1] of cadlag functions ¢ : [%, 1] — R equipped with

the Skorohod Ji-topology as follows. First, a direct application of Theorem 14.14 in [35]

shows that
{ SL2"tJ — L2ntJ n }
2n te|

in distribution on D[%, 1]. Alternatively, one may deduce (2.5) from Theorem 2.1 of Fazekas
[23]. Secondly, observe that

SLQntJ — L2ntj IOgQ L2ntj _ 2" SLQntJ — |_2ntJn _ L2ntj log LQntJ
on on 2oon )0

= X O }iert (2.5)

21

|27t ] |27t |
where convergence of the deterministic centerings

Ly 12

— —tlogyt = x(t)

and normalizations

Yn (t> =
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can also be interpreted as convergence in D[%, 1] with continuous limit functions x and y.
Since addition and multiplication are continuous in every element of D[,1] x D|[3,1] for
which the coordinate-functions have no common discontinuities (see Theorem 4.1 in [57],
respectively Theorem 13.3.2 in [58]), an application of the continuous mapping theorem

yields

SLQntJ - L2ntJ 10g2 L2ntJ } 1
— 1t (X (t) —tlogyt
{ [2] t€[3.1] S ? }t€[2

in distribution on D[%, 1]. Hence we have convergence in distribution of stochastic processes
n (2.4) for k(n) = [2"t] for which circular convergence of 7,y towards t € [, 1] holds.
The object of our study are local fluctuations of the sample paths of the stochastic process
Y = {Y(t)}te[%ﬂ. Figure 2.1 shows typical (approximative) sample paths of {Y(t)}te[% 1]
generated by n = 2!6 simulated St. Petersburg games. Note that the sample paths do only
have upward jumps due to the fact that the Lévy measure ¢ is concentrated on 2%.

The main goal of our paper is to determine the Hausdorff dimension of the range Y ([3,1]) =
{Y(t) : t € [3,1]} and the graph Gy ([3,1]) = {(t,Y(?)) : t € [3,1]} of the stochastic
process Y encoding all the possible distributional limits of St. Petersburg games. For an

arbitrary subset F© C R? the s-dimensional Hausdorff measure is defined as

H® (F)—hmmf{Z|F|s |F;|] < dand F C UF}
=1

=1

where |F| = sup{||z — y| : #,y € F'} denotes the diameter of a set F C R? and | - | is the
FEuclidean norm. It can now be shown that there exists a unique value dimg F' > 0 so that
H*(F) = oo for all 0 < s < dimp F" and H*(F) = 0 for all s > dimy F. This critical value

is called the Hausdorff dimension of F'. Specifically, we have
dimyg F' = inf {s : H*(F) =0} =sup {s: H*(F) = oo}.

For details on the Hausdorff dimension we refer to [19, 43].
Now let F' C R be a Borel set and denote by M!(F) the set of probability measures on
F. For s > 0 the s-energy of u € MY (F) is defined by

// IIw—ylls '
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Figure 2.1: Simulation of four approximations to the sample paths of Y. For better visibility the

jumps are shown as vertical lines.
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By Frostman’s lemma, e.g., see |34, 43|, there exists a probability measure pu € M(F)

with Is(p) < oo if dimyg F' > s. In this case F' is said to have positive s-capacity Cs(F)

given by

Cs(F) = sup{Ls(n)~" : p e M'(F)}

and the capacitary dimension of F' is defined by

dimc F' =sup{s > 0: C5(F) > 0} =inf{s > 0: Cs(F) = 0}.

A consequence of Frostman’s theorem, e.g., see [34, 43], is that for Borel sets F C R?

the Hausdorff and capacitary dimension coincide. Therefore, one can prove lower bounds

for the Hausdorff dimension with a simple capacity argument: if I(u) < oo for some
p € MY(F) then dimpg F = dimg F > s.
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An alternative fractal dimension is the so called box-counting dimension (see, e.g., [19]).
For this purpose let N5(F') be the smallest number of closed balls of radius ¢ that cover the
set ' C R?. The lower and the upper box-counting dimensions of an arbitrary set ' C R?
are now defined as

log Ns(F S log Ns(F
@BleiminfL(s() and dimBF:limsupL&()

2.
6—»0 —logd 50 —logé (2:6)

and the box-counting dimension of F' is given by
dimp F = lim 128 No(F)
6—0 —logé
provided that this limit exists. The different fractal dimensions are related as follows:

dimg F < dimp F < dimp F < d. (2.7)
Note that there are plenty of sets F' C R? where these inequalities are strict.
In Section 2 we will determine the Hausdorff and box-counting dimension of the range
Y ([3,1]) and the graph Gy ([3,1]) for almost all sample paths of the stochastic process
Y. Additionally, in Section 3 we will also consider a deterministic sequence introduced by
Steinhaus [51] which is called the “Steinhaus sequence” according to [13]. The Steinhaus
sequence ()nen is defined by z,, = 2% if n = 2871 4 m - 2% for some k € N and m € Nj.
Alternatively, as in Vardi [55], one can define z,, to be twice the highest power of 2 dividing

n. The Steinhaus sequence is explicitly given by
2,4,2,8,2,4,2.16,2,4,2,8,2,4,2,32,2.4,2,8,2,4,2,16,2,4,2,8,2,4,2,64, ...

and has relative frequencies lim,,_,oo n " card{l<j<n:z; = 2’“} =27 for k € N. The
sequence (zp)nen has been considered as entrance fees for repeated St. Petersburg games
in [51, 13] and has been proven to be a sequence of nearly asymptotically fair premiums
in a certain sense. For details we refer to [13|. In contrast to [51, 13] we will consider
the Steinhaus sequence as a sequence of possible gains in repeated St. Petersburg games.
Again, we will determine the Hausdorff and box-counting dimension of the range and the
graph of the corresponding limiting object of the centralized and normalized Steinhaus
sequence. To do so, we will employ results for iterated function systems as presented in
[22].
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2.2 Hausdorff dimension of the St. Petersburg game

2.2.1 Hausdorff dimension of the range

In this section we evaluate the Hausdorff dimension of the range of the stochastic process
Y = {Y(t)}te[ 1) We employ common techniques used to calculate Hausdorff dimensions
of selfsimilar Lévy processes (see [59, 46, 36]) and adapt them to our situation. Note that
the given process Y is neither a Lévy process nor does it have the selfsimilarity property

of a semistable process. The result is stated in the theorem below.

Theorem 2.1
We have dimp Y ([3,1]) = 1 almost surely.

Note that Theorem 2.1 together with (2.7) yields
dimp Y ([3,1]) = dimg Y([,1]) =1

almost surely. Since Y is a process on R it is obvious that dimy Y ([3,1]) < 1 almost surely.

For the proof of Theorem 2.1 it is hence sufficient to prove the following lemma.

Lemma 2.2
We have dimy Y ([3,1]) > 1 almost surely.

Proof. As mentioned above we can write
Y(t) = 71 (X(2) — tlogy ),

where X = {X(t)}>0 is a semistable Lévy process. To prove the assertion we will apply
Frostman’s theorem [34, 43] with the probability measure o = 2A[1 ;;, where A denotes
2

Lebesgue measure. For this purpose let 0 < v < 1 and note that o is an admissible measure

Ao =

By Frostman’s theorem it is now sufficient to show that for all v € (0, 1)

for Frostman’s lemma, i.e.

[ [E (1Y (s) = Y(£)[ 7] ds dt < oc.
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For r € (0,1] let g, be the Lebesgue density of X (r) chosen from the class C*°(R) by
Proposition 2.8.1 in [50]. Then we have M := sup,¢(q 1] SuPger |9-(7)| < oo as in Lemma

3 of [8]; see also Lemma 2.2 in [36]. By symmetry of the integrand we get

[ /1115 (1Y (s) = Y (£)| 7] ds dt

_2/ / (157X () —Togy s — 7 (X (s) + (X (t) — X(5))) + logy t] ] dsat
—2/ / ‘S $—1Og28—t 1($+y)+log2t‘ gt s( )d)\2($,y)dsdt
1 R2
2
t t— "
1 J1 Jp2 S S t
2 72
1 pt—1 w ; )
=2 — —  _a4logy (— | -2
/2/0 /RQ t(t—w)HOgQ(t—w) t

where in the last equality we substituted w = ¢t — s. Now we write w € (0, 3] as w = 27™r

with m = m(w) € N and r € (3,1]. This leads us to

—
9s() gi—s(y) AN (2, y) ds dt

<

-
Gi—w(2) gu(y) dX*(z, y) dw dt,

Ju(y) = dyP(X( ) <)
ddyP (X( M) < y) CZ/P (2 ™(X(r) —mr) < y)
d

Using the substitutions v = 2™y + mr and u = Lm (t(t T+ log, ( > + %) we get
w t Y
- 1 ) _Z
zt(t—w)z+0g2<t—w> t
w t Y
— - 1 - _Z
) t(t—w)x+0g2<t—w> t
/ w 1 t 2—m +mw
g2 |t(t —w) 82\ —w t t

_t—w/ 7
- T R2

Gi—w(T) gu(y) AN*(z,y)

-y
Gi—w(x) gr(2™y + mr) dX* (2, y)

m

-
Gi—w(2)gr(v) AN (z,v)

2—m
T(u —v)

gt—w(@(w)) gr(v) dX*(u, v)
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PSR ([ [ Yl ol ala(w0) o) ),

where A denotes the set A = {(u,v) € R? : |u — v| < 1}. We now estimate the two integrals

separately. First,

/ = 0 g () g0 (v) AN, v)

M/ </ v —u) 7du+/:+1(u—v)mu> gr(v) dv

2M
:M/grvdv —
R1—7 ) -y

and secondly,

[ =l e (00) 9:0) 4 0,0) < [ gl g (o) a.0)

r

gt—u() gr (v) dN*(2,0) =
R2

< .
St—w t—w

This leads us to

/ | t Y
R S S '
e |1t —w) 2\t —w) ¢

< $7mY w +1) <™ ﬂ +1) = Kt72m7,
r(l—7) 1

-

Gt—w(®) gu(y) AN (2, y)

Taken all together, we obtain

1,1 1 pt—3
/ / E[|Y(s) Y (t)| ] dsdt < 2K/ / 12y dt

1 1 1 Jo

2
1
_2K/ / t72m(w7dtdw—2KZ/ / 2™ dt dw (2.8)
+w (m+1) %J,—u)
QKZ/ / 12 At 2 dr = Ky (207 / £ dt < oo,

meN meN 2

since 7 — 1 < 0. This concludes our proof. O
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2.2.2 Hausdorff dimension of the graph

In this section we show that the dimension result for the range of the stochastic process
Y also holds for its graph Gy([%, 1]). We will split the proof into two parts, first verifying
«a = 1 as an upper bound and secondly as a lower bound for the Hausdorff dimension of

the graph.

We first calculate the upper bound for the Hausdorff dimension of the graph of the
semistable Lévy process X and later on transfer the result to the process Y. As X is
not strictly semistable we cannot use the dimension results of [36], without modifying it
according to our situation. This parallels investigations for stable Lévy processes, where
dimension results for the strictly stable (symmetric) Cauchy process and for an asym-
metric (non-strictly) stable Cauchy process have been addressed separately. Nevertheless,
the Hausdorff dimension of the range, respectively the graph, coincides for both Cauchy
processes; see [3, 27, 53].

Proposition 2.3
Let {Z(t) := (t, X (t))}+>0- Then almost surely

dimg Z([3,1]) < 1.

Let T(a,s) = [ 1B(0,0)(Z(t)) dt denote the sojourn time of the Lévy process Z up to time
s in the closed ball B(0,a) C R? with radius a centered at the origin. To prove Proposition

2.3 we need the following lemma.

Lemma 2.4
Let Z be the stochastic process defined in Proposition 2.3. There exists a positive and finite

constant K such that for all0 < a <1 and % < s <1 we have

E[T(a,s)] > Ka.

Proof. Fix 0 <a<1landlet 0 <§ < %, so that

2= (ot < g5 <270 « — < g,

E@



DIMENSION RESULTS RELATED TO THE ST. PETERSBURG GAME 21

for some 79 € Ng. Furthermore we choose 0 < § < % small enough (i.e. iy € Ny big

enough) so that
—2Z for all i > 4 29
<35 : (2.9
and that additionally

1 . .
F X< o7 | -P| nf X(r)<-———]23. 2.10
(7'21[111»)2) (T) 52\/§> <7'€1ﬁ,2) (7”) 52\/§> ) ( )

Inequality (2.10) holds for ¢ > 0 small enough since X is a Lévy process and it can be
assumed that it has cadlag paths. Thus both sup,¢(; 2) X (r) and inf,c[; 9) X (r) are random

variables. We have

E[T(a,s)]:/OSIP’(HZ(tH <a)dt>/08]P’(\X(t)|<\;§,t<\;§> dt
_ 0” (]X()\<\j§)dt>/02_iOIP’<|X()<\/§>dt

= Z/QZH <|X |<>dt Z / <|X2 r!<\/§>dr

1=19+1 1=i9+1
a
= Z / —iar)| < ) dr
i=19+1 ( \/§
2i
= Z / —ir| < ) dr.
1=ig+1 ( \/5

By (2.9) and (2.10) the probability above can be estimated from below by

B (1) —irl < 20) =P (L ir < X0y < Lo )
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a a
>P| sup X(r) < —=2%0H! —IP’( inf X(r) < 2“)“)
<r€[1l,)2) ) 22 ) ref1,2) )< 2V

1
>P| sup X(r) < ——= (me
<r6[172) (r) 62\@> rell,2)

Note that 0 does not depend on a. It follows that
1 1 1 1
E - - 27" = =27 > —fa =: Ka,
2 2 2 2
i=i9+1 = z()—i-l

which concludes the proof. O

Proof. Proposition 2.3 Let K; > 0 be a fixed constant. A family A(a) of cubes of side
a € (0,1] in R? is called Kj-nested if no ball of radius @ in R? can intersect more than K;
cubes of A(a). For any u > 0 let My,(a,s) be the number of these cubes hit by the Lévy
process Z at some time ¢ € [u,u + s|. Then a famous covering lemma of Pruitt and Taylor

[48, Lemma 6.1] states that
E[M.,(a, s)] < 2Kys - (E[T(%,s)]) "

Lemma 2.4 now enables us to construct a covering of Z([3, 1]) whose expected s-dimensional
Hausdorff measure is finite for every s > 1. The arguments are in complete analogy to the

proof of part (i) of Lemma 3.4 in [36] and thus omitted. O

In order to transfer the result of Proposition 2.3 to the process Y we introduce the

%,1] X ICl — [%,1] X ICQ with

t t
(Yoreo-( ) .

where K1,K2 C R are not further specified compact intervals that can vary throughout

continuous function 7 : |

the paper. It can easily be shown, that for a fixed compact interval X; C R the function
7 is bi-Lipschitz when choosing Ky such that [3,1] x Ky = Im(7). We can now write all
elements (t,Y(t))" € Gy([3,1]) as
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Since X is a Lévy process, it can be assumed that all paths are cadlag and hence that for

all fixed w € Q there exists a compact interval £ C R such that
X(t)(w) €Ky forall t € [3,1].
This means that for Z = (Z(¢t) = (¢, X(t)))te[%,l} and all w € Q we have
dimys Z([3,1]) (w) = dimgs 7(Z([4. 1])) (w) = dimys Gy (3. 1)) ()

by Lemma 1.8 in [17]. Since we have shown in Proposition 2.3 that dimpg Z([3,1]) < 1

almost surely, we have thus proven the following upper bound.

Theorem 2.5
We have dimy Gy ([3,1]) < 1 almost surely.

To prove the lower bound for the Hausdorff dimension of the graph we can use the same

technique as for the lower bound in case of the range of Y.

Theorem 2.6
We have dimy Gy ([3,1]) > 1 almost surely.

Proof. Let 0 < v < 1. By (2.8) we get

1 1
/1 / E [ll(s.Y () = (¢, V()T 7"] dsdt

X
2

1 1
:ﬁ [ E [((5 — 12+ (Y(s) =Y (1)) } ds dt

1,1
< / / E[|Y(s) = Y(t)|77] dsdt < oo.
5y
As in Lemma 2.2 the assertion follows by Frostman’s theorem. O

With similar techniques it is also possible to proof the following dimension result for the

box-counting dimension of the graph of the St. Petersburg process Y.

Theorem 2.7
We have dimp Gy ([5,1]) = 1 almost surely.
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Proof. The lower bound follows directly from the almost sure inequalities
1 < dimg Gy ([3,1]) < dimg Gy ({3, 1]) < dimp Gy ([3,1]).

For the upper bound it is now sufficient to verify dimpg Gy ([3,1]) < 1 almost surely. Due
to the nature of the upper box-counting dimension (see (2.6)) we can again calculate the
upper bound for dimg Z([,1]) < 1 with the same covering arguments as in the proof of
part (i) of Lemma 3.4 in [36]. With the bi-Lipschitz invariance of the upper box-counting

dimension (see Section 3.2 in [19]) the proof concludes. O

Remark 2.8
If one prefers to flip an unfair coin this naturally leads to so called generalized St. Petersburg

games as treated in [8, 12, 26, 47]. Let p € (0,1) be the probability of the coin falling heads

and let ¢ =1 — p. The single gain in a generalized St. Petersburg game is given by g~ 1/

for some a > 0. We focus on the classical situation o = 1 and slightly modify the gain to

¢ Tp~! for ease of notation, which results in the limit theorem

Sk(n) — k(n)logy q k(n) .
k(n)

Y(t) =t (X(t) —tlogy , )

in distribution, whenever
gl 81/a "W k() — ¢ € [g,1],

where { X (t) }i=0 is a semistable Lévy process with the semi-selfsimilarity property

d

X(q %) S ¢ *(X )+ kt)  for every k € Z and t > 0.

We emphasize that with the above techniques our Theorems 2.1-2.7 also hold for the process
{Y'(t) }re[q,1) in this generalized situation when replacing the interval by [q,1]. Presumably,

similar results can be shown for general a > 0.

2.3 Hausdorff dimension of the Steinhaus sequence

Recall the definition of the Steinhaus sequence (z,)nen given in the Introduction. The
asymptotic properties of (z,,)nen have been analyzed in full detail by Csérgé and Simons
[13]. Let s(n) = 21 + -+, and , = n-27M8271 ¢ (3,1] asin (2.3). Then by Theorem
3.3 in [13] we have for any n € N

s(n) —nlogyn
n

= 5(771)’ (2.12)
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Figure 2.2: Graph of £ on the interval [%, 1). For better visibility the jumps of ¢ are shown as

vertical lines.
2_

1,54

0,57

0,5 0,6 0,7 0,8 0,9 1,0

where the function ¢ : [3,1] — [0,2] is defined by

1 & key,
f(V)ZQ—IOgQ’Y—*ZQT
7=

and the sequence (ex)reny C {0,1} is given by the dyadic expansion v = Y 72, 5 of
7 € [3,1] with the convention that e, = 0 for infinitely many k € N. By Theorem 3.1 in
[13] the function & is cadlag with f(%) = 2 = {(1) and has jumps precisely at the dyadic
rationals in (%, 1]. All these jumps are upward and the largest jump occurs from £(1—) = 0
to (1) = 2. The graph of £ seems to inhere fractal properties as can be seen in Figure 2.2
below, a replication of Figure 1 in [13]. It follows directly from (2.12) that the sequence
(s(n))nen of total gains satisfies the asymptotic property of Feller

s(n)

nlogyn

—1 (2.13)
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as n — 00; see [13]. Note that Feller’s law of large numbers does not hold in an almost

sure sense. According to classical results in [6, 1, 14] it is known that

n n

lim sup =00 and liminf

=1 Imost ly. 2.14
ko s e AN v almost surely (2.14)

More precisely, we have LIM{S,,/(nlogyn) : n € N} = [1, 00] almost surely by Corollary
1 in [55], where LIM denotes the set of accumulation points. But there is a version of the

strong law of large numbers by [15] when neglecting the largest gain

Sn — mMaxigk<n Xk

— 1 almost surely.
nlogyn

A comparison of (2.13) and (2.14) shows that the Steinhaus sequence belongs to an excep-
tional nullset with respect to (2.14) concerning the almost sure limit behavior of the total
gain in repeated St. Petersburg games.

Moreover, for any sequence k, — 00 with vg, = ky, - 27182kl — 4 € [L 1] we get from
(2.12)

o) “hnlogaln N} C {&(),€(-)}-

Hence we may consider the function £ as the corresponding limiting object when using the

@#mm{

same centering and normalization sequences as in (2.4). We will now show that the Stein-
haus sequence is not exceptional concerning the local fluctuations of the limit measured
by the Hausdorff or box-counting dimension.

It follows directly from the above stated properties of £ given in Theorem 3.1 of [13] that the
range &([3,1]) is equal to the interval (0,2] and hence dimpé&([3,1])
= 1 by Theorem 1.12 in [17]. This shows that dimpy &([3,1]) coincides with the Haus-
dorff dimension of the range of a typical sample path of {Y(t)}te[%ﬂ. Clearly, by (2.7)
we also have dimy £([3,1]) = dimp &([3,1]) = 1. A look at Figure 2.2 suggests that it is
merely the graph and not the range of £ that should inhere fractal properties. In the sequel
we will argue that also the graph Gg([%, 1]) is typical concerning the almost sure dimension
properties of the sample graph of {Y(t)}te[ 1) To this aim we will apply the inverse 77!
of the bi-Lipschitz function 7 defined in (2.11) with ICy = [0,2] C R. Le., we now consider
the function 771 : [§,1] x [0,2] — [3,1] x Ky with 771(¢,z) = (t,¢(x +1ogy t)) ", where the
compact interval 1 C R is chosen such that [%, 1] x K1 = Im7~1. Applied to the graph
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Figure 2.3: Image of 77'(G¢[3,1)). For better visibility the jumps are shown as vertical lines.
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of £ we get for any v € [1,1]

71 = ! - .
(7,€(7)) ( Y(&(v) + logy ) ) < 2y — 2211 ]€2€Tk >

and by bi-Lipschitz invariance we have
dimys Ge([3,1]) = dimp 7 (Ge([3, 1])). (2.15)

The same equality holds for upper and lower box-counting dimensions; e.g., see [19]. The

image 771 (Ge([3,1))) is illustrated in Figure 2.3 and shows perfect selfsimilarity. To see

this, we may write 7" (7,£(7)) = (v, f(7)) " with

— k
o) =2 =3 5
k=1
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Lemma 2.9

For any ~y € [3,1) we have

FGry+

Proof. For the dyadic expansion v = Y 77,

1

2

) =317+ f(7) = f(

28

27+

).

1
i

% of v € [%, 1) we necessarily have g1 = 1.
el 1 k=1,
2 Ep—1 k=2
1 k=1,
6//
ex—1 k=3.
gy
_ 1 k—1
=7 2 Z 2k; nd
k=2
_ ksk—l . 1 kEk_l
T Lo 272 ok
k=3 k=2
320, ks;k‘l and furthermore we get
o0
1 (k+1)eg
2 Z 2k

Consequently,
o e o
1 11 k
A=Y s =
k=1 k=1
and
o e o
1 11 k
HI= Y s = 2
k=1 k=1
It follows that
ey
fGy+3)=26G7+3) - 3
k=1
o
kgll
FGy+1) =267+ -
k=1
This shows f(%’y + %) = f(%y + i) =75+
> ke
k—1
7_}'%_2 ok :7_{_%_
k=2
=7
concluding the proof.
Let 70,71 : [3,1] x [0, 3] = [3
1 1
e + =
TQ(I‘,?J):( 1 2 4 ):
;(1—z+y)

(

1/2 0
~1/2 1/2

,1] x [0, ] be the affine contractions given by

x 1/4

Yy 1/2

JC)- (8
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Figure 2.4: Contractions generating the image. The highlighted parallelograms are 74(D), 71 (D)
with D = [$,1] x [0, 1] (left) and their first iterates 7o(7o(D)), 71(10(D)), 70(71(D)), T1(11(D))
(right).

0,5

(e Yo o () (e
71(x,y)—<%(1_x+y))_(_1/2 1/2)<y)+<1/2>.

Then 79 maps 7~ 1(Ge([4,1))) onto its left half and 7 onto its right half, i.e. for any
v € [3,1) we have

T A+ 1,7+ D)) =100 f() = o(rH(1.€(y)))  and

T+ 5657+ 3) =T f()) = (T (0, €)),

which follows directly from Lemma 2.9. These contraction properties are illustrated in
Figure 2.4 and show that the image 771 (G¢([3, 1))) can be generated by an iterated function
system. By Hutchinson [31] there exists a unique non-empty compact set F' C [%, 1] x [0, %],
called the attractor, such that F' = 7(F") U 7 (F') which fulfills

F= ﬂ U TiTO"'OTil([%al]X[Oa%])-

r=1 (i1,...,ir)€{0,1}"

In fact for any (in)neny € {0, 1} the iterated contractions 7;, o --- o 7;, applied to the

square [1,1] x [0, 3] converge to a single point of F as r — oo and every element of F can
2 2 g g y

be obtained in this way. More precisely, our construction shows that for v € [%, 1) with
dyadic expansion v = » 77, 5} we have €1 = 1 and

d(Tsr O---0 7_62([%7 1] X [07 %])77_1(775(7))) —0
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as r — 0o, where d(A, x) = inf{|ly—z| : y € A} for A C R? and = € R?. Since we required
er = 0 for infinitely many k € N, the only possible limit points of F' missing are those with
7., = 71 for all but finitely many k > 2. For these necessarily v = % + D o 5k € (%, 1] is

a dyadic rational and we have

d(TEr 0---0 7—52([%7 1] X [0’ %])’ 7_1(775(7_)» —0

as r — oo. The above arguments show that F' is the closure of 771(G¢([3,1))) and since
the dyadic rationals are countable, by elementary properties of the Hausdorff dimension

and (2.15) we get
dimpg F = dimg 771 (Ge([2,1))) = dimp G¢([3,1]). (2.16)

The same equality holds for upper and lower box-counting dimensions; e.g., see page 44 in
[19].

A common way to calculate the fractal dimension of the self-affine invariant set F' is by
means of the singular value function. For an overview of such methods we refer to [22].

The linear part of both affine mappings 7y and 71 is equal to the linear contraction with

( 1/2 0 )
L= .
—1/2 1/2

By induction one easily calculates for r € N

LT:< /2 0 )
—r/2r 12"

and the singular values of L" are the positive roots of the eigenvalues of (L") L™ which

associated matrix

calculate as

n 1 \/r2+2+\/r4+4r2

(

27”

(r) 1 r2 42 —/rd 4+ 492
and  «y 25 5 .

These determine the singular value function of L™ for » € N given by
(agr))S for 0 <s <1,

P(17) = . (2.17)
o (ay )™t for1<s <2
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Now the affinity dimension of F' is defined by

dimAF:inf{s>0:Z Z SOS(LiTO"'OLil)<OO}
r=1 (i1, ir)€{0,1}7

)
= inf {s >0: Z2T¢S(LT) < oo},
r=1

where Ly, L1 are the linear parts of the affine contractions g, respectively 71, and the last
equality holds since Lo = L = L; in our situation. The special form of the singular values
agr), ag) of L" together with (2.17) shows that dima F' = 1.

Since the union F' = 79(F) U (F') is disjoint, by Proposition 2 in [21] we get a lower bound
for the Hausdorff dimension of F’

dimHF>inf{s>0: Z Z (903((Liro---oLz‘1)_1))71 <OO}

r=1 (i1,...,ir)€{0,1}7
= inf {s >0: ZZT(QDS(Lir))_l < oo}
r=1
Again, by induction one easily calculates for r € N

_ 2" 0
L7 =
r2° 2"

and the singular values of L™" are

1) or T2 2+ VT 402 1) or [T2H2— V1 dr2
1 =2 and (5 =2

B 5 5 ;

which shows that dimy £ > 1. Since by Proposition 1 in [22]| we have
dimyg F < dimg F < dimg F < dimy F,

altogether the above calculations show:

Theorem 2.10
We have dimy Ge([3,1]) = 1 = dimp G¢([3, 1]).

This shows that the graph of £, being the limiting object of the Steinhaus sequence (consid-
ered as a possible sequence of total gains in repeated St. Petersburg games), is not excep-
tional concerning the Hausdorff or box-counting dimension of the sample graph Gy ([3, 1])

calculated in Section 2.
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3.1 Introduction

Let X = (X(t))i>0 be a Lévy process in R%. Namely, X is a stochastically continuous
process with cadlag paths that has stationary and independent increments and starts in
X (0) = 0 almost surely. The distribution of X is uniquely determined by the distribution
of X (1) which can be an arbitrary infinitely divisible distribution. The process X is called
(c¥, c)-operator semistable, if the distribution of X (1) is full, i.e. not supported on any

lower dimensional hyperplane, and there exists a linear operator E on R¢ such that
{X(ct)}no = {cPX(D)},,, forsomee>1. (3.1)

Here 2 denotes equality of all finite dimensional distributions and
oo
1 n
E = Z (log ) En

n!
n=0

If for some a € (0,2] the exponent E is a multiple of the identity, i.e. £ = «a - I, we call
the process (c'/®, ¢)-semistable. The Lévy process is called operator stable if (3.1) holds
for all ¢ > 0.

The aim of this paper is to calculate the Hausdorfl dimension dimyg Grx (B) of the graph
Grx(B) = {(t,X(t)) : t € B} of an operator semistable Lévy process X = (X (¢))¢>0 for
an arbitrary Borel set B C R,.

For an arbitrary subset F' of R? the s-dimensional Hausdorff measure H*(F) is defined as

00 0o
H*(F) = lim inf {Z} |F|¢:|F;] <6 and F C UlF} ,

where |F| = sup{||z — y|| : =,y € F} denotes the diameter of a set F C R? and | - ||
is the Euclidean norm. It can be shown that the value dimgy F' = inf {s : H*(F) = 0} =
sup {s : H*(F) = oo} exists and is unique for all subsets F' C RZ. The critical value dimy F
is called the Hausdorff dimension of F'. Further details on the Hausdorff dimension can be
found in |20] and [43].

In the past efforts have been made to generate dimension results for Lévy processes, which
fulfill certain scaling properties. An overview can for example be found in [38] or [59].
For an operator semistable Lévy process X and an arbitrary Borel set B C R, Kern and

Wedrich [36] calculated the Hausdorff dimension of the range dimy X (B) in terms of the
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real parts of the eigenvalues of the exponent F and the Hausdorff dimension of B. The
result is a generalization of the one stated in Meerschaert and Xiao [46], who calculated
the Hausdorff dimension dimyg X (B) for an operator stable Lévy process.

For an arbitrary operator semistable Lévy process X our aim is to adapt the methods used
to prove the results above by interpreting the graph Grx(B) = {(¢,X(t)) : t € B} as a
process on R which fulfills the scaling property (3.1) for a certain exponent but whose
distribution is not full. The method of generating dimension results for a class of Lévy
processes by interpreting the graph as a (d + 1)-dimensional Lévy process has also been
employed by Manstavicius in [41].

The most prominent example of a semistable, non-stable distribution is perhaps the limit
distribution of the cumulative gains in a series of St. Petersburg games. In this particular
case, Kern and Wedrich [37] already calculated the Hausdorff dimension dimg Grx ([0, 1])
of the corresponding graph over the interval [0, 1] employing the method described above.
Dimension results for the graph of a stable Lévy process can be found in [4] and [32].
Furthermore, in the case that X is a dilation stable Lévy process on R? i.e. an operator
stable Lévy process with a diagonal exponent, Xiao and Lin [60] calculated the Hausdorff
dimension dimy Grx(B) for an arbitrary Borel set B C Ry and Hou [29] determined an
exact Hausdorff measure function for Grx ([0, 1]).

This paper is structured as follows: In Section 2.1 we recall spectral decomposition re-
sults from [45], which enable us to decompose the exponent E and thereby the operator
semistable Lévy process X according to the distinct real parts of the eigenvalues of E. Sec-
tion 2.2 contains certain uniformity and positivity results from [36] for the density functions
of the process X, which will be helpful in the proofs of our main results. The main results
on the Hausdorff dimension of the graph of an operator semistable Lévy process are stated
and proven in Section 3.

Throughout this paper K denotes an unspecified positive and finite constant that can vary

in each occurrence. Fixed constants will be denoted by Ki, K», etc.
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3.2 Preliminaries

3.2.1 Spectral decomposition

Let X be a (c¥,c)-operator semistable Lévy process. Factor the minimal polynomial of
E into qi(z) - ... gp(x) where all roots of g; have real parts equal to a; and a; < a; for
1 <j. Let o = aj_l so that oy > ... > ap, and note that 0 < o; < 2 by Theorem 7.1.10
in [45]. Define V; = Ker(g;(E)). According to Theorem 2.1.14 in [45] V} @ --- @V}, is then
a direct sum decomposition of R? into E invariant subspaces. In an appropriate basis, F
is then block-diagonal and we may write £ = Fy @ --- ® E, where E; : V; — V; and every
eigenvalue of F; has real part equal to a;. Especially, every V; is an Ej-invariant subspace
of dimension d; = dimVj and d = dy + ... +d,. Write X(t) = XM (#) +... + XP)(¢) with
respect to this direct sum decomposition, where by Lemma 7.1.17 in [45], {X()(¢),t > 0}
is a (cP, c)-operator semistable Lévy process on V;. We can now choose an inner product
(-,-) on R such that the Vj,j € {1,...,p}, are mutually orthogonal and throughout this
paper we will let ||z| = \/(z, ) be the associated Euclidean norm. In particular we have
for t = c"m > 0 that

d T T T
IXO1 = [l X m)]? = | XD (m)|? + ...+ [P X P (m)| 2, (3.2)

with r € Z and m € [1,¢).
The following lemma states a result on the growth behavior of the exponential operators
tFi near the origin t = 0. Tt is a variation of Lemma 2.1 in [46] and a direct consequence
of Corollary 2.2.5 in [45].

Lemma 3.1
For every j € {1,...,p} and every e > 0 there exists a finite constant K > 1 such that for
all 0 <t <1 we have

K1taite < ||tfi || < Kt%—¢ (3.3)
and

K479 < |t Fi)| < K¢~ (ate), (3.4)
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3.2.2 Properties of the density function

The following three lemmas state uniformity results of operator semistable Lévy processes.
They will be very helpful in the proofs of our main theorems. The lemmas are taken from
Kern and Wedrich [36]. Let X = {X(¢)}+>0 be a full dimensional operator semistable Lévy
process on R? and ¢;,t > 0, the corresponding continuous density functions. Lemma 2.2

in [36] states the following:

Lemma 3.2

The mapping (t,z) — g+(z) is continuous on (0,00) x R? and we have
sup sup |g¢(x)] < oo. (3.5)
te[l,c) zeRd

As a consequence we get a result on the existence of negative moments of an operator

semistable Lévy process X = {X(t)};>0 on R? given in Lemma 2.3 of [36].

Lemma 3.3
For any 6§ € (0,d) we have

s BIXOI) < oo (3.6)
Furthermore, we will need a uniform positivity result for the density functions taken from
Lemma 2.4 of [36].

Lemma 3.4

Let {X (t)}+>0 be an operator semistable Lévy process with mazimal index oy > 1, dy =1
and with density g: as above. Then there exist constants K > 0, r > 0 and uniformly
bounded Borel sets Jy CRI1 2 Vo @ ... @V, fort € [1,¢) such that

gt(z1,...,xp) > K >0 for all (x1,...,xp) € [—1,7] X Jp. (3.7)
Further, we can choose {Ji}ief1,) such that X1(Jy) > R for every t € [L,c). Note that

the constants K, r and R do not depend ont € [1,c).

Remark 3.5

Note that oy > 1 is a necessary condition in Lemma 8.4. To see that, take for example
the aq-stable subordinator with 0 < ay < 1. Here the support of the density function is a
subset of Ry, so that (3.7) does not hold for any r > 0.
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3.3 Main results

The following two Theorems are the main results of this paper. The constants a1, as and

di are defined as in Section 2.1 by means of the spectral decompostition.

Theorem 3.6
Let X = {X(t),t € Ry} be an operator semistable Lévy process on R with d > 2. Then

for any Borel set B C Ry we have almost surely

dimg B - max(ai, 1), if ;1 dimyg B < dj,

dimy Grx(B) =
1+ max(ag,1) - (dimyg B — a%), if oy dimyg B > d;.

The dimension result for the one-dimensional case reads as follows:

Theorem 3.7
Let X = {X(t),t € R} be a (c¥/*,¢)-semistable Lévy process on R. Then for any Borel

set B C Ry we have almost surely

dimpg B - max(a, 1), if adimyg B <1,

dimy Grx(B) =
1+dimy B —1, if adimpy B > 1.

Let X = (X(¢))i>0 be a (c¥, c)-operator semistable Lévy process on R? and let a; > ... >
oy, denote the reciprocals of the real parts of the eigenvalues of E as defined in Section 2.1.
We want to calculate the Hausdorff dimension of the graph Grx(B) of X for an arbitrary
Borel set B C Ry. Therefore, we define the process Z = (Z(t))i>0 as Z(t) = (¢, X (¢)) for
all t > 0. This gives us dimy Z(B) = dimy Grx(B). One can easily see that Z is also a

Lévy process and fulfills the scaling property of a (¢!, ¢)-operator semistable process where

(1)

Nevertheless, the process Z itself is not operator semistable in the sense of the definition
given in the Introduction as the distribution of Z(1) is obviously not full.
As mentioned in the Introduction, the Hausdorff dimension dimy X (B) of the range of an
operator semistable Lévy process X has already been calculated in [36] as

(65} dlmH B if a1 dlmH B S dl,

dimy X (B) =
1+ ay (dimHB _ i) if ay dimg B > dj,
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almost surely for d > 2. Hence, for the reasons mentioned above, we are now able to use
the parts of the result (3.8) and the corresponding proofs where fullness of the process was
not required. All other parts, however, have to be calculated anew.

The proof of Theorem 3.1 is split into two parts. First we will obtain the upper bounds
for dimy Grx(B) by choosing a suitable sequence of coverings. This method goes back
to Pruitt and Taylor [48] and Hendricks |28]. Afterwards we will use standard capacity

arguments in order to prove the lower bounds.

3.3.1 Upper Bounds

For a Lévy process {X (t) }1>0 let

Ty(a,s) = /0 Lo (X (6)dt (3.9)

be the sojourn time in the closed ball B(0,a) with radius a centered at the origin up to
time s > 0.

The following covering lemma is due to Pruitt and Taylor (see Lemma 6.1 in [48]):

Lemma 3.8

Let Z = {Z(t) }i>0 be a Lévy process in R and let A(a) be a fived Ki-nested family of
cubes in RT of side a with 0 < a < 1. For any u > 0 let My(a, s) be the number of cubes
in A(a) hit by Z(t) al some time t € [u,u + s]. Then

E[Mu(a,s)] < 2Kis- (E [Tz (4,5)])

In order to prove the upper bounds of Theorem 3.6 we now need to calculate sharp lower
bounds of the expected sojourn times E[Tz(a, s)] of the graph Z = {(¢t, X (¢)),t > 0} of an
operator semistable Lévy process on R%.

In their paper Kern and Wedrich calculated in Theorem 2.6 in [36] upper and lower bounds

for the expected sojourn times E[T'x (a, s)] of an operator semistable Lévy process:

Theorem 3.9
Let X = {X(t)}+>0 be as in Theorem 3.1. For any 0 < of < ag < oy < off < o <

there exist positive and finite constants K, ..., Kg such that
(1) if a1 < dzy, then for all0 < a <1 and a® < s <1 we have

Kga™ < E[Tx(a, s)] < K7a®.
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(ii) if a1 > dy =1, for all 0 < a < ag with ag > 0 sufficiently small, and all a®?* < s <1
we have
Kga” < E[Tx(a,s)] < Koa”",

where p’ =1+ o§(1— ) and p/ = 1+ aj(1 - L),

aq
Looking at the proof of the lower bounds of Theorem 3.9 (i) (i.e. Theorem 2.6 (i) in [36]),
we find that the condition a1 < d; is not needed here. Hence, the same proof additionally

gives us the following corollary:

Corollary 3.10
Let X = {X (t)}+>0 be as in Theorem 3.1. For any 0 < ay < o} there exists a positive and
finite constant f(g such that for oll 0 < a <1 and a® < s <1 we have

Kga™ < E[Tx(a, s)].

Similarly to the results above we will now calculate lower bounds for the expected sojourn
times E[Tz(a, s)] of the graph Z = {(¢, X (¢)),t > 0} of an operator semistable Lévy process
on R%. The upper bounds can also be calculated but are not stated here as they are not

needed to determine the Hausdorff dimension.

Theorem 3.11
Let Z = {(t,X(t)),t > 0}, where X = {X(t),t > 0} is as in Theorem 3.1.

(1) If a1 > 1, there exists a positive and finite constant Ko such that for all 0 < a < 1

and a® < s <1 and any a1 < o

E[Tz(a,s)] > Kgaa/l.

(ii) If an < 1, there exists a positive and finite constant K3 such that for all 0 < a <1
and a < s <1 and any e >0

E[Tz(a,s)] > Kza'**.

(iii) If o > dy = 1 and ag > 1, there exists a positive and finite constant K4 such that
for any 0 < as < o < a1 and all a > 0 small enough, say 0 < a < ap, and all
a*? <s<1

1

E[T4(a,s)] > Kga' ™" a0),
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(iv) If a1 > dy =1 and ag < 1, there exists a positive and finite constant K5 such that

for all a > 0 small enough, say 0 < a < ag, and all \/1% <s<1

1

E[Ty(a,s)] > Ksa® o1

Proof. (i) & (ii) Let o} > ;. Looking at the proof of Corollary 3.10 (i.e. Theorem 2.6
part (i) in [36]) one realizes that the fullness is not needed there. Hence we can use this

result to prove part (i) and (ii) of the present theorem. In order to do so we need to further

it

of the process Z. Analogously to Section 2.1 denote by &; > ... > @&, the reciprocals of

examine the exponent

the real parts of the eigenvalues of F' and by dy the dimension of the Fy invariant subspace
of R4*1 where F} is (analagously to Fy) the blockmatrix, whose eigenvalues have real part
equal to a7 '. Furthermore, let &) be such that &) = a1 + o — .

In part (i) we have that oy > 1. Then @) = a; and dy > dy. By Corollary 3.10 there now

exists a positive constant Ko such that
E[Tz(a, s)] > Kya® = Kya™

forall0 <a<1anda* <s<I1.
On the other hand in part (ii) we have a3 < 1. Then &; = 1 and d; = 1. For any € > 0,

by Corollary 3.10 there now exists a postive constant K3 such that
E[Tz(a, 8)] > Kgadﬁ_e = f(gal—"_6

forall0<a<landa<s<1.
(iii) Let 0 < o < a; < aj_q forall j =2,...,p. Choose ig,7; € Ny such that ¢ <a<
0t and ¢ < 00 < o~ For ¢ € (0,1] we can write t = mc~* with m € [1,¢)

and ¢ € Ng. By Lemma 3.1 we then have
IXD @) < [l XD (m)[| < [l ]| [ XD (m)|| < K /5| xD(cit)| (3.10)

for all j = 1,...,p. Note that, since d; = 1, for j = 1 in (3.10) we can choose K = 1

and o) = ;. Furthermore, since o, > 1 there exists a constant ag > 0 such that for all
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0<a<aowehavea

Vp

M&@ﬂ=AEﬂHW<®ﬁ=A}NwX®W<Mﬁ

> [P (1x0#) <« — XD <« —2e 2< < p ] < —2 >dt
> [T (1x00) < g IX00] < Lz < <pll < o

!
o

a2
> P1IXD)] <« —2— | xD (¢ <a,2<'<p>dt
> [T p (X060 < L X0l < 2 <

—1

c "1 .
zA Pmeun< = xO) < -2 @ngp)w

ViHl NZEa]

—’L+1

a ; a
= < — | X9t <,2§'§p>dt
lg;y[ﬁ P(IXD0] < e IXO0) < S22 <5

it L ﬁ*io
. ci

> At) XU < K71 2<ji<pl|dt
> > [ e en < S O <k o<y

1=11+1

o0 e XM (m)| < Cﬁ% and

> c—{/ P 4y dm,

o X0 m)| < K2 <j<p

where the penultimate inequality follows from (3.10). By Lemma 3.4 choose Kijg >
0, > 0 and uniformly bounded Borel sets J,, € R% ! with Lebesgue measure 0 <
Ko < X71(J,,) < oo for every m € [1,¢) such that the bounded continuous density
gm(x1,. .. xp) of X(m) = XD (m) + ...+ XP)(m) fulfills

gm(x1,...,xp) > K19 >0 forall (z1,...,2p) € [—11] X Jy

and for every m € [1,¢). Since {Jy}mef,e) is uniformly bounded by Lemma 2.4 we are

able to choose 0 < § < ¢ < 1 such that

—o]
1C

me(l,c)

2
Let n =c / (ry/p + 1).
Since a1 > of > 1 there exists a constant ag € (0,1] such that (na)® < (a)® for

. . / .
all 0 < a < ag. Now, choose i2,i3 € Ng such that ¢ < ((56*’“1)0[2 < ¢+l and
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¢ < (ne)* < ¢~BFL Note that

cfig < (T]cfio)al < ((5@)0/2 < (6Cfio+1)0/2 < Cfi2+1

and
o—(i1+1) > 2. oo > (C—Q . C_io)a'z _ (073 ] sz'0+1)o/2 > (50710“)0/2 > C—z’g’
ence i3 > i9 — 1 and 47 + 1 < i5. We further have for all ¢ = 4s,...,73 + 1 and every
h g > 4 1 and 4 1 < i9. We further h for all ¢ ; ; 1 and
j=2,...,p
7,'/01171'0 (i3+1)/a17i0 2/041 —i9\—1 .—1%0 2/a1
c < < (nc™)~ ¢ _c . (3.11)
vp+1 vp+1 vp+1 nvp+1
and, since o > o for j =2,...,p,
Ci/oc;- —10 C’ig/a‘/j —10 (66—1'0-}-]_)—&/2/04;- C—io
> >
Vp+1 Vp+1 vp+1 (312)

(5—1Cm—4)aé/a;c—4o - %2/ N c—o1/ap
Vp+1 TSVp+1 T Sp+ T

Let I,,, = (—Ci\/;%o ) Ci\/;;%o) X Jm. Then together with the calculations above, we get

Z
using (3.11) and (3.12)

is+1 D ()| < €L2120 and
T(a,s)] Z _1/ /tl dm
im0 X )H<K'”J——2<J<p
i3+1 i3+1 Z/Oq io
>Z // gm(x dmdm>Zc (c—1)2 NES - Ko - Ky
=12 =20
‘ i3+1 1 ) 1— C—(i3-‘r2) 17& 1— (¢ 2 1_0711
— Kc*lo Z (sz)l a] — chzo ( - )1 _ ( 1) -
i=ia 1—co1 1—co

— Km0 <(c—z‘2)1all _ (C—(i3+2)>1_c«11>

> Ka (CiiO)H_O/2 (1_?11) — Ko (Ciio)a1 .
(3.13)
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Since 1+ a4 (1 — a%) <l+a(l1- a%) = o we have (c_io)al_<1+a/2<1_“%)) —0ifa — 0,
i.e. 19 — oco. Hence we can further choose ag sufficiently small, such that
E[Ty(a,s)] > Ksa'T207a7)
for all 0 < a < qyg.
(iv) Let 0 < oj < o) < @j—q for all j =2,...,p, and additionally, let ay < a5 < 1. Now

—1 +1
' g S For t € (0,1] we
can write t = mc™" with m € [1,¢) and ¢ € Ny. By (3.10) we then have

choose ig, i1 € Ng such that ¢ < a < ¢~ and ¢ <

IXD @) L e XD )| < K % XD (i) (3.14)

for all j = 1,...,p. Note that, since d; = 1, for j = 1 in (3.14) we can choose K = 1 and
oy = aj. Similarly to the proof of part (iii), this gives us

\/1% a ; a
E[Ty(a, s z/ IP(X(Ut ' <,2§j§p)dt
[Tz(a,s)] ; XM (1) \/mll @]l NES
o ) a ) a
> P(|1xY@) < X9 @) < ,2§j§p)dt
/ (\ (0 < 2 IXO0] < 2
it o f/—io
Z / (et < S | X ()| < K S 2 < j<p | dt
Sy e Vp+1’ Vp+177 =7~
a0
o0 e |IXM(m)| < C2— and
> cZ/ P Pt S —ig dm,
=t X O (m)|| < K'e i 2 < < p

ot
where the penultimate inequality follows from (3.14). As in the proof of part (iii), by

Lemma 3.4 choose Kiy > 0, 7 > 0 and uniformly bounded Borel sets .J,, C R?! with
Lebesgue measure 0 < Ko < A\71(.J,,) < oo for every m € [1,¢) such that the bounded
continuous density g, (z1,...,x,) of X(m) = XM (m) + ...+ XP)(m) fulfills

gm(z1,...,2p) > K190 >0 forall (z1,...,2p) € [-1,r] X Jp

and for every m € [1,¢). Since {Jm}mei,e) is uniformly bounded by Lemma 2.4 we are
now able to choose 0 < § < (v/p+ 1-¢*)~! < 1 such that

70‘1

1

me[l,c)
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2
Let n =c / (ry/p + 1).
Since oy > 1 there exists a constant 0 < ag < 1 such that we have (na)** < da for all
0 < a < ag. Now, choose is,i3 € Ny such that ¢ < fe~ot!l < ¢t apd 8 <
(ne=)* < ¢+l Note that

B < (776_"°)a1 < (na)™* < da < St < ot

1 -3

and, since § < T ¢

3

673

a

>
Vp+1~ p+1
Hence, we also get i — 1 < i3 and 43 + 1 < d3. As in (3.11), we further have for all
1 =19,...,13 + 1 that

C—(’L1+1) Z C_2 . . C—’L0+1 2 5C_ZO+1 > C_ZZ.

ci/al—io

— <7 (3.15)

and, since oy < 1forall j =2,...,p,

S , I . _ r IR r
cl/a]v i0 612/0] i0 (50 zo—i-l) l/a]C io (5 1o 1)1/ajc io

> > p—
Vp+1 = Vp+1 — Vp+1 p+1 (316)
C—l/a; c—1/ap c—a1/op .

> > > .

T ovp+1 T 0vp+1 T dp+1
Define the subsets {I,, : m € [1,¢)} C R? as above. Similarly to the calculations in (3.13),
using (3.15) and (3.16) we arrive at

E[Tz(a,s)] > Kc™™ <(c—i2)1‘a11 — (C—<i3+2>)1°‘11> (3.17)

Altogether, we get

a1—1

E[Ty(a,s)] > Kz (C_io)lio‘i1 — Kgpc™™ (C_io)
= K51 (C_iO)Q_i — Ks9 (C_io)w1 )

Since a7 > 1 and therefore 2 —1/ay =1+ (1 —1/aq) < 14+ a1(1 — 1/a1) = a1, we can
choose ag sufficiently small, such that

1

E[Tz(a,s)] > Ksa” a1,

for all 0 < a < ag. O
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Similarly to the proof of Lemma 3.4 in [36], we can now find a suitable covering of Z(B)

and prove the desired upper bounds.

Lemma 3.12
Let X = {X(t),t € Ry} be an operator semistable Lévy process on RY with d > 2. Then

for any Borel set B C R, we have almost surely

a1 dimH B, Zf a7 dimHB S dl,Oél Z 1, (’L)
dimy B if aq dimy B < d 1 /i
dimy Gry (B) < imyg B, if oy dimp B < dj,ap < 1, (i)

1+ ap(dimy B — ), if agdimy B > dy, o0 > ag > 1, (idd)
1+ dimg B — -, if ap dimy B > di, a1 > 1 > as. (iv)

Proof. (i) Assume oy dimy B < dj and a3 > 1. Analogously to the proof of Lemma 3.4
in [36] for the case oy dimy B < 1, it follows by Lemma 3.8 and Theorem 3.11 (i) that
dimy Z(B) < a1 dimy B almost surely.

(ii) Assume oy dimyg B < d; and a3 < 1 < d;. For v > dimy B, choose 5 > 1 such that
v =1- 8+~ > dimg B. For € € (0,1], by definition of the Hausdorff dimension, there

exists a sequence {I;};cn of intervals in R of length |I;| < e such that

o o0
B C U I, and Z |7 < 1.
i=1 i=1

Let s; = b; := |I;]; then b;/3 < s;. It follows by Lemma 3.8 and Theorem 3.11 (ii) that
Z(I;) can be covered by M; cubes C;; € A(b;) of side b; such that for every i € N we have

1 -8
<2Kisikyt (%) = Ksib’ = KL

E[M;] < 2Kjs; <E [TZ <%,81)D 3

Note that Z(B) C J;2, Ujvill Cij, where b;jv/d 4 1 is the diameter of C;;. In other words,
{Ci;} is a (ev/d + 1)-covering of X (B). By monotone convergence we have

o x o o
ZMin] =Y EMp)] <Y KL PIL=K) |L]" <K
=1 i=1 1=1 =1

Letting € — 0, i.e b; — 0 and applying Fatou’s lemma, we get

E

oo M;
E[H(X(B)] <E [liminf >3 (biv/d+ 1)7

i=1 j=1
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<liminfvd+1'E
e—0

ZMin] <Vd+1'K < o,
=1

which shows that dimg Z(B) < « almost surely. And since v > dimg B is arbitrary, we
get dimy Z(B) < dimy B almost surely.

(iii) Assume a1 dimyg B > dy and ag > 1. Since dimy B < 1, we have ag > d; = 1.
For v > dimpy B choose of, > ag such that v =1 — % + Z—’;’y > dimy B. For ¢ € (0,1]
define {I; }ien as in part (i) and let s; := |I;| and b; := |IZ\D%2 Then (b;/3)*? < s;. Again,
by Lemma 3.8 and Theorem 3.11 (iii) it follows that Z(I;) can be covered by M; cubes
Cij € A(b;) of side b; such that for every ¢ € N we have

)—1—%(1—;9

1
B < 2Ks (B[T7 (%.5)]) < 2misiit (%

1

/
_ K |L[ e e 0man),

(- L)

= Ksibi

By monotone convergence we have

s 14al(y—--) > 1oL 9 g 1y 1.9 1 > ,
E [ZMibi o ] <Y K| e e et 0T = kST L) < K.
i=1 i=1 i=1
Since v > dimpy B and of, > a9 are arbitrary, with the same arguments as in part (ii) we
get dimy Z(B) <1+ aa(dimy B — a%) almost surely.
(iv) Assume a3 dimy B > dy and as < 1. Since dimy B < 1, we have ay > d; = 1.
Let v = o' > dimpy B. For € € (0,1] define {I;};en as in part (ii) and let s; := |I;| and
b; ;= |I;|. Then b;/(3y/p+ 1) < s;. Again, by Lemma 3.8 and Theorem 3.11 (iv) it follows
that Z(1;) can be covered by M; cubes C;; € A(b;) of side b; such that for every i € N we
have

1

1 IR S aan
<2kisib; (%) T = Ksb

-2+

b; 1 _1+L
E[M;] < 26K (B |17 (%, 5:) = K |5~

%
By monotone convergence we have
i 1‘#’)/*i > _]__l_L ]__A'_,Y_L > > /
E|Y Mp, <D KL LT = KDY LY =K Y LY < K.
=1 =1 i=1 =1

Since v > dimpy B is arbitrary, we get dimy Z(B) < 1+ dimy B — a% almost surely. [
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3.3.2 Lower Bounds

In order to obtain the lower bounds of dimy Grx(B) we apply Frostman’s Lemma and
Theorem and use the relationship between the Hausdorff dimension and the capacitary

dimension (see [20, 43| for details).

Lemma 3.13
Let X = {X(t),t € Ry} be an operator semistable Lévy process on R with d > 2. Then

for any Borel set B C Ry we have almost surely

a1 dimy B, if aordimyg B < dy,a1 > 1, (1)
di B ) di B <d 1 )
dimy Gry (B) > impg B, if apdimyg B < dj,aq <1, (i)
l—l—ag(dimHB—o%), if ardimpyg B > dy, a1 > ag > 1, (i)
)

1+ dimyg B — -, if oy dimg B > dy, o1 > 1> ao. (iv

Proof. (1)-(iii) Since projections are Lipschitz continuous, we have dimy Grx (B) > dimy X (B).
Hence, the desired lower bounds in these two parts can be deduced from the dimension
result (3.8) for the range of an operator semistable process.

(ii) Choose 0 < 7 < dimy B < 1. Then by Frostman’s lemma there exists a probability

// |S_t|7 < oo, (3.18)

In order to prove dimg Grx(B) = dimg Z(B) > v almost surely, by Frostman’s theorem
[34, 43] it suffices to show that

//E[HZ(s) — Z(t)177] o(ds) o(dt) < oo. (3.19)
BJB

Let s,t € B CR;. Then

measure o on B such that

-y
H( ) ( 8 )‘ SE[ls—t|7] =ls—t[7
X(s)
Hence, (3.19) follows directly from (3.18).
(iv) Assume a1 dimyg B > dj then ag > d; = 1. Choose 1 <y < 1+ dimy B — =, then

p=v—1+ oz% < dimyg B. By Frostman’s lemma, there exists again a probability measure

o on B such that
NS
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Again, in order to verify (3.19) we split the domain of integration into two parts.

First assume that |s — ¢t| = mc™% < 1 with m € [1,¢) and i € Ny. Since d; = 1 we get

H (Xit)) ) (XZ)) ‘

1
<K : - gm(x1)dxy

i
R oc oz |Y + s —t]7
1
=K — N - gm(w1)dxy
R m e (me™t)er - |zq|Y + |s — ¢
1
<K | — — - gm(21)dz1
R ¢ @1 .|5_t|0¢1 |;C1|'Y+ ‘5—t|’7
1
<K — + gm(21)dz1
R |s —t|o|zy[v + s — t[7

-

. _
<E [(c‘zi AXO(m))? + |s — t|2> 2}

_ 1
=K-|s—t al/ T cgm(z1)dry = K - |s —t| o1 - Iy,
R |z 7+ [s — ¢ A

where gy, (1) is the density function of X (m). Let
Fo(r) =P <\X(1)(m)] < r1> = /| | gm(x1)dzq
z1|<r1

and note that by Lemma 3.2

sup sup |gm(z1)| < Kg < 0.
mée[l,c) 1 ER

This leads to
Fi, (n) <1A2Kg-r1 Vri>0and Vm € [1,¢).

We denote z = |s — t| . By using integration by parts, we deduce

o0 1
Iy = A N s Fm(drl)

ry +27
1 > oyt
= Fon(ry :| —|—/ -1 F r1)dry
[7’1/—1—,27 m(r1) 0 0 (rI’—F:ﬂ)Q m(r1)

S K/ ?”1d7’1 K/ ’)/7’1 7’1
0 (Tl + 27 (r] + Z’Y
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= K/ 281 — 3 dsq
((zs1)Y +27)

= KZ_(IY_I) . /‘oo’ysl2 dSl
o (s]+1)

§ Kz—(’y—l) — K |S _ t|7(771)(170‘711),

where the last integral is finite since v > 1. Together we get for |s —¢] <1

—
t —y1--L
(7 <Kls—t| " A = K s -t
X (¢) X(s)
For |s —t| > 1 we have
. -
s
sup E - < sup Ells—t|77| = sup [s—t|77 <1.
js—t[>1 '(X(t)> (X(S))‘ |s—t[1 | | \s—t|21’ |

Therefore it follows from the calculations above that

L0z (e) - (o)

Using Frostman’s theorem we get

-

o(ds)o(dt) < oo

dimH G?“)(<E) > Y-

Since v < 1 +dimyg B — a% was arbitrary this concludes the proof. O

3.3.3 Proof of Main Results

Theorem 3.6 now follows directly from Lemma 3.12 and Lemma 3.13. It remains to prove
the corresponding dimension result for the one-dimensional case as stated in Theorem 3.7.
For adimyg B < 1 Lemma 3.12 and 3.13 are still valid for d = 1 with o3 := . In case
adimyg B > 1 = d the proof runs analogously to Lemma 3.12 part (iv) and Lemma 3.13
part (iv).

Remark 3.14

For B = 10,1}, an alternative way to calculate dimy Grx (B) can be to examine the index
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introduced by Khoshnevisan et al. in [39], which depends on the asymptotic behavior of the
Lévy exponent of the process X. As this is subject of current research, it is not addressed

in the present paper.
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4.1 Introduction

Let X = {X(t) : t > 0} be a Lévy process on R%. More precisely, X is a stochastically
continuous process with cadlag paths and stationary and independent increments that
starts in X (0) = 0 almost surely. Then the distribution of X is uniquely determined
by the distribution of X (1) which can be an arbitrary infinitely divisible distribution. For
¢ > 1 and a linear operator E on R? we call the Lévy process X (cF, ¢)-operator semistable
if the distribution of X (1) is full, i.e. not supported on any lower dimensional hyperplane,

and
{X () }50 = {"X (D)} 120 (4.1)

where @ denotes equality of all finite-dimensional distributions and

o

1 n
E = Z (log c) B

n!

n=0

The linear operator E is referred to as the exponent of the operator semistable Lévy process
X. If (4.1) holds for all ¢ > 1, the Lévy process is called operator stable. If the exponent
E is a multiple of the identity, i.e. E = 1/« - I, where necessarily a € (0, 2], the process
X is simply called (¢'/?, ¢)-semistable. In case (4.1) holds for all ¢ > 0, the Lévy process
is called operator stable with exponent E, or a-stable in case F = 1/« - I, where o = 2
refers to the Brownian motion case.

In the past, efforts have been made to generate results on exact Hausdorff measure functions
for the range of stable Lévy processes. The case of Brownian motion was studied by
Ciesielski and Taylor |7, 52|. An exact Hausdorff measure function for the range of an a-
stable Lévy process was formulated by Taylor [53]. It turned out that the gauge function
depends on whether the Lebesgue density of X (1) is positive or zero in the origin, which by
Taylor were called stable processes of type A or type B, respectively. Furthermore, Pruitt
and Taylor [48] studied sample path properties of Lévy processes with independent stable
components, including exact Hausdorff measures. Based on their work, Hou and Ying [30]
determined an exact Hausdorff measure function for the range of certain operator stable
Lévy process of type A with diagonal exponent E. They emphasize without proof that
similar methods also lead to an exact Hausdorff measure function for type B, see Remark

1 in [30]. For an overview on general dimension results for Lévy processes see [38] and [59].
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Our aim is to generalize the results of Hou and Ying in two respects. Firstly, we consider
the more general class of operator semistable Lévy process with the weaker discrete scaling
(4.1) and, secondly, we will relax the assumption that the exponent E should be diagonal
and show that it suffices to require diagonality for a principal component E7; see Section
2.2 for details. The Hausdorff dimension for the range and the graph of operator semistable
Lévy processes have recently been determined in [36] and [56], respectively. The special
case of the limit process in subsequent coin-tossing games of the famous St. Petersburg
paradox has been studied in [37] in detail.

The methods applied in this paper are similar to the ones used in [53] and [30]. The paper
is structured as follows. Section 2.1 gives the definition of an exact Hausdorff measure
function for an arbitrary Borel set ' C R?%. In Section 2.2 we recall spectral decomposi-
tion results as stated in [45] which enable us to decompose the operator semistable Lévy
process X according to the distinct real parts of the eigenvalues of the exponent E. Then,
Section 2.3 contains first results for the expected sojourn times of operator semistable Lévy
processes. The main results are stated and proven in Section 3 and 4, respectively.
Throughout this paper, K denotes an unspecified positive and finite constant that can

vary in each occurrence, whereas fixed constants will be denoted by K, C1, Ko, Cs, etc.

4.2 Preliminaries

4.2.1 Exact Hausdorff measure functions

A function ¢ is said to belong to the class ® if there exists a constant § > 0 such that ¢
is right-continuous and increasing on the open interval (0,9), ¢(0+) = 0 and fulfills the
doubling property, i.e. there exists a constant K7 > 0 such that

gif(is)) <K, forall0<s< %5. (4.2)

For a function ¢ € ® the ¢-Hausdorff measure of an arbitrary Borel set ' C R? is then
defined as

6 — m(F) = liminf {Z«sum FC PRl < } (4.3)
=1

i=1
where |F| = sup{||lz — y|| : 2,y € F} denotes the diameter of a set F C R? and || - | is

the Euclidean norm. The function ¢ € ® is called an exact Hausdorff measure function for
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FCR?if 0 < ¢ —m(F) < co. We emphasize that all the gauge functions ¢ appearing in
this paper belong to the class ®.

For an arbitrary Borel measure p on R% and a function ¢ € ®, the upper ¢-density of u at
x € R% is defined as

ﬁfj = 1iI;1§(1)1p W, (4.4)

where B(x,r) denotes the closed ball with radius r centered at x. The following lemma is

similar to Lemma 2.1 in [30] and is a direct consequence of the results in [49].

Lemma 4.1
For a given ¢ € ®, there exists a positive constant Ko such that for any Borel measure u

on R? and every Borel set F C R, we have

6= m(F) > K p(F) inf Dq}() (45)

4.2.2 Spectral decomposition

Let X be a (c¥,c)-operator semistable Lévy process. Factor the minimal polynomial of
E into q1(z) - ... - gp(x) where all roots of ¢; have real parts equal to a; and a; # a; for
i # j. Without loss of generality, one can additionally assume that a; < a; for ¢ < j.
Note that a; > 3 for all j € {1,...p} by Theorem 7.1.10 in [45]. Define V; = Ker(g;(E)).
According to Theorem 2.1.14 in [45] Vi1 & --- & V], is then a direct sum decomposition of
R? into E invariant subspaces. In an appropriate basis, E is then block-diagonal and we
may write ' = E; @ --- @ I, where E; : V; — V; and every eigenvalue of F; has real part
equal to aj. Especially, every V; is an Ej-invariant subspace of dimension d; = dimV}
and d = dy + ... +d,. Write X(t) = XM (t) + ... + XP)(t) with respect to this direct
sum decomposition, where by Lemma 7.1.17 in [45], XU) ={X0)(#),t > 0} is a (¢, ¢)-
operator semistable Lévy process on Vj. We can now choose an inner product (-,-) on
R? such that the Vj,j € {1,...,p}, are mutually orthogonal and throughout this paper
we will let ||lz|| = \/(z,2) be the associated Euclidean norm. In particular we have for
t =c"m > 0 that

d T T T
IXO1 = [l X (m)]? = |7 XD (m)|> + ...+ [P X P (m)| 2, (4.6)

with r € Z and m € [1,¢).
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Throughout this paper, we will denote by a;; = 1/a; the reciprocals of the real parts of the
eigenvalues of the exponent E. We assume that the process X has no Gaussian component
in which case 0 < o, < ... < a1 < 2. Note that in this paper, we will only consider operator
semistable Lévy processes with diagonal principal exponent, i.e. By = afl -I% where I%
denotes the identity operator on the dj-dimensional subspace Vi. Since V; = R% we
may consider X(V) as an operator semistable Lévy process on R with diagonal exponent
Ey = afl - I% and identity matrix I9 € R%*% Unless otherwise stated, throughout this
paper there will be no restriction on all the other spectral components j = 2,...,p, i.e.
X0) is an arbitrary (¢, ¢)-operator semistable Lévy process on V; =2 R% | where the real
part of any eigenvalue of the exponent E; is equal to a; = 04]-_1 € (0,2), but in general we

do not assume that E; is diagonal for j = 2,...,p.

4.2.3 Expected sojourn times

For a Lévy process X = {X(¢t) : t > 0} let

T(as) = /0 Lo (X (0)dr,

be the sojourn time up to time s > 0 in the closed ball B(0,a) with radius a > 0 and
centered at the origin. We now determine sharp upper and lower bounds for the expected
sojourn times E[T'(a,s)] of an operator semistable Lévy process with diagonal exponent
E. Although, in this paper we only need the result for a; < dp, for completeness we also

include the result for oy > d;.

Lemma 4.2
Let X be a (P, c)-operator semistable Lévy process on R with diagonal principal exponent
E;.

(i) If a1 < dy, there exist constants Ky, Ks > 0 such that for all 0 < a < 1 and
a® <s<1,
Kya*t <E[T(a,s)] < Ksa®!.

(i) If d > 2 and oy > dy then di = 1 and we further assume that Es is diagonal. Then
there exist constants Kg, K7 > 0 such that for oll a > 0 small enough, say 0 < a < ayp,
and all a*? < s <1,

Kea” < E[T(a,s)] < Kra”,
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where p =1+ az(1 —1/ay).

Proof. The assertions can be proven by only slightly varying the proof of Theorem 2.6 in
[36] and using the fact that for £ = a;l - I% where I% € R%*9% denotes the identity

operator on Vj, we have [|t¥ || = t1/% for all ¢ > 0. O

4.3 Main Result

Let a1 and dy be as defined in Section 4.2.2 by means of the spectral decomposition. Asin
[30] we were only able to fully solve the question of exact Hausdorff measures for the range
of operator semistable Lévy processes in the case a; < d; but also give partial results for
the case a1 > di. We will consider operator semistable Lévy processes of type A and type
B, simultaneously. If a1 < dy and X is of type B we will need the following assumption

on the tail asymptotic of sojourn times.

Assumption 4.3

Let X be a (cE, c)-operator semistable Lévy process of type B on R? with diagonal principal
exponent E1 and 0 < a1 < 1. We suppose that there exist constants Kg, \g > 0 such that
for all A\ > X

P (T(a,1) > Aa®) < exp (—Kgxﬁ) .

Note that if X is an operator stable Lévy process of type B with o1 < d; and diagonal
principal exponent E, then the projection of X(!) onto any coordinate-axis is a stable
subordinator and thus necessarily a; < 1. In this case it is known that Assumption
4.3 holds true by Lemma 6 in [53] or Lemma 5.2 in [48]. In our more general operator
semistable case it is an open question whether the same tail asymptotic of the sojourn
times holds true. Hence in case of type B we will need to suppose that Assumption 4.3

holds true. The following theorem states the main result of this paper.

Theorem 4.4
Let X be a (cE, c)-operator semistable Lévy process on R® with diagonal principal exponent
Es.

(i) If X is of type A and 0 < oy < min{2,d;} then

1
¢(a) = a“* loglog —
a
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1s an exact Hausdorff measure function for almost all sample paths of X over the

interval [0, 1].

(ii) If X is of type B and 0 < a1 < 1, then, given Assumption 4.3,

1 1—aq
$(a) = a™ (log log a>

is an ezact Haousdorff measure function for almost all sample paths of X over the
interval [0, 1].

4.4 Proof

To prove our main result we will show that the asserted ¢-Hausdorff measures of the range

of X are both, greater than zero and less than infinity.

4.4.1 Greater than zero

The following tail asymptotic of the sojourn times is true for any Lévy process and will be
used if X is of type A. The proof can be found in Lemma 3.2 of Hou and Ying [30] and

uses the Markov inequality.

Lemma 4.5

Let X be a Lévy process on RE. Then for all0 < § <1, A > 0 and a > 0, we have that

P(T(a,1) > XE[T(2a,1)]) < !

5 exp (=ON). (4.7)

Remark 4.6
Note that (4.7) is only meaningful if X > 1 and in this case the right-hand side takes it
minimum at 6 = 1 — 1/X. Thus for X\ > 1 the inequality (4.7) becomes strongest in the

form

P(T(a,1) > AE[T'(2a,1)]) < Aexp(l — \).

Note further that for an operator semistable Lévy process of type B with diagonal principal
exponent By and oy < 1 by Lemma 2.2(i) our Assumption 4.3 is stronger than (4.7) for

large values of .
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Lemma 4.7

Let X be a (¢, c)-operator semistable Lévy process on R with diagonal principal exponent
Ey.

(i) If X is of type A and 0 < oy < min{2,d;} then for
1
¢(a) = a“*loglog .

there exists a positive constant Ko1 such that for all tg € [0,1] we have almost surely

a—0

: 1ot

lim sup ——~ / 1B(X(to),a) (X(t)) dt < Kgl. (48)
o(a) Jo

(ii) If X is of type B and 0 < a1 < 1 then, given Assumption 4.3, for

1 1—aq
#(a) = a™ <log log a>

there exists a positive constant Koo such that for all tg € [0,1] we have almost surely

1 1
limsup — - 1 (X (1)) dt < Kga. 4.9
s /O B(X(to),a) (X (1)) 92 (4.9)

Proof. Let ty € [0,1]. Define

X(to)—X(tQ—t), if 0 <t <y,

X(t), if t > to.

Using a change of variable by setting u :=1tg —t and v :=t — tp we get

1
/0 L (o)) (X (8))
to 1
—/0 1B(X(t0),a)(X(t))dt+/t LB(x(ty),a) (X (1))dt
0

0 1-to
=— / LB(X (t0),a) (X (to — u))du + /0 1B(X (to),a) (X (v + to) )dv
to

to 1—to
_ /0 1 5(0.0) (Y (1))l + /0 0. (X (0 4+ to) — X (to))dv
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1 1
< /0 0.0 (Y (u))du + /0 Lo (X (0 + to) — X (t0))do.

Note that the processes (X (¢))i>0, (Y (£))i>0 and (X (¢t + to) — X (t0))e>0 have the same
finite-dimensional distributions. Hence, it is sufficient to show that there exists a constant

Ky > 0 such that

: T(a,1) Ko\
(e S <)

For X of type A, 0 < @y < min{2,d;} and a > 0 small enough, we have by Lemma 4.2(i)
and Lemma 4.5 that

Ky 1
P (T(a, 1) > TTI)\CL 1) < 5 OXP (—=oN)

for all 0 € (0,1) and all A > 0. Now choose A = %log log % Then for a > 0 small enough

2K, 1 1 1\ 2
P <T(a, 1) > T4a°‘1 loglog ) < —- (log ) (4.10)
a a

STz
For n € N define a,, := 27" and E, := {T'(an,1) > 254 - a2 loglog i} By (4.10) we get
for sufficiently large N € N

0o 1 0o 1 -2 (log 2)_2 x4
< — — = —— — .
ZP(En)—l_(; Z(logan> 1—4 Zn2<oo
n=N n=N n=N

Applying the Borel-Cantelli lemma, for almost all w there exists an integer N(w) such that
the event E,, does not occur for n > N(w). For a > 0 small enough, we can find ng > N(w)

such that ay,,+1 < a < ay, which gives us

1
T(a) < T(an,) _ 2K4ap} loglog ag K2t |

a®tloglog 2 — apty 1 loglog % ~ da,, . loglog i )

For Ko := K4 22791 /§ this concludes the proof of part (i).

Now let X be of type B and 0 < a1 < 1. By Assumption 4.3 there exist positive constants
Kg, Ao > 0 such that for all A > Ag

1
P(T(a,1) > Aa™) < exp <—K8)\m) .

Put A = (-2 -loglog & al. For all a > 0 sufficiently small, such that A > \g, we then
Ksg a

PT(1)>21111_M°‘1< K 2111
a, K oglog — a < exp 3 K oglog —

get
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1 1\ 2
= exp (—210g10g ) = <10g > .
a a

1—
Let a, = 27" and E, = {T(an,l) > (Kls -loglog é) * -ao‘l}. Then for N € N

n

sufficiently large

i P(E,) < i (log1>2 = (log2) 2 i LS < 00

n=N v n=N tn -y n?
By Borel Cantelli, for almost all w there exists an integer N(w) such that F, does not
occur for n > N(w). If apt1 < a < a, and n > N(w)

T(a) < T(an)

-1
)1—a1 — <2K§‘1 :

a1 1 l-a; —
Ayl (log log E)

Setting Kgo :=4 - (Kg)o‘r1 concludes the proof. O

a™ (log log é

Theorem 4.8
Let X be a (¢, c)-operator semistable Lévy process on R® with diagonal principal exponent

E;.
(i) If X is of type A and 0 < ag < min{2,d;} then for
¢(a) = a™ log log%
we have ¢ —m(X([0,1])) > 0 almost surely.

(ii) If X is of type B and 0 < oy < 1 then, given Assumption 4.3, for

1 1—aq
¢(a) = a™ (log log >
a
we have ¢ —m(X([0,1])) > 0 almost surely.

Proof. For all subsets A C R¢ define the random Borel measure j as

1
u(A) = /0 La(X(8)dt

This gives us p(X([0,1])) = Lfor allw € Q. Let F = {X(to) : to € [0,1] and (4.8) holds} C
X ([0,1]). By Tonelli’s theorem we have almost surely

1 1
p(F) :/o 1F(X(t))dt:/0 LX (t0) : to€[0,1] and (4.8) holds} (X (t))dt
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1 rl
:/o /0 L{x(to) - (4.8) hotas) (X (t))dto dt

1 1 1
:/0 /0 L{X (t0) : (4.8) holds} (X (t))dt dtOZ/O ldty = 1.

Applying Lemma 4.1 and Lemma 4.7 and using the fact that ¢ is ultimately increasing,

we have that almost surely

-1
¢ —m(F) > Ko pu(F) inf (limsup /L(B()((to),@)))

X (to)eF \ a—oo ¢(261
. . u(B(X(to>,a)>)‘1 Ky
>Ko-1- inf limsup ——————= > > 0.
= X(to)eF< P #(2a ~ max{Ko1, Ko2}
Since F' C X ([0, 1]) this concludes the proof. O
Remark 4.9
Similarly, if X is of type A, d > 2 and oy > dy = 1 then for
1
¢(a) = a”loglog — (4.11)
a

with p = 1+ as(l — 1/a1) we have ¢ — m(X([0,1])) > 0 almost surely. This follows
analogously to the proof of Theorem 4.8(i) using Lemma 4.2(ii) instead of part (i) in
the proof of Lemma 4.7. Unfortunately, in this case we were not able to show that ¢ —
m(X([0,1])) < oo.

4.4.2 Less than infinity

Lemma 4.10
Let X be a (¢, c)-operator semistable Lévy process on R with diagonal principal exponent

Ey.

(i) If X is of type A, then there exists a constant K19 > 0 such that for all 0 < X\ < 1
and 0 <7 <1

P < sup || X ()] < 7'6“11)\> > exp (—KipA™). (4.12)

0<t<r
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(i) If X is of type B and 0 < ay < 1, then there exist constants K11, Ao > 0 such that
forall0< A< Xand <1<

1 [}
IP’( sup || X(t)] < 7‘0‘1)\> > exp (—Kll)\fﬁ> .

0<t<r

Proof. (i) Let p(t,-) be the density function of X (¢), ¢ > 0. Since the process is of type A,
the density function p(1,-) is bounded and continuous and p(1,0) > 0. Hence, we can find
§,m > 0 such that for all z € R? with ||z|| < 2§ we have that p(1,z) > 7. Then for ||z|| < §
this leads to

P(|X(1) + 2| < 6) = /Rd L{jy+a)<s} P(L, y)dy

oo oo
2/ "‘/_wl{y1+m|<ja}""'1{yd+wd<jg}p(1’y) dyr -+~ dya

—0o0

26 28
B / ) '/25 Lyral<ny " Higaroa<2oy PLY) dyr - dya

v

20
20 28
77/26-../261{y1+x1<\;33} e 1{\yd+xd|<%} dy1'~dyd

ol G (o)) () () e

Furthermore, since the process X has cadlag paths, it is almost surely bounded on finite

intervals. Hence, by tightness we can find r > 1 large enough such that

1
P ( sup || X(¢)]| >r— (5> < 56’2.

0<t<1

Altogether, we get for all ||z] <

P ( sup X (8) + 2| < r, [ X(1) + 2] < 5)
1

0<t<

—PIX(W) +2] <)~ P sup X0+l 2 |X(1) +0] <)

>C’2—IP)<sup I X (t) + || >r>

0<t<1

1
>C’2—IP)<sup || X (2)]| >r—(5> > 502.

0<t<1



EXACT HAUSDORFF MEASURE FUNCTIONS 65

Let £ € N. By induction, it now follows from the properties of a Lévy process that

P ( sup [[X(8)[| < ?“) >P <OS<12£I<; X @I < X R < 5)

0<t<k

> P ( sup | X(@)| <r [[X(K)|| <8, sup [ X(@)||<r[|X(E-1)|< 5)
k 0<t<k—1

k—1<t<

sup [ X(8)[| <r | X(k=1)] < 5)
0<t<k-—-1

_ / / P ( sup  [|1X(0) = X(k—1) +all < | X(k) = X(k—1) + 2| < 5)
0.0 tleli<o)

k—1<t<k

(z,y)

dP
( sup IIX(t)7||X(k1)|I>
0<t<k—1

-/ P(sm>uxw+wu<nwwn+wW<g
0,) H{llall<s}  \k—1<t<k
dP (z,y)
( sup ||X(t>,||X(k:—1)||>
0<t<k—1

>

N =

1 Nk
Cy P ( sup || X@)| <r || X(k=1)| < 5) > (502) = exp (—klog (202_1)) .
0<t<k—1

For uw > 1 choose k € N with £ < u < k+ 1. Then for all » > 1 large enough we have

P(mm|xuw<r)zp( wp|muﬂ<r>

0<t<u 0<t<k+1

> exp (—(k+1)log (2C5 1)) = exp <—k: : % -log (2 C2l)>

> exp (—u - 2log (2 C’;l)) =:exp (—C3 u),
where C3 > 0 is a constant independent from u. Now let 0 < 7 < 1. Then there exists
an i € Ng such that ¢ () < 7 < ¢~ and for 0 < A < 1 there exists a j € N such that
=2 < A" < @1 Using the fact that for diagonal E; we have ||s¥| < s'/®1 for
0 < s < 1, this leads us to

i+1
P < sup [|X (1) < T$A> > P ( sup | X(8)] < c‘jl)\)

0<t<t 0<t<c—?
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o il i+ it
_P< sup [ X (e < e A) ZP( T P A)

0<t<ci 0<t<cy

i—1
SP( sup [[X@O)| <A >P( sup [X(@)| <
0<t<cs 0<t<cd

>exp (—C3- /) > exp (—K1pA™ ™),
where K :=C5-c? - r™

(ii) Let 0 < 7 < 1. Then there exists an i; € Ny with ¢~ (1+1) < 7 < ¢~ We have

i1+1
P < sup | X(8)] < Th) >P ( sup || X ()] < c‘lcu>

0<t<r 0<t<c

) i1+1
_p ( sup | X(c 1) < clm) >p < sup X ()] < cim) — g0,

0<t<1 0<t<1

66

where the last inequality follows from the fact that for diagonal E; we have ||m|? < m!/®

for all m € (0,1]. Furthermore for all £ € N\ {1} we can find a j € Ny such that

¢t < k=! < ¢ 7. Since X has independent and stationary increments we get

k

— 1 L
g\ >P ﬂ sup || X(t) — X <Z )H <k7leTar
i=1 | SE<t<i k
k 1
= H]P’ sup || X(1)]| < k7te e A
i1 \0<t<k-!

Vv

P sup [|X(t)] <cUHDe A
0<t<ci

k
= P(sup 1X(c7t)|| < c e o 1)\)}
0<t<1
> [E (s 100 < A)}
0<t<1
2
- P(sup X ()] < VG mar ) )]
0<t<1
L_q 1 - L k
2 P sup || X(t)|| <ker "¢ “ara :[ (k”‘l c alA)] :
0<t<1
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Define h(A) = log g(A). Then
h\) > k-h (kali‘lc‘?lm) .

11
Furthermore define the sequence (zy)ken as T = T , then z11/z — 1 and 2 — 0
as k — oo. We get

a1 ]

1

h(xg) > k- h(1) = ™o -z h(1) > 2, 1 - (1),

Since for all k¥ € N we have

g(1) > [P (s 1x(0l< k)]k

0<t<1

there exists a kg € N such that the right-hand-side is strictly positive for all k > ko, i.e.
g(1) > 0. Hence, there exists a finite constant K > 0 such that h(1) = logg(l) > —K.
Since h is non-increasing, there is a Ag > 0 such that for 0 < A < A\g with 2511 < A < g,

and k > kg we have

] 531

h(A) = hakgr) = (we1) 00 - h(1) = =K - (zg41) 170

forall 0 < A < Ag. O

Lemma 4.11
Let X be a (¢, c)-operator semistable Lévy process on R® with diagonal principal exponent

FEy.

(i) For the principal component j = 1 there exists a constant K12 > 0 such that for all
1 €7 and all a > 0 we have

i (”X(l)(ai)u > ac—a%) =P(|XDQ)| > a) < K12 ™. (4.13)
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(it) For all other components j =2,...,p and arbitrary &' > 0, 6; € (0, aj_l) there exists
a constant Kjo > 0 such that for all i € Z and all a > ag > 1 we have

. . —1 1 5. /
P <||X(j)(c_’)|| > ac @ 511)) < Kjp a= (@), (4.14)

Proof. (i) Let v be a (c'/*1, ¢)-semistable law on R. One can show (see the Remarks in

section 3 of [44]) that for all ¢ > 0

v({lz] > t}) =7 f (1), (4.15)

where f is a bounded, asymptotically log-periodic function. Let X;,..., Xy, denote the
marginals of X(1(1),1.e. X; = (X(1)(1), ¢;) with canonical basis vector e;, and let X;(t) =
(XM (t), ;) be the Lévy process generated by X;. Since

Xj(ct) = (XD(et), e5) = (P XD (1), ¢5) = (XD (1), ¢5) = /1 X (t)

the distributions of the marginals X; are (c!/*, c)-semistable on R. Hence, by (4.15) there

exists a finite constant C7 > 0 such that
P(|X;| >a) <Cia™* forall a>0,j5=1,...,d;.
Since | XD ()] < K- |XD(1)[l = K - 9L, |X;], we further get

d1 dl
a a
P(|,X<1>(1)H>a)gp SoIxl> | <P U{|ij>dlK}
i=1 i=1

d1 —Q1
a a
<§:IP’ Xil>— )< [— =: K9 a™,
= (’ il dlK)— 1(d1K> 12

which concludes the proof of (i).
(ii) By Lemma 2.1 in [36] we have for any r € [1,¢)

XD e )| = [l P XD (r)]| < Jle™ | XD ()]
(4.16)
. . —i(L =5 .
< K- X0 @) = K ¢ @ ) x 0 )
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and hence we get
. . (L5 .
P (HX@)(C—Z)H > ac & 5]>> <P (HX(J)(I)H > K—la) . (4.17)
As in part (i), for the marginals X7,..., Xy, of X0)(1), ie. X = (XU)(1),e;) with

canonical basis vector ey, we get

d;
P (HX<J'>(1)H > K—1a> < ;P(\Xﬂ > Cha) . (4.18)

In view of Theorem 8.2.1 in [45], an application of Theorem 6.3.25(a) in [45] gives

. 1 s /

P (|X)| > Caa) = P (|<X<J>(1), ex)| > cza) < COypa %0 = Ogpa= @9 (4.19)
for all a > ap and some ag > 1 independent of k = 1,...,d;. Now, (4.14) follows directly
from (4.17)—(4.19). O
Lemma 4.12

Let X be a (cE, c)-operator semistable Lévy process on R? with diagonal principal exponent
E,. Given ¢ € (0,1), 01 := 0 and §; € (0, a;l) for j = 2,... p, there exists a constant
ag > 0 such that for all a > ag and all i € Ny we have

. (=5
. P (X0 >0 ) <o <
te[0,c77]

Proof. Using (4.16) in case j = 2,...,p and the semistability in case j = 1, we get

. (L5 ) J 7 S
sup P <HX(])(75)H > ac & 6J)> < sup sup P <\|X(j)(7"ck)H > ac = (m)
t€[0,c77] r€[l,c) k>i

k(L _s. } s
< sup sup P (K-c k(a]. 6J)H )f(])(r)H > ac (a5 5J)>
rell,c) k>i

. a
= sup P(|XD)|>~—).
re(l,c) ( K>

Since (XU (7“))7,6[1 .
follows by Prohorov’s theorem that for € € (0, 1) there exists ag > 0 such that for all a > ag

) is stochastically continuous and hence weakly relatively compact, it

we have

- a
sup P (| XD >—=) <e<1,
re(l,e) ( K)

concluding the proof. O
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Lemma 4.13

Let X be a (¢, c)-operator semistable Lévy process on R with diagonal principal exponent
Ei. Gwen e € (0,1), 61 := 0 and §; € (0, aj_l) for j = 2,...,p, there exists a constant
ag > 0 such that for all a > ag and all i € Ny we have

P sup [XO(0)] > 2ac g-ﬁ»(uch—mm ) 5a>>.
te[0,c77] 1—¢

Proof. For N € Nand n = 1,..., N define V;, y := XD (kN) — XU (kN ), where kY :=
N ¢%. Then Yy ,..., Yy are independent and > p_, Vi n = X(j)(k,]y). By Lemma, 4.12
for any € € (0,1) there exists a constant ag > 0 such that for all a > ag we have

N n 1
s P(HZYk,N—ZYk,NH >ac ﬂ)
k=1

0<n<N b—1

. . [P T SR
= s P (IX002) - X)) > e 5 )

0<n<N

. - 1 5.
— o ﬂ”(uxwkﬁ—kmwc = %))
0<n<N

j : [T S
= sup P (||X(y) (1=2) e )| > ac (3 63))
0<n<N
() —i(5:=0))
< sup P(IXYV(E)] >ac <e<l.
te[0,c77

Using the Lévy-Ottaviani inequality (see Lemma 3.21 in [5]) and the fact that (X ) (t))s0

has right-continuous paths, it follows that

te[0,c77

G) —i(5-—0;)
P sup [ XY(O)| > 2ac "

. (5
— lim IP’( sup [ XOEN)| > 2ac " 5”)

N—o00 0<n<N
1 ' i)
< - (]) N @ J
< Jim P (X0 > a5 )
1 . . (L5
=7—:F <|!X(”(c’)|| > ac % %)) :

concluding the proof. O
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For a Lévy process X = {X(¢) : t > 0} define the first exit time from the closed ball
B(0,a)
Pa)=inf{t >0: || X#)| > a};

and the maximum displacement process for ¢ > 0 as

M(t) = sup [[X(s)]|
0<s<t
Note that for a,r > 0 the first exit time P(a) and the maximum displacement process

M (r) are related by
{P(a) <r}={M(r) > a}. (4.20)

Lemma 4.14
Let X be a (¢, c)-operator semistable Lévy process on R with diagonal principal exponent

Ey. Then for

a® loglog %, if X is of type A and 0 < a1 < dy
o(a) = (421)

—a

a™ (log log %)1 , if X is of type B and 0 < a1 < 1

there exist constants K13, K14,7 > 0 such that

(2 <) o).

Jor all 0 < ~v <~ and § > ~/6.

Proof. First assume that X is of type A and a; € (0, min{dy, 2}), thus ¢(a) = a** log log %
By regular variation techniques, it can be shown that for a; < d; the function v, defined

by (s) = s/ (loglog 1/s)~1/*1, is asymptotically inverse to ¢ in the sense that
o(YP(s)) ~sass—=0+ and Y(¢(a)) ~aasa—0+. (4.23)

Owing to the fact that {M(t) > a} = {P(a) < t}, instead of estimating the probability

that i((g)) remains small, we will now estimate the probability that %(tt)) remains large.

Therefore, define a sequence t; = exp(—k?), k > 1. Then for all k there exists an i, € Ny
such that ¢~ (&t < ¢, < ¢~ Define

M'(ty) = sup || X(t) = X (trr1)ll

L1 <t<tg



ExacT HAUSDORFF MEASURE FUNCTIONS 72

and Cy := (3K19)/*, where Ky is the constant in Lemma 4.10 (a). Furthermore, define

o (M0 (8 ) e (0

Then

sup || X (2)|| >2C’4¢(tk)}
0<t<ty

{ sup [ X (#)[| > 204¢(tk)} U{ sup [l X(0)]| > 204¢(tk)}

0<t<tp41 thp1 <t<ty
- sup || X (@) > 2041/1(tk)}
0<t<tp41
U { sup [ X () = X (trr) | + 1 X (trr) ]| > 2C4w(tk)}
b1 S<t<tp
c

0<t<tpy1

{ sup [ X (¢)[| > 2C4¢(tk)} UL X (Ers1) || > Catp(tr)}

U { sup  ||X () — X (tgt1)]| > 041/1(%)}

tpy1 <t<ty

c { sup || X (#)[| > Cﬂ/}@k)} U{ sup | X(#) = X (try0)]| > Cw(tk)}

0<t<tg4+1 tot1 St<tp
= H, UGj.
And for all m € N this gives us
2m 2m 2m
k=m-+1 k=m-+1 k=m+1

Note that the sets (G)ren are pairwise independent. Set P(Gy) = 1 —pg and P(Hy) = gx.
Applying Lemma 4.10 (a) we have for sufficiently large k

pr =P (M'(tx) < Cat(tr))

=P ( sup || X () — X(trs1)]| < C4¢(tk)>

L1 <t<tg
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=P ( sup || X(@®)| < C4¢(tk>>

0<t<tp—tk+1

1

1 1\ o1
> JP’( sup [|X(¢)]| < Cu -t (10%10% t) 1)
k

0<t<ty

1

> exp <—K10 (Ci (g 1og<1/tk>>a1)_”>

1 1
= exp (—Km . 3K -log log tk)

1 1 1
= exp <—3loglog t> = exp (—3 log k:2> =k"3.
k

-1 e (O,aj_l) for

1
o (e5]

win

On the other hand, choosing ¢’ € (0,ap), 61 := 0 and 0; =
j=2,...,p, then for sufficiently large k € N we get by Lemma 4.13 and Lemma 4.11

=P ( sup [ X(1)]| > Cw(tk))

0<t<tit

1 1
. Cy-t." (loglog -) a1
sup [ XD (t)]| > —* =
0<t<ti1 p

IA
M=
=

<.
Il
-

Co ™ loglog 1) 13,3
: 4t Uoglogzr) “1ipy,”  Briy
sup || X9 (1)] > -

0<t<tr11 p

I
pg@

<.
Il
—_

1 1 B .
~ar (570 (G5 =6)

1
, Cy -t} <loglog i) b
sup (| XD ()] > g =

0<t<c ih+1 p

IA
NE
=

<.
I
—

1 1 1 1
Cy-t)! (loglogi> T e e

2p

—ik+1(o%j—5j)

KO P || X0 ()| >

NE

<.
Il
_

IN

P L _ 1 (=)
>R (1 (oo ) )
j=1
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4 /
aj—8 5 ap—3§

p
Z (tk tr+1loglog ;- ) o SK-(téltkHloglogi) o

IN

apfé/ ozpf(sl

=K - (exp (k* — (k+1)?) -log (k*)) " *1 = K - (exp(—2k — 1) - log (k*)) 1

< exp(—Cy1 k).

Hence, there exists mg € N large enough such that for all m > mg

]P’( 2ﬂm Dk>§IP< ﬁn Gk>+ Zf: P(H})

k=m+1 k=m+1 k=m+1
2m 2m
= ] a-px Z g < H exp(—pr) + >, exp(—Cur k)
k=m-+1 k=m+1 k=m+1 k=m+1
2m
< exp <— Z pk> + Csexp(—Cy1 m)
k=m-+1

IN

2m
< exp <— Z k™ i) +C56Xp( 041 m)

exp | — Z (2m)~ 3) + Csexp(—Cq1m)
k=m+1

i
N———

= exp (—2_§m%> + Csexp(—Cq1m) < exp (—m
Define
ap = 2C)(ty) = 2Cy (log k2) a1 - exp ( /-62/041) )

Then for mq sufficiently large one can show that as,, > a2, for all m > mg. By (4.23)
and the properties of ¢, there now exists a positive constant K13 > 0 such that for k large

enough
tg ~ > 2K
k ¢<2C > 13- ¢(ak).
Therefore, using {M (t) > a} = {P(a) < t}, we have for m > mg sufficiently large,

2m 2m
IP’( ﬂ Dk> = IP’( ﬂ {M(ty) > 204¢(tk)}>

k=m+1 k=m+1
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2m 2m
=P ( | {PCw(t)) < tﬁ) >P ( M {Pla) < K13¢(ak)}>

k=m+1 k=m+1

P(a)
>P sup < Kiz].
<a2m§a§am+1 (b(a) )

Let 70 > 0 be small enough such that vy < exp(—=5m3/a1). Let 0 < v < 79, 6 > v/% and
m be the largest integer less than /—%'log~y. Then

v < exp(=bm?/an) < ap, < azm < At

= 204 (og ((m + 1) ™ -exp (210

a1

<20y (log ((m + 1)2))—1/a1 - exp <0q51;)1g7>

— 20, (log ((m +1)2)) /" .41/

<20y (log log (7_“1/5))71/% AME <A <5,

and hence

2m
(o) () enl

k=m+1
< exp (—K - (m + 1)i> < exp <—K. <_O;110g7)515>
< exp (-Ku - (—logfy)%),

which concludes the proof for X of type A and 0 < a1 < 2.

Now assume that X is of type B and 0 < a; < 1. Then ¢(a) = a™* (log log %)1_0‘1. Define
P(s) = st/ (log log %)7% Then ¢ and 1 are asymptotically inverse to each other as
a,s — 0 in the same sense as in (4.23). Again consider the sequence t;, = exp(—k?),
k > 1. For all k there exists an i, € N such that ¢~ (*%*1) < ¢, < ¢~%. Furthermore, define

Cp := (3K11)1 /1 where K1 is as in Lemma 4.10 (b), and let

Dy = {Aj((tt:)) > 2.06}, G = {]\Z;i’;) > 06} and Hj, := {% > 06}.




EXACT HAUSDORFF MEASURE FUNCTIONS 76

With the same methods as before one can show that for all m € N
2m 2m 2m
k=m+1 k=m+1 k=m+1

Set P(Gy) = 1 — px and P(Hy) = qx. Applying Lemma 4.10(ii), we have for sufficiently

large k
pe =P ( sup || X(t) = X (try1)l| > C6¢(tk)>
U1 <t<ty
l—aq
1\ o
>P| sup [|X(¢)| <Cs- ti/al <10glog ) '
0<t<ty, tk
__oag
_lmag 1-ay
> exp <—K11 (CG (loglog(1/ty)) = > )
Kn 1 _2
exp< 3K oglog tk) 3
On the other hand, choosing &' € (0,¢p), 01 := 0 and §; = i — a% € (0,04;1) for

j=2,...,p, similarly to type A for sufficiently large k¥ € N we get by Lemma 4.13 and

Lemma 4.11

l—ag

1
ay 1\~ &
Co -ty (loglog ¢-) =1

P| sup [[X9)] >
0<t<ti1 p

qr <

-

<
I
—_

1 Ly () Lo,

4 Cs -t (loglog L) a1 ¢, % ¢
sup HX(j)(t)H > k ( tk) k+1 k+1

0<t<tp41 p

I
Atg“

<
I
—-

11—«
! b (G5 70) (1) (2 —65)
-C J

. Cﬁ'tg (10g10gi)_ o by, 1j7
sup  [|XO)(8)]| > & .

0<t<c kt1 p

IN
=

<
Il
-

1—
1 a1 1 1

Ce - t,:il <loglog i)i o t;ﬁ cc °1-c

—ik+1(fj—5j)

K(j).[[D X(j) —igt1
|XO (e > >

<
Il
-

-
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IN

P . 1 _l-og 1 _(Oéj_‘;/)
Z KU . <t§1 (log log i) o tk_fll>
j=1

o6 ap—4’
P 1 1 l1—o1 Jal 1 1 11— palé
< ZK(]) (t,; tri1 (loglog E) > <K- <t;; lkt1 (10g log g) )
j=1
) ) oy 1on) o
:K-<exp(k: — (k+1)°) - (log (k%)) )
ap—5/

= K - (exp(=2k — 1)+ (log (k%)) '™™) ™ < exp(~Cer k).

Analogously to the calculations in type A above, we can now prove that there exist

constants K13, K14,70 > 0 such that

P (721;25 g((Z)) < K13> < exp (*K14 - (—log7)

provided 0 < v < 79 and 6 > ~4/6. This concludes the proof. O

ool

) , (4.24)

Corollary 4.15
Let X be a (¢, c)-operator semistable Lévy process on R® with diagonal principal exponent

Ey and ay < dy. Then for ¢ as in (4.21) there exist constants K13, Ki4,70 > 0 such that

T(a,1) 1
: (éﬁ% ola) KB) < e (~Kia (~10g7)7) (4.25)

Jor all 0 < ~v <~ and § > ~/6.
Proof. Obviously, T'(a,1) <t < 1 implies that P(a) < t. This gives us

o g <t = { 56 < )

provided 0 and therefore « small enough to ensure that ¢ is increasing on (0,d) and
Ki3¢(9) < 1. Lemma 4.14 then concludes the proof. O

Let K3 > 0 be a fixed constant. A family A(a) of cubes of side a in R? is called K3-nested
if no balls of radius a in R? can intersect more than K3 cubes of A(a). Here, we will choose
A(a) to be the family of all cubes in R? of the form [k1a, (ky 4+ 1)a] x ... x [kqa, (kg + 1)a]
with K3 = 3%. The following covering lemma is due to Pruitt and Taylor [48, Lemma 6.1]:
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Lemma 4.16

Let X = {X(t)}+>0 be a Lévy process in R and let A(a) be a fived Ks-nested family of
cubes in RY of side a with 0 < a < 1. For any u > 0 let M,(a,s) be the number of cubes
in A(a) hit by X (t) at some time t € [u,u + s]. Then

E[M,(a,s)] <2Kzs- (E[T(%,5)]) "

For u = 0 we simply write M(a, s) := My(a, s). The following result is a direct consequence
of Lemma 4.2 and Lemma 4.16. Although part (ii) is not needed here, it might be useful
to show that ¢ — m(X([0,1])) < oo for ¢ as in (4.11) in case X is of type A, d > 2 and
ap >dp = 1.

Lemma 4.17
Let X be a (P, c)-operator semistable Lévy process on R with diagonal principal exponent
E;.

(1) If cy < dy, there exists a constant Ky5 > 0 such that for all a <1

E[M(a,1)] < Kisa™*".

(i) If d > 2 and oy > dy, then dy = 1 and we further assume that Es is diagonal. Then

there ewists a constant Kig > 0 such that for all a > 0 small enough
E[M(CL, 1)] < Kyga™?,
where p =1+ az(1 —1/ay).

Let Az be the set of cubes of side 2! =% and centered at (j1/2%,...,jq/2%), where j;, 1 <
I < d, are integers, closed on the left and open on the right. The following result is taken

from Lemma 3.9 in [30] and based on Lemma 9 in [53].

Lemma 4.18
If E =", L, where each I; is a cube of Ay for some integer k, then we can find a subset

{j+} such that E C\JI;, and no point of E is contained in more than 2 of the cubes I, .

Theorem 4.19

Let X be a (¢, c)-operator semistable Lévy process on R with diagonal principal exponent



EXACT HAUSDORFF MEASURE FUNCTIONS 79

FEq and oy < dy. Then for

a® log log%, if X is of type A and 0 < oy < 2
¢(a) =

—a1

a™ (loglog é)l , if Xisoftype B and 0 < oy < 1
we have almost surely ¢ —m(X([0,1])) < oo.

Proof. Let r be a positive integer and 0 := 27", Furthermore, let n be an integer with
27" < min(qp,27%), where 7g is as in Lemma 4.14 and A,, the collection of cubes of side
27" with centers the same as in A,. Define 77 = inf {¢t > 0 : X(¢) € I} for any cube
I and A/, = {I € A, : 77 < 1}, the cubes hit by X over the time interval [0,1]. Then
M(27", 1) = |A,]. Let v, := 27". We say that a cube I in A/, is bad if for all a € [yy, J]

TI-‘r].
/ Loy (X (O)dt < Krz(a),

I

and good otherwise. For any cube I € A,, we have
P(Iisbad [0< 7' <1)

TI
ST g ey 0 (X ()t

=P su <Kj3lo<ri <1
vngfga ¢(a) i
1 I I
1 X(t - X dt
=P sup fo B(O’a)( (t+7) () < Ki3|0< T<1].
m<a<d P(a)

Note that {X(t + 71) — X(71)}s>0 is identical in law with {X(¢)};>0 on {7! < oo} by
the strong Markov property (see e.g. Corollary 40.11 in [50]). Hence, we get by applying
Corollary 4.15

P (I is bad |0 < < 1) < exp (—K14 . (—logfyn)%> = exp (—07 . n%) ,

where C7 > 0 is a constant independent from n. Now let N, denote the number of bad
cubes in A’,,. Then by Lemma 4.17

E[N,] < exp (—07 . n%> E [M(Q_", 1)] < K152 exp (—C7 . n%> .
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Hence, by the Markov inequality for n sufficiently large there exists a constant Cg > 0

L E [| Nn|]
P (N” > 2" exp <_n10)> < 2101 exp (—nl/10)

< Kisexp (—C7 03 + nTz) < Kisexp (—Cg . n%) .

This implies that
0 oo
SR (Vo= 2 exp (—n!/1)) < K+ Kis 3 exp (~Cs-n'/1) < oc.
n=1 n=1

By the Borel-Cantelli lemma, there now exists an Qy with P(9) = 1 such that for all

w € Qo we can find an integer n; = nj(w) such that for n > ny
Ny, (w) < 2™ exp (—n1/10> :
Furthermore, by regular variation techniques, there exists a constant Cy > 0 such that
o) (\/& . 27”> = (\/& 2*") o loglog (\/& 2”) = Cy 27" log(n).
Thus, for w € Qp and n > n;(w)

3 (1) = Na(w) - ¢ (\/&- 2*") < Cyexp (—nl/w) log(n). (4.26)

I bad

Now consider the good cubes I in A’,,. Our aim is to show that the good cubes can be

covered economically. For a good cube I there exists a € [y, 27 "] such that
1 41
00) < o= [ Ubxton.a (X0

We can find an integer k with 27% > 5a > 27%~1 and a cube I’ in A, such that I’ contains I
and B(X(7!),a). Then, one can easily show that & > r —4 and, since 7/ < 1 by definition
of A/,,, we get

(1) = (Va2 = (Vd-4-275) < (Vd-4-50)

ri+1 2
< Ko(a) < K / e (X0 < K /0 1 (X (£))dt.
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Applying Lemma 4.18 to the collection {I’ : I is good}, we can show that there is a
subset A’, which still covers J; good I, but no point is covered more than 2% times. Hence,

Yoren 1 < 24 and there exists a constant C1g > 0 such that

> (') ZK/ 1p(X(t))dt = K/ D 1p(X(t)dt < Cip- 2T (4.27)

I'eN I'eN I'eN’

Using all the bad cubes together with the covering of good cubes defined above, we obtain
a covering of X ([0,1]) by cubes with diameters less than v/d - 277+°. This means

X([0,1]) € (U I) U ( U I’).
I bad I'e N’

For sufficiently large n applying (4.26) and (4.27) we finally arrive at

Z |I| Z gb ‘I’ < Cyexp ( /10) log(n) + Cyo - 9d+1 <Oy 9d+1 ey
I: bad I'eN

Thus, ¢ —m(X([0,1])) < Cio-2%! +1 < oo almost surely, which concludes the proof. [

4.4.3 Proof of the main result

The proof of Theorem 4.4 now follows directly from Theorem 4.8 and Theorem 4.19.



Chapter 5

Conclusion and outlook

82
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Operator semistable Lévy processes are stochastic processes with a selfsimilarity property
on a discrete scale. They generalize the better known class of (operator) stable Lévy
processes, which have a continuous scaling property. Operator semistable Lévy processes
have an application in various scientific fields, such as physics and financial mathematics,
where they prove to be useful when developing mathematical models describing long-term
dependencies. For this reason, it is important to analyze the fractal properties of this class
of stochastic processes in order to get a better understanding of the path behavior.
Starting from the work of Kern and Wedrich [36], who calculated the Hausdor{f dimension
dimy X (B) for the range X(B) = {X(t) : t € B} of an operator semistable Lévy process
X and an arbitrary Borel set B C R, this thesis offers further results on the dimension
properties of operator semistable Lévy processes.

Based on the examination of a specific non-strictly semistable Lévy process in the first
manuscript (Chapter 2), the problem of generating a formula for the graph Grx(B) =
{(t,X(t)) : t € B} of an arbitrary operator semistable Lévy process X in R? and any Borel
set B C R4 has been completely solved in Chapter 3 of this thesis. Finally, based on the
works of Taylor [53] and Hou and Ying [30], the third manuscript in Chapter 4 refines
the results on the path behavior of certain operator semistable Lévy processes by dealing
with the subject of exact Hausdorff measure functions. In particular, for the range of an
operator semistable Lévy process with a partially diagonal exponent and a; < d; exact
Hausdorff measure functions are calculated over the time interval [0, 1] .

Although the results in this thesis are an important step to fully understand the fractal
properties of selfsimilar stochastic processes (both on a continuous and a discrete scale),
there are still open research questions that have yet to be addressed.

For instance, if X is of type B, an additional assumption is needed to prove the result in
the third manuscript (compare Assumption 4.3). Hence, in a next step, one can further
investigate if either the assumption is valid for all operator semistable Lévy processes
of type B with principal diagonal exponent and a; < dj or if it is possible to find an
alternative way of proof that doesn’t depend on the assumption. Also, for a; > dy as
well as operator (semi)stable Lévy processes with non-diagonal principal exponent E the
problem of finding a representation of exact Hausdorff measure functions is still open.
For the calculation of exact Hausdorff measure functions for operator semistable Lévy

processes with principal diagonal exponent, sharp upper and lower bounds for the expected
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sojourn times E[T(a,s)] were needed (compare Lemma 4.2 in the third manuscript). In
case that the principal exponent is non-diagonal, it is not clear if a corresponding result
even exists. Hence, if this turns out not to be the case, one has to either investigate if there
is an alternative way to calculate exact Hausdorff measure functions or, by generating a
counterexample, prove that exact Hausdorff measure functions do not necessarily exist for
arbitrary operator semistable Lévy processes.

Furthermore, the proofs of the above mentioned results depend, in particular, on the Lévy
properties of the process X. Consequently, another line of further research would be to try
and generalize the above results on stochastic processes which, for instance, fulfill the semi-
selfsimilarity condition (1.1) and have stationary increments but lack the independence of
the increments. First results in this direction can be found in [40]| and |60] for selfsimilar

Markov processes (cf. also the survey article [59]).
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