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Chapter 1

Introduction

”This is the information age...The only trouble is that most of it is misinformation, or its

uglier cousin, disinformation. There are many reasons to mis- or disinform the public, and

small rewards for accuracy.”

Bradley Efron,

Public Policy and Statistics: Case Studies from RAND, 2000, pag. vii

One of the most important processes in science is the accumulation of information and knowledge.

Ideally, for a particular research problem we should have a collection of experiments and studies which

indicate the best way to proceed. However, this is not the case in several areas of empirical research.

Instead, researchers have to face a heterogeneous and fragmented evidence coming from published

articles, unpublished reports, databases, etc., that has to be analyzed together.

Meta-Analysis is a branch of statistical techniques that helps researchers to combine results and

evidence from a multiplicity of sources in a coherent statistical model. During the last 20 years meta-

analysis has been very popular in the Evidence Base Medicine, where it injected scientific formality in

the evaluation and optimization of medical decision-making (Welton et al. 2012). However meta-analysis

has been crossing the borders of different disciplines and it is currently applied to combine information

in different areas such as: Genetics and Genomics (Guerra and Goldstein 2010; Veyrieras et al. 2007;

Goffinet and Gerber 2000), Social Sciences (Boruch 2005), Economics (Stanley and Doucouliagos

2012), Ecology and Evolution (Koricheva et al. 2013) and Astrophysics (Hogg 2001; Vallee 2002).

This is a work of Bayesian Meta-Analysis, this approach of meta-analysis is characterized by the

construction of formal probability models to combine multiple sources of information. The Bayesian
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Meta-Analysis has its roots in the work of Eddy et al. (1992), where the interconnection of each piece

of evidence is described by using a Directed Acyclic Graph (DAG). Inferential statements about model

parameters are based on posterior distributions that are approximated by using Markov Chain Monte

Carlo (MCMC) computation techniques. A gentle introduction to Bayesian Meta-Analysis can be found

in (Spiegelhalter et al. 2004, Chap. 8).

Aims of this work

The following points summarize the main work in Bayesian Meta-Analysis investigated in this thesis:

• Generalized Evidence Synthesis is the extension of the meta-analysis to deal with results coming

from different statistical designs (e.g. retrospective, prospective, observational, etc.). In this work

we investigated the state of the art in this area by making a review of methods and applications of

the published work in the last 20 years.

• Cross Design Synthesis is a meta-analysis technique to explore in which extent experimental results

can be extrapolated into a new application framework. A new approach for Cross Design Synthesis

was developed to investigate how to combine evidence from aggregated results (e.g. published

papers) with individual participant data (e.g. databases), when the sources of information are

coming from different statistical designs.

• Meta-analysis of diagnostic test is still an open research topic, in this work we investigated how to

deal with the complexities of the evidence of diagnostic test data. We developed a novelty model

that realistically include the multiple sources of variability in this type of meta-analysis.

• Software development has been a main focus of this work. We investigated how to implement a

complex Bayesian Meta-Analysis model into an easy to use statistical software. We developed

a package in the R system that simplifies the applications of Bayesian meta-analysis for non-

statisticians.
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Overview of the chapters

This thesis is a collection of articles in Bayesian meta-analysis, each chapter presents one of those papers.

At the beginning of each chapter information about authorship is provided as well as publication status.

In Chapter 2 we present two letters to the editors (Curcio and Verde 2011; Verde and Curcio

2012) which have been motivated by methodological pitfalls in meta-analysis. The case in point was a

meta-analysis performed after the safety communication in July 2010 issued by the The Food and Drug

Administration. This communication warrants about the increased risk of death with Tygacil (tigecycline)

compared to other antibiotics used to treat similar infections.

Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-

analysis, such as: generalizing experimental results or increasing the power to detect an effect that a

single study is not able to detect. Chapter 3 presents a methodological review of Generalized Evidence

Synthesis performed by Verde and Ohmann (2014). In this review we cover statistical methods that

have been used for the evidence-synthesis of different study-types with the same outcome and similar

interventions. For the methodological review a literature retrieval in the area of generalized evidence-

synthesis was performed and publications were identified, assessed, grouped and classified. Furthermore

real applications of these methods in medicine were identified and described. For these approaches 39

real clinical applications could be identified to save some pages in adobe reader. A new classification

of methods is provided, which takes into account: the inferential approach, the bias modeling, the

hierarchical structure and the use of graphical modeling. We conclude with a discussion of pros and cons

of our approach and give some practical advice.

In Chapter 4 we present the recent work on Cross Design Synthesis of Verde et al. (2015). This paper

describes a unified modeling framework to combine aggregated data from randomized controlled trials

(RCTs) with individual participant data (IPD) from observational studies. Rather than simply pooling

the available evidence into an overall treatment effect, adjusted for potential confounding, the intention

of this work is to explore treatment effects in specific patient populations reflected by the IPD. In this

way, by collecting IPD we can potentially gain new insights from RCTs’ results which cannot be seen

using only a meta-analysis of RCTs. We present a new Bayesian hierarchical meta-regression model

which combines sub-models, representing different types of data, into a coherent analysis. We highlight

different types of model’s parameters: those which are the focus of inference (e.g. treatment effect

in a subgroup of patients) and those which are used to adjust for biases introduced by data collection
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processes (e.g. internal or external validity). The methods are applied to a case study where RCTs’

results, investigating efficacy in the treatment of diabetic foot problems, are extrapolated to groups of

patients treated in medical routine and who were enrolled in a prospective cohort study.

Chapter 5 presents a short comment on conflict of evidence which has been my contribution to

the discussion of Finegold and Drton (2014). The conflict of evidence is the deconstructionist part

of meta-analysis, where each piece of evidence is put aside from the full model and compared to the

rest of the evidence. In Verde (2014) I conjectured that a way to perform conflict of evidence in a

multi-parameter meta-analysis model was to extend the random effects distribution by using a scale

mixture of normal distributions per random effect. I have called this technique ”splitting the studies’

weights” and it is implemented in the R package bamdit, which is the topic of Chapter 7.

Meta-analysis of diagnostic test data is another complex type of meta-analysis. It differs from

other types of meta-analysis in several aspects: First, the diagnostic summaries that we aim to combine

(e.g. sensitivity and specificity) could be interdependent and a marginal combination by pooling these

quantities might be misleading. Second, diagnostic studies are usually performed under slightly different

diagnostic setups and they can be applied to different patients’ populations. Hence, we can expect high

heterogeneity between studies’ results. In Chapter 6 we present a novelty approach for meta-analysis of

diagnostic test proposed by Verde (2010). This approach is based on flexible random-effects distributions

based on scale mixture of Normals.

Usually, practitioners conducting meta-analysis are not statistical experts and combining results from

diagnostic studies may become a challenge. In Chapter 7 we present the R package bamidt (Verde

2015), its name stands for ”Bayesian meta-analysis of diagnostic test-data”. bamdit was developed

with the aim of simplifying the use of models in meta-analysis, that up to now have demanded great

statistical expertise in Bayesian meta-analysis. The package implements a series of innovative statistical

techniques including: the Bayesian Summary Receiver Operating Characteristic (BSROC) curve, the use

of prior distributions that avoid boundary estimation problems of component of variance and correlation

parameters, analysis of conflict of evidence and robust estimation of model parameters. In addition, the

package comes with several published examples of meta-analysis that can be used for illustration or

further research in this area.
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Chapter 2

Meta-analyses of mortality rates of the

Tigecycline antibiotic

”In moving beyond the confines of classical statistics,

we are also moving outside its wall of protection”

-Bradly Efron (2010) Large-Scale Inference, Prologue, page x.

Contributions of the authors:

As clinical researcher DC brought to discussion the results of the meta-analysis of Yahav et al. PEV

designed and wrote the papers, presented the methodological critics and developed the new statistical

method.
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Sir,
In the September 2011 issue of the Journal of Antimicrobial
Chemotherapy, Yahav et al.1 published a systematic review and
meta-analysis of 15 randomized clinical trials (RCTs) that com-
pared tigecycline with other antibiotics for the treatment of
severe infections. The overall 30 day mortality was estimated

to be higher with tigecycline compared with other regimens
[relative risk (RR) 1.29, 95% confidence interval (CI) 1.02–1.64];
therefore, the authors recommend that clinicians should avoid
tigecycline monotherapy in the treatment of severe infections
and reserve it as a last-resort drug.

The authors performed a test of heterogeneity between
studies. Given that the test result was not significant at 5%, they
decided to pool all the RRs by using a fixed-effect meta-analysis
model. Unfortunately, this is a common practice inmeta-analysis,
which usually leads to very misleading results. First of all, the
pooled RR as well as its standard error are sensitive to the
estimation of the between-studies standard deviation (SD).2 SD
is difficult to estimate with a small number of studies. On the
other hand, it is very well known that the significant test of hetero-
geneity lacks statistical power to detect values of SD greater than
zero.3 In addition, the statistically non-significant results of this
test cannot be interpreted as evidence of the homogeneity of
the results among all RCTs included.4

The profile likelihood of the SD in a random-effect model is
an alternative method to analyse the evidence of heterogen-
eity in the RCTs included in the review;3 Figure 1 presents this
type of analysis. In the left panel we have the profile likelihood
of SD, which summarizes the support from the RCTs for differ-
ent values of SD. The broken lines are the 95% CI for SD (0–
0.538). Clearly, a value of SD¼0 has the maximum support;
however, values of SD greater than zero (e.g. SD¼0.1) might
be considered as being reasonably supported by the data of
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Figure 1. Meta-analysis sensitivity plot. Left panel: profile likelihood of the SD of between-study effects. The y-axis represents support from the data of
the studies included in the meta-analysis (0¼no support; 1¼maximum support). The broken lines are the 95% CI of the SD of this variability
parameter. Right panel: the y-axis is the pooled RR and the x-axis is the SD of between-study effects. The broken lines are the 95% CI of the RR
for different values of the SD of between-study effects.
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the RCTs. In the right panel we show how the pooled RR and
its 95% CI change for different values of SD. For example, for
SD¼0.1 the pooled RR (95% CI) is 1.28 (0.987–1.656), which
is not statistically significant. This sensitivity analysis shows
that SD¼0 is not a robust choice as an estimate, since small
non-zero values of SD, which are well supported by the
data, can have a strong influence on the conclusions. There-
fore, a sharp conclusion based on SD¼0 is misleading in this
context.

The decision to pool studies with SD¼0 is based on the
assumption that the studies are identical, which is incorrect,
mainly from a clinical point of view. For example, the RCT of
hospital-acquired pneumonia presents a total mortality rate of
62.5%, while the mortality rates of the other studies are
between 2.1% and 13.2%. That clearly casts doubt on the
simplistic assumption of the homogeneity of the studies. In
addition, the correlation between the RR of the studies and the
total mortality rates in the logarithmic scale is20.72, which indi-
cates that the meta-analysis should include an adjustment for
the total mortality rate.5

Lastly, the authors do not present any predictive quantities
in the meta-analysis. The predictive summary statistics are
considered the most important quantities in a meta-analysis.6

The main reason is that these quantities are associated with
the future use and the potential clinical use of the
meta-analysis results. In the context of few therapeutic
options for treating infections due to multidrug-resistant patho-
gens, this is a very important issue to solve in this tigecycline
meta-analysis. By using the authors’ fixed-effects model, the
95% predictive interval for the RR is 0.971–1.641, which pre-
dicts that a future comparative study might have an RR ,1.
However, six studies included in the meta-analysis cannot be
predicted from the model presented by the authors [compli-
cated skin and skin structure infections (n¼2), complicated
intra-abdominal infections, diabetic foot infection with osteo-
myelitis, community-acquired pneumonia and methicillin-
resistant Staphylococcus aureus infections]. This clearly indi-
cates the inconsistency between the data and the model
used for the meta-analysis.

In summary, the main conclusion presented by the authors
that the overall mortality was higher with tigecycline compared
with other regimens is, at least, misleading.

A suitable statistical analysis, which accounts for the
complexity of the clinical evidence, should be presented for appli-
cation of the published results in clinical practice.
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0 M O N T H

Correspondence
Imbalanced Mortality
Evidence for Tigecycline:
2011, the Year of the
Meta-analysis

TO THE EDITOR—During 2011, 3 high-
quality meta-analyses investigated, among
other clinical questions, the difference
between mortality rates for any cause of
30-day mortality for tigecycline and any
other antibiotic [1–3]. Although the
meta-analyses of Cai et al [1] and Tasina
et al [2] concluded that the evidence of
mortality differences should be con-
sidered nonconclusive, Yahav et al [3]
boldly concluded that the differences
between mortality rates were statistically
significant. Given that these meta-
analyses included almost the same pub-
lished studies, it is worth asking why they
arrived at different conclusions regarding
mortality differences.

The source of disagreement between
authors is the statistical model they
applied. Although the empirical evi-
dence (ie, published studies) can be de-
clared correct, the statistical model is
always “wrong.” The statistical model is
wrong in the sense of its limitations to
describe the complexity of the problem
at hand. How can we trust the con-
clusions of a wrong statistical model? A
wrong statistical model upgrades to
become useful if it is able to predict the
published studies included in the sys-
tematic review. For example, in a recent
publication [4] we pointed out that the
model used by Yahav et al was not able
to predict 6 of 14 studies, so a bold con-
clusion from this statistical model is de-
finitively misleading.

Another way to interpret the evidence
of mortality in these meta-analyses is by
asking whether the extent of difference

in mortality rates is related to the under-
lying risk of the patients in the different
trials. If this relationship exists, then it
has important implications in the
interpretation of the mortality results
(eg, by detecting which patients may be
at risk under application of tigecycline
and which patients may be not).
A natural way to measure underlying

risk in a clinical trial is by estimating the
mortality rate of the control group. We
can assess the relationship between
underlying risk and difference in mor-
tality rates using the model proposed by
Sharp and Thompson [5]. Figure 1 shows
the regression line that summarizes this
relationship for the tigecycline meta-
analysis published by Yahav et al [3]. The

negative slope of this line indicates a de-
crease in mortality differences as the mor-
tality in the comparator group increases.
Moreover, the predictive confidence
bounds include all studies used in the
meta-analysis, which gives confidence in
the conclusions coming from this model.

The message of Figure 1 is that we
cannot make a general statement about
mortality differences for tigecycline; it
may depend on the underlying mortality
of the study population. For populations
with low mortality rates (left hand side
of Figure 1), the model favors the com-
parator drug, whereas for populations
with increased mortality rates, there is
no differences between the groups’ mor-
tality rates.

Figure 1. Evidence of mortality in tigecycline compared with any other antibiotic. Each vertical
line represents a study result. The points correspond to the observed odds ratio of mortality, and
the dashed lines represent the 95% confidence intervals. The meta-regression line is presented by
the solid line in the center with its 95% predictive interval.
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We hope that our view will motivate
readers to think more critically about
meta-analysis results in general.
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Chapter 3

Review on Generalized Evidence Synthesis

”What a long, strange trip it’s been.”

-Grateful Dead Sentiment, 1977.

Contributions of the authors:

PEV designed and wrote the paper, made the methodological systematic review and developed the new

classification of statistical method. CO proposed the research work, performed the systematic review of

the clinical applications and provided several inputs into the discussion.
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Combining randomized and non-
randomized evidence in clinical

research: a review of methods and
applications

Pablo E. Verde* and Christian Ohmann

Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis,
such as generalizing experimental results or increasing the power to detect an effect that a single study is
not able to detect. However, while in meta-analysis, the main question may be simple, the structure of
evidence available to answer it may be complex. As a consequence, combining disparate pieces of
evidence becomes a challenge. In this review, we cover statistical methods that have been used for the
evidence-synthesis of different study types with the same outcome and similar interventions. For the
methodological review, a literature retrieval in the area of generalized evidence-synthesis was performed,
and publications were identified, assessed, grouped and classified. Furthermore real applications of these
methods in medicine were identified and described. For these approaches, 39 real clinical applications
could be identified. A new classification of methods is provided, which takes into account: the inferential
approach, the bias modeling, the hierarchical structure, and the use of graphical modeling. We conclude
with a discussion of pros and cons of our approach and give some practical advice. Copyright © 2014 John
Wiley & Sons, Ltd.

Keywords: observational studies; randomized control trials; bias modeling; network meta-analysis; cross-design
synthesis; generalized evidence synthesis; hierarchical Bayesian models

1. Introduction

Statistical evidence synthesis is a branch of statistical methods that allows researchers to combine scientific results
from multiple pieces of evidence into a single analysis. These techniques are used to extend the scope of a single
experiment, by combining results from several experiments. A typical application is the meta-analysis of
experiments addressing the same primary research question and using the same statistical design, where the
application of simple statistical procedures (e.g., random-effects meta-analysis) is sufficient.

However, while in a meta-analysis, the clinical question may be simple, (e.g., what is the effect of an
intervention in a population of interest?), the structure of evidence available to answer it may be complex (e.g.,
the published results may have different grades of quality), as a consequence, combining disparate pieces of
evidence becomes a challenge.

In this review, we cover statistical methods that have been used for the evidence-synthesis of different study
types with the same outcome and similar interventions. The study types considered are randomized controlled trials
(RCTs) and non-randomized studies, covering studies with non-randomized control groups and studies without a
control group (e.g., register and cohort study) (Deeks et al., 2003). The methods reviewed are methods used for
combining aggregated data and used for combining aggregated with individual data as well.

The main reason for the aforementioned restrictions is the increasing complexity and quantity of
methodological research in evidence-synthesis, which requires focusing on a methodological review. However,
there is a strong need for such a specific review; for example, to answer the relevant question of how to generalize
results from RCTs to clinical practice, that is, how much of the proved efficacy can be translated into effectiveness.
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Moreover, researchers may have multiple motivations for combining different study types in a meta-analysis,
for example:

• To increase the power to detect an effect that a single source of data is not able to detect.
• To reconstruct evidence that is not directly observable in a single study.
• To learn from the evidence how to improve the statistical design of future studies.
• To make decisions in situations where further experimentation may not be helpful, could not be ethical, or
may not be feasible due to time or budget constraints.

However, no study type is free of bias, and the resulting analysis will be a trade-off between extending the
inferential scope of a meta-analysis and adjusting the bias that is introduced by combining different study types.

The interest of including non-randomized studies in evidence synthesis has recently been highlighted in a
special issue of this journal, where the authors presented the outcomes of a special workshop led by the Non-
Randomized Studies Methods Group of the Cochrane Collaboration (Reeves et al., 2013). Four discussion papers
covered the following: issues in study design and risk of bias by Higgins et al. (2013), issues relating to
confounding factors when including non-randomized evidence by Valentine and Thompson (2013), issues in
selective reporting by Norris et al. (2013), applicability of non-randomized evidence as complementary source
of evidence by Schünemann et al. (2013), and a guideline of checklists for review authors by Wells et al. (2013).

Much has been written in evidence synthesis and meta-analysis from many perspectives. An early review of
Bayesian meta-analysis methods in tutorial style is presented by Sutton and Abrams (2001). Probably, the most
complete review in multi-parameter evidence synthesis is given by Ades and Sutton (2006). Sutton and Higgins
(2008) presented an extensive review of methodological developments in meta-analysis. The paper of Higgins
et al. (2009) concentrates on issues and applications of random-effects meta-analysis. Ioannidis (2010) reviews
issues in meta-analysis from the practitioner’s point of view.

This review updates previous methodological reviews (Sutton and Abrams, 2001; Ades and Sutton, 2006;
Sutton and Higgins, 2008) in specific topics and includes new methods that were not developed at that time.
Furthermore, a new classification of methods was developed and, for the first time, real medical applications of
the methods assessed.

We omitted the highly important topic of publication bias, which addresses the problem that studies which
claim statistically significant results are more likely to be published than studies with inconclusive results. Useful
literature relating to this topic includes the following: Sutton et al. (2000), Rothstein et al. (2005) and the recent
work of Copas (2013).

This paper is organized as follows: Section 2 describes the searching and classification techniques used to
identify methodological work and their applications. Results of the methodological work are organized in
chronological order and we provide an annotated description of the methods and their applications. Section 3
presents our results, and Section 4 provides a general discussion with some recommendations for practitioners.

2. Methods

2.1. Identification and classification of methodological work

Methodological papers have been previously identified in general reviews such as (Ades and Sutton, 2006) and
(Sutton and Higgins, 2008). We use these reviews as a starting point to update the main methodological work
and group them into methods, which investigated the combination of different study types in meta-analysis.

A manual search was performed by carefully looking at cross-references and in main applied statistical journals
with a focus on applications in life sciences and medicine. Those included the following: Biometrics, Biometrical
Journal, Biostatistics, Journal of the Royal Statistical Society series A and C, Research Synthesis Methods, Statistics
in Medicine, and Statistical Methods in Medical Research. We also included main methodological journals, which
publish applied work, those are the following: Annals of Applied Statistics, Journal of the American Statistical
Association, Journal of the Royal Statistical Society series B, and Statistical Science.

For historical reasons, we start by presenting the Confidence Profile Method (CPM) in Section 3.1. Network meta-
analysis is the topic of Section 3.2. The cross-design synthesis (CDS) and related approaches are covered in Section 3.3.
Bias modeling of different study types is covered in Section 3.4, and the state of the art of Bayesian hierarchical
models (BMHs) is presented in Section 3.5. In each section, we add a subsection with applications in clinical context.
Section 3.6 summarizes the inferential approaches and operational characteristics of the statistical methods reviewed.

2.2. Identification of applications in clinical context

Clinical applications were identified from PubMed and within the Web of Science (Version 5.10), by using the
following strategy:

• First, we select a key methodological paper in which the proposed method has been originally presented.
• Second, citations of the key methodological paper were identified and classified as follows:
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• Methodological reference: In this case, the method is cited in a methodological or discussion context,
where the method itself is not applied, but it is used as a reference for methodological extensions or
discussion.

• Application in methodological context: This type of application is used for demonstration in a real data
problem and used for methodological motivation or to highlight potential benefits in clinical use.

• Application in clinical context: Examples of clinical applications include the use of a method to provide
scientific evidence for a clinical problem, the development of guidelines, or systematic reviews.

The citations databases used, with default starting date, were the following: Science Citation Index Expanded –

1945–present, Social Sciences Citation Index – 1956–present, Arts and Humanities Citation Index – 1975–present,
Conference Proceedings Citation Index-Science – 1990–present, Conference Proceedings Citation Index-Social
Sciences and Humanities – 1990–present, Book Citation Indexâ€“ Science – 2005–present, Book Citation Indexâ
€“ Social Sciences & Humanities – 2005–present.

In addition, a PubMed search was performed with different search patterns: ‘Confidence Profile Methods’,
‘Network meta-analysis’, ‘Cross-design Synthesis’, ‘Bayesian hierarchical model’; in combination with ‘different
study design’ or ‘meta-analysis’.

3. Results

3.1. The Confidence Profile Method

The CPM was introduced by Eddy (1989) as a general statistical framework to combine multiple sources of
information in evidence synthesis and further described in a series of tutorial articles (Eddy, et al., 1992; Eddy,
1989; Eddy et al., 1990b; Eddy et al., 1990a; Shachter et al., 1990) and in a book with numerous examples (Eddy
et al. (1992). The CPM was proposed under the realistic assumption that the empirical evidence used in meta-
analysis could be incomplete, indirect, and biased.

The CPM was a vanguard approach, and it has influenced further developments over the last decades,
including indirect treatment comparisons and network meta-analysis (NMA) (Section 3.2), direct bias modeling
(Section 3.4) and the use of Bayesian graphical models in evidence syntheses (Ades, 2003; Spiegelhalter et al.,
2004; Ades and Sutton, 2006) (Section 3.5).

Several important aspects have been introduced in the CPM framework, and we can highlight the following:

• First, the evidence to be analyzed in a systematic review is not considered as a realization of a random
sample. As a consequence, statistical techniques with roots in the analysis of a single experimental data could
lead to misleading results.

• Second, the problem of analysis of clinical evidence is embedded in a formal probability model with a
Bayesian network representation. That allows a pictorial representation of the pieces of evidence, parameters
of interest, functional parameters, and bias modeling.

• Third, the analysis of evidence is explicitly subjective. The analyst has to formalize his/her current state of
knowledge of the problem at hand and include this aspect into the statistical model. Although statistical
computations of the CPM can be done with direct use of the likelihood function or using Bayesian
techniques, the interpretation is always subjective.

• The CPM emphasizes a case-specific modeling approach, where variability and bias of multiple sources of
evidences have to be assembled in a single model. That contrasts with the statistical procedural approach,
such as meta-analysis using fixed or random effects, where one approach applies to every situation.

3.1.1. Type of evidence, bias modeling, and inference. The CPM classified different types of evidence, where the
type of evidence defines the likelihood function for interpretation of experimental results at face value. The main
source of classification is the experimental design ((Eddy et al., 1992), Chapter 5).

Given that no experimental design is free of bias, Eddy et al. (1992) [p. 66–68] classified the propensity of bias of
different experimental designs, with two main types of bias:

• Bias to internal validity, which is composed of factors that cause the observed results to not reflect the effects
of the intervention in the circumstances of investigation. Typical examples of these factors are confounding
variables, loss to follow-up, patient-selection bias, and dilution bias.

• Bias to external validity and comparability, which are composed of factors that make differences between the
circumstances of investigation and the circumstances of interest. Examples of bias to external validity are
population bias and intensity bias.

The CPM was not a BHM like those reviewed in Section 3.5. Statistical inference was carried out by direct
application of Bayesian methods, that is, by multiplying the likelihood functions of the model parameters by their
priors. Multiple parameters were assumed independent a priori and conjugate or Jeffrey’s priors were used for
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these model parameters. The method allowed to calculate posteriors of functional parameters, for example,
parameters of interest after adjusting by bias modeling. Computations were based on Normal approximations
of the posterior distribution and were implemented in the book’s companion software (FAST*PRO) of Eddy
et al. (1992).

As a general statistical framework, the CPM was perfectly suited to modern Bayesian computation techniques
and software, but it was developed prior to the Markov Chain Monte Carlo (MCMC) revolution in statistics. Clearly,
the Bayesian graphical approach was one of the more complex parts of the methodology. Although the diagrams
were usually simple in their final form, they were not easy to develop unless the practitioner was skilled in
structuring conditional independence statements between model quantities. Probably, these issues have
restricted its application. Spiegelhalter et al. (2004) (Chapter 8) showed straightforward implementation of CPM’s
ideas with BUGS software (Lunn et al., 2009) including Bayesian graphical models and computations using MCMC.

3.1.2. Applications in clinical context. Eighty-five citations of two key methodological papers from Eddy and
another 11 references were identified in PubMed. These papers were evaluated with respect to clinical applications:

1. Web of Science: Citations of Eddy (1989) (n=45)
2. Web of Science: Citations of Eddy et al. (1990a) (n= 40)
3. PubMed: Search pattern ‘Confidence Profile Method’ (n= 11)

3.1.2.1. Guidelines. The CPM was systematically applied in a series of clinical guidelines developed by the American
Urological Association and published between 1987 and 2007 in clinical urological journals. These guidelines cover
the management of invasive bladder cancer (Eddy, 1989; Smith et al., 1999; Hall et al., 2007), ureteral calculi (Segura
et al., 1997), female stress urinary incontinence (Leach et al., 1997), organic erectile dysfunction (Montague et al.,
1996), prostate cancer (Austenfeld et al., 1994), and staghorn calculi (Segura et al., 1994).

In these guidelines, CPM was used for evidence combination, including meta-analysis of comparable RCTs, of
individual arms of RCTs and of individual arms from all studies regardless of study design. The analyses were
performed with the Fast*Pro software (Eddy et al., 1992).

Two publications describe a guideline for detecting development dysplasia of the hip in children, published in
2000 (Lehmann et al., 2000; Pediatrics, 2000). The method used a combination of expert panel, decision modeling,
and evidence synthesis. Summarizing evidence was performed across probabilities by the CPM. The calculation
was done with the BUGS software (Lunn et al., 2009).
3.1.2.2. Meta-analyses. In 2009, a meta-analysis on ovarian preservation during chemotherapy was published in
the Journal of Women’s Health (Clowse et al., 2009). Two systematic reviews using the CPM to combine evidence
of RCTs and cohort studies were published in 2003 in the Journal of Hepatology, one dealing with acute hepatitis
C (Licata et al., 2003) and the other with chronic hepatitis B (Craxi et al., 2003). The probability of sudden death
from rupture of intracranial aneurysms was calculated in a meta-analysis and published in 2002 in the Journal
Neurosurgery (Huang and van Gelder, 2002). In 1999, several meta-analyses were published, with meta-analytic
techniques based on the CPM and using the FAST*PRO software. These studies covered hormone replacement
therapy and the risk of colon cancer (Obstetrics and Gynecology, (Nanda et al., 1999), treatment of chronic
hepatitis C (American Journal of Gastroenterology, (Leach et al., 1997) and Journal of Hepatology, (Craxi et al.,
1999) and prophylactic auxiliary node dissection on breast cancer survival (Annals of Surgical Oncology, (Orr,
1999). Three applications of the CPM are related to meta-analysis in cardiology, one investigating predictors of
adverse outcome after coronary interventions (Journal of American College of Cardiology, 1998, (Block et al.,
1998) and two dedicated to risk stratification after myocardial infarction (Annals of Internal Medicine, 1997,
(Peterson et al., 1997) American Journal of Cardiology, (Shaw et al., 1996).

In another application, CPM was used to derive a summary estimate of relative risk of future fractures from
different study types, such as prospective cohort, case-control, and cross-sectional studies (Klotzbuecher et al.,
2000). A systematic review of efficacy of ketogenic diet for the treatment of refractory epilepsy in children
combining uncontrolled retrospective and prospective studies was performed with FAST*PRO (Lefevre and
Aronson, 2000). The effect of spinal manipulation on patient’s pain and functional outcomes in low back pain
was assessed by combining data from 25 controlled trials (Shekelle et al., 1992). CPM was used to combine data
from uncontrolled non-randomized trials into single best estimates of outcome of femoropopliteal percutaneous
transluminal angioplasty in the treatment of lower extremity ischemia (Adar et al., 1989). Two meta-analyses, with
a reference to CPM but combining only RCTs were performed, one dealing with antibiotics in tube thoracostoma
(Evans et al., 1995) and the other with manipulation and mobilization of the cervical spine (Hurwitz et al., 1996).

3.2. Network meta-analysis

Network meta-analysis (NMA) is a new area in evidence synthesis, where the aim is to combine data from studies
reporting randomized results of several treatments to not only make pairwise treatment comparisons, but to also
reconstruct comparisons that have not been performed head-to-head in any study before.

Increasing interest of practitioners in this area has been recently surveyed by Abdelhamid et al. (2012). They
reported that ‘…many reviewers (76%) accepted that indirect evidence is needed as it may be the only source
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of information for relative effectiveness of competing interventions, provided that review authors and readers are
conscious of its limitations’.

Network meta-analysis has its roots in the Eddy’s CPM ((Eddy et al., 1992), p. 45), where disparate pieces of
evidence are combined to reconstruct evidence, which is not directly observable. Early applications of indirect
treatment comparison can be found in Higgins and Whitehead, 1996; Hasselblad, 1998; Dominici et al., 1999
and Ades, 2003 (see Section 4).

Meta-analysis, which combines results from a mixture of randomized treatment comparisons, has been called
in different ways in the statistical literature: mixed treatment comparisons (Lu and Ades, 2004), network meta-
analysis (Lumley, 2002), and multiple-treatment meta-analysis (Salanti et al., 2008). Statistical methods are based
on the use of generalized linear modeling framework from the Bayesian (Dias et al., 2013) and classical perspective
(Lu et al., 2012; Piepho et al., 2012). White et al. (2012) showed that NMA models can be estimated by expressing
them as multivariate random-effect meta-regression models. Meta-analysis of aggregated and patient individual
data has been investigated by exploring treatment by patient-level covariates interactions (Donegan et al.,
2012; Donegan et al., 2013).

At first sight, statistical methods in NMA might be similar to the classical topic of incomplete block designs
((Hinkelmann and Kempthorne, 1994), sec. 9.8), where the number of experimental units in a block is smaller than
the number of treatments. However, as pointed out by (Senn et al., 2011), while the randomization of treatments
in incomplete block designs might be performed within and between blocks and the experimenter controls the
distribution of treatments per block, in NMA randomization is only performed within the trial and experimenters
do not have any control on the number of treatments per study. These issues make difficult to justify a valid measure
of treatment effects at both the level of the study and across studies. Moreover, as usual in meta-analysis, trials are
performed by different investigators on different patients and with different protocols. As a consequence, variability
of treatment effects might be very different within and between trials. Therefore, modeling between-trial
heterogeneity is not straightforward (Lu and Ades, 2009) and remains a modeling issue (Thorlund et al., 2013).

Another important issue that might arise in NMA is the lack of agreement between direct treatment
comparison and evidence of indirect comparison. This type of conflict of evidence results when treatment
differences vary between types of trials. Lumley (2002) called this issue incoherence while Lu and Ades (2006)
called it inconsistency. Different statistical techniques have been proposed to detect and model inconsistency in
NMA. Lu and Ades (2006) proposed a factor that measures inconsistency between treatment comparisons, while
Dias et al. (2010) proposed a node-splitting algorithm to test inconsistency. For multi-arm NMA, Higgins et al.
(2012) distinguish between two types of inconsistencies: loop inconsistencies and design inconsistencies. Loop
inconsistencies are regarded as a special type of between-studies heterogeneity that might affect the magnitude
of treatment effect. For example, studies of different comparisons were undertaken in different settings or
contexts, and these differences are associated with the magnitude of treatment effect. Design inconsistencies
are regarded as a study-level covariate that modifies the effect sizes within the study. They proposed an approach
to identify inconsistencies by including a full set of design-by-treatment interaction terms in an NMA model. This
model handles simultaneously design and loop inconsistencies.

Although, statistical methods of NMA of RCTs are an active area of research, the combination of studies with
randomized and non-randomized evidence is a new area of research. We found two recent works on NMA and
different study types: Schmitz et al., (2013) and Soares et al., (2014).

Schmitz et al. (2013) proposed three alternative approaches of combining data from different trial designs in NMA:
a simple combination of study’s data by ignoring the different design types; the usage of observational data as prior
information to adjust for bias due to trial design; and a three-level hierarchical model to account for heterogeneity
between-trial design. The first approach is used to analyze inconsistencies between direct and indirect treatment
comparison. The second one is used to understand the bias that observational data may introduce into the analysis.
This is performedwith a prior to posterior sensitivity analysis. The third approach, the three-level hierarchical model, is
used to combine different study types and to provide overall estimates after accounting for between-study type
variability. This model is an application of the grouped random-effects approach that is reviewed in Section 3.5.1.

Soares et al. (2014) developed a hierarchical Bayesian model to include randomized and non-randomized
studies in a NMA. Observational studies are used to explore modeling assumptions in evidence synthesis in the
presence of sparse data.

3.2.1. Applications in clinical context.
1. Web of Science: Citation of Schmitz et al. (2013) (n=1)
2. Web of Science: Citations of Soares et al. (2014) (n=0)
3. PubMed: Search pattern ‘network meta-analysis and different study types’ (n=24). Two clinical applications

were identified.

The work of Schmitz et al. (2013) was cited by Mesgarpour et al. (2013), who combined 48 studies (34 RCTs and
14 observational) to compare safety of off-label erythropoiesis stimulating agents (ESAs) in critically ill patients.
ESAs treatment is compared with other effective interventions, placebo or no treatment by using a three-level
hierarchical Bayesian model. The model used by the authors accounted for between-studies variability and
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between-design variability. In addition, a sensitivity analysis is performed by down-weighting the evidence of
observational studies. They also analyzed the robustness of their results by comparing results from models that
included all studies, with the results from models that excluded studies with high risk of bias or low quality.
The authors concluded that there was no statistical evidence of increase of risk in ill patients treated with ESAs.

Bittl et al. (2013) performed a Bayesian cross-design and NMA of 12 studies (four randomized clinical trials and
eight observational studies) comparing coronary artery bypass graft with percutaneous coronary intervention and
seven studies (two randomized clinical trials and five observational studies) coronary artery bypass graft with
medical therapy. Based on an NMA, they arrived to the conclusion that medical therapy is associated with higher
1-year mortality than with the use of percutaneous coronary intervention for patients with unprotected left main
coronary artery disease (odds ratio, 3.22; 95% credibility interval, 1.96–5.30).

Jones et al. (2013) made a systematic review to compare effectiveness of antiplatelet therapy, medical therapy,
exercise, and endovascular and surgical revascularization in patients with peripheral artery disease. A meta-
analysis of direct comparison was supplemented with an NMA. Evidences were available from 83 RCTs and four
observational studies.

3.3. Cross-design synthesis

The CDS was a method designed in 1992 by the US General Accounting Office to combine experimental and non-
experimental data. The method is described in Droitcour et al. (1993) and in Chelimsky et al. (1993).

Cross-design synthesis was developed to adjust the typical patients selection bias of the RCTs and generalize
their results to populations that have not been included in RCT experimentation. With this end in mind, historical
information coming from registers should be combined with RCT’s results. Under the CDS’s paradigm,
experimental and non-experimental data are viewed as complementary sources of information.

The typical application of the CDS is called the empty cell problem, where the results of the RCTs should be
extrapolated to a subgroup population where the data are only available in the register. Basically, the logic behind
the CDS is a step-wise strategy for evidence synthesis:

1. Assemble the literature on the effectiveness of an intervention and the individual patients data of
subgroups of interest.

2. Determine whether bias is relevant in individual studies through expert review and then adjust for this bias
(e.g., by using the CPM). Adjust the bias of individual data by covariates adjustment, standardization,
propensity scores (Agostino, 1998), etc.

3. Combine the experimental and adjusted non-experimental evidence by assuming that clinical effects are
proportional between subgroups.

The reliability of the CDS was criticized in the Lancet by Anonymous (1992) and by Begg (1992) who pointed
out that the authors have underestimated the problem of harmonizing results from RCTs and medical databases.

A modern view of the CDS was recently given by Kaizar (2011), where the statistical framework proposed by
Imai et al. (2008) is used to evaluate the statistical properties of a CDS estimator. Kaizar (2011) evaluated the
CDS with an extensive computer simulation experiment and used a real case example regarding the effectiveness
of insulin pumps versus glargine insulin injections in the regulation of blood glucose in adolescents with type 1
diabetes. (Kaizar, 2011) concludes that under reasonable data assumptions, the simple CDS estimator has smaller
bias and better coverage than commonly used estimates based on randomized or observational studies alone.

Another topic directly related to the aims of the CDS is the assessment of effectiveness, that is, the
generalization of RCTs results to clinical practice. RCTs provide the gold standard for proving efficacy of
interventions. The reason is high internal validity, allowing causal reasoning. Often, RCTs are performed with
highly selected patient populations, excluding women, children, elderly, and patients with comorbidity. As a
consequence, generalizability of results from RCTs to these patients is severely limited, and different types of bias,
such as selection bias, may occur. In addition, adequate information about the recruitment process is often not
provided, making an assessment of generalizability to clinical practice difficult. Recent work in this area is
presented by Benson and Hartz (2000), Zimmerman et al. (2004), Fortin et al. (2006), Prentice et al. (2006),
Greenhouse et al. (2008), Ahern et al. (2009), Frangakis (2009), and Cole and Stuart (2010).

Some developments in BHMs have been motivated by the CDS method, for example, those by Nixon and Duffy
(2002), Prevost et al. (2000), and Peters et al. (2005). We review these methods in Section 3.5.

3.3.1. Applications in clinical context.
1. Web of Science: Citation of (Droitcour et al., 1993) (n= 9)
2. Web of Science: Citations of (Chelimsky et al., 1993) (n= 3)
3. PubMed: Search pattern ‘cross-design synthesis’ (n= 9 )

The CDS method was applied by the US General Accounting Office in 1994 to study the effect of ‘Breast
conservation versus mastectomy: patient survival in day-to-day medical practice in randomized studies’. No other
clinical application was found.
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3.4. Direct modeling of bias

3.4.1. Classical meta-analysis techniques. Meta-analysis with historical controls is analyzed by Begg and Pilote
(1991). A random-effects meta-analysis model is presented in which the baseline effect in each study is random,
but the treatment effect is constant. With this model, the appropriate contribution of historical studies can be
determined. The method is Bayesian in nature, but estimation of hyper-parameters is performed by Empirical
Bayesian techniques. The authors illustrated this method by combining four RCTs with 12 uncontrolled studies
to analyze the efficacy of bone-marrow transplantation versus conventional chemotherapy in the treatment of
acute non-lymphocytic leukemia. Li and Begg (1994) presented a non-iterative estimator of treatment effects
based on this method. They studied theoretical properties and presented results from a simulation experiment
which contemplate different random-effects distributions (normal, log-normal, exponential, and uniform). They
concluded that both the pooled effects and the between-studies estimators are strongly consistent with desirable
heuristic properties.

An early work in combining disparate study designs is presented by Brumback et al. (1999). They present a
meta-analysis where three case-control, and 28 cohort studies are combined to study the association of
prenatal testing via chorionic villus sampling with the occurrence of terminal limb defects. The authors
combine two types of sub-models in a single meta-analysis: a fixed effect sub-model with a logistic-
regression is used to model the evidence of case-control studies and a random-effects with a Poisson
regression with a conjugate Gamma distribution is used to model the evidence of the cohort studies.
Inference on the pooled effect parameter is estimated by combining the likelihood of the fixed effect,
and the marginal likelihood of the random-effects model. The resulting likelihood depends on the
parameters of the Gamma distribution, the authors presented a sensitivity analysis by estimating the pooled
effect for different values of these parameters.
3.4.1.1. Applications in clinical context. 1. Web of Science: citations of Begg and Pilote (1991) (n= 25). In Web of
Science, we found 25 methodological citations of Begg and Pilote (1991). No clinical applications were found
using the random-effects model of Begg and Pilote (1991).

3.4.2. Adjustment of likelihoods for study design and quality. Wolpert and Mengersen (2004) presented
reductionist and alternative method to the CPM. While CPM constructs a global probabilistic model by using
conditional independence between model parameters and pieces of evidence, Wolpert and Mengersen
(2004) proposed to directly adjust the likelihood of each study’s parameter for its potential bias. The adjustment
is done by defining a bias function similarly to the CPM. In a second step, the adjusted likelihoods are combined
by a meta-analysis model (e.g., a random-effect model). Computations were based on MCMC, and the authors
highlight potential advantages of the method, such as inference of functional parameters and ranking
parameters.

They apply this technique to combine case-control studies with cohort studies in order to assess the
relationship between environmental exposure to tobacco smoke and lung cancer. The likelihood of each
study is adjusted by the propensity that each design has with respect to different types of misclassifications,
which includes the following: the bias introduced from the misclassification of people who always smoked
to people who have never smoked, bias of misclassification of disease and non-disease, and misclassification
of exposure status.

Multiple bias modeling of meta-analysis of retrospective case-control studies is analyzed by Greenland (2005).
He presented a Bayesian modeling approach where priors are used to encapsulate external information of
different types of bias. He called this sort of sensitivity analysis a meta-sensitivity modeling. He applied this
technique to adjust a meta-analysis of 14 case-control studies (12 published and two unpublished) of residential
magnetic fields and childhood leukemia. The sources of bias considered in the meta-sensitivity analysis were the
following: confounding factors of field exposure and leukemia, sampling and response bias, and measurement
errors in magnetic fields.

Another way to adjust likelihoods in Bayesian modeling is by explicitly discounting for study’s quality bias using
a ‘power prior’ (Ibrahim and Chen, 2000). The likelihood of low quality studies is raised to a power factor between
0 and 1, where values close to 0 indicate low quality and values close to 1 no bias. Recently, Neuenschwander et al.
(2009) proposed to scale the power priors to a ‘proper power prior’ to estimate the discounting factor.

Turner et al. (2009) recognize the practical limitations and difficulties of elicitation of bias, and they introduced
a comprehensive approach to adjust a classical meta-analysis for multiple sources of bias. The idea is that the
pooled treatment effect of the bias-adjusted meta-analysis will reflect a more realistic estimate than the naive
meta-analysis.

In Turner’s approach, multiple sources of bias are divided into two main types of bias: internal validity bias and
external validity bias. Each study included in the meta-analysis is evaluated by a group of assessors, who estimate
different types of biases by a score system. External empirical evidence of bias can be included in the analysis
(Welton et al., 2009), but the method assumes that, in general, it is unrealistic that such evidence exists.
3.4.2.1. Applications in clinical context. 1. Web of Science: citations of Wolpert and Mengersen (2004) (n= 14). We
found 14 citations of Wolpert and Mengersen (2004) with three clear related clinical applications:
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• Bayesian modeling for direct adjustment of likelihoods was applied to the outcome of beta-interferon
treatment in relapsing-remitting multiple sclerosis (O’Rourke et al., 2007). In this analysis, the likelihood of
the log odds ratio is approximated by a normal distribution, the results from observational case-control
studies are adjusted to account for an exaggerated precision of treatment effect and for a systematic bias
toward overestimation of treatment effects. The adjustment is based on a fixed value, which reflects that
observational studies overestimate treatment effect by a median of 30% (Egger et al., 2002).

• A similar approach was presented by O’Rourke et al. (2009), where safety and efficacy of IV-TPA for ischaemic
stroke were analyzed by a cumulative Bayesian meta-analysis based on a Beta-Binomial model. In this case,
results from observational studies are adjusted by overestimation of treatment effect by using a fixed approach.

• Another cumulative meta-analysis with bias adjustment for observational studies is presented by O’Rourke
and Walsh (2010). A prior distribution for the OR of dead within 1 year after acute stroke was built using a
meta-analysis of 26 RCTs comparing stroke unit care versus alternative models of stroke care. The analysis
was performed sequentially by starting with the RCTs prior, data from individual observational studies were
used to sequentially update outcome knowledge. Again, the likelihood of each observational study was
adjusted for overestimation by using a fix value, which reflects that observational studies overestimate
treatment effect by a median of 30% (Egger et al., 2002).

The assertion in the examples seems to be that the non-randomized studies overestimate the effect size,
whereas Deeks et al. (2003) clearly demonstrated that non-random allocation can lead to overestimation or
underestimation of treatment effects.

Recently, Turner et al. (2012) applied their method to adjust a meta-analysis, which included 10 studies
comparing routine antenatal anti-D prophylaxis to control. After adjustment for differences in study design and
quality, the authors concluded that there is strong evidence in the benefit of routine antenatal anti-D prophylaxis.

3.5. Bayesian hierarchical methods

Bayesian hierarchical modeling techniques have been used to combine studies with different designs during the
last two decades. In this section, we consider full BHMs where uncertainty of the hyper parameters are included
into the model and where computations based on MCMC are used to estimate posteriors of all parameters in the
model in a single modeling step.

3.5.1. The grouped random-effects approach. Combining dissimilar studies in a common meta-analysis was
criticized by Larose and Dey (1997). They proposed to group studies with different designs in a common BHM,
where each group has its own treatment effect and dispersion parameter. They called this approach ‘the grouped
random-effects’model. They illustrated their technique with a meta-analysis which combined six single-blind RCTs
with nine double-blind RCTs in the study of efficacy of an anti-epileptic drug, progabide. The model is a binomial-
normal BHM where a careful sensitivity analysis of the hyper-priors is analyzed. The authors presented four non-
informative models for the hyper-priors. Computations were implemented by using Gibbs sampling and the
Metropolis method. They concluded that results were insensitive to the hyper-priors specification. Interesting
results of this analysis were that open studies were systematically more dispersed than closed studies, and open
studies supported the efficacy of progabide, closed studies supported the reverse hypothesis, while the union of
the groups supported neither hypothesis. That was a clear warning for meta-analyses that indiscriminately
combined studies with different designs.

Prevost et al. (2000) presented the first formal Bayesian approach to the cross-design synthesis problem. They
propose a three-level hierarchical model, where the first and the second level are used to model the observed
evidence and the variability between studies, respectively. A third level is used to model the variability
between-study types. This model allows the exchange of information across the study types, with the additional
advantages that neither assumes independence between effects in different study types nor equivalence of such
effects. In addition, the authors describe a posterior predictive analysis to the ‘empty cell’ problem, where results
of a new RCT or a non-randomized study are predicted from the model. The model is illustrated by combining
evidence of RCTs and non-randomized studies, which describe the benefit, in terms of mortality reduction, of
using mammography screening in breast cancer for different age groups of women.

Prevost et al. (2000) described carefully how priors for hyper-parameters were chosen, and they presented a
sensitivity analysis for the priors specification. They concluded that the variability between-study types has the
greatest effect on both, the estimate of the overall pooled effect, and the pooled effects within each type of studies.

Another Bayesian development of the cross-design synthesis is presented by Peters et al. (2005). The model is
motivated by a toxicological application, which investigated the association between exposure to
trihalomethanes in drinking water and low birth weight. The available evidence included the study-specific
dose-response slope from studies across two disciplines: epidemiological studies with evidence of humans and
toxicological studies with evidence of animals. A three-level BHM is developed to account for study type effects,
which is similar to the model of Prevost et al. (2000). The authors presented a detailed sensitivity analysis by using
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different sets of prior distributions. They arrived at similar conclusions as Prevost et al. (2000), where priors on the
between-study types variance component had a main influence in the analysis.

3.5.2. The hierarchical regression modeling approach. Another area is the combination of aggregated and patient
individual data, where both types of evidence correspond to different study designs. Methods for combining
aggregated and individual patient data have been developed recently under the name of Hierarchical Related
Regression (HRR) modeling (Jackson et al., 2006; Jackson et al., 2008). The main idea of HRR is the existence of
shared parameters between different data sources that justify merging information in a common model. In
HRR, there is an explicit use of graphical models to describe: the probabilistic relationship of multiple sources
of information, which bias sub-models are introduced and how share parameters are linked to different data
types. Computations are usually implemented in WinBUGS or other MCMC software (e.g., OpenBUGS, JAGS).
Recent applications and further development of HRR are presented by Molitor et al. (2009) and Jackson et al.
(2009). Riley et al. (2008) and Sutton et al. (2008) described similar approaches of combining aggregated and
individual data in meta-analysis of randomized trials.

McCarron et al. (2010) combined RCTs and non-randomized studies to syntheses evidence of studies
comparing treatment for abdominal aortic aneurysms. They developed a BHM, where each arm’s outcomes are
modeled with binomial distributions, and study effects are modeled with a normal distribution in the logistic scale
(i.e., log(p/(1� p))). Systematic variability between different study types are modeled by adjusting the study effects
with a meta-regression model. The authors proposed to adjust differences in patients’ characteristics between
study arms. For example, if age is used for adjustment at the study level, the difference of age between study arms
is used as covariate. The idea behind this type of adjustment comes from the empirical finding of Deeks et al.
(2003), which describe that non-randomized trials tend to present unbalance in patients’ characteristics between
studies arms. The authors argued that covariate adjustment using aggregate study values does not account for
covariate imbalances between treatment arms. In a complementary work, McCarron et al. (2011) presented an
exhaustive simulation experiment to validate the idea of adjustment by differences between arms in patient
characteristics.

3.5.3. The hierarchical weighting approach for study design and quality. Complex cost-effectiveness modeling is
an area where evidence is usually collected from different study types. Spiegelhalter and Best (2003) embed a
generalized evidence synthesis model into a cost-effectiveness model to predict costs and benefits of hip
prostheses in different age-sex subgroups. They introduced a BHM for generalized evidence synthesis where
multiple sources of evidence could be weighted according to their assumed quality. In this model, the study effect
is the sum of two random effects: one describing the study’s external bias and the other describing the study’s
internal bias. The marginal variance of study’s effect is expressed as the product of study’s quality weight and
the variance between studies due to external bias. The quality weights are interpreted as the proportion of
between-study variability unrelated to internal bias. This strategy avoids the estimation of the second variance
component related to internal bias. For the quality weights, the authors proposed to give fixed values. These
values can be obtained from external empirical information or by elicitation from expert opinion. In either case,
a sensitivity analysis to a range of assumptions about the quality weights can be carried out. An example of
combining one RCT, one register and one case series is used to illustrate this technique. A sensitivity analysis
for different quality weight values is presented where the evidence of non-randomized evidence is down-
weighted in different ways.

Welton et al. (2009) presented a BHM to model meta-analysis or RCTs that may present a high risk of bias. In
particular, the authors consider RCTs that may be biased by failure to conceal randomized allocation at the time
of patient recruitment. The authors developed a mixed effects model where treatment effects are considered as
fixed and bias effect as random. One novelty of this work was to inject empirical bias information into the model
by using prior distributions that are estimated from a collection of previously published meta-analysis of RCTs.
Although this model is developed only for RCTs, it can be directly applied to combine experimental and non-
experimental studies, where the last ones are at high risk of bias.

Meta-analysis of diagnostic tests is an area where RCTs are usually combined with observational studies. The
main motivation is to assess diagnostic accuracy in populations that are not contemplated in RCTs. This type of
meta-analysis required special techniques to model the correlation between test operating characteristics (e.g.,
sensitivity and specificity). Verde, (2010) developed a BHM, where random effects follow a bi-variate scale mixture
distribution. He gave direct interpretation of the scale weights as measures of model’s deviations. A systematic
increase of dispersion of retrospective studies was modeled by allowing a meta-regression equation to the scale
weights. This technique is illustrated in a meta-analysis of 51 studies, which investigate the accuracy of computer
tomography in the diagnoses of appendicitis. The model is implemented in the R package bamdit (Bayesian meta-
analysis of diagnostic test data) (Verde, 2013), which combines R and JAGS (Just another Gibbs sampling)
(Plummer, 2003). The use of scale mixture distributions is a potential modeling tool to handle different study types
in meta-analysis of efficacy outcomes as well.
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3.5.4. Further hierarchical modeling techniques. Dominici et al. (1999) combined results of RCTs with
heterogeneous designs to analyze the effectiveness of commonly recommended prophylactic treatments for
migraine headaches. They developed a complex BHM to handle a diversity of reporting results (some studies
reported results in continuous scores, others reported differences between treatments, others dichotomous
outcomes) by using a latent variable approach. Studies presented different type of treatments and indirect
comparison was also used to assess treatments that were not compared in the same trial. This work is one of
the earliest full implementation of ideas coming from Eddy’s CPM by using modern Bayesian modeling and
computational techniques (e.g., MCMC). A related work on mixed treatment comparisons was presented by Ades
(2003), who extended the ideas of Eddy’s CPM on ‘chain of evidence’ to reconstruct treatment comparisons where
no direct comparison evidence was available. The work of Dominici et al. (1999) and Ades (2003) represent an
early development of mixed treatment comparisons in meta-analysis.

While cross-design synthesis refers to the inclusion in a meta-analysis of studies addressing the same question
under different designs, Nixon and Duffy (2002) proposed to combine studies addressing different but clinically
related questions. They called this procedure ‘the cross-issue synthesis’, which was another name for the ‘chain
of evidence’ problem.

The authors build a BHM to estimate the effectiveness of tamoxifen in the treatment of breast cancer for
women with mutations in the BRCA1 or BRCA2 gene. One factor affecting the effectiveness of tamoxifen is the
estrogen-receptor (ER) concentration of the primary tumor. Women with this gene mutation are typically ER
negative, so the effectiveness of tamoxifen is affected by this mutation. They estimate the effectiveness of
tamoxifen in BRCA by combining three different study types: preventive trials of tamoxifen, studies of adjuvant
tamoxifen and studies reporting relationship between ER gene mutations. The authors used the grouped
random-effect approach to allow different variability parameters for each study type and functional parameters
to reconstruct the conditional probabilities needed in the analysis. This analysis was an example of what we
can call today “research synthesis for personalized medicine”.

Meta-analysis is usually a two-step analysis: In the first step, individual studies are selected and summarized
and in the second step a meta-analysis model is applied (e.g., a random-effects model). This contrasts to BHM
where a single step is used to estimate all parameters simultaneously. The BHM approach has the advantage of
contemplating all parameters’ variability in a single model and it offers great technological flexibility by using
MCMC methods. However, there are situations where the two-step approach is useful: when study-specific
analyses are too complex, when there are several models or parameters of interest to consider or when the
parameters of interest are complex functions of other study parameters. Recently, Lunn et al. (2013) presented
a new strategy of meta-analysis, where a Bayesian two-step approach is proposed. The idea is to give a full
Bayesian analysis at the level of each study and summarize study results by the posteriors resulting from MCMC.
In the second step, parameters’ posteriors for each study are combined in a global Bayesian meta-analysis model.
The authors illustrate this new technique with two examples: one meta-analysis that studies the effect of taking
diuretics on the risk of pre-eclampsia during pregnancy and another complex meta-analysis where studies provide
longitudinal measures of abdominal aortic aneurysms data together with the occurrence of clinical events. Clearly, this
newmeta-analysis approach can be directly used for combining studies of different design, for example individual bias
modeling can be applied to each study in the first stage and combination of study results in the second one.
3.5.4.1. Applications in clinical context.

1. Web of Science: Citations of Larose and Dey (1997) (n=20).
2. Web of Science: Citations of Dominici et al. (1999) (n=20).
3. Web of Science: Citations of Prevost et al. (2000) (n= 44).
4. PubMed: Search pattern ‘Bayesian hierarchical model’ in combination with ‘different study design’ (n= 8) or

‘meta-analysis’ (n= 21).

For Larose and Dey (1997) and Dominici et al. (1999) no clinical applications were found. From 44 citations of
Prevost et al. (2000), two clinical applications were identified: one was a Bayesian meta-analysis from Grines
et al. (2008), which compared short-term mortality estimates from RCTs and non-RCTs in the intervention of acute
myocardial infarction using AngioJet thrombectomy to percutaneous coronary intervention alone. The other was
a BHM from Sampath et al. (2007), which assessed the efficacy of loop diuretics in acute renal failure in a meta-
analysis by combining RCTs and non-RCTs.

3.6. General characteristics of evidence synthesis methods

The previous sections were divided by the proportion of influence that classical and Bayesian methods have on
the development of methods for combining different study types. However, no matter which statistical school,
these methods have a particular characteristic: the necessity of bias modeling between pieces of evidence,
which clearly introduce an overlapping area between techniques. The aim of this section is to provide a more
general understanding of how those methods overlap in terms of the statistical philosophy and the bias
modeling technique.
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Table 1 represents a classification of statistical methods used in research synthesis. Methods are characterized
according to the following features:

• Statistical inference: A method is classified as Classical or Bayesian, where Bayesian means that prior
distributions for all parameters are given. For example, the commonly used random-effects model, where
all parameters are estimated from the data (i.e., Empirical-Bayes estimation), is considered as a Classical
inferential approach.

• Bias modeling: We classified the bias modeling as Yes, if explicit modeling of bias is used (e.g., quality
weighting and likelihood adjustment).

• Hierarchical modeling: This feature is classified as Yes, if the method involves hierarchical parameter
structures to model multiple sources of evidence.

• DAG: Yes means that the method is based on a Directed Acyclic Graph representation. DAGs representations
were promoted in the early days by (Eddy, 1989) and it is interesting to assess if this feature has been used.

Starting at the top of Table 1, we have as a reference the most popular meta-analysis methods: the fixed-effects
and the random-effects models. These methods are blind to potential bias, if they are used for combining
different study types, their results are prone to a multiplicity of bias.

The Eddy’s CPM is represented as a hierarchical Bayesian meta-analysis with the possibility of extensive
bias modeling. Eddy’s method was an attempt to improve the bias issues of fixed and random-effects
models. However, it is interesting to note that the clinical applications we found used the CPM as a Bayesian
random-effects meta-analysis without bias modeling. In some cases, the authors mentioned that the CPM
could adjust the meta-analysis when different study types are combined, but they did not make bias
adjustment themselves. Eddy himself laments that the complexity of his method has limited its use among
practitioners (Eddy, 2013).

Following our historical approach, the cross-design synthesis is classified as a sort of classical meta-analysis
with explicit modeling of bias. The work of Begg and Pilote (1991) as well as Brumback et al. (1999) uses classical
statistical methods, with explicit bias modeling in the case of Brumback et al. (1999).

The rest of the papers in Table 1 clearly show that during the last 15 years, the Bayesian approach has
dominated this area of meta-analysis. The grouped random effects approaches did not focus on bias modeling
but on variability between study types, while the direct adjustment of likelihoods (Wolpert and Mengersen,
2004; Greenland, 2005; Turner et al., 2009), the hierarchical regression (Jackson et al., 2006; McCarron et al.,
2010), and weighting approaches (Spiegelhalter and Best, 2003; Welton et al., 2009; Verde, 2010) have enforced
bias modeling.

Table 1. General characteristics of evidence synthesis methods used to combine different study types.

Main reference/method Statistical Inference Bias modeling Hierarchical DAG

Fixed effects meta-analysis Classical No No No
Random-effects meta-analysis Classical No Yes No
Confidence profile method Bayesian Yes Yes Yes
Cross-design synthesis Classical Yes No No
(Begg and Pilote, 1991) Classical No Yes No
(Brumback et al., 1999) Classical Yes Yes No
(Wolpert and Mengersen, 2004) Bayesian Yes Yes No
(Greenland, 2005) Bayesian Yes Yes No
(Turner et al., 2009) Bayesian Yes Yes Yes
(Welton et al., 2009) Bayesian Yes Yes No
(Larose and Dey, 1997) Bayesian No Yes No
(Prevost et al., 2000) Bayesian No Yes No
(Peters et al., 2005) Bayesian No Yes No
(Jackson et al., 2006) Bayesian Yes Yes Yes
(Riley et al., 2008) Classical Yes Yes No
(Sutton and Higgins, 2008) Bayesian Yes Yes No
(McCarron et al., 2010) Bayesian Yes Yes No
(Spiegelhalter and Best, 2003) Bayesian Yes Yes Yes
(Verde, 2010) Bayesian Yes Yes No
(Dominici et al., 1999) Bayesian No Yes No
(Schmitz et al., 2013) Bayesian Yes Yes No
(Soares et al., 2014) Bayesian Yes Yes No

The aim of this summary is to show the relative influence of Bayesian, frequentist, and bias modeling upon
different methods developed in the last two decades.
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The recent work in combining randomized and observational studies in NMA can be clearly classified. Schmitz
et al. (2013) is a three-level BHM based on the grouped random effects approach to model between-study type
heterogeneity. The work of Soares et al. (2014) is a BHM with extensive bias modeling.

Finally, the use of DAGs in evidence synthesis has been sporadic and more related to the use of the statistical
software (e.g., WinBUGS).

4. Discussion

4.1. Classification of statistical approaches

This paper aims to give an overview of different modeling techniques that have been developed to combine
different study types in meta-analysis. For historical reasons, we started with the Eddy’s confidence profile method
and continued with the cross-design synthesis, but the classification between bias modeling and Bayesian
hierarchical modeling was less clear.

The classification in Section 3.6 was an attempt to clarify the overlapping areas between those sections.
Although, this is only a rough classification some clear patterns emerge: Independently from the inferential
approach, bias modeling is promoted almost for every model, the increasing applications of hierarchical Bayesian
modeling, with the classical techniques that have been wiped off the play field. The trend of case-specific
modeling approach as was originally promoted by the CPM.

4.2. Critique of our review and the methodological impact on clinical applications

In this review, clinical applications mean applications of the methodology to improve diagnosis, prognosis, or
treatment for a clinical problem. It can be assumed that the majority of serious clinical applications have been
published in at least one of the databases covered in our review. Nevertheless, it was difficult to identify and link
statistical methods to clinical applications. Our searching strategy for identification has been weak in many
aspects including the following points: First, there is not always one methodological paper, which can be clearly
defined as the origin source of a method/technology. Second, even if such a paper exists, it may not be cited in a
clinical application. Therefore, our approach to look at citations may not find clinical applications. Third, a broad
search in PubMed without specification gives too many publications (e.g., BHM: 1149). A more restricted search,
for example, ‘Bayesian hierarchical model’+ ‘meta analysis’, may again miss clinical applications.

As a consequence, our strategy (citation of key papers and restricted search) may identify only a subset of the
clinical applications. Nevertheless, it is a systematic and reproducible strategy and for the review more than 250
publications, which have been identified according to this strategy, have been evaluated, and only 39 clinical
applications were found. However, from a pragmatic point of view, we can at least have a rough estimate of
the amount of clinical applications.

Taking a historical perspective, the impact of methodological work in clinical applications can be summarized
as follows: early ideas of the Eddy’s CPM were adopted by research groups and guidelines were developed, but
the method did not spread out in practice. Classical approaches like the one of Begg and Pilote (1991) and the
cross-design synthesis were not applied in real clinical context. Adjusted likelihood techniques were applied by
a research group, but they did not reach general practice. The potential that BHM has in complex meta-analysis
modeling has been established with a large amount of examples, and methodological work but expertise required
for their applications remains an issue.

4.3. Relationships with network-meta-analysis

Specific to NMA are inconsistencies resulting from differences in treatment effects across direct and indirect
comparisons, which may result in bias. However, if there are sources of bias that effect direct comparisons of
studies then the pooled results of NMA incorporating different study types (e.g., RCTs and studies with non-
randomized control groups) are affected as well. In addition, if estimation of between-study heterogeneity is of
major issue in NMA, the inclusion of different study types can challenge practitioners in this problem. Therefore,
biases generated by combining different study types are also relevant for NMA. The recently work of Schmitz et al.
(2013) and Soares et al. (2014) are two examples of the recent trend in this new area of research.

One potential advantage of combining observational and RCTs in NMA is that we might have direct treatment
comparisons in observational studies that are not represented in the RCTs. Making available direct comparisons
form observational studies might reduce the risk of having inconsistencies in the NMA, at the expenses of
introducing bias due to non-randomized treatment assignment.

4.4. Influence of statistical software

The methodological development in this area has been strongly influenced by the statistical software BUGS (Lunn
et al., 2009) and Bayesian methodological papers published after 2000 used BUGS. Moreover, the published BUGS
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scripts allow practitioners to use this software in their own applications. This trend contrasts with papers published
during the nineties, where the main focus was onmethodological research with little chance of using these methods
in clinical contexts. We can consider this development as a success of the early ideas of Eddy’s CPM.

Compared with other statistical areas, the development of R packages for meta-analysis has been slow and
simplistic where most of the R packages for meta-analysis are focused on single study type meta-analysis. There
is a lot of work that remains to be done in software development in this area.

4.5. Some practical advice

Combining different study types in a single meta-analysis is motivated by the principle of using all of the available
evidence in a meta-analysis. However, we have seen in this review that there are many alternative methods to
perform this task. Some of these methods require substantive input from outside the statistical analysis (e.g.,
the Turner bias model).

Clearly, transparency in the data collection and detailed information on each study included in the review is
one of the basic premises in meta-analysis, but combining different study types demand an extra modeling effort.
We add the following advice to practitioners in this area:

• Regardless of which meta-analysis approach is used, we should investigate external sources of information
that may help in the bias modeling process. We could use this information for prior elicitation of bias (Turner
et al., 2009), for direct likelihood adjustments (Wolpert and Mengersen, 2004), for meta-regression
approaches (McCarron et al., 2010), for empirical bias modeling (Welton et al., 2009), or for quality weighting
(Spiegelhalter and Best, 2003).

• Before combining different study types in a single meta-analysis, we should first make a separate meta-
analysis for each study type. Exploring the differences and contradictions between results may help the
modeling process. For example, increases of variability between-study types may be resolved by using
grouped random-effects techniques (Larose and Dey, 1997; Prevost et al., 2000).

• We may ask to which extent does the model fitted predict future results? Model validation in meta-analysis is
not very popular, but it should be like any other statistical modeling problem. Bayesian predictive data are
conditionally independent from the data used to build the model and can be used for model checking in
meta-analysis (Higgins et al., 2009; Verde, 2010).

• Can we detect conflict between pieces of evidence? The conflict assessment is the deconstructionist side of
evidence synthesis, where each piece of evidence is put aside from the full model and compared to the rest
of the evidence. Conflict assessment of pieces of evidence in meta-analysis is a new area of methodological
research. One possibility is to embed a meta-analysis model in a more general model where the non-conflict
situation is a particular case. For example, Verde 2010a applied a scale mixture of multivariate normal and he
made conflict diagnostics by direct interpretation of the scale weights. Another alternative is presented by
Presanis et al. (2013), where the authors described how to generalize the conflict p-value proposed by
Marshall and Spiegelhalter (2007) to complex evidence modeling.

• Unfortunately, bias modeling cannot be validated, but a sensitivity analysis based on predictive data can be
used to understand how conclusions from a meta-analysis are affected by the inclusion of different study
types. We should have in mind that usually there is not ‘a best model’. Examples of applications such as those
described by Spiegelhalter and Best 2003) show that combining disparate evidence ends in a stochastic
sensitivity analysis and not to a single best analysis.

• Bayesian hierarchical models have been the most popular approach for combining disparate sources of
evidence, but there are a number of issues from the practical perspective, such as when to judge studies
or study types ‘exchangeable’, how to put suitable priors on variance components, which type of sensitivity
analysis is particularly relevant, and so on.
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Chapter 4

Bayesian Cross-Design Synthesis

”Taking a model too seriously is really just another way of not taking it seriously at all.”

- Andrew Gelman, 30 November 2009.
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Bayesian evidence synthesis for exploring
generalizability of treatment effects: a
case study of combining randomized and
non-randomized results in diabetes
Pablo E. Verde,a*† Christian Ohmann,a Stephan Morbachb
and Andrea Icksc

In this paper, we present a unified modeling framework to combine aggregated data from randomized controlled
trials (RCTs) with individual participant data (IPD) from observational studies. Rather than simply pooling the
available evidence into an overall treatment effect, adjusted for potential confounding, the intention of this work
is to explore treatment effects in specific patient populations reflected by the IPD. In this way, by collecting IPD,
we can potentially gain new insights from RCTs’ results, which cannot be seen using only a meta-analysis of
RCTs. We present a new Bayesian hierarchical meta-regression model, which combines submodels, representing
different types of data into a coherent analysis. Predictors of baseline risk are estimated from the individual data.
Simultaneously, a bivariate random effects distribution of baseline risk and treatment effects is estimated from the
combined individual and aggregate data. Therefore, given a subgroup of interest, the estimated treatment effect
can be calculated through its correlation with baseline risk. We highlight different types of model parameters:
those that are the focus of inference (e.g., treatment effect in a subgroup of patients) and those that are used
to adjust for biases introduced by data collection processes (e.g., internal or external validity). The model is
applied to a case study where RCTs’ results, investigating efficacy in the treatment of diabetic foot problems,
are extrapolated to groups of patients treated in medical routine and who were enrolled in a prospective cohort
study. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: cross-design synthesis; Bayesian hierarchical models; conflict of evidence; bias modeling

1. Introduction

After reviewing and analyzing experimental evidence of randomized clinical trials (RCTs), researchers
are usually interested in assessing if these results can be extended to clinical practice. Although high
quality RCTs are the gold standard for efficacy research, the context of experimentation is usually differ-
ent from the context of application, which limits their external validity in clinical practice. For example,
a major hurdle in the generalizability of trial results is the presence of a potential effect modification such
as comorbidity. In this case, the magnitude of the treatment effect may vary according to the presence of
coexisting diseases ([1, 2]).
The topic of this article is to explore the generalization of RCTs’ results to groups of patients that may

be excluded from RCTs but are treated in medical routine care (e.g., patients with severe comorbidities).
Typically, information about patients treated in routine care is available from registers, observational stud-
ies (e.g., cohort studies), or other sources. The value of observational data might be attenuated when there
is no effect modification. In such a case, we could expect similar treatment effect, although the groups
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of interest have not been targeted by trials. However, as pointed out earlier, the presence of coexisting
diseases could influence treatment effects.
Hence, in order to understand to what extent a new group of patients may benefit from a new treatment,

we have to combine evidence from different study types, randomized, and non-randomized, and given
that in practice, it is still difficult to have access to individual participant data (IPD) from RCTs, we also
have to combine different data types, aggregated data (AD) results with IPD.
One simple approach to extrapolate results from a random effects meta-analysis of RCTs is to use

the resulting posterior predictive distribution of treatment effect as an informative prior when analyzing
the IPD. However, this approach could introduce a bias if the RCTs’ populations are very different from
IPD, or it could provide a weak information if the meta-analysis is based on a small number of studies.
For these reasons, in this paper, we propose a unified framework in order to combine different data types
simultaneously into a single model.
A new hierarchical meta-regression model is presented, which combines results from different study

types and different data types. Themodel is built piece by piece by highlighting the data collection process
(e.g., randomized and non-randomized) and the type of data of each piece of evidence (e.g., aggregated
or individual). In this approach, experimental and non-experimental data are viewed as complementary
sources of evidence, and the model can be used to understand to what extent it is possible to generalize
RCTs’ results to medical routine.
However, different study types are prone to different types of biases, and results might have different

grades of quality. A great part of the work described in Section 3 is devoted to bias modeling issues.
The external validity bias of RCTs is modeled by exploring the relationship between baseline risk and
treatment effect. This model component is similar to the models presented by McIntosh [3], Thompson
et al. [4], Sharp and Thompson [5], and Arends et al. [6], recently extended by Guolo [7, 8] and Ghidey
[9], and applied in clinical context byVerde and Curcio [10]. The internal validity bias of RCTs is adjusted
by a weighting approach, which penalizes unusual results by combining different scale normal distribu-
tions [11], and this approach is extended to account for the quality limitation of observational data [12].
The uncontrolled patient selection of observational evidence is modeled with a bias component, which
relates individual patient characteristics to baseline risk.
In order to apply the model presented in this paper, the basic data requirement is that the same outcome

variable is available across different study types. Hence, there are parameters (e.g., event rates) that are
common to different study types, we called them shared parameters. In Section 3,we use these parameters
to connect evidence between different study types.
Several statistical techniques have been developed to combine aggregated and individual-level data.

Jackson et al. [13, 14] introduced the hierarchical related regression approach to combine observational
aggregated and individual data with the aim of increasing statistical power and reducing ecological bias
in epidemiology studies. Jackson et al. [15] combined different types of data with different covariates
but with the same outcome variable. Statistical methods to combine aggregated and IPD in meta-analysis
of randomized trials have been presented in Riley et al. [16] and Sutton et al. [17], where the authors
explore the advantages of having individual data in both treatment groups.
A first heuristic attempt to extrapolate RCTs’ results by usingmedical routine data was the cross-design

synthesis [18], where the prediction of treatment effect on patients excluded from the RCTswas called the
empty cell problem. Kaizar [19] evaluated statistical properties of the cross-design synthesis estimator by
using an extensive simulation experiment. Verde andOhmann [20] have reviewed and classified statistical
techniques that have been used to combine randomized and non-randomized evidence during the last two
decades. The model presented in this paper can be viewed as a combination of a hierarchical regression
model with a weighting approach, which accounts for a multiplicity of biases. In this approach, the empty
cell problem could be handled as a prediction problem in regression analysis.
This paper is organized as follows. In Section 2, we present a case study that investigates treatment

efficacy in diabetic foot problems and its extrapolation to patients enrolled in a prospective cohort study.
Statistical methods are described in Section 3. In Section 4, we present the statistical analysis and its
results. These results should not be considered as a direct contribution to the treatment of diabetic patients,
which would require further research. Finally, in Section 5, we give a summary and a brief discussion of
the methods presented in this paper.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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2. Description of the case study

2.1. The medical problem: diabetes and diabetic foot

Foot ulcers and lower extremity amputations are among the most significant complications of diabetes,
and they both have a high risk of recurrence. Moreover, amputations cause higher health costs in patients
with diabetes compared with non-diabetic patients [21], and those affected carry an increased risk of
mortality [22, 23].
Evidence from RCTs showed that adjunctive therapies result in clinical efficacy and cost efficiency

[24–26] compared with standard care healing for foot ulcers and amputations. The question is whether
results available from RCTs, which have been performed in selected populations, can be generalized to
other patient populations.

2.2. Description of the aggregated data

The AD used in this paper correspond to RCTs resulting from a systematic review [27]. Our clinical
question was the effectiveness of adjunctive treatments in managing diabetic foot problems when the
outcome variable was minor amputation. With this aim, we selected RCTs with the following criteria: (1)
studies with patients with diabetic foot ulcer; (2) studies where the outcome variable of investigation was
amputation; and (3) studies where the experimental group was treated with routine care and an adjunctive
therapy for diabetic foot problems.
Adjunctive therapies differ in various ways as follows: Negative-pressure wound therapy is a widely

used low-cost treatment; Hyperbaric Oxygen Therapy requires specific facilities and equipment and
is usually performed in several sessions. Dalteparin is a drug therapy applied subcutaneously, which
modulates blood coagulation; granulocyte colony-stimulating factor modulates the immune response to
infection, and Human Epidermal Growth Factor is applied as a growth factor. In spite of these differences,
our clinical question was about the general effectiveness of adjunctive treatments.
Table I presents results of the identified RCTs, including type of adjunctive therapy, number of patients

in the control and treatment group and the number of minor amputations in the control and treatment
group, where minor amputations range from toe amputations to amputations of the foot at the ankle joint.
In addition, we have the follow-up time in days and two patient characteristics as follows: (1) if the
study population includes patients with peripheral artery disease (PAD) and (2) patients’ ulcer severity
characterized by the Wagner score. A detailed description of patients and study characteristics of these
studies are presented in the supplementary material of [28].
We performed an assessment of risk of bias of the studies included in this case study. This assessment

was performed using the risk of bias tool in the Review Manager software (version 5.3.5). Results are
summarized in Figures 1 and 2. The risk of bias summarized in Figure 1 shows that the study by Duzgun
et al. 2008 has a high risk of bias. We found three possible factors that influence bias in this study: (1)
selection bias due to allocation concealment; (2) further possible bias includes the higher prevalence of
male patients, of obese patients, and of smokers in the treatment group; and (3) as mentioned by the
authors in the discussion, bias introduced by not distinguishing between different types of foot ulcers.

Table I. Description of the randomized controlled trials by author and type of adjuvant therapy.

Name Adjunctive therapy n.ct amp.ct n.tr amp.tr f.up PAD Wagner

1 Blume et al. 2008 NPWT 166 17 169 7 112 no 2 to 3
2 Duzgun et al. 2008 Hyperbaric Oxygen 50 24 50 4 30 no 2 to 3
3 Kaestenbauer et al. 2003 G-CSF 17 1 20 1 10 no 2 to 3
4 Kalani et al. 2003 Dalteparin 42 4 43 2 180 yes 1 to 2
5 Loendahl et al. 2010 Hyperbaric Oxygen 45 4 49 4 365 yes 1 to 3
6 Tsang et al. 2003 hEGF 19 2 21 2 84 no 1 to 2

The variables are as follows; n.ct is the number of patients in the control group, and amp.ct is the number of minor
amputations in the control group. n.tr is the number of patients in the treatment group, and amp.tr is the number
of minor amputations in the experimental group; f.up is the follow-up period in days. PAD, if yes, patients with
peripheral artery disease included, and Wagner is the range of Wagner score of patients included in the randomized
controlled trial.
NPWT, negative-pressure wound therapy; G-CSF, granulocyte colony-stimulating factor; hEGF, Human Epidermal
Growth Factor.
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Figure 1. Risk of bias summary: review authors’ judgments about each risk of bias item for each study included.

Figure 2. Risk of bias graph: review authors’ judgments about each risk of bias item presented as percentages
across all included studies.

The overall assessment of the six studies in Figure 2 shows that the bias domains “blinding of outcome
assessment” and “other biases”could be important factors of bias (50 % of the RCTs scored at high risk).

2.3. Description of the individual participant data

The source of evidence for IPD used in this paper corresponds to the prospective cohort study ofMorbach
et al. [29]. The purpose of this study was to investigate risk factors associated with amputation as well
as with mortality during a long-term period of at least 10 years, in a target population of participants
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presenting diabetic foot ulcers. The authors found that PAD, age, and being on dialysis were the most
important risk factors for long-term prediction of major amputation.
We assess the quality of this study using the Newcastle–Ottawa assessment scale for cohort stud-

ies [30], with the following domain’s results: selection scored four stars out of four and outcome domain
three stars out of three. The comparability domain was not applicable in this study. In summary, this is a
good observational study, which is somewhat representative of the target population.
The number of participants in this cohort was 260; at inclusion, the mean age was 68.92 ± 10.9 with

a diabetes duration in years of 15.87 ± 10.59. Fifty-nine percent of the participants were male; 88% had
type 2 diabetes, and 59 % of the participants were smokers or former smokers. Neuropathy and PAD
were present at study initiation in 86% and 57% of the participants, respectively. Histories of a coronary
event or stroke were reported by 20% and 21% of the subjects, respectively, without major differences
according to sex. Ulcer severity was measured with the Wagner score from 1 to 5, where 1 indicates the
lowest severity. The distribution of the Wagner score from 1 to 5 was: 34%, 20%, 27%, 17% and 2%,
respectively. Further details on risk factors and comorbidities of the cohort are given in Section 4.
As described in Table I, the therapeutic evidence of minor amputation applies to RCTs with follow-up

periods of less than a year. Therefore, we concentrated the analysis of IPD of this cohort study on the
first year of follow-up.

3. Bayesian evidence synthesis modeling

In this section, we present a new Bayesian hierarchical meta-regression model, which combines submod-
els, representing different types of data, into a coherent analysis. In Sections 3.1 and 3.2,we describe the
submodel used to combine RCT’s AD. This is a bivariate random effects meta-analysis model, which
accounts for two types of biases as follows: (1) external validity bias due to variation in the RCTs’ baseline
risk and (2) internal validity bias due to quality issues.
In Section 3.3, we introduce the submodel corresponding to IPD. Thismodel accounts for observational

bias, and it is linked with the AD submodel through two shared parameters. In Section 3.3.1, we present a
conditional model that naturally predicts treatment effects in subgroups of patients by using a regression
approach. Further modeling details are presented in Section 3.4.

3.1. Data model for aggregated and individual data

Consider a meta-analysis of N randomized studies, where yAD0,i denotes the number of events in the
control group of study i (i = 1,… ,N) arising from nAD0,i subjects and y

AD
1,i and n

AD
1,i denote the equivalent

quantities in the treatment group. The upper script AD is used to highlight that the results have been
aggregated at the level of the study and we do not have access to IPD.
The outcome variables yAD0,i and y

AD
1,i are modeled with two binomial distributions as follows:

yAD0,i ∼ Binomial
(
pAD0,i , n

AD
0,i

)
and yAD1,i ∼ Binomial

(
pAD1,i , n

AD
1,i

)
, (1)

where pAD0,i and p
AD
1,i are the event rates for each group.

In addition, suppose we have evidence of participants treated as controls from an observational study
(i = N + 1), with the same outcome variable as in the randomized studies, with the individual participant
outcome variable yIPD0,N+1,j (for j = 1,… ,M), and with several individual characteristics or risk factors
xj,1, xj,2,… , xj,p. The individual outcome variable y

IPD
0,N+1,j is modeled with a Bernoulli distribution with

the following:

pIPD0,N+1,j = Pr
(
yIPD0,N+1,j = 1

)
. (2)

In order to simplify the notation in the following sections, we call yAD0 =
(
yAD0,1 ,… , yAD0,N

)
, yAD1 =(

yAD1,1 ,… , yAD1,N

)
and yIPD0 =

(
yIPD0,N+1,1,… , yIPD0,N+1,M

)
the respective vectors of data.

3.2. Random effects model for aggregated experimental evidence

For i = 1,… ,N, we model between-studies variability with the following random components:
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h
(
pAD0,i

)
= 𝜃1,i and g

(
pAD1,i

)
− g

(
pAD0,i

)
= 𝜃2,i, (3)

where 𝜃1,i represents an explicit adjustment for a potential external validity bias and 𝜃2,i represents the
relative treatment effect (i.e., relative to the control treatment). The random effect 𝜃1,i summarizes the
number of patients’ characteristics and study design features that may influence the treatment effect 𝜃2,i,
we called 𝜃1,i the baseline risk effect of study i.
The function g(⋅) corresponds to the link function, which defines the scale where the treatment effect

is defined. The function h(⋅) represents the scale where a linear relationship between underlying risk
and treatment effect is modeled. Two forms of link functions are used in this work: the logistic link
logit(p) = log(p∕(1−p)), which represents the odds ratio in the logarithmic scale and the complementary
log–log link function log(− log(1 − p)) = log(H) where H represents the cumulative hazard up to the
mean follow-up.
The effects 𝜃1,i and 𝜃2,i are modeled as exchangeable between studies, and they follow a scale-mixture

of bivariate normal distributions with mean and variance as follows:

E

[(
𝜃1,i
𝜃2,i

)]
=
(
𝜇1
𝜇2

)
, var

[(
𝜃1,i
𝜃2,i

)]
= 1
wi

(
𝜎21 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎22

)
(4)

and scale mixing density
wi ∼ p(wi). (5)

The motivation for including 𝜃1,i into the model is twofold: On the one hand, participants’ characteris-
tics are aggregated at the study level, and they cannot be used to directly adjust treatment effect. On the
other hand, study level factors are usually known (e.g., length of the follow-up period), but the amount
of studies N could be too small to make a direct adjustment useful.
The inclusion of the random weights wi into the model is similar to the bivariate random effect meta-

analysis of Verde [11], where p(wi) allows for a great flexibility to model the marginal distribution of 𝜃1,i
and 𝜃2,i. Two important cases are as follows:wi ∼ Gamma(𝛼, 𝛽)with 𝛼 = 𝛽 = 𝜈∕2, which corresponds to a
marginal bivariate t-distribution with known degrees of freedom 𝜈 and p(wi = 1) = 1,which corresponds
to a bivariate normal distribution.
Another important aspect of wi is its interpretation as estimated bias correction. A priori all studies

included in the review have a mean of E(wi) = 1. We can expect that studies, which are unusually
heterogeneous, will have posteriors means substantially less than 1. If the model is not corrected by the
influence of unusual study results, then the meta-analysis may produce biased results.
Unusual results could be produced by factors that may affect the quality of the study, such as dilution

of the treatment effect, confounding factors, loss to follow-up, and others. For that reason, the studies’
weights wi can be interpreted as an adjustment of studies’ internal validity bias.
The present model is a simplification of the complexity involved in modeling the between-study het-

erogeneity. There are several alternatives to extend the distribution of the random effects 𝜃1,i and 𝜃2,i
including an asymmetric bivariate distribution or adding a regression equation that explains systematic
changes of the studies weights w1,… ,wN [11].

3.3. Combining observational individual data with aggregated experimental data

The fact that the evidence concerning individual participants is non-experimental has to be handled with
care. Clearly, data resulting from different study types might have different grades of quality. Therefore,
the potential bias introduced by combining different study types has to be explicitly modeled. In this
section, we consider a simple formulation that can be used as a first modeling step.
In order to combine results from different study types, we assume that participants treated as controls

may have similar results across study types. Therefore, the event rate of the control group is a parameter
defined across study types. Hence, the starting point to connect evidence across different study types is the
combination of the event rate parameters pIPD0 and pAD0 = h−1(𝜇1) and the marginal variance var(𝜃1) = 𝜎21 .
We called 𝜇1 and 𝜎21 shared parameters to highlight that they are commonly estimated across different
study types.
Now, let us suppose that because of uncontrolled patient selection and quality limitations, the cohort

suffers from an internal bias 𝜙 that is modeled as follows:

𝜙 ∼ Normal
(
𝜇𝜙, 𝜎

2
𝜙

)
. (6)
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Hence, the cohort has a baseline risk random effect represented by the following:

h
(
pIPD0,N+1

)
= 𝜃1,N+1 + 𝜙 (7)

= 𝜃IPD1,N+1. (8)

The cohort effect 𝜃IPD1,N+1 combines the effect of a hypothetical experimental control group 𝜃1,N+1 with an
intrinsic observational bias 𝜙 and has a biased mean of

E
(
𝜃IPD1,N+1

)
= 𝜇1 + 𝜇𝜙 (9)

= 𝜇IPD1 (10)

and a variance inflation of

var
(
𝜃IPD1,N+1

)
= 𝜎21 + 𝜎2

𝜙
. (11)

Now, by taking

wN+1 =
𝜎21

𝜎21 + 𝜎2
𝜙

, (12)

we have

var
(
𝜃IPD1,N+1

)
=

𝜎21

wN+1
(13)

= 𝜎IPD1
2

(14)

in this way the variance of 𝜙 is modeled by using the shared parameter 𝜎1 and the weight component
wN+1, which are estimated across study types. Note that we assumed that 𝜃1,N+1 is independent of the
observational bias 𝜙. In section 5, we briefly discuss this point.
The individual patients’ characteristics x1, x2,… , xp are used to reduce the influence of the patient

selection bias 𝜇𝜙 as follows:

E
(
𝜃IPD1,N+1|x1,j,… xp,j

)
= 𝜇1 + 𝜇𝜙 + 𝛽1x1,j +…+ 𝛽pxp,j. (15)

If the participants’ characteristics correctly adjust for selection bias and there is no other known system-
atic bias, then we expect that the posterior of 𝜇𝜙 will be concentrated around zero. Hence, the parameter
𝜇1 can be estimated by using evidences from different study types. In other words, experimental and non-
experimental data are not in conflict, and we expect that the pooled amputation rate of the RCTs is similar
to the base line risk of the cohort after adjusting by patient risk factors. In Section 3.4.1, we describe a
procedure to check if experimental and non-experimental data are in conflict.
In our approach, we leave 𝜇𝜙 as a free parameter, where its prior is updated by using the contribution

of IPD. However, depending on the context of application, other authors have given a fixed value for
𝜇𝜙 [12, 13].
The weight wN+1 represents an adjustment for the quality of observational evidence. An immediate

question this approach raises is as follows: How much contribution does a non-randomized study have
compared with a randomized trial? In this work, we follow a data driven approach by approximating the
joint posterior of w1,… ,wN and wN+1. If the posterior of wN+1 is concentrated at 1, then empirically
the observational evidence is not in conflict with the RCTs’ evidence. In this approach, randomized and
non-randomized evidences are partially exchangeable after learning from the posterior distribution of
w1,… ,wN and wN+1.
If the posterior of wN+1 is concentrated at lower positive values, then the observational data strongly

deviate from the RCTs’ evidence. In this case, RCTs’ results cannot be generalized to the observational
data. One first step to harmonize this heterogeneity is to search for individual data covariates that may
correct this deviation.
Clearly, if there is prior evidence that the observational data are of poor quality, then a deterministic

approach can be applied by giving a fixed value to wN+1 = k, which penalizes evidence with lower
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quality. This was applied by Spiegelhalter and Best [12]. However, a deterministic penalization could be
too arbitrary in practice. For these reasons, we propose an alternative procedure in this paper. Suppose
that a priori we assume that wN+1 ∼ Gamma(aN+1, bN+1), with the prior mean as follows:

E(wN+1) =
aN+1
bN+1

= k, (16)

and we are working with a model with 𝜈 degrees of freedom. Now, by taking

aN+1 = 𝜈∕2 and bN+1 = (𝜈 + 𝛿)∕2, (17)

we can elicit 𝛿 by 𝛿 = 𝜈(1 − k)∕k.
We use this procedure in Section 4 to perform a sensitivity analysis of the predictive posteriors of

subgroups of patients. For example, we fixed a priori a low value of E(wN+1) = 0.4, and we checked if
this value influenced the results. This procedure can be extended to any piece of evidence that we are
combining in a meta-analysis.

3.3.1. The conditional model and the treatment effect of a subgroup of patients. The random effect
model of (𝜃i,1, 𝜃i,2) (i = 1,… ,N) of Section 3.2 and the model of 𝜃N+1,1 of Section 3.3 are
equivalent to

𝜃i,1 ∼ Normal
(
𝜇1, 𝜎

2
1∕wi

)
, (18)

𝜃i,2|𝜃i,1 ∼ Normal

(
𝜇2 + 𝜌

𝜎2

𝜎1
(𝜃i,1 − 𝜇1),

(
1 − 𝜌2

)
𝜎22∕wi

)
(19)

and

𝜃N+1,1 ∼ Normal
(
𝜇1 + 𝜇𝜙 + 𝛽1x1 +…+ 𝛽pxp, 𝜎

2
1∕wN+1

)
. (20)

The conditional mean of 𝜃i,2|𝜃i,1 is used to extrapolate a treatment effect for a particular value of 𝜃i,1.
In this work, we approximate the posterior conditional mean of 𝜃i,2|𝜃i,1 by using Markov chain Monte
Carlo (MCMC) computations and by specifying a suitable range of values of 𝜃i,1 (Section 3.4.3).
We note that, if the posterior distribution of 𝜌 is centered at zero, the treatment effect is summarized

by the posterior distribution of 𝜇2. In such a case, we should be careful with the interpretation of results,
and we should analyze whether there are other study level characteristics that can be useful to adjust for
external validity by using for example a meta-regression approach (Section 3.4.2).
One interesting aspect of this conditional model is that it gives a solution to the empty cell problem

in cross-design synthesis [18]. The idea here is to combine the distribution of (19) with (20). Hence,
inference of treatment effect of a particular subgroup of patients characterized by the risk factor xk
(k = 1,… , p) and baseline risk at 𝜃xk1 = 𝜇1 + 𝜇𝜙 + 𝛽k, is based on the posterior distribution of the
functional parameter:

𝜂k = 𝜇2 + 𝜌
𝜎2

𝜎1
(𝜇𝜙 + 𝛽k). (21)

The baseline risk of the group 𝜃
xk
1 gives the location on the axes of 𝜃1 where the treatment effect 𝜂k is

predicted. For details in the implementation, see the Bayesian analysis using gibbs sampling (BUGS)
script in the appendix.

3.3.2. Priors for hyperparameters. The formulation of the model for aggregate data is completed by
specifying the priors for the hyperparameters 𝜇1, 𝜇2, 𝜇𝜙, 𝜎1, 𝜎2, and 𝜌. We assume that parameters are
independent and we use the following set of priors:

𝜇1 ∼ Logistic(m1, v1), 𝜇2 ∼ Logistic(m2, v2), 𝜇𝜙 ∼ Logistic(m3, v3) (22)

and

𝜎1 ∼ Uniform(0, u1), 𝜎2 ∼ Uniform(0, u2). (23)

The correlation parameter 𝜌 is transformed by using the Fisher transformation,
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z = logit

(
𝜌 + 1
2

)

and a Normal prior is used for z as follows:

z ∼ Normal(mz, vz). (24)

Using independent priors that constrain 𝜎1 > 0, 𝜎2 > 0 and |𝜌| < 1 guarantee that in each MCMC
iteration, the variance–covariance matrix of the random effects 𝜃1 and 𝜃2 is positive definite. For
implementation details, see the BUGS script in the appendix.
An alternative prior for the variance matrix is the inverse Wishart distribution. However, this distri-

bution is less flexible than working directly with each parameter’s prior. In addition, an inverse Wishart
prior implies that 𝜎21 and 𝜎22 follow inverse Gamma priors, which might lead to biased results when a
small number of studies are included in the analysis [31].
The values of the constants m1, v1,m2, v2,m3, v3, u1, u2,mz, and vz have to be given. They can be used

to include valid prior information that might be empirically available, or they could be the result of expert
elicitation. If such information is not available, we recommend to set these parameters to values that
represent weakly informative priors. In this work, we use m1 = m2 = m3 = mz = 0, v1 = v2 = v3 = 4,
and vz = 1 as weakly informative prior setup. These values are fairly conservative in the sense that they
induce priors for the event rates pAD0,i and p

AD
1,i , which have a U-shaped form like non-informative Jeffreys

priors for probabilities. If we wish to work with uniform priors in the probability scale, we should take
v1 = v2 = v3 = 1. Our priors’ setup gives locally uniform distributions for 𝜇1, 𝜇2, and 𝜇𝜙, uniforms for
𝜎1 and 𝜎2, and a symmetric distribution for 𝜌 centered at 0.
It is well-known that for a small number of studies, the posteriors of 𝜎1 and 𝜎2 are sensitive to the

priors, so different values of u1 and u2 should be used for a sensitivity analysis. In our experience, the
most difficult parameter to estimate in this model is 𝜌. This is a critical parameter because it makes the
difference between adjusting or not for external validity bias. Therefore, we recommend to perform a
prior to posterior sensitivity analysis by giving different values for mz and vz to understand their effect
in the model.

3.3.3. Priors for regression parameters. The prior distribution of the regression coefficients 𝛽1,… , 𝛽k
encapsulates a variable selection procedure, and depending on the context of application, some priors’
configuration may be more suitable than others. Basically, if regression parameters are independent a
priori, no variable selection is performed. When these coefficients are modeled as exchangeable with
a prior mean of 0 and unknown variance 𝜎2

𝛽
, then a shrinkage effect toward 0 is produced. This effect

regularizes the model by penalizing the inclusion of uninteresting variables. In addition, the probability
distribution used increases the penalty according to the heaviness of its tail. In this way, coefficients with
posteriors far from 0 are considered statistically relevant for the model.
In general, we have to scale the covariates in order to make the assumption of exchangeability

reasonable. In this application, every covariate is binary, and scaling covariates is therefore not necessary.
There is an extensive number of possibilities to handle variable selection in regression. For a recent

review on this topic, see [32]. In order to be flexible when dealing with this model component, we apply
a normal-gamma prior distribution to the coefficients 𝛽1,… , 𝛽p with the following parametric form [33]:

𝛽k ∼ Normal
(
0, 𝜆k𝜎

2
𝛽

)
, 𝜎𝛽 ∼ Uniform(0, u3) (25)

and

𝜆k ∼ Gamma(a, b). (26)

When a = b = 1, the marginal distribution of 𝛽k is a double exponential prior (i.e., a least absolute
shrinkage and selection operator (LASSO) penalization); taking a = b = 𝜈∕2 gives a t-distribution with
𝜈 degrees of freedom, and making 𝜆1 = · · · = 𝜆p = 1 gives a Normal prior with unknown variance
𝜎2
𝛽
(i.e., a Ridge penalization). We chose to work with u3 = 5, which leaves the priors for 𝛽k locally

uninformative. We applied these different configurations to explore which regression models are more
suitable for linking risk effects and events. However, as pointed out by one reviewer, in the context of our
application, there are no practical reasons for decreasing the amount of covariates. Therefore, a LASSO
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Figure 3. Directed acyclic graph for the model which combines aggregated data (AD) and individual participants
data (IPD). Ellipses represent random variables and dashed ellipses indicate hyper-prior parameters. A double-
lined arrow indicates a functional relationship between variables and a single-lined arrow a stochastic relationship.
Two submodels are represented as follows: on the left hand side a model, which links individual risk factors to the
outcome variable yID0 . On the right hand side a model for aggregated results

(
yAD0 , yAD1

)
adjusted by RCTs’ external

validity 𝜃1. Both submodels include a bias adjustment by internal validity wi. Frames with dashed lines show the
models used to assess conflict of evidence. The frame with the solid line displays a random effects meta-analysis

model without external validity adjustment.

penalization seems unnecessary. Instead, a ridge regression could be preferred as this approach allows to
correct a maximum of potential confounder effects.

3.4. Further modeling topics and statistical computations

3.4.1. Assessing conflict of evidence with a directed acyclic graph. An important issue when combining
different sources of information is the potential inconsistency between pieces of evidence. The dashed
frames in the directed acyclic graph (DAG) presented in Figure 3 show two important submodels that
could be in conflict in our analysis: the left frame corresponds to the submodel with IPD only and the
right frame corresponds to the submodel with AD only for the control group in the RCTs.
We assess a potential conflict of evidence between IPD and AD by setting 𝜇𝜙 = 0 and 𝜌 = 0 as constant

nodes, and by splitting the node 𝜇1 into two nodes 𝜇
AD
1 the pooled mean of the control group of the RCTs

and 𝛽0 the intercept of the regression model of the individual participants data. In this way, the posteriors
of 𝜇AD1 and 𝛽0 are calculated independently of each other and without the influence of the treatment effect
𝜇2.
By comparing the resulting posteriors of 𝜇AD1 and 𝛽0, we can assess if the RCTs’ data are in conflict

with the individual patient data. Substantial deviation between posteriors indicates inconsistency between
study types. Formally, a Bayesian p-value can be calculated in order tomeasure the departure from the null
hypothesis of no conflict. For technical details on calculating Bayesian p-values in conflict of evidence
in hierarchical models, see [34] and more recently [35]. In this paper, we made an informal analysis by
visualizing the posteriors of model parameters.

3.4.2. Inclusion of study level covariates. The extent to which observed study level characteristics influ-
ence treatment effect can be investigated with a meta-regression by including these covariates into the
conditional mean of the model (19). In this work, two study level covariates presented in Table I are ana-
lyzed as follows. The first one is the length of follow-up in months, and the second one is the grouping
factor, which indicates if the trial includes patients with PAD.
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3.4.3. Software implementation and computations. The Bayesian hierarchical model presented in this
work can be fitted by using MCMC simulations. Samples from the full posterior distribution of model
parameters can be generated using the statistical software WinBUGS [36].
All calculations were implemented in R [37] and by calling WinBUGS from R using the package

R2WinBUGS [38]. Results are based on two parallel MCMC simulations with 50,000 iterations, tak-
ing the first half of the iterations as burn-in period. Convergence was investigated using the R package
coda [39]. The BUGS script used in the statistical analysis is part of the supplementary material of this
paper and can be applied to similar types of statistical analysis.

4. Statistical analysis and results

4.1. Preliminary analysis for aggregated and individual patient data

4.1.1. Analysis of link functions. The modeling aspect of deciding, which link functions to use, was ana-
lyzed by comparing the posteriors of the hyperparameters under different combinations of link functions.
We analyzed the following combinations of link functions: (1) logit and complementary log–log function
for g(⋅) and (2) logit, complementary log–log and log for h(⋅).
The four combinations of link functions show an important overlapping of posteriors of 𝜇1, 𝜇2, 𝜎1,

𝜎2, and 𝜌. These results indicate that conclusions of the analysis are not sensitive to the choice of link
functions. Therefore, to make results easy to interpret, we decided to use the logit link for g(⋅) and h(⋅)
for further analyses.

4.1.2. Analysis of structural distribution. We started by comparing results with the bivariate normal
distribution and a scale mixture distribution. We decided to work with 𝜈 = 4 degrees of freedom, which
is a value that is small enough to penalize studies with unusual results.
The mixture model clearly identified the study by Duzgun et al. (2008) as an outlier, with a posterior

mean weight E(w2|yAD0 , yAD1 ) = 0.5. Interestingly, the risk of bias assessment in Section 2.2 pointed out
that this study was at high risk for internal validity.
The mixture model automatically corrected the influence of unusual study results. In our case study,

this correction strongly influences the posterior distribution of 𝜌. For the Normal model, the posterior
mean was -0.559 and had a 95% credibility interval [ -0.961, 0.013 ], while the corresponding results
for the scale mixture had a posterior mean of -0.338 and a 95% credibility interval of [ -0.822, 0.137 ].
Further analyses in this section are based on the scale mixture of normal distribution for random effects.

4.1.3. Analysis of covariates at study level. In order to analyze the influence on treatment effect based
on study level characteristics, we performed a meta-regression analysis with the length of the follow-up
period and the presence of patients with peripheral artery disease (PAD) as covariates. The posterior distri-
bution of the regression coefficients has the following mean and 95 % credibility intervals: for follow-up
0.1 [-2.3, 2.5] and PAD 0.01 [-1.7, 1.6]. These results clearly show that study level covariates do not help
to explain systematic variability between studies.

4.1.4. Regression analysis of participant individual data. The aim of this analysis is to find out which
individual risk factors are associated with individual baseline risk. We analyzed three different Bayesian
variable selection procedures as follows:

• No penalty for including covariates in the model. This procedure is achieved by using independent
priors for regression coefficients.

• The use of ridge penalization, which corresponds to exchangeable regression coefficients with
normal priors.

• The use of lasso penalization, which is equivalent to using exchangeable regression coefficients with
double exponential priors.

Figure 4 summarizes the regression results by comparing coefficients’ posteriors between the inde-
pendent coefficients and the exchangeable ridge regression model. An important shrinkage effect can
be observed by modeling coefficients as exchangeable. This effect adjusts the posterior distribution
of the regression coefficients by pooling their values toward zero and by reducing the width of their
posterior intervals.
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Figure 4. Caterpillar plot of posteriors of regression coefficients: For each regression coefficient 𝛽i two 95%
credibility interval are displayed, the upper grey lines correspond to the model with independent coefficients
and the lower black lines correspond to the model with exchangeable coefficients. The most relevant risk factors
identified in this analysis were: the classification of Wagner score (1, 2, 3 vs. 4), the first ever lesion (no/yes) and

moderate effect of patent ductus arteriosus. PAD, peripheral artery disease .

The most important individual risk factors identified in this analysis were as follows: the classification
of Wagner score (1, 2, 3 vs. 4), the first ever lesion (no/yes) and moderate effect of PAD.
We did not find any practical differences between ridge and LASSO results. Hence, we decided to

use the former to combine individual and AD in the following Sections 4.2 and 4.3. Further results
concerning the difference between ridge and LASSO results are presented in [28].

4.2. Conflicts of evidence between randomized clinical trial results and observational individual data

4.2.1. Independent analysis of aggregated data and individual participant data. Before combining dis-
parate data together, an important question must be answered: Are these pieces of evidence in conflict? In
this section, we analyze independently the AD from the IPD by following the recommendations presented
in the discussion section of Verde and Ohmann [20].
In particular, we assess conflict of evidence by comparing the pooled amputation rate in the logistic

scale of the RCT’s control group 𝜇AD1 (Figure 3 dashed frame on the right) with 𝛽0 the intercept of the
regression model of the individual participants data (Figure 3 dashed frame on the left). As stated in
Section 3.4.1, we calculate the posterior distribution of 𝜇AD1 , without the influence of treatment effect
𝜇2; we proceed by setting the correlation coefficient 𝜌 = 0 and modeling the random effects 𝜃1 and 𝜃2
independently. The posterior distribution of 𝜇AD1 is compared with the posterior distribution of 𝛽0.
For the AD, the posterior marginal mean of 𝜇AD1 is -1.914 with 95% posterior interval of (-2.714, -

0.924), which completely overlaps the posterior of 𝛽0, which has amean equal to -2.016 and posterior 95%
interval of (-3.155, -0.935). The left panel of Figure 5 shows the overlaps of the posterior distributions
of these parameters, which clearly indicate no conflict of evidence between AD and IPD.

4.2.2. Analysis by combining aggregated data and individual participant data. In addition to the previ-
ous procedure, we estimate the posterior distribution of 𝜇1 and 𝜇𝜙 by combining both AD and IPD with
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Figure 5. Left panel: Assessment of conflict of evidence by comparing posteriors of baseline risk for aggregated
and individual data. Right panel: Posteriors of quality weights, the distributions overlapping the the vertical line

at one correspond to studies without discounting.

the model presented in Section 3.3. The resulting posterior mean of 𝜇1 was -2.05 with 95% credibility
interval of (-2.96, -1.12), and the posterior mean of 𝜇𝜙 was -0.94 with 95% posterior interval of (-3.87,
1.98), which indicates that in our example, no additional intercept 𝜇𝜙 is needed when observational data
are combined with RCT data. These results are in the same line as the previous section. Therefore, we
decided to set 𝜇𝜙 = 0 for the subsequent analyses.
We gave equal prior weights to each RCT (E(wi) = 1 for i = 1,… ,N) and to the cohort study

(E(wN+1) = 1). The right panel of Figure 5 shows the posteriors for the weights of each piece of evidence,
we can see that the study by Duzgun et al. (2008) is down-weighted compared with the others RCTs.
Interestingly, the posterior distribution of the cohort’s weight is centered at one, which shows concor-

dance with the RCTs’ results. We can see that in this case, experimental and observational data are not in
conflict, which empirically validates their combination. In the right panel of Figure 5, we can also see that
a prior mean of k = 0.4 or lower should be necessary for an additional penalization of the observational
data. This result is used in Section 4.3.1 for sensitivity analysis of the predictive treatment analysis.

4.3. Results of combining aggregated and individual data

The results of the following sections are based on the full model, which combines themodel of aggregated
and individual patient data.

4.3.1. Extrapolation treatment effects for subgroups of patients. The aim of this section is to quantify the
treatment effect for different groups of patients and the influence of different types of bias. The following
scenarios are analyzed:

• Extrapolation of treatment effect by adjusting to external bias and taking the baseline risk of the
cohort as the target population.

• We extend the extrapolation of the treatment effects to subgroups of patients. These include (1)
patients with Wagner’s score of 4, (2) patients with a previous lesion, and (3) patients with PAD.
As depicted in Figure 4, the first two groups have a clear risk factor of amputation while the third

group has a moderate risk factor.

Figure 6 summarizes the results of the hierarchical meta-regression model. The solid lines correspond
to the posteriormedian and 95% credibility interval. Themodel shows that an increase in baseline risk cor-
responds to an increase in treatment effect (lower values on the vertical axis correspond to an increase in
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Figure 6. Summary results of generalizing treatment effects in logistic scale: randomized controlled trials’ results
are displayed as circles. The fitted hierarchical meta-regression model is summarized as follows: The black lines
are the posterior median and 95% credibility interval intervals for the distribution of treatment effect given a range

of values of the baseline risk. The vertical dashed line corresponds to the baseline risk of the cohort study.

treatment effect). The vertical dashed line marks the baseline risk of the cohort study, and the intersection
with the solid lines corresponds to the prediction of treatment effect.

Figure 7. Summary results of generalizing treatment effects. From the bottom to the top the posterior means and
95% credibility intervals of the following cases are presented: no bias adjustment, extrapolation to the cohort

baseline risk, and three subgroups of patients.
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With more details, Figure 7 compares the 95% posterior intervals of the treatment effect estimated as
follows: (1) a simple random effects model without bias correction, (2) the treatment effect of the cohort
after adjusting for risk effects, and (3) the previously mentioned subgroups of patients. From the bottom
to the top, we have the following results:

• The simple random effects model reveal a trend but not a definitive treatment effect. This result
contrasted with the treatment effect adjusted by external validity bias and evaluated at the baseline
risk of the cohort. This extrapolation gives a log odds ratio of -1.262 (-2.334, -0.218), which is a
clear positive treatment effect. In this way, we expect that patients similar to those participating in
the cohort would have a positive treatment effect.

• The next three lines correspond to the three subgroups of patients with Wagner’s score 4, PAD pos-
itive, and a first ever lesion. Clearly, there is an increase in variability because of the sparsity of the
data, but the trend is a reduction of the odds of amputation.

• In particular, the subgroup of patients with Wagner’s score 4 has a log odds ratio of -1.5 (-3.0, -0.22),
and the group of patients with a first ever lesion has a log odds of -1.3[-2.7, -0.18].

• Figure 8 shows the posterior predictive distributions for two subgroups of patients. The left panel
corresponds to patients with Wagner score 4 and the right panel to the group of patients with a lesion
at the time of enrollment in the cohort. Hence, if the treatment is applied to these subgroups, the
predictive median and 95% posterior intervals for the number of amputations are as follows: (a) 3(0,
11) for the subgroup of patients with Wagner score equal to 4; and b) 6 (1, 219) for the subgroup
of patients with first ever lesion. The observed numbers of amputations in each group were: 21 out
of 49; and 31 out of 114, respectively. These results show that there is a potential advantage in
using adjunctive therapies in these subgroups of patients. We performed a sensitivity analysis of the
previous results by using a prior quality weight of 0.4 for the cohort study. Posterior predictive results
were very stable with 4(0,11) and 10(2, 24) for each subgroup, respectively.

The results of this section showed the advantage of combining aggregated experimental data with
observational individual data and the possibility to target subgroups of patients for further investigation.
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Figure 8. Posterior predictive results. Left panel: Subgroup of patients with Wagner score 4. The vertical line
indicates 21 observed amputations out of 49 patients. Right panel: results for the group of patients which had a

foot lesion when they enter the cohort, the vertical line indicates 31 amputations out of 114 patients.
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If the AD can be adjusted by their internal and external validity bias, then as pictured in Figure 6,
we can start linking AD with IPD evidence. Figure 7 highlighted the fact that by collecting IPD we can
potentially gain new insights from RCTs’ results which cannot be seen using a simple random effects
model. Finally, the posterior predictions at the subgroup level displayed in Figure 8 clearly show that
these insights can help to understand effects in unstudied patient groups.

5. Conclusions

In this article, we developed a new statistical framework for generalizing RCTs’ results in clinical prac-
tice. This framework is based on a Bayesian evidence synthesis model, which combines aggregated
experimental data with observational individual data of patients treated in medical routine care.
The proposed model can be divided into two submodels. The first one adjusts RCTs’ treatment effects

with their baseline risk, and the second one links individual risk factors with baseline risk. By combin-
ing these submodels, we can predict treatment effect for a particular subgroup of patients that could be
underrepresented in the RCTs. In addition, a mechanism for adjusting each piece of evidence by its inter-
nal validity is integrated into this approach. In a way, this model can be viewed as a formal Bayesian
approach of the heuristic cross-design synthesis method, and it is flexible enough to deal with multiple
sources of bias which are usually present in these types of data. In our approach, the empty cell problem
is naturally handled as a prediction problem in regression analysis.
Our motivation to develop this model was to assess to what extent results from RCTs, which showed

a trend in efficacy of diabetic foot problems, can be extrapolated in medical routine care. With this end
in mind, we analyzed AD from six RCTs with IPD from a cohort study. The analysis showed that the
assessment of treatment effect in a new group of patients is possible, but the validity of these predictions
may depend on the quality of the observational data. This type of analysis should be taken as hypothesis
generating, for example, by targeting particular groups of patients that may benefit most from a new
treatment, or for further investigation rather than as confirmatory results.
Our case study presents a strong agreement between results of RCTs’ control groups and the cohort

study. The demographic profiles of the patients participating in the RCTs were similar to those enrolled
in the cohort. Neither lack of quality nor the patient selection in the cohort were at issue. However, in
other applications we could expect that observational bias may be more predominant. We expect that the
statistical tools presented in Section 3 could be useful in such a case.
A common way to model the bias introduced by combining different study types is by including a

variance component which measures this feature. This is known as grouped-random effects in evidence
synthesis literature [20]. This approach requires a large number of studies in order to assess between
study type variability. In our application, with a few numbers of RCTs and a single observational study,
the grouped-random effects method is not suitable. The model presented in this paper is an alternative
for the grouped-random effects approach when few studies of different design have to be combined in a
meta-analysis.
We conclude with some remarks on the limitations of the case study and the modeling approach

presented in Section 3, and we point out areas that require further research as follows:

• The case study presented in this paper is a real one, but it is quite limited. In order to fully demonstrate
the value of the proposed methods, we should apply them to examples where less similarities exist
between the different sources of evidence. We are currently working in this line of research, and we
expect to include not only therapeutic but also diagnostic and prognostic studies. As mentioned by
one reviewer, effect modification and study quality will have a stronger influence in such scenarios,
and the availability of IPD and modeling covariates in these data will become more relevant as is
currently the case.

• We had the simplistic assumption that 𝜃1,N+1 is independent of the observational bias 𝜙 and after
performing a conflict of evidence analysis, we set 𝜇𝜙 = 0. As mentioned by one of our reviewers,
one may be surprised to see a positive correlation between these two parameters. Moreover, the bias
direction in observational studies is uncertain. Deeks et al. [40] showed that non-random allocation
can lead to overestimation or underestimation of treatment effects. In this regard, our case study is
very limited. In order to further investigate these issues, we should combine several observational
studies and RCTs with a grouped-random effects approach.

• We proposed to use the weights w1,… ,wN+1 as a device to construct heavy-tailed distributions for
the random effects. If the data allow us to learn from the posteriors of w1,… ,wN+1, then, technically
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speaking, these weights are measures of studies’ misfit. In this paper, we argue that in the context
of evidence synthesis these weights are linked with the study’s internal validity. However, this is a
conjecture that requires further research. In meta-analysis of diagnostic test data, Verde [11] found
that observational studies tend to have over-dispersion, that is, systematically lower values of wis.

• As pointed out by one reviewer, one line of research could be to assess risk of bias and quality assess-
ment by existing tools and compare the resulting quality with the weights distributions obtained by
our model. Further references regarding this line of research include issues in study design and risk
of bias by Higgins et al. [41], issues relating to confounding factors when including non-randomized
evidence by Valentine and Thompson [42], issues in selective reporting by Norris et al. [43], appli-
cability of non-randomized evidence as a complementary source of evidence by Schuenemann [44],
and a guideline of checklists for review authors by Wells [45].

• The method has limits when the correlation between 𝜃1 and 𝜃2 is low or their variances are low. In
these cases, the predicted treatment effect would be unstable. A line of further research could be to
use a meta-regression with common covariates between RCTs and observational data that may help
to link treatment effect and individual participant characteristics. We are currently working on this
problem as well.

• We have presented a multiplicity of biases. The question is as follows: how much does each bias
affect the posterior distribution of any parameter of interest? The technical problem we have is the
interconnection of all parameters in the model, which makes it difficult to isolate the influence of
different types of bias in posteriors of a parameter of interest. To answer this question, we can use
the DAG representation of the full statistical model presented in Figure 3. The advantage of having
a DAG is that it allows us to calculate the influence of each component by restricting its influence
during the simulation process. This is called cutting feedback in a DAG and is implemented in the
statistical software WinBUGS and OpenBUGS [36] with the cut function. One further topic of
research in our work is to use the cut function in order to automatically assess bias influence in the
model.

• Finally, our work is just a first step in the complex problem of generalizing evidence.We did not cover
important aspects such as modeling several observational studies together with RCTs’ evidence,
observational studies with different sets of risk factors, if the inclusion of individual data reduces
ecological bias in meta-analysis, and the application of our approach to further clinical problems.

As this last section shows, we left a number of methodological questions unresolved. We hope that our
work motivates statisticians to investigate further advantages and discovers new insights in combining
aggregate and individual data in medical research.

Appendix: R script, BUGS model and further numerical results

In this appendix, we provide the R script and the main BUGS model used in Section 4.3 to combine
IPD and AD from RCTs’ results. At the end of the appendix, Table A.1 presents detailed results of the
analysis reported in Section 4.3.

# Model for combining aggregated and individual data .........................
cat(
"model

{
# Model for aggregated data ..................................................
for(i in 1: (N-1))
{
y.0[i] ˜ dbin(p.0[i], n.0[i])
y.1[i] ˜ dbin(p.1[i], n.1[i])

logit(p.0[i]) <- theta.1[i]
logit(p.1[i]) <- theta.2[i] + logit(p.0[i])

theta.1[i] ˜ dnorm(mu.1, pre.theta.1[i]) # Shared random-effect
theta.2[i] ˜ dnorm(mu.2.1[i], pre.theta.2.1[i])

lambda[i] ˜ dchisqr(df)
s[i] <- df/lambda[i]

pre.theta.1[i] <- inv.sigma2.1 / s[i]
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Table A.1. Summary results for the model used in Section 4.3 for 𝜇𝜙 = 0.

Block Parameters mean sd 2.5% 50% 97.5%

Hyperparameters mu.1 -2.15 0.41 -2.97 -2.15 -1.31
mu.obs -2.15 0.41 -2.97 -2.15 -1.31
mu.2 -0.74 0.53 -1.76 -0.74 0.35
sigma.1 0.79 0.39 0.27 0.71 1.78
sigma.2 1.33 0.97 0.09 1.06 3.67
rho -0.50 0.39 -0.98 -0.56 0.42

Conditional model of AD beta.0 -0.74 0.53 -1.76 -0.74 0.35
beta.1 -0.73 0.53 -1.76 -0.74 0.31

Regression coefficients of IPD beta.first.ever.lesion[2] 0.75 0.32 0.16 0.74 1.42
beta.pad[2] 0.47 0.31 -0.12 0.46 1.12
beta.w[2] 0.92 0.36 0.25 0.91 1.65

Random effects theta.1[1] -2.19 0.24 -2.68 -2.18 -1.73
theta.1[2] -0.26 0.30 -0.87 -0.25 0.32
theta.1[3] -2.47 0.66 -3.96 -2.40 -1.36
theta.1[4] -2.25 0.43 -3.19 -2.23 -1.46
theta.1[5] -2.27 0.43 -3.20 -2.24 -1.50
theta.1[6] -2.16 0.56 -3.35 -2.13 -1.14
theta.1[7] -2.58 0.60 -3.89 -2.54 -1.53
theta.2[1] -0.89 0.41 -1.72 -0.88 -0.12
theta.2[2] -2.28 0.61 -3.53 -2.25 -1.16
theta.2[3] -0.54 0.85 -2.15 -0.58 1.28
theta.2[4] -0.75 0.64 -2.03 -0.75 0.53
theta.2[5] -0.44 0.61 -1.57 -0.47 0.84
theta.2[6] -0.55 0.75 -1.94 -0.58 1.05
theta.2[7] -0.43 1.06 -2.42 -0.49 1.86

Weights weight[1] 1.23 0.76 0.22 1.07 3.12
weight[2] 0.51 0.45 0.04 0.38 1.73
weight[3] 1.11 0.72 0.18 0.96 2.91
weight[4] 1.19 0.75 0.21 1.04 3.05
weight[5] 1.19 0.75 0.21 1.03 3.06
weight[6] 1.16 0.74 0.20 1.00 3.01
weight[7] 1.05 0.71 0.16 0.89 2.83

Subgroups mu.t.w -1.40 0.72 -2.96 -1.35 -0.12
mu.t.f -1.28 0.65 -2.69 -1.24 -0.09
mu.t.pda -1.08 0.60 -2.35 -1.05 0.06
pr.t.w 0.08 0.06 0.02 0.06 0.22
pr.t.f 0.07 0.05 0.02 0.06 0.19
pr.t.pda 0.07 0.04 0.02 0.06 0.15
y.new.w 3.86 3.31 0.00 3.00 12.00
y.new.f 8.35 6.00 1.00 7.00 23.00
y.new.pda 9.84 6.23 2.00 9.00 24.00

Parameters are in BUGS notation and results organized in blocks of parameters, from the top to the bot-
tom: Hyperparameters, intercept and slope of the conditional model for aggregated data (AD), regression
coefficients of themain risk factors for individual participant data (IPD), random-effects, studies’ weights
and treatment effects for subgroups of patients.

pre.theta.2[i] <- inv.sigma2.2 / s[i]

#Conditional precision
pre.theta.2.1[i] <- pre.theta.1[i] / (1-rho*rho)

#Conditional mean
mu.2.1[i] <- mu.2 + rho * sigma.2 / sigma.1 * (theta.1[i] - mu.1)
}
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# DF
df <- 4

# Priors marginal model ...

mu.1 ˜ dlogis(0, 0.25) # Shared node
mu.2 ˜ dlogis(0, 0.25)

inv.sigma2.1 <- 1/(sigma.1*sigma.1)
inv.sigma2.2 <- 1/(sigma.2*sigma.2)
sigma.1 ˜ dunif(0, 4) # Shared node
sigma.2 ˜ dunif(0, 4)

# Correlation
z ˜ dnorm(0, 0.25)
rho <- 2*exp(z)/(1+exp(z)) - 1

# Model for individual data ............................................
# Random effect for the cohort study ...................................

mu.2.1[N] <- mu.2 + rho * sigma.2 / sigma.1 * (theta.1[N] - mu.obs)

theta.1[N] ˜ dnorm(mu.obs, pre.theta.1[N])
theta.2[N] ˜ dnorm(mu.2.1[N], pre.theta.2.1[N])

# Introduced mu.phi

# mu.phi ˜ dlogis(0, 0.25) # non-informative
# mu.phi ˜ dnorm(0, 1) # informative

mu.phi <- 0 # non-conflict = 0;
or constant bias mu.phi > or < 0.

mu.obs <- mu.1 + mu.phi

# Structure of w[N].....................................................
# Case: same as RCTs
a <- df/2
b <- df/2

#Case: penalization at E(w[N])= k = 0.4
# b <- (df + 6)/2

lambda[N] ˜ dgamma(a, b)
s[N] <- 1/lambda[N]

# Case 2: full penalization
# s[N] <- 10

pre.theta.1[N] <- inv.sigma2.1 / s[N]
pre.theta.2[N] <- inv.sigma2.2 / s[N]
pre.theta.2.1[N] <- pre.theta.1[N] / (1-rho*rho)

# Weights
for(i in 1:N){weight[i] <- 1/s[i]}

# Regression model ......................................................
for( i in 1:M ){
y.0.pid[i] ˜ dbern(p0.pid[i])

logit(p0.pid[i]) <- theta.1[N] # Shared random-effect
+ beta.w[w[i]]
+ beta.pad[pad[i]]
+ beta.neuropathy1[neuropathy1[i]]
+ beta.first.ever.lesion[first.ever.lesion[i]]
+ beta.no.continuous.care[no.continuous.care[i]]
+ beta.male[male[i]]
+ beta.diab.typ2[diab.typ2[i]]
+ beta.insulin[insulin[i]]
+ beta.HOCHD[HOCHD[i]]
+ beta.HOS[HOS[i]]
+ beta.CRF[CRF[i]]
+ beta.dialysis[dialysis[i]]
+ beta.DNOAP[DNOAP[i]]
+ beta.smoking.ever[smoking.ever[i]]
+ beta.age[age[i]]
+ beta.diabdur[diabdur[i]]
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}

# Setup ...
beta.w[1] <- 0
beta.pad[1] <- 0
beta.neuropathy1[1] <- 0
beta.first.ever.lesion[1] <- 0
beta.no.continuous.care[1] <- 0
beta.male[1] <- 0
beta.diab.typ2[1] <- 0
beta.insulin[1] <- 0
beta.HOCHD[1] <- 0
beta.HOS[1] <- 0
beta.CRF[1] <- 0
beta.dialysis[1] <- 0
beta.DNOAP[1] <- 0
beta.smoking.ever[1] <- 0
beta.age[1] <- 0
beta.diabdur[1] <- 0

# Priors ...
#beta.0 ˜ dnorm(0, 1)
beta.w[2] ˜ dnorm(0, pre.beta)
beta.pad[2] ˜ dnorm(0, pre.beta)
beta.neuropathy1[2] ˜ dnorm(0, pre.beta)
beta.first.ever.lesion[2] ˜ dnorm(0, pre.beta)
beta.no.continuous.care[2] ˜ dnorm(0, pre.beta)
beta.male[2] ˜ dnorm(0, pre.beta)
beta.diab.typ2[2] ˜ dnorm(0, pre.beta)
beta.insulin[2] ˜ dnorm(0, pre.beta)
beta.HOCHD[2] ˜ dnorm(0, pre.beta)
beta.HOS[2] ˜ dnorm(0, pre.beta)
beta.CRF[2] ˜ dnorm(0, pre.beta)
beta.dialysis[2] ˜ dnorm(0, pre.beta)
beta.DNOAP[2] ˜ dnorm(0, pre.beta)
beta.smoking.ever[2] ˜ dnorm(0, pre.beta)
beta.age[2] ˜ dnorm(0, pre.beta)
beta.diabdur[2] ˜ dnorm(0, pre.beta)

pre.beta <- 1/(sigma.beta*sigma.beta)
sigma.beta ˜ dunif(0, 2)

# Further parameters of interest ............................................

# Functional parameters for plotting the conditional model: (mu.2 | mu.1)...
beta.0 <- mu.2
beta.1 <- rho * sigma.2/sigma.1

# Mean controls wagner/first lesion/pad group...
mu.c.w <- mu.1 + mu.phi + beta.w[2] # Location on the x-axis

of Wagner
mu.c.f <- mu.1 + mu.phi + beta.first.ever.lesion[2] # Location on the x-axis

of first ever lesion
mu.c.pda <- mu.1 + mu.phi + beta.pad[2] # Location on the x-axis

of pad

# Mean treatment groups...
mu.t.w <- mu.2 + beta.1 * beta.w[2]
mu.t.f <- mu.2 + beta.1 * beta.first.ever.lesion[2]
mu.t.pda <- mu.2 + beta.1 * beta.pad[2]

# Predictive probability of amputation if treatment applyed ...
pr.t.w <- exp(mu.c.w + mu.t.w)/(1+exp(mu.c.w + mu.t.w))
pr.t.f <- exp(mu.c.f + mu.t.f)/(1+exp(mu.c.f + mu.t.f))
pr.t.pda <- exp(mu.c.pda + mu.t.pda)/(1+exp(mu.c.pda + mu.t.pda))

# Predictive number of amputations per group ...
y.new.w ˜ dbin(pr.t.w, 49)
y.new.f ˜ dbin(pr.t.f, 114)
y.new.pda ˜ dbin(pr.t.pda, 148)

}
", file = "Full_new.bug")

mfull.new <- bugs(data.full.new, inits=NULL, par.full.new,

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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"Full_new.bug",
n.chains = 2,
n.iter = 50000,
n.thin=1,
bugs.directory = bugsdir,
n.burnin=floor(25000),
working.directory = getwd(),
clearWD = FALSE, debug = F)
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Chapter 5

A Comment on Conflict of Evidence

”There must be, he thought, some key, some crack in this mystery he could

use to achieve an answer”.

-P.C. Doherty, Crown in Darkness.
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Comment by Pablo E. Verde1

My congratulations to the authors for this interesting paper. I found the extension of the
classical t-distribution by using a scale mixture of normal distributions per coordinate
quite useful in practice and the Dirichlet t-distribution an elegant approach. I would
like to make the following practical comments:

Statistical inference of the parameter α in the Dirichlet t-distribution looks chal-
lenging. The authors Michael Finegold and Mathias Drton applied two strategies: one
by fixing α to different values and another one by applying a Gamma prior distribution
with parameters equal to 1, which gives a prior E(α) = 1. In applications, I would rec-
ommend to make a prior to posterior analysis of this parameter in order to understand
if we could learn something about α from the data at hand. The same strategy should
be applied to the degrees of freedom parameter ν.

In my work in multi-parameters meta-analysis (Verde 2010; Verde and Sykosch 2011)
I found that the single component scale mixture is useful enough for outliers’ identifi-
cation and for down-weighting pieces of evidence with unusual results. However, the
introduction of the Dirichlet t-distribution opens an interesting possibility in the detec-
tion of conflict of evidence in meta-analysis and in the detection of structural outliers
in Bayesian hierarchical modeling.

The conflict assessment is the deconstructionist side of meta-analysis, where each
piece of evidence is put aside from the full model and compared to the rest of the
evidence. One possibility for this type of analysis is to embed a meta-analysis model in
a more general model where the non-conflict situation is a particular case. For example
in Verde et al. (2014), we applied a scale mixture of multivariate normal distributions
in a meta-analysis combining randomized and non-randomized evidence and we made
conflict diagnostics by direct interpretation of the scale weights. Another alternative
is presented by Presanis et al. (2013), where the authors described how to generalize
the conflict p-value proposed by Marshall and Spiegelhalter (2007) to complex evidence
modeling. In summary, by using a Dirichlet t-distribution conflict of evidence can be
generalized and performed for each parameter in a multi-parameter meta-analysis.

References
Marshall, E. C. and Spiegelhalter, D. J. (2007). “Identifying outliers in Bayesian hier-

archical models: a simulation-based approach.” Bayesian Analysis, 2: 409–444.
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Chapter 6

A Bayesian Model for Meta-Analysis of

Diagnostic Test Data

”Why does he insist that we must have a diagnosis? Some things are not meant to be known

by man.”

-Susanna Gregory, An Unholy Alliance.
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Meta-analysis of diagnostic test data: A bivariate
Bayesian modeling approach
Pablo E. Verde∗†

In the last decades, the amount of published results on clinical diagnostic tests has expanded very rapidly. The counterpart to this
development has been the formal evaluation and synthesis of diagnostic results. However, published results present substantial
heterogeneity and they can be regarded as so far removed from the classical domain of meta-analysis, that they can provide
a rather severe test of classical statistical methods. Recently, bivariate random effects meta-analytic methods, which model the
pairs of sensitivities and specificities, have been presented from the classical point of view. In this work a bivariate Bayesian
modeling approach is presented. This approach substantially extends the scope of classical bivariate methods by allowing the
structural distribution of the random effects to depend on multiple sources of variability. Meta-analysis is summarized by
the predictive posterior distributions for sensitivity and specificity. This new approach allows, also, to perform substantial
model checking, model diagnostic and model selection. Statistical computations are implemented in the public domain statistical
software (WinBUGS and R) and illustrated with real data examples. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: meta-analysis; diagnostic studies; posterior prediction; hierarchical models; Bayesian modeling; BUGS

1. Introduction

The first crucial information in the presence of illness is a medical diagnosis. How good or bad a diagnosis is performed
may directly influence the quality of the health care. Accurate evaluation of diagnostic tests contributes to the prevention
of unjustified treatment, as well as unnecessary health costs. In the last decades, the amount of published results on
clinical diagnostic tests, their systematic reviews and meta-analysis has expanded very rapidly [1].

In this paper we concentrate on the most common meta-analysis of binary diagnostic outcome, where results for the
i th study (i =1, . . . , N ) are summarized in a 2×2 table as follows:

Patient status

With disease Without disease

Test + tpi f pi
outcome − f ni tni
Sum: ni,1 ni,2

where tpi and f ni are the number of patients with positive and negative diagnostic results in the group with disease
and f pi and tni are the number of patients with positive and negative test results in the group without disease,
respectively. The total number of patients with disease is ni,1 = tpi + f ni and the total number of patients without
disease is ni,2 = f pi + tni . Common summary statistics describing test accuracy can be estimated for each study,
the most commonly used are the empirical true positive rate or sensitivity and the empirical true negative rate or
specificity,

T̂PRi = tpi

ni,1
, T̂NRi = tni

ni,2
(1)

Coordination Center for Clinical Trials, University of Düsseldorf, Moorenstr. 5, D-40225, Germany
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and their complementary empirical rates, the false positive rate (F̂PR) and the false negative rate (F̂NR),

F̂PRi = f pi

ni,2
, F̂NRi = f ni

ni,1
. (2)

The main question we investigate in this paper is: How can we combine and summarize these types of diagnostic
information?

To start answering this question, we should note that meta-analysis of diagnostic test data differs from other types of
meta-analysis, in at least three aspects: First, summaries describing the test accuracy (e.g. sensitivity and specificity) are
usually interdependent and a marginal combination by averaging or pooling these quantities might be misleading [2, 3].
Second, the context where diagnostic studies have been performed can be very different in terms of diagnostic setup,
study design, population characteristics or study quality [4--6]. Third, it usually involves a small sample of studies.

These issues have contributed to making this area of meta-analysis a very active area of methodological research.
On the one hand, methods for searching and assessing the quality of published studies have been established [7] and
on the other hand a large amount of diverse statistical methods have been developed. Moses et al. [8] introduced a
simple fixed-effects meta-regression model, which summarizes study results by an imaginary curve, called the Summary
Receiving Operation (SROC) curve. This method has been extensively used in the medical literature and has been
recently recommended by the Cochrane Diagnostic Test Accuracy Working Group [9]. Well-known limitations of the
SROC curve have motivated alternative meta-regression models [10], the development of a full Bayesian model, called
the hierarchical SROC curve (HSROC) [11, 12], and its empirical Bayesian version [13]. Further research work under the
SROC curve has been done, which includes a better understanding on its properties [14, 15], meta-analysis of diagnostic
test with imperfect reference standard [16] and publication bias [17].

As an alternative to the SROC curve approach, several authors have proposed to jointly model sensitivity and specificity
with bivariate random effects models ([18--21], (Arends, unpublished)). Relationships between SROC and bivariate
approaches have been investigated [22, 23]. More recently alternative parametrization for the bivariate approach have
been proposed [24, 25], recommendations of summarizing a meta-analysis by ROC curves or not has been presented
[26], Bayesian computations based on integrated nested Laplace approximations have been investigated [27, 28] and the
inclusion of individual patient data with bivariate random effects model has been analyzed [29].

The aim of this paper is to present a flexible class of new statistical models to deal with meta-analysis of diagnostic
test data. We construct a hierarchical Bayesian model that realistically reflects the underlying complexities of these types
of data. This model can be regarded as a general version of the Bayesian bivariate random effects meta-analysis, where
heterogeneity between studies is modeled by a rich class of structural distributions based on scale bivariate normals.

The remainder of this paper is organized as follows: In Section 2 we briefly introduce our running examples, in
Section 3 we present the bivariate Bayesian model for meta-analysis of diagnostic test data, in Section 4 this model
is applied to our running examples and results compared with other approaches are reported. Finally, in Section 5 we
discuss and outline some areas for further work.

2. Examples

Figure 1 displays the pairs (T̂PRi , F̂PRi ) of our two running examples. The left panel presents results of 52 studies
reporting the accuracy of computer tomography (CT) scans in the diagnosis of appendicitis [30] calculated from Table I.

This disease is one of the most common acute surgical events [31], where the traditional clinical examination
delivers low diagnostic performance [32]. Therefore, a new diagnostic technology could reduce the risk of postoperative
complications and save health-care resources [33]. One of the main research interests of this systematic review was to
give overall measurements of diagnostic accuracy of CT technology. Another one was to explore study characteristics or
published information that may influence diagnostic results. Standardized data extraction forms were used to collect the
papers’ results and to assess the quality information [34]. Table II gives some variables describing study characteristics:
(Country, Type of hospital), patients characteristics (Inclusion criteria, Children included), study quality (Design) and
diagnostic setup (Contrast medium, Localization). More details regarding the list of databases and searching templates are
described in the original technical report [30]. In Section 4 we analyze these explanatory variables with a meta-regression
model to understand how the published information may influence diagnostic results.

The right panel of Figure 1 shows diagnostic results of 10 studies reporting the accuracy of magnetic resonance
imaging (MRI) for the diagnosis of lymph node metastasis in women with cervical cancer (Table III of Scheidler et al.
[35]). This systematic review has been used in the methodology literature on meta-analysis of diagnostic test by several
authors (Rutter and Gatsonis [11], Walter [14, 15], Macaskill [13], Reistma et al. [18], Gatsonis and Paliwal [3], Chu
and Cole [20], Chu and Gou [23], Chu et al. [25] and Martino and Rue [28]) and gives a good example to compare

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 3088--3102
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Figure 1. Two examples of meta-analysis of diagnostic test data. Left panel: 52 studies, CT scans in the diagnosis of appen-
dicitis. Right panel: 10 studies, magnetic resonance imaging (MRI) for the diagnosis of lymph node metastasis in women with

cervical cancer.

our approach to other meta-analytic methods whenever possible. More details on these two examples are described in
Section 4.

3. A Bayesian framework for meta-analysis of diagnostic test

In Section 1 we highlighted issues involved in the analysis and synthesis of diagnostic test results. In this section we
introduce a novel Bayesian modeling framework, which incorporate these data complexities in a very practical way.

3.1. Data model and structural distributions

Following the notation of the introduction, let tpi and f pi be the true positive and false positive results for study i
(i =1, . . . , N ). Conditioning on ni,1 and on ni,2 our data model consists of two binomial distribution with

tpi ∼Bin(TPRi ,ni,1), f pi ∼Bin(FPRi ,ni,2), (3)

where TPRi and FPRi are the probabilities to observe a positive test result in the disease and non-disease population
respectively. The N pairs of probabilities TPRi and FPRi are transformed by a link function g(·) into a scale where
they are defined in the range (−∞,∞). The canonical link function for binomial data is the logit link function (g(p)=
log(p/(1− p))), but other alternative links, e.g. the complementary log–log ((g(p)= log(−1 log(1− p)))) link function
can be used. Choosing a suitable link function for the data at hand is a modeling problem that will be illustrated in
Section 4. In general, the link function should be chosen to give a parsimonious model to fit the data.

We model the variability between studies by defining the study accuracy effects, which are differences and sums of
the rates in the g(·) scale:

Di =g(TPRi )−g(FPRi ), Si =g(TPRi )+g(FPRi ), (4)

where Di and Si are modeled with a scale mixture of bivariate Normal distributions

(Di , Si ) ∼ N (�,�i ), i =1,2, . . . , N , (5)

�i = wi ×�, (6)

wi ∼ p(wi ) (7)

with � the precision matrix, i.e. the inverse of the covariance matrix � and p(wi ) a scale mixing density. Modeling
(Di , Si ) is similar to direct modeling (g(TPRi ),g(FPRi )); however, the linear transformation should leave (Di , Si ) roughly
independent making our inference less sensitive to the prior distribution of �.

3090
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Table I. Cross-classified tables for 52 studies reporting diagnostic results of CT scans used to diagnose
appendicitis: id refers to study identification number; tpi and f pi are the number of patients with
positive diagnostic results in the group with disease; f ni and tni are the number of patients with
negative test results in the group without disease; (R) and (P) indicate retrospective and prospective
study design respectively. Study numbers 31 and 32 correspond to two different papers with the same
data, both papers were included in the review, but only one is used for the statistical analysis.

Study tp fp fn tn

(R)1 87 4 2 3
(R)2 111 1 4 30
(R)3 184 7 8 9
(R)4 168 3 1 7
(P)5 89 3 5 33
(R)6 21 1 0 14
(R)7 125 3 0 12
(P)8 40 4 5 43
(P)9 40 0 4 8
(R)10 104 3 4 185
(R)11 34 4 1 54
(P)12 29 4 1 66
(P)13 28 5 1 74
(P)14 67 7 5 118
(P)15 30 3 3 42
(P)16 36 1 1 11
(P)17 131 12 4 170
(R)18 23 0 1 76
(P)19 4 2 0 25
(R)20 31 2 6 76
(P)21 110 4 5 181
(P)22 37 2 4 66
(P)23 18 1 1 55
(R)24 35 0 1 36
(P)25 28 6 7 63
(R)26 9 2 2 16
(R)27 38 8 1 82
(R)28 64 1 2 128
(R)29 103 1 8 252
(P)30 88 3 5 24
(R)31 137 8 5 402
(R)32 137 8 5 402
(P)33 32 2 0 66
(P)34 114 3 1 211
(P)35 52 1 1 46
(P)36 17 0 0 18
(P)37 56 2 0 41
(R)38 49 4 1 43
(R)39 58 6 3 87
(P)40 21 0 1 34
(R)41 33 11 3 60
(R)42 44 3 6 61
(P)43 43 5 4 166
(P)44 4 0 0 22
(R)45 28 8 3 64
(P)46 30 0 2 25
(P)47 47 1 1 51
(P)48 183 26 9 24
(P)49 28 2 2 68
(P)50 33 3 2 33
(P)51 35 1 2 12
(R)52 42 3 3 17

In this context, Di is the study effect associated with diagnostic discriminatory power and Si is the effect associated
with diagnostic threshold value. Positive values of Di indicate the power discrimination of the diagnostic procedure,
whereas positive values of Si indicate good sensitivity at the expense of increase of the FPRi .

The scale mixing density p(wi ) introduces great flexibility to model the marginal distribution of study effects (Di , Si ),
some particular cases with heavy tails are the bivariate t-distribution which corresponds to wi ∼�(�/2,�/2) with known

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 3088--3102
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Table II. List of covariates describing study characteristics,patients characteristics, study quality and
diagnostic setup.

Notation Variable name Label Value description

x1 Country EU and others/U.S.A. 0/1
x2 Type of hospital University/others 0/1
x3 Inclusion criteria Suspected/appendectomy 0/1
x4 Other CT findings included No/yes 0/1
x5 Study design Prospective/retrospective 0/1
x6 Contrast medium No/yes 0/1
x7 Localization One area/more than one area 0/1
x8 Children included No/yes 0/1

Table III. Notation and parameter names for the Bayesian bivariate model based on scale mixture of Normals.

Notation Parameter

tpi Frequency of true positive patients

f pi Frequency of false positive patients

ni,1 Total number of disease patients in the study

ni,2 Total number of non disease patients in the study

TPRi True positive rate of study i

FPRi False positive rate of study i

Di Study accuracy effect (difference of the link function of TPR and FPR)

Si Study threshold effect (sum of the link function of TPR and FPR)

wi Study mixture weight

�D Mean of Di

�S Mean of Si

� Precision matrix of (Di , Si )

�2
D Variance of Di

�2
S Variance of Si

�D,S Covariance (Di , Si )

� Degrees of freedom

degrees of freedom �>2, the Cauchy distribution with �=1 and the Double Exponential distribution with wi ∼Exp(1)
(see Carlin and Louis [36], p. 184). The bivariate Normal corresponds to wi =1 when p(wi ) is degenerated at one.
In this work, we pay particular attention to the bivariate t-distribution, which is extended to include uncertainty on �
and to explain systematic variability (see Section 3.5). Table III summarizes the notation involved in our model.

3.2. Priors

One important component of a Bayesian statistical model is the use of prior distributions that can be applied as a starting
point of analysis in similar modeling situations, with this aim in this work we apply weakly informative priors. The use
of weakly informative priors introduces numerical stabilization by discarding unrealistic parameter values, while still
being vague enough to be used as a default in routine applied work. We also use priors that are conditionally conjugate
to the hyper-parameters. These priors can be interpreted in terms of equivalent data, which can simplify elicitation of
their parameters in a particular context where more substantial information exists.

The following priors are given for hyper-parameters �D , �S , � and �:

• The parameters �D and �S are odds ratios on the scale defined by g(·). We can expect that in a typical application
where a logit link is used these parameters are in the range of −5 to 5. Then we use independent Normal priors
with 0 mean and precision 0.25, these priors cover �D and �S within these range with 99 per cent probability and
they give low probability to very extreme values.

• We represent vague information of the precision matrix � with a Wishart distribution with identity scale matrix
and three degrees of freedom. This prior gives a uniform distribution for the correlation between (Di , Si ) and two
�2

3 for the precision parameters.
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• For the degrees of freedom parameter we use �∼Exp(1). This prior distribution favors lower values of � and
strongly penalizes extreme values of (Di , Si ).

3.3. Interpretation of the mixture weights

The use of the mixture weights wi is in principle a mathematical device to construct heavy tails distributions and a data
augmentation technique that is useful for computations. However, one crucial issue in meta-analysis is the ability of
identifying studies that may influence results and are not simple to find a priori. For this reason we are going to give a
direct interpretation to the weights wi .

In this work we use the posterior distribution of wi as an indication of model misfit or an identification of studies
with unusual heterogeneity. A priori all studies included in the review have a prior mean of wi equal to 1, studies which
are unusual heterogeneous will have posteriors with values substantially less than 1, say less than 0.7.

To gain more insight into the interpretation of weights wi we can see that under the normal distribution, where wi =1
(i =1, . . . , N ), studies are considered as exchangeable, i.e. the study label carries no relevant modeling information.
However, if the wi s are unknown then studies are modeled as partial-exchangeable given what we can learn from wi .

The presence of weights wi s with posterior distributions not concentrated at 1 indicates lack of exchangeability or
misfit with respect to the normal distribution, which can be further investigated by using meta-regression (Section 3.4)
or structural dispersion modeling (Section 3.5).

3.4. Meta-regression

A meta-regression model can be useful to analyze the impact of published information, like study characteristics or
population differences, into diagnostic accuracy. However, it is worth mentioning some limitations of meta-regression
methods: results are susceptible to aggregation or ecological bias, which occurs when study results and published
populations’ summaries do not directly reflect the relationship between patients’ characteristics and patients’ diagnostic
outcomes. In addition, the published available data for analysis may be limited. In synthesis, meta-regression analysis
should be interpreted as an explorative approach where results may be useful to suggest further investigation.

It is easy to include a regression structure to analyze systematic influence of variables in diagnostic results. We write
(�i,D,�i,S), the fixed effects of the model, as a system of two regression equations,

�i,D = �0 +�1xi,1 +·· ·+�pxi,p, (8)

�i,S = �0 +�1xi,1 +·· ·+�pxi,p, (9)

where each equation depends on a known p-dimensional vector of covariates (xi,1, . . . , xi,p) and 2(p+1) unknown
regression coefficients (�0,�1, . . . ,�p) and (�0,�1, . . . ,�p).

Prior distributions for the regression coefficients are essential ingredients in any Bayesian analysis, they encapsulate a
variable selection strategy with an implicit regularization technique. For example, modeling � j and � j as exchangeable
with normal priors results in a Bayesian version of ridge regression and using Laplace priors results in a Bayesian
version of the Lasso regression [37]. As suggested by the referee, we model � j and � j as exchangeable with a Gaussian
distribution,

�0, . . . ,�p,�0, . . . ,�p ∼N(0,�). (10)

For the precision parameter � we use a uniform prior between 0 and 10 on the standard deviation 1/
√

(�).

3.5. Combining studies with different designs and structural dispersion

Usually, meta-analysis includes studies with different design (e.g. retrospective and prospective designs), which is also
known as generalized evidence synthesis. Including different study designs in a meta-analysis may extend the inferential
scope, e.g. the spectrum of the population under study at the cost of increasing the data heterogeneity.

Given the uncontrolled context where the data of retrospective studies are obtained, we may expect that retrospective
studies present substantially more variability than prospective ones. One way to quantify this feature is by adding a
systematic structure to the weights wi as follows:

wi ∼ Gamma(	, �wi
), (11)

log(�wi
) = 
0 +
1 xi , (12)
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where xi is an indicator variable with

xi =
{

0 Prospectivedesign,

1 Restrospectivedesign.

As in the previous sections we use weakly informative priors for (	,
0,
1). We give an exponential prior for shape
parameter 	∼Exp(1). Alternatively, we may set a priori 	=1 and model wi as exponential with parameter �wi

. Given
that we do not expect a design effect greater than 5 on the logarithmic scale we set two normal priors for the regression
parameters 
0 ∼N(0,0.25) and 
1 ∼N(0,0.25).

The regression parameter 
1 accesses the variability introduced by studies with retrospective design, a posterior of
exp(
1) concentrated on values greater than 1 indicates an increase in variability. Another way to access an increase in
variability is presented by Verde [38]. This technique consists of modeling the variance matrices of the random effects
for each study design separately and calculating a measure of excess of variability, e.g. the ratio of the generalized
variances. In our applications, we found that modeling directly wi gives a better model fitness than fitting variance
matrices separately.

3.6. Summary quantities of interest

We report for the parameters in the model (�D,�S,�
2
D,�2

S,	D,S,�) posteriors means and percentiles (2.5 per cent,
50 per cent, 97.5 per cent) for the marginal posterior distributions.

The overall diagnostic accuracy is summarized by the posterior distribution of the functional parameters:

Sensitivity(pooled)=g−1[(�D +�S)/2], Specificity(pooled)=1−g−1[(�S −�D)/2], (13)

which give an internal meta-analytic summary, and by their marginal predictive posteriors p(Sensitivity(predicted)|Data)
and p(Specificity(predicted)|Data), which predict results of a future study. These predictive summaries are the most
important and completed statistical inference that can be drawn from the meta-analysis [39].

For the meta-regression and structural dispersion components we report numerical summaries as above and a forest-plot
for the regression coefficients based on the percentiles (2.5 per cent, 50 per cent, 97.5 per cent) of their posteriors.

3.7. Model checking

As usual in practice, we cannot guarantee that a fitted model is correct. The basic approach used here for model checking
is to simulate predictive values from the fitted model and comparing these quantities with the observed ones. This
technique has been extensively used in Bayesian data analysis [40--44].

In this paper we recommend the building of a scatter plot by simulating predictive values (TPR∗,FPR∗) from
p(TPRpred,FPRpred|Data) and by comparing these pairs with the estimated values directly calculated from the diagnostic
tables (T̂PRi , F̂PRi ). Although this method is quite simple, this visual devise usually spots out deficits of the fitted model,
see in Section 4. Then, the model can be updated by changing the link function, using different structural distributions
or by adding covariates. This modeling process is monitored by reporting the DIC (Deviance Information Criterion)
[45] a measure based on a trade off between goodness of fit and model complexity. Models with smaller DIC are better
supported by the data in the sense of short-term predictions.

3.8. Statistical computations and software implementation

All these marginal posteriors and predictive distributions, which are presented in this section are not analytically tractable.
We based our inference on MCMC techniques implemented in the WinBUGS package [46] and linked to R [47] with
the R2WinBUGS package [48]. More computational details are given in the Appendix.

4. Data analysis

In the examples presented in this section we used the following computational setup: Calculations are based on five chains
with random starting values and with 20 000 replications. The last 10 000 iterations are used for analysis. Convergence
checking was carefully performed by visual analysis of trace plots and empirical autocorrelation functions, with the
B-G-R diagnostic test [49, 50] and by the effective sample size (ESS) [51]. Graphical and numerical summaries presented
in this section are based on a single chain of length 10 000.
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Table IV. Summary results of two fitted models for MR data. Posterior distributions are based on a single chain of length
20 000 with the first 10 000 iterations discarded.

Structural distribution Link function Parameter Mean 2.5 per cent 50 per cent 97.5 per cent

Normal Logistic �D 2.462 1.646 2.450 3.329
�S −3.115 −3.925 −3.118 −2.284

�2
D 0.836 0.148 0.617 2.836

�2
S 0.822 0.139 0.575 2.939

	D,S 0.321 −0.614 0.411 0.909
Sensitivity (pooled) 0.421 0.274 0.418 0.590
Specificity (pooled) 0.941 0.909 0.942 0.964

Sensitivity (predicted) 0.428 0.122 0.414 0.800
Specificity (predicted) 0.935 0.844 0.942 0.981

DIC 83.4
Scale mixture Logistic �D 2.089 1.376 2.088 2.806

�S −3.368 −4.078 −3.377 −2.598

�2
D 0.469 0.112 0.358 1.462

�2
S 0.504 0.111 0.374 1.674

	D,S 0.179 −0.626 0.210 0.816
� 2.636 0.856 2.373 5.943

Sensitivity (pooled) 0.348 0.235 0.345 0.477
Specificity (pooled) 0.937 0.904 0.939 0.962

Sensitivity (predicted) 0.363 0.065 0.345 0.791
Specificity (predicted) 0.923 0.755 0.939 0.987

DIC 79.8

4.1. Example: MRI

To analyze these data, we started by applying a bivariate Binomial–Normal model with two different link functions:
logit and cloglog. The DIC of the model with logit link was 83.4, while the model with cloglog link was 82.4. We found
that the last model slightly better fits the data, but not substantially. Given that the logit link is easily interpretable (e.g.
as diagnostic odds rations, etc.) we choose this model for further analysis. A third model was fitted with a bivariate
Binomial-t based on the scale mixture of normals, this model achieved a DIC with 79.8 indicating an interesting
improvement in model fitting. In addition, the estimated degrees of freedom is �=2.634, which shows that the Normal
model is not adequate for these data.

Table IV summarizes numerical results of the Binomial–Normal and the Binomial-t models, respectively. The first
important difference between these models is that the model based on the bivariate t-distribution gives narrower posterior
distributions for the model parameters indicating an increase in efficiency in the use of the data. For example, the
posterior distributions of the mean parameters (�D,�S) are 10 and 20 per cent larger under the normal distribution
compared with the bivariate t-distribution. For the pooled sensitivity the posterior interval is 30 per cent narrow, whereas
pooled specificity is similar under both models. Figure 2 compares the posterior distributions for the pooled sensitivity
and specificity under these two models, we can clearly see the correction effect on the pooled specificity.

The effect on the predictive sensitivity and specificity is different to the pooled summaries. The model with bivariate
t-distribution gives 10 and 70 per cent wider predictive posteriors for sensitivity and specificity respectively. Figure 3
presents the scatters of 200 predictive pairs of sensitivity and specificity under these two models. On the left panel the
model with bivariate Normal shows less scatter of the predictive rates indicating inconsistence with the observed data.
On the right panel the model with bivariate t-distribution shows substantially more scatter of the predictive rates given
more consistency with the observed rates.

Posteriors of variance parameters in both models show that studies are not homogeneous and correlations show that
Di and Si are uncorrelated. The posterior distribution of Si is concentrated on negative values, which highlight that
published studies overstated specificity at the expense of a low sensitivity.

The lower number of estimated degrees of freedom indicates the presence of studies with unusual study’s effects and
low mixture weights. Studies corresponding to Ho et al. 1992 and Kim et al. 1994 in Table III (lines 5 and 8) [35]
had posterior mean mixture wights of 0.615 and 0.653, respectively. These two studies are located on the right panel
of Figure 3 and indicted by larger circles. The study of Ho et al. 1992 reported 0 per cent sensitivity and 100 per cent
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Figure 2. Results for MR data. Posterior distributions for the pooled sensitivity and specificity under Normal and Scale Mixture
distribution.
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Figure 3. Posterior predicted sensitivity and specificity for MR data. Left panel: Model fitted with Normal random effects. Right
panel: Model fitted with Scale mixture distribution.

specificity, a quite extreme result for these meta-analysis, while the study of Kim et al. 1994 is a big study with 272
patients with a high imbalance between disease and non-disease groups.

Comparing our analysis with the previous ones we can highlight the following points:

• For the pooled specificity results of the Bayesian Binomial-Normal model agree very much with results presented
in Table I of Chu and Cole [20] and Table I of Martino and Rue [28]. But for the pooled sensitivity our approach
gives slightly lower values. It is possible that the highly imbalanced and big study of Kim et al.(1994) influence
the deterministic computations moving estimates upwards.

• The pooled summaries based on the Bayesian HSROC, Table III [11], showed the same pattern as Chu and Cole
[20]. These authors also fit a t-distribution with fixed d f =2 for the study effects under the HSROC model and
they report in Section 4.6 that they obtain similar results as the Normal model, concluding that a Normal model
gives a good fit for these data. Our analysis showed that there are clear outliers in these data and a Normal model
can not accommodate these anomalies.

• In Table IV of Walter’s [14] he presents estimations under the classical SROC and weighted SROC. The intercept
parameter of the classical and weighted SROC is within the 95 per cent posterior interval of �D under the Binomial-
Normal model, the slope parameters of the SROC are estimated close to zero which is in concordance with
the posterior interval of 	D,S(−0.614,0.909) . However, under the Binomial-t model the intercept parameters of
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Walter’s SROC analysis are outside the 95 per cent posterior interval of �D indicating that the SROC overestimates
the diagnostic odds ratio in this meta-analysis.

• We fitted a Bayesian version of the three variate model with parametrization on (�i , Sei , Spi ) and (Pi , P PVi , N PVi )
of Chu et al. [25]. This analysis gave total DIC=135.753 for the (�i , Sei , Spi ) and a partial DIC=83.00 for
the components (Sei , Spi ). These results show that there is no improvement in model fitness compared with the
bivariate Binomial-t model. We were not able to fit the (Pi , P PVi , N PVi ) model because the study of Ho et al.
1992 in the Table III [35] (lines 5) corresponds to a Binomial sub-model tp5 ∼Bin(P PV5,m5,1) with m5,1 =0.

4.2. Example: CT appendicitis

We start the analysis of these data with the same strategy of Example 4.1. Two models with a logit and a cloglog link
functions where fitted using a Binomial–Normal model. The model with cloglog had a DIC=414.7 and the model with
logit link had a DIC=416.4 showing no important differences in model fitness. As in Example 4.1, we chose the logit
link for further analysis. A model with bivariate Binomial-t distribution was fitted, which resulted with a DIC=405.7,
indicating a substantial improvement in model fitness.

In this example we found the same effect on the posterior summaries as the Example 4.1: the posterior distribu-
tions present narrower posterior credibility intervals in the Binomial-t model. The estimated degrees of freedom �=4.7
indicates that the Binomial–Normal model is not adequate for these data. Summary posteriors of variance param-
eters show that studies are not homogeneous and correlations show that Di and Si are negatively correlated. The
posterior distribution of Si is centered at zero indicating a balance between sensitivity and specificity for published
studies.

The posterior of the pooled sensitivity is 0.955 (0.944, 0.964) and specificity is 0.952 (0.935, 0.966). These posterior
summaries are very similar in both models. But posterior predictive summaries for sensitivity and specificity are 12.6
and 33.3 per cent wider under the Binomial-t distribution. The predictive posteriors for sensitivity and specificity under
the Binomial-t model are 0.947 (0.868, 0.985) and 0.925 (0.669, 0.995), respectively.

In this example 7 studies were found with lower mixture weights, these are studies number (R)1, (R)3, (R)4,
(R)7, (P)25, (P)29, (P)47 and they had posterior mean weights of 0.526, 0.563, 0.589, 0.664, 0.737, 0.685 and 0.387,
respectively. Going back to study information in Table I, we found that these unusual diagnostic results have been
produced by a remarkable imbalance between disease and non-disease groups, which is more accentuated in retrospective
studies.

Given that study design gives the context in which these studies have been performed, we further explore its effect by
including study design as covariate in the meta-regression model component and as a covariate in the study relevance
model component, i.e. we fit the following model:

�i,D = �0 +�1xi,1 (14)

�i,S = �0 +�1xi,1, (15)

wi ∼ Gamma(	, �wi
), (16)

log(�wi
) = 
0 +
1 xi , (17)

where xi is an indicator variable with

xi =
{

0 Prospective design,

1 Retrospective design.

The DIC=381.7 indicates a great improvement in model fitness. However, the posterior mean and 95 per cent
credibility interval for �1 is −0.033 (−0.814, 0.772) and for �1 is 0.437 (−0.352, 1.242), both results show no design
effect. The improvement in DIC comes from explaining the increase of variability in the meta-analysis by including
studies with retrospective design. This effect is measure by exp(
1) which has a posterior mean of 7.680 (1.665, 18.672)
and posterior probability Pr(exp(
1)>1|data)=0.997.

The main reason to include studies with different design was to study the accuracy of CT in different populations
and different CT setup. In order to study the influence of these characteristics in the meta-analysis, we extended the
meta-regression model by including the covariates described in Table II. The DIC=378.5 shows slightly improvement in
model fitness; however, some interesting patterns of these covariates are suggested in this analysis. Figure 4 summarizes
these results. Each segment corresponds to the 2.5, 50 and 97.5 pe cent percentiles of the posterior distribution for each
group of coefficients. The left panel corresponds to the posteriors for �i ’s and the right panel for �i ’s.
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Figure 4. Summary plot for regression analysis. Left panel: regression coefficient �i explaining influence of test discriminatory
power. Right panel: regression coefficient �i explaining influence of positive test results.

In Figure 4 we see that studies that have been performed outside university hospitals delivered higher diagnostic
accuracy. Using more than one location in the CT setup have better diagnostic results. There is a tendency that studies
which used contrast medium did not improve diagnostic results, but increased false positive rates.

5. Conclusions

In this article we have introduced a new Bayesian statistical model for meta-analysis of diagnostic test. The model is
conceptually simple and combines familiar ideas of bivariate meta-analysis. In a way, this model may be interpreted as
a Bayesian version of the classical bivariate meta-analysis approach, but versatile enough to deal with multiple sources
of uncertainty which are usually present in this type of data.

A new data description based on study’s diagnostic accuracy and study’s dispersion has been presented. In particular
the study’s dispersion is interpreted as a measure of the rareness or incompatibility of a study included in the meta-
analysis. Technically, this is achieved by using a scale mixture of bivariate Normals where the mixture weights for each
study are directly interpreted as measuring excess of study’s dispersion. This approach has the side effect of producing
robust estimation of model parameters and delivering predictions compatible with the data at hand.

The data analysis of Section 4 shows that it is difficult to return to the naive idea that study effects follow a single
bivariate normal distribution or equivalently that every study included in the review is worth the same amount of
information. In this regard we agree with the recent work of Lee and Thompson [52], that inference regarding random
effects should be based on distributions more flexible than the normal. As mentioned by the referee, other authors
have already pointed to the fact that a random effects distribution will have heavier tails when there are unobserved
confounding factors (Marshall and Spiegelhalter [53]).

Previous methodological work in this area summarized results by parameter estimates and uncertainties (typically in
simple tabulation form) to conclude the analysis. They rarely address the problem of model checking, sometimes there
is a model comparison using AIC, but rarely a graphical check showing the implications of the entire fitted model.
In this work we recommend summarizing meta-analysis by predictive outcomes that vividly reflect the future use of
meta-analytic results. These predictive quantities go hand in hand with model checking and can be used to spot out
model deficiencies.

The model is extended to include covariates to explain systematic variability in the meta-analysis. As in the classical
approach meta-regression can be used to explain diagnostic accuracy, but also, covariates can be used to explain structural
dispersion. The use of study design as covariate to explain changes in variability give a parsimonious model to fit the
data and it is an alternative to adding another hierarchical level as is commonly use in generalized evidence synthesis
[54]. In this regard the model proposed in this work can be applied to other meta-analytic problems where studies with
different designs have to be combine.

Given the complexity of the modeling procedures, we have found the MCMC calculations very stable and ready to
use in routine meta-analytical work. This contrast with the HSROC approach, which in our experience can be hard to
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get convergence and with quadrature methods used in classical techniques, which can be unstable when we deal with
small numbers of studies. In a recent simulation experiment Hamza et al. [55] reported unsatisfactory numerical results
for quadrature methods when the number of studies included is 10 or less. The use of nested Laplace approximations is
a powerful and accurate alternative to fit bivariate Bayesian random effects models, but the current implementation in
the R package INLA [28] is not versatile enough to fit the models presented in this paper. Therefore, we recommend the
use of MCMC techniques for bivariate meta-analysis. In particular our implementation is an straightforward application
in WinBUGS and R.

Finally, we did not cover some aspects that may need future research, such as modeling several diagnostic tables per
study, the inclusion of individual data, meta-analysis of diagnostic test with imperfect reference standard and publication
bias in meta-analysis of diagnostic test.

Appendix A: R and BUGS code for the bivariate hierarchical model with scale normal mixtures

To perform the statistical analyzes described in this paper we run WinBUGS within R with the function bugs() from
the package R2WinBUGS [48]. This approach combines the powerful MCMC calculations implemented in WinBUGS
and gives flexibility for building plots and further summaries within R. It is the recommended form to make this type
of Bayesian statistical analysis. In this appendix we describe the script to make the analysis of the MRI meta-analysis
example. More details and the script for the CT example can be requested from the author.

The following script shows how to implement in BUGS language the bivariate binomial model with structural
t-distribution based on scale mixtures. In order to fit this model we assume that the BUGS code is in the file btlogit.tex
as follows:

#BUGS model: bivariate binomial t-distribution based on normal mixtures and with logit link.
model
{
for( i in 1 : n ) {
tp[i] ~ dbin(tpr[i], n1[i]); fp[i] ~ dbin(fpr[i], n2[i])
m[i,1:2] ~ dmnorm(mu.0[1:2 ], sigma.inv[1:2, 1:2])
w[i] ~ dgamma(nu.2, nu.2) I(0.001, 3)
y[i, 1] <- mu[1] + m[i, 1] / sqrt(w[i])
y[i, 2] <- mu[2] + m[i, 2] / sqrt(w[i])
logit(tpr[i]) <- (y[i, 1] + y[i, 2])/2
logit(fpr[i]) <- (y[i, 2] - y[i, 1])/2

}

# Priors ...
mu[1] ~ dnorm(0, 0.25) ; mu[2] ~ dnorm(0, 0.25)
mu.0[1] <- 0; mu.0[2] <- 0; nu.2 <- nu/2
nu ~ dexp(1)
sigma.inv[1:2,1:2] ~ dwish(R[1:2,1:2], 3)

# Pooled summaries ...
x.pool <- (mu[1]+mu[2])/2; y.pool <- (mu[2]-mu[1])/2
pool.se <- exp(x.pool) / ( 1 + exp(x.pool) )
pool.sp <- 1 - exp(y.pool) / ( 1 + exp(y.pool) )

# Predictive summaries...
mu.s[1:2] ~ dmt(mu[], sigma.inv[1:2, 1:2], nu)
x.s <- (mu.s[1] + mu.s[2])/2; y.s <- (mu.s[2] - mu.s[1])/2
new.se <- exp(x.s)/(1+exp(x.s)); new.sp <- 1-exp(y.s)/(1+exp(y.s))

# Variance covariance matrix for random-effects...
sigma[1:2, 1:2] <- inverse(sigma.inv[1:2, 1:2])
sigmaD <- sigma[1,1]; sigmaS <- sigma[2, 2]
rhoDS <- sigma[1,2]/(pow(sigmaD, 0.5) * pow(sigmaS, 0.5))
}

To fit this model, we need to specify two R objects, one with the names of the data and another with the names of
the parameters of interest, so in R we have:

# Binomial + t + logit
# R is the scale matrix of the Wishart
# tp true positives, etc..
data.t <- list ("R", "tp", "n1", "fp", "n2", "n")
parameters.t <- c("nu", "w", "pool.se", "pool.sp", "new.se", "new.sp", "mu",
"sigmaD", "sigmaS", "rhoDS")

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 3088--3102

3099



P. E. VERDE

The function bugs() has a series of arguments that are needed to run BUGS:

mt <- bugs(data.t, inits=NULL, parameters.t, "btlogit.txt", n.chains = 1,
n.iter = 20000, n.thin=1, bugs.directory = bugsdir, working.directory = getwd(),
clearWD=TRUE, debug=TRUE)

The first argument refers to the data nodes, the second how initial values are generated (here NULL means that BUGS
will generate these values randomly), parameters.t is the vector of parameters to monitor and btlogit.txt is the
BUGS model. In this example, the argument n.chains=1 indicates that we generate one chain, n.inter = 20000 the
length of the chain, by default the first n.inter/2 iterations will be omitted for analysis. For more details see the help
files of bugs().

The resulting object mt is an R object from the class mcmc.list, which can be analyzed using the package coda or
manually as we do here. For example the print() function gives a summary of the object:

> print(mt, digits=3)
...

mean sd 2.5% 25% 50% 75% 97.5%
nu 2.636 1.332 0.856 1.682 2.373 3.281 5.943
...
mu[1] 2.089 0.364 1.376 1.849 2.088 2.325 2.806
mu[2] -3.368 0.375 -4.078 -3.622 -3.377 -3.128 -2.598
sigmaD 0.469 0.396 0.112 0.233 0.358 0.576 1.462
sigmaS 0.504 0.442 0.111 0.238 0.374 0.617 1.674
rhoDS 0.179 0.390 -0.626 -0.096 0.210 0.489 0.816
deviance 72.043 5.485 62.240 68.200 1.640 5.490 83.970
DIC info (using the rule, pD = Dbar-Dhat)
pD = 7.7 and DIC = 79.8
DIC is an estimate of expected predictive error (lower deviance is better).
>

The following lines show how to access sensitivity and specificity posterior distributions and plot them:

> sensitivity <- mt$sims.array[,1,"se"]
> specificity <- mt$sims.array[,1,"sp"]
> par(mfrow = c(1,2))
> hist(sensitivity, breaks=80, prob=T, main="", xlab="sensitivity")
> lines(density(sensitivity), lwd = 2, col ="blue")
> hist(specificity, breaks=80, prob=T, main="", xlab="specificity")
> lines(density(specificity), lwd = 2, col ="red")
> par(mfrow = c(1,1))
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Chapter 7

bamdit: an R Package for Meta-Analysis of

Diagnostic Test Data

”That’s what a computer is to me: the computer is the most remarkable tool that we’ve ever

come up with. It’s the equivalent of a bicycle for our minds.”

Steve Jobs,
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Abstract

In this paper we present the R package bamdit, its name stands for ”Bayesian meta-
analysis of diagnostic test-data”. bamdit was developed with the aim of simplifying the
use of models in meta-analysis, that up to now have demanded great statistical expertise
in Bayesian meta-analysis. The package implements a series of innovative statistical tech-
niques including: the Bayesian Summary Receiver Operating Characteristic (BSROC)
curve, the use of prior distributions that avoid boundary estimation problems of compo-
nent of variance and correlation parameters, analysis of conflict of evidence and robust
estimation of model parameters. In addition, the package comes with several published
examples of meta-analysis that can be used for illustration or further research in this area.

Keywords: meta-analysis, diagnostic test data, hierarchical models, conflict of evidence, bias
modeling, MCMC, JAGS, R.
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1. Introduction

One of the most important decisions in the presence of illness is the correct medical diagnosis.
Ideally, for a particular diagnostic problem we should have a collection of studies which
indicate the best way to proceed. However, this is not the case in clinical and other areas of
empirical research. Instead, researchers have to face a heterogeneous and fragmented evidence
that has to be analyzed.

Meta-analysis is a branch of statistical techniques that helps researchers to combine evidence
from a multiplicity of sources. In particular, meta-analysis of diagnostic test data differs from
other types of meta-analysis in several aspects: First, the diagnostic summaries that we aim to
combine (e.g. sensitivity and specificity) could be interdependent and a marginal combination
by pooling these quantities might be misleading (Irwig, Macaskill, Glasziou, and Fahey 1995).
Second, diagnostic studies are usually performed under slightly different diagnostic setups and
they can be applied to different patients’ populations. Hence, we can expect high heterogeneity
between studies’ results. In addition, the number of studies included might be small and with
different qualities (e.g. they might have different study designs) (Lijmer, Mol, Heisterkamp,
Bonsel, Prins, van der Meule, and Bossuyt 1999; Lijmer, Bossuyt, and Heisterkamp 2002;
Westwood, Whiting, and Kleijnen 2005). Hence, conducting meta-analysis and combining
results from diagnostic studies may become a challenge.

In this paper we present the R package bamdit. The name of the package stands for ”Bayesian
meta-analysis of diagnostic test-data”. The development of the package started with the
following question: ”How can we make complex meta-analysis in an automatic fashion?”

The initial release of bandit was the version 1.0 of the Summer 2011. This version was an ex-
perimental package where the aim was to investigate different statistical software architectures
to fit complex meta-analysis models. During the last years we have rewritten and updated
the package several times with the intention of making the package more user friendly. The
current release corresponds to version 2.0 which is presented in this paper.

The package may be helpful to practitioners who are not familiar with complex Bayesian mod-
eling and who do not have the skills to implement these models in general proposed Bayesian
software such us WinBUGS/OpenBUGS Lunn, Spiegelhalter, Thomas, and Best (2009) or
JAGS Plummer (2003).

For more than a decade meta-analysis of diagnostic tests has been an active area of research.
Statistical methods have fallen into two main approaches: On the one hand we have techniques
that have a focus on making a meta-analysis summary by recovering an underlined Receiver
Operating Characteristic (ROC) curve. This in the case of the summary ROC (SROC) curve
introduced by Moses, Shapiro, and Littenberg (1993) and the hierarchical ROC (HROC)
curve presented in Rutter and Gatsonis (1995, 2001); Macaskill (2004).

On the other hand we have approaches that directly model the diagnostic outcomes as a
bivariate meta-analysis (Reitsma, Glas, Rutjes, Scholten, Bossuyt, and Zwinderman 2005;
Chu and Guo 2009). The relationships between these two approaches have been investigated
by Harbord, Deeks, Egger, Whiting, and Sterne (2007) and Arends, Hamza, Van Houwelingen,
Heijenbrik, Hunink, and Stijnen (2008) from the classical perspective and by Novielli, Cooper,
Sutton, and Abrams (2010) from the Bayesian perspective.

Recent research in meta-analysis of diagnostic test data has focused on the problem of mod-
eling heterogeneity (Verde 2010b), measuring heterogeneity (Zhou and Dendukuri 2014),
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assessing publication bias (Buerkner and Doebler 2014) and modeling results in the presence
of imperfect reference standard (Menten, Boelaert, and Lesaffre 2013).

Software for meta-analysis has been available for many years, in particular in R (Team 2013)
several packages have been developed for different meta-analytic problems. An extensive
list with a comprehensive description of these packages is presented in the CRAN task view
”Meta-Analysis” (Dewey 2014). In particular the following R packages have been developed
for meta-analysis of diagnostic test data: mada implements the bivariate method of Reitsma
et al. (2005). HSROC provides the implementation of the hierarchical summary receiver
operating characteristic (HSROC) method of Rutter and Gatsonis (2001). Meatron includes
the implementation of the Reitsma et al. (2005) model including the case of diagnostic test
with an imperfect reference standard. metamisc implements the method of Riley, Lambert,
Staessen, Wang, Gueyffier, Thijs, and Boutitie (2008) which estimates a common within and
between correlation when the within-study correlations are unknown.

Implementation of different Bayesian meta-analysis models for diagnostic test data in Win-
BUGS software is discussed in Rutter and Gatsonis (2001), Verde (2008, 2010b) and Novielli
et al. (2010). Approximate Bayesian methods using INLA (Integrated Nested Laplace Approx-
imation) can be found in Paul, Riebler, Bachmann, Rue, and Held (2010).

The rest of the paper is organized as follows: In Section 2 we describe the software implemen-
tation of bamdit. In Section 3 we present methodological details of the Bayesian statistical
model. In Section 4 we show how to use bamdit in practice. Finally, in Section 5 we give a
brief summary of the work and we discuss future developments of package.

2. Software implementation

In the implementation of bamdit we have considered that the package should be easy to
use for practitioners familiar with R, but without Bayesian statistical background. We also
considered that the package has to be portable between different operative systems. bamdit
uses JAGS for MCMC computations, therefore the main system requirement is that JAGS (≥
3.4.0) is installed in your computer (see http://mcmc-jags.sourceforge.net).

From the statistical point of view, the software reduces the risk of having boundary problems
in the estimation of the variance components and correlation between random effects of the
meta-analysis model. In this regard it can be applied to problems where classical approaches
fail (see Section 4). In addition, bamdit is equipped with an automatic analysis of conflict of
evidence (Verde 2014) which allows to spot out studies with unusual results that have been
included in the meta-analysis.

A single function called metadiag() performs the meta-analysis. This function allows to
fit bivariate Normal random effects or bivariate scale mixture of Normals. The default link
function is the logistic link, but the user can choose between the three classical link functions
of binomial data: logistic, complementary log-log or probit. The output of this function can
be analyzed with R2jags or with rjags packages. Internally, this function writes the BUGS
script and send the script to JAGS where MCMC (Markov Chain Monte Carlo) computations
are performed and returned to R. Further statistical details of the model behind bamdit is
presented in Section 3.

Convergence of the MCMC computations can be analyzed using the R package coda (Plum-
mer, Best, Cowles, and Vines 2006). In addition, we have implemented a series of graphical
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functions that can be used to summarize results and to compare results between models. We
demonstrate this software’s functionality in Section 4.

3. Bayesian meta-analysis of diagnostic test data

3.1. Data model for diagnostic test results

We assume that the pieces of evidence that we aim to combine are the results of N diagnostic
studies, where results of the ith study (i = 1, . . . , N) are summarized in a 2 × 2 table as
follows:

Patient status
With disease Without disease

Test + tpi fpi
outcome - fni tni

Sum: ni,1 ni,2

where tpi and fni are the number of patients with positive and negative diagnostic results
from ni,1 patients with disease and fpi and tni are the positive and negative diagnostic results
from ni,2 patients without disease.

Assuming that ni,1 and ni,2 have been fixed by design, we model the tpi and fpi outcomes
with two independent Binomial distributions:

tpi ∼ Binomial(TPRi, ni,1) and fpi ∼ Binomial(FPRi, ni,2), (1)

where TPRi is the true positive rate or sensitivity of study i and FPRi its the false positive
rate or complementary specificity (1-specificity).

At face value, diagnostic performance of each study is summarized by the empirical true
positive rate and true negative rate or specificity,

T̂PRi =
tpi
ni,1

and T̂NRi =
tni

ni,2
(2)

and the complementary empirical rates of false positive rate and false negative diagnostic
results,

F̂PRi =
fpi
ni,2

and ̂FNRi =
fni

ni,1
. (3)

The main question in meta-analysis of diagnostic test data is: How can we combine the
multiplicity of diagnostic accuracy rates in a single coherent model? In this work we recognize
that in order to combine results of different studies we have to explicitly model the variability
between studies, which is the topic of the next section.
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3.2. Random effects model

We model between studies variability with the following random components:

Di = g(TPRi)− g(FPRi) and Si = g(TPRi) + g(FPRi), (4)

where g(·) corresponds to a link function which maps the diagnostic rates to the real scale
(−∞,∞). The canonical link function used in this work is the logistic link g(p) = log(p/(1−
p)), but other links are also possible (e.g. the complementary log-log link function g(p) =
log(− log(1− p)).

The random component Di represents the study effect associated with the diagnostic discrim-
inatory power. For example, the logistic link function of Di corresponds to the diagnostic
odds ratio in the logarithmic scale:

Di = log

(
TPRi

1− TPRi

)
− log

(
FPRi

1− FPRi

)
. (5)

Meta-analysis based on odds ratios is a common practice for therapeutic outcomes and for
diagnostic studies one could also follows this approach. However, diagnostic results are sen-
sitive to the diagnostic settings (e.g. the use of different thresholds) and to the populations
where the diagnostic procedure under investigation is applied. These issues are associated
with the external validity of diagnostic results.

Following the footsteps of Moses et al. (1993), Verde (2010a) introduced the random effect Si.
This random effect quantifies variability produced by patients’ characteristics, study design
and diagnostic setup, that may produced a correlation between the observed T̂PRs and F̂PRs.
In short, we called Si the threshold effect of study i and represents and adjustment of
external validity in the meta-analysis.

Conditionally to a study weight wi, the study effects Di and Si are modeled as exchangeable
between studies and they follow a scale-mixture of bivariate Normal distributions with mean
and variance:

E

[(
Di

Si

) ∣∣∣∣ wi

]
=

(
μD

μS

)
, and var

[(
Di

Si

) ∣∣∣∣ wi

]
=

1

wi

(
σ2
D ρσDσS

ρσDσS σ2
S

)
= Σi,

(6)
and scale mixing density

wi ∼ p(wi). (7)

The inclusion of the random weights wi into the model was proposed by Verde (2010a), where
p(wi) allows for a great flexibility to model the marginal distribution of Di and Si. Two
important cases are: wi ∼ χ2(ν), which corresponds to a marginal bivariate t-distribution
with known degrees of freedom ν, and p(wi = 1) = 1 which corresponds to a bivariate Normal
distribution. In the case of the bivariate t-distribution by integrating wi from the conditional
distribution of (Di, Si|wi) we have a marginal variance of

var

[(
Di

Si

)]
=

ν

ν − 2

(
σ2
D ρσDσS

ρσDσS σ2
S

)
, (8)

hence we have to restrict ν > 2 in order to have non infinite marginal variance in the random
effects.
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Another important aspect of wi is its interpretation as estimated bias correction. A priori
all studies included in the review have a mean of E(wi) = 1, we can expect that studies which
are unusually heterogeneous will have posteriors substantially greater than 1. If the model is
not corrected by the influence of unusual study results, then the meta-analysis may produce
biased results.

Unusual studies’ results could be produced by factors that may affect the quality of the study,
such as errors in recording diagnostic results, confounding factors, loss to follow-up, etc. For
that reason, the studies’ weights wi can be interpreted as an adjustment of studies’ internal
validity bias.

Figure 1 displays the Directed Acyclic Graph (DAG) of the model presented in this section. In
the usual DAG notation, elliptical nodes represent random variables (parameters and data),
rectangular nodes represent fixed parameters, single arrows correspond to stochastic depen-
dencies between nodes and double arrows correspond to deterministic relationships. Model
parameters with priors are depicted with ellipses with dashed lines. Repeated structures of
the graph are represented by the central plate, where each 2×2 table is modeled as the result
of diagnostic parameters (TPRi and FPRi) which are the result of random study effects (Di

and Si). The model of interest is framed with a rectangle containing the hyper-parameters of
the model (μD, μS , σD, σS , ρ).

The DAG of Figure 1 links the statistical model to the MCMC computations implemented
in JAGS. Using an automatic theorem proof algorithm JAGS factorized the joint posterior
distribution in a set of conditional distributions which are used for Gibbs sampling. In addition
the DAG representation helps to understand how to extend the model of interest. For example,
the pooled Sensitivity and the pooled Specificity are the result as functional parameters of the
hyper-parameters (see Section 3.5).

3.3. Splitting the studies’ weights and conflict of evidence analysis

In Verde (2014) I conjectured that a way to perform conflict of evidence in a multi-parameter
meta-analysis model was to extend the the random effects distribution by using a scale mixture
of normal distributions per random effect. I have called this technique ”splitting the studies’
weights” and it is implemented in the bamdit’s function metadiag() by using the argument
split.w = TRUE.

The study’s weight wi is now ”split” in two components weights wi,1 and wi,2, these weights
measure individual conflict for the components Di and Si respectively. For example, if the
sources of conflict are studies with unusual specificity the posteriors of wi,2 will be away from
a prior mean E(wi,2) = 1, while the corresponding posteriors of wi,1 will be concentrated
around the prior mean. We illustrate how to use this technique in the examples of Section 4.

Conditionally to a study weights wi,1 and wi,2, the study effects Di and Si are modeled as
exchangeable between studies. We use as a common scale mixing density a χ2 distribution:

w1,1, . . . , wn,1, w1,2 . . . , wn,2 ∼ χ2(ν), (9)

with known degrees of freedom ν.

3.4. Priors for Hyperparameters

The formulation of the model for aggregate data is completed by specifying the priors for the
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fpi 

TPRi FPRi 

tpi  

ρ 

Di 

μ.D 

i = 1, …, N 

Si 

μ.S 

wi 

Σi 

σ.S σ.D 

ni,2  ni,2  

Sp.pool Se.pool 

FPR.new TPR.new 

fp.new tp.new nnew,2  nnew,1  

Dnew 
Snew 

Figure 1: DAG for the model which combines diagnostic accuracy results. Elliptical nodes
represent random variables (parameters and data), rectangular nodes represent fixed param-
eters, single arrows correspond to stochastic dependencies between nodes and double arrows
correspond to deterministic relationships. Model parameters with priors are depicted with
ellipses with dashed lines. Repeated structures of the graph are represented by the central
plate. The model of interest is framed with a rectangle containing the hyper-parameters of
the model (μD, μS , σD, σS , ρ).
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hyperparameters μD, μS , σD, σS and ρ. We assume that parameters are independent and we
use the following set of priors:

μD ∼ Logistic(m1, v1), μS ∼ Logistic(m2, v2) (10)

and
σD ∼ Uniform(0, u1), σS ∼ Uniform(0, u2). (11)

The correlation parameter ρ, is transformed by using the Fisher transformation,

z = logit

(
ρ+ 1

2

)
and a Normal prior is used for z:

z ∼ Normal(mr, vr). (12)

Modeling priors in this way guarantees that in each MCMC iteration the variance-covariance
matrix of the random effects θ1 and θ2 is positive definite. The values of the constants
m1, v1,m2, v2, u1, u2,mr and vr have to be given. They can be used to include valid prior
information, which might be empirically available or they could be the result of expert elici-
tation. If such information is not available, we recommend setting these parameters to values
that represent weakly informative priors. In this work, we usem1 = m2 = mr = 0, v1 = v2 = 1
and vr = 1 as weakly informative prior setup.

These values are fairly conservative, in the sense that they induce prior uniform distributions
for TPRi and FPRi. They give locally uniform distributions for μ1 and μ2; uniforms for
σ1 and σ2; and a symmetric distribution for ρ centered at 0. In our experience, the most
difficult parameter to estimate in this model is ρ. Therefore, we recommend to make a prior
to posterior sensitivity analysis by giving different values for mr and vr to understand their
influence in the analysis.

Finally, in the current implementation of bamdit we give a fixed value of the degrees of freedom
ν with a default value of ν = 4.

3.5. Pooled and predictive summaries

In meta-analysis of diagnostic data we are interested in summarizing the overall accuracy of
the test in term of the pooled Sensitivity and the pooled Specificity.

These quantities are calculated as functions of μD and μS as following:

Sensitivitypooled = g−1[(μD + μS)/2], Specificitypooled = 1− g−1[(μD − μS)/2]. (13)

In Figure 1 these quantities are represented as functions of logical nodes, statistical inference
is based on sampling from their marginal posterior distributions:

p(Sensitivitypooled|Data) p(Specificitypooled|Data). (14)

Another important summary is the predicted pairs of rates (FPR, TPR) for a study that has
not been included in the meta-analysis. Statistical inference of these quantities is based on
sampling from the bivariate predictive posterior

p(TPRnew,FPRnew|Data). (15)
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In Figure 1 we display how this posterior is built by defining a stochastic node (Dnew, Snew)
which is used to calculate TPRnew,FPRnew in each MCMC iteration.

The predictive posterior( 15) can be used graphically in order to report the predictive surface
at a given credibility level (e.g. 95%). We call this summary the Bayesian Predictive Surface
(BPS). Clearly, in this model framework we can calculate the marginal predictive posteriors
p(TPRnew|Data) and p(FPRnew|Data).
The predictive posterior (15) can be used to generate predictive data. This process is described
at the top of Figure 1. A total number of patients is fixed in each group nnew

1 and nnew
2 and

the predictive number of true positive and false positive results is generated by using two
independent Binomial distributions with predictive rates TPRnew,FPRnew. These predictive
data can be used to assess what is expected in a new diagnostic study with nnew

1 and nnew
2

patients per group.

Data prediction can be extended to generate N studies with the same number of ni,1 and ni,2

as the original ones. The resulting predictive data can be compared with the observed data
to assess model misfit.

3.6. Conditional summaries and the Bayesian SROC curve (BSROC) and
the area under the curve (BAUC)

The most commonly statistical technique use for practitioners to summarize meta-analysis of
diagnostic data is the Summary Receiving Operating Characteristic (SROC) curve introduced
by Moses et al. (1993). The model presented in Section 3 allows to build the Bayesian version
of the SROC curve introduced by Verde (2008).

An alternative representation of the marginal model presented in Section 3.2 is the model
based on the conditional distribution of (Di|Si = x) and the marginal distribution of Si. The
conditional mean of (Di|Si = x) is given by:

E(Di|Si = x) = A + Bx (16)

where the functional parameters A and B are

A = μD, and B = ρ
σD
σS

. (17)

We define the Bayesian SROC curve (BSROC) by transforming back results from (S,D) to
(FPR,TPR) with

BSROC(FPR) = g−1
[

A

(1−B)
+

B + 1

(1−B)
g(FPR)

]
. (18)

The BSROC curve is obtained by calculating TPR in a grid of values of FPR which gives a
posterior conditionaly on each value of FPR. Therefore, it is straightforward to give credibility
intervals for the BSROC for each value of FPR.

One important aspect of the BSROC is that incorporates the variability of the model’s pa-
rameters, which influence the wide of its credibility intervals. In addition, give that FPR is
modeled as random variable, the curve is corrected by measurement error bias in FPR.

Finally, we can define a Bayesian area under the SROC curve (BAUC) by numerically inte-
grating the BSROC for a range of values of the FPR:

BAUC =

∫ fpr1

fpr0
BSROC(x) dx. (19)
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We recommend to use the limits fpr0 and fpr1 within the observed values of F̂PRs. The
BAUC has the appealing interpretation to be the probability that in a pair of disease and
non-disease subjects, the disease subject will be classified as more likely to have the disease.

We have implemented these conditional summaries in the function bsroc(), the function
plots the study results with the fitted SROC curve, its credibility intervals and the posterior
distribution of the BAUC. We illustrate this functionality in Section 4.

4. Application of bamdit in practice

4.1. Example: Diagnostic of bladder cancer

Glas, Lijmer, Prins, Bonsel, and Bossuyt (2003) performed a systematic review to investi-
gate diagnostic procedures for tumor markers used for diagnostic of bladder cancer. One of
this markers was telemerase, a ribonucleoprotein enzyme,which was evaluated in 10 studies.
Riley, Abrams, Sutton, and Thompson (2007) used this example to present issues regarding
boundary problems in the estimation of the correlation between random effects. Paul et al.
(2010) illustrate the use of INLA computations in this example as well.

Looking at the data

The data of this meta-analysis can be found in the glas data frame in bamdit. We can have
a quick view of the different subgroups of markers by using the function plotdata(), here we
present some of its functionality:

R> library(bamdit)

R> data(glas)

R> head(glas)

tp n1 fp n2 Author cutoff(U/ml) marker

1 1 2 15 52 Kirollos <NA> BTA

2 17 60 9 70 Johnston <NA> BTA

3 8 28 7 34 Murphy <NA> BTA

4 19 47 8 30 Landman <NA> BTA

5 33 41 27 304 Leyh <NA> BTA

6 8 12 12 35 Chong <NA> BTA

R> plotdata(glas, # Data frame

+ group = glas$marker, # groupping variable

+ max.size = 5) # scale of circles

We extract the subset of studies which have been reported results by using the telemerase
marker:

R> glas.t <- glas[glas$marker == "Telomerase", 1:4]

and we plot this subgroup by
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Figure 2: Display of the meta-analysis results of the data frame glas: each circle identifies
the true positive rate vs. the false positive rate of each study. Different colours are used for
different markers and different sizes for sample sizes.



12 bamdit: Bayesian meta-analysis of diagnostic test data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR (1 − Specificity)

TP
R

 (S
en

si
tiv

ity
)

n

40

80

120

160

Figure 3: Display of the meta-analysis results of studies with telemerase marker in the data
frame glas.
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R> plotdata(glas.t)

Fitting Bayesian meta-analysis models

A single function called metadiag() is used to fit different type of Bayesian meta-analysis
models. Below we illustrate some of the arguments of this function. For example, to fits a
model, with bivariate Normal distribution with logistic link function, type:

R> glas.m1 <- metadiag(glas.t, # Data frame

+ re = "normal", # Random effects distribution

+ link = "logit", # Link function

+ nr.burnin = 1000, # Iterations for burnin

+ nr.iterations = 10000, # Total iterations

+ nr.chains = 4, # Number of chains

+ r2jags = TRUE) # Use r2jags as interface to jags

module glm loaded

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 208

Initializing model

To see the results of this computations just print the object by:

R> glas.m1

Inference for Bugs model at "5", fit using jags,

4 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5

n.sims = 4000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

fp.new 9.152 10.567 0.000 2.000 5.000 13.000 40.000 1.00 1600

mu.D 3.375 0.527 2.378 3.032 3.355 3.696 4.491 1.00 1700

mu.S -0.926 0.761 -2.467 -1.395 -0.930 -0.446 0.544 1.00 4000

rho -0.483 0.224 -0.822 -0.651 -0.519 -0.351 0.042 1.00 4000

se.new 0.734 0.179 0.276 0.644 0.771 0.866 0.971 1.00 2600

se.pool 0.767 0.062 0.628 0.732 0.771 0.807 0.877 1.00 1500

sigma.D 1.355 0.474 0.690 1.031 1.277 1.574 2.478 1.00 2100

sigma.S 2.191 0.643 1.280 1.748 2.079 2.521 3.737 1.00 4000

sp.new 0.817 0.204 0.226 0.745 0.898 0.961 0.997 1.01 2100

sp.pool 0.885 0.055 0.749 0.856 0.895 0.924 0.965 1.00 4000

tp.new 36.697 9.429 13.000 32.000 39.000 44.000 49.000 1.00 2400

deviance 82.065 5.998 72.456 77.705 81.317 85.709 95.620 1.00 2700

For each parameter, n.eff is a crude measure of effective sample size,
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Figure 4: Results of the meta-analysis: Posterior distributions for the pooled sensitivity and
specificity and their predictive posteriors.

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 18.0 and DIC = 100.0

DIC is an estimate of expected predictive error (lower deviance is better).

We can see that hyper-parameters, like the component of variances (σD and σS) and the
correlation between random effects (ρ) are estimated without boundary problems.

Displaying meta-analysis summaries

The function plotsesp() is a user friendly function in bamdit which displays the posterior
distribution of the pooled sensitivity and specificity and their predictive posteriors. We can
display these posteriors as follows:

R> plotsesp(glas.m1)

Figure 4 shows the output, clearly the low number of studies influence the ability to predict
the result of a future study.

It is very useful to display the the Bayesian Predictive Surface by contourns at different
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Figure 5: Results of the meta-analysis: Bayesian Predictive Surface by contourns at different
credibility levels.

credibility levels and compare these curves with the observed data. The function plotcont

displays parametric and non-parametric predictive contours:

R> plotcont(m = glas.m1, # Fitted model

+ data = glas.t, # Data frame with studies results

+ level = c(0.5, 0.75, 0.95), # Credibility levels

+ parametric.smooth = TRUE) # Parametric curve

The BSROC curve and its area under the curve are useful summaries of a meta-analysis, we
can easily display these summaries by using the function bsroc() as follows:

R> bsroc(glas.m1, # Fitted model

+ data = glas.t, # Data frame with studies results

+ level = c(0.025, 0.5, 0.975), # Credibility levels
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Figure 6: Conditional summaries: Left panel shows the BSROC curve, the central line cor-
responds to the posterior median and the upper and lower curves to the quantiles of the 2.5
and 97.5 precent respectively. The right panel displays the posterior distribution of the area
under the BSROC curve.

+ plot.post.bauc = TRUE, # include the posterior of the AUC

+ binwidth.p = 1/50, # histogram class length is range*binwidth.p

+ fpr.x = seq(0.01, 0.75, 0.01), # grid of values for FPR

+ lower.auc = 0, # lower limit for the BAUC

+ upper.auc = 0.99) # upper limit for the BAUC

Summary results for the Bayesian Area Under the Curve (BAUC)

------------------------------------------------------------

2.5% 25% 50% 75% 97.5%

0.810 0.869 0.891 0.911 0.943

------------------------------------------------------------

NULL

Interesting, the BAUC results and the BSROC , which is display in Figure 6, show promising
diagnostic ability of this marker.
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Hyper-parameters posterios and checking convergence of MCMC computations

If we are interested in visualizing the posterior distributions of all hyper-parameters simulta-
neusly, we can use one of the alternative matrix plot function in R. For example, we can use
the ggpairs() function from the package GGally as follows:

R> library(ggplot2)

R> library(GGally)

R> library(R2jags)

Loading required package: rjags

Loading required package: coda

Linked to JAGS 3.4.0

Loaded modules: basemod,bugs,dic,glm

Attaching package: �R2jags�

The following object is masked from �package:coda�:

traceplot

R> attach.jags(glas.m1)

R> hyper.post <- data.frame(mu.D, mu.S, sigma.D, sigma.S, rho)

R>

R> ggpairs(hyper.post, # Data frame

+ title = "Hyper-Posteriors", # title of the graph

+ upper = list(params = c(size = 5)), # print correlations

+ lower = list(continuous = "density") # contour plots

+ )

In Figure 7 we can also see in the lower diagonal panels the correlation structure of this
multivariate posterior. Clearly hyper-parameters are uncorrelated with the exception of μD

and μS .

Convergence of the MCMC computations can be investigated with the package ggmcmc, this
package also offers an alternative to display results:

R> library(ggmcmc)

Loading required package: dplyr

Attaching package: �dplyr�

The following object is masked from �package:GGally�:

nasa

The following object is masked from �package:stats�:
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filter

The following objects are masked from package:base :

intersect, setdiff, setequal, union

Loading required package: tidyr

R> out.m1 <- as.mcmc(glas.m1)

R> out.m1 <- ggs(out.m1)

R> ggs_traceplot(out.m1, family = c("sigma"))

Conflict of evidence analysis by using scale mixtures random-effects

We can fit a model with scale mixtures as random effects to investigate if there are conflict
of evidence between the studies included in the systematic review. The following code gives
an example:



20 bamdit: Bayesian meta-analysis of diagnostic test data

R> glas.m2 <- metadiag(glas.t, # Data frame

+ re = "sm", # Scale mixture of normals

+ link = "logit", # Link function

+ df = 4, # Degrees of freedom

+ split.w = TRUE, # Different weights for each component

+ nr.burnin = 1000, # Iterations for burnin

+ nr.iterations = 10000, # Total iterations

+ nr.chains = 4, # Number of chains

+ r2jags = TRUE) # Use r2jags as interface to jags

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 278

Initializing model

The results are printed as usual:

R> glas.m2

Inference for Bugs model at "6", fit using jags,

4 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5

n.sims = 4000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

fp.new 9.008 10.659 0.000 2.000 5.000 12.000 42.000 1.00 1300

mu.D 3.405 0.497 2.476 3.085 3.393 3.722 4.433 1.00 4000

mu.S -0.980 0.758 -2.493 -1.466 -0.979 -0.508 0.534 1.00 4000

rho -0.462 0.231 -0.816 -0.633 -0.496 -0.330 0.078 1.00 3600

se.new 0.727 0.190 0.203 0.646 0.770 0.861 0.978 1.01 4000

se.pool 0.765 0.061 0.628 0.731 0.769 0.806 0.873 1.00 4000

sigma.D 1.138 0.426 0.521 0.843 1.064 1.350 2.185 1.00 3100

sigma.S 1.824 0.637 0.901 1.390 1.710 2.144 3.387 1.00 2100

sp.new 0.820 0.208 0.166 0.765 0.898 0.960 0.997 1.02 1500

sp.pool 0.889 0.052 0.762 0.863 0.899 0.926 0.964 1.00 4000

tp.new 36.417 9.913 10.000 32.000 39.000 43.000 49.000 1.00 4000

w1[1] 1.579 2.080 0.351 0.685 1.063 1.729 5.826 1.00 4000

w1[2] 1.556 2.322 0.341 0.670 1.045 1.714 5.418 1.00 4000

w1[3] 1.565 2.118 0.342 0.684 1.048 1.713 5.886 1.00 4000

w1[4] 1.558 1.918 0.336 0.684 1.043 1.745 5.852 1.00 2000

w1[5] 1.876 2.372 0.366 0.773 1.235 2.042 7.418 1.00 2000

w1[6] 1.493 1.705 0.339 0.660 1.003 1.659 5.726 1.00 4000

w1[7] 1.685 2.255 0.354 0.697 1.127 1.846 6.556 1.00 1900

w1[8] 1.514 1.685 0.338 0.661 1.037 1.741 5.730 1.00 4000

w1[9] 1.601 2.142 0.348 0.694 1.048 1.733 6.013 1.00 4000

w1[10] 2.481 3.632 0.401 0.910 1.517 2.755 10.386 1.00 2400

w2[1] 1.530 1.815 0.343 0.677 1.053 1.732 5.539 1.00 1500
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w2[2] 1.525 1.798 0.325 0.670 1.056 1.748 5.356 1.00 3800

w2[3] 1.904 2.091 0.387 0.800 1.264 2.161 7.376 1.00 3900

w2[4] 1.800 2.222 0.370 0.765 1.194 2.047 6.622 1.00 4000

w2[5] 2.342 3.962 0.438 0.916 1.445 2.499 9.303 1.00 4000

w2[6] 1.521 2.246 0.354 0.681 1.037 1.693 5.544 1.00 4000

w2[7] 2.282 3.267 0.423 0.883 1.423 2.499 8.980 1.00 760

w2[8] 1.493 2.173 0.336 0.661 0.996 1.638 5.342 1.00 4000

w2[9] 1.433 1.677 0.337 0.656 1.006 1.639 4.933 1.00 2900

w2[10] 3.434 5.605 0.575 1.264 2.124 3.754 13.959 1.00 4000

deviance 82.030 6.109 72.127 77.626 81.454 85.471 96.029 1.00 2400

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 18.6 and DIC = 100.7

DIC is an estimate of expected predictive error (lower deviance is better).

Although, this model shows similar results as the model with bivariate normal random effects,
there is about 5% of reduction of the standard deviations of the pool summaries and we have
the additional information coming from the posterior weights. The function plotw plots a
the posteriors of the weights:

R> plotw(m = glas.m2)

Figure 9 summarize the results of the component weights w1 and w2. If the bivariate normal
random effects is correct, then we expect that the posteriors are centered at 1. Studies 5 and
7 showed a moderate deviation and Study 10 a clear deviation. We can print the original
data to explain these results

R> glas.t[c(5, 7, 10), ]

tp n1 fp n2

38 40 57 1 138

40 23 42 0 12

43 37 44 22 29

and calculate the empirical rates

R> dat.hat <- data.frame(tpr = glas.t[,1]/glas.t[,2],

+ fpr = glas.t[,3]/glas.t[,4],

+ n = glas.t[,2] + glas.t[,4])

R> dat.hat[c(5, 7, 10), ]

tpr fpr n

5 0.702 0.00725 195

7 0.548 0.00000 54

10 0.841 0.75862 73
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Figure 9: Posterior distributions of the component weights: It is expect that the posterior is
centered at 1. Studies 5 and 7 showed a moderate deviation and Study 10 a clear deviation.
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Figure 10: Comparative results of the Bayesian Predictive Surface at the 95 percent credibility
level.The Normal random effects model corresponds to the solid line and the scale mixtures
of random effects to the dotted line.

Studies 5 and 7 have a very low false positive rate, may be too low to be true! Study 10
has over 75% false positive rate, which is extreme for these data. We can use the function
plotcompare() to display the differences between two models with respect to the predictive
posterior contours:

R> plotcompare(m1 = glas.m1, # Model 1 object

+ m2 = glas.m2, # Model 2 object

+ data = glas.t,

+ m1.name = "Binomial + Normal", # Label for Model 1

+ m2.name = "Binomial + Scale mixtures", # Label for Model 2

+ level = 0.95)

Figure 10 shows that the model with the scale mixture random effects extends the predictive
contours in the lower direction of sensitivity and in the upper direction of the false positive
rate.
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Computer tomography (CT) scans in the diagnosis of appendicitis

This example refers to a meta-analysis 51 studies investigating the accuracy performance of
Computer Tomography (CT) scans in the diagnosis of appendicitis Verde (2008).

One characteristic of this meta-analysis is the combination of disparate data. From the 51
studies 22 were retrospective and 29 were prospective. Verde (2008) analyzed this character-
istic and found that retrospective studies had substantial more heterogeneity than prospective
ones, which led to the structural dispersion model of Verde (2010a). Recently, Zhou and Den-
dukuri (2014) used this data to illustrate measurement heterogeneity in a bivariate random
effects meta-analysis.

Looking at the data

The data of this meta-analysis can be found in the ct data frame in bamdit. In addition to
the test performance results, this data frame contains information about study characteristics,
patient characteristics, study design, and diagnostic setup.

R> data(ct)

R> gr <- with(ct, factor(design,

+ labels = c("Retrospective study", "Prospective study")))

R>

R> plotdata(ct, # Data frame

+ group = gr, # Groupping variable

+ y.lo = 0.75, # Lower limit of y-axis

+ x.up = 0.75, # Upper limit of x-axis

+ alpha.p = 0.5, # Transparency of the balls

+ max.size = 5) # Scale the circles

Analyzing conflict of evidence of studies with different design

We analyze these data to show how to compare the posterior weights for different groups of
studies. In the following example we compare these posteriors by using the function plotw

and given to the argument group the factor variable which indicates if a study has prospective
or retrospective design.

R> ct.m <- metadiag(ct,

+ re = "sm", # Scale mixture of normals

+ link = "logit", # Link function

+ df = 4, # Degrees of freedom

+ split.w = TRUE, # Different weights for each component

+ nr.burnin = 1000, # Iterations for burnin

+ nr.iterations = 10000, # Total iterations

+ nr.chains = 4, # Number of chains

+ r2jags = TRUE) # Use r2jags as interface to jags

Compiling model graph

Resolving undeclared variables

Allocating nodes
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Figure 11: Display of the meta-analysis results of the data frame ct: each circle identifies
the true positive rate vs. the false positive rate of each study. Different colours are used for
different study designs and different sizes for sample sizes.
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Graph Size: 1180

Initializing model

R> plotw(m = ct.m, # The fitted model

+ group = gr # The groupping factor

+ )

Figure 12 displays the posteriors of each components’ weights. The right panel shows that
prospective studies number 25 and 33 deviate with respect to the prior mean of 1, while on
the left panel we see that a prospective study (number 47) and five retrospective studies have
substantial variability.

The function plotcompare() can be used to compare the predictive differences between ret-
rospective and prospective studies:

R> m1.ct <- metadiag(ct[ct$design==1, 1:4]) # Restrospective studies

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 388

Initializing model

R> m2.ct <- metadiag(ct[ct$design==2, 1:4]) # Prospective studies

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 493

Initializing model

R> plotcompare(m1.ct, m2.ct, data = ct,

+ m1.name = "Retrospective design",

+ m2.name = "Prospective design",

+ group = gr,

+ limits.x = c(0, 0.75), limits.y = c(0.65, 1))

Finally, Figure 13 presents the 95% predictive posterior contours for studies with retrospective
and prospective design, we can clearly see the effects of study design in the meta-analysis. In
synthesis, retrospective studies are less specific and more uncertain than prospective ones.
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Figure 12: Posterior distributions of the component weights: It is expect that the posterior
is centered at 1. Studies with retrospective design tend to present deviations in FPR.
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Figure 13: Predictive posteriors contours at 95 credibility level: Two models with Normal
random effects are fitted to studies with retrospective (blue points) and prospective (red
points) design.
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5. Conclusions

When developing bamdit, our aim was to simplify the application of a meta-analysis model
which was accessible to practitioners but which up to now had required a large amount of
statistical expertise. The package implements a series of innovative statistical techniques to
avoid boundary estimation of parameters, conflict of evidence and robust estimation of model
parameters.

The first example in Section 4 shows that the MCMC algorithm implemented in bamdit
outperforms a classical bivariate random effects approach based on REML estimation, which
can be unreliable when the meta-analysis contains a small number of studies with a large
heterogeneity (Riley et al. 2007). Moreover the flexible random effects distribution used in
bamdit helps to better understand the studies’ results by pointing out unusual results.

The conflict of evidence assessment is the deconstructionist side of meta-analysis, where each
piece of evidence is put aside from the full model and compared to the rest of the evidence.
One possibility for this type of analysis is to embed a meta-analysis model in a more general
model where the non-conflict situation is a particular case. Both examples in Section 4
demonstrated that we could apply a double scale mixture of bivariate normal distributions
and we made conflict diagnostics by direct interpretation of the scale weights.

One important topic currently not implemented in bamdit is the meta-regression and the in-
direct comparison of several diagnostic procedures. These topics are linked to the problematic
of ecological bias and are topics of current research. However, we plan to update bamdit to
include this functionality soon.
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