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Abstract

With the coming-of-age of the lithography and fibre laser technologies,

the interest of developing a compact and economic particle accelerator has in-

creased in recent years. In this thesis, we propose a particle acceleration in

periodic structures. Since the acceleration mechanism is based on the direct

interaction between particles and lasers, it is also referred as direct laser ac-

celeration, in contrast with the plasma acceleration. The structure consists of

many rectangular blocks (called shields) with cylindrical holes at the centre.

The blocks are separated by half laser wavelength from each other such that

there is a gap for the longitudinal electric field component to accelerate parti-

cles. The proposed scheme is ready to be integrated into a scalable multi-stage

electron acceleration.

The investigation is done by performing simulations with the Virtual

Laser Plasma Laboratory (VLPL) code. The particles will be inject into the

scheme and pass through dozen periods of the silicon structure. The acceler-

ation gradient is calculated to be approximately 136 GeV/m. We also study

the effect of the ionisation on the stability of the scheme.

Due to their high electrical breakdown, heavier dielectric materials are

desirable for the scheme. However, the ionisation process likely leads to the

abundance of electrons in the simulation domain, which can lessen the com-

putation speed. Thus, we also report in this thesis the development of the

Voronoi particle merging algorithm as an integral part of the VLPL code. The

core concept is using the Voronoi tessellation to group similar particles in the

phase space. In this manner, the growth of particles in the simulation box is

put under control while the physical description of the system is not strongly

distorted. The algorithm can enhance the computation performance and is

serviceable for simulations where the number of particles grows exponentially.
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Zusammenfassung

Mit der Etablierung von Lithographie und Faserlasern ist das Interesse an

der Entwicklung von einem kompakten und wirtschaftlichen Teilchenbeschle-

uniger in der letzten Jahren angestiegen. In dieser Arbeit schlagen wir eine

Teilchenbeschleunigung in periodischen Strukturen vor. Da der Beschleuni-

gungsmechanismus auf der direkten Wechselwirkung zwischen den Teilchen

und dem Laser basiert, wird dieser Prozess auch als direkte Laserbeschleu-

nigung bezeichnet, im Gegensatz zu der Plasmabeschleunigung. Die Struk-

tur besteht aus vielen rechteckigen Blöcken (sogenannten Schilden) mit zylin-

drischen Bohrungen in der Mitte. Die Blöcke sind durch eine halbe Laser-

wellenlänge voneinander getrennt, so dass es Raum für die longitudinale Kom-

ponente des elektrischen Feldes gibt, um Partikel zu beschleunigen.

Die Untersuchung wird durch Simulationen mit dem Virtual Laser-Plasma

Laboratory (VLPL) Code fertiggestellt. Die Partikel werden in dem Aufbau

injiziert und fahren durch ein Dutzend Perioden der Siliziumstruktur. Der

Beschleuningungsgradient wird zu ca. 136 GeV/m berechnent. Des Weiteren

untersuchen wir die Wirkung der Ionisation auf die Stabilität des Systems.

Aufgrund ihrer höheren elektrischen Durchschlagschwelle sind schwerere

dielektrische Materialen für das Schema wünschenwert. Jedoch führt die Ion-

isation warscheinlich zu einem Überfluss von Elektronen in der Simulations-

domain, was die Rechengeschwindigkeit verringern kann. So berichten wir in

dieser Arbeit auch von der Entwicklung des verschmelzenden Voronoi Partikel

Algorithmus als integralem Bestandteil des VLPL Codes. Das Kernkonzept

benutzt den Voronoi Tessellation, um ähnliche Partikel im Phasenraum zu

gruppieren. Auf diese Weise wird das Wachstum der Partikel in der Simula-

tionsbox unter Kontrolle gehalten, wärent die physikalische Beschreibung des

Systems nicht stark verzerrt wird. Der Algorithmus kann die Rechenleistung
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verbessern und ist betriebsbereit für Simulationen, bei denen die Anzahl der

Partikel exponentiell wächst.
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CHAPTER 1
Introduction

Atoms are mindless particles and none of them are considered to be alive.

Mysteriously, trillions of them engage in a particular arrangement and a will-

ing manner to create a functioning human body. Not only that, they form all

organic living things on Earth. They are the essential constituents of the Uni-

verse’s miraculous state known as life. Despite this, they are not the smallest

particles known by mankind. Tinier are protons and electrons. It was the-

orised by Murray Gell-Mann and G. Zweig [1] that if we delved deeper into

the proton structure, we would find quarks, the fundamental building blocks

of matter. This theory was then verified by experiments in 1968 [2] at the

Stanford Linear Accelerator Center (SLAC). The thrilling journey of finding

subatomic particles has not yet ended with these findings. In 2013, particle

physicists triumphed once more when CERN† proudly proclaimed that the

Higgs boson, first proposed by P. Higgs [3] in 1964, was experimentally discov-

ered in Geneva, Switzerland [4].
∗French: Conseil Européen pour la Recherche Nucléaire; English: European Council for

Nuclear Research.
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2 Chapter 1. Introduction

The progress and fame of particle physics cannot be acknowledged with-

out giving credit to a less popular physical discipline, particle acceleration.

Quarks’ physical existence was first perceived at SLAC. SLAC’s main acceler-

ator is an RF linear accelerator which is 3.2 km long and buried 10 m below

grounds. According to data published in 1993 [5], the establishment of SLAC

facility amounted to $600ml (approx. e528.5ml), "excluding the original R&D,

the cost of SLC". On the other hand, the hunting for Higgs boson initiated

the construction of the world’s most powerful and largest particle experiment

complex, CERN’s Large Hadron Collider (LHC). With the annual budget of

e7.5bn∗, it occupies an area of 27 km in circumference, 175 m under the

France-Switzerland border. In these gigantic machines, the particles can get

accelerated up to 50 GeV (for electrons and positrons at SLAC) or 6.5 TeV

(for protons at CERN).

Not all particle accelerators are as enormous as these colossi and solely

dedicated to explore the fundamental layer of matter. They can be used as

sources of X-ray radiations (synchrotron radiation or free electron laser). These

high energy photon beams are valuable assets in many scientific fields, such as

material science, chemistry, and biology. Moreover, particle accelerators also

find their place in the modern daily life: in hospitals or in specialised clinics.

Not as grand as their relatives, these humble machines serve a noble purpose:

to treat cancer.

Due to all benefits it bestows, it is desirable to own a powerful accelerator.

Unfortunately, not all research facilities nor hospitals acquire huge land area or

large budget plan like SLAC or CERN. Thus, over the years, many works have
∗For more detail, see: http://askanexpert.web.cern.ch/AskAnExpert/en/Accelerators/

LHCgeneral-en.html#3
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been dedicated to create a compact and powerful particle accelerator. In this

thesis, we propose the novel idea of particle acceleration in periodic structures.

The scheme is readily compact and thus can be integrated into a multi-stage

accelerator. Our scheme consists of multiple identical cuboids, called shielding

blocks, which are separated from each other by half the laser wavelength. The

main objective of these blocks is to limit the interaction length between the

particle beam and the lasers such that the particles only experience only the

accelerating phase.

The works in this thesis are done by using the particles-in-cell (PIC) sim-

ulation code Virtual Laser Plasma Laboratory (VLPL) developed by Prof. A.

Pukhov. Nowadays, PIC codes can be downloaded for free (e.g. EPOCH†)

or requires commercial licenses (e.g. VORPAL [6]). Despite being different

in the ways of distribution, PIC programs utilise the same core concept: the

usage of macro-particles to represent plasma’s particle distribution function in

the full six-dimensional phase space. Being able to run on high performance

computational grids or clusters, the PIC algorithm has a wide range of service,

from particle physics to astrophysics. First introduced in the 1960s, a PIC sim-

ulation consisted of merely several hundred macro-particles. The simulation

complexity has grown considerably afterwards: in several scenarios, millions

of particles might be required in order to obtain a decent result. Although the

advancement of computer technology has helped to mitigate this problem, the

bottleneck issue still exists.

Another approach is to merge particles during simulations. This strategy

is favourable and advantageous in certain cases in which the number of particles

†See: https://ccpforge.cse.rl.ac.uk/gf/project/epoch/
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grows constantly, e.g. pair production or ionisation. The procedure must be

carried out such that the phase space must not be distorted after a merging

event and the fundamental physics conservation laws must be obeyed. Within

the scope of this thesis, the Voronoi particle merging algorithm is presented.

The algorithm operates on the basis of tessellation of the 6D phase space. The

particles are grouped together if they are close together in the phase space.

The distance measure is defined through the Voronoi diagram. Moreover, our

algorithm also provides a mean to directly control the errors due to merging

events. The algorithm is tested in several scenarios and yields positive results.

The thesis is organised as follows

• In Chapter 2, I give the overview of the Lawson-Woodward theorem,

which is fundamental in particle acceleration. Then I present a short

survey of the recent development in particle acceleration (laser wakefield

acceleration and dielectric laser acceleration). Also included in this chap-

ter are basic knowledge that are required for the simulations and data

analysis: optical field ionisation and emittance.

• Chapter 3 is reserved for the particles-in-cell algorithm. The explana-

tion of the macro-particle concept is given. Other necessary algorithms

like finite difference time domain method and Boris pusher are also cov-

ered in this chapter. Furthermore, the parallel implementation of PIC

code in VLPL is also briefly introduced.

• Chapter 4 features the particle acceleration scheme in periodic struc-

tures. I also explore several aspects of the scheme in detail.
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• In Chapter 5, I describe the simulation setup in order to test the per-

formance of our acceleration scheme. Then the simulation results are

presented and discussed.

• Chapter 6 involves the design of the Voronoi particle merging algorithm.

The algorithm is explained thoroughly in every step. I also discuss the

issue of the energy conservation in particle merging algorithm in general

and the ways to improve it. Afterwards the analysis of simulation results

is presented and studied.

• Chapter 7 is the final chapter of this thesis. Here I summarise my works

and explore the prospects of future developments for our acceleration

scheme and particle merging algorithm.



CHAPTER 2
General Aspects

2.1 Lawson-Woodward theorem

Consider an electron travelling in vacuum across a transverse laser field. In

one half of the laser oscillation, the phase of the field can be supportive for

particle acceleration. Thus, in this duration, the particle can extract energy

from the field (see Fig. 2.1a). However, this accelerating phase will eventually

reverse to become the decelerating phase. In the second half of the laser

oscillation, the laser phase changes signs and the particle gets decelerated as a

consequence (see Fig. 2.1b). In total, the particle gains no energy in one laser

cycle. Mathematically, the energy gain by the particle is given by [7]

ΔE = eE0 sin θ
∫ +∞

−∞
v cos [ωt (β cos θ − 1)] dt = 0. (2.1)

Here, E0 is the laser’s amplitude, ω its frequency; v is the electron velocity,

β = v/c with c is the speed of light; θ is the angle between the electron’s and

6



2.1. Lawson-Woodward theorem 7

laser’s propagation direction.

(a)

(b)

Figure 2.1: An electron travelling across a transverse laser field in vacuum. (a)
The particle gains energy in the first half of the laser oscillation. (b) The field
becomes decelerating in the second half of the oscillation.

In the field of particle acceleration, the Lawson-Woodward theorem [8][9] pro-

vides an important guideline to consider under which circumstances the par-

ticle acceleration is possible. It states that particles will gain no energy under

following circumstances

1. The interaction takes place in vacuum.

2. No boundaries or surfaces (dielectric, conductor, or plasma) are present.

3. The particle is highly relativistic.

4. The interaction region is infinitely large.
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5. Non-linear forces (e.g. ponderomotive forces) are neglected.

Thus, in order to accelerate relativistic particles one has to violate at least

one of these conditions. In this chapter, we will review two most interesting

approaches to accelerate particles to relativistic energy: wakefield acceleration

and dielectric laser acceleration.

2.2 Wakefield acceleration

Wakefield acceleration is a plasma-based acceleration, where the acceleration

mechanism is based on the excitation of a plasma wave by an intense laser pulse

(laser wakefield acceleration - LWA) or an electron beam (plasma wakefield ac-

celeration - PWFA). The concept was originally put forward for consideration

by T. Tajima and J. M. Dawson [10] in 1979 and first experimented by C. Joshi

in 1984 [11]. It is demonstrated that plasma accelerators can generate billions

of electron volts per metre. Currently, the wakefield machine at the Lawrence

Berkeley National Laboratory is the strongest, by accelerating electrons up to

4.25 GeV over a 2 cm length [12]. The review by E. Esarey et al. [13] provides

deep knowledge and discussion about the topic.

In LWA, the excitation of an underdense plasma by intense laser pulses

is produced via the ponderomotive force associated with the pulse envelope

(see Fig. 2.2). The plasma electrons are expelled from the region of high laser

intensity. If the longitudinal length scale Lz of the pulse profile’s gradient is

approximately equal to the plasma wavelength λp, the ponderomotive force

excites large amplitude plasma waves (called wakefields), offering high energy
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gain [13].

In PWFA, a pair of electron bunches are sent through a plasma slab. The

front bunch (drive bunch) pushes plasma electrons away, creating a so-called

blowout (or bubble) regime (proposed in 2002 by A. Pukhov and J. Meyer-ter-

Vehn [14], experimentally confirmed in 2004 by J. Faure et al. [15]), which

consists of only positively charge ions. The plasma wakefield is created and

accelerates the second bunch (trailing bunch) when the expelled electrons are

pushed back in behind this bunch (see Fig. 2.3).

Figure 2.2: (a) Schematic of LWA. The illustration is taken from C. Geddes[16].
(b) The plasma wakefield excied by a Gaussian laser pulse. The figure is taken
from E. Esarey et al. [13].

In 2014, SLAC’s Facility for Advanced Accelerator Experimental Tests

reported that a highly efficient technique for accelerating electrons [18]. The

bunch contains a substantial charge and has a small energy spread. At CERN,

scientists have been working on the AWAKE project to accelerate electron

beams to the TeV energy regime using 400[GeV] proton beams from the Super

Proton Synchrotron∗. Having potential to be an affordable and compact accel-

erator, it is expected that once it reaches its full potential, the technology can
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Figure 2.3: Schematic of bubble acceleration. The illustration is taken from
N. Kirby et al. [17].

find its service in many laboratories, hospitals, industries and even security

service, as a replacement for traditional RF accelerators.

2.3 Dielectric laser acceleration

The early concept for dielectric laser acceleration (DLA) was proposed by Y.

Takeda and I. Matsui [19] in 1968 by exploiting the inverse Smith-Purcell

effect [20] in metallic gratings. Due to the electrical breakdown of metals, the

acceleration gradient was merely in the order of kiloelectronvolt per metre.

On the other hand, it has been verified through experiments [21][22] that

dielectric materials can endure stronger fields, one to two orders of magnitude,

than metals.

To utilise the advantage of high laser damage thresholds and low Ohmic
∗See: http://awake.web.cern.ch/awake/.
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losses of dielectric materials [7], several DLA schemes have been proposed in

recent years. For example, Fig. 2.4 shows the DLA proposal by Plettner et

al. [23]. The scheme consists of two dielectric gratings separated by a vacuum

channel. Two counter-propagating laser beams are sent into the channel from

both sides. During the propagation inside the gratings, the electromagnetic

waves will encounters an additional π-phase shift at the pillars, as depicted in

the inset. After being injected into the structure, an electron beam will always

experience the accelerating field.

Figure 2.4: The DLA scheme with double dielectric gratings. The lasers are
sent from both sides of the structure. The pillars will add a π-phase shift to
the electromagnetic waves. The correctly injected particle beam will always
harvest the accelerating field, as shown in the inset. The picture is taken from
Plettner et al. [23]

Fig. 2.5 depicts the experiment setup and results performed at the Next

Linear Collider Test Accelerator (SLAC) facility at the SLAC National Ac-

celerator Laboratory [24]. The structure is 550 μm long, with period 800 nm

(≈ 687 optical periods) and gap 400 nm. The 60 MeV beam is focused by a
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(a)

(b)

Figure 2.5: The SLAC Next Linear Collider Test Accelerator: (a) experimental
setup; (b) an acceleration gradient of 300[MV/m] is achieved from experiments.
The images are taken from [24].
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permanent magnetic quadrupole triplet and then injected to the structure. It

is reported that the acceleration gradient of 300 MV/m is achieved. Fig. 2.5b

shows a sample of the structure, in comparison with human finger. Almost at

the same time, J. Breuer and P. Hommelhoff reported a 25 MeV/m acceler-

ation gradient for non-relativistic electron beam in a dielectric structure [25].

Based on these results, it is envisioned that a scalable and modular linear

accelerator can be realised, which has a wide operation range: the machine

can accelerate particles from non-relativistic to relativistic regime while does

not occupy much area. Moreover, the structures can also be useful in ultrafast

electron microscopy or electron diffraction experiments [26].

2.4 Ionisation

Ionisation is the process by which atoms or molecules lose electrons due to

the interaction with external fields (e.g. laser pulses), known as optical field

ionisation (OFI), or by collision with other particles. In this section, we re-

capitulate the principal formulae for the OFI process. On the other hand, we

neglect the effect of the collisional ionisation since it is slow compared to the

femtosecond pulse used in the simulations [27].

The behaviour of an ionisation process and the dependence of the ion-

isation probability on the ionisation potential and properties of an external

field is quantified in the adiabatic parameter κ, published by Keldysh [28] in

1965. The Keldysh parameter is defined as the ratio between the frequency ω0
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(a) Multi-photon ionisation (b) Tunnelling ionisation

Figure 2.6: Ionisation processes

of the laser beam and the frequency ωt of an electron tunnelling through an

ionisation potential barrier of an atomic level Uion [29]

κ =
ω0

ωt

= ω0

√
2meUion

eE
. (2.2)

Here, E is the electric field amplitude, e and me are the elementary charge and

the electron mass, respectively. The Keldysh factor has two limiting cases:

• κ � 1: in this regime an electron will simultaneously absorb N > 1

photons (see Fig. 2.6a). Granted that the energy per laser photon is

smaller than the ionisation potential, the total absorbed energy is high

enough to facilitate electron’s crossing the energy gap between the initial

and final (ionised) states. This phenomenon is known as multi-photon or

weak-field ionisation [30].

• κ � 1: under an intense laser field, the potential barrier of an atom (or

molecule) is distorted drastically. As a consequence, the height of the
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barrier is lowered and the length decreases. Thus, electrons can tunnel

through the barrier and escape the atom (or molecule) easily (see Fig.

2.6b). This phenomenon is called tunnelling or strong-field ionisation,

and is a quantum-mechanic event [30].

In our simulation, the ionisation potential Uion is in between 20 eV and 120

eV at the early stage of the ionisation process. The laser intensity is about

I ≈ 2×1017 W/cm2, we obtain from Eq. (2.2) κ ≈ 0.05. Thus, we can neglect

the effect of the multi-photon process. Moreover, the time step is usually

smaller than the laser period and hence the laser field can be considered to be

static at each time step. On the account of these conditions, we can safely use

the formula for the tunnelling ionisation in a static field. According to Chen

et al. [31], the tunnelling ionisation rate of complex atoms in a static field E

is given by

WDClm = ωaC
2
n∗l∗

(2l + 1)(l + |m|)!
2|m|(|m|)!(l − |m|)! ×

(
Uion

2UH

)[
2
Ea

E

(
Uion

UH

)3/2
]2n∗−|m|−1

× exp

[
−2

3

Ea

E

(
Uion

UH

)3/2
]
. (2.3)

Here, UH = 13.6 eV is Hydrogen’s ionisation potential; ωa = α3c/re is the

atomic unit frequency; Ea = α4mec
2/ere; α and re are the fine structure

constant and classical electron radius, respectively; l and m are the electron’s

quantum number and its projection; n∗ = Z
√

UH/Uion is the effective principal

quantum number and n∗
0 is the value for the ground state; l∗ = n∗

0 − 1 is the

effective orbital number; Z is the ion charge number after ionisation. The

coefficients Cn∗l∗ , based on the Ammosov-Delone-Krainov (ADK) model [32],
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are defined as

C2
n∗l∗ =

22n
∗

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
, (2.4)

with the gamma function Γ(t) =
∫∞
0

xt−1e−xdx.

2.5 Emittance

One important property of a charged particle beam in a particle accelerator

is the emittance (unit: mm × mrad). It quantifies the average area or vol-

ume spread of particles in the phase space. Unlike the physical dimensions,

the beam emittance is an invariant quantity in the absence of dissipative or

cooling forces [33]. In one dimension (the phase space consists only position x

and momentum p), the root-mean-square (rms) emittance of a beam with Ne

particles is defined as [34]

εx =
√

〈x2〉〈p2〉 − 〈xp〉2, (2.5)

where the rms beam size is defined as

〈x2〉 = σ2
x =

1

Ne

∑
j

x2
j , (2.6)

and the rms beam angular divergence σp

〈p2〉 = σ2
p =

1

Ne

∑
j

p2j , (2.7)
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and the rms correlation term

〈xp〉 = 1

Ne

∑
j

xjpj. (2.8)

Often the beam energy varies in the accelerators and thus the emittance is no

longer invariant. To retain the invariance property, we often use the normalised

emittance εnx which is defined as

εnx = βγεx. (2.9)

Here, β = v/c and γ = 1/
√

1− v2/c2, with c is the speed of light. The

normalised emittance defined in Eq. (2.9) is conserved during acceleration.



CHAPTER 3
Particle-in-Cell Algorithm

3.1 Introduction

In plasma physics, we typically encounter huge particle densities: ranging from

1012 cm−3 in laboratory plasmas to 1027 cm−3 in laser pellet fusion plasmas.

The practicality of analytical approaches are limited in such scenarios. Pio-

neered by Buneman [35] and Dawson [36], the Particle-in-Cell (PIC) method

has been developed over many decades [37][38][39] to become a powerful sim-

ulation tool to study plasma phenomena with full kinetic description. The

PIC codes employ the concept of macro-particle. A macro-particle represents

a smooth cloud of many real particles moving with the same velocity and has

the same charge-to-mass ratio as in real plasmas [40].

In this chapter I will introduce the core concept of the PIC method. The

chapter is organised as follows

• Section 3.2 features the finite difference time domain method to solve

18
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the Maxwell’s equations.

• Section 3.3 describes the algorithm to solve the particles’ equation of

motion.

• Section 3.4 explains the macro-particle representation of the phase space

distribution and the current deposition in PIC code .

• Section 3.5 summarise the chapter and introduce several technical aspects

of a PIC program.

3.2 Maxwell Solver

The Maxwell’s equations in the CGS unit system are [41]

∇ · E = 4πρ, (3.1)

∇ ·B = 0, (3.2)

∇× E = −1

c

∂B

∂t
, (3.3)

∇×B =
1

c

∂E

∂t
+

4π

c
J. (3.4)

Here, E and B are the electric and magnetic fields, respectively; ρ is the charge

density; J is the current density; c is the speed of light. The continuity equation

can be obtained by combining Eqs. (3.1) and (3.4)

∂ρ

∂t
+ c∇ · J = 0. (3.5)
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If the system under consideration satisfies the continuity equation and the

Gauss’ laws at the very beginning of the simulation, it will always conserve

the charge. As a result, we can discard Eqs. (3.1) and (3.3) and only need to

solve Eqs. (3.3) and (3.4) during the simulation.

In 1966, Yee introduced a finite-difference time-domain method (FDTD)

to solve the time-dependent Maxwell’s equations [42]. Tested over 45 years,

the Yee’s algorithm proves to be a robust and efficient technique with appli-

cations in various fields. The method employs the staggering scheme in space

and the leapfrog integration in time.

Spatial discretisation: The Yee algorithm splits the simulation domain into

cubical cells with grid steps Δx, Δy, and Δz in the x, y, and z axes, respec-

tively. In each cell, electric field components are placed at the cell faces and

magnetic field components are arranged along the cell edges∗(see Fig. 3.1). A

field component u evaluated at a discrete point in the grid can be represented

by a set of integer numbers (i, j, k) as

u(iΔx, jΔy, kΔz) = ui,j,k. (3.6)

Then, we define the symmetric finite difference operators d̂α of a field

component ui,j,k as follows

d̂xui,j,k =
ui+1/2,j,k − ui−1/2,j,k

Δx
, (3.7)

d̂yui,j,k =
ui,j+1/2,k − ui,j−1/2,k

Δy
, (3.8)

d̂zui,j,k =
ui,j,k+1/2 − ui,j,k−1/2

Δz
. (3.9)

∗Placing all E and B components at the cell centre will give rise to the numerical errors
and dispersion.
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Figure 3.1: Structure of a Yee cell: electric field components are defined at the
cell faces and magnetic field components are placed along the edges.
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Then, the Maxwell’s equations (3.3) and (3.4) are spatially discretised, based

on the Yee grid, as

∇× E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d̂yEz|i+1/2,j,k − d̂zEy|i+1/2,j,k

d̂zEx|i,j+1/2,k − d̂xEz|i,j+1/2,k

d̂xEy|i,j,k+1/2 − d̂yEx|i,j,k+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −∂t
c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Bx|i+1/2,j,k

By|i,j+1/2,k

Bz|i,j,k+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −1

c

∂B

∂t
, (3.10)

∇×B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d̂yBz|i,j+1/2,k+1/2 − d̂zBy|i,j+1/2,k+1/2

d̂zBx|i+1/2,j,k+1/2 − d̂xBz|i+1/2,j,k+1/2

d̂xBy|i+1/2,j+1/2,k − d̂yBx|i+1/2,j+1/2,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
∂t
c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ex|i,j+1/2,k+1/2

Ey|i+1/2,j,k+1/2

Ez|i+1/2,j+1/2,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+
4π

c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Jx|i,j+1/2,k+1/2

Jy|i+1/2,j,k+1/2

Jz|i+1/2,j+1/2,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
1

c

∂E

∂t
+

4π

c
J. (3.11)

Temporal discretisation In the Yee’s algorithm, the field components E and

B are temporally centred and interleaved in a so-called leapfrog arrangement,
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as depicted in Fig. 3.2. According to Taflove et al. [43], the advantages of this

approach are "central difference in nature and second-order accurate."

Figure 3.2: The location of the field components E and B in the Yee’s algo-
rithm: central difference in space and leapfrog in time.

In free space, the Maxwell’s equations (3.3) and (3.4) can be rewritten in the

form

1

c

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Bx

By

BZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Bz

∂y

∂Bx

∂z

∂By

∂x

∂Ey

∂z

∂Ez

∂x

∂Ex

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂By

∂z

∂Bz

∂x

∂Bx

∂y

∂Ez

∂y

∂Ex

∂z

∂Ey

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.12)
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which can be written in a more compact form

∂u

∂t
= M̂u+ N̂u. (3.13)

By applying the standard temporal Crank-Nicholson discretisation [44] to Eq.

(3.13), we obtain

un+1 − un

Δt
=

1

2

(
M̂un+1 + M̂un

)
+

1

2

(
N̂un+1 + N̂un

)
+O(Δt)2. (3.14)

Expanding and omitting high order terms in Eq. (3.14) yields

(
1− Δt

2
M̂

)(
1− Δt

2
N̂

)
un+1 =

(
1 +

Δt

2
M̂

)(
1 +

Δt

2
N̂

)
un, (3.15)

which can be separated into two stages†

⎧⎪⎪⎨
⎪⎪⎩
(
1− Δt

2
M̂
)
un+1/2 =

(
1 + Δt

2
N̂
)
un

(
1− Δt

2
N̂
)
un+1 =

(
1 + Δt

2
M̂
)
un+1/2.

(3.16)

By combining the spatially discretised Maxwell’s equations (3.10) and (3.11)

and the temporal discretisation Eq. (3.16), we obtain the FDTD Maxwell

solver used in the VLPL framework. The solver virtually involves three steps

Bn+1/2 = Bn − Δt

2
∇× En, (3.17)

En+1 = En +Δt∇×Bn+1/2 −ΔtJ+1/2, (3.18)

Bn+1 = Bn+1/2 − Δt

2
∇× En+1. (3.19)

†Detailed calculation can be found in Fomberg’s article [44].
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Stability condition of Yee’s scheme The Yee’s algorithm requires a specific

relation between the time step Δt and grid steps Δx, Δy, and Δz [43]

cΔt

√
1

(Δx)2
+

1

(Δy)2
+

1

(Δz)2
≥ 1. (3.20)

The violation of the condition (3.20) will cause the nonphysical wave disper-

sion: the speed of light in vacuum is smaller than c in the simulation domain.

3.3 Particle pusher

For a relativistic particle with mass m and charge q, the equation of motion

reads

p = γmv, (3.21)

F =
dp

dt
. (3.22)

Here, p and v are the momentum and velocity of the particle. The particle’s

Lorentz factor is given by

γ =
1√

1− v2

c2

. (3.23)

Introducing u = γv/c = p/mc, Eq. (3.22) becomes

F = m
d (γv)

dt
= m

du

dt
. (3.24)
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In an electromagnetic field, the force F is the Lorentz force. Thus,

m
du

dt
= q

(
E+

v ×B

c

)
. (3.25)

The particle position x and momentum u can be found by solving the sym-

plectic system of differential equations

u̇ =
F

m
, (3.26)

ẋ =
u

γ
. (3.27)

The leapfrog method can be used to solve the system (3.26) and (3.27) ef-

fectively: staggering x and u at discrete times (see Fig. 3.3) and using the

temporal average for un to maintain the second-order accuracy

un =
un−1/2 + un+1/2

2
. (3.28)

Hence, we obtain the implicit equations

Figure 3.3: Chart of the leapfrog method: position x is evaluated at integral
time-steps while momentum u is evaluated at half times.



3.3. Particle pusher 27

xn+1 − xn

Δt
=

un+1/2

γn+1/2
, (3.29)

un+1/2 − un−1/2

Δt
=

q

mc

(
En +

un+1/2 + un−1/2

2γn
×Bn

)
. (3.30)

Eqs. (3.29) and (3.30) can be solved by using high-order integration meth-

ods (e.g. Runge-Kutta). However, these methods often require a considerable

amount of time, especially when there are many particles in the system. In-

stead, the implicit method proposed by Boris in 1970 [45] provides an efficient

solution by decoupling the electric field push from the magnetic field push. By

defining the relations

un−1/2 = u− − qEn

2mc
Δt, (3.31)

un+1/2 = u+ +
qEn

2mc
Δt. (3.32)

and inserting into Eq. (3.30), we have

u+ − u− =
(
u+ + u−)× qB

2mcγn
dt. (3.33)

Denoting t = qBΔt/2mcγn, Eq. (3.33) reduces to

u+ − u− =
(
u+ + u−)× t

⇒ u+ − u+ × t = u− + u− × t. (3.34)

Eq. (3.34) is a linear system with the solution

u′ = u− + u− × t, (3.35)

u+ = u− + u′ × 2t

1 + t2
. (3.36)
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Collecting all equations together, the Boris method involves four steps to push

the particle momentum:

Step 1: apply the first half of the electric field push

u− = un−1/2 +
qEn

2mc
Δt. (3.37)

Step 2: calculate the mid term u′

u′ = u− + u− × t, (3.38)

t =
qB

2mcγn
Δt. (3.39)

Step 3: apply the magnetic field push (rotation).

u+ = u− + u′ × 2t

1 + t2
. (3.40)

Step 4: apply the second half of the electric field push.

un+1/2 = u+ +
qEn

2mc
Δt. (3.41)

The particle position can be easily obtained from the new momentum un+1/2

xn+1 = xn +
un+1/2

γn+1/2
Δt

= xn +
un+1/2√

1 + (un+1/2)
2
Δt (3.42)
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3.4 Macro-particles

The relativistic Vlasov equation, which describes the temporal evolution of the

distribution function f (x,p, t) of plasma, reads [46]

∂f

∂t
+

p

mγ
+

F

m
∇pf = St. (3.43)

Here, St is the collisional term. In combination with the Maxwell’s equations,

the Vlasov equation 3.43 provides the complete information about plasma be-

haviour. The PIC algorithm operates on the basis that the particle distribution

function is decomposed into many macro-particles in the phase space

f(x,p, t) =
N∑
i=1

fi (xi,pi, t)

=
N∑
i

WiSx (x− xi)Sp (p− pi) , (3.44)

where Wi is the weight of the ith macro-particle; S (xi,pi, t) is the shape func-

tion which describes the macro-particle’s extension in phase space. It is re-

quired that S has to satisfy the identity

∫ +∞

−∞
S(x, t)dx = 1. (3.45)

Typically the shape function for momentum Sp is chosen to be Dirac delta

function

Sp (p− pi) = δ (p− pi) . (3.46)
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while the counterpart for position Sx is defined to be separable

Sx (x− xi) = S (x− xi)S (y − yi)S (z − zi) . (3.47)

and each component has a flat-top profile

S(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, |x| < 1

2

0, otherwise
. (3.48)

To compute the force acting on the n-th particle (xn,pn), the fields obtained

(a) (b)

Figure 3.4: Plasma phase space distribution: (a) Represented by Vlasov’s
equation (3.43); (b) Rendered with macro-particles in PIC algorithm. The
images are taken from T. Tückmantel [47].

from Yee’s algorithm must be interpolated at the particle’s position

En =
∑
i∈Γ

EiS(xn − xi). (3.49)



3.4. Macro-particles 31

Here, Γ denotes a group of Yee cells surrounding the particle. Fig. 3.5 shows an

example of linear interpolation scheme for the electric field. Then, we deposit

Figure 3.5: To push a particle, the field values from Yee cells are interpolated
at the particle’s centre of mass.

the current induced by the particle’s motion to the grid cells

Jx
i,j+1/2,k+1/2 = δxWn(a

+
y a

+
z + byz), (3.50)

Jy
i+1/2,j,k+1/2 = δyWn(a

+
z a

+
x + bzx), (3.51)

Jz
i+1/2,j+1/2,k = δzWn(a

+
x a

+
y + bxy), (3.52)

Jx
i,j−1/2,k+1/2 = δxWn[(1− a+y )a

+
z − byz], (3.53)

Jx
i,j+1/2,k−1/2 = δxWn[a

+
y (1− a+z )− byz], (3.54)

Jx
i,j−1/2,k−1/2 = δxWn[(1− a+y )(1− a+z )− byz], (3.55)
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Jy
i+1/2,j,k−1/2 = δyWn[(1− a+z )a

+
x − bzx], (3.56)

Jy
i−1/2,j,k+1/2 = δyWn[a

+
z (1− a+x )− bzx], (3.57)

Jy
i−1/2,j,k−1/2 = δyWn[(1− a+z )(1− a+x )− bzx], (3.58)

Jz
i−1/2,j+1/2,k = δzWn[(1− a+x )a

+
y − bxy], (3.59)

Jz
i+1/2,j−1/2,k = δzWn[a

+
x (1− a+y )− bxy], (3.60)

Jz
i−1/2,j−1/2,k = δzWn[(1− a+x )(1− a+y )− bxy], (3.61)

where (δx, δy, δz) denote the particle’s displacement; for α, β = {x, y, z}

aα = 1− 2
xα + 0.5Δα

Δα

, (3.62)

bαβ =
1

12
ΔxαΔxβ. (3.63)

3.5 Particle-in-Cell algorithm

Collecting all steps together, we have a complete computational cycle of the

PIC algorithm (see Fig. 3.6) as follows

• The plasma phase space distribution is represented by a set of macro-

particles with position xn and momentum pn.

• The simulation domain is spatially discretised and the electromagnetic

fields E and B are obtained by solving Maxwell’s equations.

• The field values are then interpolated to particles’ position in order to

solve the equations of motion. The particle pusher module can be ex-
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tended to include other interesting effects like ionisation or photon gen-

eration.

• Generate the currents due to particles’ displacement and deposit them

to the grid cells.

• Proceed to the next time step.

Figure 3.6: A computational cycle of the PIC algorithm.

Depending on the grid steps, a simulation can contain from several hundred to

millions grid cells. To handle this kind of increase and to utilise the clusters’

computing resources, the simulation domain is often partitioned into smaller

grids which are then passed to different processes. The subdomains then can

run as separate simulations (see Fig. 3.7). While being separated, the pro-

cessed must be controlled by an interface for management of simulation con-

sistency. In the VLPL code, we use OpenMPI† to keep track of processes’

activities.

After one computation time step, the processes will communicate with

each other. To avoid the mismatches that might occur during runtime, two

or more guard cells are added to each subdomain (see Fig. 3.8). Data can
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be transferred by mean of accessing information stored in the guard cells. In

VLPL, the data storage is handled by the HDF5 model‡.

Figure 3.7: Parallelisation in PIC programs: An original simulation domain (a)
is partitioned into several sub-domains (b) which are then passed to different
processes.

Figure 3.8: The communication bridges between partitions are established by
adding guard cells to each subdomain. Their main tasks are to maintain the
local boundary conditions and store information from adjacent partitions.

†Open Message Passing Interface. See webpage http://www.open-mpi.de/ for more de-
tail.

‡Hierarchical Data Format. See webpage https://www.hdfgroup.org/HDF5/ for more
detail.



CHAPTER 4
Electron Acceleration Scheme

based on Periodic Structures

4.1 Introduction

In Chapter 1, we have discussed about the Lawson-Woodward theorem and

several scenarios to violate it. Before going further, we revisit the situation

where an electron travelling in vacuum across a transverse laser field. As we

already know that the particle gets accelerated in one half of the laser oscilla-

tion and decelerated in the other half. If we desire to accelerate particles, we

need to restrict the interaction length between the laser and the particle. This

requirement can be fulfilled by inserting a kind of field obstruction during the

decelerating phase. Expectedly, the electron only experiences the accelerating

field in one laser cycle (see Fig. 4.1). This is the constitution concept of the

electron acceleration scheme presented in this chapter.

35
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Figure 4.1: To accelerate particles, we need to limit the interaction length
between the particles and the laser beams, especially during the decelerating
phase. This can be done by the introduction of a field obstruction.

Section 4.2 explains in great detail the operational design of the accel-

eration scheme. In section 4.3 we discuss several aspects and experimental

requirements concerning the scheme.

4.2 The scheme design

Fig. 4.2 shows the design of the periodic structure for electron acceleration.

Here, 1 encapsulates one structure period, which consists of shielding blocks

2 and two pairs of lasers 3 .

A shielding block is a rectangular cuboid with length l and thickness

(width and height) w, whose main task is to impede the laser propagation. A

cylindrical hole with diameter d0 is drilled through the block to allow particles’

propagation (see Fig. 4.2c). Each block is separated from each other such that
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the gap between two consecutive blocks is half laser wavelength λ0 long. The

gap length ensures that the particles will interact with the laser field only in

half oscillation period. Thus, they are either accelerated or decelerated, not

both. The blocks are positioned along the particles’ propagation direction (e.g.

x-axis).

In the transverse plane (e.g. yz-plane), two pairs of laser beams (one

along y- and one along z-axis) are provided at each gap. The laser beams

counter-propagate in their corresponding axes and are focused at the centre

of the gap (see Fig. 4.2b). This geometry of lasers guarantees a symmetric

formation of the field in the gap. In consequence, when travelling through the

gap, the particles will experience a strong accelerating and balanced field such

that they are not pushed towards any particular direction but are maintained

equally inside the block hole. There is also another requirement imposed on

the laser configuration. The lasers at later periods must be temporally shifted

backwards such that the particles will always experience the same field at

every structure period. Thus, the pairs 4 in Fig. 4.2a are intendedly faded

to indicate the temporal shift. Fig. 4.3 shows the electric field component

EX obtained from a self-consistent simulation. The right pairs appear to be

weaker than the left counterpart since they arrive at the structure at a later

time.

Before being injected into the acceleration structure, the particle beam

will have to pass through magnetic lens to ensure that the beam remains in the

centre of the structure gap. Usually the beam diameter might be larger than

that of the gap. In this case, many particles will collide with the structure and
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(a) The schematic design of the periodic structure for electron acceleration. Here,
1 encapsulates one structure period and 2 is the shielding structure. 3 and 4
represent the laser beams, where 4 appear faded since they are delayed in time. 5
and 6 describe main regions during particles’ propagation inside the structure.

(b) The laser setup at each gap. The four laser beams are focused at the centre of
the gap, which will intendedly provide a strong field for electron acceleration.

(c) The parameter detail of the shielding structure.

Figure 4.2: The design, laser setup, and parameter detail of the periodic struc-
ture for electron acceleration.
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get lost while the others pass through and enter the structure. Due to this

reason, it is recommended to build the first shielding block longer so that the

effect caused by the beam impact does not affect the acceleration performance.

Figure 4.3: The electric field component EX in the acceleration scheme ob-
tained from a self-consistent simulation (see next chapter). The right pairs are
delayed in time thus they appear to be weaker than the left counterpart.

Throughout the operating time of the acceleration scheme, there are

mainly two regions of interest, namely the shielded region 5 and the open

region 6 (see Fig. 4.2a). Fig. 4.4 shows the expected evolution of an electron

propagating in the structure. In the shielded region, the particles are exempt

from the interaction with the lasers, since the shielding block prevents them

from penetrating inside. Accordingly, the particles’ momenta remain constant

in this region, as depicted with the straight lines in Fig. 4.4. Subsequently, the

particles cross the extent of the gap and travel in the gap. In this open region,

the field is building up intensely. Assumed that the injection is at the right

phase, the particles can extract energy from the field and thus the momenta

increase. The outcome of this region is depicted as the steep slopes in Fig. 4.4.

The laser phase will eventually change side. When it happens, the particles

are already at the other end of the gap and entering the next shielding block.
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Figure 4.4: The expected phase space evolution of an electron travelling in the
acceleration structure. The particle’s momentum will remain constant when
propagating in the hole and increase when travelling in the open gap.

Although the energy gain per period might be small, the particles will

propagate through hundreds of periods and thus small gains will aggregate

into huge total energy upsurge at the end of the structure. Moreover, by

adjusting the temporal shifts for the laser and/or the length of the blocks,

the structure can be constructed and assembled in a multi-stage acceleration

process.

In this scheme, the electron acceleration is realised based on the direct

interaction between the laser pulses and particles. Hence, we can also name it

the direct laser acceleration, in contrast to plasma-based acceleration.

4.3 Other aspects

Analogy with dielectric laser acceleration: The direct laser acceleration

proposed in this chapter does not rely on the laser phase shift during the
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propagation inside the structure since it is difficult to control. Moreover,

we aim for single-shot scenarios with intense laser pulses to achieve higher

acceleration gradient. Thus, the material damages may not pose a serious

concern as in the dielectric scheme.

Half-period Fabry-Perot structure: The original accelerating design was

the half-period Fabry-Perot structure [48] shown in Fig. 4.5. Contrary to

the open structure presented in section 4.2, the gaps in the Fabry-Perot

design are formed into micro-cavities with length L, where one side is

covered by a layer of thin foil being partially transparent to laser beams

and the other is closed to reflect radiation. The main task of the micro-

cavity is to enhance the laser field. The field enhancement factor can be

estimated by

M =
Ec

E0

≈ 1

1−R
, (4.1)

where Ec is the field in the cavity, E0 is the laser field, and R is the reflec-

tivity of the thin foil. According to [49], the cavity field can be amplified

from the pump laser manifold. Fig. 4.6 shows the field enhancement

factor M against the cavity length L for the case the thin foil thickness

is dtf = 0.02λ0 and λ0 = 800 nm. The maximised value is M = 59.48

for L = 0.4792λ0. That is, the resonant field Ec can be expectedly 60

times higher than the original field E0. However, this design has several

disadvantages.

• For this design, it is required that the laser intensity must be mod-

erate to maintain the structure’s integrity during the interaction. It
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Figure 4.5: The schematic design of the Fabry-Perot resonator accelerating
structure. A layer of thin film being partially transparent to laser beams is
used to cover one side of the gap. The other side is closed by a reflective wall.
The gap is then formed into a micro-cavity with length L.

Figure 4.6: The field enhancement factor M against the cavity length L in
the half-period Fabry-Perot accelerating structure. The thin foil is assumed to
have thickness dtf = 0.02λ0, for λ0 = 800 nm.
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is shown that the whole structure can sustain lasers with intensities

as high as 1014 W/cm2 [48]. In spite of high finesse, we cannot ex-

ploit higher intensity laser that are available on the market. This

limitation would greatly bring down the performance of the scheme.

• In order to achieve the highest finesse as possible, the cavity length

and thin foil thickness must be precisely produced at tiny scale. Any

small deviation can undermine the cavity’s quality. This restriction

can cause a lot of pressure on the manufacturing process.

• The thin foil can be easily damaged due to the interaction with the

incoming laser field or the resonant field. This can also degrade the

finesse of the cavity.

In contrast, the open structure presented in section 4.2 can operate with

laser intensities as high as 1017 W/cm2 (see next chapter). Moreover,

the accelerating field of the open structure does not rely on the property

of the cavity and thus the flexibility of the design is greatly expanded.

On account of these reasons, the development of the resonant design is

terminated.

Producing structures for experiments The size of the structure is nor-

mally in nano-scale. For this range, the 3D-printing approach is much

favoured. For example, in early February 2016 (at the time of writing

this thesis), a group of scientists at the Karlsruhe Institute of Technol-

ogy, Germany published their findings in Nature Materials [50], in which

they created a glassy carbon nano-lattice with single struts shorter than

1 μm and diameters as small as 200 nm. To produce such a lattice, the

team make use of a 3D printing technique, so called two-photon direct
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laser writing or direct-write laser lithography. After 3D printing process

is finished, the pyrolysis process is utilised to shrink the lattice by 80%

to resolve even a smaller lattice. Such technology is expensive for the

time being but will expectedly go down in price in the near future.

Laser requirement The coherency between laser pulses is of utmost impor-

tance in our acceleration scheme. For typical laser systems, maintaining

the coherency for two pulses is already a laborious task, leave alone for a

dozen of lasers. However, the emergence of the Coherent Amplification

Network (CAN) fibre laser system [51] provides a prospective possibility

to realise the periodic laser-based electron acceleration. Fig. 4.7 shows

the CAN’s operating principle. The most significant property of the CAN

system is massive parallelism: a huge number of identical and mutually

coherent laser pulses can be created from a vast fibre array.

Figure 4.7: The operating system of the Coherent Amplification Network
(CAN): the seed laser pulse (1) is stretched (2), then split and amplified in
many fibre channels (3). The process is repeated several times (4). All the
channels are combined, compressed (5) and focused (6) coherently to produce
the final pulse (7). The image is taken from [51].



CHAPTER 5
Simulation Results on Electron Ac-

celeration

In the previous chapter, I have described in detail the design of the new electron

acceleration scheme based on the periodic structure and the functionalities of

its components. In this chapter lies the major part of my work: conducting

the simulation to test the performance and practicality of the scheme. The

simulation results are presented in the following order:

• Section 5.1 contains the parameter list for conducting the simulations.

• In section 5.2, I study the ionisation process of the periodic structure

and the effect of the hole diameter on the field.

• Section 5.3 shows the main simulation results.

Finally, in section 5.4 I summarise the works done in this chapter and dis-

cuss other characteristic points.All the simulations presented here are obtained

by using the VLPL code [38].
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Parameter Notation Value Unit

General Settings

Wavelength λ0 0.8× 10−4 cm
Boxlength x× y × z 16× 8× 8 λ0

Gridstep dx× dy × dz 0.05× 0.05× 0.05 λ0

Timestep dt 0.01 λ0/c

Number of particles per cell 10

Structure Settings

Element Silicon
Hole diameter d0 0.2 λ0

Thickness w 4 λ0

Length l 7.5 λ0

Number of periods 12

Laser Settings

Beam diameter 2 λ0

Pulse duration 30 fs
Temporal delay 10 λ0/c

Electron Beam Settings

Initial Lorentz factor γi 1000
Beam length 8 λ0

Initial bunch charge Qi 318.37 fC

Table 5.1: The simulation parameters for electron acceleration scheme in pe-
riodic structures.
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5.1 Parameter settings

The parameter settings for the electron acceleration simulations are listed in

Table 5.1. The laser wavelength is assumed to be λ0 = 0.8 × 10−4 cm. The

simulation box has a three dimensional planar geometry with lengths 16λ0 ×
8λ0× 8λ0 and gridsteps 0.05λ0× 0.05λ0× 0.05λ0 in x−, y−, and z−axes. The

timestep is chosen to be dt = 0.01λ0/c. Each cell has eight numerical particles

for every species.

(a) Longitudinal plane (b) Transverse plane

Figure 5.1: The initial configuration of one structure period in the longitudinal
(a) and transverse (b) planes for the electron acceleration simulations. The
electron beam will be injected along the x-axis and traverse through twelve
structure periods.

Fig. 5.1 shows the initial atom density of one structure period in the

longitudinal and transverse planes. Silicon is selected to be the element of the

structure. The choice of the material will be discussed further in section 5.4.

In the beginning of the simulation, the silicon atom is at ground state and

hence there is no free electron. Each structure period has length l = 7.5λ0,

thickness w = 4λ0, and hole diameter d0 = 0.2λ0. The electrons will be
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injected from the left border along the x−axis. Initially, the electron beam

has the Lorentz factor γi = 1000. The beam is 8λ0 long and has the total

bunch charge Qi ≈ 318.37 fC∗. The particle beam will traverse through twelve

structure periods.

As described in the previous chapter, each gap is supported by four

lasers, two of which propagate along the y-axis and the others along the

z-axis. The laser temporal delay between two consecutive gaps is set at

8λ0/c. The laser pulses have Gaussian profiles in the propagation directions

and transverse planes. They are focused at the centre of their correspond-

ing gaps. To save the computation time, the beam diameter at the focal

point is chosen to be 2λ0 and the pulse duration is 30 fs. The normalised

laser amplitude a0 = eEL/meω0c = 1.0, corresponding to the optical intensity

I0 ≈ 2.13× 1018 W/cm2. Here, EL is the laser electric field amplitude and ω0

is the laser frequency.

The simulation is done in the moving frame with the box shift speed is

set at the speed of light c.

5.2 Overview simulations

5.2.1 Effect of ionisation and material response

Fig. 5.2 shows the electron density of the structure in the longitudinal and

transverse planes before (T0) and after (T1 = T0 + 8λ0/c) the particle beam

∗In contrast, test particles will not generate field. On that account, simulations with test
particles are generally faster but lack full physical description.



5.2. Overview simulations 49

passes through the gap.

(a) Longitudinal plane, before. (b) Transverse plane, before.

(c) Longitudinal plane, after. (d) Transverse plane, after.

Figure 5.2: The electron density of the structure in the longitudinal and trans-
verse planes before (a and b) and after (c and d) the electron beam passes
through the gap.

We observe that at both time stamps the edge of structure is going

through a strong ionisation process due to the interaction with the laser fields.

Indeed, the average ionisation of silicon ions at frame T0 is 1.8, while at frame

T1 this number has increased to 5.6. Meanwhile, the bulk of the structure en-

dures a mild perturbation with the average ionisation level is about 1.4. This
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is due to the fact that the laser fields are not yet strong enough to penetrate

deep into the shielding block and a part of them is reflected back at the surface.

We also notice that there is an asymmetry in the electron density be-

tween two sides of the gap in the structure (see Figs. 5.2a and 5.2c). The

figures indicate that the ionisation process on the left side is stronger than its

counterpart on the right side of the gap. The reason is that since the particle

beam is injected from the left side of the simulation box, the field generated

by the beam will interact with the left part sooner and hence the ionisation

on this side will occur earlier. This leads to the lack of symmetry observed in

Fig. 5.2.

5.2.2 Hole diameters

We now test the dependence of the field on the diameter d while keeping

other parameters intact. In this series of simulation, the normalised laser

intensities are set at a = 1.0, corresponding to the optical intensity I = 2.1×
1018 W/cm2. Fig. 5.3 shows the simulation results for various hole diameters

d = {0.1λ0, 0.2λ0, 0.3λ0, 0.4λ0, 0.5λ0} and Fig. 5.4 shows the 1D cut of the

electric field Ex.

From the figures, we observe that the hole diameter influences not only the

shape but also the field amplitude at the gap centre, which in turn affects the

quality of the shielding. As clearly seen from Fig. 5.3, the wider the diameter

becomes, the more the field broadens into the hole. For d ≤ 0.2λ0, the field

spreading can still be considered acceptable. However, with d = 0.5λ0 the

higher oscillation perpetuates across the longitudinal axis. Thus, the intention
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of the shielding becomes less useful. We also notice from Fig. 5.4 that the

field at the centre of the gap evolves from a flat-top to a bell-like shape and

the field amplitude is being reduced as the diameter increases.

Figure 5.4: 1D cut of the electric field Ex along the longitudinal axis of the
hole with diameters d = {0.1λ0, 0.2λ0, 0.3λ0, 0.4λ0, 0.5λ0}. The black dotted
lines indicate the extent of the gap.

We conclude that in order to achieve good quality of shielding, the hole

diameter d must be kept as small as possible since wider holes will allow the

fields spreading into the shielding, and even higher oscillation in certain cases.

On the other hand, by maintaining d ≤ 0.2λ0 the structure offers not only the

best shielding but also high intensity and flat-top field for particle acceleration.
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5.3 Simulation results

5.3.1 Simulation with laser intensity a = 1.0

First we consider the simulation in which the normalised laser intensities are

set to a = 1.0 (optical intensity I = 2.1 × 1018 W/cm2). Fig. 5.5 shows

the initial and final phase space x/px distributions of the electron beam in

the acceleration simulation with twelve structure periods. Here, only particles

which are trapped inside the hole are taken into consideration

y2 + z2 ≤ d20
4
, (5.1)

with y and z are particle’s position and d0 is the hole diameter.

Initially, every electron has the same Lorentz factor γi = 1000. Thus, the

phase space distribution is a straight line, as shown in Fig. 5.5a. After trav-

elling through the acceleration structure, the beam’s phase space distribution

transforms into a much different curve, as shown in Fig. 5.5b. We have several

remarks concerning this evolution.

1. At the end of the simulation, the phase space distribution is sinusoidal,

mimicking the laser field oscillation and its peak occurs at the time the

lasers are focused at the gap centre.

2. The beam is broken into many parts and the particles are concentrating

around the extremum points of the wave: if particles get accelerated,

they will gather around maximum points, called acceleration windows.
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(a) The initial phase space distribution.

(b) The final phase space distribution.

Figure 5.5: The initial (a) and final (b) phase space x/px distributions of the
electron beam in the acceleration simulation with twelve structure periods.
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Figure 5.6: The acceleration gradient for each acceleration window in the
simulation with a = 1.0.

Figure 5.7: The average energy for each acceleration window in the simulation
with a = 1.0.
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Otherwise, they get together at minimum points. In this thesis, the

acceleration windows are enumerated from left to right, starting from 1.

In this simulation, there are in total eight windows since the beam length

is 8λ.

3. The peaks of all acceleration windows are not equal. Instead, they follow

the peaks of the laser field: raising and then declining. As a consequence,

each acceleration window experiences a different acceleration gradient.

Fig. 5.6 shows the acceleration gradient and Fig. 5.7 shows the average

energy for each acceleration window. We observe that window #8 enters

the gap first and achieves the final energy of 518.04 MeV with the ac-

celeration gradient 91.69 GeV/m. The highest gradient, 136.34 GeV/m,

is reached at window #5 whose average energy is 521.47 MeV after 294

fs. Then it gradually decreases to 76.9 GeV/m at the tail window #1.

Moreover, Fig. 5.7 shows that the average energies of all acceleration

windows increase in a short period and then remain constant by a long

duration, as expected in Fig. 4.4.

4. We also see that there are less particles at the slopes between two con-

secutive extrema. This implies that particles will get lost if they are not

localised around an extremum.

The transverse particle distribution of the electron beam at the end of

the simulation is shown in Fig. 5.8. We observe that the electrons are concen-

trating around the centre of the y-axis and being slightly shifted to the right.

Meanwhile, along the z-axis the particles are spreading out but still exhibits

bell-like distribution. After travelling through the structure, the total bunch
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Figure 5.8: The transverse particle distribution of the electron beam at the
end of the simulation.

Figure 5.9: The electric field components Ex and Ey when the lasers are focused
at the centre of the gap.
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Figure 5.10: The bunch charge for each acceleration window in the simulation
with a = 1.0.

Figure 5.11: The emittance for each acceleration window in the simulation
with a = 1.0.
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charge of the beam has reduced to Qf ≈ 64.98 fC from the original value

Qi ≈ 318.37 fC. This means that only 20% of injected particles are trapped.

Figs. 5.10 and 5.11 show the bunch charge and emittance for each acceleration

window, respectively. The bunch charge for each window gradually decreases

while the emittance tends to fluctuate over the course of the simulation. This

behaviour can be explained by examining the fields at the gap during the par-

ticle propagation. Fig. 5.9 shows the components Ex (accelerating field) and

Ey (defocusing field) when the lasers are focused at the centre of the gap. Both

fields show a sign of disturbance growing strongly: the amplitude of Ey has

arisen comparable to that of Ex and thus can pull away particles travelling

through. The root of this perturbation stems from the ionisation of the struc-

ture. Under the influence of an intense laser field, more electrons are removed

forcefully from their atoms/ions and become free electrons. These electrons

start moving and emit field to the surroundings. This field accumulates over

time and in turn affects the particle beam.

From this simulation, we learn that the scheme is able to achieve high

acceleration gradient in a short length. However, there appears a hindrance

to the performance of the scheme: the disturbance due to the ionisation pro-

cess. To see clearer the performance dependency on the laser intensity, we run

another set of simulations, which will be presented in the next section.

5.3.2 Simulations with intense laser fields

Next, we study the dependence of the acceleration structure’s performance and

stability on the laser intensity. In this series of simulations, we consider three



60 Chapter 5. Simulation Results on Electron Acceleration

cases a = {0.5, 1.5, 2.0} in addition to a = 1.0 already discussed above.

Figure 5.12: The relationship between the electron beam’s average energy and
laser intensity. The green dots show the average energies obtained directly
from the simulations presented above; the blue line represents the regression
model fit to the data; the light blue area shows the confidence interval.

Fig. 5.12 depicts the dependency of the beam’s average energy on the

laser intensity. In the graph, the green dots represents the values obtained

directly from the simulations; the blue line shows the regression model fit to

the data and the light blue area around the line shows the confidence interval.

It can be clearly observed that the average energy is linearly proportional to

the laser intensity.

Fig. 5.13 shows the phase space distributions of the electron beam ob-

tained with different laser intensities. The distribution shape for a = 0.5 (Fig.

5.13a) is comparable to that for a = 1.0 presented above. Meanwhile, the

distributions for a = 1.5 and a = 2.0 are strongly distorted at the region sur-

rounding the beam centre. This region enters the gap at the same time the

lasers are focused. It will accordingly experience the strongest force and sup-
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posedly harvest the highest accelerating field. However, the ionisation process

is more likely to occur with higher intensities. As a consequence, the field

is disturbed and undesirable components have chance to rise. To illustrate

this statement clearer, we compare Fig. 5.9 and Fig. 5.15. Starting with

a = 0.5, the electric field Ex displays a clear pattern of laser oscillation. Ex-

cept along the edge, the component Ey is extremely small inside the gap. As

discussed above, the field disturbance can be clearly seen in the case a = 1.0.

The situation becomes worse when the laser intensity is increased to a = 1.5

and a = 2.0. The field component Ex ceases to be flat-top and Ey becomes

completely chaotic. These undesirable fields even propagate into the shielding

hole. Thus, towards the tail the particles are strongly deflected from the hole

or get decelerated, as observed in Figs. 5.13b and 5.13c.

With a = 0.5, the beam’s total charge at the end of the simulation is

104.01 fC (corresponding to 31% trapped particles), while with a = 1.5 and

a = 2.0 the number is 43.53 fC and 31.85 fC, respectively. From these results,

we can infer that strong intensity lasers are not always favourable. Essentially

it comes down to a trade-off between the beam stability and its acceleration

gradient. For this part, the choice of material for the structure can play a vital

role.

5.4 Summary

In this chapter, we present the simulation results of the particle acceleration

in periodic structures. It is indicated from these simulations that the electrons

can harvest high acceleration gradient, up to 136.64 GeV/m, in a short length
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(a) a = 0.5.

(b) a = 1.5.

(c) a = 2.0.

Figure 5.13: The phase space x/px distributions of the electron beam with
various laser intensities.
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(a) a = 0.5.

(b) a = 1.5.

(c) a = 2.0.

Figure 5.14: The acceleration gradients of the electron beam with various laser
intensities.
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(a) a = 0.5.

(b) a = 1.5.

(c) a = 2.0.

Figure 5.15: The electric field components Ex and Ey when the lasers are
focused at the centre of the gap with different laser intensities.
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of 76.8× 10−4 cm with the laser intensity a0 = 1.0. However, the result is by

no means perfect. Due to the ionisation of the structure, the field perturbation

has space to grow such that many particles get lost during the propagation in

the structure. At the end of the simulation, only 20% of particles pass through.

By lowering the laser intensity to a0 = 0.5, the number of trapped particles

is increased to 30% but the highest acceleration gradient is reduced by half.

Thus, in order to improve the stability of the scheme, we have to take care of

the disturbance caused by the ionisation process.

Choice of material For every material, the laser damage threshold fluence

is the breakdown limit of that material. Fig. 5.16 shows the damage

threshold fluence of several optical materials [52].

From the laser damage threshold fluence Fth (unit: J/m2), we can esti-

mate the maximum accelerating electric field Emax (unit: GV/m) that a

material can sustain without breaking down by the following formula

Emax ≈
√
Fth. (5.2)

Even though the material breakdown will eventually occur, materials

with higher threshold fluences can sustain for a longer time. As a con-

sequence, the field in the gap can be be come more stable, which is

critical for accelerating and focusing performance of particles. In the

scope of this thesis, the material of the structure is silicon, which has

Emax ≈ 1 GV/m. I expect that when materials like Al2O3 or SiO2 are

used, the performance of the structure can be greatly improved.

Comparison with the previous development In [48], we reported that
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Figure 5.16: The laser damage threshold fluence of several optical materials.
The measurements were conducted with a 1[ps], 800[nm], 600[Hz] Ti:sapphire
laser. The picture is taken from K. Soon et al. [52].

gradient above TeV/m was achieved and the electron bunch gained up to

200 GeV/m over a distance 10.2 cm in the open accelerating structure an

acceleration (see Fig. 5.17). The acceleration gradient about 2 TeV/m is

(a) The accelerating field component Ex. (b) The longitudinal electron phase space.

Figure 5.17: (a) The accelerating field component Ex and (b) the longitudinal
electron phase space after the accelerating distance 10.2 cm (b). The electrons
gained up to 200 GeV over a distance 10.2 [cm].
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at least 20 times higher than the one presented in the previous section.

The reasons leading to this dissimilarity are as follows:

• In the past publication, we assumed that the structure was fully

ionised. This assumption is critical. Under this supposition, the

structure can sustain higher laser intensities in a longer duration.

In Fig. 5.17a, the peak amplitude reaches 8 TV/m.

• The electron bunch was test particles. The usage of test particles

can greatly reduce the simulation duration. However, it has one

drawback: the bunch-charge effect is completely ignored. Thus, the

physical picture might not accurately rendered.

However, the full ionisation condition is not easily satisfied in experiment.

We have to inject a strong laser pulse to completely ionise the structure

and wait until the system attains the equilibrium. Only until then can

the accelerating phase begin. But we also need to take into account

that the effect of the residual field from the ionising phase might to the

main phase. If all points are considered, the scale and complexity of

simulations would become enormous and present significant difficulties.

Thus, we adapt to a simpler and more realistic scenario which is presented

in this chapter.



CHAPTER 6
Particle Merging Algorithm in PIC

code

In the previous chapters, we explored the possibility of the particle acceleration

in periodic structures. It is suggested that using heavier materials can help to

mitigate the undesirable fields caused due to ionisation. In these cases, this

means that there would be more electrons created in the simulation box which

in turn can increase the computation time. The issue can be handled by merg-

ing particles together such that the physical description of the system is kept

intact after a merging event. In this chapter, we present an efficient algorithm

for merging particles in PIC codes: Voronoi particle merging algorithm.

Authorship claim: The content of this chapter is largely reproduced from my

paper [53] published in Computer Physics Communication on February 2016.

Several parts are edited to fit into the structure of this thesis. Particularly,

the new section 6.4 is added to discuss in more detail the matter of energy

conservation in this topic.
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6.1 Survey on the topic

For more than 60 years the particle-in-cell (PIC) technique [54] has been used

to simulate a wide variety of physical problems, ranging from electrical dis-

charge to particle acceleration. However, in several scenarios - in particular

field ionisation or QED cascades - the number of particles in the simulation

box grows exponentially. Due to an overwhelming number of particles, the as-

sociated memory required can easily exceed that available on even high perfor-

mance computers and as a consequence the computational performance drops

drastically.

In these situations, a particle merging algorithm (PMA) has to be imple-

mented. The main goal of a PMA is to reduce the number of particles in a

simulation box while keeping the physical properties of the system intact after

a merging event. A straightforward PMA is to randomly pick a pair of parti-

cles and then merge, see for example [55]. Since it merges with no guidance,

the method is not able to preserve the phase space distribution, and so the

physical picture is likely to be distorted after merging. The problem is that it

fails to incorporate the notion of proximity in the phase space, i.e. how similar

particles are, into its framework. In the scope of this paper, we call this PMA

the blind method.

Lapenta already proposed a scheme for merging particles (called “particle

coalescence”) in [56] and [57]. In this method, particles are first sorted into

two bins. Then the binning process continues until the number of particles

per bin is small enough for the pairwise comparison. This type of PMA was

then refined and improved by Teunissen and Ebert [58], in which the k-d tree
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method was employed to search for the nearest neighbour. Recently, a similar

approach was also proposed by Vranic et al. [59], where the momentum space

is divided into smaller subcells for sorting particles.

We design our PMA from a different point of view, in which the algorithm

not only merges particles which are close in the phase space but also offers

users a direct control over errors introduced by a merging event. The notion

of proximity in our algorithm is developed through the concept of the Voronoi

diagram [60], thus the name Voronoi PMA. As shown later, the quantification

of the error is realised through the coefficients of variation. The algorithm

is successfully implemented into the framework of the VLPL (Virtual Laser

Plasma Laboratory) code [38].

The chapter is organised as follows: in section 6.2, we briefly introduce

the definition and some examples of the Voronoi diagram; the comprehensive

description of our PMA is revealed in section 6.3; in section 6.5 the performance

of our merging algorithm are discussed in three case studies:

The counter-propagating plasma blocks : Section 6.5.1. This simple test

was utilised during the design phase of the algorithm.

The two-stream instability : Section 6.5.2. This is the classical case, in

which the phase space distribution undergoes a dynamic and vigorous

evolution.

The magnetic shower : Section 6.5.3. This case study is carried out to test

the quality of the PMA in a situation where the number of particles

always increases.
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Finally, the chapter is summarised in section 6.6.

6.2 Voronoi diagram

For any given set of n sites, S = {s1, s2, ..., sn} in the real d-space R
d, the

Voronoi cell Vk associated with the site sk is a set of points in R
d, such that

the distance from those points to sk is not greater than the distance to any

other site sj (j �= k) in S [61].

Vk = {x ∈ R
d | ∀j : dist(x, sk) ≤ dist(x, sj)} for 1 ≤ i, j ≤ n. (6.1)

Here, dist(x, y) denotes the metric function of the distance in R
d. The Voronoi

diagram was first developed, though informally, in 1644 by Descartes. In

1908, the Russian-Ukrainian mathematician G. F. Voronoi formally defined

and studied the general case [60]. The concept is used in many contemporary

research fields, such as geophysics, meteorology, and condensed matter physics.

Observing eq. (6.1), we see that the metric function dist(x, y) plays a

vital role in the formation of the Voronoi diagram. Different metrics will

result in different Voronoi diagrams. Moreover, in our case, different metrics

also require different implementations of the algorithm (see section 6.3 for

more detail). Fig. 6.1 shows the Voronoi diagram of a random distribution

with Euclidean and Chebyshev measures. Given two vectors p and q, the
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Figure 6.1: The Voronoi diagrams with different metric functions. Each
Voronoi region is painted with a distinct colour. The black star in each region
is the Voronoi centroid.

Euclidean distance is

dist(p,q) =

√∑
i

(qi − pi)2, (6.2)

while the Chebyshev distance is given by

dist(p,q) = max |qi − pi|. (6.3)

6.3 Algorithm

Input: The algorithm requires two user inputs, TX and TP, which are the

tolerances for position and momentum. These parameters are employed as

the stopping condition and appear at step 3. A merging event will take place

in a simulation cell if the particle number N of that cell is greater than the

minimum particle number Nmin. The merging events are not supposed to take

place at every time step. Instead, it is obligated to make sure that the merging
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rate is greater than the periods of other physical events in the simulation box.

By doing so, the chain of events is kept intact during the merging interval.

Step 1: For every simulation cell, collect all particles (weight wi, position

xi, and momentum pi) in that cell into a set V0. This set V0 is the first Voronoi

cell, which covers the entire phase space of a simulation cell. We then calculate

the statistical average in the phase space of this set of particles V0 by the

following formulae:

W0 =
∑
i∈V0

wi, (6.4)

X0 =

∑
i∈V0

wixi∑
i∈V0

wi

, (6.5)

P0 =

∑
i∈V0

wipi∑
i∈V0

wi

. (6.6)

The point (X0,P0) with weight W0 is the centroid of the first Voronoi cell

V0. From now on, quantities of a Voronoi centroid are denoted by the capital

letters.

Step 2: We calculate the standard deviation of each dimension l in the

phase space with respect to the current Voronoi centroid:

σX0,l
=

√
1

W0

∑
i

wi(xi,l −X0,l)2, (6.7)

σP0,l
=

√
1

W0

∑
i

wi(pi,l −P0,l)2. (6.8)

We compute the coefficient of variation (CV) Δ for each dimension. The CVs
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for spatial and momentum dimensions are defined as

ΔX0,l
=

σX0,l

LX0,l

, (6.9)

ΔP0,l
=

σP0,l

P0,l

. (6.10)

For the spatial dimensions, due to the symmetry in space the CV ΔX0 is

defined as the ratio between the standard deviation and the length LX0 of

the first Voronoi cell V0. On the other hand, since there is no such symmetry

in the momentum space, the CV ΔP0 is obtained from dividing the standard

deviation by the mean value. As the CVs are dimensionless numbers we can

treat the data obtained from the position and momentum spaces equally (see

step 4 below). In our algorithm, the CVs represent the accuracy of the merging

scheme, with smaller CVs resulting in smaller errors due to merging.

Step 3: We compare the recently obtained CVs ΔX0 and ΔP0 with their

corresponding tolerances TX and TP. If a Voronoi cell has all six CVs less than

or equal to the tolerances, the algorithm will mark that cell finished and stop

dividing it. On the other hand, as long as there is at least one component

whose CV does not satisfy the aforementioned requirement, the algorithm will

keep going to the next step.

Step 4: We consider the individual components of ΔX0 and ΔP0 , that

is {Δx,Δy,Δz,Δpx ,Δpy ,Δpz}, and find the axis k which has the largest devi-

ation.

k = max
l

Δl, with l ∈ {x, y, z, px, py, pz}. (6.11)



6.3. Algorithm 75

Often, the tolerances TX and TP0 are unequal, due to their instinctive

attributes: it is reasonable to relax a bit on TX and put more restraint on TP.

This might prompt an issue, in which two components of CVs, one from space

and the other from momentum, are equal and satisfy eq. . One option is to

select randomly one of the CVs and proceed. Despite the fact that two CVs

are equal, the separation of one CV from its corresponding tolerance is likely

far greater than the other. For this reason, this quick but rash solution would

render a poor cutting in the next step.

In the VLPL framework, I employ a more rational approach. Assume that

Δmax
x and Δmax

p are the largest deviations in the X- and P-spaces, respectively.

We calculate the difference ratios

RX = (ΔX − TX)/TX, (6.12)

RP = (ΔP − TP)/TP, (6.13)

If RX ≥ RP , the division in X-space is favoured, and vice versa.

Step 5: Make a hyperplane cut through the the Voronoi centroid perpen-

dicular to the axis k. Denote q and Q the dynamic variables of the particles

and of the centre, respectively, on the axis k. The hyperplane cut divides the

set V0 into two new independent subsets V1 and V2, whose new centroids are

given by
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V1 = {i ∈ V0 : qi ≤ Q} V2 = {i ∈ V0 : qi > Q}

W1 =
∑

i∈V1
wi W2 =

∑
i∈V2

wi

X1 =
∑

i∈V1
wixi

∑
i∈V1

wi
X2 =

∑
i∈V2

wixi
∑

i∈V2
wi

P1 =
∑

i∈V1
wipi

∑
i∈V1

wi
P2 =

∑
i∈V2

wipi
∑

i∈V2
wi

Step 6: Sort the particles into their corresponding new sets. Repeat

steps 2-6 for the new sets V1 and V2 until the stopping condition is satisfied.

Step 7: If the stopping condition is met for all Voronoi cells, the algo-

rithm removes all particles from the simulation cell and replaces them with

the Voronoi centroids as the merged particles. The algorithm ends here.

We have several remarks on our algorithm:

• Our Voronoi PMA is inspired by Schreiber’s adaptive k-means clustering

algorithm used in Computational Geometry [62].

• In step 1, we state that the merging process is carried out cell by cell.

However, the algorithm can be adjusted such that the first Voronoi cell

V0 contains all particles from the simulation box and starts merging from

there. The rest of the algorithm is kept intact. However, it is likely that

the global merging approach violates the local charge conservation. In

this case, one must take into account a correction scheme in order to com-

pensate for the error caused by merging events. Which implementation

is used depends strongly on the user preference or the code framework.
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We adhere to the cell-by-cell implementation as it is readily parallelised.

• The distance measure used here (see eq. (6.3), step 4) can be considered

as a Chebyshev-like distance, since Eq. (6.3) is not guaranteed for every

particle and phase space dimension. We have chosen this measure instead

of a more obvious candidate, the Euclidean measure, for the following

reasons:

1. The simplest implementation of the Euclidean measure requires

the seeding of Voronoi centroids at the beginning of the algorithm.

Moreover, the number of Voronoi centroids is kept constant through-

out the algorithm. This limitation not only reduces greatly the

flexibility of the algorithm but also cannot fit well to the dynamic

situation of a physical problem [62]. Conversely, the Chebyshev

measure requires no seeding and suits perfectly the divide-and-sort

scheme, which is applied here.

2. In [63], the author states a rule of thumb that for a given dataset of

N points, the number of centroids is set to k ≈√N/2. Again, the

number of Voronoi centroids cannot be changed once the algorithm

starts. As such, we do not follow this rule.

3. In order to use the Euclidean measure without a fixed number of

centroids, we would have to solve the problem of an unknown num-

ber of clusters in a dataset. This can be done through the Bayesian

information criterion [64] or the removing centroids method [65].

The former approach is difficult to implement, while the latter tends

to be computationally intensive.
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6.4 Energy conservation in PMA

In this section, we will discuss the main concern of every PMA: the energy

conservation of the system after a merging event. First, we consider the relation

between energy E and momentum P is

E =
√
1 +P2. (6.14)

Similarly to step 1 above, we have the statistical average of energy of a set of

particles V0

E0 =

∑
i∈V0

wiEi

wi

. (6.15)

⇒ E2
0 =

(∑
i∈V0

wiEi

wi

)2

=

∑
i w

2
iE

2
i + 2

∑
i �=j wiwjEiEj

(
∑

i wi)
2

=

∑
i w

2
i (1 + p2

i ) + 2
∑

i �=j wiwj

√
(1 + p2

i )(1 + p2
j)

(
∑

i wi)
2 . (6.16)

On the other hand, the expected value of energy of a new particle, created

from the particle set V0 is

Eexp =
√
1 +P2

0. (6.17)

⇒ E2
exp = 1 +

(∑
i wiP

2
0∑

i wi

)2

=
(
∑

i wi)
2 + (
∑

i wiPi)
2

(
∑

i wi)
2

=

∑
i w

2
i + 2

∑
i �=j wiwj +

∑
i w

2
ip

2
i + 2

∑
i �=j wiwjpipj

(wi)
2

=

∑
i w

2
i (1 + p2

i ) + 2
∑

i �=j wiwj(1 + pipj)

(
∑

i wi)
2 . (6.18)
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Then, the difference between Eqs. (6.16) and (6.18) is

δE2 = E2
0 − E2

exp

=
2

(
∑

i wi)
2

∑
i �=j

wiwj

(√
(1 + p2

i )(1 + p2
j)− (1 + pipj)

)
. (6.19)

We observe that from Eq. (6.19) the difference δE2 is always non-zero unless

pi = pj. Thus, the whole system always loses an amount of energy after

a merging event. For the Voronoi PMA, this issue can be observed in Figs.

6.7 and 6.11 below. These figures show the relative error in the total energy

for the two-stream instability and the magnetic shower, respectively. These

graphs show that the loss in energy per merging event is extremely small (on

the order of 10−7 to 10−5). The merging quality can be further improved by

introducing a specific mechanism to conserve energy perfectly and directly.

We can consider the Langdon-Marder corrector-scheme [66][67][68]. We

also make a side remark that the Langdon-Marder scheme becomes obligatory

in case users want to implement the algorithm through the global merging

approach. On the other hand, one may think of merging into two particles as

in [59]. These two approaches are similar in the sense that the rectification

mechanism occurs after a merging event takes place. In [58], the authors

introduce four different schemes to deal with this issue: 1. conserve momentum

strictly; 2. conserve energy strictly; 3. conserve both momentum and energy

on average; 4. scale velocity of one particles to conserve energy strictly. In this

case, the correction process is internally implanted into the algorithm. Which

approach yields the optimum solution is still an open question.
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6.5 Simulation

Having presented the algorithm, we proceed to test its performance. To this

end, we consider three situations: counter-propagating plasma blocks, the two-

stream instability [39] [69], and the magnetic shower produced by an energetic

particle entering a strong magnetic field [70].

Before going further, we briefly describe the implementation of the blind

method used here for comparison. We define the parameter α as the merging

fraction. A merging event will take place in a simulation cell if the number

of particles N of that cell satisfies the condition N > ceil(αN). Then, the

blind method merges particles in the current cell until the number of particles

after merging is at maximum ceil(αN). This implementation allows the blind

method produces the same number of particles as in the Voronoi PMA for fair

comparison.

6.5.1 Counter-propagating Plasma Blocks

The counter-propagating plasma blocks simulation is a simple test, in which

two blocks of non-interacting particles with uniform density distribution prop-

agate and then overlap each other. These blocks have the same momentum

magnitude but opposite propagation directions (see Fig. 6.2). With no merg-

ing, there is no change to the system apart from the translation in x-direction

after the blocks pass through each other. By using this test we can easily spot

whether a given PMA preserves the phase space distributions since there is a

duration when the blocks overlap. If a merging method does not preserve, two
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Figure 6.2: The initial configuration for the counter-propagating plasma blocks
simulation: two blocks have the same momentum magnitude but opposite
propagation directions. The merging event will commence when two blocks
start overlapping each other since the particle number exceeds the threshold.
For the Voronoi PMA, the threshold is Nmin = 15, and ceil(αN) for the blind
method. A good merging algorithm will leave behind no change in the phase
space distribution apart from the translation in the x-direction.

or more particles from the different distributions might be merged together.

Here, we compare the performance of the Voronoi PMA and the blind method.

The merging period Tmrg = 2Δt, with Δt is the time step, is applied for both

methods. For the Voronoi PMA, the tolerances are TX = 0.4 and TP = 0.01.

For the blind method, we deliberately choose the parameter α so as to give a

similar final number of particles as in the Voronoi PMA.

We look at the number of PIC particles appearing in the simulation (see

Fig. 6.3a). Starting with 12000 particles, the blind method merges into 4200

particles at the end of the simulation, while the Voronoi PMA finishes the

task with approximately 3800 particles. The numbers of particles produced

by two methods are approximately equivalent. Fig. 6.4 shows the phase space

distributions at the end of the simulation and Figs. 6.3 (b,c, and d) show the
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Figure 6.3: The number of PIC particles during the simulation (fig. a) and
the histograms for no-merge, the Voronoi PMA, and the blind method (figs.
b, c, and d respectively) in the counter-propagating plasma blocks simulation.
Despite merging into a similar number of particles, the Voronoi PMA does not
distort the momentum distribution.

histogram. For the blind method, we see that after the blocks have passed

through each other, there are many particles left behind between the two

blocks. The momentum space plot and the histogram shows that these par-

ticles have zero momentum. The blind method also produces many particles

with momenta not equal to the original magnitude (150mc). As a consequence,

the particle distributions are smeared and the conservation of energy is vio-
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Figure 6.4: The phase space distributions (first row x/y, second row x/px) at
the end of the counter-propagating blocks simulation. The blind method leaves
behind many particles that have zero momentum. Meanwhile, the Voronoi
PMA reproduces the result obtained with no merging.

lated. Conversely, the Voronoi PMA accurately preserves the phase space

distributions, returning the same result as for the case with no merging. To

understand clearly the behaviour of two merging algorithms, we consider Fig.

6.5: two identical particles but with different direction of motion in a same

cell.

For the blind method, a typical response is merge two particles together

with no caution. According to the conservation of momentum, the newly

created particle will have zero momentum and thus its energy is 1 (see Eq.

(6.14)). The conservation of energy is outright violated. On the other hand,

the Voronoi PMA groups particles by taking into account both the direction

and the magnitude of particles’ momenta. In the situation of Fig. 6.5, the

CVs ΔP0 of these two particles will greatly exceed the momentum tolerance
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Figure 6.5: A typical problem for PMA: how to merge two identical particles
such that the energy and momentum are preserved after the event?

TP. As a consequence, they are recategorise into two different Voronoi groups

as in step 5 of section 6.3. Thus, an attempt to merge particles in cases like

this is disallowed.

For this test, we see that despite the fact that it finishes the simula-

tion with fewer particles than the blind method, the Voronoi PMA accurately

preserves the particle distributions, while the blind method does not.

6.5.2 Two-stream instability

The two-stream instability consists of two identical particle beams streaming

through each other. These beams propagate in the opposite directions and a

small perturbation in the charge density can change the electric field, which

in turn causes further perturbation in the density distributions. This type of
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Parameter Notation Value Unit

General Settings

Wavelength λ0 0.8× 10−4 cm
Boxlength x× y 3.2× 1.0 λ0

Gridstep dx× dy 0.01× 0.1 λ0

Timestep dt 0.005 λ0/c

Number of CPUs 8× 1

Electron Settings

Initial Lorentz factor γ0 1.0

General Merging Settings

Merging start 5
Merging period 50 dt

Voronoi Merging Settings

Minimum particles per cell 200
Position tolerance TX 0.8
Momentum tolerance TP 0.15

Blind Merging Settings

Merging fraction α 0.965

Table 6.1: The configuration for the two-stream instability simulation.



86 Chapter 6. Particle Merging Algorithm in PIC code

Figure 6.6: The phase space distributions (x/px) for the two-stream instabil-
ity simulation at different time stamps. The first column shows the original
simulation with 32 × 104 particles. The second and third columns show the
simulation with the blind and Voronoi merging method, respectively. While
the outcome produced by the blind method looks different, the Voronoi PMA
follows the evolution course as in the no-merging case.
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simulation makes an illustrative example of how the algorithm manage merg-

ing particles in a dynamic evolution of the phase space. The configuration

for the two-stream instability is listed in table 6.1. At the beginning of the

simulation, we create two electron beams with the same initial Lorentz factor

γ = 1 but opposite propagation directions. Each beam has 16× 104 particles

and is neutralised by the background charge density. Purposefully, the merg-

ing algorithms are only enabled after time t = 5λ0/c, when the instability can

be visibly observed. The merging fraction for the blind method is chosen to be

α = 0.965, such that we can have a fair comparison between two algorithms.

Figure 6.7: The number of PIC particles during the simulation (fig. a) and
the relative error in the total energy due to merging events for the two-stream
instability simulation. The Voronoi PMA reduces the number of particles from
32×104 to 17.8×104 particles and stops merging from there, since the number
of particles per cell is already below the threshold. The highest relative error
in the total energy for the Voronoi PMA is 0.006, and the blind method 0.1.

The phase space distribution (x/px) for the two-stream instability is

shown in Fig. 6.6 at different time stamps. Similarly to the counter-propagating
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plasma blocks, the blind method (the last column) produces many particles

with momenta approximately equal to zero, which do not appear in the orig-

inal simulation (the first column). This early distortion in the phase space

distribution leads to a different instability growth at later time. On the other

hand, the Voronoi PMA (the second column) retains the phase space distribu-

tion throughout the simulation. Moreover, in contrast to the smooth pictures

obtained without merging, the outcomes of the two algorithms appear grainier,

since there are lesser particles in the phase space due to merging events. Fig.

6.7 shows the number of electrons and the relative error in the total energy

δE = abs(E0 − E)/E0. Here, E0 is the energy of the system without merg-

ing. Observing Fig. 6.7a, we see that when the merging event is enabled (at

t = 5λ0/c), there is a steep fall in the number of particles for the Voronoi PMA

(the red line), falling from 32× 104 to 20× 104 particles. This abrupt drop is

then followed by a short decline to 17.8× 104 particles. At around t = 8λ0/c,

there is almost no merging event till the end of the simulation, since the num-

ber of particles per cell is already below the threshold. On the contrary, the

blind method (the green line) exhibits a steady decline in the number of par-

ticles , reducing to 16.8 × 104 particles at the end of the simulation. From

Fig. 6.7b, wee see that the total energy relative error is rising up to 0.1 for the

blind method, while the Voronoi PMA reaches a peak at δE = 0.006 during

the simulation.
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6.5.3 Magnetic Shower

Introduction

Consider an energetic particle propagating through a strong magnetic field.

Due to the interaction with the field, the particle will emit hard photons on

its course. In turn, these photons interact with the field and will decay into

energetic electron-positron pairs. The cascade of particles develops quickly and

an exponential growth of the number of particles is usually observed. This

phenomena is called the magnetic shower. The occurrence of the magnetic

shower requires both an intense field and high particle energies [70] [71]. This

condition is quantified in the quantum parameter χ [70], which is defined as

χ = γ
B

BS

. (6.20)

Here, γ is the particle’s Lorentz factor, B the magnetic field strength, and

the Schwinger field BS = 4.41 × 1013 G. The pair production has sufficient

probability to start the cascade process only when χ ≥ 0.1 [70]. The proba-

bility rates for photon emission and pair production are expressed in intricate

expressions (see eq. (2) and (3) in ref. [72] and the description therein). The

computation usually requires solving the double integral of the Airy function.

Thus, the task involves a significant computational overhead. However, under

the assumption that the dimensionless field amplitude a0 � 1, the field can be

regarded as being constant during the decay processes. Additionally, if both

conditions χ � B/BS and B � BS are satisfied, we can utilise the theory of

quantum processes under a constant cross field given in [73] [74]. According
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to this theory, the probability rates for the photon emission Wem and pair

production Wpair are

Wem =
α

3
√
3π

mc2

�γ

∫ 1

0

5x2 + 7x+ 7

(1 + x)3
K2/3

(
2x

3χ

)
dx (6.21)

and

Wpair =
α

3
√
3π

m2c4

�ε

∫ 1

0

9− x2

1− x2
K2/3

(
8

3(1− x2)κ

)
dx. (6.22)

Here, α is the fine structure constant; K2/3(x) is the modified Bessel function

of the second kind; ε is photon’s energy and κ its quantum parameter. Our

numerical model for the cascade process is based on the Monte Carlo method

[72] [75].

The magnetic shower is an appropriate example since the number of par-

ticles can grow exponentially during the simulation and the particles’ energies

can range from several to hundred MeVs. Thus, it is a good indicator of how

a PMA copes with the dynamic development during the simulation while pre-

serving the physical features of the system.

Simulation

The simulation configuration for the magnetic shower is listed in table 6.2.

We begin the simulation with 5 numerical electrons. For an electron with a

Lorentz factor γ = 5 × 104 and a magnetic field eB/mecω = 500, the quan-

tum parameter is χ ≈ 150 � 1. Here, e is the elementary charge, me the

electron mass, c the velocity of light, and ω = 2πc/λ0. As before, we consider



6.5. Simulation 91

three cases: without merging, with the blind merging method, and with the

Voronoi algorithm. As before we deliberately choose the merging fraction α

such that the blind method and the Voronoi PMA result in the similar number

of particles at the end of the simulation.

Figure 6.8: The number of particles in the magnetic shower simulation as a
function of time for electron, positron, and photon (from left to right). The
first row shows the result from the simulation without merging, the second
row shows the outcome by using the Voronoi PMA (red) and the blind method
(green). The Voronoi PMA reduces the number of electrons (positrons) from
2.8× 106 to 6.5× 104 particles.

The growth in particle number is shown in Fig. 6.8. Without merging

(blue), both electron and positron display exponential growth during the sim-

ulation. At the end of the simulation, a total number of 2.8 × 106 particles

has been reached for each specie. Meanwhile, the photon specie grows from

0 to 7 × 104 particles at the last frame. The blind method (green) results in
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Parameter Notation Value Unit

General Settings

Wavelength λ0 0.8× 10−4 cm
Boxlength x× y × z 3.2× 3.2× 3.2 λ0

Gridstep dx× dy × dz 0.04× 0.04× 0.04 λ0

Timestep dt 0.005 λ0/c

Number of CPUs 5× 5× 5

Electron Settings

Initial Lorentz factor γ0 5× 104

External Field Settings

Magnetic field strength BX 6.6× 1010 G

General Merging Settings

Merging start 0
Merging period 2 dt

Voronoi Merging Settings

Minimum particles per cell 10
Position tolerance TX 1.0
Momentum tolerance TP 0.02

Blind Merging Settings

Merging fraction α 0.88

Table 6.2: The configuration for the magnetic shower simulation.
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1.45 × 105 electrons and posittrons, 4000 photons. The Voronoi PMA (red)

produces in total 1.35× 105 electrons and positrons, and 8000 photons. That

is, the number of particles in the box is reduced approximately 40 times by

both methods. In order to verify the validity of the simulation, we look at the

total energy and the spectra of the particles. Figs. 6.9 and 6.10 illustrate the

evolution of the particle energies and their spectra at the end of the simulation.

For the blind method (solid, green line in Fig. 6.9), we see a gradual decrease

in the total energy of electrons and positrons around the point when the pho-

ton energy is reaching its peak. This strongly affects the spectrum of every

specie in the simulation box (see Figs. 6.10 g, h, i): the distinct peak electrons

and positrons is not observed. On the other hand, with a careful approach the

Voronoi PMA (short dash, black line) overlaps the case with no merging (long

dash, light blue )in Fig. 6.9, showing that it preserves the physical behaviour

in the total energy, with the decrease in electron energy, increase in positron

energy, and the sharp rise followed by a decrease in photon energy. Moreover,

the Voronoi PMA accurately reproduces the spectra obtained with no merging

(see Figs. 6.10 d, e, and f). Originally, the simulation with no merging takes

approximately 2 hours (7265 seconds). With the same settings, the Voronoi

PMA completes roughly in 20 minutes (1172 seconds) and the blind method

takes about 24 minutes (1440 seconds).

Finally, we perform a parameter scan on the tolerances TX and TP in

order to observe the growth of particles and the accumulation of error due

to merging. Fig. 6.11 shows the number of electrons and the relative error

δE = (E0 − E)/E0 during the simulation and Fig. 6.12 displays the total

computation time with various tolerance settings. Here, E0 is the energy of the
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Figure 6.9: The total energy evolution of electron, positron, and photon during
the magnetic shower simulation for three merging cases: no-merge case (long
dash, light blue); Voronoi (short dash, black), and blind (solid, green). Unlike
the blind method, the Voronoi PMA reproduces the results obtained from the
original simulation.

system without merging. The most accurate simulation is achieved with TX =

0.5 and TP = 0.005. With this setting, the simulation takes roughly 40 minutes

to complete and the total energy loss is around 0.05 MeV (δE ≈ 1×10−7). We

observe that the growth is also exponential and the number of electrons has

reached 2.4 × 105 particles at the end of the simulation. When we loosen the

tolerances, more particles are merged together. As a result, the growth rate

becomes more linear but the energy loss develops speedily. In our test, the

extreme case with TX = 1.0 and TP = 0.03 produces 7.7 × 104 electrons and

positrons, 5×103 photons, and takes 14 minutes to finish. However, in this case,

it accumulates 20 MeV total energy loss (δE ≈ 3.9× 10−5). Although the loss

is extremely small, we notice the double in magnitude just by increasing from

TP = 0.025 to TP = 0.03. We also observe that, the purple line (TX = 0.5 and

TP = 0.02) completely overlaps the dark blue line (TX = 1.0 and TP = 0.02),

showing that the tolerance TP is more sensitive than TX. Since, in a given cell,

the particle momenta may vary significantly, an accurate simulation requires



6.5. Simulation 95

Figure 6.10: The spectra for the electron, positron, and photon species in the
magnetic shower simulation at time t = 98Δt for three merging cases: no merge
(blue), the Voronoi PMA (green), and the blind method(red). The spectra of
particles are accurately reproduced by using the Voronoi PMA. Meanwhile,
with the blind method, the distinct peak for electrons and positrons is not
observed.
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small TP. We recommend TP = 0.05 and TX = 1.0 as a threshold for this type

of simulation.

Figure 6.11: The number of electron and the relative error in the total en-
ergy due to merging with various tolerances [TX, TP] settings for the magnetic
shower simulation. With relaxed tolerances, the growth of particle number
becomes linear but the error also accumulates faster. When stricter tolerances
are used, the growth resumes the exponential behaviour while the error devel-
ops with a slower rate. We also observe that, the purple line (TX = 0.5 and
TP = 0.02) completely overlaps the dark blue line (TX = 1.0 and TP = 0.02),
showing that the algorithm is always more sensitive towards the momentum
space.

6.6 Summary

In this chapter, we present the Voronoi particle merging algorithm for PIC

codes. The phase space of a simulation cell is partitioned, as in the Voronoi

diagram, into smaller subsets, which only consist of particles that are close
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Figure 6.12: The total computation time for the magnetic shower simulation.
The last six columns show the simulations with the Voronoi PMA for various
tolerances [TX, TP] settings.

to each other. The quality of a merging event is ensured by two user inputs,

the tolerances on position TX and momentum TP. The tolerances act as the

balance between the speed-up and the accuracy of the simulation. Stricter

tolerances mean smaller error but without much in the speed-up. On the

other hand, relaxed tolerances result in more merged particles and thus the

computation time decreases but the error will accumulate faster. Making a

right combination for the tolerance pair for a certain simulation requires prior

knowledge of particles’ behaviour. If a simulation involves particles which

spread out in a large range in the momentum space, we suggest keeping the

TP lower than 0.02. Otherwise, this value can be relaxed. On the other hand,

since it relates to particles’ relative position in a cell, TX can be chosen up to

1.0.

We have tested the performance of our algorithm with three tests: the
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counter-propagating plasma blocks, the two-stream instability and magnetic

shower simulations. In all cases, we observe that the conservation of momen-

tum is perfectly held and the conservation of energy is maintained extremely

well, with only small margin of error. The two-stream instability shows that

the Voronoi PMA preserves the phase space evolution and the total energy

error in this case is of the order of 10−3. In the magnetic shower simulation,

the total energy error is of the order of 10−5 with a speed-up by a factor of 6

and the spectra of particles are also comparable very well to those obtained

with no merging.



CHAPTER 7
Conclusion and Outlook

In the first part of this thesis, we have proposed a new scheme of particle

acceleration in periodic structures. The detailed illustration of the scheme is

given in chapter 4. The accelerator design consists of multiple identical shield-

ing blocks which are separated from each other by half the laser wavelength.

Each block has a cylindrical hole at the centre to support the particle beam’s

propagation. The main objective of the shielding blocks is to restrict the

interaction length between the particles and the lasers: the particles only ex-

perience the accelerating field while the effect of the negative phase is negated

by the blocks. The scheme is then evaluated by using the PIC simulation

method. The outcome is presented in chapter 5. From the simulation results,

we observe that the scheme is capable of accelerating the electrons with high

acceleration gradient, up to 136.64 GeV/m over a short distance of 76.8×10−4

cm. With the advantage of being compact, the structure can serve as a module

of a multi-stage acceleration scheme.

However, there is an inherent problem in the scheme. The complication

99
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lies in the field perturbation due to the ionisation of the structure. This is

demonstrated in section 5.3. Although the acceleration gradient scales linearly

with the laser intensity, higher intensities ionises the structure faster and thus

the perturbation has more space to grow. This disturbance is the main cause of

particles deflecting away from the shielding hole. At the end of the simulations,

only about 20% of particles get trapped inside the hole. Thus, future works

would involve explore the choice of material for a certain laser parameters in

order to improve the efficiency of trapping particles in the structure. Besides,

due to storage limitations, we were only able to perform simulations in 12

structure periods. The extension of the simulation time would be beneficial

to studying the acceleration process and particle movement in detail. Apart

from this, the most challenging part is bringing the proposal to experimental

tables.

In the conclusion of chapter 5, we suggest to use heavier materials for

the construction of the structure to mitigate the disturbance by the ionisation

process. It is likely that there would be more electrons generated in the simu-

lation box which can stretch the computation time. Thus, the second part of

the thesis is devoted to the design of the Voronoi particle merging algorithm as

a pre-emptive step for this matter. In our algorithm, the particles are grouped

together based on their proximity in the phase space attributed to the Voronoi

tessellation method. The algorithm is comprehensibly presented in chapter

6. We have tested the algorithm in various practical situations: counter-

propagating plasma blocks, two-stream instability, and magnetic shower. In

all case studies, the algorithm has displayed the capability and competence

of merging particles and boosting the computation time while preserving the



101

physical description of the system. The total energy error is ranging between

10−3 and 10−5. In the case of magnetic shower, the computation time was

boosted up to a factor of 6.

Nevertheless, the development of the algorithm doesn’t stop here. The

next step would comprise the refinement of energy conservation. There are

two possible approaches: using the Langdon-Marder scheme or merging into

two particles. Another great upgrade is to provide users an array of justifiable

candidates of the tolerance pair for each simulation case. As shown in the

simulation, the choice of the tolerances in one case might not be applicable to

the other. The Bayesian treatment would be a valuable tool to achieve this

task.
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