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ABSTRACT

Random potential energy landscapes (rPELs) represent a facile and versatile tool of statis-

tical physics to analyze various complex phenomena, e.g. diffusion in disordered media and

biological cells as well as glass transitions and protein folding. A controlled experimental

realization of rPELs is therefore highly desired. In this work, a novel optical set-up is de-

signed, constructed and tested, based upon a specially designed diffuser. Furthermore, its

application to the study of colloidal particles is presented.

When laser light impinges on the diffuser, a random intensity speckle pattern is created.

Colloidal particles exposed to this speckle pattern experience a rPEL whose local properties

depend on the light intensity and the particle volume. In particular, this set-up offers the

unique option to freely tune the correlation length and the distribution of energy values of

the rPEL from exponential to Gaussian. Moreover, the new set-up offers a much larger field

of view compared to established methods, allowing for studies with significantly improved

statistics.

The set-up has been used to induce a rPEL with a non-Gaussian distribution of energy

values and systematically study the spatial arrangement and dynamics of colloidal particles

as a function of the potential roughness, tuned by the laser power, and the particle con-

centration. The former is characterized by the local probability density of the particles, the

disorder-averaged pair density correlation function and the Edwards-Anderson order param-

eter, which quantifies the correlation of the mean local density among disorder realizations.

Made possible by the new set-up, such a correlation function has been determined for

the first time in experiments. Analysis of the particle concentration reveals that collisions

caused by particle-particle interactions increase the probability of trapped particles to cross

energy barriers. Hence, an increase in the concentration leads to a decrease of the trapping

strength. In particular, a critical concentration has been found, at which particle-particle

and particle-potential interactions are balanced. This results in a re-entrant behaviour of

the short-term diffusion coefficient and strongly heterogeneous dynamics.
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ZUSAMMENFASSUNG

Raue Potentiallandschaften (rPEL) stellen ein vielseitiges Werkzeug der statistischen Physik

dar, um komplexe Phänomene zu studieren, z.B. Diffusion in ungeordneten Medien, Glas-

übergänge und Protein-Faltung. Eine experimentelle Verwirklichung einer kontrollierbaren

rPEL ist daher wünschenswert. In dieser Arbeit werden dazu das Design und die Konstruk-

tion eines neuartigen optischen Aufbaus vorgestellt, der auf einem speziellen Diffusor basiert

und zur Untersuchung kolloidaler Proben genutzt wird.

Wenn ein Laserstrahl auf einen Diffusor trifft, wird ein zufälliges Intensitäts-Flecken-

Muster erzeugt. Kolloidale Teilchen, die diesem Flecken-Muster ausgesetzt werden, erfahren

eine rPEL, deren lokalen Eigenschaften von der Lichtintensität und dem Teilchen-Volumen

abhängen. Der optische Aufbau bietet die einzigartige Möglichkeit, die Korrelationslänge

frei zu verändern und die Verteilung der Energiewerte der rPEL zu variieren. Im Vergleich

zu etablierten Methoden liefert dieser Aufbau einen viel größeren Beobachtungsbereich und

ermöglicht daher Untersuchungen mit signifikant besserer Statistik.

Der Aufbau wurde dazu benutzt, eine rPEL zu erzeugen, deren Energiewerte nicht

Gauß-verteilt sind. Weiterhin wurden die räumliche Anordnung und Dynamik kolloidaler

Teilchen in Abhängigkeit von der Rauigkeit des Potentials, welche durch die Laserstärke

verändert wird, und der Teilchenkonzentration systematisch untersucht. Der erste As-

pekt wird durch die lokale Wahrscheinlichkeitsdichte der Teilchen, die unordnungsgemit-

telte Dichte-Korrelationsfunktion und den Edwards-Anderson-Ordnungsparameter charak-

terisiert, der die Korrelation der mittleren lokalen Dichte zwischen verschiedenen Real-

isierungen der Unordnung quantifiziert. Solche Korrelationsfunktionen konnten mit Hilfe des

neuen Aufbaus erstmals experimentell bestimmt werden. Eine Analyse der Teilchenkonzen-

tration wiederum zeigt, dass Kollisionen, die durch Teilchen-Teilchen-Wechselwirkungen

hervorgerufen werden, die Wahrscheinlichkeit dafür erhöhen, dass gefangene Teilchen En-

ergiebarrieren überwinden. Eine Erhöhung der Konzentration fürt also zu einer Verringerung

der Fallenstärke. Insbesondere wurde eine kritische Konzentration festgestellt, bei der

Teilchen-Teilchen- und Teilchen-Potential-Wechselwirkungen einander ausgleichen. Da-

her werden eine zu- und wieder abnehmende Kurzzeitdiffusion und eine sehr heterogene

Teilchen-Dynamik beobachtet.
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BACKGROUND1
1.1 Colloidal Dispersions

Colloids are particles which have a size between ≈ 1 nm to 10 µm in at least one of their

dimensions, i.e. they are bigger than atoms and molecules but smaller than macroscopic

objects which can be resolved by the human eye [1]. The typical colloidal length scale,

which includes e.g. proteins and bacteria, is shown in Fig. 1.1 alongside a recorded image

of our model system and some examples of objects with other length scales.

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3

colloids

pencil
point

hairbacteriaproteinsmolecules

m
10 µm

Figure 1.1: The colloidal length scale (10−9 − 10−5 m) in comparison to other systems.
At the bottom a recorded image of a colloidal sample with particles of radius R = 1.4 µm
is shown.

1



1.2 Colloidal Interactions

A colloidal dispersion usually consists of at least two phases, i.e. the colloids (dispersed

phase) are dispersed in a continuous dispersion medium (dispersing phase), whereby either

phase can be gaseous, liquid or solid; the exception is a gas phase dispersed in a gas,

which is not a colloidal dispersion. Typical examples for the variety of these heterogeneous

systems from everyday life are paint, ink, blood (all solid-liquid), fog (liquid-gas), and milk

(liquid-liquid). In this work, a dispersion of solid particles in water is used (Fig. 1.1 bottom).

The lower boundary of the length scale is defined such that the dispersion medium can

be seen as a continuum compared to the dispersed particles and hence quantum mechanical

effects can be neglected. The upper limit is given by the internal thermal energy of the

colloidal system, which has to be either in the range of or greater than the gravitational

potential energy of the particles, such that thermal fluctuations in the system are still

apparent and random motion of the particles is relevant (Sec. 1.4). Therefore, colloidal

systems, driven by thermal energy and entropic forces, tend to move towards equilibrium

and thus show, depending on inter-particle forces and the concentration of the dispersed

phase, a rich phase behaviour.

1.2 Colloidal Interactions

Although each individual particle in a colloidal dispersion may have a small dize and hence

a low surface area, the large number of particles (of the order 1012-1014/litre for 1 µm

particles) means the total surface area can be very large; hence the interface between the

colloid and the dispersion medium is hugely important. Moreover, particles tend to build

large agglomerates hence minimizing their free surface energy. An omnipresent attractive

force between atoms, molecules or colloidal particles is the so called van der Waals force. If

two particles approach each other, fluctuations in the surface charges induce dipole moments

which leads to an attractive net force between the particles and favours aggregation. Thus,

unwanted aggregation has to be prevented by modification of particle-particle interactions

and stabilization of the particles in the dispersion. In this work, a repulsive force component

was added in order to exploit charge stabilization. Dispersing charged particles in water

results in an interplay between the attractive van der Waals force and the screened repulsive

electrostatic forces between like-charged particles, which can be described by the so called

Derjaguin-Landau-Verwey-Overbeek theory. The screening of the electrostatic repulsion is

2



Chapter 1. Background

0 2R separation r

potential
U (r)

forbidden

Figure 1.2: Illustration of the separation (r) dependent pair-potential U(r) for hard sphere
systems. The potential is infinitely large up to particle contact at 2R and zero at larger
separations.

caused by dissolved ions in the solution, which build a layer of counterions around the

particle and hence maintain overall charge neutrality. The thickness of this layer and thus

the screening length strongly depends on the (number of) ions in the water and thus the

range of the repulsion can be tuned via the salt concentration. If the range of the forces is

very short in comparison to particle size, the interparticle forces can be approximated by the

well-known hard-sphere interaction [2]. The resulting hard-sphere pair potential, which is

infinitely large up to particle contact and zero at larger separations, is shown schematically

in Fig. 1.2.

1.3 Phase Behaviour in Colloidal Dispersions

Fig. 1.3 schematically shows the phase behaviour of a two-dimensional colloidal dispersion

with interparticle forces, which can be described by the hard-sphere model, as a function

of the particle concentration φA = NπR2/A, where N is the number of particles, R is

the average particle radius and A is the area of the field of observation; φA is hence

the normalized two-dimensional particle density. In a monodisperse mixture and at low

concentrations the system represents a heterogeneous liquid. An increase of the particle

concentration does not change the disordered arrangement of the particles. However, the

3



1.4 Diffusion of Colloidal Particles: Brownian Motion

excluded volume increases and thus at φA ≈ 0.7, an entropy driven transition to an ordered

crystalline phase sets in [2]. Unlike in three dimensions, in two dimensions an additional

hexatic phase seemingly occurs in between the dense liquid and the solid (0.7 . φA .

0.72) [3–7]. The origin and order of this transition are still under debate [3, 8–10] and

depend on external influences on the system. The closed packing in a two-dimensional hard-

sphere system corresponds to a geometrically possible regular triagonal particle arrangement

with φA,cp = π/
√
12 ≈ 0.907 [11]. In non-equilibrium systems, such as those with high

polydispersity, an amorphous glass phase can occur at φA & 0.8 [12–14].

0 0.8

hexatic

0.910.72

non
equilibrium

(polydispersity)

glass

solidliquid

A

equilibrium

0.7

Figure 1.3: Schematic phase diagram for hard sphere systems in two-dimensions.
Schematic showing the liquid (top left), the hexatic phase (0.7 . φA . 0.72, top cen-
tre), the ordered solid (φA & 0.72, top right) and the amorphous glass phase (only in
polydisperse samples, φA & 0.8, bottom). One particle and its next nearest neighbours are
highlighted in blue and grey respectively, illustrating the local spatial arrangement.

1.4 Diffusion of Colloidal Particles: Brownian Motion

Colloidal particles dispersed in a liquid undergo random motion, which is driven by thermal

energy. Due to collisions with solvent molecules a randomly fluctuating force acts on the

particles. The resulting dynamic response, the so called Brownian motion (BM), can be

4



Chapter 1. Background

described by a random walk. Fig. 1.4 (a) shows a typical trajectory of a particle undergoing

BM (black line) in two dimensions. Since motion in the x- and y -directions are statistically

independent and a separate analysis of the diffusion in each of the directions is admissible,

a one-dimensional analysis of the dynamical behaviour was performed. Thus, looking at

the particle’s position along one direction as a function of time, t (Fig. 1.4 (b), black line)

reveals the typical dynamical behaviour of free diffusion.
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 sub-diffusive
 free diffusion

(a)
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t

(d)

Figure 1.4: (a) Typical two-dimensional trajectories of a particle following normal diffu-
sion (black) and one with sub-diffusive behavior (red); (b) The particles’ positions in the
x-direction as a function of waiting time, tw; (c) The number distribution of particle dis-
placements N(∆x) at lag time t = 100 s and a Gaussian fit to the data; (d) The time- and
ensemble-averaged mean-squared displacement ⟨∆x2⟩tw,i .

To quantify the time-dependent dynamic behaviour of the particle ensemble, the anal-

ysis of the probability distribution of particle displacements, the so called van Hove self

5



1.4 Diffusion of Colloidal Particles: Brownian Motion

correlation function, has to be analysed. This is defined as [15–17]:

Gs(∆x , t) = ⟨δ [∆x + xi (tw)− xi (tw + t)]⟩tw,i (1.1)

=
1

N

⟨
N∑

i=1

δ [∆x + xi (tw)− xi (tw + t)]

⟩

tw

(1.2)

=
N(∆x , t)

2πw ∆x
(∑N

i=1N(∆x , t)
) (1.3)

with the number of particles N, the Dirac delta function δ[...], the displacement counter

N(∆x , t), and the histogram bin width w . Furthermore, averaging over the particle ensem-

ble i and/or waiting time tw is indicated by angle brackets. The distribution Gs describes

the probability that a particle moves a distance ∆x in a time lag t and displays Gaussian

behaviour for Brownian motion. Fig. 1.4 (c) shows the displacement counter N(∆x , t) for

a lag time of 100 s and the corresponding Gaussian fit (indicated by a black line for normal

BM). In the absence of an external potential, the total net force on a particle for long times

is zero and the first moment of the particle displacement distribution, i.e. its mean ⟨∆x⟩, is
also zero, as can be seen in Fig. 1.4 (c). Therefore, the second moment of the distribution,

i.e. the variance
⟨
∆x2

⟩
, must be considered in order to analyse the dynamic behaviour

of the particles. The time- and ensemble-averaged mean-squared displacement (MSD) for

normal BM is given by

⟨∆x2(t)⟩ =
⟨
[xi (tw + t)− xi (tw)]

2
⟩

(1.4)

= 2D0t (1.5)

where the proportionality constant D0 is called the self-diffusion coefficient. Einstein showed

in 1905 that the MSD is proportional to time (Eq. (1.5)) for freely diffusing particles [18],

as can also be seen in Fig. 1.4 (d). If the particle motion is influenced by the particle

concentration or an external potential, ‘anomalous’ diffusion emerges, and the MSD is

represented by:

⟨∆x2(t)⟩ ∝ tµ (1.6)

6



Chapter 1. Background

with the diffusive exponent µ. The lag time dependence of µ can be calculated from

µ(t) =
∂

∂ log(t)
log

(⟨
∆x2(t)

⟩)
. (1.7)

If particles are hindered in their motion, they exhibit sub-diffusion, which is given by µ(t) <

1. A typical trajectory, the resulting displacement distribution and the time- and ensemble-

averaged MSD for a particle undergoing such sub-diffusive behaviour is shown in Fig. 1.4,

indicated by the red line. In comparison with the freely diffusing particle, the sub-diffusive

trajectory shows strongly hindered motion for all lag times, i.e. only small displacements

(Fig. 1.4 (b)). Hence the variance of the displacement distribution (Fig. 1.4 (c)), i.e. its

MSD, is smaller than for free diffusion (Fig. 1.4 (d)). Furthermore, the lag time-dependent

diffusion coefficient D(t) is given by

D(t) =
1

2

∂

∂(t)
⟨∆x2(t)⟩ . (1.8)

In the absence of drift, one can take the next higher non-zero moment of the displacement

distribution into account ⟨∆x4⟩ and can calculate the so called non-Gaussian parameter

(NGP), α2:

α2(t) =
⟨∆x4(t)⟩

3 ⟨∆x2(t)⟩2 − 1 . (1.9)

The non-Gaussian parameter is the excess kurtosis of the displacement distribution and

thus indicates deviations of the shape of the measured distribution from a Gaussian.

1.5 Light Forces Acting on Colloidal Particles

When exposed to a light field colloidal particles are subjected to optical forces; these have

been described extensively [19–26].

For illustration, consider a transparent dielectric particle with radius R and a refractive

index, np, which is higher than that of the surrounding medium, nm, interacting with

a collimated light beam. The refractive index mismatch causes the incident light to be

scattered, reflected and absorbed by the particle (Fig. 1.5). The transferred momentum of

the photons induces a reaction force on the particle, the so called radiation pressure, which

7



1.5 Light Forces Acting on Colloidal Particles

acts in the beam direction and is given by

Frad = q
nPL

c
(1.10)

with the refractive index ratio n = np/nm, the power of the photon source, i.e. laser power,

PL, and speed of light in a vacuum c . In the case of almost transparent dielectric spherical

particles, the photons are scattered rather than reflected or absorbed and the quality factor

q can be assumed to be in the order of 10−1 [24].

Figure 1.5: Optical gradient forces in the ray optics regime: (a) A spherical particle with
np > nm is exposed to a collimated laser beam with a linear intensity gradient from left
to right. The restoring force acts in the direction of the highest intensity, (b) The same
particle exposed to a strongly focussed Gaussian beam. The axial light gradient forces the
particle to the beam centre, while the gradient in the beam direction generates a restoring
force, pulling the particle into the beam focus. Adapted from Ref. [25].

When calculating the optical forces that act on the spherical particles, two limiting cases

typically are considered; the optical forces for these can be calculated exactly. If the particle

is much larger than the wavelength of the trapping laser, i.e. R ≫ λ, the light-induced

forces can be described with geometrical (ray) optics. In this regime, refraction of light

rays at the spherical surface of the particles is important, since it leads to a momentum

transfer from photon to particle and therefore is the origin of a restoring force that acts in

the direction of the light gradient. Fig. 1.5 schematically shows the forces on a particle for

a light field with a linear gradient (a) and for the case of a strongly focussed laser with a

Gaussian TEM00 mode (b), i.e. highest intensity in the beam centre [25]. If a spherical

8



Chapter 1. Background

particle with np > nm is exposed to a collimated laser beam, the light rays are refracted

towards the centre of the sphere. Thus, a linearly increasing intensity gradient leads to a

restoring force that acts in the direction of the highest intensity (Fig. 1.5 (a)). Furthermore,

a particle exposed to a strongly focussed Gaussian beam will be forced by the axial light

gradient to stay at the beam centre, whilst the gradient in the beam direction generates

a restoring force, pulling the particle against the radiation pressure into the focal plane

(Fig. 1.5 (b)). Therefore, a spherical dielectric particle can be trapped in three dimensions

with a single laser, an arrangement, first described by A. Ashkin and co-workers in 1986 [27]

and commonly called optical tweezers.

If the particle is much smaller than the wavelength of the laser, i.e. R ≪ λ, Rayleigh

scattering becomes apparent. The electromagnetic field induces a dipole moment in the

polarizable particle, which itself then acts as a point dipole. In the Rayleigh regime, the

optical forces can be separated into two components: the scattering and gradient forces.

On the one hand, the absorption and reemittance of light by the induced dipole can be

summarized in the scattering force Fscat, which is given by [27]:

Fscat =
128π5R6nm

3λ4c

(
n2 − 1

n2 + 2

)2

I (r) . (1.11)

Fscat is proportional to the intensity of the incident laser beam I (r), strongly depends on

the particle size (∝ R6) and, due to its origin, acts along the beam direction. On the other

hand, an inhomogeneous light field permanently interacts with the induced dipole via the

gradient force, which can be calculated in the time-averaged form as [22]:

Fgrad =
2πR3nm

c

(
n2 − 1

n2 + 2

)
∇I (r) . (1.12)

Fgrad is proportional to the intensity gradient∇I (r) and for np > nm points into the direction

of the highest intensity. If the gradient force exceeds the scattering force, i.e. Fgrad > Fscat,

as is the case with a strongly focussed Gaussian beam, the particle is pulled towards the

focal spot, the region of highest intensity.

The case of a particle with a size similar to the wavelength of the trapping beam is more

complex [23, 25, 26, 28, 29]; this is not well described by either of the two above introduced

forces. Analytical solutions for this size regime are only known for some specific cases. For

example, the generalized Lorentz-Mie theory provides a solution for the scattering of a plane

9



1.6 Rough Energy Landscapes

wave at a spherical dielectric particle. Since it includes the coherence of the laser light as

well as the curvature of the particle, it is valid in a large size range, from very small particles

(as usually described by the Rayleigh model) up to the ray optics regime [26]. Due to the

complexity and computational costs, this theory is beyond the scope of this work and is not

described here in detail.

Single beam optical gradient traps, i.e. optical tweezers, are used in many different

scientific fields, such as physics, biology and medicine. Due to the ability to measure

and apply forces with optical tweezers in the pico-Newton range and length scales in the

nanometre to micron range, they have become a sophisticated tool to study biological and

molecular phenomena, such as the observation of single-molecule motor movements [30, 31]

and the stretching of DNA molecules [32]. Furthermore, the manipulation and investigation

of colloidal systems is possible, since the applied optical forces and thus the potential

energy of the light traps is of the order of the thermal energy of colloidal particles. Instead

of optical tweezers, i.e. zero-dimensional optical traps, more complex higher dimensional

optical intensity landscapes, such as multiple optical tweezers [33] (in three dimensions) or

sinusoidal [34] and random interference patterns [35, 36] (both in two dimensions) can be

realized by carefully manipulating the light field. Thus the influence of complex, modifiable

energy landscapes on particle arrangement and dynamics can be studied.

1.6 Rough Energy Landscapes

Energy landscapes represent the energy of a system as a function of its (configurational)

coordinates and/or other parameters of the system [37]. Fig. 1.6 shows a hiker on a

mountain range as an example for a potential energy landscape (PEL). The walker follows a

certain track on the (two-dimensional) spatial landscape, while his current potential energy

is determined by the altitude. Thus the walker’s potential energy can approximately be

described by a distance to altitude diagram, i.e. a one-dimensional PEL (inlet). In fact, all

movements can be examined as a function of an underlying potential landscape and thus a

model system, as presented in this thesis, can be used to mimic the (anomalous) dynamics.

The concept of energy landscapes is used in many scientific fields to determine properties

of systems ranging from small molecules, proteins and other biomolecules to large clusters,

glasses and even biological cells [37]. Applications include transport in materials with defects

10



Chapter 1. Background

Figure 1.6: Kilimanjaro mountain range, an example for a potential energy landscape.
When climbing the mountain a walker follows a certain track on a two-dimensional spatial
landscape, while the third coordinate here is the altitude. Thus the walker’s potential energy
can approximately be described by a distance to altitude diagram, i.e. a one-dimensional
potential energy landscape (inlet). Adapted from Ref. [38].

or impurities [39], in inhomogeneous media [40, 41] such as biological cells [42–44], and in

the presence of fixed obstacles, e.g. in a Lorentz gas [45]. Recently, energy landscapes have

also been used to describe particle dynamics in glasses [13, 46–49] (Fig. 1.7 (a)), as well

as to determine (bio)chemical reactions [50], and the folding of proteins and DNA [51, 52]

(Fig. 1.7 (b)).

(a) (b)

Figure 1.7: Schematic examples for rough energy landscapes: (a) potential energy land-
scape of a dense colloidal system as a function of configurational coordinates [46] and (b)
folding energy landscape describing states of protein folding and aggregation [52].
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The focus of this thesis is rough energy landscapes, which have been used in the inter-

pretation of several experimental observations, such as the behavior of RNA, proteins and

transmembrane helices [53, 54]. Furthermore, random potential energy landscapes (rPEL)

often provide a very useful description of the effect of disorder on the dynamics [49, 55, 56].

Recent experiments in which single-molecule and -particle tracking methods were applied to

biological samples such as cells and their membranes [41, 42], biofilms [57] or prototypical

crowded fluids, e.g. dextran [58], revealed anomalous dynamics in such systems. Thus

anomalous diffusion of particles or molecules in crowded environments, as investigated in

this work, can be seen as a general scenario, encountered for example by a single species

diffusing through a biological cell in the presence of other species. Furthermore, the dy-

namics are not only influenced by the concentration of the species under investigation, i.e

the tracer particles, or the overall concentration within the cell, but also by the presence of

osmotic gradients or adsorption sites [41–43, 57, 58]. Although it seems counter-intuitive to

consider sub-diffusion as a good strategy for a tracer particle to more quickly find its target

in such an environment compared with the case of free diffusion, it has been proven that

sub-diffusive dynamics can decrease the time until a biological species reaches a favourable

spot or target as seen in special adsorption or reaction sites in cells, on cell membranes or

DNA [59]. The various interactions of the species with its (micro-)environment result in an

underlying potential energy landscape, which influences the (anomalous) diffusion process.

The diffusion phenomena occurring from the intersection of both high concentrations, i.e.

an crowded environment, and the amplitude of an underlying random potential has been

analysed in this work with the help of a model system, which was experimentally realized

by exploiting the interaction of light with spherical colloidal particles. In contrast to the

biological examples described above, both the mobile obstacles and the diffusing tracer

species have been mimicked with identical colloidal particles.
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OVERVIEW2
2.1 Experimental Set-up

The main part of this work was the design and construction of a novel optical set-up

with which a random potential energy landscape (rPEL) could be generated and to which

colloids were exposed. A full description of the optical set-up and the characterization of

the resulting rPEL can be found in paper I (published in [1]); a schematic and photograph

of the set-up are shown in Fig. 2.1 and a short summary follows.

Figure 2.1: A photograph and schematic [2] of the experimental set-up used to generate
random light fields to which colloidal samples were exposed. The beam path is highlighted
in green.

The laser beam is steered into the sample plane of an inverted microscope (Nikon

Eclipse Ti-U) with the help of three mirrors (M1, M2 and DM1 in Fig. 2.1), where the

dichroic mirror is almost totally reflective for the laser wavelength but transmits most of

the visible light of the microscope illumination. Colloidal samples that were sedimented into

a quasi two-dimensional plane could be exposed to a light field and their motion simulta-

neously observed on the microscope and via a CMOS camera. Subsequently, these images
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2.2 Speckle Patterns: Optically Generated Random Potential Energy Landscapes

were analysed, particle positions were obtained for each image and two-dimensional particle

trajectories from time stacks of images were formed using standard particle tracking rou-

tines [3]. Furthermore, particle positions and trajectories were used to calculate statistical

measures which characterize the arrangement and dynamics of the colloids in the presence

of the rPEL, such as the time-averaged local particle density ⟨ρ(x , y , t)⟩t (Sec. 2.3) or the
MSD

⟨
∆r2(t)

⟩
(Sec. 2.4).

The central optical element of this set-up used to modify the laser beam, or more

precisely its intensity distribution, is the so called Engineered Diffuser (ED, RPC Photon-

ics) [4–6]. It consists of a random microlens array, which creates a macroscopically uniform

intensity pattern with a so called top-hat intensity distribution when illuminated with a

Gaussian laser beam. Nonetheless, interference between wavefronts coming from different

microlenses leads to laser speckles, i.e intensity fluctuations on the microscopic length scale

of the particles. The size of the speckles can be modified with a beam expander (BE);

by changing the diameter of the beam incident on the diffuser the number of illuminated

microlenses, i.e. independent scattering centres, is changed. Furthermore, a motorized

rotation stage to which the diffuser is mounted can be used to rotate the rough intensity

pattern. This leads to a time-averaged flat intensity field and hence particles can solely be

exposed to radiation pressure.

2.2 Speckle Patterns: Optically Generated Random Potential En-

ergy Landscapes

This section describes the experimentally realized speckle patterns which represent random

potential energy landscapes (rPELs) for colloidal particles. A detailed and quantitative

characterization can be found in paper I and Ref. [1].

A recorded intensity pattern with randomly distributed intensities, i.e. laser speckles, is

shown in Fig. 2.2. It can be rationalized as a superposition of many independent optical

traps, which are randomly distributed. Therefore, colloidal particles exposed to the speckle

pattern and with a refractive index larger than that of the dispersion medium, i.e. np > nm,

are pulled to regions of high intensity due to gradient forces (see Sec. 1.5). Such a particle

experiences a rPEL with local properties determined by the light intensity ‘detected’ by

the colloid, i.e. the intensity distribution over the whole particle volume. Thus integrating
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Chapter 2. Overview

Figure 2.2: Convolving the recorded image of the random intensity speckle pattern (a) with
the volume of a test particle with radius R = 1.4 µm (b) results in the random potential
energy landscape experienced by the colloidal particle (c). The 8-bit values of the intensity
and the values of the potential in arbitrary units are represented as grey levels. Adapted
from Ref. [1].

the local intensity pattern I (x , y) (Fig. 2.2 (a)) over the particle volume (Fig. 2.2 (b))

results in a local potential energy landscape U(x , y) (Fig. 2.2 (c)). Although the particle’s

polarizability and thus the exact amplitude are unknown, this method can be used to

calculate the typical characteristics of the rPEL (Fig. 2.3), which are a Gaussian-shaped

spatial correlation function CU with a 1/e-width of about the particle size (Fig. 2.3 (b))

and a Gamma-distributed potential probability density p(U) (Fig. 2.3 (c)).

Figure 2.3: (a) Sketch of the two-dimensional rPEL used in experiments. Characteristic
for the potential landscape are a Gaussian-shaped spatial correlation function CU with
1/e-width 1.9 µm (b) and a Gamma-distributed potential probability density p(U) (c).
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2.3 Colloids Probing a rPEL

2.3 Colloids Probing a rPEL

Besides the experimental realization of an optical random potential energy landscape, the

systematic investigation of the modified spatial arrangement and dynamics of individual

particles as well as particle ensembles exposed to such rPELs formed the main part of this

thesis, as described in papers II-VI.

Figure 2.4: Sketch of a particle exploring a rough potential energy landscape.

An understanding of the influence of a random potential on the arrangement and dy-

namics of colloidal particles can be gained through examining individual particles in a one-

dimensional rPEL (Fig. 2.4). Particles, which are initially quenched in a non-equilibrium

state, move via BM and explore the potential landscape with all its valleys, saddles and peaks

and hence their distribution evolves towards equilibrium. Since this is a one-dimensional

problem, the diffusing particles have to overcome every single barrier, i.e. the local potential

maxima, to mainly populate the deepest minima. They can however also get trapped for

a long time in metastable states before equilibrium is reached. Particle dynamics are thus

strongly sub-diffusive in the presence of a rPEL.

Compared to the one-dimensional picture, the particle diffusion in a two-dimensional

rPEL is slightly different. In two dimensions, particles can circumvent potential hills by

crossing adjacent saddles and can thus move around the maxima. Hence, the diffusivity

of the particles is increased in contrast to the one-dimensional case even though dynamics

are still sub-diffusive [7]. The time a particle needs to overcome the barriers in order to

sample the whole landscape depends on the potential roughness, i.e. its spatial correlation

function, C (U), and the potential energy distribution, p(U). Particle dynamics can therefore

be adjusted from a normal diffusive to a strongly sub-diffusive state by changing these

parameters. In most of the experiments described here, this was done by adjusting the laser

power, PL, which is proportional to the width of the potential and hence the distribution
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Chapter 2. Overview

of energy barriers [8], while the spatial correlation function was held constant. The particle

concentration, φA, was also modified so that particle arrangement and dynamics could

be studied as a function of both laser power and concentration. Fig. 2.5 shows sketches

characterizing the different regimes investigated in this thesis in the PL-φA-diagram. The

effects of either increasing particle concentration at fixed laser power (horizontal lines) or

increasing laser power at a range of concentrations (vertical lines) were analysed separately

(see Sec. 2.4.1 and Sec. 2.4.3, respectively). Terms and colors used to indicate the laser

power and particle concentration regimes focused on are outlined in Tab. 2.1.

C1 C2 C3

L1

L2

L3

P
L

ϕA

L0

Figure 2.5: The explored range of laser power PL and particle concentration φA includes
different scenarios. The effects of either increasing particle concentration at different values
of the laser power (horizontal lines) or increasing laser power at a range of concentrations
(three vertical lines are shown exemplarily) were analysed. Sketches illustrating different
values of concentration and potential roughness (laser power) are shown for four selected
situations in the diagram. For two of them, recorded images of the colloidal samples
interacting with the rPEL are also shown.

All experimental results, whether they describe static spatial measures or time-dependent

dynamics, are based on exact detection of particle positions for all measurement times. Ei-

ther particle trajectories can be subsequently calculated or the number of particles N(x , y , t)

in each region of size ∆x∆y at position ri = (xi , yi ) at each time t can be used to calcu-

late the local particle density ρ(x , y , t) = N(x , y , t)/∆x∆y . The necessary discretization

and resolution of the measured data as well as the whole calculation procedure are further

described in paper II.
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2.3 Colloids Probing a rPEL

Table 2.1: Terms and colors used to indicate different laser power and particle concentra-
tion regimes (cf. Fig. 2.5).

term laser power area fraction line/symbol

PL (mW) φA color

L0 0 pink

L1 917 purple
L2 1640 light blue
L3 2600 dark blue

C1 0.05 green
C2 0.25 orange
C3 0.45 red

L3L0

y
/

µ
m

x / µmx / µm x / µm

L1

C1

38

0

19

38190

(a) (b) (c)

38190 38190

Figure 2.6: Colloidal particles interacting with the light field sample the rPEL. Trajectories
in a central region of the colloidal sample for a measurement time tmax = 7200 s are shown
for low concentration C1 and increasing laser power L0 (a), L1 (b), and L3 (c). Trapping
of particles in small regions becomes apparent for high laser power. Thus, only a small part
of the sample is visited by particles within the time of the measurement tmax.

The first step in understanding how particles interact with a two-dimensional rPEL in

experiments is to investigate the sampling behaviour of the colloids in such a situation by

analysing their trajectories as a function of the potential roughness. Fig. 2.6 shows the

particle trajectories in a centred region of a dilute colloidal sample, C1, for measurement

time tmax = 7200 s, as a function of the laser power, when sub-diffusive behaviour in the

presence of a rPEL becomes apparent comparing the picture in the absence of a rough

potential L0 (a) with the ones recorded with laser power L1 (b) and L3 (c). Trapping

of particles in small regions occurs for high laser powers and is stronger with higher laser

powers, which equates to deeper mean potential depths. The particles thus visit only a

part of the sample and at high laser power, L3, their movements are strongly restricted
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to the sites of highest intensity, i.e. lowest potential (Fig. 2.6 (c)). A rough potential in

combination with low particle concentration thus leads to an ‘undersampling’ of regions with

high potential energies. In terms of the landscape picture, this is equivalent to particles

moving around instead of over the hills. As a result, the time-averaged local particle

density ⟨ρ(r, t)⟩t , which holds spatial information about the underlying potential, becomes

a discretized particle density landscape where density maxima correspond to minima in

the potential (Fig. 2.7 (a)). For high concentrations, particle-potential as well as particle-

particle interactions have to be considered and hence ⟨ρ(r, t)⟩t does not represent the

rPEL any more, but a landscape smoothed by inter-particle collisions and diffusive particles

(Fig. 2.7 (b)). A more detailed study of the high concentration regime, i.e. the influence of

a crowded environment on the particle dynamics, is described in Sec. 2.4.3 and paper VI.

(a) C1L1 (b) C3L3

Figure 2.7: Time-averaged particle density landscape, ⟨ρ(r, t)⟩t , (a) for low laser power
(L1) and low concentration (C1), and (b) for high laser power (L3) and high concentration
(C3).

2.3.1 Spatial Arrangement of Colloids in rPELs

We determine the density autocovariance function, C (r), the off-diagonal density correlation

function, g (2)(r), and the pair density correlation function, g (1)(r), to characterize the local

time-averaged particle density ⟨ρ(r, t)⟩t and thus the particle-potential and particle-particle

interactions.

The two-dimensional density autocovariance function, C (r), is defined by [9]:

C (r) =
⟨ ⟨

ρ
(
r′, t

)⟩
t

⟨
ρ
(
r′ + r, t

)⟩
t

⟩
r′ − ρ20

=F -1
(
F
{
⟨ρ(r, t)⟩t - ρ0

}
F
{
(⟨ρ(r, t)⟩t - ρ0)

})
(2.1)

21



2.3 Colloids Probing a rPEL

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

PL

 L1
 L2
 L3

C
(r

) /
 1

0-3

r / D

0

0.0 0.2 0.4 0.6

0.0

0.1

0.2
 C1L1
 C3L1

C
(r

) /
 1

0-3
 

r / D

(a)

0 2 4

1

2

0 2 4

0

1

2

3  experiment: C3L1
 theory

g(2
) (r

)

r / D

g(1
) (r

)

r / D

(b)

Figure 2.8: (a) Azimuthally averaged autocovariance function, C (r), as a function of
normalized distance ,r/D, for different laser powers, PL (L1-L3, indicated by colours) and
increasing mean particle density ρ0. The inset shows all data for L1 together with Gaussian
fits to data corresponding to conditions C1L1 and C3L1 as black lines. (b) The experimen-
tally determined azimuthally averaged off-diagonal density correlation function g (2)(r) and
the pair density correlation function g (1)(r) (inset) compared with results obtained from
the disorder-corrected liquid state theory, as a function of normalized distance, r/D, for
high mean particle density (C3) and low laser power (L1).

with the Fourier transformation, inverse Fourier transformation and complex conjugation

indicated by F , F−1 and (...), respectively. Here, an isotropic sample is considered and

thus an azimuthal average is carried out; C (r) = (1/2π)
∫ 2π
0 C (r , Θ)dΘ. It is shown

in Fig. 2.8 (a) for different laser powers and mean particle densities. A pronounced peak is

located at the origin of C (r) independent of PL and ρ0. It is well described by a Gaussian

distribution C (r) = σ2 exp
(
−(r/lc)

2
)
with the amplitude σ2 = C (0) =

⟨
⟨ρ(r, t)⟩2t

⟩
r
− ρ20

and correlation length lc (Fig. 2.8 (a) inset). The amplitude, σ2, describes the probability to

find a particle in a specific region for the entire measurement time and hence characterizes

the mean depth of the potential minima as sampled by the particles. It increases with PL

as well as ρ0. The correlation length, lc, characterizes the width of the potential minima as

sampled by the particles and decreases with laser power PL due to the tighter pinning of the

particles. A minimum follows on the primary peak of C (r) (Fig. 2.8 (a)). It becomes more

pronounced with PL and ρ0 and occurs at a distance comparable to the correlation length

of the potential. In potential minima trapped particles induce excluded volumes in their

vicinities and thus cause a minimum in C (r). Higher order minima and maxima are caused

by particle-potential and multiple-particle interactions and reflect spatial arrangements of
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neighbouring particles. Furthermore, C (r) = 1 in the absence of a rPEL and for low enough

ρ0, where particle-particle interactions are not important.

The off-diagonal density correlation function, g (2)(r), is given by:

g (2)(r) =
1

ρ20

[⟨⟨
ρ
(
r′, t, l

)⟩
t

⟨
ρ
(
r′+r, t, l

)⟩
t

⟩
r′

]
l
. (2.2)

It is the density-normalized and disorder-averaged spatial correlation function and hence

g (2)(r) = C (r)/ρ20 + 1 for a large field of view, i.e. disorder averaging in one single

realisation of the rPEL. g (2)(r) quantifies the probability for a particular location being

occupied by a particle after an arbitrarily long time period [10]. Thus, it characterizes the

coupling between positional ordering of the particles and the spatial disorder of the rPEL.

Furthermore, the disorder-averaged analogue of the pair density correlation function

g (1)(r) is defined by [11]:

g (1)(r) =
1

ρ20

[⟨
ρ
(
r′, t, l

)
ρ
(
r′+r, t, l

)⟩
t,r′

]
l
− 1

ρ0
δ(r, l) . (2.3)

where the time average for the disordered system has to be taken prior to the disorder

average, δ(r, l) is the Dirac delta function and the last term vanishes in the canonical

ensemble. The pair distribution function, g (1)(r), describes the variance in ⟨ρ(r, t)⟩t as a

function of the distance. [12]

The azimuthal averages, g (2)(r) and g (1)(r), are shown in Fig. 2.8 (b) for low laser power

(L1) and high mean particle density (C3), where the experimental results are compared

to predictions of liquid state theory [12] generalised to include the effects of quenched

disorder [11, 13]. (The reader is referred to paper II for details of the calculations.) The

g (2)(r) agree very well, whereas the primary peak in g (1)(r) is overestimated in the theory.

Fitting yields ⟨U2⟩1/2 ≈ 2kBT for the strength of the disorder potential, which is consistent

with experimental expectations.

The time-averaged local particle density, ⟨ρ(r, t)⟩t , was determined. It was analysed as

a function of laser power, PL, and mean particle density, ρ0 (Fig. 2.7). Affected by the

rPEL, local in time and/or space correlated particle density variations occur, which are char-

acterized by the density correlation functions C (r) (Fig. 2.8 (a)), g (2)(r) (Fig. 2.8 (b)) and

g (1)(r) (Fig. 2.8 (b) inset). The off-diagonal density correlation function reflects particle-

potential interactions, namely the potential roughness and spatial correlations in the local
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density, which are caused by trapped particles. This is the first time these correlation

functions have experimentally been determined in the presence of quenched disorder.

2.4 Two-Dimensional Colloidal Dynamics in rPELs

2.4.1 Anomalous Diffusion in Correlated Potentials

As a model system for the project outlined in this thesis, colloidal particles were sedimented

into a quasi two-dimensional layer and were then exposed to a rPEL. Both the spatial

arrangement of the particles and their time-dependent dynamics were studied in relation

to the particle concentration and the mean potential depth of the applied field, and its

correlations, as controlled by the laser power. Papers IV and VI provide further details.
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Figure 2.9: Experimental results illustrating the time-dependent dynamics in the dilute
regime for normal diffusion in the absence of an external potential (L0, pink line) and
anomalous diffusion in the presence of a rPEL as a function of laser power PL (L1-3,
see Tab. 2.1 for colors). The (anomalous) dynamics are represented by the time- and
ensemble-averaged MSD (TEAMSD) (a), diffusion coefficient D(t) (b), diffusive exponent
µ(t) (c) and non-Gaussian parameter α2(t) (d).
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Fig. 2.9 shows the time-dependent particle dynamics in the dilute regime C1 in the

absence of a laser field L0 and in the presence of a rPEL with three different laser powers

L1-3. These are represented by the time- and ensemble-averaged mean-squared displace-

ment (TEAMSD) ⟨∆r2(t)⟩tw,i (a), the normalized diffusion coefficient D(t)/D0 (b), the

diffusive exponent µ(t) (c), and the non-Gaussian parameter α2 (d) (Eqs. (1.4) - (1.9)) all

as a function of the normalized time t/tB with the Brownian time tB = R2/(4D0) correct-

ing for influences of the particle radius. As expected for normal diffusion, the TEAMSD

is proportional to the time (Eq. (1.5)), whilst the diffusion coefficient and the diffusive

exponent take constant values of one, and the NGP is equal to zero in the case of L0 and

for all investigated times (pink lines). In the presence of a rPEL (L1-3) all four quantities

indicate diffusive behaviour at very short and very long times and sub-diffusive behaviour

at intermediate times, where an increase in the laser power leads to slower dynamics of

the particles. Although exposed to a rPEL, particles can still freely diffuse within potential

minima at short times if the particle size is less than the average speckle size. The influence

of the rough potential landscape is strongest at intermediate times, since particles have to

overcome potential barriers to move away from their initial position within potential traps.

Dynamics at long times are again mostly determined by the particles, which were hindered

from freely diffusing through the sample, but were able to overcome the potential barriers.

The long-term diffusive exponent DL = lim
t→∞

D(t) thus becomes proportional to time, in

the presence of a rough potential, with a value smaller than the initial one at short times,

i.e. the short-term diffusion coefficient DS = lim
t→0

D(t) (Fig. 2.9 (b)).

The particles are sedimented to a quasi two-dimensional layer at the bottom of the

sample cell and hence particle-wall interactions have to be considered with respect to their

influence on particle dynamics at short times [14–16]. The radius dependent Stokes-Einstein

diffusion coefficient DSE
0 , which describes free, two-dimensional particle diffusion in the

absence of a boundary, is given by [17]:

DSE
0 (R) =

kBT

6πηR
, (2.4)

where kB is the Boltzmann constant, T is temperature, and η the viscosity of the dispersion

medium (η = 1.002 × 10−3 Pa s for water at T = 20◦C). The lateral motion of a particle

adjacent to a wall depends on the particle center-wall separation, h, and is slowed down
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due to hydrodynamic interactions (HIs). Faxen suggested a correction term for Eq. (2.4)

including the dependence of h on the dynamics near the surface and thus the corrected

short-term diffusion coefficient DF
0 becomes [14, 18]:

DF
0 (h,R) =

(
1− 9

16

R

h
+O

(
R3

h3

))
DSE
0 (R) (2.5)

which was shown to correctly describe lateral diffusion results within an error of ±5% within

this first order of the approximation [14].
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Figure 2.10: Examination of the particle dynamics considering radiation pressure, hydrody-
namic interactions and potential correlations: (a) Measured short-term diffusion coefficient
as a function of the particle radius, R, in the absence of an external potential, D0 (L0, open
symbols) and in the presence of a strong rPEL, DS (L3, filled symbols) compared to the
predictions of Stokes-Einstein (Eq. (2.4), solid black line), of Faxen with h = R (Eq. (2.5),
dashed blue line) and Faxen with h = R+ lg (dash-dotted red line); (b) Long-term diffusion
coefficient, DL (solid symbols) as a function of the particle radius, R. While the long-term
diffusion coefficient is rapidly decreasing with increasing R for small particles (R < 2 µm),
it displays asymptotic behaviour for bigger particles.

Fig. 2.10 (a) shows the measured short-term diffusion coefficient as a function of the

particle radius in the absence of an external potential (L0), D0, and in the presence of a

strong rPEL (L3), DS, compared to the predictions of Stokes-Einstein (Eq. (2.4)), and of

Faxen (Eq. (2.5)) with h = R and h = R + lg, where lg is the gravitational length as given

by [19, 20]:

lg(R) =
kBT

g∆ρVp
(2.6)

with the standard acceleration due to gravity g = 9.8 m/s2, the difference between the

density of the polystyrene particle ρp = 1.05 × 103 kg/m3 and the dispersion medium
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ρm = 1.00 × 103 kg/m3 (water), ∆ρ, and the particle volume Vp = 4πR3/3. The short-

term dynamics of sedimented particles, i.e. D0, are best described by the prediction of

Faxen including the gravitational length lg and thus h = R + lg. On the other hand,

radiation pressure pushes the particles towards the wall and hence leads to a decrease in

the short-term diffusion coefficient, especially for small particles. This can be accounted

for by including Faxen’s hydrodynamic correction with the particle-wall separation h = R.

The long-term diffusion coefficient normalized by the short-term value, i.e. DL/DS,

is independent of hydrodynamic interactions and particle-wall separation and is hence only

influenced by potential-particle interactions and thus the potential roughness, i.e. its spatial

correlations. Fig. 2.10 (b) shows the long-term diffusion coefficient as a function of the

particle radius. While DL is rapidly decreasing with increasing R for small particles (R <

2 µm), it displays an asymptote for larger particles. Large particles are less influenced by

the rPEL roughness due to their experiencing a smoothed out potential landscape caused

by the integration over several laser speckles.

2.4.2 Time- and Ensemble-Averages in Relaxing Systems: Evolution of Particle

Dynamics in a rPEL

This section contains a brief discussion of the effects of the type of averaging, i.e. time-

and/or ensemble-averaging, on quantities that characterize the particle dynamics in rPELs,

as studied in detail in paper V.

Initially, the particle ensemble is distributed randomly in the rPEL and the occupancy

of potential energy values is homogeneous. With increasing waiting times, tw, i.e. in the

course of the experiment, the system evolves towards its equilibrium distribution, which

depends on the probability distribution of energy values of the rPEL, p(U), and the laser

power. The relaxation of the system can be studied by determination of the time evolution

of time- and/or ensemble-averaged dynamical quantities such as the MSD.

In order to improve statistics, time- and ensemble-averaged measures are often con-

sidered, such as the TEAMSD, ⟨∆r2(t)⟩tw,i , and the corresponding diffusion coefficient

D(t) = ⟨∆r2(t)⟩tw,i/t. The latter is shown in Fig. 2.11 for a system initially quenched in

the rPEL, i.e. not equilibrated, and a relaxed system, both for C1L2. The observation of

the relaxed system was started at least 2 hours after the experiment was started (and thus

the rPEL turned on) such that the system had enough time to evolve towards equilibrium.
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Figure 2.11: Time-dependent diffusion coefficient, D(t), as calculated from the TEAMSD,
for a system initially quenched in the rPEL, i.e. not equilibrated, and a relaxed system (as
indicated). It was determined for conditions C1L2 and for a very long time interval (black
lines) and several smaller time intervals, each of the same length but with different starting
times, tstart (color gradient, see legend).

The diffusion coefficient was calculated for both systems for a very long time interval and

several smaller time intervals, each of the same length but with different starting times, tstart

(as indicated in the legend of Fig. 2.11). For all measurements independent of the starting

time, tstart, the length of the measurement (tmax − tstart) or the state of relaxation of the

system, D(t) shows the expected behaviour. It initially displays normal diffusion followed

by a decrease at intermediate times and a subsequent plateau at longer times. However,

the relaxed system differs from the initially quenched system, as is apparent in two striking

characteristics of the diffusion coefficients as calculated from TEAMSDs. Firstly, a com-

parison of D(t) for the analysis of the longest time intervals (Fig. 2.11, black lines z1 and

z2) reveals that the diffusion coefficient of the relaxed system is considerably smaller at

intermediate and long time scales than that for the quenched system. Secondly, looking

at smaller time intervals with increasing tstart (color gradient bright to dark lines) a clear

dependence of the starting time on the long-term diffusion is observed for the quenched (t1

to t5) but not for the relaxed system (t6 to t10). This is caused by the average over waiting

times tw, which can depend on both the start time tstart and the total measurement time

tmax and is thus related to the relaxation of the particle ensemble in ergodic systems, where
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lim
tmax→∞

⟨
∆r2(t)

⟩
tw

=
⟨
∆r2(t)

⟩
i

(2.7)

is valid, as well as in non-ergodic systems [21, 22]. Therefore, it is necessary to separately

study quantities that are either ensemble-averaged (EA) over all trajectories of the particle

ensemble or time-averaged (TA) over a very long single trajectory, i.e. averaged over waiting

times tw. The ensemble-averaged mean-squared displacement (EAMSD), ⟨∆r2(t)⟩i , is

given by

⟨
∆r2(t)

⟩
i
=

1

N

N∑

i=1

[ri (t)− ri (0)]
2 , (2.8)

while the time-averaged mean-squared displacement (TAMSD), ⟨∆r2(t)⟩tw , can be calcu-

lated from

⟨
∆r2(t)

⟩
tw

=
1

tmax − t

∫ tstart+tmax−t

tstart

[ri (tw + t)− ri (tw)]
2 dtw . (2.9)

In this case, the start time of the measurement does not necessarily have to coincide with

the beginning of the experiment.

10-1 100 101 102 10310-3

10-2

10-1

100

D
 / 

µm
2  s-1

t / tB

EA:
 L1
 L2
 L2equ
 L3

TEA:
 L1
 L2
 L2equ
 L3

10-1 100 101 102 10310-3

10-2

10-1

100

(a)

10-1 100 101 102 1030

2

4

6

8

10

EB

t / tB

 L1
 L2
 L2equ
 L3

(b)

Figure 2.12: Comparison of an initially quenched system with a relaxed system: (a)
Diffusion coefficient, D(t), for C1L2 calculated for the quenched and the relaxed system
from the EAMSD (open and half-filled circles, respectively) and the TEAMSD (blue solid
and dashed line, respectively). The inset additionally shows results for quenched systems
at laser powers L1 and L3. (b) Ergodicity (breaking) parameter, EB, as a function of the
normalized time, t/tB, for a quenched system and three different laser powers L1-3 (open
symbols) and for a relaxed system and laser power L2 (half-filled circles).

The time-dependence of the diffusion coefficient as a measure for the anomalous dynam-

ics of the system was calculated for a quenched and a relaxed system from their EAMSD as
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well as TEAMSD and these are compared in Fig. 2.12 (a). The ensemble-averaged diffusion

coefficient (open circles) for a quenched system is larger than the time- and ensemble-

averaged one (blue solid line) at intermediate and long times as expected, although they

almost coincide for very long times. The difference at finite times is caused by time-

averaging and is independent of the potential strength (see inset of Fig. 2.12 (a)), whereas

the crossing at late times is an indication of an ergodic system in which both the ensemble-

and time-averages become equal for very long times. The relaxed system can easily be dis-

tinguished from the quenched system as both the ensemble-averaged (half-filled circles) and

time- and ensemble-averaged diffusion coefficients (blue dashed line) coincide at all times.

Indeed, the system is ergodic; if the waiting time after starting the experiment is long

enough, the system evolves to equilibrium. Thus the (non-)ergodicity of a system can fur-

ther be quantified by the so called auxiliary ergodicity parameter, EB =
⟨
∆r2

⟩
i
/
⟨
∆r2

⟩
tw,i

,

where EB = 1 indicates a necessary condition for ergodicity [23].

The analysis of the ergodicity (breaking) parameter, EB, which is shown in Fig. 2.12 (b)

as a function of the normalized time, t/tB, for a quenched system and three different

laser powers L1-3 (open symbols) confirms the results from the analysis of the diffusion

coefficients: EB = 1 for very small times whereby the particles do not interact with the

potential, EB > 1 for intermediate times indicating temporal weakly non-ergodic behaviour

induced by the rPEL and depending on the potential roughness and EB ≈ 1 for long times,

indicating ergodicity of the system. However, for a relaxed system and laser power L2

(Fig. 2.12 (b), half-filled circles) the auxiliary ergodicity parameter is equal to one for all

times indicating the equilibrium state.

It has been shown that the evolution of the particle ensemble towards equilibrium is man-

ifest in a reduction of the ensemble- and time-averaged diffusion coefficient with increasing

waiting times since deeper minima are increasingly populated (Fig. 2.11). Time-averaged

quantities reflect the relaxation of the particle ensemble towards equilibrium and hence

can indicate when it is reached. Furthermore, differences between TAMSDs, EAMSDs and

TEAMSDs as well as quantities based on these differences, such as the auxiliary ergodicity

parameter EB, can be used to identify the mechanisms underlying anomalous diffusion in

complex fluids and crowded environments [24–26].
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2.4.3 Anomalous Diffusion in Crowded Environments

In this section, the main results of paper VI are briefly reviewed. The analysis of the

mechanisms underlying the anomalous diffusion in rPELs in general is first shown, thus

allowing the extension of the analysis to the influences of the particle concentration in

crowded systems.
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Figure 2.13: Single particle TAMSDs as well as TEAMSD (purple line) and EAMSD
(yellow line) for different laser powers L1-3 (bottom to top) and concentrations C1-3 (left
to right), respectively.

In order to understand the mechanisms underlying the anomalous diffusion in rPELs, the

analysis of single trajectories and differences between the TAMSDs, EAMSD and TEAMSD

have been studied. Differences are known to appear in systems exhibiting anomalous diffu-

sion as well as in relaxing, i.e. temporarily non-ergodic, systems, as shown above. Fig. 2.13

shows the TAMSDs (black lines), EAMSD (yellow line) and TEAMSD (purple line) for dif-

ferent laser powers, i.e. potential strengths, L1-3 and concentrations C1-3. Single-trajectory

measures such as the TAMSD can be analysed to characterize the heterogeneity of the par-

ticle dynamics. Normal free diffusion would be indicated by a linear slope with gradient

one for all TAMSDs, no deviation between the TEAMSD and the EAMSD, and no differ-
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ences between single trajectories at all times. However, small scatter between TAMSDs at

the end of the measurement time can also be caused by time-averaging artefacts in the

experimental data and is not necessarily a signature for heterogeneous dynamics.

Deviations to the freely diffusing case are observed for all concentrations and potential

depths. In the presence of a rPEL with low laser power L1 and low concentration C1

(Fig. 2.13 (g)) all TAMSDs show the typical sub-diffusive behaviour expected for diffusion

in a rPEL, i.e. normal diffusion at short times and a plateau at intermediate times. The

plateau of most of the TAMSDs is not very pronounced and hence they become diffusive

again at long times. A few TAMSDs, however, show a plateau which extends over the whole

time of the measurement, i.e. some particles are trapped at (or near) their initial position.

Thus we can distinguish between two species, (fast) diffusing and trapped particles, i.e.

obstacles, where a diffusing particle can become trapped and vice versa. The TAMSDs of

the obstacles are up to two orders of magnitude lower than the ones of the diffusive particles

and hence the TEAMSD is mainly determined by the diffusing species (Fig. 2.13 (g), purple

line). Time- and ensemble-averaged measures are biased in regard to fast moving particles

and thus effects of the slower species are smoothed out. The heterogeneity of the dynamics

can further be quantified by the difference between the TEAMSD and the EAMSD (yellow

line). It is, as discussed above, an indicator for the ergodicity of the system and shows

a system that still evolves towards equilibrium for intermediate times. For long times,

however, the TEAMSD and the EAMSD almost fall on top of each other, pointing to an

ergodic system.

Increasing the laser power to L3 at low concentrations C1 (Fig. 2.13 (d) and (a)) leads

to a majority of the particles being strongly confined in deep potential traps as indicated

by more extended plateaus in the TAMSDs. Furthermore, the discrepancy between the

TEAMSD and the EAMSD increases with the laser power and the system becomes non-

ergodic for at least the time of the measurement, a signature for weak-ergodicity breaking.

This has been observed in many systems with anomalous diffusion [23, 26].

One important question is the influence the particle concentration has on the anomalous

diffusion as triggered by the rPEL? A first consideration of the case of low laser power L1

and increasing concentration C1-3 provides indications (Fig. 2.13 (g-i)). An increase in

the particle concentration leads to fewer and more weakly trapped particles and hence

weaker sub-diffusive behaviour. At a high concentration C3, all TAMSDs as well as the
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TEAMSD and the EAMSD almost coincide. Particle collisions lead to a higher probability

for initially trapped particles to leave their potential well, lower the average trapping time

and hence diffusion becomes more homogeneous. Thus, due to particle-particle interactions,

all particles show the same slightly sub-diffusive dynamics at intermediate times, which is

mostly determined by the volume occupied by the particles. In contrast, the case for high

laser power L3 and the highest concentration C3 represents the most heterogeneous picture

of the TAMSDs (Fig. 2.13 (c)). On one hand, many TAMSDs show dynamical behaviour

corresponding to normal diffusion or slight sub-diffusion; on the other hand, several TAMSDs

form a plateau at long times indicating particles being trapped in the rPEL. Nevertheless,

despite the heterogeneity, the difference of EAMSD and TEAMSD is smaller than at low

concentrations and almost vanishing at long times, suggesting that the system is ergodic

and almost at equilibrium at long times.
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Figure 2.14: Schematic of the main diffusive processes. Trajectories at high concentration
C3 and laser power L3 for a lag time of t = 200 tB. Particles are drawn schematically as
grey shaded areas in accordance with their radius R = 1.4 µm at the last particle position,
i.e. the end of the trajectories. Particle dynamics can be classified into three groups:
Strongly hindered diffusion, i.e. trapping (blue), percolating diffusion (red), and hopping
motions (green).

The heterogeneity of the diffusion for the case of high concentration C3 and laser power

L3 can be recognized in Fig. 2.14, which shows a small section of the particle trajectories.

Mechanisms underlying the anomalous diffusion in rPELs can be classified by three main
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dynamical processes (indicated by differently colored trajectories in Fig. 2.14): strongly

sub-diffusive, i.e. trapping (blue) and almost diffusive, i.e. percolating (red) behaviour, as

well as nearest-neighbour rearrangements, i.e. hopping motion (green) are identified. The

green trajectories (Fig. 2.14) form a connected line of five particles, where each is centred

at a potential valley. Particles are trapped within their initial potential minima for most of

the measurement time, but if one of the particles is randomly displaced by more than its

own radius, the vacant potential valley is quickly occupied by an adjacent particle. Hence,

string-like hopping motion occurs, where the step-size is discretized corresponding to the

average distance between two adjacent potential minima. It is caused by the mean distance

between potential minima almost matching the particle diameter and thus particles can

only move if one of its nearest-neighbours rearranges. Furthermore, this effect depends on

both the actual particle and potential minima arrangement and the particle concentration.

Similar effects, namely spatially restricted and correlated dynamics, have been observed in

experiments of very dense two-dimensional systems [27] but are also expected to occur in

more complex systems such as the dense Lorentz gas, porous media and crowded (cellular)

environments [28–34].

Thus far anomalous diffusion regarding ensemble-averaged measures such as the EAMSD

and the TEAMSD as well as single particle measures, i.e. single trajectories and the

TAMSDs, has been considered. Furthermore, the influences on the particle dynamics of

both the strength of the rPEL, i.e. particle-potential interactions, and of the particle

concentration, i.e. particle-particle interactions, were studied. One main result was that

particle-potential interactions are most pronounced for low concentrations C1 and high laser

power L3, whereas particle-particle interactions are more pronounced for high concentra-

tions C3 and low laser power L1. However, the strongest heterogeneity in the dynamics

was found for the case of both high concentration C3 and high laser power L3, indicating

an intricate interplay of the interactions, which will be further characterized by a discus-

sion of the short-term diffusion coefficient, Ds, and the long-term diffusion coefficient, DL,

which were calculated from TEAMSDs and are shown as a function of PL and φA. Here,

Ds = D(t < 2.5 s) includes, in contrast to DS as defined in Sec. 2.4.1, the influence of

potential traps on the short-term dynamics.

The short-term diffusion coefficient is shown in Fig. 2.15 (a) in a schematic iso-diffusivity

diagram as a function of laser power and particle concentration, where the measured Ds
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Figure 2.15: Short-term diffusion coefficient Ds (a) and long-term diffusion coefficient DL

(b) in the PL-φA plane. Filled circles and squares are measured conditions in the presence
and absence of a rPEL, respectively. The values of Ds and DL are represented by a colour
scale, where the gradient from purple to dark red indicates increasing values. Furthermore,
extended experimental data, which were taken from Ref. [35] and also correspond to the
absence of an external potential, are included in (b) as crosses. Grey dash-dotted lines
indicate possible iso-diffusivity lines between suggested colored iso-diffusivity areas (see
text for explanation).

values (symbols) appear as colour scale and the gradient from purple to dark red indicates

increasing values. Additionally, regions with similar values of Ds, which are referred to as

iso-diffusivity areas, are characterized by the same colors. However, these areas, which are

an average over several iso-diffusivity lines with similar shape, can be seen as guides to

35



2.4 Two-Dimensional Colloidal Dynamics in rPELs

the eyes only, since Ds changes continuously and therefore no discrete transition between

the indicated areas exists. As a main result, measurement points with a similar short-time

diffusion coefficient form a dome-shaped area, i.e. Ds exhibits re-entrant behaviour with

a maximum at φA ≈ 0.1-0.3, depending on the strength of the potential. This can best

be seen by following the line L2 with constant laser power from low concentrations to high

ones; Ds first increases until it reaches a maximum of Ds ≈ 0.06 µm2s−1 at an area fraction

of φA ≈ 0.22 and constantly decreases again afterwards. The width of the iso-diffusivity

areas increases with increasing PL due to counteracting influences of both the rPEL and the

particle concentration. At low concentrations, particle-potential interactions predominate,

whereas at high concentrations particle-particle interactions, i.e. excluded volume effects,

prevail.

The long-term diffusion coefficient, DL, is shown in Fig. 2.15 (b) as a function of PL and

φA, where the values are represented by a logarithmic color scale. Iso-diffusivity areas are

again shown, this time for the long-term values. In contrast to their short-term equivalents,

long-term iso-diffusivity lines increase at low concentrations with increasing laser power but

saturate at high φA, independent of PL. At even higher concentrations than the measured

ones, the long-time diffusion coefficient is expected to decrease again, as previously found

for the short-term iso-diffusivity lines (cf. Fig. 2.15 (a)), since particles become hindered in

their motion by excluded volume effects [35, 36]. This argument is further strengthened by

experimental results for the long-term diffusion coefficient in the absence of a rPEL (squares

and asterisks [35] in Fig. 2.15 (b)), which shows a monotonic decrease of DL with increasing

concentration, where a limit of DL/D0 ≈ 0.1 was suggested for the two-dimensional freezing

transition in the absence of hydrodynamic interactions [37].

Single trajectory analysis, e.g. TAMSDs, have shown a very heterogeneous picture

of the particle dynamics, which strongly depends on both the potential strength and the

particle concentration. Particle-potential interactions are determined by the characteris-

tics of the potential energy landscape, such as the spatial correlation function, C (U), the

potential probability distribution, p(U), and the mean potential strength, ⟨U⟩, whereas

particle-particle interactions are essentially determined by the particle concentration. As

a result, trapped particles acting as obstacles hinder the motion of diffusing particles and

hence a sub-diffusive regime emerges in the TEAMSD, while the TAMSDs show large scat-

ter between different single trajectories. The probability of obstacles becoming diffusive or
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particles becoming trapped is determined by both the potential strength and the particle

concentration. An increase in the laser power leads to stronger trapping and therefore fur-

ther immobilization of the particles, since the likelihood of a particle overcoming a potential

energy barrier and thus becoming diffusive is decreased. Finally, the separately studied short-

and long-term colloidal dynamics reveal a trend for the counteracting influences of parti-

cle concentration and potential strength and, at least for short times, a potential strength

dependent critical concentration was identified. At this critical concentration these effects

cancel each other out, resulting in a re-entrant regime of the short-term diffusion coeffi-

cient Ds (Fig. 2.15 (a)). A similar behaviour is also expected for the long-term diffusion

coefficient DL (Fig. 2.15 (b)).
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Experimental creation and characterization of random potential energy landscapes
exploiting speckle patterns

Jörg Bewerunge1 and Stefan U. Egelhaaf1
1Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany

(Dated: July 8, 2016)

The concept of potential energy landscapes is applied in many areas of science. We experimentally
realize a random potential energy landscape (rPEL) to which colloids are exposed. This is achieved
exploiting the interaction of matter with light. The optical set-up is based on a special diffuser,
which creates a top-hat beam containing a speckle pattern. This is imposed on colloids. The effect
of the speckle pattern on the colloids can be described by a rPEL. The speckle pattern as well
as the rPEL are quantitatively characterized. The distributions of both, intensity and potential
energy values, can be approximated by Gamma distributions. They can be tuned from exponential
to approximately Gaussian with variable standard deviation, which determines the contrast of the
speckles and the roughness of the rPEL. Moreover, the characteristic length scales, e.g. the speckle
size, can be controlled. By rotating the diffuser, furthermore, a flat potential can be created and
hence only radiation pressure exerted on the particles.

PACS numbers: 05.40.-a, 07.60.-j, 42.30.Ms, 42.60.Jf, 82.70.Dd

I. INTRODUCTION

A potential energy surface is a multi-dimensional sur-
face that represents the potential energy of a system as
a function of the coordinates and/or other parameters of
its constituents, usually atoms, molecules or particles [1].
Since its topographical features resemble a landscape
with mountain ranges, valleys and passes, frequently it is
referred to as a potential energy landscape (PEL), despite
typically being multi-dimensional. The PEL defines all
the thermodynamic and kinetic properties of a system.
The evolution of a system can pictorially be described by
the motion of a point on the PEL.

The concept of a PEL is successfully used in many
fields of science to determine the properties and be-
havior of systems ranging from small to polymeric
(bio)molecules and from atomic clusters to biological
cells [1]. They are used to describe, e.g., the par-
ticle dynamics in dense and crowded systems [2–5],
on surfaces [6–8], between magnetic domains [9], and
in inhomogeneous materials [10–13] as well as the ef-
fects of external potentials on the dynamics of ultracold
atoms [14, 15], quantum gases [16], Bose-Einstein con-
densates [17–20], and their applications to atom cooling
and trapping [21], and also include the investigation of
the minimum energy conformations of molecules [1], and
the folding and association of proteins and DNA [22–26].

Here we experimentally create a PEL to which colloidal
particles are exposed and which changes, e.g., their ar-
rangement and dynamics [1, 27–33]. As a model system,
it can help to improve our understanding of the underly-
ing principles governing the behavior in PELs and being
common to different systems.

A PEL can experimentally be realized by exploiting
the interaction of light with matter [34, 35]. We focus on
large colloidal particles with a refractive index larger than
the one of the dispersing liquid. Their interaction with

light is usually described by two forces [34, 35]: a scat-
tering force or ‘radiation pressure’, which pushes the par-
ticles along the beam, and a gradient force, which pulls
particles towards regions of high intensity. A classical ap-
plication of this effect is optical tweezers which are used
to trap and manipulate individual colloidal particles or
groups of particles [34–37]. Rather than tightly focused
beams, extended light fields can be used to create a PEL
[38]. Light fields of almost any shape have been gen-
erated using spatial light modulators [38–43] or acousto-
optic deflectors [44–46], while crossed laser beams [47–49]
and other arrangements [50–52] have been used to create
specific light fields.

Randomly-modulated intensity patterns, so-called
laser speckles [53, 54], can be used to create a random
potential energy landscape (rPEL). The landscape can
be rationalized as a superposition of many independent
randomly-distributed optical traps. They have been re-
alized using various approaches: holographic methods to
produce one [39–42] and two-dimensional [43, 55] pat-
terns, optical fibers for two-dimensional patterns [56] as
well as diffusers for one [18–20, 57], two [17, 21, 58] and
three-dimensional [14, 59–61] patterns.

We use a special diffuser [62–65] to create a random
light field, that is a fully developed speckle pattern. Due
to the light-matter interactions, a colloidal particle ex-
posed to the speckle pattern will experience a rPEL
whose local value depends on the light intensity ‘de-
tected’ by the particle. Since the particles are not point-
like, the local potential value depends on the intensity
distribution over the whole particle volume [48, 66–68].
We describe the interaction of a colloidal particle with
the speckle pattern analogous to a detector that records
the speckle intensity over a finite area. This allows us
to quantitatively characterize the statistics of the rPEL.
As will be shown, the distribution of energy values can
be described by a Gamma distribution, and thus ranges
from an exponential to an approximately Gaussian dis-
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FIG. 1. (Color online) Schematic representation of the set-up
used to create a speckle pattern, to which colloidal particles
are exposed and simultaneously imaged with an optical micro-
scope. The central optical element is a special diffuser (ED).
It is illuminated by a parallel Gaussian beam and creates a
top-hat beam including a speckle pattern, which is steered
to the sample plane of an inverted microscope. See text for
details.

tribution, and the correlation length is set by the particle
and speckle sizes. The shape and width of the distribu-
tion and the correlation length hence can be tuned in a
broad range. The obtained rPEL can be applied to study
the spatial arrangement and dynamics of colloidal parti-
cles in an external potential [27, 28, 30–33, 38, 40–43].
The chosen diffuser allows the creation of a large light
field and thus the simultaneous investigation of many
particles, which typically results in excellent statistics.
Furthermore, its small and compact design simplifies its
alignment, movement and rotation.

II. CREATION OF SPECKLE PATTERNS

The set-up (Fig. 1) allows one to create a top-hat beam
with a speckle pattern. Thus, there are intensity fluctu-
ations on a small length scale, i.e. about the size of the
colloidal particles. At the same time, the top-hat beam
implies a constant intensity on a larger length scale, at
least the field of view. This light field is used to impose
a rPEL, without any underlying long-range variations,
on colloidal particles. The particles are constrained to a
quasi two-dimensional plane and can simultaneously be
observed with an optical microscope.

x , r (µm)

FIG. 2. (Color online) (A) Individual and (B) averaged in-
tensity patterns in the sample plane. The average is taken
over 120 images with an individual exposure time of 10 ms
obtained with a rate of 10 fps while the diffuser is rotated
with a constant angular velocity of 20 ◦/s. The intensities in
arbitrary units are represented by colors (as indicated). (C)
Corresponding intensity profiles along the horizontal dashed
line in (A) (dashed line) and azimuthal average of the pattern
in (A) (yellow line on the left) and in (B) (purple line on the
right). Experimental conditions BE 5× (Tab. I). Measure-
ments are performed with a beam profiler (Coherent Laser-
Cam HR). Grey rectangles in (A) and (B) and grey lines in
(C) indicate a field of view of 179 × 179 µm2.

A. Diffuser

The central optical element of the set-up is a special
diffuser (RPC Photonics, Engineered Diffuser™ EDC-
1-A-1r, diameter 25.4 mm) [62, 64, 65]. It is a laser-
written, randomly-arranged array of microlenses that
vary in radius of curvature and size and cover on av-
erage an area Al ≈ 2000 µm2. When illuminated with
an expanded Gaussian laser beam, individual wavefronts
originate from each microlens whose characteristics are
designed such that a macroscopically uniform intensity
pattern with a small divergence is produced, reflecting a
top-hat intensity distribution (Fig. 2) [65, 69]. Nonethe-
less, the random distribution as well as the individual
variations of the microlenses and the interference of the
corresponding wavefronts lead to microscopic intensity
variations, i.e. laser speckles (Figs. 2A, 3A). The speckle
pattern consists of three-dimensional cylindrical high-
intensity regions [70]. Their orientation and position with
respect to the beam axis determine the properties of the
speckles in the two-dimensional sample plane [71, 72].
Thus the correct imaging of the modified beam into the
sample plane of the microscope is important. Moreover,

3.1 Paper I: Experimental creation and characterization of random
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FIG. 3. (Color online) (A) Speckle pattern filling a field of
view of 108×108 µm2 corresponding to 480 × 480 pixels with
intensities represented as grey levels (as indicated). Experi-
mental conditions BE 5× (Tab. I). (B) Weight function D⊙(r)
(Eq. 8) representing the volume of a spherical colloidal par-
ticle with radius R = 1.4 µm. (C) Random potential energy
landscape (rPEL) experienced by the particle in the speckle
pattern shown in (A) and calculated by convolving the in-
tensity in (A) with D⊙(r). The values of the potential in
arbitrary units are represented as grey levels (as indicated).

the speckle size is controlled by the diameter of the il-
luminating laser beam, determining the number of il-
luminated microlenses. Their number is chosen large
enough to ensure a statistically fully developed speckle
pattern [53, 54]. By changing the position of the beam
on the diffuser, statistically equivalent but independent
realizations of the speckle pattern can be created.

B. Optical Set-up

The speckle pattern strongly depends on the proper-
ties of the beam incident on the diffuser. Fully devel-

oped speckles require the interference of many polarized
monochromatic wavefronts with random phases and am-
plitudes and thus a large incident beam that illuminates
many microlenses. Furthermore, the optics used to image
the modified beam into the sample plane, especially their
apertures, have to be designed carefully and, for imaging
the speckle pattern, also the detector and its pixel size
have to be considered.

A solid-state laser (Laser Quantum, Opus 532, wave-
length λ = 532 nm, maximum intensity PL,max = 2.6 W)
provides a monochromatic linearly-polarized Gaussian
beam which is slightly elliptical with an axial ratio
of 1.12. The laser beam is steered by two mirrors
(M1, M2, Fig. 1) to a beam expander (BE, Sill Optics,
S6EXZ5076/121) with variable magnification (1 − 8×)
and divergence correction. Using the beam expander,
the area Ab of the Gaussian beam hitting the diffuser
can be controlled. The diffuser is mounted in a motor-
ized rotation stage (Newport, PR50CC).

The beam leaving the diffuser is divergent (about 1◦)
and hence collimated by two lenses (L1, L2), where the
first lens (L1, Edmund Optics, 1”DCX75, focal length
fL1 = 7.5 cm) is placed a distance fL1 behind the diffuser
followed by the second lens (L2, Thorlabs, 2”PCX75,
fL2 = 7.5 cm) in a distance d12 = 16 cm. This leads
to a collimated beam with area Ac (about 1 cm2 for
a 5× magnification of the beam expander, i.e. BE 5×,
Tab. I) on the aperture stop, after the beam has been in-
troduced into the light path of the inverted microscope by
a dichroic mirror (D1, Edmund Optics, NT69-901). The
condenser (Nikon, TI-C-LWD) then focuses the beam in
the sample plane (Figs. 2A, 3A). The lenses (L1, L2) to-
gether with the condenser form a telecentric illumination
system which collimates the beam and focuses it in the
sample plane.

The laser beam is removed from the light path of the
microscope by a dichroic mirror (D2, Edmund Optics,
NT69-901) which deflects the beam into a beam dump
(BD). Furthermore, a notch filter (NF, Edmund Optics
NT67-119, optical density OD4 at λ = 532 nm) is intro-
duced in front of the camera.

The colloidal particles are observed using an inverted
microscope (Nikon, Eclipse Ti-U) with usually a 20× ob-
jective (Nikon, CFI S Plan Fluor ELWD, N.A. 0.45) and
an optional additional magnification of 1.5× resulting in
a field of view of 431 × 345 µm2 and 288 × 230 µm2, re-
spectively. The images are recorded using an 8-bit CMOS
camera (PixeLINK, PL-B741F with 1280 × 1024 pixels,
if not stated otherwise).

To image the speckle pattern at low laser intensities
PL ≈ 1 mW, the dichroic mirror (D2) and notch filter
(NF) are removed. When examining the speckle pattern,
a very dilute sample (less than five particles in the field of
view) is used. The sedimented particles help to focus on
the sample plane and hence record the relevant plane of
the speckle pattern. The presence of a sample also leaves
the light path unchanged. This ensures that the recorded
speckle pattern represents the intensity distribution to
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which the particles are exposed.

III. CHARACTERISTICS OF SPECKLE
PATTERNS

If wavefronts of the same wavelength but with ran-
dom phases and amplitudes, as those created by the mi-
crolenses, interfere, speckle patterns occur. Speckles are
characterized by intensity fluctuations on a small length
scale but a uniform intensity on a larger length scale.
The statistics of the intensity fluctuations, such as the
intensity distribution and spatial correlation, have been
investigated in the context of coherent light reflected from
rough surfaces or transmitted through diffusers [53, 54,
73]. The same statistics are expected for the speckle pat-
tern created by the present diffuser [62, 64, 65]. Thus
below we follow [53, 54, 73].

A. Ideal Speckles

The interference of many monochromatic and linearly
polarized wavefronts with random phasors results in a
fully developed speckle pattern. In this case, the intensity
distribution of the speckle pattern follows an exponential
distribution

p(I) = 1
⟨I⟩ exp

(
− I

⟨I⟩

)
(1)

with the mean intensity ⟨I⟩ and standard deviation σ =
(
⟨
I2⟩− ⟨I⟩2)1/2 = ⟨I⟩.
The normalized standard deviation represents the con-

trast of the speckle pattern,

c = σ

⟨I⟩ =
√

⟨I2⟩ − ⟨I⟩2

⟨I⟩ . (2)

The contrast c quantifies the magnitude of the intensity
fluctuations. For an exponential distribution, i.e. a fully
developed speckle pattern, it reaches its maximum value
c = 1.

The spatial structure of the speckle pattern is charac-
terized by the normalized spatial autocorrelation func-
tion of the intensity [53, 54, 70, 73]

CI(∆r) = ⟨I(r)I(r + ∆r)⟩
⟨I(r)⟩2 − 1 , (3)

where I(r) is the intensity at position r and ⟨ ⟩ can rep-
resent both, an ensemble or a spatial average. A spa-
tially infinite pattern without long-range correlations is
self-averaging [74] and hence the spatial and ensemble av-
erages coincide. To a good approximation this also holds
for (finite) experimental speckle patterns, similar to the
ones considered here [20]. The extent of CI(∆r) provides

a measure for the correlation area of the speckle pattern,
that is the characteristic speckle area

AS =
∞∫∫

−∞

CI(∆r) d2∆r . (4)

B. Integrated Speckles

In an experimental situation, the optical elements and
especially their apertures as well as the finite detector
size have to be considered [53, 54, 73, 75]. The finite de-
tector size can be taken into account through the weight
function D(r), which represents the spatial sensitivity of
the detector. Accordingly, the effective detector area AD
can be calculated as

AD =
∞∫∫

−∞

D(r) d2r . (5)

In the following also the (deterministic) autocorrela-
tion function of the weight function D(r) is required,
which is given by

CD(∆r) = 1
AD

∞∫∫

−∞

D(r)D(r−∆r) d2r . (6)

Based on CD(∆r), the effective measurement area is de-
fined as

Am = AD
CD(0) = A2

D
∞∫∫

−∞
D2(r) d2r

. (7)

A detector centered at position r registers an intensity
ID(r) that is the integrated intensity taking the weight
function D(r) into account, i.e. [53, 75]

ID(r) = 1
AD

∞∫∫

−∞

D(∆r)I(r+∆r) d2∆r . (8)

The intensity distribution for a finite detector is de-
scribed to a good approximation by a Gamma distribu-
tion

p(ID) = 1
Γ(M)

(
M

⟨ID⟩

)M

IM−1
D exp

(
− M

⟨ID⟩ID

)
, (9)

where Γ is the Gamma function and the mean of the de-
tected intensity is identical with the mean of the ideal
speckle pattern, i.e. ⟨ID⟩ = ⟨I⟩, and the normalized stan-
dard deviation or contrast is cD = 1/M1/2, if noise and
correlations between neighboring pixels are absent. The
parameter M is given by

M =

⎛
⎝ 1

AD

∞∫∫

−∞

CI(∆r)CD(∆r) d2∆r

⎞
⎠

−1

, (10)
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which depends on the spatial characteristics of the
speckle pattern and detector, i.e. the correlation func-
tions of the intensity CI(∆r) (Eq. 3) and weight function
CD(∆r) (Eq. 6), respectively.

If the effective measurement area Am is large compared
to the speckle area AS, i.e. Am ≫ AS, many speck-
les contribute to the detected intensity ID(r). Then
M represents the (large) number of detected speckles,
M ≈ Am/AS ≫ 1 [53, 54, 75], and p(ID) approaches
a Gaussian distribution with mean ⟨I⟩ and normalized
standard deviation c. In the opposite limit of a very small
effective measurement area, Am ≪ AS, only one speckle
is detected. Thus M → 1 and p(ID) approaches the ex-
ponential distribution (Eq. 1). In this case, neighboring
detectors might no longer be independent. If, however,
the effective measurement area and speckle area are simi-
lar (Am ≈ AS), M can only be (numerically) calculated if
CI(∆r) and D(r) are known. Due to the complex effects
of the optical components on the speckle pattern, this
often is not the case and approximations must be used.

In the following we apply these relationships for
different detectors and thus D(r) (the different cases
are indicated by superscripts); circular (Du(r)) and
square (Dp(r)) detector pixels, which are also subjected
to smoothing (D�(r)) and binning (D�(r)), as well as
spherical (D⊙(r)) and cubic (D�(r)) particles acting as
‘detectors’.

1. Detector Pixel

In our experiments, the speckle patterns are detected
by uniform square pixels. Their weight function is

Dp(r) =
{

1 inside the pixel
0 outside the pixel (11)

and hence Apm = ApD are equal to the pixel area. Based on
this weight function, CpD(∆r) (Eq. 6) and IpD(r) (Eq. 8)
can be calculated. Furthermore, it is expected that p(IpD)
can be approximated by a Gamma distribution (Eq. 9).
However, to calculate the parameter Mp (Eq. 10), also
CpI (∆r) (Eq. 3) is required.

If the top-hat beam is approximated by a Gaussian
beam, the corresponding result for a Gaussian beam de-
tected by uniform square pixels [54, 75],

CpI (∆r) = exp
(

−π∆r2

As

)
, (12)

can be used. Then, Mp is given by

Mp=
[√

AS
Apm

erf
(√

πApm
AS

)

−
(

AS
πApm

){
1 − exp

(
−πApm

AS

)}]−2

. (13)

For a Gaussian beam detected by uniform circular pixels

Mu =Aum
AS

[
1 − exp

(
−2Aum

AS

)

×
{

I0

(
2Aum
AS

)
+ I1

(
2Aum
AS

)}]−1

, (14)

where I0 and I1 are modified Bessel functions of the first
kind and orders zero and one, respectively. Further ge-
ometries have been considered [20, 53, 70, 75], but are
less appropriate for the present situation.

To check the suitability of the above equations for our
experimental situation, in particular the approximation
of the top-hat beam by a Gaussian beam, these relations
will be compared to our experimental results in Sec. IV A.

2. Colloidal Particle

Colloidal particles are susceptible to electromagnetic
radiation if their refractive index is different from the one
of the suspending liquid [34, 35]. Since the particles are
not point-like, their response depends on the intensity
integrated over their volume [48, 66–68]. This is anal-
ogous to the extended detector described above, except
that the particle’s susceptibility (or polarizability) rather
than the detector efficiency is relevant. It is proportional
to the particle volume traversed by the beam. Since the
speckles are oriented in beam direction and their exten-
sion in beam direction is much larger than in the sample
plane [54, 70], the projection of the particle volume in
beam direction is considered. The (projected) particle
volume is taken into account through the weight func-
tion D⊙(r). For a homogeneous spherical particle the
normalized weight function is

D⊙(r) =
{

1
R

√
R2 − r2 if r ≤ R

0 if r > R
, (15)

and shown in Fig. 3B. To obtain its absolute value, mate-
rial specific parameters describing the light–particle in-
teraction have to be considered [34, 35, 68] and sum-
marized in a (r-independent) prefactor. Independent of
this constant prefactor, the effective measurement area
(Eq. 7), or rather effective particle area, becomes

A⊙
m = 8π

9 R2 . (16)

The (deterministic) autocorrelation function of the
weight function D⊙(r), that is C⊙

D (∆r) (Eq. 6), can only
be determined numerically [68]. Finally, taking into ac-
count the particle volume through D⊙(r), the integrated
intensity I⊙

D (r) can be calculated (Eq. 8) [66–68].
Exploiting the analogy between a colloidal particle and

a detector, we expect that the intensity distribution as
experienced by the particle, i.e. the rPEL, can be ap-
proximated by a Gamma distribution, similar to Eqs. 9
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and 10, but its parameter M has to be determined.
This analogy is explored and experimentally tested in
Sec. IV B.

IV. RESULTS AND DISCUSSION

A. Speckle Pattern

Different speckle patterns are created by changing the
size of the beam that illuminates the diffuser using the
variable beam expander. Magnifications between 3×
and 7× are possible yielding beam areas on the diffuser
0.3 cm2 . Ab . 1.7 cm2 (Tab. I). Stationary speckle pat-
terns as well as time-varying speckle patterns, created by
rotating the diffuser, are investigated and the data com-
pared to the relations presented above (Sec. III B 1) to
test their applicability to the present experimental situ-
ation.

1. Stationary Speckle Pattern

The observed intensities IpD(r) (Figs. 3A, 4, left) re-
semble speckle patterns with their characteristic inten-
sity fluctuations. A qualitative inspection indicates a
decreasing speckle size with increasing beam size. The
magnitude of the intensity fluctuations is quantified by
the intensity distribution p(IpD) (Fig. 5) and the contrast
c (Tab. I). The observed p(IpD) are well described by an
exponential distribution (Eq. 1), which suggests fully de-
veloped speckles. This is consistent with the fact that all
beam areas Ab are much larger than the microlens area
Al and hence many microlenses (Ab/Al > 104) are illu-
minated and, in addition, the detector pixels are much
smaller than the speckle area, i.e. Apm ≪ ApS . Only small
deviations from an exponential distribution are observed.
The smallest intensity occurs with a slightly larger prob-
ability. This is attributed to the finite exposure time and
sensitivity of the camera, which limit the minimum de-
tectable intensity. If, within the exposure time, too few
photons are registered, the pixel will record zero intensity
which thus occurs with a slightly too large probability.
Also the highest intensities are recorded slightly too fre-
quently due to noise together with the limited dynamic
range of the 8-bit camera given the large range of in-
tensity values. Still, the chosen exposure time and laser
power provide the optimum compromise.

The normalized standard deviation of p(IpD) or con-
trast c (Eq. 2) is found to be close to one (Tab. I), which
is consistent with fully developed speckles. However, the
contrast is slightly larger than one. This might be due
to the flat-top instead of a Gaussian beam [76] and addi-
tional noise, for example contributed by the camera [77].
The depolarization and scattering by the (very few) par-
ticles in the sample plane might also contribute. The
increase of c with decreasing beam area Ab is attributed
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FIG. 4. (Color online) (left) Speckle patterns IpD(r) created
with different beam areas Ab due to different magnifications of
the beam expander (as indicated, Tab. I). Intensities are rep-
resented as grey levels (scale at bottom). (right) Correspond-
ing power spectral densities with their values represented by
colors (logarithmic scale in arbitrary units at bottom). For
clarity the lowest frequencies are shifted to the center. The
spurious high values in x and y direction through the origin
are caused by boundary effects in the Fourier transform.
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FIG. 5. (Color online) Normalized intensity distributions
⟨IpD⟩ p(IpD) as observed in experiments with different beam ar-
eas Ab due to different magnifications of the beam expander
(as indicated, Tab. I). Each symbol is the average of four
data points. The line represents an exponential distribution
(Eq. 1).
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TABLE I. Experimental conditions with different magnifications of the beam expander, where the nominal magnifications serve
as labels. Parameters characterizing the speckle patterns, namely the ratio of the beam area to the mean microlens area, Ab/Al

where Al ≈ 2000 µm2, speckle contrast c (Eq. 2), and speckle area ApS (Eq. 4). Parameters characterizing the speckle patterns
convolved with the weight function D⊙(r) of a particle with radius R = 1.4 µm and thus A⊙

m = 5.5 µm2, i.e. parameters
characterizing the rPEL, namely the ratio of the effective particle area to the speckle size, A⊙

m/ApS , the parameter M, the
correlation area AU

S , the effective correlation area of the weight function A⊙
S = AU

S − ApS . Furthermore, the corresponding
symbols used in the figures are indicated.

experiment Ab/Al c A♣S (µm2) convolution with D⊙(r) A⊙
m/A♣S M AU

S (µm2) A⊙
S (µm2)

D BE 3× 15876 1.05 14.9 0.37 1.3 20.6 5.7
✩ BE 4× 28224 1.05 8.3 ★ 0.66 1.8 14.9 6.6
✶ BE 5× 44100 1.05 5.1 ❛ 1.07 2.6 11.8 6.7
✸ BE 6× 63504 1.04 3.5 ❝ 1.57 3.1 10.2 6.7
✻ BE 7× 86436 1.04 2.6 ❢ 2.08 3.7 9.4 6.7

 
 

C
I
(
r)

r ( m)

speckle
area
AS

BE 5x

FIG. 6. (Color online) Intensity correlation function CpI as
a function of ∆r in x (light green triangle, left) and y (dark
green triangle, right) directions as observed in the experiment
BE 5× (Tab. I). Predictions for a Gaussian beam detected by
square pixels CpI (∆r) (Eq. 12) are fitted to the two data sets
(solid lines). The length at which CpI decays to 1/e (indicated
for the x direction) is related to the speckle area ApS .

to slight changes in the divergence of the beam that has
not been corrected in this series.

To quantify the characteristic length scale of the fluc-
tuations, i.e. the speckle area ApS (Eq. 4), the spatial in-
tensity correlation function CpI (∆r) (Eq. 3) is determined
from the intensity IpD(r). It is separately calculated in x
and y direction (Fig. 6) to account for the slightly ellipti-
cal beam (Sec. II B). The prediction for a Gaussian beam
detected by a square pixel CpI (∆r) (Eq. 12) is fitted to
the experimental data sets. Despite the approximation
of the top-hat beam by a Gaussian beam, it describes
the data very well. The small deviations at large ∆r
indicate some non-Rayleigh statistics. This is also sug-
gested by the slightly too large contrast c (Tab. I) and
small deviations of the intensity probability distribution
p(IpD) from the ideal exponential case, and has been ob-
served already previously [78]. Furthermore, there are

small fluctuations at large ∆r which are attributed to
the circular apertures. The lengths at which CpI (∆r) de-
cays to 1/e, ∆rx and ∆ry (Fig. 6), provide a measure
of the speckle sizes in x and y directions, respectively,
and the speckle area ApS = π(∆r2

x+∆r2
y). They indicate

slightly elliptical speckles with an axial ratio of about 1.1,
consistent with the elliptical beam (Sec. II B).

For an effective measurement area much smaller than
the speckle area (Apm ≪ ApS), hence well above the
Nyquist limit ApS ≈ 2Apm = 2 px, equivalent information
can be obtained from the width of the power spectral
density (Fig. 4, right), which is inversely proportional
to the width of the spatial correlation function [79, 80].
With decreasing speckle area ApS , indeed the peak at low
frequencies becomes smaller and broader (Fig. 4, top to
bottom), consistent with the findings based on CpI (∆r).

2. Time-varying Speckle Pattern

Our set-up offers the possibility to rotate the diffuser
around the optical axis. While a rotation does not
change the intensity statistics, the actual speckle pattern
is changed and represents another realization, provided
the rotation angle ∆φ was large enough. The correlation
between two speckle patterns, IpD(φ, r) and IpD(φ+∆φ, r)
is quantified by the angular correlation function, namely

CpI (∆φ) = ⟨IpD(φ, r)IpD(φ+∆φ, r)⟩
⟨IpD⟩2 − 1 , (17)

where ⟨IpD⟩ is independent of the angle φ and ⟨ ⟩ rep-
resents an average over all pixels, i.e. all r, and realiza-
tions. As expected, CpI (∆φ) decreases with increasing
∆φ (Fig. 7). Only very small correlations, say 10 %,
are observed beyond ∆φc ≈ 2◦. Thus, rotations with
∆φ ≫ ∆φc are expected to result in essentially uncorre-
lated realizations of the speckle pattern.

The definition of CpI (∆φ) is analogous to the spatial
intensity correlation function CI(∆r) (Eq. 3), which can
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FIG. 7. (Color online) Angular intensity correlation func-
tion CpI (∆φ) based on speckle patterns obtained with ori-
entations of the diffuser that differ by ∆φ (Eq. 17). The
red line represents the calculation based on Eq. 18. Ex-
perimental conditions BE 5×, which implies a speckle area
ApS = 5.1 µm (Tab. I), a square field of view with lateral
length Lv = 202.2 µm and an exposure time of 1.1ms.

be used to calculate CpI (∆φ). A rotation of the diffuser
by ∆φ implies a displacement of the speckle pattern by
∆φ × r, which depends on the distance r = |r| from the
optical axis around which the speckle pattern is rotated.
Thus, IpD(φ, r)IpD(φ+∆φ, r) = IpD(φ, r)IpD(φ, r−∆φ×r),
which relates CpI (∆φ) to CpI (∆r). Averaging over a cir-
cular field of view with radius Rv and square pixels, and
using the correlation function for a Gaussian beam de-
tected by square pixels, CpI (∆r) (Eq. 12), yields

CpI (∆φ) = 1
πR2

v

∫ Rv

0
CpI (r∆φ) 2πr dr

= As
πR2

v

1
∆φ2

{
1 − exp

(
−πR2

v
As

∆φ2
)}

. (18)

For a square field of view with size L2
v and square pixels,

the corresponding relation involves the error function.
However, it can be approximated by a circular field of
view, i.e. Eq. (18), with an effective radius Rv ≈ 0.57 Lv,
which corresponds to a slightly larger effective area. This
prediction is confirmed by the experimental data (Fig. 7).

To fully characterize time-varying speckle patterns, the
angular velocity has to be considered. This is similar to
the situation in speckle contrast analysis, imaging appli-
cations and light scattering [81–84]. If the diffuser is ro-
tated, and hence the speckle pattern changed, faster than
the particles can follow, i.e. than their relaxation time,
the colloidal particles effectively experience a temporally
averaged and hence microscopically flat intensity pattern
instead of a speckle pattern (Fig. 2). Then, only time-
averaged intensities are of interest. Both, averages over
many images with short exposure times as well as indi-
vidual images with long exposure times, are considered.
With appropriate camera parameters, both procedures

yield equivalent time-averaged intensities [83]. The aver-
age over many realizations indeed shows significantly re-
duced fluctuations compared to the static speckle pattern
(Fig. 2A,B). Nevertheless, a small modulation remains,
even in the azimuthal average (Fig. 2C).

B. Random Potential Energy Landscape

Having investigated the speckle patterns, we now con-
sider their effect on spherical colloidal particles that are
characterized by the weight function D⊙(r) (Eq. 15,
Sec. III B 2). The effect of a speckle pattern can be de-
scribed by an external potential U(r), the rPEL (as the
one shown in Fig. 3C). We will now determine the prop-
erties of U(r).

1. Time-averaged local particle density

The speckle pattern affects the distribution of parti-
cles. It is quantified by the time-averaged local par-
ticle density ρ(r) which is determined from the parti-
cle locations [85]. The density ρ(r) for a (quasi) two-
dimensional layer of particles with a mean surface frac-
tion ⟨ρ⟩ = 0.25, i.e. about 1200 particles in a field of view
of 171 × 171 µm2, is shown in figure 8. A qualitative
inspection reveals that ρ(r) resembles some of the char-
acteristics of the rPEL U(r) (Fig. 3C). It exhibits ran-
dom fluctuations with a comparable characteristic length
scale, but also longer-ranged correlations. Furthermore,
the maxima of ρ(r) are more pronounced while the sad-
dle points and minima are blurred. Within reasonable
measurement times, the low ⟨ρ⟩ and the strongly disor-
dered potential hence do not provide sufficient statistics
to obtain space-resolved information on ρ(r) and thus
the potential U(r). This suggests to investigate samples
with larger ⟨ρ⟩. However, a straight-forward determi-
nation of U(r) from ρ(r) through the Boltzmann distri-
bution requires that particle–particle interactions can be
neglected and thus that the sample is dilute. In more
concentrated systems, the determination of U(r) requires
to apply more involved methods, e.g., liquid-state the-
ory [29] or Inverse Monte Carlo Simulations [86]. This is
beyond the scope of the present work.

2. Convolution with the Weight Function of a Spherical
Particle

To avoid this complication, we investigate the convo-
lution of the speckle pattern with the weight function of
a spherical particle, D⊙(r), and, instead of the full U(r),
determine the statistics of U(r), namely the distribution
of its values, the magnitude of its fluctuations and its cor-
relation area. In the case of a particle exposed to a light
field, D⊙(r) describes the susceptibility of the particle to
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FIG. 8. Time-averaged local particle density ρ(r) of a (quasi)
two-dimensional layer of spherical polystyrene particles with
sulfonated chain ends with radius R = 1.4 µm, polydispersity
3.2 % and mean surface density ⟨ρ⟩ = 0.25 in a speckle pat-
tern (BE 5×, Tab. I) created using a moderate laser power
(PL = 1640 mW). About 37 000 images at 3.75 fps (AVT,
Pike F032B) were recorded and averaged. Densities are rep-
resented as grey levels (logarithmic scale in arbitrary units).

light (Eq. 15), but is formally identical to a detector effi-
ciency. The convolution of D⊙(r) with the intensity pat-
tern I(r) yields the total intensity I⊙

D (r) that is ‘detected’
by a particle at position r (Eq. 8). Due to the light–
matter interaction [34, 35, 68, 87–89], I⊙

D (r) represents
an external potential U(r) = I⊙

D (r) imposed on the parti-
cle, that is the rPEL. Since D⊙(r) takes into account the
volume of the particle, the extended colloidal particle at
position r in the speckle pattern I(r) can be regarded as
a point-like particle in the potential U(r) = I⊙

D (r). This
procedure and a typical U(r) are illustrated in Fig. 3. It
has already successfully been applied to micron-sized col-
loidal particles in a one-dimensional rPEL; experiments
and simulations yielded consistent results [40].

Potentials U(r) obtained by convolving experimental
speckle patterns IpD(r) with the weight function D⊙(r)
(Eqs. 8, 15) [40, 67, 68, 90] are quantitatively investigated
in the following. This allows us to test whether p(I⊙

D ) =
p(U) can be described by a Gamma distribution (Eq. 9)
and to find an approximation for the parameter M .

On a qualitative level, U(r) appears washed out com-
pared to the speckle pattern (Fig. 3) due to the convo-
lution with D⊙(r). The magnitude of the fluctuations is
reduced and their characteristic length scale is increased,
in particular if the particle is large. This is consistent
with experimental observations (Fig. 8).

The distribution of potential values p(U) depends on
the speckle area ApS (Eq. 4) and the effective particle
area A⊙

m = (8π/9)R2 (Eq. 16). If ApS is kept constant,
the effect of the particle area A⊙

m on p(U) can be studied
(Fig. 9A). We consider particles with radii in the range
0.3 µm ≤ R ≤ 5.0 µm, which are large enough to be ob-
served with the microscope. A small R or A⊙

m leads to an

almost exponential distribution and develops into an ap-
proximately Gaussian distribution as A⊙

m increases. Cor-
respondingly, for constant A⊙

m but decreasing ApS , a sim-
ilar transition from an exponential to an approximately
Gaussian distribution is observed (Fig. 9B). More gen-
eral, similar distributions are obtained for comparable
A⊙

m/ApS (Fig. 9C) and thus p(U) appears to only depend
on this ratio with its shape changing from an almost ex-
ponential distribution to an approximately Gaussian dis-
tribution upon increasing A⊙

m/ApS .
For all A⊙

m and ApS , a Gamma distribution (Eq. 9) is
fitted to the data. The Gamma distribution describes
the distribution of potential values p(U) well and only
depends on A⊙

m/ApS . Only small deviations are observed,
similar to those reported before [91]. They are attributed
to the approximations leading to the Gamma distribu-
tion [54], e.g. a Gaussian instead of a top-hat beam and
the presence of finite optical components and detector
pixels, and a possible effect of the (very few) particles on
the speckle pattern (Sec. IV A).

The fit of the Gamma distribution to the data yields
the parameter M (Eq. 9, Fig. 9), which is related to the
contrast c and standard deviation σ. In the case of the
potential, σ represents the magnitude of the fluctuations
or ‘roughness’ of the random potential U(r). Thus we
consider M−1 ∼ σ2. Independent of the specific parti-
cle and speckle sizes, M−1 only depends on A⊙

m/ApS and
decreases with increasing A⊙

m/ApS (Fig. 10). Thus, the
magnitude of the fluctuations only depends on the num-
ber of speckles that interact with a particle.

The correlation area AU
S of the potential U(r) is ob-

tained from the length at which the correlation function
CU (∆r) decays to 1/e (Fig. 11, Tab. I). The correlation
area of the intensity or speckle area ApS decreases with
increasing beam size and hence also AU

S . The difference
between both values is the effective correlation area of
the weight function; A⊙

S = AU
S − ApS (Tab. I). The value

of A⊙
S only depends on the weight function D⊙(r) as long

as the effective particle area A⊙
m is larger than the speckle

area ApS , consistent with the data (Tab. I).

3. Convolution with Other Weight Functions

Instead of convolving the intensity IpD(r) with the
weight function of spherical particles, D⊙(r), it is con-
volved with the weight function of cubic particles, D�(r),
with different effective particle areas A�

m. A similar
M−1(A�

m/ApS) is obtained (Fig. 10, magenta ×).This in-
dicates that the precise shape of the particle is not cru-
cial, as long as it has the same effective particle area Am.

Furthermore, the effect of smoothing is investigated.
The intensity IpD(r) is smoothed using a filter before
it is convolved with D⊙(r). The filter replaces each
pixel’s intensity IpD(r) by the average intensity of the
n × n pixels surrounding the pixel, I�D (r). Smoothing
is equivalent to the convolution of the intensity with
D�(r) described above, but I�D (r) in addition is sub-
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FIG. 9. Normalized distribution of potential values ⟨U⟩ p(U) calculated by the convolution of an experimentally-determined
speckle pattern IpD(r) with the weight function D⊙(r) of a colloidal particle for (A) different effective particle areas A⊙

m and
constant speckle area ApS = 5.1 µm2 (BE 5×, Tab. I), (B) different ApS and constant A⊙

m = 5.5 µm2 and (C) different A⊙
m/ApS .

The different conditions and the inverse of the fit parameter M are summarized in the table. The solid lines represent fits by
Gamma distributions (Eq. 9) and dashed lines in (C) fits by an exponential and a Gaussian distribution as indicated.

sequently convolved with D⊙(r). Both yield virtually
identical results (Fig. 10, red +, green +) , as long as
the smoothing is taken into account in the calculation of
AU

S , i.e. AU
S = A⊙

S +A�S +ApS . This becomes increasingly
more significant as smoothing extends over larger areas.

Finally, IpD(r) is binned into larger ‘meta pixels’ re-
sulting in a larger effective measurement area A�

m, but
smaller number of (meta) pixels. This is in contrast to
smoothing, where the number of pixels is maintained.
The corresponding intensity I�

D (r) mimicks a camera
with larger but less pixels. Hence, the number of speckles
in the effective measurement area is increased, A�

m/ApS >
Apm/ApS . Nevertheless, for a sufficient number of meta
pixels (above about 20), p(I�

D ) can be described in good
approximation by a Gamma distribution (Eq. 9, data not
shown) and M−1(A�

m/Aps ) shows the same dependence on
A�

m/ApS (Fig. 10, blue asterisk).
These findings suggest that the dependence of M−1

on Am/AS does not strongly depend on the experimen-
tal conditions as long as they are properly taken into
account through Am and AS. Thus, our experimental
situation, namely a top-hat beam and a particle as ‘de-

tector’, appears well approximated by a Gaussian beam
and a square or circular detector. Indeed, M as given
by Eqs. 13 or 14, which both only depend on the ratio
Am/AS, reproduces our findings very well (Fig. 10, lines).
This confirms previous experimental results for similar,
but not identical, speckle patterns and optical geome-
tries [70, 75]. We hence established an appropriate de-
scription of the statistics of the rPEL, U(r), imposed on
the colloidal particles. In particular, the distribution of
potential values can be characterized by a Gamma distri-
bution (Eq. 9) and the parameter M−1, quantifying the
magnitude of its fluctuations, by Eq. 13 or 14.

V. CONCLUSIONS

We experimentally realize random potential energy
landscapes exploiting the interaction of matter with light.
Colloidal particles are investigated which act as ‘detec-
tors’ in a random intensity pattern, that is laser speckles.
The speckle pattern is produced using an optical set-up
which is based on a special diffuser. The diffuser cre-
ates a top-hat beam containing a speckle pattern. This
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FIG. 10. (Color online) Parameter M−1, which quantifies
the fluctuations of the potential U(r), as a function of the
ratio of the effective particle area Am and the speckle area
AS, for different conditions (as indicated in Fig. 9) as well as
(magenta ×) cubic (instead of spherical) particles with differ-
ent sizes, i.e. effective particle areas A�

m, in the experimental
condition BE 5×, (red +, green +) spherical particles in an
intensity pattern which has been smoothed over 5 × 5 and
10 × 10 pixels, respectively, and (blue asterisk) a point-like
particle, i.e. no convolution, in an intensity pattern which has
been binned over different numbers of pixels (1×1 to 50×50).
The dashed grey and solid black lines represent predictions for
a Gaussian beam and a square (Eq. 13) and circular (Eq. 14)
detector, respectively.

 BE 3x
 BE 4x
 BE 5x
 BE 6x
 BE 7x  

 

C
I 
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FIG. 11. (Color online) Intensity, CpI (∆r) (connected open
symbols), and potential, CU(∆r) (connected filled symbols),
correlation functions as a function of ∆r, which are based
on the intensity IpD(r) and its convolution with the weight
function D⊙(r) of a particle with radius R = 1.4µm, respec-
tively (Tab. I). The lengths at which the correlation functions
decay to 1/e are related to the speckle areas ApS and the cor-
relation areas of the potential, AU

S , respectively, and hence to
the effective correlation area of the weight function A⊙

S .

speckle pattern is quantitatively characterized. In the
standard experimental conditions, the intensity distribu-
tion is found to follow an exponential distribution with
the normalized standard deviation or contrast being close
to one, which indicates that fully developed speckles are
formed. Their size can be controlled through the size of
the illuminating laser beam.

The interaction of the particle with the speckle pat-
tern is described analogous to a detector recording the
intensity. However, the intensity that is ‘detected’ by the
particle represents an external potential that is imposed
on the particle, the rPEL. It is found that the distribu-
tion of energy values of the rPEL can be described by
a Gamma distribution and approximations for the stan-
dard deviation of the distribution are identified. Using
these approximations, thus, the statistics of the rPEL
can quantitatively be described. These relations together
with the set-up, can be exploited to produce rPELs with
the desired distribution of energy values and correlation
lengths, where the shape of the distribution can be varied
in a broad range, from exponential to Gaussian.

When colloidal particles are exposed to such an inten-
sity pattern, that is an rPEL, their spatial arrangement
and dynamics will be affected as demonstrated previ-
ously [38, 40, 42, 43] and in agreement with theoreti-
cal predictions [1, 27–33]. In these previous studies, the
speckle patterns have been created using a spatial light
modulator [39]. Compared to this method, the present
set-up offers a much larger field of view and thus the
possibility to simultaneously observe a much larger num-
ber of particles. The distribution of potential energy val-
ues and their spatial correlation furthermore are tunable.
In addition, the diffuser can be rotated and hence the
speckle pattern varied. If this is faster than the par-
ticle dynamics, the particles experience a time-averaged
and hence flat effective potential. Radiation pressure still
pushes them towards the wall and the increased hydro-
dynamic interactions slow them down. Therefore, the
effect of hydrodynamic wall–particle interactions can be
determined independently.
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Colloids Exposed to Random Potential Energy Landscapes: from Particle
Number Density to Particle-Potential and Particle-Particle Interactions
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Egelhaaf1
1)Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf,
Germany
2)Department of Chemical Physics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001,
Israel
3)TIFR Centre for Interdisciplinary Sciences, Hyderabad 500075, India
(Dated: 8 July 2016)

Colloidal particles were exposed to a random potential energy landscape (rPEL) that has been created op-
tically via a speckle pattern. The mean particle density as well as the potential roughness, i.e. the disorder
strength, were varied. The local probability density of the particles as well as its main characteristics were
determined. For the first time, the disorder-averaged pair density correlation function g(1)(r) and an analogue
of the Edwards-Anderson order parameter g(2)(r), which quantifies the correlation of the mean local density
among disorder realisations, were measured experimentally and shown to be consistent with replica liquid
state theory results.

PACS numbers: 05.20.Jj, 47.57.-s, 64.70.pv, 82.70.Dd

I. INTRODUCTION

The potential energy landscape (PEL) of a system de-
pends on the coordinates and/or other parameters of its
constituents.1 The concept of a PEL is successfully used
in many fields of science to determine the properties and
behavior of systems ranging from small, large and poly-
meric molecules, proteins and other biomolecules to clus-
ters, glasses and biological cells.1 It is also applied to de-
scribe the transport over atomic surfaces,2–4 in materials
with defects (e.g., ions in zeolites5 or charge carriers in
conductors with impurities6), in inhomogeneous media7,8

(e.g., porous gels,9 cell membranes10 or cells11–14) or in
the presence of fixed obstacles as in a Lorentz gas.15 They
are also used to determine the rates of (bio)chemical
reactions,1,16 the folding of proteins and DNA,17–23 as
well as the particle dynamics in dense suspensions close to
freezing,24 in glasses4,25–35 or, more general, in crowded
systems.12

We focus on random potential energy landscapes
(rPEL), which have been used in the interpretation of
several experimental observations. For example, rPEL
with a Gaussian distribution of energy values with a
width of about the thermal energy have been used to de-
scribe the behavior of RNA, proteins and transmembrane
helices.19,36,37 Although a rPEL might only represent a
crude approximation for many experimental situations,
it often provides a very useful initial description of the
effect of disorder on the dynamics.5,35,38

The PEL is experimentally realised by exploiting the
interaction of light with colloidal particles,39,40 which was
already applied to realise, e.g., sinusoidal41–45 or random
landscapes.46–51 (See 49 for a review.) Here we inves-
tigate how a rPEL modifies the spatial arrangement of
ensembles of colloidal particles.1,7,52 Local density vari-
ations occur, which are related to the distribution of

energy levels p(U) and the spatial correlation function
CU (r) of the underlying potential. For various disorder
strengths, controlled through the laser power P , and par-
ticle concentrations, i.e. mean particle number densities
ρ0, we track particle positions and calculate the local den-
sity ρ(r, t) at each time t, based on which different corre-
lation functions are obtained: the disorder-averaged pair
distribution function or pair density correlation function
g(1)(r),53 and, to characterize the quenched disorder, the
density correlation g(2)(r),52,54 similar to the Edwards-
Anderson order parameter,55–57 which is intensively used
in the context of spin glasses and has been proposed in
the context of pinned vortex liquids54 and calculated in
computer simulations.52,58 However, as yet it has never
been measured in an experiment. In this paper, we pro-
ceed to do precisely that. This analysis provides the
main characteristics of the effect of the disorder, i.e. the
rPEL, with respect to particle-potential as well as pair
and higher order inter-particle interactions and can easily
be extended to other systems, such as magnetic bubble
arrays in a disordered potential,59–61 particles on pat-
terned surfaces62 and vortex liquids as well as glasses in
the presence of random pinning.58,63

II. MATERIALS AND METHODS

A. Optical Set-up

A random intensity distribution, i.e. a speckle pattern,
was created by directing an expanded laser beam (Laser
Quantum, Opus 532, wavelength 532 nm, maximum in-
tensity Pmax = 2.6 W) onto a microlens array (RPC
Photonics, Engineered Diffuser™ EDC-1-A-1r, diameter
25.4 mm)64,65 and subsequently focussing the modified
beam into the sample plane of an inverted microscope.
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This results in a macroscopically uniform beam with a so
called top-hat intensity distribution. However, the wave-
fronts from the randomly-distributed microlenses inter-
fere in the sample plane. This leads to microscopic in-
tensity variations, so-called laser speckles, to which the
particles were exposed. The interaction of the particles
with the speckle pattern can be described by a rPEL.
The particle size roughly matches the speckle size, but
is much larger than the laser wavelength. Moreover, the
laser intensity is spread over a large field of view. Thus,
we neither expect nor observe optical binding effects66,67

or light field-induced dispersion forces.68 The colloidal
particles were observed using the inverted microscope
(Nikon, Eclipse Ti-U) with a 20× objective (Nikon, CFI S
Plan Fluor ELWD, numerical aperture 0.45). A detailed
description of the optical set-up and a statistical analy-
sis of both the intensity pattern and the resulting rPEL
can be found in ref. 51, where the present conditions
correspond to ‘BE 5×’.

B. Samples

Samples consisted of spherical polystyrene particles
with sulfonated chain ends (Invitrogen, diameter D =
2.8 µm, polydispersity 3.2 %) dispersed in purified water
(ELGA purelab flex, electrical resistivity 18.2×104 Ωm).
Three glass cover slips (#1.5) and a microscope slide (all
from VWR) were assembled to form a small capillary.69

After the capillary was filled with the dispersion, it was
sealed with UV-glue (Norland, NOA61). Due to the den-
sity difference between particles and water, the particles
sedimented and formed a quasi two-dimensional layer at
the bottom of the sample cell.

C. Data Acquisition

Each measurement consisted of K ≈ 27, 000 images,
which were recorded at 3.75 frames per second using an 8-
bit camera (AVT, Pike F-032B with 640×480 pixels and
pixel pitch of 0.372 µm). Particle positions were deter-
mined using standard procedures.70 Because the system
evolves from a quenched random distribution towards its
equilibrium distribution, care was taken that the correla-
tion functions are not affected by the relaxation process,
i.e. do not show a time dependence.71

Based on the particle positions, we determined the
number of particles N (xm, yn, t, l) in each region at r =
rmn = (xm, yn) at each time t for a particular realisation
of the potential l (out of L different realisations), and
calculated the local particle density as

ρ(xm, yn, t, l) = N (xm, yn, t, l)
∆x∆y

, (1)

where ∆x = xm−xm−1 and ∆y = ym−ym−1, with ∆x =
∆y for all m = 1...M , n = 1...N . Hence the quadratic
regions all have the same size of 0.186 µm, which is well

FIG. 1. (a) Random potential energy landscape (rPEL), i.e.
U(r), as calculated by convolving the measured intensity pat-
tern I(r) with the projected volume of a particle of diameter
D = 2.8 µm, (b) its normalized probability density of energy
values p(U) and (c) its normalized spatial correlation function
CU(r)/CU(0) with 1/e-width 0.69D indicated by a cross.

above the uncertainty of the particle positions, about
0.05 µm.70 It is noteworthy that these regions do not co-
incide with pixels of the camera. The distance r between
two regions at r and r′ is r = |r − r′|, which depends on
the location of both regions and thus on m, m′, n and
n′. It was divided into bins of ∆r = 0.2∆x, which rep-
resents a compromise between good statistics and high
resolution.

III. RESULTS AND DISCUSSION

A. Random Potential Energy Landscape (rPEL)

The colloidal particles were exposed to a rPEL by ex-
ploiting the interaction of light with particles having a
refractive index different from the one of the dispers-
ing liquid. Their interaction usually is described by two
forces:39,40 a scattering force, which pushes the particles
along the beam, and a gradient force, which pulls par-
ticles with a larger refractive index than the one of the
solvent towards regions of high intensity. This effect is
typically applied in optical tweezers which are used to
trap or manipulate colloidal particles.39,40,72,73 Rather
than single focused beams, an extended light field can be
used to create a PEL.49 To predict not only the shape of
the PEL but also its amplitude, the particles’ susceptibil-
ity or polarizability needs to be known, which typically is
not the case. Nevertheless, it is possible to calculate the
typical characteristics of the PEL by integrating the local
intensity I(r) over the particle’s projected volume, thus
taking the particle volume traversed by the light beam
into account.74 This results in an estimate of the poten-
tial U(r) imposed on a particle, which then is considered
to be point-like.51

Fig. 1 (a) shows one realisation of the rPEL, i.e. U(r),
as a grey scale image which was obtained by convolv-
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FIG. 2. Different laser powers P (L0 to L3), corresponding
to different mean potential values ⟨U⟩ or disorder strengths,
and mean particle densities ρ0 (C1 to C3) are investigated.
For four conditions sketches showing particles in a rPEL are
shown.

ing a recorded intensity pattern with the projected vol-
ume of a particle. The rPEL was characterized by
the distribution of energy values p(U), which follows a
Gamma distribution75 with shape parameter M = 2.6
(Fig. 1 (b), for details see condition BE5× in Tab. II
of ref. 51). The length scale of the fluctuations was
described by the normalized spatial covariance function
CU (r) = ⟨U(r′)U(r′ + r)⟩r′/⟨U(r′)⟩2

r′ − 1, whose az-
imuthal average can be described by a Gaussian distri-
bution CU (r) = exp(−(r/ξ)2) with ξ = 0.69D (Fig. 1
(c)).

B. Particles in the rPEL

In the experiments, the particle concentration, i.e. the
mean particle number density ρ0 or the particle area
fraction φA = π(D/2)2ρ0, as well as the laser power P ,
and hence the mean potential value ⟨U⟩ and the disorder
strength, were varied, whereas the shape of the distribu-
tion, p(U), and the spatial correlation function, CU (r),
remain unchanged (Fig. 2). We consider three differ-
ent ρ0 (C1: ρ0 = 0.007 µm−2, C2: ρ0 = 0.041 µm−2,
C3: ρ0 = 0.072 µm−2, corresponding to area fractions
φA = 0.045, 0.25 and 0.45, respectively) as well as four
different P (L0: 0 mW, L1: 917 mW, L2: 1640 mW, L3:
2600 mW), and indicate conditions by CiLj.

Fig. 3 shows images of colloidal particles (top) and
their trajectories (bottom) for two different mean par-
ticle densities ρ0 (C1, C3) and increasing laser power P
and hence disorder strength (L0, L1, L3), where L0 corre-
sponds to the absence of a laser field and hence free diffu-
sion. (For images at other combinations of mean particle
density and laser power see Fig. 12 in the appendix.) Nei-
ther for the low nor for the high mean particle density
an effect of the potential is immediately visible in the im-

ages. However, there is a clear effect of the rPEL on the
trajectories. For the low mean particle density C1, as the
disorder strength is increased, the motion of the particles
is restricted to small areas and a few particles even stay in
one potential minimum for the entire measurement time.
At high mean particle density C3 and low laser power L1
(Fig. 3 (f)) almost the whole field of view is sampled by
the particles. This indicates that the particles are very
mobile and exchange positions. In contrast, for high po-
tential roughness L3 (Fig. 3 (j)) some particles appear
stuck in potential minima. This prevents other particles
from exploring their neighbourhood and leads to regions
depleted of particle centres.

The dynamic behaviour has important consequences
on how particles sample a PEL. Since experiments have
a limited measurement time, sampling can be incomplete
and hence local information only be partially accessi-
ble. The completeness of sampling determines whether
time-averaged quantities might hold reliable local infor-
mation and describe all points in a PEL, or whether only
spatially-averaged quantities might provide reliable infor-
mation. Very low mean particle densities result in only
limited information on some locations of the PEL. Upon
increasing the mean particle density, sampling can be-
come more complete (e.g. C3L1). However, higher mean
particle densities also enhance particle-particle interac-
tions, which hence might dominate particle-potential in-
teractions. This reduces correlations with the underlying
potential. Moreover, a strongly varying potential can also
result in an ‘undersampling’ of energetically unfavourable
areas, i.e. potential maxima, since they are avoided by
the particles. The unexplored areas might depend on the
initial positions of the particles, due to the quenched dis-
order of the potential. An average over different disorder
realisations might help, but excludes the determination
of local quantities, which loose their relevance.

C. Time-Averaged Particle Density

First, we consider the time-averaged (or thermal-
averaged) local particle density

⟨ρ (r, t, l)⟩t = 1
K

K∑

k=1
ρ(xm, xn, t, l) . (2)

Its ensemble and disorder average gives the mean par-
ticle density ρ0 = [⟨ρ (r, t, l)⟩t,r]l, where ⟨...⟩t, ⟨...⟩r and
[...]l denote time, ensemble and disorder averages, respec-
tively. In the experiments presented here, the large field
of view provides a sufficient disorder average within a
single rPEL realisation. Thus here the total number of
disorder realisations L = 1 and the sample average im-
plies an ensemble and disorder average.

Fig. 4 shows the time-averaged local particle density
⟨ρ(r, t)⟩t, for large laser power L3 and high mean parti-
cle density C3 (cf. Fig. 3 (i) and (j)). (For further exam-
ples see Fig. 11 in the appendix.) For dilute samples in
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FIG. 3. (top) Micrographs of parts of the samples (178 × 178 µm2) and (bottom) particle trajectories in a central region
(38 × 38 µm2, indicated in the micrographs) during a time ∆t = 7200 s after the micrograph has been taken, for different laser
powers L0, L1, L3 (left to right) and mean particle densities C1, C3.

FIG. 4. Time-averaged local particle density ⟨ρ(r, t)⟩t for high
laser power L3 and large mean particle density C3. The log-
arithmic colour scale indicates low (ρ0 = 1 × 10−4 µm−2) to
high (ρ0 = 0.63 µm−2) local densities by dark blue to red
colours.

equilibrium, ⟨ρ (r, t)⟩t is related to U(r) (Fig. 1 (a)) by
the Boltzmann distribution. At mean particle densities
which result in reasonable statistics, however, ⟨ρ (r, t)⟩t is
affected by both, U(r) and particle-particle interactions.

The local time-averaged particle density ⟨ρ(r, t)⟩t is
characterized by the two-dimensional density autocovari-
ance function C(r), i.e. the density autocorrelation func-
tion of ⟨ρ(r, t)⟩t around the mean ρ0, which is, making
use of the Wiener-Khinchin theorem,76 given by

C(r) =
[⟨

⟨ρ (r′, t)⟩t ⟨ρ (r′ + r, t)⟩t

⟩
r′

]
l
− ρ2

0

=
[
F -1 (F {⟨ρ(r, t)⟩t - ρ0} F∗ {(⟨ρ(r, t)⟩t - ρ0)})

]
l

(3)

where F , F−1, and ∗ indicate the Fourier transforma-
tion, inverse Fourier transformation, and complex con-

jugation, respectively. Since isotropic samples are con-
sidered, an azimuthal average is carried out; C(r) =
(1/2π)

∫ 2π

0 C(r, Θ)dΘ.
In Fig. 5, the azimuthally-averaged density autoco-

variance function C(r) is shown for different laser pow-
ers. It shows similar behaviour for all investigated ex-
perimental conditions since varying the laser power only
changes the disorder strength but not the shape or statis-
tics of the rPEL. A pronounced peak is located at the
origin which is well described by a Gaussian distribu-
tion C(r) = σ2 exp(−(r/lc)2) (Fig. 5 inset). Its ampli-
tude σ2 = C(0) = ⟨⟨ρ(r, t)⟩2

t ⟩r − ρ2
0 is the variance of

the local particle density and describes the probability
to find a, not necessarily the same, particle in a specific
region for the entire measurement time. Thus the am-
plitude σ2 characterizes the mean depth of the potential
minima as sampled by the particles. It increases with
potential strength about linearly and also increases with
ρ0 (Fig. 6(a)). With increasing ρ0, the particles occupy
increasingly higher potential values thus broadening the
range of occupied values and increasing σ. The correla-
tion length lc (Fig. 6(b)) characterizes the width of the
potential minimum as sampled by the particles. It de-
creases with laser power P , i.e. disorder strength, re-
flecting the tighter pinning. It also depends on the mean
particle density ρ0. For low ρ0, particle-potential interac-
tions dominate, whereas with increasing ρ0, the particles
occupy increasingly higher potential values within the
same minimum and hence lc increases. In contrast, for
high ρ0, particle-particle interactions dominate and the
area fraction occupied by particles becomes important.
Then lc is mostly determined by the particle diameter D
rather than the speckle size and hence slightly decreases
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FIG. 5. Azimuthally averaged autocovariance or spatial auto-
correlation function C(r) of the time-averaged particle density
⟨ρ(r, t)⟩t as a function of normalized distance r/D for differ-
ent laser powers P (L1-L3, indicated by colours) and increas-
ing mean particle density ρ0 (indicated by arrows). Inset:
Same data with Gaussian fits to data corresponding to mean
particle density C3 as black lines with symbols representing
different laser powers (as indicated).

before reaching a constant level. The height of this level
decreases with potential strength, since the smaller the
particles’ excursions the smaller lc.

The primary peak of C(r) is followed by a minimum,
which is more pronounced as the laser power increases
(Fig. 5, indicated by arrow). It occurs at a distance com-
parable to the correlation length of the potential, 0.69D
(Fig. 1), independent of both, P and ρ0. In contrast, the
minimum becomes more pronounced with P and ρ0. It is
caused by particles pinned in potential minima, which ex-
clude particles from their vicinity (Fig. 3 (f) and (j)). The
higher order minima (and maxima) are roughly spaced by
multiples of the particle diameter D. These oscillations
are caused by either particle-potential or, in the case of
high ρ0, multiple-particle interactions and thus reflect
spatial arrangements of neighbouring particles, such as,
e.g., caused by depletion and caging.

D. Correlation Functions

To characterize the particle-potential and particle-
particle interactions, based on the measured time-
averaged local particle density ⟨ρ(r, t)⟩t we determine
the pair distribution or pair density correlation func-
tion g(1)(r), the off-diagonal density correlation function
g(2)(r) and the total correlation or Ursell function h(r)
which all are normalized by ρ2

0.
The off-diagonal density correlation function g(2)(r)

is an analogue of the Edwards-Anderson order param-
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FIG. 6. (a) Standard deviation σ and (b) correlation length
lc of the time-averaged particle density ⟨ρ(r, t)⟩t as a function
of mean particle density ρ0 shown for different laser powers
P (L1-L3, as indicated).

eter.52,77 It is defined by

g(2)(r) = 1
ρ2

0

[
⟨⟨ρ (r′, t, l)⟩t ⟨ρ (r′+r, t, l)⟩t⟩r′

]
l

(4)

and hence is the normalized spatial correlation function
of the mean local density among disorder realisations.
It quantifies the probability for a particle to be pinned
by the rPEL, i.e. it quantifies whether a certain loca-
tion is still occupied by a particle after an arbitrarily
long time period.77 Therefore it describes a coupling be-
tween spatial disorder of pinning sites and particle po-
sitional ordering in time as well as multiple-particle in-
teractions. Without an external potential, i.e. vanishing
disorder strength, and for low enough mean particle den-
sities, where particle-particle interactions are not impor-
tant, g(2)(r) = 1. Application of an external quenched
disorder, here in the form of the speckle pattern of the
external laser field, disrupts this conservation law locally
and thereby breaks the corresponding symmetry. This
phenomenon is directly observed in the form of the real
space inhomogeneities introduced in the density profile.
The off-diagonal density correlation function g(2)(r) char-
acterizes the order parameter of this symmetry-broken
disordered state. Furthermore, for a large field of view
and hence disorder averaging in one single realisation of
the rPEL, g(2)(r) = C(r)/ρ2

0 + 1. We consider the az-
imuthal average g(2)(r). It is calculated from the exper-
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FIG. 7. (a) Azimuthally averaged off-diagonal density corre-
lation function g(2)(r), (b) pair density correlation function
g(1)(r), and (c) total correlation function h(r) as a function
of the normalized distance r/D for different laser powers P
(L1-L3, indicated by arrows) and mean particle densities ρ0
(C1-C3, as indicated). The data corresponding to C2 and C3
were shifted along the y-axis by +2 and +4, respectively.

imental data by

g(2)(r) = 1
ρ2

0

1
L

L∑

l=1

1
MN

MN∑

m′,n′=1

× 1
Nr

∑

m,n

[{
1
K

K∑

k=1
ρ(xm′ , yn′ , t, l)

}

×
{

1
K

K∑

k=1
ρ(xm′+m, yn′+n, t, l)

}]
(5)

where m and n are chosen such that regions with their
centres in an annulus between radii r−∆r/2 and r+∆r/2
are included with Nr the number of such regions.

Fig. 7 (a) shows g(2)(r) for different mean particle den-
sities ρ0 (C1-C3) and laser powers P (L1-L3, indicated by
arrows). (Further conditions are shown in Fig. 13 in the

appendix.) For large distances r the time-averaged par-
ticle density is uncorrelated and thus g(2)(r → ∞) = 1.
By contrast, correlations between high local densities, re-
flecting potential minima, lead to deviations from unity.
For small distances r → 0 a pronounced peak is observed,
consistent with the observations in connection with the
density autocovariance function C(r) (cf. Fig. 5). For dis-
tances larger than the minimal particle-particle distance
r > D, no clear r dependence of the fluctuations is visible
for the lowest ρ0 (C1). This is attributed to the irregular
distribution of the small number of particles in the ran-
dom potential, in particular the potential minima, and
hence the limited sampling (see Sec. III B). For medium
and high ρ0 (C2, C3) maxima occur around multiple inte-
gers of D. In the absence of a rPEL no such fluctuations
are present in g(2)(r) (Fig. 13 in the appendix). This
indicates the interplay of particle-particle and particle-
potential interactions.

The correlation function g(1)(r), which is the disorder-
averaged analogue of the pair distribution function or
pair density correlation function, is defined by52

g(1)(r, l) = 1
ρ2

0

[
⟨ρ (r′, t, l) ρ (r′+r, t, l)⟩t,r′

]
l
− 1

ρ0
δ(r, l)

(6)
where δ(r, l) is the Dirac delta function and the time
average for the disordered system has to be taken prior
to the disorder average. Note that the time-average of
the product of the densities is taken in Eq. (6), whereas
the product of the time-averaged densities is considered
in Eq. (4). In the canonical ensemble the last term van-
ishes. The azimuthal average can be determined from
the experimental data by

g(1)(r) = 1
ρ2

0

1
L

L∑

l=1

1
MN

MN∑

m′,n′=1

1
Nr

∑

m,n

× 1
K

K∑

k=1
ρ(xm′ , yn′ , t, l)ρ(xm′+m, yn′+n, t, l)

(7)

where, again, m and n are chosen to include regions with
their centres in an annulus between radii r−∆r/2 and
r+∆r/2. It describes the spatial variance in the time-
averaged local particle density.53

For r < D, g(1)(r) = 0 whereas g(1)(r) = 1 for r ≫ D
for all conditions (Fig. 7 (b)), which resembles a hard
sphere system. At intermediate r, oscillations similar to
the ones found for g(2)(r) are observed. For large ρ0 they
hardly depend on the laser power P . At low ρ0 the fluc-
tuations are more pronounced but appear at random dis-
tances. This is attributed to the limited sampling of the
rPEL due to the small number of particles (see Sec. III B).

The peak at r = D, the contact value g(1)(D), is
linked to the compressibility and thus the equation of
state78–80 (Fig. 8). The contact value g(1)(D) increases
with ρ0 and P . The experimentally determined g(1)(D)
is very sensitive to the number of particles and their lo-
calization errors as well as the histogram parameters, i.e.
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FIG. 8. Contact value of the pair density correlation func-
tion g(1)(D) as a function of the mean particle density ρ0 for
different laser powers P (L0-L3, as indicated). The dashed
line represents the prediction by the Henderson equation of
state.79

bin positions and size. In particular at higher densities
(ρ0 > 0.06 µm−2), the peak of g(1)(r) at r ≈ D is very
sharp compared to the bin size and the uncertainty of
our tracking procedure and therefore g(1)(D) is expected
to be underestimated. A theoretical prediction for hard
spheres,79,80 g(1)(D) = (1 − 7φA/16) / (1 − φA)2 (Fig. 8)
agrees with the experimental data obtained in the ab-
sence of a rPEL (L0, indicated by pink stars) for low
densities (ρ0 . 0.06 µm−2) but differs at higher den-
sities. This is possibly caused by the above mentioned
uncertainties involved in the determination of g(1)(D).

The total correlation or Ursell function h(r) is given
by

h(r) = g(1)(r) − g(2)(r) . (8)

The contributions of particle-potential interactions to
g(1)(r) are taken into account by g(2)(r) and hence
h(r) mainly describes the disorder-, ensemble- and time-
averaged density fluctuations caused by particle-particle
and multiple-particle interactions. Therefore, h(r) ap-
pears as a pair distribution function which hardly con-
tains correlations due to the potential, in particular for
r > D. For a homogeneous, isotropic fluid in the absence
of an external potential, and hence g(2)(r) = 1, it be-
comes h(r) = g(1)(r) − 1, resembling the pair correlation
function.

The total correlation function h(r) is shown in Fig. 7
(c) for different mean potential densities ρ0 (C1-C3) and
laser powers P (L0-L3). In the absence of a rPEL (L0),
h(r) is approximately -1 for r < D, shows a peak at
r ≈ D and is about zero beyond the peak for r ≫ D.
In the presence of a rPEL, the behaviour for r < D dif-
fers due to the strongly increasing g(2)(r). The height
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FIG. 9. Comparison of the azimuthally averaged pair density
correlation function g(1)(r), off-diagonal density correlation
function g(2)(r), and total correlation or Ursell function h(r)
as a function of normalized distance r/D for high laser power
L3 and mean particle density C3.

of the peak at r ≈ D increases with increasing mean
particle density and its width decreases with increasing
laser power. Remarkably, beyond this peak h(r) is almost
constant and takes a value of about zero for all investi-
gated mean particle densities and laser powers. This is
due to the balance between g(1)(r) and g(2)(r) which is
illustrated in Fig. 9 by a direct comparison of all three
functions. The above-mentioned concurrence of the os-
cillations of g(1)(r) and g(2)(r) results in an almost flat
h(r) beyond the first peak. The remaining maximum of
h(r) at r ≈ 2D is rather attributed to particle-particle
and multiple-particle interactions than particle-potential
interactions. (For a comparison of g(1)(r) and g(2)(r) at
all measured combinations of mean particle density ρ0
and laser power P see Fig. 13 in the appendix.)

E. Replica Liquid State Theory

For a deeper understanding of our results, we compare
the experimentally obtained correlation functions g(1)(r)
and g(2)(r) to predictions of liquid state theory,53 gen-
eralised to include the effects of an external rPEL, i.e.
quenched disorder. While the details of this theory have
been described previously,52,54 they are briefly mentioned
for completeness.

The colloidal particles are assumed to interact with
each other through a hard sphere pair potential V (r) and
are exposed to a random potential U(r) with the distribu-
tion of energy values p(U) being Gaussian and the short
ranged spatial correlations quantified by CU (r) as in the
experiments. To obtain the free energy of this system, the
disorder-average of the logarithm of the partition func-
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tion, [ln Z]l, is calculated using the replica trick,55

[ln Z]l = lim
q→0

∫
dUp(U)Zq − 1

q
,

where Zq is the partition function of a set of q non-
interacting realisations of the same system, i.e. ‘replicas’.
The partition function of N particles replicated q times
and averaged over the disorder distribution p(U) is iden-
tical to the partition function of N × q particles interact-
ing with the potential V αβ(r) = V (r)δαβ + CU (r).54 The
liquid state theory for such a system is now constructed
assuming replica symmetry where all liquid state correla-
tion functions, such as the pair correlation function, share
the symmetry gαβ(r) = gβα(r) = g(1)(r)δαβ +g(2)(r)(1−
δαβ). In the q → 0 limit, the Ornstein-Zernike relation
is53

h(1)(k) = c(1)(k) − (c(1)(k) − c(2)(k))2

(1 − c(1)(k) + c(2)(k))2

h(2)(k) = c(2)(k)
(1 − c(1)(k) + c(2)(k))2 , (9)

where h(1)(k) is the Fourier transform of the (diagonal)
pair correlation function h(1)(r) = g(1)(r) − 1 and c(1)(r)
the corresponding direct correlation function. The off-
diagonal correlations, with superscript (2), are defined
analogously. The Ornstein-Zernike relation needs to be
complemented with a closure relation in order to solve for
the correlation functions. We have used two sets of clo-
sure relations to try to reproduce the measured correla-
tion functions. Firstly, the analogue of the Percus-Yevick
(PY) equation modified for the replicated case,

c(1)(r) =
(

e−β(V (r)+CU (r)) − 1
) (

1 + y(1)(r)
)

c(2)(r) =
(

e−βCU (r) − 1
) (

1 + y(2)(r)
)

, (10)

where y(1)(r) = h(1)(r) − c(1)(r) and similarly y(2)(r) are
the indirect correlation functions. These relations are
solved using the method of Gillan.81

The results from the replicated PY liquid state theory
are compared to the experimental results for C3L1, i.e.
a mean particle density ρ0 = 0.56 D−2 (Fig. 10). Fit-
ting yielded for the strength of the disorder ⟨U2⟩1/2 =
1.8 kBT with the thermal energy kBT , consistent with
experimental expectations, and for the correlation length
ξ = 0.43 D, which is somewhat lower than the experimen-
tal value ξ = 0.69 D. While the g(2)(r) agree remarkably
well, the PY approximation overestimates correlations in
g(1)(r). This is a well known feature of the PY closure.
To correct for this, we propose and solve a hybrid set
of closure relations where the first equation of the set
in Eq. (10) is replaced with

c(1)(r) = e−β(V (r)+CU (r))+y(1)(r) − 1 − y(1)(r) (11)

and the second equation is kept the same. This results in
much better agreement of the g(1)(r) while the g(2)(r) is
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FIG. 10. Comparison of the experimentally determined az-
imuthally averaged off-diagonal density correlation function
g(2)(r) and the pair density correlation function g(1)(r) (inset)
with results obtained from liquid state theory, as a function
of normalized distance r/D for low laser power L1 and high
mean particle density C3.

almost unchanged. Thus, with the hybrid set of closure
relations quantitative agreement between experimental
data and replica liquid state theory predictions are ob-
tained.

For experiments with the same laser power P , also
the strength of the disorder ⟨U2⟩1/2 and the correlation
length ξ remain constant, independent of the mean parti-
cle density ρ0. Ideally, the results from our replica liquid
state theory should follow these expectations. However,
at large laser powers Eqs. (10) and (11) begin to give
unphysical results. Also the fitted values, especially for
ξ, depend on ρ0. This indicates that the validity of the
simple closure relations used in our theory is limited if
the disorder is strong. Moreover, it is important to en-
sure that the whole landscape is sampled by the particles,
which is particularly difficult for dilute systems within a
reasonable measurement time. This can only be resolved
by further experiments on a larger set of densities ρ0 and
laser powers P and/or by a better liquid state theory.82

Finally, the time-averaged local particle density in the
presence of the rPEL is given by:52,53

⟨ρ(r, t, l)⟩t = ρ0 − ρ2
0

kBT

∫
dr′h(|r − r′|)U(r′) + ... (12)

which links the time-averaged local particle density
⟨ρ(r, t, l)⟩t to the disorder potential U(r). This analyt-
ical relationship can be used to determine U(r) from a
measurement of ⟨ρ(r, t, l)⟩t or to predict ⟨ρ(r, t, l)⟩t from
U(r) and h(r).52
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IV. CONCLUSIONS

We investigated colloidal particles in a random po-
tential energy landscape (rPEL) with energy values dis-
tributed according to a Gamma distribution. It was
imposed by a laser speckle pattern. The rPEL affects
the distribution of particles which, at higher mean par-
ticle densities, is also modified by particle-particle inter-
actions. Therefore, local particle density variations oc-
cur, which are correlated in time and space. The time-
averaged local particle density was determined and anal-
ysed as a function of mean particle density ρ0 and laser
power P , i.e. disorder strength. The off-diagonal den-
sity correlation function g(2)(r) not only reflects the po-
tential roughness, but also spatial correlations in the lo-
cal density caused by pinned particles. Thus it reflects
particle-potential and particle-particle interactions. The
pair density correlation function g(1)(r) is also influenced
by spatial correlations of the rPEL. As a result, the to-
tal correlation or Ursell function h(r) = g(1)(r) − g(2)(r)
hardly reflects particle-potential interactions, but char-
acterizes particle-particle and multiple-particle interac-
tions. To our knowledge, this is the first time these corre-
lation functions have experimentally been determined in
the presence of disorder. Furthermore, they have success-
fully been compared to results from replica liquid state
theory. This results in quantitative agreement, but also
points towards deficits in the existing liquid state theory
and calls for further experiments.
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APPENDIX

1. Particle Arrangements

Fig. 12 shows micrographs of colloidal particles for
three different mean particle densities ρ0 (C1-C3) and
increasing laser power P , i.e. disorder strength, (L1-L3).
Neither for low nor for high mean particle density and/or
laser power an effect of the potential is immediately vis-
ible in the images.
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FIG. 12. Micrographs of parts of the samples (178×178 µm2)
for increasing laser power (L1-L3) and mean particle density
(C1-C3, as indicated).

2. Time-Averaged Local Particle Density

The time-averaged local particle density ⟨ρ (r, t)⟩t for
three different laser powers P , i.e. disorder strengths,
(L1-L3) and mean particle densities ρ0 (C1-C3) is shown
in Fig. 11. For dilute samples trapping of particles in
deep potential minima during the entire measurement
time leads to a discretisation of the density landscape.
This becomes stronger with increasing laser power. At
higher mean particle densities, ⟨ρ (r, t)⟩t is affected by
both particle-potential and particle-particle interactions,
resulting in a smoothed density landscape. This becomes
more apparent with a decrease in the laser power.

3. Correlation Functions

The azimuthally-averaged pair density correlation
function g(1)(r) and off-diagonal density correlation func-

tion g(2)(r) at all measured combinations of mean par-
ticle density ρ0 and laser power P (L0-L3) are shown
in Fig. 13. For very large distances r the time-averaged
local particle density is uncorrelated, and thus g(1)(r →
∞) = 1 and g(2)(r → ∞) = 1 independent of the mean
particle density ρ0 and the laser power P , i.e disorder
strength. By contrast, correlations at finite distances r
between high local density values reflect pinning sites,
i.e. particle cages or potential minima, and can be iden-
tified by deviations from this value. In the absence of
a rPEL (L0), g(1)(r) shows a strong dependence on the
mean particle density whereas g(2)(r) ≈ 1 for all mean
particle densities, except for very few low mean parti-
cle densities ρ0 which is attributed to insufficient statis-
tics. However, in the presence of a rPEL (L1-L3) and for
medium to high mean particle densities ρ0, for both cor-
relation functions maxima are observed around integer
multiples of D, which increase with mean particle den-
sity ρ0 and laser power P and indicate the interplay of
particle-particle and particle-potential interactions.
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FIG. 13. (a) Azimuthally-averaged pair density correlation
function g(1)(r) and (b) off-diagonal density correlation func-
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face fraction φA or particle density (C1-C3, as indicated by
colour gradient from green to red). Data are shifted vertically
for clarity.
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The dynamics of individual colloidal particles in random potential energy landscapes were inves-
tigated experimentally and by Monte Carlo simulations. The value of the potential at each point
in the two-dimensional energy landscape follows a Gaussian distribution. The width of the distri-
bution, and hence the degree of roughness of the energy landscape, was varied and its effect on
the particle dynamics studied. This situation represents an example of Brownian dynamics in the
presence of disorder. In the experiments, the energy landscapes were generated optically using a
holographic set-up with a spatial light modulator, and the particle trajectories were followed by
video microscopy. The dynamics are characterized using, e.g., the time-dependent diffusion coef-
ficient, the mean squared displacement, the van Hove function and the non-Gaussian parameter.
In both, experiments and simulations, the dynamics are initially diffusive, show an extended sub-
diffusive regime at intermediate times before diffusive motion is recovered at very long times. The
dependence of the long-time diffusion coefficient on the width of the Gaussian distribution agrees
with theoretical predictions. Compared to the dynamics in a one-dimensional potential energy land-
scape, the localization at intermediate times is weaker and the diffusive regime at long times reached
earlier, which is due to the possibility to avoid local maxima in two-dimensional energy landscapes.

PACS numbers: 05.40.Fb (Random walks and Levy flights), 82.70.Dd (Colloids)

I. INTRODUCTION

The Brownian motion of colloidal particles is one of
the classical phenomena in statistical physics [1–4]. In
real situations, the particles often do not move freely,
but their dynamics are modified by an external potential
[5–7]. Especially a random potential, and thus Brown-
ian motion in the presence of disorder, leads to inter-
esting transport phenomena [8, 9]. Up to now, the dy-
namics in random potentials have been studied mainly
by theory and computer simulations [10–19]. Theoret-
ical models include the random barrier model [13], the
random trap model [14], the random walk with barri-
ers [15] and the continuous time random walk [16] as
well as studies of diffusion in a rough potential [20] and
in materials with defects like zeolites [21]. In particu-
lar, the long-time limit has been investigated for differ-
ent realizations of random potentials [8, 9]. In contrast,
less is known on the intermediate regime and the time
needed to reach the long-time limit. To our knowledge,
only very few systematic experimental tests of theoretical
and simulation predictions have been performed [22–24].
Nevertheless, the theoretical predictions have been ap-
plied successfully to experimental data and the concept
of particles diffusing through an energy landscape has
proven to be very useful in understanding very different

∗ florian.evers@hhu.de

phenomena. This includes particle diffusion in inhomo-
geneous media (e.g. single molecule dynamics in porous
gels [25] or in cells [26–28]), the dynamics on rough sur-
faces [29, 30], the dynamics of particles moving along the
walls between magnetic domains [22, 31], the dynamics
of independent charge carriers in a conductor with im-
purities (in the parameter range where conduction can
be modeled as a classical process) [32, 33]. In particular,
random potentials with a Gaussian distribution of energy
levels have been suggested for different systems [9, 22, 34].
Furthermore, some processes can be represented by a tra-
jectory in the systems’ configuration space, for example
vitrification leading to glassy systems [35–41] or protein
folding [42–47]. Often diffusion in a random potential
energy landscape represents a crude approximation only,
but it can nevertheless provide a useful first description
of the effect of disorder on the dynamics [8, 48]. Disor-
der may modify the value of the diffusion coefficient or
it may alter Brownian motion leading to anomalous dif-
fusion. Which effect dominates depends not only on the
specific process, but also on the time scale of interest.

An external potential can be imposed on a polariz-
able colloidal particle by exposing it to a light field [49–
52]. Light exerts different forces on particles, if their
refractive index differs from (typically exceeds) that of
the solvent: a scattering force or ‘radiation pressure’,
which pushes particles along the laser beam, and a gra-
dient force, which attracts particles toward regions of
high light intensity [50–52]. A classical application of
this effect are optical tweezers which are used to trap
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individual particles by a tightly focused laser beam [50–
55]. Furthermore, above a certain light intensity, a pe-
riodic light field can induce a disorder-order transition
in a two-dimensional charged colloidal system, known as
light-induced freezing. If the intensity is increased fur-
ther, the induced crystal melts into a modulated liquid;
this process is called light-induced melting [56–58]. In
addition to the particle arrangement, the particle dynam-
ics can be affected by periodic [59] and random [23] light
fields, resulting in anomalous diffusion. Light fields hence
provide a means to manipulate the spatial arrangement
and dynamics of colloidal particles.

Recently, we experimentally realized one-dimensional
random energy landscapes [23, 53] and periodic poten-
tials [49, 59] using laser light fields and studied the dy-
namics of individual particles in these potentials. Here,
this is extended to the dynamics of individual colloidal
particles in two-dimensional random potentials. In our
experiments and simulations, the values of the two-
dimensional random potential were drawn from a Gaus-
sian distribution, whose width ε represents the degree of
roughness of the potential and, in the experiments, was
controlled by the laser power P . The static properties of
the potential were determined quantitatively. Further-
more, the trajectories of individual particles in this po-
tential were followed using video microscopy [60–62] and
compared to our simulation results. The dynamics were
characterized by, e.g., the time-dependent diffusion coef-
ficient, the mean squared displacement (MSD), the non-
Gaussian parameter, and the van Hove function. The
dynamics are initially diffusive but then, at intermedi-
ate times, show an extended subdiffusive regime before
diffusive behaviour is reestablished at very long times.
Our findings are compared to the particle dynamics in
one-dimensional random potentials [23, 24] and periodic
potentials [59]. In two-dimensional potential energy land-
scapes, particles can bypass large barriers. Therefore, the
particle dynamics are controlled by minima and saddle
points instead of minima and maxima. Moreover, com-
pared to periodic potentials, the barriers have different
heights, which significantly affects the particle dynamics.

II. MATERIALS AND METHODS

A. Sample preparation

Each sample consisted of surfactant-free sulfonated
polystyrene particles with a radius R = 1.4 µm and poly-
dispersity 3.2 % (Interfacial Dynamics Microspheres &
Nanospheres) suspended in heavy water (D2O), so that
the particles cream rather than sediment. Stock solutions
of the particles were diluted to result in an area fraction
of the creamed sample, σ < 0.10, which represents a com-
promise between negligible particle–particle interactions
and reasonable statistics. Area fractions were estimated
from micrographs according to σ = πR2N/A with N and
A being the number of particles and the area covered by

the light field, respectively.
The heavy water (D2O) was de-ionised by stirring with

ion exchange resin to increase the particle–glass repulsion
and thus reduce the fraction of particles sticking to the
glass surface. To further reduce sticking, all glassware
was sonicated in 2% Helmanex II solution at about 60 ◦C
and then rinsed with Millipore water and dried in air
prior to use. Each sample cell was constructed from a
microscope slide and three cover slips, two used as spacers
(number 0 with thickness 0.085 − 0.13 mm, supplied by
VWR) with a gap between them and the third on top to
create a narrow capillary (number 1 with thickness 0.13−
0.16 mm, supplied by VWR) [63]. Thin cover glasses
were used as spacers to allow imaging of the creamed
particles using a high resolution objective with a working
distance of 0.13 mm. The sample chamber was filled
using capillary action and subsequently sealed with UV
glue.

B. Light field generation

The set-up contains a laser with a wavelength of
532 nm (Ventus 532-1500, Laser Quantum). Its beam
is expanded and then reflected from a spatial light
modulator (Holoeye 2500-LCR). Subsequently, it is di-
rected through two telescopes to reduce its diameter
and reflected off three mirrors to steer it through an in-
verted microscope (Nikon Eclipse 2000-U) into the sam-
ple [23, 53, 64]. One of the mirrors is a dichroic mirror to
introduce the beam into the microscope beam path and
to use the microscope objective (60× oil immersion, nu-
merical aperture NA 1.4, Nikon) to image the light field
into the sample plane. The beam passes upwards through
the sample and hence, due to radiation pressure, pushes
the particles against the top of the cell, which reinforces
the creaming of the particles. A notch filter in the imag-
ing path prevents laser light from reaching the ocular or
camera. To aid alignment, the notch filter can be re-
moved and the sample replaced by a mirror, so that the
light intensity distribution in the sample plane can be
imaged using the microscope.
A kinoform (phase hologram) was calculated using the

Gerchberg-Saxton iterative algorithm [65] (Fig. 1A) and
displayed in the centre of the spatial light modulator.
The kinoform corresponds to a homogeneous disc sur-
rounded by a ring to prevent particle movements into and
out of the disc. The Fourier transform of the kinoform
is, as expected, a homogeneous disc surrounded by a ring
(Fig. 1B). In order to account for the angle at which the
laser impinges on the spatial light modulator (22.5◦), the
disc and ring are a factor 1/ cos (22.5◦) = 1.08 taller than
they are wide [23, 53]. The observed light field intensity
I(x, y) (Fig. 1C) corresponds to the disc of the Fourier
transformed kinoform. Indeed, the illumination is overall
flat but, crucially, has some fluctuations due to the finite
size and pixelation of the light modulator [23]. These
fluctuations are exploited in the following. Furthermore,
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FIG. 1. (A) Kinoform calculated by applying the Gerchberg-
Saxton algorithm to a homogeneous disc surrounded by a ring
and (B) its Fourier transform. (C) Micrograph of the observed
intensity I(x, y) of the disc taken at very low laser power P ≤
0.2 mW. (D) Potential U(x, y) as experienced by a point-like
test particle obtained by convoluting I(x, y) with the volume
of a spherical particle with radius R = 1.4 µm =̂ 12.7 px.

there is a bright 0th-order peak in the centre. Using this
peak, a particle was trapped and used to monitor any
drift of the set-up [23]. Global drifts were found to be
negligible during individual measurements (up to 4 h).

C. Video microscopy and particle tracking

The samples were observed using the inverted micro-
scope. Micrographs were recorded using a CMOS cam-
era (PL-B742F, Pixelink). Particle coordinates were ex-
tracted from the time series of micrographs and the tra-
jectories determined using IDL routines [60]. To allow
for an unambiguous reconstruction of the trajectories,
the distance particles move between two images was re-
quired to be much smaller than the average interparticle
distance and thus limited to 1.2R. Furthermore, care was
taken that particles do not approach each other or the
boundary closely such that particle–particle and particle–
boundary interactions can be neglected. Typical mea-
surement times were 2 to 3 h. Particles which were stuck
to the glass were identified by comparing the particles’
short-time friction coefficient ξi, i.e. the inverse mobility,
determined from the mean squared displacement, to the
expected bulk value ξ0 = 6πηR with the solvent viscos-
ity η = 1.19× 10−3 Pa s at room temperature. Particles
with ξi > 20 ξ0 were declared stuck and removed from the
analysis. Typically, one particle was stuck to the glass in
the field of view, which contained about 20 particles.

For identical conditions, measurements at different po-
sitions in the sample yielded very similar results, despite
slightly different particle area fractions σ. This repro-
ducibility allowed us to average several independent mea-
surements of equal recording time Texp to improve statis-
tics.

D. Monte Carlo simulations

The Monte Carlo simulations were performed on a
4096 × 4096 square lattice with the lattice points sep-
arated by a distance ∆s in both directions, where we
have set ∆s = 1. The potential values at the lat-
tice points, Ũ(x, y), were produced using a Box-Muller
algorithm generating numbers which are Gaussian dis-
tributed with zero mean and standard deviation ε̃. The
potential Ũ(x, y) was convoluted with the particle vol-
ume to obtain the potential U(x, y) felt by a point-like
test particle

U(x, y) =

∑
k

∑
l

Ũ(x−k∆s, y−l∆s) a(k, l)

√∑
k

∑
l

a2(k, l)
(1)

where the double sum runs over the projected particle,
i.e. k2 + l2 ≤ m2 with k∆s and l∆s the distances from
the particle centre in the two directions and R = m∆s
the radius of the particle. The volume of the particle is
represented by

a(k, l) = 2
√

(m2 − k2 − l2) . (2)

As a compromise between negligible discretization effects
and viable computation time, we have chosenm = 32 and
thus −32 ≤ k, l ≤ 32.
The convolution leads to a potential U(x, y) (Fig. 2),

which is smoother than Ũ(x, y). Its values follow the
same Gaussian distribution, albeit with a spatial corre-
lation decaying on the length scale of the particle size.
It is supposed to resemble the potential energy land-
scape experienced by a colloidal particle in the light field
(Sec. III A).
Once the potential energy landscape U(x, y) was fixed,

a particle was positioned on a randomly chosen lattice
point. During the simulation, a direction is chosen ran-
domly and, depending on the energy difference ∆U to
the neighbouring lattice point, the particle is moved in
any case if ∆U ≤ 0, or moved with a finite probability
exp (−∆U/kBT ) if ∆U > 0 (where kBT is the thermal en-
ergy). By averaging over 1024 different initial positions of
the particle, representative averages can be determined.
For each Monte Carlo run, the short-time diffusion coef-
ficient D0 and the related Brownian time tB = R2/4D0

were calculated by a linear fit to the MSD at short times.
In analogy to the experiment, data were acquired up to
Tsim = 1000 tB. This yielded particle trajectories as in
the experiments. Thus, the different parameters, such as
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FIG. 2. (Color online) Some region of the spatially correlated
Gaussian potential energy landscape U(x, y)/kBT obtained
by convolution of a spatially uncorrelated Gaussian energy
landscape with the particle volume. It thus reflects the po-
tential felt by a particle (Fig. 1D) and is used in the Monte
Carlo simulations.

the mean squared displacement, were determined as in
the experiments, including averaging over waiting times
(see below). It turned out that within statistical uncer-
tainty the results for different realizations of the potential
energy landscape U(x, y) are identical. As in the experi-
ments, separate simulations were performed for different
values of the degree of roughness 0 kBT ≤ ε ≤ 3 kBT to
investigate its effect on the dynamics.

III. RESULTS AND DISCUSSION

We studied the behaviour of individual colloidal par-
ticles in two-dimensional random potential energy land-
scapes. At first, the properties of the experimentally cre-
ated energy landscapes are presented. Then, the particle
dynamics in these energy landscapes are discussed and
compared to the results of our Monte Carlo simulations
and theoretical predictions. Finally, our experimental
and simulation results are contrasted with the dynamics
in one-dimensional random and periodic potentials.

A. Properties of the optically generated random
potential

A realization of the light field at very low laser power is
displayed in Fig. 1C. The light field interacts with polar-
izable particles [50–52]. The polarizable particle volume
is taken into account by convolving the local light inten-
sity I(x, y) with the particle volume. The effect of the
light field on the particle is then represented by an exter-
nal potential U(x, y) as felt by a point-like test particle
(Fig. 1D).

To determine the characteristic length scales of the

FIG. 3. Azimuthally averaged spatial correlation function
⟨Φ(x̃, ỹ)⟩Ω of the laser intensity I(x, y) (dashed line) and of
the potential energy landscape felt by a point-like test particle
U(x, y) (solid line) vs. the distance ∆r as determined from
Fig. 1C and D, respectively.

light field intensity I(x, y) and of the potential felt by
a point-like test particle U(x, y), the spatial correlation
functions were determined and their azimuthal average
⟨Φ(x̃, ỹ)⟩Ω calculated. The spatial correlation of the light
field intensity I(x, y) decays on a short length scale com-
pared to the particle size. However, the convolution with
the particle volume introduces a length scale, namely the
particle diameter 2R. The spatial correlation of the po-
tential U(x, y), which was similarly determined, indeed
decays on a characteristic length of 2R (Fig. 3).
Based on the observed light intensity I(x, y) and po-

tential energy landscape U(x, y) (Fig. 1C,D), the distri-
butions of the light intensity values p(I) and potential
values p(U) were determined (Fig. 4). The distribution
p(I) follows the probability density function of a Gamma
distribution [66]

fΓ(I) =
bk

Γ(k)
Ik−1e−bI , (3)

where I ≥ 0, Γ(k) is the Gamma function and b the scale
parameter. A fit to the experimental p(I) yielded a shape
parameter k = 3.1±0.1 (Fig. 4A), corresponding to a 3D
speckle pattern [66, 67]. The distribution p(U) can be
described by a Gaussian distribution

fG(U) =
1√
2πε2

e−
(U−⟨U⟩)2

2ε2 (4)

with the average ⟨U⟩ and width or standard deviation ε
(Fig. 4B). Due to the convolution with the particle vol-
ume, U(x, y) represents a weighted average of several in-
dependent (random) values of I(x, y) and thus p(U) has a
significantly reduced width compared to p(I). The width
ε characterizes the degree of roughness of the random po-
tential U(x, y), which is controlled by the laser power P ,
but cannot easily be determined experimentally. Thus, to
establish a quantitative relation between the roughness
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FIG. 4. (Color online) Distribution of (A) values of the inten-
sity of the light field, p(I), and (B) values of the potential as
felt by a point-like test particle, p(U), based on the observed
intensity I(x, y) and potential U(x, y) shown in Fig. 1C and
D, respectively. Dark lines are fits based on a Gamma and
Gaussian distribution, respectively.

ε, used in the simulations, and the laser power P , ap-
plied in experiments, the experimental potential energy
landscape was calibrated. This was achieved by a direct
comparison of the experimental and simulation results,
namely of the time-dependent diffusion coefficient D(t)
at very short and long times (Sec. III C). The calibration
resulted in an approximately linear relation between ε
and P , which might saturate for large P (Fig. 5).

B. Dynamics in the random potential –
experiments

The effect of two-dimensional random energy land-
scapes on the particle dynamics is qualitatively illus-
trated in Fig. 6. Outside the light field (white back-
ground), particles undergo free diffusion, exploring a
large area. This region is separated by a large barrier
(white/green rings) from the two-dimensional random
light field (green disc). Within the random potential,
the excursions of the particles are limited and hence the
particle dynamics are slowed down. The particles remain
longer at some positions, which correspond to local min-

FIG. 5. Standard deviation ε of the distribution of potential
energy values, p(U), as a function of laser power P .

FIG. 6. (Color online) Trajectories of particles undergoing
diffusion in a two-dimensional plane, part of which contains a
random potential (green background) which is separated by
a barrier (white/green rings) from the surroundings (white
background). Particle radius R = 1.4 µm, particle surface
fraction σ = 0.04, laser power P = 1.32 W corresponding
to a standard deviation ε = 2.8 kBT , and a recording time
Texp = 3.8 h. Coordinates are given in µm.

ima of the potential. For a potential with a larger degree
of roughness ε, i.e. a larger width of p(U), this effect
is more pronounced with particles being more efficiently
trapped and hence exploring a smaller region.

Based on the particle trajectories, different statistical
properties were computed to characterize the particle dy-
namics. We found identical behaviour along the x- and
y-directions as expected for an isotropic system. The dy-
namical properties were hence determined as a function
of the distance, ∆r = [(∆x)2+(∆y)2]1/2, where distances
are scaled by the particle radius R = 1.4 µm and times
by the Brownian time tB = R2/(4D0) = (6.4 ± 0.1) s
with D0 experimentally determined in the absence of a
random potential, i.e. ε = 0, but in the vicinity of the
water–glass interface. This renders the data independent
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FIG. 7. (Color online) Particle residence time distribution
Ψl,ε(t) representing the probability that it takes a particle a
time t to travel at least a distance l in a random potential with
standard deviation ε. All curves are smoothed by a moving
five-points average. (A) Ψl,ε(t) for different length l/R (as
indicated, increasing left to right) and ε = 2.8 kBT , scaled
plot as inset. (B) Ψl,ε(t) for l/R = 2 and different ε (as
indicated, decreasing from top at maxima).

of the specific experimental conditions, except for a radi-
ation pressure effect (Sec. III C). Moreover, the statistical
properties were obtained by averaging over different par-
ticles, which are well separated and thus non-interacting,
and over waiting times t0 to improve statistics. Since, ini-
tially, the occupancy of energy levels was homogeneous
but tended toward a Boltzmann distribution in the course
of the experiment, the average over waiting times de-
pends on the total measurement time Texp, which was
Texp ≈ 1000 tB.

Depending on the particle positions, the particles ex-
perience various potential values U(x, y) and are trapped
for different times, reflecting the different heights of the
saddle points to the neighbouring minima. The time t
required to explore at least a distance l in a potential
with roughness ε has been determined and the particle
residence time distribution Ψl,ε(t) calculated. To explore
a distance l by free diffusion with diffusion coefficient D0,
on average the time t = l2/(4D0) is required. To explore
larger distances l and/or in the presence of a random po-
tential, on average larger times are required. For short
distances l < 2R, i.e. within a minimum, Ψl,ε(t) does
not significantly depend on ε but depends on the dis-
tance l (Fig. 7A). The l dependence is mainly governed

FIG. 8. (Color online) Distribution of particle displacements
∆r within time t, P (∆r, t) (A) in the absence of a poten-
tial (ε = 0), i.e. for free diffusion, with the scaled P (∆r, t)
as an inset, (B) in the presence of a random potential with
roughness ε = 2.8 kBT for different times t (as indicated, in-
creasing left to right) and (C) with different roughnesses ε (as
indicated, increasing right to left) for time t = 50 tB.

by the longer time required to diffuse a larger distance l as
shown by a rescaling assuming diffusive motion (Fig. 7A,
inset). In contrast, to travel a distance of at least 2R,
which corresponds to the typical minimum-minimum sep-
aration (Fig. 3), in general requires to cross a barrier or
saddle point, whose average height depends on ε. Ac-
cordingly, Ψl,ε(t) depends on the roughness ε (Fig. 7B)
and the mean residence time exceeds the average time
t = 4tB required to diffuse 2R in the absence of a poten-
tial.

The probability distribution of particle displacements
∆r, i.e. the self part of the van Hove function, P (∆r, t),
at different delay times t is calculated based on the trajec-
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tories by averaging over all waiting times t0 and particles
i:

P (∆r, t) = ⟨δ (∆r − [ri(t0+t)− ri(t0)])⟩t0,i , (5)

where ri(t) is the position of particle i at time t and
the average is taken over particles i and waiting times
t0 to improve statistics. In the case of free two-
dimensional diffusion, i.e. without any external poten-
tial, P (∆r, t) follows a Rayleigh distribution, P (∆r, t) ∼
∆r/(2D0t) exp

(
−∆r2/4D0t

)
, whose width increases lin-

early with time t (Fig. 8A). In the presence of a random
potential, P (∆r, t) changes qualitatively (Fig. 8B). The
potential tends to trap the particle so that it explores
less space and the distributions P (∆r, t) get much nar-
rower. This is more pronounced for longer times, when
the dynamics include barrier crossing. Accordingly, at
long delay times, the roughness of the potential signifi-
cantly effects P (∆r, t), which becomes narrower with in-
creasing ε (Fig. 8C).
The width of the distribution of particle displacements,

P (∆r, t), can be characterized by the mean squared dis-
placement (MSD)

⟨
∆r2(t)

⟩
=

⟨
∆x2(t)

⟩
+
⟨
∆y2(t)

⟩
, (6)

which is calculated from the particle trajectories accord-
ing to

⟨∆x2(t)⟩ =
⟨
[xi(t0 + t)− xi(t0)]

2
⟩
t0,i

− ⟨[xi(t0 + t)− xi(t0)]⟩2t0,i (7)

and ⟨∆y2(t)⟩ correspondingly, with the second term cor-
recting for possible drifts. In the absence of a potential
(ε = 0), ⟨∆r2(t)⟩ increases linearly with time, as ex-
pected for free diffusion (Fig. 9A). In the presence of
a random potential, the particle dynamics exhibit three
distinct regimes. Both, at short times (t/tB <∼ 0.1) and
long times (t/tB >∼ 30), the particle dynamics are diffu-
sive. At small t, the diffusive behaviour reflects small
excursions within local minima and is thus essentially
independent of the roughness ε. Nevertheless, diffusion
is reduced compared to free diffusion (ε = 0) because
laser pressure pushes the particles closer to the water-
glass interface and thus reduces their mobility [68–70],
with only a weak dependence on laser power P > 0 and
hence ε > 0. Furthermore, the averaging over waiting
times t0 (Eqs. 6,7) leads to a reduction of the MSD, es-
pecially at short times. This is due to the evolution of the
system towards an equilibrium (Boltzmann) distribution
which leads to an increasing occupation of deep minima.
(Both effects are discussed in more detail in Sec. III C.)
For large enough t, hopping between minima becomes im-
portant and constitutes a random walk. Thus, diffusive
behaviour is reestablished at long times, although with
a strongly reduced diffusion coefficient. At intermediate
t, the MSDs exhibit an inflection point, which becomes
increasingly pronounced as ε increases. This subdiffusive
behaviour is caused by the particle being trapped in local

FIG. 9. (Color online) (A) Normalized mean squared dis-

placement
⟨
∆r(t)2

⟩
/R2, (B) normalized diffusion coefficient

D(t)/D0, (C) exponent µ(t) in the relation
⟨
∆r2(t)

⟩
∼ tµ(t)

and (D) non-Gaussian parameter α2(t) as a function of delay
time t normalized by the Brownian time tB in the presence
of a two-dimensional random potential with roughness ε (as
indicated, increasing from top (A-C) and bottom (D), respec-
tively). For clarity, only every fifth data point is plotted as
a symbol. Black crosses indicate minima and maxima of µ(t)
and α2(t), respectively.
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minima for prolonged times before it escapes to a neigh-
bouring minima. Since there is a wide range of residence
times (Fig. 7), reflecting barriers of different heights, the
subdiffusive regime extends over a broad range of times.

From the two-dimensional MSD ⟨∆r2(t)⟩, the time-
dependent diffusion coefficient D(t) can be calculated ac-
cording to

D(t) =
1

2d

∂

∂t

⟨
∆r2(t)

⟩
, (8)

where in the present case the dimension d = 2. The
three regimes discussed above are also reflected in the
normalized time-dependent diffusion coefficient D(t)/D0

(Fig. 9B). Toward very short times, D(t)/D0 tends to-
ward one (actually slightly below one due to the radia-
tion pressure and the averaging mentioned above and dis-
cussed in Sec. III C). It strongly decreases at intermediate
times to reach a much smaller value D∞ at long times,
where hopping between minima dominates and diffusion
is reestablished, reflected in the plateau of D(t) at long
times. The asymptotic diffusion coefficient D∞ was de-
termined experimentally and will be discussed together
with the simulation results in Sec. III C.

In order to characterize deviations from diffusive be-
haviour, in particular the subdiffusion at intermediate
times, the exponent µ in the relation

⟨
∆r2(t)

⟩
∼ tµ(t)

is determined from the slope of the MSD in double-
logarithmic representation:

µ(t) =
∂ log

(⟨
∆r2(t)

⟩)

∂ log (t)
. (9)

For free diffusion µ = 1, while µ < 1 in the case of
subdiffusion. The subdiffusive dynamics at intermediate
times results in a minimum in µ(t). It becomes more
pronounced with increasing ε, but remains at about the
same time (Fig. 9C, crosses). In contrast, the diffusive
behaviour at short and long times is reflected in the trend
of µ(t) toward one in these two limits.
While the exponent µ(t) characterizes deviations from

diffusive behaviour, the non-Gaussian parameter α2(t)
quantifies, in the case of one dimension, the devia-
tion of the distribution of particle displacements from
a Gaussian distribution. It corresponds to the first non-
Gaussian correction [40]. In two dimensions, it quantifies
deviations from a Rayleigh distribution (Fig. 8). Follow-
ing a previous definition [71]:

α2(t) =

⟨
∆r4(t)

⟩

(1 + 2/d) ⟨∆r2(t)⟩2
− 1, (10)

where
⟨
∆r4(t)

⟩
=

⟨
∆x4(t)

⟩
+

⟨
∆y4(t)

⟩
+

2
⟨
∆x2(t)

⟩ ⟨
∆y2(t)

⟩
and

⟨
∆x4(t)

⟩
and

⟨
∆y4(t)

⟩
are

defined in analogy to
⟨
∆x2(t)

⟩
. The time-dependence

of α2(t) also shows three different dynamic regimes
(Fig. 9D). At very short and very long times, when
the particle dynamics are diffusive, α2(t) ≈ 0, while
at intermediate times α2(t) develops a peak which
becomes more pronounced and moves to larger times

FIG. 10. (Color online) Characteristic times, namely of the
minimum in the exponent µ(t), i.e. tµ, and the maximum in
the non-Gaussian parameter α2(t), i.e. tα, as a function of
the degree of roughness ε of the potential from experiments
(filled symbols, corresponding to the crosses in Fig. 9C,D but
taking the radiation pressure effect, as quantified in the inset
of Fig. 11, into account) and simulations (open symbols). The
solid line is a guide to the eye.

with increasing ε. This reflects the broader distribution
of barrier heights and hence residence times Ψl,ε(t) at
larger ε (Fig. 7).
All parameters indicate an intermediate time regime

characterized by subdiffusive dynamics. In particular, a
minimum in the exponent µ(t) at tµ and, at a later time
tα, a maximum in the non-Gaussian parameter α2(t) are
observed (Fig. 9C,D). While the time tµ hardly depends
on ε, the maximum in α2(t) shifts to significantly larger
times tα with increasing ε (Fig. 10). The minimum of
µ(t) is reached when diffusion is most efficiently sup-
pressed. This occurs just before a significant fraction
of the particles start to escape the minima. This implies
relatively shallow minima, which have a similar depth
for essentially all ε. Thus the dependence of tµ on ε is
very small. On the other hand, the maximum of α2(t)
occurs when the dynamics is maximally heterogeneous,
i.e. some minima have long been left, others only recently
and some not yet. This spread increases with ε and hence
does the maximum of α2(t). Accordingly, to reach this
maximally heterogeneous state takes longer and thus tα
increases with ε.

C. Dynamics in the random potential – simulations

The simulations also show three regimes: initially
diffusion followed by subdiffusive behaviour and finally
again diffusion with a considerably reduced diffusion co-
efficient D∞ (Fig. 11), consistent with our experimental
findings (Fig. 9).
Already at short times, the diffusion coefficient D(t)

is noticeably reduced. The reduction, caused by the ran-
dom potential, is considerably enhanced by the averaging
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FIG. 11. (Color online) Normalized diffusion coefficient
D(t)/D0 as a function of delay time t/tB for differ-
ent roughnesses ε from simulations (black solid lines, for
ε/kBT = 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3) and experiments
(coloured lines with symbols as in Fig. 9 and sequence top to
bottom). Here, the experimental data are scaled with an ef-
fective diffusion coefficient and effective Brownian time to ac-
count for the effect of radiation pressure (see text for details).
The dependence of the scaling factor f on radiation pressure,
which is proportional to the laser power P and hence the de-
gree of roughness ε (Fig. 5), is shown as inset.

over waiting times t0 (Eqs. 6,7). As time progresses, the
initially homogeneous particle distribution develops into
the equilibrium distribution with the energy levels oc-
cupied according to the Boltzmann distribution. This
implies a growing occupation of deep minima, in which
the particles reside for a long time, and hence slower dy-
namics. With increasing simulation time Tsim (or mea-
surement time Texp), and hence an increasing range of
waiting times 0 ≤ t0 ≤ Tsim−t included in the aver-
age, the weight of near-equilibrium distributions with a
large fraction of less-mobile particles increases. Hence,
the averaging over t0 leads to a smaller mean diffusion
coefficient D(t) with the decrease becoming more pro-
nounced as Tsim increases and t decreases. The decrease
of D(t) is thus particularly noticeable at short times t.
Furthermore, the simulation time has to be matched to
the measurement time, Tsim ≈ Texp, to allow for a mean-
ingful comparison.

At long times, diffusion is reestablished although with
a significantly smaller diffusion coefficient D∞(ε), which
is estimated by the value at t = 80 tB, i.e. D∞ ≈ D(80tB)
(Fig. 12). The diffusion coefficient at long times, D∞(ε),
has been linked to the free diffusion coefficient D0 [9, 72–
74]:

D∞(ε)

D0
= e

− 1
2

(
ε

kBT

)2

(11)

The most dominant feature of this equation is the de-
pendence on −(ε/kBT )

2 which is just the ratio of the
equilibrium energy of a Gaussian distribution −ε2/kBT
and kBT . This first term dominates the temperature-
dependence of the barrier, because the typical energies

FIG. 12. (Color online) Ratio of the long-time diffusion coef-
ficient D∞ ≈ D(80tB) and the diffusion coefficient D0 in the
absence of a potential as a function of the degree of rough-
ness ε as obtained from simulations. Solid symbols: total
simulation time similar to the experimental recoding time,
Tsim ≈ Texp, open symbols: one order of magnitude longer
simulation time, Tsim ≈ 10Texp, D∞ ≈ D(1000 tB). The
red solid line represents a spline interpolation of the simula-
tion data and the blue dashed and dotted lines the theoreti-
cal predictions for a two-dimensional [9] and one-dimensional
[20] random potential, respectively. The inset shows the ra-
tio D(t)/D0 at different times t = tB, 10 tB and 100 tB. The
black lines are guides to the eye.

to be crossed for transitions between different regions
are essentially temperature-independent, as suggested by
a percolation picture (cf. [19]). The simulation find-
ings and theoretical prediction show very good agreement
at small ε and deviations at large ε >∼ 2kBT (Fig. 12).
These deviations are due to the increasingly longer times
required to reach the asymptotic long-time value D∞
which, for ε >∼ 2kBT , is beyond the simulation time
Tsim (Fig. 11). This is illustrated by the approach of
D(t, ε) toward D∞(ε) for different ε, which is partic-
ularly slow and eventually beyond the simulation time
Tsim for large ε (Fig. 12, inset). Note that the simulation
time was matched to the experimental recording time,
Tsim ≈ Texp, in order to obtain equivalent averaging. If
the simulation time is increased by an order of magni-
tude, Tsim ≈ 10Texp, a significantly better agreement
with the theoretical prediction is observed (Fig. 12).

At intermediate times, the dynamics are dominated
by the slow transition from the initial to the long-time
diffusion. This transition can be characterized by the
times discussed above: tµ and tα at which the minimum
of µ(t) and the maximum of α2(t) occur, respectively.
These times have been extracted from the simulation
data and quantitatively agree with the experimental re-
sults (Fig. 10). Based on the Stokes-Einstein equation,
the α-relaxation time is expected to be inversely propor-
tional to the long-time diffusion coefficient D∞ [75]. Fur-
thermore, the maximum of the non-Gaussian parameter,
i.e. tα, is typically close to the α-relaxation time. To-
gether with Eq. 11, this suggests ln tα ∼ (ε/kBT )

2. This

Chapter 3. Scientific Papers

79



10

is indeed observed (Fig. 10). The range of ε is, however,
too small to unambiguously confirm this relation.

We now quantitatively compare our experimental and
simulation results. This requires to determine the rela-
tionship between ε and the experimentally applied laser
power P as well as the friction coefficient of the parti-
cles, ξ∗0 , which implicitly also depends on the laser power
P . Due to hydrodynamic effects, the friction coefficient
varies with the particles’ distance from the water–glass
interface [68–70]. The distance is controlled by a balance
between the repulsive particle–wall interaction [76–79]
and the radiation pressure (and gravity) [50–52], which
pushes the particles toward the glass slide and depends on
P [64]. Both, ε(P ) and ξ∗0(P ), are together determined in
an iterative procedure which is based on a comparison of
the experimental and simulation results and is described
in the following.

Although the degree of roughness ε of the optically-
generated potential U(x, y) can be tuned via the laser
power P and we expect a linear relationship ε ∼ P , ε(P )
cannot easily be determined experimentally. Therefore,
in a first step, this relation has been estimated using D∞,
which depends on ε (in the simulations, Figs. 11, 12) and
P (in the experiments, Fig. 9). Since the asymptotic limit
D∞ is not accessible, we use D∞/D0 ≈ D(80tB)/D0 for
the simulation results and D∞/D0 ≈ D(80tB)/D(0.2tB)
for the experimental results since the short time limit
of the diffusion coefficient is not accessible experimen-
tally (and affected by radiation pressure as described be-
low). An interpolation of D∞(ε)/D0 determined in sim-
ulations (Fig. 12, red line) was used to assign an ε to
the D∞(P )/D(0.2tB) from experiments with different P .
This yields a first approximation for ε(P ).

The friction coefficient of the particles implicitly also
depends on the laser power P . A finite P > 0 will
lead to radiation pressure pushing the particles closer to
the water–glass interface and hence increases the friction
coefficient ξ∗0 > ξ0 and reduces the diffusion coefficient
D∗

0 < D0. At short times, the diffusion coefficient tends
to a value, Ds, which can be used to guide the correction.
Although the short-time dynamics are hardly affected by
the random potential, the averaging over waiting times
t0 (Eq. 8) affects Ds [24], as mentioned above. Thus,
the experimental value Ds = D(ts), where ts ≈ 0.2 tB,
was fitted to the corresponding simulation value, which
is equally affected by the averaging. The choice of Ds

affects tB and in turn ts and hence D(ts). Therefore, the
procedure was iterated until consistent relations were ob-
tained.

This procedure yielded a relation ε(P ) (Fig. 5), which
appears linear up to large P where ε starts to saturate.
The slope is consistent with a previous calibration of a
one-dimensional random potential when taking the dif-
ferent illuminated areas into account [23]. Furthermore,
the iterative procedure provides the friction coefficient;
ξ∗0 ≈ 1.4 ξ0 for P > 0 and ξ∗0 = ξ0 for P = 0 and the
simulations (Fig 11, inset). This implies a scaling fac-
tor f = ξ∗0/ξ0, leading to an effective diffusion coefficient

D∗
0 = D0/f and an effective Brownian time t∗B = ftB in

the experiments with P > 0, while in the simulations and
experiments with P = 0, D∗

0 = D0 and t∗B = tB. Also
other procedures have been followed to determine ε(P )
and ξ∗0(P ); they all resulted in a linear relation ε(P ) ∼ P
with slopes within 20% and also very similar ξ∗0(P ).
Having determined ε(P ) and corrected the experimen-

tal data for radiation pressure effects, we can compare
the experimental and simulation results (Fig. 11). While
the dynamics at short and long times have been exploited
to obtain ε(P ) and ξ∗0 , a comparison of the intermediate
subdiffusive behaviour with the transition from short to
long-time diffusion and the corresponding time scales is
meaningful. The dynamics at intermediate times indeed
quantitatively agree. In addition, the quantitative agree-
ments of the time scales, tµ and tα, determined from the
experimental and simulation data (Fig. 10) have already
been discussed.

D. Comparison to particle dynamics in
one-dimensional random and periodic potentials

As in two-dimensional random potentials, in one-
dimensional random potentials the particle dynamics also
show three distinct regimes: diffusion at short and long
times and subdiffusion at intermediate times (Fig. 13)
[23, 24]. The dynamics are much slower in the one-
dimensional case. In particular, it takes a much longer
time to approach the asymptotic long-time limit. In gen-
eral, the characteristic times, for example tµ and tα, are
considerably longer and show a stronger dependence on
ε. Furthermore, the long-time diffusion coefficient D∞ is
smaller (Fig. 12, blue dotted line) [20]:

D∞(ε)

D0
= e

−
(

ε
kBT

)2

(12)

In two dimensions, D∞ is larger because large barri-
ers can be avoided, but the exponential dependence on
(ε/kBT )

2 remains, consistent with the percolation argu-
ment.
In addition to random potentials, colloidal particles

have also been investigated in periodic potentials [56–
59, 80, 81]. In a sinusoidal potential [59], only one barrier
height exists and thus the distribution of escape times is
narrower. The dynamics at intermediate times exhibit a
smaller slope at the inflection point of the mean squared
displacement, corresponding to a more pronounced sub-
diffusive behaviour with a deeper minimum of the ex-
ponent µ(t). On the other hand, long-time diffusion is
established earlier as very deep minima are absent.

IV. CONCLUSIONS

We investigated the dynamics of individual colloidal
particles in two-dimensional random potential energy
landscapes, whose values follow a Gaussian distribution
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FIG. 13. (Color online) Normalized diffusion coefficient
D(t)/D0 as a function of normalized delay time t/tB for par-
ticles in a one-dimensional (lines) and two-dimensional (sym-
bols) random potential with different standard deviations ε
(as indicated) as observed in simulations. Solid horizontal
lines at large t/tB correspond to theoretical predictions [9, 20].

with a standard deviation ε, which characterizes the de-
gree of roughness of the potential. In the experiments,
the potential was created using an optical set-up and
the roughness ε was controlled via the laser power P .
The experimentally observed dynamics agree with our
Monte Carlo simulation results. Three distinct regimes
have been observed. At short times, the particles ex-
hibit diffusive behaviour within their local minima, in
which they remain until they cross a barrier, i.e. a saddle
point, to a neighbouring minima. The wide distribution
of barrier heights leads to a significant spread in resi-
dence times. In the mean squared displacement this is

reflected as a broad subdiffusive region with a relatively
large slope at the inflection point at intermediate times.
At long times, the hopping between minima resembles
a random walk and diffusive dynamics are recovered al-
though with a significantly reduced diffusion coefficient.
The long-time diffusion coefficient decreases with increas-
ing degree of roughness ε in agreement with theoretical
predictions [9]. This decrease is less pronounced than in
one-dimensional potential energy landscapes [20]. This
is attributed to the possibility to bypass large barriers in
two-dimensions.

The system presented here can also serve as a well-
controlled, tunable and easily observable model for other
systems, which either explore space or configuration
space, i.e. a potential energy landscape. These systems
include crowded systems, such as concentrated colloidal
suspensions, supercooled liquids, glasses [33, 35–40], or
living cells [26–28], but also complex potential energy
landscapes, such as those suggested in protein folding
[42–44, 46, 47].
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I. INTRODUCTION

Recently dynamics in rough potentials with (spatial)
correlations, where the correlations can either be within
particle arrangement/dynamics or only the ones from the
potential itself, got into the centre of interest [1]. We in-
vestigate the diffusion of colloidal particles, which were
exposed to a rough potential energy landscape (rPEL)
with Gamma-distributed potential energy levels p(U)
and a Gaussian-distributed spatial correlation function
CU , and analyse their dynamics as a function of the par-
ticle radius R with regard to particle-potential interac-
tions. The radius R and the correlation length are of
similar size. The rPEL originates in the potential felt
by spherical particles which were exposed to a random
laser intensity pattern, so called laser speckles, and thus
exploiting optical forces and hence both the potential en-
ergy distribution and the correlation function depend on
the particle radius due to the gradient forces of the laser
field. But also radiation pressure acts on the sedimented
particles, pushes them onto the glass wall of the sample
cell and thus particle-wall interactions have to be con-
sidered. These are corrected for in the description of
hydrodynamic interactions (HI) near a surface by Faxén.

Theoretical predictions by Stokes-Einstein for diffusion
in bulk and for a constant particle centre-wall separation
h by Faxén exist. The particles with different radii have
different buoyancy forces and hence sedimentation is a
function of the particle volume. Eventually, in equilib-
rium the net force is zero so that the gravitational force
counteracts the buoyancy force. Thus we can calculate
the sedimentation length lg and show that the particles
sediment down to a separation h that is exactly their
own radius R plus lg. In addition, the laser pressure
forces the particles to lower their height even more to ex-
actly h = R independent of the particle size. This limit
is caused by the normal force, which has to be consid-
ered as soon as the particles are settled on the bottom
glass slide. However, the influence of an interface, .i.e.
the wall, on the diffusive behaviour of a colloidal parti-
cle was already predicted by Faxén, who described the
slow down of dynamics near the surface due to hydrody-
namic interactions (HI) as a function of the particle-wall
separation. In this work we show that this model can
be used to describe the hindered diffusion of sedimented
colloidal particles near a glass interface both in the ab-
sence and in the presence of an optical force, i.e. radia-
tion pressure. Since short time dynamics are independent
of the potential roughness but solely influenced by HIs,

all experiments can be normalized with the experimental
short-term diffusion coefficient DS, which corresponds to
Faxén’s model for the case of totally sedimented particles
(h = R) and thus is proportional to the particle radius,
and the corresponding time ts.

The normalized long-term diffusion coefficient DL/DS
shows a clear dependence on the radius R; a strong de-
crease for R < 2 µm followed by a plateau at R ≥ 2 µm.
The particle volume and thus the over the particle inte-
grated intensity increases with the radius and hence the
influence of the rPEL gets stronger. However, spatial
correlations of the potential have to be considered since
it shows a dependence on the average speckle size which
was calculated to be of the order of R = 2 µm [2]. The
behaviour for smaller particles can be explained by the
different initial speed of the particles and thus different
sampling of the potential landscape, the one for larger
particles by the smoothing out of the potential correla-
tions.

So far, little was published about intermediate dynam-
ics referring to correlations. Here, we show the minimum
of the diffusive exponent µmin and the non-Gaussian pa-
rameter (NGP) α2. On the one hand, µmin behaves sim-
ilar to the long-term diffusion limit DL. The NGP, on
the other hand, shows different, heterogeneous dynam-
ics, which can again be seperated into two regimes of the
particle radius for R < 2 and R > 2 µm. Furthermore
the time of the minimum in the diffusive exponent tmin
and the value of the MSD at this time MSDmin are of
interest. The later is related to 1/R via the potential
trap stiffness.

II. MATERIALS AND METHODS

A. Sample Preparation

Samples consist of spherical polystyrene particles (In-
terfacial Dynamics Corporation) dispersed in purified
water (ELGA purelab flex, electrical resistivity ρ =
18.2 × 104 Ωm) and are prepared in home-made glass
microscopy cells [3]. Monodisperse samples with particle
radii R = 0.8−4.2 µm were used. Three glass cover slips
and a microscope slide (VWR) are assembled to form a
small capillary and closed with uv-glue (Norland). Due
to the density difference between particles and the sur-
rounding medium, particles are forced to sediment build-
ing a (quasi) two-dimensional layer. In this case, in-
stead of using the bulk concentration as an indicator for
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particle-particle interactions, it is sensible to look at the
particle area fraction φA = πNR2/A, which is hereinafter
also referred to as concentration (of the two-dimensional
system), with number of particles N in the field of view
with area A. For all measurements φA < 0.04.

B. Data Acquisition

The particle positions and their movements are exam-
ined with an inverted microscope (Nikon, Eclipse Ti-U)
and a 20× objective (Nikon, CFI S Plan Fluor ELWD,
numerical aperture NA = 0.45) while images of time-
series were recorded by a CCD camera (AVT, Pike F-
032B with 640 × 480 pixels and pixel pitch ppx = ppy =
0.372 µm px−1). Typical images have a quadratic field
of view of 460 × 460 px2 = 171 × 171 µm2. For every
measurement about 59600 images at a frame rate of 7.5
fps are recorded. Furthermore, position determination
and subsequent trajectory analysis were carried out us-
ing particle tracking routines in IDL [4]. Subsequently,
the short time dynamics, which are only influenced by
the laser pressure (and HIs) but not by the roughness
of the rPEL, were analyzed and time- and ensemble-
averaged parameters describing the diffusion, e.g., the
mean-squared displacement (MSD) and the short time
diffusion coefficient DS, calculated. Since the particles
are initially quenched in the rPEL, the system still re-
laxes within the time of the measurement and thus, since
time-averaged data is considered, the long time dynam-
ical behaviour of the system, in contrast to short time
dynamics, depends on the analysis time. Furthermore,
the relaxation time of the system strongly depends on
the mobility of the particles and thus on particle radius
R. This was corrected by cutting the trajectories (for ev-
ery measurement) at a maximal time of t = 40ts, where
ts = R2/4DS is the time a particle needs to move a dis-
tance equal to its own radius with its initial diffusion
coefficient DS.

C. Random Potential Energy Landscape

The particles were exposed to a random potential en-
ergy landscape (rPEL), which was realized with an opti-
cal set-up based on laser light (Laser Quantum, Opus
532, wavelength λ = 532 nm, maximum laser power
PL,max = 2.6 W) shaped with a special diffuser (RPC
Photonics, Engineered Diffuser EDC- 1-A-1r,) [2, 5]. In
this way, it is possible to imprint a macroscopically
flat (top-hat intensity distribution) but microscopically
rough (laser speckles on the particle length scale) inten-
sity landscape on the sample plane. The experiments de-
scribed in this work were performed at fixed conditions of
the optical set-up (‘BE 5×’ in [2]) resulting in a speckle
area AS = 5.1 µm2. Further parameters characterizing
the speckle patterns convolved with the weight function
of a spherical particle with radius R and thus effective
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FIG. 1. MSD vs time t (both not scaled) for different radii
R.

particle area Am = 8
9 πR2 are, here for R = 1.4 µm,

the ratio of the effective particle area to the speckle area
Am/AS = 1.07 and the correlation parameter M = 2.6.
It results in a rPEL felt by the diffusing particles with the
spatial correlations and energy level distribution mainly
determined by the properties of the underlying intensity
landscape and the particle radius. So far, much work fo-
cussed on Gaussian roughness (M ≫ 1), while rugged en-
ergy landscapes are much more common. Here, the cor-
relations of the potential, i.e. M , were tuned by changing
the particle radius R while holding the speckle size AS
constant.

III. RESULTS AND DISCUSSION

We investigate colloidal particles exposed to a rPEL
with Gamma-distributed potential energy levels and
analyse their dynamics as a function of the particle radius
with regard to particle-potential interactions. A typi-
cal measure to analyse particle dynamics is the mean-
squared displacement (MSD), ⟨∆r2⟩, which corresponds
to the variance of the displacement probability distribu-
tion and is given by

⟨∆r2(t)⟩ = ⟨[ri(tw + t) − ri(tw)]⟩2
tw,i (1)

= 4D0t (2)

where ⟨...⟩ denotes time- and ensemble averaging and the
proportionality constant D0 is called the self-diffusion
coefficient. The MSD is proportional to the time t for
freely diffusing particles [6]. If the particles’ motion is
influenced by the particle concentration or an external
potential, ‘anomalous’ diffusion emerges, and eq. (2) be-
comes

⟨∆r2(t)⟩ ∝ tµ (3)

with the diffusive exponent µ.
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Figure 1 shows the MSD for different particle radii R.
As expected, the particles show diffusive behaviour at
short times, sub-diffusive behaviour (µ < 1) at interme-
diate times and tend to become diffusive again (but with
a smaller diffusion coefficient DL) at large time scales, in-
dependent of the particle’s radius. Furthermore, the in-
fluence of the radius is clearly visible as a shift to smaller
MSD values for increasing values of the particle radius at
all time scales, i.e. the particles’ motion is increasingly
restricted the bigger the particles are.

A. Hindered Short-Time Diffusion Near the Wall

In this work the particles are sedimented to a quasi
two-dimensional layer at the bottom of the sample cell
and hence particle-wall interactions have to be considered
for their influence on the particle dynamics [7–9]. The
distance to the bottom cover slip can be estimated by
the gravitational length lg which is given by

lg(R) = kBT

g∆ρVp
(4)

with the Boltzmann constant kB, temperature T , the
standard acceleration due to gravity g = 9.80665 m/s2,
the difference between the density of the polystyrene par-
ticle ρp = 1.05 × 103 kg/m3 and the dispersion medium
ρm = 1.000 × 103 kg/m3 (water), ∆ρ, and the particle
volume Vp = 4πR3/3.

The Stokes-Einstein diffusion coefficient DSE
0 , which

describes free particle diffusion in bulk, is given by

DSE
0 (R) = kBT

6πηR
(5)

with the viscosity of the dispersion medium η (η =
1.002 × 10−3 Pas for water at T = 20 C). If a particle
approaches a surface its lateral motion depends on the
particle centre-surface distance h and is generally slowed
down due to hydrodynamic interactions (HI). Faxén [10]
suggested a correction term to describe the dynamics
near a wall, which includes the dependence on h normal-
ized by the particle radius R. The corrected short-term
diffusion coefficient DF

0 is given by

DF
0 (h, R) =

(
1 − 9

16
R

h
+ O

(
R3

h3

))
DSE

0 (R) (6)

with the particle centre-wall separation h. It has been
shown to match with experimental results of particles
moving parallel and close to a surface, even with only
the first order term of the expansion [7]. For the case of
R = h it becomes

DF
0 (h = R) ≈ 7

16DSE
0 . (7)

The experimental short-time diffusion coefficient for
sedimented particles D0 is shown in fig. 2 as a function
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FIG. 2. Experimental short time diffusion coefficient in the
absence of a laser field, D0 (open symbols), and for the case
with a rPEL and high laser power PL = 2600 mW, DS (closed
symbols), in comparison with theoretical predictions for bulk
diffusion, i.e. Stokes-Einstein, DSE

0 (eq. (5), black solid line),
in a distance h = R, DF

0 (eq. (6), blue dashed line), and a
distance h = R + lg from the wall, D

lg
0 (red dash-dotted line),

based on Faxén’s prediction with the gravitation length lg.
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FIG. 3. Experimental particle centre-wall separation h for
the case without (hD0 , open symbols) and with a rPEL (hDS ,
closed symbols). Calculated gravitational length lg (eq. (4),
pink solid line), particle size R (blue dashed line) and a com-
bination of both (R + lg, red dash-dotted line).

of the particle radius R (open symbols). It was deter-
mined by calculating the time-dependent diffusion coef-
ficient D(t) as

D(t) = 1
2

∂

∂(t) ⟨∆r2(t)⟩ (8)

and subsequently evaluating D0 = lim
t→0

D(t). The short-
time diffusion is well described by Faxén’s correction with
h = R + lg (fig. 2, red dash-dotted line), i.e. the par-
ticles are sedimented to an equilibrium position above
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FIG. 4. The MSD normalized with the particle radius R
as a function of the time normalized with ts, i.e. the MSD
corrected for the influence of HIs due to sedimentation and
laser pressure. All curves (aside from the one for R = 1 µm)
show a short-term diffusion which is scalable with R, D/DS ≈
1, and a size dependent decrease of intermediate and long-
term dynamics.

the bottom sample wall which depends on the particle’s
sedimentation length lg (eq. (4)) as shown in fig. 3. Ex-
posing the particles to an optical field leads to radia-
tion pressure, which pushes the particles closer to the
wall, since it points in the same direction as the grav-
itational force. This effect is independent of the shape
of the optical landscape, i.e. the optical gradient forces,
and thus shows no further influence of the rPEL. How-
ever, it pushes the particles closer to the wall (fig. 3,
filled symbols) and thus their short-time diffusion coeffi-
cient DS (fig. 2, filled symbols) is further reduced in com-
parison to the diffusion of just sedimented particles D0
(open symbols), especially for the case of small particles
(R ≤ 2 µm). Moreover, comparing the resulting particle-
wall separation in the presence of radiation pressure hDS

(fig. 3, filled symbols) with the particle radius R (blue
dashed line) shows, within experimental errors, a per-
fect match, i.e. the particles are more or less in contact
with the wall, and hence the short-time dynamics can be
shown to be well described by Faxén’s correction with
particle-wall seperation h = R, DF

0 (h = R) (eq. (7), cf.
fig. 2). Thus, since short time dynamics are independent
of the potential roughness but solely influenced by HIs,
all experiments can be normalized with the experimen-
tal short-term diffusion coefficient DS, which corresponds
to Faxén’s model for the case of totally sedimented par-
ticles (h = R) and thus is proportional to the particle
radius (fig. 2), and the corresponding time ts. Figure 4
shows the MSD normalized with the particle radius R as
a function of the time normalized with ts. At short times
D/DS ≈ 1 independent of the particle radius R.

1 2 3 4
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D
L /

 D
S (

t=
3t

s)

R / µm

FIG. 5. Normalized long-term diffusion coefficient DL/DS,
with DL = D(t = 3tS), as a function of the particle radius R,
shown on a logarithmic scale.

B. Anomalous Diffusion as a Function of the
Particle Size

In contrast to the short-term dynamics, the interme-
diate and long-term dynamics are strongly influenced by
the rPEL. The normalized long-term diffusion coefficient
DL/DS, with DL = D(t = 3tS), as a function of the par-
ticle radius R is shown on a logarithmic scale in fig. 5.
Although it is steadily decreasing for all R, the slow down
of DL/DS with increasing R is the strongest for small par-
ticle radii (R < 2 µm) and shows a saturation at values
of R ≥ 2 µm. Here we show results for particle sizes
between a radius less than half of the average intensity
speckle size, which is s = 1.98 µm, (Rmin = 0.8 µm)
and up to roughly two times larger than the speckle size
(Rmax = 4.155 µm). Since DL was corrected for influ-
ences of short-time dynamics and thus HIs, these results
can solely be explained by the interaction of the particles
with the rough potential. The particle-potential interac-
tions are mainly influenced by two effects. On the one
hand, the particle volume directly effects the strength of
the optical trapping by influencing its trap stiffness κ [11].
This effect shows ambiguous behaviour with increasing
particle volume and can, depending on the wavelength of
the laser light and the particle volume, either increase or
decrease the effect of the potential. On the other hand,
integrating more local intensities over a larger effective
area of the particles leads to a smoothing of the poten-
tial correlations. Hence, DL saturates to a plateau for
values of the radius that are larger than the speckle size.

At intermediate time scales anomalous diffusion is ob-
served. A good measure to describe anomalous diffusion
is the time dependent diffusive exponent µ(t), which can
be calculated from

µ(t) = ∂

∂ log(t) log
(⟨

∆r2(t)
⟩)

. (9)

If particles are hindered in their motion, one speaks of
sub-diffusion which is indicated by µ(t) < 1. As already
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FIG. 6. The minimum of the diffusive exponent µmin (a) and
the time tmin at which µ(t) becomes minimal normalized by
ts (b), both as a function of the particle radius R.

seen by the analysis of the MSD (cf. fig. 1), sub-diffusion
is apparent at intermediate times for all investigated par-
ticle radii. It is useful to further quantify this reduc-
tion in the diffusivity by determining the minimum of
the diffusive exponent µmin as a function of the particle
radius R (fig. 6). µmin shows comparable behaviour to
the one of the long time diffusion coefficient DL, that
is decreasing values with increasing radius R. Although
the statistics at intermediate times are better due to the
time-averaging, the trends of µmin are less pronounced
than for longer times. This is presumably caused by on-
going relaxation of the system while the measurements
were performed.

As a link to sub-diffusive behaviour at intermediate
times, where µ(t) shows a minimum, the square-root of
the plateau value of the MSD,

√
MSDmin, was determined

as a function of particle radius R.
√

MSDmin can be
seen as a measure for the average displacement of parti-
cles trapped in the laser potential. Thus a proportion-
ality of

√
MSDmin with the stiffness of the single optical

traps κ is suggested [11, 12]. Although the trap stiff-
ness κ usually shows ambiguous behaviour as a function
of the particle radius R normalized with the laser wave-
length λ, here, only particles larger than the wavelength
(2πR/λ & 3 [11]) are considered and thus the geometri-
cal optics regime is valid for all investigated particle sizes.
Hence a monotone decrease of the trap stiffness with in-

1 2 3 4
0.0

0.5

1.0

1.5

sq
rt

( M
SD

m
in
 ) 

/ 
µm

R / µm

1/R

FIG. 7. The square-root of the plateau value of the MSD,√
MSDmin, as a function of particle radius R. The dashed

line indicates 1/R.
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FIG. 8. The non-Gaussian parameter α2 as a function of the
normalized time t/tS for different particle radii R.

creasing particle radius, i.e. κ ∝ √
MSDmin ∝ 1/R, is

expected [11].
In the absence of a drift one can also calculate the so

called non-Gaussian parameter (NGP) α2 as

α2(t) = ⟨∆r4(t)⟩
3 ⟨∆r2(t)⟩2 − 1 , (10)

where ⟨∆r4(t)⟩ is the next higher non-zero moment of
the displacement distribution, which is calculated accord-
ingly to ⟨∆r2(t)⟩. The non-Gaussian parameter α2 is the
excess kurtosis of the displacement distribution and thus
indicates deviations of the shape of the measured dis-
tribution from a perfect Gaussian. It is shown in fig. 8
as a function of the normalized time t/tS for different
particle radii R. Again, two regimes can be identified
which are roughly separated by the average speckle size
s = 1.98 µm. Although large particles seem to be less
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influenced by the rPEL, as seen in the long-term diffu-
sion coefficient DL, their motion is very heterogeneous in
comparison to smaller particles with R ≤ s. This can be
explained by large particles seeing several laser speckles
at once and thus correlations between adjacent speckles
have to be included. Since the rPEL of this work has
potential energy levels which are Gamma-distributed, it
is, in comparison to Gaussian rPELs, more likely that
the diffusion of the particles is strongly influenced by few
very deep potential wells. The larger a particle is, the
higher is the probability to be initially quenched to a po-
sition in the rPEL at which such a deep potential well is
present and hence some of the larger particles are longer
pinned in potential traps although the overall correla-
tions are less pronounced and hence most particles show
normal diffusive behavior, as without a rPEL.

IV. CONCLUSIONS

We investigated the diffusion of colloidal particles,
which were exposed to a rough potential energy land-
scape, and analysed their dynamics as a function of the
particle radius R with regard to the particle-potential
interactions and potential correlations. The short-term
diffusion coefficient DS in presence of a laser field, which

pushes the particles to the bottom slide of the sample
cell, was determined. Taking the gravitational length lg
and the particle centre-wall separation into account, it
was used to normalize the experimental long-term diffu-
sion coefficient DL for hydrodynamic interactions. At in-
termediate and long times, particle dynamics is strongly
influenced by the rPEL resulting in anomalous diffusion,
which is indicated by a small diffusive exponent, µ < 1,
and a large NGP, α2 > 1. Furthermore, these param-
eters were analysed as a function of the particle radius
R. With increasing R both DL and the minimum in
the diffusive exponent µmin monotonically decrease with
a trend to saturate for large particles. A proportion-
ality of

√
MSDmin, which can be seen as a measure for

the average displacement of particles trapped in the laser
potential, with the stiffness of single optical traps κ was
suggested.
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Time- and ensemble-averages in evolving systems: the case of Brownian
particles in random potentials

Jörg Bewerunge,1 Imad Ladadwa,2 Florian Platten,1 Christoph Zunke,1 Andreas Heuer,3 and Stefan U. Egelhaaf1
1)Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf,
Germany
2)Fahad Bin Sultan University, SA-71454 Tabuk, Saudi-Arabia
3)Institut für Physikalische Chemie, Universität Münster, D-48149 Münster, Germany
(Dated: 8 July 2016)

Anomalous diffusion is a ubiquitous phenomenon in complex systems. It is often quantified using time- and
ensemble-averages to improve statistics, although time averages represent a non-local measure in time and
hence can be difficult to interpret. We present a detailed analysis of the influence of time- and ensemble-
averages on dynamical quantities by investigating Brownian particles in a rough potential energy landscape
(PEL). Initially, the particle ensemble is randomly distributed, but the occupancy of energy values evolves
towards the equilibrium distribution. This relaxation manifests itself in the time evolution of time- and
ensemble-averaged dynamical measures. We use Monte Carlo simulations to study particle dynamics in a
potential with a Gaussian distribution of energy values, where the long-time limit of the diffusion coefficient
is known from theory. In our experiments, individual colloidal particles are exposed to a laser speckle pattern
inducing a non-Gaussian roughness and are followed by optical microscopy. The relaxation depends on the
kind and degree of roughness of the PEL. It can be followed and quantified by the time- and ensemble-
averaged mean squared displacement. Moreover, the heterogeneity of the dynamics is characterized using
single-trajectory analysis. The results of this work are relevant for the correct interpretation of single-particle
tracking experiments in general.

PACS numbers: 05.20.Jj, 47.57.-s, 64.70.pv, 82.70.Dd

I. INTRODUCTION

The mean-squared displacement (MSD),
⟨
δr2(t)

⟩
, is

often used to characterize the dynamics of Brownian par-
ticles. In many situations, the dependence of the MSD
on lag time t follows a power law, according to

⟨
δr2(t)

⟩
∝ tµ . (1)

For normal diffusion, the MSD increases linearly with
time and one obtains µ = 1. However, in recent years,
interest moved to anomalous diffusion, i.e. µ ̸= 1.1–3 Sys-
tems with µ < 1 and µ > 1 are called sub- and superdif-
fusive, respectively. We focus on subdiffusive behavior,
which occurs, e.g., in many-particle systems, such as
crowded biological cells,4–6 dense colloidal suspensions,7,8

and other glassy samples.9 Moreover, individual parti-
cles might undergo subdiffusion due to confinement,5,10

e.g. in disordered or porous media,11–14 or external
potentials.15 Due to the advances in single molecule ex-
periments and particle tracking algorithms,16–19 an in-
creasing number of such studies are performed and quan-
titative data sets become available.

The average on the left-hand side of Eq. (1) can be un-
derstood in different ways. First, as an ensemble average
(EAMSD)

⟨
δr2

i (t)
⟩

i
over the trajectories of N particles i

⟨
δr2

i (t)
⟩

i
= 1

N

N∑

i=1
[ri(t) − ri(0)]2 . (2)

Second, as a time average (TAMSD) over a very long sin-
gle trajectory of particle i, which extends up to a maxi-

mum time tmax ≫ t, i.e. an average over waiting times
t0:

⟨
δr2

i (t)
⟩

t0
= 1

tmax − t

·
∫ tstart+tmax−t

tstart

[ri(t0 + t) − ri(t0)]2 dt0 ,

(3)

where the start time, tstart, of the measurement might
not coincide with the start of the experiment. Further-
more, a combination of both is possible and yields the
time- and ensemble-averaged mean-squared displacement
(TEAMSD):

⟨
δr2(t)

⟩
t0,i

=
⟨⟨

δr2
i (t)

⟩
t0

⟩
i

. (4)

Thus, the question arises whether the ensemble or the
time-average or both should be applied.20

In an ergodic system,

limtmax→∞
⟨
δr2

i (t)
⟩

t0
=
⟨
δr2

i (t)
⟩

i
, (5)

whereas, in a non-ergodic system, the TAMSD repre-
sents a stochastic variable. Recently, the dependence of
TAMSDs on the duration tmax of the trajectory, has been
related to the long-term relaxation behavior or ageing of
ergodic and non-ergodic systems.21,22 Moreover, differ-
ences between TAMSDs and EAMSDs have been used
to identify the type or mechanism underlying anomalous
diffusion in complex fluids.23–25
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FIG. 1. Generic situation studied in this work: a single par-
ticle exploring a random potential energy landscape (PEL).

The dynamics of individual Brownian particles ex-
posed to a stationary random potential energy land-
scape (PEL), as illustrated in Fig. 1, provides a use-
ful description for many diffusion and transport pro-
cesses in disordered or porous media. Colloidal model
systems can be used to systematically and quantita-
tively study particle dynamics in experiments26–31 and
simulations.32–37 In particular, almost any external po-
tential can be imposed on colloidal particles using laser
light fields.15,38 Recently, we experimentally realized one-
and two-dimensional random PEL and studied their ef-
fect on particle dynamics.39,40 Initially, particles were
positioned randomly in the PEL (Fig. 1) and first ex-
plored the landscape in their vicinity, diffusing within lo-
cal minima. At intermediate times, particle motion was
constrained to the minima, leading to a pronounced sub-
diffusive regime, whereas, at long times, particle hopping
between minima could be described by normal diffusion
with, however, a significantly reduced long-time diffusion
coefficient D∞. The transition from intermediate subd-
iffusion to the long-time asymptotic limit is expected to
occur on a time scale τ , the effective relaxation time,

τ ≈ l2

D∞
, (6)

where l is the characteristic length scale of the
PEL.14,41,42 In particular, for tmax ≫ τ , TAMSDs and
EAMSDs are found to be identical, reflecting the ergod-
icity of the system.

In this work, we studied the dynamics of individual
Brownian particles in random PELs with Gaussian and
non-Gaussian (i.e. here Gamma) distributions of energy
values (or “roughness”) by experiments and Monte Carlo
(MC) simulations, where, for a Gaussian distribution,
D∞ is known from theory.14 In our experiments, the
particles were exposed to a laser speckle pattern, which
leads to a Gamma distribution of energy values, and
their dynamics was followed by optical video microscopy
and single-particle trajectories were extracted43 and ana-
lyzed. Initially the particles were randomly distributed in
the PEL and hence were in a non-equilibrium situation.
During the experiments and simulations, they developed
towards the equilibrium distribution. Due to this evo-
lution of the system, the time- and ensemble-averaged

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

U/ U

U
p(
U
)

 

Gaussian PELnon-Gaussian PEL

FIG. 2. Distribution p(U) of energy values U of random PELs
used in the experiments (Gamma distributed with M = 2.6,
i.e. non-Gaussian, pΓ(U); calculation and fit shown as solid
and dashed line, respectively) and simulations (Gaussian dis-
tributed, pG(U)) and schematic sketches of the corresponding
PELs (insets).

dynamical properties depend on the maximum duration
tmax of the investigated particle trajectories. Time- and
ensemble-averaged MSDs (TEAMSDs) can be used to fol-
low the equilibration of the systems, especially, in com-
bination with the spread of the MSDs of single particles.

II. MATERIALS & METHODS

A. Sample Preparation

Samples consisted of an aqueous suspension of
polystyrene spheres with sulfonated chain ends (Inter-
facial Dynamics Corporation, radius R = 1.4 µm, poly-
dispersity 3.2 %). Suspensions were filled into sample
cells by capillary action. Sample cells were constructed
from thoroughly cleaned glass cover slips and a micro-
scope slide (VWR) glued together with Norland Optical
Adhesive 61 to result in a small capillary.44 Once the
particles had sedimented into a (quasi) two-dimensional
layer on the cover slip, we determined the particle area
fraction φA = πR2N/A with the particle number N in
the investigated area A of the light field. The samples
were dilute (φA ≤ 0.06) and hence particle-particle inter-
actions negligible.

B. Light Field Generation

A solid-state laser (Laser Quantum, Opus 532, wave-
length λ = 532 nm) with a maximum intensity PL =
2.6 W provided a linearly-polarized Gaussian beam. The
central optical element was a special diffuser (RPC Pho-
tonics, Engineered Diffuser™ EDC-1-A-1r).45 If the dif-
fuser is illuminated by an expanded Gaussian laser beam,
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a macroscopically flat top-hat intensity pattern with fluc-
tuations on a microscopic scale, i.e. a speckle pattern, is
produced. The characteristic speckle size is controlled
by the diameter of the illuminating laser beam; in our
experiments, the particle–speckle size ratio was about 1.
Details of the optical set-up are described in ref.46

The effect of this speckle pattern on a colloidal particle
can be described by a random PEL (Fig. 2 left inset).46

The distribution of energy values p(U) follows a Gamma
distribution

pΓ(U) = 1
Γ(M)

(
M

⟨U⟩

)M

UM−1e−MU/⟨U⟩ (7)

with the mean of the distribution ⟨U⟩, i.e. the average
of the energy values, the Gamma function Γ(M), and
the shape parameter M = 2.6 (Fig. 2, for details see
condition BE5× in Tab. II of ref.46). The standard de-
viation of the distribution, ε = ⟨U⟩ /

√
M , i.e. the de-

gree of roughness of the potential, is controlled by the
laser power PL ∝ ε.40,46 Moreover, for large values of M ,
pΓ(U) tends to a Gaussian distribution of energy values
(Fig. 2):

pG(U) = 1√
2πϵ2

exp
(

− (U − ⟨U⟩)2

2ε2

)
. (8)

For the same standard deviation the Gamma distributed
PEL has a large fraction of very high maxima than the
Gaussian distributed PEL.

The colloidal particles were followed using a commer-
cial inverted microscope (Nikon Eclipse Ti-U) with a 20×
objective (Nikon CFI S Plan Fluor ELWD, numerical
aperture 0.45). In most experiments, a CMOS camera
(PixeLINK, PL-B741F) with a maximum field of view of
1280 × 1024 pixels (431 × 345 µm2) was used to record
about 10 200 images at a frame rate of 2 frames per
second for a complete measurement run. For each im-
age, the particle locations were determined in an area of
1000 × 1000 pixels.43 Few particles had short-time diffu-
sion coefficients less than two percent of the mean diffu-
sion coefficient and hence were considered stuck to the
cover slip and disregarded. Particle locations were con-
nected to yield particle trajectories.43 We only consid-
ered trajectories which extended over at least 10 frames.
Then the number of trajectories (typically 250) was ap-
proximately constant (±5) over time.

C. Monte Carlo Simulations

The Monte Carlo simulations were performed on a
4096 × 4096 square lattice with the lattice points sepa-
rated by a distance ∆s in both directions, where we have
set ∆s = 1. The potential values at the lattice points,
Ũ(x, y), were produced using a Box-Muller algorithm
generating numbers which are Gaussian distributed with
standard deviation ε̃. To mimick the experimental situa-
tion, the potential Ũ(x, y) was convoluted with the par-
ticle volume to obtain the potential U(x, y) which can

then be thought to be imposed onto a point-like test par-
ticle. The potential U(x, y) is smoother than Ũ(x, y).
Its values follow a Gaussian distribution with a standard
deviation ε. The spatial correlation l of U(x, y) decays
on the length scale of the particle size; l ≈ 2R.40 The
spatial correlation is similar to the Gamma-distributed
random PEL experienced by a colloidal particle in the
light field.46

Once U(x, y) was determined, a particle was positioned
on a randomly chosen lattice point. During the simula-
tion, a direction was chosen randomly and, depending
on the energy difference ∆U to the neighbouring lat-
tice point, the move was always accepted if ∆U ≤ 0
or otherwise accepted with probability exp (−∆U/kBT )
if ∆U > 0 (where kBT is the thermal energy). For each
Monte Carlo run, the short-time diffusion coefficient D0
and the related Brownian time tB = R2/(4D0) were cal-
culated. Data were acquired up to tmax = 10000 tB. Av-
erages based on 1024 runs with different initial particle
positions appeared reliable. It turned out that, within
statistical uncertainty, the results for different realiza-
tions of the potential energy landscape U(x, y) are iden-
tical. Separate simulations were performed for different
values of the standard deviation 0 kBT ≤ ε ≤ 5 kBT to
investigate its effect on the dynamics. Details of the sim-
ulations are given in ref.40

D. Data analysis

Based on the particle trajectories, different statistical
properties were computed to characterize the particle dy-
namics. The dynamical properties were determined as a
function of the distance, ∆r = [(∆x)2 +(∆y)2]1/2, where
distances are scaled by the particle radius R and times
by the Brownian time tB. In our experiments, we had
R = 1.4 µm and tB = 5.5 s based on the experimentally
determined short-time diffusion coefficient D0. This ren-
ders the data independent of the specific experimental
conditions. Initially, the occupancy of energy values was
homogeneous but tended towards its equilibrium distri-
bution in the course of the experiment. Therefore, the
average over waiting times t0 depends on the total mea-
surement time tmax.

The two-dimensional mean-squared displacement
(MSD) is given by

⟨
∆r2(t)

⟩
=
⟨
∆x2(t)

⟩
+
⟨
∆y2(t)

⟩
, (9)

which is calculated from the particle trajectories accord-
ing to

⟨∆x2(t)⟩ =
⟨
δx2⟩

t0,i
− ⟨δx⟩2

t0,i (10)

and ⟨∆y2(t)⟩ correspondingly. The second term cor-
rects for possible drifts. From the two-dimensional MSD,
⟨∆r2(t)⟩, the time-dependent diffusion coefficient D(t)
was calculated according to

D(t) = 1
2d

∂

∂t

⟨
∆r2(t)

⟩
, (11)
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where in the present case the dimension d = 2. The
exponent µ (Eq. 1) was determined from the slope of the
MSD in double-logarithmic representation:

µ(t) =
∂ log

(⟨
∆r2(t)

⟩)

∂ log (t) . (12)

While the exponent µ(t) characterizes deviations from
diffusive behaviour, the non-Gaussian parameter α2(t)
corresponds to the excess kurtosis and is given by:

α2(t) =
⟨
∆r4(t)

⟩

(1 + 2/d) ⟨∆r2(t)⟩2 − 1 , (13)

where
⟨
∆r4(t)

⟩
is defined analogous to

⟨
∆r2(t)

⟩
(Eqs.

8,9).40

III. RESULTS AND DISCUSSION

We first discuss the effect of the maximum simulation
time tmax on the parameters describing the (evolving)
particle dynamics in a random potential with a Gaussian
distribution of energy values (“Gaussian roughness”),
where the long-time limit of the diffusion coefficient is
known from theory. Then, we analyze how time- and
ensemble-averaged dynamical properties reflect the relax-
ation behavior in PELs with Gaussian and non-Gaussian
roughness. Moreover, we show how such quantities can
be used to follow equilibration, here the evolution from
an initially homogeneous distribution to its equilibrium
distribution. This notion will be confirmed by the anal-
ysis of single particle trajectories.

Fig. 3 shows Monte Carlo simulation data for parti-
cle dynamics in a random PEL with a Gaussian distri-
bution of energy values. Part (A) contains data on the
mean-squared displacement averaged over different parti-
cles and waiting times (TEAMSD, eq. 4) for different val-
ues of the standard deviation of the PEL, ε (Eq. 8), and
different maximum simulation times tmax. In the absence
of an external potential, the TEAMSD increases linearly
with time for all values of tmax (black solid line), as ex-
pected for free diffusion. In the presence of the random
potential, the TEAMSD increases linearly with time at
very short and very long times, but exhibits a pronounced
slowing-down at intermediate times. Correspondingly, at
very short and very long times, the diffusion coefficient
(Fig. 3B) shows a plateau and, at intermediate times, an
extended decrease. At very small t, the dynamics reflect
diffusion within local minima and is thus essentially in-
dependent of ε. At small t, such that

⟨
∆r2⟩

t0,i
. R2,

the TEAMSD depends on ε but only slightly on tmax, re-
flecting small excursions within local minima. For large
enough t, hopping between minima dominates and results
in a random walk. Thus, diffusive behaviour is reestab-
lished at long times, although with a strongly reduced dif-
fusion coefficient D∞. At intermediate t, the TEAMSDs
exhibit an inflection point, which becomes increasingly
pronounced as ε increases. This subdiffusive behaviour
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FIG. 3. (A) Time- and ensemble-averaged mean-squared dis-
placement (TEAMSD),

⟨
∆r2(t)

⟩
t0,i

, and (B) diffusion coeffi-
cient D(t) as a function of lag time t of particles in a random
PEL with a Gaussian distribution of energy values with differ-
ent standard deviations ε (as indicated, in units of kBT ). The
simulations extend over different times tmax = 102 tB, 103 tB
and 104 tB (solid lines, connected symbols and dashed lines,
respectively), whereas the start time tstart = 0 in all cases. In
addition, the ensemble-averaged mean-squared displacement
(EAMSD),

⟨
∆r2(t)

⟩
i
, is shown for a very large tstart when

equilibrium is reached (black dash-dotted lines). The black
solid lines indicate free diffusion. Solid horizontal lines at
large t indicate theoretical predictions (Eq. 14)14 and solid
vertical lines relaxation times (Eq. 6). (C) Mean occupied
energy value ⟨U⟩/kBT as a function of tmax. Solid horizontal
lines indicate the long time limit ⟨U⟩/kBT = −(ε/kBT )2.
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is caused by particles being trapped in local minima for
prolonged times before they can escape to neighbouring
minima. Since there is a wide range of residence times,
reflecting barriers of different heights, the subdiffusive
regime extends over a broad range of times.

For a Gaussian distribution of energy values (Eq. 8),
the long-time diffusion coefficient, D∞, is known from
theory.14,47–49 It strongly depends on ε and is predicted
to follow (Fig. 3B, solid horizontal lines):

D∞(ε)
D0

= exp
(

−1
2

(
ε

kBT

)2
)

(14)

For ε = 2 kBT the long-time diffusive limit is reached
within the time window investigated, whereas it is
not reached in the cases of ε = 3 and 5 kBT , even
for tmax = 104 tB (dashed lines). According to
Eq. (6), the relaxation time is expected to scale as
τ ≈ 16 tB exp ( 1

2 (ε/kBT )2). Thus, τ = 118 tB, 1440 tB
and 4.3 × 106 tB for ε = 2, 3 and 5 kBT , respectively,
consistent with the observed transition times for ε = 2
and 3 kBT (Fig. 3B, solid vertical lines).

We also analyzed the dependence of the mean occupied
energy value, ⟨U⟩, on the maximum simulation time tmax,
which corresponds to the maximum possible waiting time
t0 (Fig. 3C). ⟨U⟩ exhibits a continuous decrease from
⟨U⟩ = 0 at tmax = 0 to

⟨U⟩ = − ε2

kBT
(15)

in the long time limit (vertical lines). This decrease re-
flects the relaxation of the particle ensemble into deeper
minima and is the main reason for the decrease of the
MSD with increasing tmax (Fig. 3A).

Fig. 3 reveals a strong effect of the maximum simula-
tion time tmax, i.e. the maximum possible waiting time
t0, on the TEAMSDs and diffusion coefficients (solid
lines, connected symbols and dashed lines of the same
color), reflecting the relaxation of the initially homoge-
neously distributed particles to their equilibrium distri-
bution. For ε = 2kBT , the long-time limit is reached
within the maximum simulation time considered here.
The corresponding TEAMSDs with the two largest val-
ues of tmax almost coincide at long lag times t, reflect-
ing that the system is relaxed relatively quickly. Short
lag times t ≪ tmax imply larger maximum waiting times
t0 = tstart + tmax − t (Eq. 3) and hence also a large weight
of slower dynamics even for the shorter tmax, which im-
plies only a small dependence on tmax. Furthermore, for
t ≪ tB, the particles only explore one minimum and
therefore the local dynamics is basically independent of
the height of the PEL. Hence, the TEAMSDs at short
times coincide irrespective of tmax. Similar applies to
very large t ≫ τ , which implies tmax ≫ τ , and hence the
TEAMSDs also coincide at long times. At intermediate
lag times t, larger tmax lead to a larger weight of later
times. Due to the evolution of the system towards its
equilibrium distribution with an increasing occupation

of deep minima at longer absolute times (Fig. 3C), this
imposes slower dynamics which results in a monotonic
decrease of the TEAMSD and the diffusion coefficient
with increasing tmax. Consistent with this, the decrease
is most pronounced for the largest ε with particles ex-
ploring the deepest minima. These results imply that
the TEAMSDs can be used to characterize the relaxation
behavior of the system.

While Fig. 3 is based on systems with Gaussian rough-
ness, Fig. 4 compares data from systems with Gaussian
(A1-A4) and non-Gaussian (Gamma) roughness (B1-B4),
as obtained from Monte Carlo simulations and particle
tracking experiments, respectively. Again, we analyze
how the relaxation of the system is reflected in time- and
ensemble-averaged dynamical quantities. For different
values of the standard deviation ε, we study the effect of
increasing measurement time tmax, i.e. we truncate the
trajectories after different times (see sketch C1).

As in Fig. 3, we observe a decrease of the TEAMSD
and the diffusion coefficient with increasing effective mea-
surement time tmax and standard deviation ε, which is
quantified by D50 = D(t=50tB) (Fig. 4). In addition,
we have extracted the local slope of the MSD, µ(t). At
short lag times t, µ(t) decreases, reaching a minimum,
µmin, at about 2-3 tB, which corresponds to the inflec-
tion point of D(t). The µmin decreases with increasing
tmax (C3), until the equilibrium value of µmin is reached.
Moreover, µ decreases with the standard deviation ε due
to the deeper minima. At the minimum, the particles
are most efficiently trapped. For larger times t, the par-
ticles succeed in escaping first the shallow and then also
deeper minima and, correspondingly, µ(t) rises over some
time range reflecting the distribution of the depths of the
minima. Finally in the long-time diffusive limit, µ(t) is
expected to reach a value of 1, but is observed to diverge
due to the vanishing number of trajectories.

The non-Gaussian parameter α2(t) quantifies the de-
viation from a Gaussian distribution of particle displac-
ments. It is approximately zero at short and very long
times, indicating that the distribution of particle dis-
placements is well described by a Gaussian and consistent
with diffusive dynamics. At intermediate times, α2(t) ex-
hibits a peak, αmax, denoting the time at which the diffu-
sion is maximally heterogeneous. This occurs after some
particles have already escaped shallow minima while oth-
ers are still caught in deeper minima and, therefore, the
peak in α2(t) occurs at later times than the minimum
in µ(t). The maximum of α2(t) strongly increases with
tmax, reflecting the increased heterogeneity, and with ε,
due to the increasingly deeper minima (C4).

Qualitatively, the trends of particle dynamics in the
non-Gaussian random PEL (B1-B4) resemble those in a
Gaussian random PEL (A1-A4). However, quantitative
differences are observed. For the two higher laser pow-
ers, the diffusion coefficient D(t) (B2) roughly decreases
to similar values as in the Gaussian cases (A2; see also
comparison in C2), whereas the minimum of µ(t) and
the maxima of α2(t) are more pronounced in the non-
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FIG. 4. Particle dynamics in random PEL with Gaussian (A1-A4, MC simulations for ε = 3 and 5 kBT ) and non-Gaussian
roughness (B1-B4, experiments with PL = 917, 1640, and 2600 mW) with different maximum times tmax (as indicated schemat-
ically in C1), whereas the start time tstart = 0 in all cases. TEAMSD

⟨
∆r2(t)

⟩
t0,i

(A1, B1), diffusion coefficient D(t) (A2,
B2), characteristic slope of the MSD µ(t) (A3, B3), and non-Gaussian parameter α2(t) (A4, B4) as a function of lag time t.
Characteristic values (marked by symbols in parts A and B), namely the diffusion coefficient at t/tB = 50 (C2), the minimum
of µ(t) (C3), and the maximum of α2(t) (C4), as a function of the maximum time tmax.

Gaussian case (C3 and C4). These differences are due
to the asymmetric distribution of energy values in the
non-Gaussian case (Fig. 2) and thus the larger fraction
of very high energy barriers which affect the relaxation
process.

In Fig. 5, we show how the relaxation of the system
affects the time- and ensemble-averaged dynamical prop-
erties. The time average is taken over a constant time
interval tmax that, however, starts at different times tstart
after the particles have been exposed to the random PEL
(C1). The general behavior is similar to the one described
above. The TEAMSD (A1,B1) and the diffusion coeffi-
cient (A2,B2) at intermediate and long times decrease
with tstart. Correspondingly, the values of µ(t) and α2(t)
decrease and increase with tstart, respectively (A3, B3

and A4, B4). The dependencies of D50, µmin, and αmax
on tstart demonstrate the effect of the relaxation process.
The longer the particles explored the random PEL, the
deeper minima they found and, correspondingly, D50 and
µmin decrease and αmax increases with tstart. Once the
system is completely relaxed, these properties level off
at their equilibrium values. Due to the constant tmax,
this series (Fig. 5) reflects the evolution of the system
with time, i.e. tstart, more directly than the previous se-
ries (Fig. 4). However, tmax is at most equal but typically
much smaller than in the previous section. This can have
serious implications for the statistical uncertainties and
is the reason that often a constant tstart and an increas-
ing tmax, as in the previous series (Fig. 4), is preferred
despite the associated problems in data interpretation.
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(A1, B1), diffusion coefficient D(t) (A2, B2), characteristic slope of the MSD µ(t) (A3, B3), and non-Gaussian
parameter α2(t) (A4, B4) as a function of lag time t. Characteristic values (marked by symbols in parts A and B), namely the
diffusion coefficient at t/tB = 50 (C2), the minimum of µ(t) (C3), and the maximum of α2(t) (C4), as a function of the starting
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To illustrate the dynamics in equilibrium, Fig. 6 shows
TEAMSDs of particles exposed to the PEL for long but
different times tstart before the measurement was started,
similar as in Fig. 5C1. Within their statistical errors, the
TEAMSDs coincide at all times. This suggests that the
times tstart were long enough for the system to be in or
close to equilibrium. In particular, this analysis can serve
as a predictor for equilibration in experiments.

To shed more light on how the time- and ensemble
averages affect the MSDs, we have performed a single
particle trajectory analysis (Fig. 7). Fig. 7A corresponds
to the time series c1 (Fig. 5C1), in which the measure-
ments starts as soon as particles are exposed to the PEL.
Time-averaged MSDs of single particle trajectories are

calculated (TAMSDs, thin black lines). The huge spread
of TAMSDs indicates the dynamic heterogeneity of the
ensemble of particles exploring minima with a biased dis-
tribution of depths. The TAMSDs initially increase with
time, but those of particles in very deep minima very soon
reach plateaux, which extend to the end of the measure-
ment time with

⟨
∆r2(t)

⟩
t0

≈ 0.1R2. The TAMSDs of
particles in shallower minima exhibit larger plateau val-
ues. Particles might even escape the minima, diffusing
into the next ones, and hence the corresponding TAMSDs
show diffusive behavior at late times. Particles only ex-
periencing very shallow minima have TAMSDs which
only slightly differ from free diffusion. The TAMSDs of
the whole ensemble are averaged to yield the time and
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of particles in a random PEL with a non-Gaussian roughness
(experiments with PL = 1640 mW), averaged over the same
time interval but starting at different times tstart that are
all long compared to the relaxation time τ of the system (as
indicated in the inset).

ensemble-averaged MSD (TEAMSD, thick magenta line)
In addition, we include the EAMSD

⟨
∆r2(t)

⟩
i
, which

are not averaged over waiting times (thick yellow line).
The EAMSD is much larger at intermediate times than
the TEAMSD. While time-averaged MSDs are highly
nonlocal in time, due to the contributions from differ-
ent times during the temporal evolution of the system,
the (only) EAMSD is local in time. Thus, the EAMSD is
larger, because some particles are not (yet) trapped at a
specific time. The observed difference between EAMSD
(t0 = 0) and TEAMSD indicates that the system is far
from being equilibrated.

At a later time in the course of the experiment
(Fig. 7B), which corresponds to time series c5 (Fig. 5C1),
more particles are trapped in local minima. Thus, their
TAMSDs exhibit plateaux. EAMSD (t0 = 0) and
TEAMSD coincide at short and intermediate times and
slightly deviate at long times. This indicates that the sys-
tem is almost in equilibrium. If the whole measurement
time is taken into account (Fig. 7C), which corresponds
to time series m (Fig. 5C1), the impact of the relaxation
is still strong, leading to a marked difference between
EAMSD (t0 = 0) and TEAMSD, similar to Fig. 7A.
In Fig. 7D, trajectories of the relaxed system (Fig. 6,
time series n) are shown. The dynamics of most parti-
cles is slowed down by local minima, leading to plateaux
in their TAMSDs at intermediate and long times. Only
few particles explore very shallow minima so that their
TAMSDs are only slightly different from free diffusion.
In particular, their dynamics becomes diffusive at long
times, but with a reduced diffusion coefficient. For the
relaxed system, EAMSD (t0 = 0) and TEAMSD coin-
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FIG. 7. Single particle dynamics in a random PEL with
non-Gaussian roughness (experiments with PL = 1640 mW)
with different measurement periods (as indicated). TAMSDs⟨
∆r2(t)

⟩
t0

(black lines), TEAMSDs
⟨
∆r2(t)

⟩
t0,i

(thick ma-
genta lines), and EAMSDs

⟨
∆r2(t)

⟩
i

with waiting time t0 = 0
(thick yellow lines). Time series (A) c1 (Fig. 5C1); (B) c5
(Fig. 5C1); (C) m (Fig. 5C1); (D) n (Fig. 6).

cide at all times. If statistics allows for a good enough
EAMSD, which is not averaged over waiting times, this
can be compared to the TEAMSD. Their similarity then
indicates the level of equilibration. Yet, at intermediate
and large times, most single trajectory TAMSDs deviate
from both the EAMSD and the TEAMSDs, reflecting the
dynamic heterogeneity in the random PEL.

IV. CONCLUSION

We studied the effects of time- and ensemble-averaging
on quantities characterizing the particle dynamics in ran-
dom PELs. Initially the particles were homogeneously
distributed, but the occupancy of energy values evolved
towards its equilibrium distribution. The relaxation of
the particle ensemble towards equilibrium becomes man-
ifest in a reduction of the time-averaged MSD and dif-
fusion coefficient with waiting time since deeper minima
are increasingly populated. The effects are stronger in
non-Gaussian random PELs and increase with the stan-
dard deviation of the potential, ε. Hence, the evolu-
tion of time-averaged quantities reflects the relaxation
of the ensemble and can indicate the approach towards
equilibrium and when it is reached. They correspond
very well with the evolution of the mean occupied en-
ergy value. Moreover, single particle trajectory analysis
reveals a marked spread, indicating dynamic heterogene-
ity due to the distribution of the depths of the potential
minima. The results of this work are relevant for single
particle tracking analysis and interpretation in general.
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and R. Castañeda Priego, Phys. Rev. E 86, 031123 (2012).
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Anomalous Colloidal Diffusion: Interplay of Crowding and an External Random
Potential

Jörg Bewerunge,1 Christoph Zunke,1 Stella Glöckner,1 Florian Platten,1 and Stefan U. Egelhaaf1
1Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany

(Dated: July 8, 2016)

Anomalous diffusion of colloidal particles can be observed studying disordered media or crowded
environments, such as biological cells or cell membranes. It is often caused by interactions of the
species under investigation with its (micro-)environment, for example adsorption sites or concentra-
tion gradients. The term anomalous diffusion usually is used to describe particle dynamics with a
mean-squared displacement ⟨∆r2⟩ that is not proportional to the time t and/or non Gaussian statis-
tics. With recent studies about the unexpected diffusive behaviour found in experiments, especially
when applying single-molecule and single-particle tracking methods to biological samples, anoma-
lous diffusion analysis gathered new interest. Yet, it is hard to analyse the mechanisms underlying
species motion in crowded systems, e.g. biological cells, by simple diffusion models.

In this work, we investigate the dynamics of Brownian particles exposed to a random potential
energy landscape (rPEL) as a function of particle concentration in order to shed light on the variety
of diffusion phenomena occurring in crowded systems. We are thus able to study and disentangle the
mutual effects of particle–particle and particle–potential interactions on the colloidal dynamics. The
particle–potential interactions are caused by a random laser speckle intensity pattern that forces
colloids to move to and stay in high intensity regions, which correspond to valleys in the resulting
Gamma-distributed random potential energy landscape (rPEL). Particle–particle interactions are
essentially determined by the particle concentration. As a result, obstacles, namely trapped particles,
hinder the motion of diffusing ones, thus leading to a sub-diffusive regime,whereby the probability
of obstacles becoming diffusive or particles trapped is mainly given by the characteristics of the
potential energy landscape. Increasing laser power, that is potential strength, leads to a stronger
trapping and therefore further immobilization of the trapped particle fraction. Furthermore, the
likelihood of a particle to overcome the potential energy barrier, leaving a trap, and to get diffusive
is decreased. In this work the short- and long-term colloidal dynamics are separately studied to
reveal the mechanisms underlying the two counteracting effects. Thus, a critical concentration
is identified, in which both effects cancel out each other, resulting in a re-entrant regime of the
short-term diffusion coefficient Ds.

PACS numbers: 05.20.Jj, 05.40.*, 42.30.Ms, 47.57.J-, 64.70.pv, 82.70.Dd

I. INTRODUCTION

Recently anomalous diffusion, i.e. particle dynamics
with a mean-squared displacement ⟨∆r2⟩ that is not pro-
portional to the time t and/or non Gaussian statistics,
has been gathered new interest [1–15]. This was initiated
by the attempt to explain the unexpected diffusive be-
haviour found in experiments, especially when applying
single-molecule and single-particle tracking methods to
biological samples, such as cells and their membranes [6–
8, 16, 17], biofilms [9] or prototypical crowded fluids, e.g.
agarose [18] or dextran [10]. However, the sub-diffusive
transport, e.g. through disordered media or in crowded
environments, is generally of interest [11, 19–21]. The
anomalous diffusion of tracer particles in crowded envi-
ronments is a general scenario, encountered, e.g., by a
single species in a biological cell diffusing in the presence
of a zoo of different other species. The anomalous be-
havior is usually affected by a bunch of parameters, such
as the concentrations of each species, the overall concen-
tration within the cell, the size of the cell, its membrane
stiffness and, very important, the inter-particle interac-
tions [6–10, 13, 16–18]. The complex interplay of these
parameters can even lead to counter-intuitive situations,

in which, e.g. intermediate diffusion in a crowded envi-
ronment is speeded up (in contrast to the expected slow-
ing down) [12]. Moreover, sub-diffusion can even decrease
the time until a species finds one of its favourable spots
or targets (e.g. special absorption or reaction sites in
cells, on cell membranes or DNA) [22]. Anomalous dif-
fusion has been intensively studied in experiments and
in theory with special emphasis on dense [23, 24] or
glassy systems [19, 25, 26] and disordered or porous me-
dia [2, 3, 27, 28]. In particular, theoretical approaches
include Monte Carlo simulations [3, 27, 29] and lattice
models [30], Brownian dynamics [14, 31], molecular dy-
namics simulations [2, 32, 33] and Mode-Coupling The-
ory [15, 25, 28]. As illustrated above, anomalous diffusion
can occur in various situations. Therefore, many differ-
ent models have been devised to analysze these scenar-
ios [11, 13], including, among others, fractional Brownian
motion [10], continous-time random walk [11] and perco-
lation models, such as obstructed diffusion [2–5, 30, 34].
The first, fractional Brownian motion, is basically a ran-
dom walk model with a memory kernel, i.e. the incre-
ments of this process are anti-correlated in the case of
sub-diffusion. Thus, this is a good model to characterize
diffusion in viscoelastic media [10]. The continous-time
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random walk in turn consists of freely diffusing parti-
cles with power-law distributed waiting times between
jumps, where ageing effects take place, such as weak-
ergodicity breaking [11, 13], and hence differences be-
tween single particle- and ensemble-analysis should be
considered. Moreover, the obstructed diffusion model is
best characterized by randomly distributed (im)mobile
obstacles hindering the particle diffusion. Depending on
the obstacle concentration, particles can, above the per-
colation threshold, even be forced to diffuse in fractal-like
sub-areas. Furthermore, non-Gaussian statistics seem to
be relevant for understanding the mechanisms underlying
anomalous diffusion [14].

So far, species motion in crowded systems, e.g. biolog-
ical cells, can usually not be explained with single simple
diffusion models, as e.g. excluded volume, and hence is
not well understood. It is caused by various interactions
of the species with its environment, e.g., amongst others,
adsorption mechanisms, osmotic gradients and chemo-
taxis, and results in an underlying potential energy land-
scape (PEL) influencing the diffusion process. Thus, in
this work, we shed light on the variety of diffusion phe-
nomena occurring from the intersection of both crowding
(high concentrations) and the amplitude of an underly-
ing random potential with the help of our colloidal model
system. Furthermore, we mimic both mobile obstacles
and the diffusing species with identical colloidal parti-
cles. The particle–potential interactions are caused by
a random laser speckle intensity pattern that forces col-
loids to move to and stay in high intensity regions, which
correspond to valleys in the resulting Gamma-distributed
random potential energy landscape (rPEL). Thus, each
laser speckle can be approximated by a single optical trap
with a random height distribution, while the characteris-
tic width ϵ of the resulting potential distribution, i.e. the
‘(mean) potential strength’, is proportional to the laser
power [35].

In order to systematically analyse particle dynamics in
rPELs, we introduce a ”state diagram”, in which particle
concentration (area fraction φA) and mean roughness of
the potential (laser power PL) are used to characterize
the different situations investigated (fig. 1). We focus
on constant laser power PL (indicated by lines L1-L3) or
constant area fraction φA (indicated by lines C1-C3). At
selected points of the state diagram, schematic illustra-
tions of the rPELs are shown. Particle concentrations
(φA ≤ 0.65) within the liquid phase are chosen to study
the effects of particle–particle interactions on the dynam-
ics.

This work is structured as follows. In section II we
describe the sample preparation and experimental set-
up. Moreover, we introduce different measures, which are
used to characterise anomalous diffusion in section III.
We first investigate the influence of concentration and
potential on ensemble- and time-averaged measures (sec-
tion III A). Then, we analyse the underlying mechanisms
via displacement distribution and single-trajectory anal-
ysis (section III B). Finally, the PL-φA-dependence of the

C1 C2 C3

L1

L2

L3

P
L

ϕA

L0

FIG. 1. ‘State diagram’, laser power PL (mean of the rPEL
roughness ϵ) vs. particle concentration φA, illustrating the
different scenarios studied in this work. The effect of increas-
ing particle concentration is studied at four different values
of the laser power PL (indicated by lines L0-L4). We fo-
cus on three different concentrations (lines C1-C3), but ad-
ditional measurements viewing a broader range of concentra-
tions have been performed at selected laser power (not indi-
cated). Schematic illustrations are shown at selected positions
in the state diagram. Furthermore, recorded images of typical
samples at concentrations C1 and C3 are shown.

short-term and long-term diffusion coefficients are dis-
cussed in detail and possible interdependencies are iden-
tified.

II. MATERIALS AND METHODS

A. Sample Preparation

Samples consist of spherical polystyrene particles (In-
terfacial Dynamics Corporation radius R = 1.4 µm and
polydispersity 3.2 %) dispersed in purified water (ELGA
purelab flex, electrical resistivity ρ = 18.2 × 104 Ωm)
and are prepared in self-made glass microscopy cells [36].
Three glass cover slips and a microscope slide (VWR)
are assembled to form a small capillary and closed with
uv-glue (Norland). Due to the density difference be-
tween particles and the surrounding medium, particles
are forced to sediment building a (quasi) two-dimensional
layer. The particle concentration of this layer is given by
the particle area fraction φA = πNR2/A with the num-
ber of particles N in the field of view with area A.

B. Optical Microscopy

The particle positions and their movements are exam-
ined with an inverted microscope (Nikon, Eclipse Ti-U)
and a 20× objective (Nikon, CFI S Plan Fluor ELWD,

3.6 Paper VI: Anomalous Colloidal Diffusion: Interplay of Crowding and an
External Random Potential

106



3

numerical aperture NA = 0.45) while images of time-
series were recorded by a CCD camera (AVT, Pike F-
032B with 640 × 480 pixels and pixel pitch ppx = ppy =
0.372 µm px−1). Figure 1 shows typical images with a
quadratic field of view of 460 × 460 px2 = 171 × 171
µm2. For every measurement about 27000 images at a
frame rate of 3.75 fps are recorded. Furthermore, po-
sition determination and subsequent trajectory analysis
were carried out using particle tracking routines in IDL
[37].

C. Random Potential Energy Landscape

The particles were exposed to a random potential en-
ergy landscape, which was realized with an optical set-up
based on laser light (Laser Quantum, Opus 532, wave-
length λ = 532 nm, maximum laser power PL,max =
2.6 W) shaped with a special diffuser (RPC Photonics,
Engineered Diffuser EDC- 1-A-1r,) [38, 39]. In this way,
it is possible to imprint a macroscopically flat (top-hat
intensity distribution) but microscopically rough (laser
speckles on the particle length scale) intensity landscape
on the sample plane. The experiments described in this
work were performed at fixed conditions of the opti-
cal set-up (‘BE 5×’ in [39]): Parameters characterizing
the speckle patterns are the ratio of the beam area to
the mean microlens area, Ab/Al = 44100 where Al ≈
2000 µm2, speckle contrast c = 1.05, and speckle area
AS = 5.1 µm2. Parameters characterizing the speckle
patterns convolved with the weight function of a spher-
ical particle with radius R = 1.4 µm and thus effective
particle area Am = 5.5 µm2, i.e. parameters character-
izing the rPEL, are the ratio of the effective particle
area to the speckle area A⊙

m/AS = 1.07, correlation pa-
rameter M = 2.6 and correlation area of the potential
AU

S = 11.8 µm2.
Since the particles’ refractive index is different from

the one of the surrounding medium, the particles inter-
act with the intensity speckle pattern via optical forces,
namely the laser pressure and locally induced optical gra-
dient forces [40–42]. It results in a potential energy land-
scape felt by the diffusing particles with the spatial corre-
lations and energy level distribution mainly determined
by the properties of the underlying intensity landscape
and the particle radius. A detailed analysis of the exper-
imental creation of rPELs is given in [39]. Consequently,
the spatial correlation function CU of the potential for
particles with R = 1.4 µm used here, is well-described
by a Gaussian distribution with 1/e-width σCU

= 1.38R.
It can be used as a measure for the spatial extent of the
potential minima [39]. Furthermore, the intensity dis-
tribution of the speckle pattern p(U) follows a Gamma
distribution

p(U) = 1
Γ(M)

(
M

⟨U⟩

)M

IM−1
D exp

(
− M

⟨U⟩U

)
,

where Γ is the Gamma function and M = 2.6. Thus, the

particles, which would freely diffuse in the absence of a
laser speckle pattern, experience a rPEL. So far, much
work focussed on Gaussian roughness (M ≫ 1), while
rugged energy landscapes are much more common.

D. Quantifying Anomalous Colloidal Diffusion

Particle diffusion is strongly affected by the presence of
a rPEL and its statistical properties [35, 43]. The most
direct approach of characterizing colloidal diffusion is to
look at the first moment of the particle displacements
⟨∆x(t)⟩t0,i = ⟨[xi(t + t0) − xi(t0)]⟩t0,i (or ⟨∆r(t)⟩t0,i in
two dimensions), whereby the average ⟨...⟩ can be ex-
ecuted over either all particles i at positions x (r in
2d) of the ensemble, all waiting times t0, or both. En-
semble averaged displacements represent a good mea-
sure for the analysis of direct temporal influences on,
e.g., an ageing sample. Waiting time-averaged displace-
ments correspond to single-trajectory analysis and, used
in heterogeneous systems, therefore show scattering in
the particle dynamics, i.e. deviations between single
particle movements [6, 11]. However, for the case of a
large field of view and long measurement times, ensem-
ble and time average should be statistically equivalent if
the sample is ergodic. Since experiments are often lim-
ited in either particle number or measurement time, both
temporal and ensemble averaging is frequently preferred
for the sake of good statistics. We use both ensem-
ble and time averaging unless stated otherwise. Since
⟨∆r(t)⟩ = ⟨∆x(t)⟩ = ⟨∆y(t)⟩ = 0 for isotropic Brown-
ian motion, particle dynamics is studied in terms of the
displacement probability G(r, t), the so called van Hove
function, and higher moments, e.g., the mean-squared
displacement (MSD) ⟨∆r2(t)⟩.

Analysis of the probability to find a particle at time t
at the position r, provided that there was a particle at the
origin of the coordinate system at the time t = 0, leads
to the so called van Hove correlation function [44–46]

G(r, t) =
⟨

1
N

N∑

i=1

N∑

j=1
δ[r + rj(0) − ri(t)]

⟩
(1)

= 1
N

⟨
N∑

i=1
δ[r + ri(0) − ri(t)]

⟩

+ 1
N

⟨
N∑

i ̸=j

δ[r + rj(0) − ri(t)]
⟩

= Gs(r, t) + Gd(r, t) , (2)

with the number of particles N , and the Dirac delta func-
tion δ[...]. Here, Gs and Gd are the self- and distinct-part
of the van Hove function, describing the mean distance a
particle, starting at the origin at time t = 0, has moved
at time t and the movements of the other particles, re-
spectively. The self-part Gs describes the distance that
a particle starting at the origin has moved at the time t.
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Gs is also referred to as the probability density function
of the mean displacements p(∆r, t). For free diffusion in
two dimensions, motions in x- and y-direction are inde-
pendent from each other and hence p(∆r, t) can be calcu-
lated from the van Hove self-part probability histogram
via

p(∆r, t) = 2π∆r Gs(∆r, t) (3)

= N(∆r, t)(∑N
i=1 N(∆r, t)

)
w

,

where N(∆r, t) is the displacement counter, and w the
histogram bin width. It is well characterised by a
Rayleigh distribution

p(∆r, t) = ∆r(t)
Rσ2 · e−(∆r(t))2/2R2σ2

, (4)

with the radius of the particles R and mode σ.
The mean-squared displacement (MSD) in two dimen-

sions is given by

⟨∆r2(t)⟩ = ⟨∆x2(t)⟩ + ⟨∆y2(t)⟩ = 4D0t , (5)

where D0 is the self-diffusion coefficient for particles
freely diffusing on a surface, resulting in the charac-
teristic time tB = R2/4D0. Furthermore, the relation
⟨∆x2(t)⟩ =

⟨
[xi(t) − xi(0)]2

⟩
− ⟨[xi(t) − xi(0)]⟩2 was

used, where the second term corrects for possible drifts
in the trajectories.

If the particle motion is influenced by the concentration
and/or a potential landscape, one encounters ‘anomalous’
diffusion, and eq. (5) becomes

⟨∆r2(t)⟩ ∝ tµ (6)

with the diffusive exponent µ. This implies the time de-
pendence of µ can be calculated from

µ(t) = ∂

∂ log(t) log
(⟨

∆r2(t)
⟩)

, (7)

and thus sub-diffusion, i.e. particles hindered in their
motion, is indicated by µ(t) < 1. In sections III A 1
and III A 2 the influence of particle concentration and po-
tential depth on the diffusive exponent µ(t) are analysed
in detail.

Moreover, following eq. (5) a time-dependent diffusion
coefficient D(t) can be calculated

D(t) = 1
2d

∂

∂(t) ⟨∆r2(t)⟩ (8)

with dimension d. Furthermore, one can calculate the
limits of very short Ds = lim

t→0
D(t)/D0 and long times

Dlong = lim
t→∞

D(t)/D0. However, caused by finite cam-
era frame rate and measurement time T , this limits are
not accessible in experiment. Therefore we estimate the

short-time diffusion coefficient by fitting a linear function
to the experimentally measured mean-squared displace-
ment with t ≤ 3s, so that its slope gives Ds = D(t ≤ 3s).
The chosen time is a compromise between looking at very
short times, where particles presumably do not inter-
act with the landscape, and a for the fit adequate num-
ber of measurement points (≥ 10), and mostly depends
on the camera frame rate (usually 3.75 fps). The ex-
perimental long-time diffusion coefficient was defined as
Dlong = (Dmin(t))/D0. In the (sub-)diffusive regime D(t)
is, apart from by the time-averaging caused statistical
uncertainties at t ≈ T , a monotonically decreasing func-
tion for all lag times t until it reaches a plateau, when
the diffusive regime is reached. Thus we can estimate
the long-time diffusion coefficient as the minimal value
Dmin(t). In particular, we study the limits of short times
Ds and long times Dlong in sections III A and III C.

We take the next higher non-zero moment of the dis-
placement distribution ⟨∆r4(t)⟩ into account to calculate
the non-Gaussian parameter α2 as

α2(t) = ⟨∆r4(t)⟩(
1 + 2

d

)
⟨∆r2(t)⟩2 − 1 . (9)

Therefore, the non-Gaussian parameter α2 is related to
the excess kurtosis of the displacement distribution, that
is the deviation of the shape of the measured distribu-
tion from a perfect Gaussian. The mean-squared dis-
placement ⟨∆r2(t)⟩, that can be identified as the vari-
ance, and the non-Gaussian parameter α2(t), thus de-
scribe the shape and alteration of the displacement dis-
tribution (eq. (3)) over time.

III. RESULTS AND DISCUSSION

First, the interplay of crowding and random potential
is studied (section III A) by examination of the individual
influences of both laser power (section III A 1) and parti-
cle concentration (section III A 2) on the dynamics. Sub-
sequently, underlying mechanisms that govern particle
dynamics are identified by analysis of the displacement
distribution p(∆r, t) (section III B 1) and single-particle
trajectories (section III B 2). In the third part of the re-
sults (section III C), short- and long-term dynamics are
further investigated with focus on the PL-φA state dia-
gram. We study the effect of particle concentration at
fixed laser power (horizontal lines in fig. 1) and the effect
of laser power at fixed particle concentration (vertical
lines in fig. 1). In the following, L0, L1, L2 and L3 refer
to different laser power PL and C1, C2 and C3 refer to
different area fractions φA, as further described in table I.

A. Interplay of Crowding and Random Potential

In this section, we will analyse the concurrent effects
of crowding and random potential on particle dynamics.
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TABLE I. Terms and colors used to indicate different laser
power and particle concentration regimes (cf. fig. 1).

term laser power area fraction line/symbol
PL (mW) φA color

L0 0 pink
L1 917 purple
L2 1640 light blue
L3 2600 dark blue
C1 0.05 green
C2 0.25 orange
C3 0.45 red
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FIG. 2. Free volume scaling: Mean-squared displace-
ment scaled with the particles’ effective mean free path,
⟨∆r2(t)⟩/l2, as a function of the scaled time t/teff with l2 =
πR2/φA and teff = πtB/φA at fixed laser power L1, L2 and L3,
(a) to (c). Colored lines indicate low to high area fractions φA
(from dark green to dark red). Black vertical and horizontal
lines indicate the transition point

√
⟨∆r2(t)⟩ = 0.1l and its

corresponding time, respectively.

Figure 2 shows the time-dependent mean-squared dis-
placements ⟨∆r2(t)⟩ for three laser powers L1-L3 and
various concentrations. The MSD is scaled with the con-
centration dependent particles’ effective mean free path
⟨∆r2(t)⟩/l2 as a function of the dimensionless time t/teff
with l2 = πR2/φA and teff = πtB/φA [15]. We observe
two general trends: First, as expected for Brownian mo-
tion, the mean-squared displacement for a dilute sam-
ple in the absence of an external potential (C1L0, pink
line) is proportional to the time t. Second, all measure-
ments that were done in a rough potential, independent
of the potential strength or particle concentration, show

clear signs of sub-diffusive systems [1]: an initial short-
term diffusive regime, followed by an intermediate sub-
diffusive regime that again turns to diffusive behaviour
for long times.

Considering the concentration influence on the dynam-
ics, fig. 2 (a) shows that after scaling with l2, all mean-
squared displacement lines, apart from the one showing
the normal diffusion (C1L0, pink line) and the one for
a rough potential but lowest concentration (dark green
line), almost fall on top of each other. The scaling col-
laps indicates that, for the conditions studied, the short-
and long-time diffusion coefficient are influenced by the
available free volume accessible for the particles. Fur-
thermore, we observe a transition from the diffusive to a
sub-diffusive regime for displacements larger than about
10% of the mean free path l (

√
⟨∆r2(t)⟩ = 0.1l, indi-

cated by horizontal line in fig. 2). Thus it is consistent
with a Lindemann-like criterion found in earlier stud-
ies of crowded colloidal systems [15, 47] and related to
intra-cage dynamics in dense systems indicating coop-
erative dynamics. This can be interpreted as a clear
signature of the dynamics being governed by the free
volume. Short-term dynamics essentially depend on the
particle area fraction via indirect hydrodynamic inter-
actions, while long-time diffusion is better characterized
by inter-particle interactions [48], which was also con-
firmed for the case of dense colloidal motion in a pore [49].
Therefore, hydrodynamic coupling between particles and
the sample cell wall [50], possibly amplified by the par-
ticles being slightly pushed to the bottom glass slide by
laser pressure, might have slight influence on the dynam-
ics [15, 49, 51]. A closer look (inset fig. 2 (a)) reveals that
in samples with a low concentration and a weak poten-
tial strong sub-diffusion occurs at intermediate and long
times. The area fraction dependent scaling approach fails
in the presence of a rPEL for the case of low concentra-
tions, caused by the few particles all being trapped in the
deepest potential minima. Therefore, the resulting mean-
free path of the particles is mostly given by the particle
movement within highly separated potential traps and
independent of the particle concentration. Moreover, in-
creasing the concentration leads to particles moving more
freely (in between potential minima of different heights)
and scaling with the area fraction becomes possible again.

In brief, depending on the potential roughness, three
regimes can be identified (fig. 2): (a) Weak potentials L1:
Scaling of the MSD with the mean free path is possible for
all concentrations, but the lowest (dark green lines, cor-
respond to points C1L1 and below in fig. 1); (b) Medium
potential strength L2: Strong deviations in the interme-
diate and long-time diffusion regimes for low concentra-
tions (green lines); (c) Strong potentials L3: Strong devi-
ations in the intermediate and long-time diffusion regime
for low to medium concentrations (green (inter alia C1L3)
to dark yellow (C2L3) lines). Additionally, small devia-
tions to the free diffusion case (pink, C1L0) occur at this
laser power regardless of the concentration in the short-
term regime.

Chapter 3. Scientific Papers

109



6

We now scale all mean-squared displacements and
times with the particle radius R and the Brownian time
tB, if not stated otherwise. Thus we are able to explore
the different effects of crowding and the rPEL. We will
first discuss the potential strength dependent dynam-
ics (section III A 1) and afterwards the changes in dy-
namics when we increase the particle concentration (sec-
tion III A 2).

1. Laser Power Dependent Dynamics

In fig. 3, the dynamics of a dilute solution C1 is studied
in the absence of an external potential and as a function
of laser power in terms of ⟨∆r2(t)⟩ (a), D(t) (b), µ(t) (c)
and α2(t) (d). Increasing the potential strength at con-
stant concentration leads to sub-diffusive behaviour at
intermediate times, which tends to become diffusive at
late times. This becomes apparent in a steady decrease
of the diffusion coefficent D(t), which exhibits a plateau
for long lag times (fig. 3 (b)). In addition, the diffusive
exponent, which is a measure for non-Brownian dynam-
ics, is smaller than one for all times (µ(t) < 1) (fig. 3 (c))
and shows a laser power dependent minimum at times
around tB. An indicator for non-Gaussian dynamics is
the appearance of a peak in the non-Gaussian parameter
α2(t) (fig. 3 (d)), which occurs in the presence of a rough
potential and is most pronounced at the highest potential
strength. Similar non-Gaussian sub-diffusive behaviour
was already found for rough potential landscapes with a
Gaussian potential energy distribution p(U) [35, 43].

Figure 4 shows the normalized short-time diffusion co-
efficient Ds/D0 (a), the normalized long-time diffusion
coefficient Dlong/D0 (b), the minimum value of the dif-
fusion exponent µmin (c) and the maximum value of the
non-Gaussian parameter αmax (d), as well as the times
at which the minimum in µ and the maximum in α are
reached, tµmin/tB (e) and tαmax/tB (f), respectively. They
are shown for concentrations C1, C2 and C3 (filled sym-
bols, increasing area fraction accentuated by color gradi-
ent from green to red) as a function of the laser power
PL (corresponding to L0, L1, L2 and L3).

Both the short-time diffusion coefficient Ds and the
long-time diffusion coefficient Dlong are reduced with
increasing laser power irrespective of the concentration
(fig. 4 (a) and (b)). Ds describes the movement of par-
ticles for short times and distances (less than their own
radius), e.g. the rattling in either potential traps or par-
ticle cages, whereas Dlong is a measure for particles hop-
ping between potential minima or inter-cage dynamics.
Furthermore, the dip in the diffusive exponent deepens
with laser power (fig. 4 (c)) and the non-Gaussian pa-
rameter peak grows with increasing laser power (fig. 4
(d)). A common feature exists in the variation of the
last three measured variables. Increasing the concentra-
tion from C1 (green) to C3 (red) leads to a reduction of
the differences between the values for the different poten-
tial strengths, i.e. the potential looses influence on the

particle dynamics.
Polanowski et al. [30] have simulated two-dimensional

fluid dynamics in a crowded environment comprising
static obstacles via a dynamic lattice liquid model, and
thereby analysed anomalous diffusion and the coopera-
tive phenomena occurring in such dense systems as a
function of the obstacle concentration. Their simulation
results for Ds/D0 and Dlong/D0, taken from ref. [30], are
shown in parts in fig. 4 (a) and (b). They qualitatively re-
semble trends found in the experiments, at least for low
to intermediate laser power. However, we have to em-
phasize, that we scaled the obstacle concentration to our
laser potential arbitrarily (by a constant factor). There-
fore, we only discuss basic similarities and discrepancies
between the systems and their possible influence on the
diffusion coefficients. In general, the dynamic lattice liq-
uid model is based on liquids in which quasi-located par-
ticles that usually only vibrate on there lattice sites exe-
cute correlated motions with their neighbours, exchang-
ing positions. In the case considered in the simulations,
the number of particles is high and constant, while the
concentration of pinned colloids (obstacles) is chosen to
be between zero and the percolation transition. As a re-
sult two species of particles were found with the ‘slow’
particles being located near or in cages of obstacles and
the ‘fast’ species far away from these. Comparing this to
our experimental system, a similar picture can be found.
In the absence of an external potential, all particles dif-
fuse freely. In contrast, when a rough potential is applied,
a few particles are trapped in deep potential wells. Their
motion is restricted to

⟨
∆r2⟩

≈ 0.1R2, and thus they act
as quasi-static obstacles. However, most of the particles
are not trapped and hence are still diffusing, but their
motion is hindered by the (quasi-static) obstacles. Here,
we took into account that, even though we usually use a
picture of a higher dimensional potential landscape, the
particles can only diffuse in two-dimensions, i.e. never
overlap, and therefore appear as a barrier in the poten-
tial landscape for other particles at their present position.
All data sets of both the short-term and the long-term
diffusion coefficients Ds and Dlong, shown in fig. 4 (a)
and (b), respectively, decrease monotonically for increas-
ing laser power. However, a difference between simula-
tion and experiment is seen at high laser powers. The
divergence of Dlong/D0 of the simulations is ascribed to
a percolation transition at finite obstacle densities. This
is not observed in experiments. Here, the number and
spatial arrangement of the (quasi-static) obstacles largely
depends on the potential strength and the potential en-
ergy distribution p(U), which is static and independent
of the laser power.

2. Concentration Dependent Dynamics

In this section, we analyse the effect of particle con-
centration on the dynamics at intermediate laser pow-
ers (fig. 5). Similar trends have been observed at
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FIG. 4. Laser power dependent extreme values: (a) short-
term diffusion coefficient Ds/D0, (b) long-term diffusion co-
efficient Dlong/D0, (c) minimum in the diffusive exponent
µmin, (d) maximum in the non-Gaussian parameter αmax,
(e) time of the minimum of the diffusive exponent tµmin /tB,
and (f) time of the maximum of the non-Gaussian parame-
ter tαmax /tB as a function of the laser power PL, all for C1,
C2 and C3, represented by different symbols and colors (dark
green squares, dark yellow circles and red triangles, respec-
tively) and for a variety of concentrations for laser power L2
as well. Values corresponding to fig. 6 are drawn as open
and light shaded symbols. Lines are guides to the eye. In
sub-figures (a) and (b) simulation data [30] is included (black
crosses), corresponding to diffusion through a crowded envi-
ronment as a function of obstacle concentration instead of the
laser power (arbitrarily scaled with PL = φobst · 10 W).

lower/higher PL (cf. fig. 6), but quantitative differences
occur because both laser power and particle concentra-
tion affect the dynamics (see section III C for details).
Figure 5 shows the time-dependent normalized mean-
squared displacement ⟨∆r2(t)⟩/R2, normalized diffusion
coefficient D(t)/D0, diffusive exponent µ(t), and non-
Gaussian parameter α2(t) for increasing concentrations

at fixed medium laser power L2. Low to high concentra-
tions are indicated by a color gradient dark green to dark
red, respectively. The mean-squared displacement (fig. 5
(a)) and the diffusion coefficient (fig. 5 (b)) indicate sub-
diffusive behaviour at all times. Furthermore, the dif-
fusion coefficient D(t)/D0 at intermediate to long times
(fig. 5 (b), (f)) increases proportionally with the particle
concentration. At intermediate times, it is preferable to
analyse the logarithmic derivative of the mean-squared
displacement, the diffusive exponent µ(t), and the ex-
cess kurtosis of the displacement distribution, the non-
Gaussian parameter α2(t), since they are more sensitive
for dynamical behaviour going beyond normal Brown-
ian diffusion. µ(t) (fig. 5 (c),(g)) shows a deep dip for
low concentrations (C1L2, dark green) that is tailing off
with increasing concentration. Since time- and ensemble-
averaged measures are considered, the observed trends
can be explained as follows. At low concentrations (and
in equilibrium) all particles are trapped in the deepest po-
tential wells, showing strong sub-diffusion. Upon adding
particles, however, less pronounced potential minima are
occupied, i.e. colloids are in average more mobile. At
even higher concentrations, particle-particle interactions
and collisions both prevent particles from occupying some
of the deepest potential minima (excluded volume) and
limit the average period for which particles get trapped,
further smoothing out the influence of the potential. The
minimum value µmin is reached at times around tB for all
concentrations. This was expected, since tµmin only de-
pends on the potential correlations, namely the average
width of potential minima. It marks the time, when a
majority out of the particle ensemble is trapped, as dis-
cussed in detail for diluted samples in rPELs with Gaus-
sian roughness in [35, 43]. Then again, in α2(t) (fig. 5
(d),(h)) a peak starts to appear at times around tB with
height and time of its maximum value αmax depending
on the concentration. The short-term diffusion coefficient
Ds (fig. 5 (e)), unlike the one for long lag times, shows
an unsettled concentration dependence for medium po-
tential strength L2 and hence does not provide enough
information to draw conclusions concerning other poten-
tial depths. Therefore, a detailed analysis of the in sec-
tion III A 1 introduced measurables Ds, Dlong, µmin, and
αmax as a function of concentration was performed.
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(c) diffusive exponent µ(t), and (d) non-Gaussian param-
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Sub-figures (e),(f),(g) and (h) constitute zoom into the time
regimes matching with the appearance of Ds, Dlong, µmin and
αmax, respectively.

Figure 6 shows the normalized short-time diffusion co-
efficient Ds/D0 (a), the normalized long-time diffusion
coefficient Dlong/D0 (b), the minimum value of the dif-
fusion exponent µmin (c) and the maximum value of the
non-Gaussian parameter αmax (d), as well as the times
at which the minimum in µ and the maximum in α are
reached, tµmin/tB (e) and tαmax/tB (f), respectively. Here,
the long-time diffusion coefficient Dlong and the mini-
mum of the diffusive exponent µmin continually increase,
while the maximum of the non-Gaussian parameter αmax
monotonically decreases the higher the concentration is.
In contrast, the short-time diffusion coefficient Ds ex-
hibits a maximum. Starting with the low concentra-
tion and following one of the lines drawn as guides to
the eye Ds first increases for all investigated potential
strengths L1-3, then decreases until it reaches a plateau
at high concentrations. Additionally, a maximum in Ds
at medium volume fractions (φA ≈ 0.1−0.3) is observed,
but is not found in absence of a potential, where Ds
monotonically decreases with increasing φA. Figures 6
(e) and (f) show the corresponding times tµmin/tB and
tαmax/tB at which the extreme values µmin and αmax are
reached, respectively. The time of the occurrence of the
minimum in the diffusive exponent tµmin/tB generally has
a roughly constant value of about 1 for all concentra-
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FIG. 6. Concentration dependent extreme values: normal-
ized short-time diffusion coefficient Ds/D0 (a), the normalized
long-time diffusion coefficient Dlong/D0 (b), the minimum
value of the diffusion exponent µmin (c) and the maximum
value of the non-Gaussian parameter αmax (d), as well as the
times at which the minimum in µ and the maximum in α are
reached, tµmin /tB (e) and tαmax /tB (f), respectively. All are
shown for L0, L1, L2 and L3 indicated by magenta squares,
purple circles, light blue triangles and dark blue stars, respec-
tively. In sub-figure (b) experimental data, corresponding to
the case of no laser potential and taken from [51], is included
as black crosses. Lines are guides to the eye.

tions and laser powers. Then again, tαmax/tB behaves
almost identical to αmax. Increasing the concentration
leads to decreasing peak values αmax and times tαmax/tB,
that is the displacement distribution behaves more Gaus-
sian again. Together with the result that the minimum
of the diffusive exponent µmin is approaching a value
of one (the value of normal diffusion) for high concen-
trations, this indicates the concentration to smooth out
the sub-diffusive dynamics caused by the potential land-
scape. The scaling in fig. 2 (b-c) corroborates this con-
clusion. Concentration dependent scaling with l2 works
for medium and high laser power the better the higher
the concentration is, since decreasing the particles’ free
accessible space counteracts the by the potential induced
particle arrangement.

B. Identifying Mechanisms that Govern Particle
Dynamics

So far, we have analysed the time- and ensemble-
averaged measures of dynamics, which are well suited
to discuss ensemble phenomena, especially at large time-
scales. To get further inside into the underlying mech-
anisms, we study the behaviour of particles in time or
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space individually [11]. In this section, we first analyse
how the self-part of the van Hove correlation function,
namely the normalized probability density of the particle
displacements p(⟨∆r⟩) depends on the time period, laser
power and particle concentration. Second, we study the
single trajectory time-averaged mean-squared displace-
ments and, in particular, the corresponding population
probability histograms.

1. van Hove Correlation Function

Since ⟨∆r2(t)⟩ and α2(t) only characterize its width
and shape relative to a Gaussian distribution we analyse
the self-part of the van Hove function p(∆r, t) in more de-
tail. Figure 7 shows the time dependence of p(∆r, t) for
three different scenarios: two-dimensional free diffusion
L0 (a-d), a rough potential with constant concentration
C2 (e-h) and various concentrations with constant inter-
mediate laser power L2 (i-l), where grey dashed verti-
cal lines indicate multiple integers of the width of the
spatial correlation function of the potential landscape
σCU = 1.38R [39]. Without an applied laser field (fig. 7
(a-d)), the peak of the probability function can be de-
scribed by a Rayleigh distribution (eq. (4)) for all mea-
sured time scales. The maximal height of the distribu-
tion decreases with increasing times, whereas its width
proportionally increases. Since the width corresponds to
the ensemble-averaged mean-squared displacement parti-
cles undergo normal diffusion (µ = 1) without deviations
from Gaussian statistics (α2 ≈ 0).

Now we focus on the influence of a rough potential on
the dynamics (fig. 7 (e-l)). First, we look at the displace-
ment probability distributions for rough potentials L1-L3
with constant concentration C2 (fig. 7 (e-h)). For small
times (t < tB, fig. 7 (e)), p(∆r) can still be represented
by a Rayleigh distribution (eq. (4)) with slightly differ-
ent parameters than used in fig. 7 (a). The width of the
probability peak decreases, whereas its height increases
with increasing laser power. This indicates, that some
of the particles move within limited regions, namely po-
tential traps. The trend becomes stronger at later times
(fig. 7 (f-h)). In addition, the point, at which the prob-
ability drops to zero, is in this case strongly affected by
the mean potential strength. In fig. 7 (f), we observe for
times t ≈ 2tB, that p(∆r) = 0 for ∆r ≈ 1.38R at medium
concentrations C2 and medium to large laser powers L2-
L3. The probability function for low laser power L1 be-
comes zero for larger displacements, seemingly ∆r ≈ 2R.
The first can be explained by the particles being trapped
in the laser potential wells, whose average size is given
by σCU [39]. The latter, on the other hand, is presum-
ably more affected by the inter-particle distance 2R than
by the potential correlations, since the particle mobility
is only slightly impaired in weak potentials. This state-
ment is further confirmed by the analysis of even longer
lag times and constant concentration C2 (fig. 7 (g-h)).
Even for times 20tB ≤ t ≤ 400tB many particles are

still trapped, i.e. p(∆r) is showing an increased proba-
bility of confined displacements ∆r ≤ 1.38R, for medium
C2L2 and high laser powers C2L3, whereas for the case of
low potential strength C2L1 most particles are diffusive
again.

So far, we have focused on the pronounced peak at
short spatial scales, which has been ascribed to particles
being trapped only at short distances by either the poten-
tial wells, namely ∆r ≤ 1.38R, or other particles, leading
to ∆r ≤ 2R, and being diffusive otherwise. Furthermore,
we observe a distinctive feature at late time scales. In the
insets of sub-figures 7 (g) and (h), it is shown that at late
times (t ≥ 20tB, (g)) a second peak starts to form, which
becomes more pronounced for long times (t ≈ 400tB,
(h)). Since we are looking at ensemble averages, this can
be explained by cooperative movements, i.e. all parti-
cles starting at the origin at t = 0 and getting trapped
for short lag times have a non-vanishing probability to
move about 2R, the position of the second peak in p(∆r).
Trapped particles overcome surrounding potential energy
barriers and hop to neighbouring potential minima, while
other particles occupy the vacancies getting trapped. Al-
though the concentration C2, φA,C2 = 0.25, is not very
dense, the external potential causes dynamical behaviour
which is well known from dense liquids, crowded environ-
ments or colloidal glasses as e.g. ‘particle cage hopping’
or other cooperative behaviour [2, 24, 32, 33, 47, 52, 53].

As a next step, we study the concentration dependence
of these effects at constant laser power L2 (fig. 7 (i-l), low
to high concentrations coloured in green to red, respec-
tively). We find that not only the initial trapping at short
times (t ≤ 2tB, (i-j)), but also the height and position of
the second peak that evolves for medium to long times
(t ≥ 20tB, (k-l)) are affected by the increase of the par-
ticle concentration. The higher the concentration of the
particles, the lower is the main peak and the higher the
second peak in p(∆r). This can be explained by particle-
particle collisions helping trapped particles to overcome
the potential barrier of the initial potential wells, before
possibly getting trapped again in another potential min-
imum, resulting in heterogeneous diffusion and a higher
mean mobility. The self-part of the van Hove function
Gs(∆r) plotted logarithmically against the displacement
∆r (SI, fig. 17) further corroborates this interpretation.
In the presence of a rough potential and at intermedi-
ate to long times, an exponential tail (constant slope)
is clearly visible, which is often found in crowded sys-
tems caused by a linear combination of several Gaus-
sian Gs with different diffusion coefficients [14]. More-
over, the position of the second peak is studied (fig. 7
(k-l), inset). Despite of worse statistics at long time
scales, the position changes continuously from the mini-
mum inter-particle distance ∆r = 2R for medium times
(t ≈ 20tB, (k)) and high concentrations (dark red line)
to the position of the next potential well, namely two
times the potential correlation length ∆r ≈ 2.76R, for
late times (t ≥ 20tB, (l)) and low concentrations (dark
green line). In addition, we do not expect effects due
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to a liquid-hexatic transition, which could occur at even
higher concentrations (φA ≈ 0.70) [29, 33], or due to a
glass transition, which could occur at more polydisperse
systems [19, 47, 54]. This is important to note, since the
dynamical behaviour seen here, so far only known from
glass or solid phases, can thus be assigned to the underly-
ing potential. Therefore we conclude, particles diffusing
through a random potential energy landscape with in-
termediate potential roughness get trapped in potential
wells for short lag times, but also show a distinct sec-
ond peak in their displacement probability distribution
at longer time scales. Similar, presumably cooperative,
behaviour has been observed in dense liquids [23, 24, 33],
glass forming liquids [52, 53] or porous environments [2]
and is interpreted as collective particle motions either in
time or space inducing heterogeneous diffusion. For ex-
ample, cooperative string-like behaviour found in dense
quasi-two-dimensional liquids was explained with density
fluctuations and temporal structural heterogeneity in the
sample [23, 24]. Furthermore, Kim et al. [33] noted that,
due to discretized dynamics, even in systems with seem-
ingly Fickian dynamics (µ = 1) various peaks in p(∆r, t)
can be found for several decades in time.

2. Single particle mean-squared displacements

To get deeper insight into the heterogeneity of the dif-
fusive behaviour, we analyse single particle trajectories,

as exemplarily shown in fig. 8, at different lag times.
For this purpose, time-averaged single particle mean-
squared displacements are calculated and compared with
the (time and) ensemble averages (fig. 10, see section II D
for details of the averaging). Furthermore, time-averaged
single-trajectory mean-squared displacement histograms
are analysed (fig. 11). Based on this comprehensive anal-
ysis, we are able to disentangle contributions of single
particle and ensemble effects.

Figure 8 shows snapshots of particle trajectories at
high concentration C3 and laser power L3 for three dif-
ferent lag times t = 2, 20, 200 tB. These lag times are
characteristic, representing the times at which the time-
regimes of the minimum in the diffusive exponent µmin,
the maximum in the non-Gaussian parameter αmax, and
the transition to diffusive behaviour at long times occur.
Particles are schematically shown at the start and end
positions of their trajectories, as white and grey shaded
circular areas, respectively, in accordance with their real
size. Furthermore, a selection of particles and their tra-
jectories are highlighted by different colors to emphasize
particle movements and hence emerging trajectory over-
laps. Figure 8 (a) represents particle movements within
a lag time t = 2 tB at the beginning of the measurement.
Particles can on average diffuse a distance of about their
own radius before they feel the optical potential and even-
tually get trapped (dark grey particles). Hence, in this
time range, the diffusion of the particles is strongly sub-
diffusive, leading to a minimum in the diffusive exponent
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are indicated by colors, while surrounding, mostly trapped particles are drawn in dark grey. Furthermore, for the highlighted
trajectories also the end position of the prior sub-figure, according to times t = 0 , 2 , 20 tB is indicated by ‘particles’, here
drawn as white open circular areas with dashed borders.

µ. However, due to the high concentration, some parti-
cles (indicated by colors) can still move distances beyond
the trap width (⟨∆r2⟩ > σ = 1.38 R), caused by their
initial position and a limited number of deep potential
wells. At later times (fig. 8 (b)), the particles’ diffusion
is more diversified. While some particles are strongly
trapped, others already left potential minima and got
diffusive again or vice versa. Particles indicated by col-
ors start to form a percolating cluster, while exchanging
their positions in weak potential minima. The diffusive
heterogeneity is quantified by the maximum in the non-
Gaussian parameter α2, which occurs in this time range.
At even longer lag times the sample shows more diffu-
sive behavior again. Most of the particles already left
their initial traps, sampling more and more of the field of
view. Still, there are differences between particles, that
are strongly trapped (dark grey) and particles that are
moving in a percolating cluster (colored), spanning for
long times at least the length scale of the field of view.

The particle dynamics can be classified by three main
diffusive processes, which are shown schematically in
fig. 9 as differently colored trajectories. Besides strongly
sub-diffusive (trapped, blue) and almost diffusive (perco-
lating, red) behavior, a third process is identified (green).
Since the mean distance between potential minima al-
most matches the particle diameter, a pronounced hop-
ping motion of particles takes place. A particle can
only move if one of its next-neighbours rearranges, which
is similar to single file diffusion [55], but in this case
strongly depends on the actual particle and potential
minima arrangement. The green trajectories in fig. 9
form a connected line of five particles, each centred at

y
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m
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24.5

x / µm
2 9.5 17 24.5

FIG. 9. Schematic overview of the main diffusive processes
via a snapshot of trajectories at high concentrations C3 and
laser power L3 with starting time t0 = 2 tB and for lag time
t = 200 tB. Particles of interest are schematically drawn, in
accordance to their size (radius R = 1.4 µm), as grey shaded
circular areas at the end positions of the underlying trajecto-
ries. Trajectories showing strong trapping, perculating diffu-
sion, and hopping motions, are colored blue, red, and green,
respectively.

a potential minimum. For most of the time, particles
are trapped within their initial potential valleys. How-
ever, if one of the particles is displaced by more than its
own radius, the vacancy in the rPEL will very quickly
be occupied by an adjacent particle. Therefore, string-
like hopping motion with discretized step-sizes, which
correspond to the average distance between two adja-
cent potential minima, occurs. Similar spatially re-
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FIG. 10. Time-averaged single particle mean-squared displacements with ensemble and time averaged (red line) and only
ensemble averaged mean-squared displacement (green line) for different laser powers L1-L3 (bottom to top) and concentrations
C1-C3 (left to right), respectively. Times t =1, 10, 100, 1000 s, for which the population probability histograms are calculated
(fig. 11), are indicated by dashed vertical lines.

stricted, correlated dynamics were already observed in
very dense two-dimensional systems [23] and are also ex-
pected to occur in more complex systems such as the
dense Lorentz gas, porous media and crowded (cellular)
environments [13, 27, 56–60].

Time-averaged single-particle squared displacements
are analysed to characterize the heterogeneous dynamics.
Figure 10 shows the time-averaged squared displacements
for single trajectories corresponding to points C1L3 (a)
to C3L1 (i) in the PL-φA state diagram. Free, normal dif-
fusion id characterized by a linear slope, no deviation be-
tween the time- and ensemble average (red line) and the
ensemble-average (green line) and no scatter between sin-
gle trajectories at short and intermediate times. Scatter
between single trajectories at the end of the measurement
time, in turn, is most probably caused by time-averaging,
which leads to statistics that are worse at long times than
at short lag times. For clarity, each second trajectory is
shown, whereby we carefully checked that left out tra-
jectories do not show different behaviour. For all con-
centrations and potential depths, deviations to the freely
diffusing case are observed, the least at high concentra-
tions and low laser power (C3L1, fig. 10 (i)). Single tra-

jectories that diverge at very short time scales are most
probably caused by the slightly polydisperse samples and
are therefore neglected in the following analysis. For low
concentrations and/or high laser powers, roughly two dif-
ferent kinds of trajectories can be identified. First, trajec-
tories that have an intermediate regime with only a slight
sub-diffusive plateau becoming diffusive again within the
measurement time. Second, trajectories of trapped par-
ticles forming a constant plateau that is prolonged be-
yond the time of measurement. It is important to note
that, since the mean-squared displacement of the second
group of particles is about two orders of magnitude lower
at long times, the time- and ensemble-averaged value of
⟨∆r2⟩i,t0 is mainly determined by the faster particles that
are already diffusive again. This is illustrated by the
bending up of the red line, which, for all lag times, is
located in the upper third of the single trajectories. As a
consequence, the time- and ensemble-averaged measures
are biased in direction of fast moving particles smooth-
ing out effects of the slower species. The difference be-
tween the ensemble averaged ⟨∆r2⟩i (green line) and the
ensemble- and time-averaged mean-squared displacement
⟨∆r2⟩i,t0 , together with scattering of the trajectories for
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FIG. 11. Population probability histograms of the time-averaged single particle mean-squared displacements for times t =1,
10, 100, 1000 s for different laser powers L1-L3 (bottom to top) and concentrations C1-C3 (left to right), respectively. Time-
and ensemble averaged mean (red) and the maximum of the histogram (purple) are indicated by colored bars.

even intermediate times, indicates non-ergodic behaviour
for at least the time of measurement and hints at weak-
ergodicity breaking, which has been observed in many
systems with anomalous diffusion [5, 6, 11, 61].

To better understand the single trajectory scattering,
the probability density of single-particle mean-squared
displacements p(⟨∆r2⟩t0) is calculated for concentration-
potential combinations of fig. 10 at lag times t =1, 10,
100, 1000 s (indicated by vertical lines). The probabil-
ity histograms are shown in fig. 11, where red and purple
horizontal bars indicate the time- and ensemble-averaged
mean and peak position, that is the highest probability
to find a particle at this distance p(⟨∆r2⟩t0) after time
t, respectively. For high laser power L3 and low concen-
tration C1 (fig. 11 (a)), the distribution at short times
t = 1s closely resembles Boltzmann statistics of free diffu-
sion with the position of the mean being identical to the
one of the distributions’ peak. At later times t ≥ 10s the
distribution splits up and a second peak evolves. Here,
most of the particles are trapped for the whole measure-
ment time giving rise to a strong second peak, which is
even higher than the diffusive one. Furthermore, with

increasing time (fig. 11 (a), left to right), the position of
the time- and ensemble-mean (red bar), which accounts
for the diffusive particles, rises, while the distributions’
peak position (purple bar) levels up at low mean-squared
displacements. For the case of very rough landscapes
L3 and low to medium concentration C1-2 ( fig. 11 (a-
b)), this phenomenon is most pronounced, whereas, for
the highest investigated concentration (c), the peak and
mean positions are almost identical for all times. Since
the number of deep potential wells is constant and, at
medium concentrations, all strong minima are occupied
by particles, a further increase of the volume fraction
leads to particles which are on average more mobile and
the mean trapping time is decreased by particle-particle
collisions. At constant laser power L2 with increasing
concentration C1 to C3 (fig. 11 (d-f)), for all concentra-
tions, less particles are strongly trapped, i.e. occupy the
lowest potential energy values, for long times. For lower
laser power L1, the same trend starting at even lower con-
centrations is observed (fig. 11 (g-i)). A time-averaged
quantity which follows Boltzmann statistics implies that
for low concentrations and long times only the deepest
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FIG. 12. Position of the highest peak in the single-trajectory
mean-squared displacement probability distribution (indi-
cated by green bars in fig. 11) plotted against the time for
various concentrations and laser powers. Concentrations are
indicated by a color gradient (green ≡ low to red ≡ high) and
laser power L0, L1, L2 and L3 by different line types (and
symbols) solid (squares), dashed (circles), dash-dotted (trian-
gles up) and dotted (stars), respectively. Solid black lines are
guides to the eye for slope 1 and a constant value ⟨∆r2⟩ = 0.2
µm.

potential wells are filled. This is indeed observed in the
experiments at low concentration C1 and intermediate
to high laser powers L2-3 (fig. 11 (a),(d)) and at medium
concentration C2 and high laser power L3 (b). The sin-
gle trajectories (fig. 10 (a),(b),(d)) indicate that, at late
times, most of the particles are trapped, i.e. occupy deep
potential wells. At low laser power and/or higher concen-
trations, we observe a decreasing probability of particles
to stay trapped over long times for increasing concentra-
tion due to particle-particle interactions and the onset of
excluded volume effects. Hence, the free mean path of
the particles is reduced and the probability of collisions
raised. Furthermore, more particles undergoing Brown-
ian motion are pinned in less deep traps for less time.
Consequently, the particles’ (trap-)residence time is de-
creased, since they either cannot find a (deep) potential
minimum any more or are pushed out by other particles
after short times already. This leads to a smoothing out
of the underlying potential landscape, therefore inducing
faster and more cooperative diffusive behaviour.

The position of the highest peak in the single-
trajectory mean-squared displacement probability distri-
bution (maxima in fig. 11) is separately plotted against
the time as a function of concentration and potential
strength in fig. 12. While the time-dependence of the
peak’s position is linear for L0 (solid green line), as ex-
pected for free diffusion, a more and more pronounced
plateau can be identified for higher laser power (dash-
dotted and dotted lines). It is most pronounced at low
concentrations (green lines), in accordance with the anal-
ysis of the single-trajectory mean-squared displacements
and their displacement probabilities above. The levelling
up of the peak position is a clear sign that a large fraction

of the particles, which does not necessarily have to be the
majority, is quasi-pinned in potential traps for at least
the time of the plateau. However, a large number of the
particles is still diffusive, so that a percolation transition
is presumably not reached yet. The position of this max-
imum peak, e.g. ⟨∆r2⟩ ≈ 0.2 µm for C1L3 (green dotted
line in fig. 12), should correspond to the mean displace-
ment of particles rattling around within traps and there-
fore scales with the average potential width and depth.

C. Are Short-Term Dynamics Indicative of the
Long-Term Behaviour?

For ensemble-averaged measures the anomalous dif-
fusion is most pronounced at intermediate time scales
(1 ≤ t/tB ≤ 50), with the strongest influence on both
D(t) and µ(t), as the results of section III A indicate,
whereas for single particle measures strong deviations
from normal diffusive behaviour are observed for short
and large time scales (section III B). Thus, two coun-
teracting influences, namely the particle-potential and
particle-particle interactions, were identified. The first
is most pronounced for low concentrations and high laser
power, the latter for high concentrations and low laser
power. To further characterize their interplay, we discuss
the short-term diffusion coefficient Ds and the long-term
diffusion coefficient Dlong in the PL-φA state diagram,
followed by a comparison of both to identify possible con-
nections.

1. Short-Term Diffusion

In fig. 13, the short-term diffusion coefficient Ds, intro-
duced in section II D, is plotted in the form of the PL-φA
state diagram, where symbols represent measured con-
centrations and laser powers and Ds appears as colour
scale. Furthermore, possible regions with similar values
of Ds, referred to as iso-diffusivity areas, are indicated
by colors as well, where the gradient from purple to dark
red characterises increasing values. It has to be noted
though, that these areas can be seen as an average over
several iso-diffusivity lines with similar shape and, there-
fore, serve as guides to the eyes only. Furthermore, other
similar Ds values could have been picked out, since Ds
changes continuously and therefore no discrete transition
between the indicated areas exists.

As already seen in fig. 4, Ds exhibits re-entrant be-
haviour with a maximum at φA = 0.1-0.3 depending on
the strength of the laser potential. For example, following
line L2 with constant laser PL,2 from low concentrations
to high ones, the short time diffusion coefficient first in-
creases until it reaches its maximum Ds,L2,max ≈ 0.06
µm2s−1 at area fraction φA ≈ 0.22 and constantly de-
creases again afterwards and is true for all investigated,
but especially pronounced for intermediate laser powers.
To further explain this, we first identify possible iso-
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FIG. 13. Short-time diffusion coefficient Ds in the PL-φA state
diagram. Filled circles and squares are measured conditions
with and without an external potential, respectively. Mea-
surements that correspond to crossing points of the potential
L0-L3 and concentration C1-C3 lines, following the diagram
of fig. 1, are named and indicated by black dots. The value
of the short-term diffusion coefficient Ds is represented by
the colour scale, where the gradient from purple to dark red
characterises increasing values. Grey dash-dotted lines indi-
cate possible iso-diffusivity lines between suggested colored
iso-diffusivity areas (see text for explanation).

diffusivity lines (grey dash-dotted lines in fig. 13) of short-
term iso-diffusivity areas (indicated by colors), with the
result, that measurement points with a similar short-
time diffusion coefficient form a dome-shaped area. The
width of the area increases with increasing laser power,
since stronger potentials influence the particle interac-
tions up to even higher concentrations. However, it is
well known, that the particle interactions of dense sam-
ples (φA ≥ 0.3) are strongly dependent on the concen-
tration, even without an impinged potential landscape.
Therefore, the influence of the random potential energy
landscape on the short-time particle dynamics is limited
again at high concentrations. In addition, the peakedness
of both the self-part of the van Hove function and the
population probability histograms of the time-averaged
single particle mean-squared displacements seem to be
most pronounced at points coinciding with the most left
points in the green iso-diffusivity area in fig. 13, corre-
sponding to Ds ≈ 0.05 µm2s−1.

2. Long-Term Diffusion

The long-term diffusion coefficient Dlong was plotted
in a PL-φA diagram as well (fig. 14), but, in contrast
to Ds, represented by a logarithmic color scale. In this
case, long-term iso-diffusivity areas, featured again by
uniform colors, are going somehow diagonal from points
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FIG. 14. Long-time diffusion coefficient Dlong in the PL-φA
diagram. Filled circles and squares are measured points with
and without an external potential, respectively. Furthermore,
experimental data, corresponding to the absence of an exter-
nal potential, taken from [51] is included as crosses. Mea-
surements that correspond to crossing points of the potential
L0-L3 and concentration C1-C3 lines, following the diagram
of fig. 1, are named and indicated by black dots. The long-
term diffusion coefficient Dlong is represented by the log-colour
scale, where the gradient from purple to dark red characterises
increasing values. Grey dash-dotted lines indicate possible
iso-diffusivity lines between suggested colored iso-diffusivity
areas.

of low concentration and laser power to points of high φA
and PL. The iso-diffusivity lines show a tendency to sat-
urate with increasing concentration. As described in sec-
tion III A, Dlong first continuously increases with increas-
ing area fraction and afterwards levels up to a plateau
for higher concentrations, provided that the potential
strength is kept constant (cf. fig. 6). At even higher
concentrations, the long-time diffusion coefficient is ex-
pected to decrease again, since particles become hindered
in their motion by excluded volume effects. The con-
centrations at which the maximum is seemingly reached
are φA,sat,1 ≈ 0.1, φA,sat,2 ≈ 0.2 and φA,sat,3 ≈ 0.35 for
L1, L2 and L3, respectively. Furthermore these values
coincide with starting points of long-term iso-diffusivity
lines in fig. 14, corresponding to Dlong,1/D0 ≈ 10−1,
Dlong,2/D0 ≈ 5 · 10−2 and Dlong,3/D0 ≈ 10−2 and
therefore almost match the transition points identified
for short-term diffusion (cf. fig. 13). It is interesting
to note, that while further increasing the concentration
at constant laser power, a re-entrant regime, as previ-
ously found for the short-term iso-diffusivity lines (cf. sec-
tion III C 1), is expected to show up for all long-time
diffusion coefficients as well, as suggested by the anal-
ysis of the long-term diffusion coefficient of measure-
ments without an external potential (squares and aster-
isks in fig. 14, [48, 51]). Increasing the concentration
leads to a monotonic decrease of Dlong/D0, until a limit
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FIG. 15. Short-term diffusion coefficient Ds vs. long-term
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between potential types: no potential (squares) and rough
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red) and symbol size correspond to increasing area fraction
φA and laser power PL, respectively. Lines C1-C3 and L0-L3
are included as guides to the eye (cf. fig. 1).

of Dlong/D0 ≈ 0.1 is reached, which was suggested for
the two-dimensional freezing transition in the absence of
hydrodynamic interactions [31].

3. Ds vs Dlong

Due to their similarities, the dependence of both Ds
and Dlong on the area fraction as well as the potential
is compared simultaneously. This is done in two ways,
namely a Ds-Dlong diagram with symbol size depending
on PL and color-coded by φA and the calculation of the
difference Ds −Dlong, as shown in figs. 15 and 16, respec-
tively. Figure 15 provides an overview of both the short-
and long-term diffusion coefficients, measured for all ex-
amined concentrations (symbol color) and laser powers
(symbol size) in presence of a rough potential (circles),
together with data measured in absence of a potential
landscape (squares). Lines C1-C3 and L0-L3 are included
as guides to the eye (cf. fig. 1). If no potential is ap-
plied, Ds is almost constant for low concentrations and
decreases with increasing area fractions as Dlong does as
well. This behaviour was well described in literature [62]
and is, for hard spheres, not expected to change until
area fractions well above φA = 0.6. Nonetheless, this is
in strong contrast to the case of a rough potential, where
Ds shows re-entrant behaviour (cf. fig. 13) while Dlong
even increases with increasing area fraction (cf. fig. 14),
as indicated by lines L1-L3. Moreover, it was shown
in section III A that the striking behaviour of Ds and
Dlong as a function of concentration is smoothed out by
lowering the potential strength. Thus, the existence of a
transition situated at low laser powers can be assumed,
above which the long-term diffusion coefficient is decreas-
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FIG. 16. Difference of short-term diffusion coefficient Ds
and long-term diffusion coefficient Dlong as a function of the
area fraction φA. Symbols distinguish between potential type
(shape) and strength (color) as follows: no potential (squares)
and rough potential (circles). The color gradient from pink
to dark blue corresponds to laser powers PL,0 to PL,3, respec-
tively. Lines L0-L3 are included as guide to the eye.

ing with increasing concentration, as for the cases with-
out a potential. Below this transition Dlong behaves vice
versa, as seen for all investigated laser powers (cf. fig. 14).
The point of transition is indicated by a crossing of lines
C1-C3 in fig. 15.

Furthermore, analysing the difference Ds − Dlong the
suggested transition in dynamics is further clarified. Fig-
ure 16 shows the result of the normalized subtraction of
short-term diffusion coefficient Ds and long-term diffu-
sion coefficient Dlong as a function of the area fraction
φA with symbol shape and color indicating potential type
(cf. fig. 15) and laser power, repsectively. In the absence
of an external potential and at low concentrations (pink
line L0 and squares, fig. 16) Ds − Dlong increases mono-
tonically with increasing φA, whereas in the presence of
an rPEL a re-entrant behaviour with increasing area frac-
tion, as indicated by lines L1-L3, is observed. However,
at medium to high concentrations Ds −Dlong levels up ir-
respective of the potential, i.e. all lines L0 (from below),
L1, L2 and L3 (from above) seem to continuously ap-
proach a constant value of Ds − Dlong ≈ 0.35D0. For
a certain range of low concentrations, that can reach
up to φA ≈ 0.3 for the highest investigated potential
strength L3, the short-term diffusion is mostly deter-
mined by trapped particles, thus particle-potential in-
teractions. This is changing dramatically with higher
area fractions, where concentration effects, i.e. particle-
particle interactions, are dominating. As a result, in this
concentration regime, only the mean free path of the par-
ticles l2 is important, and mean-squared displacement
data can be scaled as shown in fig. 2. As another con-
sequence, both the short-term as well as the long-term
diffusion coefficient decrease continuously, at least within
the concentration range of our measurements.
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IV. CONCLUSIONS

The dynamics of colloids probing a light-induced ran-
dom potential energy landscape (rPEL) was investigated
as a function of the sample concentration . On the one
hand, Gauss-like random laser speckle intensity pattern
forces the polarizable colloids to spend most time in high
intensity regions, corresponding to valleys in the result-
ing rPEL. This leads to trapping of the particles and a
sub-diffusive regime at intermediate lag times. Similarly,
diffusion is slowed down if the particle concentration is
high. However, at small and intermediate concentrations
diffusion is accelerated. The concentration, on the other
hand, acts as an opposing force. Collisions caused by
particle–particle interactions increase the probability of
previously trapped particles to overcome and cross an en-
ergy barrier, namely a saddle point in the landscape. To
shed light on the mechanisms behind the counteracting
effects of particle concentration and potential strength,
we have analyzed short- and long-term colloidal dynam-
ics in terms of Ds and Dlong and studied ensemble and
single trajectories. Thus, signs of cooperative particle
behaviour depending on the potential strength and the
concentration were found in both the displacement prob-
ability densities p(∆r) (cf. fig. 7) and single-trajectory
mean-squared displacements (cf. fig. 10), even though
concentrations used in this experiments are well below
the two-dimensional liquid-hexatic transition, for which
this behaviour is well known [29, 32]. A critical con-
centration was identified, in which both effects cancel
out each other, resulting in a re-entrant regime of Ds

in the PL − φA− state diagram (cf. fig. 13). Further-
more, similarities to a simulated system, i.e. Monte Carlo
simulations of tracer diffusion through (im)mobile ob-
stacles [3, 5], were observed. In particular, comparing
the diffusion coefficients at short and intermediate times
strengthens the assumption that our system is governed
by two different behaviours of the particles, on the one
hand within their traps mobile obstacles and on the other
almost freely diffusing particles. Yet, the mobility of
trapped particles is governed by the distribution of trap
stiffnesses (given by the underlying potential landscape).
Altogether, the results of this work provide further inside
into the dynamics of tracer particles diffusing through an
externally imposed random potential energy landscape as
well as a crowded environment and thus the system intro-
duced here could be used as a simplified model system
to study, e.g., dynamics of several species in biological
cells or diffusive transport on membranes. Moreover, in
future experiments, we plan to quantitatively analyze the
potential-particle interactions, i.e. trap sizes/stiffnesses

and waiting-time distributions, and the influence of both
concentration and random potential on the ergodicity of
the system to shed light on the heterogeneity of the dy-
namics [6, 11, 61].
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APPENDIX

A. Self-part of the van Hove function Gs(∆r, t)

In the self-part of the van Hove function Gs(∆r) for an
external potential and at long times (SI, fig. 17 (f) and
(i)) an exponential tail is visible (as linear behaviour with
constant slope in the logarithmic representation). This
is often found in crowded systems and possibly caused
by a linear combination of several Gaussian Gs with dif-
ferent diffusion coefficients [14] indicating heterogeneous
dynamics.
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FIG. 17. Logarithmic plot of the self-part of the van Hove
function Gs(∆r) vs. the displacement ∆r normalized by the
particle radius R, for (a-c) no potential and different concen-
trations φA, (d-f) a rough potential and constant concentra-
tion (corresponding to C2) and (g-i) a rough potential and
constant laser power L2; all for times t = 1, 10, 100 and 500s.
The grid of grey dashed vertical lines indicates the width
of the spatial correlation function of the potential landscape
σCU = 1.38 R [39]. Black lines in sub-figures (f) and (i) cor-
respond to exponential fits at long displacements (∆r > 3R).
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The dynamics of colloidal particles in potential energy landscapes have mainly been investigated
theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes
with the help of light fields and the observation of the particle dynamics by video microscopy. The
experimentally observed dynamics in periodic and random potentials are compared to simulation
and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent dif-
fusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by
intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced
and extended the different regimes are, depends on the specific conditions, in particular the shape
of the potential as well as its roughness or amplitude but also the particle concentration. Here we
focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus
the interplay between particle–particle and particle–potential interactions, is also mentioned briefly.
Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated sys-
tems close to their glass transition, with which it is compared. The effect of certain potential energy
landscapes on the dynamics of individual particles appears similar to the effect of interparticle
interactions in the absence of an external potential.

I. INTRODUCTION

The motion of colloidal particles in potential energy
landscapes is a central process in statistical physics which
is relevant for a variety of scientific and applied fields such
as hard and soft condensed matter, nanotechnology, geo-
physics and biology [1–3]. Particle diffusion in periodic
and random external fields is encountered in many situa-
tions [4–7], such as atoms, molecules, clusters or particles
moving on a surface with a spatially varying topology or
interaction [8], or moving through inhomogeneous bulk
materials, e.g. porous media or gels [9], rocks [2], living
cells or biological membranes [10–15]. It also includes the
diffusion of charge carriers in a conductor with impuri-
ties [16, 17], particle diffusion on garnet films [18–20] or
diffusion in optical lattices [21, 22], superdiffusion in ac-
tive media [23], and vortex dynamics in superconductors
[24]. Moreover, some processes are modelled by diffusion
in the configuration space of the system, e.g. the glass
transition [25–30] and protein folding [31–33].
Thermal energy drives the Brownian motion of col-

loidal particles [34, 35]. In free diffusion, their mean-
squared displacement ⟨∆x2(t)⟩ increases linearly with
time t; ⟨∆x2(t)⟩ ∝ tµ with µ = 1. Particle–external po-
tential (as well as particle–particle) interactions can mod-
ify the dynamics significantly leading to µ ̸= 1 [14, 36–
42]. Often the dynamics slow down; on an intermedi-
ate time scale subdiffusion (µ < 1) is observed, while
at long times diffusion is reestablished with a reduced

∗ Florian.Evers@hhu.de
† Stefan.Egelhaaf@hhu.de

(long-time) diffusion coefficient D∞. Different theoreti-
cal models have been developed to describe particle dy-
namics in external potentials, including the random bar-
rier model [43], the random trap model [38, 44], the con-
tinuous time random walk [45], diffusion in rough and
regular potentials [7, 46–48], the Lorentz gas model [49],
and diffusion in quenched-annealed binary mixtures [50].
Typically, theories focus on the asymptotic long-time
limit, which is often difficult to reach in experiments.
In contrast, less is known about the behaviour at inter-
mediate times, where the transitions between the differ-
ent regimes occur. Furthermore, theoretical calculations
have mainly been exploited to extract information from
experimental data, while only recently have theoretical
predictions been compared systematically with experi-
ments [18–20, 51–58].

Here we thus focus on recent experimental results on
the dynamics of colloidal particles in potential energy
landscapes and their comparison to simulation and theo-
retical predictions. A prerequisite for systematic experi-
ments is the controlled creation of external potential en-
ergy landscapes. This, for example, is possible due to the
interaction of colloidal particles with light [59–66]. The
effect of light on particles with a refractive index different
(typically larger) from the one of the surrounding liquid
is usually described by two forces: a scattering force or
‘radiation pressure’, which pushes the particles along the
light beam, and a gradient force, which pulls particles
toward regions of high light intensity. A classical appli-
cation of this effect is optical tweezers which are used to
trap and manipulate individual particles or ensembles of
particles by a tightly focused laser beam or several laser
beams, respectively [65–68]. Extended light fields rather
than light beams can be used to create potential energy
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landscapes. Arbitrary light fields can be generated us-
ing a spatial light modulator [61, 68] or an acousto-optic
deflector [63, 64, 69], while crossed laser beams [60], dif-
fusors [70] and other optical devices can be used to create
particular high-quality light fields (Sec. II).

Light fields can affect the arrangement and dynam-
ics of colloidal particles within individual phases but can
also induce phase changes. For example, upon increas-
ing the amplitude of a periodic light field applied to a
colloidal fluid, a disorder-order transition is induced in
a two-dimensional charged colloidal system, known as
light-induced freezing [41, 71–73]. A further increase of
the amplitude results in the melting of the crystal into
a modulated liquid; this process is called light-induced
melting. Extended light fields can also be applied to
direct heterogeneous crystallization and hence the struc-
ture and unit cell dimensions of the formed bulk crystals
or quasi-crystals [74–78]. Using light fields, the effect
of periodic as well as random potentials on the particle
dynamics has been experimentally investigated [52–54]
and compared to simulation and theoretical predictions
[7, 38–40, 46, 54–56, 79, 80]. Most of the theoretical
predictions only concern the asymptotic long-time be-
haviour. Possible links between the long-time behaviour
and the intermediate dynamics, as observed in the exper-
iments, are discussed [53, 56, 81]. Furthermore, the dy-
namics of individual particles in sinusoidal potentials are
showing similarities with the dynamics in glasses [54, 82].
Inspired by this idea, in this review the dynamics of
individual particles in different external potentials are
compared to the dynamics of concentrated hard spheres
[29, 83, 84]. Energy landscapes are not only considered
in the context of glasses, but random energy landscapes
with a Gaussian distribution of energy levels of width
ε ≈ O(kBT ), where kBT is the thermal energy, seem
to be relevant for proteins, RNA and transmembrane he-
lices [85, 86]. Moreover, the diffusion (or ‘permeation’) of
rodlike viruses through smectic layers can be described
by the diffusion in a sinusoidal potential of amplitude
ε ≈ kBT [87, 88].

II. COLLOIDS IN LIGHT FIELDS: CREATION
OF POTENTIAL ENERGY LANDSCAPES

The optical force on a colloidal particle has been inves-
tigated extensively, in particular in the context of optical
tweezers [62–67, 89–95]. We consider a transparent col-
loidal particle with a refractive index nc suspended in
a medium with a smaller refractive index nm, that is
nc > nm, and begin with the case of a particle much
larger than the wavelength of light. In this case, the sim-
ple picture of ray optics applies. If light is incident on a
particle, it will be scattered and reflected. While light ar-
rives from only one direction, the scattered and reflected
light travels in different directions. Hence the direction
of the light and accordingly the momenta of the photons
are changed. Due to conservation of momentum, an equal

but opposite momentum change will be imparted on the
particle. The rate of momentum change determines the
force on the particle, which acts in the direction of light
propagation and might, e.g. due to the astigmatism of
the objective, also have effects outside the main beam
[96]. This is the so-called scattering force or, considering
the photon ‘bombardment’, the radiation pressure.
When hitting the particle, the light beam will also

be refracted, that is the particle acts as a (microscopic)
lens. This, again, changes the direction of the beam and
hence the momentum of the photons. The resulting force
pushes the particle toward higher light intensities, mainly
into the centre of the beam. This is the gradient force,
which acts in lateral direction and gradients typically also
exist in axial direction, e.g. toward a focus. This decom-
position of the optical force into two components, the
scattering and gradient forces, is done traditionally al-
though both originate from the same physics.
If the particle with radius R is much smaller than the

wavelength of light, λ, that is in the so-called Rayleigh
regime, the particle’s polarizability is considered. The
electric field of the light induces an oscillating dipole in
the dielectric particle, which re-radiates light. This leads
to the scattering force [91–94]

Fscatt =
σnm

c
I0 with σ =

128π5R6

3λ4

(
m2 − 1

m2 + 2

)2

,(1)

where I0 is the incident light intensity, σ the scattering
cross section of a spherical particle, c the speed of light
and m = nc/nm.
The incident light intensity is typically inhomogeneous,

I0(r⃗), which leads to a further (component of the) force
acting on the particle. An induced dipole in an inhomo-
geneous electric field experiences a force in the direction
of the field gradient, the gradient force [93, 94]

Fgrad =
2πα

cnm
∇⃗I0(r⃗) with α = n2

mR
3

(
m2 − 1

m2 + 2

)
,(2)

where α characterises the polarizability of a sphere. The
gradient force pushes particles with nc > nm towards
regions of higher intensity.
In the experiments described in the following, the

particles are of comparable size to the wavelength of
light. However, this case is much more difficult to model
[63, 64, 97, 98] and will thus not be described here.
In optical tweezers, tightly focused laser light is used

to trap particles. In contrast, exploiting the gradient
force, here, extended spatially modulated light fields are
applied to create potential energy landscapes [60]. The
modulations in the potential are relatively weak such that
typically particles are not trapped for long times, but
only remain for some time in certain areas. Since the
light field acts on the whole volume of the particle, its
volume has to be convoluted with the light intensity to
obtain the potential felt by the particle. Depending on
the size of the particle and the modulation of the light
field, the centre of the particle might thus be attracted to
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FIG. 1. (top) Schematic representations of the potential energy landscapes as felt by the particles and as reconstructed from
experimental data (left to right): sinusoidally-varying periodic potential [54], one- and two-dimensional random potentials
[52, 53]. For the one-dimensional random potential, the histogram of values of the potential, p(U), is shown and compared to
a Gaussian distribution (green line). (bottom) Representative particle trajectories in these potentials. The one-dimensional
random potential was arranged in large circles to obtain ‘periodic boundary conditions’ and to improve the statistics by
simultaneously investigating several circles.

bright or dark regions [60]. Furthermore, it is difficult to
impose potentials with features smaller than the particle
size.
Extended space- and also time-dependent light fields

can be created using various optical devices, e.g. holo-
graphic instruments based on a spatial light modulator
(SLM) [61, 67, 68] or an acoustic-optic deflector (AOD)
[69]. Spatial light modulators use arrays of liquid-crystal
pixels. Each pixel imposes a modulation of the phase,
amplitude or polarization, which can be externally con-
trolled. This allows creation of almost any light field,
within the limits of the finite size, pixelation and modu-
lation resolution of the SLM. The latter result in a noise
component in the light field. This can be exploited to
create random potentials. It can also be avoided by cy-
cling different realizations of the same light field but with
different phases, with a refresh rate beyond the structural
relaxation rate of the sample [52, 53, 99]. Furthermore,
the dynamic possibilities of a holographic instrument can
be improved by combining it with galvanometer-driven
mirrors [68].
A conceptually simple but more specialized set-up is

based on a crossed-beam geometry, which yields a stand-
ing wave pattern, i.e. a sinusoidally-varying periodic light
field, within an overlying Gaussian envelope due to the
finite size of the beams [60, 72, 73, 100–102]. Moreover,
optical devices, such as diffusors, can be used to generate
special beam shapes like top-hat geometries or randomly-
varying light fields [70].
While the gradient force is exploited to impose ex-

tended modulated potentials, whose amplitude is typi-
cally controlled by the laser power, the scattering force
or radiation pressure will also affect the sample. The ra-
diation pressure determines the distance of the particle

from the cover slip, which will thus depend on the laser
power. Due to hydrodynamic interactions, the distance
to the cover slip affects the diffusion of the particle, which
typically is reduced compared to free diffusion [103–105].
The experimental data presented in the following are cor-
rected for this effect.

III. DYNAMICS OF INDIVIDUAL COLLOIDS
IN PERIODIC AND RANDOM POTENTIALS

Individual colloidal particles have been exposed
to different potential energy landscapes (Fig. 1,
top): sinusoidally-varying periodic potentials U(y) =
ε sin (2πy/λ) with amplitude ε and wavelength λ
(Fig. 1A), as well as one- and two-dimensional ran-
dom potentials with a Gaussian distribution of poten-
tial values with (full) width 2ε (Fig. 1B,C). For the one-
dimensional random potential, figure 1B shows the his-
togram of values of the potential, p(U), which follows a
Gaussian distribution p(U) ∝ exp{−(U −⟨U⟩)2/2ε2}. In
the experiments, the periodic potentials were generated
using crossed laser beams [54, 60] and the random poten-
tials using a spatial light modulator [52, 53, 68] (Sec. II).
The particle motions were monitored by video mi-

croscopy and the particle trajectories recovered by par-
ticle tracking algorithms [106, 107]. In the absence of a
light field, i.e. without an external potential, colloidal
particles undergo free diffusion, thus exploring large ar-
eas. However, in the presence of external potentials, the
particle dynamics are modified (Fig. 1, bottom). The tra-
jectories and hence the excursions of the particles were
limited with the particles remaining for extended peri-
ods at positions that correspond to local minima of the
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potential. In the periodic potential, anisotropic trajecto-
ries were observed (Fig. 1D). Particle motion along the
valleys (x direction) was unaffected, while their motion
across the maxima (y direction) was hindered by barriers
of height 2ε.
In the one-dimensional random potentials, the parti-

cles remained for different periods of time at different
positions, reflecting the randomly-varying potential val-
ues along the circular path (Fig. 1E). (The circular paths
provided ‘periodic boundary conditions’ and the use of
several circles helped to improve statistics.) Similarly, in
the two-dimensional random potentials, the motion of the
particles was limited due to the presence of local poten-
tial minima and saddle points (Fig. 1F). Upon increasing
the amplitude of the oscillations or the amplitude of the
roughness, ε, the particles were more efficiently trapped
and hence explored an even smaller region.

Based on the particle trajectories, different parame-
ters were computed to characterize the particle dynamics
quantitatively in the presence of external potentials. The
mean-squared displacement (MSD) is calculated accord-
ing to

⟨∆x2(t)⟩ =
⟨
[xi(t0 + t)− xi(t0)]

2
⟩
t0,i

−⟨ [xi(t0 + t)− xi(t0)] ⟩2t0,i , (3)

where the second term corrects for possible drifts. For
both, experiments and simulations, the average is taken
over particles i and waiting time t0 to improve statistics.
The average over t0 affects the results [55, 56], because
initially the particles are randomly distributed while the
distribution of occupied energy levels evolves toward a
Boltzmann distribution. To render the data independent
of the specific experimental conditions, ⟨∆x2(t)⟩ was nor-
malized by the square of the particle radius R2, and the
time t by the Brownian time tB = R2/(2dD0) with the
short-time diffusion coefficient D0 and the dimension d.
From the MSD, the normalized time-dependent diffu-

sion coefficient D(t)/D0 is calculated according to

D(t)

D0
=

∂
(⟨
∆x2(t)

⟩
/R2

)

∂(t/tB)
, (4)

while the slope of the MSD in double-logarithmic repre-
sentation

µ(t) =
∂ log

(⟨
∆x2(t)

⟩
/R2

)

∂ log (t/tB)
(5)

corresponds to the exponent in the relation
⟨
∆x2(t)

⟩
∼

tµ(t) and quantifies deviations from diffusive behaviour:
for free diffusion µ = 1, while µ < 1 for subdiffusion and
µ > 1 for superdiffusion. In addition, the non-Gaussian
parameter [82]

α2(t) =

⟨
∆x4(t)

⟩

(1 + 2/d) ⟨∆x2(t)⟩2
− 1 (6)

characterizes the deviation of the distribution of parti-
cle displacements from a Gaussian distribution and rep-
resents the first non-Gaussian correction [108]. In the

two-dimensional case, the analogous equation based on
⟨∆r2(t)⟩ and ⟨∆r4(t)⟩ was calculated and has the corre-
sponding meaning.

The effect of potential shape and amplitude on the par-
ticle dynamics was investigated in experiments [52–54],
simulations [55, 56] and theory [54, 80], which all show
consistent results (Fig. 2). Without an external potential
(ε = 0), the MSD increases linearly with time and the
diffusion coefficient D(t)/D0 ≈ 1, exponent µ(t) ≈ 1 and
non-Gaussian parameter α2(t) ≈ 0 are all independent of
time, as expected for free diffusion. In contrast, in the
presence of a periodic or random potential, the particle
dynamics exhibit three distinct regimes which will be dis-
cussed in turn in the following. (Note that in the case
of the sinusoidal potential, we only discuss the motion
across the barriers, i.e. in y direction.)

At short times, the particle dynamics are diffusive and
follow the potential-free case. This reflects small excur-
sions within local minima and hence shows no significant
dependence on the amplitude ε.

At intermediate times, the MSDs exhibit inflection
points or plateaux, which become increasingly pro-
nounced as ε increases. This corresponds to the decrease
of the diffusion coefficients D(t)/D0 from 1 to signifi-
cantly lower values, the decrease of the exponent µ(t)
and the increase of the non-Gaussian parameter α2(t).
The subdiffusive behaviour is caused by the particle be-
ing trapped in local minima for extended periods before
it can escape to a neighbouring minimum.

In the case of the periodic potential, the barriers are all
of equal height, 2ε, and thus the residence time distribu-
tion is relatively narrow. This is reflected in the reduced
MSDs, the very pronounced and relatively quick decrease
in D(t)/D0 and µ(t) and increase in α2(t). Thus, the
minima in µ(t) and maxima in α2(t) occur at relatively
short times, tµ,min and tα,max, respectively (Fig. 3, blue
solid symbols). The minima in µ(t) occur earlier than the
maxima in α2(t). This is due to the fact that the mini-
mum in µ(t) reflects the largest deviation from diffusive
behaviour, i.e. when the probability to be (still) stuck in
a minimum is largest and thus diffusion is most efficiently
suppressed, whereas the maximum in α2(t) indicates the
largest deviation from the Gaussian distribution of dis-
placements, i.e. the dynamics are maximally heteroge-
neous with some minima having been left a long time
ago, some only recently, with others yet to be left. The
maximum in α2(t) thus only appears once jumps have
occurred, which happens after the minimum in µ(t), and
hence tµ,min < tα,max. This also implies a weak ε depen-
dence of tµ,min and a significant ε dependence of tα,max

since ε determines the height of the barrier which has to
be crossed. Similarly, the intermediate regime ends once
the particle escapes the minima and performs a random
walk between different minima with the diffusion coeffi-
cient D(t)/D0, µ(t) and α2(t) reaching the plateaux val-
ues, unity and zero, respectively. Again, since all barrier
heights are identical, this occurs within a short period of
time. Nevertheless, the time required to reach the end
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FIG. 2. Particle dynamics in (left to right) sinusoidally-varying periodic [54], one-dimensional random [52] and two-dimensional
random potentials [53] as characterized by (top to bottom) the normalized mean-squared displacements (where the normalization
has been done according to the specific potential shape), the normalized time-dependent diffusion coefficient D(t)/D0, the

exponent µ(t) in the relation
⟨
∆x2(t)

⟩
∝ tµ(t), and the non-Gaussian parameter α2(t) for different potential amplitudes and

degrees of roughness ε (as indicated in the legends, in units of kBT ). Experimental data are represented by symbols, simulations
by solid lines, theoretical predictions (for the periodic potential) by thick lines. Theoretical predictions for D∞/D0 are indicated
by horizontal lines.

of the intermediate regime and hence the long-time dif-
fusive limit, quantified either by µ → 1, i.e. tµ,∞, or by
α2 → 0, i.e. tα,∞, strongly depends on ε.
In the other case, i.e. in the presence of a random

potential, there exists a wide range of barrier heights
and thus residence times. This is reflected in the less
pronounced plateaux or rather inflection points in the

MSDs, a very slow decrease of D(t)/D0 with very slow
approaches to the long-time plateaux as well as a slow de-
crease and increase of µ(t) and α2(t), respectively, and in
particular an extremely slow return of µ(t) and α2(t) to
1 and 0, respectively. Therefore, the intermediate subd-
iffusive regime, as indicated by the range from tµ,min and
tα,max to tµ,∞ and tα,∞, occurs relatively late and in par-
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τ	



FIG. 3. Characteristic time scales τ in sinusoidally-varying
periodic, one-dimensional and two-dimensional random po-
tentials (as indicated and explained in the text). Data for
the periodic potential are extracted from theoretical results.
For the random potentials, data are retrieved from simulation
data not averaged over waiting times t0 [55, 56].

ticular extends over a broad range of times with a strong
ε dependence (Fig. 3), where the particular ε dependence
of tµ,∞ and tα,∞ is still under debate [53, 81]. For the
one-dimensional random potential, subdiffusion is more
pronounced than for the two-dimensional random poten-
tial, since in two dimensions maxima can be avoided and
only saddle points need to be crossed. For the same rea-
son, in one dimension, the ε dependence appears stronger
and the intermediate regime extends to longer times.
Thus, in the one-dimensional random potential the inter-
mediate subdiffusive regime covers a longer time period
than in the two-dimensional case, which in turn is longer
and shows a stronger ε dependence than in the periodic
potential. Moreover, increasing amplitude ε has similar
effects for all potential shapes: First, the subdiffusive
behaviour becomes more pronounced. Second, the inter-
mediate regime extends to longer times, indicated by the
slow returns of µ(t) and α2(t) to 1 and 0, respectively.
However, the beginning of the intermediate regime, char-
acterized by the maxima in µ(t) and minima in α2(t)
and the corresponding times tµ,min and tα,max, remains
at about the same time with a weak ε dependence since
no or only a few barrier crossings are involved. [109]
Extrapolations of the characteristic times τ to vanishing
potential amplitudes results in different values τ(ε→0)
for the different potential shapes. Although unexpected,
this might be related to the definitions of the amplitude ε
for the periodic and random potentials, respectively, and
to the fact that without an external potential, i.e. ε = 0,
µ(t) = 1 and α2(t) = 0 and thus no minimum in µ(t)
and no maximum in α2(t) exist and hence τ(ε=0) is not
defined.

At very long times, again diffusive behaviour is ob-
served with constant, but much smaller D∞/D0 and µ(t)
returning to 1 and α2(t) to 0. On long time scales, hop-

FIG. 4. Normalized long-time diffusion coefficient D∞(ε)/D0

in one- and two-dimensional random potentials and
sinusoidally-varying periodic potentials (left to right). Solid
lines indicate theoretical predictions [7, 46, 80], symbols simu-
lation results that have not been averaged over waiting times
t0 [54–56].

ping between minima becomes possible and, once more,
the dominant process is a random walk, now between
minima. The return to diffusion is fast in the case of the
periodic potential, since very deep minima are absent,
but slow in the two- and especially the one-dimensional
random potential. With increasing amplitude ε, one
notices increasingly long times to reach the asymptotic
long-time limit (Fig. 3) and a decrease of the long-time
diffusion coefficient D∞(ε) (Fig. 4), which has been cal-
culated for different potential shapes. For a periodic si-
nusoidal potential [54, 80]

D∞(ε)

D0
= J−2

0

(
ε

kBT

)
≈ 2π

(
ε

kBT

)
e

(
−2ε
kBT

)
, (7)

where J0 is the Bessel function of the first kind of order
0 and the approximation holds for ε ≫ kBT/2 [54]. In
the case of one- and two-dimensional random potentials
one finds [7, 46, 110–112]

D∞(ε)

D0
= e

− 1
d

(
ε

kBT

)2

. (8)

In the case of a two-dimensional random potential,
D∞(ε) is larger because maxima can be avoided and only
saddle points have to be crossed. Nevertheless, the expo-
nential dependence on −(ε/kBT )

2 remains, which is the
ratio of the equilibrium energy of a Gaussian distribu-
tion, −ε2/kBT , and the thermal energy kBT . The first
term describes the equilibrium energy and dominates the
dependence of the activation barriers on temperature, be-
cause the typical barrier energies to be overcome when
moving between different regions are essentially indepen-
dent of the thermal energy, as suggested by the percola-
tion picture [113]. The theoretical predictions and sim-
ulation as well as experimental data agree (Fig. 4), ex-
cept at large ε where deviations are noticeable. Figure 4
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FIG. 5. Effect of particle–particle and particle–potential interactions on the particle dynamics. The dynamics of individual
particles in sinusoidally-varying periodic and one- and two-dimensional random potentials (thin lines with symbols as indi-
cated) [52–54] are compared to (A,C,D) (quasi) two-dimensional concentrated hard discs [83] and (B,E,F) three-dimensional
concentrated hard spheres [29], the latter two in the absence of an external potential (thick lines as indicated). (A,B) Dimen-
sionless mean squared displacements and (C–F) exponent µ(t) as function of dimensionless time. To allow for a comparison,
both the mean squared displacement and the time have been normalized by typical length scales of the corresponding sys-
tems, indicated by the parameters ⟨∆u+ 2(t+)⟩ and t+. Shown are the theoretical predictions for individual particles in
periodic potentials with amplitude (A,C) ε/kBT = 1, 2, 3, 8 and (B,E) 2, 3, 4, 6 [54], simulation results for individual par-
ticles in one-dimensional random potentials with amplitude ε/kBT = 1.2, 2.3, 3.1 [56] and in two-dimensional random po-
tentials with amplitude ε/kBT = 1.0, 2.0, 3.0 [53, 55], simulation results for concentrated hard discs with surface fractions
σ = 0.68, 0.69, 0.70, 0.715 in the absence of an external potential [83], experimental data for concentrated hard spheres with
volume fractions Φ = 0.466, 0.519, 0.558, 0.583 in the absence of an external potential [29] (all top to bottom).

shows the theoretical predictions and simulation results,
the latter agreeing with the experimental data (Fig. 2).
The slightly higher data are due to the fact that even for
the longest investigated times the asymptotic long-time
limit is not quite reached for the largest ε (Fig. 2). More-
over, the data suggest that the time to reach the long-
time limit, characterised by tµ,∞(ε) or tα,∞(ε) (Fig. 3),
is not related to D∞(ε)−1 (Fig. 4).

The particle dynamics in periodic and random po-
tentials as discussed above, resemble the dynamics of
concentrated systems, whose subdiffusive behaviour has
been associated with caging by neighbouring particles
[114–116]. Thus particle–potential and particle–particle
interactions seem to have similar effects on the parti-
cle dynamics. Their effects lead to characteristic signa-
tures especially in the intermediate regime, which was de-
scribed above. We hence can compare the dynamics of in-
dividual particles in external potentials and concentrated
interacting particles without external potential (Fig. 5),
namely experimental data from a three-dimensional bulk
system containing hard spheres of different volume frac-
tions [29] and experimental as well as simulation data

from (quasi) two-dimensional systems of hard discs with
different surface fractions [83, 84]. The dynamics of the
concentrated two-dimensional system and the individual
particles in the periodic potential are strikingly similar
(Fig. 5A,C), while the dynamics in the random potentials
appear different (Fig. 5A,D). In contrast, the dynamics
of the concentrated three-dimensional system seem differ-
ent from the individual particles in the periodic potential,
for example the intermediate MSD is broader (Fig. 5B,E),
while it resembles the dynamics in the random potentials
(Fig. 5B,F).

IV. DYNAMICS OF INTERACTING COLLOIDS
IN PERIODIC AND RANDOM POTENTIALS

So far the dynamics of individual colloidal particles in
periodic and random potentials were considered. It shows
striking similarities with the dynamics of concentrated
suspensions without external potentials [29, 83, 84].
The combined effect of particle–potential and particle–
particle interactions is hence briefly discussed. An in-
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FIG. 6. Particle dynamics, namely MSD across the barri-
ers, i.e. in y direction (main figure), and along the valleys,
i.e. in x direction (inset), of an individual dilute large par-
ticle (R1 = 2.5 µm, open symbols) and concentrated large
particles in a binary mixture (R1 = 2.5 µm, R2 = 1 µm, to-
tal surface fraction σ ≈ 0.57 with an about equal number of
large and small spheres, filled symbols), both in sinusoidally-
varying periodic potentials with wavelength λ = 5.2 µm and
different amplitudes (as indicated). Lines represent Brown-
ian Dynamics simulations of individual particles in a periodic
potential with ε/kBT = 0.0, 1.5, 2.0, 2.5.

crease of the particle concentration in a one-dimensional
channel leads to single file diffusion with ⟨∆x2(t)⟩ ∼ t0.5

[117], which becomes more complex if a periodic po-
tential is present along the channel [42]. Also in two-
dimensional potentials an interplay between the particle–
potential and particle–particle interactions was observed
[41], which, under the investigated conditions, may be
linked to changes in the particle arrangement, caused
by laser-induced freezing and melting [71–73]. More
complex potential-induced disorder-order and disorder-
disorder transitions have been theoretically investigated
in mixtures, namely colloid-polymer mixtures and binary
hard discs [118–120]. The dynamics of binary colloidal
mixtures with large size disparity have been investigated
without the presence of an external potential [121, 122].
Here, we focus on the dynamics of concentrated binary
hard sphere mixtures in a periodic potential, with the
mixture in the modulated liquid state. The MSDs of
individual particles (similar to those in Sec. III) and of
interacting particles in the presence of smaller particles
in a periodic potential are determined (Fig. 6). No signa-
ture of single-file diffusion could be observed in the MSDs
along the valleys, i.e. in x direction (Fig. 6, inset). Across
the barriers, i.e. in y direction, the MSDs of the interact-
ing large particles in the binary mixture (in a periodic
potential with amplitude ε) resemble the MSDs of indi-

vidual large particles (in a periodic potential with a larger
amplitude ε′). For the present conditions, in particular
surface fraction σ ≈ 0.57, we found ε′ ≈ ε + 0.5 kBT .
Moreover, the MSDs of the individual and interacting
particles in a periodic potential agree with Brownian Dy-
namics simulations of an individual particle in a periodic
potential (Fig. 6, lines). Similar observations have been
made for interacting quasi-monodisperse particles in pe-
riodic and random potentials [79, 123].

V. CONCLUSION

Optical devices, such as spatial light modulators and
acousto-optic deflectors, can be exploited to create a large
variety of modulated light fields. Due to the polariz-
ability of colloidal particles, this translates into potential
energy landscapes of almost any shape. The large flexi-
bility, together with the possibility to observe and track
colloidal particles by video microscopy, provides an ideal
experimental tool to systematically and quantitatively
investigate fundamental questions in statistical physics.
Here we focused on individual Brownian particles, but
also briefly mentioned interacting particles, in periodic
and random potentials. The experimental findings were
compared to simulation results and theoretical predic-
tions. While the latter mainly concerns the long-time
asymptotic limit, the experiments and simulations also
provide detailed quantitative information on the inter-
mediate dynamics, which exhibit subdiffusive behaviour.
This was compared to the distinct intermediate dynam-
ics of concentrated colloidal suspensions, thus comparing
particle–potential and particle–particle interactions. The
interplay between these interactions was also illustrated
using concentrated binary mixtures in external poten-
tials. The dynamics of concentrated interacting parti-
cles in potential energy landscapes deserve further work,
which will also be extended to time-dependent potentials.
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[14] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602

(2013).
[15] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65,

29 (2012).
[16] A. Byström and A. M. Byström, Acta Crystallogr. 3,

146 (1950).
[17] A. Heuer, S. Murugavel, and B. Roling, Phys. Rev. B

72, 174304 (2005).
[18] P. Tierno, P. Reimann, T. H. Johansen, and F. Sagués,

Phys. Rev. Lett. 105, 230602 (2010).
[19] P. Tierno, F. Sagués, T. H. Johansen, and T. M. Fis-

cher, Phys. Chem. Chem. Phys. 11, 9615 (2009).
[20] P. Tierno, F. Sagués, T. H. Johansen, and I. M. Sokolov,

Phys. Rev. Lett. 109, 070601 (2012).
[21] F.-R. Carminati, M. Schiavoni, L. Sanchez-Palencia,

F. Renzoni, and G. Grynberg, Eur. Phys. J. D. 17,
249 (2001).
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