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Abstract. The aim of this work is to develop formulas which ex-
press three point genus zero Gromov-Witten invariants on a homo-
geneous space of Picard rank one as classical intersection numbers
on a different compact homogeneous space. Such formulas were
first proved for the Grassmannian, the isotropic and the symplec-
tic Grassmanian ([6], [7]) and were later generalized to cominuscule
homogeneous spaces [11]. After reviewing the concepts already
known, we study in more detail the isotropic Grassmannian. We
give a new formula in this case which differs from the one already
known from [7] by the use of different objects which relate rational
curves passing through three Schubert varieties in general position
and points in a threefold intersection of cohomology classes on an
auxiliary space.

Das Ziel dieser Arbeit ist es, Formeln zu entwickeln, welche drei
Punkt Geschlecht null Gromov-Witten Invarianten auf einem ho-
mogenen Raum von Picard-Rang eins als klassische Durchschnitts-
zahlen auf einem anderen kompakten homogenen Raum ausdrück-
en. Solche Formeln wurden zuerst für die Graßmann-Varietät, die
isotrope and die symplektische Graßmann-Varietät bewiesen ([6],
[7]), und später auf kominusküle homogene Räume verallgemeinert
[11]. Nachdem wir die bereits bekannten Konzepte durchdenken,
studieren wir in größerem Detail die isotrope Graßmann-Varietät.
Wir geben in diesem Fall eine neue Formel an, welche sich von
der bereits aus [7] bekannten unterscheidet, durch den Gebrauch
anderer Objekte welche rationale Kurven, die durch drei Schubert-
Varietäten in allgemeiner Lage verlaufen, in Beziehung setzen zu
Punkten in einem Durchschnitt von drei Kohomologieklassen auf
einem Hilfsraum.
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Introduction

The aim of this work is to work out quantum to classical formulas for
computing Gromov-Witten invariants similar to formulas obtained in
[6, Corollary 1]. Sereval steps in this direction were already done in [7]
and [11]. Let us briefly present these results for the Grassmannian since
they serve as a model for all quantum to classical formulas. Let X =
G(k, n) and 1 ≤ d ≤ min(k, n−k) be a degree. Let λ, μ and ν be three
partitions of shape k× (n−k) such that |λ|+ |μ|+ |ν| = k(n−k)+nd.
Denote by Y = F(k− d, k+ d, n) the flag variety parametrizing partial
flags Vk−d ⊆ Vk+d ⊆ Cn where Vk−d is of dimension k−d and Vk+d is of
dimension k+d. For a Schubert variety Xλ(F•) where F• is a complete

flag in Cn we denote with X
(d)
λ (F•) the transformed Schubert variety

in Y defined by

X
(d)
λ (F•) = {(Vk−d, Vk+d) ∈ Y | ∃Vk ∈ Xλ(F•) : Vk−d ⊆ Vk ⊆ Vk+d}

and with [X
(d)
λ ] its cohomology class. Then we have the following for-

mula

(1) 〈σλ, σμ, σν〉d =

∫
Y

[X
(d)
λ ] · [X(d)

μ ] · [X(d)
ν ]

where on the left side stands the Gromov-Witten invariant of the Schu-
bert cycles σλ, σμ and σν . This invariant counts the number of rational
curves of degree d which pass through general translates of the Schu-
bert varieties parametrized by λ, μ and ν. We refer to a formula like
(1) as a quantum to classical principle for X.

Let X = G/P be a homogeneous space where P is a maximal para-
bolic subgroup and G is a simple affine algebraic group. Maximality of
P means geometrically that Pic(X) ∼= Z. While the quantum to clas-
sical principle (1) works for all degrees d we will focus our discussion
on the degree dX . We briefly recall the definition of this degree. For
more details we refer to Section 7. First we define a metric d on X.
For two points x, y ∈ X we define d(x, y) to be the degree d of a curve
passing through x and y such that the degree d is minimal in the set
of all degrees of curves passing through x and y. We further define

dX = max
x,y∈X

d(x, y) .

It is a consequence of [13] that dX is the minimal power of the quantum
parameter q appearing in the quantum product [{pt}] � [{pt}], i.e. we
can write

[{pt}] � [{pt}] = σ · qdX + higher degree terms

for some effective homogeneous cohomology class σ.
After recalling some basic notions we tackle the task of the algorith-

mic computation of dX (Section 8.1). We may compute the number
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dX directly by exhibiting the root system of G: Let αP be the sim-
ple root associated to P . If we denote with θ1 the highest root in
the root system R = R1 of G, then all roots orthogonal to θ1 form a
root system, which may be reducible. We pick the irreducible compo-
nent R2 of the root system {α ∈ R | (θ1, α) = 0} which contains the
simple root αP and repeat the procedure: we choose the highest root
θ2 in the root system R2, etc. After finitely many steps we end up
with k roots θ1, . . . , θk such that Rk+1 is empty. We call the sequence
of roots θ1, . . . , θk the θ-sequence. The reader will find many informa-
tions concerning the θ-sequence in Section 8, among them the following
proposition concerning the algorithmic computation of dX .

Proposition 0.1 (Proposition 8.16). Let θ1, . . . , θk be the θ-sequence
as defined above. Then the maximal possible distance dX is given by

dX =
k∑

i=1

〈θ∨i , ω〉

where ω denotes the fundamental weight dual to the simple coroot α∨
P

associated to P .

The θ-sequence gives naturally rise to a rational curve fΔ of degree
dX , the so called diagonal curve. We briefly recall the definition of the
diagonal curve. Then we state our main result concerning the density
of the diagonal curve. For more details we refer to Section 9. Let G′

be the subgroup of G defined as G′ = SL2(θ1) × · · · × SL2(θk). To
abbreviate we set X ′ = G′/G′∩P . We clearly have X ′ ∼= P1×· · ·×P1.
We can define a rational curve of degree dX via the composition

fΔ : P1 Δ−→ P1 × · · · × P1 ∼= X ′ ↪→ X ,

where Δ denotes the diagonal embedding. We call this curve the di-
agonal curve. Let M = M0,3(X, dX) be the Kontsevich-Manin moduli
space parametrizing all 3-pointed stable maps to X of degree dX and
genus zero. Our main result concerning the density of the diagonal
curve reads as follows:

Theorem 0.2 (Theorem 9.5). Suppose that X �= G2/P1 and that X �=
B�/P� where 
 > 1 is odd. The diagonal curve has a dense open orbit
under the action of G in M. In other words, the diagonal curve is a
general curve.

This result is of importance since it says that every other general
curve is in the G-orbit of fΔ. Therefore we can reduce the main con-
structions to the diagonal curve. The main construction of this work is
the construction of the irreducible subvariety X̂ of X. We briefly recall
the definition of X̂ and state its main properties. For more details we
refer to Section 11. Let B be Kostant’s cascade of strongly orthogonal
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roots. For a precise definition of this maximal set of strongly orthog-
onal roots we refer to Section 4. From the definition of B it is clear
that {θ1, . . . , θk} ⊆ B. Let S be the set of all roots γ such that γ is not
orthogonal to precisely two elements of {θ1, . . . , θk}. Let SΔ be the set
of simple roots contained in S. If k = 1 we set R′ = ∅. If k > 1 we
define R′ to be the union of all irreducible components unequal to Rk

of the root system consisting of all roots in Rk−1 which are orthogonal
to θk−1. Let R̂ be the root subsystem of R generated by B, SΔ and
R′. Let Ĝ be the algebraic subgroup of G with root system R̂. Let
X̂ = Ĝ/Ĝ∩P . Then it is clear that X̂ is an irreducible subvariety of X.

Our main result concerning the variety X̂ is the following proposition.

Proposition 0.3 (Proposition 11.67). Through three points of X̂ in
general position passes a unique rational curve of degree dX which is
contained in X̂.

The number dX and its properties concerning the geometry of ra-
tional curves motivates the definition of the subvarieties XdX

(x, y) and
YdX

(f) of X where f is a general curve of degree dX and x and y are
two points in X. In general for a degree d with 1 ≤ d ≤ dX we define
Xd(x, y) to be the union of all rational curves in X of degree d which
pass through x and y and we define Yd(f) for a general curve f of
degree d to be the intersection

Yd(f) =
⋂

x,y∈f(P1)
general

Xd(x, y) .

We will mostly restrict ourselves to the situation where d = dX . Then
we can restrict our attention to YdX

(fΔ) since the properties of any
YdX

(f) for a general curve f of degree dX follow from the properties of
YdX

(fΔ) via translation whenever the assumptions of Theorem 0.2 are
satisfied.

We assume from now on that X �= G2/P1 and X �= B�/P� where

 > 1 is odd. Then we know that the diagonal curve has a dense open
orbit in M. By Proposition 0.3 and since fΔ(P1) ⊆ X̂ by definition of

X̂ it follows fairly easily that X̂ ⊆ YdX
(fΔ). Now we contemplate the

following assumptions.

Assumption 0.4 (Assumption 13.3).

• We assume that X̂ is an irreducible component of YdX
(fΔ).

• We assume that all irreducible components of YdX
(fΔ) are pair-

wise nonisomorphic.
• We assume that each irreducible component X0 of YdX

(fΔ) sat-
isfies the following property: through three points of X0 in gen-
eral position passes a unique rational curve of degree dX which
is contained in X0.
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Under these assumptions we are able to develop a quantum to clas-
sical principle for X. We will see later that these assumptions are sat-
isfied for isotropic Grassmannians and lead to a quantum to classical
principle which differs from the one known from [7]. We now introduce
the abstract framework which makes sense whenever the Assumption
0.4 is satisfied. For more details we refer to Section 13.

Let Q be the stabilizer of X̂ in G. Let Y = G/Q and Z = G/P ∩
Q. We have obvious projection maps p : Z → X and q : Z → Y .
Let w be a Weyl group element. Then we denote by Xw the Schu-
bert variety parametrized by w and by σ(w) the corresponding Schu-
bert cycle parametrized by w. We write Fw = qp−1(Xw). The vari-
ety Fw is B-stable and irreducible. We define a surjective morphism
qw : p−1(Xw) → Fw via restriction of q. Let Nw be the nonempty open
subset of Fw where the fibers of qw are of minimal dimension. Then Nw

is an open dense B-stable subset of Fw. We can define a non negative
integer q̄w by the following equation in cohomology:

qw∗[p−1(Xw)] = q̄w[Fw] .

With this notation we are able to formulate the following theorem.

Theorem 0.5 (Theorem 13.19). Suppose that the Assumption 0.4 is
satisfied. Let g, g′ and g′′ be three general elements of G. Let u, v and
w be three Weyl group elements such that

codim(Xu) + codim(Xv) + codim(Xw) = dim(M) .

Then we have the following equality:

〈σ(u), σ(v), σ(w)〉dX
= q̄uq̄v q̄w card(gFu ∩ g′Fv ∩ g′′Fw)

where 〈σ(u), σ(v), σ(w)〉dX
denotes the Gromov-Witten invariant of the

Schubert cycles σ(u), σ(v) and σ(w).

Let w be a Weyl group element. Then it is easy to see that we always
have the following inequality:

codim(Fw) ≥ codim(Xw) − dim(X̂) .

Furthermore we know that the have q̄w = 0 whenever the previous
inequality is strict. Therefore we get the following corollary of the
previous theorem.

Corollary 0.6 (Corollary 13.20). Suppose that the Assumption 0.4 is
satisfied. Let u, v and w be three Weyl group elements. Suppose that
the inequality

codim(Fs) ≥ codim(Xs) + dim(X̂)

is strict for at least one s ∈ {u, v, w}. Then we have the vanishing

〈σ(u), σ(v), σ(w)〉dX
= 0 .
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In Section 15 – 18 we work out this program in case of the isotropic
Grassmannian X = GQ(l, 2p) where l is odd and l ≤ p− 2. For this X
we find using Proposition 0.1 that dX = l+ 1. In this case we are able
to give an explicit description of the irreducible components of Yl+1(f)
for a general rational curve f of degree dX = l + 1 (cf. Lemma 17.1).
This description yields in particular the following fact.

Fact 0.7 (Corollary 17.3). Let X = GQ(l, 2p) where l is odd and l ≤
p− 2. Then the Assumption 0.4 is satisfied.

For the convenience of the reader we briefly want to recall the descrip-
tion of X̂ in terms of isotropic subspaces. To this end let e1, . . . , e2p be
a standard basis of C2p which is compatible with B. We now define the
2(l−1)-dimensional nondegenerated subspace WfΔ

which parametrizes

X̂. Let

WfΔ
= 〈e1, . . . , el−1, e2p−l+2, . . . , e2p〉 .

Then we have the follwing fact.

Fact 0.8 (Corollary 17.2 and Lemma 17.4). The irreducible compo-

nent X̂ of Yl+1(fΔ) can be explicitely described in terms of isotropic
subspaces via the following equation:

X̂ = {V ∈ X | dim(WfΔ
∩ V ) = l − 1, dim(W⊥

fΔ
∩ V ) = 1}

∼= GQ(l − 1, 2(l − 1)) × Q2(p−l) .

In case of the isotropic Grassmannian X we have a natural compact-
ification Ȳ of Y at hand. Let Ȳ = G(2(l − 1), 2p). Then we see that
Y embeds into Ȳ as an open dense subvariety. We will identify the
morphism q : Z → Y with the composition Z → Y ↪→ Ȳ .

We briefly explain how we parametrize Schubert varieties in X. For
more details we refer to Section 14. Let P̃(l, p) be the set of all (p− l)-
strict partitions of shape l × (2p− l − 1) with type attached to them.
Then we know that P̃(l, p) parametrizes the Schubert varieties in X.
We denote by wλ the minimal length representative corresponding to
a partition λ. We write Xλ = Xwλ

and σλ = σ(wλ) = [Xλ] for all
partitions λ. Moreover we define q̄λ = q̄wλ

. With this notation Theorem
0.5 reads as follows.

Theorem 0.9 (Theorem 18.4). Let λ, μ and ν be elements of P̃(l, p)
such that

codim(Xλ) + codim(Xμ) + codim(Xν) = dim(X) + (2p− l− 1)(l+ 1) .

Then we have the following equality:

〈σλ, σμ, σν〉l+1 = q̄λq̄μq̄ν

∫
Ȳ

q∗p∗σλ · q∗p∗σμ · q∗p∗σν .
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Remark 0.10. The quantum to classical principle in Theorem 0.9 differs
from the quantum to classical principle for cominuscule homogeneous
spaces [11, Corollary 23] (formula (1) is an instance of this) by the
following points:

• The transformed Schubert cycles q∗p∗σλ are not any more Schu-
bert cycles on Ȳ but rather may decompose into a linear com-
bination of Schubert cycles on Ȳ .

• The integer coefficients q̄λ are not necessarily one so that the
Gromov-Witten invariant is rather a positive multiple of an
integral than the integral itself.

• The integrand Ȳ is a homogeneous space which is not homoge-
neous under the action of G = SO2p but rather homogeneous
under the action of a larger group namely SL2p.

The quantum to classical principles for many other examples, the
isotropic Grassmannian included, in particular for homogeneous spaces
homogeneous under the action of the exceptional group E6 were inte-
sively studied in [25, p. 55 f., p. 61 ff.]. In fact many ideas contained
in this work as well as in its introduction already appear in some form
in [25, cf. 1. Introduction]. One of the objectives of this thesis was
to develop these ideas on a solid mathematical basis. Since the note
[25] was never published, it was only available and accessible thanks to
Prof. Nicolas Perrin, the adviser of this thesis. Through many useful
discussions he patiently introduced the author to the subject, moti-
vated and initiated this kind of research. So the author wants to take
the opportunity to express his gratitude.

1. Homogeneous spaces

In this section we introduce the basic objects we are using throughout
this work: algebraic homogeneous space. We use this occassion to set
up the notation we are using from now on. In particular we will be
interested in homogeneous fiber bundles, since we use this construction
later on. It is supposed to be the counterpart in algebraic geometry
of the concept of associated bundles in topology. We close this section
with the investigation of a special class of homogeneous spaces, the so
called cominuscule homogeneous spaces.

As a general reference for the theory of homogeneous spaces we use
[30, Chapter 1]. For the theory of algebraic groups we refer to [15].

By a variety we mean a reduced k-scheme of finite type where k is
an algebraically closed field of characteristic zero. Many of our results
will even hold in positive characteristic, but to simplify the statements
we always assume that the characteristic is zero. In the main part of
this work, we will even focus on the case where k = C, so that we do
not lose anything.
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By an algebraic group we mean a variety which has the structure
of a group scheme. We always denote the Lie algebra of an algebraic
group G,H, . . . by lowercase Gothic letters g, h, . . . We always denote
the identity element of an algebraic group G by e and the character
group of G by X(G).

Let G be a linear algebraic group and H a closed subgroup of G.

Definition 1.1. Let X be a variety with a transitive G-action. In this
situation X is called a homogeneous space.

A pointed homogeneous space is a pair (X, o) where X is a homoge-
neous space and o ∈ X. The natural map π : G→ X , g �→ go is called
the orbit map.

Definition 1.2. The space G/H equipped with the quotient topology
and a structure sheaf OG/H which is the direct image of the sheaf OH

G

of H-invariant regular functions on G is called the (geometric) quotient
of G modulo H.

Theorem 1.3. (1) G/H is a smooth, quasiprojective homogeneous
space. The quotient morphism π : G → G/H is seperable and
loacally trivial in étale topology.

(2) For any pointed homogeneous space (X, o) such that H ⊆ Go,
the orbit map π : G→ X factors through π̄ : G/H → X.

(3) π̄ is an isomorphism if and only if H = Go and π is separable.

Proof. [30, Theorem 1.1] �

Since we assume that the ground field k is of characteristic zero the
orbit map π will always be separable. We therefore can always assume
that a pointed homogeneous space is of the form G/H.

Definition 1.4. Let X be a G-homogeneous space. The isotropy rep-
resentation at x ∈ X is the natural representation TxX of Gx given by
differentials of right translation.

Proposition 1.5. TeHG/H ∼= g/h as H-modules. The isomorphism is
given by the differential of the seperable quotient map π. The right-hand
representation of H is the quotient of the adjoint representation of H
in g. The left-hand representation of H is the isotropy representation
at eH.

Proof. [30, Proposition 1.1] �

1.1. Homogeneous fiber bundles. In this subsection we introduce
homogeneous fiber bundles following [30, Section 2] and collect the most
important facts which we will be needed later on. Homogeneous fiber
bundles can be used to compute the Picard group of a homogeneous
space (Theorem 1.10).

Let Z be anH-variety. ThenH acts onG×Z by h(g, z) = (gh−1, hz).
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Definition 1.6. The quotient space G×HZ = (G×Z)/H equipped with
the quotient topology and a structure sheaf which is the direct image of
the sheaf of H-invariant regular functions is called the homogeneous
fiber bundle over G/H associated to Z.

The G-action on G×Z by left translation of the first factor commutes
with the H-action on G×Z and factors to a G-action on G×H Z. We
denotes by g ∗ z the image of (g, z) in G×H Z and identify e∗ z with z.

The homogeneous bundle G ×H Z is G-equivariantly fibered over
G/H with fibers gZ. The fiber map G ×H Z → G/H is given by
g ∗ z �→ gH.

Theorem 1.7. If Z is covered by H-stable quasiprojective open subsets,
then G×HZ is a G-variety and the fiber map G×HZ → G/H is locally
trivial in étale topology.

Proof. [30, Theorem 2.1] �

Fact 1.8. If Z is quasiprojective or normal and H is connected, then
Z is covered by H-stable quasiprojective open subsets. If H is reductive
and Z is affine then G×H Z is affine.

Proof. [30, Theorem 2.1] �

In our application in Section 12 the assumptions of Theorem 1.7 are
always satisfied. Therefore all our bundles will be locally trivial in étale
topology.

Whenever we deal with homogeneous fiber bundles we will assume
from now on that the assumptions of Theorem 1.7 are satisfied.

The next lemma indicates when a homogeneous bundle is trivial.

Lemma 1.9. The homogeneous bundle G×H Z is trivial, that is G×H

Z ∼= G/H × Z if the H-action on Z extends to a G-action.

Proof. [30, Lemma 2.1] �

If the fiber Z is anH-module, then the homogeneous bundle is locally
trivial in the Zariski topology ([30, page 11]). Any G-variety mapped
onto G/H is a homogneous bundle, in particular any G-vector bundle
over G/H is G-isomorphic to G×H M where M is a finite-dimensional
rational H-module. We denote the sheaf of sections of G ×H M by
L(M).

We now use homogeneous bundles to compute the Picard group of
a homogeneous space. Any G-line bundle over G/H is G-isomorphic
to G×H kχ for some character χ ∈ X(H) where H acts on kχ via the
character χ ([30, page 12]). We denote the sheaf of sections of G×H kχ

by L(χ) = L(kχ). This yields an isomorphism of abelian groups

X(H) → PicG(G/H) , χ �→ L(χ)
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where PicG denotes the group of G-linearized invertible sheaves. If G
is simply connected we have a surjective homomorphism

X(H) → Pic(G/H)

which is defined in the same way by forgetting the G-linearization.
Its kernel consists of the characters that correspond to different G-
linearizations of the trivial line bundle G/H × k over G/H. If G is
connected, then these characters are exactly the restrictions ResG

HX(G)
to H of characters of G. We obtain the following

Theorem 1.10. PicG(G/H) ∼= X(H). If G is connected and simply
connected, then

Pic(G/H) ∼= X(H)/ResG
HX(G)

.

Proof. For more details see [30, Theorem 2.2]. �
Example 1.11. Let G be a connected reductive linear algebraic group,
B ⊆ G a Borel subgroup. Then Pic(G/B) is isomorphic to the weight
lattice of the root system of G.

1.2. Parabolic subgroups. In this subsection we give (according to
[15, 30.1]) a description of parabolic subgroups of a reductive linear
algebraic group. Moreover we describe the Levi decomposition of such
parabolic subgroup (according to [15, 30.2]). We will use these concepts
later on in the text, since we will be mostly concerned with reductive
groups.

We start with the most greatest generality: letG be a linear algebraic
group.

Definition 1.12. A Borel subgroup of G is one which is maximal
among the closed connected solvable subgroups. A closed subgroup P
is called parabolic if P contains a Borel subgroup of G.

Let H be an abitrary closed subgroup of G as before.

Theorem 1.13. G/H is projective if and only if H is parabolic.

Proof. [30, Theorem 3.1] �
For the rest of this subsection we assume that G is reductive. When-

ever we work with a reductive group we use the notation we set up in
the following.

We fix a maximal torus T and a Borel subgroup B containing T .
We will describe all parabolic subgroups which contain B, the so called
standard parabolic subgroups (relative to B). Every other parabolic
subgroup is conjugated to a standard parabolic subgroup (since all
Borel subgroups are conjugated to each other).

Let R be the root system associated to T and G, Δ the set of simple
roots in R / the base of R (corresponding to the choice of the Borel
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subgroup B), R+ the set of postive roots and R− the set of negative
roots.

Let W be the Weyl group associated to T and G. Let I be a subset
of Δ. We denote by WI the subgroup of W generated by all simple
reflections sα where α ∈ I. Let PI = BWIB. The group PI is a
standard parabolic subgroup of G. Moreover we have the following

Theorem 1.14. (1) Each parabolic subgroup of G is conjugate to
one and only one subgroup PI where I ⊆ Δ.

(2) The roots of PI are those in R+ along with those roots in R−

which are Z-linear combinations of I.

Proof. [15, 30.1, Theorem] �
Example 1.15. Let P be a maximal parabolic subgroup of G containing
B. By Theorem 1.14 there exists a subset I ⊆ Δ such that P = PI .
The complement Δ \ I of I in Δ consists of one element, which we
denote by αP . In this situation, we say that P is associated to αP . If
the simple roots Δ are ordered in some way such that αP = αi is the
ith element in this ordering, we write P = Pi. If the root system R
is irreducible we always use the ordering of Δ given by the Bourbaki
tables [4, Chapter VI, Table I-IX].

Example 1.16. Suppose that G is connected. Let P = PI be a standard
parablic subgroup associated to some I ⊆ Δ. By Theorem 1.10, the
Picard group of X = G/P is given by

Pic(X) ∼=
∑

α∈Δ\I
Zωα

where ωα is the fundamental weight associated to α. In particular we
see that the Picard rank ofX is equal to one if and only if P is maximal.
In this case we write ω = ωαP

and we have that Pic(X) ∼= Zω.

Example 1.17. Let P be a maximal parabolic subgroup of G containing
B. Let Vω be the highest weight representation of G with highest
weight ω. Let vω be a highest weight vector. Since the isotropy group
in G of the line kvω is precisely P , we get a homogeneous emebedding
X = G/P ⊆ P(Vω). We call this embedding the minimal homogeneous
embedding of X.

For the purpose of this thesis the case where k = C and X is a
projective homogeneous space of Picard rank one homogeneous under
the action of a reductive, simple, linear algebraic group will be the most
important one.

Let P be a parabolic subgroup of G containing B. In this sitation
we will always use the following

Notation 1.18. Let RP be the root system associated to T and P , ΔP

be the simple roots in RP (corresponding to B), R+
P the positive roots

of RP and R−
P the negative roots of RP .
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Let WP be the Weyl group associated to T and P . Then we have
P = PΔP

, WP = WΔP
and P = BWPB. We denote by W P the set of

minimal length representatives of W modulo WP .

Finally in this subsection we want to recall the Levi decomposition
of P . To this end let V be the unipotent radical of P .

Definition 1.19. If there exists a connected, reductive group L such
that the product morphism L � V → P is an isomorphism then L is
called a Levi factor and P = LV is called the Levi decomposition of P .

Theorem 1.20. Any parabloic subgroup P of G has a Levi decompo-
sition P = LV and any two Levi factors are conjugate by an element
of V .

Proof. [15, 30.2, Theorem] �
If P is a parabolic subgroup containing B, we will usually assume

that T ⊆ L, so that the Levi factor is unique. In this case we have
direct sum decompositions of the Lie algebras as follows:

(2) v =
⊕

α∈R+\R+
P

gα , l = t ⊕
⊕

α∈RP

gα .

Since V is normal in P , v is an ideal in p. It is also clear that l is a
subalgebra of g. Moreover we see from P = LV that p = l ⊕ v.

1.3. Cominuscule homogeneous spaces. The class of cominuscule
homogeneous spaces is important for us, since a quantum to classical
principle is known for those spaces ([11]). In fact, many more general
situations we will study will simplify drastically in the cominuscule
case. Therefore it makes sense to introduce this class of spaces in this
subsection, so that we can use it as a motivating example throughout
the text. Furthermore we introduce some basic concepts, such as the
symmetric space associated to a cominuscule homogeneous space and
the rank of a cominuscule homogeneous space.

Let G be a simple, reductive, linear algebraic group and P a maximal
parabolic subgroup containing B.

Lemma 1.21. The following conditions are equivalent.

(1) The unipotent radical V of P is abelian.
(2) The simple root αP occurs in the highest root θ1 of R with co-

efficient one, i.e. 〈θ1, ω
∨〉 = 1.

(3) For all roots α we have that 〈α, ω∨〉 ∈ {−1, 0, 1}.
(4) ω∨ is a nonzero minimal dominant weight, i.e. there is no

weight λ < ω∨ also dominant.

Proof. The equivalence of (1) and (2) is proved in [27, Lemma 2.2].
The equivalence of (2) and (3) is obvious. The equivalence of (3) and
(4) is proved in [14, 13., Exc. 13]. �
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Remark 1.22. Since we assume that the ground field is of characteristic
zero the equivalence of (1) and (2) is always valid. If the characteristic
is positive the only exception where this equivalence fails to be true
occurs in type G2 when the characteristic is two. For more details see
[27].

Definition 1.23. We say that X = G/P is a cominuscule homoge-
neous space if one of the equivalent conditions of Lemma 1.21 holds.

The classification of cominuscule homogeneous spaces is easy since
condition (2) of Lemma 1.21 restricts the possibility of the choice of
αP in a way we can directly read off the expression of the highest root
θ1 of R as a linear combination of simple roots.

Proposition 1.24. Let G be a simply connected, simple, reductive,
linear algebraic group. Let X = G/P be a cominuscule homogeneous
space. Then X is up to isomorphism either

• a Grassmannian G(k, n) where n ≥ 2,
• a symplectic Grassmannian Gω(p, 2p) where p ≥ 2,
• an isotropic Grassmannian GQ(p, 2p) where p ≥ 3,
• a quadric Qm of dimension m ≥ 3,
• the Cayley plane OP2 = E6/P6 or
• the Freudenthal variety E7/P7.

On the other hand every of the varieties in the list is a cominuscule
homogeneous space.

Proof. IfG is of type An−1, then αP may be chosen abitrary. If αP = αk,
the quotient X = G/P is isomorphic to the Grassmannian G(k, n). If
G is of type B� where 
 ≥ 2, then αP is necessarily α1. Therefore
the quotient X = G/P is isomorphic to a quadric Qm of dimension
m = 2
 − 1. If G is of type Cp where p ≥ 2, then αP is necessarily
αp. Therefore the quotient X = G/P is isomorphic to the symplectic
Grassmannian Gω(p, 2p). If G is of type Dp where p ≥ 3 then either
αP = α1, αp−1 or = αp. The cases where αP = αp−1 and = αp clearly
lead to isomorphic spaces X where the isomorphism is induced by the
automorphism which permutes αp−1 and αp and fixes the other αi’s. If
αP = α1, then the quotient X = G/P is isomorphic to a quadric Qm

of dimension m = 2(p− 1). If αP = αp, then the quotient X = G/P is
isomorphic to the isotropic Grassmannian GQ(p, 2p). If G is of type E6,
then αP is necessarily α1 or α6. Both cases lead to isomorphic spaces X
where the isomorphism is induced by the Weyl involution. If αP = α6

then the quotient X = G/P equals the Cayley plane OP2 = E6/P6.
If G is of type E7, then αP is necessarily α7. The quotient X = G/P
equals the Freudenthal variety E7/P7. If G is of type E8, of type F4 or
of type G2, there is no choice of αP so that condition (2) is satisfied.

On the other hand it is clear from what we said up to now that all
varieties in the list occur as a cominuscule homogeneous space. �
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Corollary 1.25. Let X = G/P be a cominuscule homogeneous space.
Then αP is a long root.

Proof. If R is simply laced, the assertion is trivial. Assume that R is
not simply laced. By the classification of cominuscule homogeneous
spaces, G is either of type B� where 
 ≥ 2 or of type Cp where p ≥ 2.
If G is of type B� where 
 ≥ 2, then αP = α1 and (α1, α1) > (α�, α�).
Therefore αP is long. If G is of type Cp where p ≥ 2, then αP = αp

and (αp, αp) > (α1, α1). Therefore αP is long in all cases. �

We explain now how to associate to every cominuscule homogeneous
space a symmetric space.

Let G be a connected, reductive, linear algebraic group and H a
closed subgroup.

Definition 1.26 ([30, Definition 26.1]). A symmetric space is a ho-
mogeneous space G/H equipped with a non-identical involution σ ∈
Aut(G) such that (Gσ)◦ ⊆ H ⊆ Gσ.

Let P be a parabolic subgroup of G containing B. Let L be a Levi
factor of P and V the unipotent radical of P . Let P− the parabloic
subgroup of G opposite to P . The parabolic subgroup P− contains the
Borel subgroup B− opposite to B. Let V − be the unipotent radical of
P−. We denote the Lie algebras of P−, V −, . . . always with lowercase
Gothic letters p−, v−, . . .

Lemma 1.27. Let q = v⊕v−. Then we have a direct sum composition
g = l ⊕ q. If G/P is a cominuscule homogeneous space, then the three
Cartan relations

[l, l] ⊆ l , [l, q] ⊆ q , [q, q] ⊆ l

are satisfied.

Proof. The direct sum decomposition of g follows directly from (2) and
since we have the direct sum decomposition

v− =
⊕

α∈R+\R+
P

g−α .

The first two Cartan relations actually hold for every reductive group
G and any parabolic subgroup P containing B (not only for cominus-
cule homogeneous spaces G/P ). Since l is a subalgebra of g it is clear
that [l, l] ⊆ l. Since L = P ∩P− we have that l = p∩ p−. Since v is an
ideal in p and v− is an ideal in p−, it follows in particular that [l, v] ⊆ v
and [l, v−] ⊆ v−. Therefore we conclude that [l, q] ⊆ q.

We now prove the third Cartan relation. Let α, β ∈ R+ \ R+
P

be two roots. By assumption we have that 〈α, ω∨〉 = 〈α, ω∨〉 = 1.
Therefore α + β cannot be a root since 〈α+ β, ω∨, 〉 = 2 which vi-
olates the cominuscule assumption. Thus [gα, gβ] = 0 and by the
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same token [g−α, g−β] = 0. To see that [q, q] ⊆ l it therefore suf-
fices to prove that if α − β, β − α are roots then α − β, β − α ∈ RP

(thanks to the direct sum decomposition (2) of l). But this is clear
since 〈α− β, ω∨〉 = 〈β − α, ω∨〉 = 0. �

Corollary 1.28. Let G/P be a cominuscule homogeneous space. Then
G/L is a symmetric space. If G is semisimple and simply connected,
then Gσ = L is connected.

Proof. Let σ∗ be the involution of the vector space g = l ⊕ q with
(+1)-eigenspace l and (−1)-eigenspace q. The three Cartan relations
guarantee that σ∗ respects the Lie bracket and is thus a Lie algebra
automorphism of g. Let σ ∈ Aut(G) be the unique non-identical
involution of G such that deσ = σ∗. Since gσ∗ = l it is clear that
(Gσ)◦ ⊆ L ⊆ Gσ. If G is semisimple and simply connected then Gσ

is connected ([30, Remark 26.1]), whence it follows that Gσ = L is
connected. �

Definition 1.29. Let X = G/P be a cominuscule homogeneous space.
Then we call G/L the symmetric space associated to X and σ the in-
volution associated to X

We now define the rank of a cominuscule homogeneous space, using
the geometry of its associated symmetric space.

Definition 1.30. Let G/H be a symmetric space with involution σ.
We say a torus T1 is σ-split if σ acts on T1 as the inversion.

Definition 1.31. Let X = G/P be a cominuscule homogeneous space
and σ the involution associated to X. We define the rank of X to be
the number

rk(X) = sup
T1

dim(T1P/P )

where the supremum runs over all σ-split maximal tori T1.

2. Cohomology of homogeneous spaces

In this section we describe the Schubert varieties in a homogeneous
space and their relation to integral cohomology: the cohomology classes
of the Schubert varieties form an integral bases of the cohomology
ring. We briefly introduce the basic concepts, the Bruhat order and the
Bialynicki-Birula decomposition, related to the cellular decompositon
of the homogeneous space given by the Schubert cells. These concepts
will be needed later on. Again we use this occasion to set up the
notation we are using from now on.

As general references for these topics we use [2] and [17].
Let X = G/P a homogeneous space where G is a reductive linear

algebraic group and P is a parabolic subgroup.
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Definition 2.1. Let w be a Weyl group element. The Schubert cell
Ωw associated to w is defined to be the subvariety BwP/P of X. The
Schubert variety Xw associated to w is defined to be the closure of the
Schubert cell Ωw associated to w. The opposite Schubert variety Yw

associated to w is defined to be the closure of the opposite Schubert cell
B−wP/P associated to w. The Schubert cycle σw associated to w is
defined to be the cohomology class [Yw] of Yw. The Schubert cycle σ(w)
associated to w is defined to be the cohomology class [Xw] of Xw.

Let 
P (w) denote the P -length of w for some Weyl group element w.

Lemma 2.2. Let w be a Weyl group element. The Schubert cell Ωw

is locally closed, irreducible and isomorphic, as a variety, to an affine
space. The Schubert variety Xw is irreducible. Both Ωw and Xw have
equal dimension given by the P -length of w:

dim Ωw = dimXw = 
P (w) .

Proof. The Schubert cell Ωw is a B-orbit by definition. Therefore it
is locally closed. The Schubert cell Ωw is the image of B under the
orbit map which sends b ∈ B to bwP/P . Since B is connected and
hence irreducible the image Ωw of B is also irreducible. That Ωw is
isomorphic to an affine space follows from [2, 14.12, Theorem (b)].
Since Ωw is irreducible, it is clear that Xw is also irreducible. That the
dimension of Ωw and Xw is given by 
P (w) follows from [2, 14.12]. �

It is clear that the Schubert cell Ωw and the Schubert variety Xw

only depend on the class of w modulo WP . Therefore the set of all
Schubert cells / Schubert varieties is parametrized by W/WP and W P .

Corollary 2.3. The set of all Schubert cells {Ωw}w∈W/WP
forms an

affine stratification1 of X.

Proof. We already saw in Lemma 2.2 that Ωw is isomorphic to an affine
space. From the Bruhat decomposition of G ([15, 28.3, Theorem]) we
see that X decomposes into a disjoint union of all Schubert cells:

X =
∐

w∈W/WP

Ωw

By the structure of the B-orbits in X, it is clear that the closure of any
strata Ωw is the union of strata of dimension less or equal than 
P (w).
Therefore {Ωw}w∈W/WP

forms an affine stratification of X. �
Corollary 2.4. Let G be complex. The Schubert cycles σw where w
runs through W/WP form an integral basis of the cohomology ring
H∗(X,Z). In particular we have that

Pic(X) ∼=
∑

α∈Δ\ΔP

Zσsα
∼= H2(X,Z) .

1By affine stratification we mean in this context that all strata are isomorphic
to an affine space.
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The first isomorphism is given by sending a line bundle L(χ) where
χ ∈ X(P ) to its first Chern class c1(L(χ)).

Proof. Since {Ωw}w∈W/WP
is an affine stratification of X, it is also a

cellular decomposition of X. It is a general fact from topology, that
every cellular decomposition gives an integral basis of the cohomology
ring, if we pass to the cohomology classes.

The cohomology H2(X,Z) is generated as a free Z-module by the
Schubert cycles σw parametrized by Weyl group elements w of P -length
one wich are precisely the simple reflections sα parametrized by α ∈
Δ \ ΔP . This proves the second isomorphism. The first isomophism
follows from Example 1.16 and the following fact. �
Fact 2.5. Let α ∈ Δ \ ΔP . Then c1(L(ωα)) = σsα.

Proof. [13, Lemma 3.3] �
Next we define a partial order � on W (or W P ), the so called Bruhat

order.

Definition 2.6. Let v and w be two Weyl group elements. Then v � w
if and only if Ωv ⊆ Xw.

It is clear that � is a partial order. Let w be a Weyl group element.
Then we can write the Schubert variety Xw as a disjoint union:

Xw = Ωw �
∐
v≺w

Ωv .

By the strucutre of the B-orbits in X, it is clear that 
P (v) < 
P (w)
for all v ≺ w.

Let wo be the unique longest element of the Weyl group W and let
wP be the unique longest element of the Weyl group WP . Let wX be
the minimal length representative of wo modulo WP .

Lemma 2.7. The element wX is the unique maximal element with
respect to the Bruhat order on W P . We have that wowP = wX . The
Schubert cell ΩwX

associated to wX is an open dense subset of X.

Proof. It follows from [15, 28.5, Proposition] that ΩwX
is dense in X.

Therefore XwX
= X and we have the decomposition of X as a disjoint

union:
X = ΩwX

�
∐

v≺wX

Ωv .

Thus it is clear that wX is the unique maximal element with respect to
the Bruhat order on W P . In order to see that wowP = wX it suffices to
show that wowP is a minimal length representative moduloWP since we
already know that woWP = wXWP . Since 
(wX) = 
P (wX) = dimX
it suffices to show that 
(wowP ) = dimX. But this is clear since


(wowP ) = 
(wo) − 
(wP ) = dimG− dimP = dimX .

�
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We will need an explicit description of Poincaré duality on the level
of Weyl group elements in W P . We denote the Poincaré dual of a
cohomology class σ always by σ∗.

Fact 2.8. Let w be a Weyl group element in W P . The Poincaré dual σ∗
w

of the Schubert cycle σw associated to w is a Schubert cycle associated
to a Weyl group element in W P which we denote by w∗. The involution
from W P to W P which sends w to w∗ is explicitly described by w �→
wowwowX = wowwP .

Proof. [11, page 51] �

Let Gm ⊆ T correspond to an interior point of a Weyl chamber.

Lemma 2.9. We have that

XGm = XT ∼= W/WP

where ∼= means bijection. The bijection between the T -fixed points of
X and W/WP (or W P ) is given by sending a Weyl group element w to
the T -fixed point x(w) := wP/P . In particular W acts transitively on
the finite set XT .

Proof. [17, page 3, claim (iii), Lemma 1, Lemma 2] �

We will need a slightly different description of the Schubert cells in
terms of the Bialynicki-Birula decomposition of X.

Lemma 2.10. Let w be a Weyl group element and p = x(w) the associ-
ated T -fixed point. The Schubert cell Ωw associated to w is isomorphic
to the set Ap of all points x ∈ X such that

lim
t→0

tx = p .

Proof. In fact both Ωw and Ap are isomorphic to affine space A = A�P (w)

of dimension 
P (w). Under these isomorphisms 0 ∈ A is sent to p. For
more details see [17, page 5]. �

3. Stable maps and quantum cohomology in homogeneous

spaces

We briefly want to recall the basic notions from the theory of quan-
tum cohomology in homogeneous spaces which we will use throughout
this work. For a systematic treatement, more details and further ref-
erences we refer to [12].

The Kontsevich-Manin moduli space can be introduced for arbitrary
smooth projective varieties and for arbitrary genus. A particular well-
behaved theory which is immediately related to enumerative geome-
try can be developed for smooth convex spaces and genus zero. For
our purposes the case of homogeneous spaces is completely sufficient.
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Therefore we restrict our short introduction to the case of homoge-
neous spaces and genus zero and refer to [12] and the seminal papers
of Kontsevich and Manin [18, 19, 20] for the more general theory.

Let X = G/P be a homogeneous space where G is a complex con-
nected semisimple algebraic group and P is a parabolic subgroup of G.
Let d ∈ H2(X,Z) be a 1-cycle and N a non negative integer.

Definition 3.1. We say that (C, p1, . . . , pN , μ) is an N-pointed map to
X of genus zero and degree d (or just is an N-pointed map to X if it is
clear from the context which d is meant) if C a projective, connected,
(at worst) nodal curve of arithmetic genus zero, the markings p1, . . . , pN

are distinct nonsingular points of C, and μ is a morphism from C to
X such that μ∗([C]) = d. Two N-pointed maps (C, p1, . . . , pN , μ) and
(C ′, p′1, . . . , p

′
N , μ

′) are said to be isomorphic if there exists an isomor-
phism τ : C → C ′ taking pi to p′i for all 1 ≤ i ≤ N such that μ′ ◦ τ = μ.

Definition 3.2. We say that (C, p1, . . . , pN , μ) is an N-pointed stable
map to X if (C, p1, . . . , pN , μ) is an N-pointed map to X which has
finite automorphism group or equivalent if Kontsevich’s stability con-
dition holds for every irreducible component E of C:

• If E ∼= P1 and E is mapped to a point by μ then E must contain
at least three special points (either marked points or singular
points of C).

Let M = M0,N(X, d)2 be the Kontsevich-Manin moduli space pa-
rametrizing all N -pointed stable maps to X of degree d and genus
zero. The space M solves a specific coarse moduli problem which we
will not spell out in detail. For us it suffices to know that the C-valued
points of M are in bijection with the isomorphism classes of N -pointed
stable maps to X and that M is in a certain sense universal with this
property. We list the main properties of M in the following theorem.

Theorem 3.3. The space M is a normal projective irreducible variety
with at worst quotient singularities. The dimension of M is given by
the following formula:

dim(X) +

∫
d

c1(X) +N − 3 .

Here we denote by c1(X) the first Chern class c1(TX) of the tangent
bundle TX on X. This class is sometimes also called the index of
X. The previous formula is often called the expected dimension of the
moduli space, in other words M is of expected dimension.

Proof. Every homogeneous space of the form X = G/P is known to be
convex. For a proof of this fact and the definition of a convex space

2This space is usually denoted by M0,N (X, d). Our notation is somewhat non-
standard. But since we have no need to speak about other spaces which are usually
denoted by M0,N (X, d), M0,N (X, d) or M0,N (X, d) there will be no confusion.
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we refer to [12, page 6]. Therefore all the properties of M except
the irreducibility follow from [12, Theorem 2]. The irreducibilty is
established in [17, Corollary 1]. �

Let [C, p1, . . . , pN , μ] denote the isomorphism class of an N -pointed
stable map (C, p1, . . . , pN , μ). The space M is equipped with N evalu-
ation morphisms ev1, . . . , evN from M to X, where evi takes the point
[C, p1, . . . , pN , μ] ∈ M to the point μ(pi) in X. Given N arbitrary
classes γ1, . . . , γN in H∗(X,Z), we can define a number 〈γ1, . . . , γN〉d3,
called a Gromov-Witten invariant, by the following expression:

〈γ1, . . . , γN〉d =

∫
M

ev∗
1(γ1) ∪ · · · ∪ ev∗

N(γN) .

This definition makes perfect sense in view of Theorem 3.3. It follows
directly from the definition that 〈γ1, . . . , γN〉d is invariant under permu-
tations of the classes γ1, . . . , γN . Moreover it is clear that if the classes
γ1, . . . , γN are homogeneous the Gromov-Witten invariant 〈γ1, . . . , γN〉d
will be nonzero only if

N∑
i=1

codim(γi) = dim(M) .

We have the following remark which is easy to prove (cf. [12, (I), page
35]): The Gromow Witten invariant 〈γ1, . . . , γN〉0 is nonzero only if
N = 3. In this case we have

(3) 〈γ1, γ2, γ3〉0 = γ1 ∪ γ2 ∪ γ3 .

Let Γ1, . . . ,ΓN be pure dimensional subvarieties of X such that Γi

represents the class γi for all 1 ≤ i ≤ N . Then the classes γi are in
particular homogeneous. Assume that

N∑
i=1

codim(Γi) =
N∑

i=1

codim(γi) = dim(M) .

Then we have the following lemma which relates the Gromov-Witten
invariants to enumerative geometry.

Lemma 3.4. Let g1, . . . ,N be general elements of G. Then the scheme
theoretic intersection

(4) ev−1
1 (g1Γ1) ∩ · · · ∩ ev−1

N (gNΓN)

3Here again our notation is somewhat non-standard. This invariant is usually
denoted by Id(γ1 · · · γN ) whereas 〈γ1, . . . , γN 〉d has a different meaning. Since we
have no need to speak about both invariants at the same time there will be no
confusion. For our investigations the case N = 3 is most important. Later on
we will only consider three points (genus zero) Gromow-Witten invariants. In this
case both invariants coincide: Id(γ1, γ2, γ3) = 〈γ1, γ2, γ3〉d. In particular this case
suffices to define the quantum product � on QH∗(X, Z).
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is a finite number of reduced points and we have

〈γ1, . . . , γN〉d = ev−1
1 (g1Γ1) ∩ · · · ∩ ev−1

N (gNΓN) .

In particular the Gromov-Witten invariant 〈γ1, . . . , γN〉d counts the
number of N-pointed maps μ from P1 to X of degree d satisfying
μ(pi) ∈ giΓi for all 1 ≤ i ≤ N .

Proof. The first statement follows directly from [12, Lemma 14]. Let
U be the open dense subvariety of M parametrizing smooth, rational,
irreducible curves. By Kleiman-Bertini we know that the intersection
(4) is supported in U . Hence the last statement follows. �

The Gromov-Witten invariants can be used to define the (small)
quantum cohomology ring QH∗(X,Z). This definition apparently de-
pends on the choice of a basis of H∗(X,Z). In case of a homogeneous
space X = G/P we have a canonical choice of a basis of H∗(X,Z)
given by the Schubert cycles σw parametrized by all w ∈ W/WP . This
choice of a basis makes the formulas particularly nice.

We write Z[q] = Z[qα | α ∈ Δ \ ΔP ] for the polynomial ring over
Z with independent variables qα indexed by α ∈ Δ \ ΔP . The index
set Δ \ΔP corresponds to our canonical choice of a basis of H2(X,Z).
The variables qα where α ∈ Δ\ΔP are graded by the following degree:
deg(qα) = 2

∫
σ(sα)

c1(X). For an effective degree d we write qd for the

monomial

qd =
∏

α∈Δ\ΔP

q
∫

d σsα
α

in other words if we write d =
∑

α∈Δ\ΔP
dασ(sα) where dα ≥ 0 for all α

then we have qd =
∏

α∈Δ\ΔP
qdα
α . We now define a Z[q]-module as the

tensor product H∗(X,Z) ⊗Z Z[q]. The same Schubert cycles σw which
form a Z-basis of H∗(X,Z) form a Z[q]-basis of QH∗(X,Z). We equip
the module QH∗(X,Z) with the quantum product � which is defined
by the rule

σu � σv =
∑

d

qd
∑

w

〈σu, σv, σ
∗
w〉d σw

and extended Z[q]-linearly to the whole module. Here the first sum
runs over all effective degrees d and the second over all w ∈ W/WP . In
fact the summands in the sum over w will be nonzero only if


P (w) = 
P (u) + 
P (v) −
∫

d

c1(X) .

Theorem 3.5. The quantum product � makes QH∗(X,Z) into a graded
commutative associative Z[q]-algebra with unit.

Proof. The commutativity of the product is directly obvious from the
definition. The associativity is nontrivial. A proof can be found in [12,
10.]. The unit 1 = σ1 = [X] ∈ H0(X,Z) of the ordinary cohomolgy
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ring is also a unit in the quantum cohomology ring. Indeed, this can
be seen directly from property [12, (II), page 35]. Using this property
we have

σu � 1 =
∑

w

σw

∫
X

σu ∪ σ∗
w = σu .

It is easy to see that we have just defined the degree of the variables
qα in such a way that the resulting product preserves the grading.
Therefore QH∗(X,Z) is a graded Z[q]-algebra as claimed. �
Remark 3.6.

• Note that the natural inclusion H∗(X,Z) ⊆ QH∗(X,Z) of abel-
ian groups does not preserve the product structure.

• With the right adjustement of the definition of the quantum
product one can define the quantum cohomology ring for an
arbitrary basis of H∗(X,Z). It turns out that the resulting
algebras are up to isomorphism independent of the choice of a
basis (cf. [12, 10.]).

• When d �= 0 then M is empty unless d is the class of a curve,
in particular effective. Therefore we can take the sum over d
in the definition of the quantum product � over all d since the
terms where d is not effective vanish anyway.

• The quantum cohomology is a deformation of H∗(X,Z) in the
usual sense: H∗(X,Z) is recovered by setting the variables qα =
0. This is a easy consequence of the formula (3). The classical
situation arises from something deeper in the limit q → 0.

4. Chain cascades of orthogonal roots

In this section we introduce basic notions about chain cascades of
orthogonal roots. We are closely following the reference [21]. We some-
times use these notions to

”
localize“ terminology in the sequel. In

particular one specific chain cascade will give rise to the so called θ-
sequence which is the major tool of this treatement.

Let X = G/P be a homogeneous space where G is a simple and
simply connected affine algebraic group and P is a maximal parabolic
subgroup.

Notation 4.1. Let ϕ be a positive root. We always use the following
notation. We write Δ(ϕ) = supp(ϕ) for the set of simple roots which
occur in the expression of ϕ as a linear combination of simple roots with
positive integral coefficients. We denote by R(ϕ) the root subsystem
of R which has as set of simple roots the set Δ(ϕ). In other words
R(ϕ) is the root subsystem of R generated by Δ(ϕ). Since Δ(ϕ) is
connected the root system R(ϕ) is always irreducible. We denote by
G(ϕ) the simple subgroup of G which has R(ϕ) as root system. We
write P (ϕ) = G(ϕ) ∩ P and B(ϕ) = G(ϕ) ∩ B. Then it is clear
that P (ϕ) is a maximal parabolic subgroup of G(ϕ) whenever αP ∈
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Δ(ϕ). Moreover B(ϕ) is always a Borel subgroup of G(ϕ). We write
X(ϕ) = G(ϕ)/P (ϕ). We have a natural inclusion X(ϕ) ⊆ X. Note
that X(ϕ) = {x(1)} whenever αP /∈ Δ(ϕ).

We denote the Weyl group of G(ϕ) by WG(ϕ). The group WG(ϕ) is
clearly a subgroup of W . We denote the longest element of the Weyl
group WG(ϕ) by wo(ϕ). We denote the Lie algebra of G(ϕ) by g(ϕ).
We denote the Lie algebra of P (ϕ) by p(ϕ).

The following remark is of no importance for the rest of this work.
The impatient reader may skip it.

Remark 4.2. Let R be the category with objects R+, where we draw an
arrow β → α from β ∈ R+ to α ∈ R+ if and only if supp(β) ⊇ supp(α).
We can endow R with a pretopology by defining a covering family of
α ∈ R+ to be a collection of morphisms {βi → α}i which satisfies
supp(α) =

⋂
i supp(βi).

To see this we only have to remark that for two morphism β1 → α
and β2 → α the fiber product β1 ×α β2 always exists. Indeed, β1 and
β2 are clearly non-separated roots since their supports are not disjoint:
supp(β1) ∩ supp(β2) ⊇ supp(α) �= ∅. In this case β1 ∨ β2 is a positive
root ([9, Lemma 4.4]) and it is easy to see that β1 ∨ β2 = β1 ×α β2.
Using the fact that supp(β1 ∨β2) = supp(β1)∪ supp(β2) all axioms are
immediate.

We can define two presheaves on R with values in the category of
algebraic groups and in the category of varieties by the assignements
α �→ G(α) and α �→ X(α) where a morphism β → α is sent to the
obvious maps G(α) → G(β) and X(α) → X(β) respectively. We
denote these presheaves still by G and X respectively. Let {βi → α}i

be a covering family of α, then we clearly have G(α) =
⋂

iG(βi) and
X(α) =

⋂
iX(βi). Therefore it is clear that the presheaves G and X

are actually sheaves on R. Note that G and X are compatible in the
sense that for every morphism f : β → α, every g ∈ G(α) and every
x ∈ X(α) we have X(f)(gx) = (G(f)(g))(X(f)(x)).

If R is an irreducible root system we denote by R◦ the root subsystem
of R consisting of all roots which are orthogonal to the highest root of
R.

Definition 4.3. A chain cascade C is a set {α1, . . . , αk} of positive
roots αi such that α1 is the highest root of R and such that for all
2 ≤ i ≤ k the root αi is the highest root of any irreducible component
of R(αi−1)

◦. If ϕ is an arbitrary positive root we uniquely associate to
it a chain cascade C(ϕ) = {α1, . . . , αk} such that ϕ ∈ R(αi) for all
1 ≤ i ≤ k and such that ϕ is orthogonal to αi for all 1 ≤ i ≤ k − 1 but
not orthogonal to αk. We call the union B =

⋃
ϕ∈R+ C(ϕ) the cascade

of strongly orthogonal roots.
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Definition 4.4. A positive root ϕ is called locally high if it is the highest
root of R(ϕ). Two roots β and β′ are called strongly orthogonal if β
and β′ are orthogonal and neither β + β′ nor β − β′ are roots. Two
subsets of roots S and S ′ are called totally disjoint if every element of
S is strongly orthogonal to every element of S ′.

Fact 4.5.

• Any chain cascade is totally ordered with respect to the usual
partial ordering on the root system.

• Let ϕ be a positive root. The highest root of any irreducible
component of R(ϕ)◦ is locally high.

• All elements of any chain cascade are locally high. All elements
of B are locally high.

• Two different elements of any chain cascade are strongly or-
thogonal.

• Let β and β′ be two elements of B such that there exists no
chain cascade which both contains β and β′. Then there exists
a positive root ϕ ∈ B such that β and β′ belong to different
irreducible components of R(ϕ)◦. In particular R(β) and R(β′)
are totally disjoint.

• Two different elements of B are always strongly orthogonal.
• The set B is a maximal set of strongly orthogonal roots.

Proof. Let C = {α1, . . . , αk} be a chain cascade where the roots are
labeled as in the definition. Then we have α1 ≥ · · · ≥ αk.

The second point is directly clear from the definition. The first sen-
tence of the third point follows from the second point and the definition
of a chain cascade. The second sentence in the third point follows since
B is a union of chain cascades.

Let β and β′ be two different elements of a chain cascade. From
the definition of a chain cascade it is directly clear that β and β′ are
orthogonal. Since chain cascades are totally ordered we may assume
that β′ ≤ β. Then we have β, β′ ∈ R(β). Since β is locally high we see
that β + β′ cannot be a root. Suppose for a contradiction that β − β′

is a root. Since β is locally high we know that β is a long root of R(β).
Therefore it follows that (β, β) ≥ (β − β′, β − β′) = (β, β) + (β′, β′) >
(β, β) which is absurd. Therefore we see that β − β′ cannot be a root.
This means that β and β′ are strongly orthogonal.

Let β and β′ be two elements of B such that there exists no chain
cascade which both contains β and β′. Let φ and φ′ be positive roots
such that β ∈ C(φ) and such that β′ ∈ C(φ′). The intersection C =
C(φ)∩C(φ′) is nonempty since it contains the highest root of R. Let ϕ
be the smallest element of C ⊆ B. By assumption we know that β, β′ /∈
C. Therefore it follows that β, β′ < ϕ. By definition of ϕ we see that β
and β′ belong to different irreducible components of R(ϕ)◦ (otherwise
the highest root of the common irreducible component would be smaller
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than ϕ and contained in C). Let α ∈ R(β) and α′ ∈ R(β′). We want
to show that α and α′ are strongly orthogonal. It is clear that α and
α′ are orthogonal. Suppose that α± α′ would be a root. Then it must
be contained in R(ϕ)◦ and hence in the irreducible components R(β)
and R(β′) which is absurd since they are distinct.

Let β and β′ be two different elements of B. If there exists a chain
cascade which both contains β and β′ then the result follows from the
fourth point. Otherwise the previous point shows that R(β) and R(β′)
are totally disjoint, in particular that β and β′ are strongly orthogonal.

The very last point is [21, Theorem 1.8]. �
Fact 4.6.

• If β ∈ B, then C(β) is a chain cascade with smallest element
β. Conversely, let C be a chain cascade with smallest element
β. Then C = C(β).

• Let ϕ and ϕ′ be two positive roots such that ϕ ≥ ϕ′. Then
C(ϕ) ⊆ C(ϕ′).

• Let ϕ be a positive root. Then C(ϕ) = {β ∈ B | ϕ ≤ β}.
• Let C be a chain cascade. Let β ∈ B and β′ ∈ C such that
β ≥ β′. Then C(β) ⊆ C. In particular β ∈ C.

• Let C and C ′ be two chain cascades such that C ∪ C ′ is also a
chain cascade. Then either C ⊆ C ′ or C ′ ⊆ C.

• We have the following identities:

B =
⋃

ϕ∈R+

C(ϕ) =
⋃
β∈B

C(β) =
⋃
α∈Δ

C(α) .

Proof. Let β ∈ B. Let β′ be the smallest element of C(β). By definition
we have β ≤ β′. From the definition it is also clear that β and β′ are
not orthogonal. Since two different elements of B are always (strongly)
orthogonal, it follows that β = β′. Therefore C(β) is a chain cascade
with smallest element β.

Conversely, let C be a chain cascade with smallest element β. Let
C = {α1, . . . , αk}. Then β = αk. From the definition it is clear that
β ≤ αi for all 1 ≤ i ≤ k and that β is orthogonal to αi for all 1 ≤ i ≤
k − 1 but not orthogol to αk. This implies that C = C(β).

Let ϕ and ϕ′ be two positive roots such that ϕ ≥ ϕ′. Let C(ϕ) =
{α1, . . . , αk}. We clearly have ϕ ≤ αi for all 1 ≤ i ≤ k and thus ϕ′ ≤ αi

for all 1 ≤ i ≤ k. This implies that C(ϕ) ⊆ C(ϕ′).
Let ϕ be a positive root. Let β ∈ B such that ϕ ≤ β. Then β ∈

C(β) ⊆ C(ϕ). This proves the inclusion from right to left. The other
inclusion is an immediate consequence of the definition.

Let C be a chain cascade. Let β ∈ B and β′ ∈ C such that β ≥ β′.
Let β′′ be the smallest element of C. Then C = C(β′′) and β′′ ≤ β′ ≤ β.
Therefore we have C(β) ⊆ C(β′) ⊆ C(β′′) = C. In particular β ∈ C.

Let C and C ′ be two chain cascades. Let β be the smallest element
of C and β′ be the smallest element of C ′. Since C ∪ C ′ is a chain
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cascade, we have either β ≤ β′ or β′ ≤ β. This implies that either
C(β′) = C ′ ⊆ C = C(β) or C(β) = C ⊆ C ′ = C(β′).

The first identity is just the definition of B. The inclusion from right
to left in the second identity is obvious. Let ϕ ∈ R+ and let β ∈ B be
the smallest element of C(ϕ). Then C(ϕ) = C(β). This fact proves the
inclusion from left to right in the second identity. Next we show that⋃

ϕ∈R+ C(ϕ) =
⋃

α∈ΔC(α). The inclusion from right to left is obvious.

Let ϕ ∈ R+. Let α be any simple root in the support of ϕ. Then
α ≤ ϕ and thus C(ϕ) ⊆ C(α). This proves the inclusion from left to
right. �
Lemma 4.7. Suppose that G is not of type G2 and not of type B� where

 is odd and greater than 1. All elements of B have equal length, i.e.
all elements of B are contained in the same W -orbit. In particular, all
elements of B are long roots; for all β ∈ B we have 〈β∨, α〉 ∈ {−1, 0, 1}
for all α ∈ R \ {±β}.
Proof. In order to prove that all elements of B have equal length, it
suffices to show that an arbitrary element β ∈ B has equal length as
θ1. In other words this means, to show that β is long. By choosing
α ∈ supp(β) we may assume that β ∈ C(α). Let C(α) = {β1, . . . , βk}.
Then β1 = θ1 where θ1 is the highest root in R. Let β = βi for some
1 ≤ i ≤ k. We can clearly assume that i ≥ 2 and that k ≥ 2. Moreover
we can assume that R(β) is simply laced and that R is not simply laced.
(If R is simply laced there is nothing to prove. If R(β) is not simply
laced, then β is clearly a long root, as it is the highest root of R(β).)
By analysing the non simply laced Dynkin diagrams it is easy to see
that these assumptions imply that i = k ≥ 2 and that R(β) is of type
A1. This means that β = βk = α. If R is of type B� where 
 ≥ 2 the
only possibility is α ∈ {α1, α3, α5 . . .}. If R is of type Cp where p ≥ 2
the only possibility is α = αp. If R is of type F4 the only possibility
is α = α2. If R is of type G2 the only possibility is α = α1. Since by
assumption G is not of type G2 and not of type B� where 
 > 1 is odd,
we see that α = β is long in all cases.

The last statement is now obvious, since for all long roots β we have
〈β∨, α〉 ∈ {−1, 0, 1} for all α ∈ R \ {±β}. �
Lemma 4.8. Let ϕ be a positive root. Let w ∈ WG(ϕ). Then X(ϕ)w =
Xw. (Global and local Schubert varieties can be identified.) In partic-

ular, W
P (ϕ)
G(ϕ) ⊆ W P and 
P = 
P (ϕ) on WG(ϕ). The Bruhat order on

WG(ϕ) is compatible with the Bruhat order on W .

Proof. We have the obvious inclusion B(ϕ)wP (ϕ)/P (ϕ) ⊆ BwP/P
which implies that X(ϕ)w ⊆ Xw. On the other hand, it is clear that

dim(Xw) = 
P (w) ≤ 
P (ϕ)(w) = dim(X(ϕ)w) .

Since X(ϕ)w and Xw are both closed and irreducible, this implies
that we have equalities X(ϕ)w = Xw and 
P (w) = 
P (ϕ)(w). This
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means that a minimal length representative of w modulo W
P (ϕ)

is also
a minimal length representative of w modulo WP , in other words that

W
P (ϕ)
G(ϕ) ⊆ W P . The Bruhat order on WG(ϕ) is compatible with the

Bruhat order on W since Xv ⊆ Xw if and only if X(ϕ)v ⊆ X(ϕ)w for
all v, w ∈ WG(ϕ). �

Corollary 4.9. Let β ∈ B. Then X(β) = Xwo(β) = Xwo|g(β)
.

Proof. The previous lemma implies that X(β) = X(β)wo(β) = Xwo(β).
By [21, Proposition 1.10] we know that wo|g(β) = wo(β)|g(β). Both
equations together imply the statement. �
Corollary 4.10. Let β → α be an arrow from β ∈ R+ to α ∈ R+.
Then 
P (wo(α)) ≤ 
P (wo(β)).

Proof. Since β → α we have an inclusion X(α) ⊆ X(β). The previous
corollary then implies that


P (wo(α)) = dim(X(α)) ≤ dim(X(β)) = 
P (wo(β)) .

�

5. T -invariant curves

In this section we introduce T -invariant curves and the distance func-
tion δ according to [13]. This class of curves is of particular importance,
since any curve converges to a T -invariant curve. Since T -invariant
curves and their degree can be described purely combinatorially, this
reduces many curve theoretic problems to computations with Weyl
group elements.

Let X = G/P be a homogeneous space where G is a reductive linear
algebraic group and P is a parabolic subgroup.

Lemma 5.1. Let α be a root in R+ \ R+
P . Then there is a unique

irreducible T -invariant curve Cα in X that contains the points x(1)
and x(sα).

Proof. Let SL2(α) be the 3-dimensional simple subgroup of G with Lie
algebra gα ⊕ g−α ⊕ [gα, g−α]. Then Cα = SL2(α)P/P is the desired
unique T -invariant curve that contains the T -fixed points x(1) and
x(sα). For more details, see [13, page 5]. �
Definition 5.2. Let α be a root. Then we define the degree d(α) of α
to be the following element of H2(X,Z):

d(α) =
∑

β∈Δ\ΔP

〈α∨, ωβ〉σs∗β .

Lemma 5.3. If w is in WP , then d(w(α)) = d(α) for all roots α.
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Proof. [13, Lemma 3.1] �
Lemma 5.4. Let α be a root in R+ \R+

P . Then the degree [Cα] of Cα

is d(α).

Proof. [13, Lemma 3.4] �
Lemma 5.5. Let u and v be unequal elements in W/WP . The following
are equivalent:

(1) There is a reflection s ∈ W such that v = su.
(2) There are representatives ũ of u and ṽ of v, and a reflection

t ∈ W such that ṽ = ũt.

The reflection s of (1) is uniquely determined. The reflection t of
(2) is determined up to conjugation by an element of WP .

Proof. [13, Lemma 4.1] �
Let u and v be two unequal elements in W/WP . We call u and

v adjacent if they are related as in Lemma 5.5. Note that this is a
symmetic relation: u and v are adjacent if and only if v and u are
adjacent. Moreover u and v are adjacent if and only if wu and wv are
adjacent for any w ∈ W . In particular u and v are adjacent if and only
if u∗ and v∗ are adjacent.

Lemma 5.6. Let u and v be adjacent elements. Then u and v are
comparable with respect to the Bruhat order, i.e. either u ≺ v or v ≺ u.

Proof. [10, Theorem F, (4)] �
A sequence u0, . . . , ur in W/WP is called a chain if ui and ui−1 are

adjacent for all 1 ≤ i ≤ r. Let βi ∈ R+ \ R+
P be a sequence of roots

such that ui−1sβi
= ui for all 1 ≤ i ≤ r. Then we define the degree of

the chain u0, . . . , ur to be the sum
∑r

i=1 d(βi). This is well defined in
the sense that it does not depend on the choice of the roots βi since the
roots βi are determined up to conjugation by an element of WP by ui−1

and ui and since d is WP -invariant. It is clear from the definition that
each T -invariant curve is associated to a unique chain. In other words,
T -invariant curves and chains are in one to one correspondence where
the degree of a chain and the degree of the associated T -invariant curve
are equal.

Let u and v be arbitrary elements of W/WP . We call a chain
u0, . . . , ur a chain from u to v if u0, . . . , ur is a chain which satisfies
u � u0 and ur � v∗. We define δ(u, v) to be the degree of a chain
u0, . . . , ur from u to v such that the degree of u0, . . . , ur is minimal in
the set of all degrees of chains from u to v. We extend our notation
and write δ(u) = δ(u,wX) = δ(u,wo) for all u ∈ W/WP .

Remark 5.7. We actually think of δ as a function with functoriality
W×W → H2(X,Z). But the reader should be aware that this function
is not well defined in a strict sense, since there might be several minima
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δ(u, v) in the set of all degrees of chains from u to v. These minima
must not be comparable, except the parabolic subgroup P is maximal,
in which case the function δ is well defined with unique values in Z
which only depend on the arguments u and v. In the general case
where P is not necessarily maximal, we still make statements about δ
in the following sense: if zd is for example an element in W and d a
degree, we write δ(zd) ≤ d. The statement δ(zd) ≤ d is supposed to
mean, that there exists a chain from zd to wX of minimal degree δ(zd)
less or equal than d. In each case where we use the function δ in this
way, it will be clear from the context which minima δ(zd) is meant.

We list some immediate properties of the function δ in the following

Lemma 5.8.

• The value of δ(u, v) depends only of the class of u and v modulo
WP .

• The function δ is commutative: δ(u, v) = δ(v, u) for all u and
v.

• δ(u, v) = 0 if and only if u � v∗.
• δ(u, v) = 0 if either u = 1 or v = 1.
• δ(u, u∗) = δ(u∗, u) = 0 for all u.
• Let α be a root in R+ \R+

P . Then δ(sα) ≤ d(α).
• δ(u, v) ≤ δ(u′, v′) for all u � u′ and all v′ � v. In particular,
δ(u) ≤ δ(u′) for all u � u′.

• Assume that P is maximal. Then we have

max
u,v∈W/WP

δ(u, v) = max
u∈W/WP

δ(u) = δ(wX) .

• A chain u0, . . . , ur from u to wX satisfies u � u0 and ur = 1.
• Let u0, . . . , ur be a chain from u to v of degree δ(u, v). Let u′

and v′ be such that u � u′ � u0 and such that u∗r � v′ � v.
Then δ(u, v) = δ(u′, v′).

• If P is maximal, then δ(u) ≤ 
P (u) for all u.

Proof. The definition of δ(u, v) depends only on the T -fixed points
defined by u and v. Therefore it is clear that δ(u, v) does only depend
on the class of u and v modulo WP .

Let u0, u1, . . . , ur be a chain from u to v. Then u∗r, . . . , u
∗
1, u

∗
0 deter-

mines a chain from v to u. Therefore δ(u, v) = δ(v, u).
Suppose first that u � v∗. Then every chain u0, . . . , ur such that

u0 = ur and such that u � u0 � v∗ defines a chain from u to v.
In particular we can choose r = 0 to obtain a chain from u to v of
degree zero. This shows that δ(u, v) = 0. Conversely, suppose that
δ(u, v) = 0. Then there exists a chain from u to v of degree zero. Such
a chain must consist of precisely one element. This means there exists
an element u0 such that u � u0 � v∗. In particular we have u � v∗.

If either u = 1 or v = 1 we obviously have u � v∗. Therefore it
follows from the previous point that δ(u, v) = 0.
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It suffices to show that δ(u, v) = 0 where v = u∗. The other equality
follows since δ is commutative. But we obviously have u � v∗ = u.
Therefore the conclusion follows from the third point.

Let α ∈ R+ \R+
P . A chain from sα to wX is given by u0 = sα, u1 = 1.

This chain clearly has degree d(α). Therefore we conclude that δ(sα) ≤
d(α).

Let u � u′ and v′ � v. Then every chain from u′ to v′ determines a
chain from u to v. Therefore it is clear that δ(u, v) ≤ δ(u′, v′).

This point follows directly from the previous point, since wX is the
unique maximal element in the Bruhat order4.

A chain u0, . . . , ur from u to wX clearly satisfies u � u0 and ur � w∗
X .

But w∗
X ∈ WP and thus ur � 1 which implies ur = 1.

Let the notation be as in the statement. We know that δ(u, v) ≤
δ(u′, v′) ≤ δ(u0, u

∗
r). On the other hand u0, . . . , ur is a chain from u0

to u∗r of degree δ(u, v). This implies that δ(u0, u
∗
r) ≤ δ(u, v). Therefore

we get the equality δ(u, v) = δ(u′, v′).
Suppose that P is maximal. Let u ∈ W be an arbitrary element.

Let ũ be a minimal length representative of u. Let ũ = sαr · · · sα1 be
a reduced expression of ũ. This means that αi is simple for all i and
that 
P (u) = 
(ũ) = r. Let i1, . . . , ij be a sequence of integers such
that i1 < · · · < ij and such that αi = αP if and only if i ∈ {i1, . . . , ij}.
Since ũ is a minimal length representative, we clearly have i1 = 1. Then
ũ = sαr · · · sαi1

, sαr · · · sαi2
, . . . , sαr · · · sαij

, 1 is a chain from u to wX of

degree j. Therefore we have δ(u) ≤ j ≤ r = 
P (u) as claimed. �
Example 5.9. We give an example for a root α ∈ R+ \ R+

P such that
δ(sα) < d(α). Let R be of type G2 and let αP = α2. Let α = 2α1 + α2

be the highest short root. Let β1 = α2 and β2 = 3α1 + α2. Then we
have that d(α) = 3 and d(β1) = d(β2) = 1. Moreover it is easy to
check that sαWP = sβ2sβ1WP . Therefore we have δ(sα) ≤ 2. Since
d(α) = 3 > 1 we must have δ(sα) > 1 and thus δ(sα) = 2 < d(α) = 3.

Lemma 5.10. Let f be a curve of degree d which passes through a
finite number of Schubert cells Ωu0 , . . . ,Ωur . Then f converges to a T -
invariant curve f0 of degree d which passes through the T -fixed points

x(u0), . . . , x(ur) .

In other words, there is a chain u with members u0, . . . , ur such that f0

is associated to u.

Proof. Let Gm correspond to an interior point of a Weyl chamber.
Let f0 = limt→0 tf . Then f0 is clearly a T -invariant curve. Since

4Note that we need to assume here that P is maximal, since only then two
degrees are always comparable. In general we can only say that

max
u,v∈W/WP

δ(u, v) ⊇ max
u∈W/WP

δ(u) ⊇ δ(wX) .
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f passes through Ωu0 , . . . ,Ωur , Lemma 2.10 implies that f0 passes
through x(u0), . . . , x(ur). In other words f0 is associated to a chain
with members u0, . . . , ur. �
Fact 5.11. Let (a1, . . . , al) ∈ Zl

>0 be a sequence of positive integers
such that the following inequality is satisfied

l∑
i=1

ai

(
ai +

l−i−1∑
j=0

2jai+j+1

)
>

(
l∑

i=1

ai

)2

.

Then we have that l ≥ 4 and that
∑l

i=1 ai ≥ 5.

Proof. If l = 1 then the inequality becomes a2
1 > a2

1 which can never
be satisfied. If l = 2 then the inequality becomes a1(a1 + a2) + a2

2 >
a2

1 + 2a1a2 + a2
2 which is equivalent to 0 > a1a2. The later inequality

can never be satisfied. If l = 3 then the inequality becomes

a1(a1 +a2 +2a3)+a2(a2 +a3)+a
2
3 > a2

1 +a2
2 +a2

3 +2a1a2 +2a1a3 +2a2a3

which is equivalent to 0 > a1a2 + a2a3. The later inequality can never
be satisfied. Therefore we conclude that l ≥ 4. If l ≥ 5 then it is
clear that

∑l
i=1 ai ≥ 5. We are left to check that if l = 4 then also∑l

i=1 ai ≥ 5. Assume we had l = 4 and
∑l

i=1 ai < 5. It then follows
that a1 = a2 = a3 = a4 = 1. By plugging in these values the initial
inequality becomes 15 > 16 – a contradiction. Therefore we conclude
that in all cases

∑l
i=1 ai ≥ 5. �

Fact 5.12. Suppose that P is maximal and that R is simply laced. Let
β1, . . . , βl be a sequence of positive roots. Then we have the following
inequality:

ω − sβl
· · · sβ1(ω) ≤

l∑
i=1

d(βi)

(
βi +

l−i−1∑
j=0

2jβi+j+1

)
.

Proof. The proof is based on the following inequality sγ(δ) ≤ γ + δ for
all positive roots γ and δ. We prove the formula by induction on l.
The case where l = 1 is plain. Suppose that l > 1 and that the formula
is true for l − 1. Then we have

ω − d(βl)βl − sβl
· · · sβ1(ω) = sβl

(ω − sβl−1
· · · sβ1(ω)) .

If we apply the induction hypotheses and repeatedly the simple in-
equality stated in the beginning of the proof, we obtain the following
upper bound for the previous expression:

≤
l−1∑
i=1

d(βi)

⎛⎝βi +

(l−1)−i−1∑
j=0

2jβi+j+1 +

⎛⎝1 +

(l−1)−i−1∑
j=0

2j

⎞⎠ βl

⎞⎠ .

Using the fact that 1 +
∑(l−1)−i−1

j=0 2j = 2l−i−1 and rearanging the in-
equality the result follows. �
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Lemma 5.13. Suppose that P is maximal and that R is simply laced.
Let γ, β1, . . . , βl ∈ R+\R+

P be roots such that sγWP = sβl
· · · sβ1WP and

such that δ(sγ) =
∑l

i=1 d(βi) < d(γ). Then it follows that d(γ) = 6
and that δ(sγ) = 5 and that l ∈ {4, 5}.
Proof. To abbreviate, let ai = d(βi) for all 1 ≤ i ≤ l. Using the
previous fact we obtain the following inequality:

d(γ)γ = ω − sβl
· · · sβ1(ω) ≤

l∑
i=1

ai

(
βi +

l−i−1∑
j=0

2jβi+j+1

)
.

If we apply 〈−, ω∨〉 to this inequality we obtain:(
l∑

i=1

ai

)2

< d(γ)2 ≤
l∑

i=1

ai

(
ai +

l−i−1∑
j=0

2jai+j+1

)
.

The fact above then implies that l ≥ 4 and that
∑l

i=1 ai ≥ 5. Since
d(γ) ≤ 6 in any root system, we conclude that d(γ) = 6 and that

δ(sγ) =
∑l

i=1 ai = 5. The later equality immediately implies that
l ≤ 5 and thus l ∈ {4, 5} as claimed. �

Lemma 5.14. Suppose that P is maximal and that R is simply laced.
For all positive roots γ we have the following equality: δ(sγ) = d(γ).

Proof. If γ ∈ R+
P then the statement is obvious. Assume that γ ∈

R+ \ R+
P . Assume for a contradiction that δ(sγ) < d(γ). Then there

exist roots β1, . . . , βl ∈ R+ \ R+
P such that sγWP = sβl

· · · sβ1WP and

such that δ(sγ) =
∑l

i=1 d(βi). From the previous lemma it follows that
d(γ) = 6 and that δ(sγ) = 5 and that l ∈ {4, 5}. Let ai = d(βi) for all

1 ≤ i ≤ l. Then we have
∑l

i=1 ai = 5. This means that either l = 5
and a1 = · · · = a5 = 1 or that l = 4 and ap = 2 for some p ∈ {1, . . . , 4}
and ai = 1 for all i ∈ {1, . . . , 4} \ {p}. From the proof of the previous
lemma we see that the sequence a1, . . . , al must satisfy the following
inequality:

d(γ)2 = 36 ≤
l∑

i=1

ai

(
ai +

l−i−1∑
j=0

2jai+j+1

)
.

But each of the five possibilities we have for the sequence a1, . . . , al

violates the previous inequality. Therefore we end up with a contra-
diction. This shows that we have δ(sγ) = d(γ) for all γ ∈ R+ \R+

P and
proves the lemma. �

6. Curve neighborhoods

Let X = G/P be a homogeneous space defined by a connected, sim-
ply connected, semisimple linear algebraic group G and an arbitrary
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parabolic subgroup P . In this section we investigate curve neighbor-
hoods according to the references [8] and [9]. We start by recalling
basic notions and basic theorems of this theory.

Lemma 6.1. There exists a unique binary operation · such that (W, ·)
is a monoid which satisfies the following properties:

• usα � u · sα for all u ∈ W and all α ∈ Δ.
• u = u · 1 � u · sα for all u ∈ W and all α ∈ Δ.
• The monoid (W, ·) is minimal with respect to this properties,

i.e. if (W, ∗) is a second monoid which satisfies the two previous
properties and in addition u ∗ sα � u · sα for all u ∈ W and all
α ∈ Δ then we have (W, ∗) = (W, ·).

The binary operation · is called the Demazure product.

Proof. Let · be the Demazure product as defined in [9, 3.]. By [9,
Proposition 3.1] the Demazure product satisfies the first two properties
stated above. Let (W, ∗) be a monoid which satisfies the first two
properties listed above. We first show that u · sα � u∗ sα for all u ∈ W
and all α ∈ Δ. Indeed, if usα � u then u · sα = usα � u ∗ sα by the
first property. If usα � u then u · sα = u = u ∗ 1 � u ∗ sα by the second
property.

If either (W, ∗) is a monoid which in addition satisfies the third prop-
erty or (W, ∗) is a monoid which satisfies u ∗ sα � u · sα for all u ∈ W
and all α ∈ Δ we obtain u ∗ sα = u · sα. In order to show that the
Demazure product satisfies the third property and in order to establish
the uniquenes part of the lemma, it suffices to show that a monoid
(W, ∗) which satisfies u ∗ sα = u · sα for all u ∈ W and all α ∈ Δ is
equal to (W, ·).

Let (W, ∗) be such a monoid. To prove u ∗ v = u · v we proceed by
induction on the length of v. The case where 
(v) = 0 is trivial and
the case where 
(v) = 1 follows from the assumption. Assume that

(v) > 1 and that the equation is known for all elements with length
less than 
(v). Let v = sα1 · · · sαr be a reduced expression of v where
r = 
(v) > 1. By the induction hypothesis and the definition of the
Demazure product it follows that u ·v = u ·vsαr ·sαr = (u∗vsαr) ·sαr =
u ∗ vsαr ∗ sαr = u ∗ (vsαr · sαr) = u ∗ v as required. �

For basic properties of the Demazure product we refer to [8, 4.] and
[9, 3.]. In particular we will tacitly use that the Demazure product
induces a product W ×W/WP → W/WP given by u · (wWP ) = (u ·
w)WP .

Definition 6.2. Given any subvariety Ω ⊆ X and any effective de-
gree d, we define the degree d curve neighborhood of Ω to be Γd(Ω) =
ev1(ev

−1
2 (Ω)). If Ω is a Schubert variety, then Γd(Ω) is a Schubert va-

riety as well ([9, Theorem 5.1]). For each effective degree d, we denote
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the unique element of W P parametrizing the Schubert variety Γd(X1)
by zd.

From this definition it is immediately obvious that for two degrees
0 ≤ d ≤ d′ we have zd � zd′ since we have Γd(X1) ⊆ Γd′(X1).

The following theorem is of major importance. We quote it once and
then often use it without explicitely referring to it.

Theorem 6.3. For any w ∈ W and any effective degree d we have
Γd(Xw) = Xw·zd

.

Proof. [8, Theorem 1] or [9, Theorem 5.1] �
Corollary 6.4. Let d and d′ be two effective degrees. Then we have
zd · zd′ � zd+d′.

Proof. [8, Corollary 5.1] or [9, Corollary 4.12(b)] �
Definition 6.5. Given a degree d a root which is a maximal element
of the set {α ∈ R+ \ R+

P | d(α) ≤ d} is called a maximal root of d.
Let d ≥ 0 be a degree then we define a greedy decomposition of d to
be a sequence of roots (α1, . . . , αr) such that α1 is a maximal root of
d and (α2, . . . , αr) is a greedy decomposition of d − d(α1). The empty
sequence is the only greedy decomposition of 0.

Fact 6.6. Any greedy decomposition is unique up to reordering. Let
(α1, . . . , αr) be a greedy decomposition of an effective degree d. Then
we have the following equality:

zdwP = sα1 · . . . · sαr · wP .

Any element αi of a greedy decomposition is a maximal root of d(αi).

Proof. [9, 4.2] �
Lemma 6.7. For all u ∈ W we have x(u) ∈ Γδ(u)(X1) or equivalent
u � zδ(u). In particular we can find a chain u0, . . . , ur from u to wX of
degree δ(u) which satisfies u0 = u and ur = 1.

Proof. By [13, Theorem 9.1] δ(u) gives the minimal power of q in
σu � [{pt}]. This means in particular that there exists a rational curve
ϕ : P1 → X of degree δ(u) which meets Yu and x(1). This is equiva-
lent to saying that ev−1

1 (x(1))∩ ev−1
2 (Yu) is nonempty in M0,2(X, δ(u))

which is again equivalent to Γδ(u)(X1)∩Yu �= ∅. Therefore we conclude
that x(u) ∈ Γδ(u)(X1) or equivalent u � zδ(u). The very last statement
is now obvious. �
Corollary 6.8. For all α ∈ R+ \ R+

P we have sα � zd(α). For all
d ≥ δ(wX) we have zd = wX .

Proof. Indeed, let α ∈ R+ \ R+
P then we have δ(sα) ≤ d(α). Therefore

the previous lemma yields sα � zδ(sα) � zd(α). Let d ≥ δ(wX). Then we
have by the previous lemma that wX � zδ(wX) � zd and thus zd = wX

as claimed. �
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Corollary 6.9. For all u ∈ W we have δ(u) = δ(u−1).

Proof. We can find a chain u0, . . . , ur from u to wX of degree δ(u)
which satisfies u0 = u and ur = 1. Then u−1

0 , . . . , u−1
r is a chain from

u−1 to wX of the same degree δ(u) which satisfies u0 = u−1 and ur = 1.
Thus δ(u−1) ≤ δ(u). By replacing u with u−1 we also conclude that
δ(u) = δ((u−1)−1) ≤ δ(u−1). �
Corollary 6.10. The function δ is WP -invariant: for all u ∈ W and
all w ∈ WP we have δ(wu) = δ(u).

Proof. By the previous corollary, we have δ(wu) = δ(u−1w−1). Since
δ(u−1) depends only on the class of u−1 moduloWP we have δ(u−1w−1) =
δ(u−1). Using the previous corollary again, we find δ(u−1) = δ(u) which
gives in total δ(wu) = δ(u). �
Corollary 6.11. Let u0, . . . , ur be a chain from u to wX of degree
δ(u). For all 1 ≤ i ≤ r let αi be the unique root in R+ \ R+

P such that
sαi
ui−1 = ur. Then

δ(ui) =
r∑

j=i+1

d(αj) .

In particular we have

δ(u) = δ(u0) > δ(u1) > · · · > δ(ur−1) > δ(ur) = 0

and u �� u1 and
u0 � u1 � · · · � ur−1 � ur .

Proof. The chain u0, . . . , ur clearly satisfies u0 � u and ur = 1. There-
fore we have δ(u0) ≥ δ(u) and δ(ur) = 0. On the other hand u0, . . . , ur

is a chain from u0 to wX of degree δ(u), thus δ(u0) ≤ δ(u) and we
get δ(u) = δ(u0). Since ui, . . . , ur is a chain from ui to wX of degree∑r

j=i+1 d(αj) we get
∑r

j=i+1 d(αj) ≥ δ(ui). On the other hand there

exists a chain u′i, . . . , u
′
s from ui to wX of degree δ(ui) which satisfies

ui = u′i and u′s = 1. If
∑r

j=i+1 d(αj) > δ(ui) then u0, . . . , ui = u′i, . . . , u
′
s

would be a chain from u to wX of degree
i∑

j=1

d(αj) + δ(ui) <
r∑

j=1

d(αj) = δ(u)

which contradicts the definition of δ(u). Therefore we conclude that
δ(ui) =

∑r
j=i+1 d(αj) for all 0 ≤ i ≤ r. In particular it follows that

δ(ui) − δ(ui+1) = d(αi) > 0 and thus δ(ui) > δ(ui+1) for all 0 ≤ i ≤
r − 1. If ui � ui+1 for some 0 ≤ i ≤ r − 1 then δ(ui) ≤ δ(ui+1)
which contradicts the previous results. Since two element ui and ui+1

which are adjacent are always comparable in the Bruhat order, we get
ui � ui+1 for all 0 ≤ i ≤ r − 1. Similar, if u � u1 then δ(u) ≤ δ(u1)
which again contradicts the previous results. Therefore it follows that
u �� u1. �
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Lemma 6.12. For all degrees d we have δ(zd) ≤ d. For all u ∈ W we
have that δ(zδ(u)) = δ(u).

Proof. Let d be a degree. Then clearly zd ∈ Γd(X1) = Xzd
. Thus

we can find a chain u0, . . . , ur from zd to wX of degree d which even
satisfies u0 = zd and ur = 1. It follows that δ(zd) ≤ d.

Since u � zδ(u) it is clear that δ(u) ≤ δ(zδ(u)). The other inequality
follows from the previous claim applied to d = δ(u). �

Lemma 6.13. Let u ∈ W . Then δ(u) is the smallest degree d such
that u � zd.

Proof. Let d be the smallest degree such that u � zd. Since u � zδ(u) it
follows that d ≤ δ(u). On the other hand, we can find a chain u0, . . . , ur

of degree d which satisfies u0 = zd and ur = 1 since zd ∈ Γd(X1). Since
u � zd this chain defines a chain from u to wX of degree d. Thus
δ(u) ≤ d. In total δ(u) = d. �

Lemma 6.14. Let u, v ∈ W . Then δ(uv) ≤ δ(u · v) ≤ δ(u) + δ(v).

Proof. Note that uv � u · v. Therefore δ(uv) ≤ δ(u · v). From u � zδ(u)

and v � zδ(v) we conclude that

uv � u · v � zδ(u) · zδ(v) � zδ(u)+δ(v) .

Since δ(u · v) is the smallest degree d such that u · v � zd we conclude
that δ(u · v) ≤ δ(u) + δ(v). �

Corollary 6.15. Let u0, . . . , ur be a chain from u to wX of degree δ(u).
Let βi be a root in R+ \ R+

P such that ui−1sβi
= ui for all 1 ≤ i ≤ r.

Then δ(sβi
) = d(βi) for all i.

Proof. We clearly have δ(u) = δ(u0) and ur ∈ WP . By definition we
have u0WP = sβ1 · · · sβrWP . Since δ(sβi

) ≤ d(βi) is always satisfied, we
get from the triangle inequality of δ that

δ(u) = δ(u0) = δ(sβ1 · · · sβr) ≤
r∑

i=1

δ(sβi
) ≤

r∑
i=1

d(βi) = δ(u)

where the last equation follows from the definition of the chain u0, . . . , ur.
Therefore we get equality everywhere which means that δ(sβi

) = d(βi)
for all i. �

6.1. P -cosmall roots.

Definition 6.16. A root α ∈ R+ \R+
P is P -cosmall if


P (sα) =

∫
d(α)

c1(TX) − 1

.
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Definition 6.17. A Weyl group element u is called P -cosmall if


(zδ(u)) =

∫
δ(u)

c1(TX) − 1 .

Theorem 6.18. Let α ∈ R+ \ R+
P be a root. Then the following are

equivalent.

• The root α is P -cosmall.
• The root α is a maximal root of d(α).
• We have (R+ \ R+

P ) ∩ sα(R+
P ) = ∅ and 〈α∨, γ〉 = 1 for all γ ∈

I(sα) \ (R+
P ∪ {α}) where I(sα) denotes the inversion set of sα,

i.e. I(sα) consists of all positive roots β such that sα(β) < 0.

Proof. [9, Theorem 6.1] �
Example 6.19. We always denote by θ1 the highest root of R. The
highest root θ1 is P -cosmall, since it is a maximal root of d(θ1) ([9,
Theorem 6.1]). It is the unique maximal root in the set {α ∈ R+ \R+

P |
d(α) ≤ d(θ1)}.
Remark 6.20. Suppose that P is maximal, and that α ∈ R+\R+

P is a P -
cosmall root. Then we have necessarily that supp(α) = supp(θ1) = Δ.

Indeed, since α ∈ R+ \ R+
P we have d(α) > 0 and also 〈α, ω∨〉 > 0.

Therefore we must have αP ∈ supp(α). Suppose that supp(α) �= Δ,
then we can find a simple root β ∈ ΔP such that β /∈ supp(α). Then
sβ(α) is a root which is strictly larger than α and satisfies d(sβ(α)) =
d(α) since sβ ∈ WP . This contradicts the fact that α is a maximal
root of d(α). Therefore we conclude that supp(α) = supp(θ1) = Δ as
claimed.

Example 6.21. Let R be of type An−1 and let P be maximal. Then the
only P -cosmall root is the highest root θ1. This follows directly from
the previous remark.

Example 6.22. Every P -cosmall root is also B-cosmall. A complete list
of all B-cosmall roots in type An−1, B�, Cp, Dp, F4 and G2 is given in
[9, Example 4.1, 4.2 and 4.3].

Lemma 6.23. Let α and β be B-cosmall roots. (This is in particular
the case if they are P -cosmall.) Suppose that α ≤ β. Then d(α) ≤ d(β).

Proof. If α and β are B-cosmall roots, then α ≤ β is equivalent to
α∨ ≤ β∨ ([9, Lemma 4.7]). In particular it follows that d(α) ≤ d(β) if
α ≤ β. �
Lemma 6.24. Let α and β be roots such that β is P -cosmall and such
that d(α) ≤ d(β). Then sα � sβ.

Proof. Indeed, we have sα � zδ(sα) � zd(α) � zd(β). Since β is P -
cosmall, we have sβWP = zd(β)WP and thus sα � sβ. �
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Lemma 6.25. Let α ∈ R+ \R+
P be a P -cosmall root. Then

〈[{pt}], σsα〉d(α) = 1 .

Conversely, let α ∈ R+\R+
P be a root wich satisfies 〈[{pt}], σsα〉d(α) �= 0.

Then α is P -cosmall.

Proof. Let α ∈ R+ \R+
P be a P -cosmall root. Let u = wX and w = s∗α.

Then


P (wsα) = dim(X) = 
P (w) + 
P (sα) = 
P (w) + c1(X)d(α) − 1

and uWP = wsαWP . Therefore it follows from [9, Corollary 7.3] that
〈[Yu], [Xw]〉d(α) = 〈[{pt}], σsα〉d(α) = 1.

Conversely, let α ∈ R+\R+
P be a root which satisfies 〈[{pt}], σsα〉d(α) �=

0, then there exists a P -cosmall root α′ ∈ R+ \ R+
P such that uWP =

wsα′WP ([9, Corollary 7.3]). It immediately follows that α = α′. There-
fore α is P -cosmall. �
Lemma 6.26. Suppose that P is maximal. Let d be a degree and let α
be a P -cosmall root. If sα � zd then d(α) ≤ d.

Proof. Suppose that sα � zd. Then Xsα ⊆ Xzd
. By comparing the

dimensions of these varieties, we that 
P (sα) = c1(X)d(α) − 1 ≤ 
(zd).
By [8, Proposition 5.3] we see that 
(zd) ≤ c1(X)d − 1. We conclude
that d(α) ≤ d.

�
Corollary 6.27. Suppose that P is maximal. Let α be a P -cosmall
root. Then δ(sα) = d(α).

Proof. We clearly have sα � zδ(sα). The previous lemma then implies
d(α) ≤ δ(sα). The other inequality δ(sα) ≤ d(α) is always satisfied.
Therefore we get equality δ(sα) = d(α) as claimed. �
Corollary 6.28. Suppose that P is maximal. Let α ∈ R+ \ R+

P be a
P -cosmall root. Then sα is P -cosmall.

Proof. By the above we have that δ(sα) = d(α). Since α is P -cosmall
we have that zd(α)WP = sαWP . Therefore we get, again since α is
P -cosmall, that


(zδ(sα)) = 
(zd(α)) = 
P (sα) = c1(X)d(α) − 1 = c1(X)δ(sα) − 1

as claimed. �
Lemma 6.29. Let α ∈ R+ \R+

P be a root such that zd(α)WP = sαWP .
This is in particular the case if α is P -cosmall. A chain u0, . . . , ur from
sα to wX of minimal degree δ(sα) satisfies u0 = sα and ur = 1.

Proof. Let u0, . . . , ur be a chain from sα to wX of degree δ(sα). Then
we have u0 � sα and ur = 1. We show that actually u0 = sα in this
situation. Indeed, by definition x(u0) ∈ Γδ(sα)(X1) ⊆ Γd(α)(X1). By
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assumption we know that Γd(α)(X1) = Xsα . We conclude that u0 � sα.
Therefore we can assume that u0 = sα. �
Lemma 6.30. Let u be a P -cosmall Weyl group element. Then there
exists a unique root α ∈ R+ \R+

P such that zδ(u)WP = sαWP . This root
α is P -cosmall and satisfies δ(u) = d(α) and u � sα.

Proof. By [8, Proposition 5.3] there exists a unique α ∈ R+ \ R+
P such

that zδ(u)WP = sαWP . This root α is P -cosmall and satisfies δ(u) =
d(α). We only have to show that u � sα. To this end, let u0, . . . , ur

be a chain from u to wX . This chain satisfies u0 � u and ur = 1. By
definition, we see that x(u0) ∈ Γδ(u)(X1) = Xsα . Therefore we conclude
that u0 � sα and thus u � u0 � sα. �
6.2. The set U . We now study the subset U of W/WP defined as
follows:

U = {u ∈ W/WP | δ(u) + δ(u∗) = δ(wX)}
Lemma 6.31. We have the following description of U in terms of the
geometry of chains:

U =
⋃
u

{u0, . . . , ur}

where the union runs over all chains u : u0, . . . , ur from wX to wX of
degree δ(wX).

Proof. Let u0, . . . , ur be a chain from wX to wX of degree δ(wX). Then
we necessarily have u0 = wo and ur = 1. Let j be an index between
0 and r. We have to show that u = uj ∈ U . Let βi ∈ R+ \ R+

P

be a root such that ui−1sβi
= ui for all 1 ≤ i ≤ r. Then we have

δ(u) =
∑r

i=j+1 d(βi). Moreover u∗ = wou = sβ1 · · · sβj
and thus δ(u∗) ≤∑j

i=1 d(βi). Suppose that δ(u∗) <
∑j

i=1 d(βi). There exists a chain
u′0, . . . , u

′
s from u∗ to wX which satisfies u′0 = u∗ and u′s = 1 and has

degree δ(u∗). Let β′
i ∈ R+ \ R+

P be a root such that u′i−1sβ′
i

= u′i for
all 1 ≤ i ≤ s. Then we have δ(u∗) =

∑s
i=1 d(β

′
i) and u∗sβ′

1
· · · sβ′

s
= 1

which gives u = wosβ′
s
· · · sβ′

1
. Therefore wo, wosβ′

s
, . . . , wosβ′

s
· · · sβ′

1
=

u = uj, . . . , ur is a chain from wX to wX of degree
s∑

i=1

d(β′
i) +

r∑
i=j+1

d(βi) <
r∑

i=1

d(βi) = δ(wX)

which contradicts the definition of δ(wX). Therefore we conclude that

δ(u∗) =
∑j

i=1 d(βi) and thus

δ(u) + δ(u∗) =
r∑

i=1

d(βi) = δ(wX) .

This proves that u ∈ U and thus the inclusion from right to left.
In order to prove the inclusion from left to right, let u ∈ U . Let

u0, . . . , ur be a chain from u to wX which satisfies u0 = u and ur = 1 and
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has degree δ(u). Let u′0, . . . , u
′
s be a chain from u∗ to wX which satisfies

u′0 = u∗ and u′s = 1 and has degree δ(u∗). Let β′
i ∈ R+ \ R+

P be a root
such that u′i−1sβ′

i
= u′i for all 1 ≤ i ≤ s. Then we have u∗sβ′

1
· · · sβ′

s
= 1

and thus wosβ′
s
· · · sβ′

1
= u. Therefore wo, wosβ′

s
, . . . , wosβ′

s
· · · sβ′

1
= u =

u0, . . . , ur is a chain from wX to wX of degree

s∑
i=1

d(β′
i) + δ(u) = δ(u∗) + δ(u) = δ(wX) .

This shows that u is contained in the right set and proves the inclusion
from left to right. �

Corollary 6.32. For all u ∈ W/WP we have δ(u) + δ(u∗) ≥ δ(wX).
The set U can also described as the set of all elements u ∈ W/WP

which satisfy δ(u) + δ(u∗) ≤ δ(wX).

Proof. The first claim is an immediate consequence of the previous
proof. The second claim follows from the first. �

For the sake of completeness, we list further immediate properties of
the set U .

Lemma 6.33.

• U is closed under under taking Poincaré duals: u ∈ U if and
only if u∗ ∈ U . U contains 1 and wX .

• Let d be a degree. Then we have(
Xzd

∩ Yz∗
δ(wX )−d

)T

= {x(u) | u ∈ U such that δ(u) = d} .
and Xzd′ ∩ Yz∗

δ(wX )−d
= ∅ for all degrees d′ < d.

• For all u ∈ U we have z∗δ(u∗) � zδ(u).

• For all u ∈ U the power qδ(u) is the smallest power of q in the
quantum product [{pt}] � σz∗

δ(u∗)
. Therefore we have δ(z∗δ(u∗)) =

δ(u).
• If u ∈ U , then zδ(u) ∈ U .
• For all u ∈ U we have woWP = zδ(u) ·zδ(u∗)WP = zδ(u∗) ·zδ(u)WP .

Proof. The very first point follows immediatly from the definition of U .
Let d be a degree. Since Yz∗

δ(wX )−d
= woΓδ(wX)−d(X1) and Xzd

=

Γd(X1), a T -fixed point x(u) in the intersection of both varieties is part
of a curve of degree δ(wX) passing through x(1) and x(wX), in other
words u is part of a chain from wX to wX of degree δ(wX). Therefore
we conclude that u ∈ U . On the other hand, we have u � zd and
u∗ � zδ(wX)−d and thus δ(u) ≤ δ(zd) ≤ d and δ(u∗) ≤ δ(zδ(wX)−d) ≤
δ(wX) − d. Since δ(u) + δ(u∗) = δ(wX) we get equality in both cases,
in particular δ(u) = d. This means that x(u) is contained in the right
side. This proves the inclusion from left to right.
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Let u ∈ U such that δ(u) = d. Then u � zδ(u) = zd and u∗ � zδ(u∗) =
zδ(wX)−δ(u) = zδ(wX)−d. Thus x(u) is in the intersection on the left side.
This proves the inclusion from right to left.

Let d′ be a degree strictly smaller than d. If the intersection Xzd′ ∩
Yz∗

δ(wX )−d
is nonempty, then we can find a point x which is part of a curve

of degree d′ + δ(wX)− d passing through x(1) and x(wX). This curves
gives rise to a chain from wX to wX of degree d′ + δ(wX)− d < δ(wX),
which contradicts the definition of δ(wX). Therefore we conclude that
the intersection is empty.

If we apply the previous results to d = δ(u) for some u ∈ U , then
we see that the intersection Xzδ(u)

∩ Yz∗
δ(wX )−δ(u)

is nonempty, since

it contains the point x(u). This immediately implies that z∗δ(u∗) =
z∗δ(wX)−δ(u) � zδ(u).

Let u ∈ U . By what we saw up to now, δ(u) is the smallest degree d,
such that Xzd

∩Yz∗
δ(u∗)

is nonempty. By [13, Theorem 9.1] this precisely

means that qδ(u) is the smallest power of q in the quantum product
[{pt}]�σz∗

δ(u∗)
. On the other hand, again by [13, Theorem 9.1] this power

of q is given by qδ(z∗
δ(u∗)

). Therefore we conclude that δ(z∗δ(u∗)) = δ(u).

Let u ∈ U . Then δ(zδ(u)) = δ(u) (this holds even for arbitrary
elements in W ) and δ(z∗δ(u)) = δ(u∗) by what we saw in the previous

item applied to u∗ ∈ U . It follows that δ(zδ(u)) + δ(z∗δ(u)) = δ(u) +

δ(u∗) = δ(wX) since u ∈ U and thus zδ(u) ∈ U .
For all u ∈ U we can choose a chain u0, . . . , ur from wX to wX which

satisfies u0 = w0, ur = 1 and uj = zδ(u) for some index j between 0 and
r. (This is the content of the previous item.) Let αi be the unique root
in R+ \ R+

P such that sαi
ui−1 = ui for all 1 ≤ i ≤ r. Then we have∑j

i=1 d(αi) = δ(u∗j) since uj ∈ U . Let u = sα1 · · · sαj
so that w0 = uuj.

It then follows that

w0 = uuj � sα1 · . . . · sαj
· uj � zδ(sα1 ) · . . . · zδ(sαj ) · uj �

zd(α1) · . . . · zd(αj) · uj � zδ(u∗
j ) · uj � w0

and thus woWP = zδ(u∗
j ) · ujWP . But δ(u∗j) = δ(z∗δ(u)) = δ(u∗), since

u∗ ∈ U . The equation then reads as woWP = zδ(u∗) · zδ(u)WP . By
replacing u with u∗ we also get woWP = zδ(u) · zδ(u∗)WP . This proves
the last claim. �

6.3. P -indecomposable roots.

Definition 6.34. Let α be a root in R+ \ R+
P . We say that α is

P -indecomposable if δ(sα) = d(α) and if for every sequence of roots
β1, . . . , βr ∈ R+ \ R+

P such that sβ1 · · · sβrWP = sαWP and such that
d(α) =

∑r
i=1 d(βi) it follows that r = 1 (and thus β1 = α).
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We say that a Weyl group element u ∈ W is P -indecomposable, if
there exists a P -indecomposable root α ∈ R+ \ R+

P such that uWP =
sαWP . (If such an α exists it is of course unique.)

Example 6.35. All simple roots α ∈ Δ \ ΔP are P -indecomposable. In
particular, if P is maximal, then αP is P -indecomposable.

Example 6.36. Let P be maximal. Then all roots α ∈ R+ \ R+
P such

that d(α) = 1 are P -indecomposable.

Example 6.37. Let X be a simply laced cominuscule homogeneous
space. Then all roots in R+ \R+

P are P -indecomposable.

Lemma 6.38. Let α ∈ R+ \ R+
P be a P -indecomposable root and let

w ∈ WP . Then w(α) is also P -indecomposable.

Proof. Let α be P -indecomposable, let w ∈ WP and let β1, . . . , βr ∈
R+ \R+

P be a sequence of roots such that sβ1 · · · sβrWP = sw(α)WP and
such that d(w(α)) =

∑r
i=1 d(βi). It is easy to see that this implies

sw−1(β1) · · · sw−1(βr)WP = sαWP . On the other hand d(α) = d(w(α)) =∑r
i=1 d(βi) =

∑r
i=1 d(w

−1(βi)) since d is WP -invariant. Since α is P -
indecomposable, this implies that r = 1. Therefore w(α) is also P -
indecomposable. �
Lemma 6.39. Let α ∈ R+ \ R+

P be a P -cosmall root which satisfies
δ(sα) = d(α). (If P is maximal every P -cosmall root α satisfies δ(sα) =
d(α).) Then α is P -indecomposable.

Proof. Let β1, . . . , βr ∈ R+ \ R+
P be a sequence of roots such that

sβ1 · · · sβrWP = sαWP and such that d(α) =
∑r

i=1 d(βi). By the tri-
angle inequality for 
P we have 
P (sα) ≤ ∑r

i=1 
P (sβi
). Since α is

P -cosmall, this inequality gives∫
d(α)

c1(X) − 1 ≤
r∑

i=1

(∫
d(βi)

c1(X) − 1

)
=

∫
d(α)

c1(X) − r .

But this inequality can only be satisfied if r = 1. Therefore α is P -
indecomposable. �
Example 6.40 ([9, Example 6.6]). We give an example for a root α ∈
R+ \R+

P which is neither P -cosmall nor P -indecomposable but satisfies
δ(sα) = d(α). Let R be of type B2 and let αP = α1. Let α = α1 + α2,
let θ1 = α1 + 2α2 and let θ2 = α1. Then we have sαWP = sθ1sθ2WP .
We will see later that δ(sθ1sθ2) = d(θ1) + d(θ2) = 1 + 1 = 2. Therefore
we have δ(sα) = d(α) = d(θ1) + d(θ2) = 2. This shows that α cannot
be P -indecomposable. The previous lemma then shows that α cannot
be P -cosmall.

Lemma 6.41. An element u ∈ W/WP is P -indecomposable if and
only if for every sequence of elements u1, . . . , ur ∈ W such that uWP =
u1 · · ·urWP and such that δ(u) =

∑r
i=1 δ(ui) it follows that r = 1.
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Proof. Suppose first that u is P -indecomposable. Let u1, . . . , ur ∈ W
be a sequence of elements such that uWP = u1 · · ·urWP and such
that δ(u) =

∑r
i=1 δ(ui). For each i we can find a sequence of roots

βi1, . . . , βiji
∈ R+ \R+

P such that uiWP = sβi1
· · · sβiji

WP and such that

δ(ui) =
∑ji

j=1 d(βij). If we possibly replace βij with an element in its
WP -orbit this gives uWp = sβ11 · · · sβ1j1

· · · sβr1 · · · sβrjr
WP . Let α be a

P -indecomposable root such that uWP = sαWP . It follows that

d(α) = δ(sα) = δ(u) =
r∑

i=1

δ(ui) =
∑
i,j

d(βij)

and thus r = 1 since α is P -indecomposable. This proves one implica-
tion.

To prove the other implication, let β1, . . . , βr ∈ R+ \ R+
P be a se-

quence of roots such that uWP = sβ1 · · · sβrWP and such that δ(u) =∑r
i=1 d(βi). Every βi clearly satisfies δ(sβi

) = d(βi). If we apply the
condition to ui = sβi

we see that r = 1 and thus uWP = sαWP where
α = β1 satisfies δ(sα) = d(α) = δ(u). Since the sequence β1, . . . , βr was
chosen arbitrary, we see that α and thus u is P -indecomposable. �
Example 6.42. Let P be maximal. Then all elements u ∈ W/WP such
that δ(u) = 1 are P -indecomposable.

Lemma 6.43. Let d be a degree. Let (α1, . . . , αr) be a greedy decom-
position of d. Then

zdWP = sα1 · . . . · sαrWP = zd(α1) · . . . · zd(αr)WP .

In terms of curve neighborhoods this equation becomes

Γd(X1) = Γd(αr)(· · · (Γd(α1)(X1)) · · · ) .
Proof. From the main theorem on curve neighborhoods it is clear that

Xzd(α1)·...·zd(αr)
= Γd(αr)(· · · (Γd(α1)(X1)) · · · ) .

Since all members of a greedy decomposition are P -cosmall, we have
sαi
WP = zd(αi)WP for all i. Therefore it follows that Γd(α1)(X1) =

Xzd(α1)
= Xsα1

and thus Γd(α2)(Γd(α1)(X1)) = Xsα1 ·zd(α2)
= Xsα1 ·sα2

. By
repreating this process we find that

Γd(αr)(· · · (Γd(α1)(X1)) · · · ) = Xsα1 ·...·sαr
.

Both displayed euqations together yield sα1 · . . . · sαrWP = zd(α1) · . . . ·
zd(αr)WP . From the definition of a greedy decomposition it follows
directly that zdWP = sα1 · . . . · sαrWP . This proves the first statement.
The last statement is clear now since we have Γd(X1) = Xzd

. �
Lemma 6.44. Let α ∈ R+ \ R+

P be a P -indecomposable root. Every
greedy decomposition of d(α) consists of precisely one element. More-
over there exists a P -cosmall root β such that zd(α)WP = sβWP and
such that d(α) = d(β). In particular, zd(α) is P -indecomposable.
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Let α ∈ R+\R+
P be a P -indecomposable root which satisfies zd(α)WP =

sαWP . Then α is also P -cosmall.

Proof. Let α be a P -indecomposable root. Let (α1, . . . , αr) be a greedy
decomposition of d(α). We clearly have sα � zδ(sα) = zd(α) and thus

x(sα) ∈ Γd(α)(X1) = Γd(αr)(· · · (Γd(α1)(X1)) · · · ) .
Therefore we can find elements u1, . . . , ur ∈ W such that sαWP =
ur . . . u1WP and such that δ(ui) = d(αi). Now we have

δ(sα) = d(α) =
r∑

i=1

d(αi) =
r∑

i=1

δ(ui)

which implies that r = 1 since α is P -indecomposable. Therefore it
follows that zd(α)WP = sα1WP . If we put β = α1 the first statement
follows since α1 is P -cosmall as it is part of a greedy decomposition.
Moreover we have d(α) = d(β). To see that zd(α) is P -indecomposable
it suffices to show that δ(sβ) = d(β) since β is P -cosmall. But this is
clear since δ(sβ) = δ(zd(α)) = δ(zδ(sα)) = δ(sα) = d(α) = d(β) where
we used that α is P -indecomposable and thus δ(sα) = d(α).

If α is P -indecomposable and satisfies in addition zd(α)WP = sαWP ,
then it clearly follows that sαWP = sβWP and thus α = β which means
that α is P -cosmall. �

Corollary 6.45. Let α ∈ R+ \ R+
P be a root which satisfies δ(sα) =

d(α). Then α is P -cosmall if and only if α is P -indecomposable and
zd(α)WP = sαWP .

Proof. This is just a reformulation of the results we proved up to now.
�

Lemma 6.46. Let α ∈ R+ \ R+
P be a P -cosmall root which satisfies

δ(sα) = d(α). (If P is maximal this is always the case.) Then there
exists a unique maximal root of d(α) and this unique maximal root is
given by α.

Proof. Let α1 be a maximal root of d(α). By definition we know that
d(α1) ≤ d(α). We first show that d(α1) = d(α). Suppose for a con-
tradiction that d(α1) < d(α). Then we can find a greedy decompo-
sition (α1, . . . , αr) of d(α) such that r > 1. On the other hand, we
know that α is a P -cosmall root which satisfies δ(sα) = d(α). There-
fore α is P -indecomposable and every greedy decomposition of d(α)
must consist of precisely one element. This contradiction proves that
d(α1) = d(α). Therefore α1 is a P -cosmall root. It follows that
sα1WP = zd(α)WP = sαWP and thus α = α1. This proves that α
is the unique maximal root of d(α). �
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6.4. The set U1. Let U1 be the subset of U consisting of all u ∈ U
such that δ(u) is maximal in the set {δ(u) | u ∈ U such that δ(u) <
δ(wX)} or equivalent such that δ(u∗) is minimal in the set {δ(u) | u ∈
U such that δ(u) > 0}.

We have an obvious inclusion:

U1 ⊆ {u1 | u0, . . . , ur chain from wX to wX of degree δ(wX)}
Every element u ∈ U1 is part of a chain u0, . . . , ur from wX to wX of
degree δ(wX). Let j be the index such that u = uj. We clearly have
that j ≥ 1 since δ(u0) = δ(wX). On the other hand we know that
δ(wX) > δ(u1) > δ(ui) for all i ≥ 2. Since ui ∈ U for all i, we follow
from the maximality of δ(u) that u = u1 and j = 1. This proves the
stated inclusion.

From this inclusion, we see in particular that for all u ∈ U1 there
exists a unique root α ∈ R+ \R+

P such that u∗WP = sαWP .

Lemma 6.47. We have the following inclusion of sets:

U1 ⊆ {u ∈ U | u∗ is P -indecomposable}
Proof. Let u ∈ U1. Let α ∈ R+ \ R+

P be the unique root such that
u∗WP = sαWP . By Corollary 6.15 we know that δ(sα) = d(α). Let
β1, . . . , βr ∈ R+ \R+

P be a sequence of roots such that

sαWP = sβ1 · · · sβrWP

and such that δ(α) =
∑r

i=1 d(βi). In order to see that α and u∗

are P -indecomposable it suffices to show that r = 1. Let u0, . . . , ur

be a chain from wX to wX of degree δ(wX) which satisfies u1 = u.
The chain u0, . . . , ur necessarily satisfies u0 = wo and ur = 1. Then
wo, wosβ1 , . . . , wosβ1 · · · sβr , u2, . . . , ur is a chain from wX to wX since
wosβ1 · · · sβrWP = uWP . The degree of this chain is clearly

δ(u) +
r∑

i=1

d(βi) = δ(u) + d(α) = δ(u) + δ(u∗) = δ(wX) .

Therefore we have that wosβ1 ∈ U . Suppose that r > 1. Then we have
by Corollary 6.11 that δ(wX) > δ(wosβ1) > δ(wosβ1 · · · sβr) = δ(u).
But this contradicts the fact that u ∈ U1. Therefore we conclude that
r = 1 and that α and u∗ are P -indecomposable. �

Lemma 6.48. Let u ∈ U1. Then there exists a P -cosmall root α ∈
R+ \ R+

P such that zδ(u∗)WP = sαWP . In particular δ(u∗) = d(α) and
δ(wX) = δ(u) + d(α). We can write woWP = zδ(u) · sαWP .

Proof. Let d = δ(u∗) for short. Let α ∈ R+ \R+
P be a maximal root of

d. By [9, Corollary 4.12(c)] we have sα · zd−d(α)WP = zdWP and thus
woWP = zδ(u) · zdWP = zδ(u) · sα · zd−d(α)WP . Since zδ(u) · sα � zδ(u)+d(α)
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by [9, Corollary 4.12(b)] it follows that woWP = zδ(u)+d(α) · zd−d(α)WP .
In the language of curve neighborhoods this reads as

Γd−d(α)(Γδ(u)+d(α)(X1)) = X .

This means that we can find a v such that v � zδ(u)+d(α) and such that
there exists a chain from v0, . . . vr of degree d−d(α) which satisfies v0 =
wX and vr = v. Therefore we have δ(v) ≤ δ(zδ(u)+d(α)) ≤ δ(u) + d(α)
and δ(v∗) ≤ d − d(α). This shows that δ(v) + δ(v∗) ≤ δ(u) + δ(u∗) =
δ(wX). Since this inequaltiy can never be strict, we get equalities
δ(v) = δ(u) + d(α) and δ(v∗) = d − d(α) and δ(v) + δ(v∗) = δ(wX).
Therefore v ∈ U and δ(v) > δ(u) (since d(α) > 0). By the maximality
of u we conclude that δ(v) = δ(wX). This implies that δ(wX) = δ(u)+
d(α) and d = d(α).

By our choice, α ∈ R+\R+
P was a maximal root in d. Since d = d(α),

this implies that α is P -cosmall. The equation sα · zd−d(α)WP = zdWP

becomes sαWP = zdWP . The equation woWP = zδ(u) · zdWP becomes
woWP = zδ(u) · sαWP . �

Corollary 6.49. Let u ∈ U1. Let α ∈ R+ \ R+
P be a maximal root

of δ(u∗). Then s∗α ∈ U1. In particular sα ∈ U . Moreover we have
δ(s∗α) = δ(u), δ(sα) = δ(u∗) = d(α) and s∗α � zδ(u).

Proof. We know in general that z∗δ(u∗) � zδ(u) for all u ∈ U . In partic-

ular for u as in the statement, this gives s∗α � zδ(u) and thus δ(s∗α) ≤
δ(zδ(u)) = δ(u). On the other hand we know that δ(sα) = d(α) = δ(u∗)
by the previous result. This gives δ(sα)+δ(s∗α) ≤ δ(u)+δ(u∗) = δ(wX).
Since this inequality can never be strict, we get the equality δ(s∗α) =
δ(u). Moreover we see that sα ∈ U and s∗α ∈ U1. �

Let B be the following set5 of roots:

B = {α ∈ R+ \R+
P | α maximal root of δ(u∗) for some u ∈ U1} .

We denote the highest root of R by θ1.

Lemma 6.50.

• All elements of B are P -cosmall and P -indecomposable.
• Different roots in B are incomparable: if α, β ∈ B such that
α ≤ β then α = β.

• Different degrees of roots in B are incomparable: if α, β ∈ B
such that d(α) ≤ d(β) then d(α) = d(β).

• Let α, β ∈ B such that sα � sβ then sαWP = sβWP .
• For all α ∈ B we have d(α) ≤ d(θ1) and sα � sθ1.
• For all α ∈ B there is a unique maximal root of d(α) and this

unique maximal root is given by α.

5There should not be any confusion with the set B and the Borel subgroup of G
which is also denoted by B.
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• If θ1 ∈ B then B = {θ1}. If there is a root α ∈ B such that
d(α) = d(θ1) then B = {θ1}.

• Suppose that wo is P -indecomposable. Let α be the unique P -
indecomposable root such that woWP = sαWP . Then B = {α}.

• For all u ∈ U1 we have u∗ � sα � sθ1 for a unique element
α ∈ B. This element α satisfies δ(u∗) = d(α).

• Let α ∈ B. Then there exists a chain u0, . . . , ur from wX to wX

of degree δ(wX) which satisfies u0 = wo and u1 = wosα = s∗α.
• If u ∈ U1 then zδ(u) ∈ U1. In particular for all α ∈ B we have

that s∗α ∈ U1 and that zδ(s∗α) ∈ U1.

Proof. We already saw that all elements of B are P -cosmall. We also
know that s∗α ∈ U1 for all α ∈ B. But this implies that sα and α are
P -indecomposable.

Let α, β ∈ B such that α ≤ β. Since α and β are both P -cosmall,
it follows that d(α) ≤ d(β). By the minimality of d(β) we conclude
that d(α) = d(β). Since α is a maximal root of d(α) we conclude that
α = β.

Let α, β ∈ B such that d(α) ≤ d(β). By the minimality of d(α) it
follows that d(α) = d(β).

Let α, β ∈ B such that sα � sβ. Then we have zd(α) � zd(β) and
thus d(α) ≤ d(β). (Note that δ(sα) = d(α) and δ(sβ) = d(β).) By the
previous point, it follows that d(α) = d(β) and thus sαWP = sβWP

since sαWP = zd(α)WP and sβWP = zd(β)WP .
Let α ∈ B. Since α and θ1 are P -cosmall, it follows that d(α) ≤

d(θ1). Consequently, we have zd(α) � zd(θ1). Again, since α and θ1 are
P -cosmall, this impies sα � sθ1 .

Let α ∈ B. Let β ∈ R+ \R+
P a maximal root of d(α). Since s∗α ∈ U1

we conclude that β ∈ B. By definition d(β) ≤ d(α). Since different
degrees of roots in B are incomparable, we conclude that d(α) = d(β).
Since α and β are P -cosmall, it follows that sαWP = sβWP . Since
α ∈ R+ \ R+

P is uniquely determined by the coset sαWP ([9, Lemma
2.2]), it follows that α = β. Therefore α is the unique maximal root of
d(α). A different way to see that α is the unique maximal root of d(α)
is to note that α is P -cosmall and satisfies δ(sα) = d(α) (Lemma 6.46).

Suppose that θ1 ∈ B. Every root α ∈ B can be compared with the
highest root θ1: α ≤ θ1. Since different roots in B are incomparable,
it follows that α = θ1 and thus B = {θ1}. Suppose that there is a root
α ∈ B such that d(α) = d(θ1). For all β ∈ B, we have that d(β) ≤
d(α) = d(θ1). Since different degrees of roots in B are incomparable,
we conclude that d(β) = d(θ1) for all β ∈ B. On the other hand we
know that β is the unique maximal root of d(β) = d(θ1). But this
unique maximal root is given by θ1. Therefore we have β = θ1 for
β ∈ B which means that B = {θ1}.

Suppose that wo is P -indecomposable. Let α be as in the statement.
By definition it is clear that U1 = {1}. Therefore it is clear that B
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consists of precisely one element α′ which is the unique maximal root
of δ(wo). We also know that δ(wo) = d(α′) and that α′ is P -cosmall.
Therefore it follows that sα′WP = zd(α′)WP = zδ(wo)WP = woWP =
sαWP and thus α = α′. This means that B = {α} as claimed.

We already saw that sα � sθ1 for all α ∈ B. Let u ∈ U1 and let
α be a maximal root of δ(u∗). We have that u∗ � zδ(u∗) and that
zδ(u∗)WP = sαWP . This implies that u∗ � sα as claimed. It also clear
by what we saw up to now that δ(u∗) = d(α). Next we prove the
uniqueness of α. Let α, β ∈ B such that u∗ � sα and u∗ � sβ. Then
it follows that from the minimality of d(α) and d(β) that δ(u∗) = d(α)
and that δ(u∗) = d(β). This implies d(α) = d(β). But since different
degrees of roots in B are incomparable we must have α = β.

Let α ∈ B. Since s∗α ∈ U1 there exists a chain u0, . . . , ur from wX

to wX of degree δ(wX) which satisfies u1 = s∗α. It is clear that we also
can chose u0 = wo.

Let u ∈ U1. We already saw that this implies that zδ(u) ∈ U . But
since δ(zδ(u)) = δ(u) we also have zδ(u) ∈ U1. �
Remark 6.51. We already see from the previous lemma that if P is max-
imal then B consists of precisely one element. Indeed, if P is maximal
any two degrees are comparable, therefore d = d(α) is independent of
the choice of α ∈ B, since different degrees of roots in B are incompa-
rable. On the other hand there is a unique maximal root α of d, which
must be the unique element of B: B = {α}. (Note that B is nonempty
by construction.)

Lemma 6.52. Let (α1, . . . , αr) be a greedy decomposition of δ(wX).
Then there exist elements α, β ∈ B such that d(α) ≤ d(α1) and d(β) ≤
d(αr).

Proof. Let (α1, . . . , αr) be a greedy decomposition of δ(wX). Then we
can write

X = Γd(αr)(· · · (Γd(α2)(Xsα1
)) · · · ) .

Therefore we can find u, v ∈ U such that δ(u∗) = d(α1), δ(v
∗) = d(αr)

and u∗ � sα1 (U is closed under taking Poincaré duals). By definition
we can find α, β ∈ B such that d(α) ≤ d(α1) and d(β) ≤ d(αr). �
Lemma 6.53. Let u ∈ U and v ∈ W such that δ(v) ≤ δ(u) and u � v.
Then v ∈ U and δ(u) = δ(v).

Proof. Since u � v, we have that u∗ � v∗ and thus δ(u∗) ≥ δ(v∗). Since
u ∈ U we obtain

δ(v) + δ(v∗) ≤ δ(u) + δ(u∗) = δ(wX) .

This means that v ∈ U . Moreover we get the equality δ(u) = δ(v). �
Lemma 6.54. Let P be maximal. Then we have that sθ1 ∈ U . This
means that δ(wX) = d(θ1) + δ(s∗θ1

).
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Proof. Let (α1, . . . , αr) be a greedy decomposition of δ(wX). Since P is
maximal and θ1 is P -cosmall, we know that δ(sθ1) = d(θ1). Therefore
we have that d(θ1) ≤ δ(wX) and thus α1 = θ1. We can write

zδ(wX)WP = sα1 · . . . · sαrWP = sθ1 · zδ(wX)−d(θ1)WP .

In terms of curve neighborhoods this becomes X = Γδ(wX)−d(θ1)(Xsθ1
).

Therefore we can find a chain u0, . . . , ur from wX to wX of degree δ(wX)
such that there exists an index j between 0 and r such that δ(uj) =
d(θ1) and uj � sθ1 . Since δ(sθ1) = d(θ1) (P maximal, θ1 P -cosmall)
and since uj ∈ U , the previous lemma implies that sθ1 ∈ U . The final
equation follows from the definition of U and since δ(sθ1) = d(θ1). �

We now introduce a further set of roots. Let α ∈ B. We saw
that zδ(s∗α) ∈ U1 and thus that z∗δ(s∗α) is P -indecomposable. Therefore

there exists a unique P -indecomposable root β ∈ R+ \ R+
P such that

z∗δ(s∗α)WP = sβWP . Since β is uniquely determined by α we can write

β = ϕ(α). Let B∗ be the following set of roots

B∗ = {β ∈ R+ \R+
P | sβWP = z∗δ(s∗α)WP for some α ∈ B} .

We have natural surjective map ϕ : B → B∗ which sends an element
α ∈ B to ϕ(α) ∈ B∗ where ϕ(α) is as defined above.

Lemma 6.55.

• ϕ induces a bijection between B and B∗.
• All element of B∗ are P -indecomposable.
• For all α ∈ B we have that d(ϕ(α)) = d(α), ϕ(α) ≤ α and that
sϕ(α) � sα.

• For all u ∈ U1 we have sϕ(α) � u∗ � sα for a unique element
α ∈ B. This element α satisfies δ(u∗) = d(α). Conversely,
every element u ∈ W such that sϕ(α) � u∗ � sα for some α ∈ B
satisfies u ∈ U1.

Proof. For all α ∈ B it is clear that s∗ϕ(α) ∈ U1 and that sϕ(α) � sα.

Therefore we get that α is uniquely determined by ϕ(α) or in other
words that ϕ is injective and induces therefore a bijection between B
and B∗.

This is true just because every β ∈ B∗ satisfies s∗β ∈ U1.
We already saw that sϕ(α) � sα for all α ∈ B. This immediately

implies that δ(sϕ(α)) = d(α) since s∗ϕ(α) ∈ U1. Since sϕ(α) is a reflection

which occurs in a chain from wX to wX of degree δ(wX) we also know
that δ(sϕ(α)) = d(ϕ(α)) and thus d(ϕ(α)) = d(α). Since α is the unique
maximal root of d(α) it follows that ϕ(α) ≤ α.

Let u ∈ U1. We already know that there exists a unique α ∈ B such
that u∗ � sα and such that δ(u∗) = d(α). We clearly have δ(u) = δ(s∗α)
since u, sα ∈ U1. But this implies that u � zδ(s∗α) which gives by taking
Poincaré duals that sϕ(α) � u∗ as claimed. Conversely, let u ∈ W be an
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element which satisfies sϕ(α) � u∗ � sα for some α ∈ B. Then we have
δ(u∗) ≤ d(α) and δ(u) ≤ δ(s∗ϕ(α)) = δ(zδ(s∗α)) = δ(s∗α) which implies

that δ(u) + δ(u∗) ≤ δ(wX). Therefore we get equalities δ(u) = δ(s∗α)
and δ(u∗) = d(α). But this means that u ∈ U1. �
Corollary 6.56. We have the following bijection of sets

U1
∼= U∗

1 :=
∐
α∈B

{β ∈ R+ \R+
P | sϕ(α) � sβ � sα}

which sends an element β ∈ U∗
1 to the element s∗β ∈ U1. This bijection

induces via restriction a further bijection of sets as follows:

{u ∈ U1 | 〈[{pt}], σu∗〉δ(u∗) �= 0} ∼= B .

Proof. The first bijection follows directly from the previous lemma. To
see the second bijection, note that all elements β ∈ U∗

1 \ B are not
P -cosmall, since they are not maximal in d(β). Therefore those β’s
have vanishing Gromov-Witten invariant:

〈
[{pt}], σsβ

〉
d(β)

= 0. On

the other hand, all elements α of B are P -cosmall and therefore have
nonvanishing Gromov-Witten invariant: 〈[{pt}], σsα〉d(α) = 1. This
proves the second bijection. �
Corollary 6.57. All elements of U∗

1 are P -indecomposable. Let β ∈ U∗
1

then there exists a unique α ∈ B such that δ(sβ) = d(β) = d(α). This
root α satisfies β ≤ α.

Proof. Let β ∈ U∗
1 . It is clear that s∗β ∈ U1. Therefore β and sβ are

P -indecomposable. Let α be the unique root in B such that sϕ(α) �
sβ � sα. Then we have δ(sβ) = d(α). Since all reflections sβ where
β ∈ U∗

1 occur in a chain from wX to wX of degree δ(wX) we know that
δ(sβ) = d(β) and thus d(β) = d(α). Since α is the unique maximal
root of d(α) it follows that β ≤ α. The uniqueness of α ∈ B such
that d(β) = d(α) is clear since different degrees of roots in B are
incomparable. �

6.5. Local curve neighborhoods. Let β ∈ B and let d be a degree in
H2(X(β),Z). Let w be a Weyl group element in WG(β). We define the

local degree d curve neighborhood Γβ
d(Xw) of Xw with respect to X(β)

in the same way we defined the (global) degree d curve neighborhood
Γd(Xw) of Xw with respect to X. This makes sense since global and
local Schubert varieties can be identified for β ∈ B. Moreover we clearly
identify H2(X(β),Z) with a sublattice of H2(X,Z). We define zβ

d to

be the unique element in W
P (β)
G(β) which satisfies Xzβ

d
= Γβ

d(X1). With

this notation we clearly have zθ1
d = zd for all degrees d, zβ

d � zd for all

β and all degrees d in H2(X(β),Z) and zβ
0 = 1 for all β.

Let β still denote a root in B. Then we define a function δβ with
functoriality WG(β) ×WG(β) → H2(X(β),Z) with respect to X(β) in
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the same way as we defined the function δ with functoriality W ×W →
H2(X,Z) with respect to X. Again we extend our notation by writing

δβ(u) = δβ(u,wo(β)). With this notation we clearly have zβ
dWP =

wo(β)WP for all degrees d in H2(X(β),Z) such that d ≥ δβ(wo(β)).

Lemma 6.58. Let β ∈ B. Let d be a degree in H2(X(β),Z) and let

w ∈ WG(β). Then we have Γβ
d(Xw) = Γd(Xw)∩X(β). In particular we

have Γβ
d(X1) = Γd(X1) ∩X(β).

Proof. With the notation as in the statement, we have an obvious in-
clusion Γβ

d(Xw) ⊆ Γd(Xw)∩X(β). We prove the other inclusion by in-

duction on d ∈ H2(X(β),Z). If d = 0 then Γβ
d(Xw) = Γd(Xw) = Xw ⊆

X(β) and there is nothing to prove. Suppose that d > 0 and that the
inclusion from right to left is true for all d′ < d. Since Γd(Xw) ∩X(β)

and Γβ
d(Xw) are B-stable it suffices to prove that every T -fixed point

x(u) ∈ Γd(Xw) ∩X(β) is contained in Γβ
d(Xw). Since x(u) ∈ X(β) we

know that u � wo(β) or equivalent u ∈ WG(β). Since x(u) ∈ Γd(Xw)
there exists a chain u0, . . . , ur from u to w∗ of degree d which satis-
fies u0 = u. Let βi ∈ R+ \ R+

P be roots such that ui−1sβi
= ui for

all 1 ≤ i ≤ r. Then u1, . . . , ur is a chain from u1 to w∗ of degree
d′ := d − d(β1) < d. Therefore x(u1) ∈ Γd′(Xw). Since u0 and u1 are
adjacent, we have either u0 ≺ u1 or u1 ≺ u0. If u = u0 ≺ u1 if follows
that x(u) ∈ Γd′(Xw) since Γd′(Xw) is a Schubert variety. The induction

hypothesis implies that x(u) ∈ Γd′(Xw)∩X(β) = Γβ
d′(Xw) ⊆ Γβ

d(Xw) as
required. Therefore we can assume that u1 ≺ u0 = u. In this case it fol-
lows that u1 ≺ u � wo(β) and thus u1 ∈ WG(β) and x(u1) ∈ X(β). The

induction hypothesis implies that x(u1) ∈ Γd′(Xw) ∩X(β) = Γβ
d′(Xw).

Therefore there exists a chain u′1, . . . , u
′
s from u1 to w∗ of degree d′

which satisfies u′1 = u1 such that the associated T -invariant curve is
completely contained in X(β). Since u0 ∈ WG(β) and u1 ∈ WG(β) it
clearly follows that β1 ∈ R(β). Therefore u0, u1 = u′1, . . . , u

′
s is a chain

from u to w∗ of degree d = d(β1) + d′ which satisfies u0 = u such that
the associated T -invariant curve is completely contained in X(β). But

this means that x(u) ∈ Γβ
d(Xw) as required. This completes the proof

of the inclusion from right to left. �

Lemma 6.59. Let u ∈ W be a Weyl group element. Let β ∈ B. Let
u0, . . . , ur be a chain of degree δ(u) from u to wX such that u0 ∈ WG(β).
Let αi ∈ R+ \ R+

P be the unique root such that sαi
ui−1 = ui for all i.

Then ui ∈ WG(β) for all i and αi ∈ R(β) for all i.

Proof. Let u0, . . . , ur be as in the statement. By Corollary 6.11 we
know that u0 � u1 � · · · � ur. Since u0 ∈ WG(β) and β ∈ B this
implies that ui ∈ WG(β) for all i. Since sαi

ui−1 = ui this implies that
αi ∈ R(β) for all i. �
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Lemma 6.60. Let β ∈ B. Then δβ and δ coincide on WG(β), i.e.
δβ(u) = δ(u) for all u ∈ WG(β).

Proof. By definition we have δ ≤ δβ since the minimum in δ runs
through a larger set of chains which includes the set of chains concerned
in δβ. To prove the other equality, let u ∈ WG(β). Let u0, . . . , ur

be a chain from u to wX of degree δ(u) which satisfies u0 = u and
ur = 1. Since u0 ∈ WG(β) and β ∈ B the previous lemma implies that
the T -invariant curve associated to the chain u0, . . . , ur is completely
contained in X(β), so that it is part of the set of chains concerned
in δβ(u). This implies that δβ(u) ≤ δ(u). In total, we get equality
δβ(u) = δ(u) for all u ∈ WG(β).

A different way to see the statement is to use (local) curve neigh-
borhoods. Let u ∈ WG(β) and β ∈ B. On the one hand we have

u � zβ
δβ(u) � zδβ(u) which implies that δ(u) ≤ δβ(u). This means in

particular that δ(u) ∈ H2(X(β),Z) since δβ(u) ∈ H2(X(β),Z) by def-
inition. On the other hand u � zδ(u) and u � wo(β) implies that

u � zβ
δ(u) since Γβ

δ(u)(X1) = Γδ(u)(X1) ∩ X(β). But u � zβ
δ(u) implies

that δβ(u) ≤ δ(u). In total, we again find that δβ(u) = δ(u) for all
u ∈ WG(β). �
Definition 6.61. A root α ∈ R+ \ R+

P is called locally P -cosmall if
there exists a root β ∈ B such that supp(α) ⊆ supp(β) and such that α
is P (β)-cosmall in X(β).

Definition 6.62. A root α ∈ R+\R+
P is called locally P -indecomposable

if there exists a root β ∈ B such that supp(α) ⊆ supp(β) and such that
α is P (β)-indecomposable in X(β).

Example 6.63. Every P -cosmall root / P -indecomposable root is in
particular locally P -cosmall / locally P -indecomposable. We just apply
the defintion to β = θ1 ∈ B.

Every root β ∈ B is locally P -cosmall. Indeed, let β ∈ B then β
is locally high, which means that β is the highest root of R(β). This
implies that β is P (β)-cosmall in X(β). Therefore it follows from the
definition that β is locally P -cosmall.

Lemma 6.64. A root α ∈ R+ \R+
P is P -indecomposable if and only if

it is locally P -indecomposable.

Proof. A root which is P -indecomposable is clearly locally P -indecom-
posable. Suppose that α is locally P -indecomposable. Let β ∈ B such
that supp(α) ⊆ supp(β) and such that α is P (β)-indecomposable in
X(β). Then we have δβ(sα) = d(α). But since δ and δβ coincide
on WG(β) we also have δ(sα) = d(α). Let β1, . . . , βr ∈ R+ \ R+

P be
a sequence of roots such that sαWP = sβ1 · · · sβrWP and such that
d(α) =

∑r
i=1 d(βi). We have to show that r = 1. The sequence

u0 = sβ1 · · · sβr , u1 = sβ2 · · · sβr , . . . , ur−1 = sβr , ur = 1 defines a chain



54

of degree δ(sα) = d(α) from sα to wX such that u0 ∈ WG(β). This
implies that ui ∈ WG(β) for all i and that βi ∈ R(β) for all i. The
equation sαWP = u0WP clearly also holds modulo WP (β). Since α is
P (β)-indecomposable in X(β) this implies r = 1 as required. �
Lemma 6.65. Let α be a locally P -cosmall root. If P is maximal, then
δ(sα) = d(α). In particular, if P is maximal we have δ(sβ) = d(β) for
all β ∈ B.

Proof. Suppose that α is locally P -cosmall. Let β ∈ B such that
supp(α) ⊆ supp(β) and such that α is P (β)-cosmall in X(β). If P -
maximal, we can assume that P (β) is also maximal. Otherwise we had
G(β) = P (β) ⊆ P and thus δ(sα) = d(α) = 0 for all α ∈ R(β) ⊆ RP . If
P (β) is maximal, it follows that δβ(sα) = d(α) since α is P (β)-cosmall
in X(β). Since δβ and δ coincide on WG(β) for all β ∈ B it follows that
δ(sα) = δβ(sα) = d(α) as claimed.

The last statement is clear since every element of B is locally P -
cosmall. �
Example 6.66. Suppose that P is maximal. Every root β ∈ B is P -
indecomposable. Indeed, every root β ∈ B is locally P -cosmall and
satisfies δ(sβ) = d(β) since P is maximal, therefore every β ∈ B is
locally P -indecomposable, therefore P -indecomposable.

Lemma 6.67. Let α ∈ R+\R+
P be a P -indecomposable root. Let β ∈ B

be a root such that supp(α) ⊆ supp(β) or equivalent such that α ≤ β.
Then d(α) ≤ d(β). In particular, if P is maximal and if β, β′ ∈ B are
two roots such that β ≤ β′. Then d(β) ≤ d(β′).

Proof. Let α and β be as in the statement. Since α is P -indecomposable
and since α ∈ R(β) we know that α is also P (β)-indecomposable in
X(β). By Lemma 6.44 there exists a root γ which is P (β)-cosmall in

X(β) such that zβ
d(α)WP = sγWP and such that d(α) = d(γ). Since

γ ∈ R(β) and β is locally high, it follows that γ ≤ β. Since β ∈ B
we know that β is P (β)-cosmall in X(β). Therefore we conclude that
d(γ) ≤ d(β) and thus d(α) ≤ d(β).

The last statement is clear since if P is maximal every element of B
is P -indecomposable. �
Theorem 6.68 ([9, Conjecture 6.5]). Assume that R is simply laced
and let α ∈ R+ \ R+

P . Then α is P -cosmall if and only if zd(α)WP =
sαWP .

Proof. If α is P -cosmall then zd(α)WP = sαWP is always satisfied (even
if R is not necessarily simply laced). Suppose that zd(α)WP = sαWP .
Let β be a maximal element of the set {γ ∈ R+ \ R+

P | d(γ) ≤
d(α) and γ ≥ α}. Then β is clearly also a maximal element of the
set {γ ∈ R+ \R+

P | d(γ) ≤ d(α)} since any element γ ∈ R+ \R+
P which

satisfies γ ≥ β and d(γ) ≤ d(α) also satisfies γ ≥ α. Since β ≥ α and
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since R is simply laced it follows that β∨ ≥ α∨ and thus d(β) ≥ d(α).
On the other hand we know that d(β) ≤ d(α) by the choice of β.
Therefore we have d(α) = d(β) and that β is P -cosmall. This implies
that zd(α)WP = sβWP = sαWP and thus α = β. This means that α is
P -cosmall. �
Corollary 6.69. Suppose that R is simply laced and that P is maximal.
Let α ∈ R+ \R+

P . If zd(α)WP = sαWP , then α is P -indecomposable.

Proof. Suppose that zd(α)WP = sαWP . Since R is simply laced we know
by the previous theorem that α is P -cosmall. Since P is maximal this
implies δ(sα) = d(α). Lemma 6.39 implies that α is P -indecomposable.

�
Example 6.70 ([9, Example 6.6]). We give an example for a root α ∈
R+ \R+

P such that zd(α)WP = sαWP and such that α is not P -cosmall.
By the previous theorem this is only possible if R is not simply laced.
Let R be of type B2 and let αP = α1. Let α = α1 + α2, let θ1 =
α1 + 2α2 and let θ2 = α1. We already saw in Example 6.40 that α
is not P -cosmall. We will see later (and it is easy to prove directly)
that sθ1sθ2WP = woWP . So it follows as in Example 6.40 that δ(wX) =
δ(sθ1sθ2) = 2. On the other hand we know that d(α) = 2 and thus
zd(α)WP = woWP . Together with the fact that sαWP = sθ1sθ2WP this
yields zd(α)WP = sαWP .

7. The distance function d

In this section we introduce the distance function d according to [11,
Definition 3.2] and relate it to the function δ.

As before, X = G/P denotes a homogeneous space where G is a
connected, simply connected linear algebraic group and P is a parabolic
subgroup.

Let x, y ∈ X, we define d(x, y) to be the degree d of a curve passing
through x and y such that the degree d is minimal in the set of all
degrees of curves passing through x and y. We further define

dX = max
x,y∈X

d(x, y) .

Note that the nature of the function d is similar to that of δ explained
in Remark 5.7.

We list immediate properties of the function d in the following

Lemma 7.1.

• The function d is a metric on X.
• The function d is G-invariant: for all x, y ∈ X and all g ∈ G

we have d(x, y) = d(gx, gy).
• Let u, v ∈ W . Then d(x(u), x(v)) = δ(v−1u) = δ(u−1v).
• Let x ∈ Ωu and y ∈ Ωv. Then d(x, y) ≥ d(x(u), x(v))
• Let x ∈ Ωu. Then d(x, x(1)) = d(x(u), x(1)) = δ(u).
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• Assume that P is maximal. Then we have the equality dX =
δ(wX) = d(x(wX), x(1)).

Proof. It is clear from the definition of d that d is symmetric and that
d(x, x) = 0 for all x ∈ X. Let x, y, z be arbitrary in X. Let f be a
curve of degree d(x, y) passing through x and y and let g be a curve
of degree d(y, z) passing through y and z. Then f ∪ g is a curve of
degree d(x, y) + d(y, z) passing through x and z. Therefore we have
d(x, z) ≤ d(x, y) + d(y, z). This proves that d is a metric on X.

Let x, y ∈ X and g ∈ G. Let f be a curve of degree d(x, y) passing
through x and y. Then gf is a curve of degree d(x, y) passing through
gx and gy. Therefore we have d(gx, gy) ≤ d(x, y). By replacing g with
g−1 / x with gx / y with gy the other inequality d(x, y) ≤ d(gx, gy)
follows. In total, we get equality d(x, y) = d(gx, gy).

Let u, v ∈ W . Since d(x(u), x(v)) = d(x(v−1u), x(1)) by the G-
ivariance of d, we can assume from the beginning that v = 1. We al-
ready saw that δ(u) = δ(u−1). We are left to show that d(x(u), x(1)) =
δ(u). We saw earlier that we can find a chain u0, . . . , ur from u to wX

of degree δ(u) which satisfies u0 = u and ur = 1. The T -invariant curve
associated to the chain u0, . . . , ur is a curve of degree δ(u) which passes
through x(u) and x(1). Therefore we find that d(x(u), x(1)) ≤ δ(u).
On the other hand, let f be a curve of degree d(x(u), x(1)) which passes
through x(u) and x(1). Then f converges to a T -invariant curve which
still passes through x(u) and x(1). This T -invariant curve is associ-
ated to a chain from u to wX of degree d(x(u), x(1)). It follows that
d(x(u), x(1)) ≥ δ(u). In total, we get equality d(x(u), x(1)) = δ(u) as
claimed.

Let x ∈ Ωu and y ∈ Ωv. Let f be a curve of degree d(x, y) passing
through x and y. Then f coverges to a T -invariant curve of degree
d(x, y) passing through x(u) and x(v). Therefore we have d(x, y) ≥
d(x(u), x(v)).

Let x ∈ Ωu. By the previous point, we already know that d(x, x(1)) ≥
d(x(u), x(1)). On the other hand, we know that d(x(u), x(1)) = δ(u).
Since u � zδ(u) we have Ωu ⊆ Γδ(u)(X1). Since x ∈ Ωu we can
find a curve of degree δ(u) passing through x and x(1). This means
that d(x, x(1)) ≤ δ(u) = d(x(u), x(1)). In total, we get equality
d(x, x(1)) = d(x(u), x(1)).

By the G-invariance of d, the previous point and Lemma 5.8, we
have

dX = max
x,y∈X

d(x, y) = max
x∈X

d(x, x(1)) = max
u∈W/WP

d(x(u), x(1))

= max
u∈W/WP

δ(u) = δ(wX) = d(x(wX), x(1)) .

This proves the desired equality. �
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Conjecture 7.2. The degree dX gives a maximal power qdX of the
quantum parameter q which can occur in an arbitrary quantum product
of two Schubert cycles.

Remark 7.3. We will see later that this conjecture is satisfied for a
specific class of homogeneous spaces where P is maximal (cf. Lemma
13.21, Remark 13.22). More generally it is known that this conjecture
is satisfied for all cominuscule homogeneous spaces (cf. [11, Proposition
28]).

8. The θ-sequence

Let X = G/P denote a homogeneous space where G is a connected,
simply connected, linear algebraic group and P is a maximal parabolic
subgroup. Since P is maximal we have a distinguished chain cascade
C(αP ) associated to αP . We always write C(αP ) = {θ1, . . . , θk} where
θ1 ≥ · · · ≥ θk are ordered according to their indices. We call the
sequence of roots θ1, . . . , θk the θ-sequence. The θ-sequence consists
precisely of the elements of B which are contained in R+ \R+

P . We al-
ways denote with k the length of the θ-sequence, that is the cardinality
of C(αP ). The θ-sequence was first introduced and intensively studied
in [25].

To simplify notation, we use the following notation adapted to the
θ-sequence.

Notation 8.1. For all 1 ≤ i ≤ k we write Ri = R(θi), Δi = Δ(θi),
Gi = G(θi), Pi = P (θi), Bi = B(θi), X

i = X(θi), gi = g(θi), pi = p(θi)
and di = d(θi).

Note that for all 1 ≤ i ≤ k we have H2(X,Z) = H2(X
i,Z) = Z.

Therefore every degree in H2(X,Z) is also a degree in H2(X
i,Z). For

each w ∈ WGi
and each degree d we write Γi

d(Xw) = Γθi
d (Xw) and

zi
d = zθi

d . We also write δi = δθi
although this notation is only of

technical nature since δ = δi on WGi
.

We know that every element of B is locally P -cosmall. More con-
cretely, for all 1 ≤ i ≤ k the root θi is Pi-cosmall in X i. Therefore
we have sθi

WP = zi
di
WP and thus Γi

di
(X1) = Xsθi

. The dimension

of Γi
di

(X1) is given by 
P (sθi
) = c1(X

i)di − 1. Moreover, we have
δ(sθi

) = di.

Remark 8.2. Note that we have δ(sθi
) = di for i ≥ 2 although the roots

θi for i ≥ 2 are not P -cosmall, since supp(θi) �= Δ for i ≥ 2. If P
is maximal P -cosmalleness of a root α is sufficient to guarantee that
δ(sα) = d(α) but it is not necessary.

Also, note that all elements of B are locally P -cosmall and P -inde-
composable. In particular, all θi for i ≥ 2 are locally P -cosmall and
P -indecomposable although the roots θi for i ≥ 2 are not P -cosmall,
since supp(θi) �= Δ for all i ≥ 2. If P is maximal P -cosmalleness of a
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root is sufficient for P -indecomposablility but not necessary. Indeed,
for all i ≥ 2 we must have zi

di
≺ zdi

or equivalent sθi
≺ zdi

.

Lemma 8.3. Let 1 ≤ i ≤ k. At most one irreducible component of
R◦

i is different from A1. Moreover R◦
i has at most three irreducible

components which happens if and only if Ri is of type D4.

Proof. We can clearly assume that i = 1. If R is of type An where
n ≥ 1, Cp where p ≥ 2, E6, E7, E8, F4 or G2 then there is at most one
irreducible component of R◦ and there is nothing to prove. If R is of
type B� where 
 ≥ 2 then there are at most two irreducible components
of R◦ with simple roots α1 and α3, . . . , α�. If R is of type Dp where
p > 4 then there are two irreducible components of R◦ with simple roots
α1 and α3, . . . , αp. If R is of type D4 then there are three irreducible
components of R◦ with simple roots α1 and α3 and α4. In each case
the assertion is true. �

Lemma 8.4. We have three integer sequences associated to X:

d1 ≥ d2 ≥ · · · ≥ dk ≥ 1


P (sθ1) > 
P (sθ2) > · · · > 
P (sθk
) > 0

c1(X) > c1(X
2) > · · · > c1(X

k) > 1

Proof. It is clear that θ1 ≥ θ2 ≥ · · · ≥ θk and that θi ∈ B for all i.
Therefore Lemma 6.67 implies d1 ≥ d2 ≥ · · · ≥ dk. Since θk �∈ RP it is
clear that dk ≥ 1. This proves the first integer sequence. Let 2 ≤ i ≤ k.
Since supp(θi) � supp(θi−1) we know that θi is not Pi−1-cosmall in
X i−1 (Remark 6.20) which means that 
P (sθi

) < c1(X
i−1)di − 1 ≤

c1(X
i−1)di−1 − 1 = 
P (sθi

). Since sθk
�∈ WP it is clear that 
P (sθk

) > 0.
This proves the second integer sequence. The third one follows from
the inequality 
P (sθi

) = c1(X
i)di − 1 < c1(X

i−1)di − 1. It is clear that
c1(X

k) > 0 since otherwise 
P (sθk
) < 0. To prove that c1(X

k) > 1, note
that θk is locally P -cosmall as it is an element of B and thus δ(sθk

) = dk.
On the other hand we know that δ(sθk

) ≤ 
P (sθk
) = c1(X

k)dk − 1.
Putting these inequalities together, we get 1 ≤ (c1(X

k) − 1)dk which
implies c1(X

k) > 1. �

Corollary 8.5. If X = G/P is a cominuscule homogeneous space,
then d1 = · · · = dk = 1.

Proof. Let X = G/P be a cominuscule homogeneous space. Then αP

and θ1 are both long roots. Therefore we have (θ1, θ1) = (αP , αP ) =
(ω, ω) and thus d1 = 〈θ∨1 , ω〉 = 〈θ1, ω

∨〉 = 1. Since d1 ≥ · · · ≥ dk ≥ 1 it
follows that d1 = · · · = dk = 1 as claimed. �

Lemma 8.6. Suppose that X �= G2/P1 and that X �= B�/P� where

 > 1 is odd. All elements of the θ-sequence are long. In particular,
for all 1 ≤ i ≤ k we have 〈θ∨i , α〉 ∈ {−1, 0, 1} for all α ∈ R \ {±θi}.
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Proof. This follows directly from Lemma 4.7 and its proof. �

Lemma 8.7. For all 1 ≤ i ≤ k, we have the following equation:

woWP |gi/pi
= sθi

· · · sθk
WP |gi/pi

.

Proof. By [21, Proposition 1.10] we know that wo =
∏

β∈B sβ. All

elements β ∈ B \ C(αP ) are contained in R+
P . Therefore we obtain

woWP = sθ1 · · · sθk
WP . Since sθj

acts trivially on gi for all j < i the
result follows if we restrict this equation to gi/pi. �

Corollary 8.8. For all 1 ≤ i ≤ k, we have that X i = Xwo(θi) =
Xsθi

···sθk
.

Proof. This is an immediate consequence of the previous lemma and
Corollary 4.9. �

Lemma 8.9 ([25, Lemma 9.4]). Let 1 ≤ i ≤ k. Then the P -length is
additive in the sense that


P (sθi
· · · sθk

) =
k∑

j=i


P (sθj
) .

For each w ∈ W we let I(w) = {α ∈ R+ | w(α) < 0} denote the
inversion set of w. We then have 
(w) = card(I(w)) or more generally

P (w) = card(I(w) \R+

P ).

Proof. Note that 
P = 
Pi
on WGi

. By replacing Ri with R it therefore
suffices to show that


P (sθ1 · · · sθk
) =

k∑
i=1


P (sθi
) .

Let u = sθ1 · · · sθk
for short. Each of the inversion sets I(sθi

) is con-
tained in Ri since sθi

∈ WGi
and since 
B = 
Bi

on WGi
. For all

1 ≤ i ≤ k let Ii = I(sθi
) \R+

Pi
. To prove the claimed equality it suffices

to show that I(u) \ R+
P can be written as a disjoint union of the sets

Ii as follows: I(u) \ R+
P =

∐k
i=1 Ii. We first prove that the sets Ii are

pairwise disjoint for different i.
Let γ ∈ Ii for some i. To see that the sets Ii are pairwise disjoint, it

is clearly sufficient to prove that γ �∈ Ij for all j > i. By [9, Theorem
6.1(c)] we know that 〈θ∨i , γ〉 ∈ {1, 2} and that the value 2 occurs if and
only if γ = θi. In particular γ is not orthogonal to θi and thus not
contained in Rj for any j > i, a fortiori not contained in Ij for any
j > i (Ij ⊆ Rj).

Next we prove that Ii ⊆ I(u) \ R+
P for all i. Let γ ∈ Ii. To see that

γ ∈ I(u) \ R+
P it is sufficent to prove that u(γ) < 0. Since θ1, . . . , θk

are pairwise orthogonal and γ is orthogonal to θj for all j < i as γ is
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an element of Ri we get that

u(γ) = sθi
· · · sθk

(γ) = γ −
k∑

j=i

〈
θ∨j , γ

〉
θj = sθi

(γ) −
k∑

j=i+1

〈
θ∨j , γ

〉
θj .

From this equation it follows immediately that

〈θ∨i , u(γ)〉 = 〈θ∨i , sθi
(γ)〉 = −〈θ∨i , γ〉

which implies that

sθi
u(γ) = u(γ) + 〈θ∨i , γ〉 θi .

By [9, loc. cit.] we know that 〈θ∨i , γ〉 ∈ {1, 2} and that the value 2
occurs if and only if γ = θi. Since γ ∈ Ri we also know that sθi

u(γ) =
sθi+1

· · · sθk
(γ) ∈ Ri. Suppose for a contradiction that u(γ) > 0. By

what we said before, we then have sθi
u(γ) > θi and sθi

u(γ) ∈ Ri. Since
this contradicts the fact that θi is the highest root of Ri we must have
u(γ) < 0. This shows the desired inclusion Ii ⊆ I(u) \R+

P for all i.

Finally we prove the inclusion I(u)\R+
P ⊆ ⋃k

i=1 Ii. Let γ ∈ I(u)\R+
P .

The root γ cannot be orthogonal to θi for all i since otherwise we had
u(γ) = γ > 0. Let i be the smallest index such such that γ is not
orthogonal to θi. Then we have that γ ∈ R+ \ R+

P is orthogonal to
θ1, . . . , θi−1 but not orthogonal to θi. This means that γ ∈ R+

i \ (R+
i+1∪

R+
Pi

) which in particular implies that sθi
(γ) ∈ Ri \ Ri+1. Therefore

we know that γ ≤ θi and that sθi
(γ) = γ − 〈θ∨i , γ〉 θi ≤ θi.These two

inequalities imply that the nonzero number 〈θ∨i , γ〉 is positive and thus
that sθi

(γ) < 0. This means that γ ∈ Ii as claimed. This completes
the proof. �

Remark 8.10. Let F be a subset of C(αP ). Let u =
∏

β∈F sβ. Let
r be the cardinality of the set F and let 1 ≤ i1 < · · · < ir ≤ k be
the sequence of integers such that F = {θi1 , . . . , θir}. The proof of
the previous lemma actually shows that I(u) \ R+

P =
∐r

j=1 Iij and in
particular that


P

(∏
β∈F

sβ

)
=
∑
β∈F


P (sβ) .

To simplify notation and to avoid the use of double indices we have
written out the arguments only for F = C(αP ) but the idea of the
proof works analogously for any F ⊆ C(αP ). The P -length additivity
for arbitrary subsets of C(αP ) directly generalizes to arbitrary subsets
of B (cf. proof of Corollary 8.17).

Remark 8.11. The proof of the previous lemma also shows that we have
Ii = R+

i \ (R+
i+1 ∪ R+

Pi
) for all 1 ≤ i ≤ k. Here we set by convention

Rk+1 = ∅. We will recover this equation in a more geometric context
later on (cf. Section 8.3).
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For all 1 ≤ i ≤ k, we know that zi
di

is the minimal length represen-
tative of sθi

. It is convenient to write s̃θi
= zi

di
.

Lemma 8.12. For all 1 ≤ i ≤ k the element s̃θk
· · · s̃θi

is a minimal
length representative of sθi

· · · sθk
. Moreover we have

s̃θk
· · · s̃θi

= s̃θk
· . . . · s̃θi

.

Proof. Let vi ∈ WP such that s̃θi
= sθi

vi. Since s̃θi
, sθi

∈ WGi
it is clear

that vi ∈ WGi
∩WP = WPi

. Since θi is orthogonal to all simple roots
in Δj for all j > i, it follows that sθi

vj = vjsθi
for all j > i. Using this

we obtain

sθi
· · · sθk

vk · · · vi = sθk
· · · sθi

vk · · · vi = sθk
vk · · · sθi

vi = s̃θk
· · · s̃θi

which means that sθi
· · · sθk

and s̃θk
· · · s̃θi

represent the same class mod-
ulo WP . Using the P -length additivity this gives

k∑
j=i


(s̃θj
) =

k∑
j=i


P (sθj
) = 
P (sθi

· · · sθk
) = 
P (s̃θk

· · · s̃θi
) ≤ 
(s̃θk

· · · s̃θi
)

Since the other inequality is always satisfied, we get equality in the
previous inequality, which means that s̃θk

· · · s̃θi
is a minimal length

representative of sθi
· · · sθk

and that this element is length additive. By
[9, Proposition 3.2] we get that s̃θk

· · · s̃θi
= s̃θk

· . . . · s̃θi
. �

Corollary 8.13. We can express X i for all 1 ≤ i ≤ k as iterated curve
neighborhood of a point as follows:

X i = Γi
di

(Γi−1
di−1

(· · · (Γk
dk

(X1)) · · · )) .
Proof. By the previous lemma and Corollary 8.8, we know that X i =
Xsθi

···sθk
= Xs̃θk

·...·s̃θi
. Since s̃θi

= zi
di

by definition, the statement is
now just a reformulation in terms of curve neighborhoods. �
Lemma 8.14. For all 1 ≤ i ≤ k the cohomology class σsθi

···sθk
is

Poincaré dual to the cohomology class σsθ1
···sθi−1

where we set for i = 1

the empty product equal to 1. In particular [X2] is Poincaré dual to
[Γd1(X1)].

Proof. We already know that wo(θi)WP = sθi
· · · sθk

WP . Since the
minimal length representative of sθi

· · · sθk
is given by s̃θk

· · · s̃θi
it fol-

lows that wXi = s̃θk
· · · s̃θi

. It is clear that wXi is Poincaré dual in
X i to the element 1. Therefore we have wo(θi)wXiwo(θi)wXi = 1.
Since wo|gi

= wo(θi)|gi
it follows also that wowXiwowXi = 1. If

we multiply this equation with s̃θi−1
· · · s̃θ1 from the right, we obtain

wowXiwowX = s̃θi−1
· · · s̃θ1 which means that wXi is Poincaré dual to

s̃θi−1
· · · s̃θ1 or equivalent that sθi

· · · sθk
is Poincaré dual to sθ1 · · · sθi−1

.
The statement in the last sentence is now obvious, since X2 =

Xsθ2
···sθk

and Γd1(X1) = Xsθ1
. �
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Example 8.15. Let X = G(3, 6) and denote with α1, . . . , α5 the simple
roots of G. The θ-sequence is given by

θ1 = α1 + · · · + α5 , θ2 = α2 + α3 + α4 , θ3 = α3 .

We have the following Weyl group elements (with the notation ex-
plained bellow)

sθ1 = (16) = (123654) = (2, 2, 0)

sθ2 = (25) = (2354) = (3, 2, 1)

sθ3 = (34) = (34) = (3, 3, 2)

sθ1sθ2 = (16)(25) = (1364)(25) = (1, 0, 0)

sθ2sθ3 = (25)(34) = (24)(35) = (3, 1, 1)

sθ1sθ2sθ3 = (16)(25)(34) = (14)(25)(36) = (0, 0, 0)

where the first equality is strict, the second equality in each line gives
the minimal length representative modulo WP = S3 × S3 and the
third equality gives the corresponding partition. Since B = C(αP )
we know that wo = sθ1sθ2sθ3 = (16)(25)(34). Therefore we see that
wP = wowX = (13)(46). The homogeneous spaces X2 and X3 and the
curve neighborhoods in X and X2 are given by

X2 = Xsθ2
sθ3

= X(3,1,1) = G(2, 4) , X3 = Xsθ3
= X(3,3,2) = G(1, 2) ,

Γ1(X1) = Xsθ1
= X(2,2,0) , Γ2

1(X1) = Xsθ2
= X(3,2,1) .

We can verify in this example the general results we obtained so far:
[Γ1(X1)] and [X2] are Poincaré dual to each other, sθ1sθ2 and sθ3 are
Poincaré dual to each other, we have that Γ2

1(X1) = Γ1(X1) ∩X2 and
that Γ3

1(X1) = X3 = Γ1(X1) ∩X3.

8.1. Algorithmic computation of dX.

Proposition 8.16. We have the following identities:

dX =
k∑

i=1

di and δ(wX) =
k∑

i=1

δ(sθi
) .

In particular, the chain sθ1 · · · sθk
, sθ2 · · · sθk

, . . . , sθk
, 1 from wX to wX

is of degree δ(wX).

Proof. The first formula is clearly equivalent to the second one by the
results we obtain up to now. We prove these formulas by induction on k.
If k = 1, then sθ1WP = woWP and we get dX = δ(wX) = δ(sθ1) = d1.
Suppose that k > 1 and that the formula is proven for all integers
smaller than k. By Lemma 6.54, we know that δ(wX) = d1 + δ(s∗θ1

).
On the other hand we have that s∗θ1

WP = sθ2 · · · sθk
WP = wo(θ2)WP .

The induction hypotheses implies that δ2(wo(θ2)) =
∑k

i=2 di. Moreover
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we know that δ2 = δ on WG2 . Putting these facts together, we get

dX = δ(wX) = d1 + δ(s∗θ1
) = d1 + δ(wo(θ2)) =

k∑
i=1

di .

The very last statement is now obvious. �
Corollary 8.17. Let F be a subset of B. Then δ is additive in the
sense that

δ

(∏
β∈F

sβ

)
=
∑
β∈F

δ(sβ) =
∑
β∈F

d(β) .

Proof. We only need to prove the first equality in the statement. The
second equality is then obvious since we know that δ(sβ) = d(β) for
all β ∈ B. We first reduce to the case where F is a subset of C(αP ).
Note that all elements of B\C(αP ) must be contained in R+

P since they
do not contain αP in their support. Since sβ and sβ′ commute for all
β, β′ ∈ B this implies that(∏

β∈F

sβ

)
WP =

⎛⎝ ∏
β∈F∩C(αP )

sβ

⎞⎠WP .

Since δ depends only on the class modulo WP the previous equation
implies in particular that

δ

(∏
β∈F

sβ

)
= δ

⎛⎝ ∏
β∈F∩C(αP )

sβ

⎞⎠ .

Moreover we have δ(sβ) = 0 for all β ∈ B \ C(αP ) since sβ ∈ WP .
Therefore it is clear that we have∑

β∈F

δ(sβ) =
∑

β∈F∩C(αP )

δ(sβ) .

By replacing F with F ∩C(αP ) we may assume that F ⊆ C(αP ). Next
we reduce to the case where F = C(αP ). The case F = C(αP ) is clear
from the previous proposition since δ(wX) = δ(sθ1 · · · sθk

). The triangle
inequality for δ gives

δ(sθ1 · · · sθk
) ≤ δ

(∏
β∈F

sβ

)
+ δ

⎛⎝ ∏
β∈C(αP )\F

sβ

⎞⎠ ≤
k∑

i=1

δ(sθi
) .

Since the left side is known to be equal to the right side, we get equality
everywhere. In particular the claim follows. �
Corollary 8.18. Let β, β′ ∈ B such that β ≤ β′. Then δ(wo(β)) ≤
δ(wo(β

′)).
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Proof. If β ∈ R+
P then wo(β) ∈ WP and δ(wo(β)) = 0. There is nothing

to prove in this case. Suppose that β ∈ R+\RP , then also β′ ∈ R+\RP .
Therefore we have β, β′ ∈ C(αP ). Let β = θi and β′ = θj. Then i ≥ j
since β ≤ β′. It follows that

δ(wo(β)) =
k∑

l=i

δ(sθl
) ≤

k∑
l=j

δ(sθl
) = δ(wo(β

′)) .

�
Corollary 8.19. Let f be a curve of degree dX which passes through
Ωsθi

···sθk
for all 1 ≤ i ≤ k. Then f converges to the T -invariant curve

associated to the chain sθ1 · · · sθk
, sθ2 · · · sθk

, . . . , sθk
, 1.

Proof. We know that f converges to a T -invariant curve of degree dX

which passes through the T -fixed points

x(sθ1 · · · sθk
), x(sθ2 · · · sθk

), . . . , x(sθk
), x(1) .

But since sθi
are P -indecomposable for all 1 ≤ i ≤ k, there is only one

T -invariant curve passing through those T -fixed points, namely the T -
invariant curve associated to the chain sθ1 · · · sθk

, sθ2 · · · sθk
, . . . , sθk

, 1.
�

Proposition 8.20. If X = G/P is a cominuscule homogeneous space
the following numbers are equal:

• dX = k
• The dimension of a Cartan subspace of p, i.e. the dimension

of a maximal abelian subspace of p consisting of semisimple
elements. (This is well defined since all the Cartan subspaces
of p are L-conjugates.)

• The number of occurences of sαP
in a reduced expression of wX .

(This well defined since X is cominuscule.)
• The number of orbits of the isotropy representation.
• The rank rk(X) of X.

Proof. That dX = k is clear since d1 = · · · = dk = 1 for a cominuscule
homogeneous space X. Let a be a Cartan subspace of p. That k =
dim(a) was proved in [28, Proposition 2.1(3)]. That dX = δ(wX) equals
the number of occurences of sαP

in a reduced expression of wX was
proved in [11, Lemma 21]. That dim(a) equals the number of orbits of
the isotropy representation was proved in [16, 6.2]. That dim(a) equals
the rank rk(X) of X was proved in [30, Proposition 26.7]. �

Since P is maximal, we know that B consists of a unique root α
and that B∗ consists also of a unique root β = ϕ(α). We denote the
degree by d(B) = d(α) = d(β). In the same way we associated to X
the sets B and B∗ we can associate to X i sets Bi and Bi∗. We denote
the degree of the unique element of Bi (or Bi∗) by d(Bi). Since θk is
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P -indecomposable, it is easy to see that Bk = Bk∗ = {θk} and thus
d(Bk) = dk.

Lemma 8.21. We have the following ascending integer sequence:

d(B) ≤ d(B2) ≤ · · · ≤ d(Bk) = dk .

Proof. It is clearly enough to prove that d(B) ≤ d(B2). If we want to
prove that d(Bi) ≤ d(Bi+1) we just replace X with X i. Let α′ ∈
B2. Let u′0, . . . , u

′
r be a chain in X2 from wX2 to wX2 of degree

dX2 =
∑k

i=2 di such that u′1 = wo(θ2)sα′ . Then u0 = sθ1u
′
0, . . . , ur =

sθ1u
′
r, ur+1 = u′r is a chain in X from wX to wX of degree dX =

∑k
i=1 di.

Then we have u1 ∈ U and δ(u∗1) = d(α′) = d(B2). From the definition
it then follows that d(B) ≤ d(B2). �
Corollary 8.22. If X is cominuscule we have Bi = {θi} for all 1 ≤
i ≤ k. In particular, d(B) = · · · = d(Bk) = dk = · · · = d1 = 1.

Proof. Since X is cominuscule, we know that dk = 1. Since d(B) > 0
by definition, it follows that d(B) = · · · = d(Bk) = dk = · · · = d1 = 1.
By definition the unique element of Bi is the unique maximal root of
d(Bi) = 1 contained in R+

i \ R+
Pi

. Therefore it is clear that Bi = {θi}
as claimed. �
Lemma 8.23. Let β be the unique element of B∗. Then we have
sβ � sθi

for all 1 ≤ i ≤ k. This means in particular that β ∈ R+
k \R+

Pk
,

β ≤ θk and that β is orthogonal to θ1, . . . , θk−1 but not orthogonal to
θk.

Proof. Let us first prove that sβ � sθk
. Let α be the unique element

of B. Since d(B) ≤ dk we have that δ(s∗α) ≥∑k−1
i=1 di. This shows that

sθ1 · · · sθk−1
� zδ(s∗α). By dualizing this inequality, we get that sβ � sθk

.
This means that β ∈ R+

k \ R+
Pk

, in particular that β ∈ R+
i \ R+

Pi
for

all 1 ≤ i ≤ k. Once we know this it is clear that sβ � zi
d(B). Since

d(B) ≤ dk ≤ di this implies that sβ � zi
di

which means that sβ � sθi
.

The last sentence of the statement is now obvious. �
Lemma 8.24. Let z = zk

d(B). We clearly have z � sθk
. Moreover

we have z∗ ∈ U1. Let β′ be the unique root in R+ \ R+
P such that

zWP = sβ′WP (which exists since z is P -indecomposable). The root
β′ is locally P -cosmall and contained in R+

k \ R+
Pk

. Moreover we have
β ≤ β′ ≤ α and β ≤ β′ ≤ θk.

Proof. Let z = zk
d(B). From the definition it is clear that z � sθk

. We

prove that z∗ ∈ U1. Since δ = δk on WGk
we clearly have δ(z) = δk(z).

On the other hand we know that δk(z) ≤ d(B) from the definition of
z. Therefore we get δ(z) ≤ d(B). Since δk(sβ) = δ(sβ) = d(β) = d(B),
we get sβ � z. On the other hand it is clear that z � zd(B) and thus
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z � sα. This means that z is in the interval sβ � z � sα. By what we
saw before this implies that z∗ ∈ U1.

Let β′ ∈ R+ \ R+
P be as in the statement. From the definition it is

clear that β′ ∈ U∗
1 and thus β′ is P -indecomposable. It is also clear that

β′ ∈ R+
k \R+

Pk
. Since β′ is P -indecomposable and since sβ′WP = zWP ,

it follows that β′ is Pk-cosmall in Xk and thus locally P -cosmall. That
β′ ≤ θk is clear since β′ ∈ Rk. For all roots γ ∈ U∗

1 we know that γ ≤ α.
In particular, we know that β′ ≤ α. We are left to show that β ≤ β′.
By definition, β′ is the unique maximal root of d(β′) = d(β) = d(B) in
R+

k \R+
Pk

. Therefore it follows that β ≤ β′. �

Remark 8.25. It is unclear if it can happen that d(B) < dk. We are
not able to provide an example with justification of this behaviour. If
d(B) = dk (which happens for example if k = 1, if X is cominuscule or
more generally if dk = 1) we can say that θk ∈ U∗

1 , since zWP = sθk
WP

in this case.

Example 8.26. Suppose that dX = k = 2. Then it is clear that d1 =
d2 = 1 and thus d(B) = 1. Therefore B consists of the unique maximal
root of 1 which is the highest root θ1. Since θ1 is P -cosmall we have
that sθ1WP = z1WP . Moreover s∗θ1

WP = sθ2WP . Using this we see from
the definition of B∗ that B∗ = {θ2} in other words that ϕ(θ1) = θ2.
Corollary 6.56 then gives us that

U∗
1 = {β ∈ R+ \R+

P | sθ2 � sβ � sθ1}
or equivalently that

U1 = {u ∈ W/WP | sθ2 � u∗ � sθ1} .
In particular we see that the intervall in the Bruhat order which de-
scribes U1 and U∗

1 is nontrivial in the sense that it consists of more than
one element.

8.2. The structure of Ω. In this subsection we will always suppose
that k ≥ 2. For all 1 ≤ i ≤ k let Ii = Δi \ Δi+1 where we set
Δk+1 = ∅. Let P ′

i be the parabolic subgroup of Gi associated to Δi+1:
P

′
i = (Pi)Δi+1

= (Pi)Δi\Ii
. Let Ωi = P ′

iwo(θi)P/P be the P ′
i -orbit in X

parametrized by wo(θi).
Note that Ωi is open and dense in X i. Indeed, Ωi is dense in X i since

it contains the open and dense subvariety Ωwo(θi) of X i. Moreover Ωi

is open since it is locally closed and the closure of Ωi is X i.
To simplify notation we write I = I1, P

′ = P ′
1 and Ω = Ω1 =

P ′woP/P . Let P ′− be the parabolic subgroup of G opposite to P ′. Let
L′ be the Levi factor of P ′ (or P ′−). Let V ′ be the unipotent radical of
P ′ and let V ′− be the unipotent radical of P ′−.

Since wo|gi
= wo(θi)|gi

for all 1 ≤ i ≤ k we know that the Weyl
involution ι leaves stable Δi. In particular ι leaves stable Ii.
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For a root β ∈ R we may write β as an integral linear combination
of simple roots. We denote the coefficient of a simple root α in this
expression by nα(β). With this notation we have

β =
∑
α∈Δ

nα(β)α .

Depending wether β is a positive or a negative root, either all coeffi-
cients nα(β) are non negative or non positive. If S ⊆ Δ is a subset of
simple roots, we set

nS(β) =
∑
α∈S

nα(β) .

Fact 8.27. We have two trivial identities:

{β ∈ R | nI(β) > 0} = R+ \R+
2

{β ∈ R | nI(β) < 0} = R− \R−
2

Proof. The second identity is a trivial consequence of the first one and
vice versa. We prove the first identity. Note first that

{β ∈ R | nI(β) > 0} = {β ∈ R+ | nI(β) > 0}
since every root β which has at least one positive coefficient nα(β) must
be positive. Therefore the desired equality follows from the equality

{β ∈ R+ | nI(β) = 0} = R+
2

by taking complements. The inclusion from right to left is obvious. A
root β ∈ R+ which satisfies nI(β) = 0 must be a linear combination
of simple roots in Δ2 (because Δ = I � Δ2). This proves that a root
β ∈ R+ which satisfies nI(β) = 0 is contained in R+

2 . This shows the
inclusion from left to right. �
Corollary 8.28. We have the following identities:

V ′ =
∏

β∈R+\R+
2

Uβ , V
′− =

∏
β∈R−\R−

2

Uβ ,

where Uβ denotes as usual the unique T -stable subgroup of G having
Lie algebra gβ.

Proof. The first identity clearly follows from the second one and vice
versa since wo(R

+ \R+
2 ) = R− \R−

2 . We prove the first identity. From
[3, Proposition 4.7] it follows that

V ′ =
∏

β∈R : nI(β)>0

Uβ .

The result is now a trivial consequence of the previous fact. �
Corollary 8.29. The groups V ′ and V ′− are stable under conjuga-
tion with elements of WG2: for all w ∈ WG2 we have wV ′w−1 = V ′,
wV ′−w−1 = V ′− or equivalent wV ′ = V ′w, wV ′− = V ′−w.
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Proof. Let w ∈ WG2 . By the previous corollary it clearly suffices to
prove that w(R+ \ R+

2 ) = R+ \ R+
2 and w(R− \ R−

2 ) = R− \ R−
2 . The

first equation is a trivial consequence of the second one and vice versa.
We prove the first equation. Since w ∈ WG2 we know that w leaves
stable R, R2 and therefore also R \ R2. Since 
B = 
B2 on WG2 it is
clear that no positive root in R+ \ R+

2 can be mapped to a negative
root. Therefore the desired equality follows. �
Lemma 8.30. Let α be a positive root such that sαsθ1 · · · sθk

∈ WG2

(or equivalently such that sαsθ1 ∈ WG2). Then α = θ1.

Proof. By assumption sαsθ1 is an element of WG2 , therefore it follows
from the definition that sαsθ1(θ1) = θ1. On the other hand we have by
direct computation that sαsθ1(θ1) = −θ1 + 〈α∨, θ1〉α. So we conclude
that 2θ1 = 〈α∨, θ1〉α. Since θ1 is the highest root and α is positive,
this is only posible if 〈α∨, θ1〉 ≥ 2. If 〈α∨, θ1〉 = 2 it follows that α = θ1

as claimed. Assume that 〈α∨, θ1〉 > 2. Then we have necessarily that
〈α∨, θ1〉 = 3 and R is of type G2. By assumption k ≥ 2 so that
necessarily αP = α1. Therefore R2 is of type A1 and WG2 = {1, sα1}.
If sαsθ1 = 1 it follows that α = θ1 as claimed. Assume that sαsθ1 = sα1

then we get by evaluating this equation at α1 that α1−〈α∨, α1〉α = −α1

and thus 2α1 = 〈α∨, α1〉α. This is only possible if 〈α∨, α1〉 = 2 and
α = α1. The equation sαsθ1 = sα1 then becomes sθ1 = 1 which is
absurd. �
Lemma 8.31. For all elements w ∈ WG2 we have that sθ1 � wsθ1 · · · sθk

.

Proof. Let w ∈ WG2 . Since sθ1 and sθ2 · · · sθk
are Poincaré dual to

each other, the statement sθ1 � wsθ1 · · · sθk
is equivalent to the state-

ment sθ2 · · · sθk
� wowsθ1 · · · sθk

. Since sθ1 · · · sθk
is Poincaré dual to

1 the expression wowsθ1 · · · sθk
is congruent to wowwo modulo WP .

Since wo|g2
= wo(θ2)|g2

we have that wowwo ∈ WG2 . The statement
sθ2 · · · sθk

� wowwo therefore becomes obvious since sθ2 · · · sθk
is the

maximal element with respect to the Bruhat order on WG2 (in other
words since Xsθ2

···sθk
= X2). �

Corollary 8.32. For all elements w ∈ WG2 we have that sθ1 � wsθ1.

Proof. This is an immediate consequence of the lemma since wsθ1 =
(wsθ2 · · · sθk

)sθ1 · · · sθk
and wsθ2 · · · sθk

∈ WG2 . �
Lemma 8.33. The open dense P ′-orbit Ω parametrized by wo decom-
poses into a finite disjoint union of Schubert cells as follows:

Ω =
∐

sθ1
�v

Ωv .

Proof. By [23, Proposition 2] Ω can be written as a disjoint union of
Schubert cells parametrized by an intervall in the Bruhat order:

Ω =
∐

wm�v�wM

Ωv .
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where wm, wM ∈ W/WP . Since ΩwX
⊆ Ω and wX is the unique maximal

element in the Bruhat order, we only have to determine wm. To this
end, let Ω∗ = woΩ. Then we can write

Ω∗ =
∐

v�w∗
m

B−vP/P .

On the other hand the B−-orbits of Ω∗ = P ′−P/P are parametrized
by WG2WP/WP

∼= WG2/WP2 since WP ′− = WP ′ = WL′ = WG2 and
WG2∩WP = WP2 . The unique maximal element in WG2 with respect to
the Bruhat order is given by sθ2 · · · sθk

since Xsθ2
···sθk

= X2. Therefore
we conclude that w∗

m = sθ2 · · · sθk
and thus wm = sθ1 as claimed. �

Corollary 8.34. We have that

Γd1(X1) ∩ Ω = Ωsθ1
.

Proof. Since Γd1(X1) = Xsθ1
the intersection Γd1(X1)∩Ω = Xsθ1

∩Ω is
B-stable, thus a union of Schubert cells parametrized by Weyl group
elements v which both satisfy v � sθ1 (since Ωv ⊆ Xsθ1

) and v � sθ1

(since Ωv ⊆ Ω). There is only one such Schubert cell, namely Ωsθ1
.

The claim follows. �
Corollary 8.35. The T -fixed points of Ω and the T -fixed points of X2

are in natural bijection:

(X2)T = WG2/WP2
∼= {v ∈ W/WP | sθ1 � v} = ΩT .

A bijection is given by sending vWP2 ∈ (X2)T to the element vsθ1WP =
sθ1vWP . In particular, for every element w � sθ1 there exists a v ∈
WG2 such that wWP = vsθ1WP = sθ1vWP .

Proof. We already saw that we can identify the T -fixed points of Ω
and the T -fixed points of X2 with the sets described in the statement.
Moreover it is clear that we can write

WG2/WP2 = {w ∈ W/WP | w � sθ2 · · · sθk
} .

Therefore it is obvious that Poincaré duality induces a bijection be-
tween the T -fixed points of Ω and the T -fixed points of X2. In par-
ticular both sets have the same cardinality. Corollary 8.32 guarantees
that the map which sends vWP2 to vsθ1WP is a well defined map from
(X2)T to ΩT . Moreover this maps is clearly injective. Since source
and target have the same cardinality, it must be also bijective. The
statement in the last sentence is just a reformulation of the surjectivity
of this map. �

According to this results we can write Ω as a disjoint union of Schu-
bert cells as follows:

Ω =
∐

v∈WG2

Ωvsθ1
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or more generally

Ωi =
∐

sθi
�v�sθi

···sθk

Ωv =
∐

v∈WGi+1

Ωvsθi

for all 1 ≤ i ≤ k − 1.

Lemma 8.36. Let w be a Weyl group element such that w � sθ1 and
let α ∈ R+ \R+

P be a root such that sαw ∈ WG2. Then α = θ1.

Proof. Let w and α be as in the statement. If sαw ∈ WG2 then we
also have sαw

′ ∈ WG2 for every other element w′ in the class wWP .
Therefore we can assume by the previous corollary that w = sθ1v for
some v ∈ WG2 such that sαw ∈ WG2 . But this immediately implies
that sαsθ1 ∈ WG2 . Lemma 8.30 then shows that α = θ1 as claimed. �

8.3. The morphism g1. In this subsection we still assume that k ≥ 2.

Lemma 8.37. Ω is an open and dense subvariety of X with com-
plement of codimension at least two which is contained in X \ X2.
Moreover there exists a surjective morphism

g1 : Ω → X2 .

Proof. We already saw that Ω is an open and dense subvariety of X.
We have a trivial decomposition of Δ into a disjoint union: Δ = I�Δ2.
Since ι leaves stable I and since αP ∈ Δ2, it follows that ι(I)∩{αP} =
I ∩ {αP} = ∅. [24, Proposition 6] then implies that the complement
of Ω in X is of codimension at least two. In order to see that Ω ⊆
X \X2, we prove the stronger statement that Ω ⊆ X \P ′u2P/P where
u2 = sθ2 · · · sθk

for short. Suppose this inclusion does not hold, then it

follows that Ω ⊆ P ′u2P/P because of the structure of the P ′-orbits in
X. This implies that Ω = P ′u2P/P since Ω is the maximal P ′-orbit in
X. By the structure of Ω this means that sθ1 � u2 which implies that
sθ1 ∈ WG2 and that θ1 ∈ R+

2 – a contradiction.
We now introduce the surjective morphism g1 : Ω → X2. We consider

the composition of surjective morphisms

Ω
∼−→ P ′−P/P ∼= P ′−/P ′− ∩ P → L′/L′ ∩ P

where the first morphism is given by multiplication with w−1
o = wo

from the left and the third morphism is the projection onto the Levi
factor L′. Because of the decomposition of Δ = I � Δ2 it is clear that
L′ decomposes as

L′ ∼= (Gm)I ×G2 .

This isomorphism sends L′∩P to a product of (Gm)I and the parabolic
subgroup of G2 associated to αP (which makes sense, since αP ∈ Δ2)
which is P2. Thus L′/L′ ∩ P ∼= G2/P2 = X2. In total this defines a
surjective morphism g1 : Ω → X2. �
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It is clear that we can introduce analogously for each 1 ≤ i ≤ k − 1
surjective morphisms

gi : Ωi → X i+1 .

These morphism satisfy analogous properties as we will state for g1. To
simplify notation we will usually consider only the case i = 1 in what
follows.

Corollary 8.38. For all 1 ≤ i ≤ k we have the following formulas


P (sθi
) = card(R+

i \ (R+
i+1 ∪R+

Pi
))

where we set Rk+1 = ∅.
Proof. The formula for i = k follows since Xk = Xsθk

. By replacing

X with X i we can assume without loss of generality that i = 1. From
the definition of g1 it is clear that the fiber of g1 is isomorphic to
V ′−/V ′− ∩ P . From the structure of V ′− we see that

dim(V ′−/V ′− ∩ P ) = card(R− \ (R−
2 ∪R−

P )) = card(R+ \ (R+
2 ∪R+

P )) .

Since Ω is dense in X, we know that dim(X) = dim(Ω). Therefore the
surjective morphism g1 yields the equation

dim(X) = dim(V ′−/V ′− ∩ P ) + dim(X2) .

From the P -length additvity, we already know that

dim(X i) = 
P (sθi
· · · sθk

) =
k∑

j=i


P (sθj
)

for all 1 ≤ i ≤ k. Therefore we have

dim(X) − dim(X2) = 
P (sθ1) .

Putting all these equation together the desired equation with i = 1
follows. �
Corollary 8.39. For all 1 ≤ i ≤ k we have an equality:

I(sθi
) \R+

Pi
= R+

i \ (R+
i+1 ∪R+

Pi
)

where we set Rk+1 = ∅.
Proof. We already saw that I(sθi

) ⊆ R+
i . Since all elements of Ri+1 are

orthogonal to θi they can not be part of the inversion set. It follows
that I(sθi

) ⊆ R+
i \R+

i+1 and thus I(sθi
) \R+

Pi
⊆ R+

i \ (R+
i+1 ∪R+

Pi
). By

the previous corollary both sets of this inclusion have cardinality equal
to 
P (sθi

). Therefore the desired equality follows. �
From the previous equality we see once more that we have a disjoint

union:

R+ \R+
P =

k∐
i=1

I(sθi
) \R+

Pi
.
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We already saw this in the proof of Lemma 8.9. It is of course also possi-
ble to prove the previous corollary directly without using the morphism
g1. As a direct consequence of the previous corollary and [9, Theorem
6.1(c)] we can say that 〈θ∨i , γ〉 ∈ {1, 2} for all γ ∈ R+

i \ (R+
i+1 ∪ R+

Pi
)

and that the value 2 occurs if and only if γ = θi.

Lemma 8.40. The fiber of g1 is isomorphic to the degree d1 curve
neighborhood of a point in X intersected with Ω:

V ′−/V ′− ∩ P ∼= V ′woP/P = g−1
1 (x(1)) ∼= Ωsθ1

= Γd1(X1) ∩ Ω .

Proof. It is clear from the definition of g1 that the fiber of g1 is isomor-
phic to V ′−/V ′− ∩ P . We have an isomorphism

V ′−/V ′− ∩ P ∼= V ′−P/P ∼= V ′woP/P

where the second isomorphism is given by multiplication with wo from
the left. From the definition of g1 it is clear that g−1

1 (x(1)) = V ′woP/P .
We already saw that Ωsθ1

= Γd1(X1) ∩ Ω. We are left to show that
V ′woP/P ∼= Ωsθ1

. Since V ′ is stable under conjugation with elements
of WG2 we have

V ′woP/P = V ′sθ1 · · · sθk
P/P = sθ2 · · · sθk

V ′sθ1P/P .

This defines an isomorphism

V ′woP/P ∼= V ′sθ1P/P

which is given by multiplication with sθ2 · · · sθk
from the left. Since

V ′ ⊆ B this gives an injective morphism V ′woP/P ↪→ Ωsθ1
. From

the previous corollary we know that both varieties have equal dimen-
sion 
P (sθ1). The unipotent radical V ′ is closed and connected hence
irreducible. Therefore V ′woP/P is also irreducible. Since Ωsθ1

is
an irreducible Schubert cell, it follows that the injective morphism
V ′woP/P ↪→ Ωsθ1

is actually an isomorphism as claimed. �

Remark 8.41. The morphism g1 was first introduced in a more general
setup in [24, Proposition 5]. It was proved there that g1 is a tower of
affine bundles.

8.4. The sets Oi. In this subsection we still suppose that k ≥ 2.
Moreover we assume that X �= G2/P1 and that X �= B�/P� where

 > 1 is odd so that we can freely use Lemma 8.6.

For all 2 ≤ i ≤ k we define the following sets of roots:

Oi = {β ∈ R+ \ (R+
2 ∪R+

P ) | sθi
(β) ∈ RP} .

We set O1 = {θ1}.
Lemma 8.42. Let 2 ≤ i ≤ k. Then we have the following equality of
sets:

Oi = {β ∈ R+ \ (R+
2 ∪R+

P ) | β = θi + α where α ∈ RP} .
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For all β ∈ Oi we have 〈θ∨i , β〉 = 1. The relation between α and
β is given by sθi

(β) = α ∈ R+
P . The degree of β ∈ Oi is given by

d(β) = di(θi, θi)/(β, β) ≥ di.

Proof. It is clear that θi �∈ R+ \ (R+
2 ∪ R+

P ). By Lemma 8.6 we have
〈θ∨i , β〉 ∈ {−1, 0, 1} for all β ∈ R+ \ (R+

2 ∪ R+
P ) in particular for all

β ∈ Oi. If β satisfies in addition sθi
(β) ∈ RP , then it is clear that

we must have 〈θ∨i , β〉 = 1. It follows that sθi
(β) = β − θi and thus

β = θi + sθi
(β) where sθi

(β) ∈ RP . This proves the inclusion from
left to right. To prove the other inclusion, let β ∈ R+ \ (R+

2 ∪ R+
P )

such that β = θi + α for some α ∈ RP . Then 〈θ∨i , β〉 = 2 + 〈θ∨i , α〉.
Since α �= ±θi as α ∈ RP we see that 〈θ∨i , β〉 , 〈θ∨i , α〉 ∈ {−1, 0, 1}. The
only possibility that the equation is satisfied occurs if 〈θ∨i , β〉 = 1 and
〈θ∨i , α〉 = −1. We conclude that sθi

(β) = β−θi = α ∈ RP . This proves
the inclusion from right to left. It also proves that 〈θ∨i , β〉 = 1 for all
β ∈ Oi. The relation between α and β was already established. It is
also clear that α is always positive since β − θi must be positive.

Let β ∈ Oi. We prove the equation for the degree of β. Since
sθi

(β) ∈ RP we have d(sθi
(β)) = 0. On the other hand we have

〈sθi
(β)∨, ω〉 = 〈β∨, ω − diθi〉 = d(β) − di 〈β∨, θi〉

by theW -invariance of 〈−,−〉. Since 〈θ∨i , β〉 = 1 we also have 〈β∨, θi〉 =
(θi, θi)/(β, β). Putting these equations together the desired equality
d(β) = di(θi, θi)/(β, β) follows. Since θi is long, it is clear that (θi, θi) ≥
(β, β) and thus d(β) ≥ di. �

Lemma 8.43. Let 2 ≤ i ≤ k. The set R+ \ (R+
2 ∪ R+

P ∪ Oi) is stable
under the action of sθi

:

sθi
(R+ \ (R+

2 ∪R+
P ∪Oi)) = R+ \ (R+

2 ∪R+
P ∪Oi) .

Proof. We know that the inversion set I(sθi
) is contained in Ri. There-

fore we see that sθi
(R+\R+

i ) = R+\R+
i , in particular sθi

(R+\(R+
2 ∪R+

P∪
Oi)) ⊆ R+. Let β ∈ R+ \ (R+

2 ∪R+
P ∪Oi). Since β /∈ Oi we know that

sθi
(β) /∈ RP and thus sθi

(β) ∈ R+ \R+
P . Since β ∈ R+ \ (R+

2 ∪R+
P ) we

know that β is not orthogonal to θ1. The equation (sθi
(β), θ1) = (β, θ1)

shows that sθi
(β) is also not orthogonal to θ1. Therefore we con-

clude that sθi
(β) ∈ R+ \ (R+

2 ∪ R+
P ). If sθi

(β) ∈ Oi then β ∈ RP

which is inpossible by the choice of β. Therefore we conclude that
sθi

(β) ∈ R+ \ (R+
2 ∪R+

P ∪Oi) as claimed. �

Corollary 8.44. Let 2 ≤ i ≤ k. We have the following equation:∑
β∈R+\(R+

2 ∪R+
P∪Oi)

〈θ∨i , β〉 = 0 .
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Proof. By the previous lemma we have∑
β∈R+\(R+

2 ∪R+
P∪Oi)

〈θ∨i , β〉 =
∑

β∈R+\(R+
2 ∪R+

P∪Oi)

〈θ∨i , sθi
(β)〉

= −
∑

β∈R+\(R+
2 ∪R+

P∪Oi)

〈θ∨i , β〉 .

This immediately implies the desired equality. �
Corollary 8.45. Let 2 ≤ i ≤ k. We have the following identity:

card(Oi) = (c1(X) − c1(X
2))di .

Proof. By [9, page 5, equation (3)] we know that

(c1(X) − c1(X
2))di =

∑
β∈R+\(R+

2 ∪R+
P )

〈θ∨i , β〉 .

Using the previous corollary, the fact that 〈θ∨i , β〉 = 1 for all β ∈ Oi

and the fact that Oi ⊆ R+ \ (R+
2 ∪R+

P ) we get∑
β∈R+\(R+

2 ∪R+
P )

〈θ∨i , β〉 =
∑
β∈Oi

〈θ∨i , β〉 = card(Oi) .

Both equation together yield the desired result. �
Lemma 8.46. Let β ∈ ⋃k

i=2Oi. Then 〈θ∨i , β〉 = 1 for precisely one
index 2 ≤ i ≤ k. If β ∈ Oi then

〈
θ∨j , β

〉 ∈ {−1, 0} for all 2 ≤ i �= j ≤ k.
In particular the sets Oi are pairwise disjoint for all 1 ≤ i ≤ k.

Proof. Suppose that β ∈ Oi for some 2 ≤ i ≤ k. Let j be an index
between 2 and k such that

〈
θ∨j , β

〉
= 1. We first prove that i = j in this

situation. Suppose for a contradiction that i �= j. Then we know that
sθi
sθj

(β) = β−θi−θj since 〈θ∨i , β〉 =
〈
θ∨j , β

〉
= 1. Moreover β−θi−θj

is a positive root since nI(β − θi − θj) = nI(β) > 0. It follows that
d(sθi

sθj
(β)) ≥ 0. On the other hand, we have〈

sθi
sθj

(β)∨, ω
〉

= 〈β∨, ω − diθi − djθj〉 = d(β) − di
(θi, θi)

(β, β)
− dj

(θj, θj)

(β, β)

where last equality follows since 〈θ∨i , β〉 =
〈
θ∨j , β

〉
= 1. We know from

Lemma 8.42 that d(β) = di(θi, θi)/(β, β). Therefore it follows that
d(sθi

sθj
(β)) = −dj(θj, θj)/(β, β) < 0 – a contradiction.

By what we proved up to now the statement in the first sentence
of the lemma is reduced to the statement that the union

⋃k
i=2Oi is

disjoint. Suppose that β ∈ Oi ∩ Oj where 2 ≤ i, j ≤ k. Then we have
β ∈ Oi such that

〈
θ∨j , β

〉
= 1. By what we proved in the first paragraph

we must have i = j. Therefore the sets Oi are pairwise disjoint for all
2 ≤ i ≤ k. This proves the statement in the first sentence of the lemma.

Since O1 is clearly disjiont from Oi for all 2 ≤ i ≤ k we also see that
the sets Oi are pairwise disjoint for all 1 ≤ i ≤ k. Since we know that
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always
〈
θ∨j , β

〉 ∈ {−1, 0, 1} for all β ∈ ⋃k
i=2Oi and all 2 ≤ j ≤ k the

second statement follows immediately from the first. �

Corollary 8.47. We have the following identity:

card

(
k⋃

i=1

Oi

)
= (c1(X)dX − dim(X)) − (c1(X

2)dX2 − dim(X2)) .

Proof. Recall that we have

dim(X) − dim(X2) = 
P (sθ1) = c1(X)d1 − 1

and dX = d1 + dX2 . Therefore the right side of the identity is equal to

1 + (c1(X) − c1(X
2))dX2 = 1 +

k∑
i=2

(c1(X) − c1(X
2))di .

If we plug in the identity from Corollary 8.45 and use the disjointness
from the previous lemma this expression becomes

1 +
k∑

i=2

card(Oi) =
k∑

i=1

card(Oi) = card

(
k⋃

i=1

Oi

)
.

�

Corollary 8.48. Let 2 ≤ i, j ≤ k be two indices. Then∑
β∈Oi

〈
θ∨j , β

〉
=
∑
β∈Oj

〈θ∨i , β〉 .

Proof. We may assume that i �= j. By be the previous lemma it suffices
to prove that the sets Aij = {β ∈ Oi |

〈
θ∨j , β

〉
= −1} and Aji = {β ∈

Oj | 〈θ∨i , β〉 = −1} are in bijection. We define a map ϕij from Aij to Aji

by sending β to sθj
sθi

(β). If we write β = θi+α where α = sθi
(β) ∈ R+

P

this map is given by θi + α �→ θj + α. Therefore it is obvious that
ϕij(β) ∈ Oj. It is clear that 〈θ∨i , ϕij(β)〉 =

〈
θ∨i , sθj

sθi
(β)
〉

= −〈θ∨i , β〉 =
−1. Therefore the map ϕij is well defined. Similarly we define a map
ϕji from Aji to Aij by sending β to sθi

sθj
(β). Then ϕij and ϕji are

inverse to each other. This proves that Aij and Aji are in bijection as
required. �

Conjecture 8.49. The sum
∑

β∈⋃k
j=1 Oj

〈θ∨i , β〉 is independent of i for

all 2 ≤ i ≤ k.

9. The diagonal curve

Let X = G/P be a homogeneous space where G is a connected,
simply connected, linear algebraic group and P is a maximal parabolic
subgroup.
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Let G′ be the subgroup of G defined as G′ = SL2(θ1)×· · ·×SL2(θk).
We call G′ the diagonal group. To abbreviate we set X ′ = G′x(1) =
G′/G′ ∩ P . We clearly have X ′ = Cθ1 × · · · × Cθk

∼= P1 × · · · × P1.
Let u = sθ1 · · · sθk

for short. We can define a rational curve of degree
dX passing through x(1) and x(u) via the composition

fΔ : P1 Δ−→ P1 × · · · × P1 ∼= X ′ ↪→ X ,

where Δ denotes the diagonal embedding. We call this curve the diag-
onal curve and denote its image by CΔ. The diagonal curve was first
introduced in [25, 3.2].

Let α be a root. We denote by xα the root vector corresponding to
α. We write xθ =

∑k
i=1 xθi

for short.

Fact 9.1. The diagonal curve has the following description in terms of
the exponential map:

fΔ : P1 → X , t �→ exp(txθ)x(1) .

In particular, the diagonal curve has tangent direction at x(1) given by
xθ.

Proof. Let α ∈ R+ \R+
P . The isomorphism P1 ∼= Cα is given explicitely

by the exponential map t �→ exp(txα)x(1). Using this description we
see from the definition of the diagonal curve that the diagonal curve is
given by

t �→ exp(txθ1) · · · exp(txθk
)x(1) .

Let i and j be two indices between 1 and k. Suppose that i ≤ j.
Then θi + θj is never a root, since otherwise it is contained in Ri and
larger than θi. Therefore we conclude that the elements xθ1 , . . . , xθk

are pairwise commutative. This implies that

exp(txθ1) · · · exp(txθk
) = exp(txθ) .

for all t ∈ P1. Therefore the diagonal curve is given by t �→ exp(txθ)x(1)
as claimed. The last sentence in the statement is obvious from the
definition of the exponential map. �

Let Oi be the set of all roots β ∈ R+
i \R+

Pi
such that β = θj + α for

some i ≤ j ≤ k and some α ∈ R+
Pi
∪ {0}. With this notation it is clear

that we have Ok ⊆ · · · ⊆ O1 and Ok = {θk}.
Fact 9.2. For all 1 ≤ i ≤ k− 1 we have the following identity: Oi+1 =
Oi ∩ (R+

i+1 \R+
Pi+1

) = Oi ∩Ri+1.

Proof. The inclusionsOi+1 ⊆ Oi∩(R+
i+1\R+

Pi+1
) ⊆ Oi∩Ri+1 are obvious.

Let β ∈ Oi ∩Ri+1. It is clear that β ∈ (R+
i \R+

Pi
)∩Ri+1 = R+

i+1 \R+
Pi+1

since R+
i ∩ Ri+1 = R+

i+1 and R+
Pi

∩ R+
i+1 = R+

Pi+1
. Let β = θj + α for

some i ≤ j ≤ k and some α ∈ R+
Pi

∪ {0}. Since β ∈ Ri+1 we have
nIi

(β) = nIi
(θj) + nIi

(α) = 0 and thus nIi
(θj) = nIi

(α) = 0 which
implies j ≥ i+ 1 and α ∈ R+

Pi+1
∪ {0}. This means that β ∈ Oi+1. �
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Lemma 9.3. Suppose that X �= G2/P1 and that X �= B�/P� where

 > 1 is odd. Then we have

O1 = O2 �
k∐

i=1

Oi .

Proof. By the previous fact we have O1 = O1∩ (R+ \R+
P ) = O2� (O1∩

(R+ \ (R+
2 ∪ R+

P ))) since R+ \ R+
P = (R+

2 \ R+
P2

) � (R+ \ (R+
2 ∪ R+

P )).
In Section 8.4 we saw that for all 1 ≤ i ≤ k we have the uniform
description

Oi = {β ∈ R+ \ (R+
2 ∪R+

P ) | β = θi + α where α ∈ R+
P ∪ {0}} .

From this description it is obvious that O1 ∩ (R+ \ (R+
2 ∪ R+

P )) =∐k
i=1Oi. �
Let 1 ≤ i ≤ k. Let Mi = M0,3(X

i, dXi). We denote by Mi(2) the
fiber of the evaluation map ev1 × ev2 : Mi → X i ×X i over

(x(1), x(wXi)) = (x(1), x(wo(θi))) .

The dimension of Mi(2) is given by

dim(Mi(2)) = c1(X
i)dXi − dim(X i) .

To abbreviate we write M = M1 and M(2) = M1(2).

Lemma 9.4. Suppose that X �= G2/P1 and that X �= B�/P� where

 > 1 is odd. For all 1 ≤ i ≤ k we have the following identity:

card(Oi) = dim(Mi(2)) .

Proof. By replacing X with X i we may assume that i = 1. We prove
the statement by induction on k. If k = 1 then dim(X) = 
P (sθ1) =
c1(X)d1 − 1 = c1(X)dX − 1 and thus dim(M(2)) = 1. On the other
hand we have O1 = {θ1} and thus card(O1) = 1. Assume that k > 1
and that the statement is known for all integers strictly smaller than k.
By induction hypothesis we then know that dim(M2(2)) = card(O2).
By Corollary 8.47 we know that

card

(
k⋃

i=1

Oi

)
= dim(M(2)) − dim(M2(2)) .

From the previous lemma we know that

card(O1) = card

(
k⋃

i=1

Oi

)
+ card(O2) .

Altogether this implies that card(O1) = dim(M(2)) as desired. �
Theorem 9.5 ([25, Proposition 3.1]). Suppose that X �= G2/P1 and
that X �= B�/P� where 
 > 1 is odd. The diagonal curve has a dense
open orbit under the action of G in M. In other words, the diagonal
curve is a general curve.
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Proof. First note that the claim is equivalent to saying that the diag-
onal curve has a dense orbit under the action of L in M(2) where L is
the Levi factor of P . Let TfΔ

be the tangent space at fΔ of the orbit
LfΔ of the diagonal curve under the action of L. In order to prove that
LfΔ is dense in M(2) it suffices to prove that dim(TfΔ

) = dim(M(2)).
We know that the tangent direction of fΔ at x(1) is given by xθ. By
letting the maximal torus T ⊆ L act on fΔ we see that the linearly in-
dependent root vectors xθ1 , . . . , xθk

are contained in the tangent space
TfΔ

. By letting L act on xθ1 , . . . , xθk
we see that the tangent space TfΔ

is spanned by the vectors xβ where β = θi + α for some 1 ≤ i ≤ k
and some α ∈ R+

P ∪ {0}. Let β = θi + α for some 1 ≤ i ≤ k and
some α ∈ R+

P . If β /∈ R then xβ = 0. If β ∈ R then clearly also
β ∈ R+ \ R+

P . Therefore we conclude that the tangent space TfΔ
is

spanned by the linearly independent root vectors xβ where β ∈ O1. In
other words this means that dim(TfΔ

) = card(O1). By the previous
lemma we know that card(O1) = dim(M(2)). Together this implies
that dim(TfΔ

) = dim(M(2)) as required. �
Remark 9.6. The idea of the previous result goes back to [25, Propo-
sition 3.1]. It is stated there in a more general context. However no
proof is given.

Remark 9.7. The author has checked that the previous proposition is
optimal in the sense that the diagonal curve has not a dense orbit under
action of G in M if X = G2/P1 or X = B�/P� where 
 > 1 is odd.

Indeed, let X = G2/P1 or X = B�/P� where 
 > 1. We will later
introduce a notion of dualizing variety and will see thatX is an instance
of a dualizing variety (Lemma 11.59). All we need to know for now is
the following formula for the dimension of X:

dim(X) =
c1(X)dX

2
which is proved in Corollary 11.62. This formula is obviously equivalent
to dim(M) = 3 dim(X) which is in turn equivalent to dim(M(2)) =
dim(X). In order to disprove the previous theorem it clearly suffices to
show that dim(TfΔ

) < dim(M(2)) which is in view of the preceeding
discussion and the proof of Theorem 9.5 equivalent to show that O1 �=
R+ \ R+

P . Therefore we only have to find a root β ∈ R+ \ R+
P which

is not contained in O1. Let β be any root which has αP -coefficient
equal to two and all other coefficients less or equal than one. Since X
is a dualizing variety we know that θk = αP (cf. Corollary 11.3, this
fact is also easy to check directly for our specific X). Since θk + α has
αP -coefficient equal to one for all α ∈ R+

P ∪ {0} we see that there is
no choice of α ∈ R+

P ∪ {0} such that β = θk + α. On the other hand
for i < k the root θi has more than one coefficient greater than one,
in particular there is no choice of α ∈ R+

P ∪ {0} such that β = θi + α.
This shows that β /∈ O1 as desired.



79

Conjecture 9.8. The diagonal curve has always a dense open orbit
under the action of Aut(X) in M.

Conjecture 9.9. Let 
 > 1 be odd and let p = 
 + 1 ≥ 3. Under the
isomorphism G2/P1

∼= Q5
∼= B3/P1 and the isomorphism

B�/P�
∼= GQ(
, 2
+ 1) ∼= GQ(p, 2p) ∼= Dp/Pp

the diagonal curve of the homogeneous space in the source is mapped
to the diagonal curve of the homogeneous space in the target. Both
diagonal curves have the same degree.

Remark 9.10. In view of Theorem 9.5 the proof of Conjecture 9.8 is
reduced to the proof of Conjecture 9.9. Indeed, Conjecture 9.8 is a
trivial consequence of Theorem 9.5 for all X �= G2/P1 and for all X �=
B�/P� where 
 > 1 is odd since G is a subgroup of Aut(X). In case
that X = G2/P1 or X = B�/P� where 
 > 1 is odd the isomorphism
from Conjecture 9.9 shows us that the diagonal curve has a dense open
orbit under the action of Aut(X) in M.

Remark 9.11. We will see later at least that the degree of the diagonal
curve of the homogeneous space in the source of the isomorphism from
Conjecture 9.9 is equal to the degree of the diagonal curve of the homo-
geneous space in the target of the isomorphism (cf. proof of Corollary
11.61).

Corollary 9.12. For any homogeneous X, the group Aut(X) has a
dense open orbit on M.

Proof. If X �= G2/P1 and X �= B�/P� where 
 > 1 is odd this is a
direct consequence of Theorem 9.5. In the other cases it follows (again
by Theorem 9.5) that the inverse image of the diagonal curve under
the isomorphism from Conjecture 9.9 has a dense open orbit under the
action of Aut(X). �

10. The set S

Let X = G/P be a homogeneous space where G is a connected,
simply connected, linear algebraic group and P is a maximal parabolic
subgroup.

Let S be the set of all roots γ such that γ is not orthogonal to
precisely two elements of C(αP ). Let S+ = S ∩ R+ the set of positive
roots in S. Let SΔ = S ∩ Δ the set of simple roots in S. With this
notation we have SΔ ⊆ ΔP since αP is orthogonal to θ1, . . . , θk−1 and
therefore not contained in S.

Let γ ∈ S. We denote by i(γ) the smallest index i such that γ is not
orthogonal to θi. We denote by j(γ) the largest index j such that γ is
not orthogonal to θj. With this notation we have i(γ) < j(γ) for all
γ ∈ S.
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Let Wθ be the subgroup of W generated by sθ1 , . . . , sθk
. From the

definition it is clear that Wθ acts on S. With this notation we have
i(w(γ)) = i(γ) and j(w(γ)) = j(γ) for all γ ∈ S and all w ∈ Wθ.

Let u = sθ1 · · · sθk
for short. For all 1 ≤ i ≤ k we write hi = ht(θi)

for short. We then have a decreasing integer sequence h1 > · · · > hk.

Lemma 10.1. Assume that R is simply laced. A root γ is contained
in S if and only if u(γ) is orthogonal to γ.

Proof. Assume that R is simply laced. Let γ be a root. Then u(γ) is
orthogonal to γ if and only if 〈γ∨, u(γ)〉 = 0 if and only if

2 −
k∑

i=1

〈θ∨i , γ〉 〈γ∨, θi〉 = 0

if and only if 〈θ∨i , γ〉 〈γ∨, θi〉 =
〈
θ∨j , γ

〉 〈γ∨, θj〉 = 1 for precisely two
different indices i and j between 1 and k (since R is simply laced) if
and only if γ is not orthogonal two precisely two different indices i and
j between 1 and k if and only if γ ∈ S. �
Lemma 10.2. Let γ ∈ S and let i = i(γ). Then γ ∈ Ri \Ri+1.

Proof. Let γ and i be as in the statement. Let l be the largest index
such that γ ∈ Rl. By definition we have γ ∈ Rl\Rl+1. We have to show
that i = l. Suppose for a contradiction that γ is orthogonal to θl. Then
we clearly have γ ∈ RP since otherwise we have γ ∈ Rl+1. Moreover it
follows that i > l. It is also clear that sθi

(γ) ∈ Rl. In order to show
that sθi

(γ) ∈ Rl\Rl+1 it suffices to show that nIl
(sθi

(γ)) �= 0. The later
statement is clear since γ ∈ Rl \ Rl+1 and i > l and thus nIl

(sθi
(γ)) =

nIl
(γ) �= 0. Therefore we conclude that sθi

(γ) ∈ Rl \ Rl+1. On the
other hand we have that sθi

(γ) is orthogonal to θ1, . . . , θl and that
〈sθi

(γ), ω∨〉 = −〈θ∨i , γ〉 〈θi, ω
∨〉 �= 0 and thus sθi

(γ) ∈ R \ RP . Both
facts together mean that sθi

(γ) ∈ Rl+1 – a contradiction. Therefore we
conclude that γ is not orthogonal to θl. Since γ ∈ Rl we know that γ
is orthogonal to θ1, . . . , θl−1. In other words this means that i = l as
required. �
Corollary 10.3. Let γ ∈ SΔ and let i = i(γ). Then γ ∈ Ii.

Proof. Let γ and i be as in the statement. By the previous lemma we
have γ ∈ (Ri \Ri+1) ∩ Δ = Ii. �
Corollary 10.4. Let γ ∈ S+ and let i = i(γ). Then we have 〈θ∨i , γ〉 =
1

Proof. By the previous lemma we know that γ ∈ Ri and thus sθi
(γ) ∈

Ri. Since θi is the highest root of Ri it is clear that 〈θ∨i , γ〉 ∈ {−1, 1}.
Since γ is positive we must have 〈θ∨i , γ〉 = 1 as claimed. �
Lemma 10.5. Let γ ∈ SΔ, let i = i(γ) and j = j(γ). Then j = i+ 1,
〈θ∨i , γ〉 = 1,

〈
θ∨i+1, γ

〉
< 0 and 2 ≤ hi − hi+1.
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Proof. Let γ ∈ SΔ. Since γ ∈ Ri \ Ri+1 we know that γ ∈ Ii. The
root γ and the root θi+1 are non-separated, since otherwise γ and θl

for all i + 1 ≤ l ≤ k are separated and thus γ is orthogonal to θl for
all i + 1 ≤ l ≤ k. Since γ and θi+1 are non-separated and since γ
and θi+1 have disjoint support, γ and θi+1 must be not orthogonal to
each other. It follows that j = i + 1. We already saw that 〈θ∨i , γ〉 =
1. Suppose that

〈
θ∨i+1, γ

〉
> 0. Then δ := sθi+1

(γ) would be a root

which satisfies nIi
(δ) = 1 and nΔi+1

(δ) = − 〈θ∨i+1, γ
〉
hi+1 < 0 – a

contradiction. Therefore we conclude that
〈
θ∨i+1, γ

〉
< 0, in particular

δ is a positive root in Ri. Therefore sθi
sθi+1

(γ) = δ − θi is a negative

root. We find that 1 ≤ hi−ht(δ) = hi−1+
〈
θ∨i+1, γ

〉
hi+1 ≤ hi−1−hi+1

and thus 2 ≤ hi − hi+1. �

Let P be the set consisting of all root γ ∈ S+ such that
〈
θ∨j(γ), γ

〉
< 0.

By the previous lemma we know that SΔ ⊆ P.

Lemma 10.6. The set P is a set of representatives of the orbits of
the action of Wθ on S. Each Wθ-orbit representated by some γ ∈ P
consists of the elements

γ > 0, γ − θi < 0, γ − 〈θ∨j , γ〉 θj > 0, γ − θi −
〈
θ∨j , γ

〉
θj < 0

where i = i(γ) and j = j(γ).

Proof. Let γ ∈ S. The orbit Wθ(γ) contains a positive root. Indeed,
if γ < 0 then sθi

(γ) = γ + θi where i = i(γ) is positive. Therefore
we can choose a root δ ∈ Wθ(γ) such that the height of δ is minimal
in the set {ht(α) | α ∈ Wθ(γ) , ht(α) > 0}. Let j = j(γ) = j(δ).
Suppose that

〈
θ∨j , δ

〉
> 0. Then sθj

(δ) = δ − 〈θ∨j , δ〉 θj is a positive
roots (since δ ∈ Ri \ Ri+1 and thus nIi

(sθj
(δ)) = nIi

(δ) > 0) with
strictly smaller height than δ – contrary to the choice of δ. Therefore
we conclude that

〈
θ∨j , δ

〉
< 0 and that sθj

(δ) is a positive root in Ri.
This proves that every Wθ-orbit in S contains at least one element in P .
Moreover it proves that the Wθ-orbit of some element γ ∈ P is given
by the four elements described in the statement together with their
sign. We are left to show that every Wθ-orbit of some γ ∈ S contains
a unique element in P . To this end, suppose that Wθ(γ) = Wθ(δ)
where γ, δ ∈ P. Suppose in addition that γ �= δ. Since δ is positive we
must have δ = γ − 〈θ∨j , γ〉 θj where j = j(γ) = j(δ). It follows that〈
θ∨j , δ

〉
= − 〈θ∨j , γ〉 > 0 – contrary to the fact that δ ∈ P. Therefore

we must have γ = δ. This proves the desired uniqueness. �

Corollary 10.7. Suppose that P ⊆ R+
P . The set S∩ (R+ \R+

P ) is a set
of representatives of the orbits of the action of Wθ on S. If in addition

X �= B�/P� where 
 > 1 is odd, then we have
〈∑k

i=1 θ
∨
i , γ
〉

= 2 for all

γ ∈ S ∩ (R+ \R+
P ).
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Proof. Suppose that P ⊆ R+
P . By the previous lemma a Wθ-orbit

representated by some γ ∈ P contains a unique element in R+ \ R+
P

namely γ − 〈θ∨j , γ〉 θj where j = j(γ). This proves that S ∩ (R+ \R+
P )

is a set of representatives of the orbits of the action of Wθ on S.
The assumption P ⊆ R+

P implies that X �= G2/P1, since if X =
G2/P1 we have α1+α2 ∈ P but α1+α2 /∈ R+

P . If in addition X �= B�/P�

where 
 > 1 is odd, we can use Lemma 8.6. Therefore we have for all

γ ∈ P that
〈
θ∨j(γ), γ

〉
= −1 and consequently

〈∑k
i=1 θ

∨
i , γ
〉

= 0.

Let γ ∈ S ∩ (R+ \R+
P ). By what we proved up to now we can find a

unique element δ ∈ P such that γ = δ + θj where j = j(γ) = j(δ). It

follows that
〈∑k

i=1 θ
∨
i , γ
〉

= 0 + 2 = 2 as claimed. �

Corollary 10.8. Suppose that X is a cominuscule homogeneous space.
Then we have P ⊆ R+

P . Moreover the set S ∩ (R+ \ R+
P ) and the set

S ∩ (R− \ R−
P ) are sets of representatives of the orbits of the action of

Wθ on S. Moreover we have that 〈η∨, γ〉 = 2 for all γ ∈ S ∩ (R+ \R+
P )

and that 〈η∨, γ〉 = −2 for all γ ∈ S ∩ (R− \R−
P ) where η∨ =

∑k
i=1 θ

∨
i .

Proof. Since X is cominuscule we know that X �= G2/P1 and that
X �= B�/P� where 
 > 1 is odd. Therefore we can use Lemma 8.6.

Suppose there exists γ ∈ P such that γ /∈ R+
P . Then the root

sθj(γ)
(γ) = γ+θj(γ) has αP -coefficient larger than one which contradicts

the fact that X is a cominuscule homogeneous space. Therefore we
conclude that P ⊆ R+

P . By the previous corollary we then know that
S ∩ (R+ \ R+

P ) is a set of representatives of the orbits of Wθ in S and
that 〈η∨, γ〉 = 2 for all γ ∈ S ∩ (R+ \R+

P ).
Moreover aWθ-orbits representated by some γ ∈ P contains a unique

element in R− \R−
P namely γ−θi(γ). (To exclude that γ−θi(γ) +θj(γ) is

also in S ∩ (R− \ R−
P ) we use the cominuscule assumption.) Therefore

S ∩ (R− \R−
P ) is a set of representatives of the orbits of Wθ in S.

Finally let γ ∈ S∩(R−\R−
P ). By what we proved up to know we can

find a unique element δ ∈ P such that γ = δ−θi where i = i(γ) = i(δ).
As in the previous corollary it follows that 〈η∨, γ〉 = 0 − 2 = −2 since
〈η∨, δ〉 = 1 − 1 = 0. �

11. The group Ĝ

Let X = G/P be a homogeneous space where G is a connected,
simply connected, linear algebraic group and P is a maximal parabolic
subgroup.

If k = 1 we set R′ = ∅. If k > 1 let R′ be the union of all irreducible
components �= Rk of the root system consisting of all roots in Rk−1

orthogonal to θk−1. Let R̂ be the root subsystem of R generated by B,
SΔ and R′. Let Ĝ be the algebraic subgroup of G with root system R̂.
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Let X̂ = Ĝ/Ĝ ∩ P . The variety X̂ is a subvariety of X wich satisfies

CΔ ⊆ X ′ ⊆ X̂.

Definition 11.1. We call X a dualizing variety if R̂ = R and thus
X̂ = X.

Lemma 11.2. The root system R̂i
6 is generated by B ∩ Ri, SΔ ∩ Ri

and R′ ∩Ri. In particular we have that

{±θk} = R̂k ⊆ R̂k−1 ⊆ · · · ⊆ R̂ .

Proof. It is clear that B ∩Ri is the cascade of orthogonal roots associ-
ated to Ri. Since all elements of SΔ ∩Ri are orthogonal to θ1, . . . , θi−1

it is clear that SΔ∩Ri is the set SΔ associated to Ri. Note that R′
k = ∅

and also R′ ∩ Rk = ∅ and thus R′ ∩ Rk = R′
k. If i < k then it is clear

that R′ ⊆ Ri and thus R′ ∩ Ri = R′ = R′
i. Therefore we get for all

1 ≤ i ≤ k that R′ ∩ Ri = R′
i. All these facts together imply that R̂i is

generated by B∩Ri, SΔ∩Ri and R′∩Ri. The sequence of inclusions is
now obvious. Note that B ∩Rk = {θk}, SΔ ∩Rk = ∅ and R′ ∩Rk = ∅.
Therefore we have R̂k = {±θk}. �

Corollary 11.3. If R̂ = R then R̂i = Ri for all 1 ≤ i ≤ k and θk = αP

(or equivalently αP ∈ C(αP )).

Proof. Since Ri = R ∩ Ri = R̂ ∩ Ri it is clear that Ri is generated by
B ∩Ri, SΔ ∩Ri and R′ ∩Ri. By the previous lemma R̂i has the same
set of generators. Therefore it follows that R̂i = Ri as claimed.

In particular, this shows that R̂k = Rk = {±θk}. On the other
hand we know that αP ∈ Rk. Therefore we conclude that θk = αP as
claimed. �
Lemma 11.4. If R̂ = R then for all i ∈ {1, . . . , k − 1} there exists a
γ ∈ SΔ such that i = i(γ).

Proof. Let i ∈ {1, . . . , k − 1} and suppose for a contradiction that
i �= i(γ) for all γ ∈ SΔ. Then the irreducible component of R containing
R′ cannot contain θ1, . . . , θi (Lemma 10.5) which contradicts the fact
that R is irreducible. �

Let R1, . . . ,Rr be the irreducible components of R̂. For each 1 ≤
i ≤ r let Gi be the simple linear algebraic subgroup of G with root
system Ri. We have a natural choice of a Borel subgroup of Gi and a
natural choice of a maximal parabolic subgroup Pi = Gi ∩P of Gi. In
particular it makes sense to speak about the positive roots in Ri, the
simple roots in Ri, the θ-sequence of Ri, etc. Let Xi = Gi/Pi. Then
the number dXi

is well defined. It makes sense to write dX̂ =
∑r

i=1 dXi
.

6With R̂i we mean the root system associated to Ri in the same way we associ-
ated R̂ to R. More explicitely we have R̂i = R̂i. We do not mean R̂i = (R̂)i which
makes no sense in general since R̂ is not necessarily irreducible.



84

Lemma 11.5. Let 1 ≤ i ≤ r. Let θ∗ be the smallest element of C(αP )∩
Ri and let θ∗ be the largest element of C(αP ) ∩ Ri. Then we have

C(αP ) ∩ Ri = {θ ∈ C(αP ) | θ∗ ≤ θ ≤ θ∗} .
Proof. Let θ∗ = θj1 and let θ∗ = θj2 for some 1 ≤ j1, j2 ≤ k. We
clearly have j1 ≤ j2. The inclusion from left to right is obvious from
the definition. We prove the inclusion from right to left by induction on
j2−j1. If j1 = j2 there is nothing to prove. Suppose that j1 < j2. Using
the induction hypothesis, it suffices to prove that θj1+1 ∈ C(αP ) ∩ Ri.

Suppose for a contradiction that θj1+1 /∈ C(αP ) ∩ Ri. Since R̂ =

R1×· · ·×Rr and since C(αP ) ⊆ R̂ we have C(αP ) =
∐r

i=1C(αP )∩Ri.
From this disjoint union we see that SΔ∩Ri consists of the simple roots
which are not orthogonal to precisely two elements of C(αP )∩Ri. Using
the assumption and Lemma 10.5 we conclude that θj1 is orthogonal to
all elements of SΔ ∩Ri. In addition θj1 is orthogonal to all elements of
B ∩Ri \ {θj1} and to all elements of R′ ∩Ri. Since Ri is generated by
B ∩ Ri, S ∩ Ri and R′ ∩ Ri we conclude that θj1 is orthogonal to all
elements of Ri\{±θj1} which contradicts the fact that Ri is irreducible.
Therefore we conclude that θj1+1 ∈ C(αP ) ∩ Ri which completes the
proof. �
Lemma 11.6. Assume that R′ �= ∅. There exists one and only one
index 1 ≤ i ≤ r such that R′ ⊆ Ri.

Proof. Since R′ ⊆ R̂ we clearly have R′ =
∐r

i=1R
′ ∩ Ri. If R′ is

irreducible it follows that R′ = R′ ∩ Ri and thus R′ ⊆ Ri for one and
only one index 1 ≤ i ≤ r. Suppose that R′ is not irreducible. By
Lemma 8.3 we then know that R◦

k−1 has three irreducible components
and that Rk−1 is of type D4. It immediately follows that Rk−1 ⊆ Ri

for one and only one index 1 ≤ i ≤ r, in particular R′ ⊆ Ri. In each
case the assertion is true. �
Lemma 11.7. Assume that R′ �= ∅. Let 1 ≤ i ≤ r such that R′ ⊆ Ri.
Then θk−1, θk ∈ C(αP ) ∩ Ri.

Proof. Let i be as in the statement. Then there exists an element
γ ∈ SΔ ∩ Ri such that γ is not orthogonal to the highest root of an
irreducible component of R′ since otherwise Ri is not irreducible. By
Lemma 10.5 it follows that i(γ) = k − 1 and that j(γ) = k and thus
θk−1, θk ∈ C(α) ∩ Ri. �
Lemma 11.8. Let 1 ≤ i ≤ r. Let θ∗ be the largest element of C(αP )∩
Ri. Then we have Ri ⊆ R(θ∗).

Proof. Let θ∗ = θj for some 1 ≤ j ≤ k. It is clear from the definition
that B ∩ Ri ⊆ Rj. The set SΔ ∩ Ri consists of all simple roots which
are not orthogonal to precisely two elements of C(αP )∩Ri. Therefore
we have i(γ) ≥ j for all γ ∈ SΔ ∩ Ri and thus SΔ ∩ Ri ⊆ Rj (Lemma
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10.2). If j = k we have C(αP ) ∩ Ri = {θk} and SΔ ∩ Ri = ∅. Since
all elements of R′ are orthogonal to θk and since Ri is irreducible, we
conclude that R′∩Ri = ∅ and thus Ri = {±θk} in particular Ri ⊆ Rk.
If j < k then we have R′ ⊆ Rj in particular R′∩Ri ⊆ Rj. Therefore we
know in all cases that R′ ∩ Ri ⊆ Rj. Since Ri is generated by B ∩ Ri,
SΔ ∩ Ri and R′ ∩ Ri we conclude that Ri ⊆ Rj. �

Lemma 11.9. Let 1 ≤ i ≤ r. The set C(αP )∩Ri is the θ-sequence of
Ri.

Proof. Let θj1 be the largest element of C(αP ) ∩ Ri and let θj2 be the

smallest element of C(αP ) ∩ Ri. Let θ̂1, . . . , θ̂ki
be the θ-sequence of

Ri. Since Ri ⊆ R
j1

by the previous lemma we see that θ̂1 ≤ θj1 . On

the other hand we have θj1 ∈ Ri and thus θj1 ≤ θ̂1 which means that

θ̂1 = θj1 . From this it follows immediately that Ri
2 = Ri ∩Rj1+1 which

implies that θ̂2 = θj1+1 since θj1+1 ∈ Ri and therefore also θj1+1 ∈
Ri

2. By repeating this process we see that Ri
j = Ri ∩ Rj1+j for all

0 ≤ j ≤ j2 − j1 and that ki ≥ j2 − j1 and that θ̂j = θj1+j for all
0 ≤ j ≤ j2 − j1. From the definition of Ri it is rather clear that
Ri

j2−j1
= Ri ∩ Rj2 = {±θj2}. From this it follows that ki = j2 − j1

which completes the proof. �

Corollary 11.10. We have the equality dX = dX̂ .

Proof. By the previous lemma we know that

dXi
=

∑
θ∈C(αP )∩Ri

d(θ)

for all 1 ≤ i ≤ r. On the other hand we have C(αP ) =
∐r

i=1C(αP )∩Ri.
This implies that

dX̂ =
r∑

i=1

dXi
=

∑
θ∈C(αP )

d(θ) = dX .

�

Corollary 11.11. Let X be a cominuscule homogeneous space. Then
Xi is also a cominuscule homogeneous space for all 1 ≤ i ≤ r such that
C(αP ) ∩ Ri �= ∅.
Proof. Let i be an index such that C(αP )∩Ri �= ∅. Let θ∗ be the largest
element of C(αP ) ∩ Ri. Then we know that θ∗ is the highest root of
Ri. Since X is cominuscule it is clear that 〈θ∗, ω∨〉 = 1. Therefore Xi

is also cominuscule. �

Lemma 11.12. Let i be an index such that C(αP ) ∩ Ri = ∅. Then
Ri = {±θ} for some root θ ∈ B ∩R+

P .
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Proof. Let i be an index such that C(αP )∩Ri = ∅. Then SΔ ∩Ri = ∅
and R′ ∩ Ri = ∅. It follows that Ri is generated by B ∩ Ri. Since Ri

is irreducible the set B ∩ Ri consists of precisely one element θ. Since
θ /∈ C(αP ) it follows that θ ∈ R+

P . Therefore we have Ri = {±θ} where
θ ∈ B ∩R+

P . �
Lemma 11.13. For all 1 ≤ i ≤ r such that C(αP ) ∩ Ri �= ∅ we have

that R̂i = Ri. This means that Xi is a dualizing variety.

Proof. Let i be an index such that C(αP ) ∩ Ri �= ∅. Assume first that
R′ ∩ Ri = ∅. Then Ri is generated by B ∩ Ri and SΔ ∩ Ri. Let θ∗

be the highest root of Ri. Then we know that θ∗ ∈ C(αP ) ∩ Ri and
that Ri ⊆ R(θ∗). Therefore it is clear that B ∩ Ri is the cascade of
strongly orthogonal roots associated to Ri. Moreover SΔ ∩Ri consists
of all simple roots which are not orthogonal to precisely two elements of
C(αP ) ∩ Ri which is the θ-sequence associated to Ri. Since θk−1, θk /∈
C(αP )∩Ri we know by Lemma 8.3 that Ri′ is either empty or of type

A1 (or of type A1 ×A1) and thus Ri′ ⊆ B∩Ri. In total we see that R̂i

is generated by B ∩ Ri and by SΔ ∩ Ri. Therefore we conclude that

R̂i = Ri.
Assume now that R′∩Ri �= ∅. Then R′ ⊆ Ri and θk−1, θk ∈ C(αP )∩

Ri. It follows that Ri′ = R′. By what we proved up to now we see

that R̂i is generated by B ∩Ri, SΔ ∩Ri and R′ ∩Ri. Since Ri has the

same set of generators it follows that R̂i = Ri. �
Corollary 11.14. The variety X̂ is a product of dualizing varieties.

Proof. By definition we know that X̂ =
∏r

i=1 Xi. If i is an index such
that C(αP )∩Ri = ∅ then Ri ⊆ RP and thus Xi = {pt}. It follows that

X̂ =
∏

i : C(αP )∩Ri �=∅ Xi. By the previous lemma each factor Xi where i

is an index such that C(αP ) ∩ Ri �= ∅ is a dualizing variety. Therefore

X̂ is a product of dualizing varieties. �
11.1. Computation of X̂. Let d be a degree and let x, y ∈ X. We
denote by Xd(x, y) the union all rational curves of degree d which pass
through x and y. Let f be a general rational curve of degree d. We
denote by Yd(f) the intersection

Yd(f) =
⋂

x,y∈f(P1)
general

Xd(x, y) .

Lemma 11.15. Let f be a general rational curve of degree d. Let Y
be an irreducible subvariety of X such that through three points of Y
in general position passes a unique rational curve of degree d which is
contained in Y . Suppose that f(P1) ⊆ Y . Then Y ⊆ Yd(f).

Proof. By assumption there exists an open dense subset U of Y such
that for two general points x, y ∈ f(P1) there exists a unique rational
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curve of degree d which passes through x, y and U . It follows that
U ⊆ Xd(x, y) for all general points x, y ∈ f(P1) and thus U ⊆ Yd(f).
Since Yd(f) is closed it follows that Y = Ū ⊆ Yd(f) as claimed. �

Lemma 11.16. Let X = G/P be a cominuscule homogeneous space.

Then we have an isomorphism X̂ ∼= YdX
(fΔ). Up to isomorphism we

get the following table:

X dX X̂ ∼= YdX
(fΔ)

G(l, n), n ≥ 2 min(l, n− l) G(dX , 2dX)
Gω(p, 2p), p ≥ 2 p Gω(dX , 2dX)
GQ(p, 2p), p ≥ 3 [p/2] GQ(2dX , 4dX)

Qm, m ≥ 3 2 Qm

E6/P1 2 Q8

E7/P7 3 E7/P7

Proof. By Theorem 9.5 we know that the diagonal curve fΔ is general
for a cominuscule homogeneous space since a cominuscule homogeneous
space X satisfies X �= G2/P1 and X �= B�/P� where 
 > 1 is odd. It
follows from [11, Proposition 19] that YdX

(fΔ) = XdX
(x, y) where x and

y are two general points in CΔ. The isomorphism types of XdX
(x, y)

as well as the values of dX are known from [11, Proposition 18]. (The
value of dX can also be computed directly using the algorithm discussed
in this work.) They are given as described in the table. Therefore it

suffices to show that X̂ has the same isomorphism types as described
in the table. We prove this by studying each case separately.

Let X = G(l, n) where n ≥ 2. Then we have B∩ (R+ \R+
P ) = C(αP )

and SΔ = {α1, . . . , αk−1, αn−k+1, . . . , αn−1} and R′ = ∅. It is easy to
see that the root system generated by α1, . . . , αk−1, αn−k+1, . . . , αn−1, θk

contains the roots θ1, . . . , θk−1. The irreducible component of R̂ which
is not contained in RP is therefore generated by

α1, . . . , αk−1, αn−k+1, . . . , αn−1, θk

and is thus of type A2k−1 with the kth node marked. It follows that
X̂ = G(k, 2k) = G(dX , 2dX) as claimed.

Let X = Gω(p, 2p) where p ≥ 2. Then we have B = C(αP ) and

SΔ = {α1, . . . , αp−1} and R′ = ∅. Therefore R̂ contains all simple roots

Δ and thus R̂ = R. It follows that X̂ = X = Gω(p, 2p) = Gω(dX , 2dX)
as claimed.

Let X = GQ(p, 2p) where p ≥ 3. We distinguish the cases where p is
odd and where p is even. Suppose that p is odd. We can assume that
p ≥ 5 since the case p = 3 is already covered by type An−1. Then we
have that B = C(αP )∪{α1, α3, . . . , αp−2} and SΔ = {α2, α4, . . . , αp−3}
and R′ = {αp−4} ⊆ B. It is easy to see that the roots system generated

by α1, α2, . . . , αp−2, θ1 contains the roots θ2, . . . , θk. Therefore R̂ is

generated by α1, α2, . . . , αp−2, θ1. It follows that R̂ is of type Dp−1 with
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the (p−1)th node marked. Therefore we have X̂ = GQ(p−1, 2(p−1)) =
GQ(2dX , 4dX) as claimed.

Suppose next that X = GQ(p, 2p) where p ≥ 3 and p is even. Then
we have B = C(αP ) ∪ {α1, α3, . . . , αp−1} and SΔ = {α2, α4, . . . , αp−2}
and R′ = {αp−3, αp−1} ⊆ B. Therefore R̂ contains all simple roots Δ

and thus R̂ = R. It follows that X̂ = X = GQ(p, 2p) = GQ(2dX , 4dX)
as claimed.

Let X = Qm where m ≥ 3. We distinguish the cases where m is
even and where m is odd. Suppose that m is even. Let p = m/2 + 1.
We can assume that p > 3 since the case p = 3 is already covered by
type An−1. We can even assume that p > 4 since the case p = 4 is
already covered by type Dp with the pth node marked. Then we have
B ∩ (R+ \ R+

P ) = C(αP ) and SΔ = {α2} and R′ is of type Dp−2 with

simple roots α3, . . . , αp. Therefore R̂ contains all simple roots Δ and

thus R̂ = R. It follows that X̂ = X = Qm.
Suppose next that X = Qm where m ≥ 3 and m is odd. Let 
 =

(m+ 1)/2. Then we have B ∩ (R+ \R+
P ) = C(αP ) and SΔ = {α2} and

R′ is generated by α3, . . . , α�. (R′ is of type B�−2 if 
 > 2 and of type

A1 if 
 = 2.) Therefore R̂ contains all simple roots Δ and thus R̂ = R.

It follows that X̂ = X = Qm.
Let X = E6/P1. Then we have B = C(αP ) ∪ {α3 + α4 + α5, α4}

and SΔ = {α2} and R′ = ∅. It is easy to see that the root system

generated by α2, α4, θ1, θ2 contains the root α3 + α4 + α5. Therefore R̂
is generated by α2, α4, θ1, θ2. It follows that R̂ is of type D4 with the
first node marked. Therefore we have X̂ = Q8 as claimed.

Let X = E7/P7. Then we have SΔ = {α1, α6}. The root system R2

is of type D6 with the first node marked and its set of simple roots is
given by {α2, . . . , α7}. We already figured out that R̂2 = R2. Since

R̂2 ⊆ R̂ and SΔ ⊆ R̂ it follows that all simple roots Δ are contained in
R̂ and thus R̂ = R. It follows that X̂ = X = E7/P7 as claimed. �

Corollary 11.17. Let X = G/P be a cominuscule homogeneous space.

Then X̂ is also a cominuscule homogeneous space. Through three points
of X̂ in general position passes a unique rational curve of degree dX

which is contained in X̂.

Proof. Let X be a cominuscule homogeneous space. From the table in
the previous lemma it is clear that X̂ is also a cominuscule homogeneous
space. From [11, Fact 20] and the table above we know that through

three points of X̂ in general position passes a unique rational curve of
degree dX which is contained in X̂. �

Corollary 11.18. Let X = G/P be a cominuscule homogeneous space.

Then we have an equality X̂ = YdX
(fΔ).
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Proof. By the previous corollary the assumptions of Lemma 11.15 are
satisfied for Y = X̂, d = dX and f = fΔ. It follows that X̂ ⊆ YdX

(fΔ).
On the other hand we already know from the previous lemma that
X̂ ∼= YdX

(fΔ). Therefore it follows that X̂ = YdX
(fΔ) as claimed. �

Lemma 11.19. Let X = GQ(l, 2p) where l ≤ p − 2 and l odd. Then

R̂ is of type Dl−1 × Dp−l+1 and we have an isomorphism

X̂ ∼= GQ(l − 1, 2(l − 1)) × Q2(p−l) .

Proof. Let X = GQ(l, 2p) where l ≤ p− 2 and l is odd. We distinguish
the cases where l < p−2 and where l = p−2. Assume first that l < p−2.
The root systemR′ is generated by αl+2, . . . , αp and thus of type Dp−l−1.
The root system R′ is irreducible if and only if l + 2 < p − 1. If R′ is
irreducible, let B′ be the cascade of orthogonal roots associated to R′. If
R′ is not irreducible then l+2 = p−1 and we set B′ = {αp−1, αp}. With
this notation we have a disjoint union B = C(αP )�{α1, α3, . . . , αl−2}�
B′. Moreover we have SΔ = {α2, α4, . . . , αl−3, αl+1}. Let Dl−1 be the
root system generated by α1, α2, . . . , αl−2, θ1. It is easy to see that the
root system Dl−1 contains the roots θ2, . . . , θk−1. By definition it is
clear that the root system Dl−1 is of type Dl−1 with the (l− 1)th node
marked. Let Dp−l+1 be the root system generated by θk, αl+1 and R′.
Then we know that Dp−l+1 is generated by αl, . . . , αp since θk = αl and
R′ is generated by αl+2, . . . , αp. Therefore the root system Dp−l+1 is of
type Dp−l+1 with the first node marked. From the definition it is clear

that R̂ = Dl−1 ×Dp−l+1 and thus X̂ = GQ(l − 1, 2(l − 1)) × Q2(p−l) as
claimed.

Next we treat the case where l = p− 2. Then we have B = C(αP )∪
{α1, α3, . . . , αl−2} and SΔ = {α2, α4, . . . , αl−3, αp−1, αp} and R′ = ∅.
Let Dl−1 be the root system generated by α1, α2, . . . , αl−2, θ1. It is
easy to see that the root system Dl−1 contains the roots θ2, . . . , θk−2.
By definition it is clear that the root system Dl−1 is of type Dl−1 with
(l− 1)th node marked. Let Dp−l+1 = D3 be the root system generated
by αp−1, αp, θk. Then it is clear that the root system D3 is generated
by αp−2, αp−1, αp since θk = αp−2 and contains the root θk−1. Therefore
D3 is of type D3 with the first node marked. From the definition it is
clear that R̂ = Dl−1 × D3 and thus X̂ = GQ(l − 1, 2(l − 1)) × Q4 =
GQ(l − 1, 2(l − 1)) × Q2(p−l) as claimed. �
Corollary 11.20. Let X = GQ(l, 2p) with l ≤ p − 2 and l odd. Then
we have dX = l + 1 and k = (l + 3)/2.

Proof. By the previous lemma we know that X̂ is the product of two
dualizing varieties X1 and X2 where X1

∼= GQ(l− 1, 2(l− 1)) and X2
∼=

Q2(p−l). Since d1 = · · · = dk−2 = 2 we have that dX1 = 2dGQ(l−1,2(l−1)) =
2(l−1)/2 = l−1. Since dk−1 = dk = 1 we have that dX2 = dQ2(p−l)

= 2.

Both equation together lead to the result that dX = dX̂ = (l−1)+2 =
l + 1.
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Using dX = l + 1 we can easily reformulate k in terms of l. Indeed,
the equation dX = dX1 +dX2 can be reformulated as l+1 = 2(k−2)+2
and thus k = (l + 3)/2. �

11.2. The group Ŵ . Let u = sθ1 · · · sθk
. For a root γ we write tγ =

su(γ)sγ. Let Wδ be the subgroup of W generated by the set {tγ | γ ⊥
u(γ)}. Let Ŵ be the subgroup of W generated by Wθ, Wδ and the set
{sβ | β ⊥ θi for all 1 ≤ i ≤ k}.

Let Θ be the free Z-module with generators θ1, . . . , θk. Let W̃ be the
subgroup of W consisting of all elements w ∈ W such that w(θi) ∈ Θ
for all 1 ≤ i ≤ k.

Fact 11.21. We have an inclusion of subgroups Ŵ ⊆ W̃ .

Proof. To prove the inclusion Ŵ ⊆ W̃ it is clearly sufficient to prove
that a set of generators of Ŵ is contained in W̃ . Since Wθ ⊆ W̃ and
{sβ | β ⊥ θi for all 1 ≤ i ≤ k} ⊆ W̃ is obvious it suffices to prove that

tγ ∈ W̃ for all roots γ which are orthogonal to u(γ). Let γ be a root
which is orthogonal to u(γ). By the W -invariance of 〈−,−〉 we have
〈u(γ)∨, θi〉 = −〈γ∨, θi〉 and thus

tγ(θi) = θi − 〈γ∨, θi〉 γ + 〈γ∨, θi〉u(γ) .
Since u(γ) = γ −∑k

j=1

〈
θ∨j , γ

〉
θj it follows that

tγ(θi) = θi − 〈γ∨, θi〉
k∑

j=1

〈
θ∨j , γ

〉
θj ∈ Θ .

Therefore we have that tγ ∈ W̃ for all roots γ which are orthogonal to
u(γ). This completes the proof. �

Fact 11.22. The element u is contained in the center of Ŵ .

Proof. It clearly suffices to show that u commutes with a set of gen-
erator of Ŵ . Since u clearly commutes with all elements of Wθ and
all elements of {sβ | β ⊥ θi for all 1 ≤ i ≤ k} it suffices to show
that u commutes with tγ for all roots γ which are orthogonal to u(γ).
Let γ be a root which is orthogonal to u(γ). Then we have utγ =
(usu(γ)u

−1)(usγu
−1)u = sγsu(γ)u = tγu since u2 = 1 and since tγ =

sγsu(γ) for a root γ which is orthogonal to u(γ). This completes the
proof. �

Corollary 11.23. Let γ be a root which is orthogonal to u(γ). Let
δ be an arbitrary root. Then we have tγ = t−1

γ and tγ(γ) = −γ and

tγtδt
−1
γ = ttγ(δ). More generally let w be an element which commutes

with u (which is in particular the case if w ∈ Ŵ ). Then we have
wtδw

−1 = tw(δ).
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Proof. Let γ and δ be as in the statement. The first identity is obvious
since tγ = sγsu(γ). The second identity is obvious since su(γ)(γ) = γ.

Since u ∈ Z(Ŵ ) we know that u commutes with tγ. Therefore the
third identity follows from the very last statement. To prove the last
statement, let w be an element which commutes with u. Then we have
wtδw

−1 = swu(δ)sw(δ) = suw(δ)sw(δ) = tw(δ) as claimed. �
Corollary 11.24. Let γ be a root which is orthogonal to u(γ). Then

we have a strict inclusion of subgroups of Ŵ as follows:

StabŴ (γ) � CŴ (tγ) .

Proof. Let w ∈ StabŴ (γ). Since w commutes with u we have wtγw
−1 =

tw(γ) = tγ and thus w ∈ CŴ (tγ). The element tγ is clearly contained
in CŴ (tγ) but not contained in StabŴ (γ) since tγ(γ) = −γ. Therefore
the inclusion in the statement is strict. �
Corollary 11.25. Let γ and δ be roots which are orthogonal to u(γ)
and u(δ). Then tγ(δ) is a root which is orthogonal to utγ(δ).

Proof. Indeed, let γ and δ be as in the statement. Since u ∈ Z(Ŵ ) it
follows that (utγ(δ), tγ(δ)) = (tγu(δ), tγ(δ)) = (u(δ), δ) = 0. Therefore
tγ(δ) is orthogonal to utγ(δ) as claimed. �

Corollary 11.26. Suppose that R is simply laced. The group Ŵ acts
on the set S.

Proof. Since Wθ obviously acts on the set S and since sβ(γ) ∈ S for
all γ ∈ S and all roots β which are orthogonal to θ1, . . . , θk (this holds
even if R is arbitrary and not necessarily simply laced), it suffices to
prove that tγ(δ) ∈ S for all γ, δ ∈ S. But this follows directly from the
previous corollary. �

Let α be a root. We write α′ = α + u(α). Let γ be a root which is
orthogonal to u(γ). Then we have tγ(γ

′) = −γ′ since tγ(γ) = −γ and
since tγu(γ) = utγ(γ) = −u(γ). Moreover note that u(η) = −η for all
η ∈ Θ, i.e. u acts as −id on Θ.

Lemma 11.27. Let γ and δ be roots which are orthogonal to u(γ) and
u(δ) respectively. Suppose that tγ and tδ commute. Suppose further
that δ is not orthogonal to γ′. Then we have δ = nγ + η for some
n ∈ {±1} and some η ∈ Θ.

Proof. Let γ and δ be roots which satisfy the assumptions in the state-
ment. To abbreviate let δ̂ = tγ(δ). For a root α we then have

δ̂ = δ − 〈γ∨, δ′〉 γ + Θ7

tδ(α) = α− 〈δ∨, α′〉 δ + Θ

tδ̂(α) = α−
〈
δ̂∨, α′

〉
δ̂ + Θ .
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The equation tγtδ = tδtγ is equivalent to tδ̂ = tδ. Evaluating this
equation at α we find that

〈δ∨, α′〉 δ =
〈
δ̂∨, α′

〉
δ̂ + Θ =

〈
δ̂∨, α′

〉
δ −

〈
δ̂∨, α′

〉
〈γ∨, δ′〉 γ + Θ .

If we plug in α = γ and use that〈
δ̂∨, γ′

〉
= 〈δ∨, tγ(γ′)〉 = −〈δ∨, γ′〉

we find that

2 〈δ∨, γ′〉 δ = 〈δ∨, γ′〉 〈γ∨, δ′〉 γ + Θ .

Since δ is not orthogonal to γ′ we therefore may write δ = nγ + η for
some n ∈ Z and some η ∈ Θ. If we plug in this identity for δ in the
equation (u(δ), δ) = 0 we find that

0 = n2(u(γ), γ)+n(u(γ), η)+n(u(η), γ)+(u(η), η) = −2n(η, γ)−(η, η) .

If η �= 0 this equation implies that −n 〈η∨, γ〉 = 1 and thus n ∈ {±1}.
If η = 0 we have δ = nγ which again implies that n ∈ {±1} since the
root system R is reduced. In all cases we find that n ∈ {±1}. Therefore
δ has the desired expression in terms of γ. �

Corollary 11.28. Let γ and δ be two roots which are orthogonal to
u(γ) and u(δ). Suppose that tγ = tδ. Then we have δ = nγ + η for
some n ∈ {±1} and some η ∈ Θ.

Proof. Let γ and δ be roots which satisfy the assumptions in the state-
ment. We clearly know that tγ and tδ commute. By the previous
lemma it suffices to show that δ is not orthogonal to γ′. Suppose for a
contradiction that δ is orthogonal to γ′. Then we have that

−γ = tγ(γ) = tδ(γ) = γ − 〈δ∨, γ′〉 δ + Θ = γ + Θ

which implies that γ ∈ Θ and thus (u(γ), γ) = −(γ, γ) �= 0 – a contra-
diction. �

Lemma 11.29. Let X be a simply laced dualizing variety, i.e. R̂ = R
and R is simply laced. Let w ∈ W be an element which commmutes
with all elements of Ŵ . Then the element w is an involution.

Proof. Let w ∈ W be an element which commutes with all elements
of Ŵ . Since w commutes with sθi

we have sθi
w(θi) = −w(θi) and

thus w(θi) = niθi for some ni ∈ {±1}. Hence w2(θi) = θi for all 1 ≤
i ≤ k. Similarly, since w commutes with all sβ where β is orthogonal
to all θi, it follows that w(β) = nββ for some nβ ∈ {±1} and hence
w2(β) = β. Let γ ∈ S. Since w commutes with tγ and with u it follows
that wtγw

−1 = tw(γ) = tγ. From the previous corollary it follows that

7We write here and in what follows Θ as a placeholder for an element of Θ.
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w(γ) = nγ + η for some n ∈ {±1} and η ∈ Θ. Write η =
∑k

i=1 biθi for
some bi ∈ Z. Then we find that

wsθi
(γ) = nγ + η − 〈θ∨i , γ〉niθi

sθi
w(γ) = nγ + sθi

(η) − 〈θ∨i , γ〉nθi

which gives that

η − sθi
(η) = 2biθi = 〈θ∨i , γ〉 (ni − n)θi .

From the last equation we see that if n = ni then bi = 0 and bi(n+ni) =
0. If n �= ni then n + ni = 0 and bi(n + ni) = 0 since n, ni ∈ {±1}.
Therefore we get that bi(n+ ni) = 0 for all i and thus

0 =
k∑

i=1

biθi(n+ ni) = nη + w(η) .

Using the last equation, we find that

w2(γ) = γ + nη + w(η) = γ

for all γ ∈ S.
In total we have that w2(α) = α for all roots α which are either

equal to θi for some i or orthogonal to θi for all i or contained in S.
Since the root system generated by all such α contains the root system
R̂ and since R̂ = R by assumption, we conclude that w2(α) = α for all
roots α. Therefore w is an involution. �
Corollary 11.30. Let X be a simply laced dualizing vatiety. Then the
center of Ŵ and the center of W̃ consist of involutions.

Proof. An element w ∈ Z(Ŵ ) ⊆ W clearly commutes with all elements

of Ŵ . An element w ∈ Z(W̃ ) ⊆ W clearly commutes with all elements

of W̃ and therefore also with all elements of Ŵ since Ŵ ⊆ W̃ . In each
case the previous lemma implies that w is an involution. �
Conjecture 11.31. Let X be a dualizing variety (not necessarily sim-
ply laced). Then the center of W̃ consists of involutions.

Example 11.32. Let X = G(2, 4), so that θ1 = α1 +α2 +α3 and θ2 = α2

is the chain cascade associated to αP = α2. ThenW = S4, u = (14)(23)
and

W̃ = Ŵ = {id, (14), (23), (14)(23), (12)(34), (1243), (1342), (13)(24)}
and the center of W̃ is given by Z = Z(W̃ ) = Z(Ŵ ) = {id, (14)(23)}.
We see that in this example the inclusion Ŵ ⊆ W̃ is an equality, in
particular CW̃ (u) = W̃ . The set of positive roots γ orthogonal to u(γ)
is

S+ = {α1, α3, α1 + α2, α2 + α3}
so that the group generated by all su(γ)sγ for all such γ is

Wδ = 〈s−α3sα1 , s−α2−α3sα1+α2〉 = {id, (12)(34), (13)(24), (14)(23)} .
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Moreover we have

Wθ = 〈sθ1 , sθ2〉 = {id, (14), (23), (14)(23)} .
Then we see that Wθ ∩Wδ = Z, Wθ/Z ∼= Z/2Z and Wδ/Z ∼= Z/2Z.
Moreover

W̃/Z = Ŵ/Z = Wθ/Z �Wδ/Z ∼= Z/2Z � Z/2Z

where the semi direct product is of course a direct product in this
example. Furthermore we see that Ŵ acts transitively on S.

11.3. The dimension formula for dualizing varieties. Let β be
a root. Then we write J(β) for the set of indices i ∈ {1, . . . , k} such
that β is not orthogonal to θi. For all γ ∈ S we know that J(γ) =
{i(γ), j(γ)} with i(γ) < j(γ).

Fact 11.33. Suppose that Rk is of type A1. Then we have the following
equality:

{β ∈ R | J(β) = ∅} = (±B ∪R′) \ ±C(αP ) .

Proof. The inclusion from right to left is obvious. We prove the in-
clusion from left to right. We do an induction on k. Suppose first
that k = 1. Then R is of type A1 by assumption and both sets under
consideration are empty. Therefore the inclusion from left to right is
obvious. Suppose that k > 1. Let β ∈ R such that J(β) = ∅. It is
clear that β /∈ ±C(αP ) since then we had card(J(β)) = 1. Therefore
it suffices to show that β ∈ ±B ∪ R′. We distinguish the cases where
R2 is of type A1 and where R2 is not of type A1. Suppose first that
R2 is of type A1. Then it is clear that k = 2 and thus R◦ = R′ � R2.
Since β is orthogonal to θ1 we know that β ∈ R◦. Since R2 = {±θ2}
we know that β /∈ R2 and thus β ∈ R′, in particular β ∈ ±B ∪ R′.
Assume next that R2 is not of type A1. By Lemma 8.3 we know that
all irreducible components of R◦ different from R2 are of type A1 and
thus contained in ±B. Therefore we see that R◦ ⊆ ±B ∪ R2. Since
β is orthogonal to θ1 we know that β ∈ R◦. If in addition β ∈ R2

the induction hypothesis yields that β ∈ ±B ∪ R′ and we are done. If
β /∈ R2 it follows from the inclusion R◦ ⊆ ±B ∪ R2 that β ∈ ±B, in
particular β ∈ ±B ∪R′. This completes the induction step. �
Example 11.34. Note that we cannot expect the equality in the fact to
be true if the assumption that Rk is of type A1 is dropped. To see this,
we may take R of type Dp with p sufficiently large and αP = α2. Then
it is clear that k = 1 and thus R′ = ∅. The root α4 is orthogonal to θ1

but not contained in ±B. The inclusion from left to right fails, since
Rk = R is not of type A1.

Corollary 11.35. In complete generality, we have the following equal-
ity:

{β ∈ R̂ | J(β) = ∅} = (±B ∪R′) \ ±C(αP ) .
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Proof. The inclusion from right to left is obvious. We prove the in-
clusion from left to right. Let β ∈ R̂ such that J(β) = ∅. It is clear
that β /∈ ±C(αP ) since otherwise we had card(J(β)) = 1. Therefore it
suffices to show that β ∈ ±B ∪ R′. Let β ∈ Ri for some 1 ≤ i ≤ r. If
C(αP )∩Ri = ∅ then Ri ⊆ ±B∩RP and the assertion is obvious. Sup-

pose that C(αP ) ∩ Ri �= ∅. Then we know that R̂i = Ri and thus the
previous fact applies to the root system Ri (Corollary 11.3). Therefore
we get that β ∈ ±(B ∩ Ri) ∪ Ri′. If R′ ∩ Ri = ∅ then Ri′ ⊆ B ∩ Ri

and if R′ ∩Ri �= ∅ then Ri′ = R′ (Lemma 11.13). In both cases we get
±(B ∩ Ri) ∪ Ri′ ⊆ ±B ∪R′ which completes the proof. �
Corollary 11.36. Let X be a dualizing variety. Then we have the
following inequality:

{β ∈ R | J(β) = ∅} = (±B ∪R′) \ ±C(αP ) .

Proof. This follows either directly from the previous corollary since
R̂ = R for a dualizing variety, or it follows from the original fact since
Rk is of type A1 for a dualizing variety by Corollary 11.3. �
Lemma 11.37. A simply laced dualizing variety is a cominuscule ho-
mogeneous space.

Proof. We argue by contradiction. Suppose that there is a simply laced
dualizing variety X which is not cominuscule. First we note that k > 1
since otherwise k = 1 and X ∼= P1 were a cominuscule homogeneous
space. By Corollary 11.3 we know that dk = 1 and thus we can choose
an index i minimal with the property that di+1 = 1. Since R̂i = Ri we
may replace R with Ri (or X with X i) and therefore may assume that
d1 > d2 = · · · = dk = 1.

We now do a case by case analysis to show that such a variety cannot
exists. It is clear that R cannot be of type An−1 since all all quotients of
GLn by a maximal parabolic subgroup are cominuscule homogeneous
spaces. Assume that R is of type Dp where p ≥ 4. Since X is not
cominuscule and since k > 1 we know that αP ∈ {α3, . . . , αp−2} and
that p > 4. Since d2 = 1 we conclude that αP = α3. Let l = 3. Then
X = GQ(l, 2p) where l ≤ p − 2 and l odd. By Lemma 11.19 we know
that this variety is not a dualizing variety. Next assume that R is of
type E6. Since X is not cominuscule we know that αP /∈ {α1, α6}.
Since k > 1 we know that αP �= α2. Therefore we conclude that
αP ∈ {α3, α4, α5}. Then it follows that α2 /∈ SΔ and thus that θ1

generates an irreducible component of R̂. This contradicts the fact
that R̂ = R is irreducible. Next assume that R is of type E7. Since
k > 1 and X is not cominuscule, we conclude that αP ∈ {α2, . . . , α6}.
Since d2 = · · · = dk = 1 we conclude further that αP ∈ {α2, α3}.
Then it follow that α1 /∈ SΔ and thus that θ1 generates an irreducible
component of R̂. This contradicts the fact that R̂ = R is irreducible.
Next assume that R is of type E8. Since k > 1 and d2 = · · · = dk = 1
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we conclude that αP = α7. Then it follows that α8 /∈ SΔ and thus that
θ1 generates an irreducible component of R̂. This contradicts the fact
that R̂ = R is irreducible.

In each case follows a contradiction. Therefore a simply laced dual-
izing variety which is not cominuscule cannot exists. In other words:
every simply laced dualizing variety is a cominuscule homogeneous
space. �
Lemma 11.38. Suppose that R is simply laced. Let γ ∈ S. Let i = i(γ)
and j = j(γ). Then we have that sθi

sγ � sθi
and thus δ(sθi

sγ) ≤ di.
Moreover we have that sθj

sγ � sθj
and thus δ(sθj

sγ) ≥ dj.

Proof. We statement in the third sentence holds even if R is not nec-
essarily simply laced. Indeed, we know that sθj

sγ and sθj
must be

comparable in the Bruhat order. Suppose for a contradiction that
sθj
sγ � sθj

. Then it follows that sγ ∈ WGj
and thus γ ∈ Rj. This

would mean that γ is orthogonal to θi – a contradiction. Therefore we
conclude that sθj

sγ � sθj
and thus δ(sθj

sγ) ≥ dj.
Next suppose that R is simply laced. We first show that δ(sθi

sγ) ≤
di. For this purpose we may well assume that γ is positive. We then
know that 〈θ∨i , γ〉 = 〈γ∨, θi〉 = 1. Furthermore we know that γ ∈ Ri

and thus γ < θi or equivalent θi − γ > 0. Since sθi
sγ = sγssγ(θi) =

sγsθi−γ and since R is simply laced it then follows that

δ(sθi
sγ) ≤ d(γ) + d(θi − γ) = di .

Since γ, θi ∈ Ri this inequality implies that sθi
sγ � zi

di
. The statement

sθi
sγ � sθi

is now obvious since sθi
WP = zi

di
WP . �

Lemma 11.39. Let X be a cominuscule homogeneous space. Let γ ∈
S and i = i(γ) and j = j(γ). Then we have that sθi

sγ � sθi
and

δ(sθi
sγ) = di. Moreover we have that sθj

sγ � sθj
and δ(sθj

sγ) = dj.

Proof. It clearly suffices to show that δ(sθi
sγ) = di and that δ(sθj

sγ) =
dj. The relations in the Bruhat order follow immediately as in the proof
of the previous lemma. Let δ be the unique element of P such that
γ = w(δ) for some w ∈ Wθ. We now distinguish the four possibilities
we have for w.

If w is the identity, then γ = δ ∈ RP and the equalities are obvious.
If w = sθi

then sθi
sγ = sδsθi

and thus δ(sθi
sγ) = δ(sθi

) = di since
δ ∈ RP . Moreover sθj

sγ = ssθi
sθj

(δ)sθj
and thus δ(sθj

sγ) = δ(sθj
) = dj

since sθi
sθj

(δ) ∈ RP . If w = sθj
then the equalities follow in exactly

the same way as in the case that w = sθi
by replacing the indices i and

j. If w = sθi
sθj

then γ ∈ RP and the equalities are obvious. Therefore
in all cases the equalities follow. �

We already know that Wθ ⊆ U . The following corollary produces
other elements of U in the case that X is a cominuscule homogeneous
space.
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Corollary 11.40. Let X be a cominuscule homogeneous space. Let
γ ∈ S and let F be a subset of {1, . . . , k} such that F ∩ J(γ) consists
of precisely one element. Then we have that

(∏
l∈F sθl

)
sγ ∈ U and

that δ
((∏

l∈F sθl

)
sγ

)
=
∑

l∈F dl. In particular if i ∈ J(γ) we have that
sθi
sγ ∈ U and that δ(sθi

sγ) = di.

Proof. Let F be a subset of {1, . . . , k} such that F∩J(γ) = {i} for some
i. Let j be the index such that J(γ) = {i, j}. Let u =

(∏
l∈F sθl

)
sγ.

We then have

δ(u) ≤ δ

⎛⎝ ∏
l∈F\{i}

sθl

⎞⎠+ δ(sθi
sγ) =

∑
l∈F

dl

by the previous lemma. Write F c for the complement of F in {1, . . . , k}.
Then we have

δ(u∗) = δ

((∏
l∈F c

sθl

)
sγ

)
≤ δ

⎛⎝ ∏
l∈F c\{j}

sθl

⎞⎠+ δ(sθj
sγ) =

∑
l∈F c

dl

by the previous lemma. Both inequalities together yield that δ(u) +
δ(u∗) ≤ dX . Therefore it follows that u ∈ U and that we have equalities
everywhere. This means in particular that δ(u) =

∑
l∈F dl as claimed.

The very last statement follows by takting F = {i} ⊆ J(γ). �
Fact 11.41. Let X be a cominuscule homogeneous space. Suppose that
R is simply laced. Let γ ∈ S. Then we have the following result:

δ(tγ) =

{
2 if γ ∈ R \RP

0 if γ ∈ RP

.

Moreover we see that tγ ∈ U for all γ ∈ S.

Proof. Write u = sθ1 · · · sθk
for short. Suppose first that γ ∈ RP . Then

it is clear that also u(γ) ∈ RP and thus tγ ∈ WP and thus δ(tγ) = 0.
Suppose next that γ ∈ R \ RP . We may assume that γ is positive
without changing the situation. Let i = i(γ) and let j = j(γ). By the
previous corollary we have that δ(tγ) ≤ δ(su(γ)sθi

)+δ(sθi
sγ) = 2di = 2.

Since γ ∈ R+ \R+
P we know that u(γ) ∈ R− \R−

P . Since γ and u(γ) are
orthogonal we therefore compute that tγ(ω) = ω+u(γ)−γ = ω−θi−θj.
If δ(tγ) = 0 then tγ ∈ WP and thus tγ(ω) = ω. With the prvious
computation we conclude that θi = −θj which is absurd. Therefore
we conclude that δ(tγ) > 0. If δ(tγ) = 1 then tγ is P -indecomposable.
In particular there exists a P -indecomposable root β ∈ R+ \ R+

P such
that sβWP = tγWP . With the previous computation we conclude that
β = θi + θj which is absurd since X is cominuscule. Therefore we
conclude that δ(tγ) > 1 and thus δ(tγ) = 2 as claimed.

Finally we want to prove that tγ ∈ U for all γ ∈ S. If γ ∈ RP then
there is nothing to prove. Assume that γ ∈ R+ \ R+

P . In view of the
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previous computation, to see the result it clearly suffices to prove that
δ(utγ) ≤ k− 2. Now utγ = sγusγ = sθ1 · · · ssγ(θi) · · · ssγ(θj) · · · sθk

. Since
both sγ(θi), sγ(θj) ∈ RP we conclude that δ(utγ) ≤ k − 2 as claimed.
This completes the proof. �
Lemma 11.42. Suppose that X is a cominuscule homogeneous space
and that R is simply laced. Let γ, δ ∈ S such that J(γ) ∩ J(δ) = ∅.
Then γ is orthogonal to δ.

Proof. Let γ, δ ∈ S such that J(γ)∩J(δ) = ∅. Suppose for a contradic-
tion that γ is not orthogonal to δ. We may assume that γ, δ ∈ R+ \R+

P

otherwise we replace if necessary γ and δ by other roots in their Wθ-
orbit without changing the sets J(γ) and J(δ) and without changing the
property that γ is not orthogonal to δ. In this situation we must have
〈γ∨, δ〉 > 0 since otherwise the root sγ(δ) had αP -coefficient greater
than one which contradicts the fact that X is a cominuscule homog-
neous space. Since γ �= ±δ and since R is simply laced we conclude that
〈γ∨, δ〉 = 〈δ∨, γ〉 = 1. This means that sγ(δ) = δ− γ and sδ(γ) = γ− δ
are both contained in RP . We may assume that i(γ) < i(δ) < j(δ) by
replacing γ with δ if necessary. It then follows that the root δ − γ is
smaller than δ < θi(δ) and thus contained in Ri(δ) which means that
the root δ − γ is orthogonal to θ1, . . . , θi(δ)−1, in particular orthogonal
to θi(γ). On the other hand we have (δ − γ, θi(γ)) = −(γ, θi(γ)) = −1 –
a contradiction. Therefore we conclude that the initial assumption is
false and thus that γ is orthogonal to δ. �
Remark 11.43. The converse of the previous lemma is false. For in-
stance, let R be of type A5 and αP = α3. Let γ = α1 and δ = α5.
Then γ, δ ∈ SΔ ⊆ P ⊆ S such that γ is orthogonal to δ and such that
J(γ) = J(δ) = {1, 2}.
Lemma 11.44. Suppose that X is a cominuscule homogeneous space
and that R is simply laced. Let γ ∈ S and let δ ∈ R such that J(δ) =
{i}. If i /∈ J(γ) then γ is orthogonal to δ.

Proof. The proof follows among the same lines as the proof of the
previous lemma. �
Lemma 11.45. Let R be simply laced. Let γ and δ be two different
elements in S+ such that γ is not orthogonal to δ and such that J(γ)∩
J(δ) �= ∅. Let i ∈ J(γ) ∩ J(δ). Then either we have that (sγ(δ), θi) =
(sδ(γ), θi) = 0 or (exclusively) that sγ(δ), sδ(γ) ∈ {±θi}.
Proof. Since R is simply laced we have that sγ(δ) = −〈γ∨, δ〉 sδ(γ).
Thus (sγ(δ), θi) = 0 is equivalent to (sδ(γ), θi) = 0 and sγ(δ) ∈ {±θi}
is equivalent to sδ(γ) ∈ {±θi}. It is obvious that the logical or is
exclusive. Therefore we only have to prove one of each statements.
Since R is simply laced we know that 〈γ∨, δ〉 , 〈θ∨i , γ〉 , 〈θ∨i , δ〉 ∈ {±1}
and thus that 〈θ∨i , sγ(δ)〉 ∈ {−2, 0, 2}. If the later bracket is zero the
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first case occurs, if the later bracket is ±2 then sγ(δ) ∈ {±θi} and the
second case occurs. �
Corollary 11.46. Let R be simply laced. Let γ, δ ∈ S be two elements
such that γ is not orthogonal to δ. Suppose that J(γ) ∩ J(δ) = {i}.
Then (sγ(δ), θi) = (sδ(γ), θi) = 0.

Proof. We may assume that γ and δ are positive without changing the
situation. Then the previous lemma applies to γ and δ. Suppose that
sγ(δ) = ±θi. Let j ∈ J(δ) \ {i}. Then (±θi, θj) = 0 but (sγ(δ), θj) =
(δ, θj) �= 0 – a contradiction. Therefore the second case does not occure.
The conclusion follows. �
Lemma 11.47. Let X be a cominuscule homogeneous space and let R
be simply laced. Let γ, δ ∈ S. Then card(J(sγ(δ))) ≤ 2.

Proof. If γ and δ are orthogonal, then sγ(δ) = δ ∈ S and the result is
trivial. Therefore we may assume that γ and δ are not orthogonal. If
γ = ±δ, then sγ(δ) = −δ ∈ S and the result is trivial. Therefore we
may assume that γ �= ±δ. Moreover we may assume that γ and δ are
both positive without changing the situation. Since γ is not orthogonal
to δ we know by Lemma 11.42 that J(γ) ∩ J(δ) �= ∅. There are two
possibility: either J(γ)∩ J(δ) = {i} or J(γ) = J(δ). Assume first that
the first possibility occurs. Then the previous corollary implies that
J(sγ(δ)) = {j, l} where J(γ) = {i, j} and J(δ) = {i, l}, in particular
the condition in the statement is satisfied. Suppose next that J(γ) =
J(δ). Then it is directly clear that J(sγ(δ)) ⊆ J(γ) = J(δ) and the
condition in the statement is again satisfied. �
Lemma 11.48. Let X be a cominuscule homogeneous space and let R
be simply laced. Let γ ∈ S and let δ ∈ R such that J(δ) = {i}. Then
card(J(sγ(δ))) ≤ 2.

Proof. If γ and δ are orthogonal, then sγ(δ) = δ and the result is trivial.
Assume that γ and δ are not orthogonal. By Lemma 11.44 we then
know that i ∈ J(γ). But then it is obvious that J(sγ(δ)) ⊆ J(γ) and
the result follows. �
Lemma 11.49. Let X be a cominuscule homogeneous space and let
R be simply laced. Let γ ∈ B ∪ S ∪ R′ and let δ ∈ R such that
card(J(δ)) ≤ 2. Suppose that either δ ∈ R̂ or that Rk is of type A1.
Then card(J(sγ(δ))) ≤ 2.

Proof. If card(J(δ)) = 2 then δ ∈ S. If γ ∈ S also, then Lemma
11.47 yields the result. The reflections along roots in B ∪ R′ clearly
act on S. Therefore sγ(δ) ∈ S if γ ∈ B ∪ R′ and the result is clear.
Assume next that card(J(δ)) = 1. If γ ∈ S, then Lemma 11.48 yields
the result. The reflections along roots in B ∪ R′ clearly act on the set
{β ∈ R | card(J(β)) = 1}. Thus J(sγ(δ)) consists of one element if
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γ ∈ B∪R′ and the result is clear. Finally assume that J(δ) = ∅. Then
δ ∈ (±B ∪ R′) \ ±C(αP ). If γ ∈ S the result follows since reflections
along roots in B ∪ R′ act on S. If γ ∈ B ∪ R′ the result follows since
±B∪R′ is a roots system whose elements β all satisfy card(J(β)) ≤ 1.
In all cases the result follows. �

Lemma 11.50. Let X be a cominuscule homogeneous space and let R
be simply laced. Then we have the following inclusion:

R̂ ⊆ {α ∈ R | card(J(α)) ≤ 2} .
Proof. Let α ∈ R̂. Then there exists roots γ1, . . . , γn, δ ∈ B ∪ SΔ ∪
R′ such that α = sγ1 · · · sγn(δ). We prove by induction on n that
card(J(α)) ≤ 2. If n = 0 there is nothing to prove. If n > 0 then
the induction hypotheses implies that card(J(α′)) ≤ 2 where α′ =
sγ2 · · · sγn(δ). The previous lemma then implies that also card(J(α)) ≤
2 where α = sγ1(α

′). This completes the proof. �

Corollary 11.51. Let X be a simply laced dualizing variety. Then we
have card(J(α)) ≤ 2 for all α ∈ R.

Proof. A simply laced dualizing variety is a cominuscule homogeneous
space. Therefore the previous lemma applies and yields the result since
R = R̂. �

Lemma 11.52. Let X be a cominuscule homogeneous space and let R
be simply laced. Then we have the following equality:

{α ∈ R̂ | card(J(α)) = 1} = ±C(αP ) .

Proof. The inclusion from right to left is obvious. We prove the in-
clusion from left to right. Let α ∈ R̂ such that card(J(α)) = 1.

By definition of R̂ there exists γ1, . . . , γn, δ ∈ B ∪ SΔ ∪ R′ such that
α = sγ1 · · · sγn(δ). Since reflections along roots in B ∪ R′ act on S we

may assume that γ1, . . . , γl ∈ B ∪ R′ and that γl+1, . . . , γn ∈ S ∩ R̂ for
some 0 ≤ l ≤ n. Note that α ∈ ±C(αp) if and only if sγl

· · · sγ1(α) ∈
±C(αP ). Since reflections along roots in B ∪ R′ clearly act on the set
{β ∈ R | card(J(β)) = 1}, we have J(α) = J(sγl

· · · sγ1(α)). Therefore

we may assume that l = 0 in other words that γ1, . . . , γn ∈ S ∩ R̂.
We now proceed by induction on n. If n = 0 the assertion is ob-

vious. Let n > 0 and let α′ = sγ2 · · · sγn(δ). If J(α′) consists of one
element, then the induction hypothesis yieds that α′ ∈ ±C(αP ) and
consequently that α = sγ1(α

′) ∈ S since α′ acts on S. This contradicts
the fact that J(α) consists of one element. Similar, if J(α′) is empty,
then α = sγ1(α

′) ∈ S since (B ∪ R′) \ C(αP ) acts on S. This contra-
dicts the fact that J(α) consists of one element. From the definition

of α′ it is clear that α′ ∈ R̂. Lemma 11.50 yields that card(J(α′)) = 2
and thus α′ ∈ S. Since α /∈ S we may assume that γ1 and α′ are not
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orthogonal. Moreover we may assume that γ1 and α′ are both posi-
tive without changing the situation. The fact that γ1 and α′ are not
orthogonal implies that J(γ1) ∩ J(α′) �= ∅. Since J(γ1)�J(α′) ⊆ J(α)
we see that J(α′) = J(γ1). Let J(α) = {i}. Then we obviously have
i ∈ J(α′) ∩ J(γ1). We are now in the situation to apply Lemma 11.45.
Since (α, θi) = (sγ1(α

′), θi) �= 0 we must have α ∈ {±θi} as desired. �

Corollary 11.53. Let X be a simply laced dualizing variety. Then we
have the following equality:

{α ∈ R | card(J(α)) = 1} = ±C(αP ) .

Proof. A simply laced dualizing variety is a cominuscule homogeneous
space. Therefore the previous lemma applies and yields the result since
R = R̂. �

Lemma 11.54 (Dimension formula for dualizing varieties). Let X be
a simply laced dualizing variety. Then we have the following formula
for the dimension of X:

dim(X) = k + card(P) .

Proof. By Corollary 11.51 we have

R+ \R+
P =

2∐
i=0

{α ∈ R+ \R+
P | card(J(α)) = i} .

Since {β ∈ R | card(J(β)) = 0} = (±B ∪ R′) \ ±C(αP ) ⊆ RP the first
of the three summands is empty. By the previous corollary the second
summand is equal to C(αP ). The third summand is by definition equal
to (R+ \ R+

P ) ∩ S. The later set is a set of representatives of the Wθ-
orbits in S. The set P is also a set of representatives of the Wθ-orbits in
S. Therefore the set (R+ \R+

P )∩S is in bijection with P which means
that card((R+ \ R+

P ) ∩ S) = card(P). Putting these facts together we
conclude that

dim(X) = card(R+ \R+
P ) = k + card(P) .

�

Lemma 11.55. Let X be a cominuscule homogeneous space and let
R be simply laced. Then we have the following upper bound for the
dimension of X̂:

dim(X̂) ≤ k + card(P) .

Proof. In view of the previous results, the proof of this upper bound
for dim(X̂) follows among the same lines as the proof of the previous
lemma. The only difference is that we only have an inclusion {α ∈
R̂+ \ R+

P | card(J(α)) = 2} ⊆ (R+ \ R+
P ) ∩ S where we do not know if

always equality holds. �
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Lemma 11.56. Suppose that R is simply laced. Let γ ∈ P. Let
i = i(γ) and j = j(γ). Then we have that γ is not a rational multiple
of θi − θj.

Proof. Suppose for a contradiction that γ = (θi−θj)q for some q ∈ Q×.
Then we know that sθj

(γ) = γ+θj = qθi+(1−q)θj is a root. Since R is

simply laced it follows that
〈
γ∨, sθj

(γ)
〉

= 2q2 −2q(1− q) = 2q(2q−1).

On the other hand we compute that
〈
γ∨, sθj

(γ)
〉

= 〈γ∨, γ + θj〉 =
2− 1 = 1. Both equation together yield that 1 = 2q(2q− 1). Since this
equation has no rational solutions we end up with a contradiction. �
Corollary 11.57. Suppose that R is simply laced. Then we know that
the cardinality of P is divisible by two.

Proof. We first prove that the element −sθ1 · · · sθk
acts on P . Indeed,

let γ ∈ P and let i = i(γ) and j = j(γ). Then we know that δ =
−sθ1 · · · sθk

(γ) = θi − (γ + θj) is a positive roots in S which satisfies
i = i(δ) and j = j(δ). Furthermore we see by direct computation that〈
θ∨j , δ

〉
= −1 < 0. All together this means by definition that δ ∈ P.

From this discussion we see that P is paritioned by the orbits of the
group {1,−sθ1 · · · sθk

} ∼= Z/2Z. We are left to show that each of the
orbits consists of precisely two elements, in other words we are left to
show that −sθ1 · · · sθk

(γ) �= γ for all γ ∈ P. Suppose for a contradiction
that −sθ1 · · · sθk

(γ) = γ for some γ ∈ P. Then it immediately follows
that γ = (θi(γ) − θj(γ))/2 which contradicts the previous lemma. �
Lemma 11.58. Suppose that R is simply laced. Let γ ∈ S. Then the
sum of two roots in Wθ(γ) is never a root: let γ′, δ′ ∈ Wθ(γ) then γ′+δ′

is not a root.

Proof. To prove the lemma we clearly can assume that γ ∈ P since P
is a set of representatives of the Wθ-orbits in S. Then we have that

Wθ(γ) = {γ, γ − θi, γ + θj, γ − θi + θj}
where i = i(γ) and j = j(γ). In order to prove the statement it clearly
suffices to show that none of the following elements:

2γ − θi, 2γ + θj, 2γ − θi + θj, 2γ − 2θi + θj, 2γ − θi + 2θj

is a root. Suppose that 2γ − θi is a root. Then we have that

〈γ∨, 2γ − θi〉 = 4 − 1 = 3

which is impossible since R is simply laced. Suppose that 2γ + θj is a
root. Then we have that 〈γ∨, 2γ + θj〉 = 4− 1 = 3 which is impossible
since R is simply laced. Suppose that 2γ − θi + θj is a root. Then
we have that 〈γ∨, 2γ − θi + θj〉 = 4 − 1 − 1 = 2. Since R is simply
laced, this implies that 2γ − θi + θj = ±γ which means that either
γ = θi − θj or γ = (θi − θj)/3. Both cases imply that there exists
a rational number q such that γ = (θi − θj)q which contradicts the
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previous lemma. Suppose that 2γ − 2θi + θj is a root. Then we have
that 〈γ∨ − θ∨i , 2γ − 2θi + θj〉 = 4−2−1−2+4 = 3 which is impossible
since R is simply laced. Suppose that 2γ − θi + 2θj is a root. Then
we have that

〈
γ∨ + θ∨j , 2γ − θi + 2θj

〉
= 4− 1− 2− 2 + 4 = 3 which is

impossible since R is simply laced. Therefore none of the proceeding
elements is a root as claimed. �

11.4. Classification of dualizing varieties.

Lemma 11.59. Let X be a dualizing variety. Up to isomorphism X
is given by one of the varieties in the following list:

X = X̂
G(p, 2p)

Gω(p, 2p), p ≥ 2
GQ(p, 2p), p ≥ 3, p even

Qm, m ≥ 3
E7/P7

Proof. From Lemma 11.16 it is clear that the varieties in the list are
all dualizing varieties. Moreover Lemma 11.16 says that the cominus-
cule dualizing varieties are up to isomorphism precisely the varieties
occuring in the previous list. We have to show that there are no other
dualizing varieties.

Let X be a dualizing variety. By what we said up to know we may
assume that X is not cominuscule. Since a simply laced dualizing
variety is a cominuscule homogeneous space, it follows that R is not
simply laced. We now do a case by case analysis.

Suppose first that G is of type B� where 
 ≥ 2 and let αP = αn for
some 1 ≤ n ≤ 
. Since X is not cominuscule we know that n > 1.
Suppose that n < 
. Since X is a dualizing variety we know that
θk = αn (Corollary 11.3). This immediately implies that k > 2. Since
αn−1 /∈ SΔ it is easy to see that θ1 and R′ generate two different
irreducible components of R̂. Since R̂ = R this is a contradiction. We
conclude that αP = α�. Again since we must have θk = α� we conclude
that 
 is odd. This means that X = B�/P�

∼= GQ(
, 2
+1) ∼= GQ(p, 2p)
where p = 
 + 1. Since 
 ≥ 2 is odd we know that p ≥ 3 is even.
Therefore it follows that X already appears in the list of dualizing
varieties in the statement.

Next suppose that G is of type Cp where p ≥ 2 and let αP = αn for
some 1 ≤ n ≤ p. Since X is not cominuscule we know that n < p.
Then it is easy to see that αp /∈ R̂ which contradicts the fact that

R̂ = R. Therefore we see that there is no dualizing variety of type Cp

which is not cominuscule.
Next suppose that G is of type F4. Since θk = αP we conclude that

k > 1 and that αP = αn for some 2 ≤ n ≤ 4. Therefore we know that
R2 = R̂2 is of type C3. Since there is only one dualizing variety of type
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C3 by the previous analysis we conclude that αP = α2. Since α1 /∈ SΔ

is is easy to see that α1 /∈ R̂. Since R̂ = R this is a contradiction.
Therefore we see that there is no dualizing variety of type F4.

Next suppose that G is of type G2. Since θk = αP we immediately
conclude that αP = α1. This means that X = G2/P1

∼= Q5 already
appears in the list of dualizing varieties in the statement. �
Corollary 11.60. Every dualizing variety is isomorphic to a cominus-
cule dualizing variety.

Proof. Let X be a dualizing variety which is not cominuscule. The
proof of the previous lemma then shows that X is either equal to B�/P�

where 
 > 1 is odd or is equal to G2/P1. Both varieties where seen to
be isomorphic to a cominuscule dualizing variety in the proof of the
previous lemma. �
Corollary 11.61. Let X be a dualizing variety. Through three points
of X in general position passes a unique rational curve of degree dX .

Proof. For a cominuscule dualizing variety this is a direct consequence
of Corollary 11.17. For a dualizing variety which is not cominuscule
the result will follows from the previous corollary once we have checked
that the invariant dX is preserved under the isomorphism under con-
sideration. Since we know from Lemma 11.16 that dGQ(p,2p) = [p/2]
where p ≥ 3 and that dQm = 2 where m ≥ 3, we only have to check
that dB	/P	

= (
 + 1)/2 for all 
 > 1 odd and that dG2/P1 = 2. If
X = B�/P� where 
 > 1 is odd it is immediate that k = (
+ 1)/2 and
that d1 = · · · = dk = 1 and thus dX = (
 + 1)/2. If X = G2/P1 it is
immediate that k = 2 and that d1 = d2 = 1 and thus dX = 2. In both
cases we get the desired value of dX . �
Corollary 11.62. Let X be a dualizing variety. Then we have the
following formula for the dimension of X:

dim(X) =
c1(X)dX

2
.

Proof. Indeed, from the previous corollary it is immediate that

dim(M0,3(X, dX)) − 3 dim(X) = 0 .

But we know that dim(M0,3(X, dX)) = c1(X)dX + dim(X). Therefore
the desired formula follows. �
Corollary 11.63. Let X be a dualizing variety (not necessarily simply
laced). Then we have d1 = · · · = dk = 1.

Proof. We already proved that a simply laced dualizing variety is comi-
nuscule. Therefore we may assume that X is not simply laced. In the
case that X is a dualizing variety which is not cominuscule, we have
checked the assertion in the proof of Corollary 11.61. We are left to
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check the case of a non simply laced dualizing variety which is cominus-
cule. By the classification of dualizing varieties this means that either
X = Gω(p, 2p) where p ≥ 2 or X = Qm where m ≥ 3 is odd. In both
cases it is clear that dX = k and thus d1 = · · · = dk = 1. �

The following conjecture is concerned with the converse of Corollary
11.61.

Conjecture 11.64. Through three points of X in general position
passes a unique rational curve of degree dX if and only if X is a dual-
izing variety.

Remark 11.65. The previous conjecture is known for all cominuscule
homogeneous spaces X. Indeed, let X be a cominuscule homogeneous
space such that through three points of X in general position passes
a unique rational curve of degree dX . Then it is clear from what we
proved up to now that X̂ = YdX

(fΔ) = XdX
(x(1), x(wo)) = X where

the last equality follows from the assumption on X. Thus it follows
that X is a dualizing variety.

We use the same notation as introduced in the beginning of Section
11: we denote with R1, . . . ,Rr the irreducible components of R̂, etc.
Consistently with the previous notation, we denote with WĜ the Weyl

group of Ĝ.

Definition 11.66. We call an irreducible component Ri of R̂ nontrivial
if C(αP ) ∩ Ri �= ∅ or equivalent if Ri �⊆ RP . Otherwise we call an
irreducible component trivial.

We denote the number of nontrivial irreducible components with s.
It is clear that r ≥ s.

The following proposition is a generalization of Corollary 11.17.

Proposition 11.67. Through three points of X̂ in general position
passes a unique rational curve of degree dX which is contained in X̂.
Consequently we have that X̂ ⊆ YdX

(fΔ) and that WĜ ⊆ U .

Proof. For all 1 ≤ i ≤ r such that Ri is nontrivial we know that
Xi is a dualizing variety and thus that through three points of Xi in
general position passes a unique rational curve of degree dXi

which
is contained in Xi. Therefore we see that through three points of
X̂ =

∏
i : C(αP )∩Ri �=∅ Xi in general position passes a unique rational

curve of degree dX = dX̂ which is contained in X̂. This proves the

first statement. That X̂ ⊆ YdX
(fΔ) follows now from Lemma 11.15

and the fact that CΔ ⊆ X̂. From the inclusion X̂ ⊆ YdX
(fΔ) follows in

particular that X̂ ⊆ XdX
(x(1), x(wo)) which implies that WĜ ⊆ U . �

Corollary 11.68. Let X be a dualizing variety. Then we have that
U = W/WP .
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Proof. Indeed, by the previous proposition we know that WĜ ⊆ U . But

since Ĝ = G the result follows. �

Lemma 11.69. We have the following inequality between the number
s of nontrivial irreducible components of R̂ and and the number of
different values of di for 1 ≤ i ≤ k:

s ≥ card{d1, . . . , dk} .
Proof. Let Ri be a nontrivial irreducible component of R̂. By the
previous results we know that C(αP ) ∩ Ri is the θ-sequence of Ri and
that the value of d(θ) is independent of the choice of θ ∈ C(αP ) ∩
Ri8. Therefore we have a map from {1 ≤ i ≤ r | Ri nontrivial} to
{d1, . . . , dk} which sends an index i to the value d(θ) for some θ ∈
C(αP ) ∩ Ri. Since C(αP ) =

∐
i : C(αP )∩Ri �=∅C(αP ) ∩ Ri this map is

surjective. It follows that s ≥ card{d1, . . . , dk} as claimed. �

Lemma 11.70. The number s of nontrivial irreducible components of
R̂ and the number of different values of di for 1 ≤ i ≤ k coincide:

s = card{d1, . . . , dk} .
Proof. The author has checked the previous statement in all possible
types by direct computation of X̂ and its representation as a product
of dualizing varieties. Since we are lacking a neat type independent
proof, we omit the details. In all cases where s = 1, where X̂ is itself
a dualizing variety, which include the cases where X is a cominuscule
homogeneous space, the statement is obvious anyway. For the suc-
cessive discussion the statement will be of no importance, although
it completes the picture we have from the relation between X and
X̂. To prove the inequality

”
≤“ it clearly suffices to show that for all

i ∈ {1, . . . , k − 1} such that di = di+1 there exists a root γ ∈ SΔ such
that i(γ) = i. �

Fact 11.71. Let X be a simply laced dualizing variety. Then we have
the following equality:

(
P (sθ1) − 1)k = 2 card(P) .

Proof. Since through three points of X in general position passes a
unique rational curve of degree dX , we know that dim(M0,3(X, dX))−
3 dim(X) = c1(X)dX − 2 dim(X) = 0 and thus c1(X)dX = 2 dim(X).
If we plug in the dimension formula for dualizing varieties, we obtain
c1(X)dX = 2k + 2 card(P) and thus (c1(X) − 2)k = 2 card(P) since
dX = k. Since 
P (sθ1) = c1(X)d1−1 = c1(X)−1 the result follows. �

8Note that this value d(θ) need not necessarily be equal to one, although Xi is
isomorphic to a dualizing variety. The value d(θ) depends on the embedding of Xi

and X̂ into X but is independent of the choice of θ ∈ C(αP ) ∩ Ri.
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Corollary 11.72. Let X be a simply laced dualizing variety. Then we
know that the number (
P (sθ1) − 1)k is divisible by four.

Proof. We already know that the cardinality of P is divisible by two.
Thus the formula from the previous fact implies the claim. �

Fact 11.73. Let R1, . . . ,Rs be the nontrivial irreducible components of
R̂. Then the diagonal curve can be written as fΔ = (f1, . . . , fs) where
each fi is the diagonal curve associated to Xi. In particular each fi is
of degree dXi

and has image in Xi.

Proof. Since the diagonal curve has image in X̂ and since X̂ is the prod-
uct of X1, . . . ,Xs it is clear that fΔ can be written as fΔ = (f1, . . . , fs)
where each fi has image in Xi. Since C(αP ) ∩ Ri is the θ-sequence
of Ri it follows from the definition of fΔ that each fi is the diagonal
curve associated to Xi. The very last statement follows from general
properties of diagonal curves. �

12. Bundles over X ′

Let X = G/P be a homogeneous space where G is a simple, sim-
ply connected linear algebraic group and P is a maximal parabolic
subgroup. In this section we assume that R is simply laced.

Let γ ∈ S. We denote by Oγ the orbit of the action of G′ on Uγ. Let
U be the unipotent radical of B. Let U− be the unipotent radical of
B−. With this notation we have Oγ ⊆ U × U− for all γ ∈ S.

Let γ ∈ S. By Lemma 11.58 we know that Oγ is a subgroup of
G. Therefore we can define Eγ = G′ ×G′∩P Oγ/Oγ ∩ P . We write

X ′
γ = G′Oγx(1). With this notation X ′

γ is the closure of the image of
the total space of Eγ in X.

Fact 12.1. Let γ ∈ S. The group G′ and the orbit Oγ form a semidirect
product G′Oγ = G′ � Oγ. In particular we have that

G′ =
⋂
γ∈S

G′Oγ

whenever P is not empty. Moreover we have the weaker inclusion

X ′ ⊆
⋂
γ∈S

X ′
γ

which holds for all P.

Proof. Let γ ∈ S. To see that G′ and Oγ form a semidirect product it
suffices to prove that G′ ∩ Oγ = 1 or equivalently that⎛⎝ ∏

θ∈±C(αP )

Uθ

⎞⎠ ∩ Oγ = 1



108

since Oγ ⊆ U×U−. Since θi /∈ S for all 1 ≤ i ≤ k the before mentioned
intersection is obviously trivial.

Let γ, δ ∈ S. Then we clearly have Oγ = Oδ if and only if γ and δ
are in the same orbit of the action of Wθ on S. Therefore we have⋂

γ∈S

Oγ =
⋂
γ∈P

Oγ .

Since G′ and Oγ form a semidirect product it follows that⋂
γ∈S

G′Oγ = G′ ⋂
γ∈P

Oγ .

Since the set P is a set of representatives of the orbits of the action
of Wθ on S we have a direct product

∏
γ∈P Oγ and thus

⋂
γ∈P Oγ = 1

whenever P consists of more than one element. Since the cardinality
of P is divisible by two, we know that P will consist of more than
one element whenever P is not empty. The previous equality therefore
yields

⋂
γ∈S G

′Oγ = G′ whenever P is not empty. The inclusion in the
statement follows by applying the natural projection G → X to the
equality we proved just before whenever P is not empty. If P is empty
we interpret the intersection

⋂
γ∈S X

′
γ as the whole space X. Therefore

the desired inclusion becomes trivial whenever P is empty. �
Since we have a direct product

∏
γ∈P Oγ we also have a direct sum⊕

γ∈P Eγ. We denote this direct sum by E =
⊕

γ∈P Eγ and this direct

product by O =
∏

γ∈P Oγ. We denote the closure of the image of the

total space of E in X by X̃. With this notation we have X̃ = G′Ox(1).
We have a commutative diagram

E

k∏
i=1

U−θi
×

∏
γ∈S∩(R−\R−

P )

Uγ

∧

> X̃ ⊆ X
>

where the horizontal arrow is an injection. From this diagram we infer
that

k + card(S ∩ (R− \R−
P )) ≤ dim(X̃) .

Fact 12.2. Let X be a cominuscule homogeneous space and let R be
simply laced. Then we have the following inequalities:

dim(X̂) ≤ k + card(P) ≤ dim(X̃) .

Proof. The first inequality was already proved before for every comi-
nuscuel homogeneous space X such that R is simply laced. Since X
is cominuscule we know that the set S ∩ (R− \ R−

P ) as well as the set
P are sets of representatives of the orbits of the action of Wθ on S.
In particular card(S ∩ (R− \ R−

P )) = card(P). Therefore the second
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inequality follows from the inequality we deduced directly before the
fact. �

Fact 12.3. Let X be a cominuscule homogeneous space and let R be
simply laced. Let γ ∈ S. Then Eγ is a line bundle on X ′ such that
f ∗

Δ(Eγ) ∼= OP1(2).

Proof. We may assume that γ ∈ P. Then we know that the orbit of γ
under the action of Wθ contains precisely one element of S∩(R+ \R+

P ),
namely γ + θj(γ), and precisely one element of S ∩ (R− \ R−

P ), namely

γ − θi(γ). These roots satisfy
〈
η∨, γ + θj(γ)

〉
= 2 and

〈
η∨, γ − θi(γ)

〉
=

−2 where η∨ =
∑k

i=1 θ
∨
i . Therefore it is clear from the definition that Eγ

is a line bundle. Moreover we see that the highest weight of the action
of the onedimensional maximal torus in P ′ = G′ ∩ P on Oγ/Oγ ∩ P
is given by 2. In formulas this means that Eγ = L(2). From this
description it obviously follows that f ∗

Δ(Eγ) ∼= OP1(2). �

Lemma 12.4. Let X be a cominuscule homogeneous space and let R
be simply laced. Then we have X̃ = X̂. Consequently the dimension
formula holds:

dim(X̂) = k + card(P) .

Moreover we have S ⊆ R̂.

Proof. We first prove that through three points of X̃ in general position
passes a rational curve of degree dX . Since E maps onto a dense subset
of X̃ it clearly suffices to prove that through three points of E in general
position passes a rational curve of degree dX . Since E is a direct sum it
clearly suffices to show that for all γ ∈ P through three points of Eγ in
general position passes a rational curve of degree dX . Since X ′ = G′CΔ

it is clear that through three points of X ′ in general position passes a
rational curve of degree dX . Since f ∗

Δ(Eγ) ∼= OP1(2) this curve will lift
uniquely to a rational curve in Eγ of the same degree passing through
three points of Eγ in general position. This proves the claim.

We know that X̃ is irreducible as the closure of the image of the
irreducible variety E . Therefore it now follows from the first paragraph
and Lemma 11.15 that X̃ ⊆ YdX

(fΔ) = X̂. By Fact 12.2 we know

that dim(X̂) ≤ dim(X̃). Since X̂ is irreducible it therefore follows

that X̃ = X̂. Using Fact 12.2 once more we see that the dimension
formula is satisfied. From the equality X̃ = X̂ it immediately follows
that S ⊆ R̂. �

Corollary 12.5. Let X be a simply laced dualizing variety. Then we
have X̃ = X̂ = X.

Proof. Obvious. �
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13. General quantum to classical principle

Let X = G/P be a homogeneous space where G is a simple, simply
connected linear algebraic group and P is a maximal parabolic sub-
group. In this section we suppose that X �= G2/P1 and that X �= B�/P�

where 
 > 1 is odd. Then we know that the diagonal curve has a dense
open orbit under the action of G in M = M0,3(X, dX). In other words
a curve which is in the orbit of the diagonal curve is a general curve.

Let Q = StabG(X̂). Then we know that Q is a closed subgroup of

G. Moreover we have the obvious inclusions Ĝ ⊆ Q ⊆ ĜP . We write
Y = G/Q for the quotient.

Fact 13.1. Suppose in addition that X is a cominuscule homogeneous
space. Then Q is a parabolic subgroup of G.

Proof. In view of Lemma 11.16 this follows from [11, Proposition 18].
�

Remark 13.2. Even if X is a cominuscule homogeneous space, the para-
bolic subgroup Q will not necessarily be a standard parabolic subgroup.
Already in type An we find examples where B �⊆ Q.

Assumption 13.3. In the rest of this section we will make the follow-
ing assumptions:

• We assume that X̂ is an irreducible component of YdX
(fΔ).

• We assume that all irreducible components of YdX
(fΔ) are pair-

wise nonisomorphic.
• We assume that each irreducible component X0 of YdX

(fΔ) sat-
isfies the following property: through three points of X0 in gen-
eral position passes a unique rational curve of degree dX which
is contained in X0.

Remark 13.4. We already know that this assumption is satisfied for all
cominuscule homogeneous spaces, since then X̂ = YdX

(fΔ). We will
see later that this assumption is also satisfied if X = GQ(l, 2p) where
l ≤ p− 2 and l odd.

Conjecture 13.5. X̂ is an irreducible component of YdX
(fΔ) if and

only if S ⊆ R̂.

Conjecture 13.6. Suppose that R is simply laced. Then the following
are equivalent:

• X̂ is an irreducible component of YdX
(fΔ).

• We have the inclusion S ⊆ R̂.
• We have the equality X̃ = X̂.

Remark 13.7. By what we proved up to now the first of the two previous
conjectures is known for all cominuscule homogeneous spaces and the
second one is known for all cominuscule homogeneous spaces such that
R is simply laced.
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Fact 13.8. Let X0, . . . , Xn be the irreducible components of YdX
(fΔ).

Then we have

StabG(YdX
(fΔ)) =

n⋂
i=0

StabG(Xi) .

Proof. The inclusion from right to left is obvious. Let g ∈ G be an
element wich stabilizes YdX

(fΔ). Then Xi and gXi are two isomorphic
irreducible components of YdX

(fΔ). By the assumption it follows that
gXi = Xi for all i. Therefore g is contained in the intersection on the
right side. This proves the inclusion from left to right. �
Corollary 13.9. We have an inclusion: StabG(fΔ) ⊆ Q.

Proof. For every g ∈ G we obviously have gYdX
(fΔ) = YdX

(gfΔ).
Therefore every element which stabilizes the diagonal curve will also
stabilize YdX

(fΔ). The previous fact then implies that every element
which stabilizes the diagonal curve also stabilizes each irreducible com-
ponent of YdX

(fΔ) in particular X̂ by assumption. This proves the
desired inclusion. �
Fact 13.10. Let g ∈ G be an element such that gX̂ ⊆ YdX

(fΔ). Then

we have that gX̂ is an irreducible component of YdX
(fΔ).

Proof. Indeed, let X0 be the irreducible component of YdX
(fΔ) which

contains gX̂. Then we have CΔ ⊆ X̂ ⊆ g−1X0. By our assumption X0

and g−1X0 satisfy the three point property. Therefore Lemma 11.15
implies that g−1X0 ⊆ YdX

(fΔ). Again by the assumption we know that

X̂ is an irreducible component. Since g−1X0 is irreducible it follows
that X̂ = g−1X0 and thus gX̂ = X0 which means that gX̂ is an
irreducible component of YdX

(fΔ) as claimed. �

Corollary 13.11. Let g ∈ G such that CΔ ⊆ gX̂ ∩ X̂. Then it follows
that g ∈ Q.

Proof. Through three points of gX̂ and X̂ in general position passes a
unique rational curve of degree dX . In addition we have CΔ ⊆ gX̂ ∩
X̂. Therefore Lemma 11.15 implies that gX̂, X̂ ⊆ YdX

(fΔ). By the

previous fact we know that gX̂ and X̂ are two isomorphic irreducible
components of YdX

(fΔ) and thus must be equal by assumption. This

means gX̂ = X̂ or equivalent g ∈ Q. �
Let f be a general curve in M. Then there exists a g ∈ G such that

f = gfΔ. Then we can define X̂f = gX̂. This is well defined since
we know that StabG(fΔ) ⊆ Q. With this notation we obviously have

X̂fΔ
= X̂. Moreover we know that the image of any general curve f

is contained in X̂f . The homogeneous space Y parametrizes the set

{X̂f | f general}.
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Fact 13.12. We have a birational map:

{(y, x1, x2, x3) ∈ Y ×X3 | x1, x2, x3 ∈ yX̂} → M .

Proof. Let us denote by N the potential source of the birational map.
Let (y, x1, x2, x3) be a general point in N . Then we know that x1, x2

and x3 are three points of yX̂ in general position. By Proposition
11.67 there exists a unique rational curve f which is contained in yX̂
and passes through the three points x1, x2 and x3. The assignement
(y, x1, x2, x3) �→ f with marked points x1, x2 and x3 then defines a ra-
tional map from N to M. The inverse of this rational map can be
defined as follows: let f be a general curve in M. Then we know that
f is in the orbit of the diagonal curve. Therefore it makes sense to send
f to the point in Y associated to X̂f where we keep the marked points
of f as marked points of the image.

We can easily check that the defined maps are inverse to each other.
Let (y, x1, x2, x3) be a general point in N with image f . Since the
original point is general, we see that f is also general. Therefore there
exists a g ∈ G such that f = gfΔ. We have to show that gQ/Q = y.

Let h ∈ G such that hQ/Q = y. We know that f(P1) ⊆ yX̂ = hX̂ and

thus gCΔ ⊆ hX̂ and thus CΔ ⊆ g−1hX̂ ∩ X̂. The previous corollary
then implies g−1h ∈ Q which means gQ/Q = hQ/Q = y as desired.

Finally, let f be a general curve in M with image (y, x1, x2, x3) ∈ N .

Then we know by definition that yX̂ = X̂f . Since f is general, we see
that the image is also general. Therefore there exists a unique rational
curve in yX̂ which passes through the points x1, x2 and x3. This curve
is given by f – hence the assignement (y, x1, x2, x3) �→ f . �

Corollary 13.13. We have the following equality for the dimension of
M:

dim(M) = dim(Y ) + 3 dim(X̂) .

Proof. Indeed, the previous fact implies that dim(M) = dim(N ). But

we obviously have dim(N ) = dim(Y ) + 3 dim(X̂). �

We now introduce the incidence variety Z. Let Z = {(x, y) ∈ X×Y |
x ∈ yX̂}. Since Ĝ acts transitively on X̂ we know that Q also acts

transitively on X̂. It follows that X̂ ∼= Q/Q∩P and that Z ∼= G/P ∩Q.

It is convenient to write P̂ = Ĝ ∩ P . With this notation we have the
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following commutative diagram:

G/P̂
p̄
> X

Z
p

>
>

X

1

>

G/Ĝ

q̄∨

Y

q

∨>

In this diagram the morphisms p, q, p̄ and q̄ are the obvious projections.
The morphisms which are not labeled are also the obvious projections.

The fibers of q are all (independently from the point in Y ) isomorphic

to X̂. Therefore we get the equality of dimensions:

dim(Z) = dim(Y ) + dim(X̂) .

The fibers of p are all (independently from the point in X) isomorphic
to P/P ∩Q. Therefore we get the equality of dimensions:

dim(Z) = dim(X) + dim(P/P ∩Q) .

Both equalities together yield the following equality of dimensions:

(5) dim(Y ) − dim(P/P ∩Q) = dim(X) − dim(X̂) .

Let w be a Weyl group element. Then we write Fw = qp−1(Xw).
For an abritrary element g ∈ G we obviously have gFw = qp−1(gXw)
since both morphisms p and q are G-equivariant. We define a surjective
morphism qw : p−1(Xw) → Fw via restriction of q.

Fact 13.14. Let w be a Weyl group element. The morphism qw is
proper.

Proof. To see that qw is proper it clearly suffices to show that p−1(Xw) →
Y is proper (since the inclusion Fw ⊆ Y is separated). Since p−1(Xw) →
Y is the composition of the closed immersion p−1(Xw) → Z and q : Z →
Y it suffices to show q is proper in order to see that p−1(Xw) → Y
is proper. Since q is the composition of the closed immersion Z →
X × Y and the natural projection X × Y → Y it suffices to show that
X × Y → Y is proper in order to see that q is proper. Since X is pro-
jective we know that the structure morphism X → Spec(C) is proper.
Since proper is stable under base change and since X × Y → Y is the
base change of X → Spec(C) along Y → Spec(C) we conclude that
X × Y → Y is proper as desired. �

Fact 13.15. Let w be a Weyl group element. The variety qp−1(Ωw) is
a dense subset of Fw.
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Proof. It clearly suffices to show that p−1(Ωw) is a dense subset of

p−1(Xw) since we have q(p−1(Ωw)) ⊆ qp−1(Ωw). Let π : G → X be
the natural projection. Since p−1(Ωw) resp. p−1(Xw) is the image
of π−1(Ωw) resp. π−1(Xw) under the natural projection G → Z it
suffices to prove that π−1(Ωw) is a dense subset of π−1(Xw). Since
π−1(Ωw) = BwP is stable under the right action of P , the closure A
of π−1(Ωw) in G is also stable under the right action of P . In other
words this means that A = π−1(B) where B = π(A). Since A is closed
and X carries the quotient topology we conclude that B is also closed.
Since π is surjective we see that B = π(A) ⊇ ππ−1(Ωw) = Ωw. Since B
is closed we conclude that B ⊇ Xw and thus A ⊇ π−1(Xw). Since the
other inclusion A ⊆ π−1(Xw) is obvious it follows that A = π−1(Xw)
which means that π−1(Ωw) is a dense subset of π−1(Xw) as desired. �
Fact 13.16. Let w be a Weyl group element. The variety Fw is B-
stable and irreducible.

Proof. It is clear that Fw is B-stable since Xw is B-stable and the
morphisms p and q are G-equivariant. Since qp−1(Ωw) is a dense subset
of Fw it suffices to show that qp−1(Ωw) is irreducible. Since p and q
are G-equivariant we have qp−1(Ωw) = Bqp−1(x(w)) = Bwqp−1(x(1)).
Therefore it suffices to show that qp−1(x(1)) is irreducible in order to
see that qp−1(Ωw) is irreducible. By definition we have of p and q
we have qp−1(x(1)) = PQ/Q. From this expression it is clear that
qp−1(x(1)) is irreducible. The claim follows. �

Let Nw be the nonempty open subset of Fw where the fibers of qw
are of minimal dimension. Since Fw is irreducible, the nonempty open
subset Nw of Fw is dense. Since qw is B-equivariant the open dense
subset Nw of Fw is B-stable.

Fact 13.17. Let w be a Weyl group element. We have the following
fundamental inequality:

codim(Fw) ≥ codim(Xw) − dim(X̂) .

Moreover the following statements are equivalent:

• The fundamental inequality is an equality.
• The equality dim(Fw) = dim(p−1(Xw)) holds.
• The fiber of qw over some point in Nw is finite.
• The fiber of qw over all points in Nw is finite.

Proof. We morphism qw is obviously surjective. Therefore we get that
dim(Fw) ≤ dim(p−1(Xw)). On the other hand we already know that

dim(p−1(Xw)) = dim(Xw) + dim(P/P ∩Q) .

If we put this together we find that

codim(Fw) ≥ dim(Y )−dim(P/P ∩Q)−
P (w) = codim(Xw)−dim(X̂)
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where we used the equality (5). We also see that equality holds if
and only if dim(Fw) = dim(p−1(Xw)). This proves the fundamental
inequality and the equivalence of the first two statements.

The equivalence of the third and the fourth statement is clear from
the definition of Nw, since the dimension of the fibers of qw over points
in Nw is independent from the point in Nw.

Assume that we have equality dim(Fw) = dim(p−1(Xw)). Then there
exists a nonempty open subset U of Fw such that all fibers of qw over
points in U are zerodimensional / finite. Since Nw is a dense open
subset of Fw it is clear that Nw ∩ U �= ∅, hence the fiber of qw over
some point in Nw is finite. This proves that the second statement
implies the third statement.

Similarly, assume that we have dim(Fw) < dim(p−1(Xw)). Then
there exists a nonempty open subset U of Fw such that all fibers of qw
over points in U have positive dimension. Since Nw is a dense open
subset of Fw it is clear that Nw∩U �= ∅, hence the fiber of qw over some
point in Nw is infinite. This proves that the fourth statement implies
the second statement. �

Let w be a Weyl group element. We are now ready to define the non
negative integer q̄w. Suppose that one of the four equivalent statements
of Fact 13.17 is satisfied. Then we define q̄w = card(q−1

w (y)) for some
y ∈ Nw. This is a well defined non negative integer since the fibers of
qw over points in Nw are all finite and of the same cardinality. If one of
the four equivalent statements of Fact 13.17 is violated then we define
q̄w = 0. More concisely we can say that q̄w is the unique non negative
integer defined by the following equation in cohomology:

qw∗[p−1(Xw)] = q̄w[Fw] .

Fact 13.18. Let g, g′ and g′′ be three general elements of G. Let u, v
and w be three Weyl group elements. Then we have an isomorphism
between

{(y, x1, x2, x3) ∈ gFu ∩ g′Fv ∩ g′′Fw ×X3 |
x1 ∈ yX̂ ∩ gXu, x2 ∈ yX̂ ∩ g′Xv, x3 ∈ yX̂ ∩ g′′Xw}

and

{f ∈ M | ev1(f) ∈ gXu, ev2(f) ∈ g′Xv, ev3(f) ∈ g′′Xw}
which is given by restricting the birational map from Fact 13.12.

Proof. Let (y, x1, x2, x3) be a point in the first variety. Since g, g′ and g′′

are general elements of G, we know that x1, x2 and x3 are three points
of yX̂ in general position. Thus there exists a unique rational curve f
which is contained in yX̂ such that ev1(f) = x1 ∈ gXu, ev2(f) = x2 ∈
g′Xv and such that ev3(f) = x3 ∈ g′′Xw. This means that we have a
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well defined morphism between the varieties under consideration which
is given by restricting the birational map from Fact 13.12.

Let f be a curve in the second scheme. Since g, g′ and g′′ are general
elements of G, we know that f is a general curve. Thus there exists a
h ∈ G such that f = hfΔ. Let x1, x2 and x3 be the marked points of
f . Let y = hQ/Q. Since f(P1) ⊆ yX̂ we see that the points x1, x2 and
x3 satisfy the defining condition of the first variety in the statement.
Therefore (y, x1, x2, x3) is a well defined point in this variety. Therefore
we have a well defined inverse morphism which is given by restricting
the inverse of the birational map from Fact 13.12.

That the two defined morphism are inverse to each other was already
checked in the proof of Fact 13.12. �
Theorem 13.19. Let g, g′ and g′′ be three general elements of G. Let
u, v and w be three Weyl group elements such that

codim(Xu) + codim(Xv) + codim(Xw) = dim(M) .

Then we have the following equality:

〈σ(u), σ(v), σ(w)〉dX
= q̄uq̄v q̄w card(gFu ∩ g′Fv ∩ g′′Fw) .

Proof. Suppose first that one of the four equivalent statements of Fact
13.17 is satisfied for each of the Weyl group elements u, v and w. Then
we find that

codim(gFu ∩ g′Fv ∩ g′′Fw) =
∑

s∈{u,v,w}
codim(Fs)

=
∑

s∈{u,v,w}
codim(Xs) + 3 dim(X̂)

= dim(M) + 3 dim(X̂) = dim(Y )

where the last line follows from Corollary 13.13. This means that the
cardinality of gFu ∩ g′Fv ∩ g′′Fw is finite. Moreover for sufficiently
general elements g, g′ and g′′ we can assume that

gFu ∩ g′Fv ∩ g′′Fw = gNu ∩ g′Nv ∩ g′′Nw ,

i.e that the the intersection thakes place in the open dense B-stable
subsets. Therefore we see from the previous fact that the number of
curves passing through three general translates of Xu, Xv and Xw is
finite and that this number is given by the expression in the statement
of the theorem.

Next assume that one of the four equivalent statements of Fact 13.17
is violated for at least one s ∈ {u, v, w}. Then we know by definition
that q̄s = 0. Therefore the right side of the claimed formula is always
zero. To prove the desired equality it suffices to show that there are
either no or there are infinitely many curves passing through three
general translates of Xu, Xv and Xw. Suppose that there exists at
least one such curve corresponding to a point y ∈ gNu ∩ g′Nv ∩ g′′Nw.
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We may assume that s = u. Then we know by assumption that the
fiber yX̂ ∩ gXu is infinite. The previous fact then implies that there
are infinitely many curves passing through three general translates of
Xu, Xv and Xw. �
Corollary 13.20. Let u, v and w be three Weyl group elements. Sup-
pose that the inequality

codim(Fs) ≥ codim(Xs) + dim(X̂)

is strict for at least one s ∈ {u, v, w}. Then we have the vanishing

〈σ(u), σ(v), σ(w)〉dX
= 0 .

Proof. If
∑

s∈{u,v,w} codim(Xs) �= dim(M) then the Gromov-Witten
invariant is zero anyway. Otherwise we know from the previous theorem
that the Gromov-Witten invariant is zero since we have q̄s = 0 for at
least one s ∈ {u, v, w}. �
Lemma 13.21. Let X be a dualizing variety. Then we have

〈σu, σv, σw〉dX
=

{
1 if u = v = w = wX

0 otherwise

For all d > dX we have 〈σu, σv, σw〉d = 0 for all Weyl group elements
u, v and w.

Proof. The first claim follows directly from Corollary 11.61, since if one
of the Schubert cycles σu, σv or σw is positive dimensional then there
exist infinitely many rational curves passing through general translates
of Yu, Yv and Yw, and if all Schubert cycles are zero dimensional then
there exists precisely one rational curve. Let d > dX . Since we know
that c1(X)dX − 2 dim(X) = 0 it follows that c1(X)d − 2 dim(X) >
0. This means that there are infinitely many rational curves passing
through three general points of X. This gives the desired vanishing
〈σu, σv, σw〉d = 0 for all Weyl group elements u, v and w. �
Remark 13.22. From the previous lemma we see that Conjecture 7.2
is satisfied for all dualizing varieties. More generally it was proved in
[11, Proposition 28] that Conjecture 7.2 is also true for all cominuscule
homogeneous spaces.

Corollary 13.23. Let X be a dualizing variety. Then we have

[{pt}] � [{pt}] = [X] · qdX .

Proof. Since dX = δ(wX) we kow that qdX is the minimal power of the
quantum parameter q occuring in the quantum product [{pt}] � [{pt}].
But the previous lemma also shows that qdX is a maximal power of
the quantum parameter q which can occur in any quantum product
σu�σv. Therefore we obtain the desired formula in view of the previous
lemma. �
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14. Schubert varieties in isotropic Grassmannians

Let X = G/P = GQ(l, 2p) where l ≤ p − 2 and p ≥ 3. Let q =
p− l. In this section we describe the Schubert varieties in X using the
parametrization by q-strict partitions as in [7, 4.] and [29, 6.].

Let V be the real vector space spanned by the root system R. Let
ε1, . . . , εp be the standard basis of V which represents the root system
as in Bourbaki (cf. [4, Chapter VI, Table I-IX]). The Weyl group W is
the semidirect product Sp�(Z/2Z)p−1 where Sp acts by permutation of
the εi’s and (Z/2Z)p−1 acts by εi �→ (±1)iεi where

∏p
i=1(±1)i = 1. We

think of elements of W either as permutations with an even number
of bars or as permutation matrices with negative signs attached to an
even number of entries. The simple reflections sαi

which generate W
can be described as barred permutations as follows: sαi

= (i(i+1)) for
all 1 ≤ i ≤ p−1 (cycle notation) and sαp = (1, . . . , p−2, p, p− 1) (array
notation). The order of the Weyl group W is obviously 2p−1p!. The
Weyl group WP of P is generated by all simple reflections sαi

where
i �= l. Consequently we can write WP = Sl × (Sp−l � (Z/2Z)p−l−1)
where the first factor is generated by sα1 , . . . , sαl−1

and the second fac-
tor is generated by sαl+1

, . . . , sαp . The order of the group WP is thus
2p−l−1l!(p − l)!. The order of the set W P of minimal length represen-
tatives is then the order of W divided by the order of WP which is
2l
(

p
l

)
.

Fact 14.1. The set W P of minimal length representatives is given by
the set of all barred permutations

w = (u1, . . . , ut, ut+1, . . . , ul, ul+1, . . . , up−1, ûp)

where 0 ≤ t ≤ l, u1 < · · · < ut, ut+1 > · · · > ul, ul+1 < · · · < up and
where ûp = up if l − t is even and ûp = up if l − t is odd.

Proof. Let w be a barred permutation as in the statement. It is easy
to see that w(α) > 0 for all α ∈ ΔP . Therefore it follows that w is
a minimal length representative (cf. [22, 9.1]). To see that the set
of all barred permutations as in the statement is the complete set of
minimal length representatives it suffices to show that the cardinal-
ity of all barred permutations as in the statement equals 2l

(
p
l

)
. But

the cardinality of all barred permutations as in the statement is by
definition

l∑
t=0

(
l

t

)(
p

l

)
= 2l

(
p

l

)
as desired. �
Remark 14.2. Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Since we know
that l ≤ p− 2 by assumption and since ul+1 < · · · < up we can always
say that up > 1.
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Definition 14.3 ([7, Definition 1.1]). We say that a partition λ is q-
strict if no part greater than q is repeated, i.e. λj > q implies λj+1 < λj.
We say that a partition λ is strict if it is 0-strict.

We now introduce various sets of partitions. We denote by R(q, l)
the set of all partitions of shape q× l. We denote by D(l, p− 1) the set
of all strict partitions of shape l × (p − 1). We denote by P(l, p) the
set of all q-strict partitions of shape l × (2p− l − 1) = l × (p+ q − 1).
We denote the length of a partition λ by 
(λ). We denote the weight
of a partition λ by |λ|. We denote the conjugate (or transpose) of a
partition α by α′. We denote by Q(l, p) the set of all partition pairs
(α, λ) ∈ R(q, l) ×D(l, p− 1) such that αq ≥ 
(λ).

We now associate a number in {0, 1, 2} called the type and denoted
by type(−) to any element of P(l, p) and Q(l, p). If a partition λ ∈
P(l, p) has no part equal to q we set type(λ) = 0, otherwise we have
type(λ) = 1 or type(λ) = 2. If a partition pair (α, λ) ∈ Q(l, p) satisfies
αq = 
(λ) we set type(α, λ) = 0, otherwise we have type(α, λ) = 1 or

type(α, λ) = 2. We denote by P̃(l, p) the set of all partitions in P(l, p)
with their type attached to them. We denote by Q̃(l, p) the set of all
partition pairs in Q(l, p) with their type attached to them.

Fact 14.4. The map ϕ wich sends a partition pair (α, λ) ∈ Q(l, p) to
the partition α′ +λ defines a well defined injective map from Q(l, p) to
P(l, p). The map ϕ extends to a well defined injective map from Q̃(l, p)
to P̃(l, p) (which we still denote by ϕ) in such a way that type(α, λ) =
type(ϕ(α, λ)) for all partition pairs (α, λ) ∈ Q̃(l, p).

Proof. It is obvious that the image ϕ(α, λ) of a partition pair (α, λ) ∈
Q(l, p) is of shape l×(2p−l−1). To see that the map ϕ is well defined it
therefore suffices to show that the image is a q-strict partition. Suppose
that two succesive parts are repeated: α′

j + λj = α′
j+1 + λj+1 for some

j. Then we have to show that α′
j + λj ≤ q. Indeed, it follows that

λj − λj+1 = α′
j+1 − α′

j ≤ 0 and thus λj = λj+1 = 0 since λ is a strict
partition. This means that α′

j + λj = α′
j ≤ q as claimed.

Next we prove that the map ϕ is injective. Suppose that ϕ(α, λ) =
ϕ(β, μ) for two partition pairs (α, λ), (β, μ) ∈ Q(l, p). Suppose that

(μ) ≤ 
(λ). From the condition αq ≥ 
(λ) it follows that α′

1 = · · · =
α′

�(λ) = q and similar that β′
1 = · · · = β′

�(μ) = q. From ϕ(α, λ)j =

ϕ(β, μ)j for all 1 ≤ j ≤ 
(μ) it then follows that λj = μj for all
1 ≤ j ≤ 
(μ) which means in particular that μ ⊆ λ. From α′ + μ ⊆
α′+λ = β′+μ it then follows that α′ ⊆ β′ in particular α′

�(λ) = β′
�(λ) = q.

The equality α′
�(λ) + λ�(λ) = β′

�(λ) + μ�(λ) then gives λ�(λ) = μ�(λ) > 0

and thus 
(μ) ≥ 
(λ) which means 
(μ) = 
(λ) by assumption. This
immediately implies λ = μ and thus α′ = β′ and thus (α, λ) = (β, μ)
as desired.
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To see that the map ϕ extends to a well defined injective map from
Q̃(l, p) to P̃(l, p) in such a way that type(α, λ) = type(ϕ(α, λ)) for all
partition pairs (α, λ) ∈ Q̃(l, p) we only have to show that the image
of a type zero partition pair (α, λ) ∈ Q̃(p, l) is mapped under ϕ to
a type zero partition in P̃(l, p), in other words we have to show that
if ϕ(α, λ)j = q for a partition pair (α, λ) ∈ Q(l, p) and some j then
αq > 
(λ). Indeed, suppose that α′

j + λj = q for a partition pair
(α, λ) ∈ Q(l, p) and some j. Suppose that λj > 0 then α′

j < q and thus

(λ) ≥ j > αq – a contradiction. Therefore we conclude that λj = 0
and thus α′

j = q and thus αq ≥ j > 
(λ) as required. �

We define a second length function 
̊ on the set of minimal length
representatives W P . Let w ∈ W P be a minimal length representative
with representation as barred permutation as in Fact 14.1. Then we
define 
̊(w) by the following assignement:


̊(w) =

⎧⎪⎨⎪⎩
0 if t = l

l − t if t < l and ul > 1

l − t− 1 if t < l and ul = 1

Lemma 14.5. Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Let l < i ≤ p be
an index. Then we have the following inequality:

ui − 1 + card{t < j ≤ l | uj > ui} ≥ l − t .

Proof. Indeed, the inequality in question is equivalent to the inequality

ui − 1 ≥ card{t < j ≤ l | uj < ui}
which is obvious. �
Corollary 14.6. Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Let l < i ≤ p be
an index. Suppose that we have the following equality:

ui − 1 + card{t < j ≤ l | uj > ui} = 
̊(w) .

Then we have that 
̊(w) = l − t which means that ul > 1 if t < l.

Proof. This is obvious from the previous lemma and the definition of

̊. �
Lemma 14.7. Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Let di = card{t <
j ≤ l | uj > up−i+1} for all 1 ≤ i ≤ q. Let αi = up−i+1 + i− q − 1 + di

for all 1 ≤ i ≤ q. Then we have

l ≥ α1 ≥ · · · ≥ αq ≥ l − t ≥ 
̊(w) ≥ 0

which means that α = (α1, . . . , αq) is a well defined partition in R(q, l).
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Proof. In general we have di ≤ p−up−i+1 for all 1 ≤ i ≤ q, in particular
we have d1 ≤ p − up from which it follows that α1 ≤ p − q = l. By
definition and by the previous lemma we have that αq ≥ l − t. Let
1 ≤ i < q. We are left to show that αi − αi+1 ≥ 0. By definition
this inequality is equivalent to up−i+1 − up−i − 1 ≥ di+1 − di. Again by
definition we have

di+1 − di = card{t < j ≤ l | up−i < uj < up−i+1}
so that the previous inequality becomes obvious. �

We now associate to each element w ∈ W P an element ψ(w) =
(α, λ) ∈ Q̃(l, p). Suppose that w is represented as barred permutation
as in Fact 14.1. We then define α to be the element of R(l, p) which
depends on w as described in the previous lemma. To define λ we
suppose first that we have equality αq = 
̊(w). Then we know by the
previous corollary that ul > 1 if t < l. Therefore we can define a strict
partition λ of length 
̊(w) = l − t by the assignement λi = ut+i − 1 for

all 1 ≤ i ≤ 
̊(w). It is clear that λ is a well defined element of D(l, p−1)
and that the pair (α, λ) is a well defined element of Q̃(l, p) of type zero.

Suppose next that αq �= 
̊(w), i.e. αq > 
̊(w) by Lemma 14.5. Then

we can define a strict partition λ of length 
̊(w) by the assignement

λi = ut+i − 1 for all 1 ≤ i ≤ 
̊(w) which makes sense since ut+i > 1

for all 1 ≤ i ≤ 
̊(w). It is clear that λ is a well defined element of
D(l, p− 1) and that the pair (α, λ) is a well defined element of Q(l, p).
We set type(α, λ) = 1 if ûp = up and type(α, λ) = 2 if ûp = up to

produce a well defined element (α, λ) ∈ Q̃(l, p). With these definitions

we always have 
(λ) = 
̊(w).

Lemma 14.8. Let w and w′ be two elements of W P which have the
following representation as barred permutations:

w = (u1, . . . , ut, ut+1, . . . , ul, ul+1, . . . , ûp) ,

w′ = (v1, . . . , vt, ut+1, . . . , ul, vl+1, . . . , v̂p) .

Let 1 ≤ i ≤ q be some index. Let di = card{t < j ≤ l | uj > up−i+1}
and let ei = card{t < j ≤ l | uj > vp−i+1}. Suppose that up−i+1 + di =
vp−i+1 + ei. Then we have that up−i+1 = vp−i+1.

Proof. Suppose for a contradiction that we have up−i+1 < vp−i+1. Then
we have

n := vp−i+1 −up−i+1 = di − ei = card{t < j ≤ l | up−i+1 < uj < vp−i+1}
which means that there exist n indices t < jn < · · · < j1 ≤ l such
that up−i+1 < uj1 < · · · < ujn < vp−i+1. But the later sequence of
inequalities immediately implies that n = vp−i+1 − up−i+1 > n – a
contradiction. Therefore we conclude that up−i+1 = vp−i+1 as desired.

�
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Lemma 14.9. The map ψ from W P to Q̃(l, p) as defined above is
injective.

Proof. Suppose that ψ(w) = ψ(w′) = (α, λ) for two elements w,w′ ∈
W P . First we observe that we know by construction that 
(λ) = 
̊(w) =


̊(w′). It is easy to see that we can reconstruct from the type of (α, λ)
and the length of λ the value of t of a barred permutation in the
preimage of (α, λ) which therefore must coincide for both barred per-
mutations w and w′. Indeed, if (α, λ) is of type zero then we have
t = l − 
(λ) (Corollary 14.6). Suppose next that (α, λ) is of type one.
Then we know that t − l must be even. In addition it is clear that
t− l−
(λ) is zero if 
(λ) is even and one if 
(λ) is odd. Finally suppose
that (α, λ) is of type two. Then we know that t − l must be odd. In
addition it is clear that t− l− 
(λ) is zero if 
(λ) is odd and one if 
(λ)
is odd. Once we know how to reconstruct the value of t from (α, λ)
we also know how to reconstruct the values of ut+1, . . . , ul. Indeed, we
must have ut+i = λi + 1 for all 1 ≤ i ≤ 
(λ) and ul = 1 if 
(λ) < t− l.
In total this means that w and w′ have a representations as barred per-
mutations as in the previous lemma. The conclusion of the previous
lemma then immediately implies that up−i+1 = vp−i+1 for all 1 ≤ i ≤ q
since w and w′ have the same image under ψ. This in turn immediately
implies that w = w′ as desired. �
Corollary 14.10. The maps ψ and ϕ induce bijcetions:

W P ∼=ψ Q̃(l, p) ∼=ϕ P̃(l, p) .

Proof. Since ψ and ϕ are injective we know that the composition ϕ ◦ψ
is also injective. Since by [7, 4.3] the set P̃(l, p) parametrizes the B-
orbits as well as the set W P , we know that they must have the same
cardinality. Therefore the map ϕ◦ψ is bijective and thus also the maps
ψ and ϕ are bijective as claimed. �
Lemma 14.11. Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Let the numbers
di for all 1 ≤ i ≤ q be defined as in Lemma 14.7. Then we have the
following formula for the length of w:


(w) =
t∑

i=1

ui −
q∑

i=1

di + (p+ q)(l − t) − l(l + 1)

2
.

Proof. Let ai = card{j > i | uj < ui} and let bi = card{j > i | uj >
ui}. By [26, 2.(1)] we know that


(w) =

p∑
i=1

ai + 2
l∑

i=t+1

bi .

To prove the desired formula we only have to simplify this expression. If
i > l then ai = 0. If t < i ≤ l then ai = l−i+card{l < j ≤ p | uj < ui}
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and thus
l∑

i=t+1

ai =
(l − t− 1)(l − t)

2
+

q∑
i=1

di .

If i ≤ t then ai = ui − i and thus

t∑
i=1

ai =
t∑

i=1

ui − t(t+ 1)

2
.

In total this gives that

p∑
i=1

ai =
t∑

i=1

ui +

q∑
i=1

di +
l(l − 1)

2
− lt .

On the other hand we have
l∑

i=t+1

bi = card{t < i ≤ l, l < j ≤ p | uj > ui} = (p− l)(l − t) −
q∑

i=1

di .

Putting all formulas together we obtain the desired result. �

Let w ∈ W P be a minimal length representative with representation
as barred permutation as in Fact 14.1. Let u′i = p + 1 − ui for all
1 ≤ i ≤ p. Then we can define a new minimal length representative w′

by setting:

w′ = (u′t, . . . , u
′
1, u

′
l, . . . , u

′
t+1, u

′
p, . . . , û

′
l+1) .

If we set φ(w) = w′ this construction defines us a map from W P to
W P . From the definition it is clear that φ is an involution, in particular
bijective. We denote the image of an element w ∈ W P under ϕ ◦ ψ ◦ φ
by λw. We denote the preimage of an element λ ∈ P̃(l, p) under ϕ◦ψ◦φ
by wλ. If w ∈ W is an arbitrary Weyl group element we define λw = λw̃

where w̃ is the minimal length representative of w. If λ ∈ P̃(l, p) then
it makes sense to denote the dual partition of λ by λ∗. The element
∗ ∈ P̃(l, p) is defined by the formula λ∗ = λw∗

λ
.

Lemma 14.12. For all w ∈ W we have 
P (w) = |λw| or equivalent for
all w ∈ W P we have 
(w) = |λw|.
Proof. For a partition pair (α, λ) we define the weight of (α, λ) in the
obvious way as |(α, λ)| = |α|+|λ|. From the definition of ϕ it is obvious
that ϕ is weight preserving, that is |ϕ(α, λ)| = |(α, λ)| for all partition
pairs (α, λ). Let w ∈ W P be a minimal length representative with
representation as barred permutation as in Fact 14.1. Let w′ = φ(w)
and let (α, λ) = ψ(w′). Since ϕ is weight preserving we only have to
show that 
(w) = |(α, λ)|. Let the numbers di for all 1 ≤ i ≤ q be
defined as in Lemma 14.7 with respect to the entries of w and let the
numbers d′i for all 1 ≤ i ≤ q be defined as in Lemma 14.7 but now with
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respect to the entries of w′. From the definition of these numbers it is
rather clear that we have

q∑
i=1

d′i = q(l − t) −
q∑

i=1

di .

Let u′i for all 1 ≤ i ≤ p be defined as before in terms of ui. By reordering
the summands the definition of α gives

|α| =

q∑
i=1

(u′p−i+1 + i− q − 1 + d′i) .

If we plug in the identities we know for the primed variables this sum
becomes

q∑
i=1

(l + i− up−i+1 + d′i) = lq +
q(q + 1)

2
−

p∑
i=l+1

ui + q(l − t) −
q∑

i=1

di .

By reordering the summands the definition of λ gives on the other hand

|λ| =
l∑

i=t+1

u′i − 1 = p(l − t) −
l∑

i=t+1

ui .

If we use the trivial identity

t∑
i=1

ui =
p(p+ 1)

2
−

p∑
i=t+1

ui

then we immediately see that we have

|(α, λ)| =
t∑

i=1

ui −
q∑

i=1

di + (p+ q)(l − t) + lq +
q(q + 1)

2
− p(p+ 1)

2
.

If we plug in the symbolic identity

lq +
q(q + 1)

2
− p(p+ 1)

2
+
l(l + 1)

2
= 0

in the previous equation then the expression precisely becomes 
(w)
according to the previous lemma. �
Fact 14.13. The dimension of X is given by the following formula:

dim(X) = (p+ q)l − l(l + 1)

2
= 2lq +

l(l − 1)

2
.

Proof. There is a unique element of P̃(l, p) of maximal weight, namely
the partition

ρ = (2p− l − 1, 2p− l − 2, . . . , 2(p− l)) .

Since every part of ρ is greater than q, we necessarily have type(ρ) = 0.
On the other hand there is also a unique element of W P of maximal
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length, namely the element wX . Therefore we conclude that wX = wρ

or equivalent ρ = λwX
. This implies that

dim(X) = 
(wX) = |ρ| = (p+ q)l − l(l + 1)

2
.

The second equality in the statement is just a symbolic identity. �
Example 14.14. We have the following description of wo, wX and wP

in terms of barred permutations:

wo = (1, 2, . . . , p− 1, p̂) ,

wX = (l, l − 1, . . . , 1, l + 1, . . . , p− 1, p̂) ,

wP = (l, l − 1, . . . , 1, l + 1, . . . , p− 1, p̂) ,

where in each case the hat indicates that the number of bars is com-
pleted to an even number of bars. Indeed, the description of wo is
well known. The barred permutation which desribes wX is obtained by
taking the unique element of W P of maximal length equal to dim(X).
The barred permutation which describes wP arises from the identity
wP = wowX and the previous descriptions.

Example 14.15. In this example we assume that l is odd. Let ρi =
λsθi

···sθk
for all 1 ≤ i ≤ k. In this example we want to compute the

partitions ρi. We start with the case i = k. Then we have sθk
= sαl

and thus s̃θk
= sθk

= sαl
. This means that we have 
P (sθk

) = 1.
Therefore ρk must be the unique parition of weight 1. We conclude
that ρk = (1, 0l−1). The partition ρk is necessarily of type zero.

Assume now that 1 ≤ i < k. Then we have

sθi
= (1, . . . , 2i− 2, 2i, 2i− 1, 2i+ 1, . . . , p) .

By multiplying those elements we obtain that

sθi
· · · sθk

= (1, . . . , 2i− 2, 2i, 2i− 1, 2(i+ 1), 2(i+ 1) − 1,

. . . , l − 1, l − 2, l, l + 1, l + 2, . . . , p) .

If we take minimal length representatives of the above elements this
results in the formula:

wXi = s̃θi
· · · s̃θk

= (1, . . . , 2i− 2, l, . . . , 2i− 1, l + 1, . . . , p) .

From this formula it is easy to compute the corresponding paritions as

ρi = (p+ q − 2i+ 1, p+ q − 2i, . . . , p+ q − l, 02i−2) .

The parition ρi is necessarily of type zero. According to the computa-
tion in the previous example we find that ρ = ρ1. Note that we have
inclusions

ρk ⊆ ρk−1 ⊆ · · · ⊆ ρ1

corresponding to the general fact that

sθk
� sθk−1

sθk
� · · · � sθ1 · · · sθk

.
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Let WG be the set of all permutations σ ∈ S2p such that σ(i) +
σ(2p+ 1− i) = 2p+ 1 for all 1 ≤ i ≤ 2p (or for all 1 ≤ i ≤ p) and such
that card{j ≤ p | σ(j) > p} is even. We think of elements of WG as
permutation matrices.

Fact 14.16. The set WG is a subgroup of S2p of order card(W ) =
2p−1p!. For all σ ∈ WG we have sgn(σ) = 1.

Proof. It is clear that the identity is part of WG. Let σ, τ ∈ WG. It is
clear that we have τσ(i) + τσ(2p + 1 − i) = 2p + 1 for all 1 ≤ i ≤ 2p.
In order to see that WG is a subgroup of S2p we therefore only have to
check that card{j ≤ p | τσ(j) > p} is even. To this end we compute:

card{j ≤ p | τσ(j) > p} = card{j | τ(j) > p} − card{j > p | τσ(j) > p}
≡ card{j > p | τ(j) > p} − card{j > p | τσ(j) > p}

where the last congruence follows since τ ∈ WG. Now we have

card{j > p | τ(j) > p} =

card{j > p | τσ(j) > p, σ(j) > p} + card{j ≤ p | τσ(j) > p, σ(j) > p}
and

card{j > p | τσ(j) > p} =

card{j > p | τσ(j) > p, σ(j) > p} + card{j > p | τσ(j) > p, σ(j) ≤ p} =

card{j > p | τσ(j) > p, σ(j) > p} + card{j ≤ p | τσ(j) ≤ p, σ(j) > p} .
If we plug in the two latter identities in the first congruence we get

card{j ≤ p | τσ(j) > p} ≡ card{j ≤ p | σ(j) > p} ≡ 0

where the last congruence follows since σ ∈ WG. In total this proves
that τσ ∈ WG and that WG is a subgroup of S2p .

We next check that the sgn(σ) = 1 for all σ ∈ WG. Let σ ∈ WG.
Then there exists a unique product π ∈ WG of an even number of
the transitions (1(2p)), (2(2p − 1)), . . . , (p(p + 1)) such that σπ has a
permutation matrix of the form(

A 0
0 B

)
where A and B are permutation matrices of permutations τ, τ ′ ∈ Sp.
Since σπ is an element of WG we know that τ(i) + τ(p+ 1− i) = p+ 1
for all 1 ≤ i ≤ p. But this equation immediately implies that sgn(τ) =
sgn(τ ′). On the other hand it is obvious that sgn(π) = 1. Therefore
we get sgn(σ) = sgn(σπ) = sgn(τ) sgn(τ ′) = 1 as claimed.

Finally we compute the order of WG. To this end, let πi = (i(2p+1−
i))((i+1)(2p− i)) for all 1 ≤ i ≤ p−1. The subgroup of WG generated
by all products of an even number of the transitions (i(2p + 1 − i))
for all 1 ≤ i ≤ p is obviously the same as the subgroup generated by
π1, . . . , πp−1 which is isomophic to (Z/2Z)p−1. Since we already know
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that every element of WG can be uniquely written as a product of an
element of Sp and an element of 〈π1, . . . , πp−1〉 we conclude that WG is
as a set in bijection to Sp × (Z/2Z)p−1 and thus of order card(W ) =
2p−1p!. �
Corollary 14.17. If we embed Sp in the obvious way into WG then we
have a decomposition of WG as a semidirect product:

WG = Sp � 〈π1, . . . , πp−1〉
where πi = (i(2p+ 1 − i))((i+ 1)(2p− i)) for all 1 ≤ i ≤ p− 1.

Proof. By what we saw up to now it suffices to show that Sp acts
on 〈π1, . . . , πp−1〉 via conjugation. But this is clear since we have that
σ(i(2p+1−i))σ−1 = (σ(i)(2p+1−σ(i))) for all σ ∈ Sp and all 1 ≤ i ≤ p,
that is every of the transitions (i(2p+1−i)) where 1 ≤ i ≤ p is mapped
again to such a transition. �

It is clear that an element of WG is already determined by the first p
entries of the permutation. Threrefore we sometimes write an element
of WG as a tuple of the first p entries and not as a tuple of all 2p entries.

Let w ∈ W . Then we write w = (ŵ1, . . . , ŵp) where ŵi ∈ {wi, wi}
for all 1 ≤ i ≤ p. We now define a map f : W → WG by the following
assignement:

f(w)(i) =

{
wi if ŵi = wi

2p+ 1 − wi if ŵi = wi

for all 1 ≤ i ≤ p.

Fact 14.18. The map f is an isomorphism of groups.

Proof. It is clear that f maps the identity to the identity. Let w, v ∈
W . We distinguish four cases to check that f(vw) = f(v)f(w). Let
1 ≤ i ≤ p be arbitrary. Assume first that ŵi = wi and v̂wi

= vwi
.

Then we have f(vw)(i) = vwi
and f(v)f(w)(i) = f(v)(wi) = vwi

as
claimed. Assume next that ŵi = wi and v̂wi

= vwi
. Then we have

f(vw)(i) = 2p + 1 − vwi
and f(v)f(w)(i) = f(v)(wi) = 2p + 1 − vwi

as claimed. Assume next that ŵi = wi and v̂wi
= vwi

. Then we
have f(vw)(i) = 2p + 1 − vwi

and f(v)f(w)(i) = f(v)(2p + 1 − wi) =
2p+1−f(v)(wi) = 2p+1−vwi

as claimed. Assume finally that ŵi = wi

and v̂wi
= vwi

. Then we have f(vw)(i) = vwi
and f(v)f(w)(i) =

f(v)(2p + 1 − wi) = 2p + 1 − f(v)(wi) = vwi
as claimed. This shows

that f is a group homomorphism. The injectivity of f is obvious from
the definition. The surjectivity of f follows since we already know that
card(W ) = card(WG). �
Example 14.19. Let π1, . . . , πp−1 be the elements of WG as defined in
Corollary 14.17. Then we have:

f(1, . . . , i− 1, i, i+ 1, i+ 2, . . . , p) = πi
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for all 1 ≤ i ≤ p− 1.
Moreover it is clear from the definition of f that we have f(w) = w

for all w ∈ Sp where Sp is as usually embedded into W and WG. In
particular we have f(sαi

) = sαi
for all 1 ≤ i ≤ p− 1. The image of sαp

under f is seen to be f(sαp) = (1, . . . , p− 2, p+ 1, p+ 2).

Let C2p be a 2p-dimensional complex vector space equipped with
a nondegenerated symmetric bilinear form Q. We can choose a ba-
sis v1, . . . , v2p of C2p such that Q(vi, vj) = 0 if i + j �= 2p + 1 and
Q(vi, v2p+1−i) = 1 for all 1 ≤ i ≤ p ([7, Lemma 4.1]). With respect to
this basis Q is represented by the matrix E, the antidiagonal (1, . . . , 1)
of size 2p × 2p. By changing the basis of C2p we may assume from
the beginning that Q is represented by E with respect to the canonical
basis e1, . . . , e2p. With these choices the group G is given by matrices
A ∈ SL2p(C) which satisfy tAEA = E. If we identify elements of WG

with permutation matrices then we see that the defining condition of
WG and the fact that all elements of WG have signature one imply that
WG ⊆ G. On the other hand a permutation matrix clearly normalizes
a diagonal matrix, so that we get WG ⊆ NG(T ).

Fact 14.20. The morphism f is a section of the natural projection
NG(T ) → NG(T )/T = W .

Proof. Since f is a group homomorphism it clearly suffices to show that
the simple reflections in W have the right images in NG(T ). But we
already computed these images in Example 14.19. To check that these
images project to the correspoding simple reflections we only have to
check their action (via conjugation) on the spaces gαi

for all 1 ≤ i ≤ p.
By choosing a Chevalley basis of g as in [1, 3.5] we immediately see
that we have the right action on these spaces. �
Definition 14.21. According to [7, page 39] we define an index set P
to be a subset of {1, . . . , 2p} of cardinality l such that i + j �= 2p + 1
for all i, j ∈ P .

To every element w ∈ W we can associate an index set Pw by setting
Pw = {σ(1), . . . , σ(l)} where σ = f(w). From the definition of σ ∈ WG

it is obvious that Pw is an index set. Moreover it is clear that Pw

only depends on the class of w modulo WP since WP acts on Pw by
permuting the entries. If in addition w ∈ W P then the description of
minimal length representatives shows that σ(1) < · · · < σ(l). Since
an element of W P is completely determined by its first l entries this
shows that w �→ Pw defines a bijections between W P and the set of all
index sets. Since P is the stabilizer of 〈e1, . . . , el〉 in G we know that
x(w) = 〈ei | i ∈ Pw〉.
Definition 14.22. An isotropic flag in (C2p, Q) is a complete flag F•
such that Fp+i = F⊥

p−i for all 0 ≤ i ≤ p.
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For all 1 ≤ i ≤ 2p let Fi = 〈e1, . . . , ei〉 and let F0 = 0. Then F• is an
isotropic flag in the above sense. The stabilizer of F• in G is the Borel
group B.

Lemma 14.23. Let w ∈ W and let σ = f(w). Then we can describe
the isotropic subspaces parametrized by Ωw in terms of the following
formula:

Ωw = {V ∈ X | dim(V ∩Fi) = card{j ≤ l | σ(j) ≤ i} for all 1 ≤ i ≤ 2p} .
If w is in addition in W P then Ωw parametrizes all V ∈ X which satisfy
the incidences V ⊆ Fσ(l) and dim(V ∩Fi) = j for all σ(j) ≤ i < σ(j+1)
and all 1 ≤ j < l.

Proof. Denote by Ω′
w the right side of the first formula in the lemma.

Since Pw only depends on the class of w modulo WP we see that Ω′
w

also only depends on the classe of w modulo WP . In order to show that
Ωw = Ω′

w we therefore may assume that w ∈ W P . From the definition
of Ω′

w it is clear that Ω′
w is B-stable and that x(w) ∈ Ω′

w. It therefore
suffices to show that the only T -fixed point contained in Ω′

w is equal to
x(w). Let v ∈ W P such that x(v) ∈ Ω′

w. Then we have to show that
w = v. Let π = f(v). Since x(v) ∈ Ω′

w we see that

card{j ≤ l | σ(j) ≤ i} = card{j ≤ l | π(j) ≤ i}
for all 1 ≤ i ≤ 2p. But this immediately implies that Pw = Pv and thus
w = v since the set of all index sets in bijection with W P . This proves
the first formula. The second formula is an immediate consequence of
the first and the fact that σ(1) < · · · < σ(l) if w ∈ W P . �
Proposition 14.24. Let w ∈ W and let Pw = {p1 < · · · < pl} be the
corresponding index set. If p+ 1 /∈ Pw then

Xw = {V ∈ X | dim(V ∩ Fpj
) ≥ j for all 1 ≤ j ≤ l}

while if p+ 1 ∈ Pw then

Xw = {V ∈ X | V ∩Fp−1 = V ∩Fp , dim(V ∩Fpj
) ≥ j for all 1 ≤ j ≤ l} .

Proof. [7, Proposition 4.5] �
Remark 14.25. The Bruhat order and Poincaré duality can be ex-
plicitely described in terms of index sets. The reader finds the formulas
in [7, page 43].

Let λ ∈ P̃(l, p). Then it makes sense to write Xλ = Xwλ
. In this

situation it is clear that the Schubert variety is computed with respect
to the flag F• corresponding to the Borel B. Latter on we will also con-
sider translates of Schubert varieties which are computed with respect
to a different flag. Therefore it is often necesserary to mention the flag
in the notation. If G• is an arbitrary isotropic flag we write Xλ(G•)
for the Schubert variety relative to the flag G•. With this notation we
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clearly have Xλ = Xλ(F•). We denote the Schubert cycle associated to
wλ by σλ = [Xλ] = [Xλ(G•)] where G• is an arbitrary isotropic flag.

Example 14.26. In this example we assume again that l is odd. Let
1 ≤ i < k. Then it is clear from Example 14.15 that we have

Psθi
···sθk

= {1, . . . , 2i− 2, 2p+ 1 − l, 2p+ 2 − l, . . . , 2p+ 2 − 2i} .
It is clear that p + 1 /∈ Psθi

···sθk
. Therefore the first formula from the

previous proposition applies. We find that all incidences for isotropic
subspaces parametrized by Xρi

are redundant except the (2i−2)th and
the lth one. This gives us the formula

Xρi
= {V ∈ X | F2(i−1) ⊆ V ⊆ F2(p−(i−1))} .

By definition it is clear that F2(p−(i−1)) = F⊥
2(i−1). Therefore Q induces

a nondegenerate symmetric bilinear form on F2(p−(i−1))/F2(i−1) which
we still denote by Q. Consequently the map V �→ V/F2(i−1) defines an
isomorphism Xρi

∼= GQ(l− 2(i− 1), 2(p− 2(i− 1))). This isomorphism
corresponds to the canonical identification Xρi

= X i. In particular we
have Xk−1 = GQ(1, 2(p − l + 1)) = Q2q. Concerning the codimension
we find that

codim(X i) = |ρ| − |ρi| = 2(i− 1)(p+ q) − (i− 1)(2(i− 1) + 1) .

Finally we treat the case where i = k. Then we have Pθk
= {1, . . . , l−

1, l+1}. It is clear that p+1 /∈ Pθk
. Therefore the first formula from the

previous proposition applies. We find that all incidences for isotropic
subspaces parametrized by Xρk

are redundant except the (l− 1)th and
the lth one. This gives us the formula

Xρk
= {V ∈ X | Fl−1 ⊆ V ⊆ Fl+1} .

Since any l-dimensional subspace V which satisfies Fl−1 ⊆ V ⊆ Fl+1 is
automatically totally isotropic, we see that the map V �→ V/Fl−1 de-
fines an isomorphism Xρk

∼= G(1, 2) = P1 corresponding to the canon-
ical identification Xρk

= Xk.

Example 14.27. Assume again that l is odd. We know that X̂ is the
product of two dualizing varieties X1 and X2 where X1

∼= GQ(l−1, 2(l−
1)) and X2

∼= Q2(p−l). Thanks to the previous example we can express
which isotropic subspaces are parametrized by X2. Indeed, we know
that the root system R2 is generated by the simple roots αl, . . . , αp

(cf. proof of Lemma 11.19). On the other hand, from the definition
it is clear that the root system Rk−1 is also generated by the simple
roots αl, . . . , αp. Therefore we conclude that X2 = Xk−1. The previous
example then shows that we have

X2 = {V ∈ X | Fl−1 ⊆ V ⊆ F2p−l+1} .
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Example 14.28. Assume again that l is odd. We already know that
d1 = · · · = dk−2 = 2, dk−1 = dk = 1, dX = l + 1 and k = (l + 3)/2.
In this example we want to compute other invariants of X. We claim
that c1(X

i) = p+ q− 2i+ 1 for all 1 ≤ i < k. This means in particular
that we always have c1(X) = p + q − 1. To prove this, suppose first
that 1 ≤ i ≤ k − 2. Then we know that di = 2. Using the formula for
the codimension of X i from the example above we get that


P (sθi
) = codim(X i+1) − codim(X i) = 2(p+ q) − 4i+ 1 .

The formula 
P (sθi
) = c1(X

i)di−1 then immediately yields that c1(X
i) =

p+ q − 2i+ 1. Next we consider the case i = k − 1. Then we have by
the example above that


P (sθk−1
) = dim(Xk−1) − dim(Xk) = 2q − 1 .

Since dk−1 = 1 the formula 
P (sθk−1
) = c1(X

k−1)dk−1 − 1 yields that
c1(X

k−1) = 2q. But p+ q−2(k−1)+1 = p+ q− l = 2q. Therefore the
formula is also satisfied for i = k− 1. (Note that the index of Xk = P1

is trivially c1(X
k) = 2 and that 
P (sθk

) = dim(Xk) = 1.)

15. Rational curves in isotropic Grassmannians

Let X = G/P = GQ(l, 2p) where l ≤ p − 2 and p ≥ 3. Let q =
p− l. We stick to all the notation which was introduced in the previous
section.

A rational curve of degree d to X is a morphism f : P1 → X such
that ∫

X

f∗[P1] · σsαP
= d .

For a given degree d and three q-strict paritions λ, μ and ν in P̃(l, p)
such that

|λ∗| + |μ∗| + |ν∗| = dim(X) + c1(X)d

the (three-point genus zero) Gromov-Witten invariant 〈σλ, σμ, σν〉d is
the number of rational curves f : P1 → X of degree d such that f(0) ∈
Xλ(F•), f(1) ∈ Xμ(G•) and f(∞) ∈ Xν(H•) for three isotropic flags
F•, G• and H• in general position. This is equivalent to the general
definition from Section 3, since a general member of M0,3(X, d) will be
a rational curve in the above sense (cf. [13, 7.]).

We will use the following proposition from [7, Proposition 1.1] during
the text.

Proposition 15.1. Let U, V and W be three points of GQ(2d, 4d),
which are in pairwise general position. Then there exists a unique ratio-
nal curve f : P1 → GQ(2d, 4d) of degree d such that f(0) = U, f(1) = V
and f(∞) = W .
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Proof. The variety GQ(2d, 4d) is a dualizing variety which satisfies
dGQ(2d,4d) = d. Therefore the assertion follows from Corollary 11.61.
For a direct proof which uses the geometry of isotropic subspaces we
refer to [7, Proposition 1.1] �

If f is a rational curve to X then we define, according to [5], the
kernel of f , denoted by ker(f), to be the largest linear subspace con-
tained in all the linear subspaces given by points in f(P1) and we define
the span of f , denoted by Span(f), to be the smallest linear subspace
containing all the linear subspaces given by points in f(P1), i.e.

ker(f) =
⋂

x∈P1

f(x), Span(f) =
∑
x∈P1

f(x) .

For the kernel and the span of a rational curve we have the following
dimension bounds. A proof can be found in [5, Lemma 1].

Proposition 15.2. Let f be a rational curve of degree d in X. Then
the dimension of the span of f is at most l + d and the dimension of
the kernel of f is at least l − d.

Proof. [5, Lemma 1] �
Corollary 15.3. Let f be a general curve of degree d in X. Then the
dimension of the span of f is equal to min(l+d, 2p) and the dimension
of the kernel of f is equal to max(l − d, 0).

Proof. Since the curve f is general this is a direct consequence of the
previous proposition. �

16. The subspaces Wf

Let X = GQ(l, 2p) where l ≤ p−2, p ≥ 3 and l is odd. Let q = p− l.
During the text we worked out the following invariants of X:

dX = l + 1 , k = (l + 3)/2 , c1(X) = p+ q − 1 .

We also worked out the isomorphism

X̂ ∼= GQ(l − 1, 2(l − 1)) × Q2(p−l) .

We denote by R1 and R2 the nontrivial irreducible components of R̂
where R1 is of type Dl−1 and R2 is of type Dp−l+1. Then we have

X1
∼= GQ(l− 1, 2(l− 1)) and X2

∼= Q2(p−l) and X̂ = X1 ×X2. Moreover
we have dX1 = l−1 and dX2 = 2 and dX = dX̂ = dX1 +dX2 . Furthermore
note that we know from Theorem 9.5 that the diagonal curve is a
general curve in X.

The ideas of this section and the following sections appear first in
[25, 9.7.6 and 9.7.7]. For a 2(l− 1)-dimensional subspace W , we define
a subvariety XW of X as

XW = {V ∈ X | dim(W ∩ V ) = l − 1, dim(W⊥ ∩ V ) = 1} .
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Lemma 16.1. Let W be a nondegenerated subspace of dimension 2(l−
1). If V is a l-dimensional totally isotropic subspace which satisfies
dim(W ∩ V ) = l − 1, then we have a direct sum decomposition

V = (W ∩ V ) ⊕ (W⊥ ∩ V ) where dim(W⊥ ∩ V ) = 1

so that XW parametrizes l-dimensional isotropic subspaces which satisfy
dim(W ∩ V ) = l − 1. We get an isomorphism

XW
∼= GQ(l − 1, 2(l − 1)) × Q2(p−l)

given by sending a totally isotropic subspace V ∈ XW to the pair (W ∩
V,W⊥ ∩ V ). The inverse of this isomorphism is given by sending the
pair (V ′, U) to the direct sum V ′⊕U . In particular XW is an irreducible
subvariety of X of dimension

dim(XW ) =
(l − 1)(l − 2)

2
+ 2(p− l) .

Proof. We only need to proof that an isotropic subspace V of dimension
l which satisfies dim(W∩V ) = l−1 always also satisfies dim(W⊥∩V ) =
1. Indeed, W⊥ and W∩V are in direct sum, since W is nondegenerated
and are both contained in (W ∩ V )⊥ since V is totally isotropic. Since
W⊥ ⊕ (W ∩ V ) and (W ∩ V )⊥ are of equal dimension 2p − l + 1 we
get equality. Intersecting the equality (W ∩ V )⊥ = W⊥ ⊕ (W ∩ V )
with V we get the decomposition (W ∩ V ) ⊕ (W⊥ ∩ V ) of V . Since
dim(W ∩ V ) = l − 1 this implies that dim(W⊥ ∩ V ) = 1. �

Corollary 16.2. Let W be a nondegenerated subspace of dimension
2(l − 1). Then XW parametrizes l-dimensional isotropic subspaces V
which satisfy dim(W ∩ V ) ≥ l − 1.

Proof. Since W is a nondegenerated subspace of dimension 2(l − 1), a
maximal isotropic subspace contained in W is of dimension l− 1. If V
is a l-dimensional isotropic subspace we therefore must have dim(W ∩
V ) < l since otherwise V ⊆ W and we obtain a maximal isotropic sub-
space contained in W of dimension l. Therefore the claim follows from
the previous which says that XW parametrizes l-dimensional isotropic
subspaces V which satisfy dim(W ∩ V ) = l − 1. �

Corollary 16.3. Let W be a nondegenerated subspace of dimension
2(l− 1). Then XW satisfies the three point property with respect to the
degree dX .

Proof. From the previous lemma we see that we have an isomorphism
XW

∼= X̂. Moreover we see that this isomorphism preserves the degrees
dX1 and dX2 of the factors of X̂. Since X̂ satisfies the three point
property with respect to the degree dX it therefore follows thatXW also
satisfies the three point property with respect to the same degree. �
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Lemma 16.4. Let f : P1 → X be a general rational curve in X of
degree dX = l + 1. Then there exists a subspace Wf associated to f of
dimension 2(l − 1) such that dim(Wf ∩ f(x)) = l − 1 and dim(W⊥

f ∩
f(x)) = 1 for all x ∈ P1.

Proof. Let K be the tautological vector bundle on X. Since f ∗(K) has
degree c1(∧lf ∗(K)) = f ∗(OX(−1)) = −(l + 1) and rank l, the vector

bundle f ∗(K) over P1 slpits into a direct sum
⊕l

i=1 OP1(−ai) of line

bundles OP1(−ai) with
∑l

i=1 ai = l + 1 and a1 ≥ . . . ≥ al ≥ 0. Since
the differences between ai and ai+1 are minimal for general f , we have
f ∗(K) = OP1(−2) ⊕OP1(−1)⊕(l−1).

Let Wf = H0(P1,OP1(1)⊕(l−1))∨. Then we have a commutative dia-
gram

OP1(−2) ⊕OP1(−1)⊕(l−1) > OP1 ⊗ C2p

OP1(−1)⊕(l−1)

∧

> OP1 ⊗Wf

∧

where the left vertical arrow is the unique canonical morhism

OP1(−1)⊕(l−1) → OP1(−2) ⊕OP1(−1)⊕(l−1)

given by inclusion of the direct factor, the right vertical arrow and
the top horizontal arrow are the obvious morphisms and the horizontal
arrow below is the dual of the morphism

OP1 ⊗H0(P1,OP1(1)⊕(l−1)) → OP1(1)⊕(l−1)

resulting from the fact that OP1(1)⊕(l−1) is globally generated. From the
commutativity of the diagram, we see that dim(Wf ∩ f(x)) ≥ l− 1 for
all x ∈ P1. From the definition ofWf it is clear that dim(Wf ) = 2(l−1).
Since f is general it is also clear that Wf is nondegenerated. Therefore
Corollary 16.2 applies and it follows that f(x) ∈ XWf

for all x ∈ P1.
The definition of XWf

then implies that dim(Wf ∩ f(x)) = l − 1 and

dim(W⊥
f ∩ f(x)) = 1 for all x ∈ P1 as claimed. �

Corollary 16.5. Let f be a general curve in X of degree dX = l + 1.
Then f can be written as (f ′, f ′′) with f ′ : P1 → GQ(l− 1, 2(l− 1)) and
f ′′ : P1 → Q2(p−l) of bidegree (l − 1, 2).

Proof. Since f takes values in XWf
it can be written as (f ′, f ′′) with

f ′ : P1 → GQ(l − 1, 2(l − 1)) and f ′′ : P1 → Q2(p−l) of bidegree (d′, d′′).
We know that d′ ≤ dX1 = l − 1 and that d′′ ≤ dX2 = 2 since if either
d′ > l − 1 or d′′ > 2 then there would exist infinitely many curves
of degree dX = l + 1 through three general points in f(P1) which are
contained in XWf

. But this contradicts Corollary 16.3. Since the sum
d′ + d′′ equals the degree l + 1 of f we get equality in both cases:
d′ = l − 1 and d′′ = 2. �
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Remark 16.6. Note that this corollary also follows directly from Fact
11.73 once we know that XWfΔ

= X̂.

Corollary 16.7. Let f be a general curve in X of degree dX = l + 1.
Then Wf can be written as the intersection of the span of pairs of
general points in f(P1), i.e.

Wf =
⋂

x,y∈P1

general

(f(x) + f(y)) .

Proof. Let f = (f ′, f ′′) be a decomposition of f as in the previous
corollary. Let x and y be a pair of general points in P1. Then we know
that f ′(x) are f ′(y) are in direct sum and hence f ′(x) + f ′(y) is of
dimension 2(l − 1). By definition it is clear that f ′(x) + f ′(y) ⊆ Wf .
Therefore we get the equality f ′(x)+f ′(y) = Wf . Using this equality we
get the following line of equations for pairs of general points x, y ∈ P1:⋂

x,y

(f(x) + f(y)) =
⋂
x,y

((f ′(x) + f ′(y)) ⊕ (f ′′(x) + f ′′(y)))

=
⋂
x,y

(Wf ⊕ (f ′′(x) + f ′′(y)))

Using that
∑

x,y(f
′′(x)+f ′′(y)) ⊆ W⊥

f we see thatWf and
∑

x,y(f
′′(x)+

f ′′(y)) are in direct sum since Wf is nondegenerated for a general curve
f . Using this fact we get the equality:⋂

x,y

(Wf ⊕ (f ′′(x) + f ′′(y))) = Wf ⊕
⋂
x,y

(f ′′(x) + f ′′(y)) .

Finally it is clear that four general points x, x′, y, y′ in P1 satisfy the
equation

(f ′′(x) + f ′′(y)) ∩ (f ′′(x′) + f ′(y′)) = 0 .

In particular it follows from this that we get for pairs of general points
x, y ∈ P1 that ⋂

x,y

(f ′′(x) + f ′′(y)) = 0 .

Putting all equations together the corollary follows. �
Lemma 16.8. Let W be a subspace of dimension 2(l − 1). If V1, V2

and V3 are three elements of XW in pairwise general position, then we
have the inclusion

(6) W ⊆ (V1 + V2) ∩ (V1 + V3) ∩ (V2 + V3) .

and equality holds if either the span of V1, V2 and V3 is contained in a
(2l+1)-dimensional subspace which is for example the case if V1, V2 and
V3 lie on a rational curve in X of degree l+1 or if W is nondegenerated
which is for example the case if there exists a general rational curve f
in X of degree l + 1 such that W = Wf .
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Proof. Since V1, V2 and V3 are in general position, the intersections
V1 ∩W,V2 ∩W and V3 ∩W are in general position and of dimension
l − 1, hence they are pairwise in direct sum and we get that

(Vi + Vj) ∩W = (Vi ∩W ) ⊕ (Vj ∩W ) = W

for all 1 ≤ i < j ≤ 3. Denote with W ′ the intersection on the right
side of the inclusion (6). Intersecting W ′ with W , we see that this
intersection is equal to W because of the previous equalities. This
shows the inclusion W ⊆ W ′.

If V1, V2 and V3 lie on a rational curve of degree l+1, then their span
is contained in the span of the rational curve which is of dimension
less or equal than 2l+ 1 by Proposition 15.2. And if the span of V1, V2

and V3 is contained in a subspace L of dimension less or equal than
2l+1, then it follows that dim(W ′) ≤ 2(l−1) since V1, V2 and V3 are in
pairwise general position and hence pairwise in direct sum as subspaces
of L. In view of the inclusion W ⊆ W ′ it then follows that W = W ′ as
claimed.

Finally, suppose that W is in addition nondegenerated. By Lemma
16.4 this happens if there exists a general rational curve f such that
W = Wf . By Lemma 16.1 we have a direct sum decomposition of
Vi into Ui = W⊥ ∩ Vi and V ′

i = W ∩ Vi for i = 1, 2, 3. Using the
fact that W is nondegenerated, we see that U1 + U2 + U3 ⊆ W⊥ and
V ′

1 + V ′
2 + V3 ⊆ W are in direct sum. This gives us the equality

W ′ = (U1 + U2) ∩ (U1 + U3) ∩ (U2 + U3)+

(V ′
1 + V ′

2) ∩ (V ′
1 + V ′

3) ∩ (V ′
2 + V ′

3)

where the first summand is equal to 0 since U1, U2 and U3 are of di-
mension one and in pairwise general position. The inclusion W ′ ⊆ W
then follows. In total we get equality W = W ′ as claimed. �
Corollary 16.9. Let f be a general curve in X of degree dX = l+1. Let
x, y and z be three points in P1 which are in pairwise general position.
Then we get the equality:

Wf = (f(x) + f(y)) ∩ (f(x) + f(z)) ∩ (f(y) + f(z)) .

Proof. This follows directly from the previous lemma. �

17. Irreducible components of YdX
(f)

Let f be a general curve in X of degree dX = l + 1. We define the
following subvariety of X:

XSpan(f) = {V ∈ X | V ⊆ Span(f)} .
By Corollary 15.3 we know that ker(f) = 0 and that Span(f) is of di-
mension 2l+1. Therefore XSpan(f) parametrizes all isotropic subspaces
which lie between the kernel and the span of f . Moreover since f is a
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general curve we know that Span(f) is nondegenerated. Therefore we
get the following isomorphism:

XSpan(f)
∼= GQ(l, 2l + 1) ∼= GQ(l + 1, 2(l + 1)) .

This shows that XSpan(f) is isomorphic to a dualizing variety. In par-
ticular this means that XSpan(f) satisfies the three point property with
respect to the degree dX . From Lemma 11.15 it follows that XSpan(f) ⊆
YdX

(f).

Lemma 17.1. Let f be a general rational curve in X of degree dX =
l + 1. Then Yl+1(f) decomposes into two irreducible components given
by XSpan(f) and XWf

.

Proof. We already saw that both XWf
and XSpan(f) are irreducible and

satisfy the three point property with respect to the degree dX (cf.
Corollary 16.3). Therefore it follows from Lemma 11.15 that XWf

⊆
YdX

(f), XSpan(f) ⊆ YdX
(f) and thus XSpan(f) ∪ XWf

⊆ YdX
(f). To

see that Yl+1(f) decomposes into two irreducible components given by
XSpan(f) and XWf

it therefore suffices to show that Yl+1 ⊆ XSpan(f) ∪
XWf

.
Let V be an element of Yl+1(f) which is not contained in Span(f).

Let x and y be two general points of P1. Then there exists a rational
curve g of degree l+ 1 passing through f(x), f(y) and V . Since f(x) +
f(y) is of dimension 2l and V is not contained in Span(f), it follows
from Proposition 15.2 that the span of g is of dimension 2l + 1 and
that the intersection (f(x) + f(y)) ∩ V is of dimension l − 1. If the
intesection (f(x) + f(y)) ∩ V varies with x and y then V ⊆ Span(f).
Thus (f(x) + f(y)) ∩ V is independent of x and y. By Corollary 16.7,
it follows that Wf ∩ V is of dimension l− 1. This implies that V is an
element of XWf

by Lemma 16.1. �

Corollary 17.2. We have the following equality: X̂ = XWfΔ
.

Proof. We already know that X̂ is irreducible and contained in YdX
(fΔ).

By the previous lemma it follows that X̂ is either contained in XSpan(fΔ)

or in XWfΔ
. Since the inclusion X̂ ⊆ XSpan(fΔ) is not possible it follows

that X̂ ⊆ XWfΔ
. Since we already know that X̂ ∼= XWfΔ

it immediately

follows that X̂ = XWfΔ
as claimed. �

Corollary 17.3. The Assumption 13.3 is satisfied. In particular we
get a quantum to classical principle for X as described in Section 13.

Proof. This is clear now from the previous lemma and the previous
corollary. �

Lemma 17.4. The nondegenerated 2(l−1)-dimensional subspace WfΔ

which is associated to the diagonal curve can be explicitely described in
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terms of the standard basis e1, . . . , e2p by the equation:

WfΔ
= 〈e1, . . . , el−1, e2p−l+2, . . . , e2p〉 .

Proof. Since the diagonal curve is a general curve, we have a well de-
fined nondegenerated subspace W = WfΔ

of dimension 2(l − 1). Since

XW = X̂ we see from the explicit description of X2 in terms of isotropic
subspaces (Example 14.27) that

W⊥ = 〈el, . . . , e2p−l+1〉 .
Since W = W⊥⊥ the result follows.

We provide a second proof of this lemma. By Example 14.26 we
know that

x(wo) = 〈e2p+1−l, . . . , e2p〉 , x(sθk
) = 〈e1, . . . , el−1, el+1〉 .

Furthermore it is trivial that x(1) = 〈e1, . . . , el〉. By Corollary 16.7 it

obviously follows that W ⊆ x(1) ⊕ x(wo). Since x(sθk
) ∈ X̂ = XW it

follows that dim(W ∩x(sθk
)) = l−1. Since el+1 /∈ W (this must be the

case since even el+1 /∈ x(1) ⊕ x(wo)) it follows from this equation that

〈e1, . . . , el−1〉 ⊆W ⊆ 〈e1, . . . , el, e2p+1−l, . . . , e2p〉 .
But there is one and only one nondegenerated subspaceW of dimension
2(l − 1) which satisfies these two inclusions, namely the W described
in the statement of the lemma. �

18. Compactification of Y

Fact 18.1. We have the equality Q = StabG(WfΔ
).

Proof. Let W = WfΔ
for short. By definition we have g ∈ Q if and

only if gX̂ = X̂. Since X̂ = XW this is equivalent to Xg−1W = XW

which is equivalent to g−1W = W . By definition we have g−1W = W
if and only if g−1 ∈ StabG(W ) if and only if g ∈ StabG(W ). �

Let Ȳ = G(2(l − 1), 2p). By the previous fact we have a wellde-
fined open immersion Y ↪→ Ȳ which sends a point y ∈ Y to the
2(l− 1)-dimensional nondegenerate subspace yWfΔ

. The image of this
morphism is the open dense subvariety of Ȳ consisting of all 2(l − 1)-
dimensional nondegenerate subspaces. Therefore we can think of Y as
the variety parametrizing the set {XW | W ∈ Ȳ nondegenerated} and
we can think of the morphism Y ↪→ Ȳ as the assignement XW �→ W .
Since Ȳ is a projective homogeneous space we can think of Ȳ as a
natural compactification of Y . We will often identify Y with the open
dense subvariety of Ȳ . We will often write Y ⊆ Ȳ .

Recall the morphisms p and q from Section 13. We will identify
the morphism q : Z → Y with the composition Z → Y ↪→ Ȳ . Let w
be a Weyl group element. Recall the non negative numbers q̄w from
Section 13. Let λ ∈ P̃(l, p). Then we can define a non negative number
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associated to λ by the equality q̄λ = q̄wλ
. With this notation we have

for example q̄∅ = q̄1 = 1.

Fact 18.2. Let f be a general curve of degree dX = l + 1. Then we
have the equality X̂f = XWf

.

Proof. Let g ∈ G be an element such that f = gfΔ. Then we have by
definition that X̂f = gX̂. We already know that X̂ = XWfΔ

. Therefore

it follows that gX̂ = XgWfΔ
. Therefore it suffices to show that gWfΔ

=
Wf . But this clear from Corollary 16.7 since f = gfΔ. �

Lemma 18.3. Let λ, μ and ν be elements of P̃(l, p). Let F•, G• and
H• be three isotropic flags in general position. Then the map f �→ Wf

gives a bijection between the set of general rational curves f of degree
dX = l + 1 satisfying f(0) ∈ Xλ(F•), f(1) ∈ Xμ(G•) and f(∞) ∈
Xν(H•) and the set of points W in the intersection qp−1(Xλ(F•)) ∩
qp−1(Xμ(G•)) ∩ qp−1(Xν(H•)) together with three points in the fibers
XW ∩Xλ(F•), XW ∩Xμ(G•) and XW ∩Xν(H•).

Proof. By Fact 13.18 we already know that the two sets in question are
in bijection. We only have to show that the bijection is given by the
assignement f �→ Wf . But this is clear from the previous fact and the
definition of the assignement in the proof of Fact 13.18 �
Theorem 18.4. Let λ, μ and ν be elements of P̃(l, p) such that

|λ∗| + |μ∗| + |ν∗| = dim(X) + c1(X)dX .

Then we have the following equality:

〈σλ, σμ, σν〉l+1 = q̄λq̄μq̄ν

∫
Ȳ

q∗p∗σλ · q∗p∗σμ · q∗p∗σν .

Proof. Let u = wλ, v = wμ and w = wν be the Weyl group elements
corresponding to the partitions λ, μ and ν. Let F̄u, F̄v and F̄w be the
closures of Fu, Fv and Fw in Ȳ where we consider Fu, Fv and Fw as
subvarieties of Ȳ via the natural inclusion Y ⊆ Ȳ . Let g, g′ and g′′ be
general elements of G. Then we have

gFu ∩ g′Fv ∩ g′′Fw = gF̄u ∩ g′F̄v ∩ g′′F̄w .

The cardinality of the right side equals the integral over Ȳ which is
written in the statement. Therefore the claim follows from Theorem
13.19. �
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