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Summary 1

1 SUMMARY

1.1  English Summary

In the last decade, the application of genetically-encoded biosensors proved successful to
establish novel and elaborated strategies for engineering microbial cell factories by enlarging the
repertoire  of metabolic engineering tools and by enabling unprecedented insights into
bioprocesses at single-cell resolution. Especially, biosensors based on bacterial transcriptional
regulators translating intracellular metabolite concentration into a measureable output proved to
be of high value for a variety of metabolic engineering approaches.

Although nature provides a plethora of transcriptional regulators to sense intrinsic and
extrinsic stimuli, only a few regulators and their respective target promoters have been well
characterized to date. This hampers the prompt decision for suitable sensor candidates. To this
end, an elaborated FACS (fluorescence-activated cell sorting)-based strategy was developed for
the rapid identification of effector-responsive promoters as suitable parts for biosensor design.
Basically, a library of Escherichia coli promoter-auto-fluorescent protein fusions was screened
by toggled rounds of positive and negative selection. This approach led to the isolation of the L-
phenylalanine-responsive mtr promoter. The construction of different biosensors based on the mitr
promoter revealed a significant influence of the sensor’s architecture on the dynamic range and
the sensitivity towards effector molecules. Additionally, the mtr biosensor was successfully
applied to screen a mutant library of E. coli cells for cells with increased L-phenylalanine
productivity.

Adaptive laboratory evolution (ALE) has widely been applied to adapt microbes to
environmental stress or to improve metabolite production. So far, however, the strategy was only
applicable to fitness-linked phenotypes. To this end, we established biosensor-driven adaptive
laboratory evolution to evolve inconspicuous product formation. Sensor cells with the highest
fluorescent output and hence, increased metabolite production, were iteratively isolated by FACS
and re-cultivated. This strategy was successfully applied to the pyruvate-dehydrogenase deficient
L-valine producer strain Corynebacterium glutamicum AaceE using the Lrp biosensor, which was
developed for the detection of branched-chain amino acids and methionine. Evolved clones
featured about 25% increased production and 3-4-fold reduced by-product formation. By genome
sequencing and the subsequent evaluation of single mutations in the cured AaceE background,
decreased L-alanine production was attributed to a mutation in the global regulator GIxR.
Interestingly, a loss-of-function mutation in the urease accessory protein UreD resulted in about
100% increased L-valine formation in CGXII minimal medium. Further studies demonstrated
that urea as part of the cultivation medium imposes a central bottleneck for efficient L-valine
production: Urea degradation increases the pH by ammonia release, thereby interfering with
growth and L-valine production. Likewise, carbon dioxide formation stimulates anaplerosis
leading to a reduced pyruvate pool — the precursor for L-valine production.

Altogether, these studies emphasize biosensors as valuable and versatile tools to improve
metabolic cell factories with an enormous potential for future applications.
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1.2 German Summary

Im letzten Jahrzehnt hat sich die Anwendung genetisch-kodierter Sensoren als erfolgreich erwiesen, um
neue und effiziente Strategien fiir die Entwicklung mikrobieller Zellfabriken zu etablieren. Biosensoren
vergroern zum einen das Repertoire an Werkzeugen fiir die Stammentwicklung und ermoglichen zum
anderen neuartige Einblicke in Bioprozesse auf Einzelzellebene. Vor allem Biosensoren, die auf
bakteriellen Transkriptionsregulatoren basieren und so die intrazelluldre Metabolitkonzentration in ein
messbares Signal iibersetzen, spielen aufgrund ihrer vielseitigen Einsatzmoglichkeiten eine grof3e Rolle im
Metabolic Engineering Bereich.

Obwohl die Natur eine groe Anzahl an Transkriptionsregulatoren hervorgebracht hat, damit Zellen
intrinsische und extrinsische Signale wahrzunehmen konnen, gibt es bis heute nur wenige gut untersuchte
Regulatoren und entsprechende Zielpromotoren. Dies beeintrichtigt allerdings eine schnelle
Identifizierung neuer Sensorkandidaten. Zu diesem Zweck wurde eine Methode entwickelt, welche auf der
Fluoreszenz-aktivierten Zellsortierung (FACS) basiert und deren Ziel es ist, schnell neue Promotoren, die
durch bestimmte Effektoren aktiviert werden, zu identifizieren, um somit neue und geeignete Bausteine
fiir die Sensorentwicklung zu gewinnen. Das Grundprinzip besteht darin aus einer Escherichia coli
Promoter-Sammlung (Promotoren fusioniert an ein autofluoreszierendes Protein) diejenigen Promotoren
durch abwechselnde Runden positiver und negativer Selektion anzureichern, die durch Effektoren
aktiviert werden konnen. Dieser Ansatz fiihrte zur Isolierung des mtr Promoters, der durch Phenylalanin
aktiviert wird. Die Evaluierung unterschiedlicher mir-basierter Biosensoren ergab, dass die
Sensorarchitektur einen signifikanten Einfluss auf den dynamischen Bereich und die Effektormolekiil-
Sensitivitdt hat. Zudem wurden mit Hilfe des mizr Biosensors erfolgreich Zellen mit erhohter
intrazelluldrer Phenylalaninkonzentration mittels FACS aus eine E. coli Mutantenbibliothek isoliert.

Im Labor durchgefiihrte adaptive Evolutionsstrategien werden vielseitig angewendet, um Mikroben
an Umweltstress anzupassen oder um deren Produktion zu verbessern. Bisher war diese Strategie jedoch
nur fiir phinotypische Merkmale geeignet, die direkt an die Fitness des Organismus gekoppelt sind.
Deshalb haben wir eine Sensor-gesteuerte adaptive Evolutionsmethode entwickelt, um die Produktion
unscheinbarer Metabolite zu verbessern. Sensorzellen mit dem hochsten Fluoreszenzsignal, was
gleichzeitig auf eine erhthte Metabolit-Produktion hindeutet, wurden mehrmals mittels FACS isoliert und
kultiviert. Diese Methode wurde erfolgreich am Beispiel des Pyruvat-Dehydrogenase-Komplex-
defizienten Valin-Produktionsstammes Corynebacterium glutamicum AaceE etabliert. Hier wurde der Lrp
Biosensor verwendet, der fiir die Detektion von verzweigtkettigen Aminosduren und Methionine
entwickelt wurde. Evolvierte Klone zeigten eine um 25% erhohte Valin-Produktion und gleichzeitige eine
drei- bis vierfach reduzierte Nebenproduktbildung. Durch Genomsequenzierung und anschlieBender
Evaluierung von einzelnen Mutationen im nicht-evolvierten AaceE Stamm wurde gezeigt, dass eine
Mutation im globalen Regulator GIXR zu einer verringerten Alanin-Produktion fiihrt. Interessanterweise
fiihrte der mutationsbedingte Funktionsverlust des Urease akzessorischen Proteins UreD bei Kultivierung
im CGXII Minimalmedium zu einer um 100% erhohten Valin-Bildung. Weitere Experimente zeigten,
dass Harnstoff als Bestandteil des Mediums ein zentrales Problem fiir eine effiziente Valin-Produktion
darstellt: Durch den Abbau von Harnstoff zu Ammonium steigt der pH-Wert, was das Wachstum positiv,
aber die Produktion negativ beeinflusst. Ebenso zeigte sich, dass die Bildung von Kohlenstoffdioxid die
Anaplerose stimuliert, was zu einer reduzierten Pyruvat-Konzentration als Vorstufe der Valin-Biosynthese
fiihrt.

Zusammenfassend haben die durchgefiihrten Experimente gezeigt, dass die Produktion von
Zellfabriken durch den geschickten und vielseitigen Einsatz von Biosensoren verbessert werden kann.
Dariiber hinaus bieten Sensoren ein enormes Potential fiir zukiinftige ~Anwendungen.
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2 INTRODUCTION

2.1  Microbial cell factories — towards a sustainable bioeconomy

Since Neolithic times, humans have used microbial fermentation for feed and food refinement
(Erickson et al., 2012). The awareness of limited fossil resources, untamable industrial waste
streams and the climate change are currently driving the efforts for the establishment of a
sustainable bioeconomy. Engineering of microorganisms for the production of value-added
compounds from renewable feedstocks is one key for the transition from a currently petroleum-
dependent and energy-intensive chemical industry towards a sustainable bioeconomy (Becker
and Wittmann, 2015; Erickson et al.,, 2012; Wieschalka et al., 2013). In the last decades,
microbial processes have been established to build chemical units for the production of a broad
range of products including solvents, polymers, nutrients, biofuels, bioenergy, flavors and
pharmaceuticals (Becker and Wittmann, 2015; Woolston et al., 2013). Especially, the market for
animal feed products has enormously increased. For 2020, the World Economic Forum expects a
market size of about US$95 billion for products generated by microbial fermentation (Erickson et

al., 2012).

Nature has equipped organisms with a plethora of pathways, metabolic reactions and enzymes to
catalyze the transition of basic carbon sources to complex, high valuable molecules. Superior to
chemical synthesis, microbial biosynthesis benefits here from chemo-, stereo- and
regioselectivity of enzymatic reactions, which reduces energy and costs for the intensive
purification of the desired, enantiopure products (Becker and Wittmann, 2015; Erickson et al.,
2012). Escherichia coli (Chen et al., 2013; Wendisch et al., 2006), Corynebacterium glutamicum
(Eggeling and Bott, 2015; Heider and Wendisch, 2015; Wieschalka et al., 2013) and
Saccharomyces cerevisiae (Liu et al., 2013; Nielsen et al., 2013) are traditionally the most
important workhorses. The deep knowledge of their physiology, aerobic as well as anaerobic
growth, the availability of a variety of molecular tools and their broad range of metabolic
products are of great benefit for metabolic engineering purposes (Becker and Wittmann, 2015;

Woo and Park, 2014).

In the last decade, next generation sequencing (NGS) techniques, which deliver the detailed
knowledge of the genetic code in short time and allow in turn for the precise manipulation of the

genome, revolutionized the field of metabolic engineering. The combination of recombinant
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DNA technologies, systems and synthetic engineering approaches contributed to this success e.g.
by allowing for the establishment and transfer of artificial or heterologous pathways in
production hosts. A broad range of metabolic engineering techniques will be discussed in chapter
2.3 (“Metabolic engineering of microbial cell factories”). The developments of the last decades
have pushed the transition from an energy-intensive and fossil oil-dependent chemical industry to
a sustainable bioeconomy based on renewable resources. Now, the challenge is to engineer
efficient microbial cell factories, which are economically competitive to traditional production

processes (Becker and Wittmann, 2015; Erickson et al., 2012).

2.2 Amino acid production using microorganisms

Amino acids represent essential building blocks for the synthesis of proteins and diverse
metabolic intermediates (Mitsuhashi, 2014). For commercial applications, the biotechnological
production of amino acids nowadays superseded the extraction from protein hydrolysates, which
was not efficient enough for large-scale production (Leuchtenberger et al., 2005). In addition,
microbial amino acid biosynthesis provides the great advantage of forming the bioactive L-
enantiomer (except for the non-chiral glycine and methionine) in contrast to chemical synthesis
(Becker and Wittmann, 2012; Bolten et al., 2010). The global amino acid market faces currently
an annual microbial production volume of more than 5,000,000 tons (Eggeling and Bott, 2015;
Wendisch, 2014). The main drivers are L-glutamate and the animal feed additives L-lysine, L-
threonine, L-phenylalanine and D-/L-methionine expecting a market size of US$20.4 billion by
2020 (Global Industry Analysts Inc, 2015). Due to the lack of the respective biosynthesis
pathways in humans and animals, all nine essential amino acids (L-histidine, L-isoleucine, L-
leucine, L-lysine, L-methionine, L-phenylalanine, L-threonine, L-tryptophan and L-valine) are of
high interest for the establishment of microbial production processes (Becker and Wittmann,

2012; Leuchtenberger et al., 2005).

C. glutamicum and E. coli are the main platform organisms for the production of amino acids
(Becker and Wittmann, 2012; Becker and Wittmann, 2015; Eggeling and Bott, 2015;
Leuchtenberger et al., 2005; Mitsuhashi, 2014; Wendisch, 2014). However, both organisms
reveal pros and cons for the production of specific amino acids: Although E. coli features a
higher theoretical yield for methionine biosynthesis, for example, C. glutamicum uses a less
complex regulatory control for the production of the same amino acid (Kromer et al., 2006;

Mitsuhashi, 2014; Tosaka and Takanami, 1986). Furthermore, C. glutamicum can utilize several
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carbon sources at the same time, while E. coli features sequential carbon utilization leading to
diauxic growth phenotypes (Wendisch, 2014). In the following, recent efforts for microbial L-
phenylalanine production by E. coli and L-valine production by C. glutamicum are presented in

more detail.

Table 2.2: Selected C. glutamicum and E. coli strains engineered for L-phenylalanine or L-valine

production.
Strains Genotype Titer Comments References
(gL
L-phenylalanine
E coli Not indicated in detail 50.0 Fed batch fermentation (Backman et
on glucose al., 1990)
LJ110 A(pheA tyrA
E. coli JJF T 9E(II-)I :m;r}ivrt ZZ}Q’ 380 08 L' during in situ (Riiffer et al.,
F-4/pF81 P - - & product recovery (ISPR)  2004)
aroB™ aroL
KY10865, pKY1 (arolF", Jar fermentation on (Tkeda and
C. glutamicum csm™), pKF1 (arolF”, esm™, — 28.0 Cucrose Katsumata,
; u
pheA™) 1992)
W3L10 Alphed tyrA aroF), Fed batch fermentation .
g AlaclZYA::P.- aroFBL, (Weiner et al.,
E. coli FUS4.11kan 13.4 on glycerol and
pykA::FRT, pykF::FRT-Kan- . 2014a)
FRT ammonia
L-valine
C. glutamicum ATCC13032 AaceE, pJC4- 2.8 Fed batch fermentation ~ (Blombach et
ilvBNCE on glucose and acetate al., 2007)
C. glutamicum ATCC13032 AaceE, Apyc, 483 Fed batch fermentation ~ (Blombach et
Apgi, p]JC4-ilvBNCE on glucose and acetate al., 2008)
C. glutamicum ATCC13032, aceE A16, 83.6 Fed batch fermentation (Buchholz et
Apqo, Appc, pJC4-ilvBNCE on glucose al., 2013)
ATCC13869, AaceE, AalaT, .
C. glutamicum AilvA, pIYW-4-ilvBNC -Irp,- 51.0 Fed batch fermentation (Chen et al.,
on glucose 2015)
brnFE
W, Alacl, AilvA, .
E coli pKBRIlVEN"CED, 60.7 Fed batch fermentation  (Park et al.,
on glucose 2011)
pTrcl84ygaZHIrp

2.2.1 L-phenylalanine production in Escherichia coli
Metabolic engineering of L-phenylalanine production in E. coli has been promoted for many
years reaching final titers of up to 50 g L' during growth on glucose (Backman et al., 1990;

Riiffer et al., 2004) and 13.4 g L! during growth on glycerol (Weiner et al., 2014a) (Tab. 2.2).
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Fig. 2.2.1 Schematic of the biosynthesis of L-phenylalanine by E. coli. The precursors
phosphoenolpyruvate (PEP) and erythrose-4-phosphate (Ery-4-P) for the general biosynthesis of
aromatic amino acids are provided directly by glycolysis or via the pentose phosphate pathway
(PPP). PEP and Ery-4-P are condensed to 3-deoxy-D-arabino-heptulosonate 7-phosphate
(DAHP) by one of the three DAHP synthases AroF, AroG or AroH, which indicates the start
point of the shikimate pathway. Via several enzymatic steps, the formation of chorismate is
catalyzed, which is the shared precursor of all three aromatic amino acids. L-phenylalanine is
produced from chorismate via prephenic acid catalyzed by prephenate dehydratase.
Abbreviations: tricarboxylic acid cycle (TCA), 5-enolpyruvoylshikimate 3-phosphate (EPSP).
Dashed lines indicate the existence of intermediate steps that are not depicted in the figure.

Besides its important role as precursor for the artificial sweetener aspartame or as building block
for pharmaceutical products (Sprenger, 2006; Sprenger, 2007), L-phenylalanine became likewise
interesting as precursor for various aromatic compounds including pinosylvin, cinnamic and p-
hydroxycinnamic acid used as flavor enhancer or ingredients of cosmetics (Sariaslani, 2007; van
Summeren-Wesenhagen and Marienhagen, 2015; Vargas-Tah et al., 2015). For engineering an
efficient L-phenylalanine microbial cell factory, E. coli was used as primary workhorse due to its
rapid growth, the availability of genetic engineering tools and the well-studied biosynthetic
pathway (Backman et al., 1990; Pittard et al., 2005). Recently, efforts were also taken in C.
glutamicum to push L-phenylalanine production (Zhang et al., 2014a; Zhang et al., 2015a; Zhang

et al., 2013). Both organisms produce aromatic amino acids via the shikimate pathway
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(Fig. 2.2.1), however, with differences in some involved enzymes (Sprenger, 2006). Key targets
during engineering of E. coli strains for L-phenylalanine production are i) the generation of
feedback-insensitive versions of the 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP)
synthases AroF, AroG, AroH and chorismate mutase/prephenate dehydratase PheA, ii) the
improvement of the supply with the precursors phosphoenolpyruvate (PEP) and erythrose-4-
phosphate, and iii) the overproduction of enzymes catalyzing rate limiting steps like the
shikimate synthase AroL (Bongaerts et al., 2001; Ikeda, 2006; Sprenger, 2007). Although high L-
phenylalanine titers have already been reached during growth on glucose, alternative carbon
sources are in demand. For example, glycerol as by-product of biodiesel production may reduce
costs and meets the requirements of a sustainable bioeconomy (Weiner et al., 2014a). The
negative impact on growth upon high L-phenylalanine concentrations, the delivery of precursors
or the central metabolism are still bottlenecks, which need to be addressed during engineering of

production strains (Polen et al., 2005; Weiner et al., 2014b).

2.2.2 L-valine production in Corynebacterium glutamicum

The biosynthesis pathway of L-valine branches from the glycolytic product pyruvate (Fig. 2.2.2).
Hence, the pivotal points for increased L-valine production are the availability of the precursor
pyruvate and the overproduction of the L-valine biosynthesis pathway, which have been
addressed during engineering L-valine producer strains (Tab. 2.2). To reach high concentrations
of pyruvate in C. glutamicum, the deletion of aceE encoding the Elp subunit of the pyruvate
dehydrogenase complex (PDHC) became a central target to inhibit the degradation of pyruvate to
acetyl-CoA (Blombach et al., 2007; Schreiner et al., 2005). The drawback of these strains,
however, is the growth-decoupled production phenotype. Due to the deficiency of PDHC activity,
acetate has to be added to the medium to maintain the acetyl-CoA level for fueling the
tricarboxylic acid (TCA) cycle for growth. The presence of acetate, however, abolishes
phosphoenolpyruvate:sugar phosphotransferase system (PTS)-mediated glucose uptake via the
regulator sugR required for L-valine production (Blombach et al., 2009; Engels and Wendisch,
2007). Upon depletion of acetate, L-valine is produced. During fed-batch fermentation, the
AaceE strain produced up to 22.8 g L' L-valine (Yps 0.39 mol L-valine per mol glucose)
(Blombach et al., 2007). Based on this strain, the deletion of the pyruvate:quinone oxidoreductase
(Apgo), which inhibits the degradation of pyruvate to acetate, and the deletion of the

phosphoglucose isomerase (Apgi), which pushes carbon flux through the pentose-phosphate
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Fig. 2.2.2 Schematic of the biosynthesis of
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pathway (PPP) to enhance the NADPH availability, resulted in final L-valine titers of up to
483 gL' (Yps 0.75 mol L-valine per mol glucose). The additional deletion of the pyruvate
carboxylase (pyc) preventing the efflux of the precursor pyruvate into the TCA cycle via
anaplerosis further enhanced Yp/s to 0.86 mol L-valine per mol glucose (Blombach et al., 2008;
Eikmanns and Blombach, 2014). For large-scale industrial production, however, growth-
decoupled and auxotrophic phenotypes as well as the cultivation on two carbon sources are costly
and laborious. To this end, Buchholz and co-workers reduced the expression of aceE by promoter
engineering, which allows growth on glucose as single carbon source and resulted in a final L-
valine titer of 83.6 g L' (Buchholz et al., 2013). Alternative approaches for increasing L-valine
production relied on i) the additional deletion of by-product synthesis routes (e.g. L-alanine and
L-isoleucine), ii) the overexpression of the branched-chain amino acid exporter BrnFE and the
transcriptional regulator Lrp or iii) on the inactivation of D-pantothenate synthesis to limit CoA
availability for PDHC activity (Chen et al., 2015; Radmacher et al., 2002). Biomass formation,
NADPH availability, improved bioprocesses or alternative carbon sources provide certainly

targets for increasing L-valine production.

2.3  Metabolic engineering of microbial factories

Microbes are equipped with a plethora of enzymes and metabolic pathways, which enable the
conversion of simple carbon sources into highly complex, value-added compounds (Becker and
Wittmann, 2015). The natural metabolic activity, however, is stringently controlled and reduced

to a minimal level primarily aiming for proliferation and maintenance. For this reason, the
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metabolic flux towards product formation is traditionally not maximized to save resources and
energy. Although microbial refinement of food and drinks unconsciously accompanied mankind
for several thousands of years, the awareness that living organisms are responsible for e.g. lactic
acid fermentation discovered by Pasteur in 1857 (Pasteur, 1857), ushered the era of targeted

microbial applications.

The first techniques to engineer microbes incorporated the iterative exposition to chemical
mutagens or ultraviolet (UV) radiation, which generated random mutations throughout the entire
genome (Benigni et al., 1992; Ghribi et al., 2004; Harper and Lee, 2012; Hughes et al., 2012).
These mutant libraries were screened for clones with the desired phenotype (Ghribi et al., 2004;
Ohnishi et al., 2008). Throughout iterative rounds of mutagenesis, however, several thousand
mutations accumulated in the genome including beneficial, non-profitable and silent mutations.
Although the resulting strains produced increased amounts of the particular target metabolites,
the numerous mutations significantly affected the fitness of the cells, which led to slow growth,

low stress tolerance and decreased robustness during bioprocesses (Becker and Wittmann, 2015).

During the last two decades, the increasing knowledge of bacterial physiology, the availability of
sequence data as well as the development of recombinant DNA technologies has enabled the
targeted deletion and overexpression of endogenous genes as well as the introduction of
heterologous sequences (Erickson et al., 2012; Heider and Wendisch, 2015; Wendisch, 2014;
Woolston et al., 2013). This rational design concept realizes the local engineering of metabolic
pathways with a defined genetic background. Nevertheless, the comprehensive engineering of the
complex network of metabolic interactions including efficient co-factor and energy supply as
well as potential metabolic bottlenecks requires a deeper knowledge of the microbial physiology
(Becker and Wittmann, 2015). Here, systemic analysis provides a novel global and quantitative
insight into the microbial cell. Comprehensive Omics datasets including valuable quantitative
information on genes (genomics), transcripts (transcriptomics), proteins (proteomics), metabolites
(metabolomics) and pathway fluxes (fluxomics) provide a powerful basis for the development of
mechanisms to control dynamic gene expression, to identify metabolic bottlenecks or to redirect
metabolic fluxes (Becker and Wittmann, 2015; Furusawa et al., 2013; Petzold et al., 2015;
Woolston et al., 2013). These strategies allow for the system-wide engineering of microbial cell
factories. Based on data of multiomic platforms, in silico models can be derived supporting the

simulation of optimal metabolic fluxes through pathways for high yields — which is, however,
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still in the early stages of development (Becker and Wittmann, 2015; Kim et al., 2015; Wiechert
and Noack, 2011).

Synthetic biology incorporates the full spectrum of genetic engineering possibilities to design cell
factories with novel features that have never existed before (Church et al., 2014; Way et al,,
2014). Novel synthetic strategies can accelerate the development and commercialization of
microbial cell factories by overcoming natural barriers such as gene expression noise, metabolic
by-products, crosstalk or broad enzyme activities (Church et al., 2014; Erickson et al., 2012). To
this end, a broad range of innovative tools has been developed including CRISPR-Cas9 mediated
genome editing and multiplex-automated genome engineering (MAGE) of natural and artificial
genomes (Bonde et al., 2014; Jakociunas et al., 2015; Li et al., 2015; Liu and Jiang, 2015; Ronda
et al., 2015; Wang et al., 2009), oscillators and genetic switches for the dynamic regulation of
gene expression cascades (Church et al., 2014; Liu et al., 2015b; Zhang et al., 2012), optogenetic
tools (Binder et al., 2014; Moglich and Hegemann, 2013), and non-invasive quantification of
intracellular activities e.g. by biosensors based on native or synthetic transcriptional regulators
(Chou and Keasling, 2013; Mahr and Frunzke, 2016; Ng et al., 2015; Tang et al., 2008; Woo and
Park, 2014).

Although systemic analysis provides a global and comprehensive view of the metabolic
landscape, the high complexity of carbon and energy fluxes has nowadays not been completely
understood. There are still many obscured factors including unknown gene activities, regulatory
mechanisms or detailed knowledge of certain metabolic pathways. During the last years, adaptive
laboratory evolution approaches driven by mutation and selection have drawn the attention for
engineering biotechnological interesting strains (Abatemarco et al., 2013; Portnoy et al., 2011;
Schmidt-Dannert and Arnold, 1999): By iteratively exposing industrial producer strains to
sequentially increasing levels of environmental stress, microbial strains were adapted to e.g.
oxidative or thermal stress (Lee et al., 2013; Oide et al., 2015; Sandberg et al., 2014; Tenaillon et
al., 2012). Further approaches aimed to improve product formation (Mahr et al., 2015; Raman et
al., 2014; Reyes et al., 2014; Xie et al., 2015) or the tolerance towards solvents (Atsumi et al.,
2010; Lee et al., 2011; Oide et al., 2015). Most strategies are based on the emergence of natural
mutations and the improvement of fitness-linked phenotypes, which are directly exposed to a

natural selective pressure. Anyway, an adaptive laboratory evolution approach for inconspicuous
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product formation not necessary linked to fitness would beneficially expand the toolbox of

metabolic engineering.

Another strategy for the comprehensive engineering of microorganisms is the application of
random genomic mutagenesis, which was reinvigorated by the establishment of efficient
screening systems based on genetically-encoded biosensors (Delvigne et al., 2015; Dietrich et al.,
2010; Eggeling et al., 2015; Mahr and Frunzke, 2016; Schallmey et al., 2014; Zhang et al.,
2015b). Due to decreasing prices of genome sequencing by NGS, mutations occurring during
adaptive evolution as well as during biosensor-driven selection of mutant libraries can easily be
assessed by comparative sequence analysis (Becker and Wittmann, 2015; Harper et al., 2011).
These strategies revealed to deliver novel, non-intuitive targets for the establishment and

improvement of industrial production strains.

2.4 Genetically-encoded biosensors

Engineering microbes for large-scale production demands efficient tools for the high-throughput
(HT) development of novel cell factories as well as approaches for the evaluation of the
bioprocess performance. Techniques for single cell analysis, for instance, are required to discover
the formation of inefficient subpopulations, which might have a negative impact on the outcome
and robustness of bioprocesses (Delvigne and Goffin, 2014; Lieder et al., 2014). Moreover, the
screening of vast strain libraries generated by random or transposon mutagenesis presents a HT
strategy to identify novel targets for rational engineering approaches. Cases where product
formation is directly linked to an easily selectable phenotype, e.g. carotenoid production (An et
al., 1991; Ukibe et al., 2008), or the formation of a chromophore as consequence of an enzyme
reaction may interface with the development of efficient HT approaches (Santos and
Stephanopoulos, 2008). However, the majority of biotech-relevant compounds are inconspicuous
small molecules, which do confer a selectable phenotype to the cell, remains laborious without an
efficient HT screening tool (Dietrich et al., 2010; Mahr and Frunzke, 2016; Zhang et al., 2015b).
Here, the development of genetically-encoded biosensors converting the intracellular metabolite
concentration into a measureable, optical output is of high value for diverse biotechnological

applications.

Organisms have evolved a broad repertoire of different mechanisms to sense and respond to

environmental stimuli including stress, gases, temperature, pH, ions or the availability of
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nutrients, in order to control gene expression. This spectrum of natural sensor devices comprising
RNA aptamer structures in riboswitches, transcriptional regulators and enzymes provides a

valuable repertoire for the construction of biosensors for intracellular metabolite detection.

A RNA aptamer-based biosensors

|

B FRET-based biosensors

C Transcription factor-based biosensors

\/

]
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Operator r‘—’ Operator r‘

~AAA

Fig. 2.4 Schematic of biosensors based on A. RNA aptamers, B. FRET and C. transcription
factors. The biosensors are shown in their OFF (left) and ON state (right) upon binding of
metabolites (red). Abbreviation: ribosome binding site (RBS), cyan (CFP) and yellow fluorescent
protein (YFP), Forster (fluorescence) resonance energy transfer (FRET).
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24.1 RNA aptamer-based biosensors

Riboswitches are non-translated RNA elements, which change their three-dimensional RNA
aptamer structure upon binding of effector metabolites triggering the efficiency of the gene
expression machinery, RNA stability or the enzymatic activity of RNA molecules — termed
ribozymes (Fig. 2.4) (Aboul-Ela et al., 2015; Michener et al., 2012; Serganov and Nudler, 2013).
The immense power of riboswitch structures regulating gene expression was first described for
the response to thiamine pyrophosphate (Winkler et al., 2002a), flavin mononucleotide (Winkler
et al., 2002b) and coenzyme B12 (Nahvi et al., 2002). Nowadays, a wide range of natural
metabolite-binding RNAs were identified with the help of algorithms e.g. Riboswitch Finder
(http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/server.html  (Bengert and Dandekar,
2004)) or Riboswitch Explorer (http://132.248.32.45:8080/cgi-bin/ribex.cgi (Abreu-Goodger and
Merino, 2005)) and archived in different databases including the Aptamer Base
(http://aptamerbase.semanticscience.org/ (Cruz-Toledo et al., 2012)). Furthermore, the synthetic
architecture by computational methods or methods like the SELEX (systematic evolution of
ligands by exponential enrichment) in vitro assembly technique theoretically allows engineering
of RNA aptamers for the detection of any desired metabolite (Beisel and Smolke, 2009; Ellington
and Szostak, 1990). Frequently, the synthetic in vitro or in silico selection of RNA aptamers
revealed rather low compatibility with in vivo systems (Kopniczky et al., 2015; Liang et al., 2011;
Schallmey et al., 2014). Alternative approaches rely on the step-wise modification of existing
RNA aptamers e.g. to alter the specificity (Mannironi et al., 2000). In the last years, RNA
aptamer-based biosensors have been constructed for visualization of intracellular xanthine (Win
and Smolke, 2007), for screening a library of mutated caffeine demethylases (Michener and
Smolke, 2012), as Riboselector for the evolution of L-lysine or L-tryptophan production by the
fusion of the RNA-aptamer to a selectable marker gene (Jang et al., 2015; Yang et al., 2013), or
for the control of lysine transport in C. glutamicum (Zhou and Zeng, 2015). Furthermore, Paige
and co-workers connected metabolite-binding aptamers to fluorophore-binding aptamers for
sensing S-adenosylmethionine and adenosine 5’-diphosphate (Paige et al., 2012). Recently, this
type of sensor was shown to be applicable to study metabolite dynamics at the single cell level
(You et al., 2015). The great advantage of RNA-based biosensors is certainly the save of energy
and resources as well as the quick response to transient changes during bacterial growth as they
do not require, for instance, the pre-existence of a transcription regulator (Kopniczky et al.,

2015).
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2.4.2 FRET-based biosensors

Another strategy to measure intracellular molecule concentrations is based on Forster
(fluorescence) resonance energy transfer (FRET) between two auto-fluorescent proteins (AFPs)
(Fig. 2.4). In principle, the excitation energy of an AFP with short wavelength (FRET donor) can
be transferred in a radiation-free way to an AFP of high wavelength (FRET acceptor), if both
AFPs are in close proximity (<10 nm) and the excitation spectrum of the FRET acceptor overlaps
with the emission spectrum of the FRET donor. Both AFPs are linked by a sensory domain,
which undergoes a conformational change upon metabolite binding (Constantinou and Polizzi,
2013; Frommer et al., 2009; Michener et al., 2012; Schallmey et al., 2014). Thereupon, both
AFPs change their position relatively to each other either inducing or inhibiting FRET. The ratio
of the intensity of emitted fluorescence of FRET acceptor and donor even allows the quantitative
estimation of the metabolite concentration, which presents one great advantage of this biosensor
type (Constantinou and Polizzi, 2013; Frommer et al., 2009). During the last decade, a broad
range of FRET-based biosensors has been constructed for sensing sugars (Behjousiar et al., 2012;
Bermejo et al., 2011), amino acids (Behjousiar et al., 2012; Gruenwald et al., 2012; Okada et al.,
2009), ions (Hessels and Merkx, 2015), redox states (Yano et al., 2010), hydrogen peroxide
(Bilan et al., 2013) or oxygen (Potzkei et al., 2012). Helpful platforms for the construction of
FRET sensors are the Protein Data Bank (PDB; http://www.rcsb.org/pdb/home/home.do (Berman
et al, 2000)) or the FRETView software (http://turroserver.chem.columbia
.edu/fretview/index.html (Stevens et al., 2007)). Although the amount of functional FRET-based
biosensors promises a high success rate, the low predictability of conformational change of the
sensory domain upon metabolite-binding and the resulting change of the FRET ratio render
design efforts rather empirical (Constantinou and Polizzi, 2013; Frommer et al., 2009).
Furthermore, the pH, ionic strength, temperature, buffer salts and other metabolites can impact
the FRET ratio, which have to be considered using this sensor type for quantitative measurements
(Moussa et al., 2014; Okumoto et al., 2012). In the last years, FRET-based biosensors have been
used to study fundamental questions based on intracellular metabolite concentrations of
mammalian, plant or microbial cells (Michener et al., 2012). In addition, they are proposed to be
of high value for monitoring biotechnological processes due to their short signal response time
(Constantinou and Polizzi, 2013). However, no application during HT strain development has

been reported so far. Although binding affinities might be engineered, existing FRET-based
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biosensors are highly sensitive and respond mainly to changes in the nM or uM scale, which

render these sensors unfeasible for metabolic engineering approaches.

2.4.3 Transcription factor-based biosensors

The allosteric control of transcriptional regulators provides a highly interesting mechanism for
metabolite detection, which has widely been exploited for the construction of genetically-
encoded biosensors (Mahr and Frunzke, 2016; Schallmey et al., 2014; Zhang et al., 2015b).
Metabolite-responsive transcription factors (TFs) change their conformation upon effector
binding, which in turn leads to their attachment to the TF-binding site recruiting the RNA
polymerase for transcription initiation (Fig.2.4). Beside small molecule recognition,
transcriptional regulators have also been reported to control gene expression in response to ions,
physical parameters (temperature, pH), protein-protein interactions or protein modifications
(Mahr and Frunzke, 2016). For microorganisms, global databases like DBD
(www.transcriptionfactor.org (Wilson et al., 2008)) as well as species-specific platforms such as
CMRegNet (http://www.lgcm.icb.ufmg.br/cmregnet/ (Abreu et al., 2015)) for corynebacterial and
mycobacterial species exist, which summarize the broad landscape of transcriptional regulators in
bacteria and contribute valuable details for the construction of TF-based biosensors (Mahr and
Frunzke, 2016).

Transcriptional regulator-based biosensors were first successfully developed for the detection of
toxic chemicals or ions as environmental pollutants (Fernandez-Lopez et al., 2015; Merulla et al.,
2013; van der Meer and Belkin, 2010). In the last years, their broad applicability was also used to
study dynamics in bacterial cells at the single cell level (Kiviet et al., 2014; Mustafi et al., 2014)
or for diverse biotechnological applications (Liu et al., 2015a; Mahr and Frunzke, 2016;
Schallmey et al., 2014; Zhang et al., 2015b). By linking the metabolite-responsive TF-promoter
pair to an easy screenable (e.g. fluorescence) or selectable (e.g. antibiotic or auxotrophic marker)
phenotype, HT strain development based on genome-wide random or transposon mutagenesis has
become feasible and effective for the isolation of cells with an increased intracellular metabolite
concentration. This strategy was successfully applied to improve the production of succinate
(Dietrich et al., 2013), branched-chain amino acids (Mustafi et al., 2012), L-lysine (Binder et al.,
2012), butanol as well as linear and branched-chain alcohols (Dietrich et al., 2013), benzoic acids
(van Sint Fiet et al., 2006) or B-ketoadipate (Dietrich et al., 2013). Furthermore, TF-based

biosensors are also of high interest to screen enzyme libraries for desired characteristics
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(Schendzielorz et al., 2014; Siedler et al., 2014a; Siedler et al., 2014b; Uchiyama and Miyazaki,
2010a). Applied in synthetic regulatory circuits, transcriptional regulators proved to be effective
tools for the dynamical control and balance of metabolic fluxes for improved product formation.
This strategy was efficiently implemented to regulate acyl-CoA and ethanol biosynthesis for the
enhanced production of fatty acid ethyl ester (Zhang et al., 2012) or to improve malonyl-CoA
levels for malonyl-CoA derived products (Liu et al., 2015b; Xu et al., 2014). The broad
applicability of transcriptional regulator-based biosensors features the great success of these
valuable sensor devices. However, the low number of well-characterized TF-promoter pairs, the
low orthogonality of sensor constructs, the inappropriate characteristics of the biosensor in terms
of specificity, sensitivity or dynamic range as well as the requirement to sense non-native and

non-natural products requires improvement.

2.5  Aims of this work

Although nature provides a diversity of transcriptional regulator-promoter pairs available for the
construction of biosensors, the identification of suitable candidates for the detection of desired
metabolites often turns out to be laborious and time-consuming. For this reason, one aim of this
work is the development of an efficient HT strategy to screen promoter libraries for appropriate
sensor devices. Based on the Alon library, which consists of more than 2000 different
Escherichia coli promoter-gfpmut2 fusions and hence, readily available sensor devices, a
workflow will be developed using fluorescent-activated cell sorting (FACS) to screen for
galactose and L-phenylalanine-responsive promoters, which might be used for the development
of biosensors. In the following, selected candidates will be chosen in order to study the influence
of the biosensor architecture on the sensor’s characteristics. To this end, comparative analysis of
different sensor constructs will be performed. Finally, identified L-phenylalanine-responsive
biosensors shall be tested for applicability during FACS HT screening of L-phenylalanine

producers after random mutagenesis of E. coli strains.

Adaptive laboratory evolution (ALE) is an interesting opportunity for the biotechnological
improvement of production strains to identify novel and non-intuitive mutations by selecting at
the same time against detrimental mutations. So far, however, ALE has only been applied to easy
selectable or fitness-linked phenotypes. For this reason, another aim of this work will be the
establishment of a biosensor-driven adaptive evolution strategy for improving the production of

metabolites not linked to a directly selectable phenotype e.g. amino acids. The novel approach
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will be tested using the Lrp biosensor to improve e.g. L-valine production. By iteratively
imposing an artificial selective pressure on cells with a high sensor output using FACS, clones
with intracellularly increased L-valine levels shall be enriched. Evolved clones will
comparatively be analyzed and mutations revealed by whole genome sequencing will then be re-
introduced into the non-evolved strain to identify whether they are beneficial for L-valine
production. This strategy will also be examined for the production of other biotechnological

interesting metabolites.

The application of biosensors for monitoring metabolite production at the single cell level can
reveal interesting dynamics as well as inefficient subpopulations. In live cell imaging studies, the
Lrp biosensor will be applied to investigate single cell growth and production of C. glutamicum

AaceL.
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3 RESULTS

The overall topic of this PhD thesis was the development of transcriptional regulator-based
biosensors for biotechnological interesting applications. The results were summarized in two
published papers, one submitted manuscript and one manuscript that will be submitted in the near
future. Furthermore, recent efforts in this research field were summarized in two scientific

reviews.

In a first study, the recently developed Lrp biosensor for the visualization of intracellular
methionine and branched-chain amino acids was applied to monitor single-cell metabolite
production of the L-valine producer strain C. glutamicum AaceE and gradually engineered
derivatives. The publication “Application of a genetically encoded biosensor for live cell imaging
of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium
glutamicum strains” describes the detection of cell-to-cell variations using the Lrp biosensor,
which may occur during bioprocesses. Interestingly, live cell imaging analyses in microfluidic
chip devices revealed the formation of different types of non-producing cells as well as the

formation of subpopulations in the presence of low amounts of complex medium compounds.

Adaptive laboratory evolution (ALE) has widely been applied to improve diverse characteristics
of production strains. The publication “Biosensor-driven adaptive laboratory evolution of L-
valine production in Corynebacterium glutamicum” describes the application of the Lrp biosensor
to improve growth and L-valine production of C. glutamicum AaceE by iteratively cultivating
and selecting cells with the highest fluorescent output using FACS. This strategy proved likewise
successful to reduce by-product formation. Out of seven emerged mutations, four were
reintroduced as single mutations into the non-evolved AaceFE strain and were revealed to increase

L-valine production or to reduce by-product formation.

During the biosensor-driven adaptive evolution, one mutation (ureD-E188%*) arose leading to the
formation of a truncated UreD protein, which was revealed to significantly increase L-valine
production by about 100%. In previous studies, the lack of the essential accessory protein UreD
was described to inactivate urease leading to reduced levels of the urea degradation products
carbon dioxide and ammonia. The manuscript “Urease inactivity increases L-valine production in
Corynebacterium glutamicum™ presents a combination of gene deletion studies, batch

fermentation with CO, aeration and pH shifts, as well as DNA microarray analysis, which
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revealed the pH-dependency of growth and production, and the impairment of anaplerosis under

reduced CO,/HCOj5" levels increasing the pyruvate supply for L-valine production.

The natural abundance of transcriptional regulator sensing metabolites often overwhelms the
decision of suitable biosensor candidates. To this end, we developed a HT strategy for the fast
and easy detection of novel sensors, which is presented in the manuscript “Screening of an
Escherichia coli promoter library for a phenylalanine biosensor”. The approach is based on the
pooled Alon library consisting of about 2000 different E. coli promoter-gfpmut2 fusions and
hence, readily available sensor devices. By toggled rounds of positive and negative selection
using FACS, galactose and phenylalanine-responsive promoters were successfully enriched.
Based on the enriched phenylalanine-responsive promoter of mtr, different biosensor
architectures were constructed and characterized. One mtr biosensor was successfully applied for
FACS HT screening of a randomly mutagenized E. coli MG1655 library for phenylalanine

producing strains.

Throughout the last years, the development and application of transcription-factor-based
biosensors has widely expanded for biotechnological applications. In the review “Transcription
factor-based biosensors in biotechnology: current state and future prospects”, the recent process
in this research field is summarized. The review provides a detailed overview of biosensors
applied in biotechnological strain development and screening approaches. Furthermore, current
efforts in the fields of high-throughput screening, dynamic pathway control by regulatory
circuits, biosensor-driven adaptive evolution or single-cell analysis are highlighted. In addition,
the review describes a broad range of recent studies, which deal with the engineering of
biosensors for altered specificities and dynamic ranges, improved or reduced sensitivity as well
as achieved orthogonality. Finally, the review emphasizes the integration of Omics and NGS

techniques to expand the possibilities for biosensor development and future applications.
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suggesting a loss of metabolic activity, These studies demanstrate that genetically encoded biosensors are a valuable rool
for monitoring single cell productivity and to study the phenotypic pattern of micrebial production strains,
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misheachg infempeetations of biolageal phenvmena (1], Analys
ol growth amd product Fesbon of stogle micenbial celk would

Introduction

I vatural environments, mberent cell-to-cell vartation wichn

. i : 3% f 2 - E.ll'ln]lh‘: a aletaileed ill.’\-iE_IJl it he J|]1|.'||-:-I_-,||i|: sievetuee ol The
tsirenie populations andd resuliing femmiion of subpopulnioe

population representing & further, impomant sep towards @

alich brars an overall lincss advantage loe e whole popalation

L. Wariahon of phenavypic i Tas heen woporned 1o pronte:
the divison of lahor or as “he-hedging™ strategy 1o enable rapd
ataption 1o sudden exviranmental changes [1,2.5,4]. In biotech-
nalomenl processes, however, arismg phenotypic viriaton and the
lorrnziion ol msoliiently prodocing subpopollions can aelaersely
alleet the endice: prewloction proeess |5,6], Besiches ais Bicloieal

origin, hetcrogencity within bege scale cultdvation proceses is

cauged by envivonriental variatons at the micooo scale, o, of

dissalved gases, pH and numients cavsed by msulficient mixing or
the: formstion of hiafilms [78.49,140],

Mowadavs, bioprocess moenierng 15 sill dominated by bulk
apgroeches delnenng awversge voloes: Toe the shole popubazoe,
Masking ol celbw-cell variation miht conzequently el

PLOS OME | www.plosoneorg

sytens level unclerstanding of microbial processes. A major
driveback of this approsch 35, however, the mited  nomber of
micrehialle produced mewabolites which confer an ohserable

B ey excepiinns are

pheniype to the mespective cell; ameng
matueal cheomophores, such as wids. Uhis  challenge
demands  the development of novel wols and  wochnbques o
single-cell quantification and real-ime momoring of eonspiou-
ous, srmall metaboliees (L1215 o this contest, geneacalls
ergded Trosensors cipalde o deecting snedl smoleeules wside e
cellaned vransfiormming this tnlormaton ni an opecal reeloul e,

Hooreseence signal) depeesent o poverddul inol T smgle-ccl]

amalysis of micenbial production strains. The implementation of
genctically ercoded mictabalice sensars in live cell imaging siudies

perdormest m microllasdic cultivation swstems offers the advaneage
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of longterm ohservation of single<cell gronh and mecabolite
prrosthectian witle high speial and emgeeal resolugion [T415],

Clrrprbacieriuny ghotbomdva represents o oF the st importan
pratorm organisms in indosirial hiotechoology: dominating e
slobal, large-scale production of amino acids e, L-glutamate, L-
ysine, aned Tevaline, [16], Revest stuchies seane molipgasameier
e eytometry resealed  phonarepic helerogeneity in erma of
viabilivy, membrane potential aod growih actvity of O gheameo
wildd pype eclis grosen in ke dhsks [17], Howeerr, popalation
|1-:::u::rngcuni1'y dul'inq [pracoctinn processes has not been smicied n
decail for this species, ver Recendy, our group repormed on dhe
dlevelopment of a0 senetically encudecd mesabolie sepsor (Lap-
sorsorl, which cnables the eylosafie: demeetion of” heansbicd-chaan
aming acids or Lemethionime i segle O gliameen cells. The
seqeor 15 based on the transcripoonal resulator Lep of © glibmmas
which activaies expression ol the fenfE opemn, eneading an
aminn aciel export system, wpon aceumulation: of the effecior
arrine sads Lemethionme, Lelencine, Lasoleuvine, and Levaline
(18, V22T ] B peevionss - sodics, the sensor was seeces(ully
applicd in Oow eyvromenny-hased high-throughput (I soreenings
for the isolaton of mutants producing amina acids and m first Tree
el ir||.'|g'i||g siwBes af the Tevaline Jma-ﬂl::l:li-::ll simn £ Sn'u.'mfi-wlr.'
Awekl |12,

0 ity was successlully engineered foe elficient Lvaline
production within the [as years [25,240 252627, Sirains are
bazed oo the deletinn of the g™ e, which enende: the F.|[_'|
subumin ol the pyoate delydengenass comples (PIHC) and - an
additional plasmid-baged overexgpresion of the VO genes
encoding Levaline brosynthesis engymes, The resulong sman £
_l_glf?a.v!.-.llm}.w: A F |.|JJ(':-1-;|1-'|§:’\'E':-F.'| wits  hrrhes
adeliional  deledinm ol the genes . enending parivatcigninane
madoreductaze (fgo), phosphorlocos: lsomerase Jo, and pyrocate
carbuxylase (e, These muodilications led v o zeres of st
hased on the same parental srain (G gletesionm deelS, with a
stepmaise tncreasing procuct vield (Y e reaching the theoretical
il Yeee of OBG moal Levaline fier el @l g‘h,u,;l_m_. i G
sluigizivion Aaedl Apgn Apge Apge (p[CA-iblINCE; (28], 'The
common and characterste feature of these  PDIICdeficient
sqraine 35 the onsel of the production phase anly afier a complete
|x:lr|m.|.||'|E.lIi.|||.|. af the acciane which s n:||_||i|'|x| 1w g:lm‘lh IQ.".-J. | e
tn these propertics the sirains represent an ideal wating ground for
hosrnzor performance, In this work, we have sucoessfally apphied
the genedcally coeoded Lep-seisce (o lve coll iaging sidics o
momitor amino acid production,  growth, and viabiliee o ©
miwtawicin Tovaline pradoction strains inoa dmemesolved manner

i|||E,1r4|'L-|,x| |15-'

anel al xillgh: el resodution.,

Materials and Methods

Bacterial strains, media, and growth conditions

Bacterial strains and plasmics used or constructed m chis work
are lsted in Table 1. Unless stated vtherwise, pre-cultures of ©
abwbemicmn were incculaiedd with single colomics fronn a frosh hiean
heart infision (BHI agar plate containing 31 mbd acerane and
incubrared 00 ml BHT complesx medinm wich 30 mM acetare for
i boae 3070 aned 170 cpen, This fiest pre-culisee was osil o
incrnlate a 100 mi shake flask containing 20 ml COXIT minimal
medinm [29] with 222 mdd plocose and 150 mbd acecae, The
cells af thee seconed pre-calione were cullivited avernighn w3000
anel 120 epm, washed twice with 0U8% fwds? saline and then uaed
tr inoculane the main cofture to an opeical density (00,0 of LI
ot stated dilferentdy, cells in the nain colore were culovated
washer the sune concditioses as in the pre-—colioee, Folssiom acetale
wa uscd inall experiments performed i this stucy, fideadin el
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DO wae growm aerobically in TE mediom on a rotare shaker
(120 o) o oo LR sggae plages an 37700 [30]. Whese appropriane,
the iz comtaanesd kaonvein (25 pg mi ol [T Mol Or
Goug ml ' lor £l LG o isopropyl fryg-L-thiogalaciopyr-
anoatde [ TPTG), as indicated. For online monitonng of growth and
Hluorescence, cells were cultvated m Hewell Bowerplates using the
Bialectos system mpelabs GmbH, Aschen, Gerrmansd [317.
Colivaon conditians have beon described prevossly (22,

Recombinant DNA work

Standard metheds like PCR, DNA restricoion or lgation were
carried out according to standerd proocols: [340], Svnthesis of
oheonucleatides and  sequencing anabysz were performed by
Favroafins MW Operon (Elersteld, Grerocow), The vecior pEi-
Crirmsun wis derived by Clomech Babaoratories (Aoonain View,
CaA, LsA) For the comstruction ol pfOd-ilvBNCE-crimsen, e2-
crmpar umder transeriptiosal conwol of P, was ampiificd vsing
oliconucteotides {acl-fiv and E2-Crimson-v {33, The BCE
prociuct was cloned i the veewr pJC4aBNCE T25] wang
the Bat L TOTT restriesion site. For clvomasormeal indegrasion of he
Lapesenaor, the scnspe cassetie: was insened it the inlergenie
region of rgl 12001122 usng pK18-mobhscB-cp 1121, egl 122
[22]. The transfer of the mtegration plasmid inmm € gltesiinm and
selection of the Grst and second recombination events wers
prrformed is deseribed previously [35]. Correct integration at the
chromsarnad locus was veriled Ty colosy PCR usine peisers Tl
el 127D el Tl 1225,

Cuantification of amino acids

For determination of amine ackd concentratons in the
supernatant,  samples  of  the  cultures were centrifuged
(13,000 rpm, T0man, P and amine acid concentration was
cuantifieel by revessed-phase Bigh-presace ogoid chromatopeaphy

as deseribed belore |'l‘!|

Microfluidic chip cultivation

Murofluidic TDMS-glass chips were fabrncawd according to
| 14,34, The micrdinicdic monekyer cultivation system wilized in
the present stdy was designed for mdcrocelony growth ancd
gremwtB-coupled. phenatypic stslics s the single-cell level [T453]

The desdee eavares TO0 arses ol eoeoeyer cultivation chambers
(1 pmoxad) =40 ;. helghe = wickh ® lengrhy (or TIT
pweriitoring of microeclony growth under constan ensvironmenial
comditicns, The mecrofluicdic chin connected o | ml dispesable
syringes {Ohmnilix 4 P, B Braon Melsungen Ale, Crermany) [ue
comttnuens mwelse supply was placed tnside an in-hoose manic-
el icubatos for emperatore and atmosphere comrol. Media
flow was controlled  with sringe ponps el ESY S, Ceeni
GmbH, Korbussen, Gemmany!. The incubarer was mounted oot
d [ully mctorszed weerted Wikon Echpse T macroscope DNikon
GmbH, Disseldor!, Germony) suitable for time-lapse Tee ool
imaging, The seug wis crpoipped with a looes assistan (Niken
PFS) |1i:||||]||'I|.1::|l:ir|_!_l| T thiemal eleil |||||'||'|§__l, |u||g—||'|'|1| |'||'||'|1c|.y:'|:-1|}'
and a CIT Plan Apo Lamhbda DM 100X-magnification, 143
numerts  apermire ol phase contrast objective,  Temperature
comtrol of the objective wie realized wsing an ohjscove heamr
(ALA OB]-Heater, Al Scientilic [nstoomenis, USAL A cel]
stspension ol O en (L0-1, tranzlereed . Fram a0 pre-coliuee s
capoteniial growth phase, was mlused o the svsten. Adier
successful cell seeding, the growth mediom was nfused  ac
approximately LU0 ol min ™' per chanmel,
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Table 1. Bacterial stralns, plasmids, and oligonucleatides wsed in this study,

Straing, plasmids Relewant charactaristics Relerence

Stralns

E. ool (3H5x pEd, Al TE9 (ASacA M S bkl 7, recdi, enddT, gurdschi el Inwsrogen

L gluramicum ATOCT3032 Aiptin-ametrophic wild pe, [43]

daced = giereemicun wild type with delesion of the acet genes coding for the E1p sublni |49
aof the pyuvate dekydrogenase-complex (POHC

Aacef Anga gt AageE strEin with dedetion of tve ggo gene, Coding for 150]
‘pyruvalexuingre oxidieeduciass.

Aocel Apgo Apai C giwloemtur Acoce Apgo sbiain with deletion of the pal gene, coding for the phesphoglocose i)
SOmemsn.

Aaces Apgo Apgl MDY £, gitemicimn Aacef Apqa Apaistrain with deletion of the gy gere, coding for the prmuvate [
carbomylase.

L gAtamicinn sansoe strain o, gitshamicum wild type straln with chiomosamally integrated Lrp-sensor lintesmted Thiss wiork,
it the irtergenc regisn of cq1121-00 1128 and pHCHENCE-Crirsen plasmid

AGCeE sensoe srain AaceE sraln with chrormosamally inegrated Lrp-sensor 11210013220 and piCRivBNCE-oimsen plasmad,  This wirk,

AaceE AP sensar st AaceE Apga strain with chramosamally integraced Lrp-sensar {og1127-011221 and Thiss wiork,
Sl ENCE-Crimsan lasmid,

AaceE Apao Ajgl sansoe sIiain AnceE Apga Apgi strain chromeseenaly Inmegrated Lip-sensar-Gogi128-091122) and This woastk
PICAHIVENCE-zrimsnn plasmid.

Aacel Apan Apgi Apye sermor Strain - AaceE Apgo Apgi Apwe strain with chrormosomally ntegrated Lrp-ssnsor Thiz work.
ieg 11 20-col1 221 and plCA-iBMNCE-crimson plasmid.

Plasmids

Pkl E. paii-C, giitsonicam shuttle vector, Kar?, arilfy,, ol [51]

Pl -iptenF-eyp oS idermvative containing Lip-sensor cassette, which consists of ip logd3t3), the intergenic region [221
af fe fmF jcolatal and a tanscriptional fision of hine with ey,

phCa-hBRCE piC1demmtive carnying the RENCE genes coding for the Lwafine biosynthata [25]
eraymies acetohydroogacid synthase, somerareductase, and frarsaminass B

P A IkHMCE crimson pRdllENCE dervatye confaining edcrimsan urder transcriptional control This wnrk,
al P

pH'IS-:wL‘uaL'E- wector far allelic exchange in & giwemicunm; Kar'; arils, sach, eda, [32]

prEI&-mobsacE-og 1121, i ErobsacE dervative for genomic integration of Lhe Lipsenioe it the Thitd ek,

ciy 1 1 22-Lrprisnsor imterganic regan of cgl 12t-e01122 in C alutgmicun,

Oligonucleotides Sequence [5' » 37)

(E TCAAGCCTTOGTCACTGETCC Tl seeinik

E2-Cifrmaan-n CTACTEGAACAGGTEATGECGE This weirk.

Irt-0g 1121-Tw TTEGCETGTEGTTGETTAG Thes weork,

IME-0g 1122 CGCATCAAGTAGATCTCTG Thiss wintk.

daizi 0137 1oumal pane 00857310001

Live cell imaging and image analysis Results

The micrescops was coquippedd with an ANIDOR LECA K
DLAN EMOCCT camera (Andor Technology ple.. Belfase, UK for
i recording and o S0W Xenon lizht scarce for foorescence
excitadon (Lambada DG, Suer Insouments. USA] Following
Maescenee s AHE S Amaleniechoik, Gemsiy] were
applied: 8 YFP: HOY 300720 (fexciation e, (15 (dicheaich,
anc  HEY 56353 [emesiong O] E2-Crimsan: HUY GODS ST
‘excitaton filter:, OS50 (dichroic) and QG767 (emission,. Phase
contrast and fuorescence microscopy tmages of several microools
omivs were capromed o T ome aneervals, Groneth i

Online menitoring of Lvaline production

Freviously, we preseitted the Lrp-binsensor as & convenient tool
toa ehiserrrmmatie hetwern o Tivels of Tevaline |:-|1c||||||'lic|rs ane] wiled
repe lewed (22 In che present spady, we ascsaed the perfrmmance
of the biosenzor to wonitor the course of Lovalme producoon over
timae in high-vicld and basic L glmmeess L-valine procdoetion
straing [FH]. For this parpose, the Lip-senanr was chromnsomalky
antezreabee] it vhe dileeend strsing i order oot plazmid-Tised
clleers, such as o doctuating copy numbher cr plasmid loss. Sieains
mdet study were daedisLp-sensor p]CH-AVENCE-crimson;,
Aavell g Leprcosor (RO BN CE=vimeon), daell Ao
Lrp-sensor (plC4-UvBNCE-crimaan), and Aol dpga Aol
Lapresenson (plO4-ie BNCE-crimson), Teneeloail relemed o

Muorescence were recoeded Tor 1020 fsomenic miacrocalonies

luring cach expeviment, Iroage analysis was peclormed with the
Mikon M5 Flemens AR :ilill:ll.'\.'ilr'l' package, The viaslizatgon of At
hueage vee was realized using our in-house dt".-'{:](!pl:d Python- :1.-: Usendn sivakns” ( Palile Ty The sensae steains as well as the wild
R oe O wetemicon ATOC 13052 pC-ABNCE-crimson) con-
Gining dae Lepesensor wers cultivaded o CCXIE izl amelio
supplice with 134 mM acctate and 222 mdd glecose o microtier

PLOS OME | www.plosoneorg 3 January 2014 | Volume 9 | lsswee 1 | 285731
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s 10,55 mi Allng volome] o the Riolector cultvaion syseem,
erabling caline mwasarenwnt ol Biomass ackseatier] saul «YFP
flworescence [517, Within the first 10 oo 12 howrs, the smans grew
expanentially while exhilatng o decrease in Nuorescenee aver fimie
Frgure 1A, Bi Phis pesaduoal fluorescencs angd the decrease ol the
signal e the frse hours were also observed inthe wald tepe summ
ang theselne can i.i'lc-.'[:l' b aseraleed 16 -:'||a||g-:'5 al auli- or
hackgroimd  Nuorescence during growth, Abter depletion of the
seetate required for groavih, the cells entered the stationary phase
anel an iwrease o eYFP Nuoresccnen was denecterd, dmdicaiing
rrowth-decoupled Lovaline production of che strains (Figure 16,
A the early procducoon phase all straims exhibiied o stmilio sepsor
sigmal, bag split vp i the course of the cultivation. Twelee hoes
after shifting tno the production phase an almost tweofold higher
segwon ouipt ol the high-yield prodocess (daekl Ao Adgi
Aweek] Apgo Apei Ay sciser sieaing; was obseesedl i compasison 1o
the busic producers (dacek and Aol Apge sensor srains)
Frgre TR, O, The Bouoresconce af the dacek and the dacek Afan
sepsor awains reacherd i madinum intensity wichin five 10 en
hours, sureesng constant mternal Lovalineg concentratons. In
vontrast, the loorcscence of the dacels Apga Apgd and the Aot
Apge Apai Agic sensor strains increased foe abour 15 hour,
refiecting the higher poential for Tevaline production of these
abrsiae,  Pelerminancen ol arping acied comcenimiion o the
sypernatant contfirmed  different levels of Levaline productson,
ranging fram 500 mAT Tevaline noaverage for the AgeeP Apos Afr
soepsor st and the dacet Ao Apar A sensor steain o 23 mM
in average for the deee sensor strein and the deel Apm epsor
sirzin (Faguee WO, These results demeanserade that the Tapeseisor
dos not only provide an G AOPE response skl tvpe sere
prodection straing, but can be applied {or online monitonng of
prreslsction processes in basie as waell as high-viek] peodsction
strains, since (1 mformaton abour initiation of the prodoction
process i provdded, 5 the course o metabolice proclucion process
i alisplasee] overe firmcaand (8 dilfereog bevels ol peodacivies aec:
revealed,

Live cell imaging of Lvaline production

Irv the fodlowang experiments, we aoalyeed the applicabiliog of
the Lrp=Tavsensog in Bve coll dirging studies Lo investigale growid,
phvsiclomy, and metabolic actvity of sngle cells mea tme-rezoled
manner, For this porpaose, O ghioriomm L-valine praduction stains
were cultivated i eoneksver miceolluidic: coltivaion ehambees
under constant environmensal conditens (Fiaore 240 [14], After
-'||||§|-:'--:'|‘:|] wrendatiay e miceofloidic chambiers, coells were
grown in CGX1D medium with 134 md] acetare and 224 mM
slucose as carbon sowrce, A medium change (afier 155 hours)
COXID medinm containing 222 mM glucose inigated  L-valine
production. Figure 2 shows two representative colonies of e
Awee B sensor strain and the dece® dpge Apgi sensar sien during
grovwth (1, ty) and Levaline production phase (o 1) (Videa S1, 520,
Cells pradually stopped mrovang snd stmultnecusly exhibaed
pregressively ncreasing cYFP Bucrcscence afler the amediom
switeh,

The average (onrmsocrec signal of theee micksendonies [Tun-
rescence dgnal e colomy area) of the daelfl sensor swain and the
AweeF Aggn Az sensor sivzin doving grow e wd production lease
i depirted in Figare 21, In conmrast e the daced? e g sonsor
srain, colonies of the Aacef sensor smain already displaved a fow
eYFP sigmal during the growih phice, Allhough stacling o
different  levels, the fluorescence of bith swaims increased
cormparably when Laaline production wits imitiated, In sereement
with the sesults alstained o oicrstiter plale callivactions zee

Figmre 1 colonics of the high-veld producer decell Apgs Afr

PLOS ONE | www.plosoneorg
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Figura 1. Biosensor-based online monitoring of L-valine
production in PDHC-deficient C gitamicum strains, (A! Growth
and (B} Lrp-sensar output [@YFP fluorescence) of the sensar straing
gluramicien ATCC 13032 wild type (stars), dacek [dizmonds), dacek
Apgo idrclas), doce Apgo dpgl (triangles), and doceE dpgo dpal Apyc
{squares] cultivated in CGXH minimal medium containing 222 mM
glucose ard 154 mM acetate. Data represent average values of threo
irdependent cultivaticns. The fransition of the producer strains into the
stationary and production phase s highlighted by the grey area.
(C) EYFP fluorescence of respective strains at the beginning of the
production phase (black bars) and teeefve hours after the initiation of L
waling  preduction lgrey bars), L-valine concentration (mb) in the
supsernatant of the reapective strain 25 h after beginning af cultivation
as measurad by HPLL (= indicated abowve the grey bars.
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Figure 2. Live cell imaging of L-valine production strains using microfluldic monolayer cultivation chambers. [A) lllustratlon of the
micrafuldic cultivaticn chambers, The system cansists of several armays of picoliter sized mancdayer cultivation chambers. (B) Fluorescence emission
of three entire microcofonies (average a¥YFP signal per colony area) of the docef sensor strain {triangles} and the Jocef dpgo Apgi sensor strain
Iefiprmands) over time. Fluorescence was measured every 2.5 b (1C) Growth (8 -tk and production phase (ty-te of isegenic micrecolonies of the docef
sermsor strain (upper o] and the dacef Apgo Jpgd sensor strain (ower row], 100 Histogeams illustrating Aucrescence distribution within a
representative microcalany of the Jdacet sensor strain {left] and the darek Apge Apgi sensar stiain (right]. The e¥YFP slgnal of single cells was
measured &t t=1% b {red), t=26 h {green), t=34 h (purple), and t=40 h (blugl. Average fluorescence valuss are indicated above the respective
peaks. All cultivations were performed in microfluidic chambers shown in (A) in CEXEH minimal medivm containing 154 mM acetate and 222 mM
glucose during growth phase or CEXI with 222 mM glucose during the production phase, respectively,

dos 1137 Vjourmal pone DOBST 31,0002

sepeor srait showed an overall bigher fmal Quorescence m
wonprrion 1o cobonies of the doaed seosor sten, This was also
telivered Trd the single-coll Muorcscenee ol the respeetive. draing
during the producton phase (Tigore 202 Measurement of single-
cell Huorescence of both strains revealed o Brosdemng Gagstan
disteiftian in the course ol the expemment.

Comelation of sensor output and metabolic activity

Laa Lierthier stwelics; we ingended wovalidate the correlaton ol tye
Lep-biosensor output and the physiologieal state of the respecayve
cells, Tnoother words, 3 a0 low semsor oot an indicmion for
reclirerd metabalic aoivity ce even death ol the sespective cell? i
inrrexluce & measure lor plasmid sability n L-valine producing
sepzar sirains, 2o coding for Greered Quocescence protem
Fz-Crimson wis placod gnddee coneral of P i the vector p]C4-

VN containing the gone clester SdEV0E o averespirssion of

the Lvaline biosmchess genes [32]. The wvecwor with e
wterriled plasmid marker wis ransterred o the dacel Ao
Apr sensoe steain and cYFP (Lap-hiose nsarn) and - E2-Crineaon
plasmic marker) fhonreseenee: emission were recardecd tor micen-
coloniics grown in microfluidic cultivation chambers, Figure 54
shiovws o pepresentative colony of the Jacel Apgn Aiei sensor soram
id the eoad of the procuetivn phiase (=46 B, Siogleoell eYFP ol
E2-Crimson fuorescencs were recondod and acc depieied inoa
correlation plot, with each dor representing a sngle  ocll
Fzure 30, Creerall, a strong correlatian between ¢¥TFT and E2
Crrmpsaon st was observed = 0732008, 0= 1436, Cnly a
s amount of eells [=21%) displaved o bigh L2-Crameon, but
lowe YT simnal. Metobobicallv nacove or dead cells Jow sipmal

for eYTT and E2-Crmmson) were rarely detected, Nevertheless, a
fewr cases we also observed icrocolomies with sn Jenessed
nurnber of non-flucrescent cells (see section 5. Their frequency,
howwever, ssrongly depended oo the chasen colony and cell densie
ey enliivation,

Occurrence of non-fluorescent cells during the
production phase

Draring the praducian phase, we always observerd the acenr-
renee ol some noo-luorcseent cells. Live cell mmaging sodees
erabde the mvestgation of this phenomenon noa ime-resolboed
meanner and the discrimination. herveen dilterent iypes of non-
fluerescent cells, e bysed, dead cells or dormant forms which
resurme growthe afler aowhils

Ulncher congdiions describee in section 3.2, we wsuelhe abserved
vidoies shoswing aotvpical Couesian distilaien ol cYFF infensity,
bt occasionally colonies with an increased  nomber of non-
flucrescing cells were found (1% of cells) Figare 1), We oacked
dillerent eclis in aeveral micracolonics, clustered thes and Fone
different tpes of non-prococing cells (Figore 4, Videa 5% The
mayjortty of cells. hawever, underwent mransiton frean growih o
preoductioge and will not be discused hoee,  The Bt g of noe-
proclucing cells initated Lavaline production, but showed a sucden
cell Jesis al a Jater trme (Fagure 45 1 1D and IV These cells were
rarely seen al constant cavionmental conditicns, bl weee mone
frequently observed when colew growth exceeded the chamber
sire, leadimg to densely packed colomies, A second fracoon of cells
peither mitiatecd L-vadine procuction nor showed growth alier a
change of mediuom, These cells might eiher represent dead or

r=0.73

AaceE Apgo Apgl
EYFP fluorescance (a. u.)

E2-Crimson 0 50

T T
00 150 200 250

E2-Crimson fluorescence (a, u.)

Figure 3. Correlation of the Lrp-sensor output (eYFP} and the plasmid marker E2-Crimson. (A} Microicapy overlay plot of phase-cantrast,
eYHP and E2-Crimson signal of an lscgenic microcolony of the dacet Apgo Apgl sensar straln after 46 h (see Figure 20), (B) Dot plot displaying eYFP
amd EZ-Crimson sigmal of single cells of three isogenic microoalonies (triangles, circles, and diamonds! of the Aace€ Apgo Jdpgi sensor strain,

doi1 0137 L joumal pone 00857 31,9003
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800 800 1000 3.5um DEEHIIII

«Mo flugrescence
axfiax, MNuorescencs

1045

945 h

Figure 4. Occurrence of non-fluorescent cells during the production phase. (A} Microcolony and lineage tree of the docef Apgo dpgi
samsor straan. Differant types of non-fluorescent cells are ilfustrated in B, (B) (kA1) Lysing cells and (I} dermantfor dead cell, which do not switch from
arowth 1o praduction, (1V) Leaky cedl that shaws decreasing Runmescence signal aver fime, potentially caused by a permeabilized cell membrane, W)
Cells showing sow growth, bur no prodection, Images marked with an astersk show cells of another microcolony of the docef Apgoe Apgi sensor

strain, not shown in this fgure,
do 10135 Joumnal pone D0BS 7 31,9004

dormant cells (Figuee 4, 11, Fisallv, we alo observed non-
producing cells which did not enter producton phase, but
continued e grow (Figure 1, ¥, although no carbon souree, Le,
TR, Wik |,a|t'r|.;i|:'||'|| i the oo, Choe :u_src'si'iﬂ-:' |,"<||E:.~||.|Ii-:|||
wisnlel T tleat these cells e subapied theie geowah e uiiliving
mlurnes as carhon soee.

Phenotypic heterogengity of C glutamicum L-valine
production strains

I comtrast e groseth o well-coteolled meralinidic devices,
cells v bvprical shake sk oo Bioreactor cultivatioes Eee sagnificant
e tuatiens with respeet o metabaolize accumalation and physical
parameters (pHL O el Remarkably, when we exchanged the
il mediom wsed o the abovementioned studies against a
nan=defingeed conples mecdom OGN conining low sz of

PLOS ONE | wwwplosoneorg

B, we chserved o strong tmpact o the phesorpic pattern with
respnt fee ammine seenl procoction inoall sieing analesd,

Starting frenn aesivgle coll, srowth of ae dsogenic microcolony af
thie Aaced senzen sreain in COX D mediom with 154 mM acetane,
222 mM glucose and 10.5% BHI was monisored i the meroflodie
coultivatbon system. Aller a primary geowth phase, eolls were
supplemented swith 202 mdd glocose and 0.3% BT o orgger -
vidine peocucticn, Alhougl mest of (he cells switched fron
grosth o peoduction (Pigure 3A Viden 545 in approximately
W of the recorded colomies one or several single cells continued
gremeiig allee U mediom change, This alseeed Bisialbiling in the
decizion of switching from groacth wo produrtion was ohsemed foe
all Levaline producing stsne: ander stucly wlien the cells were
wresatt i e peesciee of low amouns ol BHE (Figoos 51 in File
51, Videa 535 Tr was alse chserved in cells without the Lip-sensor,
whach ishcates it the observec] split in phesiypes is ool cosed

by the sensor il (Figure 52 in File SE. Figure 5 shows two
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Figure 5. Biosensor-driven analysis of phenotypic heterogeneity, In the presance of low amounts of complex carbon sources, significant
ciell-tercel| wariability i the sweitch Frarm growth to Lwaline production was observed, (A Growth and production phase linitiated after 340 mim) ol an
lsoganic microcolony of the Aacef sensor strain and (B} the linsage ree of the respective microccolosy highlighting sewveral single cell traces. EYFP
fluorescence was quantified in single cells after 360 min. (C) Single cell traces of fluorescence output of marked cells {see A and B) and average

emission of the whole colony (black, dashed line, 500 -

grey shading). Cultivation was performed in CGXN minimal medium containing 154 mi

acetate, 222 m glucese and 005% B doring growth phase or 222 mld gloeoose and 0.5%: BHI turing rlr:ldu(linn phase, respEclively,

oz 10137 Vjoumal pone 0DRST 31,005

exemmplary cells, oogtoaing o e saoee mothes cell, where ape
coll (reed) dicicee] T the Ly S s indtiaded Lavaline peodoction
directy after the medinm switch, swhile the sister ecll continued o
gros (ty= 10522 min, n Tenwrsrer, somic of the dezscencants
later alee swarched to Levaline production blue: or coponuoed
srovwth throwghout the course of the expermment (greent, This
experitnent illasteated that, depending on the coliivation canili-

tiores, recereling ol the aversge Duorescent autpun of the swhaode
popaslation would mack the signilicant variation at the single-cell
level (Tigure 30, In contrast, a uniform switching behavior was
obeerved when only gluccse was present m the  production
mecim lastrating the sorang impacs of shight changes i mediom
commpsiion on the phenotypac strocture of a paricolae populas
Hamn.

Discussion

Kowadavs, multiple physiclogicsl parameter: in single cells can
he anabyeed by ow cyvmnerry or fuorescence microscopy using a
comstantly mereasing pumber of Querescent dyves ancd staining
protocols [36], Smelecell productviey = a kev performance
inficaer o aotechnologicn]  procdiction processcs, which s
chien masked by typical bolk-hased  analbysis,
Heweower, technalogival Timitaions and a lack of convertient wonls
for accurate smgle<cell analysz prevented medepth analy=s of
productivars in miccobial hioproceses. Inthe present work, the

unifrrmnarely

PLOS ONE | wwwplosoneorg

gresetically eocosled Drpebicsepsor i osdueced as aoposeerful el
Feer simghe coll analysis ol prodocizon stesins,

Uhe Lap scnse cassclle was nscrled into the geoome ol
different € glwtmaices L-valine producing srains in oreler 1o avold
the effect of plasmid cogee mumher Quctoacoons on the sensor
ouipt, by fiest proel of prscple expedmenis, the genarmically
wiegrateel memabelie schsee proved suable o visoaliae diflzeem
tevels of Lvalme production m eradually engineered strains [28].
Thus, thet semsor 1 net restoctes o pravide an OSSO responze
(WL s pevslocsion sicaing, bt reblects sore subitle differences
with respect 1o the metabaolic actvity of smgle celis, Kemarkably,
almost all eYFPnematve cells (=053%)0 of the Laaline producing
sensor strnns showed no arowth when sorted oncsgar plates FACS
aned stained positive Ge PL Dcieating an impaiced membeane
mtegrity (data not shown), This & further suppored by the high
correlation of sensur paiput (@Y FP) o e signal of the ntegrated
plasmic marker (E2-Crimson) shown o Figuee 34, B Sl
comvelations were recentdy deseribed or sicies: based onoa GET-
sensor enabling the detection of carbon-hmited conditions n £ ol
as wll as for o repomer st i yemst isdhich e expression of
gl was st uncer ennoml of' a ribnsomal protein promaoter |(37,58],

[ BT
cell imaging during growth inside micralluidic chip deviees 1o
mwvestirate the phenotypic pactern al the single-cell level [14. The
sensor outpul of dsogemic colomies of de different producton
straing slovweel a0 broaed Cranessian disteilstson apesting placno-
tvpic heterogeneity with respeet o Lavaline production. The peak

fvericrens Levisline proclucticn <leaing wene anadvee] by live
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width nerensed proportional w the mesn Auorescence of the
popualations, which iz sl observed when loorescent eparier
genes are sel under conoel ol wducille promoters, such as Py,
‘data not shown). This pattern wis obtained in all strains under
spacdy aned oo dilfforemer was absereed inosteming wath inerezasgd
prrerusnr availabilioe (Apgs, Ager) or incrcased. MALPH apply
) oproesting that these factors have no mpact on the peak
witth ol the sepsor cutput, However, several pavometers meay
influence the disteabation aof the ceporier patpol Gl sensor sieaing,
including rofactor supphy of the nvalved bicsynrhetic eneymes,
cell evele, carbon souree uptake or even stochastic ellscrs on gene
exprssion [3].

Irachivadusl cedl tracking Iy tioseslapse microscopy reveaded
diflizvent typos ol son-procducing colls besides the productive muin
prapralaticon. Suclden and progeesseee cell lesis and eclis i oa
dormnant state were abserved, Additionally, @ complee lack of the
switeh from groavth o production phase was observed, with cells
contining prosdl ot low e, These cells magto aalize carlon
sourecs, which are low concentated, e ave contineously supplicd
by the medium fiow, For example, protocaechnie acid, requined
az pron-chebator, can b wsed as cobon soree by O slhitmmaene
[ 340 Alernativele, collular metsbolism mtight have adaged o
overlon of glucose, bypassing the reactions catalyzed by the P
complex (defetion of acef) and the perovate:quinone axidoreduc
tase G anel preadciiog accivl-Caodoas precarsare e TOA-cecle,
Stacies ol Lissanoy of all described that in spice of deleting the
menes for the kmown  acewate-synihesizing  pathwavs ino ©
siwtarwsern,  restdual acctate Tormation during cultivation n
il mcdiom was sl abseeves i steaine. engineceed for
aemolic suecinate production [41].

In the presence of low amounts of complex oedium, we
obeepved a bistabilite mothe cells decision o migare Levaline
production or w continue grovth Figure 5, Fioore 51 and 53 m
File 51, Viden 54, 853. Besides the expected transition from
grovth o prodnction, cells either showed unhampered provwth and
cell division or a tme-delaved switch to production (Figure 55 m
File 51} To langer-scale producien proceses the owoarrenoe of
such subpopuladions may bave @ moajer bogsct on process
cllicicney, as these colls might oversrow the entire popalation n
the course of ame ancl, conzeguenthy, Tezources are depleted for
Tacammsss foarrmativn sl of Being converted e the final prodac,
These bicecosar-based analvsis, again, demaonsteate that despiie
targeted. genetc mantpulatdon on cells o work as efficien,
umilorm microbaal factores, phenotypac saration maght lead o the
nevarretier b elmstie dilferences inocellalar prodochivite. even
under  the  webloonmalied  coltvatdon  conditons presenc
microllzdic chambers, Contimued growth of some cells mighs be
Tz an didferent encrmedic: st of the colls o dilferences oot
leweel ol vrarsprrter proteins. A low ameant of a specilie permeass
i sufficient to meuce an autocatalyvtic positive feedback resuldng in
i oo erm arsduciion bebavior, as deseribed Tur Tuctose uplake
anel eatabanbizm Ly Moovick ancd Webnes e e 30 wsrs agn o
by Bipgede ot ol For expressicn driven from the e AL promorer
[42,43:44].

Conclusions

Ton (his steschy, swee clezerile the armim e senstong Lepesensor zs a
valuable, non-inwvasive eal to monitor the meabedic activiey of
FRHC—deboiem (0 glabmeicon L-valine producers ae single-cell
resclution, In meent yvears, a mamther ol metalobite snsors based
o BNA  aptamers or tanscription  factors were reported,
incrmsing the mmber ol aceessible melaboline 1345, 46,47
Futore =uclics will aim at unraveling the undedying molecalar

PLOS ONE | www.plosoneorg
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mechamizms of the ahsened phenatypic vananon, benchmarking
thi= appreoach e the analvsis and impeeserment ol st aoned
Biatechnniogical production processes.

Supporting Information

File 51 This hle ncdudes Figerez 81, 52 angd 55, Figore 81,
Phenotypic heterogeneity of the deceE Apgo dpgi dpye
sensor strain upon switch from growth to production
phase. [A) Microcolony showing tramsiton o producing cellz or
(B} mixtore of groaving il peoducing cells alles mecom awiteh
(imdtisted after 240 ming. In approedmately 30% of the recorded
colonies one oF several single cells contimued srowth after meedium
switch. (G, I Fluorescence histograms depicting single cell
Buerescenee 1o 2elected vmes during gromaly [O0-240 mind 2
prochictnn phase (0-1T200 ming of the microralonics shown in A
(C) and B (DM Cholovagon was perfonmed n CGXI minimal
meelium contaiming 15F mb acetue, 222 mM gducese and 00%
BHI during gl plise or 222 il glocose aedd 113% HBHI
during productinn phase, respretivel. Figore 82, Phenotypic
heverogencity of dacef and Adaecef dpgo Apgi upon
switch from growth to producton phase. (A) Ao
micrncrlenies whene all ccll stopped groseth Dloe. stars) upea
transition o the production phase (upper row) or & mixore of
crowing (red stars) cand  non-gvowing colls (lower vow) afier
miganon of the producoon phase. Ino appresamisiely 500% of the
reventled eodinies one or several stngle celis continued greawth adier
medinm awitch (initiated alter 250 min). {Q) daceds dige don
microcelonics, [n the upper row, all cells stopped mowth whereas
e the s powe s macrocolany b showen were s cells continged
greswth afler initation of the production phase. L appraximately
% of the recorded colondes one or several single cells continued
groavth aller medism swich jniaed afier 230 ming. These
Gincling: connfirm that the phenorypic spdin shosen in Figoree 5 s nol
dug tnthe presence of the Lep-senzsar. Cultivaron was perfommed
i QORI minimal medinm containing 158 mdd accrane, 227 mdd
glucose and (3% BHI during growth phase or 222 mb gheoose
and 90.5% BHY during producien phase, respectively, Figure 53,
Simgle cell traces of the daccE Adpgoe Apgs Appe sensor
strain upen switch from growth to production phase. (A
Simgle cell traces showing the switch from growth (cell length =
Bl eyt proshoction dlosrescene =
divisions during productiog phase (1= 5.3 h, 1= 13.0 b (B) s3ingle
cell traces showang oo switch from groneth o production. Single
cell traces are taken o the coldvation of deeef Ao Abm Ao
sensar sleadn shown in Fiooe 51,

P13

sigrirres) aller zeveral ool

Video 81 Growth and production of C. glulemicion
ATCC 13032 daceE sensor strain, Upon the swiwh to the
production. phase, cells gradually: swpped  growing and simulta-
oeoushy exhibited  progressively ineseasing . oY FF loorescence.
Growtli phaser CGGXID medioe 154 mdd accian: and
2 md plucose; production. phase: GGXID mediom with
222 mM glucese az carbon zounree,

WAV,

Video 52 Growth and produoction of € glutemfeum
ATCC 13052 dacel dpgo Apgi sensor steadn, Upon the
switch to the production phase, cells gradually =sopped growing
and  simultapecusly  exhibited  progressiely. inoeasmg eYFP
Hueweescenes, Ceeowth plases CGXLL mediim with 134 mkd
acetare and 224 mM glucose; producinn phase: GOXIT modium
with 222 mM glucose #s carbon souree,

(WaAly,

with
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Video 83  Occurrence ol non-fluorescent cells during the
production phase of the C. ghitaricem ATOC 13032
AveeE Apgo Apgi sensor atrain.

AWM

Video 54 Phenotypic heterogeneity of the O, glelani-
enm AgeeF sensor straim. Cells were grovn i CGXT
medinrm witle 154 mM acetsie, 222 mbd aloeose amd 1.53% BHIL
MAter o primary gronwth phase, cells were supplemneied with
FE M plucose andd 108% BHI o irigne Levaline praduction,
Although most of the colls switched from growth to prodoction
Frgure 34, in approsimeseby 30%: of the recorded colonies one or
several sisple vells contisued growing allee the medine changpe.

L R
Video 85 Microcolonies of the O, gltamicum dacel

Apgo Apgi sensor strain displaying phenotypic hetero-
geneity. Crrowdl ol sis microcodenies (OGRTD owdiom swilh
L3l mM acemte, 222 mM elucose and 0.5% BHI 15 shown m
rricrofaidic chip devices, Al o primiey grossth plase, cells were
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Biosensor

Acdaptive liboratony evolulion
Tramscriptiom [actor
Canmshacterium gudmmicim
L-waline

Metabslic ermgineesing

Adaptive laboratory evohstion has proven a valuable stravegy For metabolic engineering. Here, woe
established an experimental evolution approach for improving microblal metabolite production by
imposing an artificial selective pressure on the flucrescent outpur of a biosensor using fluorescence-
activared cell soming, Cetls shoswing 1he highast fluorescent oulput were iteratively solared and (re-}
cultivated. The t-valine producer Corynebacterion glutamicam Accef was equipped with an L-valine-
responsive sansor based on the ranscriptional regulator Lep of O gluetomicwne Evalved straing feaoused a
significantly higher growth rate, increased -valine titers {-25%) and a 3-4-told redoction of by-product
formation, Genome sequencing resultad in che identification of a loss—of-function ruration (Urel-E 188"}
in the gene urell [urease scoessory protein], which was shown o increase i-valine production by up o
ks, Furthermore, dacreased c-alanine formarion was attributed to a mutation in the global regulator
GlxR. These resuits emphasize biosensor-driven evolution as a straighttorward approach to improwve
groneth and producovity of microblal production strains,

2 2015 hrernational Metabolic Eogineering Society, Puldished by Elsevier D,

1. Introduction

Mutation and selection are key components of evolution drv-
g adaption and the development of novel traits, Short generation
times and a natural mutation frequency of 100" 10" muta-
tons per base pair per replication cycle epable the selection of
beneficial phenarypical traits from high genetic diversity (Rarrick
andd Lensld, 20030 During the last few years, laboratory evolution
strategies went more and more inta the focus to adapt industrial
progducer strains o detcimental growth conditions such as axida-
tive and thermal stress {Lee ot al., 2013, Oide et al,, 20115: Sandberg
et al, 2004, Tenaillon et al, 2002, to improve product formation
[Raman et al., 2004; Reyes @l al, 200145 Xie o al,, 2015) or solvent
rolerance [Arsumi et al, 2000; Lee er al., 2001; Oide ef al, -2015)
(for reviews discussing the use of adaptive evolution approaches
in metabolic engineering, see Abharemarca ef al, 2003 Partnoy
et al., 2011).

e to the high complexity of carbon and energy fluxes in
living cells, classical strain engineering based on rational design
approaches is often limited by the current knowledge of hacterial

*Cormespandence to; Instioat filr Bio- und  Geowdssenschafter, 1BG-1: Hio-
teclmologie, Foschiungsientruom fibch Goobill, Leo-Brasd -SiraBe, 52425 [GOkich,
Canany, Tax: | 49 2461 61 2710,

E-mail avddress: | rmebeftouelichate (] Franzke),

it dx doiocg

I pmber 2005, Da 0

phasiclogy. Allermatively, ligh-throughpul engiocenng approg-
ches Based on vandosn mwlageoesis followesd Dy oan elcient
screening strategy are applied to overcome the limits of rational
strain development, In this context, the wse of biosensors has
praven to be a highly valuable tool by translating intracellular
product formarion into a screenable aptical ourput, such as fluor-
escence Cliotrich et al., 20103 Eggeling et al., 2015: Schallimey at al.,
A4 However, after random mutagenesis strains typically reveal
several hundreds of genomic alterations representing a major
challenge i identifying those mutations linked o the pardicular
pherotype of interest (Binder et al, 2002; Chou and Keasling,
2003 Here, industrial strain development strongly benefits from
adaptive evolutinn approaches, in which strains typically feature
nnly a few mutatinons and which enahle the enichment of non-
intuitive benaficial mutations by improving growth at the same
time (Abatemarco et al, 2013; PortRoy et-al. 20011} Up to. now,
laboratory evolution experiments of mainly Atness-linked phe-
neypes have been performad by exposing microorganisms (o
sequentially increasing levels of environmental stress [Eckdshl
cral, 200157 Lee ¢t al, 2003; Marietou et al, 2014; thde e al, 2015;
Reyes el al, 2004} Especially in the case of the yeast Secchor-
omyces cerevisioe, adaptation o an improved ethanol tolerance has
been proven nsefl for increasing product formation (Alper ot al.,
20067 Jiménez and Bemiter, 1987 Liu, 2006%

TOAE-T1TE o 2015 Incernarional Metabolic Englneering Secen. Pablished by Elsevier Inc
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The kattom fline of almest all reported adaprive evolurion
approaches is selection for improved growth and survival, which
usually coincides with increased praduct farmation - espacially in
the case of growth-coupled processes (Feist of al, 2000, To expand
the wolbax for metabolic enginecnng, we here repoct on a novel
strategy capable of evolving the production of inconspicuous
metabolites, which are not linked o [mess. This approach
inwnlves the implementarion of an artificial selective pressure on
the Quorescent output of transcription faclor-based bosensors by
flunrescence-activared cell sorring (FACS). In previowos studies,
several laboratories bave successfully demonstrated the value of
synthetic sensoer constructs for small mobecule detection as well as
their application in high-throughput screening approaches and
single-cell analysis (Binder of al, 2002 Dietricls et al., 2000, 2013,
Mustafi et al, 2012, 2004; Siedler et al,, 2004,

Recently, we developed an aming acd blosensor, based on the
rranscriptional regulator Lrp of Corvnebacterivm glutamicuim (Lange
cboal, 2002 which enables the intracellular detection of -methio-
ning as well as branched-chain amino acids, and transiates this
information inle a measureable (luorescent output [Mustaf) of al,
20127 This biosensor system has already been successfully applied
foer enline monitoriog and fve cell imaging studies of C glutamicem
t-valie. production strains at the single-cell level o analvze phe-
nofypic production hererogeneity {Mustafi et al, 2004],

C glutamicurm 15 an inportant idusteial platform organism
used for rhe large-scale industrial preduction of amine acids (e.g.
t-glutamate, w-lysine and -valine) (Cageling and Dot 2005;
Wendisch, 2 cvaline is an essential amino acid for verte-
hrates and is required for infusion solutions, cosmetics or as pre-
cursof for herbicides {Ezgeling et al., 2001 Leuchrenberger, 19945
In order to engineer strains for i-valine produoction, mutanes
deficient in the E1p subunit {acel) of the pyruvate dehydrogenase
complex {PDHC) have been consrructed and characterized in sev-
cral studies [Blambach ot al, 2008, 2007; Chen et al, 2015; Eik-
manms-and Blamaach, 20040 Due to the inactivation of the POHC,
pyruvate accumulates in the cell and is chanpeled as a precursor
rowards -valine production (Fig. 11 For cell growth, acetate is
supplied to the medivm to maintain the acetyl-Cof pool for the
rricarboxylic acid {TCA) cvcle,

In this study, we successfully established a biosensor-driven
adaptive evolution approach Lo mmprove t-valine production of C
slutamicum Aacef, [solzeed evaoived clones exhibited significantiy
increased progluct formation apd reduced formation of the by-
pro<duct -alaning, This approach demanstrates the power of
binsensor-driven laboratory evolution approaches to select for
bereficial and nos-intuitive mutations leading o an improved
production phenotype.

2. Materials and methods
2.1, Bacterio! straing, media ond growth conditions

The bacterial strains apd plasmids used in this study are listed
in ‘Fable 1. Strain C glutamicion ATCC 13032 was used as the wild
type strain (Kalinowski et al, 2003), Unless atherwise specified, C
glutomicum Aocel cells were picked from a brain heart infusion
{BHL agar plate containing 85 mi acerate, inoculared in < ml BHI
mediom with 85 mM acetate and incubated for elght howrs at
30°C and 170 rpm. Subsequencly, the cells from the first pre-
culture were wsed o noculate a second pre-culluee i a shake
flask containing 20 mil CCXH minimal medivm {KEeilhaver et al,
1888 with 222 mM glucose and 254 mb acetate. The colls were
incubarad overnight at 320 °C and 120 rpoa. The following day, the
rells were washed with 0.9% [(wiv) saline, adjusted to an oprical
density (Ol of 1 in fresh S0 ml CGXO minimal medivm

Results
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Fig. 1. Schematic af the central metabatism ol C glowmicam apcel amd the L
valine binsynthetc pathway. Due fo the deletinn af the Epl subunit { Aecek] af the
POHL, pyrovate |s nor comverted to aceryl-Cod by the activiy of che POHC red
wross | Abbreviatioms: acetohydmosy acid somerareduciase (AHAIR], avelabned ey
il symthase (AHAS] avelale Kinase (AK), alanine amimseanslerase (AT, alamine
aminorransberase (Avih), dibedroxy acid debpdratase (BHALY, perovate decarbox-
vlase (POl pvievate delwiregenase complex [PDHIL pyrovare knase (PR
phosphaennlpynavate (PEF), PEF carhoscylinase [PERCE), PEP carbrsylase (PEPCx),
peruvategumane eaidoreducase (FOD, phasphamansacetylase (FTA), mansami
nase B ITAL

containing 222 mk glucese and 254 mh acetate, and inoubated at
30<C and 120 rpm, lUnless otherwise specified, CGXI minimal
medium was prepared without the addition of urea, whick is part
of the original CGXU recipe (Keillauer e al, 19930, In this stwdy,
acetate was added to the medium as potassium acetate sall Bio-
mass formarion was monitored by measuring OMgpq, while the cell
dry weizht (COW, 2 L") was calculated by following equation:
COW=0Dyu% 03 gL' (Buchhalzy et al, 2013} Escherfchio coli
DHZ0 cells were incubaced o lysogeny broth (LB} medium by
agitation ar 120 rpm in shake flasks or grown on LB agar plates ar
37 C{Sambronk et al, 2001 ), IF appropriate, kanamycin was added
Loy the miedia ina final concentration of 25 pefml for O glutemicus
and 54 pgfml for E coli,

2.2 Procedure of e binsensar-driven evalution sxperinent

For the evolution experiment, C glutamicum Aacek containing
the plasmid-encoded Lrp-hiosensor was picked from an agar plare
and cultivated overnizght in 4 ml BHI medium with 85 mM acetate
and 25 pg'ml kanamycin. The following day, 2 ml of the preculture
was used o inoculate a 200 ml shale fask with 50 ml CCXU
minimal medium, 222 mh glucnse, 254 mi acetate and 25 pgimi
kanamycin, As the strain C glutamicum Aacef displays a growrh-
decoupled production phenotype {Blombach et 2l 2007 cells
were analyzed and sorted by FACS after 28 b of cultivation. At this
time, the cells ypically entered the stationary phase and had
initiared -waline production same hours aga, Ome million cells
showing the lop 10% sensor outpul were sorted on MultiScreen
HTS fGlter plates (Millipore, Billerica, USA} Lo separate cells from
the FACSEFLow™ buffer (Becton Dickinson, San [ose, USA) We iso-
lated 10F cells with the top 1% sensor outpur to ensure a high
genomic variahility in the propagated culture, Furthermaore, we
fuund that inpeulating the colture with a lower number of cells
resulted in wnstable growth. n parallel, the supernatant of the
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Tahle 1
Bacterial strains, plasmids and oligonwdestides usaed 1n s stady,
Strains or plasmids Relevant characteristics Source or reference
Srains
C gluinmicum ATCC 13032 Biutin-auanlroplic wild oepe Kinoshita pr al., 2004)
C glutemicum duacef In-Frame deletion al cpd{shi (Schreines et al, 2005

G ghutomicum ancel plei-T98S  LIxK Thri's to Ser This study

C mutemicum AoceE nrel-EEBS°  UieD GlulBE o s1op codon Thig soudy

C ghutemicunt AaeeE prpD-T2001  FopD The2al e e This soudy

C gluremicum soceF rps-D3HE Kpsl with hase exchange (S0, silent muration his sudy

Ecoll DHSn AUEPEH alocU IS5 (6B ZDM LS ) (SoRTT recAl eidd] griASE -1 reid? Livitregen

Plasmids

P -Lrp-sensor Kan'; plt1 demvative comfaming | mi-sensoe cassette, which consiaes of irp (cgtd110 the intergemic regean of - [Moastafio e oal, 2002
Irp=tiiFE [cp03 1405 ] and a tramscriptiondl Tesion al benF with exfn.

PRS- mobsuack Karr'; plasmial e allelic exchange in O guesmmicum (pEI8 anle-socE oed) tSchaler e al, 1954]

pE1%-mnbrach e R-TATS Kar'; pii19-mndsach gerivasive for the pchange of Thr? 1o Serin QxR This szunfy

PRI mobsacE-urelE1HE" Kar'; pi1g-matsack derivamve for the exchange of GlulEd 1o stop codon In UreD This sudy

pi 19 mobsach-prpD-T2001 Kt pl19-muodeach derivative for the exchargs of The20l o lle in Prpl Thiz study

pE19-mobsacB-rp=P-D300 Kart & pE19-modmachl derivatve for the exchange of ofoune B0 1 thyming, silent mutaton Thiz study

Ollponucleotides Sequence (5-37

sl ) Banslll v COCOCATCOGCACTAACATCOTCEADC AATTCCATAG (Raml il

bl EcoRl nev CCCCAATTCTTATRCCAGCCOCACTTOOCAAATE (BRI

phel T9ES_Fu GOOTCADGCTOCTCUTC TG

sle®_TO3S_rev GCACAGCAGCAGCCTGOCGIC

erel_TaonHE_fw CCCOCATCOAT CACACAAACCOAATCACTCCCAAL [Bambl]

urcf?_EcoRl_rev CCLGAATTUCTAGTACTTUCGEAAATICACC GOTTC [Foakl)

urefd_E16E"_fw LCCACTCCCGATACSLANGTTITG

urely C1B8" rev CAAAACTTOCCTATOGGRACTOOS

prpl BamHI_fw
prdd_EcoBl_rev

COCTECACETOCALT CTAGAGCATOCATOATTAADC ACCAALTS DOCACOC (BamHIl
L TAAAACT AL LG A TOAR T TOTUAGAACAGTUCTICDG AATEAL AL {FoaRl)

prpl) T2O11_fw GLCATTCCACATCACCACOGOGAT
prol) TEMI_rev CTCCOCCTECTCATGTCOAATCCE
Tpsi2)_HamHi_f COCLLATCUC T CTATAA A ACTLCTTATTTGACAAGAM
rpsPT2)_EcoRl_rev OO GAATIL GOCCALGATCACTUGTGTGE

sl DOOD_Fue CACCAACCGOCATLOCAAGGTIATC

rpsi® DO0D_rev CATAACCTTGCCATELCGLTTOLTG
hek_gonomsen_fw TAL AT DO COA GTT AL TGT CAT C
plel_senomSey rev CCT GCA GOC TCA GGA A5C TTC

prob_uemansey o GEC GTT GAG GTC GTG ATT TIG C
prpd_genamSen ey GOG GOG AGA ATG CAC CAG GO

Fpal*_penomsen tw CAC GEG CAG GTT AL CAA GAN GG
Fpal*_penoinSeq_rev AL TCA GTC AAC TAG GO TAA C

uref)_ genomsSeq fu COG CAR GAA CAS ACC AT CTG OO
urel_genomsen_rey LT AL 1T GAR GAR CTC CAL GAT

* Lrlerlined sequences highlight introduced Tecignithm siles i resiriclion endanockees [resticlion encoucleases indicaied in parentlzses], while bold lellers mark

exchanged base pairs during site directed mulagenesis

anabyzedd culture was prepared for aHPLE analysis and a glyoerol
stock [final conc. 10% {wiv) glycerol) af the evolved culture was
stoved for Turther analysis at —20 °C (fig. 2AL The Alter with the
cells was excised with single-use scalpels (Braun, Melsungen,
Germanyl, and was inoculared and cultivared overnight in 4 mi
BHI medium wich 85 mM acetare and kanamycin. The next day,
2 ml of the overnight culture was vsed to inoculate a new 200 ml
shake flask with 30 ml CGXI minimal mediom ghicose, acetate
and kanamycin, as mentioned above, Theoughout several evolu-
rion steps, cells were analyzed by uHPLC and sorted by FACS after
28 h of cultivation as described above.

2.3, Recombkinant ONA work

The standard methads of PCR, DNA restriction and ligation
were performed aceording to standard  protocols [Sambrook
etoal, 2008 ) Sequencing of DMA lagments and plasmids, as well
as the syothesis of the required oligonucleotides {Table 1}, were
conducted by Curofins MWG Operon {Ebersfield, Cermany). For the
construction of suicide plasmids containing point mutations in
xR, wreld) and sl the respective  wild-rype genes  were
amplificd from genomic DNAC plR was amplificd wsing primers
S22 _BamHI_fw  and  glsl EcoRl_rev, wreld  with  prioeecs

urel_BamHI_fw and urel_EcoR_rev, and rps with primers rps®
{21 _BamHLfw and rpsA2)1_EcoRl_rev. Amplified products were
digested using the restriction enzymes BamHI and EcoRl, and the
resulting fragments were ligated into pE19-mobsacs, which was
digested vsing the same cozymes, For the construction of pk 19-
rgbsacl-prplt, prod was amplified from gencmic DNA using pri-
mers prpl Bambl Py and pepld EcoRl_rey, and the resulting
fragment was cloped into the BamHl and EcoRl digested vector
pE19-mebsocE by Gibson assembly (Gibson et al. 2009, Erali
DHS was transtormed wsing the RhCl method (Hanahan, 1963,
Preparation of plasmids from Ecoli was done by using the QlAprep
spin miniprep kit {Qiagen, Hilden, Germany). The respective hase
exchanges were introduced via the QuikChange Lightning Site-
Directed  Mutagenesis  Kit  (Agilent.  Santa  Clara, USA]
using primers plxk_T935 P and glx8_T935_rev, wrelD E188°_fw
and ureld E188" rev, rps® D300 e and rpsP D300 rev, and
prpt T2 Pee and prpl T2 rev, respectively, For chromosa-
mal integration, the resulting plasmids pK19-mobsacB-gleR-T93S,
pE19-mobsacB-urel-E188", pK19-mobsacf-rpsP-IE00 (rpsP-co0)
and pK19-mobsocB-prpD-T2001 were rransformed in & glutomicmn
HoceE by electroporation {van der Best et oal, 19990 First and
second recombination events were conducted and verified as
previously  described (Miebizch and  Bort 20010 Intreduced
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Fig. 2. Diosensar-divven adaplive evolution ol cvaline prodecion of C glutaiicam accei. (A] Schematic of e expeomental approaacls Cultivated sensar cells were
iteratteely analyred by o cvtametry after 28 h of incuhaticn followed by isolating one madlion cells by gatng an the top 102 Quareseent (sensar] autput, Seebed oells werne
iterarneely re-rilivared and re-solated. L-valine procducrion was monitared thronghant the eynfution eaperiment by oHFLC, (B Developmens of L-valime (red) and -alanine
ibiue) production. The Sray zone marks the adapration of the Aacef strain w the mdndmal mediam afoer precultivation in complex medium, The data reprezent avesase
values from three techrical replicates, [C] Development of the bontensar cutput (oY PP uorescence) of sslected wenlution steps analveed By ow cytometry, Dot plos
displaying the e¥FP-A farea) luceescence agasnst the FSC-A signal foell stz For evclucan, one million cells with the heghess 1006 of the fluomzscenn oorput Tred gate) wiere
Isalated and recultivaned, In & contral experiment, one miltion cells were sected from d gate covering the entice population (green gate),

mutaticns were reviewed by amplification and sequencing of the
FESPECTiVE EENNMmMe regions using primer pairs glxel senom&en fw
and  plR_genomSeg_rev,  prpl_genomSeq_bw o oand  prpl_pe-
nemseq rey, rpsP gepombSeq by oand rpsl_genombSeq_rev  and
urel)_genomben fw and wrel) genomSeq. rev, respectively.

24, Flow cytametry

Flow cytometric analyses and cell sorting were pertormed on a
EACSAra 1 Mow cylomeler (Becton Dickimnson, San Jose, USA)
equipped with a blue sclid state laser (488 nm excitation).
Forward-scatter characteristics (FSC) and side-scarter characrer-
stics (550 were detected as small-angle and orthogonal scatiers
of the 488-nm laser, respectively, EYTFP flucrescence was detected
using a 502-nm long-pass and a 530/30-nm band-pass filter set.
FACS-Diva software 6.0 was used to adjust and recoed the mea-
surements, All analyses were performed while thresholding on B5C
o remove noise. Four-way purity was used as the precision mode
[or cell sorting with a threshold rate of up to 3000 cventssec. For
flow cytometry (FO) analyses, O glitamicum &eecck culture sam-
ples were diluted to an ONg of 0005 in FACSFlow™ shearh fluid
bufter [BD, Heidelberg, Germany). Data were danalyezed using
Flowjo w307 analvsis software {Tree Star. Ashland, USA)

25, DNA micrarroys

For transcriptome analysis, 20l of the evolved O, ghiramicion
AoceE glvcerod stock rozen alter the second and third evolution
step was lnoculated in 4ml BUHI medium containing 254 mid
acetate and kanamycin, and incubared ar 30 °C and 170 rpm for
eizhi howrs. The second pre-culture and the main cultere were
prepared as described in 2.1, After 28,5 h af cultivation, the cells

were harvested by centrifugation (4256 =g 10 min, 4 °C] at an
O of 204 {culture of second evolution step? and 27 (culture
af the third evolution step), respectively, the pellet was immedi-
ately frozen in liquid nitrogen and stored at - BOSC, RNA pre-
paration, cONA synthesis and microchip hybridization, scanning
antd evaluation were perfonmed as previously described [Bavmgan
et al, 2013).

26, Microrirer plote culrivition

Opline monitering of growth and fluorescence was performed
in 48-well microtiter FlowerPlates {MEPs] in tie BioLector culti-
varion system (mZp-labs GmbH, Aachen, Germany) (Kensy ot al.
20093, Cufrivation conditions were adjusted as previously descri-
bed {Mustafi et al, 2012,

27 Quuritificadion of aming acid production

Quantification of amino acids as orthe-phithaldialdelyde der-
vatives using  ultra-high  performance  liquid chromatography
(UHPLE) by automatic pre-column derivatization and separation
by reverse-phase chromatography was done on an Agilent 1290
Infinity LC ChemStation {Agilent, santa Clara, USA) equipped with
a fuorescence detector. A gradient of Ma-borace buffer (10 mbd
MazHPOL 10 mi NazBD5, pH 8.2, adapted to operaror's quide )
and methanol was used as the eluent for the Zorbax Eclipse AsA
35 pm 4G = 75 mm celumn (Aglent, Santa Clara, USA) To mea-
sure the aminn acid content in the supernatant, samples were
taken from rthe culture, centrifuged for 10 min at 13,000 rpm and
4°C and diluted 1:100,
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L& Genome preparation and sequencing

For next-generation sequencing (MNGS), genomic DNA was pre-
pared from C glrtmmicum strains as described [Eikmanns e al,
19547, Extracted DMA was fragmented by sonication and subjected
o library preparation and indexing using & Truseq DNA PCE-free
sample preparation kit [NMomina, Chesterford, LK) The resulting
fibraries were quantified vsing the KAPA library gquant kit (Peqlah,
Bonn, Germany}-

Sequencing of pooled librarizs was performed on a MiSeq
(MMumina, Chesterford, UK} using paired-end sequencing with a
read-length of 2« 250 or 2 « 300 bases, Data analysis and base
calling were undertaken with the llumina instrument saftware
and stored as fastg pucput files, Sequencing data of each sample
wore imported into CLC Genomics Workbench (Version 7.5.1,
Qiagen Aarchus &S, Denmack) for data analvsis and variant
detection, Sequencing reads were trimmed by adapeer and index
sequences as well as base quality, Trimmed reaxds were mapped to
accession BX927147 as C mlutamicem reference genome (Kali-
powskl el al, 20037 The resulting mappings were used for the
quality-based variant decection of each sample and manuvally
inspected for relevance,

28, GC-Tol-M5 aralysis

Metabolome analyses of supernatants were performed on a
GRAOMN gas chromatograph (Agilent, Santa Clara, USA) coupled foa
Micromass GCT  Premier  high-resolution  time-of-fight  mass
specirometer {Waters, Milford, LSAYL Sample preparation, deriva-
fization, M5 operation and peak identificarion were perfarmed as
described previously [Paczia e al, 20270,

3. Resulis
310 The hinsensor-driven svolution of C glutamicom Aocef

For the pront of concept of the hiosensor-driven adaptive
evolution appreoach, the basal c-valine producer strain C glutomi-
cum dacel containing the sensor plasmid plC1-Lip-sensor was
usedl; herein referred to as rhe sensor strain (Muostah er al, 2002,
O giummmicum AoceF served as a basal strain for several metaholic
eogineering  studies  and  displays 3 chavadenstic  growlh-
decoupled production phenctype (Blombach et al., 2008, 2007;
Eikmanns and Rlombach, 2014). Under the applied experimental
concitions, biomass 15 produced [rom acetale and c-valine pro-
duction is initiated in the stationary phase from glucose, Conse-
quently, the cells were analvzed and sarted by FACS after 28 h of
cultivation to ensure they had already reached the scationary
phase and exhibited an increased intracelluflar c-valine pool
resulting ina measurable output of the Lrp-biosensor, During five
iterative evolution steps, one million sensar cells showing the top
10% fluorescent output were iteratively isolated hy FACS, Simul-
taneously, -valine and L-alanine {by-product ) accumulaton in the
supernatant of che respective cultures was measurad by ulPLC
[Fig, 2AL Sorted cells were re-cultivated in CGXIl containing
222 i glucose and 254 mM acetate for ancther 238 h.

After the initial cultivation. the parenral sensor stralix accu
mulared 4 mb -valine and 3 mM of rhe hy-product L-alanine in
the supernatant witlin 28 b ol incubation (Fiz. 281 Alter adaption
w CGXN minimal mediam, the strain produced 13 mM L-valinge
and 13 mbd L-alanine, Within Gve evolution steps, the L-valine
prixluction of the calture increased by about 25% {fram 13 mM ro
aboutl 16 mM in average, Fig, 2B), while the production of L-ala-
nine decreased by a factor of 3-4 to 3.5 mM after the second

sorting step, Throughour the biosensor-driven evalution. the ratio
of L-valine (o L-alapine increased 3.4-Told.

The icerative sorting of the top 10% of the fluorescent cells
resulted in a stepwvise increase of the oYFP from a goometric mean
of 301 a.w. {parental steain] to 1526 au. (after Ath sorc) within fve
sorting steps (red rectangles, Fig. 20 Meanwhile, Agcef sensar
vells dhd noel sphil up oo several subpopulations suggesting Lhal
the increase of flunrescence is a result of genomic modifications
and does not rellect phenotypic variability as described previously
for derivatives of this strain [ Mustafi et al, 200475 In arder toowerify
that the bivsensor signal is required for che adaptive evalution
approach, the entire population was sorted to escape the selective
pressure imposed by the sensor signal and FACE, Applying this
sorting strategy, the eYFP siznal deopped from a geomelric mean
of 585 auw to 115 au. (Fig. 2C) In several independent experi-
ments, no L-valing was determined anyowore in the supernatant.
Colony PCR revealed contamination with O glutmmicem wild-type
cells (data not shown) supporting the fact that selection on the
sensar signal is crocial for the successful enrichment of adapted
clones and to avoid contaminabion while passing through the non-
sterile FACS instrument. Owverall, these results suggest that the
Biosensor-driven evolution is successfully driven by the selectable
output of the Lrp-biosensor, which-in combination with FACS-
impnses a selective pressure for improved [-valine production.

3.2 Differennial expression in evodved cells exhibiting reduced L-alanine
production

Comparative transriptome analysis was performed o assess
gene expression changes potentially related o reduced L-alanine
production. Since a sisnificant phenotypic change is reflected by the
changes in L-alaning production between the second and thind
evolution step, we conducted a comparative franscriptome experi-
ment. Remarkably, 70 genes exhibited mBERA levels that bad been
aftered maore than two-fold [(Table 57), Intecestingly, oiaT encoding
the L-alanine aminotransferase featured an approximately teao-fold
decrease in mENA level after three iterative cultivation and sorting
cycles. AlaT is responsible for the conversion of pyruvate o L-ala-
nine (Marienhagen and bggeling, 2008). Funhermore, a sig-
nificantly decreased mBMA level of pyc encoding the anapleuratic
pyruvate carboxylase was observed (Peters-Wendisch et al., 1958],
‘While decreased alnT levels are in line with the reduced L-alanine
formation, pye downregulation argues for an increased intracellular
pyruvate and, rhus, improved precursor supply for L-valine pro-
duction. Remarkably, 21 genes showing an altered mRENA level were
reparted as being uider the control of the global resulator GIxE,
which targets more than 180 genes (see Table S1) (Jungwirth et al,
2005, Teramoto et al, 20115 These results suggest that the moed ified
production phenotype after the third evolution step may result
[rom regulatory effects on the transcoptomic level leading 1o a
giohal renrganization of metabalic Huxes,

4.3, Analysis of isolated clones

The biosepsor-driven laboratory evolution approach likely
resulted in e highly heterogeneous populztion in terms of geno-
oype. For fuether analysis, single C glutamicum Aacell cells were
spotted on BHI agar plares afrer the fifth evolurion step using FACS,
The respective growth and peoduction phenotype of solated
strains was analyzed in microtiter place cultivations, Compared ta
the  non-evolved,  parental  strain © plulomicurt AoceE
[Mmae=036 = 0.007 h~ "), the evolved cells featured a shortened
fag phase and an increased growth rawe of ppe==041 | 00E !
during cultivation in the BioLector system {Fig, 3A)L After 30 h of
incuharion, the isolared evolved strains produced on average about
16% more L-valiee than the pon-evolved Aocel strain: a single



42

Biosensor-driven adaptive laboratory evolution

Results

B sl et al / Meraboli Engingeriag 32 (2015] 184-194 159

isclate, fermed M1, even displayed an approximately two-fold
increase in proeduct tormation (Fig. 38, Table 20, To verify growth
and production of isolated clones, two strains with high (M1) and
medivm [M2] Lvaline accumulaticn in the superpatant were
anafyzed in comparizon fo the parental Aqcef serain by shalke flask
cultivation {Fig 52), Here, strain M1 featured 63% (57 mM) and M2
20042 mM increased L-valine producton after 48 b compared to
the parental Aacel strain,

The average specific e¥FM flunrescence of the Aocef strain
(LR 4+ 0024 aa) increased o 34 0376 an, in the evolved
straims. Some srrains produced rhe same amoanr of L-valine hy
featuring different e¥Fl* senzsor signal lewels ar the same fime. As
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Fig. 3. Growth and prcducnm of Isolated AnceE sensor smrains after the s evo-
lution steps, (&) Growth of evalived (ooloredt) and nom evebeed (hlack) docef senson
strairg incuhared 0 microditer plates (n CGKI minimal mediom with 242 ml
glucose and 254 mM acetate, (8] Specific eYFP fluercscence againss L-vadine aocu-
mlation i the supernatunt &lter 3000 of mom-evalved (Black dols) asd ewolyed
anoef mrains (hiueired dars], Clones M1 and M2 inved dats) were furcher analyzed
by shake Hask incubatan (Fie 521

Table 2

the hiasensor signal correlares with the intraceliular L-valine level,
differences in the extracellular concentration may onginate from
varialility in growth o efficiency of amina acid secretion. To vule
our the possikiliy that this phenotype is linksd to mutations
within the plasmid pjCl-Lrp-sensor, sensor plasmids of evolved
strains were isolated, sequenced and reintroduced into the non-
evolved Agref strain, However, sequencing shivwed no mutarian
within the Lrp-biosensor [data not shown) Reintroduction of
Hasmids from evelved clones into the parental steain resulted ina
hazal level of specific e¥FP fluorescence {Fig, 51 ). This suggests that
the phserved elevated specific luorescent output of isolated clones
reflects specific genomic medifications leading to an increased
intracelfular L-valine level, but not mutations an the sensor
plasmid,

24 Charecterization of oocumalated mutations

In order o identify the accomulated metations in the adaptive
evolution experiment, the genomic DNA was solated rom cul-
tures after every evalution step and from two isolated clones (M1
and M2, Fio. 5273 angd analyzed win NGS, Owverall, seven mutations
were identificd in the population after the 5% evolution step
(Table 21 Single-nuclectide polymorphisms (SMPs] leading to
aming acid exchanges or a stop codon were identified in gR
(T935), encoding a cAMP-dependent glebal transcriptional reg-
ulatar, in prpf2 (T2011), coding for 2-methylcitrate dehydratase,
arel 10 wreD [E188%), encoding the urease accessory protein UreD.
SMPs leading to silent mutations were identified in rpsP {cO0t)
encoding the ribosomal protein 316, in fepd (c1045¢) coding for a
GTP-binding protein, and in the intergenic region (IGR) of cg2945
fencoding a putative Carl-like tanscripticnal cegulator) and
2047 (cgrRS, a twa-component response regulator], The deletion
of eoe cyvtosine in the open reading frame of ca2380 éncoding &
putative membrane protein, resulted in a frameshift muration.
Sequencing revealed the establishment of most mutations atter
the third or fourth evolution step [requency = 80%), whereas the
mutation urell-E1BE" was anly identified in one sequenced single
mutant [Tahle 27,

For further analysis, fowr mutations within annotated genes
were introdoced into the genome of the pen-evobeed parental
strain O glutomicum Agcel; glkB-TO35 (027710, wrel-F 188" (23621,
Drpl=T2000 {ed2r) and rpsP-D300 [cS, silent mutation) The
resuleing serains were analyzed for growrh and prodocrion in
shiake Masks (Fig. 4). Excepl for AoceE gixRB-T935, strains showed a
similar growth rate of 0,24 to 0.25 h~ ' (Fig. 441 and reached a final
aprical density of 43 afrer 30 h. Biomass formation of AqreF glR-
T935 was reduced by about 165 After 33 h ol ncubation,
C pletamicem Aacel showed an Yew of 154 mmol Lovaline

Avcurmulated] mutatices-in the binsensor-driven avolution of C glidaeicwem ATCC13032 sacei.

varlant data ¢ glutamicumATUCT 303 aacek (parental straln)’  5MI frequency in the last population”  Iselated chones”
0l Care IGR Mame  Nhidion Mi K12
CRGOTIT cEii U E n n "mn il
TEO7THGA CRDESE R T3S n o0 o oy
CE73216T SRRy oD T201E o 1] 100 120
GHIISIT0A W F LT s D00 e 1] a3 100 LLET]
Dol CIZEEMEE- cEEZED - GUfs n 211 945 7
C2455026T CEESFT fepd  T34ET (gliMda) O D 100 10
C2B0A25T IR F n 36 10 i

Genome sequencng was perfonmed lor the parental strain £ glicamicu aoceE, the evolved culture after the fifth evalution sep as wiedl as for the two Clones M1 and M2
isalsbed alfter the T step Reads wede muapped using aeoessian BXO27 1407 as e relerence genoane. AbGrevialions: absalute nuclemide posiGon will exchanges (ni, deletian

(D) given [or the plus strancd; intergenie region (CRY Trameshall [15)

* The geven nuibers sepresent the mapping frequency of The identified genomic alterations.
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Fig 4. Characrerization of selected mutatons reintoduced inio O ghaamicue
Aarck (A) Growth of O plotemioen: aoref (*), anceE giokd-TO35 (o], Ancrk wrpl)-
ETRE™ (w] acef pipD-T2001 (o] and SaceE-rpeF-D300 (M) | n CEXIL minimal
medium centaining 223 mbd glucose and 254 mM acetae (B Bisinass yeld for L-
waling red) and the by posluct L-alanine (hiue) as ¥, in oo per g COW alter
43 hoof incubation, Dara represens avermge values from three andependent coli-
vadans, Satstically significantly inoreased L-valine production and reduced |-
alanine productivn are macked with astenshs, which weere Calcolated by Student's
unpaited f-test (n=13; N5 mar signaficans: TP =005 VP 0 TP <000

por ¢ CDW, while Agcef pivR-T935, AaceE prpD-T2010 and
AoceE rpsP-D300 produced about 15-20% more L-valine, respoec-
tively (Fig. 4} Remarkably, L-valine production of Aocet wrel-
E188* was significantly increased by about 1005 with a Yes of
305 + 0087 mmol per g COW [ p-value 0,004),

Furthermore, the parental strain O gletomicom AaceE exhibits
significant by-product formation (06 mmol g ' COW L-alanine],
wihich is substantially reduced by 325 in AeceE glek-1925 {p-value
0.03), These results are in line with the expectation that the
hinsensor-driven adaprive evolufion approach selects against
detrimental mutations and promotes the accumulation of muta-
tions contributing to the targeted phenotype,

3.5, Loss-of-function in arease octivity siznificontdy dncreases Lvaline

producrion

The mutation wrel-E188° results i a truncared version of the
urease acressory protein Urel), The disruption of urel) was shown
ta disable the function of urease to degrade urea to carbon dioxide
and ammonium (Fig 38) (Molden et al, 20000), To test whether the
loss-of-function in urease aclivity Jeads (o similarly  increased
L-valine levels, O glutomiceim Sacel and Adcel ureD-E188" were

& izhr er ol [/ Meabollt Enpineering 32 (2005 184-194

cultivared in CGXI minimal medium with and without 5 g/] urea,
After 300h of cultivation in shake flasks with urea, C glutomicim
Aacel accumulated 205mM  L-valine and 9.9 mM L-alanine
{Fiz. 5B). Without urea, the production of L-valine significantly
increased by Y56% 0 36 mM. Lvaline levels increased in Aacet
ureD-E1887 with wrea to 442 mM and without urea to 50.5 mb,
Without urea andfor i e presence of the wreD-E188° mutalion,
[-alanine production of the AoceF strain increased about four- to
five-fold.

GC-ToF-M5 analyses were then performed to further investi-
zate the impact of urea andior the presence of the ureD-E188*
mutation on the intracellular metabotite pocl, Both the strains
cultivated withowt wrea andfor carrying the mutation ureD-E1858*
featured significantly lncreased levels of the L-valine biosynthesis
intermediates Z-acetolactate and dihydroxyisovalerate compared
o e AoceE straie cultivated in the presence of urea (Flg. SC+D,
Fig. 531 Furthermore, the ratio of pyruvate to lactare was (.24 for
the AdaceE strain with weea, and shifted towards pyruvate for
Sorek cultivared wirhowr urea (1227 and for Agcef ureD-E188"
witle {1587 and without urea [2.48) As already measured in the
supernatant (Fig. 5B}, L-valine and L-alaning levels were strongly
increased in strains cultivated without wurea andior with wreD-
E188°, Whereas significant amounts of urea were left by Aocel
uref)-E18E", urea was metabolized during cultivarion of the Aacef
strain in CORAL medium containing urea,

The impact of urea andlor the presence of the wreD-E188"
miutation was further confirmed i pH-contralled batch fermen-
rations (Flg. 541 Again, the strains AaceE cultivated without urea
or AoceF urel-E 188 with and without urea exhibited significantly
improved product formation {up to S0%), Altogether, these data
confirm that urease inactiviry (and/or urea deficiency’] significantly
increases L-valine production, which is veflected by the phenotype
of the Aaref ureD-F188" strain,

4. Discussion

Engineering of bacterial srrains for small molecule production
remains challenging due to the high complexity of bacterial phy-
sinlngy. Directed evolufion of Hmness-linked phenotypes has been
shown o overcome these lmits by oselecting against growth
defective mutations and by promating the identification of non-
intuitive beneficial mutations (Abatemarco et al, 2003 Porinoy
eroal, 20000 In most cases, however, phenotypical fraits are not
directly coupled to bacteral growth. In the present work, we
successfully established a Biosensordriven laboratovy evalution
approach far the improvement of growth and metabolite pro-
duction of industrially relevant strains by impesiog an actificial
selective pressure on the fluorescent output of the biosensor using
EFACE, Within a few ilerative rounds, C glutamicus: ATCC 12032
AoceF rontaining the plasmid-encoded Lrp-hiosensor {Blombach
ek al. 2007 Mustali et al, 2012) was evolved towards an increased
L-valine production, decreased by-product formation {L-waline)
and a significantly improved growth behavior (Figo 20 After the
fifth sorting step, L-valine levels remained constant. probably due
by the fact that the Lrp-biosensor reached is intracellular detee-
tlon limit {Muscafi et al, 2020 However, blosensor enginearing
rosvards reduced sensitivity andor increased dynamic range might
represent an option for a farther inpeovement of this approach
tMustafi et al., 2005, Tabor et al., 2009], Genome sequencing and
insertion ol selected SNPs into the parental AoceE strain back-
ground resulted in the identification of nowel mutations, which
divectly alfecl product {ueD-E188%) or by-produoct {plak-T935)
formacion. The observed phenotypes were further confirmed by
enhanced batch culrivations in a bioreactor system (Flg 54, These
resules prove the geneval applicability of this approach for strain
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eogineering and highlight the versatile application of biosensoers
for the improvernent and analysis of production strains.

The generation of genetic diversity 15 a critical first step in
several metabolic engineenng approaches. Mowadays, random
muragenesis and screening strafegies incorporating the entire
gename arc widely wsed for strain development (Derkx ot al,
2004: Santes and Stephanopoulos, 2008; Schallmey et al., 2014).
Chemical or physical mutagens sech as N-methyl-M'-nitro-N-
nitrosozuanidione (MMNG) or UV radiation typically induce several
hundred base transitions (Harper and Lee. 2002). Furthermore,
mutator strains concaining detective DNA repair systems induce
up o S00-fold ncreased mutation rates (Creener el al, 19971 In
a recent study, a mutator phenotype was integrated as an-actuator
into a synthetic regulatory circwit under the control of a smail
miclecule biosensor, by this way, the mutation rate of the particular
strains was flexihly controlled by the concentration af the desired
molecule (Chou and Keasting, 2013). All these strategies, however,
were shown to generate hundreds of genomic modifications in
nne strain including single beneficial mutations, which are usually
pbscured by a high number of newtral and deleterions mutations
(Bnder eral, 2012 Chiou and Keasling, 2013 Decky et al., 2004).
Identification of benchlicial muotations, therefore, remains extre-
inely laborous due 1o e lack of & selective pressire as dimposed
during bicsensor-driven evelution. In contrast to random muta-
genests, adaptive evolution strategies have been shown to lead to.a
considerably low pumber of genomic modifications by selecting
against detrimnental murations at the same time (Charusant et al,
2002 Herring e al, 20060 Our biosenser-driven evelution of the
Aacel strain resulted in a total of seven SMPs accumulated within
the genome, which enabled the prompt identification of promizing
cardidates for further analysis (Fig. 4: Table 2),

During the evolution of the Adqcel strain, four mucations led to
armine acid changes or to a stop codon in annotated senes, When
mutations were inserted into the nop-evolved Aocel parental

strain, cach muation alone was found o wrease the L-valine
productieie. This finding strongly argues that bicsensov-based
evolution directly selects for strains that accumulare mutations
according to the selective pressure, OF these, a mutdtion in the
global regulator GixR was identified, GlxR represents a central
DMA-binding transcriptional regulator of the CEP/FNRE protein
family in C gletamicum, which binds cAMP and regulates more
than 180 geres invalved in, amangst others, carbon and nitrogen
ietabolism, a= well as cespiration (Kol el al, 2008; Kohl and
Fauch, 20090 During biosensor-based evolution, the amino acid
residue threonine at position 93, which is parr ot the cAMP-
binding pockel, was replaced by serine {Townsend e al, 20040
193 is conserved in O glutamicum and s relativie Mycebaocterium
mibercuiosiz, while this residue is replaced by serine in E coli
sprecies (Townsend et al., 200147% We found that this mutation was
established in the population afrer the third sorting step — along
with the reduction of L-alanine production. Inserting the SMP into
the non-evolved Adqcek steain resulted in 2 significantly reduced
formation of the by-praduct L-alanine {(Fig. AR). Orher rested SkPs
did not feature lower L-alanine production thus showing the
specificity of the CIxB-T935 effect, Transcrptome analysis revealed
the downregulation of several GlxR-activated genes and the
upregulation of 4 set of CluB-repressed genes dafter the thivd evo-
lution step (Table 511 Based on current knowledge, the regulation
of the L-alanine aminotransferases AlaT and Awtd is not directly
coordinated by the GExR regulon (Pauling et al, 20127 illustrating
that a glabal reorganization of the regulatory/metabolic netwarks
seems likely to be respansibie for the observed production
phenotype.

A further mutation beneficial for L-valine praduction was identi-
fieed i the gepe encodimg Uhe wease accessury prolein Urel The
urease of O glutamicm s encoded by the wreABCEFCD operon
encoding structural and awessory proteins calalysing the degradation
of urea 0o carbon dickide and avuvomium (Molderr er al 20000,
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During hiosensor-based evolution, the codan for gluramare residue
188 in the accessory pratein Urel} was replaced by a stop codon
feading 1o the formation of a truncated protein, Introduction of the
Urel1-E185* into the parental strain significantly increasad the L-valing
production of C glutmniomm Aacef by abour 100%, This effect was
surcessfully aftributed o a strong doanregulation of the urease
reaction, since a further increase was observed when the CGXO
robnimal roedivim was prepared without weea (Fiz. 51 In lioe with this
finding, previous studies revealed that the dismaption of el redices
wrease acrivity from 781 (mg proteind ! tn 00 U (mg peakein) !
inhibating the degradation of urea to carbon dicgide and ammonium
[Molder et al, 2000), Residual urease activity may explain the further
increasze of Lvaline procluction by cultivation without wrea compared
o the effect of the prel-E188" mufation in the presence of nrea,
Conseguently, the lads of urea and/or a pon-functional urease encyme
are: thought to result in reduced ivtracellular beveds of carbon deoxide
aed ammonium. During fermentation of O glutarmicon wild-oype
cells, Blombach et al, chaerved an increased level of the by-prducts [-
alaninge and L-valine under low COS/HOD, — coneentrations | Blombach
eloal, 20040 In accosdance with thir Godings, metabolore analys=is
fusicg GC-Tol) revealed an increase of the Lwaline biosynthesis
pathway inrermediates Z-aceto-lactare and dibpdroxyisovalerare sug-
gesting an increased flux towards L-valine, Furthermore. we ohserved
a shift from lactate o pyruvate averllow in the absence of wrea or i
the wref-k188* background, As © glutariican is koown o produce
inecreased levels of lactate under oogygen deprivation (Hasegawa 21 2l
220, we assume that reduced levels of dissolved carbon dinxide
might affect lactate delydrogenase activity and increase pyruvate
availability, [n addition, we hypothesize that reduced levels of
ydrogen carbopate might impair the activiey of the anapleuraric
enrymes phosphoensipynnvate [(PEPCx) angd  pymineate carboegylases
[PCx i wivo, wehich play the major role of carboxylation reactions in C
gintamicur, leading o an increased pood of pyrovate For Lvatine
production {Peters Wendisch et al, 1998 (Fg. 11

Rational engineering approaches of the C glutormicam AeceE
stram yiclded final L-valine tters of op to 412 mb or 437 mi
during fed-batch fermentaticn by the oversxpression of L-valine
hinsynrhesis genes, deletion of by-product pathways, improve-
ment of precursor and reduction equivalent supply (Blomlbach
vt al, 2008; Chen el al, 2005) The great success of the bioscnsor-
deiven evolution approach was the identification of alternative,
non-intuitive targets, which are abscured by the limiced knowl-
edge of the bacterial physiology and which can further improve
the production of rationally engincered strains,

In several recent studies, adaptive labocatory  evelution
approaches served as a camplementary strategy for the improve-
ment of production strains {Abkatemarco et al, 2003 ; Portnoy et al,
200013 Simple serial cultivaton strategics have been soccessfulby
applied to increase the geowth rate (Cheng o al, 20045 Fong et al,
20057 as well as moberance of certain growth substrates {Lee et al,
2003, 2011 or stress conditions immediately linked to product/by-
product formation (Roves et al, 2014), Especially, in the case of
growth-linked production processes, an increased growih rate
immediately coincides with an improved producton rare. For
cxample, by serial transfer of E coli cultures, Fong et al. were able
to improve the growth rate along with lactate production {Fong
efal, 2005 Furthermore, engineering of 5. cerevisios for increased
ethanol rolerance was associated with the improvement in erhanol
priluction from glucose (Alper o al, 2006), In the present stdy,
wie pew successTully applicd a metabolite biosensor Lo exerl arti-
fictal selective pressure on intracellular product formation in order
to specifically enrich mutarions leading to an improved production
phenotype, The abserved phenotype established during the evo-
lution procedure was [nally atinbuted o single SNPs and venlied
i the parental strain background.

In conclusion. binsensor-driven evalution proved as an efficient
straregy fo halance metabolic fluxes according to the engineer’s
purposes without any deep knowledge of the complex bacterial
physiclogy. This approach might also be of great benefit for the
establishment of heterologous pathways in order to adapt the
organisim to changed energy and  metabolite  fluxes, Thus,
bigsensor-driven in vivo evolubon represents a promising com-
plementary strategy to rational metabolic engineering and thereby
enlarzes the current reperinire of engineering techniques,
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Urease inactivity increases L-valine production
Regina Mahr and Julia Frunzke

Institute of Bio-and Gensciences, IB(G-1: Biotechnology, Forschungszentrum liilich, Germany

Abstract

LUrea is known as important nitrogen source for the amine acid producer Corynebacterium
glutamicun, During the biosensor-driven adaptive laboratory evolution of C. glutamicam Aacell, we
identified a loss-of-function mutation in UreD (wreD-E188%), which increases L-valine production
by about 100%. Previously, the disruption of UreDd was reporiced to lead to the formation of an
inactive urease enzyme complex, which consequently inhibits the degradation of urea W carbon
dioxide and ammonia. Previous metabolome analysis of C. gludamicaom Aacel and AaceF urel)-
E188% led to the hypothesis that the reduced level of carbon dioxide might in turn reduce the
activity of anaplerotic engymes phosphoenolpyruvate (PEPCx) and pyruvate carboxylase (PCx).
This seems to increase the availability of pyrovate for L-valine hiosynthesis. In this study, we
analyzed the relationship between L-valine production, anaplerosis, urease activity and CO/HCOy
availability: By the additional deletion of pye (encoding PCx) in the AgceE and AaceE ureld-E188%
bhackgronnd, growth was significantly reduced and even inhibited for the nrease inactive strain. This
fact showed that anaplerosis plays indeed an important role during growth on acetate. The addition
of hydrogen carbonate partly complemented the lack of pye, which reveals the impact of CO./HCOy
availahility on the activity of anaplerotic enzymes. Furthermore, batch fermentation by additional
C0O; aeration reduced growth and L-valine production of the AgeeE wreD-E188* Lo the level of Lhe
urease active AgeeF strain. As urea degradation increases the pH by ammonia formation and CQ;
dissaciates in water dependent on the pH, batch fermentation was performed at different pH levels.
Together with transcriptome analysis of AaceE and AgceE wreD-E188%, the increased pH was
proposed to enhance the activity of the central metabolism, which contributes to the reduced
avallability of pyrovate. In conclusion, the beneficial effect of wrea deficiency on L-valine
production results from a complex interplay between pH and COYHCO, availahility.

from pyruvate (Fig. [A), To increase the pyruvate
Introduction pool. the Elp subunit (geet) of the pyruvate
dehydrogenase  complex (PDHC) was  deleted,
which provided an excellent bhasal strain  for
engineering L-valine production strains ( Blombach
et al., 2008; Blombach et al., 20007; Eikmanns and
Blombach, 2004, Due to the inactivation of the
PDHC, celis feature growth-decoupled L-valine
production  in minimal mediom  containing a
mixture of zlucose and acetate as carbon source:

For almost 60 years, Corviebacierinm gliscmicurm
has been known as an excellent platform orgunism
four large-scale amino acid production {Kinoshita et
al., 1957 Due to the lack of biosynthesis enzvines
in humans and animals, the nine essential amino
acids including L-valine are of central interest for
the biotechnological industry {Leuchlenberger el
al., 2005; Mitsuhashi, 20140, In 2. glutamicun, the

production of L-valine branches in the glycolysis The Ageel strain grows on acetale, which provides

acetyl-CoA for the tricarboxylic acid (TCA) cyele,



52

Urease inactivity increases L-valine production

and upon depletion, glucose is metabolized for the
production of L-valing {(Blombach et al., 2007,
Eikmanns and Blombach, 2014, Oldiges et al.,
2014

[During  biosensor-driven laboratory
evolution ol the L-valine producer strain ©
glutamiciom AaceE, a loss-of-function mutaton of
urease {wrefX-EIRE*) resulting in a fruncated
prodein (aa [-187) was isolated. The mtroduction
of this point mutation led to significantly increased
L-valine prodoction by about  two-fold  in
comparison W the parental strain (Fig, 1 B) (Muohr
et al., 2015). Upon the disruption of weld, Nolden
and co-workers observed o reduction inourease
activity from 7.8 U (mg prowin)' to 0.1 U (mg
proteiny’,  which  strongly  diminishes  the
degradation of urea 1o two molecoles ammonia and

adaptive

one moleculs carbon dioxide (Fig, | C) (Nolden et
al., 20000, Urea is a component of the original
recipe for CGXI minimal medinm {(Keilhaver et
al.,  1993). A further
production was observed when CGXIT minimal
medivm was prepared without orea (Fig. 1 B

inerease  of  Levaline

Metabolome analysis (GC-ToF) of O plutamicum
Adeel, wref)-E188% revealed increased levels of
the L-valine biosynthesis inlermediates  2-uceto-
lactate and dihydroxvisovalerate in the supernatant
suggesting an increased flux wwards L-valine
compared 1o the Ageel strin (Mahr et al., 2015)
Furthermore, a shift from lactate to pyrovate in the
supernalant was observed for cultures lacking urea
or containing the wreD-EIS8* mutation. which
indicates intracellular accumulation of the L-valine
precursor pyruvate (Mahr et al,, 20135).

A Glisose L-Alanine B
i B0 =
: m M L-valine
HIo, 1:; . =3 1m L-alanine
) = PEP Aceto- P Dihydrexy-  E 40
fé;c_) lactate izsovalerate -
€, \L R OO, @%@ 2 a0
- o
Pyruvate 7 Acatate Ketoieo- E X
- EE-':@C; ! valarate E
! L 0, @f) G%‘:} L g
i v
Pln 2
== Acelyl- Aq@“ Al
|| i p;.g;;haga kfne fgceE  AsceE faceE  AaceE
wiurea wel-E188° wio urea ureD-E188°
'1‘ wil urea WO urea
Oxaloacetate Citrate
. C
¢
i TCA eycle E'. CH.N.O + H,O _Urease | CO, + 2NH,
! L
i ¥

Fig. 1 L-valine production and the influence of urease inactivity. A, Owverview of the central metabolism of €.
plitamican Aacek and the L-valine biosynthetie pathway, The Ageef strain harbors the deletion of the Epl subonit
{rewd gross) of the pyruvate dehvdrogenase comples (PTIHC), which blocks the conversion of pyrvate tooacetyl-Co A
vig: PDHC activity. Abbreviations: acetohydroxy acid isomeroreductase (AHAIR) acetohydroxy acid svnthase
(AHAS), acctate kinase {AK), alonine aminotransferase (AlsT), alanine aminotransforase (AvtA), dihyvdroxy acid
dehyidratase (DHAD), pyrwvate decarboxylase (PCx), pyruvate debydrogenase complex (PDHC ), pyruvate kinase
(PK). phosphoenolpyruvate (PEP). PEP carbosykinase (PEPCEK), PEP carboxviase (PEPCx). pyruveleiguinomne
oxidoreductase (PO, phosphotransacetvlase (PTA). transaminase B (TA)L B. L-valine (red bars) and L-olanine
{blue barsy titers in the supematant were measured after 30 hours of shake flask culovaton of Accel and Aacef
wrel-E188% cells in CGXTT minimal medium containing 222 mM ghicose and 254 mM acetate prepared with 5 ¢ 1.7
urea or without urea, Data represent average values from three independent hiological replicates. €. | mol urea s
degraded by wrease activity to 1 mal carbon dioxide and 2 mol ammonia.
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Urea is an important and ecasily accessible nitrogen
source for . gletomicwn besides  glutamine,
ammonium and creatining (Nolden et al., 2000;
Rehm et al., 20000, Urcase presents a key enzyme
for the urilization of urea as an alternative nitrogen
source. The wre gene cluster wreABCEFGD
encodes the three structural subunits (UreA. UreB,
UreC’) and the four accessory proteins (LireE,
UreF, UreG, UreDr ) of urease. Thereol, the proteins
UreC and UreD were found to be of crucial
importance for vrease activity and for growth on
urca {MNolden et al., 2000).

The lack of urea or urease activity (welD-ETREY)
wits proposed o likewise reduce the avilability of
ammonig and carbon dioxide (Fig. | C), In this
context, we hypothesized that the efflux  of
glvealytic  products  (phosphognolpyrovate. and
prruvate] into the TCA cyele via the hyvdrogen
carbonate-dependent  activity of the anaplerotic
ehzymes phosphoenclpyrovate (PEPCx. ppe) and
pyruvate carboxylase (PCx, pye) might be reduced
pnder low COWHCOL concentrations ([ Blombach
and Takors, 2015; Mahr ¢t al.. 2015), Henee, this
might increase the pyruvate pool for L-valine
biosynthesis (Fie. 1A} In  this  study, we
demonstrate the influence of anaplerosis doring
growvth on acetate by analyzing the urease-active
and —inactive (ureD-E188%) O glutemicurn Aacelfl
{Zprve) strain in the presence of increased levels of
hydrogen carbonate or with €0, asration during
butch fermentation. As the degradation of urea
impacts the pH and in twn the dissociation of
carbon dioxide in water, the dependency of growth
and production on pH during batch fermentation is
analvzed. Together with transcriptome analysis of
the urease-active and —inactive stain, @
multilayered mfluence of wrea availability on L-
valineg production was proposed: the effect of
carbon dioxide availability on anuplerosis and the
impuct on pH-dependent gene regulation  and
enzymaric activiry.

Material and Methods

Bacterial strains, media and growth conditions
All bacterial strains and plasmids vsed in this stody
are listed in Table 1. The sirains are based on the
. gluramidcwn ATCCIA032  wild-type  strain
(Kalinowski et al., 2003}, If not stated dilferently,
O gluramicum AaceE cells were grown on brain
heart  infusion  (BHI:  Becton  Dickinson,
Heidelberg, Germany)  agar  plates  conlaining
&85 mM acetate at 30°C for two days. Then, one
colony was picked and incobated for eight hours at
30°C and 170 rpm an 4 ml BHI mediom contuining
B35 mh acetate. Afterwards, 20 ml of CGXI
minimal - medivm (Keilhaoer  er oal,  1993)
containing 222 mM and 254 mM  acetate were
inoculated with cells from the first pre-cultre,
Owvernight, the culture was incubated at 30°C and
120 rpm. The following day. the cells were washed
with 0% [w/iv) saline and inoculated in a baffled
Nask with fresh 5300 ml CGXI minimal medium
containing 222 mM glucose and 254 mM acetate to
an optical density (O of 1. The culture was
incubated at 30°C and 120 rpm,. Where indiculed.
urea, which is part of the original CGXI recipe
(Keilhaver ¢t al., 1993), was not added to the
CGXIT minimal medivm. Acetate and carbonate
were provided in the mediam as potassium acetate
or polassium carbonate  sall,  respectively.
Carbonate was  added o after
autoclaving at a temperature of 30°C followed by
filter sterilizing. The cell dry weight (CDW, g L")
was caleulated from the measured Oy by the
following equation: CIW = Oy x 0.3 ¢ L7
(Buchholz cu al, 2013). Escherichia coli DH3o
cells were grown on lysogeny broth (LB} agar
plates or incobated in shake flasks with LB
medium by agitation at 120 rpm. If necessary,
kanamycin was added in a final concentration of
25 pgfml for C glutamicum or 50 pgml lor £ cofl
to medium and agar plates.

the medium
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Table 1: Bacterial strains, plasmids and oligonucleotides used in this study.

Strains or plasmids  Relevant characteristics

Source or
reference

Strains

. glutamicum
ATCC 13032

€. plutamicun
AaceE

. glutamicin
AgeeE wrel-E188%
£, glatamicim
AaceE Apye

. wlatamicim
Aace E Apve nreD-
El1&8*

E. coli DH5a

Biotin-auxotrophic wild Lvpe
In-frame deletion of cp2466

Urel? Glu L 88 to stop codon

codon

In-frame deletion of cp2466 and cplr9f

In-frame deletion of ce2466 and cpd 790 ; UreD Glu 188 to stop

{ Kinoshita ct
al., 2004)
{Schreiner et
al., 2005)
{Mahr et al.,
2013y

This stady

Thus study

supEd4 Alact169 (080lacZDMIS) hsdR17 recAl endAl gyrA9 Invitrogen

thi-T relA ]
Plasimids
pEI19mohsacBApye  pKI19mobsacH containing the 1 kb fragment of the deleted pye {Peters-
gene Wendisch et
al., 1994)
Oligonueleotides Sequence (5'-3°
151-pyc-fw GCAGATGCCATTTACCCG
152-pye-ry COGTGACAGACTCAACG

Genomic delefion of pye

The suicide plasmid pKI19mobsacBApywe  was
isolated from £ coli DH3o cells using the
OQlAprep {Qiagen,  Hilden,
Germany). The plasmid was transformed in
electro-competent . glfemicum Ageell  and
AgceE wreD-E188* cells by cleclroporation (van
RBest et al., 1999 First
recombination events were perlormed and verilicd
as previously described (Nichisch and Bot, 2001 ).
The deletion of pye was reviewed by amplification
and sequencing wsing the primer pair [530-pye-fw
[52-pyc-rv.  Synthesis  of  required
oligonucleotides  and  the sequencing of DNA
[ragments were perlormed in subcontracting with
Eurofins MWG Operon (Ebersfeld, Germany).

spin miniprep kit

der and  second

and

Microtiter plate cultivation

Online monitoring  of  bacterial  growth  was
performed in 48awell micratiter  FlowerPlates

(MEPs) using the BioLeclor cultivation system
im2p-labs GmbH, Baessweiler, Germany) (Kensy
et al., 2000) O ghvamicen cells were inoculated
from a pre-cullure in 48-well MPFs conlaining
50 pl CGXIT minimal mediom with 222 mM
glucose and 234 mM acetare 0 an ODgy of 1. In
the BioLector, cells were incubated at 37°C and
1200 rpm. Buring cultivation, biomass formation
was recorded as the backscatiered light inlensily
light wavelength 620 nm: signal gain factor of
20}

Batch fermentation
Batch  fermentation was  performed i the
DASbox®  Bioreactor  swstem  (Eppendorf,

Hamburg, Germany). Prior 0 inecolation ol
fermenters, cells of an ovemight pre-culture (50 ml
BHI medium containing 8% mM acetate) were
wished with 0.9% (wiv) suline. Initiallv. the
fermenters were filled with 200 mb CGX 1 minimal
medivm containing 222 mM glucose and 254 mM

Results
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acetate and inoculated woan ODgyw of 1. The
cultures were tempered at 30°C. The bhioreactors
were sparged with 1 vwin synthetic air, Where
indicated, the CO- concentration was increased w
10 (v/v). The dissolved oxvezen concentration
wis adjusted 1o 30% by o stirver speed cascade
from 400 to 1200 rpm and was monitored using a
polarimerric oxyzen electrode (Oxyferm FIJA,
Humilton, Bonadoz, Swilzerland), According
the respective experiment, the pH was adjusted
using 2 M potassinm hydeoxide and 2 hydrochloric
acid, and measured by g standard pH electrode
{Easyferm Plus, Hamilton, Bonaduz, Switzerland).
Fowmn development was suppressed by manual
injection of 0.0 ml 253% (wiv) silicon antifpam

2 iwater  suspension when  required  (Sigma
Aldrich, Sleinheim, Germany ).

Ouantification of amine acid production

Using ultea-hizh performance ligyuich
chromatography  (uHPLC), amino  acids  were

quantified as ortho-phthaldialdehyde derivatives
by automatic pre-columm derivatization, Separation
of derivatives by reverse-phase  chromutography
was performed on an Agilent 1290 Infiniy 1O
ChemStation  (Agilent, Samta  Claca, USA)
equipped with a fluorescence detector. As eluent
For the Zorbax Eclipse AAA 3.5 micron 4.6 x
TS5 mm column (Agilent, Santa Clara, USAL a
gradient of Ma-horate buffer (10 mM Na,HPO,y;
10 mM Na.B,Os, pH 8.2 adapted to operater’s
guide) and methano] was applied. Prior to analysis,
samples were centrifugad for 10 min at 13,000 rpm
and 4°C and diluted 1:100,

DNA microarrays

For transcriptome. analysis, C. glitamicum AaceE
and Ageel wreD-EL85* cells were cullivated in
50 m] CGXI minima] mediom containing 222 mb
ghocose and 254 mM acetate at 30°C and 120 rpm.
Cells were harvested after 28 hours of cultivation
{production phase). The cells were sedimented by
centrifgation (4256 x g, 10 minutes, 4°C) and the
peller was immediately Irozen in liguid nitrogen
and stored at -B0°C. RNA  preparation, cIINA
synthesis and microchip hybridization, scanning

and  evaluation were performed as  previously

described ( Baumgart ecal., 2013},

Results and Discussion

Deletion of pye strongly affects the growth of
ghitamicum AaceE and AgeeEl ureD-E1887

The pyruvale curboxyluse (PCx) encoded by pye 15
the dominating enzyme in O glidamicun for
refueling the TCA cyvele via oxaloacetate (Fig, 1 C)
(Peters-Wendisch et al., 1998). We deleted pyc in
the Aacel! and Aacel nreD-E188% backeround 1o
eraming the influence of anaplerosis on growlh
and L-valine production. By microtiter cultivation
in CGXI minimal medium, the strains Ageef and
Agcell nreD-ELS8*  leatured  growth rates ol
0.24 £ 0.006 h' and 0.27 £ 0.002 h”, respectively
(Fig. 2 A}, The additional delenon of pye reduced
the prowth rate of strain AdeeE Apye o
015 £0.005 k" and almest  inhibited  growth
{growth rate: 0,01 +0.001 ') of this mutant in
CGXIT minimal medium carrving the loss-of-
function mutation in Urel} {(Aocel Apve wreld-
E18%%), with  deleted  pre
featured a significantly increased lag phase of
about 20 hours, Peters-Wendisch er al, proposed a
very low fm vive activily of the second anaplerolic
enzyme PEPCx in O plutamicum  (Peters-
Wendisch et al, 1993 Peters-Wendisch et al,
1998}, In accordance with our findings, the lack of
PCx activity seems not to be compensated by
FEPCx. In addition, the activity of both anaplerolic
coeymes s dependent on COHCO;  availability
(Fig. 1 C) {Blombach and Takors, 20015; Sauer and
Eikmanns, 2005). We hypothesize  thal  ureosc
inactivity evoked by the wreD-EI8E*® mutation
may result in decreased levels of intracellular
carbon dioside impacting the fnovive activily of
anaplerotic enzymes. Thuos, residual activity of
PEPCx might not be sufficient o support growth in
the absence of pye o the strain AgeeE Apve wrel-
E188% strain. The fact that CO deficiency after
moculation induces o long lug phase is well known
iBlombach and Takors, 20015 Repaske et al,

Muorcover.  sirains
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1974), The extended lag phase is traditionally not
observed during well-nerated hatch fermentation.
Under low  pCO,, Blombach  and  co-workers
revedled o three phasic growth behavior with a
strongly reduced growth rate (000 b of O
alwtcomiciem Apve in the second phase (Blombach
et al.,, 20113, Furthermore, the additional deletion
of pve in a gradually engineered Awcel sfrain
{AcceE Apge Apef) extended the Gme o reach the
stationary  phase {(growth
{ Blombach et al., 2008},

rate not  indicated)

Allpgether, these lindings suggest thul anaplerosis
Plays indeed an important role during growth of C
ghtamicien AaceE and derivalives on acelate, Al
first sight, this scems surprsing as acctate 1%
known o repress  phosphoenalpyruvate::sugar
phosphotransferase SysLem (PTS -mediated
glucose uplake via the regulator SugR (Blombach
et al, 20089; Engels and Wendisch, 2007)
However, the lack of glucose significanily
impaired growth of the AgceE strain {Schreiner et
al., 20051, For this reason, we suppose here the
activily of allernative glucose uplake syslems as
recently described (lkeda et al., 2011; lkeda et al.,
20150,

Phenotypic complementation by increased levels
of hydrogen carbonate

To reveal whether carbon dioeade  deliciency
generaled by urcase inactivity or orea deficiency
itself affect anaplerosis reducing indirectly the
Prruvale L-valine production.,  we
cultivated by providing hydrogen
carbonate (o the medium, The addition of 100 mM
HCO; had no elfect on the growth rate of the
AaceE Apve strain itself (0015 £ 0002 by, bue it
teduced the log phase Lo eight hours., Interestingly,
the AaceE Apve  wreD-E138F Featured
growth at a rate of 0,17 £ 0,002 b and a lag-phase
of about eight hours by cultivation in presence of
1060 mM HCO, (Fig. 2 A). These results indicate
that the addition of hydrogen carbonate partly
complemented the growth deliciency of the Aocel
Apve wrefd-ETRRY strain proposing an important
rode of carbon  dioxide delivery by urea lor

pool  lor
thie  strains

siruin

anaplerosis. Woe propose that full complementation
by hydrogen carbonate is not achievable due to the
low activity and  minor role of PEPCx o O
gluramicum (Peters-Wendisch et al.. 1998)
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Fig. 2 The influence of corbonate on growth and
production of O gletamiciim Aceel derivatives, A,
Carhonate improves growlh and biomass formanen of
Aacell (black, ¢ 91 Aacell ureD-EIRE® (areen, & A,
Aacell Apve (blue, &, 2) and Aacel Apve arel)-E1RRT
(oo, w07 stmains. From the first pre-culture in £ ml
BHI mediom comaiming 85 mh acetare, a secomd pre-
culture was inoculated in CGXTD minimael  medicm
containing 222 mM  plucose  and 254 mM acetate
without (filled symbals) and wath 100 mM carbonate
(emply  symbalsh. For online  monitoring  in the
BioLector svatem, cells were inoculated in 730 ul fresh
CGXIL minimal  mediume (with 222 mM  glocose,
254 mM acetate; +- 100 mM carbonate)d o an Oy of
I amd incubated at 30°C and 1200 rpm for 28 hours. B,
L-valine (red bars) and L-alanine titers (blue bars) in the
supernatant after 28 hours of cultivaden in the
BioLector. Data represent average values from three
independent biclowrical replicates.

Results



Results

Urease inactivity increases L-valine production

57

A’
;| g TR ]
-
' q‘ 4 [
— i b
Jp |
By ="
= .
8 -
4 - .
| | + ApccE (1% Q)
= = -m— Aucef wel-ELBRT (21%0)
i i | & AcoF (219 00 10 D)

& facel ureD-ELBE" (21% 0,/ 10% OO,
® & 1 15 An 25 3¢ 35 An A5 0

Tirme (h)
Bdﬁ
]
40 |
§ &
=, - .
M li."
£ P
£ o4
=¥ [
15 ¢
10

90 25 90 35 46 45 &0

Timez [h)
C. sELE® Acatals
== Oz Glucose
P
E
w
o
Q
3
m H
=
E
& " s
lg ]
s ul ]
i
0 ey I g
o o 15 0 3 A0 3% 45 50
Time (h)

Fig. 3 Carbon dioxide influences A, biomass formation
and B. L-valine production of © plutamicim Aocel
urel-EI88* during balch fermentation, O glamioun
el (4, &) oand Aacel wreD-E1SS* cells (m, #) were
cultivated COXI minimal medium containing 222 mM
glucose and 254 acetate in prescnce (A . o) and without
increased CO- levels (¢, m), For moreased OO levels,
105 (wivy GOy owaos addinenally sparged nie the
bioreactor. Cultivatons were performed at 30°C and the
pH valve was maintained at pH 7. C. Glucose (empty
symbols)  and  acetae (flled  symbolsy Jevels wene
determined throughout balch fermmentation.

The production of L-valine and the by-product L-
alanine need to be considered as they act as the
opponent  and  desired  efflux of glycolysis 1o
contrast to the cfflux via anaplerosis. The strains
AaceE and Aacel wreD-EI1E8* produced 15 mM
and 34 mM L-valine, and 10 mM and 38 mM L-
alanine within 28 howrs of cultivation, respectively
(Fig. 2 B). The addition of hydrogen carbonare,
however, similarly reduced the L-valine production
by 54% (Aacek) and 59% {AaceE urel)-E1S8%):
the by-procduct L-alanine increased by 22% for the
AgeeE strain and decressed by 51% for the AgceE
wrel-E1RR¥strain. - Although
notably  affected. L-valine
decreased  upon culivation al high  hydrogen
carhonate levels. In the context of increased L-
alunine  and  L-valine  production  under  low
COVHCO: concentrations observed by Blombach
and co-workers (Blombach et al, 2013), we
suppose an enhanced efflux of glyeolvsis via
anaplerosis  under increased COWHCO,  level,
stimolating PEPCY and PCx activity,

growth  wias  not
levels  significantly

Dt the impaired growth by the deletion of pye,
Aprve mutants entered the stationary and production
phase at a later time point. For this reason, the L-
valing titers are not directly comparable to those of
Adeel and Aacel uref)-E1RR*. The final L-valine
concentration of the Aweef Apye strain did not
increase significantly in the presence of hyvdrogen
carbonate, bur L-alanine production increased 4-
fold (Fig. | B). Interestingly, C. glutamicum AaceE
Apve wrelE188" accumulated & mM  L-valine
without significant growth for unknown reasons. In
the presence of hydrogen carbonate; L-valine and
L-alanine titers increased by 36% and T6%,
respectively,

In an additional experiment, we analyveed the effecl
of increased 0 aroowth  and
production of © wlwamicum Aocell ureld-E188%
during batch fermentation. Without additional CO.
gassing, we observed similar growth rates of
0.26 b and 0.27 b for O elutamicum Aacell and
Aaeel wrel)-EIRR*,  respectively  (Fig. 3 A
Aeration with CO; only slightly impaired growih

aeration  on
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of the AgceE strain {growth rate (023 h'"), but did
not significantly affect the growth of Ascef ureld-
E188* strain (0.26 ). Without €O, aeration, C,
glutamicum  AgceE wreD-EIRR®
increased biomass formation of 8 g CDW L
compared 1o the Aacel strain with (7.2 g L'} and
without additional CO. {7 g L'y and the AaceE
wref-E188% strain with OO, gassine (7 & L)
Without CO- acraton, O glutamicum AaceE
wreD-EIRE* produced a final titer of 43 mM L-
valine, which was notably reduced by CO- gassing
te 33 mM L-valine (Fig. 3 B). Compared to the
AaceE wreD-E1RRY strain, C. glitamicim AaceE
leatured 16% reduced L-vahine production, which
did not change significantly under increased COs
levels. All srrains featured similar acetare and
glucose  consumption  rates (Fig | Ch In
accordance with the findings during microtiter
cultivation, these results indicate once more that
carbon dioxide as product of wrea degradation
affects L-valine production.

featured  an

Formation of by-products

During batch fermentation with COy acration., the
strains  re-accumulated  significant
acetate during the L-valine production  phase;
89 mM and 40 mM for AaceE without and with
0 geration, 29 mhd and 82 mM for AaceF wrel-
E185% without and with OO, acration, respectively
{Fig. 1 C). In addition. metabolome analvsis of the
supernatant of . glwtamicum AaceF and AaceF
areD-E18E= cultivated in shake [lasks revealed
increasaed levels of lactate, succinate and malate for
the Accefl, but not for the Aocefl wreld-H1EE*
strain (Fig. 51). The synthesis of organic acids
under aerobic conditions 15 usually an indicator for
slucose excess, the melabolization of which i3
limited by the maximal enzyme activity and
oxyeen  supply,  resulting  in substrate-level
phosphorylation (overltow metabolism) (Cheng el
al., 2004; Paczia et al., 2012). At the same time, C,
slwiamicien — prowing as well as non-growing —
cells are known to metabolize glucose to organic
acids under oxygen deprivation (Okino et al,
2005: Rados et al., 2004 Yamamote et al., 200125

amounts  of

Furthermore, additional hydrogen  carbonate or
0, aeration under anaerobic conditions were
shown 1o enhance succinate and acetate vields by
cnhancing the flux at the pyruvate node towards
PEPCx, PCx and PDHC (Okino et al., 2005; Rados
et al., 2014). In AgceE sirains, latter can be
excluded due to the lack of PDHC activity. At this
time, the underlying mechanism for organic acid
synthesis of the AgeeE sirain in gencral and (e
AgeeE wreD-EI88% strain under increased CO-
levels cannot be elucidated completely. Besides the
impact of COJHCO: on anaplerosis, the reduced
biomass formation might alse be an  indirect
consequence ol increased  organic acid  lewels,
which are known to inhibit protein activity (Rados
et al., 2004} and lead to an elevated loss of carbon,

The impact of the pH on growth and production
of O, glutamicum AaceF

The degradation of urea by urease leads to an
increase of the pH of a culwre by the Tormation of
During 28 hours of shake flask
cultivation, the initially adjusted pH value of 7
shifted in a cullure with © gleamicnm AoceE cells
to pH &, while the pH was not changed for the
Ageell  wrel-E1S8*  culture due 10 urease
imactivity., The pH significantly impacts the
appearance of carbon dioxide in the mediom.
Depending on the pH, CO; dissociates in waler 1o
different ratios of free carbon dioxide. carbonic
acid, hydrogen carbonate and carbonate as follows
(Bailey and Ollis, 1986; Buytendyk et al., 1927

ammionia.

ki Fast fast
COz+ Hal — HaCOs — HCOs™ + H™ — OO~ £ 217

According o Bailey and Ollis, a shill from pH 7 o
pH 8 results in ten- and 100-fold increased levels
of HCOW and CO,™, respectively, while a shift (o
pH 6.5 decrcases HCOO,
removes CO™ species {Bailey and Ollis, 1986;
Blombach and  Takors, 200131, In  confrast,
dizsolved 0. and H.CO, levels are not affected
by the pH. Compared to the urease inactive strain,
the Ageel strain generales incressed intracellular
levels of carbon dioxide.

four-fold and  almost

Results
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‘Table 2: Growth rate, L-valing titers and volumetric productivity of O glramicum daceE and Sacel wre-E1EE™
determined during batch fermentation at pH values of 6.3, 7 and #. The cells were cultivated in CGXIT minimal
medivm centaming 222 mM glocose and 254 mM scetate preparcd with and without wrea,

Strain Growth rate (p) L-valine (mM) Volumetric
productivity
immol L' h™')
pH6S | pHY pH% | pH6GS5 | pHY pH 8 pH 6.5 pH 7 pH S
dacek 019 | 026 | 031 32 36 9 0.99 1.67 0.22
W wred
dacel 0,12 nd. | 036 27 n.d. 15 0.91 nd. 0.37
Wi tired
AaceF
ureD-E188% a.12 (.27 n.d. 34 43 n.d. 141 20 ..
w itrea
AaceF
uref»-E188* n.d. n.d. (135 n.d. n.d. 12 m.d. n.d. 0.30
win wrea

Thus, in accordance with the pH dependency of
dissolved carbon dioxide, these results indicate an
increase of HOO, species for the Aacel strain, in
conlrast  w  the  AwceE  wrel-E18R*
Carboxylation reactions as conducted by PEPCx
and PCx require HCOS, This argues for in an
inereased elflux of glycolysis via anaplerosis in the
presence of increased HOO concentrations,

SLTHIT.

To analyee the influence of different pH levels on
growth and production, batch lermentation of C
glutamicien Aacel and Aocel wrel)-E188Y was
performed by mainlaining the pH at 6.5, 7 and &
{Fig. 4, Tab. 2}. Comparcd to the culdvation at pH
7, the growth rate was significantly reduced at a
pH of 0.5, especially by cultivation without urea
and with wrease inactivity (Tab. 2). Follmann and
co-workers observed the formation of H.O, under
acidic condiions in O glatamicwm wild-lype cells,
which might lead to oxidative stress. From
transcripiomic and proteomic studies ar acidic
conditions, they concluded that oxidalive stress
induces iron starvation, which in men reduces the
activity of TCA cyele enzvimes and consequently
leads to reduced growth (Follmann et al., 2009
The further reduced growth rate by caltivation

without urea or urease activity might be explained
by decreased oxaloacetate levels as a conseguence
of reduced anaplerotic activity. At a pH of &
erowth rates were signilicantly higher compared 1o
pH 7 (Tab. 2). Although . gletamicem s
traditionally cultivated at meutral pH, optimal
erowth is observed up o pH 9 by an increased
expression of genes encoding enzymes involved in
the TCA, respiration and  stress
(Barriuso-Tglesias et al., 2006; Barriuso-lglesias et
al,, 2008; Follmann et al., 20009}, In addition, the
increase of HOOy species under elevated pH as
mentioned above might contribule to the increase

resisiance

of oxaloacetate sapply necessary for enhanced
growth (Blombach and Takors, 2015).

Dwiring  batch  fermentation,  the  volumetric
productivity was decreased at pH 6.3 tor all steains,
and even stronger redueed sl o pH ol 8 The
volumetric  productivity  and  final  L-valine
production of the Agcels strain, however, seemed
to be more affected by the changed pH level than
the Adcel wref)-E1BRY strain (Fig. 4, Tab. 2).
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Fig. 4 The pH value influences hiomass formation and L-vabine prodoction of € gleamionm Avce® amd  Aacel
erel-EIRE* Batch fermentation was performed at pll values of A 6.5, B. 7 and C. B, which were maintained by
titration of 2 M hydrochloric acid and 2 3 potassiom hydroxide, © slfamicum Aacel (¢, m) and Ageef wre -
E188% { & ) cells were coltivated in CGXIT minimal medium contmning 222 mM glucose and 254 acctatc with (e,

& 3 and withoul urea (m, »),

Interestingly, the shift o pH 6.5 had a stronger
negative effect on  growth than on L-valine
production, while ot o pH of 8, growth was
improved but L-valine production was strongly
reduced for so far unidentified reasons.

1o

Comparative transcriptome analysis of
glutamicum Ancell and Ageell nrel)-E188=

Comparative ranseriptome analysis was perlonmed
of shake flask coltures to assess changes in gene
expression induced by the wreD-EI18S* mutation,
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Aboul 120 genes exhibited mBENA levels altered
more than 1,3-fold with, however, unexpected high
p-values (Tab. 51). Interestingly, the expréssion of
pyve encoding the anaplerotic enzyme PCxo owas
downregulated in the Aacel wreD-E188" strain,
which indicates a redoced (lux of pyruvate Wowards
oxaloacetate (Mahr et al., 2015; Peters-Wendisch
et al., 199%), Interestingly, the expression of ppi
cncoding glucose-G-phosphale isomerase was also
downrezulated suggesting an increased carbon flux
through the pentose-phosphate  pathway  (PPP),
which increases NADPH supply for Levaline
prodoction (Tab, 51), During engineering  of
Aace indeed, the deletion of  pgi
significantly  increased L-valine  production by
enhancing NADPH supply via PPP (Blombach et
al., 2008: Eikmanns and Blombach, 2014}
Similarly, "C flux analysis revealed an increased
Mux via PPP hy overexpression of genes encoding
L-valine biosynthesis cneymes in the AaeeE strain
{Bartek et al., 2011). which suggests an increased
[ux through the PPP as natural consequence of
NADFH

Slrains,

cnhanced demand for  L-valine

production.

Furthermore, mRNA levels of [dhd encoding
NAD-dependent L-lactate dehydrogenase, which
catalyzes the reduction of pyruvate to lactate, and
Nl encoding o menaguinone-dependent L-lactane
dehydrogenase. which catalyzes the oxidation of
lactate, were decreased. This implies a diminished
lactate metabolism as already observed during
metabolome  analysis  increasing  pyruvate
availakility for L-valine production (Mahe et al,,
2015; Stansen ot al., 2005; Toyoda et al.. 2009).
Moveover, we observed the downregulation of
several genes encoding proteins of the respiratory
chain (&0, 04D, gorB, aipE, apd) and the
nitate/nitrite antiporter wark in presence of the
areD-E1R8® mutation, Diflerent studies reported
on the uwpregulation of mBENA levels of genes
involved in the respiratory chain under alkaline
conditions (Barriuso-Tzlesias et al., 2006; Bamiuso-

11

Iglesias et al., 2008; Follmann et al., 2009). This
result agrees with the observed up-shift of the pH
during shake flask coltivation of O glutamicnm
AgeeE in contrast to the AagceE wrel)-E|8R¥
culture.

Conclusion

Dwring cultivation of the L-valine producer C.
wlhwrenicum Accel, we observed that the lack of
ured in the mediom or the mactivity of urease (hy
the disruption of the accessory protein wreld)
increased L-valine production by about 100%
(hlahr et al., 2015), We hypothesized that carbon
dinxide as  hy-product  of urea  degradation
stimulates the activily of anaplerosis by redocing
the availability of pyruvate as precursor for L-
valine production, Anaplerosis plays indeed an
important  role as the additional lack of the
amaplerotic enzyme PCx in the AaeceE strain
resulted in impaired growth and almost abolished
erowth in the wrease-inactive AwceE sirain. The
addition of hydrogen carbonate restored growth of
bath strains demonsteating that the provision of
COy by urcase is essential for anaplerolic acivity,
Furthermore, the beneficial effect of urea deficieny
on L-valing production was removed during CO,-
acrated batch fermentation. The degradation of
urea increases the pH of a colture by ammonia
[ermation. Balch lermentation al pH 8 showed
improved growth, but strongly reduced L-valine
formation. Together with transcriptome analysis an
increased  activity  of the central metabolism
lowering pyruvate
proposed gt alkaline conditions. Purther studies
such as metabolic flux analysis using “'C-labeled
urea could elucidate targets of formed COy and its
influence on metabolism of C glutamicum Aacek.
Altogether, our efforts revealed the urgent need of
considering appropriate environmental conditions

likewise availability  was

ez, COYHCOL, pH, medium componenls el
during metabolic strain engineering and process
development besides genomic modifications,
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Screening of an Escherichia coli promoter library for a
phenylalanine biosensor

Regina Mahr, Raphael Freiherr von Boeselager, Johanna Wiechert and Julia Frunzke

Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jiilich, Germany

Abstract

In recent years, the application ol genefically-encoded biosensors for the engineering of microbial
production strains and tfor monitoring metabolite production during fermentation processes opened
new opportunities for indostrial biotechnology, The construction of transcription factor-based
bivsensors, however, requires the selection ol suitable transcription lactor-promoter pairs to
convert the concentration of effector molecules into a measureable output signal. Here, we present
an efficient strategy to screen promoter libraries for appropriate parts applicable for hiosensor
design. To this end, we pooled the strains of the Alon library containing about 2000 different
Escherichia coli promoter-gfpmui2 fusions, and enriched L-phenylalanine-responsive promoters by
togeled rounds of positive and negative selection using Muorescence activated cell sorting (FACS).
The promoter of mir, encoding an L-tryptophan-specific transporter, was identified as suitable
sensor device for L-phenylalanine detection. Furthermore, we performed a comparative analysis of
different biosensor constructs and revealed the strong influence of the biosensor architeciure. As
provf-of-principle, we successfully applied the mfr sensor in a FACS high-throughput (HT)
screening of L-phenylalaning producers after random mutagenesis of an E. cofi MG1655 strain.
These results fllustrate the utter utility and applicability of the developed screening approach to
identify novel sensor candidates.

or periplasmic-binding proteins, which can he

Introduction exploiled for the construction of  biosensors,
Transcription factor {TF)-hased hiosensors consist
of a repolator that hinds intracellular  effector

milecules and in

During  the  last  years,  genctically-cneoded
hiosensors have revealed their great potential as
valuable tools for metabolic st engineering and
lor cnabling new insights in bloprocesses al single-
cell resolution (Delvigne et al., 2004 Liv et al.,
200 54; Muhr and Frumeke, 2016; Schallmey el al.,

o activiales or Tepresses
gradually  the cxpression of tlarget gencs. By
transcriptionally fusing target promoters to genes
encoding  aute-fluorescent proteins (AFPs). the
intracellular

effector  concentration  can  he

2014y By converting the intracellular effector
molecule concentration into a measureable ourpot,
biosensors are in demand in cases, in which an
easily detectable phenctype is not  available.

Microorganisms are eguipped with o vanety of

metabolite-sensing mechanisms including

teanscriptional regulators, riboswitches, enzymes

converted into a measurable optical signal (Maht
and Fruneke, 20065 Biosensors bused on bacterial
TFs have successfully been implemented in high-
throughput (HT) screenings ol mutunt libraries
using floorescence-activated cell sorting (FACS)
[Rinder er al,, 2012; Mustafi et al., 2012; Siedler et
al,, 2014y or in biosensor-doven  adaplive
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luboratory  evolution  approaches for the
improvement of micrabial metabolite production
{Mahr et al., 20015). Fuorthermore, the efficient
screeming of  feedback-resistant cnzymics
{Schendzielorz et al, 2014}, dynamic pathway
regulation {Dahl er al., 2013; Liu et al., 2015k Xu
et al., 2004, Zhang et al., 2012) and the analysis of
population heterogeneity at the single-cell level
{Holfmann ot al, 2013; Mustali el oal, 2014)
demonstrate the broad applicability of biosensors

{Liu er al.. 2005a; Mahr and Fronzke, 20189,

Muture has evolved o broad runge ol (hese sensor
devices. However, only a few regulators and
comesponding  larget weiell
charueterized to date. Freguently, the plethora of
tarpeted promoters hampers the identification of
suitable biosensor candidales. Thus, workflows
cnabling the rtapid identification of Tesponsive
promoters are required for efficient sensor designs,
In this study, we developed a convenient sirategy
for screening promoter-AFT libraries using FACS.
As  proof-of-principle, we  screengd the  Alon
library 2000 different
promoter-gipmer? - fusions  in Fseherichic coll
(Zaslaver et al., 2006) in order to identify
biosensor candidates suitable for the detection of

genes  huve  been

consisting  of  uboul

[-phenylalanine.

The aromatic amino seid L-phenylalaning is one of
the most besides L-
glutamate, L-lysine and L-methionine and faces an
increasing commercial interest (Sprenger. 20007,
As precursor for the artificial sweetcner aspariame
or s building block for pharmaceotical producis,
including HIV  protease
inhibitors, L-phenvlalanine  has  played an
important role for many years (Sprenger, 2006;
Sprenger, 2007 Forthermore, the commerncially
interesting aromatic compounds pinosylvin {van
Summeren-Wesenhagen and Marienhagen, 2013),
cinnamic and p-hydrosycinnamic acid {Sariaslani,
2007; Vargas-Tah et al., 20135) or phenylpyruvic
acid (Hou el al, 20015) are svnthesized [rom the

demanded  aminoe  acids

infusion  fluids  or

precursor L-phenylalanine and serve as notable
flavor enhancers, cosmetical or pharmaceutical
building hlocks,

Besides  chemical  syvothesis and  hydrolylic
cleavage of proteins, microbial fermentation has
now become the dominating production process
(Bongaerts ot al, 2000 Leuchtenberger et oal.,
2005; Sprenger, 2006; Sprenger, 2007). £
seTves  as o oan importanl  platform organism
producing  L-phenylalanine - as most
microorganisms — via the aromatic amino acid
bivsynlhetic  pathway  (shikimate  pathway})
(Bentley, 1990; Sprenger, 2007). Rational
engineering approaches yielded sirains producing
final L-phenylalunine titers of up to 50 gL' from
alucose (Backman et al., 1990: Riiffer et al_, 2004)
anl T'.i.4g]_." based on glycerol as subsiraie
(Weiner et al., 2004,

cofl

In  this  stdy,
promelers were enriched by toggled rounds of
sclection and  counter-selection  from  the Alon
library, This approach revealed the promoter of
mitr, cneoding an L-tryplophan-specific ransporier
(Pittard et al., 2005), as an appropriate part for
sensor design. Subsequently, hiosensors based on
the mir promoter
successfully applied during FACS HT-screening of
a mukant Eocoff K-12 MGL655 hbrary [or sirains
with increased phenylalanine production.

L-phenylalanine-responsive

were characterized and

Material and Methods

Bacterial straing, media and growth conditions

In this study, the E. coli wild-type strains K-12
MG1635 and DHSa were used (Blattner et al.,
1997 Hayashi et al., 2006). All bacterial strains
maed in this study are listed in Table 1, Unless
indicated otherwise, £ cofi cells were grown on
Iysogeny broth (LB) asar plates at 37°C or pre-
cultivated in LB medium for eleht hours at 37°C

and  17rpm  (Sambrook et al, 2001

Results
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Table 1: Bacterial strains, plasmids and oligonucleotides used in this study.

Strains or plasmids

Relevant characteristics

Source or reference

Strains
F.eoli DHSq

E. coli K-12 MG 1655

Plasmids
pEKEx2

pIC1

plCl-venus-term-BS

pJC1-mir sensor-
typel
pJCl-mir sensor-
typel
pJC1-mnir sensor-
typed
pJC1-mitr sensor-
typed

Olizgonuclestides
BamHAIL lacl fw

EcoRY _lacl_rv
TyrR_inv_fw

OL_TyrB_inv_ry
Ptac_fw

Ptac_rv
OL_200bp_Pmir fw
Pmir_rv

STOP_RBS_ wvenus fw
Yenus_OL_rv
tyrR_OL({BamHI,pJC
1)_fw
Pmtr_OL{BamHLp]J
Ch_fw
PtyrR_OL{Pmitr)_rv

GFP int ry

supE4d Alacll 169 (080acZDM 15} hsdR17 recA ]
endd D gyvrd 90 thi-1 relA
F lambda il rfb-50 rph-1

Kan", ."\]'I'.IPHZ iV, oriVe . Poo lacl, pBLI,
pUCIR

(EL coli-C. gluramicum shuttle vectar)

Kan®, Amp" ; oriVe,. orive,.

(AL coli-C. pluraniciom shuttle vector)

pJC1 derivative containing a tecminator sequence
of Beacillis subeiliy behind vens

pHC1-P -venns

pIC -lacl-P ~tvrR-Po -venus
PICL-P o tyrR-P mvetiies.

pIC1-F -t B-P o -venis

Sequence (5'-3°)"

Invitrogen
(Blattner et al., 19497,
Hayashi et al., 2006)

{Eikmanns et al., 1994}

(Cremer et al., 1990)
Heyer, unpublished
This aticly

This study

This study

This stucy

CGATCAGCGACGCOGCAGGGGEATCCGOGTTGOGCTCACTGCCC

(BamHI)

GATATCOTCTGAATCTOGTGTATATGGCGAG (EcoRV)
CATATACACCAGATTCAGACGATATCCATATTOGCGCTTACTCTTCG

TTC

CATCGGCTCOTATAATGTGTGOAGTTCCCATGCGTCTGGAAGTC

GOGAAAGGTTTTGCACCATTICGATGG

TCCACACATTATACGAGCCGATGATTAATTGTC
COAATOOTGCAAAACCTTTOGCGCAGTTACTGGGUGATGCAC
ATATCTCCTTCTTAAAGTCTATGCATTGCACTOTACCAGTACAC
TAGACTTTAAGAAGGAGATATATGOTGAGCAAGGGOGAG

AAAACCGACGGCCAGTACTAGTTACTTGTACAGCTCGTCCATGC (Spel)
AGGGCGATCAGCGACGCCGCAGGGGGATCCTTACTCTTCGTTCTTCT
TCTGACTCAGAC (BamHI)
AGGGCGATCAGUGACGCCGCAGGGGEATCCGCAGTTACTGGGCGAT
GCACAG (BamHI)
GCGGCTGTGCATCGOCCAGTAACTGCGGGGATTTCCGTCGTCAGCTT
ATC

CAAGAANTTGOGACAACTCCAGTG

"Underlined sequences hizghlight introduced recognilion sites Tor restriction endonucleases (resiriction
cndonucleases indicated in parenthescs).
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Subsequently, a second pre-cullure was inoculated
in a shake flask containing 20 ml M9 minimal or
phenylalanine  production  medium  with  0.5%
glucose and cells were incubated overnight at 37°C
and 120 rpm. The following day, cells were
wiashed with 0.9% (w/v) NaCl solution  and
adjusted to an optical density (ODew) of 0.5 in
S0 ml fresh minimal medium. Further incubation
wis dene al 37°C and 120 rpm. As  minimal
mediom, M9 mediom (6 gL Na HPO, 3glL
KlLPOy, 05/ NaCl 1g/l NILCL | mM
Me30,, 0.l mM CaCl,, | mlL trace  element
solution [3 oM ammoniom  molyhdate, 400 pM
H:BOs, 30 pM CoCly, 10pM CobOy, 300 uM
MnCl, and 10pM ZnS0y filer  sterilized]:
adjusted to a pH of 7) or an adapted phenylalanine
produection medivm (0.3 /L MgSO, « 7 H-0,
0.015 /L CaCly ® 2 HaO), 3 g KHLPOG 12 gfL
K-HPO, 001 g/l MaCl, 3/l (NHLS0,,
0.075/1.0 g/L FeS0, x 7 H0Of Na-citrate, 1.5 ml/L
trace element solution {2 g/l AL{SOy) x 1B HaO,
0.75 g/l Co50. x 7 HAO, 2.5 /L Cus0. x 5 HO,
0521 H.BO: 24¢/L Mn50, x H.O. 3glL
MNaxMoCl & 2 HaO), 2.5 /1. NiSOy = 6 HaO, 15 g/l
Zns0y 7 H: dissolved in ddH-O a1 pH 1-2],
00075 2/ thiamine/HCL,  ingredients  were
dizssolved in ddH.0 [pH ~ 7.2] and filter sterilized)
were used (Genigh et al, 20020 Miller, 1972),
When necessary, 50 pz/ml kanamycin was added
to the mediom, All dipeptide stocks were dissolved
in the respective minimal medium and  stored
at -20°C,

Recombinant DNA work

Cloning  technigues  including  PCR, DNA
restriction and ligation were performed according
to standard protocols (Sambrook et oal, 2001,
Synthesis of oligonuclectides and sequencing of
plasmids was performed in subcontracting with
Eurolins MWG Operon ( Ebersleld, Germauny ), All
plasmids and oligonucleotides are listed in Table 1.
Plasmids were isolated from £ ceoli osing the
Gene]ET Plasmid Miniprep Kit (Thermo Fisher
Scientific, Waltham, Massachusetts, LISA).

For the construction of the pICl-mir sensor-lype2,
the facl fragment was amplified from the pEKEx2
veclor  using  primers  BamHI_lacl_fw  and
EcoRY_lacl_rv, the nrR fragment was amplificd
with primers TyrR_inv_fw and OL_TwR_inv_rv
from genome DNA ol E celi K-12 MG1655, the
Py promoter was amplified from the pEKEx2
vector with primers Prac_fw and Prac_rv, 331 bp
upstrieam o the ranscriptional start site of the P,
promoter  was  amplified from  genomic DNA
of £ eali K-12 MGI655  using  primers
OL_200bp_Pmatr_fw and Pmtr_rv, and veris was
amplified from pJCl-venus-term-BS with primers
STOP_RBS wvenus_fw  and  Venus OL_rv.  All
fragments were pooled o an eguimelar
concentration and cloned into the BamHI and Spel
digested wector plCl-venus-lerm-BS by Gibson
assembly  (Gibson et al., 2009, For  the
constiuction  of  plCl-mir  sensor-type3.,  the
biosensor construet was amplified  without  fael
from the pICl-mir sensor-type? vector using
primers tyrR OL(BamHLpJC1) fw anl
Venus OL rv. For the assembly o plCl-mir
sensor-typed, the fragment P e-tyrf was amplified
from gepomic DNA ol E coll using primers
R OL{BamHLpIC1)_fw
PryrR_OL{Pmer)_rv, and P.. and venos were
amplified rom plCl- sensor-lyped using primers
Prmtr_fw and Venus_OL_rv. The plasmid plC1-
mir sensor-lypel wias constructed by amplilving
Py.. and venns from the plCl-mtr sensor-lypel
vector using primers Prtr_OL{ BamHLpJC1)_fw
and Venus_OL_rv, The respective fragments were
cloned into the BamHIL and Spel digested pICI-

and

venus-term-B5  vector  wvia Gibson  assembly
[Gibson et al,, 2000,
For cloning purposes, £ eafil DHSo was

transformed using the RbC1 methoed (Hanahan,
19830, All other £ celi strains were ranslormed
using the transformation and storage solution

(TS5} procadure (Chung et al., 1989),

Flow cytometry
Flow cytometric (FC) analyses and cell sorting

were  performed wsing a FACSAra 11 flow

Results
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cyvtometer {Beclon Dickinson, Sun Jose, USA)
equipped with a blue solid state laser (488 nm
excilation), Forward-scatter characteristics (FSC)
(85C)  were
derected as small-angle and orthogonal scatters of
the 488-nm laser, respectively. EYTP [uorescence
was detected using a 502-nm long-pass and a
S30/30-nm band-pass FACS-Diva
stllware 6.0 was used 1o record the messurements.,

and  side-scatter  characteristics

filter set,

During analyses, thresholding on F5C was applied
to remove background noise, As precision mode,
Four-way purity wus used for cell sorting with a
threshold rate up to 1LOO0 events per second. I
nel stated  ditferently, cells wene sorted on agar
plates or on MuoltiScreen HTS 96-well [iller plates
{Millipore, Billerica, USAY 1o separate cells from
the FACSFlow'™ butter (Becton Dickinson., San
Jose, USA) as alrcady deseribed in (Mahe et al.,
2N 5). The filier containing the sorted cells was
with  single-use  scalpels  (Braun,
Melsungen, Germany) and inoculated in fresh
medium, For FC analyses, £ coli colture samples
wiere diluted o un ODg of 0.05 in FACSFlow ™
sheath fluid huffer (B, Heidelberg, Germany).
Thie analysis software Flowlo VOI00E was used o

cxcised

visualize and evaluate the data (Tree Star, Ashland,

LISA).

Microtiter plate cultivation

Online monitoring of growth and fluorescence was
performed  in 48-well microtiter  FlowerPlates
(MFPs) using the BioLector cultivation system
{m2p-labs GmbH, Baesweiler, Germany) (Kensy
et al,, 2009) I not stated differently, 48-well
MPFs were inoculated with £ cali cells from a
pre-culture to an QD of 0.5 in a total volume of
T30 ul. In the BioLector instrament, cells were
incubated at 37°C and agitation of 1200 rpm.
While hiomass production was recorded as the
backscatlered  light  intensity  (light  wavelength
620 nm; factor of 200, e¥FP
fluorescence was measured at an excitation of
510 nm and an emission of 532 nm (signal gain
factor of 6{). The specific fluorescence for the
cells is defined as the eYIP floorescence per

signal  gain

backscattered fight intensity (given in arbitrary
units, a.u.).

Screening of the Alon library for phenylalanine-
responsive promoters

Initially, all straing of the Alon promoter library
consisting of about 2000 different  promoler-
gfpmni2 fusions i £ coli K-12 MGI6SS were
pooled (Fig. 1a) (Zaslaver et al, 2006). To chis
end, the single clones stored in 96-well plates
(Munc™  MicroWell™  Plates, Thermo Fisher
Scientific, Waltham, Massachusetts, USA) were
transfermed o aear plaies (Nune™ OmnmiTrayv'™
Single-Well Plates, Thermo Fisher Scientific,
Waltham, Massachuseits, USA) containing LB
with 50 pMh kapamyein uwsing a 96-well plate
replicator stamp (LabArt,  Waldbilttelbrunn,
Germiny ) and incobated at 37°C lor 18 hours, The
colonies were washed from the agar plates using
0 ml LB and kanamycin and a Drigalski spatula,
and collected ina 1 L shake fask. Then, cells were
incubated for one houwr at 37°C and 120 rpm.
washed in 1x PBS and 2 ml of the mixed library
were transferred to 100 ml M9 minimal mediom
containing 0.5% (wiv) glucose and kKanamycin,
The culture was incubated overnight at 37°C and
120rpm.  The following day, aliquots were
prepared of a glyceral eryo-stock containing a final
glveerol concentration of 25% {v'v) and stored

at -8,

For screening, S00ul of the glycerol stock
containing the pooled Alon library were used o
inpculate 20 ml M9 minimal mediom containing
0% (wiv) glucose and kanamyein, and incubated
ab 37°C and 120 rpm (Fig. la). While the desired
effector was added to one culture for induction, a
second culture withoul effector was prepared as
negative control. Prior 1o sorting, the cultures were
incubated for three hours, To screen for induced
(“ON") promoters. 0.5-1 x 10° of the top 35% cells
were sorted on filter plates and the excised filter
was  incubated in 4 ml LB with kanamyein
overnight (Fig. la)., The following day, cells of
I mil pre-culture were pelleted, washed with 1x
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FBS and inoculate 20ml M9 minimal
medium  containing  (0L5%  (w/v)  glocose  and
kanamyein, To screen for  effector-responsive
promoters, which do not show a fuorescent signal
under non-induced conditions {TOFF™ promaters),
the vells were incubated without effector for four
hours (Fig.la). Subsequently, 0.5-1 x 10" cells
from the botom 35% gare, which was pre-defined

used to

during the lirst sorling step. were sorted on fller
plates and incubated in 4 ml LB with kanamyecin.
After two togeled rounds of selection, cells were
spotted as single clones on agar plates and were re-
cultivated in the BioLector system for verification
ol effector responsiveness and delermination of the
dynamic range (Fig. la) From positive clones.
plasmid DNA was prepared and sequenced using
primer GEP int_rv o identily isolated promoters,

Fluorescence microscopy

Fluorescence microscopy was performed on a
Zeiss Axioplan 2 imaging microscope eguipped
with an AxioCam MRm camera and a Plan-
Apochromat 100x, 140 Oil DIC ail-dmmersion
objective. The AxioVision 4.8 software was used
to acquire and analyze the (#eiss,
Gittingen, Germanv), Samples were spread on a
microscope slide coated with a thin layer of 400 pl
1% agarose and covered hy a cover glass.

images

Rundom mutagenesis and FACS sereening

Bandom  mutapencsis using  the mutagen N-
methyl-N-nitro-MN-nitrosoguanidine (MNMNG) was
adapted from the protocol of (Harper et al, 2001
Prior to mutagenesis, @ pro-culture of B colifphC1-
mie sensor-typel cells in LB mediom was dilured
1:50 in 20ml fresh LB mediom  conlaining
kanamycin. At an 0Dy of 2, 5 ml of this cultore
were harvested and washed twice in 2.5 ml (L1 M

citrale bufler (pH 5.5} (two-fold concentration of

the cells). Subsequently, the cells were incubated
with 30 pa/ml MNNG (dissolved i DMSO) for
3 minutes at 37°C and 60 rpm. As control, a
second culture was incubated containing the same
amount of DMS0, Then, the cells were washed
twice with 5 ml 0.9% {w/v) saline and cultivated in
Falcons for two hours in LB medium containing

4% pglocose at 37°C and 170 rpm. Mulagenized
cells were stored as cryo-stocks in LB medium
containing 0% glyceral (wivl al -30°C for up lo
one weck.

Fior two LB
noculated withe 1 ml of the cryo-stock conlaining
mutagenized  and  non-muotagenized  cells,
respectively, The following day, the pre-cultures
wore used o phenylalanine
production medium containing (1L.5% elocose and
kanamiycin to an ODgw of 005, Cells were
ingubated for six hours at 379C and 120 rpm,
Subsequently, 2.5 x 107 cells with a sienificantly

screening, pre-cultures  were

inoculae 20 ml

increased  Tuorescenl  oulpel  compared oo the
control were sorted on Olter plates as already
described above (section “Flow cytometry™), The
filter with the cells was inoculated in LB medium
with  kanamycin  overnight, further
enrichment steps sorting 1% 10° high fluorescent
cells using FACS were performed w averd false
positive isolates. Finally, enriched cells were
spotted a8 single cells on agar plates (Nung™
Ommni Tray ™ Single-Well Plawes, Thermo Fisher
Scientific,  Waltham,  Massachusetts, USA)
containing LB agar with kanamycin, Single cells
were picked using a 96-well plate replicator stamp
iLabArt, Waldbiittelbrann, Germany) inocualated in
Bo-well  plates  (Nunc™ MicroWell™  Plates,
Thermo Fizher Waltham.
Massachusetrs, USA) containing LB medium and
amtibiotic, and incubated in the Microtron Pro
(Infors HT, Bottmingen, Switzerland) for eighe
hours, For storage, glycerol at a final concentration
of 20K was added and plates were frozen at -80°C,

and  two

Scientific,

Yerification of isolated mutants after FACS

HT-screening
[solated mutants were first inoculaled in 48-well
MPHs  containing  725pl LB mediom  and

kanamyein plus 25 pl of the thawed glyveerol siock,
and incubated at 37°C overnight reaching the
stationary phase. Subsequently, 25 pl of this pre-
culture used 1o inoculate 4d-well MEPs
comtaining 725 pl  phenylalanine  production
medivm.  Incubation and online monitoring  of

WETC

Results
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backscatter und Nuorescence were performed in the
Biol.ector system, After 28 hours of incubation,
the supernatant was analyzed for amino acid
production wsing ulira-high performance Hguid
chromatography (uHPLC).

Ouantification of amine acid production

Using uHPLC. amino acids were guantified as
artho-phthaldialdehyde derivatives by automatic
pro-eolumn derivalizution  and  separalion by
reverse-phase chromatography on an Agilent 1290
Infinity LOC ChemStation (Agilent, Santa Clara,
USA) eqguipped with o Nuorescence deteclor, As
eluent for the Zorbax Eclipse AAA 3.5 micron 4.6
% 7.5 mm ocolumn (Agilent, Santa Clara, USAL a
gradient of Na-borate bufler (10 mMM NuHPO,.
10 mM Na,B.0x, pH 8.2: adapted 1o operator’s
guide) was applied. To determine the concentration
of amino acids in the supernatant, culture samples
were centrifuged for 10 min at 13,000 rpm and 4°C
and  diluted  according  w the  expected
concentration.

Results

Proof-of-principle: Screening for galactose-
responsive promoters

For the sraightforward  development of  novel
hbiosensors with desired  sensor  properties, HT
approaches are required for the efficient and rapid
identification of suitable parts, Here, we pooled all
E. coli B-12 MG1655 strains of the Alon library
containing about 2000 different promoter-gffrme?
fusions on the plasmids pUAGH or pUAL3ZY (Fig.
1a) (Yaslaver et al, 2006). Toggled rounds of
selection and counter-selection were conducted o
enrich promoters responsive to the desired effector
metabolite (for a detailed description of this
workMow, the reader 18 nelerred w the material and
methods section). Initially, cells were incubated in
the presence of an effector molecule to activate
g2 expression [Tom inducible promoters (Fig,
l1a). Subsequently, 0.5-1 % 10 cells of the top 35%
Muorescent cells were isolated using FACS, To get
rid of constitutively activated promoters, isolated

cells were cultivated without the effector molecule
followed by sorting of 0.5-1 x 10" cells from a pre-
detined botiom 353% gate, The togeled selection
procedure was repeated twice o reduce the amount
of false positive clones and to enrich desired
promoter-AFP  fusions. Finally, selected clones
were isolated and verified by monitoring growth
and Ffluorescence using microscale  ciltivation
system, Plusmid DNA - from cells  containing
metabolite-responsive  promoter-gipmut?  fusions
was prepared and sequenced o identify isolated
promiter fusions (Fig, lal

In a first set of experiments, we screened for the
well-characienzed  promoters  activaled by the
cffector galactose (Fig. Sla). In a frst step, the
Alon library cultivated without effector molecnles
was split by FACS in fractions containing cells
with high and low fuorescence to teduce the
amount of constitutively active or repressible
promoters, To mduce responsive promoters of the
pooled Alon library, we cultivated the cells in
20ml M9 minimal  containing  0.5%  (wiv)
galactose and kanamyein, For counler-selection
and as reference culture (for FACS gating), cells
were cultivated in M9 medinm with 0.3% (wiv)
glucose. Prior to sorting, the cells were grown for
six hours at 37°C and (20 rpm. We enriched cells
with a high Muerescent outpul in the presence ol
galactose from 3% to TR% within five steps of
toogled selection (the gating strategy is depicted in
Fig. Sla). Within two counter-selection steps,
constitutively activated or false positive cells were
redoced From 25% to 4%, While 78% of the cells
wire induced in presence of galactose, only 9% of
the cells showed an increased fluorescent signal in
presence of glucose alter five selection steps (Fig,
Sla). The plasmid DNA of nine clones showing
the strongest activation in presence of galactose
was sequenced: cighl clones harbored the P
gipmui2 fusion and one clone contained the Py, -
gfpmd2 fusion, During culfivation in microtiter
plates, both promoter-gipmur2-fusions revealed a
range of 2.1 defining the
maximumm fold change of the reporter output in

minimal  dynamic
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Fig. 1 Screening of L-phenylalanine-responsive promoters. a Schematic overview of the screening process. Initially,
the Alon library consisting of about 2000 promoter-gfomur? usions of £ colfil K-12 MGL1655 was pooled and
incobated in the presence of o desired effector molecale o induce respensive promoters. In the first step, the top 33%
Muorescent cells were sorted o iselate induced ("ONT) promaters (green gafed, In the secomd step, the cells were
incubatcd withoul cifector molecules (0 sepamale constlubve “OMN" promolers [rom mesponsive promoters (Lhis ms
called “OFF” promolers) by sorling the botlom 35% Ouorescenl cells (red gate). After two mounds of 1oggied
selection, effecior-responsive promoters were solated vig FACS and cultivated in macrotier plates w venby the
screening outeaine. Plasmmd DNA of pozsitive clones was prepared and sequenced to identify isolated promoters. b
Screening of the Alon library for L-phenvlalanine-responsive promoters, For induction, 3 mM of the dipepride L-
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the presence of 0.3% galactose (Fig. S1b). Both  concentrations and  under  glucose  limitation

isolated promoters regulate the expression of well-
known genes. While pal§ encodes the galactose
isorepressor which represses the tanscription of
genes involved in the transporl and cutabolism of

palactose in presence  of  high  salactose

iSemsey et al., 2007 Weickert and Adhya, 1992).
lneZ encodes the B-galactosidase representing first
structural gene of the lae operon, which was
reported o be  weakly induced by smalactose
(Williams and Paigen, 1968},
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Screening  for
promoters

In the nest step, we screened lor L-phenylalanine-
responsive promoters. Therefore, the pooled Alon
librav was cuoltivated m 20 ml M9 minimal
medivm  containing 0.5%  (wiv) glucose and
kanamyein (Fig. Ib). After one hour of incubation,
the dipeptide L-alanyl-l-phenylalanine (Ala-Phe,

L-phenylalanine-responsive

[inal conc, 3 mbd) was added as ellfector molecule.
After three hours of induction, activated cells
falling within an upper 353% gate were sorted using
FACS (Fig. Ib). For counter-selection,  the
sereening medium was prepared without Ala-Phe.
We wsed dipeptides for screening, as previous
churmclerizations  of  biosensors  [ealured  an
improved uptake of short peptides - the
intracellular hydrolysis of which  leads 1o an
increase of the respective amino acids in the
cvioplasm (Mustafi el al., 2012; Payne, 1977,
Simmonds and Griffith, 1961 ). Within five steps of
togaled selection, no significant enrichment of
strains [alling within the respective gale was
observed. However, a distinel subpopulation of
cells displaying an increased reporter output
became visible in the second and thind round of
induction. This population was not detected in the
non-induced control sample, After five togpled
selection steps, the fraction of cells in the induced
state was about two-fold higher in comparison o
the contral sample 3.7% and 2.0%. respectively
{Fig, 1b). Plasmid DMNA of 23 isolated struins
{from gate P} was sequenced and the following
promoter fusions were identified: mrr (12 clones;
L-tryptophanfindole:H™  symporter),  lacZ  (three
clones; B-galactosidase), prpfl (one clone; 2-
methyleitrate DMNA-binding transcriptional
regulator), artP (one clone; L-arginine ABC
transporter-ATP binding subunit), vei T (one clone;
DNA-binding trunsenpuonal regulator), nepG (one
clone; nuclenside:H' symporter), gadA (one clone;
lutamate decarboxylase A), fadB (one clone; fatty
acid oxidation complex, o component), vl (one
clone;  J-sulfolactaldehyde  reductase) and  dind
fone clone; antitoxin of Yaf-Dind wxin-anttoxin
system  and  DNA-binding  transcriptional

repressor). Verification of the isolated sirains vig
microscale  cultivation  revealed a  significant
response 0o Ala-Phe for the mir promoter (minimal
dynamic range 2.9), the godd promoter (minimal
dynamic range 1.6 and the ar® promoter
tminimal dynamic range 1.3) {Ig. S1ch

Characterization of the mfr promoter fusion

The wmur gene encodes an |-tryptophan-specific
transporter, whose exprossion s regulated by the
two transcriptional regulators TrpR (tryptophan
repressor) and TyrR (ryrosine repressor) (Fig, 2a)
(Heatwole and Somerville, 1991; Pitand el oul.
2005, Whipp and Pittard, 1977). As reported in
previous studies, the expression of me 15 indoced
in the presence of phenylalanime wand tyrosine and
fully repressed in presence of ryptophan (Whipp
and Pittard, 1977, In order o verify the mir
promoter as suitable part for biosensor design, the
respective promoter  region  (ncluding 331 bp
upsiresim  of the wanscriptional start site) was
transeriptionally fused to the vellow fluorescent
protein-encoding gene verns by adding AAGAAG
as tibosommal binding site (RBS) seven base pairs
upstream of the start codon and cloned into the
vector plCL (termed plCl-mir sensor-typel) (Fig,
3abk In presemce of the effector amino acids
containing  dipeptides Ala-Tyr and Ala-Phe, the
biosensor featured minimal dynamic ranges ol 3.7
and 7.8, respectively (Fig. 2b). In presence of Ala-
Ala, Ala-Trp or without dipeptides, rthe strains
exhibited a low basal Nuorescent signal. This result
was  confirmed by fluorescence  microscopy
showing low Venus Muorescence after cullivation
without dipeptides and a strong signal in the
presence of 3 mM Ala-Phe (Fig. 2d). Additionally,
mixtures of dipeptides containing aromatic amino
acids {overall concentration of 3 mb) were added
to the cells during microtiter cultivation (Fig, 2c).
While the combination o Ala-Tyr and Ala-Phe
featured a minimal dynamic range of 8.2, induction
was counteracted by the addition of Ala-Trp 1o the
dipeptide mixture. This confirms the previous
findings that repression by TrpR in the presence of
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L-ryptophan  dominates the regulation of mir
EXPression.

Quantitative characterization of  different
hiosensor designs based on the promoter of mir
In the following, we aimed to analyze the impact
of  wvariation  in the biosensor  design on
functionality., Therefore, four different hiosensors
bsed the pronmoter
wonstructed and characterized (Fig, 3 and b, All
hiosensors consist of the transcriptional fusion of

designs on IR were

the mite promoter and venws as described above
{Fig. 3u). Additionally, biosensor lypes Lwo lo four
include R under the control of Py, (types two
and three) or the native promoter (tvpe Four),
respectively. To control the expression of Py we
included the facf gene in sensor construct type two

20 Time h

1o

Fig. 2 Mative architecture of the sr promoter and
characterization, 8 The pir promater consists of a weak
TyrR hox (located -98 o -11S hps melative to the
transcriptional start site) and a strong TyrR box (located
between -0 and -H3 bps) as well as two Trpk binding
sites located between -3 and -20bp, and between -1 1 and
=24 bps downstream of the transcripional start site
(arrow) Chitpefecocve.org) (Keseler et al., 2013; Pittard.
1996; Pittard ot al, 20053 Phenylalanine-dependent
gene expression is promoted by binding of TyrR 10 the
strong Tyl box and to the C-ferminal domain of the o-
subunit of ENA  polymerase, while for tvrosine-
mediated expression additional binding of TwR to the
wink TyrRE box i reguired. The mmscription s
completely blocked by binding of the TrpR repressor in
presence of  Letrvpmophan, b Specific . Venus
fluorescence of £ ool K-12 MGIO55/PIC 1 -mitr scnsor-
typel cultvated without dipeptides (m) and in presence
of 3 mi Ala-Ala (), Als-Pho (#), Ala-Trp (2 and Ala-
Tyr (&) ¢ Specific Venos fluorcscence of the same
sirain cultivated withoul dipeplides (1) and in presence
of egual mixtures of Ala-Phe and Ala-Tvr (), Ala-Phe
and Ala-Trp (0, Ala-Trp and Ala-Tvr (A) and Ala-Phe,
Ala-Twr and Ala-Trp (x) with an overall concentration
of 3 mbd. Cultivation was performed in the microtiler
scale at 37°C and 1200 rpm in M% minimal mediwm
containing (0.5% {wiv) elucose and kanamycin. The data
represent dverage  valugs  from three  independent
baologrical rephicates. d Phase contrast and Nuonescence
microscope images of B call K-12 MGIOS5/pJC 1 -wmirr
sensor-type] without (left panels) and m presence of
3 mM Ala-Phe (right pancis),

(Fig. 3a). The application of biosensors for FACS
HT-screenings requires a detailed guantitative
characterization of the bicsensor response in lerms
of specilicily, sensitivily, dynamic range und the
applicahility using FACS, Here, referring
Mustafi and coworkers, a competitive dipepride
feeding  strategy  was used to  describe  the
relationship between effector input concentrations
amd the biosensor oulpul (Mustali et al, 2012),
More precisely,  different
containing  dipeptides { Ala-Phe) and non-effector
dipeptides (Ala-Ala) competiive for dipeptide
uptake systems were added to  adjust
intracellular concentration of effector molecules
(Payne, 1977; Vrljic el al., 1996). Biosensor types
two and four, incloding the tvrR gene, featured
minimal dynamic ranges of 4.3 and 4.5. Both

T

ratins  of  cffector

the

Results
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Fig. 3 Quantitative charscterization of different promoter designs. a For all mer biosensor constructs, the vesiy
encoding a vellow Muorescent protein was cloned under the control of the sur promoter. Sensor (ypes two o four
encode additionally mvef under the P (tvpes tweo and three) or the native P.e promoter (tvpe four). For the
regulation of P, focf was cloned on the construgt of hinsensor type two, b Relationship between the added
extracellular comcentration of L-phenylalanine and the specific Venus Muorescent output of the mur biosensor 1y pes
one (). two (4, three (@) and four (& ) in E cofi K-12 MG16335 on the pIC1 vector. 25 oM IPTG was additonally
added to #sitr biosensor tvpe two, ¢ The specificity of the mre biosenzsor was tested in the BioLector using £, coli K-
12 MGI635pIC-mer sensor-tvpel  cells, The differemt smino geids and dipeptides were added inoa final
concentralion of 3 mbd, The specific Venus Nuorescence was recorded afler sis hours ol collivation, d FACS
histograms showing the Yenus fluorescent signal of £ colf pICL-mir sensor-typel after seven hours of cultivation in
the BioLector in presence of different dipepiide ratios, b and o To adjust the intracellular aming acid, different ratios
af the dipeptide containing the effector aming acid amd the competing newtral dipepide Alis-Als were added 10 an
overall dipeptide concentration of 3 mM. Represented data show average values from three independent biological
replicates

constrocts  displayed  considerable  high  basal  signal at extracellular concentrations above 0.3 uM
specific  fluorescent  outputs  without  effector Ala-Phe, while the lack of vl expression resulted
maolecules or in the presence of 3 mM Ala-Ala  inoa saturated signal at 1.5 mb (Fig. 3h).

{Fig. 3b). Biosensor Lypes one and three displayed
minimal dynamic ranges of 3.2 and 4.1 showing
also a lower level of basal specific fluorescence.
Biosensors expressing fyrR featured a saturated

To verify the specificity of the mir sensor for
aromatic amino acids, £ eoli K-12 MGI655/pICTH-
mir sensor-typel  cells were cultivated in the

11
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presence of 13 different dipeptides and two amino
acids (Fig. 3c). We ohserved a significant response
to dipeptides containing the aromatic amino acids
L-phenyialanine and  L-tyrosine.  However.,  we
observed that the hiosensor responds to 3 mM Ala-
Mlet with a minimal dynamic range of 19, To our
knowledge, the activation of the s promoter in
the presence of l.-methionine has not heen
described previously.

For testing the suitability of the biosensors for
FACS HT-screening, £, coli K-12 MG1O53/pIC1-
mir sensor-lypel cells were incubaled in presence
of different ratios of Ala-Ala and Ala-Phe and
analyeed via Mow cylometry (Fig. 3d, Fig, 52) We
determined an increasing Quorescent signal in the
presence of increasing levels of Ala-Phe proving
the applicability of the hiosensor for FC analvses
and sereening.

Biosensor-based high throughput screening of
randomly mulagenized strains

T verily the applicability of the mite biosensor for
FACS HT-screening of phenylalanine producing
cells, the strain £ coli K-12 MGIG35/pIC] -t
sensor-typel was chemically mutagenized using
N-methyl-MN -nifro-N-nirosoguaniding  (MNNG)
{Fig, 4a). Mutant cells exhibiting an increased
hiosensor output were spotted on agar plates using
FACS,

Motably, also the analvsis of non-mutagenized
sensor cells revealed about (L6% high flucrescent
cells under all tested conditions (Figz. S4). This
obscrved  phonotypic  heterogencity  was  either
evoked spontanecusly by the expression of the
biosensor. or reflects varability of the metabolic
state of hacterial cells within the population. Tao
discriminate between phenotypic heterogeneity and
the rise of spontancous (sensor) muolations, we
isolated 2 x 107 spontanecusly fluorescent cells
{gate P1, 0.06%) and cells from the  entire
population as control (gate P2) using FACS (Fig.
54). Bolated cells were re-analyzed by FC after

12

cight hours of coltivation in minimal medium.
Remarkably, both cultures showed a comparahle
fraction of spontaneously flucrescent cells (0.6%
of gate PL, 084% of gate P2) suggesting that the

observed spontaneous  fluorescence did  not
originate  from  genomic  medilications  or
contaminations, but  might  reflect  phenotypic

heterogeneity in terms of the intracellular amino
acid level (Fig. 54) Furlhermore, cells [tom the
entire population (gate P2) and spontaneous cells
{gate P1) were spotted as single cells on agar
plates. While about 96.7% of sorted cells from the
entire popalation (population P2) formed colonies,
only 48 19% of the sorled spontancous  cells
(population PL) regrew as colonies on aguar plates,

To get rid of these spontaneous cells and in order
(o enrich positive mutants, we followed a selection
strategy: mutant cells were twice soted and re-
cultivated hetween the two sorting steps (Fig, 4h)
{Mahr et al., 2015). The two enrichment steps
resulted in an increase of top fluorescent cells from
2% (gate P1) to 53.8% (gate P2, Fig. 4h). As
controd, the enlite population of non-mulagenized
cells was sorted without revealing an increase in
the fluorescent output, From gate P2, 480 single
cells  exhibiing  a  significantly
fluprescent output were spotted on agar plates
(viability 72.3%) (Fig. 4b). Thereof, 20 randomly
selected mutants were cultivated in microtiter
plares and the supernatant was analyzed after
28 hours for wmine acid production using uHPLC
iFig. 4c, Fig, 83}, The majority of clones displayed
incregsed  biomass  formation  and  significantly
increased specific fluorescent signals compared o
the non-mutagenized control strain (Fig. 53). Out
of 90 randomly selected clones, 71 featured higher
L-phenylalanine production than the wild-type
strain £ coli K-12 MGTA35/pIC -mir sensor-
typel (40 pM £1.7) 27% ol the analysed mulanly
depicted  two-fold  increased  L-phenylalanine
production. The best mutant produced 4 3-fold
L-phenylalanine (160 phd)
comparad to the wild-type strain (Fig. 4c).

increased

incrzased levels

Results



Results Screening of a promoter library for a phenylalanine biosensor 79
FACS HT =screening : Microtiter
a ngndam . and enrichment of SFT'"E' ?IF scale UHF;LC’.‘
mulagenesia it sl single cells sirllivation analysis

L=k |

Fluue

b After mutagenesis Bfter the 2% anrichment stap
;:' Control Mulagenized cells '; Control Mulagenized cells
=107 B4 % ol L
I | : JI'_ |
% 10°) sieboogy | B 104
= | =
%mﬂ 8 10
B2 a1l E -1:
B 107 5107
@ 104 e R B e
;% 10 19" 16" 10° 10" 10" 10" 10" 10" E. 0010t 10 100 40" 10t 107 10t e
FSC-H (a.u) FSC-H jau.)
€ aﬂj = MG1655 wild-type (wt)
%_ | - I:_sl:l!_alr.-,_'_d_ r_1|l:.|l_a__r1l._‘:er;__1|'r_|5
[ =
=
% a0y - .
@
=
| A
10 20 30 40 5 a0 70 &0 a0

0
Pdutant strain Mo.

Fig, 4 Biosensor-based FACS HT-screening, a1 Schematic overview of the screeming procesy, Imitially, E. coli K-12
MG1655/p)C]-mir sensor-tvpel cells were mutagenized wvsing the chemical mutagen MWNG, Mutagenized cells
were analyzed by Aow cytometry (FC), and 2.5 x 10 10 1 % 10° mutants with the top Aucresecent outpul wens sorted
and re-cultivated. To enrich positive mutants, this step was repeated twice. Subsequently, single cells were spotted
omn agar plates, re-cultivated s iselated clones in the BioLector for 28 hours in phenylalanine production medium and
aming acd production in the supernatant was determined by tHPLC, b The dot plots display the Wenus fluorescent
sipnal apainst the forward scatter (FSC) of control (pon-mutapenized) and mutagenized cells afier munapenesis and
after two entichment stepy, Mutagenized cells were sorted from gates P1 and P2, mespectively, As control, cells of the
enfire population were sorted. ¢ L-phenylalanine production of $) isolated mutant clonas (hlack bars) in comparison
to the non-mutagenized E, coli K-12 MG1655/pJC] -mir sensor-typel strain {red bars), The cells were cultivated in
the BioLector in phenylalanine production medium contiming (.5% (w/v) glucose and kanamycin at 37°C and
1200 rpm. Prodoction was determined by uHPLC after 28 hours of incubation,

Some mutants displayed an increased dynamic eleven clones with the highest dynamic range was
range of the sensor cutput (Fig. 53). To identify  sequenced. Interestingly, only ooe mutant
whether mutations within the biosensor are  displaved a base exchange {-54 bp downstream of
responsible, the mir sensor-typel frapment of  transcriptional start site; cytosine exchanped to

13



80

Screening of a promoter library for a phenylalanine biosensor

thymine) in the mitr promoter region of the
plasmid-encoded hiosensor.

Discussion

In this study, we developed an elaborated strategy
to use FACS for the screening of promoter libraries
for metabolite-responsive promoters, which can be
applied as snitable parts for the construction of
biosensors, For this purpose, the Alon library
presents an excellent source as it consists of aboul
20000 different promoter-gfpmed2 fusions (more
than 75% of all E coli promoters) and hence,
readily available parts for sensor design (Zaslaver
etal., 2006), For screening, we pooled all strains of
the Alon library and by loggled rounds of selection
under induced and non-induced conditions using
FACS, melabolile-responsive  promoters  wers
cariched (Fig. 1, Fig. 31 For prool-ol-principle,
we screened for galactose- and phenylalanine-
responsive promoters, During the enrichment of
galactose-responsive promoters, we successfully
enriched galS and facd promoter-glpm 2 fusions
whereol the regulation by galactose is well-studied
{Fig. S0 (Williams and Paigen, 1963).

In a second step, we tested the screening approach
the of  L-phenylalanine-
respomsive promoters. The control of biosynthesis
and transport of aromatic amine acids underlies a
complex  hierarchy regulatory
{(Sprenger, 2007} including feedback-inhibition of
pacemaker  enzymes  (Ogino al.. 1982),
transeriptional control by the regulators TyrR and
TrpR (Herrmann and Weaver, 1999: Pittard, 1996)
altenuulion  mechanisms  at the
interface {Chen  and

for identification

af Processes

el

as  well  as

transeriptional/translational

Yanofsky, 2003). This challenges a  well-
wconsidered  sereening stralegy.,  which i an
important - prerequisite for  the  final  output

comesponding to the guotation Y ou get whal vou
screen for” (Schmidt-Dannert and Arneld, 1999,
As promaters respond 1o effector amine acids at
different speed snd rmate, the tme point of
screening and for sorting is of crucial importance.

14

Due o the underlyving mechunisms including the
adaption to growth mediom, the uptake and
processing of effector molecules (Loo et al,, 2014;
Payne, 1977), the actvation of the gene cxpression
machinery (Bintu et al., 2005b; Carey et al., 2013;
Fritz et al., 2014; Mikeld et al, 2013) and the
maturation of fluorescent proteins (Craggs, 2009;
lizuka et al., 2001), we decided 1o sorr .-
phenylalanine-(aming acid-induced cells alter fooar
hours and galactose-{carbon-source)-induced cells
after six hours of cultivation. Moreover, the impact
of the medium composition on e.g. carbon/nitrogen
stress-response be
considered. We used MY mimmal medium doe 10
its lack of other amino acids and carbon source and
due o its very low auto-fluorescence (Miller,
1972} Furthermore, promoters show  diflerent
strength of activation and FACS analyses feature a
certain variance in the observed signal due 1o
technical artifacts. For these reasons, the choice of
the appropriate sorting gate is essential for the final
outcome of the screening. We have chosen an
upper and lower 35% gale for the entire library
which excluodes 3% of the cells with a mean

starvation  or needs

Nuorescent outpul (Fig. | B) The clearly separated
sorting gates eliminate cells with a constitutively
mean  fluorescent  outpuf,  To  get  oid  of
constitutively actvated promoters, we established
the toggled rounds of selecting promoters with a
high Moorescent output under induced conditions
and promoters with a low Tuorescent oulpul onder
non-induced conditions. Using this strategy, we
successfully  enriched  galactose-  and  L-
phenylulanine-responsive  promoters (Fig 1. Fig.
510 Our screening process was developed in a way
that promoters activated in response o effector
miclecules of
negatively-regulated promoters is proposed o be
achieved by selecling low [Tuorescent prometers in
presence of the effector of interest (EOT) and by
selecting high thoorescent promoters in the absence
of an EOL By coupling the responsive promoter 1o
a strong repressor, which in turn controls the
expression of an AFP encoding gene via a tightly
regulated prometer, for instance, the output of the

were  enriched. The selection
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negatively-regulated promoter can be inverled into
a positive visible signal, which might be as well
suitable for the application as biosensor (Mustafi e
2005; Ohlendorf et al., 20012). Allernative
approaches for screening promoter libraries mostly
vely on the cultivation and characterization of
single clones one by one, which appears cost-
intensive and laborious (Bjarnason er al,, 2003:
Keren etal, 20013; Robijns el al., 2004; Zaslaver cl
al., 2006; Zeevi et al, 2011). Here, the
implementation  of FACS  pre-screening  using
toggled rounds of selection as described can surely
reduce the time-consuming screening process,

al.

1

During screeming  [or L-phenylalanine-responsive
prometers, the promoter of mir encoding a high-
affinity L-tryprophan-specific permease {Heatwole
and Somerville, 1991; Hiraga et al., 1965 was
cnriched. Heatwole and Somerville deseribed the
activation of mir gene expression by phenvlalanine
and tyrosine via the TyrR repressor and the
superior repression of same by L-tryptophan via
TrpR. The regulstory control enables the cell 1o
inecrease  the cellular level of L-tryplophan in
presence of high L-phenylalanine and L-tyrosine
concentrations  or 1o reduce the uptake by
inhibiting the expression of mir in presence of high
Lryptophan levels. This allows modolating the
intracellular ratio of the three aromatic aming aeids
{Heatwnle and Somerville,
Pircard, 19913, At the molecular level, TyrR
dimerizes in presence of L-phenylalanine, binds w
the stromg TyrR box and promotes the recroitment
of RNA-polymerase, while hexamerization of
TyrE and the additional binding o the weak TyrR
box in presence of L-tyrosine is required for
tyrosine-mediated  gene  expression (Fig. 2ZA)
(Pittard, 1996; Pictard et al, 2005). Lryprophan-
mediated attachment of Trpl to the 'Trpk binding
completely  hinders ENA - polymerase
recroitment  (Heatwole and Somerville, 1991
Pittard et al., 2005), This differential expression of
the mrr gene observed  during
hiosensor (Fig. 2). For the
construction of the mir biosensor, the promoier

1991; Sarsern and

siles

wits  likewise

characterization

15

includes both TrpR and TyrR binding sites. The
presence of the TrpR boxes, however, implies

consequently  the  disturbance  of biosensor
signuling under inercasid L-tryptophan
concentrations, Hence,  high intracellular

concentrations of L-phenylalanine and L-tyrosine
masked by high L-tryptophan
Here, the sensitivity
bivsensor could be reduced by sereening an crror-
prone library of the TrpR boxes for candidates with
reduced sensitiviry towards tey ptophan
iSchendzielorz et al, 2MM4; Wise and Kuske.
20000,

would  be

concentrations, of the

The analysis ol dillerent biosensor designs (Fig, 3
A and B) revealed a significant mlluence on
biosensor characteristics in terms of sensitivity and
dynamic  range in
additiomal copics of the transcriptional reprossor
TyrR encoded on the plasmid, The additional feel?
expression evoked a high basal Muorescence and a
sarated  biosensor signal at  already low L-
phenylalanine concentrations {up o 021 mM
culernal Alu-Fheh In conlrast, native TyrR levels
ledt to similar dynamic ranges, but a reduced basal
fluorescence and decreased sensitivity towards L-
phenylalanine (Fig. 3 B and D). Plasmid-based
expression of fwR resalts in significantly increased
the (runscriptional  regulator TyrR
compared to native expression. Conventional gene
expression  analyses  uosually  rely on simple
promoter-reporter fusions (Keren et al, 2013;
Robijns et al., 2004; Zaslaver er al., 2006), For the
construction  of  hiosansors, however,  (he
corresponding TF s traditionally added not only 1o
express heterologous genes, but also to avoid
ttration effects of the natve regulator. For single
target regulators like Lrp of Corynebacrerium
glurasnicwm [Lrp biosensorl, which controls as
solely trget the expression of the BrnPE exporler
(Lange et al, 2002; Mustafi et al, 2012), an
increased number of TF binding sites {due 1o
plasmid-based  expressiond  generates
effects due to the natorally tight regulation of the
transcription factor 1o a low pumber of binding

levels  of

titration

presence  and  absence  of
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sites (Brewster et al, 20014). Global regulators like
TyrlR contralling a complex regulon with multiple
binding sites, however, are nol necessarily affected
by a few additional TF binding sites due to their
nateral high protein  abundance. Here, the
additional  expression ol the  (ranscriptional
regulator might significantly influence the global
regulation, Furthermore, the rate of ocoupation of a
promoter by lrunscriplion [aclors recruiling  the
EMNA  polymerase  through  protein-protein
interaction determines the rare of gene expression -
hence, the sensitivity and dynamic range of the
hiosensor (Bintu et al., 2005a; Bintu et al., 2005h0;
Tubor et al., 2009, Thus, the higher the level of
the transcriptional regulator is, the more eflector
malecules can bind simuoitaneously resulting in a
highly sensitive response and salurated operalor
sites  al  low  concentrations.  Likewise.  the
introcluction of a second operator site or the
modification of runscription factors were used o
increase the sensitivity and dynamic range of
sensor constructs in different studies (Lutz and
Bujard, 1997; Mahr and Fruneke, 2015: Silva-
Kocha and de Lorenzo, 2012; Tabhor et al., 2005,
Our studies revealed that the architecture of a
biosensor can significantly influcnee the scnsor’s
output characteristics, For this reason, it is worth to
compare  different before
application.

biosensor  designs

Based on the observed biosensor performance
churacteristics, we chose the mir sensor type 1 lor
the application during FACS HT-screening of
Foeeli K-12 MG16535 chemically mutagenized
cells (Fig. 4). All biosensor Lypes featured aboul
0.0% cells with a strongly increased fluorescent
autput under induced and non-induced condilions
{data not shown, Fig. 84). Sortng and
cultivation of these spontansously induced cells
did nol resull in their enrichment, which suggests

re-

phenotypic  heterogensity  as  ovigin for  high
fluorescent cells. Furthermore, only halt’ of these

16

cells sorted on agar plates formed colonies, Due o
these results, we included additionally rwo
enrichiment steps into the FACS HT-screening 1o
reduce the amount of false positive isolates (Fig. 4
A About 30% of 90 isolated and charactenized
mutant strains showed at least two-Told up o 4.3-
fold increased L-phenylalanine titers (Fig. 4 ),
which falls within the scope of success of similar
studics (Binder ot al., 2002; Mustafi el al., 2012;
Santos and  Stephanopoulos, 2008). One great
disadvantage of L-phenylalanine is its growth
limiting effect (Grinter, [998). At extermal L-
phenylalanine concentrations of 5 gL, growth
rale of E eoli wild-lype cells was Tound 1o be
reduced by hall (Polen et al., 2005), In this case,
the iterative enrichment of high fluorescent cells
selects  aguinst  Ddse-posilive but also growth
defeetive colls al the same tme. This might reduce
growth-defective  mutants  with  high -
phenylalanine production.

Cienetically-encoded biosensors have enlarged the
repertoire of tools for enginesring and monitoring
industrially-relevant production strains, Although
nature provides a plethora of sensor devices, the
identitication of suitable candidates requires the
deep  knowledge of  underlying
mechanisms and intensive research. Efficient and

regulatory

automatized workllows are requined, which enable
the rapid identification of novel and soitable sensor
devices. Here, the screening of a promoter-AFP
library using FACS has shown o contribute 1o the
rapid and easy detection of novel biosensors for
ERZINSEring and IMproving slrains For
biotecchnological purposcs. Furthermore, we were
able to demonstrate the significant influence of the
biosensor design on the sensor's performance

characteristics. Taken together, these etforts
contribute to the exploitation and development of
custom-made  biosensors according . W the

rescarcher™s purpose.

Results
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Abstract Living organisms have evolved a plethorn of sens-
ing aystemns [or the mira- and eximeellular detection of small
milecules, ons or phvsical parameters, Several recent studies
have demonstrated that these principles can he exploited to
devise symthetic regulatony circuits for metahaolic engineening
sirategies, In this context, transeriptiion Fctors (TFs) controf-
ling mictobial physicleey at the Jevel of ranseription play
mujor role in biosensor destgn, sinee they can he implemented
in synthetc circuits controfling geneg expression in dependen-
ev ol, for example, small molecole production. Here, we ne-
view recenl progress on the ulilzation of TF-based bosensory
in microhinl biotechnology highlighting different areas af ap-
plication. Recenl advances in metabolic engmeenng reveal
TF-hase] sensors o be versalile loels for siraim amd emeoyme
develupment using high-throughput (HT) sereening statemcs
and adaptive lahomtory evolution, the optimization of heter-
alogons pathways vie the implementation of dynamic control
circuits and for the monitoring of single-cell productivity in
live cell imaging studies. These examples underdine the mm-
mense potential of TF-based biosensor civeuils bul also dén-
Lify limitations and room for further optimieation.

Kevwords Transenphomal regulator - Biosensor - Metabohe
engineering - Sereening - Evolution - Single-cell analysis
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Introduction

In the last century, the era of metabolic engineering resulted in
an gnomnous nerease in microbial processes for the prodoe-
tiom af value-added compounds, such as proteing, smino
acids, biofuels, organic acids amd polymer precorsers, Based
om renewsble foedstocks, the efficient establishment and opti-
mization af hinprocesses is the key tooa mansition from the
currently petrodeurn-dependent and energy-intensive chemical
indlustry towards o sustainable boecanormsy.

Exploiting microorganisms [or lanre-seale production re-
guires, on the one hand, elabomted high-throughpot (HT)
trals For sbram engimeering, and, on the other hand, technigques
for mnalviemg the performance of producer stmins amil the
efficiency of hioprivesses. Recent studies using metabalic
flux amalysis and in silico modelling approaches enable new
ingights nto the hacterial physiology durnng fermentation
(Wiechert and Noack 200 1) however, the fommation of insf-
ficienl subpopulations allecting the outcome of the bioprocess
is often neglected (Delvigne and Goilin 20104; Lieder e al
20014y, While rational strain engineering &5 limited by the high
physiological complexity ol microhes, traditional randim mu-
Lagerniesis strategivs ane resiracied by the selection and soreen-
ing capacity, which requires a readily sccessible phenotype
Tmkedd to product formation (Dietrich et al, 2000; Schafimey
etal, 2004), During the past decade, advinces in synthetic
bialogy signilicantly contributed to the establishment of movel
metabolic engineenng wols (Ng et al. 200 5; Wendisch 2014).
For example. genetically encoded hiosensors have proven w
b ol high value for various applications in strain enginegring,
dynamic pathway control and single-cell analvsis. The basic
principle is based on metabolile-sensmg proteins (eg. an-
seription factors, eneymes or periplasmic-hinding proteins)
o R AS (e.g. riboswilches and viboeymes) which are activat-
el upon hinding of eflector molecules and comiral i uen the
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expression of an actuator parl (e.g. Muorescent reporiars,
repulatory switches or selection markers), This hiosensor
architecture enables the intacellular detection of metabalite
production by converting it inlo 2 measureable outpul
{Fig. 11,

In the following sections, we will review recent progress
regarding the design of bosensor circuits based on transcrip-
tion factors {TFs) and their application in metabolic enginesr-
g strategies including HT screening approaches, dynamic
pathway contrel, biosensor-driven evolution and single-cell
analysis {Frz. 2). We will not include the application of TF-
based blosensors for the detection of envirohmental pollut-
ants, which is reviewed elsewhere (Femandez-Lopes el al.
2013; van der Meer and Belkin 2014, For recent review ari-
cles on BN A« and FRET-based binsensors, see Frommer of al
2009), Liang etal, (20013, Michener et al. (2002}, Schallmey
etal (2014) and £hang etal. (2401 5).

Exploiting nature®s toolbox—Iiranseription
factor-based biosensors

Living organisms have evolved a variety of different sensor
principles to monitor the intra- or extracellular accwinulation
ol small molecules. ions or changes in physical parameters. [n
prokarvotes, T'Fs play s major role in physicleegical adaptation
by controlling gene expression at the level of transcripton—

Lypically by interfenng with the binding of the RNA polvmer-
ase o DNAL The activity of TFs can be affected by the inter-
action with small {effector) malecules, ons, phyaical param-
elers (ep. emperalure or pll), prolein-protein mleraction or
protemn modification. In several recent studies, researchers
have demonstrated thiat these mechanisms provide a versatile
teollox for applications in metabolic engineering and single-
cell analysis of production stadns (Table 1) (Liu et al. 2010 5a;
Michener et al. 2012¢ Schallmey et al. 201 4).

Especially, metabolite-responsive TFs have proven to be
valuable tools for bictechnological applications and have been
integeated into a diverse set of synthetic repulatory circuits
etabling the detection of] lor example, aming acids {Binder
et al. 20012 Mustafi et al. 2002), succinate {Dietrich et al.
20113), butanol (Dietrich et al. 2013}, malonvl-Cos (Xu
et al. 20134, b) and secondary metabolites (Siedler et al.
2014b). These circuits are typically based on a previously
well-characterized TF which limas the rapid access to novel
metabolite sensors to a small set of known TFs, However, the
principle of substeate-induced gene expression [(S1GEX),
where fragments of a metapenomic libeary can be lipated into
an operon-teap vector in feont of a suitable reporter gene {e.g.
ofp), might reprasent an option o oveteome this limitation
{Uchiyama and Mivazaki 2010b; Uchivama and Watanabe
200, Ongmally developed for the screening of novel en-
myvmes and biosynthete operons, this design can in principle
also be exploited to screen metagenomic libraries for effector-
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Fig. 2 “ersatile spplications of TF -based baosensors, Bioscnsers with an
opracn! resdout, o2 production of an nutofieorescent protein (AFP), ore
cffizient teols for the. gh-throughpet (07} screening of lanze mutint
librarizs using fluorescencc-notivated cell sorting (F4CF). Bioscnsoer-
driven evolution has proven a convenient stritegy o increuse
production by deratively imposing an artiticial seloctve pressure on the
fuorescens owtput of o biosenser using FACS or selection schemes

responsive TF-promoter pairs. Furthermore, global databascs
like DBL (oo transcnptionfactor.orz: (Wilson etal. 20081,
Repl'recize (hitpe/repprecize thl.pov/RegPrecize; (Novichkoy
etal. 20133} or PRODORIC ( www, prodoric.de; {Miinch et al,
20023) are useful tools to gain information on prokaryotic
transcription factors and regulons. Finally, plenty of
specics-specific databascs are available, including
RegulonDB (hitpzregnlondb.ceg unam.mx; {Salgado ot al,
20063) and EcoCyve (httpsfecosve.ong; (hesoler et al 200 31)
for Escherichio cofi or CMRegMNet (www lzem.ich ufime br!
cmregnet; {Abreu et al. 2013)) for corynebhacrerial and
mycobacterial species which also provide valuable
information regarding regulatory circuits for the
development of nowvel sensor devices,

Bezides classical one-component TFz, the principle of two-
component signalhing (TCS) represents a promismg made for
the extracellular detection of small molecules in production
atmins or synthetic communitics. Provious studics have al-
reacy demonstratcd that the modular design of TCS can be
cxploited o create sensor kinases with novel effector specific-
ities and to tmansduce the information o the level of gene
cxpression {Ohfendort et al. 20025, In a recont study, Ganesh
and co-workers reported on the construction of a chimeric,
malate-responsive TCS by fusing the sensor domain of
halk { Bacilfus subalic) to the kinase domain of Envsd
{Escherichin cofi) thereby controlling the activity of the
appC promoter in response to extemal malate aceumulstion

"Online monitoring

Frcadu it
Taporter wigta:

Integratzd into synthelic regulatory: cmreoits, hinsensors can be used for
the dynamic control of biosynthete pothways in order 40 avoid, For
expmple, the scsumoiiton of e intermedinges. Finally, biosensors
are convenient tooks for non-invasive onfine monitoring of production
processes wnd or analysis at smale-cell resslufion usmg FATS and e
cell frmagimg in microthnsdic chip devices

{Crancsh et al. 2005). To ensure specific siznal transduction
and to avold detrimental cross-talk to host TCSs, the stoichi-
ometry, the expression level of the protein components, as
weell as the potential phosphataze activity of the sensor kinase
remain critical aspects to be considered for the desian of TCS-
based biosensors (Podgomaia and Laoh 20133,

An alternative prnciple for intra- or extracellular sensing is
represemted by extracytoplasmic function { ECE) sigma factors
{Maszcher 2013). The orthogonality of ECF-based switches
has recently been demonstrated by a proof-of-prnciple study
describing the construction of a bistable switch in £ cofi
{Chen and Arkin 2012) and was tfurther developed by
Fhodivs et al., who characterized ECF sigma tactor familics
in bacteria using bininformatics. The authors reported on 20
highly orthoeonal combinations of sizma factors and their
cognate promaoters { Rhodms et al, 200 31, These studies pro-
vide a prommsing basis for the design of synthetic cireuits in
metabolic cngineering,

High-throughput serecning

Genetically encoded biosensors enable the specific fransfanon
of intraceliular product accumulation into & screenable (eg
fluorescence) or selectable (e.g antibiotic resistance) output
b driving the production of a reporter protein (Fig. 1R).
Comsequently, an important field of hiosensor application 14
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Table 1 Cherview of TE-hased hicsensoes applicd in bicteclnological strain developmon and seeeeniing approaclcs

Tr Analyee Host chassis  Outpud Appheaton
At besed Isopenkeny] diphosphine L. coli Mty herry Irprovenient of sopentenyl diphospha e
om Aral of 2 cali {Tevzpen) production of B oedi asimg a Wosensor-

comfrolled mutlor sirategy, Vispaletmn of the
protuction Ty the bivsensor outpat {Claoa and

Keasling 2013)

BenR of B s Benzoate E, vall GFP Serecning of & metagencmics library for irmproved
amidase activitics (Uichivama and hdiyazaki
2010ka)

Bl of T I=Butanol fresponse 0 lingar FLoalld TetA-LiFP Impeovement of | -butanol prodiction of £ el by

Futanlinmnes and kranchod-chain aleohols) a hinsenaor-hased aclection scheme.

Sumultaneans menitorng of growth amd
flunreseenos ds measure of the hicsensor output
{Dictricl et al. 2001 3)

CwsB of & glutammonm O-aeety] {home-) senne Celwapncem eX TP Vizualushon of sulphur limitutien at the smgle cell
lewel (el Proanm et ul 20033

Dcult of E, colf Buecinare E ol Teth Proot-af~concept study: linking dicarboxylic acid
prohiction to bacterial growth (Dhetrich et al.
2013%

FalR of £ coli Fany acidiacyl-CoA gl EFPrepulatony circwit hioplementaion of o synthenic circnt fordenamig

patbreay control of the produciien of fifty aeid
wtivyl ester m B el hang et al, 20030

FapT of B sufuifes Malonvl oA E vl eFPiregulatoey civcuir = Design and Kinetic analysis of a malony]-CoA
scnsor in £ cell (X ot al. 2004k}

+TF-hased negative feedhack loop for the dymamic

control of faty acid hiosyntheais in dependeney
of the intracetlular malony]-Cod lewel (Lin et al,
2001 5h)

Lol ol &, eedi P TS, bl B opali il Lave el mmagimge stady of the comeliton betwem
arvarth ntle Tuctustions srd metobahs
stnchistici v (Kiveet @ al. 20004)

Lap of & gliromceis L-valine Colwramicam Y TP * HT FALCS sereening ofa chemically mutngenized
L-leucing o, whiterisicisg wi Thrary (Mustafi ot al. 2002)
L-isolevcine + Live cell imaging of L-valine production of
L-micthinming PIHC-deficient . glifosican steains (hustafi

ctal 20143
+ Biosensor-driven evolution of L-valine
production {Mubr et al. 2005)

Ly of 7, plfuiiomicaim L-Ivsine O prletonican eYTF =TT EACS screeniing ofa chemeally mulagenized
|samgming ) grhwtenmicrem wi Wby (Bimsder ¢0al, 2002
L-histidirs: = Sereening of e libearies Tor feedinck.

resiabinl varin s ol ey sngynes Do amme acil
prresduction {Schendsicloe: el al. 2004

NahR of P protida Benzoic acids E call Teth Proof~afconcept stady: sebection of biseatalysts
by the implementation of & TF-based selection
scheme {van 3ink Feet et al. 2006}

Peal ol Pt presides B-elupm ipate £ oali Teth Prowf-o Feuneept sty Binking B-Kelosdipaie
presductinn to bacteral growth (Thetrich e al,
WA

SomB ot £ ool NADPH E roll cYFP HT FACE screening of a mutant library of the

NADPH-dependent alcobol dehydrogenase of
Locohaeiiios beevis for improved 4-methyl-2-
pentanone {Siedler o al, 2004u)

Tyrk of . enft L-tyrosine F. neald MlutlE-mdherry Imprevemont of L-nerosine productinon of &£ ol
using a bicsensne-contraliod nadator sirategy.
Wiswalization of the productson by the hinsensnr
ctitpat {Chos and Keasling 2013)

&) Springer



Results

Transcription factor-based biosensors: current state and future prospects

95

Agapl Microbsel Binrechnagl

imyplermentation in T screening approaches tor the selection
of novel or improved biocatalysts (Fig. 2) (Eppeling et al.
2005, Schallmey et al. 20141 Fluorescence-activated cell
sorling (FACS) was applied in seversl recent studies as a par-
ticularly suitable H'T technigque. For example, the transcrip-
tional regubatoe Lip of Corvebacterium glutmicnn was re-
cently implementad in a FACS HT screening approach for the
isolation of mutant strains producing branched-chain amino
acids {L-valine, L-levcine and L-isoleucing) from 2 mutant
litwary after chemical mutagenesis (Mustall et al. 20120, The
native tunction of Lp is o sense the intracellular accwmula-
tion of branched-chaie aming acids and methiomine, and
turm o activate the amioo acid export system BmPE in onder
fo avoid hizh intracellular levels and toxic effects of these
aming acids (Lange et al. 20123, These characteristics provids
an optimal basis for the construction of binsensors featuring
an appropriate dvnamic rangs and sensitivity for the improve-
ment of production strains. lnaddition. they have a signiticant
advantage in comparison w the use of sensors based on tran-
seriptional {binsynthesis) repressors or periplasmic-binding
proteins, which tepically display a very high effector atfinity.
The successtul application of a similar activator protein has
also been demonsmrared by a smudy using the LysG TF for the
izolation of L-lvsine-producing strains of O pluiamicim via
FACS (Binder et al, 2001 2).

Furthermore, T'F-based sensors were successially exploited
in engyme screenings. For example, the abovementioned
Lys(i sensor was used to screen enzyme libraries for
feedback-resisrant enzyme variants for the overproduction of
the effector amino acids L-arginine | N-aeetyvl-Leglutamate ki-
nase), L-histiding (ATP phosphoribosyl transterase) and L-
[vsine {aspartate kimase) (Schendzclorz et al. 2004), An
engineered Al variant was used by Tang and co-workers
for the directed cvolution of 2-pyvrone synthase activity (from
Cierbera Avhriday in &, eoli. Two imerative rounds of mutagen-
¢sis and sclection led to the izolation of cnzyme vanants
displaving ronghly 20-fald increased triacetic acid lactong
production (Tang et al. 20133, The considerable plasticity of
the Aral protein for the engineering of new effector specitic-
ities was already previcusly demonstrated in o stady where o
mevalonate-responsive Aral variant was used for the sereon-
mg of mhasome hinding site (KBS varants m front of 2
hydroxymethylglutaryl-CoA reductase (Tang and Cinnoe
2001 A promising altermative to the sensing of product for-
mation was recently demonstrated by the application of an
MADPH-responsive biosenzor based on & cofi Soxk, This
acnsor provides @ broadly applicable tool for the screcning
of NADPH-dependent enzyvines, a5 excmplified by screcning
adehydrogenase library for enzymes exhibiting improved cat-
alytic activity for the substrate 4-methyl-2-pentanone (Siedler
et sl 201 4a),

A an alternative to screeming strategies, TF-hased bigsen-
sors can also he integrated in cireuits o establish a product-

dependent selection scheme driving the expression ol Tor ex-
ample, an antibiolic resistance or toxin gene (Fig. Ih)
{Dietrich et al. 2013; Raman et al. 2004 van Sint Fiet et al.
20060, The prool=of-principle was provided by 2 study of van
Sint Fiet et al., who used the transcriptional activator Nahl2
which responds to benzoare and 2-hydroxybenzaldelvde by
the activation of ferd (o faeZ) expression (van Sint Fiet et al.
2006, The authors sugzested that this design enables the ef-
ficient selection of novel or imyproved biocatalysis for chemi-
cal syathesis. Suitability of such a circnit design was later, for
instance, demonsrated by the improvement ot 1-butanol pro-
duction of enpineered £ colf by using the putative o™ -tran-
scriptional activator BmoR and a 554—|:lr:pemlcn:, ilcohiol-
regulated promoter (M) tom Prewdomonay fadanovora
driving the expression of a feed-gip zene fusion (Detrich
etal. 20031, This setup alloweed the simultansous monitoring
of growth and fluorescence as a measure of the bicsensor
output.

Dynamic pathway control

In microcrganistms, small molecule biosynthesis is typically
controlled by g complex regulatory netwark which optimizes
metabolic flux according to the requirements of the host and
counteracts the accumulation of toxic intermediates.
Consequently, the simple integration of heterologous biosyn-
thetic pathways or enzvimes may lead to unbalanced tlux and
detrimental interference with the host metabolizm, In this con-
text, TF-based biosenzors can be used o construct synthetic
regulatory switches to dyvnamically regulate metabolic fluxes
{Fizs, 1b and Z). This has, for example, been achieved by
uzing the fatty acvl-CoA bicsensor Fadk o coordinate the
biosynthesis of acvl-CoA and ethancl as well as the cxpres-
siom of o wax-ester synthase inan £ coff swaim producing fatty
acid ethyl ester (FAEE) (Zhang ot al. 2012), Upon accumula-
tien of acyl-Coa, the repressor Fadlt dissociates from its tar-
pet promoters, leading to the activation of ethanol bissy nrhe-
s1s and the expression of wax-cster svnthase, which comverts
ethanel and acyl-Cod o FAEE, Similarlv, Xu and co-workers
designed a hvbrd promoter-regulator svstem based on the
malonyl-CoA-responsive TF FapR om £ coli (Xu et al
21aR). This regulator was further used to devise different
negative feedback loops for the dynamie control of the en-
mvmes aceiyl-CoA carboxylase and fatty acid swnthase for
improved fatty acid biosynthesis as a function of intraceliukar
malonyl-CoA levels (Liv etal. 20015b; Xuo et al, 2010 4a).

The fact that accumulation of toxic intermediates may lead
toa complex ceblular stress response can also be exploited for
the desizn of synthetic cireuits balancimg the pathway flus, In
contrast to the choice of & well-known TF for cireuit design,
transcrptomme analysis by DNA microsrrays or RN A-Seq may
be applicd to uncover genes whose expression s altersd upon
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accumulation ol a certain patbiway intermediate. For inslance,
exploiting the ceflular response ol £ oot to the accurmulation
ol Tarnesy] pyrophosphate was wsed to balangce terpencid pro-
duction {Dabl el al. 20030 However, transcriptome analysis
provides a snapshot view of the cellular response to metabolite
aceumulation and, thus, the dvnamic behaviour of the partic-
ular transcriptional response can hardly be estimated.
Furthermene, complex regulatory hisrarchies will likely hin-
der the exact descoption of the sensor tanstar curve and ifs
application tor the dynamic control of heterologous pathways.

Biosensor-driven adaptive evolution

Drue to the high physiological complexity of living organisms
and the Himited knowledae of their underlying mechanisms,
alternative approaches are in demand ro efficiently engineer
bacterial strains for biotechnolegical applicatons. Random
mutagenesis soategies, however, lead to several hundred un-
directed small nuelectide polymorphisms (SNPs) genome-
wide (Harper and Lee 200 2), which makes it difficult 10 iden-
tify mutations contributing to the desived phenotypic trail.
Evolution approsches deiven by mutation and selection have
provven a valuable tool to adapt microorganisms o stress
conditions (Lee et al. 2013; Oide ot al. 2013 or w0 improve
product formation (Keves et al. 2014; Xie et al. 2003), In
sgveral recent strategics. biosensors were successtislly imple-
mented o expand adaptive laboratory evelunon to includs
production phenotypes which are not natorally linked to bac-
terial prowth or fitness (Fig, 2) (Chou and Keasling 2013
Dietrich et al. 2013; Mahy et al. 2015; Yang et al. 2013},
Using feedback-repgulated evolation of phenatype (FREP).
Chow and Keashing dynamically regulated the mutation rate of
a sirain defective in the INA repair machinery by controlling
the natator gene (aedf25) a8 the actuator of a small molecule
biosensor (Chou and Keasling 2013}, The FREP smateoy was
auccesafully applisd in £ cofi i increase tyrosing production
up to fivefoldd, Lising the same strategy, the propagation of
high Ivcopene producer cells tor a total cultitvation of 432 b
vielded up to 6800 pa lycopene g dry cell weight, The
application of FREPR however, reaulted in several hundred
SMPs throughout the entire genome (Chou and Keasling
2130 To reduce the number of mutations, we recently
cstablished 8 biosensor-doven adaptive cvolution strafemy,
which iz based on the namral mutation frequeney of 107" to
L0 mutations per base pair per replication evele {Mahr et al,
2015, Using FACS, cells exhibiting a high biosensor output
(eY F P fluorcscenes) were ireratively isolated and recultivated,
Within five rounds of evalution. growth and the L-valing
product tormation of a pyrovate-dehvdrogenase-deficient
L plutamicum smain were significantly maproved, while st
the same time o three- o fourfold reduction in by-produc
{L-alanine) formation was achieved, Four out of seven

&) Springer

identified SWNPs wene reinlroduced into the parental strain
and were Found to significantly increase Lovaline production
ar to reduce by-product formation (ahe et al, 201 5.

Since wiificial selection schemes may result in the enrich-
ment of (false positive) cheaters, Raman et al. devised a com-
bination of a positive and negative selection strategy based on
the TolC selector (positive selection: sodium dodecyl-
sulphate: negative selection: using colicin E1. (DeVito
2008, This elegant design enabled the performance of mul-
tiple toggted rounds of selection to mprove the production of
naringenin and glocarie acid (Raman et al. 20140 Altogether,
these examples demnonateate that biosensor-driven evalution
represents o suitable stratepy w complement rational ap-
proaches for the engineering of production strains.

Single-cell analysis

Microbial metabolism is typically analveed using bulk tech-
niques neglecting single-cell behaviour and the formation of
complex phenotyvpic patierns {Huang 2009 Vasdekis and
Stephanopoulos 2015 Howewver, even clonal groups of mi-
croorganiams imay display significant phenetypic variation
which can significantly contribute to the fitmess of the whole
population in its natural ecological niche (Ackermann 201 3).
Cell-to-cell variability caused by inminsic or extrinsic factors
mav, however, strongly influence bioprocess performance and
stability (Delvigne et al. 2004; Miiller et al. 20000 The for-
mation of inetficient subpoputations has, for example. been
obhserved in the production of solvent by endospore-forming
Closiridic (Tracy et al ZO08), the production of lactobionic
acid in Peendowionas tgetrodens (Alonso et al. 20120 and the
production of heterologons proteins by £, coli (Want ot al.
200, Bgeiflus megaterivm (Miinch ot al. 2013) and veast
(Carlquist ot al, 2012; Mewman et al, 2000). However, only
a limited number of studies implemented TF-basod biosensors
for single-cell analvsiz of production strains, o far (Delvigne
etal. 2009; Hoffmann et al. 2013; Mustafi et al. 2014).
Recent advances in live cell imaging approaches using
microfluidic chip devices and flow cvtometry (FC) have sig-
nificantly contributed to the analvsis and monioring of micro-
bial papulations at single-cell resolution (Fig, 2 (Debvigne
and Goffin 2014; Grinberger et al, 2004; Vasdekis and
Stephanopoelos 2005), To address the variety of biologicsl
questions, different microfluidic chips have recently been de-
weloped for the spatiotemporal analysis of microbial popuola-
fiong, including two-dimensional picolitte bioreactor cham-
bers (Grimberger et al. 2002, 2014 as well a5 one-
dimensional designs (e.g. the mother maching ( Long ot al.
200 3; Wang et al, 20005 for the long-term study of hacterial
growth and Mlucrescence, The mother machine structure was,
for instange, applied o analyee the comelaton of growth e
fluctuations and metahalic stochasteity wsing 8 Lacl-sensor
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{Kiviet etal. 2014) In this study, Kiviet and co-workers dem-
onstrated how gene expression noise can affect growih rate
Auctuations and vice versa, leading o celiular haternpeneity
(Kiviet el al. 2014). Becently, the abovementioned Lip bio-
sensor was applied to monitor L-valine production of
prruvate-deliydropenase-deficient £ glwsamicum straing
grown in 20 microfluidic chip devices (Mustafi et al. 2014).
Iaterestingly, the addition of small amounts of complex medi-
um compounds. as ofien vsed durng production processes.
resulted m phenotypic heterogeneity during the production
phase ( Mustafi et al. 2074).

Cotnplementing live cell imaging studies. FC allows the
convenienl analysis of populations grown in large volumes
such as shake flasks or bioreactors by HT processzes (Huang
2009; Vasdekis and Stephanopoulos 2015), Combined with
biosensors, FOC has the potential to identify the formation of
subpopulations with respect to metabolic activity, co-facror
supply or cell evele state and to usge this information tor the
optimization of bioprocesses. For example, Delvigne and co-
workers revealed subpopulations differing in rpod expression
applying oscillating feed conteol during fermentation wsing a
transcriptional spod-gimd? sensor construct (Debvigne et al.
2008, Furthermore, recent advances in the establishment of
downstream analytical methods bring the analvsis of 1solated
subpopulations within reach. lehmiich and co-warkers
eatablished a workflow to analvze the proteome of FALCS-
isolated subpopulations by mass spectrometry (Jahn et al.
2013; lehmiich et al. 2010) This protocol was successtully
applied to analvze subpopulations occurring during the
prowth of Preudomonay putide K T2440 in bioprocesses
{Lieder et al. 20141, Alwgether, these examples highlight the
reeent advances in single-cell analysiz of microbial production
straing, Combined with TF-based biosensors, these technolog-
ical advances will significantly increase the reselution of
bloprocess monitorine,

Biosensor engineering

Although nature has evolved a variety of TF-promoter pairs,
these sensor devices ondy exist fora limited number of cellular
metabolites (Mustafi et al, 2015 Tang and Ciring 201 1), As
organisms tightly regulate their transcriptional machinery, cn-
dogenous promoter activity and its confrol ane adapted to the
arganism’s purposcs. For this reason, hiosensors based on
native transcription faciors and promaoters are often limited
in scnsitivity a5 well a3 the dynamic range, and are incompat-
ible with non-native hosts (Blazeck and Alper 2003;
Umeyama et al. 2013; Zhang et al. 2012, 2013
Furthermore, many biotechnological applications require the
extension of promiscuous transeriptional regulators for speeif-
ie o non-natural ligands (Looger aal, 20003; Schallmey ¢t al,
2004y Thae to the modular architeeture of promater regions

{ Blazeck and Aldper 2005371 and TTs (Galvao et al. 2007}, engi-
nearing of hiosensors for suimble performoance chamcteristics
becomes feasible (Fip. 3, Takle 23, For example, Zhang and
co-workers increased the dynamic ange of 2 sensor syslem
bazed on the fatty acid-sensing transcriptional repulator Fadl2
about 1000-fold by the introduction of two copies of the
FadR-DMA binding sequence into the stong phage lambda
{Pp) and phage T7 promoters (Fa ) (Lutz and Bujard 1997:
Zhang etal. 2012} By combining the FadB binding sites with
a Lacl operator site in the syathetic promoter, a tight regula-
tion and induction by IPTC and fatty acids was accomplished,
vielding o dvnamic sensor-regulator system which enabled
fatry vcid ethy] ester production o be increased threelold
{Fig. 3a) (Zhang et al. 2002).

The modulation of the affinity and amount of TF binding
sites can likewise contribute 1o the development of altered
effector specificities and sensitrvities (de Las Heras et al.
201Z; Silva-Rocha and de Lorenzo 2012, For example, the
TF BenR {AraC Xyl familv) of £ matide KT2440 repulates
Py, promoter activity by binding to the (nr-p operatot site in
response o benzoate and with less efficiency to 3-
methylbenzoate (3MBE2) (Silva-Rocha and de Lorenzo
201 Z). Interestingly, the completion of a second truncated op-
crator motif upstream of the Ch-p site enhanced sensitivity of
the sensor constrict to 3MBz four- to fivetold (Fig, 2b) ¢ Binm
et al. 200%a, b; Silva-Focha and de Lorenzo 200127,

The modular architecture of regulators responding w eftoc-
tor molecules theoretically allows the development of any
specificity and sensitivity (Fig, 3¢} {Galvao and de Lorenzo
2006, Techniques penerating penetic diversity, such as error-
prone PCR (Wise and Kuske 2000), ehemical and saturation
mutagenesis (Tang and Cirine 2001 Tang etal. 2008, 2003 or
computational modelling based on crvstal struchsne data sots
{Looger et al, 2003; Mandell and Kortemme 20049} confribut-
o to the development of effector-molocule binding sites with
altered or novel specificitics (Galvao and de Lorenzo 2004),
For cxample, the L-arabinose-response transcriprional regula-
tor Aral” was engineered by saturation mutagenasis to specit-
ically respond to D-arabinose (Tang et al. 2008), to
mevalonate (Tang and Cinno 20117} and to triacetic acid lac-
tone (Tang et &l. 2013), The de nova desizn of TF exhibiting
the desired effector speeificity was, furthermore, reparted &
sty by Chow and Keasling, who assembled the hgand bind-
ing domain of enzymies with the AmC DA binding domains,
viclding a swnthetic manscription factor for the sensing of
isopenteny| diphosphate (Chou and Keasling 20133,
However, complex conformational changes oceumng upon
ligand binding and inter-domain interactions required for sig-
nal transduction make it more difficult to apphy this strategy as
a ubiquitous design approach.

The arthogonality of functional biologics! pars (eg.
promoters, coding sequences or terminators) sl repre-
sents 8 major objective in the ficld of synthetic hiology

&) springer
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Table 2  Examples for bigsonsor onginociimg

TT: source Arnalae Huowt

Churpu Churssteristics urchitectune

A i £ ool Isopentenyl diphosphibe Eocoli

{ lyeopene)

AmClmev: B calf Mevalonate £ eolf

AmC-Mut; £ cali Dr-nrehinose £ ol

A TAL: B pali Trincetic sowd Tacions: £ ool

BenF: P piila Benzoae. S-methvibenzoate 2 padial

DeuSEnvE chimeric
TCSE. cnld

GALA-Idag i &
corevisiaedl ool

Furnaraie E cnli

lzopenieny| diphosphute L colf

{izoprensods)

MalkoEnvi chimearis TOS:
B ssefatln B eoll

Malstc E eolf

Metd-Rd2: F ooy S-adencsyl-methioning

PhIF: £ el 2 4-Dincoty lphboroglucing]

Kyl paificia A=Methyl-heney heleolol

mexy lene

P mtiler

5. ermvivian

HEKI%3 cells  YFP

Mot amiCherry Sensor bused on g synthels 11 compesesd of
ioprenid binading dovsan st the TINA
mcmg demim of Amd i hoo and Beashog
i

Hereening of an Al mutnnt hbrury fora TF
with a specitic response towards mevalonaie
[mutsted lizand binding site} { Tang and
Cirimo 20113

GFF Sereeming of an AmC mutnnt liboury fora TF

with a specific response towards D-arshinose
[ruutated Tligand hinding site) | Tang e al.
TOOR)

Sereening of an Al mutant libeary for o TF
wilkt i specilic response (ovwirds friicetc acid
laseconnne {rvstated Tyrarnd Binching sitel | Fang
et al. 2018

Intesduction of & scoond aperator motit into the
proroter region increased speciticity of the
hinscnsor iorameds -mctlylhenzoate (Silva-
Rocha ond de Lorenzo 20025

GFP Chirmerie TCS-hased sensor for the extracelular
sensing of fimarate (Canesh ecal, 200 4

Sensor bused on a svntheie TF composed of u
zoprerid binding domaim ws! the DA
bimchmg domain of GALS (Chou and
Foemslme 240035

Hensor besed on o chimerc TCS enabling thi
cxtracellular desection of malate by B colt
[(Gancsh et al. 2015)

Fauipment of the F.ooll TF Metl with the
Iranserphionl actiation dome B42 resulls
in the functional cxpression in 5. corevivies
{Urmirwammi et al, 20033

Equipment of the £ coff TF PRIF with
stikuryotic-spectlic sinats results in 2 .4-
digcetviphloroghicinol recognition in
sukuryotic HER293 cells ¢ Stanton oL al
2014)

LGFPov

GFE LacZ

LuxCDABE

Citnme

GFP

Venus, S50

LuaCTiABE Fxuiproent of the hiosmnser with o posites
Feedbeck loop amd an stenussm mechanism
shilted the specificiy wowands m-xylene {de

Las Heras ot al. 2002

TFs tor hiosensor designs, However, accessibility to novel
bioscnsor cireuits and sensor components with altered effector
specificifics (2., to non-natural compounds) is key to a broad
application in a wide varicty of studics, As demonsrated by a
number of smwidics. the modular design of TFs and their re-
apootive tareet promoeters make a rapid design of novel circoits
feasible (Fig. 3, Table 23, Despite this modulanty and in-depth
knowledge of the molecular basis, however, the design of
aynthetic regulatory cirenits i3 not yet like a Lego set. To this
endd, fisture attempts mst focus on the precise defmition of
highly arthogonal parts for sensor design and on the officient

generation of custom-mads sensor domains with novel spec-
ificitics and suitable charsctenstics (sensor mansfor curves).
Here, the combination of rational design and HT screening
of mutant TF librarics appears most promising for efficient
sensor design, Furthermore, the integration of synthetic
biosensor cireuirs imvolves a metabelic burden for the host
aystem which may affect productiviny. Especially in the
case of mtegral dvnamic control circuits, the expression
level of senzor components should be optimized to 4 min-
imum fevel, ensuring sensor functionality but minimizing
interference with the host svstem,

&) springer
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Fig. 3 Examples of hiosensor engineering for alicred performance
characteristics or orthogonal applications. & The dvnamic range,
deseribing the maximum fofd change of & reporter ourput 10 & given
inpur signal {Mustafi ot al. 2005), was increased by introducing two
FodR, binding sites from the fedA8 promoter into the strong lnmbda
phawe promioter Py (Zhang et al. 2002). b To increase the sensitivity ns
rate of inerepse in reporter output (depicted by the slope of the transter
curve) to 3-methylbenznate (IMB2). the truncated operator site (mp-d
upstream of the operator site Omp-p in the Py, promoter was completed

(Fig, 2d), Libraries of standardized modules (also desig-
nated as BioBricks) may contmribute to facilitate the engi-
neering of sensor devices, 1The functional transfer bemween
arganisms, however, still remains challenging, In an inter-
esting study, Umevama and co-workers fused the tran-
acripticnal regulator Met) of £ coli fo the transcriptional
activation domain B42, vielding the svathetic TF Metl-
B42 which allows S-adenosylmethionine (SAM) sensing
in the weast Sgecharomyees cerevivige {Umeyama et al,
2003y Due to the extremely low diversity of regulatory
prodeins in mammalian cells, Stanton and co-workers sup-
plied the FhlF repressor of &, ool with eukarvotic-specific
signals (including a nuclear localization signal) and
cquipped regulated promoeters with multiple operator sites
resulting in 2.4-diacetviphloroglicinol recognition in
HERZ93 cells (Stanton et al, 2004}, Althoueh orthogonal -
ity shill remains problematic, these examples show, how-
ever, that the frunsfer of sensor ¢lements i3 feasible even
across kingdom horders,

&) Springer

enabling the binding of two bereoate-binding manscripten faciors (1)
{Rihva-Rochaand dz Lorenzo 2002} ¢ Funthermaore, sereening of an AmC
mutein library for effectors of interest resulied o the idemification of
transcription factors with altered specificities {Tang and Ciring 2011
Tupg et al. 200131 d The orthogonal fransfer of biosensors o host
organisms i challenging. Umeyama and co-workers equipped the 5-
adenosylmethiontne (SAM)-responsive. wanscription factor Medd of
E et with the franscriptional activator domain B42 resulting in SAM
detection in & eeveviziae (Umeyamea et ol. 2013}

Future prospects

TF-based binsensors have significantly contributed o a num-
ber of recent metabalic enginecring approaches by improving
production strains or by identifving non-producing subpopu-
latioms during bioprocesses {Fig. 23, However, a detailed mo-
lecular understanding of the observed phenotypic patterns
durimg formentation requres the establishment of highly sen-
sitive Chariey technigues interfacing with live cell imagng (e.e
in microtludic chipsy and cyvtometry analysis and cell somting.
Here, the combination of hinscnsors with next generation se-
quencing ie.g. RMA-seq) or high-resolution proteomics ap-
pears promising to reveal new insights intoe subpopulations
and may support the identification of hottlenccks during
hioprocesses,

Most biosensors reparted to date are based on & small num-
ber of well-characterized TFs (Table 1), AL this point, the
servening of promoter libranes or manser ptome analysis using
RN A-seq might conmbute to harmness stll uncharacterized
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Tr-based bivsensors have the potential to revalutioniee
recent strategies in biotechnological strain development.
Flowwever, several studies still remain at the level of sensor
comatruction and prool-ol-principle epplications. To enhance
the availability of senzors with appropriate characteristics,
more studies are required to establish efficient workflows for
biosensor design. Altepether, these efforts should aim to en-
able an application-orented construction of hiosensors o al-
low the rapid engineering of required circuits meeting the
needs of the particular metabolic enginesning purpose.
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4 DISCUSSION
4.1 Biosensors — valuable tools for biotechnology

4.1.1 Screening of nature’s toolbox for novel sensor candidates

Microorganisms possess a plethora of natural sensor devices (e.g. transcriptional regulators,
riboswitches or enzymes) for sensing the broad range of intrinsic and extrinsic stimuli. This
ability allows for a quick adaption to the changing availability of nutrients and other cellular
requirements, or to altered physical and environmental conditions. The principle of sensing
metabolites by transcriptional regulators has been proven to be of high value for a variety of
biotechnological applications including the visualization of inconspicuous metabolites during
bioprocesses, the control of biosynthetic pathways as regulatory circuits, and the development of
production strains (Liu et al., 2015a; Mahr and Frunzke, 2016; Zhang et al., 2015b). To date,
however, only a few regulators and their corresponding target promoters have been well
characterized, which constitutes an important prerequisite to choose a suitable sensor candidate
for the desired application. Hence, efficient strategies are in demand for the fast identification of
appropriate effector-responsive transcriptional regulators and target promoters. To this end, an
elaborated FACS-based workflow was developed in this study to screen libraries of promoters
fused to genes encoding auto-fluorescent proteins (chapter 3.4). The Alon library consisting of
about 2000 different promoter-gfpmut2 fusions in E. coli presents a valuable tool with readily
available sensor devices (Zaslaver et al., 2006). Using FACS, metabolite-responsive promoters
were enriched from the pooled library by toggled rounds of positive and negative selection. This
novel strategy was successfully applied to screen for galactose- and L-phenylalanine-responsive

promoter-gfpmut2 fusions.

According to the statement “You get what you screen for” (Schmidt-Dannert and Arnold, 1999),
the efficient screening for metabolite-responsive promoters by FACS requires a well-considered
protocol. Here, the eventual application of the biosensor plays an important role: Due to the
diverse underlying dynamics of gene regulatory mechanisms in response to effector molecules,
the time point for sorting of cells as well as the composition of the cultivation medium may
strongly impact the outcome of the screening process. Furthermore, the choice of the sorting gate
may decide about the characteristics of the enriched promoters in terms of background activity

and the dynamic range. Beyond that, the toggled rounds of positive and negative selection turned
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out to be efficient to get rid of constitutively active promoters of e.g. house-keeping genes.
Likewise, this FACS-based strategy is proposed to enable screening for transcriptional repressors

by inverting the toggled rounds of selection.

Besides FACS, automated robotic platforms allow for the HT screening of strain libraries clone
by clone to identify variants with the desired phenotype or function. Screening clone by clone
avoids on the one hand the loss of appropriate strains, which is more probable during FACS
screening. One the other hand, the high screening capacity of about 80.000 cells per second and
the potential to sort 10.000 cells within the same time argue strongly for the application of FACS
reducing likewise costs and time (Dietrich et al., 2010). Furthermore, the outcome of screening
promoter libraries depends strongly on the pre-adjusted conditions (e.g. medium, time, etc.).
Here, FACS allows for the fast and easy screening of libraries under different conditions within a
few minutes in contrast to screening clone by clone. One limitation of the FACS-based strategy is
the availability of a suitable and easily accessible library of promoter fusions. Considering
biotechnological applications, appropriate and comprehensive collections exist for the
biotechnological interesting microbes E. coli (Zaslaver et al., 2006) and S. cerevisiae (Newman et
al., 2006). Nevertheless, the decreasing costs of gene synthesis and robot-based production lines
allow for the generation of such libraries in a manageable manner. Furthermore, the integration of
promoter libraries in different organisms might also enable the screening for orthogonal sensor

devices.

A similar strategy was developed by Uchiyama and co-workers in order to identify catabolic
genes from environmental metagenomes (Uchiyama and Miyazaki, 2010b; Uchiyama and
Watanabe, 2008). By fusing fragments of a metagenomic library to a reporter gene (e.g. gfp) in
an operon-trap vector, HT screening for metabolically-relevant fragments using FACS became
possible. This strategy might likewise be exploited to screen metagenomic libraries for effector-
responsive transcriptional regulator-promoter pairs. Furthermore, comparative transcriptome
analysis like DNA microarrays or RNA sequencing may also contribute to the identification of,
so far, uncharacterized metabolite-responsive genes, of which the regulatory mechanism might be

exploited as biosensor devices (Dahl et al., 2013; Mahr and Frunzke, 2016).



Discussion 105

4.1.2 The application of biosensors for single cell studies

Besides their valuable application for metabolic engineering purposes, genetically-encoded
biosensors are excellent tools to visualize the development of cell-to-cell heterogeneity e.g. in
bioprocesses (Delvigne et al., 2009; Mustafi et al., 2014; Vasdekis and Stephanopoulos, 2015).
Typically, the development of phenotypic pattern such as inefficient subpopulations, which may
affect the performance and stability of bioprocesses, is neglected by the use of bulk analyses
(Delvigne and Goffin, 2014; Delvigne et al., 2014; Miiller et al., 2010). In this study, the Lrp
biosensor was applied to study phenotypic pattern of the L-valine producer C. glutamicum AaceE
and derivatives by live cell imaging (chapter 3.1, (Mustafi et al., 2014)). In contrast to large-scale
cultivations, 2D microfluidic chip devices offer the great advantage to analyze single cells in a
monolayer with high spatial and temporal resolution and enable likewise the cultivation at
environmental constant and defined conditions (Griinberger et al., 2012; Griinberger et al., 2014).
Interestingly, the analysis of the growth-decoupled L-valine producer strain AaceE and
derivatives revealed the formation of non-producing subpopulations in the production phase upon
addition of small amounts of complex medium compounds as often used during production
processes. While most cells switched from growth to production (depicted by the fluorescent
signal of the biosensor), single cells continued growing and/or switched to production at a later
time point (Fig. 5 in chapter 3.1, (Mustafi et al., 2014)). A similar phenotypic pattern of
fluorescent and non-fluorescent sensor AaceE cells was observed during flow cytometric analysis
of shake flask cultures (data not shown). Although the origin for phenotypic heterogeneity was
ascribed to the used complex medium compounds, the responsible triggers as well as the
underlying physiological and molecular basis remain unknown due to the lack of readily

available single cell analysis tools interfacing with FACS or microfluidics.

So far, different staining techniques interfacing with FACS proved efficient to discriminate
between living, lysed or dead cells, or may detect variations in the DNA content or membrane
potential of cellular populations (Langemann et al., 2016; Neumeyer et al., 2013). Furthermore,
workflows have been established to analyze the proteome of FACS-isolated subpopulations by
mass spectrometry (Jahn et al., 2013; Jehmlich et al., 2010). Even mass-spectrometric
measurements of various metabolites in single cells are nowadays possible (Amantonico et al.,
2008; Heinemann and Zenobi, 2011; Rubakhin et al., 2013). In the future, the interplay of

biosensors with next generation sequencing techniques (e.g. RNA-seq) and high-resolution
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proteomics or metabolomics might provide novel and profitable insights into the formation of

subpopulation.

4.1.3 Limitations of transcriptional regulator-based biosensors

Within recent years, biosensors based on transcriptional regulators have proven to be of great
benefit for the establishment of efficient microbial cell factories by improving production strains
or by identifying inefficient subpopulations in bioprocesses (Binder et al., 2012; Chou and
Keasling, 2013; Delvigne et al., 2009; Dietrich et al., 2013; Mabhr et al., 2015; Mustafi et al.,
2012; Mustafi et al., 2014; Zhang et al., 2012). The drawbacks and limits of genetically-encoded
biosensors, however, are often neglected during application, but have to be considered for the

correct interpretation of the obtained results.

The mechanism of transcriptional regulators to transfer the intracellular presence of effector
metabolites into the expression of target genes is based on a complex hierarchy of molecular
interactions and biochemical reactions. This includes metabolite sensing, transcriptional and
translational processes, and the interference between different regulatory networks. In E. coli,
transcription typically runs with a speed of 40-80 base pairs per second, while translation
proceeds at about 20 amino acids per second (Dennis and Bremer, 1974; Young and Bremer,
1976). For this reason, the information on a defined amount of effector metabolites at a defined
time-point is transmitted as time-delayed response. Moreover, the metabolite-dependent
expression of a gene encoding a fluorescent protein results in a further delayed optical response
due to protein folding and the maturation of the chromophore. In the case of eYFP, the
maturation requires about seven minutes in E. coli at 37°C, while the maturation of Venus was
measured to proceed within two minutes under the same conditions (lizuka et al., 2011; Nagai et
al., 2002). In comparison, FRET-based biosensors or engineered riboswitches, binding
fluorophores upon metabolite recognition, reveal an improved temporal resolution of effector
metabolites as ligand-binding directly results in the transmission of fluorescence as consequence
of a conformational change (Michener et al., 2012; Mohsin and Ahmad, 2014; Potzkei et al.,
2012; Schallmey et al., 2014; You et al., 2015; Zhang et al., 2015b).

For quantitative intracellular measurements, fastidious calibration and characterization of the
biosensor’s performance are required to describe the relationship between input concentration

and output signal under highly defined conditions (Dietrich et al., 2010). To this end, the effector
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molecule must enter the cell. This, however, is often not possible due to the lack of uptake
systems or inappropriate physical characteristics of the effector to cross the membrane (e.g. high
hydrophilicity). In contrast to TF-based biosensors, FRET-based biosensors allow for quantitative
analyses upon intensive calibration and definition of assay conditions. This is difficult to achieve
for TF-based biosensors due to the high number of mechanisms involved in the expression of
target genes upon metabolite sensing (Constantinou and Polizzi, 2013; Michener et al., 2012). In
theory, quantitative intracellular analysis would need the incorporation of any intrinsic and
extrinsic factor affecting gene expression or fluorescence development, which is hardly feasible
in living organism due to e.g. gene expression noise (Carey et al., 2013; Elowitz and Leibler,
2000; Keren et al., 2015; Sanchez et al., 2013). Beyond that, TF-based biosensors report on the
intracellular metabolite level, which is a prerequisite for an application in FACS screenings. Most
biotechnological applications, however, aim to maximize the amount of excreted product in the
supernatant to reduce costs during downstream processing without an interest for intracellular
metabolite levels (Delvigne et al., 2015). For this reason, a quantification of intracellular
metabolites is negligible in most cases. Nevertheless, TF-based biosensors report on the relative
intracellular metabolite concentration in a reliable way, which allows for the discrimination of
cells or populations with different productivity during HT screening or monitoring of

bioprocesses using FC/FACS or fluorescence microscopy.

Traditionally, the biosensor construct consists of the transcriptional regulator and the target
promoter controlling the expression of an actuator gene encoded on a plasmid. During the
development of the mtr biosensor for detecting L-phenylalanine in E. coli, different designs of
the biosensor with and without the transcriptional regulator were found to drastically affect the
biosensor’s performance characteristics. On the one hand, the additional expression of the
transcription factor avoids titration effects of the native regulator and allows for heterologous
gene expression. On the other hand, the increased numbers of TF molecules can have a strong
impact on the bacterial physiology by skewing the activity of the transcriptional network,
especially in the case of global regulators controlling the expression of various target genes. This
effect can even be multiplied by the amount of plasmid copies in the case of plasmid-based
expression of sensor circuits (Delvigne et al., 2015). To avoid the interference with the native
regulatory network, to prevent the multiplication of gene expression noise or to reliably study the

dimensions of phenotypic heterogeneity, the use of low-copy number plasmids or chromosomal
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integration have shown to be of great benefit (Freed et al., 2008; Mustafi et al., 2014; Silander et
al., 2012). In addition, the different architectures of the mitr biosensor in this study (chapter 3.4)
demonstrated that an additional copy of the regulator is often not necessary and may even lead to
improved performance characteristics. For this reason, it might be advantageous to test different
biosensor designs e.g. with and without the additional expression of a native regulator in advance.
Further strategies to alter the performance characteristics of a biosensor are discussed in chapter

4.1.4 (“Engineering of biosensors for improved and desired characteristics”).

For the visualization of intracellular metabolites, biosensors usually drive the production of an
auto-fluorescent protein, e.g. green fluorescent protein (GFP) and derivatives. The drawback of
GFP-derived fluorescent proteins, however, consists in the requirement of oxygen for the
formation of the chromophore (Craggs, 2009), which excludes their reliable application during
micro- and anaerobic cultivation. Alternatively, Drepper and co-workers developed a set of flavin
mononucleotide (FMN)-based fluorescent proteins (FbFPs) based on the photoactive light
oxygen voltage (LOV)-domain of blue-light photoreceptors from Bacillus subtilis and
Pseudomonas putida, which enable fluorescent signaling in the absence of oxygen (Drepper et
al., 2007; Drepper et al., 2010; Walter et al., 2012). Their low brightness, quantum yield and
strongly reduced thermal or photostability in contrast to GFP derivatives have indeed been
reported and addressed in different studies (Christie et al., 2012; Song et al., 2013; Wingen et al.,
2014), however, the broad applicability of FbFP is still hampered (Mukherjee and Schroeder,
2015). Traditionally, GFP feature high stability with a half-life of more than 24 hours. Highly
stable fluorescent proteins prevent dynamic measurements by the accumulation of reporter
proteins within the cell. Engineered GFP derivatives already exhibit reduced photostability
(Shaner et al., 2005). Additionally, the destabilization of auto-fluorescent proteins using variants
of ssrA tags, which are recognized by cytoplasmic proteases, revealed further improvement of
dynamic measurements of fluorescent signals in various microbes (Andersen et al., 1998;

Hentschel et al., 2013; Triccas et al., 2002).

The application of biosensors for live cell imaging studies in microfluidic devices offers the
possibility to study microbial population dynamics at the single cell level (Mustafi et al., 2014).
The rate of iterative excitation should be kept a minimum — especially excitation light of the
energy-rich short wavelength — to avoid phototoxic effects e.g. DNA damage by free radicals

(Haselgriibler et al., 2014; Lipovsky et al., 2010; NPG-Editorial, 2013; Waters, 2013). Especially
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the performance of multicolor experiments of different parameters in parallel using several
fluorescent proteins can provide an immense physiological burden on the living cell (Schliiter et
al., 2015; Shaner et al., 2005). To reduce the artifacts of exposed light, fluorescent proteins have

to be carefully chosen according to their respective application and the organism under study.

4.1.4 Engineering of biosensors for improved and desired characteristics

The different designs of the mtr biosensor for L-phenylalanine detection revealed a significant
influence of the architecture on the sensor’s performance characteristics including the dynamic
range, sensitivity and background signal (chapter 3.4). Extending beyond, diverse studies
demonstrated that engineering of biosensors according to the respective purpose can become
feasible due to the modular architecture of promoter regions (Blazeck and Alper, 2013) and

transcriptional regulators (Galvao et al., 2007; Zhang et al., 2015b).

The mtr biosensor, which consists of the native promoter of mtr fused to the gene encoding the
fluorescent protein Venus (Fig. 4.1.4.1 A), features a maximal fivefold increased fluorescent
signal in response to L-phenylalanine (chapter 3.4). Other biosensors such as the pSenLys sensor
for sensing L-lysine and the DcuR/DcuS-based or PcaR-based sensor for sensing dicarboxylic
acids showed similar dynamic ranges of signal output (six- to 15-fold) in the presence of the
respective effector molecule (Binder et al., 2012; Dietrich et al., 2013). The Lrp biosensor
featured an about tenfold increased signal in response to L-isoleucine, twelvefold to L-valine, 22-
fold to L-leucine and an even 78-fold dynamic range to L-methionine accumulation (Mustafi et
al., 2012). A broad dynamic range as shown for L-methionine detection by the Lrp sensor is
desired to reliably distinguish between different productive cells by FC or fluorescence
microscopy. To enhance fatty acid sensing in E. coli, Zhang and coworkers introduced the TF-
binding sites of the transcriptional regulator FadR into the strong phage promoters of lambda (Py)
and T7 (Paj), thereby increasing the dynamic range up to 1000-fold (Zhang et al., 2012).
Similarly, Lutz and Bujard engineered the tight regulation of the TetR/O system for sensing
anhydrotetracycline over a 5000-fold range (Lutz and Bujard, 1997). A similar approach could
also be considered for improving the dynamic range of the mtr biosensor in response to L-
phenylalanine. This could be achieved by introducing one or two TyrR-binding sites up- and/or
downstream of the -35 region of a strong phage promoter e.g. the well-studied lambda phage

promoter (Fig. 4.1.4.1 B).
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Fig. 4.1.4.1 The mtr biosensor and potential designs for improved and desired performance
characteristics. A. The mtr biosensor is based on the native promoter P,, fused to the gene
encoding the fluorescent protein Venus. The native promoter P, consists of a weak and a strong
TyrR box and two TrpR boxes. For L-phenylalanine (F)-mediated activation of gene expression,
TyrR binds as dimer to the strong TyrR-binding site and recruits RNA-polymerase. L-tyrosine
(Y)-mediated gene expression requires binding of TyrR as hexamer to the weak and strong TyrR
boxes. B. Introduction of the strong TyrR box between the -10 and -35 region of the A phage
promoter P; might improve the dynamic range and might likewise reduce the background noise.
C. Randomization of TF-binding sites (shaded) by e.g. error-prone PCR results in a diversity of
promoter derivatives of which m¢r promoters with a K; in the low mM range might be screened.
D. The recognition of L-tyrosine as effector of the mtr promoter might be inhibited by removing

removal of
weak TyrR box -8

or replacing the weak TyrR box.
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Reporter systems with a dynamic response in the uM to mM range are of high value for
biotechnological applications (Eggeling et al., 2015). For this reason, the sensitivity, which
describes the rate of increase in reporter output to the amount of effector molecules, presents an
important factor for the performance of the biosensor (Dietrich et al., 2010). To improve the
sensitivity of the regulator BenR of P. putida KT2440 towards 3-methylbenzoate, Silva-Rocha
and de Lorenzo successfully completed a second truncated operator motif within the P, promoter
(Silva-Rocha and de Lorenzo, 2012). Likewise, the addition of several additional operator motifs
was proposed to increase the sensitivity (Tabor et al., 2009). The mtr biosensor, however, is
already highly sensitive to L-phenylalanine in the uM range. The promoter of mtr contains TrpR-
binding sites for L-tryptophan-mediated repression and upstream located TyrR-binding sites for
L-phenylalanine- and L-tyrosine-mediated activation (Pittard et al., 2005). Engineering of TF-
binding sites e.g. by error prone PCR, and screening for biosensors featuring a K; in the low mM
range might improve the biosensor’s potential for the application in strains with industrially

interesting L-phenylalanine or L-tyrosine production (Fig. 4.1.4.1 C).

The specificity of a biosensor for a defined effector molecule is important to reduce false-positive
isolates during FACS HT screening or to avoid the misinterpretation of live cell imaging or
bioprocess studies. As the mtr biosensor senses the aromatic amino acids L-phenylalanine and L-
tyrosine, the isolation of L-tyrosine and L-phenylalanine producers is likely. The case of the mtr
biosensor fortunately comprises an easy solution of this dilemma: L-tyrosine-mediated activation
of the mtr promoter requires binding of TyrR as hexamer to the strong and the weak box (TF-
binding site) in contrast to L-phenylalanine detection, which only requires binding to the strong
box (Pittard et al., 2005; Sarsero and Pittard, 1991). By removing or replacing the weak box, the

activation of gene expression upon L-tyrosine recognition may be eliminated (Fig. 4.1.4.1 D).

The diversity of biotechnologically produced metabolites challenges the expansion of biosensors
for non-native and non-natural products (Schallmey et al., 2014). Theoretically, the modular
architecture of transcriptional regulators (metabolite- and DNA-binding domains) enables
engineering of the biosensor for improved, altered or novel specificities (Galvao and de Lorenzo,
2006). Different strategies proved successful to modify the ligand binding pockets of regulators
by error-prone PCR (Wise and Kuske, 2000), chemical and saturation mutagenesis (Tang and
Cirino, 2011; Tang et al., 2008; Tang et al., 2013) followed by HT screening of mutant libraries,

or computational modelling based on crystal structures (Combs et al., 2013; Fry et al., 2010;
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Looger et al., 2003; Mandell and Kortemme, 2009). A further approach relies on the artificial
assembly of enzymatic metabolite-binding domains and the AraC DNA-binding domain e.g. for
sensing isopentenyl diphosphate (Chou and Keasling, 2013). Furthermore, the orthogonality of
biological functions still provides a bottleneck for metabolic engineering strategies, which often
rely on heterologous pathways for the formation of non-native products (Mahr and Frunzke,
2016; Schallmey et al., 2014; Zhang et al., 2015b). For the functional transfer of biological parts
between different host species, the expression from native promoters of the acceptor organisms as
well as codon-optimization may be highly beneficial (Gopal and Kumar, 2013; Gustafsson et al.,
2004; Sorensen and Mortensen, 2005). In addition, engineering the contact between the non-
native regulator or promoter, and the native transcriptional or translational machinery (e.g. a-
subunit of the RNA polymerase, DNA binding sites), which is necessary for metabolite
recognition and signal transduction, might be interesting targets for improving orthogonality (Fig.

4.1.4.2).

Fig. 4.1.4.2 The interaction between the transcription factor (TF, gray), the promoter P, and the
RNA polymerase (green). Potential targets for the improvement of the recognition of a non-
native TF or native/non-native promoter P, by the native transcription machinery: 1. The
interaction between the a-subunit of the RNA-polymerase and the TF. 2. The recognition of the -
10 and -35 region and the o-factor. 3. The recognition between the TF and the TF-binding site
(operator). 4. The distance between the -35 region and the TF-binding site.

In previous studies, the equipment with eukaryotic-specific signals (nuclear localization signal,
transcriptional activation domain, etc.) proved successful to transfer bacterial regulators to yeast

or mammalian cells allowing for S-adenosylmethionine, fatty acids or 2,4-diacetylphloroglucinol

sensing (Ellis and Wolfgang, 2012; Stanton et al., 2014; Teo and Chang, 2014; Umeyama et al.,
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2013). Nevertheless, efficient strategies are required to improve the orthogonality of
transcriptional regulators and to understand the detailed interactions between the regulator,

metabolite, operator and RNA polymerase (Charoensawan et al., 2015; Zhang et al., 2015b).

4.2  Novel strategies for engineering microbial cell factories

Rational metabolic engineering approaches mainly focus on the development of biosynthetic
pathways, the sufficient supply with precursors, the import of substrates or the export of products
as well as the degradation of those. A global and comprehensive consideration of the impact on
microbial physiology is often neglected due to the high complexity of carbon and energy fluxes
in living organisms. In addition, there are still many unknown and uncharacterized gene
activities, regulatory mechanisms and metabolic fluxes, which obscure a systems-level insight
into the global metabolic landscape. For this reason, novel metabolic engineering strategies and
tools are in demand, which incorporate the entire physiology of the organism for improved
production phenotypes. Here, adaptive laboratory evolution approaches as well as random
mutagenesis of the entire genome followed by an elaborated screening strategy enabled the fast
identification of non-intuitive targets for improving microbial cell factories (Atsumi et al., 2010;
Baek et al., 2015; Fong et al., 2005; Mahr et al., 2015; Park et al., 2014; Sandberg et al., 2014;
Xie et al., 2015). Further valuable contributions of both strategies for metabolic engineering
purposes are highlighted in the following reviews (Abatemarco et al., 2013; Dietrich et al., 2010;
Eggeling et al., 2015; Portnoy et al., 2011). Recently, the application of genetically-encoded
biosensors revealed the expansion of the utility of these strategies to engineer biotechnological

interesting, but inconspicuous metabolite production (Fig. 4.2).

4.2.1 Application of biosensors for high-throughput screening

Since the start of microbial engineering in the early last century, the diversification of genetic
elements mimicking the processes of evolution and the consequential screening for desired
functions have proven successful to develop novel and improved biotechnologically interesting
phenotypes such as increased metabolite production (Becker and Wittmann, 2015; Dietrich et al.,
2010; Parekh et al., 2000). The low-throughput (<10° individuals per day) of analytical
techniques such as chromatography, mass or nuclear magnetic resonance spectroscopy, however,
hamper screening of large mutant libraries. Here, the application of genetically-encoded
biosensors visualizing intracellular metabolites, which allows for interfacing with FACS,

revolutionized the HT screening of inconspicuous, small metabolites.
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Fig. 4.2 Schematic of A. FACS HT screening of mutagenized sensor cells and B. biosensor-
driven adaptive laboratory evolution. A. For FACS HT screening, sensor containing cells are
randomly mutagenized by chemical mutagens such as MNNG. Cells are analyzed by FC and
those with the highest fluorescent output are isolated by FACS as single clones on agar plates. B.
For the biosensor-driven adaptive laboratory evolution, sensor cells with the top fluorescent
output are iteratively isolated and re-cultivated. Then, high fluorescent sensor cells are spotted as
single clones on agar plates. A. and B. Isolated single clones are re-cultivated in microtiter plates
and analyzed for growth and fluorescence. The supernatant is assessed for the production by
uHPLC. Subsequently, cells featuring desired characteristics are sequenced.

In a proof-of-principle study, the mtr biosensor for the detection of L-phenylalanine was used to
screen a chemically mutagenized library of E. coli K-12 MG1655 cells using FACS (chapter 3.4).
After mutagenesis, biosensor containing cells were screened by FACS, which allows for
screening of about 80.000 cells per second and the possibility to isolate about 10.000 clones
within the same time span (Fig. 4.2 A). Optionally, several enrichment steps with and without
intermediate cultivation can be included to reduce false-positive clones. Following the isolation

of single clones, a second screening step is of crucial importance as the increase of throughput is

typically accompanied by reduced sensitivity and the neglect of small variations. Typically,
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FACS-based screens are affected by the isolation of false-positive clones (22% this study; 77%
(Mustafi et al., 2012)) due to the variance of the fluorescent signal for technical issues and noisy
gene expression (Delvigne et al., 2015; Dietrich et al., 2010; Sanchez et al., 2013). In addition,
the enrichment of exporter gene mutations improving or reducing the ability of metabolite
secretion as well as the occurrence of modifications within the fluorescent reporter gene may
likewise skew the picture of the actual production capacity of the organism, which can be

revealed by re-analysis of isolated clones.

During screening for L-phenylalanine producers, about one third of 90 isolated mutant strains
displayed at least two-fold up to 4.3-fold increased production titers (Fig. 4 in chapter 3.4).
Similar studies featured a comparable fraction of positive clones (Binder et al., 2012; Mustafi et
al., 2012). The top mutant clone excreted 160 uM L-phenylalanine into the supernatant.
Compared to rationally engineered strains, which produce up to 300 mM (=50 g L) (Backman et
al., 1990; Riiffer et al., 2004), the outcome appears quite low. Increased levels of L-phenylalanine
can strongly impact the growth rate (Grinter, 1998). Polen and coworkers observed that the
addition of 5 g L' L-phenylalanine reduced the growth rate by a factor of two (Polen et al.,
2005). For this reason, the iterative enrichment by FACS, which was used to reduce the isolation
of false-positive clones, might likewise select against slow growing cells impacted by increased
L-phenylalanine production (chapter 3.4). Furthermore, the applied biosensor featured a highly
sensitive response in the low puM range by approximating saturation in the mid-uM range. These
performance characteristics of the biosensor consequently led to the isolation of clones with
corresponding intracellular amino acid concentrations. Thereby, the identification of single
clones with further increased production might be overlooked due to the high number of “low-
performance” clones. Besides L-phenylalanine, the mtr biosensor responds additionally to
increased L-tyrosine levels. Both aromatic amino acids share a great part of their biosynthetic
route (Sprenger, 2007). Consequently, mutations increasing prephenic acid — a precursor of both
amino acids — enhance the production of both. In this case, the fluorescent output of the biosensor
would be composed of the response to L-phenylalanine and L-tyrosine. Interestingly, no clone
with significantly increased L-tyrosine production was isolated (data not shown). Altogether, the
design of the screening process (e.g. by implementation of several enrichment steps) as well as
the performance of the biosensor may significantly impact the outcome of FACS HT screening.

Here, the engineering of the biosensor for reduced sensitivity, improved specificity towards L-
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phenylalanine or the increase of the dynamic range as described in chapter 4.1.4 (“Engineering of
biosensors for improved and desired characteristics”) might be highly beneficial. For further
limits and considerations for the application of biosensors, the reader is referred to chapter 4.1.3

(“Limitations of transcriptional regulator-based biosensors™).

For the establishment of the mutant E. coli library, the alkylating mutagen N-methyl-N’-nitro-N-
nitrosoguanidine (MNNG) was chosen due to ability to generate genome-wide mutations as
observed in a variety of previous studies (Binder et al., 2012; Harper and Lee, 2012; Ohnishi et
al., 2008). The drawback of random mutagenesis is the emergence of several hundred small
nucleotide polymorphisms (SNPs) throughout the entire genome, which hampers the
identification of valuable, non-intuitive mutations. For example, the top five mutants isolated by
FACS HT screening using the mtr biosensor revealed a total of 538 SNPs, of which 310 SNPs
resulted in amino acid exchanges or stop codons (Tab. S4.2.1.1). Interestingly, amino acid
exchanges were found in nine genes (mtr, pheA, trpB, trpD, trpE, tyrA, tyrP, yedA, yddE), which
are associated with the biosynthesis or transport of aromatic amino acids. To verify beneficial
SNPs for metabolite production, a high number of single mutations have to be re-introduced into
a cured genomic background (Binder et al., 2012), which is laborious and time-consuming.
Elaborated strategies like “Phenotype Sequencing” based on the computational sequence analysis
of multiple independent mutants, or a recombineering strategy interfacing with biosensors based
on FACS have been developed to improve the identification of valuable mutations (Binder et al.,
2013; Harper et al., 2011). The interesting interplay of epistatic or synergistic mutations as
observed during evolution-based studies (Cheng et al., 2014; Horinouchi et al., 2015; Oide et al.,
2015; Sandberg et al., 2014; Tenaillon et al., 2012) might hardly be revealed by the abundance of

mutations.

In addition, extensive studies using MNNG in E. coli and C. glutamicum demonstrated the
preferential accumulation of GC to AT transitions (96.6%) and the dependency of the genomic
context (Harper and Lee, 2012; Ohnishi et al., 2008), which strongly restricts the spectra of
amino acid exchanges. In the mtr biosensor-based FACS HT screening of MNNG-mutagenized
E. coli cells, for instance, 12% of all amino exchanges resulted in serine, 11% in isoleucine, and
10% in aspartic acid, asparagine or valine (Tab. S4.2.1.2). Exchanges to glycine, tyrosine,
tryptophan, glutamine, proline or alanine were hardly or not identified. Furthermore, amino acids

phenylalanine, tyrosine, isoleucine, asparagine or lysine were not found to be exchanged by
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MNNG-mutagenesis (Tab. S4.2.1.2). This mutation spectra strongly limits the potential for the
identification of ideal and desired protein functions e.g. enzymatic activities, feedback resistance,
allosteric or DNA-binding capabilities, or protein-protein interactions. A broad range of
alternative mutagens exists such as mutagenic chemicals including other alkylating agents, azides
or base analogs (Benigni et al., 1992; Cai and Fix, 2002; Kodym and Afza, 2003; Pavlov et al.,
1991; Richardson et al., 1988), or physical mutagens like ultra-violet (UV) and electromagnetic
radiation (gamma rays or X rays) or atmospheric and room temperature plasma (ARTP)
mutagenesis (Kodym and Afza, 2003; Zhang et al., 2015¢c; Zhang et al., 2014b). However, they
all share rather one-sided mutation spectra. Here, the diversification of single, genetic fragments
such as catalytic domains of interesting enzymes by error-prone PCR followed by FACS HT
screening might contribute to the identification of desired phenotypical characteristics

(Schendzielorz et al., 2014; Siedler et al., 2014a; Siedler et al., 2014b).

4.2.2 Biosensor-driven adaptive laboratory evolution

In contrast to random mutagenesis, adaptive laboratory evolution (ALE) approaches driven by
mutation and selection profit from a strongly reduced number of mutations by promoting the
establishment of beneficial traits and selecting against detrimental mutations at the same time
(Abatemarco et al., 2013; Harper et al., 2011; Portnoy et al., 2011). Based on a natural mutation
frequency of 107'% to 10” mutations per base pair per replication cycle and short generation times
(Barrick and Lenski, 2013), laboratory evolution experiments of microbes allow the selection of
beneficial phenotypical traits from a natural diversity of phenotypic characteristics. So far,
adaptive laboratory evolution has mostly been applied to easy selectable or fitness-linked
phenotypes by iteratively increasing environmental stress (Eckdahl et al., 2015; Lee et al., 2013;
Marietou et al., 2014; Oide et al., 2015; Reyes et al., 2014).

4.2.2.1 The establishment biosensor-driven adaptive laboratory evolution

In this study, the applicability of laboratory evolution was expanded to inconspicuous, small
metabolites by imposing an artificial selective pressure on the fluorescent output of a biosensor
using FACS. This novel approach was successfully applied to improve production of the basal L-
valine producer strain C. glutamicum AaceE containing the Lrp biosensor (chapter 3.2,
(Blombach et al., 2007; Mahr et al., 2015)). Cells with the top fluorescent output indicating
increased L-valine production were iteratively isolated by FACS and (re-) cultivated (Fig. 4.2 B).

As the AaceE strain displays a growth-decoupled L-valine production phenotype, cells were
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iteratively sorted in the production phase after 28 hours of cultivation. Within five rounds of
toggled sorting and cultivation, isolated evolved strains featured improved growth, on average
about 25% increased L-valine production and three- to four-fold reduced by-product (L-alanine)
formation. Sequencing of two isolated mutants revealed a total of seven SNPs, of which four
(ureD-E188%*, glxR-T93S, prpD2-T2011 and rpsP-D30D(c90t)) were re-introduced and assessed
in the non-evolved AaceE strain. All mutations featured about 15-20% increased biomass-
specific L-valine yields (Yp/x). The ureD-E188* mutation even resulted in a further increased L-
valine yield of about 100%. Moreover, the reduction of L-alanine formation was attributed to a
mutation in the cAMP-binding pocket of glxR (Mahr et al., 2015). To test the applicability of the
biosensor-driven adaptive laboratory evolution approach to improve likewise the production of
other metabolites, the L-leucine production strain C. glutamicum MV-Leu7 (Vogt et al., 2014)
was additionally employed in a FACS-based evolution experiment using the Lrp biosensor (Fig.
S4.2.2.1). In contrast to the AaceE strain for L-valine production, MV-Leu7 features a growth-
coupled production phenotype, which requires an altered sorting strategy. Here, sorting of cells
with the highest fluorescent output in the early exponential phase at an ODgg of 4 proved to be
more efficient in contrast to sorting in the stationary phase after 28 hours, which was beneficial
for the evolution of growth-decoupled L-valine production (data not shown). Within four iterative
evolution steps, the biomass-specific L-leucine yield Yp/x increased from 0.55 to 0.81 mmol per g
cell dry weight (CDW) by around 50% (Fig. S4.2.2.1). Interestingly, the growth rate dropped
during the evolution experiment, which might result from the rerouting of carbon sources towards
L-leucine production. Nevertheless, these results prove biosensor-driven adaptive laboratory
evolution efficient and straightforward for improving production strains without a deep

knowledge of the complex bacterial physiology.

4.2.2.2 “You get what you screen for”

Along with the statement “You get what you screen for” (Schmidt-Dannert and Arnold, 1999),
the outcome of the biosensor-driven adaptive laboratory evolution approach strongly depends on
several factors including 1) the performance of the biosensor, ii) the growth- and production-
phase selected for FC analysis and sorting, iii) the medium composition, iv) the scale of
cultivation, v) the sorting strategy and accuracy of FACS and/or vi) cultivation conditions

affecting the living cell.
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First of all, the performance characteristics of the biosensor seem to be of high importance:
During evolution, no further improvement of extracellular L-valine accumulation of the evolved
culture was observed after the fifth sorting step (Fig. 1 in chapter 3.2, (Mahr et al., 2015)). This
observation might indicate the saturation of the biosensor response, where an increase of
intracellular amino acid concentration does not further result in an increase of the output of the
biosensor due to reaching the highest rate of occupation of the promoter with transcription factors
(Bintu et al., 2005a; Bintu et al., 2005b). For this reason, biosensor-driven evolution selecting
cells with the top fluorescent output could not further improve L-valine production using the Lrp
biosensor. Here, engineering of the biosensor is proposed to expand the operating range of the
biosensor-driven adaptive laboratory evolution. While the sensitivity might be reduced by e.g.
modifying the TF-binding site of the promoter or the DNA-binding domain within the TF itself,
the dynamic range might be enhanced e.g. by the incorporation of the Lrp operator sequence in a
strong phage promoter (as described in chapter 4.1.4 “Engineering of biosensors for improved

and desired characteristics”).

The novel ALE approach proved highly successful to identify bottlenecks during the cultivation
of the L-valine producer strain C. glutamicum AaceE. For instance, the identified ureD-E188*
mutation generates a truncated, non-functional urease-accessory UreD protein. In a previous
publication, UreD was categorized as protein of crucial importance for urease activity in order to
degrade urea to ammonia and carbon dioxide (Nolden et al., 2000). Traditionally, urea serves as
nitrogen source in the CGXII cultivation medium (Keilhauer et al., 1993). Interestingly, the lack
of urea further increased L-valine production of the AaceFE strain (Fig. 4 and 5 in chapter 3.2,
(Mabhr et al., 2015). Additional experiments within this study revealed that the degradation of
urea strongly impacts the pH of a shake flask culture without pH maintenance by ammonia
generation. This leads to improved growth, but strongly reduced L-valine production.
Furthermore, the analyses indicated an increased activity of the anaplerotic enzymes
phosphoenolpyruvate- and pyruvate carboxylase under elevated levels of CO/HCO;5
(degradation product of urea) reducing the availability of the L-valine-precursor pyruvate by an
enhanced efflux of glycolytic products via anaplerosis (chapter 3.3). The beneficial effect of urea
deficiency on L-valine production, however, was more pronounced during shake flask cultivation
(Fig. 5 and Fig. S4 in chapter 3.2 (Mahr et al., 2015)) — the method of choice during the

performed evolution experiment. Obviously, the presence of urea in the CGXII minimal medium
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provided a bottleneck for L-valine production. It remains a debatable point whether a similar
urease inactivating mutation would have been found during altered cultivation and sorting
conditions. Certainly, altered evolution strategies (e.g. sorting time, medium composition, etc.)
may lead to completely different outcomes. The later application of the evolved strain has to be

considered during the choice of cultivation conditions.

4.2.2.3  Beyond biosensor-driven adaptive laboratory evolution

Based on the natural mutation frequency, a total of seven mutations emerged during five rounds
of biosensor-driven adaptive laboratory evolution (Tab. 2 in chapter 3.2, (Mahr et al., 2015)).
Here, the implementation of a mutagenesis strategy, which only slightly increases the frequency
of mutations, might be beneficial to allow selection from an increased genetic diversity. In
contrast to random mutagenesis, the application of so-called mutator strains containing defective
DNA repair systems might present an alternative option to increase diversity (Greener et al.,
1997; Loh et al., 2010; Luan et al.,, 2013; Muteeb and Sen, 2010). For example, Oide and
colleagues observed the emergence of an unexpected high number of mutations during ALE,
which was proposed to result from the spontaneous development of a mutator phenotype in C.
glutamicum cells (Oide et al., 2015). Furthermore, Chou and Keasling established the feedback-
regulated evolution of phenotype (FREP) approach in E. coli, where the mutation rate is
dynamically regulated by the target metabolite concentration controlling the expression of a
mutator gene (mutD5) encoding a deficient proofreading exonuclease of DNA polymerase III
(Chou and Keasling, 2013). However, FREP as well as the spontaneous development of mutator
strains resulted in several hundred SNPs throughout the entire genome, which complicated the
search for beneficial mutations. A strong reduction of the mutation rate by controlling a mutator
gene from a weak, constitutive promoter might result in a decreased number of mutations and
would allow interfacing with the biosensor-driven adaptive laboratory evolution approach. Here,
a mutant mutT gene encoding oxoguanine-triphosphatase as part of the DNA mismatch repair
machinery might be beneficial to increase the frequency of mutations in C. glutamicum

(Nakamura et al., 2003; Resende et al., 2011).

An alternative strategy to FACS-based laboratory evolution of inconspicuous phenotypes
provides the coupling of the biosensor output to growth (Dietrich et al., 2013; van Sint Fiet et al.,
2006). By linking small-molecule production to an actuator mediating e.g. antibiotic or toxin

resistance, for instance, bacterial growth in the presence of antibiotics or toxins is only possible,
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if cells produce sufficient amounts of desired metabolites. Theoretically, a high selective pressure
elicited by a high concentration of antibiotics or toxins should lead to the growth of cells with
high metabolite production. One great limit of this strategy, however, is the evolution of
antibiotic resistance not linked to product formation or the application of antibiotics, which are
degraded over time. Furthermore, the system is limited at the point, where the detrimental effect

of the antibiotic or toxin exceeds the potential for the development of resistance.

Beyond that, biosensor-driven adaptive laboratory evolution can be highly beneficial to balance
metabolic fluxes upon vast metabolic engineering efforts such as the introduction of heterologous
biosynthetic pathways or the deletion of central physiological reactions. Moreover, this strategy
may also be applied to improve the tolerance of the engineered strain to detrimental or growth-
inhibiting, inconspicuous end- and by-products such as aromatic amino acids (Polen et al., 2005).
Altogether, biosensor-driven adaptive laboratory evolution approaches serve as excellent,
complementary tools for metabolic engineering and may contribute to the identification of novel

and non-intuitive targets to improve microbial cell factories.

4.3 Future prospects of biosensor applications

The present study demonstrates the enormous versatility of biosensors based on transcriptional
regulators to reveal the formation of subpopulations in bioprocesses, to identify new and non-
intuitive targets for strain engineering, and to improve fluxes of metabolites or energy for
increased product formation. The broad biotechnological application of biosensors requires
readily accessible sensor devices with appropriate and/or easy adjustable performance
characteristics. Although efforts exist to generate libraries of standardized biological modules —
so-called BioBricks (http://parts.igem.org/Catalog) (Endy, 2005; Voigt, 2006), the design of
suitable, orthogonal biosensors is not yet like a Lego set. The efficient, easy and fast generation
of custom-made sensor devices is still a bottleneck of the biosensor technology and has to be

addressed in the future.

In the last years, increasing interest focused on the integration of regulatory circuits to
dynamically control and balance metabolic fluxes upon diverse stimuli, and to overcome the
natural barriers for metabolite overproduction (Dahl et al., 2013; Liu et al., 2015b; Xu et al.,
2014; Zhang et al., 2012; Zhou and Zeng, 2015). To this end, elaborated multiomic strategies are

required to identify metabolic bottlenecks. In addition, efficient workflows are in demand to
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screen for biological bricks suitable to dynamically control pathways. For example, toggle switch
designs proved successful to shift between different metabolic pathways upon intrinsic or
extrinsic signals (Anesiadis et al., 2013; Soma et al., 2014; Tsuruno et al., 2015): L-valine
production in C. glutamicum was engineered by increasing the supply with precursors via the
inactivation of the PDHC (AaceE) (Blombach et al., 2007; Schreiner et al., 2005) or the
downregulation of aceE (Buchholz et al., 2013). However, both strategies are inefficient as they
require the addition of two expensive carbon sources or feature an impaired growth phenotype
with a low substrate-specific yield (Blombach et al., 2007; Buchholz et al., 2013; Eikmanns and
Blombach, 2014). Here, the incorporation of a toggle switch redirecting the flux from glycolysis
towards L-valine biosynthesis upon reaching a high biomass formation might kill two birds with
one stone — increased growth rates and biomass formation as well as improved metabolite
production on a single carbon source. Furthermore, genetic circuits might also be interesting to
control and coordinate the performance of synthetic communities of orthogonal microbes where
organism A delivers precursors, carbon sources or energy to organism B producing the
metabolite of interest (Bertrand et al., 2014; Hoelzle et al., 2014; Jagmann and Philipp, 2014;
Pandhal and Noirel, 2014). For instance, Marchand and Collins established a quorum-sensing
based system to allow communication of a synthetic community of E. coli and B. subtilis
(Marchand and Collins, 2013). Genetic circuits may be beneficial e.g. to elicit growth or
biosynthetic pathways of organism B upon a sufficient production of precursors by organism A.
In the last years, biosensors were designed that likewise report on by-product formation,
accumulation of toxic intermediates or the lack of oxygen or carbon sources — extrinsic and
intrinsic factors that can influence bioprocesses (Constantinou and Polizzi, 2013). Linking the
biosensor signal via electrodes to feed pumps or the aeration system, for instance, the

intracellular requirements obscured by extracellular measurements may immediately be satisfied.

All these examples demonstrate the high potential of genetically-encoded biosensors to give new
impetus to biotechnological strain and bioprocess development. Driven by the fascination and
potential of microbial cells, the creativity for the implementation of biosensor circuits in

microbial cell factories will certainly not arrest in the future.
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6 APPENDIX

6.1 Supplemental information — Application of a genetically encoded biosensor for live
cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient

Corynebacterium glutamicum strains
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to production phase, (A) Microeolony showing transinon w producing cells or (B) o mixture of growing and
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production phase, respectively.,
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Figure 53, Single cell traces of the AaceE Apge Apgi Sppee sensor strain apon switch from growth to

production phase. (A) Simale cell truces showing the swatch from growth (el length=blue Imed 0 prodection

(fluorescence=squares) after several cell divisions doring production phase (=853 h, t=154 h). (B) Single cell

traces showing me switch from growth o production. Single cell races sre taken frome the coltivation of Aaced?
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6.2 Supplemental information — Biosensor-driven adaptive laboratory evolution of L-

valine production in Corynebacterium glutamicum

Regina Mahrl, Cornelia G'eitgensl, Jochem Géitgensl, Tino Polenl, Jorn Kalinowski® and Julia
Frunzke'*

Supporting Tables

Table S1 Comparative transcriptome analysis of mRNA levels of populations after the third
versus after the second evolution step. Listed are all genes showing a >2-fold altered mRNA
level. The relative mRNA level is given as average ratio (3"/2"%) calculated from three
independent biological replicates. Known transcriptional regulation of genes by transcriptional
regulators is indicated by R (repression) and A (activation) (Pauling et al., 2012).

Locus Gene Annotation R/A Ratio p value
3rd /2nd
GIxR regulon
cg0344 fabGl 3-oxoacyl-acyl-carrier protein reductase ROR 2.937 0.043
cg0345 - putative metal-dependent hydrolase of the ROR 2.488 0.002
TIM-barrel fold
cg0346  fadE  glutaryl-CoA dehydrogenase RO 2415  0.045
cg0445 sdhCD succinate:menaquinone oxidoreductase, RO 0.459 0.036
cytochrome b subunit RRemB
RRipA
ADth
ARamA
cg0791  pyc  pyruvate carboxylase RER 0.405 0.049
RRamB
cg0797 prpBl 2-methylisocitrate lyase ROR 0.355 0.011
cg0812 dtsRI  acetyl/propionyl-CoA carboxylase, beta ROR 0.308 0.006
subunit RFR
cg0936  rpfl  resuscitation promoting factor AR 0.267 0.011
cg0957 fas-IB fatty acid synthase, Fas-I type RSIXRR 0.401 0.024
R as
cgl037  rpf2  resuscitation promoting factor, secreted AR 0.347 0.035
protein ARamA
RRamB
RMtrA
cgl314  putP  proline transport system Rilxi 0413  <0.001
A €X.
cgl341  narl  nitrate reductase, gamma subunit AR 0.223 0.033

ARosR
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Locus Gene Annotation R/A Ratio  p value
3l‘d /211(1
RRlpA
RAMR
cgl342  narJ nitrate reductase, delta subunit, assembly AGR 0.206 0.039
factor AROR
RAMR
cgl343 narH nitrate reductase, beta subunit, iron sulfur ACXR 0.315 0.010
protein AROR
cgl344 narG nitrate reductase, alpha subunit ASR 0.271 0.032
AROSR
RRiPA
RAMR
cg2119 pfkB  1-phosphofructokinase ROPR 0.471  <0.001
RSugR
RFruR
RLIR
cg2403 gcrB  cytochrome bc; complex, cytochrome b AR 0416  <0.001
subunit ARTA
cg2404  gcrA  cytochrome be, complex, Rieske iron-sulfur A"} 0.385  <0.001
protein AMA
cg2406 ctaE  cytochrome aas oxidase, subunit 3 AR 0.467  <0.001
AHI’I‘A
RRamB
cg2559 aceB  malate synthase, part of glyoxylate shunt ROPR 0.373 0.047
RRamB
ARamA
ACspAZ
cg2840 actA  coenzyme A transferase acetate, propionate, AR 0.427 0.009
succinate RRmB
ArgR regulon
cgl580 argC  N-acetyl-gamma-glutamyl-phosphate RAER 0.144 0.007
reductase R
cgl582 argB  acetylglutamate kinase RAER 0.345 0.003
cgl583 argD  acetylornithine aminotransferase RAER 0.291 0.011
RFarR
cgl584 argF  ornithine carbamoyltransferase RAER 0.347  <0.001
RFarR
cgl585 argR  transcriptional repressor of arginine RAER 0.410 0.001
biosynthesis, ArgR-family R
cgl1588 argH argininosuccinate lyase RAER 0.453  <0.001
cgl814 carA  carbamoyl-phosphate synthase, small subunit ~ R} 0.383 0.005
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Locus Gene Annotation R/A Ratio  p value
3l‘d /211(1

ArsR regulon
cgl705 arsBl arsenite permease, arsenical resistance-3 RAK 2.980 0.044
ACR3 family RASR?

cgl706 arsCl arsenate reductase, arsenical pump modifier RASK! 2.555 0.018
RAISR2

SufR regulon

cgl760  sufU  cysteine desulthydrase RR 3.175 0.032
ROxyR

cgl1762  sufC  Fe-S cluster assembly ATPase R>R 4121 0.020
ROxyR

cgl763  sufD  Fe-S cluster assembly membrane protein RR 4910 0.013
ROxyR
ASieM
ASieH

cgl764  sufB  Fe-S cluster assembly protein RZ“‘R 5.956 0.016
R xyR

cgl765  sufR  transcriptional regulator of suf operon R>R 7.239 0.011
ROxyR
ASigH

Further interesting targets

cg3149 alaT  aminotransferase, uses alanine, glutamate, 2- 0.660 0.089
i aminobutyrate and aspartate

cg2877 avtA aminotransferase, uses alanine, keto- 0.801 0.059
*

isovalerate and ketobutyrate

SOS and stress response
cg0831 rusG  trehalose uptake system, ABC-type, permease 0.379 0.005
cg0834  rusE  trehalose uptake system, ABC-type, bacterial ~ A™** 0.353 0.024
extracellular solute-binding protein

cg0892 - hypothetical protein 0.408 0.045
cgl362 atpB  F,Fo-ATP synthase, o-subunit of Fo part N 0.311  0.001
cgl364 atpFF  FFo-ATP synthase, B-subunit of Fq part ASEH 0.320 0.008
cgl553  gor2  quinone oxidoreductase RO™® 2959  0.031

RHrcA
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Locus Gene Annotation R/A Ratio  p value
3rd /2nd
cg2106 - hypothetical protein, conserved A>EH 2.846  0.042
cg3011 groEL chaperonin GroEL Als{igi 2.538  0.004
gHspR
cg3327 dps  starvation-induced DNA protecting protein AOD”d; 2.220  <0.001
R
cg3330 putative secreted protein AP 3.147  0.012
Others
cg0061 rodA  putative FTSW/RODA/SPOVE family cell 0.442 0.030
cycle protein
cg0177 hypothetical protein 0.443 0.021
cg0233 hypothetical protein, conserved 0.390 0.007
cg0238 - putative L-gulonolactone oxidase, FAD/FMN- 0.426  <0.001
containing dehydrogenase
cg0258 moaE molybdopterin cofactor synthase, large 0.476 0.013
subunit 2
cg0435 udgAl UDP-glucose 6-dehydrogenase 0.445  <0.001
cg0593  rpsJ  30S ribosomal protein S10 2.373 0.009
cg0699 guaB2 inositol-5-monophosphate dehydrogenase N 0.417 0.009
cgl076 glmU  putative UDP-N-acetylglucosamine 0.447 0.019
pyrophosphorylase
cgl1138 - putative phosphinothricin acetyltransferase 0.417 0.005
cgl1203 - putative Mg”* chelatase subunit ChlI 0412  <0.001
cgl333 argS arginyl-tRNA synthetase 0.425 0.001
cgld79 malP  maltodextrin phosphorylase 0.298 0.005
cgl730 - putative secreted protease subunit, 0.403 0.020
stomatin/prohibitin homolog
cgl1793 - hypothetical protein, conserved 0.412 0.008
cg1832 putative ABC-type iron-siderophore RS 0.425 0.050
transporter, substrate-binding lipoprotein
cg1842 - putative secreted metalloprotease 0.427 0.034
cg1905 hypothetical protein CGP3 region 0.314 0.018
cg2160 - putative hydrolase of metallo-beta-lactamase 0.468  <0.001
superfamily
cg2523 malQ  4-alpha-glucanotransferase 0.403  <0.001
cg2704 - putative ABC-type putative sugar transporter, 0.376  <0.001
permease subunit
cg2857 purF  amidophosphoribosyltransferase 0.395 0.001
cg3117 cysX ferredoxin-like protein Agysllz 0.462  0.002
X
EMch
cg3179 fadD2 acyl-CoA synthase 0.459 0.002
cg3303 - putative transcriptional regulator, PadR-like 2.336 0.003
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Supporting Figures
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Fig. S1 The increased fluorescent output of evolved C. glutamicum AaceE strains does not derive
from mutations within the sensor plasmids. Sensor plasmids (E1-ES) were isolated from evolved
C. glutamicum AaceFE strains (black) and were reintroduced into the non-evolved parental strain
C. glutamicum AaceE (white). The specific eYFP fluorescent output of evolved strains and the
non-evolved AaceE strains (containing the sensor of evolved strains) was recorded after 30 hours
of cultivation in microtiter plates. The data represent average values from three independent
cultivations including standard deviation.
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Fig. S2 Growth (filled symbols) and L-valine production (empty symbols) of C. glutamicum
AaceFE (black) and the evolved strains M1 (red) and M2 (blue) (Fig. 3, Tab. 2) during shake flask
cultivation. First, cells were inoculated in 4 ml BHI medium containing 51 mM acetate and
kanamycin (50 pg/ml), and incubated for eight hours at 30°C. Then, 1 ml of the preculture was
used to inoculate a second preculture in 20 ml CGXII minimal medium containing 222 mM
glucose, 254 mM acetate and kanamycin (50 pg/ml). After an overnight cultivation at 30°C, cells
were inoculated to an ODggy of 1 in 50 ml CGXII minimal medium containing 222 mM glucose,
254 mM acetate and kanamycin (50 pg/ml).
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Fig. S3 GC-ToF-MS analysis of the influence of urea on the intracellular metabolite pool of C.
glutamicum AaceE in comparison to AaceE ureD-E188* (Fig. 5). Peak areas of MS spectra are
plotted against each other. The solid line marks the 45 degree angle line. Abbreviations: alanine
(a), 2-aceto-lactate (ac), dihydroxyisovalerate (d), lactate (1), pyruvate (p), urea (u), valine (v).
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Saturated peak areas are marked with an asterisk (*), while the plus (+) indicates the sum of peak
areas of different trimethylsilyl (TMS) derivatives (L-valine 1TMS and L-valine 2TMS; L-
alanine 2TMS and L-alanine 3TMS).
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Fig. S4 Bioreactor batch fermentation of C. glutamicum AaceE in presence (4) and without urea
(m), and C. glutamicum AaceE ureD-E188* in presence (®) and without urea (x). Growth and L-
valine production were monitored for 45 hours. Fermentations were performed at 30°Cina 1.4 L
glass bioreactor (Multifors Multi-Fermenter System) with independently controllable bioreactors
(Infors, Einsbach, Germany). Cells of a 50 ml overnight pre-culture in BHI medium containing
85 mM acetate were harvested, washed with 0.9% (w/v) saline and then inoculated to an ODg( of
1.5 in 500 ml CGXII minimal medium containing 0.5% BHI, 254 mM acetate and 222 mM
glucose. The bioreactors were sparged with 0.9 1 min™' synthetic air, while dissolved oxygen was
measured using a polarimetric oxygen electrode (Mettler Toledo, GieBen, Germany). The
dissolved oxygen concentration was adjusted to 30% by a stirrer speed cascade from 600 to
1000 rpm. The pH was adjusted to pH 7 using 3 M potassium hydroxide and 3 M hydrochloric
acid, while online pH measurements were done using a standard pH electrode (Mettler Toledo,
GieBen, Germany). Foam development was suppressed by titration of 25% (v/v) silicon antifoam
204/water suspension (Sigma Aldrich, Steinheim, Germany).
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6.3 Supplemental information — Urease inactivity increases L-valine production in

Corynebacterium glutamicum

Supporting Tables

Table S1 Comparative transcriptome analysis of mRNA levels of C. glutamicum AaceE and
AaceE ureD-E188* after 28 hours of shake flask cultivation in CGXII minimal medium
containing 222 mM glucose and 254 mM acetate. Listed are all genes showing a >1.5-fold altered
mRNA level and a p value of <0.20, with the exception of some interesting genes. The relative
mRNA level is given as average ratio (AaceE ureD-E188*/AaceE) cultivated from three
independent biological replicates.

Locus Gene Annotation Ratio AaceE ureD- p value
E188*/AaceE
GIxR regulon
cg0566 gabT 4-aminobutyrate aminotransferase 2.13 0.195
cg0791 pyc pyruvate carboxylase 0.17 0.281
cg0797 prpBl 2-methylisocitrate lyase 2.09 0.143
cgl143 - putative transcriptional regulator 1.72 0.095
cg2403 qcrB cytochrome bcl complex, cytochrome b 0.28 0.255
subunit
cg2410 ItsA glutamine-dependent amidotransferase 1.67 0.001
cg2831 ramA transcriptional regulator, acetate 0.20 0.299
metabolism
cg3216 gntP gluconate permease, gluconate:H+ 2.20 0.055
symporter GntP family
cg3219 ldhA NAD-dependent L-lactate dehydrogenase 0.24 0.300
cg3227 lldD menaquinone-dependent L-lactate 0.26 0.291
dehydrogenase
AmtR regulon
cg0115 ureC urease alpha subunit 0.34 0.310
cgl064 urtC ABC-type urea uptake system, permease 1.60 0.200
subunit
cgl781 SOxA sarcosine oxidase- C-terminal fragment 1.66 0.002

SOS and stress response

cg0617 - putative molybdopterin-guanine 0.37 0.160
dinucleotide biosynthesis protein

cgl319 - putative ATPase involved in DNA repair 1.58 0.070

cgl1362 atpB F,Fo-ATP synthase, a-subunit of Fq part 1.63 0.001

cgl1363 atpE F,Fo-ATP synthase, c-subunit of Fq part 0.34 0.324

cgl1367 atpG F,Fo-ATP synthase, y-subunit of F, part 0.19 0.287
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Locus Gene Annotation Ratio AaceE ureD- p value
E188*/AaceE

cgl1696 - putative antibiotic efflux permease of the 9.00 0.167
major facilitator superfamily

cgl708 - hypothetical protein, conserved 2.98 0.067

cgl765 sufR transcriptional regulator of suf operon 0.24 0.142

cg2644 clpP2 ATP-dependent Clp protease proteolytic 0.18 0.292
subunit
RipA/DtxR regulon

cg0310 katA catalase 0.61 0.382

cg0445 sdhC succinate:menaquinone oxidoreductase, 0.69 0.498
cytochrome b subunit

cg0768 - putative iron-siderophore ABC transporter 2.15 0.187

cg0769 - putative iron-siderophore ABC transporter 2.87 0.152

cgl345 narkK nitrate/nitrite antiporter 0.39 0.311
Specific biosynthesis pathways

cg0977 - putative ABC-type transport system 0.50 0.001

cgl218 ndnR transcriptional repressor of NAD de novo 2.07 0.059
biosynthesis genes

cg1588 argH argininosuccinate lyase 0.07 0.224

cg2269 - putative permease 1.78 0.153

cg2789 mrx2 mycoredoxin 2 0.44 0.248

cg3359 trpE anthranilate synthase component I 0.17 0.343
TCA

cg2425 sucE succinate exporter 1.54 0.063

cg0445 sdhC succinate:menaquinone oxidoreductase, 0.69 0.498
cytochrome b subunit

cg2613 mdh malate dehydrogenase (EC:1.1.1.37) 0.58 0.393
Others

cg0074 - putative sulfurtransferase 1.73 0.050

cg0181 alkB alkylated DNA repair protein 1.63 0.077

cg0183 - putative lyse type translocator 1.52 0.070

cg0208 - hypothetical protein 0.14 0.169

cg0248 - putative ABC-type polysaccharide/polyol 1.56 0.021
phosphate export sytem

cg0356 - putative serine protease 1.50 0.152

cg0368 - putative secreted protein, conserved 1.88 0.145

cg0369 - putative secreted protein, conserved 1.57 0.045

cg0385 bglS'’ beta-glucosidase precursor-N-terminal 1.62 0.155
domain

cg0401 rmlAl TDP-glucose pyrophosphorylase 1.55 0.159

cg0525 - hypothetical protein 3.07 0.174

cg0640 fdxB ferredoxin no. 2, 2Fe-2S 1.64 0.138
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Locus Gene Annotation Ratio AaceE ureD- p value
E188*/AaceE
cg0658 rptA terminal rhamnopyranosyltransferase 1.72 0.096
cg0672 - hypothetical protein, conserved 1.95 0.080
cg0733 - putative ABC transporter ATP-binding 1.78 0.087
protein
cg0752 - putative secreted or membrane protein 0.25 0.140
cg0765 - putative secreted protein 2.05 0.130
cg0784 - putative cell wall-associated hydrolase 1.69 0.050
cg0794 yciC putative P-loop GTPase 2.03 0.046
cg0852 - hypothetical protein, conserved 1.51 0.033
cg0866 - putative purine/pyrimidine phosphoribosyl 1.64 0.070
transferase
cg0872 - putative GTPase 0.40 0.199
cg0919 tmpl8a  transposase 1.67 0.001
cg0973 pgi glucose-6-phosphate isomerase 0.28 0.274
cgllll eno enolase, phosphopyruvate hydratase 0.26 0.260
cgl118 - putative pyrimidine reductase 1.59 0.001
cgl133 ghyA serine hydroxymethyltransferase 0.33 0.198
cgl149 - hypothetical protein 1.58 0.135
cgl1236 Ipx thiol peroxidase 0.03 0.088
cgl1302 - putative HKD family nuclease 1.58 0.165
cgl354 rho transcription termination factor Rho 1.86 0.005
cgl355 prfA peptide chain release factor 1 RF-1 2.11 0.059
cg1360 - putative membrane protein 1.95 0.025
cgld13 rbsB ribose/xylose transport 0.04 0.263
cgl457 dnaQ2  putative DNA polymerase III, epsilon 1.59 0.124
subunit
cgl467 - putative transcriptional regulator 1.69 0.119
cgl1501 coaD phosphopantetheine adenylyltransferase 1.63 0.085
cgl754 - hypothetical protein 1.77 0.088
cg1807 dfp phosphopantothenoylcysteine 1.71 0.146
synthase/decarboxylase
cg1827 aroB 3-dehydroquinate synthase 1.61 0.073
cg1829 aroC chorismate synthase 2.01 0.084
cg1922 - hypothetical protein CGP3 region 2.10 0.109
cg1950 tmpl4b  transposase fragment CGP3 region 1.60 0.018
cgl978 - hypothetical protein CGP3 region 1.54 0.067
cgl1984 - hypothetical protein CGP3 region 2.03 0.079
cg1993 - hypothetical protein CGP3 region 1.94 0.145
cg2072 - putative di-and tricarboxylate transporter 1.55 0.075
cg2088 - hypothetical protein 1.53 0.003
cg2092 SigA RNA polymerase sigma factor 0.37 0.320
cg2102 sigB RNA polymerase sigma factor 0.23 0.315

cg2104 galE UDP-glucose 4-epimerase 0.20 0.314
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Locus Gene Annotation Ratio AaceE ureD- p value
E188*/AaceE
cg2340 - putative ABC-type amino acid transport 1.67 0.001
system
cg2382 - putative GCN5-related N-acetyltransferase 1.62 0.037
cg2389 - putative membrane protein 1.57 0.101
cg2446 ginE glutamate-ammonia-ligase 0.74 0.182
adenylyltransferase
cg2483 - hypothetical protein 1.98 0.101
cg2490 - putative secreted guanine-specific 1.77 0.029
ribonuclease
cg2494 dgt deoxyguanosinetriphosphate 1.55 0.009
triphosphohydrolase-like protein
cg2568 detM C4-dicarboxylate transport system 6.58 0.177
permease large protein
cg2574 - putative threonine efflux transporter 1.51 0.075
cg2673 - putative permease of the major facilitator 1.63 0.035
superfamily
cg2757 tnpl5a  transposase 1.67 0.021
cg2772 clpS ATP-dependent Clp protease adaptor 0.46 0.312
protein
cg2797 - hypothetical protein, conserved 2.26 0.121
cg2799 pknE putative secreted protein 0.37 0.201
cg2868 nuc putative extracellular nuclease 1.95 0.064
cg2888 phoR two component response regulator 0.08 0.185
¢g2900 ddh meso-diaminopimelate dehydrogenase 1.70 0.023
cg2918 - putative dehydrogenase or related protein 1.94 0.157
cg2919 - putative oxidoreductase 1.54 0.015
cg2940 - putative ATPase components of ABC-type 1.97 0.133
transport system
cg3016 - hypothetical protein 2.03 0.083
cg3049 JprA putative ferredoxin/ferredoxin-NADP 0.24 0.293
reductase
cg3060 cgtS6 two component sensor kinase 2.11 0.086
cg3065 - hypothetical protein, conserved 1.56 0.168
cg3146 bglY’ beta-glucosidase-fragment 1.51 0.057
cg3148 fepC’ putative ABC transporter 1.57 0.129
cg3185 - hypothetical protein, conserved 1.53 0.161
cg3199 - putative hydrolase of the HAD superfamily 1.61 0.195
cg3231 - hypothetical protein 1.77 0.162
cg3284 copS two component sensor kinase 1.51 0.050
cg3349 nagL maleylpyruvate isomerase 3.21 0.186
cgrll - 5S ribosomal RNA 1.54 0.106
cgtRNA _ - Tyr tRNA 1.55 0.164
3542
cgtRNA _ - Met tRNA 1.52 0.020

3570
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Fig. S1 GC-ToF-MS analysis of the supernatant after cultivating C. glutamicum AaceE with and
without urea and AaceE ureD-E188* with urea for 30 hours. A. Overview of MS spectra. B. MS
spectra of succinate and 2-acetolactate. The red arrow indicates the reading direction (succinate
and 2-acetolactate peaks are comparable among themselves, but not both molecules with each
other). Metabolome analyses of supernatants were performed on a 6890N gas chromatograph
(Agilent, Santa Clara, USA) coupled to a Micromass GCT Premier high-resolution time-of-flight
mass spectrometer (Waters, Milford, USA). Sample preparation, derivatization, MS operation
and peak identification were performed as described previously (Paczia et al.,, 2012).
Abbreviation: trimethylsilyl (TMS) derivatives.

References
Paczia, N., Nilgen, A., Lehmann, T., Gitgens, J., Wiechert, W., Noack, S. (2012). Extensive
exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell
Fact. 11, 122.
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6.4  Supplemental information — Screening of an Escherichia coli promoter library for a

phenylalanine biosensor

Supporting Figures
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Fig. S1 Screening of galactose and L-phenylalanine responsive promoters. a Initially, the pooled strains
containing of the Alon promoter library were incubated in 20 ml M9 minimal medium without effector
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molecules and split in fractions of low and high fluorescence to reduce the fraction of constitutively active
or inactive promoters (not shown). Subsequently, cells with low fluorescence were re-incubated in 20 ml
M9 minimal medium containing 0.5% (w/v) of the effector molecule galactose for six hours at 37°C and
120 rpm. One million cells from the green gate were sorted on filter plates and incubated overnight at
37°C and 170 rpm in 4 ml LB with kanamycin. To separate constitutive “ON” promoters from responsive
promoters, counter-selection was performed by subsequently incubating the isolated cells in 20 ml M9
minimal medium containing 0.5% (w/v) glucose for six hours. This time, cells from the red gate (“OFF”
promoters) were sorted on filter plates and incubated overnight in 4 ml LB with kanamycin. To reduce the
fraction of false positive clones, one further round of toggled screening was performed. The green and red
arrows indicate the gate chosen for cell sorting throughout the screening procedure. A culture grown in
glucose minimal medium served as reference. The numbers indicate the percentage of the entire
population covered by the respective gate. b Biomass formation and specific GFPmut2 fluorescence of E.
coli K-12 MG1655 containing plasmids pUA66 (¢), pUA66_P,.s-gfpmut2 (@) and pUA66_P,,..-gfpmut2
(m). The strains were cultivated in the BioLector microbioreactor system at 37°C and 1200 rpm in M9
minimal medium containing 0.5% (w/v) glucose as negative control (filled symbols) or 0.5% (w/v)
galactose as inductor (empty symbols). ¢ Specific Venus fluorescence of selected clones from the Alon
library containing promoter-gfpmut2 fusions that were enriched during the screening for L-phenylalanine
responsive promoters. Cells were cultivated in the presence (black bar) or without (gray bar) 3 mM L-
alanyl-L-phenylalanine (Ala-Phe). Numbers above bars indicate the minimal dynamic range (fold-change
induced versus non-induced). b and ¢ Data represent average values of three independent biological
replicates.

A Biosensor type 2 B Biosensor type 4 C Biosensor type 3
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Fig. S2 Flow cytometric (FC) analyses of different biosensor designs a type two, b type four and ¢ type
three in presence of different ratios of Ala-Ala and Ala-Phe (overall concentration 3 mM) showing
histograms of the Venus fluorescence. Cells were cultivated in microtiter plates in M9 minimal medium
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containing 0.5% (w/v) glucose and kanamycin in the presence of different Ala-Phe/Ala-Ala ratios. After
seven hours of incubation, the sensor output was analyzed by FC.
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Fig. S3 Growth and specific Venus fluorescence of isolated mutants. a and b 90 isolated mutants (each 45
mutants depicted in a and b) were analyzed by cultivation at microtiter scale in phenylalanine production
medium containing 0.5% (w/v) glucose and kanamycin for 28 hours (colored lines). Growth and
fluorescence of the non-mutagenized E. coli K-12 MG1655/pJC1-mtr sensor-typel strain is indicated by
the black line. Data shown for isolated mutant clones represent single measurements; the data shown for
the non-mutagenized wild type-strain represent average data of three biological replicates.
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Fig. S4 Biosensor-based single-cell analysis reveals cell-to-cell variability of E. coli K-12 MG1655. a FC
analysis of E. coli K-12 MG1655 pJC1-mtr sensor-typel cells after eight hours of cultivation in 20 ml
phenylalanine production medium containing 0.5% (w/v) glucose and kanamycin at 37°C and 120 rpm.
Dot plots display the side scatter (SSC), forward scatter (FSC) and Venus fluorescence of single cells. 2 x
10° cells were sorted from gate P1 (red) and P2 (green) in 4 ml LB with kanamycin and incubated
overnight at 37°C and 170 rpm. The following day, cells were inoculated in 20 ml phenylalanine
production medium, incubated for eight hours and re-analyzed by FC (P1, red and P2, green). The
numbers in the gates indicate the percentage of cells showing spontaneously increased fluorescent outputs.
b Live cell imaging of isogenic microcolonies of E. coli K-12 MG1655 cells containing the sensor
plasmid pJC1-mtr sensor-typel in presence of 3 mM (upper row) and without (lower row) the dipeptide L-
alanyl-L-phenylalanine (Ala-Phe). The cells were cultivated for eight hours in L-phenylalanine production
medium in microfluidic monolayer cultivation chambers as previously described (Griinberger et al., 2012;
Griinberger et al., 2015). (Griinberger et al., 2012; Griinberger et al., 2015).
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6.5  Supplemental information — Discussion

Supporting Tables

Table S4.2.1: Overview of mutations identified in five mutants (1-5) isolated by FACS HT
screening of an MNNG-mutagenized E. coli K-12 MG1655 library using the mitr biosensor
encoded on the plasmid pJC1-mtr biosensor typel. Sequencing and comparative analysis were
performed as previously described (Mahr et al., 2015). Reads were mapped using accession
NC_000913 as the reference genome. Mutations in genes associated with the biosynthesis or
transport of aromatic amino acids are highlighted with an asterisk. Abbreviation: Original strain
E. coli K-12 MG1655 pJC1-mtr biosensor typel (parental strain).

Gene Gene  Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain

b0040  caiT A203V - X = - B -
b0043  fixC G316S - X - - - -
b0068  thiB T160I - X = = - -
b0073  leuB A270V - X - - - -
b0084  fis] V4531 - = = - X ;
b0085  murE G378D - X - - - -
b0088  murD A109T - X = = - -
b0219  yafV A82T - - - - X -
b0463  acrA A355T - = = - X ;
b0532  sfmD A388V - - - - X -
b0621  dcuC D100N - = s . X i,
b0841  ybjG R139C - - - - - X
b0844  ybjl P56S - = . - - X
b0847  ybjL A428V - - - - - X
b0847  ybjL L298F - = - - - X
b0876  ybjD P332S - - - X - i}
b0974  hyaC T216I - - = - - X
b0984  gfcD G264D - - - - - X
b0997  torA R592H - = - - - X
b0998  torD A96T - - - - - X
b0999  cbpM G29D - - = - - X
b1018  efeO E80K - - - - - X
b1022  pgaC R293C - = - - - X
b1023  pgaB P126S - - - - - X
b1159  mcrA P249S - - X = - -
b1177  ycgJ GI15R - X - - - -
b1180  ycgM E86K - X - - - -
b1184  umuC A178T - X - - - -

b1192  ldcA S232N - - s X - -
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Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain

b1194 ycgR  AL70T - - - X - 3

b1195 ymgE  M2II - X - ) _ )

b1201  dhaR GI11E - X - - - -

b1202  ycgV  P653L - X - ) _ )

bI220  ychO  P280S - - - X } )

b1224  narG T7911 - - - X - -

bI255  yciC G38R - - X - - ;

bi261  trpB* E155K - - - X - -

bi264  trpE* C377Y - - X - - -

b1315  ycjS D30IN - - X - - -

bI372  siR G859E - - X - _ )

b1386  tynA T7171 - - X - - -

b1392  paaE V72M - - X - - -

b1397  paal E219K - - X - - i

b1407  ydbD A531T - - X - - -

bl411  ynbD W235% - - X - - -

b1413  hrpA A347T - - X - - -

b1431  ydcL G188D - - X - - -

b1459  yncl G197D - - X - - -

bi464  yddE  P150S - - X ) ) )

b1483  ddpF P265S - - X - - -
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Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain
b1487  ddpA  A297V - - X - - -

b1492  gadC P481S - - X - - -

b1501  ydeP P564L - - X - - -

b1623  add A201V - - - X - -

b1750  ydjX L12F . - - X . )

b1754  ynjB S264L - - - X . )

b1774  ydjJ G148R - - - X - )

b1808  yoaA A62T - - - X - -

b1809  yoaB P90S - - - X - -

b1849  pwrT R68H - - - - X -

b1864  yebC T126I - - X - - -

b1876  argS G297D - - - - - X

b1886  tar P539S - - - - - X

b1907  tyrP* D280N - - X - - -

b1919  dcyD Al43V - - X - - -

b1929  yedE V211 - - X - - -

b1943  fliK D142G - - X - - -

b1957 yodC V111 - - X - - }

b1967  hchA S34F - - X - - -

b1978  yeel V14311 - - - - - X

b1992  cobS G228S - - X - - -



(o)

Appendix Discussion 1

Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain

b2000  flu G484S - - - - - X

b2000  flu G826S - - - ; ) X

b2025  hisF DISIN - - i ) } X

b2043  wcaM R278C - - - - - X

b2049  cpsB A407V - - - - - X

b2064  asmA Q384* - - - - - X

b2071 yegJ  DI14N - - X - - ;

b2078  baeS G598 - ; - ; ) X

b2079  baeR  RSIH - ; i ) ) X

b2091  gatD R304W - - X - - -

b2095  gaiZ A32T - - - - - X

b2097  fbaB P24S - - X - - -

b2100  yegV  AG2T - - X - . )

b2124  yehS ATIV - - X - - -

b2132  bglX R486C - - - - - X

b2134 pbpG  R104C - - X - . )

b2139  mdtQ P141S - - X - - -

b2144  sanA E228K - - X - - -

b2151  galS P291L - - X - - -

b2154  yeiG D92N - - X - - -

b2159  nfo V1741 - - _ . _ X
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Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain
b2176 rin P326S - - X - - R

b2178  yejB S35IN - - ) _ _ X

b2206  napA S618S - - X - - -

b2214  apbE A192V - - - - - X

b2332  yfcO  GI83D - ; ; ) X )

b2464  talA G138E - - - - X -

b2482  hyfB R380Q - ; ; - X ;

b2493  yfs0  Al54V - - - . X )

b2574  nadB \Z38! - - - X - -

b2600  tyrA* G90E - X - - - -

b2661 gabD  GA459D - - - - X )

b2678  proW RI81H - - - - X -

b2698 recX Wi161* - X - - - -

b2705  srlD D209N - - - - X -

b2710  norV W119%* - - - - X -

b2750  cysC A153V - - - - X -

b2764  cysJ T25M - - - - X -

b2766  ygcN E277K - - - - X -

b2784  relA P253S - - - - X -

b2785  rimD T2411 - - - - X -

b2786  barA P797S - X - - - -
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Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain

b2810 csdA A198V - X - - _ R

b2834  tas T3421 - - - - X -

b2838  lysA E202K - X - - - -

b2874  ygeA  VI184M - - - - X )

b2882  xanQ D466N - - - - X -

b2938  speA V365M - - - - X -

b2943  galP Q147* - - - - X -

b2976  glicB E630K - - - - X -

b2981  yghO  W22% - X - ; ) )

b2988  gss W305* - X - - - -

b2993  hybD  T8TI - - - ) X }

b2996  hybA  S122F - ; ) ; X )

b2997  hybO P220S - - - - X -

b3008  metC A91V - X - - - R

b3013  yghG  S195F - X - ) _ )

b3019  parC G53S - X - - - -

b3020  ygiS V76M - X - - - -

b3046  ygiG ~ G1191D - - - - X }

b3051  yqiK V531 - - - - X -

b3056 cca G16E - X - - - -

b3067  rpoD D193N - - X - - -
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Gene Gene Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain
b3095 ygjA A143V - - - - X -

b3104 yhal  P49L - - - ) X }

b3114 tdcE  R67TH - ; - ) X )

b3124  garK A51V - - - - X -

b3142  yraH Gl11S - - - - X -

b3151  yraQ A9T - - - - X -

b3160  yhbW  A220V - - ; ) X )

b3162  deaD G459D - - - - X -

b3163  nipl E290K - - - ) X )

b3164  pnp E646K - - - - X -

b3168  infB T3441 - - - - X -

b3182  dacB WI153* - - - - X -

b3225  nanA P182L - - X - - -

b3591  selA A373T - - - - X -

b3671  ilvB DI126N - - -X - - -

b3744  asnA E244K - - - - - X

b3971  rrfB P24S - - - - X -

b4241  treR R117C - - - - X -

b4295  yjhU M1561 - - - - X -

b4301 sgcE  GI7IR - - - ) X )

b4305  sgcX G90D - - - - X -
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Gene Gene  Mutein Parental Mutant1 Mutant2 Mutant3 Mutant4 Mutant5
name strain

b4312  fimB T1771 - - - - X B
b4319  fimG S55F - - = . X ;
b4320  fimH S93F - - - - X -
b4324  uxuR P26S - - = - X -
b4325  yjiC A248T - - - - X -
b4326  iraD P78S - - = . X i
b4332  yjiJ A160T - - - . X -
b4356  IgoT A287V - X - = - i,
b4379  yjjiw P239S - X - - - ;
b4392 it V5IM - X - - - _
b4393  trpR* GS85E - X - - - -
b4423  ldrC S29G - - = . X i,
b4462  ygaQ T5981 - X - - - -

b4463  ygcU L432F - - - - X
b4466  ssIE G1484S - - - - X
b4466  ssIE D619N - = - . X B
b4466  ssIE R146C - - - - X
b4467  gIcF V156M - - - - X
b4467  glcF D96N - - - - X

b4492  ydbA E52K - - X - - -
b4492  ydbA S641N - - X - - -
b4498  gatR L576F - - = - - X
b4498  gatR P83L - - - - - X
b4537  yecJ T771 - - = - - X
b4565  sgcB C47Y - - - . X -
b4582  yoeA G302S - - . . - X
b4639  yeeH S20N - - X - - _
b4661  yfcU D603N - X - = - i,
b4696  yneO A1023T - - X - - -

Table S4.2.1.2: Summary of identified amino acid exchanges or stop codons (stop) in isolated
clones by the mtr biosensor-based FACS HT screening of an E. coli K-12 MG1655 library
mutagenized by MNNG.

Amino acid Exchanged to... Amount Amino acid Exchanged to... Amount
Alanine Threonine 27 Glutamine Stop 3
Alanine Valine 32 Arginine Cysteine 9
Cysteine Tyrosine 2 Arginine Tryptophan 2

Aspartate Asparagine 25 Arginine Histidine 7
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Amino acid Exchanged to... Amount Amino acid Exchanged to... Amount
Aspartate Glycine 1 Arginine Glutamine 1
Glutamate Lysine 18 Arginine Lysine 2
Glycine Aspartate 32 Serine Leucine 2
Glycine Glutamate 13 Serine Phenylalanine 6
Glycine Serine 9 Serine Asparagine 7
Glycine Arginine 5 Serine Glycine 1
Histidine Tyrosine 1 Threonine Methionine 2
Histidine Arginine 1 Threonine Isoleucine 19
Leucine Phenylalanine 7 Threonine Serine 1
Methionine Isoleucine 2 Valine Methionine 9
Proline Leucine 10 Valine Isoleucine 13
Proline Serine 27 Tryptophan Stop 10
Supporting Figures
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Fig. S4.2.2.1 The development of the biomass-specific L-leucine and L-alanine production
during biosensor-driven adaptive laboratory evolution of the growth-coupled L-leucine

production strain C. glutamicum MV-Leu7. The MV-Leu7 strain containing the plasmid-encoded

Lrp biosensor was cultivated in CGXII minimal medium until reaching an ODgoy of 4.
Subsequently, the cells with the top 10% fluorescent output were isolated by FACS and re-
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cultivated. The procedure of iterative sorting and re-cultivation was modified from Mahr et al.
(2015).
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Biosensoren
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Transkriptionsregulatoren im Dienste
der Biotechnologie
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Microbes have evelved a variety of sensor devices for the intracellular
detection of small molecules.: This capability was recently harnessed for
the construction of transcription factor-based biosensors translating the
intracellular aming acid accumnulation in Corynebacterium glutamicum
inta a fluorescent readout. These systems were successhully implement-
ed in FACS high throughput screening appreaches and allow the study of
micrabizl populations at the single call level.
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