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Abstract

In this thesis, we present a study of interacting electrons confined in a two-dimensional
space in the presence of a parabolic trap and strong Rashba spin-orbit coupling. The sys-
tem is characterized by dimensionless parameters for the Rashba coupling α � 1 and the
interaction strength λ � 1. At the single-particle level, the energy spectrum shows Landau-
like bands plus a decoupled rotor expressed in terms of the total angular momentum. The
low-energy physics take place on a ring in momentum space. The significant consequence
is that two classes of interactions are boosted, namely, interaction of Kramers pairs and
exchange interaction. The ground states of the system are discussed in two parts. In the
first part, we predict that an interplay between Coulomb interaction and strong Rashba
coupling leads to a transition to orbital ferromagnetism in few-electron N � 10 quantum
dots. In the regime of ultrastrong Rashba coupling α → ∞ for two electrons, an analytical
study shows that an arbitrarily weak interaction induces a large magnetization, which re-
flects that the orbital angular momentum is behind the effect. For α = 10 and α = 15, the
results of exact-diagonalization technique for N = 2 and N = 3 indicate that a spontaneous
magnetization emerges if the interaction strength exceeds a critical value λ > λc. Finally,
a Hartree-Fock calculation for α = 30 and number of electrons up to N = 10 shall be given
which reproduces the effect qualitatively. In the second part, we present the study of the
many-body system containing large but finite number of electrons N � α. For very weak
interactions, the Hamiltonian is bosonized and several correlation functions are computed.
Remarkably, we show that Kramers pairs are correlated strongly. Moreover, we establish
a connection between our system and the well-studied Richardson pairing model and 1D
Heisenberg XXZ spin chain.
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Zusammenfassung

In dieser Arbeit diskutieren wir ein zweidimensionales, wechselwirkendes Elektronengas
unter Einfluss einer parabolischen Falle und starker Rashba Spin-Bahn Kopplung. Das
System wird hierbei durch dimensionslose Parameter für Rashba-Kopplung α � 1 und
Wechselwirkungsstärke λ � 1 beschrieben. Auf dem Niveau einer Einzel -Teilchen Beschrei-
bung zeigt sich ein Spektrum, das sich aus Landau-artigen Energiebändern, und einem
entkoppelten Rotor, ausgedrückt durch den Gesamtdrehimpuls J , zusammensetzt. Die
entsprechende Nieder-Energie Physik kann auf einem Ring im Impulsraum beschrieben
werden. Dies hat zur Folge, dass zwei Arten von Wechselwirkungen verstärkt werden, na-
mentlich die Wechselwirkung zwischen Kramers-Paaren und die Austauschwechselwirkung.
Wir diskutieren die Grundzustände des Systems in zwei Abschnitten: Im ersten Teil finden
wir, dass ein Zusammenspiel von Coulomb-Wechselwirkung und starker Rashba-Kopplung
in Quantenpunkten mit N ≤ 10 Elektronen zu orbitalem Ferromagnetismus führt. Im
Regime extrem starker Rashba-Kopplung α → ∞ für zwei Elektronen zeigt unser analytis-
cher Ansatz, dass beliebig schwache Wechselwirkung eine Magnetisierung hervorruft. Dies
spiegelt wider, dass der Bahndrehimpuls für den Effekt verantwortlich ist. Für Rashba-
Kopplungsstärken α = 10 und α = 15 deuten unsere Ergebnisse einer exakten Diagonal-
isierung mit N = 2 und N = 3 Elektronen die Entstehung einer spontanen Magnetisierung
an, sobald die Wechselwirkungsstärke einen kritischen Wert λ > λc übersteigt. Zuletzt
präsentieren wir Hartee-Fock Rechnungen für Rashba-Kopplung α = 30 und bis zu N = 10
Elektronen, die diesen Effekt qualitativ reproduzieren. Im zweiten Teil betrachten wir ein
System mit großer (aber endlicher) Zahl von Elektronen N � α. Hier bosonisieren wir
den Hamiltonian für sehr schwache Wechselwirkungsstärken, und berechnen verschiedene
Korrelationsfunktionen. Insbesondere zeigen wir, dass in diesem Fall die Kramers-Paare
stark korreliert sind. Abschließend diskutieren wir die Verbindung zwischen unserem Sys-
tem, und anderen wohlbekannten Modellen, wie dem Richardson pairing Modell und der
1D Heisenberg Spin-Kette.
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Chapter 1

Introduction

The conventional framework of quantum condensed matter physics relies mainly on the
Landau’s Fermi liquid and symmetry-breaking theory [1, 39]. The discovery of quantum
Hall effects [58] in two-dimensional (2D) electron gases were among those triumphs late in
twentieth century which challenged the well-established methods in the field. The electrical
resistance in quantum Hall systems can be measured with the unprecedented high precision
in spite of rough samples and poor control over details of apparatuses. The satisfactory
explanation of the phenomena is involved in topological arguments which are beyond the
conventional theories. The integer quantum Hall states constitute the first realized topo-
logical insulators which are characterized by an insulating gap in the bulk regime and
gapless edge modes [53, 37]. The observation of the effect requires high magnetic fields at
extremely low temperature which can only be realized in highly specialized laboratories.

The theoretical explanation of quantum Hall effect led to construction of generalized mod-
els which give rise to new classes of topological state [118, 119]. In contrast to the quantum
Hall effect, the class of topological insulators with time-reversal symmetry was predicted
theoretically first and later observed experimentally [48, 83] almost a decade ago. They
rely on the strong spin-orbit coupling (SOC) [108, 41] rather than the magnetic field. SOC
locks the spin of an electron to its momentum and can be considered as an effective mag-
netic field. The absence of an external magnetic field retains the time-reversal symmetry
of the systems and renders totally a new class of topological state which is called quantum
spin Hall insulator in two spatial dimensions [48, 83]. These topological phases are also
insulator in the bulk regime but support an odd number of helical edge states. That is
counter-propagating pairs of electrons with opposite spin orientation are present at the
edges of the materials. These spin currents are dissipationless and supply potential appli-
cations in low power electronic devices and spintronic [81].

SOC has also found crucial roles in the research activities with considerable fundamental
interest. The proximity effect of s-wave superconductors and spin-orbit coupled materials
are the candidates to realize Majorana fermions [2, 34]. This fermion is its own antiparticle
which is not observed unambiguously since its original prediction in high-energy physics.
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Experimental discovery of Majorana fermions has become one of the main pursuing themes
in the recent solid-state physics as it promises fault tolerant quantum computing [57]. There
are also recent proposals for realization of Majorana fermions in spin-orbit coupled ma-
terials which exhibit superconducting instability within repulsive electronic gases [38, 92].
That is based on the fact that SOC enhances the instability against superconductivity even
in repulsive 2D electron gases [103]. This is in the same spirit of the Kohn-Luttinger effect
which is an electronic mechanism for superconductivity [60] but appears to be very weak
in 2D systems [26, 84].

The fascinating physics realized through engaging SOC have stimulated intensive researches
both theoretically and experimentally to tailor new spin-orbit coupled materials and ex-
plore their novel physics in the past decade. The scientific curiosity underlying this thesis
has been flourished on this ground. We study effects of the strong SOC on a 2D system
of interacting electrons in the presence of a parabolic trap theoretically. In fact, such a
system models the electronic gas confined at the interface of different semiconductors and
commonly is referred as quantum dots [88]. At the few-electron level, the electronic prop-
erties of quantum dots in semiconductor nanostructure have been extensively studied over
the past decades [77, 88]. In the absence of SOC and interaction, the electrostatic confine-
ment of electrons results in a simple 2D harmonic oscillator. However, the role of Coulomb
interactions in such devises cannot be dismissed. Apart from the ubiquitous impact of the
Coulomb interactions on transport spectroscopy [77], a transition to a finite-size Wigner
crystallization is predicted to be induced by a strong Coulomb potential [116, 7]. The
"Wigner molecule" is characterized by the suppression of fluctuations due to the electro-
static repulsion and maximizing the interelectron distances [54, 16, 12]. SOC is present
at the semiconductor interfaces due to the inversion-asymmetry [108] which modifies the
spectrum of the 2D oscillator. We focus on the Rashba term herein which is often the dom-
inant SOC and can be tuned by gate voltages [108]. Though, we expect that other types
of SOC generate similar type of physics presented herein. Study of such a setup has been
done in different regime of parameters. For instance, the single-particle spectrum of a dot
with weak Rashba coupling is discussed in [105, 82], and the effect of interactions in such
a dot is considered with density-functional theory [46], quantum Monte Carlo simulations
[35, 106, 4], exact diagonalization [30, 29, 24], and configuration-interaction calculations
[22]. The transition to Wigner molecule is found to take place for weaker interactions.
Also, the related bulk Wigner crystallization is found to be enhanced with Rashba cou-
pling [13, 97].

In this thesis, we are interested in the strong Rashba coupling which appears to be within
close experimental reach [72, 115, 56]. Given the above developments, it is not surprising
that several theoretical works have already discussed the physics of noninteracting electrons
in strong Rashba dots [67, 66, 87, 42, 32]. In this regime, the low-energy single-particle spec-
trum shows almost degenerate Landau-like bands, see chapter 3. Time-reversal symmetry
of the system leads to the Kramers degeneracy and hence the system behaves as a helical
liquid in which the counter-propagating electrons with equal but opposite total angular mo-
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mentums are present in the absence of interaction. In fact, by virtue of the bulk-boundary
correspondence [48], the authors of Ref. [67] argued that the noninteracting strong Rashba
dot has features similar to the finite-size version of a 2D topological insulator. The almost
flat single-body dispersion leads to the profound effect of interactions. For instance, lattice
models in the regime of weak interactions realize topological insulator while illustrate a
transition to Mott-insulator or spin-liquid phases for strong interactions [109]. In the case
of interacting bosons with strong Rashba coupling see [111, 95, 51, 114, 121]. Furthermore,
the interplay of a single-particle potential and Coulomb interaction can induce umklapp
processes which destroy the helical edge states [113, 110]. Moreover, a prediction of mag-
netization in interacting quantum dots with Rashba SOC has been recently reported [11]
which is quite relevant to the results discussed herein.

Motivated by these developments, we study ground state of interacting electrons in a
2D space in the presence of a trap and strong Rashba coupling. The system at single-
particle level has two characteristic length scales. The first is the confinement length scale
lT =

√
�/meω where ω is the trap frequency and me is the effective mass. The second is the

inverse Rashba wavenumber k−1
0 which determines the strength of Rashba term. One of the

control parameters in the system is the dimensionless Rashba coupling α = lTk0. We study
the strong α � 1 and ultrastrong α → ∞ Rashba coupling separately. The other control
parameter is the dimensionless interaction strength λ = lT/aB where aB = �

2ε0/mee
2 is

the Bohr radius. The dielectric constant ε0 accounts for the static external screening of
the interaction potential. The structure of this thesis is laid out as follows.

In chapter 2, we briefly review the spin-orbit coupling effect in the nonrelativistic quan-
tum mechanic and mention several condensed matter systems in which the strong Rashba
coupling can be expected. The single-body Hamiltonian which describes our system is dis-
cussed in chapter 3. In the regime of strong Rashba SOC, a low-energy Hamiltonian can
be derived which allows writing down the eigenfunction of the system analytically. The
eigenenergy includes the spectrum of a 1D oscillator corresponding to the radial degree
of freedom with the band indices n = 0, 1, 2, · · · and a decoupled rotor in terms of the
total angular momentum J , which is a half-odd-integer number. Since we are interested
later in the regime of weak-to-intermediate interaction strength, a single-band approxima-
tion n = 0 is introduced which provides possibility of analytical progress. The low-energy
excitations are localized around a ring in momentum space which indicates the system is
quasi-one dimensional. Furthermore, two different approaches of taking the limit α → ∞
are considered and the associated eigenfunctions are presented. In one of them, the trap
is switched off asymptotically ω → 0 while the other maintains the trap. The significance
of these two approaches will be discussed in following chapters.

In chapter 4, interaction matrix elements (IMEs) are presented. First, we discuss the sym-
metry relations of IMEs represented in the eigenbasis. It will be shown that the interplay
between the time reversal symmetry of a interaction potential and the eigenbasis induces
phase constraints on the matrix elements i.e how the sign of IMEs alters. Next, the nu-

21



merical values of matrix elements, for Coulomb and contact potentials, are presented. The
matrix elements are nonuniform in the sense that their magnitudes depend to the mo-
mentums of interacting particles and the exchanged momentum. We will discuss that the
maximum absolute magnitude of matrix elements take place for two types of interactions:
either while the net angular momentum of interacting particles is zero, which is called
BCS-like interaction, or when two interacting particles exchange their momentum, which
is called exchange-type interaction. The reason of boosted IMEs is based on the peculiarity
of scattering processes on the momentum-space ring, which is caused by strong Rashba
coupling. We investigate this fact by considering the limit α → ∞ through switching
off the trap asymptotically ω → 0. It is worth mentioning that a toy model is proposed
and studied, presented in appendix A, in order to clarify the intricate but physically rich
features of the IMEs. In fact, one of the rewards is that having known how electrons are
correlated in the interaction term gives rise to the insight into the competing phases in-
tuitively, which is turned out to be non-trivial. Moreover, we discuss the Coulomb-matrix
elements for α → ∞ through maintaining the trap. Although the matrix elements admit
the symmetry relations mentioned before, an odd-even-parity effect arises in this regime
where interactions with an odd exchanged momentum vanish identically. Weak interac-
tions in the resulting model for α → ∞ induce already strongly correlated phases.

We present the ground states of Coulomb-interacting few-electron dots N � 10 in chapter
5. In the regime of α → ∞, an arbitrary weak interaction gives rise to a large magnetiza-
tion M ≈ (λα)1/4� for N = 2. Such a large magnetization reflects that the orbital angular
momentum is behind the phenomenon. The ground-state results derived by means of the
exact-diagonalization technique, for N = 2 and N = 3 with Rashba coupling α = 10 and
α = 15, demonstrate a transition to the orbital ferromagnetism for interaction strength
exceeding a critical value λ > λc. The parameter λc becomes smaller with increase in α
which is consistent with the results of α → ∞. We also present a few results obtained
by density matrix renormalization group (DMRG) [107, 25, 93]. The DMRG technique is
found to be able to reproduced the exact-diagonalization outcomes with a high accuracy.
Study of our system by means of the DMRG technique is still in progress. In the end of this
chapter, we discuss the results of Hartree-Fock calculations for the system containing up to
N � 10 electrons and α = 30, where the exact diagonalization becomes computationally
too expensive. The Hartree-Fock calculations show qualitatively the same effect, reflecting
that orbital ferromagnetism represents the generic behavior of weakly Coulomb-interacting
electrons in quantum dots with strong Rashba coupling.

In chapter 6, we study the many-body system with a well-defined JF ∼ α where JF is
the Fermi momentum in the absence of interactions. α is assumed to be an arbitrary
large number but finite. Therefore, we deal with a canonical ensemble. In the regime of
very weak interactions, we estimate the matrix elements corresponding to the states close
to the Fermi momentums ±JF with a uniform coupling constant if the variations of the
IMEs are small in comparison with the level spacing. The resulting effective model can
be diagonalized readily and is amenable to bosonization, and hence, exact calculation of
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correlation functions. Many intermediate calculations of bosonization and part of the re-
sults are relegated to appendix D in order to enhance the readability of the chapter. The
remarkable outcome of the bosonization study is the strong correlation of Kramers pairs
either for a repulsive or attractive coupling constant, which is a sign of superconductivity
in grand canonical systems. Furthermore, the ground state is shown to be unmagnetized
which is expected in the considered regime of weak interactions. Relying on the strong
correlation, a uniform pairing Hamiltonian is constructed though for a repulsive pairing
force. The model is shown to be equivalent to the Richardson pairing model which bears an
exact solution. Although, without solving the model, we show that a transition is possible
with increase in interaction strength even by means of such a truncated model. Having
realized the important interaction channels in the considered regime, we construct an ex-
tended Hartree-Fock Hamiltonian. The model shall be shown to be equivalent to a 1D
Heisenberg XXZ model. In principle, we are interested to engage the model and explore
the chance of a transition to orbital ferromagnetism for electrons interacting with different
type of potentials, e.g. Coulomb or contact potential. Although an analytical solution
of the model is not found, it inspires us the application of numerical resolutions like the
DMRG technique.

Part of the materials in chapters 3 and 4 and almost all the results presented in chapter
5 are published in [76]. Also the Hamiltonian in different regime of parameters is being
solved by means of DMRG technique and the results are expected to be published in the
near future.
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Chapter 2

Spin-Orbit Coupling in
Condensed-Matter Systems

In this chapter, we give a brief review of spin-orbit coupling in condensed-matter systems.
The effect intuitively can be understood as follows. Consider an electron moving in the
electric field E with velocity v. A magnetic field Beff = v × E then appears in the rest
frame of the electron according to the law of Lorentz transformation. The magnetic field is
coupled to the spin angular momentum of the electron s which contributes to the Hamil-
tonian as a Zeeman term ∝ Beff · s = (v × E) · s. This intuitive picture describes the
emergence of the Rashba spin splitting where the momentum of the electron is coupled
with its spin. In the following, we consider formally the relativistic corrections to the
Schrödinger equation [21, 108, 98, 94] which gives rise to the Rashba term. In principle,
the spin-orbit coupling (SOC) appears as weak as the second order relativistic correction in
1/c .The relativistic corrections often in condensed-matter physics can be neglected since
the electronic velocities v encountered in solid-state materials are smaller than the velocity
of light c in several orders of magnitude v/c � 1. Though, there are situations where this
effect can be magnified and should be taken into account.

Consider an electron which is described by the Dirac equation. If we expand it in the
powers of 1/c, the Schrödinger equation in the presence of electromagnetic fields can be
obtained in the first-order

H(1) =
1

2me
[p+ eA(r)]2 + U(r)− geμBB · s, (2.1)

where me is the mass of the electron, p is the canonical momentum, A(r) and U(r) are
vector and scaler potential, μB = e�/2me, and ge is the electron g-factor. The Pauli
matrices σ are related to the spin operator as s = 1

2
σ. The terms second order in the

powers of 1/c take the form

H(2) = − 1

8m3
ec

2
[σ · (p+ eA)]4 +

�
2

8m2
ec

2
∇2U(r) +

�

4m2
ec

2
σ · [∇U(r)× (p+ eA)] . (2.2)
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The first term contains correction to the kinetic and Zeeman energy which is negligible in
solid-state physics. The second term is called Darwin term which in the atomic Coulomb
potential is important only for s-electrons [98]. The last term is spin-orbit interaction. It
can be written as a coupling of spin and orbital angular momentum term if the potential
U(r) is central, that is

∇U(r) =
dU(r)

dr

r

r
. (2.3)

Neglecting the vector potential, we obtain

H
(I)
SO =

�
2

2m2
ec

2

1

r

dU(r)

dr
L · s, (2.4)

where �L = r× p is the orbital angular momentum. It can be shown that this term gives
a contribution ∝ Z2 for an atom with atomic number Z and therefore can be important
for heavy elements while it is negligible for light elements. The spin-orbit-coupling term
has the following form if U(r) is the scaler potential of a uniform external electric field E
along z direction perpendicular to the 2D plane

H
(II)
SO = γ (σxpy − σypx) , (2.5)

where the electric field is absorbed into γ. This term is called Rashba spin-orbit inter-
action which its effect in quantum dots is under focus in this thesis. Rashba coupling
is often the dominant spin-orbit interaction in semiconductors. In addition, it can be
tuned by gate voltages [108], in contrast to the other type spin-orbit interaction like the
Dresselhaus coupling which is expected to have the similar physics as described herein.
SOC is normally weak enough in semiconductors to be treated in perturbation theory
[108]. Although, we consider strong Rashba coupling. This regime seems to be within
close experimental reach [59, 72, 8, 9, 43, 115, 56, 74]. In principle, the electronic systems
at interfaces of different semiconductors exhibit inversion-asymmetry which gives rise to
SOC. Another possibility to realize the SOC in 2D systems is the electronic gases at oxide
interferences [78, 55, 120, 50] which is discovered almost a decade ago and present corre-
lated states unprecedented in conventional semiconductors interfaces. There is a growing
research activity on the emergent properties at these new quantum wells [52]. Electron
gases at oxide heterostructures manifest ferromagnetism and superconductivity which il-
lustrate the promising potential of the oxide interfaces and stimulated intensive research
to discover novel physics of the 2D electron gases. Also, it is worth noting that there is an
active research in the field of ultracold quantum gases to engineer variety of SOCs [41, 117].
Internal degrees of freedom of cold atoms can be coupled with laser fields that render syn-
thesis SOC. Cold gases are highly tunable and can be prepared on demand. Particularly,
the inter-particle interactions of the cold atoms can be designed which makes them one
of the suitable candidates to testify the predictions made in this thesis. In the following
chapters, we present first the model Hamiltonian which describes a single electron confined
in a 2D space in the presence of a parabolic trap and strong Rashba coupling. Next, we dis-
cuss the interaction-driven physics of the system in different regimes of control parameters.
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Chapter 3

Single-Particle Hamiltonian

A Model Hamiltonian is introduced which describes a single electron in a two-dimensional
(2D) space in the presence of a parabolic trap and Rashba spin-orbit coupling (SOC). In
the regime of strong Rashba coupling, the low-energy physics is characterized by almost flat
Landau-like bands. Effective eigenfunctions of the single-particle Hamiltonian is written in
this regime. Two different limits of ultrastrong Rashba coupling and their corresponding
eigenfunctions are presented, one corresponds to the localization of electrons on a ring in
momentum space which does not admit the trap while the other one maintains the trap.

3.1 Model Hamiltonian

The following Hamiltonian describes a single electron with mass m confined in a 2D space
in the presence of a parabolic trap and Rashba SOC

H0 =
p2

2m
+

1

2
mω2r2 − �k0

m
σ · (p× ẑ) +

�
2k2

0

2m
(3.1)

where p = (px, py) and r = (x, y), the trap frequency is ω, the strength of Rashba cou-
pling is determined by k0, and the Pauli matrices are σ = (σx, σy, σz). The constant
term �

2k2
0/2m has been introduced for later convenience. The system enjoys time reversal

symmetry T H0T −1 = H0 where the explicit form of the time reversal operator T is given
below. Furthermore, the total angular momentum Jz = Lz + �σz/2, with Lz the generator
of rotation about ẑ, is conserved [H0, Jz] = 0. The trap breaks the translational symme-
try [H0,p] �= 0 and the Rashba term breaks the parity symmetry of the system [H0,P ] �= 0.

The Hamiltonian H0 does not bear an exact solution. We attempt to expose the solutions of
H0 in different regimes. In the absence of the Rashba term k0 = 0, the Hamiltonian reduces
to a 2D harmonic oscillator which is exactly solvable. The eigenenergies are labeled by two
band indices. If the trap is switched off ω = 0, the helicity operator Ph = (kyσx − kxσy)/k
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E(k)

kx

ky

Figure 3.1: Dispersion of an electron with strength of Rashba SOC k0 when the trap is
switched off ω = 0. The low-energy sector lies on a ring k = k0 due to Rashba term. The
polarization of spin is shown by the oriented black circles on top of the two bands.

is a conserved operator with eigenspinors

|Φ±(φ)〉 =
1√
2

⎛⎝ ±1

−ieiφ

⎞⎠ (3.2)

where φ is the azimuthal angle in momentum space. The eigenvalues of the helicity op-
erator read Ph|Φ±〉 = ∓|Φ±〉. The Hamiltonian for ω = 0 is also exactly solvable with
the dispersion E(k) = �

2(k ∓ k0)
2/2m which is illustrated in Fig. 3.1. The lowest-energy

physics takes place over a ring in momentum space with the radius k0 corresponding to
the positive-helicity sector.

In the presence of both Rashba SOC and trap, the system has two characteristic length
scale, the confinement scale lT =

√
�/mω and the spin-orbit length k−1

0 . The ratio of these
length scales defines the dimensionless Rashba coupling α = k0lT . In the regime of large
Rashba coupling α � 1, the slow and fast degrees of freedom can be separated with the
aid of Born-Oppenheimer approximation [17].

3.2 Born-Oppenheimer Approximation

We are interested in the strong Rashba SOC α � 1 where the negative helicity is separated
by a gap Eso = α2

�ω from the positive helicity and can be safely projected out. In
principle, spin is the fast degree of freedom in the regime of α � 1 and we can proceed
with Born-Oppenheimer approximation. The projected low-energy Hamiltonian can be
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derived through

H+
0 = 〈Φ+|H0|Φ+〉 =

�
2

2m

(
k − k2

0

)
+

mω2

2

{
〈Φ+|r2|Φ+〉+ 2〈Φ+|r|Φ+〉+ r2

}
. (3.3)

We use the normalized spinor 〈Φ+|Φ+〉 = 1 to simplify the relations in Eq. 3.3. Acting by
r on the relation yields

〈Φ+|rΦ+〉+ 〈rΦ+|Φ+〉 = 0, (3.4)
〈Φ+|r2 Φ+〉+ 2〈rΦ+|rΦ+〉+ 〈r2 Φ+|Φ+〉 = 0, (3.5)

where for the sake of consistency, we put 〈Φ+|rΦ+〉 ≡ 〈Φ+|r|Φ+〉. In the momentum space,
we have r = i∇k where in the cylindrical coordinate takes the form ∇k = ∂kêk +

1
k
∂φêφ.

With the aid of the the Berry connection [112]

Ak = −i〈Φ+|∇k|Φ+〉 =
1

2k
êφ, (3.6)

the projected Hamiltonian reads

H+
0 =

�
2

2m

(
k − k2

0

)
+

mω2

2
(i∇k −Ak)

2 + VBO (k) , (3.7)

where Born-Oppenheimer potential is defined by

VBO (k) =
mω2

2

{
〈∇k Φ+|∇k Φ+〉 − 〈∇k Φ+|Φ+〉〈Φ+|∇k Φ+〉

}
=

mω2

8k2
. (3.8)

From here on, the unit of length is set to lT and we measure energy in the unit of �ω,
therefore, we drop �ω and define dimensionless variables κ = klT and � = r/lT . Collecting
the terms in the projected Hamiltonian H+

0 gives

H+
0 =

1

2

(
κ− α2

)
− 1

2

∂2

∂κ2
− 1

2κ

∂

∂κ
+

1

2κ2

(
Lz +

1

2

)2

+
1

8κ2
, (3.9)

where Lz = −i∂φ with integral eigenvalues m ∈ Z. The gauge field Eq. 3.6 induces a half
flux-quantum magnetic field threading the system through z-axis in momentum space [42].
Engaging the ansatz u(κ) eimφ/

√
κ and the following relation(

∂2

∂κ2
+

1

κ

∂

∂κ
− 1

4κ2

)
u√
κ
=

1√
κ

∂2u

∂κ2
, (3.10)

we require then to solve the radial 1D eigenvalue problem for given J = m+ 1
2(

− ∂2

∂κ2
+

1

2
(κ− α)2 +

J2

2κ2
− En,J

)
un,J(κ) = 0, (3.11)
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Figure 3.2: Dispersion of the low-energy projected Hamiltonian in Eq. 3.13 illustrated
versus positive total angular momentum J > 0 for several band indices. The dimensionless
Rashba coupling is set to α = 10. The energies of eigenstates in a given band are connected
by a thick dashed line as a guide to the eye. The thin dashed blue lines show the bottom
of each band which are gapped by an energy �ω.

to find out the low-energy eigenstate

ψn,J(κ, φ) =
ei(J−1/2)φ

√
2πκ

un,J(κ)Φ+(φ), (3.12)

where n is the radial number. In the regime of α � 1, we approximate J2/2κ2 → J2/2α2

since the low-energy states are expected to be localized around the deep valley defined
by the 1D harmonic trap in Eq. 3.11. Thus, we neglect the correction in the order of
1/α3. Consequently, the angular degree of freedom is decoupled from the radial one. The
eigenvalue problem in Eq. 3.11 then becomes a shifted 1D harmonic oscillator plus a rigid
rotor problem with the moment of inertia 1/α2. The energy takes the form

En,J = n+
1

2
+

J2

2α2
, (3.13)

where n = 0, 1, 2, · · · labels the band index. A plot of En,J is given in Fig. 3.2 which
resembles Landau-like bands. The eigenvalue is turned out to be highly accurate for α � 4
according to the numerical calculation which is performed on the Hamiltonian in Eq. 3.1.

3.3 Single-Band Approximation

In the regime of weak-to-intermediate Coulomb-interaction strength, discussed in the fol-
lowing chapters, we consider only the zeroth band n = 0 given the Fermi momentum is
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set within the band JF � α. Accordingly, the excitations within the zeroth band are con-
sidered and from here on we drop the index n. This scheme will be called the single-band
approximation. The low-energy Hilbert space is spanned by the basis constructed from
orthonormal eigenfunctions

ψJ(κ, φ) =
π1/4lT√

κ
e−(κ−α)2/2

⎛⎝ ei(J−1/2)φ

−iei(J+1/2)φ

⎞⎠ . (3.14)

The corresponding energy is EJ = J2/2α2 regardless of the c-number contribution. The
momentum-space density of probability is independent of J and concentrated around a
ring k = k0 with a Gaussian distribution

ρ(k) =
2
√
πlT
k

e−(k−k0)2l2T . (3.15)

We study the time-reversal (TR) symmetry of the eigenfunctions. TR operator can be
constructed as Θ = σyUK in which σy is the Pauli matrix, U is a unitary operator and K
is the conjugation operator [91]. The TR operator acts merely on the angular part of the
eigenfunction in Eq. 3.14. The time-reversed partner of ψJ(κ, φ) is

ΘψJ(κ, φ) = σyUK
π1/4lT√

κ
e−(κ−α)2/2

⎛⎝ ei(J−1/2)φ

−iei(J+1/2)φ

⎞⎠

=

(
0 −i
i 0

)
π1/4lT√

κ
e−(κ−α)2/2

⎛⎝ e−i(J− 1
2
)(φ+π)

ie−i(J+ 1
2
)(φ+π)

⎞⎠
= (−1)J+

1
2 ψ−J(κ, φ), (3.16)

and obviously Θ2 = −1 which is the characteristic of spin-1/2, or more specifically, J half-
integer states. Therefore, in the Dirac bracket notation, the relation takes the following
from

Θ|ψJ〉 = (−1)J+1/2|ψ−J〉. (3.17)

With the help of the identity in Eq. 3.16, a symmetry relation for the matrix elements of
a one-body potential V , even or odd under TR ΘVΘ−1 = ±V , can be derived

〈ψJ |V |ψJ ′〉 = ±(−1)J+J ′+1〈ψ−J ′ |V |ψ−J〉. (3.18)

It can be readily seen that V cannot mix time-reversed partners 〈ψJ |V |ψ−J〉 = 0 if
ΘVΘ−1 = V , and the diagonal elements also vanish 〈ψJ |V |ψJ〉 = 0 if ΘVΘ−1 = −V .
In the next chapter, we will discuss the peculiar symmetry relations for matrix elements
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of a two-body potential as the consequence of the TR symmetry. The coordinate-space
representation of ψJ(κ, φ) can be derived by a Fourier transform

ψ̃J(�, θ) =
iJ−1/2

lT
ei(J−1/2)θ

⎛⎝ FJ−1/2(�)

eiθFJ+1/2(�)

⎞⎠ , (3.19)

and the auxiliary function is

Fm(�) =

ˆ ∞

0

dκ
√
κ

2π3/4
e−(κ−α)2/2 Jm(κ�), (3.20)

and Jm(x) is the Bessel function for m ∈ Z. We will use the coordinate representation to
compute interaction matrix elements since it is more convenient for numerical calculation.

We study asymptotic forms of ψJ(k) and ψ̃J(r) as they will be used in the regime of ultra
strong Rashba coupling α → ∞. The limit α = k0lT → ∞ can be taken formally in two
ways. The first one, by holding k0 finite and taking lT → ∞. In fact, this approach leads
to a homogeneous system by switching off the trap ω → 0 and makes the single band ap-
proximation ill-defined i.e. the band gap �ω shrinks to zero. Although, the representation
of interaction matrix elements by means of this asymptotic form provides valuable insight
in clarifying the features of finite α system, see the next chapter.

The density of probability in Eq. 3.15 becomes ρ(k) = (2π/k0)δ(k − k0) which describes
localization on a ring in momentum space k = k0. Therefore, ψJ(κ, φ) behaves as

lim
α→∞

ψJ(k) =

√
2π3/2

k0lT
δ(k − k0)

⎛⎝ ei(J−1/2)φ

−iei(J+1/2)φ

⎞⎠ . (3.21)

Since the radial degree of freedom is not affected by TR operator, the asymptotic wave-
function behaves in the same way as |ψJ〉 under the operation of Θ

Θ lim
α→∞

ψJ(k) = (−1)J+
1
2 lim

α→∞
ψ−J(k). (3.22)

The Second approach is to take the limit by holding lT finite versus k0 → ∞. The integral
representation of the auxiliary function can be evaluated in this regime

Fm(�) =

ˆ ∞

−α

dκ̄
√
κ

2π3/4
e−κ̄2/2 Jm(α�+ κ̄�), (3.23)

by asymptotic expansion of Bessel function

Jm(z) ≈
√

2

πz
cos(z − mπ

2
− π

2
) +O(1/z). (3.24)

32



We replace the square root of κ in Eq. 3.23 by
√
α in the regime of large α and with the

aid of the asymptotic expansion of the Bessel function, we obtain

lim
α→∞

ψ̃J(�, θ) =
iJ−1/2ei(J−1/2)θe−�2/2

π3/4lT
√
�

⎛⎝ cos (α�− πJ/2)

eiθ sin (α�− πJ/2)

⎞⎠ . (3.25)

On the contrary to the asymptotic form of ψJ(k) in Eq. 3.21, the Gaussian factor e−� in
Eq. 3.25 reflects the trap. Different forms of the eigenfunctions in α � 1 will be engaged
to describe the interacting system in different regimes.

3.4 Second Quantized Representation
We proceed to represent the single-particle Hamiltonian in a second quantized representa-
tion

H0 = �ω
∑
J

J2

2α2
c†JcJ , (3.26)

where we have restored the energy unit �ω. The fermion creation and annihilation operators
c†J and cJ , respectively, obey anticommutation relation {c†J , cJ ′} = δJJ ′ . The TR of the
operators can be constructed from the relation in Eq. 3.16

Θc†J = (−1)J+1/2c†−J . (3.27)

The field operators in the momentum- and coordinate-space are given by

Ψ(k) =
∑
J

ψJ(k)cJ , (3.28)

Ψ̃(r) =
∑
J

ψ̃J(r)cJ , (3.29)

where the eigenfunctions in Eqs. 3.14 and 3.19 are used. The ground state in the non-
interacting system constructs a Fermi sea with all the states occupied up to Fermi points
|J | ≤ JF � α. The ground state for an even number of particles N = 2JF + 1 is unique
and has the energy

E0 = �ωN(N2 − 1)/24α2. (3.30)

Although, the ground state is twofold degenerate for odd N . One of the crucial quantity
herein is the net total angular momentum, which we call it magnetization from here on, and
is defined as the sum of the total angular momentum of all the electrons. The corresponding
operator in the first quantization reads

N∑
i=1

Jzi = �

N∑
i=1

(−i∂φi
+ σzi/2), (3.31)
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and in the second quantization

M̂ = �

∑
J

Jc†JcJ . (3.32)

The conservation of M̂ follows from the conservation of total angular momentum [Jz, H0] =
0. The ground state expectation value of magnetization 〈M̂〉0 in the non-interacting regime
is zero in the case of even number of particles and, otherwise, has a value equal to ±�JF .
We discuss later how the interaction can magnetize the system spontaneously.

3.5 Summary
The system is time-reversal invariant and also conserves the total angular momentum. Al-
though, the parity is broken and the system is not translationally invariant. A single-body
Hamiltonian is introduced which describes an electron confined in a 2D space in the pres-
ence of a parabolic trap and Rashba SOC. In the regime of strong Rashba Coupling, the
effective eigenfunctions indicate that electrons are localized around a ring in momentum
space. In the single-band approximation, the only dynamical degree of freedom is the total
angular momentum. The ultrastrong limit of dimensionless Rashba coupling α → ∞ leads
to two different asymptotic forms. One corresponds to the localization of electrons on the
momentum-space ring by holding k0 finite while switching off the trap ω → 0. The second
asymptotic form is achieved by maintaining the trap and taking the limit k0 → ∞. It will
be shown in chapters 4 that both the asymptotic forms give rise to an odd-even parity
for Coulomb-matrix elements. Although, in the resulting model of α → ∞, a very weak
interaction induces correlated states.
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Chapter 4

Interaction Matrix Elements

In this chapter, we discuss the representation of interaction potentials in the eigenbasis
of the system. The matrix elements of Coulomb and contact potentials are presented.
We introduce the partial time-reversal symmetry of interaction potentials to study the
symmetry relation of interaction matrix elements (IMEs). In fact, using the time-reversal
symmetry of eigenbasis and partial time-reversal symmetry of interaction potentials, we
derive the phase constraints on IMEs. The IMEs in the regime of ultrastrong Rashba cou-
pling α → ∞ are also discussed. In this limit, the kinetic term vanishes. Therefore, the
ultrastrong Rashba-coupling limits are called flat-band model. The limit by lT → ∞ and
holding k0 finite realizes a ring in momentum space and makes it possible to explain the
boosted elements of BCS-like and exchange-type interactions in the case of finite α. We
call the resulting model in this limit "flat-band model in momentum space". Moreover,
the Coulomb-matrix elements in the regime of α → ∞, through keeping lT finite versus
k0 → ∞, are presented which show an odd-even-parity effect. That is interactions with an
odd exchanged momentum vanishes identically. The model in the latter limit is distinct
by the name "flat-band model in coordinate space".

4.1 Symmetry Relations of Interaction Matrix Elements
Switching on the inter-particle interaction, the full Hamiltonian H = H0+HI incorporates
kinetic term H0 and the interaction term HI . The second quantized representation of H
is written formally as

H = �ω
∑
J

J2

2α2
c†JcJ +

1

2

∑
J1,J2
J′
1,J

′
2

〈ψJ ′
1
, ψJ ′

2
|V |ψJ2 , ψJ1〉c†J ′

1
c†J ′

2
cJ2cJ1 , (4.1)

where c†J (cJ) creates (annihilates) an electron with angular momentum J ∈ Z+ 1/2. The
fermion operators satisfy the anticommutation relation {c†J , cJ ′} = δJ,J ′ . We study the
symmetry relations of IMEs 〈ψJ ′

1
, ψJ ′

2
|V |ψJ2 , ψJ1〉 in this bracket representation. In the
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J1 J2

J ′
1 J ′

2

(−1)J2+J ′
2+1×=

−J2

J1

J ′
1

−J ′
2

= (−1)J1+J ′
1+1×

J2

J ′
2−J1

−J ′
1

−J1

−J ′
1

= (−1)J1+J2+J ′
1+J ′

2×
−J2

−J ′
2

(a) (b) (c) (d)

Figure 4.1: The corresponding scattering processes of matrix elements which are equivalent
under partial time reversal up to a phase factor. The TR in each single-particle Hilbert
space reverses the motion of particles and exchanges outgoing particle with the incoming
one. For instance, in the process (a), J1,2 and J ′

1,2 can be taken to be incoming and
outgoing particles, respectively. Under partial TR on J1 and J ′

1, the angular momentums
of the incoming and outgoing particles are reversed and exchanged to become −J ′

1 and
−J1, respectively, depicted in the process (b), in spite of the intact incoming and outgoing
momentums of the other pair J2 and J ′

2. Furthermore, a phase factor (−1)J1+J ′
1+1 is

generated under the partial TR. In the process (c), the partial TR is carried out on the
pair J2 and J ′

2 while J1 and J ′
1 are left intact in comparison with the process in (a). Finally,

the whole scattering process is reversed in (d) and is multiplied with the appropriate phase
factor.

following sections, we write them in concrete eigenbases of the system which are derived
in the preceding chapter. We begin by considering the hermicity V † = V , which gives rise
to the following relation between IMEs

〈ψJ ′
1
, ψJ ′

2
|V |ψJ2 , ψJ1〉 = 〈ψJ1 , ψJ2 |V |ψJ ′

2
, ψJ ′

1
〉, (4.2)

independent of the representation obviously. Indistinguishability of particles yields

〈ψJ ′
1
, ψJ ′

2
|V |ψJ2 , ψJ1〉 = 〈ψJ ′

2
, ψJ ′

1
|V |ψJ1 , ψJ2〉. (4.3)

Next, we investigate the consequences of time reversal (TR) symmetry on the IMEs. In
fact, a two-body potential connects two Hilbert spaces, i.e.V connects the two-body state
|ψJ , ψJ ′〉 to 〈ψJ ′

1
, ψJ ′

2
|. Although, we are going to analysis the representation of V in the

basis by means of the single-particle TR operator Θ. Suppose ΘVΘ−1 = V that means V
is even under TR invariant in each of the Hilbert spaces which we call it partial TR. Note
that V is a two-body potential but Θ is a single-body operator. TR symmetry of the basis,
Eq. 3.17, induces phase restrictions on the matrix elements of V

〈ψJ ′
1
, ψJ ′

2
|V |ψJ2 , ψJ1〉 = 〈ψ−J1 , ψJ ′

2
|V |ψJ2 , ψ−J ′

1
〉(−1)J1+J ′

1+1

= 〈ψJ ′
1
, ψ−J2 |V |ψ−J ′

2
, ψJ1〉(−1)J2+J ′

2+1

= 〈ψ−J ′
1
, ψ−J ′

2
|V |ψ−J ′

2
, ψ−J ′

1
〉(−1)J1+J2+J ′

1+J ′
2 , (4.4)

The relations are illustrated in Fig. 4.1. The operation of Θ reverses the motion of
the particles which are in the same Hilbert space, and therefore, the incoming particle
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becomes outgoing and vice versa. In Eq. 4.4, in the first line, the equality relation is
induced by Θ|ψJ1〉 = (−1)J1+1/2|ψ−J1〉 and Θ|ψJ ′

1
〉 = (−1)J

′
1+1/2|ψ−J ′

1
〉, and in the second

line by operation on |ψJ2〉 and |ψJ ′
2
〉. Since the phase constraints on IMEs are stemmed

from TR symmetry of |ψJ〉, they are independent of the analytical form of V as far as
ΘVΘ−1 = V . That is the case for Coulomb and contact potential. As we are interested in
the rotational invariant potentials, the total angular momentum of interacting particles is
conserved J1 + J2 = J ′

1 + J ′
2. Introducing the exchanged angular momentum m, we write

J ′
1,2 = J1,2 ±m. The relations in Eq. 4.4 then take the form

〈ψJ1+m, ψJ2−m|V |ψJ2 , ψJ1〉 = (−1)m〈ψ−J1 , ψJ2−m|V |ψJ2 , ψ−J1−m〉
= (−1)m〈ψJ1+m, ψ−J2 |V |ψ−J2+m, ψJ1〉
= 〈ψ−J1 , ψ−J2+m|V |ψ−J1−m, ψ−J2〉, (4.5)

The immediate implication of the phase constraints is that direct scattering into the time-
reversed partner J → −J is forbidden

〈ψ−J , ψJ ′−2J |V |ψJ ′ , ψJ〉 = 0, (4.6)

for arbitrary J ′ but the exchanged momentum m = 2J which is an odd number. It is inter-
esting to note that the phenomenon which is observed at the single-particle level, compare
with the discussion after Eq. 3.18, persists in the two-body potential. Incidentally, we
have shown in appendix B the similar symmetry relations discussed here persist in 2D and
3D isotropic systems.

4.2 Coulomb-Matrix Elements
In this section, the numerical value of matrix elements of Coulomb potential V = e2/ε0r in
the eigenbasis of the system are presented in two regimes of strong α = k0lT � 1 and ultra-
strong α → ∞ Rashba coupling. The limit α → ∞ vanishes the kinetic term J2/2α2 → 0,
therefore, the model in this regime is called flat-band model. In the ultrastrong Rashba
coupling, IMEs are studied separately for two different asymptotic wave-functions, namely,
in momentum and coordinate representation which are introduced in Eqs. 3.21 and 3.25,
respectively.

4.2.1 Finite Rashba Coupling

For finite α, it is more convenient to work in the coordinate-space representation. First,
we define

V J1,J2
J ′
1,J

′
2

=
1

2
〈ψJ ′

1
, ψJ ′

2
|V |ψJ2 , ψJ1〉

=
1

2

ˆ
dr1dr2 ψ̃

†
J ′
1
(r1)ψ̃

†
J ′
2
(r2)V (r1 − r2) ψ̃J2

(r2)ψ̃J1
(r1) (4.7)
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where the factor 1/2 is introduced to absorb all the numerical prefactor in the numerical
definition of the matrix elements. Substituting the coordinate representation of |ψJ〉

ψ̃J(�, θ) =
iJ−1/2

lT
ei(J−1/2)θ

⎛⎝ FJ−1/2(�)

eiθFJ+1/2(�)

⎞⎠ , (4.8)

leads to the integral form of the Coulomb-matrix elements

V J1,J2
J ′
1,J

′
2
=

λ

2l3T

ˆ 2π

0

dθ1dθ2 e
i(J1−J ′

1)(θ1+
π
2
)ei(J2−J ′

2)(θ2+
π
2
)

ˆ ∞

0

dr1dr2
|r1 − r2|

FJ1J ′
1
(r1)FJ2J ′

2
(r2), (4.9)

where

FJJ ′(r) = r
∑
σ=±1

FJ+σ/2(r)FJ ′+σ/2(r) (4.10)

is defined in terms of the auxiliary function

Fm(�) =

ˆ ∞

0

dκ
√
κ

2π3/4
e−(κ−α)2/2 Jm(κ�), (4.11)

The new variables θ1,2 = θs ± θ/2 make it possible to perform the integral over θs which
gives the conservation of the angular momentum constraint

V J1,J2
J ′
1,J

′
2
= λ�ω δJ1+J2,J ′

1+J ′
2
V

(m)
J1J2

, (4.12)

and the exchanged momentum m is defined as J ′
1,2 = J1,2±m. The product of the auxiliary

functions satisfies

F−J,−J ′(r) = (−1)mFJJ ′(r) (4.13)

which relies on

J−n(r) = (−1)nJn(r), (4.14)

for n ∈ Z. The full Hamiltonian for finite α takes the form

H = �ω
∑
J

J2

2α2
c†JcJ + λ�ω

∑
J1,J2

m

V
(m)
J1J2

c†J1+mc
†
J2−mcJ2cJ1 . (4.15)

The dimensionless strength of Coulomb interaction is

λ =
e2

ε0lT�ω
, (4.16)
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where dielectric constant ε0 accounts for static external screening. The integral represen-
tation of dimensionless IMEs reads

V
(m)
J1J2

= 2π

ˆ π

0

dθ cos (mθ)

ˆ ∞

0

d�d�′
FJ1,J1+m(�)FJ2,J2−m(�

′)√
�2 + �′2 − 2��′ cos θ

. (4.17)

The Coulomb term can be expanded by Legendre functions Pl cos (θ)

1√
r21 + r22 − 2r1r2 cos θ

∣∣∣∣∣
r2>r1

=
∞∑
l=0

rl1
rl+1
2

Pl(cos θ). (4.18)

The expansion makes it possible to perform the angular part of the integral. First, we
introduce

R(m)
l =

1

π

ˆ π

0

dθ cos (mθ)Pl(cos θ), (4.19)

which has nonzero value for even l +m and l � m [33]

R(m)
l =

(2l − 1)!!

2ll!

(l+|m|)/2∏
n=1

(n− 1/2)(l − n+ 1)

n(l − n+ 1/2)
, (4.20)

with R(0)
0 = 1. The ultimate integral form of IMEs takes the form

V
(m)
J1J2

=
∑

l=|m|,|m|+2,···
2π2R(m)

l

ˆ ∞

0

d�

�l+1

ˆ �

0

d�′�′l [FJ1,J1+m(�)FJ2,J2−m(�
′) + (� ↔ �′)] . (4.21)

In fact, the Legendre expansion transforms one of the integrals in Eq. 4.17 to a sum which
can be evaluated with more control over the numerical error.

Before proceeding further, we examine the symmetry relations of IMEs derived in the
preceding section by means of the coordinate representation in Eq. 4.21. It can be readily
shown

V
(m)
J1J2

= V
(m)
J2−m,J1+m = V

(−m)
J2J1

, (4.22)

which follow from the hermicity in Eq. 4.2 and indistinguishability of particles in Eq. 4.3,
respectively. With the aid of the relation in Eq. 4.13, we find

V
(m)
J1J2

= (−1)mV
(m)
−J1−m,J2

= (−1)mV
(m)
J1,−J2+m = V

(m)
−J1−m,−J2+m, (4.23)

which are the phase constraints on IMEs revealed by TR symmetry in Eq. 4.5. Using the
relation in Eq. 4.22, the phase constraints also can be represented like

V
(m)
J1J2

= V
(m)
J2−m,J1+m = (−1)mV

(m)
−J2,J1+m = (−1)mV

(m)
J2−m,−J1

= V
(m)
−J2,−J1

, (4.24)
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Figure 4.2: Color-scale plot of the Coulomb-matrix elements V
(m)
J1,J2

in (J2, J1) plane, nor-
malized to their maximum in the shown region, for α = 10 in the upper panels and α = 30
in the lower panels. The exchanged momentum m is fixed in each panel. The maxi-
mal absolute magnitude values of elements take place along two solid lines in each panel,
corresponding to BCS-like J1 = −J2 and exchange-type J2 = J1 + m interactions. The
symmetry centers (m/2,−m/2) are the points where two dotted lines intersect. For even
m, the symmetry center does not refer to a matrix element.
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Figure 4.3: 3D representation of the matrix elements shown in Fig. 4.2 for α = 30.

The forbidden backward scattering condition Eq. 4.6 reads

V
(m)
m/2,J ′ = V

(m)
J ′,m/2 = 0, (4.25)

which can be satisfied for m = 2J , which is an odd number, and arbitrary J ′. V
(m)
J1J2

is
nonuniform and depends significantly on the angular momentums of incoming particles J1,2
besides their exchanged momentum m. The numerical values of V (m)

J1J2
are shown in figures

4.2, 4.3 and 4.4. The salient features of IMEs are summarized in the following.

1. For a given m, IMEs show a point group symmetry in the (J2, J1) plane with the
symmetry center at (m/2,−m/2). The point group relies on the TR symmetry of
two-body potential i.e. ∼ Z2 × Z2. The symmetry center is a matrix element only
for odd m. |V (m)

J1J2
| has four reflection axes, J1 = −J2, J2 = J1 +m and J1,2 = ∓m/2

which intersect at the symmetry center.

2. The maximal absolute values of V
(m)
J1J2

take place along two lines, BCS-like J1 =
−J2 and exchange-type J2 = J1 + m interaction. In the presence of the Rashba
coupling, low-lying eigenstates are localized on a ring in momentum space. The
scattering processes on a ring are restricted topologically to BCS-like and exchange-
type interaction, see section 4.2.2, which boost the same type of processes in the
angular momentum space i.e. J1 = −J2 and J2 = J1 +m.

3. The partial TR connects elements of BCS-like and exchange-type interactions V (m)
J1,−J1

=

(−1)mV
(m)
J1,J1+m.
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Figure 4.4: Coulomb-matrix elements for α = 10 in the upper panels and α = 30 in the
lower panels and several m. The matrix elements are shown along one of the maximal
absolute magnitude lines, namely, the exchange-type interactions J2 = J1+m and the line
J2 = −J1 + α crossing the line J2 = J1 + m transversely. The elements for m = 0 are
shown together with elements of m = 1 in separate panels.
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4. The absolute magnitude of V
(m)
J1J2

decreases with increase in m. Particularly, for
(J2, J1) far from the symmetry center, there is a hierarchy along the maximal absolute-
magnitude lines |V (0)

J1,−J1
| > |V (1)

J1,−J1
| > |V (2)

J1,−J1
| > · · · , and also the same hierarchy

along J2 = J1 + m. The rate of decay versus increase in m is determined by the
concrete analytical form of V . Although, the rate is higher for a long-range poten-
tial, e.g. Coulomb potential, rather than a short-range one like contact interaction
potential, see the next section.

4.2.2 Flat-Band Model in Momentum Space

In this subsection, Coulomb potential is represented in the asymptotic state which is derived
by holding k0 finite while taking the limit lT → ∞. Despite the fact that this limit violates
the single-band approximation as ω → 0 to obtain lT → ∞, it is worth to study IMEs in
this limit since some deep physics of the interacting system can be revealed which are veiled
by the coordinate-space representations. The asymptotic wave-function realizes a ring in
momentum space k = k0. The wave-function is quasi-one dimensional due to absence of
the radial degree of freedom in the wave-function

ΨJ(k) = lim
α→∞

ψJ(k) =

√
2π3/2

k0lT
δ(k − k0)

⎛⎝ ei(J−1/2)φ

−iei(J+1/2)φ

⎞⎠ . (4.26)

The advantage of ΨJ(k) is that it allows to proceed the derivation of IMEs in momentum
representation. The Coulomb-matrix elements read

VJ1,J2
J ′
1,J

′
2
=

1

2

ˆ
dk1k2dq

(2π)6
Ψ †
J ′
1
(k1 + q)Ψ †

J ′
2
(k2 − q)Vq ΨJ2

(k2)ΨJ1
(k1), (4.27)

where Vq = 2πe2/q is the momentum representation of Coulomb potential in two dimen-
sional (2D) space. We refer to k1,2 as momenta of incoming particles and k′

1,2 the momenta
of outgoing ones. The translational invariance of V enforces conservation of translational
momentum k′

1,2 = k1,2±q which the exchanged (translational) momentum q is introduced.
The Dirac delta function in ΨJ(k) constrains the magnitude of momenta to stay on the
ring

k1,2 = k0e
iφ1,2 , (4.28)

k′
1,2 = k1,2 ± q = k0e

iφ′
1,2 , (4.29)

where 2D vectors are written in the complex plane k = keiφ. The constraints for k′
1,2

indicate

ei2φ
′
1,2 =

k0e
i2φ1,2 ± qei2φ

k0e−i2φ1,2 ± qe−i2φ
, (4.30)

k2
0 =

(
k0e

i2φ1,2 ± qei2φ
) (

k0e
−i2φ1,2 ± qe−i2φ

)
. (4.31)
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Performing the integrals of k1,2 in Eq. 4.29 and implementing the constraints, we arrive at

VJ1,J2
J ′
1,J

′
2
=

λ�ω

(2lT )2

ˆ q

0

dq

(2π)2

ˆ 2π

0

dφ1dφ2dφ δ(k
′
1 − k0)δ(k

′
2 − k0) e

i(J1+J2−J ′
1−J ′

2)φ

×ei(J1−J ′
1)φ1ei(J2−J ′

2)φ2

∑
σ1=±1
σ2=±1

(
1 +

q

k0
eiφ1

)J ′
1+σ1/2 (

1− q

k0
eiφ2

)J ′
2+σ2/2

, (4.32)

where the integration variables are shifted φ1,2 → φ1,2+φ. Therefore, k′
1,2 in the argument

of delta functions take the form

k′
1,2 =

√
k2
0 + q2 ± 2k0q cosφ1,2. (4.33)

Note that the measure of q integral cancels the 1/q of Coulomb potential. The magnitude
of the exchanged momentum is limited by ring-constraint 0 � q � 2k0. Evaluating the
integral of φ gives the conservation of angular momentum. The dimensionless IMEs can
be defined by

VJ1,J2
J ′
1,J

′
2
= λ�ω δJ1+J2,J ′

1+J ′
2
V (m)
J1J2

. (4.34)

For a given q, the delta functions in Eq. 4.32 can be satisfied by

cosφ1 = − cosφ2 = − q

2k0
, (4.35)

which restricts the relative orientation of the incoming particles φ2 = π ± φ1. Note that
φ1,2 are associated with k1,2 which are the momenta of incoming particles according to the
convention. The latter constraint restricts the interaction on the ring to two different types
of scattering processes: BCS-like φ2 = π + φ1 and exchange-type φ2 = π − φ1 which are
shown in Fig. 4.5. Parametrizing q = 2k0 cosϑ by ϑ ∈ [0, π/2] yields, with the aid of Eq.
4.35, to φ1 = π ± ϑ and φ2 = ±ϑ. By means of this parametrization, the delta functions
can be written as

δ(k′
1 − k0)δ(k

′
2 − k0) =

1

q2 sin2 ϑ

∑
σ1=±1
σ2=±1

δ(φ1 − π − σ1ϑ) δ(φ2 − σ2ϑ). (4.36)

Performing the integral over φ1,2 and using the following identities

1− q

k0
eiφ = 1− 2 cosφ eiφ = −ei2φ, (4.37)

∑
σ1=±1
σ2=±1

iσ1+σ2eiφ(σ1+σ2) = 4 sin2 φ, (4.38)

∑
σ1=±1
σ2=±1

iσ1+σ2eiφ(σ1−σ2) = −4 sin2 φ, (4.39)
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Figure 4.5: Two-particle scattering processes k1,2 → k′
1,2 = k1,2 ± q for a given exchanged

momentum q, in the α → ∞ limit where particle momenta are constrained to a ring of
radius k0. For a non-zero exchanged momentum |q| �= 0, there exist four processes which
can be classified into (a) BCS-like interactions where k1 = −k2 are scattered to k′

1 = −k′
2,

and (b) exchange-type interactions by which k2 = k1 + q, or equivalently k1 = k′
2 and

k2 = k′
1.

the integral representation of dimensionless IMEs V (m)
J1J2

reads

V (m)
J1J2

= (−1)J1+J2+m 1

2πα

ˆ π/2

0

sinϑ

cos2 ϑ

{
cos [2(J1 + J2)ϑ]− cos [2(J1 − J2 +m)ϑ]

}
. (4.40)

The integral is divergent for even m since cos−2 ϑ at the upper limit of the integral π/2
vanishes versus non-zero numerator. Although, the integral renders finite value for m = odd
as the numerator becomes also zero at π/2

cos [(J1 + J2)π]− cos [(J1 − J2 +m)π] = (−1)J1+J2 + (−1)J1−J2 = 0, (4.41)

which is due to half-odd-integer J . It is worth pointing that the singularity stems from the
radial degree of freedom, i.e. delta functions, which is not a degree of freedom for particles
on a ring. The singularity can be regularized by introducing a long-distance cutoff so that
q ∼ 1/lT � k0. Practically, the replacement cos2 ϑ → cos2 ϑ + α−2 in the denominator
removes the singularity for m = 2n and one obtains

(−1)J1+J2

ˆ π/2

0

sinϑ

cos2 ϑ+ α−2

{
cos [2(J1 + J2)ϑ]− cos [2(J1 − J2 + 2n)ϑ]

}
≈ α, (4.42)
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and ultimately the dimensionless IMEs read

V (m)
J1J2

≈ δm,even, (4.43)

since V (m)
J1J2

, for odd m, is suppressed by a factor of α−1 in Eq. 4.40.
We analyze the representation of V (m)

J1J2
in Eq. 4.40 to explain the observed properties of

IMEs in the regime of finite Rashba coupling V
(m)
J1J2

, derived in the preceding section. It is
possible to do so although the numerical values of V (m)

J1J2
show odd-even-parity effect despite

those of V (m)
J1J2

: The single-particle states are localized strictly or effectively on a ring in
momentum space in both ultrastrong Rashba coupling by lT → ∞ and finite α regime,
respectively. This restriction of phase space reduces the scattering processes to those given
in Fig. 4.5, namely, BCS-like and exchange-type processes. Furthermore, ΨJ(k) and ψJ(k)
satisfy the same set of symmetries and induces the same phase constraint on IMEs which
are derived in section 4.1.

We discuss why IMEs have maximal absolute magnitudes along BCS-like and exchange-
type interactions. Note that cos [2(J1 + J2)ϑ] in Eq. 4.40 comes out from the BCS-like
scattering processes which constrain the orientation of interacting particles φ2 = π +
φ1, see the discussion after Eq.4.35. If J1 + J2 = 0, then cos [2(J1 + J2)ϑ] takes on its
maximum and the contribution of the BCS-like processes is maximized to the integral.
Also cos [2(J1 − J2 +m)ϑ] stems from the exchange-type scattering processes φ2 = π−φ1.
If J2 = J1+m, the contribution of exchange-type scattering processes becomes maximum1.
Furthermore, the absolute magnitude of IMEs along J2 = −J1 and J2 = J1 +m are equal
for given J1 and m

V (m)
J1,−J1

= (−1)m
1

2πα

ˆ π/2

0

sinϑ

cos2 ϑ

{
1− cos [2(2J1 +m)ϑ]

}
= (−1)mV (m)

J1,J1+m. (4.44)

And if both J2 = −J1 and J2 = J1+m are met simultaneously, the contribution of BCS-like
and exchange-type processes cancel each other precisely out. This implies

(J2, J1) =
(m
2
,−m

2

)
, (4.45)

which is the center of symmetry of IMEs in the (J2, J1)-plane for a given m, see Fig. 4.2,
i.e. the intersection of two maximal absolute lines. In fact, the symmetry relations of IMEs
can be derived readily from the representation in Eq. 4.40 without a prior knowledge of
relations in Eq. 4.4, and hence, the TR symmetry of eigenstates

V (m)
J1J2

= (−1)mV (m)
−J1−m,J2

= (−1)mV (m)
J1,−J2+m = V (m)

−J1−m,−J2+m. (4.46)

1The lines J2 = −J1 and J2 = J1 +m for given m define the maximal absolute of V(m)
J1J2

only for odd
m. For even m the integral in Eq. 4.40 is singular and independent of J1,2. In appendix A, we study a
strictly 1D ring in momentum space which IMEs have the similar form to the integral in Eq. 4.40 but
nonsingular.
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To summarize, the momentum conserving interaction of two particles on a ring in transla-
tional momentum space are restricted topologically to merely BCS-like and exchange-type
scattering processes. These processes boost the same type of interactions in the angular
momentum space, i.e. the maximal absolute lines of IMEs along BCS-like J2 = −J1 and
exchange-type J2 = J1 +m interactions. Also, it is possible to derive the symmetry rela-
tions of IMEs

Finally, we observed that electrons are allowed to interact either by exchanging momenta or
being time-reversed partners. The strong correlation of time-reversed partners takes place
in superconducting phase [3]. And exchange interaction favors magnetic phase [10]. It is
then plausible to look for counterparts of these phases in our system in different regime of
parameters. In fact, we shall see in chapter 5 that Coulomb interacting few-electron dots
realizes orbital ferromagnetism even for weak interactions. And Kramers pairs are strongly
correlated for weak short-range interactions, see chapter 6.

4.2.3 Flat-Band Model in Coordinate Space

In this section, Coulomb-matrix elements are evaluated by means of the coordinate wave-
function in Eq. 3.25 in the limit of α → ∞, while lT is held finite and k0 → ∞

ψ̄J(�, θ) = lim
α→∞

ψ̃J(�, θ) =
iJ−1/2ei(J−1/2)θe−�2/2

π3/4lT
√
�

⎛⎝ cos (α�− πJ/2)

eiθ sin (α�− πJ/2)

⎞⎠ . (4.47)

The auxiliary function takes the following form

F̃m(�) = lim
α→∞

FJ,J+m(�) = π−3/2 cos (mπ/2)e−�2 . (4.48)

Substituting the wavefunction in the integral form of Coulomb-matrix elements in Eq.4.9,
IMEs obtain a compact form

lim
α→∞

V
(m)
J1J2

= Sm, (4.49)

which does depend solely on the exchanged momentum m. Moreover,

Sm|m=odd = 0, (4.50)

which gives rise to the odd-even-parity effect. Sm satisfies the symmetry relations discussed
before. Namely, Sm = S−m, and also since Sm is identically zero for odd m, the phase
constraint in Eq. 4.6 is fulfilled trivially. In terms of R(m)

l , see Eq.4.20, Sm takes the form

Sm = δm,even

∑
l=|m|+|m|+2,···

e−ηlR(m)
l Cl, (4.51)
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Table 4.1: Non-zero values of Sm in Eq. 4.49 for m � 16.

where

Cl =
2√
π

ˆ π/4

0

dφ
tanl φ

cosφ
. (4.52)

The small parameter η � 1 in Eq.4.51 is introduced to regularize the logarithmic singu-
larity of l summation. This weak divergence arises out of the 1/r Coulomb potential at
r → 0, which practically is cut off by the transverse confinement. The non-zero values of
Sm are shown in Table 4.1. Sm has a maximum at m = 0 and decreases monotonically
versus increase in |m|. The full Hamiltonian is written

H∞ = �ω
∑
J

EJc
†
JcJ + λ�ω

∑
J1,J1
m �=0

Smc
†
J1+mc

†
J2−mcJ2cJ1 + Es, (4.53)

where EJ = J2/2α2 and the contribution of zero-exchange interaction is Es = λ�ωS0N(N − 1)
for system of N electrons. In principle, in the ultrastrong Rashba coupling, the kinetic
term vanishes although it is incorporated perturbatively. In chapter 5, we exploit the
Hamiltonian derived here to study the ground state of a system containing two electrons.
It will be shown that even a weak interaction induces a very large magnetization.

4.3 Matrix Elements of Contact Interaction Potential
In this section, IMEs of a contact potential λ�ωδ(r) are evaluated in the eigenbasis of finite
Rashba coupling. It allows then to compare the IMEs of a short-range potential with the
long-range Coulomb potential which discussed before. Briefly, a short-range potential in
coordinate space appears as a long-range in the representation exploited here. That is the
IMEs decay quite slowly with increase in the exchanged momentum m, particularly, in
comparison with the Coulomb-matrix elements.
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We start with the coordinate representation

V̄ J1,J2
J ′
1,J

′
2

= �ω
λ

2

ˆ
dr1dr2 ψ̃

†
J ′
1
(r1)ψ̃

†
J ′
2
(r2) δ(r1 − r2)ψ̃J2

(r2)ψ̃J1
(r1)

= �ω
λ

2l−2
T

ˆ
dr ψ̃†

J ′
1
(r)ψ̃†

J ′
2
(r) ψ̃J2

(r)ψ̃J1
(r). (4.54)

Substituting the eigenfunction in Eq. 4.8, we obtain the dimensionless IMEs

V̄
(m)
J1J2

= π

ˆ ∞

0

�d�F̄J1J ′
1
(�)F̄J2J ′

2
(�), (4.55)

where the dimensionless IMEs are defined by

V̄ J1,J2
J ′
1,J

′
2
= λ�ωδJ1+J2,J ′

1+J ′
2
V̄

(m)
J1J2

. (4.56)

The function F̄JJ ′(r) is defined in terms of the auxiliary functions (given in Eq. 4.11)

F̄JJ ′(r) =
∑
σ=±1

FJ+σ/2(r)FJ ′+σ/2(r). (4.57)

Clearly V̄
(m)
J1J2

satisfy the same symmetry relations discussed in sections 4.1 and 4.2. The
numerical values of V̄ (m)

J1J2
are depicted in figures 4.6 and 4.7.

4.4 Summary
In this chapter, interaction matrix elements in the eigenbasis of the system are discussed,
either for finite α � 1 or α → ∞. In the case of finite α, the time-reversal symmetry of
the eigenbasis and interaction potentials induce phase constraints on the interaction matrix
elements V (m)

J1J2
which are independent of the analytical form of interaction potentials. V (m)

J1J2

depends significantly on the angular momenta of interacting particles (J2, J1) and the odd-
even parity of m. In fact, V (m)

J1J2
has maximal absolute magnitude alongs BCS-like J1 = −J2

and exchange-type J2 = J1+m interactions for a given m. Those boosted interactions rely
on the topological restriction of the scattering processes on the ring in momentum space
generated by the strong Rashba coupling. The sign of IMEs along BCS-like interaction
is switched by the phase factor (−1)m, whereas, the sign of exchange-type interaction is
determined by the sign of the interaction potential V itself. Two different interaction po-
tentials are represented in the eigenbasis, namely, Coulomb and contact potential. It was
discussed that the short-range potential becomes a long-range one in the representation
as a function of exchanged momentum m; in the sense that the matrix elements decay
quite slowly with increase in m, particularly, in comparison with the long-range Coulomb
potential which its matrix elements decay quickly with increase in m. For the ultrastrong
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Rashba coupling α → ∞, by maintaining the trap while taking the limit k0 → ∞, the
matrix elements show an odd-even-parity effect by which the interactions with an odd
exchanged momentum vanish identically.

Intuitively speaking, the peculiar form of the IMEs implies that the ground state of the
system in different regimes of interaction strength λ will be determined by a competi-
tion between BCS-like and exchange-type interactions, that is to say, strong correlation of
Kramers pairs and magnetic phases. Indeed, it will be shown that a transition from the
state with the maximum number of occupied Kramers pairs occurs to the orbital ferro-
magnetism in the few-particle Coulomb interacting system, see chapter 5. In addition, the
strong correlation of Kramers pairs is shown in chapter 6 by means of the bosonization
machinery in the regime of very weak interactions.
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Figure 4.6: Color-scale plot of the contact potential matrix elements V̄ (m)
J1,J2

in (J2, J1) plane,
normalized to their maximum in the shown region, for α = 10 in the upper panels and
α = 30 in the lower panels. The exchanged momentum m is fixed in each panel. The
maximal absolute magnitude values of elements take place along two solid lines in each
panel, corresponding to BCS-like J1 = −J2 and exchange-type J2 = J1 +m interactions.
The symmetry centers (m/2,−m/2) are the points where two dotted lines intersect. For
even m, the symmetry center does not refer to a matrix element.
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Figure 4.7: Contact potential matrix elements for α = 10 in the upper panels and α = 30 in
the lower panels and several m. The matrix elements are shown along one of the maximal
absolute magnitude lines, namely, the exchange-type interactions J2 = J1+m and the line
J2 = −J1 + α crossing the line J2 = J1 +m transversely.
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Chapter 5

Few-Body System

We begin in this chapter to investigate Coulomb-interacting few-electron dots in the pres-
ence of strong Rashba spin-orbit coupling (SOC) α � 1. We are mainly interested in the
interaction-driven features of the system. We need to deal with a discrete finite system.
The interactions must be weak enough in order to admit the single-band approximation
|J | � α which formally we take it into account through restricting the interaction strength
as λ � 1. Practically, one must check that the highest occupied states stay far from the
bottom of the next band.

We start to study the system of two electrons N = 2 in the ultrastrong Rashba coupling
α → ∞. The limit is taken by holding the trap length scale lT finite while k0 → ∞
(dimensionless Rashba coupling is defined by α = k0lT ). The kinetic term vanishes in
this limit although it is treated in the perturbation theory. The peculiarity of the ul-
trastrong Rashba coupling is the odd-even-parity effect in the interaction term. That is
matrix elements with an odd exchanged momentum vanish. It shall be shown that the
ground state is highly degenerate although a spontaneous large ground-state magnetiza-
tion emerges if the Coulomb corrections is contributed in a perturbation-theory manner.
Consequently, a very weak interaction leads to a large magnetization in the system. Since
the system is effectively spinless, the orbital angular momentum merely contribute to the
magnetization, and hence, the phase is called orbital ferromagnetism. In principle, the
magnetization is the sum of angular momentums of occupied states, in a mean-field sense,
and gives rise to a nonzero value if one of the two time-reversed partners is occupied. That
is the magnetization requires broken Kramers pairs. Although the ground state has the
Kramers degeneracy in the orbital ferromagnetic state, the energy barrier between two
minima breaks time-reversal symmetry practically.

Next, we engage the standard exact diagonalization to find out the features of the few-
electron systems N = 2 and N = 3 with a finite but large Rashba coupling as a function
of interaction strength λ. The ground-state energy as a function of λ shows non-analytical
features at different values of critical interaction strength λc which mark transitions to
magnetized states. The derivative of the ground-state energy with respect to the λ shows
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discontinuity at the transition points. The analysis of the system at two different values
of Rashba coupling α = 10, 15 suggests that the transition from unmagnetized state to the
spontaneous ferromagnetism takes place at a weaker interaction strength if α is increased.

We present also a few results for N = 4 and α = 15 calculated by means of the density
matrix renormalization group (DMRG) [107, 25, 93]. DMRG is one of the most powerful
technique for discrete 1D systems. In fact, after reproducing the results of the exact di-
agonalization for N = 2, 3 with DMRG, the study of the system is extended for larger N
with the technique which is computationally much more efficient in comparison with the
exact diagonalization.

Finally, a Hartree-Fock (HF) calculation is carried out on the system with N � 10 and
α = 30. The results of HF admit the spontaneous magnetization qualitatively. Though,
since the standard HF Hamiltonian dose not contain BCS-like interactions, the Kramers
pairs are broken quickly even for a very weak interaction, particularly, with increase in N .
In the next chapter, we consider an extended Hartree-Fock Hamiltonian which is expected
to remedy this insufficiency.

5.1 Ultrastrong Rashba Coupling
In this section, we consider the ultrastrong Rashba coupling α = lTk0 → ∞ by holding the
trap length lT finite while taking the limit k0 → ∞ which is consistent with the single-band
approximation. The Hamiltonian, derived in the preceding chapter, has the form

H∞ = �ω
∑
J

EJc
†
JcJ + λ�ω

∑
J1,J1
m �=0

Smc
†
J1+mc

†
J2−mcJ2cJ1 + Es, (5.1)

where the kinetic term with EJ = J2/2α2 is kept as a perturbation in the limit α → ∞.
The numerical values of Sm is discussed in section 4.2.3 and Es = S0N(N − 1)λ�ω. In the
following, we consider the ground-state of H∞ for N = 2.

5.1.1 Ground State

Two particle Hilbert space can be spanned by c†J1c
†
J2
|0〉 where J1 > J2 to avoid double

counting. |0〉 is the vacuum state with no particle. The two-particle eigenstates of H∞
comprise of three families. The corresponding states are presented by |M, γ〉 in which M
is integer. γ = 1, 2, 3 is the family index, see figure 5.1. Expanding the eigenstates in the
two-particle basis yields

|M, γ〉 =
∑
J>0

βJc
†
J+M+iγ

c†−J+M |0〉, (5.2)
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Figure 5.1: Schematic illustration of the invariant two-particle states |M, γ〉 (with integer
M and family index γ = 1, 2, 3) [see Eq. 5.2] in the J1 − J2 plane. These states span the
complete two-particle Hilbert space. Our ordering convention J1 > J2 implies that only
states below the main diagonal (dashed red line) appear. Yellow cells correspond to γ = 1,
where the respective numbers indicate M . Green (blue) cells refer to γ = 2 (γ = 3). The
interacting ground state has γ = 1.

Figure 5.2: Distribution function nJ = |βJ |2 versus J for ground state of two-particle
system. As a matter of illustration, we have put λα2 = 104 which gives Emin = −0.0992725.
Inset panel, shows the pairwise oscillatory behavior of βJ versus J .
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where normalization of the eigenstates require
∑

J>0 |βJ |2 = 1. The auxiliary index iγ is
defined with respect to the family index as i1 = 0 and i2,3 = 1. The summation in Eq. 5.2
for γ = 2 (γ = 3) consists of solely even (odd) J + 1/2. Operating with H∞ on the states,
we obtain

H∞|M, γ〉 =
∑

J,J ′>0

βJ ′
[(
EJ+M+iγ + E−J+M

)
δJ,J ′ + 2λ�ω

(
SJ−J ′ − δiγ ,1SJ+J ′

)]
c†J+M+iγ

c†−J+M |0〉. (5.3)

The M dependence only appears from EJ ∝ α−2 which indicates states in the same family
are degenerate for α → ∞. The ground state must be in the family of γ = 1 since the
exchange energy SJ+J ′ is absent for γ �= 1. Therefore, the magnetization of the ground
state is even 〈M̂〉 = 2M�. From here on, we drop the family index and proceed with the
ground-state family

|M〉 =
∑
J>0

βJc
†
J+Mc†−J+M |0〉. (5.4)

Matrix elements of H∞ has the following form

〈M ′|H∞|M〉 = �ω

(
M2

α2
+ 2λE

)
δMM ′ , (5.5)

which is diagonal since H∞ is rotational invariant and cannot mix states with different
magnetization. The dimensionless parameter has the form

E =
∑

J,J ′>0

(
J2

2λα2
δJJ ′ + SJ−J ′ − SJ+J ′

)
βJβJ ′ . (5.6)

βJ is independent of M and can be chosen real valued. The energy of the ground state
depends on Rashba coupling and interaction strength through λα2 in Eq. 5.6. The ground
state can be found by minimizing Emin as a function of βJ numerically. Subsequently, the
distribution function nJ = |βJ |2 can be obtained readily. βJ and nJ are shown in Fig. 5.2
for typical values of Rashba coupling and interaction strength. The numerical values of
nJ can be fitted to a Gaussian factor e−(J/J∗), with J∗ ∼ √

α which fulfilled the single-bad
approximation self-consistently. βJ in Fig. 5.2 exhibits a pairwise oscillatory behavior as
a function of J . It will be shown in subsection 5.1.4 that the oscillatory behavior of βJ is
enforced by the antisymmetry of fermions.

5.1.2 Ground-State Magnetization

The analysis of the preceding section yield to the ground state energy

E0
M =

(
M2

α2
+ 2λEmin

)
�ω, (5.7)
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where Emin needs to be evaluated numerically. The second order perturbative term M2/α2

suggests the ground state has a zero magnetization M = 0. Although, the corrections
to Coulomb-matrix elements scale as α−1 approximately, see Eq. 4.43 and the discussion
beyond. The correction then should be taken into account as they are subleading to the
contribution of kinetic term M2/α2.

A comment is here in order. In the ultrastrong Rashba coupling α → ∞, the eigenfunction
is obtained by keeping the lowest order term in the asymptotic expansion of the Bessel
function, see Eq. 3.24. In principle, one should keep the higher order terms of the expan-
sion and incorporate them in the computation of Coulomb-matrix elements to estimate the
Coulomb correction beyond H∞. Although, in the following, we take the interaction term
HI of finite in Eq. 5.25 as the corrections to H∞ in a perturbation theory heuristically in
order to determine the ground state.

The expectation value of HI takes the form

〈M ′|HI |M〉 = 2λ�ωδMM ′
∑

J,J ′>0

βJβJ ′
(
V

(J−J ′)
−J+M,J+M − V

(J+J ′)
−J+M,J+M

)
, (5.8)

where we have used the symmetry relations discussed in section 4.1. The Coulomb correc-
tion treated in perturbation theory is

EM = E−M = E0
M + 〈M |HI |M〉 − 2λ�ωEmin. (5.9)

We measure EM with respect to the energy of the unmagnetized state δEM = EM −EM=0.
The numerical value of δEM is shown in Fig. 5.3 for concrete values α = 30 and λ = 1
as an illustration. It is interesting to note that M = 0 state represents a local energy
maximum. The main contribution to δEm is dominated by terms J = J ′ as V m=0

JJ ′ is the
strongest channel of interaction, see chapter 4. We estimate

δEm ≈ 2λ�ω
∑
J>0

nJ

(
V

(0)
−J+M,J+M − V

(0)
−J,J

)
< 0, (5.10)

where nJ = |βJ |2. The inequality holds since V
(0)
J,J ′ > 0 has maximum values along J =

±J ′. Since, we have found herein M � 1, the effect must stem from the orbital angular
momentum rather than the spin one, particularly, here for N = 2.

The value of M = M(α, λ) can be estimated analytically as follows. We compute 〈M |HI |M〉
exploiting matrix elements given in Eq. 4.40 to find

δEM

�ω
≈ M2

α2
− 2λ

πα

ˆ π/2

0

dϑ
sinϑ

cos2 ϑ
sin2 (2Mϑ). (5.11)

We minimize δEM with respect to M and find the ground-state magnetization M = M0

M0 =
2λα

π

ˆ π/2

0

dϑ
ϑ sinϑ

cos2 ϑ
sin (4M0ϑ). (5.12)
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Figure 5.3: Energy of two-particle state in ultrastrong Rashba coupling relative to the
energy of unmagnetized state M = 0. δEm is measured in units of �ω. For illustration, we
have chosen α = 30 and λ = 1.

The main contribution to the integral comes from ϑ � M−1
0 for M0 � 1. Performing the

integral, we obtain M0 = (λα)1/4 which suggest M0 can be very large even for very weak
interaction.

The ground state is degenerate due to the time-reversal symmetry | ±M0〉 with magneti-
zation ±2M0. Therefore, a superposition of | ±M0〉 is a ground state also

|Φ〉 =
∑
η=±

cη|ηM0〉,
∑
η=±

|cη|2 = 1. (5.13)

|Φ〉 is not an eigenstate of total magnetization operator M̂ . The magnetization expectation
value 〈Φ|M̂ |Φ〉 = 2M0�(|c+|2−|c−|2) is finite except if |c+| = |c−|. It implies that applying
a weak magnetic fields the magnetization takes on one of the minimums ±M0. Switching
off the magnetic field adiabatically, we then obtain |Φ〉 → |M0〉. Since the barrier between
two minima is finite, the tunneling effect can unmagnetized the state with |c+| = |c−|.
Nonetheless, M̂2 always has non-zero eigenvalue.

We discuss the eccentricity of the quantum dot by which quantum-tunneling processes
between energy minima with opposite magnetization ±M0 becomes relevant. First, we
note that the energy barrier between two minima is B�ω with B ∝ 0.1, see Fig. 5.3. We
employ an effective low-energy Hamiltonian to estimate tunneling rate between minima

Heff =

[
ε
φ2

2
+B

(M2 −M2
0 )

2

M4
0

]
�ω, (5.14)

where φ is the field conjugate to magnetization M , the small parameter ε describes the
dot eccentricity. The solution of the effective Hamiltonian is known exactly [3]. The parity
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symmetry of the Hamiltonian splits the ground state to symmetric and antisymmetric
eigenstates. The level splitting of two states

δE = �ωB

√
2

π
64 exp

(
−4

√
2B

3
√
ε
M0

)
, (5.15)

allows estimation for time scale of tunneling rate

ωτ =
�ω

δE
≈ 0.2e5.96M0 , (5.16)

where we have put B = 0.1 and ε = 0.01 for illustration. For M0 = 18 observe in Fig. 5.3,
we estimate the time scale for tunneling between minima as ωτ = 1045. This astronomi-
cally long time indicates that on the laboratory-time scale, the tunneling process can be
disregarded.

It is useful to compare the phenomenon observed here with the well-known persistent cur-
rent in the normal-metal quantum ring [20, 45, 23, 49, 100, 15], where a circulating equi-
librium electric current flows and can be experimentally observed, see [15] and references
therein. The persistent current requires a non-zero flux threading the ring and emerges
even in the absence of interactions. Though, the orbital ferromagnetism in a 2D dot is
generated by the interplay of Coulomb interactions and strong Rashba SOC. The spon-
taneous magnetization which is discussed here can be very large. The persistent current
analogy suggests how the magnetization predicted here can be observed experimentally in
spite of their differences. In addition, the response of the system to a weak magnetic field
applied perpendicular to the 2D plane is expected to reveal information about the magne-
tization. The susceptibility is then should be singular similar to the ordinary ferromagnet.
At temperature higher than the energy barrier discussed above, the orbital ferromagnetism
in the system will be suppressed and ultimately disappear. An estimation for the relevant
temperature is Tc ≈ B�ω/kB. For typical quantum dots [61], Tc ≈ 1 to 10 K.

5.1.3 Spin and Charge Density

We assume the system of two particles is in a definite state |M0〉. The total spin density
at position (r, θ) has the form

S(r, θ) =
∑
J>0

nJ [sJ+M0(r, θ) + s−J+M0(r, θ)] , (5.17)

where sJ(r) = �

2
ψ̄∗
J(r)σ ψ̄∗

J(r) and σ = (σx, σy, σz) are Pauli matrices. The x component,
for instance, has the form

sJ(r, θ) ≈
�

2

e−r2/l2T

π3/2lT r
cos θ sin (2k0r − πJ). (5.18)
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Substituting the explicit form of sJ(r, θ) in Eq. 5.17, two terms cancel each other and
vanish the density Sx(r, θ) = 0. The same argument applies to the other component and
leads to S = 0.

Charge density for N particles can be derived in the ground state

ρC(r) =
eN

π3/2lT r
e−r2/l2T , (5.19)

which is radially symmetric and independent of Coulomb interaction in the considered
regime λ � 1. The λ independence of ρC is in marked contrast to the case of weak spin-
orbit coupling where ρC has information about interactions and can be exploited to detect
Wigner-molecule formation [7, 106]. Such a featureless charge density implies absence of
Wigner crystallization which emerges in the regime of weak spin-orbit coupling and strong
Coulomb interaction [22]. Furthermore, we compute the pair distribution function in the
following subsection which also does not show any sign of crystallization. Although, it
contains informations about the oscillatory feature of βJ observed before.

5.1.4 Pair Distribution Function

We see in the following that the pair distribution function in the regime of ultrastrong
Rashba coupling reveals a noteworthy constraint on βJ which attributes the pairwise os-
cillatory behavior observed in Fig. 5.2 to Pauli exclusion principle. The pair distribution
function is defined as

P(r, r′) = 〈M |Ψ†(r)Ψ†(r′)Ψ(r′)Ψ(r)|M〉, (5.20)

where Ψ†(r) and Ψ(r) are fermion field operators which are defined as

Ψ†(r) =
∑
J

ψ̄∗
J(r)c

†
J , (5.21)

and ψ̄J(r) is the eigenfunction of the free system defined Eq. 4.47. Using the relation in
Eq. 5.21 and the eigenstate |M〉, given in Eq. 5.4, after some algebra, we obtain

P(r, r′) =
2 e−r2−r′ 2

π3l4T rr
′

∑
J,J′>0
η=±1

ηβJβJ ′ cos [(J − ηJ ′)(θ − θ′)] cos2 [π(J − ηJ ′)/2], (5.22)

where in polar coordinate r = (r, θ). The pair distribution must vanish for r = r′ due to
Pauli exclusion principle. It implies a constraint on βJ

P(r, r) = 0 ⇒
∑
J>0

βJ sin (Jπ) = 0. (5.23)
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The following ansatz for the pair of consecutive βJ satisfies the constraint

β1/2 = β3/2,

β5/2 = β7/2,

...
β(4n+1)/2 = β(4n+3)/2, for n ∈ Z

+, (5.24)

where βJ is suppose to be real. The ansatz mimics the pairwise oscillatory behavior of βJ in
Fig. 5.2. It is worth pointing that P(r, r′) = 0 for θ = θ′ even if r �= r′. Moreover, the pair
correlation function vanishes even for θ− θ′ = ±π. Also, no sign of Wigner crystallization
shows up in the considered regime α → ∞ and λ � 1.

5.2 Exact Diagonalization
The system of few Coulomb-interacting electrons in the presence of a strong Rashba spin-
orbit coupling α � 1 and parabolic trap is studied numerically. Using the standard exact
diagonalization technique, ground-state energy and magnetization of few electrons N � 3
versus variation of interaction strength λ � 1 are derived for α = 10 and 15. A transition
takes place from unmagnetized ground state to an orbital ferromagnet if the interaction
strength exceeds a critical value λ > λc.

We begin with the full Hamiltonian

H = H0 +HI

= �ω
∑
J

EJc
†
JcJ + λ�ω

∑
J1,J2

m

V
(m)
J1J2

c†J1+mc
†
J2−mcJ2cJ1 , (5.25)

where EJ = J2/2α2 and the Coulomb-matrix elements V
(m)
J1J2

are discussed in chapter 4.
In principle, the numerical values of V

(m)
J1J2

is a function of Rashba coupling α, which is
taken into account implicitly. In this section, we derive the ground-state quantities of H
for α = 10 and α = 15 while varying the interaction strength in the range of 0 � λ � 1.
We expand H in the basis of N particles, see appendix C, and diagonalize the matrix
representation numerically. Having the ground states of the system as a function of α and
λ, the physical quantities of the ground state can be evaluated readily.

5.2.1 Ground State

The ground-state results obtained by exact diagonalization for N = 2 and N = 3 and
Rashba coupling α = 10 and α = 15 versus discrete values of interaction strength λ are
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Figure 5.4: Exact-diagonalization results for the ground-state energy E0 and magnetization
M of N = 2 and N = 3 versus interaction strength λ for α = 10 and α = 15. The energy
E0(λ) is shown in the top panels. The singularities of dE0/dλ at the critical values of λ
are visible in the middle panels. The bottom panels show magnetization M(λ) where for
λ > λc a big jump is visible. For N = 3, magnetization is always non-zero even for λ < λc.
Although, for N = 2, the magnetization is zero for λ < λc.

shown in Fig. 5.4. We review the observed physics revealed by exact diagonalization. In
the non-interacting limit λ = 0, the ground-state magnetization is equal to zero for an even
number of particles, but otherwise, non-zero

⎧⎪⎪⎨⎪⎪⎩
〈GS|M̂ |GS〉

∣∣∣
λ=0

= 0 if N = even,

〈GS|M̂ |GS〉
∣∣∣
λ=0

= ±�N/2 if N = odd.

(5.26)

Therefor, the ground-state of non-interacting system with an odd number of particles is
degenerate due to time reversal symmetry. If the magnetization of a state is close to the
magnetization of the non-interacting states, we call it unmagnetized states for convenience.
Increasing the interaction strength, when λ reaches the first critical value λc, the ground
state shows a sharp transition to a ferromagnetic state with a large magnetization. The
large magnetization |M | � 1, in fact, rules out any spin-based origin for the phenomena.
We call the state orbital ferromagnet since it relies on the orbital angular momentum.

Due to time reversal symmetry, the ground state is degenerate in the orbital ferromag-
netic state with 〈GS|M̂ |GS〉 = ±M . In fact, numerical rounding errors in the exact-
diagonalization method corresponds to the initial condition in choosing the realized ground
state. Increasing λ further, more jumps in the magnetization take place at larger distinct
values of interaction strength. The ground-state magnetization for N = 2 in the orbital
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ferromagnetic state is always even, while, for N = 3, the magnetization takes on half-odd-
integer values and changes by one integer at the moments of transition in the ferromagnetic
states.

The ground-state energy E0 increases analytically as a function of λ before the first tran-
sition, while E0 becomes singular at the critical interaction strength. The derivative of
energy with respect to interaction strength dE0/dλ is shown in Fig. 5.4, which indicate E0

increases linearly as a function of interaction strength λ in the orbital ferromagnetic state.

In the following chapter, a number of effective models are considered in order to explain
the low-energy physics of the system to some extent. In the following, we interpret the
observations with the aid of the characteristic of interaction matrix elements (IMEs) V (m)

J1J2
,

see chapter 4. First, we give a short review. IMEs have a number of properties which are
due to the time reversal symmetry of the eigenbasis and topological restrictions of scatter-
ing processes on the (translational) momentum-space ring generated by Rashba coupling.
Thereby, the matrix elements are boosted along BCS-like J1 = −J2 and exchange-type
interactions J2 = J1 + m. The former correlates Kramers pairs and the latter provides
exchange energy responsible for magnetization. Furthermore, there is hierarchy for IMEs
that |V (m)

J1J2
| decays quickly by increasing exchanged momentum m.

Interaction with m = 0 along BCS-like channel V (0)
−J,J > 0 makes the presence of Kramers

pairs energetically expensive. On the other hand, if interacting electrons are nearest neigh-
bor J2 = J1 ± 1, then they benefit from the largest exchange energy −V

(±1)
J±1,J < 0 (the

negative sign is due to fermion antisymmetry while V
(±1)
J±1,J > 0). From a mean-field point

of view, m = 0 channel breaks the pairs and m = ±1 along the exchange-type interactions
cause electrons to occupy the nearest neighbor sites. This fact indicates the magnetization
of a two-electron system in ferromagnetic state must be an even number M = (2J + 1)�.
The expectation values of distribution function nJ = c†JcJ before and after transition to
the orbital ferromagnetism are shown in Fig. 5.5. It is clear that before transition two
electrons are Kramers pair, while they occupy the adjacent sites after transition. For
N = 3, two electrons occupy the nearest neighbor sites and one electron is free of nearest
neighbor. Therefore, the ground-state magnetization M = (2J + 1+ J ′)� can take on any
half-odd-integer value.

Comparing the results for α = 10 and α = 15, it is evident that the transition to the orbital
ferromagnetism takes place for a weaker interaction strength by increasing the Rashba cou-
pling. For α = 10 and N = 2, the first critical interaction strength occurs at λc ≈ 0.25
at which the magnetization jumps from zero to |M | = 6�. While for α = 15 and N = 2,
the first transition happens from zero magnetization to |M | = 8� at λc ≈ 0.17. Similarly,
for N = 3 the first critical interaction strength decreases from λc ≈ 0.31 to λc ≈ 0.22 for
α = 10 and α = 15, respectively. The total angular momentum for N = 3 is and half-odd-
integer. In this case, the magnetization abruptly changes from |M | = 0.5� to |M | = 11.5�
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Figure 5.5: Distribution function nJ versus angular momentum J , for two-electron system
in different regime of interaction strength λ. J , in the range of −α � J � α due to the
single-band approximation. The interaction strength is shown schematically by an arrow
on top of the panels. The panels for λ < λc show nJ before the transition to the orbital
ferromagnetism. In this regime, the sites are occupied symmetrically with respect to the
origin due to the time-reversal symmetry. For λ > λc, the panels depict nJ after the
transition to the orbital ferromagnetism. In ferromagnet phase, electrons occupy nearest
neighbor sites as though they constitute a composite particle which a unified peak is visible
rather than two peaks. This composite-like particle moves coherently further in J-space
toward the end of the band with Increase in interaction strength λ.

for α = 10 and from |M | = 0.5� to |M | = 14.5� for α = 15 at first critical interaction
strengths.

In section 4.2.3, we studied two-particle system in the presence of the ultrastrong Rashba
coupling α → ∞. It was shown there that the effect of zero-exchanged-momentum inter-
action is crucial in the realization of the orbital ferromagnetism. This fact is consistent
with the exact-diagonalization results as discussed here. It reveals the pair-breaker role of
interactions with zero-exchanged momentum. Besides, for α → ∞, the critical interaction
strength vanishes in α → ∞ i.e. an infinitesimally weak interaction leads to the orbital fer-
romagnetism. This is also consistent with the results given here as the critical interaction
strength decreases with increase in α, see Fig. 5.4. Another common feature in these two
limits is that the magnetization for N = 2 takes on even values. As is discussed for the
case of finite α, this fact is due to the large exchange interactions by exchanging m = ±1
momentum which is in contrast to the ultrastrong Rashba coupling. The odd-even-parity
effect for α → ∞ indicates the absence of interactions with an odd exchanged momentum.

Since the total orbital angular momentum is conserved [H, M̂ ] = 0, the eigenstates can
be chosen to be the simultaneous eigenstates of H and M̂ . States with fixed M have an
spectrum determined by internal degree of freedoms i.e. relative angular momentums of
electrons which are not conserved quantity in the presence of interaction. Anyway, it is
possible to find the state with lowest energy EM in each sector defined by fixed M at a
given interaction strength λ. In Fig. 5.6, EM is shown versus M for N = 2 and N = 3
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Figure 5.6: The lowest energy of states with fixed magnetization M , and Rashba coupling
α = 15, and several interaction strength λ. Increasing λ, gradually a second well appears
in EM at magnetization larger than the first dip |M | ≈ 0, for N = 2 and N = 3 in the
left and right panel, respectively. This well stabilizes itself as the ground state by further
increase in λ which is called the orbital ferromagnetic state.

and several interaction strengths1. For larger values of λ, two dips appear in the energy of
states with a given λ gradually, one corresponding to the unmagnetized state and the other
to the orbital ferromagnet. Two dips are separated with a shallow energy barrier which is
in order of 0.1�ω. It should be noted that at a given λ, the lowest energies is the energy
of the ground states and the other energies correspond to the excited states. The energy
of two dips, unmagnetized and magnetized one, are quite degenerate. This fact indicates
that even for Coulomb interacting system, the phase with strong correlation of Kramers
pairs, and hence lowest magnetization, is competing with the orbital ferromagnetism, see
also the following chapter. Such a competition indeed is expected from the characteristics
of the interaction in the system, discussed in chapter 4. Taking into account the Kramers
degeneracy, a third dip exists at the negative branch of magnetization in Fig. 5.6. The
oscillations in the excited states for N = 2 will be discussed in the section of Hartree-Fock
approximation 5.4.

5.3 Density Matrix Renormalization Group

In this section, we present the DMRG results for N = 4 and α = 15. DMRG calcula-
tions reproduced the exact-diagonalization findings discussed in the preceding section with
a very high accuracy, not shown here. In fact, it turned out that the study of the sys-

1We thank Dr. Peter Schmitteckert for pointing out the representation of data in a way shown in Fig.
5.6.
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Figure 5.7: DMRG results for N = 4 and α = 15. The left panel shows the ground-
state magnetization M versus interaction strength λ. The right panel illustrates the lowest
energy EM of the states with a given magnetization versus magnetization of the state M
for several values of interaction strength.

tem containing large number of particles with DMRG technique is computationally more
efficient in comparison with the exact diagonalization. In Fig. 5.7, the magnetization is
depicted versus λ for N = 4 and α = 15. The transition from an unmagnetized state to the
orbital ferromagnetism with M = 26� takes place at λc ≈ 0.24 which is slightly larger than
the value for N = 3 and α = 15, see Fig. 5.4. Similar to N = 2, the magnetization takes
on even values. That is by increase in λ, transitions take place form M = 26� to M = 28�,
and so on. The underlying reason for the parity of the magnetization is explained in the
preceding section. Moreover, the lowest energy of states with a given magnetization M is
shown in Fig. 5.7. It can be seen that the oscillatory behaviors appear for the energy of
the states close to the orbital ferromagnet ground state, similar oscillations are observed
for N = 2, see Fig. 5.6. We discuss the effect in the following section.

5.4 Hartree-Fock Approximation
The exact diagonalization becomes computationally expensive for N > 3. Instead, we carry
out unrestricted Hartree-Fock (HF) approximation [44] in order to find the ground-state
results for system of N � 10 particles. The HF Hamiltonian has the form

HHF =
∑
J

(
EJ + 2

∑
J ′

[
V

(0)
JJ ′ − V

(J ′−J)
JJ ′

]
nJ ′

)
c†JcJ , (5.27)

where the occupation number nJ = 〈c†JcJ〉 is taken as the variational parameter2. The
self-consistentecy is found numerically by iteration, starting from randomly chosen initial

2An alternative way to compute the ground-state energy is as follows. The occupation number nJ is
a conserved quantity in the HF theory with eigenvalues 0 or 1. And also note that [M̂, nJ ] = 0. The
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Figure 5.8: Hartree-Fock results (black diamonds) for the critical interaction strength λc

versus particle number N for α = 30 (main panel). The red circle shows the corresponding
exact-diagonalization result for N = 2. Inset: Magnetization M per particle number in
units of � found for λ � λc versus particle number N .

distribution. The converged set of distribution functions {nJ} gives the ground-state en-
ergy and magnetization. The results of HF is shown in Fig. 5.8. When λ approaches the
first critical value of interaction strength λc, the ground-state energies shows non-analytical
features. For N = 2, the corresponding exact diagonalization results is given. The HF
prediction is only slightly smaller than the exact one. This can be understood as the BCS-
like interaction with m �= 0, particularly m = odd, are absent in HHF, see the discussion
below. The inset of Fig. 5.8 the HF value of magnetization scales as M ∝ N is significantly
smaller than the exact one. With increasing N , HF predictions show the transition can be
reached at even weaker interaction.

Although HF qualitatively describes transition to the orbital ferromagnetic states with
increase in λ, it becomes poor in rendering systematic results for larger N . Particularly,
the critical interaction strength λc for N � 4 does not take on a sharp value in HF analysis
and is chosen as the value where the largest jump in the magnetization takes place.

This deficiency can be attributed, first, to the shallow minima of free energy, see Fig. 5.6,
which is a difficult quantity to be predicted with rough approximation of HF method. The
states with all the possible magnetizations are almost degenerate. The second reason is
concerning dismissing the BCS-like interaction in HHF, through approximating the interac-
tion term, which has the same importance as the exchange-type interactions V (J ′−J)

JJ ′ relying

eigenstates can be chosen to be simultaneous eigenstate of magnetization M̂ and set of nJ for allowed J in
the single-band approximation |J | � α. Number of eigenstates for a given particle numbers N is finite due
to the discreteness of J and single-band approximation |J | � α. The energy of the states can be evaluated
readily by means of HF hamiltonian. The method for finding the ground-state energy then reduces to a
sorting problem.
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Figure 5.9: Energy of the Hartree-Fock eigenstates for N = 2 with even |J, J +1〉 and odd
|J, J + 2〉 magnetization, shown versus magnetization M of the sates. As an illustration,
we set the interaction strength λ = 0.3 which indicates the interacting model is in the
orbital ferromagnetic phase as λ > λc, see Fig. 5.4. The oscillation in EM appears as the
magnetization of states alternates between odd and even values. The state with M = 8�
and M = 10� have the lowest energies.

on the symmetry relations of IMEs. In fact, BCS-like interaction with odd m, in coalition
with the kinetic term, favors the presence of Kramers pairs although BCS-like interaction
with even m, particularly m = 0 channel, and all the exchange-type interactions work in
favor of magnetism. In the absence of BCS-like interaction with m �= 0, Kramers pairs
become unstable quickly after switching on the interaction.

Equivalently, one can say HHF conserves the relative angular momentum of particles
through conserving the momentum of each particles, since HHF is a free theory. Although,
the interacting model H does not bear this symmetry. In chapter 6.3, an effective model is
constructed which incorporate both Hartree-Fock term and BCS-like interaction together.
The latter actually breaks the extra symmetry of HHF.

Finally, we address the oscillatory behaviors observed in the lowest energies of the states
with fixed magnetization M for two-particle system N = 2, see Fig. 5.6. According to
the analysis given in the preceding section, in the orbital ferromagnetic phase, electrons
of broken Kramers pairs prefer to occupy consecutive sites to reduce the energy by largest
exchange interactions. And also note that the oscillations give rise while λ approaches its
first critical value. Then, it is not difficult to attribute the oscillations to the constraint
provided by odd-even parity of magnetization M in a mean-field argument. Indeed, for
even M two particles can occupy consecutive site J2 = J1 − 1 = J which gives an even-
number magnetization M = 2J + 1. Otherwise, if M is an odd number, the electrons
should occupy the next nearest neighbor to lower the energy by a weaker exchange energy
than the nearest neighbor interaction. We study the following ansatz by HHF to quantify
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the argument

|M〉 =

⎧⎪⎨⎪⎩
|J, J + 1〉 = c†Jc

†
J+1|0〉 For even M = 2J + 1 ,

|J, J + 2〉 = c†Jc
†
J+2|0〉 For odd M = 2J + 2 .

Operating with HHF on these states, we find

〈M |HHF|M〉 =

⎧⎪⎨⎪⎩
J2

2α2 +
(J+1)2

2α2 + 2λ
(
V 0
J,J+1 − V 1

J,J+1

)
if M = even,

J2

2α2 +
(J+2)2

2α2 + 2λ
(
V 0
J,J+2 − V 2

J,J+2

)
if M = odd.

A plot of the energies is shown in Fig. 5.9 which resembles the same type of oscillation
observed in exact diagonalization results in Fig. 5.6. For N = 3, it is not necessary to
break the nearest neighbor pairs as a response to the change of the total magnetization by
one integer. In the orbital ferromagnetic state, there is a pair of electrons which occupy
the nearest neighbor sites. The sum of angular momentum of these two electrons is even.
The third electron can change its angular momentum by one integer to compensate the
change of the total magnetization. The same scenario is expected to happen for larger odd
or even number of particles.

5.5 Summary
We have studied Coulomb-interacting few-electron quantum dots with strong Rashba SOC.
In the regime of ultrastrong Rashba coupling, we have observed that even very weak inter-
actions give rise to a large magnetization in the system for N = 2. Engaging standard exact
diagonalization technique and Hartree-Fock approximation, the ground-state energy and
magnetization of few-electron systems are evaluated as a function of interaction strength
λ. The ground state shows a transition from unmagnetized states to an orbital ferromag-
netism if strength of interaction exceeds a critical value λ > λc. The results of exact
diagonalization for N = 2 and N = 3 indicate clearly that transition to the magnetized
state takes place for a weaker critical value of interaction strength λc by increasing the
dimensionless Rashba coupling α. The HF calculations predicts the same transitions to
orbital ferromagnetism for N � 10 qualitatively. Moreover, DMRG results for N = 4 and
α = 15 admits the physics observed by exact-diagonalization technique. That is a sharp
transition to orbital ferromagnetism occurs at a critical interaction strength.
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Chapter 6

Many-Body System

In this chapter, we study a 2D system of N interacting electrons in the presence of a
strong Rashba spin-orbit coupling (SOC) α � 1 and parabolic trap. N is taken to be an
arbitrary integral number. The Fermi momentum JF , which is taken in the noninteracting
regime, and the dimensionless Rashba coupling must satisfy N/2 ≈ JF � α in order to
maintain the single-band approximation, see section 3.3. In fact, even in the limit α → ∞,
see section 5.1, we deal with a discrete model due to the discreteness of the total angular
momentum. Remarkably, the odd-even parity is crucial in the characteristics of the inter-
actions which emphasize the maintenance of the discreteness. Therefore in this chapter,
the approach in the study of the system is to approximate the many-body Hamiltonian in
different regimes of interaction and write it formally in forms similar to the well-studied
discrete models which allow a prospect of analytical or numerical treatments. Note that,
the exact diagonalization becomes computationally too expensive even for N = 4.

We start with the study of the model in the regime of very weak interactions. In this
regime, the interaction matrix elements (IMEs) for the states close to the Fermi momen-
tum JF can be approximated by a uniform coupling constant, i.e. independent of the
momentum of incoming and outgoing electrons, if the variations of IMEs in the relevant
regions are small in comparison with the level spacing. The Hamiltonian is then amenable
to bosonization. It shall be shown that Kramers pairs are correlated strongly even for a
repulsive interaction. In fact, the strong correlation in grand-canonical ensembles is a sign
of superconductivity although that is debatable in the canonical ensemble studied here
[19, 18]. The ground state is shown to be unmagnetized which is plausible for such a weak
interaction. Though, the singular correlation of Kramers pairs persists even in magnetized
states, however, is suppressed significantly. Therefore, once more, an odd-even-parity effect
arises with respect to the number of electrons: For an odd number, the ground state is
magnetized which suppresses the correlation function.

Next, we construct and study another effective model based on the strong correlation
of Kramers pairs. Truncating the interaction terms and keeping the uniformed BCS-like
interactions of Kramers pairs, we obtain the well-studied pairing model which its exact
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solution has been derived by Richardson around fifty years ago [89]. In order to find out
the eigenenergy of the model, one must solve a set of nonlinear singular equations which
is called Richardson equations. Instead of solving the equations, we analyze the model
heuristically in two regimes of weak and strong interactions which indicates a transition
takes place from pairing ground state to the orbital ferromagnetism. Although, the value
of the critical interaction strength, in which the transition occurs, might violate the weak-
interaction constraints on which the effective models are constructed. To check the critical
interaction strength, one needs to solve the Richardson equations and find the ground-state
energy in different range of interactions. However, the study of the effective pairing model
gives this insight that transition from the pairing to the orbital ferromagnetism, two phases
which are expected in the system, can be realized in the system only by engaging the BCS-
like interactions, and also the exchange-type interactions based on symmetry relations.

The last effective model which we study in this chapter relies on the result of the pairing
model. We approximate the original Hamiltonian by truncating the interaction term and
maintain only BCS-like and exchange-type interactions. The significance of those interac-
tions are based on two facts. First, the IMEs of BCS-like and exchange-type interactions
are the strongest elements for a given exchanged momentum m. Next, the correlation
function of Kramers pairs is shown to be singular. Restoring the inhomogeneity of IMEs,
one can study the stronger interaction in comparison with the other effective uniform mod-
els. Besides, it allows to compare the role of different interaction potentials, e.g. Coulomb
or contact, in the physics of the system. On the other side, such a truncated Hamilto-
nian is equivalent to an extended Hartree-Fock Hamiltonian since it includes Hartree-Fock
Hamiltonian in addition to a term which solely describes BCS-like interactions. The effec-
tive Hamiltonian in fact can be interpreted as a lattice model. We show that it also can
be represented as a Heisenberg XXZ spin model by constructing operators which satisfy
SU(2) algebra. Although the analytical solution of the model is not found, it can be tack-
led with the numerical technique appropriate for discrete 1D problems as DMRG method
[107, 25, 93]. Indeed, the the effective model inspired us to apply the DMRG technique,
see section 5.3, to the full system.

6.1 Bosonization

In this section, first, the interaction matrix elements are estimated by a uniform coupling
constant in the regime of weakly interacting electrons. Afterward, it can be shown that
the low-energy excitations in the system are density fluctuations. The boson representa-
tion of the effective Hamiltonian can be diagonalized which leads to the computation of
the ground-state magnetization. We show that the ground state is unmagnetized. The
effective 1D Hamiltonian is amenable to bosonization [73, 99, 104], and therefore, allows
exact calculation of correlation functions. It will be shown that the correlation of Kramers
pairs is singular for both repulsive and attractive interaction potentials. The preliminary
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and complementary to the calculations presented in this section are relegated to appendix
D.

6.1.1 Effective Uniform Hamiltonian

We study a many-body system of electrons described by the following Hamiltonian in
second quantized representation

H = H0 +HI

=
∑
J

J2

2α2
c†JcJ + λ

∑
J1,J2

m

V
(m)
J1,J2

c†J1+mc
†
J2−mcJ2cJ1 , (6.1)

where λ is the dimensionless strength of interaction. The energy unit �ω is set to unity. The
symmetry relations of V (m)

J1,J2
are studied in section 4.3 and its numerical values are discussed

for Coulomb and contact potentials. The non-interacting system λ = 0 has a well-defined
Fermi momentum JF which is the angular momentum of the highest occupied state. For
weakly interacting electrons, low-lying excited states live in the vicinity of Fermi points
|J | ≈ JF . We engage this fact and approximate the kinetic term and IMEs |J1,2| ≈ JF � α.

First we discuss the kinetic term. In the regime of weak interaction, the states close to the
Fermi points ±JF can be excited by interaction. Introducing a new variable through J =
±JF +j for j ∈ Z yields to the energy dispersion ε±j = (±JF +j)2/2α2 = εF ±vF j+j2/2α2

where εF = J2
F/2α

2 and vF = JF/α
2 are the Fermi energy and Fermi velocity, respectively.

We consider |j| � JF � α and neglect the term second order in j/α. The creation
and annihilation operator are labeled by j and chirality η = ± read as c†jη ≡ c†ηJF+j and
cjη ≡ cηJF+j, respectively. The free Hamiltonian is approximated by

H0 ≈ vF
∑
j, η=±

ηj c†jηcjη, (6.2)

up to a c-number. It is worth pointing that c†jη transforms under time reversal (TR) as

Θc†jη = (−1)ηJF+1/2+jc†−j,−η, (6.3)

and note that j ∈ Z. Therefore, the time-reversed partner of (j, η) is the state (−j,−η).
Next, we estimate IMEs. We are interested in the weakly interacting theory λ � vF . This
implies the states close to the narrow bandwidth around the Fermi momentum ||J |−JF | �
JF � α can be excited by interaction. This fact suggests the matrix elements V

(m)
J1,J2

with
|J1,2| ≈ JF are relevant to the interacting theory, i.e. those elements depicted in Fig. 6.1
with highlighted squares in (J2, J1) planes schematically for m = even and m = odd. It
was observed in section 4.3 that V

(m)
J1,J2

of both Coulomb and contact potentials decreases
with increase in |m|, particularly, along the maximal absolute magnitude lines and far from
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Figure 6.1: (Color online) Schematic illustration of the interaction matrix elements V
(m)
J1,J2

in the vicinity of Fermi points JF for even/odd m. In the weak-interaction regime, the
low-energy interaction-driven excitations lie close to the Fermi points. Therefore, the
interaction matrix elements with |J1,2| ∼ JF are relevant. In the bosonization scheme,
the absolute magnitude of the matrix elements incorporated in the highlighted squares,
shown inside the panels, are approximated to be a c-number independent of J1,2 and m.
Although, their sign depends on m and relative chirality of interacting particles: whether
J1J2 > 0 or J1J2 < 0.

the symmetry center (m/2,−m/2). It indicates the backward scattering m ∼ 2JF can be
neglected by tuning JF � α, and hence, only the forward scatterings |m| � JF contribute
to the low-energy physics.

In the next step, we estimate the absolute magnitude of IMEs V
(m)
J1J2

for |J1,2| ≈ JF by a
coupling constant and neglect the small variation of |λV (m)

J1,J2
| in comparison with the level

spacing vF

λ
∣∣∣V (m)

J1,J2

∣∣∣ ≈ g

4π
, (6.4)

where g is independent of J1,2 and m. The approximation can be justified if

||V | − |V ′|| < vF
λ
, for |J1,2| ≈ JF � α and |m| � 2JF , (6.5)

which is equivalent to saying that the level quantization vF does not see the variations
of IMEs in the weakly interacting theory. The constraint can be satisfied confidently in
the limit λ < 1 for a short-range potential e.g. contact potential although for Coulomb
potential λ � 1 might be required. Now, we need to determine the phase of the coupling
constant g. From Fig. 6.1, it is clear that the sign of IMEs has to be assigned concerning
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the chirality of the interacting particles

λV
(m)
J1,J2

≈

⎧⎪⎨⎪⎩
g/4π for J1J2 > 0,

(−1)mg/4π for J1J2 < 0.

(6.6)

The interaction term then has to be written separately with respect to the chirality

HI =
g

4π

∑
j,j,m
η=±

(−1)mc†j+mηc
†
j′−m,−ηcj′,−ηcjη +

g

4π

∑
j,j′,m
η=±

c†j+mηc
†
j′−mηcj′ηcjη, (6.7)

where the convention of this section has been employed J = ηJF + j for j ∈ Z and
chirality η = ±. The first (second) term in HI describes the interactions of particles with
the opposite (same) chirality. Then the effective isotropic Hamiltonian can be written by
assembling H0 and HI as

H = vF
∑
j, η=±

ηj c†jηcjη +
g

4π

∑
j, j′,m
η=±

(−1)mc†j+mηc
†
j′−m−ηcj′−ηcjη +

g

4π

∑
j, j′,m
η=±

c†j+mηc
†
j′−mηcj′ηcjη. (6.8)

We can represent H solely in terms of the chiral density operators which is defined by

nmη =
∑
j

c†jηcj+mη, (6.9)

with the commutation relation

[nmη, n−m′η′ ] = δηη′δmm′ ηm. (6.10)

The Hamiltonian then up to a zero-point shift in energy takes the form

H = vF
∑
m>0
η=±

n−mη nmη +
g

4π

∑
m �=0
η=±

{
(−1)m nmη n−m−η + nmη n−mη

}
+H ′, (6.11)

where the kinetic term is also represented by means of the density operators [99, 104]. The
zero modes are collected in

H ′ =
vF
2

∑
η

δN̂η

(
δN̂η + 1

)
+

g

4π

(
δN̂+ + δN̂−

)2

, (6.12)

in terms of the normal ordered operator

δN̂η =
∑
j

: c†jηcjη :=
∑
ηj>0

c†jηcjη −
∑
ηj<0

cjηc
†
jη, (6.13)

which counts the number of particles added to or removed from the corresponding branch
η. The effective Hamiltonian in the current form describes the dynamics of the density
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fluctuations in the system which is in fact equivalent to a boson gas. This equivalence shall
be more apparent in the next subsection.

The phase factor (−1)m for the interaction of particles with the opposite chirality can be
gauged out. In fact, we attach a phase factor to the density operator

ñmη = eiηmπ/2 nmη. (6.14)

in order to remove (−1)m in the interaction term. ñmη satisfies the same commutation
relation of the density operators in Eq. 6.10. Substituting the gauged density operator in
the Hamiltonian yields

H = vF
∑
m>0
η=±

ñ−mη ñmη +
g

4π

∑
m �=0
η=±

{
ñmη ñ−m−η + ñmη ñ−mη

}
+H ′, (6.15)

which leaves invariant all the other terms. Now, H takes the form of the standard
Tomonaga-Luttinger model [99, 104], with length of the system L = 2π. We diagonalize
this Hamiltonian in the next section. Although, we engage the bare operators to inspect
the correlation functions in the interacting system, see subsection 6.1.4. It is interesting
to note that the gauge eiηmπ/2 does not depend to the interaction strength λ, or g in the
effective model. In this view, the gauge gives rise to non-perturbative features of the in-
teracting model. It exists if the interaction is switched on and no matter how much the
interaction is weak. The phase factor (−1)m, which its effect in Eq. 6.15 is transferred to
the gauge eiηmπ/2, relies on the time-reversal symmetry of the interaction potential and the
eigenbsis, discussed in chapter 4. For instance, the time reversal of Coulomb potential is its
fundamental feature and cannot be discarded. As will be shown later, the Kramers pairs
are correlated strongly due to the presence of this robust property without any dependence
to the sign of the interaction potential.

6.1.2 Diagonalizing the Full Hamiltonian

The effective Hamiltonian is quadratic and can be diagonalized readily. First, it is required
to represent the Hamiltonian in terms of the boson operators. With the aid of the gauged
boson operators b̃†m and b̃m, defined in Eqs. D.69 and D.70, with the commutation relations

[b̃m, b̃m′ ] = [b̃†m, b̃
†
m′ ] = 0, (6.16)

[b̃m, b̃
†
m′ ] = δmm′ , (6.17)

the Hamiltonian takes the form

H = vF
∑
m

|m| b̃†mb̃m +
g

4π

∑
m

|m|
(
b̃†mb̃

†
−m + b̃−mb̃m + b̃†mb̃m + b̃−mb̃

†
−m

)
+H ′. (6.18)
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H can be diagonalized through a canonical transformation

b̃†m = β†
m coshϑ− β−m sinhϑ, (6.19)

b̃−m = β−m coshϑ− β†
m sinhϑ, (6.20)

where β†
m and βm satisfy the boson commutation relations. The coefficients are defined by

tan 2ϑ =
g̃

1 + g̃
, (6.21)

g̃ =
g

2πvF
. (6.22)

The excitation energy in the interacting model then can be obtained as

H = u
∑
m

|m| β†
mβm +H ′, (6.23)

which the renormalized Fermi velocity is

u = vF
√

1 + 2g̃. (6.24)

The contribution of the zero modes to the energy is determined by H ′ which is defined in
Eq. 6.12. The states with no particle-hole excitations are eigenstate of H. Let represent
those states with | �N〉 where the number of zero modes are given by �N = (δN+, δN−).
That is δNη electrons are added to or removed from the branch η = ±, for δNη > 0 or
δNη < 0, respectively1. Therefore, the energy of the state | �N〉 is determined solely by
H ′. It indicates that the ground state is the boson vacuum βm|0〉 = 0 with no zero mode
δN̂±|0〉 = 0.

6.1.3 Ground-State Magnetization

Having found the ground state of the effective Hamiltonian, it is now possible to compute
the ground-state magnetization. The total angular momentum, or magnetization, operator
is defined as

M̂ = �

∑
j

(ηJF + j) : c†jηcjη : . (6.25)

In terms of the gauged boson operators, we find

M̂ = �

∑
m

m b̃†mb̃m + M̂0, (6.26)

1An explicit representation of the free boson vacuum is given in appendix D.1.3.
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where the contribution of the zero modes is collected in

M̂0 = �JF

(
δN̂+ − δN̂−

)
+

�

2

(
δN̂+ − δN̂−

)(
δN̂+ + δN̂− + 1

)
. (6.27)

We need to represent it in terms of the boson operators which diagonalize the Hamiltonian.
The expectation value of M̂ in the ground state of the interacting system then gives the
magnetization. With the help of Eqs. 6.19 and 6.20, we obtain

M̂ = �

∑
m

m
{
β†
mβm cosh2 ϑ− β†

mβ
†
−m coshϑ sinhϑ

−β−mβm coshϑ sinhϑ+ β−mβ
†
−m sinh2 ϑ

}
+ M̂0. (6.28)

The vacuum expectation value of M̂ vanishes except the contribution solely from the zero
modes

〈 �N |M̂ | �N〉 = � sinh2 ϑ
∞∑

m=−∞
m 〈 �N |β−mβ

†
−m| �N〉+ 〈 �N |M̂0| �N〉

= � sinh2 ϑ
∞∑

m=−∞
m+ 〈 �N |M̂0| �N〉

= 〈 �N |M̂0| �N〉. (6.29)

The sum does not contribute
∑

m m = 0 since m is an odd function. Although, the sum
must be regularized, the regularization factor ∼ e−|m|a must be an even function. The
magnetized states are not energetically favored due to the contribution of zero modes:
suppose δN+ = −δN− = δN , by means of the zero modes of the Hamiltonian (6.12), we
find

〈 �N |H ′| �N〉 = �ω vF δN
2, (6.30)

which indicates that in the considered regime of weak interaction, the system is unmagne-
tized.

6.1.4 Correlation of Kramers Pairs

The effective uniform 1D Hamiltonian allows exact calculation of correlation functions.
It is convenient to compute the correlation functions in the continuous space conjugates
to the space of the good quantum number. We conjugate the total angular momentum
j = J ∓ JF to the azimuthal angle θ in the translational momentum space k. In fact, it
is shown in appendix D.1.1 that the density operator is only a function of the azimuthal
angle θ in the momentum space representation. This is so because the localized electrons
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on the Rashba ring in momentum space can be characterized by only θ.

In the bosonization technique, an equivalent representation of fermion fields can be given
in terms of the boson fields. The full form of the fermion field in our system is a function of
the radial degree of freedom in addition to the azimuthal one. But, in the weak interaction
regime, we integrate out the radial degree of freedom and consider a field which is only a
function of θ and importantly leads to the correct form of the density operator in k space,
see section D.1.1. Indeed, the effective Hamiltonian is described by the density operators
and the fermion field itself is not an observable.

As it is mentioned before, we are interested in the correlation of the bare fermions, associ-
ated with the operators c†jη and cjη, in the interacting system. The corresponding fermion
field is defined by

c†jη =
1√
2π

˛
dθ eijθ Ψ†

η(θ), (6.31)

where θ ∈ [0, 2π). The boson representation of the fermion field is formulated as

Ψ†
+(θ) =

1√
2πa

F †
+ e−i

√
π[Φ(θ)+Θ(θ)], (6.32)

Ψ†
−(θ) =

1√
2πa

F †
− ei

√
π[Φ(θ)−Θ(θ)]. (6.33)

where Φ(θ) and Θ(θ) are dual boson fields defined in Eqs. D.33 and D.34. And F †
± is the

Klein factor which insures the anticommutation relation required for the fermion field. a
is a small parameter for regularization and the limit a → 0 is implicit in the definition of
the fields. The dual fields can be written in terms of the renormalized gauged dual fields
which act in the Hilbert space of interacting model

Φ(θ) =
1

2

{√
K

[
Φ(θ − π

2
) + Φ(θ +

π

2
)
]
+

1√
K

[
Θ(θ − π

2
)−Θ(θ +

π

2
)
]}

, (6.34)

Θ(θ) =
1

2

{√
K

[
Φ(θ − π

2
)− Φ(θ +

π

2
)
]
+

1√
K

[
Θ(θ − π

2
) + Θ(θ +

π

2
)
]}

, (6.35)

where K = vF/u and u = vF
√

1 + 2g̃ are the Luttinger parameter and the renormal-
ized Fermi velocity, respectively. It should be taken into account that ∂θΦ and ∂θΘ are
proportional to the particle density and current density of the free system, respectively,
in the momentum space. In the same way, ∂θΦ and ∂θΘ are proportional to the gauged
particle density and current in the interacting model, respectively. It is interesting to note
that the gauged density (6.14) leads to a non-local relation between the free fields and
renormalized gauged dual fields. The non-locality cannot be removed by a sole rotation
θ → θ + θ0. Besides, the bare particle density, for instance, induces both gauged particle
and current density in the interacting model. It should be remembered that all these rely
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on the time-reversal symmetry of the interaction term. We shall see that this non-local
features correlate strongly time-reversed pairs.

Having constructed the boson representation of the fermion fields and the relation between
the bare and renormalized gauged boson fields, we are now in the position to calculate exact
correlation functions in the interacting system which is the subject of the next subsections.
We present result for the correlation of Kramers pairs which shows singular behavior. In
fact, it is the most important result in the bosonization section. The details of the cal-
culation is relegated to appendix D.2.4. Also, in the subsection D.2.5, we briefly discuss
that correlation of density fluctuations render trivial results in the considered regime of
interaction.

We investigate the correlation of pairs c†j+c
†
−j− in the interacting model. Such pairs are

quite similar, formally, to the s-wave Cooper pairs since the electrons seem to be time-
reversed partner. Although, a subtlety should be taken into account. As we have observed
in Eq. 6.3, under TR c†jη goes to (−1)ηJF+1/2+jc†−j−η. Therefore, the time-reversed pair
should be multiplied by a phase factor (−1)JF+1/2+jc†j+c

†
−j−. We call the pairs Kramers

pairs if the phase factor has the right form. We observe that
˛

dθΨ†
+(θ)Ψ

†
−(θ + θ0) =

∑
j

eijθ0 c†j+c
†
−j−, (6.36)

which shows that the time-reversed partner of Ψ†
+(θ) is Ψ†

−(θ+ π) which is expected since
θ is the azimuthal angle in the momentum space. We probe the correlation function for
arbitrary θ0, although, it reveals correlation of pairs which are not constructed from time-
reversed partners for θ0 �= π. We calculate the static correlation function

P(θ0) =
∑
j, j′

ei(j−j′)θ0 〈 �N |c†j+c†−j−c−j′−cj′+| �N〉int

=

˛
dθdθ′〈 �N |Ψ†

+(θ)Ψ
†
−(θ + θ0)Ψ−(θ

′ + θ0)Ψ+(θ
′) | �N〉int. (6.37)

The numerical values of P(θ0) are depicted in Fig. 6.2 versus θ0 for several K and two
different boson vacuum: one with zero magnetization and the other with non-zero magne-
tization i.e. δN+ = −δN− = δN �= 0 and hence 〈M̂〉 �= 0. The latter reveals the effect of
the magnetization on the correlation function. As a matter of illustration, we set a = 0.1.
The detailed calculation of P(θ0) is given in appendix D.2.4. For interacting model K �= 1,
the correlation function shows spikes when pairs are constructed by time-reversed part-
ners θ0 = π. The spike disappears obviously for free system K = 1, but shows up if the
interaction is switched on, no matter the pair potential is attractive K > 1 or repulsive
K < 1. It is also interesting to note that even for magnetized states δN �= 0, the spikes
persist although has been weakened relatively in comparison with unmagnetized vacuum.
An analytical representation for P(θ0 = π) can be obtained which its singular part in the
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Figure 6.2: The correlation function in Eq. 6.37 versus the azimuthal angle θ0 for non-
interacting K = 1, repulsive K < 1 and attractive K > 1 Luttinger parameter. We set
a = 0.1 as a matter of illustration. The numerical values of P(θ0) is shifted by P(0) for
K �= 1. The spikes appear for correlation of Kramers pairs θ0 = π only in the interacting
regime K �= 1. The magnetized boson vacuum δN = 5 suppresses the correlation functions
by almost one order of magnitude although the spikes persist for K �= 1.

limit of a → 0 has the form

P(θ0 = π) ∝ lim
a→0

(cosh a− 1)−
K2−1
2K 2F1(

1

2
,
1

K
; 1;

sech2a

2
), (6.38)

where 2F1(q, b; c; z) is the hypergeometric function.

We discuss the observed singular behavior of the correlation function in the following. The
singularity in the Cooper pairs correlation function is a sign of instability against supercon-
ductivity in a grand canonical system. The Fermi surface is destroyed in superconductivity,
and hence quasiparticle excitations requires a minimum finite energy [102]. In our system,
the lowest-energy particle-hole excitation is gapped by ∼ �ωu. The zero-mode excitation is
also gapped by an energy �ωvF . These energy gaps rely on the quantization of angular mo-
mentum and charges, respectively, and does not have anything to do with the energy gap
induced by pairing. Though, the energy gaps maintain the maximum number of Kramers
pairs via adiabatically connecting the maximum number of the pairs in the free system
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to the weakly interacting state. It is interesting also to note that the pair correlation is
sensitive to the parity of the particle number. For an odd number of electrons, a single
electron will be left without a partner, and hence, contributes to the magnetization of the
ground state. As it is discussed, the magnetized states suppress the correlation function.

What is underlaying the strong correlation? The correlation of time-reversed pairs is taken
into account in the original interacting model (6.1) through the boosted IMEs along BCS-
like interaction. Although their significance are ruled out by neglecting variations of the
IMEs in the effective model (6.8), the system is yet settled on the momentum-space ring in
the way the fermion fields are exploited, (6.32) and (6.33). Consequently, the topological
restriction of the scattering processes on the ring gives rise to merely the BCS-like and
exchange-type interactions. The exchange-type interaction is resolved in the interaction of
electrons with the same chirality in Eq. 6.15 which just renormalizes the Fermi energy. It is
the BCS-like interactions which leads to the strong correlation of Kramers pairs. In other
words, the time-reversed pairs are correlated by the topological restricted interactions on
the ring.

Another peculiarity of the model is the phase-dependent interaction of electrons with op-
posite chirality, which relies on the time reversal of the representation itself. It is worth
noting that this channel reflects the topologically protected BCS-like interaction on the
momentum-space ring which is the interaction of Kramers pairs. The phase factor which
appears in this channel can be gauged out and does not lead to any effect on the energy
spectrum of the excitations (6.23). Though, it yields to a non-local relations between the
free boson fields and the interacting dual fields (6.34) and (6.35). This non-locality appears
when the interaction is switched on, no matter whether it is repulsive or attractive, and
technically is responsible for the observed singularity of the correlation function.

As it is shown, the pairs ei(JF+1/2+j)θ0c†j+c
†
−j− are not correlated for K �= 1 unless they

are constructed from time-reversed partners θ0 = π. The generic pairs take the from
Ψ†

+(θ)Ψ
†
−(θ + θ0) in the momentum space. Since the momentum associated with the az-

imuthal angle θ on the ring is ∝ eiθ, constructing pairs of time-reversed partners requires
θ0 = π. In principle, there is no perturbation in the system to allow Ψ†

+(θ)Ψ
†
−(θ+θ0)Ψ−(θ

′+
θ0)Ψ+(θ

′) which violates the conservation of momentum except for θ0 = π, disregarding
θ = θ′ which gives a regular contribution. Therefore, interplay between time reversal sym-
metry and conservation of momentum on the momentum-space ring leads to the strong
correlation of Kramers pairs.

The Kramers pair is similar to a s-wave Cooper pair formally as the constituent electrons
are time-reversed partners [102]. Although, the angular momentum of the Kramers pair
is not well-defined since the angular momentum operator L̂z = −i�∂θ does not lead to a
good quantum number in our system. One should project the wavefunction of the pairs
onto the basis of spin and orbital angular momentum to check the orbital symmetry of
the Kramers pairs. Concerning the effective eigenstate of the free Hamiltonian, see section
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3.2, we expand the fermion operator as c†J = a†m↑ + a†m+1↓ where J is the half-odd-integer
total angular momentum, m ∈ Z is the angular momentum and ↑↓ are components of
spin-1/2 along the quantization axis. And therefore, a†m↑ creates an electron with angular
momentum m and spin ↑. Discarding the chirality and the phase factor, the Kramers pair
in terms of a†m↑ takes the form (given J > 0)

c†Jc
†
−J = a†m↑a

†
−m−1↑ + a†m↑a

†
−m↓ + a†m+1↓a

†
−m−1↑ + a†m+1↓a

†
−m↓, (6.39)

which shows heuristically that the Kramers pair is a superposition of s-wave with zero an-
gular momentum and p-wave with the angular momentum equals to ±1. In other words,
the pair is a superposition of singlet and triplet pairs.

The mechanism which leads to the strong correlation of Kramers pairs relies on the time re-
versal symmetry and localization of interacting electrons around a momentum-space ring
and does not have anything to do with boson mediated interactions [6]. It suggests an
intrinsic pairing mechanism for isotropic electronic systems even with a repulsive pair po-
tential. However, the mechanism can be compared with Kohn-Luttinger effect [60, 69, 80].
The effect is an electronic pairing mechanism for repulsively interacting fermions, which
is a many-body effect in essence and considered to be a particle-hole mediated interaction
between electrons. Kohn and Luttinger have proposed the mechanism for 3D system orig-
inally. The effect in a 2D space is studied, for example, in references [26, 40, 84]. Briefly,
in 2D space, the effect is weaker and requires contribution of higher orders in the bare
interaction [26].

The necessary condition for Kohn-Luttinger effect is the sharpness of Fermi surface, which
gives rise to the well-known singular dielectric constant at the perfect nesting [47], where
particles and holes with the same energy are connected by the exchanged momentum
equals to the double Fermi wavenumber q = 2kF . The singularity generates an oscillatory
long-range interaction in the coordinate space. Technically, in the 3D space treatment,
the scattering vertex is dressed by the bubble-polarization-type diagrams up to the second
order in the bare interaction which in turn leads to an effective attractive interaction. In
their seminal paper, Kohn and Luttinger have shown that this effective interaction gives
rise to the instability against formation of Cooper pairs in the electronic liquid.

Two essential ingredients for Kohn-Luttinger effect might be compared with the character-
istic of the interacting model studied herein. The first feature is the sharpness of the Fermi
surface which realizes a ring in momentum space for isotropic 2D systems. The second
is that the sign of a repulsive interaction potential is switched by projecting the effective
interaction onto the angular momentum basis. The sign of the interaction potential can be
switched with the aids of the phase factors generated in this representation. These similar-
ities suggest that the Kohn-Luttinger effect might root in the intrinsic pairing mechanism
observed here rather than the nested Fermi surface. And therefore, it might be to put the
effect on a new ground. In fact, the representation of an interacting model in the basis
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compatible with the angular momentum, instead of the translational momentum, takes
into account automatically the correlation of pairs. Investigating the pairing instability
of an isotropic system in such a representation might shed light to the curiosity which we
leave it for future study.

The system, which is studied in this chapter, hosts N ∼ α with an estimation for Rashba
coupling α ∼ 102. Although emergence of superconducting pairing is quite surprising in
such a small system, it seems to be relevant to the recent search for superconductivity in
small systems [19]. In fact, the experimental observation of superconductivity in ultrasmall
metallic grains [14, 101, 85, 86, 18] containing 104−105 electrons has stimulated theoretical
studies for realization of superconducting pairing in metallic nanoclusters which contain
102 − 103 delocalized electrons [63, 65, 64]. An interesting point about these ultrasmall
systems is that the superconducting state also manifests the odd-even-parity effect which
a similar effect is discussed above. That is the presence of an unpaired electron suppresses
the superconductivity. On the other side, it is shown that Rashba SOC enhances super-
conductivity in 2D systems of repulsive electron gas [103, 38, 68], in spite of the weaker
Kohn-Luttinger effect in 2D, which provides an encouragement for the main result of this
section. These facts indicate that the observed strong correlation of pairs in our system
can contribute to the path toward new superconductivity in small systems. The study pre-
sented here can be extended to include temperature-dependent correlation function and
also investigation of electronic transport in the system [28]. Besides, the proposed experi-
ments in the references [65, 62] to observe superconductivity in the metallic nanoclusters
can also be relevant for our system. However, we estimate roughly that the effect should
be present for temperature kBT � �ωvF .

Before leaving this section, we discuss the absence of the orbital ferromagnetism in the
considered model. In the regime of weakly interacting electrons, the IMEs are estimated
by a uniform coupling constant g through neglecting the variations of absolute value of
matrix elements around g in comparison with the level spacing vF . The orbital ferromag-
netism requires asymmetry in chirality and therefore an stronger interaction to break the
pairing and symmetric chiral population which is beyond the validity of the approximation
and hence the effective model. The nonuniform IMEs need to be retained for stronger in-
teractions. In fact, the interactions with zero-exchanged momentum in the original model
contribute as a pair-breaking channel and favors the orbital ferromagnetism. In the follow-
ing sections, we develop other effective models based on the results of this section which
allow probing stronger interactiona in the system.

6.2 Effective Pairing Model

In this section, we proceed with our study of the system containing arbitrary number of
interacting electrons but restricted by single-band approximation N ∼ α. In the preceding
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section, the IMEs are replaced by a uniform coupling constant in the regime of weak inter-
action. Therefore, a homogeneous interaction term is realized in which the magnitude of
matrix elements do not depend to the angular momentum of the incoming and outgoing
particles. The effective system leads to the singular correlation of Kramers pairs. This
implies that the BCS-like interactions are the most important interaction channel in the
considered regime. Additionally, the maximal absolute magnitude of IMEs are along BCS-
like and exchange-type interactions. And, those interactions have the same magnitude
according to the symmetry relations of IMEs. Relying on these facts, we further truncate
the IMEs to write down effective Hamiltonians which can capture the competition between
the pairing ground state, i.e. state with strong correlation of Kramers pairs, and the or-
bital ferromagnetism. Those are in fact the most likely phases in the system, see chapter 4.

In the following, we solely keep the matrix elements along the maximal absolute magnitude
lines, namely, the BCS-like J1 = −J2 and the exchange-type J2 = J1 + m interactions.
Based on the same argument presented in the preceding section, we neglect the variation
of IMEs along those lines. Therefore, the interaction term becomes uniform which shall
be shown being equivalent to the Richardson pairing model [89, 31]. The latter model
bears an exact solution and is reviewed briefly in appendix E. With the aid of a heuris-
tic analysis, we show that a transition to the orbital ferromagnetism is expectable in the
model. Although, determining whether the transition takes place at a reasonable value of
interaction strength, by which the constraints of weak interactions is maintained, requires
solving the pairing Hamiltonian and is beyond the treatment of this section.

We begin with the effective Hamiltonian written in the preceding section in Eq. 6.8. Al-
though, we adopt another convention to label the states. We set J ≡ ηJF + ηn and
consider η ≡ sgn(J) as the pseudo-spin. JF is the Fermi momentum as the highest occu-
pied state in the non-interacting system. Therefore, we have n ∈ Z. We are interested in
low-energy physics where interaction-driven excitations stay in the vicinity of Fermi energy
n � JF � α. We focus on Ñ electrons close to the Fermi points. The electron-electron
interaction is required to be weak enough in order to maintain the single-band approxima-
tion |J | � α. The fermion operators are defined in the new convention by c†nη ≡ c†J and
cnη ≡ cJ . Time reversal reads

Θc†nη = (−1)ηJF+ηn+1/2c†n,−η, (6.40)

which indicates that (n, η) and (n,−η) are time-reversed partners. The effective Hamilto-
nian takes the form

H = vF
∑

n
η=±

nc†nηcnη +
g

4π

∑
n, n′,m
η=±

(−1)mc†n+mηc
†
n′−m,−ηcn′,−ηcnη +

g

4π

∑
n, n′,m
η=±

c†n+mηc
†
n′−mηcn′ηcnη, (6.41)

where the unit of energy �ω is set to unity. The Fermi velocity is defined by vF = JF/α
2.

It is shown in the preceding section that the correlation of Kramers pairs is singular even
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for a repulsive interaction g > 0. Therefore, the BCS-like interactions are dominant in
this regime. We approximated the interaction term in H further and keep the elements
along Cooper channel. That is the BCS-like interactions. According to the time-reversal
symmetry of IMEs, discussed in chapter 4, the exchange-type interactions also should be
kept although they give no contribution to the dynamical behavior of the system. The
Hamiltonian then reads

H ≈ vF
∑

n
η=±

nc†nηcnη +
g

4π

∑
n,m
η=±

(−1)mc†n+mηc
†
−n−m,−ηc−n,−ηcnη +

g

4π

∑
n,n′
η=±

c†nηc
†
n′ηcnηcn′η

= vF
∑

n
η=±

nc†nηcnη +
g

2π

∑
n,n′

(−1)n−n′
c†n+c

†
−n−c−n′−cn′+ − g

4π

∑
n, n′
η=±

(c†nηcnη − δnn′)c†n′ηcn′η. (6.42)

The last term gives a constant proportional to the square of particle number and does not
contribute to the dynamics of the system. Hence, we neglect this term to obtain

H = vF
∑

n
η=±

nc†nηcnη +
g

2π

∑
n,n′

(−1)n−n′
c†n+c

†
−n−c−n′−cn′+. (6.43)

The Hamiltonian then realizes a form akin to the Richardson pairing model which is solved
exactly [89]. A short review of the solution is given in appendix E. In order to write the
Hamiltonian in an exact form of Richardson’s model, we define the boson-like operators

b̃
†
n = einπ c†n+c

†
n−, (6.44)

N̂n = (c†n+cn+ + c†n−cn−)/2, (6.45)

which gauge out the phase factor of interaction term. The operators have the same com-
mutation relations as those of Richardson’s pairing model in Eqs. E.4 and E.5

[b̃n, N̂n′ ] = δnn′ b̃n, (6.46)

[b̃n, b̃
†
n′ ] = δnn′(1− 2N̂n′). (6.47)

The effective Hamiltonian takes the form

H = 2vF
∑
n

nN̂n +
g

2π

∑
n, n′

b̃
†
n b̃n′ . (6.48)

Let the system contains an even number of electrons Ñ = even which constructs of P
pairs and ν unpaired electrons. By unpaired electrons we meant that if the state (n, η)
is occupied its time-reversed (n,−η) must be empty. Then, we have the relation Ñ =
2P + ν. The number of unpaired electrons ν is is called seniority and can lead to a non-
zero magnetization in the system since n = ηJ − JF . Suppose also (n, η) belongs to the
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set S which is specified by the states near the Fermi energy. According to the Richardson,
the eigenstates of the pairing model have the form

|ψ〉 =
P∏

k=1

∑
n

1

2vFn− Ek

b̃
†
n|0〉, (6.49)

with the eigenenergy E =
∑P

k=1 Ek. The sum is over those n ∈ S which are not singly
occupied. The energy of pairs Ek can be derived by solving the Richardson equation

1− g

π

P∑
i 	=k

1

Ei − Ek

+
g

2π

∑
n

1

2vFn− Ek

= 0. (6.50)

This equations can be solved numerically in its discrete form or analytically in the contin-
uum limit [90]. Similar to the bosonization result (6.1.2), the phase factor (−1)m in the
interaction term does not have any effect on the energy spectrum of the model. Although,
the pair correlation function ∑

n, n′
(−1)n−n′〈ψ|b̃†

n b̃n′ |ψ〉, (6.51)

is expected to have a non-trivial information even for a repulsive pairing force g > 0, see
the discussion in the section 6.1. However, we are not going the solve the Richardson equa-
tion. Rather than, we exploit the effective model to show that there must be a transition
from pairing ground state to the orbital ferromagnetism if g exceeds a critical value.

We analyze the model in two extreme limits. If we take the limit g̃ = g/2πvF → 0, i.e.
non-interacting model, there are maximum numbers of Kramers pair. Consequently, the
seniority, which can highlight occurrence of magnetization, is zero or 1 for even or odd Ñ ,
respectively. On the other hand, if g̃ → ∞, the ground state does not contain any doubly
occupied site. That is the seniority must be maximum ν = Ñ and the pairing term does
not contribute to the energy. In this limit, all the possible magnetized states are degenerate
which indicates the ground state is highly degenerate. Although, in this regime g̃ → ∞,
the variation of matrix elements must be taken into account and they cannot be estimated
by a uniform coupling constant g. The corrections of IMEs lift the degeneracy partly. It
will be discussed in the following section that the exchange-type interactions polarize the
spin η in a ferromagnetic way. This indicates that the ground state has a large magne-
tization. It is quite similar to the scenario discussed for the flat-band model in section 4.2.3.

To conclude, in the limit g̃ → 0, there is no broken Kramers pairs but in the strongly
correlated regime g̃ → ∞ no Kramers pair exists. Switching on the interaction adiabati-
cally, the magnetization is expected to increase gradually, that is to say, Kramers pairs are
broken one by one. According to the results of the bosonization study, the Kramers pairs
are correlated strongly even for a repulsive interaction 0 < g̃, and their strong correlation
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persists in the orbital ferromagnetic states although it is suppressed significantly. This
implies the strong correlation coexists with the orbital ferromagnetism in the moderate
range of g̃. Absence of a sharp transition is reasonable as the system has a finite size [19].

We are actually interested at the critical value g̃c where the first Kramers pair is broken.
That is the moment where the first interaction-driven magnetization occurs in the system.
Determining g̃c requires solutions of the Richardson equation in the relevant regime of g̃.
In fact, the strength of g̃c must admit the constraint to the uniform effective model and
the single-band approximation i.e. the highest occupied state at g̃c must stay away from
the bottom of the next band. Otherwise, one has to take into account more details of the
IMEs to judge about the existence of such a transition.

The analysis of this section has shown solely BCS-like interaction can break the Kramers
pairs for a repulsive interaction. In the next section, we retain more subtleties of the origi-
nal interacting model. The variations of IMEs will be restored along the maximal absolute
lines as a function of exchanged momentum and angular momentums of incoming/outgoing
particles. Furthermore, the matrix elements by zero-exchanged momentum m = 0, which
has a considerable role in the physics of the system, are also kept. The effective Hamilto-
nian resembles the Hartree-Fock theory. Although, it incorporates an extra term associated
with the interaction of Kramers pairs.

6.3 Extended Hartree-Fock Hamiltonian

In two preceding sections, our study of many-body system was constrained by an extra
condition for weak interactions ||V | − |V ′|| < vF/λ in addition to the single-band approxi-
mation. Interesting physics are captured even in such a weakly interacting system. With
the help of the effective pairing model, we have seen that in the regime of stronger in-
teraction, there is a transition to orbital ferromagnetism although the critical interaction
strength might violate the weak interaction constraints. In the following section, we con-
tinue to work with the effective model in the preceding section while retaining variations
of IMEs along the maximal absolute magnitude lines. Besides, the matrix elements of
zero-exchanged momentum m = 0 are kept thoroughly. This allows to relax the second
constraint ||V |−|V ′|| < vF/λ and consider stronger interactions in the system. The approx-
imated Hamiltonian is equivalent to Hartree-Fock Hamiltonian plus a term which describes
interaction of Kramers pairs solely. We call it extended Hartree-Fock Hamiltonian. Having
retained the elements with m = 0, it is now possible to compare how different types of
potential, for instance Coulomb and contact potential, modify the physics of the system.
The effective Hamiltonian can be read as a lattice model. In this regard, discrete angular
momentum J labels the sites of a 1D lattice. Similar to the preceding section, two chiral
degrees of freedom can be accounted as the pseudo-spin-1/2 of the electron in site |J |.
Although, we do not restrict the interaction of electrons to those in the vicinity of Fermi
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energy and hence no linearized kinetic term. The single-band approximation 0 < |J | � α
indicates the lattice is finite. The kinetic term represents an external site-dependent po-
tential. Therefore, the Hamiltonian describes interacting spinful electrons in a finite lattice
in the presence of an external field coupled to the charge degree of freedom. The effective
Hamiltonian can also be represented as a Heisenberg XXZ model [98]. The site-dependent
interaction of spins and absence of translational invariance make an analytical solution of
the model a formidable task. Although, such a model can be tackled with well-known
numerical methods like density matrix renormalization group [107, 25, 93], which is a pow-
erful technique for discrete 1D systems.

We begin with the full Hamiltonian

H =
∑
J

EJc
†
JcJ + λ

∑
J1,J2

m

V
(m)
J1,J2

c†J1c
†
J2
cJ2−mcJ1+m, (6.52)

where EJ = J2/2α2 and α is the dimensionless Rashba coupling, λ is the dimensionless
strength of interaction. The unit of energy is �ω which is set to unity. The IMEs V (m)

J1,J2
are

studied in chapter 4. In the many-body system, once again we assume JF � α where JF
is the Fermi momentum in the absence of interactions. The number of particles N in the
system is taken to be in the order of Rashba coupling N � α. We truncate the interaction
term further and keep only the matrix elements along the maximal absolute magnitude
lines J2 = J1 +m and J1 = −J2 for m �= 0 but all the elements for m = 0, which is the
strongest channel of interaction. The approximated Hamiltonian H has the form

H =
∑
J

EJc
†
JcJ + λ

∑
J,J ′

(
V

(0)
J,J ′ − V

(J ′−J)
J,J ′

)
c†JcJc

†
J ′cJ ′

+ λ
∑
J,J′
J �=J′

V
(J ′−J)
J,−J c†Jc

†
−Jc−J ′cJ ′ . (6.53)

The first line contains the Hartree-Fock (HF) Hamiltonian. The terms in the second line
correspond to the BCS-like interaction by m �= 0 and in order to have contribution, presence
of a Kramers pair is necessary. As shown in the preceding sections, the BCS-like interac-
tion determines the physics of the system in the regime of weak interactions. Though, the
standard HF approximation automatically excludes this term, see Sec. 5.4, which leads to
instability of unmagnetized states even for a very weak interaction. In fact, the BCS-like
interactions are off-diagonal and detracts the approximated Hamiltonian from HF theory.
Therefore, finding a variational parameter similar to the one of the standard HF theory
〈c†JcJ〉 is not straightforward.

6.3.1 Effective Lattice Model

The discrete angular momentum J is interpreted as if it labels sites of a 1D lattice. In order
to develop the idea, we consider only the positive quantum numbers J > 0 and account

89



sign of J with an extra label η = sgn(J). The latter quantum number comprises two states
of a pseudo-spin-1/2. The fermion operators in terms of the new convention are defined as
c†J,η and cJ,η. We define the boson-like operators in the similar way of the preceding section

nJη = c†J,ηcJ,η, (6.54)

S+
J = c†J,+c

†
J,− =

(
S−
J

)†
, (6.55)

that gives n2
Jη = nJη, (S

+
J )

2 = (S−
J )

2 = 0 and also S+
J S

−
J = nJ+nJ−. The commutation

relations read as

[nJη, nJ ′η′ ] = 0, (6.56)

[
nJη, S

±
J ′
]

= ±δJJ ′ S±
J , (6.57)

[
S+
J , S

−
J ′
]

= δJJ ′ (nJ+ + nJ− − 1) . (6.58)

With the aid of the bosonic operators and also the symmetry relations of V (m)
J1J2

, the effective
Hamiltonian H can be written as

H =
∑
J>0
η

EJnJη + λ
∑
J,J′>0
η,η′

vηη
′

JJ ′ nJηnJ ′η′ + λ
∑

J>J ′>0

uJJ ′
(
S+
J S

−
J ′ + S+

J ′S
−
J

)
, (6.59)

where the matrix elements are defined in terms of V (m)
J1J2

in the following way

v++
JJ ′ = v−−

JJ ′ =
(
V

(0)
J,J ′ − V

(J ′−J)
J,J ′

)
, (6.60)

v+−
JJ ′ = v−+

JJ ′ =
(
V

(0)
J,J ′ − V

(J ′+J)
−J,J ′

)
, (6.61)

uJJ ′ = 2
(
V

(J−J ′)
−J,J − V

(J ′+J)
−J,J

)
. (6.62)

The Hamiltonian then describes interacting spinful electrons in a finite 1D lattice consist-
ing of sites in Λ = {J ∈ Z + 1/2; 0 < J � α}. The kinetic term reads as an external
field coupled to the charge degree of freedom. The middle term in Eq. 6.59 is equivalent
to the interaction terms in HF theory. v−+

JJ ′ and v+−
JJ ′ describe interaction of electrons at

sites J and J ′ with opposite spin polarization and include the on-site interaction v−+
JJ . The

matrix elements v++
JJ ′ and v−−

JJ ′ are the interaction strength of electrons with the same spin
polarization at sites J and J ′. The last term in Eq. 6.59 can be considered as it describe
hopping of Kramers pairs. The lattice model resembles the features of Hubbard model
[36]. Although, there is a term for hopping of electron pairs instead of a single-particle
hopping. And also a long-range interaction between electrons is considered.
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The symmetry relations of V (m)
J1J2

induce constraints on the matrix elements of the lattice
model. The matrix elements in HF terms are positive vηη

′
JJ ′ � 0 for arbitraryJ, J ′ > 0 and

η, η′ = ±. Obviously, self-interaction is forbidden vηηJJ = 0. For hopping term, if J ′ − J
is an odd number, we have uJJ ′ < 0, and otherwise uJJ ′ > 0. Hopping of Kramers pairs
between the nearest neighbor sites is a processes by which the system can reduce its energy.
In fact, the absence of this term in the standard HF calculation for few-electron system in
section 5.4 gave rise to the instability of the unmagnetized states. Also, it can be shown
that the matrix elements are invariant under interchange on the indices

vηη
′

JJ ′ = vηη
′

J ′J , (6.63)
uJJ ′ = uJ ′J . (6.64)

The absolute magnitude of V (m)
J1J2

has a general hierarchy, specifically, for the elements far
from the symmetry center (J2, J1) = (m/2,−m/2). This hierarchy is in fact independent
of type of the potential e.g. Coulomb or contact potential. It can be engaged to char-
acterize the strength of interaction in the lattice model. The matrix elements V

(J ′+J)
−J,J ′ , in

Eqs. 6.61 and 6.62, correspond to the strength of backward scattering which is negligible
for J, J ′ ∼ JF � α. This indicates v+−

JJ ′ > v++
JJ ′ . Consequently, the HF terms favor ferro-

magnetic spin polarization of the electrons. Also, they make double occupancy of sites,
or in the other words, Kramers pairs unfavorable. That is due to the presence of V (0)

−J,J in
v−ηη
JJ which is the strongest repulsive interaction among the matrix elements. The char-

acteristics of HF terms in the lattice model is consistent with the observed results in the
few-electron systems. One significant point is that the interaction of nearest neighbors has
the weakest strength among the interactions of electrons with the same spin polarization.
It favors consecutive occupation of sites with the ferromagnet order which admits the ob-
served distribution function by exact diagonalization method. The absolute magnitude of
the pair-hopping amplitude uJJ ′ decreases versus increase in the hopping distance |J ′−J |.
It can be rationalized by noting that the absolute magnitude of V (m)

−J,J decreases by increase
in the exchanged momentum m. Moreover, its sign depends to the parity of |J ′ − J |. uJJ ′

is negative (positive) if |J ′ − J | is odd (even.)

The magnitudes of the matrix elements are illustrated in figure 6.3 for Coulomb and con-
tact potential. We review their characteristics. For Coulomb potential, v++

JJ ′ and v+−
JJ ′ are in

the same order of magnitude generally. In fact, both v++
JJ ′ and v+−

JJ ′ are dominated by V
(0)
J1J2

which is significantly stronger than the elements with m �= 0 in the Coulomb-potential
case. They decay slowly with increase in the distance of lattice sites |J ′−J |. We note that
the magnitude of the elements are not mirror symmetric with respect to J ′ − J = 0. That
is because of the characteristics of interaction matrix elements which their magnitudes are
larger for the elements close to the symmetry centers (m/2,−m/2). On the contrary to
vηη

′
JJ ′ , absolute magnitude of the pair-hopping |uJJ ′ | decays quite quickly by increase in
|J ′ − J |. Finally, it can be concluded that HF interactions dominate hopping amplitude in
the Coulomb interacting electrons and by increase in the interaction strength λ, a transi-
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Figure 6.3: (Color online) Numerical values of the matrix elements for the lattice model
in Eq. 6.59 versus J ′ − J and several values of J , corresponding to the Coulomb 1/r and
contact δ(r) potential in the upper and lower panels, respectively. As a matter of illustra-
tion, the matrix elements for α = 30 are chosen in the evaluation of the matrix elements.
J ′ − J is equivalent to the relative distance of the lattice sites. In the leftmost panels,
the numerical values of v++

JJ ′ show that the interaction of the nearest neighbors has the low-
est cost energetically if the electrons have the same spin polarization. The magnitude of
the Coulomb-matrix elements are larger than the ones for the contact potential by almost
one order of magnitude. The center panels show that the on-site interaction v+−

JJ ′ is the
strongest interaction which makes the double occupancy of a site expensive. v++

JJ ′ of the
contact-potential decays faster than the Coulomb potential as a function of |J ′−J |. In the
rightmost panels, the matrix elements for hopping of the pairs |uJJ ′ |/2 are given. uJJ ′

is negative if J ′ − J is an odd number and positive otherwise. And its absolute magnitude
decays faster for the Coulomb potential than the contact potential as a function of J ′ − J .
Therefore, the long-range Coulomb potential emerges as a short-range interaction here.
But oppositely, the short-range contact potential is a long-range interaction in the lattice
model for interaction of Kramers pairs.

tion to the orbital ferromagnetism is likely.

For contact potential, v++
JJ ′ is weaker than v+−

JJ ′ by almost one order of magnitude but the
absolute hopping strength uJJ ′ is comparable with the magnitude of v+−

JJ ′ . It reflects the
fact that V (m)

J1J2
for contact potential decays slowly by increase in |m|. The weak ferromag-

net coupling v++
JJ ′ in the contact-potential interacting electrons indicates the lower chance

for the orbital ferromagnetism intuitively in comparison with the Coulomb potential.
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Two relevant conserved quantities are

N =
∑
J

(nJ+ + nJ−), M =
∑
J

(nJ+ − nJ−). (6.65)

N and M count total number of particles and dimensionless magnetization, respectively.
The ground state of the effective Hamiltonian H needs to be found among states which have
the same number of particles. If a state has no doubly occupied site, it is an eigenstate of
H. In principle, the singly occupied sites are blocked and H is unable to move them. This
fact indicates that the local operator mJ = nJ+−nJ−, which counts magnetization of Jth
site, commutes with the Hamiltonian [mJ ,H] = 0. This extra conservation law is due to
the neglected interactions and is absent in the original model (6.52). We define the blocked
domain B in a state |Ψ〉 as the set of sites which are singly occupied B = {J ; mJ |ψ〉 �= 0}
and the free domain as the remaining sites F = Λ \ B.

6.3.2 Effective Hamiltonian as Heisenberg XXZ Model

The effective Hamiltonian H can be written as a 1D Heisenberg XXZ spin chain in the
free domain F . The approach presented here is in a close relation with the generalized
Richardson-Gaudin models [5, 79]. SU(2) algebra can be completed by defining

Sz
J = (nJ+ + nJ− − 1)/2. (6.66)

If J ∈ F , then Sz
J
2 = 1/4 as either the site is empty or doubly occupied. Using the

commutation relations in Eqs. 6.57 and 6.58, we find[
Sz
Jη, S

±
J ′
]
= ±δJJ ′ S±

J ,
[
S+
J , S

−
J ′
]
= δJJ ′ 2Sz

J , (6.67)

and hence

SJ · SJ = S(S + 1) = Sz2

J + (S+
J S

−
J + S−

J S
+
J )/2 = 3/4. (6.68)

That is the free domain is treated as a 1D chain of spin-1/2. We note that the meaning of
S±
J is being changed from here on. S+

J and S−
J in Eq. 6.59 are creation and annihilation

operators of Kramers pair, respectively, but in the following, we take them as the spin-1/2
raising and lowering operators, respectively.

We need to rewrite nJη in terms of spineless operators as nJη = Sz
J + 1/2 + ηmJ/2. The

operator mJ gives no contribution if J ∈ F . In the following, wherever Sz
J appears, it acts

on the free domain and hence its eigenvalues is ±1/2. The part of Hamiltonian acting on
the free domain takes the form similar to the Heisenberg XXZ model in the presence of a
magnetic field

HF =
∑
J∈F

BJS
z
J + λ

∑
J>J ′∈F

{
vJJ ′Sz

JS
z
J ′ + uJJ ′

(
S+
J S

−
J ′ + S+

J ′S
−
J

)}
+ EF , (6.69)
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where the new parameters are defined as

vJJ ′ = 2
∑
η,η′

vηη
′

JJ ′ , (6.70)

BJ = 2EJ + λ
∑
J′∈F
η,η′

vηη
′

JJ ′ , (6.71)

EF =
∑
J∈F

{
EJ +

λ

4

∑
J′∈F
η,η′

vηη
′

JJ ′(1 + δ−ηη′δJJ ′)

}
. (6.72)

Here, the kinetic term and exchange-type interactions behave as a site-dependent magnetic
field Bj. The constant term EF depends on the free domain in the state |Ψ〉 and must be
kept. The part of Hamiltonian which acts on the blocked domain reads as

HB =
∑
J∈B
η

EJnJη + λ
∑

J,J′∈B
η,η′

vηη
′

JJ ′ nJηnJ ′η′ . (6.73)

HB is equivalent to HF Hamiltonian. The interaction of single electrons in B and spin-1/2
in F can be captured by

HFB = 2λ
∑

J∈F,J′∈B
η,η′

vηη
′

JJ ′ nJη

(
Sz
J ′ +

1

2

)
. (6.74)

The full Hamiltonian is comprised of three terms H = HF+HB+HFB. A general eigenstate
of the effective Hamiltonian has the form

|Ψ〉 =
∑

l1<l2<···<lM
(li∈F for i=1,··· ,M)

f(l1, l2, · · · , lM)S+
l1
S+
l2
· · ·S+

lM
|ψ〉, (6.75)

|ψ〉 =
∏
p∈B

c†p|0〉. (6.76)

Although the lack of translational symmetry of H in addition to the long-range site-
dependent interactions are major obstacles to obtain an analytical solution, the model
can be solved numerically. Particularly, the discreetness of the theory makes it amenable
to methods suitable for 1D lattice models as density matrix renormalization group technic
[107, 25, 93].

6.4 Summary
In this chapter, we have studied interacting many-electron dot with strong Rashba cou-
pling. The number of electrons is considered to be N ∼ α. In the regime of very weak
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interactions, we have approximated the interaction term by a uniform one which allows
bosonizing the Hamiltonian. The significant results of this regime were strong correlation
of Kramers pairs even for a repulsive interaction. And also no spontaneous magnetization
occurs in this regime. We studied the static correlation functions, or zero temperature,
though, the study can readily be generalized to non-zero temperature. Based on the strong
correlation of Kramers pairs, a pairing model was constructed. Although the pairing model
has an exact analytical solution, we engaged the model to demonstrate that solely the
BCS-like interactions might realize a transition from strong correlation of Kramers pairs
to orbital ferromagnetism. In the end, relying on the results derived from two effective
models, we have approximated the full Hamiltonian and constructed an extended Hartree-
Fock Hamiltonian. The latter includes the standard Hartree-Fock Hamiltonian and an
extra term which corresponds to the BCS-like interaction. Furthermore, we analyzed the
representation of Coulomb and contact potential in the model and the probable physics
they can realize for the system. The extended Hartree-Fock Hamiltonian can be repre-
sented as a Heisenberg XXZ spin model. The lattice model is not solved but has a proper
form to be studied with numerical techniques like DMRG.
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Chapter 7

Summary and Conclusion

In this thesis, we studied interacting 2D electrons in the presence of a parabolic trap and
strong Rashba spin-orbit coupling. The system models mainly quantum dots which are re-
alized at the interfaces of semiconductors. Absence of external magnetic fields indicates the
system enjoys time-reversal symmetry. The trap breaks translational symmetry. The cru-
cial feature is that strong Rashba coupling causes the low-energy physics to take place on a
ring in momentum space. This attributes a quasi-one-dimensional character to the system
which the immediate consequence is the profound effect of even very weak interactions in
the system. Specifically, two classes of interactions are boosted due to the settlement of the
system on a momentum-space ring, namely, BCS-like and exchange-type interactions. We
named the two-body scattering processes in this way since the conservation of momentum
on the ring restricts the interactions solely to the interaction of Kramers pairs with zero net
total momentum and the exchange interaction. Therefore, the BCS-like interaction does
not mean that the interacting electrons form Cooper pairs necessarily, in the way that is
concerned in the BCS theory. Although, strong correlation of Kramers pairs and exchange
interactions are two types of interactions which are known to be responsible for competing
phases in many-body systems, which are superconductivity and magnetism, respectively.
It is interesting that the study presented herein shows that the system resembles those
phases in different regime of characteristic parameters as follows.

First, we review the study of the system hosting few Coulomb interacting electrons. In
the regime of ultrastrong Rashba coupling, we found that the system of two interacting
electrons becomes orbital ferromagnet even for very weak interactions. The magnetiza-
tion predicted here is very large which rules out any explanation based on the spin of
electrons. In fact, the orbital ferromagnetism labels a transition from the helical state, in
which two electrons counterpropagate, to the state which electrons circulate in the same
direction. Therefore, by the magnetization we meant the net total angular momentum of
electrons. We showed that an energy barrier separates the doubly degenerate ground state
labeled with opposite sign of total magnetization. That is the time-reversal symmetry is
broken practically, since if the system chooses one of the degenerate states, the tunneling
rate between two degenerate states takes an astronomically long time. Next, we engaged
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numerical techniques like exact diagonalization and standard Hartree-Fock approximation
to study the ground-state properties of interacting electrons in the presence of finite but
strong Rashba coupling. It is observed that if the strength of Coulomb interaction exceeds
a critical value, a transition from unmagnetized ground state, or almost unmagnetized
state for an odd number of electrons, to orbital ferromagnetism takes place. The investiga-
tion of the system with different strength of Rashba coupling suggests that the transition
occurs at a weaker interaction strength by increasing the strength of Rashba coupling. In
addition, the Hartree-Fock calculations have been carried out for particle numbers up to
ten which admit the spontaneous magnetization of the system qualitatively. Moreover, a
few results of DMRG are presented to illustrate the power of this technique on tackling
the system studied herein. The DMRG calculations reproduce the exact-diagonalization
findings with a very high accuracy and further results are expected in the near future.

The system containing arbitrary but finite number of particles is also studied in this the-
sis. We constructed a number of effective models to follow this purpose. In the regime
of very weak interaction, it is possible to approximate the interaction terms by uniform
terms if the variations of interaction matrix elements are small in comparison with the
level spacing. This condition can be fulfilled more easier for the contact potential, in co-
ordinate space, rather than the Coulomb potential. Such an effective 1D Hamiltonian is
amenable to bosonozation and therefore exact calculation of correlation functions. Strong
correlation of Kramers pairs even for a repulsive interaction potential is the significant
result of bosonization study. Furthermore, absence of spontaneous magnetizations can be
demonstrated which is expectable for the very weak interaction. Another effective model is
constructed to analyze the possibility of a transition to orbital ferromagnetism. Relying on
the strong correlation of Kramers pairs, we singled out the uniform interaction of Kramers
pairs. The model is shown to be equivalent to Richardson pairing model though for a
repulsive pairing force. Although the model bears an exact solution, we merely assessed
it heuristically in two extreme regimes, non-interacting and strong interaction. It is then
shown that the model predicts a transition to a magnetic state. Although, one must solve
the model exactly, to check whether the critical interaction strength satisfies the low-energy
constraints or not, which is beyond the treatment for the model considered here. Based on
the result of the effective models, we wrote down an approximated Hamiltonian by keep-
ing the BCS-like and exchange-type interactions for non-zero exchanged momentum. The
resulting Hamiltonian is called extended Hartree-Fock Hamiltonian since it includes the
Hartree-Fock terms plus an extra term which describes solely interactions of time-reversed
partners. The interesting feature of the model is that it sets the scene for competition
between states with zero magnetization and orbital ferromagnetism, by incorporating the
minimal but crucial features of the full interacting model. It is worth noting that those
states, i.e. unmagnetized with the maximum number of Kramers pairs and orbital ferro-
magnetism, are expected intuitively due to the characteristics of the interaction matrix
elements. The Hamiltonian can be written as the Heisenberg XXZ spin model. Although
we could not find an analytical solution for the model, application of numerical technique
is promising since there exist powerful methods for 1D discrete models.
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Although it is reported that increasing Rashba coupling enhances Wigner crystallization,
where the electrostatic repulsion suppresses quantum fluctuations and interelectron dis-
tances are maximized, we did not found any clue for the Wigner molecule in our system.
In fact, one should increase the interaction strength, beyond the regime we studied, in
order to achieve the crystallization. Therefore, it remains an open question to address the
transition from orbital ferromagnetism to Wigner molecule.

In the end, we hope that our predictions find the chance to be testified in a laboratory
and also stimulate further theoretical and experimental study of Rashba spin-orbit coupled
materials.
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Appendix A

Strictly 1D Ring in Momentum Space

A toy model is studied which describes an electron on a ring in momentum space with
Rashba spin-orbit coupling. The model assumes the same symmetry of the original model
studied herein at the single-particle level, introduced in chapter 3. Consequently. the in-
teraction matrix elements (IMEs) have the same symmetry relations of the original model,
considered in chapter 4. In fact, the model was developed initially to investigate the phase
constraints associated with the IMEs of the original interacting model. The maximal abso-
lute magnitude of IMEs are BCS-like and exchange-type interactions associated with the
restricted scattering processes on a ring in momentum space. Although the latter feature
was touched on by the original model in the regime of ultrstrong Rashba coupling, see sub-
section 4.2.2, the IMEs were zero for odd-exchanged momentum and a constant otherwise.
Also, we draw a connection between scattering processes on the momentum-space ring and
moduli space of equilateral tetragons [71, 70]. In the end, it is shown that the interacting
toy model is well approximated with the Richardson-Gaudin pairing model, see appendix
E, which is exactly solvable.

A.1 Single-Particle Hamiltonian
We begin with a dimensionless one-dimensional Hamiltonian which describes a particle on
a unit circle in the (translational) momentum space

Hr
0 = −∂2

θ −ΔP , (A.1)

where θ is the azimuthal angle in momentum space and P = σx sin θ−σy cos θ is the helicity
operator. Δ is the dimensionless strength of Rashba coupling. The toy model respects the
same symmetries of the original model introduced in chapter 3. Namely, Hr

0 is even under
time reversal and conserves the total angular momentum [Hr

0, Ĵz] = 0, and clearly it is
not translational invariant [Hr

0, p̂] �= 0, where Ĵz is the generator of rotation in orbital and
spin angular momentum around ẑ axis, and p̂ is the generator of translation. Although,
the toy model is scale invariance as it does have dependence only on the angular degree

101



of freedom despite the original model in chapter 3. The orthonormal eigenfunctions and
corresponding eigenenergies of the model can be found readily

Φ+
J (θ) =

1√
2π

⎛⎝ cosϑ+ei(J−1/2)θ

−i sinϑ+ei(J+1/2)θ

⎞⎠ , (A.2)

Φ−
J (θ) =

1√
2π

⎛⎝ cosϑ−ei(J−1/2)θ

i sinϑ−ei(J+1/2)θ

⎞⎠ , (A.3)

E±
J = J2 + 1/4∓

√
(J/2)2 +Δ2, (A.4)

where ± are the positive and negative helicity indices. The coefficients of the eigenfunctions
have the form

cosϑ± =
Δ√

Δ2 +
[(
J − 1

2

)2 − E±
J

]2 , (A.5)

sinϑ± =
±

[(
J − 1

2

)2 − E±
J

]
√

Δ2 +
[(
J − 1

2

)2 − E±
J

]2 . (A.6)

Dispersion of the model is shown in Fig. A.1. A band gap ∼ Δ separates the positive
and negative helicity bands and the positive helicity has the lower energy similar to the
original model, see Sec. 3.2. We are interested in the low-lying excitations of the system
where (Δ/J)2 � 1. In this regime, the coefficients take the form(

Δ

J

)2

� 1 → cosϑ± = sinϑ± ≈ 1√
2
, (A.7)

and, consequently, the positive helicity eigenstate reads

Φ+
J (θ) → ΦJ(θ) =

1√
4π

⎛⎝ ei(J−1/2)θ

−iei(J+1/2)θ

⎞⎠ . (A.8)

From here on, we consider only the low-energy eigenstate ΦJ(θ). The eigenstate of Hr
0 in

the regime of strong Rashba coupling is the same as the angular part of the original model
in its momentum space representation, see Eq. 3.14. Therefore, it seems to be plausible
expecting similarities between the features observed for IMEs of the original model, dis-
cussed in chapter 4, and the toy model. The matrix elements of a non-singular potential
will be carried out in the next section. Integral of matrix elements has the form similar to
the one derived for ultrastrong Rashba coupling in subsection 4.40.
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Figure A.1: Energy dispersion for a particle on a momentum-space ring with a Rashba
coupling Δ = 50. Two bands are associated with positive, the lower band, and negative,
the upper band, helicity.

A.2 Interaction Matrix Elements
We proceed with the positive helicity eigenstate, and hence, the angular momentum is
the only quantum number which labels the states. The full Hamiltonian in the second
quantization can be written formally as

Hr
I =

λ

2

∑
J1,J2
J′
1,J

′
2

〈ΦJ ′
1
,ΦJ ′

2
|V |ΦJ2 ,ΦJ1〉c†J ′

1
c†J ′

2
cJ2cJ1 , (A.9)

where c†J and cJ are the fermion creation and annihilation operators, respectively. λ is the
dimensionless interaction strength. We assume a short-range interaction potential V which
is rotational and translational invariant, and use the completeness of the angular eigenkets

˛
dθ|θ〉〈θ| = 1, (A.10)

to evaluate the matrix elements as

V J1,J2
J ′
1,J

′
2

= 〈ΦJ ′
1
,ΦJ ′

2
|V |ΦJ2 ,ΦJ1〉

=

˛ 4∏
i=1

dθiΦ
∗
J ′
1
(θ′1)Φ

∗
J ′
2
(θ′2)V (θ′1, θ

′
2, θ2, θ1) ΦJ2(θ2)ΦJ1(θ1). (A.11)

For the sake of simplicity, we assume a contact-type potential in coordinate space which
takes the following form in the basis

〈θ′1, θ′2|V |θ2, θ1〉 = δ(eiθ1 + eiθ2 − eiθ
′
1 − eiθ

′
2). (A.12)
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Figure A.2: (Color online) (a) Two surfaces q = ∓2 cosφ1,2 in 3D space of (φ1, φ2, q). (b).
Two curves C1,2 defined by the intersections of the surfaces characterize all the momentum
conserving scattering processes on a momentum-space ring up to an in-plane rotation. The
blue curve corresponds to BCS-like interactions φ2 = φ1 + π while the red curve describes
exchange-type interactions φ2 = π − φ1. A plane defined by a given q with 0 < q < 2
crosses at four points with the curves which demonstrates that for a given q there exist
four processes, see Fig. A.3. The processes with q = 0 are shown by two black solid
lines schematically. The resulting set of curves can be identified with the moduli space of
equilateral tetragons which is a connected 1D space with four holes, see the text.

Taking into account that θ is the azimuthal angle in momentum space, we can assign a
translational momentum k = eiθ to the particle being on the unit circle |k| = 1. Therefore,
the delta function guarantees the conservation of translational momentum of interacting
particles. We treat this constraint in an approach based on a physical reasoning rather
than a strict algebraic steps. Practically, we find a curve which parametrizes all the pos-
sible scattering processes on the ring. Afterwards, taking into account the constraints, we
carry out the integral over this curve to evaluate the interaction matrix elements.

We write k′
1,2 = k1,2±q by means of the exchanged momentum q = qeiφ with 0 � q � 2 to

satisfy the conservation law. The azimuthal angle of outgoing particles θ′1,2 can be written
in terms of θ1,2 and φ as

eiθ
′
1,2 = eiθ1,2

(
1± qei(φ−θ1,2)

1± qe−i(φ−θ1,2)

)1/2

. (A.13)

We define new variables

φ1,2 = φ− θ1,2. (A.14)

The outgoing particles must stay on the ring |k′
1,2| = 1 which leads to the following con-

straints on the magnitude of the exchanged momentum(
1± qe−iφ1,2

) (
1± qeiφ1,2

)
= 1 ⇒ q = ∓2 cosφ1,2 � 0. (A.15)
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These two equations for q must be satisfied simultaneously. Therefore, their intersections
define connected curves in the 3D space of (φ1, φ2, q), see Fig. A.2. Each point of these
curves corresponds to a momentum conserving scattering process on a ring while the ori-
entation of the exchanged momentum q is fixed by φ. Before parametrizing this curve, we
find the conditions on φ1,2 to satisfy Eq. A.15.

In section 4.2.2, it is shown that momentum conserving scattering processes on a ring are
classified into two groups, namely, BCS-like and exchange-type interactions, see Fig. A.3.
This fact introduces two constraints, the first φ2 = φ1 + π for BCS-like interactions and
the second φ2 = π − φ1 for exchange-type interactions. Therefore, the intersection of two
surfaces in the (φ1, φ2, q) space can be parametrized by two curves

C1 = (ϑ, ϑ+ π,−2 cosϑ), (A.16)

for BCS-like interactions and

C2 = (ϑ, π − ϑ,−2 cosϑ), (A.17)

for exchange-type interactions. One should note that the interactions with q = 0 is singular
since φ is not defined. In this case, θ′1 = θ1 and θ′2 = θ2 can take on values independently.
These processes can be considered as the two lines which connect C1,2, see Fig. A.2. The
processes with q = 0 contributes as a constant term to the Hamiltonian and can be ne-
glected.

Now, firstly, the integral in Eq. A.11 can be written in terms of φ1,2 and q. Thereafter, the
integral can be evaluated along two curves C1,2 parametrized by a single variable ϑ. The
magnitude of the exchanged momentum needs to be positive definite q � 0 ⇒ −2 cosϑ � 0
which gives π/2 � ϑ � −π/2. The measures of the line integrals are

dC1,2 =
√

dφ2
1 + dφ2

2 + dq2
∣∣∣∣
C1,2

= dϑ
√
2
√
1 + 2 sin2 ϑ. (A.18)

The matrix elements in Eq. A.11 after some algebras take the form

V
(m)
J1J2

= (−1)J1+J2+m

√
2λ

8π

ˆ π/2

−π/2

dϑ sin2 ϑ
√
1 + 2 sin2 ϑ

{
cos [2(J1 + J2)ϑ]− cos [2(J1 − J2 +m)ϑ]

}
,

(A.19)

where V J1J2
J ′
1J

′
2
= V

(m)
J1J2

δJ1+J2,J ′
1+J ′

2
and the exchanged angular momentum is defined through

J ′
1,2 = J1,2 ± m. The first cosine in the brackets is associated with BCS-like scattering

processes on the ring parametrized by the curve C1. The contribution of this term is max-
imum if the interacting particles have zero net total angular momentum J1 = −J2. The
second cosine in the brackets originates from exchange-type interactions parametrized by
C2. This term is maximum if J2 = J1 + m. The numerical values of IMEs are shown in
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Figure A.3: Scattering processes k1,2 → k′
1,2 = k1,2 ± q for a given exchanged momentum

q, on a momentum-space ring |k1,2| = |k′
1,2| = 1. For a non-zero exchanged momentum

|q| �= 0, there exist four processes which can be classified into (a) BCS-like interactions
where k1 = −k2 are scattered to k′

1 = −k′
2, and (b) exchange-type interactions by which

k2 = k1 + q, or equivalently k1 = k′
2 and k2 = k′

1. Consequently, the same types of
interactions are boosted in the angular momentum space, see Fig. A.4.

Fig. A.4 which demonstrate the maximal absolute magnitudes of V (m)
J1J2

lie along two lines
J1 = −J2 and J2 = J1 + m. Therefore, the IMEs along J1 = −J2 and J2 = J1 + m are
boosted due to the topological restriction of scattering processes on a momentum-space
ring to the same kinds of interactions, namely, BCS-like and exchange-type ones, see Fig.
A.3. The features of the IMEs are summarized in subsection 4.2.1.

The absolute magnitude of V (m)
J1J2

along J1 = −J2 and J2 = J1 +m is almost independent
of J1,2 and m, but decays quickly otherwise. It can be rationalized, for instance, if we
consider the IMEs along J = J2 = J1 +m that yields

V
(m)
J+m,J =

√
2λ

8π

ˆ π/2

−π/2

dϑ sin2 ϑ
√
1 + 2 sin2 ϑ

{
1− cos [2(2J +m)ϑ]

}
. (A.20)

The integral of the oscillatory term cos [2(2J +m)ϑ] almost vanishes and can be neglected

V
(m)
J+m,J ≈

√
2λ

8π

ˆ π/2

−π/2

dϑ sin2 ϑ
√
1 + 2 sin2 ϑ, (A.21)

which is independent of J1,2 and m. The exception is if 2J = m by which the matrix
element vanishes identically, that is, the direct scattering into the time-reversed partner is
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Figure A.4: Interaction matrix elements V (m)
J1,J2

of the toy model in (J2, J1) plane, normalized
to their maximum value in the shown region. The top row shows matrix elements for m = 0
and m = 1. The values along the exchange-type interactions J2 = J1+m and the horizontal
line J1 = 10.5 are shown in the lower plots.

forbidden due to the time reversal symmetry. With the help of the symmetry relations of
IMEs, we write

V
(m)
J+m,J = (−1)mV

(m)
J,−J ≈ cons., (A.22)

where the c-number is independent of J and m.

Before leaving this section, we mention a connection between the set of all the momentum
conserving scattering processes on the momentum-space ring and the moduli space of
equilateral tetragons [71, 70]. Given a string L = (l1, · · · , ln) with li > 0, the moduli space
of closed planar polygons is defined by

ML =
{
(u1, · · · , un) ∈ Sn;

n∑
i=1

liui = 0
}
/SO(2),

where li and ui denote the length and direction of the ith side of the polygon, respectively.
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Consider now momentum-conserving interaction of N particles on a momentum-space ring

N∑
i=1

ki =
N∑
i=1

k′
i, (A.23)

where ki and k′
i are the momentum of ith particle before and after interaction, respectively,

while |ki| = |k′
i| = 1. In fact, the constraint for momentum conservation of N interacting

particles defines an equilateral 2N -gon. In the case of N = 2, the scattering processes
construct equilateral tetragons, see Fig. A.3. Identifying the scattering processes which
are equivalent under SO(2), that is fixing the orientation of exchanged momentum q for
instance, we arrive at the moduli space of equilateral tetragons, let call it Qr. This space
is comprised of the curves C1,2 in the 3D space (φ1, φ2, q), plus lines in the plane of q = 0
which contribute as a constant term into the Hamiltonian. It is known [70] that Qr is a
compact 1D manifold (hyperplane) with finitely many singular points. The rank of zeroth
Homology group [75] of Qr is dimH0(Qr;Z) = 1 that shows it is a connected manifold,
and the rank of its first Homology group is dimH1(Qr;Z) = 4 which gives the number of
holes in Qr, see Fig. A.2. The singularities of this space are those points where C1 and C2
intersect and also the points which connects C1,2 to the lines corresponding to the processes
with q = 0.

A.3 Effective Pairing Model
As it is shown in the preceding section, the interaction matrix elements have a constant
value for given m along maximal absolute magnitude lines and decay rapidly otherwise.
If we neglect the interactions for J1 �= −J2 and J2 �= J1 + m and the anomalies of V (m)

J1,J2

around the symmetry centers (J2, J1) = (m/2,−m/2), the resulting Hamiltonian takes the
form

Hr ≈
∑
J

J2c†JcJ +
g

2

∑
J,J ′

(−1)J−J ′
c†Jc

†
−Jc−J ′cJ ′ − g

2

∑
J,J ′

c†JcJc
†
J ′cJ ′ , (A.24)

where the absolute values of interaction matrix elements along the lines are replaced by
a coupling constant g. The last term gives a constant contribution ∼ N2 and can be ne-
glected. Only the pairing term determines the interaction-driven dynamics of the system.
The interacting model can be written as the Richardson-Gaudin pairing model which bears
an exact solution, see section 6.2 and appendix E.

A.4 Summary
A toy model is proposed and studied which describe an electron on a ring in momentum
space in the presence of Rashba spin-orbit coupling. The eigenstates of the model can be
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derived analytically on contrast to the original model which an effective eigenfunction can
be constructed. The main aim for studying the toy model was to investigate the sign of
the interaction matrix elements of the original model. In the regime of the strong Rashba
coupling, the matrix elements can be represented by an integral equation. The compact
form of the integral equation pave the way to dig out the symmetry relations of IMEs and
also the reason of the boosted IMEs, i.e. the maximal absolute magnitude elements. As is
discussed in chapter 4, the time reversal of the eigenbasis and the pair potential imposes
phase constraints on IMEs. Furthermore, the topological restriction of scattering processes
on momentum-space ring gives rise to boosted IMEs of the same type, namely, BCS-like
and exchange-type interactions. The interacting model is equivalent to Richardson pairing
model effectively which bears an exact solution.

109



110



Appendix B

Interaction Matrix Elements in 2D and
3D Systems

In this appendix, we briefly mention that the symmetry relations and the boosted classes
of interaction, observed in chapter 4, are present also in the isotropic 2D and 3D Fermi
liquid. In fact, the phase constraints are the consequence of the representation in the an-
gular momentum basis. And the boosted matrix elements rely on the restricted scattering
processes for the states close to the Fermi surface. The interests of such a generalization is
that the representation takes into account the intrinsic correlation of interacting particles,
particularly in 2D. For sure, the representation does not change the physics of systems,
however, it can be constructive if the system is going to be treated effectively, in contrast
to the exact solutions.

Consider a 2D isotropic system [H,Lz] = 0 where H is the Hamiltonian of the system and
Lz is the angular momentum operator. In such cases, it is possible to choose a simulta-
neous eigenket of H and Lz that is |k, j〉 where k is a discrete or continues wavenumber.
Coordinate-space representation of the eigenket up to a normalization constant can be
〈r|k, j〉 = Jj(kr)e

jθ for j ∈ Z. We abbreviate the quantum numbers by |ξ〉 ≡ |k, j〉. The
eigenket under time reversal (TR) gives [91]

Θ|k, j〉 = (−1)j|k,−j〉, (B.1)

or in the shortened notation Θ|ξ〉 = (−1)j|ξ̄〉. The same relations as in Eq. 4.4 can be
written for a two-body potential represented in the basis

〈ξ′1, ξ′2|V |ξ2, ξ1〉 = 〈ξ̄, ξ′2|V |ξ2, ξ̄′1〉(−1)j1+j′1

= 〈ξ′1, ξ̄2|V |ξ̄′2, ξ1〉(−1)j2+j′2

= 〈ξ̄1, ξ̄2|V |ξ̄′2, ξ̄′1〉(−1)j1+j′1+j2+j′2 . (B.2)

Rotational invariance of the interaction potential gives j1 + j2 = j′1 + j′2 and reduces the
phase factors to (−1)j1+j′1 = (−1)j2+j′2 = (−1)m and (−1)j1+j2+j′1+j′2 = 1 with m being the
exchanged momentum j′1,2 = j1,2±m. For 2D isotropic fermion systems, the Fermi surface
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is a ring in momentum space. Low-lying excitations live in the vicinity of Fermi surface
k ≈ kF and once again due to the restriction of scattering processes on a momentum-ring,
here Fermi surface, the BCS-like and exchange-type interactions are boosted in j-space.

The characteristics summarized in the ending part of Sec. 4.2.1 also apply to the general
representation in Eq. B.2, although, since j ∈ Z, the corresponding modifications should
be taken into account. For instance, the symmetry center (m/2,−m/2) refers to a matrix
elements in (j2, j1) plane for even m. And also there is no forbidden interaction due to TR
symmetry as the the eigenbasis is spin-independent, or in other words, because j is not
half-odd-integer. It is straightforward to generalize the scheme and incorporate spin.

In 3D isotropic systems, the eigenbasis can be constructed by |n, l, j〉 where n is the radial
quantum number, l and j are angular momentum and its projection along the quantiza-
tion axis, respectively. The coordinate representation of the eigenket reads 〈r|n, l, j〉 =
Rnl(r)Y

m
l (θ, φ) where Rnl(r) is the real-value radial wave-function and Y m

l (θ, φ) is the
spherical harmonics [91]. Once again we introduce the abbreviation |Ξ〉 = |n, l, j〉. TR
symmetry yields

Θ|n, l, j〉 = (−1)j|n, l,−j〉, (B.3)

and in the abbreviated notation Θ|Ξ〉 = (−1)j|Ξ̄〉. We arrive at The same symmetry rela-
tions like Eq. B.2. The Fermi surface in 3D isotropic fermion system is defines by a sphere
in momentum space. The low-energy excitations take place around the Fermi surface. The
phase space of scattering processes in 3D is not restricted as 2D space. In fact, fixing the
momentum transfer q in Fig. 4.5, the either joint point of k1 and k′

1 or k2 and k′
2 in

Fig.4.5 can be rotated toward the third dimension around the momentum transfer q which
gives neither BCS-like nor exchange-type interaction. One then expects that those boosted
channels of interaction in 2D, namely BCS-like and exchange type, should be less signifi-
cant for 3D in the angular momentum representation. Incidentally, a study of electronic
systems involved in the reduced scattering processes on 2D and 3D Fermi surface can be
found, for instance, in the reference [96].
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Appendix C

Representation in N Fermion Basis

In this appendix, we represent the full Hamiltonian in the basis of N fermions. The
representation is used in the exact-diagonalization calculations. Consider the following
generic state of N fermions

|a1, a2, · · · , aN〉 = c†a1c
†
a2
· · · c†aN |0〉, (C.1)

where c†ai is the fermion creation operator with ai ∈ Z+1/2 for i = 1, 2, · · · , N . The state
|0〉 is the vacuum with zero number of particle. We consider the states with a1 < a2 <
· · · < aN which indicate that the kets are orthonormal

〈b1, b2, · · · , bN |a1, a2, · · · , aN〉 =
N∏
i=1

δaibi . (C.2)

Now, we can construct an orthonormal basis∑
a1<···<aN

|a1, a2, · · · , aN〉〈a1, a2, · · · , aN | = 1. (C.3)

The eigenvalue problem H|Φn〉 = En|Φn〉 can be expanded in this basis∑
b1<···<bN

〈a1, a2, · · · , aN |H|b1, b2, · · · , bN〉ϕn
b1,b2,··· ,bN = En ϕn

a1,a2,··· ,aN , (C.4)

where

ϕn
a1,a2,··· ,aN = 〈a1, a2, · · · , aN |Φn〉, (C.5)

is the projection of nth eigenstate along |a1, a2, · · · , aN〉. For convenience in the represen-
tation of the matrix elements, we define

ϕ̄n
a1,a2,··· ,aN =

⎧⎪⎨⎪⎩
ϕn
a1,a2,··· ,aN if a1 < a2 < · · · < aN ,

0 otherwise,
(C.6)
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and also the interaction matrix elements

V J1J2
J ′
1J

′
2
= 2V

(m)
J1J2

δJ1+J2,J ′
1+J ′

2
, (C.7)

with J ′
1,2 = J1,2 ± m. Furthermore, we assume the convention of summation over re-

peated indices, unless the indices are presented in parenthesis. The matrix elements of the
Hamiltonian take the form

〈aN · · · a1|H0|b1 · · · bN〉 ϕ̄n
b1,··· ,bN = �ω

(
E(a1) + E(a2) + · · ·+ E(aN )

)
ϕ̄n
(a1),··· ,(aN ), (C.8)

〈aN · · · a1|HI |b1 · · · bN〉 ϕ̄n
b1,··· ,bN =

λ�ω

N !
V J1J2
J ′
1J

′
2

(
N
2

)
ϕ̄n
b1,b2,··· ,bN (εaiajεJ ′

1J
′
2
)(εJ1J2ak···alεb1b2b3···bN )εij···l.

(C.9)

The Levi-Civita symbols represent determinant of Kronecker delta functions

εa1a2···aN εb1b2···bN =

∣∣∣∣∣∣∣∣∣
δa1b1 δa1b2 · · · δa1bN
δa2b1 δa2b2 · · · δa2bN

...
...

...
δaN b1 δaN b2 · · · δaN bN

∣∣∣∣∣∣∣∣∣
. (C.10)

which is used to make the formula concise. The explicit representation of H in two-particle
basis has the following form

En ϕn
a1a2

= �ω
(
ε(a1) + ε(a2)

)
ϕn
(a1)(a2)

+
λ�ω

4
V J1J2
J ′
1J

′
2
ϕn
b1b2

(εaiajεJ ′
1J

′
2
)(εJ1J2εb1b2)εij

= �ω
(
ε(a1) + ε(a2)

)
ϕn
(a1)(a2)

+ λ�ω
(
V J1J2
a2a1

− V J1J2
a1a2

)
ϕn
J1J2

. (C.11)

Similarly, for N = 3, we find

En ϕn
a1a2a3

= �ω
(
ε(a1) + ε(a2) + ε(a3)

)
ϕn
(a1)(a2)(a3)

+ λ�ω
(
V J1J2
a3a2

− V J1J2
a2a3

) (
ϕn
a1J1J2

− ϕn
J1a1J2

+ ϕn
J1J1a1

)
+ λ�ω

(
V J1J2
a1a3

− V J1J2
a3a1

) (
ϕn
a2J1J2

− ϕn
J1a2J2

+ ϕn
J1J1a2

)
+ λ�ω

(
V J1J2
a2a1

− V J1J2
a1a2

) (
ϕn
a3J1J2

− ϕn
J1a3J2

+ ϕn
J1J1a3

)
. (C.12)

Single-band approximation, discussed in section 3.3, truncates the matrix elements by
|J | � α. Therefore, the effective matrix-representation of H with finite dimensions can be
diagonalized numerically, although, for few electrons.
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Appendix D

Preliminary and Complementary to
Bosonization

In this appendix, we present preliminary and complementary calculations to the bosoniza-
tion machinery applied to the system in chapter 6. Also parts of the results which are
missed there shall be given here. Our approach is mainly based on the bosonization tech-
nique reviewed in Ref. [99].

D.1 System of Non-Interacting Electrons
In the following section, we deal with the non-interacting Hamiltonian. The ingredients
for bosonizing the Hamiltonian are discussed. Fermion and boson field operators are in-
troduced. In the next section, we compute the correlation of interacting boson.

D.1.1 Operator Identities for Free System

We propose the following fermion field operator

Ξ†
η(θ) =

1√
4π

∑
j

(
e−i{(ηJF+j)−1/2}θ ie−i{(ηJF+j)+1/2}θ) c†jη, (D.1)

where the angular part of the wave-function in momentum representation (3.14) has been
used by substitution J = ηJF + j where j ∈ Z. The creation operator can be written in
term of Ξ†

η(θ) through an inverse Fourier transform

c†jη =
1√
4π

˛
dθΞ†

η(θ)

⎛⎝ ei{(ηJF+j)−1/2}θ

−iei{(ηJF+j)+1/2}θ

⎞⎠ . (D.2)
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In order to work only with the dynamical part of the field operator i.e. j-dependent part,
we rewrite the spinor field Ξ†

η(θ) in terms of a scaler field as

Ξ†
η(θ) =

Ψ†
η(θ)√
2

(
e−i(ηJF−1/2)θ ie−i(ηJF+1/2)θ

)
. (D.3)

Ψ†
η(θ) =

1√
2π

∑
j

e−ijθ c†jη. (D.4)

The inverse Fourier transform gives

c†jη =
1√
2π

˛
dθ eijθ Ψ†

η(θ). (D.5)

The anticommutation relations of the field operators can be derived by {c†jη, c†j′η′} = 0 and
{c†jη, cj′η′} = δjj′δηη′ which leads to [104]

{
Ψ†

η(θ), Ψ
†
η′(θ

′)
}

=
{
Ψη(θ), Ψη′(θ

′)
}
= 0, (D.6)

{
Ψ†

η(θ), Ψη′(θ
′)
}

=
δηη′

2π

∑
j

e−ij(θ−θ′)

= δηη′
∑
n∈Z

δ (θ − θ′ − 2πn) . (D.7)

Since θ, θ′ ∈ [0, 2π), the anticommutation relation reduces to

{
Ψ†

η(θ), Ψη′(θ
′)
}
= δηη′δ (θ − θ′) . (D.8)

A comment is here in order. The fermion field operator Ξ†
η(θ) (D.1) is independent of

the radial degree of freedom i.e. it is merely a function of azimuthal angle θ although
the system is 2D. In principle, the field operator representation of c†J (the half-odd-integer
angular momentum is retained and the chirality is relaxed for the moment) in momentum
space has the form

a†(k) =
∑
J

uk√
4π

(
e−i(J−1/2)θ ie−i(J+1/2)θ

)
c†J , (D.9)

where uk is the normalized radial part of the eigenfunction which is missed in Eq. D.1 and
Eq. D.2. We have taken into account the single-band approximation i.e. no summation
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on the band index although the treatment can be readily generalized to incorporate band
indices. We are going to show that both a†(k) and Ξ†

η(θ) generate the same density of
particles. This relies on the fact that the radial and angular degrees of freedom are decou-
pled. Therefore, we can adopt the 1D field operator Ξ†

η(θ) as is needed in the bosonization
scheme. To do so, we write down the total occupation number operator per volume in
terms of a†(k) and a(k) as

N̂ =

ˆ
dk a†(k)a(k). (D.10)

Substituting the field operator (D.9), we obtain

N̂ =

ˆ
k dk u2

k

˛
dθ

∑
J

1√
4π

(
e−i(J−1/2)θ ie−i(J+1/2)θ

)
c†J

∑
J ′

1√
4π

⎛⎝ ei(J
′−1/2)θ

−iei(J
′+1/2)θ

⎞⎠ cJ ′ . (D.11)

The radial part of the eigenfunction is normalized
´
k dk u2

k = 1 which leads to

N̂ =

˛
dθΞ†(θ) Ξ(θ), (D.12)

by means of

Ξ†(θ) =
1√
4π

∑
J

(
e−i(J−1/2)θ ie−i(J+1/2)θ

)
c†J . (D.13)

Introducing the chirality through J = ηJF + j, the chiral field operator Ξ†
η(θ) (D.1) can

be achieved. This shows that solely the azimuthal degree of freedom in momentum space
determines the density of particles i.e. δN̂ = dθΞ†(θ)Ξ(θ) = dθ n(θ), independent of the
radial degree of freedom.

In fact, a quasi-one-dimensional system emerges in the low-energy physics of the strong
Rashba coupling. The decoupling of the radial degree of freedom from angular one in the
momentum space (3.14) manifests this dimension reduction. The radial part of the eigen-
function constrains the electrons on a ring in momentum space and the only dynamical
degree of freedom is the azimuthal one. The fermion fields can be taken as a function of the
azimuthal angle merely. Therefore, we are going to bosonize the fermion field operators
which are defined in the translational momentum space k. Although it is inconvenient
conceptually, practically it allows us to derive the correlation functions which are defined
in terms of the discrete angular momentum.
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In the following, we introduce the quantities which are needed to reformulate the theory
in terms of boson fields. The angular momentum representation of the density operator
results from Eq. D.12

N̂ =

˛
dθ n(θ) =

˛
dθ

∑
m

eimθ

2π
nm, (D.14)

where

n(θ) = Ξ†(θ)Ξ(θ), (D.15)

nm =
∑
J

c†JcJ+m. (D.16)

The normal-ordered Fourier transform of the chiral density operator reads

nη(θ) = : Ψ†
η(θ)Ψη(θ) :

=
1

2π

∑
m 	=0

eimθ−a|m|/2 nmη +
1

2π
δN̂η, (D.17)

where a is a positive infinitesimal number to regularize the infinite sum. Note that the
scaler field operator (D.3) leads to Ξ†

η(θ)Ξη(θ) = Ψ†
η(θ)Ψη(θ). The chiral density nmη is

introduced in Eq. 6.9. The bosonic phase fields are defined by means of nmη like

ϕη(θ) = −i
∑
m>0

1

m
eimθ−am/2 nmη +

θ

2
δN̂η, (D.18)

ϕ†
η(θ) = i

∑
m>0

1

m
e−imθ−am/2 n−mη +

θ

2
δN̂η, (D.19)

and the Hermitian chiral bosonic phase fields φη = ϕ†
η + ϕη is

φη(θ) = −i
∑
m 	=0

1

m
eimθ−a|m|/2 nmη + θ δN̂η. (D.20)

The bosonic creation and annihilation operators are defined in terms of the chiral density
operators
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bm =

⎧⎪⎪⎨⎪⎪⎩
1√
m
nm+ m > 0,

1√
|m| nm− m < 0,

(D.21)

b†m =

⎧⎪⎪⎨⎪⎪⎩
1√
m
n−m+ m > 0,

1√
|m| n−m− m < 0.

(D.22)

The commutation relations of the bosonic operators are written in the following way

[bm, bm′ ] = [b†m, b
†
m′ ] = 0, (D.23)

[bm, b
†
m′ ] = δmm′ . (D.24)

The chiral density operators n±(θ) in terms of b†m and bm take the form

n+(θ) =
1

2π

∑
m>0

√
m

(
eimθbm + e−imθb†m

)
e−am/2 +

1

2π
δN̂+, (D.25)

n−(θ) =
1

2π

∑
m>0

√
m

(
eimθb†−m + e−imθb−m

)
e−am/2 +

1

2π
δN̂−. (D.26)

And also the chiral bosonic phase fields can be written in terms of the boson creation and
annihilation operators

ϕ+(θ) = −i
∑
m>0

1√
m

eimθ−am/2 bm +
θ

2
δN̂+, (D.27)

ϕ−(θ) = i
∑
m>0

1√
m

eimθ−am/2 b−m +
θ

2
δN̂−. (D.28)

The Hermitian chiral bosonic phase fields φη = ϕ†
η + ϕη reads

φ+(θ) = −i
∑
m>0

1√
m

(
eimθ bm − e−imθ b†m

)
e−am/2 + θ δN̂+, (D.29)

φ−(θ) = −i
∑
m>0

1√
m

(
eimθ b†−m − e−imθ b−m

)
e−am/2 + θ δN̂−. (D.30)
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Commutation relation of the phase fields can be derived which has the following form

[φ+(θ), φ+(θ
′)] =

∑
m>0

1

m

{
eim(θ−θ′) − e−im(θ−θ′)

}
e−am

= ln

(
1− e−i(θ−θ′)−a

1− ei(θ−θ′)−a

)
, (D.31)

where ln (1− x) = −∑∞
n=1 x

n/n is used in the evaluation of the sum. Similarly

[φ−(θ), φ−(θ′)] = ln

(
1− ei(θ−θ′)−a

1− e−i(θ−θ′)−a

)
. (D.32)

The dual fields are defined by the following linear combinations

Φ(θ) =
1√
4π

{
φ+(θ) + φ−(θ)

}
, (D.33)

Θ(θ) =
1√
4π

{
φ+(θ)− φ−(θ)

}
. (D.34)

D.1.2 Boson Form of Free Hamiltonian

We write down the free Hamiltonian in terms of the chiral field operators

H0 = vF
∑

j
η=±

ηj c†jηcjη (D.35)

= vF
∑
η=±

˛
dθΞ†

η(θ)
(
−i∂θ +

σz

2
− ηJF

)
Ξη(θ), (D.36)

where the translation by ηJF in the second line is due to the definition of the new parameter
J = ηJF + j. Substituting the spinor representation of the field operators yields

H0 = vF

˛
dθ

{
: Ψ†

−(θ) i∂θ Ψ−(θ) : − : Ψ†
+(θ) i∂θ Ψ+(θ) :

}
, (D.37)

where the normal ordering is introduced. The free Hamiltonian can also be represented in
terms of the boson operators

H0 = vF
∑
m 	=0

|m|b†mbm +
vF
2

∑
η

δN̂η

(
δN̂η + 1

)
, (D.38)
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where the contribution of m = 0, i.e. zero modes, is represented separately. The boson
form of H0 can be readily justified by computing the commutation relations of fermonic
Hamiltonian (D.35) with boson operators

[H0, bm] = −vF |m|bm, (D.39)

[H0, b
†
m] = vF |m|b†m, (D.40)

which have the sane algebra if H0 is replaced by its boson representation (D.38). The H0

can readily be presented by an equivalent form

H0 = πvF

˛
dθ

[
n2
+(θ) + n2

−(θ)
]
. (D.41)

It is more convenient to have H0 represented by Φ(θ) and its dual fields

H0 =
vF
2

˛
dθ

{
[∂θΘ(θ)]2 + [∂θΦ(θ)]

2
}
. (D.42)

The interacting Hamiltonian has a representation identical to the latter form of H0 but
with renormalized Fermi velocity and dual fields. This equivalency allows to compute
quantities of the interacting model using the non-interacting one.

D.1.3 Eigenstates of Free Hamiltonian

In the following, we construct the ground states of H0. Consider | �N〉 defined by

| �N〉 = |δN+, δN−〉 = C
δN+

+ C
δN−
− |0〉, (D.43)

and

CδNη
η =

⎧⎪⎨⎪⎩
c†δNηη

c†δNη−1η · · · c†1η if δNη > 0,

1 if δNη = 0,

cδNη+1η cδNη+2η · · · c0η if δNη < 0,

(D.44)

where we have adopted the convention of Ref. [104]. The null state |0〉 is the Fermi sea
where all the states are occupied up to Fermi points ±JF which is set by j = 0, note that
J = ηJF + j. If δNη > 0, then δNη electrons are added to the branch η. Otherwise, if
δNη < 0, then |δNη| electrons are reduced from the corresponding branch. Since | �N〉 has
no particle-hole excitation, it is a vacuum for the boson operator bm| �N〉 = 0. In principle,
the states with non-zero δNη are excited states due to the contribution of zero modes

H0| �N〉 = vF
2

∑
η

δNη (δNη + 1) | �N〉. (D.45)
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D.1.4 Klein Factors

The boson operators maintain the number of particles in each branch. Formally, an ex-
tra operator is needed to connect the sections of Hilbert space with different number of
particles. Consider a state with extra δNη particles on branch η without any particle-hole
excitation bm|δNη〉 = 0. The Klein factors F †

η and Fη add one particle to the lowest energy
state or remove one particle from the highest occupied state

F †
η |δNη〉 = |δNη + 1〉, (D.46)

Fη|δNη〉 = |δNη − 1〉. (D.47)

They are unitary operators

F †
ηFη = FηF

†
η = 1, (D.48)

and commute with the boson operators

[F †
η , bm] = [F †

η , b
†
m] = [Fη, bm] = [Fη, b

†
m] = 0. (D.49)

The Klein factors satisfy the following anticommutation relations

{F †
η , F

†
η′} = {Fη, Fη′} = 0, for η �= η′, (D.50)

{F †
η , Fη′} = 2δηη′. (D.51)

We do not explore the subtleties of Klein factors in details as they will not be of signif-
icance in our treatment for bosonizing the interacting theory. The Klein factors appear
in the definition of the bosonized fermion fields which are exploited in the calculation of
correlation functions. In the absence of backward scattering and any other impurities in
our theory, the particle number in each branch is conserved and the Klein factors can be
discarded safely.

D.1.5 Bosonized Fermion Fields

The fermion field operators are defined in terms of boson fields as

Ψ+(θ) =
1√
2πa

F+ eiφ+

=
1√
2πa

F+ ei
√
π[Φ(θ)+Θ(θ)], (D.52)

and

Ψ−(θ) =
1√
2πa

F− e−iφ−

=
1√
2πa

F− e−i
√
π[Φ(θ)−Θ(θ)]. (D.53)
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The adjoint operators take the form

Ψ†
+(θ) =

1√
2πa

F †
+ e−iφ+

=
1√
2πa

F †
+ e−i

√
π[Φ(θ)+Θ(θ)], (D.54)

and

Ψ†
−(θ) =

1√
2πa

F †
− eiφ−

=
1√
2πa

F †
− ei

√
π[Φ(θ)−Θ(θ)]. (D.55)

The Klein factors F± are necessary to ensure the anticommutation relations of the fermion
fields. The limit a → 0 is implicit in the definition of the field operators.

D.1.6 Correlation Functions in Free System

In this subsection, we compute a generic correlation function of free boson fields which
later will be used in the calculation of the correlation functions in the interacting theory.
Consider the following expectation value in the bosonic vacuum

CABην(x, x
′, y, y′) = 〈 �N |ÔAB,ην(x, y) Ô

†
AB,ην(x

′, y′)| �N〉, (D.56)

where ÔAB,ην is defined explicitly in terms of the dual fields (D.33) and (D.34)

ÔAB,ην = exp
{
− i

√
π A [ηΦ(x) + νΦ(y)]− i

√
π B [Θ(x) + Θ(y)]

}
= e−arg(x,y). (D.57)

A and B are arbitrary real constants and η, ν = ± are introduced for the later convenience.
arg(x, y) has been introduced as an abbreviation of the argument. The Klein factors are
dropped from very beginning as in the absence of the backward scattering, the sector of
Hilbert space with different number of particles cannot be connected via boson fields. We
construct the correlation function with dual fields Φ and Θ since the correlation functions
of the interacting fields can be mapped to the dual free fields. We rewrite the field operators
in terms of the chiral fields as working with them are more convenient. We find then

A [ηΦ(x) + νΦ(y)]− B [Θ(x) + Θ(y)] =
1√
π

{∑
k=±

Ληk φk(x) +
∑
k=±

Λνk φk(y)
}
, (D.58)

where we have defined

Λην =
ηA+ νB

2
. (D.59)
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The following identities for two arbitrary operators P and Q

eP eQ = eP+Q e(1/2)[P,Q], (D.60)

〈e−iP 〉 = e−(1/2)〈P 2〉, (D.61)

is helpful in the calculation of the correlation function. The commutation relations of the
chiral boson fields are demonstrated in Eqs. D.31 and D.32. We pursue to calculate the
expectation values of the fields. We need to know the expectation value of the following
combination in the boson vacuums

[arg(x, y)− arg(x′, y′)]2 = −
{∑

k=±
Ληk [φk(x)− φk(x

′)] +
∑
k=±

Λνk [φk(y)− φk(y
′)]

}2

. (D.62)

Among many terms, we present the ultimate form of some typical terms using the definition
of free bosonic fields in Eqs. D.29 and D.30.

〈 �N |φ2
+(x)| �N〉 = −

∑
m>0
m′>0

e−a(m+m′)/2
√
mm′ 〈 �N |

(
eimxbm − e−imxb†m

) (
eim

′xbm′ − e−im′xb†m′

)
| �N〉+ x2δN2

+

=
∑
m

e−am

m
+ x2δN2

+

= − ln (1− e−a) + x2δN2
+, (D.63)

where the boson vacuum | �N〉 has been defined in Eq. D.43. The next example is

〈 �N |φ+(x)φ+(x
′)| �N〉 =

∑
m

1

m
eim(x−x′)−am + x x′δN2

+

= − ln (1− ei(x−x′)−a) + x x′δN2
+, (D.64)

and similarly

〈 �N |φ2
−(x)| �N〉 = − ln (1− e−a) + x2δN2

−, (D.65)

〈 �N |φ−(x)φ−(x′)| �N〉 = − ln (1− ei(x
′−x)−a) + x x′δN2

−. (D.66)
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Collecting together all the terms, we obtain

exp

(
1

2
〈[arg(x, y)− arg(x′, y′)]2〉

)
=

(
1− e−a

)2(Λ2
η++Λ2

η−)

× exp

{
(
∑
k=±

Λ2
ηkδN

2
k )(x− x′)2 + (

∑
k=±

Λ2
νkδN

2
k )(y − y′)2 + 2(

∑
k=±

ΛηkΛνkδN
2
k )(x− x′)(y − y′)

}

×
{(

1− ei(x−x′)−a
)(

1− e−i(x−x′)−a
)(

1− ei(y−y′)−a
)(

1− e−i(y−y′)−a
)}−(Λ2

η++Λ2
η−)/2

×
{(

1− ei(x−y′)−a
) (

1− ei(y
′−x)−a

) (
1− ei(x

′−y)−a
) (

1− ei(y−x′)−a
)

(1− ei(x−y)−a) (1− ei(y−x)−a) (1− ei(x′−y′)−a) (1− ei(y′−x′)−a)

}−(Λη+Λν++Λη−Λν−)/2

. (D.67)

D.2 System of Interacting Electrons

In this section, we proceed to consider the boson form of the interacting model. First, we
construct the operator identities required here. Next, we compute response functions of
the system and correlation of interacting fermion fields.

D.2.1 Operators Identities of Interacting Model

The Full Hamiltonian is defined in terms of the gauged density operators (6.15). Therefore,
we require to construct the boson operators by means of the gauged density operators. The
Fourier transform of the gauged density operator can be readily obtained

ñη(θ) =
1

2π

∑
m 	=0

eimθ−a|m|/2 ñmη +
1

π
δN̂η,

=
1

2π

∑
m 	=0

eim(θ+ηπ/2)−a|m|/2 nmη +
1

π
δN̂η,

= nη(θ + ηπ/2), (D.68)

which is equal to the bare density (D.17) up to a transformation of the argument θ →
θ+ ηπ/2. In fact, that is a rotation in momentum space. The boson operators in terms of
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ñmη take the form

b̃m =

⎧⎪⎪⎨⎪⎪⎩
1√
m
ñm+ m > 0,

1√
|m| ñm− m < 0,

(D.69)

b̃†m =

⎧⎪⎪⎨⎪⎪⎩
1√
m
ñ−m+ m > 0,

1√
|m| ñ−m− m < 0.

(D.70)

The commutation relations of the gauged bosonic operators reads

[b̃m, b̃m′ ] = [b̃†m, b̃
†
m′ ] = 0, (D.71)

[b̃m, b̃
†
m′ ] = δmm′ , (D.72)

where is the same as the bare boson operators. ñη(θ) in terms of b̃†m and b̃m takes the form

ñ+(θ) =
1

2π

∑
m>0

√
m

(
eimθb̃m + e−imθb̃†m

)
e−am/2 +

1

2π
δN̂+, (D.73)

ñ−(θ) =
1

2π

∑
m>0

√
m

(
eimθb̃†−m + e−imθb̃−m

)
e−am/2 +

1

2π
δN̂−. (D.74)

The gauged bosonic operator lead to the transformed bosonic phase fields

ϕ̃η(θ) = ϕη(θ + ηπ/2), (D.75)

ϕ̃†
η(θ) = ϕ†

η(θ + ηπ/2), (D.76)

φ̃η(θ) = ϕ̃†
η(θ) + ϕ̃η(θ) = φη(θ + ηπ/2). (D.77)

The relations between the gauged and the bare dual fields are not similar to the phase
fields a sole rotation

Φ̃(θ) =
1

2

{
Φ(θ + π/2) + Φ(θ − π/2) + Θ(θ + π/2)−Θ(θ − π/2)

}
, (D.78)

Θ̃(θ) =
1

2

{
Φ(θ + π/2)− Φ(θ − π/2) + Θ(θ + π/2) + Θ(θ − π/2)

}
. (D.79)
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D.2.2 Density-Density Response Function

The density-density response function of Luttinger-Tomonaga model can be computed
exactly through solving the equation of motion for density operators. The chiral density-
density response function is defined by (� = 1)

Πηη′(m,ω) =
1

2πi

ˆ ∞

0

dt eiωt 〈[nη(m, t), nη′(−m, 0)]〉

=

ˆ ∞

−∞
dt eiωt Πηη′(m, t), (D.80)

where θ̂(t) is the heavy-side theta function, and

Πηη′(m, t) =
θ̂(t)

2πi
〈[nη(m, t), nη′(−m, 0)]〉 .

= ei(η
′−η)mπ/2 θ̂(t)

2πi
〈[ñη(m, t), ñη′(−m, 0)]〉 , (D.81)

where in the second line, the gauged density operators are substituted. By writing down
an equation for ∂tΠηη′(m, t) through ∂t ñη(m, t) = i [H, ñη(m, t)] and taking the inverse
Fourier transform to frequency space, the response function can be solved exactly [99].
The final results have the form

Π++(m,ω) =
1

2π

m
{
ω + (vF + g/2π)m

}
ω2 −m2u2

, (D.82)

Π−+(m,ω) = −(−1)m

2π

m2g/2π

ω2 −m2u2
,

Π+−(m,ω) = −(−1)m

2π

m2g/2π

ω2 −m2u2
, (D.83)

Π−−(m,ω) = − 1

2π

m
{
ω − (vF + g/2π)m

}
ω2 −m2u2

, (D.84)

where u = vF
√
1 + 2g̃ is the renormalized Fermi velocity. Due to the phase-dependent

interaction matrix elements of particles with opposite chirality, the corresponding density-
density response function also acquires a phase factor. The total density-density response
read

Π(m,ω) =
1

π

m2
{
vF + (g/2π) [1− (−1)m]

}
ω2 −m2u2

, (D.85)

which shows a parity effect. The parity effect appears if g �= 0 although for |g| � vF , it
would be negligible in the total response function.
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D.2.3 Correlation Functions in Interacting Model

The full Hamiltonian (6.15) has the same form as the free system in terms of the dual fields
(D.42) up to the renormalization of fields and parameters. Therefore, it is straightforward
to exploit the correlation functions of the free model to carry out the correlation functions
of the interacting model. Representing the full Hamiltonian by the gauged dual fields, in
Eqs. D.78 and D.79, yields

H =
u

2

˛
dθ

{ 1

K

[
∂θΦ̃(θ)

]2
+K

[
∂θΘ̃(θ)

]2 }
, (D.86)

where u = vF
√
1 + 2g̃ and K = vF/u are renormalized Fermi velocity and the Luttinger

parameter, respectively. The renormalized dual fields

Φ =
Φ̃√
K

, (D.87)

Θ =
√
K Θ̃, (D.88)

transform H to the same analytical form as H0

H =
u

2

˛
dθ

{ [
∂θΦ(θ)

]2
+

[
∂θΘ(θ)

]2 }
. (D.89)

In order to inspect the correlation of electrons in the interacting system, it is required to
represent the bare operators by means of the fields of the interacting model. The boson
fields of the noninteracting system in term of Φ and Θ have the following forms

Φ(x) =
1

2

{√
K

[
Φ(x− π

2
) + Φ(x+

π

2
)
]
+

1√
K

[
Θ(x− π

2
)−Θ(x+

π

2
)
]}

,(D.90)

Θ(x) =
1

2

{√
K

[
Φ(x− π

2
)− Φ(x+

π

2
)
]
+

1√
K

[
Θ(x− π

2
) + Θ(x+

π

2
)
]}

.(D.91)

Here, we summarize the procedure by which the correlation functions will be calculated:

I) In the noninteracting system, the correlation functions of an arbitrary linear combi-
nation of boson fields 〈Ô†Ô〉, where

Ô† =
n∑

i=1

(AiΦ(xi) + BiΘ(yi)) , (D.92)

can be calculated straightforwardly.

II) Correlation functions of the interacting system in terms of Φ and Θ have the same
form as the corresponding correlation functions of the noninteracting system while u
is replaced by vF .
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III) We are interested in the correlation functions of the bare boson fields in the ground
state of the interacting system. Hence, we use the relations in Eqs. D.90 and D.91 to
rewrite the correlation functions since O acts on the ground state of the interacting
system.

As an example, we calculate
〈
Ψ+(θ, t)Ψ

†
+(0, 0)

〉
in the boson representation for both

ground states of noninteracting 〈· · · 〉0 and interacting 〈· · · 〉int system. The boson forms of
the fermion field operators in Eqs. D.52 and D.53 yield

Ψ+(θ, t)Ψ
†
+(0, 0) =

1

2πa
ei

√
π[Φ(θ, t)+Θ(θ, t)] e−i

√
π[Φ(0, 0)+Θ(0, 0)]. (D.93)

The Klein factors are dismissed since the number of particles in each branch is conserved.
We have φ±(θ, t) = φ±(θ ∓ vF t) due to the linear dispersion. Using identities eA eB =

eA+B e
1
2
[A,B] and

〈
eA

〉
= e

1
2
〈A2〉, we find〈

Ψ+(θ, t)Ψ
†
+(0, 0)

〉
0
=

(
1− ei(θ−vF t)−a

)−1
, (D.94)

where in the calculation, we have engaged e−a � 1−a that cancels the regularization factor
in the denominator. For interacting ground state, we use the relations given in Eq. D.91
and Eq. D.90 in Eq. D.93 which provide〈
Ψ+(θ, t)Ψ

†
+(0, 0)

〉
int

∝
(
1− ei(θ−ut)−a

)−(
√
K+1/

√
K)2/4 (

1− e−i(θ−ut)−a
)−(

√
K−1/

√
K)2/4

. (D.95)

In the noninteracting limit K = 1, the results coincide obviously.

D.2.4 Correlation of Kramers Pairs

We calculate the static correlation function

P(θ0) =
∑
j, j′

ei(j−j′)θ0 〈c†j+c†−j−c−j′−cj′+〉int

=

˛
dθdθ′〈Ψ†

+(θ)Ψ
†
−(θ + θ0)Ψ−(θ

′ + θ0)Ψ+(θ
′) 〉int, (D.96)

which reveals the correlation of Kramers pairs if θ0 = π, see the discussion in section 6.1.4.
In the boson form, first, we calculate the following generic correlation function〈
Ψ†

+(x)Ψ
†
−(y)Ψ−(y

′)Ψ+(x
′)
〉

int
∝ P(X, Y ) =

〈
e−iφ+(x) eiφ−(y) e−iφ−(y′) eiφ+(x′)

〉
int

, (D.97)

where X = (x, x′) and Y = (y, y′) and x, y ∈ [0, 2π). With the aid of eA eB = eA+B e
1
2
[A,B],

we obtain

P(X, Y ) = 〈 �N | exp
{
− iφ+(x) + iφ−(y)− iφ−(y′) + iφ+(x

′)
}
| �N〉int

× exp
{1

2
[φ+(x), φ+(x

′)] +
1

2
[φ−(y), φ−(y′)]

}
, (D.98)
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where the bosonic vacuum defined in Eq. D.43 is used. The linear combination of the
fields in the first line should be written in terms of the interacting bosonic fields by means
of the relations in Eqs. D.33, D.34, D.90 and D.91, which yield

1√
π

{
φ+(x)− φ+(y)

}
=

√
K

{
Φ(x− π

2
)− Φ(y +

π

2
)
}
+

1√
K

{
Θ(x− π

2
) + Θ(y +

π

2
)
}
. (D.99)

Transforming two other fields in the exponent in the same way, we arrive at the form
which makes it possible to exploit the correlation function of the free model derived in sec.
D.1.6 according to the recipe given in the preceding section. Adjusting the coefficients and
chirality of the fields in Eq. D.67, we find the result. Before writing down the final form
of P(X, Y ), we calculate the term associated with the commutation relations of the field
(D.98). The commutation relations in Eqs. D.31 and D.32 give

exp
{1

2
[φ+(x), φ+(x

′)] +
1

2
[φ−(y), φ−(y′)]

}
=

[
(1− e−i(x−x′)−a)(1− ei(y−y′)−a)

(1− ei(x−x′)−a)(1− e−i(y−y′)−a)

] 1
2

. (D.100)

Collecting all the terms and setting δN+ = −δN− = δN � 0 in the boson vacuum defined
in Eq. D.43, we obtain

P(X, Y ) = aK+1/K exp

{
− δN2

4

{
K [(x− x′) + (y − y′)]2 +

1

K
[(x− x′)− (y − y′)]2

}}

×
[
(1− ei(x−x′)−a)(1− e−i(y−y′)−a)

]− (K+1)2

4K

×
[
(1− e−i(x−x′)−a)(1− ei(y−y′)−a)

]− (K−1)2

4K

×
[
(1 + ei(x−y′)−a)(1 + e−i(x−y′)−a)(1 + ei(x

′−y)−a)(1 + e−i(x′−y)−a)

(1 + ei(x−y)−a)(1 + e−i(x−y)−a)(1 + ei(x′−y′)−a)(1 + e−i(x′−y′)−a)

]K2−1
4K

. (D.101)

Note that in the fourth line, due to the gauged boson fields, cf. Eqs. D.90 and D.91, the
sign of the exponential terms are switched. We set y = x+ θ0 and y′ = x′ + θ0 in order to
obtain the correlation function in Eq. D.96, which yield

P(x, x′; θ0) ∝ e−K[δN(x−x′)]2 [cosh a− cos (x− x′)]−
K2+1
2K

×
{
[cosh a+ cos (x− x′ − θ0)] [cosh a+ cos (x− x′ + θ0)]

(cosh a+ cos θ0)
2

}K2−1
4K

.(D.102)

The correlation function is rotational invariant P(x, x′; θ0) ≡ P(x−x′; θ0). For correlation
of Kramers pairs θ0 = π, we find

P(x− x′; π) ∝ e−K[δN(x−x′)]2 [cosh a− cos (x− x′)]−
1
K [cosh a− 1]−

K2−1
2K . (D.103)
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The magnetized bosonic vacuum | �N〉int, such as δN+ = −δN− = δN �= 0 and hence
〈M̂〉 �= 0, suppresses the pair correlation function by a Gaussian factor. P(θ0) in Eq. D.96
can be obtained through

P(θ0) ∝
˛

dθP(θ; θ0). (D.104)

P(θ0) is illustrated in Fig. 6.2 for several K and in different boson vacuums.

D.2.5 Density-Density Correlations

In this subsection, we compute the correlation of density fluctuations in different branches.
In principle, density-density correlation functions can reveal information about the sponta-
neous magnetization in the system. In fact, we are interested to know how the fluctuations
of magnetization density are correlated. The magnetization density M̂ =

¸
dθM(θ) has

the form

M(θ) =
1

2π

∑
J,m

(J −m) eimθ c†JcJ−m

=
1

2π

∑
m

eimθ Jm, (D.105)

where the chirality has been discarded in the representation and J + 1/2, m ∈ Z. Infor-
mation tied with 〈M(θ, t)M†(θ, 0)〉 would be interesting. But in the following, we follow
another path. The magnetization emerges if an asymmetry in the population of the left
and right moving particles occurs. Therefore, we define δnm = nm+ − nm−, which is a
measure of the asymmetry, and investigate

〈δnm δn†
m〉 =

˛
dθ dθ′

〈
δn(θ) δn†(θ′)

〉
e−im(θ−θ′), (D.106)

where nη(θ) = Ψ†
η(θ)Ψη(θ), see Eq. D.17. We need to calculate〈

Ψ†
+(x)Ψ+(x)Ψ

†
+(y)Ψ+(y)

〉
int

∝ D++(x, y), (D.107)〈
Ψ†

+(x)Ψ+(x)Ψ
†
−(y)Ψ−(y)

〉
int

∝ D+−(x, y). (D.108)

Calculating the correlation functions in the same way as presented in the preceding sub-
section, it turns out that they are c-number. The same is true for the following correlation
function 〈

Ψ†
+(x)Ψ−(x)Ψ

†
−(y)Ψ+(y)

〉
int

∝ const., (D.109)
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which reveals information about the correlation of particle-hole excitations across the Fermi
sea ˛

dθΨ†
+(θ)Ψ−(θ) =

∑
j

c†j+cj− ≡
∑
J>0

c†JcJ−2JF
. (D.110)

The system is unable to correlate the population in different branches due to the absence
of the backward scattering which expectable in the regime of weak interactions.
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Appendix E

Richardson Pairing Model

In this appendix, we review briefly the Richardson pairing model [89, 31] and write down
its exact eigenstates. Consider the following Hamiltonian

HR = HR
0 +HR

p

=
∑
f

2εfN̂f − g
∑
f, f ′

b†
fbf ′ , (E.1)

where εf is an arbitrary function of the discrete quantum number f and

N̂f =
1

2
(a†f+af+ + a†f−af−), (E.2)

bf = af−af+. (E.3)

a†f+ and af+ are fermion creation and annihilation operators, respectively, which indicate
b2
f = 0. The quantum numbers (f, σ) and (f, −σ) label time-reversed partners for σ = ±1.

(f, σ) ∈ S that S is a finite set of states, say, in the vicinity of Fermi surface. The
commutation relations of the operators read

[bf , N̂f ′ ] = δff ′bf , (E.4)

[bf , b
†
f ′ ] = δff ′(1− 2N̂f ′). (E.5)

bf annihilates any state |ψ〉 if the levels f± are empty or singly occupied. Therefore, the
singly occupied levels contributes to the energy solely through HR

0 , and are blocked for
the pairing term HR

p . The number of singly occupied levels ν is called seniority. The total
number of particles N and number of pairs P make the relation N = 2P + ν. The pair
degeneracy Ω is defined as the number of different values of f in S. Here, we represent the
solutions have been derived by Richardson [89] for two specific models which are relevant
to our system: I) The flat-band pairing model εf = ε = constant and II) a model with
εf �= constant. The number of particles N in the both models is taken to be an even number.
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I) For P pairs in a flat-band pairing model, the eigenstate with ν = 0 is

|ψFB〉 =
ψFB

√
P !

∑
f1, f2,··· ,fP

b†
f1
b†
f2
· · · b†

fP
|0〉, (E.6)

where the sum is over distinct fi. The ground state energy is EFB
0 = 2Pε−gP (Ω−P+

1) and corresponding coefficient ψFB
0 = constant. The excited states are constructed

by breaking pairs and increasing ν. The energy of nth excited states, ν = 2n for
n = 0, · · · , P , and the corresponding coefficient are

EFB
n = 2Pε− g(P − n)(Ω− P − n+ 1), (E.7)

ψFB
n =

√
(Ω− P − n)!

(Ω− 2n)!
. (E.8)

II) For pairing model with arbitrary εf , the exact eigenstates for P pairs and ν = 0 has
the form

|ψR〉 =
P∏

k=1

B†
k|0〉, (E.9)

B†
k =

Ω∑
f=1

1

2εf − Ek

b†
f , (E.10)

where the pair energies Ek are the solutions of P non-linear equations which are
called Richardson equations

1 + 2g
P∑

j 	=k

1

Ej − Ek

− g
Ω∑

f=1

1

2εf − Ek

= 0. (E.11)

The eigenenergies HR|ψR〉 = ER|ψR〉 is simply ER =
∑P

k=1 Ek [27].
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