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Abstract

In this thesis, we develop and apply a toolbox of versatile theoretical methods of cal-

culating structural, and short-time and long-time dynamic properties of three classes of

industrially important dispersions. The first one are suspensions of hydrodynamically

structured colloidal particles, and here most notably non-ionic microgels. The second class

are dispersions of submicron sized charge-stabilized colloidal globules, and the third one

are globular protein solutions with competing short-range attraction (SA) and long-range

repulsion (LR). The results for the transport, structure, and thermodynamic properties of

charge-stabilized colloids are used as input in our realistic macroscopic diffusion-advection

modeling of the membrane cross-flow ultrafiltration of silica particles dispersions. The

thesis bridges thus the gap from the theoretical exploration of intra-particle properties

such as solvent permeability, particle softness, and surface charge, to the calculation of

transport, structural, and thermodynamic properties of concentrated dispersions, and to

the modeling of a technologically important filtration process. The accuracy of our toolbox

methods is assessed by the comprehensive comparison with experimental measurements

of, and simulation results for static and dynamic properties. The considered dynamic

properties include short- and long-time self-diffusion and sedimentation coefficients, the

wavenumber-dependent diffusion function determined routinely in dynamic scattering ex-

periments, and the zero- and high-frequency shear viscosities.

In particular, we provide various analytic transport coefficient expressions for rigid perme-

able particles that can be readily used for the analysis of dynamic scattering and rheology

data. The toolbox methods for the calculation of transport properties of concentrated dis-

persions of globular colloidal particles with internal hydrodynamic structure are based on

the hydrodynamic radius model (HRM) wherein the internal particle structure is mapped

on an effective hydrodynamic radius for unchanged direct interactions. The good perfor-

mance of the HRM is demonstrated by comparison with dynamic light scattering experi-

ments on concentrated suspensions of solvent permeable non-ionic microgels. Furthermore,

we quantify the effect of particle softness and permeability on the dynamics of ionic mi-

crogel suspensions, and we characterize the particle interactions and microstructure in

polydisperse amphoteric microgel systems in the zwitterionic regime.

In addition, we thoroughly investigate the influence of transient clustering on the statics

and dynamics of globular particles dispersions with competing short-range attractive (SA)

and long-range repulsive (LR) interactions. SALR systems such as low-salinity protein so-

lutions have attracted considerable interest over the past years, due to the observation of
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a low-wavenumber peak of the static structure factor indicative of particle clustering. In

this thesis, we present the first systematic theoretical study of the effect of clustering on

short-time transport properties. Using our analytic toolbox methods, we systematically

explore two classes of SALR models, in conjunction with computer simulations and exper-

iments on Lysozyme protein solutions. Our results show that the low-wavenumber peak

is present also in the hydrodynamic function characterizing the short-time dynamics, in

good qualitative agreement with neutron spin echo measurements. The subtle interplay of

SA and LR is highlighted by an unusual non-monotonic interaction strength dependence

of the mean sedimentation velocity.

Finally, we describe theoretically the membrane ultrafiltration (UF) process of low-salinity

charge-stabilized particles dispersions. The importance of accurate thermodynamic and

transport properties as salient inputs to the macroscopic modeling is demonstrated by the

excellent agreement of our theoretical model predictions with UF measurements of the

permeate flow for low-salinity silica suspensions.
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Zusammenfassung

In der vorliegenden Dissertation befassen wir uns mit der Entwicklung und Anwendung

einer vielseitig anwendbaren Sammlung von theoretischen Methoden (”Toolbox”) zur

Berechnung von Kurzzeit- und Langzeittransportkoeffizienten sowie struktureller Größen

von drei Klassen industriell relevanter Dispersionen. Die erste Klasse sind Suspensio-

nen kolloidaler Teilchen mit innerer hydrodynamischer Struktur und hier insbesondere

nicht-ionische Mikrogele. Die zweite Klasse umfasst ladungsstabilisierte Dispersionen

sphärischer kolloidaler Teilchen und die dritte Lösungen sphärischer Proteine mit vergleich-

bar starker kurzreichweitiger Attraktion und langreichweitiger Repulsion. Die mit unserer

analytischen Toolbox gewonnenen Ergebnisse über das Transportverhalten, Mikrostruk-

tur und thermodynamischen Eigenschaften dieser Systeme sind wichtiger Input für un-

sere realistische Modellierung der Querfluss-Ultrafiltration von wässrigen Suspensionen

geladener Silicateilchen. Diese Modellierung basiert auf einer makroskopischen Diffusions-

Advektions-Beschreibung von Teilchen und dispergierender Flüssigkeit. Die Dissertation

schlägt somit eine Brücke von der grundlegenden theoretischen Beschreibung intrinsischer

Teilcheneigenschaften, wie z.B. der Lösungsmittelpermeabilität, Oberflächenladung und

Elastizität, zu der Berechnung von Transport-, Struktur- und thermodynamischen Größen

konzentrierter Dispersionen von Teilchen und darüber hinaus zu der Modellierung eines

technologisch wichtigen Filtrationsprozesses. Die Genauigkeit der verwendeten Toolbox-

Methoden wird geklärt durch umfassende Vergleiche mit Simulationen und experimentellen

Ergebnissen statischer und dynamischer Messgrößen. Die dynamischen Größen umfassen

dabei Kurzzeit- und Langzeit-Selbstdiffusionskoeffizienten, Sedimentationsgeschwindigkei-

ten, routinemäßig in dynamischen Lichtstreuexperimenten bestimmten wellenzahlabhän-

gigen Diffusionsfunktionen sowie Viskositäten unter Hochfrequenz- und Nullfrequenzbe-

dingungen.

Für Suspensionen harter permeabler Teilchen leiten wir analytische Ausdrücke für di-

verse Transportkoeffizienten her, welche für die Analyse dynamischer Lichtstreu- sowie

rheologischer Messungen vorteilhaft genutzt werden können. Unsere Toolbox-Methoden

zur Berechnung der Transporteigenschaften konzentrierter Dispersionen hydrodynamisch

strukturierter Teilchen basieren auf dem hydrodynamischen Radius Modell (HRM). In

diesem Modell wird die innere hydrodynamische Struktur eines Teilchens durch einen ef-

fektiven hydrodynamischen Radius beschrieben, wobei die direkten Wechselwirkungen un-

verändert bleiben. Wir demonstrieren die Leistungsfähigkeit des HRM durch den Vergleich

unserer theoretischen Ergebnisse mit dynamischen Lichtstreumessungen an konzentrierten,
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nicht-ionischen und permeablen Mikrogel Suspensionen. Des Weiteren quantifizieren wir

den Einfluss der Elastizität und Permeabilität ionischer Mikrogelteilchen auf die System-

dynamik. Für Suspensionen polydisperser amphoterischer Mikrogele im zwitterionischen

Bereich berechnen wir aus den Teilchenwechselwirkungen die resultierende Mikrostruktur.

Weiterhin analysieren wir für Dispersionen sphärischer Teilchen mit vergleichbarer kurz-

reichweitiger attraktiver (SA) und langreichweitiger repulsiver (LR) Wechselwirkung den

Einfluss transienter Teilchencluster auf die statischen und dynamischen Eigenschaften des

Systems. Vor allem die Struktur und das Phasenverhalten von SALR Systemen wurden

in den vergangenen Jahren eingehend untersucht. Insbesondere findet man für diese Sys-

teme einen Strukturfaktorpeak bei niedrigen Wellenzahlen, welcher als eine Signatur für

die Existenz (transienter) Cluster interpretiert wird. Wir beschreiben in der vorliegenden

Dissertation die erste systematische theoretische Analyse des Einflusses transienter Clus-

terbildung auf Kurzzeittransporteigenschaften. Unter Verwendung unserer analytischen

Toolbox-Methoden und mittels des Vergleiches mit Computersimulationen und Experi-

menten untersuchen wir eingehend zwei Klassen von SALR Systemen. Wir zeigen in guter

Übereinstimmung mit Neutronenspinecho Messungen, dass ein Peak bei niedrigen Wellen-

zahlen auch in der die Kurzzeitdiffusion charakterisierenden hydrodynamischen Funktion

auftritt. Das subtile Wechselspiel von SA und LR manifestiert sich weiterhin in einer

überraschend nicht-monotonen Abhängigkeit der mittleren Sedimentationsgeschwindigkeit

von dem globalen Wechselwirkungsstärkeparameter.

Abschließend diskutieren wir unsere theoretische Beschreibung des Membran-Ultrafiltra-

tionsprozesses (UF) angewandt auf Suspensionen ladungsstabilisierter Teilchen mit nie-

drigem Salzgehalt. Durch den Vergleich unserer theoretischen Ergebnisse für den Per-

meatfluss mit entsprechenden UF Messungen an Silicateilchen Suspensionen zeigen wir,

dass für eine quantitative makroskopische Modellierung präzise analytische Ausdrücke für

thermodynamische- und Transportgrößen von großer Bedeutung sind.
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1. Introduction

Soft matter systems are ubiquitously found in nature and daily-life products. Examples are

blood, ink, adhesives, cosmetics, dairy products, paints, polymer melts, foams, micelles,

emulsions, microemulsions, soft glasses, proteins, cells and aerosols. An important subclass

of soft matter systems are colloidal dispersions, consisting of mesoscopically sized particles

of linear extension 1 nm − 1µm dispersed in a low-molecular solvent such as water or an

organic fluid. This definition of colloids includes in particular protein solutions. On the

spatial resolution & 1 nm, the solvent can be described as a continuum. For particle radii

. 1µm and a lower-viscosity solvent such as water, Brownian particle motion is strong

and sedimentation is accordingly weak. While the term colloid was originally used for

suspensions of mesoscopic rigid particles, nowadays a broad class of particles of different

shapes, stiffness and intra-particle structures such as rods and micelles, are referred to

as colloids, and studied using a variety of experimental techniques and theoretical and

computer simulation methods [1].

An important feature of colloidal systems is that particles of special size, shape, and

electric charge can be readily synthesized. Furthermore, the interaction potentials can be

largely varied in range and strength, e.g. by changing the solvent, or by using additives

such as small depletants or salt ions. In certain charge-stabilized dispersions, particle

charge inversion can be induced by the addition of multivalent ions, or by a temperature

change in case of amphiphilic particles. This makes colloids well suited for the design of

macroscopic materials of desired properties, and for medical applications such as targeted

drug delivery in the case of microgels. The structure and dynamics of bigger colloidal

particles can be studied using microscopy, and that of smaller ones by light scattering

techniques, allowing for gaining detailed insight into the system behavior.

In the past few years, the study of sophisticated bio-particle systems has shifted into the

focus of Soft Matter science [2]. Interestingly, theoretical methods designed for traditional

colloidal systems are meanwhile successfully applied to more complicated nanometer-sized

particles such as globular proteins and monoclonal antibodies that can have anisotropic

interactions [3, 4]. Regarding the dynamics of colloids, not only their direct and hydro-

dynamic interactions (HIs), but also the internal hydrodynamic particle structure are of

importance. The development and validation of calculation methods for static and dy-

namic properties of biological soft matter systems are important tasks. These methods

can contribute to a better understanding of biological processes such as the formation of

protein aggregates, and its effect on the Alzheimer and Parkinson diseases [5]. Moreover,
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1. Introduction

the theoretical modeling of industrial soft matter processes necessitates accurate transport

properties expressions. An example in case where biological systems are involved is the

filtration of protein suspension in medical industry [6, 7].

In this thesis, we provide and evaluate a toolbox of easy-to-apply analytic methods for

the calculation of static and dynamic properties of colloidal systems of globular particles,

including globular protein solutions and microgel suspensions. The high accuracy of the

employed theoretical methods is validated by a comprehensive comparison with computer

simulation results, and with measurements of static and dynamic properties. In contrast

to expensive computer simulations, our methods allow for extensive parameter variation

studies, providing thus a convenient tool for the analysis of experimental data. The pre-

sented methods are applied to a variety of experimental systems spanning a broad size

and complexity range. First, neutral microgel particles suspensions are studied where

both hard and soft steric interactions are present. Second, we study the structure and

dynamics of dispersions of particles with surface or internal charges, namely charged silica

particles, and ionic and amphoteric microgel systems, respectively. In addition, we success-

fully demonstrate the applicability of our calculation methods to low-salinity Lysozyme

protein solutions, by focusing here on the structural and dynamic effects arising from the

competition of short-range attractive and long-range repulsive (SALR) interaction forces.

In the thesis, we bridge the gap from individual intra-particle properties such as softness,

fluid permeability, and charge to collective behavior, namely the pair-structure and vari-

ous transport properties, and furthermore to an important technological process, namely

the cross-flow ultrafiltration of charged-particles dispersions. In this context, we demon-

strate the importance of the hydrodynamic particle structure, and the usage of accurate

transport property expressions as salient input to our filtration model. In fact, analytic

transport coefficients are highly useful also for the optimization of industrial processes,

i.e, for improving the performance of the filtration process regarding product and energy

cost, and product output.

For the calculation of the short-time dynamic properties, notably the hydrodynamic func-

tion, H(q), diffusion function, D(q), short-time self-diffusion coefficient, dS, sedimentation

velocity, K, collective diffusion coefficient, dC, and high-frequency viscosity, η∞, we em-

ploy two convenient analytic calculation schemes. These are the Pairwise-additivity (PA)

approximation and the Beenakker-Mazur (BM) methods, respectively. In particular, we

present and discuss a PA-BM hybrid scheme combining the advantages of the two methods,

and we give generalized transport properties expressions based on the hydrodynamic ra-

dius model (HRM). In this model, the internal particle structure is mapped on an effective

hydrodynamic radius for unchanged direct interactions. Long-time dynamic properties,
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and here most notably the long-time self-diffusion coefficient, dL, and the zero-frequency

viscosity, η, are calculated using general scaling relations, and a (simplified) mode-coupling

theory method for the memory contribution part.

Considered static properties include the static structure factor, S(q), radial distribution

function, g(r), isothermal compressibility, χT, and the particle osmotic pressure Π. Here,

g(r) and S(q) serve as salient input to the PA and BM methods. Depending on the inves-

tigated system, we use for their calculation appropriate Ornstein-Zernike integral equation

schemes, namely the Percus-Yevick with Verlet-Weis correction, and the hypernetted chain

and Zerah-Hansen schemes.

The focus of our theoretical analysis is set on two classes of dispersions of technological and

biological importance, respectively. The first class are microgels consisting of cross-linked

polymer chains that can be synthesized using a variety of polymeric materials, allowing for

the control of their intra-particle properties. The latter are in particular influenced by the

interplay with the penetrating solvent molecules. Microgels are highly sensitive to external

stimuli such as pH, temperature, salinity, and concentration that influence the particle

swelling. This renders microgels as promising candidates for many applications such as

carriers in drug delivery [8–11], the engineering of tissues [12–15], the design of switchable

membranes for separation processes in water purification and medical technology [16] [17],

the modification of rheological properties [18], e.g., in cosmetics and hand soaps [19], and

the design of photonic crystals with tunable band gaps and defects [20–23].

Microgels have typically a radially decaying cross-linker density giving rise to soft inter-

actions during inter-penetration. However, we show by comparison with experimental

static structure factor measurements that for larger non-ionic microgels, this softness is

a very minor effect, with the consequence that the hard-sphere description of microgels

becomes quite accurate. Based on this finding, we present a comprehensive toolbox of

analytic methods for the calculation of short-time transport properties of particles with

internal hydrodynamic structure and hard-sphere-type direct interactions. We exemplify

the high accuracy of our toolbox methods by the comparison with dynamic light scattering

(DLS) experiments on non-ionic microgels and with simulations, where in the latter case

the effect of HIs is included. In addition, we discuss the impact of softness and solvent

permeability on the dynamics of ionic microgel systems where the effect of intra-particle

hydrodynamics is attenuated by the long-ranged electrostatic repulsion.

Moreover, we extend our toolbox to long-time dynamic properties of concentrated systems

of hydrodynamically structured particles. Different from their short-time siblings, long-

time transport properties are affected additionally by the non-instantaneous microstruc-

tural relaxation of the clouds of neighboring Brownian particles. This relaxation is con-
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1. Introduction

trolled both by direct and hydrodynamic interactions. Our toolbox extension to long-time

properties combines the HRM with a factorization approximation method introduced orig-

inally by Medina-Noyola [24], and elaborated subsequently by Brady [25, 26] and Banchio

et al. [27].

Different from the aforementioned microgel systems, amphoteric microgels contain both

acidic and basic co-monomers. As a consequence, they do not just show a single volume

phase transition but swell in acidic and basic environments, and collapse in the intermedi-

ate pH-regime. In this so-called zwitterionic regime, the particle collapse is caused by the

domination of ion pairing between oppositely charged groups over the repulsion between

groups of the same charge [28]. Thus, internal salts are forming accompanied by the re-

lease of counterions [29]. To investigate the influence of the oppositely charged groups on

the interaction potential of zwitterionic microgels, we compare concentration series mea-

surements of the measurable static structure factor on samples with various amounts of

the zwitterionic co-monomer with polydisperse hard-sphere calculations. We observe that

the zwitterionic microgels are well described by the hard-sphere model for total volume

fractions φT . 0.4, irrespective of the amount of zwitterionic co-monomer.

In addition to microgel systems, we further study Brownian particle systems with short-

range attraction (SA) and long-range repulsion (LR) such as low-salinity lysozyme protein

solutions, and suspensions of micron-sized charged colloidal particles with added depletant.

SALR systems have been intensely studied over the past years [2, 30–36]. In particular, the

interesting phase behavior of SALR systems including equilibrium-cluster and percolated-

cluster states has been investigated. These investigations have been triggered by the

finding of a low-wavenumber (low-q) peak in the static structure factor S(q), indicative

of intermediate-range microstructural ordering arising from the competing SA and LR [2,

32]. SALR protein systems are particularly interesting since the clustering of proteins can

result in severe diseases such as Alzheimer and Parkinson [5, 37], or cateract formation

[38].

In comparison with the large body of work on the structure and phase behavior of SALR

systems, little is known to date about their dynamic properties. This concerns in partic-

ular theoretical and simulation works on these systems that are challenging owing to the

important influence of the HIs. A complication in the theoretical description of cluster

states arises from the presence of additional time and length scales associated with the

distributions of cluster lifetimes, sizes and charges. This hampers a clear distinction be-

tween colloidal short-time and long-time regimes, as it can be made for a homogeneous

suspension of individually diffusing monodisperse particles. An interesting experimental

observation pointing to these complications is the surprising observation that the short-
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and long-time self-diffusion coefficients for salt-free lysozyme solutions deduced from neu-

tron spin echo (NSE) data share roughly the same concentration dependence [32].

As an important part of this thesis, we present a generic theoretical study of short-time

diffusion and rheological transport properties of two SALR model systems by employing

our toolbox of well tested analytic methods that account for the salient HIs. We use

isotropic pair potentials to describe phenomenologically the orientationally averaged SA

of globular proteins, plus the for low salinity systems long-ranged electric double layer

repulsion originating from the protein charges and surface-released counterions. The static

input to our toolbox of dynamic methods can be calculated to excellent accuracy for the

dispersed-fluid phase region, as we are going to show in comparison with Monte-Carlo

simulation data of the radial distribution function, g(r), using the thermodynamically

self-consistent Zerah–Hansen (ZH) integral equation scheme. We show that the dynamics

has unusual features compared to reference systems with pure repulsion or attraction, and

we reveal the presence of a low-q peak in the hydrodynamic function H(q), resulting from

the competition of SA and LR.

Static and dynamic dispersion properties including the osmotic suspension pressure, Π,

and compressibility, χOSM, and the dispersion viscosity, η, and (long-time) collective dif-

fusion coefficient, dL
C, are salient inputs to the modeling of ultrafiltration (UF) processes.

UF is an extensively used low-energy cost method for the separation and concentration of

smaller colloidal or bio-particles [39] such as proteins, macromolecular drugs, and nano-

sized microgel particles. In UF, Brownian motion is strong but hydrodynamic diffusion

and migration mechanisms are weak in comparison. In this thesis, we address in addition

to transport bulk properties calculations the cross-flow UF of electrostatically strongly

repelling colloidal silica particles under low-salinity conditions. We use a theoretical de-

scription based on the one-component macroion fluid model which ignores the electroki-

netic microionic effects but accounts for the strong influence of surface-released counteri-

ons on the renormalized colloidal charge and screening parameter. The static suspension

properties are calculated by using integral equation theory in combination with a Poisson-

Boltzmann (PB) cell model, and are employed as input to our analytic calculations of

accurate transport coefficients. These coefficients are used as input to the cross-flow UF

model previously employed by Roa et al. [39] for permeable hard-sphere suspensions. Our

theoretical results for the cross-flow permeate flux are shown to be in very good agreement

with filtration experiments on aqueous suspensions of charge-stabilized silica particles.

The thesis is organized as follows:

In Chapter 2, we describe the explored systems and pose our main research questions.
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1. Introduction

Moreover, we put our work in the context of recent research, and point to possible appli-

cations.

The essentials of the equilibrium microstructure methods of calculation, and the employed

Ornstein-Zernike closure relations used for the calculation of static dispersion properties

are presented in Chapter 3.

In Chapter 4, we discuss the time- and length scales, and the governing equations associ-

ated with the Brownian motion of colloidal particles in a low-molecular solvent. We focus

especially on hydrodynamic particle models and boundary conditions used to account for

the internal hydrodynamic particle structure. Furthermore, we discuss the notion of hydro-

dynamic interactions (HIs), and transport properties characterizing the system dynamics.

Chapter 4 is complemented by the explanation of the methods of calculation employed in

this thesis for various short- and long-time dynamic properties.

The results of our analytic toolbox of methods for calculating short- and long-time trans-

port properties of permeable hard-sphere dispersions are presented in Chapter 5. In

addition, we exemplify the high accuracy of our toolbox methods by comparison with

benchmark simulations, and experimental data for the wavenumber-dependent diffusion

function, D(q), of non-ionic microgel particles. Moreover, we test the accuracy of gener-

alized Stokes-Einstein relations relating rheological and diffusion properties.

In Chapter 6, we discuss first the impact of softness and permeability on the short-time

dynamics of ionic microgel suspensions. Secondly, we model and study the cross-flow UF

process of charged silica particle systems. For this purpose, we employ a charge renormal-

ization procedure to account for the effects of surface released counterions on static and

transport properties. The Chapter is concluded by a comparison of the predictions by

our UF model with UF experiment results on charged silica particles, showing the good

accuracy of our model calculations.

The measured static structure factors, SM(q) of zwitterionic microgels are compared to

polydisperse hard-sphere calculations in Chapter 7, in order to investigate the influence

of the zwitterionic co-monomer on the particle interactions.

In Chapter 8, we thoroughly discuss static and transport properties of SALR systems. To

this end, we systematically study parameter variations of the SALR potential to reveal the

individual effect of SA and LR. We show that a balance between SA and LR is necessary

for a low-q peak not only of the static structure factor, S(q), but also of the hydrody-

namic function H(q). In particular, we highlight that intermediate-range microstructural

ordering is a general feature of SALR systems and is not explainable using a purely mono-

tonic continuous pair potential part, as we show by the comparison with the theoretical

predictions for the hard-core two-Yukawa and Lennard-Jones Yukawa SALR potential
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systems. In the first considered SALR model, hard-core excluded volume interactions are

combined with short- and long-range Yukawa potential parts. In the second considered

model referred to as the LJY model, a 100 − 50 Lennard-Jones (LJ) potential is used to

describe the soft steric plus SA interactions, while the LR part is modeled by a repulsive

Yukawa potential. Note that in low-salinity protein solutions, LR is caused by electro-

static particle interactions while the origin of the SA is still under debate (c.f. Sec. 2.3).

Furthermore, we discuss the applicability of generalized Stokes-Einstein (GSE) relations

to SALR systems. A comparison of our theoretical H(q) predictions with neutron spin

echo (NSE) measurements of H(q) for Lysozyme solutions shows qualitative agreement.

As an outlook, we present first results of an ongoing theory-simulation collaboration where

the accuracy of our analytic toolbox calculations of transport properties for a LJY-SALR

system is assessed through the comparison with multi-particle collision dynamics (MPC)

computer simulations that fully account for the HIs.

The thesis is concluded in Chapter 9, where also possible future applications and extensions

of the presented work are discussed.

In the Appendix, we give the details of the employed integral equation schemes, and

explain the dynamic calculation methods.
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2. Explored systems and interaction models

In this chapter, we introduce the central research questions addressed in the thesis. For

this purpose, we provide an overview over the explored systems, discuss their importance,

and describe exemplary applications. In particular, we show that colloidal methods help

to understand and predict the equilibrium structure and dynamics of a broad variety of

particulate systems ranging from classical colloidal systems of submicron sized particles to

biological macromolecules of a few nanometers in diameter. We are especially interested

in how single particle properties such as permeability, softness and electric charge are

affecting the transport properties. The results for the systems introduced in this Chapter

are presented in Chapters 5 ff.

2.1. Hydrodynamically structured particles

2.1.1. Necessity of hydrodynamic particle modeling

Suspensions of globular colloidal particles with internal hydrodynamic structure and dif-

ferent surface boundary conditions are abundant in Soft Matter science. Examples of

technological and biomedical relevance are non-ionic and ionic microgel suspensions, and

spherical core-shell particles consisting of a dry core and a shell of a soft material such

as a polymer brush. The particles in these systems are to a certain degree permeable to

the solvent. Microgel particles in particular consist of a network formed by cross-linked

polymer chains. They have useful features such as a temperature-, pH-, salinity- and

concentration-dependent [40] swelling behavior, as well as elasticity and flexibility. This

renders microgels as good candidates for various applications such as drug delivery [8–10],

the engineering of tissues [12–15], and the modification of rheological properties e.g. in

cosmetics [18, 19]. Additionally, microgels have been employed in the design of photonic

crystals with tunable band gaps and defects [20–23] and the fabrication of switchable

membranes for separation processes in water purification and medical technology [16, 17].

The elasticity of microgels can be controlled, e.g., by the amount of cross-linker and the

length of polymer chains used in their synthesis. Microgels can be therefore considered as

bridging the gap between genuine colloidal hard spheres and ultra-soft colloids [41].

Although microgel and core-shell particle systems have been intensely studied experi-

mentally over the past years, a quantitative theoretical description of the diffusion and

rheological properties of concentrated suspensions is still in demand. This is owed to the
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2. Explored systems and interaction models

complicated many-particle hydrodynamic interactions (HIs) which are significantly influ-

enced by the internal hydrodynamic structure of the particles. Surprisingly, despite the

commonly complex internal structure of colloidal systems, it is usually sufficient to use

only a single parameter for the description of solvent particle interactions such as the

effective solvent penetration depth. The simplicity of hydrodynamic particle models al-

lows for the calculation of analytic expressions for transport properties. In Fig. 2.1, the

hydrodynamic particle modeling procedure and a selection of models is sketched. We will

discuss the different models in detail in Subsec. 4.1.4

core-shell microgel proteins core shell microgel proteins

Navier  
slip-stick BC 

uniformly- 
permeable particle 

a− Lh

a
ah

a

hydrodynamic 
radius model 

Fig. 2.1.: Sketch of the simplifying hydrodynamic particle modeling procedure. For details
about the different particle models, see Subsec. 4.1.4.

The theoretical understanding of the influence of HIs on colloidal transport properties such

as translational and rotational diffusion coefficients, the hydrodynamic function, and high-

frequency and zero-frequency viscosities is of key importance also in process engineering,

e.g. in filtration and fractionation processes [39, 42], and for the energy cost reduction in

the transportation of colloidal suspensions by means of viscosity minimization. Techno-

logical applications require analytic expressions of transport properties, serving as input

and allowing for easy parameter variation.

On a coarse-grained level, the porosity-averaged fluid flow inside a solvent-permeable par-

ticle is commonly described by the Brinkman-Debye-Bueche (BDB) equation invoking

the Darcy permeability, κ2, where 1/κ is the hydrodynamic penetration length [43, 44].

Globular particles with an on average spherically symmetric hydrodynamic structure can

be characterized by a permeability coefficient, κ(d), depending on the radial distance, d,

from the particle center [45]. Versatile hydrodynamic simulation tools such as the HY-
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2.1. Hydrodynamically structured particles

DROMULTIPOLE hydrodynamic force multipole method [46] have been developed which

allow for calculating transport properties of concentrated dispersions of hydrodynamically

structured particles with the full inclusion of HIs. However, these simulations are nu-

merically expensive, and in principle they must be performed separately for each particle

model. In a recent series of papers, various short-time dynamic properties of dispersions of

uniformly permeable spheres [47–50], and of core-shell particles with uniformly permeable

shell [51–53], have been calculated using the HYDROMULTIPOLE method, as functions

of particle concentration, reduced Darcy permeability, and shell-thickness to particle size

ratio. The non-hydrodynamic direct particle interactions in these simulations have been

taken for simplicity as pure hard-core interactions characterized by the excluded volume

particle radius a = σ/2. Any softness in the effective pair potential, V (r), between two

globular particles at the center-to-center distance r is hereby disregarded.

As discussed in Refs. [52–54], a simplifying concept allowing for abstracting from spe-

cific intra-particle structures is the so-called hydrodynamic radius model (HRM) which

invokes the notion of an apparent no-slip hydrodynamic particle radius ah (see also Refs.

[55, 56]). The HRM amounts to approximating a globular particle of spherically sym-

metric hydrodynamic structure by a no-slip sphere of hydrodynamic radius ah, while

leaving the effective pair potential unchanged. Under from an experimental viewpoint

surprisingly general conditions, ah is unequivocally determined from the measurement of

a single-particle transport property such as the translational diffusion coefficient, d0, or

the intrinsic viscosity [η]. The definition of the HRM includes also spherical particles with

fuzzy hydrodynamic structure and no sharp outer boundary, and with a soft pair poten-

tial such as for weakly cross-linked ionic microgels [40, 57, 58]. For spherical particles

with excluded volume interactions only where ah < a, the HRM reduces to the so-called

spherical annulus model. For the annulus model, numerically precise simulation results for

various short-time dynamic properties have been given in Ref. [51]. The good accuracy

of the simplifying HRM was demonstrated in Refs. [49, 51, 59] for uniformly permeable

and core-shell spheres with pure excluded volume interactions, by a thorough compari-

son with simulation results. While a single hydrodynamic radius suffices to characterize

the hydrodynamic intra-particle structure of many experimentally realized suspensions

regarding its influence on configuration-averaged transport properties, the replacement of

the soft pair potential by an effective hard-core potential is in general a less successful

strategy regarding the statics. Methods of calculating static suspension properties based

on an effective hard-sphere potential such as the Barker-Henderson perturbation scheme,

a second virial coefficient mapping method, and variational methods commonly fail if the

longer-ranged soft part of the pair potential stretches out significantly beyond the physical
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excluded volume radius. For charge-stabilized colloids, e.g., this has been shown in Refs.

[60, 61].

We will exemplify the applicability of the HRM in this thesis by the comparison with short-

time measurements on non-ionic microgels discussed in Chapter 5. For this purpose, we will

use both the hard-sphere and soft Hertz potentials. Both potentials have been successfully

employed in studies of microgels, which show a mesh-like structure accompanied by (size-

dependent) stiff particle interactions. In addition, we present an extensive toolbox of

methods for the calculation of short- and long-time dynamic properties of concentrated

dispersions of stiff, permeable particles, based on the HRM and the hard-sphere interaction

potential.

2.1.2. Pair potential models

Owing to many possible applications, various theoretical schemes have been developed

for the analytic calculation of static properties of microgel suspensions. Progress in this

direction was made in particular for ionic microgels through the development of effective

pair potentials characterized by the suspension temperature and salinity, and the bare

charge of the microgel particles [62–64]. The validity of these effective pair potentials

has been scrutinized in various joint theoretical-experimental studies (see e.g. Refs. [57,

65]). In contrast to ionic microgels, the effective pair potentials used for non-ionic soft

microgels where short-range interactions are not masked by the longer-ranged electrostatic

repulsion, are to date still on a more heuristic level. The pronounced dependence of

the pair potential in non-ionic microgel systems on ambient and intra-particle conditions

such as the solvent quality and temperature, number and distribution of cross-linker, and

the length and functionality of polymer chains requires a larger number of parameters

characterizing the effective pair potential on a microscopic scale. On a more coarse-

grained level, simplifying pair potentials have been used such as the hard-sphere [66] and

elastic Hertz [57, 67] potentials, and certain ultra-soft pair potentials [41]. The intricate

dependence on environmental parameters is hidden in these coarse-grained potentials in

a reduced number of interaction parameters such as the effective interaction strength and

the effective particle radius.

Hertz potential

A useful coarse-grained effective pair potential for non-ionic globular microgel particles of

low cross-link density, and for the excluded volume interaction part of ionic microgels (c.f.
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2.1. Hydrodynamically structured particles

Sec. 2.2.1), is given by the Hertz potential,

βV (r) =

ε
(

1− r
σs

) 5
2

r ≤ σs

0 r > σs .
(2.1)

This potential describes the energy penalty caused by the elastic deformation of two collid-

ing spheres [57, 68]. Here, β = 1/(kBT ) is the reduced inverse temperature with Boltzmann

constant kB and absolute temperature T , and σs plays the role of an effective soft particle

diameter. For distances r ≥ σs, two Hertz-model particles do not interact with each other.

The strength of the continuous potential is quantified by the non-dimensional elasticity

parameter (effective potential strength),

ε =
2Y σ3

s

15kBT (1− ν2)
, (2.2)

depending on the bulk modulus, Y , and the Poisson ratio, ν, of a particle [57, 68]. On

approximating the mesoscopic particle elastic moduli Y and ν by macroscopic values, the

estimate ε ≈ 104 ∼ 105 is obtained for more strongly cross-linked micron-sized microgels

[57]. Note here the strong size dependence ε ∝ σ3
s , implying a significantly decreased

potential strength for smaller microgel particles. As an aside, we note that this is of

course only a rough estimate since the elastic moduli of a macroscopic material are in

general different from the ones associated with the deformation of a microscopic particle.

This has been recently discussed in [69, 70].

In addition, while our work is concerned with the fluid-like concentration regime only,

we remark that quite different solid phases are observed in concentrated Hertz potential

systems for different values of ε [71]. To use the Hertz potential for the steric interaction

potential part has been shown to provide a nearly fit-parameter-free description of the

structure and phase behavior of ionic and non-ionic microgel systems, in good agreement

with experimental results for various particle sizes [57, 67], and values of ε in the range

from 102− 104. This is found even though the particles are of a distinctly inhomogeneous

structure. The strong effect of changing ε in the Hertz potential is visualized in Fig.

2.2. Note that the Hertz potential is continuous and non-diverging in the overlap region.

However, large ε values give rise to practically impenetrable particles.

While for large ε the Hertz and hard-sphere potentials give very similar results for the

equilibrium microstructure, the effective diameter σs in the Hertz potential is in general

somewhat larger than the corresponding hard-sphere diameter σ, i.e. σs & σ. This

reflects the fact that the Hertz potential incorporates overall the softness of a microgel
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σ

β

ε = 1
ε = 10
ε = 10
ε = 10
ε = 10

Fig. 2.2.: Comparison of the hard-sphere interaction potential (HS) with the Hertz poten-
tial for interaction strengths values ε ∈ [

1− 104
]

particle which in turn originates from the radially inhomogeneous cross-linker density.

(See Chapter 5 for details.)

Hard-sphere potential

For very large values of ε, the Hertz potential becomes practically indistinguishable from

the hard-sphere potential (c.f. Fig. 2.2),

VHS(r) =

⎧⎨
⎩∞ r ≤ σ = 2a

0 r > σ ,
(2.3)

with hard-sphere diameter σ. Employing the Hertz potential in the fitting of the static

structure factor, S(q), data of non-ionic submicron-sized poly(N-isopropylacrylamide)

(PNIPAM) microgel samples, we determined an ε value of 104. Considering such a large

deformation energy penalty, the usage of the hard-sphere potential in place of the Hertz

potential is well justified in the complete fluid-phase concentration regime. This is ad-

vantageous from a theoretical viewpoint since colloidal hard spheres are among the best

studied soft matter systems.

In addition of being the key quantities in static scattering experiments on concentrated

suspensions, S(q), and its associated radial distribution function (RDF), g(r), are re-

quired as inputs in theoretical methods for calculating colloidal transport properties. For

the Hertz potential model, we have determined the two functions numerically from solv-

ing the approximate Percus-Yevick (PY) integral equation [72, 73]. The corresponding

pair correlation functions for the hard-sphere model are determined from the analytic
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2.1. Hydrodynamically structured particles

PY solution combined with the Verlet-Weis (VW) correction [74], by which the accurate

Carnahan-Starling equation of state is incorporated via S(0) (see also Ref. [75]). The

VW correction compensates, in particular, the overestimation by the PY solution of the

principal peak height, S(qm), of the hard-sphere structure factor, for volume fractions

φ = (π/6)ρσ3 & 0.4. Here, ρ is the number density of particles.

Since for the hard-sphere interaction potential analytic expressions for g(r) and S(q) are

known, we are in the position to derive analytic expression for a broad variety of short-and

long-time transport properties of hard-sphere systems.

2.1.3. Analytic toolbox for the hydrodynamic radius model (HRM)

Our toolbox of analytic methods for calculating colloidal transport properties is based on

the HRM, and it takes advantage of the tabulated simulation data for spherical annulus

particles listed in Ref. [51]. The toolbox incorporates in particular useful approximate

scaling relations for the wavenumber-dependent sedimentation coefficient, H(q), the short-

time translational self-diffusion coefficient, dS, and the high-frequency viscosity η∞. These

quantities are routinely determined in dynamic scattering experiments and oscillatory

rheometry measurements. The scaling relations for permeable particles with hard-core

interactions are known to be in remarkably good agreement with simulation data [47, 48,

76]. We show that they apply likewise to particles with a soft pair potential, and we

augment them by scaling expressions for the collective diffusion coefficient, dC, and the

associated sedimentation coefficient K.

Moreover, we extend the toolbox to long-time dynamic properties of concentrated systems

of hydrodynamically structured particles, including the low-shear zero-frequency suspen-

sion viscosity, η, and the long-time translational self-diffusion coefficient dL. Different from

their short-time siblings, long-time transport properties are affected additionally by the

non-instantaneous microstructural relaxation of the cloud of neighboring Brownian parti-

cles. This relaxation is controlled both by direct and hydrodynamic interactions (c.f Sec.

5.4). The toolbox extension to long-time properties combines the HRM with a factoriza-

tion approximation method introduced originally by Medina-Noyola [24], and elaborated

subsequently by Brady [25, 26] and Banchio et al. [27]. The HRM is also useful for

long-time properties, since the hydrodynamic mobilities in the generalized many-particle

Smoluchowski diffusion equation describing the configurational distribution function are

time-independent [61].

We demonstrate the accuracy of our user-friendly toolbox through the analysis of a static

and dynamic light scattering study on a concentration series of non-ionic, submicron-sized
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PNIPAM microgel particles dispersed in dimethylformamide (DMF) (see Chapter 5). We

show that the static and dynamic scattering data for S(q) and H(q), respectively, can

be quantitatively described, in the complete experimental wavenumber range, by using a

reduced solvent penetration length equal to three percent of the particle diameter.

2.2. Charge-stabilized particles

A vast number of biological and synthesized soft matter systems includes charged parti-

cles or macromolecules, e.g. due to the chemical reactions invoked in the particle produc-

tion process or due to surface-ion dissociation triggered by a polar solvent. Accordingly,

the study of charged-particles systems is of high interest. However, the consideration

of particle-charge related effects such as counterion condensation makes the theoretical

description quite complex.

We study two different charged-particles systems, which we describe in detail in this sec-

tion. Firstly, we apply the concept of the hydrodynamic radius model to charged (ionic)

microgel particles, and investigate how softness and permeability affect their transport

properties. This is of special interest for the analysis of dynamic light scattering measure-

ments, and to obtain information about the particle sizes and structures based on these

measurements.

Secondly, we highlight the importance of an appropriate calculation of diffusion and rhe-

ological properties for charged-particle systems in the framework of a technological appli-

cation, namely the ultrafiltration (UF) of charged silica particles suspensions.

2.2.1. Ionic microgels

As discussed earlier, microgel particles consist of an intramolecular cross-linked polymer

network [41]. The microgel intra-particle properties can be directly modified, e.g. by a

specific choice of polymer and the amount of cross-linker during the synthesis. The intra-

particle properties are intimately linked to the particles collective behavior influencing

thermodynamic properties, phase states and transport coefficients. Since microgels can

be synthesized from a broad variety of polymeric materials, particles with specific intra-

particle properties can be designed. To manufacture systems with specific features, it is

thus essential to understand how intra-particle properties affect the collective behavior of

the dispersion. This knowledge is important also for the deduction of particle properties

from measurements of the collective behavior, such as encoded in the diffusion function,

D(q), measured in dynamic light scattering (DLS) experiments. For the definition and
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2.2. Charge-stabilized particles

meaning of D(q) we refer to Subsec. 4.2.1.

In general, the effect of fluid permeability of particles can be expected to be smaller for

charge-stabilized particles at moderate volume fractions than for uncharged ones since

near-contact configurations are more unlikely. A quantitative investigation of the effect

of permeability on the transport properties of ionic microgels is still in demand. The

benefit of treating the soft short-range interactions of microgels by using the Hertzian

interaction potential has been shown in several studies [57, 67, 77]. We re-emphasize the

strong size dependence of the Hertz potential strength ε (c.f. Eq. (2.2)), which scales with

the cube of the particle diameter. The broad size distribution of synthesized microgel

particles in the range from a few tenths of nm to several µm, is reflected in the broad

parameter range ε ∼ 1−106, (c.f. Fig. 2.2), as estimated on the basis of Young’s modulus

and Poisson’s ratio for macroscopic PNIPAM gels. In addition, microgel particles show

typically a radially decaying cross-linking density which leads to the formation of dangling

polymer chains on the particles surfaces [41] so that the two-particle interaction right at

the onset of overlap is softened.

Hence, the softness and permeability are two important properties of microgels with high

impact on the system’s collective behavior. The understanding of their effects on the

equilibrium structure and transport properties is thus an important topic in soft matter

science. It is further essential for the usage of microgels in many applications such as for

drug delivery.

This amply motivates our investigation of the influence of microgel permeability and soft-

ness on statics and dynamics of ionic microgel systems. The direct interaction between

ionic microgels is very well described by an effective interaction potential by Denton which

he derived from a coarse-graining procedure [57, 63, 78]. For the steric interaction of micro-

gels, we use the Hertz potential introduced in Eq. (2.1). The main difference between ionic

microgels and charge-stabilized rigid silica spheres, the latter discussed in the upcoming

subsection, is that the counterions and the solvent can penetrate into the polymer-mesh of

the microgel particles. This lowers the effective microgel charge and affects the screening

of the particle interactions.

In the Denton potential [63, 78], the overlap (r ≤ σs) and non-overlap regions (r > σs)

are distinguished. For r ≤ σs, in addition to the elastic Hertz potential, there is an

electrostatic potential contribution given by [57, 63, 78]

βVeff(r) =
2Z2lB
σs

[
6

5
− 2

(
r

σs
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2

(
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)5
]
− 72Z2lB

κ4σ4
sr

Φind(r), (2.4)
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with
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Here lB = e2/(εkBT ) is the Bjerum length of the solvent, ε the solvent macroscopic dielec-

tric constant, and e the proton charge. For water at room temperature, lB = 0.7 nm.

When the microgel particles are non-overlapping, the pair potential continuously crosses

over into a Yukawa-type screened Coulomb potential, differing from that of non-permeable

charge-stabilized colloids in Eq. (2.8) by a different effective charge, i.e. [57]

βVeff(r) =
144Z2lB
κ4σ4

s

[
cosh(κσs/2)− 2 sinh(κσs/2)

κσs

]2 e−κr

r
. (r > σs) . (2.6)

The bare charge number of the microgels is Z, and κ is the inverse Debye screening length

which for a 1− 1 electrolyte is given by

κ =
√

4π(nc + 2ns)λB . (2.7)

Here, nc is the counterions number density, and ns the number density of 1− 1 electrolyte

salt ion pairs in cgs units [57].

For our discussion of the effect of permeability and softness on the short-time dynamics of

ionic microgels presented in Sec. 6.1, we use realistic system parameters from a previous

theoretical-experimental study by Riest et al. [57]. In this earlier publication, we have

shown that the Denton plus Hertz pair potential allows for an accurate and fit-parameter-

free description of static properties of ionic microgels.

2.2.2. Ultrafiltration (UF) of charge-stabilized suspensions

In a broad variety of applications, membrane ultrafiltration (UF) plays an important role.

The notion ultrafiltration refers to the filtration of smaller and typically nanosized particles
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2.2. Charge-stabilized particles

using higher trans-membrane pressure values (TMP). It needs to be distinghuised from

the so-called microfiltration (MF) of larger particles, where a lower TMP is applied and

higher permeation flux occurs [39]. While in UF, the effect of Brownian motion is strong,

with the system remaining basically in local thermal equilibrium, the dominant effect in

MF is shear-induced hydrodynamic migration and non-isotropic hydrodynamic diffusion.

The important role of the thermodynamic osmotic pressure in UF is taken over by an

effective osmotic pressure in MF which can be characterized by an effective temperature

[79, 80].

An important example of UF is the purification of proteins. Due to the wide-spread usage

of proteins also in industrial applications, there is a large interest in optimizing protein

UF procedures.

In earlier work, Roa et al. [39] analyzed the performance of a new cross-flow UF model

for permeable hard-sphere suspensions highlighting in particular the importance of using

accurate transport coefficient expressions as model inputs. We study here the cross-flow

UF of charged silica suspensions which necessitates the consideration of counterion and

electrolyte screening effects. For this purpose, we use a Poisson-Boltzmann (PB) cell

model based charge-renormalization procedure for the calculation of the state-dependent

interaction potential parameters.

Fig. 2.3.: Sketch of the hollow-fiber membrane used in the inside-out cross-flow ultrafiltra-
tion process. Sketch kindly provided by R. Roa [39].

A typical cross-flow, inside-out UF setup is presented in Fig. 2.3. A suspension of particles

is pumped through a hollow-fiber membrane of inner radius R. The applied pressure

difference between the pressure at the inlet, pin, and the outlet, pout, is denoted as ΔpL =

pin − pout. It is important, and realized in most instances, that the length L of the fiber

is large compared to its radius, i.e. R 	 L. Ideally, the membrane is only permeable
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to the solvent molecules which are permeating through the membrane due to an applied

transmembrane pressure difference ∆pTMP. The pure-fluid hydraulic permeability of the

clean membrane, L0
p, characterizes its solvent permeability in the absence of colloidal

particles.

In our model calculations, we assume the membrane to be fully retentive to the colloidal

particles. A small fraction of the axially in-flowing solvent permeates the membrane

to the outside of the fiber into the permeate bath. This process can be continuated

to achieve a higher degree of purification. In this so-called inside-out cross-flow setup,

the particle advection towards the membrane by the permeating solvent, driven by the

difference between the trans-membrane pressure, ∆pTMP, and transmembrane osmotic

particle pressure, Π, is balanced by the diffusive back transport of particles away from

the inner membrane surface. This leads to the formation of a concentration-polarization

(CP) layer, i.e. a particle-enriched region of mobile particles near to the inner membrane

surface (see Fig. 2.3).

For the theoretical determination of the CP profile and permeate flux, the knowledge

of accurate transport properties, namely the collective diffusion coefficient, dC(φ), and

the steady low-shear viscosity, η(φ), of the suspension are required as functions of the

colloidal volume fraction φ. In addition, the suspension osmotic pressure Π(φ) and the

related isothermal osmotic compressibility χOSM(φ) needs to be known for the filtration

modeling.

For the charged-silica system studied in this thesis, these properties can be obtained

in principle on basis of the so-called Primitive Model (PM) [61, 73, 81], where the large

colloidal macroions and small surface-released counterions, and the electrolyte ions (termed

microions for short), are treated on equal footing as different species of uniformly charged

hard spheres immersed in a structureless dielectric (Newtonian) fluid of dielectric constant

ε and shear viscosity η0. PM-based theoretical calculations and computer simulations are

in general quite elaborate, owing to the disparate length and time scales characteristic of

the spatio-temporal coupling of the various ion species.

In taking advantage of the strong size asymmetry of microions and monodisperse col-

loidal macroions, the one-component macroion fluid model (OCM) is frequently used. In

the OCM, the effective pair interaction potential, Veff(r), between two microion-dressed

charged colloid spheres of diameter σ = 2a at center-to-center distance r is modeled, to

decent accuracy in general, by the sum of a hard-sphere and screened Coulomb potential

20



2.3. SALR systems

of the form [61, 81–83]

βVeff(r) =

∞ r < σ

lBZ
2
eff

(
exp{κeffa}

1+κeffa

)2
exp{−κeffr}

r , r ≥ σ .
(2.8)

Here, Zeff and κeff are the in general concentration and temperature dependent effective

colloid charge number and electrostatic screening parameter, respectively. The OCM

potential is state-dependent as a consequence of having traced out the microion degrees of

freedom by starting, e.g., from the multi-component PM description. In using the OCM, it

is assumed that van der Waals attraction and other non-electric short-range colloid-colloid

interactions are negligible. This assumption is justified for sufficiently strongly charged

colloids, if the salt concentration is small enough so that near-contact configurations are

unlikely, or if the solvent dielectric constant nearly matches that of the particles, or if the

charged particles are (additionally) sterically stabilized by surface-grafted short polymers

[84]. Systems describable by the OCM model range from charge-stabilized suspensions of

rigid colloidal spheres [85] to ionic microgels [40] and globular protein solutions [86, 87].

In this thesis the hypernetted-chain approximation (HNC) in conjunction with the OCM

is employed for calculating the colloid g(r) and the associated S(q). These entities are

used as input in the dynamic calculation schemes applied for the calculation of the zero-

frequency viscosity, η, the sedimentation velocity, K, and the (short-time) collective diffu-

sion coefficient dC. Subsequently, the precise transport properties are used as input to the

calculation of the permeate flux in the framework of the UF model, which results in good

agreement of the model results with UF experiments on charged silica spheres dispersed in

water. The static and dynamic suspension properties, and the filtration modeling results

in comparison to the experiment are discussed in Sec. 6.2.

2.3. SALR systems

2.3.1. Importance and examples of these systems

Brownian particles dispersions with short-range attraction (SA) and long-range repul-

sion (LR) such as low-salinity lysozyme protein solutions, and suspensions of micron-sized

charged colloidal particles with added depletant, have been intensely studied over the past

years [2, 30–36]. SALR protein systems are particularly interesting since the clustering of

proteins can result in severe diseases such as Alzheimer and Parkinson [5, 37]. Stradner

et al. [2] observed experimentally a small-wavenumber peak in the static structure fac-

21



2. Explored systems and interaction models

tor, S(q), at a wavenumber, qc, distinctly smaller than the wavenumber, qm, where the

next-neighbor peak of individual particles of height S(qm) is located. They attributed

the structure factor peak at qc to the formation of particle clusters. A cluster peak of

S(q) is indeed observed for the mesoscopically inhomogeneous equilibrium-cluster phase

of reversibly formed fluid-like clusters in equilibrium with individually dispersed particles

(monomers) [30, 33, 35]. This phase is stabilized against macroscopic phase separation by

the long-range repulsive interaction part which limits the mean cluster size and suppresses

cluster-cluster aggregation.

Liu et al. [32, 33] showed subsequently that a small-wavenumber peak at a wavenumber

qc < qm is indicative not only of the equilibrium-cluster phase. It is present, in particular,

also in the so-called dispersed-fluid phase of SALR systems occurring for smaller concen-

trations and interaction strengths (i.e., larger reduced temperatures) where non-associated

monomers are dominant, and where the S(qc)-peak is indicative of intermediate-range mi-

crostructural ordering (IRO) arising from the competing SA and LR.

In the past few years, the microstructure and cluster states of the two-Yukawa [33, 88]

SALR potential model, and the generalized (2α∗-α∗) Lennard-Jones (LJ) - Yukawa SALR

potential for typical LJ power law exponents α∗ ∼ 45 − 50 [34], have been intensely

studied. Associated reduced temperature-concentration state diagrams [30, 33, 34] have

been mapped out, and compared with experimental results in particular for zero-salt

lysozyme solutions [30, 33, 35]. Depending on particle concentration, relative strength

and range of the competing SA and LR potential parts determining the size and shape,

and the lifetime of clusters, various dynamically arrested modulated phases have been

found in addition to the dispersed-fluid and equilibrium-cluster phases, including cluster-

percolated gels and glasses composed of clusters [30, 31, 33–35, 88, 89]. See here Subsec.

2.3.3 for details.

In comparison with the large body of work on the structure and phase behavior of SALR

systems, little is known to date about their dynamic properties. This concerns in particular

theoretical and simulation works on these systems that are challenging owing to the impor-

tant influence of the HIs. The HIs need to be accounted for in a realistic modeling. Rigid

clusters behave hydrodynamically different from fluid-like ones since there is no hydrody-

namic screening in the latter case. In earlier Brownian dynamics simulation calculations

[30] of the dynamic structure factor, S(q, t), and the wavenumber dependent short-time

diffusion function, D(q), based on the generalized Lennard-Jones-Yukawa SALR model,

HIs were completely disregarded. As discussed in the introduction, the surprising exper-

imental observation that the short- and long-time self-diffusion coefficients for salt-free

lysozyme solutions deduced from neutron spin echo (NSE) data share roughly the same
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concentration dependence [32], indicates the complications in the theoretical description

of cluster states, arising from the presence of additional time and length scales associated

with the distributions of cluster lifetimes, sizes and charges. Therefore, a clear distinction

between colloidal short-time and long-time regimes, as it can be made for a homogeneous

suspension of individually diffusing monodisperse particles, is hampered.

In this thesis, we present a generic theoretical study of short-time diffusion and rheological

transport properties of two SALR model systems where the salient HIs are accounted for.

Firs,t we consider an isotropic hard-core plus two-Yukawa pair potential, and second a

Lennard-Jones plus Yukawa potential presented further down in Subsec. 2.3.2. Both po-

tentials include, complementary to an (effective) hard core, an SA part originating either

from the short-ranged Yukawa or the LJ-type interaction contribution. The long-ranged

electrostatic repulsion is modeled in both cases by a Yukawa potential. These two SALR

potentials are frequently used in studies of microstructural properties and phase behav-

ior [31, 34, 36, 90, 91]. They describe phenomenologically the orientationally averaged

short-range attraction of globular proteins, and the for low-salinity systems long-ranged

electric double layer repulsion originating from the protein charges and surface-released

counterions. The detailed origin of the SA for protein suspensions is not understood to

this day [92]. Yet, Tardieu et al. [93] found that in addition to LR, SA is needed for a

theoretical description of small-angle X-ray (SAXS) measurements on the static structure

factor of Lysozyme.

Proteins show a chemically complex structure including positive and negative charges,

and hydrophilic and hydrophobic regions with the latter potentially inducing short-range

interparticle attractions. In addition, van der Waals forces can contribute to the SA. For

protein systems such as Lysozyme the Hamaker constants, characterizing the strength of

dispersion forces, are in the range of 1−2 kBT as measured in [94–96]. When the Hamaker

constant is used instead as free paramter in the fit of the measured second virial coefficients

B2 (see Subsec. 8.1.1 for its definition) of Lysozyme using the Derjaguin-Landau-Verwey-

Overbeek (DLVO) potential, values of this constant from 4−9 up to 55 kBT [94] have been

obtained. The difference in the Hamaker constant values obtained by direct measurement

and B2(T ) fitting suggests that not only dispersion forces are at the origin of the SA but

further short-range interactions must be present. These additional interactions artificially

raise the Hamaker constant values in the B2(T ) fitting procedure [97]. In addition to the

aforementioned hydrophobic and electrostatic particle interactions, hydrogen bonding is

considered as a potential cause of the SA in protein suspensions [92, 98]. We note that

these interactions may be strongly anisotropic. Yet, in the fluid phase, and at least for

volume fractions φ . 0.25, integral equation theory (IET) calculations using isotropic pair

23



2. Explored systems and interaction models

potentials have been shown to agree with the measured S(q)’s of Lysozyme solutions and

other proteins such as BSA [86, 98, 99].

In our analytic-dynamic calculations, we focus on SALR systems in the homogeneous

dispersed-fluid phase state where most of the particles diffuse individually. However, the

tendency of clustering is noticeable also in this phase as hallmarked, e.g., by the occurrence

of an IRO peak in S(q) as the transition line to the equilibrium-cluster phase is approached.

For the calculation of equilibrium (short-time) diffusion and rheological properties in the

dispersed-fluid phase, we employ our analytic toolbox developed for colloidal systems. Its

applicability to bio-particle systems such as proteins is by no means evident.

2.3.2. Two models

Hard-sphere plus two-Yukawa potential

The hard-sphere plus two-Yukawa SALR pair potential, V (r), used in our theoretical study

of short-time diffusion and rheological properties presented in Sec. 2.3 reads explicitly [100,

101],

βV (x) =

∞ , x < 1

α
[
−K1

e−z1(x−1)

x +K2
e−z2(x−1)

x

]
, x ≥ 1 .

(2.9)

Here, x = r/σ is the inter-particle center-to-center distance, r, in units of the particle

diameter σ. Moreover, z1 and z2 determine the range of the attractive and repulsive

Yukawa potential parts in units of σ, respectively, and K1 = αK1 and K2 = αK2 are the

respective SA and LR potential strengths in units of kBT . To achieve a systematic variation

of the potential shape, and to reduce the number of adjustable potential parameters, we

follow Costa et al. [91] in demanding that

α = −βV
(
x = 1+

)
, (2.10)

which implies that K2 = K1− 1. Accordingly, α is identified as the depth of the potential

well at two-particle contact in units of kBT . It plays thus the role of an interaction strength

parameter equal to the inverse of the reduced effective temperature T ∗. In the high-T ∗

limit for which α = 0, the two-Yukawa soft potential contribution in Eq. (2.9) is vanishing,

and the particles behave practically as hard spheres.

In the present thesis, α = 1/T ∗ is varied in the interval [0 − 3] so that for the maximal

potential depth, −3kBT , particles in contact can still disintegrate by thermal motion. As

shown in Fig. 2.4, with increasing α, the potential well deepens, and a shallow poten-

tial barrier of height βV (xmax) develops at xmax, followed for distances x > xmax by a
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monotonic decay within the range set by 1/z2.

σ

β

α = 0.1
α = 1
α = 2
α = 3

Fig. 2.4.: Plot of the hard-sphere plus two-Yukawa SALR pair potential for various values
of α, and fixed parameters K1 = 1.6306, K2 = 0.6306, z1 = 10, and z2 = 0.5.
The dashed vertical lines mark the effective attraction range x0 = 1.1, and the
location of the potential maximum xmax ≈ 1.326.

A systematic study of the effect of varying attraction/repulsion strength/range on struc-

tural and dynamic system properties necessitates restrictions on the 4-dimensional param-

eter space spanned by {K1,K2, z1, z2}. To this end, Costa et al.[91] have fixed, in addition

to α = 1, the effective attraction range x0. The latter is defined as the first zero-crossing

of the pair potential for x > 1. This leads to the following constraints for the attraction

and repulsion strengths [91]:

K1 =
1

1− exp [(z2 − z1) (x0 − 1)]
(2.11)

K2 −K1 = −1. (2.12)

We consider three different values of the effective atrracion range, namely x0 = {1.05, 1.1, 1.2}
realistic, e.g., for globular proteins such as Lyszoyme [31, 32, 90]. The studied z1 and z2

values and a scheme allowing for the systematic variation of potential features are pre-

sented in Subsec. 8.1.1.

LJ-Yukawa potential

The modified Lennard-Jones-Yukawa potential (LJY) is another SALR system showing

IRO peak formation. The advantage of considering this system is the straightforward ap-
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plicability of simulation techniques owing to the lack of a sharp hard-core excluded volume

potential part. Hence, Molecular Dynamics (MD) simulations can be used for the inves-

tigation of static properties, and the multi-particle collision dynamics (MPC) simulation

method, accounting for the full HIs, for the investigation of the particle dynamics.

The LJY potential consists of a 100-50 Lennard-Jones potential with a Born-type short-

range O(x−100) repulsion part, a short-range O(x−50) attraction part, and a long-range

screened Coulomb part. In total,

βV (x) = 4ε

[(
1

x

)100

−
(
1

x

)50
]
+

Aξ

x
e
−x

ξ , (2.13)

where ε is the strength of short-range attraction/repulsion, and A the prefactor of the

Yukawa term. The potential parameter A is related to the surface potential of the colloids

[34, 102], and ξ denotes the Debye screening length in units of the particle diameter σ.

σ

β ε = 0
ε = 1
ε = 2
ε = 3
ε = 4
ε = 5
ε = 6

Fig. 2.5.: Lennard-Jones-Yukawa potential in Eq. (2.13), for various values of ε used in
the present thesis, and fixed LR parameter A = 2 and ξ = 1.794 independent of
ε. The potential minimum is to a good approximation located at xmin = 1.014,
with depth βV (xmin) ≈ 2− ε.

As we will discuss in Subsec. 2.3.3, the phase behavior of this pair potential model has

been intensively studied by Mani et al. [34] using MD simulations and the thermodynamic

Gibbs-Duhem integration method. These authors used the fixed parameter values A = 2

and ξ = 1.794, varying only the attraction strength ε and the reduced number density,

ρ∗ = 6φ/π, in units of σ3. Their choice of the reduced screening length ξ corresponds,

for a typical colloidal size of σ ≈ 100 nm, to a 1:1 salt concentration in water of about
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3µM [34]. The corresponding minimum of V (r) for nonzero ε is xmin = 1.014, with the

approximate potential depth βV (xmin) = 2 − ε as shown in Fig. 2.5. For the here used

parameter range, ε = 0 − 6, the effective attraction range x0 of the LJY system varies

between x0 ≈ 1.032 for ε = 3 and x0 = 1.05 for ε = 6 (c.f. Subsec 2.3.2).

2.3.3. Phase behavior

The phase behavior of SALR potential systems has been intensively studied over the past

years. To this end, and in addition to computer simulation methdods various theoretical

schemes have been used, including Gibbs-Duhem integration [34], discrete perturbation

theory [33, 103, 104], and self-consistent Ornstein Zernike schemes [105, 106]. Except for

[34], all studies focused for simplicity on the calculation of the liquid-liquid (liquid-vapor)

coexistence curves of so-called attractive reference potentials. These purely attractive

potentials usually consist of the SALR potential set to zero for distances greater than the

effective attraction range x0.

Noro and Frenkel have proposed an extended law of corresponding states (ELCS) for

systems of different ranges of attractive interactions. Their extension states that for SA

systems the second virial coefficient, B2, the effective hard-core diameter, σeff, and the

depth of the potential well, V (rmin), allow for the estimation of the liquid-gas critical

point temperature [107]. For more details see Subsecs: 8.1.1 and 8.1.2. Recently, Platten

et al. [108] successfully applied the ELCS to map the experimentally determined gas-

liquid binodals of protein solutions to the binodals of short-range square-well fluids, with

the latter determined by Monte Carlo (MC) simulations.

Godfrin et al. [33] have presented a detailed computer simulation study of the phase

behavior of the hard-sphere two-Yukawa and the LJY potential models for a variety of

parameter sets. They have generated a temperature - volume fraction generalized phase

diagram of clustered states. For this purpose, they scale the temperature and volume frac-

tion by the respective liquid-vapor critical point values associated with the two interaction

potential models and the investigated parameter sets.

The phase diagram of Godfrin et al. [33] is sketched in Fig. 2.6. The authors distin-

guish four different states, the dispersed-fluid, equilibrium-cluster, random-percolated and

cluster-percolated states, on basis of the cluster-size distribution function (CSD) calcu-

lated from MC simulation data. The CSD gives the average fraction of particles, N(s),

in the system which are members of a cluster of size s. For more details of the CSD, its

definition, and its characteristic behavior for the four distinct states see Subsec. 8.1.3.

In the dispersed-fluid state, no equilibrium-cluster formation is observed. For low temper-
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2. Explored systems and interaction models

Fig. 2.6.: Rough sketch of the generalized temperature, T , volume fraction, φ, phase di-
agram of clustered states for SALR systems (hard-sphere plus two-Yukawa po-
tential and LJY potential) generated by Godfrin et al. [33]. The temperature
and volume fraction are normalized by the respective liquid-vapor critical point
values, Tc and φc, of the reference attractive potential. The dashed line denotes
the liquid-liquid binodal of the purely attractive reference potential system. The
sketch is based on Fig. 4 of [33].

atures in the dispersed-fluid state however, an IRO peak is found at qc. The IRO peak is

not a direct sign for equilibrium-cluster formation or a preferred cluster size. It just in-

dicates the emergence of highly transient clusters typically with mean cluster size smaller

than ∼ 2− 3. Monomers are the most important species in the fluid state [98].

If for small φ-values the temperature is lowered to states well below the binodal of the at-

tractive reference system, a first-order phase transition to the equilibrium-cluster phase is

found. In contrast to the dispersed-fluid phase, in the eqilibrium-cluster phase clusters of

preferred size are in equilibrium with monomers [33, 109]. Thus, the thermodynamic prop-

erties of the system can be expected to be dominated by clusters and not by monomers [98].

That the equilibrium-cluster phase of SALR potential systems is located underneath the

liquid-liquid binodal of the purely attractive reference system (c.f. Fig. 2.6) suggests that

long-range repulsion suppresses the phase separation observed in a SA system, causing in-

stead the formation of equilibrium clusters [33]. For larger φ values, two distinct percolated

states are found. Below the liquid-liquid binodal of the attractive reference system, finite

clusters serve as building blocks of the percolated system (cluster-percolated state) whereas

for higher temperatures the system randomly percolates (random-percolated state).

In this thesis, we focus on SALR systems in the dispersed-fluid phase where only transient

clustering occurs. Here, the applicability of the employed Zerah-Hansen (ZH) IET-scheme
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2.3. SALR systems

is guaranteed, and our analytic toolbox for the dynamics of colloidal suspensions men-

tioned already in Subsec. 2.1.3 can be used. To ensure that the studied systems are in

the fluid state, we have calculated the liquid-gas critical temperature T ∗c of the reference

attractive fluid using the ELCS. Following the generalized phase diagram of Godfrin et

al. (see Fig. 2.6), we consider only SALR systems at reduced temperatures T ∗ > T ∗c

and limit our considerations to small volume fractions well below the φ values associated

with the dynamic percolation line of the attractive reference fluid (c.f. [98]). In addition,

we use MC and MD simulations of selected systems to calculate the CSD, and to verify

our ZH results for g(r). The agreement of simulation and self-consistent ZH approxima-

tion results is an indicator of the fluid structure of the system, since the ZH closure can

be expected to fail in reproducing the sharp peaks of the simulated g(r) associated with

equilibrium-cluster formation (c.f. Subsec. 8.3.3). In addition, Godfrin et al. [33] have

presented a heuristic criterion allowing to distinct between dispersed-fluid and random-

percolated vs. equilibrium-cluster and cluster-percolated states. At low φ, the critical

value Scrit(qc) ∼ 2.7 of the IRO peak marks the first-order transition from the dispersed-

fluid (S(qc) < Scrit(qc)) to the equilibrium-cluster phase (S(qc) > Scrit(qc)). All SALR

systems discussed in this thesis have IRO peak values well below this threshold. Further-

more, the IRO peak position, qc, of the explored systems is shifting to larger values as φ

is increased. As discussed by Cardinaux et al. [30] based on Lyszoyme experiments and

computer simulations of SALR systems, a φ-independence of the cluster peak position can

be considered as an indicator of the equilibrium-cluster phase.

Mani et al. [34] theoretically studied LJY systems using MD and MC simulations and

the analytic Gibbs-Duhem integration method. They showed that the equilibrium-cluster

and part of the non-equilibrium-cluster and gel (percolated) phases, are outside of the

solid-liquid coexistence region. Here, crystallization is suppressed in favor of cluster or gel

formation.

A detailed analysis of the cluster shapes found in the equilibrium and non-equilibrium

cluster phases highlights the subtle interplay of SA and LR for the resulting phase behavior.

If the attraction strength is above a certain threshold, elongated clusters, such as Bernal

spirals [110] are formed instead of spherical ones even though the latter have a smaller

potential energy [34]. The creation of elongated clusters is triggered by the LR interactions.

Considering two particles in contact, a third one experiences the lowest energy barrier

when it approaches the two along the connection line of their centers. If the depth of the

attractive well is too large, and can hardly be overcome by thermal energy, the particle

rearrangement becomes very slow which results in a kinetic trapping of the configuration

[34]. Hence, equilibrium cluster formation necessitates the detailed balance between SA,
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2. Explored systems and interaction models

favoring aggregation, and LR, suppressing macroscopic phase separation.

2.4. Polydisperse zwitterionic microgels

We have identified microgels already as model systems of permeable particles with tunable

softness. In addtion, they have features of practical importance such as temperatue and

pH-dependent volume phase transitions. This renders them as promising candidates for a

variety of applications in a diversity of fields such as in medicine, membrane science and

cosmetics [10, 15, 16, 19].

As discussed earlier, microgels consist of cross-linked polymer chains. Through the selec-

tion of the cross-linker and employed polymer, and their mass composition, properties of

the synthesized microgel particles such as size, softness, charge and permeability can be

affected. We have been involved in a joined experimental-theoretical study of amphoteric

microgels containing both positive and negative charges of equal amount. We explored if

and when the intra-particle charges start to affect the inter-particle interactions.

Introducing weak acidic [111–114] or basic [115–117] comonomers into PNIPAM microgels

leads to multisensitive microgels to, e.g., temperature, pH, and ionic strength. The pH-

dependent swelling of ionic microgels is caused by the osmotic pressure of the counterions

[118]. Recently, Holmqvist et al. [40] published a combined theoretical-experimental study

of the structure and dynamics of negatively charged PNIPAM microgels. They show that

the swelling of the particles depends on the number density of particles, in addition to

their dependence on pH and salinity.

The amphoteric microgels studied in this thesis contain both acidic and basic comonomers.

Consequently, the microgels show not only a a single volume phase transition as observed,

e.g., for PNIPAM suspensions but a more complicated three-state transition. They swell

in acidic or basic environments, and collapse for intermediate pH values. The intermediate

pH-regime, where the amphoteric microgels are collapsed, is referred to as the zwitterionic

regime. The simplest way to synthesize amphoteric microgels is to use a zwitterionic

comonomer, e.g. sulfobetaine [119]. The betaines carry an identical number of opposite

charges in a well-defined distance, which renders zwitterionic microgels into ideal model

systems of amphoteric microgels. On first sight, one might expect that the presence of

opposite charges in the microgel network influences the interactions between the particles.

To investigate the inter-particle interactions of amphoteric microgels, we have systemat-

ically varied the amount of zwitterions, and compared the resulting concentration series

of measured structure factors to polydisperse hard-sphere calculations. In this way, we

revealed when the charges inside a microgel start to affect the inter-particle interactions.
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2.4. Polydisperse zwitterionic microgels

It can be expected that the positive and negative charges inside a particle cause deviations

from the hard-sphere interactions, at least for large volume fractions when particles are

close to each other. The usage of the hard-sphere interaction potential for the theoretical

description of zwitterionic microgels is justified since the interaction strength parameter

of the Hertz potential is large, i.e. ε ≈ 103.

2.4.1. Schulz particle size distribution

Basically all one-component colloidal systems, regardless synthetic or biological ones are

not perfectly monodisperse in size. A monodisperse theoretical description is thus usually

only an approximation. Yet, if the polydispersity is low, the particles can be considered

as practically monodisperse.

However, the chemically produced zwitterionic microgels explored in detail in Chapter

7 necessitate a polydisperse description. The size polydispersity is characterized by the

particle size distribution function (PSD), ps

(
R;R, sR

)
, which is the probability density of

finding a particle with radius R in a suspension of polydisperse particles of mean particle

radius R and relative standard deviation sR. The latter reads explicitly,

sR =

[
R2 −R2

] 1
2

R
= [t+ 1]−

1
2 , (2.14)

where t is the non-dimensional width parameter.

For the PSD, we use the unimodal and skew-symmetric Schulz distribution function given

by (see, e.g. [61])

ps

(
R;R, sR

)
=

[
t+ 1

R

]t+1 Rt

Γ (t+ 1)
exp

[
− t+ 1

R
R

]
, (t > 0) , (2.15)

with moments

Rn =

∫ ∞
0

dR RnpS

(
R;R, sR

)
=

(n+ t)!

t! (t+ 1)n
R
n
, (2.16)

for n = {0, 1, . . .}. For small sR, the Schulz distribution is well approximated by a Gaussian

distribution function centered at R.

In Fig. 2.7, we show the unimodal Schulz distribution for mean diameter σ = 2R = 1,

and standard deviation sR = 0.18. For a practical measurable structure factor calcula-

tion presented in detail in Subsec. 3.5, we approximate the continuous distribution by a
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σ

σ;
 1

, 0
.1

8)

Fig. 2.7.: Solid line: continuous Schulz distribution ps (σ; 1, 0.18) with mean diameter σ =
1 and sR = 0.18, in comparison with its histogramatic representation {xi, σi}mi=1

for m = 4 components (red vertical bars). The latter is determined by equating
the first 2m = 8 moments of the Schulz distribution with its histogramatic
representation.

histogramatic one using m representative components

ps
(
R;R, sR

)∣∣
discrete

=

m∑
i=1

xiδ (R−Ri) , (2.17)

with 0 ≤ xi ≤ 1, and
∑m

i=1 xi = 1.

The m particle sizes, Ri, and respective weights, xi, are calculated by equating the first

2m-moments of the histogramatic representation,

Rn
∣∣
discrete

=
m∑
i=1

xiR
n
i ; i = 0 . . . 2m− 1 , (2.18)

with the respective ones of the Schulz distribution in Eq. (2.16). The result is exemplified

for ps (σ; 1, 0.18) in Fig. 2.7.

2.4.2. Form factor model

The zwitterionic microgel systems investigated in Chapter 7 have a non-homogeneous

spherical structure. Accordingly, the neutron scattering signal differs from that of a ho-

mogeneous sphere of same radius. This is accounted for by the scattering amplitude, f(q),

which quantifies the effect of the non-homogeneous distribution of intra-particle scatter-
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2.4. Polydisperse zwitterionic microgels

ing sites. The different reaction kinetics of the cross-linkers BIS and NIPAM leads to an

inhomogeneous cross-linker density inside the microgel, resulting in a fuzzy spherical sur-

face. For the comparison of the measured static structure factor, SM(q), with polydisperse

IET calculations of this quantity, one needs thus to account for the specific intra-particle

structure.

	
  

!

Fig. 2.8.: Schematics of the scattering amplitude model by Stieger et al. [120]. For details
see [120].

For the zwitterionic microgels, we use the scattering amplitude model by Stieger et al. [120]

depicted in Fig. 2.8. In this model, the scattering amplitude of a crosslinked microgel is

related to that of a core-shell-like particle with core radius R, and a shell of width 2σsurf.

The scattering amplitude is obtained from the convolution of the radial scattering length

distribution of a homogeneous sphere of radius Rbox with a Gaussian function of constant
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2. Explored systems and interaction models

width 1/σsurf. The latter accounts for the inhomogeneous cross-linker density. Explicitly,

f (qR) = R3

(
j1 (qR)

qR

)
exp

[
−(qσsurf)

2

2

]
, (2.19)

where R = Rbox + 2σsurf, and j1 (x) is the first-order spherical Bessel function. The total

radius in the scattering amplitude model is here

RHC = R+ 2σsurf. (2.20)

The subscript HC (hard core) denotes that this radius is used as the particle excluded

volume radius in our polydisperse static correlation function calculations. For the details

of the IET calculations for polydisperse zwitterionic microgel systems, see Section 3.5. In

Chapter 7, the results are compared with small angle neutron scattering (SANS) data.
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3. Theory of equilibrium microstructure

A variety of methods has been developed for the calculation of static suspension properties.

We discuss here the underlying concepts, followed by the presentation of the methods of

calculation of g(r) and S(q) used in this thesis. The Chapter ends with the generalization

of the presented methods to polydisperse systems, and the discussion of the cluster-size

distribution function. The latter is useful for analyzing computer simulation results for

clustering systems.

3.1. Static distribution functions

To calculate thermodynamic properties of an one-component many-body system using sta-

tistical mechanics the three macroscopic state variables volume of the system, V , number

of particles, N , and total energy, E, need to be known. Dependent on the considered ther-

modynamic ensemble, these variables can vary. If not mentioned explicitly, we will focus

in the following on the canonical ensemble where the temperature, T , particle number,

N and system volume, V , are fixed. In the thermodynamic limit N → ∞, V → ∞ with

ρ = N/V constant the different ensembles are equivalent away from phase boundaries.

The key function relating the positions of N spherical colloidal particles to macroscopic

state variables is the equilibrium probability density function (PDF) PN. It is the proba-

bility density for N particles to attain center-of-mass positions (r1, r2, . . . , rN ) = rN in a

system of volume V and temperature T . Explicitly, PN is given by [73]

PN

(
rN
)

=
e−βU(rN)

ZN
, (3.1)

where U
(
rN
)

is the N -particle potential energy which is often taken as pairwise additive,

i.e.

U(rN ) ≈
N∑

i,j=1
i<j

V (ri, rj) . (3.2)

Here V (ri, rj) is the effective pair potential of two particles i and j located respectively

at ri and rj . It is assumed here that three-body and higher-order effects are negligible.

In Eq. 3.1,

ZN =

∫
V n

drN exp
[
−βU

(
rN
)]

(3.3)
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3. Theory of equilibrium microstructure

is the configurational integral.

For the calculation of thermodynamic functions and in scattering experiments accessible

properties such as S(q) and g(r), only reduced distribution functions involving n � N

representative particles are required. The canonical n-particle density function is defined

by [73]

ρ
(n)
N (r1, . . . , rn) =

N !

(N − n)!

∫
dr(N−n) PN

(
rN
)
, (3.4)

and it is the probability density of finding n particles at positions r1 to rn. The factor

N !/(N − n)! accounts for classical indistinguishability of the N particles. In the fluid

phase state without a symmetry breaking external field, the system is spatially uniform

and isotropic [73]. Uniformity means here that [75]:

ρ
(n)
N (r1, r2, . . . , rn) = ρ

(n)
N (r1 + ∆r, r2 + ∆r, . . . , rn + ∆r) (3.5)

where ∆r is an arbitrary displacement vector. In particular, this implies that

ρ
(1)
N (r) = ρ . (3.6)

Moreover, the two-particle density, ρ
(2)
N (r, r′), is then solely a function of the distance

|r− r′| between two considered particles at position r and r′, viz.

ρ
(2)
N

(
r, r′

)
= ρ

(2)
N

(∣∣r− r′
∣∣) , (3.7)

when in addition d has been assumed.

In fluid colloidal systems away from a critical point, the correlation length ξ defined as

the distance over which two particles are correlated is typically of the order of the range

of the interaction pair-potential V (ri, rj) [75]. Thus,

ρ
(n)
N (r1, . . . , rn) ≈

n∏
i=1

ρ
(1)
N (ri) = ρn (3.8)

for |ri − rj | � ξ, where the second equality holds only in a uniform system [75]. The devi-

ation of a fluid system from the classical ideal gas behavior is quantified by the canonical

n-particle distribution function

g
(n)
N (rn) =

ρ
(n)
N (rn)∏n

i=1 ρ
(1)
N (ri)

=
ρ

(n)
N (rn)

ρn
, (3.9)
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where the second equality holds for a homogeneous system [73]. Hence, g
(n)
N (rn) is a

measure of the n-particle local structure in a colloidal system.

Note that when the potential energy UN is pairwise additive, g(2) (ri, rj) suffices to calculate

thermodynamic properties as described in Sec. 3.3. The two-particle distribution function

of an isotropic system depends on r = |ri − rj | only, and it is referred to as the radial

distribution function (RDF)

g(r) = lim
∞

g
(2)
N (r) = lim

∞

N(N − 1)

ρ2

∫
dr3 . . . drN PN (rN ) , (3.10)

where lim∞ denotes the thermodynamic limit. Note that g(r � ξ) = 1 (c.f. Eq. (3.8)).

Moreover [73]

g(r, φ→ 0) = e−βV (r) . (3.11)

The RDF in a system of large colloidal particles can be directly determined by confocal

microscopy. In a simulation study, it is obtained by counting the number of particles in

a thin spherical shell, at distance r from a selected particle, of thickness ∆r and volume

4πr2∆r. This follows from [75]

ρ

∫
dr12 g

(2)
N (r12) =

(3.10)

N(N − 1)

ρ

∫
dr12

∫
dr3 . . . drN PN (rN )

= N − 1 , (3.12)

where r12 = r1 − r2. Using N � 1 this implies

g(r) =
N(r)

4πρ r2∆r
, (3.13)

where N(r) is the number of particles with centers inside the shell [r, r + ∆r].

The discussion of the reduced distribution functions was given here using the canonical

ensemble. It can be repeated for the grand-canonical ensemble when the chemical potential

µ is used in place of N which is now varied. In the thermodynamic limit of a very large

system, the reduced distribution functions and thermodynamic properties are independent

of the employed statistical ensemble. We finally note that ρ(2)(r) and g(r) can be expressed
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as [73]

ρ(2)(r, r′) = lim
∞

〈
N∑

i,j=1
i6=j

δ (r− ri) δ (r− rj)

〉
, (3.14)

g(r) = lim
∞

1

ρ

〈
1

N

N∑
i,j=1
i6=j

δ (r− (rj − ri))

〉
, (3.15)

where the first equation is valid also for an inhomogeneuos system. Here, 〈. . .〉 denotes

likewise the canonical or grand-canonical ensemble average.

3.2. Static structure factor

The Fourier transform of g(r), or more precisely that of the total correlation function,

h(r) = g(r) − 1, with h(r → ∞) = 0, is the static structure factor S(q). The latter is

measured in a static scattering measurement. If monochromatic radiation of wavelength λ

impinges on a sample cell of volume V , it gets scattered by the included Brownian particles.

To infer information about the system microstructure, the scattering experiment needs to

probe distances in the order of the particle sizes and typical next-neighbor distances [121].

For colloidal systems where these distances are typically of the order of a few nm to µm,

scattering techniques such as DLS and SANS are widely used.

In a static scattering measurement, the mean intensity of scattered light, I(q), is measured

as a function of the wavenumber q. The latter is related to the scattering angle α by

q = 4π
λ sin

(
α
2

)
, where λ is the scattering wavelength inside the medium. For an ergodic

system of monodisperse particles, one has

I(q) ∝ 〈N〉P (q)S(q) , (3.16)

where 〈N〉 is the mean number of particles in the scattering volume, P (q) is the particle

form factor describing the distribution of intra-particle scattering sites, and S(q) is the cor-

relation function of the q-th component of microscopic density fluctuations characterizing
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the inter-particle correlations. The function S(q) is defined by [121]

S(q) = lim
∞

〈
1

N

N∑
j,l=1

eiq(rj−rl)

〉
(3.17)

= lim
∞

〈
1

N
ρqρ−q

〉
≥ 0 , (3.18)

with the q-th Fourier component of density fluctuations [121]

ρq =
N∑
l=1

eiqrl −Nδq,0 . (3.19)

Using the definition of the two-particle distribution function in Eq. (3.10) and Eq. (3.17),

S(q)− 1 is basically identified as the Fourier Transform of h(r), i.e.

S(q)− 1 = ρ

∫
dr eiqr h(r) (3.20)

= 4πρ

∫ ∞
0

dr r2h(r) j0(qr) . (3.21)

Here, an isotropic system is assumed, and j0(x) denotes the zeroth-order spherical Bessel

function. Note that Eq. (3.20) allows in principle for inferring g(r), and from this indirectly

V (r), from an experimental S(q). In practice, however, experimental noise and the limited

q-range (qmax = 4π/λ) severely hamper this procedure (see, e.g., [99, 122–124]).

In a system of hard spheres or purely repulsively charged particles, the distance, rm,

where the principal peak of g(r) occurs is related to the principal peak position, qm, of

S(q) approximately by rm ≈ 2π/qm. In Chapter 8, we will discuss this inverse relationship

in more detail, by investigating if the IRO peak position qc of S(q) can be used to infer

the mean distance, rc, between transient clusters.

3.3. Thermodynamic properties

We discuss here expressions for the internal energy, E, pressure, P , and osmotic compress-

ibility, χT, of a suspension in relation to g(r) and U(r).

We mentioned in Section 3.1 that distribution functions contain all the information about

the system thermodynamics. Following [75, 121], we discuss how three different thermo-

dynamic properties are linked to the g(r) and U(r), on assuming pairwise additivity of

U(rN ). First, we discuss the energy, pressure, and thermodynamic compressibility for
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state-independent interaction potentials, meaning that the latter are independent of tem-

perature and density. Generalized expressions for state dependent potentials are discussed

in Subsec. 3.3.2.

3.3.1. State-independent pair potentials

For pairwisse additive U , thermodynamic properties can be obtained via the equation

lim
∞

(
E

N

)
=

1

2
ρ

∫ ∞
0

dr 4πr2g(r)V (r) . (3.22)

for the internal energy E. Likewise, the pressure (virial) equation

P = Pid + Pint = ρkBT −
2π

3
ρ2

∫ ∞
0

dr r3g(r)
dV (r)

dr
. (3.23)

can be used for the calculation of the system pressure P , which is composed of two contri-

butions. The first is the kinetic ideal gas pressure Pid. The second part Pint, is due to the

interaction of particles, causing P > Pid for a purely repulsive systems where V ′(r) < 0.

For a discontinuous interaction potential the derivative in Eq. (3.23) causes problems.

By introducing the cavity function, Ξ(r) = exp(βV (r))g(r), in place of g(r), the pressure

equation for a system with hard-core diameter σ is derived which reads [73]

P

Pid
= 1− 2π

3
ρ

∫ ∞
σ

dr r3g(r)
dV (r)

dr
+ 4φ g

(
σ+
)
, (3.24)

where g(r < σ) = 0 has been used. Here, g(σ+) is the contact value of the RDF.

A third route for the calculation of thermodynamic properties is provided by the com-

pressibility equation,

χT

χid
T

= lim
q→0

S(q) = 1 + ρ

∫
dr [g(r)− 1] , (3.25)

with isothermal compressibility χT defined by

χT ≡ −
1

V

∂V

∂P

∣∣∣∣
T

=
1

ρ

∂ρ

∂P

∣∣∣∣
T

. (3.26)

In the framework of the grand canonical ensemble, χT can be related to the fluctuation in

the particle number N . Different from the energy and pressure equation, the pairwise ad-

ditivity of the potential energy U is not required for the applicability of the compressibility
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3.4. Ornstein-Zernike based integral equations

equation.

3.3.2. State-dependent pair potentials

State-dependent potentials arise when a coarse-graining procedure has been used where

in a mixture of large and small particles the small particles degrees of freedom have been

integrated out. This results in the description of the large particles as pseudo-particles

interacting by a state-dependent effective potential that implicitly accounts for the integral

effect of the small particles. Examples in case are the effective depletion potential of

polymer-dressed colloidal particles in a colloid-polymer mixture, and the Yukawa-type

effective potential of microion-dressed charged spheres.

In the calculation of thermodynamic properties, the state-dependence of the effective in-

teraction potential needs to be accounted for. The energy Eq. (3.22), and the pressure

Eq. (3.23), are generalized for state-dependent potentials to [75]

lim
∞

(
E

N

)
=

3

2
kBT + f0 (ρ) +

1

2
ρ

∫ ∞
0

dr 4πr2 g(r)
∂ [βV (r;T, ρ)]

∂β
, (3.27)

P = Pid + ρ2∂f0(ρ)

∂ρ
− 2π

3
ρ2

∫ ∞
0

dr r2 g(r)

[
r
∂

∂r
− 3ρ

∂

∂ρ

]
V (r;T, ρ) , (3.28)

where V (r;T, ρ) is the state-dependent effective pair potential of the large particle species.

Here, f0 denotes an additional structure-independent contribution to the total free energy

per (larger) particle which is called volume energy. For fixed T , it depends on the density ρ

of pseudo particles [57, 75]. The related osmotic pressure in the context of charge-stabilized

dispersions is discussed in detail in Sec. 6.2.4.

3.4. Ornstein-Zernike based integral equations

For given effective pair potential, S(q) and g(r) can be calculated using either elaborate MC

or MD simulations, or an appropriately selected Ornstein-Zernike (OZ) integral equation

scheme. The integral equation schemes are based on the OZ equation describing the

correlation of two particles at distance r. For a one-component homogeneous and isotropic

colloidal system, the OZ equation reads

h(r) = c(r) + ρ

∫
dr′c(

∣∣r − r′∣∣)h(r′) (3.29)

= c(r) + ρ (c ∗ h) (r) , (3.30)
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3. Theory of equilibrium microstructure

where (c ∗ h) (r) denotes the convolution of the direct, and total correlation functions, c(r)

and h(r), respectively.

In terms of S(q), the OZ equation is

S(q) =
1

1− ρc̃(q)
, (3.31)

where c̃(q) is the three-dimensional Fourier transform of c(r). For the calculation of g(r)

or h(r), a second so-called closure equation is needed which relates h(r), c(r), and V (r).

There are various ways to derive approximate closures for specific purposes. One way

is to use density functional theory (DFT), where different approximations for the excess

Helmholtz free energy functional give rise to different closure relations. An example in

case is the hypernetted-chain approximation (HNC) discussed in Section 3.4.2. For details

about its derivation starting from DFT see [1, 125].

Another way is to use diagramatic expansions of h(r) in terms of c(r) and V (r). An exact

but formal closure relation is given by [1, 73]

g(r) = exp [−βV (r) + g(r)− 1− c(r) +B(r)] , (3.32)

where B(r) is the so-called bridge function which is rather short-ranged and not very

sensitive to the specific form of V (r) [1, 126]. Different approximations for B(r) result in

different closure relations of accuarcy depending on the specific V (r). In the following,

we discuss the closure relations used in this thesis. The numerical solution of the integral

equation system consisting of Eq. (3.30) and an appropriately selected closure was gained

iteratively, starting with the Mayer function approximation for c(r) or, in extended pa-

rameter studies, starting from a previous solution for c(r). In our implementation of the

iteration procedure, the Fourier-transformed OZ-equation has been used, combined with

the FFTW software package (3.3.3) [127].

3.4.1. Verlet-Weis corrected Percus-Yevick solution for hard spheres

The Percus-Yevick (PY) closure reads [72]

c(r) ≈ g(r)
[
1− eβV (r)

]
. (3.33)

It is quite accurate for systems with short-ranged repulsion [73] and for hard spheres, it has

an analytic solution presented in Appendix A.1. This solution is known to be accurate for

φ . 0.4. For larger φ, it overestimates the next-neighbor peak height S(qm). To remedy
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3.4. Ornstein-Zernike based integral equations

σ

(a)

σ

(b)

Fig. 3.1.: Comparison of the PY and VW solutions for the S(q) of a hard-sphere suspension
with (a) φ = 0.419, and (b) φ = 0.497.

this, Verlet and Weis (VW) [74] introduced a refinement by incorporating the accurate

Carnahan-Starling (CS) expressions for gCS(σ
+) and the osmotic compressibility χT|CS

[75], viz.

gCS

(
σ+;φ

)
=

1− 0.5φ

(1− φ)3
, (3.34)

χT

χid
T

∣∣∣∣
CS

=
(1− φ)4

(1 + 2φ)2 + φ3 (φ− 4)
. (3.35)

The explicit VW expression for g(r) is given in Appendix A.2.

In Fig. 3.1, the PY and VW results for the S(q) of hard spheres are compared for (a)

φ = 0.419, and (b) φ = 0.497. For φ > 0.4, the PY solution overestimates somewhat the

oscillations in S(q). This overestimation is largest around the principal peak region.

3.4.2. HNC scheme

The non-linear hypernetted-chain closure is

g(r) ≈ e−βV (r) eh(r)−c(r) . (3.36)

Different from the PY closure it guarantees that g(r) ≥ 0, but there exists no analytic

solution. While the HNC scheme is ill-suited for hard-sphere systems, it applies well for

systems with soft interactions such as the Hertz potential for smaller ε (see e.g. [57, 125]),

and systems with long-ranged soft-repulsive interactions such as the Coulomb or Yukawa

interactions [121].

43



3. Theory of equilibrium microstructure

3.4.3. Zerah-Hansen scheme

The closure relations presented thus far lack thermodynamic self-consistency, in the sense

that the isothermal compressibilities calculated using the energy, pressure, and compress-

ibility equations are in general different (c.f. Sec. 3.3). The accuracy of a closure is

significantly increased when hybrid schemes are used which (partially) restore thermody-

namic self-consistency by interpolating between two appropriately selected pure closures.

The interpolation parameter is fixed by enforcing (partial) thermodynamic consistency. An

important example of a self-consistent closure scheme is the Rogers-Young (RY) scheme

[128] interpolating between the HNC and PY closures. It works well for systems with

purely repulsive V (r).

A hybrid scheme for pair potentials including attractive potential parts was proposed by

Zerah and Hansen [129]. It interpolates between the HNC closure (3.36) for long, and the

soft-core mean spherical approximation (SMSA) for short-distances. The Zerah-Hansen

(ZH) scheme is in particular suited for systems with a soft-core repulsion plus an additional

attraction as discussed in Chapter 8 [129–131].

In the ZH scheme, V (r) is split into a reference part, V1(r), and a perturbation part V2(r).

In this splitting, Zerah and Hansen [129] used the procedure proposed by Weeks et al.

[132].

β

Fig. 3.2.: Decomposition of the hard-core double Yukawa SALR potential V (r) in an at-
tractive reference potential part, V1(r), and repulsive perturbation potential part
V2(r). The parameters of the hard-core plus two-Yukawa SALR potential in Eq.
(2.9) are α = 1, K1 = 1.6306, K2 = 0.6306, z1 = 10, and z2 = 0.5.

For the two-Yukawa (Eq. (2.9)) and LJY SALR potentials (Eq. (2.13)) discussed in this
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3.4. Ornstein-Zernike based integral equations

thesis, we use the potential splitting V = V1 + V2, with

V1(r) =


∞ , r < σ

V (rshift) , r ≤ rshift

V (r) , r > rshift .

(3.37)

V2(r) =

V (r)− V (rshift) , σ ≤ r ≤ rshift

0 , r > rshift ,
(3.38)

and rshift = rmax > σ. Here, rmax is the distance where V (r) has its maximum. Accord-

ingly, V2(r) is purely attractive , as seen in Fig. 3.2, and V1(r) is purely repulsive. The

ZH closure reads

g(r) ≈ e−βV1(r)

[
1 +

ef(r)[h(r)−c(r)−βV2(r)] − 1

f(r)

]
, (3.39)

with the mixing function

f(r) = 1− e−ϑr , (3.40)

where ϑ is determined from enforcing equality of the compressibility derived from the virial

and compressibility route. In taking the concentration derivative of the virial pressure, we

assume for simplicity that the mixing parameter is density independent. This additional

approximation is justified, since ϑ is only a slowly varying function of ρ [129]. In the limit

of ϑ r →∞, the ZH closure reduces to the HNC closure (Eq. (3.36)) while for ϑ r → 0 the

SMSA closure

g(r) ≈ e−βV1(r) [1 + h(r)− c(r)− βV2(r)] (3.41)

is recovered.

Since different choices for V1(r) and V2(r) are possible, the comparison with simulation

data for g(r) is a necessary prerequisite to assess the accuracy of the ZH scheme [129].

Our choice of the potential splitting leads to ZH results for g(r) in excellent agreement

with computer simulations (MC, MD and MPC), as shown in Subsecs. 8.1.3 and 8.3.

3.4.4. Random phase approximation

In random phase approximation (RPA), c(r) of an isotropic and homogeneous colloidal

system with interaction potential V (r) is approximated by

c(r) ≈ c0(r)− βw(r) . (3.42)
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3. Theory of equilibrium microstructure

Here, c0 is the direct correlation function of an appropriately chosen reference system with

interaction potential V0, and w(r) the so called perturbation potential part,

V (r) = V0(r) + w(r) . (3.43)

The RPA for c(r) is justified if the contribution by the perturbation potential is small,

or if the particles are very soft. Insertion of Eq. (3.42) in Eq. (3.31) results in the RPA

expression for S(q),
1

SRP(q)
=

1

S0(q)
+ βρ w̃(q) . (3.44)

Here, S0(q) is the static structure factor of the reference system, and w̃(q) the Fourier

transform of the perturbation potential, the latter appropriately continuated in the overlap

region for a system with excluded volume interactions. Typically, w(r < σ) = 0 is used

here. It should be noted that g(r < σ) = 0 is not enforced by this simple scheme.

The accuracy of RPA results depends strongly on the suitable choice of the reference

potential. The perturbation potential, and the concentration should be small. Mathemat-

ically this is expressed by the condition S0(q)βρw̃(q) > −1 resulting from demanding that

S(q) > 0. The RPA is a useful tool for systems such as polymer blends [75, 133], allowing

for an analytic solution for S(q) in systems which otherwise are not analytically treatable.

3.5. Polydispersity and decoupling approximation

So far only monodisperse systems have been discussed. The generalization of the OZ

integral equation methods to polydisperse systems is computationally more demanding.

In the following, we discuss how the so-called measurable static structure factor, SM(q),

of a polydisperse system is related to the mean intensity, I(q), measured in a SANS

experiment which is the method used in the study of the zwitterionic microgels discussed

in Chapter 7

The scattering intensity, I(q), is proportional to the differential cross section, dσ (q) /dΩ,

defined as the number of neutrons scattered into an element of solid angle dΩ in the

direction of the scattering vector q. The differential scattering cross section corrected for

incoherent flat background at large momentum transfer, is for a polydisperse dispersion

of spherical colloidal particles of same material given by

dσ (q)

dΩ
∝ I (q) ∝ ρT f2 (q)SM (q) (3.45)

where ρT is the total number density of particles in the scattering volume [61], and single
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3.5. Polydispersity and decoupling approximation

scattering has been assumed. Here, f2 (q) is the second moment of the particle scatter-

ing amplitude with respect to the particle size distribution function given in Eq. (2.15).

The overline characterizes the average with respect to this distribution. Moreover, SM(q)

describes the scattering-amplitude-averaged inter-particle correlations encoded in the neu-

tron beam interference pattern. For a polydisperse system, SM (q) is not a purely statis-

tical mechanical quantity, since it depends also on the intra-particle scattering properties.

Thus, SM (q → 0) is in general different from the total isothermal osmotic compressibility.

For non-dilute suspensions, SM (q) is obtained experimentally by dividing the measured

intensity, I (q), of the non-dilute sample of number density ρT by the scaled intensity,

I0 (q), of a dilute reference sample at density ρ0
T � ρT where S0

M (q) ∼= 1, i.e.

SM (q) =
I (q)

I0 (q)

ρ0
T

ρT
. (3.46)

It is assumed here that the particle scattering amplitudes and the size distribution do not

change with concentration. For a polydisperse (multicomponent) system, the measurable

form factor, PM(q), is given by

PM (q) =
f2 (q)

f2 (q = 0)
, (3.47)

and normalized such that PM (q = 0) = 1.

For the size distribution ps

(
R;R, sR

)
, we use the unimodal and skew-symmetric Schulz

distribution function in Eq. (2.15) to describe the polydisperse zwitterionic microgels. In

accordance with experimental observations, only the particle core of radius R and thus

RHC (c.f. Eq. (2.20)) is treated as polydisperse, whereas the shell width 2σsurf is kept

constant.

For calculating SM(q), we use the m-component histogrammatic approximation of the

continuous Schulz distribution introduced in Subsec 2.4. The m(m + 1)/2 partial static

structure factors, Sαβ(q), are related to the partial total correlation functions, hαβ (r), of

α and β type particles by

Sαβ(q) = δαβ + 4πρT (xαxβ)
1
2

∫ ∞
0

dr r2hαβ(r)
sin (qr)

qr
. (3.48)

For size polydispersity sR < 0.3, it is sufficient to use a m = 4 component histogrammatic

representation. For the Sαβ(q) of a mixture of hard spheres of radius distribution {Rα},
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we use the analytic PY solution for the Laplace transform,

H̃αβ(s) =

∫ ∞
0

dr r hαβ(r) e−sr (3.49)

of rhαβ (r) provided by Blum and Hoye [134]. Using this solution, Sαβ(q) is obtained

straightforwardly from

Sαβ(q) = δαβ +
4π (ραρβ)

1
2

q
Im
[
H̃αβ (s = iq)

]
, (3.50)

with ρ{α,β} = ρTx{α,β}.

The total volume fraction, φT, of the polydisperse hard-sphere system is related to the

third moment of the hard-core radii distribution by

φT =
4π

3
ρTR3

HC . (3.51)

The polydisperse PY hard-sphere solution for fluid mixtures is known to be decently good

for φT . 0.3 and sR . 0.15. In place of the multi-component PY solution, we employ

here for analytic simplicity the so-called decoupling approximation expression, SD(q), of

SM(q) [61, 135]. This approximation uses the VW closure for monodisperse hard spheres,

with size polydispersity accounted for in the scattering amplitudes only. Thus, hαβ(r) is

approximated by the total correlation function, hid(r), of an ideally monodisperse system

of volume fraction φT, and total number density ρT equal to that of the actual polydisperse

system. Explicitly,

hαβ(r) ≈ hid (r;φT, R
∗
HC) (3.52)

where

R∗HC =
(
R3

HC

) 1
3

= RHC

[
1 +O

(
s2

R

)]
. (3.53)

In the decoupling approximation, SD(q), is given by

SM(q) ≈ SD(q) = [1−X(q)] +X(q)Sid (q;φT, R
∗
HC) (3.54)

where Sid (q;φT, R
∗
HC) is the static structure factor of the ideally monodisperse system

[61]. The function X(q) incorporates the scattering amplitude polydispersity and reads

[61]

X(q) =

[
f(q)

]2
f2(q)

. (3.55)
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3.5. Polydispersity and decoupling approximation

Note that 0 ≤ X(q) ≤ 1.

As shown in [136], the principal peak height of the Verlet-Weis (VW) corrected hard-

sphere structure factor at wave-number qm is, up to φT . 0.54, to a good approximation

given by

Sid(qm) ≈ 1 + 0.644φT g
CS
id (2R∗HC;φT) , (3.56)

where gCS
id (2R∗HC;φT) is the CS contact value of the hard-sphere RDF. According to MD

simulation results by Rintoul and Torquato [137, 138], the CS contact value expression

applies also to the metastable fluid branch of the hard-sphere phase diagram, up to the

melting point volume fraction φm = 0.54.

0 2 4 6 8
y= qR

0

0.5

1

1.5

S M
(q

)

SD(q) in VW-PY
Sid(q) in VW-PY
SM(q) in PY

Fig. 3.3.: Comparison of the decoupling approximation form SD(q) (solid line) of SM(q)
with the polydisperse PY solution for homogeneously scattering spheres of mean
radius R, polydispersity sR = 0.105, and φT = 0.25 (dashed line). Further shown
is the VW-PY structure factor Sid(q) of an ideally monodisperse system (dotted
line, see Eq. 3.54).

A comparison of the decoupling approximation result with the polydisperse PY solution

for SM(q) is presented in Fig. 3.3. For illustrative purposes, the calculations have been

performed for a system of homogeneously scattering spheres of mean radius R, sR = 0.105

and φT = 0.25. Polydispersity leads to a damping of the maxima and minima of SM(q), and

to a reduction of the principal peak height compared to that of the monodisperse system

characterized by Sid(q) [61]. The decoupling approximation overestimates SM(q) at low q,

and it predicts a deeper first minimum than the polydisperse structure factor. Nonetheless,

the principal peak shape of SM(q) is nicely reproduced in decoupling approximation, for

the considered sR values.
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We mention that an analytic extension of the polydisperse PY solution for H̃αβ(s), valid

for higher volume fractions, has been provided by Santos et al. [139]. For simplicity,

and since the considered sR values are rather small, we can restrict ourselves here to the

decoupling approximation with VW-PY input for Sid(q).
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The particles in soft matter systems have sizes in the range from a few nanometers to µm

and are embedded in a solvent whose molecules being orders of magnitude smaller. As a

consequence, the solvent can be treated as a continuum, affecting the motion of embedded

particles by HIs. In addition, the solute particles are affected by the thermal kicks of

the solvent molecules adding up to a non-directional stochastic force termed Brownian

force. The resulting Brownian motion is fundamental for the understanding of soft mat-

ter systems since it is the driving force for the homogenization, and the achievement of

thermodynamic equilibrium.

4.1. Fundamentals

4.1.1. Hydrodynamic time- and length-scales

For colloidal particles, one has the time scale separation

τD =
a2

d0
� τB =

m

ζ0
. (4.1)

Here, the structural relaxation time, τD, is a typical colloidal single-particle diffusion time

across the characteristic length, usually set equal to the particle radius a, and d0 is the

Stokes-Einstein single-particle self-diffusion coefficient; τB quantifies the momentum relax-

ation of a colloidal Brownian particle of mass m in the suspending fluid. For correlation

times large compared to the typical solvent molecules collision time, τS = 10−14 s, the

mean motion of a colloidal particle can be described by the averaged Langevin equation,

m
d

dt
〈v(t)〉 = −ζ0 〈v(t)〉 , (4.2)

with solution

〈v(t)〉 = v0e
− t
τB , (4.3)

where v0 is the initial velocity, and ζ0 = 6πη0a the friction coefficient. For a time resolution

t ∼ τD � τB where a detectable change in the particle position is observed, the Brownian

particles move essentially inertia-free.

This is consistent with the dynamics of the embedding fluid which, as we show now, is
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likewise inertia-free for t� τB. In this thesis, we are considering colloids in low molecular

weight solvents, such asH2O, D2O and DMF and hence a Newtonian fluid characterized by

a constant shear viscosity η0. Thus, for t� τs the fluid can be described as a homogeneous,

incompressible medium governed by the Navier-Stokes equation of incompressible flow,

ρs
du (r, t)

dt
= −∇p(r, t) + η0∆u(r, t) + f e(r, t) , (4.4)

with

∇ · u(r) = 0 , (4.5)

where ρs is the constant fluid mass density, and u and p are the fluid velocity and pressure

fields, respectively. Moreover, f e(r, t) is an external volumetric body force density acting

on the fluid at position vector r. It can be due to an externally applied force field, such as

an electric, magnetic, or gravitational field, or to system and particle surface boundaries.

The motion of a Brownian particle is coupled to the fluid via particle surface boundary

conditions (BCs) such as the no-slip BC

u(r)|r∈S+
i

= vi + Ωi × (r− ri) (4.6)

where vi and Ωi are the translational and angular velocities, respectively, of a rigid particle

i with surface Si and center position ri. Note that S+
i is the fluid layer adjacent to the

particle surface Si.

Since the Reynolds number associated with the characteristic length a, fulfills

Rea =
ρsvpa

η0
∼ |ρsu · ∇u|
|η0∆u|

� 1 , (4.7)

for colloidal particles, where |u| ∼ vp is the characteristic particle velocity and ∇ ∼ 1/a,

the Navier-Stokes equation reduces to the time-dependent linear Stokes equation

ρs
∂

∂t
u = −∇p(r, t) + η0∆u(r, t) + f e(r, t) . (4.8)

Moreover, since t� τB = (2/9)τη for neutrally buoyant particles, where

τη =
ρsa

2

η0
(4.9)

is the characteristic time for the transversal diffusive momentum transport in a viscous
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fluid, one finds ∣∣∣∣∣ρs
∂
∂tu

η0∆u

∣∣∣∣∣ ∼ τη
t
� 1 , (4.10)

so that the ∂tu part in the Stokes equation (4.8) can be likewise neglected.

As a consequence, the quasi-stationary fluid flow associated with the non-inertial particle

motion is described by the linear Stokes equation,

− η0∆u(r) +∇p(r)− f e(r) = 0 , ∇ · u(r) = 0 , (4.11)

expressing a local force balance between viscous, pressure, and external body forces.

Accordingly, the hydrodynamic force balance for each colloidal particle i is given by

Fh
i + Fi = 0 , (4.12)

where

Fh
i =

∮
S+
i

dS σ(r) · n̂(r) (4.13)

is the hydrodynamic force on particle i exerted by the surrounding fluid through its surface

Si. Here, n̂ is the unit vector normal to the particle surface at surface point r pointing

out of the particle into the fluid [140], and

σ = −p1 + η0

[
(∇u) + (∇u)T

]
(4.14)

is the Newtonian hydrodynamic stress tensor. The superscript T denotes matrix transpo-

sition, and 1 is the unit matrix. Moreover, Fi is the sum of all non-hydrodynamic forces

acting on particle i. Note that ∇ · σ = η0∆u − ∇p = 0 in the absence of a volumetric

body force.

4.1.2. Generalized Smoluchowski equation

The time evolution of the probability distribution function (PDF), P (X, t), with X =

{r1, . . . , rN}, of finding the centers of N particles at the configuration X at time t is

described by an N -particle diffusion equation termed the generalized Smoluchowski equa-

tion (GSE). This quantity is obtained heuristically from combining the exact continuity
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equation,

∂

∂t
P (X, t) +

N∑
i=1

∇i [vi P (X, t)] = 0 , (4.15)

expressing particle conservation with the force balance (c.f. Eq. (4.12))

Fh
i + Fint

i + FB
i = 0 (4.16)

for each Brownian particle i. Here, Fint
i = −∇iU(X) is the direct force on particle i due

to the interaction with the other particles, and

FB
i = −kBT∇i ln [P (X, t)] (4.17)

is a generalized chemical potential gradient force on particle i, termed Brownian force,

which has been introduced to enforce equilibration

P (X, t)→ Peq(X) (4.18)

for t → ∞, in the absence of external forces acting on the particles and no macroscopic

flow.

Using the linearity and instantaneity of Stokes flow (c.f. Eq. (4.11)), it follows

Fh
i = −

N∑
j=1

ζij(X) · vj , (4.19)

where ζij(X) are the N particle friction tensors forming the elements of a symmetric and

positive definite position-dependent 3N × 3N hydrodynamic friction matrix. Eq. (4.19)

substituted into Eq. (4.16) can be used to express the particle configurational velocities

vi in terms of the hydrodynamic forces. This leads to the GSE,

∂

∂t
P (X, t) = Ô(X)P (X, t) (4.20)

where

Ô(X) =
N∑

i,j=1

∇i · µij(X) ·
[
kBT∇j − Fint

j (X)
]

(4.21)
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is the second-order Smoluchowski differential operator. Inversion of (4.19) gives

vi = −
N∑

i,j=1

µij(X) · Fh
j , (4.22)

where the µij are the hydrodynamic mobility tensors forming the elements of a 3N × 3N

symmetric and positive definite mobility matrix.

4.1.3. Hydrodynamic interactions

The generalized Stokes law presented in Eqs. (4.19) and (4.22) states that the velocity

of a colloidal particle is influenced by the instantaneous hydrodynamic forces exerted on

all particles in the system. To visualize this, consider a particle i moving in the presence

of N − 1 other particles in a viscous fluid. Due to its motion, particle i exerts a force

Fi = −Fh
i on the surrounding fluid resulting in a perturbation of the fluid velocity field.

This perturbation is for t� {τη, τB} quasi-instantaneously transmitted through the fluid

as described by Eq. (4.11) inducing forces not only on neighboring particles but due to

hydrodynamic back-reflections also on the particle i itself.

The matrices µ and ξ are solely dependent on the particle configuration X, and the

hydrodynamic particle surface boundary conditions. The latter are discussed in detail in

Subsec. 4.1.4. The difficult theoretical treatment of HIs originates firstly from their long-

range nature. The disturbance of the fluid velocity field induced by the forced motion of a

particle decays with distance r as 1/r [141]. Moreover, two particles are strongly affected

hydrodynamically by a neighboring one. In contrast to effective direct interactions, which

often can be treated as pairwise additive, HIs can be described as pairwise additive for

semidilute systems of particles repelling each other over larger distances.

In the absence of HIs (free-draining limit), the mobility tensors reduce to

µij = δijµ01 , (4.23)

where µ0 = 1/ζ0. Provided the particles are mutually distinct so that they can be described

hydrodynamically as point-like, one has

µii = µ01 , (4.24)

µij ≈ T (ri − rj) , (4.25)
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where

T (r) =
1

8πη0r
[1 + r̂r̂] (4.26)

is the so-called Oseen tensor for an unbounded quiescent fluid and r̂ = r/r. The Oseen

tensor linearly relates a point force F0 acting on the fluid at r0 to the resulting flow-field

according to

u(r) = T (r− r0) · F0 . (4.27)

The next step beyond the far-distance point-particle approximation is to account for the

non-zero particle volume while maintaining the pairwise additivity of the point-particle

approximation. This leads to the Rotne-Prager (RP) approximation for no-slip spheres

(c.f Eq. (4.6))

µRP
ii = µ01 +O

[(
a

rij

)4
]
, (4.28)

µRP
ij = µ0

[
3

4

a

rij
(1 + r̂ij r̂ij) +

1

2

(
a

rij

)3

(1− 3r̂ij r̂ij)

]
+O

[(
a

rij

)4
]
, (4.29)

where r̂ij = (ri − rj)/ |ri − rj | and rij = |rij |.
The RP approximation can be applied to charged-particles dispersions where the mutual

distance is large compared to the particle radius a, and the importance of the near-field

HIs is minor. Only under these conditions is the approximation of the self-mobility µii by

µ01 justified.

The RP approximation cannot be used for hard spheres where near-contact particle config-

urations are likely, requiring instead the inclusion of lubrication-forces. However, its ana-

lytic form allows for the calculation of analytic expressions for certain transport properties.

This is exemplified by Eq. (5.3), giving the sedimentation coefficient, K, of permeable hard

spheres in RP approximation. In spite of the limited accuracy, such expressions provide

valid estimates for trends. Very importantly, the RP approximation preserves the positive

definiteness of the exact mobility matrix, guaranteeing that P (X, t→∞) = Peq(X).

The mobility matrix elements for higher orders in 1/r beyond the monopole and dipole

order can be calculated using various methods such as, e.g., the method of reflections [142]

and scattering series expansion methods [143].

Here, we discussed torque-free colloidal particles in a quiescent fluid, only. Though, the

presented concepts can be extended to particles with torque and to conditions where an

external force, e.g. an external shear flow, is present.
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4.1.4. Hydrodynamic particle modeling and boundary conditions

In Section 2.1, we have discussed the importance of appropriate hydrodynamic particle

modeling of the internal particle structure. The modeling includes the selection of ap-

propriate inner BCs for describing the solvent particle interactions. In this thesis, we

take advantage of the fact that complex particle intrinsic structures can be mapped on

the HRM, by considering the effect of solvent permeability through an effective reduced

hydrodynamic radius ah ≤ a, for which stick BCs apply. As an illustration, consider

two simple hydrodynamic particle models, namely uniformly fluid-permeable rigid spheres

[144, 145], and non-permeable rigid spheres with Navier partial-slip hydrodynamic surface

boundary conditions [146].

In the uniformly-permeable sphere model, the pore-size averaged fluid flow inside a particle

is described by the Brinkman-Debye-Bueche (BDB) equation, and outside by the Stokes

equation [147] (c.f Eq. (4.11)). The BDB equation describes the pore-size averaged fluid

flow inside a particle i of volume Vi by the inclusion of an additional friction [51, 59]

η0∆u(r)−∇P (r)− η0κ
2 [u(r)−wi(r)] = 0 , for r ∈ Vi . (4.30)

Here, wi is the velocity of the rigid skeleton of particle i with translational velocity vi and

angular velocity Ωi. Accordingly, u(r)−wi denotes the fluid velocity within the reference

frame of the particle skeleton. This relative velocity causes an additional friction force

characterized by the so-called inverse hydrodynamic penetration length, κ−1, and the sol-

vent viscosity η0. The imposed particle boundary conditions are that the fluid velocity and

tangential stress vary continuously across the particle surface. The suspension transport

properties in this model depend on the material-specific quantity κ, or equivalently on the

reduced parameter

λx =
1

κa
, (4.31)

equal to the ratio of the hydrodynamic penetration length, 1/κ, 1 and particle radius

a. The penetration length is roughly equal to the mean pore size of the rigid particle

skeleton. In the limit λx → 0 of vanishing mean pore size, a non-permeable sphere with

no-slip hydrodynamic BCs on its surface is obtained. For the BDB equation to apply,

the mean pore size should be smaller than one tenth of the particle radius, i.e. λx ≤ 0.1.

The present permeable particle model has been generalized to spherical particles with a

non-constant permeability profile κ(r), varying with the radial distance r (see, e.g. Ref.

1The hydrodynamic penetration length κ discussed in this section should not be confused with the Debye
screening length denoted by the same letter.
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4. Dynamic properties

[144]), such as core-shell particles [51, 148–150] consisting of a dry core and a permeable

outer shell. The core-shell model describes, in a coarse-grained manner, the hydrodynamic

effect of a polymer brush.

ls

u-w

fluid
particle

Fig. 4.1.: Sketch of Navier slip-stick boundary conditions, and the corresponding slip
length ls. Here, u−w denotes the velocity of the solvent relative to the particle
surface w.

The Navier partial-slip model describes fluid-impermeable colloidal spheres where the

fluid is allowed to partially slip along their surfaces. The associated Navier partial-slip

BC demands, for a stationary sphere, at each surface point the proportionality of surface-

tangential fluid velocity, u‖, and shear-stress, t‖, according to

u‖ =
ls
η0

t‖ . (4.32)

The proportionality constant is given by the ratio of the so-called Navier length, ls, and

the fluid shear viscosity η0. Here, ls approximately characterizes the extrapolated distance

over which the relative velocity of the solvent decays to zero as illustrated in Fig. 4.1. In

the limit l∗s → 0, the no-slip BC describing zero surface slip is recovered. Here, l∗s = ls/a

is the reduced Navier length. In the opposite limit l∗s → ∞, the free-surface BC of zero

tangential stress is obtained, corresponding to fluid perfectly slipping along the sphere

surface in form of local plug flow. The Navier partial-slip BC can serve as an effective

description of a hydrophobic particle surface, and of a rigid particle with surface roughness

and corrugations [151]. It is also applicable when non-adsorbing (short) polymers are

dispersed in the fluid, owing to the formation of a thin clear-fluid depletion layer at the

particle surfaces [152].

The hydrodynamic radius is a single-particle property which depends on the intra-particle

hydrodynamic structure of the spherical particle, and in principle also on the considered

58



4.1. Fundamentals

single-particle transport property. It can be defined operationally through the Stokes-

Einstein(-Debye) expressions

dt0(α) =
kBT

6πη0ath(α)
(4.33)

dr0(α) =
kBT

8πη0arh(α)3
, (4.34)

for the translational and rotational diffusion coefficients dt0 and dr0, respectively, of an

isolated spherical particle in an infinite fluid. The single-particle diffusion coefficients are

related to the respective mobilities by d
{t,r}
0 = kBTµ

{t,r}
0 . An additional definition not

considered here is based on the intrinsic viscosity, [η], of dispersed spheres [49]. Here,

α denotes a set of parameters characterizing the hydrodynamic particle structure. For

the two considered models is α = {λx, l∗s}. The respective translational and rotational

hydrodynamic radii are [144, 145]

ath(λx)

a
=

2x2 (x− tanh (x))

2x3 + 3(x− tanh (x))
(4.35)

arh(λx)

a
=

[
1 +

3

x2
− 3 coth (x)

x

] 1
3

, (4.36)

for a homogeneously permeable sphere with x = 1/λx, and [146]

ath(l∗s)

a
=

1 + 2 l∗s
1 + 3 l∗s

(4.37)

arh(l∗s)

a
=

(
1

1 + 3 l∗s

)1/3

, (4.38)

for a Navier partial-slip sphere.

One can associate each hydrodynamic radius, ah, with a reduced hydrodynamic slip length,

L∗h, through

L∗h(α) =
Lh(α)

a
= 1− ah(α)

a
. (4.39)

The quantity L∗h is the relative radial distance, Lh = a − ah, of the apparent no-slip

spherical surface inside the particle to its outside surface, in units of the outside surface,

direct interaction radius a. Except for λx, the asterisk is used in the context of the HRM

to label lengths given in units of a.

In the experimentally common situation where L∗h is small, curvature effects are negligible

and the particle-fluid interface can be described as flat. As it is explained in Ref. [53], the
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4. Dynamic properties

key point to notice is that the reduced slip length, L∗h,f = 1− ah,f/a, in the flat-interface

approximation and its associated flat-interface hydrodynamic radius, ah,f , are independent

of the single-particle transport properties dt0, dr0 and [η] used in their definition. Since each

of these transport properties is associated with a particular ambient velocity field, e.g. with

a constant flow field in case of dt0, an equivalent statement is that Lh,f is independent of

the ambient flow.

It was shown in Ref. [53] that the relations

L∗h(α) = L∗h,f (α)
[
1 +O

(
L∗h,f (α)

)]
(4.40)

a∗h(α) = a∗h,f (α)
[
1 +O

(
L∗h,f (α)2

)]
, (4.41)

apply universally to rigid spheres with arbitrary, non-singular spherically symmetric hydro-

dynamic structures and boundary conditions, independent of the invoked single-particle

transport property.

These relations are readily verified, using Eqs. (4.35) - (4.38), for the special case of a

Navier partial-slip sphere where the flat-interface slip length is equal to

L∗h,f (l∗s) = l∗s , (4.42)

and for a uniformly permeable sphere where

L∗h,f (λx) = λx . (4.43)

Note that the slip length, Lh, is equal to the Navier length, ls, in the flat-interface limit

only.

Eqs. (4.40-4.41) do not apply to non-rigid particles such as spherical liquid droplets, and

rigid particles of singular hydrodynamic structure. The latter case is exemplified in Ref.

[145] by a hollow sphere with a uniformly permeable rigid shell of infinitesimal thickness.

The hydrodynamic radii ath and arh of the ultra-thin hollow sphere differ already to linear

order in the smallness parameter λx. As for a droplet, an inscribed apparent no-slip

spherical surface which is necessarily rigid can not be introduced for the singular hollow-

sphere example.

Eqs. (4.35-4.38) can be inverted to obtain the material-specific parameters λx and l∗s in

terms of the ratio

γ =
ah
a
, (4.44)
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or likewise in terms of the reduced width (slip length), γ = 1 − γ, of the apparent fluid

annulus region surrounding the apparent no-slip sphere. The parameter γ completely

characterizes the intra-particle hydrodynamic structure in the hydrodynamic radius model

(HRM) where spherical particles of arbitrary hydrodynamic structure are described hy-

drodynamically as no-slip spheres of reduced radius ah, for unchanged pair potential. This

implies in particular an unchanged excluded volume radius a > ah, c.f. Fig. 2.1.

Numerical results illustrating the inversion of Eqs. (4.35-4.38) are depicted in Fig. 4.2

where the reduced penetration length of a permeable sphere, λt,r
x , and the reduced slip

length of a Navier partial-slip sphere, (l∗s)
t,r, are plotted as functions of γ. The reduced

lengths derived from the translational (rotational) Stokes-Einstein-(Debye) relation are

labeled by the superscript t (superscript r). For a thin annulus shell with γ > 0.9, the

γ−

λ
λ

γ−

Fig. 4.2.: Reduced fluid penetration length λt,r
x (red lines) and reduced Navier length (l∗s)

t,r

(blue lines), as functions of the reduced fluid annulus width γ = 1 − γ. Solid
lines (dashed lines) describe quantities derived from the translational (rotational)
single-sphere Stokes-Einstein-(Debye) relation.

four reduced lengths are small and commonly described by the dashed-dotted line γ,

corresponding to λx ≈ Lh and l∗s ≈ Lh. This situation is common to colloidal systems for

which values λx < 0.05 are typically found, and for which the Navier length is commonly

equal to a few nanometers.

Differences between the considered lengths are significant for larger values of γ. For a given

reduced hydrodynamic radius γ = ah/a, two different values λt
x �= λr

x are then obtained.

The perfect-slip limit l∗s → ∞ corresponds to γ = 1/3 for translational, and to γ = 1 for

rotational diffusion. While a rotating perfect-slip sphere experiences no friction, akin to
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a point particle for which γ = 0, the values of γ for a translating Navier sphere do not

exceed 1/3. Regarding the translational diffusion coefficient, a perfect-slip sphere with

γ = 2/3 has the same value, dt0 = kBT/(4πη0a), as a uniformly permeable sphere with

λx ≈ 0.278. However, such a large value of λx is unrealistic. As mentioned before, in order

for the BDB equation to describe flow inside a permeable particle, λx should be no larger

than 0.1, corresponding to a maximally allowed penetration length equal to one-tenth of

the particle radius.

Since in this thesis only translational diffusion properties are studied, the superscript t is

omitted in the following.

4.1.5. Dynamic structure factor

The dynamic structure factor is given in Smoluchowski dynamics by [153]

S(q, t) =

〈
1

N

N∑
i,j=1

eiq·ri
(
eÔBt e−iq·rj

)〉
eq

. (4.45)

It is the time-dependent generalization of the static structure factor, S(q) = S(q, t = 0),

presented in Eq. (3.17), and is the time auto-correlation function of microscopic particle

concentration fluctuations in Fourier space. In Eq. 4.45, 〈. . .〉eq denotes the equilibrium

average and

ÔB(X) =

N∑
i,j=1

[
kBT ∇i + F int

i (X)
]
· µij(X) · ∇j , (4.46)

is the so-called backward Smoluchowski operator equal to the adjoint of Ô(X) in Eq. (4.21)

with respect to the unweighted inner product (f |g) =
∫

dX f(X) g∗(X) for two arbitrary

configuration-space functions f and g. Note that S(q, t) is experimentally accessible using

DLS or NSE. It can be shown, that ÔB is a negative-semi definite operator so that S(q, t)

is a positive valued and strictly monotonic decaying function of time [153]. Eq. 4.45

will be used for the derivation of an expression for the hydrodynamic function which

characterizes the influence of HIs on the short-time dynamics of colloidal suspensions (c.f.

Subsec. 4.2.1).

4.1.6. Basics of DLS and NSE

Which experimental technique is useful for the measurement of S(q, t) of a suspension of

monodisperse colloidal particles depends on the particle sizes. For particles suspensions in

the micrometer size range, dynamic light scattering is useful. For quasi-elastic scattering,
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one infers in homodyne DLS the intensity auto-correlation function

gI(q, t) ∝
〈
|ES(q, 0)|2 |ES(q, t)|2

〉
, (4.47)

with the scattered light electric field strength amplitude

ES(q, t) ∝
N∑
j=1

f(q)eiq·rjE0 . (4.48)

Here, E0 is the incident light electric field strength [75], f(q) denotes the form factor of

a spherical particle, and 〈. . .〉 is likewise a time or ensemble average for ergodic systems.

Using the Siegert relation valid for an ergodic medium and with ES(q, t) treatable as a

Gaussian random variable, S(q, t) can be inferred from a DLS measurement of gI(q, t)

according to
gI(q, t)

gI(q, 0)
∝ β∗

(
S(q, t)

S(q, 0)

)2

, (4.49)

where β∗ with 0 < β∗ ≤ 1 is a geometric correction factor depending on the number of

collected speckles. For homogeneously scattering spherical particles is f(q) ∝ σ3. Thus

DLS measurements on systems containing cluster of particles are subtle. The scattering

signal from a large cluster can be dominant.

In a neutron spin echo experiment quasi-elastic scattering of an initially polarized neutron

beam from a sample is used to determine directly S(q, t) from the phase shift of the

scattered neutron beam [98]. Because of the small De Broglie wavelength of thermal

neutrons, distances on the inter-atomic length scale can be resolved. Different from DLS

multiple scattering is very small even in a concentrated dispersion in NSE. Moreover,

S(q, t) is derived from atomic and molecular positions [154] so that in NSE there is not

the strong particle size dependence of the scattering signal proportional to σ6 as in DLS.

This is a great advantage when the dynamics of (transient) clusters of particles is studied.

Our American collaborators use NSE at the NIST Center for Neutron Research in Gaithers-

burg, MD, and the Institut Laue-Langevin in Grenoble to measure the short-time dynamics

of Lysozyme protein solutions [98]. This is presented in Sec. 8.2. In the NSE measure-

ments they consider short correlation times, typically less than 25 ns [32]. In the scanned

q-range and time window the internal motion of Lysozyme domains, which in principle

could be probed by NSE, can be ignored due to the strong rigidity of the Lysozyme pro-

tein [32, 155]. Note further that the rotation of the proteins is much slower than their

translational motion [32].
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4.2. Short-time dynamics

The short-time regime, τB � t � τD, is distinct from the long-time regime, t � τD,

as discussed in Sec. 4.1.1. For short times, the particle configuration change is so mi-

nuscule that the slowing influence of direct interactions is not yet operative, different

from the solvent-mediated HIs which act quasi-instantaneously on the colloidal short-time

scale. Short-time transport properties are thus expressible as simple equilibrium averages,

with direct interactions entering only indirectly via their influence on the equilibrium mi-

crostructure, e.g on g(r). Long-time transport properties are additionally influenced by

the Brownian motion of the particles so that they depend in a direct way both on direct

and hydrodynamic interactions.

In this section, we describe our analytic toolbox of calculating short-time diffusion and

rheological properties of hydrodynamically structured particles, in the framework of the

HRM.

4.2.1. Hydrodynamic function

The short-time dynamics is characterized by the initial decay of S(q, t). For an analytic

expression of S(q, t) for t� τD, a cumulant expansion can be used,

S(q, t) = S(q, t = 0) exp

[ ∞∑
l=1

(−t)l

l!
Γ(l)(q)

]
, (4.50)

where Γ(n) is the n-th cumulant of S(q, t). For uncorrelated particles in a dilute suspension

for which the GSE is explicitly solvable, one shows that Γ(1)(q) = q2d0 with the Stokes-

Einstein single-particle diffusion coefficient d0. For correlated particles suspensions, the

first cumulant is given by

Γ(1)(q) = q2D(q) (4.51)

with the short-time diffusion function D(q). The higher order cumulants characterize the

deviation of S(q, t) from a purely exponential decay for time t ∼ τD [153].

An analytic expression for D(q) is derived from the first-order in time Taylor expansion

of the rhs of Eq. (4.45). Comparison with Eq. (4.50) gives

Γ(1)(q) = q2D(q) = q2d0
H(q)

S(q)
(4.52)
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with the positive-valued hydrodynamic function H(q) given by

H(q) = lim
∞

1

Nµ0

N∑
i,j=1

〈
q̂ · µij(X) · q̂ eiq·(ri−rj)

〉
eq
, (4.53)

where q̂ = q/q.

This is the key-quantity classifying short-time diffusion on length scales∼ 1/q. It quantifies

the effect of HIs on the short-time decay of S(q, t). The thermodynamic limit used in Eq.

(4.53) to describe a macroscopically large scattering volume. For hydrodynamically non-

interacting colloidal particles is µij = µ01δij , so that H(q) ≡ 1 independent of q. In

this case, the decay of concentration fluctuation correlations is governed solely by S(q)

according to

D(q)|no-HI = q2 1

S(q)
. (4.54)

Any oscillations in H(q) are thus a hallmark for the influence of HIs. Note that D(q) is

directly accessible in DLS and NSE by the measurement of the short-time decay of S(q, t).

The employed hydrodynamic particle model in a theoretical calculation enters H(q) via

the hydrodynamic mobility tensor µ for which analytic or numerical results are required.

Self-diffusion coefficient

Eq. (4.53) can be split into a self- and a distinct-part:

H (q) =
1

d0
〈q̂ ·D11 (X) · q̂〉eq + lim

∞

N − 1

d0

〈
q̂ ·D12 (X) · q̂ eiqR12

〉
eq

(4.55)

=
ds

d0
+Hd(q) (4.56)

where in place of the mobility tensor µ the related diffusivity tensor D = kBTµ with

d0 = kBTµ0 has been used. The wavenumber-independent first part contains all self

terms i = j. It is equal to the translational short-time self-diffusion coefficient, dS, which

quantifies the slope of the initial mean square displacement (MSD). Owing to the slowing

influence of the near-field part of the HIs at non-zero particle concentrations, dS is smaller

than d0 to which it reduces at infinite dilution only. The second, wavenumber-dependent

distinct part, Hd(q), is due to hydrodynamic cross correlations. It vanishes for q →∞.

65



4. Dynamic properties

sedimentation velocity

The hydrodynamic function has the physical interpretation of a short-time generalized

sedimentation coefficient for a homogeneous suspension of monodisperse colloidal spheres

subjected to a weak force field colinear with q and oscillating spatially as cos (q · r) with

spatial position r [156]. For q → 0, a uniform force field is recovered such as the buoyancy

corrected local gravitational field on earth. As a consequence,

K =
Vsed

V0
= lim

q→0
H(q) (4.57)

is the short-time average sedimentation velocity, Vsed, of hydrodynamically interacting

colloidal particles, normalized by the particle model dependent mean sedimentation ve-

locity, V0, of an isolated particle sedimenting in the same force field. The sedimentation

coefficient, K, is related to the short-time collective diffusion coefficient, dC, by

dC = d0
K

S(0)
, (4.58)

where for monodisperse particles S(0) = S(q → 0) is the relative osmotic compressibility

of the suspension. At larger concentrations where S(0) is small, dC can be significantly

larger than d0 even though K < 1. In principle, the short-time coefficient dC should

be distinguished from the associated long-time collective diffusion coefficient, dL
C appear-

ing in Fick’s law, j = −dL
C∇n, of macroscopic gradient diffusion. The latter, however,

is only slightly smaller than the short-time coefficient, by less than 7 % even for a con-

centrated suspension of no-slip colloidal hard spheres at volume fraction φ = 0.45 [157].

The difference between the two collective diffusion coefficients can be expected to be even

smaller for particles with weaker HIs such as permeable and partial-slip spheres, and

charge-stabilized particles with long-range electrostatic repulsion. Different from collec-

tive diffusion and sedimentation, the long-time translational self-diffusion coefficient, dL,

can be substantially smaller than its short-time sibling dS, owing to the retarding relax-

ation of next-neighbor particle cages which are slightly distorted from their equilibrium

spherical symmetry at long times. For colloidal hard spheres at the freezing transition

concentration, e.g., is dL/dS ≈ 0.1 according to the empirical freezing rule by Löwen et al.

[158, 159].

A key observation regarding the translational mobility tensors, µij , of hydrodynamically

structured spherical particles is the relation

µij(X) = µij;HRM(X; ah,f )
[
1 +O

((
L∗h,f

)2)]
, (4.59)

66



4.2. Short-time dynamics

where the µij;HRM(X; ah,f ) are the mobility tensors of the associated HRM. The rela-

tion follows from Eqs. (4.40) and (4.41) in conjunction with a general scattering series

expansion of the exact N -sphere translational mobility tensors [52, 53]. Since the short-

time transport properties are equilibrium averages of specific mobility tensor elements, it

follows that

H(q) = HHRM(q)
[
1 +O

((
L∗h,f

)2)]
(4.60)

with an analogous expression valid for η∞. Thus, the error introduced in calculating short-

time transport properties of hydrodynamically structured particles using the simplifying

HRM is of O((L∗h,f )2) small.

For the calculation of the short-time self-diffusion coefficient and sedimentation velocity

analytic expressions have been derived. We will present in Chapter 5 useful analytic scaling

relations for the calculation of short-time diffusion dynamic properties of suspensions of

internally structured particles. These relations are complemented by two semi-analytic

and easy-to-implement approximation schemes which have been successfully applied in

the past to suspensions of no-slip neutral and charge-stabilized spherical particles [65, 86,

136, 160]. The so called pairwise additivity (PA) and Beenakker-Mazur (BM) methods are

presented in Secs. 4.4.1 and 4.4.2, and complemented by a discussion of a hybrid scheme

in Sec. 4.4.3.

4.2.2. High-frequency viscosity

So far diffusion-related properties have been addressed. We discuss next a short-time

rheological property, namely the high-frequency-limiting suspension viscosity η∞. It lin-

early relates the average suspension shear stress to the applied rate of strain in a low-

amplitude, high-frequency shear experiment. For frequencies ω � 1/τD, the suspension

microstructure remains practically unchanged so that like the short-time diffusion proper-

ties discussed before, η∞ is a quantity of purely hydrodymanic origin, influenced by direct

particle interactions through the equilibrium averaging only. For particles acting hydro-

dynamically like points (γ = 0), it reduces to the shear viscosity, η0, of the suspending

Newtonian fluid. In the limit of infinite dilution, the viscosity expression η0 (1 + 2.5φ) is

obtained, which included the Einstein intrinsic viscosity contribution 5/2φ.

The high-frequency viscosity should be distinguished from the zero-frequency viscosity

[161],

η (φ) = η∞ (φ) + ∆η (φ) , (4.61)

with the latter determined in a steady low-shear experiment. See Subsec. 4.3.2 for a
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discussion of η.

4.3. Long-time dynamics

Long-time colloidal transport properties such as dL and η characterize the particle dynam-

ics on time scales t� τD during which the particle configuration has changed significantly.

Different from short-time properties, they are influenced by thermally driven microstruc-

tural relaxations depending on direct and hydrodynamic interactions alike. This renders

a first-principles calculation of long-time properties demanding, both in theory and sim-

ulations, in particular when the salient HIs are accounted for. Consequently, in most

simulation studies of the concentration dependence of dL and η, the influence of the HIs

has been ignored [162–164]. The few existing three-dimensional simulation studies where

HIs are included focus on Brownian hard spheres with no-slip BCs [165–167]. Therefore,

a theoretical scheme is in demand allowing for the approximate calculation of dL and η

for suspensions of hydrodynamically structured particles. Such a scheme is presented in

detail in Sec. 5.4. In addition, simplified mode-coupling theory expressions for dL and η

are presented in Subsec. 4.4.4.

Here, we shortly introduce the long-time dynamic properties discussed in this work and

highlight their physical origin.

4.3.1. Self-diffusion coefficient

The long-time self-diffusion coefficient, dL, is equal to the slope of the MSD for times

t � τD. It can be related to dS with the help of the following configurational average

expression [61],

dL = dS + ∆D , (4.62)

with

∆D = −
〈

(q̂ · v1)Ô−1
B (q̂ · v1)

〉
. (4.63)

The slowing effect on dL by the dynamically restructuring cage of next neighbors formed

around each particle is embodied in the negative valued relaxation contribution, ∆D, to

DL implying

0 ≤ dL < dS < d0 , forφ > 0 . (4.64)

In Eq. (4.63), v1 = ÔBr1 is the coarse-grained velocity of a representative particle 1 at po-
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sition r1 whose Brownian motion is considered, and ÔB(X) is the backward Smoluchowksi

differential operator defined in Eq. (4.46), with its inverse denoted by Ô−1
B (X).

The calculation of the long-time diffusion coefficient is an ambitious task since the distor-

tion of the next-neighbor cage and its reformation need to be considered. For this reason,

dL can not be expressed as average over equilibrium distribution functions. Even using

computer simulations, only few data, mainly for hard-sphere systems, exist since the com-

putational cost of addressing the long-time regime is very high. This is going to improve

in the near future due to the strong increase of computational resources.

However, there exist theoretical schemes for the calculation of long-time dynamic prop-

erties based on approximations required for the solution of the generalized Smoluchowski

equation (4.20) in the long-time regime. For instance, dL can be calculated using a linear

response formalism [142, 153]. In addition, mode-coupling theory (MCT) can be used to

calculate the time evolution of the dynamic structure factor based on a memory function

formalism. The latter characterizes the fact that a particle configuration at time t depends

on its previous history in a non-Markovian way. The MCT scheme is not central to the

work presented here.

4.3.2. Zero-frequency viscosity

The zero frequency viscosity introduced in Eq. (4.61) linearly relates the shear stress τ

exerted on a dispersion and the resulting shear rate ∂u/∂y for steady shear, i.e.

τ = η
∂u

∂y
. (4.65)

According to Fig. 4.3, we consider here simple shear flow where u = uêx with u = γ̇y and

constant shear rate γ̇.

In comparison to the high-frequency viscosity η∞ (c.f. Eq. 4.61), η has an additional

contribution, ∆η > 0, originating from the relaxation of the shear-distorted dynamic

particle cage formed around each particle. Thus, ∆η is influenced both by direct and

hydrodynamic interactions, with the consequence that for strongly correlated colloidal

particles, it is substantially larger than η∞. The long-time dynamic property η can be

calculated for example using the simplified MCT expression presented in Sec. 4.4.4. In

addition, in Subsec. 5.4.2, we discuss an analytic scaling relation which allows for the

calculation of η for permeable particles within the HRM.
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τ = F/A

y 

x

u
∂u

∂y

Fig. 4.3.: Sketch of a steady-shear experiment with applied stress τ = F/A and resulting
velocity gradient ∂u/∂y. F denotes the tangential force on the upper plate of
the shear cell, and A its area.

4.4. Methods of calculations

In this section, we discuss three different analytic methods for the calculation of dynamic

short-time properties, namely the pairwise-additivity approximation (PA), the Beenakker-

Mazur method (BM), and a hybrid scheme (PA-BM) combining the advantages of the

latter two methods. We present a generalization of these methods to the HRM that allows

for an appropriate modeling in particular of particle permeability, and more generally an

efficient treatment of different hydrodynamic particle models.

4.4.1. PA approximation for the HRM

The PA approximation of short-time diffusion properties is based on the cluster expansion

of the N -particle translational mobility matrix of colloidal spheres,

μij (X) = μ0 1δij +
[
μ
(2)
ij (X)− μ0 1δij

]
+ three-body terms + . . . , (4.66)

with three-body and higher-order cluster contributions being disregarded. The single-

particle translational mobility coefficient, μ0 = d0/(kBT ), is dependent on the hydro-

dynamic intra-particle structure. In the PA approximation, the hydrodynamic mobility
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tensors on the pairwise additive level,

μ
(2)
ij (X) = μ0

⎡
⎣δij

⎛
⎝1 +

N∑
l=1;l �=i

ω11 (ril)

⎞
⎠ (4.67)

+ (1− δij) ω12 (rij)

]
,

where rij = ri − rj , are fully accounted for including near-contact lubrication terms. The

two-particle tensors ω11 and ω12 describe the hydrodynamic self-interaction of a sphere

through flow reflections at another one (ω11), and interactions induced by the motion

of a second particle (ω12), respectively. The axial symmetry of the two-sphere hydrody-

namic problem in an unbound fluid allows for splitting these tensors into longitudinal and

transversal components (c.f. Fig. 4.4), i.e.

ωij(r) = xij(r)r̂r̂+ yij (r) [1 − r̂r̂] , (4.68)

where r̂ = r/r.

Fig. 4.4.: Symmetry of hydrodynamic interactions in the PA approximation, with corre-
sponding longitudinal, xij(r), and transversal, yij(r), 2-sphere mobility coeffi-
cients.

The two-sphere mobilities xij(r) and yij(r), where i, j ∈ {1, 2}, can be calculated recur-

sively in the form of a power series in the reduced inverse pair distance, ah/r, combined

with known near-contact lubrication expressions [147, 168, 169] (c.f. Fig. 4.5). The

respective truncated expressions up to second order (c.f. Eqs. 4.28 and 4.29) in RP ap-

proximation have been presented already in Subsec. 4.1.3, in the context of the mobility

matrix.

Insertion of Eq. (4.67) into Eq. (4.53) leads to the PA approximation expressions for dS
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σσ

γ = 1.0
γ = 0.9

Fig. 4.5.: Longitudinal and transversal mobility coefficients, xij(r) and yij(r), tabulated
by Jeffrey and Onishi [168] as functions of the interparticle distance r in units of
the particle diameter σ. The scaled effective mobilities in the HRM for γ = 0.9
are represented by the dashed lines, illustrating the reduced strength of HIs with
decreasing σh/σ.

and Hd(q) [65]. We present these expressions in a form suitable for HRM particles where

one distinguishes between the hydrodynamic particle diameter, σh = 2ah, and the direct

interaction diameter σ. For rigid spherical particles is σ = 2a the hard-core diameter,

while for mechanically soft particles, σ is identified with the characteristic soft diameter

σs such as the one appearing in the Hertz potential in Eq. (2.1).

Introducing the reduced pair distance, x = r/σh, and wavenumber, y = qσh, the self-part

contribution to H(q) is given by

dS (φ, γ)

d0 (γ)

∣∣∣∣
PA

= 1 + 8γ3φ

∫ ∞

0
dxx2 g (γx) [x11 (x) + 2y11 (x)− 3] . (4.69)
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The distinct contribution to H(y, γ) reads

Hd (y, γ)
∣∣∣
PA

= γ3φ (4.70)

+ 18γφ

∫ ∞
0

dx xh (γx)

[
j0 (xy)− j1 (xy)

xy
+ γ2 j2 (xy)

6x2

]
+ 24γ3φ

∫ ∞
0

dx x2g (γx) y12 (x) j0 (xy)

+ 24γ3φ

∫ ∞
0

dx x2g (γx) [x12 (x)− y12 (x)]

[
j1 (xy)

xy
− j2 (xy)

]
,

where jn is the spherical Bessel function of order n, and h = g − 1 is the total correlation

function. The overlines in x12(x) and y12(x) indicate that the respective far-field parts

up to third order in 1/x have been subtracted off. The argument γx in g and h, with

γ = σh/σ, is a reminder that the RDF is commonly calculated as a function of r/σ, such as

in the VW-PY solution for hard spheres. In Fig. 4.5, we show the longitudinal, x11(r) and

x12(r), and transversal, y11(r) and y12(r), mobility coefficients tabulated by Jeffrey and

Onishi [168] as functions of the interparticle distance r in units of the particle diameter

σ for γ = 1 and γ = 0.9. Values of γ < 1 lead to a shift of the γ = 1 mobility functions

reflecting the reduced strengths of the HIs.

In our computations, we use accurate tables for the mobility coefficients provided by

Jeffrey and Onishi [170–173] for x = rσh < 15 which continuously cross-over into the

corresponding far-distance expansion expressions provided in Appendix B.1.

According to Eq. (4.69), the first-order virial coefficient of the short-time self-diffusion

coefficient, dS , is given by

λt (γ) = 8γ3

∫ ∞
0

dx x2 exp [−βV (x)] [x11 (x) + 2y11 (x)− 3] . (4.71)

With the invocation of the precisely tabulated mobilities, the PA-scheme accurately re-

produces the first-order virial coefficients for dS, K, and η∞ [173].

The PA expression for the high-frequency limiting viscosity, generalized to the HRM, reads

η∞ (φ, γ)

η0

∣∣∣∣
PA

= 1 +
5

2
γ3φ

[
1 + γ3φ

]
+ 60

(
γ3φ

)2 ∫ ∞
0

dxx2g (γx) J (x) , (4.72)

with the rapidly decaying two-sphere shear mobility function, J(x), accounting for the two-

body HIs. It decays asymptotically for distances x as J(x) ∼ (15/128)x−6. We employ
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an accurate numerical table for J(x), based on recursion expressions and the lubrication

analysis given in Ref. [170], accompanied by the far-field expansion for distances x > 15.

Finally, we note that in the spherical annulus model of hydrodynamically structured hard

spheres, the lower integration boundary of all integrals in this subsection is given by 1/γ.

4.4.2. Beenakker-Mazur method for the HRM

Except for η∞, the applicability range of the PA method for short-time hydrodynamic

properties is restricted to lower φ values. To first order in φ, the PA solution is exact. In

contrast, the BM method for H(q) and η∞ by Beenakker and Mazur [174, 175] is appli-

cable also to concentrated systems. We discuss here the standard version of this scheme,

but generalized to the HRM where S(q) is the only required input. The BM method

is based on a renormalized concentration fluctuation expansion where many-particle HIs

contributions are approximately accounted for in terms of so-called ring diagrams, but

with lubrication corrections disregarded. Once the self-part dS of H(q) is suitably cor-

rected [65, 85], as discussed in Sec. 4.4.3, the BM method provides a decent description of

short-time transport properties, and this for neutral and charge-stabilized particle systems

alike (see Ref. [65]). The BM method results for η∞ and H(q) reveal inaccuracies at all

concentrations which can be partially attributed to its approximate treatment of the HIs.

This is underlined in recent work by Makuch and Cichocki [176] where the approximation

steps in the derivation of the BM method have been reduced. The fact that their revised

version of the BM method with improved hydrodynamic mobility tensors does not signif-

icantly improve the agreement with simulation data for no-slip hard spheres points to a

fortuitous cancellation of errors introduced in the approximate derivational steps of the

original Beenakker-Mazur method.

The BM method expressions for ds/d0 and Hd(q) [174, 175], generalized to the HRM,

reads

ds

d0

∣∣∣∣
δγ

=
2

π

∫ ∞
0

dk

(
sin (x)

x

)2 1

1 + λ3φSγ0 (x)
(4.73)

Hd (y, γ)
∣∣∣
δγ

=
3

4π

∫ ∞
0

dy′

(
sin
(

1
2y
′)

1
2y
′

)2
1

1 + γ3φSγ0

(
1
2y
′
)

·
∫ 1

−1
dµ

(
1− µ2

) [
S

(
1

γ

√
y2 + y′2 − 2yy′µ

)
− 1

]
, (4.74)

where y = qσh. The function Sγ0(x) consists of an infinite sum of wavenumber-dependent
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contributions depending on the effective hydrodynamic volume fraction φh = γ3φ, as

well as on the inter-related scalar coefficients γ
(n)
0 , with n ∈ {0, 1, 2, · · · }. The explicit

expressions for Sγ0(x) and γ
(n)
0 , and details about our implementation of the BM method,

are provided in the Appendix B.2. Higher-order versions of the BM method require higher

than second-order static correlation functions [173] and hence are laborious to implement.

The BM method expression for η∞ by Beenakker [177], as adapted to the HRM, is given

by

η∞ (φ, γ)

η0

∣∣∣∣
δγ

=
1

λ(0) (φ, γ) + λ(2) (φ, γ)
, (4.75)

where

λ(0) (φ, γ) =

[
1 +

5

2
γ3φγ̃

(2)
0

]−1

(4.76)

λ(2) (φ, γ) =
15

2π
γ3φ

[
γ̃

(2)
0 λ(0) (φ, γ)

]2

∫ ∞
0

dy
j2
1

(
1
2y
)

1 + γ3φSγ0

(
1
2y, γ

3φ
) [S (y

γ

)
− 1

]
, (4.77)

and γ̃
(2)
0 = γ

(2)
0 /ρ. The argument y/γ in the static structure factor is used as a reminder

that S(q) is usually calculated as a function of qσ.

The approximate character of the BM method is highlighted by an analysis of the first-

order virial results of the self-diffusion coefficient, the sedimentation velocity and the high-

frequency viscosity. This analysis shows that for low φ the first-order virial coefficient

is severely overestimated by up to ∼ 49% [173]. In addition, the HRM self-diffusion

coefficient in BM approximation depends solely on the hydrodynamic volume fraction,

λ3φ, independent of the system configuration, e.g. g(r) or S(q). It has been shown to be

a decently good approximation for hard-sphere systems only [173].

4.4.3. Hybrid BM-PA scheme

A simple yet significant improvement over the original BM method, preserving its analytic

simplicity, is obtained from using it for the distinct part, Hd(q), only, where it gives overall

good results. This was shown in Refs. [65, 85, 136], both for neutral and charge-stabilized

particles systems in comparison with elaborate hydrodynamic force multipole simulations

and experimental data. Regarding the self-part, dS , of H(q), accurate expressions can be

used instead, such as the scaling relations presented in Eq. (5.1) for particles with hard-
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core interactions, or the PA approximation expression in Eq. (4.69) for lower-concentrated,

charge-stabilized systems. This hybrid procedure is referred to as the self-part corrected

BM or hybrid BM-PA scheme, respectively. It has been successfully applied to hard-sphere

and charged-stabilized suspensions, as well as to BSA protein solutions [86, 178].

The success of the BM-PA hybrid scheme can be understood by the analysis of the ad-

vantages and disadvantages of the two involved methods. First, the PA-approximation

is exact to first-order in φ. In contrast, the BM method is an approximation for the

full liquid-state φ-range. The latter considers many-body hydrodynamic interactions but

disregards lubrication effects. In this sense, it is complimentary to the PA-scheme. The

PA-method accurately describes the HIs in systems at low concentrations and with a

strong likelihood of near-contact configurations. This explains the good accuracy of the

PA calculated self-diffusion coefficient that originates from the fast decay of the corre-

sponding mobility coefficients, according to µii ∼ 1/r4, and thus dS is strongly influenced

by the local surrounding of a particle. By its design, the BM method is here less accurate.

The disregard of many-body HIs in the PA-scheme implies the neglect of any hydrodynamic

shielding effects. The latter refers to the attenuation of the strength but not the range

of the HIs [173]. Shielding needs to be discriminated from the screening of HIs by fixed

objects, such as walls, pillars, or rigid clusters, which take momentum out of the system.

Since the distinct parts of the hydrodynamic mobilities describe cross-particle HIs where

shielding effects are important and which are of longer range than the self-parts, the

BM method should be advantageous at least for more concentrated systems. This is

supported by the observation that the PA-scheme provides an accurate description of

the sedimentation velocity of hard-spheres only up to φ ≈ 0.08 while the self-diffusion

coefficient is well described up to φ ≈ 0.15 [173].

4.4.4. Simplified MCT for the long-time dynamics

Here, we shortly explain the employed simplified mode-coupling theory (MCT) expressions

for the zero-frequency viscosity η. Since the focus of this thesis is not on MCT calculations

of long-time dynamic properties, the following discussion will be brief, in presenting only

the simplified MCT expressions.

Zero-frequency viscosity

Different from the high-frequency viscosity, η∞, where accurate analytic calculation tools

such as the PA method (see Eq. (4.72)) exist, the calculation of the zero-frequency viscos-

ity, η = η∞ + ∆η, is far more complicated. The reason for this lies in the relaxation part,
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∆η, which accounts for the shear-induced dynamic deformation of next-neighbor cages

discussed already in Subsec. 4.3.2. For simplicity, we start from the following simplified

MCT expression for ∆η which disregards HIs (see, e.g., [179]),

∆ηMCT =
kBT

60π2

∫ ∞
0

dq q4

(
S′(q)

S(q)

)2 ∫ ∞
0

dt

(
S(q, t)

S(q)

)2

> 0 . (4.78)

Here, S′(q) is the derivative of S(q) with respect to q. Instead of calculating ∆ηMCT self-

consistently together with the dynamic structure factor S(q, t) by using the corresponding

MCT memory equation for S(q) [173, 180], we approximate S(q, t) by its short-time form

with HIs included. This results in the first-iteration MCT expression

∆η

η0

∣∣∣∣(1)

MCT

≈ 1

40π

∫ ∞
0

dy y2 (S′(y))2

S(y)

1

H(y)
, (4.79)

where H(y) is the hydrodynamic function. The employed approximation of S(q, t) by its

short-time form

S(y, t) ≈ S(y) exp

[
−y2H(y)

S(y)

t

τσ

]
(4.80)

with τσ = σ2/d0, gives rise to an underestimation of the relaxation part, i.e.

∆η|(1)
MCT < ∆η|MCT . (4.81)

This underestimation is more pronounced for higher volume fractions, with the conse-

quence that in the first-iteration MCT no dynamic glass transition at a φ = φg is pre-

dicted.
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structured particles: Results

In this chapter, we discuss the dynamics of hydrodynamically structured colloidal particles

systems. For this purpose, we employ the HRM introduced in Subsec. 4.1.4 to account,

e.g., for (partial) particle solvent permeability. As model system, non-ionic PNIPAM mi-

crogel suspensions are investigated. We show by comparison of the experimental S(q)

with Hertz- and hard-core interaction potential based IET calculations, that the microgel

particles are consistently and accurately described using the hard-sphere potential. The

accurate structure functions S(q) and g(r) are used as input in the calculations of short-

time dynamics properties, with results in excellent agreement with DLS measurements on

PNIPAM microgels. Motivated by the good agreement of our dynamic transport proper-

ties calculations with the dynamic measurements on non-ionic microgels, we present an

extensive analytic toolbox for the calculation of short- and long-time dynamic suspension

properties of hydrodynamically structured particles with hard-core excluded volume in-

teractions. Our easy-to-apply toolbox provides a ready tool for the analysis of dynamic

experimental data, e.g., on permeable particles suspensions.

5.1. Equilibrium structure functions

In Fig. 5.1, we compare the PY-VW structre factors, S(q), for the hard-sphere model

(c.f. Subsec. 3.4.1) with static light scattering results by Eckert and Richtering [66] for a

concentration series of non-ionic PNIPAM microgels in DMF. The details of the particle

synthesis are given in Refs. [66, 181, 182]. In our PY-VW calculations, we have used the

experimentally obtained (mean) particle diameter σ = 240 nm, and the (volume-swelling

corrected) volume fractions φ as given in Ref. [66]. We refer to this reference for the

details on how the volume fractions have been determined. The agreement between the

experimental and PY-VW structure factors is good even for small wavenumbers q. There

is in particular a significantly improved agreement for the largest considered volume frac-

tion, as compared to the bare PY S(q) used in the earlier work in [66] (dashed curve in

Fig. 5.1). The remaining small deviations for the most concentrated system at φ = 0.5

can be at least partially attributed to experimental uncertainties, and possibly also to the

breakdown of the exact factorization of the mean scattered intensity into static structure

and form factors as discussed by Likos et al. [183, 184]. In Fig. 5.2, the experimental
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σ

φ
φ
φ
φ

Fig. 5.1.: Comparison of the experimental static structure factor, S(q), of PNIPAM mi-
crogels (filled symbols, taken from Ref. [66]) with the Verlet-Weis corrected
Percus-Yevick prediction (solid lines), for various particle volume fractions φ
as indicated. The bare PY structure factor for the largest considered volume
fraction φ = 0.5 is represented by the dashed curve.

Fig. 5.2.: Experimental structure factor at φ = 0.378 (filled circles) in comparison with
the best-fit hard-sphere model PY-VW S(q) (black solid line), and the best-fit
Hertz model S(q) calculated in PY approximation (red solid line). For the Hertz
model, the parameters ε = 104 , σs = 245 nm, and φs = 0.398 have been used.
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structure factor of PNIPAM microgels is compared, for φ = 0.378, with the best-fit hard-

sphere and the best-fit Hertz potential structure factors. For the Hertz model system,

the parameter values σs = 245 nm, ε = 104, and φs = (π/6)ρσ3
s = 0.398 have been used.

The theoretical curves coincide practically, as expected for the invoked large value of ε

which restricts the softness range of the Hertz potential to a narrow interval around the

effective diameter σs. This can be noticed from the inset of Fig. 5.3. The remnant poten-

tial softness still necessitates a slightly larger effective diameter σs than the hard-sphere

model value σ = 240 nm, for the Hertz potential incorporates the interactions by dangling

polymer chains at the periphery of microgel particles. The larger particle size in the Hertz

potential model goes along with a larger volume fraction φs than that used in the best-fit

hard-sphere model result. With increasing volume fraction in the range φs ∈ [0.299− 0.5],

a slight decrease of the best-fit effective diameter σs is observed. However, owing to the

smallness of the particle size shrinkage, for the considered PNIPAM in DMF system this

effect can be disregarded in its influence on static and dynamic properties.

σ

β

Fig. 5.3.: Radial distribution functions, g(r), corresponding to the hard-sphere and Hertz
potential structure factors in Fig. 5.2. The inset compares the hard-sphere and
Hertz pair potential, for the parameters in Fig. 5.2.

The g(r)’s corresponding to the best-fit Hertz and hard-sphere model structure factors in

Fig. 5.2 are depicted in Fig. 5.3. The slight softness of the Hertz potential is reflected in

the somewhat reduced peak height of g(r) (red solid curve), and in the slight extension

of the RDF into the overlap region r < σs. From Figs. 5.2 and 5.3, we conclude that the

pair correlations of the considered PNIPAM suspensions in the experimental concentration

range are fully compatible with the simple hard-sphere potential. For microgels of lower
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cross-linker density and smaller size where the softness of the particles is important, the

Hertz potential model should be used.

5.2. Short-time dynamics

5.2.1. Self-diffusion coefficient

In Refs. [65, 76], it was shown by comparison with computer simulation results for uni-

formly permeable hard spheres with hydrodynamic screening length λx < 0.2 that the

short-time translational self-diffusion coefficient dS normalized by its infinite dilution value

d0 is well represented by the simple scaling relation,

dS (φ, λt)

d0 (λt)
= 1 + λtφ

(
1 + 0.12φ− 0.70φ2

)
, (5.1)

for all φ ≤ 0.5, and with an accuracy of 3.5 % or better. A similar scaling relation has

been obtained for the short-time rotational self-diffusion coefficient of permeable-sphere

suspensions with hard-core interactions [76]. The only dependence in Eq. (5.1) on the

permeability parameter λx characterizing the intra-particle hydrodynamic structure is

contained in the first virial coefficient, λt = λt(λx), which is the linear coefficient in

the expansion of dS in powers of φ. Eq. (5.1) states that the dS for hydrodynamically

structured particles can be scaled to the corresponding coefficient of no-slip hard spheres

where λx = 0 and λt(λx = 0) = −1.8315.

In fact, on the level of the HRM model, Eq. (5.1) is applicable to suspensions of hard

spheres of arbitrary hydrodynamic structure, with deviations from the dS of the actual

particle system being of quadratic order small in the reduced slip length L∗h according to

Eq. (4.60). On recalling that for spherical particles with hard-core direct interactions only,

the HRM reduces to the spherical annulus model, the only input required in Eq. (5.1) is

the second virial coefficient, λt(γ), of spherical annulus particles depending on the ratio,

γ = ah/a, of hydrodynamic and hard-core radius. Using for λt(γ) the Eq. (4.71) in Subsec.

4.4.1 in conjunction with tabulated numerical values for the longitudinal and transversal

mobility coefficients, x11(r) and y11(r), of two no-slip spheres of radius ah calculated using

the method of Jeffrey and Onishi [168], we have obtained numerically precise values for

the first-order virial coefficient of spherical annulus particles. These values are described
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to high accuracy by the polynomial fit

λt (γ) =− 1.8315 + 7.820γ − 14.231γ2 (5.2)

+ 14.908γ3 − 9.383γ4 + 2.717γ5 ,

(with γ = 1−γ) accounting for the numerically correct limiting value λt (γ = 1) = −1.8315

of no-slip hard spheres.

γ−

λ

Fig. 5.4.: Modulus |λt| of the first-order virial coefficient of dS in the spherical annulus
model, as a function of the reduced fluid annulus shell width γ = 1 − γ. Solid
line: Polynomial fit according to Eq. (5.2). Filled squares: Tabulated values
by Cichocki et al. [52] for spherical annulus particles with γ ≤ 1/3. Filled
diamonds: Tabulated values by Cichocki and Felderhof [185].

In Fig. 5.4, the high accuracy of the polynomial fit in Eq. (5.2) is shown in comparison with

earlier numerical results [52, 185] for the first-order virial coefficient of spherical annulus

particles. Note that λt (γ = 0) = 0 relates to the limiting case of spherical annulus particles

interacting hydrodynamically as point particles for which there are no hydrodynamic self-

reflections so that dS reduces to the Stokes-Einstein value d0 independent of φ. The

associated long-time coefficient dL for γ = 0 is still φ-dependent and smaller than d0.

The accuracy of the analytic scaling formula in Eq. (5.1) in combination with Eq. (5.2) for

the short-time self-diffusion coefficient of spherical annulus particle systems is established

in Fig. 5.5 by the comparison with high-precision benchmark simulation data for the

spherical annulus [51] and uniformly permeable particle models [47]. Regarding the latter

model, the conversion of λx to the related reduced hydrodynamic radius parameter γ in

the spherical annulus model was done using Eq. (4.35) for d0(λx). This corresponds to
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γ−

φ  = 0.05
φ  = 0.15
φ  = 0.25
φ  = 0.35
φ  = 0.45

Fig. 5.5.: Results for the reduced self-diffusion coefficient, dS/d0, of the spherical annulus
model as function of γ = 1−γ, for several volume fractions φ as indicated. Solid
lines: Prediction by the scaling formula in Eq. (5.1) in combination with the
first order virial coefficient fitting polynomial in Eq. (5.2). Closed symbols: HY-
DROMULTIPOLE simulation data for the spherical annulus model tabulated in
Ref. [51]. Open symbols: Simulation data for uniformly permeable spheres tab-
ulated in Ref. [47], with Eq. (4.35) used in mapping the permeability parameter
λx onto the annulus model parameter γ = ah/a (recall Fig. 4.2).

the inversion of the curve for λt
x in Fig. (4.2) in terms of γ. For example, the smallest

reasonably selected value λx = 0.1 corresponds to γ = 0.89. Results for dS are depicted in

Fig. 5.5 in dependence on the reduced slip length γ, for volume fractions extending over

a broad concentration range.

The excellent agreement between the scaling formula for dS (solid lines), and the simulation

data (symbols) does not only validate this formula. For the special case of permeable

hard spheres, it additionally highlights the good performance of the HRM, for a broad

concentration range and permeability values largely exceeding the ones discussed earlier

in the thin shell-limit discussion of the core-shell model in Ref. [52].

In summary, the analytic formulas in Eqs. (5.1) and (5.2) allow for a quick and accurate

calculation of the translational short-time self-diffusion coefficient of hydrodynamically

structured spherical particles with hard-core interactions. The only input is the single-

particle property ah/a which can be determined experimentally, e.g., by a DLS measure-

ment of d0 in conjunction with a static scattering experiment determining the excluded

volume radius. The formula for dS is applicable also to particles with a short-range, weakly

soft pair potential such as the Hertz potential for non-small potential strengths ε, provided
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the effective diameter σs and the related volume fraction φs are used instead of σ and φ.

The formula for dS in Eqs. (5.1) and (5.2) based on its virial expansion is not valid for par-

ticles with a long-range, soft pair potential where an (effective) excluded volume diameter

is not the characteristic parameter. An example in case are low-salinity suspensions of

charge-stabilized colloidal spheres, where according to theory, simulation and experiment

dS has to good accuracy the fractional concentration dependence 1 − dS/d0 ≈ AS φ
4/3,

with a coefficient AS h 2.5− 2.9 which varies to a small extent with the particle size and

charge [136, 186]. The initial slope of dS at φ = 0 is thus zero in these charge-stabilized

systems. Different from the formula in Eqs. (5.1) and (5.2), the HRM is applicable also to

spherical particles with arbitrary soft direct interactions, and to particles of fuzzy hydro-

dynamic structure without a sharp outer boundary. In the framework of the HRM, the

coefficient dS and other short-time transport properties of particles with soft interactions

can be approximately and semi-analytically calculated using the PA method at smaller,

and the self-part corrected δγ method at larger concentrations. The inputs g(r) and S(q)

to these methods can be obtained from OZ integral equation schemes such as the ones

presented in Sec. 3.4.

5.2.2. Sedimentation velocity

Different from self-diffusion, the neglect of hydrodynamic near-distance and particularly

lubrication effects in approximate analytic calculations is less consequential regarding sed-

imentation. Therefore, K can be described semi-qualitatively on the RP type level where

only the long-distance dipolar contribution to the mobility tensors is accounted for. This

amounts hydrodynamically to the neglect of all hydrodynamic flow reflection by the par-

ticles.

Using the RP approximation in conjunction with the analytic PY solution for the Laplace

transform of rg(r), Contreras-Aburto et al. [187] have derived analytic expressions for the

short-time sedimentation coefficient of Navier partial-slip and uniformly permeable spheres

with hard-core interaction. Here, we present the according expression for spherical annulus

particles,

KRP (φ, γ) = 1 + γφ

(
γ2 + 12

[
φ (2− φ)− 10

20 (1 + 2φ)

])
, (5.3)

which includes hydrodynamic point particles as a limiting case for which K(φ, γ = 0) = 1.

In the opposite limit, γ = 1, of no-slip hard spheres, Eq. (5.3) reproduces an expression

by Banchio and Nägele [136] which was rederived subsequently by Gilleland et al. [188]

using a variational method.

The comparison in Fig. 5.6 of the RP based analytic formula in Eq. (5.3) with benchmark
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φ

γ = 1.00
γ = 0.90
γ = 0.80
γ = 0.60

Fig. 5.6.: Concentration dependence of the sedimentation coefficient, K, of the spherical
annulus model for reduced hydrodynamic radius values γ as indicated. Solid
lines: RP approximation KRP in Eq. (5.3). Filled symbols: Simulation data
taken from Ref. [51].

simulation data for spherical annulus hard spheres [51] shows that the sedimentation

velocity is overestimated by the formula at larger concentrations. This is a consequence

of the neglect of flow reflections in the RP approximation which becomes less severe with

decreasing annulus parameter γ, owing to the, for a fixed φ, increasing distances between

the hydrodynamic particle surfaces. For the lowest considered value γ = 0.6, excellent

agreement between the simulation data and KRP is observed. The largest deviations occur

for no-slip hard spheres where KRP provides an upper bound to the exact sedimentation

coefficient [156, 188]. As an aside, we note that even at φ = 0.5, KRP changes only slightly

if the VW-corrected g(r) is used instead of the bare PY g(r).

While KRP nicely describes the trends of the exact spherical annulus sedimentation coef-

ficient K in its φ and γ dependence, in search of an improved analytic expression we make

the ansatz

K (φ, γ) = 1 + λk (γ) uk (φ, γ) (5.4)

= 1 + λk (γ)φ [1 +O (φ)] ,

where λK (γ) is the first-order virial coefficient of the sedimentation coefficient for which

high-precision values have been provided by Cichocki et al. [52, 185]. According to Fig.
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γ−

λ

Fig. 5.7.: First-order virial coefficient, λK , of the sedimentation coefficient of spherical
annulus particles. Filled symbols: Tabulated values by Cichocki et al. for thick
(diamonds) [185] and thin annulus shell (squares) systems [52], in comparison
with the polynomial in Eq. (5.5) (black solid line).

5.7, these tabulated values are well represented by the polynomial,

λK (γ) = −6.5464 + 8.592γ − 3.901γ2 (5.5)

+ 2.011γ3 − 0.142γ4

in the full parameter range 0 < γ ≤ 1. At γ = 1 in particular, the known value λK =

−6.5464 of no-slip hard spheres is recovered from the polynomial.

In the first equality in Eq. (5.4), we have introduced the sedimentation scaling function

uK = (K − 1) /λK. In Ref. [76], a scaling ansatz analogous to Eq. (5.4) was used for

the short-time translational and rotational self-diffusion coefficients of uniformly perme-

able hard spheres. By the comparison with simulation data, it was shown therein that

the scaling functions uS(φ, λx) and uR(φ, λx) associated with translational and rotational

self-diffusion, respectively, are practically independent of the permeability coefficient for

all values λx ≤ 0.1. They are therefore well approximated by (i.e. scaled to) the respective

functions uS,R(φ, λx = 0) of non-permeable solid spheres. On using a third-order poly-

nomial fit of uS(φ, λx = 0) obtained from simulation data of no-slip hard spheres, and

the first two known virial coefficients of dS(φ, λx = 0), Eq. (5.1) for dS(φ, λx) has been

obtained [65, 76].

As noticed already in the context of permeable spheres [76], uK depends significantly

on the intra-particle hydrodynamic structure, different from its self-diffusion siblings. In
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φ

γ = 1.0
γ = 0.95
γ = 0.9
γ = 0.8
γ = 0.6

Fig. 5.8.: Concentration dependence of the scaling function uK (φ, γ) associated with the
sedimentation coefficient of spherical annulus particles, for values of γ as indi-
cated. Colored filled symbols: Values obtained from simulation data of K(φ, γ)
[51]. Colored solid lines: Semi-empirical formula in Eq. (5.6).

Fig. 5.8, this is demonstrated for the spherical annulus system using tabulated simulation

data for K(φ, γ) in Ref. [51]. The simulation data of uK(φ, γ) for a fixed φ > 0 clearly

differ from each other for different γ values. Thus, the γ-dependence of K(φ, γ) cannot

be embodied solely in terms of the first-order virial coefficient, in contrast to Eq. (5.1)

describing dS. However, as it is shown in Fig. 5.8, the simulation data for uK(φ) are well

described for γ ≥ 0.8 by a forth-order polynomial in γφ, namely

uK (φ, γ) = φ
[
1− 3.348γφ+ 7.426 (γφ)2 (5.6)

−10.034 (γφ)3 + 5.882 (γφ)4
]
.

The resulting analytic expression,

K (φ, γ) = 1 + λK (γ)φ
[
1− 3.348γφ+ 7.426 (γφ)2 (5.7)

−10.034 (γφ)3 + 5.882 (γφ)4
]
,

for the sedimentation coefficient provides, in conjunction with Eq. (5.5) for λK(γ), an

accurate description in the from the experimental viewpoint sufficiently broad parameter

range γ ∈ [0.8− 1]. The numerical coefficient 3.348 in the bracket of Eq. (5.7) is selected

such that at γ = 1 the correct numerical value 21.918 of the second virial coefficient of

no-slip rigid spheres [185] is recovered.
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φ

γ = 1.00
γ = 0.90
γ = 0.80
γ = 0.60

Fig. 5.9.: Sedimentation coefficient of the spherical annulus model as a function of φ, for
values of γ as indicated. Filled squares: Simulation data for spherical annulus
particles [51]. Solid lines: Analytic formula in Eq. (5.7) with λK according to
Eq. (5.5). Dashed lines: Prediction of the hybrid BM-PA scheme, with self-part
dS according to Eq. (5.1), distinct part Hd(q) from Eq. (4.74), and VW-PY
input for S(q).

From Fig. 5.9, the good agreement of the semi-empirical formula for K(φ, γ) in Eq.

(5.7) with the spherical annulus simulation data [51] is noticed for γ ≥ 0.8. Moreover,

results for K(φ, γ) are displayed as predicted by the hybrid BM-PA scheme (Subsec. 4.4.3)

with VW-PY structure factor input where the self-part contribution to K was calculated

according to Eq. (5.1). While in good overall agreement with the simulation data, the

hybrid BM-PA method results for K deviate significantly at larger φ. Different from Eq.

(5.7) which applies to spherical particles with hard-core interactions only, the BM method

is applicable also to particles with soft interactions.

The analytic expressions in Eqs. (5.7) and (5.1) for K and dS are profitably used in the

following discussion of the hydrodynamic function of core-shell particle systems.

5.2.3. Hydrodynamic function scaling

Due to the fact that H(q) is given, according to Eq. (4.53), by an equilibrium average

over hydrodynamic mobilities, its principal peak location and the wavenumber locations

of its secondary maxima are nearly coincident with those of S(q). As a static equilibrium

property, S(q) is independent of the hydrodynamic particle structure in particular and

the HIs in general. This observation has led Abade et al. [48] to the following remarkable
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finding, which they analyzed in the context of uniformly permeable hard spheres: While

the amplitudes of the oscillations in H(q) are strongly sensitive to the permeability (i.e.,

the hydrodynamic particle structure), the relative q-dependence of H(q) is practically

permeability independent, and can be scaled thus to that of no-slip hard spheres. To see

this quantitatively, consider the so-called reduced hydrodymanic function [48],

hd (q) =
Hd(q)

|Hd(q = 0)| , (5.8)

where Hd(q) is the wavenumber-dependent distinct part of H(q) introduced in Eq. (4.56).

σ

γ = 1.00
γ = 0.95
γ = 0.90
γ = 0.80
γ = 0.60

Fig. 5.10.: Reduced hydrodynamic function, hd(q), for spherical annulus particles at fixed
volume fraction φ = 0.35 and varying γ as indicated. The wavenumber is scaled
in terms of the hard-sphere diameter σ = 2a. Solid lines: BM method results
using VW-PY structure factors as input. Filled squares: Simulation result for
no-slip (ns) hard spheres (γ = 1) taken from Ref. [48].

The reduced hydrodynamic function is defined such that hd(q = 0) = −1 and hd(q →
∞) = 0. Abade et al. found that hd(q) is at all q nearly independent of the permeability

parameter λx, practically in the complete liquid-phase concentration interval. In extrapo-

lating their finding to the spherical annulus model as motivated by our general discussion

in Subsec. 4.1.4, H(q) can be expected to be well represented by

H (q) ≈ dS (φ, γ)

d0 (γ)
− hnsd (q)

[
K(φ, γ)− dS (φ, γ)

d0 (γ)

]
, (5.9)

where hnsd (q) = hd(q, γ = 1) is the reduced hydrodynamic function of no-slip hard spheres.

The hydrodynamic particle structure enters into this expression by the coefficients K and
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dS/d0 only for which we have provided accurate analytic expressions. The relative q-

dependence of H(q) is described by the master function hnsd (q) which can be conveniently

calculated using the semi-analytic BM method for Hd(q).

σ

γ = 1.0
γ = 0.95
γ = 0.9
γ = 0.8
γ = 0.6

Fig. 5.11.: Hydrodynamic function, H(q), of spherical annulus spheres for φ = 0.35 and
values of γ as indicated. The solid lines show results by the semi-analytic
formula in Eq. (5.9), with dS/d0 and K according to Eqs. (5.1) and (5.7),
respectively, and hnsd (q) calculated using the BM method.

To validate hydrodynamic function scaling for the spherical annulus model, in Fig. 5.10 we

present results for hd(q, γ) in a broad γ parameter range, obtained using the BM method

in Subsec. 4.4.2. All curves collapse practically on a single master curve which in turn

nicely agrees with the simulation data for no-slip (ns) hard spheres taken from Ref. [48].

The sensitivity of H(q) on the reduced hydrodynamic radius γ is illustrated in Fig. 5.11,

where H(q) has been calculated according to Eq. (5.9). The strength of the HIs ceases

with decreasing γ. Notice that H(q) → 1 for γ → 0.

To date, the validity of the hydrodynamic function scaling was scrutinized for particles with

hard-sphere interactions only [47, 48]. As discussed in Sec. 2.1, the soft Hertz potential

in Eq. (2.1) is a useful description of the coarse-grained interaction of certain types of

mechanically soft microgel particles. For this reason, we investigate now the scaling of the

hydrodynamic function for suspensions of Hertz particles of different interaction strengths

ε. In Fig. 5.12, the functions hd(q) of Hertz particles are shown for various values of

the reduced hydrodynamic radius, defined here by γ = ah/as with as = σs/2 denoting

the effective soft radius of the Hertz potential. Two largely distinct interaction (softness)

parameters ε = 10 and 104 are considered, representing highly soft and weakly soft particle

systems, respectively. The inset depicts the respective shapes of the Hertz potential. For

ε = 10, there is a significant likelihood of finding two particles at a distance smaller
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than σs, as quantified by values of g(r < σs) significantly larger than zero. Even then the

HRM remains applicable, provided the hydrodynamic structure of the actual soft particles

is not significantly distorted away (on average) from spherical symmetry during particle

interpenetration.

σ

γ = 1.00
γ = 0.95
γ = 0.90
γ = 0.80
γ = 0.60

σ

β

Fig. 5.12.: Reduced hydrodynamic function, hd(q), for a Hertzian spheres system of inter-
action strength ε = 10 (dashed lines) and ε = 104 (solid lines), respectively,
for various reduced hydrodynamic radii, γ = ah/as, as indicated. The effective
volume fraction is φs = 0.35. The depicted results have been calculated using
the BM method with PY structure factor input. Inset: Excerpt of the Hertz
potential curve for ε = 10 (dashed) and ε = 104 (solid), respectively. Wavenum-
ber q and radial distance r are scaled by the effective soft diameter, σs = 2as,
of the Hertz potential.

The curves for hd(q) in Fig. 5.12 have been obtained using the HRM-based BM method

with the structure factor input for the Hertzian spheres calculated in PY approximation.

The figure shows that hydrodynamic function scaling applies to Hertz model particles

for a broad softness range, with the shape of the γ-independent master curve for hd(q)

depending on the softness parameter. The scaling behavior of H(q) can be expected to

hold also for other soft pair potentials.

5.2.4. High-frequency viscosity

In Refs. [48, 50], a generalized Saitô formula for the high-frequency viscosity of permeable

spheres with hard-core interactions has been introduced which, for φ ≤ 0.5, gives results

in good agreement with simulation data. In the framework of the spherical annulus model,
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φ

η ∞
η γ = 1.0

γ = 0.97
γ
γ

φ

η ∞
η

δγ

Fig. 5.13.: High-frequency viscosity, η∞, of spherical annulus particles in dependence on
φ, for values of γ as indicated. Filled symbols: Simulation data taken from
Refs. [51, 136]. Solid lines: Generalized Saitô formula in Eqs. (5.10) - (5.12).
Dashed lines: PA scheme results with VW-PY input for g(r). Dotted lines:
BM scheme results with VW-PY input for S(q).

the formula reads

η∞ (φ, γ)

η0
= 1 + [η] (γ)φ

1 + Ŝ (φ, γ)

1− 2
5 [η] (γ)φ

(
1 + Ŝ (φ, γ)

) . (5.10)

It expresses η∞ in terms of the intrinsic viscosity, [η] (γ) = (5/2) γ3, depending on the

hydrodynamic particle structure only, and the Saitô function Ŝ (φ, γ). The latter is ap-

proximated linearly in φ as

Ŝ (φ, γ) =

(
λV (γ)

[η](γ)
− 2

5
[η](γ)

)
φ , (5.11)

where λV (γ) is the second-order virial coefficient in the expansion of η∞/η0 in powers of φ.

Numerical values for the second virial coefficient of spherical annulus particles are given

in Ref. [52]. For γ ≥ 2/3, these values are well represented by the polynomial

λV(γ) = 5.0021− 39.279γ + 143.179γ2 (5.12)

− 288.202γ3 + 254.581γ4 .

In Fig. 5.13, the predictions for η∞ by the generalized Saitô formula in Eqs. (5.10) -
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(5.12) are compared with existing simulation results [51] for the spherical annulus model.

There is good agreement with the simulation in the displayed liquid-phase concentration

range. For fixed concentration ρ and fixed hard-core radius a, the viscosity increases with

increasing ah, i.e. increasing γ, owing to the enlarged dissipation. Additionally shown in

the figure are results for η∞ by the PA and BM methods described in Subsecs. 4.4.1 and

4.4.2, respectively. Like in the PA scheme for short-time diffusion properties, two-body HIs

contributions to η∞ are fully accounted for but three-body and higher order contributions

have been neglected. The PA scheme is in good agreement with the simulation data for

φ < 0.2 only. For small γ, the applicability of the PA method extends to somewhat

larger φ. We attribute this, first, to the weaker hydrodynamic interactions for γ < 1,

and second to the fast O(1/r6) asymptotic decay of the shear mobility function associated

with η∞. While the BM scheme viscosity predictions for no-slip spheres are in better

agreement with the simulation data than those by the PA scheme, for γ < 1 the BM

scheme consistently overestimates the high-frequency viscosity. Quite interestingly, for all

φ < 0.5 the BM prediction for η∞ scales to good accuracy with the hydrodynamic volume

fraction φh = γ3φ.

5.2.5. Generalized Stokes-Einstein relation

φ

Λ

γ = 1.00
γ = 0.90
γ = 0.80
γ = 0.60

Fig. 5.14.: Test of the short-time GSE relation in Eq. (5.13) for spherical annulus particles
with values of γ as indicated. Solid lines: Product function ΛS of the generalized
Saitô expression in Eq. (5.10) for η∞/η0 and Eq. (5.1) for dS/d0 in accord with
Eq. (5.14).

As straightforward applications of the generalized Saitô formula (Eq. (5.10)), and Eq.

(5.1) describing η∞(φ, γ) and dS(φ, λ) in the spherical annulus model, we analyze next the
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validity of the short-time generalized Stokes-Einstein (GSE) relation,

ΛS(φ, γ) ≈ 1 , (5.13)

with the short-time GSE function

ΛS(φ, γ) =
dS(φ, γ)

d0(γ)
× η∞(φ, γ)

η0
. (5.14)

Eq. (5.13) expresses that dS(φ, γ) should be proportional for all concentrations to the

inverse of η∞(φ, γ). This relation is trivially fulfilled at infinite dilution where it reduces to

the single-sphere translational Stokes-Einstein relation for a hydrodynamically structured

colloidal sphere. The approximate validity of this relation would be quite useful, since

η∞ can then be determined more easily, and using a smaller amount of particles, by a

dynamic scattering experiment instead of a rheo-mechanical measurement. This is why

GSE relations including the present one have been thoroughly subjected to theoretical

explorations, for particulate systems including permeable hard spheres [50] and charge-

stabilized particles [27, 136].

An exact GSE relation is reflected in Fig. (5.14) by a horizontal straight line of unit height.

However, for all considered values of γ, significant deviations from ΛS = 1 are observed at

larger volume fractions. The deviations are largest for no-slip hard-core particles where the

HIs are strongest, amounting to about 40% at φ = 0.45. For concentrations φ ≤ 0.4, the

displayed curves for ΛS(φ) are nearly straight lines, characterized by the linear coefficient,

λS(γ), in the expansion of ΛS to linear order in φ. The linear concentration coefficient

derived from our analytic expressions for dS and η∞ is given by the polynomial

λS(γ) = 0.6685 + 0.3201γ +O
(
γ2
)
. (5.15)

For a given hydrodynamic particle model, the values of γ which should be used in calcu-

lating dS and η∞, respectively, are actually different if the O((L∗h,f )2) corrections to ah,f

in Eq. (4.41) cannot be neglected. However, this does not affect our general conclusion

that the GSE relation is violated, as illustrated by the curves in Fig. (5.14) where for

simplicity the same γ values were used in calculating dS and η∞.

According to Fig. (5.14), the ordering relation ΛS(φ) > 1 is obeyed by particles with

pure hard-core interactions. As shown in Ref. [136], the same ordering applies to charge-

stabilized suspensions. In contrast, the long-time product function ΛL
S(φ) = (dL/d0) ×

(η/η0) relating long-time self-diffusion coefficient dL to zero-frequency viscosity η has been

shown for no-slip hard-sphere and charge-stabilized suspensions to fulfill the opposite
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ordering ΛL
S(φ) < 1 for φ > 0 [27]. Our results for the long-time GSE ΛL

S are presented

in Subsec. 5.4.3 where we show that ΛL
S(φ) < 1 for φ > 0 is fulfilled for permeable

hard-sphere suspensions independent of particle permeability.

5.3. Comparison with experiments on non-ionic microgels

We demonstrate now the accuracy of our easy-to-apply toolbox methods of calculating

short-time diffusion properties by analyzing DLS measurements by Eckert and Richtering

[66] on non-ionic PNIPAM microgels in DMF. As discussed in Subsec. 5.1, the microgel

particles behave as hard spheres as far as their static properties are concerned. On model-

ing the microgels also hydrodynamically as no-slip hard spheres with ah = a, and on basis

of bare BM method results for H(q), Eckert and Richtering came to the conclusion that

short-time particle diffusion is underestimated by the no-slip hard-sphere model. This sug-

gests that the non-uniform cross-linker density of the microgels should have a significant

hydrodynamic effect.

To account for this effect, we model here the microgels as spherical annulus particles, and

determine H(q) using the scaling Eq. (5.9) in conjunction with the analytic expressions

in Eqs. (5.7) and (5.1) for K and dS, respectively. In the BM method calculation of

hnsd (q) which enters into the scaling expression of H(q), we use the HS-VW structure

factors depicted in Fig. 5.1, with the hard-core radius a = 120 nm. The only adjustable

parameter in our model is thus the reduced hydrodynamic radius γ = ah/a.

In Fig. 5.15, our theoretical results for H(q) are presented and compared with the exper-

imental findings in Ref. [66]. The latter have been obtained indirectly from multiplying

the DLS first cumulant data for the diffusion function D(q) by the VW-PY S(q) (c.f. Eq.

(4.52)). Using the constant ratio γ = 0.97, we obtain very good agreement between the-

ory and experiment for all volume fractions. Our finding of a concentration-independent

hydrodynamic radius ah = 0.97 × a points to the consistency of our analytic method of

calculating H(q), since as an intrinsic particle property, ah should not depend significantly

on the volume fraction. While this holds for the strongly cross-linked non-ionic microgels

considered here, for weakly cross-linked ionic microgels in the swollen-state temperature

range, a significant size shrinkage with increasing concentration is observed [40].

The deduced hydrodynamic microgel radius is only 3% smaller than the excluded volume

radius, corresponding to a likewise small value, λx = 0.029, of the reduced fluid penetration

length. This exemplifies the common experimental situation of ah ≈ ah,f , with a relative

correction to the flat plane value ah,f being here of O
(

(L∗h,f )2
)
≈ 10−3 small.

The small microgel permeability nonetheless significantly affects H(q), in particular at
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σ

φ
φ
φ
φ

Fig. 5.15.: Experimentally deduced hydrodynamic function of PNIPAM microgels in DMF
(filled symbols, taken from Ref. [66]) compared with the theoretical predictions
(solid lines) for the spherical annulus model, using γ = 0.97 and Eq. (5.9) for
H(q), combined with Eq. (5.7) for K and Eq. (5.1) for dS. Dashed line:
Theoretical prediction for non-permeable particles (γ = 1) at φ = 0.5. The
wavenumbers are scaled by the hard-core diamter σ = 240 nm.

larger concentrations. This is shown in Fig. 5.15 for φ = 0.5 by the comparison with

the hydrodynamic function for zero permeability (dashed curve): The residual particle

permeability enlarges the sedimentation velocity by more than 100%, and the self-diffusion

coefficient by more than 30%.

In Fig. 5.16, our theoretical results for D(q)/d0 are plotted together with the DLS data

[66] for the same quantity. The theoretical curves have been obtained from dividing the

spherical annulus H(q)’s depicted in Fig. 5.15 by the associated VW-PY structure fac-

tors, S(q), of hard spheres in accordance with Eq. (4.52). At q = 0, the VW-PY S(q)

reduces to the CS expression for the reduced osmotic compressibility presented in Eq.

(3.35), valid in the full fluid-phase volume fraction range of hard spheres. The agreement

between theoretical and experimental diffusion functions is very good in the intermediate

wavenumber range including the principal peak position, qm, of S(q) where D(q) is mini-

mal, and also for larger wavenumbers. At small q values and large volume fractions, the

experimental data are overestimated. Even considering the remaining small-q deviations,

the here presented theoretical results for D(q) are in distinctly better agreement with the

experimental data than the earlier ones presented in Ref. [66] where permeability effects

were not included.

The deviations in D(q) at small-q can be partially attributed to the high sensitivity of
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σ

φ
φ
φ
φ

Fig. 5.16.: DLS data for the reduced diffusion function D(q)/d0 (filled symbols) taken from
Ref. [66], in comparison with our theoretical predictions for γ = 0.97, obtained
by dividing the sperical annulus results for H(q) depicted in Fig. 5.15 by the
VW-PY values of S(q) shown in Fig. 5.1.

the inverse compressibility factor, 1/S(0), multiplying H(0) in Eq. (4.58), on the residual

softness of the microgels. This is demonstrated in Fig. 5.17, where the concentration

dependence of 1/S(0) for hard spheres is compared to that of the Hertz potential system

for the strongly distinct softness parameters ε = 104, 102 and 10. According to the figure,

even a small residual softness characterized by ε = 104 significantly enlarges the osmotic

compressibility for large volume fractions, with 1/S(0) being lowered accordingly. Viewed

on the scale of the structure factors in Fig. 5.2, the small-q differences are not resolved

since S(0) is very small for large concentrations. While the smaller factor 1/S(0) in the

Hertz model would improve the agreement with the experimental D(q) at small q, we

recall in referring to Fig. 5.2 that a somewhat larger volume fraction φs, than that for

hard spheres is required in the Hertz model for an equally good fit of the experimental

S(q). If the enlarged volume fraction is accounted for, there remains a small final reduction

in 1/S(0) only. An additional cause for the small-q differences can be size polydispersity.

It was shown in Ref. [189], that a small degree of polidispersity significantly enlarges, in

concentrated suspensions, the measured diffusion function at small q.

In summarizing, we conclude that our HRM based toolbox methods reproduce the short-

time diffusion properties of the non-ionic microgel suspensions very well, and with little

numerical effort. The non-homogeneous cross-linker density is accounted for by a hydro-

dynamic radius which is only three percent smaller than the excluded volume radius.
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φ

ε
ε
ε

Fig. 5.17.: Influence of particle softness (elasticity) on the inverse compressibility factor
1/S(0), for hard-sphere and Hertz potential particles, plotted as a function of
φ. The Carnahan-Starling (CS) (black solid line) and PY (red solid line) results
for hard spheres are compared with the PY-based pedictions for Hertz model
particles with softness parameters ε = 104 (dashed line), 102 (dashed-dotted
line), and 10 (dotted line).

5.4. Long-time dynamics

In the following, we present a theoretical scheme for the approximate calculation of dL

and η for suspensions of hydrodynamically structured particles, which as a bonus requires

only little numerical effort. It is based on the HRM and a factorization approximation

method proposed originally by Medina-Noyola for self-diffusion [24]. We point out that

the HRM error estimation for short-time properties in Eq. (4.60) applies also to long-time

properties including dL/d0 and η, and also to the dynamic structure factor, S(q, t), for

arbitrary correlation times. This follows from general expressions for long-time transport

coefficients and S(q, t) which have been obtained using the Mori-Zwanzig projection oper-

ator formalism in conjunction with the many-particle generalized Smoluchowski equation

(Eq. (4.20)) for the configurational probability distribution function [61]. The crucial fact

to notice here is that the hydrodynamic mobility tensors entering into the GSE have no

explicit time dependence.

We exemplify the error estimate for dL by starting from the configurational average ex-

pression presented in Eq. (4.62). The only information about the backward Smoluchowski

operator ÔB (Eq. (4.46)) needed here is its linear dependence on the mobility tensors μij .

From this and Eq. (4.59), it follows that the error introduced in approximating dL/d0 by
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dL;HRM/d0 is of O((L∗h,f )2) small.

5.4.1. Self-diffusion coefficient

Using Eq. (4.62), dL can be written as

dL (φ) = dS (φ)

[
1 +

∆D(φ)

dS(φ)

]
, (5.16)

where in the term in brackets, the explicit dependence on dS has been scaled out. Accord-

ing to arguments first put forward by Medina-Noyola [24], and subsequently substantially

elaborated by Brady also regarding the zero-frequency viscosity [25, 26], the factor func-

tion in brackets is not only scale invariant with respect to dS, but for hard spheres it is to

a decent approximation also independent of the HIs. This implies the no-HI factorization

approximation, [
1 +

∆D

dS

]
≈
[
dL

d0

]
no-HI

, (5.17)

where the bracket term is approximated by a purely structural factor determined by ex-

cluded volume interactions only. For known dS, the problem of calculating dL is thus

simplified to the calculation of the reduced long-time self-diffusion coefficient without HIs.

The dependence of dL on the HIs, and the hydrodynamic particle structure, is embodied

here in dS alone.

Brownian dynamics simulation results for [dL(φ)/d0]no-HI by Hinsen and Cichocki [162]

and Moriguchi [190] are depicted in Fig. 5.18. In the fluid-phase concentration regime

φ ≤ φf , where φf = 0.494 is the volume fraction at freezing, the simulation data are well

described by the polynomial least-square fit,[
dL

d0

]
no-HI

= 1− 2φ+ 1.272φ2 − 1.951φ3 , (5.18)

where the exact first-order virial coefficient, λL = 2, for a hard-sphere suspension without

HIs has been incorporated. The figure depicts furthermore the analytic approximation,[
dL

d0

]
no-HI

≈ 1

1 + 2φ g(σ+;φ)
, (5.19)

given by Brady [25], where the structural factor is expressed in terms of the RDF contact

value, g(σ+;φ), of hard spheres. The contact value for the fluid-phase concentration

range is to high accuracy described by the CS expression given in Eq. (3.34) [137], with

g(σ+;φf ) = 5.81. Eq. (5.19) incorporates the exact first-order virial coefficient, λL = −2.
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φ

Fig. 5.18.: Reduced long-time self-diffusion coefficient, [dL/d0]no-HI, of colloidal hard
spheres without HIs. Filled circles and squares: Brownian dynamics simulation
results by Hinsen and Cichocki [162] and Moriguchi [190], respectively. Solid
line: Polynomial fit in Eq. (5.18). Dashed line: Eq. (5.19) with Carnahan-
Starling contact value input.

Moreover, near random closed packing at φrcp ≈ 0.64 where a metastable hard-sphere fluid

gets jammed, on basis of results for g(σ+;φ) by Rintoul and Torquato [137] it predicts that

[dL]no-HI diminishes linearly like 0.59 × (1 − φ/φrcp). Since dS vanishes likewise linearly

in case of no-slip hard spheres, the quadratic scaling prediction dL ∼ (1 − φ/φrcp)
2 near

random closed packing is obtained in the factorization approximation.

The performance of the no-HI factorization approximation for the dL of no-slip spheres on

basis of Eq. (5.1) for dS at γ = 1 and Eq. (5.18) for [dL/d0]no-HI, is documented in Fig.

5.19 by the comparison with DLS data by van Megen et al. [191, 192], and simulation

results by Phung [165] with HIs included. The Stokesian dynamics simulation data for

Brownian hard spheres by Phung have been obtained for a small number (N = 27) of

particles, and for a small albeit non-zero shear Péclet number Pe = 0.01. The Péclet

number is defined as ratio of advective and diffusive transport rate, i.e.

Pe =
τD

τshear
=

a2γ̇

d0
, (5.20)

where τshear = 1/γ̇, so that for Pe = 0.01 diffusion dominates the system dynamics. The

overall agreement of the no-HI factorization approximation with the experimental and

simulation data is quite good. The factorization approximation gives λL = −3.831 for

the first-order virial coefficient of hydrodynamically interacting no-slip spheres, while its
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φ

Fig. 5.19.: Reduced long-time self-diffusion coefficient, dL/d0, of no-slip colloidal hard
spheres. Filled circles: Experimental data by van Megen et al. [191, 192].
Filled squares: Simulation data by Phung [165]. Solid line: No-HI factorization
approximation in Eqs. (5.16)-(5.18), with the short-time factor dS/d0 according
to Eq. (5.1) for γ = 1.

correct numerical value is given by λL = −2.1. The initial low-concentration decrease of

dL is thus overestimated.

The good performance of the no-HI factorization approximation for no-slip hard spheres

gives support to its straightforward extension to hydrodynamically structured particles,

by using for dS/d0 now the analytic expression in Eq. (5.1) for spherical annulus spheres.

Our results for dL/d0 based on this extended factorization scheme are shown in Fig.

5.20. With decreasing γ, the slowing down effect of the HIs on dL diminishes. In

the limit γ → 0 of hard spheres acting hydrodynamically as point particles, the long-

time self-diffusion coefficient in the absence of HIs is recovered. According to Cichocki

and Felderhof [185], the linear concentration coefficient of dL/d0 for small γ is λL(γ) =

−2
[
1− 1.031γ + 0.111γ2 +O(γ3)

]
, where the linear and quadratic terms in γ are due

to the so-called Oseen long-distance HIs contribution to the relaxation part ΔD. The

contributions of the short-time part, dS, to dL appear first in quadratic order in γ. While

this describes quantitatively how dL approaches [dL]no-HI for small γ, we reemphasize that

γ > 0.8 is valid for most hydrodynamically structured colloidal particles.

The no-HI factorization approximation predicts the ratio, dL/dS, of long-time and short-

time coefficients to be independent of HIs and hydrodynamic particle structure, with value
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φ

γ = 1.0
γ = 0.95
γ
γ = 0.8
γ = 0.0

Fig. 5.20.: Generic influence of the intra-particle hydrodynamic structure on dL/d0, quan-
tified in the no-HI factorization approximation, Eqs. (5.16)-(5.18), using for
dS/d0 the spherical annulus model formula in Eqs. (5.1) and (5.2). Several
values of γ are considered as indicated.

equal to [dL/d0]no-HI. This implies with Eqs. (5.16) and (5.17) that

(
dL
dS

)
(φf ) ≈ 0.1 , (5.21)

in good accord with the Löwen-Palberg freezing criterion value of about 0.1. Thus, a

universal freezing value of 0.1 is predicted not only for colloidal suspensions with different

repulsive pair potentials, but also with different hydrodynamic intra-particle structures.

For pair interactions characterized by a single length scale, the dynamic Löwen-Palberg

criterion has been shown to be equivalent to the static Hansen-Verlet freezing criterion for

the value S(qm) of the structure factor peak height [159].

5.4.2. Zero-frequency viscosity

Analogous to Eq. (5.16) for dL, in Eq. (4.61) for the low-shear zero-frequency viscosity η,

we factor out the high-frequency (short-time) contribution η∞ according to

η (φ) = η∞ (φ)

[
1 +

Δη (φ)

η∞ (φ)

]
, (5.22)
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with the term in brackets expected to be approximately independent of the HIs. This

suggests the no-HI factorization approximation,

Δη (φ)

η∞ (φ)
≈

[
Δη (φ)

η0

]
no-HI

, (5.23)

where [Δη]no-HI is the shear relaxation viscosity part without HIs. In this approximation,

the HIs are assumed to affect η only by means of the factored out η∞ in Eq. (5.22). The

neglect of HIs simplifies the calculation of the shear relaxation viscosity part considerably.

Following works by Brady [25, 26], an analytic estimate of Δη for no-slip hard spheres

without HIs is given by [
Δη

η0

]
no-HI

≈ 12

5
φ2g(σ+;φ) , (5.24)

with g (σ+;φ) given by Eq. (3.34) for φ ≤ 0.49. This estimate combines the exact low

φ

Δη
η

Fig. 5.21.: Reduced shear relaxation viscosity part without HIs, [Δη/η0]no-HI, of a suspen-
sion of Brownian hard spheres in dependence of φ. Filled circles: Brownian
dynamics (BD) simulation data by Foss and Brady [164]. Solid line: Analytic
estimate in Eq. (5.24). Dashed line: Semi-empirical expression in Eq. (5.25).

concentration limit, 2.4φ2 + O(φ3), of [Δη]no-HI with its divergence at random closed

packing according to [Δη]no-HI ∼ (1− φ/φrcp)
−1, triggered by the divergence of the hard-

sphere contact value. Together with the likewise linear divergence of η∞ for no-slip hard

spheres, a quadratic divergence η ∼ (1− φ/φrcp)
−2 is thus predicted for the zero-frequency

viscosity. For hydrodynamically structured particles where ah < a, there are no diverging

lubrication forces for spheres in contact. The high-frequency viscosity remains then finite
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at random closed packing, and the particles can still rotate individually. Moreover, η

diverges only linearly as η(φ, γ < 1) ∼ (1− φ/φrcp)−1.

In Fig. 5.21, the outcome of Eq. (5.24) for [∆η]no-HI is compared to Brownian dynamics

simulation results without HIs by Foss and Brady [164, 166]. Up to φ ≈ 0.35, the sim-

ulation data are decently well represented by the analytic expression, but the steep rise

of [∆η]no-HI at large volume fractions is not reproduced. The simulation data are well

captured for all φ by the semi-empirical expression[
∆η

η0

]
no-HI

=
12
5 φ

2
(
1− 7.085φ+ 20.182φ2

)(
1− φ

φrcp

) , (5.25)

combining the exact quadratic-order concentration dependence with the linear order di-

vergence at random closed packing. Throughout this work, we restrict our analysis to

the equilibrium fluid-phase concentration regime φ ≤ 0.5, while the viscosity simulations

in Refs. [163, 164, 166] have been extended to the metastable fluid concentration regime

φf < φ < φrcp where crystallization is kinetically suppressed. Regarding the shear re-

laxation viscosity part with HIs included, Brady has proposed the following approximate

scaling expression [25, 26],
∆η

η∞
≈ 12

5
φ2 g(σ+;φ)

ΛS(φ)
, (5.26)

where the influence of the HIs on the ratio ∆η/η∞ is solely embodied in the short-time

GSE function ΛS defined in Eq. (5.14). For no-slip hard spheres, ΛS is well represented

for φ < 0.4 by ΛS ≈ 1 + 0.67φ according to Eq. (5.15), while without HIs ΛS is equal

to one. Consequently, Eq. (5.26) predicts ∆η/η∞ to be only mildly affected by the HIs,

giving some credit to the no-HI factorization approximation in Eq. (5.23). Eq. (5.26) was

obtained from arguing that the adequate diffusion time scale in a concentrated suspension

is a2
h/dS instead of a2

h/d0, and from using a low-concentration estimate of the weakly shear-

distorted stationary pair distribution function with the prefactor g(σ+;φ) preserved [25].

A detailed discussion of the approximations going into Eq. (5.26) is given by Lionberger

and Russel [195, 196].

On using in place of Eq. (5.24) the semi-empirical fitting expression in Eq. (5.25) as the

non-hydrodynamic factor in Eq. (5.26) , Brady’s scaling relation is modified to

∆η

η∞
≈

12
5 φ

2
(
1− 7.085φ+ 20.182φ2

)(
1− φ

φrcp

)
ΛS(φ)

. (5.27)

The two here considered variants of the no-HI scaling approximation of η consist of using

105



5. Dispersions of hydrodynamically structured particles: Results

φ

η
η

Fig. 5.22.: Zero-frequency viscosity, η/η0, of no-slip Brownian hard spheres with HIs. Solid
and dashed black lines: No-HI factorization predictions using η∞(φ, γ = 1) ac-
cording to Eq. (5.10), and [η/η0]no-HI according to Eqs. (5.24) and (5.25),
respectively. Solid and dashed red lines: Brady’s (modified) scaling approxi-
mations using Eqs. (5.26) and (5.27) for Δη/η∞, respectively, and Eq. (5.10)
for the factored out η∞. The factor 1/ΛS in the (modified) scaling approxima-
tion is calculated using Eq. (5.10) for η∞ and Eq. (5.1) for dS. Dotted line:
Eq. (5.28). Filled symbols: Experimental data by Segrè et al. [193] and Weiss
et al. [194]. Open symbols: Stokesian dynamics (SD) simulation results for
Brownian hard spheres by Foss and Brady [166] and Phung [165].

Eqs. (5.24) and (5.25), respectively, as input for the ratio Δη/η∞ in the bracket term

in Eq. (5.22), in conjunction with the accurate generalized Saitô formula in Eq. (5.10)

used for η∞. In addition, Brady’s scaling expression for η and its modification consist

of approximating Δη/η∞ in the bracket term in Eq. (5.22) by Eqs. (5.26) and (5.27),

respectively, with the generalized Saito formula used again for the factored out high-

frequency viscosity. The hydrodynamic factor 1/ΛS in the two scaling expressions is

calculated analytically using Eq. (5.1) for dS, and the generalized Saitô formula for η∞.

The results for η(φ, γ = 1) by the four inter-related analytic approximations are depicted

in Fig. 5.22. They are compared with experimental data by Segrè et al. [193] and Weiss

et al. [194], and Stokesian dynamics (SD) simulation data for Brownian hard spheres with

HIs included by Foss and Brady [166] and Phung [165]. The latter have been obtained

for a small number (N = 27) of particles in the basic simulation box. In Ref. [166], Δη

was deduced using a general Green-Kubo formula for the shear stress correlation function

of hydrodynamically interacting particles [179]. The viscosity curves by all four approx-

imations compare overall quite well with the simulation data. Depending on the used
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approximation for ∆η/η∞, deviations are visible at intermediate and large volume frac-

tions. The neglect of HIs in ∆η/η∞ results in an overestimation of the simulations data at

large φ, but the low-φ experimental viscosity data are well described. On considering the

simulation data to be more trustworthy than the experimental data, owing to experimen-

tal polydispersity effects and difficulties in determining the precise volume fraction, the

modified scaling expression by Brady in Eq. (5.27) provides the overall best description of

the SD data for η, slightly better than Brady’s original scaling expression in Eq. (5.26).

We use the modified scaling expression in the following discussion of hydrodynamically

structured particles. Note that the second-order in concentration coefficient of η is pre-

dicted by all four factorization approximation variants as 5.01+2.4 = 7.41, while the exact

coefficient is equal to 5.931 [197]. This low-φ difference is not resolved on the scale of Fig.

5.22.

The figure includes additionally the viscosity prediction by the formula

η(φ)/η0 =
1− 0.4φ+ 0.222φ

2(
1− φ

)2 , (5.28)

with φ = φ/φrcp, which incorporates the first two known virial coefficients in η/η0 =

1 + 2.5φ + 5.91φ2 +O(φ3) and a quadratic divergence of η at φrcp. As seen in Fig. 5.22,

the formula describes the simulation and experimental data well for φ ≤ 0.35, but it

strongly underestimates them at larger φ.

Akin to long-time self-diffusion, we can straightforwardly extend our analysis to hydro-

dynamically structured particles, by using the generalized Saitô expression in Eq. (5.10)

for η∞(φ, γ), in combination with the modified Brady scaling expression in Eq. (5.27)

for ∆η/η∞. The viscosity predictions for different reduced hydodynamic radii γ, and

volume fractions extending up to φf, are depicted in Fig. 5.23. Note the pronounced

reduction of η(φ, γ) with decreasing γ, owing to the reduced dissipation, inherited from

the similar behavior of η∞(φ, γ). In the limit γ → 0, the zero-frequency viscosity re-

duces to η(φ, 0) = η0 + [∆η]no-HI. In spite of being approximate, the analytic modified

scaling expression for η(φ, γ) in Eqs. (5.22) and (5.27) can be expected to be useful for

a quick analysis of experimental viscosity data of hydrodynamically structured colloidal

suspensions. For the PNIPAM microgels in DMF, e.g., where γ = 0.97 has been deduced,

a significant reduction both in η and η∞ is predicted relative to the corresponding vis-

cosities of non-permeable particles. It will be interesting to compare our zero-frequency

and high-frequency viscosity predictions with future viscosity measurements on non-ionic

PNIPAM in DMF systems.
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φ

η
η

γ = 1.0
γ = 0.97
γ = 0.9
γ = 0.8
γ = 0.0

Fig. 5.23.: Predictions for the reduced zero-frequency viscosity, η(φ, γ)/η0, of hydrody-
namically structured particles, based on the modified Brady scaling expression
for Δη/η∞ in Eq. (5.27), and the generalized Saitô formula in Eq. (5.10) for
η∞(φ, γ). The hydrodynamic factor ΛS(φ, γ) is calculated using Eq. (5.10) for
η∞(φ, γ), and Eq. (5.1) for dS(φ, γ)/d0(γ). Several values of γ are considered
as indicated.

5.4.3. Long-time generalized Stokes-Einstein relations

The long-time analogue to the short-time GSE presented in Eq. (5.14) is given by ΛL
S ≈ 1

where

ΛL
s (φ, γ) =

dL(φ, γ)

d0(γ)
× η(φ, γ)

η0
. (5.29)

We use the the no-HI factorization approximation results for dL (c.f. Fig. 5.20), and

the modified scaling expression for η in Eq. (5.27) (c.f. Fig. 5.23), in order to asses the

validity of ΛL
S = 1 via Fig. 5.24. Our results show that the long-time GSE is strongly

violated in the whole fluid-phase concentration regime, and that the deviations are en-

hanced with decreasing γ. The non-monotonic concentration dependence of ΛL
S reflects

a competition of the contributions coming from η and dL, which both have a monotonic

φ dependence. Further, we find for permeable hard-sphere systems that ΛL
S(φ, γ) ≤ 1 for

φ ≤ φf, independent of the value of γ, in agreement with earlier results by Banchio et

al. [27] for an impermeable hard-sphere suspension with stick BCs. The violation of the

discussed long-time GSE is so pronounced that it is of no use for permeable hard sphere

suspensions.

Note that in Fig. 5.24, we have assumed that the HRM parameter γ is the same for dL

and η. As discussed in Subsecs. 4.1.4 and 5.2.5, this is an approximation valid for small
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φ

Λ

γ = 1.0
γ = 0.9
γ = 0.8
γ = 0.0

Fig. 5.24.: Test of the long-time GSE relation in Eq. (5.29), for spherical annulus par-
ticles with values of γ as indicated. For η, the modified scaling expression
in Eq. (5.27) (c.f. Fig. 5.23) is used together with the no-HI factorization
approximation for dL in Eqs. (5.16)-(5.18) (c.f. Fig. 5.20).

values of the reduced slip length L∗
h,f .
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In this chapter, we consider two different charged-particles systems. Firstly, we analyze

how the softness and permeability influence the dynamics of ionic microgel suspensions.

This is of interest for the analysis of dynamic scattering data. Secondly, aqueous colloidal

suspensions of charged silica particles are investigated. The focus is here on the calcu-

lation of accurate transport properties expressions, used subsequently in a theoretical-

experimental UF modeling study.

6.1. Ionic microgels: softness and permeability effects

We employ here the effective Denton pair potential for ionic microgels presented in Eqs.

(2.4) and (2.6), with steric interactions given by the Hertz potential (Eq. (2.1)) to study the

effect of particle softness and permeability on the structure and dynamics of ionic microgel

suspensions. For this purpose, we use realistic experimentally determined parameters as

described in [57]. These parameters include the inverse Debye screening length, κ, in

units of the particle diameter determined as κσs = 7, and the bare charge number of the

microgels determined as Z = 150. The only varied potential parameter is the interaction

strength ε ∈ [1− 105] of the Hertz potential part. In Fig. 6.1, we show the corresponding

interaction potentials.

To reveal the effect of softness and permeability on the dynamics of ionic microgels, it is

sufficient to make a case study for a single concentration, which we select as φ = 0.15.

The Darcy permeability of the microgels is described using the HRM, with γ defined as

the ratio of ah and the soft interaction radius as = σs/2 (c.f. Eq. (2.1)).

It is not a priori obvious that the HRM can be applied to highly soft particles. While

for particles with hard-sphere excluded volume interactions, e.g. for particles with a rigid

mesh-like backbone, g(r < γσ) is ensured to be zero, this is not the case for particles

interacting softly. The overlap of soft particles leads to their deformation which in turn

affects the solvent-particle interaction. However, as long as a particle remains spherical

on average, the model of impermeable spheres with effective stick BC diameter γσs can be

used. The accuracy of the HRM for transport property calculations of soft ionic microgels

should be better for systems where only a shallow non-zero tail of g(r) for r < σ is present.

This holds for moderate φ and/or in systems with strong electrostatic repulsion, where

overlap configurations are unlikely. Keeping this in mind, we nonetheless vary γ without

paying heed to the explicit softness of the pair potential and hence the actual form of g(r),
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σ

β

ε = 1
ε = 10
ε = 10
ε = 10
ε = 10
ε = 10

Fig. 6.1.: Pair potential of ionic microgels according to Eqs. (2.4), (2.6) and (2.1), for
various values of ε as indicated. The reduced Debye screening length κσs is 7,
and the bare charge number of the microgels Z = 150. The inter-particle distance
r is scaled by the effective microgel diameter σs used in the Hertz potential part.
The dotted lines are the contributions by the Hertz potential (Eq. (2.1)) to the
total potential for selected values of ε. The inset focuses on the crossover from
the overlap (r ≤ σs) to the non-overlap region (r > σs).

for we are interested here in the qualitative behavior rather than quantitative results.

6.1.1. Structure functions

In Fig. 6.2, we illustrate the effect of particle softness on g(r) and S(q), for a suspension

of ionic microgels with φ = 0.15. For the calculation of g(r) and S(q), we use the PY

closure discussed in Subsec. 3.4.2.

With increasing ε and consequential increase of the energy penalty for particle deformation,

the probability of overlapping particles configurations decreases significantly. As a result,

the distance up to which the RDF is practically zero shifts to larger values, reaching for

ε = 104 σs. We note that the Hertz potential (for r < σs) is bounded which is likewise

the case for the Denton potential part. For the lowest considered value ε = 1, the energy

contribution from the electrostatic part on overlap (c.f. Eq. (2.4) and Fig. 6.1) is 5 times

larger than the Hertz potential contribution. For the considered concentration φ = 0.15,

we have g(0) = 0 for ε = 1, despite the energy penalty at full particle overlap of about

6 kBT .

With increasing ε the g(σ+
s ) grows, and for ε = 105 a tiny depletion zone at x ≈ 1.8 is

appearing. A non-zero g(σ+
s ) is due to the weak electrostatic repulsion for the discussed

systems. To visualize the effect of the electrostatic repulsion, we show gHS(r) of neutral
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Fig. 6.2.: (a) RDF g(r) and (b) S(q) in PY approximation for the Denton plus Hertz
pair potential presented in Eqs. (2.4), (2.6), and (2.1) for various values of ε as
indicated, and using φ = 0.15. The bare microgel charge number is Z = 150,
and the reduced Debye screening length is κσs = 7. These are realistic values
for the ionic microgel systems studied in [57]. The symbols in (a) are the g(r)
of a hard-sphere suspension with diameter σ = σs and φ = 0.15.

hard spheres as the black symbols in Fig. 6.2a. Note that gHS(r) is in good agreement

with the RDF of a system of particles interacting by the Hertz potential with ε = 105. The

increase of g(σ+
s ), and the decreasing likelihood of overlap configurations with increasing ε,

is mirrored in S(q) by a shift of the next-neighbor peak position, qm, to smaller q-values,

and the increase of the respective peak height S(qm). In addition, S(q) develops more

pronounced oscillations, and the osmotic compressibility becomes strongly reduced.

6.1.2. Short-time dynamics

In Fig. 6.3, we study how changes in the Hertz interaction strength ε are affecting the

short-time diffusion of ionic microgel systems as characterized by H(q). We first study

theoretically impermeable particles with stick surface BCs for which γ = 1. For the

calculation of H(q), we use the hybrid BM-PA scheme discussed in Subsec. 4.4.3, with

self-part input dS calculated in PA approximation. In the BM and PA methods, the PY

S(q) and g(r) are used as input.

The hydrodynamic function has the same trends as S(q) regarding the next-neighbor peak

S(qm). In addition, the sedimentation coefficient, K = H(0), reflects the trends in S(0).

A possible explanation for this similarity is that the particle softness leads to an increased

likelihood for overlap which in turn results in an effective reduction of the friction exerted

on the particles by the solvent back flow. As a consequence, K is larger for softer particles.

Interestingly, K turns out to be particularly sensitive to ε. As an example, the functions
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Fig. 6.3.: Hydrodynamic function of impermeable ionic microgel suspensions with κσs = 7
and Z = 150, and values of ε as indicated for φ = 0.15. The function H(q) is
calculated using the BM-PA hybrid method.

H(q) for ε = 103 and 105 are basically coincident in the whole q-range except for the low-q

region.

Interestingly, the same ε dependence is observed for the self-diffusion coefficient, dS, with

its increase with decreasing ε, however, being small compared to the increase of K.

In Fig. 6.4a, we demonstrate the influence of solvent permeability on H(q) for an ionic

microgel suspension. The considered values γ = {0.9, 0.95, 1.0} cover actually a broad

range of experimentally realistic permeabilities (c.f. Subsec. 4.1.4). With increasing

permeability (decreasing γ), the influence of HIs becomes weaker and H(q) is shifted for

all q to higher values, while the shape of the function remains practically unchanged.

Moreover, with decreasing γ, the difference in the self-diffusion coefficients for ε = 1 and

104 decreases. This reflects that the hydrodynamic mobilities associated with self-diffusion

are faster decaying than those for H(q).

Results for the diffusion function, D(q), directly accessible in DLS experiments are shown

in Fig. 6.4b. The particle softness leads to a lowering of the diffusion function for low-

q while increasing permeability results in an up-shift of D(q). The first feature can be

attributed to the distinctly higher osmotic compressibility at smaller ε and the latter

mirrors the behavior of H(q). For a fixed value of ε, the increase in permeability leads to

a down-shift of D(q).

To conclude, we have shown theoretically that particle permeability and softness strongly

affect the short-time diffusion of ionic microgel systems described using the Denton-Hertz
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Fig. 6.4.: (a) H(q) and (b) D(q) of permeable ionic microgel suspensions, for φ = 0.15 and
ε = 1 and 104. The permeability is characterized by the reduced HRM parameter
γ. The hybrid BM-PA scheme is employed for the calculation of H(q), and the
PY S(q) is used in the calculation of D(q)/d0 = H(q)/S(q).

pair potential. The effect of softness is stronger on sedimentation than on self-diffusion.

In contrast, permeability distinctly affects H(q) and D(q) in the full q-range. Particle

permeability results in an upturn in D(q) for low-q values that is further enhanced in

systems with large ε values due to the associated small χT. In fact, an upturn in D(q) at

low q has been seen in DLS studies on ionic microgel suspensions [198]. Finally, note that a

small q upturn can be also caused by particle polydispersity [189] and additional attractive

forces. The here presented discussion of D(q) can be useful for the analysis of dynamic

scattering measurements on permeable and / or soft charged-particles suspensions.

6.2. Application to ultrafiltration of charged particles

In this section, we discuss the importance of accurate transport properties expressions as

input for the theoretical modeling of technological processes. We present here a model

for cross-flow inside-out UF used by Roa et al. [39] to describe the filtration of perme-

able hard-sphere suspensions. In this thesis, this model is applied to the UF of aqueous

charged-silica particles suspensions, described using the state-dependent inter-particle po-

tential in Eq. (2.8). The charge renormalization of the silica surface charges due to

surface-released counterions is accounted for by the determination of effective charges and

screening lengths within a PB cell model approach. This allows for the accurate calcu-

lation of properties needed in the cross-flow UF modeling, namely the osmotic pressure,

Π, the isothermal compressibility, χOSM, the collective diffusion coefficient, dC, and the

zero-frequency viscosity, η, as function of the particle concentration.
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6.2.1. Cross-flow ultrafiltration (UF) model

In UF, the transport of a Brownian particles suspension is considered under laminar flow

conditions where the system is only slightly perturbed from thermal equilibrium. Under

continuous cross-flow operation, a steady-state is quickly reached, with fully developed

suspension flow in the lumen side of the membrane fiber, and a stationary particles-

enriched CP layer is formed at the inner membrane wall (c.f. Fig. 2.3). Owing to the very

large Schmidt number of colloidal suspensions, given by the ratio of the characteristic

single-particle diffusion and hydrodynamic vorticity diffusion times associated with the

particle radius distance, the steady suspension flow is much faster developed than the CP

layer. The CP layer becomes more pronounced and more extended with increasing distance

from the fiber inlet. On a coarse-grained length scale where the size of the particles is not

resolved, the stationary transport is governed by continuum mechanics equations. There

is first the mass balance (particle conservation) described by the continuity equation,

∇ · J(r) = 0 , (6.1)

where

J(r) = −dL
C(φ(r))∇φ(r) + φ(r)u(r) (6.2)

is the particle flux, and φ(r) is the local particle volume fraction at position r inside

the suspension. The flux J(r) has a diffusion contribution related to Brownian motion

whose strength at given concentration gradient is quantified by the long-time collective

or gradient diffusion coefficient dL
C(φ) (the short-time counterpart is given in Eq. (4.58)),

and an advection contribution proportional to the suspension-averaged fluid velocity u.

The latter fulfills the incompressibility constraint of ∇ · u = 0.

Since in UF the local low-Reynolds number conditions are met, the momentum balance

for the suspension-averaged fluid flow is governed by the effective Stokes equation intro-

duced in Eq. (4.11). It contains the suspensions-averaged local pressure, p(r), and the

φ-dependent effective suspension viscosity, η(φ), of steady low-shear flow. In inhomoge-

neous suspension regions such as in the CP layer, there is an additional hydrodynamic

force density proportional to ∇η.

The governing Eqs. (4.11), (6.1) and (6.2), are subjected to boundary conditions imposing

the inlet flow, and specifying flow conditions at the lumen side of the membrane. We

assume a fully developed Poiseuille inlet flow, i.e.

u(r, x = 0) = um

(
1− r2

R2

)
ex, (6.3)
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of a homogeneous feed solution of volume fraction φ0. The axis of the cylindrical fiber

extends from x = 0 to L, in the direction of the unit vector ex, with r denoting the

radial distance from this axis. The inflow velocity um at the fiber axis is related to the

characteristic shear rate, γ̇, by [199]

γ̇ =
2um
R

=
4Qfeed

ρmπR2
, (6.4)

where Qfeed is the integral suspension mass flow (in g/l) through the inlet cross section, and

ρm the constant suspension mass density. The mass density difference between particles

and fluid is neglected here.

Furthermore, we impose Darcy’s law [199]

vw(x) ≡ u(R, x) · er = L0
p

[
∆pTMP(x)−Π (φw(x))

]
, (6.5)

for the (reverse osmosis) inside-out permeate velocity, vw(x), along the membrane position

x. Here, φw(x) = φ(r = R, x) is the particle concentration, ∆pTMP(x) the transmembrane

pressure, Π(φw) the osmotic pressure at the inner membrane wall, and er the radial unit

vector of the cylindrical coordinate system. Moreover, L0
p = 1/(η0Rmem) is the solvent

permeability of the clean membrane and Rmem the clean membrane hydraulic resistance. It

is important to note that the pressure leading to solvent permeation is equal to ∆pTMP(x)

reduced by Π(φw). We use furthermore the zero-tangential fluid velocity condition at the

membrane-suspension interface,

er × u(R, x)× er = 0 , (6.6)

and the reflecting boundary condition,

J(R, x) · er = 0 , (6.7)

describing the particle-impermeability of the membrane.

Strictly speaking, the boundary conditions in Eqs. (6.3) - (6.7) should be taken not right

at the membrane-suspension interface but at the external boundary of a transition layer

adjacent to the inner membrane surface of thickness δ∗, which is required to be large

compared to the particle size and mean pore size of the membrane, but small compared to

the membrane thickness and fiber radius R. Furthermore, for charged particles and / or a

charged membrane, the transition layer thickness δ∗ should be large compared to the Debye

screening length, but small compared to the extension of the CP layer. Provided such a
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vw(x)

y
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CP layer

membrane
u(x,y)

0 x

Fig. 6.5.: Sketch of the locally flat CP layer on top of the membrane surface at y = 0. The
permeate velocity, vw, is given by vw(x) = v(x, y = 0), and the zero-tangential
fluid velocity condition in Eq. (6.6) results in u(x, y = 0) = 0. Sketch kindly
provided by R. Roa [39]

thin transition layer can be identified, and the imposed flow driven by the transmembrane

pressure does not significantly perturb thermodynamic equilibrium within the layer, Eqs.

(6.3) - (6.7) can be used which implicitly imply an infinitely thin transition layer. In

particular, the filtration behavior is then not affected by the membrane surface charge.

A more detailed discussion of the transition layer picture will be given in a forthcoming

article, describing a systematic theoretical analysis of the UF of charge-stabilized suspen-

sions for varying salt conditions [200]. In the present UF study, the requirements for an

unperturbed transition layer are met. Moreover, since um � v0w where v0w = L0
p Δ pTMP

is the maximal permeate velocity reached for a clean membrane and pure solvent as feed,

also the CP layer is thin compared to R. Thus a boundary layer analysis of Eqs. (6.1),

(6.2) and the Stokes equation (4.11) can be made, resulting in a similarity solution for the

CP layer concentration profile φ(x, y). Here y = R − r 	 R is the transversal distance

from the membrane wall. From this profile, and for known concentration dependence of

the osmotic pressure, the permeate velocity vw(x) is obtained using Darcy’s law. Note

that the fluid velocity u(r) inside the CP layer is split into an axial u(x, y) and radial

v(x, y) velocity contribution according to u(r) = u(x, y)êx + v(x, y)êy. Thus, vw is given

by vw = v(x, y = 0) as sketched in Fig. 6.5.

The coupled set of non-linear ordinary differential equations from which the similarity

solution φ(x, y) is obtained using the boundary conditions noted before, is described in

detail in [39]. For given inlet feed flow and ΔpL = pin − pout (c.f. Subsec. 2.2.2), the

only input quantities required in this numerical solution are the osmotic pressure, Π(φ),

the zero-frequency viscosity, η(φ), the collective diffusion coefficient, dc(φ), characterizing
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the charge-stabilized suspension, and ∆TMP(x). All of these properties can be calculated

using the methods presented in this thesis.

6.2.2. Experimental sample properties

In the cross-flow UF measurements, an aqueous suspension of charge-stabilized silica par-

ticle is used. The suspension consists of Ludox silica particles dispersed in purified water

without added electrolyte. The mean hydrodynamic particle radius is ah = 15 nm. The

concentration of the feed suspension is 0.1 wt% on assuming monodisperse particles, and

on neglecting the mass density difference with respect to the solvent. Additionally to the

monovalent counterions dissociated from the silica particles surfaces that neutralize the

negative particle charges, the suspension includes ions from the self-dissociation of water

molecules, and from atmospheric CO2 contamination. All this amounts to pH = 5. The

zeta potential was measured with a Mastersizer 3000 from Malvern Instruments giving the

value ζ = −35 mV.

The number of bare elementary charges on a silica particle surface is estimated as Zbare ≈
106, i.e. as (lB/a)Zbare = 5 in reduced units. We have obtained this value using Fig. 4.10

in [201] from which for pH = 5 the surface charge density 0.0375 e/nm2 of SiO− ions is

deduced.

The Debye screening parameter, κres, of the permeate reservoir is estimated by assuming

the pH of the permeate to be the same as that of the dilute feed suspension. The screening

parameter follows then from using

κ2
res = 8πlBNA[H+] , (6.8)

where [H+] = 10−pH is the molar hydronium concentration, and NA denotes Avogadro’s

number. This leads to κresa = 0.15. The values for Zbare and κres noted here are used in

the cell model calculations of Zeff and κeff going into the OCM potential.

6.2.3. Renormalized charge and screening length

As discussed in Subsec. 2.2.2, we employ the OCM (c.f. Eq. (2.8)) for the description

of a charge-stabilized suspension of rigid colloidal spheres. Here, we discuss how the

concentration dependent potential parameters Zeff and κeff are calculated.

For monovalent microions that can be treated as pointlike in comparison with the colloidal

macroions, and for small microion correlation effects disregarded, Zeff and κeff can be

obtained using the mean-field Poisson-Boltzmann (PB) spherical cell model description of
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Alexander et al. [202] (see also Trizac et al. [82, 203]). In the PB cell model, the bulk

suspension is represented by a single spherical macroion with uniformly distributed bare

surface charge Zbaree, placed at the centre of a spherical cell, whose radius R = a/φ1/3 is

set by the colloid volume fraction. The fluid and the microions, with the latter described

by radially smeared out concentration profiles, are confined to the outer shell of thickness

R−a. For a system with monovalent counterions dissociated from the colloid surfaces such

as for the considered silica suspension, which is in osmotic equilibrium with a 1-1 strong

electrolyte reservoir with concentration cres of salt ion pairs, the mean-field electrostatic

potential Φ(r), expressed in units of kBT /e, is the solution of the non-linear PB equation

[203]

Φ′′(r) + 2
Φ′(r)

r
= κ2

res sinh{Φ(r)} . (6.9)

Here, the prime denotes differentiation with respect to the radial distance r. For the con-

sidered osmotic Donnan equilibrium, the appropriate inner and outer boundary conditions

rendering the solution Φ(r) unique are Φ′(a) = −lBZbare/a
2 and Φ′(R) = 0, respectively,

in accord with the global electroneutrality of the cell and zero potential inside the reser-

voir. Following Alexander et al. [202], the effective colloid charge number, Zeff, is then

obtained from the solution, Φl(r), of the PB equation linearized at the cell boundary using

Φ′l(a) = −lBZeff/a
2. This leads to [203]

lB
a
Zeff = γRF (κeffa, φ

−1/3) , (6.10)

where

κ2
eff = 4πlB

[
n+(R) + n−(R)

]
= κ2

res cosh{Φ(R)}γRF (κeffa, φ
−1/3) , (6.11)

and

F (x, y) =
1

x

[ (
x2y − 1

)
sinh{xy − 1} (6.12)

+ x (y − 1) cosh{xy − x}
]
, (6.13)

with γR = tanh{φ(R)}. Here, n±(R) are the co- and counterion concentration at the

cell boundary. The Donnan potential φ(R) is associated with the lowering of the salt

concentration ns = Ns/VR, with VR = (4π/3)R3, in the suspension relative to the reservoir

concentration cres. It is obtained from numerically solving the non-linear PB boundary
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value problem for Φ(r). For this purpose, the MATLAB routine bvp4c [204] has been

employed. The overall electroneutrallity of the cell commands, with x = r/σ (σ = 2a),

that

ns
cres

= 24φ(1− φ)

∫ R/σ

1/2
dxx2 exp{Φ(x)} , (6.14)

where Zbare < 0 and thus Φ < 0 has been used. In using the here described PB cell model

to obtain Zeff and κeff as functions of lB/aZbare, κresa and φ, we ignore chemical charge

regulation effects arising from an incomplete dissociation of colloidal surface groups.

In our silica filtration experiments, the role of the microion reservoir is played by the

permeate. On assuming that the membrane is fully retentive to the silica spheres, the ion

concentration in the aqueous reservoir is practically set by the water-adsorbed atmospheric

CO2 resulting in κresa = 0.15. The Donnan equilibrium corresponds to a semi-grand

canonical ensemble description where microions can be exchanged between suspension

and reservoir. A closed suspension of given salt concentration ns is treated most easily

by mapping it on a corresponding semi-open system. The reservoir concentration cres, for

which cres > ns, is then uniquely determined from solving Eq. (6.14) for the searched-for

cres at given ns using a root-finding procedure.

The PB cell model predictions for the concentration dependence of the effective charge

number and screening parameter of the low-salinity aqueous silica suspension in Donnan

equilibrium are depicted in Fig. 6.6 and its inset, respectively, for a concentration inde-

pendent bare charge number Zbare ≈ 106 in units of the elementary charge. Owing to

the quasi-condensation of counterions at the colloid sphere surface, the effective charge

Zeff is in general smaller than the bare one. At very small φ, the salt ions contribute

dominantly to the electrostatic screening (salt-dominated regime) and Zeff and κeff are

nearly concentration independent. This is the regime where the OCM effective poten-

tial Veff(r) is practically state-independent, with values of κeff close to the reservoir value

κres constituting its lower bound. At sufficiently large φ, screening is mainly due to the

non-condensed part of the surface-released counterions (counterion-dominated regime). In

this higher concentration regime, both Zeff and κeff change significantly with increasing φ,

giving rise to a distinctly state-dependent OCM potential, and values of κeff significantly

larger than κres. According to Dobnikar et al. [82], the crossover region connecting the

two regimes in the PB cell model is roughly characterized by the threshold concentration

value,

φ∗ = 0.2× (κresa)2

(lB/a)Zbare
, (6.15)
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φ

φ

κ
κ

Fig. 6.6.: Charge number ratio, Zeff/Zbare, (main figure part) and screening parameter
ratio, κeff/κres, (inset) as functions of colloid volume fraction φ, calculated using
the Alexander PB cell model. The employed systems parameters (lB/a)Zbare =
5, κresa = 0.15, a = 15 nm, and lB = 0.71 nm are those of the low-salinity
aqueous silica particles suspension in osmotic equilibrium with an aqueous 1-1
electrolyte reservoir. The vertical dotted line marks the threshold concentration
value φ∗. See Eq. (6.15) and the text for details.

which for our low-salinity silica system amounts to φ∗ = 0.9 × 10−3, as indicated by the

dotted vertical lines in Fig. 6.6. This concentration value is one order in magnitude smaller

than the concentration φ ≈ 0.02 where the minimal (i.e., maximally charge-renormalized)

value of Zeff(φ) occurs which is 14% smaller in magnitude than Zbare. In our filtration ex-

periments using silica suspensions, the constant feed concentration is φ0 = 0.001, implying

silica concentration values, φw(x), along the membrane wall larger than φ∗. It is noticed

from Fig. 6.6 that the concentrations in the UF experiments belong to the counterion-

dominated region where Zeff, and hence Veff(r), change significantly if φ is varied.

6.2.4. Osmotic pressure and compressibility

The OCM potential, Veff, with Zeff and κeff determined using the PB cell model, is em-

ployed for the calculation of static system properties, namely g(r), S(q), the isothermal

osmotic compressibility, χosm, and the total suspension pressure P . While the first two

serve as input in the BM-PA hybrid scheme for the calculation of accurate transport prop-

erties, the latter are used for the filtration modeling. As mentioned in the discussion of
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thermodynamic properties in Sec. 3.3, the calculation of the suspension pressure for sys-

tems with state dependent interaction potentials is more intricate and will be discussed in

the following.

The total suspension pressure, P , caused by microions and macroions can be formally split

as [82, 205]

P = Pmicro + Pcorr , (6.16)

into a microionic pressure part, Pmicro, deriving from the so-called free volume contribu-

tion to the total PM free energy originating from the non-condensed microions, and the

correlation pressure part, Pcorr, due to correlations among the microion-dressed colloids.

In the considered Donnan equilibrium situation with a lower-concentrated monovalent ion

reservoir, the osmotic pressure, Π, i.e. the difference between suspension pressure and the

reservoir pressure, Pres, is given by

Π = P − 2cres kBT , (6.17)

where in accord with the PB level of description, Pres has been approximated by its

ideal gas form. This simplification is justified, since the leading non-ideal (limiting-law)

contribution, −kBTκ3
res/(24π), to the reservoir pressure is, for κresa = 0.15, three orders

of magnitude smaller than the ideal gas part .

For lower-salinity systems of colloids having many surface charges, the microionic (coun-

terion) pressure contribution is dominant so that P ≈ Pmicro [82]. This holds true in

particular for our filtration experiments where φ > φ∗ is valid, as we are going to dis-

cuss below. In the cell model, Pmicro is determined by the microion densities at the cell

boundary,

βPmicro = n+(R) + n−(R) = 2cres

(
κeff

κres

)2

, (6.18)

where the second equality holds in PB approximation.

The correlation pressure part, Pcorr, is in general quite different from the pressure, POCM,

obtained from treating the suspension as an effective one-component fluid of dressed

macroions with the concentration-dependence of the OCM potential disregarded. Under

isothermal conditions, and without significant effective three-body correlation contribu-

tions arising at very low salinity only, the total suspension pressure can be determined

from the generalized virial equation, presented in Eq. (3.28) for a one-component fluid

system with concentration-dependent effective pair potential.

Additionally to the colloidal ideal gas contribution, and the contributions associated with
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the macroion g(r) appearing on the right-hand-side of Eq. (3.28), there is a pressure

contribution deriving from the free volume energy, f0(ρ), whose colloid concentration

dependence is basically inherited from the non-condensed counterions owing to the total

electroneutrallity constraint. While f0 has no influence on g(r) which is determined solely

by Veff(r), it must be considered for smaller salinity to obtain thermodynamic properties

from an effective one-component treatment.

The general applicability of Eq. (3.28) has been questioned in the literature [81, 206].

However, at least in the linear screening case of weakly charged colloids where Zeff = Zbare,

it exactly reproduces the PM pressure, provided a consistent expression for the free volume

pressure contribution on the right-hand-side of Eq. (3.28) is used which accounts for the

ideal gas pressure contribution, n|Zbare|kBT , of surface-released counterions (see [207–

211]). The bare OCM pressure, POCM, is given in units of kBT by the following part of

Eq. (3.28)

βPOCM = ρ+
2π

3
ρ2
{
σ3g(σ+)−

∫ ∞
σ+

drr3 g(r)
∂ (βVeff(r))

∂r

}
, (6.19)

with the negative-valued pressure contribution by the concentration derivative of Veff(r)

omitted, and the discontinuity of Veff(r) already considered by the integrated-out contact

value term. Eq. (6.19) is a good approximation of the total suspension pressure P for very

high salinity only, when the effect of the surface-released counterions becomes negligible,

and f0 and Veff(r) are ρ-independent.

Different pressure contributions are shown in Fig. 6.7, for concentration values extending

up to φ = 0.3, and using the same low-salinity silica system parameters as in Fig. 6.6.

Since according to the inset in Fig. 6.8, g(σ+) ≈ 0 even at φ = 0.3, it follows that the

contact-value pressure contribution in Eq. 6.19 is negligibly small. Moreover, since the

HNC generated principal structure factor peak height, S(qm;φ), at wavenumber qm is

smaller than 3 for all φ ≤ 0.3, we conclude that the suspension is liquid-like structured.

We have used here the semi-empirical Hansen-Verlet rule, stating that S(qm) ≈ 3 is the

peak value for which charge-stabilized systems ( characterized in particular by g(σ+) ≈ 0)

start to crystallize [212].

According to Fig. 6.7, the main contribution to the suspension pressure is due to the

microions. That P ≈ Pmicro holds true for our silica suspension is expected for systems in

the counter-ion dominated concentration regime, as scrutinized in numerous Monte-Carlo

simulations of strongly charge- and size asymmetric PM systems (see, e.g., [82, 83]). Note

further from the figure that Pmicro � Pid. For reference, also the pressure curve of a hard-

sphere suspension is shown, obtained by the Carnahan-Starling equation of state (c.f. Eq.
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φ

π
β φ
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Fig. 6.7.: Colloid volume fraction dependence of different reduced pressure contributions
listed in the legend, for system parameters as in Fig. 6.6. Pres: ideal gas reservoir
pressure; Pmicro: PB cell model microionic pressure part according to Eq. (6.18);
POCM: OCM pressure part in Eq. (6.19), calculated using the HNC g(r) of
colloidal macroions. PHS: hard-sphere pressure according to Carnahan-Starling
equation of state. Pid = nkBT : colloidal ideal gas pressure. The inset depicts
Pmicro, POCM and PHS on a double-linear scale.

(3.35)). The pressure POCM in Fig. 6.7 is about one half of Pmicro, illustrating that it

strongly overestimates Pcorr in the low-salinity regime [82, 205].

The crux of the present discussion is that we can use

βΠ ≈ 1

4πlB

(
κ2eff − κ2res

)
(6.20)

as a good approximation for the osmotic pressure of the silica suspension.

The long-wavelength limit, S(0) = S(q → 0), of the macroion static structure factor is

required as another thermodynamic input to the UF calculation in addition to Π, since it

goes into the calculation of dc. According to an exact relation by Kirkwood and Buff, the

osmotic isothermal compressibility factor, χosm, in Donnan equilibrium can be expressed

solely in terms of S(0), i.e., [213]

χ−1
osm ≡

(
∂βΠ

∂ρ

)
T,res

=
1

S(0)
, (6.21)

without the explicit colloid-microion and microion-microion static correlation functions be-

125



6. Charged-particles dispersions: Results

φ

φ

σ
Fig. 6.8.: Colloidal structure factor principal peak height, S(qm), as a function of φ, cal-

culated in HNC approximation using the OCM potential with PB cell model
values for Zeff and κeff. System parameters as in Fig. 6.6. Inset: Contact value,
g(σ+), of the HNC colloidal radial distribution function.

ing involved. The concentration derivative of Π is taken here for fixed reservoir properties,

namely fixed electrolyte ion chemical potential and concentration cres. Since P ≈ Pmicro

is valid for our low-salinity system, we obtain the compressibility factor straightforwardly

from

χ−1
osm ≈ κeff

2πlB

(
∂κeff
∂ρ

)
T,res

, (6.22)

using the PM cell model result for κeff. At low salinity, χT ∼ 1/Zeff is approximately

valid, making explicit the low osmotic compressibility of the strongly repelling macroions.

The Kirkwood-Buff relation is useful also for testing the degree of self-consistency of

the approximations, namely the PB cell model and HNC approximations, employed in

calculating χosm and S(0), respectively. In the concentration range of the present UF

study, the difference between the two quantities is less than 20%.

While the cell model Pmicro is a good approximation for the suspension pressure of our silica

system, with the compressibility factor determined from Eq. (6.22), for completeness we

shortly address how Π can be calculated for conditions where P is not well approximated

any more by Pmicro. First, a so-called extrapolated-point-charge method of calculating

P has been developed recently by Boon et al. [214] which uses likewise the Alexander

cell model input, but now for a modified OCM potential. Second, in two closely related
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Fig. 6.9.: (a) S(q) and (b) g(r) calculated in HNC approximation for the OCM potential
with PB-cell model values for Zeff and κeff as presented in Fig 6.6, and for values
of φ as indicated. In (a), the dotted black line indicates the Hansen-Verlet
freezing criterion value S(qm) ≈ 3 (see text for more details) and in (b), the
same color code as in (a) is used.

set of approaches put forward by Castañeda-Priego et al. [215, 216], and Colla et al.

[217] (see also [218]), the exact validity of the Kirkwood-Buff relation is enforced by a self-

consistent combination of the PB-based renormalized jellium model for calculating Zeff and

κeff, and the Rogers-Young integral equation scheme for calculating S(q) with its mixing

parameter being adjusted. Which of these methods of calculating Π is more accurate in

comparison with benchmark PM simulations is still a matter of future assessment. For

suspensions whose colloidal electric double layers are thin compared with the particle

radius, a perturbation method (free energy minimalization) can be used based on an

effective hard-sphere reference system (see, e.g., [209]).

6.2.5. Pair-structure functions

The effective charge and screening length obtained from the PB cell model calculations

are used in the OCM potential for the calculation of the macroion-macroion g(r) and

S(q). For numerical simplicity, we have employed the HNC approximation presented in

Eq. (3.36). While the HNC lacks thermodynamic self-consistency, different from the more

elaborate Rogers-Young scheme [128], it can be expected to be decently accurate for the

here considered lower salinity systems (cf. Heinen et al. in [65]).

In Fig. 6.9a, we present S(q) results for the OCM potential with PB-cell model values for

Zeff and κeff as presented in Fig 6.6, and for various values of φ. With increasing φ, the next-

neighbor peak in S(q) increases distinctly and shifts to higher wavenumbers, characteristic

of a reduction of the mean particle distance. At the same time, the oscillations in S(q)
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become more pronounced. For the highest volume fraction considered, φ = 0.4, the

Hansen-Verlet freezing criterion value S(qm) ≈ 3 is exceeded suggesting the crystallization

of the system. As we will show in the comparison with UF measurements, the φ values

observed in the model calculations are so small that the fluidity of the sample is guaranteed.

The corresponding HNC g(r) results are presented in Fig. 6.9b. For all considered φ,

g(σ+) is practically zero due to the strong electrostatic repulsion between the macroions.

With increasing φ, the next-neighbor peak in g(r) is shifting from about 4σ to 1.2σ for

φ = 0.3, accompanied by a distinct increase of its height. In addition, more pronounced

higher order peaks of g(r) are formed pointing to an increased structural ordering of the

system.

6.2.6. Transport properties

The concentration-dependent long-time collective diffusion coefficient, dL
C(φ), in the con-

stitutive equation invoking the coarse-grained silica particles flux J(r, t), can be expressed

in Donnan equilibrium as [136]

dL
C(φ) = d0

KL(φ)

χosm
, (6.23)

where χosm = S(0) is the osmotic compressibility coefficient calculated using Eq. (6.22).

Here, KL(φ) is the long-time sedimentation coefficient. As discussed in Subsec. 4.2.1 and,

e.g., [136], KL is in principle smaller than the corresponding short-time sedimentation

coefficient K = H(q → 0). However, for low-salinity systems where two-body HIs prevail,

the difference between the two coefficients is minuscule and can be ignored. Consequently,

we will use the short-time collective diffusion coefficient dC as an excellent approximation

for dL
C.

For the calculation of H(q), K, and dS we use the hybrid BM-PA scheme introduced in

Subsec. 4.4.3. The accuracy of BM-PA scheme calculations of H(q) has been exemplified

for charge-stabilized suspensions whose colloidal interactions are described by an OCM-

type potential, by comparison with experiment and simulation [65, 85, 136, 178].

In Fig. 6.10, we display the BM-PA results for H(q) for the same system parameters

as used in Fig. 6.9. With increasing φ, H(q) shifts to lower values mirroring a growing

slowing-down effect of HIs on the system dynamics. As a consequence, both, dS, and K at-

tain distinctly smaller values. For φ = 0.4, non-physical negative H(q) values are caused by

the inaccuracy of the employed BM-PA hybrid scheme at large φ. As discussed in Subsec.

4.4.3, the PA method used for the calculation of dS, disregards any hydrodynamic shield-
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Fig. 6.10.: Hydrodynamic function of charged-silica sphere suspensions for the same pa-
rameters as for S(q) and g(r) presented in Figs. 6.9a and 6.9b.

ing effects which are of importance in more dense colloidal suspensions. Consequently, the

PA scheme strongly underestimates dS at large φ. For hard-sphere suspensions, the PA

approximation is known to give accurate predictions for dS up to φ � 0.15 [178]. However,

since in the UF model presented in the remainder of this section considerably lower φ

values are considered the usage of the hybrid BM-PA scheme is appropriate.

Fig. 6.11 depicts the concentration dependence of dC = d0K/χOSM for the silica particles

system, calculated by the theoretical BM-PA method calculations. This result is compared

with the corresponding result where the long-ranged colloidal HIs are disregarded, and with

the dC for neutral hard spheres. Both the sedimentation coefficient, K, and the osmotic

compressibility factor, χosm, are monotonically decreasing with increasing φ. At small φ,

the decrease of χosm outbalances that of K, owing to the strong electrostatic inter-particle

repulsion, with the consequence that dC rises steeply initially (see inset). At larger φ, the

slowing influence of the HIs becomes stronger, with the effect that dC passes through a

maximum at φ ≈ 0.003, followed up by its moderate decline at larger φ values. When HIs

are neglected so that K = 1, a monotonically increasing dC is predicted instead in the

considered concentration range. The key point to notice from Fig. 6.11 is that owing to

the strong electrostatic repulsion between the silica particles, dC is largely enhanced by one

order in magnitude relative to the collective diffusion coefficient of neutral hard spheres.

The hard-sphere results for dC with HIs included shown in the figure as the dashed-dotted
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φ

/χ
1/χ

φ

Fig. 6.11.: Reduced collective diffusion coefficient, dC(φ)/d0, as a function of φ, for same
system parameters as in Fig. 6.6. Solid line: Charged-silica suspension, with
K = H(0) calculated using the BM-PA method with HNC input for S(q) and
g(r), and χT calculated using Eq. (6.22). Dashed line: Hypothetical silica
suspension without HIs for which K = 1. Dashed-dotted line: Second-order
virial expansion result for neutral hard spheres.

line has been generated using the second-order virial expansion expression [46, 136, 219],

dc(φ)/d0 = 1 + 1.454φ− 0.45φ2 , (6.24)

which is in good agreement with simulation data even up to φ = 0.494 where a non-sheared

hard-sphere suspension starts to solidify (see, eg., [39]).

Note that the electrokinetic reduction of dC, arising from the non-instantaneous relaxation

of the microion clouds surrounding each colloidal macroion, is not accounted for in the

BM-PA method based on the OCM. This reduction can be estimated using the PM-based

coupled-mode theory [220], showing that it is negligibly small owing to the large silica-

microion size asymmetry.

6.2.7. PA-MCT results for the zero-frequency viscosity

The second important transport property input to the filtration model is the concentration-

dependent effective suspension viscosity, η(φ), discussed in Subsec. 4.3.2 and presented

in Eq. (4.61). Just like dC(φ), it depends additionally on salinity and colloidal sur-
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face charges. In suspensions of strongly correlated particles such as the present silica

system, the long-time zero-shear viscosity η is significantly larger than the short-time

high-frequency viscosity η∞. This distinguishes the viscosity from the collective diffusion

coefficient since for the latter the difference between short- and long-time forms stays very

small.

Shear-thinning effects can be neglected under UF conditions where the shear Péclet-

number is small. Moreover, since for moderate salinity near-contact configurations of

three or more silica spheres are unlikely, we can use the PA method for calculating the

low-shear η∞.

φ

η ∞
η

Fig. 6.12.: Comparison of the reduced high-frequency viscosity, η∞/η0, in PA approxima-
tion of charged-silica spheres with parameters presented in Fig. 6.6 (red solid
line) with the low-salinity polynomial prediction presented in Eq. (6.25) (black)
[136], and the Saito formula expression for impermeable HS in Eq. (5.10) (blue).

In Fig. 6.12, we show that up to φ ≤ 0.3, the PA result for η∞ of the silica system is

quantitatively described by the polynomial

η∞
η0

= 1 +
5

2
φ (1 + φ) + 7.9φ3 . (6.25)

We emphasize that this polynomial is not a truncated virial expansion expression. It has

been derived in [136] on basis of the PA method and additional simplifications justifiable

for low-salinity systems, and it is shown therein to be in good agreement with elaborate

hydrodynamic simulation viscosity results. Note that η∞ of charged-silica particles is

somewhat smaller than that of uncharged hard spheres at the same concentration, owing
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to the smaller likelihood of near-contact configurations in the former case (c.f. Fig. 5.13).

For the calculation of the zero-frequency viscosity, η, we use the first iteration solution

in Eq. (4.79) of the one-component MCT expression for ΔηMCT (Eq. (4.78)) discussed

in Subsec. 4.4.4. The first iteration expression can be used since we restrict ourselves

to concentration values φ < 0.2 where S(qm) is distinctly smaller than the Hansen-Verlet

freezing criterion value of 3. The effect of HIs is incorporated in Eq. (4.79) only through

the hydrodynamic function H(q). As shown in [179], HIs modify also the static vertex

functions in the MCT expression for Δη. This modification is disregarded here since its

effect can be expected to be small for the range of smaller concentration values encountered

inside the CP layer of the studied UF experiments (see below).

φ

η
/η

η/η
Δη/η
η⏐  /η

η/η

Fig. 6.13.: Theoretical predictions of the concentration-dependent reduced steady-shear
viscosity, η(φ)/η0, of charged-silica spheres (solid black line), in comparison
with the corresponding viscosity of neutral hard spheres (HS, solid blue line).
Additionally shown are the shear-relaxation viscosity contribution, Δη, of silica
spheres (dashed black line), and the steady-shear viscosity obtained for the HIs
disregarded (solid red line). System parameters of the silica system are as in
Fig. 6.6.

The result for the steady-shear viscosity of our silica system as a function of φ is included

in Fig. 6.13. The high-frequency part, η∞, of the viscosity has been calculated using

Eq. (6.25), and the shear-relaxation part is obtained using Eq. (4.79). Regarding the Δη

part, we employ as input the BM-PA H(y) presented in Fig. (6.10), and the HNC S(y)

(Fig. 6.9a) based on the OCM potential with the PB cell model result for Zeff and κeff.
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For φ = 0.2, η is enlarged relative to the solvent viscosity η0 by a factor of 3.4, while the

high-frequency viscosity is raised by a factor of 1.7 only. Notice here that ∆η(φ = 0) = 0.

To see the influence of the HIs, in Fig. 6.13 we additionally show the steady-shear viscosity

result without HIs, where η∞ is equal to the Einstein expression η∞/η0 = 1 + 2.5φ for

no-slip spheres, and H(y) is identical to one in Eq. (4.79). For φ & 0.1, HIs significantly

enhance the steady-shear viscosity of the silica suspension. Additionally shown is the

viscosity of hard spheres, which we have calculated using the accurate scaling expression

discussed in detail in Subsec. 5.4.2 (see Eqs. (5.22)-(5.24)). Different from charged-silica

particles, the ∆η for neutral hard spheres is for φ < 0.2 small compared to η∞.

Note that we are dealing here with the demanding case of low-salinity systems with ex-

tended electric double layers and long-ranged electric repulsion. Electrokinetic viscosity

effects are not considered here, for these are secondary effects expected to become smaller

with increasing concentration. For higher-salinity systems with thin electric double layers,

a simple thermodynamic perturbation theory approach becomes useful where the viscosity

calculation can be mapped to that for an effective hard-sphere system (see, e.g., [221]).

In closing the discussion on transport coefficient calculations, we note that the PB cell

model is used here only for deriving the effective charge and screening length but not

for a direct calculation of transport coefficients. Thus, different from a pure cell model

approach such as the one by Jönsson and Jönsson [222], particle correlations are accounted

for. In the work by Jönsson and Jönsson [222], the collective friction coefficient defined

by fc = kBT/dC and hence dC have been estimated on assuming the approximate validity

of the GSE relation, dC/d0 ≈ η/η0, between dC and η, by using a spherical cell model

viscosity expression. This approach is flawed for various reasons. First, it has been shown

both in theory and simulations, and in experiments on BSA protein solutions [86] that

the aforementioned GSE between dC and η is invalid unless the concentration is very

small. And indeed, according to Fig. 6.11, the dC of a lower-salinity system has a non-

monotonic concentration dependence, whereas η and η∞ are monotonically increasing with

increasing concentration. The so-called Kholodenko-Douglas GSE relation between dC and

η involving in addition the osmotic compressibility factor S(0) (short-time counterpart in

Eq. (8.5)), is likewise invalid for low-salinity systems, albeit it holds decently well for hard

spheres (see [86] for details).

Second, a comparison with simulation results revealed that cell model predictions for η

and K are in general not reliable, giving poor predictions in particular for smaller con-

centrations [39]. Moreover, owing to the neglected inter-particle correlations, the viscosity

obtained from the standard PB cell model scheme should be more adequately identified

with η∞ rather than η. As seen in Fig. 6.13, the latter is distinctly larger for a low-salinity
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system than the first one.

6.2.8. UF experimental details

The inside-out cross-flow ultrafiltration measurements have been performed using an

OSMO Inspector device from Con-vergence. In this device, the silica suspension is steadily

pumped, at constant temperature T = 303 K, through a membrane module containing 10

hollow cylindrical fiber membranes in parallel mode. The fiber membranes are HFs PES

(polyethersulfon, negatively charged) with a nominal mean pore size of 10 nm. The fibers

have a mean length L = 40 cm and an inner diameter 2R = 0.8 mm, with a total area

Amembr = 2πRL = 0.01 m2 of the membrane module.

The OSMO Inspector allows to set the feed and retentate (outlet) mass fluxes Qfeed

and Qret, respectively. The permeate flux follows from mass conservation as Qperm =

Qfeed −Qret. Moreover, the mechanical (i.e. non-osmotic) pressure values at the feed, re-

tentate and permeate positions are measured. From these values, the fiber-length-averaged

transmembrane pressure, ∆pTMP, is calculated using

∆pTMP =
Pfeed + Pret

2
− Pperm , (6.26)

wherein a linear axial pressure drop from inlet to outlet is assumed for constant permeate

pressure. Using a linear pressure profile is an approximation sufficient for the present

analysis. The form of the lumen-side axial pressure decline is actually more complicated,

as discussed by Mondor and Moresoli on basis of the momentum and continuity equation

combined with Darcy’s law [223, 224].

In the UF experiments, the feed flux was kept constant at Qfeed = 600 g/h, while the

retentate flux was stepwise decreased. Accordingly, the permeate flux increased stepwise

from Qperm = 100 − 500 g/h. The fiber-length-averaged permeate velocity is obtained

using

〈vw〉 = Qperm/ρmAmem , (6.27)

with the suspension mass density ρm = 1000 g/liters taken to be constant. The se-

lected process parameters lead to permeate velocities in the range 〈vw〉 = 10 − 50 LMH

(liters/m2/h), i.e. 2.8− 13.9µm/s.

The pure water permeability, L0
p, of the membrane was measured before and after the silica

UF experiment. This measurement was done in constant flux mode, with v0
w = 50 LMH =

13.9µm/s, and ∆pTMP obtained from inserting the associated measured pressure values
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into Eq. (6.26). The permeability follows then from Darcy’s law,

L0
p =

u0
w

∆pTMP
, (6.28)

without osmotic pressure contribution since pure water is used as feed. In this way, the

value L0
p ≈ 155 LMH/bar = 4.3 × 10−10 m/Pa · s is obtained which is used in our UF

model calculations of the permeate flux and CP layer profiles discussed in the following

subsection.

6.2.9. Theoretical results

We present here our theoretical results for cross-flow UF of low-salinity charge-stabilized

suspensions based on the boundary layer filtration model, with input for Π, χT, dc(φ),

and η(φ) as described in Subsecs. 6.2.3 - 6.2.7. The selected system parameters are those

characterizing the OSMO Inspector cross-flow UF setup, and the employed low-salinity

aqueous silica suspensions for T = 303 K. For explicit values of the operating parameters

we refer to [225]. The feed volume fraction φ0 = 1.0×10−3 is large enough for Eqs. (6.20)

and (6.22) describing the osmotic pressure and compressibility in the counterion-dominated

regime to apply. Moreover, Pe � 1 so that shear-induced hydrodynamic diffusion is

negligible in comparison to thermal diffusion [226]. Since R � L, the boundary-layer

description condition um � v0
w, and with ReR ∼ 10 also the Rayleigh number condition

of laminar pipe flow, are fulfilled. We have checked that the (effective) Debye length is

much smaller than the (typical) thickness of the CP layer. Furthermore, the UF condition

of local thermodynamic equilibrium is fulfilled.

The CP layer profile and the permeate velocity are calculated using the boundary layer

method described in Subsec. 6.2.1, with dC, η, and Π as input. We will see in the following

that for our operating conditions, membrane fouling due to a cake layer of jammed particles

is avoided.

Fig. 6.14(a) and (b) depict the calculated CP concentration profile, φw(x), and permeate

velocity profile, vw(x), at the membrane surface in their dependence on the reduced axial

distance, x/L, from the fiber inlet. The solid curves are the results for the low-salinity silica

suspension, while the dashed curves in the inset describe neutral hard spheres. Note that

for the electrically repelling silica particles, φw(x) increases only slightly above the feed

concentration φ0 with increasing distance x. This can be attributed to the large values of

the collective diffusion coefficient dC(φ) of charge-stabilized particles even for small φ (see

Fig. 6.11), causing particles flow-advected towards the membrane surface to be strongly
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φ
)/φ

φ
)/φ

Fig. 6.14.: (a) Calculated membrane surface volume fraction profile, φw(x), scaled by the
feed volume fraction φ0, and (b) permeate velocity profile, vw(x), scaled by the
pure solvent velocity, v0w, for the charge-stabilized low-salinity silica suspension
(solid lines). Insets: same as in main figure, but for hard spheres (dashed lines).
System parameters: ΔpTMP = 0.08 bar, γ̇ = 332 s−1, a = 15nm, φ0 = 10−3,
L0
p = 4.3× 10−10 m/Pa · s.

driven away by diffusion. In Fig. 6.14(b), the permeate velocity, vw(x), of the silica system

decreases only slightly with increasing x: With increasing axial distance from the inlet, φw

and hence Π(φw) ≈ Pmicro−Pres (see Fig. 6.7) are only mildly enhanced so that according

to Eq. (6.5), vw(x) is only slightly lowered below its clear solvent value v0w = L0
pΔpTMP

at given TMP. This should be contrasted with the theoretical UF predictions for hard

spheres at unchanged operating conditions (see insets of Figs. 6.14(a) and (b)) where φw

is enhanced, and vw lowered, by two orders of magnitude. This marked difference can

be attributed to the, for hard spheres, significantly smaller collective diffusion coefficient

giving rise to a significant enrichment of particles at the membrane wall with osmotic

pressure and viscosity values much larger than those of the silica system.

It is instructing to quantify the effects on the CP layer and permeate flux induced by

individually replacing Π(φ), dC(φ), and η of the charged-silica particles (CS) by those of

neutral HS. This quantification is made in Figs. 6.15(a) and (b). The black curves marked
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Fig. 6.15.: (a) Surface particles volume fraction profile, φw(x) scaled by the feed volume
fraction, φ0, and (b) permeate velocity profile, vw(x), scaled by the pure solvent
velocity, v0w. The solid black lines marked with ◦ are results for low-salinity silica
suspensions. Red lines marked with � are results using osmotic pressure, ΠHS,
for hard spheres, and collective diffusion coefficient dCS

C , and viscosity, ηCS,
for charged spheres. Green lines marked with ♦ are obtained using collective
diffusion coefficient for hard spheres, and osmotic pressure and viscosity for
charged spheres. Blue lines marked with � are obtained using viscosity for hard
spheres, and osmotic pressure and collective diffusion coefficient for charged
spheres. System parameters as in Fig. 6.13.

by ◦ are the results for φw(x) and vw(x) of the silica system shown before in Fig. 6.14.

If in the UF calculations the Carnahan-Starling osmotic pressure for hard spheres is used

(Eq. (3.35)) in place of the charged-particles pressure, the red curves marked with �
are obtained. While the CP profile at the membrane remains practically the same, the

permeate velocity is now larger and practically equal to v0w, owing to ΠHS(φ) < ΠCS(φ)

(see Fig. 6.7 and Eq. 6.5). If the osmotic pressure and effective viscosity remain those of

the silica system but the collective diffusion coefficient of hard spheres is used instead, the

green curves marked with ♦ are obtained for φw(x) and vw(x). The CP profile (permeate

velocity) is now much larger (smaller) than the ones of the silica system, with values

comparatively close to those for the hard-sphere system. This behavior is explained by
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noting dHS
C (φ) 	 dCS

C (φ) (see Fig. 6.11) leading to a strongly reduced transverse diffusion

flux of particles away from the membrane surface, and hence to an enhanced CP layer.

Finally, if the osmotic pressure and collective diffusion coefficient of the silica spheres is

used in combination with the viscosity of hard spheres (blue curve marked with �), φw(x)

and vw(x) remain practically equal to the profiles of the original silica system. Thus,

the UF performance for the investigated low-salinity suspensions is rather insensitive to

changes in the CP layer viscosity.

6.2.10. Comparison with experiment

Δ

μ

Fig. 6.16.: Fiber-length-averaged permeate velocity, 〈vw〉, as function of transmembrane
pressure ΔpTMP. Comparison of our theoretical model predictions for aque-
ous charged-silica particles suspensions (red solid line) with the experimental
UF results (open circles). Dashed blue line: theoretical prediction for (non-
permeable) hard spheres. The black dotted curve is the result for pure water
where 〈vw〉 = L0

pΔpTMP. System parameters as in Fig. 6.6.

The UF model results are compared here with the outcome of our silica suspension UF

measurements described in Subsec. 6.2.8.

In Fig. 6.16, the fiber-length-averaged permeate velocity, 〈vw〉, is plotted as function of

ΔpTMP, with the TMP determined using Eq. (6.26) from the measured pressure values

at the feed, retentate and permeate points. The dotted black curve is the pure water

filtration result, 〈vw〉 = L0
p ΔpTMP, where L0

p = 155 LMH/bar (cf. Subsec. 6.2.8). The

open circles are the experimental findings obtained using Eq. (6.27). From the theoretical
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predictions for vw(x), 〈vw〉 is calculated using its definition,

〈vw〉 =
1

L

∫ L

0
vw(x)dx. (6.29)

The dashed blue curve is the theoretical result for no-slip hard spheres. The influence of

the for hard spheres well developed CP layer becomes visible at ∆pTMP > 0.1 bar where

〈vw〉 is reduced below the pure water feed straight line. The hard-sphere curve of 〈vw〉
is truncated above ∆pTMP ≈ 0.17 where the random closed packing membrane surface

concentration φw = 0.64 is reached, and an amorphous cake layer of jammed particles is

formed. In this thesis, cake layer formation and other membrane fouling mechanisms are

not discussed theoretically. For charge-stabilized particles and charged membranes, this

requires an elaborate modeling outside the scope of the present work. The solid red curve

is the theoretical prediction for the charged-silica particles, obtained by the theoretical

methods described in Subsec. 6.2.1.

In Fig. 6.16, full agreement is observed between the experimental 〈vw〉 and the theoretical

prediction for the silica system, except for the data point at the largest experimentally

considered TMP. The experimental and theoretical data points are close to the pure solvent

curve, showing that the osmotic pressure influence is insignificant for the UF of low-salinity

suspensions. While this finding is surprising on first sight, it has been shown in Subsec.

6.2.9 that the strong transversal diffusion flux pointing away from the membrane surface

causes the CP layer to be only weakly developed. The reason why the experimental data

point at the largest TMP is below the theoretical straight line is definitely not a cake

formation by crystallization or vitrification. This fouling mechanism is ruled out since the

concentration values along the membrane surface (cf. Fig. 6.14) are way too small for

the structure factor peak height, S(qm;φw), to reach the Hansen-Verlet freezing value 3

of low-salinity charge-stabilized systems (see again Fig. 6.8 and [212]). The straight line

deviation of the last data point may be due instead to some preferential adsorption of

silica particles at the membrane. The fouling is mechanically reversible, since the same

value of L0
p is measured after the silica filtration experiment followed by a backwashing

cycle. The high-TMP data point can be accounted for in Eq. (6.5) by adding the fouling

resistance, Rfoul, to the membrane resistance according to

Lp =
1

η0(Rmem +Rfoul)
. (6.30)

Different from the silica system, the osmotic membrane wall pressure, Π(φw), of the refer-

ence hard-sphere system is an important contribution to Darcy’s law in Eq. (6.5), lowering
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6. Charged-particles dispersions: Results

the permeate velocity well below the pure solvent values.
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7. Zwitterionic microgels

In this chapter, we present work in collaboration with A. J. Schmid, T. Eckert and W.

Richtering from RWTH Aachen University regarding the characterization of the direct

interactions in amphoteric microgel suspensions. As discussed already in Sec. 2.4, am-

photeric microgels containing both acidic and basic co-monomers swell in acidic and basic

environments, and collapse in the so-called zwitterionic regime of intermediate pH values.

We systematically vary here the amount of zwitterions inside the microgel particles, and

compare the resulting concentration series of measured static structure factors to polydis-

perse hard-sphere calculations, identifying hereby the influence of the zwitterion on the

particle interactions.

7.1. Sample preparation

A series of zwitterionic microgels with increasing amount of the zwitterionic co-monomer

sulfobetaine is synthesized. A pure PNIPAM system is serving as a reference (sample

N0). In the other systems (N1-N3), the amount of sulfobetaine was increased up to about

∼ 3 mol% in the monomer feed (N1: 0.9 mol%, N2: 1.9 mol%, and N3: 2.8 mol%). In addi-

tion, the cross-linking ratio of 1 : 20, which is the molar ratio of cross-linker to monomer, is

kept constant to achieve a similar volume swelling ratio, S, for all samples. The surfactant

SDS is used to stabilize the particle surface during the synthesis, and to produce small

particles, which can be analysed by small angle neutron scattering techniques. For more

details about the monomer feeds of the microgels, see [227]. Detailed information about

the physicochemical properties of the invesitaged zwitterionic microgels in dilute solution,

and the role of sulfobetaine during their synthesis in the presence of SDS, are published

by our experimental coworkers in [29].

7.2. Measured structure functions including polydispersity

In a first set of experiments, the angular dependent scattering intensity, I(q), is measured

in the dilute regime for all samples in D2O, well below the volume phase transition tem-

perature (VPTT) (Fig. 7.1). The zwitterionic microgels samples are measured at 20◦C,

and the pure PNIPAM samples (N0) at 24◦C ± 2◦C. The scattering curves are fitted

according to the form factor model of Stieger et al. [120] (c.f. Eq. (2.19)). These fits

describe the data very well over the entire q-range. The slight deviations in the large-q
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7. Zwitterionic microgels

region can be due to small errors in the treatment of incoherent scattering. The important

fit parameters are summarized in Table 7.1. The mean excluded-volume radius. RHC, is

calculated from these fitting parameters using Eq. (2.20).
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Fig. 7.1.: SANS scattering curves of samples (a) N0, (b) N1, (c) N2, and (d) N3 in D2O
at 20◦C (sample N0 was measured at 24◦C ± 2◦C). The concentration is about
0.2 wt%. Solid lines represent fits according to the form factor model of Stieger
et al. [120] given in Eq. (2.19). Large error bars in the intermediate q-range are
due to the low signal statistics at the border of the detector.

In the second set of SANS experiments, for all samples a series of I(q) measurements

with increasing particle mass fraction in the range of 1 wt% to 6 wt% in heavy water are

performed. In Fig. 7.2, we present the comparison of the experimental SM(q) inferred

from the corresponding normalized scattering curves using Eq. (3.46), and our theoretical

predictions calculated using the polydisperse hard-sphere model with parameters presented

in Table 7.1. In the theoretical calculations, the total volume fraction, φT, in Eq. (3.52)

is the only fit parameter. As discussed in detail in Sec. 3.5, instead of a fully polydisperse

description we use the decoupling approximation approach in conjunction with the Verlet-

Weis approximation for the structure factor of monodisperse hard spheres.
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7.2. Measured structure functions including polydispersity

sample R [nm] σsurf [nm] sR [%] RHC [nm] Rh [nm] RHC/Rh

N0 54.2 13.1 13.5 80.4 92 0.874
N1 50.7 14.1 10.5 78.9 90 0.877
N2 42.6 12.7 17.5 68.0 81 0.840
N3 39.9 10.3 17.0 60.5 78 0.776

Table 7.1.: Parameters obtained from the theoretical form factor fit of the SANS scattering
curves for samples N0 - N4 in D2O in the dilute regime using the form factor
model of Stieger et al. [120] given in Eq. (2.19). Samples N1 - N3 were
measured at 20◦C while sample N0 was measured at 24◦C ± 2◦C. Note that
RHC = R+2σsurf. For completeness, also values for the effective hydrodynamic
radius Rh determined by low-q DLS are presented [227]. (The hydrodynamic
radius of sample N0 was measured in D2O at 24◦C.)

The peak position qm, of SM(q) is shifted to larger q-values with increasing concentration,

for all considered samples. This is indicative of a lowering inter-particle distance with

increasing φT.

For values φT . 0.4, the theoretical fits based on the (poly-disperse) hard-sphere model

describe the experimental structure factor data quite well for all samples. At larger volume

fractions φT > 0.4, theoretical and experimental data deviate significantly from each

other for all considered samples. The experimental principal peak position, qm, of SM(q)

attains larger q-values than that of the theoretical prediction indicating a smaller center-

to-center distance in the experimental system. The pure PNIPAM based microgels can

achieve this either by deswelling with associated lowering of the particle size, or by particle

overlapping. The latter mechanism appears reasonable at high volume fractions owing to

the inhomogeneous structure and lower polymer density on the particle surfaces. The

former mechanism leads to a visible change in the scattering curve, in particular regarding

the locations of the local minima. It should be noticed here that the form of I(q) at high

concentrations is changed not only through the changing form factor, but also through

the changing SM(q).

The temperature responsiveness, and by this the particle sizes of PNIPAM microgels in

aqueous solution, are altered by the solvent quality. The solvent quality is determined by

the strength of the hydrogen bonds between water molecules and NIPAM. These should

not depend on the particle concentration, which renders a shrinking of the particles as

rather unlikely. Contrast variation experiments of a mixture of deuterated and protonated

PNIPAM microgels can provide information on the particle form factor in concentrated

solutions, and on the particle shrinking or overlapping. This will be the topic of future

investigation.
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Fig. 7.2.: Open symbols: SANS measurable static structure factor, SM(q), of microgel
samples (a) N0, (b) N1, (c) N2, and (d) N3 in D2O at 20◦C (sample N0 was
measured at 24◦C ± 2◦C) at various concentrations as indicated. The lines are
theoretical structure factors based on the decoupling approximation combined
with the PY-VW hard-sphere solution for Sid(q). In the legend, the total volume
fraction φT resulting from the theoretical fit is given.

There is no visible influence of the zwitterionic comonomer, since the hard-sphere model

structure factors describe all scattering data equally well for the four considered systems.

We conclude thus that at low φT, the hard-sphere potential suitably describes the (effec-

tive) pair interactions between pure PNIPAM (N0) microgels, and between the zwitterionic

microgels (N1-N3). It is also noticeable for all samples that SM(q → 0) decreases mono-

tonically with increasing φT. A significant increase of SM(q) in the low-q regime with

increasing φT is an indicator for the existence of (effective) attractive forces between the

particles. For an example relevant in this context, Baxter [228] uses an attractive sur-

face adhesion potential in addition to the hard-sphere potential, leading to a SM(q) which

increases with concentration in the low-q regime.
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7.2. Measured structure functions including polydispersity

On first sight, one might expect an attractive contribution to the pair potential due to the

incorporation of the zwitterionic comonomer. However, the purely repulsive hard-sphere

potential is sufficient to describe the SM(q → 0) of the zwitterionic microgels even up to

φT ≈ 0.4. At very high volume fractions, however, when the microgels can overlap, the ex-

perimental data show no evidence for attractive forces between the zwitterionic microgels.

This absence of attraction can be due to two possible mechanisms: Firstly, the rather low

amount of incorporated charges is not sufficient to cause attraction. Secondly, the for-

mation of internal salt between the sulfonate headgroup and the quaternary ammonium

group of sulfobetaine is more favourable than intermolecular salt formation.
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8. Systems with short-range attraction and

long-range repulsion

8.1. Two-Yukawa SALR systems

We investigate here in detail the influence of the strength and range of competing short-

range attractive and long-range repulsive interactions between globular particles such as

proteins, on the dispersion structure and dynamics. Our focus is on the two-Yukawa

potential model in the fluid phase state where only transient particle clusters occur.

8.1.1. Parameter models

We employ the two-Yukawa SALR potential (see Eq. (2.9)) introduced in Subsec. 2.3.2.

The investigation of the effects of the individual potential contributions necessitates a

systematic variation of the associated potential parameters. Due to the presence both of

SA and LR potential contributions a variation of one parameter affects the total potential.

For example, increasing the attraction strength K1 alters not only the SA part, but results

in the change of the effective attraction range, x0, and the repulsive barrier height.

As discussed in Subsec. 2.3.2, K1, and K2 can be expressed as functions of the attraction

and repulsion ranges z1 and z2, respectively, and of x0. In the following, our way of

selecting these three free parameters is discussed.

The second virial coefficient, B2, is a global measure of the interaction strength. It is given

by [107]

B2 = 2πσ3

∫ ∞
0

dxx2
[
1− e−βV (x)

]
, (8.1)

with x = r/σ. For the two-Yukawa SALR potential, V (x), the parameters are the in-

teraction strength α, x0, z1, and z2. In place of B2, it is useful to consider instead the

reduced second virial coefficient B∗2 = B2/B
HS
2 , where BHS

2 = (2π/3)σ3 is the hard-sphere

reference value. It has been found empirically that if the B∗2 ’s of two pair potentials are

close to each other at a given T ∗ = 1/α, the B∗2(T ∗) curves are close in the full fluid-phase

temperature range (c.f. 8.1b) [91, 107].

Costa et al. [91] suggest a B∗2-based procedure to select the potential parameters for a

systematic variation of the potential features. On fixing the effective attraction range to

x0 = 1.1, they select three different z1 values: In model M1: z1 = 19, in M2: z1 = 13, and

in M3: z2 = 10. In addition, for model M3 the repulsion range z2 = 0.5 is selected. The
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Fig. 8.1.: (a) The potential curves for models M1 (black), M2 (red), and M3 (blue) with
effective attraction range x0 = 1.1 are shown as solid lines. The dotted line
represents model M2 for x0 = 1.05, and the dashed line for x0 = 1.2. (b) α
dependence of the reduced second virial coefficient B∗

2(α) for the three models
with x0 values as indicated.

z2 values of models M1 and M2 are then determined such that the equality of B∗
2(α) in

the three models is enforced in the full fluid-phase temperature range, as shown in Fig.

8.1b. Note that B∗
2(α) increases from 1 at α = 0 to 28 at α = 3. Note further that

with increasing α, the depth of the attractive well, and the height of the potential barrier,

are both enlarged for fixed ratio, K1/K2, of the attractive and repulsive soft potential

strengths. After the determination of z1 and z2 using Eqs. (2.11) and (2.12), all potential

parameters are fixed. For x0 = 1.1, the potential parameters of M1, M2, and M3 are

shown in Table 8.1.

Model z1 z2 K1 K2 xmax βV (xmax)/α

M1 19 0.257 1.1813 0.1813 1.256 0.128
M2 13 0.390 1.3954 0.3954 1.297 0.249
M3 10 0.500 1.6306 0.6306 1.326 0.357

Table 8.1.: Two-Yukawa SALR potential parameters z1, z2, K1 and K2 for fixed interac-
tion range x0 = 1.1, as used by Costa et al. [91]. In addition, the reduced
height of the first potential maximum, βV (xmax)/α, and its position, xmax, are
presented.

The procedure of Costa et al. [91] has the advantage that for fixed x0, the attractive

parts, βV (x < x0), of the models M1-M3 are almost indistinguishable. However, since

the equality of B∗
2 is enforced, model M1 having the smallest z2 has the lowest repulsive

barrier value, V (xmax) (c.f Table 8.1).

Costa et al. [91] studied an effective interaction range of x0 = 1.1 only, while here we
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Model z1 z2 K1 K2

M2(x0 = 1.05) 13 0.685 2.17503 1.17503
M2(x0 = 1.1) 13 0.390 1.3954 0.3954
M2(x0 = 1.2) 13 0.166 1.08317 0.08317

Table 8.2.: Potential parameters of model M2(x0) for x0 = 1.05, 1.1, and 1.2.

additionally consider x0 = 1.05 and x0 = 1.2. To this end, we use the z1 value of potential

model M2, and determine z2 such that the B∗2 ’s of the new potentials for x0 = 1.05 and

x0 = 1.2, respectively, agree with the B∗2 ’s of M1, M2, M3 for x0 = 1.1 (c.f. Fig. 8.1b).

We denote the potential parameter sets with x0 = 1.1 by M1(x0 = 1.1), M2(x0 = 1.1) and

M3(x0 = 1.1). The potential parameter sets with x0 = 1.05 and 1.2 will be denoted as

M2(x0 = 1.05) and M2(x0 = 1.2), since they share the same z1 value with M2(x0 = 1.1).

The parameters of the model M2 are presented in Table 8.2. For decreasing x0, βV (xmax)

increases and the repulsion range decreases as shown in Fig. 8.1a.

8.1.2. Gas-liquid critical temperature

As discussed in [31, 33, 98], the gas-liquid critical temperature, T ∗c , of an appropriately

chosen short-range attractive reference system of the SALR system allows for accurate

predictions of the phase behavior of the SALR system. To ensure that the investigated

systems are all part of the dispersed-fluid phase (see Sec. 2.3), we calculate here T ∗c of

reference attractive systems by employing the ELCS proposed by Noro and Frenkel [107].

This extended law states that the equation of state for systems with sufficiently short-

ranged attractive interaction is solely dependent on three parameters: effective diameter,

σeff, energy scale, ε, given typically by the depth of the attractive well, and reduced

second virial coefficient, B∗2 = B2/((2/3)πσ3
eff), where σeff is used in the calculation of

BHS
2 . In particular, the mapping on a square-well potential system sharing the same

σeff, ε, and B∗2 allows for the calculation of T ∗c . For the attractive reference potential,

we use in our calculations the full SALR potential in Eq. (2.9), with the additional

cutoff requirement that βV (x ≥ x0) = 0. We find that T ∗c for all considered models lies

outside the temperature range discussed in this thesis, i.e. T ∗c < 1/3 and αc > 3. Thus,

according to the T ∗c values, only fluid-like systems in the monomer-dominated regime are

considered as intended. The values for T ∗c and the corresponding interaction parameter αc

are presented in Table 8.3. Note that the long-range repulsive potential part in the SALR

system shifts the liquid-liquid phase transition line to lower temperatures [229].

In addition, we restrict our calculations to small concentrations φ ≤ 0.15 such that all
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Model
x0 = 1.05 x0 = 1.1 x0 = 1.2
T ∗c αc T ∗c αc T ∗c αc

M1 0.291 3.431
M2 0.282 3.551 0.297 3.363 0.316 3.167
M3 0.301 3.325

Table 8.3.: Critical temperatures, T ∗c , of the attractive reference system for the SALR
models Mi(x0) with i ∈ {1, 2, 3}, and potential cutoff at x = x0.

considered systems are in the dispersed-fluid state where most particles diffuse individually.

There still remains the tendency of clustering as noticed, e.g., by the presence of an

IRO low-q peak in S(q) that grows with increasing α and φ as the transition line to the

equilibrium-cluster phase is approached.

Thus, when referring in the remainder of this work to clustering (clusters) we actually

consider highly transient clusters in a fluid-phase system where the mean cluster size is

1-3 particles.

The transition line between the dispersed-fluid and equilibrium-cluster phases marks a

microphase separation into clusters, owing to the suppression of macroscopic phase sepa-

ration by the long-range repulsive part [33, 34, 230]. Combinations of density functional

theory and perturbation theory approaches where the clusters are modeled for simplicity

as spherical, suggest a first-order-like phase transition between the two thermodynami-

cally stable phases, as characterized by the discontinuous jump of the cluster size above a

critical colloidal particle density [88, 229].

8.1.3. Variation of attraction strength

Here, we discuss our theoretical results for a two-Yukawa SALR system of specific potential

parameters {K1,K2, z1, z2}, and study structural and dynamical properties for different

interaction strength α, and φ. As in Ref. [91], we employ model M3(x0 = 1.1) with

parameters K1 = 1.6306, K2 = 1 −K1 = 0.6306, z1 = 10 and z2 = 0.5, characterized by

SALR potential curves of constant effective attraction range x0 = 1.1, but varying α > 0,

where βV (xmax) ≈ 0.36α at xmax ≈ 1.33, and K1/K2 = 2.59.

Static pair structure

Before presenting results for the short-time properties, we discuss first the behavior of

the SALR static structure functions, S(q) and g(r), constituting the salient input to

the dynamic calculations. We employ the thermodynamically self-consistent ZH integral

150



8.1. Two-Yukawa SALR systems

equation scheme [129] (c.f Subsec. 3.4.3) for calculating the static input which is well suited

for pair potentials with an attractive soft pair potential part. For simplicity, the potential

parameters {K1,K2, z1, z2, α} are held fixed in taking the concentration derivative of the

virial pressure needed for the enforcement of thermodynamic self-consistency between the

virial pressure and osmotic compressibility thermodynamic routes.

σ

α = 0
α = 0.1
α = 0.5
α = 1.0
α = 1.5
α = 2.0
α = 2.5
α = 3.0

Fig. 8.2.: Zerah-Hansen (ZH) scheme results for the static structure factor, S(q), of the
two-Yukawa SALR system as a function of reduced wavenumber y = qσ, for
φ = 0.1 and various interaction parameter values α as indicated. The S(q) of
the hard-sphere reference system (α = 0) is included for comparison (filled black
circles).

Results for S(q) obtained by the ZH scheme are shown in Fig. 8.2, for φ = 0.1 and several

values of α as indicated. With increasing α, the osmotic compressibility factor, S(0), de-

creases monotonically. In contrast, the next-neighbor peak of individual particles of height,

S(qm), decreases initially slightly for increasing α, taking its minimal value at α ≈ 0.5

with a subsequent monotonic increase with further increasing α. The next-neighbor peak

location, qm, however, is monotonically increasing. The IRO peak in S(q) at a qc < qm

becomes first visible for α ≈ 1.5 and at qcσ ≈ 2.5. It increases with increasing α, while its

position is shifted slightly to smaller values. Note that if the attraction strengthK1 = αK1

were increased for constant repulsion strength K2 = αK2, the osmotic compressibility is

raised instead of being depressed. In completing the discussion of S(q), notice the suc-

cession of isosbestic wavenumber points, qisoi , where the structure factor curves intersect.

The α-independent isosbestic points in Fig. 8.2 can be easily and alternatively identified,

to good accuracy, in the framework of the simple random phase approximation for S(q),

by the roots of the spatial Fourier transform of the soft potential part of V (r), extended
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8. Systems with short-range attraction and long-range repulsion

into the non-overlap region as V (x < 1) = 0, as discussed in detail in Subsec. 8.1.3.
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Fig. 8.3.: Radial distribution function, g(r), for φ = 0.1 plotted versus reduced distance
x = r/σ. Solid lines: ZH scheme results. Filled circles: MC simulation data.
The peak at x = 2 is due to particle pairs with a third (red) particle in between
as sketched. The inset magnifies the larger-distance region of g(r) for α = 2 and
3. The vertical dashed arrow in the inset marks the inflection point visible for
α = 3, and located roughly at 2π/(qcσ).

The here discussed features of S(q) are reflected in the ZH-calculated RDFs, shown in Fig.

8.3, in comparison with our MC simulation data (filled circles). The RDFs quantify the

growing influence of both the SA and LR potential parts with increasing α, giving rise

to a more pronounced microstructure than the one of the hard-core reference system at

the same concentration. As it is seen in the main figure part, with increasing α the RDF

contact value, g(x = 1+), grows strongly from 1.3 at α = 0 to 28 at α = 3 (see Fig. 8.4),

accompanied by the buildup of a pronounced depletion zone inside 1 < x < 2, and a peak

at x = 2 of height smaller than one for φ = 0.1 which sharpens and renders larger than

one with increasing concentration. The pronounced contact value of g(r), and its adjacent

depletion zone, reflect primarily the strong influence of the SA, while the peak at x = 2

quantifies the enhanced probability, due to the concerted effect of SA and LR, of finding a

linear alignment of two particles with a third one fitting snugly in between (see also [89]).

For α values where the IRO peak has developed, and for pair separations x ≥ 2π/yc = xc

where yc = qcσ ≈ 2.1, a broad region of g(x) with values weakly enhanced above one is

observed (see the inset of Fig. 8.3) that extends roughly across two particle diameters

indicative of the mean transient cluster size [88]. In this larger-distance region, g(x) has

for α = 3 a shallow inflection point at xc ≈ 3, marked in the inset by the vertical dashed
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8.1. Two-Yukawa SALR systems

arrow.

In addition to the indicators discussed in Subsec. 2.3.3 and the gas-liquid critical temper-

ature of the attractive reference system (c.f. Subsec. 8.1.2) ensuring that the investigated

SALR systems are in the dispersed-fluid phase region, the present findings reassure this

point. Firstly, according to Figs. 8.3 and 8.4, the MC data for g(r) are in excellent agree-

ment with the ZH scheme results applying to a homogeneous fluid-like system. Secondly,

the IRO peak heights are all well below the critical value Scrit(qc) ∼ 2.7, obtained by

Godfrin et al. [33] as an empirical criterion for the two-Yukawa SALR model for signaling

in the here considered concentration range a first-order transition from the dispersed-fluid

to the equilibrium-cluster phase. The IRO peak position, qc, shifts to larger values as φ is

increased (cf. [30]).

α

σ

Fig. 8.4.: Contact value, g(σ+), of the RDF for φ = 0.1, as a function of interaction
strength α. Solid line: ZH scheme result. Filled red circles: MC simulation
data.

In Fig. 8.5, we present a comparison of the ZH-results of g(r) with MC simulations for

the most concentrated system for which φ = 0.15 (see page 157 for details about the

MC simulations). For α = 3 only, an additional shallow peak in the MC-generated g(r)

becomes visible at x ≈ √
3, corresponding to the distance between a pair of spheres where

an orthogonally aligned dimer of two touching spheres fits snugly in between [89]. Yet, also

this system of largest concentration and interaction strength belongs to the dispersed-fluid

phase region.

So far, only the dependence of g(r) and S(q) on the interaction strength, α, has been

discussed. In Fig. 8.6, we present S(q) for model system M3(x0 = 1.1) with α = 3 and
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σ

α = 2
α = 2.5
α = 3

Fig. 8.5.: Radial distribution function, g(r), for φ = 0.15 plotted versus reduced distance
x = r/σ. Solid lines: ZH scheme results. Filled circles: MC simulation data.
The inset magnifies the larger-distance region of g(r).

σ

φ = 0.01
φ = 0.03
φ = 0.05
φ = 0.08
φ = 0.10
φ = 0.13
φ = 0.15

Fig. 8.6.: ZH-calculated static structure factor of model system M3(x0 = 1.1), for α = 3
and various values of φ as indicated.
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various φ values. With increasing φ, the inverse isothermal compressibility, χT, propor-

tional to 1/S(0) is strongly reduced revealing the dominant role of the long-range repulsion

for the system ordering. For a purely attractive system, χT increases with increasing φ.

For φ > 0.01, a distinct IRO peak is observable exceeding the next-neighbor peak in its

height. The more pronounced structure of the system at higher φ is mirrored by the

increased amplitude of oscillations in S(q). While the position qm of the next-neighbor

peak remains practically unchanged, a small shift of the IRO peak position qc to higher

wavenumbers is observable. This indicates that while the structure of the cluster regions

of locally higher density is not changing, due to the increased number of particles the

inter-cluster distance decreases. The dependence of qm on φ is clearly different from its

dependence on the interaction strength α, where an increase in α dramatically changes

the next-neighbor distance. This suggests that in the case of high α and moderate φ,

the system structure and here especially the typical next-neighbor distance is set by the

interaction potential.

σ

φ = 0.01
φ = 0.03
φ = 0.05
φ = 0.08
φ = 0.10
φ = 0.13
φ = 0.15

φ = 0.01
φ = 0.03
φ = 0.05
φ = 0.08
φ = 0.10
φ = 0.13
φ = 0.15

Fig. 8.7.: RDF g(r) corresponding to the S(q) of model system M3(x0 = 1.1) in Fig. 8.6,
for α = 3 and various values of φ. The inset highlights that with increasing φ,
a broad peak region of roughly two-particle diameters extension arises which is
indicative of the mean cluster size (see text for details).

The behavior of S(q) for changing φ in Fig. 8.6 is reflected by the behavior of g(r) shown

in Fig. 8.7. With increasing φ, the peak in g(r) mirroring the inline configuration of

three particles sharpens without changing its position. For φ > 0.03, the broad peak in

g(r) for x � 2.75 is shifted to smaller distances while maintaining its approximate width

of 2σ. If one relates the width of this peak at about xc to the mean cluster size, its

constancy suggests that the transient clusters do not change their mean size but approach
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each other with increasing φ. However, we note that this interpretation requires future

confirmation by simulations since it is hard to draw definite conclusions about the system

microstructure based alone on the radially averaged distribution functions S(q) and g(r).

Note that additionally to the ZH-scheme employed in this thesis, alternative OZ closure

relations have been used for SALR systems that are of comparable accuracy. For example,

Costa et al. [91] use the modified HNC by Rosenfeld and Ashcroft [126], and the self-

consistent Bomont-Bretonnet [231, 232] closures, respectively. In the context of two-

Yukawa SALR systems, the importance of thermodynamic self-consistency of the employed

integral equation scheme is discussed by Kim et al. [233].

Cluster-size distribution function (CSD)

We have discussed various indicators to confirm that the investigated systems are fluid-

like. As an additional check, we have performed MC simulations and analyzed the data

by calculating the cluster-size distribution function. The CSD,

N(s) =

〈
s

Np
n(s)

〉
, (8.2)

characterizes the average fraction of particles, N(s), which are members of a cluster of

size s [31]. Here, 〈. . .〉 is an average over representative configurations of a simulation

and / or multiple simulation runs, and n(s) is the number of clusters of size s within a

specific configuration. Moreover, Np is the total number of particles in the system such

that
∑Np

s=1N(s) = 1.

A cluster is defined using a cutoff-distance, rcluster, by demanding that a particle i and

at least another particle j of a cluster have the center-to-center distance |rij | < rcluster.

For the two-Yukawa and the LJY SALR systems, we use rclusterσ = x0, where x0 is the

effective attraction range (i.e. V (x0) = 0, for x0 > 1), in agreement with the cluster

identification procedures in [31, 33, 34].

Based on the characteristics of N(s), four different phases depicted in the generalized

phase diagram for SALR systems in Fig. 2.6 are identified [33]:

1. Dispersed-fluid phase:

Here, the CSD is monotonically decaying with increasing s, indicative of a monomer-

dominated system where only transient small clusters are formed.

2. Equilibrium-cluster phase:

In addition to the dominating monomer peak (s = 1), the CSD has another distinct
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8.1. Two-Yukawa SALR systems

peak at s∗ > 2, indicative of equilibrium clusters of a preferred size around s∗ in

thermodynamic equilibrium with monomers (c.f Fig. 8.36b).

3. Cluster-percolated phase:

The CSD has multiple peaks at different cluster sizes plus an additional peak at

s = Np, signaling a percolating system of clusters. In addition, the fraction of

monomers is severely reduced.

4. Random-percolated phase:

Characterized by a monotonically decaying CSD with a distinct peak at system size

s = Np, representing a random percolated system.

We have conducted Metropolis algorithm MC simulations in the NVT ensemble. The sim-

ulations were performed with N = 4096 particles in a cubic simulation box with periodic

boundary conditions and potential cutoff rcutoff = 10σ. As random number generator, the

ranlxs1 routine of the GSL-package [234] has been used. We have analyzed the generated

configurations, and have calculated the CSDs using an evaluation program kindly provided

by S. Das (ICS-2 / IAS-2, FZ Jülich).

α = 0.1
α = 1
α = 2
α = 2.5
α = 3

Fig. 8.8.: Cluster-size distribution function, N(s), as function of cluster size s for system
M3(x0 = 1.1), and α values as indicated. The volume fraction is φ = 0.1 in the
main figure, and φ = 0.15 in the inset. The evaluation code for the calculation
of N(s) from our MC data has been kindly provided by Shibananda Das (ICS-2
/ IAS-2, FZ Jülich).

In Fig. 8.8, we show the CSD for system M3(x0 = 1.1) and a set of different α values.

For φ = 0.1 (main part of Fig. 8.8) and α ≤ 2, strictly monotonically decaying CSDs are

observed, confirming the fluid-phase behavior of the systems. For α = 3, the onset of a
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plateau in the CSD is visible but there is no distinct peak. This suggests that the fluid

system is close to the transition to the equilibrium-cluster phase. The inset of Fig. 8.8

displays CSDs for φ = 0.15 and α ≥ 2. With increasing α, a slightly pronounced plateau

is formed. In addition, the decay of the CSD for φ = 0.15 is slower than for φ = 0.1,

resulting in a larger mean cluster size 〈s〉. However, a distinct peak in N(s) for s > 2 is

for φ = 0.15 not yet visible.

The CSDs shown here confirm the finding of the previous subsections that for α � 3 the

systems are in the dispersed-fluid phase state. For α ≈ 3, however, the equilibrium-cluster

phase transition line is approached, with slight inaccuracies in the employed ZH-IET for

g(r) being visible in comparison with the MC results in Fig. 8.5.

Short-time diffusion properties

For the calculation of the equilibrium short-time diffusion properties, H(q), D(q), dS, and

K of SALR systems presented in this chapter, we use the hybrid BM-PA scheme presented

in Subsec. 4.4.3. For dispersions with a hard-core plus purely repulsive Yukawa potential

such as that of charge-stabilized colloids, the BM-PA hybrid method gives results in good

overall agreement with simulation and experimental data [65, 85, 136, 178]. It can be

expected to provide semi-quantitative results also for the considered homogeneous SALR

systems. Its analytic simplicity makes the BM-PA scheme a convenient tool for assessing

general dynamic trends. For the calculation of η∞, the PA method is employed.

σ

α = 0
α = 0.1
α = 0.5
α = 1.0
α = 1.5
α = 2.0
α = 2.5
α = 3.0

Fig. 8.9.: Hydrodynamic function, H(q), calculated using the BM-PA hybrid method with
structural input presented in Fig. 8.2, for φ = 0.1.

We merely note here that while the bare PA method with its exact account of two-body

158



8.1. Two-Yukawa SALR systems

lubrication works well for the self-diffusion coefficient and the high-frequency viscosity up

to the largest considered concentration φ = 0.15, for φ � 0.08 it has the tendency to over-

estimate the q-dependent oscillations in Hd(q). This has been demonstrated for purely

repulsive Yukawa systems by the comparison with Stokesian dynamics simulations [186],

and a similar trend is observed likewise for the SALR systems in a comparison between

BM-PA and pure PA results for H(q) not shown in this thesis. The overestimation of

oscillations has been attributed to the neglect of (non-pairwise additive) hydrodynamic

shielding effects by the PA method. This shielding is approximately accounted for in the

BM method by the inclusion of ring diagrams as discussed in Subsec. 4.4.2.

Hydrodynamic function

αα

Fig. 8.10.: Comparison of the position of the IRO peak, qc, the next-neighbor peak po-
sition, qm, and the following peak position denoted by q3 in H(q) and S(q)
as functions of the interaction strength α. Here, results for M3(x0 = 1.1) at
φ = 0.1 are shown.

Results for H(q) obtained by the BM-PA scheme with ZH g(r) and S(q) input are shown

in Fig. 8.9, for the same system parameters as in Fig. 8.2. To our knowledge, this is the

first theoretical prediction of a low-q IRO peak in H(q). This peak of H(q) emerges first

at larger interaction strengths α > 1.5 as for the IRO peak of S(q). In the considered

parameter range, the IRO peak of H(q) does not supersede the next-neighbor peak H(qm).

Note that the oscillations in H(q) are triggered by the ones in S(q) which explains why

the positions of the IRO and next-neighbor peaks in H(q) are practically coincident with

the respective positions, qc and qm, of S(q). This is shown explicitly in Fig. 8.10, where
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the position of the IRO peak, qc, the next-neighbor peak, qm, and the following peak, q3,

in H(q) and S(q) are compared.

It is further noticed that the hard-sphere H(q) obtained for α = 0 is essentially an upper

bound for the curves of H(q) for non-zero α, for wavenumbers located to the right of the

IRO peak region. The next-neighbor peak values, H(qm), are smaller than one which is

indicative of a significant influence of the near-distance part of the HIs. In contrast, H(qm)

is larger than one for lower-concentrated systems having purely LR [85].

σ

φ = 0.01
φ = 0.03
φ = 0.05
φ = 0.08
φ = 0.10
φ = 0.13
φ = 0.15

Fig. 8.11.: Hydrodynamic function, H(q), of model system M3(x0 = 1.1) and α = 3, for
various φ values as indicated. The corresponding S(q) and g(r) are shown in
Figs. 8.6 and 8.7, respectively.

The φ dependence of H(q) for system M3(x0 = 1.1) and α = 3 is presented in Fig. 8.11.

The oscillations in H(q) get more pronounced with increasing φ, in accordance with the

S(q) results in Fig. 8.6. In addition, with increasing φ the slowing down effect of HIs

becomes stronger resulting in a shift of H(q) to smaller values. For the considered system

parameters, the IRO peak is observable for considerably low φ. For φ = 0.03, the IRO

peak in H(q) and the next-neighbor peak H(qm) are of comparable height, while for larger

φ the peak at qc decreases stronger than that at qm. Clearly visible is the strong decrease

of dS, associated with H(q → ∞), and of K = H(q → 0) for increasing φ. This is discussed

in more detail in the following.

Self-diffusion coefficient

In Fig. 8.12a, we depict the φ dependence of dS for Model M3(x0 = 1.1) and several

α values. Triggered by the rising g(σ+) with increasing α accompanied by an enhanced
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φ

α = 0
α = 1
α = 2
α = 3

(a)

φ

α = 0
α = 1
α = 2
α = 3

α

(b)

Fig. 8.12.: Concentration dependence of (a) the short-time self-diffusion coefficient, dS, and
(b) the sedimentation coefficient, K = Vsed/V0, for M3(x0 = 1.1) and values of
α as indicated. The inset in (b) depicts the non-monotonic α dependence of K,
for φ = 0.1.

transient clustering tendency, dS decreases monotonically with increasing α and φ, with

values below those for hard spheres (namely dS(α = 0, φ)) at the same concentration. In

fact, transient clustering slows self-diffusion both at short and long times, as it has been

shown theoretically for sticky hard spheres, and hard spheres with additional square-well

attraction [197, 235, 236]. While dS is lowered in systems with enhanced SA having no

LR, in systems with pure LR such as in a low-salinity suspension of charge-stabilized

particles, the decline of dS with increasing φ is less pronounced than that for the hard-

sphere reference system, showing typically a φ4/3 fractional concentration dependence

[136]. Incidentally, an enhancement of self-diffusion for systems having LR only, and its

slowing for systems with pure SA, can be expected both regarding dS and dL [159]. That

dS decreases with increasing α when the strength both of the SA and LR potential parts

are enlarged in proportion to each other, is due to the rapid O(r−4) long-distance decay of

the hydrodynamic self-mobility tensor associated with dS [61], putting thus more weight to

the near-contact region of g(r). The monotonic decrease of dS with increasing α explains

why the α-independent isosbestic points seen in S(q), and discussed in more detail in

Subsec. 8.1.3, are absent in H(q).

Sedimentation velocity

We proceed in discussing the sedimentation coefficient, K, whose monotonic decrease with

increasing φ is shown in Fig. 8.12b. The predicted sedimentation velocity for the con-

sidered non-zero α values is smaller than the sedimentation velocity of the corresponding

hard-sphere system, i.e. K(α > 0, φ) < K(0, φ). This reflects the overall dominant in-
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fluence of the LR part regarding sedimentation which is known in systems with pure LR

to reduce the sedimentation velocity [65, 136]. The additional influence of the SA part is

seen in the, on first sight, surprising non-monotonic α-dependence of K exemplified in the

inset of Fig. 8.12b for φ = 0.1: K decreases for small α at constant φ, with a subsequent

moderate increase for increasingly large α values once it has passed through a minimum

at α ≈ 1.8. The non-monotonic behavior of K as a function of α is a consequence of

the delicate interplay of the SA potential part, which by itself enhances sedimentation,

with the LR part that has the opposite effect. Different from self-diffusion which is most

strongly influenced by the near-distance part of the HIs, as a collective property K is also

strongly affected by the O(r−1) long-distance part of the HIs. In this context, we refer

to a recent multiparticle collisions dynamics (MPC) simulation study by Moncha-Jorda

et al. [237] for the sedimentation coefficient of a dispersion of Brownian particles with

short-range interactions only where the SA dominates (i.e., B∗2 < 0). In their systems, the

slope of the low-φ linear form of K changes from negative to positive values when B∗ is

lowered roughly below −0.87. Due to transient clustering, a non-monotonic φ dependence

of K is observed for B∗2 ≈ −1.42. Moncho-Jordá et al. note further that their systems

belong to the dispersed-fluid-phase region such as ours. At this point, we remark again

that different from self-diffusion where the long-time coefficient dL in concentrated sys-

tems is substantially smaller than dS owing to pronounced dynamic caging effects [178],

the short-time coefficient K can be expected to be only slightly larger than its long-time

counterpart.

Collective diffusion coefficient

In Fig. 8.13, we present the collective diffusion coefficient, dC, introduced in Eq. (4.58),

as function of φ. For non-zero α, dC is dominated by the strong decrease of the osmotic

compressibility, χT, with increasing φ and α, respectively, resulting in larger dC values.

Since the changes in χT become smaller with increasing φ (c.f. Fig. 8.6), the monotonic

decrease of K with increasing φ leads to a peak in dC at φ ≈ 0.125 for α = 3. Different

from K, dC has a monotonic α dependence due to the strong decay of χT with increasing

α.

Wavenumber-dependent diffusion function

Fig. 8.14 displays the inverse of the diffusion function, D(q), in units of d0. The figure high-

lights the importance of HIs by the comparison with the prediction, d0/D(q)|no HI = S(q),

for hydrodynamically non-interacting particles (dashed lines in Fig. 8.14) which differs
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φ

α = 0
α = 1
α = 2
α = 3

Fig. 8.13.: Concentration dependence of the collective diffusion coefficient, dC, for model
M3(x0 = 1.1) and α values as indicated.

significantly from the result with HIs included. Like for S(q), the IRO peak, d0/D(qc), at

α = 3.0 is larger than the next-neighbor peak, d0/D(qm).

Fig. 8.14 serves further to explain how dS can be inferred approximately from DLS and

NSE experiments where only a finite wavenumber band is accessed. As first suggested by

Pusey [238] and theoretically corroborated later by Abade et al. [47], a decent estimate

of dS within a few percent error is given by D(q) evaluated at a wavenumber q∗ equal

to the first wavenumber situated to the right of qm where S(q∗) = 1. Our results for dS

and D(q) show that this practical way of determining dS is applicable likewise to SALR

systems as shown in Fig. 8.15. However, if D(q) is evaluated instead at a wavenumber q∗,
with S(q∗) = 1, situated in between the IRO and next-neighbor peaks, dS is significantly

underestimated by about 15%. For a decent estimate of dS, it is thus essential to cover a

sufficiently broad q-range extending beyond the next-neighbor peak region.

Discussion of isosbestic points

In Fig. 8.2, there are α-independent isosbestic points in the S(q) of model M3(x0 = 1.1).

These are likewise found for varying temperature in experiments and theoretical work on,

e.g., SALR Lysozyme solutions [93], SA-type potential systems [122], and suspensions of

sterically stabilized silica particles interacting effectively as sticky hard spheres [239]. In

addition, concentration-independent isosbestic points exist in the S(q)’s andH(q)(d0/dS)’s

of hard-sphere suspensions where only a single interaction length scale exist [240]. To un-

derstand the origin of α-independent isosbestic points, we study the two-Yukawa potential
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σ

Fig. 8.14.: Inverse, d0/D(q), of the short-time diffusion function, D(q), in units of the
single-particle diffusion coefficient, d0, obtained using the results for S(q) and
H(q) in Figs. 8.2 and 8.9, respectively. The color code is the same as in
Fig. 8.2. To highlight the strong influence of the HIs, the dashed lines depict
d0/D(q)|no HI = S(q) for α = 0.1 (black) and α = 3 (magenta), respectively,
describing hydrodynamically non-interacting particles characterized by H(q) =
1.

using for analytic simplicity the RPA described in Subsec. 3.4.4.

For this purpose, we use the hard-sphere system as the reference system such that the

perturbation potential w(r) is given by the soft two-Yukawa potential part, i.e.

βw(r) =

⎧⎨
⎩0 , r < σ

α
(
K1

e−z1(x−1)

x +K2
e−z2(x−1)

x

)
, r ≥ σ .

(8.3)

We have set here w(r < σ) = 0. The resulting expression for S(q) in RPA approximation

reads (c.f. Eq. (3.44))

1

SRP(y)
=

1

S0(y)
+ 3φα

[(
− K1

z21 + y2
+

K2

z22 + y2

)
cos(y)(

− K1z1
z21 + y2

+
K2z2
z22 + y2

)
sin(y)

y

]
, (8.4)

with y = qσ, and S(q) of the hard-sphere reference system denoted by S0(q).

In Fig. 8.16, we present the RPA S(q) results for system M3(x0 = 1.1), for various α val-

ues and φ = 0.1. The RPA S(q)’s visibly deviate from S0(q) for low q-values only. With
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φφ

α = 1
α = 2
α = 3
α = 0

Fig. 8.15.: dS in PA-approximation (dashed line) for system M3(x0 = 1.1) and selected
α values in comparison with D(q∗i ). The different q∗i values refer to the first
q∗m > qm (open circles), q∗3 > q3, and q∗c > qc (filled triangles) for which S(q∗i ) =
1. The different colors distinguish between the different α-values considered:
α = 1 black, α = 2 red, and α = 3 blue. For comparison, the results for hard
spheres (α = 0) are presented in green.

σ

α = 0
α = 0.1
α = 0.5
α = 1
α = 2
α = 3

Fig. 8.16.: RPA-S(q) for system M3(x0 = 1.1) and φ = 0.1, with α values as indicated. As
hard-sphere reference structure factor, the analytic PY solution is used (black
filled circles).

165



8. Systems with short-range attraction and long-range repulsion

yiso 1.48433 3.86007 6.48705 9.26627 12.1498

SRP (yiso) 0.509566 0.850394 1.07481 0.964358 1.01983

Table 8.4.: RPA predicted α-isosbestic points of S(q), for M3(x0 = 1.1) and y ≤ 15.

increasing α, χT significantly decreases as it is typically found for purely repulsive parti-

cles. On basis of the analytic RPA solution for S(q), we have calculated the wavenumber

positions of the α-independent isosbestic points, {yiso}, equal to the roots of the Fourier

Transform of w(r) (c.f. Eq. (8.4)). The results are presented in Table 8.4 for y ≤ 15.

A comparison of the RPA α isosbestic points with the more elaborate ZH results for S(q)

is presented in Fig. 8.2 illustrating the very good agreement. Only in the low-q region

the ZH and RPA calculated {y(i)iso}’s deviate, with an RPA-predicted isosbestic point not

observed in the ZH results. Since in RPA the SA and LR potential parts are treated

as perturbations, the IRO peak originating from the competition of SA and LR is not

reproduced. For q � qm, however, the RPA describes the α-isosbestic points of the ZH-

S(q) quite well. This finding suggests that the locations and values of the α-isosbestic

points of the ZH S(q) are basically due to the hard-core part of the two-Yukawa SALR

potential.

σ

α = 0.1
α = 1.0
α = 2.0
α = 3.0
α = 0

(a)

σ

α = 0.1
α = 0.5
α = 1.0
α = 1.5
α = 2.0
α = 2.5
α = 3.0

(b)

Fig. 8.17.: Comparison of α-independent isosbestic points of the RPA S(q) for M3(x0 =
1.1) and φ = 0.1 with (a) S(q) and (b) Hd(q) in PY and BM approximation,

respectively. In (a), the positions of the RPA isosbestic points, {y(i)iso}, are shown
by stars, while in (b) the {y(i)iso}’s are marked by dashed vertical lines.

Louis [122] suggested an extended corresponding states principle for SA potentials where

φ, B∗
2 , and different from Noro and Frenkel [107] an effective attraction range related to

the position of the first (lowest-q) isosbestic point are used. In addition, he finds the

first isosbestic point y
(1)
iso to approach the value π for infinitely short-ranged attraction,

166



8.1. Two-Yukawa SALR systems

with attaining smaller values for increasing attraction range. Our result for y
(1)
iso distinctly

differs from π due to the encountered finite attraction range, and the presence of the LR.

Owing to the significant decrease of dS with increasing α, there are no α-isosbestic points in

H(q) as noticed from Fig. 8.9. According to Fig. 8.17b, the distinct part Hd(q), however,

shares the wavenumber locations, {y(i)iso}, of isosbestic points with S(q) for y
(i)
iso � qmσ.

High-frequency viscosity and GSE relations

For a comprehensive assessment of short-time transport properties of SALR systems in

the fluid-phase region, we discuss next our predictions for the high-frequency viscosity η∞.

Its concentration dependence is shown in Fig. 8.18.

φ

η ∞
η

α = 0
α = 1
α = 2
α = 3

Fig. 8.18.: High-frequency viscosity, η∞ (φ), in units of the solvent viscosity η0, as function
of φ, and for values of α as indicated.

Increasing φ implies more pronounced stress relaxations, and an enhanced viscous dissipa-

tion, resulting in an enlarged viscosity. Furthermore, a monotonic increase of η∞ above the

corresponding hard-sphere values is observed with increasing α. This should be contrasted

with a dispersion having LR interactions only, where η∞ is smaller than in a hard-sphere

system of equal concentration [136]. To comprehend this notice that the hydrodynamic

shear mobility tensor coupling the hydrodynamic stress dipole acting on a particle surface

to the fluid rate-of-strain tensor at the position of another particle is rather short-ranged

[170], with an O(1/r6) asymptotic decay. The near-contact region of the RDF has thus the

strongest influence on the high-frequency viscosity so that with increasing RDF contact

value, η∞ is accordingly increased.

As a useful application, for our SALR systems we discuss finally the applicability of two
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short-time GSE relations relating η∞ to dS and dC, respectively. Additionally, to the GSE

function ΛS introduced in Eq. (5.14), consider the GSE function ΛC defined by

ΛC =
η∞ (φ)

η0

dC (φ)

d0

√
S (q → 0, φ) . (8.5)

Kholodenko and Douglas [241] suggested the validity of the GSE relation ΛC(φ) ≈ 1 which

was applied in particular to protein solutions [86, 242].
Λ

φ

Λ

α = 0
α = 1
α = 2
α = 3

Fig. 8.19.: Concentration dependence of the self-diffusion GSE function, ΛS(φ), defined
in Eq. (5.14), for values of α as indicated. Inset: Corresponding curves for
the Kholodenko-Douglas collective diffusion GSE function ΛC(φ). The dashed-
doted black lines are accurate hard-sphere results (α = 0) obtained from the
analytic expressions for dS(φ), dC(φ), and η∞(φ) given in [178].

The validity of GSE relations ΛS(φ) ≈ 1 and ΛC(φ) ≈ 1, would be especially useful

for protein solutions, allowing for determining the solution viscosity from a scattering

experiment.

Our results for the ΛS(φ) and ΛC(φ) of SALR systems are shown in the main part and

inset of Fig. 8.19, respectively. Notice here the different ordinate scales in main figure

part and the inset. In the considered φ range, the maximal deviation of ΛS from one is

about 10%, showing that the GSE relation for dS is a useful tool for a semi-quantitative

assessment of η∞ in a dynamic scattering experiment. While the Kholodenko-Douglas

GSE relation for dC applies quite well to hard spheres, with ΛC(φ) being rather close

to one even at φ = 0.15, its applicability worsens significantly with increasing α. Note

again the approximate character of the BM-PA scheme, as illustrated in Fig. 8.19 by the

showing of the dashed-dotted curves for ΛS(α = 0, φ) and ΛC(α = 0, φ), obtained from
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8.1. Two-Yukawa SALR systems

accurate analytic expressions for the hard-sphere dS, dC, and η∞ [178]. The deviations

of the PA curves for α = 0 from these numerically precise GSE functions is due to the

underestimation of dS and η∞ at larger φ by the PA scheme which does not account

for hydrodynamic shielding effects associated with non-pairwise additive man-body HIs

contributions. The individually smaller errors in dS, dC, and η∞ introduced by the PA

method are amplified by the GSE functions ΛS and ΛC described in Eqs. (5.14) and (8.5).

8.1.4. Effect of short-range attraction

σ

β

Fig. 8.20.: Reduced interaction potentials, βV (r), for z1 = 10, z2 = 0.5, K2 = 0.44 and
α = 1. The reduced attraction strength K1 is varied from 0-4.

In the previous section, we discussed the effect of changing α on the structure and dynamics

in SALR systems. The strength of the SA and LR was varied by keeping the ratio constant.

To learn more about IRO peak formation caused by the interplay of SA and LR, we focus

now on the effect of adding attraction to an originally purely repulsive pair potential. For

this study, we select z1 = 10, z2 = 0.5, K2 = 0.44, and α = 1. Only the reduced attraction

strength K1 is varied from 0-4 for constant φ = 0.05, with V (r) shown in Fig. 8.20.

This procedure helps to elucidate the individual role of SA and LR shown in the last

section to lead to interesting phenomena like the non-monotonic α dependence of the

sedimentation velocity.

Pair structure using the Zerah-Hansen scheme

How attraction affects the pair structure of a hard-core plus two-Yukawa system is shown

in Figs. 8.21a and 8.21b displaying S(q) and g(r) for varying attraction strength K1.
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8. Systems with short-range attraction and long-range repulsion

σ

(a)

σ

(b)

Fig. 8.21.: ZH-approximation (a) of S(q), and (b) of g(r) for a hard-core plus two-Yukawa
system at φ = 0.05, with z1 = 10, z2 = 0.5, K2 = 0.44, and α = 1. The reduced
attraction strength K1 is varied from 0-4. In (b) the arrows mark the positions
xc ≈ 2π/qc for K1 = 3 (green), and 4 (purple).

Due to the moderate repulsion strength K2 = 0.44, for α = 1 and φ = 0.05, the purely

repulsive system where K1 = 0 has only small undulations in g(r). For K1 = 1, a negative

contact value, V (σ+), has developed as seen in Fig. 8.20. This causes a distinct increase

in g(σ+) (not shown explicitly). Due to the simultaneous buildup of a potential barrier in

V (r) with increasing K1, a slight depletion zone starts to develop in g(r) at x ≈ 1.25. For

K1 = 4, the behavior of g(r) becomes different from that for lower K1, with now a peak

occurring at x = 2 characteristic of the in-line configuration of three touching particles.

Additionally, a broad peak in g(r) becomes visible whose onset at xc can be linked to the

IRO peak position, qc ≈ 2π/xc, in S(q) as observed before in Subsec. 8.1.3. The xc-qc

positions linkage does not hold for K1 = 3, for which there is a shallow IRO peak in S(q)

(see the inset of Fig. 8.21b with xc ≈ 2π/qc marked by the green arrow). The IRO peak

is observed for K1 � 2, only, indicating the importance of a competition between SA and

LR for its formation.

In addition, qc shifts to lower q-values indicating an increased mean transient cluster

distance. This interpretation is underlined by the position of the one-crossings in g(r) for

x � 4 shifting to larger x values with increasing K1 as seen in the inset of Fig. 8.21b.

The next-neighbor peak position qm has the opposite trend, shifting to larger q-values

associated with a reduction of the typical next-neighbor distances whenK1 becomes larger.

Different from the α-variation studies in the previous subsection, here, χT is enhanced with

increasing K1 as expected for pure SA systems. The changes in χT are small, however.
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8.1. Two-Yukawa SALR systems

Diffusion properties

According to Fig. 8.22, H(q) shares the same trends with S(q) regarding its IRO and next-

neighbor peak positions whenK1 is varied. Due to the strong decrease of dS with increasing

K1, however, the cage diffusion coefficient, D(qm), associated with H(qm) decreases with

increasing attraction strength. This can be at least partially attributed to the strong

increase of g(σ+), causing an increased HIs-induced slowing.

σ

Fig. 8.22.: Hydrodynamic function, H(q), calculated using the hybrid BM-PA scheme for
K1 values as indicated. The corresponding S(q) and g(r) are shown in Fig.
8.21.

In agreement with results for SA systems, a monotonic increase of K with increasing K1 is

observed unlike the non-monotonic behavior discovered for a variation of α. Further, the

peak H(qc) associated with diffusion processes related to the IRO length scale distinctly

exceeds one and the value of the cage diffusion coefficient H(qm) for K1 = 4. Hence, HIs

enhance the decay of density correlations on the IRO length scale as found, e.g., for purely

repulsive systems for the next-neighbor length scale [186].

High-frequency viscosity

In Fig. 8.23, the effect of SA on η∞ is shown. The increase of η∞ with increasingK1 can be

explained by the high sensitivity of η∞ to g(σ+) in particular, and the next-neighbor region

in general, owing to the fast decay of the two-sphere shear-mobility function according to

J(x) ∝ x−6. With increasing K1, the hydrodynamic coupling between particles becomes

stronger resulting in a higher viscous dissipation.

To conclude, the introduction of SA to an originally purely repulsive particles system leads
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8. Systems with short-range attraction and long-range repulsion

φ

η ∞
η

Fig. 8.23.: Effect of attraction on the high-frequency limiting viscosity, η∞, of a hard-core
plus two-Yukawa system, calculated using the PA approximation in Eq. (4.72).
The same potential parameters as in Figs. 8.21 and 8.22 are used.

to the formation of an IRO peak both in S(q) and H(q). Moreover, the sedimentation

coefficient K increases with increasing SA due to reduced hydrodynamic friction, where-

upon dS decreases due to the larger likelihood of near-contact configurations. For the same

reason, the increased viscous dissipation causes η∞ to grow with increasing K1.

8.1.5. Variation of the repulsion range

In this subsection, we discuss shortly the effect of the variation of the range of the LR, z2,

on the statics and dynamics of SALR systems for constant B∗
2 . To this end, we employ

the potential models Mi(x0 = 1.1) for i ∈ {1, 2, 3}, with parameters shown in Table 8.1

and introduced in Subsec. 8.1.1, denoted here for short by Mi. As visible in Fig. 8.24,

an increase of z2 is accompanied by the increase of the potential maximum, V (rmax), as a

consequence of the equality of B∗
2(α) for the three models and a particular α ∈ [0, 3] (c.f.

Fig. 8.1b). Note that the attractive potential part, V (x < x0), is practically unaffected

when varying z2, implying that T ∗
c based on the attractive reference potential varies only

weakly (c.f. Table 8.3).

Pair structure using the ZH scheme

The pair strutcure of the three potential models for x0 = 1.1 has been previously investi-

gated by Costa et al. [91]. Using two different self-consistent integral equation schemes,

they found that the reduced temperature, T ∗, for which an IRO peak arises, decreases in
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8.1. Two-Yukawa SALR systems

σ

β

Fig. 8.24.: Reduced pair potentials of models Mi(x0 = 1.1) for i ∈ {1, 2, 3} and α = 1.
The associated potential parameters are given in Table 8.1.

going from M3 → M2 → M1, i.e. in decreasing V (rmax). The same trend is observed in our

ZH results for S(q) in Fig. 8.25a. The model system M3 has the smallest z2 and largest

V (rmax), giving rise to an enlarged stability of near-contact configurations in comparison

to the other models, reflected in larger values of g(σ+) not depicted here.

σ

α = 3 (+0.5)
α = 2 (+0.25)
α = 1(a)

σ

α = 3 (+0.5)
α = 2 (+0.25)
α = 1(b)

Fig. 8.25.: Model dependence of (a) ZH S(q), and (b) BM-PA H(q) for x0 = 1.1, and
φ = 0.1. Black: model M1, red: M2, and blue: M3. The curves for different
values of α are distinguished by different line types, and vertical offsets as
indicated.

The peak positions qm and qc of S(q) both shift to larger q-values for increasing z2,

indicative of decreasing next-neighbor, and IRO structure distances. The peak in g(r) at

roughly xc is shifted to smaller distances as expected, while its width remains practically

unchanged (not shown).
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8. Systems with short-range attraction and long-range repulsion

Transport properties

Different from S(qm), the hydrodynamic function peak height H(qm) stays practically

constant in going from M3 → M2 → M1. This can be attributed to the different values

of dS of the three models in Fig. 8.26a. Model M3 with the most pronounced IRO peak

and largest g(σ+) has the smallest dS. This result points to the sensitivity of dS to the

near distance pair structure owing to μii ∼ 1/r4 and the dominant influence of the SA

implying dS < dHS
S . By the same token, η∞ increases in going from M3 → M2 → M1.

α

(a)

α

(b)

Fig. 8.26.: Model dependence of (a) dS and (b) K (same color code) on the effective at-
traction range, x0, and interaction strength, α, for φ = 0.1. Black: model M1,
red: M2, and blue: M3. Different x0 values are distinguished by different line
types as indicated. For the discussion of the x0-dependence, see Subsec. 8.1.6.

The IRO peak H(qc) is less pronounced than S(qc) for the same α value. In Fig. 8.26b,

we present that the non-monotonic α dependence of K, resulting from the competition of

SA and LR, is found for all three potential models. Model M3 with the largest V (rmax)

and smallest range of the LR has the smallest K values. This observation suggests that

for the considered potential models sharing the same B2(α), an increase of the repulsive

potential barrier results in a stronger slowing of sedimentation than the increase of z2.

8.1.6. Variation of the effective attraction range

We briefly discuss here the effect of changing the effective range of attraction, x0, for

fixed interaction strength α implying constant B∗
2 . Consider model M2(x0) for x0 =

{1.05, 1.1, 1.2} and α = 3 in Fig. 8.27. A decreasing x0 is accompanied by an increasing

potential barrier, and a faster decay of the LR potential part. We use here φ = 0.1 and

α = 3, which guarantees that all systems are in the dispersed-fluid state with a distinct

IRO peak in S(q). See Table 8.3 for the gas-liquid critical temperature T ∗
c of the attractive
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8.1. Two-Yukawa SALR systems

σ

β

Fig. 8.27.: Pair potential of model M2, for α = 3 and three effective attraction ranges, x0,
as indicated.

reference system.

Pair structure using the ZH scheme

σ

(a)

σ

(b)

Fig. 8.28.: ZH-calculated (a) S(q), and (b) g(r) (same color code) for model M2(x0 = 1.05)
(dotted), M2(x0 = 1.1) (solid), and M2(x0 = 1.2) (dashed), for φ = 0.1 and
α = 3. The inset in (b) is a magnification of the peak region in g(r) at xc ≈
2π/yc. The respective peak positions for M2(x0) are xc(x0 = 1.05) ≈ 2.76,
xc(x0 = 1.1) ≈ 3.10, and xc(x0 = 1.2) ≈ 4.45, marked by arrows of respective
color.

Fig. 8.28 shows S(q) and g(r) for models M2(x0), with x0 = {1.05, 1.1, 1.2} and α = 3.

With increasing x0, g(σ
+) increases and qm shifts to larger wavenumber values. While
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8. Systems with short-range attraction and long-range repulsion

S(qm) is only mildly affected by changing x0, S(qc) has a surprising non-monotonic de-

pendence on x0. The most strongly developed IRO peak is at x0 = 1.05 which can be

associated with a clearly visible peak in g(r) at xc = 2π/qc ≈ 2.76 as marked in the inset

of Fig. 8.28b. The larger IRO peak for x0 = 1.2 in comparison to that for x0 = 1.1

can not be attributed to the peak in g(r) at xc, since for x0 = 1.2 only a very shal-

low peak can be observed. Our results suggest that regarding model M2(x0 = 1.2), the

broad attractive potential part taken together with the long-ranged but weak repulsion,

favor intermediate-range order. In addition, it can be expected that the IRO structure in

systems with x0 = 1.05, and 1.1 will differ from the one for x0 = 1.2, since a larger effec-

tive attraction range results in more diffuse near-contact configurations. To what extent

changes in the IRO structure affect g(xc) is a topic for future simulations. We conclude

that a peak in g(r) at xc ≈ 3 ∼ 5 can be an indication of IRO but not necessarily so.

Transport properties

σ

(a) (b)

Fig. 8.29.: (a) BM-PA calculated H(q) of the systems in Fig. 8.28. For comparison, the
H(q) of a hard-sphere system of same φ = 0.1 is represented by the filled black
circles. (b) d0/dS versus height, S(qc), of the IRO peak. Shown are results of
all potential models M1 (squares), M2 (circle), and M3 (upper triangles) for
x0 = 1.05 (black), x0 = 1.1 (red), and x0 = 1.2 (blue).

Using Fig. 8.29a, we show that also H(qc) has a non-monotonic x0 dependence. Very

interestingly, dS, S(qc) and H(qc) share a non-monotonic x0 dependence. This is exempli-

fied in Fig. 8.29b where d0/dS is plotted versus S(qc). For systems with more pronounced

IRO, dS becomes smaller. As one expects, an increasing clustering tendency signaled by a

larger S(qc) is reflected by a smaller dS. The onset of a non-monotonic x0 dependence of

dS for α ≈ 1.5 is accompanied by the first occurrence of an IRO peak for x0 = 1.05 (c.f.

Fig 8.26a).
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Results for the sedimentation velocity, K, are presented in Fig. 8.26b. It is shown that K

increases significantly with increasing x0, and a concurrent increase of g(σ+) as observed

for purely attractive systems. Note that for all considered SALR systems and fixed α, K

follows the same trends as 1/qc.

8.2. Comparison with experiment

To investigate the applicability and accuracy of our structural and transport coefficients

calculations for SALR systems, we have compared our results to NSE measurements of

H(q) and D(q) of Lysozyme proteins in deuterium oxide (D2O). The NSE experiments

have been performed at the National Institute of Standards and Technology (NIST) by P.

D. Godfrin and Y. Liu. Lysozyme is a frequently used protein of nearly spherical tertiary

structure with mean radius a ≈ 1.5 nm [98]. More specifically, its shape is that of a prolate

ellipsoid [243]. For details of the sample preparation, we refer to Chapter 5 of [98].

The volume fraction of the Lysozyme samples has been calculated on basis of the mass

fraction, XL, of purified lyophilized Lysozyme in D2O [98]. With the known specific

volume of Lysozyme, V0 = 0.717ml/g, [98, 244] and the known mass density, ρS, of D2O,

the volume fraction φ of a sample can be calculated using [98]:

φ =
XLV0

XLV0 + (1−XL)
ρS

. (8.6)

For each sample, S(q) and D(q) have been measured, with H(q) = S(q)D(q)/d0. In

addition, a fitting procedure has been employed using the hard-core plus two-Yukawa

SALR potential to infer the potential parameters αKi, and zi (i ∈ {1, 2}) from the IET-fit

to the experimental S(q). The effective protein βV (r) has been fitted individually for each

sample to account for effects such as the variation of the pH value with changing φ. For

simplicity, the proteins have been modeled as spherical with a diameter of σ ≈ 30.74Å.

An overview over the different samples and the corresponding potential parameters ob-

tained by this fitting is presented in Table 8.5.

Pair structure

In Figs. 8.30 (a)-(c), for selected systems we compare the SANS measured S(q) with our

ZH calculations using the fit parameters in Table 8.5. The agreement of the theoretical

curves with the experimental ones is overall good, with deviations most visible for larger

q in the region around qm, where, however, the scatter in the SANS data is quite large.
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Sample T [◦C] wt [%] φ αK1 αK2 z1 z2

1 25 5 0.0398 6.0291 4.2743 10 1.2473

2 5 20 0.1432 6.4666 3.2868 10 2.7839
3 25 20 0.1472 5.8511 3.5588 10 2.9338
4 50 20 0.1551 6.1753 4.3252 10 3.3055

5 5 25 0.2017 6.3 3.0811 10 3.6117
6 25 25 0.2099 5.743 3.3574 10 3.8785
7 50 25 0.2091 5.2251 3.7215 10 4.0331

Table 8.5.: Temperature, T , and concentration, in wt [%], of the Lysozyme samples in
D2O. In addition, the parameters of the hard-sphere plus two-Yukawa potential
V (r) obtained from the IET-fit of the experimental S(q) are presented.

σ

(a)

σ

(b)

σ

(c)

σσ

(d)

Fig. 8.30.: (a), (b), and (c): Comparison of the experimental measured S(q) of Lysozyme
solution samples (a) 1, (b) 3, and (c) 7 in D2O with the ZH-calculated S(q)
using the potential parameters in Table. 8.5. (d): ZH g(r) of samples 1, 3,
and 7 in comparison with corresponding MC simulation data using potential
parameters in Table 8.5.
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The scanned q range in the SANS measurements is focused on the IRO peak region,

extending roughly up to qm. The experimental S(q) of samples 1 and 3 have an IRO peak,

while for sample 7 no low-q peak is visible.

In Fig. 8.30d, we exemplify the high accuracy of our ZH calculations of g(r) by the

comparison with MC data for the systems in Figs. 8.30 (a)-(c). The perfect agreement

of the MC simulations with the ZH-S(q) calculations indicates that all samples are in the

dispersed-fluid state.

Short-time dynamics

As discussed in Subsec. 4.1.6, one great advantage of NSE in comparison to light scattering

is that S(q, t) is determined from atomic or molecular positions such that the scattering

signal is not dominated by particle clusters or aggregates as it is in DLS. The comparison

of the NSE determined H(q) for various Lyszoyme solutions with the BM-PA calculations

using ZH input for g(r) and S(q) is presented in Fig. 8.31. Triggered by the high cost of

NSE measurements, the experimental q-range is limited to the IRO peak region.

σ

Fig. 8.31.: NSE results (symbols) for the H(q) of the Lysozyme samples in D2O listed in
Table 8.5. Here, H(q) is deduced from the experimental D(q), and S(q) by
H(q) = S(q) · D(q)/d0. For comparison, our BM-PA H(q) results are shown
using the ZH g(r) and S(q) as input (solid lines). The parameters of the hard-
sphere plus two-Yukawa potential are given in Table 8.5.

Our calculations ofH(q) are in overall good agreement with the experimental data. For the

lowest concentrated Sample 1 with φ = 0.0398, the agreement is nearly quantitative. With

increasing φ, the quantitative agreement worsens but it remains qualitatively good. The
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BM-PA H(q) reproduce all the trends observed for the experimental data, i.e., the crossing

points of the different sample curves. The offset between experimental and theoretical

results for H(q) for larger φ can be partially attributed to the inaccuracy of the PA

scheme regarding the ds part. The disregarded non-spherical shape of Lysozyme proteins

may be also of importance. While the validity of the theoretical description of Lysozyme as

globular has been verified by the comparison of the theoretical and experimental S(q) [98],

the actually ellipsoidal shape may have a significant impact on the dynamics especially

for large φ. In addition, the presence of protein hydration layers could also lead to the

overestimation of the experimental H(q) by our theoretical predictions.

σ

Fig. 8.32.: NSE results for the experimentally directly accessible diffusion function, D(q)
(symbols), with the theoretical predictions. D(q) is obtained by division of the
BM-PA H(q) in Fig. 8.31 by the respective ZH S(q) (solid lines).

The agreement between theory and experiment becomes less good whenD(q) is considered.

As it is observable in Fig. 8.32, owing to the smallness of S(q) at low q experimental-

theoretical deviations in H(q) are enhanced after division by S(q) leading to quantitative

differences. However, and quite importantly, one infers from the experimental-theoretical

comparison that for the NSE measurement of dS a sufficiently broad q-range is required

extending well beyond qm, as discussed earlier in Subsec. 8.1.3. Note that the oscillations

in the experimental D(q) are weak for q � qc.

To conclude, the comparison of our calculations of S(q), H(q), and D(q) with NSE mea-

surements on Lysozyme solutions shows the applicability of our theoretical methods orig-

inally designed for larger colloidal particles also to solutions of nanometer-sized proteins.
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8.3. Modified Lennard-Jones-Yukawa system

8.3. Modified Lennard-Jones-Yukawa system

In this section, we present our study of a second SALR system with a Lennard-Jones

plus Yukawa pair potential given in Eq. (2.13). For this SALR system, we have similar

structural and diffusion results as for the already considered two-Yukawa SALR system,

with the IRO peak as an universal feature of SALR systems. While the hard- core potential

part in the two-Yukawa SALR system renders dynamical simulations more difficult, the

LJY potential has a steep but soft short-range repulsion allowing for the usage, e.g., of

MD techniques. MD based mesoscale simulation methods (c.f. Subsec 8.3.3) allow for

a detailed investigation of the structure and dynamics of (transient) clusters. Especially

in the equilibrium-cluster and percolated phases, knowledge of the cluster shape (e.g.,

elongated vs. spherical) is indispensable for the understanding of dynamic properties such

as the zero-shear viscosity [4].

Firstly, we investigate the influence of the variation of the parameter ε characterizing

the strength of attraction in the LJY potential (c.f. Eq. (2.13)), and of varying φ on

pair distribution functions and transport properties. For this purpose, we employ the ZH

and BM-PA scheme, for S(q), g(r), and transport properties, respectively. To quantify

the accuracy of the ZH results for g(r), we compare them with MD simulations using the

HOOMD-blue software package [245–247] run on GPU. Our MD simulations are performed

for the NVT ensemble with N = 2000 particles in a cubic simulation box, using a Nosé-

Hoover thermostat. Based on the phase diagram of Mani et al [34], we select ε and φ such

that the investigated systems are mostly in the dispersed-fluid phase.

Secondly, we shortly describe an ongoing theory-simulation collaboration with S. Das, G.

Gompper, and R. G. Winkler from the IAS-2/ICS-2 of the Forschungszentrum Jülich.

The collaboration aims at the assessment of the accuracy of our dynamic calculation

schemes in the dispersed-fluid phase state, and the exploration of possible extensions of the

analytic methods to the equilibrium-cluster phase. We are in the process of comparing our

theoretical S(q) and H(q) results with multi-particle collision dynamics (MPC) simulation

results by the IAS-group, in which the effect of HIs is included.

8.3.1. Pair structure

The ZH-calculated S(q) and g(r) for LJY systems of constant ρ∗ = ρσ3 = 0.2 and different

values of ε are shown in Fig. 8.33. The corresponding pair potentials are depicted in

Fig. 2.5. Similar to the case of increasing K1 in the two-Yukawa SALR system, qm is

shifted to larger q-values with increasing ε, while S(qm) has a non-monotonic ε dependence.

Furthermore, a significant IRO peak develops with increasing ε. For the largest considered
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σ

ε = 0
ε = 2
ε = 4
ε = 5
ε = 6

(a)

σ

(b)

Fig. 8.33.: Solid lines: ZH (a) S(q), and (b) g(r) (same color code) of LJY systems with
ρ∗ = 0.2 and various ε values as indicated. Accoridng to Mani et al. [34], the
system is in the equlibrium cluster phase for ε = 6. In (b), MD simulation
results for ε = 5 (green), and ε = 6 (violet) are shown by the symbols and
the thin lines. The onset of peak formation in g(r) at x ≈ 1.59 and x ≈ 1.85
indicates the formation of non-highly transient structures. The inset focuses on
the peak region of g(r) associated with the IRO peak in S(q). Here, the arrows
mark the positions xc = 2π/qc.

value, ε = 6, the system is in the equilibrium cluster phase state according to the phase

diagram of Mani et al. [34]. While for smaller ε the simulation and ZH g(r) are in

perfect agreement as seen in Fig. 8.33b, for ε = 6 our MD simulations show additional

peaks at x ≈ 1.59 and x ≈ 1.85. The positions of these peaks are similar to the values

observed in hard-core SALR systems representing the presence of an octahedron structure

(x =
√
8/3), and two eqilateral triangles with a common side (x =

√
3) as discussed by

Valadez-Pérez et al. [89]. For the LJY systems, we have again that xc = 2π/qc does not

strictly coincide with the onset of a peak in g(r) at x ∼ 2.5, associated with IRO (c.f. inset

of Fig. 8.33b). Note that S(qc) does not exceed the critical value Scrit(qc) ∼ 2.7, given by

Godfrin et al. [33] as an empirical criterion for the onset of a first-order equilibrium-cluster

phase transition for the two-Yukawa SALR system.

8.3.2. Short-time dynamics

BM-PA results for the H(q) of the LJY-SALR systems are shown in Fig. 8.34. Like in two-

Yukawa systems, H(q) shares the positions qc and qm with those of S(q). The monotonic

decrease of H(qm) with increasing ε results from the associated strong decrease of dS

depicted in Fig. 8.35a. An enlarged attraction strength leads to an increased likelihood

of near-contact configurations, and thus to a decrease of dS. Moreover, K is distinctly
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σ

ε = 0
ε = 2
ε = 4
ε = 5
ε = 6

Fig. 8.34.: BM-PA calculated H(q) for LJY systems of various attraction strengths ε, and
ρ∗ = 0.2. As input to the hybrid BM-PA scheme, the ZH S(q) and g(r) in Figs.
8.33 are used.

increased for increasing ε (c.f. inset of Fig. 8.35a), and the IRO peak of H(q) starts to

develop for larger ε values than that of S(q). Note that the system for ε = 6 is in the

equilibrium cluster phase where the simulated and ZH-calculated g(r) differ. Hence, a

comparison of the BM-PA H(q) with simulations of H(q) regarding the influence of HIs

is important to investigate to what extent clusters affect the short-time dynamics.

ρ∗

(a)

ρ∗

η ∞
η

ε = 0
ε = 2
ε = 4
ε = 5
ε = 6

(b)

Fig. 8.35.: Reduced density dependence of (a) dS, and inset K, and (b) η∞ for values of
ε as indicated. For dS and η∞ the PA approximation, and for K the hybrid
BM-PA scheme have been used, with ZH input S(q) and g(r) from Fig. 8.33.
The color code in (a), and its inset is the same as in (b).

In Fig. 8.35b, we show the ε and ρ∗ dependence of η∞ for LJY systems. Since η∞ is highly

sensitive to near-contact configurations, it increases with increasing ε. While not shown
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8. Systems with short-range attraction and long-range repulsion

here, g(r), S(q), and H(q) of LJY systems in the dispersed-fluid phase behave similarly

to those of the two-Yukawa SALR systems in their ρ∗ dependence.

In conclusion, our theoretical and MD simulation results for the LJY system have the

same characteristic behavior as the two-Yukawa SALR system underpinning the IRO peak

formation as an universal feature of SALR systems. Owing to the soft nature of the

Lennard-Jones repulsion part, the LJY system is more amenable to dynamic simulations

considered in the following subsection.

8.3.3. Comparison with MPC simulations

To test the accuracy of our analytic methods, and to study the dynamics also in the

equilibrium cluster phase, we use the mesoscale multi-particle collision dynamics (MPC)

method. The MPC method is a hybrid simulation technique combining MD simulations

for the colloidal particles with the multi-particle collision dynamics method for the fluid,

with HIs being accounted for [248, 249]. The MPC method is useful for a broad variety

of systems, from colloidal suspensions [250–252] to active swimmers [253, 254]. In this

section, we present preliminary results of our collaboration with S. Das, G. Gompper, and

R. G. Winkler [255], who have performed the MPC simulations.

The simulations include 1560 particles in the NVT ensemble. For the achievement of

a better statistics, the calculated properties are averaged over 15 individual runs with

2 million iterations each. The same LJY potential (Eq. (2.13)) as in our theoretical

calculations is employed.

As noted before, the MPC simulations can be readily used for the study of the equilibrium-

cluster phase where the accuracy and also the convergence of the ZH method is usually

poor. Using MPC, we explore here the effect of increasing the attraction strength ε while

keeping ρ∗ fixed. The two investigated systems are in the dispersed-fluid phase (ε = 4)

and the equilibrium-cluster phase (ε = 7), respectively, and we study the difference in the

g(r) and S(q) in the two phases. Fig. 8.36a shows a simulation snapshot for the cluster

phase system, with ε = 7 and ρ∗ = 0.1. The CSD of this system, N(s), obtained from the

simulations is shown in Fig. 8.36b, giving a preferred cluster size including 7 particles. In

contrast, the N(s) of the dispersed-fluid phase system is monotonically decaying.

In Fig. 8.37, the S(q) and g(r) of the two systems are shown to highlight characteristic

differences in their behavior for the dispersed-fluid and equilibrium-cluster phase, respec-

tively. While for ε = 4, the ZH S(q) and g(r) are in very good agreement with the MPC

data including the g(x ≈ σ) region, the ZH calculations do not converge for ε = 7. In the

simulation data for ε = 7, a large IRO peak, S(qc), is visible exceeding clearly the critical
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(a)

dispersed-
fluid phase

equlibrium-
cluster phase

(b)

Fig. 8.36.: (a) MPC simulation snapshot of a LJY system with ε = 7, and ρ∗ = 0.1 in
the equilibrium-cluster state. The color signals the membership of particles
to a cluster of size s (see left vertical color bar). (b) Cluster-size distribution
function, N(s), for ε = 4 and ε = 7, and ρ∗ = 0.1, gained from the MPC
simulations. The inset shows a typical equilibrium cluster observed in the
simulations. Snapshot kindly provided by S. Das (ICS-2 / IAS-2).

σσ

ε = 4
ε = 7

(a)

σ

ε = 4
ε = 7

(b)

Fig. 8.37.: MPC simulation results for (a) S(q), and (b) g(r) of LJY systems with ε ∈
{4, 7} and ρ∗ = 0.1, in comparison with the ZH result for ε = 4. Our ZH
approximation calculations are not converging for ε = 7.

185



8. Systems with short-range attraction and long-range repulsion

value 2.7 by Godfrin et al. [33]. The corresponding g(r) is strongly peaked at soft particle

contact distance x = 1 (g(r ≈ σ) ∼ 150), with additional peaks at x ≈ 1.43, 1.66, and

about 2. As discussed earlier, the pronounced peak at x ≈ 1.66 corresponds to particles

forming two equilateral triangles with a common side [89]. Using the reduced position,

xmin, of the pair potential minimum as characteristic distance, we obtain
√

8/3xmin ≈ 1.68

in good agreement with the peak position 1.66 observed in simulation. Moreover, the small

peak at x ≈ 1.43 ≈
√

2 reflects the presence of cubically located particles. Note that the

structure of clusters is strongly influenced by the balance of SA and LR potential parts.

For the ε = 7, the clusters observed in the MPC simulations are spherical rather than

elongated as seen, e.g., in the present simulation snapshot (Fig. 8.36a) and likewise in

[34].

We are not in the position yet to present a comparison of our predictions of H(q) and D(q)

with the MPC simulation data for LJY systems. We expect the short-time properties

presented in this thesis, and based on the PA and BM methods to be in qualitative

agreement with the future MPC simulation results for systems also in the equilibrium-

cluster phase state as long as the particles forming clusters can move individually, i.e. as

long as the clusters do not form rigid objects. Otherwise, there will be hydrodynamic

screening inside a cluster, and a polydisperse modeling of the system is more appropriate.
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9. Conclusions and outlook

In this thesis, we have developed and assessed the performance of a variety of versatile and

easy-to-apply calculation methods for static and dynamic properties of dispersions of glob-

ular colloidal particles. The calculated properties encompass dynamic short- and long-time

diffusion functions and coefficients, and static pair distribution and scattering functions

as well as osmotic pressures and compressibilities. The explored dispersions include hard-

sphere-like particles with internal hydrodynamic structure, charged-particles suspensions

of submicron colloidal spheres, and solutions of nanometer-sized globular (Lysozyme) pro-

teins with competing short-range attraction and long-range repulsion. We have validated

the good accuracy of the theoretical calculation schemes by a comprehensive comparison

with experimental and simulation results. Furthermore, we have presented a bottom-up

approach to the modeling of the cross-flow UF process. For this purpose, we have ex-

plored first how the internal hydrodynamic particle structure and surface charge affect the

transport properties of concentrated systems. Secondly, we have used the accurate trans-

port coefficient expressions as input in our ultrafiltration (UF) model for calculating the

near-membrane concentration profile and trans-membrane permeate flow. In this way, we

have bridged the gap from individual particle properties via the transport and structure

in concentrated bulk systems to an important technological process.

In particular, we have presented a toolbox of easy-to-implement analytic methods for cal-

culating short-time and long-time transport properties of suspensions of spherical particles

with intrinsic hydrodynamic structure. The analytic transport coefficient expressions for

hard-sphere-like systems given in the thesis combine high accuracy with a practical imple-

mentation, and they apply to the full liquid-phase concentration regime. The expressions

are particularly useful to experimenters for a fast yet precise data analysis of scattering

and rheo-mechanical measurements. We have highlighted this by our analysis of SLS

and DLS experiments on non-ionic PNIPAM microgels in DMF. By a detailed compari-

son of hard-sphere with soft Hertz potential calculations, we have shown that non-ionic

and strongly cross-linked microgels behave statically to good accuracy as hard spheres,

but hydrodynamically as permeable spheres with a reduced penetration length λx ≈ 0.03

corresponding to a reduced hydrodynamic radius of γ = 0.97.

The intra-particle hydrodynamic structure has been accounted for using the hydrody-

namic radius model (HRM) where the particles are described hydrodynamically as no-slip

spheres, characterized by a hydrodynamic radius derived from a single-particle transport

property for unchanged direct interactions. In spite of its simplicity, the HRM is univer-
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sally applicable since correction terms are usually quite small, i.e. of quadratic order in

the reduced slip length. In many particulate systems, these corrections are negligible, and

a unique hydrodynamic radius, ah, can be used independent of the considered transport

property. As we have shown in comparison with existing computer simulation results,

the HRM-based scaling expressions are decent approximations also for strongly structured

hard-sphere-like particles, characterized by values of γ significantly smaller than one, pro-

vided ah is deduced from an associated single-particle transport coefficient, namely from

the intrinsic viscosity [η] in viscosity calculations, and d0 in self-diffusion and sedimen-

tation calculations for concentrated suspensions. The toolbox results for the collective

diffusion coefficient, dC, and the steady-shear viscosity, η, in this thesis have been al-

ready profitably used by Roa et al. [39] in their generic cross-flow UF study of uncharged

solvent-permeable particles suspensions.

We have presented a vast number of results for hydrodynamically structured, rigid particles

with hard-core interactions. The HRM, and a part of our toolbox methods, are likewise

applicable, with appropriate modifications, to spherical particles with short-ranged soft

interactions. We have shown this in detail for the reduced hydrodynamic function, hd(q),

of soft Hertz-potential particles of reduced interaction strength ε = 10. According to our

calculations based on the BM method, the useful hydrodynamic function scaling is valid

also for soft-particles dispersions.

However, the presented scaling relations for dS, K, and the long-time self-diffusion coeffi-

cient, dL, are not valid any more for particles with long-range soft repulsion that can not

be adequately described statically by an effective excluded volume diameter. Examples in

case are low-salinity suspensions of charge-stabilized particles [186], and quasi-two dimen-

sional systems of magnetically repelling particles at a liquid-gas interface [256]. While the

presented scaling expressions are invalid for these systems, their hydrodynamic structures

are still well described by the HRM, so that our HRM expressions based on the hybrid

BM-PA scheme can be used for the calculation of their transport properties.

The applicability of the HRM to charge-stabilized dispersions was explicitly demonstrated

in our study of permeability and softness effects on static and dynamic system properties

of ionic microgel suspensions. For this purpose, an effective pair potential describing ionic

microgels due to Denton [63, 78] was used and complemented by the Hertz potential for

description of the soft steric interactions [57]. We employed realistic values for the effective

particle charge and screening length determined in a previous study from experimentally

measured values [57], and we have investigated theoretically the effect of different particle

softness and permeability, as characterized by the Hertz potential interaction strength

ε, and the HRM parameter γ, respectively. We find that both the particle softness and
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the permeability severely influence short-time diffusion properties of ionic microgel sus-

pensions. Quite interestingly, the sedimentation coefficient K is particularly sensitive to

particle softness, being strongly enhanced for decreasing ε. The short-time self-diffusion

coefficient, dS, follows the same trend, however with a weak ε dependence only. A non-zero

microgel permeability attenuates the slowing effect of the HIs, as signaled by the shift of

the H(q) curve to larger values with decreasing γ. Regarding the diffusion function, D(q),

a low-q upturn is predicted theoretically with decreasing γ especially for larger ε values,

in accord with experimental observation [198]. Our theoretical predictions for H(q) and

D(q) are useful for the analysis of dynamic scattering measurements on permeable and /

or soft charged-particles suspensions.

In a joint experimental-theoretical work [227], we studied additionally amphoteric micro-

gels in the zwitterionic regime. We have investigated the influence of opposite charges

of same amounts inside the backbone of the PNIPAM microgel particles on the equilib-

rium suspension microstructure. For this purpose, zwitterionic microgels with increasing

amounts of zwitterionic comonomer have been used, with the pure PNIPAM system serv-

ing as a reference. Based on SANS measurements and our polydisperse hard-sphere model

calculations combined with the decoupling approximation, we could show that the measur-

able static structure factor, SM(q), is well described by the hard-sphere model up to a total

volume fraction φT ≈ 0.4. At larger volume fractions, the experimental scattering data

deviate significantly from those predicted by the hard-sphere model. At very large con-

centrations, the microgels are likely to overlap or de-swell. In summary, the sophisticated

intra-particle structure of the microgels containing acidic and basic comonomers affects

the particle interactions for volume fractions φT ≥ 0.4 only. At small φ, the zwitterionic

microgels behave similarly to pure PNIPAM microgels.

In addition to dispersions with purely repulsive interactions, we have comprehensively

explored systems with competing SA and LR such as low-salinity Lysozyme protein solu-

tions. Our theoretical analysis of these systems has shown that the competition of SA and

LR leads to unusual features in the concentration and interaction strength dependence

of transport properties in the dispersed-fluid phase that are not encountered in systems

with purely repulsive or attractive soft interactions. Two different SALR systems have

been investigated, namely the hard-core plus two-Yukawa potential model system, and

the Lennard-Jones plus repulsive Yukawa potential system. We have shown that the ob-

served structural and dynamical features of these two systems are general effects of the

subtle interplay of SA and LR. For the two-Yukawa SALR system, we studied the effects

of variations in the interaction strength, α, attraction strength, K1, range of repulsion, z2,

effective attraction range, x0, and particle volume fraction φ. For the LJY-SALR system,
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we analyzed the effect of varying the attraction strength, and discussed the φ dependence

of dS, sedimentation coefficient, K, and high-frequency viscosity η∞.

For the first time to our knowledge, we showed that an IRO peak signaling a (transient)

clustering tendency, is present also in the hydrodynamic function, H(q), and the diffusion

function D(q). The IRO peak of both functions grows with increasing α. While the

self-diffusion coefficient, dS, and the high-frequency viscosity, η∞, change monotonically

with increasing α, the sedimentation coefficient, K, varies non-monotonically, owing to a

subtle interplay of the SA and LR soft potential parts with the short-range and long-range

HIs contributions. While dS and η∞ are most strongly influenced by the SA through the

resulting changes in the near-contact part of the RDF g(r), K has a subtle dependence

on several potential features. Interestingly, d0/dS scales monotonically with the height,

S(qc), of the IRO peak in S(q). Furthermore, the collective diffusion coefficient, dC, is

strongly enhanced with increasing φ or increasing α. Our transport properties results

allow to assess the validity of two GSEs relating η∞ to dS and dC, respectively. While the

GSE related to dS is valid to good approximation in the whole considered concentration

regime φ ≤ 0.15 where the SALR system is in the dispersed-fluid phase state, the GSE

relation for dC is violated for all α, and all non-zero φ.

Moreover, we have analyzed how a decent estimate of dS in SALR systems is obtained

from NSE or DLS experiments performed at a specific wavenumber, q∗ > qm, for which

S(q∗) = 1 is valid. Our general results for SALR systems in the dispersed-fluid phase are

helpful as a prerequisite and reference in future studies aimed to identify so far unknown

dynamic features, e.g., in the equilibrium-cluster phase.

Furthermore, our toolbox of analytic methods for the calculation of short-time dynamic

properties of globular particles suspensions has been successfully applied to analyze NSE

measurements on low-salinity solutions of nanometer-sized Lysozyme proteins. Albeit

overestimating the NSE results forH(q) at larger φ, our calculations are in good qualitative

agreement with the measurements, reproducing in particular all experimental trends. Our

BM-PA scheme calculations use the ZH-calculated structure factors and RDFs as the only

input. Pair potential parameters have been obtained from the IET structure factor fitting

of the experimental S(q), using the two-Yukawa SALR potential. Differences between the

experimental and theoretical H(q) can be attributed to the disregarded non-sphericity of

the (Lysozyme) protein shape, and the presence of a protein hydration layer potentially

giving rise to a larger effective hydrodynamic particle radius.

Regarding SALR systems described by the Lennard-Jones plus repulsive long-ranged

Yukawa potential, we have presented first results of the comparison of our analytic toolbox

calculations for S(q) and g(r) with corresponding MPC simulations by our Jülich collab-
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orators from the ICS-2 / IAS-2. The simulations reveal characteristic differences in the

pair distribution functions of systems in the dispersed-fluid and equilibrium-cluster phase,

respectively.

Finally, we demonstrated the importance of accurate analytic expressions for static and

dynamic dispersion properties forming the input to our cross-flow UF modeling of charged-

particles dispersions under low-salinity conditions. To account for the strong effect of

surface-released counterions on the renormalized colloid charge and screening parameter,

we have employed a PB cell model approach to determine the state-dependent parameters

of the OCM effective pair potential. Subsequently, we have combined these results with

the HNC approximation to calculate the osmotic suspension pressure and compressibility,

and to predict accurate pair distribution functions. The latter served also as input to our

hybrid BM-PA calculations of the collective diffusion coefficient, dC, and high-frequency

viscosity, η∞, and to the simplified mode-coupling theory calculation of the shear re-

laxation part, ∆η, of the steady low-shear viscosity η. Using the calculated static and

dynamic suspension properties as input to our UF model has allowed us to quantitatively

reproduce the cross-flow UF measurements of the permeate flux for aqueous feed suspen-

sions of charge-stabilized silica particles. Our theoretical findings show that the osmotic

pressure has no significant effect on the UF of low-salinity suspensions, with the permeate

flux versus TMP curve being close to that for pure solvent as the feed. Only for the largest

considered transmembrane pressure is a deviation of the experimental from the theoret-

ical curves visible, which is likely due to preferential adsorption of the silica particles on

the membrane surface. Our findings substantiate an assertion by Cohen and Probstein

[257], in the related context of reverse osmosis that there is a threshold permeate flux

below which no flux decline caused by concentration-polarization or cake layer formation

occurs. Note that an account of chemical charge regulation does not qualitatively change

our findings about the permeate flux of low-salinity systems, since charge regulation only

moderately enhances the effective particle charge [258].

We close this section by discussing possible future extensions of the thesis work:

Our toolbox of analytic methods is useful not only for experimental data analysis of

scattering and rheological measurements. It can be also used for the optimization of tech-

nological processes such as filtration, where transport properties are essential ingredients

[39]. The presented (short-time) transport coefficient expressions can further serve as in-

put in the calculation of frequency- and time-dependent transport properties on basis of

mode-coupling and dynamic density functional theory methods with HIs included [259,

260].
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Regarding the HRM, it is feasible to generalize it to size polydisperse particles using an

appropriate particle size distribution function. This allows to search for extensions of the

discussed analytic scaling relations for dS, K, and η∞ to polydisperse colloidal systems and

mixtures. These generalized scaling relations would be an important ingredient for the

study of filtration processes using polydisperse or multi-component systems. The partial

static structure factors determined in this thesis for the polydisperse amphoteric microgels,

e.g, can serve as an ingredient for the calculation of multi-component microgel transport

coefficients.

In the framework of a current SFB 985 on Functional Microgels and Microgel Systems,

we will continue our work on microgel systems. It will be interesting to scrutinize our

viscosity predictions for the viscosities η∞ and η of hydrodynamically structured particles

against future rheo-mechanic measurements on non-ionic PNIPAM microgel systems. A

set of measurements of short- and long-time diffusion and rheological properties for a single

experimental system will allow to find out experimentally whether a single hydrodynamic

radius parameter γ suffices for characterizing different dynamic properties. The UF study

of low-salinity silica suspensions presented here is part of the SFB 985 project B6 encom-

passing the joint theoretical-experimental study of microgel separation and concentration.

The here studied silica suspension has served as a simplifying model of ionic microgels,

with strongly reduced complexity. While silica particles are rigid, ionic microgels can

change their shape under applied strong pressure. Moreover, their size is concentration

and salinity dependent in addition to the pH and temperature dependence. This compli-

cates the modeling of microgel filtration considerably. In future work, we will extend our

filtration modeling to ionic microgels where, in addition to charge-renormalization effects,

the particle elasticity and deformability, and environmental-dependent size changes need

to be considered (see, e.g, [40]).

The presented results about the statics and dynamics of SALR systems in the dispersed-

fluid phase is a necessary ingredient for future explorations of the dynamics in equilibrium-

cluster and percolated phases. A deeper understanding of the physical mechanisms leading

to the formation of clusters, and of their effect on transport properties is of importance

for industrial applications of proteins. A recent example in case by Godfrin et al. [4]

is the cluster-induced viscosity increase in monoclonal antibody dispersions affecting the

possibility to deliver them as a therapeutic product. Moreover, the establishment of useful

novel GSE relations would allow for an easy rheological characterization of protein systems

in research and industry. Furthermore, we plan to use MCT schemes for calculating the

zero-frequency viscosity of Lysozyme suspensions, and to compare our results to existing

experimental data [98].
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In future work, we will provide a detailed assessment of the accuracy of the BM-PA method

for SALR systems by comparison with MPC simulations both for the dispersed-fluid and

the equilibrium-cluster phase.

Due to the widespread usage of protein filtration methods in research laboratories and

chemical and pharmaceutical industry [261], our intention is to combine the gained knowl-

edge about transport properties of protein solutions with our UF model of charged-

particles dispersions in order to study the UF of protein solutions. In this context, the

observed large collective diffusion coefficient values for SALR systems can be of particular

importance, although other effects such as the surface adhesion of the proteins to the filter

membrane will also play an important role.

Finally, it will be interesting to study the influence of patchy interaction contributions in

proteins on the dispersion dynamics. Here, the work on SALR systems in this thesis can

be a good starting point.
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Abbreviations

BCs boundary conditions, page 52

BDB Brinkman-Debye-Bueche equation, page 10

BM renormalized concentration fluctuation method by Beenakker and Mazur,

page 70

CS Carnahan-Starling, page 43

CSD cluster-size distribution function, page 27

DLS dynamic light scattering, page 16

DMF dimethylformamide, page 16

ELCS extended law of corresponding states by Noro and Frenkel [107], page 27

GSE generalized Smoluchowski equation, page 53

HIs hydrodynamic interactions, page 1

HNC hypernetted-chain approximation (c.f Subsec 3.4.2), page 21

HRM hydrodynamic radius model, page 11

IET integral equation theory, page 23

IRO intermediate-range microstructural ordering, page 22

LJY Lennard-Jones plus Yukawa potential, page 25

LR long-range repulsion, page 21

MC Monte Carlo, page 27

MD Molecular Dynamics, page 26

MPC multi-particle collision dynamics, page 26

NSE neutron spin echo, page 22

OZ Ornstein-Zernike, page 41
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Abbreviations

PA pairwise-additivity approximation, page 70

PA-BM hybrid scheme combining the BM method for Hd(q) with the PA method for

dS, page 70

PB Poisson-Boltzmann, page 19

PDF probability density function, page 35

PNIPAM poly(N-isopropylacrylamide), page 14

PY Percus-Yevick, page 14

RDF radial distribution function g(r), page 14

RP Rotne-Prager approximation, page 56

RPA random phase approximation, page 46

SA short-range attraction, page 21

SALR short-range attraction plus long-range repulsion, page 21

SANS small angle neutron scattering, page 34

SMSA soft-core mean spherical approximation, page 44

TMP trans-membrane pressure, page 19

UF ultrafiltration, page 16

VW Verlet-Weis correction to the PY solution for hard spheres, page 15

ZH Zerah-Hansen scheme, page 28
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A. OZ-based integral equation theory

A.1. Percus-Yevick closure for hard spheres

The analytic PY solution for the static structure factor of hard-spheres is [75]

SPY(y) =
1

X2(y) + Y 2(y)
, (A.1)

with

X(y) = 1− 12φ [Af1(y) +Bf2(y)] , (A.2)

Y (y) = −12φ [Af3(y) +Bf4(y)] , (A.3)

and y = qσ. Furthermore,

f1(y) =
y − sin(y)

y3
, f2(y) =

cos(y)− 1

y2
, (A.4)

f3(y) =
f2(y)

y
+

1

2y
, f4(y) = −yf1(y) . (A.5)

The reduced isothermal compressibility, χT/χ
id
T , follows in PY approximation as

χT

χid
T

∣∣∣∣
PY

=
(1− φ)4

(1 + 2φ)2
, (A.6)

which for large φ differs form the accurate Carnahan-Starling compressibility. The RDF

can be calculated by Fourier inversion of SPY(q), using Eq. (3.20) expressed in terms of

the continuous function γ(r) = h(r)− c(r).

A.2. Verlet-Weis correction

The VW correction of the PY g(r) reads [75]

gVW(x;φ) = gPY(x
σ

σ′
;φ′) +A

e−µ(x−1)

x
cos [µ (x− 1)] , (A.7)
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with x = r/σ, and

φ′ = φ

(
1− 1

16
φ

)
, (A.8)

σ′ =

(
φ′

φ

) 1
3

< σ . (A.9)

The parameters A and µ are determined such that the CS-expressions (3.34) and (3.35)

are fullfilled [75]:

A
(
φ′
)

=
3φ′2(1− 0.7117φ′ − 0.114φ′2)

4(1− φ′)4
, (A.10)

µ(φ′) =
24A(φ′)

φ′gPY(1+;φ′)
, (A.11)

resulting in very good agreement of the VW g(r) with MC simulation data.

The S(q) in the Verlet-Weis corrected PY approximation follows form Fourier inversion of

Eq. (A.7).
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B. Dynamic calculation methods

B.1. PA mobilities in far-distance expansion

The far-distance expansion expressions for the hydrodynamic mobility functions in PA

approximation are [168]

x11(x) = 1− 15
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with x = rσh and pair distance r.

B.2. Implementation of the BM method

The explicit expressions for the functions Sγ0(x) and γ
(n)
0 appearing in the BM method

expressions for H(q) (Eqs. (4.73) and (4.74)) and η∞ (Eq. (4.75)) are given by [160, 175]

Sγ0 (x) =
∞∑
p=2

9π

4
εp
γ

(p)
0

ρ
(2p− 1)2

J2
p− 1

2

(x)

x3
, (B.5)

with

εp =

5
9 , ; p = 2

1 , ; p ≥ 3
(B.6)

and

ρ = γ
(m)
0 − γ(m)

0 φh(2m− 1)

∫ ∞
0

dk
J2
m− 1

2

(k)

k

Sγ0 (k)

1 + φhSγ0 (k)
. (B.7)

199



B. Dynamic calculation methods

Here, φh = γ3φ denotes the hydrodynamic volume fraction and Jn is the Bessel function

of the first kind and order n.

We have calculated the γ
(n)
0 coefficients in an iterative procedure up to order n = 10, using

a fine grid of volume fractions within
[
10−8 − 0.5

]
with varying grid size. The tabulated

values have been used as input in a spline interpolation procedure. This has resulted in an

improved accuracy as compared to the original work by Beenakker and Mazur. However,

the differences in Hd(q) and η∞ are quite small, i.e. there is no more than a 3% difference

[173]. A selection of the coefficients γ
(n)
0 is presented in Table B.1.

φ n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

0.01 1.020 1.016 1.013 1.010 1.008 1.007 1.006 1.005 1.005

0.05 1.107 1.085 1.066 1.052 1.042 1.035 1.031 1.027 1.024

0.1 1.229 1.179 1.137 1.107 1.087 1.073 1.062 1.055 1.048

0.15 1.368 1.283 1.214 1.166 1.133 1.111 1.095 1.083 1.073

0.2 1.526 1.396 1.296 1.228 1.183 1.152 1.129 1.112 1.099

0.25 1.702 1.520 1.385 1.294 1.234 1.194 1.164 1.142 1.125

0.3 1.897 1.654 1.479 1.363 1.288 1.237 1.201 1.173 1.151

0.35 2.110 1.797 1.578 1.436 1.344 1.283 1.238 1.205 1.178

0.4 2.340 1.947 1.682 1.512 1.403 1.329 1.277 1.237 1.205

0.45 2.585 2.105 1.790 1.590 1.463 1.377 1.316 1.270 1.233

0.5 2.843 2.269 1.901 1.671 1.525 1.427 1.356 1.303 1.261

Table B.1.: Coefficents γ
(n)
0 for various volume fractions φ up to order n = 10.
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101S Grobelny, M Erlkamp, J Möller, M Tolan, and R Winter, “Intermolecular interactions

in highly concentrated protein solutions upon compression and the role of the solvent”,

The Journal of Chemical Physics 141, 22D506 (2014).

102W. E. J. Verwey and J. T. G. Overbeek, Theory of the stability of lyophobic colloids,

English (Dover Publications, Mineola, N.Y., 1999).
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255J. Riest, S. Das, G. Gompper, G. Nägele, and R. G. Winkler, “Simulation and theory

of generalized Lennard-Jones Yukawa systems with competing interactions”, in prepa-

ration.

256K. Zahn, J. Méndez-Alcaraz, and G. Maret, “Hydrodynamic Interactions May Enhance

the Self-Diffusion of Colloidal Particles”, Physical Review Letters 79, 175–178 (1997).

257R. Cohen and R. Probstein, “Colloidal fouling of reverse osmosis membranes”, Journal

of Colloid and Interface Science 114, 194–207 (1986).

258R. Roa, F. Carrique, and E. Ruiz-Reina, “Ion size effects on the electric double layer of

a spherical particle in a realistic salt-free concentrated suspension”, Physical Chemistry

Chemical Physics 13, 9644–9654 (2011).
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to review my thesis.

I want to thank Andreas J. Schmid, Thomas Eckert, and Walter Richtering for the good

collaboration and for providing me with the DLS data of non-ionic microgels.

I am grateful to our American collaborators, Yun Liu, Doug Godfrin and Norman J.

Wagner for sharing their knowledge about dynamic clustering in protein suspensions with

us, and I am looking forward to intensify our collaboration in the future.

I would like to thank Shibanandan Das and Roland G. Winkler for their willingness to

share their expertise in computer simulations with us to explore the dynamics in clustering

systems. I am very confident that the combination of simulation and theory will be able

to make an important contribution to this topic. In addition, I thank Shiba for allowing

me to use his code for the analysis of the cluster-size distribution function.

I acknowledge the support of the International Helmholtz Research School of Biophysics

and Soft Matter (BioSoft) and would like to thank, in particular, Thorsten Auth for his

effort to organize the school.

Marco Heinen is thanked for the helpful discussions at the beginning of my Phd work and

for providing me with his notes and benchmark results for the validation of my code.

I would like to thank the whole ICS-3 for the nice atmosphere which made it very easy

to work in the group. In addition, I appreciated it very much that everyone was always

willing to answer questions or to assist with his expertise where needed. In particular,

I thank Marie for her help with all bureaucratic issues and her support in all questions
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