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Antwort auf meine Frage gefunden? Was wird immer kürzer, je länger es wird?�

�Oh�, antwortete Rumo, �das war leicht. Die Antwort ist natürlich Das Leben.�
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Abstract

Meta-analysis of diagnostic studies is still a rapidly developing area of biostatistical

research. In particular, there is an increasing interest in methods to compare dif-

ferent tests to a common gold standard. Restricting to the case of two diagnostic

tests, in these meta-analyses the parameters of interest are the differences of sen-

sitivities and specificities (with their corresponding confidence intervals) between

the two diagnostic tests while accounting for the various associations within single

studies, between the two tests and within patients. We propose statistical mod-

els with a quadrivariate response (where sensitivity of test 1, specificity of test 1,

sensitivity of test 2, and specificity of test 2 are the four responses) as a sensible ap-

proach to this task. Using a quadrivariate generalized linear mixed model (GLMM)

naturally generalizes the common standard bivariate model of meta-analysis for a

single diagnostic test. An alternative is given by copula models, whereby we use

a quadrivariate Gaussian copula and quadrivariate vine copula constructions which

are based on bivariate Plackett copulas. All models are compared by an extensive

simulation study. Finally, we illustrate our models by two examples. The first one

compares two tests in the diagnosis of coronary artery disease. The second example

is from diabetes research, where two screening methods for the diagnosis of type 2

diabetes mellitus are compared.
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Zusammenfassung

Die Meta-Analyse von diagnostischen Studien ist ein sich stetig weiterentwickelndes

Feld in der biostatistischen Forschung. Im Besonderen besteht ein wachsendes In-

teresse an statistischen Methoden, die es erlauben, verschiedene Tests mit einem

gemeinsamen Goldstandard zu vergleichen. Bei Beschränkung auf den Fall zweier

diagnostischer Tests handelt es sich bei den interessierenden Parametern um die

Differenzen zwischen den Sensitivitäten und Spezifitäten (mit den zugehörigen Kon-

fidenzintervallen) dieser Tests, während die verschiedenen Assoziationen zwischen

den Studien, zwischen den Tests und innerhalb der Patienten zu beachten sind.

Wir schlagen Modelle mit einer vierdimensionalen Zielgröße (wobei sich diese aus

Sensitivität und Spezifität von Test 1, sowie Sensitivität und Spezifität von Test

2 zusammensetzt) als eine sinnvolle Herangehensweise vor. Die Verwendung eines

vierdimensionalen generalisierten linearen gemischten Modells (GLMM) stellt hier-

bei eine Verallgemeinerung des bekannten bivariaten Standardmodells zur Meta-

Analyse eines einzelnen diagnostischen Tests dar. Eine alternative Möglichkeit

ist die Verwendung von Copula-Modellen, wobei wir eine vierdimensionale Gauß-

Copula und drei vierdimensionale Vine-Copulas, die auf bivariaten Plackett-Copulas

basieren, nutzen. Die Modelle werden anhand einer umfassenden Simluationsstudie

miteinander verglichen. Abschließend werden die Modelle anhand von zwei Beispie-

len illustriert. Das erste befasst sich mit dem Vergleich von zwei Möglichkeiten

zur Diagnose der koronaren Herzkrankheit. Beim zweiten Beispiel werden zwei ver-

schiedene Tests zur Diagnose von Typ 2 Diabetes mellitus verglichen.
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1 Introduction

In 1997, Van Houwelingen pointed out that meta-analysis is one of his nightmares

and he hoped that it would not haunt us (Van Houwelingen 1997). Since his publi-

cation, a few years have passed and the overall opinion has changed.

Meta-analysis, as a statistical method to summarize information from different

studies, has become a growing field of biostatistical research with many recent devel-

opments. A reason is found in the increasing importance of evidence-based medicine

which is a field in which meta-analysis plays an important role. ’Evidence based

medicine is the conscientious, explicit, and judicious use of current best evidence in

making decisions about the care of individual patients’ and ’integrating individual

clinical expertise with the best available external clinical evidence from systematic

research’ as it was pointed out by Sackett et al. (1996). Furthermore, meta-analysis

can be included in medical decision making. An overview of the meta-analytic de-

velopments is given by Sutton and Higgins (2008) and by Ades and Sutton (2006).

While methods for clinical studies are well-established using standard statistical

approaches like mixed models as it is presented by DerSimonian and Laird (1986),

in case of diagnostic studies the situation becomes more complex and challenging.

Therefore there is still an ongoing interest in new statistical methods for meta-

analysis of diagnostic accuracy studies.

As a basis for such analyses, systematic reviews are used. Thereby, a number

of studies according to the same topic are collected. Using the information from

these single studies, a meta-analysis is conducted to summarize them. In case of

diagnostic studies, every single study reports at least one fourfold table. Using that

information the corresponding sensitivities (the conditional probabilities of a positive

test result in presence of the disease) and specificities (the conditional probabilities

of negative test result in absence of the disease) can be calculated. These effect

measures should be summarized in a meta-analysis. This leads to at least bivariate

approaches, because sensitivity and specificity have to be modelled simultaneously.

In doing so, some points should be accounted for. Sensitivity and specificity are

generally negatively correlated across studies (Harbord et al. 2008). The potential

1



1 Introduction 2

heterogeneity, i.e. the possibility of different true study effects, should be considered,

too. Such approaches are statistically very challenging. In case of meta-analysing

one diagnostic test, different approaches are reported in literature. There is the

possibility to use a fixed effect model which does not account for between-study

heterogeneity (Deeks 2001). This model is outdated and should be avoided in many

situations. The most widely used and accepted model is proposed by Reitsma et al.

(2005) and Chu and Cole (2006). They recommend a bivariate logistic regression

model with random effects to account for potential heterogeneity. A few alternatives

and modifications of that model can be found in literature, for example Paul et al.

(2010), Zapf et al. (2015) or Chen et al. (2014). A very flexible alternative is

proposed by Kuss et al. (2014). They used a bivariate copula approach and extend

their model to three dimensions to account additionally for disease prevalence (Hoyer

and Kuss 2015). Such an approach is also given by Chu et al. (2009).

It is surprising that there is yet no further extension that allows the comparison

of two diagnostic tests to a common gold standard in a meta-analytic way. The need

for such models is pointed out by different authors because such studies occur more

often than expected as it was shown by Takwoingi et al. (2013). They found 466

systematic reviews which compared the accuracy of two or more tests. Additionally,

Leeflang et al. (2008) accented that ’policymakers and guideline developers may be

particularly interested in comparative accuracy’ of diagnostic tests. Tatsioni et al.

(2005) wrote that ’frequently, meta-analyses assess several diagnostic tests for the

same condition. In such cases, we may wish not only to report the performance of

each test but also to compare performance between tests.’

In the medical research area of diabetes, we found two systematic reviews (Ko-

dama et al. 2013, Bennett et al. 2007) that compare HbA1c (Glycated hemoglobin

A1c) to fasting plasma glucose (FPG) for the population-based screening of type 2

diabetes mellitus and illustrate this need in practice. Both systematic reviews report

the results of the included studies only qualitatively without summary measures as

differences of sensitivities and specificities.

Avowedly, different approaches for the meta-analysis for the comparison of diag-

nostic tests have been published in literature (Trikalinos et al. 2014, Siadaty et al.

2004, Siadaty and Shu 2004). However, they come with several disadvantages as

combining the information of sensitivity and specificity using only a single measure

or assuming independent tests.

In this thesis, we propose new approaches for the meta-analysis for the comparison

of two diagnostic tests to a common gold standard. Thereby, we extend the mod-
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els from Chu and Cole (2006) and Kuss et al. (2014) to four dimensions and use

the differences of sensitivities and specificities as measures of interest which can be

interpreted in an easy way without loss of information.

The thesis is organized as follows. First, we give a brief review on diagnostic tests

and meta-analysis including the motivation for our new models. In the next chapter

the statistical methods are explained. Afterwards, the comprehensive simulation

study and the corresponding results are presented. Then the models are illustrated

by two practical examples. Finally, we discuss our models with respect to their

advantages and disadvantages. We conclude the work with an outlook.



2 Basic principles

In medical research, the most common known type of study is the clinical trial or

intervention study. It is conducted for example to evaluate new drugs or therapies.

The outcomes of interest are clinical endpoints and could be the cure of a disease.

For a nice introduction to intervention studies see for example Schumacher and

Schulgen (2008). Contrary to that, in other cases researchers are interested in a

binary outcome according to the disease status (1: diseased (D+), 0: non-diseased

(D−)). Considering that, diagnostic tests are in demand.

The following sections will give short introductions to diagnostic tests and meta-

analyses.

2.1 Diagnostic tests

In medical practice, a diagnostic test is conducted for diagnosing a disease, i.e. to

evaluate if a person is diseased or non-diseased. An example is the diagnosis of

cancer via biopsy. It is possible that the actual standard diagnostic procedure, the

so-called gold standard or reference test, is expensive or too invasive for patients and

should be replaced by a new test. Mainly, there exist three basic roles for a new test:

replacement, triage and add-on. They are well described by Leeflang et al. (2008).

Roughly spoken, the aim of replacement is to replace an existing test based on a

comparison with the new test applied in the same population using the same gold

standard test. Triage means that patients first undergo the new test. Only these

with a conspicuous test result continue with the existing reference test. The add-on

role of a diagnostic test is the opposite of triage. The patients undergo the new test

after the existing one to identify false-positive or false negative results (Leeflang

et al. 2008). For these reasons, diagnostic studies enables us to compare a new test

(the test under evaluation or index test), which is cheaper or less invasive, to the

gold standard. The evaluation of these studies is one aim in medical research. The

diagnostic test accuracy describes how efficient a test separates between patients

with disease and those without. The aim of diagnostic studies is then to estimate

4



2.1 Diagnostic tests 5

this accuracy measured in general by two values, the sensitivity (Se) and specificity

(Sp) which are described more detailed in the next paragraph. Well-designed studies

could be used for example as a basis in the field of medical decision making (Leeflang

et al. 2008).

A diagnostic study is then conducted in the following way. Every study participant

is evaluated using the gold standard method to determine the true disease status.

Additionally, each of them undergoes the new procedure. This can lead to four

different classifications which are shown in Table 2.1. A person could be classified as

’True Positive (TP)’ if the new test and the gold standard are positive. A proband

with two negative results is tested as ’True Negative (TN)’. On the other hand

there are two possibilities of misclassification. A person could be classified as ’False

Positive (FP)’ in case the new test is positive but the standard method leads to

a negative result. The last possibility is that a study participant gets a negative

results when the new test is applied but is positive tested by the gold standard.

Then, he is a so-called ’False Negative (FN)’. All in all that means the results of a

diagnostic study can be summarized using a simple contingency table.

Table 2.1: Contingency Table

Gold Standard

Diagnostic Test + −
+ TP FP

− FN TN

To evaluate the new diagnostic test in a second step, mainly two conditional

probabilities are required. Initially, there is the probability to get a positive test

result conditional on being diseased defined by the gold standard, the sensitivity.

The second important measure is the specificity, the probability to get a negative

test result conditional on being non-diseased.

Sensitivity = Se = P (T+ | D+) =
TP

TP + FN

Specificity = Sp = P (T− | D−) =
TN

TN + FP

Other important measures to characterize the accuracy of a diagnostic test are

the predictive values. They are also conditional probabilities, but more meaningful

from a patient view because they are based on the condition of the test status which

is known in practice. They depend on the prevalence (Pre), the a priori probability
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of being diseased, and are calculated as follows using Bayes Theorem:

Positive Predictive V alue = P (D+ | T+) =
Se · Pre

Se · Pre+ (1− Sp)(1− Pre)

Negative Predictive V alue = P (D− | T−) = Sp(1− Pre)

Sp(1− Pre) + (1− Se)Pre
.

In practice, the most frequently used measures to evaluate the index test are sen-

sitivity and specificity. They are summary measures which merge all information

from a single study in only two values. In some cases this could be a disadvantage

because studies report different thresholds for declaring a test result positive. Ac-

cording to that fact, sensitivity and specificity vary with the used threshold. To

investigate such variations, the concept of receiver operating characteristics (ROC)

is applied.

Threshold

Specificity FPF=1-Specificity

FNF=1-Sensitivity

Sensitivity

Figure 2.1: Distribution of marker values in different populations: black - non-
diseased participants, grey - diseased participants.

In a first step, the density of the marker values in the population of healthy and
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diseased subjects is visualised like in Figure 2.1. Using such a plot, sensitivity, speci-

ficity, the false negative fraction (FNF, 1-sensitivity) and the false positive fraction

(FPF, 1-specificity) are assumed as realizations from distribution functions at se-

lected thresholds. It is also obvious that the values vary with different thresholds.

In a next step, this plot is transformed into the ROC-space what is seen in Figure

2.2. Here, estimated sensitivity is plotted against 1-specificity using different thresh-

olds. Such ROC curves are used when multiple thresholds are investigated and the

different sensitivities and specificities should be presented. After this, many studies

recommend the threshold where the estimated sum of sensitivity and specificity is

the largest to be used in practice. Such a selection is based on the technical principle

of the Youden index which is defined as Se+ Sp− 1 (Youden 1950).

0.0 0.2 0.4 0.6 0.8

1-Specificity

0.4

0.6

0.8

1.0

S
e
n
s
it
iv
it
y

Figure 2.2: Receiver operating characteristics of a study from Choi et al. (2011).

2.2 Meta-analysis

Meta-analysis is a method to summarize and combine results from multiple single

studies following a predefined question. It is known as a principle tool underlying
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evidence-based medicine (Ades and Sutton 2006) but is performed in a wide field of

other research areas, like economy or psychology. It is shown by Sutton and Hig-

gins (2008) that the number of meta-analysis papers in medical research (including

methods papers) increased in the last years. Figure 2.3 illustrates the number of

published papers on meta-analysis from 1990 to 2015 as collected in PubMed (search

term: meta-analysis). It underpins that there exists the necessity for meta-analysis

because there are more and more studies according addressing the same medical

problem which need to be summarized. Additionally, evidence-based medicine earns

more and more a primary role in medical research. Against the background of this

trend, the influence of meta-analysis has grown tremendously.

Figure 2.3: Numbers of publications concerning meta-analysis as collected in
PubMed (http://www.ncbi.nlm.nih.gov/pubmed) on July 12, 2015

The basis for every meta-analysis is a systematic review, a collection of separate

studies belonging to the medical context which is investigated. It includes a system-

atic and documented literature search, where studies are selected in consideration of

different requirements like specified inclusion and exclusion criteria. After this step,

a feasible meta-analysis could be performed. Such reviews are endeavoured in differ-



2.2 Meta-analysis 9

ent ways, for example by the Cochrane Collaboration (http://www.cochrane.org/).

They offer the possibility to publish systematic reviews and meta-analyses in the

Cochrane Database of Systematic Reviews. Cochrane reviews are not used to make

recommendations in any particular clinical context but they should be undertaken

to inform specific decisions (Sutton and Higgins 2008).

Statistically, a meta-analysis is a method to summarize the results of separate

studies following a predefined question in a quantitative way (Boissel et al. 1988).

The most known and widely accepted meta-analysis method is the usage of the

weighted average of the point estimates from the single studies. Thereby, we have to

differentiate between the assumption of equal treatment effects in the single studies

(a common effect), the so-called homogeneity, and the assumption of heterogeneity

which means different true treatment effects in the separate studies. In case of

homogeneous studies, the fixed-effect meta-analysis is well established. Here, the

inverse variances of the estimates are used as weights.

We give a short introduction to the fixed effects model based on the book by

Hartung et al. (2011) which is also referred for further information. In case of a fixed

effects model, we consider I independent studies where study i leads to the estimated

effect size Ti. Furthermore, Ti is an estimate of the population effect size θi. Let

σ̂2(Ti) be the estimated variance of Ti. In general Ti, as it is based on a random

sample of size ni, is approximately normal distributed with mean θi and variance

σ2(Ti) = σ2
θi;ni

. In cases where the variance depends on the unknown parameter θi,

σ̂2(Ti) is an estimator of σ2
θi;ni

. Assuming homogeneity, i.e. θ1 = · · · = θk = θ, a

combined estimate of θ is obtained by a weighted combination of the Ti

θ̂ =

∑I
i=1 wiTi∑I
i=1 wi

,

where wi is a nonnegative weight corresponding to study i. The optimal weights,

i.e. weights which make Var(θ̂) the smallest, are

wi =
1

σ2
θi;ni

.

These weights are often unknown, because σ2
θi;ni

is usually unknown. Replacing

σ2
θi;ni

by σ̂2(Ti), we get

θ̃ =

∑I
i=1 Ti/σ̂

2(Ti)∑I
i=1 1/σ̂2(Ti)
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with the estimated variance

σ̂2(θ) = V̂ar(θ̃) ≈ 1∑I
i=1 1/σ̂2(Ti)

.

Fixed-effects methods are actually under discussion because they assume that

there is the same underlying effect in each study which cannot vary. Therefore the

used standard are random effects methods. Such analyses model possible heterogene-

ity and include the among-study variation of effects into the weights (DerSimonian

and Laird 1986).

In case of a random effects model, we additionally assume that

θ̂i ∼ N
(
θ, τ 2 + σ2

i (θi)
)
,

where τ 2 is the parameter for the between-study variance or the heterogeneity pa-

rameter (Hartung et al. 2011).

Using wi(τ
2) = 1/[τ 2 + σ̂2

i (θi)] and

θ̂(τ 2) =

∑I
i=1wi(τ

2)σ̂i∑I
i=1 wi(τ

2)

a REML (Restricted maximum likelihood) estimate of τ 2 can be constructed nu-

merically by iterating

τ 2 =

∑I
i=1 w

2
i (τ

2)
{

[θ̂ − θ̂(τ 2)]2 − σ̂2
i (θi)

}
∑I

i=1 w
2
i (τ

2)
+

1∑I
i=1 wi(τ

2)

with an initial value of τ 2 on the right-hand side.

As an alternative, the DSL (DerSimonian-Laird) estimator as given by

τ̂ 2
DSL =

Q− (I − 1)∑I
i=1 v̂i −

∑I
i=1 v̂

2
i /
∑I

i=1 v̂i

with Q =
∑I

i=1 v̂i

(
θ̂i − θ̃

)2

, v̂i = 1/σ̂2
i (θi) and θ̃ =

∑I
i=1 v̂iθ̂i/

∑I
i=1 v̂i. In some

cases, the DSL estimator provides a negative estimates and has to be truncated to

0.
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2.3 Meta-analysis of diagnostic studies

Meta-analysis of diagnostic studies is still an growing field of biostatistical research.

Actually, there is an increasing interest in systematic reviews and meta-analysis

(Harbord et al. 2008). This fact is visualized in Figure 2.4, where the rising number

of publications concerning meta-analysis of diagnostic accuracy studies is shown.

The plot is based on data from PubMed using the search terms meta-analysis and

(diagnostic test or diagnostic accuracy study). This development is also pointed

out by Gatsonis et al. (2006). Moreover, they explain possible reasons for that.

They can be found in the increasing reference to evidence-based medicine where

meta-analysis is an important tool for medical decision making. Today, diagnostic

studies are in the focus of meta-analysis, because they support physicians in their

decisions according to cost effectiveness (because of increasing health care costs) or

evaluating of performance of tests that are less invasive. Here, meta-analysis is a

powerful tool to summarize results of different, independent single studies following

a common underlying question. In practice, it is done as follows.

After the first step, where separate studies are collected in a systematic review,

a meta-analysis is carried out to combine the results. Such meta-analyses involves

studies which meet the inclusion criteria. In the optimal case, the studies are re-

ported using the current guidelines as the STARD (Standard for Reporting of Di-

agnostic Accuracy) statement (Bossuyt et al. 2003) and the QUADAS (Quality

Assessment of Diagnostic Accuracy Studies) checklist (Whiting et al. 2003, Whit-

ing et al. 2011) are included. But summarizing diagnostic studies comes with some

difficulties which are also explained by Harbord et al. (2008).

In case of diagnostic studies, we analyse I different studies where each of them

evaluates the same diagnostic test. The situation is illustrated in Table 2.2. Now,

we are interested in a weighted estimator, which accounts for study size and het-

erogeneity. At this point, there is a huge difference between diagnostic studies and

clinical trials because diagnostic tests are usually quantified by two measures, sen-

sitivity and specificity (Harbord et al. 2008). Using other single measures, like the

Diagnostic odds ratio

DOR =
TP/FN

FP/TN
, (2.1)

leads to a loss of information (Deeks 2001). Therefore we have to model at least

a bivariate outcome. Additionally, sensitivity and specificity are usually negative
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Figure 2.4: Numbers of meta-analysis publications concerning diagnostic tests as
collected in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) on July
12, 2015

correlated in meta-analysis. This is explained by the fact that different studies may

use different thresholds for declaring a test positive. Therefore, it is not sufficient

to fit two univariate models for sensitivity and specificity because the used statis-

tical approach should model a possible correlation, too. Last but not least, the

heterogeneity of the studies should be accounted for. Considering all the presented

facts leads to complex models when meta-analysing diagnostic studies to a common

gold standard compared to clinical trials where statistical methods are much more

developed.

In the following, two different proposed approaches for the meta-analysis of a

single diagnostic test are presented.
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Table 2.2: Visualization of meta-analysis of diagnostic studies

Study Sensitivity Specificity

1 TP1/D+
1 TN1/D−1

2 TP2/D+
2 TN2/D−2

... ... ...

θ̂Se=... θ̂Sp=...

2.3.1 Summary ROC approach

The summary ROC (SROC) approach was developed by Moses and Littenberg (Lit-

tenberg and Moses 1993, Moses et al. 1993). The aim of that method is to construct

and estimate a smooth curve through the the plotted sensitivities and specificities

in the ROC space (Reitsma et al. 2005). For that reason, the sensitivity and FPF

(1− specificity) scale are logit-transformed to fit a linear regression model. For that

aim, we define D and S as follows:

D = ln

(
Se

1− Se

)
− ln

(
FPF

1− FPF

)
= ln(DOR) (2.2)

S = ln

(
Se

1− Se

)
+ ln

(
FPF

1− FPF

)
. (2.3)

D is the difference of the logits, i.e. the log of the DOR as it is explained in

Equation (2.1), and S their sum. S corresponds to the threshold of the diagnostic

test. If S = 0 then sensitivity equals specificity. S is positive if sensitivity is higher

than specificity and negative in studies with a higher specificity.

A linear regression is used to show the relation between ln(DOR) and the implicit

threshold. This leads to

D = α + βS + ε (2.4)

This model can be solved using weighted or unweighted least squares linear regression

(Moses et al. 1993). Furthermore, α and β are used to obtain estimated sensitivities

depending on a chosen specificity or vice versa (Macaskill et al. 2010, Reitsma et al.
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2005). In case of sensitivity, we obtain:

E(Se) =
1

1 + 1
exp(−[α+(1+β)logit(1−Sp)]/(1−β))

with logit(x) = log(x/(1− x)).

It is not straightforward to interpret the intercept and slope of the regression model

(2.4) as it was pointed out by Reitsma et al. (2005). In case of β ≈ 0, the DOR does

not depend on S and α is a summary estimate for the DOR. For β 6= 0, the DOR

varies with S. However, there is no direct interpretation of the regression coefficient,

but it considerably influences the shape of the SROC curve.

The main disadvantage of SROC approach is that summary estimates for sensi-

tivity and specificity are not directly available, because the DOR is the outcome

measure (Reitsma et al. 2005).

To solve that problem, a bivariate logistic regression model including random effects,

is proposed.

2.3.2 Generalized linear mixed models

Before presenting the bivariate model for the meta-analysis of a single diagnostic

test, we give a short introduction to generalized linear mixed models (GLMM) based

on the book by Fahrmeir et al. (2009). Further information can be found in Molen-

berghs and Verbeke (2006).

Generalized linear mixed models allow us to model an outcome Yij which is not

normally distributed while including random effects. In general, the indices denote

the i-th subject with the j-th measurement. Thereby we assume that the Yij is

conditionally independent of the q−dimensional vector bi of the random effects.

The corresponding density has to belong to an exponential family and is of the

following form:

f(yij | bi, β, φ) = exp{φ−1[yijθij − ψ(θij)] + c(yij, φ)},

where θij is the canonical parameter, ψ(θij) is differentiable function with the deriva-

tions ψ′(θij) and ψ′′(θij), and φ is a dispersion parameter. It can be shown that

E(yij) = ψ′(θij), Var(yij) = φψ′′(θij).
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In case of GLMMs, it holds

g(µij) = xTijβ + zTijbi,

where µij is the conditional expected value E(Yij | bi), bi are the multivariate nor-

mally distributed random effects (bi ∼ Nq(0, D)), g is a known link function and xij

and zij are vectors including covariates.

The parameters of interest are estimated using the maximum likelihood principle.

The likelihood function is given by

L(β,D, φ) =
N∏
i=1

f(yi | β,D, φ) =
N∏
i=1

∫ ni∏
j=1

f(yij | bi, β, φ)f(bi | D)dbi. (2.5)

Maximization of Equation (2.5) could be difficult because of a missing analytical so-

lution. In the following we present two approaches to solve that problem. The first

possibility is to approximate the data, known as penalized-quasi-likelihood method

(PQL). A second alternative is to approximate the integral using Gaussian quadra-

ture (GQ).

Penalized-quasi-likelihood method The aim of PQL estimation is to transform

the Yi so that the model can be written as

Y ∗i ≈ Xiβ + Zibi + ε∗i .

Therefore the following decomposition is made:

Yij = h(xTijβ + zTijbi) + εij,

where Var(Yij | bi) = φv(µij). Using the canonical link function leads to v(µij) =

h′(xTijβ + zTijbi). Based on a Taylor expansion, we obtain

Yij ≈ h(xTijβ̂ + zTij b̂i)

+ h′(xTijβ̂ + zTij b̂i)x
T
ij(β − β̂)

+ h′(xTijβ̂ + zTij b̂i)z
T
ij(bi − b̂i) + εij

= µ̂ij + v(µ̂ij)x
T
ij(β − β̂) + v(µ̂ij)z

T
ij(bi − b̂i) + εij.
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Furthermore the following transformations are made:

Yij − µ̂ij = v(µ̂ij)x
T
ij(β − β̂) + v(µ̂ij)z

T
ij(bi − b̂i) + εij ⇔

v(µ̂ij)
−1(Yij − µ̂ij) + xTijβ̂ + zTij b̂i = xTij + zTij + v(µ̂ij)

−1εij.

Defining

Y ∗ij = v(µ̂ij)
−1(Yij − µ̂ij) + xTijβ̂ + zTij b̂i

and

ε∗ij = v(µ̂ij)
−1εij,

we finally obtain

Y ∗i ≈ Xiβ + Zibi + ε∗i .

To summarize, four steps are made to get PQL estimates of a GLMM (Fahrmeir

et al. 2009):

(i) Empirical Bayes estimation of bi with starting values of β,D, φ,

(ii) Generating pseudo-data Y ∗i ,

(iii) Estimation of the approximate linear mixed model → update of β,D, φ,

(iv) Repeat step 1 to 3 up to convergence.

Gaussian quadrature As an alternative to the PQL method, it is possible to

approximate the integral in Equation (2.5) via Gaussian quadrature. The idea is to

use the following approximation:

∫
f(z)φ(z)dz ≈

Q∑
q=1

wqf(zq),

where φ(z) is the density function of multivariate standard normal distribution, q is

the approximation degree and wq are appropriate weights.

In case of a GLMM, we standardize the random effects using δi = D−
1
2 bi. Then
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the integral can be rewritten as

f(yi | β,D, φ) =
N∏
i=1

∫ ni∏
j=1

f(yij | bi, β, φ)f(bi | D)dbi

=
N∏
i=1

∫ ni∏
j=1

f(yij | δi, β, φ,D)f(δi)dδi

which can be approximated using the relationship
∫
f(z)φ(z)dz ≈

∑Q
q=1wqf(zq).

Gaussian quadrature is presented in a more comprehensive way in Deuflhard and

Hohmann (2008).

2.3.3 Bivariate logistic regression model with random

effects

The current bivariate standard approach is used when only one test should be an-

alyzed in a meta-analytic sense. It is based on bivariate logistic regression models

with random effects and is introduced for example by Reitsma et al. (2005), Chu et

al. (2006) or Paul et al. (2010). In detail, in a first stage the TP and the TN of the

i-th study are assumed to be binomially distributed given sensitivity and specificity.

TPi | Sei ∼ Binomial(TPi + FNi, Sei),

TNi | Spi ∼ Binomial(TNi + FPi, Spi).

To model potential between-study correlation and heterogeneity of sensitivity and

specificity, a generalized linear mixed model is assumed. Therefore, in a second

stage, a logit transformation of sensitivity and specificity is carried out. We get:

logit(Sei) = µ+ φi, logit(Spi) = ν + ψi,

where µ and ν are intercepts for logit(Sei), logit(Spi) and φi and ψi are random

effects.

Assuming a bivariate normal distribution with an expected value of 0 for the random

effects, it is possible to account for between-study correlation and heterogeneity
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using the parameter ρ of the random effects covariance matrix(
φi
ψi

)
∼ N

[(
0

0

)
,

(
σ2
φ ρσφσψ

ρσφσψ σ2
ψ

)]
.

For this GLMM the likelihood function can be expressed as

L(Se, Sp, σ2
φ, σ

2
ψ, ρ) =

I∏
i=1

∫∫ 2∏
j=1

g
(
yij;nij, l

−1(xj)
)
φ2φ2φ2(x1, x2;µ2µ2µ2,Σ2Σ2Σ2)dx1dx2,

where g is the binomial probability mass function (pmf) and yij and nij are ap-

propriate entries from the fourfold tables of the single studies, e.g. y11 and n11

represent the true positives and the number of diseased of study one, respectively.

Additionally, l represents the chosen link function and φ2φ2φ2 is the density of the bivari-

ate normal distribution with mean vector µ2µ2µ2 = (l(Se), l(Sp))T and random effects

matrix Σ2Σ2Σ2. Mostly and as in our case, the logit link as the canonical one is used but

other link functions like the complementary log-log or probit are possible, too (Chu

et al. 2010).

An also well-established model for the meta-analysis of one diagnostic test is the

HSROC (Hierarchical summary receiver operating characteristic) approach proposed

by Rutter and Gatsonis (2001). This model is equivalent to the standard bivariate

approach without including covariates (Harbord et al. 2007).

Many other authors also developed alternative approaches, e.g. Kuss et al. (2014),

Paul et al. (2010) or Zapf et al. (2015), which can be used in practice.

2.4 Meta-analysis for the comparison of

diagnostic tests

The development of more complex meta-analytic models for diagnostic accuracy

studies is still a growing field of actual research. Especially, there is an increasing

interest in methods to compare diagnostic tests. This was pointed out by different

authors. Leeflang et al. (2008) state that ’policymakers and guideline developers

may be particularly interested in comparative accuracy’ of diagnostic tests. This is

supported by Tatsioni et al. (2005) who wrote that ’frequently, meta-analyses assess

several diagnostic tests for the same condition. In such cases, we may wish not only

to report the performance of each test but also to compare performance between
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tests.’ Such models are very challenging, because they are based upon sophisticated

statistical knowledge, e.g. multivariate models. Actually, there exist studies which

evaluate more than one test as it is shown by Takwoingi et al. (2013). Therefore

there is an increasing interest in meta-analysis to compare diagnostic tests, taking

health care costs and the accuracy of different tests into consideration. There is also

an interest in a single measure which allows to describe which test works better.

Because of this, we are reporting differences between sensitivities and specificities.

In case of comparison of two tests, every patient underwent two tests in every

single study. The combination of all possible results are shown in Table 2.3.

Table 2.3: Probabilities of each combination of results in case of two diagnostic tests
for study i

Test 1 Test 2 Diseased Non-diseased

− − pD
+

i,00 pD
−

i,00

− + pD
+

i,01 pD
−

i,01

+ − pD
+

i,10 pD
−

i,10

+ + pD
+

i,11 pD
−

i,11

Some studies may report the data of every participant, i.e. the test results for

each individual are known. These are the cases where the maximum of information

is reported and we have individual patient data (IPD) where it is possible to model

the additional correlation within patients. If this information is available, we can

calculate the probabilities in Table 2.3 and we can also count the number of diseased

and non-diseased per combination of test results. Assuming additionally indepen-

dent tests we can calculate sensitivity and specificity for study i with respect to the

respective test in the following way:

Sensitivityi,1 = pD
+

i,1• = pD
+

i,10 + pD
+

i,11, (2.6)

Sensitivityi,2 = pD
+

i,•1 = pD
+

i,01 + pD
+

i,11, (2.7)

Specificityi,1 = pD
−

i,0• = pD
−

i,01 + pD
−

i,00, (2.8)
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Specificityi,2 = pD
−

i,•0 = pD
−

i,10 + pD
−

i,00. (2.9)

However, such studies are rarely reported. Mostly, aggregated data, i.e. the 2x2

contingency tables, are reported. That means each study reports two values for

sensitivity and two values for specificity. This situation is illustrated in Table 2.4.

It is also necessary to keep in mind that the tests could be dependent. Restricting

to the case of two diagnostic tests, in these meta-analyses the parameters of interest

are the differences of sensitivities and specificities (with their corresponding confi-

dence intervals) between the two diagnostic tests while accounting for the various

associations within single studies, between the two tests and within patients.

Table 2.4: Comparison of diagnostic tests

Test 1 Test 2

Study Sensitivity 1 Specificity 1 Sensitivity 2 Specificity 2

1 TP11/D+
11 TN11/D−11 TP12/D+

12 TN12/D−12

2 TP21/D+
21 TN21/D−21 TP22/D+

22 TN22/D−22

... ... ... ... ...

θ̂Se1 = . . . θ̂Sp1 = . . . θ̂Se2 = . . . θ̂Sp2 = . . .

θ̂Se1 − θ̂Se2 = . . . θ̂Sp1 − θ̂Sp2 = . . .

However, different authors have proposed models for the meta-analysis of two

diagnostic tests. Three of them are presented in the following.

2.4.1 Approach proposed by the Cochrane Collaboration

The Cochrane Collaboration propose an approach for the meta-analytic compari-

son of diagnostic tests in their handbook for systematic reviews of diagnostic test

accuracy (Macaskill et al. 2010). This approach is based on the bivariate model

including an additional binary covariate to identify which fourfold table corresponds

to each test. Therefore, they expand the model presented in Section 2.3.3 in the
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following way:

logit(Sei) = µ+Xiα + φi, logit(Spi) = ν +Xiβ + ψi.

µ and ν are intercepts for logit(Sei), logit(Spi) and Xi is a binary covariate connect-

ing the diagnostic test with the corresponding fourfold table. As mentioned above,

φi and ψi are random effects following a normal distribution:(
φi
ψi

)
∼ N

[(
0

0

)
,

(
σ2
φ ρσφσψ

ρσφσψ σ2
ψ

)]
.

The main disadvantage of this approach is that the tests are assumed to independent

and that there is no possibility to model a correlation between them.

2.4.2 Approach proposed by Siadaty et al.

Siadaty et al. (2004, 2004) present another approach based on modelling the DOR.

They define two indicator variables: ’Disease’ for the results of the gold standard and

’Result’ corresponding to the results of the index test. Both indicator variables are

available if the information from all fourfold tables is extracted. Then, the results of

the gold standard and index test is dichotomized. Afterwards, Siadaty et al. (2004,

2004) propose the following regression model in case of a single diagnostic test:

logit(Rij) = β0 + β1Dij, (2.10)

where i and j indicate the study and the test, respectively. R represents the test

result (positive or negative) and D is the true disease status. In Equation (2.10),

β1 is the log DOR (LDOR). This can also be expressed as the log ratio of TN/FP

over FN/TP . To allow for a comparison of different tests, they expand their model

including more covariates and interactions between them:

logit(Rij) = β0 + β1Dij + β2Tij + β3DijTij,

where β3 is the log ratio of the two DORs from the different tests. T represents the

diagnostic test. It constitutes the performance of one test vs. the other. In case of

a ratio that is statistically different from 0, there is a real difference between both

tests.

Siadaty et al. (2004, 2004) also show how to measure heterogeneity and the equiv-
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alence to the model from Littenberg and Moses (1993). However, one main disad-

vantage of the model proposed by Siadaty et al. (2004, 2004) is, that the measure

of interest is the DOR. Using such a measure lead to a loss of information (Deeks

2001). Another disadvantage is that it is not possible to get concrete estimators for

the sensitivities and specificities of each test.

2.4.3 Approach proposed by Trikalinos et al.

Trikalinos et al (2014) suggest an alternative model. Thereby, the approach is based

on a mixture of IPD, as presented in Table 2.3, and aggregated data, as shown in

Table 2.4. In order to model the within patient correlation, they use Equations (2.6) -

(2.9) to define the sensitivities and FPFs (1−specificities) of each test. Additionally,

the ’joint sensitivity’ (JSe) and the ’joint false positive fraction’ (JFPF) are defined

as

JSei = pD
+

i,11

and

JFPFi = pD
−

i,11.

Afterwards, for study i and test j, a logit transformation is carried out:

ηij = logit(Sei,j)

ξij = logit(FPFi,j).

This is also done for the joint measures:

ηi∗ = logit(JSei)

ξi∗ = logit(JFPFi).

To account for potential across study correlation, random effects are included that

follow a six-dimensional normal distribution:

ηi1

ηi2

ηk∗

ξi1

ξi2

ξi∗


∼ N

[(
H

Ξ

)
,T

]
.
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Thereby, H and Ξ are vectors with the overall sensitivities and FPFs for both tests

and T is the corresponding covariance matrix which can be chosen in different ways

as it is presented by Trikalinos et al. (2014).

To sum up, Trikalinos et al. (2014) propose a six-dimensional generalized linear

mixed model including random effects, to estimate the differences of sensitivities and

FPFs. This model based on individual patient data which is the main disadvantage

because such data is rarely reported in practice.



3 Statistical methods and model

ideas

The situation of comparison of two diagnostic tests described in Chapter 2 is statis-

tically challenging. Different authors have proposed models but they all come with

some problems. Siadaty et al. (2004, 2004) propose approaches using diagnostic

odds ratios and proportional odds ratio models. Using only diagnostic odds ratios

lead to a loss of information (Deeks 2001). Additionally, diagnostic odds ratios are

measures that are rarely used by practitioners who prefer sensitivity and specificity

to evaluate diagnostic tests. Therefore it is difficult to establish such a method, too.

Another approach is presented by Trikalinos et al. (2014). Here, two main disad-

vantages can be found. First, they assume independent tests. Second, they use a

mixture of individual (IPD) and aggregated data. As it is pointed out in Chapter

2, it is really difficult to get individual patient data because such datasets are rarely

reported. These two points argue against this approach. The actual used ’standard’

approach for the direct comparison of diagnostic tests is given by the Cochrane Col-

laboration. They propose a bivariate model as Chu and Cole (2006) including a

binary covariate for the test type to identify which fourfold tables corresponds to

each test (Macaskill et al. 2010). Thereby, the tests are assumed to be independent

and no correlation between them can be modelled.

In the following two new models are presented which compensate the disadvan-

tages of the alternative approaches. Differences between sensitivities and specificities

will be estimated which can be easily interpreted by physicians and the assumption

is made that both tests are dependent. Moreover, aggregated data are used which

is the most reported one in current literature.

First, a quadrivariate logistic regression model including random effects is pro-

posed that is a natural extension of the current bivariate standard approach used in

case of meta-analysis of one diagnostic test. The second presented model extends

the copula approach developed by Kuss et al. (2014) to four dimensions.

24
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3.1 Quadrivariate logistic regression model with

random effects

We propose a new model with a quadrivariate response. This is a natural extension of

the common bivariate random effects model for sensitivity and specificity proposed

by Reitsma et al. (2005) or Chu et al. (2006). The new model jointly accounts

for the four random variables sensitivity1, specificity1, sensitivity2 and specificity2

using a quadrivariate generalized linear mixed model (GLMM). This approach is

also presented in Hoyer and Kuss (2016).

Restricting to the case of two diagnostic tests, every single study reports four values:

• the true positive (TP1) and the true negative (TN1) of test 1

• the true positive (TP2) and the true negative (TN2) of test 2.

Analogously to the bivariate approach, we assume that the true positive and the true

negative of the i-th study (i = 1, ..., I) and the j-th test (j = 1, 2) are binomially

distributed, given the sensitivities and the specificities of test j.

TPij | Seij ∼ Binomial(TPij + FNij, Seij),

TNij | Spij ∼ Binomial(TNij + FPij, Spij),

To account for potential between-study correlation and heterogeneity of the two

sensitivities and the two specificities, a random effects model is suggested. First, a

logit-transformation is made as proposed in the following:

logit(Seij) = µj + φij, logit(Spij) = νj + ψij

µj and νj are intercepts for logit(Sei), logit(Spi) and φij and ψij are random effects.

To specify the random effects (φi1, ψi1, φi2, ψi2)T a quadrivariate normal distribution

is assumed:
φi1

ψi1

φi2

ψi2

 ∼ N




0

0

0

0

 ,


σ2
φ1

ρφ1ψ1σφ1σψ1 ρφ1φ2σφ1σφ2 ρφ1ψ2σφ1σψ2

σ2
ψ1

ρψ1φ2σψ1σφ2 ρψ1ψ2σψ1σψ2

σ2
φ2

ρφ2ψ2σφ2σψ2

σ2
ψ2


 .

14 parameters have to be estimated. The four variance parameters σ2
φ1
, σ2

ψ1
, σ2

φ2
, σ2

ψ2

are used to describe possible between-study heterogeneity of sensitivity1, specificity1,
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sensitivity2 and specificity2. The parameters ρφ1ψ1 , ρφ1φ2 , ρφ1ψ2 , ρψ1φ2 , ρψ1ψ2 , ρφ2ψ2

capture the corresponding correlation among the random effects. Assuming the

four correlation parameters ρφ1φ2 , ρφ1ψ2 , ρψ1φ2 and ρψ1ψ2 to be zero, is equivalent to

fit two independent bivariate models for both diagnostic tests.

Because our four-dimensional model is a natural extension of the bivariate one, we

get the following likelihood function

L(θθθ) =
I∏
i=1

∫∫ ∫∫ 4∏
j=1

g
(
yij;nij, l

−1(xj)
)

(3.1)

φ4φ4φ4(x1, x2, x3, x4;µ4µ4µ4,Σ4Σ4Σ4)dx1dx2dx3dx4,

with θθθ = (Se1, Sp1, Se2, Sp2, σ
2
φ1
, σ2

ψ1
, σ2

φ2
, σ2

ψ2
, ρφ1ψ1 , ρφ1φ2 , ρφ1ψ2 , ρψ1φ2 , ρψ1ψ2 , ρφ2ψ2)

and the same nomenclature as in Section 2.3.3 otherwise.

φ4φ4φ4 represents the density of the four-dimensional normal distribution with mean

vector µ4µ4µ4 = (l(Se1), l(Sp1), l(Se2), l(Sp2))T and the random effects matrix Σ4Σ4Σ4.

To estimate the parameters of a generalized linear mixed model different numerical

approaches are available. We compare the penalized-quasi-likelihood (PQL) method

to Gaussian quadrature (GQ). We also use two different link functions, namely the

identity link which allows to estimate the differences of sensitivities and specificities

directly and the canonical logit link where the confidence intervals of the parameters

of interest have to be calculated by hand using the delta method.

3.2 Copula models

Before introducing the quadrivariate copula model for the meta-analytic comparison

of two diagnostic tests, we give a short overview on the concept of copulas.

3.2.1 Copulas

Definition 3.1 (Copulas (Nelsen 2006))

A function C : [0, 1]d → [0, 1] is a d-dimensional copula, if

• C(u1, ..., ui−1, 0, ui+1, ..., ud) = 0 for all uk ∈ [0, 1]

• C(1, ..., 1, u, 1, ..., 1) = u for all u ∈ [0, 1]

• C is d-increasing, i.e. for each hyperrectangle B =
∏d

i=1[xi, yi] ⊆ [0, 1]d the

C-volume of B is non-negative:
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∫
B

dC(u) =
∑

z∈×di=1{xi,yi}

(−1)N(z)C(z) ≥ 0,

where N(z) = #{k : zk = xk}.

Copulas are a valuable tool to construct the joint distribution function of multi-

ple random variables. To get the corresponding cumulative distribution functions,

Sklar’s Theorem is necessary.

Theorem 3.2 (Sklar’s Theorem (Nelsen 2006) or (Sklar 1959))

Let H be a joint distribution function with margins Fi(x). Then there exists a copula

C such that for all xi ∈ R ∪ {−∞,∞} , i = 1, ..., d:

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

If the margins are continuous, then C is unique. Otherwise, C is uniquely deter-

mined on Range(F1) ×...× Range(Fd). The converse is also true: if C is a copula

and Fi, i = 1, ..., d, are distribution functions, then the function H(x1, ..., xd) =

C(F1(x1), ..., Fd(xd)) is a joint distribution function with margins Fi(x).

The proof is given by various authors, see for example Schweizer and Sklar (1983)

or Rüschendorf (2009).

It exists also a conditional version of Sklar’s Theorem which is of the following

form:

Theorem 3.3 (Conditional version of Sklar’s Theorem, (Patton 2002, Patton 2006,

Cherubini et al. 2012))

Let FX|Z(. | z) be the conditional distribution function of X | Z = z and GY |Z(. | z)

be the conditional distribution function of Y | Z = z. Let H(X,Y )|Z(., . | z) be the

joint conditional distribution function of (X, Y ) | Z = z. Additionally, let Z be the

support of Z, FX|Z and GY |Z be continuous in x and y. Then

(i) there exists a unique conditional copula function C(., . | z) with

H(X,Y )|Z(x, y | z) = C(FX|Z(x | z), GY |Z(y | z) | z),

for all (x, y) ∈ R2 and all z ∈ Z. This is equivalent to

H(X,Y )|Z(F−1
X|Z(u | z), G−1

Y |Z(v | z) | z) = C(u, v | z),



3.2 Copula models 28

for all (u, v) ∈ [0, 1]2 and all z ∈ Z.

(ii) for any conditional copula C, all (x, y) ∈ R2 and all z ∈ Z

HC(x, y | z) := C(FX|Z(x | z), GY |Z(y | z) | z)

is a joint two-dimensional conditional distribution function of (X, Y ) | Z = z

with conditional margins FX|Z(. | z) and GY |Z(. | z).

The proof is given by the cited authors.

3.2.2 Modelling dependence

The concept of copulas enables us to model the dependence between the marginal

distributions through the copula parameters. These association parameters can

be transformed into measures of correlation, like the Spearman’s (ρS(X1, X2)) or

Kendall’s (τ(X1, X2)) correlation coefficient. It was shown by Schweizer and Wolff

(1981) that both measures could be used for description of dependence. In the

following, the two correlation coefficients are explained in more details with respect

to their relation to copulas.

Kendall’s correlation coefficient

Definition 3.4 (Kendall’s correlation coefficient)

Let (X1, Y1) and (X2, Y2) be independently and identically distributed random vari-

ables. Then the correlation coefficient called Kendall’s τ is given by

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

In context of copulas, Kendall’s τ is defined in the following way (Nelsen 2006):

Theorem 3.5

Let X and Y be continuous random variables with copula C. Then Kendall’s τ is

given by

τX,Y = τC = Q(C,C) = 4

∫∫
I2

C(u, v)dC(u, v)− 1,

where Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

Proof. Let F and G be the common marginal distributions of X1 and X2 and Y1

and Y2, respectively. C1 and C2 are the copulas of (X1, Y1) and (X2, Y2). Therefore
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it follows that H1(x, y) = C1(F (x), G(y)) and H2(x, y) = C2F (x), G(y)). Q denotes

the difference between the probabilities of concordance and discordance at which

(Xi, Yi) and (Xj, Yj) are concordant if (Xi − Xj)(Yi − Yj) > 0 and discordant if

(Xi − Xj)(Yi − Yj) < 0 (Nelsen 2006). For continuous random variables applies

P [(X1 −X2)(Y1 − Y2) < 0] = 1− P [(X1 −X2)(Y1 − Y2) > 0] and therefore

Q = 2P [(X1 −X2)(Y1 − Y2) > 0]− 1. (3.2)

Furthermore, P [(X1−X2)(Y1− Y2) > 0] = P [X1 > X2, Y1 > Y2] +P [X1 < X2, Y1 <

Y2], which can be achieved by integrating over the distribution of one of the vectors

(X1, Y1) or (X2, Y2). Using (X1, Y1) we have

P [X1 > X2, Y1 > Y2] = P [X2 < X1, Y2 < Y1]

=

∫∫
R
P [X2 ≤ x, Y2 ≤ y]dC1(F (x), G(y))

=

∫∫
R
C2(F (x), G(y))dC1(F (x), G(y)).

Let u = F (x) and v = G(y). Than we get

P [X1 > X2, Y1 > Y2] =

∫∫
I2

C2(u, v)dC1(u, v).

Moreover, we obtain

P [X1 < X2, Y1 < Y2] =

∫∫
R2

P [X2 > x, Y2 > y]dC1(F (x), G(y))

=

∫∫
R2

[1− F (x)−G(y) + C2(F (x), G(y))]dC1(F (x), G(y))

=

∫∫
I2

[1− u− v + C2(u, v)]dC1(u, v).

Furthermore, E(U) = E(V ) = 1/2 because C1 is the joint distribution function of a

pair (U, V ) of uniformly distributed random variables. Hence,

P [X1 < X2, Y1 < Y2] = 1− 1

2
− 1

2
+

∫∫
I2

C2(u, v)dC1(u, v) =

∫∫
I2

C2(u, v)dC1(u, v).

Therefore

P [(X1 −X2)(Y1 − Y2) > 0] = 2

∫∫
I2

C2(u, v)dC1(u, v).
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It follows using Equation (3.2)

Q = 2P [(X1 −X2)(Y1 − Y2) > 0]− 1 = 4

∫∫
I2

C2(u, v)dC1(u, v) (3.3)

Therefore we obtain for Kendall’s τ :

τX,Y = τC = Q = Q(C,C) = 4

∫∫
I2

C(u, v)dC(u, v)− 1

Spearman’s correlation coefficient

Definition 3.6 (Spearman’s correlation coefficient)

Let (X1, Y1), (X2, Y2) and (X3, Y3) be independently and identically distributed ran-

dom variables. Then Spearman’s correlation coefficient is defined as

ρX,Y = ρS = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]).

In context of copulas we have (Nelsen 2006):

Theorem 3.7

Let X and Y be continuous random variables with corresponding copula C. Then

Spearman’s ρ is given by

ρX,Y = ρC = 3Q(C,Π) = 12

∫∫
I2

uvdC(u, v)− 3 = 12

∫∫
I2

C(u, v)dudv − 3,

where Π = Π(u, v) = uv.

Proof. The proof is simple using Equation (3.3). Then we get

ρX,Y = ρC = 3Q(C,Π)

= 12

∫∫
I2

uvdC(u, v)− 3

= 12

∫∫
I2

C(u, v)dudv − 3.
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3.2.3 Quadrivariate copula model

As an alternative to the quadrivariate logistic regression model, it is also possible

to use copula models with a four-dimensional response. It is a natural extension of

the bivariate copula model from Kuss et al. (2014).

Analogously to the quadrivariate logistic regression model with random effects,

we assume the TP and TN of the i-th study and the j-th test to be binomially

distributed, given the two sensitivities and specificities. In a next step, we assume

the sensitivities and specificities as beta distributed with parameters a∗ and b∗.

Contrary to the standard model, we now have a distribution on the original scale of

sensitivity and specificity with

Se1 ∼ Beta(aSe1 , bSe1), Sp1 ∼ Beta(aSp1 , bSp1)

and

Se2 ∼ Beta(aSe2 , bSe2), Sp2 ∼ Beta(aSp2 , bSp2).

The corresponding density function is defined by

f(p; aSe1 , bSe1) =


Γ(aSe1+bSe1 )

Γ(aSe1 )Γ(bSe1 )
paSe1−1(1− p)bSe1−1 , 0 < p < 1

0 , else

for sensitivity1 (analogously defined for sensitivity2, specificity1 and specificity2)

where Γ(x) is the Gamma function with Γ(n+ 1) = n!.

The expected values of the three beta distributions are defined as (a∗/(a∗+ b∗)) and

describe the meta-analytic parameters of interest (Se1, Sp1, Se2, Sp2). Additionally,

the estimated variances (a∗b∗/(a∗ + b∗ + 1)(a∗ + b∗)
2) explain their variation which

corresponds to heterogeneity.

The beta distribution is used because of its flexibility and the fact that it is con-

jugated to the binomial distribution. The advantage is that we get a posteriori

beta-binomial distributions which are commonly known.

Theorem 3.8

The beta distribution is conjugated to the binomial distribution.

Proof. (using the example of sensitivity)

Let (TPij = d | Sej = u) ∼ Binomial(Dij, u) , u ∈ [0, 1], d ∈ N and Sej priori beta

distributed.
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The Theorem of Bayes leads to:

f(Sej = u | TPij = d) =
P (TPij = d | Sej = u)f(u)∫ 1

0
P (TPij = d | Sej = u)f(u)du

,

where f is the density of the beta distribution.

It follows:

gSej(d) = P (TPij = d) =

∫ 1

0

P (TPij = d | Sej = u)f(u;αSej , βSej)du

=

(
Dij

d

)
1

B(αSej , βSej)

∫ 1

0

ud+αSej−1(1− u)Dij−d+βSej−1du

=

(
Dij

d

)
B(αSej + d,Dij − d+ βSej)

B(αSej , βSej)
,

where B is Euler’s beta function. Using the Theorem of Bayes:

f(Sej = u | TPij = d) =

(
Dij
d

)
ud(1− u)Dij−duαSej−1(1− u)βSej−1/B(αSej , βSej)(
Dij
d

)
B(αSej + u, βSej +Dij − u)/B(αSej , βSej)

=


u
d+αSej

−1
(1−u)

Dij−d+βSej−1

B(αSej+d,βSej+Dij−d)
, 0 < u < 1

0 , else

Finally, we obtain a posteriori a beta distribution for Sej = u | TPij = d with

(Sej = u | TPij = d) ∼ Be(αSej + u; βSej +Dij − u).

Therefore, the posteriori distribution belongs to the same family as the priori dis-

tribution.

Finally we achieve beta-binomial distributions (Held 2008) for TPij and TNij:

P (TPij = d) =

∫ 1

0

P (TPij = d | Sej = u)f(u; aSej , bSej)du

=

(
Dij

d

)
1

B(aSej , bSej)

∫ 1

0

ud+aSej−1(1− u)Dij−d+bSej−1du

=

(
Dij

d

)
B(aSej + d,Dij − d+ bSej)

B(aSej , bSej)
,

(analogously defined for TNij).

The presented model is a true random effects model. That means every subject
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(here: every study) has a single parameter (here: Sej, Spj). These parameters

follow a common distribution. Consequently, we still have a closed-form marginal

distribution (Molenberghs and Verbeke 2006), which is a contrast to the most other

random effect models like the four-dimensional GLMM.

To model the potential correlation between TPij and TNij, we apply the concept

of copulas.

In our case, we have to construct a four-dimensional cumulative distribution func-

tion (cdf). Therefore we get using Sklar’s Theorem (Sklar 1959):

H(x1, x2, x3, x4) = C(FSe1(x1), FSp1(x2), FSe2(x3), FSp2(x4)).

Now we determine the probability density function (pdf) simply by differenti-

ating the joint distribution function. We obtain (considering the Radon-Nikodym

derivative):

h(x1, x2, x3, x4) = fSe1fSp1fSe2fSp2c1234(FSe1(x1), FSp1(x2), FSe2(x3), FSp2(x4)),

where c1234 denotes a 4-variate copula density.

The density is treated as the corresponding likelihood function. Note that in the

copula case the likelihood is analytically determined and has a closed form where

no random effects are necessary. Therefore standard maximum likelihood methods

are used for parameter estimation. Similarly to the GLMM, 14 parameters have to

be estimated: 2 for each beta-binomial distribution and 6 copula parameters which

are used to model the associations between the random variables.

There is one technical issue that needs to be noticed. The used beta-binomially

marginal distributions are discrete. In that case, the copula density have to be

determined by differentiating with respect to the counting measure. According to

Sklar’s Theorem uniqueness of the copula is not guaranteed. Nevertheless, in the

following we approximate the discrete margins by assuming continuous forms. The

problem of discrete margins will be discussed in Section 3.2.7.

It is an advantage of the copula model that in principle a large number of cop-

ulas is available allowing for different association structures. This is a contrast to

the standard model where a quadrivariate normal distribution is used as a single

correlation structure. The class of potential copulas is only limited by the range of

association. This range should be the whole one from perfectly negative (−1) to
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perfectly positive (+1) because it is commonly known and described in Chapter 2

that sensitivity and specificity are mostly negatively correlated. Considering that

and based on the previous work of Kuss et al. (2014), a quadrivariate Gaussian

copula and quadrivariate vine copulas based on bivariate Plackett copulas are used.

3.2.4 Gaussian copula

The quadrivariate Gaussian copula is given by

CG(u1, u2, u3, u4) = Φ4(Φ−1(u1),Φ−1(u2),Φ−1(u3),Φ−1(u3),Φ−1(u4) | Γ),

where Φ4(. | Γ) is the distribution function of the quadrivariate normal distribution

with corresponding correlation matrix Γ. Φ−1 refers to the inverse distribution func-

tion of the univariate standard normal distribution. The corresponding density of

the Gaussian copula is defined in the following way (Song 2002):

cG(u1, u2, u3) =| Γ |−1/2 exp

{
1

2
qT (I4 − Γ−1)q

}
,

where q = (q1, q2, q3, q4)T with normal scores qj = Φ−1(uj), j = 1, 2, 3, 4, and the

four-dimensional identity matrix I4.

The Gaussian copula is a member of the class of elliptical copulas which can be

generalized to higher dimensions in a simple way. The association parameter should

be interpreted as a Pearson correlation of the normal scores. That is numerically

close to a Spearman correlation of the original margins (Song 2002).

3.2.5 Vine copulas

The most common known copulas are bivariate ones. The construction of higher

dimensional copulas could be difficult. Essentially, there are three possibilities:

(i) Use of elliptical copulas, like the Gaussian copula. This class can easily ex-

tended to higher dimensions.

(ii) Use of Archimedean copulas. This is another class of copulas which can be

extended to more than two dimensions. In our case they are improper based

on two reasons. First, the range of the copula parameter is often not the whole

one from −1 to +1. Second, the Clayton copula (Nelsen 2006) which could be



3.2 Copula models 35

used, leads to unsatisfactory simulation results in the bivariate case as shown

by Kuss et al. (2014).

(iii) Build higher dimensional copulas on basis of bivariate copulas. The concept

is called pair-copula constructions (PCC) or vine copulas.

In the following the concept of vine copulas is used and therefore it is necessary to

introduce it in a more detailed way, especially conditional copulas. The statistical

background is also well described by Patton (2002).

Let X = (X1, ..., Xn) be a vector of random variables with joint density function

f(x1, ..., xn) which can be factorised as follows (Aas et al. 2009):

f(x1, ..., xn) = f(xn)f(xn−1 | xn)f(xn−2 | xn−1, xn)...f(x1 | x2, ..., xn), (3.4)

where the decomposition is unique up to exchanging of the variables. The corre-

sponding derivation is given in the following remark.

Remark 3.9. Let X = (X1, ..., Xn) be a vector of random variables with joint density

function f(x1, ..., xn). Then, this density can be factorized as follows:

f(x1, ..., xn) = f(x1, ..., xn)
n−2∏
i=0

=1︷ ︸︸ ︷
f(xn−i, ..., xn)

f(xn−i, ..., xn)

= f(xn)
n−2∏
i=0

f(xn−i−1, ..., xn)

f(xn−i, ..., xn)

= f(xn)
n−2∏
i=0

f(xn−i−1 | xn−i, ..., xn).

Using the unconditional version of Sklar’s Theorem (Sklar 1959) and assuming

an absolutely continuous distribution function F and absolutely continuous margins

F1, ..., Fn we obtain (Aas et al. 2009):

fX1,...,Xn(x1, ..., xn) =
∂n

∂x1...∂xn
FX1,...,Xn(x1, ..., xn)

=
∂n

∂u1...∂un
C(u1, ..., un)|(u1,...,un)=(FX1

(x1),...,FXn (xn))

· ∂

∂x1

FX1(x1)...
∂

∂xn
FXn(xn)

= c12...n(FX1(x1), ..., FXn(xn))fX1(x1)...fXn(xn),
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where c12...n is the n-variate copula density.

This result has to be expanded to the conditional case, where a conditional version

of Sklar’s Theorem is necessary.

Using Theorem 3.3 the decomposition of the joint density in the conditional case

is given by:

fX1,...,Xn|Z(x1, ..., xn | z) =c(FX1|Z(x1 | z), ..., FXn|Z(xn | z) | z)

fX1|Z(x1 | z)...fXn|Z(xn | z).

For simplicity, the notation F12 is used instead of FX1,X2 , respectively for the other

functions.

In the unconditional bivariate case we get

f12(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f2(x2),

where c12(., .) is the pair-copula density for the pair of transformed variables F1(x1)

and F2(x2). Based on this relationship, in the conditional case we have

f1|2(x1 | x2) =
f12(x1, x2)

f2(x2)
= c12(F1(x1), F2(x2))f1(x1).

In case of three random variables this leads to

f1|23(x1 | x2, x3) = c12|3(F1|3(x1 | x3), F2|3(x2 | x3))f1|3(x1 | x3),

for the appropriate pair-copula c12|3. An alternative is:

f1|23(x1 | x2, x3) = c13|2(F1|2(x1 | x2), F3|2(x3 | x2))f1|2(x1 | x2), (3.5)

in which the pair-copulas c12|3 and c13|2 are different.

A further decomposition of (3.5) leads to:

f1|23(x1 | x2, x3) = c13|2(F1|2(x1 | x2), F3|2(x3 | x2))c12(F1(x1), F2(x2))f1(x1),

where two pair-copulas are used.

It is shown by Aas et al. (2009) that each term in (3.4) can be decomposed using
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the general formula

f(x | v) = cxvj |v−j(F (x | v−j), F (vj | v−j))f(x | v−j),

for a d-dimensional vector v, where v−j denotes the vector excluding the j-th com-

ponent. Based on this relationship it is obvious that a multivariate density as shown

in (3.4) can be expressed as a product of pair-copulas. Therefore it is necessary to

determine the marginal conditional distribution F (x | v). It is shown by Joe (1996)

that this distribution is given by

F (x | v) =
∂Cx,vj |v−j(F (x | v−j), F (vj | v−j))

∂F (vj | v−j)
,

where Cij|k is a bivariate copula distribution function. In case of a univariate dis-

tributed v we get

F (x | v) =
∂Cxv(Fx(x), Fv(v))

∂Fv(v)
.

Assuming that x and v are uniformly distributed, the function h(x, v,Θ) is used to

express the conditional cdf. This implies

h(x, v,Θ) = F (x | v) =
∂Cx,v(x, v, θ)

∂v
, (3.6)

where Θ denotes the set of copula parameters.

Vine copulas are a very flexible tool and there is a huge amount of possible pair-

copula constructions. Bedford and Cooke (2001, 2002) give a graphical model,

called ’regular vines’, with the aim to organize them. The so defined class is still

very general. Therefore we restrict in the following on two special cases of regular

vines: the canonical vine (C-vine) and the drawable vine (D-vine) (Kurowicka and

Cooke 2004). Each of them illustrates a specific decomposition of the density using

nested trees.

D-vine copulas Figure 3.1 visualizes the concept of a four-dimensional D-vine

copula. It involves three trees (Tj, j = 1, 2, 3) where tree Tj consists of 6− j nodes

and 5 − j edges. The edges illustrate the pair-copula densities where the labels

correspond to the respective copula density, e.g. 14 | 23 corresponds to c14|23. In the

whole decomposition n(n− 1)/2 edges and marginal densities are used. No node in

a tree is connected with more than two edges. The corresponding joint density can
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Figure 3.1: Visualization of a four-dimensional D-vine copula

be obtained trough (Aas et al. 2009)

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi | xi+1, ..., xi+j−1), F (xi+j | xi+1, ..., xi+j−1)),

where j stands for the tree and i runs over the corresponding edges.

C-vine copulas A possible C-vine copula is illustrated in Figure 3.2. In such vine

copulas each tree has got a unique node which is connected to n − j edges. The

corresponding density is written as (Aas et al. 2009)

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1(F (xj | x1, ..., xj−1), F (xj+i | x1, ..., xj−1)).

In our current case it is necessary to model quadrivariate joint densities using vine
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Figure 3.2: Visualization of a four-dimensional C-vine copula

copulas. Therefore we get (Aas et al. 2009)

f(x1, x2, x3, x4) =f(x1)f(x2)f(x3)f(x4)

c12(F (x1), F (x2))c13(F (x1), F (x3))c14(F (x1), F (x4))

c23|1(F (x2 | x1), F (x3 | x1))c24|1(F (x2 | x1), F (x4 | x1))

c34|12(F (x3 | x1, x2), F (x4 | x1, x2)),

as a possible C-vine copula.

A possible D-vine structure is given by

f(x1, x2, x3, x4) =f(x1)f(x2)f(x3)f(x4)

c12(F (x1), F (x2))c23(F (x2), F (x3))c34(F (x3), F (x4))

c13|2(F (x1 | x2), F (x3 | x2))c24|3(F (x2 | x3), F (x4 | x3))

c14|23(F (x1 | x2, x3), F (x4 | x2, x3)).

In the following, the derivation of a four-dimensional C-vine copula is given.

We assume that a four-dimensional density F1234(x1, x2, x3, x4) is decomposed as

f1234(x1, x2, x3, x4) = f1(x1)f2|1(x2 | x1)f3|12(x3 | x1, x2)f4|132(x4 | x1, x3, x2). (3.7)
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It yields

f2|1(x2 | x1) = c12(F1(x1), F2(x2))f2(x2),

and

f3|12(x3 | x1, x2) =
f23|1(x2, x3 | x1)

f2|1(x2 | x1)

=
c23|1(F2|1(x2 | x1), F3|1(x3 | x1))f3|1(x3 | x1)f2|1(x2 | x1)

f2|1(x2 | x1)

= c23|1(F2|1(x2 | x1), F3|1(x3 | x1))f3|1(x3 | x1)

= c23|1(F2|1((x2 | x1), F3|1(x3 | x1))c13(F1(x1), F3(x3))f3(x3).

Furthermore we get

f4|132(x4 | x1, x3, x2) =
f34|12(x3, x4 | x1, x2)

f3|12(x3 | x1, x2)

=
c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))

f3|12(x3 | x1, x2)

f3|12(x3 | x1, x2)f4|12(x4 | x1, x2)

f3|12(x3 | x1, x2)

= c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))f4|12(x4 | x1, x2)

= c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))
f24|1(x2, x4 | x1)

f2|1(x2 | x1)

= c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))

c24|1(F2|1(x2 | x1), F4|1(x4 | x1))f2|1(x2 | x1)f4|1(x4 | x1)

f2|1(x2 | x1)

= c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))

c24|1(F2|1(x2 | x1), F4|1(x4 | x1))f4|1(x4 | x1)

= c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))

c24|1(F2|1(x2 | x1), F4|1(x4 | x1)c14(F1(x1), F4(x4))f4(x4).

Combining with (3.7) gives

f1234(x1, x2, x3, x4) = f1(x1)f2(x2)f3(x3)f4(x4)

c12(F1(x1), F2(x2))c13(F1(x1), F3(x3))14(F1(x1), F4(x4))

c23|1(F2|1(x2 | x1), F3|1(x3 | x1))c24|1(F2|1(x2 | x1), F4|1(X4 | x1))

c34|12(F3|12(x3 | x1, x2), F4|12(x4 | x1, x2))
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as a possible canonical (C-) vine decomposition.

Starting from a different decomposition as used in Equation (3.7), we could obtain

a possible drawable (D-) vine copula.

To sum up, there exist twelve different D-vine decompositions and twelve different

C-vine decompositions where none of the D-vine ones is equal to any of the C-vine

ones. Therefore in total we have 24 different decompositions.

3.2.6 Plackett copula

It was shown in the bivariate case by Kuss et al. (2014) that the Plackett copula

is appropriate in case of a meta-analysis of diagnostic accuracy studies. Based on

their simulation results, the decision is made that the four-dimensional vine copulas

are constructed on the basis of bivariate Plackett copulas.

The bivariate Plackett copula is defined as:

CP (u, v) =
(1 + (θ − 1)(u+ v))−

√
(1 + (θ − 1)(u+ v))2 − 4uvθ(θ − 1)

2(θ − 1)
, θ > 0, θ 6= 1,

with the corresponding density

cP (u, v) = ((1 + (θ − 1)(u+ v))2 − 4θ(θ − 1)uv)−
3
2 θ(1 + (θ − 1)(u+ v − 2uv)).

In case of the Plackett copula, Spearman’s correlation coefficient is given by

ρS =
θ + 1

θ − 1
− 2θ

(θ − 1)2
ln(θ)

with ρS ∈ (−1, 1).

Constructing vine copulas, determination of conditional distribution functions is

necessary. Using Equation (3.6) we get

F (xi | xj) =
1

2

[
1− 1 + (θij − 1)(xi + xj)− 2xiθij

(1 + (θij − 1)(xi + xj)2 − 4xixjθij(θij − 1)1/2

]
where θij denotes the association between the i-th and the j-th variable. The more

complex conditional cdfs, like F (x3 | x1, x2), are constructed on basis of F (xi | xj).
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3.2.7 Copulas with discrete margins

The above presented copula approach has one main disadvantage. We use beta-

binomial distributions as marginal distributions which are discrete. Based on Sklar’s

Theorem, the joint distribution associated with a copula is guaranteed to be unique

only in case of continuous copulas. Therefore it is necessary to think about possi-

bilities to account for the problem of discrete marginal distributions. In the recent

literature there are different approaches addressing this task, for example Genest and

Nes̆lehová (2007) or Smith and Khaled (2012). Song et al. (2002, 2009) propose

a method to construct a discrete version of the Gaussian copula using multivariate

normal distributions. This approach is also used in practice (He et al. 2012). In

the work of Kuss et al. (2014), the authors simulate such a version of a bivariate

Gaussian copula and show that it is numerically more unstable than treating the

discrete margins as continuous. The approach does not lead to better results as they

support by their simulation study. Additionally, it is also difficult to implement the

Song approach using SAS, the software that we use, because multivariate distribu-

tion functions have to evaluated at different points. Therefore this method is not

presented in details in the following. Instead, we use a recent method to construct

discrete D-vine copulas as given by Panagiotelis et al. (2012). This approach is in

the following illustrated using four dimensions because that is the case we need.

For m = 4 dimensions the probability mass function (pmf) of the joint density can

be decomposed in the following way:

P (Y1 = y1, Y2 = y2, Y3 = y3, Y4 = y4) = P (Y1 = y1 | Y2 = y2, Y3 = y3, Y4 = y4)

× P (Y4 = y4 | Y2 = y2, Y3 = y3)

× P (Y3 = y3 | Y2 = y2)

× P (Y2 = y2). (3.8)
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Now, we rewrite the first term on the right-hand side using the concept presented

by Panagiotelis et al. (2012). This leads to

P (Y1 = y1 | Y2 = y2, Y3 = y3, Y4 = y4)

=

∑
i1∈{0,1}

∑
i4∈{0,1}

(−1)i1+i4C14|23(F1|23(y1 − i1 | y2, y3), F4|23(y4 − i4 | y2, y3))

P (Y4 = y4 | Y2 = y2, Y3 = y3)

= C14|23(F1|23(y1 | y2, y3), F4|23(y4 | y2, y3))

− C14|23(F1|23(y1 | y2, y3), F4|23(y4 − 1 | y2, y3))

− C14|23(F1|23(y1 − 1 | y2, y3), F4|23(y4 | y2, y3))

+ C14|23(F1|23(y1 − 1 | y2, y3), F4|23(y4 − 1 | y2, y3)),

because the denominator cancels out with the second term. Using another result

from the Panagiotelis publication, F1|23, F1|3 and F2|3 can be rewritten as

f1|23(y1 − i1 | y2, y3) =
1

P (Y2 = y2 | Y3 = y3)
{

C12|3(F1|3(y1 − i1 | y3), F2|3(y2 | y3))

− C12|3(F1|3(y1 − i1 | y3), F2|3(y2 − 1 | y3))}

with

P (Y2 = y2 | Y3 = y3) =∑
i2∈{0,2}

∑
i3∈{0,1}

(−1)i2+i3C23(F2(y2 − i2), F3(y3 − i3))

P (Y3 = y3)

=
1

P (Y3 = y3)
{C23(F2(y2), F3(y3))− C23(F2(y2), F3(y3 − 1))

− C23(F2(y2 − 1), F3(y3)) + C23(F2(y2 − 1), F3(y3 − 1))}

and

F1|3(y1 − i1 | y3) =
C13(F1(y1 − i1), F3(y3))− C13(F1(y1 − i1), F3(y3 − 1))

P (Y3 = y3)

and

F2|3(y2 | y3) =
C23(F2(y2), F3(y3))− C23(F2(y2), F3(y3 − 1))

P (Y3 = y3)
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with

P (Y3 = y3) = F3(y3)− F3(y3 − 1).

The term F4|23 can be rewritten analogously. After this, the third term of decom-

position (3.8) can be formulated as

P (Y3 = y3 | Y2 = y2) =

∑
i3∈{0,1}

∑
i2∈{0,1}

(−1)i3+i2C32(F3(y3 − i3), F2(y2 − i2))

P (Y2 = y2)

= C32(F3(y3), F2(y2))− C32(F3(y3), F2(y2 − 1))

− C32(F3(y3 − 1), F2(y2)) + C32(F3(y3 − 1), F2(y2 − 1)),

where the term P (Y2 = y2) cancels out with the last term in (3.8).

Finally, the complete expression for the pmf of a discrete D-vine copula is given and

can be implemented for simulation using the Plackett copula as basis.



4 Simulation studies

To compare the quadrivariate generalized linear mixed model, denoted by the term

’GLMM’, to the copula models, a simulation study was conducted. We also included

the approach proposed by the Cochrane Collaboration (Macaskill et al. 2010) to

investigate which model performs better. The simulation was divided into different

sections to present it in a clear way. First, the performance of the GLMM using

different link functions and integral/ data approximations was investigated and com-

pared to the Cochrane approach. This part is also described by Hoyer and Kuss

(2016). Second, the GLMM using the identity and logit link in combination with

PQL was compared to the copula models. An overview of the compared models is

given in Figure 4.1. The simulation program was written in SAS 9.3 (SAS Institute

Inc., Cary, NC, USA).

Cochrane
approach
using GQ

Cochrane
approach

using PQL

GLMM using
GQ and the

logit link

GLMM using
PQL and the
identity link

GLMM using
PQL and

the logit link

compared to

compared to

C-vine
copula

Gaussian
copula

D-vine
copula

discrete D-
vine copula

Figure 4.1: Overview of the compared models. Abbreviations: GQ: Gaussian
quadrature, PQL: penalized quasi likelihood

45
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4.1 Simulation setting

After analyzing a convenience sample from meta-analysis data (Kodama et al. 2013,

Picano et al. 2000) that give a widespread impression of possible estimates of sen-

sitivity and specificity, the following variables were varied:

• the true sensitivity1 (70%), specificity1 (80%), sensitivity2 (65%, 70%, 80%),

specificity2 (75%, 80%, 90%) and as a conclusion the true difference of sen-

sitivities (-10 percentage points (pp), 0 pp, 5 pp) and the true difference of

specificities (-10 pp, 0 pp, 5 pp)

• the true association between sensitivity1, specificity1, sensitivity2 and specificity2.

The three assumed correlation matrices are:

Γnone =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , Γneg =


1.0 −0.3 −0.2 −0.3

−0.3 1.0 −0.3 −0.2

−0.2 −0.3 1.0 −0.3

−0.3 −0.2 −0.3 1.0

 ,

Γmix =


1.0 −0.3 0.2 −0.3

−0.3 1.0 −0.3 0.2

0.2 −0.3 1.0 −0.3

−0.3 0.2 −0.3 1.0

 .

Γnone assumes that the sensitivities and specificities across the studies and even

the two tests are completely independent. For the other two matrices, we have

chosen a negative correlation of -0.3 between sensitivity and specificity of each test

because negative correlations between these two variables are most likely to appear

in reality. In case of a negative correlation structure, the sensitivities and specificities

of both tests are assumed to be negatively correlated, too. Using a mixed correlation

structure, we model a positive correlation of 0.2 between sensitivity1 and sensitivity2

and specificity1 and specificity2. The entries of the correlation matrices are inspired

by the data set from Kodama et al. (2013).

We assume 0.27 as the true variance of sensitivity1, specificity1, sensitivity2 and

specificity2 on the logit scale which corresponds to a variance of 0.02 on the original

[0,1]-scale.
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4.2 Data generation

During data generation, we were confronted with one problem. It is difficult to

generate random samples out of vine copulas. An algorithm according to that

problem is presented by Aas et al. (Aas et al. 2009), but it is not possible to

use it in case when the PCC is based on bivariate Plackett copulas because of

the inversion of some functions. This problem is also remarked by Hoyer and Kuss

(2015). Therefore, in the following only the standard model and the Gaussian copula

are used to generate data for the simulation.

After combining the design parameters, we get 54 different simulation scenarios.

For each, 1000 meta-analyses were generated. The simulated number of studies

varies between 10 and 30 and their sizes between 30 and 200, respectively, assuming

uniform distributions. Based on the study size, the number of diseased persons

were sampled from a uniform distribution. Figure 4.2 shows the process of data

generation. This choice is motivated by different meta-analyses reported in practice,

for example by Menke (2010) or Kodama et al. (2013).

Definition of the parameter constellation

Generating the number of studies (sampled
from a uniform distribution U(10,30))

Generating the study sizes
(sampled from U(30,200))

Generating the number of diseased per
study (sampled from U(30, study size))

1000×

Figure 4.2: Generating the data sets for simulation
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4.2.1 Generalized linear mixed model

To generate the observed numbers of true positives and true negatives of the single

studies, the VNORMAL call in SAS/IML is used. This procedure enables us to

create quadrivariate normally distributed random vectors where the corresponding

covariance matrix is chosen to reproduce the true values of correlation:

uik ∼ N4(0,Γx), k = 1, . . . , 4,

where x represents the chosen correlation structure. Then, these random numbers

are added to the true values of the two sensitivities and specificities and used to

calculate logit-transformed values for them:

logit(Se∗ij) = log

(
Sej,true

1− Sej,true

)
+ uik, k = 1, 3,

logit(Sp∗ij) = log

(
Spj,true

1− Spj,true

)
+ uik, k = 2, 4.

After this, an expit-transformation leads to the values for sensitivity1, specificity1,

sensitivity2 and specificity2:

Se∗ij =
exp(logit(Se∗j))

1 + exp(logit(Se∗j))
,

Sp∗ij =
exp(logit(Sp∗j))

1 + exp(logit(Sp∗j))
.

Finally, these are multiplied by the number of diseased and healthy and rounded to

the nearest integer to get the numbers of true positives and true negatives of each

study for both tests:

TPij ≈ Se∗ijND+
i
,

TNij ≈ Sp∗ij(1−ND+
i

),

where ND+
i

is the number of diseased per study.

4.2.2 Gaussian copula

Generating random numbers from the Gaussian copula is done by the SOLVE state-

ment from the SAS MODEL procedure. To achieve beta-distributed values, the

relationship between the true values of the two sensitivities and specificities, their
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corresponding variances, the expected random numbers and the distribution param-

eters is used. These parameters are the basis for the number of true positives and

true negatives of each study for both tests.

4.3 Estimation methods

For each of the simulated meta-analyses, 14 parameters have to be estimated. In

case of the standard model, these are: the two sensitivities, the two specificities,

their variances and the correlations between them. The same number of parameters

have to estimated when copula models are used. Here, these are two parameters for

each beta-binomial distribution (in total 8) and the corresponding copula parame-

ters to model the association (in total 6).

While we are using the default options in SAS, the estimated value and the corre-

sponding 95% t-confidence interval are computed.

We compare 3 implementations of the generalized linear mixed model:

• penalized-quasi-likelihood and the logit link (implemented using PROC GLIM-

MIX)

• penalized-quasi-likelihood and the identity link (implemented using PROC

GLIMMIX)

• Gaussian quadrature and the logit link (implemented using PROC NLMIXED).

This is done in order to check which approximation works less biased and numerically

more stable. Therefore we compare a numerical integral approximation (Gaussian

quadrature) to a data approximation method for generalized linear mixed mod-

els (PQL). For these statistical features we refer to the established literature, e.g.

Molenberghs and Verbeke 2006 or Fahrmeir et al. 2009 and Section 2.3.2. We also

compare two different link functions. In case of PQL estimation and the logit link,

we have the problem that the confidence intervals have to be calculated by hand

using the delta method. These models are compared to two different implementa-

tions of the Cochrane approach. Here, we also use the PQL method compared to

Gaussian quadrature.

In case of copulas, we used four different ones:

• Gaussian copula,

• C-vine copula based on bivariate Plackett copulas,
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• D-vine copula based on bivariate Plackett copulas, and

• discrete version of a D-vine copula based on bivariate Plackett copulas

For each copula, we construct the corresponding density as it was pointed out in

Chapter 3 and use the maximum likelihood concept to estimate the parameters of

interest.

Figure 4.3 shows the flow diagram of the program execution.
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Definition of the parameter constellation

Generation of the number of stud-
ies and their sizes at random

Generation of random numbers from
the underlying true model accounting

for the number of studies and their sizes

Transformation of the generated ran-
dom numbers to get the needed num-

bers of TP and TN for both tests

Estimation of model parameters

Calculation of bias, coverage and
the number of converged runs

Calculation of the averaged
bias and empirical coverage

Output

1000×

Figure 4.3: Program execution
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4.4 Results

We present the results in different sections. First, the results of the different imple-

mentations of the generalized linear mixed model and the Cochrane approach are

compared. Second, the copula models are compared to the GLMM.

Our parameters of interest are the differences between the sensitivities and speci-

ficities of the two tests. Therefore, in reporting of our results we restrict to them.

For these parameters, we show bias, coverage and the number of converged simu-

lation runs. Thereby, coverage means the proportion that an estimated confidence

interval contains the true value. To address numerical robustness, we count the

number of converged simulation runs that can reach a maximum number of 1000.

Results for the estimated two sensitivities and specificities are also calculated but

are not shown to avoid too much data. Nevertheless, these results are in the same

order as the presented ones.

To refer to the different simulation settings, the abbreviations shown in Table 4.1

are used. The results are visualized in different figures. The numerical values are

Table 4.1: Simulated settings

Setting Sensitivity1 Specificity1 Sensitivity2 Specificity2 Difference Difference
of of

sensitivities specificities

A 0.7 0.8 0.80 0.90 -0.10 -0.10
B 0.7 0.8 0.80 0.75 -0.10 0.05
C 0.7 0.8 0.80 0.80 -0.10 0.00
D 0.7 0.8 0.65 0.90 0.05 -0.10
E 0.7 0.8 0.65 0.75 0.05 0.05
F 0.7 0.8 0.65 0.80 0.05 0.00
G 0.7 0.8 0.70 0.90 0.00 -0.10
H 0.7 0.8 0.70 0.75 0.00 0.05
I 0.7 0.8 0.70 0.80 0.00 0.00

presented in the tables in the Appendix.

4.4.1 Generalized linear mixed model

Bias In terms of bias all models performed nearly similar, except in a few situ-

ations. In cases where the first tests specificity was better and the corresponding
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sensitivity was worse (scenario B), the model using penalized-quasi-likelihood and

the logit link did not seem to depend on the correlation structure because the bias

was nearly the same for every correlation matrix. On the contrary, the identity link

performed better in situations where no correlation is present. Using that model, sit-

uations where a negative correlation structure is assumed, led to the worst results.

Here, the differences of sensitivities and specificities were overestimated. Using

Gaussian quadrature the worst results were reached in case of a negative correlation

structure. Analogous results were achieved in cases where the sensitivity of the first

test was better and the specificity was lower, respectively. In case of differences of

specificities, the models seemed to be less sensitive in situations without correlation

and a mixed structure. It was striking that the model using the identity link per-

forms worst in case of negative correlations in scenario D. A similar performance

of all models could be found in scenario H with negative correlations. The bias of

the different implementations of the Cochrane approach had the same magnitude

as the most quadrivariate models and especially a bit higher than the PQL model

with logit link. To sum up, the model using the logit link seemed to perform best

compared to the others. Figures 4.4 and 4.5 support these observations.

Figure 4.4: Bias difference of sensitivities: averaged values over 1000 meta-analyses.
True model=GLMM with none, negative and mixed correlation struc-
tures
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Figure 4.5: Bias difference of specificities: averaged values over 1000 meta-analyses.
True model=GLMM with none, negative and mixed correlation struc-
tures

Coverage With respect to coverage, all GLMMs yielded results close to the ex-

pected 95%. The results were satisfactory, because we propose multivariate models

with a quadrivariate response which are numerically extremely difficult and suscep-

tible. In case of estimated differences of sensitivities, the coverage of all models was

the best when no correlation is present. Here, Gaussian quadrature seemed to have

an advantage over the others. In case of existing correlations, both models using

PQL performed similar and better than the model using Gaussian quadrature. This

model behaved worse in scenarios B and D, especially when negative correlations

were simulated. With a view on the estimated differences of specificities, the per-

formance was nearly similar compared to the differences of sensitivities. The results

were bit worse in case of none correlation, but more consistent when there is some

underlying correlation. The model using Gaussian quadrature led to some results

over the expected 95% in case of a negative correlation structure (scenarios E, H).

Especially in case of the Cochrane approach, the coverage was nearly in every case

smaller than the expected 95%. This was not satisfactory and we suggest a worse es-

timation of confidence intervals using the Cochrane approach. The complete results
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are shown in Figures 4.6 and 4.7.

Figure 4.6: Coverage difference of sensitivities. True model=GLMM with none, neg-
ative and mixed correlation structures

Convergence In terms of convergence it was obvious that none of the models

reached the maximum number of 1000 converged runs. The worst results were got

in cases with negative underlying correlations. The model using the logit link was

always the best and the model with Gaussian quadrature was always the worst.

The performance of the model using the identity link depended on the underlying

simulation setting. It seemed to be fragile in the scenarios A, D and G. Because of

the bivariate character of the Cochrane model, the numerical robustness was quite

good as expected in terms of convergence. The results can be found in Figure 4.8.

4.4.2 Copula models compared to the GLMM

Bias At first, the results are interpreted when the true underlying model was the

GLMM. In that case, the Gaussian copula behaved similar to the generalized linear

mixed model. The estimation of differences of specificities seemed to be more vul-

nerable. No clear dependence on the underlying correlation structure was visible,
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Figure 4.7: Coverage difference of specificities. True model=GLMM with none, neg-
ative and mixed correlation structures

because there exist situations where any correlation was absent and the estima-

tion was more biased than in cases with correlation. This phenomenon occurred

for example in scenario D. Using vine copulas for parameter estimation, there was

sometimes a larger bias compared to the other models. Especially the D-vine copula

led to the biggest deviation of all models, for example about 1.4 pp in setting A.

Here, the results seemed to depend on the underlying correlation structure. That

means, the vine copula models led to the largest bias in case of a negative correla-

tion. Interestingly, the discrete copula yielded the most accurate results of the vine

models. Generally, all models seemed to overestimate the difference of sensitivity,

visible by a positive bias in case of a higher sensitivity of the first test and a lower

one of the second test. Especially, larger differences of about 10 pp were overesti-

mated. On that basis, mostly scenario A led to the greatest bias. Except for the

D-vine copula, the models overestimated positive differences of specificity. This was

shown by a negative bias in case of a lower specificity of diagnostic test 1 and a

higher of test 2. To sum up, the models seemed to overestimate the true effects.

In cases where the Gaussian copula was the true underlying model, the estimates

from all models are more biased. As expected, the Gaussian copula behaved in
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Figure 4.8: Convergence. True model=GLMM with none, negative and mixed cor-
relation structures

cases of none and negative correlation best because itself was the underlying true

model. Remarkable were worse results of that copula in case of a mixed correlation

structure. Here, we observed a bias up to 6 pp. The GLMM using the logit link

yielded generally to better results than the model with the identity link. Mainly

setting A was the most biased one for differences of sensitivities. The C-vine and the

discrete copula worked better when no or a negative correlation underlies. Contrary

to that, the C- and D-vine copula behaved similar in case of a mixed correlation

structure where the discrete copula worked clearly worse. The estimation of the

differences of specificities was more unstable using the Gaussian copula and the

GLMM. Here, the Gaussian copula led to best results in case of negative correlation.

When a mixed correlation structure underlies, the standard model as well as the vine

copula approaches worked better than the Gaussian copula. The estimation of the

differences of specificities was more stable using vine copulas. The discrete copula

behaved similar to the C-vine, except in cases of negative correlation where the

C-vine led to worse results. The bias from the D-vine copula was clearly larger

compared with both other in cases with none or negative correlation structures.

As a conclusion, the estimation of the effects seemed to depend on the underlying
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correlation structure, especially using the vine copula models, and the estimates were

mainly a bit overestimated and therefore too optimistic. Another main conclusion

was that the results are worse and more unstable when the random variables are

generated using the Gaussian copula.

The complete results are depicted in Figures 4.9, 4.10, 4.11 and 4.12.

Figure 4.9: Bias difference of sensitivities: averaged values over 1000 meta-analyses.
True model=GLMM or Gaussian copula (CG) with none, negative and
mixed correlation structures

Coverage Generally, it was obvious that the expected value of 95% for the em-

pirical coverage was in less cases observed. The problem estimating the confidence

intervals was also reported in simpler models in the meta-analysis of only one di-

agnostic test, e.g. by Paul et el. (2010), Kuss et al. (2014) or Hoyer and Kuss

(2015).

In terms of coverage in our conducted simulation study, we observed that both,

the GLMM and the Gaussian copula model, behaved similar when the true model is

the GLMM. The results were satisfactory and close to 95% in every case independent

of the correlation structure. The C- and D-vine copulas worked at least as good as

the Gaussian copula and the GLMM and in some cases even better. That means in

some cases a coverage over 95% was reached, e.g. in scenario G and H with a mixed



4.4 Results 59

Figure 4.10: Bias difference of sensitivities: averaged values over 1000 meta-analyses.
True model=GLMM or Gaussian copula (CG) with none, negative and
mixed correlation structures

correlation structure. The discrete copula performed worst, especially in the mixed

correlation case.

When the Gaussian copula was the true underlying model, the reached coverage of

differences of sensitivities was in case of none and negative correlation satisfactory.

It was noticeable that the usage of the identity link sometimes led to a coverage over

95%, e.g. in setting D and G. On the other hand, the model in setting A combined

with negative correlation performed bad. The performance of the Gaussian copula

was worse in case of mixed correlation which was also observed for the estimated

bias. In case of none correlation, the C- and D-vine worked best. The discrete

copula was always a bit worse. Under a mixed correlation, the vine copula led to

the worst results. The GLMM using the logit link performed constant satisfactory

for the differences of specificities, too. The usage of the identity link yielded to

worse results in setting D and G under none and negative correlation. Under mixed

correlation structures, the Gaussian copula performed worst even for the differences

of specificities, as observed before. There was no considerable difference in the

goodness of the vine copula models between the estimation of the difference of
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Figure 4.11: Bias difference of specificities: averaged values over 1000 meta-analyses.
True model=GLMM or Gaussian copula (CG) with none, negative and
mixed correlation structures

sensitivities and specificities, respectively.

As a conclusion, the results seemed to depend on the underlying correlation struc-

ture when the true model is the Gaussian copula. Especially the vine copula models

performed worse with increasing complexity, e.g. mixed correlation.

The results are shown in Figures 4.13, 4.14, 4.15 and 4.16.

Convergence In terms of convergence and numerical robustness, there were clear

differences between the different models.

When the GLMM was the true underlying model, then all of the copula models

performed always better than the GLMM independent from the correlation struc-

ture. The GLMM led to worse results in case of negative correlation where the usage

of the identity link was the worst. Scenarios A, D and G were the most problematic

ones. The C- and D-vine approaches performed nearly similar and better than the

Gaussian copula and the GLMM. The discrete copula converged less than the other

vine copula models, especially using a mixed correlation structure.

When the true model was the Gaussian copula, the model himself converged in

cases of none and negative correlation nearly in every setting. Just under a mixed
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Figure 4.12: Bias difference of specificities: averaged values over 1000 meta-analyses.
True model=GLMM or Gaussian copula (CG) with none, negative and
mixed correlation structures

correlation, the Gaussian copula performed worse than the GLMM using a logit

link. This was expected regarding the results of bias and coverage. The vine copula

converged under none and negative correlation nearly ever but the results for mixed

correlation structures are even worst (between 300 and 500 times). In that cases the

vines are sometimes worse than the GLMM using the logit link. The GLMM with

the identity link was clearly the worst in setting A.

As a conclusion, the situations with underlying mixed correlation seemed to be

the hardest with some numerical problems in parameter estimation. The GLMM

with the identity link converged in less cases. Especially the copula models seemed

to perform numerical robust compared to the generalized linear models with random

effects.

The results are visualized in Figures 4.17 and 4.18.
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Figure 4.13: Coverage difference of sensitivities. True model=GLMM or Gaussian
copula (CG) with none, negative and mixed correlation structures

Figure 4.14: Coverage difference of sensitivities. True model=GLMM or Gaussian
copula (CG) with none, negative and mixed correlation structures



4.4 Results 63

Figure 4.15: Coverage difference of specificities. True model=GLMM or Gaussian
copula (CG) with none, negative and mixed correlation structures

Figure 4.16: Coverage difference of specificities. True model=GLMM or Gaussian
copula (CG) with none, negative and mixed correlation structures
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Figure 4.17: Convergence. True model=GLMM or Gaussian copula (CG) with none,
negative and mixed correlation structures
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Figure 4.18: Convergence. True model=GLMM or Gaussian copula (CG) with none,
negative and mixed correlation structures



5 Exemplary applications

The following section illustrates the application of the developed models using two

different data sets from research practice. Both examples stem from different medical

backgrounds. The first example investigates the performance of two tests in the

diagnosis of coronary artery disease, the second compares two tests in the screening

of type 2 diabetes mellitus. The authors of the publications are not able to give

summary measures like the difference of sensitivities and specificities to address the

diagnostic accuracy. Thus, it can be seen that there is a need for the development

of the considered methods.

5.1 Picano data set

The aim of the meta-analysis from Picano et al. (2000) was to investigate the diag-

nostic accuracies of dobutamine-stress and dipyridamole-stress echocardiographies.

These methods are widespread in the diagnosis of coronary artery disease. Dipyri-

damole is mostly used in Europe whereas dobutamine is more widespread in the

USA. Several medical reasons for that are pointed out by Picano et al. (2000). As

a conclusion they wanted to compare both tests according to their performance in

terms of sensitivity and specificity. Finally, they collected twelve studies where each

proband underwent both tests. The data are shown in Table 5.1.

The meta-analytic estimates can be found in Tables 5.2 and 5.3 as well as in

Figures 5.1 and 5.2. Depending on the chosen model, the estimated sensitivity of

dipyridamole ranges between 66% and 69%. This is slightly lower compared to

the sensitivity of dobutamine which is about 75%. Contrary to that, the estimated

specificity of dipyridamole that ranges from 92% to 95%, is higher than the specificity

of dobutamine which is in between 75% and 76%. Every model estimates a clearly

negative difference of sensitivities favoring dobutamine. The differences ranging from

-8.2 pp using the Gaussian copula to -5.8 pp using the GLMM with the logit link

and Gaussian quadrature. Both of the other GLMMs using PQL estimation lead

to analogous results from about 6.8 to 7.0 pp as the Plackett copula models. The
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Table 5.1: Echocardiography dataset from Picano et al. (2000), first test: dipyri-
damole, second test: dobutamine

Study TP1 FN1 FP1 TN1 TP2 FN2 FP2 TN2

Martin et al. 14 11 4 5 19 6 6 3
Salustri et al. 18 10 2 16 16 12 4 14
Previtali et al. 34 23 1 22 45 12 4 19
Beleslin et al. 88 31 1 16 98 21 4 13
Gruber et al. 12 5 2 22 12 5 2 22
Dagianti et al. 13 12 1 34 18 7 1 34
Sochowski et al. 16 8 3 19 17 7 4 18
Pingitore et al. 75 17 1 17 77 15 3 15
San Roman et al. 49 14 1 38 49 14 2 37
Minardi et al. 32 12 1 2 33 11 1 2
Santoro et al. 18 15 1 26 20 13 1 26
Batlle et al. 34 7 0 15 33 8 1 14

estimated differences of specificities are always positive. That means that each model

leads to a higher specificity of dipyridamole. The results range from 7.0 pp using

the GLMM with the PQL method and the logit link to 9.6 pp using the Gaussian

copula. The other copula models reach a difference from about 8.0 pp. It is obvious

that the Gaussian copula model leads to the most conspicuous results in cases of

sensitivity and specificity, respectively. Picano et al. performed a single meta-

analysis per test and reached similar results but without accounting for the various

association between the two tests. They got a difference of sensitivities from about

-9 pp and a difference of specificities from about 10 pp. Our new models account for

the potential correlations and we yield differences which are a bit smaller. Taking

into account that the simulation study showed that the new models overestimate

the parameters a bit, the results from Picano et al. seem to be too high and the

differences between the two tests are not as large as they appear.
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Table 5.2: Estimated sensitivities and specificities (in %) for the echocardiography
data set using the different models

Model Sensitivity Specificity Sensitivity Specificity
Dipyridamole Dipyridamole Dobutamine Dobutamine

[95% CI] [95% CI] [95% CI] [95% CI]

GLMM GQ 68.6 95.4 74.5 86.1
(logit link) [64.6; 72.7] [92.8; 98.0] [71.0; 78.0] [81.8; 90.3]

GLMM PQL 68.6 92.2 75.3 85.2
(identity link) [62.3; 74.8] [87.7; 96.8] [70.5; 80.1] [77.4; 92.9]

GLMM PQL 68.6 92.5 75.3 85.6
(logit link) [61.9; 74.6] [85.6; 96.3] [70.1; 80.0] [75.0; 92.1]

Gaussian Copula 66.3 90.3 74.5 80.6
[59.7; 72.9] [-; -] [68.9; 80.1] [73.7; 87.6]

Plackett C-Vine Copula 69.1 92.1 76.2 84.3
[63.1; 75.1] [87.6; 96.6] [71.4; 81.0] [76.4; 92.2]

Plackett D-Vine Copula 69.1 92.1 76.2 84.3
[63.1; 75.1] [87.6; 96.6] [71.4; 81.0] [76.4; 92.2]

Plackett discrete 69.1 92.1 75.9 84.1
D-Vine Copula [63.1; 75.1] [87.6; 96.6] [71.2; 80.7] [76.1; 92.0]

Table 5.3: Estimated differences of sensitivities and specificities (in percentage
points) for the echocardiography data set using the different models

Model Difference of sensitivities Difference of specificities
[95% CI] [95% CI]

GLMM GQ (logit link) -5.8 [-9.2; -2.4] 9.3 [4.4; 14.2]

GLMM PQL (identity link) -6.8 [-12.3; -1.3] 7.1 [1.6; 12.5]

GLMM PQL (logit link) -6.8 [-12.6; -0.9] 7.0 [0.7; 13.3]

Gaussian Copula -8.2 [-13.8; -2.6] 9.6 [2.7; 16.6]

Plackett C-Vine Copula -7.0 [-14.7; 0.6] 7.8 [-1.3; 17.0]

Plackett D-Vine Copula -7.0 [-14.7; 0.6] 7.8 [-1.3; 17.0]

Plackett discrete D-Vine Copula -6.8 [-14.4; 0.8] 8.0 [-1.1; 17.2]
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Figure 5.1: Estimates for the Picano data set: difference of sensitivities, Abbrevia-
tions: DSens - difference of sensitivities, LCL - lower confidence limit,
UCL - upper confidence limit

Figure 5.2: Estimates for the Picano data set: difference of specificities, Abbrevia-
tions: DSpec - Difference of specificities, LCL - lower confidence limit,
UCL - upper confidence limit
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5.2 Type 2 diabetes data set

With a second example, we will illustrate our new models using two existing sys-

tematic reviews (Kodama et al. 2013, Bennett et al. 2007) on the population-based

screening of type 2 diabetes mellitus. This disease is due to a progressive insulin

secretory defect on the background of insulin resistance (American Diabetes Asso-

ciation 2015). In principle, three methods are available to diagnose type 2 diabetes:

the 2-h plasma glucose value after a 75-g oral glucose tolerance test (OGTT), mea-

surement of glycated heamoglobin A1c (HbA1c) and measurement of fasting plasma

glucose (FPG). In the two systematic reviews, the single studies use mainly the

OGTT as gold standard and compare HbA1c to FPG. Unfortunately, the situation

is a bit more complicated because it occurs that the study-specific reference stan-

dards also includes information on HbA1c or FPG. Potentially, this may lead to

favouring one of the two tests. However, we ignore these subtleties for the apllica-

tion of our models. The same is done by Kodama et al. (2013) where the different

reference standards were also ignored. HbA1c, as well as FPG, is more rapid and less

unpleasant than the OGTT. HbA1c has additional advantages to FPG and OGTT

like greater convenience (because fasting is not required meaning that patients are

not requested to refrain from eating and drinking any liquids other than water before

the testing procedure), more preanalytical stability and less day-to-day variability

during stress and illness. This is pointed out in a comprehensively by the American

Diabetes Association (American Diabetes Association) (2015) and is important in

a possible screening setting. In both systematic reviews no summary measures for

sensitivity and specificity in a meta-analytic sense are given but results were re-

ported only narratively. To compensate for this disadvantage, we use this example

to show how our models work in practice. The used data are given in Table 5.4. We

included in total 38 different studies. For the references of the single studies, see

Kodama et al. (2013) and Bennett et al. (2007) and the citations therein.

The estimated sensitivities, specificities and their corresponding differences are

shown in Tables 5.5 and 5.6 and in Figures 5.3 and 5.4. Our estimated differences of

sensitivities and specificities show that there is a difference between HbA1c and FPG

but unfortunately two models do not converge. These are the models using PQL

with the identity link and the discrete copula model. This example shows that both

mentioned approaches can be very unstable in practice where the number and size

of studies could be small. Therefore the non-canonical link function and the very

complex discrete copula model should be used carefully. The other approaches lead
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to a sensitivity between 71% and 74% for HbA1c and between 70% and 73% for FPG,

respectively. Based on this, all models except of the GLMM using PQL and the logit

link, estimate a difference ranging from 1 pp (GLMM with Gaussian quadrature and

Gaussian copula) to 1.7 pp (vine copulas) in terms of sensitivity favoring HbA1c.

All models show that FPG seems to have a higher specificity than HbA1c with a

range from 2 pp to 4.4 pp. These effects should be interpreted carefully because of

wider confidence intervals. Based on our conducted simulation study we know that

the differences are mostly a bit overestimated. That means the difference in the

performance of the two tests could be a bit smaller. Taking into account that the

copula models and the GLMM using the logit link perform best, even in situation

as in the example, and that Gaussian quadrature leads to reasonable results when

the model converges, FPG seems to have a small benefit compared to HbA1c.
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Table 5.4: Type 2 diabetes dataset from Kodama et al. (Kodama et al. 2013), first
test: HbA1c, second test: fasting plasma glucose

Study TP1 FN1 FP1 TN1 TP2 FN2 FP2 TN2

Badings et al. 574 262 682 1389 633 203 465 1606
Choi et al. 489 146 1774 6966 445 190 524 8216
Li et al. 36 13 95 998 33 16 120 973
Schöttker et al. 338 29 2376 4060 266 101 1389 5047
Tahrani et al. 16 25 10 147 21 20 25 132
Wang et al. 424 192 121 2112 612 4 1281 952
Hu et al. 644 151 286 1217 648 147 293 1210
Zhang et al. 50 14 4 40 57 7 6 38
Zhou et al. 176 102 768 1286 206 72 823 1231
Kim et al. 72 16 46 258 75 13 35 269
Nakagami et al. 89 26 302 1382 74 41 79 1605
Salmasi et al. 23 7 5 109 16 14 21 93
Glümer et al. 181 71 1988 3877 198 54 721 5144
Anand et al., South Asia 25 2 45 243 24 3 60 228
Anand et al., China 12 2 25 268 12 2 59 234
Anand et al., Europe 13 6 35 260 9 10 40 255
Jesudason et al. 43 11 62 389 40 14 24 427
Tavintharan et al. 17 4 11 79 10 11 2 88
Ko et al. 575 52 1270 980 554 73 469 1781
Papoz et al. 100 12 108 381 77 35 103 386
Choi et al. 610 285 1692 3358 555 340 1667 3383
Heianza et al. 184 154 638 5265 262 76 1418 4485
Law et al. 58 23 129 204 22 59 25 308
Mukai et al. 195 100 718 969 199 96 580 1107
Soulimane et al., Denmark 74 40 1156 3660 80 34 771 4045
Soulimane et al., Australia 145 41 1107 4719 121 65 641 5185
Soulimane et al., France 61 31 742 2950 69 23 876 2816
Cederberg et al. 21 43 36 284 14 50 24 296
Nakagami et al. 42 15 318 814 35 22 198 934
Sato et al. 392 267 1130 5015 541 118 2116 4029
Inoue et al. 187 181 1112 8562 328 40 2411 7263
Inoue et al. 9 8 37 395 15 2 71 361
Norberg et al. 88 76 39 265 82 82 33 271
Takahashi et al. 52 13 37 79 39 26 29 87
Ko et al. 22 22 35 129 19 25 20 144
Mannucci et al. 79 1 689 223 75 5 686 226
Wiener et al. 114 64 20 203 139 39 27 196
Tanaka et al. 135 43 96 592 93 85 0 688
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Table 5.5: Estimated sensitivities and specificities (in %) for the type 2 diabetes
data set using the different models

Model Sensitivity Specificity Sensitivity Specificity
HbA1c HbA1c FPG FPG

[95% CI] [95% CI] [95% CI] [95% CI]

GLMM GQ (logit link) 74.1 81.4 73.0 85.8
[72.9; 75.3] [80.8; 81.9] [71.8; 74.2] [85.2; 86.3]

GLMM PQL (identity link) - - - -
[-; -] [-; -] [-; -] [-; -]

GLMM PQL (logit link) 72.1 80.8 73.1 84.0
[66.7; 76.9] [76.3; 84.7] [66.0; 79.1] [79.0; 88.0]

Gaussian Copula 71.0 78.0 70.1 80.1
[66.3; 75.6] [73.9; 82.2] [64.7; 75.4] [75.9; 84.3]

Plackett C-Vine Copula 71.6 77.5 69.9 79.6
[66.8; 76.3] [73.1; 82.0] [64.1; 75.8] [75.0; 84.2]

Plackett D-Vine Copula 71.6 77.5 69.9 79.6
[66.8; 76.3] [73.1; 82.0] [64.0; 75.7] 75.0; 84.2]

Plackett discrete D-Vine Copula - - - -
[-; -] [-; -] [-; -] [-; -]

Table 5.6: Estimated differences of sensitivities and specificities (in percentage
points) for the type 2 diabetes data set using the different models

Model Difference of sensitivities Difference of specificities
[95% CI] [95% CI]

GLMM GQ (logit link) 1.1 [-0.6; 2.8] -4.4 [-5.1; -3.6]

GLMM PQL (identity link) - [-; -] - [-; -]

GLMM PQL (logit link) -1.0 [-7.8; 5.8] -3.1 [-8.2; 2.0]

Gaussian Copula 0.9 [-4.9; 6.6] -2.1 [-7.1; 2.9]

Plackett C-Vine Copula 1.7 [-5.9; 9.2] -2.1 [-8.4; 4.3]

Plackett D-Vine Copula 1.7 [-5.9; 9.2] -2.0 [-8.4; 4.3]

Plackett discrete D-Vine Copula - [-; -] - [-; -]
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Figure 5.3: Estimates for the Kodama data set: Difference of sensitivities, Abbrevi-
ations: DSens - difference of sensitivities, LCL - lower confidence limit,
UCL - upper confidence limit

Figure 5.4: Estimates for the Kodama data set: Difference of specificities, Abbrevi-
ations: DSpec - Difference of specificities, LCL - lower confidence limit,
UCL - upper confidence limit



6 Discussion

In this thesis, new models that address the topic meta-analysis to compare two di-

agnostic tests to a common gold standard are developed. This issue is of special

concern in the research field of meta-analysis of diagnostic accuracy studies. While

methods for meta-analysis of clinical trials are well-established, this is a still growing

area of biostatistical research with recent developments. Generally, in meta-analyses

the results of different single studies dealing with the same underlying medical prob-

lem are summarized. As a basis, a systematic review is used. This yields results

which cannot be obtained from the single studies alone as it is pointed out by Boissel

et al. (1988). Actually, there is still an increasing need and interest in systematic

reviews and meta-analysis of diagnostic studies (Harbord et al. 2008). However,

this type of studies bring along difficulties that justify the current research efforts.

In case of diagnostic studies, we have at least a bivariate outcome, because each

single study reports two measures, the sensitivity (conditional probability of which

a diseased person is tested as diseased) and the specificity (conditional probability

of which a non-diseased proband is classified as non-diseased). In a meta-analysis,

we are interested in a weighted estimator for sensitivity and specificity that accounts

for different study sizes and potential heterogeneity, i.e. different accuracies of the

single studies. As an additional challenge, sensitivity and specificity are generally

negatively correlated across studies (Harbord et al. 2008). Different approaches to

this task are published (for example Reitsma et al. 2005, Chu and Cole 2006 or

Kuss et al. 2014), but the most well-known and frequently used approach is the

generalized linear mixed model from Chu and Cole (2006). These models are also

extended to the trivariate case (Chu et al. 2009, Hoyer and Kuss 2015) including

the prevalence as a third parameter of interest.

But there is still a need for approaches that allow a meta-analytic comparison

of diagnostic tests as it is recommended by Leeflang et al. (2008) and Tatsioni et

al. (2005). Such approaches should model a quadrivariate outcome including the

sensitivities and the specificities of both tests. This is quite challenging, because

of many correlations that should be accounted for. There is a correlation within
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the probands and within studies, because every participant underwent both tests,

and a correlation between studies. Different authors have addressed this topic but

their approaches involve some disadvantages. Siadaty et al. (2004) summarized the

information in only one measure, the diagnostic odds ratio, which is more difficult to

interpret. Trikalinos et al. (2014) assume independent tests and need a mixture of

aggregated and individual data. The Cochrane Collaboration recommend a bivariate

model as in Chu and Cole (2006) including a binary covariate for the test type to

identify which fourfold tables corresponds to each test (Macaskill et al. 2010). Using

that approach it is impossible to account for all potential correlations.

To compensate these disadvantages we propose new models with a four-dimensional

outcome and the difference of sensitivities and specificities as measures of interest.

As a natural extension of the bivariate approach from Chu and Cole (2006), a

quadrivariate generalized linear model with random effects is recommended where

two different link functions, the identity and the logit link, are used. Another pos-

sible model is given by the usage of four-dimensional copulas, which is an extension

of the bivariate copula model proposed by Kuss et al. (2014). As a basis, marginal

beta-binomial distributions are used that are linked by a copula. This has the ad-

vantage that no random effects are necessary.

To compare our models, an extensive simulation study was conducted. Thereby,

we use three different ways to implement the GLMM. The logit link and Gaussian

quadrature, the logit link and the PQL method and the identity link with PQL

estimation are used. On the other hand, four copula models were implemented where

the Gaussian copula, a C- and D-vine copula based on bivariate Plackett copulas

and a discrete D-vine copula are used. We have shown that in most practically

relevant cases the models perform well in terms of bias and coverage. Especially the

copula models work at least as good as the GLMM and in some situations frequently

better. With a view to the convergence of the models, it is obvious that there is

a difference. Taking the numerical robustness and the other performance measures

into account, the GLMM using Gaussian quadrature works slightly worse and should

be carefully used in practice. The same can be said about the GLMM using the

identity link. Summing up, the copula models and the GLMM with logit link and

PQL estimation seem to be valid models to compare diagnostic tests. Especially the

copula models are numerically robust because no random effects are needed. The

vine copulas have to be implemented in a comprehensive way. This leads to some

convergence problems especially for the discrete version. This problem occurs also

in practice, shown by the diabetes example. All in all, the GLMM with logit link
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and the copula models lead to valid estimates and could be applied in practice.

Of course, there are some disadvantages of our models. First, in case of the mixed

models four random effects are used which could cause numerical problems in meta-

analyses where only small data sets are available. The same problems are observed

using vine copulas with complex likelihood functions that have to be optimized. We

also do not have model selection criteria to compare copula models to mixed models.

A possible alternative could be cross validation. Only in case of the GLMMs it is

possible to select an optimal model based on well-known criteria. This is done while

performing tests on the random effects covariance matrix. By this it is tested how

many parameters should be included in the matrix. Based on the BIC (Bayesian

Information Criterion) and -2 loglikelihood a model selection can be made. This

option is available using PROC NLMIXED. We propose this idea in our submitted

paper (Hoyer and Kuss 2016). In previous publications (Kuss et al. 2014, Hoyer

and Kuss 2015), our copula models were criticized, because we consider our discrete

marginal distributions as continuous which allows us to determine the derivative.

Our simulations in the bivariate case have shown that the there is no huge bias

treating the distributions as continuous compared to discrete implementations. In

the quadrivariate case, we simulated a discrete version of a vine copula and prove

that there is no benefit. We conclude the same as before, that using the ’pseudo-

continuous’ approximation does not lead to a loss of information in the complex case

of four-dimensional responses.

To model the described within-patient correlation, individual data are necessary.

In practice, these are rarely reported. It was also shown by different authors that

there is not a huge loss of efficiency including only summary measures in meta-

analysis (Liu et al. 2015, Lin and Zeng 2010). For the rare cases where we have

these data, we implemented a GLMM with an additional random effect. Such models

are numerically very instable and need an extensive computation time.

Many expansions of our proposed models are possible. In practice, there are

meta-analyses where more than two diagnostic tests are compared (Siadaty et al.

2004). On this basis we want to extent our approaches to more than four dimensions

to cope with such complex situations. The development of model selection criteria

to compare the copula models with the GLMMs is a potential future issue. Simi-

larly, meta-analyses of ROC curves are actually requested, especially in the field of

diabetes. We observed this during screening the studies where mostly more than

one threshold is reported. While methods for estimating a summary ROC curve

for only one test are actually in scope of interest and development (e.g. Littenberg
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and Moses 1993, Dukic and Gatsonis 2003), such approaches are missing for meta-

analytic comparisons of diagnostic tests. Therefore we would like to improve our

model to estimate full summary ROC curves for the comparison of two tests. In a

first approach we included the threshold as a covariate.

To sum up, the proposed models offer different possibilities for future work and

could be used by medical researchers as well to make conclusions about the effec-

tiveness of two diagnostic tests which are directly compared.
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Appendix

Simulation Results

Table 6.1: Bias (multiplied by 100) for the differences of sensitivity and specificity on the
[0, 1]- scale. Abbreviations: ∆Se=Difference of sensitivities, ∆Sp=Difference
of specificities, corr=correlation between Se1, Sp1, Se2 and Sp2, SN=GLMM
using GQ, SI=GLMM using PQL and the identity link, SL=GLMM using
PQL and the logit link, CM=Cochrane model using GQ and the logit link,
CA=Cochrane model using the PQL and the logit link, True model=GLMM

Estimated model

True ∆Se True SN SI SL CM CA
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 0.0 0.2 0.2 0.0 0.1 0.1 0.2 0.1 0.1 0.1
negative -0.8 0.1 -0.2 -0.1 -0.1 -0.1 -0.5 -0.3 -0.4 -0.1
mixed 0.1 0.3 0.1 -0.0 0.1 -0.1 -0.0 -0.1 0.0 -0.1

0%/-10% non -0.2 -0.3 0.3 -0.0 0.1 -0.0 -0.1 -0.2 -0.0 -0.2
negative 0.3 -0.8 0.4 -0.3 0.5 0.1 -0.2 0.3 0.2 -0.4
mixed 0.2 0.0 0.1 0.1 -0.1 -0.1 -0.0 -0.1 -0.1 -0.1

0%/5% non -0.3 -0.1 -0.0 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1 -0.1
negative -0.3 -0.1 -0.2 -0.3 -0.1 -0.2 0.5 0.2 -0.0 -0.1
mixed 0.1 0.3 0.2 -0.0 0.3 -0.1 0.2 -0.1 0.2 -0.1

-10%/0% non 0.2 -0.3 0.3 -0.2 0.4 -0.1 0.3 -0.1 0.3 0.0
negative 0.0 -0.4 0.2 -0.1 0.0 0.0 0.2 0.1 -0.1 0.2
mixed 0.4 0.0 0.3 -0.0 0.2 0.0 0.2 -0.1 0.2 0.0

-10%/-10% non 0.0 -0.5 0.4 -0.1 0.3 -0.1 0.3 -0.2 0.2 -0.3
negative -0.6 -0.9 0.4 -0.4 0.5 -0.3 0.7 0.1 0.4 -0.5
mixed -0.3 -0.3 0.2 -0.3 0.1 -0.2 0.1 -0.2 -0.0 -0.2

-10%/5% non -0.2 -0.1 0.0 -0.3 0.2 -0.2 0.2 -0.3 0.2 -0.3
negative -0.4 0.9 0.5 0.2 0.3 0.1 0.2 0.3 0.3 0.2
mixed -0.0 -0.1 0.3 -0.1 0.3 -0.1 0.2 -0.0 0.2 -0.1

5%/0% non -0.4 0.1 -0.3 0.0 -0.3 0.0 -0.2 -0.0 -0.2 -0.0
negative 0.1 -0.2 -0.4 -0.3 -0.5 -0.1 -0.3 0.3 -0.1 0.2
mixed 0.2 0.2 -0.2 0.0 -0.2 0.0 -0.3 0.2 -0.2 0.2

5%/-10% non 0.3 -0.5 0.0 -0.2 -0.0 -0.2 -0.2 -0.3 -0.0 -0.3
negative 1.1 0.0 -0.1 -0.8 0.0 -0.2 -0.7 0.3 -0.1 -0.6
mixed -0.5 -0.5 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.3

5%/5% non 0.1 0.1 -0.0 -0.1 -0.1 -0.0 0.1 -0.1 0.1 -0.1
negative 0.7 -0.1 0.2 -0.3 0.0 -0.2 0.4 -0.3 0.1 -0.1
mixed 0.1 0.3 -0.0 0.0 -0.1 -0.1 -0.2 0.0 -0.2 0.0

90
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Table 6.2: Empirical coverage (in %) for the 95% confidence intervals for the differences of
sensitivity and specificity on the [0, 1]- scale. Abbreviations: ∆Se=Difference
of sensitivities, ∆Sp=Difference of specificities, corr=correlation between Se1,
Sp1, Se2 and Sp2, SN=GLMM using GQ, SI=GLMM using PQL and the
identity link, SL=GLMM using PQL and the logit link, CM=Cochrane model
using GQ and the logit link, CA=Cochrane model using the PQL and the logit
link, True model=GLMM

Estimated model

True ∆Se True SN SI SL CM CA
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 94.3 93.9 93.3 91.2 93.5 91.7 68.3 71.3 82.0 81.5
negative 92.4 88.2 93.0 93.8 92.8 96.4 59.0 61.0 74.3 77.9
mixed 93.7 96.0 91.7 92.0 93.0 92.7 69.0 74.7 84.8 88.4

0%/-10% non 91.6 87.3 93.4 90.8 91.7 92.7 67.0 77.5 79.0 84.3
negative 92.4 85.7 94.9 89.8 94.0 93.8 67.6 69.7 73.7 81.4
mixed 91.0 93.7 91.5 94.1 92.6 95.5 70.0 84.0 87.5 90.3

0%/5% non 95.2 94.6 94.0 93.0 93.3 92.6 67.2 71.3 81.7 83.8
negative 95.7 87.3 91.9 90.3 92.1 91.2 61.7 73.1 71.6 74.0
mixed 95.3 92.8 93.1 93.8 93.5 93.0 70.7 76.4 86.7 89.7

-10%/0% non 93.1 95.3 94.2 91.9 93.7 92.5 71.6 73.6 81.7 84.3
negative 84.1 89.3 93.9 93.5 92.5 93.0 66.9 67.1 78.0 77.1
mixed 91.5 94.4 92.1 91.0 93.5 92.6 73.2 75.9 88.6 88.2

-10%/-10% non 92.9 95.5 92.3 92.8 92.3 93.7 68.9 79.8 82.1 85.2
negative 91.8 89.6 89.1 90.8 92.7 95.1 65.5 71.6 76.0 81.9
mixed 88.5 90.6 93.2 93.9 93.3 94.1 73.4 84.1 87.4 90.3

-10%/5% non 93.6 93.8 92.3 92.8 92.3 93.0 68.7 71.5 81.7 84.9
negative 87.3 87.8 93.4 91.5 92.8 91.5 71.1 62.0 77.9 75.8
mixed 93.5 94.7 90.8 92.3 92.7 93.7 74.4 73.8 88.9 87.3

5%/0% non 93.2 94.8 92.2 93.1 92.2 92.8 67.6 71.7 82.3 83.2
negative 90.7 88.7 91.6 91.6 90.4 91.2 65.2 65.6 72.9 77.2
mixed 94.5 95.5 91.6 92.7 91.9 92.4 68.9 75.3 85.7 88.8

5%/-10% non 92.4 91.7 93.4 90.9 93.8 92.7 63.3 77.1 79.4 84.3
negative 82.6 83.1 92.9 90.2 91.2 92.8 54.0 66.4 70.7 78.0
mixed 92.4 84.1 94.6 92.6 92.6 94.2 70.1 81.4 88.2 90.0

5%/5% non 93.9 96.2 92.8 93.5 92.3 93.1 68.2 70.6 81.6 82.6
negative 90.0 94.6 91.8 95.2 92.2 93.9 66.7 67.3 71.9 77.4
mixed 96.3 93.0 94.0 91.9 94.5 92.5 71.7 75.9 86.6 88.4
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Table 6.3: Number of converged runs from 1000 simulation runs. Abbrevia-
tions: ∆Se=Difference of sensitivities, ∆Sp=Difference of specificities,
corr=correlation between Se1, Sp1, Se2 and Sp2, SN=GLMM using GQ,
SI=GLMM using PQL and the identity link, SL=GLMM using PQL and the
logit link, CM=Cochrane model using GQ and the logit link, CA=Cochrane
model using the PQL and the logit link, True model=GLMM

Estimated model

True ∆Se True SN SI SL CM CA
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 431 431 659 659 817 817 840 840 926 926
negative 192 192 256 256 418 418 172 172 421 421
mixed 292 292 575 575 756 756 687 687 876 876

0%/-10% non 347 347 455 455 823 823 802 802 919 919
negative 180 180 157 157 369 369 197 197 457 457
mixed 224 224 387 387 731 731 640 640 874 874

0%/5% non 460 460 670 670 820 820 849 849 942 942
negative 207 207 298 298 441 441 216 216 454 454
mixed 327 327 641 641 770 770 712 712 901 901

-10%/0% non 378 378 589 589 839 839 818 818 921 921
negative 198 198 231 231 386 386 224 224 437 437
mixed 279 279 545 545 753 753 657 657 875 875

-10%/-10% non 299 299 431 431 793 793 803 803 893 893
negative 182 182 174 174 327 327 217 217 463 463
mixed 203 203 396 396 735 735 606 606 878 878

-10%/5% non 405 405 599 599 797 797 832 832 923 923
negative 212 212 259 259 390 390 199 199 443 443
mixed 283 283 574 574 764 764 675 675 885 885

5%/0% non 447 447 652 652 812 812 849 849 934 934
negative 173 173 273 273 408 408 189 189 395 395
mixed 295 295 572 572 765 765 662 662 876 876

5%/-10% non 335 335 441 441 785 785 819 819 923 923
negative 188 188 183 183 363 363 204 204 450 450
mixed 236 236 392 392 726 726 622 622 866 866

5%/5% non 456 456 676 676 816 816 881 881 951 951
negative 196 196 292 292 424 424 182 182 442 442
mixed 361 361 615 615 760 760 692 692 882 882
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Table 6.4: Bias (multiplied by 100) for the differences of sensitivity and specificity on the
[0, 1]- scale. Abbreviations: ∆Se=Difference of sensitivities, ∆Sp=Difference
of specificities, corr=correlation between Se1, Sp1, Se2 and Sp2, SI=GLMM
using PQL and the identity link, SL=GLMM using PQL and the logit link,
CG = Gaussian Copula, CP = C-Vine Copula, CD = D-Vine Copula, DC =
Discrete D-Vine Copula, True model=Gaussian copula

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 0.1 0.1 -0.1 0.0 -0.1 0.1 -0.1 0.1 0.4 1.1 -0.1 0.1
negative -0.1 0.5 -0.1 -0.2 -0.1 -0.1 -0.2 -0.1 0.8 1.4 -0.1 -0.1
mixed -0.8 -0.0 -0.2 -0.0 -4.6 -0.0 -0.1 -0.2 -0.7 0.1 -2.0 0.4

0%/-10% non -1.2 -2.5 0.0 -2.2 0.1 -1.4 0.0 0.3 0.7 1.6 -0.0 0.1
negative -0.1 -3.7 -0.1 -2.3 -0.0 -0.1 -0.3 1.0 1.5 2.5 0.1 0.4
mixed 0.0 -1.8 -0.4 -2.4 -3.8 -3.6 0.1 -0.1 -0.2 0.0 -2.3 -0.0

0%/5% non -0.2 -0.4 -0.4 0.7 -0.4 0.1 -0.3 0.0 0.1 0.9 -0.3 0.0
negative -0.2 -0.7 0.1 0.5 -0.1 -0.1 -0.2 -0.1 0.6 1.4 -0.2 0.0
mixed -0.9 -0.0 -0.2 0.7 -4.3 0.9 -0.4 -0.1 -0.7 0.1 -2.6 0.0

-10%/0% non 0.3 0.2 -1.2 0.3 -0.1 0.3 0.0 0.3 0.4 1.1 -0.1 0.2
negative 0.7 -0.4 -1.1 0.1 0.3 -0.0 0.3 -0.1 1.2 1.2 0.2 -0.0
mixed -2.0 -0.1 -1.6 -0.1 -5.9 0.1 -1.6 -0.0 -2.0 -0.0 -3.5 -0.3

-10%/-10% non -5.0 -2.2 -1.2 -2.3 0.3 -1.9 0.1 0.0 0.7 1.4 -0.1 -0.2
negative 17.4 0.6 -1.1 -2.3 0.7 -0.0 -0.3 0.9 1.6 2.6 0.0 0.1
mixed -2.6 -2.0 -1.6 -2.1 -5.8 -3.1 -1.2 -0.1 -1.5 0.5 -3.7 0.6

-10%/5% non 0.5 -0.8 -1.2 0.4 -0.0 -0.3 0.2 -0.4 0.6 0.5 0.1 -0.4
negative -0.5 0.5 -1.5 1.0 0.1 -0.0 0.1 -0.1 0.9 1.7 -0.0 0.1
mixed -2.3 0.2 -1.5 0.8 -6.1 0.3 -1.6 0.1 -1.9 -0.1 -3.4 -0.5

5%/0% non 0.4 -0.5 0.5 -0.2 0.1 -0.2 0.1 -0.2 0.5 0.8 0.1 -0.2
negative -0.3 0.1 0.5 0.0 -0.1 -0.2 -0.3 -0.1 0.7 1.3 -0.1 -0.1
mixed -0.6 -0.2 -0.1 -0.1 -4.9 -0.5 -0.1 -0.1 -0.6 0.0 -1.8 -0.2

5%/-10% non 4.7 -6.7 0.5 -2.6 0.2 -2.1 0.2 -0.3 1.0 1.2 0.1 -0.5
negative 1.8 -7.4 0.5 -2.5 -0.2 -0.5 -0.6 0.7 1.2 2.7 -0.1 -0.0
mixed -1.4 -2.0 0.3 -2.3 -4.0 -3.2 0.5 -0.2 0.5 0.4 -1.5 0.2

5%/5% non 0.1 0.2 0.3 0.7 -0.2 0.1 -0.1 -0.0 0.4 1.1 -0.2 0.0
negative 0.4 -0.4 0.4 0.6 -0.1 -0.1 -0.1 -0.2 0.5 1.2 -0.2 -0.1
mixed -0.7 -0.1 0.1 0.7 -4.0 0.4 -0.1 -0.2 -0.3 -0.1 -2.2 0.1
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Table 6.5: Bias (multiplied by 100) for the differences of sensitivity and specificity on the
[0, 1]- scale. Abbreviations: ∆Se=Difference of sensitivities, ∆Sp=Difference
of specificities, corr=correlation between Se1, Sp1, Se2 and Sp2, SI=GLMM
using PQL and the identity link, SL=GLMM using PQL and the logit link,
CG = Gaussian Copula, CP = C-Vine Copula, CD = D-Vine Copula, DC =
Discrete D-Vine Copula, True model=GLMM

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.7 0.1 0.1
negative -0.2 -0.1 -0.1 -0.1 -0.4 -0.0 -0.2 0.0 0.4 1.5 -0.5 0.0
mixed 0.1 -0.0 0.1 -0.1 -0.0 -0.2 0.2 -0.1 -0.0 0.2 0.0 -0.1

0%/-10% non 0.3 -0.0 0.1 -0.0 0.0 -0.6 0.1 -0.1 0.5 0.6 0.0 -0.2
negative 0.4 -0.3 0.5 0.1 0.3 -0.1 0.4 0.2 1.1 1.4 0.2 -0.2
mixed 0.1 0.1 -0.1 -0.1 -0.1 -0.4 0.2 -0.0 -0.1 0.4 0.1 -0.2

0%/5% non -0.0 -0.1 -0.1 -0.2 -0.1 -0.0 0.0 -0.2 0.4 0.7 -0.0 -0.1
negative -0.2 -0.3 -0.1 -0.2 0.0 -0.1 -0.0 -0.2 0.5 1.2 -0.1 0.0
mixed 0.2 -0.0 0.3 -0.1 0.0 -0.1 0.3 -0.1 -0.0 0.3 0.1 -0.0

-10%/0% non 0.3 -0.2 0.4 -0.1 0.2 0.0 0.5 -0.0 0.8 0.5 0.3 -0.0
negative 0.2 -0.1 0.0 0.0 0.5 0.1 0.8 0.2 1.3 1.4 0.3 -0.0
mixed 0.3 -0.0 0.2 0.0 0.4 -0.0 0.7 0.0 0.6 0.4 0.4 -0.1

-10%/-10% non 0.4 -0.1 0.3 -0.1 0.0 -0.6 0.3 -0.2 0.7 0.4 0.2 -0.4
negative 0.4 -0.4 0.5 -0.3 0.6 -0.1 0.9 0.2 1.4 1.0 0.2 -0.3
mixed 0.2 -0.3 0.1 -0.2 0.4 -0.4 0.7 0.0 0.4 0.4 0.2 -0.3

-10%/5% non 0.0 -0.3 0.2 -0.2 0.1 -0.1 0.3 -0.3 0.7 0.4 0.2 -0.2
negative 0.5 0.2 0.3 0.1 0.5 -0.1 0.8 -0.3 1.2 1.2 0.1 0.1
mixed 0.3 -0.1 0.3 -0.1 0.3 -0.1 0.7 -0.2 0.5 0.2 0.3 -0.1

5%/0% non -0.3 0.0 -0.3 0.0 -0.3 -0.0 -0.3 -0.0 0.1 0.6 -0.3 -0.1
negative -0.4 -0.3 -0.5 -0.1 -0.3 -0.0 -0.3 0.1 0.2 1.3 -0.3 0.1
mixed -0.2 0.0 -0.2 0.0 -0.2 -0.0 -0.2 -0.0 -0.4 0.4 -0.3 0.0

5%/-10% non 0.0 -0.2 -0.0 -0.2 -0.1 -0.7 -0.0 -0.2 0.3 0.5 -0.1 -0.4
negative -0.1 -0.8 0.0 -0.2 -0.2 -0.3 -0.1 0.1 0.3 1.3 -0.3 -0.3
mixed -0.4 -0.3 -0.3 -0.2 -0.2 -0.5 -0.0 -0.1 -0.4 0.2 -0.2 -0.3

5%/5% non -0.0 -0.1 -0.1 -0.0 0.0 -0.0 -0.0 -0.1 0.2 0.5 -0.1 -0.1
negative 0.2 -0.3 0.0 -0.2 -0.2 -0.2 -0.0 -0.2 0.2 1.2 -0.1 -0.0
mixed -0.0 0.0 -0.1 -0.1 -0.4 0.0 -0.2 -0.1 -0.3 0.3 -0.4 -0.1
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Table 6.6: Empirical coverage (in %) for the 95% confidence intervals for the differences of
sensitivity and specificity on the [0, 1]- scale. Abbreviations: ∆Se=Difference
of sensitivities, ∆Sp=Difference of specificities, corr=correlation between Se1,
Sp1, Se2 and Sp2, SI=GLMM using PQL and the identity link, SL=GLMM
using PQL and the logit link, CG = Gaussian Copula, CP = C-Vine Copula,
CD = D-Vine Copula, DC = Discrete D-Vine Copula, True model=Gaussian
copula

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 93.2 94.6 94.1 93.6 91.9 93.3 95.4 95.3 94.6 93.8 84.0 87.6
negative 94.8 91.1 94.4 92.9 92.6 91.0 92.5 91.5 91.1 87.5 90.9 90.6
mixed 95.3 94.1 96.3 92.6 71.5 83.0 85.6 89.7 87.8 91.7 83.9 82.0

0%/-10% non 100 60.0 92.6 93.9 89.9 89.5 93.5 94.1 92.5 94.4 80.6 84.3
negative 100 40.0 92.5 93.7 91.2 91.3 91.1 92.8 87.6 87.5 89.0 90.9
mixed 100 78.6 94.3 94.2 73.3 78.0 82.4 88.9 84.4 89.9 78.4 81.1

0%/5% non 92.7 95.5 91.6 94.4 92.2 93.2 94.8 96.0 94.1 94.1 83.3 86.2
negative 91.3 92.1 92.4 93.9 92.0 92.8 91.8 91.8 91.2 88.9 88.1 90.5
mixed 94.2 92.5 95.0 94.3 73.7 83.7 85.3 90.1 83.2 89.6 79.9 78.8

-10%/0% non 93.3 94.6 94.1 92.2 92.5 93.0 94.4 94.8 94.2 93.8 84.7 83.6
negative 88.7 91.5 93.1 92.0 91.1 91.0 90.9 91.5 90.6 87.7 88.9 89.4
mixed 90.4 95.0 90.1 94.5 69.4 85.9 81.5 89.9 81.0 88.3 74.4 79.9

-10%/-10% non 100 100 94.0 93.8 93.1 90.4 94.3 94.8 94.2 95.1 84.0 85.8
negative 0 100 95.0 93.5 92.0 90.8 92.3 91.6 89.7 88.4 89.6 89.9
mixed 94.4 83.3 89.9 93.6 64.1 77.0 82.7 89.3 80.6 87.9 69.7 74.7

-10%/5% non 92.6 94.9 94.1 93.4 91.9 90.8 95.3 94.0 94.3 93.1 82.7 82.6
negative 91.2 93.7 93.6 94.9 92.3 93.0 91.9 94.1 91.7 89.5 90.5 91.7
mixed 89.5 93.0 91.6 94.0 66.7 85.2 83.7 89.2 84.0 90.7 71.6 75.6

5%/0% non 93.3 93.7 92.9 92.9 91.3 92.8 95.0 95.1 94.1 93.3 84.7 84.1
negative 93.0 91.9 93.7 93.1 91.0 90.9 92.0 91.3 92.3 87.5 88.6 89.6
mixed 92.3 93.9 96.0 95.6 74.5 87.1 84.8 90.7 86.7 91.6 83.0 79.8

5%/-10% non 87.5 50.0 93.1 93.5 90.3 89.5 93.3 94.7 93.1 94.7 83.9 86.4
negative 100 40.0 93.6 93.3 92.9 91.0 92.1 91.8 89.0 87.9 89.9 91.3
mixed 100 86.7 95.8 94.2 74.0 80.0 83.7 90.1 84.9 90.1 85.0 80.8

5%/5% non 91.0 91.2 93.0 92.7 92.1 91.7 94.9 95.0 94.7 93.0 84.6 86.2
negative 91.8 92.5 93.5 92.9 90.9 91.6 91.7 91.6 90.7 88.7 90.0 90.3
mixed 95.7 92.5 96.1 92.4 73.5 83.4 85.9 89.2 87.7 90.9 81.4 83.5
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Table 6.7: Empirical coverage (in %) for the 95% confidence intervals for the differences of
sensitivity and specificity on the [0, 1]- scale. Abbreviations: ∆Se=Difference
of sensitivities, ∆Sp=Difference of specificities, corr=correlation between Se1,
Sp1, Se2 and Sp2, SI=GLMM using PQL and the identity link, SL=GLMM
using PQL and the logit link, CG = Gaussian Copula, CP = C-Vine Copula,
CD = D-Vine Copula, DC = Discrete D-Vine Copula, True model=GLMM

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 93.3 91.2 93.5 91.7 91.5 91.0 93.4 94.0 92.4 91.7 88.1 87.2
negative 93.0 93.8 92.8 96.4 91.2 92.7 92.0 92.1 90.4 86.3 90.2 92.1
mixed 91.7 92.0 93.0 92.7 91.6 90.7 95.7 95.1 95.1 93.8 90.4 88.1

0%/-10% non 93.4 90.8 91.7 92.7 90.5 87.3 93.3 91.4 92.6 90.5 87.6 85.3
negative 94.9 89.8 94.0 93.8 92.3 89.2 92.5 91.8 91.5 84.7 89.7 88.4
mixed 91.5 94.1 92.6 95.5 91.3 90.1 95.7 93.7 95.4 92.0 88.2 89.7

0%/5% non 94.0 93.0 93.3 92.6 92.9 90.1 94.2 93.7 93.1 92.3 87.9 88.1
negative 91.9 90.3 92.1 91.2 89.8 90.7 92.3 92.1 91.0 86.7 90.0 90.4
mixed 93.1 93.8 93.5 93.0 93.0 93.6 96.1 96.3 94.9 95.6 85.6 89.1

-10%/0% non 94.2 91.9 93.7 92.5 90.9 91.7 93.9 94.2 93.0 92.9 87.1 89.4
negative 93.9 93.5 92.5 93.0 90.6 92.1 90.6 92.5 90.2 88.4 87.1 89.4
mixed 92.1 91.0 93.5 92.6 91.2 91.1 94.9 95.7 94.9 95.0 88.3 89.4

-10%/-10% non 92.3 92.8 92.3 93.7 91.3 89.3 92.2 92.6 90.7 91.2 87.1 86.1
negative 89.1 90.8 92.7 95.1 89.5 89.2 91.4 92.4 88.6 87.4 91.0 91.6
mixed 93.2 93.9 93.3 94.1 89.8 89.9 92.6 93.9 93.2 92.6 87.0 91.6

-10%/5% non 92.3 92.8 92.3 93.0 89.7 90.6 93.9 94.2 91.8 92.5 87.4 89.7
negative 93.4 91.5 92.8 91.5 91.6 89.7 91.9 90.9 90.5 85.9 89.3 90.2
mixed 90.8 92.3 92.7 93.7 89.6 92.0 94.8 95.6 94.7 95.3 87.8 88.5

5%/0% non 92.2 93.1 92.2 92.8 92.6 91.5 95.6 94.8 94.3 93.4 86.0 87.8
negative 91.6 91.6 90.4 91.2 91.4 89.7 91.6 91.8 90.6 85.6 89.5 89.7
mixed 91.6 92.7 91.9 92.4 90.3 91.3 95.1 95.6 95.4 94.8 87.0 90.7

5%/-10% non 93.4 90.9 93.8 92.7 89.8 90.7 93.9 92.8 94.3 90.5 88.6 88.0
negative 92.9 90.2 91.2 92.8 89.9 90.0 91.9 90.7 90.7 84.5 90.3 88.1
mixed 94.6 92.6 92.6 94.2 91.5 90.3 95.7 93.9 94.5 93.6 86.5 88.9

5%/5% non 92.8 93.5 92.3 93.1 91.5 91.2 94.4 94.9 93.5 92.8 85.7 88.2
negative 91.8 95.2 92.2 93.9 89.8 90.6 90.2 92.7 91.0 88.3 89.8 89.7
mixed 94.0 91.9 94.5 92.5 93.4 92.1 95.7 94.3 95.2 94.2 90.1 88.6



Appendix 97

Table 6.8: Number of converged runs from 1000 simulation runs. Abbrevia-
tions: ∆Se=Difference of sensitivities, ∆Sp=Difference of specificities,
corr=correlation between Se1, Sp1, Se2 and Sp2, SI=GLMM using PQL and
the identity link, SL=GLMM using PQL and the logit link, CG = Gaussian
Copula, CP = C-Vine Copula, CD = D-Vine Copula, DC = Discrete D-Vine
Copula, True model=Gaussian copula

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 279 279 920 920 992 992 997 997 999 999 964 964
negative 192 192 680 680 972 972 994 994 992 992 980 980
mixed 261 261 754 754 490 490 469 469 517 517 352 352

0%/-10% non 6 6 900 900 986 986 996 996 995 995 962 962
negative 5 5 583 583 956 956 989 989 978 978 974 974
mixed 17 17 778 778 450 450 461 461 493 493 320 320

0%/5% non 396 396 925 925 992 992 997 997 999 999 970 970
negative 241 241 654 654 958 958 993 993 991 991 976 976
mixed 362 362 758 758 466 466 449 449 529 529 355 355

-10%/0% non 149 149 919 919 990 990 997 997 1000 1000 964 964
negative 107 107 637 637 962 962 996 996 992 992 989 989
mixed 283 283 750 750 483 483 479 479 514 514 352 352

-10%/-10% non 1 1 907 907 989 989 997 997 994 994 969 969
negative 1 1 614 614 966 966 992 992 978 978 987 987
mixed 19 19 783 783 478 478 504 504 476 476 341 341

-10%/5% non 256 256 914 914 995 995 996 996 997 997 970 970
negative 159 159 687 687 967 967 994 994 991 991 970 970
mixed 347 347 748 748 472 472 469 469 512 512 342 342

5%/0% non 284 284 903 903 990 990 996 996 997 997 961 961
negative 188 188 639 639 965 965 989 989 984 984 976 976
mixed 265 265 768 768 496 496 509 509 531 531 331 331

5%/-10% non 8 8 898 898 987 987 996 996 992 992 957 957
negative 5 5 594 594 949 949 991 991 967 967 974 974
mixed 16 16 781 781 481 481 489 489 482 482 297 297

5%/5% non 421 421 916 916 991 991 995 995 996 996 964 964
negative 281 281 678 678 973 973 997 997 993 993 980 980
mixed 375 375 799 799 451 451 505 505 509 509 324 324
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Table 6.9: Number of converged runs from 1000 simulation runs. Abbrevia-
tions: ∆Se=Difference of sensitivities, ∆Sp=Difference of specificities,
corr=correlation between Se1, Sp1, Se2 and Sp2, SI=GLMM using PQL and
the identity link, SL=GLMM using PQL and the logit link, CG = Gaussian
Copula, CP = C-Vine Copula, CD = D-Vine Copula, DC = Discrete D-Vine
Copula, True model=GLMM

Estimated model

True ∆Se True SI SL CG CP CD DC
and ∆Sp corr

∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp ∆Se ∆Sp

0%/0% non 659 659 817 817 925 925 938 938 948 948 912 912
negative 256 256 418 418 911 911 934 934 933 933 915 915
mixed 575 575 756 756 938 938 935 935 952 952 889 889

0%/-10% non 455 455 823 823 877 877 905 905 895 895 837 837
negative 157 157 369 369 824 824 861 861 853 853 850 850
mixed 387 387 731 731 868 868 890 890 887 887 816 816

0%/5% non 670 670 820 820 957 957 963 963 962 962 934 934
negative 298 298 441 441 927 927 944 944 931 931 926 926
mixed 641 641 770 770 941 941 948 948 953 953 886 886

-10%/0% non 589 589 839 839 924 924 948 948 954 954 902 902
negative 231 231 386 386 890 890 915 915 917 917 898 898
mixed 545 545 753 753 910 910 930 930 938 938 870 870

-10%/-10% non 431 431 793 793 842 842 899 899 891 891 833 833
negative 174 174 327 327 799 799 850 850 844 844 822 822
mixed 396 396 735 735 852 852 883 883 876 876 836 836

-10%/5% non 599 599 797 797 935 935 957 957 955 955 906 906
negative 259 259 390 390 901 901 942 942 932 932 894 894
mixed 574 574 764 764 941 941 946 946 945 945 897 897

5%/0% non 652 652 812 812 954 954 961 961 959 959 925 925
negative 273 273 408 408 917 917 935 935 933 933 907 907
mixed 572 572 765 765 931 931 950 950 941 941 885 885

5%/-10% non 441 441 785 785 854 854 912 912 907 907 860 860
negative 183 183 363 363 822 822 863 863 836 836 848 848
mixed 392 392 726 726 852 852 882 882 858 858 811 811

5%/5% non 676 676 816 816 947 947 965 965 970 970 930 930
negative 292 292 424 424 924 924 949 949 930 930 903 903
mixed 615 615 760 760 939 939 943 943 950 950 879 879
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Example SAS Code

In appendix C the SAS code to fit the generalized linear mixed model using PQL

and the logit link for the diabetes data set is given.

* HbA1c and FPG data set;

* First test: HbA1c, second test: FPG;

DATA diabetes;

INPUT study tp1 fn1 fp1 tn1

tp2 fn2 fp2 tn2;

s1=tp1+fn1;

h1=tn1+fp1;

s2=tp2+fn2;

h2=tn2+fp2;

DATALINES;

1 574 262 682 1389 633 203 465 1606

2 489 146 1774 6966 445 190 524 8216

3 36 13 95 998 33 16 120 973

4 338 29 2376 4060 266 101 1389 5047

5 16 25 10 147 21 20 25 132

6 424 192 121 2112 612 4 1281 952

7 644 151 286 1217 648 147 293 1210

8 50 14 4 40 57 7 6 38

9 176 102 768 1286 206 72 823 1231

10 72 16 46 258 75 13 35 269

11 89 26 302 1382 74 41 79 1605

12 23 7 5 109 16 14 21 93

13 181 71 1988 3877 198 54 721 5144

14 25 2 45 243 24 3 60 228

15 12 2 25 268 12 2 59 234

16 13 6 35 260 9 10 40 255

17 43 11 62 389 40 14 24 427

18 17 4 11 79 10 11 2 88

19 575 52 1270 980 554 73 469 1781

20 100 12 108 381 77 35 103 386

21 610 285 1692 3358 555 340 1667 3383

22 184 154 638 5265 262 76 1418 4485

23 58 23 129 204 22 59 25 308

24 195 100 718 969 199 96 580 1107

25 74 40 1156 3660 80 34 771 4045

26 145 41 1107 4719 121 65 641 5185

27 61 31 742 2950 69 23 876 2816

28 21 43 36 284 14 50 24 296

29 42 15 318 814 35 22 198 934

30 392 267 1130 5015 541 118 2116 4029

31 187 181 1112 8562 328 40 2411 7263

32 9 8 37 395 15 2 71 361

33 88 76 39 265 82 82 33 271

34 52 13 37 79 39 26 29 87

35 22 22 35 129 19 25 20 144

36 79 1 689 223 75 5 686 226

37 114 64 20 203 139 39 27 196

38 135 43 96 592 93 85 0 688

;RUN;
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* Quadruplicate the data set;

DATA glimmix1;

SET diabetes;

DO temp1=1 TO 4; OUTPUT;END;

RUN;

* Assign the corresponding outcome;

DATA glimmix2;

SET glimmix1;

IF temp1=1 THEN DO; test=1; outcome="Sens"; outcomenum=0; outcomenum0=1;

outcomenum1=0; outcomenum2=0; outcomenum3=0; num=tp1; den=s1; END;

IF temp1=2 THEN DO; test=1; outcome="Spec"; outcomenum=1; outcomenum0=0;

outcomenum1=1; outcomenum2=0; outcomenum3=0; num=tn1; den=h1; END;

IF temp1=3 THEN DO; test=2; outcome="Sens"; outcomenum=2; outcomenum0=0;

outcomenum1=0; outcomenum2=1; outcomenum3=0; num=tp2; den=s2; END;

IF temp1=4 THEN DO; test=2; outcome="Spec"; outcomenum=3; outcomenum0=0;

outcomenum1=0; outcomenum2=0; outcomenum3=1; num=tn2; den=h2; END;

RUN;

PROC GLIMMIX DATA=glimmix2 METHOD=rspl MAXOPT=2000;

CLASS study outcomenum outcome;

MODEL num/den=outcomenum / NOINT DIST=binomial LINK=logit SOLUTION;

RANDOM outcomenum / SUBJECT=study TYPE=un;

ESTIMATE "Sensitivity, HbA1c" outcomenum 1 0 0 0/ ILINK CL DF=10000;

ESTIMATE "Specificity, HbA1c" outcomenum 0 1 0 0/ ILINK CL DF=10000;

ESTIMATE "Sensitivity, FPG" outcomenum 0 0 1 0/ ILINK CL DF=10000;

ESTIMATE "Specificity, FPG" outcomenum 0 0 0 1/ ILINK CL DF=10000;

ESTIMATE "Difference of Sensitivities" outcomenum 1 0 -1 0/ ILINK CL;

ESTIMATE "Difference of Specificities" outcomenum 0 1 0 -1/ ILINK CL;

ODS OUTPUT Estimates=MuEstimates(keep=LABEL Mu);

ODS OUTPUT Estimates=StdErrMuEstimates(keep=LABEL StdErrMu);

ODS OUTPUT Estimates=PDiff(keep=LABEL Probt);

ODS OUTPUT Estimates=glimmixestimates(drop=Estimate Statement DF tValue Probt StdErr Alpha Lower Upper

rename=(Mu=Estimate LowerMu=KI95Lower UpperMu=KI95Upper StdErrMu=SE));

NLOPTIONS TECH=newrap MAXITER=1000;

RUN;

* Calculate 95% confidence intervals for the estimated differences on the original

[0,1]-scale;

PROC TRANSPOSE DATA=MuEstimates(where=(Label in ("Sensitivity, HbA1c", "Specificity, HbA1c",

"Sensitivity, FPG", "Specificity, FPG")))

OUT=TransMuEstimates(rename=(COL1=Sens1 COL2=Spec1 COL3=Sens2 COL4=Spec2)

drop=_NAME_ _LABEL_);

RUN;

PROC TRANSPOSE DATA=StdErrMuEstimates(where=(Label in ("Sensitivity, HbA1c", "Specificity, HbA1c",

"Sensitivity, FPG", "Specificity, FPG")))

OUT=TransStdErrMuEstimates(rename=(COL1=SE_Sens1 COL2=SE_Spec1 COL3=SE_Sens2 COL4=SE_Spec2)

drop=_NAME_ _LABEL_);

RUN;

PROC TRANSPOSE DATA=PDiff(where=(Label in ("Difference of Sensitivities", "Difference of Specificities")))
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OUT=TransPDiff(rename=(COL1=PValue_DiffSens COL2=PValue_DiffSpec) drop=_NAME_ _LABEL_);

RUN;

DATA GLIMMIXresults;

MERGE TransMuEstimates TransStdErrMuEstimates TransPDiff;

diffsens=Sens1-Sens2;

diffspec=Spec1-Spec2;

* Calculate the standard error for the differences;

Quantile_DiffSens=probit(1 - PValue_DiffSens/2);

Quantile_DiffSpec=probit(1 - PValue_DiffSpec/2);

StdErr_DiffSens=abs(diffsens)/Quantile_DiffSens;

StdErr_DiffSpec=abs(diffspec)/Quantile_DiffSpec;

CI95L_diffsens=diffsens - probit(0.975)*StdErr_DiffSens;

CI95U_diffsens=diffsens + probit(0.975)*StdErr_DiffSens;

CI95L_diffspec=diffspec - probit(0.975)*StdErr_DiffSpec;

CI95U_diffspec=diffspec + probit(0.975)*StdErr_DiffSpec;

RUN;

PROC PRINT DATA=GLIMMIXresults NOOBS LABEL;

VAR diffsens CI95L_diffsens CI95U_diffsens

diffspec CI95L_diffspec CI95U_diffspec;

LABEL diffsens="Difference of Sensitivities";

LABEL diffspec="Difference of Specificities";

LABEL CI95L_diffsens="Lower limit 95%-CI"; LABEL CI95U_diffsens="Upper limit 95%-CI";

LABEL CI95L_diffspec="Lower limit 95%-CI"; LABEL CI95U_diffspec="Upper limit 95%-CI";

TITLE "GLMM, Logit-Link, Differences of Sensitivities and Specificities with 95%-CI";

RUN;
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