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Zusammenfassung
Die vorliegende Dissertation untersucht komplexitätstheoretische Eigenschaften verschiedener Wahl-

probleme und kooperativer Spiele mit hedonischen Präferenzen.

Für die Wahlsysteme Bucklin Voting und Fallback Voting werden verschiedene Arten der Einfluss-

nahme im Hinblick auf ihre Berechnungskomplexität untersucht. Wir präsentieren eine breite Analyse

der beiden Wahlsysteme bezüglich der klassischen Berechnungskomplexität von Manipulation, Beste-

chung und des Swap-Bribery-Problems. Darüber hinaus untersuchen wir ebenfalls eine für das Wahl-

system Fallback Voting angepasste Variante von Extension Bribery. Hinsichtlich der Komplexität von

Wahlkontrolle erweitern wir bereits bekannte Analysen, indem wir die parametrisierte Komplexität

von Kontrolle durch Hinzufügen/Entfernen von Kandidaten oder Wählern betrachten, wobei der Para-

meter jeweils die Anzahl der hinzugefügten/entfernten Kandidaten bzw. Wähler ist. Ergänzend dazu

präsentieren wir die erste experimentelle Untersuchung von Kontrollproblemen, in der wir die Berech-

nungskomplexität von Kontrolle in zufällig erzeugten Wahlen empirisch untersuchen. Neben Bucklin

und Fallback Voting untersuchen wir in diesem Zusammenhang ebenfalls die Pluralitätsregel.

Des Weiteren analysieren wir die Komplexität des Margin-of-Victory-Problems und untersuchen

dessen Verhältnis zu destruktiver ungewichteter Bestechung und zeigen NP-Vollständigkeit dieser bei-

den Probleme für das Cup-Protokoll. Für die exakte Variante des Margin-of-Victory-Problems, die wir

erstmals definieren und analysieren, zeigen wir DP-Vollständigkeit für das Schulze-System, das Cup-

Protokoll und die Familie von Copelandα -Systemen. Darüber hinaus definieren wir eine weitere Varian-

te – den Swap Margin of Victory – und zeigen dessen enge Verbindung zu der destruktiven Variante des

Swap-Bribery-Problems mit Einheitspreisen. Für das Cup-Protokoll ist dieses Problem NP-vollständig,

während wir für k-Approval und bestimmte Scoring-Protokolle Polynomialzeitalgorithmen angeben.

Darüber hinaus führen wir eine neue Variante des Possible-Winner-Problems für gewichtete Wahlen

ein, in denen die Präferenzen der Wähler vollständig gegeben, die Gewichte der Wähler jedoch unbe-

stimmt sind. Für den Fall, dass die Gewichte aus den nicht-negativen rationalen Zahlen gewählt werden,

zeigen wir, dass dieses Problem sowohl für Scoring-Protokolle als auch für Bucklin Voting und Fallback

Voting in deterministischer Polynomialzeit lösbar ist.

Für hedonische Spiele mit feind-basierten Präferenzen widmen wir uns der Komplexitätsanalyse

der Probleme, für ein gegebenes solches Spiel zu entscheiden, ob eine wundervoll stabile bzw. strikt

kernstabile Koalitionsstruktur existiert. Wir verbessern bekannte untere Schranken für diese Probleme

und zeigen deren DP-Härte. Darüber hinaus ist es uns gelungen zu zeigen, dass ein coDP-Härte-Beweis

gleichzeitig Härte für die Klasse Θp
2 (parallelen Zugriff auf NP) impliziert. Damit wäre die exakte

Komplexität des Existenzproblems bezüglich wundervoller Stabilität vollständig beschrieben, da dieses

Problem bekanntermaßen in dieser Komplexitätsklasse enthalten ist.

Außerdem führen wir eine neue Klasse hedonischer Spiele ein, in denen jeder Spieler seine Mitspie-

ler in Freunde, Feinde und neutrale Spieler aufteilt und für die Menge der Freunde und der Feinde je-

weils eine schwache Präferenzordnung angibt. Um diese Präferenzen über Spielern zu Präferenzen über

Koalitionen zu erweitern, verwenden wir eine verallgemeinerte Bossong-Schweigert-Erweiterung. Da

es in diesen FEN-hedonischen Spielen (FEN steht für „Friend/Enemy/Neutral“) jedoch unvollständige

Präferenzen geben kann, also Paare von Koalitionen existieren können, die anhand dieser Präferenzen

nicht vergleichbar sind, definieren wir sogenannte Vergleichbarkeitsfunktionen mit kardinalen Werten

basierend auf Borda-ähnlichen Scoring-Vektoren. Für diese echte Unterklasse von additiv separablen

hedonischen Spielen analysieren wir die Komplexität von Verifikations- und Existenzproblemen be-

züglich vieler bekannter Stabilitätskonzepte wie der Nash-Stabilität oder der (strikten) Kernstabilität.
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Abstract
In this thesis we study computational aspects of different voting problems and cooperative games with

hedonic preferences.

For two well-studied voting systems, namely Bucklin and fallback voting, we present a detailed

study of the computational complexity of common manipulative attacks on elections. We fully de-

scribe the classical worst-case complexity of manipulation, bribery, and swap bribery in both voting

systems and furthermore study extension bribery tailored to fallback elections. We extend existing

studies of the complexity of electoral control in Bucklin and fallback elections by investigating control

by adding/deleting candidates or voters parameterized by the number of added/deleted candidates or

voters, respectively. We complement these results with the first experimental evaluation of electoral

control based on randomly generated elections, which also provides results for plurality elections.

Furthermore, we study the complexity of the margin of victory problem and its relation to destructive

unweighted bribery. We show that for the cup rule, both destructive unweighted bribery and the margin

of victory problem are NP-complete. Beyond that, we introduce and study two new variants of this

problem: exact margin of victory and swap margin of victory. The exact variant can be shown to

be DP-complete for the Schulze and the cup rule, as well as for the family of Copelandα systems.

The swap margin of victory problem, on the other hand, can be shown to be solvable in deterministic

polynomial time for k-approval and certain positional scoring rules, while for the cup rule this problem

is NP-complete. We furthermore show the close connection of the swap margin of victory problem and

destructive swap bribery with unit costs.

Moreover, we define a new notion of the possible winner problem for weighted elections in which

the uncertainty lies in the voters’ weights and the complete preferences of the voters are given. We

study this problem in detail for nonnegative rational weights and show that for positional scoring rules

and Bucklin and fallback voting this problem can be solved in deterministic polynomial time.

In the context of hedonic games we study the computational complexity of wonderful stability ex-

istence and strict core stability existence in enemy-based hedonic games. We improve the best known

lower bounds for these problems by establishing DP-hardness results. We furthermore prove that coDP-

hardness of these problems directly implies hardness for Θp
2 (parallel access to NP), which in turn would

resolve the question of the exact complexity of the former problem, as it is known to be contained in

this complexity class.

Beyond that, we introduce a new class of hedonic games in which each player divides her co-players

into friends, enemies, and other (neutral) players and furthermore provides a weak ranking of her

friends and a weak ranking of her enemies. These preferences over players are extended to preferences

over coalitions using a generalized Bossong-Schweigert extension principle. The thus defined FEN-

hedonic games may have incomplete preferences, meaning that there can be pairs of coalitions that are

incomparable with respect to this preference extension. We suggest to break these incomparabilities

by defining cardinal comparability functions based on Borda-like scoring vectors leading to additively

separable preferences. We show that this class of Borda-induced FEN-hedonic games is a strict subclass

of additively separable hedonic games and provide a detailed study on the computational complexity of

the existence and verification problems of commonly studied stability concepts such as Nash stability

and (strict) core stability.
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1 Introduction
Processes of collective decision making encounter us in our every-day life on a permanent

basis. We take part in political elections and delegate our sovereign power to representatives

who themselves participate in parliamentary decision processes. In courts composed of several

judges, the individual judgings have to be aggregated to a collective judgment. Rather basic

tasks such as planning a family vacation or finding a suitable restaurant or movie for a diverse

group of people are settings of preference aggregation. A less obvious (but anyhow just as

ubiquitous) application of preference aggregation in a wider sense is the design of web search

engines as these algorithms have to provide a specifically ordered output that presumably lists

the “best” search results first.

Searching further for typical examples of preference aggregation procedures shows that

many of these processes are conducted in an electronic environment, for example online auc-

tions and the implementation of recommender systems; in some countries even political elec-

tions are held electronically by installing voting machines at the polling places. Thus, the

analysis of such processes from a technical perspective is of high interest.

1.1 The Theory of Computational Social Choice
Computational social choice is an interdisciplinary research area at the intersection of com-
puter science and social choice theory, which has a two-dimensional structure.

On the one hand, methods of collective decision making are applied to fields in computer

science such as the development of web applications [GMH+99, DKN+01, TZ16] and mul-
tiagent systems in artificial intelligence [SL09, ER97] in a wider sense. Here, existing algo-

rithms or approaches for handling collective decision making (tailored to the specific given

setting) are analyzed and may be even improved based on social-choice-theoretic properties

these mechanisms fulfill or fail to fulfill.

On the other hand, aggregation rules from social choice are looked at through the lenses of

computer science: Established aggregation rules are analyzed with respect to their algorithmic

properties, for example, the computational complexity of their running time depending on the

input size or their computational resistance against manipulative attacks [FHH10]. Computa-

tional properties that might be desirable for aggregation mechanisms used in certain settings

can be motivation for defining new variants of such rules. Another interesting line of research

is that of computer-assisted theorem proving, that, based on the approach taken by Tang and

Lin [TL09], has been further developed in the work of Geist and Endriss [GE11], Brandl et al.

[BBG+15], and Brandt and Geist [BG14].

This exemplary list is far from being exhaustive and only provides a superficial description



1 Introduction

without capturing the full variety of research directions that have been taken in the context

of computational social choice. The main areas, which are surveyed in the textbooks edited

by Rothe [Rot15] and Brandt et al. [BCE+16], and the work of Chevaleyre et al. [CEL+07],

Brandt et al. [BCE13], and Endriss [End11, End14] include judgment aggregation, multiagent
resource allocation, voting theory, and computational aspects of cooperative game theory.1

Voting as a mechanism for collective decision making has been used ever since the Athe-

nian democracy. More than 2000 years later, in the 18th century anno Domini, the seminal

work by Condorcet [Con85] constituted the theory of social choice theory – a rapidly growing

and evolving science focusing on the design and analysis of voting systems (and other mech-

anisms for preference aggregation) with respect to axiomatic properties, see [Mou88, BF02,

Tid06]. Two of the presumably most famous and discussed results are Arrow’s Impossibility
Theorem [Arr63] and the Gibbard-Satterthwaite Theorem [Gib73, Sat75] (and its extensions

by Gärdenfors [Gär76] and Duggan and Schwartz [DS00]). The latter essentially states that

for elections with at least three candidates, any reasonable voting system is manipulable in the

sense that voters can benefit from reporting insincere preferences. This result triggered a rich

line of research regarding the computational complexity of manipulative attacks on elections,

see [BTT89, CSL07, BTT92, FHH09], which we continue in this thesis.

Chapters 3–6 of this thesis study problems from voting theory and computational aspects

in certain cooperative games, namely hedonic games. For the remaining fields of compu-

tational social choice, judgment aggregation and multiagent resource allocation, we provide

short overviews of important references including surveys and recently published research.

Judgment Aggregation The model of judgment aggregation formalizes situations in which

a group of judges, who have individual positions regarding a given set of logically connected

issues, have to aggregate their positions to a collective judgment. This model was formally in-

troduced by List and Pettit [LP02] and has been intensely studied. A comprehensive overview

of these studies can be found in the surveys by List and Puppe [LP09] and Endriss et al.

[EGP12], and the book chapters by Baumeister et al. [BER15] and Endriss [End16].

Recent papers study the complexity of computing a collective judgment for given aggrega-

tion methods, see the work of Lang and Slavkovic [LS14], Endriss et al. [EHS15], and Endriss

and de Haan [EH15], while the complexity of bribery, manipulation, and control is addressed

by Baumeister et al. [BEE+15, BRS15, BEE+13, BEE+12].

Multiagent Resource Allocation In the context of multiagent resource allocation (MARA),
methods of dividing a given resource among a set of agents are defined and studied, see the

work of Chevaleyre et al. [CDE+06] for an overview of such settings and their applications.

Two subareas can be distinguished depending on whether the given resource is divisible or

not.

If the former is the case, we are in the research field of cake cutting, where the cake is a

synonym for the given heterogeneous divisible resource and the agents, who may have differ-

1Note that this is a rather coarse division into subareas since there are many overlappings leading to a fruitful

field of study.

2



1.2 Organization of this Thesis

ent preferences over different parts of this cake, aim at dividing it in a fair and efficient way.

Formally introduced in the textbooks by Brams and Taylor [BT96] and Robertson and Webb

[RW98], the development and analysis of cake cutting protocols has found much attention.

The book chapters by Lindner and Rothe [LR15b] and Procaccia [Pro16] provide a detailed

overview of the state of the art. Very recently, Aziz and Mackenzie [AM15] answered a glaring

open question in this field by presenting the first discrete and bounded cake cutting algorithm

that guarantees an envy-free allocation of the cake among four agents.

MARA settings with indivisible resources model situations in which the resource is a set

of indivisible goods which has to be allocated to the participating agents depending on their

preferences over (bundles) of these goods. Much of the progress that has been made regarding

the study of such allocation mechanisms is covered in the book chapters by Lang and Rothe

[LR15a] and Bouveret et al. [BCM16]. Recent research has, amongst others, focused on

MARA settings in which the agents provide ordinal preferences, see for example the work

of Baumeister et al. [BBL+14], Nguyen et al. [NBR15], and Aziz et al. [AGM+14], while other

recent results investigate the complexity of social welfare optimization and the optimization

of allocation procedures by bilateral swaps of the resources between agents, see the work

of Nguyen et al. [NNR+14] and Damamme et al. [DBC+15], respectively.

1.2 Organization of this Thesis
The first two sections in Chapter 2 give elementary definitions from graph and complexity

theory building a basis for further definitions and notions that will be defined in the course

of this thesis. In Section 2.3 we define the voting systems that are relevant for the presented

studies. The chapter concludes in Section 2.4 with an informal introduction to the voting

problems that will be analyzed in Chapters 3, 4, and 5. This section furthermore gives a

detailed overview of connections between these problems with respect to their complexity. The

formal definitions of these problems together with real-life examples and further motivation

can be found in the corresponding chapters in which the results are presented.

Chapter 3 is devoted to the analysis of Bucklin and fallback voting: Each section of this

chapter starts with a preliminary part in which the central voting problem and its studied vari-

ants are formally defined, pointers to related work are given, and a selection of known results

for other voting systems is presented. Following that, the results central to this thesis are

given. Section 3.1 comprises the study of the complexity of manipulation in Bucklin and

fallback voting while Section 3.2 focuses on electoral control. The latter provides a detailed

two-part study of the complexity of control problems starting with a worst-case analysis which

is complemented by the, to the best of our knowledge, first experimental study on control com-

plexity, which also provides results for plurality voting. Section 3.3 focuses on the complexity

of bribery including the standard scenario as well as campaign management problems such as

swap bribery and extension bribery.

Chapter 4 provides an analysis of the complexity of different variants of the margin of
victory problem for several voting systems and gives an overview of the relation to destructive

bribery scenarios. We introduce the new variants exact margin of victory and swap margin of

3



1 Introduction

victory and present results for Schulze and cup elections for the exact variant and results for

elections held under positional scoring rules and the cup rule for the swap margin of victory.

In Chapter 5 we define a new variant of the possible winner problem in which the uncer-

tainty lies in the distribution of the voters’ weights. This problem is studied for the case of

nonnegative rational weights for positional scoring rules and Bucklin and fallback voting.

Chapter 6 starts with an introduction to the field of game theory and defines the concept

of hedonic game. In detail, different representations of the preferences in hedonic games are

discussed and stability concepts that are commonly studied are presented. In Section 6.2 the

complexity of the existence of wonderfully stable and strictly core-stable coalition structures in

enemy-based hedonic games is analyzed. In Section 6.3, we introduce so-called FEN-hedonic
games, in which each player separates the other participating players into friends, enemies,

and neutral players and she is further allowed to ordinally rank the players in her friend set

and her enemy set. After providing motivation for and a detailed discussion of this new variant,

we finally present results regarding the complexity of existence and verification problems of

common stability concepts when incomparabilities are broken with Borda-like comparability
functions.

We conclude the thesis with a summary of the presented results and pointers to promising

future work in Chapter 7.
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2 Preliminaries
In this chapter we give basic definitions that will be used throughout this thesis. To ensure

a compact presentation of the basics, we will only define those notions here that are repeat-

edly used in different chapters. Specific notions, on the other hand, that are only relevant for

particular chapters or sections will be defined therein.

We denote with N, Z, Q, and R the set of natural numbers, integer numbers, rational num-

bers, and real numbers, respectively. The set of natural numbers does not contain the number

0. We denote N∪{0} with N0. For F ∈ {Z,Q,R}, we write F≥y = {x ∈ F | x ≥ y}. The set

F≤y is defined analogously. We call x a string over a finite, nonempty alphabet Σ, if x is a finite

sequence of letters from Σ and we denote with |x| its length. Σ∗ denotes the set of all strings

over Σ. The cardinality of a set A and a list B is denoted by ‖A‖ and ‖B‖, respectively, and for

two sets C,D ⊆ Σ∗ we write C−D = {x ∈ Σ∗ | x ∈ C and x 	∈ D}. The complement of a set

A ⊆ Σ∗ is defined by A = {x ∈ Σ∗ | x 	∈ A}.

2.1 Graph Theory
We start with some useful terms from graph theory based on the textbooks by Diestel [Die05]

and Gurski et al. [GRR+10] .

Definition 2.1 (Undirected Graph) An undirected graph G is a pair G = (V,E) consisting of
a vertex set V and a set of edges E connecting (not necessarily all of) the vertices. Formally,
an edge e ∈ E is a pair e = {v,v′} of two vertices v 	= v′ ∈V .

We call two vertices v,v′ ∈ V in a graph G = (V,E) adjacent if and only if there is an edge

e = {v,v′} ∈ E connecting the two. If for each pair of vertices v,v′ ∈ V there is an edge

connecting them, we call the graph G complete. Let V ′ ⊆ V be a subset of the vertex set

and E ′ ⊆ E a subset of the edge set. We say that the graph GV ′ = (V ′,E ′) is an induced
subgraph of G when for E ′ it holds that for each v,v′ ∈ V ′ there is an edge e ∈ E ′ if and only

if e ∈ E holds. A path between two vertices v,v′ ∈ V in a graph G = (V,E), is (if existent)

a sequence of edges ({v,v1},{v1,v2}, . . . ,{vk−1,vk},{vk,v′}) leading from v to v′, where all

vertices on the path are pairwise distinct. A cycle is a path starting from a vertex v ∈ V that

ends in the same vertex, that is, a path of the form ({v,v1},{v1,v2}, . . . ,{vk−1,vk},{vk,v}).
Vertices that are connected by an edge are also called neighbors. Based on that we call all

the vertices a certain vertex v is adjacent to the neighborhood of the vertex v, and denote

this set by N (v) = {v′ ∈ V −{v}| ∃{v,v′} ∈ E}. The set N [v] = N (v)∪{v} denotes the

closed neighborhood of the vertex v. The degree of a vertex v ∈ V is deg(v) = ‖N (v)‖.



2 Preliminaries

The term of neighborhood can also be defined for sets of vertices in a graph. Let V ′ ⊆ V be

such a subset of vertices in a graph G = (V,E), then we define the neighborhood of V ′ to be

N (V ′) =
⋃

v∈V ′ N (v). The closed neighborhood of V ′ is then N [V ′] = N (V ′)∪V ′. With

the following notions we can define interesting parameters of a graph.

Definition 2.2 (k-Clique, Dominating Set, Vertex Cover) Let G = (V,E) be an undirected
graph and V ′ ⊆V be a subset of vertices. We call V ′

• a k-clique if and only if the induced subgraph GV ′ is complete and ‖V ′‖= k.
• a dominating set if and only if for each v∈V −V ′ there is a vertex v′ ∈V ′ with {v,v′} ∈E.
• a vertex cover if and only if for each edge e ∈ E it holds that e∩V ′ 	= /0.

Note that for k ≥ 2, every k-clique contains k′-cliques for 1 ≤ k′ < k. The size of a biggest

clique in a graph is called the clique number ω(G) while the domination number γ(G) is the

size of a smallest dominating set in G. With τ(G) we denote the so-called vertex cover number
giving the size of a smallest vertex cover in G. For a given vertex v ∈V we say that the clique
number of v is the size of a biggest clique v is part of and we denote this number by ωG(v).

Example 2.3 Let G = (V,E) be an undirected graph with five vertices V = {1,2,3,4,5} and
the edges E = {{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{4,5}}. Figure 2.1 shows the graph-
ical representation of G.

1

4 5

2 3

(a) 3-clique in G

1

4 5

2 3

(b) Dominating set in G

1

4 5

2 3

(c) Vertex cover in G

Figure 2.1: Example of an undirected graph G

The biggest complete induced subgraph of G contains three vertices, thus ω(G) = 3. One
of the three 3-cliques in G, namely {2,4,5} is displayed in Figure 2.1a. The other two are
{2,3,5} and {1,2,3}. The smallest dominating set in G consists of the single vertex 2, see
Figure 2.1b. The vertex 2 is adjacent to every other vertex in G and thus {2} fulfills the
conditions for a dominating set. Since 1 ≤ γ(G) ≤ ‖V‖ trivially holds, {2} is the smallest
possible dominating set in G. The graph G has several vertex covers and Figure 2.1c shows a
minimal vertex cover. The vertices in {1,2,5} form another vertex cover, but no smaller cover
can be found, thus it holds that τ(G) = 3.

For two disjoint sets of vertices V1,V2 ⊆V we say that V1 is independent of V2 if the vertices

from the two subsets are not connected, that is if {{vi,v j} | vi ∈V1 and v j ∈V2}∩E = /0. If a

graph consists of two or more independent subsets of vertices, the graph is called disconnected
and we call the subsets independent components of the graph. Now we turn to a special family

of graphs, so-called trees.
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2.1 Graph Theory

Definition 2.4 (Tree, Rooted Tree) An undirected graph G = (V,E) is called a tree if it does
not contain any cycles and is connected. Nodes with degree 1 are called leaves. A rooted tree

is a tree in which a fixed distinct vertex r ∈V is the so-called root.

Note that in a rooted tree, the root r is never called a leaf, even if deg(r) = 1. Furthermore,

all nodes except for the leaves are called inner nodes. The neighbors of the root r are the

child-nodes of r, having r as their so-called parent-node. The remaining inner nodes are both

a child-node of their parent-node and the parent-node of their remaining neighbors. Nodes

with the same parent node are called siblings and the height of a rooted tree is the length of

the longest path from the root to a leaf. A complete binary tree is a special rooted tree where

the root and each inner node have exactly two children and there are 2k leaves if the height of

the tree is k.

Example 2.5 Figure 2.2 shows a disconnected graph with fourteen vertices consisting of two
independent components that are trees.1

1

2 3 4

5 6 7

8

9 10

11 12 13 14

Figure 2.2: Example of a disconnected graph consisting of two trees

The right component of the graph is a complete binary tree of height 2 with root 8, inner
nodes 9 and 10, and the leaves 11, 12, 13, and 14. Vertices 9 and 10 are siblings having the
same parent node 8, and are thus the child-nodes of 8. The left component is not a binary tree
as the root 1 has three child-nodes.

The notion of graphs can be extended by assigning a direction to the edges.

Definition 2.6 (Directed Graph, Complete Directed Graph) A pair G= (V,E) is a directed

graph, where V is a set of vertices and E is a set of directed edges. An edge from vertex v to
vertex v′ is denoted by (v,v′) for v 	= v′. We call a directed graph complete if for every pair of
vertices v,v′ ∈V both directed edges (v,v′) and (v′,v) are in E.

A path from vertex v to vertex v′ in a directed graph is, if existent, a sequence of edges

((v,v1),(v1,v2), . . . ,(vk−1,vk),(vk,v′)) leading from v to v′ and all vertices on the path are

pairwise distinct. In weighted (directed) graphs we assign to each edge an integer weight.2

Definition 2.7 (Strongest Path) Let G = (V,E) be a directed weighted graph and v,v′ ∈V be
two vertices in G. The strength of a path is defined to be the smallest weight any of the edges
on the path has. The strongest path from a vertex v to a vertex v′ is then a path with maximum
strength among all existent paths from v to v′ in the graph.

1Such graphs are also called forests.
2Clearly, also rational or real weights can be allowed.
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2 Preliminaries

Example 2.8 Let G=(V,E) be a directed weighted graph with five vertices in V = {1,2,3,4,5},
the edge set E = {(1,2),(1,4),(2,3),(2,5),(4,1),(4,5),(5,2),(5,3)}, and the weights dis-
played in Figure 2.3.

1 2

4

3

5

3−6

2

6

1

−30

5

Figure 2.3: Example of a directed weighted graph G

Possible paths from 1 to 3 are ((1,2),(2,3)), ((1,2),(2,5),(5,3)), ((1,4),(4,5),(5,3)), and
((1,4),(4,5),(5,2),(2,3)) and Table 2.1 shows the weights on the different paths. The minimal
weight in the third column is the weight of the path, and thus we see that the weight of the
strongest path from 1 to 3 is 3.

path weights on the path minimal weight

((1,2),(2,3)) {2,1} 1

((1,2),(2,5),(5,3)) {2,−3,5} −3

((1,4),(4,5),(5,3)) {3,6,5} 3
((1,4),(4,5),(5,2),(2,3)) {3,6,0,1} 0

Table 2.1: Weights of the different paths from 1 to 3 in graph G, where the weight of the strongest path
is displayed in boldface

2.2 Complexity Theory
In the field of complexity theory the computational complexity of problems is studied with

respect to different measures such as time and space. The time complexity of a problem is,

intuitively speaking, the number of steps an algorithm needs to solve the problem depending

on the size of the input. As for any problem there clearly might be trivial cases for which

a solution is easy to find, we are interested in the worst-case complexity of problems. The

theoretical analysis of the problems studied within this thesis focuses on their worst-case time

complexity. In this section we introduce those complexity classes and notions needed for this

analysis. If not stated otherwise, the definitions can be found in the textbooks by Rothe [Rot05,

Rot08], Papadimitriou [Pap94], Garey and Johnson [GJ79], and Downey and Fellows [DF99].

The O-notation, which is very useful to estimate an algorithm’s running time, describes the

intuition that a function f does not grow faster than another function g, where a finite number

of exceptions is allowed.

Definition 2.9 (O-Notation) Let f and g be two functions f ,g : N→ N. It holds that

f ∈ O(g) ⇐⇒ (∃c,n0 ∈ N)(∀n ≥ n0)[ f (n)≤ c ·g(n)].
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2.2 Complexity Theory

2.2.1 Classical Complexity
As common in the literature, we define a classical decision problem D to be a language over a

finite alphabet Σ, that is D ⊆ Σ∗, containing the yes-instances of the problem. For an instance

d of the problem D we write d ∈ D if and only if d is a yes-instance.

Turing [Tur36] introduced the concept of Turing machine as a computational model, on

which the remaining definitions in this section base. We start with defining the two presumably

best known complexity classes containing decision problems decidable in deterministic and

nondeterministic polynomial time, respectively.

Definition 2.10 (P and NP) The complexity class P contains all problems that are accepted
by a deterministic Turing machine in polynomial time. The class NP contains those problems
that are accepted by a nondeterministic Turing machine in polynomial time.

Since every deterministic Turing machine is, by definition, a nondeterministic one, the in-

clusion P ⊆ NP holds. The question whether this inclusion is strict is one of the famous

Millennium Problems, which is yet unresolved.3

When a problem can be shown to be contained in a specific complexity class, this establishes

an upper bound for its complexity. Lower bounds, however, can be defined with notions of

hardness for a given complexity class, say C, which allow us to determine whether a problem

is at least as hard to solve as the hardest problems contained C. We denote with FP the set of

functions f : Σ∗ → Σ∗ that are computable in deterministic polynomial time.

Definition 2.11 (Polynomial-Time Many-One Reduction) Let C be a complexity class and
let D1 and D2 be two decision problems.

1. We say that D1 is polynomial-time many-one reducible to D2, denoted by D1 ≤p
m D2, if

and only if
(∃ f ∈ FP)(∀x ∈ Σ∗)[x ∈ D1 ⇐⇒ f (x) ∈ D2].

2. We say that D1 is hard for a complexity class C if and only if D2 ≤p
m D1 for all D2 ∈ C.

3. A problem D is complete for a complexity class C if it is hard for C and contained in C.

Clearly, the polynomial-time many-one reduction is transitive, thus, it directly follows that

for two decision problems with D1 ≤p
m D2, it holds that hardness for a complexity class C of

the problem D1 directly implies hardness of D2 for this class, as well.

Assuming that P is a proper subset of NP, NP-hard problems can be considered to be in-

tractable while the complexity class P represents efficiently solvable problems. For an inter-

esting discussion on this dogma, we refer the reader to the textbooks by Rothe [Rot05, Rot08]

and to Section 2.2.2.

Cook [Coo71] and Levin [Lev73] independently established the first NP-completeness proof

by showing the problem SATISFIABILITY to be NP-complete.

3For further information, see the website of the Clay Mathematics Institute (CMI) http://www.claymath.
org/millennium-problems/p-vs-np-problem.
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SATISFIABILITY (SAT)

Given: A boolean formula ϕ in conjunctive normal form.

Question: Is ϕ satisfiable, i.e., is there a truth assignment for which ϕ evaluates to true?

A boolean formula ϕ over the variables x1,x2, . . . ,xn is in conjunctive normal form if it is

of the form ϕ(x1,x2, . . . ,xn) =
∧m

i=1Ci, where Ci =
∨ki

j=1 �i, j are the so-called clauses of ϕ
consisting of the disjunction of the literals �i, j over the variables x1,x2, . . . ,xn. We say that

a formula ϕ is in disjunctive normal form if and only if it is of the form ϕ(x1,x2, . . . ,xn) =∨m
i=1(

∧ki
j=1 �i, j). The problem 3-SAT denotes a variant of SATISFIABILITY that is restricted

on boolean formulas in 3-CNF, meaning that each clause has at most 3 literals.

Following the result by Cook [Coo71] and Levin [Lev73], a variety of decision problems

from different disciplines such as graph theory, network design, or number theory were shown

to be NP-complete, see Garey and Johnson [GJ79] for a comprehensive collection. Here, we

formally state those decision problems that will be used repeatedly in the course of this thesis.

EXACT COVER BY THREE-SETS (X3C)

Given: A set B = {b1,b2, . . . ,b3m}, m > 1, and a collection S = {S1,S2, . . . ,Sn} of

subsets Si ⊆ B with ‖Si‖= 3 for each i, 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each element of B occurs in

exactly one set in S ′?

Note that X3C is trivial to solve for m = 1. Another well-studied and commonly used

decision problem is the PARTITION problem.

PARTITION

Given: A set A = {1, . . . ,k} and a list (a1, . . . ,ak) of nonnegative integers

with ∑k
i=1 ai = 2K, where K is some positive integer.

Question: Is there a set A′ ⊆ A such that ∑i∈A′ ai = ∑i 	∈A′ ai = K?

Recall Section 2.1 for the definition of the following graph-theoretic problem.

CLIQUE

Given: An undirected graph G = (V,E) and a positive integer k.

Question: Is there a clique of size at least k in G, i.e., is ω(G)≥ k?

The complexity class coNP contains those problems D for which D is in NP. Note that for

an NP-hard problem D each of the reductions D ≤p
m D ′ and D ≤p

m D ′ can be used to establish

coNP-hardness of D ′.
Papadimitriou and Yannakakis [PY84] introduced the class DP containing those decision

problems that can be written as the difference of two NP-sets: DP = {D1−D2 |D1,D2 ∈ NP}.

Besides other problems, complete problems for this class are the so-called exact variants of

NP-hard problems, such as EXACT VERTEX COVER.
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EXACT VERTEX COVER (XVC)

Given: An undirected graph G = (V,E) and a positive integer k.

Question: Is τ(G) = k, i.e., is the size of a smallest vertex cover in G exactly k?

By changing the question to whether τ(G) ≤ k holds, the NP-complete problem VERTEX

COVER problem is defined. One way of proving a given decision problem to be DP-hard is

to find a reduction from another problem that is already known to be DP-hard. An example

of a natural DP-complete problem mentioned by Papadimitriou and Yannakakis [PY84] is the

following.

SAT-UNSAT

Given: Two boolean formulas ϕ1 and ϕ2.

Question: Does (ϕ1 ∈ SAT)∧ (ϕ2 	∈ SAT) hold?

Another way to show DP-hardness is to apply the following tool by Wagner [Wag87].

Lemma 2.12 (Wagner [Wag87]) Let D1 be some NP-hard problem, and let D2 be any set. If
there exists a polynomial-time computable function f such that, for any two instances x1 and
x2 of D1 for which x2 ∈ D1 implies that x1 ∈ D1, we have

(x1 ∈ D1)∧ (x2 	∈ D1) ⇐⇒ f (x1,x2) ∈ D2, (2.1)

then D2 is DP-hard.

Cai et al. [CGH+88, CGH+89] introduce a generalization of DP to a hierarchy of complexity

classes called the boolean hierarchy over NP, denoted by BH(NP) =
⋃

k≥0 BHk(NP), where

BHk(NP) = {D1 − (D2 − (· · ·− (Dk−1 −Dk) · · ·)) | Di ∈ NP and Dk ⊆ Dk−1 ⊆ ·· · ⊆ D1} are

the levels of the hierarchy. It holds that P = BH0(NP), NP = BH1(NP), and DP = BH2(NP).

The concept of Turing machine can be extended by giving a machine access to a so-called

oracle set D which itself is a decision problem. During a computation such an oracle Turing
machine can ask queries of the form x ∈ Σ∗ to the oracle set and gets the answer “yes” or “no”

depending on whether x ∈ D or x 	∈ D . We denote deterministic and nondeterministic oracle

Turing machines with polynomial running time by DPOTM and NPOTM, respectively.

Definition 2.13 (Polynomial-Time Turing Reduction) Let D1 and D2 be two decision prob-
lems. We say that D1

1. polynomial-time Turing reduces to D2, denoted by D1 ≤p
T D2, if and only if there is a

DPOTM accepting D1 with oracle D2.
2. nondeterministic polynomial-time Turing reduces to D2, denoted by D1 ≤NP

T D2, if and
only if there is a NPOTM accepting D1 with oracle D2.

11
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For a complexity class C we define two notions of closure: PC= {D | (∃D ′ ∈C)[D ≤p
T D ′])}

and NPC = {D | (∃D ′ ∈ C)[D ≤NP
T D ′])}. Papadimitriou and Zachos [PZ83] introduced the

complexity class Θp
2 = PNP[log] containing those decision problems that can be decided by

a DPOTM which asks O(log(n)) sequential Turing queries to an NP oracle. Hemachandra

[Hem89] and Köbler et al. [KSW87] independently showed that DPOTMs asking a set of

precomputed queries in parallel to an NP oracle can solve the same set of problems; this com-

plexity class is known as PNP
� and it thus holds that Θp

2 = PNP[log] = PNP
� . Decision problems

can be shown to be hard for this class with the following tool which has also been introduced

by Wagner [Wag87].

Lemma 2.14 (Wagner [Wag87]) Let D1 be some NP-hard problem, and let D2 be any set.
If there exists a polynomial-time computable function f such that, for all k ≥ 1 and any 2k
instances x1, . . . ,x2k of D1 for which x j ∈ D1 implies that xi ∈ D1 for i < j, we have

‖{i | xi ∈ D1}‖ is odd ⇐⇒ f (x1,x2, . . . ,x2k) ∈ D2, (2.2)

then D2 is Θp
2-hard.

Chang and Kadin [CK95] introduce structural properties of decision problems that are par-

ticularly interesting with respect to completeness for, amongst others, the levels of the boolean

hierarchy and Θp
2 .

Definition 2.15 (Chang and Kadin [CK95]) We say that a decision problem D has ANDω
functions if for all n∈N it holds {<D1,D2, . . . ,Dn >|D1 ∈D∧D2 ∈D∧ . . .∧ Dn ∈D}≤p

m D.

Their findings relevant to this thesis are summarized in the lemma below.

Lemma 2.16 (Chang and Kadin [CK95]) Let D be a decision problem.

1. If D is NP-complete, it has ANDω functions.
2. If D is DP-complete, it has ANDω functions.
3. If D is complete for any class of the boolean hierarchy higher than the second level,

it cannot have ANDω functions, unless the boolean hierarchy collapses to the second
level.

4. If D is Θp
2-complete, it has ANDω functions.

The class Θp
2 is contained in another hierarchy of complexity classes above NP: the poly-

nomial hierarchy, which goes back to the work of Meyer and Stockmeyer [MS72] and Stock-

meyer [Sto76]. Inductively, the levels of this hierarchy are defined by

Σp
0 = Δp

0 = Πp
0 = P, Σp

i+1 = NPΣp
i , Δp

i+1 = PΣp
i , Πp

i+1 = coΣp
i+1, for i ≥ 0.

This thesis focuses on the first levels of this hierarchy: Σp
0 = P, Σp

1 =NPP =NP, Πp
1 = coNP,

and for i = 2 particularly on Σp
2 . Meyer and Stockmeyer [MS72] propose the following rep-

resentation of the class Σp
2 by alternating quantifiers, which is useful to show Σp

2 membership

for a given decision problem D .
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Lemma 2.17 (Meyer and Stockmeyer [MS72]) A decision problem D1 is contained in Σp
2 if

and only if there exists a set D2 ∈ P and a polynomial p such that for each x ∈ Σ∗ it holds that

x ∈ D1 ⇐⇒ (∃y ∈ Σ∗)(∀z ∈ Σ∗)[|y| ≤ p(|x|)∧|z| ≤ p(|x|) =⇒ (x,y,z) ∈ D2].

One natural Σp
2-complete problem that will be used in a hardness proof in Chapter 6 is

the following (see the survey by Schaefer and Umans [SU02a, SU02b] for other natural Σp
2-

complete problems).

2-QUANTIFIED 3-DNF-SAT

Given: Two sets X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn} of boolean variables and a boolean

formula ϕ(X ,Y ) over X ∪Y in disjunctive normal form where each of the conjunctive

clauses consists of exactly three distinct literals.

Question: Is there a truth assignment τX for the variables in X such that for every truth assignment

τY for the variables in Y the formula ϕ(X ,Y ) evaluates to true under τX ,τY ?

We conclude this part by presenting the relation of the just defined complexity classes where

inclusions are indicated by lines from left to right. Note that none of these inclusions is known

to be strict:

P
NP

coNP
DP Θp

2 Σp
2

2.2.2 Parameterized Complexity
Downey and Fellows [DF99] introduced the theory of parameterized complexity theory which

extends the theory of classical complexity theory in the following sense: Instead of measuring

the worst-case complexity of a problem in the instance size n only, the structural properties of

a problem are taken into account by including a secondary measurement.

A parameterized decision problem is a language L ⊆ Σ∗×N with elements (x,k) ∈ L ,

where x ∈ Σ∗ is the problem instance in the classical sense and k ∈ N is the parameter.

Definition 2.18 (Fixed-parameter Tractability) A parameterized problem L is called fixed-

parameter tractable if there exists some computable function f such that for each input (x,k)
of size n = |(x,k)|, it can be determined in time O( f (k) ·nc) whether or not (x,k) ∈ L , where
c is a constant.

FPT denotes the parameterized complexity class containing all fixed-parameter tractable

problems and it can be seen as the parameterized analogon to P. The VERTEX COVER problem

parameterized by the size of a solution is contained in FPT as it can be solved in O(2kn), where

here n is the number of vertices in the instance graph, and k is the solution size. This shows

that an NP-hard problem might be efficiently solvable in practice when it is fixed-parameter

tractable and the parameter is small enough in typical instances.

By defining the concept of parameterized reduction, hardness for parameterized complexity

classes can be defined.

13



2 Preliminaries

Definition 2.19 (Parameterized Reduction) Let C be a parameterized complexity class with
L ,L ′ ∈ C. We say that

1. L parameterizedly reduces to L ′ if there is a function f : Σ∗×N→ Σ∗×N such that for
each (x,k),

• f (x,k) = (x′,k′) can be computed in time O(g(k) · p(|x|)) for some function g and
some polynomial p, and

• (x,k) ∈ L if and only if (x′,k′) ∈ L ′, where k′ ≤ g(k) and k′ depends only on k;

2. L is hard for C if every problem in C parameterizedly reduces to L ; and
3. L is complete for C if it both belongs to C and is hard for C.

The class XP contains those parameterized decision problems solvable in time O(ng(k)) for

some function g and it contains the main hierarchy of parameterized complexity classes, called

the W-hierarchy.

FPT = W[0]⊆ W[1]⊆ W[2]⊆ ·· · ⊆ W[t]⊆ ·· · ⊆ XP.

Problems that are complete for classes W[t] for t ≥ 1 are considered to be intractable with

respect to the given parameter and W[1] can be seen as a strong parameterized analogon of NP.

A natural W[1]-complete problem is the CLIQUE problem parameterized with the solution size.

The following parameterized variant of DOMINATING SET is complete for W[2].

k-DOMINATING SET (k-DS)

Given: A graph G = (V,E) and a positive integer k ≤ ‖V‖.

Parameter: k.

Question: Is there a dominating set of size at most k in G?

Note that showing W[t]-hardness of a problem for t > 1 directly establishes W[1]-hardness

of the problem, as well. For further background on parameterized complexity theory, see the

monographs by Niedermeier [Nie06] and Flum and Grohe [FG06].

2.3 Elections and Voting Systems
Given a selection of different choices, a common task for a group of individuals is to determine

the best of the given alternatives. There are various ways of achieving this goal reaching from

randomly or dictatorially choosing the winner, to holding an election where the alternatives

serve as candidates and the individuals are the voters. To successfully find a winner or a set of

winners in a given election, two issues have to be specified: firstly, how the voters can or have

to express their opinion in form of their vote and secondly, how the winner is determined from

these votes.
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Definition 2.20 (Voting System) For a given voting system E we define an E election to be
a tuple (C,V ), where C is a finite set of candidates and V is a finite list of votes. E defines
the representation of the votes in V and furthermore provides a procedure for the winner
determination. E (C,V ) denotes the set of E winners.

In the literature, voting systems that output a set of winners are also called social choice
correspondences, whereas when the winner determination has to provide a unique winner, the

system is a so-called social choice function. Note that V does not have to be given as a list

containing each single ballot, but can rather be represented succinctly by listing all occurring

distinct ballots and storing for each ballot the number of voters that have cast this exact vote.

In the social choice literature a variety of different voting systems has been designed and

each of these systems has its assets and drawbacks depending on the purpose the election is

held for. To categorize these voting systems, a comprehensive collection of properties has

been established. Two of these properties that capture the essence of democratic processes are

non-dictatorship and citizen’s sovereignty: A voting system E is called non-dictatorial if for

‖V‖ ≥ 1 there is no single voter v ∈ V such that the outcome of an election solely depends

on v’s preference. From the candidate’s perspective, the property citizen’s sovereignty which

is fulfilled if for each c ∈ C there exists a set of voters making c an E winner, guarantees

that every participating candidate, at least in theory, has a chance of being an E -winner. It is

safe to assume that these two properties should be fulfilled by any reasonable voting system.

Two other properties that are highly relevant are anonymity and neutrality. For the former to

hold, a voting system has to ensure that renaming the voters does not change the outcome of

an election. The latter is an analogon regarding the set of candidates: A voting rule is called

neutral if the outcome does not depend on the candidates’ naming, i.e., if any two candidates

are swapped in each vote, the outcome changes accordingly.

A comprehensive, but not exhaustive selection of voting systems and analyses regarding

their social choice properties can be found in the book chapters by Baumeister and Rothe

[BR15] and Zwicker [Zwi16], and the work of Brams and Fishburn [BF02], Moulin [Mou88],

Tideman [Tid06], and Rothe et al. [RBL+11].

Depending on the voting system, the winner determination procedure can be very involved.

Thus, for practical reasons (and also from a theoretical point of view, as we will see in the

Chapters 3, 4, and 5) the computational complexity of a voting system’s winner determination

is of high interest. For the Young, Dodgson, and Kemeny rule, for instance, Hemaspaandra

et al. [HHR97, HSV05] and Rothe et al. [RSV03] showed PNP
� -completeness of the winner

problem, see also the interesting recent work by Betzler et al. [BBN14].

For voting systems proceeding in several rounds, such as single transferable vote (STV)
or ranked pairs, the issue of how and especially at what point of the winner determination

process ties are broken is essential for their complexity: Breaking ties by applying the so-

called parallel universes tie-breaking (instead of breaking ties whenever they occur during the

procedure by a beforehand fixed tie-breaking order) can increase the complexity of the winner

problem from tractability to NP-hardness, see the intriguing work of Conitzer et al. [CRX09]

and Brill and Fischer [BF12]. For the voting systems that we define in the following, the set

of winners can be determined in deterministic polynomial time.
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Most of the voting systems are originally defined for elections in which all voters are equal

with respect to their influence on the election’s outcome. To allow modeling scenarios in

which this assumption is not reasonable, the concept of weighted election can be defined. In a

weighted election, each vote vi ∈ V is associated with a nonnegative integer weight wi which

implies that the voter vi is counted as if wi voters with weight 1 would have cast the same

ballot. Unweighted elections can be viewed as special weighted elections in which all voters

have unit weight.

With only one exception, all voting systems that we define in the following subsections

expect the voters to provide a preference in form of a linear order which implies that it has

to be complete, transitive, and irreflexive. Thus, the voters have to rank all candidates in C,

furthermore if a is better ranked than b and b is in turn better ranked than c the ranking has

to rank a better than c, and finally the ranking has to be strict, meaning that no ties between

candidates are allowed. For a candidate set C = {a,b,c,d} a preference of a voter preferring

c to b to d to a is denoted by c > b > d > a. Example 2.21 gives us an election where the

votes are linear preferences and demonstrates how the votes of an election are adapted when

candidates are deleted. We extend this example in the following subsections to illustrate the

voting systems that will be defined.

Example 2.21 Let (C,V ) be an election with five candidates C = {a,b,c,d,e} and six voters
in V = {v1,v2,v3,v4,v5,v6} with the following preferences.

v1 : b > c > a > d > e v3,v4 : e > b > a > d > c
v2 : a > d > c > b > e v5,v6 : c > a > e > b > d

If candidates in C are deleted, they are omitted in each vote leading to a new list of vot-
ers. In the subelection (C′,V ) with C′ = {a,c,d}, for example, the voters have the following
preferences:

v1 : c > a > d v3,v4 : a > d > c
v2 : a > d > c v5,v6 : c > a > d

The concept of transitive preferences captures the model of rational voters. There are sev-

eral voting systems also allowing irrational, that is, intransitive votes, but these are not studied

in the scope of this thesis. For further information and an interesting discussion, we refer the

interested reader to the work of Faliszewski et al. [FHH+09b].

2.3.1 Positional Scoring Rules
We start with positional scoring rules, a well-known and intensely studied family of voting

systems (see for example [BF02, HH07]). For an election (C,V ) with m candidates and n
voters, positional scoring rules are defined by a so-called scoring vector �α = (α1,α2, . . . ,αm)
with αi ≥ αi+1 for 1 ≤ i ≤ m− 1, that defines the points each candidate gets from each vote

depending on her position in the vote: Candidate c ∈ C gets αi points from a vote v ∈ V in
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which c is positioned on position i. The �α-score of a candidate is the sum of all points she

gains from all votes in V . The candidates with the highest �α-scores are the �α-winners. This

definition gives a generalized characterization of various voting systems. Betzler and Dorn

[BD10] define a subclass of positional scoring rules, so-called pure scoring rules having the

property that whenever there are m ≥ 2 candidates, the scoring vector �α for an m-candidate

election can be obtained from a scoring vector �α ′ for an (m−1)-candidate election by adding

an additional value αk such that the above inequalities for αi, i ∈ {1, . . . ,m} hold. We will

present some of the most prominent positional scoring rules, that all are pure scoring rules,

and define them by specifying the scoring vector: The Borda rule (or Borda voting, Borda
count), see [Bor81], is defined by the scoring vector �α = (m− 1,m− 2, . . . ,2,1,0). Other

known systems are plurality voting with �α = (1,0, . . . ,0), the veto rule (or veto voting), where
�α = (1,1, . . . ,1,0), and k-approval (k-AV), where for a given k with 1 ≤ k ≤ m, αi = 1 for

1 ≤ i ≤ k and αi = 0 otherwise. Note that plurality can also be defined as 1-approval and

likewise the veto rule is equivalent to (m−1)-approval.

Example 2.22 continues Example 2.21 and shows the winner determination in positional

scoring rules for a selection of different scoring vectors.

Example 2.22 Let (C,V ) be the election defined in Example 2.21. Table 2.2 shows the scores
and the winners in (C,V ) for the Borda rule, veto voting, plurality voting, 2-approval, and
3-approval.

Voting System a b c d e winners

Borda 16 13 13 3 12 a
plurality 1 1 2 0 2 {c,e}
veto 6 6 4 4 4 {a,b}
2-AV 3 3 3 1 2 {a,b,c}
3-AV 6 3 4 1 4 a

Table 2.2: Scores and winners in the election from Example 2.21 for different positional scoring rules

Columns 2 through 6 show the scores the candidates obtain for the scoring vectors of the
different voting systems. The highest overall points are given in boldface.

2.3.2 Bucklin and Fallback Voting
In Chapter 3 we focus on the voting systems Bucklin and fallback voting. Bucklin voting is a

well-known voting system that was used already in the first decade of 1900, see [HH26]. It is

also known under the name Grand Junction voting as James W. Bucklin (the eponym for the

more common name “Bucklin voting”) promoted it to be used in Grand Junction, Colorado in

1909. After that election it was also used in several other U.S. American cities until 1917.4 For

an analysis of the system’s social choice properties we refer the reader to the work of Rothe

et al. [RBL+11] and Tideman [Tid06].

4See the interesting website http://www.electology.org/bucklin for a list of cities using this system.
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In Bucklin voting the winner determination procedure proceeds as follows: For a Bucklin

election (C,V ) with m candidates we define the so-called level i score of a candidate c ∈ C
to be the number of votes in V positioning c among the first i, 1 ≤ i ≤ m, positions and

we denote it by scorei
V (c). If V is clear from the context, we will omit the subscript in the

notation and simply use scorei(c) instead. Furthermore we define maj(V ) = �‖V‖/2�+1 to be

the majority threshold. The Bucklin score of c is defined as the smallest level i on which c
reaches the majority threshold, that is scorei(c) ≥ maj(V ). Finally, those candidates with the

smallest Bucklin score, say k, and the biggest level k score are the level k Bucklin winners of

the election.

The variant of Bucklin in which all candidates with smallest Bucklin score are winners, is

called simplified Bucklin, but this variant will not be further analyzed in this thesis.

Fallback voting is a hybrid voting system that was introduced by Brams and Sanver [BS09]

that combines Bucklin voting and approval voting. Approval voting, also defined by Brams

and Fishburn [BF78, BF83] (see also the textbook edited by Laslier and Sanver [LS10]), is

not a preference-based voting system as the voters are not asked to provide a ranking of the

candidates, but to indicate their approval or disapproval of each candidate. For a compact

representation, the ballots are given as so-called approval vectors in {0,1}‖C‖ in which each

position represents a fixed candidate and the entry indicates whether the voter approves of the

candidate (1) or disapproves (0). All candidates with a maximal number of approvals are the

approval winners.

Fallback voting combines the two voting systems in the following way: In a first step each

voter v ∈ V is asked to provide her so-called approval strategy Sv specifying the candidates

that v approves of. In a second step, each voter has to rank only the candidates in Sv and we

denote this ranking by
−→
Sv . The ballots have the form

v :
−→
Sv | C−Sv.

The winner determination makes use of Bucklin voting in the following sense: For a fallback

election (C,V ) all level k Bucklin winners are so-called level k fallback winners, if they exist.

If there are no Bucklin winners due to the disapprovals, all approval winners are fallback
winners.

With the above definitions in mind it is obvious that Bucklin elections are special fallback

elections in which all voters approve of all candidates. This fact is interesting when analyz-

ing the complexity of certain control and campaign management problems (see Sections 3.2

and 3.3) where this relation allows to transfer, on the one hand, lower bounds found for Buck-

lin voting to fallback voting and, on the other hand, upper bounds found for fallback elections

to Bucklin elections. But note that it highly depends on the voting problem at hand whether or

not known results can be transferred.

Example 2.23 Recall election (C,V ) from Example 2.21. The Bucklin winner can be directly
determined as the ballots have the right representation. There are six voters in V , thus the
majority threshold maj(V ) is reached with four points. The left part of Table 2.3 shows the
different scores on the different levels in (C,V ).
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We see that the three candidates a,c, and e all reach the majority threshold on the third level
(marked by the highlighted row), thus the Bucklin score in the election is 3. Since a has the
highest level 3 score, a is the unique level 3 Bucklin winner in (C,V ).

(C,V ) (C,V ′)

a b c d e a b c d e

score1 1 1 2 0 2 1 1 1 0 2

score2 3 3 3 1 2 2 2 2 1 2

score3 6 3 4 1 4 3 2 3 1 2

score4 6 6 4 4 4 3 3 3 1 2

score5 6 6 6 6 6 3 3 3 2 2

Table 2.3: Scores in the Bucklin election (C,V ) and the fallback election (C,V ′)

As stated above, (C,V ) can also be viewed as a fallback election in which all voters approve
of all candidates. In that case, the Bucklin winners and the fallback winners always coincide.
In order to illustrate the characteristics of a fallback election let us construct a second election
(C,V ′), where the candidate set remains the same, namely C = {a,b,c,d,e} and the prefer-
ences given in V are altered by applying different approval strategies for the voters. This leads
to the new voter list V ′ with the following ballots.

v1 : b > c | {a,d,e} v4 : e > b > a > d | {c}
v2 : a > d > c > b > e | /0 v5 : c > a | {b,d,e}
v3 : e | {a,b,c,d} v6 : /0 | {a,b,c,d,e}

The right side of Table 2.3 shows the scores in this new election (C,V ′) and we see that due to
the disapprovals, there is no candidate reaching the majority threshold of 4, thus the approval
winners, namely candidates a, b, and c tie for winning and are all fallback winners in (C,V ′).

2.3.3 Copeland, Schulze, and Cup Voting
We now turn to voting systems that use the concept of pairwise comparisons between candi-

dates to determine the winner. For a given election (C,V ) and two candidates a,b ∈ C, let

DV (a,b) denote the number of votes in V that prefer a to b minus the number of votes in V
that prefer b to a, that is

DV (a,b) = ‖{v ∈V | a > b in v}‖−‖{v ∈V | b > a in v}‖.
Whenever the voter list V is clear from the context, we will omit the subscript. If DV (a,b)>

0, we say that a (strictly) beats b in pairwise comparison. Clearly, DV (a,b) =−DV (b,a) holds

by definition. If DV (a,b) = DV (b,a) = 0 we say that there is a tie between the candidates a
and b.

One of the most prominent voting based on this concept is the Condorcet system, which

goes back to Condorcet [Con85]. The so-called Condorcet winner of an election is the unique
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candidate strictly beating all other candidates. Unfortunately, the Condorcet winner does not

always exist, as the following small example shows: Consider the election over the candidates

a, b, and c with the three voters a > b > c, b > c > a, and c > a > b. We see that candidate

a strictly beats b, while b strictly beats c, but c in turn beats candidate a. This election exem-

plifies the famous Condorcet paradox. A voting system E for which (whenever one exists)

the Condorcet winner is always an E winner is called Condorcet consistent. Each of the three

voting systems that we define below fulfills this property.

We start with defining the family of Copelandα that was (in this generalization) defined

by Faliszewski et al. [FHH+09b]. For a rational number α with 0 ≤ α ≤ 1 and a given election

(C,V ), DV (a,b) is determined for every pair (a,b) ∈ C ×C. Each candidate a receives one

point for every pairwise comparison she (strictly) wins and gets α points for every tie. All

candidates with the highest score are the Copelandα winners of (C,V ).5

Turning to Schulze voting, that was introduced by Schulze [Sch11], we define for a given

election (C,V ) the weighted majority graph, denoted by WMG(C,V ), to be a weighted, com-

plete directed graph G with vertex set C, where the weight of an edge (a,b) is defined to

be DV (a,b) (recall Section 2.1 for the graph-theoretic definitions). For each pair (a,b) of

candidates, P(a,b) denotes the strength of a strongest path from a to b (i.e., of a path with

the greatest minimum edge weight among all paths from a to b). All candidates a ∈ C with

P(a,b) ≥ P(b,a) for all b ∈C�{a} are the Schulze winners of (C,V ). Note that a candidate

a∈C is the unique Schulze winner of (C,V ) if and only if P(a,b)> P(b,a) for all b∈C�{a}.

In cup (or sequential majority) elections, (see [Mou88, CSL07]), an election is defined by

specifying

• a candidate set C, a list of voters V , and additionally,

• a complete binary rooted tree T with as many leaves as there are candidates in C, called a

voting tree (where we assume that C contains enough dummy candidates so as to satisfy

‖C‖= 2k for some k and all dummy candidates are ranked worst in V ), and

• a schedule that assigns the candidates to the leaves of T .

For determining the cup winner we compute the value of DV (a,b) for each pair of can-

didates, a and b, that are siblings in the tree and the winner of this pairwise comparison is

assigned to the corresponding parent-node. This procedure is continued until the cup winner
is assigned to the root. The schedule is known beforehand and whenever ties occur, they are

broken by a beforehand fixed tie-breaking rule.

Example 2.24 Recall the election (C,V ) from Example 2.21. Table 2.4 shows the pairwise
comparisons between the candidates in C and the Copelandα scores for α ∈ {0,0.5,1}.

The scores in boldface indicate the Copelandα winners for the corresponding α . We see
that candidate a is a winner for all chosen values and is the unique winner for α = 0.5 while
candidate e is a co-winner for α = 0 and c is a co-winner for α = 1.

Figure 2.4 shows a subgraph of WMG(C,V ) in which all edges with negative or zero weight
are omitted, and the strengths of the strongest paths in the weighted majority graph.

5 Note that originally the Copeland system was defined by Copeland [Cop51], which in the notation above

is equivalent to Copeland0.5. The system Copeland1 is also known as Llull voting.
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a b c d e α = 0 α = 0.5 α = 1

a – 3 : 3 3 : 3 6 : 0 4 : 2 2 3 4
b 3 : 3 – 3 : 3 3 : 3 2 : 4 0 1.5 3

c 3 : 3 3 : 3 – 3 : 3 4 : 2 1 2.5 4
d 0 : 6 3 : 3 3 : 3 – 2 : 4 0 1 2

e 2 : 4 4 : 2 2 : 4 4 : 2 – 2 2 2

Table 2.4: Pairwise comparisons and Copelandα scores for α ∈ {0,0.5,1}

b a

c

e

d

2

2

6

2

2

(a) Subgraph of WMG(C,V )

a b c d e

a – 2 0 6 2

b 0 – 0 0 0

c 0 2 – 2 2

d 0 0 0 – 0

e 0 2 0 2 –

(b) Strengths of the strongest paths

Figure 2.4: Subgraph of WMG(C,V ) and the strenghts of the strongest paths

The first column of the table in Figure 2.4b gives us the values P(x,a) = 0 for x ∈C−{a}.
Since there are no negative values in the first row, we know that P(a,x) ≥ P(x,a) for all
x ∈C−{a}, thus a is a Schulze winner. Furthermore we see that P(a,b)> P(b,a), P(a,d)>
P(d,a), and P(a,e)> P(e,a) which implies that neither b, d, nor e can win the election. This
leaves candidate c as a possible second Schulze winner and since P(c,x) ≥ P(x,c) for all
x ∈C−{c} we have that both candidates a and c are Schulze winners in this election.

Turning to cup voting, let ((a,b),c,(d,e)) be the schedule and a > b > c > d > e be the
order in which ties are broken if they occur. Figure 2.5a shows the unbalanced voting tree
corresponding to this schedule.

a b

c d e

(a) Voting tree without dummy candidates

a b c f1 d e f2 f3

a c e f2

a e

a

(b) Voting tree with dummy candidates

Figure 2.5: Voting tree for the cup election (C,V )

To transform this tree into a legal voting tree, we have to add 3 dummy candidates F =
{ f1, f2, f3} to the election. The new election is (C′,V ′) with candidate set C′ =C∪F and the
new voter list V ′ below, where we fix the ordering of the dummy candidates in F at the bottom
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of each ballot to be lexicographically, that is f1 > f2 > f3 in each vote.

v1 : b > c > a > d > e > F v3,v4 : e > b > a > d > c > F
v2 : a > d > c > b > e > F v5,v6 : c > a > e > b > d > F

Having the voting tree shown in Figure 2.5b, we can now determine the cup winner of the
election starting with the first pairwise comparisons in the pairs of leaves (a,b), (c, f1), (d,e),
and ( f2, f3). From Table 2.4 we know that DV ′(a,b) = 0 and DV ′(d,e) = −2, and since all
dummy candidates are always ranked last in lexicographic order we have that DV ′(c, f1) = 6

and DV ′( f2, f3) = 6. Thus, candidate a moves on to the next round because of the tie-breaking
order, and c, e, and f2 due to their win in the first round. On the second level of the tree we
have the pairs (a,c) and (e, f2) which are won by a and e, respectively, leading to the final
head-to-head contest between a and e. Since DV ′(a,e) = 2 candidate a is assigned to the root
and is the cup winner of the election.

2.4 Problems From Voting Theory and their
Connections

Much research in the field of computational social choice focuses on the computational com-

plexity of voting problems. In this section we want to shortly and informally describe those

voting problems that will be studied in the Chapters 3, 4, and 5, and give an overview of their

connections with respect to their computational complexity in Figure 2.6.

The different variants of manipulation (introduced by Bartholdi et al. [BTT89] and Conitzer

et al. [CSL07]) are formally defined in Section 3.1.1 (pp. 28) and model the scenario of a

given election in which there is a coalition of manipulative voters trying to make a certain

candidate win the election by reporting insincere preferences. Formally, this problem is called

CONSTRUCTIVE COALITIONAL UNWEIGHTED MANIPULATION, CCUM for short.6 If the

manipulators try to prevent a certain candidate from being a winner we are in the so-called

destructive scenario (DCUM). When the manipulators try to make their favorite candidate

the unique winner of the election or, in the destructive case, try to prevent a certain candidate

from being a unique winner, we denote the problems by UCCUM and UDCUM (this is the so-

called unique-winner model). If the given election is weighted, the corresponding problems are

defined analogously and are denoted by CCWM, DCWM, UCCWM, and UDCWM. Trivial

reductions between these different cases are presented in Observation 3.3 on page 28.

Electoral control ([BTT92, HHR07]), defined in Section 3.2.1, is a way of influencing an

election by actions such as adding, deleting, or partitioning the set of candidates or the list of

voters. Such control actions are exerted by an external actor with either the aim of making a

candidate win the resulting election (constructive control) or preventing a candidate from win-

ning (destructive control). Since there are no significant relations to the other voting problems,

we omit the control problems in Figure 2.6.

6Note that in the formal definitions, the voting system E is always specified as a prefix of the problem name.

For the sake of readability, we omit it in this section and especially in Figure 2.6.
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By asking for a given election whether a given candidate can be made a winner by changing

at most k of the given votes, the bribery variant CONSTRUCTIVE UNWEIGHTED BRIBERY

(CUB) is defined (see [FHH09]). This and further variants are formally stated in Section 3.3.1

(pp. 78): CUB-$ denotes the problem in which each voter has a different price for chang-

ing her vote and the briber’s action is limited by a given budget. CWB and CWB-$ denote

the above defined problems in weighted elections, whereas the destructive cases of these four

problems are DUB, DWB, DUB-$, and DWB-$. Just as for the manipulation problems, we

denote these problems with uCUB, uCWB, uCUB-$, uCWB-$, uDUB, uDWB, uDUB-$, and

uDWB-$ if they are stated in the unique-winner model. Trivial connections between these

problems that directly follow from their definition are stated in Observation 3.33 on page 79.

Faliszewski et al. [FHH09] furthermore point out that priced bribery can be reduced to the cor-

responding coalitional manipulation problem, which is stated in Proposition 3.34 on page 80.

The notion of SWAP BRIBERY (introduced by Elkind et al. [EFS09]) assumes that a briber

cannot pay or persuade a voter and then change the entire ballot freely, but has to pay for

each swap of adjacent candidates in a vote separately. Each voter may have a different price

for each possible swap and the briber has to find a bribing action within a given budget. The

unweighted versions are CUSB, DUSB, UCUSB, and UDUSB while the weighted cases are

denoted by CWSB, DWSB, UCWSB, UDWSB. Besides the trivial reductions between these

problems, it holds that for elections with exactly two candidates, thus m= 2, swap bribery and

priced bribery are equivalent. Observation 3.36 on page 81 summarizes these connections.

Elkind et al. [EFS09] point out that CUSB can be seen as a generalization of yet another

voting problem, namely the so-called POSSIBLE WINNER (PW) problem ([KL05]). In con-

trast to the previously defined voting problems, here we have given an election with a list of

voters containing possibly partial votes, which means that not all ballots are complete linear

orders and the question is, whether for a given candidate there exists an extension of these

partial votes to complete linear orders such that the candidate is a winner of this new election

with the extended votes. The problem NECESSARY WINNER (NW) asks for the same input

whether the designated candidate is a winner for all possible extensions of the partial votes to

linear orders. Again, we denote the problems by UPW and UNW if the unique-winner model

is considered. Proposition 3.38 on page 82 due to [EFS09] and Proposition 3.40 on page 82

due to [SYE13] show the relations between constructive swap bribery and the possible win-

ner problem, and the destructive cases and the complement of the necessary winner problem

co(NW). Furthermore, CCUM can be seen as a special case of the PW problem, stated in

Proposition 3.39 on page 82 which was shown by Xia and Conitzer [XC11b].

Another interesting and well-studied notion is the so-called margin of victory that we study

in Chapter 4. For a given election, the margin of victory denotes the smallest number of votes

that has to be changed in order to alter the election’s winner set. The corresponding decision

problem, called MOV, asks for a given election and a given bound � whether the margin of

victory is at most �. We also define a more refined variant, called the swap margin of vic-
tory which is the smallest number of swaps needed to change the winner set of an election.

SWMOV denotes the corresponding decision problem. Both variants are highly related to

destructive bribery in the unique winner model. The relations are formally specified in Propo-

sition 4.2 that is due to [Xia12] and Corollary 4.3 (pp. 101) and Corollary 4.7 on page 104.
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Figure 2.6 summarizes the relations given in the above mentioned propositions and obser-

vations. A dashed directed edge from problem A to problem B indicates that there exists a

polynomial-time Turing reduction from A to B, that is, A ≤p
T B. For example we have that for a

fixed voting system UDUSB ≤p
T CUSB. Recalling Section 2.2, this observation may be very

useful as in this case a P membership result for CUSB would directly transfer to UDUSB. A

continuous directed edge from problem A to B specifies that A ≤p
m B holds, thus a hardness

result for A implies hardness for B, as well. The four undirected edges between the prob-

lem pairs UCWSB and UCWB-$, CWSB and CWB-$, UDWSB and UDWB-$, and finally

DWSB and DWB-$ state that if the number of candidates m in the given election is fixed to

2, these problems are equivalent. The dotted line between the problems DCWM and DWB

illustrates the connection between these two problems that was found in the analysis of these

problems in Bucklin elections: Algorithm 3.3 in Section 3.3.2 solving Bucklin-DWB uses

Algorithm 3.1 from Section 3.1.2 that solves Bucklin-DCWM. The edge labeled with “UC”

from UDUSB to SWMOV indicates that the reduction holds for the case that the voters in the

UDUSB instance all have unit costs for each possible swap.

UCUB

UCWB UCUB-$

UCWB-$

CUB

CWB CUB-$

CWB-$

UDUB

UDUB-$ UDWB

UDWB-$

DUB

DWBDUB-$

DWB-$

UCWSB CWSB UDWSB DWSB

m= 2 m= 2 m= 2 m= 2

UCUSB CUSB UDUSB DUSB

UPW PW UNW NWNW

UCCUM CCUM UDCUM DCUM

UCCWM CCWM UDCWM DCWM

MOV

SWMOV

UC

Figure 2.6: Overview of relations between voting problems

Note that we omit the possible winner problem with uncertain weights in this discussion and

in Figure 2.6 as the goal of this section is to provide a compact overview of the most important

connections.
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3 Manipulative Attacks in Bucklin and
Fallback Elections

This chapter is dedicated to a thorough analysis of the voting systems Bucklin and fallback vot-

ing with respect to the computational complexity of voting problems modelling manipulative

attacks on elections. This line of research was triggered by the famous Gibbard-Satterthwaite

theorem, independently shown by Gibbard [Gib73] and Satterthwaite [Sat75], stating that all

reasonable voting systems can be manipulated in the sense that voters can alter an election’s

outcome to their benefit by reporting insincere preferences.

Theorem 3.1 (Gibbard [Gib73], Satterthwaite [Sat75]) For elections with at least three can-
didates, there is no preference-based voting system E fulfilling the following four properties
simultaneously.

1. There is no single voter v ∈V amongst other voters such that the outcome of an election
solely depends on v’s preference (E is non-dictatorial).

2. E always determines a unique winner (E is resolute).
3. For each candidate c there exists a set of voters making c an E winner (E fulfills citizen’s

souvereignity).
4. The voters can not alter an election’s outcome to their benefit by reporting insincere

preferences (E is strategy-proof).

This result was extended to irresolute voting procedures by the work of Gärdenfors [Gär76]

and Duggan and Schwartz [DS00].

The scenario of strategical behavior of voters is called manipulation and was firstly formally

defined by Bartholdi et al. [BTT89] (and extended by Conitzer et al. [CSL07]) who introduced

the path-breaking idea of studying the computational complexity of this voting problem. The

idea behind this approach is, intuitively speaking, that even though all voting systems are

manipulable in general, finding a successful manipulation may be hard to compute. Meaning

that for a given election, the fact that a voter could not decide easily how to change her vote to

achieve her goal, would be protection enough.

Besides manipulation, Bartholdi et al. [BTT92] introduced the notion of electoral control
in which an external actor, called the chair, tries to alter an election’s outcome by actions

as adding or deleting candidates or voters or changing the entire structure of the election

by partitioning the candidates or voters. Their model was extended by Hemaspaandra et al.

[HHR07].

In the same line of research, Faliszewski et al. [FHH09, FHH+09b], introduced bribery
modelling situations in which an external actor tries to change certain votes by bribing the
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voters. A refinement of bribery can be seen in the model of campaign management defined in

the work of Elkind et al. [EFS09] and Elkind and Faliszewski [EF10a]. Here, the briber can

change specific aspects of a vote such as swapping candidates but each single change has to

be paid separately.

The worst-case complexity of these voting problems has been intensely studied for various

voting systems. Their analysis has been extended to other aspects reaching from considering

restricted domains (such as single-peakedness), approximability of their optimization vari-

ants to typical-case analyses and experimental studies. See the the surveys by Faliszewski et

al. [FHH+09a], Faliszewski and Procaccia [FP10], Conitzer [Con10], and Rothe and Schend

[RS13], and the book chapters by Brandt et al. [BCE13], Conitzer and Walsh [CW16], and Fal-

iszewski and Rothe [FR16] for a comprehensive overview. Furthermore see also the related

work we provide in the following sections for detailed information.

The analysis of Bucklin and fallback voting, however, was unsatisfyingly incomplete. This

thesis, together with previous publications, closes this gap.

Basic Assumption – Full Knowledge of Preferences We assume that the manipulative

participants in our voting problems (that is, the manipulators, the chair, or the briber, respec-

tively) have complete knowledge of the voters’ preferences and can construct the manipulative

action based on this knowledge. Regarding real-life settings, there are scenarios in which this

assumption is unrealistic, but for examples as small-scale elections among humans or large-

scale elections among software agents it can be assumed that the voters or even an outside

individuum can know how the voters will cast their votes. From a theoretical point of view,

considering that we focus on a worst-case analysis of these voting problems, the assumption is

reasonable in the sense that if a voting problem is hard to solve assuming that all preferences

are known, restricting the knowledge of these preferences does not simplify the task for the

manipulative participants. Hemaspaandra et al. [HHR07] provide a detailed discussion on this

point.

Organization of this Chapter Each section of this chapter is dedicated to one type of

manipulative attacks on elections. First the formal definitions are introduced and after giv-

ing a comprehensive overview of related work and known results, our results are presented.

Starting with manipulation in Section 3.1, we turn to the study of electoral control in Sec-

tion 3.2, where the analysis consists of a theoretical and an experimental part. In Section 3.3

we present our study on bribery and campaign management. The presented results were pub-

lished in [FRR+14, FRR+15, EFR+15a, EFR+15b, RS12a]. At the end of the chapter we

summarize our results and discuss future directions for further research.
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3.1 Manipulation

3.1 Manipulation
The concept of manipulation as defined by Bartholdi et al. [BTT89] and Conitzer et al. [CSL07]

models situations in which a group of manipulative voters (which may also consist of only one

voter) reports insincere preferences in order to make a certain candidate win or prevent a cer-

tain candidate from winning.

One example where such behavior occurs in real-world elections is the election of the Ger-

man Bundestag. Here, each voter has two votes: the so-called first vote and the second vote.

The former is given directly to a candidate from a list of local candidates registered in the

voter’s electoral district (only one candidate can be selected). These candidates may be mem-

bers of a political party, but that is not mandatory. From each district the candidate with a

simple majority of votes is elected directly to the Bundestag. The districts are usually won

by candidates from the two big parties the Sozialdemokratische Partei Deutschlands (SPD)

and the Christliche Demokratische Union Deutschlands/Christlich-Soziale Union in Bayern
(CDU/CSU); in relation to the number of seats, only a small part is won by candidates from

the smaller parties. The second vote is given directly to one of the registered parties and these

votes determine the percentage of seats each party obtains in the Bundestag. In the year 2013

the party Freie Demokratische Partei (FDP) campaigned with the slogan “Second Vote FDP,”
calling the voters of their potential coalition partner CDU on voting strategically: Instead of

giving their second vote to the CDU, the voters should vote for the FDP to ensure that the

FDP would have enough seats for being a feasible coalition partner, and thus preventing the

grand coalition consisting of the CDU and SPD. Interestingly, 2013 was the first year since the

establishment of the Federal Republic in 1949 that the FDP missed the quota of 5% of second

votes that is needed to be part of the Bundestag.

As we will see, this example does not fit the formal definition of the manipulation problem

as we will study it in this section, but it nevertheless captures the idea of strategic behavior.

Complementing the above example, we show that Bucklin and fallback voting are manipulable

in the formal sense.

Example 3.2 Recall the election (C,V ) from Example 2.23 in Section 2.3.2. Candidate a
is the unique level 3 Bucklin winner in this election. Consider the voters v5 and v6 who
both have the preference c > a > e > b > d. Their favorite candidate is c and in order to
make her a winner of the election, these voters could submit an untrue preference of the form
c > d > e > b > a leading to the scores below.

a b c d e

score1 1 1 2 0 2

score2 1 3 3 3 2

score3 4 3 4 3 4

Table 3.1: Scores in the manipulated Bucklin election

As the majority threshold is 4, the strategic behavior of these two voters makes their pre-
ferred candidate c, amongst others, a level 3 Bucklin winner of the manipulated election.
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3.1.1 Basic Definitions and Related Work
The original manipulation problem introduced by Bartholdi et al. [BTT89] models the sce-

nario of a single manipulator trying to influence a given unweighted election. Conitzer et

al. [CSL07] extended this definition by allowing a coalition of manipulators. Furthermore,

they also defined a weighted variant for elections in which different voters may have different

weights:

E -CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION (E -CCWM)

Given: A set C of candidates, a list V of nonmanipulative votes over C, a list WV of

weights of the voters in V , a nonnegative integer k, a list WS of the weights of

k manipulators in S with V ∩S = /0, and a designated candidate c ∈C.

Question: Can the votes in S be set such that c is an E winner of (C,V ∪S)?

The unweighted variant, denoted by E -CCUM, can be obtained by setting all weights in

both lists WV and WS to the unit weight of 1. By furthermore setting the number of manipula-

tors to 1, the original definition given in [BTT89] can be obtained.

The destructive variants of the weighted and unweighted variants are denoted by E -DCWM

and E -DCUM, respectively. They are defined analogously to their constructive counterparts

except that the question has to be changed to whether the votes in S can be set such that the

designated candidate is not an E winner of the resulting election (C,V ∪S).
We stated the above problem in the so-called co-winner model by asking in the constructive

case whether the designated candidate can be made an E winner. To apply the unique-winner
model, the question has to be changed to whether the designated candidate can be made the
unique E winner (can be prevented from being a unique E winner in the destructive cases). To

give a comprehensive overview of the relationships between the different manipulation prob-

lems in Observation 3.3 below, we introduce the following notation for the four manipulation

problems defined in the unique-winner model: E -UCCWM, E -UCCUM, E -UDCWM, and

E -UDCUM. In the remaining course of this thesis, however, we will refrain from distinguish-

ing between the two notations and ensure that it is always clear from the context which winner

model is used.

We omit the proof of the following observation as the reductions directly follow from the

definitions stated above. Note that the last part of this observation is often informally described

as “the destructive case is never harder than the constructive case unless P equals NP,” but we

want to stress that it is important to carefully distinguish which winner model is used.

Observation 3.3 Let E be a voting system, then the following holds.

1. E -CCUM ≤p
m E -CCWM and E -UCCUM ≤p

m E -UCCWM.
2. E -DCUM ≤p

m E -DCWM and E -UDCUM ≤p
m E -UDCWM.

3. E -UDCUM ≤p
T E -CCUM and E -UDCWM ≤p

T E -CCWM.
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Related Work and State of the Art The basic manipulation problems that we just defined

have been intensely studied for a variety of voting systems. The first of such papers following

the seminal paper by Bartholdi et al. [BTT89] is the work of Bartholdi and Orlin [BO91], who

investigated the complexity of manipulation in single transferable vote. Table 3.2 surveys re-

sults from the literature for those voting systems that are studied besides Bucklin and fallback

voting within this thesis.

Voting Rule E -CCUM E -DCUM E -CCWM E -DCWM

family of scoring rules �α∗ 1 NP-complete 2 P 3 NP-complete 2 P 3

family of scoring rules �α ′ 4 NP-complete 5 P 3 NP-complete 5 P 3

plurality P 3,5 P 3 P 3,5 P 3

veto P 3,5 P 3 P 3,5 P 3

Borda NP-complete 7 P 3 NP-complete 5 P 3

Copelandα , α ∈ [0,1]−{0.5} NP-complete 6 P 3 NP-complete 3 P 3

Copeland0.5 ? P 3 NP-complete 3 P 3

cup P 3 P 3 P 3 P 3

Schulze P 8 P 8 ? ?

1 �α∗ from [XCP10, p. 8]
2 due to [XCP10]
3 due to [CSL07]

4 �α ′ from [HH07, p. 12]
5 due to [HH07]
6 due to [FHS08, FHS10]

7 shown independently in [BNW11, DKN+11]
8 due to [GKN+13, PX12]

Table 3.2: Selection of known results regarding the complexity of manipulation

As NP-hardness establishes the worst-case complexity of the manipulation problem, the

next natural step for the analysis of a voting system’s manipulability is the question whether

it is also hard to manipulate in practice. The various approaches reach from experimental
analyses (see the work of Walsh [Wal10, Wal09], Davies et al. [DKN+11, DKN+10], and Nar-

odytska et al. [NWX11]) and approximation algorithms (studied, for example, by Zuckerman

et al. [ZPR09] and Xia et al. [XCP10]), to the study of parameterized complexity by Betzler et

al. [BHN09, BNW11], Yang [Yan14], and Dey et al. [DMN15] (see also the survey of Betzler

et al. [BBC+12]).

Rothe and Schend [RS13] provide an overview of further approaches challenging NP-

hardness shields against manipulation, including the complexity of manipulation on restricted

domains such as single-peaked electorates. See, for example, the work of Faliszewski et al.

[FHH+11], Brandt et al. [BBH+10], and Faliszewski et al. [FHH14], and the book chapter

by Hemaspaandra et al. [HHR15].

Hemaspaandra et al. [HHR14] study online manipulation in online elections in which the

voters do not cast their votes simultaneously, but sequentially. The setting introduced in this

work is closely related to noncooperative game theory.

Tie-breaking is a very important aspect when studying the complexity of manipulation. How

breaking ties at random can influence the complexity of manipulation is studied by Obraztsova

et al. [OEH11] and Obraztsova and Elkind [OE11], and more recently in the work of Aziz et

al. [AGM+13].
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3 Manipulative Attacks in Bucklin and Fallback Elections

Another fruitful line of work focuses on elections with incomplete information, see Chap-

ter 5 for more background regarding such settings. In the model introduced by Conitzer et al.

[CWX11] the manipulators only have partial information about the preferences the nonma-

nipulative voters cast. Elkind and Erdélyi [EE12] study manipulation when the uncertainty

lies in the voting system itself. They consider the setting in which a list of voting systems is

specified before the votes have to be cast and the winner will be determined based on one of

the voting systems from this given list. Manipulation is also of great concern in other areas

of computational social choice, such as judgment argumentation, fair division, and coopera-

tive game theory, see, for instance, the recent work of Baumeister et al. [BEE+15, BEE+13,

BRS15], Nguyen et al. [NBR15], and Rey and Rothe [RR14].

The study of manipulation and its variants in different setting is a quickly growing line

of research and surveying it to a full extent would go beyond the scope of this thesis. For

further related work regarding manipulation in voting we refer to the surveys by Faliszewski

and Procaccia [FP10], Faliszewski et al. [FHH10, FHH+09a], Mossel and Rácz [MR12b], and

Conitzer [Con10], and the book chapters by Baumeister and Rothe [BR15] and Conitzer and

Walsh [CW16].

3.1.2 Complexity Results
The results presented in this section, see Table 3.3 for an overview, were published in [FRR+14,

FRR+15]. All results hold in both winner models (recall their definition from Section 3.1.1).

Bucklin Voting Fallback Voting

Problem complexity reference complexity reference

E -CCWM NP-complete Thm. 3.5 P Thm. 3.4

E -DCWM P Thm. 3.7 P Thm. 3.4

E -CCUM P Thm. 3.9 P Cor. 3.8

E -DCUM P Cor. 3.10 P Cor. 3.8

Table 3.3: Overview of results for manipulation in Bucklin and fallback voting

Results for Weighted Manipulation We start with analyzing the complexity of weighted

manipulation in Bucklin and fallback voting.

Theorem 3.4 Fallback-CCWM and fallback-DCWM are in P, each in both winner models.

Proof Sketch. Manipulation in fallback voting can be tackled in a straightforward manner

and we will informally describe the strategy manipulators can follow.

Given the designated candidate p in the constructive cases, the manipulators approve only

of p and disapprove of the remaining candidates. This ensures that no other candidate than p
gains any points on any level from the manipulators’ votes. As this is clearly an optimal way
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of setting the votes with respect to the goal of making p a (unique) winner, there is no other

way to set the manipulators’ votes if this manipulation attempt does not succeed. Obviously,

this holds for both winner models.

Observation 3.3 allows us to follow that also destructive weighted manipulation for fallback

voting is in P for both winner models. �

In contrast to this easy result in fallback elections, constructive coalitional manipulation in

weighted Bucklin voting confronts the manipulators with a far more difficult task.

Theorem 3.5 For elections with at least three candidates, Bucklin-CCWM is NP-complete
in both winner models.

Proof Sketch. It is easy to see that Bucklin-CCWM is in NP in both winner models and

for all numbers of candidates. Since the winner of any Bucklin election can be determined in

deterministic polynomial time, it suffices to guess the manipulators’ votes and check whether

this manipulation is successful.

We present how NP-hardness can be established by a reduction from PARTITION. We will

not provide the full proof of the above claim, but rather show how a Bucklin election can be

constructed to show the co-winner case for an odd number of candidates (m ≥ 3). Let an

instance of PARTITION be given by A = {1, . . . ,k} and (a1, . . . ,ak) with ∑k
i=1 ai = 2K. Let

C = {c1,c2, . . . ,cm−1}∪ {p}, be the set of candidates, where m ≥ 3 is an odd number (the

desired number of candidates in the constructed election). To simplify the description of the

votes, we will use the following interval-like notation:

C[i, j] =

{
ci > ci+1 > · · ·> c j if i < j,
ci > ci+1 > · · ·> cm−1 > c1 > · · ·> c j otherwise.

For example, by writing C[1,4] > p > · · · we mean a preference order described by c1 >
c2 > c3 > c4 > p > · · · (i.e., we rank candidates c1, c2, c3, and c4 first, then p, and then

all the remaining candidates in some arbitrary-but-easy-to-compute order). Similarly, p >
C[m−2,2]> · · · would mean a preference order of the form p> cm−2 > cm−1 > c1 > c2 > · · · .

We construct a Bucklin election (C,V ), where the candidate set C is as already specified,

and where the voter list is as given in Table 3.4. Note that the overall weight of the voters in V
is 2(m−1)K.

Let there be k manipulators in S with weights a1,a2, . . . ,ak. While in the original election

we have a majority threshold of (m− 1)K + 1 points, the majority threshold is reached with

mK +1 points in the election with the manipulators.

Since p receives no points at all in (C,V ) before level m−1
2 + 1 and has fewer points than

any other candidate on this level (see Table 3.5a), p is not a Bucklin winner of the original

election (C,V ).
It can be shown that (A,(a1,a2, . . . ,ak))∈ PARTITION if and only if p can be made a Bucklin

winner in (C,V ∪S). �

The following lemma will be useful to prove the upcoming result in Theorem 3.7 and we

state it without proof.
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Group Preference Weight

(1) C
[
1, m−1

2

]
> p > · · · m−1

2 K

(2) C
[
m−1

2 +1,m−1
]
> p > · · · m−1

2 K

(3)

C[1,m−1]> p K
C[2,1]> p K

...
...

C[m−1,m−2]> p K

Table 3.4: Voter list V in the proof of Theorem 3.5 for an odd number m≥ 3 of candidates

c ∈C−{p} p

score
m−1

2 (m−1)K 0

score
m−1

2 +1 mK (m−1)K

(a) Original election (C,V )

c ∈C−{p} p

score
m−1

2 ≤mK 2K
score

m−1
2 +1 mK +K mK +K

(b) Manipulated election (C,V ∪S)

Table 3.5: Level i-scores, i ∈ {
m−1

2
, m−1

2
+1

}
, of the candidates in C for odd m≥ 3

Lemma 3.6 Let (C,V ) be a weighted Bucklin election with total weight W and let c, p ∈ C.
Then the following holds.

1. Assume that c is not a (unique) Bucklin winner in (C,V ) and that the votes in V are
changed such that the position of c is made worse in some votes, all else being equal.1

Then c is still not a (unique) Bucklin winner.

2. Assume that c is a (unique) Bucklin winner of the election and that the votes in V are
changed such that the position of c is improved in some votes, all else being equal. Then
c remains a (unique) Bucklin winner.

3. Assume that c is a (unique) Bucklin winner of the election and that p is not a (unique)
Bucklin winner. If in some votes the positions of candidates are swapped without chang-
ing the positions of c and p, all else being equal, then p is still not a (unique) Bucklin
winner.

The destructive case of coalitional manipulation in weighted Bucklin elections can be solved

in deterministic polynomial time by a straightforward approach presented in Algorithm 3.1:

Letting p be the current winner in the unmanipulated election, the algorithm tests for every

1By “all else being equal” we tacitly mean that all other candidates remain in the same position in each vote,

except those candidates that improve their position by one due to shifting c toward the bottom. An analogous

comment applies to the cases where c’s position is improved in the second statement of this lemma and where

other candidates are swapped in the third statement of this lemma.
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candidate c other than p whether this candidate can beat p by setting all manipulators votes to

c > · · ·> p, where the remaining candidates in C are arbitrarily positioned in the middle part

of the preference. The algorithm accepts if one such candidate has been found.

Algorithm 3.1: Algorithm for Bucklin-DCWM

input : C set of candidates

V list of voters

WV weights of the voters

WS weights of the manipulators

p designated candidate

output: “YES” if (C,V,WV ,WS, p) ∈ Bucklin-DCWM

“NO” if (C,V,WV ,WS, p) /∈ Bucklin-DCWM

1 if ∑w∈WS
w > ∑w∈WV w then

2 return “YES”;

3 foreach c ∈C−{p} do
4 put p in the last position in the manipulators’ votes;

5 put c in the first position in the manipulators’ votes;

6 fill the remaining positions in the manipulators’ votes arbitrarily;

7 let S be the list of the manipulators’ votes

8 if (p is not a Bucklin winner of (C,V ∪S) with weights WV ∪WS) then
9 return “YES”;

10 return “NO”;

We show the following theorem in detail as Algorithm 3.1 will be used to solve variants of

destructive bribery in Bucklin elections in Section 3.3.2 (see Algorithm 3.3 on page 90).

Theorem 3.7 In both winner models, Bucklin-DCWM can be decided in time O(m2(n+
‖WS‖)), where WS is the list of the manipulators’ weights by Algorithm 3.1.

Proof. We begin with analyzing the runtime of Algorithm 3.1. The input of the algorithm

is the set of m candidates in C, the list of n voters V each represented by a preference over

m candidates, the list of n weights in WV , the list of ‖WS‖ weights in WS, and the designated

candidate p. Thus the input size is in O(m+nm+n+‖WS‖+1) =O(nm+‖WS‖). Obviously,

the algorithm always terminates and the most costly part of the algorithm is the for-loop. To

construct the manipulators’ votes, O(‖WS‖m) steps are needed. The winner-determination

procedure for Bucklin can be implemented with a runtime of O(nm), so the if-statement in

line 8 can be computed in time O(m(n+ ‖WS‖)). Thus, the whole for-loop runs in time

O(m2(n+‖WS‖)).
To prove the correctness of the algorithm, we show that it gives the output “YES” if and

only if (C,V,WV ,WS, p) ∈ Bucklin-DCWM. (Note that by changing the condition of the if-

statement in line 8 to “(p is not a unique Bucklin winner of (C,V ∪S) with weights WV ∪WS),”
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the algorithm solves Bucklin-DCWM in the unique-winner model which can be shown with

an analogous argumentation as below.)

Only if: If the algorithm outputs “YES” in line 2, then we have ∑w∈WS
w>∑w∈WV w, i.e., the

sum of the manipulators’ weights is greater than the sum of the weights of the nonmanipulative

voters. In this case, any of the candidates c 	= p can be made a unique level 1 Bucklin winner

in (C,V ∪ S) by putting c in the first position of all the manipulators’ votes and filling the

remaining positions arbitrarily. Hence, (C,V,WV ,WS, p) ∈ Bucklin-DCWM. If the algorithm

outputs “YES” in line 9, the manipulators’ votes have been constructed such that p is not a

Bucklin winner in (C,V ∪S). Thus, we have that (C,V,WV ,WS, p) is a yes-instance of Bucklin-

DCWM.

If: Assume that (C,V,WV ,WS, p) ∈ Bucklin-DCWM. If ∑w∈WS
w > ∑w∈WV w, then the al-

gorithm correctly outputs “YES.” Otherwise, the following holds: Since the given instance is

a yes-instance of Bucklin-DCWM, the votes of the manipulators in S can be set such that p is

not a Bucklin winner of the election (C,V ∪ S). We know from Lemma 3.6 that successively

swapping p with her neighbor until p is in the last position in all votes in S does not change

the fact that p is not a Bucklin winner in (C,V ∪S′) (where S′ are the new manipulative votes

with p in the last position). Assume that c ∈C−{p} is a Bucklin winner in (C,V ∪S). Then

swap her position successively with her neighbor in the votes in S′ until c is in the first po-

sition of all manipulative votes. Let S′′ denote the accordingly changed list of manipulative

votes. Again, from Lemma 3.6 we know that c still wins in (C,V ∪S′′). Let S′′′ be the list of

manipulative votes that the algorithm constructs. We can transform S′′ into S′′′ by swapping

the corresponding candidates c′,c′′ ∈ C−{c, p} accordingly. Since the positions of c and p
remain unchanged, we have with Lemma 3.6 that p is still not a Bucklin winner in (C,V ∪S′′′).
Thus, the algorithm outputs “YES” in line 9. �

Results for Unweighted Manipulation We start with the unweighted cases in fallback

voting which are handled in Corollary 3.8 and can be followed with Observation 3.3 from

Theorem 3.4.

Corollary 3.8 Fallback-CCUM and fallback-DCUM are in P, each in both winner models.

This leads us to the last unresolved case: constructive manipulation in unweighted Buck-

lin elections. In contrast to the weighted variant which we showed to be NP-complete in

Theorem 3.5, unweighted Bucklin elections can be efficiently be manipulated. Compared to

fallback elections, however, the argumentation is much more involved as the manipulators do

not have the possibility to generally preclude other candidates than the designated one from

gaining points on relevant levels.

The following algorithm is an adaption of the corresponding algorithm for simplified Buck-

lin due to Xia et al. [XZP+09] and we will present a high-level description of the pseudocode

presented in Algorithm 3.2 solving the problem in the co-winner case.

The given input consists of a Bucklin election (C,V ) with the set of candidates C and the

list of voters V with specified preferences. Candidate p ∈ C is the candidate we want to
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3.1 Manipulation

Algorithm 3.2: Algorithm for Bucklin-CCUM

input : C set of candidates

V list of voters

k number of manipulators

p designated candidate

output: “YES” if (C,V,k, p) ∈ Bucklin-CCUM

“NO” if (C,V,k, p) /∈ Bucklin-CCUM

1 if k > ‖V‖ then
2 return “YES”;

3 let max_scr�min , max_scr�min−1, num�min , num�min−1 be arrays of length m;

4 maj = �‖V‖+k
2

�+1;

5 �min = min{i | scorei
(C,V )(p)+ k ≥ maj};

6 foreach c ∈C−{p} do
7 if min{i | scorei

(C,V )(c)≥ maj}< �min OR score�min

(C,V )(c)> score�min

(C,V )(p)+ k then
8 return “NO”;

9 max_scr�min [c] = score�min

(C,V )(p)+ k− score�min

(C,V )(c);

10 max_scr�min−1[c] = maj− score�min−1
(C,V ) (c)−1;

11 num�min [c] = min{max_scr�min [c],k};

12 num�min−1[c] = min{max_scr�min−1[c],max_scr�min [c],k};

13 if ∑c∈C−{p} min{max_scr�min−1[c],max_scr�min [c],k}< (�min −2)k OR

∑c∈C−{p} min{max_scr�min [c],k}< (�min −1)k then
14 return “NO”;

15 return “YES”;

make a winner of the resulting election by determining the yet unspecified preferences of k
manipulators.

maj: Denotes the strict majority threshold in the final election counting both the number of

regular voters and the k manipulators.

�min: Denotes the smallest level on which candidate p reaches the majority threshold maj in

the manipulated election, assuming that all the manipulators position p on top. This

means that if p is to win, p has to win at level �min, having score�min

(C,V )
(p)+ k points.

max_scr�min: This array indicates how many further points each candidate c can gain without

having strictly more points than p on level �min.

max_scr�min−1: This array indicates how many further points each candidate c may gain with-

out reaching or exceeding the majority threshold maj on one of the levels 1 through �min−
1.

num�min−1: This array indicates the number of manipulators that may have candidate c in

the first �min − 1 positions of their votes without preventing p from winning, that is,

num�min−1[c] = min{max_scr�min [c],max_scr�min−1[c],k}.

35



3 Manipulative Attacks in Bucklin and Fallback Elections

num�min: This array indicates the number of manipulators that can place c among their top �min

positions without preventing p from winning, that is, num�min [c] =min{max_scr�min [c],k}.

We have that for all c ∈ C−{p}, max_scr�min and max_scr�min−1 contain positive numbers

and that num�min [c]≥ num�min−1[c].
The algorithm proceeds as follows. In a first step (in line 1) it is tested whether there are

more manipulators than nonmanipulative voters which would lead to a trivial yes-instance.

If this test fails, the algorithm proceeds and tests whether the given instance is a trivial no-

instance in the sense that there is at least one other candidate that cannot be dethroned by

p with the given number k of manipulators (in line 7). If no such candidate is found, the

algorithm computes the necessary arrays described above and proceeds to line 13. In this final

step, assuming that p is in the first position in every manipulator’s preference, the algorithm

checks whether the remaining positions in the preferences can be filled while still ensuring

that no candidate c ∈C−{p} beats p.

The algorithm can easily be adapted to solve the unique-winner case by slightly modifying

the definition of the array max_scr�min (subtracting 1) and allowing equality in the second

inequality in line 7.

We summarize this in the following theorem that we state without proof.

Theorem 3.9 Bucklin-CCUM∈ P in both winner models.

Similar to the case of fallback elections, Theorem 3.9 and Observation 3.3 give us the corol-

lary below.

Corollary 3.10 Bucklin-DCUM is in P in both winner models.

3.2 Electoral Control
In the context of electoral control we are concerned with the situation that the chair of a given

election tries to tamper with the election’s result by altering the structure of the election itself,

for example by adding or deleting candidates or voters. Bartholdi et al. [BTT92] introduced

the constructive variants of control in which the chair’s aim is to make a certain candidate

the winner of the controlled election. Hemaspaandra et al. [HHR09] introduced the destruc-

tive variants in which the goal is to prevent the current winner from winning by conducting

structural changes.

There is no analogon to Theorem 3.1 in the context of electoral control: there are voting

systems that are immune to certain types of electoral control meaning that there do not exist

any elections in which the given type of control can be exerted successfully. Two famous

voting systems are approval voting and the Condorcet system that are immune to certain types

of candidate control [BTT92, HHR09]. But no natural voting system with a deterministic

polynomial-time winner determination has been found that is immune to all types of electoral

control.
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Thus, a rich line of research is concerned with finding a voting system with the two desired

properties of having a deterministic polynomial winner determination procedure, that is, the

winners of a given election can easily be determined, and is at the same time resistant to all

control types, where resistance means that the corresponding control problems are NP-hard.

Hemaspaandra et al. [HHR09] show that, indeed, such a voting system exists and prove that

an impossibility theorem like “For no election system whose winner complexity is in P are all
types of control NP-hard” does not hold in general. The voting system that is constructed and

serves as a counterexample, however, is very artificial leaving the question open whether a

natural voting system can be found that is resistant to all types of electoral control.

This research question is not resolved yet, but the work of Erdélyi et al. [ER10, EPR11]

and Menton [Men13] came close to an answer: the voting systems fallback voting and nor-
malized range voting are resistant to all types of electoral control except for two vulnerabilities

(meaning the corresponding decision problem is in P). Bucklin voting behaves almost as well

in terms of resistance, the only difference being that the complexity of one case of control by

partition of voters is yet unresolved.

After giving the formal definitions of the different types of control, we provide a two-part

analysis of control complexity in Bucklin and fallback voting: In a first step we extend the

worst-case analysis by Erdélyi et al. [ER10, EPR11, EF10b] by analyzing the parameterized

complexity of the various control problems with respect to natural parameters for Bucklin

voting and extend previously known results to the co-winner model. In a second step we

present the first experimental analysis of control complexity which is based on the approach

introduced by Walsh [Wal10, Wal09] for the experimental analysis of manipulation problems.

Note that this experimental analysis is also conducted for plurality voting.

3.2.1 Basic Definitions and Related Work

We now give the formal definitions of all considered types of control which were given

by Hemaspaandra et al. [HHR07]. These definitions are based on those of Bartholdi et al.

[BTT92], but provide refined definitions of the partition cases and furthermore introduce the

destructive cases of control. We complement the definitions by real-life scenarios describing

possible adaptions of the introduced models, define then the notions of resistance and vulner-

ability in terms of classical and parameterized complexity, and conclude this section by giving

an overview of known results and interesting related work.

Adding and Deleting of Voters and Candidates Let us start with one of the most

intuitive cases: Obviously, the outcome of an election can be influenced by deleting some

of the votes that were originally cast. In real-life elections such deletions could be realized

by illegally disposing of ballots or deleting votes when the election is held electronically.

More subtle ways of voter deletion include preventing voters from participating in the election

altogether by, for example, raising the voting age or leading voters to cast invalid votes when

the design of the ballots is too complicated or misleading.
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3 Manipulative Attacks in Bucklin and Fallback Elections

E –CONSTRUCTIVE CONTROL BY DELETING VOTERS (E -CCDV)

Given: An E election (C,V ), a designated candidate c ∈C, and a nonnegative integer k.

Question: Is there a sublist V ′ ⊆ V with ‖V ′‖ ≤ k such that c is an E winner of the election

(C,V −V ′)?

The destructive variants of all control types can be obtained from the constructive cases by

changing the question to whether there is a control action such that the designated candidate c
is not an E winner of the resulting election. For this first type of control the question for the

destructive variant thus has to be changed to whether there is a sublist V ′ ⊆ V with ‖V ′‖ ≤ k
such that the designated candidate c is not an E winner of the election (C,V −V ′), and we

abbreviate the problem E –DESTRUCTIVE CONTROL BY DELETING VOTERS by E -DCDV.

Get-out-the-vote activities of political campaigns or lowering the voting age can increase the

number of voters participating in an election which both can be modeled by control by adding

voters. We define it in the constructive case and denote the destructive variant by E -DCAV.

E –CONSTRUCTIVE CONTROL BY ADDING VOTERS (E -CCAV)

Given: An E election (C,V ∪V ′) with V ∩V ′ = /0, where V is a list of registered voters and V ′
is a list of unregistered voters from which additional votes can be added, a designated

candidate c ∈C, and a nonnegative integer k.

Question: Is there a sublist V ′′ ⊆ V ′ with ‖V ′‖ ≤ k such that c is an E winner of the election

(C,V ∪V ′′)?

Candidates can be forced to withdraw their candidacy by cutting the financial support of

their campaign or by changing criteria in the requirements that have to be met for a valid

candidacy, such as age limits. Amongst others, these scenarios are examples for control by

deleting candidates, which we formally define as follows.

E –CONSTRUCTIVE CONTROL BY DELETING CANDIDATES (E -CCDC)

Given: An E election (C,V ), a distinguished candidate c ∈C, and a nonnegative integer k.

Question: Is there a subset C′ ⊆ C with ‖C′‖ ≤ k such that c is an E winner of the election

(C−C′,V )?

Recall from Section 2.3 that for an election (C,V ) and a subset of candidates C′ ⊆ C we

define (C′,V ) to be the election where the list of voters V is restricted to the candidates in C′,
that is, in the voters’ preferences the candidates in C−C′ are omitted.

The positive analogon to the examples for control by deleting candidates can be taken as

examples for control by adding candidates: Dropping formerly determined requirements can

enlarge the set of candidates, as well as actions that encourage candidates to participate in the

election such as political endorsements or other forms of support for their campaign.
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E –CONSTR. CONTROL BY ADDING A LIMITED NUMBER OF CANDIDATES (E -CCAC)

Given: An E election (C ∪D,V ), with C ∩D = /0, where C is a set of qualified candidates

and D is a set of spoiler candidates from which candidates can be added, a designated

candidate c, and a nonnegative integer k.

Question: Is there a subset D′ ⊆ D with ‖D′‖ ≤ k such that c is an E winner of the election

(C∪D′,V )?

Originally, Bartholdi et al. [BTT92] defined control by adding candidates in a slightly dif-

ferent manner: In their definition there is no limit k on the number of candidates that may

be added to the original election. To distinguish these two variants, the original definition is

called CONSTRUCTIVE CONTROL BY ADDING AN UNLIMITED NUMBER OF CANDIDATES

(E -CCAUC). Faliszewski et al. [FHH+09b] show that depending on the voting system, these

two problems might indeed strongly differ with respect to their complexity as, for example,

for the Copeland1 system (also called Llull voting), Copeland1-CCAC is NP-hard whereas

Copeland1-CCAUC is in P. The destructive cases of these just defined three candidate con-

trol types will be denoted by E -DCDC, E -DCAC, and E -DCAUC, respectively but we will

not further investigate this latter type of control in this thesis.

Partitioning of Voters and Candidates In the formal model studied here, control by

partitioning either the list of voters or the set of candidates results in a two-stage election

consisting of one or two subelections in the first stage and a final election in which only

the first-stage winners participate. So-called “tie-handling rules” determine the procedures

when the subelections are not won uniquely, that is, when there is more than one winner in

at least one of the subelections. We consider the two rules TP (“ties promote”) and TE (“ties

eliminate”) that were defined by Hemaspaandra et al. [HHR07]. The TP-rule determines that

all winners of the subelections participate in the final election, independently of whether they

are unique winners or co-winners. The TE-rule, on the other hand, allows only unique winners

to move forward to the final election stage; when there are multiple winners in a subelection,

none of these candidates participates in the final round. Of course, this can lead to an empty

candidate set in the final election. In this case, the two-stage election has no winners. Note

that such a result is considered to be a successful control attempt for the destructive control

types. We give the formal definitions of the considered partition cases for the TP-rule only

since the corresponding control type in the TE-case can be defined analogously.

Considering to partition the list of voters in more than two sublists, can, in a wider sense, be

seen as a formalization of district gerrymandering, see also the work of Erdélyi et al. [EHH15]

for other variants of defining partition of voters. We, however, analyze the model originally

proposed by Bartholdi et al. [BTT92] and Hemaspaandra et al. [HHR07].

E –CONSTRUCTIVE CONTROL BY PARTITION OF VOTERS TP (E -CCPV-TP)

Given: An E election (C,V ) and a designated candidate c ∈C.

Question: Is it possible to partition V into two subsets V1 and V2 with V =V1∪V2 and V1∩V2 = /0

such that c is an E winner of the two-stage election (W1∪W2,V ), where Wi, i ∈ {1,2},

is the set of E winners of subelection (C,Vi)?
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The following example gives a motivation for partitioning the set of candidates.

Example 3.11 The student representatives of the computer science department want to orga-
nize a movie night for the students of their department and it has to be decided which movie
to show. All students coming to movie night should have a say in what movie will be watched,
so the student representatives organize an election the following way: First, they group the
different movies according to categories like “action,” “comedy,” “romance,” “thriller,” and
so on, and the students determine the best movies in each category according to their tastes.
Then, when the winners in the different categories are known, the students can decide what
kind of movie they want to see, so in the final election, they vote over the winning movies from
the categories. By limiting the number of categories to two, this situation can be modeled by
partition of candidates with run-off.

E –CONSTR. CONTROL BY RUN-OFF PARTITION OF CANDIDATES TP (E -CCRPC-TP)

Given: An E election (C,V ) and a distinguished candidate c ∈C.

Question: Is it possible to partition C into two subsets C1 and C2 with C =C1∪C2 and C1∩C2 = /0

such that c is an E winner of the two-stage election (W1∪W2,V ), where Wi, i ∈ {1,2},

is the set of E winners of subelection (Ci,V )?

The election in Example 3.11 can be modified as follows: To do justice to classic movies that

always deserve to be shown, the students’ representatives first choose some classic movies, and

then they let the students elect their favorite one among a number of recently released movies.

In the final election, the students vote over all the classic movies and the subelection winners

among the recent released movies. This models partition of candidates without a run-off.

E –CONSTRUCTIVE CONTROL BY PARTITION OF CANDIDATES TP (E -CCPC-TP)

Given: An E election (C,V ) and a distinguished candidate c ∈C.

Question: Is it possible to partition C into two subsets C1 and C2 with C =C1∪C2 and C1∩C2 = /0

such that c is an E winner of the two-stage election (W1 ∪C2,V ), where W1 is the set

of E winners of subelection (C1,V )?

We denote the corresponding problems using the TE-rule with E -CCPV-TE, E -CCRPC-

TE, and E -CCPC-TE and we abbreviate the destructive cases with E -DCPV-TP, E -DCPV-

TE, E -DCRPC-TP, E -DCRPC-TE, E -DCPC-TP, and E -DCPC-TE, respectively.

The winner model in which we just defined our control problems is the so-called co-winner
model as we always ask whether the designated candidate can be made or be prevented from

being an E winner. The unique-winner model is defined by asking whether the designated

candidate can be made or be prevented from being a unique winner of the resulting election.

We analyze the stated problems for both winner models, see Section 3.2.2. Distinguishing be-

tween these two models is important as Hemaspaandra et al. [HHM13] have shown: In fact, in

the unique-winner model the above defined 22 control types collapse to 21 control types since

E -DCRPC-TE = E -DCPC-TE holds. In the co-winner model, there are only 20 differ-

ent types of control as E -DCRPC-TP = E -DCPC-TP and E -DCRPC-TE = E -DCPC-TE

holds.
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Notions of Resistance and Vulnerability After having defined the numerous variations of

electoral control we can now turn to the analysis of their complexity. Bartholdi et al. [BTT92]

introduced the following notions of immunity and vulnerability to, and resistance against elec-

toral control.

Definition 3.12 (Immunity, Susceptibility) Let E be a voting system and let C be one of the
control types defined above. We say that E is immune to C if it is impossible for the chair
to successfully execute the given type of control. If E is not immune to C , then we call E
susceptible to C .

In other words, for a voting system to be immune against, say CONSTRUCTIVE CONTROL

BY DELETING CANDIDATES, it has to be shown that there is no election and no designated

candidate that can be made a (unique) winner by deleting any number of candidates. If just

one election can be found in which a successful control action can be achieved, then the

voting system is proven to be susceptible to this type of control. If so, the following definition

distinguishes further in terms of computational complexity.

Definition 3.13 (Vulnerability, Resistance) Let C be one of the control types defined above
and let E be susceptible to C . We say that E is vulnerable to C if the corresponding decision
problem E -C is in P. If E -C is NP-completeness, then we call E resistant to C .

Note that for voting systems with a winner determination procedure that is complete or hard

for a complexity class above NP, such as the Dodgson system, this definition of resistance is

not applicable. To address this problem when dealing with such voting systems, Hemaspaan-

dra et al. [HHR09] suggest to drop the upper bound and redefine resistance as NP-hardness.

All voting systems studied in this thesis indeed have a polynomial-time winner determination,

which is why we use the original definition.

As we aim at analyzing control complexity beyond NP-hardness shields, we introduce a

notion of parameterized resistance.

Definition 3.14 (Parameterized Resistance) Let C be one of the control types defined above
and let the voting system E be susceptible to C . We say that E is parameterized resistant to

C with respect to a fixed parameter k if the corresponding parameterized decision problem,
denoted by k-E -C , is W[1]-hard.

Since every Bucklin election is a special fallback election and electoral control does not

involve any changes in the preferences other than removing candidates or adding candidates

at a predetermined rank in a preference, the following useful lemma obviously holds.

Lemma 3.15 Let C be one of the control types defined above. If Bucklin voting is known to
be resistant to C , then also fallback voting is resistant to C . Furthermore if fallback voting is
vulnerable against control C , then Bucklin voting is vulnerable against control C , as well.
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Related Work and State of the Art Bartholdi et al. [BTT92] started the study of con-

structive control for plurality voting (PV) and the Condorcet system. Destructive control was

introduced by Hemaspaandra et al. [HHR07], who completed the study of plurality and Con-

dorcet and also studied electoral control in approval voting.

Table 3.6 gives an overview of the results in terms of classical resistance for some chosen

well-studied voting systems. We focus on those voting systems that are studied in this thesis

and complement the overview with the results for normalized range voting (NRV), studied

by Menton and Singh [MS13], which shows the same number of resistances against electoral

control as fallback voting.

Copelandα

PV Borda Schulze α ∈ {0,1} α ∈ (0,1) NRV

Control C D C D C D C D C D C D

CAC R 1 R 2 R 8,9 V 10 R 3 S 3 V 5 V 5 R 5 V 5 R 6 R 6

CAUC R 1 R 2 ? ? R 4 S 3 R 5 V 5 R 5 V 5 R 6 R 6

CDC R 1 R 2 R 8 V 10 R 4 S 3 R 5 V 5 R 5 V 5 R 6 R 6

CPC-TE R 2 ? R 4 R 5 R 5 R 6

CRPC-TE R 2 R 2

?
?

R 4 V 4

R 5 V 5

R 5 V 5

R 6 R 6

CPC-TP R 2 ? R 4 R 5 R 5 R 6

CRPC-TP R 2 R 2

?
?

R 4 V 4

R 5 V 5

R 5 V 5

R 6 R 6

CAV V 1 V 2 R 7 V 7 R 3 R 3 R 5 R 5 R 5 R 5 R 6 V 6

CDV V 1 V 2 ? V 7 R 3 R 3 R 5 R 5 R 5 R 5 R 6 V 6

CPV-TE V 2 V 2 ? V 7 R 4 R 4 R 5 R 5 R 5 R 5 R 6 R 6

CPV-TP R 2 R 2 ? ? R 4 R 4 R 5 R 5 R 5 R 5 R 6 R 6

1 [BTT92]
2 [HHR07]
3 [PX12]

4 [MS13]
5 [FHH+09b]
6 [Men13]

7 [Rus07]
8 [CFN+15]
9 [EFS11]

10 [LNR+15]

Key: C = constructive, D = destructive,

S = susceptible, R = resistant,V = vulnerable

Table 3.6: Selection of known results regarding control complexity

A comprehensive study of approval voting and its variants can be found in the book chapter

of Baumeister et al. [BEH+10]. Lin [Lin12] studies the control complexity in k-approval

elections and also provides results for control when the voters have weights. Further results

for control in weighted elections can be found in the work of Russell [Rus07] and Faliszewski

et al. [FHH15]. Hemaspaandra et al. [HHS14] study constructive control by adding voters

for the family of pure scoring rules and provide the first dichotomy result regarding electoral

control.

The parameterized complexity of control problems has found much attention. Betzler and

Uhlmann [BU09] study control by adding and deleting candidates in Copelandα and plurality

elections, while the work of Faliszewski et al. [FHH+09b] focuses on the family of Copelandα .

Extending this line of research, Liu et al. [LFZ+09] focus on plurality, Condorcet, and approval

elections. They consider natural parameters such as the number of deleted voters in control

by deleting voters. Similar studies for the maximin rule, Schulze elections, and ranked pairs

can be found in the work of Liu and Zhu [LZ10] and Hemaspaandra et al. [HLM13]. Recent
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results for the complexity of candidate control parameterized by the number of voters are

due to Chen et al. [CFN+15] and are especially interesting as they capture the complexity of

candidate control in elections with few voters. Yang [Yan14] studies, amongst others, control

problems that are parameterized by the number of candidates participating in the election.

Bredereck et al. [BFN+15a] consider the same parameter, but they analyze priced control
problems, a model that was introduced by Miąsko and Faliszewski [MF]. The theoretical

study in [BFN+15a] is complemented by an experimental evaluation, analyzing the running

time of the presented FPT algorithms.

The complexity of electoral control in elections with special structures such as single-
peaked or single-crossing preferences has been studied in the work of Faliszewski et al.

[FHH14, FHH+11], Brandt et al. [BBH+10], and Magiera and Faliszewski [MF14]. See also

the book chapter by Hemaspaandra et al. [HHR15] for an overview.

The basic model of control has been extended in various ways. Faliszewski et al. [FHH11]

study notions of multimode control, where several control actions can be performed simul-

taneously. Control by replacing candidates has recently been introduced by Loreggia et al.

[LNR+15], who study its destructive variant for positional scoring rules. Their theoretical

analysis is complemented by an empirical evaluation on real-world data sets. In Loreggia et

al. [LNR+15], the study is extended to control by replacing voters and the constructive case

of control by replacing candidates. Erdélyi et al. [EHH15] focus on control by partition and

introduce new variants of this type of control.

Recent research includes the study of control by adding voters when the set of unregistered

voters has a combinatorial structure (see the work of [BCF+15]) and the question whether

elections can be controlled by breaking ties (studied by Mattei et al. [MNW14]). Perek et

al. [PFP+13] consider the setting of voting in parliaments and analyze the question of how

many parliamentarians have to deviate from their party’s vote to alter the outcome of the elec-

tion. The notion of online control in the setting of sequential elections is defined and studied

by [HHR12a, HHR12b]. Wojtas and Faliszewski [WF12] study the complexity counting ver-

sions of control by adding/deleting candidates or voters.

For a comprehensive overview of further research related to electoral control, we refer to

the survey by Faliszewski et al. [FHH+09a] and to the recent book chapters by Faliszewski

and Rothe [FR16] and Baumeister and Rothe [BR15].

3.2.2 A Worst-Case Analysis
The study of control complexity in fallback voting was initiated by Erdélyi and Rothe [ER10]

and was continued by several follow up papers. Table 3.7 gives an overview of the results that

were obtained since then.

Erdélyi and Rothe [ER10] proved the complexity of all previously defined control prob-

lems except three cases of voter partition in fallback elections, namely constructive control

by partition of voters in the TP-model and destructive control by partition of voters in both

tie-handling models. Erdélyi et al. [EPR11] solve these three open problems and complement

the previous work by analyzing the complexity of control in Bucklin elections leaving one

open problem: the complexity of destructive control by partition of voters in the TP-model.
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Fallback Voting Bucklin Voting

Control by Const. Dest. Const. Dest.

Adding Voters P-R 1,3 V 1 P-R 3 V 1

Deleting Voters P-R 1,3 V 1 P-R 3 V 1

Adding Candidates P-R 1,3 P-R 1,3 P-R 3 P-R 3

Deleting Candidates P-R 1,3 P-R 1,3 P-R 3 P-R 3

Partition of Voters - TE R 1 R 2 R 2 R 2

Partition of Voters - TP R 2 R 2 R 2 S 2

Partition of Candidates - TE R 1 R 2

Run-off Partition of Candidates - TE R 1 R 1

R 2 R 2

Partition of Candidates - TP R 1 R 2

Run-off Partition of Candidates - TP R 1 R 1

R 2 R 2

1 shown in [ER10]
2 shown in [EPR11]
3 shown in [EF10b]

Key: S = susceptible, R = resistant, V = vulnerable,

P-R = parameterizedly resistant, TE = ties eliminate, and

TP = ties promote. Boldface results are shown in this thesis.

Table 3.7: Overview of classical and parameterized complexity results for control in Bucklin
and fallback voting, all results hold in both the co-winner and the unique-winner model

In [EF10b] Erdélyi and Fellows started the study of parameterized complexity in Bucklin and

fallback elections and investigated control by adding and deleting candidates or voters with

respect to natural parameters (the number of voters or candidates that are added or deleted).

All three of these previous studies focus on the unique-winner model, only.

The results that we present in the context of this thesis are published in [EFR+15a] which

supersedes and complements the previous research mentioned above.

In this section we present the proofs of the results marked in boldface font in Table 3.7 in

detail. The corresponding theorems are shown in Table 3.8.

Reduction from to Reference parameterized?

k-DS

BV-CCDC Theorem 3.18

yes
BV-DCDC Theorem 3.19

BV-CCAV Theorem 3.24

BV-CCDV Theorem 3.25

BV-DCPV-TE Construction 3.26 and Theorem 3.28
no

RHS

FV-DCPV-TP Construction 3.30 and Theorem 3.32

BV-CCAC
Construction 3.21 and Theorem 3.23 yes

BV-DCAC

Table 3.8: Overview of the reductions used to prove the results in Table 3.7

The latter table also gives an overview of the problems we reduce from to show the respec-

tive hardness result, provides pointers to the corresponding theorems or constructions, and also
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states in the last column whether the reduction is parameterized or not. The prefixes “BV” and

“FV” stand for “Bucklin voting” and “fallback voting,” respectively. Our hardness results for

Bucklin voting imply the same results for fallback voting due to Lemma 3.15. The only proof

that is presented explicitly for fallback elections is the case of destructive control by partition

of voters in model TP. The complexity of this control problem is still not known for Bucklin

elections.

Susceptibility Erdélyi et al. [EPR11] show that each of the defined control types is possible

in both Bucklin and fallback elections in the unique-winner model. These examples can be

straightforwardly adapted to cover the co-winner case, as well. Nevertheless, we provide a

small example to formally illustrate how, for example, voter control can be executed in Bucklin

elections.

Example 3.16 Let (C,V ) be a Bucklin election with four candidates C = {a,b,c,d} and six
voters in V = (v1,v2, . . . ,v6) with the following preferences.

v1 : c > a > b > d v3 : b > a > d > c v5 : d > b > a > c
v2 : a > b > c > d v4 : a > c > b > d v6 : c > b > d > a

We have a strict majority with 4 voters in (C,V ) and the scores are shown in Table 3.9.

(C,V ) (C,V1) (C,V2) ({b,c},V )

a b c d a b c d a b c d b c

score1 2 1 2 1 0 0 1 0 2 1 1 1 3 3

score2 4 4 3 1 1 0 1 0 3 4 2 1 6 6

Table 3.9: Scores in the Bucklin elections (C,V ),(C,V1),(C,V2),(({b,c},V ))

The candidates a and b are both level 2 winners in (C,V ). Let (V1,V2) with V1 = (v1) and
V2 = (v2,v3, . . . ,v6) be a partition of V . We see in Table 3.9 that c is the level 1 Bucklin winner
in election (C,V1), while b is the level 2 Bucklin winner in (C,V2).

So taking election (C,V ), c can be made a Bucklin winner while a can be prevented from
being a Bucklin winner by deleting the five voters v2,v3, . . . ,v6 or partitioning the voter list
into V1 and V2. Since there are only unique winners in the subelections, in both tie-breaking
models, the final election is ({b,c},V ). Furthermore starting from (C,V2), candidate a can be
made a Bucklin winner by adding v1. Starting from (C,V1), c can be prevented from being a
Bucklin winner by adding the voters v2,v3, . . . ,v6.

Example 3.16 shows that Bucklin voting is susceptible to all types of voter control in the

co-winner model. Since each Bucklin election is a special fallback election, this susceptibility

result directly transfers to fallback voting, as well. It is easy to see that both Bucklin and

fallback voting are also susceptible to all variants of candidate control we introduced. The

following lemma summarizes our findings on susceptibility and we state it without proof.
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Lemma 3.17 Bucklin and fallback voting are both susceptible to each control type defined in
Section 3.2.1, in both winner models.

Now that we have stated that Bucklin and fallback voting can be controlled by any of the

introduced control scenarios, we turn to the complexity of the corresponding control prob-

lems. Note that we assume that the above result is known and refrain from explicitly stating

Lemma 3.17 in every upcoming resistance proof. Note further that, for the sake of readability,

we will use the shorthand abc for a preference a > b > c in our proofs.

Candidate Control We start with the results for the candidate control cases. To show that

Bucklin voting is parameterizedly resistant to constructive and destructive control by deleting

candidates when the parameter is the number of deleted candidates, we give reductions from

the problem k-DOMINATING SET. Recall the definition from Section 2.2 on page 14.

Theorem 3.18 Bucklin voting is parameterizedly resistant to constructive control by deleting
candidates, when this control problem is parameterized by the number of candidates deleted,
in both winner models.

Proof. We show the parameterized resistance for both winner models starting with the

unique-winner model. To this end, let ((G,k),k) with the undirected graph G = (B,E) be

a given instance of k-DOMINATING SET. Without loss of generality, we may assume that

k < n = ‖B‖, since the set B of all vertices is a trivial dominating set in G.

Define the election (C,V ), where C = B∪D∪{w}∪X ∪Y is the set of candidates, w is the

designated candidate, D is a set of “co-winners” (see below), and X and Y are sets of padding
candidates.2

Co-winners in D: D is a set of k+1 candidates that tie with w. These candidates prevent that

deleting up to k co-winners of election (C,V ) makes w the unique winner.

Padding candidates in X: X is a set of n(n+ k)−∑n
i=1 ‖N [bi]‖ candidates such that for each

i, 1 ≤ i ≤ n, we can find a subset Xi ⊆ X with n + k −‖N [bi]‖ elements such that

Xr ∩Xs = /0 for all r,s ∈ {1, . . . ,n} with r 	= s. These subsets ensure that w is always

placed at the (n+ k+1)st position in the first voter group of V below.

Padding candidates in Y : Y is a set of n(k+1) candidates such that for each j, 1 ≤ j ≤ k+1,

we can find a subset Yj ⊆Y with n elements such that Yr ∩Ys = /0 for all r,s ∈ {1, . . . ,k+
1} with r 	= s. These subsets ensure that each d j ∈ D is always placed at the (n+k+1)st

position in the second voter group of V below.

V is the following collection of 2n+1 voters in Table 3.10, so that we have a strict majority

with n+1 votes:

Note that when up to k candidates are deleted (no matter which ones), the candidates from

D can never be among the top n+k candidates in the votes of the first voter group. Table 3.11

shows the scores on the relevant levels of the relevant candidates in election (C,V ).

2Note that in this construction as well as in later constructions, the subsets of padding candidates are always

constructed so as to ensure that, at least up to a certain level, no padding candidate scores enough points to be
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Group For each . . . # of votes preference

(1) i ∈ {1, . . . ,n} 1 N [bi]Xi w((B−N [bi])∪ (X −Xi)∪Y )D
(2) j ∈ {1, . . . ,k+1} 1 Yj (D−{d j})d j (B∪X ∪ (Y −Yj)∪{w})
(3) n− k−1 D(X ∪Y )wB
(4) 1 Dw(X ∪Y )B

Table 3.10: Voter list V in the proof of Theorem 3.18

bi ∈ B w d j ∈ D

scorek+1 ≤ n 0 n− k
scorek+2 ≤ n 1 ≤ n−1

scoren+k ≤ n 1 n
scoren+k+1 ≤ n n+1 n+1

Table 3.11: Level i scores in (C,V ) for i ∈ {k+1,k+2,n+k,n+k+1} and the candidates in C− (X ∪
Y )

The candidates in D and candidate w reach a strict majority on level n+ k+ 1, denoted by

the boldfaced entries in Table 3.11. Since there is no other candidate reaching a strict majority

of n+1 votes or more on any level up to n+ k+1, w and the candidates in D are the Bucklin

winners in the election.

We claim that G has a dominating set of size k if and only if w can be made the unique

Bucklin winner by deleting at most k candidates.

Only if: Suppose G has a dominating set B′ ⊆ B of size k. Delete the corresponding candi-

dates from C. Since B′ is a dominating set in G (i.e., B = N [B′]), every bi ∈ B has a neighbor

in B′ or is itself in B′, which means that in election (C −B′,V ) candidate w gets pushed at

least one position to the left in each of the n votes in the first voter group. So w reaches a

strict majority already on level n+ k with a score of n+ 1. Since no other candidate does so

(in particular, no candidate in D), it follows that w is the unique level n+ k Bucklin winner of

election (C−B′,V ).

If: Suppose w can be made the unique Bucklin winner of the election by deleting at most k
candidates. Since there are k+1 candidates other than w (namely, those in D) having a strict

majority on level n+ k+ 1 in election (C,V ), deleting k candidates from D is not sufficient

for making w the unique Bucklin winner of the resulting election. So by deleting at most k
candidates, w must become the unique Bucklin winner on a level lower than or equal to n+ k.

This is possible only if w is pushed at least one position to the left in all votes from the first

voter group. This, however, implies that the k′ ≤ k deleted candidates either are

• all contained in B and correspond to a dominating set of size k′ for G, or

• are in B∪X .

relevant for the outcome of the election. So in the following argument the padding candidates are mainly ignored

and their scores are not listed in the overview tables.
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Note that not all deleted candidates can be contained in X , since k < n and the sets Xi, 1≤ i≤ n,

are pairwise disjoint. If some of the k′ deleted candidates are in X , say � < k′ of them, let B′ be

the set containing the k′ −� other candidates that have been deleted. For each i, 1 ≤ i ≤ n, if in

the ith voter of the first group no candidate from N [bi] was deleted but a candidate x j from Xi,

add an arbitrary candidate from N [bi] to B′ instead of x j. This yields again a dominating set

of size k′ for G. In both cases, if k′ < k then by adding k−k′ further candidates from B (which

is possible due to k < n) we obtain a dominating set of size k for G.

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-

DOMINATING SET is the same parameter k that bounds the number of candidates allowed to

be deleted in the control problem.

For showing resistance in the co-winner model, the definition of the padding candidates in

X has to be changed such that in each voter of the first group one more padding candidate

is ranked ahead of w. This ensures that w is not a winner in the election (C,V ) and, further-

more, reaches a strict majority one level later than the candidates in D. Thus, the remaining

argumentation can be adapted straightforwardly. �

Theorem 3.19 Bucklin voting is parameterizedly resistant to destructive control by deleting
candidates, when this control problem is parameterized by the number of candidates deleted,
in both winner models.

Proof. Again, we show parameterized resistance for this control case for both winner mod-

els starting with the unique-winner case. Let ((G,k),k) with the graph G = (B,E) be a given

instance of k-DOMINATING SET. Define the election (C,V ), where C = B∪{c,w}∪M1 ∪
M2 ∪M3 ∪X ∪Y ∪Z is the candidate set, c is the designated candidate, and M1, M2, M3, X , Y ,

and Z are sets of padding candidates (recall Footnote 2 on page 47).

Padding candidates in M1, M2, and M3: M1, M2, and M3 are three pairwise disjoint sets, where

each is a set of k candidates that are positioned in the votes so as to ensure that no other

candidate besides w and c can reach a strict majority up to level n+ k.

Padding candidates in X: X is a set of n2 − ∑n
i=1 ‖N [bi]‖ candidates such that for each i,

1 ≤ i ≤ n, we can find a subset Xi ⊆ X with n−‖N [bi]‖ elements such that Xr ∩Xs = /0

for all r,s ∈ {1, . . . ,n} with r 	= s. These subsets ensure that w is always placed at the

(n+1)st position in the first voter group of V below.

Padding candidates in Y : Y is a set of n−1 padding candidates ensuring that c is at position

n in the votes of the second voter group of V below.

Padding candidates in Z: Z is a set of n−2 padding candidates ensuring that w is at position

n−1 and c is at position n in the vote of the third voter group of V below.

Table 3.12 gives the collection V of 2n+ 1 voters, so we have a strict majority threshold

of n+ 1. Note that in the first voter group, candidate c has to be on the last position in every

vote, which is why all candidates in (B−N [bi])∪M2 ∪M3 ∪ (X −Xi)∪Y ∪Z have to be (in

an arbitrary order) ranked before c.

Table 3.13 gives an overview of the scores on the relevant levels of the relevant candidates in

election (C,V ). Note that candidate c is the unique level n Bucklin winner of election (C,V ),
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Group For each . . . # of votes preference

(1) i ∈ {1, . . . ,n} 1 N [bi]Xi wM1 ((B−N [bi])∪ . . .
. . .∪M2 ∪M3 ∪ (X −Xi)∪Y ∪Z)c

(2) n Y cM2 (B∪M1 ∪M3 ∪X ∪Z ∪{w})
(3) 1 Z wcM3 (B∪M1 ∪M2 ∪X ∪Y )

Table 3.12: Voter list V in the proof of Theorem 3.19

since c is the first candidate reaching a strict majority of votes (namely, n+1 points on level n,

as indicated by a boldfaced entry).

bi ∈ B w c

scoren−1 ≤ n 1 0

scoren ≤ n 1 n+1
scoren+1 ≤ n n+1 n+1

Table 3.13: Level i scores in (C,V ) for i ∈ {n−1,n,n+1} and the candidates in B∪{c,w}

We claim that G has a dominating set of size k if and only if c can be prevented from being

a unique Bucklin winner by deleting at most k candidates.

Only if: Suppose G has a dominating set B′ ⊆ B of size k. Delete the corresponding can-

didates. Now candidate w moves at least one position to the left in each of the n votes in the

first voter group. Since candidate c reaches a strict majority no earlier than on level n and

scoren
(C−B′,V )(w) = n+1 = scoren

(C−B′,V )(c), candidate c is no longer a unique Bucklin winner

of the resulting election.

If: Suppose c can be prevented from being a unique Bucklin winner of the election by

deleting at most k candidates. Note that deleting one candidate from an election can move

the strict majority level of another candidate at most one level to the left. Observe that only

candidate w can prevent c from winning the election, since w is the only candidate other than c
who reaches a strict majority of votes until level n+k. In election (C,V ), candidate w reaches

this majority no earlier than on level n+ 1, and candidate c not before level n. Thus w can

prevent c from being a unique winner only by scoring at least as many points as c no later than

on level n. This is possible only if w is pushed at least one position to the left in all votes of

the first voter group. By an argument analogous to that given in the constructive case for this

control type (see the proof of Theorem 3.18), this implies that G has a dominating set of size k.

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-

DOMINATING SET is the same parameter k that bounds the number of candidates allowed to

be deleted in the control problem.

To handle the co-winner model, one additional voter has to be added to V , with the prefer-

ence w(M1 ∪M2 ∪M3 ∪X ∪Y ∪Z)(B∪{c}). This ensures that on level n+1 candidate w has

one point more than c and can thus beat c strictly if and only if there is a dominating set of size

at most k (which can be shown with an analogous argument to the one presented above). �
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The remaining cases of candidate control can be shown with one central construction of an

election from a given RESTRICTED HITTING SET instance, a variant of the HITTING SET

(HS) problem, see [GJ79], which we define as follows.

RESTRICTED HITTING SET (RHS)

Given: A set B = {b1,b2, . . . ,bm}, a collection S = {S1,S2, . . . ,Sn} of nonempty subsets

Si ⊆ B such that n > m, and a positive integer k with 1 < k < m.

Question: Does S have a hitting set of size at most k, i.e., is there a set B′ ⊆ B with ‖B′‖ ≤ k
such that for each i, Si ∩B′ 	= /0?

Lemma 3.20 establishes NP-completeness of the just defined problem and W[2]-hardness

when the problem is parameterized by the solution size k. We denote the latter problem with

k-RHS.

Lemma 3.20 (Erdélyi et al. [EPR11]) RHS is NP-complete and k-RHS is W[2]-hard.

Proof. It is immediate that RHS is in NP. To show NP-hardness of RHS, we reduce the

(general) HS problem to RHS.

Let (B̂,Ŝ , k̂) be a given instance of HS, where B̂ = {b1,b2, . . . ,bm̂} is a set, we have a

collection Ŝ = {S1,S2, . . . ,Sn̂} of nonempty subsets of B̂, and k̂ ≤ m̂ is a positive integer. If

k̂ = m̂ or k̂ = 1, (B̂,Ŝ , k̂) is trivially in HS, so we may assume that 1 < k̂ < m̂.

Define the following instance (B,S ,k) of RHS:

(B,S ,k) =

{
(B̂∪{a},Ŝ ∪{Sn̂+1,Sn̂+2, . . . ,Sm̂+2}, k̂+1) if n̂ ≤ m̂
(B̂,Ŝ , k̂) if n̂ > m̂,

where Sn̂+1 = Sn̂+2 = · · ·= Sm̂+2 = {a}.

Let n be the number of members of S and m be the number of elements of B. Since

1< k̂< m̂, we have 1< k<m. Note that if n̂> m̂ then (B,S ,k)= (B̂,Ŝ , k̂), so n= n̂> m̂=m;

and if n̂ ≤ m̂ then n = m̂+2 > m̂+1 = m. Thus, in both cases (B,S ,k) fulfills the restriction

of RHS.

It is easy to see that Ŝ has a hitting set of size at most k̂ if and only if S has a hitting set of

size at most k. In particular, assuming n̂ ≤ m̂, if Ŝ has a hitting set B′ of size at most k̂ then

B′ ∪ {a} is a hitting set of size at most k = k̂+1 for S ; and if Ŝ has no hitting set of size at

most k̂ then S can have no hitting set of size at most k = k̂+1 (because a 	∈ B̂, so {a}∩Si = /0

for each i, 1 ≤ i ≤ n̂). Thus, RHS is NP-hard.

In the above reduction we have that the HS instance has solution size k̂ and the constructed

RHS instance has solution size k ∈ {k̂, k̂+1}. By parameterizing both HS and RHS with the

solution size (denoted by k-HS and k-RHS), we see that the above reduction also establishes

that k-HS parameterizedly reduces to k-RHS, as the reduction is parameter preserving (k̂ ≤ k
and k solely depends on k̂). Since k-HS is known to be W[2]-hard, this implies W[2]-hardness

of k-RHS, as well. �
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Construction 3.21, which is due to Erdélyi et al. [EPR11], adapts Construction 4.28 of

Hemaspaandra et al. [HHR07], which they used to handle certain candidate control cases for

plurality voting.3 Note that the only adaption we need to make regarding Construction 3.21

is that we construct the election from a given instance of the parameterized decision problem

k-RHS, which technically, does not change the construction.

Construction 3.21 (Erdélyi et al. [EPR11]) Let ((B,S ,k),k) be an instance of k-RHS, with
B = {b1,b2, . . . ,bm} a set, S = {S1,S2, . . . ,Sn} a collection of nonempty subsets Si ⊆ B such
that n > m, and k < m a positive integer. (Thus, n > m > k > 1.)

Define the election (C,V ), where C = B∪{c,d,w} is the candidate set and where V consists
of the following 6n(k+1)+4m+11 voters in Table 3.14.

Group For each . . . # of voters preference

(1) 2m+1 cd Bw
(2) 2n+2k(n−1)+3 cwd B
(3) 2n(k+1)+5 wcd B
(4) i ∈ {1, . . . ,n} 2(k+1) d Si cw(B−Si)
(5) j ∈ {1, . . . ,m} 2 d b j wc(B−{b j})
(6) 2(k+1) d wcB

Table 3.14: Voter list V in Construction 3.21

We will make use of the following adaption of a lemma from [EPR11].

Lemma 3.22 (Erdélyi et al. [EPR11]) Consider the election (C,V ) constructed according to
Construction 3.21 from a k-RHS instance ((B,S ,k),k).

1. c is the unique level 2 Bucklin winner of election ({c,d,w},V ).
2. If S has a hitting set B′ of size k, then w is the unique Bucklin winner of election

(B′ ∪{c,d,w},V ).
3. Let D ⊆ B∪{d,w}. If c is not a unique Bucklin winner of election (D∪{c},V ), then

there exists a set B′ ⊆ B such that

a) D = B′ ∪{d,w},
b) w is a level 2 Bucklin winner of election (B′ ∪{c,d,w},V ), and
c) B′ is a hitting set for S of size at most k.

4. Let D ⊆ B∪{d,w}. If c is not a Bucklin winner of election (D∪{c},V ), then there exists
a set B′ ⊆ B such that

a) D = B′ ∪{d,w},

3Their construction was also useful in the proofs of most candidate control results for SP-AV [ENR09], so the

structure of the constructions and the arguments in the proofs of Lemma 3.22 and Theorem 3.23 are adaptations

of those by Hemaspaandra et al. [HHR07] and Erdélyi et al. [ENR09], tailored here to Bucklin voting.
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b) w is the unique level 2 Bucklin winner of election (B′ ∪{c,d,w},V ), and
c) B′ is a hitting set for S of size at most k.

Proof. We only prove the last part as the first three are already shown in [EPR11]. Let

D ⊆ B∪{d,w}. Suppose c is not a Bucklin winner of election (D∪{c},V ).

(4a) Besides c, only w has a strict majority of votes on the second level and only w can beat

c in (D∪{c},V ). Thus, w is clearly in D. In (D∪{c},V ), candidate w has no level 1

strict majority and candidate c has already on level 2 a strict majority. Thus, w must beat

c on level 2. For a contradiction, suppose d /∈ D. Then

score2
(D∪{c},V )(c)≥ 4n(k+1)+2m+11;

score2
(D∪{c},V )(w) = 4n(k+1)+2m+10,

which contradicts the above observation that w beats c on level 2. Thus, D = B′ ∪{d,w},

where B′ ⊆ B.

(4b) This part follows immediately from the proof of part (4a).

(4c) Let � be the number of sets in S not hit by B′. We have that

score2
(B′∪{c,d,w},V )(w) = 4n(k+1)+10+2(m−‖B′‖),

score2
(B′∪{c,d,w},V )(c) = 2(m− k)+4n(k+1)+9+2(k+1)�.

From part (4b) we know that score2
(B′∪{c,d,w},V )(w)> score2

(B′∪{c,d,w},V )(c), so

score2
(B′∪{c,d,w},V )(w)> score2

(B′∪{c,d,w},V )(c)

4n(k+1)+10+2(m−‖B′‖)≥ 2(m− k)+4n(k+1)+9+2(k+1)�+1

2(m−‖B′‖)≥ 2(m− k)+2(k+1)�

‖B′‖ ≤ k+(k+1)�

Thus, �= 0 has to hold and we have that B′ is a hitting set of size at most k.

This completes the proof. �

Now we can show the following results.

Theorem 3.23 Bucklin voting is parameterizedly resistant to constructive and destructive
control by adding a limited number of candidates when these two control problems are pa-
rameterized by the number of candidates added. Each result holds in both winner models.

Proof. We show parameterized resistance of Bucklin voting to both cases of control by

adding candidates in both winner models by a reduction from k-RHS. Let ((B,S ,k),k) be

an instance of k-RHS and construct election (C,V ) according to Construction 3.21. Let then

{c,d,w} be the set of original candidates and let B be the set of spoiler candidates. From (1)

in Lemma 3.22 we know that c is the unique winner in the original election.
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For the constructive case we assume candidate w to be the designated candidate. If there

is a hitting set B′ of size at most k for S , we know with (2) from Lemma 3.22 that w is a

unique (and thus a) Bucklin winner of the election in which the at most k candidates from B′
have been added. Now we assume that w is a Bucklin winner in an election where at most k
candidates from B have been added. This implies that c is not a unique winner in this election,

thus with (3) from Lemma 3.22 we know that the given k-RHS instance is a yes-instance. If,

on the other hand, we assume that w is a unique winner in such an election, c cannot be a

winner and we directly have with (4) from Lemma 3.22 that the given k-RHS instance is a

yes-instance.

For the destructive cases we set c to be the designated candidate. If there is a hitting set

of size at most k, we again, know in both winner models with (2) from Lemma 3.22 that the

control instance is a yes instance. With parts (3) and (4) the other direction of the reduction

follows directly. �

Voter Control Regarding the various cases of voter control we will present the proofs in

detail for constructive control by deleting and adding voters and destructive control by partition

of voters. We start with the former control cases.

Theorem 3.24 Bucklin voting is parameterizedly resistant to constructive control by adding
voters, when this control problem is parameterized by the number of voters added, in both
winner models.

Proof. We show parameterized resistance in both winner models with one reduction from

k-DOMINATING SET. To do so, let ((G,k),k) with an undirected graph G = (B,E) be a given

k-DS instance. We define the election (C,V ∪U), where C = B∪{c,w}∪X ∪Y is the set of

candidates, w is the designated candidate, and X and Y are sets of padding candidates (recall

Footnote 2 on page 47).

Padding candidates in X: X is a set of ∑n
i=1 ‖N [bi]‖ candidates such that for each i, 1 ≤ i ≤

n, we can find a subset Xi ⊆ X with ‖N [bi]‖ elements such that Xr ∩Xs = /0 for all

r,s ∈ {1, . . . ,n} with r 	= s. These subsets ensure that w is always placed at the (n+1)st

position in the votes of the unregistered voters in U below.

Padding candidates in Y : Y is a set of n padding candidates ensuring that none of the candi-

dates in B is ranked among the first n candidates in the votes of the registered voters in

V below.

V is the collection of registered and U is the collection of unregistered voters. V ∪U consists

of the following n+ k−1 voters shown in Table 3.15.

Clearly, c is the unique level 1 Bucklin winner of election (C,V ).
We claim that G has a dominating set of size k if and only if w can be made the unique

Bucklin winner by adding at most k voters from U .

Only if: Suppose G has a dominating set B′ of size k. Add the corresponding voters from

U to the election (i.e., each voter ui for which bi ∈ B′). Now we have an election with 2k−1
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Voter list For each . . . # of voters preference

V k−1 cY BwX
U i ∈ {1, . . . ,n} 1 (B−N [bi])Xi wc(N [bi]∪ (X −Xi)∪Y )

Table 3.15: Voter lists V and U in the proof of Theorem 3.24

voters, so the strict majority threshold is k. Since B′ is a dominating set, we have B = N [B′],
so for each b j ∈ B there is at least one of the added voters ui such that b j ∈ N [bi], which

means that b j is ranked worse than w in these k added votes. It follows that up to level n+1

only candidate w will reach this new threshold of k, hence w is the unique Bucklin winner of

this election.

If: Suppose w can be made the unique Bucklin winner by adding at most k voters from U .

Denote the set of these voters by U ′ and note that ‖U ′‖ ≤ k. Note further that we have

score1
(C,V∪U ′)(c) = score1

(C,V )(c) = k − 1, that is, c reaches a score of k − 1 already on the

first level (with or without adding U ′). However, if any candidate has a strict majority already

on the first level, then he or she is the unique Bucklin winner of the election. As w is the

unique Bucklin winner of election (C,V ∪U ′), the strict majority threshold for V ∪U ′ must

be greater than k − 1. This, in turn, implies ‖U ′‖ ≥ k, so ‖U ′‖ = k and the strict majority

threshold for V ∪U ′ is exactly k. Note that scoren+1
(C,V∪U ′)(w) = k > k− 1 = scoren+1

(C,V∪U ′)(x)
and scoren

(C,V∪U ′)(w) = 0. Moreover, since adding the voters from U ′ to the election has

made w the unique Bucklin winner of election (C,V ∪U ′), none of the candidates in B can

be ranked among the first n candidates by each voter in U ′; otherwise (i.e., if some candidate

b j ∈ B would be ranked among the first n candidates by each voter in U ′), we would have

scoren
(C,V∪U ′)(b j) = k, i.e., b j would reach a strict majority in (C,V ∪U ′) earlier than w, a

contradiction. But this means that the voters in U ′ correspond to a dominating set of size k
in G.

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-

DOMINATING SET is the same parameter k that bounds the number of voters allowed to be

added in this control problem.

The above proof works in the unique-winner and the co-winner model. �

Theorem 3.25 Bucklin voting is parameterizedly resistant to constructive control by deleting
voters, when this control problem is parameterized by the number of voters deleted, in both
winner models.

Proof. We start with proving parameterized resistance in the unique-winner model with a

reduction from k-DOMINATING SET.

Let ((G,k),k) with an undirected graph G = (B,E) be a given instance of k-DS and we

define the election (C,V ), where C = B∪{c,w}∪X ∪Y ∪Z is the set of candidates, w is the

designated candidate, and X , Y , and Z are sets of padding candidates (recall Footnote 2).
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Padding candidates in X: X is a set of ∑n
i=1 ‖B−N [bi]‖ candidates such that for each i, 1 ≤

i ≤ n, we can find a subset Xi ⊆ X with n−‖N [bi]‖ elements such that Xr ∩Xs = /0 for

all r,s ∈ {1, . . . ,n} with r 	= s. These subsets ensure that c is always placed among the

top (n+1) positions in the first voter group of V below.

Padding candidates in Y : Y is a set of ∑n
i=1 ‖N [bi]‖ candidates such that for each i, 1 ≤ i ≤ n,

we can find a subset Yi ⊆ Y with ‖N [bi]‖ elements such that Yr ∩Ys = /0 for all r,s ∈
{1, . . . ,n} with r 	= s. These subsets ensure that w is always placed at the (n + 1)st

position in the second voter group of V below.

Padding candidates in Z: Z is a set of (k−1)(n+1) candidates such that for each j, 1 ≤ j ≤
k − 1, we can find a subset Z j ⊆ Z with n+ 1 elements such that Zr ∩ Zs = /0 for all

r,s ∈ {1, . . . ,k− 1} with r 	= s. These subsets ensure that no other candidate besides c
and the candidates in Z j gain any points up to the (n+2)nd level in the third voter group

of V below.

V is the following collection of 2n+ k−1 voters listed in Table 3.16.

Group For each . . . # of votes preference

(1) i ∈ {1, . . . ,n} 1 N [bi]cXi ((B−N [bi])∪ (X −Xi)∪Y ∪Z)w
(2) i ∈ {1, . . . ,n} 1 (B−N [bi])Yi w . . .

. . .(N [bi]∪X ∪ (Y −Yi)∪Z ∪{c})
(3) j ∈ {1, . . . ,k−1} 1 cZ j (B∪X ∪Y ∪ (Z −Z j))w

Table 3.16: Voter list V in the proof of Theorem 3.25

It holds that n+ k−1 > maj(V )> n and we see the relevant scores in (C,V ) in Table 3.17.

c w b j ∈ B

score1 k−1 0 ≤ n
scoren+1 n+k−1 n n

Table 3.17: Level i scores in (C,V ) for i ∈ {1,n+1} and the candidates in B∪{c,w}

Since candidate w reaches a strict majority only on the last level but c does so no later than

on the (n+1)st level, w is not a unique Bucklin winner of this election.

We claim that G has a dominating set of size k if and only if w can be made the unique

Bucklin winner by deleting at most k voters.

Only if: Suppose G has a dominating set B′ of size k. Delete the corresponding voters from

the first voter group (i.e., each voter vi for which bi ∈ B′). Let V ′ denote the resulting list of

voters and note that ‖V ′‖= 2n−1. Now, in election (C,V ′) we have on level n+1:

• scoren+1
(C,V ′)(b j) ≤ n− 1 for each b j ∈ B (from the first and second voter groups; no b j

can have a score of n on level n+ 1, since B′ is a dominating set in G, so B = N [B′],
and all voters vi corresponding to members bi of B′ have been deleted),
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• scoren+1
(C,V ′)(c) = (n− k)+(k−1) = n−1 (from the first and third voter groups),

• scoren+1
(C,V ′)(xi) = 1 for each xi ∈ X (from the first voter group),

• scoren+1
(C,V ′)(yi) = 1 for each yi ∈ Y (from the second voter group),

• scoren+1
(C,V ′)(zi) = 1 for each zi ∈ Z (from the third voter group), and

• scoren+1
(C,V ′)(w) = n (from the second voter group).

That is, only candidate w reaches a strict majority on level n+1 in (C,V ′), thus w is the unique

Bucklin winner of this election.

If: Suppose w can be made the unique Bucklin winner by deleting at most k voters. Let V ′ be

the set of remaining voters. Observe that deleting less than k voters would make it impossible

for candidate w to be a unique Bucklin winner of the election. Indeed, if less than k voters are

deleted from V , the strict majority threshold for the set V ′ of remaining voters would exceed n.

However, since w is ranked last place in all votes except the n votes from the second voter

group, w would reach a strict majority no earlier than on the last level and thus would not be

a unique Bucklin winner of this election. Clearly, w has to win election (C,V ′) on level n+1.

Since

scoren+1
(C,V )(bi) = n = scoren+1

(C,V )(w)

for all i with 1 ≤ i ≤ n, by deleting these k votes from V each bi has to lose at least one point

on the first n+1 levels. Obviously, no voters from the second voter group can be deleted, for

otherwise candidate w would not reach the strict majority threshold on level n+1. Similarly,

deleting voters from the third voter group does not make any bi ∈ B lose any points up to

level n+1. So at least part of the deleted voters have to be from the first voter group, let us say

we delete k′ ≤ k. Since every candidate bi ∈B has to lose at least one point up to level n+1, the

k′ deleted voters in V −V ′ correspond to a dominating set in G. If k′ < k, we can delete voters

arbitrarily from the first and/or third voter group until the total allowed number of k deleted

voters is reached (that is needed to ensure the right majority threshold in the new election).

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-

DOMINATING SET is the same parameter k that bounds the number of voters that may be

deleted in this control problem.

To show parameterized resistance also in the co-winner model, the voter list has to be

slightly adapted:

• One voter of group 3 has to be deleted (thus, j ∈ {1, . . . ,k−2}).

• One voter (the only one in a new, fourth group) with preference Bc(X ∪Y ∪Z) has to be

added.

With this new voter list, the above argumentation can be adapted straightforwardly. �

Now we turn to the partition cases of voter control and begin with the analysis of destructive

control by partition of voters in model TE in Bucklin elections. We will show this control

problem to be NP-complete in both winner models, as stated in the upcoming Theorem 3.28,

but we will only explicitly present the proof in the co-winner model.
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Construction 3.26 Let (G,k) be a given instance of DOMINATING SET, where G = (B,E) is
an undirected graph. We define the election (C,V ) with candidate set C = B∪{c,u,v,w,x,y}∪
D∪F∪H∪M, where c is the designated candidate, D, F, H, M, and {u,v} are sets of padding
candidates (recall Footnote 2 on page 47), and y is a “partition-enforcing” candidate (see
below).

Padding candidates in D: D is a set of (k−1)(n+4) candidates such that for each j, 1 ≤ j ≤
k− 1, we can find a subset D j ⊆ D with n+ 4 elements such that Dr ∩Ds = /0 for all
r,s ∈ {1, . . . ,k− 1} with r 	= s. These subsets ensure that no other candidate besides x
gains more than one point up to level n+5 in the third voter group of V below.

Padding candidates in F: F is a set of 3n candidates such that for each i, 1 ≤ i ≤ n, we can
find a subset Fi ⊆ F with three elements such that Fr ∩Fs = /0 for all r,s ∈ {1, . . . ,n} with
r 	= s. These subsets ensure that the candidates in B do not gain any points up to the
fourth level in the first voter group of V below.

Padding candidates in H: H is a set of n2 candidates such that for each i, 1 ≤ i ≤ n, we can
find a subset Hi ⊆H with ‖N [bi]‖ elements such that Hr∩Hs = /0 for all r,s∈ {1, . . . ,n}
with r 	= s. These subsets ensure that w does not gain any points up to level n+5 in the
first voter group of V below.

Padding candidates in M: M is a set of 2(k+n) candidates such that for each l, 1 ≤ l ≤ k+n,
we can find a subset Ml ⊆ M with two elements and it holds that Mr ∩Ms = /0 for all
r,s ∈ {1, . . . ,k+n} with r 	= s. These subsets ensure that x and y do not gain any points
up to the fourth level in the fourth voter group of V below.

Padding candidates u and v: These two candidates ensure that the other padding candidates
are not among the top n+5 positions in the second voter group of V below.

Partition-enforcing candidate y: This candidate ensures that the voter from the second voter
group of V below has to be in the subelection candidate w wins to finally beat c in the
final election.

V consists of the following 2k+2n+1 votes that can be arranged in five groups displayed
in Table 3.18.

Group For each . . . # of votes preference

(1) i ∈ {1, . . . ,n} 1 Fi (B−N [bi])Hi yw (N [bi]∪D∪E ∪ (F −Fi)∪ (H −Hi))uvcx
(2) 1 xwcBuv(D∪E ∪F ∪H)y
(3) j ∈ {1, . . . ,k−1} 1 xD j (B∪ (D−D j)∪E ∪F ∪H)uvywc
(4) l ∈ {1, . . . ,k+n} 1 cEl xy(B∪D∪ (E −El)∪F ∪H)uvw
(5) 1 H DF M Byvxwc

Table 3.18: Voter list V in Construction 3.26

Table 3.19 shows the scores of c, w, and x on the first three levels. None of the other candidates

scores more than one point up to the third level. Note that c reaches a strict majority on this

level and thus is the unique level 3 BV winner in this election.

The thus constructed election (C,V ) has the following useful property.
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c w x

score1 k+n 0 k
score2 k+n 1 k
score3 k+n+1 1 k

Table 3.19: Level i scores of c, w, and x in (C,V ) for i ∈ {1,2,3}

Lemma 3.27 In the election (C,V ) from Construction 3.26, for every partition of V into V1

and V2, candidate c is the unique BV winner of at least one of the subelections, (C,V1) and
(C,V2).

Proof. For a contradiction, we assume that in both subelections, (C,V1) and (C,V2), candi-

date c is not a unique BV winner. Table 3.19 shows that �‖V‖/2� voters in V place c on the first

position in their votes. For our assumption to hold, the sizes of the partitions Vi, i ∈ {1,2} have

to be set such that in each Vi there are at most ‖Vi‖/2 voters positioning c first (these voters have

to be from the fourth voter group). Otherwise, c would be a Bucklin winner already on the

first level. Without loss of generality, we assume that ‖V1‖ = ‖V2‖+1 and we have �(n+k)/2�
voters from the fourth group in V1 while the remaining voters from the fourth group are in V2.

(For other relations ‖V1‖= ‖V2‖+� for � 	= 1 simply partition the voters from the fourth voter

group to ensure that there are not more than ‖Vi‖/2 in each Vi and allocate the remaining voters

arbitrarily to obtain the wanted cardinalities.)

We start with the case that n+ k is an even number. Then we have that both Vi each contain
(n+k)/2 voters from group (4) while V1 furthermore contains (n+k)/2+ 1 other voters and the

remaining n+k/2 voters are in V2. In both subelections we have the same majority threshold

maj(Vi) = (n+k)/2+1. Let the voter from the second voter group be in V1. Then we know that c
reaches the strict majority in (C,V1) on the third level. Only x can possibly beat or tie with c on

the second or third level in (C,V1). However, since x does not score more than k points in total

until the fourth level, c is the unique level 3 BV winner in subelection (C,V1), a contradiction.

For the case that n+ k is an odd number, simply assume that from (4) there are (n+k+1)/2

voters in V1, thus n+k−1/2 voters are in V2, and the remaining voters are split such that the

above assumed cardinalities do hold. The majority thresholds in Vi are maj(Vi) = (n+k+1)/2+1

and the same argumentation as above can be used to contradict the main assumption. This

completes the proof. �

Theorem 3.28 Bucklin voting is resistant to destructive control by partition of voters in model
TE for both winner models.

Proof. NP membership can be shown by guessing a partition of the voter list and checking in

deterministic polynomial time (the winner problem is in P), whether the designated candidate

has been prevented from being a Bucklin winner. To prove NP-hardness in the co-winner case,

we construct an election (C,V ) from a given DOMINATING SET instance (G,k) according to

Construction 3.26.
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We claim that G = (B,E) has a dominating set B′ of size at most k if and only if candidate

c can be prevented from being a unique BV winner by partition of voters in model TE.

Only if: Let B′ be a dominating set for G of size at most k. Partition V into V1 and V2 as

follows. Let V1 consist of the following 2k+1 voters:

• The k voters of the first voter group corresponding to the dominating set,4 i.e., for those

i with bi ∈ B′, we have one voter of the form:

Fi (B−N [bi])Hi yw(N [bi]∪D∪E ∪ (F −Fi)∪ (H −Hi))uvcx,

• the one voter from the second group: xwcBuv(D∪E ∪F ∪H)y,
• the entire third voter group, i.e., for each j, 1 ≤ j ≤ k−1, there is one voter of the form:

xD j (B∪ (D−D j)∪E ∪F ∪H∪)uvywc, and

• the one voter from the fifth group: H DF M Byvxwc.

Let V2 =V −V1. Note that the strict majority threshold in V1 is maj(V1) = k+1. Again, since

the candidates in D, F , H, and M do not score more than one point, respectively two points,

up to level n+ 5, their level n+ 5 scores are not shown in Table 3.20. The level n+ 5 scores

of the remaining candidates are shown in this table. Note that w reaches a strict majority of

k+1 on this level (and no other candidate reaches a strict majority on this or an earlier level).

Hence, w is the unique level n+ 5 BV winner in subelection (C,V1) and thus participates in

the final round.

c w x y bi ∈ B

scoren+5 1 k+1 k k ≤ k

Table 3.20: Level n+5 scores in (C,V1)

From Lemma 3.27 it follows that candidate c is the unique winner in subelection (C,V2).
So the final-stage election is ({c,w},V ) and we have that w has the following level 1 score:

score1
({c,w},V )(w) = k+n+1

Thus, w is the unique level 1 winner of the final election and c has been successfully prevented

from being a Bucklin winner by partition of voters in model TE.

If: Assume that c can be prevented from being a Bucklin winner by partition of voters in

model TE. From Lemma 3.27 we know that candidate c must participate in the final-stage

election. Since we are in model TE, at most two candidates participate in the final run-off.

To prevent c from being a Bucklin winner of the final election, there must be another finalist

beating c in a two-candidate election and w is the only candidate capable of that. Let us say

4If ‖B′‖ < k, add arbitrarily chosen voters from the first group besides those corresponding to B′ such that

we have in total k voters from this group.
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that c is the unique winner of subelection (C,V2) and w is the unique winner of subelection

(C,V1). For w to be the unique winner of subelection (C,V1), V1 has to contain voters from

the first voter group and w can win only on the (n+5)th level: In particular, x is placed before

w in all voter groups except the first, so w can win in (C,V1) only via voters from the first

voter group participating in (C,V1). Moreover, since w is placed in the last or second-to-last

position in all voters from the third and fourth groups, and since there is only one voter in the

second group, w can win only on the (n+ 5)th level (which is w’s position in the votes from

the first voter group).

Let I ⊆ {1, . . . ,n} be the set of indices i such that first-group voter

Fi (B−N [bi]) Hi y w (N [bi]∪D∪E ∪ (F −Fi)∪ (H −Hi)) u v c x

belongs to V1. Let �= ‖I‖. Since w is the unique level n+5 BV winner of subelection (C,V1)
but y is placed before w in every vote in the first group, the one voter from the second group

(which is the only voter who prefers w to y) must belong to V1. Thus we know that

scoren+5
(C,V1)

(w) = �+1 and scoren+4
(C,V1)

(y) = scoren+5
(C,V1)

(y) = �.

For the candidates in B, we have

scoren+4
(C,V1)

(b j) = scoren+5
(C,V1)

(b j) = 1+‖{bi | i ∈ I and b j 	∈ N [bi]}‖,

since each b j scores one point up to the (n+4)th level from the voter in the second group and

one point from the first group for every bi with i ∈ I such that b j 	∈ N [bi] in graph G. Again,

since w is the unique level n+5 BV winner of subelection (C,V1), no b j ∈ B can score a point

in each of the � votes from the first voter group that belong to V2. This implies that for each

b j ∈ B there has to be at least one bi with i ∈ I that is adjacent to b j in G. Thus, the set B′ of

candidates bi with i ∈ I corresponds to a dominating set in G.

Recall that scoren+5
(C,V1)

(w) = �+ 1 and scoren+4
(C,V1)

(y) = � and furthermore, for 1 ≤ j ≤ n,

scoren+4
(C,V1)

(b j) ≤ � holds. Since w needs a strict majority to be a BV winner in subelection

(C,V1), it must hold that maj(V1)≤ �+1. y and the b j ∈ B have a score of � already one level

earlier than w, so it must hold that maj(V1) = �+1, which implies ‖V1‖= 2� or ‖V1‖= 2�+1.

To ensure this cardinality of V1, other votes have to be added. Since y must not gain additional

points from these votes up to the (n+5)th, they cannot come from the fourth voter group. The

remaining votes from the third and fifth voter group total up to k. Thus, since w is the unique

Bucklin winner in subelection (C,V1), it must hold that �≤ k and we have ‖B′‖= �≤ k. �

This directly leads, together with Lemma 3.15, to the following corollary.

Corollary 3.29 Fallback voting is resistant to destructive control by partition of voters in
model TE for both winner models.

Finally, we come to the destructive case of voter partition in model TP. We will show that

fallback voting is resistant to this type of control in both winner models. Unfortunately, for
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Bucklin elections, the complexity of this problem is still unknown.

Construction 3.30 Let (B,S ,k) be a given instance of RHS, with the set B= {b1,b2, . . . ,bm},
the collection S = {S1,S2, . . . ,Sn} of nonempty subsets Si ⊆ B such that n > m, and an integer
k with 1 < k < m. Define the election (C,V ), where C = B∪{c, f ,w}∪D∪E is the candidate
set with padding candidates D= {d1, . . . ,d2(m+1)} and E = {e1, . . . ,e2(m−1)}(recall Footnote 2
on page 47). The candidates in D ensure that w is always placed at the third position in the
votes of the fourth voter group of V below. The collection of voters V consists of the following
2n(k+1)+4m+2mk voters displayed in Table 3.21. For the sake of readability we will state
the preference of the voters by only giving the ranking of the approved candidates.

Group For each . . . # of voters preference

(1) i ∈ {1, . . . ,n} k+1 wSi c
(2) j ∈ {1, . . . ,m} 1 cb j w
(3) j ∈ {1, . . . ,m} k−1 b j
(4) p ∈ {1, . . . ,m+1} 1 d2(p−1)+1 d2p w
(5) r ∈ {1, . . . ,2(m−1)} 1 er
(6) n(k+1)+m− k c
(7) mk+ k−1 cw
(8) 1 wc
(9) 1 c f w

Table 3.21: Voter list V in Construction 3.30

The strict majority threshold for V is maj(V ) = n(k+1)+2m+mk+1. In election (C,V ),
only the two candidates c and w reach a strict majority, w on the third level and c on the second

level (see Table 3.22). Thus c is the unique level 2 fallback winner of election (C,V ).

c w b j ∈ B

score1 n(k+1)+2m+mk n(k+1)+1 k−1

score2 n(k+1)+2m+mk+1 n(k+1)+mk+ k ≤ k+n(k+1)
score3 ≤ 2n(k+1)+2m+mk+1 n(k+1)+2m+mk+ k+2 ≤ k+n(k+1)
scorem+2 2n(k+1)+2m+mk+1 n(k+1)+2m+mk+ k+2 ≤ k+n(k+1)

Table 3.22: Level i scores for i ∈ {1,2,m+2} in the election (C− (D∪E),V ) from Construction 3.30

Lemma 3.31 will be used in the proof of Theorem 3.32.

Lemma 3.31 In the election (C,V ) from Construction 3.30, for every partition of V into V1

and V2, candidate c is a fallback winner of election (C,V1) or (C,V2).

Proof. For a contradiction, suppose that in both subelections, (C,V1) and (C,V2), candidate

c is not a fallback winner. Since score1
(C,V )(c) = ‖V‖/2, the two subelections must satisfy that
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• both ‖V1‖ and ‖V2‖ are even numbers, and

• score1
(C,V1)

(c) = ‖V1‖/2 and score1
(C,V2)

(c) = ‖V2‖/2.

Otherwise, c would have a strict majority already on the first level in one of the subelections

and would win that subelection. For each i ∈ {1,2}, c already on the first level has only one

point less than the strict majority threshold maj(Vi) in subelection (C,Vi), and c will get a strict

majority in (C,Vi) no later than on the (m+ 2)nd level. Thus, for both i = 1 and i = 2, there

must be candidates whose level m+2 scores in (C,Vi) are higher than the level m+2 score of

c in (C,Vi). Table 3.22 shows the level m+ 2 scores of all candidates in (C,V ). Only w and

some b j ∈ B have a chance to beat c on that level in (C,Vi), i ∈ {1,2}.

Suppose that c is defeated in both subelections by two distinct candidates from B (say, bx
defeats c in (C,V1) and by defeats c in (C,V2)). Thus the following must hold:5

scorem+2
(C,V1)

(bx)+ scorem+2
(C,V2)

(by) ≥ scorem+2
(C,V )(c)+2

2n(k+1)+2k−n(k+1) ≥ 2n(k+1)+mk+2m+3

2k ≥ n(k+1)+mk+2m+3,

which by our basic assumption m > k > 1 implies the following contradiction:

0 ≥ n(k+1)+(m−2)k+2m+3 > n(k+1)+(k−2)k+2k+3 = n(k+1)+ k2 +3 > 0.

Thus the only possibility for c to not win any of the two subelections is that c is defeated in one

subelection, say (C,V1), by a candidate from B, say bx, and in the other subelection, (C,V2),
by candidate w. Then it must hold that (again, see Footnote 5 on page 62):

scorem+2
(C,V1)

(bx)+ scorem+2
(C,V2)

(w) ≥ scorem+2
(C,V )(c)+2

2n(k+1)+2k+2m+mk+2−n(k+1)−1 ≥ 2n(k+1)+mk+2m+3

2k+1 ≥ n(k+1)+3.

Since n > 1, this cannot hold, so c must be a fallback winner in one of the two subelec-

tions. �

Theorem 3.32 Fallback voting is resistant to destructive control by partition of voters in
model TP in both winner models.

Proof. Containment in NP can be shown by guessing a partition and checking in determin-

istic polynomial time whether the control action was successful. To prove NP-hardness in

the co-winner model, we reduce RHS to our control problem. Consider the election (C,V )
constructed according to Construction 3.30 from a given RHS instance (B,S ,k), where

5For the left-hand sides of the inequalities, note that each vote occurs in only one of the two subelections.

To avoid double-counting those votes that give points to both candidates, we first sum up the overall number of

points each candidate scores and then subtract the double-counted points.
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B = {b1, . . . ,bm} is a set, S = {S1, . . . ,Sn} is a collection of nonempty subsets Si ⊆ B, and k
is an integer with 1 < k < m < n.

We claim that S has a hitting set B′ ⊆ B of size k if and only if c can be prevented from

being a fallback winner by partition of voters in model TP.

Only if: Suppose, B′ ⊆ B is a hitting set of size k for S . Partition V into V1 and V2 the

following way. Let V1 consist of those voters of the second group where b j ∈ B′ and of those

voters of the third group where b j ∈ B′. Let V2 = V −V1. In (C,V1), no candidate reaches

a strict majority (see Table 3.23), where maj(V1) = �k2/2�+ 1, and candidates c, w, and each

b j ∈ B′ win the election with an approval score of k.

c w b j ∈ B′ b j 	∈ B′

score1 k 0 k−1 0

score2 k 0 k 0

score3 k k k 0

Table 3.23: Level i scores in (C,V1) for i ∈ {1,2,3} and the candidates in B∪{c,w}

The level i scores in election (C,V2) for i ∈ {1,2,3} and the candidates in B∪{c,w} are

shown in Table 3.24.

c w b j 	∈ B′ b j ∈ B′

score1 n(k+1)+2m− k+mk n(k+1)+1 k−1 0

score2 n(k+1)+2m− k+mk+1 n(k+1)+mk+ k ≤ k+n(k+1) ≤ n(k+1)
score3 ≥ n(k+1)+2m− k+mk+1 n(k+1)+mk+2m+2 ≤ k+n(k+1) ≤ n(k+1)

Table 3.24: Level i scores in (C,V2) for i ∈ {1,2,3} and the candidates in B∪{c,w}

Since in (C,V2) no candidate from B wins, the candidates participating in the final round

are B′ ∪ {c,w}. The scores in the final election (B′ ∪ {c,w},V ) can be seen in Table 3.25 and

we see that w is the unique level 2 fallback winner, thus candidate c has been prevented from

being a fallback winner by partition of voters in model TP.

c w b j ∈ B′

score1 n(k+1)+2m+mk n(k+1)+m+2 k−1

score2 n(k+1)+2m+mk+1 n(k+1)+2m+mk+2 ≤ k+n(k+1)

Table 3.25: Level i scores in the final-stage election (B′ ∪{c,w},V ) for i ∈ {1,2}

If: Suppose candidate c can be prevented from being a fallback winner by partition of voters

in model TP. From Lemma 3.31 it follows that candidate c participates in the final round. Since

c has a strict majority of approvals, c has to lose against another candidate by a strict majority

at some level. Only candidate w has a strict majority of approvals, so w has to beat c at some
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level in the final round. Because of the low scores of f and the candidates in D and E we may

assume that only candidates from B are participating in the final round besides c and w. Let

B′ ⊆ B be the set of candidates who also participate in the final round. Let � be the number of

sets in S not hit by B′. As w cannot reach a strict majority of approvals on the first level, we

consider the level 2 scores of c and w:

score2
(B′∪{c,w},V )(c) = n(k+1)+2m+mk+1+ �(k+1),

score2
(B′∪{c,w},V )(w) = n(k+1)+2m+mk+ k−‖B′‖+2.

Since c has a strict majority already on the second level, w must beat c on this level, so the

following has to hold:

score2
(B′∪{c,w},V )(c)− score2

(B′∪{c,w},V )(w)+1 ≤ 0

n(k+1)+2m+mk+1+ �(k+1)−n(k+1)−2m−mk− k+‖B′‖−2+1 ≤ 0

‖B′‖− k+ �(k+1) ≤ 0.

This is possible only if �= 0 (i.e., all sets in S are hit by B′), which implies ‖B′‖ ≤ k. �

3.2.3 An Experimental Analysis in Bucklin, Fallback, and Plurality
Elections

In this section we present our experimental analysis of standard control problems in Bucklin

and fallback voting which we complement with results we obtained for plurality voting. Note

that our experimental study focuses on the control problems in the unique-winner model. After

giving the general experimental setup, the results will be presented in general. The following

discussion focuses on the most significant findings. The complete documentation of all results

can be found in the 370-page technical report by Rothe and Schend [RS12b]. We conclude

the analysis with a discussion on the confinements the experiments underly and possibilities

of extending and improving the taken approach.

Experimental Setup To fully describe the setup of the conducted experiments we have to

introduce the three main parts:

1. The chosen parameters confining the experiments to allow their realization within a

reasonable time frame.

2. The sampling of the randomly generated elections that serve as an input for the algo-

rithms.

3. The algorithms used to solve the given control problems.

Coping with NP-hard problems, the design of our experiments aims at optimizing the tradeoff

between expressiveness and feasibility with respect to time constraints. The approach taken in
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tackling this task (see the high-level description of the algorithm later on for more detail) is to

exhaustively test every possible control action up to a predefined size.

For the case of adding/deleting candidates or voters, this predefined size is k = �m/3� and

k = �n/3�, respectively, where m is the number of candidates and n is the number of voters of

the given election, and k is the parameter given in the control instance (recall the definitions

of the control problems from Section 3.2). On the positive side, we have that a yes-instance

for a given k is also a yes-instance for each k′ ≥ k, so the number of yes-instances found in

our experiments for smaller k directly transfers to instances with bigger values of k. On the

negative side, if no successful control actions could be found for a given k, we cannot make

conclusions for the same election with a bigger value of k.

Furthermore we implement a limit of 600 seconds stopping the computation when the limit

is exceeded. Instances for which the computation is aborted have the specified output “time-

out” separating them from instances in which all possibilities have been tested and no success-

ful control action has been found. In our experiments we implemented the same timeout value

for all investigated types of control. As our results will show, the different control types react

differently to this constant timeout threshold, so a tuning of the timeout-parameter would be

an interesting issue for further experiments. Also, varying the timeout value depending on the

election size at hand might be an interesting approach.

The randomly generated elections (C,V ) serving as an input for our algorithms have m =
‖C‖ candidates and n = ‖V‖ voters, where the values are chosen from {4,8,16,32,64,128}.

In the adding-candidates and adding-voters scenarios, the spoiler sets D and V ′ have the same

size as the set of registered candidates and voters, respectively; i.e., ‖D‖ = ‖C‖ and ‖V ′‖ =
‖V‖, and they are generated with the same distribution model as the registered voters. Each

combination of n and m is one data point for which we evaluated 500 of these elections,

trying to determine for each given election whether or not control is possible, and if it is

possible, we say that this election is controllable. This restriction to 500 elections per data

point, again, results from practical issues balancing out manageability and informative value

of the experiments conducted.

The algorithms and data-generation programs are implemented in Octave 3.2 and the exper-

iments were run on a 2,67 GHz Core-I5 750 with 8GB RAM.

Election generation and distribution of voters: There are various ways of generating

collections of votes, see, for instance, the work of Berg [Ber85], Mallows [Mal57], and Luce

[Luc05]. In our experimental approach, we will define an adaption of the so-called general
Pólya–Eggenberger urn model (PE model) mentioned by [Ber85]. To this end we first have to

specify how random votes can be cast depending on the voting system at hand and how many

different votes can exist. Since Bucklin and plurality voting both expect the voters to provide

a complete ranking of the candidates, we can use the same generation model for both voting

systems: Assuming that the generated election has m candidates, in Bucklin voting a random

vote can be obtained by generating a random permutation over the m different candidates, so

the overall number of different votes in Bucklin elections is m!. In fallback voting, random

votes can be generated as follows:

• randomly draw a preference p from all m! possible preferences with m candidates;
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• randomly draw a number, say � ∈ {0,1, . . . ,m}, of approved candidates;

• the generated vote consists of the first � candidates in p.

Thus, there can be ∑m
�=0

(m
�

)
�! different votes in fallback elections with m candidates.

In the PE model, a set of votes is sampled in the following way: Assume that we have an urn

containing all possible votes that can be cast given a certain voting system and let the number

of different votes be denoted by t. For Bucklin voting, for example, t =m!, while for fallback

voting we have that t = ∑m
�=0

(m
�

)
�!, as explained above. To sample an electorate consisting of

n votes, we proceed in the following way for a fixed parameter b:

• randomly draw one preference from the given urn—this is the first of the n votes that

shall be sampled,

• put the preference back into the urn along with b additional copies of it,

• randomly draw the second vote from the new urn,

• put the second vote back into the urn along with b additional copies of it,
...

• randomly draw the (n−1)st vote from the new urn,

• put the (n−1)st vote back into the urn along with b additional copies of it,

• randomly draw the nth vote from the new urn.

The correlation of the sampled votes strongly depends on the parameter b. By setting b = 0,

we obtain the Impartial Culture model (IC model) which samples uniformly distributed votes

out of all possible preferences since in each step the just drawn preference is put back into the

urn without adding any more preferences.

To sample correlated votes, the usual approach (also employed by, e.g., Walsh [Wal10]) is

to use the above model with the parameter b = t. This means that when the first preference

is drawn from the urn, it is put back into the urn along with t additional copies, leading to a

probability of 0.5 that the second preference will be the same as the first one and, depending on

the preferences that are drawn in each step, this effect can be intensified during the sampling

process. Thus, there is a relatively high probability that many (or even all) sampled votes can

be identical. In the setting of manipulation, where the preferences of the manipulators can be

freely set independently of the nonmanipulators’ preferences, this effect has less impact while

in the control scenarios considered in this work, identical preferences of the voters (including

e.g., unregistered votes that may be added), would artificially make control impossible or easy

to find and thus would trivialize the problem.

Therefore, we introduce the Two Mainstreams model (TM model), which is the following

adaption of the PE model:

• depending on the voting system, randomly draw two preferences out of an urn con-

taining all possible, say t, preferences—recall that either t = m! (for Bucklin) or t =
∑m
�=0

(m
�

)
�! (for fallback);

• put each preference back into the urn with t additional copies;

• draw the votes out of this urn independently at random with replacement.
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Each of the two preferences drawn in the first step can be interpreted as a representative of

one “mainstream” in society (e.g., liberal and conservative).

High-level description of the algorithms: Our algorithms are greedy heuristics, designed

so as to test the most “promising” cases (depending on the control type at hand) first, by using

appropriate preorderings. We only provide a high-level description. All algorithms for the

different types of control share the same essential method of testing various subsets, and they

differ only in the type of preordering and internal testing. Before actually searching for a

successful sublist of voters or subset of candidates, the algorithms check conditions that, if

true, indicate that the given instance is a no-instance. Let c be the designated candidate in the

control problems defined in Section 3.2. Depending on the control type, some of the following

conditions are tested:

Condition 1 (applied to all constructive cases): The designated candidate is ranked last (for

Bucklin), or is ranked last or disapproved (for fallback), in every vote.

Condition 2 (applied to control by deleting voters): For each k′ ≤ k, determine the smallest i
and j such that

scorei
(C,V )(c

′)≥ �(‖V‖−k′)/2�+1+ k′ and score j
(C,V )

(c)≥ �(‖V‖−k′)/2�+1

hold for c′ ∈C−{c}. Note that i ≤ j−1 for all k′ ≤ k.

Condition 3 (applied to control by adding voters): For each k′ ≤ k determine the smallest i
and j such that

scorei
(C,V )(c

′)≥ �(‖V‖+k′)/2�+1 and score j
(C,V )

(c)≥ �(‖V‖+k′)/2�+1− k′

hold for c′ ∈C−{c}. Note that i ≤ j−1 for all k′ ≤ k.

Condition 4 (applied to all destructive cases): In the given election, the winner has a strict

majority on the first level already.

For both constructive control by adding and deleting voters, Condition 1 is tested. Note that

for the adding voter cases this condition has to hold for both voter lists, the registered voters

and the unregistered voters.

For constructive control by deleting voters, Condition 2 is additionally tested. If Condition 2

holds, c cannot be made a unique winner by deleting at most k voters because even if all k
voters would harm the strongest rival c′ of c the most and c not at all, the rival would still

reach a strict majority on a smaller level than c.

For constructive control by adding voters, Condition 1 and 3 are tested. If Condition 3

holds for the given election and the given distinguished candidate c, then even if all added

voters helped only c on the smallest level, there would still be at least one other candidate

reaching a strict majority on a level smaller than c.

For the voter-partition cases, we have Condition 4 indicating that control is not possible for

both the constructive and destructive case, namely that in the given election there is a unique

winner on the first level. It is easy to see that for every possible partition (V1,V2) of V a level 1

winner is also a level 1 winner in at least one of the subelections. Since level 1 winners are

always unique, independent of the tie-handling model, this candidate always participates in

the run-off and will therefore always be the unique level 1 winner of the resulting two-stage
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election. So no distinguished candidate can ever be made the unique winner by partitioning

the voters. So the algorithms for destructive and constructive control by partition of voters first

check Condition 4 where the latter checks Condition 1 as well.

The algorithms for the candidate control scenarios test Condition 1 in the constructive cases

except where the candidates are partitioned. For the destructive cases, on the other hand,

Condition 4 is always tested. Note that for the adding candidates cases both conditions must

hold in the election over both the registered and the unregistered candidates.

After having excluded these trivial cases, each of the algorithms searches for a successful

sublist/subset of preordered versions of V or C. Let us describe this procedure only for con-

structive control by deleting voters in detail. In this case, the voters are preordered ascendingly

for c; that is, after the preordering v1 is a voter ranking c worst and vn is a voter ranking c best

among all voters. (In fallback voting, the “worst” position for a candidate is to be not approved

at all.) The algorithm now starts with deleting those votes c benefits least of. It follows the

procedure of a depth-first search on a tree of height k that is structured as shown in Figure 3.1.

In each node, it is tested whether deleting the votes on the path is a successful control action.

For example, on path s → 1 → 2 → 3 the algorithm tests the sublists (v1),(v1,v2),(v1,v2,v3)
and then tracks back testing the sublists (v1,v2,v4),(v1,v2,v5), (v1,v3),(v1,v3,v4), and so on.

The branches on the left side are visited first and, due to the preordering of the votes, these are

the votes c benefits least of.

3 4 5
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4 5

3

5

4 5

1

4 5

3
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Figure 3.1: Tree for n = 5 voters where up to k = 3 voters may be deleted, a node i corresponds to
voter vi after the preordering

For the adding-voters cases, the unregistered voters are ordered in a descending order for the

designated candidate, and the algorithm proceeds similarly as the algorithm for the deleting-

voters cases. With this preordering, the algorithm first tests those voters the designated candi-

date can benefit most from when these are added to the voter list.

For the partition-of-voters cases, the algorithm considers every possible sublist of the voter

list up to size k = �n/2� as V1, sets V2 = V −V1, and tests whether this is a successful con-

trol action or not. For the constructive cases, the voters are preordered descendingly with

respect to the designated candidate, whereas for the destructive control cases no preordering

is implemented.

In the candidate control scenarios, the candidates are also ordered with respect to the des-

ignated candidate, where a descending order here means that the first candidate has the most

voters ranking him or her before the designated candidate and the last candidate has the fewest
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voters doing so. An ascending order is defined analogously. Again, in the adding-candidates

case, the votes over all candidates (including the spoiler candidates) are considered. A de-

scending ordering is used for finding control actions for constructive control by deleting can-

didates and for destructive control by adding candidates, whereas for the remaining candidate

control cases an ascending order is used.

In the worst case, our algorithms check all possible subsets of size k, so they have a worst-

case running time of ∑k
�=1

(n
�

)
for voter control and ∑k

�=1

(m
�

)
for candidate control. Finally,

note that for each yes-answer, our algorithms also provide the corresponding successful control

action.

Summary of Experimental Results Table 3.26 summarizes our experimental results on

control in Bucklin, fallback, and plurality voting. We investigated the three voting systems

only for those control types they are not known to be vulnerable to, which is indicated by

an R∗-, R-, or an S-entry in Tables 3.7 and 3.6. That is, destructive control by adding and by

deleting voters (DCAV and DCDV) are omitted in Table 3.26 and furthermore the constructive

control by deleting and adding voters (CCAV and CCDV) and control by partition of voters

in model TE (CCPV-TE and DCPV-TE) is omitted for plurality voting. Also, since our algo-

rithms use the parameter k bounding the number of candidates to be added, constructive and

destructive control by adding an unlimited number of candidates (CCAUC and DCAUC) are

not considered either.

For both Bucklin and fallback voting we tested for each combination of any of the remaining

18 control types and any of the two distribution models (IC and TM), a total of 18,000 = 36 ·
500 elections, varying over the 36 data points with different values for m and n, as explained

above. This gives a total of 1,296,000 = 18 · 4 · 18,000 generated and tested elections. For

plurality voting we tested a total of 14 control types, each in both distribution models for 36

different election sizes, which results in 504,000 = 14 ·2 ·500 ·36 tested elections.

The tables give an overview of the percentage of timeouts for each such combination of

control type/voting system/distribution model, and also the minimal and maximal percentage

of yes-instances observed. We do not discuss the results for all these cases in detail here,

but focus on those with the most interesting findings. For those cases that we discuss in

detail, we provide plots giving the percentage of yes-instances, timeouts, and average com-

putational costs for all different election sizes that were tested. Note that a comprehensive

presentation of all results containing the above information for all cases (showing 168 plots

of experiments in total) can be found in the appendix of the 370-page technical report by

Rothe and Schend [RS12b]. Note that Table 3.26 lists the results separately for destructive

control by partition of candidates as the result by Hemaspaandra et al. [HHM13] establishing

E -DCRPC-TE = E -DCPC-TE in the unique-winner model was published after the experi-

ments were conducted.

Results for Adding and Deleting Voters We start with constructive control by adding

and deleting voters. As plurality voting is vulnerable to these types of control, only Bucklin

and fallback elections are tested. We discuss the results for the deleting voters case only, since
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FV BV PV

Problem min max to min max to min max to

CCAC 1 / 0 11 / 7 51 / 50 0 / 0 23 / 11 50 / 49 0 / 0 20 / 3 50 / 34
DCAC 53 / 39 92 / 71 11 / 14 71 / 42 99 / 77 6 / 12 70 / 47 99 / 60 7 / 25
CCDC 13 / 15 33 / 36 37 / 37 13 / 17 58 / 45 34 / 37 5 / 22 66 / 40 37 / 35
DCDC 8 / 12 78 / 63 15 / 22 48 / 25 99 / 77 7 / 18 7 / 4 99 / 50 10 / 35
CCPC-TE 0 / 0 19 / 18 62 / 64 1 / 0 57 / 37 57 / 62 0 / 0 60 / 21 58 / 65
DCPC-TE 8 / 16 88 / 65 18 / 29 49 / 29 100 / 78 10 / 23 1 / 2 100 / 59 22 / 41
CCPC-TP 1 / 0 17 / 17 62 / 64 1 / 0 60 / 38 57 / 61 0 / 0 64 / 24 58 / 65
DCPC-TP 8 / 16 87 / 61 18 / 29 49 / 29 100 / 82 9 / 23 1 / 3 100 / 59 22 / 44
CCRPC-TE 1 / 1 18 / 14 62 / 63 1 / 0 60 / 45 57 / 62 0 / 0 65 / 19 50 / 63
DCRPC-TE 8 / 16 86 / 68 20 / 29 46 / 29 100 / 84 9 / 23 25 / 14 100 / 61 12 / 37
CCRPC-TP 1 / 0 19 / 14 62 / 63 1 / 1 56 / 25 53 / 61 0 / 0 65 / 21 50 / 61
DCRPC-TP 8 / 16 85 / 68 21 / 29 45 / 27 100 / 81 10 / 23 23 / 14 100 / 61 13 / 35
CCPV-TP 1 / 1 53 / 20 40 / 50 1 / 0 72 / 23 31 / 48 0 / 0 54 / 13 24 / 23
DCPV-TP 37 / 27 100 / 87 6 / 17 60 / 39 100 / 88 3 / 10 55 / 15 100 / 59 4 / 35
CCPV-TE 2 / 0 97 / 34 9 / 45 2 / 0 98 / 32 8 / 44 n.i. n.i. n.i.

DCPV-TE 50 / 34 100 / 88 4 / 16 64 / 40 100 / 89 4 / 10 n.i. n.i. n.i.

CCDV 2 / 1 97 / 39 16 / 12 2 / 1 100 / 42 11 / 7 n.i. n.i. n.i.

CCAV 4 / 1 99 / 41 13 / 13 2 / 1 99 / 41 11 / 6 n.i. n.i. n.i.

- min and max: minimal and maximal percentage of yes-instances observed in all tested instances for the given

control type, including those elections where timeouts occurred;

- to: percentage of timeouts that occurred for the total of 18,000 elections tested in this control case;

- numbers in boldface: elections generated in the TM model;

- n.i.: not investigated.

Table 3.26: Overview of experimental results on control in Bucklin and fallback voting

those for control by adding voters are very similar, in both Bucklin and fallback voting. Fig-

ure 3.2 shows the results for control by deleting voters for Bucklin voting in the IC model and

in detail we have the percentage of yes-instances in Figure 3.2b, where the highest percentage

of 100% and the lowest percentage of 2% can also be seen in the “max” and “min” column

in Table 3.26. Figure 3.2c gives the detailed occurrence of timeouts for the different election

sizes and Figure 3.2a shows the average time needed to determine whether a given Bucklin

election generated under the IC model can be controlled by deleting voters or not. Note that

in the latter figure the average values do not consider those elections where the algorithm

exceeded the time limit of 600 seconds.

In the IC model, increasing the number of candidates decreases the number of yes-instances

in the generated Bucklin elections. On the other hand, the number of yes-instances increases

as the number of voters grows. In the TM model, the same correlations can be observed but

here, again, the total number and percentage of yes-instances is smaller than in the IC model.

Fallback voting behaves very similarly, so for both distributions and both voting systems

increasing the number of candidates makes successful control actions by deleting voters less

likely.

In both voting systems and in both distribution models, timeouts occur whenever the number
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(a) Average time (seconds) the algorithm needs to give

a definite output, timeout-instances excluded.

(b) Percentage of yes-instances.

m\n 4 8 16 32 64 128

4 0 0 0 10 3 1

8 0 0 0 20 7 0

16 0 0 0 23 19 3

32 0 0 0 39 27 4

64 0 0 1 49 38 17

128 0 0 31 53 47 17

(c) Percentage of timeouts.

Figure 3.2: Bucklin voting in the IC model for CCDV, n is the number of votes, m is the number of
candidates

of voters exceeds 32. If the number of candidates is 128, we have timeouts already with

16 voters. This can also be seen in the development of the computational costs shown in

Figure 3.2a after the peak for n = 16. For larger electorates, the average computational costs

drop, since the number of timeouts increases as the number of no-instances diminishes.

Results for Adding and Deleting Candidates Among these four control types, con-

structive control by adding candidates has the most timeouts. For those election sizes where

no timeouts occur (i.e., where the determination of yes- or no-instances is successful), we have

that not many elections can be controlled successfully in either of the two voting systems. In

Figure 3.3, we see the results for fallback voting in the TM model, exemplifying in Figure 3.3b

the low number of yes-instances for this type of control. For example, in the “max” column

in Table 3.26, the highest percentage of controllable fallback elections is 11% in the IC model

and only 7% in the TM model. Figure 3.3d gives the detailed occurrence of timeouts for the

different election sizes and Figure 3.3a shows the average time needed to determine whether a

given fallback election generated under the TM model can be controlled by adding candidates

or not. Remember that in the latter figure the average values do not consider those elections

where the algorithm exceeded the time limit of 600 seconds.

Together with the timeout table we can see in Figure 3.3b that in elections with up to 16

candidates the number of non-controllable elections is very high and increases as the number

of candidates increases. When more than 16 candidates participate in an election the number of
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(a) Average time (seconds) the algorithm needs to give

a definite output, timeout-instances excluded.

(b) Percentage of yes-instances.

(c) Average time (seconds) the algorithm needs to find

a yes-instance.

n\m 4 8 16 32 64 128

4 0 0 0 83 81 81

8 0 0 0 93 92 93

16 0 0 0 98 99 98

32 0 0 0 99 99 100

64 0 0 0 99 100 100

128 0 0 97 98 100 100

(d) Percentage of timeouts.

Figure 3.3: Fallback voting in the TM model for CCAC, n is the number of votes, m is the number of
candidates

no-instances diminishes as drastically as the timeout rate grows. Looking at the computational

costs in Figure 3.3a we can see this in the peaks for m = 16. Since by design our algorithm

needs generally more time to determine that an instance is a no-instance than finding a yes-

instance, the high number of no-instances for 16 candidates inflates the average computing

time. Knowing that the average computing time for finding yes-instances is not particularly

high for this type of control, see Figure 3.3c, we might conjecture that for the bigger election

sizes the instances where no distinction could be made by our algorithm are no-instances rather

than yes-instances. This indicates that this control type presumably has the lowest overall

number of yes-instances. Thus, even for small election sizes, this type of control seems to be

hard to exert successfully.

Bucklin elections behave similarly, but yield more yes-instances: Up to 23% of the elections

are controllable in the IC model and up to 11% in the TM model. In general, comparing the

results in the IC model with those in the TM model, we see similar tendencies in both models,

but the overall number and percentage of controllable elections is lower in the TM than in

the IC model, for both Bucklin and fallback voting. Plurality voting shows similar results as

fallback voting with at most 20% yes-instances in the IC model and less than 4% in the TM

model for those election sizes where no timeouts occur.
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Constructive control by deleting candidates can be exerted successfully in at most one third

of the generated fallback elections, independently of the distribution model the elections are

generated with. In Bucklin voting, on the other hand, the overall number and fraction of

controllable elections is again higher than in fallback voting, in both distribution models. Up

to 58% of the tested elections are yes-instances in the IC model. In the TM model, however, we

have with at most 45% of controllable elections fewer than in the IC model. Plurality voting

shows a similar percentage of timeouts as Bucklin and fallback voting while the maximum

numbers of controllable elections are higher than in the other two voting systems. For m= 16

they reach a peak where two thirds of the instances are yes-instances.

The results for destructive control by adding or deleting candidates show a quite different

picture than in the constructive cases, in both voting systems. The total number and fraction of

controllable elections is considerably higher than in the constructive analogue, where Bucklin

elections generated with the IC model show the highest number (and a percentage of 99%) of

controllable elections, and a percentage of 77% in the TM model, for both control by adding

and by deleting candidates. Fallback voting has again fewer yes-instances than Bucklin voting,

up to 78% in the IC model and up to 63% in the TM model for destructive control by deleting

candidates, and up to 92% (IC) and 71% (TM) for destructive control by adding candidates.

In the tested plurality elections generated with the IC model, similarly to Bucklin voting,

more than 70% and nearly up to 100% are controllable. In the TM model, roughly between

50% and 60% of yes-instances are found for those election sizes where no timeouts occur, so

between 40% and 50% of these plurality elections are not controllable. In this control scenario,

for about 46% of the elections no definite output is given in the constructive case, whereas in

only about 8% of the elections timeouts occur in the destructive case.

Results for Partition of Candidates The four cases of constructive control by partition of

candidates show the highest number of timeouts out of all control cases. For all three election

systems the percentage of timeouts per data point drastically increases from formerly 0% to

values higher than 50% when the number of candidates reaches 16, and grows even up to

100% for m ≥ 64. These values do not allow us to draw conclusions from these results. We

conjecture that the taken greedy approach is not suitable for these control cases.

For the destructive cases, on the other hand, the number of timeouts is still higher than for

other destructive control types, but low enough such that further analyzing these results is of

interest. Summarizing the results briefly, we see that in Bucklin and plurality voting in the

IC model, up to 100% of elections of a given size are controllable by our algorithms while

fallback voting shows a smaller number of controllable elections. Figure 3.4 shows the results

in plurality voting in the TM model.

Here we see that, as for other control types, the overall numbers of yes-instances is lower

than in the IC model, but still up to nearly 60% of the tested elections are controllable.

Note that, as we stated in Section 3.2.1, in the unique-winner model E -DCRPC-TE =
E -DCPC-TE holds. This result was published after the experiments were conducted, so we

have separate results for these control types. Table 3.26, however, shows strikingly similar

results for these two cases.
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(a) Average time (seconds) the algorithm needs to give

a definite output, timeout-instances excluded.

(b) Percentage of yes-instances.

m\n 4 8 16 32 64 128

4 0 0 9 56 64 62

8 0 0 21 60 69 73

16 0 0 31 72 78 89

32 0 0 37 74 85 93

64 0 0 49 78 86 93

128 0 0 45 77 88 93

(c) Percentage of timeouts.

Figure 3.4: Plurality voting in the TM model for DCPC-TP, n is the number of votes, m is the number
of candidates

Results for Partition of Voters As mentioned in Section 3.2 control by partition of voters

comes in four problem variants, where each case must be investigated separately. We very

briefly discuss some observations made for these control types. For constructive control by

partition of voters in model TP we made the following observations:

Similarly to control by deleting or by adding voters, the number of controllable elections

increases with the number of voters increasing, which was also observed for the partition

cases in Bucklin and fallback voting. We have seen that in at most 10% of the tested plurality

elections in the TM model a successful control action can be found. Note that no timeouts

occur for up to 32 candidates, so more than 90% of the elections tested are demonstrably not

controllable in these cases. For both distribution models, plurality elections produce fewer

timeouts than the corresponding fallback or Bucklin elections. This suggests that the control

problem for plurality voting is easier to solve on average than for fallback or Bucklin voting.

Using the tie-handling model TE instead of TP, in both Bucklin and fallback voting an

increase of yes-instances in the constructive cases is evident. By contrast, in the destructive

counterparts no significant difference can be observed with respect to the tie-handling rule.

The most striking results are those obtained for the destructive cases. Here we have that,

for both tie-handling models in the TM model, the average number of controllable elections is

very high; and in the IC model, control is almost always possible, see Figure 3.5.

In light of the fact that for these cases the resistance proofs of Theorems 3.28 and 3.32 tend

to be the most involved ones (yielding the most complex instances for showing NP-hardness),
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3.2 Electoral Control

(a) Average time (seconds) the algorithm needs to

give a definite output, timeout-instances excluded.

(b) Percentage of yes-instances.

m\n 4 8 16 32 64 128

4 0 0 0 18 40 61

8 0 0 0 3 15 29

16 0 0 0 1 5 15

32 0 0 0 0 3 9

64 0 0 0 0 1 5

128 0 0 0 0 1 1

(c) Percentage of timeouts.

Figure 3.5: Fallback voting in the IC model for DCPV-TP, n is the number of votes, m is the number
of candidates

these results might be surprising at first glance. However, one explanation for the observed

results can be found in exactly this fact: The elections constructed in these reductions have a

very complex structure which seems to be unlikely to occur in randomly generated elections

(at least in elections generated under the distribution models discussed in this paper). Another

explanation is that the problems used to reduce from in these proofs tend to be easy to solve

for small input sizes, but due to the complexity of the reduction, the resulting elections have

many voters/candidates compared to the elections generated for the conducted experiments.

In the destructive cases, the number of timeouts is for all three voting systems the lowest

among all control types investigated. In Bucklin elections with uniformly distributed votes and

for destructive control by partition of voters in model TP, for only 3.32% of the elections no

decision can be made within the time limit. As can be seen in the table, timeouts begin to occur

for those elections where the number of voters exceeds 16. But, again, we have to emphasize

that these values are very low compared to other types of control. This explains the plateaus

all graphs show. On the one hand, increasing the number of voters increases the number of

yes-instances. But on the other hand, for more than 16 voters timeouts begin to diminish the

fraction of observed yes-instances. Also, the average running time of the algorithm for those

instances where the time limit is not exceeded is rather low, compared to other types of control,

see Figure 3.5a. The highest computational costs occur for those election sizes where the most

no-instances were observed. As expected, in the corresponding constructive cases the number

of timeouts is significantly higher and so are the average computational costs.
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Discussion of Results Finally, we summarize the main findings of our experiments, which

allow a more fine-grained analysis and comparison—across various control scenarios, vote

distribution models, and voting systems—than merely stating NP-hardness for all these prob-

lems. Obviously, our findings are limited by the experimental setup and, of course, the fact that

exponential time seems unavoidable for these problems unless P = NP; thus, our conclusions

cannot be generalized unconditionally.

Discussion of Distribution Models: IC versus TM: Comparing the results for the dif-

ferent distribution models, we see that in every voting system for all control types studied

(except fallback voting in constructive control by deleting candidates) the overall number of

yes-instances is higher in the IC than in the TM model. This may result from the fact that

in elections with uniformly distributed votes, all candidates are likely to be approximately

equally preferred by the voters. So both constructive and destructive control actions are eas-

ier to find by our greedy algorithms. This also explains the observation that the IC model

produces fewer timeouts.

Discussion of Constructive versus Destructive Control: For all investigated types of

control where both constructive and destructive control was investigated, we found that the

destructive control types are experimentally much easier than their constructive counterparts,

culminating in almost 100% of controllable elections for certain control types in the IC model.

Compare this with the theoretical insight of Hemaspaandra et al. [HHR07] that (unique-

winner) destructive control problems disjunctively truth-table-reduce to their (co-winner) con-

structive counterparts and thus are never harder to solve, up to a polynomial factor (see also

the corresponding observation of Conitzer et al. [CSL07] regarding manipulation): In fact, the

destructive control cases tend to be even much easier in our experiments than their constructive

counterparts.

Comparison across Voting Systems: For constructive control, we have seen that fallback

and Bucklin voting show similar tendencies and numbers of yes-instances regarding voter

control. We also observed that their constructive voter control problems are in general harder

to solve than those for plurality voting. In all three voting systems, constructive control by

partition of candidates seems to be the hardest control problem investigated, at least for our

algorithms, as the most timeouts have occurred in these cases.

Adding Candidates/Voters versus Deleting Candidates/Voters: For fallback and Buck-

lin voting, we have seen that the results for control by adding voters do not differ significantly

from those observed for control by deleting voters, suggesting that both types of control are

roughly equally hard. By contrast, comparing control by adding candidates to control by

deleting candidates in the constructive case leads to different findings. In both voting systems

and both control types, we have small numbers of yes-instances. In the constructive case,

however, we observed that the number of yes-instances for control by deleting candidates is

significantly higher. These findings are perhaps not overly surprising, since in the voting sys-

tems considered here adding candidates to an election can only worsen the position of the

designated candidate in the votes. That is, constructive control can be exerted successfully

only if by adding candidates rivals of the designated candidate lose enough points so as to get

defeated by him or her. This, in turn, can happen only if the designated candidate was already

a highly preferred candidate in the original election.

76



3.2 Electoral Control

Constructive Voter versus Candidate Control: For fallback and Bucklin voting, we

can also compare constructive candidate and voter control directly. In both voting systems and

both distribution models, the number of yes-instances for constructive control by adding voters

is around four times higher than the number of yes-instances in the corresponding candidate

control type, which confirms the argument above, saying that adding candidates cannot push

the designated candidate directly. Constructive control by deleting voters can be successfully

exerted more frequently when votes are less correlated, whereas the proportion of success-

ful control actions for deleting candidates is about the same for both considered distribution

models. The observed differences between these types of voter and candidate control may re-

sult from the fact that adding or deleting candidates only shifts the position of the designated

candidate, which may not influence the outcome of the election as directly as increasing or

decreasing the candidates’ scores by adding or deleting voters does. This may explain why

voter control can be tackled more easily than candidate control by greedy approaches such as

ours.

Concluding Remarks: Reviewing the results obtained from our experiments, we can roughly

group the investigated control types in three different categories:

1. For all destructive control cases, we could show that for instances randomly generated

with either of the voter distribution models considered here, the control problems are

easily solvable by our greedy approach. This suggests that the NP- and W[2]-hardness

results from Section 3.2.2 for these cases describe solely the worst-case behavior and do

not give information about the complexity for typical instances, assuming the used voter

distribution models do give “typical” instances.

For constructive voter control by adding, deleting, or partitioning in model TE, we have

to distinguish between the two types of input instances. For uniformly distributed elec-

torates, we have seen that these control actions can also be easily computed by our

greedy approach, whereas for instances with correlated votes the problems become

harder to solve. So the complexity of these problems in practice depends immensely

on the given instance’s structure. These problems cannot be grouped into some specific

category, as they fall somewhere between the first and the second category.

2. The second category classifies those problems that are at least for small election sizes ef-

ficiently solvable in our setting. This category contains the constructive cases of control

by deleting candidates and partition of voters in model TP. For these problems our ex-

periments show that for very small instances the problems are in practice easy to solve,

but the worst case that is reflected by the theoretical hardness results is likely to occur

even for random instances (according to IC and TM) when their size increases.

3. The remaining cases of constructive candidate control (namely, adding candidates and

all variants of partition of candidates) form the third and last category in which we col-

lect those control problems that are hard to solve by our algorithms for all considered

instance sizes and structures. For these problems, our experiments may allow the con-

clusion that these problems seem to be hard to solve even in practice and on random

instances (according to IC and TM).
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3.3 Bribery and Campaign Management
Every political election is preceded by extensive election battles. Long before the election

is actually held, the streets are plastered with election posters, TV-spots are aired, candidates

participate in talk shows and engage in political debates, volunteers go from door to door

advertising the candidate or party they support, and online campaigns are launched.

Clearly, the management of such campaigns is an important part of politics – strategists

and pollsters solely focus on tackling the task of analyzing the voters’ behavior in order to

decide how the campaign can maximize the influence on them within the given budget. From

a voting-theoretical point of view, this idea is formally closely related to bribery: Candidates or

parties invest a resource such as money or time into actions that hopefully persuade opposing

voters to vote differently. Formulating campaign management and bribery as voting problems

(as Faliszewski et al. [FHH09] and Elkind et al. [EFS09] have done in their work) these two

scenarios differ on the possibilities the briber has of changing the bribed voters’ ballots: While

in the standard bribery scenario we assume that, once a voter is bribed, her entire ballot can

be changed at the briber’s will, the model of campaign management allows the briber to alter

certain aspects only, where each aspect can have a different cost depending on the voter.

The next part of this section formally introduces the voting problems formalizing different

variants of bribery and campaign management. In Sections 3.3.2 and 3.3.3 we present the

results regarding the complexity of these problems in Bucklin and fallback elections.

3.3.1 Basic Definitions and Related Work
The formal description of bribery in elections as decision problems with the aim of studying

their computational complexity was firstly introduced by Faliszewski et al. [FHH09] (see also

[FHH+09b]).

E -CONSTRUCTIVE UNWEIGHTED BRIBERY (E -CUB)

Given: An E election (C,V ), a designated candidate p, and a nonnegative integer k.

Question: Is it possible to make p an E winner by changing the votes of at most k voters?

This standard scenario can be extended by allowing the voters to have different prices for

changing their votes.

E -CONSTRUCTIVE UNWEIGHTED PRICED BRIBERY (E -CUB-$)

Given: An E election (C,V ) with n voters of which each voter vi ∈ V has a nonnegative

integer price πi, 1 ≤ i ≤ n, a designated candidate p, and a positive integer k.

Question: Is there a set I ⊆{1, . . . ,n} such that ∑
i∈I

πi ≤ k and the voters vi with i∈ I can be bribed

so that p is an E winner of the resulting election?

Both of these problems can also be defined in weighted elections which implies that each

voter has an integer weight. This leads to the final two types of standard bribery.

78



3.3 Bribery and Campaign Management

E -CONSTRUCTIVE WEIGHTED BRIBERY (E -CWB)

Given: An E election (C,V ) with each voter vi ∈ V having a nonnegative integer weight wi,

a designated candidate p, and a positive integer k.

Question: Is it possible to make p an E winner by changing the votes of at most k voters?

E -CONSTRUCTIVE WEIGHTED PRICED BRIBERY (E -CWB-$)

Given: An E election (C,V ) with n voters of which each voter vi ∈V has nonnegative integer

weight wi and price πi, 1 ≤ i ≤ n, a designated candidate p, and a positive integer k.

Question: Is there a set I ⊆{1, . . . ,n} such that ∑
i∈I

πi ≤ k and the voters vi with i∈ I can be bribed

so that p is an E winner of the resulting election?

We have stated these scenarios in the constructive variant. By changing the questions in

the above four problems to whether the designated candidate can be prevented from being an

E winner, we obtain the destructive variants which we will denote by E -DUB, E -DUB-$,

E -DWB, and E -DWB-$.

To define these eight problems in the unique-winner model instead of the co-winner model
as we did above, we have to ask whether p can be made or be prevented from being a unique

E winner. We denote the problems in the unique-winner model by E -UCUB, E -UCUB-

$, E -UCWB, E -UCWB-$. E -UDUB, E -UDUB-$, E -UDWB, and E -UDWB-$ to present

Observation 3.33. Note that the first four observations below directly follow from the fact that

the weighted and priced variants are general cases of the unweighted and/or unpriced variants.

To illustrate the notation, take the first observation:

E -CUB ≤p
m {E -CWB, E -CUB-$} ≤p

m E -CWB-$ is supposed to be a shorthand for the

relations (1) E -CUB ≤p
m E -CWB, (2) E -CUB-$ ≤p

m E -CWB-$, (3) E -CUB ≤p
m E -CUB-$,

(4) E -CWB ≤p
m E -CWB-$, (5) E -CUB ≤p

m E -CWB-$, and where the last relation follows

from the transitivity of ≤p
m. For the fifth observation we refer the reader to the explanation of

the corresponding observation for manipulation scenarios, Observation 3.3 on page 28.

Observation 3.33 Let E be a voting system, then the following holds.

1. E -CUB ≤p
m {E -CWB, E -CUB-$} ≤p

m E -CWB-$.
2. E -UCUB ≤p

m {E -UCWB, E -UCUB-$} ≤p
m E -UCWB-$.

3. E -DUB ≤p
m {E -DWB, E -DUB-$} ≤p

m E -DWB-$.
4. E -UDUB ≤p

m {E -UDWB, E -UDUB-$} ≤p
m E -UDWB-$.

5. E -UDUB ≤p
T E -CUB, E -UDUB-$ ≤p

T E -CUB-$, and E -UDWB-$ ≤p
T E -CWB-$.

Essentially, a briber has to tackle two tasks at the same time: choosing the voters to be

bribed and determining how exactly to cast the preferences of these voters. The second part is

closely related to the coalitional manipulation problem, see Section 3.1 for the exact definition,

in which for a given set of manipulators previously undefined preferences have to be specified.

We will see in the proof of Theorem 3.48 establishing tractability of Bucklin-DWB (and also
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of Bucklin-DUB-$) that we can use a known algorithm for destructive coalitional manipula-

tion in weighted Bucklin elections (Algorithm 3.1 on page 33) to solve the bribery problem

at hand. Faliszewski et al. [FHH09] further analyzed the connections between manipulation

and bribery problems and established a very strong connection between coalitional manipu-

lation and priced bribery when both problems are given in the constructive case. Since their

argumentation can be adapted straightforwardly to the destructive case, we state the following.

Proposition 3.34 (Faliszewski et al. [FHH09]) Let E be a voting system, then it holds that

1. E -CCUM ≤p
m E -CUB-$ and E -CCWM ≤p

m E -CWB-$, and
2. E -DCUM ≤p

m E -DUB-$ and E -DCWM ≤p
m E -DWB-$.

In the standard bribery scenario defined above we assume that once a voter accepted a

bribe, she changes the entire ballot as the briber requests. This assumption can be seen as a

very restricting one as it might be the case that voters would be willing to change some aspects

of their ballots, but insist on certain orderings: For instance, a voter might be willing to change

the positions of her mid-ranked candidates (she might be to some extent indifferent to all of

them) but is very certain about (and thus unwilling to change) the order of her top-ranked or

most despised candidates.

The concept of campaign management takes this into account and allows a more fine-

grained definition of bribing voters. Elkind et al. [EFS09] propose SWAP BRIBERY as a refine-

ment of standard bribery that allows the voters to have different prices for different changes

in their vote which are defined as swaps between two adjacent candidates. Formally, the price

functions of the voters are defined as follows.

Definition 3.35 (Elkind et al. [EFS09]) A swap-bribery price function for voter vi is a func-
tion πi : C ×C → N that specifies for each ordered pair (cr,cs) of candidates the price for
changing vi’s preference order from · · ·> cr > cs > · · · to · · ·> cs > cr > · · · . Only candidates
that are adjacent in a vote can be swapped.

We state the constructive case of SWAP BRIBERY directly for weighted elections as this is

the most general case.

E -CONSTRUCTIVE WEIGHTED SWAP BRIBERY (E -CWSB)

Given: An E election (C,V ), where V = (v1, . . . ,vn), a designated candidate p, a list

(π1, . . . ,πn) of swap bribery price functions, a list of weights (w1, . . . ,wn), and a non-

negative integer k.

Question: Can p be made an E winner of an election resulting from the input election by con-

ducting a sequence of swaps of adjacent candidates in the voters’ ballots such that the

total cost of the swaps does not exceed the budget k?

The unweighted variant E -CUSB can be obtained by assigning unit weights to all voters.

The destructive variants E -DWSB and E -DUSB are defined in the standard way and we denote
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the four counterparts in the unique-winner model by E -UCWSB, E -UCUSB, E -UDWSB,

and E -UDUSB.

Observe the following relations between the different swap bribery cases which can be

obtained directly from their definitions.

Observation 3.36 Let E be a voting system, then the following holds.

1. E -CUSB ≤p
m E -CWSB and E -UCUSB ≤p

m E -UCUSB.
2. E -DUSB ≤p

m E -DWSB and E -UDUSB ≤p
m E -UCDSB.

3. E -UDUSB ≤p
T E -CUSB and E -UDWSB ≤p

T E -CWSB.
4. For elections with a fixed number of 2 candidates, the following problems are equivalent:

E -CWSB and E -CWB-$, E -UCWSB and E -UCWB-$, E -DWSB and E -DWB-$,
and E -UDWSB and E -UDWB-$, respectively.

Recalling the definition of fallback voting in Section 2.3.2, we know that the ballots in a

fallback election consist of two parts: the approved candidates that are ranked and the un-

ranked set of disapproved candidates. This compels us to further specify how a vote in a

fallback election can be changed in the course of a swap bribery action: Swaps of candidates

are only allowed in the approved parts of the votes. With this definition (and only this def-

inition) of swap bribery in fallback elections, we can use the fact that Bucklin elections are

special fallback elections, to state the following result.

Lemma 3.37 Let E -SB be any of the above defined swap bribery scenarios. Then it holds
that Bucklin-SB≤p

m fallback-SB.

A special case of the SWAP BRIBERY problem that is also introduced by Elkind et al.

[EFS09] is the SHIFT BRIBERY problem in which it is only allowed to perform swaps in-

volving the designated candidate. This means, that the designated candidate can be shifted

upwards or downwards in the rankings, but no other changes are allowed. We give the defini-

tion of the problem for unit costs as we will need this variant in Section 4.4.

E -CONSTRUCTIVE SHIFT BRIBERY (E -CSHB)

Given: An E election (C,V ), where V = (v1, . . . ,vn), a designated candidate p, and a nonneg-

ative integer k.

Question: Can p be made an E winner of an election resulting from the input election by con-

ducting in total at most k shifts of p in the votes?

Swap bribery in the unweighted scenario is a generalization of the so-called POSSIBLE

WINNER problem (E -PW) defined by Konczak and Lang [KL05] which asks for a given E
election with possibly incomplete preferences whether there is an extension of the incomplete

orders to linear order such that a given candidate is an E winner of the resulting election (see

also Chapter 5 on page 122 for the formal definition definitions and further discussions and

results). For bribery this connection is important since a lower bound (such as NP-hardness)

for the E -PW problem for a fixed voting system E also holds for the more general case of

E -CUSB which is formally stated in the following proposition.

81



3 Manipulative Attacks in Bucklin and Fallback Elections

Proposition 3.38 (Elkind et al. [EFS09]) Let E be a voting system, then E -PW ≤p
m E -CUSB

and E -UPW ≤p
m E -UCUSB.

Combining the above result and Proposition 3.39 shown byXia and Conitzer [XC11b], it

can be established that E -CCUM ≤p
m E -CUSB and E -UCCUM ≤p

m E -UCUSB hold.

Proposition 3.39 (Xia and Conitzer [XC11b]) Let E be a voting system, then it holds that
E -CCUM ≤p

m E -PW and E -UCCUM ≤p
m E -UPW.

Closely related to the possible winner problem is the necessary winner problem (E -NW)

asking for the same input whether a given candidate is an E winner for every extension of the

incomplete votes to linear orders. Shiryaev et al. [SYE13] show that destructive unweighted

swap bribery in fact is a generalization of the complement of this problem.

Proposition 3.40 (Shiryaev et al. [SYE13]) Let E be a voting system, then the following re-
lations holds: E -NW ≤p

m E -DUSB and E -UNW ≤p
m E -UDUSB.

In fallback elections, we restricted the allowed changes in swap bribery actions to the ap-

proved part of the votes only. A natural next step is to consider problem variants in which

the approved part of the vote can be changed, for example, by adding formerly disapproved

candidates to it. Elkind et al. [EFS09] defined the notion of mixed bribery for the voting sys-

tem sincere-strategy approval voting (SP-AV), a hybrid voting system in which the votes also

have an approved and a disapproved part.6 Mixed bribery allows both changing the size of the

approved parts of the votes and swaps of candidates therein.

We will follow the approach of Schlotter et al. [SFE11] and analyze the complexity of

modifying the approved parts of the votes separately. To this end, we will make use of so-

called extension bribery functions that are due to Baumeister et al. [BFL+12].

Definition 3.41 (Baumeister et al. [BFL+12]) The extension bribery price function δi : N→
N of a voter vi defines the price for extending the approved part of vi’s vote with a given num-
ber of so-far-disapproved candidates (these new candidates are ranked below the previously-
approved candidates, but among themselves are ranked as the briber requests).

We define the weighted variant of EXTENSION BRIBERY in fallback elections (FV-CWEB)

formally below.

FV-CONSTRUCTIVE WEIGHTED EXTENSION BRIBERY (FV-CWEB)

Given: A fallback election (C,V ), where V = (v1, . . . ,vn), a list of weights (w1, . . . ,wn)), a

designated candidate p, a list (δ1, . . . ,δn) of extension bribery price functions, and a

nonnegative integer k.

Question: Can p be made a fallback winner by extending the approved parts of the voters’ ballots

without exceeding the budget k?

The unweighted variant FV-CUEB and the destructive variants FV-DWEB and FV-DUEB

can be obtained from this version as we have seen before for other problem variants.

6This voting system was originally introduced in the work of Brams and Sanver [BS06b] and then modified

by Erdélyi et al. [ENR09]. A thorough analysis of SP-AV and other variants of approval voting can be found in

the book chapter by Baumeister et al. [BEH+10].
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Related Work After having provided the formal definitions of the problems considered in

this section, we shortly survey the state of the art regarding the complexity of bribery and

campaign management.

We start by giving known results from the literature for the standard bribery scenarios in

those voting systems that are studied within this thesis in Table 3.27.

Problem PV Borda Schulze Copelandα Cup

E -CUB P 1 NP-complete 4 NP-complete 5 NP-complete 6 NP-complete 3

E -DUB P 2 P 2 NP-complete 5 NP-complete 6 NP-complete 7

E -CUB-$ P 1 NP-complete 4 NP-complete 5 NP-complete 6 NP-complete 3

E -DUB-$ P 3 P 3 NP-complete 5 NP-complete 6 NP-complete 7

E -CWB P 1 NP-complete 4 NP-complete 5 NP-complete 6 NP-complete 3

E -DWB P 3 P 3 NP-complete 5 NP-complete 6 NP-complete 7

E -CWB-$ NP-complete 1 NP-complete 4 NP-complete 5 NP-complete 6 NP-complete 3

E -DWB-$ NP-complete 3 NP-complete 3 NP-complete 5 NP-complete 6 NP-complete 7

1 due to [FHH09]
2 due to [Xia12]

3 due to [Rei07]
4 due to [BFH+08]

5 due to [PX12]
6 due to [FHH+09b]

7 proof of Thm. 4.8

Table 3.27: Selection of known results regarding the complexity of bribery

In Table 3.28 we present complexity results regarding swap briber that have been shown

in the literature or can be followed from known results. We see that for two very prominent

voting rules, Borda and Schulze, the complexity of unweighted swap bribery is not completely

resolved.

Problem PV Borda Schulze Copelandα Cup

E -CUSB P 1 NP-complete 5 ? NP-complete 7 NP-complete 7

E -DUSB P 2 ? ? NP-complete 8 NP-complete 8

E -CWSB NP-complete 3 NP-complete 5 NP-complete 6 NP-complete 7 NP-complete 7

E -DWSB NP-complete 4 NP-complete 4 NP-complete 6 NP-complete 8 NP-complete 8

1 due to [EFS09]
2 due to [SYE13]
3 due to [FHH09] with Obs. 3.36

4 due to [Rei07] with Obs. 3.36
5 due to [BD10] and Prop 3.38
6 due to [PX12] with Obs. 3.36

7 due to [XC11b] with Prop. 3.38
8 due to [XC11b] with Prop. 3.40

Table 3.28: Selection of known results regarding the complexity of swap bribery

Constructive bribery is studied by Lin [Lin12] for k-approval and k-veto voting while in

the work of Xia [Xia12] results for bribery in STV and ranked pairs elections are proven

and destructive bribery is studied. Yang [Yan14] and Bredereck et al. [BFN+15a] provide

complexity results for priced standard bribery parameterized by the number of candidates.

Besides those results given in the table above, Elkind et al. [EFS09] also study swap bribery

in k-approval, SP-AV, and maximin elections and extend their study to the complexity of shift

bribery for these voting systems. Their study is extended by Schlotter et al. [SFE11], who
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3 Manipulative Attacks in Bucklin and Fallback Elections

show tractability of shift bribery in (simplified) Bucklin voting and fallback voting. They fur-

thermore introduce the notion of support bribery, another interesting variant of campaign man-

agement and study both the classical and parameterized complexity of this problem. Shiryaev

et al. [SYE13] focus on destructive swap bribery and furthermore define a measure of robust-

ness of elections with respect to incorrect swaps in votes, see also Chapter 4 of this thesis.

Much attention has been paid to natural parameterizations of campaign management prob-

lems. Dorn and Schlotter [DS12] provide a detailed study on the complexity of swap bribery in

k-approval elections for different parameters. Different parameterizations of the shift bribery

problem are studied by Bredereck et al. [BCF+14b]. The work of Elkind and Faliszewski

[EF10a] focuses on the approximability of the shift bribery problem for a selection of com-

mon voting systems.

Mattei et al. [MPV+13] and Bredereck et al. [BFN+15b] focus on bribery problems tailored

to elections with certain combinatorial structures in the electorate. Other restrictions regarding

the given votes such as truncated ballots and single-peaked preferences have been addressed in

the work of Baumeister et al. [BFL+12], Brandt et al. [BBH+10], Faliszewski et al. [FHH14],

and Hemaspaandra et al. [HHR15].

Some interesting studies of bribery beyond the context of voting are the following: Bribery

in path-disruption games has been studied by Rey and Rothe [RR11] and Marple et al. [MRR14],

while Baumeister et al. [BEE+15] define and study bribery scenarios for judgment aggrega-

tion settings. The closely related lobbying problem, which was introduced by Christian et al.

[CFR+07], has found much attention in recent research, see for example the work of Bredereck

et al. [BCH+14] and Binkele-Raible et al. [BEF+14].

For a comprehensive overview, we refer to the survey by Faliszewski et al. [FHH+09a] and

the book chapters of Baumeister and Rothe [BR15] and Faliszewski and Rothe [FR16].

3.3.2 Complexity of Bribery
Table 3.29 shows the result that were published in [FRR+14, FRR+15] and that we will present

in this section.

Problem Bucklin Voting Fallback Voting
complexity reference complexity reference

E -CUB NP-complete Thm. 3.43 NP-complete Thm. 3.45

E -DUB P Cor. 3.49 P Thm. 3.50

E -CUB-$ NP-complete Cor. 3.44 NP-complete Cor. 3.46

E -DUB-$ P Thm. 3.48 P Thm. 3.50

E -CWB NP-complete Cor. 3.44 NP-complete Cor. 3.46

E -DWB P Thm. 3.48 P Thm. 3.50

E -CWB-$ NP-complete Cor. 3.44 NP-complete Cor. 3.46

E -DWB-$ NP-complete Thm. 3.47 NP-complete Thm. 3.47

Table 3.29: Overview of results for bribery in Bucklin and fallback voting
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Before we present the results that are given in the table, we state the following lemma and

show NP-hardness only in the upcoming NP-completeness proofs.

Lemma 3.42 For Bucklin and fallback voting each of the problems corresponding to the stan-
dard bribery scenarios is contained in NP.

The claim directly follows from P membership of the winner problems of Bucklin and

fallback since this allows us to check in deterministic polynomial time whether a guessed

bribery action is successful or not.

Theorem 3.43 CUB is NP-complete for Bucklin voting in both winner models.

Proof Sketch. The following proof applies to both winner models with the exact same

argumentation, no adaptions are needed. We show how a Bucklin-CUB instance ((C,V ), p,k)
can be constructed from an X3C instance (B,S ) such that (B,S ) ∈ X3C if and only if

((C,V ), p,k) ∈ Bucklin-CUB. But we will not show the equivalence.

Let (B,S ) be an instance of X3C with B = {b1,b2, . . . ,b3m} and S = {S1,S2, . . . ,Sn}.

Without loss of generality, we may assume that n≥ 2m. We construct a Bucklin-CUB instance

((C,V ), p,k), where (C,V ) is a Bucklin election with the candidates C = B∪{c,d}∪G∪{p},

p is the designated candidate, and k = m. The set G is a set of “padding candidates,” which

are used to ensure that certain candidates do not gain points up to a certain level. Padding

candidates are positioned in the votes such that, up to a certain level, they themselves do not

gain enough points to be relevant for the central argument of the proof. (Specifically, we will

ensure that up to a given level, each padding candidate gets at most one point.) Thus, their

scores are not listed in the tables giving the scores of the relevant candidates.

For every b j ∈ B, define � j to be the number of sets Si ∈ S candidate b j is contained in. V
consists of the following 2n voters (i.e., a strict majority is reached with n+1 votes):

• The first voter group consists of n voters. For each i, 1 ≤ i ≤ n, we have one voter of the

form

c > d > Si > Gi > {C− ({c,d}∪Si ∪Gi)},
where Gi ⊆ G is a set of 3m− 3 padding candidates. When a set X of candidates is

given in such a ranking, the order of the candidates from X can be fixed arbitrarily in

this ranking.

• The second voter group consists of n voters as well. We will present the preferences level

by level from the first to the (3m+2)nd position in Table 3.30, indicating the number (by

#) of occurrences of each candidate in these positions. The first (3×3)-block in the left

side of the table can be read as follows: m of the n voters position c on the first place, m
of the n voters have candidate d on the first position while the remaining n−2m voters

each position a different candidate from G on their top position. The (2 × 3)-block

below indicates that n+1− �1 of the n voters position candidate b1 on the second place

and the remaining �1 − 1 voters in this group each have a different candidate from G
on the second position in their ballot. The remaining blocks can be read analogously

until in the last block in the right side of the table, position 3m+2 is shown. Note that
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3 Manipulative Attacks in Bucklin and Fallback Elections

the notation for the padding candidates has been chosen to keep the table as readable

as possible while still emphasizing that each candidate from G is only positioned once

within the top 3m+2 positions in this voter group and thus only gains at most 1 point up

to level 3m+ 2. The G′
r-sets are disjoint subsets of G each containing exactly as many

candidates as voters are denoted by # in the respective block.

position # voters candidate position # voters candidate

1

m c
...

...
...m d

n−2m g ∈ G′
1

2
n+1− �1 b1

3m
n+1− �3m−1 b3m−1

�1 −1 g ∈ G′
2 �3m−1 −1 g ∈ G′

3m

3
n+1− �2 b2 3m+1

n+1− �3m b3m

�2 −1 g ∈ G′
3 �3m −1 g ∈ G′

3m+1

...
...

... 3m+2
n−m+1 p

m−1 g ∈ G′
3m+2

Table 3.30: Preferences of the voters in the second voter group in V in the proof of Theorem 3.43

Table 3.31a shows the scores of the relevant candidates in (C,V ) (namely, c, d, p, and each

b j ∈ B) for the relevant levels (namely, 1, 2, 3m, 3m+ 1, and 3m+ 2). In particular, one can

see that c is the unique level 1 Bucklin winner in (C,V ).

b j ∈ B c d p

score1 0 n+m m 0

score2 ≤ n+1 n+m m+n 0

score3m ≤ n+1 n+m m+n 0

score3m+1 ≤ n+1 n+m m+n 0

score3m+2 n+1 n+m m+n n−m+1

(a) Original election (C,V )

b j ∈ B c d p

score1 0 n m m
score2 ≤ n n n m
score3m ≤ n n n m
score3m+1 ≤ n n n m
score3m+2 ≤ n n n n+1

(b) Modified election (C,V ′)

Table 3.31: Level i scores for i ∈ {1,2,3m,3m+1,3m+2} and the candidates in C−G

It can now be shown that S has an exact cover S ′ for B if and only if p can be made a

Bucklin winner by changing at most m votes in V . �

With Observation 3.33 we immediately obtain the following corollary.

Corollary 3.44 In Bucklin elections, CWB, CUB-$, and CWB-$ are NP-complete, each in
both winner models.
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Note that the result for Bucklin-CUB-$ follows from Proposition 3.34 and the hardness

result for Bucklin-CCWM, see Theorem 3.5 on page 31. The upcoming two results show

that also in fallback elections, a briber is faced with an NP-hard task trying to make a certain

candidate a winner by applying one of the four standard bribery variants. The following proof

establishing NP-hardness for the unweighted and unpriced case is based on the proof of the

corresponding bribery problem in approval voting due to Faliszewski et al. [FHH09].

Theorem 3.45 CUB is NP-complete for fallback voting in both winner models.

Proof. We show NP-hardness in the co-winner model by a reduction from X3C. Let (B,S )
be an instance of X3C with B = {b1,b2, . . . ,b3m} and S = {S1,S2, . . . ,Sn}. (We assume that

n > m; otherwise, it would be immediate to check if (B,S ) is a yes-instance of X3C or not.)

We define the fallback election (C,V ) with the candidate set C = B∪E ∪{p}, where p is the

designated candidate and E is a set of n+m padding candidates. For every j ∈ {1, . . . ,3m},

we again define � j as the number of subsets Si ∈ S candidate b j ∈ B is contained in. Using

this notation, we define the subsets Bi = {b j ∈ B | i ≤ n− � j} for i ∈ {1, . . . ,n}. V consists of

the 4n−1 voters whose preferences are given in Table 3.32.

Group For each . . . # of votes preference

(1) i ∈ {1, . . . ,n} 1 Si | (B−Si)∪E ∪{p}
(2) i ∈ {1, . . . ,n} 1 Bi | (B−Bi)∪E ∪{p}
(3) n−m−1 p | B∪E
(4) � ∈ {1, . . . ,n+m} 1 e� | B∪ (E −{e�}∪{p}

Table 3.32: Voter list V in the proof of Theorem 3.45

There is no candidate reaching a strict majority on any level. With the approval scores in

Table 3.33a we see that all candidates b j ∈ B are fallback winners in (C,V ).

b j ∈ B p el ∈ E

score n n−m−1 1

(a) Original election (C,V )

b j ∈ B p el ∈ E

score n−1 n−1 1

(b) Modified election (C,V ′)

Table 3.33: Overall scores of the candidates in C

We claim that S has an exact cover S ′ for B if and only if p can be made a fallback winner

by bribing at most m voters.

Only if: Suppose that S has an exact cover S ′ for B. We change the votes of those voters

in the first voter group where Si ∈S ′ from Si | (B−Si)∪E∪{p} to p | B∪E. In the resulting

election (C,V ′), only the scores of the candidates in B and the score of p change: p gains m
points, whereas each b j ∈ B loses exactly one point. Thus, with an overall score of n− 1,

candidate p wins the election together with the candidates in B, see Table 3.33b.
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If: Suppose that p can be made a fallback winner by changing at most m votes in V . That

means that p can gain at most m points, so the maximum overall score that p can reach is n−1.

Since each b j ∈ B has an overall score of n, every candidate in B has to lose at least one point

by changing at most m votes (otherwise, there would be at least one candidate in B who beats

p). This is possible only if in m votes of the first voter group the candidates in Si are removed

from the set of approved candidates such that these m sets Si form an exact cover for B.

For the unique-winner model, simply change the third voter group in V to contain n−m
voters. �

Again, with Observation 3.33 we directly obtain NP-completeness for the other constructive

bribery cases.

Corollary 3.46 In fallback elections, CWB, CUB-$, and CWB-$ are NP-complete, each in
both winner models.

For destructive bribery we can establish NP-hardness in both Bucklin and fallback voting

when the voters both have weights and prices. We show this for both voting systems simulta-

neously as the constructed elections has only two candidates.

Theorem 3.47 Both Bucklin-DWB-$ and fallback-DWB-$ are NP-complete, each in both
winner models.

Proof. We show NP-hardness by a reduction from PARTITION. (The same reduction works

for both problems.) Let (A,(a1, . . . ,ak)) with A = {1, . . . ,k} and ∑k
i=1 ai = 2K be an instance

of PARTITION. We construct the following Bucklin (fallback) election (C,V ) with C = {c, p}
and k + 1 votes in V : For each i ∈ {1, . . . ,k}, we have one voter vi with weight wi = ai,

price πi = ai, and preference p > c, and we have one voter vk+1 with weight wk+1 = 1, price

πk+1 = K +1, and preference c > p (for fallback, all voters approve of both candidates).

The total weight of the voters in (C,V ) is 2K +1, so maj(V ) = K +1. Let K be the budget

that may not be exceeded and let p be the designated candidate. Obviously, p is the unique

level 1 Bucklin (fallback) winner in (C,V ).
We claim that (A,(a1, . . . ,ak)) ∈ PARTITION if and only if p can be prevented from being a

Bucklin (fallback) winner by changing votes in V without exceeding the budget K.

Only if: Let (A,(a1, . . . ,ak)) ∈ PARTITION with A′ ⊆ A such that ∑i∈A′ ai = K. Change the

votes of those voters with weight wi = ai for i ∈ A′ from p > c to c > p. With these changes

we have that on the first level, p has K points and c has K + 1 points, so c is the new level 1

Bucklin (fallback) winner and p has been prevented from winning.

If: Assume that p is not a Bucklin (fallback) winner in the bribed election. Since there

are only two levels, c has to win on the first level to prevent p from winning. Changing the

vote of voter vk+1 would provide no gain (and would be too expensive), so only the votes of

v1, . . . ,vk may be changed. For each of the voters, the price equals the weight, so voters with

a total weight of K can be changed. Candidate c has one point on the first level in the original

election, so it is only possible to make c a unique level 1 Bucklin winner by fully exhausting

the budget and changing the votes with a total weight of K from p > c to c > p (or, for the case
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of fallback, to approve of c only, which gives the same effect). Thus, there is a subset A′ ⊆ A
such that ∑i∈A′ ai = K, so (A,(a1, . . . ,ak)) ∈ PARTITION.

For the unique-winner model, simply omit voter vk+1 in the voter list. �

The remaining destructive bribery cases can be solved in deterministic polynomial time.

The algorithms that we will present are based on an algorithm presented by Xia [Xia12] for

destructive unweighted bribery in elections held under the simplified Bucklin rule. Algo-

rithm 3.3 adapts Xia’s approach to Bucklin elections and is a procedure to solve the problem

Bucklin-DWB. The main idea is to use Algorithm 3.1, which was designed in Section 3.1.2

on page 33 to solve the destructive coalitional weighted manipulation problem for Bucklin

elections, Bucklin-DCWM. The main difference between a bribery and a manipulation in-

stance is that in the latter only the preferences of the manipulators have to be found, whereas

in the former both the votes that will be bribed and the new preferences for these voters have

to be found. If we have the set of votes we want to change, we can use the algorithm for the

manipulation problem to construct the preferences. Thus, for the runtime of the algorithm the

determination of these voter sets is crucial, and we show that in Bucklin elections the number

of voter sets whose modification might actually lead to a successful bribery is bounded by a

polynomial in both the number of voters n and the number of candidates m.

Theorem 3.48 In Bucklin elections, DWB and DUB-$ are in P, each in both winner models.

Proof Sketch. Consider Algorithm 3.3 and a given input (C,V,WV , p,k) to it. In particular,

p is the designated candidate that we want to prevent from winning and assume that we have a

yes-instance, i.e., our bribery action is successful. We denote by (C,V ′′) the election resulting

from (C,V ) where the k votes that can be changed have already been changed. Then there is a

candidate c∈C−{p} that reaches a strict majority on level i, and it holds that scorei
(C,V ′′)(c)>

scorei
(C,V ′′)(p), which means that p is not a Bucklin winner in (C,V ′′). To achieve that, for each

i < m, there are only five types of preferences that might have been changed in V , and they

can be grouped into the following subsets Ti, j ⊆V , 1 ≤ j ≤ 5:

Ti,1 : p is among the top i−1 positions and c is among the top i positions (when changing: p
loses points, c does neither lose nor win points up to level i).

Ti,2 : p is among the top i−1 positions and c is not among the top i positions (when changing:

p loses points, c wins points up to level i).
Ti,3 : p is on position i and c is among the top i−1 positions (when changing: p loses points,

c does neither lose nor win points up to level i).
Ti,4 : p is on position i and c is not among the top i− 1 positions (when changing: p loses

points, c wins points up to level i).
Ti,5 : both p and c are not among the top i positions (when changing: p does neither lose nor

win points, c wins points up to level i).

For a sublist of voters V ′ ⊆V , denote their total weight by W ′
V . Algorithm 3.3 for Bucklin-

DWB works as follows.

It is easy to see that Algorithm 3.3 runs in deterministic polynomial time: the two outer

for-loops iterate up to m times, whereas the inner loop tests up to k5 variations of the vector

89



3 Manipulative Attacks in Bucklin and Fallback Elections

Algorithm 3.3: Algorithm for Bucklin-DWB

input : C set of candidates

V list of voters

WV list of weights of voters

k number of votes that may be changed

p designated candidate

output: “YES” if (C,V,WV ,k, p) ∈ Bucklin-DWB

“NO” if (C,V,WV ,k, p) /∈ Bucklin-DWB

1 let A = {(a1,a2, . . . ,a5) |ai ∈ {0,1, . . . ,k}}, V ′ = /0;

2 foreach c ∈C−{p} do
3 foreach i <m do
4 foreach (a1,a2, . . . ,a5) ∈ A do
5 if ∑5

�=1 a� ≤ k then
6 foreach j ∈ {1,2, . . . ,5} do
7 add the a j heaviest votes in Ti, j to V ′;

8 run Algorithm 3.1 on input (C,V −V ′,WV−V ′ ,WV ′ , p);
9 if Bucklin-DCWM(C,V −V ′,WV−V ′ ,WV ′ , p)= “YES” then

10 return “YES”;

11 return “NO”;

(a1,a2, . . . ,a5). Since k ≤ n, we have that the number of executions of Algorithm 3.1 is in

O(m2n5). We omit the proof of correctness.

For the Bucklin-DUB-$ problem the same algorithm can be used. The only difference is

that all weights have to be set to one, the cheapest instead of the heaviest votes are added to

V ′ in line 7 (i.e., in line 7 we add the votes with the lowest price instead of the ones with

the greatest weight), and it has to be tested whether the sum of the prices of the chosen votes

does not exceed the budget. For the unique-winner case, run the algorithm solving the unique-

winner variant of Bucklin-DCWM in line 8. �

With Observation 3.33 we directly obtain the following corollary.

Corollary 3.49 In Bucklin elections, DUB is in P in both winner models.

The same approach can be taken for fallback voting:

• Change “i <m” in line 3 to “i ≤m,”

• use the fallback analogue of Algorithm 3.1 in line 8, and

• change “Bucklin-DCWM” in line 9 to “fallback-DCWM,”

Theorem 3.50 In fallback elections, DWB, DUB, and DUB-$ are in P, each in both winner
models.
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3.3.3 Complexity of Campaign Management
In this section we present our results on the complexity of the campaign management problems

that were defined in Section 3.3.1. Table 3.34 gives an overview of the results published

in [FRR+14, FRR+15] and furthermore provides the references of the corresponding theorems

and corollaries within this thesis.

Bucklin voting fallback voting

Problem complexity reference complexity reference

E -CUSB NP-complete Thm. 3.52 NP-complete Cor. 3.53

E -DUSB NP-complete Thm. 3.52 NP-complete Cor. 3.53

E -CWSB NP-complete Cor. 3.53 NP-complete Cor. 3.53

E -DWSB NP-complete Cor. 3.53 NP-complete Cor. 3.53

FV-CUEB – P Thm. 3.56

FV-DUEB – P Thm. 3.56

FV-CWEB – NP-complete Thm. 3.55

FV-DWEB – NP-complete Thm. 3.55

Table 3.34: Overview of results for swap bribery and extension bribery in Bucklin and fallback voting;
The dashes “–” indicate that extension bribery is not applicable to Bucklin voting

We state an analogon to Lemma 3.42 in Section 3.3.2 in the context of campaign manage-

ment.

Lemma 3.51 For Bucklin and fallback voting each of the problems corresponding to the cam-
paign management scenarios is contained in NP.

Swap Bribery We start with the analysis of swap bribery, which we conduct for both voting

systems. We show that swap bribery in all its variants is NP-complete with a reduction from

the following swap bribery variant introduced by Elkind et al. [EFS09].

SINGLE-VOTE SWAP BRIBERY

Given: A vote v (expressed as a preference order over some candidate set C), a swap-bribery price

function π for v, a designated candidate p ∈C, and two nonnegative integers � and k.

Question: Is there a sequence of swaps of adjacent candidates, of total cost at most k, that ensure that

p is ranked among the top � positions in v?

Elkind et al. [EFS09, Theorem 6] show this problem to be NP-complete and we use it to show

that the above claimed NP-completeness of all swap bribery variants even holds in elections

with only two voters.

Theorem 3.52 BV-CUSB and BV-DUSB are NP-complete each in both winner models,
even for elections with only two voters.
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Proof. We show NP-hardness by a reduction from SINGLE-VOTE SWAP BRIBERY.

Let I = (C,v,π, p, �,k) be an instance of SINGLE-VOTE SWAP BRIBERY, where ‖C‖ = m.

We form a Bucklin election E = (A,V ) as follows. Let C′ be a collection of m− 1 dummy

candidates with C∩C′ = /0. We set A =C∪C′ ∪{d}. We partition C′ into two sets, C′
1 and C′

2,

such that ‖C′
1‖ = �− 1 and ‖C′

2‖ = ‖C′‖− (�− 1) = m− �. (We pick any easily computable

partition.) We let V be a collection of two voters, v1 and v2, with price functions π1 and π2:

1. v1 has preference order d > v > C′ (i.e., v1 ranks d on the top position, then all the

candidates from C in the same order as v, and then all the candidates from C′, in some

arbitrary-but-easy-to-compute order). For each two candidates x,y ∈ A, if both x and y
are in C then we set π1(x,y) = π(x,y), and otherwise we set π1(x,y) = k+1.

2. v2 has preference order p > C′
1 > d > C′

2 > C−{p} (that is, v2 ranks p first, then the

�− 1 candidates from C′
1 followed by d, followed by the remaining candidates from

C′, which are then followed by the candidates from C−{p}). For each two candidates

x,y ∈ A, we set π2(x,y) = k+1.

Note that in our election maj(V ) = 2. Further, the only two candidates that are ranked among

the top m+ 1 positions of both voters are p and d. Candidate d has Bucklin score �+ 1 and,

thus, we have the following situation:

1. If p is ranked among the top � positions in v1, then p is the unique Bucklin winner of

the election.

2. If p is ranked in the (�+1)st position by v1, then both p and d are Bucklin winners.

3. If p is ranked in a position worse than the (�+1)st position by v1, then d is the unique

Bucklin winner.

We claim that p can become a Bucklin winner of election E through a swap bribery of cost at

most k if and only if I is a yes-instance of SINGLE-VOTE SWAP BRIBERY.

If: Assume that I is a yes-instance of SINGLE-VOTE SWAP BRIBERY. This means that

there is a sequence of swaps within v after which p is ranked among the top � positions in

v. Applying the same swaps to v1 would cost the same and would put p among the top �+ 1

positions in v1, making p a Bucklin winner.

Only if: Assume that there is a cost-at-most-k sequence of swaps within V that make p a

Bucklin winner. Since any swap that is not in the v part of v1 costs k+ 1, we have that d’s

Bucklin score is still �+ 1, and, thus, after the swaps, p’s Bucklin score is in {2, . . . , �+ 1}.

Executing the same swaps within v shows that I is a yes-instance of SINGLE-VOTE SWAP

BRIBERY.

For the unique-winner model, simply move d one position lower in v2.

To establish that BV-DUSB in the co-winner model also is NP-complete for the case of two

voters, it suffices to use the unique-winner construction from the proof of Theorem 3.52, but

with the goal to prevent candidate d from being a Bucklin winner (the reader can see that p is

the only candidate who can threaten d without exceeding the given budget). For the unique-

winner destructive case, it suffices to use the BV-CUSB co-winner constructive construction,

but with the goal to prevent candidate d from being a unique Bucklin winner. �
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With Observation 3.36 and Lemma 3.37 we obtain the complexity of the remaining cases in

Bucklin elections and all results for fallback voting.

Corollary 3.53 The problems BV-CWSB, BV-DWSB, FV-CUSB, FV-DUSB, FV-CWSB,
and FV-DWSB are NP-complete, each in both winner models, even for elections with only
two voters.

Extension Bribery Now we turn to the analysis of extension bribery in fallback elections.

To simplify our proofs, observe the following.

Observation 3.54 In (constructive) extension bribery problems for the fallback rule it is never
profitable to extend any vote in any other way than by asking the voter to include the designated
candidate on the last unranked position.

This allows us to give the extension bribery price functions by only specifying the cost of

extending the vote by one candidate. We call the cost of it the extension cost of the vote.

Theorem 3.55 For elections with at least three candidates, both FV-CWEB and FV-DWEB

are NP-complete, each in both winner models.

Proof. To show NP-hardness, we use a reduction from PARTITION. Note that our reduction,

which has three candidates, can be modified so that an election with any number m ≥ 3 of

candidates will be constructed: Simply add the needed number of candidates to C and let all

voters disapprove of the newly added candidates. Let (A,(a1, . . . ,ak)) with A = {1, . . . ,k} and

∑k
i=1 ai = 2K be an instance of PARTITION. We define the fallback election (C,V ) with the

candidate set C = {b,c, p}, the designated candidate is p, and we let V consist of k+2 voters

in Table 3.35.

Group For each . . . # voters preference weight extension cost

(1) 1 p | {b,c} K K +1

(2) i ∈ {1,2, . . . ,k} 1 c | {b, p} ai ai
(3) 1 b | {c, p} K K +1

Table 3.35: Voter list V in the proof of Theorem 3.55

The total sum of the voters’ weights in this election is 4K, thus maj(V ) = 2K + 1. The

weighted scores of the candidates in (C,V ) are shown in Table 3.36a. As no candidate reaches

the majority threshold, candidate c wins by approval score and is the unique fallback winner

in (C,V ).
We claim that there is a set A′ ⊆ A such that ∑i∈A′ ai = ∑i	∈A′ ai = K if and only if p can

be made a fallback winner by extension-bribing some of the voters without exceeding the

budget K.

Only if: We assume that there is a set A′ ⊆ A such that ∑i∈A′ ai = ∑i	∈A′ ai = K. We can

change the votes c | {b, p} to c > p | {b} from those voters in the second voter group where
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b c p

score K 2K K

(a) Scores in (C,V )

b c p

score1 K 2K K
score2 K 2K 2K

(b) Scores in (C,V ′)

Table 3.36: Scores in the election constructed in the proof of Theorem 3.55

i ∈ A′. Each of these changes costs ai, so the overall sum of the costs is K. The candidates

have the weighted scores in the resulting election (C,V ′) that are shown in Table 3.36b. So p
can be made a fallback winner by extension-bribing voters in V without exceeding the budget

K.

If: We assume that p is a fallback winner in election (C,V ′), where V ′ is the changed voter

list and the costs for the changes are at most K. Since the cost limit is K the only changes that

can be made, and that are profitable for p, are adding p to the approval strategies of some of

the voters in the second voter group. The weighted score of candidate c cannot be decreased,

so p has to gain K points to tie with candidate c. Hence, there has to be a set A′ ⊆ A such that

∑i∈A′ ai = ∑i	∈A′ ai = K and p has to be added to the approval strategies of the voters from the

second voter group where i ∈ A′.
For the unique-winner case of FV-CWEB, only the weight of the voter in the first voter

group has to be changed to K +1 in the above election.

To show the result for the destructive case, for the co-winner model it suffices to use the

same construction as for the constructive unique-winner case, with the goal to prevent c from

winning (it can be accomplished either by p or by b). Similarly, for the unique-winner destruc-

tive case, we use the same construction as for the co-winner constructive case, with the goal to

prevent c from being a unique winner (again, either p or b can be used for this purpose). �

Turning to unweighted fallback elections, we see that the extension bribery problem be-

comes tractable.

Theorem 3.56 FV-CUEB and FV-DUEB are in P, each in both winner models.

Proof Sketch. Algorithm 3.4 solves the problem in polynomial time. The algorithm con-

siders each level s in which p could possibly become a fallback winner and tries the cheapest

bribery that might achieve this.

The algorithm clearly runs in polynomial time and its correctness follows from Observa-

tion 3.54. Furthermore, it can easily be adapted to solve the problem in the unique-winner

case. With that and some small adaptions, also the destructive cases can be solved. �
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Algorithm 3.4: Algorithm for fallback-CUEB

input : C set of candidates

V list of voters

Δ = (δ1, . . . ,δn) list of extension bribery price functions

k budget

p designated candidate

output: “YES” if (C,V,Δ,k, p) ∈ fallback-CUEB

“NO” if (C,V,Δ,k, p) /∈ fallback-CUEB

1 foreach s ∈ {1, . . . ,‖C‖} do
2 let (v′1, . . . ,v

′
r) be a sublist of V containing voters that approve of at most s−1 candidates and

do not approve of p, sorted by extension costs in ascending order;

3 foreach t ∈ {0, . . . ,r} do
4 if changing v′1, . . .v

′
t to approve p makes p a fallback winner then

5 if the sum of extension costs of v′1, . . . ,v
′
t is less than or equal to k then

6 return “YES”;

7 return “NO”;

3.4 Concluding Remarks and Future Work
In this chapter we have studied the complexity of manipulation, control, bribery, and campaign

management problems in Bucklin and fallback elections.

Manipulation Regarding manipulation, we have provided a complete study of the classical

worst-case complexity for constructive and destructive manipulation by a coalition of ma-

nipulators in weighted and unweighted elections. For both voting systems manipulation is

tractable with the one exception of constructive coalitional manipulation in weighted Bucklin

elections. The reduction for proving this latter result, however, starts from the problem PAR-

TITION, which is NP-complete, but not in the strong sense. This means that it can be solved

in pseudo-polynomial time, see the textbook by Garey and Johnson [GJ79] for further insight

regarding this matter. Thus, aiming at developing such a pseudo-polynomial time algorithm

tailored to the specific setting of constructive coalitional manipulation in weighted Bucklin

elections (or proving that no such algorithm can exist unless P = NP) would be a natural next

step.

Electoral Control In Section 3.2 we have given a comprehensive study of the computa-

tional complexity of all standard types of electoral control in Bucklin and fallback elections,

extending the studies by Erdélyi and Rothe [ER10], Erdélyi et al. [EPR11], and Erdélyi and

Fellows [EF10b]. With a total of only two vulnerabilities, fallback voting is, together with

normalized range voting [Men13], the voting system with the broadest resistance to electoral

control currently known to hold. Bucklin voting is a good candidate for a similar behavior if

the unsatisfyingly unsettled complexity of DESTRUCTIVE CONTROL BY PARTITION OF VOT-
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ERS IN MODEL TP can be resolved and the problem can be shown to be NP-hard. Our study

of the parameterized variants of adding and deleting candidates and voters strengthens the

known unparameterized resistance results as we could establish W[2]-hardness for all investi-

gated parameterized control problems. Whether these problems are W[2]-complete remains as

an interesting open question for future research as well as natural parameterizations for control

by partitioning either the set of candidates or the list of voters.

Summarizing our experimental results, we have shown that for the considered election sizes

and those voter generation models we used in our setting, destructive control could be effi-

ciently solved by our greedy approach, while the results for the constructive cases are more

complex. This leads to the conjecture that the natural parameterization by the number of

deleted/added voters might not be fine-grained or expressive enough to give information about

the behavior of instances actually occurring in practice. Even though parameterized complex-

ity offers a more differentiated worst-case analysis with respect to the considered parameter

than NP-hardness, we have seen that a further experimental analysis can provide further in-

sights. The presented experimental analysis is a first step and future research can focus on im-

proving the experimental setting. Just as Walsh [Wal09, Wal10] observes for manipulation in

the veto rule and in STV, for all types of control investigated in our experiments, the curves do

not show the typical phase transition known for “really hard” computational problems such as

the satisfiability problem (see [GW95, CKT91] for a detailed discussion of this issue). These

observations raise the question of how other distribution models influence the outcome of such

experiments. For further such models see, for instance, the work of Berg [Ber85], Mallows

[Mal57], and Luce [Luc05]. Furthermore, the algorithms implemented could be improved in

terms of considering a higher number of elections per data point, increasing the election sizes,

or allowing a higher number of voters or candidates to be deleted or added in the correspond-

ing control scenarios. Also the tuning of the timeout-parameter could allow for further results

either by simply increasing the value or varying the value depending on other parameters of

the given instance such as the election size. Besides this, other voting systems can be ana-

lyzed since only their winner determination has to be implemented in addition to a few minor

adjustments such as trivial-case checks for the investigated control scenarios tailored to the

voting system at hand. Also empirical studies based on real-world election data instead of

mere simulations of randomly generated elections can be considered for future research.

Bribery and Campaign Management We have shown that constructive standard bribery

in Bucklin and fallback election is intractable while the destructive cases can be solved in

deterministic polynomial time when the voters either are weighted or have prices, but not

both at the same time. Combining both weights and prices leads to NP-completeness of the

corresponding bribery problems also in the destructive case.

Swap bribery, on the other hand, turns out to be intractable in all considered scenarios for

both voting systems. The complexity of extension bribery, which we tailored to fallback voting

only, highly depends on whether weighted or unweighted votes are given. For the former case

we established NP-completeness and showed that in the latter case the problem is tractable in

the destructive scenario as well as in the constructive case.
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Directions for Future Work Summarizing our findings, we provide a complete picture

of the classical worst-case complexity of all standard manipulative attacks on Bucklin and

fallback elections.

Regarding electoral control, we were able to further differentiate our analysis by studying

the complexity of parameterized problem variants and also conducting an experimental eval-

uation. Such studies certainly are also of high interest in the context of bribery and campaign

management.

For all considered voting problems, a complexity-theoretic analysis of the intractable cases

parameterized by the number of voters or candidates participating in an election is worth

pursuing. These parameterizations are especially interesting as they allow us to analyze the

behavior of the given NP-hardness shield in small-scale elections, see the work of [CFN+15,

Yan14]. Furthermore we suggest the development of heuristics and approximation algorithms,

not only for those problems that turned out to be intractable. Especially for the manipulation

scenarios, the study of distributed heuristics minimizing the cost of communication between

the manipulators seems to be a promising direction for future work.

Regarding bribery, campaign management, and control it would also be interesting and

challenging to complement the existing worst-case study by a typical-case analysis as has

been done for manipulation (see, for example, the work of Conitzer et al. [CSL07], Procaccia

and Rosenschein [PR07], Friedgut et al. [FKN08], Isaksson et al. [IKM12], Mossel and Rácz

[MR12a], and Xia and Conitzer [XC08b, XC08a]).

Finally, we suggest to address the unsettled problems for other voting rules that are shown

in Tables 3.2, 3.6, and 3.28: The complexity of coalitional manipulation in weighted Schulze

elections is yet unsettled in the constructive and the destructive cases while for weighted

Copeland0.5 elections only the constructive case is unresolved. Electoral control in Borda

elections has only been partly studied, for the cup rule a study of control complexity is com-

pletely missing. Unweighted Schulze elections have not been analyzed with respect to the

complexity of swap bribery and also the complexity of destructive unweighted swap bribery

for the Borda rule remains as an open problem.
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The respect for democratic processes such as elections highly depends on the reliability of the

officially determined outcome. If voters can have reasonable doubt that the election results

are correct, this might not only have an impact on their willingness to participate in future

elections, but can also have legal consequences.

Clearly, errors in elections, for example regarding the tallying of the ballots can occur in

practice. Reasons for such irregularities can reach from accidental miscounts of votes to in-

tended illegal election fraud. Especially when electronic voting machines are used, the prob-

lem becomes obvious as there are many ways to alter an election’s outcome by attacks on

these machines, see for example the informative case study on the security of voting machines

widely used in India in the work of Wolchok et al. [WWH+10], and the publication by Epstein

[Eps15] addressing the security issues of a recently decertified voting machine that was used

in the state of Virgina, United States of America. One way of addressing this issue is to equip

voting machines such that so-called verifiable paper records are produced and whenever too

many mismatches are found, the votes have to be recounted [NBH+07]. Clearly, this attempt

only allows for spotting counting errors, but does not solve the problem of attacks on the

software of the machines, see the detailed discussion on this point in [Nor06].

To avoid costly recounts of the complete set of ballots the so-called margin of victory of an

election can be used. It is defined as the smallest number of votes that has to be changed to

alter an election’s outcome and thus defines a measure of robustness of elections. The larger

the margin of victory of an election is, the robuster the outcome is against changes in the

ballots. This notion can be used to define risk-limiting audit methods, as Stark [Sta09, Sta10]

suggests, which sequentially test batches of randomly sampled votes from an election until

either the tested votes statistically strongly suggest that the election’s outcome is correct or all

votes have been recounted in the process. Much effort has been put into the design of such

audit methods tailored to specific voting systems such as scoring rules, approval voting, range

voting, and instant run-off voting, see the work of Sarwate et al. [SCS13].

Considering the notion of bribery in elections defined as the situation in which a briber tries

to change an elections outcome by changing a given number of votes [FHH09], we see that

the margin of victory and bribery are closely related.

In this chapter we continue the study of Xia [Xia12] who introduced a decision problem

corresponding to the margin of victory and studied its computational complexity for various

voting systems. We furthermore expand the study’s scope by defining further variants of the

margin of victory problem.
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Organization of this Chapter In the first section we introduce the three different notions

of the margin of victory we want to study and present relations of these problems to certain

cases of destructive bribery. We conclude the section with an overview of related work and

the new results that will be presented in the following three sections: Section 4.2 provides our

study of the complexity of the standard margin of victory problem in cup and fallback elections

while in Section 4.3 the exact variant is studied for Schulze, Copeland, cup, and fallback

elections. These results were published in [RRS14]. In Section 4.4 we present yet unpublished

results regarding the complexity of the swap margin of victory problem in elections held under

certain positional scoring rules and the cup rule. The last section gives some concluding

remarks and pointers to potential future work.

4.1 Variants of the Margin of Victory: Definitions and
Related Work

We now present the formal definitions of the different variants of the margin of victory and

the corresponding decision problems. We furthermore explore the relations to destructive

bribery in elections and expand the study Xia [Xia12] started. In particular, we show that for

multi-winner voting systems, theoretically, destructive bribery can be easy while the margin

of victory problem is intractable.

4.1.1 The Margin of Victory
We start with the standard variant of the margin of victory that has been studied in the related

work we stated so far and that also Xia [Xia12] considers.

Definition 4.1 (Margin of Victory) For a given voting system E and a given E election (C,V ),
we define the margin of victory to be the smallest nonnegative integer � such that the winner
set can be altered by changing � votes in V , while the other votes remain unchanged. We will
use the notation MOV(E ,(C,V )) = �.

The margin of victory gives us a measure of robustness for a given election. To study this

measure of robustness for given E elections for a certain voting system E from a computational

perspective, Xia [Xia12] introduced the decision problem called E -MOV.

E -MARGIN OF VICTORY (E -MOV)

Given: An E election (C,V ) and a positive integer k.

Question: Is MOV(E ,(C,V ))≤ k?

In other words, in the E -MOV problem we ask for a given election and a given k whether

the set of winners can be altered by changing at most k votes. For successfully altering the
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winner set, the changes in the votes may lead to new winning candidates, can prevent former

winners from winning, or both at the same time. It becomes apparent that the margin of

victory and the standard bribery scenarios introduced by Faliszewski et al. [FHH09] are highly

related; especially the destructive case of unweighted bribery in the unique winner model

which is defined as follows (see also Section 3.3 for further discussion on this model and for

the definitions of other bribery scenarios).

E -UNIQUE DESTRUCTIVE UNWEIGHTED BRIBERY (E -UDUB)

Given: An E election (C,V ), a designated candidate p ∈C, and a positive integer k.

Question: Is it possible to prevent p from being a unique E winner by bribing at most

k voters, i.e., changing their votes?

For elections with unique winners Xia [Xia12] established the following connection be-

tween the E -MOV problem and destructive unweighted bribery in the unique winner model.

Proposition 4.2 ([Xia12]) Let E be a voting system that always selects a unique winner of
an election in deterministic polynomial time and satisfies E -MOV 	= /0. Then E -MOV and
E -UDUB are ≤p

m-equivalent, i.e., E -MOV ≤p
m E -UDUB and E -UDUB ≤p

m E -MOV.

The equivalence of both problems does only hold when the voting system always selects

unique winners. If more than one winner can occur, the following corollary holds.

Corollary 4.3 Let E be a voting system with E -MOV 	= /0 and that determines the set of
winners in deterministic polynomial time. Then E -UDUB ≤p

m E -MOV holds.

Proof. Let (C,V, p,k) be an E -UDUB instance, that is, we have the E election (C,V )
and candidate p is the unique winner of (C,V ). We map (C,V, p,k) to the E -MOV instance

(C,V,k) and claim that (C,V, p,k) ∈ E -UDUB if and only if (C,V,k) ∈ E -MOV.

Only if: We assume that p can be prevented from being the unique winner by changing

at most k votes in V . This directly implies that (C,V,k) ∈ E -MOV since the k changes in V
successfully alter the winning set.

If: Assume that the set of winners of (C,V ) can be changed by changing at most k votes.

We call the new set of winners W and note that either W ⊆ C −{p} holds (this is the case

if p was prevented from being a winner by the changes in the votes) or W = {p}∪W ′ for

W ′ ⊆ C−{p} (this is the case if other candidates were made winners due to the changes in

the votes). In both cases, p has been prevented from being a unique winner in the election by

changing at most k votes, thus (C,V, p,k) ∈ E -UDUB. �

To show that in the above case E -MOV ≤p
m E -UDUB in fact does not hold (unless it could

be shown that P equals NP), we construct a nonneutral voting rule that serves as a counterex-

ample.
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Theorem 4.4 There exists a voting system K such that K -UDUB ∈ P but K -MOV is NP-
complete.

Proof. We prove this claim by constructing a voting system K that always outputs at least

two winners if there are at least two candidates. For an election (C,V ) with C = {p} ∪C′
winner determination in K proceeds as follows:

K (C,V ) =

{
p if C = {p}
{p}∪ cup(C′,V ) otherwise.

It is easy to see that K -UDUB ∈ P: If C = {p}, then p is always a unique winner, but due

to the definition of the voting system, this cannot be changed. So we can easily decide that

this is a no-instance of K -UDUB. If there are more than two candidates we always have two

winners which means that in this case we always have trivial yes-instances of K -UDUB.

It remains to show that K -MOV is NP-complete. Membership in NP is easy to see. By

looking closely at the winner determination we can see that for elections with more than two

candidates, the winner set can only be changed by changing the winner set of the cup elec-

tion (C′,V ). Thus, we can easily construct a trivial reduction cup-MOV ≤p
m K -MOV and

follow NP-hardness of K -MOV from NP-hardness of cup-MOV which we show in Theo-

rem 4.8. �

Whether there exists a neutral voting rule satisfying the same properties as the voting rule

K in the proof above is an interesting but yet unsolved open question.

4.1.2 The Exact Margin of Victory
The standard E -MOV problem asks the question whether the margin of victory of an election

is smaller than or equal to a given nonnegative integer. Thus, when given a yes-instance for a

fixed k it is unclear, whether the margin of victory actually reaches this upper bound of k or

whether it equals 1 (the smallest value possible).

One way of bypassing this fact is to define a variant that asks whether the margin of victory

lies in a predetermined interval. Note that from a computational complexity point of view, the

size of this interval is irrelevant in the sense that when DP-completeness can be shown for an

interval consisting of only one integer, increasing the size of the interval does not change the

problem’s complexity, see the work of Wagner [Wag87]. We make use of this fact and define

our exact variant of the margin of victory problem as follows.

E -EXACT MARGIN OF VICTORY (E -XMOV)

Given: An E election (C,V ) and a positive integer k.

Question: Is MOV(E ,(C,V )) = k?

Clearly, E -XMOV = E -MOV∩E -MOV, thus we can state the following remark.

Remark 4.5 If E -MOV ∈ P holds for a voting system E , then also E -XMOV ∈ P holds.
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4.1.3 The Swap Margin of Victory
When a voter is faced with the task of providing a complete ranking over a large list of candi-

dates, there is a possibility that small errors can occur and faulty preferences are reported. Also

when votes are stored electronically errors may occur during the process, leading to slightly

changed votes. We want to address such errors on a smaller scale and analyze the effect of

single changes in the votes on an election’s outcome. As we are mostly concerned with elec-

tions, where the votes are linear orders, we define a single change to be a swap of two adjacent

candidates.1

We base our formal definition on the model introduced by Shiryaev et al. [SYE13]. They

define a measure of robustness restricted to elections with unique winners, the so-called robust-
ness radius of election E = (C,V ) with respect to the winning candidate c, to be the smallest

value δ such that there exists an election E ′ = (C,V ′) resulting from E by conducting at most

δ swaps in the votes where c is not a unique winner of E ′.
We, however, also allow elections with more than one winner and analyze the number of

changes needed to change this given winner set. We consider this definition to be a natural

extension of the margin of victory introduced above to the scenario where the single changes

in the votes are counted.

Definition 4.6 (Swap Margin of Victory) For a given voting system E and a given E elec-
tion (C,V ), we define the swap margin of victory to be the smallest nonnegative integer � such
that the winner set can be changed by conducting a sequence of at most � swaps in the votes
in V , while no further changes are made. We will use the notation SWMOV(E ,(C,V )) = �.

Based on this definition, we will analyze the following decision problem in Section 4.4.

E -SWAP MARGIN OF VICTORY (E -SWMOV)

Given: An E election (C,V ) and a positive integer k.

Question: Is SWMOV(E ,(C,V ))≤ k?

Just as the previously defined standard margin of victory, the swap margin of victory is

closely related to a known destructive bribery scenario. Elkind et al. [EFS09] defined con-

structive swap bribery in elections by assigning a so-called swap-bribery price function δi :

C×C →N for every voter vi as a function that specifies for each ordered pair (ci,c j) of candi-

dates the price for changing vi’s preference order from · · ·> ci > c j > · · · to · · ·> c j > ci > · · · .
Only candidates that are adjacent in a vote can be swapped. By changing the question in their

definition of CONSTRUCTIVE UNWEIGHTED SWAP BRIBERY to whether the designated can-

didate can be prevented from being the unique winner of the resulting election, we obtain

the definition of DESTRUCTIVE UNWEIGHTED SWAP BRIBERY in the unique winner model.

(See also Section 3.3 for further discussion and definitions of various bribery scenarios.) In

particular, we will study the special case of the destructive swap bribery problem where each

1See Section 3.3.1 for a similar discussion in the context of bribery and swap bribery.
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swap has unit costs, that is δi(c,d) = 1 for all vi ∈V and all c,d ∈C with c 	= d. Formally, this

problem is defined as follows.

E -UNIQUE DESTR. UNWEIGHTED SWAP BRIBERY WITH UNIT COSTS (E -UDUSB-UC)

Given: An E election E = (C,V ), a distinguished candidate c ∈C, and a budget k.

Question: Is there a sequence of at most k swaps such that c is not a unique winner in the changed

election?

Looking closely at the definitions of the E -SWMOV and the E -UDUSB-UC problem, it

becomes clear that we have analog connections between both problems as we have stated for

their standard variants in Proposition 4.2 and Corollary 4.3. We summarize both statements in

one corollary of which we omit the proof since it is a straightforward adaption of the proofs

of Corollary 4.3 and Proposition 4.2.

Corollary 4.7 Let E be a voting system with E -SWMOV 	= /0 that determines the winners of
an election in deterministic polynomial time. Then the following holds.

1. E -UDUSB-UC ≤p
m E -SWMOV.

2. If E always determines unique winners, then E -SWMOV ≤p
m E -UDUSB-UC also holds.

Shiryaev et al. [SYE13] show that the NECESSARY WINNER problem in the unique-winner

model (E -UNW) polynomial-time many-one reduces to E -UDUSB, see also Proposition 3.40

on page 82. This reduction, however, does not map to the special case of E -UDUSB-UC as it

requires that the costs of the votes can be chosen from {0,1}. Thus unfortunately, we cannot

derive any results from this interesting connection in our setting.

4.1.4 Overview of Results and Related Work
After having introduced the basic definitions, we give an overview of the complexity of the

different variants of the margin of victory problems in Table 4.1. It shows known results

due to Xia [Xia12] as well as those results that we present in this thesis which were partly

published in [RRS14].

The work of Xia [Xia12] provides a comprehensive study on the computational aspects of

the margin of victory problem and its relations to destructive bribery focusing on the unique-

winner model. Besides those voting systems that are displayed in Table 4.1, approval voting,

STV, ranked pairs, plurality with run-off, and the maximin rule are studied. For the latter

and for the family of Copelandα elections, approximation algorithms are presented. Further-

more, for the large class of continuous generalized scoring rules, see also the work of Xia and

Conitzer [XC08b], a dichotomy result regarding the typical size of the margin of victory is

shown for elections, where votes are generated by randomly drawing the votes from all pos-

sible votes assuming that these are independent and identically distributed with respect to a

given distribution.
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Cup Scoring Rules Fallback Bucklin Schulze Copelandα

E -MOV
Compl. NP-c. P P P 1 NP-c. P

Ref. Thm. 4.8 [Xia12] Thm. 4.9 [Xia12] [Xia12] 2 [Xia12] 2

E -XMOV
Compl. DP-c. P P P 1 DP-c. DP-c.

Ref. Thm. 4.11 [Xia12] 2 Thm. 4.12 [Xia12] 2 Thm. 4.10 Thm. 4.11

E -SWMOV
Compl. NP-c. P 3

? ? ? ?
Ref. Thm. 4.13 Thm. 4.15,4.14

1 simplified Bucklin 2 follows with results in [Xia12] 3 not for all scoring vectors

Key: NP-c. = NP-complete, DP-c. = DP-complete

Table 4.1: Overview of results for the margin of victory

Motivated by practical aspects, namely that exactly computing the margin of victory for a

given election might be infeasible, Cary [Car11] and Magrino et al. [MRS+11] study how the

margin of victory can be estimated in elections held under instant run-off voting (IRV) and

evaluate their findings empirically on real-world test data. See also the work by Sarwate et al.

[SCS13], who present algorithms for computing upper and lower bounds for the margin of

victory for several voting systems including IRV in order to develop further risk-limiting audit

methods. Recently, Blom et al. [BST+15] followed up on the approach taken by Magrino et al.

[MRS+11] and present improved algorithms for the estimation of the margin of victory in IRV

elections.

Rather remotely related is the approach taken by Procaccia et al. [PRK07], who similarly

to Shiryaev et al. [SYE13], focus on the error model considering single swaps in the given

preferences but define robustness significantly different: In their setting, the robustness of a

voting system is measured by the probability that the outcome of a given election alters when

random swaps in the votes are performed. Their study covers many prominent voting rules,

namely positional scoring rules, Copeland0, maximin, simplified Bucklin, and plurality with

run-off.

Note that, for the sake of readability, we abbreviate the given preferences and will use the

shorthand abc for a preference a > b > c in the upcoming proofs.

4.2 The Margin of Victory in Cup and Fallback Elections

We start with the NP-completeness result for cup-MOV which we obtain by showing the

problem cup-UDUB NP-hard and by then applying Corollary 4.3. For the hardness proof

we will construct a reduction from the well-known NP-complete problem VERTEX COVER,

see [GJ79].

105



4 The Margin of Victory and Destructive Bribery

VERTEX COVER (VC)

Given: An undirected graph G = (V,E) and a positive integer k.

Question: Is τ(G)≤ k, i.e., is the size of a smallest vertex cover in G at most k?

Theorem 4.8 For cup elections, E -MOV is NP-complete.

Proof. Membership to NP is easy to see, as the winner determination of the cup rule allows

to check in deterministic polynomial time whether a change of k guessed votes alters the

election’s outcome. Thus, we have to show NP-hardness in detail. We do so by showing NP-

hardness of cup-UDUB by a reduction from VERTEX COVER. In the proof we will use the

so-called UV technique introduced by Faliszewski et al. [FHH+09b].

Let G = (A,E) be an undirected graph with vertex set A = {a1,a2, . . . ,an} and edge set E =
{e1,e2, . . . ,em}, and let k∈N. We construct the cup election (C,V ) with C = {c,d}∪E∪P∪T ,

where P = {p1, p2, . . . , pm} and T is a set of dummy candidates that will be used to ensure that

the voting tree is balanced (we will come to that later). Let Sa = {e ∈ E | e∩{a} 	= /0} be the

set of edges incident to vertex a ∈ A.

V contains 2m(n+ k − 3)+ 6n+ 6k − 3 voters whose preferences are listed in Table 4.2.

When a set of candidates, say Z ⊆C, is given in a voter’s preference, then we assume that the

candidates in Z are ordered with respect to a (tacitly assumed) fixed order, while
←−
Z denotes

that the candidates are ordered in reverse. In particular, we fix the order of the candidates in P
to be p1 > p2 > · · ·> pm.

Group For each . . . # votes Preference

(1)
a ∈ A 1 c d Sa P (E −Sa) T
a ∈ A 1 P c d (

←−−−
E −Sa)

←−
Sa T

(2)
k votes c d P E T
k votes c d P

←−
E T

(3)
2(n+ k−2) c E P d T
2(n+ k−2) d

←−
E P c T

(4)
i ∈ {1, . . . ,m} n+ k−3 c (P−{pi}) pi ei (E −{ei}) d T
i ∈ {1, . . . ,m} n+ k−3 d (

←−−−−−
E −{ei}) pi ei (

←−−−−−
P−{pi}) c T

(5) 1 P c d E T

Table 4.2: Voter list V in the proof of Theorem 4.8

The dummy candidates in T are always positioned at the bottom of each voter’s preference,

so they lose every pairwise comparison to the candidates in C − T . This implies that their

position in the schedule is irrelevant, so we will omit them in Figure 4.1.

For the sake of readability and clarity, we will omit the dummy candidates in our further

arguments, and we will use the voting tree and schedule shown in Figure 4.1. (To transform
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4.2 The Margin of Victory in Cup and Fallback Elections

p1 e1 pi ei pm em

X d

c

Figure 4.1: Voting tree of the cup election (C−T,V ) without dummies in the proof of Theorem 4.8

this tree into a complete binary tree (i.e., into a legal voting tree), the dummy candidates in T
have to be added to the three subtrees with the roots d,c, and X , respectively.)

Since the height of the tree is in O(logm), we have in total a polynomial number of leaves,

which ensures that the reduction is in fact polynomial-time computable.

Table 4.3 shows the pairwise comparisons of the relevant candidates in C−T and we see

that c is the unique cup winner of this election.

DV (x,y) d P E

c > 4k 2k−1 2n+2k+1

d − 2k−1 2n+2k+1

P i < j : DV (pi, p j)> 4k i 	= j : DV (pi,e j) =−2n−2k+5

i ≥ j : DV (pi, p j)≤ 0 i = j : DV (pi,e j) =−1

Table 4.3: Pairwise comparisons of the candidates in C−T

We claim that G has a vertex cover of size at most k if and only if c can be prevented from

being a unique cup winner by changing at most k votes.

Only if: Assume that A′ ⊆ A is a vertex cover of size k. Change the preferences of those k
voters corresponding to A′ in the first voter group from cd Sa P(E−Sa)T to Pcd Sa (E−Sa)T .

Since A′ is a vertex cover we have that due to these changes each ei ∈ E has one vote where

she is positioned behind all candidates in P. So we have that each pi wins her first pairwise

comparison against ei by one point. In the subelection corresponding to the subtree with root

X (recall Figure 4.1), the relevant pairwise comparisons are among the candidates in P and

due to the fixed ordering of these candidates in the votes, p1 is the winner of this subelection.

Both c and d have lost k votes in comparison to p1 due to the bribe, so p1 wins both pairwise

comparisons and is thus the unique cup winner of this election. So c has been successfully

prevented from winning.

If: Assume that c can be prevented from being a unique winner by bribing at most k voters.

Due to the scores only candidates from P have a chance to prevent c from being a unique

winner, so the following has to hold for the bribed election: A candidate from P, say p1, has

to be the winner of the subelection corresponding to the subtree with root X and p1 has to win
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4 The Margin of Victory and Destructive Bribery

the pairwise comparisons against both d and c. For the latter to hold, all k bribed votes have to

have p1 positioned behind d and c (before the bribe). For the former to hold, no candidate in E
may win her first contest, which implies that every pi ∈ P has to win the pairwise comparison

against the corresponding candidate ei ∈ E. So the votes that are bribed also have to rank the

candidates in E better than those in P before the bribe is conducted. With this we see that the

k bribed votes have to be from the first voter group and that the vertices corresponding to these

votes have to form a vertex cover of size k to ensure that each ei ∈ E loses the first pairwise

comparison. �

For fallback voting we can show a tractability result.

Theorem 4.9 In fallback elections, E -MOV is in P.

Proof. Let ((C,V ),k) be a given E -MOV instance with a fallback election (C,V ) and an

integer k. We denote the set of fallback winners in (C,V ) with W .

Assume that ‖W‖ = 1. To change W , we have to dethrone the current winner. To check

whether this is possible by changing not more than k votes, we can use the known algorithm

for fallback-UDUB, see Theorem 3.50 on page 90.

If ‖W‖ ≥ 2 we can show that MOV(fallback,(C,V )) = 1: Let there be two fallback winners

a,b ∈C, thus W = {a,b}, and let � denote the level on which both candidates win the election.

(Note that �= ‖C‖ if they win by approval.) We know that score�(C,V )(a) = score�(C,V )(b) and

furthermore we can find a voter in V ranking candidate a among the top � positions. By letting

this voter disapprove of a while letting the rest of the vote remain unchanged, we can achieve

that in this new election, a has one point less on level � and is thus no longer a fallback winner.

The same approach can be used if there are more than two winners. �

4.3 The Exact Margin of Victory in Schulze, Copeland,
Cup, and Fallback Elections

In this section we present the complexity of the exact margin of victory in Schulze, Copeland,

cup, and fallback elections. The former three results are published in [RRS14]. Furthermore

we show the complexity of E -XMOV in fallback elections.

We start with a DP-completeness result for the Schulze rule (recall its definition from Sec-

tion 2.3).

Theorem 4.10 For Schulze elections, E -XMOV is DP-complete.

Proof Sketch. Since Schulze-MOV is in NP, we know with

Schulze-XMOV = {(C,V,k) |MOV(Schulze,C,V ) = k}
= {(C,V,k) |MOV(Schulze,C,V )≤ k}−{(C,V,k) |MOV(Schulze,C,V )≤ k−1}
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that Schulze-XMOV ∈ DP holds. For showing DP-hardness we provide a reduction from the

DP-complete problem XVC (recall its definition from Section 2.2).

Let G = (A,E) be an undirected graph with vertex set A = {a1,a2, . . . ,an} and edge set

E = {e1,e2, . . . ,em}, and let k be a positive integer. Without loss of generality, we assume that

6 ≤ k ≤ n and that k−1 mod 5 = 0. Let U = E1∪E2∪E3 be the marked union of three copies

of E, which are denoted by Ei = {ei1,ei2, . . . ,eim} for i ∈ {1,2,3}, and let Sa = {ei j |e j∩{a} 	=
/0 and i ∈ {1,2,3}} again denote the set of all edges in U that are incident to vertex a ∈ A.

We define the Schulze election (C,V ), where C = {c,d,e, f ,g,h, p} ∪U, and V is a list

of 40n + 324k − 132 voters, whose preferences are specified in Table 4.4. When a set of

candidates, say Z ⊆C, is given in a voter’s preference, then we assume that the candidates in

Z are ordered with respect to a (tacitly assumed) fixed order.

Figure 4.2 shows a subgraph of the weighted majority graph of this election in which, for

the sake of readability, all those edges that are not relevant for the argumentation are omitted,

namely edges with negative or zero weight and edges that are not relevant for determining the

strengths of the strongest paths. Table 4.5 shows the strengths of the relevant strongest paths

in (C,V ). We can see that candidate c is the unique Schulze winner in this election.

U

p d e

c g f

h

12(k−1)/5 12(k−1)/5

12(k−1)/5

12(k−1)/512(k−1)/5

6k−6

6k−66k−6

12k

12k

12k
6k−6

12k
12k

> 12k

4k−2

Figure 4.2: Subgraph of the WMG of the Schulze election (C,V )

The following properties of the constructed elections are useful for proving the correctness

of the reduction: Since candidate c is the unique Schulze winner in the election, the winner

set can only be changed by achieving P(c,x)≤ P(x,c) for at least one candidate x ∈C−{c}.

Further, since

P(c,x)−2k ≥ 12k−2k >
12(k−1)

5
+2k ≥ P(x,c)+2k

holds for all candidates x ∈ C−{c, p}, only p can tie with c when no more than k votes can

be changed. So it suffices to focus on the paths leading from c to p, and vice versa. From p to

c, the only reasonable path is ((p,d),(d,e),(e, f ),( f ,g),(g,c)). From c we can reach p either

directly, or via the candidates in U , or via a path having one of the candidates in {e, f ,g} as

the second-to-last vertex.

The path ((p,d),(d,e),(e, f ),( f ,g),(g,c)) consists of five edges and since there is no pref-
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Group For each . . . # voters Preference Type

(1)

a ∈ A 1 h c g f e Sa p d (U −Sa) 1

a ∈ A 1 c g e f d Sa p (U −Sa) h 1

a ∈ A 1 h c g f d e Sa p (U −Sa) 1

a ∈ A 1 c f g e d Sa p (U −Sa) h 1

a ∈ A 1 h g c f e d Sa p (U −Sa) 1

(2)

n d p e f g c U h 2

n h p d f e g c U 2

n p e d f g c U h 2

n h p d e g f c U 2

n p d e f c g U h 2

(3)
12(k−1)/10 h p d e f g c U 2
12(k−1)/10 p d e f g c U h 2

(4)
3k−3+ 12(k−1)/10 h e f g c p d U 3

3k−3+ 12(k−1)/10 d c g f e p U h 3

(5)

6k+ 12(k−1)/10 h p g c f e d U 2

6k+ 12(k−1)/10 c d e f g p U h 3

6k+ 12(k−1)/10 h p c f g e d U 2

6k+ 12(k−1)/10 g d e f c p U h 3

6k+ 12(k−1)/10 h p g c e f d U 2

6k+ 12(k−1)/10 f d e c g p U h 3

(6)

6k c h g e f p d U 3

6k d p f e g c h U 2

6k h g c e f p d U 3

6k d p f e c h g U 2

(7)

5n+41k−20 h d c g E1 E2 p E3 f e 4a
5n+41k−20 e f E2 E1 p E3 g c d h 4b

5n+41k−20 h d c f E1 E3 p E2 g e 5a
5n+41k−20 e g E3 E1 p E2 f c d h 5b

5n+41k−20 h d c e E2 E3 p E1 f g 6a
5n+41k−20 g f E3 E2 p E1 e c d h 6b

Table 4.4: Voter list V in the proof of Theorem 4.10

erence in V with the ordering cg f ed p, the weight of only four of these edges can be increased

by 2 when one vote is changed. Thus, changing five votes can increase the strength of the path

by at most 8 and the maximum value of 8 can only be achieved when the weight of each edge

is increased by 8.

Generalizing this observation, by changing at most k−1 votes in V , we have that in the new
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x d e f g h p U

P(c,x) 12k 12k 12k 12k 12k 6k−6 > 12k
P(x,c) 12(k−1)

5
12(k−1)

5
12(k−1)

5
12(k−1)

5
12(k−1)

5
12(k−1)

5
12(k−1)

5

Table 4.5: Strengths of the strongest paths in (C,V )

election P(p,c) ≤ 12(k−1)
5 + 8(k−1)

5 = 4(k−1) holds. This upper bound for P(p,c) also holds

when k changes are allowed.

By showing the following, the main argument for the reduction’s correctness is given.

MOV(Schulze,(C,V ))

⎧⎪⎨
⎪⎩
= k−1 if τ(G)< k
= k if τ(G) = k
> k otherwise,

(4.1)

where, recall, τ(G) denotes the size of a smallest vertex cover in G.

We show only the third part in detail since it is the most involved one. To this end let

τ(G) > k hold. To construct a contradiction, we assume that MOV(Schulze,(C,V )) ≤ k.

We know that P(p,c) ≤ 4(k − 1) and by changing k − 1 votes, DV ′(x, p) ≤ 4(k − 1) for all

x ∈ {c,e, f ,g} must be achieved, where V ′ denotes the election with the changed votes. This

implies that p has to be positioned behind the candidates in {c,e, f ,g} in at least k−1 of the

changed votes. Thus, we have that up to k votes of type 1 or type 3 might be changed, but

at most two votes of type 4,5, or 6, or at most one vote of type 2. Note that if two votes of

the types 4,5, or 6 are changed, both votes have to be of the same type, e.g., 4a and 4b, or 6a
and 6b. Otherwise, when for example a type-4b vote and a type-6a vote are changed, candidate

d would remain unaffected by this change and DV ′(d, p) > 4k− 4 would hold, where again,

V ′ denotes the changed voter list. Each other possible pairing of votes of different types leads

to DV ′(x, p)> 4k−4 for at least one candidate x ∈ {c,e, f ,g}.

Furthermore the weight of every edge from U to p has to be decreased by at least 2, so that

all paths from c to p have a strength of at least 4k− 4. Let V1 ⊆ V denote the sublist of V
of size at most k that have to be changed to ensure a different winner set. We distinguish the

following two cases.

1. V1 consists only of votes of type 1,2, and 3: Those votes of type 1 have to induce a

vertex cover for G since all ei j have to be positioned better than p in at least one vote.

So τ(G)≤ k, which contradicts the assumption that τ(G)> k.
2. V1 consists only of votes of type 1,2,3, and two votes of either type 4,5, or 6: For

the latter two votes (which have to be of the same type) we have that one of the sets

Ei, i ∈ {1,2,3}, is positioned behind p. So the pairwise comparison between these

candidates and p is not affected by the change. This, however, implies that those votes

of type 1 that are changed, have to induce a vertex cover which contains less than k
elements. This contradicts the assumption that τ(G)> k.

With (4.1), the correctness of the reduction can be followed straightforwardly. �

111



4 The Margin of Victory and Destructive Bribery

We state the DP-completeness result for the XMOV problem in cup and Copelandα elections

without proof as the final argumentation is very similar to that in the proof of Theorem 4.10.

Theorem 4.11 For cup elections and for Copelandα elections the problem E -XMOV is DP-
complete.

Finally we state the following result that directly follows with Remark 4.5 and Theorem 4.9.

Theorem 4.12 For fallback elections the E -XMOV problem is in P.

4.4 The Swap Margin of Victory in Cup Elections and
Positional Scoring Rules

In this section we present the results regarding the complexity of the newly defined prob-

lem E -Swap Margin of Victory. These results are not published yet. We start with an NP-

completeness result in cup elections. The reduction is an adaption of the proof of Theorem 4.8

showing that in cup elections the problems cup-UDUB and cup-MOV both are NP-complete.

Similar to the proof of Theorem 4.8, we first show that cup-UDUSB-UC is NP-hard and

follow with this result and Corollary 4.7 NP-hardness for cup-SWMOV.

Theorem 4.13 In cup elections, the destructive swap bribery problem with unit prices is NP-
complete. This implies that in cup elections E -SWMOV is NP-complete, as well.

Proof. Membership to NP can be easily established by guessing k changes in the votes and

testing whether the changes alter the set of winners. The latter can be done in deterministic

polynomial time since the winner determination of the cup rule has exactly this complexity.

To show NP-hardness, we will make use of the construction built to prove NP-hardness of

destructive bribery in cup elections in the proof of Theorem 4.8. By adjusting the limit of the

allowed changes and adding dummy candidates to make trivial changes impossible, the just

mentioned reduction from VERTEX COVER can be used to show the claim at hand.

Let G = (A,E) be an undirected graph with vertex set A = {a1,a2, . . . ,an} and edge set

E = {e1,e2, . . . ,em}, and let k be a nonnegative integer. Without loss of generality, we may

assume G to be a cubic graph, i.e., each vertex has exactly three neighbors—when restricted

to such graphs, VERTEX COVER is still NP-complete [GJ79].

We construct the following instance (C,V, �) of cup-SWMOV from (G,k) where the candi-

date set is C = {c,d, p′,e′}∪E∪P∪R∪T with P= {p1, p2, . . . , pm} and dummy candidates in

R∪T . R=
⋃10

i=1 Ri with ‖Ri‖= 11k is a set of dummy candidates used to make certain changes

impossible within the given swap limit which we define to be �= 11k. The dummy candidates

in T are added to ensure that the voting tree is balanced and will, as well as the candidates in

R, be omitted from the further a argumentation as they lose every pairwise comparison to the

candidates in C− (R∪T ).
Let Sa = {e ∈ E |e∩{a} 	= /0} be the set of edges incident to vertex a ∈ A, and for each such

set we define the corresponding set Pa ⊆P of candidates in P. If, for example, Sa = {e1,e2,e3},
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then Pa = {p1, p2, p3}. Note that every edge is in exactly 2 of these defined sets and that, since

G is a cubic graph, every Sa contains exactly three edges.

The preferences of the 2m(n+ k − 3) + 6n+ 6k − 3 voters in V are shown in Table 4.6.

When a set of candidates, say Z ⊆C, is given in a voter’s preference, then we assume that the

candidates in Z are ordered with respect to a (tacitly assumed) fixed order, while
←−
Z denotes

that the candidates are ordered in reverse. In particular, we fix the order of the candidates

in P to be p1 > p2 > · · · > pm and the order of the candidates in each Sa and Pa to also be

lexicographical.

For each . . . # votes Preference Type

a ∈ A 1 c d Sa p′ Pa R1 (P−Pa) e′ (E −Sa) (R−R1) T 1a

a ∈ A 1 p′ P c R2 d (
←−−−
E −Sa)

←−
Sa e′ (R−R2) T 1b

k c R3 d p′ P e′ E (R−R3) T 2a

k c R4 d p′ P
←−
E e′ (R−R4) T 2b

2(n+ k−2) c R5 E R6 p′ P d e′ (R− (R5 ∪R6)) T 3a

2(n+ k−2) d
←−
E R7 p′ P c e′ (R−R7) T 3b

i ∈ {1, . . . ,m} n+ k−3 c R8 (P−{pi}) pi ei (E −{ei}) e′ d (R− (R8)) T 4a

i ∈ {1, . . . ,m} n+ k−3 d (
←−−−−−
E −{ei}) R9 pi ei (

←−−−−−
P−{pi}) p′ c e′ (R−R9) T 4b

1 p′ P c R10 d e′ E (R−R10) T 5

Table 4.6: Voter list V in the proof of Theorem 4.13

From the preferences we can obtain the following pairwise comparisons between the candi-

dates in C− (R∪T ):

• DV (c,d) = DV (c,E) = DV (d,E) = 2n+2k+1,

• DV (c,P) = DV (d,P) = DV (c, p′) = DV (d, p′) = 2k−1,

• DV (p′,P) = 2n+2k+4(n+ k−2)+1,

• DV (p′,e′) = 2m(n+ k−3)+6n+6k−3,

• DV (pi, p j)

{
>

≤
0 if i < j
0 if i ≥ j, DV (pi,e j) =

{
−2n−2k+5 if i 	= j
−1 if i = j.

The voting tree without the dummy candidates is shown in Figure 4.3.

From the pairwise comparisons and the schedule given in Figure 4.3 we see that each ei
wins the first contest and moves on to the second level of the tree together with p′ who wins

her first pairwise comparison against e′. Candidate p′ loses against e1 in the second round, so

the subtree with the root marked by X is won by a candidate from E. This candidate, however,

loses to d in the next round, so we have the final contest between the candidates d and c, which

is won by c, the cup winner of election (C,V ).
To conclude the proof, we will show the following claim: The graph G = (A,E) has a vertex

cover of size at most k if and only if c can be prevented from being the cup winner in election

(C,V ) by conducting at most 11k swaps in the voters’ preferences.
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p′ e′ p1 e1 pi ei pm em

X d

c

Figure 4.3: Voting tree of the cup election (C − (R∪ T ),V ) without dummies in the proof of Theo-
rem 4.13

Only if: Suppose there is a vertex cover A′ ⊆ A of size k. Take the corresponding k votes of

type 1a of the form c d eh ei e j p′ ph pi p j R1 · · · for Sa = {eh,ei,e j} and Pa = {ph, pi, p j},

and change these votes to p′ c d ph eh pi ei p j e j R1 · · · . This change can be achieved by

first swapping p′ in all these k votes from position 6 to position 1, which needs 5k swaps in

total. Then, we move ph from position 7 to position 4 needing 3k swaps, then move pi from

position 8 to position 6 needing 2k swaps, and finally move p j from position 9 to position 8

needing k swaps. In total, we have 6k swaps for moving the candidates in Pa, leading to a total

number of 11k swaps, which is exactly the given limit. Let V ′ be the new list of votes after

these swaps.

Since A′ is a vertex cover, we have that for each i ∈ {1,2, . . . ,m} candidate pi is positioned

before candidate ei, leading to the new pairwise comparison DV ′(pi,ei) = 1. Thus all pi win

their first pairwise comparison and move on to the second round. The relations between p′ and

e′ and between p′ and the candidates in P are not affected by these changes, so we have that

p′ is assigned to the vertex marked by X in the voting tree shown in Figure 4.3. Candidate p′
is now positioned better than c and d in k votes and thus beats both candidates, which makes

her the new cup winner of the changed election.

If: Suppose that c can be prevented from being the cup winner by conducting at most 11k
swaps in the voters’ preferences. For this assumption to hold, there has to be a candidate

beating c in the final contest and we will, step by step, check for each candidate if there exists

a legal swap sequence that allows her to be this new winner.

We begin with candidate d and recall that in the unchanged election DV (c,d) = 2n+2k+1

holds. So for d to beat c we have to find at least n+ k+1 votes in which c is positioned better

than d and change their positions without exceeding the swap limit of 11k. The only votes in

which c is positioned better than d without being separated by (too many) dummy candidates

from R are those of type 1a. Since there are only n of these votes in total, d cannot be the

candidate preventing c from winning.

With the same argument we can rule out the candidates in E and also candidate e′, which

leaves the candidates in P and p′. Only the votes of type 1a allow reasonable swaps within the

swap limit and due to the position of the dummy candidates in R1, only p′ and those candidates

in Pa can be moved.
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For both the candidates in P and candidate p′ it holds that in order to beat c, the candidate

at hand has to be moved to a better position than c in at least k of these n votes. Due to the

definition of Sa and Pa each pi ∈ E is contained in Pa and Pb for exactly two vertices a,b ∈ A
in the graph. Thus, unless k ≤ 2, we cannot find k votes in which we can move pi to a better

position than c. This implies that the candidate that has to finally beat c has to be p′. To

achieve this, three conditions have to be fulfilled:

(i) p′ has to be the winner of the subelection associated to the subtree with root X ,

(ii) p′ has to strictly beat d, and

(iii) p′ has to strictly beat c.

Condition (i) can be achieved only by assuring that each pi wins her pairwise contest against

the corresponding ei. For this to hold, each pi has to be positioned better than ei in exactly

one vote and this vote can only be of type 1a. Without loss of generality, we assume that we

first change the positions of the (ei, pi) pairs and then move p′ up. (For the reverse we can find

a similar argument.) Thus we have that p′ is positioned between the candidates in Sa and Pa.

The cheapest way to position every pi better than ei (we mean cheap here with respect to the

number of needed swaps) is to change the position of each (ei, pi) pair in one vote: The first

change needs 4 swaps, the second one only 3, and the last one only 2, which gives a total of 9

swaps per vote. The corresponding votes would then be of the form c d p′ ph eh pi ei p j e j · · ·
for Sa = {eh,ei,e j} and Pa = {ph, pi, p j}. In each of these votes, only two further swaps are

needed to move p′ in front of both c and d, leading to a total number of 11 swaps per vote.

Note that to not exceed the swap limit of 11k, p′ must be moved to the first position only in

those votes where the (ei, pi) pairs have already been changed. Finally, for p′ to beat c and

d (and thus fulfilling conditions (ii) and (iii)), there have to be at least k votes that have been

changed in this way and to ensure that every pi wins her first contest, these k votes have to

correspond to a vertex cover in G. �

With the next two results we are taking a first step towards characterizing the complexity of

E -SWMOV in elections held under positional scoring rules. We show that for certain scoring

vectors �α , the corresponding E -SWMOV problem is solvable in deterministic polynomial

time. To prove our claims, we will distinguish whether in the given �α election the set of

winners contains several candidates or whether the election is won uniquely.

In the latter case we will make use of Corollary 4.7 from Section 4.1.3 by using an algorithm

due to to Shiryaev et al. [SYE13, Theorem 4.1] that solves the destructive unweighted swap

bribery problem with unit costs in the unique-winner model for positional scoring rules in

deterministic polynomial time. In this context, �α-UDUSB-UC((C,V ), �,c) =“YES” denotes

the case that the just mentioned algorithm identifies the instance ((C,V ), �,c) as a yes instance,

that is, the given candidate c can be prevented from being the unique �α winner in (C,V ) by

conducting at most � swaps.

If, however, the given �α election (C,V ) has more than one candidate in the set of winners

W ⊆C, we can distinguish the following three obvious options on how W can be changed:

(O1) Make at least one candidate c ∈W (but not all) gain at least one point.

(O2) Make at least one candidate c ∈W (but not all) lose at least one point.
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(O3) Make at least one candidate d 	∈W gain points such that afterwards d ∈W holds.

Having this in mind, we now come to our first result regarding the family of strictly de-

creasing scoring vectors. Note that, amongst others, the famous Borda rule is contained in this

family.

Theorem 4.14 For �α-elections with �α = (α1,α2, . . . ,αm) and αi > α j for all i < j, the prob-
lem E -SWMOV is in P.

Proof. Let (C,V, �) be the given instance and denote the winner set of the election by W .

Algorithm 4.1 determines in deterministic polynomial time whether the given instance is a yes

instance or not.

Algorithm 4.1: Algorithm for SWMOV for strictly decreasing �α
input : C set of candidates

V list of voters

number of votes that may be changed

output: “YES” if (C,V, �) ∈ �α-SWMOV

“NO” if (C,V, �) 	∈ �α-SWMOV

1 let W be the set of �α winners in (C,V );
2 if W = {c} then
3 if �α-UDUSB-UC((C,V ), �,c) =“YES” then
4 return “YES”;

5 return “NO”;

6 if � > 0 then
7 return “YES”;

Clearly, we have that Algorithm 4.1 runs in polynomial time since the used algorithm in

line 3 does. Furthermore it is clear that the algorithm works correctly for the case of W = {c}
(lines 2–5).

It remains to show that if ‖W‖ ≥ 2 and � > 0, the winner set can always be changed by

conducting at most � swaps. To do so, we show that in this case SWMOV(�α,(C,V )) = 1

always holds: If ‖W‖ ≥ 2, we have at least two winners with exactly the same number of

points. We have the three options (O1) – (O3) to change W and we can easily achieve one

of the options by taking one arbitrary c ∈ W and an arbitrary vote v ∈ V and swap c in this

vote with either her right or left neighbor. In the former case c loses at least one point and c’s

neighbor d gains a least one point because of the assumption that αi > α j for i < j. If d 	∈W ,

then the scores of the other winning candidates do not change due to the swap and we have

the new winner set W ′ =W −{c}. If d ∈W then d is the new unique winner, thus the winning

set changes to W ′ = {d}. If c is swapped with her left neighbor e, then c gains at least one

point and e loses at least one point during the swap. Thus c has at least one point more than all

the other candidates in W and is the new unique winner. In both cases we could successfully

change the winner set by conducting only one swap. This concludes the proof. �
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The set of strictly decreasing scoring vectors covers a large set of positional scoring rules

but by far not all; the family of k-approval voting, for example, does not fit this description as

for these particular scoring vectors only for i= k and j = k+1 the condition αi >α j does hold.

For k-approval elections we will show separately that E -SWMOV ∈ P extending the approach

used in the proof of Theorem 4.14. Besides the result from Shiryaev et al. [SYE13] we will,

if needed, also use an algorithm for constructive shift bribery in k-approval elections due

to Elkind et al. [EFS09, Theorem 4.2]. We will similarly denote the usage of this algorithm:

k-AV-CSHB((C,V ), �,d) =“YES” means that candidate d can be made a k-approval winner

of (C,V ) by performing at most � shifts only involving d. For a formal definition of the shift

bribery problem and further related work, we refer the reader to Section 3.3.1. Let us come to

our result.

Theorem 4.15 In k-approval elections with m candidates, the problem E -SWMOV is in P for
all 1 ≤ k ≤m.

Proof. Let (C,V, �) be the given instance and denote the winner set of the election by W and

let m= ‖C‖.

If k = m we have that all candidates are winners with a score of ‖V‖ which cannot be

changed by any sequence of swaps. Thus m-AV-SWMOV = /0.

Assume now that 1 ≤ k <m. Algorithm 4.2 solves the problem in deterministic polynomial

time as the used algorithms solving �α-UDUSB-UC and k-AV-CSHB are P-algorithms.

For the proof of correctness we start with the case W = {c} for a candidate c ∈C. We can

use the polynomial-time algorithm proposed by Shiryaev et al. [SYE13, Theorem 4.1] which

solves the destructive swap bribery problem for positional scoring rules in the unique-winner

model (lines 2–5).

If ‖W‖ ≥ 2, the algorithm proceeds in line 6. In this first for-loop we try to change W
according to (O1) with at most � swaps. If none of the winning candidates can gain even

one point without exceeding the number of swaps, we have that for each c ∈W all voters not

contributing to c’s score rank c on a position strictly worse than k+ �. So for each c ∈W the

set of voters is divided into those voters ranking c in their first k positions and those ranking c
on positions k+ �+1 to m.

With this in mind we try to change the winner set according to (O2) in the second for-loop

starting in line 10. Note that because we already tested option (O1), it is not possible that

any other candidate c 	= d ∈ W gains a point due to the swaps performed in this loop since

otherwise the algorithm would have returned “YES” already in the first loop for this candidate

d. So we have that if the algorithm does not return “YES” in this second loop, the voters

contributing to the winning candidates’ scores position all of them in their top k− � positions

while the remaining positions have to be filled with candidates not in W .

Altogether we can conclude that if we reach line 14 of the algorithm, the scores of the

winning candidates cannot be changed by conducting at most � swaps. This leaves only op-

tion (O3): Trying to make a former non-winning candidate a winner, but in this case (and this

is crucial) with the restriction that the scores of the winners cannot be changed. This restriction

implies that with respect to our goal, namely making d 	∈W a winner, a swap is optimal if d’s

117



4 The Margin of Victory and Destructive Bribery

Algorithm 4.2: Algorithm for SWMOV in k-AV with 1 ≤ k <m

input : C set of candidates

V list of voters

number of votes that may be changed

output: “YES” if (C,V, �) ∈ k-AV-SWMOV

“NO” if (C,V, �) 	∈ k-AV-SWMOV

1 let W be the set of k-AV winners in (C,V );
2 if W = {c} then
3 if �α-UDUSB-UC((C,V ), �,c) =“YES” then
4 return “YES”;

5 return “NO”;

6 foreach c ∈W do
7 foreach v ∈V do
8 if c gains at least one point by swapping her � positions forward in v then
9 return “YES”;

10 foreach c ∈W do
11 foreach v ∈V do
12 if d looses one point by swapping her � positions backward in v then
13 return “YES”;

14 foreach d 	∈W do
15 if k-AV-CSHB((C,V ), �,d) = “YES” then
16 return “YES”;

17 return “NO”;

position is improved due to the swap. Thus an optimal approach of making d a winner would

be to find a sequence of shifts all involving d. Thus, we can use the P-algorithm introduced

by Elkind et al. [EFS09, Theorem 4.2] for CONSTRUCTIVE SHIFT BRIBERY in k-approval

elections with the budget �, unit prices for each shift, and the designated candidate d, which

the algorithm does in lines 14–16. If this approach does not change the winner set, then the

algorithm returns “NO” as the given instance is indeed a no instance. �
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4.5 Concluding Remarks and Future Work
We have studied three variants of the margin of victory for a selection of important voting

rules and discussed their connections to the closely related setting of destructive bribery.

For the standard variant we have shown that for irresolute voting rules, the standard MAR-

GIN OF VICTORY (E -MOV) problem generalizes destructive unweighted and unpriced bribery

in the unique-winner model. Furthermore we have seen that for the cup rule, E -MOV is

NP-hard, while in fallback elections the problem is tractable. The result for cup elections is

obtained by proving destructive unweighted bribery to be NP-complete.

Extending this study, we introduced the EXACT MARGIN OF VICTORY problem and es-

tablished DP-completeness for cup, the family of Copelandα , and the Schulze rule. Another

variant that we introduced is the so-called SWAP MARGIN OF VICTORY (E -SWMOV) prob-

lem which we studied for the cup rule and certain positional scoring rules. Analogously to

the standard variant, we show that the swap margin of victory problem can be reduced to de-

structive swap bribery with unit costs in the unique-winner case. By adapting the proof of

destructive bribery in cup elections to the model of swap bribery, we obtain NP-completeness

for the cup rule, which in turns gives us NP-completeness of E -SWMOV in cup elections. For

k-approval voting and positional scoring rules with strictly decreasing scoring vectors, how-

ever, we provide tractability results. For future work we suggest to complete this study of

E -SWMOV in positional scoring rule, fallback and Bucklin voting as well as for Schulze and

Copelandα elections and thus fill in the missing results in Table 4.1.

In the context of the margin of victory, tractability of the corresponding decision problem

is desired, for all variants we considered here. Thus, especially for the intractable problems

found in this chapter, a further analysis with respect to their approximability is a promising

and interesting direction for future work.
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5 The Possible Winner Problem with
Uncertain Weights

In political elections we assume that the voters fill in their ballots exactly as the voting system

dictates, otherwise the ballots are declared void. For most preference-based voting systems

this means that each voter has to provide a complete ranking of the running candidates for her

ballot to be valid. Aside from the context of political elections, there are situations in which

incomplete preferences are unavoidable or even desired: For instance elections with a large

set of candidates making it infeasible for the voters to provide a complete ranking or candidate

sets that change while parts of the electorate already cast their votes.

Given an election with incomplete preferences a natural question is whether there exists

an extension of the partial orders to linear orders such that a certain candidate is a winner of

the election. Such a candidate is called a possible winner. This notion was introduced in the

work of Konczak and Lang [KL05], who also defined the necessary winner of an incomplete

election to be a candidate who is a winner for every possible extension of the votes to linear

orders.

The idea of possible and necessary winners can be applied to any conceivable variant of un-

certainty in elections: The list of running candidates might be incomplete when the first votes

are cast [CLM+12], it can be uncertain which candidates finally run or which voters actually

cast their votes [WF12], or the voting system itself might not be determined when the election

is held [BRR11].1 Notions as the set of possible or necessary winners for a given election

can be useful for related problems such as vote elicitation, where the aim is to determine the

winner set of an election before all preferences are known, see [CL02, PRV+11]. For a com-

prehensive overview of related research regarding incomplete information in elections, see for

example the book chapter by Boutilier and Rosenschein [BR16].

Considering the setting of weighted elections, we are interested in the scenario where not

the voters’ preferences are incomplete, but their assigned weights are not known beforehand.

We call this problem POSSIBLE WINNER WITH UNCERTAIN WEIGHTS (PWUW) and we

dedicate this chapter to a computational complexity-theoretic analysis of this problem and its

defined variants.

Weighted elections can be found in many real-world examples such as stockholder meetings

or committees consisting of representatives of different groups. While in stockholder meetings

the weights are predetermined by the share each member holds, the representatives’ weights in

committees can be defined with respect to various criteria: the size or the importance the group

1Note that these chosen examples do not fully capture the variety of related problems; see Section 5.1 for a

comprehensive overview of studied variants.
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that is represented, or other aspects such as expertise or seniority. The chair of a committee

(or any instance with similar authorization) could change these criteria to alter the weights

of the participants. This leads to the question whether it is possible to define the criteria in

order to ensure, for example, that a certain long-term policy will be pursued by the committee,

assuming that the preferences of the representatives are known. This is exactly the scenario

we model with our newly defined PWUW problem.

Organization of this Chapter In Section 5.1 we present related work by surveying known

results for the original variant of the possible and necessary winner problem for some chosen

voting rules. In addition, we shortly name other variants of these problems that have been

studied so far. In Section 5.2 we introduce the new variant POSSIBLE WINNERS WITH UN-

CERTAIN WEIGHTS and its variations, elaborate on some interesting properties and show re-

lations to other voting problems. Our results are presented in Section 5.3, where we provide

a detailed discussion of the case of nonnegative rational weights and shortly survey results

for the case of natural weights. We conclude the chapter with a summary of our findings and

giving pointers to future work.

5.1 The Standard Possible Winner Problem and Related
Work

The standard possible and necessary winner problems were formally introduced by Konczak

and Lang [KL05] and they defined the former in the following manner.

E -POSSIBLE WINNER (E -PW)

Given: An E election (C,V ) with possibly incomplete preferences and a designated candidate c ∈C.

Question: Can the partial votes in V be extended to linear orders such that c is a winner of the resulting

election?

Analogously, the so-called necessary winner problem can be defined.

E -NECESSARY WINNER (E -NW)

Given: An E election (C,V ) with possibly incomplete preferences and a designated candidate c ∈C.

Question: Is c a winner for all possible extensions of V to linear orders?

Let E -UPW and E -UNW denote the problems where unique winners are considered. Note

that the addition possibly incomplete allows the two special cases of V consisting of (1) only

partial preferences or (2) only linear orders. Looking closely at this formal definition, we

see that the E -PW problem is a generalization of the CONSTRUCTIVE COALITIONAL UN-

WEIGHTED MANIPULATION problem, see Section 3.1.1 for the formal definition of manipu-

lation. We state this relation in Proposition 3.39 on page 82 which is due to Xia and Conitzer
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[XC11b]. Furthermore, the problem of CONSTRUCTIVE UNWEIGHTED SWAP BRIBERY gen-

eralizes the E -PW problem as we have stated in Proposition 3.38 on page 82. This result is

shown in [EFS09]. Shiryaev et al. [SYE13] show that the destructive case of unweighted swap

bribery is a generalization of the complement of the E -NW problem, see Proposition 3.40

on page 82. These Propositions can be used to establish lower bounds or upper bounds for

the E -PW and E -NW problem from known results for other voting systems (an clearly, also

the other way around). For a comprehensive overview of such connections, we refer to Sec-

tion 2.4, and especially to Figure 2.6 on page 24.

Table 5.1 provides an overview of known complexity results for the E -PW and E -NW

problem for those voting system this thesis focuses on.

Voting System Possible Winner Necessary Winner

veto & plurality P 1

P 2

remaining positional scoring rules NP-complete 3

Bucklin NP-complete 4 P 4

Copelandα
NP-complete 2 coNP-complete 2

cup

fallback
? ?

Schulze

1 due to [BD10]
2 due to [XC11b]

3 due to [BD10, BR12, XC11b]
4 due to [XC11b] for simplified BV

Table 5.1: Selection of known complexity results for the standard possible and neces-
sary winner problem for chosen voting systems

Xia and Conitzer [XC11b] continue the study initiated by Konczak and Lang [KL05] and

provide results for many commonly studied voting systems such as Copeland, maximin, ranked

pairs, and simplified Bucklin. Betzler and Dorn [BD10] took a first step to fully characterize

the complexity of the E -PW problem for pure positional scoring rules. Their study was con-

tinued in the work of Baumeister and Rothe [BR12] who completed the dichotomy result

that can be derived from Table 5.1. Barrot et al. [BGL+13] introduce the setting of possible

and necessary winners and winner sets for approval elections and study inter alia the com-

plexity of verifying whether a given set is a possible/necessary approval winner set. Lang

et al. [LPR+12] and Pini et al. [PRV+11] expand the above study to elections held under vot-

ing trees and other multi round elections. Betzler et al. [BHN09] and Betzler [Bet10] study

the parameterized complexity of the possible winner problem, where the latter work focuses

on k-approval elections. This study is expanded by the recent work of Dey et al. [DMN15].

Bachrach et al. [BBF10] analyze the complexity of the counting version of the E -PW prob-

lem and furthermore provide a randomized approximation algorithm for solving the standard

manipulation and possible winner problem for voting rules with polynomial-time winner de-

termination procedures.
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Certain domain restrictions such as single-peaked preferences and truncated ballots are con-

sidered in the work of Walsh [Wal07] and Baumeister et al. [BFL+12], while the complexity

of computing the set of possible/necessary winners is addressed by Pini et al. [PRV+11] and

more recently by Gaspers et al. [GNN+14].

Based on the initial definition of the possible winner problem, a variety of related prob-

lems have been introduced: Elections in which the set of candidates changes while the voters

cast their votes have been studied by Chevaleyre et al. [CLM+10]. Their approach has been

followed up in the work of Xia et al. [XLM11] (see also [CLM+12]) and of Baumeister et

al. [BRR11], while the latter study also comprises the setting, where the uncertainty lies in

the voting system. Possible and necessary winners in the context of parliamentary voting are

studied by Bredereck et al. [BCN+15].

Probabilistic approaches to determine possible winners from incomplete preferences have

been taken, for example, by Xia and Conitzer [XC11a] and Hazon et al. [HAK+12].

The book chapter by Boutilier and Rosenschein [BR16] provides a diversified survey on

problems studied in the wider context of voting with incomplete information.

5.2 The Possible Winner Problem with Uncertain
Weights – Basic Definitions

We introduce a new variant of the possible winner problem in weighted elections in which

we do not assume that the uncertainty lies in the voters’ preferences, but in the weights that

are assigned to the voters. We introduce several variants of the problem allowing integer or

rational weights and distinguishing between several restrictions on the assignments of weights.

For a given voting system E and F ∈ {Q≥0,N0} we define the unrestricted variant of our

problem as follows.

E -POSSIBLE-WINNER-WITH-UNCERTAIN-WEIGHTS-F (E -PWUW-F)

Given: An E election (C,V0 ∪V1), V0 ∩V1 = /0, where the weights of the voters in V0 are not

specified yet and weight zero is allowed for them, yet all voters in V1 have weight one,

and a designated candidate c ∈C.

Question: Is there an assignment of weights wi ∈ F to the votes vi in V0 such that c is an E winner

of election (C,V0 ∪V1) when vi’s weight is wi for 1 ≤ i ≤ ‖V0‖?

We consider in total three restrictions of E -PWUW-F, where the third combines the first

two:

• In E -PWUW-RW-F, an E -PWUW-F instance and regions (i.e., intervals) Ri ⊆ F, 1 ≤
i ≤ |V0|, are given, and the question is the same as in E -PWUW-F, except that each

weight wi must be chosen from Ri in addition.

• In E -PWUW-BW-F, an E -PWUW-F instance and a positive bound B ∈ F is given,

and the question is the same as in E -PWUW-F, except that ∑|V0|
i=1 wi ≤ B must hold in

addition (i.e., the total weight that can be assigned must be bounded by B).
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• In E -PWUW-BW-RW-F, an E -PWUW-BW-F instance and regions (i.e., intervals) Ri ⊆
F, 1 ≤ i ≤ |V0|, are given, and the question is the same as in E -PWUW-BW-F, except

that each weight wi must be chosen from Ri in addition.

Our problems model elections in which the list of voters is partitioned into those voters

in V1 each having unit weight and the voters in V0 whose weights are not specified yet. The

ballots of all voters are known and the set of candidates is fixed. Instances with V0 = /0 are

allowed and for these inputs our problem simplifies to the winner problem for E in unweighted

elections. Taking V1 into the instances is motivated by the fact that the original PW problem

also allows that complete preferences are part of an input. Setting their weight to 1, however, is

an intended restriction that simplifies our proofs. By changing the question to whether c can be

made the unique winner of the resulting election, we obtain the problem for the unique-winner
model.

We summarize some obvious relations between the just defined variants in the following

observation.

Observation 5.1 For a fixed voting system E the following trivial reductions hold.

1. PWUW-RW-Q≥0 ≤p
m PWUW-BW-RW-Q≥0,

2. PWUW-RW-N0 ≤p
m PWUW-BW-RW-N0,

3. PWUW-BW-Q≥0 ≤p
m PWUW-BW-RW-Q≥0, and

4. PWUW-BW-N0 ≤p
m PWUW-BW-RW-N0.

We stated that the standard E -PW problem generalizes the manipulation problem when a

group of manipulators tries to alter an election’s outcome. Analogously, the problem vari-

ant E -PWUW-BW-RW-N0 can be seen as a generalization of E -CONSTRUCTIVE CONTROL

BY ADDING VOTERS (E -CCAV); recall Section 3.2.1 for its formal definition and further

background.

Proposition 5.2 Let E be a voting system. Then E -CCAV ≤p
m E -PWUW-BW-RW-N0 holds.

If voters are represented succinctly, also E -PWUW-BW-RW-N0 ≤p
m E -CCAV holds.

Proof Sketch. We only shortly describe the mapping of the instances and omit the rest of

the proof.

For the first claim let ((C,V ∪V ′),c,k) be a given instance of E -CCAV, where V contains

the registered and V ′ contains the unregistered voters. Define the E -PWUW-BW-RW-N0 in-

stance to be V0 =V ′, V1 =V , Ri = {0,1} for each vi ∈V0, and B = k.

The second claim assumes succinct representation of the voters, which allows to construct

an E -CCAV directly from an E -PWUW-BW-RW-N0 instance, where V ′ contains the ballots

corresponding to the voters in V0 and the number of occurrences of each ballot is the maximal

weight the voter in V0 can be assigned to. The remaining parts of the instance are defined as

in the reduction establishing the first claim. �
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5.3 Complexity of the Possible Winner Problem with
Uncertain Weights

Finally, we present in this section the results that were published in [BRR+12]. For the variants

with integer weights, we will survey the obtained results in Section 5.3.1, while the proofs for

rational weights are presented in detail in Section 5.3.2.

5.3.1 Complexity for Integer Weights
We start with those results from [BRR+12] covering the cases in which the weights can be

nonnegative integers, which are shown in Table 5.2. We, again, present known results for all

those voting systems studied throughout this thesis but we will not present the proofs in detail.

Voting Rule PWUW-N0 PWUW-BW-N0 PWUW-RW-N0 PWUW-BW-RW-N0

Bucklin voting

NP-c.
NP-c.

NP-c.
NP-c.

fallback voting

Copelandα

k-AV, k ≥ 4

P Pveto
P P

k-AV, k ∈ {1,2}
3-AV

?
?

cup

? ?scoring rules

Schulze NP-c. 1

1 follows from Proposition 5.2 and the result for CCAV in [PX12]. Key: NP-c. = NP-complete

Table 5.2: Overview of results for the complexity of the possible winner problem with un-
certain weights when the weights can be positive integers; if not stated otherwise, the results
are due to [BRR+12]

5.3.2 Complexity for Rational Weights
In this section we present our results for the possible winner problem with uncertain weights

when the weights can be rational numbers: all four variants of this problem are solvable in

deterministic polynomial time for fallback voting, Bucklin voting, and the complete family of

positional scoring rules.

We obtain our results from the central idea to formulate the given PWUW problem as

a linear program with rational variables. The solution of the linear program gives us the

weights that have to be assigned to achieve the given goal. We then make use of the fact that

linear programs can be solved efficiently if the values are rational numbers, as has been shown

by Hačijan [Hač79]. Note that this approach is not applicable to the case of integer weights,
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as linear programs with integer values cannot be solved efficiently unless P turns out to equal

NP. Furthermore, a voting system has to fulfill certain properties for being expressible by a

set of linear inequalities, which we will discuss in this section. We state our central idea in

Theorem 5.4 and present the proofs tailored to the analyzed voting systems in the theorems

listed in Table 5.3.

Voting Rule Complexity Reference

positional scoring rules P Theorems 5.4 and 5.5

Bucklin voting P Theorems 5.4 and 5.6

fallback voting P Theorems 5.4 and 5.7

Copelandα

? –Schulze

cup

Table 5.3: Overview of results for the complexity of the possible winner problem with uncertain
weights when the weights can be nonnegative rational numbers

The standard matrix-vector form of a linear program is usually defined as a minimization

program. The maximization variant of the problem is then defined to be the dual of the corre-

sponding linear program. In our setting we are only interested in finding maximal solutions,

therefore we will slightly abuse notation and define a linear program directly in the maximiza-

tion variant. For more background on different variants of definitions and notations for linear

programs we refer the reader to the textbook by Dantzig and Thapa [DT97].

Definition 5.3 (Linear Program) We define a linear program in the matrix-vector standard
form to be a tuple (�d,�x,A,�b) with �d,�x ∈Qs×1,�b ∈Qr×1, and A ∈Qr×s, where�x is the vector of
the variables, �dT ·�x is the objective function we want to maximize,2 and A,�b are the constraints

that have to be fulfilled while maximizing the objective function. Shortly, a linear program can
be defined as:

Maximize �dT ·�x
object to A ·�x ≤�b.

For the sake of readability and to avoid overly formalized argumentations, we will present

the constraints for the linear programs in the following proofs as sets of inequalities rather

than explicitly defining their matrix representation.

To formulate the E -PWUW problem as a linear program for a given voting system E , we

are in need of a tool to represent E in the linear program, as well. One way to do so is to

represent the winner determination of the voting system as a system of linear inequalities.

Chamberlin and Cohen [CC78] (see also the work of Faliszewski et al. [FHH11] and Dorn

and Schlotter [DS12]) provide such a representation for various voting systems in unweighted

elections.

2Note that usually the coefficients of the objective function are denoted by�c, but to avoid confusion with the

designated candidate c in our voting problem, we denote the coefficients with �d.
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5 The Possible Winner Problem with Uncertain Weights

To cover the case of weighted elections, the inequalities describing the winner determination

have to incorporate the voters’ weights and have further to be of a form that allows us to define

the weights as the variables of the linear program. This is the case for voting systems having

winner determination procedures that, firstly, chose the winners of the election based on scores

and, secondly, these scores are independent of the voters’ weights in the following sense: We

call a scoring function weight independent if a candidate’s score in a weighted election does

not differ from the score she would get in a corresponding unweighted election except that in

the former, her score is a weighted sum while in the latter it is a plain sum.

The Copelandα scores, for example, are not weight-independent, but the scores computed

in fallback and Bucklin elections, as well as in elections held under positional scoring rules

clearly are.

We now come to the central theorem of this chapter. In our setting, we have given an E
election (C,V ) with m candidates in C and n voters V =V0∪V1, where ni = ‖Vi‖ for i ∈ {0,1}
and V0 = {v1,v2, . . . ,vn0

}, V1 = {vn0+1, . . . ,vn}. The voters in V1 all have unit weight. The

goal is to decide whether there is an assignment of the yet undefined weights x1,x2, . . . ,xn0

of the voters in V0 such that the designated candidate c is a winner of the resulting election.

Furthermore we have given a bound B ∈Q≥0, and regions Ri ⊆Q≥0, 1 ≤ i ≤ n0.

Recall that by definition, we allow to assign weights of zero to the voters in V0, but we will

seek to find solutions containing positive weights (we will go into detail on how this can be

achieved in the proof below).

Theorem 5.4 Let E be a voting rule with a weight-independent scoring function that can
be described by a system A of polynomially many linear inequalities. Then E -PWUW-Q≥0,
E -PWUW-BW-Q≥0, E -PWUW-RW-Q≥0, and E -PWUW-BW-RW-Q≥0 are each in P.

Proof. Let x1,x2, . . . ,xn be the variables of the system A of polynomial many linear inequal-

ities that describes E for an E election with n voters.

We state a linear program for the problem variant E -PWUW-BW-RW-Q≥0 and to this end

let an instance of this problem be given: An election (C,V0 ∪V1) with as yet unspecified

weights in V0, a designated candidate c ∈C, a bound B ∈Q≥0, and regions Ri ⊆Q≥0, 1 ≤ i ≤
n0.

Based on this instance we construct the linear program with variables�x = (x1,x2, . . . ,xn0
,χ)

for xi,χ ∈ Q, and we maximize the objective function �dT ·�x with �d = (0,0, . . . ,0,1) and the

following set of constraints:

A (5.1)

xi −χ ≥ 0 for 1 ≤ i ≤ n0 (5.2)

χ ≥ 0 (5.3)
n0

∑
i=1

xi ≤ B (5.4)

xi ≤ ri for 1 ≤ i ≤ n0 (5.5)

−xi ≤−�i for 1 ≤ i ≤ n0 (5.6)

128



5.3 Complexity of the Possible Winner Problem with Uncertain Weights

Constraint (5.1) gives the linear inequalities that have to be fulfilled for the designated can-

didate c to win under E . This condition ensures that a solution gives an assignment of the

weights such that the designated candidate indeed is a winner of the resulting election. By

maximizing the additional variable χ in the objective function we try to find solutions where

the weights are positive, this is accomplished by constraint (5.2). Constraint (5.4) implements

our given upper bound B for the total weight to be assigned and constraints (5.5) and (5.6)

implement our given ranges Ri = [�i,ri]⊆Q for each weight.

To obtain a linear program for the remaining variants of our problem, it suffices to drop

certain constraints that are not needed for the variant at hand. In more detail: Omit constraint

(5.4) for E -PWUW-RW-Q≥0, omit constraints (5.5) and (5.6) for E -PWUW-BW-Q≥0, and

finally omit constraints (5.4), (5.5), and (5.6) for E -PWUW-Q≥0.

Obviously, the designated candidate c is a possible winner of the given election if and only

if the above linear program has a feasible solution. The fact that a solution�x with xi ∈Q for a

linear program with polynomial bounded constraints can be found in deterministic polynomial

time completes the proof. �

We now show the results stated in Table 5.3 by explicitly stating the systems of linear

inequalities that are needed to describe the voting system at hand (recall Section 2.3 for the

definitions of the voting systems) and then applying Theorem 5.4. For the following proofs we

assume that the parameters of the E -PWUW-BW-RW-Q≥0 problem are given as stated before

Theorem 5.4.

We start with the result for positional scoring rules defined by a scoring vector �α .

Theorem 5.5 For each positional scoring rule with scoring vector �α , each of the problems
�α-PWUW-Q≥0, �α-PWUW-BW-Q≥0, �α-PWUW-RW-Q≥0, and �α-PWUW-BW-RW-Q≥0 is
in P in both winner models.

Proof. We are given an election with m different candidates in C, where c ∈C is the distin-

guished candidate, and the scoring vector is �α = (α1,α2, . . . ,αm). For each candidate c ∈C in

the given election, we denote by ρ0
i (c) the position of c in the preference of voter vi in V0 for

1 ≤ i ≤ n0. Analogously, ρ1
j (c) denotes the position of candidate c in the preference of voter

v j in V1 for (n0 + 1) ≤ j ≤ n. Recall that αρ0
i (c)

denotes the number of points c gets for this

position according to the scoring vector �α .

Let SV1
(c) denote the number of points candidate c gains from the voters in V1 (recall that

those have all weight one). Then the distinguished candidate c is a winner if and only if for all

candidates c′ ∈C with c′ 	= c, we have

SV1
(c′)+

n0

∑
i=1

xiαρ0
i (c

′) ≤ SV1
(c)+

n0

∑
i=1

xiαρ0
i (c)

,

where x1,x2, . . . ,xn0
∈Q are the weights that will be assigned to the voters in V0. Thus, the

constraints ensuring that the designated candidate is a winner of the resulting election are fully

described by the above inequality.
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5 The Possible Winner Problem with Uncertain Weights

With this, the linear program for the �α-PWUW-BW-RW-Q≥0 problem can be defined as

follows: The variables are�x= (x1,x2, . . . ,xn0
,χ) with xi,χ ∈Q and we maximize the objective

function �d ·�xT with �d = (0,0, . . . ,0,1) while the following constraints have to be fulfilled:

−
n0

∑
i=1

(
αρ0

i (c)
−αρ0

i (c
′)

)
xi ≤ SV1

(c)−SV1
(c′) ∀ c′ 	= c (5.7)

xi −χ ≥ 0 for 1 ≤ i ≤ n0 (5.8)

χ ≥ 0 (5.9)
n0

∑
i=1

xi ≤ B (5.10)

xi ≤ ri for 1 ≤ i ≤ n0 (5.11)

−xi ≤−�i for 1 ≤ i ≤ n0 (5.12)

Here again, constraints (5.10) to (5.12) can be dropped to obtain the linear programs corre-

sponding to the other problem variants.

Since we have at most (m− 1)n0 + 3n0 + 2 = (m+ 2)n0 + 2 constraints, we can apply

Theorem 5.4 and we have shown the claim.

Note that the above linear program can be adapted to also solve the unique winner case: To

this end, the variable χ has to be added to the left-hand side of constraint (5.7) and whenever

a solution is found with χ > 0, candidate c is a possible unique winner of the election. �

For Bucklin and fallback voting we have to adapt the just presented approach to their level-

based winner determination. Intuitively speaking, we check level by level whether the given

candidate is a possible winner for the given level. We will make use of the representation

of simplified Bucklin elections due to Dorn and Schlotter [DS12] and slightly adapt it to a

representation of the unsimplified Bucklin rule.

Let (C,V ) be an election as given in our PWUW instances. We define for the candidates

c′ ∈C, each � ∈ {1,2, . . . ,m}, and each i ∈ {1,2, . . . ,n} the value

levl
i(c

′) =

{
0, c′ is not in top l positions in the preference of vi,

1, otherwise.

Thus, the level � score of a candidate c′ ∈C in the election (C,V ) is

score�(C,V )(c
′) =

n0

∑
i=1

lev�i (c
′)xi +

n

∑
i=n0+1

lev�i (c
′).

This notation will be useful in the proofs of the two upcoming theorems.

Theorem 5.6 In Bucklin elections, each of the problems PWUW-Q≥0, PWUW-BW-Q≥0,
PWUW-RW-Q≥0, and PWUW-BW-RW-Q≥0 is in P in both winner models.
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5.3 Complexity of the Possible Winner Problem with Uncertain Weights

Proof. Let an instance of Bucklin-PWUW-BW-RW-Q≥0 be given. We now define a linear

program with variables�x=(x1,x2, . . . ,x‖V0‖,χ), where xi,χ ∈Q and the objective function �d ·�x
with �d = (0,0, . . . ,1). Furthermore for � ∈ {1,2, . . . ,m} we have the following constraints:

n0

∑
i=1

lev�−1
i (c′)xi ≤ n1 +w

2
−

n

∑
i=n0+1

lev�−1
i (c′) ∀ c′ ∈C (5.13)

−
n0

∑
i=1

lev�i (c)xi +χ ≤ n1 +w
2

+
n

∑
i=n0+1

lev�i (c) (5.14)

−
n0

∑
i=1

(levl
i(c)− levl

i(c
′))xi ≤

n1

∑
i=n0+1

(levl
i(c)− levl

i(c
′)) ∀ c′ 	= c (5.15)

n0

∑
i=1

xi ≤ w (5.16)

−
n0

∑
i=1

xi ≤−w (5.17)

xi −χ ≥ 0 1 ≤ i ≤ n0 (5.18)

χ ≥ 0 (5.19)
n0

∑
i=1

xi ≤ B (5.20)

xi ≤ ri 1 ≤ i ≤ n0 (5.21)

−xi ≤−�i 1 ≤ i ≤ n0 (5.22)

Just as specified in the proof of Theorem 5.4, the constraints (5.20) to (5.22) have to be

dropped for the other cases of the PWUW-problem.

To solve the given Bucklin-PWUW instance, we solve the above linear program for each

� ∈ {1,2, . . . ,m}, starting with � = 1. That is, we check for each level � starting with level 1,

whether c is a possible level � Bucklin winner. If none of the m different linear programs has a

feasible solution, the given PWUW instance is a no-instance. Thus, there is no level on which

c can be made a Bucklin winner by setting the weights of the voters in V0 accordingly.

If on the other hand, we find a solution with χ > 0 for an �, we know that c is a possible

winner of the election. For the case when a solution with χ = 0 has been found for an �, we first

have to test whether c is really a level � Bucklin winner because in this case in the constraint

(5.14) it could hold that the left-hand side equals the right-hand side. This, however, implicates

that c does not reach a strict majority on level �. If c does not win the election for this solution,

we have to move on to the next � if possible.

For each � ∈ {1,2, . . . ,m} we have a linear program with at most 2m+3n0 +4 constraints.

Thus, by Theorem 5.4 we have shown the claim.

By adding χ to the left-hand side of (5.15) a solution with a positive value for χ means that

c is a possible unique winner for the given election. �
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Due to the close relation of fallback and Bucklin winners, we can adapt the proof for Bucklin

elections in a straightforward manner to prove the following theorem.

Theorem 5.7 In fallback elections the problems PWUW-Q≥0, PWUW-BW-Q≥0, PWUW-
RW-Q≥0, and PWUW-BW-RW-Q≥0 are all in P in both winner models.

Proof. For a given fallback-PWUW-BW-RW-Q≥0 instance we denote by �m the maximal

number of candidates any voter in V ranks, that is, �m is the maximal level on which a Bucklin

winner may exist. (We know that �m <m can hold due to disapprovals.)

Using the representation of Bucklin elections, we first test whether the designated candidate

c is a possible Bucklin winner on a level � ∈ {1,2, . . . , �m}. If not, we check whether c is

a possible fallback winner by approval. If this is neither the case, we know that the given

fallback-PWUW-BW-RW-Q≥0 is a no-instance.

We know that candidate c is a fallback winner by approval if and only if the following holds

for an assignment of the weights xi to the voters in V0:

n0

∑
i=1

lev�mi (c′)xi +
n1

∑
i=n0+1

lev�mi (c′)≤
n0

∑
i=1

lev�mi (c)xi +
n1

∑
i=n0+1

lev�mi (c)

To decide the given fallback-PWUW-BW-RW-Q≥0 instance, solve the linear program given

in the proof of Theorem 5.6 for each � ∈ {1,2, . . . , �m}. If no solution could be found in which

c is a level � Bucklin winner, we exchange constraints (5.13) to (5.17) in the linear program in

the proof of Theorem 5.6 with (5.23) below

−
n0

∑
i=1

xi(lev�mi (c)− lev�mi (c′))≤
n1

∑
i=n0+1

(lev�mi (c)− lev�mi (c′)) ∀c′ 	= c (5.23)

If this linear program also has no feasible solution, we know that the given fallback-PWUW-

BW-RW-Q≥0 is a no-instance.

Since �m ≤m by definition, we know that we have to solve at most m many linear programs

in which each program has 2m+ 3n0 + 4 constraints and additionally, if none of them had a

solution, one linear program with m+ 3n0 + 1 constraints. Thus, with Theorem 5.4 we have

shown that the claim holds.

The case of a possible unique winner can also be solved by the above approach. On levels 1

to �m the the linear program corresponding to the problem for Bucklin elections has to be

adapted as mentioned at the end of the proof for Theorem 5.6. To do so for the approval stage,

the same adjustment has to be made in constraint (5.23), namely adding the variable χ to the

left-hand side of the constraint and search for a solution with χ > 0. �
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5.4 Concluding Remarks and Future Work
We introduced a new variant of the possible winner problem in weighted elections, where the

uncertainty lies in the voters’ weights while the preferences are completely specified. Our

model distinguishes between two settings, one in which the weights can be arbitrary natural

numbers (E -PWUW-N0) and one in which we allow the weights to be nonnegative rational

numbers (E -PWUW-Q≥0). We have shown that all defined variants for rational weights can

be solved in deterministic polynomial time when the given voting rule can be described by

a system of polynomial many linear inequalities. This approach is applied to the family of

positional scoring rules, Bucklin, and fallback voting. Whether it can be extended to other

voting rules is left for future work. Particularly, the open problems displayed in Tables 5.2

and 5.3 could be a next step for further investigation: The study of the complexity of the

problem E -PWUW-N0 is incomplete for 3-approval voting, positional scoring rules as well

as for the cup and the Schulze rule. For the latter two voting systems also E -PWUW-Q≥0 has

to be investigated.

The suggested new problems are defined in the constructive case aiming at making a desig-

nated candidate win the given election by assigning the weights appropriately. A natural next

step would be to consider the destructive variants. Moreover, other restrictions regarding the

weights can be introduced, for instance, by allowing sets of intervals the weights can be cho-

sen from. Another interesting and more general variant can be considered for future research

in which in addition to the undefined weights, also incomplete preferences are allowed.
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6 Hedonic Games
“Play is the highest form of research” – Albert Einstein states what everyone sees when watch-

ing children play. Nothing compares to childlike curiosity and their enthusiasm for persever-

ingly searching for new challenges. To a lesser extent, most people keep this urge to play in

their free time, engaging in team sports, playing poker and chess, just to name a few.

But also in a broader sense we encounter situations that can be seen as games. In salary

negotiation, for example, we have two players, the employer and the employee, both strategi-

cally acting in order to maximize their gain. At a first glance, the goals of the two players seem

obvious: the employer wants to pay as little as possible while the employee certainly aims at

raising her income. There are, however, other aspects that come into play. If the employee’s

demand is too high, the employer might consider it unreasonable and may even decide to let

the employee go. The employer, on the other hand, should have in mind that payment is a form

of acknowledgment and that underpaid employees often underachieve and are less motivated.

We see that even in a simple looking setting, the players’ strategies can be rather involved.

Far more complicated scenarios can be found in the wider context of economics and mi-

croeconomics – the background on which the research area of game theory was build in the

early 40s of the last century in the seminal work of von Neumann and Morgenstern [NM44].

Based on their approach, Nash [Nas50b, Nas51, Nas50a] developed a further theory of nonco-
operative games and defined a notion of a stable solution, today known as Nash equilibrium.

In these games, the participating players choose their actions with the sole aim of maximizing

their outcome. For an overview of research areas in the field of noncooperative game theory,

we refer to the book chapter by Faliszewski et al. [FRR15], who also cover computational

aspects. Further algorithmic aspects are discussed in the work of Nisan et al. [NRT+07].

In cooperative game theory the focus lies on games in which players strategically play

together and form coalitions, see the textbook by Peleg and Sudhölter [PS03]. Such games are

called coalition formation games and the solution of such a game is a partition of the players

into disjoint coalitions such that the players’ utilities are maximized. How these utilities are

defined exactly depends on the context and there is a variety of different classes of cooperative

games. For a computational point of view on cooperative game theory, and a comprehensive

overview of different classes of games, we refer to the work of Elkind and Rothe [ER15]

and Chalkiadakis et al. [CEW11].

In this chapter we focus on coalition formation games in which the players have preferences

over the possible coalitions they can join and these preferences are purely hedonic. This

concept was introduced by Drèze and Greenberg [DG80] and it describes the situation in which

a player’s evaluation of a coalition does only depend on the players contained in the coalition,

thus inter-coalitional dependencies have no impact. The formal model that will be used in this

chapter was independently introduced in the work of Bogomolnaia and Jackson [BJ02] and
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Banerjee et al. [BKS01]. These games are particularly interesting as they combine aspects

from cooperative game theory and voting theory: The players, which can be considered the

voters, in some sense vote for the coalitions they consider worth joining by expressing their

preferences. How happy the players are with a given solution can be measured with notions

of stability. There are two major issues that are typically addressed in the context of hedonic

game when computational aspects are in the focus of interest.

(1) Preference representation: How can the players’ preferences over coalitions (which are

exponentially many in the number of players for each player) be represented in a com-

pact, thus, feasible way, while allowing the players to define their preferences as pre-

cisely and freely as possible?

(2) Verification and existence of stable solutions: Given a solution concept, how hard is it for

a given game and a given solution to verify its stability? And furthermore, how hard is

it to decide whether a stable solution exists at all for a given game?

Woeginger [Woe13b] provides a detailed survey on the study of computational aspects in

hedonic games. See also the book chapters by Elkind and Rothe [ER15] and Aziz and Savani

[AS16].

Organization of this Chapter In the first section of this chapter we give the basic defi-

nitions needed for our study: We define the concept of hedonic game and present preference

representations from the literature as well as well-known solution concepts. We conclude the

section with an overview of related work. In Section 6.2 we turn to the analysis of strictly

core-stable coalition structures in enemy-based hedonic games and wonderfully stable parti-

tions in corresponding graphs. We discuss known complexity results for the existence and

verification problems and present an approach for pinpointing the exact complexity of these

problems. In Section 6.3 we introduce a new class of hedonic games, so-called FEN-hedonic
games in which ordinal preferences are combined with the notion of friends and enemies. We

discuss how such preferences over players can be extended to preferences over coalitions and

define the concept of Borda-induced FEN-hedonic game. For these games we study the com-

putational complexity of various solution concepts. The chapter concludes with a summary of

our results and pointers to interesting future work.

6.1 Hedonic Games and Stability Concepts
Following the formal concept of Banerjee et al. [BKS01] and Bogomolnaia and Jackson

[BJ02], we define a hedonic game as follows.

Definition 6.1 (Hedonic Game) A hedonic game G is a tuple (P,�) consisting of a set of
players P = {1,2, . . . ,n} and a preference profile �= (�1,�2, . . . ,�n), where �i is the pref-
erence relation of player i ∈ P.

A coalition C of players in a game G = (P,�) is a subset of P. For each player i ∈ P we

denote with Pi the set of coalitions containing i, that is Pi = {C ⊆ P | i ∈C}. The preference
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relation �i∈ P2
i determines for a pair of coalitions containing i, which coalition is preferred

by i. For two coalitions A,B∈Pi, we say that player i weakly prefers A to B if A�i B, whereas

player i prefers A to B if A �i B, but not B �i A, and we write A �i B. If A �i B and B �i A,

player i is indifferent between A and B, which we denote with A ∼i B.

We call a partition Γ of the players in P into k ∈ N coalitions a coalition structure, denoted

by Γ = {C1,C2, . . . ,Ck}, where /0 	= Cr ⊆ P for each 1 ≤ r ≤ k,
⋃k

r=1Cr = P, and Cr ∩Cs = /0

for each 1 ≤ r 	= s ≤ k holds. We denote with Γ(i) the unique coalition player i is assigned to

in coalition structure Γ. A coalition structure of a given game is also called a solution of the

game.

6.1.1 Preference Representations
Clearly, the cardinality of Pi is exponential in the number of players for each player i, thus

expecting the players to provide a complete ranking over all possible coalitions would be

impractical.

This leads to a central problem that has been addressed by various approaches: How can the

preference of player i be given such that all coalitions are comparable while at the same time

ensuring that the representation is compact and for two given coalitions their relation with

respect to �i can be determined in deterministic polynomial time in the number of players.

We start with introducing a class of hedonic games, namely hedonic games with additively
separable preferences, which was introduced by Banerjee et al. [BKS01]. In these games the

players assign values to the other players and the relation of two coalitions from player i’s view

only depends on the values she assigns to those players that are part of the two coalitions.

Definition 6.2 (Additively Separable Hedonic Game) An additively separable hedonic game
is a tuple (P,�AS), where P = {1,2, . . . ,n} is the set of players and �AS= (�AS

1 ,�AS
2 , . . . ,�AS

n )
gives the additively separable preference relations of the players in P. Each player i ∈ P pro-
vides a value function wi : P−{i} → Z determining the value player i gains if player j 	= i
is contained in the same coalition as i. With this notion a players’ utility ui for a coalition

A ∈ Pi is defined to be ui(A) = ∑ j∈A−{i}wi( j). For two coalitions A,B ∈ Pi it holds that

• A �AS
i B if and only if ui(A)≥ ui(B),

• A �AS
i B if and only if ui(A)> ui(B), and

• A ∼AS
i B if and only if ui(A) = ui(B).

Since the values the players assign to the other players fully describe their preference rela-

tion over the coalitions they are contained in, an additively separable hedonic game can also

be given by (P,w) for w = (w1,w2, . . . ,wn).
Dimitrov et al. [DBH+06] have taken a different approach in tackling the problem of pref-

erence representation and introduced a class of hedonic games where each player segregates

the other players into friends and enemies and the relation between two coalitions depends on

the number of friends or enemies the coalitions contain. Two types of preference extension

were defined in this context: one focuses on the appreciation of friends while the other lays

the emphasis on the aversion to enemies. We will only define the latter in detail.
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Definition 6.3 (Enemy-Based Hedonic Game) An enemy-based hedonic game G = (P,�E)
consists of a player set P = {1,2, . . . ,n} and the enemy-based preference relations of the
players �E= (�E

1 ,�E
2 , . . . ,�E

n ). Each player i ∈ P has a set of friends Fi ⊆ P−{i} and a set
of enemies Ei = P− (Fi −{i}). For two coalitions A,B ∈ Pi it holds that A �E

i B if either

• ‖A∩Ei‖< ‖B∩Ei‖ or
• ‖A∩Ei‖= ‖B∩Ei‖ and ‖A∩Fi‖ ≥ ‖B∩Fi‖

holds. A �E
i B holds if A �E

i B, but not B �E
i A, and we write A ∼E

i B whenever both A �E
i B

and B �E
i A hold.

As Dimitrov et al. [DBH+06] pointed out, every enemy-based hedonic game is a special

additively separable hedonic game. We state this in the following remark.

Remark 6.4 For a given enemy-based hedonic game G = (P,�E) an equivalent additively
separable hedonic game G ′ = (P,w) can be obtained by defining the values of the players in
P to be wi( j) = 1 for j ∈ Fi, and wi( j) =−‖P‖ for j ∈ Ei.

Strictly following the definition of enemy-based hedonic games, the friendship relations

between the players do not have to be symmetric, that is, it could be possible that for two

players i, j ∈ P player i considers j to be a friend ( j ∈ Fi), but j on the other hand considers i to

be an enemy (i 	∈ Fj). Woeginger [Woe13b], however, points out that when studying stability

concepts the assumption that all friendship relations are indeed symmetric is a reasonable

assumption; we will explain this in detail in Section 6.1.2. Thus in the following, we assume

that for two players i, j ∈ P it holds that i ∈ Fj if and only if j ∈ Fi.

Assuming symmetric friendship relations furthermore allows to represent an enemy-based

hedonic game G = (P,�E) as an undirected graph G = (V,H)1 in which we have a vertex vi
for each i ∈ P and an edge {vi,v j} ∈ H if i ∈ Fj, thus two vertices in the graph are connected

by an edge if the players in the game are friends of each other. We call this graph G the

network of friends or the graph associated with the game G (or graph representation of G ),
and a coalition structure Γ in G corresponds to a partition Π of the vertices, where we denote

the set in Π containing vertex vi by Π(vi).
Note that for the sake of readability, in figures illustrating the graph representation of a

hedonic game, we will denote the vertices with 1,2, . . . ,n instead of v1,v2, . . . ,vn.

Example 6.5 We define the enemy-based hedonic game G = (P,�E) with P = {1,2,3,4,5,6}
with F1 = {2,4}, F2 = {1,3,4,5,6}, F3 = {2,5,6}, F4 = {1,2,5}, F5 = {2,3,4,6}, and finally
F6 = {2,3,5}. Graph G = (V,H) showed in Figure 6.1 is the graph representation of G .

Based on this network of friends we can see that the relation between the two coalitions
A = {1,2,4,6} and B = {1,2,5,6} drastically varies depending on the player: A �E

1 B, but
B �E

6 A, while A ∼E
2 B.

1Note that in this chapter we will denote the set of edges in a graph with H instead of E as the latter is already

used to denote the set of enemies.
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1 2 3

4 5 6

Figure 6.1: Graph representation of enemy-based hedonic game G = ({1,2,3,4,5,6},�E)

We conclude by giving a short overview of chosen encodings defined in the literature, which

will, however, not be further studied in the scope of this thesis.

Dimitrov et al. [DBH+06] introduced a second type of extending preferences when a net-

work of friends is given, where the focus lies on the appreciation of friends instead of the aver-

sion to enemies. In the so-called friend-based preference extension model, a player prefers

coalition A to another coalition B whenever there are either more friends in A than in B or, if

the number of friends is equal, A contains less enemies than B.

In fractional hedonic games, introduced by Aziz et al. [ABH14], the players assign numeri-

cal values to their co-players (similar to additively separable hedonic games introduced above)

and the value of a coalition is the average of those players’ values who are part of the coalition.

The anonymous encoding, see the work of Ballester [Bal04], expects the players to provide

a ranking solely over the sizes of coalitions, thus assuming that the identities of the players are

not important for the value of a coalition.

In the singleton encoding, which is due to Cechlárová and Romero-Medina [CR01] and

studied by Cechlárová and Hajduková [CH03, CH04], the players provide a ranking over the

players and the relation of two coalitions is derived from this ranking depending on the worst

ranked players in the two coalitions (the pessimistic extension) or the best ranked players in

the two coalitions (the optimistic extension).

In contrast to the just defined compact representations, the individually rational encoding,

see [Bal04], is an example of a representation with exponential size in the number of players.

Here, each player provides a ranking over all coalitions she considers to be acceptable, that is,

prefers to being alone.

As this list is by far not exhaustive, we refer the reader to the survey by Woeginger [Woe13b]

and the book chapters by Elkind and Rothe [ER15] and Aziz and Savani [AS16] for further

definitions and discussions.

6.1.2 Stability Concepts and Decision Problems
The solution of a given hedonic game is a partition of the players into disjoint coalitions and,

depending on the context, there might be different properties such a coalition structure should

preferably fulfill. We focus on notions of stability that aim at capturing the players’ satisfaction

with the partition the given coalition structure determines.

The considered stability concepts can be grouped in three categories: single-player devia-

tions, deviations based on comparisons of coalitions, and deviations of entire groups. We start

with two variants from the first category and the definition of perfectness.
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Definition 6.6 (Stability Concepts – Part I) Let G = (P,�) be a hedonic game and let Γ be
a coalition structure. We call Γ

• individual rational if Γ(i)�i {i} for all i ∈ P;

• perfect if for all i ∈ P we have that Γ(i)�i B for each B ∈ Pi;

• Nash-stable if for all i ∈ P we have that Γ(i)�i C∪{i} for each Γ(i) 	=C ∈ Γ∪{ /0}.

In other words, individual rationality assures each player a coalition that she prefers to being

alone. In some contexts, such coalitions, namely C ∈ Pi with C �i {i} are called acceptable
for player i, see for example the work of Darmann et al. [DEK+12], which implies that this

can be seen as type of minimum satisfaction a coalition structure should provide. A perfect

coalition structure, on the other hand, can be considered (as the name already suggests) to be an

ideal partition into coalitions since each player considers her coalition to be one of the best of

all possible coalitions she might be contained in. Needless to say, perfect coalition structures

do not always exist. Nash stability somehow lies in between the two above defined types

of stability: A Nash-stable coalition structure Γ guarantees for each player that she weakly

prefers her own coalition to the remaining coalitions given in the structure, that is, there might

be a coalition B ∈Pi player i weakly prefers to Γ(i) (which would already violate perfectness

of Γ), but as long as B−{i} 	∈ Γ, Nash stability is still fulfilled (assuming of course that for

the other players the criterion is fulfilled, as well). Furthermore, every Nash-stable coalition

structure is clearly individually rational as by definition Γ(i)�i {i}∪{ /0}= {i} has to hold.

Here it becomes obvious why only symmetric friendship relations matter in the context of

stability in enemy-based hedonic games. From the definition of enemy-based preferences it

follows that as soon as an enemy of player i is in the same coalition, player i prefers being

alone. Thus any coalition structure in which there is a coalition containing two players that

are not mutual friends, the coalition structure is not even individually rational. This justifies

the assumption of symmetric friendship relations.

Example 6.7 illustrates the just defined notions of individual rationality, perfectness, and

Nash stability in an enemy-based hedonic game.

Example 6.7 Recall the game G =(P,�E) from Example 6.5 and consider the coalition struc-
ture Γ = {{1,4},{2,3,5,6}}, which is indicated by the dashed lines in Figure 6.2 below.

1 2 3

4 5 6

Figure 6.2: Graph G corresponding to G and Γ = {{1,4},{2,3,5,6}}

The coalition structure Γ is individually rational since every player i ∈ P is in a coalition
with at least one friend, thus prefers Γ(i) to being alone in coalition {i}. It is clear that Γ is
not perfect since no player is in a coalition with all of her friends which would be the most
preferred coalition. Nash stability, on the other hand, is fulfilled: Players 1,4,3,5, and 6 have
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no incentive for moving to the respective other coalition since they would then be in a coalition
containing at least one enemy. Only for player 2 the other coalition, C 	= Γ(2) consists of only
friends. But since in {1,2,4} there are fewer friends than in {2,3,5,6}, player 2 does not
want to change coalitions.

The following stability concepts do not only consider the preference of player i wanting to

leave her coalition Γ(i) to another coalition C. They also take into account how the leaving of

player i would impact those players contained in Γ(i) and furthermore also check whether the

players of coalition C want the deviating player i to join them.

Definition 6.8 (Stability Concepts – Part II) Let G = (P,�) be a hedonic game and let Γ be
a coalition structure. We say that Γ is

• individually stable if for all i ∈ P and all C ∈ Γ∪{ /0} it either holds that Γ(i)�i C∪{i}
or there is a player j ∈C with C � j C∪{i};

• contractually individually stable if for all i ∈ P and all C ∈ Γ∪{ /0} it either holds that
Γ(i) �i C∪{i}, or there is a player j ∈ C with C � j C∪{i}, or there is a player k ∈
Γ(i)−{i} with Γ(i)�k Γ(i)−{i}.

Let Γ be a fixed coalition structure and let i ∈ N be a player who may be willing to deviate

since there is a coalition C ∈ Γ with C �i Γ(i). Then Γ is not individually stable if all players

j ∈ C want player i to join them, that is C∪{i} � j C for all j ∈ C. Contractually individual

stability also takes those players into account who are part of the coalition the deviating player

wants to leave, meaning that if there is a player i with C �i Γ(i) and the players in C want i to

join the coalition, the contractually individual stability of Γ is only violated if the players in

Γ(i) want player i to leave, thus Γ(i)−{i} �k Γ(i) has to hold for all k ∈ Γ(i)−{i}.

Example 6.9 Consider again the game G = (P,�E) from Example 6.5 and the coalition struc-
ture Γ = {{1,4},{2,5},{3,6}} displayed in Figure 6.3 by the dashed lines.

1 2 3

4 5 6

Figure 6.3: Graph G corresponding to G and Γ = {{1,4},{2,5},{3,6}}

Player 1 does not want to deviate since in all other coalitions there are enemies of his;
thus Γ(1) �E

1 C for all Γ(1) 	=C ∈ Γ. Player 2 would prefer joining {1,4} or {3,6}, and the
players in both coalitions would want 2 to join them, but 5 prefers being with 2 to being alone.
Similarly, players 3,4,5, and 6 would prefer joining at least one other coalition and the other
players would welcome the new member. But for each of the four players, the other player
that would be left alone by the deviation, would be worse off, since she considers the current
coalition to be acceptable. Thus, Γ is individually stable, but not contractually individually
stable.
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Now we turn to stability concepts that consider the deviation of entire groups of players for

which we need the notion of blocking coalitions: Let Γ be a coalition structure in a hedonic

game G = (P,�). We say that a coalition C ⊆ P blocks Γ if for all i ∈C it holds that C �i Γ(i).
If, on the other hand, for each i ∈ C we have that C �i Γ(i) and there is at least one player

j ∈C with C � j Γ( j), we say that this coalition weakly blocks Γ.

Definition 6.10 (Stability Concepts – Part III) Let G = (P,�) be a hedonic game and let Γ
be a coalition structure. We say that Γ is

1. core-stable if there is no nonempty coalition C ⊆ P that blocks Γ;

2. strictly core-stable if there is no coalition C ⊆ P that weakly blocks Γ.

Recalling the definition of enemy-based hedonic games, we can see that in such a game a

core-stable coalition structure always corresponds to a partition into cliques in the correspond-

ing graph.

Example 6.11 Consider again the game G = (P,�E) from Example 6.5 and the coalition
structures Γ1 = {{1,4},{2,3,5,6}} and Γ2 = {{1,4},{2,5},{3,6}}, illustrated in Figure 6.4a
and Figure 6.4b, respectively, by the dashed lines.

1 2 3

4 5 6

(a) Γ1 = {{1,4},{2,3,5,6}}

1 2 3

4 5 6

(b) Γ2 = {{1,4},{2,5},{3,6}}
Figure 6.4: Graph G corresponding to G and two coalition structures Γ1,Γ2

Consider coalition structure Γ1. We see that the players in coalition {2,3,5,6} form the
largest clique in G and this clique is a unique clique of size 4. Thus by definition, these players
cannot be part of a blocking coalition (which implies that it is neither a weakly blocking
coalition). This leaves the coalition {1,4} as a possibly (weakly) blocking one, but since
{1,4} ∈ Γ1, this is not the case. So Γ is core-stable and also strictly core-stable.

Turning to Γ2, we directly see with the argumentation above that {2,3,5,6} is a blocking,
and thus a weakly blocking coalition (illustrated in Figure 6.4b by the filled vertices). Γ2 is
therefore not (strictly) core-stable.

Figure 6.5 gives an overview of the relations between the just defined stability concepts.

A directed edge from stability α to stability β indicates that if a coalition structure Γ for a

given hedonic game G satisfies α , then Γ also satisfies β . For example, a core-stable coalition

structure is always individually rational. Note that the relations are transitive, for example,

each perfect coalition structure is also individually stable. For a detailed overview surveying

also other stability concepts, see the work of Aziz et al. [ABS13].
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PERFECTNESS (P)

NASH STABILITY (NS) STRICT CORE STABILITY (SCS)

INDIVIDUAL STABILITY (IS) CORE STABILITY (CS)

INDIVIDUAL RATIONALITY (IR)CONTRACTUALLY INDIVIDUAL STABILITY (CIS)

Figure 6.5: Overview of relations between stability concepts

There are two questions that naturally arise from a complexity-theoretic point of view in

the context of stability in hedonic games: Given a hedonic game and a coalition structure,

how hard is it to decide whether the coalition structure is stable in the sense of α in the given

game, where α is a beforehand fixed stability concept. To answer this question, the so-called

verification problem is defined and its complexity is analyzed.

α -VERIFICATION (αV)

Given: A hedonic game (P,�) and a coalition structure Γ.

Question: Does Γ in G = (P,�) satisfy α?

The second question aims at the problem of deciding whether a given game has a coalition

structure which is stable in the sense of α-stable, which is formally stated in the so-called

existence problem.

α -EXISTENCE (αE)

Given: A hedonic game (P,�).

Question: Is there a coalition structure Γ in (P,�) satisfying α?

6.1.3 Related Work
Ballester [Bal04] initiated the complexity-theoretic study of the existence problem for Nash

stability, core stability, and individual stability for hedonic games in the anonymous encoding

and the individual rational encoding for both strict and weak preferences.

The class of additively separable hedonic games has been intensely studied. We provide an

overview of known results in Table 6.1 for those stability concepts that will be further analyzed

in the upcoming Section 6.3.

These results are complemented by further analyses regarding symmetric preferences and

other stability concepts. Also the complexity of computing stable outcomes in additively sep-

arable hedonic games has found much attention, see also the work of Gairing and Savani

[GS10]. For a comprehensive overview, we refer to the survey by Aziz et al. [ABS13]. Very
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Stability VERIFICATION EXISTENCE

Perfectness

P 1

P 1

Nash Stability
NP-complete 2

Individual Stability

Contractually Individual Stability trivial 3

Core Stability coNP-complete 4 Σp
2-complete 5

Strict Core Stability coNP-complete 1 Σp
2-complete 6

1 due to [ABS13]
2 due to [SD10]

3 due to [Bal04]
4 due to [SD07]

5 due to [Woe13a]
6 due to [Woe13b, Pet15]

Table 6.1: Overview of known complexity results for chosen stability problems
in additively separable hedonic games

recently, Peters [Pet15] resolved the most glaring open question for additively separable he-

donic games regarding strict core stability by showing that the existence problem is indeed,

as Woeginger [Woe13b] conjectured, Σp
2-complete. Prior to this result the best lower bound

was known to be DP-hardness, which we show in Corollary 6.22 on page 150. The result is

based on a proof for the corresponding problem in enemy-based hedonic games (established in

Theorem 6.21 on page 150). Peters [Pet15] furthermore shows that STRICT CORE STABILITY

EXISTENCE is also Σp
2-complete for boolean hedonic games.

Hedonic games with enemy-based and friend-based preference extensions are studied in the

work of Dimitrov et al. [DBH+06] and Sung and Dimitrov [SD07]. They show that in these

games, core-stable coalition structures always exist and that games with friend-based prefer-

ence extensions also always have a strictly core-stable coalition structure. The exact complex-

ity of the verification problem for core stability in friend-based hedonic games however, is still

unresolved, but Woeginger [Woe13b] conjectures that it is solvable in deterministic polyno-

mial time. Dimitrov et al. [DBH+06] show that verifying whether a given coalition structure

in an enemy-based hedonic game is core-stable is NP-complete, while the best lower bound

for STRICT CORE STABILITY EXISTENCE is DP-hardness, as we show in Theorem 6.21 on

page 150.

Hedonic coalition nets, a representation of hedonic games using classical propositional

logic, are introduced by Elkind and Wooldridge [EW09], who study the complexity of CORE

STABILITY EXISTENCE and CORE STABILITY VERIFICATION in these games.

Aziz et al. [AHP12] study the complexity of individual and Nash stability in hedonic games

with B- and W -preferences, respectively. They furthermore introduce and analyze so-called

B-hedonic games and W-hedonic games, which are closely related but not equivalent to B-

and W -hedonic games.

Roommate games and marriage games are hedonic games in which the size of the coali-

tions the players can join in a feasible solution is restricted to 2 and in the latter case, the set of

players is the union of two types of, classically female and male, players. Finding stable solu-
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tions for these games is closely related to solving the stable roommate problem and the stable
marriage problem, respectively, see the work of Gale and Shapley [GS62]. Recently, Aziz

[Azi13] complemented known results on core stability from Gale and Shapley [GS62] and

Irving [Irv85], while Munera et al. [MDA+15] present new algorithmic methods for solving

these problems (see also the textbooks by Gusfield and Irving [GI89] and Roth and Sotomayor

[RS92] and the book chapter by Klaus et al. [KMR16]).

Pareto-optimality and perfectness have been recently studied in the work of Aziz et al.

[ABH13] for various classes of hedonic games.

Hedonic games can also be used to model problems of scheduling or selecting group activi-

ties, see the work of Darmann et al. [DEK+12] and Lee [Lee14], or to improve the experience

of popular online games, see the work of Spradling et al. [SGX+13, Spr14, SG15].

The class of fractional hedonic games has been introduced by Aziz et al. [ABH14] and

further studied in the work of Bilò et al. [BFF+15] and Brandl et al. [BBS15].

In their intriguing work, Peters and Elkind [PE15] establish connections between certain

properties of preference extensions in hedonic games that imply NP-hardness of the existence

problem for most of the above defined stability concepts. We survey and discuss some of their

findings in Section 6.3.1.

Finally, we conclude by referring to the survey by Woeginger [Woe13b] and the book chap-

ters by Elkind and Rothe [ER15] and Aziz and Savani [AS16] for related work beyond the just

presented.

6.2 Wonderful and Strict Core Stability in Enemy-Based
Hedonic Games

In this section we focus on hedonic games with enemy-based preferences which can be derived

from the network of friends that the players’ friendship relations define. These games are

particularly interesting as graph-theoretic properties of the network can be exploited to find

solutions or analyze the complexity of stability problems. The presented results are published

in the work of Rey et al. [RRS+14, RRS+15].

6.2.1 Wonderful Stability – Definition and Relation to Strict Core
Stability

For hedonic games with enemy-based preferences, Woeginger [Woe13b] suggests the notion

of wonderful stability, a stability concept which is directly defined for the network of friends

of a given game.

Definition 6.12 (Wonderful Stability) Let G = (P,�E) be a hedonic game with enemy-based
preferences and let G = (V,H) be the corresponding graph representation. We denote a par-
tition of the vertex set V by Π and the unique set containing vertex vi by Π(vi). We say that a
partition Π of V is wonderfully stable if all C ∈ Π are cliques and ‖Π(vi)‖ = ωG(vi) for all
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vertices vi ∈V . If there is a clique C ⊆V containing at least one vertex vi with ‖C‖> Π(vi),
we call C a blocking clique.

We continue our running example as follows.

Example 6.13 Recall the game G = (P,�E) from Example 6.5 in Section 6.1 and the corre-
sponding graph G. Clearly, there is no wonderfully stable partition in graph G as the maximal
clique {2,3,5,6} cannot be an element of Π without having players 1 and 4 violate the crite-
rion for wonderful stability.

Considering the game G ′ arising from deleting the friendship relation between players 2

and 4, we obtain the network G′ and see that Π = {{1,4},{2,3,5,6}} shown in Figure 6.6 is
wonderfully stable.

1 2 3

4 5 6

Figure 6.6: Graph G′ corresponding to G ′ and the wonderfully stable partition Π= {{1,4},{2,3,5,6}}

As enemy-based hedonic games model preferences with the focus on enemy-aversion, a

coalition is only acceptable for a player if it does not contain any enemies of his. Thus, any

stable, and in particular strictly core-stable, coalition structure has to correspond to a partition

of cliques in the corresponding graph. How closely wonderful stability and strict core stability

are related becomes obvious with the following lemma.

Lemma 6.14 Let G = (V,H) be the network of friends in an enemy-based hedonic game G .
Let Π be a partition of V and let Γ be the corresponding coalition structure in G .

1. If Π is a wonderfully stable partition for G, then Γ is a strictly core-stable coalition
structure for G .

2. If there is an integer c ∈ N such that ωG(v) = c for all vertices v ∈V and Γ is a strictly
core-stable coalition structure for G , then Π is a wonderfully stable partition for G.

Proof. The first implication holds by definition: If a coalition C weakly blocks a coali-

tion structure that corresponds to a partition into cliques, C has to be a clique with a larger

cardinality and hence blocks the partition.

Second, assume that there is a blocking clique C for Π, i.e., there exists some vertex vi ∈C
with ωG(vi)> ‖Π(vi)‖. Since ωG(vi) = c, there is a clique D with C ⊆ D and ‖D‖= c. Now,

the corresponding coalition D̃ = {i | vi ∈ D} is a weakly blocking coalition for Γ, because

D̃ �E
i Γ(i) and D̃ �E

j Γ( j) for each j ∈ D̃, which follows from the fact that the number of

friends in Γ(i) is at most c−1 and the number of friends in Γ( j) is at most c, respectively. �

The following proposition yields a property of the SCSE and WSE problem that turns out

to be useful for the analysis of their complexity.
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Proposition 6.15 In enemy-based hedonic games, the problems SCSE and WSE have ANDω
functions.

Proof. Let n be a positive integer and let G� with players P� for �∈ {1,2, . . . ,n} be n different

enemy-based hedonic games with a corresponding graph Gi. Define the game G with players

P=
⋃n
�=1 P� and the network of friends G which consists of the disjoint union of the graphs G�.

In other words, G is a disconnected graph consisting of n independent components. Clearly,

since the components are independent, it holds that G has a wonderfully stable partition of the

vertices if and only if each of the components has such a partition. The same holds for strictly

core-stable coalition structures. �

Observe that Proposition 6.15 can be generalized to hold for the SCSE problem in additively

separable hedonic games. This is particularly interesting as the argumentation that will be

presented in Section 6.2.3 also applies to additively separable hedonic games.

Proposition 6.16 In additively separable hedonic games the problem SCSE has ANDω func-
tions.

Proof. We show the needed reduction for n = 2. It is easy to see that the presented approach

can be extended for arbitrary n ≥ 2.

Let G1 = (P1,w1) and G2 = (P2,w2) be two additively separable hedonic games. We con-

struct the additively separable hedonic game G = (P,w), where the set of players P = P1 ∪P2

is the marked union of the players in G1 and G2. To define the values in w we denote for each

pi ∈ P with Mpi the sum of all positive values player pi assigns to the other players in her

original game, formally:

Mpi =

⎧⎪⎪⎨
⎪⎪⎩

∑
{p j∈P1|w1

pi
(p j)>0}

w1
pi
(p j), for pi ∈ P1,

∑
{p j∈P2|w2

pi
(p j)>0}

w2
pi
(p j), for pi ∈ P2.

This allows us to define the values in w.

wpi(p j) =

⎧⎪⎨
⎪⎩

w1
pi
(p j), if pi, p j ∈ P1,

w2
pi
(p j), if pi, p j ∈ P2,

−(Mpi +1), otherwise.

Thus we have that in the new game G any coalition C containing players from P1 and P2 has a

negative value for all players contained in C.

We claim that G1 ∈SCSE and G2 ∈SCSE if and only if G ∈SCSE.

Only if: Assume that Γ j are strictly core-stable coalition structures for the games G j for j ∈
{1,2}. Then Γ = Γ1 ∪Γ2 is a strictly core-stable coalition structure for G : Because of the

assumption there cannot exist any weakly blocking coalition C containing only players from P1

or only players from P2. Any coalition C′ containing players from both original games cannot
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be weakly blocking since all players contained in C prefer being alone to being in C′. Thus,

there is no weakly blocking coalition in G and Γ is strictly core-stable for G .

If: Assume that there exists a strictly core-stable coalition structure, for G and we denote

it with Γ. We know from the definition of w that Γ(pi) ⊆ P1 has to hold for each pi ∈ P1 and

Γ(pi)⊆ P2 has to hold for each pi ∈ P2. Thus, Γ = {C1,C2, . . . ,Ck} with C� ⊆ P1 or C� ⊆ P2 for

all �∈ {1,2, . . . , �}. Since Γ is strictly core-stable, there is no coalition A⊆ P1 weakly blocking

Γ and there is also no coalition B ⊆ P2 weakly blocking Γ. This implies that Γ j containing

those C� ∈ Γ with C� ∈ Pj is a strictly core-stable coalition structure for G j for j ∈ {1,2}. �

6.2.2 Complexity of Wonderful and Strict Core Stability Existence
Now we turn to the complexity of the verification and existence problems in the context of

wonderful and strict core stability. For the former stability concept, we introduce these two

problems formally and define them directly for the network of friends corresponding to the

enemy-based hedonic game.

WONDERFUL STABILITY VERIFICATION (WSV)

Given: A graph G = (V,H) and a partition Π of V into cliques.

Question: Is the given partition Π wonderfully stable?

WONDERFUL STABILITY EXISTENCE (WSE)

Given: A graph G = (V,H).

Question: Does there exist a wonderfully stable partition for G?

For both wonderful stability and strict core stability, Woeginger [Woe13b] observes that

the verification and existence problems can be stated in a compact quantified characterization,

which allows to directly imply upper bounds. Note that Woeginger [Woe13b] defines the

verification problem as the complement of our verification problem by asking whether there

exists a (with respect to the stability concept) blocking coalition. In our context, the two

problems for wonderful stability can be stated as follows.

(G,Π) ∈ WSV ⇐⇒ (∀P) [¬(P blocks Π)], (6.1)

G ∈ WSE ⇐⇒ (∃Π)(∀P) [¬(P blocks Π)]. (6.2)

Clearly, the problems SCSV and SCSE can be characterized analogously.

Table 6.2 shows the complexity of the existence and verification problems for wonderful

and strict core stability in enemy-based hedonic games.

The upper bounds can be followed directly from the above representation: Since testing

whether a given subset of vertices in a graph is a clique can be done in polynomial-time,
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Complexity Reference

Problem Upper bound Lower Bound Upper Bound Lower Bound

SCSV
coNP-complete

[SD07]

WSV Theorem 6.17

WSE ∈ Θp
2 DP-hard

[Woe13b] Theorems 6.18–6.20

SCSE ∈ Σp
2 Theorem 6.21

Table 6.2: Overview of complexity results for wonderful and strict core stability in enemy-oriented
hedonic games

WSV and SCSV belong to NP. This, however, implies that WSE and SCSE are contained in

Σp
2 due to (6.2) and the quantifier representation of Σp

2 , recall Lemma 2.17 on page 13. In his

survey, Woeginger [Woe13b] shows that the upper bound of WSE can be improved by arguing

that the problem is contained in Θp
2 which is believed to be a proper subset of Σp

2 . We tackle

the open problems regarding the unspecified lower bounds and start with the verification of

wonderfully stable partition structures and we state the result without proof.

Theorem 6.17 The problem WSV is coNP-complete.

To establish the DP-hardness of WSE in Theorem 6.20 using Lemma 2.12, we need the

following results and we state them without proof.

Theorem 6.18 The problem WSE can be shown to be coNP-hard via a reduction establishing
CLIQUE≤p

m WSE.

Woeginger [Woe13b] states NP-hardness of WSE in his survey, but omits the proof.

Theorem 6.19 (Woeginger [Woe13b]) The problem WSE can be shown to be NP-hard by a
reduction establishing X3C≤p

mWSE.

The two above results allow us to show DP-hardness of WSE by applying Wagner’s suf-

ficient condition from Lemma 2.12 and making use of the fact that the problem WSE has

AND2 functions.

Theorem 6.20 WSE is DP-hard.

Proof. Consider the NP-hard problem X3C. Given two instances of X3C, (B1,S1) and

(B2,S2), where (B2,S2) ∈ X3C implies (B1,S1) ∈ X3C, we construct the following graph

G = (V,H). The graph G consists of two disconnected subgraphs G1 = (V1,H1) and G2 =
(V2,H2), that is, G = (V1 ∪V2,H1 ∪H2). The graph G1 is obtained from (B1,S1) by applying

the reduction from Theorem 6.19. The graph G2 is built in two steps. First, the X3C instance

(B2,S2) is transformed into an instance of CLIQUE: For each set Si ∈ S , create a vertex vi.
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If two sets Si and S j are disjoint, connect the corresponding vertices by an edge {vi,v j}. Let

k = |B|/3. In the second step, transform this graph by applying the reduction from Theorem 6.18

to it. This construction can obviously be done in polynomial time. Note that, again, the proof

only works for k ≥ 3. If k ≤ 2, reduce to an appropriate trivial WSE instance.

We claim that (B1,S1)∈ X3C and (B2,S2) /∈ X3C if and only if there exists a wonderfully

stable partition for G. Note that, since (B2,S2)∈ X3C implies (B1,S1)∈ X3C, this is enough

to establish equivalence (2.1) in Lemma 2.12.

Only if: Suppose (B1,S1) ∈ X3C and (B2,S2) 	∈ X3C. Since (B1,S1) is in X3C, G1

has a wonderfully stable partition by Theorem 6.19. Since additionally (B2,S2) /∈ X3C,

there are no k = |B|/3 pairwise disjoint sets in S , thus there is no clique of size k in G. By

Theorem 6.18, G2 then also has a wonderfully stable partition. With Proposition 6.15 there

has to be a wonderfully stable partition for G, as well.

If: We prove the contrapositive, i.e., if (B1,S1) 	∈ X3C or (B2,S2) ∈ X3C, then there is

no wonderfully stable partition for G. Indeed, if (B1,S1) 	∈ X3C, then by Theorem 6.19,

there is no wonderfully stable partition for G1. On the other hand, if (B2,S2) ∈ X3C, there

exists an exact cover of B in S , that is, there are k = |B|/3 pairwise disjoint sets in S . By

construction, these sets are represented by k vertices in G2, each connected to one another,

thus forming a k-clique. By Theorem 6.18, it follows that there is no wonderfully stable

partition for G2. By construction, since there is no wonderfully stable partition for G1 or G2,

there is no wonderfully stable partition for G either.

By Lemma 2.12, WSE is DP-hard. �

Following the same line of thoughts, Theorem 6.21 can be shown.

Theorem 6.21 In enemy-based hedonic games, the problem SCSE is hard for the complexity
classes NP, coNP, and DP.

Enemy-based hedonic games can also be represented by additively separable hedonic games,

recall Remark 6.4, which allows us to state the following interesting corollary.

Corollary 6.22 The problem SCSE is DP-hard in additively separable hedonic games.

Note that for additively separable hedonic games this lower bound was raised by Peters

[Pet15] by establishing Σp
2-hardness. For enemy-based hedonic games, however, no further

improvement of our DP-hardness bound is currently known.

6.2.3 Challenge: Toward Θp
2-Hardness of Existence

After having taken the first step toward pinpointing the exact complexity of the WSE and

SCSE problem in enemy-based hedonic games, we try to improve the lower DP-hardness

bound even further. Woeginger [Woe13b] conjectures the problem WSE to be Θp
2-hard and

we will establish the interesting result that this hardness would follow immediately follow if

the problem can be shown to be coDP-hard.
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The fact that the problem WSE has ANDω functions, as shown in Proposition 6.15, implies

with Lemma 2.16(3) from Section 2.2.1 that it is either complete for DP or complete for Θp
2 ,

or it is something completely different. Note that the same argumentation clearly also holds

for the problem SCSE, but we will present our approach in detail for WSE only.

To show Θp
2-hardness of the problem, which seems to be the most likely result, a natural

approach is to use Lemma 2.14 from Section 2.2.1. To this end, we have to generalize the

construction that we defined for showing DP-hardness in the proof of Theorem 6.20.

Let x1,x2, . . . ,x2k be 2k given instances of an NP-hard problem D , for example X3C or 3-

SAT, and we construct a network of friends G consisting of k+1 independent components G�

for 1 ≤ �≤ k+1. We know from Proposition 6.15 that G has a wonderfully stable partition if

and only if each of the k+1 components has one. The components are constructed as follows:

G1 is constructed from the instance x1, while Gk+1 is constructed from instance x2k. The

remaining k− 1 instances G�, 2 ≤ � ≤ k are constructed from pairs of D instances, namely

(x2�−2,x2�−1). Figure 6.7 illustrates these constructions.

G1

x1

+

+

+

−

G2

(x2,x3)

(+,+)

(+,+)

(+,+)

(−,−)

G3

(x4,x5)

(+,+)

(−,−)

(+,+)

(−,−)

· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

Gk−1

(x2k−4,x2k−3)

(+,+)

(−,−)

(+,−)

(−,−)

Gk

(x2k−2,x2k−1)

(+,+)

(−,−)

(−,−)

(−,−)

Gk+1

x2k

+

−
−
−

Figure 6.7: Illustration of the reduction using Lemma 2.14. The last rows show possible cases of
yes/no-instances due to the relation between the x�, “+” denotes a yes-instance, and “−” denotes a
no-instance

The following properties have to hold for the just constructed graphs to apply Lemma 2.14

in the proof of Proposition 6.23 below.

Property 6.23 Let x1, . . . ,x2k be given instances of an NP-hard problem D . Construct graphs
G1, . . . ,Gk+1 as follows:

1. Construct G1 from x1 such that x1 ∈ D ⇐⇒ G1 ∈ WSE.
2. Construct G�, 2 ≤ �≤ k, from x2�−2 and x2�−1 such that

(x2�−2,x2�−1 ∈ D) or (x2�−2,x2�−1 	∈ D) ⇐⇒ G� ∈ WSE.

3. Construct Gk+1 from x2k such that x2k ∈ D ⇐⇒ Gk+1 	∈ WSE.

Proposition 6.24 Let D be an NP-hard problem and let x1, . . . ,x2k be any 2k instances of D
such that x j ∈ D implies x� ∈ D for � < j. If G1, . . . ,Gk+1 are graphs that can be constructed
from x1, . . . ,x2k in polynomial time such that Property 6.23 is satisfied, then WSE is Θp

2-hard.

Proof. Let f be a polynomial-time computable function such that f (x1, . . . ,x2k) = G, where

G is the graph consisting of k + 1 independent components G1, . . . ,Gk+1 that satisfy Prop-
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erty 6.23. To apply Lemma 2.14, we have to show equivalence (2.2) stated in that lemma:

|{x� | x� ∈ D ,1 ≤ �≤ 2k}| is odd ⇐⇒ G ∈ WSE.

Only if: Assume that |{x� | x� ∈ D ,1 ≤ � ≤ 2k}| is odd. Since x j ∈ A implies that x� ∈ D
for � < j, neither x1 	∈ D nor x2k ∈ D can hold.2 By Property 6.23, we have that both G1 and

Gk+1 have a wonderfully stable partition. Since x1 ∈ D and x2k 	∈ D , there exists an index s
(which we call the separation index) such that x� ∈ D for �≤ s, and x� 	∈ D for � > s. Again,

since x j ∈ D implies that x� ∈ D for � < j, only the following three cases can occur for each

pair (x2�−2,x2�−1) of the remaining instances:

Case 1: both x2�−2 and x2�−1 are in D ,

Case 2: neither x2�−2 nor x2�−1 are in D , or

Case 3: x2�−2 is in D , yet x2�−1 is not.

Case 3 implies that the separation index is of the form s = 2�− 2 for some � (see the third

row of Figure 6.7), which leads to a contradiction, since that would mean that there is an even

number of yes-instances. So all pairs have to be of the form stated in Case 1 or Case 2 (see the

second row of Figure 6.7). By Property 6.23, each component G�, 2≤ �≤ k, has a wonderfully

stable partition and so has G.

If: Assume that G has a wonderfully stable partition. This implies that every component

G�, 1 ≤ � ≤ k+ 1, does as well. By Property 6.23, we have that x1 ∈ D , x2k /∈ D , and for all

pairs (x2�−2,x2�−1), 2 ≤ �≤ k, either both x2�−2 and x2�−1 are in D , or neither x2�−2 nor x2�−1

are in D . In total, we have an odd number of yes-instances among x1, . . . ,x2k.

By Lemma 2.14, WSE is Θp
2-hard. �

The question remains how G can be constructed from D such that Property 6.23 is fulfilled.

The first and the third statement can be fulfilled by constructing the graphs G1 and Gk+1 from

X3C instances as in the DP-hardness proof in the proof of Theorem 6.20.

Thus, it remains to ensure the second statement. By letting the problem D be, for example,

the well-known problem 3-SAT, we are searching for a polynomial-time reduction f fulfilling

for two given 3-SAT instances ϕ1,ϕ2:

(ϕ1,ϕ2 ∈ 3-SAT) or (ϕ1,ϕ2 /∈ 3-SAT) ⇐⇒ f (ϕ1,ϕ2) ∈ WSE

⇐⇒
(ϕ1,ϕ2) 	∈ SAT-UNSAT ⇐⇒ f (ϕ1,ϕ2) ∈ WSE,

where SAT-UNSAT is the DP-complete problem defined in Section 2.2.1. Note that we

assume that ϕ2 ∈ 3-SAT implies ϕ1 ∈ 3-SAT and this restricted version of SAT-UNSAT

remains DP-complete. This leads to our final claim.

Theorem 6.25 WSE is Θp
2-complete if and only if it is coDP-hard. The same holds for the

problem SCSE in enemy-based hedonic games.
2Indeed, looking at the top and the bottom row of Figure 6.7, we see that if either x2k ∈ D or x1 	∈ A, then

either all x1, . . . ,x2k would be in D or none of them, contradicting the assumption that |{x� | x� ∈ D ,1 ≤ �≤ 2k}|
is odd.
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6.3 Hedonic Games with Friends, Enemies, and Neutral
Players

So far we have seen a variety of definitions of the players’ preferences, each of which has its

assets and drawbacks, recall Section 6.1.1.

In the enemy-based and friend-based representation of preferences, the players can express

their like and dislike of the other players, but with the underlying assumption that within the

set of friends and enemies, the players are indifferent. Ordinal preferences as given in the

singleton encoding, on the other hand, allow player i to explicitly state a ranking �i over

the remaining players, but how this ranking can be extended to a preference over coalitions

containing i is not obvious: Consider the preference of player 1 given by �1 = 3�1 2�1 4,

we cannot deduce whether 1 prefers being in the coalition {1,3} to being part of coalition

{1,2,4}. In the individually rational encoding the players provide a ranking over all acceptable

coalitions, but as there might be exponentially many of these in the number of players, this

encoding is not compact.

Aiming at giving the players the possibility of providing more fine-grained preferences

while still having a compact representation, we propose the model of weak preferences with
thresholds. Such preferences combine ordinal preferences with the concept of friends and

enemies. Furthermore we introduce the set of neutral players to which a player can assign

those players she is indifferent about. Formally, we define these preferences as follows.

Definition 6.26 Let P = {1,2, . . . ,n} be the set of players. For each i ∈ P, a weak preference

(or ranking) with double thresholds, denoted by �FEN
i , consists of a partition of P−{i} into

three sets:

• Fi (i’s friends), together with a weak order �F
i over Fi,

• Ei (i’s enemies), together with a weak order �E
i over Ei, and

• Ni (the neutral players, i.e., the players i does not care about).

We also write �FEN
i as (�F

i | j1 . . . jk |�E
i ) for Ni = { j1, . . . , jk}.

We do not provide an order over the neutral players in Ni as we want to capture the intuition

that i is indifferent about all players in Ni. That is, we tacitly assume that ja ∼i jb for all

ja, jb ∈ Ni. We also follow that player i strictly prefers all her friends in Fi to the players in

Ni while the players in Ni are strictly preferred to i’s enemies in Ei. So the weak order �i of

player i that is induced by �FEN
i can be defined as �F

i �i Ni �i �E
i .

In Example 6.27 we illustrate the just defined notion. This example will be extended in the

course of this section.

Example 6.27 Let P = {1,2,3,4,5} be a set of five players with the preferences shown in
Table 6.3.

Taking the preference of player 1, �FEN
1 = (5�1 3 | 2 | 4): she has two friends 3 and 5 in F1

and strictly prefers 5 to 3. Player 1 does not care about player 2 and considers 4 to be her only
enemy. The weak preference of player 1 induced by �FEN

1 is 5�1 3�1 2�1 4. The induced
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i ∈ P �F
i Ni �E

i

1 5�1 3 2 4

2 5�2 1 ∼2 4 /0 3

3 /0 /0 2�3 4�3 5�3 1

4 5 /0 2�4 1 ∼4 3

5 4�5 1 ∼5 2�5 3 /0 /0

Table 6.3: Ranking with double thresholds of the players in P in Example 6.27

weak preference of player 4, for example, is 5�4 2�4 1 ∼4 3. As we see in the preferences of
player 2, 3, and 5, each of the sets Fi, Ni, and Ei is allowed to be empty.

As seen in Example 6.27, we sometimes slightly abuse notation and write “ /0” for an empty

preference, that is, �F
i = /0 or �E

i = /0 if Fi = /0 or Ei = /0, respectively.

The preference �FEN
i specifies the opinion player i has about the other players, but does not

provide a preference relation over coalitions that i is contained in. To obtain such a relation,

which is in turn needed for our final goal, namely to define a new class of hedonic games,

we have to extend �FEN
i . We do so by using the generalized Bossong–Schweigert extension

principle, see the work of Bossong and Schweigert [BS06a] and Delort et al. [DSW11].

Definition 6.28 Let �FEN
i be a weak ranking with double threshold for player i. The extended

order �FEN
i is defined as follows: For every A,B ⊆ P, A �FEN

i B if and only if the following
two conditions hold:

1. There is an injective function σ from B∩Fi to A∩Fi such that for every y ∈ B∩Fi, we
have σ(y)�i y.

2. There is an injective function θ from A∩Ei to B∩Ei such that for every x ∈ A∩Ei, we
have x�i θ(x).

Finally, A �FEN
i B if and only if A �FEN

i B and not B �FEN
i A.

The above definition intuitively means that for a given coalition A∈Pi the coalition A∪{ j}
with j ∈ Fi is strictly better than A, thus A∪{ j} �FEN

i A. Adding an enemy, on the other hand,

does strictly decrease a coalition’s value: A �FEN
i A∪{k} for k ∈ Ei. For two friends j, j′ ∈ Fi

the relation between the coalitions A∪{ j} and A∪{ j′} depends on the relation between j and

j′ from player i’s view. The same holds for enemies k,k′ ∈ Ei and the relation between the

coalitions A∪{k} and A∪{k′}. For j ∈ Fi and k ∈ Ei the relation between the coalitions A
and A∪{ j,k} is not defined by �FEN

i . We will call such pairs of coalitions incomparable with
respect to �FEN

i . Note that adding or removing players from Ni does not change the value of a

coalition and due to that fact we omit the neutral players from the following explanations and

definitions.

Before we formally characterize the relation �FEN
i in Proposition 6.30, we illustrate how for

a given preference �FEN
i the generalized Bossong–Schweigert extension can be constructed:
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We start with the coalition Fi ∪{i} which, obviously, has to be the most valued coalition from

i’s point of view. By adding enemies, removing friends, or exchanging friends or enemies we

can obtain all coalitions that are comparable to Fi ∪{i} with respect to �FEN
i . This step is

repeated starting from each of the just constructed coalitions until the least valued coalition is

constructed, which is Ei ∪{i}. We illustrate this construction in Example 6.29.

Example 6.29 Let P = {1,2,3,4,5} be a set of players with the preferences �FEN
i presented

in Example 6.27. To extend these preferences over the players to preferences over coalitions
in Pi for the players i ∈ P, we construct the generalized Bossong–Schweigert extensions of
�FEN

i .
The graphs in Figure 6.8 show the generalized Bossong–Schweigert extensions �FEN

i of
the preferences �FEN

i for the players i ∈ {1,2,4}. In any of the three graphs, an edge (A,B)
from coalition A to B implies that A �FEN

i B. Note that the relation is transitive: if there is a
directed path from coalition A to coalition B, this also implies A �FEN

i B. Since player 1 has
player 2 in N1, each coalition A shown in the below graph is of the same value to 1 as A∪{2}.
For the sake of readability we omit these indifferences.

For players 3 and 5, the extension results in a graph consisting of a single path starting in
the most preferred coalition and can thus be given as a complete ranking over all coalitions:

�FEN
3 : {3} �3 {2,3} �3 {3,4} �3 {3,5} �3 {1,3} �3 {2,3,4} �3 {2,3,5} �3 {1,2,3} �3

{3,4,5} �3 {1,3,4} �3 {1,3,5} �3 {2,3,4,5} �3 {1,2,3,4} �3 {1,2,3,5} �3

{1,3,4,5} �3 {1,2,3,4,5}
�FEN

5 : {1,2,3,4,5} �5 {1,2,4,5} �5 {1,3,4,5} ∼5 {2,3,4,5} �5 {1,2,3,5} �5 {1,4,5} ∼5

{2,4,5} �5 {3,4,5} �5 {1,3,5} ∼5 {2,3,5} �5 {4,5} �5 {1,5} ∼5 {2,5} �5 {3,5} �5

{5}

Clearly, there are no incomparable coalitions in Pi with respect to �FEN
i for i ∈ {3,5}.

The players 1, 2, and 4, on the other hand, have coalitions that remain incomparable, see
Table 6.4

player pairs of incomparable coalitions

1 ({1,5},{1,3,4,5});({1,3},{1,3,4,5});({1,3},{1,4,5});({1},{1,3,4,5});({1},{1,4,5})
2 ({1,2,5},{1,2,3,4,5});({2,5},{1,2,3,4,5});({1,2,4},{1,2,3,4,5});({1,2},{1,2,3,4,5});

({2},{1,2,3,4,5});({2,5},{1,2,4});({2,5},{1,2,3,5});({2,5},{1,2,3,4});({1,2,4},{1,2,3,5});
({1,2,4},{2,3,5});({1,2,3,5},{1,2});({1,2,3,5},{2});({1,2,3,4},{1,2});({1,2,3,4},{2});
({1,2,3,4},{2,3,5});({1,2},{2,3,5});({2},{2,3,5});({2},{1,2,3})

4 ({2,4},{1,4,5});({4},{1,4,5});({4},{2,4,5})

Table 6.4: Pairs of incomparable coalitions for players 1, 2, and 4 in Example 6.29

Inspired by Bouveret et al. [BEL10], who use the original Bossong–Schweigert extension

to extend preferences over items to preferences over bundles of items in the context of fair

division, we formally characterize the just defined preference relation �FEN
i .

155



6 Hedonic Games

{1,3,5}

{1,5} {1,3,4,5}

{1,3} {1,4,5}

{1} {1,3,4}

{1,4}
(a) GBS extension of �FEN

1

{4,5}

{4} {2,4,5}

{1,4,5} ∼4 {3,4,5}{2,4}

{1,4} ∼4 {3,4}

{1,2,4} ∼4 {2,3,4}

{1,2,3,4}
(b) GBS extension of �FEN

4

{1,2,4,5}

{1,2,5} ∼2 {2,4,5} {1,2,3,4,5}

{1,2,4}{2,5}

{1,2} ∼2 {2,4}

{1,2,3,5} ∼2 {2,3,4,5}

{1,2,3,4}

{2}

{2,3,5}

{1,2,3} ∼2 {2,3,4}

{2,3}
(c) GBS extension of �FEN

2

Figure 6.8: Bossong–Schweigert extensions for players 1, 2, and 4 in Example 6.29

Proposition 6.30 Let �FEN
i be a weak ranking with double threshold for player i, and let

A,B ∈ Pi be two coalitions. Consider the orders f1 �i f2 �i · · ·�i fμ with { f1, f2, . . . , fμ} =
A∩Fi and f ′1 �i f ′2 �i · · ·�i f ′μ ′ with { f ′1, f ′2, . . . , f ′μ ′} = B∩Fi, as well as e1 �i e2 �i · · ·�i eν
with {e1,e2, . . . ,eν} = A∩Ei and e′1 �i e′2 �i · · ·�i e′ν ′ with {e′1,e

′
2, . . . ,e

′
ν ′} = B∩Ei. Then,

A �FEN
i B holds if and only if

1. μ ≥ μ ′ and ν ≤ ν ′,
2. for each k, 1 ≤ k ≤ μ ′, it holds that fk �i f ′k, and
3. for each �, 1 ≤ �≤ ν , it holds that eν−�+1 �i e′ν ′−�+1.

Proof. Obviously, if (a) to (c) hold, the two injective functions σ : B∩Fi → A∩Fi, and

θ : A∩Ei → B∩Ei mapping f ′k �→ fk for each k, 1 ≤ k ≤ μ ′, and eν−�+1 �→ e′ν ′−�+1 for each

�, 1 ≤ � ≤ ν , satisfy σ( f ′k)�i f ′k and eν−�+1 �i θ(eν−�+1), for the same range of k and �. On

the other hand, if there are two injective functions with the desired requirements, (a) holds. If

there was a k with f ′k �i fk (or an � with e′ν ′−�+1 �i eν−�+1), this would imply σ( f ′k) = f j for a

j < k (or θ(eν−�+1) = e′ν− j+1 with j > �, respectively).
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6.3 Hedonic Games with Friends, Enemies, and Neutral Players

This, however, implies that either a requirement is violated for f ′1 (or eν ), or that σ (or θ ) is

not injective, a contradiction. �

Finally, we conclude the introduction of our model in the following definition of FEN-

hedonic games.

Definition 6.31 (FEN-Hedonic Game) An FEN-hedonic game is a tuple G =(P,�FEN), where
P = {1,2, . . . ,n} is the set of players and �FEN

i is the extended order of player i based on her
preference with double thresholds �FEN

i . Since �FEN
i can be directly obtained from �FEN

i , an
FEN-hedonic game can also be stated as G = (P,�FEN).

We are now interested in studying these games with respect to the complexity of stability

problems. Any such study, however, has to consider the fact that the players’ preference

relations �FEN
i might be incomplete.

Lang et al. [LRR+15] consider two possibilities to deal with incomparabilities of coalitions:

1. Leave the incomparabilities open and define notions such as possible and necessary
stability concepts.

2. Determine the relation between incomparable coalitions by using an adaption of a voting

rule or a similar mechanism while preserving those relations that are defined in �FEN
i .

The latter approach will be presented in detail in Sections 6.3.1 and 6.3.2 while the former

will only be briefly discussed below. For both approaches, however, we need a notion of

how a completion of these incomplete preference relation could be defined. A first step is the

following definition of extensions.

Definition 6.32 (Extension) A complete preference relation �i over all coalitions contain-
ing i extends �FEN

i if and only if it contains it; that is, if A �FEN
i B implies A �i B for all

coalitions A,B. Let Ext(�FEN
i ) be the set of all complete preference relations extending �FEN

i .

To shortly survey the obtained results in [LRR+15] for the case of leaving incomparabilities

in the analysis of FEN-hedonic games open, we present Definition 6.33 that proposes two

variants of stability in the context of incomplete preference relations.

Definition 6.33 (Possible and Necessary Stability) Let G = (P,�FEN) be an FEN-hedonic
game and let Γ be a coalition structure. For any stability concept α defined in Section 6.1.2
we say that Γ satisfies

• possible α if and only if there exists a profile �∈ ×n
i=1Ext(�FEN

i ) such that Γ is stable
in the sense of α in the game G ′ = (P,�);

• necessary α if and only if for all profiles �∈×n
i=1Ext(�FEN

i ) it holds that Γ is stable in
the sense of α in the game G ′ = (P,�).

To study the complexity of possible and necessary stability the verification and the existence

problem can be defined analogously to those problems defined in Section 6.1.2.
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POSSIBLE/NECESSARY α -VERIFICATION

Given: An FEN-hedonic game G = (P,�FEN) and a coalition structure Γ.

Question: Does Γ satisfy possible/necessary α in G ?

POSSIBLE/NECESSARY α -EXISTENCE

Given: An FEN-hedonic game (P,�FEN).

Question: Is there a coalition structure Γ satisfying possible/necessary α in G ?

Table 6.5 provides an overview of selected results found and discussed in [LRR+15].

VERIFICATION EXISTENCE

Stability Possible Necessary Possible Necessary

Perfectness
P P P P

Individual Rationality

Contractually Individual Stability

NP P
NP NP

Individual Stability

Nash Stability NP-c. NP-c.

Core Stability Σp
2 , coNP-h. coNP Σp

2 Σp
2Strict Core Stability

Key: NP-c. = NP-complete, coNP-h. = coNP-hard, remaining entries indicate upper bounds

Table 6.5: Selected results for the complexity of necessary and possible verification and existence
in FEN-hedonic games

6.3.1 Breaking Incomparabilities with Borda-Like Scoring Vectors
Now we present in detail the second approach proposed by Lang et al. [LRR+15] for dealing

with incomplete preference relations in FEN-hedonic games. Our goal is to define functions

that allow to compare those coalitions that are incomparable with respect to �FEN
i while still

preserving those relations that are determined by �FEN
i .

Our definition of such functions is inspired by voting theory. Based on player i’s preference

over the other players given in �FEN
i we determine values that i assigns to the other players

and aggregate these values to compute the values of coalitions in Pi. We call such functions

computing the value of coalitions comparability functions.

Proposition 6.34 gives a characterization of how such comparability functions can be de-

fined such that those relations that are already determined by �FEN
i are preserved. In other

words, it provides a formal description of comparability functions that can be used to define

an extension of �FEN
i .
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Proposition 6.34 Let (P,�FEN) be a given FEN-hedonic game and let �FEN
i be the general-

ized Bossong–Schweigert extension of �FEN
i of player i ∈ P. We say that a function wi : P →R

is compatible with �FEN
i if and only if

• for each j ∈ Fi, we have wi( j)> 0;
• for each j ∈ Ei, we have wi( j)< 0;
• for each j ∈ Ni, we have wi( j) = 0; and
• for all j,k ∈ Fi ∪Ei, we have j�i k if and only if wi( j)> wi(k).

With this notion we can state that A �FEN
i B if and only if for any wi compatible with �FEN

i ,
we have ∑ j∈A wi( j)≥ ∑ j′∈B wi( j′).

Proof. Assume that A �FEN
i B. For the set of friends Fi, with F = A∩Fi and F ′ = B∩Fi,

it follows that there is an injective function σ : F ′ → F such that for each y ∈ F ′, we have

σ(y)�i y. Hence, for each compatible wi, wi(σ(y))≥ wi(y). Thus, since σ is injective,

∑
j∈F

wi( j) ≥ ∑
j∈σ(F ′)⊆F

wi( j) = ∑
j′∈F ′

wi(σ( j′))

≥ ∑
j′∈F ′

wi( j′). (6.3)

Similarly, for Ei, with E = A∩Ei and E ′ = B∩Ei, and θ injective, it holds that

0 ≥ ∑
j∈E

wi( j) ≥ ∑
j∈E

wi(θ( j)) = ∑
j′∈θ(E)⊆E ′

wi( j′)

≥ ∑
j′∈E ′

wi( j′). (6.4)

For each player j ∈ Ni, we have wi( j) = 0; therefore, in total,

∑
j∈A

w j > ∑
j′∈B

w j′ . (6.5)

Now assume that for each compatible wi, (6.5) holds. Thus,

∑
j∈F

wi( j)− ∑
j′∈E ′

wi( j′)> ∑
j′∈F ′

wi( j′)− ∑
j∈E

wi( j).

Assume there were no injective function mapping from each summand from the right-hand

side to one at least as large on the left hand side; then, there exists an assignment to the

values of wi compatible with �FEN
i that does not satisfy the inequality, a contradiction. This

completes the proof. �

Based on this characterization we define our comparability function as a function wi : P→Z

with wi(i) = 0. Clearly, wi( j) = 0 has to hold for all j ∈ Ni. Using terminology from voting
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theory, we define so-called scoring vectors

fi ∈ Z
‖Fi‖
>0 , ei ∈ Z

‖Ei‖
<0

determining the values that are assigned to i’s friends and enemies, respectively, and we define

these values by using Borda-like scoring vectors (see Section 2.3.1 for the definition of this

voting rule). Inspired by the work of Baumeister et al. [BFL+12] regarding modified Borda

voting, we introduce several variants capturing the notions of “optimistic” and “pessimistic”

assessments of friend or enemy relations.

Let �FEN
i be the weak preference with double thresholds of player i ∈ P with the following

ordering of i’s friends and enemies:

• �F
i = Fi,1 �F

i Fi,2 �F
i · · ·�F

i Fi,�, where each Fi, j contains friends player i is indifferent

about, and

• �E
i = Ei,1�E

i Ei,2�E
i · · ·�E

i Ei,m, where each Ei, j contains enemies i is indifferent about.

With this we define the following variants of our Borda-like scoring vectors.

1. fi can be one of the following four vectors:

a) Strongly friend-optimistic (sfo): Each player in Fi,1 gets n points, each in Fi,2 gets

n−1 points, . . . , each in Fi,� gets n− �+1 points.

b) Friend-optimistic (fo): Each player in Fi,1 gets ‖Fi‖ points, each in Fi,2 gets ‖Fi‖−1

points, . . . , each in Fi,� gets ‖Fi‖− �+1 points.

c) Strongly friend-pessimistic (sfp): Each player in Fi,� gets 1 point, each in Fi,�−1

gets 2 points, . . . , each in Fi,1 gets � points.

d) Friend-pessimistic (fp): Each player in Fi,� gets n−‖Fi‖+1 points, each in Fi,�−1

gets n−‖Fi‖+2 points, . . . , each in Fi,1 gets n−‖Fi‖+ � points.

2. ei can be one of the following four vectors:

a) Strongly enemy-optimistic (seo): Each player in Ei,1 gets −1 point, each in Ei,2
gets −2 points, . . . , each in Ei,m gets −m points.

b) Enemy-optimistic (eo): Each player in Ei,1 gets −(n−‖Ei‖+1) points, each in Ei,2
gets −(n−‖Ei‖+2) points, . . . , each in Ei,m gets −(n−‖Ei‖+m) points.

c) Strongly Enemy-pessimistic (sep): Each player in Ei,m gets −n points, each in

Ei,m−1 gets −n+1 points, . . . , each in Ei,1 gets −(n−m+1) points.

d) Enemy-pessimistic (ep): Each player in Ei,m gets −‖Ei‖ points, each in Ei,m−1 gets

−‖Ei‖+1 points, . . . , each in Ei,1 gets −(‖Ei‖−m+1) points.

Each pair of scoring vectors (fi,ei)∈{sfo, fo,sfp, fp}×{seo,eo,sep,ep} defines a particular

way of how the scores a player i assigns to the other players are derived from �FEN
i . The

intuition behind these definitions and why it is reasonable to distinguish each of the four cases

can be best seen assuming that player i is indifferent between all of his friends and all of his

enemies. With the above notation, it holds that that � = 1 and m = 1 and the values shown in

Table 6.6 are assigned to i’s friends and enemies depending on fi and ei, respectively.

We see that in the friend-optimistic case a bigger friend set implies higher values for the
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sfo fo sfp fp seo eo sep ep

value n ‖Fi‖ 1 n−‖Fi‖+1 −1 −(n−‖Ei‖+1) −n −‖Ei‖
Table 6.6: Values that are derived from different choices for fi,ei, when there are only indifferences
within �F

i and �E
i

friends contained in it, while the opposite is the case in the friend-pessimistic case. The same

holds for the comparison between the enemy-pessimistic and enemy-optimistic case with the

difference that in the former case a bigger enemy set reduces the enemies’ scores and in the

latter case a bigger enemy set implies higher values.

On the other hand, when there are no indifferences within �F
i , for fi ∈ {sfo, fp} and fi ∈

{sfp, fo} the two scoring vectors from one set yield the same scores for player i’s friends. The

same holds for ei ∈ {seo,ep} and ei ∈ {eo,sep}, whenever there are no indifferences in �E
i .

Analogously to the definition of positional scoring rules and having Proposition 6.34 in

mind, we define the value of a coalition from player i’s view as the sum of the values she

assigns to the players in the coalition.

Definition 6.35 (Borda-Like CF) Let i ∈ P be a player. For a fixed choice of scoring vectors
fi and ei defining the score function wi we define the Borda-like comparability function (CF)

f i
Borda : Pi → Z, C �→ ∑

j∈C−{i}
wi( j)

to be a function mapping every coalition C containing i to the sum of the scores the players in
C−{i} obtain from wi.

With this notion of comparability functions, we can derive a complete preference relation

from given preferences with double thresholds; we call this relation Borda-induced and define

it in Definition 6.36.

Definition 6.36 (Borda-Induced Preference Extension) For an FEN-hedonic game (P,�FEN)
with n players and a fixed choice of fi and ei, let f i

Borda be the Borda-like CF. For two coalitions
A,B ∈ Pi it holds that

• A �FENb
i B if and only if f i

Borda(A)≥ f i
Borda(B),

• A �FENb
i B if and only if f i

Borda(A)> f i
Borda(B), and

• A ∼FENb
i B if and only if f i

Borda(A) = f i
Borda(B).

Example 6.37 shows how for two choices of scoring vectors the incomparabilities in our

running example are be broken.

Example 6.37 Let G = (P,�FEN) be the FEN-hedonic game from Example 6.29. Table 6.7
shows the values the players assign to each other for two choices of scoring vectors: Table 6.7a
shows the values for fi = sfp and ei = seo, while Table 6.7b presents the values for fi = fo and
ei = ep.
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i
j 1 2 3 4 5

1 – 0 1 −1 2

2 1 – −1 1 2

3 −4 −1 – −2 −3

4 −2 −1 −2 – 1

5 2 2 1 3 –

(a) fi = sfp, ei = seo

i
j 1 2 3 4 5

1 – 0 1 −1 2

2 2 – −1 2 3

3 −4 −1 – −2 −3

4 −3 −2 −3 – 1

5 3 3 2 4 –

(b) fi = fo, ei = ep

Table 6.7: Values wi( j) for different choices of fi,ei in the game in Example 6.37

We see that for both choices of fi and ei, the values of player 1 and player 4 do not differ
since these players do not have any indifferences within their ordering of friends and enemies.

Recalling Example 6.29, the preference relations �FEN
i are incomplete for the players

i ∈ {1,2,4}, Table 6.8 shows the values that these players assign to (a selection of) their
incomparable coalitions on f i

Borda for the scoring vectors fi = sfp, ei = seo and fi = fo, ei = ep
which are shortly denoted by fe and fe′, respectively, in the table.

player 2

A {1,2,5} {1,2,3,4,5} {2,5} {1,2,3,4} {2,3,5} {1,2,3,4} {2} {1,2,3}
fe 3 3 2 1 1 1 0 0

fe′ 5 6 3 3 2 3 0 1

A {1,2,4} {1,2,3,4,5} {2,5} {1,2,3,5} {1,2,5} {1,2,3,5} {2} {2,3,5}
fe 2 3 2 2 3 2 0 1

fe′ 4 6 3 4 5 4 0 2

A {1,2} {1,2,3,4,5} {1,2} {2,3,5} {2} {1,2,3,5} {2,5} {1,2,4}
fe 1 3 1 1 0 2 2 2

fe′ 2 6 2 2 0 4 3 4

player 1 player 4

A {1,5} {1,3,4,5} {1,3} {1,3,4,5} {4} {2,4,5} {2,4} {1,4,5}
fe 1 2 2 2 0 0 -1 -1

A {1,3} {1,4,5} {1} {1,4,5}
fe 2 0 0 0

Table 6.8: Values for coalitions based on f i
Borda for i ∈ {1,2,4} in Example 6.37

Clearly from the definition of fBorda and Proposition 6.34, it follows that �FENb
i is indeed

an extension of �FEN
i . We state this fact in Proposition 6.38 without proof.

Proposition 6.38 Let (P,�FEN) be an FEN-hedonic game with n players, then it holds that
�FENb

i ∈ Ext(�FEN
i ) for each fixed choice of fi and ei and i ∈ {1, . . . ,n}.
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Finally, we can define Borda-induced FEN-hedonic games.

Definition 6.39 (Borda-Induced FEN-Hedonic Game) Let (P,�FEN) be an FEN-hedonic
game with n players. For a fixed choice of scoring vectors fi and ei for i ∈ {1, . . . ,n}, we
define with G =(P,�FENb) the Borda-induced FEN-hedonic game, where �FENb is the Borda-
induced preference extension of �FEN.

Thus, Borda-induced FEN-hedonic games are a class of FEN-hedonic games with exten-

sions defined by the scoring vectors fi and ei and each fixed pair of (fi,ei) defines a subclass.

We see from the definition of �FENb that this class of games is a subclass of additively sepa-

rable hedonic games, where wi = f i
Borda for the players i ∈ P.

Observation 6.40 A Borda-induced FEN-hedonic game is a special additively separable he-
donic game.

While for each Borda-induced FEN-hedonic game there is an additively separable hedonic

game with the same values, not every set of values can be derived from given weak preferences

with thresholds.

6.3.2 Complexity of Stability
Table 6.9 gives an overview of the results that will be presented in this section. Some of the

lower bounds only hold for certain scoring vectors fi and ei, these restrictions are indicated

in the footnotes. If no restriction is given, the result holds for all possible combinations of

scoring vectors.

Stability VERIFICATION Reference EXISTENCE Reference

P P Corollary 6.41 P Corollary 6.43

NS P Corollary 6.41 NP-complete 1 Theorem 6.47

IS P Corollary 6.41 NP-complete 1 Theorem 6.48

CIS P Corollary 6.41 P Corollary 6.43

CS coNP-complete Theorem 6.42 Σp
2-complete 2 Theorem 6.49

SCS coNP-complete Theorem 6.42 coNP-hard, ∈ Σp
2 Theorem 6.54

1 for sfp,{seo,eo,sep,ep} 2 for sfp,{seo,ep}
Table 6.9: Overview of complexity results regarding stability for Borda-induced
FEN-hedonic games

Note that whenever we state the preferences of the players in upcoming proofs, we will, for

the sake of readability, omit the indices within the orderings �F and �E . Thus, we write a ∼ b
or a�b instead of a ∼i b or a�i b in the preference of player i.
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Verification We start with the verification variants of our stability problems and first state

the known tractability results that can be followed directly from known results in additively

separable hedonic games (recall Observation 6.40).

Corollary 6.41 For Borda-induced FEN-hedonic games the problem α -STABILITY VERIFI-

CATION is in P for each of the stability concepts α ∈ {perfectness, individual stability, con-
tractually individual stability, Nash stability}.

Verifying whether a given coalition structure in a Borda-induced FEN-hedonic game is sta-

ble with respect to the two concepts of group deviation is a far more difficult task. We can

show that for both concepts, namely core stability and strict core stability, the verification

problems are coNP-complete. The proof is inspired by the corresponding result for games

with enemy-based preferences presented by Woeginger [Woe13a].

Theorem 6.42 For Borda-induced FEN-hedonic games the problems CORE STABILITY VER-

IFICATION and STRICT CORE STABILITY VERIFICATION are coNP-complete for each choice
of fi and ei.

Proof. The upper bound follows from the result for additively separable hedonic games due

to Sung and Dimitrov [SD07] and Aziz et al. [ABS13] and Observation 6.40.

To prove coNP-hardness we reduce from the complement of the CLIQUE problem de-

noted by CLIQUE. To do so, let (G,k) be a CLIQUE instance, where G = (V,H) is an

undirected graph with vertices V = {v1,v2, . . . ,vn} and edges H = {h1,h2, . . . ,hm}. We con-

struct the Borda-induced FEN-hedonic game (P,�FENb) with n + n(k − 2) players in P =
{v1,v2, . . . ,vn} ∪Q, where Q is a collection of n(k − 2) players Q =

⋃n
i=1 Qi with the sets

Qi = {qi,1,qi,2, . . . ,qi,(k−2)}. Let N (v) denote the neighborhood of vertex v ∈V .

The extension �FENb can be derived from the players’ weak rankings with double threshold

�FEN as displayed in Table 6.10 (note that when a set of players appears in a preference, the

players in the set are unranked).

For each . . . player �F N �E

i ∈ {1, . . . ,n} vi N (vi)∼ Qi P− (N (vi)∪{vi}∪Qi) /0

i ∈ {1, . . . ,n},
qi, j /0 vi ∼ (Qi −{qi, j}) P− ({vi}∪Qi)j ∈ {1, . . . ,k−2}

Table 6.10: Weak rankings with double threshold of the players in the proof of Theorem 6.42

The players corresponding to the vertices in G are mutual friends if connected by an edge,

while every one of these players has k− 1 friends in Qi which are no friends of the other vi-

players. For each i ∈ {1, . . . ,n} the players in Qi are indifferent regarding their corresponding

player vi and the players that are in the same Qi. The remaining players in the game are their

enemies, thus these players do not consider anyone to be their friend.
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Let Γ = (Γ1,Γ2, . . . ,Γn) with Γi = {vi}∪Qi be the coalition structure. The vi-players give

their coalition in Γ �(k− 2) points, while � depends on the scoring vector fi used for the set

of friends and � ≥ 1 holds. Each qi, j ∈ Q gives their coalition a score of zero (and this is

independent from the choice of fi and ei). Note that adding any other player to Γ(qi, j) turns

the score of the coalition from player qi, j’s view to a negative value.

We claim that G has a clique of size at most k−1 if and only if Γ is (strictly) core-stable.

Only if: Assume that the largest clique in G is of size k−1. Since the players in Q do not

have friends, they already reach a best possible score with their given coalition. For a weakly

blocking coalition A ⊆ P to exist it has to contain at least one player from V preferring A
strictly to her original coalition. This can only happen if A consists of a set of players from V
forming a clique. Since the largest clique in V is of size at most k−1, the players in the clique

would assign this coalition a score of �(k− 2) which is exactly the score each vi assigns the

coalition Γ(vi). Thus, there is no weakly blocking coalition which directly implies that there

is neither a blocking one.

If: We show the contraposition. Assume that there were a clique V ′ of size k in G. Then

the players corresponding to the vertices in this clique form a blocking coalition (and thus a

weakly blocking one) since every player in the clique gives the coalition V ′ a score of �(k−1)
which is bigger than the score of the coalition they are assigned to in Γ. �

Existence The first results we present follow directly with Observation 6.40 and known

results for additively separable hedonic games. Aziz et al. [ABS13] show that the existence

of a perfect coalition structure in a given additively separable hedonic game can be decided

in deterministic polynomial time while contractually individually stable coalition structures

always exist, leading to the same complexity of the existence problem.

Corollary 6.43 For Borda-induced FEN-hedonic games the problems PERFECTNESS EX-

ISTENCE and CONTRACTUALLY INDIVIDUAL STABILITY EXISTENCE, are in P for each
choice of fi and ei.

For the remaining stability problems, the known upper bounds can be transferred to our

games with Observation 6.40, as well. The lower bounds, on the other hand, have to be proven

separately. We will show that certain known hardness proofs for additively separable hedonic

games can be adapted to also hold for Borda-induced FEN-hedonic games when the scoring

vectors fi = sfp and ei = seo are used, assuming that the additively separable hedonic game in

the known proof fulfills two properties: the values that the players assign to each other have to

be integers and they are not allowed to be symmetric. With these two conditions fulfilled, we

show in Construction 6.44 how a Borda-induced FEN-hedonic game can be constructed from

a given additively separable hedonic game such that the two games are equivalent in the sense

of Lemma 6.46.

Construction 6.44 Let G = (P,w) be an additively separable hedonic game, where the play-
ers pi ∈ P have values wpi : P−{pi} → Rpi ⊆ Z and the values are not symmetric. We con-
struct a Borda-induced FEN-hedonic game G ′ = (P′,�FENb) with fi = sfp and ei = seo. Let
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6 Hedonic Games

P′ = P∪D be the set of players in G ′, where P are the players in the original game G and we
have a set of (max{⋃pi∈P Rpi}+ |min{⋃pi∈P Rpi}|−2) padding players in D = {d1,d2, . . .}.

We first explain how the weak rankings with double threshold have to be constructed for the
players in P. To this end let player pi ∈ P be a player in the original game, then we define
the sets Ak

pi
= {p j ∈ P | wpi(p j) = k} for k ∈ Rpi and we know that

⋃
s∈R As

pi
= P−{pi}. We

separate the strictly negative values in Rpi from the strictly positive ones and define Rpi =
R+∪R−∪{0} (for the sake of readability we omit the index pi for R+ and R−). We define the
sets of friends, enemies, and neutral players of pi as follows: Npi = A0

pi
, Fpi =

⋃
s∈R+ As

pi
, and

Epi =
⋃

s∈R− As
pi

.
Assuming that the elements in R+ = {r1,r2, . . . ,r‖R+‖} and R− = {r′1,r

′
2, . . . ,r

′
‖R−‖} are or-

dered descendingly, we can define �F
pi

and �E
pi

as follows (note that for the sake of readability,
we omit the index pi in both �F

pi
and �E

pi
).

�F
pi

: Ar1︸︷︷︸
∼

� dl � . . .�dk︸ ︷︷ ︸
(r1−r2−1)-many

� Ar2︸︷︷︸
∼

� dm � . . .�dn︸ ︷︷ ︸
(r2−r3−1)-many

� . . .�Ar‖R+‖︸ ︷︷ ︸
∼

� dq � . . .�dt︸ ︷︷ ︸
r‖R+‖−1-many

�E
pi

: Ar′1︸︷︷︸
∼

� dl � . . .�dk︸ ︷︷ ︸
(−r′1+r′2−1)-many

� Ar′2︸︷︷︸
∼

� dm � . . .�dn︸ ︷︷ ︸
(−r′2+r′3−1)-many

� . . .� dq � . . .�dt︸ ︷︷ ︸
−r′‖R−‖−1-many

�Ar‖R−‖︸ ︷︷ ︸
∼

�D′,

where D′ contains those padding players in D that are not yet positioned in �F
pi

and �E
pi

.
For the padding players dq ∈ D we define Fdq = /0 = Ndq and E = P′ −{dq}, and let them be

indifferent between their enemies:

�FEN
dq

= ( /0 | /0 | P′ −{dk}︸ ︷︷ ︸
∼

).

Note that whenever ‖R+‖ = 1 or ‖R−‖ = 1 holds for a player, �F and �E are defined by
the last part of the above description, namely

�F = Ar‖R+‖︸ ︷︷ ︸
∼

� dq � . . .�dt︸ ︷︷ ︸
r‖R+‖−1-many

, �E = dq � . . .�dt︸ ︷︷ ︸
−r′‖R−‖−1-many

�Ar‖R−‖︸ ︷︷ ︸
∼

�D′.

We illustrate the construction in the following example.

Example 6.45 Let G = (P,w) be an additively separable hedonic games with the players
P= {p1, p2, p3, p4, p5} and the values given in Table 6.11, together with the resulting sets A−4,
A1, and A2.

We need 2+4−2 = 4 padding players d1,d2,d3, and d4 to construct the weak rankings with
double threshold and we present those in Table 6.12.

Lemma 6.46 Let G = (P,w) be an additively separable hedonic game, where the values the
players assign to each other are integers and the preferences are not symmetric. Let further-
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wpi(p j)

pi

p j p1 p2 p3 p4 p5 A2 A1 A−4

p1 – 2 2 −4 1 {p2, p3} {p5} {p4}
p2 2 – −4 −4 −4 {p1} /0 {p3, p4, p5}
p3 −4 −4 – −4 −4 /0 /0 {p1, p2, p4, p5}
p4 1 1 1 – 1 /0 {p1, p2, p3, p5} /0

p5 2 2 2 2 – {p1, p2, p3, p4} /0 /0

Table 6.11: Values of the players in G

player �F N �E

p1 p2 ∼ p3 � p5 /0 d1 �d2 �d3 � p4 �d4

p2 p1 �d1 /0 d2 �d3 �d4 � p3 ∼ p4 ∼ p5

p3 /0 /0 d1 �d2 �d3 � p1 ∼ p2 ∼ p4 ∼ p5 �d4

p4 p1 ∼ p2 ∼ p3 ∼ p5 /0 d1 ∼ d2 ∼ d3 ∼ d4

p5 p1 ∼ p2 ∼ p3 ∼ p4 �d1 /0 d2 ∼ d3 ∼ d4

Table 6.12: Constructed preferences from Example 6.45

more G ′ = (P′,�FENb) with P′ = P∪D be a Borda-induced FEN-hedonic game with fi = sfp
and ei = seo constructed from G according to Construction 6.44 and let Γ be a coalition
structure in G and Γ′ = Γ

⋃‖D‖
i=1 {di} be a coalition structure in G ′. For each stability concept

α defined in Section 6.1 it holds that Γ is stable in the sense of α in G if and only if Γ′ is stable
in the sense of α in G ′.

Proof. Each padding player di ∈ D assigns a negative value to all players in P′ − {di}, so

there are no acceptable coalitions for di ∈ D except the singleton coalition {di}. Clearly, for

each stability concept α defined in Section 6.1 a given coalition structure γ ′ can only be stable

in the sense of α if it assigns each di ∈D to the coalition {di}. With this, the above equivalence

directly follows. �

Sung and Dimitrov [SD10, Lemma 2, Theorem 3] show that in additively separable hedonic

games the problem NSE is NP-complete.

Theorem 6.47 In Borda-induced FEN-hedonic games the problem NASH STABILITY EXIS-

TENCE is NP-complete for the choice of scoring vectors fi = sfp and ei ∈ {seo,eo,sep,ep}.

Proof. With Observation 6.40 and [SD10, Lemma 2] the problem is in NP.

NP-hardness in the setting of additively separable hedonic games is shown by a reduction

from X3C and the players in the constructed game assign values from {−68,1,2,13,16} to

each other.
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For the choice of fi = sfp and ei = seo, we can use Construction 6.44 and Lemma 6.46 to

apply the argumentation in the proof of [SD10, Theorem 3].

The value −68 is the only negative value that is assigned in the additively separable hedonic

game from the original proof and the argumentation remains unchanged if this value was

smaller than −68. We show that for the other possible choices of ei this negative value, let us

call it K, is always at most −68.

Recalling the notation from Construction 6.44, we have that for each player pi ∈ P ⊆ P′
with Epi 	= D, the ordering of the enemies is

�E
pi

: dl � . . .�dk︸ ︷︷ ︸
67

�P′′� D′︸︷︷︸
≤15

,

where P′′ is the set of players, pi assigns value −68 to in the original game and D′ contains

up to 16 padding players not contained in Fpi . The set P′′ corresponds to the set Epi,68 in the

definition of the scoring vectors ei in Section 6.3.1 and it is easy to see that for each fixed

choice of ei ∈ {eo,sep,ep} it holds that K ≤−68. �

With the exact same approach we adapt the proof by Sung and Dimitrov [SD10, Lemma 2,

Theorem 4] showing NP-completeness of the problem ISE in additive separable hedonic

games for fi = sfp and ei ∈ {seo,eo,sep,ep}.

Theorem 6.48 In Borda-induced FEN-hedonic games the problem INDIVIDUAL STABILITY

EXISTENCE is NP-complete when fi = sfp and ei ∈ {seo,eo,sep,ep}.

Proof. NP membership follows straightforwardly with Observation 6.40 and Lemma 2

in [SD10]. In their NP-hardness proof, Sung and Dimitrov [SD10] construct an additively sep-

arable hedonic game from an X3C instance in which the players’ values are from {−4,2,1}.

We can adapt this proof to our setting by constructing a Borda-induced FEN-hedonic game

with Construction 6.44 and applying Lemma 6.46.

For the other choices of ei we can argue that assigning a value K that is smaller than −4, the

argumentation of the original still holds. For the players pi ∈ P ⊆ P′ with Epi 	= D Construc-

tion 6.44 defines �E
pi

to be:

�E
pi

: d1 �d2 �d3 �P′′� D′︸︷︷︸
≤2

.

Here we have that P′′ corresponds to Epi,4 in the definition of the scoring vectors ei in

Section 6.3.1 and it is, again, easy to see that for each fixed choice of ei ∈ {eo,sep,ep} it

holds that K ≤−4. �

Now we turn to the group deviation stability concepts and we start with analyzing the com-

plexity of the CORE STABILITY EXISTENCE problem. For general additively separable hedo-

nic games, Woeginger [Woe13a] showed that the problem is Σp
2-complete. We show that there

exists a corresponding Borda-induced FEN-hedonic game with the same properties as the ad-

ditively separable hedonic game constructed in this proof. We state this result in Theorem 6.49

and, for the sake of comparability, structure the proof analogously to Woeginger [Woe13a].
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Theorem 6.49 In Borda-induced FEN-hedonic games the problem CORE STABILITY EXIS-

TENCE is Σp
2-complete for the choice of scoring vectors fi = sfp and ei ∈ {seo,ep}.

Woeginger [Woe13a] shows Σp
2-completeness of CORE STABILITY EXISTENCE for addi-

tively separable hedonic games with a reduction from 2-QUANTIFIED 3-DNF-SAT defined

in Section 2.2. Our approach defined in Construction 6.44 cannot be applied directly, but with

careful adaptions we can define a Borda-induced FEN-hedonic game for which Woeginger’s

argumentation still holds:

Let m be the number of clauses and n the number of variables in a given instance of the

problem 2-QUANTIFIED 3-DNF-SAT. The values in the original game are from the set

{−∞,−2,0,ε,1,2,3,4,5,n+ 2,m+ n+ 1,4n+m− 1}, where −∞ denotes a “small enough

number” and ε = 1/n+1. To define a Borda-induced FEN-hedonic game we have to define the

exact value for −∞ and change ε to a positive integer while preserving the central argumenta-

tion. We present the definition of our Borda-induced FEN-hedonic game in Construction 6.50

and show in Lemmas 6.51 through 6.53 where and how Woeginger’s argumentation has to be

adapted.

Construction 6.50 Given a 2-QUANTIFIED 3-DNF-SAT instance (X ,Y,φ(X ,Y )) we denote
the set of clauses in φ by C and we construct the following set of players P = PX ∪PY ∪PC ∪
{Qt ,Q′

t ,Q
′′
t ,Q f ,R,R′}∪D:

• For every literal � over X, we construct a corresponding X-player p(�) (2n in total). We
denote this set with PX .

• For every literal � over Y , we construct a corresponding Y -player p(�) (2n in total). We
denote this set with PY .

• For every clause c ∈ C, we construct a corresponding C-player p(c) (m in total). We
denote this set with PC.

• We have six structure players Qt, Q′
t , Q′′

t , Q f , R, and R′.
• We have a set of padding players D which we will use to generate the preferences pro-

viding the needed values.

The number of padding players is bounded by O(n+m)+O((n+m)(n2 +nm+m2)).
The scoring vector for the set of friends is fixed to fi = sfo and we first construct �F for

the players in P. Note that we change the value of ε from 1/n+1 to 1 and adjust the score the
player Q′

t assigns player Qt to n+1 (instead of 1). Table 6.13 shows �F of the players in P and
furthermore displays the values that are assigned based on the choice of fi = sfo. Whenever set
of players are given in a preference, say of player p, we assume that p is indifferent between
the players in the set. Furthermore if a single padding player d is given, she can be replaced
by an arbitrarily picked player from D. Parts of the preferences that denoted by “· · ·” have to
be filled with an appropriate number of padding players from D.

The set of neutral players is Nd = PC ∪ PX ∪ PY − {p(�1), p(�2), p(�3)} for each d ∈ D,
NQ′′

t
= PC, Np(y) = PC ∪PX ∪ (PY −{y}), Np(x) = PC ∪PY ∪{Q′

t}, and Np = /0 for all remaining
players p ∈ P.

For each player p ∈ P assigning the symbolic value “−∞” to some of her enemies in the
original game, we define Kp to be the sum of all positive values p assigns to other players
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value: m+n+1 · · · n+2 · · · 1

Q′
t � · · · � Q′′

t � · · · � PX ∪PC�F
Qt

:

value: 4n+2m−1 · · · 2 1

R′ � · · · � PC ∪PX ∪PY � d�F
R :

value: 4 3 2 1

Q f � d � R � (PX −{x})∪{Qt}�F
p(x):

value: n+1 · · · 1

Qt � · · · � PX�F
Q′

t
:

value: 6 5

Qt � R � · · ·�F
p(c):

value: 2 1

R � d�F
p(y):

value: 1

Qt�F
Q′′

t
:

value: 1

PX�F
Q f

:

value: 1

R�F
QR′

:

value: –

–�F
D:

Table 6.13: �F of the players in the proof of Theorem 6.49

in P−{p}. Table 6.14 shows the neutral sets and �E of the players in P, where D′ denotes
those padding players not contained in �F and not contained in �E so far. This completes the
construction of the Borda-induced FEN-hedonic game for fi = sfp and ei = seo.

For the scoring vectors fi = sfo and ei = ep, a similar approach can be used to achieve
almost the same values as in the original construction. Only the preferences of the C-players
have to be constructed carefully. These players are the only players assigning a different value
than −∞ to a subset of their enemies, namely the −2 to those literal-players that are contained
in the clause the clause-player corresponds to. With ei = ep we cannot achieve the assignment
of value −2, but the assignment of value −3 by adding 12 padding players to the enemy set
and due to this change, the players R and Qt in �F have to each gain one point more, thus we
have the following adapted preferences:

value: −3 −16 −17 −18

�E
p(c) p(�1)∼ p(�2)∼ p(�3) � · · · � Q′

t � Q f � R′

value: 8 7

�F
p(c): Qt � R � · · ·
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value: −1

�E
d : P−{d}

value: · · · −KR′ −KR′ −1

· · · � P−{R} � D′�E
R′ :

value: · · · −KQ f −KQ f −1

· · · � P−PX � D′�E
Q f

:

value: · · · −KQ′′
t

−KQ f −1

· · · � PX ∪PY ∪{Q′
t ,Q f ,R,R′} � D′�E

Q′′
t
:

value: · · · −Kp(y) −Kp(y)−1

· · · � {y,Qt ,Q′
t ,Q

′′
t ,Q f ,R′} � D′�E

p(y):

value: · · · −KQ′
t

−KQ′
t
−1

· · · � PC ∪PY ∪{Q′′
t ,R,R

′} � D′�E
Q′

t
:

value: · · · −Kp(x) −Kp(x)−1

· · · � {Q′′
t ,R

′,x} � D′�E
p(x):

value: · · · −KR −KR −1

· · · � {Qt ,Q′
t ,Q

′′
t ,Q f } � D′�E

R :

value: · · · −KQt −KQt −1

· · · � PY ∪{Q f ,R,R′} � D′�E
Qt

:

value: −1 −2 · · · −Kp(c)
d � {p(�1), p(�2), p(�3)} � · · · � {Q′

t ,Q f ,R′}�E
D:

Table 6.14: �E of the players in the proof of Theorem 6.49

The remaining padding players in P that have not been assigned to �F
p(c) or �E

p(c) have to
be in Np(c). This ensures that Woeginger’s argumentation can be adapted straightforwardly.

We will present the argumentation for fi = sfo and ei = seo in detail. Consider the following
coalition structure Γ∗ that will be used throughout the rest of the argumentation. Let X =
X1 ∪X2 be a partition of X into two sets such that for each x ∈ X1 we have that x ∈ X2.

Γ∗ ={{Q f ,{p(x) | x ∈ X1}},{p(y)}y∈Y ,{R,R′},{Q′′
t },{p(c)}c∈C,{d}d∈D, (6.6)

{Qt ,{p(x) | x ∈ X2},Q′
t}}

Table 6.15 shows the values each player assigns to her coalition in Γ∗.

Q f {p(x)|x ∈ X1} R R′ {p(x)|x ∈ X2} Qt Q′t PY ,PC,Q′′
t ,D

n n+3 4n+2m−1 1 n 2n+m+1 2n+1 0

Table 6.15: Values the players assign their coalition in Γ∗
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Based on the constructed game, we will show Theorem 6.49 step by step, just as Woeginger

did, and we start with the following lemma.

Lemma 6.51 Let (P,�FEN) be a game constructed from a 2-QUANTIFIED 3-DNF-SAT in-
stance (X ,Y,φ(X ,Y )) as in Construction 6.50 and assume that Γ∗ is a core-stable coalition
structure. Then the following holds for Γ∗.

1. Coalition Γ∗(Q f ) consists of Q f and n of the X-Players. For each x ∈ X either p(x) or
p(x) is in Γ∗(Q f ).

2. Coalition Γ∗(R) cannot consist of R together with n X-players, n Y -players, and all m
C-players.

3. Γ∗(R) = {R,R′}.
4. Q′′

t 	∈ Γ∗(Qt).
5. Q′

t ∈ Γ∗(Qt).
6. Γ∗(Qt) = {Qt ,Q′

t ,{p(x)|p(x) 	∈ Γ∗(Q f )}}.
7. Γ∗ yields a value of 0 for Q′′

t , all Y -players, and all C-players.

Proof. Claim 1 directly follows from [Woe13a, Lemma 4.1] except that for the X-Players

all coalitions not containing Q f yield less than n+ 3 points. The remaining argumentation

remains unchanged.

Claims 2 and 3 can be shown with the exact argumentation as in [Woe13a, Lemmas 4.2

and 4.3].

Claim 4 can be shown with a similar argumentation as presented in [Woe13a, Lemma 4.4]:

Assume that Q′′
t ∈ Γ∗(Qt). That implies that Γ∗(Qt) ⊆ {Qt ,Q′′

t }∪PC and Qt assigns a value

of at most m+ n+ 2, Q′
t assigns a value of at most n (because she is not in a coalition with

Qt), and with Claims 1 and 3 we know that each p(x) assigns a value of at most n− 1. Now

consider the coalition {Qt ,{p(x)|p(x) 	∈Γ∗(Q f )},Q′
t} that ensures Qt a value of m+2n+1, Q′

t
a value of 2n+1, and the X-players each a value of n and would thus be a blocking coalition.

Claims 5, 6, and 7 can be shown with the exact same argumentation as [Woe13a, Lem-

mas 4.5, 4.6, and 4.7]. �

Lemma 6.52 Let (P,�FEN) be a game constructed from a 2-QUANTIFIED 3-DNF-SAT in-
stance (X ,Y,φ(X ,Y )) as in Construction 6.50. If there exists a core-stable coalition structure
Γ∗ in this game, then (X ,Y,φ(X ,Y )) is a yes instance of 2-QUANTIFIED 3-DNF-SAT.

Proof. This claim can be shown by the exact same argumentation as Woeginger provides

in [Woe13a, Section 4]. �

Lemma 6.53 Let (P,�FEN) be a game constructed from a 2-QUANTIFIED 3-DNF-SAT in-
stance (X ,Y,φ(X ,Y )) as in Construction 6.50. If (X ,Y,φ(X ,Y )) is a yes instance of 2-

QUANTIFIED 3-DNF-SAT then a core-stable coalition structure Γ exists in this game.
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Proof. Assume that (X ,Y,φ(X ,Y )) is a yes instance of 2-QUANTIFIED 3-DNF-SAT with

the truth-assignment τX for the variables in X . Define a coalition structure Γ as the one in (6.6)

and let p(x) ∈ Γ(Q f ) if and only if x is set to false.

For the sake of contradiction we assume that there is a coalition S∗ that blocks the coali-

tion structure Γ. With [Woe13a, Lemmas 5.1, 5.2, and 5.3] and some further argumentation

provided by Woeginger, we can show that

1. Γ(Q f ) 	⊆ S∗.

2. R,R′ 	∈ S∗.

3. Qt 	∈ S∗.

4. For all c ∈C, p(c) 	∈ S∗.

5. For all y ∈ Y , p(y) 	∈ S∗.

6. Q′′
t 	∈ S∗.

Furthermore, we have that for all d ∈ D, p(d) 	∈ S∗ which simply follows from the fact that

being in a singleton-coalition already maximizes the values of the players in D. Together with

Claims 1 to 6, this implies that any possibly blocking coalition S∗ is the empty set, thus Γ is a

core-stable coalition structure. �

Now we can easily conclude the proof of Theorem 6.49.

Proof of Theorem 6.49. The claim follows immediately with Construction 6.50 and Lem-

mas 6.52 and 6.53. � Theorem 6.49

The complexity of strict core stability existence was settled recently by Peters [Pet15], who

established Σp
2-completeness. Whether Construction 6.44 is applicable to transfer this proof

has to be left open for future work. We establish the following lower bound.

Theorem 6.54 For Borda-induced FEN-hedonic games the problem STRICTLY CORE STA-

BILITY EXISTENCE is coNP-hard for each choice of fi and ei.

Proof. We show coNP-hardness by a reduction from CLIQUE with a similar construction

as the one used in the proof of Theorem 6.42. To this end let G = (V,H) be an undirected

graph with V = {v1,v2, . . . ,vn} and H = {h1,h2, . . . ,hm} and let k ≥ 2 be a positive integer.

Let N (v) denote the neighborhood of vertex v ∈V and recall that N [v] = N (v)∪{v}.

Construct the Borda-induced FEN-hedonic game (P,�FENb) with the set of players P =V ∪
Q∪R∪T , where the players vi ∈V correspond to the vertices in the graph, Q =

⋃n
i=1 Qi with

Qi = {qi,1,qi,2, . . . ,qi,(k−2)}, R = {r1,r2, . . . ,rn}, and T = {t1, t2, . . . , tn}. The weak ranking

with double threshold of the players are shown in Table 6.16.

So we have that each vi considers all players in Qi to be her friends and moreover each other

player in V that corresponds to a vertex in G that is connected to the vertex corresponding to

player vi. The players in each Qi only consider vi to be a friend, do not care about the other

players in Qi and both ri, and ti, while the remaining players are enemies. For the players in R
and T we have that for every i ∈ {1, . . . ,n} both players ri and ti consider qi,1 to be their only
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For each . . . player �F N �E

i ∈ {1, . . . ,n} vi N (vi)∼ Qi P− ({N [vi]∪Qi})) /0

i ∈ {1, . . . ,n},
qi, j vi (Qi −{qi, j})∼ {ri, ti} P− (Fqi, j ∪Nqi, j)j ∈ {1, . . . ,k−2}

i ∈ {1, . . . ,n} ri qi,1 Qi −{qi,1} P− (Fri ∪Nri)

i ∈ {1, . . . ,n} ti qi,1 Qi −{qi,1} P− (Fti ∪Nti)

Table 6.16: Weak rankings with double threshold of the players in the proof of Theorem 6.54

friend, they both do not care about the other players in Qi while considering each other to be

enemies (and the remaining players are their enemies, as well).

We claim that (G,k) 	∈ CLIQUE if and only if there exists a strictly core-stable coalition

structure for (P,�FENb) for each choice of fi and ei.

Only if: Assume there is no clique of size k in G. Then

Γ = (Γv
1,Γ

v
2, . . . ,Γ

v
n,Γ

r
1,Γ

r
2, . . . ,Γ

r
n,Γ

t
1,Γ

t
2, . . . ,Γ

t
n)

with Γv
i = {vi} ∪Qi, Γr

i = {ri}, and Γt
i = {ti} is a strictly core-stable coalition structure

for (P,�FENb): The players in the coalitions Γv
i are in their best valued coalitions, thus every

coalition containing them would not be a weakly blocking coalition. This only leaves the

players in R and T which are all enemies, so these cannot form a weakly blocking coalition

neither. Thus, the coalition structure is strictly core-stable.

If: We show the contraposition. Assume that there is a clique of size k in G, say V ′. To

construct a contradiction, let Γ be a strictly core-stable coalition structure. For Γ to be strictly

core-stable, the players corresponding to the vertices in the clique V ′ have to be together in

a coalition in Γ and no other players can be contained in this coalition. Let the set J = {i ∈
{1, . . . ,n}| vi ∈ V ′} denote those indices corresponding to the vertices that are contained in

the clique V ′. For these j ∈ J we have that the players in Q j (and especially q j,1) cannot

form a coalition with their friend v j, thus the players r j and t j are both interested in forming a

coalition with player q j,1. The players in each Qi can be assigned to coalitions in four different

ways:

1. {r j,Q j}; then {t j,q j,1} would be a weakly blocking coalition.

2. {t j,Q j}; then {r j,q j,1} would be a weakly blocking coalition.

3. {t j,r j,Q j}; then both {r j,q j,1} and {t j,q j,1} would be weakly blocking coalitions.

4. {Q j}; then {r j,q j,1} and {t j,q j,1} would be weakly blocking coalitions.

We see that in all cases there exists a weakly blocking coalition, thus Γ cannot be strictly

core-stable. �
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Tackling open Problems with Metatheorems In their intriguing work, Peters and Elkind

[PE15] establish relations between properties that preferences in hedonic games can fulfill

and NP-hardness of certain stability existence problems. They focus on games in which

each player i ∈ P = {1, . . . ,n} provides a ranking �i over P and based on this ranking, the

players in P−{i} are divided into a set of friends Fi = { j 	= i | j �i i} and a set of enemies

E = { j 	= i | i�i j}. They furthermore assume that extensions of these rankings to preferences

over coalitions, denoted by �= (�1, . . . ,�n), have to allow each player to have arbitrary or-

derings of coalitions of size 2 and that the game (P,�) can be obtained from � in deterministic

polynomial time.

Recalling Definition 6.26 on page 153, we see that with small redefinitions, our Borda-

induced FEN-hedonic games indeed fulfill the above stated requirements: For a fixed player

i ∈ P, we can consider the set of neutral players Ni as a part of her set of friends and extend

the weak ranking �i over P−{i} to a ranking �′
i over P with �′

i =�F
i �Ni ∼ i��E

i , where

again i is indifferent between all players in Ni.

Definition 6.55 (Peters and Elkind [PE15]) A class of hedonic games fulfills the following
properties if for each set of n players P and every collection � = (�1, . . . ,�n) of rankings
over players, there is a game (P,�) that fulfills the given statement.

(1) Consistent on pairs: For all i ∈ P and j,k ∈ Fi ∪{i} it holds that {i, j} �i {i,k} if and
only if j�i k.

(2) Not triangle-hating: For all i ∈ P and j,k ∈ Fi it holds that j �i k implies {i, j,k} �i
{i,k}.

(3) {a-b}-toxic: For all i ∈ P and each S ⊆ P it holds that {i} �i S if ‖S∩Fi‖ = a, but
‖S∩Ei‖ ≥ b.

(4) Strictly {a-b}-toxic: For all i ∈ P and each S ⊆ P it holds that {i} �i S if ‖S∩Fi‖= a,
but ‖S∩Ei‖ ≥ b.

(5) Weakly {a-b}-toxic: For all i ∈ P and each S ⊆ P it holds that {i, j} �i S for all j ∈ Fi
if ‖S∩Fi‖= a, but ‖S∩Ei‖ ≥ b.

We can show that for each choice of scoring vectors, Borda-induced FEN-hedonic games

indeed fulfill some of these properties.

Proposition 6.56 The class of Borda-induced FEN-hedonic games fulfills consistency on pairs,
{0-1}-toxicity, as well as strict and weak {0-1}-toxicity, and is not triangle hating.

Proof. By definition, we have that for each choice of scoring vectors and a fixed player i
with j ∈ Fi ∪Ni and k ∈ Ei it always holds that

f i
Borda({i}) = 0, f i

Borda({i, j})≥ 0, and f i
Borda({i,k})< 0.

From this, the three variants of {0-1}-toxicity follow. The remaining two properties are

clearly fulfilled since our scoring vectors provide descending values with respect to �′
i. �

Conditions for the NP-hardness of NASH STABILITY EXISTENCE and INDIVIDUAL STA-

BILITY EXISTENCE are given in the next theorem.
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Theorem 6.57 (Peters and Elkind [PE15]) The problems NASH STABILITY EXISTENCE and
INDIVIDUAL STABILITY EXISTENCE are NP-hard for a class of hedonic games if the class
fulfills consistency on pairs, strict {0-1,1-1,2-2}-toxicity, and is not triangle-hating.

This theorem, however, is not applicable to our class of Borda-induced FEN-hedonic games

when scoring vectors can be chosen from {seo,ep},{sfo, fo,sfp, fp} or {sep,eo},{sfo, fp} as

this subclass fails to fulfill the needed property of strict {1-1}-toxicity.

Proposition 6.58 The subclass of Borda-induced FEN-hedonic games when scoring vectors
can be chosen from {seo,ep},{sfo, fo,sfp, fp} or {sep,eo},{sfo, fp} is not {1-1}-toxic (and
thus not strictly {1-1}-toxic).

Proof. We show the above claim for each combination of the given scoring vectors with the

following game as a counter example. Let P = {1,2,3,4} be the set of players and we have

the weak preferences with thresholds

�FEN
1 = (2�4 | /0 | 3), �FEN

2 = (1 | /0 | 3�4), �FEN
i = ( /0 | P−{i} | /0), for i ∈ {3,4}.

The values player 1 and player 2 assign to their co-players for different choices of scoring

vectors are given in the following table.

player 1 player 2

fi 2 3 4 1 3 4 ei
sfo 4 -1 3 4 -1 -2 seo
fo 2 -4 1 1 -3 -4 eo

sfp 2 -4 1 1 -3 -4 sep
fp 4 -1 3 4 -1 -2 ep

For example, when fi = sfo and ei = sep, player 1 assigns player 2 a value of 4, player 3 a

value of −4, and player 4 a value of 3. For the coalition S = {1,2,3} and an arbitrary choice

of fi,ei from {seo,ep},{sfo, fo,sfp, fp}, we have that f 1
Borda(S) > 0 = f 1

Borda({1}), which is

equivalent to S �1 {1}. For the same coalition and the scoring vectors from {sep,eo}{sfo, fp}
we obtain the same contradiction from player 2’s view and we have shown that for these pairs

of scoring vectors, (strict) {1-1}-toxicity is not fulfilled. �

In Theorems 6.48 and 6.47 we have established NP-hardness of INDIVIDUAL STABILITY

EXISTENCE and NASH STABILITY EXISTENCE for scoring vectors from {sfp},{sep,eo},

thus it is worth analyzing whether Theorem 6.57 can be applied to the subclass of Borda-

induced FEN-games when the choice of scoring vectors is limited to {fo},{sep,eo}.

Similar to Theorem 6.57, Peters and Elkind [PE15] provide a result stating conditions for

NP-hardness of CORE STABILITY EXISTENCE.

Theorem 6.59 (Peters and Elkind [PE15]) The problem CORE STABILITY EXISTENCE is
NP-hard for a class of hedonic games if the class fulfills consistency on pairs, {0-1}-toxicity,
and weak {1-1,2-2,3-4}-toxicity.
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Unfortunately, for scoring vectors chosen from {seo,ep},{fp, fo,sfo} this result is not ap-

plicable since weak {1-1}-toxicity does not hold.

Proposition 6.60 The subclass of Borda-induced FEN-hedonic games when scoring vectors
can be chosen from {seo,ep},{fp,sfp, fo,sfo} is not weakly {1-1}-toxic.

Proof. Recall the game defined in the proof of Proposition 6.58. It holds for each of the

above specified choices of scoring vectors that f 1
Borda({1,4}) = 1 = f 1

Borda({1,2,3}), which

contradicts the condition for weak {1-1}-toxicity. �

For scoring vectors from {sep,eo},{fp,sfp, fo,sfo}, however, proving weak {1-1,2-2,3-4}-

toxicity would imply NP-hardness of CORE STABILITY EXISTENCE. We leave this and the

question whether Theorem 6.57 can be applied to the given scoring vectors as open question

for future work.

6.4 Concluding Remarks and Future Work
In this chapter we have studied the complexity of stability for different representations of he-

donic games. We furthermore introduced a new class of hedonic games, namely FEN-hedonic
games in which the players’ preferences are incomplete and suggested a way of extending

these preferences using Borda-like comparability functions leading to a new subclass of addi-

tively separable hedonic games, which we call Borda-induced FEN-hedonic games.

In the context of enemy-based hedonic games we focused on the problems of STRICT CORE

STABILITY EXISTENCE and the existence and verification variant of wonderful stability as the

complexity of each of these problems was yet unresolved. While for WONDERFUL STABIL-

ITY VERIFICATION Rey et al. [RRS+15, RRS+14] prove NP-completeness and thus pinpoint

the exact complexity, for both STRICT CORE STABILITY EXISTENCE and WONDERFUL STA-

BILITY EXISTENCE a lower DP-hardness bound could be shown. These results significantly

improve known results. WONDERFUL STABILITY EXISTENCE and STRICT CORE STABIL-

ITY EXISTENCE are conjectured to be Θp
2- and Σp

2-complete, respectively, and we provide a

first step for proving Θp
2-hardness: We show that coDP-hardness of these problems directly

implies their hardness for Θp
2 .

Since enemy-based hedonic games are a subclass of additively separable hedonic games, the

above mentioned results also hold further insights on the until recently unresolved question

of the exact complexity of STRICT CORE STABILITY EXISTENCE in additively separable

hedonic games. To be precise, the formerly best known lower bound of NP-hardness was

improved to DP-hardness. Very recent results by Peters [Pet15], however, settle this glaring

open question and show Σp
2-completeness.

For our newly introduced class of Borda-induced FEN-hedonic games, we have intensely

investigated the complexity of stability with respect to commonly studied stability concepts.

There are, however, some pairs of scoring vectors for which the existence problems regard-

ing Nash stability, individual stability, and strict core stability are yet unresolved: For scoring

vectors from {fp, fo,sfo},{sep,ep,seo,eo} future research should focus on the complexity
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of NASH STABILITY EXISTENCE and INDIVIDUAL STABILITY EXISTENCE, while for scor-

ing vectors from sfp,{sep,eo} and {fp, fo,sfo},{sep,ep,seo,eo} the complexity of CORE

STABILITY EXISTENCE is yet unsettled. We have seen that for some of these choices, the

metatheorems presented in the work of Peters and Elkind [PE15] should be the first approach.

Unfortunately for some of the above choices, we could show that the results from Peters and

Elkind [PE15] are not applicable. Furthermore, other stability concepts such as strong Nash

stability or strong individual stability (see, for instance the work of Karakaya [Kar11]) can

be studied and other concepts of breaking incomparabilities compatible with the generalized

Bossong-Schweigert extension models are worthwhile to be investigated.
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7 Conclusions and Outlook
In this thesis we have studied the computational complexity of standard manipulative attacks

on Bucklin and fallback elections and we have defined new variants of the margin of victory

problem and analyzed their complexity. We have furthermore introduced the possible winner

problem with uncertain weights and have investigated its computational complexity when the

weights can be nonnegative rational numbers.

We furthermore have taken a next step to pinpoint the exact complexity of wonderful sta-

bility existence and strict core stability existence in enemy-based hedonic games. Moreover,

we introduced the class of FEN-hedonic games combining ordinal preferences with the par-

tition of players into friends, enemies, and neutral players. The players’ rankings over their

co-players are extended to possibly incomplete preferences over coalitions using the general-

ized Bossong-Schweigert extension principle. As one way of handling such incomparabilities,

we defined a subclass of these games, Borda-induced FEN-hedonic games, in which the pref-

erences are additively separable and are derived from Borda-like scoring vectors. For these

games we studied the complexity of verification and existence problems of well-known stabil-

ity concepts.

Our study, however, has left open some unresolved problems, which are summarized in the

concluding remarks of the respective chapters.

Being a fast evolving and fruitful line of research, the context of computational social choice

yields numerous ways of extending the studies presented in this thesis. In the following we

survey some of the possibly most promising directions for general future work.

In the context of voting, much recent research has focused on multiwinner elections in

which a set of winners has to be determined, for example to elect a committee or council.

For these settings, known voting rules have to be adapted [BKS04] and these new aggregation

methods have been intensely studied with respect to their algorithmic properties, see amongst

others the work of Meir et al. [MPR+08], Aziz et al. [AGG+15], Amanatidis et al. [ABL+15],

Baumeister et al. [BDR15], and Baumeister and Dennisen [BD15]. Most of this work focuses

on approval-based elections.

Another interesting line of research is the study of randomized voting rules, which have been

of central interest in social choice theory, see the book chapter by Barberà [Bar10]. Recent

results are due to Aziz et al. [ABB14] and Brandl et al. [BBH15].

In the context of hedonic game, further research can be taken into the direction of defin-

ing new classes of hedonic games or further stability concepts. Also manipulative behavior

of players is of high interest, see the work of Rodriguez-Alvarez [Rod09] or Vallée et al.

[VBZ+14].

Another interesting approach that can be taken is the definition of partition correspon-
dences, which are procedures that determine for a given game a partition of the players into
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coalitions based on their preferences, but in a centralized manner. For such mechanisms, ax-

iomatic properties can be defined and analyzed. Motivation for such procedures can be found

in settings, where the decentralized coalition formation of the players is not feasible, for ex-

ample when the communication between players is disturbed or not possible at all.

This thesis and much research has focused on the computational complexity of voting and

stability problems stated as decision problems. That is, we analyze the complexity of deciding

whether a given election can be manipulated, bribed, or controlled, or whether a given game

has a stable coalition structure. A natural next step is to consider the complexity of the cor-

responding search problems, as has been done by Hemaspaandra et al. [HHM13] for voting

problems and by Bogomolnaia and Jackson [BJ02], Gairing and Savani [GS10, GS11], and

Sung and Dimitrov [SD10] for hedonic games.

Furthermore an interesting approach is to combine aspects from voting theory and game the-

ory in the sense that manipulative activities in elections can be modeled as games, as has been

done in the work of Bachrach et al. [BEF11], Elkind et al. [EGR+15], Dutta et al. [DJL01],

and Obraztsova et al. [OEP+15].

We conclude by referring to the intriguing work by Bredereck et al. [BCF+14a], who com-

pactly, but nevertheless insightfully survey a collection of research challenges regarding the

parameterized complexity of problems in the context of computational social choice.
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