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”But above all, master technique and produce original data; all the rest will follow.”

Santiago Ramón y Cajal



Peer-reviewed publications related to the present dissertation

Original papers

Bzdok D, Grisel O, Eickenberg M, Thirion B, Varoquaux G. Semi-supervised Factored Logistic Regression

for High-Dimensional Neuroimaging Data. Advances in Neural Information Processing Systems, 2015.

Bzdok D, Varoquaux G, Grisel O, Eickenberg M, Poupon C, Thirion B. Network-network architecture:

Generative models of task activity patterns. Under review.

Bludau S*, Bzdok D*, Gruber O, Kohn N, Riedl V, Palomero-Gallagher N, Mller V, Hoffstaedter F, Amunts

K, Eickhoff SB. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitonically

informed voxel-based morphometry. American Journal of Psychiatry, in press. *equal contributions

Bzdok D*, Hartwigsen G*, Reid A, Laird AR, Fox PT, Eickhoff SB. Left inferior parietal lobe engagement

in social cognition and language. Under review. *equal contributions

Bzdok D, Heeger A, Langner R, Laird A, Fox P, Palomero-Gallagher, Vogt BA, Zilles K, Eickhoff SB.

Subspecialization in the human posterior medial cortex. Neuroimage, in press.

Eickhoff SB, Laird AR, Fox PT, Bzdok D*, Hensel L*. Functional segregation of the human dorsomedial

prefrontal cortex. Cerebral Cortex, in press. *equal contributions

Bzdok D, Langner R, Schilbach L, Laird AR, Fox PT, Zilles K, Eickhoff SB. Characterization of the

temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and

functional decoding. Neuroimage, 2013, 81:381-92.

Review and opinion papers

Eickhoff SB, Thirion B, Varoquaux G, Bzdok D. Connectivity-based parcellation: critique & implications.

Human Brain Mapping, in press.

Eickhoff, SB & Bzdok D. Neuroimaging and modelling. Where is the road to clinical application? Der

Psychiater, 2014, in press.

Eickhoff SB & Bzdok D. [Statistical meta-analyses in imaging neuroscience.] Klinische Neurophysiologie,

2013, 44:199-203.

Book chapters

Bzdok D & Eickhoff SB. Statistical learning of the neurobiological of schizophrenia. In: The Neurobiology

of Schizophrenia, Springer, Heidelberg, in press.

Bzdok D & Eickhoff SB. The resting-state physiology of the human cerebral cortex. In: Brain Mapping:

An Encyclopedic Reference. Oxford, 2015.



1 Introduction

1.1 Analytical and heuristic accesses to nature

The world around us is highly complex. A large proportion of human research efforts are undertaken in

an analytical fashion expressed by ”the unreasonable effectiveness of mathematics in the natural sciences”

(Wigner, 1960). The author states that mathematical language is a powerful tool to describe, quantify, and

predict phenomena in nature. He emphasizes that it is not imperative that natural regularities exist in the

world. He goes on to say that it might be even more surprising that humans can actually find regularities

in the physical world, describe them by mathematical equations, and use these to their advantage. Starting

from human-conceived axioms we have derived always more complicated properties of and relationships

between mathematical objects by formal proofs (Connes, 2010). A logical pyramid of theoreoms is built

that lead to always more general assertions. We also have detailed knowledge of the limitations of these

mathematical assertions. On the one hand, an identical regularity can often be equally well described in very

distant branches of mathematics. On the other hand, identical mathematical conclusions have reemerged

from derivation of a priori unrelated assertions. Indeed, the same formal language has proofed very apt in

the study of completely unrelated topics and diverging scientific disciplines; from the movements of celestial

objects in the universe studied in astronomy to the metabolism pathways governing the inner life of the

cell studied in biochemistry. Many rules about the world can thus be perfectly grasped (Hardy, 1992). As

another example, Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, etc.) reappear in many natural phenomena. The

number of petals of a flower and the spirals of a pineapple tend to be Fibonacci sequences. The family

tree of honey bees is also governed by Fibonacci regularities. Even the proportions of human finger bones

follow this formalism. Knowledge of such mathematical regularities allows imposing logical structure on

the external world. It remains unclear whether we have discovered or invented mathematics. Yet, there is

probably no doubt that mathematical conceptualization evolves as a feature of human cultural evolution

(Tomasello, 2009). Even the most abstract mathematical concepts can be expressed by one and understood

by another individual. Consequently, mathematical knowledge can be easily passed on across generations

and geographical distances. One may also note that there is usually consensus among mathematicians

about the architecture of their discipline. From an anthropological perspective, mathematical formalism for

natural phenomena appears to be one of the most powerful tools and most defining properties of the human

species (Dehaene, 2011). Indeed, Eugene Wigner concludes his praise of equations for the investigation of

nature with the following words: ”The miracle of the appropriateness of the language of mathematics for the

formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should

be grateful for it and hope that it will remain valid in future research [...].” (Wigner, 1960, p. 14).

However, the seeming perfection of mathematically described mechanisms in science has repeatedly been put

into question formally and empirically. In formal approaches, many axiomatic systems, typically formulated
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by mathematics, have been shown to be incomplete and inherently contradictory because some true assertions

cannot be proven (Gödel, 1931). That is, not every logical statement expressed by mathematics can be proven

or rejected. This is not a weakness of mathematics itself but of the formal systems that are typically described

by means of mathematical language1. Additionally, Turing machines are a tool of theoretical computer

science that act on a stream of symbols by recourse to a set of known rules to emulate computer algorithms

(Turing, 1936). Invention of these computer-program proxies was an important conceptual contribution to

the development of modern computers. Yet, Turing’s computer analogy was also instrumental to investigate

the limits of formal instructions executed by later electrical computers (e.g., in form of complexity theory).

Moreover, it is possible to define a real number with equidistributed digits (’Chaitin’s constant Ω’) that

can however not be computed (Chaitin, 2006). This is also not a weakness of mathematics itself either but

indicates limits of formal computation models that are described by mathematics. In sum, the seemingly

exhaustive analytical systems that are enabled by the language of mathematics have been shown to be

limited or incomplete in several formal approaches.

In empirical approaches ”the unreasonable effectiveness of data” (Halevy et al., 2009) has challenged an-

alytical rigor expressed by mathematical formalism alone as the best possible way to describe, quantify,

and predict natural phenomena (LeCun et al., 2015; Pietsch, 2013). More concretely, three recent empirical

observations might indicate a shift in discourse in some natural science branches:

1. Sophisticated, more accurate mathematical models can be outperformed by simple mathematical mod-

els that are provided with more input data. For instance, non-linear models may less well predict a

complex non-linear phenomenon than simple linear models in high-noise and data-scarce scenarios.

2. Oversimplified models provided with much input data can outperform models that have been de-

signed according to extensive domain expertise. For instance, complicated models drawn from human-

made linguistic knowledge have been outperformed by linguistics-näıve order-1 hidden Markov models

(HMM) combined with large text corpora.

3. There appears to be a minimal data threshold such that the data-derived models suddenly exhibit

emergence properties. For instance, simple models have been much less successful in computational

linguistics until a few years ago due to the much smaller text corpora.

Indeed, one prominent example for describing, quantifying, and predicting complex phenomena in a heuristic

fashion is automatic language translation of human text and speech. Translation systems that have been

built based on human-made grammar rules have perhaps never achieved satisfactory performance (Norvig,

2011). That is, analytical approaches that exploited thousands of book pages archiving linguistic domain

expertise in form of deterministic grammatical, syntactical, and orthographical rules appeared insufficient

1Albert Einstein: ”As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain,

they do not refer to reality.”
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for building language models that correctly translate every-day communication between humans. Statistical

machine translation was more successful by starting out based on the assumption that the ’true’ rules

underlying human language are not known. More specifically, probabilistic HMM are one of the frequently

used heuristic approaches. The next word is predicted only by the one (order 1) or few (order n) preceding

ones with equal transition probabilities (Bengio, 1999). This special case of a recurrent neural network

computes the conditional probabilities of the next language element depending on the most recent history

of these elements based on a dictionary of known elements. The transition matrix of human language (i.e.,

Given the last 1 or n word[s], what are the probabilities of the next word?) can be easily learned from

data by observing a preferably long stream of real-world language (i.e., a ’corpus’). In this way, the class of

HMMs and similar models became a dominating feature of computational linguistics, while linguistic domain

expertise lost always more in importance. Today, virtually all professional translation software solutions for

both written and spoken language are enabled by heuristic statistical models.

As an example from human biology, we currently have only few means to predict the toxicity of environmental

chemicals and potential effects of new drug compounds on health. The complex and unknown phenomenon

in nature here pertains to the mechanistic link between a protein’s known primary structure (i.e., 1D chain of

amino acids) and its unknown tertiary structure (i.e., the combination of 3D foldings of the amino acid chain

that subserves function). Among the ≈1,000,000 of existing proteins we only know the tertiary structure

of ≈50,000 ones. The structural configuration is however necessary to identify the position of binding sites

for protein-protein interaction. Knowledge of these sites in 3D space is crucially important to infer that

protein’s interplay with the human body. That is, the sequence of amino acids determines the frequently

unknown protein folding structure and the ensuing spectrum of protein-protein interaction in-vivo. In

this case, the learning problem is to derive a computational model from massive pairs of known primary

protein structure and known protein properties, including toxicity, by intentionally treating the frequently

unknown 3D structure as a black box. State-of-the-art neural network models have very recently solved this

heuristic learning problem better than probably any previous approach in academia or industry (Dahl et al.,

2014; Unterthiner et al., 2015). These investigators thus showed that biological mechanisms can be reliably

predicted from single amino acid chains, even without recourse to biological domain expertise. There might

currently not exist an analytical counterpart to such structure-function mapping of proteins. In the future,

successful heuristic approaches will conceivably be always more successful in these and other probabilistic

scenarios, including prediction of algorithmic trading in stock markets, political outcomes, optimization of

advertisement strategies, and controlling self-driving cars.

In sum, humans have recently gained the capability to create heuristic algorithms that derive complex pre-

dictive models from large amounts of data. Observing a phenomenon many times might be sufficient to

algorithmically extract the regularities of that phenomenon’s behavior in nature. This has entailed a shift

from purely mathematical treatment to giving up some human control to self-emergening mechanistic pat-

3



terns (Jordan, 2015). In the absence of an analytical access, simple statistical models can thus automatically

predict diverse natural phenomena depending on the quality and quantity of the available data resources.

1.2 Analytical and heuristic statistical approaches

Statistics aims at extracting information from data about the mechanisms in nature that generated these

data. Given its eclectic character, it may come as no surprise that statistics has developed both analytical

and heuristic strategies to model regularities of phenomena in nature. Yet, analytical and heuristic statistical

methods have been developed rather independently (Breiman, 2001). They differ with regard to historical

origin, mathematical foundation, and modelling goal.

The majority of statisticians follow an analytical regime by adhering to classical statistics (CS) for data

modelling. They hold that the phenomenon under study can be viewed as a black box whose inner workings

can be described by a small set of underlying variables. It is up to the statistician to choose the model that

best reflects the data. Data are then used to estimate the parameters of that prespecified model. Classical

statistics has dominated research at the universities since its inception almost 100 years ago. Well known

members of the CS family include for instance Student’s t-test, ANOVA, and Chi-squared test. Statistical

hypothesis testing has also been introduced at the beginning of the last century (Fisher, 1925; Neyman and

Pearson, 1928). The same approach is still practiced today (Goodman, 1999). The ensuing p-value measures

how likely it is to observe the data at hand assuming the non-preferred null hypothesis (H0) to find indirect

evidence for the preferred alternative hypothesis (H1). Similarly, likelihood-ratio tests allow comparison of

a null model and an alternative model to derive p-values of significantly different model likelihood given the

data. Despite the prevailing presence of p-values in contemporary research practice, it was not conceived by

Fisher as an acid test to judge existing versus non-existing effects in nature. Rather, the intention was a

preliminary tool to filter which potential effects should be more explicitly tested (Nuzzo, 2014). Notably, the

drawn conclusions may be wrong if the hand-selected model is a bad description of the natural phenomenon

under study. Nevertheless, statistical hypothesis testing probably fit perfectly in its time of inception and

adoption. First, CS was designed for use with mechanical calculators (Efron and Tibshirani, 1991). Gaussian

distributional assumptions have been very useful in many instances to reach mathematical convenience and,

hence, computational tractability. Second, it suited perfectly the Popperian view of critical empiricism in

academic discourse (Popper, 1934): scientific progress is to be made by continuous replacement of current

hypotheses by always more explanatory hypotheses by means of verification and falsification. The rationale

behind hypothesis falsification is that even a lot of evidence cannot confirm a given theory in an inductive

way, while a single counter example is able to proof a theory wrong in a deductive way. In sum, classical

statistics was mostly fashioned for problems with small samples and very few variables that can be grasped

by plausible models with a small number of parameters chosen by the investigator in an analytical fashion.

In contrast, only a small minority of statisticians follow a heuristic regime by adhering to statistical learning
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(SL) for algorithmic modelling. This statistical framework is frequently adopted by computer scientists,

physicists, engineers, and others without formal statistical brackground that are typically working in industry

rather than academia (Daniel and Wood, 1971). They hold that natural phenomena can be studied by

estimating regularities in the inputs and outputs to the black box without making assumptions about its

internal ’true’ mechanisms. A statistical model is thus derived that expresses relationships between the

input and output variables whose parameters are learned by ’training data’ (Abu-Mostafa et al., 2012). Put

differently, a new function with potentially thousands of parameters is created that can predict the output

from the input alone, without explicit programming model. The input data thus need to represent different

variants of all relevant configurations of the examined phenomenon in nature. Well-known members of

the SL family include for instance k-means clustering, Lasso/Ridge regression, and support vector machine

classification. Please note that SL here summarizes the seemingly more specific terms ’data-mining’, ’pattern

recognition’, ’artificial intelligence’, and ’machine learning’ that are often employed inconsistently. The

independent historical origin of CS and SL families is witnessed by the most basic terminology. In the CS

literature, inputs to statistical modelling are traditionally called independent variables or, more recently,

predictors, while these are commonly referred to as features in the SL literature (Hastie et al., 2011; Kuhn and

Johnson, 2013). When evaluating whether a certain problem is a possible target for SL three requirements

come into play (Abu-Mostafa et al., 2012):

1. A regularity exists (if there is no pattern, then it might still be worth trying SL).

2. The regularity cannot be formalized analytically (otherwise one can still apply SL, but existing ana-

lytical approaches probably create a better model).

3. We have data on the problem (the more, the better).

Since 1980 this regime led to a surge of new computer-intense statistical techniques that can be difficult

to compute on a normal calculator and that are less concerned with making mathematically convenient

assumptions to increase computational tractability (Efron and Tibshirani, 1991). This development has

been flanked by changing properties of datasets that are always higher-dimensional (i.e., wide data, more

features per observation) and based on larger samples (i.e., long data, more observations per dataset). The

important implication is that the asymptotic guarantees in CS, typically related to the law of large numbers

or the central limit theorem, do not provide mathematical backing of statistical methods applied in the

high-dimensional regime (Giraud, 2014). Instead, SL provides often algorithmic solutions and theoretical

justifications by incorporating additional structural constraints. This is well illustrated by the bet on sparsity

(Hastie et al., 2015): The investigator should always expect only a subset of the features to be relevant

because no existing statistical methods performs well in the dense scenario that assumes the entirety of

the feature is relevant in the true model. The optimality of such structural constraint in model selection

has very recently been shown by mathematical proofs. Generally, this is a trend that is not specific to
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neuroimaging research but also takes places in other scientific disciplines, including but not exclusive to

weather forecasting (Bauer et al., 2015) and economic predictions (Manyika et al., 2011). In sum, statistical

learning was mostly fashioned for problems with many variables in potentially large samples with mostly

unknown data generating processes that are emulated by a mathematical function created from data by a

machine in a heuristic fashion.

It is very important to appreciate that some statistical methods cannot be easily categorized by the CS-SL

distinction. Although the two families of statistical methods can be easily conceptualized by a number of

archetypical properties, statistical methods span a continuum between the two poles of CS and SL (Jordan,

2015, p. 61). For instance, models are often not exclusively deterministic because they incorporate a compo-

nent that accounts for unexpected, noisy variation in the data. Further, the CS-SL distinction is orthogonal

to the Bayesian-Frequentist difference and can be adopted in both these flavors (Efron, 2005). Bayesian

statistics are optimistic in considering the data at hand conditioned on preselected distributional assump-

tions for the probabilistic model to perform direct inference based on the computed posterior distributions.

Frequentist statistics are pessimistic in considering a distribution of possible data treating model parameters

as unknown (i.e., pessimistic approach) to perform indirect inference by the differences between observation

and model-derived data. Neither can univariate versus multivariate statistics relying on one versus several

input variables be clearly grouped into either CS or SL. Statistical methods can also be distinguished into

parametric and non-parametric groups (Bishop, 2006). Parametric approaches make explicit distributional

assumptions (effectively acting as a type of filter or compression) and have a constant number of model

parameters, whereas non-parametric approaches avoid predetermining its model structure (operating on the

full data) and the model parameters increase explicitly or implicitly as a function of dataset size2. More

interpretable parametric tests typically have higher power (i.e., require smaller datasets) and are less inter-

pretable non-parametric tests typically incur higher computational load (i.e., due to dynamically increasing

model complexity). Parametric models are exemplified by support vector machines, Lasso regression, and

principal component analysis, while non-parametric models are exemplified by k-nearest neighbors, neural

networks, and hierarchical clustering. Moreover, statistical models can be discriminative or generative (Ng

and Jordan, 2003). Discriminative models focus on solving a supervised problem of predicting a class y by

directly estimating P (y|X) without capturing special structure in the data X. Typically more demanding

in data quantity and computation resources, generative models estimate special structure by P (y|X) from

P (X|y) and P (y) and can thus produce synthetical examples X̃ for each class y. In general, neither CS nor

SL can generally be considered superior. This is emphasized by the no free lunch theorem stating that no

single statistical strategy can consistently do better in all circumstances (Wolpert, 1996). The investigator

2Non-parametric approaches are thus naturally prepared to capture emergence properties in larger dataset sizes (Jordan,

2015).
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is challenged to choose the statistical approach that is best suited to the phenomenon under study and the

research object at hand.

Regarding modelling goals, CS and SL exhibit various differences. CS typically aims at modelling the black

box by making a set of accurate assumptions about its content, e.g. the type of signal distribution. Contrar-

ily, SL typically aims at finding any way to model the output of the black box from its input while making

the least assumptions possible (Abu-Mostafa et al., 2012). In CS the phenomenon is therefore treated as

partly known (i.e., the processes that generated the data), whereas in SL the phenomenon is treated as

complex, completely unknown, and partly unknowable. It is in this way that CS tends to be analytical in

imposing mathematical rigor on the phenomenon, whereas SL tends to be heuristic in finding useful approx-

imations to the phenomenon. CS assumes a given statistical model at the beginning of the investigation,

whereas in SL the model is generated in the process of the statistical investigation. In more formal terms,

CS therefore closely relates to parametric statistics for confirmatory data analysis, whereas SL closely re-

lates to non-parametric statistics for exploratory data analysis (Tukey, 1977). In more practical terms, CS

is typically applied to experimental data that were generated the investigator controlled the variables of

interest (i.e., the system under studied is perturbed), while SL is typically applied to observational data

without such structured influence by the investigator (i.e., the system is left unperturbed) (Domingos, 2012).

The work unit for CS is the quantified significance associated with a statistical relationship between few

variables given a prespecified model. The work unit for SL is the quantified robustness of patterns between

many variables or, more generally, the robustness of special structure in the data (Hastie et al., 2011). CS

therefore tests for a particular structure in the data, whereas SL explores and discovers structure in the data.

Formally, CS implements data modelling by imposing an a priori model in a top-down manner, whereas

SL implements algorithmic modelling by fitting a model as a function of the data at hand in a bottom-up

manner. Intuitively, the ’truth’ is believed to be in the model (Wigner, 1960) in a CS-contrained regime,

while it is believed to be in the data (Halevy et al., 2009) in a SL-constrained regime.

As a drastically oversimplified, yet useful, conclusion, CS preassumes and tests a model for the data, whereas

SL learns a model from the data. Indeed, both human and computer learning are theoretically more conceiv-

able in a probabilistic rather than deterministic sense (Abu-Mostafa et al., 2012; Friston, 2010; Dayan et al.,

1995; Gregory, 1980). Moreover, each probabilistc model can be viewed as a superclass of a deterministic

model (Norvig, 2011). Taken together, CS assumes that the data behave according to known mechanisms,

whereas SL exploits computer algorithms to avoid the a-priori specifications of data mechanism.

1.3 The curse of dimensionality

The increasing quantities of data to analyze put many research domains, including brain imaging, to the

test (Poldrack and Gorgolewski, 2014). Today’s functional neuroimaging methods offer very high resolution

in space (especially fMRI and PET) and time (especially EEG and MEG) (Amunts et al., 2013; Buzsáki
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and Draguhn, 2004). Yet, the ’effective dimensions’ (Jordan, 2015) of neuroimaging data remain elusive.

The mere number of features per observation poses serious statistical challenges to the investigator. It is the

neuroscientific version of what is generally referred to as curse of dimensionality (Bellman, 1961). At the

root of the problem, all data samples look virtually identical in high-dimensional data scenarios. Accustomed

to regularities in 3D neighborhoods, human intuition is often led astray in how data behave in input spaces

with many variables.

The more dimensions an input space spans, the further the data points are away from each other (Hastie

et al., 2011). The closest and furthest neighbors of a given point become always closer (Beyer et al., 1999).

Counter-intuitively, measuring the distance between a randomly selected data point and its closest uniformly

distributed neighbors, reveals a shell-like occurrence probability of these neighbors, rather than a centered

probability mass. Put differently, when approximating a hypersphere by a surrounding hypercube, the

probability mass of the hypercube would almost entirely lie outside the hypersphere. As the number of

dimensions approaches infinity the volume of the hypersphere gets close to 0 and hence becomes irrelevant

comparing to the hypercube volume. The probability mass of the hypercube will increase in its corners and

decrease in its center. Put in yet another way, a space divided into isotropic units grows exponentially in the

unit number with linearly increasing dimensionality. As the main practical conclusion, the amount of data

necessary to populate these units also grows exponentially with linearly increasing input variables (Bishop,

2006). Additionally, the target function is almost always unknown in statistical learning investigations.

Hence, knowledge is frequently unavailable as to whether or not special structure exists in the input data

that can be exploited. Knowledge of special structure of the phenomenon under study can simultaneously

reduce bias (i.e., difference between the target function and the average of the function space derivable

from a model) and variance (i.e., difference between the best approximating function from the function

space and the average of the function space). This is a rare opportunity in SL because increasing, for

instance, the model complexity typically increases the variance and lowers the bias, and vice versa. In

particular, the problem of overfitting in SL has an immediate relationship with the multiple-comparisons

problem in CS (Domingos, 2012). The bias-variance decomposition captures the fundamental tradeoff in

statistical modelling between approximating the behavior of the studied phenomenon and generalizing to

newly generated data describing that behavior.

A peacefully coexisting conceptual framework exists in SL that is independent of the unknown target func-

tion. The Vapnik-Chervonenkis (VC) dimensions formalize the circumstances under which learning processes

can be successful (Vapnik, 1996). This comprises any instance of learning from a number of observations to

derive heuristic rules that capture properties of phenomena in nature, including learning in humans and ma-

chines. Formally, the VC dimensions measure the complexity capacity of a class of approximating functions

(i.e., the function space). Practically, good models have finite VC dimensions and are therefore capable to

generalize to new data. Bad models have infinite VC dimensions that are unable to make generalization
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conclusions on unseen data regardless of data quantity.

More concretely, statistical estimators that incorporate locally varying functions in small isotropic neigh-

borhoods will fail to generalize in high-dimensional data scenarios. SL approaches that overcome the curse

of dimensionality typically incorporate an explicit or implicit metric for anisotropic neighborhoods (Bach,

2014; Hastie et al., 2011). It is the hyperparameters that govern the smoothing behavior of the imposed

local neighborhoods. In so doing, the hypothesis set (i.e., each function in the function space represents

a hypothetical solution to the estimation problem) is hopefully reduced to a reasonable preselection (reg-

ularization). Guiding the statistical estimation process by complexity restrictions can alleviate the curse

of dimensionality. First, we can deliberately exclude members of the hypothesis set. Viewed from the

bias-variance tradeoff, this calibrates the sweet spot between underfitting and overfitting. Viewed from

Vapnik’s statistical learning theory, the VC dimensions can be reduced and thus the generalization perfor-

mance increased. Second, there is an infinity of possiblities to restrict the hypothesis set. Yet, these choices

are typically guided by external knowledge independent of the data at hand. Third, different complexity

restrictions typically lead to different best approximating functions.

In sum, the choice of any statistical method contraints the spectrum of possible results and of permissible

interpretations. A scientific discovery in the brain is only valid in the context of the complexity restrictions

that have been imposed on the neurobiological phenomenon of interest. No single statistical strategy, be

it SL, CS, or other, can consistently do better in all neuroscientific investigations (Wolpert, 1996). The

present dissertation is concerned with complexity restrictions to neurobiological reality as observed by fMRI

scanning.

1.4 The human brain as a complex phenomenon

The human brain is a prime example of a black box that is complex, mysterious, and perhaps in part

unknowable. It has repeatedly been proposed that the human brain might be the most complex object in

the known universe (Kandel et al., 2013). With the language from above, the human brain might constitute

a phenomon in nature that can perhaps not be perfectly grasped by purely analytical models expressed

by mathematical formalism. More concretely, the most pertinent structure that should be assumed for the

human brain, when measured by contemporary functional neuroimaging techniques (cf. next passages), is

currently unknown. Hence, the brain imaging access to neuroscience can readily be framed as a problem of

representation learning (Bengio et al., 2013). It is conceivable that this task can be solved without exhaustive

neurobiological micro-/meso-/macro-level knowledge (Sandberg and Bostrom, 2008). This is always more

supported by empirical evidence (Helmstaedter et al., 2013) and it is a contention that is embraced by the

present dissertation.

Nature versus nurture. From a global perspective, the genetic difference between our genetic endowment

and that of our closest ancestors, the non-human primate, turns out to be strikingly small. This has encour-
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aged the conviction that one or very few key genetic adaptations in the primate lineage have unchained an

avalanche of cognitive and cultural inventions that led up to today’s civilization (Durham, 1991; Tomasello,

2009). That is, the human brain might be much more defined by the increasingly fast cultural evolution

rather than the ramifications of slow biological evolution. Crucial cognitive improvements, such as the emer-

gence of verbal language, might have fueled cultural improvements that, in turn, enabled further cognitive

improvements and inventions etc. pp. This form of learning is a very plausible and decisive property of

intact tissue of the central nervous system. As a first challenge in neuroscience, it might therefore be impos-

sible to cleanly dissect the nature-nurture interplay into independent contributing factors that act during

phylogeny (i.e., development of the species) and ontogeny (i.e., development of an individual organism). In

this sense, investigating the limits between ’nature’ and ’culture’ in the human brain might equate with

asking a paradoxical question (Skinner, 1976; Dehaene and Cohen, 2007). Instead, a necessary factor for

the high level of abstraction in human culture might have precisely been the inextricability, due to bidirec-

tional influence, of neurobiological plasticity and relentless cultural exchange between human individuals in

a non-stop optimization process (Vygotsky, 1978; Luhmann, 1984; Bengio, 2014).

Neural reuse. Given the acceleration in human cultural evolution (Virilio, 1997), it might be rather un-

likely that the human brain has developed dedicated neuronal populations to subserve the panoply of novel

behaviors. Rather, evolutionarily recent mental skills, such as reading and writing, explicit pedagogy, and

symbolic mathematics, are realized by recombining low-level circuits that initially developed for other func-

tional roles. This view has become known as neural reuse or neural recycling hypotheses (Anderson, 2010;

Dehaene and Cohen, 2007). Non-human primates are lacking many of the sophisticated mental operations

that are crucially important for maintaining human societies (Mesulam, 1998; Tomasello et al., 2003). In

fact, the ’social brain hypothesis’ states that our computationally powerful brains are not an adaptation

to solve problems posed by the physical environment, but for successfully coping with increasingly com-

plex human social systems (Humphrey, 1978; Byrne and Whiten, 1988; Dunbar and Shultz, 2007). Yet,

it is becoming increasingly clear that socio-affective processing in the human brain is probably realized by

domain-general brain regions and networks that are not specific to processing social relationships (Bzdok

et al., 2015; Behrens et al., 2009; Barrett and Satpute, 2013). These considerations entail a second challenge

in neuroscience: It is probably impossible to know what purpose processing in a given neuronal popula-

tion has originally evolved to serve. All that can be observed are external manifestations and correlative

relationships of this latent biological purpose.

Inter-individual variability. Importantly, no two human brains are alike. Quite the opposite, they differ with

regard to the morphology of gyri and sulci, the topology of cytoarchitectonically and chemoarchitectoni-

cally distinguishable brain areas, the axonal connections linking the cortical areas, as well as the history of

their sensory inputs. The extent of a cortical area and its inter-individual variability can be quantitatively
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examined with its relation to cognition and behavior, that is, performance in psychological tasks in the

healthy or diseased brain. For instance, the volume of the amygdala is linked to inter-individual differences

in many (temporally transient) states and (temporally enduring) traits (Phelps and LeDoux, 2005; Sallet

et al., 2011; Bickart et al., 2011). As a third challenge in neuroscience, it is currently unknown how inter-

indivindividual differences in behavioral facets are mediated on the brain-level3. More specifically, it remains

largely elusive whether distinct behavioral differences between individuals are associated with changes of

cell bodies, dendrites, axonal connections, and/or glial cells (Kanai and Rees, 2011). That is, there is no

clear understanding of how this set of microstructures interact to solve neural computation problems, let

alone their inter-individual differences. From a methodological perspective, volumetric modelling techniques

conventionally employed in the neuroimaging field are näıve to many types of possible morphological differ-

ences between individuals. For instance, it is currently difficult to statistically grasp inversely proportional

left and right hemisphere volumes or a medical condition that randomly affects either the left or the right

brain in an individual (Ashburner and Klöppel, 2011).

Hemispheric asymmetry. Worth to be proposed as an independent challenge of neuroscience, the neurobio-

logical purpose of inter-hemispheric asymmetry is yet to be unveiled. The connectivity differences between

the left and right brain are for instance currently underresearched. They are even hardly known in the mon-

key (Stephan, 2007) that usually serves a fallback system for human connectivity investigations (Mesulam,

2012). In humans, the majority of homologous brain areas feature direct anatomical connections. Neverthe-

less, as two textbook examples, why the language and attention processes typically lateralize to the left and

right hemisphere, respectively, is currently understood only in modest fragments (Corbetta and Shulman,

2002; Stephan et al., 2003; Price, 2010).

Observational versus interventional investigations. It is further unlikely that we will reach exhaustive under-

standing of the human brain by mere observational, as opposed to interventional, research methods 4 (Pearl,

2009). Purposely induced local lesions of brain tissue in rats have early been systemically related to resulting

differences in behavioral performance indices (Franz and Lashley, 1917). In hamsters, cats, and monkeys,

decortication entails only small sensory or motor effects, while such tissue impairments of the neocortex in

humans result in much more pronounced and less reversible functional deficits (Lashley, 1951), which points

to increasing corticalization of brain function. In humans, brain lesion studies have been the most common

approaches to localize brain functions until about 20 years ago. However, inferring neurobiological insight

3Santiago Ramón y Cajal wrote: ’The complexity of the nervous system is so great, its various association systems and cell

masses so numerous and complex, and challenging, that understanding will forever lie beyond our most committed efforts.’

(Ramón y Cajal, 1909/1911)
4This idea is reflected in Edward O. Wilson’s words ”Disturb Nature and see if she reveals a secret.” (Wilson, 2013) as well

as in G. M. Shepherd’s words ”Nothing in neuroscience makes sense except in the light of behavior.” (Shepard, 1988)

11



from lesion findings constitutes yet another challenge to neuroscience. It constitute an overly simplistic con-

clusion that changes in behavior after destroying brain tissue in a circumscribed brain area directly reveals

functional roles of that brain area (Young et al., 2000). It is a limitation of these studies that they attempt

to derive the normal function of an area from the effects of damage to that area. First, the destroyed

brain area might primarily subserve inhibitory effects, such that abolition can increase neural processing

subserved in remote areas mediated by network connections. Second, a large fraction of human lesion cases

are stroke patients. The spectrum of lesion patterns found in these populations is however limited by the

existing variability of brain vessel anatomy (e.g., the majority of ischemic strokes affect the Arteria cerebri

media). Third, there is probably not a single psychiatric disorder that would be characterized by very local,

as opposed to distributed, differences in brain structure (Goodkind et al., 2015). More generally, it is still

a matter of debate whether structure (i.e., locally specific micro- and chemoarchitecture), connectivity (i.e.,

short- and long-range axonal targets), and function (i.e., lesion-induced behavioral changes) reflect three

viewpoints on the same heterogeneity of a particular brain area (Passingham et al., 2002; Kelly et al., 2012).

The binding problem. Each area in the brain exhibits activation patterns of neuronal populations with oscilla-

tory regularities. These oscillatory circles and their associated behaviors are highly preserved in mammalian

evolution (Buzsáki et al., 2013). Perhaps since early reports of increasingly complex processing of neurons in

the primary visual cortex (Hubel and Wiesel, 1965), neuroscientists tend to think information processing in

the brain as serial sequences of sensory bottom-up and modulating top-down information streams. Axonal

feedforward and feedback connections are indeed a very good predictor of the next processing step. Yet,

brain oscillations are capable of predicting when this next processing step will occur. Oscillation measured

by EEG and MEG techniques might be the currently most attractive access to the binding problem (Singer,

1999; Engel and Singer, 2001; Varela et al., 2001): There is very limited understanding of how environmen-

tal perturbation by multi-sensory stimulation is integrated and linked with prior experience into a holistic

higher-order percept via spatially distributed and temporally coherent electrophysiological activity. In an-

imals, oscillatory but not spiking activity of neuronal populations appears to be closely associated with

sensory input processing. The interpretation of oscillation findings is however demanding. This is because

they simultaneously reflect a maintenance equilibrium, sensitivity to external stimuli, and formation of pro-

cessing outputs. For instance, perception of environmental stimuli is an intrinsically probabilistic process

with nonidentical results depending on the state of ongoing oscillatory circles (Buzsáki, 2006). Addition-

ally, different oscillatory frequency bands flank each other in a same brain area in an interacting fashion

(Le Van Quyen, 2011; Canolty et al., 2006). The same rythm can reflect different categories of computa-

tional processes in different brain areas and networks. Some brain structures are characterized by specific

rythms that may not be found in the rest of the brain. Different frequency bands can subserve a same

cognitive process, while different cognitive processes can be realized by the same frequency bands. Finally,
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low frequencies govern large-scale networks in the brain that, in turn, influence small local neuronal spaces

with high-frequency oscillatory patterns.

Interpretational categories. From a philosophical perspective, the neuroscientist also faces problems when

articulating observations of phenomena in the brain. For instance, brain areas or experimental effects are

frequently described according to ’emotional’ versus ’cognitive’ interpretational categories. However, this

class of judgments implicitly preassumes the neurobiological validity of traditional psychological categories.

That is, it assumes that those two concepts have a discrete representation in measurable neurobiology. Yet,

as another major challenge to neuroscience, it remains elusive how and to what extent psychological terms,

such as ’emotion’ and ’cognition’ (Pessoa, 2008; Van Overwalle, 2011), map onto regional brain responses

(Laird et al., 2009; Mesulam, 1998; Poldrack, 2006). Potentially unjustified a-priori hypotheses are imposed

on the organization of human brain systems. It should hence be carefully called into question what terms are

an adequate word choice to refer to discrete neurobiological processes. More globally, confusion introduced

by human language itself is at the origin of many scientific problems (Wittgenstein, 1953). The grammat-

ical and lexical constraints of human language might be too tight to allow for unequivocal description of

the diverse circumstances researchers encounter in scientific investigations. The meaning of language may

be primarily defined by its practical use in concrete situations, rather than decontextualized abstractions

necessarily shared by other individuals (Whorf, 1956). Words might not have an objective meaning equally

accessible to and understood by everybody5. This is all the more the case for language descriptions of phe-

nomena that do not occur in every-day reality. In this sense, discussing subtleties of abstract neurobiological

concepts, which can hardly be practically experienced, are frequent subject to ambiguity, thus leading to

unnoticed misunderstanding and unresolvable paradoxes (Watzlawick et al., 1967). Biological processes in

the brain are an instance of such not directly experienceable phenomena underdetermined by human lan-

guage that entail interpretative conundrum. More concretely, there is still no community-wide consensus on

a comprehensive description system of human mental operations (Poldrack, 2006, 2011). This has caused

considerable heterogeneity in how neuroimaging experiments have been motivated and conducted. More-

over, it resulted in frequently inconsistent findings that are difficult to reconcile conceptually. Statistically,

rather than falsely rejecting (i.e., type I error) or falsely accepting (i.e., type II error) the null hypothesis,

previous experimental fMRI studies motivated by preassumed psychological categories might have repeat-

edly commited ’the error of the third kind’ (Kimball, 1957): providing an accurate answer to an inadequate

research question6. In sum, cognitive neuroscience has so far heavily relied on concepts historically inherited

from traditional, non-neurobiological scientific disciplines. These considerations are especially relevant to

5From a more sociological persepctive, also specialisation of human individuals alters consciousness (Habermas, 1981)
6It might be more useful to strive towards ”an approximate answer to the right question” (John W. Tukey) given that ”all

models are wrong” (George Box) anyways.
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investigations whose conclusions heavily rely on CS. Statistical hypothesis testing makes the strong implicit

assumption that the semantic concepts used to formulate the null and alternative hypotheses are plausible,

that is, neurobiologically valid.

Epistemological limits. The last challenges to the neuroscientist mentioned in this dissertation introduction

are of epistemological origin. Biology as a whole has a modest legacy in abstract theory (von Bertalanffy,

1968). This probably includes research on brain biology. In particular, the spectrum of permissible conclu-

sions that can be drawn from neuroscientific investigations is strongly conditioned by each of the following

questions (Carruthers, 2009; Dehaene, 2007; Bostrom, 2013):

1. Does the human brain offer sufficient computational resources to grasp, formalize, and predict itself?

2. Is the human mind capable to reflect on itself by directly contemplating itself via introspection or by

indirectly contemplating an internalized self-model acquired through interaction with other individu-

als?

3. To what extent is the self-reflexive description of the phenomenology of the human mind by the human

mind itself immanently limited and paradoxical?

4. How does the spectrum of existing ways to record data from brain systems inherently constrain the

spectrum of possible scientific inferences?

Consequences. Taken together, there are many intricacies about neurobiology and the mosaic knowledge

that we currently have about it. Despite ≈200 years of neuroscientific research, neuroscience is probably

not even close to something like a unified theory of brain function (Friston, 2010; Bar, 2007; Kelso et al.,

2013) that neuroscientists from different fields would be happy to consider. This caveat considerably compli-

cates the formulation of precise, neurobiologically valid hypotheses that can be formally tested in targeted

experimental studies. Therefore, it might be helpful to use heuristics-establishing statistical approaches

for pattern discovery and inference, instead of having recourse to classical statistics alone. Deriving new

knowledge about the brain exclusively by successive falsification of entirely human-conceived, intimately

language-dependent, and dichotomically framed hypotheses might be viewed as hubris by some (Feyer-

abend, 1975; Cohen, 1994). The projects decribed in this dissertation are hence based on the assumption

that an exhaustive analytical understanding of the brain might not be reached any time soon and that a

more pragmatic access may rely in the heuristic approximation of brain mechanisms by statistical learning

models. Such an attempt to learn patterns from data would follow the same direction as recent research

developments in many other domains, including language translation and drug discovery (cf. 1.1).

1.5 Functional magnetic resonance imaging (fMRI)

In the nineteenth century functional specialization in the Cortex cerebri of humans has been investigated

predominantly by reports of circumscribed tissue damage (Harlow, 1848; Broca, 1865; Wernicke, 1881). Brain
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lesion studies together with brain stimulation during surgery (Penfield and Perot, 1963) and pharmacological

intervention (Clark et al., 1970) were the mainstay of neuroscientific research for a long time, until they

were complemented by axonal tracing studies for connectivity analysis in animals (Mesulam, 1976). Today,

fMRI techniques are the most frequently chosen approach for non-invasive, in-vivo brain research in humans,

counting more than 1,000 new neuroimaging publications per year. The impact of fMRI is explained by the

availability of brain scanners in medical institutions, its non-invasivness, and its significant spatial resolution

(1-2 mm, (Engel et al., 1997)) and temporal resolution (a few seconds, (Smith et al., 2001)). fMRI enables the

localization of activity changes in neuronal populations by means of measuring the accompanying changes

in the oxy-to-deoxyhaemoglobin ratio in local draining veins (Roy and Sherrington, 1890; Ogawa et al.,

1990). For instance, onset of vibratory stimulation of a participants’ hand entails regional accumulation of

metabolic equivalents that cause regional blood flow increase (’neurovascular coupling’) in the contralateral

somatosensory cortex (Fox and Raichle, 1986). In particular, the measured BOLD (blood oxygen-level

dependent) signal exhibits an initial dip after the onset of neural activity increase that is attributed to

the fast local increase in deoxyhemoglobin. The ensuing hyperperfusion and the thus generated relative

hyperoxygenation then dictate the BOLD signal shape (i.e., ’hemodynamic response function’). It is slightly

different across the brain regions of an individual, across individuals, and probably across different tasks.

Neural activation is finally followed by re-inhibition of blood flow observable as an undershoot at the end of

the BOLD signal (Logothetis et al., 2001). Juxtaposing neural activity and corresponding BOLD signals,

the BOLD signal is at least one order of magnitude noisier, scales roughly linearly with neural activity, and is

better predicted by local field potentials than multi-unit spiking activity. The BOLD signal is possibly more

associated with input to and processing in a local neuronal population rather than its processing output.

There is indeed no clear-cut quantitative relation between the spike rate of neuronal populations and the

ensuing BOLD response. Rather, the BOLD signal reflects a mixture of transient spikes and continuous

membrane potentials, without being able to disentable excitatory and inhibitory neural activity (Logothetis

and Wandell, 2004). As a central property of fMRI acquisitions, there is a tradeoff between coverage of

sampled brain tissue, spatial and temporal resolution. For instance, augmenting the spatial resolution,

while keeping brain coverage constant, deteriorates the temporal resolution. Finally, the regional responses

in single individuals are routinely transformed into a standard brain space (i.e., ’spatial normalization’ into

the ’Talairach-Tournoux’ or ’Montreal Neurological Institute’ coordinate systems) for comparability and

statistical analysis at the group-level (Talairach and Tournoux, 1988; Evans et al., 1992).

Based on local changes in cerebral blood flow, experimental fMRI has provided insight into the cerebral

localization of specific tasks related to sensory processing, motor actions, and affective functions (Brett

et al., 2002). This is achieved by performing fMRI on an individual that lies inside the scanner magnet

while attending and responding to psychological tasks, compared to the absence of that task. Usually,

the neural correlates of a given task (i.e., a mental process of interest) are isolated by subtraction of the
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activation measured during a closely related task (i.e., control task) that is supposed not to evoke the

mental process of interest. This relies on the principle of ’pure insertion’ that cognitive subtraction between

the psychological processes of both target and control tasks is possible due to large absence of interaction

between them. Although this assumption may not be tenable in many practical cases, the principle of direct

task comparison has been widely adopted since it has been shown to be neurobiologically useful, as well as

statistically robust and reproducible (Friston et al., 1999b). This is remarkable because fMRI typically tests

differences in non-linear phenomena using linear methods. In many instances, analysis and interpretation

of the brain imaging data is often performed by integrating additional behavioral data (e.g., task reaction

times in the simplest case). Dozens of scans of a same experimental task that cover metabolic changes

in the whole brain are acquired for enhanced sensitivity. The spectrum of neuroimaging-compatible tasks

is practically only limited by the scanner surroundings and the restricted head movements. In this way,

experimental fMRI tasks have revealed the location patterns of various regionally specific effects in health

and disease.

In contrast, in the absence of task (i.e., during mind wandering), the human brain is not at rest. While

most fMRI studies focus on the minority of neural activity changes conditioned by external stimulation,

increasing attention is devoted to the majority of neural activity patterns that underlie the biochemical

maintenance of the neural processing architecture. That is, the BOLD signal can also be measured in

a task-unconstrained fashion by probing participants that lie in the scanner without following a defined

psychological task. Participants are instructed to think of nothing in particular let their minds go, and leave

their eyes open/closed or look at a fixation cross. During mind wandering humans typically mentally shift

between various heterogeneous types of thoughts, memories, and predictions. This is why resting BOLD

patterns are believed to reflect the repertoire of cognitive operations that the human brain can perform

(Smith et al., 2009). From a neurophysiological perspective, intra- and inter-neuronal activity continues in

the human brain’s resting functionality. The resting-state BOLD signal reflects fluctuations in physiological

signals recorded in the absence of task as reflected in a voxels’ time courses. Importantly, the (small)

amplitude of the resting-state signal is modulated by transient psychological states (e.g., arousal, attention,

and alertness), but also cardiac and respiratory influences. Indeed, the decomposability of this signal

measurement into independent components suggests a set of distinct influences rather than one coherent

signal pattern (Fukunaga et al., 2006). More specifically, evidence exists in favor of a neuron-, metabolism-,

vasculature-, and oxygen-driven genesis of the resting-state BOLD signal. More specifically, correlation

analysis can detect temporal coincidence in the spontaneous, slow fluctuations (≈0.01 - 0.1 Hz) of rest

BOLD. This is taken as a measure of functional coordination between topographically distant parts of the

brain. Measuring these coherent spatiotemporal couplings in resting-state BOLD fluctuations yields a set of

robust neural networks. It led to the discovery of a set of so-called resting-state networks. In sum, the biggest

fraction of the various brain signals does not correlate with a particular behavior, stimulus, or experimental
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task. These partially uncouple in a task setting, but the relative change is probably small. It is commonly

agreed that the variability in the RS signal is related to the individual’s (unconstrained) mental operations.

It likely represents a physiological instantiation of a human beings’ default mental repertoire.

A property of the brain that might not have been discovered without the advent of neuroimaging methods

is the so-called default mode network (DMN) (Buckner et al., 2008). This particular resting-state network

is a pure result of serendipity and is a focus of the present dissertation. 15 years ago, the soon to be called

DMN was initially proposed to be exclusive in decreasing neural activity consistently during experimental

paradigms requiring stimulus-guided behavior (Shulman et al., 1997). That is, the DMN was believed to

increase neural activity in the idling, unconstrained mind and decrease activity during stimulus-driven,

goal-directed tasks (Raichle et al., 2001). On a macro-scale, the metabolic baseline turnover is not equally

distributed across the brain. Interestingly, the brain areas of the DMN include the hot spots of highest

metabolic consumption that locate, first, to the posterior cingulate cortex extending into the adjacent

retrosplenial cortex and precuneus and, second, to the medial prefrontal cortex extending into the anterior

cingulate cortex (Reivich et al., 1979; Raichle et al., 2001).

It was later even argued that this network is systematically anti-correlated with brain regions more active

during task performance (Fox et al., 2005). Indeed, goal-directed task performance improves with increased

activity in saliency-related areas and decreased activity in default mode areas (Weissman et al., 2006). Con-

versely, increased activity in DMN areas were linked to increased occurrence of task-independent thoughts

(i.e., mind-wandering) during task execution (Mason et al., 2007). Two fMRI studies employing Granger

causality analysis further corroborated the anti-correlation by indicating negative influence of the default

mode on the saliency network (Pisapia et al., 2012) and vice versa (Sridharan et al., 2008). This anti-

correlation was recently challenged by repeated reports of brain regions exhibiting both task-constrained

and task-unconstrained increases in neural activity (Buckner et al., 2008). More specifically, the DMN is

now known to consistently increase neural activity during a small set of complex cognitive tasks, including

the contemplation of others and ones own mind states, spatial navigation, as well as scene construction pro-

cesses when envisioning past, fictitious, and future events (Spreng et al., 2009); more generally, envisioning

situations detached from reality. It was speculated that the human brain might have evolved to, by default,

predict environmental events using mental imagery. Constructing detached probabilistic scenes could thus

influence perception and behavior by estimating saliency and action outcomes. This would invigorate a pos-

sible relationship between the physiological baseline of the human brain and an introspective psychological

baseline (Schilbach et al., 2008). In sum, the DMN routinely defies neuroscientific intuitions and challenges

established methods. Neuroimaging research on the DMN corroborated that this particular network con-

sistently decreases activity during externally focused mental tasks and typically increases activity during a

small set of internally focused mental tasks. It may reflect unfocused every-day mind wandering in form of

continuous environmental tracking in a generative, integrative process. But neuroscience is not even close
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to certain knowledge of what this might mean in detail.

1.6 Statistical learning approaches in brain imaging

Everyday neuroimaging practice is still largely dominated by analysis approaches drawn from classical

statistics. Much of the success of cognitive neuroscience since the 1990’ies has been implemented in the

mass-univariate analysis of neuroimaging data using the general linear model (GLM). The GLM treats each

volumetric pixel of brain scans (i.e., voxel) as independent to perform serial univariate statistics (Friston

et al., 1994). Univariate approaches are recognized to be an excellent test for topographical localization of

neural activity, i.e., a differential increase or decrease of neural activity in individual brain voxels.

SL approaches promise to extend this predominantly representational agenda of fMRI investigations (i.e.,

analysis of activation localizations) to an informational agenda (i.e., analysis of information patterns)

(Kriegeskorte et al., 2006; Mur et al., 2009). SL approaches can possibly elicit hidden quantities in neu-

roimaging data by providing pieces of evidence to four questions (Brodersen, 2009; Pereira et al., 2009):

1. Where an information category is neurally processed? As SL techniques are inherently multivariate,

the coherent BOLD signal patterns in voxel sets can be localized. This extends the interpretational

spectrum from mere increase/decrease of neural activity to the existence of complex combinations of

activity changes distributed across voxels.

2. Whether a given information category is encoded by neural activity? This extends the interpretational

spectrum to topographically similar but neurally distinct processes that potentially underlie different

psychological concepts.

3. When an information category is generated, processed, and bound? When applying SL to BOLD time

series the interpretational spectrum is extended to the beginning, evolution, and end of distinct neural

processes.

4. How an information category is neurally processed? The interpretational spectrum is extended to

computational properties of the neural processes, including for instance, linearity versus non-linearity

as well as local versus distributed and isolated versus partially shared processing facets.

More generally, multivariate information inference is typically more potent than mass-univariate localization

inference because the latter is inherently local and threshold-dependent (Friston et al., 2008). The popularity

and adoption of SL methods in neuroimaging has steadily increased since the attempt of ’mind-reading’ or

’decoding’ cognitive processes from neural activity patterns (Haynes and Rees, 2005; Kamitani and Tong,

2005). The conceptual appeal has been complemented by recent advances in computing power, memory

resources, and the increasing trend for creating large data repositories (Poldrack and Gorgolewski, 2014).

More specifically, GLM-based and SL-based regimes in functional neuroimaging analysis can be conceptual-

ized as complementary instances of encoding models and decoding models (Naselaris et al., 2011; Pedregosa

et al., 2015):
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f : yt → Xt (1)

g : Xt → yt (2)

where (1) represents a (voxelwise) GLM as an encoding function and (2) for instance a (brainwise) linear

classifier as a decoding function, Xt ∈ Rd a 3D matrix of voxel values holding BOLD signals in brain space,

yt ∈ Nn a set of indicators of a psychological task or mental context, and t ∈ N a time series of brain scans.

In a related vocabulary, the encoding function is the basis for forward inference, testing the probability

of observing neural activity in brain regions given knowledge of the psychological process (Yarkoni et al.,

2011). The decoding function, in turn, is the basis for backward inference, testing the probability of a

psychological process being present given knowledge of neural activity in brain regions. A main difference

between encoding and decoding models pertains to the direction of linear mapping between brain space

and feature space. Nevertheless, both encoding or decoding functions can be viewed as a prediction task

since the mapping direction is irrelevant for deciding on a relationship between an activity Xt and a context

y at time point t. Encoding models are superior to decoding models for establishing which processing

facets are preferentially represented within brain regions. Encoding models can also be easily compared to

one another, whereas inference about brain representations according to decoding models reduces to model

comparison. An important advantage of decoding models is that they lend themselves more naturally to

examining the correspondence between brain activity in brain regions and indices of behavioral performance.

Decoding models are also more flexible than encoding models in allowing ’identification’ (Brodersen, 2009),

inferring a stimulus or task from a finite set based on brain activity, and ’reconstruction’ (Miyawaki et al.,

2008; Thirion et al., 2006), restoring a stimulus or task from brain activity. In sum, the classical functional

neuroimaging localization might be a weak choice to perform inference on structure-function relationships

without formal modelling (Stephan, 2004), whereas decoding models are readily applicable for establishing

complex structure between high-dimensional neuroimaging data and variables of interest.

Taken together, the neuroimaging field is currently going through a transition from using parametric to

always more non-parametric models (Russell and Norvig, 2010) and from data modelling to algorithmic

modelling (Breiman, 2001). This paradigm shift has been prompted by an increasing drift towards higher-

dimensional datasets (more features) that are more frequently collected in a collaborative fashion (more sites)

with measurements from always more participants (more observations) (Kandel et al., 2013; Anonymous,

2014; Poldrack and Gorgolewski, 2014; Frackowiak and Markram, 2015). SL approaches could therefore

be a useful alternative toolbox to complement methods derived from classical statistics. SL methods are

typically characterized by a) making the least assumptions possible, b) being more motivated by computa-

tional models rather than cognitive theory, and c) automatically mining structured knowledge from extensive

neuroimaging data resources. The crucial challenges in imaging neuroscience might lie in enabling mecha-
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nistic interpretability and understanding by models with generative, rather than descriminative, properties

(Brodersen et al., 2011). An important step towards this goals is the question whether low-dimensional

manifolds are embedded within the high-dimensional fMRI data.
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2 Unsupervised modelling of brain regions

2.1 Motivation

The human brain is commonly assumed to be organized in distinct modules (Brodmann, 1909; Vogt and

Vogt, 1919). These can be described according to structure, connectivity, and function. Cortical areas can

be conceptualized as patches of the brain that differ from their neighbors in terms of their microarchitecture

(e.g., cyto-, myelo- and receptorarchitecture), connectivity (i.e., set of input and output connections), and

function (e.g., lesion-induced behavior or electrophysiological responses) (Van Essen, 1985; Felleman and

Van Essen, 1991). The conjunction of i) input and output connectivity of a cortical area and ii) its local

infrastructure is thought to crucially determine what classes of computational problems a cortical area can

solve.

The correspondence between a cortical area and its characteristic axonal connectivity has prompted the class

of connectivity-based parcellation (CBP) methods in neuroscience (Behrens et al., 2003; Wiegell et al., 2003).

Capitalizing on the distinct connections of each area (Passingham et al., 2002), CBP divides a region of

interest (ROI) into distinct subregions. Put differently, CBP performs a systematic summary of the Cortex

cerebri by combining same neural tissue and separating different neural tissue according to an organizational

criterion, namely, brain connectivity. The key idea is to first compute an individual connectivity profile for

each individual voxel in the ROI. The voxel-wise connectivity profiles are then used to group the ROI voxels

such that connectivity is similar for the voxels within a group and different between groups. That is, distinct

clusters are identified in the ROI by long-range interaction patterns of the voxels in the ROI. On the one hand,

previous investigations have demonstrated that CBP can reveal clusters that recover known microscopical

boundaries of brain tissue (Behrens and Johansen-Berg, 2005). On the other hand, there are also reports

showing that CBP may yield more fine-grained subdivisions than classical cytoarchitectonic mapping (Clos

et al., 2013). Hence, CBP-derived brain modules may be viewed as ’functional areas’, although these are

outlined by connectivity clusters rather than functional clusters per se (Amunts et al., 2014).

Clustering uses a similarity measure to group a set of elements into subsets according to their measured

similarity (Jain et al., 1999; Handl et al., 2005). In CBP, the clustering algorithm groups the voxels in the

ROI into subsets according to similarity of their connectivity profiles, the heart of any CBP approach. As a

result of the so-called ’no free lunch’ theorem (Wolpert, 1996), no clustering algorithm performs optimally for

all ROIs, types of connectivity information, and study motivations. In neuroimaging research, the k-means

algorithm is likely to be the most popular clustering choice to divide a ROI into a preselected number of

k non-overlapping subregions (Nanetti et al., 2009), although spectral and hierarchical clustering have also

been used repeatedly.

K-means clustering (Lloyd, 1957; Forgy, 1965; Jain, 2010) depends on free parameters, including i) the

cluster initialization, ii) the cluster number k, and iii) the tolerance for iteration stopping. Initially k voxels
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in the ROI are randomly chosen to represent the centers of the k desired clusters. Two steps are then

iterated multiple times. First, the ROI voxels are assigned to the closest cluster center (i.e., ’centroid’),

which equates with partitioning the ROI into k clusters. The the optimal parameter k is typically chosen by

heuristic cluster validity criteria (cf. 2.3) Second, the k cluster centers are recomputed. As soon as the center

needs to be shifted by less than the preset distance threshold (early stopping is often needed for the sake of

time), the iterative process stops. Note that the final assignments of ROI voxels to particular clusters may

vary with different cluster initializations and yield non-optimal solutions at local minima. Technically, this

is because k-means represents a non-convex optimization problem. Neurobiologically, the same connectivity

data may thus result in several stable solutions for the ROI parcellation at the same preset k (i.e., low

reproducibility), as shown, for instance, in the human insula (Nanetti et al., 2009). Consequently, the

algorithm is usually repeated many times.

In neuroimaging practice, k-means seems to perform best when the subregions in the ROI are expected to

be i) few in number, ii) of similar size, and iii) featuring a roughly spherical shape on spatially correlated

voxel-wise connectivity (Jain, 2010). Additionally, k-means clustering will converge in the majority of the

cases (i.e., seldom early stopping by the tolerance parameter). In a CBP context, the same connectivity

data can describe not only one but several stable solutions in ROI parcellation at the same preset k (i.e., low

reproducibility), such as observed in the human insula (Nanetti et al., 2009). Consequently, the algorithm

is conventionally applied many times since k-means fits idiosyncracies in data that may generalize poorly

across participants. As a first practical consequence, the initialization of the cluster centers can be random

(Hartigan and Wong, 1979) or based on prior knowledge (e.g., anatomical properties). As a second practical

consequence, the final solution can be obtained by an averaging procedure or by selecting the centroids from

the best solution (Nanetti et al., 2009). Further, the solutions for different selections of k (i.e., different

number of clusters) are independent of each other. Repeating the clustering at different k’s does not emulate

a coherent hierarchy. That is, the solutions for ROI parcellation at each level (k) are independent of each

other, which makes parent-children stratifications possible but not necessary7.

Importantly, performing brain parcellation by CBP is not bound to a particular connectivity approach.

Any method to measure brain connectivity can be employed that yields a connectivity profile for each

voxel in the ROI. The functional connectivity modality in most frequent use is RSFC (Zhang and Raichle,

2010). It has recently been complemented by MACM (Robinson et al., 2010; Eickhoff et al., 2011). These

connectivity measures reflect drastically different ways to conceive and quantify interneuronal communication

between brain regions. Choosing one of them is as important as the ROI to investigate and has far-reaching

implications for permissible conclusions from the identified clusters.

MACM operates under the assumption that functional connectivity between brain regions should entail

7This is contrary to divisive top-down or agglomerative bottom-up hierarchical clustering.
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reliable coactivation (Robinson et al., 2010). It quantifies temporally related increase/decrease of neural

activity in distant brain regions throughout various experimental tasks. This connectivity modality cap-

italizes on the increasing trend for large-scale data aggregation, exemplified by the BrainMap (Fox and

Lancaster, 2002), Neurosynth (Yarkoni et al., 2011), and NeuroVault (Gorgolewski et al., 2014) neuroimag-

ing databases. Caveats of MACM include i) reliance on very sparse activation information (i.e., peak

coordinates of significant activation), which might entail missing information and biased sampling, ii) in-

ability of participant-specific connectivity analysis, and iii) inheritance of the limitations from experimental

neuroimaging studies. In spite of these limitations, the analysis of coactivation likelihoods represent an ap-

proach that is complementary to RSFC by focusing on the interactions during the performance of externally

imposed tasks.

In contrast, functional connectivity can be measured in the human brain by RSFC correlations under the

assumption that the coupling strengths between distant brain regions is measurable by correlation between

time series of BOLD signal fluctuations outside of an experimental context (Biswal et al., 1995; Zhang and

Raichle, 2010). It quantifies the correlative relationships between distant brain regions in participants idling

in the MRI scanner. This is possible because interneuronal communication continues and is reflected by

ongoing physiological fluctuations in the absence of an experimentally imposed cognitive set, i.e., during

natural mind wandering, which can be measured using fMRI. RSFC signals have been shown to recover

axonal connections and functional networks well-documented in monkey tracing studies and task-based

neuroimaging studies. Despite initial skepticism, the consistency of RSFC results has been demonstrated

repeatedly across participants, brain scans, time points, and other factors (Damoiseaux et al., 2006; Shehzad

et al., 2009). RSFC thus provides proxies of dynamic neuronal interactions that might reflect mixtures of

various cognitive processes and physiological factors (Smith et al., 2009; Mennes et al., 2013).

Task-related MACM and task-unrelated RSFC combined with CBP is an ideal set of tools to investigate

the challenging task-rest behavior of the default mode network. The right and left temporo-parietal junc-

tions (RTPJ/LTPJ), posteromedial cortex (PMC), and dorsomedial prefrontal cortex (dmPFC) have so far

almost exclusively been studied as a cohesive brain network. There is a scarcity of targeted studies on

functional segregation within this brain network As a first exception, the medial prefrontal cortex and the

posterior cingulate cortex have been identified as network cores by clustering and graph-analytic analyses

(Andrews-Hanna et al., 2010). As a second exception, an fMRI study revealed stronger recruitment of a

so-called ’dorsal subnetwork’ (dorsomedial prefrontal cortex and posterior cingulate cortex) during retrieval

of emotional (but not neutral) autobiographical memories, whereas a resting condition without controlled

task recruited a so-called ’ventral subnetwork’ (ventral striatum, ventromedial prefrontal cortex extending

into the subgenual anterior cingulate cortex) (Bado et al., 2014). These pieces of tentative evidence provide

support for functional heterogeneity within parts of the DMN.

The human RTPJ of the DMN is a supramodal association area located at the border between the temporal
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and parietal lobes surrounding the posterior end of the Sylvian fissure. It is at times referred to as ’posterior

inferior parietal lobule’, ’Brodmann area 39’, or ’posterior superior temporal sulcus’. The highly inconsis-

tent neuroanatomical labeling epitomizes the lacking consensus on coordinates, micro- or macroanatomical

landmarks that would topographically define the RTPJ (Déjerine, 1895; Mars et al., 2012). Put differently,

’temporo-parietal junction’ is a vaguely defined term that is frequently used within various cognitive disci-

plines to refer to a certain functional (rather than anatomical) cortical module. An extensive body of work

implies selectivity of the RTPJ for attentional processes, whereas a similarly extensive body of literature

claims selectivity of the RTPJ for the higher-level processing of social information. That is, one line of

research provides converging evidence for a key role of the RTPJ in attentional processes, whereas another

line of research associates this region with social-cognitive processes.

A similar controversy is apparent in the human LTPJ. High-level social cognition tasks, on the one hand,

typically modulate neural activity in the bilateral temporo-parietal junction of the parietal lobe but also the

medial prefrontal cortex, and posteriomedial cortex. Language tasks, on the other hand, typically engage

the inferior frontal gyrus, posterior superior temporal gyrus, and also the angular gyrus and supramarginal

gyrus of the left parietal lobe. Hence, the LTPJ is probably commonly recruited in social cognition (Mar,

2011) and language (Binder et al., 2009) tasks. Yet, the neural correlates common to social cognition and

language are currently underresearched. It is unclear whether both psychological functions engage the same

anatomical subregions of the LTPJ. Similar to organizational questions about the RTPJ, it is hence open

to debate whether different subregions in the LTPJ contribute to different (sub)processes underlying social

cognition, language, and various other high-level cognitive processes.

Additionally, the human posteromedial cortex (PMC) has been functionally implicated in attention, lan-

guage, and social cognition, as well as many other diverse psychological tasks. Perhaps due to the PMC’s

mosaic anatomical organization, attempts of global functional accounts range from covert reallocation of

spatial attention (Gitelman et al., 1999), mediation between internal and external focus (Leech and Sharp,

2014), computation of environmental statistics (Pearson et al., 2009), and self-referential visuospatial imagery

(Cavanna and Trimble, 2006) to modality-independent integration between emotional states and memories

(Maddock, 1999). These proposed domain-spanning roles potentially explain its various domain-specific

functional involvements potentially implemented in distinct functional modules of the PMC.

Finally, also distinct parts of the dmPFC are recruited during diverging high-level cognitive functions. The

dmPFC is another associative brain region of the DMN, raising increasing suspicion to contain functionally

heterogeneous subregions (Amodio and Frith, 2006; Gilbert et al., 2010). More generally, the anatomical

subdivisions of the entire human medial prefrontal cortex (mPFC) were first mapped out by Brodmanns

cytoarchitectonic studies (Brodmann, 1909). The cytoarchitectonical subdivision of the medial prefrontal

cortex into BA 11 (orbitofrontal cortex), BA 10 (ventral mPFC and most of frontal pole), and BA 9

(dorsal mPFC and small part of frontal pole) might however not exhaustively capture regional functional
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heterogeneity in that region. As a rare example in fMRI research, topographically distinct parts of the

human dmPFC have been shown to be recruited in social, emotional, memory, and attentional tasks from

independent neuroimaging studies (Gilbert et al., 2010).

Consequently, the RTPJ, LTPJ, PMC, and dmPFC have diverging task-related functions and, thus perhaps,

mosaic cytoarchitectures. Nevertheless, they have each been robustly implicated in the DMN (Buckner

et al., 2008). Yet, the precise nature of neural processes realized in the DMN remains as elusive as its

neurobiological organization. Viewed from the perspective of the curse of dimensionality (cf. introduction),

adressing the functional heterogeneity of nodes in the DMN by means of clustering algorithms makes the

following assumptions:

1. Neural activity in the DMN can be explained by a small set of local patterns (i.e., compositionality).

2. These can be described while ignoring extension of neural activity across various discrete local activity

patterns (i.e., known cytoarchitectonic brain regions).

3. The latent clusters within DMN nodes derived from fMRI data describe distinct properties of under-

lying neurobiology.

4. The local patterns can be approximated by estimators that model the membership of node voxels to

k latent components based on features of whole-brain connectivity.

Figure 1: Brain volumes of interest and connectivity-based parcellation results

Top row: The topographic definitions of the regions of interests in the default mode network. Bottom row: Results of the best

fitting clustering solution were projected onto the 3D brain surface.
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2.2 Methodological approach

Seed region definition. The first decision in CBP analyses concerns the part of the brain to analyze. The

ROI outlines the set of target gray-matter voxels that is to be automatically segregated into subregions.

This important step operationalizes the investigation, which strongly impacts the overall outcome and

interpretation. It is usually advisable to consolidate the location of the functional process of interest by

means of image-based (Dehaene et al., 2003) or coordinate-based (Eickhoff et al., 2009) quantitative meta-

analysis. The resulting meta-analytic ROI then statistically constrains the most robust location of activation

convergence underlying the process of interest across various participants, study designs, and laboratories.

CBP then explores the heterogeneity of connectivity patterns within this functionally defined region. Such

composite functional ROIs allow extension of the interpretational space by asking: Are the different cognitive

processes reflected by the different activations related to the same or different connectivity-defined modules

in the human brain?

To both accommodate lacking neuroanatomical consensus and acknowledge the diverse functions ascribed to

the RTPJ8, the volume of interest for CBP (Fig. 1) was constructed by merging results of three meta-analyses

of neuroimaging data on sustained attention (Langner and Eickhoff, 2012), sensorimotor control (Jakobs

et al., 2012), and theory of mind (Bzdok et al., 2012b). This is because of the absence of commonly accepted

neuroanatomical landmarks to define the location of this functional region. The first, most anterior, cluster

resulted from a quantitative meta-analysis of neuroimaging experiments on sustained attention (Langner

and Eickhoff, 2012), that is the capacity to stay focused on a particular task for extended time periods. A

second cluster resulted from a quantitative meta-analysis of neuroimaging studies on sensorimotor control

(Jakobs et al., 2012), that is the capacity to integrate exogenous stimuli and contextual information for

behavioral response formation. The third, most posterior, cluster resulted from an ALE meta-analysis of

neuroimaging experiments on theory of mind (Bzdok et al., 2012b), that is the capacity to model others

thoughts, beliefs, and behavioral dispositions by abstract inference. Merging these activation clusters yielded

a composite seed region that captures the various functional roles conventionally ascribed to the RTPJ in

the neuroscientific literature.

In analogous fashion, the LTPJ seed region was constructed from coordinate-based meta-analysis of conver-

gent neural activity in the left lateral parietal lobe during social and language task performance. High-level

social processing was represented by a previous meta-analysis on theory of mind experiments (Bzdok et al.,

2012b). General language processing was represented by a present meta-analysis on all language-associated

terms (i.e., orthography, speech, syntax, semantics, and phonology) from the BrainMap database. The to-

pographically converged activation in the lateral parietal cortex was then extracted from each meta-analysis

8Functionally-, rather than strictly neuroanatomically-, motivated terms were preferred for the seed regions, given that

neural activation associated with the target cognitive processes routinely exceeds traditional macroscopical landmarks.

26



and merged into a composite region. After voxel-wise dilation and erosion, this ROI constrained subsequent

CBP analyses.

The ROI comprising the PMC, in turn, was defined using neuroanatomical landmarks. Cytoarchitectonic

information provided the superior borders, while macroanatomical structures of the standardized brain tem-

plate guided the delineation of most other borders. Regarding the superior borders of the ROI, topographical

information was provided by histological probability maps from the Jülich brain atlas (Zilles and Amunts,

2010). Based on regionally specific appearance of cortical layers, cell density, and cell types, the human

cortex can be divided into a large number of cytoarchitectonically distinct brain regions. This structural

segregation is an important indicator of functional heterogeneity. More specifically, the posterosuperior

extent of the ROI was limited by the borders of the cytoarchitectonic areas 5M, 7A, and 7P (green line)

(Scheperjans et al., 2008). Regarding the anterosuperior border, the ROI was drawn such as to border

the dysgranular area 23d, as indicated by neuroanatomists (Vogt et al., 2006). For the remaining ROI

borders, obvious macroanatomical structures served as topographical landmarks, including the splenium of

the corpus callosum defining the rostral ROI border and the parietooccipital sulcus defining the ventral

ROI border. This neuroanatomically defined region of interest, including the gray-matter of the precuneus,

posterior cingulate cortex, and retrosplenial cortex within the PMC, served as the basis for subsequent CBP

analyses.

Finally, the dmPFC ROI was formed by combining contrast analyses from two prior neuroimaging studies.

Both used fMRI to compare brain activity underlying complex social judgments (trustworthiness and at-

tractiveness) with emotional (happiness) and cognitive (age) judgments. In the first study (Bzdok et al.,

2012a) visually presented facial stimuli were evaluated, whereas auditorily presented vocal stimuli of ev-

eryday sentences were evaluated in the second study (Hensel et al., 2015). In both studies, brain activity

was found that was exclusively related to social judgments by parcelling out brain activity shared with

emotional and cognitive judgments. Testing for topographical convergence between these two independent

contrast analyses revealed the dorsomedial prefrontal cortex as the only region that featured specific brain

activity related to complex social judgments congruently across visual and auditory stimuli. Subsequent to

sagittal mirroring for symmetry, this ROI reflecting the part of the dmPFC that was specifically recruited

by complex judgments provided the basis for subsequent CBP analyses.

Workflow. First, MACM was used to determine the coactivation profile of each voxel within the ROI. The

seed voxels were then grouped based on similarities of their coactivation profiles by k-means clustering.

Second, the most stable clustering solution was identified by the combination of different cluster stability

metrics. Third, the whole-brain connectivity patterns of each derived cluster in the ROI were determined

based on MACM and RSFC. These steps incorporated a data-guided framework to comprehensively char-

acterize the four nodes of the default mode network.
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Task-dependent functional connectivity (MACM). Delineation of whole-brain coactivation maps for each

voxel of the ROI was performed based on the BrainMap database (Fox and Lancaster, 2002). The analysis

will be limited to functional neuroimaging studies in the healthy human brain (no interventions, no group

comparisons), which reported results as coordinates in stereotaxic standard space. These inclusion criteria

yielded ≈8,000 eligible experiments at the time of analysis. Please note that all eligible BrainMap experi-

ments have been considered because any pre-selection based on taxonomic categories would have constituted

a strong a priori hypothesis about how brain networks are organized. However, it remains elusive how well

psychological constructs, such as emotion and cognition, map on regional brain responses (Poldrack, 2006;

Mesulam, 1998; Laird et al., 2009). The rationale of the coactivation analysis is to compute the convergence

across (all foci of) those BrainMap experiments where the seed voxel in question is reported as active. One

challenge in constructing voxel-wise coactivation maps is the limited number of experiments activating pre-

cisely at any particular seed voxel. Hence, pooling across the close spatial neighborhood has become the

dominant approach in MACM analysis (Eickhoff et al., 2011) to enable a reliable delineation of task-based

functional connectivity. Importantly, the extent of this spatial filter was systematically varied from including

the closest 20 to 200 experiments in steps of two (Clos et al., 2013). That is, selection was performed for

the sets of 20, 22, 24, ..., 198, 200 experiments reporting the closest activation at a given seed voxel (i.e., 91

filter sizes). This was implemented by calculating and subsequently sorting the Euclidean distances between

a given seed voxel and any activation reported in BrainMap. Then, the x nearest activation foci (i.e., filter

size) were associated with that seed voxel. The retrieved experiments were then used to compute the brain-

wide coactivation profile of a given seed voxel for each of the 91 filter sizes. In particular, a coordinate-based

meta-analysis was performed over all foci reported in these experiments to quantify their convergence. Since

the experiments were identified by activation in or near a particular seed voxel, highest convergence was

obviously found at the location of the seed. Convergence outside the seed, however, indicated coactivation

across task-based functional neuroimaging experiments. These brain-wide coactivation patterns for each

individual seed voxel were computed by activation likelihood estimation (ALE). The key idea behind ALE

is to treat the foci reported in the associated experiments not as single points, but rather as centers for 3D

Gaussian probability distributions that reflect the spatial uncertainty associated with neuroimaging results.

Using the latest ALE implementation (Eickhoff et al., 2009; Turkeltaub et al., 2012; Eickhoff et al., 2012),

the spatial extent of those Gaussian probability distributions was based on empirical estimates of between-

participant and between-template variance of neuroimaging foci (Eickhoff et al., 2009). For each experiment,

the probability distributions of all reported foci were then combined into a modeled activation (MA) map

by the recently introduced ’non-additive’ approach that prevents local summation effects (Turkeltaub et al.,

2012). The voxel-wise union across the MA maps of all experiments associated with the current seed voxel

then yielded an ALE score for each voxel of the brain that describes the coactivation probability of that

particular location with the current seed voxel. The ALE scores of all voxels within gray matter (based on
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10% probability according to the ICBM maps) were recorded before moving to the next voxel of the seed

region. In sum, quantitative ALE meta-analysis over all foci reported in the experiments associated with

the current seed voxel determined how likely any other voxel throughout the brain was to coactivate with

that particular seed voxel. Notably, no threshold was applied to the ensuing coactivation maps at this point

of analysis to retain the complete pattern of coactivation likelihood.

Task-independent functional connectivity (RSFC). Seed-voxel-wise whole-brain connectivity was likewise

assessed using resting-state correlations as an independent modality of functional connectivity for cross-

validation across different brain states. RSFC fMRI images were acquired in 100 healthy volunteers (50

female, mean age 45.2 years) without any record of neurological or psychiatric disorders. All participants

gave written informed consent prior to entering the study, which had been approved by the ethics committee

of the University of Bonn, Germany. Prior to the imaging session, participants were instructed to keep their

eyes closed and just let their mind wander without thinking of anything in particular but not to fall asleep

(which was confirmed in post-scan debriefing). For each participant, 300 RSFC EPI images were acquired

using BOLD contrast [gradient-echo EPI pulse sequence, TR = 2.2s, TE = 30ms, flip angle = 90, in-plane

resolution = 3.1 x 3.1mm2, 36 axial slices (3.1mm thickness) covering the entire brain]. The first four scans

served as dummy images allowing for magnetic field saturation and were discarded prior to further processing

using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images were first corrected for head movement by

affine registration using a two-pass procedure. The mean EPI image for each participant was then spatially

normalized to the MNI single participant template (Holmes et al., 1998) using the unified segmentation

approach (Ashburner and Friston, 2005) and the ensuing deformation was applied to the individual EPI

volumes. Finally, images were smoothed by a 5-mm FWHM Gaussian kernel to improve signal-to-noise

ratio and compensate for residual anatomical variations. The time-series data of each individual seed voxel

were processed as follows (Weissenbacher et al., 2009): In order to reduce spurious correlations, variance

that could be explained by the following nuisance variables was removed: i) The six motion parameters

derived from the image realignment, ii) the first derivative of the realignment parameters, iii) mean gray

matter, white matter and CSF signal per time-point as obtained by averaging across voxels attributed to

the respective tissue class in the SPM 8 segmentation and iv) coherent signal changes across the whole brain

as reflected by the first five components of a principal component analysis decomposition of the whole-brain

time series. All of these nuisance variables entered the model as first-order and - except for the principal

components - also as second-order terms. Data were then band-pass filtered preserving frequencies between

0.01 and 0.08 Hz since meaningful resting-state correlations will predominantly be found in these frequencies

given that the BOLD-response acts as a low-pass filter (Biswal et al., 1995). After temporal preprocessing,

the times-series of each individual seed voxel were correlated with those of any other brain voxel. The

ensuing correlation values were transformed into Fisher’s Z-scores and recorded in a connectivity matrix. In
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sum, correlations between spontaneous metabolic fluctuations throughout the brain during mind-wandering

in the absence of an externally structured task allowed quantifying the connectivity strength of the current

seed voxel with any other voxel.

Connectivity-based segregation of DMN nodes. To identify possibly distinct subregions with unique connec-

tivity patterns in the ROI at hand, CBP was performed based on MACM (Eickhoff et al., 2011) and RSFC

(Kim et al., 2010) analyses. Independent for each of the two modalities, the brain-wide connectivity profiles

for all seed voxels were combined into a NS x NB coactivation matrix, where NS denotes the number of seed

voxels and NB the number of voxels in the reference brain volume. The most appropriate number of clusters

in the respective ROI was then, analogous to previous CBP approaches (Behrens et al., 2003), determined

in a NS x NS cross-correlation matrix. This matrix reflected how strongly the connectivity profiles of each

pair of seed voxels correlated with each other. Given the use of 91 different filter sizes, this step resulted in

91 individual connectivity matrices, each representing the whole-brain connectivity of the seed voxels at a

particular filter size. The parcellation of the VOI was performed using k-means clustering as implemented in

Matlab with k = 2, 3, .., 9 using one minus the correlation between the connectivity patterns of seed voxels

as a distance measure (i.e., correlation distance). This parcellation was performed for each of the 91 filter

sizes independently, yielding 8 (k-means cluster solutions) x 91 (filter sizes) independent cluster solutions

(Clos et al., 2013). K-means clustering is a non-hierarchical clustering method that uses an iterative algo-

rithm to separate the seed region into a previously selected number of k non-overlapping clusters (Forgy,

1965; Hartigan and Wong, 1979). In all k-means applications, the distance measure was computed by 1

minus the sample correlation between points. K-means aims at minimizing the variance between elements

within clusters and maximizing the variance between clusters by first computing the centroid of each cluster

and subsequently reassigning voxels to the clusters such that their difference from the nearest centroid is

minimal. For each of the 8 x 91 parcellations we recorded the best solutions from 100 replications with

randomly placed initial centroids.

Characterization of the CBP-derived clusters: Connectivity. Following parcellation of the seed region based

on regional heterogeneity in functional connectivity, additional MACM and RSFC analyses were performed

on each of the ensuing clusters to characterize their whole-brain connectivity patterns. It is important to note

that the above MACM and RSFC analyses assessed seed-voxel-wise connectivity patterns of individual seed

voxels, while the overall connectivity pattern of a set of seed voxels was here assessed, i.e., the connectivity

of the entire cluster. For the MACM analyses on the derived clusters, an ALE meta-analysis was performed

across all BrainMap experiments featuring at least one focus of activation within the cluster using otherwise

the same approach as described above. However, statistical inference was sought at this point, in contrast to

the above MACM/RSFC analysis. To establish which regions were significantly coactivated with a particular

cluster of voxels, ALE scores for the MACM analysis of this cluster were compared to a null-distribution that
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reflects a random spatial association between experiments, but regards the within-experiment distribution

of foci as fixed. This random-effects inference assesses above-chance convergence between experiments. The

observed ALE scores from the actual meta-analysis of experiments activating within a particular cluster

were then tested against the ALE scores obtained under this null-distribution yielding a p-value based on

the proportion of equal or higher random values. The resulting p-values were then thresholded at p<0.05

following cluster-level family-wise error correction for multiple comparisons (cluster-forming threshold at

voxel-level: p<0.001). In addition to MACM analyses, RSFC analysis was also performed on the derived

clusters. Time courses were extracted for all gray-matter voxels of a given cluster of the individual participant

(Ashburner and Friston, 2005). The cluster time course was then expressed as the first eigenvariate of these

voxels time courses. Pearson correlation coefficients between the time series of the CBP-derived ROI clusters

and all other gray-matter voxels in the brain were computed to quantify RSFC. These voxel-wise correlation

coefficients were then transformed into Fishers Z-scores and tested for consistency across participants by

a one-sample t-test. The results of this random-effects analysis were then thresholded at p<0.05 following

cluster-level family-wise error correction for multiple comparisons (cluster-forming threshold at voxel-level:

p<0.001), analogous to MACM-derived cluster connectivity.

Characterization of the CBP-derived clusters: conjunction across MACM and RSFC results. To delineate

areas showing task-dependent and task-independent functional connectivity with the derived subregions in

the ROI, a conjunction analysis of the MACM and RSFC results was performed using the strict minimum

statistics (Nichols et al., 2005). In practice, regions connected with the seed in both connectivity modalities

were delineated by computing the intersection of the (cluster-level family-wise-error-corrected) connectivity

maps from the two analyses detailed above. In this way, each derived cluster was associated with a network of

areas that are congruently connected to that cluster across disparate (i.e., task-focused and mind-wandering)

brain states.

2.3 Experimental results

The ’true’ shape and number of clusters is unknown for most real-world clustering problems, and thus also in

neuroimaging research. Finding an ’optimal’ number of clusters represents an unresolved issue (i.e., cluster

validity problem) in computer science, statistics, and machine learning (Jain, 2010; Handl et al., 2005). This

has prompted the development of diverse heuristics (cluster validity criteria) to weigh the quality of the

obtained clustering solutions. This heterogeneous set of evaluative measures is necessary because clustering

algorithms will always find subregions in the investigator’s ROI, whether these truly exist in nature or

not. For all seed regions, these heuristic procedures to find the most neurobiologically pertinent clustering

solution have indicated a most reasonable cluster number choice for each of the DMN nodes given MACM

and RSFC connectivity data (Fig. 2).
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Figure 2: Different clustering criteria for model selection

Various different estimates of model fit have been applied to find the superior cluster solution. Note that only the computed

cluster validation criteria are shown that converged to the respective optimal cluster number for each seed region.
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Regarding the RTPJ node of the DMN, task-dependent connectivity (i.e., MACM) capturing neural activity

during defined mental operations and task-independent connectivity (i.e., RSFC) capturing neural activity

during task-free mind-wandering were computed for every single voxel within the seed region. For each of

these two modalities, the connectivity profiles of all seed voxels were correlated with each other, yielding

a symmetric matrix that indicated the similarity in whole-brain connectivity (for the respective modality)

across any pair of seed voxels. k-means clustering of these two (MACM- and RSFC-derived) similarity

matrices congruently indicated the presence of two distinct clusters within the RTPJ (Fig. 1). Thus,

two independent modalities of functional connectivity, task-dependent MACM and task-independent RSFC,

provided highly convergent two-cluster solutions with 90% of overlap. In contrast, these two modalities

diverged strongly when attempting a more fine-grained clustering. In the three-cluster solution, only 38% of

the seed voxels were assigned congruently across both analyses. The distinction into two clusters, therefore,

represents the most robust regional differentiation within the RTPJ. Furthermore, the two-cluster solution

was favored by three diverging cluster validity criteria (Fig. 2). First, the information-theoretic criterion

variation of information yielded lowest values for two clusters. This minimum of variation thus reflected

highest integrity of information in the two-cluster solution. Second, the inter/intra-cluster distance ratio,

a cluster-separation criterion, was steadily increasing with the number of clusters without exhibiting any

special structure. This reflected normal behavior of a data space that is increasingly compartmentalized

and thus advocated the two-cluster solution for the sake of parsimony. Third, as a topological criterion, the

percentage of misclassified voxels across filter sizes was lowest for two clusters. This indicated that lowest

cluster number exhibited the least noise across the different filter sizes. Information-theoretic, cluster-

separation, and topological criteria thus agreed on the two-cluster segregation of the RTPJ ROI as best

fitting model given the data.

Task-constrained coactivations (MACM) and task-unconstrained time-series correlations (RSFC) congru-

ently showed functional connectivity of the cluster 1 with the bilateral primary motor cortex, midcingulate

cortex/supplementary motor area and anterior insula/inferior frontal gyrus. This set of areas resulting from

congruent connectivity to the purple cluster 1 across both connectivity approaches could be referred to as

’anterior RTPJ network.’ The orange cluster 2, in turn, featured congruent (across MACM and RSFC) func-

tional connectivity with the bilateral inferior parietal cortex, precuneus, and right middle temporal gyrus -

a ’posterior RTPJ network’. Importantly, a reciprocal relationship was found between the brain networks

linked to cluster 1 and cluster 2, respectively, by assessing each clusters negative times-series correlations

(Fig. 3). In particular, the bilateral midcingulate cortex/supplementary motor area and anterior insula/in-

ferior frontal gyrus were not only positively coupled with cluster 1 across MACM and RSFC but were also

negatively coupled with cluster 2 in the RSFC analysis. Conversely, bilateral inferior parietal cortex and

precuneus (not including the posterior cingulate cortex) were positively coupled with cluster 2 and nega-

tively coupled with cluster 1. From a neurophysiological perspective, one set of brain areas thus probably
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Figure 3: Specific connectivity of the RTPJ clusters

The midcingulate cortex/supplementary motor area and anterior insula/inferior frontal gyrus (upper box) demonstrated a

positive functional relationship in MACM and RSFC analysis with purple cluster 1 as well as a negative one (RSFC-) with

orange cluster 2. Conversely, bilateral TPJ and precuneus (lower box) were positively related (MACM, RSFC+) to the posterior

RTPJ subregion and negatively related (RSFC-) to the anterior RTPJ subregion.

increases metabolic activity together with RTPJ cluster 1 and decreases activity with RTPJ cluster 2, while

another set of brain areas shows the opposite pattern. These findings suggest a functional anti-correlation

between the subregions discovered in the anterior and posterior RTPJ.

Regarding the LTPJ node of the DMN, several metrics were applied to weigh the various cluster solutions

for the LTPJ ROI against each other (Fig. 2). First, as a topological criterion, the percentage of misclas-

sified voxels across filter sizes was lowest for solutions up to four clusters. This indicated that low cluster

numbers exhibited the least noise across the different filter sizes. Second, as another topological criterion,

the percentage of voxels not related to the dominant parent cluster was lower in the four-cluster solution

than for solutions with more clusters. Dividing the parietal ROI into four clusters thus contained relatively

few regrouped voxels and therefore high continuity with their dominant parent cluster from the k-1 solu-
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tion. Third, change of inter/intra-cluster ratio, a cluster-separation criterion, was higher for four clusters

comparing to the three- and five-cluster solutions. This indicated that the four-cluster solution isolated each

cluster well from the remaining ones. The four different measures of clustering quality thus unequivocally

advocated the four-cluster solution as the best-fitting model and, thus probably, the most neurobiologically

meaningful subdivision of the LTPJ ROI (Fig. 1).

Additionally, it can be instructive to consider the neighboring cluster solutions and their relations. In the

three-cluster solution, dorsal aspects of the LTPJ ROI were separated into a single cluster, while ventral

aspects of the ROI were separated into a rostroventral (most likely related to Wernicke’s area) and a

caudodorsal cluster. In the four-cluster solution, the former dorsal cluster was further subdivided into a

bigger green rostromedial and a smaller caudolateral cluster. In the five-cluster solution, the former cluster

was further subdivided into a medial and a lateral cluster. Note that k-means clustering was here applied

independently several times to the same ROI. This procedure does not enforce hierarchically consistent

cluster solutions. Nevertheless, the rostroventral and caudoventral clusters emerged independently with

consistent topography in all three clustering analyses. This means that the regional heterogeneity in the

whole-brain connectivity was more prominent for these clusters than for the clusters emerging from the green

cluster. In other words, the two clusters in the ventral LTPJ ROI capture a more distinct connectional-

functional segregation than the latter emerging clusters in the dorsal LTPJ ROI. This consolidates the

usefulness of the four-cluster solution.

Given the overlap between the connectivity profiles of the LTPJ clusters, parts of the brain have been

investigated that were more strongly connected to a given cluster than the respective three other clusters).

To this end, the brain regions were isolated that were selectively connected with a given cluster in contrast

to all remaining clusters. For instance, to delineate the specific cluster connectivity of cluster 1, an AND

conjunction was computed across the three difference maps (cluster 1 - cluster 2), (cluster 1 - cluster 3), and

(cluster 1 - cluster 4). This procedure removed connectivity of cluster 1 that was shared with clusters 2, 3,

and 4. This is because any voxel that is deemed to reflect specific connectivity of a given cluster had been

determined to be statistically more associated with that cluster in three separate difference analyses with the

respective three other clusters. According to MACM (Fig. 4), blue cluster 1 featured highest connectivity

strength to the bilateral superior temporal gyrus (coinciding with Wernicke’s area in the left hemisphere),

superior temporal sulcus, inferior frontal gyrus, as well as aspects of the inferior parietal lobe. In the left

hemisphere, cluster 1 was also specifically connected to the anteiror insula. These specific connectivity

targets were confirmed by RSFC. Additionally, cluster 1 featured highest RSFC to the middle temporal

gyrus, temporal pole, and mid/posterior cingulate cortex. The conjunction across specific MACM and RSFC

corroborated the specific MACM profile of cluster 1, except for the left anterior insula and inferior frontal

gyrus. Red cluster 2, according to MACM, demonstrated the highest connectivity strength to the bilateral

ventromedial/frontopolar/dorsomedial prefrontal cortex, extending into the rostral anterior cingulate cortex,
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Figure 4: Specific connectivity of the LTPJ clusters

Specific functional connectivity patterns of the subregions of the four-cluster solution as determined using meta-analytic con-

nectivity modelling (MACM; top two rows), resting-state connectivity (RSFC; middle two rows), and the conjunction of both

methods (MACM & RSFC; bottom two rows). The significant results are rendered on left/right lateral and medial views of

brain regions. Specific connectivity reflects stronger functional connectivity to a given cluster in the parietal ROI than to any

of the three other clusters according to meta-analytic connectivity modelling (MACM).

posterior cingulate cortex, as well as aspects of the inferior parietal lobe. Specific connectivity in the left

hemisphere was observed in the superior frontal gyrus and middle temporal gyrus. Notably, cluster 2 yielded

the most widespread selective connectivity to highly associative brain regions among all four clusters. RSFC

confirmed these specific connectivities by conjunction analysis and showed additional distributed results by

individual analysis in the midcingulate, medial temporal, visual, and anterior-cingulate regions. Orange

cluster 3 featured highest MACM coupling with the bilateral intraparietal sulcus and anterior aspects of

dorsolateral prefrontal cortex. Specific connectivity in the left hemisphere was observed in left inferior

temporal gyrus and anterior aspects of midcingulate cortex/supplementary motor cortex. Individual and

conjunction RSFC analysis confirmed this set of regions. Yet, a part of the posterior cingulate cortex and the

right inferior frontal gyrus were only revealed by specific RSFC. Green cluster 4 featured highest MACM

connectivity to bilateral superior parietal lobe, posterior aspects of midcingulate cortex/supplementary

motor area, and posterior aspects of dorsolateral prefrontal cortex, as well as anterior insula, primary visual

cortex (including fusiform gyrus), and cerebellum (not shown). Indeed, specific RSFC confirmed this entire

set of regions by conjunction analysis.
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Regarding the PMC node of the DMN, several metrics were applied to weigh the various cluster solutions for

the PMC ROI against each other (Fig. 2). First, the information-theoretic criterion ’variation of information’

slightly decreased from three to four clusters and steeply increased from four to five clusters. This indicated

that each cluster of the k-means clusterings became increasingly chaotic starting from five clusters. Second,

the cluster-separation criterion ’silhouette coefficient’ showed a positive bump at four clusters in the upward

trend starting from three clusters. This indicated that clustering into four groups featured unexpectedly

compact clusters, although compactness increases with the number of clusters. Third, the other cluster-

separation criterion change of inter/intra-cluster ratio was highest for four clusters. This indicated that the

four-cluster solution best isolated each cluster from the remaining ones. Fourth, as a topological criterion,

the percentage of misclassified voxels across filter sizes was lowest for four clusters. This indicated that the

four-cluster solution exhibited the least noise across the different filter sizes. The four different measures of

clustering quality thus unequivocally advocated the four-cluster solution as the most robust differentiation

in the PMC ROI. Cluster 1 emerged in the dorsocaudal part of the ROI in the parietal lobe (Fig. 1).

Cluster 2 emerged in the ventral part of the PMC ROI in the posterior cingulate cortex. Cluster 3 emerged

in the dorsorostral ROI in the posterior cingulate cortex, such as cluster 2. Finally, cluster 4 emerged in the

ventrorostral ROI in and near to the retrosplenial cortex.

As to MACM (Fig. 5), red cluster 1 of the PMC ROI was specifically connected to the bilateral dorsolateral

prefrontal cortex (at the caudal end of the middle frontal gyrus and superior frontal sulcus), intraparietal

sulcus, and midcingulate cortex/supplementary motor area, as well as the right frontal eye field, temporo-

parietal junction, and supramarginal gyrus. As to RSFC, cluster 1 was specifically connected to the right

dorsolateral prefrontal cortex (similar topography as for MACM) extending into the frontal eye field, bi-

lateral intraparietal sulcus, and right temporoparietal junction. Across MACM and RSFC, cluster 1 was

congruently specifically connected to the bilateral intraparietal sulcus as well as the right frontal eye field

and temporo-parietal junction. As to MACM, green cluster 2 was specifically connected to the bilateral

vmPFC and inferior parietal cortex, as well as left inferior frontal gyrus. As to RSFC, cluster 2 was specif-

ically connected to the bilateral vmPFC and inferior parietal cortex. Across MACM and RSFC, cluster 2

was congruently specifically connected to bilateral vmPFC and middle aspects of the left inferior parietal

cortex. As to MACM, blue cluster 3 was specifically connected to the bilateral dmPFC, inferior parietal

cortex, and posterior midcingulate cortex, as well as the left dorsolateral prefrontal cortex, superior parietal

cortex, and posterior superior temporale sulcus. As to RSFC analyses, cluster 3 was specifically connected to

the bilateral dmPFC, dorsolateral prefrontal cortex, inferior parietal cortex, posterior midcingulate cortex,

middle temporal gyrus, temporal pole, and cerebellum (not shown). Across MACM and RSFC, cluster 3 was

congruently specifically connected to the bilateral dmPFC, posterior midcingulate cortex, inferior parietal

cortex, as well as the left caudal dorsolateral prefrontal cortex (close to the inferior frontal junction and

ventral premotor cortex). As to MACM, yellow cluster 4 was specifically connected to bilateral anterior
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Figure 5: Specific connectivity of the PMC clusters

Depicts renderings as well as sagittal, coronal, and axial section views of brain regions more strongly functionally connected

to a given cluster than to any of the three other clusters according to meta-analytic connectivity modelling (MACM; top two

rows), resting-state functional connectivity (RSFC; middle two rows), and the conjunction across MACM and RSFC (bottom

two rows). Coordinates in MNI space.

thalamus and right hippocampus. As to RSFC, cluster 4 was specifically connected to the bilateral hip-

pocampus, thalamus, occipital lobe, and cerebellum (not shown), as well as left amygdala. Across MACM

and RSFC, cluster 4 was congruently specifically connected to the bilateral anterior thalamus and right

hippocampus.

To finally determine the optimal parcellation of the dmPFC ROI, metrics quantified model fit for comparison

between cluster solutions. Information-theoretic, cluster separation, topological, and consistency criteria

agreed in favoring the four-cluster solution as featuring the highest stability (Fig. 2). First, the information-

theoretic criterion indicated variation of information to decrease from three to four clusters and to increase

towards five clusters. This minimum of variation thus reflected highest integrity of information in the four-

cluster solution. Second, as cluster separation criterion, the silhouette coefficient showed an increase from

three to four clusters, whereas this metric decreased again in five clusters. Four clusters thus exhibited

highest similarity among the voxels in each cluster. Third, as topological criterion, the percentage of voxels

not related to the dominant parent cluster was minimal in the four-cluster solution. Four clusters thus

contained the least amount of regrouped voxels and therefore highest continuity with their dominant parent
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cluster from the k-1 solution. Comparing to the three- and five-cluster solutions, the four-cluster solution

showed highest hierarchical consistency. Fourth, as a consistency criterion, the percentage of misclassified

voxels decreased in the four-cluster solution, whereas five clusters lost across-filter stability. In sum, these

four diverging criteria measuring model fit all favored the four-cluster solution as the most stable segregation

of the dmPFC ROI (Fig. 1).

Figure 6: Specific connectivity of the dmPFC clusters

Depicting connectivity patterns which are stronger connected to a given dmPFC cluster, compared to all three other clusters

based on meta-analytic connectivity modelling (MACM; top row) and resting-state functional connectivity (RSFC; middle

row). Specific connectivity is rendered for caudal-right (red), rostroventral (green), rostrodorsal (blue), caudal-left (yellow)

cluster.

In the MACM analysis (Fig. 6), specific connectivity patterns were only found for the green cluster 2 and

yellow cluster 4. The green rostroventral cluster 2, more than all other dmPFC clusters, was connected to

left posterior cingulate cortex and bilateral inferior parietal lobe, i.e., regions that form the core of what is

known as the default mode network. The yellow caudal-left cluster 4, in turn, was specifically connected

to the (left) anterior midcingulate cortex. In the RSFC analysis, rostroventral cluster 2 and caudal-left

cluster 4 showed similar functional connectivity as in the specific MACM analyses. Rostroventral cluster 2

was specifically connected to the left posterior cingulate cortex. Cluster 4 featured specific connectivity to

left anterior midcingulate cortex and - in addition to the MACM results - also the bilateral anterior insula.

Furthermore, RSFC analyses also revealed specific connectivity for right-caudal cluster 1 and rostrodorsal

cluster 3: Red cluster 1 was specifically connected to the right dorsolateral prefrontal cortex, superior parietal

cortex, intraparietal sulcus, inferior parietal lobe, dorsal posterior cingulate cortex, and precuneus, middle

temporal gyrus, and inferior temporal gyrus as well as left cerebellum (not shown). The blue rostrodorsal

39



cluster 3 further showed specific connectivity to the left inferior frontal gyrus, temporal pole and bilateral

middle temporal gyrus, middle occipital gyri and cerebella (not shown). It is noteworthy that RSFC yielded

more distributed connections than MACM in all dmPFC clusters. RSFC thus also revealed more extensive

specific connectivity patterns.

2.4 Discussion

From an anatomical perspective of brain segregation (Amunts et al., 2013), cortical areas are believed to

be distinguishable from their neighbors by featuring a distinct microstructure, distinct connectivity, and

distinct function. Brain function may follow naturally from brain structure and connectivity that conjointly

enable locally specific neuronal computations (Passingham et al., 2002). As CBP is based on connectivity

the defined clusters can be interpreted as ’functional areas’ in a broad sense, but may not be directly

interpretable as ’cortical areas’ in a strict sense. In fact, the concepts of what constitutes a cortical area

are mainly derived from studies of early sensory (Van Essen et al., 1992) and motor (Rizzolatti, 1987)

brain systems. They may conceivably not be applicable to higher-level associative brain areas, such as the

segregated nodes of the DMN. For instance, it is more and more difficult to relate the connectivity pattern

of an area to its functional roles with increasing distance from sensory input processing (Mesulam, 1998;

Yeo et al., 2011).

From a more methodological perspective of brain segregation, CBP does not address the question whether

there is a ’true’ neurobiological parcellation in a given brain region. CBP is employed to identify the clus-

tering solution that is ’optimal’ to describe the data. The question remains whether different parcellation

results for the same ROI capture different resolutions or dimensions of an underlying neurobiological orga-

nization. The answer depends on the region of interest. For instance, previous CBP work on the insula

(Nanetti et al., 2009; Kelly et al., 2012) and the right temporo-parietal junction (Mars et al., 2012) have

indicated close agreement between the parcellations based on different connectivity modalities. In contrast,

parcellations of the posteromedial cortex have diverged more strongly between existing CBP studies based

on different connectivity modalities (Cauda et al., 2010; Zhang and Li, 2012). These observations corrob-

orate the relevance of the conceptual differences between aspects of connectivity, such as RSFC, MACM,

and others. Moreover, there is probably no such thing as ’the connectivity’ for a particular brain volume of

interest.

None of the connectivity modalities currently existing in neuroimaging provides axonal connectivity in

stricto sensu (as gleaned from axonal tracing studies in monkeys). RSFC is task-unconstrained (i.e., task-

independent) as opposed to task-constrained (i.e., task-dependent) MACM. Both RSFC and MACM identify

temporal coincidence of neural signals in gray matter, that is, functional connectivity. Yet, functional con-

nectivity between two regions may be mediated by a third region. That is, RSFC and MACM may be driven

by indirect connections. This could however be alleviated by computing partial correlations, which is closer
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to direct interaction by summarizing conditional independences. In fact, regression-based estimators, such

as dictionary learning, instead of standard clustering approaches, may be more robust to this issue as they

take into account signal interactions. Additionally, RSFC and MACM are generally sensitive in delineating

existing connections but more prone to false positives (Jbabdi and Behrens, 2013). Importantly, RSFC-CBP

but not MACM-CBP can be conducted in individual participants. RSFC-CBP thus enables detecting inter-

individual differences in regional functional organization, while MACM-CBP inevitably generalizes across

various inter-individual variability sources in the sampled participant population.

Given the biological and methodological characteristics of the most frequently used functional connectivity

measures, the following tentative distinction is suggested. MACM-CBP may reveal clusters that are probably

functionally distinct modules even though the spectrum of brain functions is likely to be larger than what

can be probed by neuroimaging techniques (Smith et al., 2009; Mennes et al., 2013). That is, task-based

functional connectivity might be limited by human real-world behavior being richer than human in-scanner

behavior. The neurobiological nature of RSFC-CBP derived clusters might be less certain. This is because

the relation of resting-state correlations to anatomical connectivity, function, and the brain’s housekeeping

physiology is currently only incompletely understood.

Moreover, each time the investigator choses a clustering algorithm to be applied on a ROI, he or she accepts

a number of implicit or explicit assumptions (Hastie et al., 2011). Therefore, any clustering algorithm un-

avoidably biases the resulting clustering solution with respect to the number, shape, relative sizes, hierarchy,

and contiguity of the clusters. The inevitable assumptions and biases of a clustering algorithm motivate

the choice of a particular one based on the aim of the study, the ROI, and the employed connectivity data.

Moreover, using different connectional modalities it is possible to provide a valuable cross-confirmation of

the clusters’ biological relevance.

With regard to CS-SL distinction (cf. 1.2), assessing the significance of brain parcellation results is hard.

This is particularly true in the strict sense of inferential statistics, rather a broader sense of ’interesting’

or ’relevant’ structure. The key problem in wanting to assess statistical significance of CBP results is the

requirement of a null hypothesis to test against. Conceptually, a ROI clustering solution would hence be

deemed statistically significant if it has a very low probability of being true under the null hypothesis that

the investigator seeks to reject. Yet, such a null hypothesis is often difficult to formulate in clustering

applications. Instead of inferential statistics, which test for a particular structure in the clustering results,

exploratory statistics should instead discover and assess structure in the data (Efron and Tibshirani, 1991;

Hastie et al., 2011). While it is true that statistical methods span a continuum between the two poles

of inferential and exploratory statistics, comparing the importance or pertinence of clustering results from

a CBP analysis is naturally situated more towards the latter. CBP hence represents an unsupervised

statistical learning problem that is conventionally addressed by quantitatively comparing model fit using

cluster validity criteria. It may therefore be seen as one instance of a current shift in neuroimaging away
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from classical inferential towards exploratory approaches, put differently, from voxel-level mappings to more

global assessment of model fit or predictive power (O’Toole et al., 2007; Brodersen, 2009; Ashburner and

Klöppel, 2011; Formisano and Kriegeskorte, 2012).

Importantly, as connectivity-derived clusters are mere descriptions of the data, meaning of the obtained

clusters can only arise in the adoption of a neurobiological viewpoint. With regard to the RTPJ node of

the DMN, the brain regions specifically connected to the cluster 1 (i.e., more strongly than any of the other

clusters) have been proposed to compose a saliency network that detects relevant stimuli to guide behavior

(Sridharan et al., 2008). Consistently, comprehensive across-study analyses (Dosenbach et al., 2006) attested

a role of this network in tonically maintaining the task-imposed cognitive set or the task plan. The synopsis

of present and previous evidence thus suggests that the cluster-1 network is central for sensorimotor control

by integrating supramodal stimulus-guided attention and action initiation during externally structured tasks.

On the other hand, prior research consistently implicated the cluster-2-connected brain regions in higher

social processes, including perspective-taking (Mar, 2011), social judgments (Freeman et al., 2010), and

imagination-driven empathy (Lamm et al., 2011). Further research also frequently implicated the cluster-2

network in memory processes, including autobiographical/episodic memory retrieval (Spreng et al., 2009)

and semantic processing (Binder et al., 2009). Indeed, the topography of the specific cluster-2 regions

corresponds to previous meta-analytic definitions of the well known ’default mode network’. Summing

up the RTPJ node of the DMN, cluster 1 may be considered part of an externally oriented, stimulus-

driven network that probably controls attention to salient events in our environment and reactions towards

these. Conversely, cluster 2 appears to be part of an internally oriented, stimulus-independent network

potentially involved in continuous memory-informed mental imagery to potentially predict plausible social

events related to self. Although cluster 1 and cluster 2 were each implicated in many seemingly unrelated

tasks by functional profiling, the difference between the two task groups could be parsimoniously explained

by the required attention to either the external world or self. Summing up clustering results on the RTPJ

node of the DMN, the presence of an anterior and posterior subregion with antagonistic connectivity and

thus also functions emerged from application of the CBP toolbox.

With regard to the LTPJ node of the DMN, clusters emerging in the ventral versus dorsal ROI were more

consistent across clustering analyses. The follow-up connectivity analyses consistently indicated a rostro-

ventral versus caudo-ventral cluster in the inferior LTPJ ROI associated with lower- versus higher-level

aspects, respectively, of both social and language regions. Clusters that emerged in the dorsal ROI, in

turn, were connectionally related to domain-general attention and working-memory regions. The rostro-

ventral cluster 1 exhibited specific connectivity (i.e., connectivity that is stronger with cluster 1 than any

other cluster in the ROI) with the bilateral superior temporal gyrus and sulcus, inferior frontal gyrus,

and regions in the left parietal lobe. These areas have previously been associated with general aspects of

task processing and stimulus-response processing in social cognition and language tasks. In contrast to
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cluster 1, the caudo-ventral cluster 2 was specifically connected with the bilateral inferior parietal lobe,

ventro- and dorsomedial prefrontal cortex (extending into the neighboring anterior cingulate cortex) and

the posterior cingulate cortex, and left superior frontal gyrus and middle frontal gyrus. Previous studies

suggested that these regions subserve high-level associative functions, including the default mode of brain

function (Buckner et al., 2008). Analogous to the posterior subregion in RTPJ, the observed connectivity

profile for cluster 2 converges with a set of brain regions underlying the default mode network (Uddin et al.,

2010). The remaining two clusters in the dorsal ROI were characterized by highly similar connectivity

profiles. Both the cluster 3 and the cluster 4 featured connections to areas previously associated with

general cognitive control processes (Dosenbach et al., 2006; Clos et al., 2013). Summing up clustering of the

LTPJ node of the DMN, social cognition and language related processing facets are unlikely to be clearly

dissociable in the LTPJ based on large quantities of fMRI measurements. While cluster 1 and 2 were both

congruently associated with social-cognitive and language regions, the data provide evidence for a gradient

in the hierarchy of processing. Cluster 1 might predominantly subserve lower-level processing facets in social

cognition and language and cluster 2 might be more engaged in higher-level facets of these processes. This

concurs with the closely intertwined relationship between the development of social cognitive and language

capabilities in children (Heyes and Frith, 2014).

With regard to the PMC node of the DMN, cluster 1 turned out to be the only connectivity-derived region

neuroanatomically situated in the parietal lobe proper rather than cingulate cortex. This cluster derived

from the PMC ROI was selectively connected to the right frontal eye field, bilateral intraparietal sulcus,

and right temporo-parietal junction, congruently across task-related (MACM) and task-unrelated (RSFC)

analyses. This connectivity pattern of cluster 1 corroborates that the precuneus is not part of the default

mode network (Parvizi et al., 2006; Margulies et al., 2009). Instead, the cluster 1 is probably implicated in

the internally or externally triggered, overt or covert allocation of attentional resources to internal or external

information. The cluster 2 was specifically connected to the bilateral ventromedial prefrontal cortex and

aspects of the left inferior parietal cortex across task-related MACM and task-unrelated RSFC. This ROI-

derived cluster may thus be implicated in predominantly evaluating object features, as opposed to space

features, in perceived or imagined visual stimuli, potentially informed by semantic concepts. The cluster 3

was specifically connected to the bilateral dorsomedial prefrontal cortex, posterior midcingulate cortex, and

inferior parietal cortex as well as to the left dorsolateral prefrontal cortex, congruently across MACM and

RSFC. In fact, this is in line with the well-known integration of the dPCC’s in the dorsal visual stream -

the ’where’ system for spatial processing (Margulies et al., 2009; Vogt et al., 2006), in contrast to cluster 2’s

potential relation to the ventral ’what’ system. Cluster 3 in the PMC ROI is implicated in overt and covert

navigation of the self and body in real or imagined spatial environments. The cluster 4 was prominently

connected to the right hippocampus and bilateral anterior thalamus, congruently across MACM and RSFC

analyses. Also in monkeys, the retrosplenial cortex featured particularly strong axonal connections with

43



these two brain regions (Kobayashi and Amaral, 2003, 2007; Parvizi et al., 2006; Vogt et al., 1987). Cluster

4 may thus be implicated in mediating between organism-centered (i.e., egocentric or from current view) and

world-centered (i.e., allocentric or from a bird’s eye view) perspective frames, which is a frequent feature of

both processing memory and spatial scenes. Summing up the PMC node clustering and associated network

patterns, mind-wandering at rest might be subserved by different neural computations implemented in

the four derived components of the PMC. Note that ’mind-wandering’ is used here in the broad sense of

cognitive processes that are not controlled by a certain task, which makes no judgment about the content

of these thought processes. Integrating the above cluster-wise interpretations, mind-wandering might be

instantiated by internally navigating the self in mapped hypothetical, present, future, or past spaces (dorsal

posterior cingulate cortex potentially mediating spatial scene elaboration, retrosplenial cortex potentially

mediating the translation between ego and world oriented reference frames) to allow detecting behaviorally

relevant features in those envisioned scenes (ventral posterior cingulate cortex potentially mediating self-

relevance evaluation) by shifting the attentional focus between various feature and aspect contemplations

(precuneus potentially mediating the covert reallocation of attentional resources between different internal

representations). In sum, if these speculations hold some truth in them, the PMC’s conceivable key role in

the continuous environmental tracking in a generative, integrative process might explain both its highest

energy consumption in the brain and its intimate coupling with conscious awareness.

Finally, with regard to the dmPFC node of the DMN, two rostral ones (dorsal and ventral) and two caudal

ones (left and right) cluster have emerged. The rostral clusters, especially the rostroventral cluster, were

strongly connected to the posterior cingulate cortex and the inferior parietal cortex. Among all four clusters,

the cluster 2 was most consistently functionally coupled with the DMN across task-related and task-unrelated

brain states. The present results agree with the currently scarce evidence for an important DMN node in

the most frontopolar mPFC, most closely corresponding to the present cluster 2. Further, both rostral

clusters featured functional connections to the amygdala and hippocampus in the limbic system associated

with memory and social cognitive tasks. In contrast, the two caudal clusters were hemispherically divided

and predominantly connected to the respective ipsilateral hemispheres. From a network perspective of brain

function, the cluster 1 was connected to a right-lateralized frontoparietal attentional network (Corbetta

et al., 2008). The cluster 4 was connected to the left aMCC and bilateral anterior insulae, proposed to

correspond to a saliency network (Seeley et al., 2007). The results thus support a differentiation within

the dmPFC by regionally distinct functional relations to limbic, attentional, and default mode networks.

Moreover, it became apparant that the delineated dmPFC clusters exhibited prominent differences between

task-related and task-unrelated functional coupling patterns. This observation contrasts previous bimodal

studies of seed regions, such as in the nucleus accumbens (Cauda et al., 2010), where MACM and RSFC

largely conformed. That is, functional connectivity of the brain’s task state (MACM) and of the brain’s

resting state (RSFC) frequently exhibited more similarities than dissimilarities in the interaction pattern
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with the rest of the brain. Most similar to the RTPJ, also the dmPFC suggests itself as a candidate region

for mediating between neural systems that are typically more active and less active during task performance,

respectively. During tasks (MACM) the cluster 4 featured strongest connectivity with the DMN, whereas

during mind-wandering (RSFC) this cluster featured strongest connectivity to the putative saliency network.

This currently underappreciated neurobiological behavior is challenging to interpret given that the present

data are purely observational, rather than interventional (cf. 1.4). Also this last of the four investigated

DMN nodes therefore invigorates the increasingly recognized relationship between the physiological baseline

of the human brain and an introspective psychological baseline implicated in continuous self-related social

cognition and memory retrieval (Schilbach et al., 2008, 2012; Timmermans et al., 2012). More clearly, the

sophisticated, essentially unknown computational problems solved by the nodes of the default mode network

seems to range from task-free to task-constrained processing in the human brain.

In the future, these data-driven results can yield reliable cornerstones for a variety of consecutive neu-

roimaging analyses. Experimental methods requiring a-priori target regions can capitalize on CBP clusters

to further characterize their behavioral implications by diverse viewpoints towards cross-modal functional

mapping. This might include, but is not exclusive to, transcranial magnetic stimulation (TMS), dynamic

causal modelling (DCM), structural equation models (SEM), Granger causality mapping (GCM), and ROI-

based experimental fMRI analyses. From a broader perspective, CBP can thus enhance any neuroimaging

technique reliant on prospective region definitions that critically hinges on proper fit of the priors. Ulti-

mately, using clustering algorithms in neuroscience offers useful simplified views on brain regions that remain

complex in nature.
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3 Supervised modelling of brain networks

3.1 Motivation

There is considerable uncertainty about the most pertinent concept of functional brain architecture. Brain

organization is often viewed from modular versus distributed perspectives. While the modular perspective

emphasizes the segregation of the human cerebral cortex into functionally distinct cortical areas (cf. pre-

vious chapter), the distributed perspective emphasizes the functional interplay between widespred brain

networks (i.e., sets of cortical areas). Systems neuroscience has indeed established the existence of a set of

fluctuating yet robust brain networks in humans (Biswal et al., 2010; Shehzad et al., 2009). These are likely

manifestations of electrophysiological oscillation frequencies (Hipp and Siegel, 2015). Their fundamental or-

ganizational role is further attested by continued covariation during sleep and anesthesia (Fox and Raichle,

2007).

Identical neural networks have repeatedly been found across cognitive domains using diverging methods.

These observations prompted widely-adopted network notions, including the ’default mode network’ (DMN;

(Raichle et al., 2001)), ’salience network’ (SN; (Seeley et al., 2007)), and ’dorsal attention network’ (DAN;

(Corbetta et al., 2008)). Developmentally, such large-scale networks emerge during late fetal growth (Doria

et al., 2010), before cognitive capacities mature in childhood. In adult humans, nodes of a same cohe-

sive network probably have more similar functional profiles than nodes from different networks (Anderson

et al., 2013). Indeed, resting-state fluctuations between large-scale networks were observed to be less stable

than coupling between regions of each network when assessed by intra-class correlation (Shehzad et al.,

2009). Between-network connections were also less stable than intra-network connections when assessed by

Kendall’s coefficient of concordance. During task-unrelated random thought, network-network dynamics

therefore appear to be more volatile across participants and brain scans than intra-network dynamics. This

suggests that the constellation of relative network implications is an underappreciated unit of functional

brain organization.

Consistently, the onset of a given cognitive task might induce characteristic changes in functional coupling

of large-scale networks. The SN and DAN tend to display BOLD signal increases due to experimental

stimulation, although the DMN often decreases. Whether stimulus-evoked compositions of such networks

explain the majority (Smith et al., 2009) or only a fraction (Mennes et al., 2013) of overall task activity

is currently unresolved. For instance, a working-memory task entailed increase in BOLD activity in DAN

regions but decrease in default mode regions (Fransson, 2006). Notably, the functional connectivity did not

change significantly within either DAN or DMN during this fMRI task. During auditory event transitions in

another experimental fMRI study, both DAN and SN increased in activity, whereas the DMN decreased in

activity (Sridharan et al., 2008). These changes of network-network constellation are probably mechanisti-

cally relevant for unfolding behavior. This idea is supported by evidence that proportional DMN recruitment
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impairs task performance believed to be subserved by other large-scale networks (Mason et al., 2007; Weiss-

man et al., 2006). The mediation between canonical networks was tentatively proposed to involve the right

anterior insula (Sridharan et al., 2008) and right temporo-parietal junction (Bzdok et al., 2013). Moreover,

the relevance of network-network architectures possibly extends to psychiatric and neurological disorders

(Seeley et al., 2009; Mennes et al., 2010). In particular, reciprocal coupling between DMN decrease and

task-recruited networks was found to be absent in autism (Kennedy et al., 2006), reduced in schizophrenia

(Whitfield-Gabrieli et al., 2009) and major depression (Hamilton et al., 2011), as well as frequency-altered

in attention deficit hyperactivity disorder (Liddle et al., 2011).

In neuroimaging research, the notion of brain ’networks’ (Mesulam, 2012) has frequently been investigated

in rest data (Biswal et al., 2010) with a few exceptions of applications to task data (Smith et al., 2009;

Mennes et al., 2013; Cole et al., 2014). The relationship between brain activity during task and rest has pre-

dominantly been addressed by three neuroscientific tools (Zhang and Raichle, 2010): targeted neuroimaging

experiments, seed-based analysis of resting-state correlations, and independent component analysis (ICA).

How much experimental neuroimaging studies can contribute to research on task-rest correspondence is open

to question. A paradox is introduced when attempting to measure genuine mind-wandering as prompted

by a task while lying in a brain imaging scanner (Krienen et al., 2010; Bado et al., 2014). Additionally,

each neuroimaging study can tap on only a small subset of experimental tasks. This precludes synoptic as-

sessment of human cognition as a whole. Seed-based connectivity investigations depend on the assumption

that the seed-region definition successfully captures an underlying biological structure (Bullmore E and O

Sporns 2009). Seed correlation patterns are typically mixtures of overlapping canonical networks and are

significance-tested in voxel space that is orthogonal to network interpretations. Moreover, ICA decomposes

neuroimaging activations into a set of independent topographical maps (Beckmann et al., 2005). There is

no obvious way to relate the ensuing network maps to traditional psychological concepts (Yeo et al., 2014).

Although the number of such independent components is unknown, conventionally only one or two choices

are explored (Smith et al., 2009; Laird et al., 2009). One might draw two important conclusions. First, the

neurobiological validity of seed-correlation and ICA results is rarely assessed by inferential rejection of a null

hypothesis or supervised comparison against the ground truth. Second, ICA has so far been the almost ex-

clusive choice for network decomposition in neuroimaging data. This has largely neglected alternative latent

variable models, including principal component analysis (PCA), sparse PCA (SPCA), and factor analysis

(FA).

In general, finding important structure in data along the n most important directions of variation is fre-

quently done using PCA (Shlens, 2014a; Bishop, 2006; Hastie et al., 2011). This analytical procedure reduces

second-order correlation between the input features (referring to the second moment, i.e., covariance). PCA

identifies the most meaningful basis (i.e., manifold) in order to rotate the data into a new coordinate system

that reveals hidden meaningful structure. It is a data transformation that performs compression by exploit-
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ing correlations among the input variables. The ensuing first principal component expresses the direction of

the largest variance corresponding to the largest eigenvalue. The subsequent principal component is derived

along the second most important direction of variation under the constraint of being orthogonal to and

thus uncorrelated with the first components etc. pp.9 The assumptions made by PCA include i) linear-

ity (complexity restrictions to the space of candidate bases), ii) large variance is an indicator of relevant

structure, iii) the important modes of variation are orthogonal to each other, and iv) the input random

variables follow a Gaussian distribution (use of PCA is discouraged otherwise). The same principal compo-

nent space can be derived by maximizing the variance of the latent axes or minimizing the reconstruction

error from the latent axes (Bishop, 2006). Once the PCA model has been fit to the data, any unseen data

can be project onto (i.e., regressed against) the principal component weights of the n components (i.e., the

explained-variance-ordered set of n basis vectors) to obtain principal component loadings (i.e., ’importance’

along the coordinate system axes). In reexpressing a high-dimensional space in a low-dimensional space

by eigenvalue theory, PCA is mathematically related to singular value decomposition (SVD) (Golub and

Van Loan, 2012). SVD is a means from linear algebra for matrix decomposition by diagonalization to derive

the singular values and singular vectors in the rectangular-matrix setting (i.e., not constrained to quadratic

matrices such as general eigenvalue decomposition). PCA is further closely related to whitening procedures

that perform Gaussian decorrelation transformation. It is often employed as a preprocessing step before

actual data analysis (e.g., it is part of ICA, see passage below) that allows to treat all data dimensions

equally. More specifically, whitening is a lossy operation (i.e., some information cannot be restored) that

normalizes all dimensions to one (by dividing each component with the square root of its eigenvalue) and

removes existing linear dependencies (by projecting the data onto the component eigenvectors). In imaging

neuroscience using fMRI, PCA can readily be applied to series of brain images to impose orthogonality in

both the components’ time series and spatial patterns. In this context PCA yields the decomposition of

BOLD time series into the spatial modes of highest variation (Friston et al., 1999a). It further rotates the

fMRI signals into a space where the voxel values are less correlated with each other but conserves their

important changes across brain scans. For instance, experimental fMRI activity has been projected onto the

40 PCA components to subsequently predict psychological tasks from individual brain scans (Carlson et al.,

2003). Further, brain scans from participants exposed to stimuli depicting face and house pictures have also

been decomposed into their distributed PCA patterns (Haxby et al., 2001). The first principal component

explained 50% of the variance and located to the fusiform and parahippocampal gyri known to subserve

the respective category perceptions (O’Toole et al., 2007). Up to now PCA has however mostly been ap-

plied to fMRI data in the aim of dimensionality reduction rather than for generation of neurobiologically

interpretable network units.

9Algorithmically, somewhat similar to Gram-Schmidt orthonormalization.
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Classical PCA may not always perform optimally in cases of few samples and many features (wide data),

such as in typical fMRI studies (Viviani et al., 2005). Statistically, the sample eigenvectors and the popula-

tion eigenvectors can diverge considerably in the high-dimensional setting (Johnstone, 2001). This statistical

behavior is a result of the dense values of linear combinations of principal components that describe the

original features. Many multivariate statistical models harness the curse of dimensionality by adding spar-

sity constraints to the optimization objective (Foucart and Rauhut, 2013). As a natural extension of PCA,

sparse PCA derives sparse principal components with a maximum of zero weights to decrease dimensionality

of the data projection vectors (Zou et al., 2006). Sparse PCA optimization thus weighs the tradeoff between

correlation among the component loadings and sparsity of the component weights. The penalized decompo-

sition of matrices can thus be viewed as an instance of automatic variable selection by imposing additional

structural assumptions. Besides being better mathematically posed in high dimensions, less complex solu-

tions also tend to be more interpretable. Importantly, the focus will be on sparsity in principal component

weights, while an ℓ1-penality can alternatively be imposed on the coefficients (i.e., ’loadings’) of the principal

components, such as in sparse dictionary learning10 (Mairal et al., 2009). Linear combinations of feature

subsets can be extracted from neuroimaging data by reformulating PCA as a Lasso/Ridge/ElasticNet-type

optimization problem (Tibshirani, 1996; Zou and Hastie, 2005). This can be achieved with or without

additionally imposing orthogonality between the sparse principal components, although the orthogonality

assumption can interfere with the sparsity constraint. In contrast to PCA, SPCA poses a hard nonconvex

optimization problem (Hastie et al., 2015). Additionally, good SPCA implementations should sucessfully

deal with multicollinearity between the input features (to avoid random, non-interpretable variable selection)

and should be reducible to classical PCA (if the λ-coefficient of the ℓ1-norm is set to zero). Sparse matrix

decomposition of fMRI signals are also increasingly used in brain research (Varoquaux and Craddock, 2013).

A sparse dictionary learning method has for instance been used to estimate a scalable atlas of functional

brain regions from rest data (Varoquaux et al., 2011). This neurobiologically plausible statistical learning

framework explicitly accounted for observation noise and estimated both subject- and group-level latent

atlases. In sum, SPCA is a variant of PCA that derives linear combinations from subsets of the original

voxels.

Furthermore, the interpretation of principal components has repeatedly been improved by rotation tech-

niques (Jolliffe, 1995). Indeed, ICA reduces to first performing PCA/SVD (i.e., preliminary whitening)

and subsequently searching for the rotation matrix yielding independent components (Hyvärinen and Oja,

2000; Bishop, 2006; Shlens, 2014b). Besides projection into an optimized coordinate system, PCA/SVD also

accounts for noise estimation to which ICA is näıve. That is, successful application of ICA depends on pre-

ceding decorrelation of the data. It perform blind source separation and factor rotation by assuming that the

10Informally, sparse PCA can thus be viewed as the transpose of sparse dictionary learning.
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data arise from a linear combination of (non-Gaussian) independent latent components. While the first step

assumes Gaussian inputs and has a linear, analytical solution, the second step assumes non-Gaussian inputs

and requires non-linear, numerical optimization to find the best rotation matrix. The first step accounts

for second-order correlation, whereas the second step accounts for higher-order correlations. In contrast

to PCA that learns directions of maximal variance, ICA learns components with a maximum of statistical

independence, minimal mutual information, and maximal non-Gaussianity. The ensuing mixing matrix al-

lows to deconvolve the linear transformation underlying factor combinations. The derived directions in the

data are necessarily orthogonal in the whitened feature space (equal variance for each direction) but not

in the original feature space (non-equal variance for each direction). In fact, ICA and PCA yield identical

results if provided with Gaussian input data because uncorrelated Gaussian random variables are necessarily

independent. That is, PCA alone can recover the unknown data-generating sources in cases of low higher-

order correlation. In neuroimaging, ICA is by far the most frequently used decomposition method for times

series of fMRI images (McKeown et al., 1998; Beckmann et al., 2005). Typically, ICA is applied by imaging

neuroscientists to rest data of neural activity in the absence of a defined experimental task. The ensuing

building blocks of brain activity are widely believed to represent macroscopical brain networks. These can

be derived by their spatio-temporal fluctuation patterns without specifying an explicit a-priori hypothesis.

Indeed, the networks patterns almost exclusively locate to the brain’s gray matter, rather than yielding

network nodes in white matter regions. Without an a-priori region, ICA can thus extract several ’networks’

while separating out non-neuronal variance, for instance from movements and ventricles. These putative

network units of brain organization have been compared with analoguous task networks (Smith et al., 2009)

which exhibited a high degree of similarity. ICA was further capable of estimating strongly overlapping

network components (e.g., with complementary hemispheric emphasis). Despite initial skepticism, such RS

connectivity results were repeatedly shown to be consistent across participants, brain scans, time points,

and other factors (Shehzad et al., 2009). ICA networks have for instance shown spatial structure that is

robust to open versus closed eyes during image acquisition as well as to respiratory and cardiac sources of

noise. In sum, ICA relies on the largest non-Gaussian directions to estimate a set of unobserved neuronal

sources.

Finally, factor analysis models share many properties with PCA (Fabrigar et al., 1999; Beavers et al., 2013).

There is actually an ongoing discussion whether or not FA and PCA are essentially identical models, yet

they can produce different results. FA searches for hidden variables correlated with a maximum of the

independent Gaussian inputs. It thus relies on covariance (i.e., second-order correlation) like PCA. FA

analogously produces latent factors that are rotionally invariant, not unique, and cannot restore the original

signals. Like PCA, FA is useful if the form of a latent factor space is relevant but not the coordinate system

of its representation. Different from PCA, FA makes explicit assumptions about the form of the covariance

matrix by expecting unequal variance of each factor (i.e., heteroscedasticity) rather than only ones on the
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diagonal (i.e., homoscedasticity). FA is aimed at quantifying common variance, whereas PCA yields latent

variables of maximal variance. While PCA is a data transformation procedure from linear algebra, FA

qualifies as a model-based approach. FA can in fact be used with both exploratory and inferential aims

(Thompson, 2004). Additionally, FA does not yield explained variance scores for each of the latent factors

which are thus not ordered like principal components. In contrast to the above models, the observed variables

are modelled as linear combinations of latent factors with a noise term. The noise term takes the form of

an independent error variance of each of the variables. More generally, FA models are close to low-rank

approximation procedures. FA has been particularly popular in psychological research (Bortz, 2013). It has

for instance been used to investigate the building blocks of human intelligence assuming both an overarching

general and several task-specific contributors (Spearman, 1904). However, FA enjoys much less popularity

in current neuroscience research.

Relating fMRI task data to sets of macroscopical latent patterns can enhance both neurobiological inter-

pretability and statistical tractability. Interpretability can be increased by analyzing and discussing fMRI

results along functional integration accounts of brain organization. Tractability can be increased by trans-

lating the high-dimensional voxel space into a lower-dimensional network space to render ensuing statistical

analyses better behaved. More concretely, capturing whole-brain data by a lower-dimensional network rep-

resentations can avoid overfitting in various function-approximation scenarios. In neuroimaging, the BOLD

signal is measured in voxel units of typically 1 × 1 × 1 − 3 × 3 × 3mm3. Consequently, BOLD signal mea-

surements in gray matter can range between tens of thousands and hundreds of thousands voxels per brain

scan. Even simple linear estimators are therefore prone to overfitting in classification and regression tasks

due to the high number of features. This combined problem of data at hand and algorithm to apply worsen

as a function of voxel number. Some Gaussian density, for instance, is described by mean and covariance

matrix. In a 1D space, this Gaussian distribution can be described by a single value for the mean and one

for the variance. In a 3D space, however, the mean takes 3 values (linear growth with number of features)

and the 3×3 covariance matrix takes 6 unique values (polynomial growth with number of features). In much

more input variables, such as in fMRI voxel images, the number of parameters to be estimated will grow

quadratically with the number of input dimensions. Put differently, the variance of parameter estimates

does also go up with increasing dimensions of the input space (the bias remaining constant). More input

variables greatly increase the complexity capacity of the estimator’s function space. A bigger hypothesis set

increases overfitting and decreases the probability of extrapolating to unseen datasets. There is moreover

a combinatorial explosion of optimal variable subsets to build a decision function. In short, operating in

voxel space is a curse-of-dimensionality problem. One conceivable remedy to this case of high dimensional-

ity is the existence of low-dimensional subspaces in fMRI signals. Prominent properties of functional brain

organization might be describable, measurable, and predictable in units of macroscopical brain networks. If

the estimated ’intrinsic dimensions’ of a brain image indeed carry most meaningful information, it should
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be possible to recover a close proxy of the original whole-brain image from knowledge of the compressed

network information alone. For instance, not maximal-variance latent components but independent latent

components might be most neurobiologically pertinent.

Neurobiologically, it remains elusive how these neurophysiological network phenomena relate to an individ-

ual’s repertoire of mental operations. This calls for methodological approaches that go beyond completely

unsupervised analyses of linear combinations of latent components in the brain at rest (i.e., without con-

trolled task modulation). Viewed from the perspective of the curse of dimensionality (cf. introduction), the

complexity restrictions that are imposed by decomposition models applied to fMRI data include:

1. Neural activity in the brain can be explained by a small set of global patterns (i.e., compositionality).

2. These can extend across various discrete local activity patterns (i.e., known cytoarchitectonic brain

regions).

3. The latent components derived from fMRI data describe distinct properties of underlying neurobiology.

4. The global patterns can be approximated by estimators that model linear combinations of n latent

components.

The present investigation targets network-network dynamics as a whole by multivariate statistical learning.

A multi-step framework capitalized on two independent, large datasets (n=500 and n=81) with 18 typical

neuroimaging tasks (Fig. 7). Each of these two task batteries attempted to cover the diversity of the human

cognitive apparatus. In an unsupervised learning step (i.e., naive to task labels), a small number of repre-

sentative brain networks was derived from extensive neuroimaging resources. This first step yielded explicit

models of possible network patterns with minimal statistical and cognitive assumptions. In a supervised

learning step (i.e., based on task labels), the dimensionality-reduced neuroimaging data were then submitted

to an 18-task classification problem. For each task, this second step determined a plausible combination of

the modes of variation in brain signals. This quantitative association with traditional psychological con-

cepts made the neuroimaging results human-interpretable. In a validation step, task activation patterns

were recovered from the respective component loadings in the learned statistical models. This third step

evaluated how well formal network models can generate realistic task activation patterns. Capitalizing on

network-network modelling, the relationship between task-engaged and not experimentally controlled brain

states was quantitatively revisited.

3.2 Methodological approach

Dataset: HCP task data

The first of two task batteries was drawn from the Human Connectome Project (HCP). HCP is an interna-

tional long-term project dedicated to network exploration (Van Essen et al., 2012). 500 HCP participants (2

removed for quality reasons) were without psychiatric or neurological history. Informed consent was obtained
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Figure 7: Workflow

(1) In two large neuroimaging datasets (HCP with n=500, ARCHI with n=81), the dominant spatial patterns of neural activity

were discovered by decomposition methods. The repertoire of major neural networks in the human brain was hence computed

without access to task information. (2) The explicit network definitions allowed reducing whole-brain activity maps from

typical tasks into 40 component loadings per map. Statistical learning based on these biological features found a linear model

to distinguish 18 tasks. A biophysiologically plausible network-network configuration was thus automatically derived for each

task. (3) As face-validity, task activity maps were generated from the learned statistical models. The recovery performance

quantified the biological meaningfulness of each model.

from all participants by the Washington University in St. Louis institutional review board. Network discov-

ery is facilitated by probing experimental task paradigms that are known to tap on well-characterized neural

networks. This was achieved by selecting established fMRI tasks that feature known suitability as localizers

and reliability across participants (Barch et al., 2013). The HCP tasks were chosen by the external advisory

board, consortium members, and HCP team from the National Institut of Mental Health (NIH). Over two

image acquisition sessions, mostly block-design, but also event-related, paradigms were administered on 1)

working memory/cognitive control processing, 2) incentive processing, 3) visual and somatosensory-motor

processing, 4) language processing (semantic and phonological processing), 5) social cognition, 6) relational

processing, and 7) emotional processing. All data were acquired on the same Siemens Skyra 3T scanner at

Washington University. Whole-brain EPI acquisitions were acquired with a 32 channel head coil (TR=720ms,

TE=33.1ms, flip angle=52, BW=2290Hz/Px, in-plane FOV=28× 18cm, 72 slices, 2.0mm isotropic voxels).

One task was run with right-to-left and one with left-to-right phase encoding. These analyses profited

from the HCP minimally preprocessed pipeline (Glasser et al., 2013). This includes gradient unwarping,

motion correction, fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI to
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structural scan, non-linear (FNIRT) registration into MNI space, and grand-mean intensity normalization.

The preprocessed maps were spatially smoothed by a Gaussian kernel of 4mm (FWHM). A general linear

model (GLM) was implemented by FILM from the FSL suite with model regressors from convolution with a

canonical hemodynamic response function and from temporal derivatives. It is important to note that HCP

tasks were conceived to modulate activation in a maximum of different brain regions and neural systems.

Indeed, excellent brain coverage was indicated by the summing the maps of whether or not a voxel showed

a z-value bigger than 1.96 per task across participants (Barch et al., 2013). Note that statistical analysis

was performed on the GLM-derived participant-level z-score maps in MNI space.

Dataset: ARCHI task data

The second task battery was drawn from the ARCHI dataset (Pinel et al., 2007). Importantly, it was con-

ceived and acquired with the same goal for neural networks shared by a maximum of participants as the

HCP task dataset. The diverse experimental tasks capture the cerebral basis of auditory and visual percep-

tion, motor action, reading, language comprehension and mental calculation. The approval was obtained

from the regional ethical committee (Hopital de Bictre, France). 81 right-handed healthy participants (35

males and 46 females, 24 +/- 4.1 years, 3 not included in present analyses due to incomplete data) without

psychiatric or neurological history participated in four fMRI sessions acquired under different experimental

paradigms. The functional maps were warped in the MNI space and resampled at 3mm resolution. Con-

trasts were obtained using a GLM based on the specified task timing information, canonical hemodynamic

response function, high-pass filtering and auto-regressive noise model. The tasks included 1) a general local-

izer paradigm that probes basic functions, such as button with the left or right hand, viewing horizontal and

vertical checkerboards, reading and listening to short sentences, and mental computations (subractions); 2)

a social paradigm that includes making covertly some inferences on short stories that involve false beliefs

or not, viewing objects moving with or without a putative intention, listening to speech and non-speech

sounds; 3) a spatial mapping paradigm that includes perfoming ocular saccades, grasping and orientation

judgements on objects (the two different tasks were actually made on the same visual stimuli in order to

charcterize graspin-specific activity), as well as judging whether a hand photograph was the left or right

hand or was displaynig the pasl or back: again, the same input stimuli were presented twice in order to

charcterize specific reponse to hand side judgement; 4) an emotional paradigm that include facial judgments

of gender, trustworthiness and expression based on face photographs or photographs reduced to the eyes.

While the first experimental paradigm is fast event-related design, the two others are made of small blocks

of 5 to 7 seconds for each condition. The duration of the acquisitions was 1) 307s, 2) 489s, 3) 516s and 4)

436s. Visual stimuli were displayed in four 250ms epoches, separated by a 100ms intervals (i.e., 1.3s in total).

Auditory stimuli were drawn from a recorded male voice (i.e., a total of 1.6s for motor instructions, 1.2-1.7s

for sentences, and 1.2-1.3s for subtraction). The auditory or visual stimuli were shown to the participants
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for passive viewing or button response in event-related paradigms. Post-scan questions verified that the

experimental tasks were understood and followed correctly. Based on these data, the following functional

contrasts were computed and used in the following inference: 1) basic localizer, left versus right hand but-

ton, press, horisontal versus vertical checkerboard, auditory versus visual instructions, computation versus

simple reading, motor tasks versus language and math tasks; 2) social paradigm: speech versus non-speech

sounds, false belief- versus mechanistic kind of inference after visual or auditory presentation, interacting

versus non-interacting figures in the movie clip; 3) spatial mapping : grasping versus orientation judgement,

left/right hand versus hand side, effect of occular saccades; 4) emotional paradigm: gender judgement versus

no task on face image and experssion, truthworthiness versus gender judgement and baseline. Whole-brain

EPI data were acquired with the same Siemens Trio with a 32 channel head coil (TR=2400ms, TE=30ms,

flip angle=60, in-plane FOV=19.2 × 19.2cm, 40 slices, 3.0mm isotropic voxels). A posterior-anterior phase

encoding scheme was used for all images. Standard preprocessed was performed with Nipype (Gorgolewski

et al., 2011), including slice timing, motion correction, alignment, and spatial normalization. Activation

maps were spatially smoothed by a Gaussian kernel of 5mm (FWHM). Note that statistical analysis was

performed on the GLM-derived participant-level z-score maps in MNI space, analogous to the HCP task

data.

Dataset: HCP rest data

These two task datasets were complemented by HCP resting-state (RS) acquisitions of brain activity in the

absence of experimental paradigms. In line with the goal of the present study, acquisition of these data

was specifically aimed at the study of task-rest correspondence (Van Essen et al., 2012). The RS maps

were acquired in two imaging sessions. Each participant contributed four time series (2 sessions each for

left and right phase encoding) with 1,200 maps of multiband, gradient-echo planar imaging acquired during

a period of 15min (TR=720 ms, TE=33.1 ms, flip angle=52, FOV=280 × 180mm, and 2.0mm isotropic

voxels). Besides run duration, the task acquisitions were identical to the resting-state fMRI acquisitions

for maximal compatibility between task and rest data. The unusually low TR allowed for effective increase

in the signal-to-noise ratio. During map acquisition, participants fixated on a bright crosshair on a dark

background. The analyses drew on “minimally preprocessed” rest data from 25 randomly selected healthy

participants. Every participant who contributed scans to the present rest dataset was included with one left-

right and one right-left session. Importantly, PCA was applied to each set of 1,200 rest maps for denoising

and dimensionality reduction into 20 main modes of variation (Calhoun et al., 2001). That is, the 40 reduced

rest maps from 25 randomly selected participants constituted the present rest dataset of 1000 concatenated,

noise-cleaned rest activity maps.

In sum, the HCP task dataset incorporated 8,650 first-level activity maps from 18 diverse paradigms admin-

istered to 498 participants, while the ARCHI task dataset incorporated 1,404 first-level activity maps from
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18 diverse paradigms administered to 78 participants. The HCP rest dataset, in turn, incorporated 1,000

activity maps drawn from different scanning sessions in 25 participants. The maps from all three datasets

were downsampled to a common 53x63x46 space of 3mm isotropic voxels. The resampled activity maps were

masked by a gray-matter probability of at least 10% according to tissue maps from the Intertional Consor-

tium of Brain Mapping (ICBM). Each task or rest map was hence represented by 61,472 voxels representing

Z values in gray matter.

Workflow

Data folding and model selection were performed in the following fashion. In the first step, one half of the

task datasets (i.e., HCP and ARCHI) and the entire rest dataset were used for unsupervised (i.e., label-

independent) discovery of latent structure by decomposition and clustering methods. The components of

variation identified in the data allowed for feature engineering from biological structures. In the second step,

supervised (i.e., label-dependent) classification algorithms were applied to the other half of the task activity

maps to predict cognitive tasks. The winning models for classifying 18 cognitive tasks were compared

by cross-validation. This framework is the gold standard to obtain an unbiased estimate of how well a

trained classifier generalizes beyond the data samples at hand (Hastie et al., 2011; Pereira et al., 2009). The

previously unseen half of the task data (i.e., 4,325 maps from HCP and 702 maps from ARCHI) were split

into as many data folds as participants (i.e., 498 for HCP and 78 for ARCHI). In each fold, all task maps

of a given participant were left out as test set for assessment of out-of-sample performance, while the task

maps from the remaining participants served as training set for model estimation. In the third and last step,

the averaged winning models were inverse-transformed into realistic task activity maps as face validity for

the reduced representation of task activity patterns.

1. Unsupervised analysis layer

The first step uncovered hidden structure in large quantities of neural activity maps. To this end, each

dataset (i.e., first half of task datasets and entirety of rest dataset) was decomposed into the 40 modes of

variation. A large set of 40 “network archetypes” should ensure more parsimonious representation of the

unknown target function, despite increased problem difficulty due to higher variance. Latent large-scale

networks were computed by maximizing the intra-network homogeneity in neural activity and maximizing

the between-network heterogeneity. Four different decomposition methods were selected that are in frequent

general use.

Decomposition. Four different network decomposition techniques were used to test whether neuroscientific

findings generalize across diverging methodological choices. First, independent component analysis (ICA)

was used to unmix the multivariate BOLD signals into separate spatial components by minimizing their

mutual information (Hyvärinen, 1999). This iterative blind source separation was realized by a parallel
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FASTICA implementation (200 maximum iterations, per-iteration tolerance of 0.0001, initialized by a ran-

dom mixing matrix, whitening). In neuroimaging research, ICA is frequently employed to separate out

stable, statistically independent spatial patterns with identical time courses for the nodes of each extracted

network (Beckmann et al., 2005). Second, principal component analysis (PCA) was used to capture the

main directions of variation in the BOLD signals (Shlens, 2014a). This non-parametric, rotation-invariant

method assumes orthogonal components to remove second-order dependencies (i.e., covariance) between the

voxels by a change of basis (McKeown et al., 1998). An implementation of incremental PCA (Ross et al.,

2008) performed batch-by-batch decomposition for low-rank approximation with efficient memory usage

(batch size=100 activity maps, whitening). Third, sparse PCA was used to separate the BOLD signals into

network components with few regions (Chennubhotla and Jepson, 2001), which scales well to large datasets.

This decomposition method reformulates a PCA-like goal as a regression-type optimization problem con-

strained by an ℓ1-penalty term. An implementation without orthogonality assumptions yielded spatially less

distributed components to explain the variation in the data (1000 maximum iterations, per-iteration toler-

ance of 1 * 10-8, sparsity alpha=1, ridge-shrinkage at 0.01, Lasso path computed with coordinate descent)

(Varoquaux et al., 2011). Fourth, factor analysis (FA) generalizes PCA by a heteroscedastic noise model

(Bishop, 2006). Similar to PCA, FA performs a rotation-invariant low-rank approximation by identifying

the latent space of variation (1000 maximum iterations, per-iteration tolerance of 0.01, 3 iterations in power

method, randomized singular vector decomposition).

Note that all four decomposition methods implicitly assume large variance to be indicative of important

structure. They reflect different ways to model sets of partially-overlapping major brain networks without

access to any task information. All decompositions are soft in that each voxel with its BOLD signals can

be part of the support in more than one network component. In most cases, the ensuing components are

linear combinations of the original voxel signals.

Clustering. The decompositions into spatially overlapping network components were evaluated against clus-

tering of the same data into non-overlapping regional components. That is, the similarity between voxels

in neural activity changes across maps was indicative of coherent regional compartments, rather than dis-

tributed spatiotemporal networks. On the one hand, Ward clustering is a bottom-up hierarchical clustering

approach (Johnson, 1967). A spatial constraint ensured that only neighboring voxels were incorporated into

regional components of similar variation in BOLD signals (Thirion et al., 2014). On the other hand, k-means

is a popular clustering approach (Lloyd, 1957). It divided the voxels into a preselected number of k regional

components of variation without a spatial constraint (Nanetti et al., 2009).

Note that the clustering methods thus yielded a regional scaffold of functional brain architecture with

emphasis on functional specialization, whereas the decomposition methods yielded a spatially distributed

scaffold with emphasis on functional integration. The rationale was that four network-network models
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and two region-region models embodied quantitative proxies of functional integration versus functional

specialization concepts of the human brain.

2. Supervised analysis layer

The extracted hidden components were subsequently used to reduce each task activity map to a much smaller

number of component loadings. 61,472 voxels from each map’s gray-matter voxels were thus condensed

into 40 component loadings that quantify task-related network-network or region-region involvements. For

network-network models, the presence of large-scale networks in every task map was determined by ridge

regression based on a component design matrix (regularization alpha parameter=0.001, using Cholesky

solver). 40 component loadings were thus computed by projection of each task map onto the 40 network

components. For region-region models, 40 component loadings were computed by the cluster-wise mean of

the BOLD signal. Task-related brain activity was thus summarized by brain regions of homogeneous activity

changes across tasks. In both these approaches, the feature space for supervised classification had the form:

#samples (i.e., 4,325 HCP task maps or 702 ARCHI task maps) × #features (40 component loadings).

Linear support vector machines (SVM) were used to approximate the unknown target function that perfectly

classifies the 18 cognitive tasks. This discriminative maximum-margin classifier was chosen for its simplicity,

interpretability, and very good out-of-sample performance (Vapnik, 1996; Hanson and Halchenko, 2008).

The feature space was preprocessed by normalization and mean-centering of each individual voxel due to

sensibility of this procedure to scaling effects.

In particular, linear-SVM classification was performed with regularization by ℓ1- and ℓ2-penalty terms. Both

shrinkage methods were used to search for parsimonious, more interpretable models (Hastie et al., 2011).

First, ℓ1-regularized SVM analyses conducted i) feature selection (i.e., select only relevant components)

and ii) model estimation (i.e., determine what combination of components best disentangles the cognitive

tasks) in an identical process. This approach introduced a maximum of zero-ed SVM weights for auto-

matic determination of optimal model complexity. Please appreciate that prior dimensionality reduction

(i.e., decomposition or clustering) yielded a set of new features that should be much less correlated than

those of the initial voxel space (i.e., task and rest activity maps). From a neurobiological perspective, this

approach acknowledged the assumption that smaller groups of, but not all, network components should be

characteristic for the observed activity pattern of the various tasks. Hyper-parameter tuning was performed

by a grid-search of “C” (7 steps between 10-3 and 103) and averaged the fold-wise model parameters (i.e.,

bagging; (Hastie et al., 2011)). The amount of sparsity was thus adapted to best predicting cognitive tasks.

The collapsed SVM classification models thus represented the average hypothesis from that dataset with

reduced variance but essentially unchanged bias. Second, the ℓ2-regularized SVM analyses were used to

shrink the model parameters i) towards zero and ii) towards each other. In so doing, all directions of

variation were shrunken, but the low-variance directions were shrunken first. Comparing to ℓ2-regularized

58



SVM, no implicit feature selection is performed as the ensuing parameters are typically small but non-zero.

As explicit univariate component selection, ANOVA selected the most important k (i.e., 1, 5, 10, and 20)

component loadings for each given task comparing to other tasks. That is, the multivariate classification

problem was preceded by a univariate feature-selection procedure. In particular, the feature space (i.e., 40

component involvements) was reduced to the k component loadings most relevant for each task. The reduced

feature space was subsequently fed into ℓ2-penalized SVM to delineate their task-specific contribution. From

a neurobiological perspective, this approach acknowledged the assumption that the balanced contribution

of few large-scale networks should be sufficient to disentangle cognitive tasks.

Figure 8: Predictive accuracy of different network-network models

Out-of-sample performance for 2 datasets and 2 decomposition methods as a function of considered network loadings per task.

One half of the task data (i.e., 4,325 activity maps from HCP, 702 activity maps from ARCHI) were used for network discovery

of 40 ICA and Sparse-PCA components. The network loadings of the previously unseen half of the task data (i.e., 4,325 HCP

maps, 702 ARCHI maps) were then submitted to an 18-task classification problem. It was solved by ℓ2-penalized SVM with

automatic selection of the k most relevant networks for each task. To measure generalization performance, all task maps of

one selected participant were left out in each cross-validation fold.

3. Validation layer

It was finally evaluated whether the obtained explicit models capture genuine properties of fMRI task activity.

Complementing sparsity and predictive performance, this provides a face-validity criterion to disambiguate

whether task-immanent aspects of neural activity or arbitrary descriminative aspects (e.g., structured noise,

participant/scanner-related idiosyncracies) explain the models’ success. To this end, artificial maps were

generated from the explicit network-network or region-region models of each task. The 40 features describing

large-scale network or region implications in a given task were transformed back into the original gray-matter

voxel space with 61,472 voxels. In decomposition, the product was computed between the SVM coefficients
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and each component’s support. In clustering, each region’s mean activity was projected into each voxel

of that region. Importantly, back-projection from an abstract, highly reduced space to the original task

activity space should suceed as a function of the model’s construct validity. For each of 18 tasks, Pearson’s

correlation between the model-derived activity map and the mean across first-level activity maps quantified

the recovery performance. Consequently, the support recovery performance indexed the construct validity

of quantitative network-network and region-region models.

Software implementation

Python was selected as scientific computing engine. Capitalizing on its open-source ecosystem helps en-

hance replicability, reusability, and provenance tracking. Nipy (Gorgolewski et al., 2011) performed ba-

sic analyses of functional neuroimaging data (http://nipy.org/). Scikit-learn (Pedregosa et al., 2011)

provided efficient, unit-tested implementations of state-of-the-art statistical learning algorithms (http:

//scikit-learn.org). This general-purpose machine-learning library (Abraham et al., 2014) was inter-

faced with the neuroimaging-specific nilearn library for high-dimensional neuroimaging datasets (http:

//github.com/nilearn/nilearn). 3D visualization of brain maps was performed using PySurfer (http:

//pysurfer.github.io/).

3.3 Experimental results

It was formally tested whether neural activity patterns measured with fMRI in humans are largely explained

by changes in cohesive network units. Whole-brain activity maps were expressed as a linear combination

of 40 spatiotemporally coherent patterns (i.e., components). The distributed BOLD signals from 3D voxel

space were thus reduced to 40 component loadings in a network space. This low-dimensional summary of

the constellation of brain network involvements was the target of the present investigations.

The predictive accuracy of network-network models was first assessed across methodological choices and

datasets. ICA and Sparse PCA were used to translate task activity maps into sets of network loadings.

ℓ1-penalized support vector machines (SVM) with C-parameter tuning on independent component analysis

(ICA) and Sparse principal component analysis (PCA) loadings correctly detected 18 tasks in 90% to 93%

of the time. Note that chance level is at 5.6% in an 18-class scenario. The recall ranged between 90% and

93%, while the precision ranged between 87% and 90%. ICA and Sparse PCA yielded higher model sparsity

than other decomposition methods (i.e., PCA and factor analysis). Few network components turned out to

be sufficient to correctly describe activity maps by the learned network sets. More generally, the observation

of many zeros among the averaged model parameters suggests that the “true” decomposition of task activity

maps is a linear combination of few network components. In sum, 18 diverse cognitive tasks could be very

well distinguished solely based on 40 loadings of large-scale networks. The approach has been validated using

four different decomposition methods in both HCP (Human Connectome Project) and ARCHI datasets. In

60

http://nipy.org/
http://scikit-learn.org
http://scikit-learn.org
http://github.com/nilearn/nilearn
http://github.com/nilearn/nilearn
http://pysurfer.github.io/
http://pysurfer.github.io/


Figure 9: Network-network composition underlying two experimental conditions from ARCHI

(1) Examples of 40 large-scale networks drawn from task-unrelated resting-state fluctuations using Sparse PCA decomposition.

This enabled translation of whole-brain task activity maps from the ARCHI dataset into 40 component loadings per map.

(2) These measures of network implication served as basis for statistical learning of a quantitative model that disambiguates

activity maps from the 18 task classes. In the depicted matrix, each weight represents the automatically determined importance

of the corresponding large-scale network for a given cognitive task. Highlighted weights (black framed) correspond to the five

networks (colored boxes) identified as most distinctive for the first two ARCHI tasks. (3) The explicit model is exploited to

generate a whole-brain activity map for each of the 18 tasks. This is exemplified here by gender judgments and trustworthiness

judgments on facial stimuli. Three resting-state networks (cf. 1) related to visual, emotional, and motor regions were selected as

discriminative for both tasks (red, yellow, blue boxes). Each task was further associated with two specific large-scale networks.

Consistent with published experimental fMRI studies (Bzdok et al., 2012a), the default mode network (black box), implicated

in higher-order social processing, was significantly associated with trustworthiness judgments but not gender judgments on

faces.

sum, the extraction of network sets by ICA and Sparse PCA achieved the highest prediction accuracies,

precision and recall scores, as well as the most parsimonious model parameters. ICA and Sparse PCA hence

identify underlying networks that allowed the most efficient quantification of distinctive neurobiological

features.

After validating the proportional implication of large-scale networks as a salient property of task activity, the

focus was on the interpretability of the network-network models (Fig. 8 and 11). The 18-task classification

problem was solved by ℓ2-penalized SVM of the selected k most important network loadings for each task (k =
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40, 20, 10, 5, and 1). Importantly, the determined single most important ICA or Sparse-PCA network loading

per task yielded classification success between 83% (FastICA, standard deviation [SD] computed across

participant-wise data splits: 1.3) and 46% (SparsePCA, SD=1.7) for HCP as well as between 72% (FastICA,

SD=3.0) and 38% (SparsePCA, SD=4.7) for ARCHI. Increasing the number of k discriminative networks

per task rapidly saturated the predictive accuracy. The classification accuracy was virtually identical when

knowing all 40 or the 20 most distinctive network loadings, still comparable to 10 and 5 loadings, in both

datasets. In sum, experimentally evoked neural activity patterns can be well predicted by the relative

implication of 5 large-scale networks per task.

It was then evaluated whether the classification models were fit for purpose. It was quantified to what

extent the winning explicit models capture genuine properties of fMRI task activity. This provided a

face-validity criterion to disambiguate whether task-immanent aspects of neural activity or arbitrary dis-

criminative aspects (e.g., structured noise, participant/scanner-related idiosyncracies) explain the models’

success. Whole-brain activity maps were thus generated from the network-network models for each task.

The model-derived activity maps were then Pearson correlated with the mean first-level activity maps as

a measure of support recovery performance. For ICA decomposition, the mean linear correlation across 18

tasks reached ρ=0.81 (HCP, SD=0.20) and ρ=0.88 (ARCHI, SD=0.07). For Sparse-PCA decomposition,

in turn, mean correlations reached ρ=0.69 (HCP, SD=0.21) and ρ=0.70 (ARCHI, SD=0.15). These find-

ings were confirmed against negative tests by pseudo network-network models derived from decomposition of

Gaussian noise. The corresponding correlation analyses between first-level task maps and model-derived task

maps ranged between ρ=0.32 (SD=0.07) and ρ=0.25 (SD=0.06). In sum, fMRI-data-derived neurobiological

networks allowed significantly better reconstruction into the original voxel activity space than randomized

fake network templates. As an alternative to network-network models, whole-brain task activity was also

captured by region-region models (supplementary methods). Capturing task activity in local clusters units,

rather than distributed network units, was less successful in reconstructing task-specific neural activity.

Finally, network-network models were put into practice by testing explicit hypotheses about functional brain

architecture. It was formally tested whether given task activity patterns can be accounted for by network

sets obtained from a diverging task battery and from the task-free resting brain (Fig. 9 and 10). To this end,

recovery performance was compared between network sets learned from non-identical task data and from

rest data. Learning network-network models from a non-identical task battery (i.e., networks from HCP task

data and classification in ARCHI task data, or vice versa) yielded recovery performances between ρ=0.50

(SD=0.17) and ρ=0.43 (SD=0.17) across two decompositions and datasets. Importantly, learning network-

networks models from task-unrelated resting-state correlations yielded very similar recovery performances

between ρ=0.51 (SD=0.15) and ρ=0.46 (SD=0.11). Assessed by independent t-tests, recovery performance

based on network sets from different task data was in no instance significantly better than recovery from

networks discovered in task-unrelated rest data. This suggests that the network ecosystem of the mind-
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Figure 10: Recovery performance of task activity patterns across decomposition and clusterings

Four different network-network models (upper and middle row) were computed by decomposition based on sparse principal

component analysis (sparse PCA), independent component analysis (ICA), PCA, and factor analysis (FA). They capture

functional brain architecture with emphasis on functional integration as opposed to regional specialization. Two different

region-region models (lower row) were computed based on ward clustering (regions always spatially compact) and k-means

clustering (no spatial constraint). They capture functional brain architecture with emphasis on regional specialization. The

recovery performance of all 18 tasks (radial columns) is measured by the Pearson correlation ρ between the model-derived

task activity maps and the average first-level task map. As a first conclusion, modelling task-specific neural activity appears

to be more successful based on functional network units than on functional region units. Additionally, network and region

dictionaries were derived from i) identical task-data (as positive test; dark blue), ii) non-identical task-data (medium blue),

iii) resting-state data (light blue), and iv) Gaussian noise (as negative test, red). As a second conclusion, task-derived and

rest-derived network dictionaries are similarly successful in recovering whole-brain activity during divering experimental tasks.

wandering brain is recruited in response to specific environmental challenges.

3.4 Discussion

A principled approach is proposed to modelling brain activity during fMRI tasks in sets of network units.

Typical activity patterns evoked by experimental tasks are shown to be combinations of standard net-
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Figure 11: Task-rest correspondence

As a use case for network-network modelling, a fundamental question of brain organization was examined: the correspondence

between task and rest architecture. Middle column: Examples of resting-state networks (RSN) derived from decomposition

using sparse PCA of HCP rest data. RSN B and C might related to semantics processing in the anterior temporal lobe (Visser

et al., 2010), RSN D covers extended parts of the parietal cortex, while RSN E and F appear to be variants of the so-called

“salience” network (Seeley et al., 2007). Left/Right column: Examples of task-specific neural activity generated from network-

network models of the HCP/ARCHI task batteries. The arrows indicate what rest networks were automatically ranked top-five

in distinguishing 1 given task from the 17 other tasks. Although the task sets are different in HCP and ARCHI, “story versus

math” and “sentences versus computation” were the most similar cognitive contrasts in both datasets. For these 4 contrasts,

the model-derived task maps are highly similar. Consequently, 2 independent classification problems in 2 independent datasets

with a 6-fold difference in sample size resulted in 2 independent explicit models that, nevertheless, generated highly comparable

task-specific maps.

work patterns. Despite diverging model assumptions (i.e., orthogonality, sparsity, independence, and het-

eroscedasticity), all used decomposition methods allowed for generative models that quantify combinations

of spatiotemporal activity patterns. Neurobiologically interpretable stratifications have thus been computed

of large-scale network recruitment specific to cognitive tasks without recourse to cognitive theory. Decompo-

sition and reconstruction of atomic network ensembles has been validated in two large task fMRI datasets,

each aimed at capturing human cognition comprehensively. Although network-network dynamics are not
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directly observable using fMRI techniques, the underlying organization can be formally modeled in order to

test explicit hypotheses.

The configuration of large-scale networks was identified here as a characteristic property of fMRI tasks. De-

composition into 40 networks allowed distinguishing 18 typical tasks in up to 90% (HCP dataset) and 93%

(ARCHI dataset). Selecting only the loading of each task’s single most distinctive of 40 total networks, clas-

sification still scored at up to 83% (HCP) and 72% (ARCHI). In particular, ICA and Sparse PCA appeared

more successful than PCA and FA in searching the space of plausible network-network architectures. Neu-

robiological pertinence was indicated by overall best task classification scores, highest parsimony in model

parameters, and model-derived recovery of most realistic task maps. This suggests that the underlying

assumptions of these statistical models reverse-engineer critical properties of human network constellation.

In this way, present results would favor large-scale patterns to parsimoniously distribute in space (reflected

by SparsePCA models) and vary independently (reflected by ICA models), whereas orthogonality (reflected

by PCA) and different variances (reflected by FA) seem less important. Notably, attempting reconstructing

statistically coherent source signals operates with a network definition that is not strictly neurobiological

(Mesulam, 2012). Nevertheless, a huge proportion of task activity can be explained by a combination of the

brain’s main functional networks. This suggests that contrast approaches of experimental fMRI studies do

not necessarily elicit idiosycratic activity patterns, but mainly a recombination of the always same under-

lying networks. Indeed, a limited set of interacting entities generates an infinity of different observations in

numerous natural systems, formalized in General System Theory (von Bertalanffy, 1950). This contention

lends itself to a diverse set of neuroscientific questions.

The feasability of constructing and comparing network-network models was demonstrated in targeted ex-

periments. The study juxtaposed the competing “dichotomy” and “manifold” hypotheses on the neuroar-

chitectural difference between task behaviors and the idlying brain (Buckner et al., 2008). The dichotomic

view advocates functional antagonism between so-called “task-positive” and “task-negative” neural net-

works. Task-positive networks are believed to instantiate exteroceptive, environment-oriented mind sets to

maintain task-constrained stimulus evaluation and response. Task-negative networks are believed to instan-

tiate interoceptive, environment-detached mind sets to maintain adaptive mental imagery. The dichotomic

view receives support from the following observations: a) the DMN consistently decreases in neural activity

during various neuroimaging tasks (Shulman et al., 1997; Laird et al., 2009), b) activity in task-positive

brain regions was consistently anti-correlated with activity in task-negative regions (Fox et al., 2005), and c)

the spectrum of activity patterns in subcortical, limbic, and primary sensorimotor areas was richer at task

then rest (Mennes et al., 2013). Hence, the dichotomic view predicts that component extraction from rest

data will yield a dictionary of network definitions insufficient to delineate task-specific network compositions.

In stark contrast, the “manifold” view advocates a fluctuating equilibrium of functionally distinct large-scale

networks that is perturbed at task onset. This favors an identical ensemble of neural networks underlying
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functional brain architecture in active and resting brain states. This view, in turn, receives support from

the following observations: a) seed-region-based resting-state correlations frequently recover task-typical net-

works (Biswal et al., 1995), b) separate decomposition of task and rest activity maps yielded a number of to-

pographically similar networks (Smith et al., 2009), and c) only 11% of whole-brain connectivity patterns al-

ways shifted at onset of different tasks (Cole et al., 2014). Hence, the manifold view predicts that component

extraction from rest and task will be similarly performant in delineating task-specific network compositions.

This formally tested dichotomy against manifold hypothesis by learning independent network-network archi-

tectures based on non-identical task and rest data. Across four diverging decomposition methods, recovery

performance from task-derived network dictionaries was in no instance significantly better than rest-derived

network dictionaries. This indicator of equal network repertoires across task and rest favors the manifold

perspective on task-rest correspondence. Consistent with Smith and colleagues (2009), explicit network-

network models challenge the frequently embraced separation into “extrinsic” and “intrinsic” brain systems

(Golland et al., 2007). Our approach reconciles the seemingly contradictory contention that activation pat-

terns in certain brain areas are richer during task then rest (Mennes et al., 2013). The same set of canonical

networks might give rise to task-evoked network compositions seldomly observed at rest. In sum, the con-

ducted network-network experiment suggests that task-constrained onset of cognitive processes modulates

an equivalent repertoire of large-scale brain networks.

Algorithmically, SPCA and ICA yielded higher reconstruction performances than PCA and FA across cog-

nitive tasks and datasets. This suggests SPCA as a viable alternative to ICA-based image decomposition

that currently has a monopol in neuroimaging research. Both SPCA and ICA thus appear equally useful

for identification of latent brain networks in fMRI data and exploitation of such discovered macroscopical

structures for feature engineering. What statistical properties might underlie the superiority of SPCA and

ICA as well as the inferiority of PCA and FA?

Both PCA and FA relie on the covariance structure in the data to determine the latent components/fac-

tors. The relatively poorer performance suggests that second-order dependencies in fMRI are insufficient to

allow optimal reconstruction of the original data from the low-dimensional ’network’ representation. These

statistical properties of models for network decomposition might not lend themselves particularly well to

applications in imaging neuroscience. Enforcing maximal decorrelation of the discovered modes of variation

might make it difficult to actually grasp ’function integration.’ Several neurobiological activity patterns

probably reflect higher-level processing that is rather remote from sensory input from the external world

(Mesulam, 1998; Dehaene et al., 1998; Spreng et al., 2009). Such associative, integrative neural processes

are naturally cognitive-domain-overarching and therefore implicated in a number of diverging mental tasks.

PCA and FA however minimize the correlation of such higher-order, integrative processes with lower-level,

more domain-specific neural processes manifested as spatiotemporally coherent activity pattern. Put differ-

ently, PCA and FA appear to impose a form of exclusivity on network-network implications that is unlikely
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to be neurobiologically valid. In stark contrast, the employed SPCA and ICA implementations allow more

liberty for correlatedness between the discovered latent network components.

More specifically, the statistical property of orthogonality might have had particularly detrimental effects on

fMRI analyses in both the temporal and spatial domain (Beckmann et al., 2005; Friston, 1998). Temporal

coincidence of neurophysiological events might entail artificial coupling of neurobiological processes that are

actually distinct. For instance, experimental-stimulus-induced and systematic-head-motion-induced neural

activity could get fused into a single latent component. Similarly, externally triggered, simultaneous activity

in the ventral and dorsal visual stream (Ungerleider and Mishkin, 1982; Ungerleider and Haxby, 1994) might

be erroneously modelled as a common neurobiological process. Spatial coincidence of neurophysiological

events will also be forced to belong to one or very few latent components. For instance, neural activity in

the salience network (Yarkoni et al., 2011) and the default mode network (Laird et al., 2009) is differentially

modulated by various cognitive tasks. Such task-overarching neurobiological processes are unlikely to be

modelled and thus interpreted correctly by statistical models that impose an orthogonality constraint. In

fact, PCA only requires the component number n as parameter choice and produces an answer regardless

of the nature of the data-generating process. In neuroimaging practice, the orthogonality assumptions

appears impertinent and arbitrary (Friston et al., 1999a) but is probably less deleterious in the spatial

than the temporal dimension (Beckmann et al., 2005). That is, different resting-state networks with largely

overlapping spatial structures (e.g., hemispherically homologous brain networks) can be cleanly decomposed

as a function of the distinctness of their BOLD time series. More fundamentally, PCA elicits an intriguing

discrepancy between its theoretical performance and its real-world performance in fMRI data. On the one

hand, it can be mathematically proven that PCA provides the optimal data reduction under squared error

loss (Shlens, 2014a). On the other hand, raw data recorded from nature hardly ever exhibit orthogonal

directions of variation (Hastie et al., 2011). Experimental paradigms as designed by cognitive psychologists

are an exception to this rule. They introduce artificial orthogonality into their measurements by contrasting

experimental ’conditions’ that intentionally diverge according to a variable of interest (Viviani et al., 2005).

In sum, although PCA thus provides the most ’effective’ compressed representation, it did not yield the

most interpretable one in the present neuroimaging analyses.

In contrast, the independence assumption of ICA and the decorrelation-sparsity tradeoff of SPCA are less

concerned by these caveats as they do not completely abolish correlation between the latent network represen-

tations. In this sense, the present results suggest that SPCA and ICA may constitute more neurobiologically

valid models of network decomposition than PCA and FA. Put differently, one voxel can be more readily

part of the support vector of more than one component (i.e., distinct brain networks) in ICA and SPCA than

in PCA and FA. This appears to be the case although only ICA can restore the original signals, whereas a

truthful reconstruction is less likely in SPCA due to the constraint for parsimony.

Apart from these many dissimilarities, ICA, SPCA, PCA, and FA all constitute latent variable models that
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describe fMRI time series by a linear mixture of separate data-generating processes. None of them can

actually distinguish between between common variance and unique variance. While all four decomposition

procedures reexpress the data as linear combinations of latent distributed variables, only the ICA procedure

incorporates an element of non-linearity in its estimation process. As one important conclusion, due to the

linearity of network modelling, they cannot investigate one of the key properties of the functional integration

account of brain organization: the interactions between large-scale activation patterns in a statistical sense.

That is, none of the used decomposition models can genuinely capture complicated effects between latent

brain networks. This ignores that the brain is a highly non-linear system (Kandel and Schwartz, 2000).

Nevertheless, ICA, SPCA, PCA, and FA have all been able to find some intrinsic low-dimensional subspaces

in fMRI data that carry the majority of meaningful information. All four were able to recover a close

proxy of the original whole-brain images from knowledge of the compressed network information alone.

As another important conclusion, these results advocate a low intrinsic dimensionality of conventional

fMRI data that has been evidenced here across two independent datasets and diverging model assumptions.

Compression into a chosen network space can indeed recover voxel information in the whole brain from very

low-dimensional spaces. Note however that none of the four latent variable models is able to indicate a

’right’ number of network building blocks as they do not perform any explicit or implicit rank estimation.

The ’true’ number of basis functions is typically unknown in real-world settings, including neuroimaging

research. Intriguingly, the reduced spaces found by PCA, SPCA, and ICA (potentially also FA) can be

generalized by autoencoder architectures (cf. next chapter).

Taken together, systems neuroscience has transitioned the interpretational focus only recently from regions

to networks. The composition of large-scale network recruitment qualified here as meaningful mechanism un-

derlying fMRI experiments. Task-specific network compositions might thus intimately relate to psychological

notions of mental operations. This organizational principle might extend to other species given existence of

large-scale networks in monkeys (Mantini et al., 2011) and rats (Lu et al., 2012). Moreover, clinical research

corroborated DMN dysfunction in various brain disorders (Broyd et al., 2009; Whitfield-Gabrieli and Ford,

2012). As a tempting alternative hypothesis for future research, not disturbance in the DMN itself but its

relation to other superordinate networks might be disorder-specific. Ultimately, the present investigation

exposes network-network architecture as an important neural mechanisms that maintains human cognition.
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4 Semisupervised modelling for structure discovery and structure inference

4.1 Motivation

The ’true’ intrinsic dimensionality of conventional fMRI data is unknown. Yet, the previous chapter pro-

vides pieces of evidence for dominating low-dimensional subspaces in BOLD signals. This is relevant to the

neuroimaging investigator because the performance of SL models is strongly dependent on the chosen repre-

sentation of the features. In cases of low a-priori certainty about the structure of the phenomenon (especially

in case of brain-behavior and brain-concept correspondences), much engineering effort may be dedicated to

data preprocessing pipelines. In practice, human-made representations are often used to manually reduce

the data dimensionality. This preliminary procedure can considerably facilitate the model estimation process

by enhancing the bias-variance tradeoff (i.e., typically small increase in model bias, much reduced variance

due to lower model complexity) under the condition that the chosen feature representations are neurobio-

logically valid (cf. introduction). Yet, hand-crafted feature engineering does increase the work load and may

be impossible for many neuroscientific questions due to unknown ground truth. An attractive alternative

might therefore consist in casting the scenario as a representation learning problem. It is concerned with

discovering the most pertinent feature configurations, agglomerations, and transformations to describe the

explanatory variation in the data (Bengio et al., 2013). It revolves around the question where to assume

probability mass in a high-dimensional setting. That is, a function is learned that maps from the input

space into an (unknown) optimized feature representation space. Exploiting the discovered manifolds of

condensed representation, the input data can be projected into a new, low-dimensional coordinate system

that spans directions transversing the neighborhoods of highest probability mass (Bengio et al., 2013). It

turns out that neural network models constitute a class of computational architectures (Schmidhuber, 2015)

that lend themselves particularly well to representation and manifold learning tasks (Bengio, 2009; LeCun

et al., 2015). Among such layered non-linear networks, autoencoders (AE) appear particularly attractive.

Although the advantages of AE models have been known for several decades (Bourlard and Kamp, 1988;

Hertz et al., 1991; Hinton and Zemel, 1994), the feasibility of effectively training them has been demonstrated

only a few years ago (Hinton and Salakhutdinov, 2006). These unsupervised automatic feature extractors

can approximate the manifold distributions dormant in high-dimensional BOLD signals as an alternative to

parcellating brain region (chapter 2) and quantifying brain network stratifications (chapter 3). Rather than

making the a-priori assumption of brain division into discrete local features (corresponding to the notion

of anatomical brain areas) or continuous global features (corresponding to the notion of functional brain

networks), the local and/or global observational units are statistically estimated from the neuroimaging data.

The AE is a feedforward neural network that is typically composed of an input layer, one single hidden

layer, and an output layer. Its prototypical architecture follows

x̂ = σ(W1σ(W0x+ b0) + b1), (3)
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where x ∈ Rd denotes the vector with d input variables per observations, W0 is the weight matrix for

projection from input space into the hidden space (encoder module), W1 is the weight matrix for back-

projection from these hidden units to the output space (decoder module), σ is a non-linear function (typically

sigmoid σ = 1
1+e−x , possibly also hyperbolic tangent σ = sinh x

cosh x = ex−e−x

ex+e−x or rectified linear unit σ =

max(0, x)), x̂ ∈ Rd is the corrupted reconstruction of x, b0 and b1 are bias vectors. The number of hidden

units h is reflected by the row number of the W0 matrix, while the projection functions for each of the h

hidden components are represented by each matrix row’s values. Critically, a bottleneck with h < d units

imposes a rank constraint on W0. The encoder module is necessary for training and application of this

model, whereas the decoder module can be discarded after model estimation. Point estimates of the model

parameters {W0,W1,b0,b1} of the AE are obtained by minimizing the reconstruction error

E = ∥x̂− x∥2. (4)

The squared ℓ2-norm of the discrepancy between AE input and output serves as objective function for

empirical risk minimization. This simple learning model is capable of condensing diverse types of input

data into local (brain-area-like) and global (distributed-pattern-like) representations via reconstruction un-

der compression prior (Hinton and Salakhutdinov, 2006; Ranzato et al., 2006; Vincent et al., 2010). That

is, a comprehensive representation is computed for the input in an unsupervised setting (Bengio et al.,

2013; Olshausen and Field, 1996). The small bottleneck layer represents a latent code that is sufficient to

recover an approximation to the original input data. A conversion is thus identified that allows translating

high-dimensional data to a low-dimensional embedding. The ensuing transformation matrix maps from the

original coordinate systems with many axes to a new coordinate system with few, but more explanatory,

axes. The AE architecture thus allows for automatic determination of the most expressive manifolds in the

data, including functional neuroimaging data. In fact, as theoretical results, adding additional computation

layers to the AE does always improve a lower bound on the log probability assigned to training data under

mild assumptions (Hinton et al., 2006). Addionally, a linear AE can be shown to be better with regard to

the best possible training reconstruction error given a certain number of hidden units under mild assump-

tions11. Imposing sparsity constraints on the optimization problem, the regularized AE variants preclude

the possibility of viewing the latent code as a low-dimensional coordinate system while maintaining the

important directions of variation. Furthermore, viewing AEs are a single-hidden-layer neural network with

a non-decreasing homogeneous activation function (Bach, 2014), it can be observed that i) the model is

parameterized by a compact topological space, ii) is able to approximate any measurable target function

(i.e., bigger function space than that of polynomials), iii) sparsity-inducing norms do not alter the opti-

mization properties (since all norms are equivalent on Rn), and iv) such norm-induced variable selection

11Mathematical proof by Hugo Larochelle in ’Neural networks: Autoencoder - linear autoencoder’ (www.youtube.com/watch?

v=xq-I0Rl8mt0).
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can determine the number of hidden units automatically, while v) the model solves a parametric problem in

case of constant unit numbers (i.e., model parameters do not increase with increasing sample size). In sum,

AEs are unsupervised learning machines that represent a rare opportunity as automated preprocessors and

feature extractors in medical image analysis, instead of picking image features by hand. This instance of

flexible dimensionality reduction can be useful for feature engineering in the aim of visualization as well as

classification and regression.

Another incentive for introducing AEs into neuroimaging research relies in their ability to emulate common

unsupervised decomposition approaches, including PCA, SPCA, and ICA (cf. chapter 3). Indeed, the

largest axes of variance identified by (truncated, since rank-reduced) PCA are also identified by AEs with

one linear hidden layer and a squared error loss (Baldi and Hornik, 1989). While dimensionality reduction

was traditionally based on PCA, generalized data decomposition by AE has outperformed PCA in a number

of different unsupervised learning applications (Hinton and Salakhutdinov, 2006). In fact, the space spanned

by the h hidden units of the AE is identical to the space spanned by the h principal singular values/vectors

with possible rotional skewing. In contrast to PCA, the variance directions learned by the AE are typically

unit-variance scaled and are not necessarily orthogonal. More specifically, the surface of the reconstruction

error E of the linear AE equipped by squarred error loss exhibits unique local and global minima that

reproduce the principal components of the training data (Baldi and Hornik, 1989). Subspaces determined

by PCA also result from affine variants of this linear AE incorporating bias units for the encoding and

decoder modules. Furthermore, the linear AE yields SPCA-like results if ℓ1-shrinkage terms are added to

the matrix and bias weights in the optimization objective. Besides searching the axes of main variances

in the data, those solutions in the function space are encouraged that enable a maximum of sparsity (i.e.,

number of zero weights) despite optimized reconstruction. This model incorporates an intentional bias

that encourages discovery of particularly robust input features. Moreover, AEs can also yield ICA-like

results in case of tying the weight matrices W0 and W1 (i.e., W0 = W1
T ) as well as adding a non-linear

convex function at the first layer (Le et al., 2011). When adding for instance a sigmoid non-linearity to the

activations of the encoder layer, the AE can still operate in the PCA space by abiding by the linear regime of

the sigmoid function, yet it can extend beyond the PCA-induced space as well (Bourlard and Kamp, 1988;

Japkowicz et al., 2000). More generally, PCA-like linear AEs, SPCA-like sparse linear AEs, and ICA-like

non-linear AEs can be shown to be mathematically equivalent under certain conditions (Le et al., 2011).

Further, all three can also be viewed as directed graphical models (Wainwright and Jordan, 2008). The AE

would sample from the learned low-dimensional factors (i.e., rows of W0 matrix) and subsequently obtain

the input with added noise. Yet, the three AE architectures diverge regarding the bias imposed on the

hidden layer and the inference of that layer. From the perspective of dictionary learning (Mairal et al.,

2010), the first layer represents projectors to the discovered set of basis functions which are combined by the

second layer to perform reconstruction of the input data (Bach, 2014; Olshausen and Field, 1996). Further
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conceptual accesses to understanding the mechanisms of AE models include for instance generative models

and information theory (Vincent et al., 2010, 2008).

Besides solving representation learning tasks by flexible projection onto the main modes of variation in a

heuristic fashion, AEs have very recently shown good performance in semisupervised learning tasks. The

semisupervised regime aims at better classification and regression by using (an abundance of) unlabeled

data in addition to the actually labeled data. In contrast to purely supervised learning techniques, they

benefit from unlabeled data samples during model estimation. The main motivation relies in the usually

low availability and high costs of meticulously labeling data, while, in many domains, unlabeled data can be

collected fast, with low costs, and without domain expertise. For instance, a variational Bayesian AE enabled

semisupervised generative models implemented in deep neural networks that achieved 97.41% accuracy

based on only 600 labeled and 49,400 unlabeled training samples from the MNIST dataset of digit images12

(Kingma and Welling, 2013; Kingma et al., 2014). Similarly, semisupervised deep autoencoders conditioned

by a bottleneck with 10 ’supervised’ and 2 ’unsupervised’ layer units achieved up to 99.06% accuracy on

the MNIST dataset (Cheung et al., 2014). These semisupervised classification scores are promising given

that the best classification performances are hardly better using state-of-the-art supervised models on the

fully labeled dataset. Conceptually, semisupervised learning can be divided into transductive learning and

inductive learning. Transductive learning is concerned with label inference for the unlabeled samples among

the provided partly labeled data, whereas inductive learning is concerned with inference of a mapping from

data to labels. The distinction can be viewed from the perspective of a class-room analogy where a teacher

presents some solved examples for an upcoming exam but also provides some unsolved examples (Zhu and

Goldberg, 2009). Transductive learnings would pertain to solving the remaining examples as a take-home

exam, whereas inductive learning would pertain to improving on the unsolved examples as they are typical of

the upcoming in-class exam. Viewed from the perspective of the curse of dimensionality (cf. introduction),

the complexity restrictions that are imposed by semisupervised AE architectures (Zhu, 2006; Seeger, 2000;

Kingma et al., 2014) include:

1. P (X) and P (y|X) do share distribution parameters (unlabeled data are not necessarily beneficial for

a given supervised learning problem).

2. A low-dimensional manifold exists in the data at hand (i.e., compositionality).

3. Not all variables of X are necessary to obain an optimized solution to the learning problem (parame-

terized by sparsity-inducing ℓ1-norms).

4. If two data samples exhibit a small distance on the low-dimensional manifold, they should be identically

labeled.

5. The identically labeled data samples form hard clusters (rather than soft, partly overlapping clusters).

12http://yann.lecun.com/exdb/mnist/
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Taken together, semisupervised representation learning by AEs is able to tell class-relevant directions of

variation apart from class-irrelevant ones.

Indeed, existing analysis methods for neuroimaging research

Figure 12: Model architecture Linear autoen-

coders find an optimized compression of 79,941

brain voxels into n unknown activity patterns

by improving reconstruction from them. The

decomposition matrix equates with the bottleneck

of a factored logistic regression. Supervised

multi-class learning on task data (Xtask) can thus

be guided by unsupervised decomposition of rest

data (Xrest).

are almost exclusively concerned with either discovering

neurobiological structure or assessing the neural correlates

associated with mental tasks. To discover structure, on the

one hand, spatial distributions of neural activity structure

across time, ICA is often used in fMRI studies (Beckmann

et al., 2005). It decomposes the BOLD signals into the

primary modes of variation. Similarly, SPCA has been

used to separate BOLD signals into parsimonious network

components (Varoquaux et al., 2011). Network discovery

by applying ICA or SPCA is typically performed on task-

unrelated (i.e., unlabeled) “resting-state” data. These cap-

ture brain dynamics during ongoing random thought with-

out controlled environmental stimulation. In fact, a large

portion of the BOLD signal variation is known not to cor-

relate with a particular behavior, stimulus, or experimental

task (Fox and Raichle, 2007). To test structure, on the

other hand, the neural correlates underlying mental tasks,

the GLM is the dominant approach (Friston et al., 1994).

The contribution of individual brain voxels is estimated ac-

cording to a design matrix of experimental tasks. Alterna-

tively, psychophysiological interactions (PPI) elucidate the

influence of one brain region on another conditioned by ex-

perimental tasks (Friston et al., 1997). As a last example,

an increasing number of neuroimaging studies model exper-

imental tasks by training classification algorithms on brain

signals (Poldrack et al., 2009). All these methods are applied to task-associated (i.e., labeled) data that

capture brain dynamics during stimulus-guided behavior. As an important conclusion, existing supervised

neuroimaging analyses cannot exploit the abundance of easily acquired resting-state data (Biswal et al.,

2010). These may allow better discovery of the manifold of brain states due to the increasingly acknowledged

high task-rest similarities of neural activity patterns (Smith et al., 2009; Cole et al., 2014). The integration of

brain-network discovery into supervised classification can yield a semi-supervised learning framework. The

most relevant neurobiological structure should hence be identified for the prediction problem at hand. In this
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last of three studies, an autoencoder will be fit to (unlabeled) rest data and integrated as a rank-reducing

bottleneck into a multinomial logistic regression fit to (labeled) task data. This can solve a compound sta-

tistical problem of unsupervised data representation and supervised classification that have been previously

studied in isolation. Neurobiologically, this allows delineating a low-dimensional manifold of brain network

patterns and then distinguishing mental tasks by their most discriminative linear combinations. Theoret-

ically, a reduction in model variance should be achieved by resting-state autoencoders that privilege the

most neurobiologically valid models in the hypothesis set. The reduced hypothesis set entails a concomitant

reduction in VC dimensions, which increases the probability for out-of-sample generalization (Vapnik, 1996).

Practically, semisupervised learning can address the fact that neuroimaging research frequently suffers from

scarcity of labeled data. This has limited the spectrum of representations that has been extracted from

GLM analyses based on few-participant samples.

4.2 Methodological approach

A hybrid model combines an autoencoder and factored logistic regression in a semisupervised regime (Fig.

12). Different but complementary neurobiological properties can thus be conjointly exploited in an approach

that is

1. mixed: by using rest and task data,

2. factored: by performing brain network decomposition, and

3. multi-task: by capitalizing on neural representations shared across mental operations.

Data. As the currently biggest openly-accessible reference dataset, the Human Connectome Project (HCP)

was chosen as data resource (Barch et al., 2013). Neuroimaging task data with labels of ongoing cognitive

processes were drawn from 500 healthy HCP participants (cf. methods section of chapter 3). The HCP

data have been used exclusively in standardized form (i.e., mean-centering and unit-variance scaling) given

that it is often useful, sometimes necessary and virtually never detrimental (Kuhn and Johnson, 2013). No

further preprocessing has been applied on the HCP data. 18 HCP tasks were selected that are known to

elicit reliable neural activity across participants (Table 1). In sum, the HCP task data incorporated 8,650

first-level activity maps from 18 diverse paradigms administered to 498 participants (2 removed due to

incomplete data). All maps were resampled to a common 60 × 72 × 60 space of 3mm isotropic voxels and

gray-matter masked (at least 10% tissue probability). The supervised analyses were thus based on labeled

HCP task maps with 79,941 voxels of interest representing z-values in gray matter.

These labeled data were complemented by unlabeled activity maps from HCP acquisitions of unconstrained

resting-state activity (Smith et al., 2013). These reflect brain activity in the absence of controlled thought.

In sum, the HCP rest data concatenated 8,000 unlabeled, noise-cleaned rest maps with 40 brain maps from

each of 200 randomly selected participants.
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Cognitive Task Stimuli Instruction for participants

1 Reward
Card game Guess the number of a mystery card for gain/loss of money

2 Punish

3 Shapes Shape pictures Decide which of two shapes matches another shape geometrically

4 Faces Face pictures Decide which of two faces matches another face emotionally

5 Random
Videos with objects Decide whether the objects act randomly or intentionally

6 Theory of mind

7 Mathematics Spoken numbers Complete addition and subtraction problems

8 Language Auditory stories Choose answer about the topic of the story

9 Tongue movement

Visual cues

Move tongue

10 Food movement Squeezing of the left or right toe

11 Hand movement Tapping of the left or right finger

12 Matching
Shapes with textures

Decide whether two objects match in shape or texture

13 Relations Decide whether object pairs differ both along either shape or texture

14 View Bodies Pictures Passive watching

15 View Faces Pictures Passive watching

16 View Places Pictures Passive watching

17 View Tools Pictures Passive watching

18 Two-Back Various pictures Indicate whether current stimulus is the same as two items earlier

Table 1: Description of psychological tasks to predict.

A further focus relied on the utility of the optimized low-rank projection in one task dataset for dimen-

sionality reduction in another task dataset. To this end, the HCP-derived network decompositions were

used as preliminary step in the classification problem of another large sample. The ARCHI dataset (Pinel

et al., 2007) provides activity maps from diverse experimental tasks, including auditory and visual percep-

tion, motor action, reading, language comprehension and mental calculation. Analogous to HCP data, the

second task dataset thus incorporated 1,404 labeled, grey-matter masked, and z-scored activity maps from

18 diverse tasks acquired in 78 participants.

Linear autoencoder. The labeled and unlabeled data were fed into a linear statistical model composed of

an autoencoder and dimensionality-reducing logistic regression. The affine autoencoder takes the input x,

projects it into a coordinate system of latent representations z and reconstructs it back to x′ by

z = W0x+ b0 x′ = W1z+ b1, (5)

where x ∈ Rd denotes the vector of d = 79,941 voxel values from each rest map, z ∈ Rn is the n-dimensional

hidden state (i.e., distributed neural activity patterns), and x′ ∈ Rd is the reconstruction vector of the

original activity map from the hidden variables. Further, W0 denotes the weight matrix that transforms

from input space into the hidden space (encoder), W1 is the weight matrix for back-projection from the
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hidden variables to the output space (decoder). b0 and b1 are corresponding bias vectors. The model

parameters W0,b0,b1 are found by minimizing the expected squared reconstruction error

E [LAE(x)] = E
[
∥x−W1(W0x+ b0) + b1)∥2

]
. (6)

This reconstruction error criterion equates with maximizing a lower bound on the mutual information

between input and the learned representation. Here W0 and W1 were chosen to be tied, i.e. W0 = WT
1 .

Consequently, the learned weights are forced to take a two-fold function: That of signal analysis and that

of signal synthesis. The first layer analyzes the data to obtain the cleanest latent representation, while the

second layer represents building blocks from which to synthesize the data using the latent activations. Tying

these processes together makes the analysis layer interpretable and pulls all non-zero singular values towards

1. Non-linearities were not applied to the activations in the first layer. Finally, imposing shrinkage terms

on the optimization objective of this AE avoided learning the identity function as final solution that would

trivially maximizes mutual information between x and x′ (Vincent et al., 2010).

Factored logistic regression. The factored logistic regression model is probably best described as a variant

of a multinomial logistic regression. Specifically, the weight matrix is replaced by the product of two weight

matrices with a common latent dimension. The latter is typically much lower than the dimension of the

data. Alternatively, this model can be viewed as a single-hidden-layer feedforward neural network with a

linear activation function for the hidden layer and a softmax function on the output layer. As the dimension

of the hidden layer is much lower than the input layer, this architecture is sometimes referred to as a ’linear

bottleneck’ in the literature. The probability of an input x to belong to a class i ∈ {1, . . . , l} is given by

P (Y = i|x;V0,V1, c0, c1) = softmaxi(fLR(x)), (7)

where fLR(x) = V1(V0x+ c0) + c1 computes multinomial logits and softmaxi(x) = exp(xi)/
∑

j exp(xj).

The matrix V0 ∈ Rdxn transforms the input x ∈ Rd into n latent components and the matrix V1 ∈ Rnxl

projects the latent components onto hyperplanes that reflect l label probabilities. c0 and c1 are bias vectors.

The loss function is given by

E [LLR(x,y)] ≈ 1

NXtask

NXtask∑
k=0

log(P (Y = y(k)|x(k);V0,V1, c0, c1). (8)

Layer combination. Importantly, the optimization problem of the linear autoencoder and the factored logis-

tic regression are linked in two ways. First, their transformation matrices mapping from input to the latent

space are tied

V0 = W0. (9)
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Hence, a compression of the 79,941 voxel values into n unknown components was searched that represent a

latent code optimized for both rest and task activity data. Second, the objectives of the autoencoder and

the factored logistic regression are interpolated in the common loss function

L(θ, λ) = λLLR + (1− λ)
1

NXrest

LAE +Ω(θ). (10)

In so doing, the combined model parameters θ = {V0,V1, c0, c1,b0,b1} were searched with respect to the

(unsupervised) reconstruction error and the (supervised) task classification. On the one hand, minimization

of negative log-likelihood LLR as loss ensures decomposition of the Xtask data samples according to the

most classification-relevant hidden factors. On the other hand, minimization of the reconstruction-error

loss LAE pushes variation of the Xtask data-sample projections towards the manifolds underlying Xrest.

LAE is devided by NXrest to equilibrate both loss terms to the same order of magnitude. Ω(θ) represents

an ElasticNet-type regularization (Zou and Hastie, 2005; Ng, 2004) that combines ℓ1 and ℓ2 penalty terms

∀p ∈ θ.

Optimization. The parameters of the system were learned by gradient descent optimization (Boyd and Van-

denberghe, 2004; Bubeck, 2014). These gradients were obtained by using the chain rule to backpropagate

error derivatives, first, through the LR layer and, then, through the factored decomposition with AE. The

rmsprop solver was chosen (Tieleman and Hinton, 2012) as refined variation of stochastic gradient descent

and a minibatch alternative to rprop. Rmsprop dictates an adaptive learning rate for each model parameter

by scaled gradients from a running average. Step-size adaption is performed as parameter-by-parameter

updates with multiplicative rate increases/decreases if the last two gradient signs agreed/disagreed. Mo-

mentum was not added as it typically does not lead to improvements when using rmsprop (Tieleman and

Hinton, 2012). The batch size was set to 100 (given much expected redundancy within Xrest and Xtask),

matrix parameters were initalized by Gaussian random values multiplied by 0.004 (i.e., gain), and bias

parameters were initalized to 0.

The normalization factor and the update rule for θ are given by

v(t+1) = ρv(t) + (1− ρ)
(
∇θf(x

(t), y(t), θ(t))
)2

θ(t+1) = θ(t) + α
∇θf(x

(t), y(t), θ(t))√
v(t+1) + ϵ

,

(11)

where f is the loss function computed on a minibatch sample at timestep t, 0 < ρ < 1 constitutes the decay

rate. ρ was set to 0.9 to deemphasize the magnitude of the gradient. Further, α is the learning rate and ϵ

a global damping factor. The hyperparameter α was set to 0.00001 by prior studies and ϵ was set to 10−6.

Note that experimentation with other solvers (stochastic gradient descent, adadelta, and adagrad) was done

but found that rmsprop converged faster and with similar or higher generalization performance.
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Hints. In fact, the constraint by a rest-data autoencoder is closely related to the notion of hints (Abu-

Mostafa, 1994). Rather than regularization in a strict sense, its purpose is to introduce prior information on

known properties of the unknown target function f . Rather than only relying on input-output pairs in the

learning process, the hypothesis set was narrowed to the biologically most plausible solutions. That is, the

search space was reduced in a way that is compatible with the expected representation of BOLD activity

signals.

Implementation. The analyses were performed in Python. We used nilearn to handle the large quantities

of neuroimaging data (Abraham et al., 2014) and Theano for automatic, numerically stable differentiation

of symbolic computation graphs (Bastien et al., 2012; Bergstra et al., 2010).

4.3 Experimental results

Serial versus parallel structure discovery and classification. It was first tested whether there is a substantial

advantage in combining unsupervised decomposition and supervised classification learning. The approach

was benchmarked against performing data reduction on the (unlabeled) first half of the HCP task data

by PCA, SPCA, ICA, and AE (n = 5, 20, 50, 100 components) and learning classification models in the

(labeled) second half by ordinary logistic regression. PCA reduced the dimensionality of the task data by

finding orthogonal network components using a change of basis (whitening). SPCA separated the task-

related BOLD signals into network components with few regions by a regression-type optimization problem

constrained by ℓ1 penalty (no orthogonality assumptions, 1000 maximum iterations, per-iteration tolerance

of 10-8, α = 1). ICA performed iterative blind source separation by a parallel FASTICA implementation

(200 maximum iterations, per-iteration tolerance of 0.0001, initialized by random mixing matrix, whitening).

AE found a code of latent representations by optimizing projection into a bottleneck (500 iterations, same

implementation as below for rest data). The second half of the task data was projected onto the latent

components discovered in its first half. Only the ensuing component loadings were submitted to ordinary

logistic regression (one hidden layer, ℓ1 = 0.1, ℓ2 = 0.1, 500 iterations). These serial two-step approaches

were compared against parallel decomposition and classification by SSFLogReg (two hidden layers, λ = 1,

ℓ1 = 0.1, ℓ2 = 0.1, 500 iterations). Importantly, all trained classification models were tested on a large,

unseen test set (20% of data) in the present analyses. Across choices for n, SSFLogReg achieved more than

95% out-of-sample accuracy, whereas supervised learning based on PCA, SPCA, ICA, and AE loadings

ranged from 32% to 87% (Table 2). Intentionally disregarding rest data here, fLR without AE (λ = 1) was

used to test for the superiority of parallel over serial structure discovery and classification. This experiment

indeed established the advantage of directly searching for classification-relevant structure in the fMRI data,

rather than solving the supervised and unsupervised problems independently. This effect was particularly

pronounced when assuming few hidden dimensions.
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n PCA + LogReg SPCA + LogReg ICA + LogReg AE + LogReg SSFLogReg

5 45.1 % 32.2 % 37.5 % 44.2 % 95.7%

20 78.1 % 78.2 % 81.0 % 63.2 % 97.3%

50 81.7 % 84.0 % 84.2 % 77.0 % 97.6%

100 81.3 % 82.2 % 87.3 % 76.6 % 97.4%

Table 2: Serial versus parallel dimensionality reduction and classification. Chance is at 5.6%.

Model performance. SSFLogReg was subsequently trained (500 epochs) across parameter choices for the

hidden components (n = 5, 20, 100) and the balance between autoencoder and logistic regression (λ =

0, 0.25, 0.5, 0.75, 1). Assuming 5 latent directions of variation should yield models with higher bias and

smaller variance than SSFLogReg with 100 latent directions. Given the 18-class problem of HCP, setting λ

to 0 consistently yields generalization performance at chance-level (5.6%) because only the unsupervised layer

of the estimator is optimized. At each epoch (i.e., iteration over the data), the out-of-sample performance of

the trained classifier was assessed on 20% of unseen HCP data. Additionally, the “out-of-study performance”

of the learned decomposition (W0) was assessed by using it as dimensionality reduction of an independent

labeled dataset (i.e., ARCHI) and conducting ordinary logistic regression on the ensuing component loadings.

n = 5 n = 20 n = 100

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Out-of-sample

accuracy 6.0% 88.9% 95.1% 96.5% 95.7% 5.5% 97.4% 97.8% 97.3% 97.3% 6.1% 97.2% 97.0% 97.8% 97.4%

Precision (mean) 5.9% 87.0% 94.9% 96.3% 95.4% 5.1% 97.4% 97.1% 97.0% 97.0% 5.9% 96.9% 96.5% 97.5% 96.9%

Recall (mean) 5.6% 88.3% 95.2% 96.6% 95.7% 4.6% 97.5% 97.5% 97.4% 97.4% 7.2% 97.2% 97.2% 97.9% 97.4%

F1 score (mean) 4.1% 86.6% 94.9% 96.4% 95.4% 3.8% 97.4% 97.2% 97.1% 97.1% 5.3% 97.0% 96.7% 97.7% 97.2%

Out-of-study

accuracy 39.4% 60.8% 54.3% 60.7% 62.9% 77.0% 79.7% 81.9% 79.7% 79.4% 79.2% 82.2% 81.7% 81.3% 75.8%

Table 3: Performance of SSFLogReg across a coarse grid of model parameter choices. Chance is at 5.6%.

Three noteworthy observations could be made (Table 3). First, the most supervised estimator (λ = 1)

achieved in no instance the best accuracy, precision, recall, or f1 scores on HCP data. Classification by

SSFLogReg is therefore facilitated by imposing structure from the unlabeled rest data. Second, the higher

the number of latent components n, the higher the out-of-study performance with small values of λ. This

suggests that the presence of more rest-data-inspired hidden components results in more effective feature

representations in unrelated task data. Third, for n = 20 and 100 (but not 5) the purely rest-data-trained

decomposition matrix (λ = 0) resulted in noninferior out-of-study performance of 77.0% and 79.2%, respec-

tively (Table 3). This confirms that guiding model learning by task-unrelated structure extracts features of

general relevance beyond the supervised problem at hand.
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Figure 13: Accuracy of 38-task w/o bottleneck classificaton across epochs Depicts the f1 scores of 38 class predictions

for each of 300 minibatch iterations (chance is at 2.6%). Multinomial logistic regression operating in voxel space without

bottleneck (left plot) as well as with 20-component (middle plot) and 100-component (right plot) bottleneck. The curves show

per-task f1 performance on the validation set. The three accuracy scores (bottom) reflect the percentage of correctly classified

samples in the validation set by the final model. Hence, introduction of low-dimensional factors into the logistic regression

model showed at least 15% better class separability.

Individual effects of dimensionality reduction and rest data. The impact of introducing a bottleneck layer

was first quantified disregarding the autoencoder. To this end, ordinary logistic regression was juxtaposed

with SSFLogReg with λ = 1. For this experiment, the difficulty of the classification problem was increased by

including data from all 38 HCP tasks. Indeed, increased class separability in component space, as compared

to voxel space, entails differences in generalization performance of ≈ 17% (Fig. 13). Notably, the cognitive

tasks on reward and punishment processing are among the least predicted with ordinary but well predicted

with SSFLogReg (tasks 3 and 4 in Fig. 14). These experimental conditions have been reported to exhibit

highly similar neural activity patterns in GLM analyses of that dataset (Barch et al., 2013). Consequently,

also local activity differences (in the striatum and visual cortex in this case) can be successfully captured

by brain-network modelling.

The impact of rest structure was then contemplated by modulating its influence (λ = 0.25, 0.5, 0.75) in

data-scarce and data-rich settings (n = 20, ℓ1 = 0.1, ℓ2 = 0.1). At the beginning of every epoch, 2000 task

and 2000 rest maps were drawn with replacement from same amounts of task and rest maps. In frequently

encountered data-scarce scenarios, both training and validation scores improved as we depart from the most

supervised model (λ = 1). This suggests that the autoencoder of SSFLogReg does not behave like a classical

regularization but more like transfer learning. This effect was particularly pronounced in the data-scarce

scenario, yet still present in the data-rich scenario (Fig. 15).

Feature identification. It was finally examined whether the models were fit for purpose (Fig. 16 and 17). To

this end, Pearson’s correlation was computed between the classifier weights and the averaged neural activity

map for each of the 18 tasks. Ordinary logistic regression thus yielded a mean correlation of ρ = 0.28
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Figure 14: Effect of bottleneck in a 38-task classificaton problem Depicts the f1 score for each of 38 class predictions

(chance is at 2.6%) sorted from lowest to highest. Multinomial logistic regression operating in voxel space (blue bars) was

compared to SSFLogReg operating in 20 (left plot) and 100 (right plot) latent modes (grey bars). Autoencoder or rest data

were not used for these analyses (λ = 1). Ordinary logistic regression yielded 77.7% accuracy out of sample, while SSFLogReg

scored at 94.4% (n = 20) and 94.2% (n = 100). Hence, compressing the voxel data into a component space for classification

achieves higher task separability.

Figure 15: Effect of rest structure in data-scarcity versus data-richness Model performance of SSFLogReg (n = 20,

ℓ1 = 0.1, ℓ2 = 0.1) as a function of varying amount (left plot) and influence (right plot) of rest data. In the data-scarce

setting 100 task and 100 rest maps (hot colors) composed the dataset, whereas in the data-rich setting 1000 task and 1000

task maps were used (cold colors). To examine varying amount of rest structure, a given number of task maps was flanked

by less, same or more rest maps. To examine varying influence of rest structure, the impact of the rest-autoencoder layer was

modulated for different choises of λ. Gradient-descent optimization was always performed on 2000 task and 2000 rest maps

drawn with replacement from the dataset. At the begining of each epoch, these were drawn with replacement from a pool of

100 or 1000 different task and rest maps, respectively. Especially the cold bars in the data-scarce scenarios suggests a ’transfer

learning’-type effect (Pan and Yang, 2010). Chance is at 5.6%.
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across tasks. For SSFLogReg (λ = 0.25, 0.5, 0.75, 1), a per-class-weight map was computed by matrix

multiplication of the two inner layers. Feature identification performance thus ranged between ρ = 0.35 and

ρ = 0.55 for n = 5, between ρ = 0.59 and ρ = 0.69 for n = 20, and between ρ = 0.58 and ρ = 0.69 for

n = 100. Consequently, SSFLogReg puts higher absolute weights on relevant structure. This reflects an

increased signal-to-noise ratio, in part explained by the more BOLD-typical local contiguity. Conversely,

SSFLogReg puts lower probability mass on irrelevant structure. Despite lower interpretability of the results

from ordinary logistic regression, the salt-and-pepper-like weight maps were sufficient for good classification

performance.

Figure 16: Classification weight maps The voxel predictors corresponding to 5 exemplary (of 18 total) psychological tasks

(rows) from the HCP dataset (Barch et al., 2013). Left column: multinomial logistic regression (same implementation but

without bottleneck or autoencoder), middle column: SSFLogReg (n = 20 latent components, λ = 0.5, ℓ1 = 0.1, ℓ2 = 0.1), right

column: voxel-wise average across all samples of whole-brain activity maps from each task. SSFLogReg a) puts higher absolute

weights on relevant structure, b) lower ones on irrelevant structure, and c) yields BOLD-typical local contiguity (without

enforcing an explicit spatial prior). All values are z-scored and thresholded at the 75th percentile.

Hence, SSFLogReg yielded class weights that were much more similar to features of the respective training

samples for all choices of n and λ. SSFLogReg therefore captures genuine properties of task activity patterns,

rather than participant- or study-specific artefacts.

Miscellaneous observations. For the sake of completeness, modifications of the statistical model are reported

informally that did not improve generalization performance. a) Introducing stochasticity into model learning
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Figure 17: Weight maps of a same hidden factor ranging from unsupervised to supervised regime One of the

n factors from the hidden layer (W0) was plotted for the same data (full HCP dataset) and the same model choices (n =

20, ℓ1 = 0.1, ℓ2 = 0.1) along a λ-grid between purely unsupervised (λ = 0.0, top row) and purely supervised (λ = 1.0, bottom

row) settings. As qualitative evidence, a slow transition from rest- to task-typical brain networks was observed in brain space.

Although difficult to quantify, rest network elements appear to get ’reassembled’ to latent factors of the LR. This increased

confidence that the improved model performance of rest-informed fLR is not only an arbitrary effect of spatially smooth noise.

All values are z-scored.

by input corruption of Xtask deteriorated model performance in all scenarios. Adding b) rectified linear units

(ReLU) to W0 or other commonly used non-linearities (c) sigmoid, d) softplus, e) hyperbolic tangent) all

led to decreased classification accuracies, probably due to sample size limits. Further, f) “pretraining” of

the bottleneck W0 (i.e., non-random initialization) by either corresponding PCA, SPCA or ICA loadings
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did not exhibit improved accuracies, neither did h) autoencoder pretraining. Moreover, introducing an

additional h) overcomplete layer (100 units) after the bottleneck was not advantageous. Finally, imposing

either i) only ℓ1 or k) only ℓ2 penalty terms was disadvantageous in all tested cases. This favored ElasticNet

regularization chosen in the above analyses.

4.4 Discussion

The field of imaging neuroscience is still largely divided into studies that either use unsupervised methods

(especially PCA, SPCA, and ICA) to find ’resting-state networks’ in task-unrelated data or use supervised

methods (GLM, logistic regression, SVMs, etc.) in experimental data to locate the neural correlates under-

lying psychological processes (Smith et al., 2013; Barch et al., 2013). However, recent neuroimaging studies

provide evidence for a close correspondence between resting-state correlations and task-constrained neural

activity (Smith et al., 2009; Cole et al., 2014). It might be useful in a number of analysis settings to combine

the unsupervised discovery of special structure and the supervised prediction of mental tasks. To this end,

the last project has proposed an alternative model that facilitates identification of predictive brain regions

of defined mental operations by conjoint learning in those modes of variation that are most relevant to the

multi-task problem at hand. This model combines flexible brain-network discovery by AEs applied to rest

data and mental task prediction enabled by factored logistic regression applied to task data.

In particular, three pieces of evidence attest to the advantages of the undertaken SL approach. First, the

proposed AE/fLR-hybrid classified very well 18 psychological tasks from the HCP reference dataset. The

out-of-sample performance ranged between 95.7% and 97.6% accuracy across choices for different numbers of

latent variance components (n=5/20/50/100). These scores outperformed the serial approach that initially

applies PCA/SPCA/ICA-reduction of rest data into the main components of variation and subsequent LR

task classification on the component loadings, which yielde out-of-sample accuracies ranging between 32.2%

and 87.3%. Second, the benefitting knowledge of rest structure has improved the universality of the learned

factorization machines. That is, the already trained encoder layer was used for preprocessing whole-brain

maps into dimensionality-reduced representations of an independent dataset. The task-separability was

consequently enhanced in that second dataset with with out-of-dataset performance increases from 79.4%

to 81.9% (n=20) and from 75.8% to 82.2% (n=100) in 18 unseen tasks. Third, the integrated AE/fLR has

also considerably enhanced the feature identification. When computing the voxelwise Pearson correlation

between the model weights and class maps averaged across participants, the correspondence was improved

from r=0.28 (ordinary LR) up to r=0.55 (n=5), r=0.69 (n=20), and r=0.69 (n=100). Exploiting rest and

task data by the AE/fLR-model thus improved the predictive weight maps for interpretability by cognitive

neuroscientists, besides objective gains in model performance. In sum, recent neuroscientific evidence for

similar neural activity patterns during task and rest were incorporated into a domain-specific learning

model for joint dimensionality reduction and mental task classification. It enables mapping of traditional
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psychological concepts on combinations of brain networks shared across diverse psychological tasks.

Using the flexibility of factored models, the low-dimensional representation has been learned from high-

dimensional voxel brain space that is most important for prediction of cognitive task sets. The higher

generalization accuracy and feature recovery, comparing to ordinary logistic regression, corroborate the

conclusion from chapter 3: fMRI data probably concentrate near a low-dimensional manifold of characteristic

brain activity combinations. That is, the neural activation pattern underlying defined mental operations

can be expressed by a linear combination of a small number of activity components. While the activation

components had been static in that earlier study, the most relevant n activation components have here

been learned for the supervised classification goal at hand. Besides yielding higher classification scores,

SSFLogReg has therefore solved a representation learning problem as an auxiliary learning task. On the

one hand, the characteristic combination of the learned components has been quantified for optimized

prediction of each class of cognitive processes. On the other hand, however, a useful devision of brain

activity into n continuous overlapping representation components has been obtained as new observational

units for neural activity. In stark contrast to fitting linear classification models (e.g., logistic regression

and SVMs) to brain voxels, the close integration of backpropagation and layered neural networks enables

reverse-engineering of the most explanatory neurobiological representations for a given brain-behavior or

brain-concept associations. Such representation learning can probably not be achieved by the unsupervised

(e.g., PCA, SPCA, ICA, clustering algorithms) or supervised (e.g., GLM, psychophysiological interactions)

statistical models that are currently available in the neuromaging field. From the perspective of cognitive

neuroscience, the brain activity recruited during an individual’s appraisal of face versus house visual stimuli,

for instance, is probably best distinguished in locally constrained, different overlapping activation patterns

in the bilateral fusiform face area of the visual cortex (Kanwisher et al., 1997; Gauthier et al., 1999).

However, optimized representations to distinguish attention-related and language-related mental processes

are more likely to distinguish global activation patterns of similar brain regions divided into the left and

right brain hemisphere (Stephan et al., 2003; Corbetta and Shulman, 2002; Dronkers et al., 2004). As a

final contrasting example, neurobiological distinction of high-level mental operations related to semantic

processing (Mitchell et al., 2008) or processing others’ mind states (Van Overwalle, 2009) is probably best

achieved by bilateral macroscopical activation patterns. In this way, the proposed flexible generative models

can formally grasp data-generating neurobiological mechanisms by estimating the parameters of the joint

distributions P (Y,X) = P (X|Y )P (Y ). This is infeasable with discrimintative models that directly estimate

the posterior probability P (Y |X) of the unknown target function (Ng and Jordan, 2003; Bishop and Lasserre,

2007).

Additionally, SSFLogReg incorporates semisupervised components into the model structure (i.e., classifi-

cation in partly labeled data). Importantly, the possible outcomes of adding unlabeled data samples to a

supervised estimation problem range from beneficial to detrimental effects depending on the correctness of
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the model assumptions about P (X) and P (X|Y ) (Zhu and Goldberg, 2009). In the present study, there

are three pieces of evidence for the usefulness of rest data. First, the purely supervised fLR model (λ = 1,

without autoencoder or rest data) achieved in no instance the best accuracy, precision, recall or f1 scores

on HCP data across component choices (n=5/20/100). Second, the decomposition matrix from purely un-

supervised autoencoder learning on rest data (λ = 0) was applied as a data transformation procedure in an

independent dataset (ARCHI). This resting-state-activity-enabled dimensionality reduction for classifying

18 independent tasks increased the accuracies from 77% to 81.9% (n=20) and from 79.2% to 82.2% (n=100).

Third, rest-informed classification has improved the out-of-sample performance by 10% in the data-scarce

setting (100 task and 100 rest maps) and by 2% in the data-rich setting (1000 task and 1000 rest maps).

These beneficial semisupervised outcomes therefore suggest correct model assumptions about the relation-

ship between P (x) and P (x|y). But how does this application of semisupervision to neuroimaging data

relate to the notions of imputation (i.e., completing missing labels for data samples), transductive learning

(i.e., predict labels of unlabeled data items in the training set) and inductive learning (i.e., predict labels in

unseen test data) (Zhu and Goldberg, 2009; Kingma et al., 2014; Zhu, 2006)? SSFLogReg can be viewed as

an instance of imputation since it infers the missing labels of the held-out test set. Unlike typical semisuper-

vised learning, however, the present approach does not assume that the labeled and unlabeled data samples

have been sampled from the same data-generating process. That is, SSFLogReg does not assume Xtask and

Xrest to represent sampled observations of the same underlying population phenomenon. Consequently,

SSFLogReg did not have the goal to infer labels of that differently generated part of the data (i.e., transduc-

tive semisupervision) but it does improve performance on a supervised task on unseen data (i.e., inductive

semisupervision). Nevertheless, the present approach emphasizes formally incorporating existing knowledge

on the general structure of the studied phenomenon and is thus probably less well described along the

transductive-inductive distinction (Zhu, 2006). More globally, there is an increasing trend to initiate data

collaborations and share large data sets from various neuroimaging methods (Poldrack and Gorgolewski,

2014; Frackowiak and Markram, 2015). The relative paucity of meticulously labeled brain maps stands in

stark contrast to the increasing abundance of unlabeled brain maps. This available pool of massive imaging

data from brain structure and function can be exploited by semisupervised learning techniques to improve

classification and regression tasks by incorporating a-priori knowledge of normal neurobiology structure.

From a machine-learning perspective, factorization of the logistic regression weights can be viewed as trans-

forming a multi-class classification problem into a multi-task learning problem. While ’multi-class classifi-

cation’ refers to categorizing unlabeled data samples into more than two classes (Bishop, 2006), ’multi-task

learning’ refers to better solving several related problems by exploiting their commonly shared structure

(Caruana, 1997). The improved model performance suggests that many different psychological processes do

recruit similar underlying macroscopial units of brain organization. Using the main variations in the data

enables solving classification and regression problems along the main manifolds underlying the question at
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hand (Vincent et al., 2010). Automatized feature-engineering machines in form of autoencoder layers might

therefore be a useful adoption in various neuroimaging analyses. Besides increased performance, these mod-

els are more interpretable by automatically learning a mapping to and from a brain-network space. This

domain-specific learning algorithm encourages departure from the artificial and statistically less attractive

voxel space. Neurobiologically, brain activity underlying defined mental operations can be explained by

linear combinations of the main activity patterns. Flexible extraction of fundamental building blocks of

brain organization might be a relevant stepping stone for discovering the building blocks (i.e., ’cognitive

primitives’) of human thought.

In the future, it might be interesting to extend SSFLogReg from a bottleneck layer capturing primarily man-

ifestations of functional integration to a first hidden layer that can also capture manifestations of functional

segregation of brain organization. That is, AEs have shown satisfactory performance in recovering general

representational compartments in fMRI data. They are however näıve to the boundaries of microscopically

distinguishable brain regions (cf. chapter 2). It has become established in neuroscience that the human

brain is organized in discrete functional modules (Brodmann, 1909; Vogt and Vogt, 1919) that define widely

accepted boundaries based on microarchitectural properties (e.g., cyto-, myelo- and receptorarchitecture).

As one possible solution, a stacked hidden layer could contain one unit group learning brain-network-like

projections and one unit group learning brain-region-like projections. The BOLD signal of a given voxel

could thus contribute to both the explanatory spectrum of functional segregation and integration. Such a

stacked bottleneck layer could be further improved by structured sparsity that inserts prior knowledge into

the learning problem by encouraging practically likely sparsity patterns using penality terms (Huang et al.,

2011). More specifically, one could impose group-wise sparsity (i.e., encourage dropping all region or all

network representations) and within-group sparsity (i.e., encourage dropping a maximum of individual re-

gion/network units). The new hyperparameter that mediates between group-wise and within-group sparsity

can be set by cross-validation with a coarse parameter grid, analoguous to common practice in sparse-group

Lasso (Simon et al., 2013) and elastic-net regularization (Zou and Hastie, 2005). Moreover, as a natural

extention of ℓ1 penalties, the order of network patterns could be implicitly estimated by introducing a trace

norm on the input decomposition matrix (Recht et al., 2010; Bach, 2008; Mishra et al., 2013). This penalty

term sums the singular values as a convex surrogate for matrix rank in the aim of reducing the projection

space to less basis functions. The ensuing complexity reduction should allow for more advanced variable

selection by finding the most explanatory axes of the low-dimensional coordinate sytem. Neurobiologically,

the most useful number of global network patterns could thus be determined automatically.

Taken together, automatic reduction of brain maps to their neurobiological essence may be essential to

reduce computational costs and increase interpretability in the high-dimensional neuroimaging setting. After

training, the encoder module allows very fast inference because data transformation into an optimized

representation does not require any estimation procedure. Initiatives for data collection are rapidly increasing
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in neuroscience (Poldrack and Gorgolewski, 2014). These promise structured integration of neuroscientific

knowledge accumulating in databases. Tractability by condensed feature representations can avoid the ill-

posed problem of learning the full distribution of activity patterns. This is not only relevant to the multi-class

challenges spanning the human cognitive space (Schwartz et al., 2013) but also the multi-modal combination

with high-resolution 3D models of brain anatomy (Amunts et al., 2013) and high-throughput genomics (Need

and Goldstein, 2010). The biggest socioeconomic potential may lie in across-hospital clinical studies that

predict disease trajectories and drug responses in psychiatric/neurological populations (Frackowiak and

Markram, 2015; Gustavsson et al., 2011).

88



5 Conclusion

Two major views on human brain organization are functional specialization by distinct cortical areas and

functional integration by long-range connections of macroscopical networks. These complementary perspec-

tives on brain architecture have been successfully recast in a machine-learning regime. Unknown target

functions have been approximated by numerical optimization in the high dimensionsal scenario. Functional

specialization was reframed as searching for discrete local patterns in neural activity fluctuations by cluster-

ing procedures, while functional integration was reframed as searching overlapping global activity patterns

by matrix decomposition procedures. Both these neurobiologically motivated restrictions to complexity

circumvented the curse of dimensionality and allowed for useful, simplified views on brain function. Fi-

nally, unsupervised structure discovery and supervised structure inference have been incorporated into a

new, unified statistical estimator by means of autoencoders and neural network algorithms. The discovered

existence of low-dimensional subspaces in fMRI data has been exploited for projection along the optimized

directions of variation and supervised inference in the learned embedding space. Domain knowledge has

thus improved the performance of supervised statistical models by imposing known biological structure on

the estimation process. The statistical-learning access to brain imaging has allowed for a detailed charac-

terization of the complicated relationship between the human brain in a goal-directed task state and an

idlying rest state. Questions revolving around this task-rest correspondance may indeed not lend themselves

particularly well to the cognitive-theory-driven experiments that typically dominate functional neuroimag-

ing research. Ultimately, many unresolved challenges remain in systems neuroscience. Recent advances in

heuristic gradient-based methods for approximating complex regularities in neurobiologial phenomena rep-

resent an attractive alternative to traditionally used purely analytical methods rooted in classical statistics.

Neuroscientific questions can be reformulated as machine-learning problems and subsequently translated

back into neuroscientific practice and interpretation. This inter-disciplinary research agenda has the poten-

tial to extend the spectrum of possible questions and permissible conclusions about the brain.
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G. Buzsáki and A. Draguhn. Neuronal oscillations in cortical networks. Science, 304(5679):1926–1929, 2004.
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