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ABSTRACT

Motivation: A recent paradigm shift in toxicology proposes the use

of 3D in vitro systems in combination with high content image analy-

sis (HCA) techniques to lower the cost, increase the throughput and

enhance the predictivity for human hazard identification. In the field

of developmental neurotoxicity (DNT), neural progenitor cells (NPCs)

grown as neurospheres are such an in vitro system since they mimic

several basic processes of brain development including neural pro-

genitor cell migration and differentiation. HCA of such 3D in vitro

systems creates new challenges for automated evaluations because

they encompass variable cell densities, inconsistent z-layers and

heterogeneous cell populations.

Results: We propose computational methods implemented in our

Omnisphero software which assesses multiple endpoints of the ’Neu-

rosphere Assay’ and achieve precision comparable to manual eva-

luation. For neuronal identification Omnisphero reaches a detection

power (DP) of 83.8% and a false positive rate (FPR) of 11%, thus

largely improving the results obtained by an existing approach whose

DP does not exceed 50% at an FPR above 50%. The high FPR of

existing approaches results in incorrect measurements of neuronal

morphological features accompanied by an overestimation of com-

pound effects. Omnisphero additionally includes novel algorithms to

assess ’neurosphere-specific’ endpoints like radial migration and neu-

ronal density distribution across the migration area. Furthermore, a

user-assisted parameter optimization procedure makes Omnisphero

accessible to non-expert end users.

Availability: Open source software (under the GPLv3 license) is

available at https://www.omnisphero.com along with sample data.1

Contact: Ellen.Fritsche@IUF-Duesseldorf.de, Axel.Mosig@bph.rub.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 For review purposes the software and the sourcecode can be downloaded

from www.omnisphero.com/download/Omnisphero.zip

1 INTRODUCTION

In recent years, computational approaches for high content image

analysis (HCA) have substantially supported and driven the develo-

pment of high-throughput microscopy assays (Giuliano et al., 2003;

Starkuviene and Pepperkok, 2007). Such HCA methods entered the

field of developmental neurotoxicity (DNT) testing to implement

complex two-dimensional (2D) and three-dimensional (3D) cellu-

lar models for compound screening (Breier et al., 2010; Dragunow,

2008) since testing for DNT according to the current guidelines

is highly time- and cost-intensive (Bal-Price et al., 2012). While

most DNT approaches for HCA are designed for conventional (2D)

mono-cell type cultures (Radio and Mundy, 2008; Breier et al.,

2008; Harrill et al., 2010, 2011a,b, 2013; Wilson et al., 2014), only

few image analysis approaches exist for more complex heterogene-

ous 2D (Anderl et al., 2009) and none for 3D cultures. However,

HCA of 3D cell cultures have the potential to become fundamental

tools for risk assessment since they reflect the in vivo tissue arch-

itecture more precisely than 2D cultures (Pampaloni et al., 2007;

Alépée et al., 2014). The complex spatial organization of 3D cell

culture assays and the presence of different cell types creates new

challenges for computational image analysis.

The ’Neurosphere Assay’. For DNT testing in vitro, the ’Neurosph-

ere Assay’ is a promising module of an envisioned testing strategy

(Baumann et al., 2015) (Fig. 1a,e). It is based on 3D primary

human neural progenitor cell (hNPC) clusters, which mimic several

neurodevelopmental endpoints including migration as well as dif-

ferentiation into neurons, astrocytes and oligodendrocytes in vitro

(Moors et al., 2009; Baumann et al., 2014). Exposure of neurosph-

ere cultures towards test compounds allows to assess disturbances

of these processes (Moors et al., 2007, 2009; Gassmann et al.,

2010; Schreiber et al., 2010; Baumann et al., 2015). When HCA

is used to measure such neurosphere endpoints, advanced scanning

and data analysis procedures are required because the neurospheres’

3D structure results in assay-specific challenges. First, neurosphe-

res contain a 3D neurosphere-core, which, if not corrected for, leads
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to unfocused images. Second, the density of cells within the migra-

tion area of a neurosphere is highly variable. Third, neurospheres

consist of a heterogonous cell population of neurons and glia cells,

and finally, they involve sphere-specific endpoints like radial glia

migration and neuronal migration. For higher throughput of chemi-

cal testing, HCA algorithms are needed to tackle these challenges

and evaluate those endpoints with a high accuracy and precision.

Neuronal morphology and motility in DNT assays. Automated

quantification of neuronal counts and neuronal morphology in

conventional 2D neuronal cultures are well-established and were

shown to achieve a precision comparable to manual quantification

by human experts (Ramm et al., 2003). However, most studies rely

on adjusting cell densities in the samples to facilitate object discri-

mination (Harrill et al., 2010; Dragunow, 2008). In the neurosphere

model, cell density cannot be adjusted. Thus, new and existing

algorithms require re-evaluation for their applicability to quantify

relevant cellular parameters of such complex, mixed cultures. In

addition, new algorithms are needed to cover endpoints originating

from the spatial distribution of cells within the entire well.

Overview of Contributions. We propose a novel computational

approach for quantifying features of neurospheres that are relevant

for DNT testing. Our approach relies on novel methods for the

identification of the classical endpoints like neuron counting and

characterization of their morphology as well as novel algorithms to

assess endpoints like radial migration and neuronal density distribu-

tions, which originate from the morphology of the ’Neurosphere

Assay’. Compared to existing approaches for neuron identifica-

tion, our approach is based on analyzing morphology by explicitly

identifying the major morphological constituents, in particular the

length and number of neurites as well as potential branching points

of neurites. To validate our method, we assessed its accuracy and

sensitivity with respect to an extensive manual ground truth annota-

tion, and compared results to the Neuronal Profiling bioapplication

V4.1 (NPBA) module of the vHCS-Scan (build 6585) software. Our

approach is implemented and made available in the Omnisphero sof-

tware, which facilitates analysis of the full spectrum of endpoints of

the complex organoid neurosphere system. Omnisphero is accessi-

ble to non-expert end users through a graphical user interface (GUI)

and an automated parameter optimization. While our main target

is to facilitate automated high-throughput DNT assays, our image

analysis approaches may also be applied in other 3D in vitro systems

such as in the migration assay of tumor spheroids (Vinci et al.,

2013).

2 METHODS

2.1 Sample preparation

Neurospheres were incubated with either epidermal growth factor (EGF),

acrylamide or methylmercurychloride (MeHgCl) for 5 days under differen-

tiating conditions with subsequent cell viability monitoring, immunostain-

ging, and image acquisition (see Supplement 1). For each compound four

individual experiments with three technical replicates were conducted.

2.2 Image preprocessing

Preprocessing. 16-bit microscopic images of complete microtiter well pla-

tes were generated for the nuclei channel (Hoechst 33258) and the neuron

channel (βIII-tubulin) utilizing the ArrayScan VTI (Thermo Fisher Scien-

tific) and the vHCS Scan software (build 6585). Images were recorded in

tiles, which were subsequently stitched to obtain a whole-neurosphere image

which displays a complete well of a 96-well plate (Fig. 1e).

Identification of nuclei and neuronal cell bodies. Coordinates of nuclei were

identified as centroid coordinates in the whole-neurosphere images using two

different approaches. In the first approach, the nuclei channel was binarized

using the isodata approach (Ball and Hall, 1965). These binarized images

were watershed transformed, and nuclei coordinates identified as the cen-

troids of all segments satisfying suitable size constraints (Fig. 1f ). A second

approach for nuclei identification was introduced for the sake of compa-

rability with existing approaches. Here, nuclei centroids were identified

using the Spot Detector bioapplication. Obtained nuclei coordinates from the

Spot Detector bioapplication were used for further identification of neuron

cell bodies by both Omnisphero (see Section 2.3) and the NPBA to com-

pare obtained neuron coordinates of the two automated methods. Obtained

coordinates are transferred to the whole-neurosphere images.

Neurosphere-core removal. The neurosphere-core is defined as the area with

the highest intensity and cell density in the image. As detailed in Supple-

ment 2.1, this area is determined by converting the image into a thresholded

intensity matrix in which the neurosphere-core is identified as the largest

connected component. The identified area is masked out from the image for

further evaluations.

Skeletonization. For the neuron channel, the morphological skeleton SN of

every connected component N in the neuron binary channel is computed

using a refined version of the approach from Wang et al. (2013) based on the

method proposed by Bai et al. (2007) (see Fig. 1h and Supplement 2.2).

2.3 Determining standard analysis endpoints.

Automated quantification of neurons. We consider a nucleus as a candidate

for a neuronal nucleus if there is a closed connected component in the over-

lay of the binarized neuron image and the binarized nucleus image, and

if the nucleus is uniquely assigned to one skeleton SN . A corresponding

component in the nucleus channel is considered further as a neuron nucleus

candidate if the size of the overlap component exceeds a predefined thre-

shold (Fig. 1g). Those candidates are investigated further by the Neuron

Tracer algorithm which utilizes the skeletonization results (Fig. 1i). A neu-

ron nucleus candidate associated with a skeleton SN is rejected if length or

roundness of the skeleton falls below a user defined threshold. Furthermore,

areas with low signal-to-noise ratio in the neuron channel are disregarded.

Neuron nuclei candidates located on the remaining skeletons SN are coun-

ted as neuron nuclei. Whenever no neuron nucleus candidate is associated

to a skeleton, the nearest neighbor nucleus at the endpoints can be assigned

if it is located within a certain distance and angle to an endpoint. The para-

meters involved in these steps are determined using an automated parameter

optimization (Section 2.5).

Validation. As validation measures, we determined the numbers of true

positives (TPs) and false positives (FPs) as identified by an automated algo-

rithm compared to a manual ground truth annotation. Furthermore, we

determined the detection power (DP) and false-positve rate (FPR), i.e., the

ratio between TPs or FPs and the total number of cells annotated in the

ground truth annotation. All validation measurements were derived from

four independent experiments with three technical replicates per experiment.

In order to obtain ground truth for validating the automated quantification,

Omnisphero provides the user with a manual counting tool to quantify neu-

rons. User-defined coordinates are saved in a separate matrix and serve

for a one by one comparison of neuronal coordinates with an automated

evaluation.

Neuronal morphology. Neuronal morphology is characterized on the sin-

gle cell level through four features normalized per neuron, namely the total

length of neurites, the average length of neurites, the number of branching
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Fig. 1. Omnisphero workflow. Neurospheres (a) were plated on PDL/laminin coated multiwell- plates (b) and incubated with either acrylamide, MeHgCl or

EGF over 5 days. c) Afterwards cells were fixed, stained and whole wells (196 images per well of a 96 well plate) were imaged (nuclei channel (green), neuron

channel (magenta)) using the ArrayScan VTI (Thermo Fischer). The in build NPBA analyzes images for neuronal quantification (j) and neuronal morphology

(k). e) Omnisphero combines all 196 image tiles (d) to one large image montage. The complete image montage is binarized and binary nucleus images are used

for nucleus quantification using a watershed algorithm (f). Connected components in the overlap of the binarized nucleus channel and the binarized neuron

channel are used for identifying neuron candidates (g). The binary neuron image is further processed with a skeletonization algorithm (h). i) Shows the final

Neuron Tracer algorithm which uses the skeletons from (h) to verify the neuronal positions determined by the overlap neuron identification algorithm (g) and

to assess neuronal morphology (k). l) Beside these classical endpoints it is also possible to assess radial migration distance and neuronal density distributions

utilizing spatial information of image montage.

points, and the number of neurites. In order to measure only morphological

properties of the neurites, the cell soma has to be excluded. The soma of

hNPCs can be considered equivalent to the area of the neuron nuclei. The-

refore, all vertices covered by a nucleus N are not considered part of the

respective skeleton SN , resulting in a new set of subskeletons representing

the neurites. Corresponding neurites whose lengths did not exceed 12 pixels

were discarded. Whenever no nucleus would overlap a skeleton SN , the

nucleus with the shortest euclidean distance was connected to the skeleton

as long as the distance did not exceed 20 pixels. Data are stored in a relational

database (Supplement 3).

2.4 Determining extended analysis endpoints.

Migration area and migration distance. The average migration distance

is defined as the distance between the boundary of the neurosphere core

(Section 2.2) and the furthest migrated cells. It is computed by subdivi-

ding the image into 64 wedges centered at the centroid coordinate of the

neurosphere-core C (Section 2.2). The migration area is then obtained by

measuring the distance between the boundary of the neurosphere-core and

the outmost cells for all wedges (see Supplement 4.1 and Fig. 1l).

Neuronal density distribution. The neuronal density distribution is assessed

by subdividing the migration area into ten rings with equal width. Within

each ring, the ratio of neurons to cell nuclei is calculated and normalized

to the average ratio within the entire migration area, resulting in a distance

dependent density function (Supplement 4.2).

2.5 Automated Parameter Optimization

The different analysis steps of our approach involve five major parameters:

(i) the threshold for binarizing the neuron image; (ii) the threshold for bina-

rizing the nucleus image; (iii) the minimum overlap between connected

components in the two binary images for treating one nucleus as neuron;

(iv) the minimum distance for connected components between the binarized

neuron and nucleus channel for identifying neurons; and (v) the threshold for

identifying and eliminating low signal-to-noise areas in the neuron channel.

To avoid the obvious difficulty to adjust five parameters manually, we follo-

wed the idea pioneered by Held et al. (2011) and implemented an approach

that uses a small annotated reference data set to optimize these parameters.

For details, we refer to Supplement 5.

2.6 Statistical Analysis

Statistics were performed using Graphpad Prism v6 (La Jolla, California).

Dose response curves for viability, neuronal quantification, neuronal morph-

ology, migration distance and neuronal density distributions were obtained

from four independent experiments with three technical replicates per con-

dition. The raw values for viability (CTB: fluorescence signal) of each

technical replicate within one plate were corrected by subtraction of a back-

ground control (containing only media and CTB reagent), averaged and

normalized to the mean of the untreated controls (differentiation medium

for acrylamide and EGF and 0.015% DMSO in differentiation medium for

MeHgCl). Data were further analyzed as % of control and are presented

as percent of control±SEM (standard error of the mean). Neuronal quan-

tification, morphology and migration distance raw values (% of neurons as

number neurons/number of nuclei, neurite length in μm, number of branch-

ing points and migration distance in μm) were averaged for all technical

replicates within one plate. The resulting mean values were averaged among

the four individual experiments. Data are presented as mean±SEM. For dose

response curves EC50-values (Neubig et al., 2003) were determined by using

a sigmoidal dose-response (variable slope) fit with values of untreated neu-

rospheres as upper constraint and zero as lower constraint. For the neuronal

density distributions the average slopes of the four independent experiments
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Fig. 2. Methodological comparison of neuronal quantification. a-c) DP of the NPBA, the Neuron Tracer algorithm and manual evaluation for acrylamide,

EGF and MeHgCl. e-g) Corresponding FPR for all methods. d) Box blot representation of combined DP data of a-c) and h) respective box blot representation

of FPR of e-g). i-k) Dose response curves for neurogenesis and viability and respective EC50-values. l) Bland-Altman diagram for comparison of manual

evaluation versus automated evaluation. Data is plotted as average against differences of log transformed raw values. Bias are shown as continuous line and

confidence intervals as dotted lines and are given as % values. Results are obtained from four independent experiments with three technical replicates per

concentration and are presented as mean±SEM. Significant differences among one method are indicated as * and intermethodological significant differences

as #. Significant differences of the mean in the box blot representation are indicated as ** and difference in the variance as ##.

were determined using a nonlinear fit (straight line). Results are shown as

mean±SEM. Significant differences within one method were analyzed using

the analysis of variance (ANOVA) with a post hoc Sidak test (p<0.05). Inter-

methodological differences were analyzed using a multiple t-test assuming

non consistent standard deviations and the Holm-Sidak-method for determi-

ning the statistical significance (α<0.05). For Box-Plot diagrams the Tukey

representation was chosen. Differences between two groups were calculated

using unpaired t-test and F-test for comparison of variances. Bland-Altman

diagrams were plotted as average against differences of automated meth-

ods and manual evaluation using raw values of each single well of all

experiments. Raw values were transformed to logarithmic scale. Bias and

95% confidence intervals were retransformed to normal scale resulting in %

values.

3 RESULTS

3.1 Methodological comparison: Neurogenesis.

The Omnisphero Neuron Tracer algorithm exhibits a significantly

higher DP, lower FPR and a lower variance for those values among

the full concentration range of the three model-substances compa-

red to the NPBA (Fig. 2a-h). The quality of automated methods was

evaluated by comparing automatically obtained neuron coordinates

with manually annotated ground truth neuron coordinates. Compa-

rison between automated and manual evaluation of neuron cell body

coordinates revealed an average DP of 83.8% for our Omnisph-

ero Neuron Tracer algorithm compared to 41.9% for the existing

approach implemented in NPBA. The average FPR of our Neuron

Tracer algorithm is 11.0%, and thus much lower than the 52.1%

FPR of NPBA. Average DP and variation of both automated methods

are represented as box-plot diagrams in Fig. 2d, and corresponding

data for FPR in Fig. 2h respectively. Statistical analyses revealed

a significant difference between the mean values of the automated

methods for both DP and FPR (Fig. 2d,h). Variances between meth-

ods were compared using the F-test. The Neuron Tracer algorithm

shows a significantly lower variance compared to the NPBA, revea-

ling a much higher robustness of this method. The highest variance

is found for the FPR of the NPBA especially for high concentrati-

ons indicated by the non symetric box plot in Fig. 2h. Comparison

of concentration-response curves for % of neurons and calculated

EC50 values obtained by automated methods and manual evaluation

revealed no statistically significant inter-methodological differences

(Fig. 2i-k). EC50 values are consistently higher for NPBA compa-

red to manual and Neuron Tracer evaluation. Significant effects

of tested substances on neurogenesis observed by automated and

manual evaluations correspond to each other (acrylamide: 0.35 mM

for all methods; EGF: 0.5 ng/ml for all methods; MeHgCl: 0.11 μM

for all methods). Bland-Altman diagrams revealed a high accorda-

nce between manual and Neuron Tracer evaluation (Fig. 2l). The

NPBA shows a proportional error overestimating values for high and
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Fig. 3. Neuronal morphology. Bland-Altman-diagrams of combined data of all three model substances for total neurite length a), average neurite length

b), number of branching points c) and number of neurites d) for comparison of the two automated evaluations versus manual evaluation. Examples of dose

response curves for total neurite length e), average neurite length f) and number of branching points g). h) Representative images of FPs identified by NPBA

visualized with the GUI of Omnisphero are indicated as red dots. Results are obtained from four independent experiments with three technical replicates per

concentration and are presented as mean±SEM. Significant differences among one method are indicated as *. Bland-Altman-diagrams are plotted as average

against differences of log transformed raw values. Bias are shown as continuous lines and confidence intervals as dotted lines and are given as % values.

Fig. 4. Migration distance and neuronal density distributions. a-c) Migration distance obtained by manual and automated measurements of Omnisphero

for the three model substances. d-f) Average slope of each neuronal density function obtained by manual evaluation, Omnisphero and NPBA for all three

model substances and all concentrations. g) Neuronal density graphs of untreated samples and h,i) EGF treated samples (0.5 ng/ml and 5 ng/ml EGF). g,i)

Equal distributions are indicated as homogeneous green colored migration areas and h) altered density distributions as color coded migration areas. Results

are obtained from four independent experiments with three technical replicates per condition and are shown as mean±SEM. Significant differences among

one method are indicated as *.
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underestimating values for low concentrations resulting in a wide

95% confidence interval (from 57.3 to -53.1%).

3.2 Methodological comparison: Neurite outgrowth

In order to compare different methods, total neurite length, average

neurite length, number of branching points and number of neuri-

tes were determined using the same skeletonization-based approach

(see Section 2.2) for coordinates obtained by automated methods

and by manual evaluation. Differences within the results can the-

refore be attributed to differences in identified neuron coordinates

of the different methods. The manual evaluation was taken as the

gold standard to study inter-methodological comparisons using the

Bland-Altman representation. The Omnisphero Neuron Tracer sho-

wed the lowest bias and the lowest range of the 95% confidence

interval among automated methods indicating the highest accor-

dance towards manual evaluation (Fig. 3a-d). The NPBA tends to

overestimate the morphological features which becomes most obvi-

ous for the number of branching points. This can be seen in Fig. 3c

as well as in Fig. 3g where values determined using the coordina-

tes identified by NPBA are between 25-30% higher compared to the

manual evaluation. Calculation of the bias which is always positive

for NPBA reveals a systematic error of the method. This systema-

tic error leading to the overestimation of effects persists for average

neurite length and total neurite length Fig. 3a,b,e,f, but not for the

number of neurites Fig. 3d. Concentration-response curves for all

endpoints and substances are shown in Supplementary Fig. S.6.

3.3 Novel endpoints: Migration distance and neuronal

density distribution

Both manual evaluation and Omnisphero reveal an increase of

migration distance upon EGF treatment, and a concentration-

dependent decrease in migration distance induced by acrylamide

and MeHgCl with no significant difference between methods

(Fig. 4a-c). Average slope neuronal density distribution graphs sho-

wed no significant difference between manual evaluation, Omnisph-

ero and NPBA (Fig. 4d-f ). Untreated neurospheres showed a close

to ideal equal distribution of neurons for all distances (Fig. 4g). Tre-

atment with acrylamide and MeHgCl did not influence this neuronal

density distribution at any concentrations indicated by a stable slope

(Fig. 4d,f ). Low concentrations of EGF (0.5 -2.5 ng/ml, Fig. 4h),

however, significantly alter the neuronal density distribution. Under

these concentrations the density of neurons was higher in the vici-

nity of the neurosphere-core and decreased with increasing distance.

This effect disappears at higher concentrations (Fig. 4i).

4 DISCUSSION

In order to assess the relevance of the results obtained by our newly

introduced approach for HCA-based DNT assays, two questions are

of major concern: (i) how robust the new approach is to deliver reli-

able assessments of DNT screenings involving a large number of

substances, and (ii) how the results acquired with the novel methods

compare to existing approaches. This will finally allow to assess the

suitability of a fully-automated HCA of neurosphere cultures as an

assay for DNT testing.

Robustness of neuronal quantification. The recognition of neurons

by Omnisphero clearly exceeds NPBA with a DP of 83.8% (compa-

red to 41.9% by NPBA) and a FPR of 11% (compared to 52.1%).

Remarkably, the performance of Omnisphero remains constant or

improves compared to NPBA over the full range of concentrations

for all substances. The FPR of NPBA increases significantly with

increasing concentrations (Fig. 2e-g). The overall higher variability

of NPBA shown in the Box-Plot diagram in Fig. 2d,h will narrow

down the size of effects detectable with this approach. Besides

this quantitative analysis of DP and FPR, the GUI of Omnisphero

also facilitates to qualitatively assess the reliability of an automa-

ted method by displaying the neuron coordinates. In particular, it is

possible to specifically display the coordinates of all unidentified or

falsely identified neurons. We utilized this feature to identify poten-

tial subpopulations of cells not detectable or falsely detected by a

specific algorithm in order to spot systematic errors of this algori-

thm. In fact, we identified a systematic error for NPBA which tends

to assign glial nuclei as neuronal when passed by a neurite (see

Fig. 3h). This can be explained by the algorithm used by NPBA,

which identifies neurons by measuring relative overlap between the

neuron fluorescence channel and a ring placed around the identified

nucleus. Neurites crossing a non-neuronal nucleus will produce a

corresponding overlap, so that areas with a high neuron density are

particularly prone to produce false positive neurons. In contrast, the

approach in Omnisphero is based on a combination of overlap cri-

teria and a skeletonization, which prevents this particularly frequent

source of false positive neurons as identified by the NPBA. Overall,

our results strongly indicate that the quantification of neuronal fea-

tures by Omnisphero is highly robust, and far exceeds the robustness

of existing approaches, which can be explained by using morpholo-

gical skeletonizations in addition to overlap criteria as a basis for

quantification.

Assessment of classical endpoints and extended analysis endpoints.

To validate the algorithms of Omnisphero for substance screening

we treated neurospheres over 5 days with three model substances

with described effects on endpoints of the ’Neurosphere Assay’:

Acrylamide (Park et al., 2010), EGF (Ayuso-Sacido et al., 2010) and

MeHgCl (Moors et al., 2009; Baumann et al., 2015; Lewandowski

et al., 2003). All substances are expected to decrease neurogenesis

in a concentration-dependent manner, yet by different mechanisms:

inducing NPC apoptosis as well as general neurotoxicity (Erke-

koglu and Baydar, 2014) in the case of acrylamide (Park et al.,

2010) and inhibiting neuronal differentiation by EGF (Ayuso-Sacido

et al., 2010) and MeHgCl (Baumann et al., 2015). Concentration-

response curves for all three substances were compared between

manual evaluation and automated methods. All methods delivered

comparable curve shapes with significant effects starting at 0.35

mM for Acrylamide, 0.5 ng/ml for EGF and 0.11 μM for MeHgCl

(Fig. 2i-k). Calculated EC50-values revealed no statistically signifi-

cant difference between methods, but were always higher for NPBA

(Fig. 2i-k). In order to figure out the reason for this overestima-

tion we created Bland-Altman diagrams (Fig. 2l), demonstrating a

proportional error of NPBA, leading to an overestimation of high

concentrations and an underestimation for low concentrations. The

overestimation of the percentages of neurons for high concentrati-

ons in the concentration-response curves is attributed to the high

FPR of the NPBA (Fig. 2h). The underestimation for low concen-

trations is more likely attributed to the low DP of the NPBA. Since
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high concentrations decrease the number of neurons to below 1%

of the control value, even high FPR alterations will not significantly

alter the curve fitting for determining the EC50 value. In contrast,

the underestimation for low concentrations can play a more cru-

cial role, especially when concentration-response curves display a

slight slope. In such a case, the underestimation for low concentra-

tions could result in missing of low concentration effects resulting

in significantly higher EC50 values. Besides neuronal quantifica-

tion we evaluated neuronal morphology on the single cell level after

5 days of differentiation in the same samples: total neurite length,

average neurite length, number of branching points and number of

neurites (Fig. 3a-g). MeHgCl reduced neurite outgrowth in rat, but

not in human embryonic stem cell-derived neuronal cultures at non-

cytotoxic concentrations (Harrill et al., 2011a; Radio and Mundy,

2008). In line with these results, we observed that MeHgCl effected

neuronal morphology of human NPC-derived neurons only for the

highest concentration of MeHgCl tested (0.33 μM, Fig. 3g), which

exceeds the concentration reducing neurogenesis (0.11 μM) and

decreased cell viability (Fig. 2k). So far nothing is known for EGFs

ability to interfere with neuronal morphology. Since EGF inhibits

neuronal differentiation (Ayuso-Sacido et al., 2010), we expected

an EGF-induced delayed neuronal maturation possibly resulting in

reduction of neurite outgrowth and branching. Indeed, we observed

a reduction of total and average neurite length, number of branch-

ing points and a significant decrease of neurite number upon EGF

exposure (Supplementary Fig. S.6) at concentrations not reducing

viability (Fig. 2j). The effects of acrylamide on neuron morphology

of developing neurons are, to the best of our knowledge, not known.

Acrylamide’s mode of actions are associated with three mechanisms

suspected to induce neurite degeneration in fully differentiated neu-

rons: inhibition of kinesin-based fast axonal transport, alteration of

neurotransmitter levels, and direct inhibition of neurotransmission

(Erkekoglu and Baydar, 2014). Since 5 days differentiated neurons

from hNPC are relatively immature, acrylamide effects on neurite

outgrowth are expected to be limited. This is in line with the automa-

ted and manual results: only the NPBA detects effects in total neurite

length (Fig. 3e) for the highest acrylamide concentration applied,

while the number of neurons was significantly reduced at a subcyto-

toxic concentration of 0.354 mM (Fig. 2i). However, one limitation

of assessing neurite outgrowth is the dynamic range of values (Har-

rill et al., 2011a), which for developing neurons in the neurosphere

system (50-60 μm) is much lower compared to e.g. primary corti-

cal cultures (129.8±12.6 μm). Therefore, small compound effects

on this endpoint cannot be distinguished from in vitro model vari-

ability. Comparison of the evaluation performances for endpoints

concerning neuronal morphology revealed similar curve shapes for

manual and automated methods (Supplementary Fig. S.6). While

curves of manual evaluation and of the Omnisphero algorithm corre-

spond very precisely, the curve of NPBA indicates an overestimation

of total neurite length (Fig. 3a,e), average neurite length (Fig. 3b,f )

and, most notably, for the number of branching points (Fig. 3c,g).

In order to identify a potential systematic error, we again generated

Bland-Altman-diagrams (Fig. 3a-d), revealing a systematic error for

NPBA as well as a higher variability compared to the Neuron Tracer.

The NPBA algorithm overestimates the number of branching points

by up to 39.2% (Fig. 3c). This overestimation effect tends to result

in an artificially high sensitivity of NPBA for adverse outcomes. This

is demonstrated by NPBA detecting significant effects of EGF on

average neurite (Fig. 3f ) and of acrylamide on total neurite length

(Fig. 3e), which are not confirmed by either manual evaluation or the

other algorithms. These significant effects on neuronal morphology

originate from the higher measures of the control values (Fig. 3e,f ).

Additionally, the higher overall variability of NPBA leads to the loss

of significant results for the total number of branching points in

the case of MeHgCl (Fig. 3g). All model substances interfere with

cell migration in vitro and/or in vivo. MeHgCl decreases migration

in vitro and in vivo, acrylamide disturbs migration in vivo (Ogawa

et al., 2011; Kakita et al., 2002) and EGF induces cellular migration

in vitro and in vivo (Ayuso-Sacido et al., 2010; Puehringer et al.,

2013). Both, manual and automatic evaluations of radial migration

detected either concentration-dependent increases (EGF) or decre-

ases (acrylamide, MeHgCl) for radial migration with no detectable

inter-methodological differences (Fig. 4a-c). The last endpoint eva-

luated was the neuronal density distribution, which provides the

unique opportunity of measuring specific neuronal migration in vitro

and is, to the best of our knowledge, the first time assessed in a 3D in

vitro system. Untreated neurospheres display a close to ideal equal

distribution of neurons migrating on the glia scaffold (Baumann

et al., 2014) (Fig. 4g). MeHgCl did not alter neuronal migration

by any applied concentration (Fig. 4f ). Because MeHgCl interfe-

res with SH-groups of proteins (Bernhoft, 2012) our data indicates

that glial cell migration might be more sensitive to MeHgCl expo-

sure (Fig. 4c) than neuronal migration itself. However, so far the

precise molecular mechanisms behind neuronal migration disturba-

nces in MeHgCl-exposed humans are not clarified (Kakita et al.,

2002), but based on our data there is room to speculate that distur-

bances of neuronal migration due to migrational defects of the glial

scaffold might be involved. Acrylamide is also suspected to alter

migration resulting in a distorted distribution of neurons (Ogawa

et al., 2011). Comparable to MeHgCl, acrylamide decreased the

overall migration distance without specific effects on neuron posi-

tioning (Fig. 4a,d) pointing towards a non-neuron-specific effect

on migration. In contrast to the other substances, EGF is reported

to induce neuronal migration in vivo and in vitro [(Ayuso-Sacido

et al., 2010; Puehringer et al., 2013); 20 ng/ml]. In the ’Neurosphere

Assay’, increased neuronal migration will manifest in a higher neu-

ronal density towards the periphery of the migration area than close

to the neurosphere-core, while inhibition of neuronal migration will

accumulate neurons in areas close to the neurosphere-core. Very

low concentrations of EGF (0.5-2.5 ng/ml) caused the latter with

gathering in the central migration areas (Fig. 4h). Increasing EGF

concentrations up to 20 ng/ml restored equal distribution of neurons

across the migration area (Fig. 4i). Because all EGF concentrations

enhanced the total radial migration distance (Fig. 4b), the restora-

tion of equal neuronal distribution at higher EGF concentrations is

actually only possible by increased neuronal migration. Thus, our

HCA allows evaluation of migration of specific cell types in this

mixed culture 3D system.

Automated parameter optimization. Investigation of different trai-

ning set sizes in the automated parameter optimization of Omni-

sphero revealed that a manual evaluation time of roughly one

hour delivers comparable precise results for parameter settings than

those obtained by experts (manual: DP=82.4%; FP=11.8%; Quality

Index (QI, defined in Supplement 5)=70.6% and reduced optimi-

zed: DP=81.0%; FP=13.8%; QI=67.2%). Manual validation times

of few hours are reasonable if one considers that parameters among

experiments remain comparable with the exception of the threshold
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values which are related to different staining qualities. Therefore,

parameters for a given time point, in our case 5 days of differen-

tiation, within a given in vitro system, in our case hNPCs, can be

assessed with a manual time expense of roughly 1 hour. This pro-

cedure, however, has to be readjusted when altering experimental

setups or changing the in vitro system. A further reduction in manual

annotation time can be accomplished by only using control or low-

concentration spots for annotation, which, however, comes at the

cost of slightly less accurate quantifications (see Supplement 5).

5 CONCLUSION

Our novel approach implemented in the Omnisphero software faci-

litates a highly robust HCA-based assay contributing to DNT in

vitro testing. Omnisphero assesses effects of three model substances

in the ’Neurosphere Assay’, and achieves an accuracy and preci-

sion that is comparable to manual evaluation. In contrast to existing

software, Omnisphero is also capable of analyzing spatial distribu-

tion of cells within the entire well including endpoints like radial

migration and neuronal density distributions, which is of high rele-

vance especially for 3D in vitro systems. Migration endpoints can

be transferred to other 3D cell systems such as tumor spheroids,

where radial migration is a measure for invasiveness (Vinci et al.,

2013). Furthermore, through automated parameter optimization,

Omnisphero is highly automated and thus suitable for users with-

out data analysis or programming experience in studies involving

large numbers of experiments.
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Supplement S.1 Sample preparation

Human neural progenitor cells (hNPC, Lonza, Verviers, Belgium) from gestational

week 16-20 were grown as neurospheres (Baumann et al., 2014) in proliferation medium

consisting of Dulbeccos modified Eagle medium (Life Technologies GmbH, Darm-

stadt, Germany) and Hams F12 (3:1) (Life Technologies GmbH, Darmstadt, Germany)

supplemented with 2% B27 (Life Technologies GmbH, Darmstadt, Germany), 20 ng/ml

epidermal growth factor (EGF, Life Technologies GmbH, Darmstadt, Germany), 20

ng/ml recombinant human fibroblast growth factor (FGF, R&D Systems, Wiesbaden,

Germany) and 1% penicillin and streptomycin (Pan-Biotech, Aidenbach, Germany).

For differentiation one neurosphere with a diameter of 0.3 mm is centered to the mid-

dle of the well of a PDL/laminin (Sigma Aldrich, Munich, Germany) coated 96-well

plate containing 100 μl of differentiation medium [DMEM (Life Technologies GmbH,

Darmstadt, Germany), Hams F12 (Life Technologies GmbH, Darmstadt, Germany) 3:1

supplemented with 1% of N2 (Life Technologies GmbH, Darmstadt, Germany) and

1% penicillin and streptomycin (Pan-Biotech, Aidenbach, Germany)] containing the

respective treatment. One experiment contains neurospheres treated with seven differ-

ent concentrations of acrylamide (Sigma Aldrich, Munich, Germany), EGF (Life Tech-

nologies GmbH, Darmstadt, Germany) or MeHgCl (in 0.015% DMSO, Sigma Aldrich,

Munich, Germany) and the respective solvent in triplicates. For each substance four in-

dependent experiments were conducted. Neurospheres were differentiated over 5 days

with half media exchange after 3 days. For staining, neurospheres were fixed by adding

50 μl 12% w/v paraformaldehyde (PFA, Merck, Darmstadt, Germany) to the media in

each well resulting in a total volume of 150 μl and a final PFA concentration of 4% w/v.

Plates were incubated for 45 min at 37◦C. The supernatant was removed and 100 μl of

phosphate-buffered saline (PBS, Biochrom, Berlin, Germany) were added to each well.

The supernatant was removed and 50 μl of primary antibody solution were added to

each well, containing βIII-tubuline antibody (1:200, anti-β-tubulin III rabbit, # T2200-

200UL, Sigma Aldrich, Munich, Germany), goat serum (10% Sigma Aldrich, Munich,

Germany) and phosphate-buffered saline Triton X (PBS-T) (0.1%, Roth, Karlsruhe,

Germany). Plates were incubated 1 hour at 37◦C and the wells were washed thrice

with 100 μl of PBS. The supernatant was removed and 50 μl of secondary antibody

solution was added to each well, containing Hoechst (0.2 mg/ml; 1:50, Sigma Aldrich,

Munich, Germany), Alexa 546 anti rabbit (1:200; Alexa Fluor 546 goat anti- rabbit IgG

#A11010, Life Technologies GmbH, Darmstadt, Germany) in PBS. Plates were incu-

bated 30 min at 37◦C and wells were washed thrice with PBS. Each well was covered

with 200 μl PBS and stored at 4◦C in the dark.

Supplement S.2 Image Preprocessing

S.2.1 Neurosphere-core removal.

The boundary of the neurosphere-core is determined by subdividing the nucleus chan-

nel image into a grid of 89×89 squared subregions, each subregion containing 80×80
pixels. In each subregion, the intensity values Ii of all pixels are integrated, resulting
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in the 89×89 density matrix DI of the nucleus image. This matrix is binarized using a

user-defined threshold. In this binarized matrix, the connected component γ involving

the largest entry in DI (i.e., the highest density area) is identified as the neurosphere-

core. The resulting area associated with γ is masked out from the image, and the cen-

troid of the this area is calculated as the center of the neurosphere-core C = (xC , yC).
In order to account for error sources originating from bright objects not corresponding

to the neurosphere such as bright edges of the well boundary, only areas exceeding a

certain distance from the boundary of the image are considered as neurosphere cores.

S.2.2 Skeletonization

In order to extract morphological features of the neurite outgrowth a morphological

skeleton of the binarized neuron fluorescence channel was computed using the method

of Bai et al. (2007). More precisely, for each connected component N of the thresh-

olded neuron channel, one skeleton SN is represented as a graph as follows. A vertex

w ∈ W is introduced for each branching point, i.e., a point belonging to SN with

three ore more neighbours in its 8-neighbourhood. Edges are identified by sequences

of points, i.e., points with exactly two neighbours. Finally, endpoints are represented

by vertices in SN as points which have precisely one neighbour in the skeleton. The

resulting skeletons are postprocessed as described earlier by Wang et al. (2013). By

eliminating the branching points, we split each SN into a set of subskeletons. All sub-

skeletons shorter than 12 pixels are eliminated, and branching points seperated by less

than 30 pixels are summarized to a single branching point located at the correspond-

ing weight point of the two summarized branching points. Remaining subskeletons

are reconnected on their endpoints ensuring that each new connection point has only

two neighbours and no other skeleton lines are touched. This ensures that no artifical

branching points are created. Whenever this was not possible without touching another

skeleton line, the shortest euclidean distance is selected.

Supplement S.3 Neuronal Morphology

Neuronal morphology is assessed at the level of individual neuronal cells (Supplemen-

tary Fig. S.1). Each neuron is described by the number of neurites, the total length of

neurites and the average length of neurites adjacent to one neuron nucleus as well as the

number of branching points present in the adjacent neurites. The single cell features

are averaged in one well for all identified neurons and are further averaged as the mean

of triplicates containing the same treatment. In order to only extract morphological

features of neurites the cell soma has to be excluded. The size of the soma of neurons

derived from neural progenitor cells roughly equals the area of the cell nucleus of the

neuron. Therefore, all positions covered by a neuron nucleus, represented by a vertex

v ∈ V , are not considered part of the skeleton SN , resulting in a new set of subskele-

tons Y representing the neurites. In some cases, a nucleus identified as a neuronal

nucleus may not exhibit any overlap with the skeleton SN . In such cases, the nucleus

is connected to the skeleton with the shortest euclidean distance whenever this distance

does not exceed 20 pixels. Before extracting the morphological characteristics, again
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Supplementary Figure S.1. Morphology of two individual neurons. The post-processed neuronal morphology

shows the two identified neuron nuclei (magenta areas) with three adjacent neurites (bright blue skeletons)

and two branching points.

the method of Wang et al. (2013) is applied, to ensure that no new artifical branching

points are created. The resulting morphological data describing the identified neurons

and their neurite structure are exported to a relational Postgre SQL database. For an

entity-relationship diagram, refer to Supplementary Fig. S.2, SQL statements for ex-

tracting neurite length, average neurite length, and numbers of neurites and branching

points are provided in Supplementary Fig. S.3, S.4 and S.5, respectively. The result-

ing morphological features for total neurite length, average neurite length, number of

branching points, and number of neurites for all methods and all model substances are

exemplified in Supplementary Fig. S.6. The following morphological features are

extracted:

• Total neurite length/neuron. The sum of the length of all subskeletons Y adjacent

to one vertex v is averaged for all vertices in V resulting in the average total

neurite length per neuron of one well.

• Average neurite length/neuron. The average length of all subskeletons Y adjacent

to one vertex v is averaged for all vertices in V resulting in the average length of

neurites per neuron of one well.

• Neurite count/neuron. The sum of the number of subskeletons Y connected to

a vertex v is averaged for all vertices in V resulting in the average number of

neurites per neuron of one well.

• Total number of branching points/neuron. The sum of elements w within all

subskeletons Y connected to a vertex v is averaged for all vertices in V resulting

in the average total number of branching points per neuron of one well.
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Supplementary Figure S.2. Entity-relationship diagram of the database structure for representing neuronal

morphology. The database consists of four tables and a mapping table connecting neurites and nuclei. All

identified neuron nuclei and morphological skeletons of one experiment are saved in the database. Omn-

siphero neurite comprises the morphological skeleton SN and omnisphero subneurite all neurites obtained

by eliminating all vertices covered by a nucleus N from SN . Neuron nuclei can be assigned to multiple

neurites.

SELECT expname,typeid,wellname, avg(sublengthtotal) as

Total_Subneuritelength_PerNucleus FROM

(

SELECT nuc.id,ex.name as expname,ex.well as wellname,ex.type as typeid,

sum(sub.length) as sublengthtotal FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map ON

map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu on neu.id = sub.neuriteid

INNER JOIN OMNISPHERO_EXPERIMENT ex ON neu.experiment_id = ex.id

WHERE ((neu.totallength > 10 AND neu.totallength <= 100

AND neu.totalbranchingpoints <3 )

OR (neu.totallength > 100 AND neu.totallength <= 200

AND neu.totalbranchingpoints <4 )

OR (neu.totallength > 200 AND neu.totallength <= 300

AND neu.totalbranchingpoints <4) OR (neu.totallength > 300

AND neu.totallength <= 360 AND neu.totalbranchingpoints <5))

AND sub.id not in(

SELECT subid FROM

(

SELECT sub.id as subid, ex.name,ex.type,ex.well,

count(distinct nuc.id) as distinctNuclei

FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map

ON map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu ON sub.neuriteid=neu.id

INNER JOIN OMNISPHERO_EXPERIMENT ex on neu.experiment_id = ex.id

GROUP BY ex.name,ex.type, ex.well, sub.id order by sub.id asc

) as innerResult WHERE innerResult.distinctNuclei >= 3)

GROUP BY nuc.id, ex.name, ex.well,ex.type

)

as mainneurite group by expname, wellname, typeid order by expname,

typeid, wellname

Supplementary Figure S.3. SQL statement for extracting total neurite length per neuron.
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SELECT expname,typeid,wellname, avg(sublength) as

Average_Subneuritelength_PerNucleus FROM

(SELECT nuc.id,ex.name as expname,ex.well as wellname,ex.type as typeid,

avg(sub.length) as sublength FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map ON

map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu on neu.id = sub.neuriteid

INNER JOIN OMNISPHERO_EXPERIMENT ex ON neu.experiment_id = ex.id

WHERE ((neu.totallength > 10 AND neu.totallength <= 100

AND neu.totalbranchingpoints <3 )

OR (neu.totallength > 100 AND neu.totallength <= 200

AND neu.totalbranchingpoints <4 )

OR (neu.totallength > 200 AND neu.totallength <= 300

AND neu.totalbranchingpoints <4)

OR (neu.totallength > 300 AND neu.totallength <= 360

AND neu.totalbranchingpoints <5))

AND sub.id not in

(SELECT subid FROM

(SELECT sub.id as subid, ex.name,ex.type,ex.well,

count(distinct nuc.id) as distinctNuclei FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map

ON map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu ON sub.neuriteid=neu.id

INNER JOIN OMNISPHERO_EXPERIMENT ex on neu.experiment_id = ex.id

GROUP BY ex.name,ex.type, ex.well, sub.id order by sub.id asc) as

innerResult WHERE innerResult.distinctNuclei >= 3)

GROUP BY nuc.id, ex.name, ex.well,ex.type

) as mainneurite group by expname, wellname, typeid

order by expname,typeid, wellname

Supplementary Figure S.4. SQL statement for extracting average neurite length per neuron.

SELECT expname,typeid,wellname,

avg(sublengthtotal) as Total_Subneuritelength_PerNucleus,

avg(numberbranchingpoints) as numberbranchingpoints,

avg(distinctsubneurites) as distinctsubneurites FROM

(SELECT nuc.id,ex.name as expname,ex.well as wellname,ex.type as typeid,

sum(sub.length) as sublengthtotal,

sum(sub.branchingpoints) as numberbranchingpoints,

count(distinct map.subneuriteid) as distinctsubneurites

FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map

ON map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu on neu.id = sub.neuriteid

INNER JOIN OMNISPHERO_EXPERIMENT ex ON neu.experiment_id = ex.id

WHERE ((neu.totallength > 10 AND neu.totallength <= 100

AND neu.totalbranchingpoints <3)

OR (neu.totallength > 100 AND neu.totallength <= 200

AND neu.totalbranchingpoints <4)

OR (neu.totallength > 200 AND neu.totallength <= 300

AND neu.totalbranchingpoints <4)

OR (neu.totallength > 300 AND neu.totallength <= 360

AND neu.totalbranchingpoints <5))

AND sub.id not in

(SELECT subid FROM

(SELECT sub.id as subid, ex.name,ex.type,ex.well,

count(distinct nuc.id) as distinctNuclei FROM OMNISPHERO_NUCLEUS nuc

INNER JOIN OMNISPHERO_SUBNEURITE_NUCLEUS_MAPPING map

ON map.nucleusid=nuc.id

INNER JOIN OMNISPHERO_SUBNEURITE sub on sub.id = map.subneuriteid

INNER JOIN OMNISPHERO_NEURITE neu ON sub.neuriteid=neu.id

INNER JOIN OMNISPHERO_EXPERIMENT ex on neu.experiment_id = ex.id

GROUP BY ex.name,ex.type, ex.well, sub.id order by sub.id asc)

as innerResult WHERE innerResult.distinctNuclei >= 3

) GROUP BY nuc.id, ex.name, ex.well,ex.type)

as mainneurite group by expname, wellname, typeid

order by expname,typeid, wellname

Supplementary Figure S.5. SQL statement for extracting neurite counts and total numbers of branching

points per neuron.
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Supplementary Figure S.6. Neuronal morphology. a-l): Total neurite length, average neurite length, number

of branching points and number of neurites derived from the identified starting points by the manual eval-

uation and the two automated methods for all three model substances. Data are presented as mean±SEM.

Significant differences among one method are indicated as *.

Supplement S.4 Determining extended analysis endpoints.

S.4.1 Determining migration area and migration distance

The outer boundary of the migration area is determined by generating a density matrix

BC of the nuclei coordinates with a subsequent seed fill operation using the same pro-

cedure as for determining the boundary of the neurosphere-core and its center point C
from the density matrix CI . The migration area, defined as the area between the two

calculated boundaries, can now be described as the binary matrix BM = BC − CI .

The Matrix BM is subdivided further into 64 circular wedges W1, . . . ,W64 with cen-

ter point (C(xC , yC)). For each wedge Wj the point Ij = (xI

j
, yI

j
) with the furthest

distance from C is determined spanning the outer rim of the migration distance. The

inner border is determined in a nested loop procedure in which for each wedge Wj

the point Fj = (xF

j
, yF

j
) is determined with the furthest distance from C still located

within the area of the neurosphere-core (CI ). The circular polygon I1, . . . , I64, I1 and

F1, . . . , F64, F1 can now be transformed back into original pixel coordinates, where

it spans the migration area. Having identified the migration area, we can now com-

pute the distance between Fj and the edge of the neurosphere-core Ij in Wj for each

segment j, measuring the “furthest migration in segment j”. Taking the average of all

segmental migration finally yields the average migration distance. In order to account

for washing artifacts and removed parts of the migration area during immuncytochem-

ical staining, only directions with a minimal length of 33% of the longest measured

distance in j were taken into account for the average migration distance. Furthermore,

those Wj where the sphere migrated across the image boundary were not taken into

account.
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S.4.2 Neuronal density distribution

In order to quantify the distribution of neurons in different migration radii around the

neurosphere-core, we compute neuronal density distributions as follows: Each seg-

ment Wj is further subdivided into ten rings R1,j , . . . , R10,j , where Rk,j covers all

points in Wj whose distance lies within the range (i − 1) · Lj/k and i · Lj/k, where

Lj denotes the distance between the edge of the neurosphere-core and Fj . Neuronal

densities (% of neurons, i.e. number of neurons/number of nuclei) within each ring

are further normalized to the average neuronal density within the entire migration area

in order to account for decreasing neuron number with increased substance concentra-

tions. Normalized neuronal densities within a given ring can be calculated according

to

δk =

∑
j
(Rk,j ∩X)/

∑
j
(Rk,j ∩N)

∑
�,j
(R�,j ∩X)/

∑
�,j
(R�,j ∩N)

Being X the neuron matrix and N the nuclei matrix. Obtained neuronal density func-

tions are shown in Supplementary Fig. S.7, S.8, S.9 .
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Supplementary Figure S.7. Neuronal density distribution of acrylamide. Neuronal density distributions of

increasing acrylamide concentrations are assessed by dividing the migration area into 10 rings. In each ring,

the ratio between the number of neurons and cell nuclei is normalized to the ratio within the entire migration

area resulting in a distance-dependent neuronal density function. Results are obtained from four independent

experiments with three technical replicates per concentration and are presented as mean±SEM.
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Supplementary Figure S.8. Neuronal density distribution of EGF. Neuronal density distributions of increas-

ing EGF concentrations are assessed by dividing the migration area into 10 rings. In each ring the ratio

between the number of neurons and cell nuclei is normalized to the ratio within the entire migration area

resulting in a distance-dependent neuronal density function. Results are obtained from four independent

experiments with three technical replicates per concentration and are presented as mean±SEM.

10



Supplementary Figure S.9. Neuronal density distribution of MeHgCl. Neuronal density distributions of

increasing MeHgCl concentrations are assessed by dividing the migration area into 10 rings. In each ring

the ratio between the number of neurons and cell nuclei is normalized to the ratio within the entire migration

area resulting in a distance-dependent neuronal density function. Results are obtained from four independent

experiments with three technical replicates per concentration and are presented as mean±SEM.
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Supplement S.5 Parameter Optimization

S.5.1 Methods

Our parameter optimization is based on a dataset with manually annotated neuronal

nuclei. As both detection power (DP) and false positive rate (FPR) should be accounted

we optimize the DP without increasing the FPR above a user defined value. This value

was defined as 15%, due to previous reports which revealed an average interindividual

difference among experimentators of 11–19% (Schmuck et al., 2014; Sciarabba et al.,

2009). In order to obtain the maximal DP without exceeding the user defined FPR, a

so-called Quality index (QI) was introduced as the target value to be optimized. The QI

assigns weights to different FPRs according to a piecewise linear function. FPR below

10% are not weighted in the QI, while FPR bigger than 15% are weighted a 100%. The

weight for FPR between 10 and 15% within the QI is linearly interpolated.

Optimization is accomplished by an iterative interval method that starts with a user

defined parameter interval calculating QIs for the lower QI(Pl0) and higher QI(Ph0)
interval border. Subsequently, the interval border with the lower QI is shifted by 1/4
of the difference between the higher and the lower interval border in the direction of

the other interval border. This procedure is repeated until the difference between Phi

and Pli is below a fixed threshold, set for every parameter individually.

S.5.2 Results

While the different computational analyses steps involve several parameters, we pro-

posed a parameter optimization scheme in Omnisphero to calibrate these parameters

based on a small annotated reference data set. The parameter optimization delivers

comparable values for the DP, FPR and QI compared to manual parameter adjustment.

In order to validate this optimization approach, we utilized a training set consisting of

17648 manually annotated neurons derived from full images from three experiments

(one from each substance). In a first complete setting, we automatically optimized pa-

rameters on the complete manually annotated data set. As it turns out, we obtained a

QI that was slightly higher compared to manually adjusted parameters (70.7% com-

pared to 70.6%, Supplementary Fig. S.10a). The complete manual annotation, how-

ever, requires an manual annotation time of roughly 12 hours, which is not practicable

for normal laboratory workflows. Therefore we tested the robustness of this method

by using a reduced setting, where the data set used for optimization contained only a

subimage of each image limited to the dimension of 1200 × 800 pixels (24 filters per

experiment). The filter was placed vertical to the axis of the neurosphere-core in order

to cover different regions of cell densities. This lowered the total number of annotated

neurons to 2705 (see Supplementary Fig. S.10b). Therefore, total evaluation time de-

creased to roughly one hour. We observed only minor effect on the resulting DP, FP and

QI (manual: DP=82.4%; FP=11.8%; QI=70.6% and reduced optimized: DP=81.0%;

FP=13.8%; QI=67.2%). In a last step a min. setting using only nine filters contain-

ing a total of 950 annotated neurons were used for parameter optimization, reducing

the evaluation time to 40 min but at the same time also reducing DP (76.7%) and QI

(61.0%) and increasing the FPR (15.7%) (see Supplementary Fig. S.10c). Supplemen-
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Supplementary Figure S.10. Parameter optimization: Relation between manual evaluation time, resulting

values for DP, FP and QI and size of the training set for three reference data sets. Results are obtained

from one experiment per substance (EGF, acrylamide, MeHgCl) with three technical replicates per exper-

iment resulting in a total of three independent experiments. Data is presented in a box-plot diagram and

corresponding means are connected via straight lines.

tary Fig. S.10 shows the relation between size of the training set, manual evaluation

time and results for QI, DP and FP.
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1. Introduction

During mammalian brain development, cortical layers are

formed in an inside-out fashion, in which early-generated neurons

occupy deeper layers, and later-generated ones locate to more

superficial layers. This process is delicately guided by a variety of

molecular signals and alterations of this molecular interplay

produce organ malfunction with resulting behavioral deficits

(reviewed in Aboitiz et al., 2001; Gupta et al., 2002). Such complex

brain layer formation encompasses several biological processes:

neural stem/progenitor cell (NPC) proliferation, migration and

differentiation ensuring allocation of newly generated cells to their

appropriate position. Besides genetic alterations (reviewed in

Gupta et al., 2002), also exogenous noxae can interfere with

cortical layer formation. Such compounds include MeHgCl (Kakita

et al., 2002), gamma-irradiation (Inouye et al., 1993) and

ethylnitrosourea (Oyanagi et al., 2001). These are thought to

interfere with one or more of the processes necessary for proper

cortical layer formation by perturbing cell adhesion, guidance cues,

motogenic factors, stop and detachment signals or the cytoskele-

ton (Manent et al., 2011).

Safety evaluations for identifying compounds with such

destructive potential or gene targeting in rodents to identify

genes and pathways contributing to cortical layer formation utilize

the common strategy of histology and immunohistochemistry in

offspring brains to measure relative sizes of cortical layers (OECD

426, 2007; EPA OPPTS 870.6300, 1998; Tsuji and Crofton, 2012).

This is often combined with the labeling of newly generated cells

by 5-bromo-2-deoxyuridine (BrdU) incorporation. This method

labels freshly divided NPCs and thus enables tracking of newborn

cells to their final positions. Moreover, cell generation can be

studied in a quantitative way by also counting the total number of

BrdU+ cells. These analyses are generally performed manually by
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cell-to-cell evaluation of stained brain slices (Inouye et al., 1993;

Kakita et al., 2002; Oyanagi et al., 2001). The total number of BrdU+

cells in a brain area is a measure of NPC proliferation and the

positioning within the layers reveals proper cell migration. This

method bears two caveats. For one, manual counting of nuclei in

numerous images is time-consuming and is therefore usually

performed only in one image per brain. Even though the most time

consuming step would be the animal experiment itself, analysis of

multiple brain slices is limited by the manual evaluation. Secondly,

a researcher bias is prone to be introduced.

There are several freely available applications for extracting

cellular structures from images of histological slices (Mulrane

et al., 2008). Other software is even able to reconstruct neuronal

dendritic trees and axonal projections in 3D (Sciarabba et al.,

2009). Such applications are specifically designed to extract a

variety of information on, e.g., cell morphology, staining intensity,

cell size or spatial information. However, to the best of our

knowledge, there is so far no program available, that quantifies and

positions BrdU+ cells in brain slices.

The automatic program presented in this article, named

‘BrdeLuxe’, is specially designed to quantify the density of BrdU+

cells in cortical layers of stained brain slices by assigning

coordinates of BrdU+-cells to certain brain layers. Therefore any

Spot detector which is able to export coordinates of identified

BrdU+-cells would be suitable. In this approach, the Spot Detector

V.4 bioapplication, which is part of the vHCS-Scan V.6.3.1 software

(Thermo Scientific), is used for the identification of BrdU+ cells. A

suitable Spot detector has to meet several criteria, which are well

fulfilled by the vHCS-Scan V.6.3.1 software. For one, the program

has to extract such BrdU+ events from the surrounding tissue

through a background correction, differentiate them from bright

staining artifacts like bubbles, holes, dirt particles, pieces of

meninges, blood vessels or tissue foldings and has to acquire the

position of each BrdU+ cell within the slice. This positional

information is then used by BrdeLuxe to associate each BrdU+ cell

to a certain cortical layer. To allow medium or high-throughput

image analyses, the Spot Detector V.4 bioapplication even

identifies BrdU+ cells in non-perfect focusing conditions. In the

present work, we describe the BrdeLuxe program in detail.

Moreover, we compare the accuracy and precision of this method

to conventional manual counting and to quantification with the

open source software ImageJ.

2. Materials and methods

2.1. Animals

The in vivo experimental protocol was approved by the Animal

Care and Use Committee of the ‘‘Rovira i Virgili’’ University, where

all the in vivo experiments were performed. Sprague Dawley timed

pregnant rats (Harlan InterfaunaIberica; Barcelona, Spain) were

kept at a constant dark–light cycle of 12–12 h and maintained at a

temperature of 22 � 2 8C and humidity of 50 � 10%. The animals

had free access to standard food (Panlab, Barcelona) and tap water

and were monitored daily for general health during gestation and

development.

2.2. BrdU administration

On gestational day (GD) 16, 8 Sprague-Dawley dams received

one BrdU (Sigma–Aldrich) dose of 50 mg/kg b.w. intraperitoneally.

2.3. Brain sample collection and tissue sectioning

On post-natal day (PND) 28 one male and one female per

litter (16 in total) were anesthetized with 2% tribromoethanol

(0.15 ml/10 g body weight, i.p.) and perfused through the heart

first with saline solution and then with 4% paraformaldehyde

(PFA). Brains were removed, post-fixed in 4% PFA for 48 h at 4 8C

and transferred into a 30% sucrose/phosphate-buffered saline

(PBS) for 48 h at 4 8C. Brains were fast frozen in isopentane and dry

ice at �80 8C for 30 s and stored at �20 8C until sectioning in

40 mm coronal sections with a cryostat (Leica CM 1850, Leica

Microsystems). Brain slices of each animal were serially divided in

six batches, each one containing slices with an interspace of

240 mm. One of the batches was used for the subsequent

immunohistochemical analyses.

2.4. Immunohistochemical staining

Free floating coronary sections were washed two times for

5 min in TBS (tris buffered saline) and then the DNA was denatured

with 2 M HCl for 30 min at 37 8C. After neutralizing for 10 min in

0.1 M sodium borate buffer (pH = 8.5) the slices were washed six

times for 5 min again in TBS. Brain slices were permeabilized with

TBS-plus (TBS containing 1% triton-X 100 and 3% goat serum) for

30 min and then incubated with a rat anti BrdU Monoclonal

Antibody (AbDSerotec, Oxford, UK; # MCA2060) 1:500 diluted in

TBS-plus over night at 4 8C. On the next day slices were washed two

times for 5 min in TBS and then the Cy3-coupled secondary

antibody (Dianova, Hamburg, Germany; # 712-165-153) 1:250

diluted in TBS-plus was applied for 2 h at room temperature (RT).

Slices were washed six times for 5 min in TBS in order to remove

non-specifically bound secondary antibody.

Subsequently, the same brain sections were permeabilized with

PBS-Triton (PBS-T) [PBS containing 0.1% Triton X-100] for 10 min.

Sections were placed in baskets with 400 ml of 1:100 fluorescent dye

dilution (NeuroTrace1Fluorescent Nissl stain; Molecular Probes1, #

N-21 480) in PBS each in a well of a 24-well plate and were incubated

for 20 min at RT while shaking. The sections were again washed with

PBS five times for 2 min. Finally, the sections were washed in PBS for

2 h at RT (or alternatively over night at 4 8C), placed into 0.1 M PBS

phosphate buffer, transferred to microscope slides (Superfrost1,

Menzel GmbH & Co KG) and mounted in mounting medium (Aqua

Poly Mount, Polysciences Inc.).

2.5. Picture acquisition

The perirhinal area and the dorsolateral entorhinal area of the

coronal sections were imaged using an inverted fluorescence

microscope (Paxinos and Watson, 2009). Both areas were imaged

at a 100x magnification at two positions with two channels each,

one for Nissl (green: excitation: 470 nm, emission: 509 nm) and

one for BrdU (red: excitation: 558 nm, emission: 583 nm). For all

regions, both pictures were overlapped using the automated

fotomerge function of Adobe Photoshop S3 (Fig. 1, (1) and (2)).

2.6. Image pre-processing

Images of the BrdU channel were scanned using the bioapplica-

tion SpotDetector (V.4) of the vHCS-Scan (V. 6.3.1) software

(Thermo Fisher). Therefore, the BrdU channel images were pre-

processed in three steps. First, the BrdU channel images were

converted to 8-bit pictures using a batch function of ImageJ. In the

following step a self-written program was used to scale pictures to

1024 � 1024 pixels, thereby saving scaling factors separately in a

comma-separated values file (CSV-file) (Fig. 1, (3)). This program

also renamed the pictures with a plate identity code, which can be

recognized by the vHCS-Scan software. As the last step, images

were scanned separately by using a fixed threshold, which resulted

in the identification of BrdU+ nuclei (Fig. 1, (4)). Afterwards, BrdU+

cell coordinates on the rescaled picture were exported as a second
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CSV-file. Two color images were resized without converting them

to 8-bit.

2.7. ‘BrdeLuxe’ program description

Our novel ‘BrdeLuxe’ software uses the coordinates of the

identified BrdU+ cells to calculate their number in a given brain layer.

Within the BrdeLuxe user interface, the resized original two channel

pictures (Fig. 1, (5)) and their corresponding CSV-files for BrdU+ cell

coordinates (Fig. 1, (5)) are loaded. An erasing tool is implemented in

the program to manually erase the remaining staining artifacts after

background correction if necessary. Within the left part of the

BrdeLuxe users interface cortex layers have to be manually drawn

following the green Nissl staining (Fig. 1, (6)). Thereby, only the

upper and lower lines need to be sketched for the first layer

because the program automatically completes the polygon by

connecting the ends of both lines with the shortest possible distance

along the edges of the picture. For cases in which layers are disrupted

by holes, the area of the holes is calculated and subtracted from the

area marked by the polygon automatically. Holes are identified as

regions with a much lower intensity compared to the brain slice. For

the second layer, only the non-adjacent line has to be drawn. This

prevents a possible overlap of two polygons and ensures that the

polygon covers the entire area. In the screen were the CSV-file is

displayed, the layer area is automatically determined using a

floodfill algorithm (Fig. 1, (7)). After all layers are marked, the total

BrdU+ cell number, the layer area, the density of cells (number of

cells per mm2) and the average layer thickness are automatically

calculated and visualized in a table (Fig. 1, (8)).

2.8. BrdU+ cell counting evaluation

A total of ten images, five from the perirhinal area and five from

the dorsolateral entorhinal area belonging to two different brains

were evaluated by two researchers independent of each other or

the automated counts using three different methods: manual

Fig. 1. Workflow of the evaluation of the number of BrdU+ cells in cortical layers. Two pictures per brain area are taken (1) and merged (2). The red channel BrdU picture is

converted to 8-bit and both, the BrdU channel and the Nissl channel picture, are rescaled to 1024 � 1024 pixels (3) and renamed. The BrdU channel picture is then analyzed

with the vHCS-Scan V.6.3.1 software (Spot Detector V.4 bioapplication) (4). BrdU+ cell coordinates are exported as a CSV-file (comma-separated values file). The Nissl picture

and the CSV are imported to the BrdeLuxe user interface (5). The layers are marked manually in the Nissl picture (red lines in (6)). The resulting polygon is overlaid on the

BrdU+-cell coordinates to assign cells to the marked region (7). Results of BrdU+ cell number, layer area, cell density and average layer thickness are shown in (8). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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counting, BrdeLuxe and ImageJ. Manual evaluation was performed

first to avoid introduction of a counting bias by the results from the

automated assessments. Then images were examined using the

BrdeLuxe program as described in Section 2.7 and ImageJ, an open

source image processing software developed at the National

Institutes of Health of the United States (Rasband, 1997). When

using ImageJ, the red channel BrdU pictures were background

corrected using the rolling ball method (Sternberger, 1983).

Afterwards, a threshold was chosen from the ‘Auto threshold’

function of ImageJ. Particles were subsequently evaluated in each

layer by defining a ROI (region of interest) which met the layer

borders and by running the ‘Analyze particles’ function. For all

methods, the absolute numbers of BrdU+ cells were counted for

each individual layer.

2.9. Statistical analyses

Statistical analyses were used to examine differences in-

between the three different evaluation methods (manual counting,

BrdeLuxe and ImageJ) and between performances of the two

evaluators for each method.

For comparing the accuracy of the two automated methods, the

mean value from manual countings of the total number of BrdU+

cells from both researchers (x1 and x2) was calculated for each

picture (xmanual). As all pictures had different numbers of BrdU+

cells, xmanual values were set to 100% and used as the standard

value for comparative analysis. The total number of BrdU+ cells

assessed for the same pictures with the two automated methods,

BrdeLuxe and ImageJ, for both researchers were then normalized to

xmanual and compared. Variances were compared one by one for the

manual versus each automatic program using the Bartlett’s test.

The significance threshold was set to p < 0.05 and is represented as

#, while p values <0.01 are represented by ##. For not statistically

significant differences in the variances (homogeneous param-

eters), means of manually and automatically counted images each

were compared using the parametric one-way ANOVA test. In

cases of statistically significant variances (non-homogeneous

parameters), means were compared using the non-parametric

Kruskal–Wallis test. Statistically significant differences among

means were represented as * for p < 0.05 and as ** for p < 0.01.

To evaluate the inter-individual differences of the two different

investigators across the three different methods, the mean values

were also assessed for the two automated methods (xBrdeLuxe and

xImageJ). Subsequently, the numbers of BrdU+ cells determined by

the researchers (e.g. xBrdeLuxe1 and xBrdeLuxe2) were divided by the

respective mean value for each picture and method (e.g. xBrdeLuxe).

In case there was no difference in counting between the two

evaluators, xBrdeLuxe1/xBrdeLuxe = xBrdeLuxe2/xBrdeLuxe = 1. Inter-indi-

vidual differences were analyzed for each method by applying the

Bartlett’s test. The same procedures as for the total number of

BrdU+ cells/slice were also performed to evaluate the percentages

of BrdU+ cells per cortical layer. Results of the method and inter-

individual comparisons are presented as box and whiskers graphs

including outlayers (&) as defined by the Tukey method (Hoaglin

et al., 1983).

To determine the time needed for image analyses across the

three methods, evaluation time for each image with each method

was recorded. The mean time needed for both researchers to

evaluate the pictures with the three methods was compared using

the Kruskal–Wallis test as the variances of the groups were

significantly different from the Bartlett’s test.

3. Results and discussion

The aim of this study was to evaluate how a novel, automated

method for quantification of BrdU+ cells in brain slices (BrdeLuxe)

performs in comparison to ImageJ with regard to manual counting

in slice evaluation. Moreover, reproducibility of the three methods

across two independent investigators was assessed. For these

studies, manual counting was set as the reference value because

this is currently the most common method for quantification of

BrdU+ cells in brain slices. With these comparative investigations,

accuracy and precision of the different image analysis methods

was assessed. Thereby, these were defined as the closeness toward

the defined true value, which is the manual counting, and as the

variance of the individual data points, respectively.

Quantification of BrdU+ cells in brain slices by utilizing

BrdeLuxe comprises eight individual steps (Fig. 1). (1) Images

are taken by a fluorescent microscope, (2) merged and the red

channel pictures of the BrdU staining are converted to 8-bit. (3)

Both, the Nissl picture and the BrdU picture, are rescaled to

1024 � 1024 pixels and renamed. (4) The BrdU picture is analyzed

with the vHCS-Scan V. 6.3.1 (Spot Detector bioapplication V.4).

BrdU+ cell coordinates are exported as a CSV-file and the Nissl

picture and the CSV-file are imported into the BrdeLuxe user

interface (5) where individual layers are marked manually (red

lines in 6) and the resulting polygon is transferred to the BrdU+ cell

coordinates to assign all cells to the marked area (7). Results of cell

number, average layer thickness and density are then automati-

cally determined and shown in (8).

When the total number of BrdU+ cells was determined by the

three different methods, manual counting, BrdeLuxe and ImageJ,

the mean number of positively evaluated BrdU+ cells did not

significantly differ between BrdeLuxe and the manual counting.

However, ImageJ identified significantly less BrdU+ cells in the

defined total cortical area (27%) than the manual counting

(p < 0.01; Fig. 2a). BrdeLuxe thus achieved a higher accuracy than

ImageJ reflecting systematic errors in the application of the latter.

Next, the variances of each automatic method were compared to

the variance of the manual method (standard deviation: SD = 13%).

While there was no significant difference in variance between the

manual and the BrdeLuxe evaluations (SD = 19%), ImageJ showed a

significantly higher variance (SD = 27%) than the manual counting

(p < 0.01; Fig. 2a). These results demonstrate that quantification of

BrdU+ cells in brain slices with BrdeLuxe is as precise as counting

manually, while the same evaluations performed with ImageJ are

significantly less precise.

In a following analysis, we evaluated the inter-individual

differences in counting total numbers of BrdU+ cells for each

method. The variation between researchers using the manual

method was in accordance with the published literature (SD = 11%,

Sciarabba et al., 2009). There were no statistically significant

differences between the variances of any method (Fig. 2b),

showing that multiple researchers can use the automatic tools

without introducing more variance than by counting manually.

An automatic program, which is able to accurately and precisely

count total numbers of BrdU+ cells in whole cortical areas is useful

in cases where proliferation and/or cell death of NPCs are

measured. This is the case when malformations of cortical

development included in Group I of the Barkovich classification

are assessed (Barkovich et al., 2012). Nevertheless, when evaluat-

ing alterations encompassed in Group II of the Barkovich

classification, which cover malformations due to alterations in

the migration pattern of cells, the quantitative distribution of

BrdU+ cells across cortical layers is required. In case one wants to

involve automatic image analyses techniques into such evalua-

tions, it is indispensable to ensure that the automatic program is

identifying the number of BrdU+ cells in cell rich versus cell poor

layers or in layers with artifacts correctly. Manual counting of

BrdU+ cells revealed that on average 2% of the total BrdU+ cells are

in layer I, 34% in layer II/III, 35% in layer IV and 29% in layer V/VI

(Fig. 3a). In all pictures, the percentages of BrdU+ cells were much
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higher in layers II–VI than in layer I. The distribution of BrdU+ cells

across layers corresponded to the published literature for the age

of the animals (PND28), BrdU administration day (GD16) and areas

evaluated (Bayer, 1990). Such raw percentages of BrdU+ cell

distribution do not allow a statistical comparison of the BrdeLuxe

and ImageJ programs to the manual evaluation in terms of

accuracy and precision of the methods because in each picture the

percentages of BrdU+ cells per layer was different (Fig. 3a). To

define accuracy and precision of identified BrdU+ cells in individual

brain layers with the automated methods in comparison to the

manual counting, all layer counts were set in relation to the mean

manual count of the same layer in each image and were then

statistically compared (Fig. 3b). Quantification of stained BrdU+

cells in layers I–VI with the BrdeLuxe program did not reveal any

significant differences between manual and BrdeLuxe evaluations

in any layers. For ImageJ, quantified means were significantly

higher in layer I (700%) and significantly lower in layer V/VI (79%).

Layer I contains on average only 2% of the total number of BrdU+

cells but usually holds many artifacts due to unspecific stainings of

the meninges. With BrdeLuxe, the researchers were able to

minimize those artifacts because the program – in contrast to

ImageJ – includes an erasing tool. Although the results of ImageJ for

layer I were seven times higher than the manual ones on average,

this increase had no significant impact on the total number of

BrdU+ cells because the absolute BrdU+ cell numbers in this layer

were very low. Contrarily, the significant percentage of BrdU+ cells

(21%) that ImageJ missed in layer V/VI had a major influence on the

total number of BrdU+ cells as presented in Fig. 2a, because this

layer contributes to approximately 30% of the total number of

BrdU+ cells. These data indicate that BrdeLuxe counts BrdU+ cells in

individual brain layers with a high accuracy compared to manual

counting, while ImageJ does not perform as good due to generation

of false-positive and false-negative data.

For analyses of method precision, variances of methods with

regard to layer-specific BrdU quantification were gauged. The

variance of the results obtained by BrdeLuxe was significantly

higher than the manual one in layers I and II/III, while for ImageJ it

was significantly higher in layers I, II/III and IV. This result indicates

a lower precision of the automated methods in the evaluation of

these layers than manual counting, which might be explained by

program-generated random errors. In layer I these errors are

possibly introduced by the presence of artifacts when using ImageJ

and by the use of the erasing tool when using BrdeLuxe. In the

subsequent layers, the random error would be more related to the

layer drawing process or to the threshold selection when analyzing

the picture. A shared limitation of all methods is that the

researchers need to know how to define the cortical layers, as

none of the programs is doing it automatically. Nevertheless,

marking brain layers was more convenient for BrdeLuxe compared

to ImageJ as only two borders per layer had to be drawn. This

prevented an overlap of areas because the lower border from the

previous layer was used by the program as the top border of

the new layer. Taken together, accuracy and precision indicate that

the BrdeLuxe method is superior over ImageJ, but still BrdeLuxe

does not reach precision levels of manual counting.

Regarding the inter-individual performance of all methods for

brain layer-specific quantification of BrdU+ cells, there were no

statistically significant differences between the variances of the

manual percentages and the BrdeLuxe percentages in any layer

(Fig. 3c) showing again that several researchers can use BrdeLuxe

without introducing more variation by the automated method

than by manual counting. For ImageJ there was only a significant

higher variance in layer V/VI. When counting with the automatic

methods, main inter-individual variances are introduced by the

selection of different thresholds by the researchers themselves

during the image segmentation step. The ‘Auto threshold’ function

of ImageJ offers 16 possible fixed thresholds, which differ very

much in background subtraction because they use different

algorithms. In this study researchers could freely choose amongst

them and it was found that the most applicable algorithms were

Otsu (Otsu, 1979) and Triangle (Zack et al., 1977), whereas the

other 14 algorithms were not suitable for the desired analyses in

our image set. With Spot Detector V.4 the researchers were

allowed to choose a manual threshold value per picture and judge

in real time the mask of object identification within the picture. As

the researchers could select more carefully among manual

thresholds instead of applying two fixed options, the variance

among them became lower, and the selection of the particles more

exact.

While counting each picture, the employed time was recorded

and the mean time needed for image evaluation of each method

compared (Fig. 3d). These measurements demonstrated that both

automated methods were significantly faster than manual

counting. In this regard it has to be considered that within the

recorded time, the manual evaluation gives only the result for

the BrdU+ cell number and extra time would be needed for the

Fig. 2. Comparison of three methods for the determination of the total number of BrdU+ cells. (a) Methodological comparison of the mean and the variance of the automatic

methods in comparison to the manual evaluation. The total number of BrdU+ cells counted by each researcher for each picture is expressed in percentage of the manual mean

of the corresponding picture. (b) Inter-individual comparison of two researchers across the three methods. The total number of BrdU+ cells counted by each researcher for

each method in each picture is divided by the mean value of the respective method and picture. Symbols: *, ** = significantly different means respect to the manual group; #,

## = significantly different variances respect to the manual group; & = outlayer.
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measurement of the areas of the counted regions. In the reported

mean times of both automatic methods, the area measurement is

included as this is automatically done while counting the

particles. The time needed to select the fixed threshold for

ImageJ or the manual threshold for BrdeLuxe was also included in

the reported times. Between the two automated methods,

BrdeLuxe was the fastest, making it more suitable for multiple

brain slices screening. The relevance of the speed stands out

when large in vivo neurodevelopmental studies need to be

performed, where several litters per dose have to be examined

and if multiple pictures per animal have to be evaluated. In

previously published work, BrdU+ cell analyses were performed

manually, and the evaluation of only one slice per animal

(Oyanagi et al., 2001) or two slices per animal (Inouye et al.,

1993) was included. With the BrdeLuxe method approximately

20 pictures can be evaluated in one hour, offering the possibility

to assess complete areas in the brain through the evaluation of

several seriated slices in less time.

As a summary, the advantages and disadvantages of the three

methods are displayed in Table 1. Considering the evaluated

criteria, it is concluded that BrdeLuxe is a fast, accurate and precise

tool to count the number of BrdU+ cells in cortical slices. This

automatic application will be useful for neurodevelopmental

toxicity studies and for physiological evaluations on the genetic

mechanisms implied in cortical development. Therefore, misplace-

ment of cells could in addition be assed via cell identity by using

layer-specific markers, which could be analyzed by BrdeLuxe in the

same fashion. Regarding future studies, it is important to remark

that this approach offers the possibility to scan entire brain slices

with an ArrayScan device (Thermo Scientific), enabling the

evaluation of several brain regions. In this case, extra time is

saved, as the ArrayScan device is able to take pictures of brain slices

automatically and thus no manual microscopic picture taking and

overlapping is needed. Hence, automated brain slice evaluation for

quantitative analysis of BrdU+ cells with the BrdeLuxe program is a

feasible alternative to manual counting.

Fig. 3. Comparison of the three methods for determination of the percentage of BrdU+ cells in each cortical layer. (a) Mean percentage of BrdU+ cells in the ten evaluated

pictures by two researchers with the standard error (SEM). No statistical analysis is performed on this data, since methodological comparison required data normalization as

presented in graph b. (b) Methodological comparison of the mean and the variance of the automatic methods in comparison to the manual evaluation for all cortical layers.

The percentage of BrdU+ cells per layer obtained by each researcher for each picture is divided by the manually determined mean percent of the corresponding picture. (c)

Inter-individual comparison of two researchers within the three methods for all cortical layers. The percentage of BrdU+ cells per layer obtained by each researcher for each

method in each picture is divided by the mean value of the respective layer and method. (d) Comparison of the time needed to evaluate one picture with each method in

minutes. Symbols: *, ** = significantly different means compared to the manual group; #, ## = significantly different variances compared to the manual group; & = outlayer.
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Table 1

Advantages and disadvantages of manual versus automated methods for BrdU+ cell evaluation in brain slices.

Manual BrdeLuxe ImageJ

Advantages

Best pattern recognition Fastest method No need of scaled pictures

No layer overlapping No layer overlapping Open source software

No need for scaled pictures High accuracy Faster than manual

High precision

Same inter-individual differences than with manual

counting

Disadvantages

Slowest method No open source software Slower than BrdeLuxe

Not suitable for medium/high-throughput Less precise than manual method for layers I and II/III Layers overlapping

Low accuracy

Low precision

More inter-individual difference than in manual evaluation
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