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�������� ��	 
������	� � � ����	� ������ ��	 �� ��	�� ���	 � ��	 ��� �� ������	�	�

���	� ��	��� ������ ����� �� ��	 �	�� ����	
����	 �� 	��	��� ����	�� ��	�� ���	

�� ���
�����	 �� ��	 ���	�	��� �� ������ ����� ������ �� �� ������ ��������� 
������	

��	� ��	 �
����� ��������
	� �	����	 ��	� �	���	 ���	 ����	 ������ ��������� ���
	�����

���	 	����	� ��� ��������� ���	� ����	�� �� ����� �����	��� 
������� 
����	���

�����	����	� ��	� ��	 ���� � ��� ��������� �� ������ 
������� ����� ��	� � ����

��������� �� �	���������� ��
�����	�

 � �	�� ���� 
����� ��������� ��������� ���� �
�	�	� 	�	� � ��	!��������� �����

����	� ����� �� �������	���	� �� ���	��	� �������� "	�
��	 ��	 ���
������ �� ���� ����	��

��� ���	�� �� ��	 ����	 �� ��	 ����� �������� ���	 	���	� � ������������ 	�
������

�� ���� # 
���������� � �	����	� ��������
�� 
�����	 �� ��	 ���	�� �	������� ����� ��

	�
	��	� �� �	 ���	�	� �� $�����% ������� 	�������� 
������	�� �� ��� ��	�	 ���	�

�� �	 ����	 �� 	��������� �	����	� ����� ��� �� �	 	�
���	��

&	�	 �	 ������ ��� �����	��	� �� ��	������	 ������ �������� '	 ��	 ����� �����

�
�	�	 ������	� ���� ����	 �������� �����	���� ����� ����� �� �� 	�
	���	�����

	�
���	 �� ������� ��(	�	� ����� �	�������) ��� 	���
�	� ��	 ����	 
������	� ��

�	 ���	� �� ����	 �� ����� 
������	�� �����	����	� �	 	�
��	 ��	�	 ������	� �� �����

	��	��� ���������� ��	�� ��	��� �� 
��� ��	 ����	�� ��� ���� ��	�� !��	��	� ����	

�� ���	��	 ��	 ��	�������	� 	���	�	� �� ��	 �������� ��	 �	�	��� �	�	��
	�

��	����
� 	���	� �� �� ������ ��	 
������	� � ���� �� ������� ��������
� ����	 ��	�

��	 	�
��	� �� 	��	��� ��	��� '	 *� ���� ��(	�	� ����� �	������� �� �	�� ��

��(	�	� ����� ����	� ���� ���	 �	�� ������� 
��
	���	�� ���	 ��������	� ������� ��

�����	������ ������� ��	�	 ����� �	�������� ���	��	� ���� ��	 ������ �� �������	

����	 
������	 ������� �� �	�� �� �������� �	�	���		���	�� ��	 ���� �	�
�����	 ���

��	 ��(	�	� ��	���� �	�������� ��	� ��������� �� +���

������� �	 ���	 ��	������	� ��	 ������� �� �����	 ����� 
������	� ��*	� �� �	�	

����	 �
�	�	�� ,	�� ����� ����	� 
������	� �� 
��� ������� ��	 ����� ���	�� �	��		

����	 �
�	�	�� ��	�	�� ����	� ����	�� �	���	 ���	������ �������	�� "�	 �� ��	 ����� ��

��	 ����	 
������	�� ���	�	�� ����������� �� 	�	� 
	��	�� �� �	����� � ���� ��������

������� �� ��	 ����	��� ��	 ���
	����� �	��		 ����������� �� ��(���� ��� �		

���� �� �	���� � � ����������� �	��� �� ��	 ��	��	����	 �����	��� ������ �� ��	 ����	�


������	�� ��	 ������� �� ��	 ����	� 
������	� ����� ��� �	 �	�	���	� ����� �� �

��	� ��������� �� +���	��	� ���	��� �	������ ������� ��������
� �� ��(	�	����

������ ��������
�� ����� ��� �����	� ����� ���� -�"�
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���� �

���� ���� �� �	
� ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� �	��	��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� �	��	���� ��� ������ � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���� �	��	���� ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� ��	� ������	 	
 �	��	���� ������� � � � � � � � � � � � � � � � � � � � � � � ��

�� � !	��� �"���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� �������� �

���� #$�����%� ��%�" ��&�$�� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ '��� ������� �	%(�$���	% �%� �"%���� � � � � � � � � � � � � � � ��

������ )���� �������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

���� *�%�" ��&�$�� $%�� ���� � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ +�������	" ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ �	%���%� ���� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ �	%���%� ���� ����� � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� �	���
������ �� �������� ��	����� ��

���� ,$�������	% �- .������ 	
 �"%�������" ��"������ ��%�" �	��	���� ��&/

�$��- #$�����%� �	������ �%� �"%����� $%�� ���� � � � � � � � � � � � ��

���� ,$�������	% �- 0�����%� 	
 ��%�" �	��	���� ������� � � � � � � � � � � � � � ��

���� ,$�������	% �- 1�%���%� �"%����� �$�%� ����� 	����		�� �% ��%�"

�	��	���� ������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �  �

���� ,$�������	% �- 0�����%� �%� ��	��" 	
 ��%�" �	��	���� ������� � � � � � � 2�

���� ,$�������	% �- ���� �%� 3	� 	
 �������- ����% ���	%�� ��%4�� �	 ���

������� ������$��	% 	
 �"%������ ����	��%������ � � � � � � � � � � � � � � ��

�� � ,$�������	%  - !	��%� �% � �	���� �	���� �%��	%��%�- �%	���	$�

�"%����� ��"	%� ��� '	�%�5 ��� �	��� � � � � � � � � � � � � � � � � � � ���

�� ��������� ������ �����  ��!��� ���

�
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���� ������	
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� ������� ���������
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� ��������
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� ����������� �
����� ���������
 � � � � � � � � � � � � � � � � � � � � � � ���

������ ���� ���� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ ���� � � ��  !� � � � � � � � � � � � � � � � � � � � � � � � � � � ��"

������ ����
��	 ��� ��� ��	� �������������� � � � � � � � � � � � � � � � ��#

������ $���������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�
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���� ���� �� �	
� ������

����� �����	 
��	 ������ ����	 ��� ��� ���� ���� � �� �� ��

��� ���� ����������

���
��� �� ���� ������ �����
�� �������������� �� ���� �����
� �� ���� ��� �� � �� �����

������� ���!� �� �� ����� ���������� ��� 
���������� �
��� ���� � ����� �� ���� ���


��� ����� ���� � ��
�� 
�����	 ����� ����� �� � �� �� ��� ����� �� � ��" ����
�����

�� � ��" 
������� #��� ��� ��������� �� �����
� �!� ���
�� 
���	 ��� �������� ���

������� �
������ �� � ������	 ��� ���
�� "����� ��
����� �� ���
�� �����
�	 ����


����� ����
���� ������� �� ���� ������� ���!�	 �������� �� � �
� ������ �������

��� � �
� ������ 
������ �����$����� ���� 
����� �����
� ��� �� ����� �����
��	

"��� ���������� � ������ �������� �� �
� ������� ������ ��

���� 
����� �����
� ��� ������ ��
��� %���� ���� �� �������� �� �
��������


������	 ���
��� ��� ������	 & ��
����� ���
��� ��� �� ����� �� ������ ���

���������� ���� 
����� ��� ����������� ��� ���� ����� ��� ��� �������� �����
	 �����

� ����� �� �� � "�'������������ �����
 ��
����� �� � ������� �� ���� 
����� ���'

�����
�� (�� ��������	 ��� �� 
�
����� �������� �� � ������ �� ���������� 
������

��������� �� ������� 
�
����� ��������	 "������ ��� �� ������ �� �� ��� )��� ����

� ����� ���
���� ���"��!� ��� �� ������	 ���� ��� �������
	 ��� �� ���"�� �� �

����� ������ ����������	 ��������� �� � 
����� �� ����� )�
���� ��� 
����������	

����
���� � ������������ ���
�� ��������

���� �	��	���

������ ��� �������� ������� �� �� � ���
 *�
 �� *+ �
 ��� ��� �
� ������ �� ���'

��� �����)���� ����
� ���������	 ���� ,��"���� 
�����	 ��� �� ��� ����� ���� ���


��� ������ ���� ��� 
������ �� ��� ���������� 
����
	 "���� ��� ���� �� ���"��

�� � ��������
� ������� ��� %��� ����������� ��� ������ ������� �� � ������������

��������
	 �� ������ ��� 
����� �� ��� ������� ,��"���� 
����� ������
�� �� ��������

�� ��� �����
 
����� ��� ���������� ���
 �������� �� ��� ������ 
������ "��� ���
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�� ������	
����

��������	
 ��� ��� ������ 	������� �� ��������	� ��� ����������� ���� ��� �������� ���	 �

��	����� Δ�r �� � ��� ���� t �	 ���		��� ��	��������
 �� ��� ������� ��	� ��� �����������

��	��������� �� ��	���������	� ��	� �������� �� �	 �� ��� �	���������������� ��������� �	

������ ��

p(Δ�r, t) := 〈 1
N

N∑

i=1

δ(Δ�r − (�ri(t+ t0)− �ri(t0))〉. ��
��

���� 〈...〉 ��������	 � �������� ������ ��� �� ����� ������� ����	 t0� �ri(t) ������	 ���

��	����� �� �������� i �� ���� t� ��� N �	 ��� ����� ������ �� ��������� ��������	 �� ��� 	�	�

���	���
 �� ����������� ��� ������	 �� ��� �������������� ������ ��	��������� Δ�r(t)

��� ������� �� ��� �� ��� �������� p(Δ�r, t)
 �� ��� �������� ������ �	 �	�������� ���

����������� ��� � ��	��������� �� ���� ��������� �	 �!���� �� ����������� ��� ������ ��	�

��������� 〈Δ�r(t)〉 ���	��	 �����������
 ������ ��� 	�����	� ���������� ����������"�����
�� ��� �������� �������	 �	 ��� �����	!����� ��	��������� �#$%�

〈Δ�r(t)2〉 = 〈 1
N

N∑

i=0

(�ri(t+ t0)− �ri(t0))
2〉. ��
&�

'��	���� 	��(�� �� ��	 	������ (��) �� ��� ��������� )������ �������������� �� *��(����

������ ���� ��� �� �	�� �������	 ��� �����	!����� ��	��������� �	 ������������ ��

����� 〈Δ�r(t)2〉 = 2dDt� (���� d �	 ��� �����	��� �� ��� ��������� 	����
 +�� ����	����

���,����� ����������"��� ��� ������	� �� ��� #$% �	 �������� �� �	 �� �	��� ���,�����

D


-�������� ��	���	���	 �.����� ���� ��������� )��(� ��	� ���� ��������� 	�	���	�

	��� �	 � ��	���!��� ���	� ����	������ ���	�����"������ ��� �����������
 +�������� �������	

��� �	�� �	 � ����� 	�	��� �� 	���� ���	���� ��������� �� ������ ��������	
 %�� ��

����� ���� 	�"� �� �������	�� �� ����	 ��� ��� ������� 	��( �������	 �� �������	�

���� ��� �� 	������ �� 	�����	���� ��� ������!��	 	��� �	 ����� 	��������� �� �������

�����	����� (�����	 ��� ������ 	�	���	 ��� �	� �� ������	���� ������!��	� �
�
 /����	 ��

������� 	��������� ������	 ����������
 #������� ��� 	��( �������	 �� �������	 � ��	

��� ����������� �� ������� �������� ��� ���0�������	 �� 	����� ��������	
 1��� ��� ������	�

�� ��������� 	�	���	 �	 ��� ������� �� ��� �	� �	 ����� 	�	���	 ��� ������ 	�	���	


�� ������	� �� ����	� (���� ��� ����������� ��������� �	 ���������� �� ��� ����������

	��������� ��� �����������	 ���(��� ��������� ��������	 ��� �� �� �����	 ������	 ��� ���
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P (Δx) φ = 0.56
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RLarge

,

RSmall RLarge

xs =
VSmall

VParticles

,

VSmall φ

φRCP

δ � 0.2
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δ
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3dL
φ ≈ 0.61 δ ≈ 0.2



g(r)
xs r/dL

φ ≈ 0.61
δ ≈ 0.2 dL + dS

xs = 0.3 0.5

g(r) dL+dS
dL + 2dS



δy2 t
φ ≈ 0.61 δ ≈ 0.2 xs

l l =
√

δy2(t → 0) xs

δy2

xs = 0

xs = 0.1

l 0.3 ≤ xs ≤ 0.7

0.3 ≤ xs ≤ 0.7

xs 0.9

l 0.1 ≤ xs ≤ 0.9

xs
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������ ��

*��
�� +�,� ����� ����� 	�� ����
��� ����	���� �	�� ��	����	� ���!�� � ����� ���	����� ��
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δ ≈ 0.18 0.28
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f(q, δt)
xs δ ≈ 0.18 φ ≈ 0.625, 0.61 0.60
q = 2.34 −1 δ ≈ 0.28 φ ≈ 0.61, 0.604, 0.588, 0.58, 0.57, 0.56, 0.52, 0.5, 0.4

0.3 q = 2.34 −1 φ ≈ 0.61 q =
0.23, 1.05, 1.87, 2.69, 3.51, 4.32, 5.14, 5.96 −1 δ ≈ 0.18 δ ≈ 0.28

f(q, δt)
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G′ γ ≈ 0.2
γy G′ G′′

xs δ ≈ 0.21
φ ≈ 0.61 φ ≈ 0.58 Peω = 0.55 δ ≈ 0.38 φ ≈ 0.615 0.595

ω = 1 −1 δ = 0.38

γ̇ σ

t γ = γ̇t

σ γ

σsteady



σ
γ γpeak

σpeak/σsteady − 1

γpeak σpeak/σsteady−1

xs

Peγ̇ = γ̇〈τ short〉 〈τ short〉 = 〈τ short0 〉/f φ f

f ≈ 1/32 φ ≈ 0.61

γpeak Peγ̇

Peγ̇ ≤ 1

10

Peγ̇ > 1

Peγ̇

Peγ̇

σpeak/σsteady−1

Peγ̇

xs xs = 0.5

Peγ̇



γpeak σpeak/σsteady −
1 xs Peγ̇ = 0.03 0.24

0.64 1.20 2.40 4.70 γpeak
σpeak/σsteady − 1 Peγ̇ xs
0.1 0.3 0.5 0.7 0.9 1.0

δ ≈ 0.2 φ ≈ 0.61

xs < 0.5

xs ≥ 0.5

γpeak

xs xs = 0.3

xs

xs ≤ 0.3 Peγ̇ xs = 0.5

xs = 0.3 Peγ̇

xs ≥ 0.5 Peγ̇

xs = 0.1



δy2 xs = 0.7
Peγ̇ = 0.0035

tw K
Ds

Ds K xs Peγ̇

tw

tw

δy2 ∼ tn

n ≈ 1

δy2 t → 0

l l

xs

K

K = δy2shear/δy
2
rest − 1 ,

δy2shear δy2rest



K xs Peγ̇

xs = 0.3 0.5

xs = 0.3 xs = 0.5

tw = 0

Ds = Dsteady/Dsdiff − 1,

Dsteady Dsdiff

Ds xs



���� ������ 	�
���� ���� ����

������ ����	�
���	 �������� � ������ �������� ��� ��� ����������� ���
	��������	� ���

������� ��� ���� � 
	���� ���� ��� ��
��
 �� ���		 �� 	��
� ������	��� ���� ��� ������	

���� ���	� ��� ��� 	���	������� 	��
��� ��� ������	 ���� ���	� �� ��� ���	� ������ �� ���

����������� �����
�� ���������� �������� ����� �� �������� �� ����� ��� ������ �

��� ������ ������ �� ��������� �� ��� ���������	 ��	������� ���� � ��� ��
�����������


�������� �����
� ��
� ����������� � ���� � ��� ������ �� ��	������ ��� ����	��� ��	��

� ��� 	���	������� 	��
�� �� ��������� �� ��� ��
������ � ����� ���������  ��
����

	���	������� �� ���� 	���� �� � ���� ���������� �������������� ��� �� ������ ����������

�� !���

������ �����	�� �
�	� ������

�� ��� �������� ������� ��� �� "�� ������������� �� ��� ����� ���� ��� ���	������� � ��

��������� �������� ����� ���� 	���� �� ��� !���������� � ��� 
	���� �� �������� �� �����

��� ����� �� �������� ����� ������ ��� ���� �������� ���������� �� � ����������� ��

����� ���������� � �������� ����� ������ σ �� ���	��� �� �� ������		� #�������� �������

��� ���	����� � ��� ���������� γ �� ��� �������� �� � ������� � ���� t� $�
���

%�&& �' ����� � ������	 �������� � � 
	���� ������ �� � ����� ����������� (�	� ���

���	������� � � ������ ����� ��� ���	� ������ σy ����	�� �� � !�� ��������� ��� !��

�������� �� ������������� �� � 	����� �������� � ������ ���� ����� ���� γ̇ �� ��������� $��

�������� σ < σy� � ����	����� �������� � γ(t) �� ��������
�	���� ���� ��������� � ��	���	���

�������� ���������� �� ��� ����� � ��� �������  � ������������ �������� �� ���� ��

σ 	 σy� $�� ����� ����� ��� ������ ����� � ������	��� ��������� ��� �� 	��
�� ����� ���

������ ������ �� ���� !����	��� ��������� ��� ���������� ��� ��� ��
��� �� ��� �����

����� �	��� �����
 � )���� ���� �������	� �����
 ����� � ������	����� �������� � γ(t) ��

��������� *��� ���� ��� ����		������ � γ �� ���		 ����� �� ���		 �������� ��� ��� ��

���������� ������� ����
 ��� ��		 ��� �� ��������� �����

�� ������
���� ��� ��
���� � ����� ��� !��� ��� 	�
�������� ���� ���������� � ���

������ λcreep(γ) = �log(γ)/�log(t) �� ��	��	����� ��� ���������� λcreep ����������� ��

��� �������� � ��� ���� ���������� � γ(t) ��� �� ����� �� $�
��� %�&& �'� ��� ��	��

λcreep = 1 ����������� �� !�� ��� λcreep < 1 �� ����� ��������� ����������	�� ���

���������� ��� ����� �������� �� ������	����� ��������� ������������� �� λcreep > 1� ��

������ �� ��� ������ ��	�� γ1� ��� ��	�� γmax ���������� ��� ������ ���� ��� ��������

�������� �� γ(t)� ���� � ������� �� λcreep�

��� ��	��� � γmax ��� γ1 ��� ����� �� $�
��� %�&% �� �������� � ���	��� ������� ���

������ γmax ��������� ����������	� ���� ���	��� ������� +�������� ��� ��������	 ���	��


γmax ∼ σ0.3� ����������� � ����������� �� ���� ������ �� ����� ��� ������ γ1 ����� �

��



γ t σ > σy
σ ≈ σy σ < σy
λcreep(t) = log(γ)/ log(t) γ γ1
λcreep = 1 γmax λcreep

γmax γ1 σ
φ = 0.61 γmax ∼ σα α = 0.3
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���� ���� ����

������� ��	�
���� 	�� ������ �� ���������� �� �	� �
������� �� γpeak �� � �������� �� γ̇ ��

�������� ���� ��������� ����������� ���� ������ ��� ���� �� ������� �� �	� ����������

γpeak(γ̇) ��� �����
��� �� ����� �	��� ����� �������� ������ ���������� �	� � �������

��� ����� γ̇ �	� �������� ������ ������� ����������� �!����� � �"�� ������� 	�

����� ����������� �	�� �	�� �	� ����������� �� ����� �������� ���� �� �� �������� �� �	�

������ �	��� �	� ���������� �� #�� 	������� 	�� ������� �	�� �	� ���� ��� �� ��������

���� �� ����� �������� ������ �� �
������� ����$�� 	�� �����
����� �� ���������� ��

�	� ������ ������ �� γpeak(γ̇) ���� ���� ���� ������������

���� �	�� 	�� ���� ��������� �� �	�� ��� �	� ���
���� �������% �� ��� �	�� �	��� ���

��� �� � �� ��	��
� � #����&����� �� �	� ������ '��	�� �� ���� � �������� �	��� ����

�� � �	��� ������ σ > σy� � ������ �� �� ��� ����� �	�� �� ���	 ����� �	� ����� #��

������ ��� �������� � ��
�������� �	��% �� ������� ��� (���������� 	� )��� ��� �� �	�

γ̇(σ) �������� �� ����� ����������� �� �	� ����� #�� ������% �	��� �	� �����������

��������� ������� ���	 ����� 	� ������ (���������% σ(γ̇)% �� ��������� ���� ���� ����

�����������% �	��� �	� ������ ���� � �� 	�� ����� ����� 
���� �� �	� � ���� #���� *�

�	�� �� % ���	 #�� ����� ��� �� �	��������&�� � ��� ����������% σ ��� γ̇� +	�� ��

���� � �	��� ��� )� ��� �� �	��� ���������� �� ��� ������� �	� ������� *� �	� ���� �σ%

γ̇� �� ����������� �� �	� �	���� �	��	 ��������� �� )��� ��� �	��	 �� ��������% �	��

�	� #�� ������ ��� �(��
������

+��	 �	� 	��� �� ������ ��,- �� ��� ������� ���	 �� ���� ���� *� �	��� ��� ����� ���

��� ��������� ������������ ��� ��� ������� *� �	� ����� ����������% �	� ����� #��

�� �	��������&�� � � ������ �������� �� �	� ������ ���	 ����% ���� � �������� �	��� ����

�	��	 �� ��������� �� �� γ̇(σ = 20.�) ≈ 1.9 �−1� /��% �� �	� ��������� ����������� �

������� �	��� ����% γ̇ = 2.034 �−1% �� �������� ����� �	� ������ �
���	��� �	� � ���� #���

��� �	� ������ ���� � �� ��� ����� ������ 
����% σ ≈ 18.5.�� 0�
����� ���	 �� � ��

�	��� �	� � ���� �� � ������ �� ������ ���������� �	���� ���� �� �	� #����&����� �� �	�

����� ��� ������ �� �	� ���� ����� #�� ������

.������� �	� ������� σγ̇ ���� ������ ��,- �� ��
���� � ������ ����������� �����% ���

�������� �� �	� (������� �	��	�� �	� � ������ � �	��	 �	� )��� ����� ������ #�� ��

��	��
�� ������� �� �	� �� �	��� �� �������� +	�� �� ������� �	� ������� ���� �������

���������� ��� ����� ����������� �� �� ������ 
������ �	�� ����� #�� �� ��	��
�� �������

�� ���� �� �	� ����������������� ����������� 	�� �� ����������� ���� 
������ ��� �	� ���

������� σ = 30.� ��� γ̇ = 10.17 �−1� 	� ��������� ������ ����� �� �	� ����� �� ����� 

#�� ����� �� �� 
�� ��!����� ��� ��������� ��� ����� ������������ 	� �
������� �� σγ̇

�������� ���� �	� ����� ���������� � ����� ���� �� ������ ��,- ��� ��������� �	� ������

�
���	��� �������� �� �	� ��������� ���������� �� γ̇ = 2.034 �−1� 1���
��% �	�� �������

��



γ(t) γ̇(t)
σ = 20 30

σ(t)
γ̇ = 2.034 −1 10.17 −1 δ ≈ 0.2 φ ≈ 0.61 xs = 0.7

σγ̇(t)



σ ≈ 5σy σ ≈ σy
t = 7, 54, 67, 107, 134 201

σ = 30 γ̇ = 10.17 −1

δ ≈ 0.2 φ ≈ 0.61 xs = 0.1

σ > σy

σ � σy

γ(t)

δy2(t) δy2(t) ∼ γ(t)

σ � σy σ > σy

δy2 γ
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� γ̇ ������� � ��
��� �
������ � γ(t) ���� �����

�
�� 
 ��� ���� ��
�� � ��������
��� �
������ � δy2(t) ���� t ��� ��
���������

� ��� ��� �
����� �
� ��� ��
������ ���������� � ��� ��������� ��� ���� � ���� �

��� �������� �� ������� �
� �� × �� ����� ��� ���� � ���� �� �� (2.8dL)
2� ���

������� μlm � ��� ��������� �
 ��� �� ���� �
��� lm  l,m = 1...10!� �� ����
 ��

μlm(t) = 〈Δyi(t)〉lm,  "�#!

����� Δyi(t) = yi(t) − yi(t0) �� ��� ����������
� � �������� i �
 ��� �������� �������


�
� 〈...〉lm ��� ������� ��� ��� ��������� �
 �� lm ����� ��� �����
 ��� �� �� t = t0�

��� ��� � ��� ������� �� ����� ������� ������ σ > σy �
� �� ������ σ ≈ σy ��

���������� �
 $����� "��% �� ��&���
� ������ '� ��
 �� ���
 ���� �� σ > σy ��� ���
�

� ���� ���� ���� �������  ���( �����! �
������� ���� ����� )������ � ��
���

������
����� ������
 ��� ���
� � ������������ ���� �
� ��������� �����
 ���

��
�� '
�������
���� ���� ������
����� ���� ��� �� ����� ������� ��������� ���� σ ≈
σy�

* ��&���
�� ������
 �� �������� ���� ����� �
� ����� ������� ��������� ��� ��
� �


��� ������� ����������
 � ��� �������� �������� $� σ ≈ σy ��
���� ����������� ����

���� ���� �
� �� ������� ��� ��
� �� �
� ����� '
 �
����� � ����� �� σ > σy�

��� ��
���� ����������� ����
� � ������ ������� ������� �� ���� ����� ����� �
�

� ����� ����
 ����� �����+��
��� ���
� ��� ���� ������� ��� �������
�� � ���

����
��� ����
 � ����� ������� ����� �� ����� ����� ��� 
��� � ��������&���
 �


��� ),-� �� ��������

� �
������ �
 �
����� � ��� �����
��
������ ������ ��� ��������
������ �����

����� 
� 
���������� � ��� .� � ��� ������ ������� �� ������� �� ��������
������

����� ��� �������/ �� σ � σy ��� ����� ������ ���� ������
��� �
������ � γ(t) �
�

��� .� ������ �� σ > σy� '� ��� ��
�� ���� ��� �������
� �������.� ����� ��� ��

������� � ��� 
� ������� �
 ��� �����
��
������ ������ *����� ��� (�
�� � �����

���� ���
������ � ��� ���� .�� ��� ��������� ��
����� ����
� ��� 
��� � .� ��

��
� � �� ��&���
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���
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 ��� ������ �������� σ > σy �
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Glasses of dynamically asymmetric binary colloidal
mixtures: Quiescent properties and dynamics under shear
Tatjana Sentjabrskaja∗, Donald Guu†, M Paul Lettinga†, Stefan U Egelhaaf∗ and

Marco Laurati∗

∗Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, 40225 Germany
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Abstract. We investigate mixing effects on the glass state of binary colloidal hard-sphere-like mixtures with large size
asymmetry, at a constant volume fraction φ = 0.61. The structure, dynamics and viscoelastic response as a function of mixing
ratio reflect a transition between caging by one or the other component. The strongest effect of mixing is observed in systems
dominated by caging of the large component. The possibility to pack a large number of small spheres in the free volume left by
the large ones induces a pronounced deformation of the cage of the large spheres, which become increasingly delocalised. This
results in faster dynamics and a strong reduction of the elastic modulus. When the relative volume fraction of small spheres
exceeds that of large spheres, the small particles start to form their own cages, slowing down the dynamics and increasing the
elastic modulus of the system. The large spheres become the minority and act as an impurity in the ordering beyond the first
neighbour shell, i.e. the cage, and do not directly affect the particle organisation on the cage level. In such a system, when
shear at constant rate is applied, melting of the glass is observed due to facilitated out-of-cage diffusion which is associated
with structural anisotropy induced by shear.
Keywords: glass, binary mixtures, viscoelasticity, dynamics, structure
PACS: 61.43.Fs,64.70.pV,81.05.kf,82.70.Dd,83.10.Pp,83.60.Bc,83.80.Hj

INTRODUCTION

Many different systems, among them polymers, metals
and colloids, can form thermodynamically equilibrated
states, but also non-equilibrium, metastable states, in-
cluding amorphous solid materials called glasses [1, 2].
The glass transition is generally associated with a dra-
matic slowing down of the particle dynamics which is
driven by changes in thermal energy or crowding.
One of the simplest model systems to study crowding in-
duced glass formation are suspensions of colloidal hard
spheres. By increasing the particle volume fraction φ for-
mation of a glass state above φ = φg prevents crystallisa-
tion, if the system has a sufficiently broad distribution
of sizes. The formation of the glass state is explained
in terms of the cage effect: At φ > φg each particle is
trapped in the cage of its neighbours resulting in dynam-
ical arrest, i.e. the absence of long distance diffusion over
a large window of times [3, 4]. Dynamical arrest and for-
mation of a solid state above φ ≥ φg are also manifested
in the viscoelastic properties as a sudden increase of the
viscosity [5] and the appearance of a Maxwell plateau
modulus in the linear response [6].

The addition of a second component with a signifi-
cantly different mean size compared to the first compo-
nent, leads to an even richer scenario. Depending on the
total volume fraction of the system and the mixing ratio
of the two species, mode coupling theory (MCT) predicts

the existence of different glass states [7]. When the size-
ratio δ = Rs/Rl = ds/dl , where Rs, ds and Rl , dl are the
radii and diameters of the small and large components re-
spectively, becomes about 0.2 and smaller, four different
glass states are expected [7]: In the first state both com-
ponents are caged; in the second state dynamical arrest
of the large component is driven by depletion attraction
induced by the small species; in the third state the large
component is arrested through caging, while the small
component is mobile; finally the small particles can be
caged, while the large particles are not caged, but only
localised by the surrounding dense matrix of small parti-
cles. Despite the rich behaviour predicted by theory, the
glass state of colloidal binary mixtures at such large size
disparities is hardly studied experimentally [8]. In [8] the
formation of a glass despite the mobility of the small
component is reported. A similar glass state has also been
found in simulations of soft sphere mixtures [9, 10].

In order to extend these studies and to explore the for-
mation of different glasses, we performed experiments to
determine the microscopic structure, dynamics and vis-
coelastic response of colloidal hard-sphere mixtures of
large size disparity (δ = 0.2) and constant total volume
fraction φ � 0.61. We vary the relative volume fraction
of the small component, xs = φs/φ , to explore the effect
of mixing on the glass state. We find that the composition
of the mixture strongly affects the dynamics and elastic
modulus of the system, in particular in mixtures contain-



ing a smaller volume fraction of small spheres, xs < 0.5.
In addition, we compare the dynamics of a sample under
shear to its quiescent state, showing that the driving intro-
duced by shear leads to an acceleration of the non-affine
particle motions, inducing glass melting. A discussion of
the non-linear rheology of these mixtures and compari-
son to predictions of mode-coupling theory are reported
in separate publications [11, 12].

METHODS

Samples

Suspensions of poly-methylmethacrylate (PMMA)
particles sterically stabilized with a layer of polyhydrox-
ystearic acid (PHS) were prepared in a solvent mixture
of cycloheptyl bromide (CHB) and cis-decalin, closely
matching the density and refractive index of the colloids.
In the CHB/decalin solvent mixture, the spheres acquire
a small charge which is screened by adding 4 mM
tetrabutylammoniumchloride [13]. This system shows
almost hard-sphere behaviour, with the volume fraction
φ = (4π/3)nR3 being the only thermodynamic control
parameter, with n the number density of particles and
R the sphere radius. Binary colloidal mixtures with
δ � 0.2, fixed total volume fraction φ � 0.61 and dif-
ferent mixing ratios were prepared starting from one
component stock suspensions. The stock suspensions
were obtained by diluting a sediment of large particles
of mean size dl = 1.76 ± 0.02 μm (relative polydis-
persity σ = 0.057), or small particles of mean size
ds = 0.350± 0.004 μm (σ = 0.150). The large particles
were fluorescently labeled with nitrobenzoxadiazole
(NBD). For the two one-component colloidal stock
suspensions, the values of the radius and polydispersity
were determined from the angular dependence of the
scattered intensity and diffusion coefficient obtained by
means of static and dynamic light scattering, respec-
tively, on a very dilute colloidal suspension (φ � 10−4).
The volume fraction of the sediment of large spheres was
experimentally determined as follows: A first guess for
the volume fraction φRCP of the sediment was obtained
using simulation results [14]. The sediment was then
diluted to a nominal volume fraction φ � 0.4 and ob-
served using confocal microscopy. The imaged volume
was partitioned into Voronöi cells and the mean size of
the Voronöi volume per particle calculated. The ratio of
the particle volume to the mean Voronöi volume serves
as an estimate of the volume fraction of the sample.
This was found to be φ = 0.43 which corresponds to
φ l

RCP = 0.68. The small spheres were too small to be
imaged. Therefore their volume fraction was adjusted
to give an equivalent rheological response to the large

spheres. For ideal hard spheres, the energy density scales
as nkBT , so that the shear moduli must be equal in
these units. The volume fraction of the one-component
small particles suspension was adjusted to obtain the
same normalised shear moduli as for the one-component
large particles. Although their linear viscoelasticities
are thus within experimental resolution the same, their
volume fractions could be slightly different, since the
samples have different polydispersities. Accordingly, for
intermediate xs, shear moduli are reported in reduced
units of the energy density.

Confocal microscopy

Quiescent State

Confocal microscopy experiments on quiescent sam-
ples were performed using a VT-Eye confocal unit
(Visitech International), mounted on a Nikon Ti-U in-
verted microscope with a 100x Nikon Plan-Apo VC oil-
immersion objective, and a laser with λ = 488 nm. Sam-
ples were contained in vials where the bottom was cut
and replaced by a coverslip to allow for imaging [15].
Stacks of images of 512×512 pixels, corresponding to
an x-y plane size of approx. 50×50 μm2 were acquired.
Each stack was composed of 101 images obtained ev-
ery 0.2 μm in z-direction, leading to an imaged volume
of approximately 50× 50× 20 μm3 per stack. The time
needed to acquire one stack was approximately 3.8 s.
Stacks were acquired at a depth of approx. 30μm from
the coverslip. Typically for each sample 7 different vol-
umes were imaged for 1200s during which 300 stacks
were collected for each volume to follow the dynamics
of the samples. The stacks were analysed using standard
routines [16] to extract particle coordinates and trajec-
tories. Figure 1 shows typical two-dimensional images
corresponding to a plane in a stack, acquired for samples
with different mixing ratios xs.

Under Shear

Under shear, samples were imaged using a custom-
built rotational shear cell (a modified version of the
model described in [17]), mounted on a Zeiss Axiovert
M200 microscope with a 63x Zeiss Plan Neo Fluar
water-glycerol immersion objective and equipped with
a VT-Infinity confocal unit (Visitech International). A
glass coverslip serves as bottom plate of the cell to al-
low for imaging with high numerical aperture objectives.
The glass surface was covered with polydisperse col-
loidal hard spheres with a size comparable to the large
spheres to minimise the effects of wall slip [18]. The top



FIGURE 1. Typical confocal microscopy images of quies-
cent samples showing the large fluorescently-labelled particles
only. The total volume fraction of the samples is φ = 0.61 and
the relative volume fraction of small particles xs are as indi-
cated.

of the cell is formed by a metal cone with 14 mm diam-
eter and 2◦ cone angle. Images are acquired at a radial
distance of 7 mm from the center. The plate and cone ro-
tate in opposite directions, giving rise to a zero-velocity
plane in the sample, the depth of which can be adjusted
through the relative speed of the cone and plate. Images
were acquired with an Andor iXon 897 EMCCD camera
for 300s, at an average rate of 10 frames per second. Sol-
vent evaporation was minimised using a solvent sealing
at the top of the cell.

Rheology

Rheology measurements were performed with a
AR2000ex stress-controlled rheometer, using a cone-
plate geometry with 20 mm diameter, 2◦ cone angle and
0.054 mm gap. A solvent trap was used to minimise
solvent evaporation during the measurements. The tem-
perature was set to 20 ◦C and controlled within ±0.1
◦C via a standard Peltier plate. The effects of sample
loading and aging were minimized by performing a
standard rejuvenation procedure before each test: di-
rectly after loading, we performed a dynamic strain
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2

0

g(
r)

5.04.03.02.01.00.0

r/dl

FIGURE 2. Radial distribution function g(r) of the large
spheres, determined using confocal microscopy. The total vol-
ume fraction of the samples is φ = 0.61 and the relative volume
fractions of small particles are xS = 0, 0.1, 0.3, 0.5, 0.7, 0.9 (top
to bottom). Data are shifted along the vertical axis for clarity.

sweep, i.e. applied oscillatory shear to the samples
with a frequency ω = 1 rad/s and an increasing strain
amplitude until the sample was flowing. Before each
measurement, flow of the sample was induced applying
oscillatory shear at strain γ = 300%. Shear was applied
for the time needed to achieve a steady-state response,
i.e. the storage modulus G′ and the loss modulus G′′
become time-independent, typically 200 s. Successively,
the linear viscoelastic moduli were measured at 0.1%
≤ γ ≤ 0.5% (depending on sample) as a function of time
to monitor reformation of structure, until the moduli
reached a time-independent value, typically after 100 s to
900 s (depending on sample). After this, the experiment
was started immediately.

RESULTS AND DISCUSSION

Quiescent Structure

To understand mixing-induced changes on the cage
structure of a one-component glass, we used confocal
microscopy to determine the radial distribution functions
g(r) of large spheres, the only species which is fluores-
cently labeled and therefore visible (Figs. 1 and 2).

The g(r) for xs = 0 is typical of a glass-forming one-
component suspension with size polydispersity. It shows
a pronounced correlation peak at r ≈ dl , correspond-
ing to the highest probability of finding particles in the
first-neighbour shell, and additional peaks at larger r re-
lated to particles in the successive neighbour shells. For
a small volume fraction of small particles (xs = 0.1,
φl = (1 − xs)φ = 0.549) these features remain, but in
addition a small shoulder to the right of the first max-
imum is observed. This indicates a perturbation of the



cage formed by the large spheres. When increasing xs to
0.3 (φl = 0.427), the height of the first-neighbour peak
decreases, which indicates dilution (also evident in Fig.
1), and that some particles formerly constituting the cage
are located at larger distances. These particles are found
at distances dl + ds (where the shoulder was observed
at xs = 0.1) and dl + 2ds, as seen from the correspond-
ing peaks in g(r). This implies that small particles are
located in between large particles and hence loosen the
cage structure. In line with this observation the layering
of large spheres only extends to the third neighbour shell.
At xs = 0.5 (φl = 0.305) particles are mostly located at
distance dl + ds and also the probability of finding parti-
cles at dl + 2ds is increased. Moreover, additional peaks
at dl + nds are visible. This indicates that at xs = 0.5 a
first neighbour shell of large spheres does no longer sur-
round large particles (Fig. 1), and a transition to a cage
of small spheres takes place. This is consistent with the
following geometrical argument: Each small sphere of
radius Rs projects on a sphere of radius Rl = Rs/δ an
angle θ = 2arcsin(1/(1+1/δ )). The maximum packing
of small spheres having the centers separated by this an-
gular distance, i.e. covering the surface area of a large
sphere, can be calculated as N = 120 [19]. At xs = 0.5
the number fraction of small particles for each big parti-
cle is ξs/ξl = xs/δ 3(1− xs) = 125, i.e. on average each
large particle is covered by small particles for xs = 0.5
and hence the first neighbour shell and cage of large par-
ticles disappear. At xs = 0.7 (φl = 0.183) correlations at
distances dl +nds dominate and layering beyond the sec-
ond neighbour shell vanishes due to the pronounced di-
lution of the large spheres (Fig. 1). Correlations are fur-
ther reduced at xs = 0.9 (φl = 0.061) due to the increased
dilution of the large spheres (Fig. 1). From the evolu-
tion of the radial distribution function with increasing xs
one can therefore conclude that the small spheres occupy
an increasingly larger fraction of the free volume in be-
tween the large spheres, inducing a distortion of the cage
of large spheres until a transition to a system dominated
by the cage of small spheres is observed.

Quiescent Dynamics

To explore the effect of the structural changes dis-
cussed in the previous section on the microscopic dy-
namics, we investigate the mean squared displacements
(MSDs) of the large particles, δ r2

l , as a function of
xs (Figure 3). The system of only large spheres (xs =
0.0) presents an MSD which, within the accessible time
range, shows no long-time diffusion, i.e. glassy dynam-
ics. Moreover, the plateau of the MSD corresponds to
a localisation of the particles on distances of the order
νl(xS = 0) ≈ 0.1dl, which is typical for a cage in a one-
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FIGURE 3. Mean squared displacements δ r2
l of the large

spheres, normalised by their diameter squared (d2
l ), determined

using confocal microscopy. The total volume fraction of the
samples is φ = 0.61 and the relative volume fractions of small
particles are xS = 0.0 (◦), 0.1 (�), 0.3 (�), 0.5 (
), 0.7 (�), 0.9
(
).

component glass. The time-dependence of the dynam-
ics is similar for xs = 0.1, but the localisation length is
slightly larger. This reflects the small perturbation of the
cage structure (Figure 2). For xs = 0.3 a significant accel-
eration of the dynamics is observed, for times t > 10 s the
particles are no longer localised and the MSD increases
sub-linearly with t. It is expected that diffusive dynam-
ics is established beyond the accessible time scale. The
acceleration of the dynamics is related to the consider-
able distortion of the cage of large spheres induced by
the presence of the small spheres, which increase the mo-
bility. A comparable time-dependence of the MSD is ob-
tained at xs = 0.5, but the displacements are smaller, in-
dicating a stronger localisation. A stronger localisation
can be associated with the transition to the cage structure
of small spheres, as also evidenced in the g(r). Note that
the caging of the small spheres is apparently incomplete
yet, and therefore the large particles are not localised.
For the two largest values of xs the large spheres are
localised by a cage of small spheres. Accordingly their
MSD again show no diffusion. The localisation length
is of the order of νl(xs ≥ 0.7,0.9) ≈ 0.02dl, i.e. about
δνl(xS = 0), which indicates that the particles are indeed
localised on the length scale of the cage of small parti-
cles. Note that the plateau values of the MSDs of these
samples approach the resolution limit of the setup.

Linear Viscoelastic Moduli

In order to establish a link between the microscopic
structure and dynamics of the samples and their me-
chanical response, we measured the frequency depen-
dent linear viscoelastic moduli of the mixtures (Figure
4). The moduli are reported in units of energy density
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FIGURE 4. Storage modulus G′ (full symbols) and loss
modulus G′′ (open symbols), in units proportional to the energy
density (kBT/〈R3〉), as a function of oscillatory Peclet number
Peω , for samples with φ = 0.61 and relative volume fractions
of small particles xS = 0.0 (◦), 0.1 (�), 0.3 (�), 0.5 (
), 0.7
(�), 0.9 (
), 1.0 (�).

〈nkBT 〉 ∼ kBT/〈R3〉, with n particle density and:

1
〈R3〉 =

1
R3

L

[
xS
( 1

δ 3 − 1
)
+ 1

]
(1)

This representation removes the trivial effect of differ-
ent average particle sizes for different values of xs on
the absolute values of the shear moduli. The data are
shown as a function of the oscillatory Peclet number
Peω = τB/τω = (6πηω〈R3〉)/kBT which represents the
ratio between the period of oscillation, τω = 1/ω , and
the Brownian time, τB = 〈R2/D0〉, where D0 is the free
diffusion coefficient.
At large values of Peω , for all samples G′′ is larger than
G′. This response can be associated to the in-cage dy-
namics, i.e. the short time diffusion of a particle in its
cage. In contrast at smaller frequencies, i.e. longer times,
the structural relaxation associated with long-time diffu-
sion allows us to distinguish the response of a glass from
that of a fluid.
The one-component systems (xs = 0.0,1.0) show the re-
sponse of a glass. The storage modulus G′ is larger than
the loss modulus G′′ and no crossing of the two mod-
uli can be observed at low Peω , indicating that no struc-
tural relaxation is observed in the accessible frequency
window. At xs = 0.1 the Peω (frequency) dependence
of the viscoelastic moduli is similar to that of the one-
component systems, i.e. still characteristic of a glass, but
the viscoelastic moduli are reduced by more than an or-
der of magnitude, despite the only limited structural de-
formation of the cage induced by the presence of the
small spheres. This is however consistent with the larger
localisation length observed in the dynamics, which in-
dicates a looser cage structure. At xs = 0.3 the reduc-
tion of the shear moduli is even more pronounced than at
xs = 0.1. Moreover G′ and G′′ become similar, indicating
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FIGURE 5. (a) Height of the first, g1max (black, full sym-
bols), and second, g2max = g(dl + ds) (red, open symbols),
peaks of g(r) (Figure 2), (b) Localisation length νl in units
of dl , estimated from MSDs at t = 4.5s (Figure 3) (c) Storage
modulus G′(Peω = 0.1) (black, full symbols, left axis) and ratio
G′/G′′ at the same Peω (red, open symbols, right axis), in units
of energy density kBT/〈R3〉) and (d) theoretical prediction [23]
for changes in φRCP at δ = 0.175 as a function of xs.

a weaker solid-like response. This is consistent with the
large structural distortion of the cage manifested in the
radial distribution function (Figure 2) and with the faster
dynamics (Figure 3). Compared to xs = 0.3, at xs = 0.5
the moduli at large Peω are bigger, but smaller at low
Peω , which is due to the stronger frequency dependence
of the shear moduli. In addition, G′ and G′′ have almost
identical values. Such a response is similar to that ob-
served for depletion driven colloidal gels in the vicinity
of the gelation boundary [20, 21, 22]. Further increas-
ing xs to 0.7 and 0.9, the moduli become larger and for
xs = 0.9 approach the values of the one-component sys-
tems. This is consistent with a transition to a system
dominated by cages formed by the small particles and
with structure and dynamics of these samples. Note that
the residual distortion induced by the large spheres leads
to a reduction of the overall elastic response of these
samples.
The trends discussed above are summarized by plotting

G′ and the ratio G′/G′′ as a function of xs, at a fixed value
of Peω = 0.1 (Figure 5c). The ratio G′/G′′ attains the



smallest value at xs = 0.5, which could reflect a transi-
tion from a system dominated by cages formed by large
spheres to a system dominated by cages formed by small
spheres. This interpretation is supported by the trends of
the heights of the first and second peaks of g(r) (Figure
5a): Between xs = 0.3 and xs = 0.5 the first peak strongly
drops and then remains nearly constant for larger xs, in-
dicating the disappearance of the first neighbor shell of
large particles, i.e the large spheres cage. The second
peak reaches its maximum at xs = 0.5, corresponding to
formation on average of a shell of small particles around
each large particle, and then decreases for larger values
of xs, due to the further intercalation of small spheres in
between two large spheres, which leads to caging of the
small spheres. In contrast, the elasticity of the samples,
represented by G′, reaches a minimum at xs = 0.3. This
could be explained by the larger localisation length of
the large spheres at xs = 0.3 (Figure 5b). Furthermore,
changes in G′ are considerably larger in systems with
a larger volume fraction of large spheres. This can be
rationalized by considering the effects of the inclusion
of the second component on the structure of the sys-
tem in the two cases: In systems at small xs, the small
spheres can be packed in the free volume in between the
large spheres, including the free volume within the cages.
This deforms the cage and shifts random close packing
(Figure 5d, data for δ = 0.175 taken from [23]). On the
other hand, addition of large spheres to a system of small
spheres only affects the order beyond the first shell, i.e.
beyond the cage, since the large spheres cannot fill the
space in between the small spheres. This results in struc-
tural heterogeneity rather than cage deformation, and in a
small shift of random close packing (Figure 5d, xs > 0.5).

Dynamics under shear

We investigated the effect of shear on the motions of
large particles in a sample with a major relative volume
fraction of small spheres (xs = 0.9). The mean squared
displacements δ r2

l of large particles were determined in
the quiescent and steady state of shear, for two different
shear rates γ̇ . For the applied shear rates, the time scale
introduced by shear, 1/γ̇, is considerably longer than the
Brownian time τB associated with the short-time diffu-
sion of both large and small spheres. This is quantified
through the Peclet number Peγ̇ =(6πηγ̇〈R3〉)/kBT . Both
time scales are smaller than the structural relaxation time
of the system, which diverges, although activated pro-
cesses typically lead to diffusion at long times [24].
The velocity profiles obtained in the steady state of shear
are shown in figure 6. They were obtained by determin-
ing the velocity of the particles from their trajectories.
The zero-velocity plane is located at about 15 μm into
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FIGURE 6. Average velocity of the large spheres as a func-
tion of position z in the gap, for sample with a relative volume
fraction of small spheres xs = 0.9 and Pel

γ̇ = 4.2×10−1 (main
plot) and 6.7×10−2 (inset). Arrows indicate the location of the
plane where the dynamics were measured.

the sample for both shear rates. The velocity profiles
show a larger velocity gradient below the zero-velocity
plane than above. Within each band though the velocity
profile is linear, indicating laminar flow. For the higher
shear rate the slower band corresponds to γ̇ � 0.06 s−1,
while the faster band to γ̇ � 0.25 s−1. The weighted av-
erage γ̇ � 0.117 s−1 agrees within uncertainties with the
expected value of γ̇ � 0.120 s−1. Similarly for the slower
shear rate the slower band corresponds to γ̇ � 0.0095 s−1

and the faster one to γ̇ � 0.041 s−1, with an average of
0.017 s−1. The formation of the two bands might be due
to the different roughness of the particles coated surface
of the bottom plate and the smooth metallic surface of
the cone. The dynamics under shear were determined
in a velocity-vorticity plane within the slower bands for
both shear rates, corresponding for the large spheres to
Pel

γ̇ = 4.2×10−1 and 6.7×10−2, and at about z = 27 μm
in the sample (arrows in Figure 6).
The results of measurements with the shear cell setup

are reported in Figure 7 as MSDs vs. strain γ = γ̇t. The
strain axis for the quiescent MSD was obtained using
the faster shear rate γ̇ � 0.06 s−1. The quiescent dynam-
ics show a time dependence similar to that obtained us-
ing the other confocal microscope setup (compare fig-
ures 7 and 3): particles are localised on the experimen-
tally accessible time window and no long-time diffusion
is observed. One can observe though that the localisa-
tion length is larger for the measurements with the shear
cell setup. This might be attributed to the combination of
two factors [25]: the larger noise level of the multi-beam
VT-infinity confocal microscope, which arises from the
cross-talk of the fluorescence emission from many dif-
ferent particles simultaneously excited; the smaller mag-
nification (63x instead of 100x) and the larger pixel size
(0.25 μm compared to 0.115 μm), which increase the
uncertainty in the determination of particle coordinates.



Note also that, in order to compare to measurements un-
der shear, the quiescent MSDs are measured in a two-
dimensional plane instead of a three dimensional volume
as in the other setup. Application of a slow shear rate,
corresponding to Pel

γ̇ = 6.7×10−2, induces a significant
acceleration of the non-affine dynamics of the large par-
ticles, as shown in figure 7: The particles are initially lo-
calised on the same length scale as in the quiescent state
but become delocalised at γ ≥ 6 %, with the MSD in-
creasing first sub-linearly and then linearly with γ over
the remaining range of measured times. The final linear
increase of δ r2

l sin t (γ ∝ t) indicates diffusive behavior.
At the larger shear rate (Pel

γ̇ = 4.2× 10−1) the particle
dynamics first show localisation on a length scale smaller
than in the quiescent state and for γ > 3 % the MSD in-
creases more than linearly with time t and might at larger
γ tend to normal diffusion. For the smaller shear rate, the
cage-deformation introduced by shear enables the ini-
tially caged particles to diffuse, resulting in the observed
acceleration of the average single-particle dynamics and
glass melting. The larger shear rate is sufficiently large
to possibly induce cage constriction at short times result-
ing in the lower localisation length of the MSD. More-
over, the observed super-diffusive behavior could result
from the transition from highly constrained in-cage mo-
tions to out-of cage shear induced diffusive motions. The
observed behavior is similar to the one which occurs in
one-component colloidal glasses and dense fluids under
application of a constant shear rate, as shown in experi-
ments [26, 27, 28, 29, 30], simulations [31, 27, 30] and
Mode-Coupling theory [27, 30]. In particular, a link be-
tween shear-induced cage break up and acceleration of
the dynamics has been found [29]. Upon application of
shear, the cage increasingly deforms, until the maximum
elastically sustainable deformation is achieved, where a
stress overshoot is observed in rheology, and the cage
opens, allowing for diffusion in the steady state of shear
where residual structural anisotropy is observed. Before
steady state is achieved, super-diffusion is observed at
the transition from caging to diffusion, corresponding to
cage yielding. When the shear rate becomes sufficiently
large, cage constriction is continuously induced by shear
and a super-diffusive regime is observed in the steady
state [29], similar to what is observed in the mixture
for the larger shear rate. Note that for xs = 0.9 the cage
being deformed is that composed of small spheres. The
Pes

γ̇ = δ 3Pel
γ̇ values for the small spheres are 5.4×10−4

and 3.4×10−3 for the slower and faster shear rates re-
spectively. Cage constriction effects are typically ob-
served for Peγ̇ > 0.1 in one-component glasses [29].
For glasses composed by only one species of particles
the long-time diffusion coefficient DL in the steady state
of shear is dominated by the time scale introduced by the
shear rate and scales as γ̇0.8 [26, 31]. The scaling clearly
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FIGURE 7. Mean squared displacements δ r2
l of the large

spheres as a function of strain γ = γ̇t, in units of the squared
large spheres diameter d2

l , determined by confocal microscopy
for sample with a relative volume fraction of small spheres
xs = 0.9, in the quiescent state (�) and in the steady state of
shear at Pel

γ̇ = 6.7×10−2 (◦) and 4.2×10−1 (�). The MSDs
under shear only contain non-affine particle motions. The strain
axis for the quiescent state was calculated using the lower shear
rate γ̇ � 0.06 s−1.

does not hold in this case, since the values on the x-axis
scale with γ̇ . The ratio between the DL values for the two
applied shear rates apparently scales with a larger expo-
nent of approximately 1.6, which could be related to the
peculiar properties of the mixture.

CONCLUSIONS

We presented experimental results on the structure, dy-
namics and viscoelasticity of glasses formed by binary
colloidal mixtures with size ratio δ = 0.2 and different
mixing ratios. Changes in the properties of these glasses
as a function of mixing ratio can be rationalized in terms
of a transition from caging of the large spheres to caging
of the small spheres. In comparison to a glass com-
posed of only large spheres, mixing a large fraction of
large spheres with a small fraction of small spheres in-
duces pronounced changes in the glass state. The cage of
large spheres is deformed due to the inclusion of small
spheres in the free volume between the large particles.
This loosening of the cage results in increased mobil-
ity of the large particles and an acceleration of their dy-
namics. Correspondingly a strong decrease of the elastic
modulus is observed. Further increasing the fraction of
small spheres, the cage distortion increases as more and
more small particles fill the free volume. This is consis-
tent with random close packing occurring at a larger total
volume fraction [23]. It also results in a further speed-
ing up of the dynamics and reduction of the elastic mod-
ulus. At xs = 0.5 on average each large sphere can be
completely covered by small spheres and leads to a dis-



ruption of the cage structure of the large spheres. Con-
comitantly the response of the system starts to be dom-
inated by caging of the small spheres. This is seen as a
tighter localisation of the large spheres and a modulus
which starts to increase again. This trend continues with
increasing xs. In systems dominated by the cage of the
small particles, the large spheres reduce the order on the
intermediate length scale beyond the first shell, i.e. the
cage. If shear is imposed on a mixture where caging by
the small component dominates the response, the initially
frozen dynamics become diffusive in the experimental
time-window at small shear rates, and super-diffusive at
larger shear rates. A stronger localisation at short times
is also observed at larger shear rates. This indicates that
application of shear induces melting of the glass by fa-
cilitating out-of-cage diffusion through elongation and
deformation of the cage, and cage constriction at large
shear rates, similar to recent results on one-component
glasses [29, 30].
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Yielding of binary colloidal glasses

T. Sentjabrskaja,a E. Babaliari,b J. Hendricks,a M. Laurati,*a G. Petekidisb

and S. U. Egelhaafa

The rheological response, in particular the non-linear response, to oscillatory shear is experimentally

investigated in colloidal glasses. The glasses are highly concentrated binary hard-sphere mixtures with

relatively large size disparities. For a size ratio of 0.2, a strong reduction of the normalized elastic

moduli, the yield strain and stress and, for some samples, even melting of the glass to a fluid is observed

upon addition of the second species. This is attributed to the more efficient packing, as indicated by the

shift of random close packing to larger total volume fractions. This leads to an increase in free volume

which favours cage deformations and hence a loosening of the cage. Cage deformations are also

favoured by the structural heterogeneity introduced by the second species. For a limited parameter

range, we furthermore found indications of two-step yielding, as has been reported previously for

attractive glasses. In samples containing spheres with more comparable sizes, namely a size ratio of 0.38,

the cage seems less distorted and structural heterogeneities on larger length scales seem to become

important. The limited structural changes are reflected in only a small reduction of the moduli, yield

strain and stress.

1 Introduction

Many particle dispersions used in applications, for example
paint, ink, cement, ceramics or foodstuffs, are characterised by
a size distribution of the dispersed phase. Even if a mono-
disperse system is desirable, it is oen difficult to avoid a
distribution of particle sizes. Furthermore, through the size
distribution, the properties of a dispersion, such as its rheo-
logical behaviour, can be tuned, for instance to meet processing
or application needs. To investigate the effect of a distribution
of sizes, binary mixtures of spherical colloidal particles repre-
sent the simplest model system.

The interactions and the phase behaviour of binary colloidal
hard-sphere mixtures have been studied by theory1–5 and
simulations.4–6 In equilibrium, binary colloidal mixtures exhibit
a wider uid–solid coexistence region than one-component
systems, which has been thoroughly investigated in experi-
ments.7–10 Additionally, formation of complex crystalline struc-
tures through co-crystallisation of the two species is predicted
and observed.11–14 For size ratios d ¼ RS/RL ( 0.2, where RS and
RL are the radii of the small and large spheres, respectively,
theory expects uid–uid and solid–solid coexistences,4 which
are also observed in simulations15 but not yet in experiments. In
addition, non-equilibrium glass states have been predicted
theoretically16–19 and observed experimentally.9,20 In particular,

Mode Coupling Theory (MCT) predicts that, at constant total
volume fraction f, a one-component glass is melted upon
addition of a sufficient amount of spheres with a different size
(d # 0.65).16,17 This is consistent with the faster structural
relaxation experimentally observed in samples with d z 0.6, f
z 0.58 and intermediate mixing ratios.20 This leads to a strong
decrease of the viscosity, which has been determined in exper-
iments and simulations for a sufficiently large degree of mix-
ing.21,22 Recent MCT results17 furthermore predict that for a
large size disparity, d # 0.2, different glass states exist, which
are distinguished by caging of one or both species, or by
depletion induced bonding of the large spheres. The latter, for
which some experimental evidence exists for d z 0.1,9 is
expected to show similarities with attractive glasses as those
observed in colloid–polymer mixtures.23,24

Similar to the interactions and the phase behavior, also the
rheological response of binary mixtures changes upon varying
the size and mixing ratios. This has been studied experimen-
tally,21,25–31 theoretically32–34 and by simulations.35–37 In the
granular limit, i.e. when Brownian motion becomes irrelevant,
binary mixtures with a size ratio d ¼ 0.2 exhibit a minimum of
the viscosity at a relative volume fraction of small spheres, xS z
0.4,38 which is known as the Farris effect. In contrast, for
colloidal mixtures a minimum of the viscosity is only observed
at high total volume fractions f $ 0.4 and at a mixing ratio
which depends on f and d.34 With decreasing d, the minimum
occurs at smaller fractions of small spheres, which results from
a balance between the more efficient packing, since small
spheres can ll the space between large spheres, and the
depletion attraction induced between large spheres.34
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Nevertheless, the rheology of concentrated binary colloidal
mixtures has hardly been studied,21,39 especially of spheres with
signicantly different sizes, i.e. small size ratios d.

Here we investigate the rheology of dispersions containing
binary mixtures with small size ratios, d z 0.2 and 0.38, over a
broad range of total volume fractions f and mixing ratios,
characterized by the relative volume fraction of small spheres xS
¼ fS/f. Their response to oscillatory shear is studied with a
particular focus on the non-linear viscoelastic properties, while
the linear response, together with the structure and dynamics at
rest, will be discussed in detail elsewhere.40,41 In the present
case of spheres with signicantly different sizes (i.e. small d),
the non-linear response contains contributions related to the
different length scales present in the samples. This is similar to
colloid–polymer mixtures, where systems with attractive inter-
actions, such as gels or attractive glasses, are characterized by
two yielding processes.42–45 The two yielding processes reect
the breaking of inter-particle ‘bonds’ and cluster breaking, in
the case of gels, or irreversible cage deformation, in the case of
attractive glasses.44,45 The yielding behaviour of attractive
systems is hence different from the one of repulsive systems,
which typically only show one yielding mechanism related to
cage distortion.42,43,46,47

2 Materials and methods
2.1 Rheology

Rheological measurements were performed with an AR2000ex
stress-controlled rheometer, and ARES G2 and ARES strain-
controlled rheometers from TA instruments, using cone and
plate geometries of diameter D ¼ 20 mm, cone angle a ¼ 2�

and gap d ¼ 0.054 mm (AR2000ex), D ¼ 25 mm, a ¼ 2� and
d¼ 0.048mm (ARES G2) and D¼ 25mm and 50mm, a¼ 2� and
d¼ 0.048 mm (ARES). Solvent traps were used in all rheometers
to minimize solvent evaporation. The temperature was set to
T ¼ 20 �C and controlled within �0.1 �C via a standard Peltier
plate (AR2000ex, ARES) or an advanced Peltier system (ARES
G2). The effects of sample loading and aging were reduced by
performing the following rejuvenation procedure before each
test. Directly aer loading, a dynamic strain sweep was per-
formed to estimate the strain amplitude g at which the system
starts to ow, i.e. oscillatory shear was applied to the samples
with frequency u ¼ 1 rad s�1 and increasing g until the sample
showed a liquid-like response. Then, before each measurement,
ow of the sample was induced by applying oscillatory shear at a
sufficiently large strain. In the case of the size ratio d¼ 0.20, g¼
300% was used for all samples. For d ¼ 0.38 and d ¼ 0.19,
different values 200% # g # 1000% were used depending on
the volume fraction f and relative volume fraction of small
particles xs. Shear was applied until a steady-state response, i.e.
a time-independent storage G0 and loss modulus G00, was ach-
ieved, which typically took about 200 s. Subsequently the
samples were sheared at 0.1% # g # 1.5% (depending on the
sample) until the linear viscoelastic moduli reached a time-
independent value, typically aer 100 s to 900 s (depending on
the sample). This indicated that no further structural changes
occurred and hence a reproducible state of the sample was

reached and a new measurement could be started. Note that
ageing effects might be present at longer waiting times.
Measurements with serrated and smooth geometries, respec-
tively, yielded comparable results suggesting the absence of
wall slip.

2.2 Samples

Polymethylmethacrylate (PMMA) spheres sterically stabilized
with a layer of polyhydroxystearic acid (PHSA)were dispersed in a
mixture of cycloheptyl bromide (CHB) and cis-decalin that
closely matched the density and refractive index of the colloids
(d ¼ 0.20 and 0.19) or in a mixture of octadecene and bromo-
naphthalene which minimizes solvent evaporation (d ¼ 0.38).
For samples in octadecene–bromonaphthalene, measurements
of the time evolution of the linear viscoelastic moduli indicate
the absence of signicant gravitational effects over times much
longer than typical measurement times. In the CHB–decalin
mixture, the particles acquire a small charge whichwas screened
by adding 4 mM tetrabutylammoniumchloride.48 In this case,
the colloids behave like hard-spheres in both solvent mixtures.
PMMA spheres with different average radii were used; RF

L ¼
880 nm (polydispersity 0.057) and RS1 ¼ 175 nm (polydispersity
0.150) to result in d ¼ 0.20; RNF

L ¼ 942 nm (polydispersity 0.06)
and the sameRS1 to result in d¼0.19;RL¼358nm(polydispersity
0.140) and RS2 ¼ 137 nm (polydispersity 0.120) to result in
d ¼ 0.38. The radii and polydispersities were determined from
the angular dependencies of the scattered intensity and the
diffusion coefficients, obtained using static and dynamic light
scattering, respectively, with very dilute colloidal suspensions
(fx 10�4). For the large spheres, a similar radius, RF

L¼ 885 nm,
has been estimated from the position of the rst peak of the
radial distribution function, which was obtained by confocal
microscopy.49 Confocal microscopy could be performed with
these large spheres, because they were uorescently labelled
with nitrobenzoxadiazole (NBD). Confocal microscopy was also
used to determine the volume fraction of a dispersion of these
spheres as follows. A random close packed sample was obtained
by sedimenting a dilute suspension in a centrifuge. The sedi-
ment, whose volume fraction was roughly estimated using
simulation results,50 was subsequently diluted to a volume
fractionfx0.4 and imagedby confocalmicroscopy. The imaged
volume was partitioned into Voronöi cells and their mean
volume was determined. The ratio of the particle volume to the
mean Voronöi volume provides an estimate of the volume frac-
tion of the sample, f ¼ 0.43. This allowed us to calculate the
volume fraction of the random close packed stock solution fL

RCP

¼ 0.68. The smaller spheres were too small to be imaged (thus
also not uorescently labelled). The volume fraction of their
sediment was estimated taking into account their poly-
dispersity:50 fS1

RCP x 0.68 for spheres with radius RS1 ¼ 175 nm
and fS2

RCPx fL
RCPx 0.67 for spheres with radii RS2¼ 137 nm and

RL¼ 358 nm. The value of the volume fraction is known to suffer
from relatively large uncertainties.51 Thus the value of f obtained
for the large sphereswasused as a reference value and the volume
fraction of the two batches containing the smaller particles was
adjusted using rheological measurements as follows. Linear
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viscoelastic moduli for samples at nominally equal volume frac-
tion (fx 0.58 for d¼ 0.20,fx 0.595 for d¼ 0.38,fx 0.61 for d¼
0.19) were measured in Dynamic Frequency Sweeps (DFS) at a
strain amplitude 0.1% # g # 1.5% (depending on sample). The
obtained storage moduli G0 and loss moduli G00 as a function of
oscillation frequency u are expected to agree for spheres of
different sizes but with the same volume fraction, if the moduli
are rescaled by the energy density � kBT/R

3 and the frequency by
the Brownian time sB ¼ R2/D0 with D0 ¼ 6phR the Stokes–Ein-
stein–Sutherland diffusion coefficient in the dilute limit52 and h

the solvent viscosity. The dispersion of small spheres was diluted
until its rescaled linear response matched that of the dispersion
of large spheres with the desired volume fraction, i.e. until an
equivalent rheological response in the linear regime was
obtained (Fig. 1). Furthermore, it was veried that thenormalised
elastic modulus G0 and its f dependence coincides, for all parti-
cles used, with that of a dispersion containing crystallising
colloids with a low polydispersity, whose volume fraction was
determined in the crystal–uid coexistence region.52 When illu-
minated by laser light, Bragg reections were not observed,
indicating the absence of crystallinity in the one-component
dispersions. By mixing appropriate amounts of the one-compo-
nent dispersions, samples with different total volume fractions f
and relative volume fractions of small particles xs ¼ fS/(fS + fL)
were prepared, where fS and fL are the volume fractions of small
and large particles, respectively. Samples with different xS and
twodifferent values off (for d¼ 0.20 and0.38) aswell asxed xS¼
0.65 and different values of f (for d ¼ 0.19) were investigated.

3 Results and discussion

In Dynamic Strain Sweep (DSS) experiments, a sinusoidal strain
is applied whose frequency u is constant but whose amplitude g

is increased in steps, starting in the linear viscoelastic regime
and progressing into the non-linear regime. The stress response
of the system is recorded as a function of strain amplitude g.
Fig. 2 shows the results of DSS measurements for samples with
size ratio d¼ 0.20, total volume fractions f¼ 0.61 and 0.58, and
different relative volume fractions of small spheres xS. Beyond
the linear viscoelastic regime the stress response in DSS
experiments signicantly deviates from a simple sinusoidal
form and can be decomposed into higher order (odd)
harmonics, as shown before for one-component hard-sphere
glasses.52 However, the G0 and G0 0 values shown in Fig. 2 corre-
spond to the rst harmonic contribution of the stress response.
To allow for a comparison of the different samples, measure-
ments were not performed at a constant frequency u, but at a
xed oscillatory Peclet number Peu ¼ usB. It is the ratio of the
Brownian time of the system, sB ¼ hR2/D0i, and the timescale
imposed by shear, i.e. the inverse of the frequency, su ¼ 1/u.
Thus, Peu ¼ h(6phR3)/(kBT)i u and

�
R3

� ¼ RL
3

"
xS

�
1

d3
� 1

�
þ 1

#�1

: (1)

We applied Peu ¼ 5.55 � 10�1 corresponding to 7.6 � 10�2

rad s�1 # u # 9.7 rad s�1, depending on xS.
The one component systems (xS ¼ 0 and 1) for both f show

the characteristic response of a hard sphere glass (Fig. 2a
and b).42,43,47,52 (Note that due to the much lower energy density
of the samples with the large spheres, their response is much
weaker and thus more affected by noise.) The storage modulus
G0 is larger than the loss modulus G00 in the linear viscoelastic
regime, with their values comparable to the ones obtained in
dynamic frequency sweeps (Fig. 1).40 The two moduli become
equal at a strain amplitude gy (highlighted with circles in Fig. 2),
which is identied with the yield strain of the glass. At the yield
strain gy and the corresponding yield stress sy, the local envi-
ronment of a particle is irreversibly rearranged, i.e. its cage
broken.42,43,46,47 For g > gy, G0 0 is larger than G0 and the system
starts to ow. In this regime, G0 0 shows a maximum which
indicates the largest energy dissipation and has also been
previously used to estimate the yield strain associated with
irreversible rearrangements of the cage.43,46 Upon increasing the
volume fraction from f ¼ 0.58 to 0.61, the linear viscoelastic
moduli and the yield strain gy increase. This is consistent with
previous studies,46,47,52 which found gy to increase with volume
fraction up to f z 0.62, beyond which it decreases due to the
approach toward random close packing.

Keeping the total volume fraction f constant, but changing
the composition to xS¼ 0.9, the storage and lossmoduli decrease
(Fig. 2). The decrease is not only due to the presence of large
particles and hence a lower energy density, but remains even if
the moduli are rescaled by the energy density hnkBTi � 1/hR3i.
This indicates a soening of the glass. A soer response is also
reected in a reduced yield strain gy and yield stress sy (circles in
Fig. 2). A further decrease of the relative volume fraction of small
spheres to xS ¼ 0.7 leads to an additional reduction of the
storage, G0, and loss, G0 0, modulus, yield strain gy and stress sy,
which indicates that the glass still becomes mechanically

Fig. 1 (top) Storage, G0 (full symbols), and loss, G0 0 (open symbols), moduli of
samples containing large ( ) and small ( ) spheres, respectively, as a function of
frequency u obtained by Dynamic Frequency Sweep measurements for (left) a
size ratio d ¼ 0.20 and total volume fraction f ¼ 0.58 and (right) d¼ 0.38 and f¼
0.595. (bottom) Same data in units proportional to the energy density, i.e. kBT/R

3,
and Brownian time sB ¼ D0/R

2. The strain amplitude was g ¼ 0.5% for d ¼ 0.20
and g ¼ 1.5% for d ¼ 0.38.
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weaker. For xS $ 0.7, comparable effects are found for f ¼ 0.61
and 0.58.

This is different for xS < 0.7. For the higher total volume
fraction f¼ 0.61, the samples with xS¼ 0.5 and 0.3 have a much
smaller G0 which, however, is still slightly larger than G0 0 and the
samples hence show a weak solid-like response in the linear
viscoelastic regime (Fig. 2a). This is consistent with gy and sy

values which are more than one and almost three orders of
magnitude smaller, respectively, than typical values of one-
component hard-sphere glasses at the same total volume frac-
tion. Hence the samples become very brittle and may ow
plastically at smaller strain amplitudes or stresses. A closer

inspection of the response of the sample with f¼ 0.61 and xS ¼
0.3 reveals a particularly interesting strain amplitude depen-
dence of the moduli (Fig. 3). The linear response ends already at
g z 0.2% (Fig. 3, arrow on the le), beyond which G0 decreases
smoothly up to gz 4%, where it shows a kink and subsequently
decreases with a power-law, while G00 shows a small maximum
(Fig. 3, arrow on the right). This response suggests the presence
of two length scales, most likely associated with the small and
large spheres, which both contribute to the yielding of the
system at this xS. The rst yielding at small strains g z 0.2%
might correspond to plastic rearrangements of cages formed by
small spheres. Cage distortion and yielding might be facilitated
by the shear-induced interaction with the large spheres, i.e.
contact forces between large and small spheres. Once these
cages are rearranged, the system is still prevented from owing
by the cages of large spheres which are only slightly deformed.
At strains of about 4% the cages of large spheres deform and the
system starts to ow. The ratio between the two yield strains,
0.2/4 x 0.04, corresponds to d/4 which suggests a non-trivial
scaling of the yield strains with the cage size (which would give a
factor d). This nding could also result from the moderate
polydispersity of the small spheres, which implies a distribution
of the effective size ratio and in particular accelerates the
dynamics,53 and could contribute to reduce the magnitude of
the maxima of G0 0, which are characteristic of the double
yielding phenomenon. A two-step yielding behavior has also
been observed for attractive glasses and gels.42–45 Compared to
f ¼ 0.61, at f ¼ 0.58 decreasing the relative volume fraction of
small spheres to xS ¼ 0.5 has an even stronger effect (Fig. 2b).
Within the whole examined range of strain amplitudes, G0 0 > G0

which implies uid-like behavior. Thus, the glass is melted.
Fluid-like behavior in the whole range of the measured g is also
observed for xS ¼ 0.3, with the response being similar to that
obtained for f¼ 0.61, except for the smallest g (Fig. 3). Samples

Fig. 2 Storage, G0 , (full symbols) and loss, G0 0 , (open symbols) moduli as a function of the strain amplitude g obtained in DSS measurements. The size ratio d¼ 0.20, the
total volume fraction (a) f ¼ 0.61 and (b) f ¼ 0.58, the relative volume fraction of small particles xS ¼ 0.0 ( ), 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ), 1.0 ( ) and Peu ¼
5.55 � 10�1 (corresponding to 7.6 � 10�2 rad s�1 # u # 9.7 rad s�1). Circles indicate the yield points and the red solid line indicates their xS-dependence (the dashed
line in (b) is used for fluid samples, which do not present a yield point).

Fig. 3 Storage, G0 , (full symbols) and loss, G0 0 , (open symbols) moduli as a
function of the strain amplitude g obtained in DSSmeasurements for size ratio d¼
0.20, a relative volume fraction of small spheres xS ¼ 0.3 and the total volume
fraction f ¼ 0.61 ( ) and f ¼ 0.58 ( ). Arrows indicate the two yielding points
observed for the sample with f ¼ 0.61.
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showing uid-like behavior (xS ¼ 0.3 and 0.5) do not present a
nite value of yield strain and stress, corresponding to the
missing circles in Fig. 2b. The melting of the glass is caused by
the larger free volume fraction created by the presence of small
spheres, as will be discussed in more detail later. This is similar
to the behaviour of one-component systems when f is
decreased below the glass transition.

Finally, the samples at both total volume fractions show the
response of a weak solid for xS ¼ 0.1. For f ¼ 0.61 the storage
modulus G0 is further reduced and becomes similar to G00,
indicating the proximity of a transition to the uid state. On the
other hand the yield strain gy and stress sy are slightly increased
(Fig. 2). In contrast, for f ¼ 0.58 the response again changes
qualitatively, which implies a reentrant behavior; the melting
and re-formation of a solid glass state as the fraction of small
spheres is reduced.

A second size ratio, d ¼ 0.38, was investigated also at two
total volume fractions f¼ 0.595 and 0.615 and different relative
volume fractions of small particles xS (Fig. 4). Starting from the
one-component systems and increasing the amount of the
second component, the storage modulus G0 decreases in the
linear viscoelastic regime indicating a soening of the glass,
similar to the ndings with d ¼ 0.20 (Fig. 2). However, in the
case of d ¼ 0.38, the minimum of G0 is located at xS z 0.5 for

both f. Note that in terms of the relative number of small
spheres xS ¼ nL/(nS + nL) ¼ xS[d

3 + xS(1 � d3)]�1, where nS and nL
are the number densities of small and large spheres, respec-
tively, the minimum of G0 is found for both size ratios at values
of xS > 0.85. Furthermore, the minimum in the xS-dependence is
much weaker for the yield stress sy and absent for the yield
strain gy (Fig. 4). Thus, no melting of the glass is observed for
d ¼ 0.38.

Having studied the rheological response as a function of the
relative volume fraction of small spheres xS, we now turn to the
dependence on the total volume fraction f for constant xS ¼
0.65 (d ¼ 0.19) and 0.5 (d ¼ 0.38) (Fig. 5). With decreasing f, the
storage modulus G0 decreases in the linear regime and
approaches the loss modulus G00 (Fig. 5a,b and e). Thus, with
decreasing f, the solid-like response becomes weaker. This is
particularly pronounced for d ¼ 0.19, which shows a uid-like
response for f ¼ 0.55, that is G00 > G0 in the linear viscoelastic
regime (Fig. 5a and e). The yield point, i.e. the yield strain gy and
stress sy, decreases with decreasing f for both values of d and,
for d ¼ 0.19 it disappears at f ¼ 0.55, i.e. the sample becomes
a uid (Fig. 5c and d). This is consistent with the response of

Fig. 4 Storage, G0 , (full symbols) and loss, G0 0 , (open symbols) moduli as a
function of strain amplitude g obtained in DSS measurements. The size ratio d ¼
0.38, (a) the total volume fraction f ¼ 0.615 and the relative volume fraction of
small particles xS ¼ 0.0 ( ), 0.08 ( ), 0.25 ( ), 0.5 ( ), 1.0 ( ) and (b) f¼ 0.595 and
xS ¼ 0.0 ( ), 0.25 ( ), 0.5 ( ), 0.75 ( ) and 1.0 ( ). The frequency u ¼ 1 rad s�1.
Circles indicate the yield points and the red solid line indicates their xS-
dependence.

Fig. 5 (a,b) Storage, G0 , (full symbols) and loss, G0 0 , (open symbols) moduli as a
function of strain amplitude g obtained in DSS measurements for (a) the size ratio
d ¼ 0.19, the relative volume fraction of small particles xS ¼ 0.65, total volume
fractions f ¼ 0.61 ( ), 0.59 ( ), 0.57 ( ) and 0.55 ( ). (b) d ¼ 0.38, xS ¼ 0.5, f ¼
0.615 ( ) and 0.595 ( ). Frequency u ¼ 1 rad s�1, corresponding to Peu ¼ 8.99 �
10�2 for d ¼ 0.19 and Peu ¼ 8.85 � 10�2 for d ¼ 0.38. (c) Yield stress sy, (d) yield
strain gy and (e) ratio G0/G0 0 in the linear viscoelastic regime (g¼ 0.5% and 1% for
d¼ 0.2 and 0.38, respectively), as a function of total volume fraction f for samples
of plots (a) ( ) and (b) ( ).
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one-component systems, whose yield strain gy also decreases
with decreasing f until a transition to a uid occurs.46,47,52

The decrease in gy is attributed to the fact that, upon
decreasing f, the cages become larger and looser and thus
increasingly smaller distortions of the cages are sufficient to
allow the particles to escape through Brownian motion. Finally,
in the uid phase (f ¼ 0.55), particles can leave the cage even
in the absence of shear. The sample with d¼ 0.19, xS ¼ 0.65 and
f ¼ 0.57 shows a dependence of G0 and G0 0 on the strain
amplitude g similar to that of the sample with d¼ 0.20, xS ¼ 0.3
and f ¼ 0.61 (Fig. 3), which again suggests the presence of two
yielding points. Note that this sample is a dense, slowly relaxing
uid and not a glass, according to the frequency dependence of
the linear viscoelastic moduli (data not shown). Nevertheless,
the similarity of the response of the two samples suggests that a
glass state similar to that of d ¼ 0.20, xS ¼ 0.3 and f ¼ 0.61, i.e.
characterized by a double yielding process and caging on two
length scales, might be obtained at f slightly larger than 0.57
for xS ¼ 0.65. This is in agreement with MCT predictions, where
a transition from a glass characterized by caging on one length
scale (that of the small spheres) at high f, to a glass charac-
terized by caging on two length scales at lower f, and successive
melting of this glass with further decreasing f, is expected at
comparable, constant xS.17,19

The results of the DSS measurements show a slight depen-
dence on frequency (Fig. 6). In the linear viscoelastic regime, the
storage modulus G0 increases with increasing frequency u, in
agreement with the results of our Dynamic Frequency Sweep
(DFS) measurements (Fig. 1) and as discussed in more detail
elsewhere.40 With increasing frequency u, the probed times
decrease and are progressively shorter than the structural
relaxation time. This leads to an increasingly more elastic
response. Also the yield strain gy and stress sy increase with

increasing Peu (Fig. 7b and c). This is similar to the behavior of
one-component colloidal glasses42,43,46,47 and can be understood
as follows. Shear-induced cage deformation facilitates the
escape of particles from their cage through Brownian motion,
which results in yielding.54 In oscillatory shear, the maximum
cage deformation is achieved at the largest excursion. In the
vicinity of this point a particle is most likely to escape from
the cage by Brownian motion. With increasing frequency, the
particles spend less time at the maximum (but more frequently)
and are therefore less likely to escape because the escape
probability depends rather on the balance between the resi-
dence time at the maximum and the Brownian time than on the
attempt rate.44,55,56 The reduced escape probability must be
compensated by a larger cage deformation. Thus, with
increasing frequency u, a larger strain and stress will be
required, and hence stored, before the cage breaks.

Our ndings are summarized in Fig. 7. For a given total
volume fraction f, adding a second component to the one-
component systems results in a weaker elastic response. For d¼
0.20, the glass soens particularly strongly and, if the sample is
sufficiently close to the glass transition (here f ¼ 0.58), even
melts and shows a uid-like response. This reduction in G0 is
not symmetric with respect to the one-component systems, but

Fig. 6 Storage, G0 , (full symbols) and loss, G0 0 , (open symbols) moduli as a
function of strain amplitude g obtained in DSS measurements. (left) The size ratio
d ¼ 0.20, total volume fraction (top) f ¼ 0.61 and (bottom) 0.58, relative volume
fraction of small spheres xS ¼ 0.9, and frequencies u ¼ 1 rad s�1 ( ), 5 rad s�1 ( )
and 10 rad s�1 ( ). (right) d ¼ 0.38, (top) f ¼ 0.615 and (bottom) 0.595, xS ¼ 0.5,
u ¼ 0.1 rad s�1 ( ), 1 rad s�1 ( ) and 10 rad s�1 ( ).

Fig. 7 (a) Storage modulus G0 in the linear viscoelastic regime (g ¼ 0.2%), (b)
yield strain gy estimated from the crossing point of G0 and G0 0 and (c) corre-
sponding yield stress sy as a function of the relative volume fraction of small
particles xS for samples with size ratio d ¼ 0.20 and total volume fraction f ¼ 0.61
( ) and f ¼ 0.58 ( ) and Peu ¼ 5.55 10�1, and d ¼ 0.38, f ¼ 0.615 ( ) and f ¼
0.595 ( ) and u ¼ 1 rad s.�1 (b) also contains results for Peu ¼ 2.75 10�1 ( ) and
Peu ¼ 5.55 10�2 ( ) for the sample with xS ¼ 0.9 and f ¼ 0.61. (d) Height of the
maxima of the pair distribution function g(r), gmax, corresponding to r ¼ 2RL ( ),
r¼ 2(RL + RS) ( ) and r¼ 2(RL + 2RS) ( ) and (e) localisation length L extracted from
the plateaus of mean squared displacements as a function of xS, for samples with
d ¼ 0.2 and f ¼ 0.61.40,41 Error bars are smaller than the symbols in all plots.
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is more pronounced for glasses mainly consisting of large
spheres to which a small fraction of small spheres has been
added. This is evident when comparing, for example, G0 for
samples with xS ¼ 0.1 and 0.9. This asymmetry might, however,
be due to the choice of the control parameter, here the relative
volume fraction of small particles xS. Instead, one could use the
relative number of small spheres, xS. Hence xS ¼ 0.1 corre-
sponds to xS ¼ 0.93 while xS ¼ 0.9 implies a relative number of
large spheres of only xL¼ 8.9� 10�4. This might explain why for
xS ¼ 0.9 the cage of small spheres is not signicantly affected by
the small number of large spheres. In contrast, for xS ¼ 0.1 a
large number of small spheres has to be accommodated by the
large spheres, which is likely to induce a signicant cage
deformation and to result in a signicant soening.

This is supported by confocal microscopy measurements of
the structure and dynamics of the large spheres,40,41 which are
summarized in Fig. 7d and e. Already at xS ¼ 0.1, the pair
distribution function g(r) does not only show a peak at r ¼ 2RL,
but also a shoulder at r ¼ 2 (RL + RS) indicating that the cage of
large spheres is deformed and that a signicant fraction of large
particles is separated by small particles. This cage deformation
leads to a slight increase in the particle localisation length
extracted from the plateau of mean-squared displacements, but
the dynamics of the system is still arrested.40,41 The reduced
localisation is thought to be responsible for the strong decrease
in yield strain. Rearrangement of the cage of large spheres
becomes even more pronounced as xS is increased to 0.3 and
0.5, as demonstrated by the increasingly larger reduction of the
peak at r¼ 2RL and the corresponding increase at r¼ 2 (RL + RS)
as well as the appearance of additional peaks at distances r ¼ 2
(RL + nRS), with n an integer number. For these xS, the dynamics
show diffusion at f ¼ 0.58 and sub-diffusion at f ¼ 0.61 with a
decreasing localization length suggesting that large particles
start to be localized more tightly by small spheres.40,41 During
this process of cage rearrangement, for f ¼ 0.58 the elasticity
decreases and the yield strain gy disappears due to the melting
of the glass, while at f ¼ 0.61 both G0 and gy start to increase
again signicantly above xS ¼ 0.3 possibly due to the emergent
caging and localisation of large spheres by small spheres. For
xS > 0.5 the localisation in cages of small spheres, i.e. the
transition to a different glass state, is accomplished: large
particles represent a dilute phase in a dense matrix of small
spheres and are localised on distances which are about a factor
d ¼ 0.2 smaller than at xS ¼ 0 and their dynamics are again
arrested.40,41 The tighter localisation and dynamical arrest
induce an increased G0 and gy toward the values of the one-
component glass of small spheres. A pronounced effect of size
and mixing ratios on the structure and dynamics of the glass
was also reported for 2D colloidal glass formers.57–61 In partic-
ular, changes in the relative content of the small component
and the size ratio have been reported to have pronounced
effects on the dynamics.58,59

For d ¼ 0.38, the soening is less pronounced and no
melting is observed. Moreover, the dependence of G0 on xS is
more symmetrical with respect to the one-component systems.
The smaller effect is attributed to the fact that the small parti-
cles have a reduced ability to occupy the interstitial space

between the large particles at this size ratio. The critical value dc
at which the small spheres cannot ll the space in between two
large ones in a dense packing of large spheres can be estimated:
in a group of 9 spheres arranged as in a body-centred cubic
lattice and in contact with each other, the centers of two spheres
along a face diagonal are separated by 2

ffiffiffi
2

p
RL and a small

sphere can ll the space le in between the large spheres if
RS # ð ffiffiffi

2
p � 1ÞRLz0:41RL, i.e. d # dc z 0.41, which is compa-

rable to d ¼ 0.38. Although in the glass states considered here,
ordered congurations are not expected, the size of the void
space might be similar. Thus the cage itself, i.e. the rst
neighbour shell, is not expected to be rearranged signicantly
and the soening hence appears to be caused by the heteroge-
neity of the cage on an intermediate length scale rather than a
more efficient packing. The weaker cage deformation induced
by the smaller packing ability at d ¼ 0.38 can also explain the
weaker reduction of the yield strain and stress observed at
intermediate mixing ratios for this d.

Instead of the relative volume, xS, or number, xS, fraction of
small particles, we now consider the distance to the two limiting
volume fractions of the glass state, corresponding to the glass
transition and random close packing. Mode Coupling Theory
(MCT) predicts17 that in mixtures the glass transition is shied
to higher total volume fractions. For example, for the size ratio d

¼ 0.38 the maximum volume fraction for the glass transition is
expected at xS z 0.4, which is consistent with the occurrence of
maximum soening in our experiments. The shi of the glass
transition could be related to the addition of small particles
with their larger mobility. This might favour structural rear-
rangements of the large spheres through collective motions and
lead to a glass with a reduced elasticity, i.e. G0. In mixtures, MCT
predicts qualitative changes of the relative particle mobilities,
associated with different glass states.

In addition, the more efficient packing in mixtures results in
an increased total volume fraction at random close packing,
fRCP. Theoretical predictions for fRCP are available for binary
mixtures of monodisperse hard spheres, with different size
ratios d and mixing ratios, i.e. xS.62,63 Based on the predictions
for fRCP, we calculate the available free volume ffree ¼ fRCP � f

as a function of xS and d. (Predictions for d ¼ 0.17 and 0.39 are
used for the experimental d ¼ 0.20 and 0.38, respectively.) Note
that the predicted values of fRCP were shied by the difference
between the value of fRCP in the monodisperse case (fRCP ¼
0.64) and the experimental values of fRCP (fRCP ¼ 0.68 for d ¼
0.2 and fRCP ¼ 0.67 for d ¼ 0.38, Section 2.2). With decreasing
free volume ffree, that is toward random close packing, the
storage modulus G0 is found to increase (Fig. 8). The depen-
dence of G0 on ffree indicates a common behavior for all d and f

investigated and can be approximately described by a power-law
dependence G0hR3i/kBT � (ffree)

�p, with p z 3. A similar power-
law dependence is observed for one-component hard-sphere
systems up to ffree # 0.1 (Fig. 8, dashed line).46,47,52,64 At larger
values of ffree the one-component system shows a sharper
decay.

We now consider the dependence of the yield point on the
free volume ffree. The xS-dependence of the yield strain gy and
stress sy is quite different for the two size ratios (Fig. 7b and c).
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In particular, both, gy and sy, show a much weaker dependence
on xS for d¼ 0.38 than d¼ 0.2. This can also be linked to the free
volume available for structural rearrangements. The depen-
dence of gy on ffree (Fig. 8b) indicates that toward small free
volumes, the yield strain saturates at an approximately constant
value gy z 20%, which agrees with the yield strain observed in
one-component glasses.42,43,52,64 At smaller values of ffree, i.e.
very close to RCP, which are not reached here, in the one-
component systems the yield strain decreases (Fig. 8). In
contrast, toward large ffree > 0.1 a strong decrease of gy is
observed (for samples with d ¼ 0.20 since only they reach large
enough ffree due to their large fRCP). This decrease indicates
that if a sufficiently large free volume, i.e. a sufficiently loose
packing, is present, signicant structural rearrangements can
be induced by small strains. The strong decrease of the yield
strain is observed for samples in which the small spheres
occupy the free space between the large spheres. The interca-
lation of small spheres in between large spheres possibly
induces a strong deformation of the cage. Similar effects have
been observed in mixtures of star polymers with signicant size
disparity.65 This supports our previous nding that yielding is
not only facilitated by the increase of free volume but also by
structural heterogeneities leading to cage deformation. Inter-
estingly, the strong decrease in the yield strain gy for ffree > 0.1
is not observed in one-component systems,46,47,52 since in this
regime the glass is melted. This is also consistent with G0

sharply decreasing for ffree$ 0.1 for the one-component system

(Fig. 8a, dashed line). We speculate that in the glass state
G0hR3i/kBT � (ffree)

�p with p z 3 for one and two-component
systems. The slight shi between our system (red line) and the
previous one-component data (dashed line) might be due to
different interactions mediated by different solvents.51 These
ndings show that at large values of ffree, a glass can still be
formed in the mixture (possibly due to attractions) while a
dense uid is observed in one-component systems.

4 Conclusions

The linear and non-linear response to oscillatory shear has been
studied in concentrated binary hard-sphere mixtures with large
size disparities, d z 0.20 and 0.38. In the linear regime, the
response of mixtures is soer than that of the corresponding
one-component systems at the same total volume fraction f, as
demonstrated by the smaller normalised storage modulus G0.
The soening is associated with a shi of random close packing
to larger total volume fractions, and thus a larger free volume
fraction ffree, which results from the more efficient packing in
two-component systems.62 Pronounced soening occurs for the
size ratio d¼ 0.20 and for samples containing amajority of large
spheres (xS ( 0.5). This indicates that soening is not only a
result of an increased free volume ffree but also of cage distor-
tions due to small particles lling the space between the large
spheres. In contrast, in the samples with a smaller size disparity
(d ¼ 0.38) and a majority of small spheres (xS T 0.5), we can
speculate that on average the cage structure should be poorly
affected due to the reduced ability of the small component to ll
space in between the large spheres, and heterogeneities are thus
only introduced beyond the rst neighbour shell, which results
in a weaker soening of the glass.

In the non-linear regime, the more efficient packing in the
mixtures affects the yielding behaviour. When the free volume
ffree is only slightly increased, yielding is characterised by a one-
step cage break-up, as in one-component systems. With
increasing free volume, yielding occurs at smaller deforma-
tions. Interestingly, at large values of the free volume, the
presence of a small but nite yield strain indicates the persis-
tence of a weak solid-like state in the mixtures, while at
comparable free volume a one-component system melts. This
occurs in systems where the small spheres can occupy the space
in between the large spheres, which suggests that the interca-
lation of small spheres induces a strong deformation and
loosening of the cage structure and thus contributes to the
reduction of the yield strain. Moreover, the yielding behaviour
could be affected by a possible transition between different
glass states, in particular if it is associated with the mobility of
the small spheres, which could facilitate yielding through
collective motions. In addition to the one-step yielding behav-
iour, we also found indications of a more complex two-step
yielding behavior for a sample with xS ¼ 0.3, f ¼ 0.61. The two
steps could be linked to the two different length scales present
in these samples, representing caging of small and large
spheres, respectively. While two length scales are present in all
mixtures, in most samples one of the two dominates, rendering
the second yielding insignicant.

Fig. 8 (a) Storagemodulus G0 in the linear viscoelastic regime and (b) yield strain
gy as a function of the free volume ffree for the same samples as presented in
Fig. 7, and for samples of Fig. 5 ( ). The red line in (a) shows a power-law fit
G0hR3i/kBT � ffree

�p, with p ¼ 2.7. The dashed lines represent data of one-
component hard-sphere glasses.52
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Transient dynamics during stress overshoots in
binary colloidal glasses

T. Sentjabrskaja,a M. Hermes,b W. C. K. Poon,b C. D. Estrada,c R. Castañeda-Priego,c

S. U. Egelhaafa and M. Laurati*a

We investigate, using simultaneous rheology and confocal microscopy, the time-dependent stress

response and transient single-particle dynamics following a step change in shear rate in binary colloidal

glasses with large dynamical asymmetry and different mixing ratios. The transition from solid-like

response to flow is characterised by a stress overshoot, whose magnitude is linked to transient

superdiffusive dynamics as well as cage compression effects. These and the yield strain at which the

overshoot occurs vary with the mixing ratio, and hence the prevailing caging mechanism. The yielding

and stress storage are dominated by dynamics on different time and length scales, the short-time in-

cage dynamics and the long-time structural relaxation respectively. These time scales and their relation

to the characteristic time associated with the applied shear, namely the inverse shear rate, result in two

different and distinct regimes of the shear rate dependencies of the yield strain and the magnitude of the

stress overshoot.

1 Introduction

A wide range of technical applications is based on glassy
materials, including polymeric,1 metallic2 and colloidal
systems.3 One-component dispersions of hard-sphere like
colloids have been intensively used as model systems to study
the glass transition.3 In this system, the volume fraction f is the
only control parameter. The glass state is driven by crowding:
for f > 0.58 particles are permanently localised in cages formed
by their neighbours, which they can only escape through acti-
vated processes.4 Colloidal glasses melt and ow under appli-
cation of shear.5–13 Shear-induced melting is associated with an
irreversible deformation of the cage9,13 and the onset of diffusive
dynamics.8 It occurs via a transient regime in which the system
yields. At yielding a stress overshoot is observed in the rheo-
logical response and reects maximal cage distortion in the
structure and a transient super-diffusive regime in the
dynamics.9,13–15

Many glassy materials used in applications are not one-
component systems, but composed of particles with different
sizes. This raises the question whether, and if so how, the shear-
induced melting process, in particular the transient macro-
scopic rheology and the microscopic structure and dynamics, is
affected by the presence of multiple components. The simplest

multi-component model system is a binary mixture of colloidal
hard spheres. The phase behavior of binary colloidal hard
spheres has been studied in experiments,16–20 simulations21–23

and theory.23–29 It depends on several parameters, namely the
total volume fraction, the size ratio and the mixing ratio of the
two components. Theory predicts that at small to moderate size
disparities the glass transition shis to larger total volume
fractions, similar to the effect of polydispersity.24,30–32 This
implies that for constant total volume fraction, glass melting
can be induced by mixing. This is reected in the acceleration of
the dynamics measured by light scattering16 as well as the
strong reduction of the viscosity observed by rheology.33 At large
enough size disparities multiple glass states are expected.30

They differ by the mechanism driving the arrest of the large
spheres, either caging or depletion-induced bonding, and the
dynamics of the small spheres, either dynamical arrest or
mobility.25,30 Some of these states have been observed experi-
mentally17–19 and in molecular dynamics simulations.21

The yielding behaviour of binary glasses under oscillatory
shear was recently studied for size ratios d ¼ Rs/RL ¼ 0.38 and
0.2,20 with Rs and RL the radii of the small and large spheres
respectively. At constant total volume fraction f, a decrease of
the yield strain and stress is observed at intermediate mixing
ratios, and is particularly pronounced for the larger size
disparity. This effect has been associated with the variation in
the free volume due to changes in the volume fraction of
random close packing, which also becomes more pronounced
at larger size disparities.

Here, we extend this study to explore the response aer
switch-on of a constant shear rate. In particular the link
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between the macroscopic non-linear rheology and the transient
single-particle dynamics is investigated using confocal micros-
copy. A stress overshoot and super-diffusive transient dynamics
is found to characterise yielding, similar to the behaviour of
one-component systems.9,13–15 However, in binary mixtures the
yield strain and magnitude of the overshoot depend in a
complex and different way on the shear rate and show a
dependence on the composition of the mixture. The composi-
tion determines the caging mechanism, localization length as
well as the short and long-time dynamics, including the degree
of super-diffusion.

The manuscript is structured as follows. Section 2 describes
the experimental systems and methods, namely simultaneous
rheology and confocal microscopy, as well as the simulations. In
Section 3 we rst present the equilibrium structure and
dynamics of the large particles in the mixtures and a resume of
the linear viscoelastic properties of the binary mixtures. Then
we discuss the results of the non-linear rheology and the
dynamics under shear before offering some conclusions in
Section 4.

2 Methods
2.1 Rheology

Rheological measurements are performed using an ARES G2
strain controlled rheometer (TA instruments) with a cone-plate
geometry (diameter 20 mm, cone angle 2�, truncation gap 0.054
mm). A solvent trapminimizes solvent evaporation. Rheological
measurements on colloidal glasses can be affected by loading
effects, shear history and aging. Therefore, before each test a
renjuvenation procedure is performed in order to obtain a
reproducible initial state. First, aer loading we perform a
dynamic strain sweep to estimate the yield strain gyield of the
system. Oscillatory shear at strain amplitude g¼ 300%[ gyield

is applied to induce ow and maintained until the viscoelastic
storage, G0, and loss, G0 0, moduli reach a stationary state, typi-
cally aer 200 s. Aerwards, oscillatory shear in the linear
viscoelastic regime (0.05% < g < 0.1%, depending on sample) is
applied until G0 and G0 0 become stationary, typically for times
200 s < t < 700 s, depending on the sample. The state charac-
terised by the stationary values of G0 and G00 thus represents the
initial reproducible state. The absence of wall slip is veried by
comparison with measurements obtained with roughened
geometries (data not shown).

2.2 Confocal microscopy under shear

Confocal microscopy measurements under shear are per-
formed with a confocal rheoscope, which is a combination of
an MCR301 WSP rheometer (Anton Paar) and a fast-scanning
VT-Eye confocal scanner (Visitech), mounted on a Nikon Ti-U
inverted microscope with a Nikon Plan Apo 60� objective (NA
¼ 1.40). Details of the setup can be found in previous work.34

We use a cone-plate geometry with diameter 50 mm, cone
angle 1� and truncation gap 0.10 mm. To minimise wall-slip
the cone is sandblasted, while the bottom plate, consisting of a
thin glass plate, is coated with PMMA particles of size

0.885 mm and 0.174 mm.35 A solvent trap is used to reduce
solvent evaporation. Images of the samples (512 � 512 pixels,
corresponding to about 48 mm � 48 mm for samples with 0.3 <
xs < 0.9, 51 mm � 51 mm for xs ¼ 0.0, and 53 mm � 53 mm for
xs ¼ 0.1) are acquired at a depth of 30 mm from the bottom
plate and at a distance of about 6 mm from the center. Time
series of 2D images are taken at a rate of 31 or 67 frames per
second, depending on the sample. Particle coordinates and
trajectories are extracted from the pictures using previously-
explained routines.36

2.3 Samples

We use suspensions of polymethylmethacrylate (PMMA)
colloids, sterically stabilized with polyhydroxystearic acid (PHS)
and dispersed in a solvent mixture of cis-decalin and cycloheptyl
bromide (CHB). The solvent mixture matches the density and
almost the refractive index of the particles. The charge that the
particles acquire in the CHB/decalin solvent is screened by
adding 4 mM tetrabutylammoniumchloride (TBAC).37 Under
these conditions the interactions in the system are hard-sphere-
like.38 For the most sensitive rheological measurements we use
particles with radii Rrheo

L ¼ 0.304 mm and Rrheo
s ¼ 0.063 mm, and

polydispersities of approximately 10% and 15%, respectively.
The size ratio of the mixture is drheo ¼ 0.207. The high energy
density of these small particles leads to a strong rheological
signal. The sample set corresponding to these particles is
referred to as RH in the following. For measurements on the
confocal rheoscope, a mixture of PMMA particles with radii
Rmic
L ¼ 0.885 mm (6% polydispersity) and Rmic

s ¼ 0.174 mm (15%
polydispersity) is prepared resulting in dmic ¼ 0.197. The large
spheres with radius Rmic

L are uorescently labelled with nitro-
benzoxadiazole (NBD) and can be observed with the confocal
microscope using a solid state laser with wavelength l ¼ 488
nm. This sample set is referred to as CO in the following. The
particle radii and polydispersities are determined by static and
dynamic light scattering with an uncertainty in the radius of
about 2%.

The volume fraction of the sediment of the large spheres is
determined by imaging the sample by confocal microscopy and
using the Voronoi construction to estimate the mean Voronoi
volume per particle. The procedure of determining the volume
fraction is described in detail in20 and leads to the estimate
fRCP
L z 0.68. A one-component sample with f ¼ 0.61 is

prepared by diluting the sediment. This sample is used as a
reference. The volume fractions of the samples containing the
small particles are adjusted in order to obtain comparable
linear viscoelastic moduli in units of the energy density 3kBT/
4pR3, where kB is the Boltzmann constant, T the temperature
and R the particles' radius, while multiplying the frequency by
the free-diffusion Brownian time s0 ¼ 6phR3/kBT, where h ¼
2.2 mPa s is the solvent viscosity. In this way we obtain samples
with comparable dynamics, according to the generalised
Stokes–Einstein relation.39 Samples with constant total volume
fraction f ¼ 0.61 and different compositions, namely fractions
of small particles xs ¼ fs/f, where fs is the volume fraction of
small particles, are prepared by mixing the stock solutions.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 6546–6555 | 6547
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2.4 Simulations

Event-driven molecular dynamics simulations are performed to
investigate the dynamics of binary hard spheres with the same
size ratio d ¼ 0.2 as in the experiments. To render simulations
with this size disparity feasible, we applied the double-cell
scheme,23 which uses a combination of large cells with a size
just above 2RL and small cells with a size just above 2Rs. This
allows us to compute long enough sequences of particle
congurations. Due to the nature of the hard-sphere potential,
the system is conservative and additionally the temperature is
constant. Thus, its evolution can be determined by calculating a
sequence of elastic collisions; the particles move in a straight
line before any collision. Given the positions,~ri, and velocities,
~vi, of each pair (i, j) of particles at time t, the collision time Dt is
determined by the physical solution (real and positive) of the
quadratic equation~rij

2(t + Dt)¼ [~rij(t) +~vij(t)Dt]
2¼ [(2Ri + 2Rj)/2]

2.
The set of collision times of each particle is stored in an ordered
list to monitor its trajectory with a nonuniform time step
sequence. In each collision, the change in the velocities of the
colliding particles is obtained by the energy and momentum
conservation laws as D~vi ¼ �2mjð~vij$~rijÞr̂ij=ðmi þmjÞ. Hence,
the next collision can be predicted. Thus, the simulations
provide particle trajectories, based on which the mean squared
displacement can be determined, as well as, e.g., the mean free
path l0 and the mean time between collisions, T short

s . With
increasing volume fraction, T short

s approaches zero and thus the
rate of collisions quickly grows. With our computing resources
we can investigate volume fractions f # 0.58, i.e. below the
experimental volume fraction. Experiments with f ¼ 0.61
(Fig. 2) and f ¼ 0.58 (ref. 40) indicate that the qualitative vari-
ations of the dynamics, quantied by the mean squared
displacements, as a function of mixing ratio are comparable for
the two volume fractions. We thus compare our experimental
ndings to simulation results for f ¼ 0.58. The simulations
cover 0.1# xs # 0.7 and the one-component limits xs ¼ 0.0 and
1.0. The numbers of large particles are 125 (xs ¼ 0.7), 250 (xs ¼
0.5), 500 (other xs) and according numbers of small particles.
The large and small spheres have the same mass density and
the two populations are monodisperse. The simulations start
with random particle congurations. At least 10 different runs
are averaged for each xs to reduce statistical uncertainties.

3 Results and discussion
3.1 Quiescent structure

Binary mixtures with a size ratio d ¼ 0.2, a total volume fraction
f¼ 0.61 and different compositions 0# xs # 1 are investigated.
The pair distribution functions g(r) of the large particles in the
quiescent state were determined by confocal microscopy
(Fig. 1). They indicate an amorphous structure for all xs. Similar
data were reported and discussed in detail in ref. 19. We thus
only recall the main ndings. The one-component glass of large
spheres shows a uid-like structure typical of a colloidal glass; a
main peak corresponding to the rst shell of nearest neigh-
bours at distance r ¼ 2RL (the caging particles) and additional
peaks indicating the successive shells of nearest neighbours.

Upon addition of small spheres, additional particle congura-
tions appear due to the intercalation of small spheres between
large spheres. While a small shoulder at r ¼ 2RL + 2Rs is already
visible for xs ¼ 0.1, peaks at this distance and also at r ¼ 2RL +
4Rs are observed for xs ¼ 0.3, which correspond to congura-
tions in which two large particles are separated by one or two
small particles, respectively (Fig. 1, dashed lines). This indicates
a loosening of the cage of large particles with increasing xs,
which leads to a transition in caging at xs ¼ 0.5, as indicated by
the disappearing rst peak at r ¼ 2RL and the pronounced peak
at r ¼ 2RL + 2Rs. Hence, at xs ¼ 0.5 the large spheres are prev-
alently caged by small spheres. Upon further increasing xs the
large particles, still caged by small particles, become increas-
ingly more dilute. Particle congurations in which small parti-
cles intercalate between large particles were not observed in
mixtures with larger d ¼ 0.67,41 in agreement with geometrical
arguments20 predicting a limiting value d # 0.41.

3.2 Quiescent dynamics

The mean squared displacement (MSD) of the large particles in
one direction is:

dy2(t) ¼ h(yi(t + t0) � yi(t0))
2ii,t0 , (1)

where t is the delay time, t0 a selected time along the trajectory
of particle i and h ii,t0 indicates the average over all particles i in
the eld of view and all times t0. It is determined from time
series of 3D stacks in the quiescent state before applying shear
(Fig. 2). For xs ¼ 0.0 and 0.1 the MSDs are at, indicating
localisation of particles in cages and absence of long-time
diffusion within the measurement window. The localisation
length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy2ðt1Þ
p

; with t1 the shortest delay time measured,
corresponds to that expected for a cage of large particles. For
xs ¼ 0.3 the large-particle dynamics become diffusive at long
times. Similarly, for xs ¼ 0.5 mobility is observed at long times

Fig. 1 Pair distribution function g(r) of large particles Rmic
L in mixtures

with f ¼ 0.61, d ¼ 0.2 and different compositions xs ¼ 0.0 ( ), 0.1 ( ),
0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). Data for xs > 0 are shifted vertically.
Dashed lines indicate particle–particle distances r ¼ 2(RL + Rs) and r ¼
2(RL + 2Rs), corresponding to configurations in which two large
particles are separated by one or two small particles, respectively.
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even though no diffusive regime is visible within the experi-
mental time window. In addition, the localisation length L is
reduced, indicating the presence of small particles around the
large particles, hindering their motions. This is consistent with
the pair distribution function of the large particles (Fig. 1),
which shows an increasingly more pronounced shoulder at a
distance corresponding to the sum of a large and small
particle.19,20 For larger fractions of small particles, xs > 0.5, the
long-time dynamics again slow down and particles continue to
become increasingly localised in the cage of small particles. This
transition in caging and the faster dynamics at intermediate
compositions have been observed previously for the same d.19

However, the acceleration of the dynamics in the present
mixtures is much more pronounced than at larger d.16,20,31,32,42,43

This could result from the melting of the cage of large spheres,
which accompanies the glass–glass transition observed at xs ¼
0.5 in our system. This appears to affect the particle dynamics
more than the smaller cage polydispersity inmixtures of particles
withmore comparable sizes. Furthermore, the dependence of the
MSD on xs can be related to the available free volume in the
mixtures, which can be estimated on the basis of the xs depen-
dence of the volume fraction of random close packing, fRCP.19,20

The intrinsic time scales of the samples can be obtained
from the corresponding short- and long-time diffusion coeffi-
cients. The short-time Brownian time of the small particles,
sshorts ¼ Rs

2/Dshort
s with the short-time diffusion coefficient

Dshort
s ¼ fD0,s. It is related to the free (dilute) diffusion coefficient

D0,s ¼ kBT/6phRs by the f-dependent factor f. In a one-compo-
nent system, f can be estimated by extrapolating the data in
Fig. 8 of ref. 44 to f ¼ 0.61, yielding f z 1/32. Similarly, the
short-time Brownian time of the large particles, sshortL ¼ sshorts /d3,
can be determined. For binary mixtures, the composition-
averaged short-time Brownian time in the dilute limit is
hsshort0 i ¼ 6phhR3i/kBT and at a volume fraction f we obtain
hsshorti ¼ hsshort0 i/f, where hR3i ¼ RL

3/[1 � xs(1 � 1/d3)] is the
number-averaged cube of the radius.

We studied the long-time dynamics using event-driven
molecular dynamics simulations of binary mixtures of hard-
spheres23 with the same size ratio d ¼ 0.2, but a reduced total
volume fraction f ¼ 0.58 to keep the simulation times reason-
able (Section 2.4). Although the simulations do not consider a
solvent and thus do not include Brownian motion at short
times, an effective short-time diffusion coefficient D0

s can be
determined; D0

s ¼ l0
2/T short

s with themean free path l0 andmean
free time T short

s .45 With this rescaling the ratio D*
s is equivalent

to that obtained in a system with Brownian dynamics; D*
s ¼

Dlong
s /Dshort

s , with Dshort
s the short-time Brownian diffusion

coefficient.45 The same equivalence applies to the ratio of the
long time relaxation time T long

s and the mean free time T short
s .

Then D*
s for the small (and, similarly, the large) spheres can be

extracted from the MSDs rescaled by l0
2 with times rescaled by

T short
s . To simplify the comparison with experiments, in what

follows we will indicate the ratio T long
s /T short

s using the equiv-
alent ratio of the Brownian relaxation times slongs /sshorts . From D*

s,
the normalised long-time structural relaxation time of the small
spheres, slongs /sshorts ¼ 1/D*

s, and, similarly, of the large spheres,
slongL /sshorts ¼ 1/(d3D*

L), can be calculated (Fig. 3).
The structural relaxation time of the small spheres, slongs ,

monotonously increases with xs indicating the progressive
arrest of the small spheres. However, the structural relaxation
time of the large spheres, slongL , exhibits an intermediate
minimum (xs ¼ 0.1) consistent with the melting of the one-
component glasses as a second species is added. While the
addition of small spheres to the glass of large spheres melts the
glass, the addition of large spheres not only melts the glass of
small spheres, but also induces obstacles.46 This leads to the
asymmetric dependence of slongL on xs. We expect the minimum
to be more pronounced for the higher f ¼ 0.61 of the experi-
ments, since the large and small spheres are deeper in the
glassy state at xs < 0.3 and xs $ 0.7 than at f ¼ 0.58. Previous
experimental work on binary mixtures with the same size ratio
and comparable xs ¼ 0.7 indicates glass states for f > 0.57 and

Fig. 2 Quiescent mean squared displacement in one direction dy2 of
large particles Rmic

L in mixtures with f ¼ 0.61, d ¼ 0.2 and different
compositions xs ¼ 0.0 ( ), 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ), 0.9 ( ). The
delay time t is normalised by the composition-averaged short-time
Brownian time hsshorti. (Inset) The xs-dependence of the localisation
length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy2ðt1Þ
p

in units of Rmic
L (left y-axis) and Rmic

s (right y-axis),
where t1 is the shortest delay time measured.

Fig. 3 Long-time structural relaxation times of large, slongL ( ), and
small, slongs ( ), spheres as a function of composition xs, obtained from
MD simulations of binary hard sphere mixtures with size ratio d ¼ 0.2
and total volume fraction f ¼ 0.58. The relaxation times are normal-
ised by the mean free time of the small spheres sshorts . The dashed and
solid lines indicate the number-averaged, hslongi, and dominant, ~tlong,
structural relaxation times, respectively.
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uid states for f # 0.57.20 In addition, the number-averaged
long-time structural relaxation time at a volume fraction f ¼
0.58 can be calculated according to hslongi ¼ [(1 � xs)d

3slongL +
xss

long
s ]/[(1 � xs)d

3 + xs] (Fig. 3, dashed line). This exhibits a
minimum at xs z 0.3. The minimum is shied with respect to
the minimum of slongL (xs z 0.1) due to the increasing weight of
the smaller slongs . As mentioned above, a transition in caging is
expected at xs z 0.5 with caging by large and small spheres at
small and large xs, respectively.20 Thus, the systems are expected
to be dominated by slongL and slongs for xs ( 0.5 and xs T 0.5,
respectively, which we denote by ~tlongs (Fig. 3, solid line).

3.3 Linear viscoelasticity

The storage modulus, G0, as a function of composition xs is
extracted from the linear viscoelastic regime of dynamic strain
sweeps (0.5% < g < 1%, depending on sample), Fig. 4. Values ofG0

are determined for an oscillatory Péclet number Peu ¼ 1.2 with
Peu ¼ uhsshorti, where u is the oscillation frequency. They are
reported in units of the composition-averaged energy density,
kBT/hR3i, to remove the trivial dependence on the particle size.
The large values of G0 at xs ¼ 0.0 and 1.0 are consistent with their
one-component glass states. By adding a second species, G0

decreases, indicating glass soening with the results for both
sample sets, RH (radii 0.304 mm, 0.063 mm) and CO (radii
0.885 mm, 0.174 mm) being comparable. The glass soening is
thought to result from the transition in caging and the faster
long-time dynamics at intermediate compositions (Fig. 2).19 It is
particularly pronounced for 0.1# xs# 0.5, i.e. upon adding small
particles to large particles. This reects the asymmetry observed
in the dynamics. The dependence of G0 on xs hence appears
related to changes in the microscopic dynamics.19,20

3.4 Non-linear stress response

In a step rate experiment, a constant shear rate _g is applied to
the initially quiescent sample and the evolution of the stress s
as a function of time t or, equivalently, strain g ¼ _gt is
measured. The dependence of the measured stress on strain is
presented in Fig. 5 for binary mixtures with size ratio d ¼ 0.2,
total volume fraction f ¼ 0.61 and different compositions xs as

well as different shear rates _g or Péclet numbers Pe _g ¼ _ghsshorti.
For these values of Pe _g and f, homogeneous ow, i.e. laminar
ow in the absence of shear banding, is expected for one
component systems.35,47 In order to compare different mixing
ratios, the stress s is scaled by the composition-averaged energy
density. For all xs and Pe _g, at small strains g the stress increases
almost linearly and reaches a maximum or overshoot, speak, at a
strain gpeak. Subsequently the stress decreases to a constant
value, ssteady, which is the steady state value of the stress when
the system ows. The noise in the measurements is seen to
decrease with increasing xs as a result of the increasingly larger
energy density of the mixtures as the fraction of small spheres
increases. From the curves in Fig. 5 we extract the value of the
strain at the peak, gpeak and the magnitude of the stress over-
shoot speak/ssteady � 1 to quantify the stress overshoot as a
function of xs and Pe _g. For one-component hard-sphere glasses
(xs ¼ 0 and 1) this stress response, in particular the stress
overshoot, has previously been observed and studied as a
function of Pe _g.9,13–15,48 It has been associated with the maximal
cage distortion before the cage breaks.9,13During cage distortion
stress is stored, and is only released when the deformation of
the cage is partially relaxed by out-of-cage motion, resulting in
the overshoot. Moreover, the overshoot is linked to super-
diffusive particle motion observed in experiments and simula-
tions, and predicted by mode coupling theory.13–15

The strain at the overshoot, gpeak, is associated with the yield
strain. It exhibits a dependence on composition xs, which is
comparable for all Pe _g (Fig. 6a). The yield strain gpeak initially
decreases until it reaches a minimum at xs ¼ 0.3 and then
increases again. This xs dependence reects the xs dependence
of the number-averaged long-time structural relaxation time
hslongi (Fig. 3), which is associated with the distance to the glass
transition. This suggests that the yield strain is larger for systems

Fig. 4 Storage modulus G0/(kBT/hR3i) in the linear viscoelastic regime,
extracted from dynamic strain sweep measurements at oscillatory
Péclet numbers Peu¼ 1.2 for two sample sets with f¼ 0.61, d¼ 0.2: ( )
CO (larger spheres, also used for microscopy) and ( ) RH (smaller
spheres, only used for rheology).

Fig. 5 Stress s scaled by the average energy density kBT/hR3i vs. strain
gmeasured in step rate experiments for samples with compositions xs
(as indicated) and Péclet numbers Pe _g ¼ 0.03, 0.24, 0.64, 1.20, 2.40
and 4.70 (bottom to top).
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which are deeper in the glass state. It might also be related to
variations in the localisation length of the caging species.

In samples for which a broad range of Pe _g values is explored,
namely xs ¼ 0.5 and 0.7, two regimes in the Pe _g dependence of
the yield strain gpeak are observed (Fig. 7a). The yield strain gpeak

remains approximately constant at gpeak z 10% for Pe _g ( 1, in
agreement with MCT predictions for one-component glasses,48

but increases for larger Pe _g, similar to experimental results on
one-component colloidal glasses of hard-sphere like parti-
cles.9,15 This behaviour becomes clearer by rescaling the yield
strain gpeak with a scaling factor Z0(xs) (Fig. 7, inset), which is the
average of the gpeak values obtained for the different Pe values at
a given composition xs (Fig. 6a). As expected, the scaling factor
Z0(xs) (Fig. 8) follows the xs dependence of gpeak and hence also
hslongi, similar to the data in Fig. 6a.

The behaviour in the two regimes can be understood by
considering the relevant time scales; the characteristic time
scale of shear, sshear ¼ 1/ _g, and the inherent time scale of the
sample, namely the number-averaged short-time Brownian time
hsshorti (dened in Section 3.2). If sshear > hsshorti, i.e. Pe _g < 1, the
shear-induced deformation is slow compared to the Brownian
dynamics. Therefore structural rearrangements and yielding
can occur once the shear-induced cage deformation is suffi-
ciently large to facilitate escape through Brownian motion. This
cage deformation is expected to be similar to the size of the cage
in a glass or dense uid (Fig. 2, inset), consistent with the
observed gpeak z 10%. At larger shear rates _g, when sshear (
hsshorti or equivalently Pe _g T 1, the probability of cage escape
due to Brownian motion decreases. With increasing Pe _g, the
particle displacements are increasingly dominated by the affine
motion imposed by shear while the contribution by (random)
Brownian motion decreases and thus particle collisions become
less probable. Therefore, before yielding occurs the cage is
deformed more, i.e. gpeak increases. The rescaled yield strain
gpeak/Z0 is found to increase linearly with Pe _g for Pe _g T 1
(Fig. 7a, inset). Thus gpeak ¼ _gtpeak ¼ 0.1Pe _g ¼ 0.1 _ghsshorti and

hence tpeak ¼ 0.1hsshorti. Therefore, independent of _g or,
equivalently, Pe _g, yielding occurs aer the same time, about
0.1hsshorti. This suggests that for yielding to occur, at least a
shear-induced (affine) displacement of about 10% and a
minimum Brownian (random) displacement are required. The
minimum mean squared displacement dypeak

2 ¼ 2Dsheartpeak ¼
2Dshear0.1hsshorti ( 0.2hR2i, where the last relation provides an
upper boundary since the diffusion coefficient under shear,
Dshear (Section 3.5), is smaller than the one in the quiescent
state, which is implicitly contained in hsshorti. The minimum
displacement hence is about the size of the cage. A more
quantitative comparison needs to consider the anisotropic
structure of the sheared cages.9,13

Fig. 6 (a) Strain at the stress overshoot, gpeak, which can be taken as
the yield strain, and (b) magnitude of the stress overshoot, speak/ssteady
� 1, as a function of composition xs for Péclet numbers Pe _g ¼ 0.03 ( ),
0.24 ( ), 0.64 ( ), 1.20 ( ), 2.40 ( ) and 4.70 ( ).

Fig. 7 (a) Strain at the stress overshoot, gpeak, and (b) magnitude of the
stress overshoot, speak/ssteady � 1, as a function of Péclet number Pe _g

and (c) rescaled yield strain, gpeak/Z(xs), and (d) rescaled magnitude of
the stress overshoot, (speak/ssteady � 1)/Y(xs), as a function of rescaled
shear rate, X(xs) _g, for compositions xs ¼ 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ),
0.9 ( ), 1.0 ( ). The data in (c) and (d) are the same as in (a) and (b),
respectively. The inset to (a) shows the same data as in the main plot,
but superimposed along the ordinate using the scaling factor Z0(xs).
The line indicates a slope of 1. (See text for details on the rescaling.)
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Two regimes are also observed for the shear rate dependence
of the magnitude of the stress overshoot, quantied by speak/
ssteady � 1, for xs ¼ 0.5 and 0.7 (Fig. 7b). At small Pe _g, the
magnitude of the stress overshoot increases with increasing
Pe _g, as already observed in experiments on thermosensitive
pNIPAM particles and as predicted by MCT for one-component
systems.48 It then reaches a maximum and decreases for large
Pe _g, similar to one-component glasses of hard-sphere like
PMMA particles.9,49 The transition between the two regimes
occurs at transitional Péclet numbers which depend on xs, in
contrast to the dependence of gpeak on Pe. In particular, the
speak/ssteady � 1 dependence for xs ¼ 0.5 (Fig. 7b, ) is shied to
considerably larger values of Pe _g compared to dependencies
observed for other xs. That the transitional Péclet number
depends on xs implies that the time at which the transition
occurs does not scale with the composition-averaged short-time
Brownian time hsshorti, which determines Pe _g.

To determine the appropriate characteristic time of the
transition in speak/ssteady � 1 as a function of xs, the data in
Fig. 7b are rescaled as (speak/ssteady � 1)/Y(xs) versus X(xs) _g,
where the scaling factors X(xs) and Y(xs) are chosen such that
the resulting curves superimpose (Fig. 7d), that is the curves are
shied horizontally such that the transition occurs at X(xs) _g¼ 1
and vertically that the curves overlap. The scaling factor X(xs)
hence represents the characteristic time of the transition
between the increasing and the decreasing branches of speak/
ssteady � 1 for the different xs. It exhibits a pronounced
minimum at xs ¼ 0.5 (Fig. 8, solid line). The xs dependence is
thus qualitatively different from the monotonously decreasing
hsshorti. However, the dependence appears similar to the one of
the dominant structural relaxation time in the quiescent state,
~tlong (Fig. 3, solid line), which is the relaxation time of the
relevant caging species, i.e. the large particles for xs # 0.3 and
the small particles for xs > 0.3.

Therefore, the transition between the two regimes depends
on the balance between sshear and the dominant structural
relaxation time �slong. This indicates that the processes relevant
for stress transmission involve particle movements on length

scales of out-of-cage diffusion. This is consistent with the fact
that in one-component systems the overshoot has been asso-
ciated with the yielding of the cage.9,13 The out-of-cage move-
ments are longer than those required for cage deformation,
which determine gpeak, and hence the timescale of out-of-cage
diffusion is not relevant for the transition between the two
regimes of the Péclet number dependence of gpeak. This is
supported by the poor overlap of the gpeak curves if scaled by the
same X(xs) used for scaling the stresses (Fig. 7c). The overlap is
not signicantly improved by also scaling gpeak by Z(xs) such
that all curves superimpose in the ordinate and on the right
branch of the curve with xs ¼ 1.0 in the abscissa (Fig. 7c).

The value of Y(xs) (Fig. 8) corresponds to the average value of
speak/ssteady � 1 for a given xs. The magnitude of the overshoot,
speak/ssteady � 1 (Fig. 6b) increases from xs ¼ 0.1, attains a
maximum at xs ¼ 0.3 and reaches a minimum at xs ¼ 0.5.
Subsequently it stays about constant for large Pe _g (2.40 to 4.70)
or increases to an also approximately constant value for small
Pe _g (0.03 to 1.20). The difference between small and large Pe _g is
related to the two regimes of the stress response discussed
above (Fig. 7a and b).

3.5 Dynamics under shear

We aim to link the effects observed in the rheological
measurements to the individual-particle dynamics under shear
determined by confocal microscopy. Confocal microscopy
allows us to image colloids during the step rate experiments and
hence to follow shear-induced changes in the dynamics of the
large particles, which are uorescently labelled. Based on the
particle trajectories in the velocity-vorticity plane, (xi(t), yi(t)),
transient mean squared displacements in the vorticity direc-
tion, dy2, are calculated for different waiting times tw aer
application of shear:

dy2(t, tw) ¼ h(yi(t + tw) � yi(tw))
2ii, (2)

where the average runs over all large particles i in the eld of
view, but not the waiting time tw (eqn (1)). In the vorticity
(neutral) direction contributions of affine particle motions are
absent, and thus do not affect an investigation of the effects of
shear on the Brownian motion of the particles. The particle
dynamics can only reliably be determined using particle
tracking if the particles move less than about a tenth of their
radius between two successive frames. This limits the shear
rates _g or Péclet numbers Pe _g to 10�2 < Pe _g < 1, which corre-
sponds to the regime where Brownian motion signicantly
contributes to yielding and stress relaxation (Fig. 7a and b).

Aer shear is switched on, a steady-state develops. The cor-
respondingMSDs in the steady-state are reported in Fig. 9 (thick
color lines), together with the MSDs in the quiescent state (thick
black lines). Compared to the quiescent state, the steady-state
MSDs exhibit stronger localization at short times, but also faster
long-time dynamics, namely a signicantly increased long-time
diffusion coefficient Dsteady

L , which increases with increasing Pe _g

for all compositions xs (Fig. 10a). The increase in Dsteady
L corre-

sponds to shear thinning and is in agreement with previous
studies on one-component glasses8,9,14,15,50 and measurements

Fig. 8 Composition dependence of the scaling factors of the shear
rate, X (solid line), of the strain at the stress overshoot, Y (dashed-
dotted line), and of the magnitude of the stress overshoot, Z0 (dotted
line). The scaling factor X represents a characteristic time and is
normalized by the short-time Brownian time of the small spheres
sshorts . (For details on the scaling factors see text.)
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of a two-component glass with d ¼ 0.2 and xs ¼ 0.9.19 For the
largest Pe _g values, Dsteady

L as a function of xs presents a weak
maximum, and hence the fastest shear-induced dynamics, at
xs ¼ 0.3 (Fig. 10a). The same composition also exhibits the
fastest long-time dynamics of the large particles in the quies-
cent state (Fig. 2 and 3). In addition, this composition shows the
smallest gpeak (Fig. 6a), which indicates a link between facili-
tated yielding, i.e. a smaller yield strain, and fast dynamics in
the steady-state, i.e. a larger diffusion coefficient. This is
consistent with the observation that yielding requires a
minimum mean squared displacement, which is reached
earlier for faster dynamics. For the group of data at smaller Pe _g,

Dsteady
L slightly decreases for xs $ 0.3, i.e. the steady-state

dynamics slows down with increasing xs. This seems to be
consistent with the slow-down of the dynamics in the quiescent
state and corresponds to the increase of gpeak (Fig. 6a), in
agreement with the proposed link between yielding and
dynamics in the steady-state.

In addition to the steady-state, the transient state following
switch-on of shear is investigated (Fig. 9, thin color lines). At
short delay times the transient MSDs moderately increase,
associated with a slight expansion of the cage, but they remain
below the quiescent MSD indicating tighter localization. At long
delay times, and for all waiting times, we observe relatively fast
diffusion, already with the steady-state diffusion coefficient
Dsteady
L . While Dsteady

L is reached already at the shortest waiting
time tw, it is reached at a relatively late delay time t, which
becomes increasingly shorter as tw increases. The steady-state
MSDs are recovered aer a waiting time t*w which depends on
the mixing ratio xs, and has apparently no relation with sshear,
different from one-component systems.13–15

At intermediate delay times a super-linear increase of the
MSDs is observed which indicates superdiffusion. The time
range with superdiffusion progressively disappears as tw
increases, but also depends on Pe _g and xs. The amount of
superdiffusion is quantied by Dsteady

L /Dsdiff
L � 1 with Dsdiff

L the
apparent diffusion coefficient at maximum superdiffusion,
estimated from the minimum of dy2/t vs. t (not shown). With
increasing xs, the amount of superdiffusion, Dsteady

L /Dsdiff
L � 1

increases for (almost) constant, large Pe _g (Pe _g ¼ 0.24 for xs ¼
0.1, 0.3, 0.5 and Pe _g ¼ 0.28 for xs ¼ 0.9, Fig. 10b orange/red

Fig. 9 Mean squared displacement in the vorticity direction dy2 for
different compositions xs and Péclet numbers. (a) xs ¼ 0.1, Pe _g ¼ 0.24
(red), (b) xs ¼ 0.3, Pe _g ¼ 0.24 (red), 0.08 (blue), (c) xs ¼ 0.5, Pe _g ¼ 0.24
(red), 0.005 (blue), (d) xs ¼ 0.7, Pe _g¼ 0.035, and (e) xs¼ 0.9, Pe _g¼ 0.28
(red), 0.028 (blue), 0.003 (violet). The black lines correspond to the
MSDs in the quiescent state, thick lines to theMSDs in the steady-state,
and thin lines to transient MSDs at waiting time tw ¼ 0 and, where
present, at longer tw, increasing from bottom to top.

Fig. 10 (a) Steady-state diffusion coefficient Dsteady
L of the large

spheres, (b) amount of superdiffusion Dsteady
L /Dsdiff

L � 1 of the large
spheres at waiting time tw ¼ 0, and (c) magnitude of the cage
compression K ¼ dyshear

2/dyrest
2 � 1, as a function of xs. Different Pe _g

values are indicated according to the color scale. The error bars
represent variations between repeated measurements with same xs
and Pe _g.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 6546–6555 | 6553
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color). As expected, this does not reect the dependence of the
stress overshoot, speak/ssteady � 1 (Fig. 6b), since the large
particles, whose dynamics is studied here, dominate the rheo-
logical response only for xs ( 0.5 (Section 3.4). However, the
increase in Dsteady

L /Dsdiff
L � 1 with xs might reect the decrease of

the localisation length at rest (Fig. 2, inset). This suggests that a
tighter localisation at rest leads to a more abrupt and
pronounced transition to ow once shear sufficiently deforms
the cage to allow particles to escape. The increase of the degree
of super-diffusion with increasing xs seems to become more
pronounced with increasing Pe _g (Fig. 10b). With increasing Pe _g,
Dsteady
L /Dsdiff

L � 1 increases for all xs and tw ¼ 0 s (Fig. 10b,
different colors). The Pe dependence is similar to the one of
Dsteady
L and the magnitude of the stress overshoot, speak/ssteady�

1 (Fig. 7b). This is consistent with the idea that speak/ssteady � 1
is related to the probability of particle collisions, which occur
more frequent as the dynamics becomes faster. Furthermore, it
suggests that a larger stored stress results in a more
pronounced super-diffusive response, in agreement with
similar ndings for one-component systems.15

At short delay times (t ( 1 s, range decreasing with
increasing tw), the MSDs are dominated by caging (Fig. 9). At
these times, the transient MSDs under shear remain below the
quiescent state, although they slightly increase with waiting
time tw toward the steady-state. Thus, shear results in a stronger
localisation of the large particles in the vorticity direction. The
magnitude of cage compression in the vorticity direction is
quantied by K¼ dyshear

2/dyrest
2 � 1, where dyshear

2 and dyrest
2 are

the value of the MSD under shear and at rest, respectively, at the
same time 0.015 s # t # 0.030 s (Fig. 10c). The magnitude of the
cage compression, |K| decreases from xs ¼ 0.1 to 0.3 and 0.5 to
0.9. Increasing xs from 0.1 to 0.3, and from 0.5 to 0.9, the local-
ization length of the large spheres at rest decreases (Fig. 2a,
inset). This implies that the cage is tighter and a smaller free
volume is available for compressing the cage, accordingly |K|
decreases. However, at xs ¼ 0.5, the cage is strongly compressed
although the localisation length at xs ¼ 0.5 is comparable to that
at xs ¼ 0.3 in the quiescent state (Fig. 2, inset). Nevertheless, for
xs ¼ 0.5 the cage is composed of small spheres which might
easier rearrange under shear and closely pack around the large
spheres than large spheres can. This supports the suggestion that
a qualitative change in caging occurs at xs z 0.5.

Moreover, K closely resembles the stress overshoot, speak/
ssteady � 1 (Fig. 6b), with both exhibiting only a limited
dependence on Pe _g (within the limited range of Pe _g investigated
by confocal microscopy). In particular, a large |K| corresponds
to a small speak/ssteady � 1 and vice versa. This suggests that
stress is partially released through irreversible cage compres-
sion, resulting in a smaller stress overshoot. In contrast, if stress
can not sufficiently be released through cage compression, it is
stored in the system. This storage of stress requires particle
movements beyond the cage size and involves several particles.
These large movements are related to the long-time diffusion of
the cage particles. Hence the relevant timescale is the dominant
long-time structural relaxation time ~tlong, consistent with the
conclusions based on the xs dependence of speak/ssteady � 1
(Section 3.4). This illustrates the importance of caging and the

transition in caging. In contrast, yielding requires many parti-
cles to move, although each particle might only move on the
length scale of the cage. Moreover, the yield strain gpeak is a
relative, dimensionless quantity and hence insensitive to
whether the cage is formed by large or small spheres.

4 Conclusions

The addition of a second species to a one-component glass
results in the loosening of the cage. The transition between
caging by small and large particles, respectively, occurs at xs z
0.5.19,20 The degree of arrest is reected in the dynamics at
rest,19,20 and, as shown here, also under shear. We have shown
that under both conditions, at rest and under shear, the
mobility is maximum at xs z 0.3 (Fig. 2 and 10a).

The change in caging also affects the shear-induced cage
compression in vorticity direction, with the strongest compres-
sion at xsz 0.5 (Fig. 10c). This is attributed to the highmobility of
the small particles at xs z 0.5 allowing them to realize their
higher packing ability in the mixtures. In addition to this partic-
ular behaviour, in general the cage compression decreases upon
addition of small spheres, which is attributed to an increasingly
tighter cage at rest that leaves space for small cage compressions
only (Fig. 2, inset). A tight localisation at rest results in an abrupt
and pronounced transition to ow once shear-induced cage
deformations allow particles to escape. This transition is charac-
terised by transient superdiffusion (Fig. 9 and 10b).

Yielding appears to require Brownian motion beyond a
minimum excursion. When this excursion is reached depends
on the composition-averaged dynamics of the samples and the
shear rate. Slow glassy dynamics thus results in larger yield
strains gpeak, which is found to increase linearly with the shear
rate as long as _g hsshorti T 1 (Fig. 7a, inset). For the Brownian
motion to be effective, an affine shear deformation with gpeak T

10% seems necessary, which limits yielding at small shear rates.
We therefore suggest that different processes set a lower limit to
the yield strain gpeak at small and large shear rates, respectively.

Since stress is released during cage compression, the
magnitude of the stress overshoot is inversely related to the
degree of compression and the overshoot linked to super-
diffusion. Storage of stress requires rearrangements and
particle movements which, in contrast to the processes during
yielding, extend signicantly beyond the cage and thus occur on
the structural relaxation time ~tlong of the caging species, that is
the large spheres for xs( 0.5 and the small spheres for xsT 0.5.

In future work, the macroscopic rheological behaviour and
the microscopic single-particle dynamics need to be related to
the evolution of the microscopic structure during the applica-
tion of shear, similar to the link established in one-component
glasses.9
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1 Introduction

The behavior of glasses under application of a mechanical de-

formation, like shear, is of great interest for many applications

in which glass-forming systems need to flow, e.g., to be able

to process them. One model system to study this behavior is

a colloidal suspension in the glass state. Colloidal glasses are

characterized by frozen-in dynamics resulting in a very slow

internal relaxation. External driving by application of a shear

field leads to a competition between slow internal relaxation

and the time scale imposed by shear. Therefore, for small de-

formations, i.e. in the linear viscoelastic regime, the rheolog-

ical properties of colloidal glasses are dominated by elasticity

and the glass behaves like a solid1–3. On the other hand, if the

deformation becomes larger, for example due to an increase

of the deformation amplitude, viscosity starts to dominate and

eventually the system flows3,4.

For continuous shear, an application of a constant strain rate

or a constant stress larger than the yield stress leads to a steady

flow. The transition from rest to steady flow is characterized

by transient phenomena. In particular, after applying a step

rate of deformation, an anisotropy of the microscopic struc-

ture develops with increasing the time elapsed after applica-

tion of shear. The cages become elongated and the maximum

cage deformation coincides with the occurrence of a stress

overshoot in the macroscopic rheology5–8. The breakdown of

the cage following cage deformation is associated with super-

diffusive dynamics5–8.

The application of a constant stress also leads to the flu-

idization of the glassy system if the stress is larger than the

yield stress of the system3,9,10. For stresses below the yield

stress, the system does not flow. Instead a creep regime,

characterized by a slow, sublinear increase of the deforma-

tion as a function of time, is observed. The study of the mi-

a Condensed Matter Physics Laboratory, Heinrich-Heine University,
Universitätsstraße 1, 40225 Düsseldorf, Germany. E-mail: tat-
jana.sentjabrskaja@hhu.de
b Department of Materials Science and Technology and IESL-FORTH, Uni-
versity of Crete, Hereklion, Greece.
c Soft Matter, Rheology and Technology Section, University of Leuven, Bel-
gium.

croscopic single-particle dynamics during the application of a

constant stress indicates a linear relation between the macro-

scopic strain and the mean squared displacement, which has

no analogue in the strain-controlled case. This finding can be

related to the fact that under stress-control both the dynamics

and the strain are dominated by groups of highly mobile par-

ticles and their spatial distribution. The fusion of these highly

mobile regions eventually leads to flow10.

The different relations between strain and microscopic dy-

namics observed for stress and strain-controlled analogue rhe-

ological processes indicate qualitative differences that have to

be explored in more detail. In this work we compare therefore

the rheological response to stress- and strain-controlled shear

of model colloidal glasses both with respect to the steady state

and transient regimes. We use binary mixtures with large dy-

namical asymmetry, where different caging mechanisms are

found11–13. We study in this way also the influence of a differ-

ent glass state on the rheological response to applied strain rate

or stress. Moreover, glass softening as a function of mixing

ratio between small and large spheres was observed in these

systems: This phenomenon gives us the possibility to system-

atically study how much the response in strain and stress con-

trolled experiments differs, depending on how glassy or fluid

the system is by simply changing the relative amount of the

mixture components.

2 Materials and methods

Sample

Our samples are sterically stabilized polymethylmethacrylate

(PMMA) particles [Antl1986]. We used PMMA spheres

with different radii: RL1 = 304 nm (polydispersity 0.10) and

RS1 = 63 nm (polydispersity 0.15) resulting in size ratio δ =
RS1/RL1 = 0.207. In a second system we used RL2 = 358 nm

(polydispersity 0.14) and RS2 = 137 nm (polydispersity 0.12)

resulting in δ = 0.38. The radii and polydispersities were

determined by using static and dynamic light scattering with

very dilute samples at φ < 10−3.



The particles with δ = 0.207 are suspended in a cis-decalin

and cycloheptyl bromide (CHB) mixture which matches

the density and the refractive index of the particles. In

decalin/CHB solvent colloids acquire charge which was

screened by adding salt, namely 4 mM tetrabutylammonium-

chloride14. The particles with δ = 0.38 are suspended in a

mixture of octadecene and bromonaphtalene to minimize the

solvent evaporation. In both solvent mixtures the PMMA par-

ticles behave like hard-spheres.

The volume fraction of sediments, obtained by centrifuging

dilute suspensions, were roughly estimated to be φ = 0.67−
0.68 depending on the size and corresponding polydispersity.

One-component colloids stock solutions with φ = 0.61 were

obtained by subsequently diluting sediments until the linear

viscoelastic moduli (after subtracting the trivial size depen-

dence of the signal) match the values of a reference sample (as

described in Ref.13). By mixing the batches of one-component

samples we prepared binary mixtures with constant total vol-

ume fraction φ = 0.61 and different fractions of small particles

xs = φs/φ where φs the volume fraction of small component.

Rheology

SmallSet creep: AR2000ex stress-controlled rheometer from

TA instruments, cone and plate geometries of diameter D =
20 mm, cone angle α = 2◦, gap d = 0.054 mm and D =
40 mm, α = 0.3◦ and d = 0.012 mm.

SmallSet step rate relaxations: ARES G2 strain-controlled

rheometer from TA instruments, cone and plate geometries of

diameter D = 25 mm, cone angle α = 2◦, gap d = 0.048 mm

and (a part of relaxations) D = 50 mm, cone angle α = 1.16◦,

gap d = 0.051 mm.

Rejuvenation procedure was performed before each mea-

surement to reduce an influence of loading, aging and sample

history effects and to ensure a reproducible initial state of the

sample. For this reason, directly after loading, a Dynamical

Strain Sweep was performed, i.e. an application of oscilla-

tory shear to the sample with a frequency ω = 1 rad/s and in-

creasing strain γ from 0.01 % to 700-1000 % (depending on

the sample). After that and before each measurement two Dy-

namical Time Sweeps (DTS) were performed: at first a DTS

by a strain γ = 300 % for a waiting time of 100 s to fluidize

the sample and then a DTS by very low strain 0.01-0.1 % (de-

pending on the sample) until the elastic, G′, and viscous, G′′,
moduli reached constant steady-state values. A solvent trap

was used to minimize solvent evaporation.

3 Flow

In this chapter we are going to discuss the steady-shear flow

of colloidal binary mixtures. For this we display the flow

curves, where the stress response of the sample is measured

as a function of the applied shear rate. The stress σ is mea-

sured in the steady-flow state under application of a constant

shear rate γ̇ . Flow curves for increasing (continuous line)

and decreasing (dashed line) shear rate are measured. In or-

der to account for trivial effects due to the different average

size of particles in the samples, the stress is expressed in units

of energy density kBT/ < R3 >= kBT [1− xs(1− 1/δ 3)]/R3
L

and plotted against Peclet number Peγ̇ = γ̇ < τshort >, with

< τshort >=< τshort
0 > / f and < τshort

0 >= 6πη < R3 > /kBT
the composition-averaged short-time Brownian time in the

dilute limit. The φ -dependent factor f is estimated to be

f ≈ 1/32 for volume fraction 0.61 (extrapolate the data in

Fig.8 of reference15).

Figure 1 shows the flow curves measured for samples with

δ=0.207, φ = 0.61 and different mixing ratios xs. For all mix-

ing ratios, 0≤ xs ≤ 1, shear-thinning behavior characteristic of

colloidal dispersions? , indicated by an increase of the stress

σ with increasing shear rate γ̇ , was found. For glassy sys-

tem, in the regime γ̇ → 0, the stress tends to a constant value,

associated to the yield stress of the system? . Due to the lim-

ited accessible range of Peγ̇ , the existence of an yield stress

at γ̇ → 0 cannot be clearly determined for the measurements

discussed here.

For the one-component systems, xs = 0 and xs = 1, compa-

rable values of stress σγ̇ in units of energy density are ob-

served. This observation indicates a similar glass state for

both. Nevertheless, the flow curves differ in their slopes. For

xs = 0, the slope of the flow curve is approximately 1, in con-

trast to ∼ 0.??? observed for xs = 1, what may be attributed to

a certain degree of softness of the small particles. The slope

of σ(Peγ̇) for 0 < xs < 1 shows a smooth transition from 1 at

xs = 0 to a smaller value obtained for xs = 1. In previous stud-

ies of colloidal glasses16,17 it was shown that for hard spheres

at large Peγ̇ the stress is linearly proportional to γ̇ while for

soft spheres the slope of the stress tends to 0.5, i.e σ ∼ γ̇0.5,

supporting the suggestion of a certain degree of softness for

the small particles.

Adding small spheres to a glass of large particles, i.e. in-

creasing xs, leads to a rapid decrease of the stress, which

reaches its minimum at xs = 0.3 at any Peγ̇ . By further in-

creasing xs, for 0.3 < xs < 1, the stress at certain Peγ̇ increases

again approaching the stress value of the one-component sys-

tem with xs = 1. This behavior of the stress as a function of xs
at a constant Peγ̇ indicates the softening and re-vitrification of

the system for intermediate xs. The presence of a minimum of

σ for xs = 0.3 at certain Peγ̇ and the glass softening observed

for intermediate xs qualitatively agrees with previous experi-

mental results18, including DSS tests13 and step-rate experi-

ments12, and theoretical work19,20.

For comparison, σ(γ̇) is also extracted from a series of step-

rate experiments, where a constant shear rate is applied and the



Fig. 1 Flow curves, i.e. stress σ in units of energy density as a

function of Peclet number. Continuous lines: measured from small

to large γ̇; dashed lines: measured from large to small γ̇; cross:

extracted from step rates experiments; asterisk: extracted from step

stress (creep) experiments.

stress σ as a function of strain γ is measured. The steady-flow

state is reached at large γ , where the stress σsteady is extracted.

Note that in the step-rate experiment the initial state of the

sample is the quiescent state obtained after rejuvenation. This

is different from the measurement of the flow curve, where

the initial state of the sample is the steady-flow state reached

by the application of the previous γ̇ . However, both protocols

result in comparable σ(γ̇) as it is shown in Figure 1. The val-

ues of shear stress σsteady extracted from step-rate experiments

(cross) are in a good agreement with those from flow curves

(line).

One other way to measure the relation σ(γ̇) is a series of

creep experiments, where a constant stress σ is applied to the

sample and the shear rate γ̇ (or the strain γ) is measured as a

function of time t (Fig.2b). For stress above the yield stress,

σ > σy, the shear rate γ̇ reaches a steady value γ̇const after a

transient regime at intermediate times. The values γ̇const(σ)
lie typically on the flow curve or slightly above, indicating a

good agreement between results obtained with different shear

protocols (Fig.1). In the creep regime, σ � σy, the shear rate

slowly decreases all the time and does not reach a constant

value. In this regime, the steady-flow state cannot be reached.

In this case, γ̇const is defined as the last measured point. The

points collected in this regime deviate from the expected evo-

lution of the flow curve for γ̇ → 0. The deviation becomes

pronounced for the mixture with xs = 0.7.

In summary, these results show that both routes followed by

the system, the strain- and stress-controlled shear for σ > σy,

result in a comparable steady-flow state of the system. It holds

for one-component systems as well as for binary mixtures, in-

dependent on the mixing composition xs.

4 Creep

In creep experiments a constant shear stress σ is applied to the

system and the induced deformation γ or deformation rate γ̇ is

recorded as a function of time t. For a material characterized

by a yield stress σy, at least two regimes can be distinguished

on the basis of the applied stress: for σ < σy, the material

presents a solid-like response and usually creep is observed;

second, for σ > σy a flow response is observed. For σ ≈ σy
an intermediate response is found. These regimes are observed

in our measurements.

Figure 2 a) shows some of the results obtained for the one-

component glass of small spheres with radius RS1 and volume

fraction φ ≈ 0.61. At short times, the initial super-linear in-

crease of strain γ(t) is followed by oscillations which are an

effect of instrument inertia21,22 and will not be discussed fur-

ther. After this initial stage, for small applied stress σ < σy,

a creep response is observed. This creep response is char-

acterized by a slow, sub-linear increase of strain with time.

The sub-linear increase can be separated in two additional

regimes: one at intermediate times (immediately after the

regime affected by instrument inertia) showing a very slow,

nearly plateau-like increase of γ(t), and one at long times,

where the increase of strain becomes faster, but still remains

sub-linear. Recently it was shown that these two regimes are

characteristics of creep in colloidal glasses9,21 and colloidal

gels23. For considerably larger applied stress, σ > σy, the

system flows and the linear dependence of strain on time is ob-

served. For stress σ ≈ σy, an intermediate behavior is found.

The creep-like response at intermediate times is followed by a

rapid, super-linear increase of γ(t) observed over a restricted

time interval, before finally the flow regime is entered. For

one-component glasses it has been shown that the super-linear

increase of γ(t), like the stress overshoot observed in step-

rate experiments, originates at the structural breakdown of the

cage9,10.

The strain response of mixtures at similar applied stresses

σ in units of energy density 〈R3〉/kBT , as is shown in Figure

3. Different scenarios depending on the mixing composition

xs are observed. One-component glasses show a creep-like re-

sponse, what indicates that the selected value of the applied

stress lies below the yield stress of these systems. In con-

trast to that, a fluid-like response was found for mixtures with

intermediate xs. An intermediate behavior, where a transition

from creep to flow is observed, was found for the mixture with

xs = 0.7 and size ratio δ ≈ 0.207. Therefore, for mixtures with

intermediate xs, the applied stresses are larger (or comparable

for δ = 0.207 xs = 0.7) to their yield stresses. The different re-

sponses observed for binary mixtures in creep measurements

at similar applied stress σ〈R3〉/kBT , show the effect of soft-

ening induced by mixing. The result is in agreement with the

previous study of binary mixtures11,12, where it was shown



Fig. 2 (a) Strain γ and (b) shear rate γ̇ as a function of time t,
measured in step stress (creep) tests performed on samples with φ =

0.61 and radius RS1 (for applied stress σ = 10 Pa, 15 Pa, 35 Pa,

50 Pa, 65 Pa, 80 Pa, 100 Pa, 140 Pa, 200 Pa, 300 Pa from bottom to

top). (c) Logarithmic time derivative of the strain

λcreep(t) = d log(γ)/d log(t) which corresponds to the exponent of

the time dependence of strain γ on time t and can be used to

distinguish regimes of linear, sub and super-linear dependence. The

time tmax is defined at the maximum of λcreep. The time t1 is the

time where λcreep = 0, i.e. where transition from sub- to super-linear

regime happens. (d) Logarithmic time derivative of the strain λcreep
as a function of strain γ . γ1 indicate the value of strain where

λcreep = 1 and γmax is the value of strain at maximum of λcreep.

that the addition of a second component leads to glass soft-

ening, i.e. the reduction of the yield stress. The pronounced

effect of glass softening occurs in mixtures with small size

ratios δ ≈ 0.2, and is not symmetric with respect to the mix-

ing composition. The strongest softening effect is observed at

xs ≈ 0.311,12.

The evolution of γ(t) measured at one constant applied

stress σ may show different regimes as it was already dis-

cussed. To quantify the transition between these regimes, the

logarithmic derivative λcreep of strain γ with respect to time t,
i.e. λcreep(t) = d log(γ)/d log(t), is calculated. Figures 2 c),

d) show λcreep for the one-component glass of small spheres

as a function of t or γ , respectively. The initial regime due to

instrument inertia is characterized by a fast decrease from an

initial exponent λcreep = 2 and a regime of oscillations. Af-

ter that, for σ ≈ σy, the value of λcreep starts to increase from

a value < 1 and presents a peak value larger than 1 before

tending finally to this value, which characterizes flow. The

deviations from this behavior are observed for σ ≈ σy, where

the peak value is smaller than 1, and for σ � σy, where no

Fig. 3 Strain γ as a function of time t, measured in creep tests

performed on samples with φ = 0.61 and a) δ = 0.207 and

composition xs = 0 (black), 0.1 (blue), 0.3 (green), 0.5 (red), 0.7

(turquoise), 0.9 (purple), 1 (yellow) and b) δ = 0.38 at xs = 0

(black), 0.25 (green), 0.5 (red), 0.75 (turquoise), 1 (yellow) at

similar applied stress σ〈R3〉/kBT .

maximum is observed.

The transition between different regimes is analyzed more

closely. We extract the time tmax at the maximum of λcreep (see

Figure 4 a)). This represents the time at which the deforma-

tion increases most sharply. For all studied mixtures we found

a decrease of tmax with increasing applied stress σ . Approach-

ing the yield stress σy from higher values of σ , the transition

between creep and flow tends to move to increasingly longer

times. This suggests the presence of a divergent timescale in

the transition, where eventually the sub-linear increase will

continue indefinitely. The same phenomenon has already been

observed for one-component hard-sphere glasses9 and col-

loidal gels23,24.

From the logarithmic time derivative of the strain, λcreep,

we also extract the strain γmax = γ̇tmax and the strain γ1, where

λcreep = 1. The parameters, γmax and γ1, are shown in Figure

4 b) and c), respectively. The strain γmax increases continu-

ous by increasing σ . Moreover, we find a scaling γmax ∼ σα ,

with α = 0.3, independent of the composition xs and size

ratio δ . A similar dependence is found in the evolution of

γ1(σ). The strain γ1 indicates the transition from the creep

regime (characterized by λcreep < 1) to the super-linear regime

(with λcreep > 1). The evolutions of γ1 and γmax showing the

slow increasing of shear strain with increasing stress, can be



Fig. 4 a) Time tmax where λcreep is maximal as a function of

reduced stress σ/σyield for samples with δ = 0.207 and composition

xs = 0 (∗), 0.1 (�), 0.3 (�), 0.7 (•), 0.9 (�), 1 (∗) and δ = 0.38 at xs
= 0.5 (�), 0.75 (◦). b) Strain γmax where λcreep is maximal as a

function of applied stress in units of energy density and fit

γmax ∼ σα with α = 0.3. c) Strain γ1 where λcreep crosses 1 by

transition from creep to super-linear regime.

compared to the dependence of γ on shear rate γ̇ , discussed

in Ref.12. The behavior can be understood within the cage

picture: the increase of σ induces more affine displacements

of particles and reduces the probability of collisions between

particles associated with Brownian motion. Consequently, in-

creasing σ the cage can be deformed more before it breaks.

We suppose to see an intermediate behavior between two ex-

tremes: a regime of σ → 0 dominated by Brownian motion

and a regime of σ → ∞, where the particle dynamics is con-

trolled by the affine motion imposed by the shear.

5 Step-rate experiment

In a step-rate experiment the evolution of stress σ is mea-

sured as a function of strain γ (or time t) under application

of shear at constant shear rate γ̇ . Typically, σ(γ) shows an

initial linear increase, followed by a maximum of the stress,

i.e. a stress overshoot, and finally a regime of constant stress

corresponding to the steady state flow, as it is shown in Figure

Fig. 5 a) Stress σ as a function of strain γ and b) derivative of the

stress λStepRate = dlog(σ)/dlog(γ) as a function of strain γ ,

measured in step rate experiment for applied shear rates which

correspond to Peγ̇ = 4.7, 2.4, 1.2, 0.64, 0.24 and 0.032 (from top to

bottom) for composition xs = 1.

5 a). For colloidal glasses the appearance of a stress overshoot

was observed and studied earlier. It was found that the stress

overshoot is related to the maximum cage deformation before

the cage breaks6,8. Moreover, the singe-particle dynamics un-

der shear reveal a transient super-diffusive regime of the parti-

cle motions at deformations which are comparable to those at

which the stress overshoot is observed5,7,8.

Introducing the small particles into the large-sphere glass

leads, similar to results of other tests described before, to soft-

ening, which is more pronounced at intermediate mixing ra-

tios and large size disparity11,13. Moreover, for the size ra-

tio δ ≈ 0.2, two different caging mechanisms depending on

the mixing composition xs are found12. It was shown that for

0.5 ≤ xs < 1 the localization of the large particles occurs due

to caging by the neighboring large particles. In contrast to that,

for 0.1 � xs ≤ 0.5, large spheres are surrounded by the small

ones and become localised in small-particle cages. Two dif-

ferent caging mechanisms result in a non-trivial dependence

of the magnitude of the stress overshoot on xs as discussed

in Ref.12. Increasing the size ratio up to δ ≈ 0.38 leads to a

reduction of the softening effect? .

We study binary mixtures with size ratios δ ≈ 0.38 and

δ ≈ 0.207. Figure 6 shows σ(γ) measured for mixtures with

different compositions, under a constant γ̇ , which results in

the similar Peclet number for all mixtures. The stress σ is

represented in units of the energy density kBT/〈R3〉. The rep-

resentation highlights the similarity of the response to shear

observed for one-component systems (Fig. 6 b)). For bi-

nary mixtures with δ ≈ 0.207, a pronounced reduction of the



steady-state stress σsteady is observed at intermediate mixing

ratios. For mixtures with δ = 0.38 the reduction is less pro-

nounced. The reduction of σsteady follows very closely the

variation of the yield stress measured by Dynamical Strain

Sweep (DSS)13 and the softening effect described before.

The strain at the overshoot, γpeak, and the magnitude of the

overshoot, σpeak/σsteady − 1, are extracted from the measure-

ments and are shown in Figure 6 as functions of Peclet number

Peγ̇ . For both δ , the strain at the overshoot γpeak remains al-

most constant for Peclet number, Peγ̇ < 1, independent on the

composition xs. In this Peclet number range the influence of

the affine motion is week and the shear-induced cage defor-

mation is slow. Therefore the escape from cages in mainly

due to Brownian motion. Consequently, in this regime the de-

pendence of γpeak, associated to the yield strain, shows only

a weak dependence on the shear rate. For δ = 0.207 we also

observed that γpeak remains constant for Peγ̇ � 1 and increases

by larger Peγ̇ where the particle displacements are dominated

by affine motions12. Moreover for δ = 0.207 it was found that

the magnitude of the stress overshoot, associated to the stored

stress, exhibits a minimum at xs = 0.5 due to the transition in

caging mechanism, namely caging by large or small particles.

At δ = 0.38, instead the magnitude of the overshoot is similar

for all mixtures (Fig.6 b)) since only one caging mechanism

is observed. This observation supports the idea that the stress

storage occurs on the long-time structural relaxation time of

the caging species and the absence of the sharp caging tran-

sition results consequently in a monotonic decrease of stored

stress with xs.

6 Comparison

In previous sections we discussed two different shear exper-

iments: the application of constant strain or stress. It was

shown that they both lead to a comparable steady-flow state,

but the way to reach this state, particularly the yielding pro-

cess, may be different. To investigate this transient regime,

we compare the creep results to the results obtained in step-

rate experiments.

Figure 8 compares two creep and two step-rate measure-

ments for one sample. In the creep experiment, the steady

flow is characterized by a linear increase of the strain with

time, i.e. a regime of constant shear rate. In the step-rate ex-

periments we selected similar applied shear rates. After the

stress overshoot, the system starts to flow and the stress de-

cays to its steady-state value. It can be seen that both shear

protocols lead to the fluidization of the glass and steady flow.

The results of the two tests can be directly compared by plot-

ting the product σγ̇ versus time t (see Figure 8 c)). This plot

evidences that the steady state of flow is the same for step rate

and creep experiment.

It also reveals a second interesting point, associated to the

Fig. 6 Stress σ as a function of strain γ , measured in step rate

experiment for applied shear rates which correspond to a) Peγ̇ = 0.24

for samples with δ = 0.207 and composition 0.1 (blue), 0.3 (green),

0.5 (red), 0.7 (turquoise), 0.9 (purple), 1 (yellow) and b) Peγ̇ ≈ 0.25

for samples with δ = 0.38 and composition xs = 0 (black), 0.5 (red),

0.75 (turquoise), 1 (yellow).

question whether the dynamics, by which the final steady-state

flow is achieved, depend on the way shear is applied. When

we compare the results from strain-controlled and creep exper-

iments it is clearly visible that steady flow is achieved earlier

in time in the strain-controlled experiment. This is particu-

larly well visible for the parameter σ = 30 Pa =???σy and

γ̇ = 10.17s−1. The transient regimes prior to the onset of

steady flow seems to be very different for step-rate and creep

experiments in particular at large σ , γ̇ . The evolution of σγ̇
obtained from creep experiment (yellow line in Fig. 8 c)) re-

sembles the stress overshoot measured in the step-rate experi-

ment at γ̇ = 2.034s−1, while it is very different for σ = 30 Pa

and γ̇ = 10.17s−1.

The difference between these two experiments is supported

by the observation of the microscopic single-particle dynam-

ics during the shear. In previous works10 the dynamics of par-

ticles under strain-controlled shear was studied. For glassy

systems it was shown that the transition to flow goes along

with the super-diffusive dynamics of particles. The super-

diffusivity was also found in the dynamics observed under an

application of a constant stress10. For constant shear rate this

also implies that the relation between MSD and γ shows a

super-linear regime. On the other hand, it was found that for

applied constant stress, a linear relation between MSD and γ



Fig. 7 a) Strain at the stress overshoot, γreak, and b) magnitude of

the stress overshoot, σpeak/σsteady −1, as a function of Peclet

number for size ratio δ = 0.38 and compositions xs = 0.25 (�), 0.5

(�), 0.75 (◦), 1 (+) and for δ = 0.207 and different xs (points

SoftMatter).

holds also in the transient super-diffusive regime of the MSD

(and even in creep regime). This could explain the faster dy-

namics leading to flow at constant shear rate. In addition,

the presence of strong dynamical heterogeneities observed in

stress-controlled experiments has no clear analogy in strain-

controlled case.

7 Recovery

After stress removal in a creep experiment, the system relaxes

and the recovered strain γr = γ(t0)− γ(t) is measured over

time t, as it is shown in Figure 9. At small times the signal

is affected by oscillations due to the instrument inertia and

was excluded from the analysis []. Depending on the state

of the sample at the end of the creep test priors the recovery

measurement, two different scenarios of strain recovery are

observed. For large stress, σ > σy, where at the end of the

creep test the fluidization of the glass is observed, the initial

oscillations are followed by an increase of the recovered strain

γr which approaches a constant steady-state value γ tot
r at large

times. In contrast to that, for small stress, σ � σy, where the

system recovers after creeping, the recovery is poor and the

recovered strain increases for all times without approaching

a plateau. In this regime, the shape of γr(t) is concave, in

contrast to the convex shape observed for large stresses.

Fig. 8 a) The evolution of the strain γ(t) (solid line) and the

corresponding shear rate γ̇(t) (dotted line) measured in creep

experiment for applied stress σ = 20 Pa and 30 Pa and b) the

evolution of the stress σ(t) obtained by applying the shear with

shear rate γ̇ = 2.034 s−1 and 10.17 s−1 on binary mixture with δ =

0.207, φ = 0.61 and xs = 0.7. c) The curves from a) and b) plotted

as σγ̇(t).

The two regimes of strain recovery are observed in the sys-

tems of binary mixtures with different composition xs as well

(see Figure 10). As it was discussed early, the similar value of

the stress σ〈R3〉/kBT applied on mixtures with different com-

positions results in flow or creep behavior, depending on the

softness of the mixture, i.e. their yield stress. As expected, for

soft mixtures where the shear-induced flow is observed at the

end of the creep measurement, a pronounced stain recovery is

found. Differently to that, creeping behavior observed for the

one-component glasses and some of the mixtures (with xs =
0.9 at δ ≈ 0.207 and xs = 0.25 at δ ≈ 0.38), is followed by a

poor strain recovery.

The results show that the state of the sample when the shear

is removed determines the time-dependence and magnitude

of the strain recovery. To quantify this observation we de-

termine the total recovered strain γ tot
r and its dependence on



Fig. 9 Recovered strain γr after creep experiment at applied shear

stress σ as indicated for samples with φ = 0.61 and radius RS1.

Black lines are fits with γr ∼ tb.

Fig. 10 Recovered strain γr after creep experiment for samples with

a) δ = 0.207 and composition xs = 0 (black), 0.7 (turquoise), 0.9

(purple), 1 (yellow) and b) δ = 0.38 and xs = 0 (black), 0.25 (green),

0.5 (red), 0.75 (turquoise), 1 (yellow) at similar shear stresses σ in

units of energy density 〈R3〉/kBT applied before in the

corresponding creep text.

the stress σ . To determine γ tot
r , we consider the temporal

derivative λrecov = dγr/dt and determine γ tot
r for low value of

λrecov = 10−3. Figure 11 a) shows the evolution of γ tot
r as a

function of stress σ/σy, i.e. the stress σ applied in the pre-

vious creep experiment normalized by the yield stress σy of

the respective mixture. The yield stress is determined at the

cross point of the shear moduli G′ and G′′ measured in Dy-

namical Strain Sweep (DSS) experiment at angular frequency

ω =1 rad/s13. For one-component glasses and glassy mix-

tures, the total recovered strain shows a strong dependence

on stress. Typically γ tot
r increases with increasing σ , reaches a

maximum at the stress close to the yield stress to decay than to

a constant value of 7-10%. For soft glasses (for example δ =

0.207 and xs = 0.3) γ tot
r presents small values for all measured

stresses and no maxima is observed.

As it was already mentioned, the shape of γr(t) changes

from concave, observed for recovery after creeping, to convex,

if the sample flows. The transition from concave to convex is

additionally studied here. For this, the recovered strain γr as a

function of time t is characterized by a power law dependence

γr ∼ tb, where b is a fit parameter. For σ < σy, the exponent

b is typically positive and represents the concave shape (see

Figure 11 b)). Increasing σ and leaving the creep regime is

followed by a decrease of b to negative values, indicating the

convexity of γr(t). The changing from convex to concave na-

ture of recovered strain occur at stress below the yield stress

σy.

In a perfectly elastic solid, the elastic restoring force,

i.e. σ(t), is proportional to the deformation γ(t) and causes

a continuing acceleration. This leads to a continuing increase

of the ‘velocity’ (recovered strain rate?) γ̇r and an increas-

ingly faster reduction of the deformation γ(t) = γ(t0)− γr(t)
or increasingly faster increase of the recovered strain γr(t).
This implies a concave shape of γr(t). In the ideal case, this

corresponds to the motion of an extended and recoiling har-

monic spring with γ(t) = γ(t0)cos(ωt). The concave shape

remains for weak friction, although with a decreasing ampli-

tude. However, beyond the yield stress, we do not expect an

elastic restoring force and hence no proportionality between

σ(t) and γ(t), and, in addition, we expect friction or dissipa-

tion and rearrangements to play a significant role. As a result,

there is no continuing force and hence no continuing accelera-

tion. Thus, the ‘velocity’ γ̇r does not increase during recovery.

This leads to the convex shape of γr(t).

8 Stress relaxation

The stress relaxation is measured after cessation of shear with

a constant rate γ̇ starting from a well-defined steady-flow state.

The relaxed stress σrelax = σ/σplateau is measured as a func-

tion of time. The stress σplateau is the corresponding steady-

state value of stress for applied rate γ̇ . Figure 12 shows the



Fig. 11 a) Total recovered strain γtot
r after creep experiment created

at different shear stresses σ for samples with δ = 0.207 and

composition xs = 0 (�), 0.3 (�), 0.7 (•), 0.9 (�), 1 (∗) and δ = 0.38

at xs = 0 (+), 0.25 (�), 0.5 (�), 0.75 (◦), 1 (×). b) Exponent b
extracted from fits of the recovered strain vs time with γr ∼ tb.

transient decay of σrelax(t) measured after cessation of shear

for various shear rates. Like recovered strain after creep ex-

periments, the relaxed stress at short times is affected by in-

ertia. At high Peclet number Peγ̇ ∼ γ̇ , the oscillations due to

the inertia are followed by a fast decay of the relaxed stress.

In contrast to that, a slowing rate of decay is observed as Peγ̇
decreases. This observation shows that the stress relaxation

is more effective if the preshear leads to a strong fluidization.

This can be understood in terms of stronger structural distor-

tions at larger shear rates6.

At large times, σrelax approaches a constant value, i.e. a fi-

nite persistent residual stress. Decreasing the shear rate goes

along with an increase of the finite persistent residual stress.

The results show that a less pronounced restructuring of the

sample leads to an incomplete stress relaxation and a larger

residual stress. The results are consistent with previous work,

where the partial stress relaxation in colloidal glasses was

studied by experiments, simulations and theory25. Moreover,

it was shown that for small shear rates, γ̇ → 0, the finite persis-

tent residual stress approaches the yield stress of the system.

The stress relaxation for binary mixtures with different size

ratios δ and mixing compositions xs is studied. Some of the

results are shown in Figure 13. The σrelax is shown as a func-

tion of γ̇ and is measured for binary mixtures at size ratio δ =
0.207 and 0.38 at similar Peclet numbers. The glass soft-

ening, with the pronounced reduction of the yield stress for

mixtures with intermediate compositions xs and low size ratio

Fig. 12 Relaxed stress σrelax = σ/σplateau as a function of time t
after cessation of shear with Peclet numbers Peγ̇ = 0.03, 0.24, 0.64,

1.20, 2.40 and 4.70 (from top to bottom) for one-component glass

with φ = 0.61 and particle radius RS1.

Fig. 13 Relaxed stress σrelax as a function of γ̇t measured after

cessation of shear with Peclet number a) Peγ̇ = 0.24 for samples with

δ = 0.207, φ = 0.61 and composition xs = 0.1 (blue), 0.3 (green),

0.5 (red), 0.7 (turquoise), 0.9 (purple), 1 (yellow) and b) Peγ̇ ≈
0.13-0.18 for samples with δ = 0.38, φ = 0.61 and composition xs =

0 (black), 0.25 (green), 0.5 (red), 0.75 (turquoise), 1 (yellow).



Fig. 14 Relaxation time trelax (black symbols) and recovery time

trecov (color symbols) as a function of energy
∫

σγ̇dt normalized by

yield stress σy for mixtures at the volume fraction φ = 0.61 and with

different compositions xs and size ratios δ as indicated.

δ ∼ 0.2, affects the stress relaxation. For the soft mixtures

with δ = 0.207 and 0.1 � xs � 0.7, the stress relaxes almost

completely indicating small values of the yield stress. It is

different for the one-component system with xs = 1 and the

binary mixture with xs = 0.9, where σrelax decays to a finite

value reflecting the glass nature of the systems. Similar glass-

like relaxation is observed for the mixtures with δ = 0.38 for

all mixing compositions 0 ≤ xs ≤ 1, in agreement with the

weak softening effect observed in this case.

9 Comparison

In the first part of the paper we have shown that the strain-

controlled shear as well as the stress-controlled shear (for σ >
σy) result in a similar steady-flow state. An open question

is, to what extent the strain recovery is similar to the stress

relaxation, if both processes are started from the same steady-

flow state.

To answer this question, we consider the relaxation time

trelax, where the temporal derivative λrelax = dσrelax/dt
reaches a low value, and the recovery time trecov where the

strain reaches the value γ tot
r . The results are shown in Figure

14. Both times, trelax and trecov, are plotted as a function of en-

ergy
∫

σγ̇dt normalized by the yield stress σy of the respective

mixture. The black symbols correspond to the time trelax, ob-

tained in the stress relaxation experiments. It is clear, that an

increase of the preshear rate leads to a faster stress relaxation,

as indicated by the decreasing trelax with γ̇ . The behavior is

observed for all mixtures, independent on the size ratio or the

mixing composition.

Two regimes are observed in the evolution of recovery time

trecov (color symbols),obtained in the strain recovery experi-

ments. The first regime of trecov is to find at large stresses, σ <
σy, where trecov decreases with increasing 1

σy

∫
σγ̇dt. More-

over, for 1
σy

∫
σγ̇dt > 10−2, the overlap of the results for both

times, trecov and trelax is observed. This reflects the similarity

of the stress relaxation and the strain recovery processes. An

additional regime is found for small stresses, σ < σy, where

the sample recovers after creeping. This second regime is re-

lated to an increase of recovery time with increasing stress,

and is not observed in the evolution of trelax due to the absence

of the creeping-like behavior.

The results of trecov for small stresses may be compared with

the relaxation time measured after cessation of shear before

the steady-flow state occurs and where the structural deforma-

tions are still (partially) reversible. For this, in a future work,

the preshear at constant rate should be switched off before the

stress overshoot appears.

10 Conclusion

In this work we compared the rheological response of glasses

characterized by different caging mechanisms to the applica-

tion of stress-controlled or strain-controlled shear. We found

that the transient regime previous to steady flow, particularly

the yielding process, is different for the two protocols: The

strain-controlled protocol is more efficient in the sense that

the steady state of flow is reached more rapidly. Moreover,

while the yield strain determined in strain-controlled step rate

experiments is strongly dependent on the caging mechanism,

and therefore the cage size, as also found in previous stud-

ies11–13, the same quantities under stress control show no clear

correlation. This might be due to the spreading of the yielding

process under stress control, with a cage deformation which,

possibly, is intermittent instead of continuous, as in the case of

a constant strain rate. Despite the different yielding processes,

both kinds of shear lead to a steady-flow state (for σ > σy in

the stress-controlled case) which is comparable for both pro-

tocols.

Given the same flowing state, the relaxation of the stress or

strain from a step rate or step stress experiment is found to be

comparable in the regime accessible for both cases, the one of

large stresses σ > σy. This suggests that the structure of the

flowing states achieved with the two protocols is comparable.

Furthermore, there is no visible effect of the caging mecha-

nism, indicating that the flowing state has lost memory of it. It

is rather the particle diffusion coefficient in the quiescent state,

as determined by the distance from the glass transition, which

affects the dynamics of restructuring and the relaxation time.

The stress-controlled measurements in addition show that re-



laxation from a non-flowing state, like that of a creeping glass,

has characteristics of rather an elastic recovery, with the relax-

ation time increasing with the applied stress and accumulated

strain.
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The properties of materials not only depend on their chemical composition, but also on the arrangement 
and dynamics of their constituents. It is thus crucial to understand the link between the macroscopic 
behaviour and the microscopic single-particle level. The relation between an applied mechanical force 
and microscopic processes is understood for crystalline, i.e. ordered, materials. Crystalline solids (like 
metals, ceramics or minerals) irreversibly deform when subjected to a load which is small enough to 
avoid fracture, although this response is very slow. This kind of response is called creep and originates 
from the presence of defects in the otherwise ordered arrangement of atoms. The diffusion of vacancies 
and dislocations is responsible for the observed plastic deformation1. The same relation and microscopic 
processes cannot occur in amorphous, i.e. disordered, materials.

Nevertheless, in amorphous solid-like materials, a similar macroscopic creep response is observed 
under application of shear stresses below the yield stress σy , i.e. below the transition from an elastic to a 
plastic response. The macroscopic creep response has been intensively studied in metallic, polymeric and 
colloidal glasses2–7. Several models8–15, successfully describe the time evolution of the strain measured 
during creep, namely its characteristic sub-linear time dependence. However, the relation of the creep 
response to the microscopic structure and dynamics has hardly been determined and is not well under-
stood. Due to the disordered structure of amorphous solids the concept of defects is not applicable and a 
microscopic mechanism different from the one in crystalline solids must be responsible for creep. Thus, 
to make progress, microscopic observations on a single-particle level during creep tests are required.
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Combining experiments and simulations, we investigated colloidal glasses when constant stress is 
suddenly applied, i.e. during creep tests . We reveal a quantitative link between the macroscopic rheolog-
ical response and the microscopic dynamics. This is possible due to recent developments in simultane-
ously performing rheology and confocal microscopy16,17. During creep flow near the yielding threshold, 
we observe that very few particles undergo large non-affine displacements which leads to pronounced, 
but spatially localized, dynamical heterogeneities and sub-diffusive dynamics. In contrast, for stresses 
beyond the yield stress, transient super-diffusive dynamics mark the onset of steady flow. At the same 
time, growing domains of enhanced dynamic activity are present, with their number correlating with 
the macroscopic strain. This is reflected in a correlation between the macroscopic strain and the single 
particle displacements. In addition to the steady-state flow regime, this correlation also holds in the creep 
and transient states, specially for stresses near the yield stress. Hence, we can quantitatively relate the 
macroscopic rheological response of soft glasses to the average and heterogeneous microscopic dynam-
ics which are spatially localized during creep but span the entire system at large stresses that lead to 
flow. The different microscopic behavior thus reflects the different macroscopic response during creep 
and flow, respectively. This extends previous observations to non-linear and non-equilibrium situations. 
Furthermore, as we observe the same behavior for different systems, realized in the experiments and 
simulations, this appears to be a general feature of glasses.

In our experiments and simulations we investigated two different model colloidal glasses. In the experi-
ments, the glass is a binary mixture of sterically stabilised PMMA spheres with a size ratio of 5, dispersed 
in a density and refractive index matching solvent, with total volume fraction φ =  0.61 and a relative 
volume fraction of small spheres xS =  φS/φ = 0.1. In this binary glass, the motion of the large particles is 
arrested via caging by neighbouring large particles18–20. In our molecular dynamics simulations, the glass 
is formed by a binary Yukawa fluid of large and small spheres with size ratio 1.2 and a relative number 
fraction of small spheres of 0.5, large enough to prevent crystallization. This system is quenched to 
T =  0.10, i.e well below the mode-coupling critical temperature of the system, Tc =  0.14. All times are 
normalized; in the experiments by the short-time one-dimensional Brownian diffusion time of the large 
spheres, d k T3 8 3 760

exp
L
3

Bτ πη= / ≈ .  s, where dL is the diameter of the large spheres , η is the viscosity 
and kBT the thermal energy, and in the simulations by the time unit md0

sim
S
2

SS
1 2τ ε= ( / ) / , where m, dS 

and SS are units of mass, length and energy, respectively, with dS the diameter of the small spheres and 
SS the energy-scale corresponding to the interaction between small particles. The colloidal glasses inves-

tigated in experiments and simulations hence involve different interactions and different mixing and size 
ratios of their components. Using these different model systems allows us to explore the general features 
in the response of glasses to externally applied stresses.

 
We performed a step to an applied constant stress (σ =  const) on an initially quiescent glass. In the 
experiments, the stress was applied using a commercial stress-controlled rheometer, while in the simu-
lations one wall was pulled by a constant force F0. We monitored the macroscopic response via the time 
evolution of strain γ(t). This situation is in contrast to the case of imposing a constant shear rate 
(γ =  const)21–27, where the bulk stress σ(t) is monitored. Unlike for an applied shear rate γ, when constant 
stress σ is applied there is no timescale imposed and flow regimes below yielding can be investigated. 
The choice of control parameter, i.e. constant σ or constant γ, hence determines the intermediate flow 
states via which a glass evolves from the quiescent state to steady flow11. In the following, we exploit these 
possibilities and link the increasing macroscopic strain to the evolution of local particle motions, using 
stress as the external variable and including stresses below the yield stress σy . In experiments, we esti-
mated the yield stress of the glass, σy ≈  0.010 Pa, from the stress at the crossing point of the storage and 
loss moduli in large amplitude oscillatory shear measurements at 1 rad/s. In simulations, at T =  0.10 the 
yield stress σy =  0.072 (in simulation units) was estimated by strain-rate controlled simulations28.

If the applied stress σ ≈  σy , a characteristic creep response is observed with the strain increasing 
sub-linearly with time within the experimental window, γ  ~ ta with a ≈  0.5 (Fig.  1a, broken line). 
Furthermore, for σ =  0.9σy (Fig. 1b, broken line), a smaller effective exponent is found, in agreement with 
previous results6,12,28–30. Hence, for yσ σ<  , the deformation occurs extremely slowly and the system is 
unable to reach a steady state within the observation time. This is reflected in the particle dynamics in 
vorticity (neutral) direction, namely the mean squared displacement (MSD) Δ y2(t) (Fig.  1c,d, broken 
lines). In experiments and simulations, at short times the increase of the MSDs is limited, consistent with 
caging, while at longer times a sub-diffusive regime is observed; Δ y2 ~ tb with b <  1. We find b ≈  a within 
the explored time window. The MSDs show little change with the waiting times tw after the beginning of 
the stress application (Fig. 1c,d, broken lines). The observed macroscopic creep response and the absence 
of steady-state flow is thus connected to the particles’ inability to diffuse.

In contrast, if yσ σ  , the strain response shows a rapid transition to a steady flow regime, which 
corresponds to γ ~ t, i.e. γ is constant (Fig. 1a,b, solid lines). The MSDs again display caging at interme-
diate times (Fig.  1c,d, solid line), while at long times diffusion27,31–33. The slightly lower MSD plateau 
observed in experiments is due to cage constriction18, and is also observed in Brownian dynamics 
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simulations24,27, but not in molecular dynamics simulations where the microscopic dynamics is Newtonian. 
In between caging and long time diffusion, a transient super-diffusive regime is observed. This coincides 
with the transition of the rheological response from the initial elastic regime to the flow regime. Note 
that in the experiments, the initial superlinear increase in strain is a known effect of the rheometer’s 
inertia34. With increasing waiting time tw (Fig. 1c,d), super-diffusion occurs at increasingly earlier times 
and for increasingly shorter time intervals, until it almost disappears in the steady state. Thus, the onset 
of flow is characterized by transient super-diffusion and, subsequently in the steady state, by diffusion. 
This indicates that the different regimes in the macroscopic strain response γ(t) are reflected in different 
features of the single-particle dynamics, here characterized by the MSD Δ y2(t).

We now quantitatively investigate the relation between the macroscopic strain γ(t) and the micro-
scopic MSDs Δ y2(t). In the case of steady flow t tγ γ( ) =  and, since then the particles diffuse, 
Δ y2(t) ~ D(σ)t, which implies that y t D t C t[ ]2 σ γ γ σ γΔ ( ) ( )/ ( ) = ( ) ( ). Previous experiments and 
simulations under constant applied shear rate have found D 0 8γ .  21,22, which implies C 0 2σ( ) γ− . , 
since stress and strain control are equivalent in steady flow. In our case, in the asymptotic diffusive 
regime (corresponding to 10γ , Fig. 1a,b) we observe an approximate linear relation Δ y2(t) ~ γ (t) for 
a large range of σ (Fig. 2a, Sec. 1 in Supplementary Information). The slight shifts between the curves 
for different σ occur due to the expected behaviour of C(σ) (Fig. 2b). If Δ y2 is rescaled by C(σ), the data 
fall onto a single line of slope 1 (Fig. 2c).

Although our argument for the relation Δ y2(t) ~ γ(t) is based on the assumption of steady flow, the 
relation surprisingly also holds in non-steady states for 10γ < , which corresponds to creep (for yσ σ< ) 
or the transient regime before steady flow (for σ >  σy). In contrast, Δ y2(t) ~ γ(t) does not hold for large 

Figure 1. Comparison of (left) experimental and (right) simulation results. (top) Time-dependence 
of the strain γ(t) for applied stresses σ as indicated, relative to the yield stress σy. (bottom) Mean squared 
displacement in the vorticity direction, Δ y2, (indicated by same colors and line styles), immediately after 
stress application, i.e. for waiting time tw =  0, and larger tw (as indicated) until the steady-state is reached, i.e. 
tw→ ∞ (symbols). For the smaller applied stress, Δ y2 is divided by a factor 3 for clarity, both in experiments 
and simulations.
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stresses σ and small strains γ (or short times t). In both, experiments and simulations, systematic devi-
ations are seen to occur with increasing stress. The deviations occur due to a time lag between the par-
ticles’ motion beyond their cages and the onset of macroscopic deformation (Fig. SM-1, Supplementary 
Information). Moreover, at very short times, i.e. in the initial elastic regime (Fig. 1), the proportionality 
is also not observed. This suggests that the observed correlation is a consequence of the plasticity that 
develops after the initial elastic regime. Our observations mark a clear difference between the yielding 
response under applied constant stress (investigated here) and applied constant shear rate (investigated 
in24,26). In the latter, Δ y2(t) ~ γ(t) cannot hold in the transient regime, where Δ y2(t) increases superline-
arly with t while γ(t) increases linearly. Note that this connection between nonlinear strain and the 
single-particle dynamics is an implicit assumption in a recent theoretical approach based on a nonlinear 
Langevin equation35–37. Our data indicates to what extent such a connection is valid.

In addition to the 
characterisation of the particle displacements via the MSD, i.e. a mean value, we have also investigated 
the distribution of the displacements, namely the self part of the van Hove function p(Δ y). For σ ≈  σy 
(Fig.  3, left), at all times the van Hove functions exhibit a nearly Gaussian shape for small Δ y, which 
corresponds to localised particles, and moderate exponential tails which correspond to large displace-
ments of a small fraction of particles. The non-Gaussian tails only slightly change with increasing time. 
This indicates that shear-induced delocalisation is a very slow process. In particular, large displacements 
at the shortest time of the measurement t 0 00370 0

expτ/ = .  hardly occur and therefore macroscopic flow 
is delayed.

For σ >  σy (Fig. 3, right) shear leads to a larger deviation from a Gaussian distribution with a signif-
icant number of large displacements. The deviation from Gaussian behavior was quantified by the time 
dependence of the integral IR(t) of the residuals of the Gaussian fits to p(Δ y), which, for each fixed 
time, was normalised to the integral of the distribution (Fig. 3, inset). A non monotonic trend of IR(t) 
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Figure 2. (a) Mean squared displacement in vorticity direction, Δ y2, as a function of strain γ for different 
values of the applied stress σ/σy obtained in experiments and simulations (Sec. 1 of Supplementary 
Information). The experimental Δ y2 values are multiplied by a constant factor in order to match the 
simulation data. (b) Ratio of diffusion coefficient to shear rate, C Dσ σ γ( ) = ( )/ , obtained from fits (Sec. 1 of 
Supplementary Information), as a function of the shear rate in the steady state, γ. The dashed line indicates 
a power-law C 0 2σ γ( ) − . . (c) Scaling plot of Δ y2/C(σ) as a function of γ, with the dashed line indicating a 
slope of 1.
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is observed, with a maximum value during the intermediate super-diffusive regime. At later times IR(t) 
continuously decreases and eventually vanishes when diffusion sets in and a Gaussian distribution of 
displacements is recovered.

The tails in the van Hove function 
p(Δ y) reveal the existence of a small number of very mobile particles during the transient regime. We 

Figure 3. Van Hove self-correlation functions, i.e. distributions of displacements p(Δy), determined 
(top) by experiments for (a) a stress σ ≈  σy, a waiting time tw =  0 and times t 0 00370

expτ/ = . , 0.54, 1.05, 2.12 
and 5.31 (left to right) and (b) σ ≈  5σy, tw =  0 and same times, except the longest time here is t 2 650

expτ/ = . , 
(bottom) by simulations for (c) σ ≈  1.1σy, tw =  0 and t 20 3 7 10 11 10 56 100

sim 3 3 3τ/ = , . × , × , ×  and 
110 ×  103 (left to right) and (d) σ ≈  1.53σy, tw =  0 and t 20 1 01 10 3 7 10 7 4 100

sim 3 3 3τ/ = , . × , . × , . ×  and 
18.6 ×  103 (left to right). Dashed lines represent Gaussian fits to p(Δ y) for small Δ y. Insets: normalized 
integral IR of the residuals of the Gaussian fits in the main plots, as a function of time t/τ0.
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quantify the time evolution of the fraction of these mobile particles by the ratio t I ta
vH

aΦ ( ) = ( ) with Ia 
the integral of p(Δ y) for displacements Δ y/d >  5Δ ymin, with d =  dS and dL in simulations and experi-
ments, respectively (Fig. 4, solid symbols). The value y y t dmin

2
0

2Δ = Δ ( )/  is the localization length 
estimated from the MSDs at the shortest time t0 (Fig.  1c,d). In simulations the time-dependence of 

ta
vHΦ ( ) closely follows that of the instantaneous strain γ(t), up to t 1a

vHΦ ( ) =  (Fig.  4a, lines). In the 
experiments, similar results for ta

vHΦ ( ) are observed (Fig. 4b) except that, in contrast to the simulations, 
γ(t) is not the instantaneous strain but a time average, leading to a small deviation between ta

vHΦ ( ) and 
γ(t). The macroscopic strain is therefore not only proportional to the average mean squared displacement 
(Fig. 2) but also the fraction of mobile particles: this indicates that the mobile, dynamically active parti-
cles contribute most significantly to the mean squared displacement. This is true both below and above 
the yield stress.

We introduce spatial coarse-graining 
in order to reduce noise. We divide the field of view into 10 ×  10 square boxes, each with size (2.8 dL)2. For 
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Figure 4. Fraction of active particles ta
vHΦ ( ) (solid symbols) and active boxes ta

bΦ ( ) (open symbols) 
determined (a) by simulations at stresses σ/σy =  0.9 (●, ○), 1.1 (▲, Δ), 1.4 (◊), 1.53 (▷) and (b) by 
experiments at σ/σy ≈  1.0 (■, □ ) and 5.0 (▲, Δ). Lines of the same colour represent the strain γ  for the 
corresponding applied stresses, where the instantaneous strain is shown in the case of the simulations.
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each particle i, the displacement in the vorticity direction, Δ yi(t) =  yi(t)–yi(t0), was determined. The average 
particle mobility in box lm, with l, m 1 10= … , was calculated according to

t y t 1lm i lm
μ ( ) = Δ ( ) ( )

where 
lm…  denotes an average over all the particles which were in the box lm at t =  t0. A box lm is 

defined active at time t if μlm >  5Δ ymin, following the same criterion used to distinguish largest displace-
ments of single particles in the van Hove functions (Fig.  1c,d). The fraction of active boxes, 

t N t Na
b

a totΦ ( ) = ( )/ , with Na the number of active boxes and Ntot the total number of boxes. With time 
ta

bΦ ( ) grows as the fraction of the single mobile particles ta
vHΦ ( ) (Fig.  4, symbols). Thus, the 

time-dependence of ta
bΦ ( ) is also proportional to γ (t). A similar connection between the number of 

active regions and strain growth was experimentally observed in the creep flow of frictional granular 
particles38.

To investigate the existence of heterogeneity in the dynamical activity, we consider the spatial distri-
bution of active boxes. For σ ≈  σy , the distribution of local mobilities within the velocity-vorticity plane 
does not indicate any prominent features (Fig. 5, top). At any specific time, there are some active boxes 
with larger mobilities, but the locations of the boxes with the largest mobilities vary randomly with time. 
For σ ≈  5σy, similar mobilities occur at short times, when the localisation plateau in the MSD is observed 
(Fig.  5a,b, bottom). In contrast, at t 0 3 0

expτ> . , roughly coincident with the onset of super-diffusion in 
the MSDs determined for tw =  0 (Fig. 1c), a region with enhanced mobilities emerges (Fig. 5c,d, bottom), 
expands with time (Fig.  5e, bottom) and spans almost the whole field of view once the system flows 
(Fig. 5f, bottom). Hence, the onset of flow (Fig. 1a,b) coincides with the appearance of a region of higher 
local mobility (Fig. 5) and super-diffusive dynamics (Fig. 1c,d). Furthermore, it leads to the pronounced 
non-Gaussian tails in the van Hove correlation function at intermediate times (Fig. 3), which disappear 
once steady flow has developed and the dynamics again becomes more homogeneous (Fig. 3, inset).

The enhanced local mobilities do not result from sudden large displacements, but occur through the 
accumulation of only slightly above-average local, non-affine particle displacements. This has been con-
firmed by calculating the instantaneous mobilities from 0 18 0

expτ.  to 0 46 0
expτ.  and 0 28 0

expτ.  to 0 56 0
expτ. , i.e. 

for 10 sampling times, instead of starting from the shortest measurement time (as in Fig. 5). No large 
instantaneous mobilities and no significant difference to σ ≈  σy are observed (Sec. 2 in Supplementary 
Information). Similar results are obtained in our simulations. The occurrence of correlated plastic 
events39,40 and avalanche-like behavior41,42 have been proposed as mechanisms driving the onset of flow. 
Such cooperative events might be connected to the correlated local mobilities and their spreading 
observed in our study. The observed intermittency in the displacements might also be related to stick-slip 
motion43.

The larger area in the velocity-vorticity plane monitored in the experiments allows us to quantitatively 
investigate the spatial growth of active regions. If the box lm is active or inactive, nlm is defined as 1 or 
0, respectively. Based on this definition, we calculate the spatial correlation of active boxes, that is the 
box-box correlation function, G r n nlm l m( ) = ′ ′  with r2 =  (l–l′ )2 +  (m–m′ )2 (Fig. 6a). The brackets …  
indicate an average over the individual boxes. The characteristic length ξ of the spatial correlation G(r) 
was determined by fitting a stretched exponential function f r A rexp[ ]ξ( ) = −( / )β  to G(r). The corre-
lation length ξ(t) increases from an initial value ξ ≈  5dL at t 0 10 0

expτ= .  to ξ ≈  30dL at t 0 92 0
expτ= . , with 

Figure 5. Maps of average particle mobilities μlm(t) within boxes lm (Eq. (1)) for (top) stress σ ≈  σy and 
(bottom) σ ≈  5σy and times t 0 025 0 20 0 27 0 43 0 53 0 800

expτ/ = . , . , . , . , . , .  (a–f, indicated in Fig. 1c by dashed 
lines) as observed in experiments. The box size is (2.8 dL)2.
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ξ(t) ~ t2/3 (Fig. 6b). For σ ≈  σy the correlation length ξ(t) instead does not grow and stays approximately 
constant for all times t (data not shown).

Using experiments and simulations, we demonstrated that under applied stress, the macroscopic defor-
mation of glasses can be linked in a consistent way to the single particle displacements. In particular, the 
strain is approximately linearly related to the single-particle MSD even in the time-dependent non-linear 
response regime, including the creep and the transient regime preceding steady flow. Furthermore, the 
fraction of active particles in the van Hove function as well as the fraction of active regions, i.e. of 
groups of particles, is also proportional to the macroscopic strain. Heterogeneities in the location of 
these active particles are present both for applied stresses smaller and larger than the yield stress. The 
spatial distribution of regions with larger displacements determines the onset of flow. For applied stresses 
around the yield stress, i.e. during creep, localised regions of enhanced dynamical activity allow only 
for sub-diffusive dynamics. Increasing the stress beyond the yield stress, the active regions grow heter-
ogeneously and super-diffusive transients emerge leading to particle diffusion with steady flow setting 
in. We observe qualitatively the same behavior for the different models studied in our experiments and 
simulations and thus expect that our observations represent generic features of glasses.

4
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Figure 6. (a) Box-box correlation functions G(r) for stress σ/σy ≈  5 and time t 0 10
expτ/ = . , 0.20, 0.27, 0.43, 

0.53, 0.66, 0.80 and 0.93 (left to right) as observed in experiments. Lines represent stretched exponential fits. 
(b) Correlation length of active boxes, ξ, as a function of time for σ/σy ≈  5.0; the line indicates ξ/dL ~ t2/3.
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Future work should focus on understanding how the external stress leads to the occurrence of locally 
enhanced mobilities, e.g. whether these are related to thermally activated local structural changes. 
Furthermore, the mechanisms that drive the spreading of the active regions within the plane as well 
as in the transverse direction need to be identified, thereby providing possible links to transient shear 
banding in the velocity-gradient plane28,44. All these would help to develop a more complete scenario for 
the fluidisation of glassy systems under applied stress. Furthermore, it can open the route to the rational 
design of materials with desired response to applied stresses.

 We investigated a mixture of sterically stabilized PMMA spheres of diameters 
dL =  1.76 μm (fluorescently labeled) and dS =  0.36 μm, dispersed in a cis-decalin/cycloheptyl-bromide 
mixture which closely matches their density and refractive index. After addition of salt (tetrabutylam-
moniumchloride), this system presents hard-sphere like interactions45,46. The total volume fraction is 
φ =  0.61 and the relative fraction of small spheres xS =  φS/φ =  0.1. The formation of a glassy state in this 
mixture was demonstrated by using rheology and confocal microscopy measurements of the dynamics 
of large particles18–20. The presence of small spheres, with their larger energy density, increases the yield 
stress of the system, thereby improving the quality of the rheological data while still allowing for the 
simultaneous observation of the large spheres with confocal microscopy16,17. The rheological and confo-
cal microscopy measurements reported in the manuscript were obtained using a combination of a com-
mercial MCR-301 WSP stress-controlled rheometer (Anton-Paar) and a VT-Eye confocal unit (Visitech) 
mounted on a Nikon Ti-U inverted microscope, with a Nikon Plan Apo 60x oil immersion objective 
(NA =  1.40). We used a cone-plate geometry of diameter 50 mm, cone angle 1° and truncation gap 
100 μm. The bottom plate consists of a microscope coverslip which was coated with a mixture of PMMA 
particles of radius 0.885 μm and 0.174 μm. The surface of the cone is sandblasted. The roughness of the 
geometries prevents wall-slip, as verified by imaging. A solvent trap was used to reduce solvent evapora-
tion. Due to the fact that rheological measurements on colloidal glasses are affected by loading effects, 
shear history and aging, before each test a renjuvenation procedure was performed in order to obtain a 
reproducible initial state of the system. After loading, we performed a dynamic strain sweep to estimate 
the yield strain γy of the system from the crossing point of the strain-dependent storage, G′ , and loss, 
G′ ′ , moduli. Oscillatory shear at 3 yγ γ=  was applied to induce flow and maintained until the 
time-dependent G′  and G′ ′  reached a stationary state, typically after 200 s. Afterwards, oscillatory shear 
in the linear viscoelastic regime, γ =  0.001, was applied until G′  and G′ ′  became stationary, typically for 
t >  300 s. The state characterised by the stationary values of G′  and G′ ′  was the initial state, prepared 
before each creep measurement. The relative error on the strain determination during creep measure-
ments is smaller than 1%.

Confocal microscopy images were acquired in a velocity-vorticity plane about 6 mm from the center 
of the geometries and 30 μm from the bottom plate. Images with 512 ×  512 pixels, corresponding to 
51 μm ×  51 μm, were acquired at a rate of 67 frames per second, which ensured accurate particle tracking 
even at the highest applied stresses (typical movies in Supplementary Information). By imaging the 
truncation gap of the cone, we verified that bending of the coverslip is negligible16. This is also indicated 
by the fact that, despite the applied stress, the particles in the imaging plane remain perfectly in focus 
(movies in Supplementary Information). The fact that we can image the truncation gap of the cone is 
also used to check that the bottom plate is perpendicular to the rotation axis of the cone. Particle coor-
dinates and trajectories were extracted from the images using standard routines47. Mean squared dis-
placements from four independent measurements were averaged. The noise contribution to our MSD 
data was estimated from the MSD of an immobile sample, resulting in y d 4 102

L
2 4Δ / ≈ × − , i.e. a factor 

of about 2.5 times smaller than the Δ y2(t) values measured at short times.

In our molecular dynamics simulations, a 50:50 binary Yukawa fluid of large and small 
spheres with size ratio 1.2 is investigated. The model parameters have been reported earlier26,28,48. Our 
simulations have been performed for samples consisting of N =  12800 particles and having dimensions 
Lx =  26.66dS, Ly =  13.33dS, Lz =  53.31dS. We work in the NVT ensemble using periodic boundary condi-
tions, the temperature being controlled by a Lowe thermostat49. The mode-coupling critical temperature 
of the system is Tc =  0.14. The system is equilibrated at T =  0.15 and then instantaneously quenched to 
T =  0.10, where it is aged for 104 0

simτ . At this time, the walls are generated by freezing particles at 
0 <  z <  2dS and Lz–2dS <  z <  Lz 28. Stress is applied by pulling one wall at a constant force F0 in the x 
direction. For each applied stress, runs over 24 independent replicas of the system were averaged. Similar 
to the experiments, the dynamics were measured in a slice at the centre of the volume having thickness 
13.3dS and distance about 18dS to the walls on each side.
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In the first section we report the time evolution of the strain γ(t) for further values of the applied stress σ, and
the corresponding transient mean squared displacements for waiting time tw = 0, complementing the data of Fig. 1
in the main manuscript. In the second section, maps of instantaneous experimental particle mobilities are shown for
comparison with the average mobilities.

I. STRAIN EVOLUTION AND TRANSIENT MEAN SQUARED DISPLACEMENTS FOR
ADDITIONAL APPLIED STRESSES

The time evolution of the strain γ(t) is shown for additional values of the applied stress σ (Fig. SM-1), complementing
the data presented in Fig. 1a,b of the manuscript. The corresponding mean squared displacements Δy2(t), determined
immediately after application of stress, i.e. with waiting time tw = 0, are also shown (lower panels). The data of
Fig. 1 are also reported for comparison. The transition from a creep to a flow response occurs with increasing σ and
is found to be gradual. The simulations show that the super-linear regime of the stress and the super-diffusion, both
observed for σ 	 σy, are especially pronounced for σ ≈ σy, while they become less pronounced for larger stresses.

For the imposed stresses, when diffusion is observed at long times, we can determine the corresponding diffusion
constants D(σ) from the mean squared displacement Δy2(t). Similarly, the steady state strain rate γ̇ can be obtained
from the corresponding long-time data for strain γ(t). Thus, C(σ) = D(σ)/γ̇, defined in the main text, can be
calculated and yields C(σ) ∼ γ̇−0.2 (Fig. 2b). Taking this into account, i.e. by plotting Δy2/C(σ) as a function of
strain γ, we obtain a collapse of the data, as shown in Fig. 2c.
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Fig-SM. 1. Comparison of (left) experimental and (right) simulation results. (top) Time-dependence of the strain γ(t) for
applied stresses (a) σ/σy ≈ 1.0, 3.0 and 5.0, and (b) σ/σy = 0.90, 1.10, 1.18, 1.39, 1.53, 1.67, 1.80 and 3.0 (bottom to top).
(bottom) Mean squared displacement in the vorticity direction, Δy2(t), for the same applied stresses (indicated by the same
colors and line styles) immediately after stress application, i.e. for waiting time tw = 0.
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Fig-SM. 2. Maps of instantaneous experimental particle mobilities μlm(t) for σ/σy ≈ 1 (top) and σ/σy ≈ 5 (bottom), from
(a,c) 0.18τ exp

0 to 0.46τ exp
0 and (b,d) 0.28τ exp

0 to 0.56τ exp
0 . Each box has size (2.8dL)

2.

II. MAPS OF INSTANTANEOUS DISPLACEMENTS

Instantaneous mobilities were calculated from 0.18τ exp0 to 0.46τ exp0 and 0.28τ exp0 to 0.56τ exp0 , for σ/σy = 1.0 (Fig. SM-
2a,b) and σ/σy = 5.0 (Fig. SM-2c,d). No regions of large instantaneous and correlated mobilities are observed.
Moreover, the maps for σ/σy ≈ 1 and σ/σy ≈ 5 are comparable, contrary to what was observed in the average
mobility maps (Fig. 4). This indicates that the enhanced average mobilities observed in Fig. 4 are not the result
of sudden large displacements but rather occur through the accumulation of slightly above-average displacements
of particles in a specific region which seem to occur with a slightly larger probability in the beginning (compare
Fig. SM-2c,d to Fig. 4c).

III. MOVIES OF SHEARED SUSPENSIONS

Typical movies corresponding to series of confocal microscopy images of the sheared glass, for σ ≈ σy and σ ≈ 5σy,
acquired in a velocity-vorticity plane about 6 mm from the center of the geometries and 30 μm from the bottom plate.
Images with 512×512 pixels, corresponding to 51 μm × 51 μm, were acquired at a rate of 67 frames per second.
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Many natural and industrial processes rely on constrained transport, such as proteins moving
through cells [1–3], cell migration [4], particles confined in nanocomposite materials and gels [5–10],
and individuals in highly dense groups of humans and animals or vehicular traffic conditions [11, 12].
These are examples of motion through crowded environments, in which the host matrix may retain
some slow, glass-like dynamics. Here we investigate constrained transport in a slowly rearranging
environment using binary colloids as model system, in which the dilute small spheres act as intruders
and the large spheres form the mobile matrix, generalizing the work of Lorentz [13]. Using confocal
differential dynamic microscopy to resolve the small particles dynamics, we discover a critical size
asymmetry at which anomalous collective transport appears, manifested as a logarithmic decay of
the density autocorrelation functions. Numerical simulations elucidate the crucial role played by the
host mobility, an aspect which has not been previously considered [13–16]. We demonstrate that
the continuous creation and disruption of channels within the matrix is central for the observed
anomalous behaviour. These results, crucially depending on the presence of size-induced dynamic
asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology.

In the presence of a confining medium, the transport of objects deviates from normal diffusion. Anomalous be-
haviour, usually manifested by the presence of sub-diffusivity [17, 18], emerges as a common feature of the dynamics.
In the Lorentz gas [13, 15], the prototype model for anomalous transport, point-like intruders move in voids between
immobile, randomly-distributed particles. Their motion becomes sub-diffusive once the voids are barely intercon-
nected. When a critical density of immobile particles is reached, they percolate and the intruder becomes localized
[13]. Softness of the immobile particles or interactions among the intruders are known to modify this picture [16, 19–
22].
So far the slow movement of the host matrix has been largely ignored, despite representing realistic situations of

biological [1–4, 12, 23] and industrial interest [5–11]. To address confined transport in slowly moving matrices, here
we investigate a binary colloidal mixture of small and large hard spheres, of diameters σs and σl, which represent
intruders and host matrix, respectively. Changing the size ratio δ = σs/σl we also modify the dynamic asymmetry of
the system. We focus on volume fractions of large particles φl > 0.5 approaching the glass transition, occurring at
φg
l ≈ 0.58. In contrast the volume fraction of the intruders φs is very small with xs ≡ φs/φ = 0.01. Such a system

combines the confinement of a dilute fluid of mobile intruders with the slow dynamics of the matrix (Fig. 1a). It thus
provides the simplest minimal model for the investigation of motion in crowded soft and biological matter.
Despite its conceptual simplicity, experimental investigations of the dynamics of small intruders in mixtures of

Brownian particles with large size-asymmetry are scarce. This might be due to limitations in the spatial and temporal
resolution of confocal microscopy which make it difficult to track particles that are significantly smaller than another
species of Brownian, i.e. at most micron-sized, particles. To overcome these limitations, we keep the selectivity
of fluorescent labelling (Fig.1b), which allows us to separately determine the small and large particles. However,
instead of tracking we employ the recent Differential Dynamic Microscopy (DDM) technique [24–26]. This is based
on the time correlation in Fourier space of the difference between images separated by a time delay Δt (Fig.1c) and
provides a measure of the (isotropic) collective intermediate scattering function or density autocorrelation function
f(q,Δt), where q is the modulus of the wavevector q (Fig.1d). The decay of f(q,Δt) as a function of time delay Δt
corresponds to the loss of correlation of the particle density on a length scale determined by q−1 within the time delay

∗emanuela.zaccarelli@cnr.it
†marco.laurati@uni-duesseldorf.de
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FIG. 1: Illustration of the system and measurement method: (a) Schematic illustration of our system at two times t1
and t2 > t1 highlighting the trajectories (green lines) of the intruders (red beads) in voids and between voids made possible
due to the mobility of the matrix particles. (b) An exemplary confocal microscopy image of a mixture with δ = 0.18 and φ =
0.58 in which (left) both particles and (right) only the small particles are shown. (c) Image differences at different delay times
Δt are Fourier transformed to give 2D Fourier power spectra for different Δt. (d) After azimuthal averaging and additional
treatment the intermediate scattering function f(q,Δt) is obtained.

Δt. The decay time is therefore related to the characteristic time of the particle motions on the length scale q−1.
Approaches similar to DDM, like fluorescence correlation spectroscopy, do not provide information on the probed
length scale. This information is crucial to investigate the effect on the dynamics of the size of the voids in which
the small particles move. The function f(q,Δt) can also be obtained by dynamic light scattering, which, however,
does not allow us to distinguish the two species by fluorescent labeling. We also study the same system by mode
coupling theory of the glass transition (MCT) and, both in the case of mobile and immobile matrix particles, by
numerical simulations, complementing the experimental results and providing insights on the underlying microscopic
mechanisms.

Fig. 2a-d shows the measured collective intermediate scattering functions f(q,Δt) of the small particles for size
ratios δ = 0.18 (Fig.2a,c) and δ = 0.28 (Fig.2 b,d) for different φ and q. For δ = 0.18 and all φ and q, f(q,Δt) vs.
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FIG. 2: Dynamics of the intruders as observed in experiments and simulations: Intermediate scattering functions
f(q,Δt) (a–h) and mean-squared displacements 〈Δr2/σ2

s〉 (i–j) as a function of delay time Δt, describing the dynamics of small
spheres in binary mixtures with size ratios δ below (left) and around (right) the onset of anomalous dynamics, for different
magnitudes of the scattering vector q and total volume fraction φ (as indicated).

Δt shows an initial decay, followed by a φ-dependent intermediate plateau, and eventually a decay to zero at longer
times (Fig.2a). The initial decay can be associated with the Brownian motion of small particles within the voids of
the large particles matrix. It becomes increasingly slower for increasing φ (Fig.2a) and decreasing q, which means
increasing length scale (Fig.2c). The intermediate plateau indicates the dynamical arrest of the collective dynamics,
i.e. of density fluctuations, and hence the absence of diffusion on the length scale determined by q−1. The height of
the plateau increases progressively with increasing φ, similarly to the scenario in which a percolation-type transition
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is approached [19, 27], and indicates that voids become smaller and particles are increasingly localised [28]. The final
decay to zero of f(q,Δt) shows that particles are still able to diffuse at long times. For a larger size ratio, δ = 0.28, and
comparable φ values, a completely different scenario appears. Beyond φ ≈ 0.60, f(q,Δt) shows remarkable anomalous
dynamics, manifested in an extended logarithmic decay over three decades in time. This intriguing behavior is mostly
visible at φ 	 0.60 and qσl ≈ 3.5, i.e. when probing a length scale of about 2σl (Fig.2b), which is comparable to the
size of the matrix particles.
The experimental findings are confirmed by simulations. For δ = 0.20 no anomalous behavior of the small particles

is detected in the collective f(q,Δt) (Fig.2e,g) and in the self fself (q,Δt) correlation functions (Supplementary, Fig.
S1). Note that for δ = 0.20, f(q,Δt) displays a two step-relaxation and the presence of localisation (Fig.2e,g),
which is absent in fself (q,Δt). Also the mean squared displacements (MSD) 〈Δr2〉 ≡ 〈|r(t) − r(0)|2〉, with r(t) the
position of a particle at time t, show almost no localisation at all φ (Fig.2i). This decoupling between collective
(f(q,Δt)) and self dynamics (fself (q,Δt), MSD) originates from the glassy environment in which the intruders move.
Correlated motions of a group of intruders distributed within the matrix are more influenced by the slow dynamics of
the matrix particles than uncorrelated single particle motions, which are mostly sensitive to the local structure of the
voids [19, 29]. For δ = 0.35 we find the emergence of logarithmic anomalous relaxations of f(q,Δt) (Fig. 2f,h) and
fself (q,Δt) (Supplementary, Fig.S1), for comparable q as in the experiments. Additional simulations for δ = 0.30
and δ = 0.40 also show a logarithmic decay over a smaller time window (Supplementary, Figs. S1,S2). Furthermore,
for δ = 0.35 and φ 	 0.60 the MSD displays a clear sub-diffusive behavior, i.e. 〈Δr2〉 ∼ tα with α < 1 (Fig. 2j).
Finally, for δ = 0.5, f(q,Δt) and fself (q,Δt) show a two-step decay and the MSD a localisation plateau at large φ
(Supplementary, Fig. S2), consistent with a standard glass transition of the small particles. At all investigated δ and
for φl > 0.55, the dynamics of the large particles are typical of glassy states and within the investigated time window
are indicating localisation and motion within nearest neighbour cages of approximate size 0.1σl (Supplementary, Fig.
S3).
These results suggest the existence of a critical size ratio δc � 0.35 at which pronounced anomalous dynamics mark

the transition from a diffusive to a glassy regime of the small particles moving in the large particles matrix. The δc
and φ values where this transition is observed are slightly smaller in the experiments than in the simulations. This
is attributed to the fact that in the experiments small particles are polydisperse, while in the simulations they are
monodisperse. Polydispersity is expected to affect the transition since the average size particles might still be able to
diffuse through the void spaces in the matrix, whereas the largest particles of the size distribution might no longer
be able to diffuse through them. The crossover observed at δc is analogous to the transition from a diffusive to a
localized state in the Lorentz gas. However, the excluded volume of the intruder generates a coupling with the host
matrix and, due to the mobility of the matrix, also between intruders in different voids, mutating localization into a
glass transition due to the (slow) mobility of the matrix particles. Although this is apparently similar to intruders in
a fixed matrix [16, 19, 20], the logarithmic decay of f(q,Δt) stands out as a novel feature.

On the basis of mode coupling theory (MCT), the appearance of logarithmic decays in f(q,Δt) [30–32] is usually
attributed to competing collective arrest mechanisms, like caging and bonding, and to higher-order glass transition
singularities [29, 33–35]. We solved MCT equations for a binary mixture of hard spheres and xs = 0.01. The resulting
correlators f(q,Δt) for a range of packing fractions around the MCT glass transition, φc ≈ 0.516 and δ = 0.20 and
0.35, are shown in Fig. 3. No clear sign of logarithmic decay of f(q,Δt) is found for these states in MCT: while
an approximate logarithmic dependence of the decay is observed at δ = 0.35, φ = 0.51 and qσl = 3.4, this extends
over an interval of times much shorter than in experiments and simulations. In addition, upon further increasing
φ the logarithmic dependence does not take over, but instead a two-step decay is found, followed by the arrest of
the dynamics (Supplementary, Fig. S6). Indeed higher-order singularities are not present in this region of φ and xs

values [29]. On the other hand, the MSD obtained from MCT shows the qualitative signatures found in simulations:
for δ = 0.20 < δc, the long-time diffusion barely slows down with increasing φ, indicating a partially frozen glass in
which the small particles are mobile. For δ = 0.35 ≈ δc, anomalous sub-diffusion is observed, indicating that the
glass-transition of the large particles and the localization transition of the small particles are close to each other.
Thus, the appearance of approximately logarithmic decay in Fig. 3 could be a signal of the transition from coupled
dynamics of the two species at large δ to decoupled dynamics at small δ.
A direct visualisation of small particle locations shows that the transition from diffusive dynamics at small δ to

localised dynamics at large δ observed in experiments, simulations and theory is associated, similarly to the Lorentz
gas, with the transition from percolating to non-percolating voids within the matrix. However, a static picture of
the void geometry cannot describe this transition, because the evolution of the void space involves a second timescale
t2 (Fig. 1a, right) associated with the mobility of the matrix. To analyse the dynamic rearrangements of the void
structure, we monitor the evolution of the position of the small particles which explore this evolving structure.
Accordingly, in Fig. 4a,b we show superpositions of small particle locations in 2D time series of confocal images over
a long total observation time texpf = 297 s, at which f(q,Δt) for δ = 0.18 shows a decay of correlations, while f(q,Δt)
for δ = 0.28 is in the logarithmic regime. For δ = 0.18 we find that, within the observation time, small particles
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FIG. 3: Dynamics of the intruders as predicted by MCT: Intermediate scattering functions f(q,Δt) (top, middle) and
mean-squared displacements 〈Δr2/σ2

l 〉 (bottom) describing the dynamics of small spheres in binary mixtures with size ratios
delta below (left) and around (right) the onset of anomalous dynamics, for different magnitudes of the scattering vector q and
total volume fraction φ (as indicated).

easily explore the whole space of the accessible voids which form a percolating network. In contrast, for δ = 0.28
particles mostly explore their local environment, since voids only barely connect even at long times, allowing only a
slow, partial exploration of the available void space. Simulations provide not only particle locations but also single-
particle trajectories in three dimensions allowing a more quantitative determination of the percolation of the explored
space. Visualisations of typical small particle trajectories for a fixed observation time tsimf = 100t0 (comparable to the

experiments) and three different values of δ confirm the experimental features (Fig.4c): within the observation time
small particles explore a percolated space for small δ, while for the critical size ratio the space is barely connected,
indicating that particles can rarely escape the local environment which is only possible due to the stochastic opening
and closing of channels between neighbouring void spaces, associated with the matrix motion on the long time scale
t2. In addition the simulations show that for even larger δ the explored space is disconnected. To quantify these
observations we calculate the size distribution n(s) of the space s explored by small particles within a certain time
interval, as explained in Methods. The results are shown in Fig.4d for different δ values for an observation time equal
to tsimf . This time corresponds to the interval over which the cluster size distribution of the explored space for δc
is close to percolation, as indicated by the power-law dependence n(s) ∼ s−2.19, consistent with random percolation
predictions [36]. Percolation at tsimf for δc is also indicated, in a finite-size system, by the maximum of the average

size of finite-size clusters (excluding percolating clusters, calculated as explained in Methods) Lc as a function of
time (Fig.4e). For the other size ratios instead Lc is very small at tsimf . At small δ this is due to the fact that
particles can easily move through channels connecting voids, and thus the explored space quickly associates into a
percolating cluster. On the other hand, for large δ the creation of channels that allow the small particles to move
between neighbouring void spaces is rare, and thus percolation of the explored space does not occur at tsimf and only
voids corresponding to the size of monomers, dimers and few-mers are observed. This analysis reveals very different
timescales at which the explored space percolates at different δ. These timescales depend, besides δ, on the timescale
t2 of the evolution of the void space, associated with the thermal motion of the matrix particles: yet this analysis is
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FIG. 4: Illustration of the space explored by small particles during their motions: (a-b) Overlay of small particle
positions at different times (colour coded from blue, corresponding to texpi = 0 s to red, corresponding to texpf = 297 s with

time steps of 33 s), obtained by particle tracking applied to 2D confocal microscopy images, for φ = 0.60 and (a) δ = 0.18,
(b) δ = 0.28. (c) Positions of ten small particles (distinguished by different colours) for (left) δ = 0.2, (middle) δ = 0.35, and
(right) δ = 0.5, for a fixed total time of the trajectories tsimf = 100t0, comparable to the experiments r(d) Distribution n(s)
(normalized by the number of small particles Ns) of the size s of the space explored by small particles, evaluated within a fixed
time interval tsimf = 100t0. For δ = 0.35 data are consistent with a power-law dependence n(s) ∼ s−2.19, consistent with random
percolation (dashed line), while for δ = 0.20 all particles belong to the same cluster. (e) Average size Lc of finite clusters as a
function of time, for different δ, as indicated. The maximum in each curve signals the onset of percolation.

not offering substantial evidence that this mobility of the matrix is causing the logarithmic decays of the correlators
observed at δc.
To go one step further and link the residual mobility of the matrix particles with the anomalous logarithmic decays,

we perform additional simulations (for φ = 0.62) for immobile matrix particles and compare the dynamics of the
intruders with the case of a mobile matrix. When the large particles are immobile (Fig. 5a), the MSD shows a
sub-diffusive regime (MSD∼ tα) followed by diffusion at long times (upward curvature) or localization (downward
curvature), depending on δ. The crossover between these two long time behaviors takes place at a critical size ratio
δimm
c ∼ 0.275 where the MSD remains subdiffusive also at long times [18]. The value of δc is smaller for the simulation
with immobile large particles. This finding is consistent with the opening of channels as a consequence of the thermal
motion of the matrix particles. In the case of mobile matrix particles localisation is never observed (Fig. 5b): even
for large δ, the residual motion of the matrix allows the small particles to move and hence their MSD increases at
long times. Furthermore, the subdiffusive regime is only observed for δ < δimm

c and thus in a smaller range than
for mobile particles. This is consistent with the opening of channels as a consequence of the thermal motion of the
matrix particles, which allows larger particles to move between voids. We also find that fself (q,Δt) calculated for
the case of an immobile matrix displays a power-law dependence on time extending for several decades (Fig. 5c), in
agreement with the Lorentz gas model [37], while the collective f(q,Δt) displays neither a power-law nor a logarithmic
dependence (Supplementary, Fig. S4). In the case of a mobile matrix, however, power law behaviour is not observed
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FIG. 5: Comparison of the dynamics of small particles in a mobile or immobile large particles matrix: (a) MSDs
of the small particles for immobile large particles at φ = 0.62 and various values of δ, as indicated. For δimm

c ∼ 0.275 a clear
subdiffusive behavior is observed at all times. (b) Comparison of the MSDs of the small particles at φ = 0.62 for mobile
(dashed lines) and immobile (full lines) large particles, for increasing δ, as indicated. (c) Self intermediate scattering functions
f self(q,Δt) at φ = 0.62 and different wavevectors qσl, as indicated, for δ = 0.25 (immobile, full lines) and δ = 0.35 (mobile,
dashed lines) highlighting the power-law dependence (dot-dashed line) in the immobile case.

but, close to δc, a logarithmic dependence is found. Thus, thermal motion of the matrix particles gives rise to the
logarithmic decay, a novel type of dynamics which does not occur in the Lorentz model.
Our combined experimental, simulation and theoretical study shows that dynamics of intruders in a mobile crowded

environment requires a description beyond the classical Lorentz gas model. The novel application of the confocal DDM
technique to concentrated binary colloidal mixtures allows us to investigate the collective dynamics of intruders in a
mobile matrix, revealing extended anomalous dynamics for specific values of the size asymmetry and of the probed
length scale. While the Lorentz model predicts a power-law behavior, which is typical for systems close to a percolation
transition, in the case of a mobile matrix we observe a logarithmic decay of the collective and self density fluctuations
over at least three decades in time, at length scales comparable to the size of the matrix particles. This logarithmic
decay marks the transition between a diffusive behaviour of intruders in a glassy medium for small size ratios δ < δc,
where transient localization is due to the excluded volume of the mobile matrix, and glassy dynamics of the intruders
at large size ratios δ > δc, due to crowding. Our results thus show that both percolation and glassy dynamics have
to be considered. By comparing mobile and immobile matrix environments, we demonstrate that the dynamics of
the small particles is profoundly altered, in a qualitative way, by the continuous evolution of channels in the mobile
matrix, due to the thermal motion of large particles. A mobile matrix corresponds to an environment in which small
intruders move in many real systems and applications, like in glasses, nanocomposite materials, chromatography,
catalysis, oil recovery, drug delivery or cell signaling, cell interiors, human and animal crowds and vehicular traffic.
We thus expect that our findings will inspire the development of a more realistic description of these situations.
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Methods

Materials We investigated dispersions of sterically stabilized PMMA spheres of diameters σl(1) = 3.10 μm
(polydispersity 0.07) or σl(2) = 1.98 μm (polydispersity 0.07) mixed with spheres of diameter σs = 0.56 μm
(polydispersity 0.13) (fluorescently labeled with nitrobenzoxadiazole (NBD)), in a cis-decalin/cycloheptyl-bromide
mixture which closely matches their density and refractive index. The size ratio of the mixtures is δ = 0.18 (σl(1))
and δ = 0.28 (σl(2)), respectively. After adding salt (tetrabutylammoniumchloride), this system presents hard-sphere
like interactions [38, 39]. A sediment of the large spheres with φ = 0.65 or of the small spheres with φ = 0.67, as
estimated from comparison with numerical simulations and experiments [40, 41], is diluted to obtain one-component
dispersions with desired volume fraction φ. Following a recent study [42], the uncertainty Δφ can be as large or above
3 %. Using the nominal volume fraction φ of the large spheres as a reference, the volume fraction of the samples
containing the small particles are adjusted in order to obtain comparable linear viscoelastic moduli in units of the
energy density 3kBT/4πR

3, where kB is the Boltzmann constant, T the temperature and R the particles’ radius, while
multiplying the frequency by the free-diffusion Brownian time τ0 = 6πηR3/kBT , where η = 2.2 mPa s is the solvent
viscosity. In this way we obtain samples with comparable rheological properties and, according to the generalised
Stokes-Einstein relation [43], also dynamics and hence a similar location with respect to the glass transition. The
comparable dynamics but different polydispersities of the one-component samples imply slightly different φ. Samples
with different total volume fractions and a fixed composition, namely a fraction of small particles xs = φs/φ = 0.01,
where φs is the volume fraction of small particles, are prepared by mixing the one-component samples.

DDM measurements Confocal microscopy images were acquired in a plane at a depth of approximately
30 μm from the coverslip. Images with 512×512 pixels, corresponding to 107 μm × 107 μm, were acquired
at a fast rate of 30 frames per second to follow the short-time dynamics and at a slow rate, between 0.07 and
0.33 frames per second, depending on sample, to follow the long-time dynamics. Image series were acquired
using a Nikon A1R-MP confocal scanning unit mounted on a Nikon Ti-U inverted microscope, with a 60x Nikon
Plan Apo oil immersion objective (NA = 1.40). The pixel size at this magnification is 0.21 μm × 0.21 μm.
The confocal images were acquired with the maximum pinhole size allowed by the microscope, corresponding to a
pinhole diameter of 255 μm. Time series of 104 images were acquired for 2 to 5 different volumes, depending on sample.

DDM analysis Particle movements induce fluctuations of the fluorescence intensity in the images, i(x, y, t), with
x, y the coordinates of a pixel in the image and t the time at which the image was recorded. To obtain additional
information on the characteristic length scales of particle motions, i(x, y, t) can be Fourier transformed, yielding

î(q, t), with q the wave vector in Fourier space, and then differences of the Fourier transformed image intensities can
be correlated (Fig. 1c) to obtain the image structure function D(q,Δt):

D(q,Δt) = 〈|̂i(q, t+Δt)− î(q, t)|2〉 (1)

where 〈〉 represents an ensemble average. This analysis technique is named Differential Dynamic Microscopy (DDM)
[24]. The intermediate scattering function f(q,Δt) (Fig. 1d) can be extracted from the image structure function:

D(q,Δt) = A(q)[1− f(q,Δt)] +B(q) (2)

with A(q) = N |K̂(q)|2S(q), where N is the number of particles in the observed volume, K̂(q) is the Fourier transform
of the Point-Spread Function of the microscope, S(q) is the static structure factor of the system, and B(q) accounts
for the camera noise. The inverse of the wave vector q determines the length scale over which the particle dynamics
are probed. Thus f(q,Δt) is obtained, similarly to dynamic light scattering (DLS)[44], but for the present system
the advantage of DDM over DLS is that fluctuations of the incoherent fluorescence signal can be correlated, a
possibility which is excluded by the requirement of coherence of light in DLS. Furthermore, use of a confocal
microscope drastically reduces the amount of background fluorescence of the measurements, significantly improving
the determination of f(q,Δt). The effect of particles moving in and out of the observation plane on f(q,Δt) was
found to be negligible for all samples, as determined by the q-dependence of the relaxation times of the initial decay
of f(q,Δt), where no plateau at small q values was observed [25, 45].

Particle Localization Coordinates of the small particles were extracted from time series of 2-dimensional images
using standard particle localization routines based on the centroiding technique [46]. Only the particle positions at
each time could be determined, not the full trajectories. Indeed the displacement of small particles during the time
delay Δt between two successive frames is comparable or larger than their diameter, which implies that identifying
particles after a Δt becomes too uncertain.
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Simulations We perform event-driven Molecular Dynamics simulations[47] in the NV T ensemble in a cubic
box with periodic boundary conditions for binary mixtures of hard spheres, of which the large components are 7%
polydisperse by a discrete Gaussian distribution[48] and the small ones are monodisperse. For each studied δ we vary
the total number of particles in the range of a few thousands. The number of small particles thus varies from 1980 for
δ = 0.2 to 292 for δ = 0.5. Mass and length are measured in units of particle mass m, average large particle diameter
σl, whereas time is in units of t0 =

√
mσ2

l /κBT , where kB is the Boltzmann constant and T the temperature. For
the simulations with immobile hard spheres, after equilibration of the mixture, we freeze the large particles only. To
roughly estimate the critical size ratio which demarcates the transition between diffusive and localized states, we
averaged results over ten different matrix realizations.

Mode Coupling Theory The equations determining f(q, t) and 〈Δr2(t)〉 within MCT were solved for a binary
mixture of hard spheres within the Percus-Yevick approximation for the static structure; for details on the theory
and the numerical procedure, see Ref. [29]. The f(q,Δt) were obtained using a wave-number grid of equidistant steps
Δq = 0.4/σl, with large-q cutoff qσl = 400. Brownian dynamics is assumed with the short-time diffusion coefficients
following the Stokes-Einstein relation; the diffusion coefficient of the large particles sets the unit of time τ0. In the
calculations, the total packing fraction φ is varied, keeping xs = φs/φ = 0.01 fixed.

Calculation of the size distribution of the explored space To evaluate the distribution of space sampled by
the small particles during time we employ the following procedure.

1. We generate a sequence of Nc configurations saved at equally spaced times ti (with i = 1 . . . Nc) within a given
time window tNc

. The time interval Δtc between two successive configurations, i.e. Δtc = ti+1 − ti is chosen in
such a way that 〈Δr2(Δtc)〉/σ2

s = 0.5.

2. We overlap all Nc configurations and perform a cluster size analysis according to the following criteria: (i) the
same particle at different times ti belong to the same cluster; (ii) if two particles overlap, they belong to the
same cluster; (iii) the size s of a cluster is defined as the number of distinct particles belonging to the same
cluster (running from one to the total number of small particles)

To improve statistics we average the cluster size distribution n(s) over a set of at least 10 independent groups of
Nc configurations. The average size of finite clusters is calculated as Lc =

∑
s2n(s)/

∑
sn(s), excluding percolating

clusters.
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Additional Simulation data

Self correlators

The self intermediate scattering functions fself (q,Δt) are reported in Fig.S1 to complement the data of the collective
intermediate scattering function in the manuscript. It is evident that for δ = 0.20 (Fig.S1(a)) the self dynamics of
large and small particles are completely decoupled; fself (q,Δt) for the small particles fully decay to zero on a much
shorter timescale than those for larger particles. In addition, the self dynamics is also decoupled from the collective
dynamics for small particles, similarly to early predictions by Bosse and Kaneko[1]. This confirms the scenario that
small particles are fully diffusive within the voids of the large particles at all explored φ (up to φ = 0.67, not shown).
For δ = 0.35 (Fig.S1(b)), fself (q,Δt) for small particles show a logarithmic decay similarly to the collective ones.
Moreover, the self dynamics of the small and large particles starts to couple, as the logarithmic decay extends over
timescales comparable to the large particle relaxation time. Finally, for δ = 0.50 (Fig.S1(c)), small and large particles
are fully coupled, both exhibiting a standard (and almost simultaneous) glass transition, with no sign of logarithmic
dynamics.
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FIG. S1: Self intermediate scattering functions fself (q,Δt) for large (dashed lines) and small (full lines) particles calculated in
simulations for qσl = 3.5 and different φ (as indicated) at δ = 0.20 (a), δ = 0.35 (b) and δ = 0.50 (c).
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Dependence on δ

In the manuscript we have shown that there exists a critical size ratio δc = 0.35 above which, for φ 	 0.60, an
enhanced logarithmic decay of the correlators is observed, which extends over 3 decades. Here we complement these
results by reporting the collective density auto-correlation functions for other values of δ. In particular, for δ = 0.30
(Fig. S2(a)) we find that the correlation function starts to develop an incipient logarithmic behavior for a limited
time window at the highest studied φ; for δ = 0.40 (Fig. S2(b)) we see quite clearly an intermediate time regime
of logarithmic decay for about two decades, which is followed at long times by a standard (stretched exponential)
final decay. Finally for δ = 0.50 (Fig. S2(c)) there is no evidence of any logarithmic decay and a standard two-step
behavior characteristic for concentrated suspensions is recovered, as also seen in the MSD (Fig. S2(d)).
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FIG. S2: Collective intermediate scattering functions f(q,Δt) for the small particles calculated for fixed qσl ∼ 3.5 and different
φ (as indicated) for δ = 0.30 (a), δ = 0.40 (b) and δ = 0.50 (c); MSD for the small particles for δ = 0.50, and different φ (as
indicated) (d).
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Large particle dynamics

The small particle dynamics display a dramatic change of behaviour at the critical size ratio, which can be
associated with changes in the mechanism of arrest and the transition from caging at large δ to localisation at small
δ, related to the decoupling of the dynamics of the two species. On the other hand the arrest mechanism of the large
particles, caging by other large particles, is not significantly affected by the presence of the small fraction, xs = 0.01,
of small particles, irrespective of size ratio. As an example, Fig.S3(a) shows that large particles at δc = 0.35, where
the small particles show anomalous dynamics, approach a standard glass transition upon increasing φ, characterised
by a typical two-step decay. Furthermore, Fig.S3(b) and (c) show that, upon changing δ, the localisation length, i.e.
the cage size, does not change significantly, as evident from the plateau height of both the MSDs (∼ 0.1σ2

l ) and the
density correlators. The cage though becomes more mobile with decreasing δ, as shown by the faster dynamics at
long times, possibly as a consequence of the fact that at small δ the small particles do not hinder the large particle
movements due to their small size and large mobility.

10-2 10-1 100 101 102 103 104

Δt/t0

0

0.2

0.4

0.6

0.8

1

f(
q,

Δt
) 0.56

0.58
0.60
0.61
0.62
0.63
0.64

(a)

φ

δ = 0.35, qσl = 3.5 

10-2 10-1 100 101 102 103 104

Δt/t0

0.4

0.6

0.8

1

f(
q,

Δt
)

δ=0.20
δ=0.25
δ=0.30
δ=0.35
δ=0.40
δ=0.50

(b) φ = 0.62, qσl = 3.5

10-2 10-1 100 101 102 103 104

Δt/t0

10-3

10-2

10-1

100

<Δ
r2 >/

σ2 l

δ=0.20
δ=0.25
δ=0.30
δ=0.35
δ=0.40
δ=0.50(c) φ = 0.62

FIG. S3: (a) Collective intermediate scattering functions f(q,Δt) for the large particles calculated in the simulations for
δ = 0.35, qσl ∼ 3.5 and different φ (as indicated); f(q,Δt) for qσl ∼ 3.5 (b) and large particles MSD (c), calculated for φ = 0.62
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Frozen vs. mobile matrix of large particles

Here we want to compare simulations of a fully mobile binary mixture of hard spheres and one where the large
particles are immobile. For the latter situation, quantitatively accurate results can only be obtained when one considers
a large system size and also performs an average over several matrix realizations, as done in previous works [2–4].
However, our aim is only to provide a qualitative comparison with the mobile case, for which our approach, based on
a single realization for a system size of O(103) particles, is sufficient, as indicated by the fact that the MSD for the
immobile matrix case reported in Fig.4(a) displays the correct behaviour with a critical exponent compatible with
the analytical predictions[4].
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FIG. S4: (a) Collective (full curve), self (dashed curve) and scaled f̂(q,Δt) (see text, circles) intermediate scattering functions

for φ = 0.62, δ = 0.25 and qσl � 4.3 in log-log plot; (b) collective (full curve), self (dashed curve) and scaled f̂(q,Δt) (symbols)
for φ = 0.62 and δ = 0.25, qσl � 4.3 (black), δ = 0.30, qσl � 3.7 (red) in semi-log plot; (c) Same data as in Fig.2h of the
manuscript, but in log-log scale instead of semi-log scale: collective correlators for φ = 0.62 for various wavevectors.

Fig. 5(c) shows that the small particle self correlators for the immobile matrix case display (at intermediate time)
a power-law behavior. It is to be noted that these correlators, even below the critical size ratio ∼ 0.3, display a
long-time finite value, i.e. a residual non-ergodicity. Indeed, different from studies on the Lorentz gas [5], we include
among the intruders small particles trapped in finite size voids, i.e. not pertaining to the percolating cluster of voids,
to make the analogy with the fully mobile case. The collective correlators, for the situation where the self ones
show a power-law dependence on time, do not present the same behavior (Fig.S4(a)). Nevertheless, defining a scaled

correlator f̂(q,Δt) = (f(q,Δt)− f(q,∞))/(1− f(q,∞)), which allows us to remove the contribution of the frozen-in
component to the correlation function [6], we see that a power-law behavior seems to emerge also for the collective
correlators, even though our current numerical resolution is not good enough to determine this clearly. However,
the important point is that in semi-log plot (Fig.S4(b)) all correlators (self, collective and scaled) for frozen matrix
conditions do not show a logarithmic decay in any time window or wavevector. Finally, in Fig.S4(c) the correlators for
the mobile matrix at the critical size ratio are reported in log-log plot showing that at qσl = 3.5, where the anomalous
logarithmic behavior is observed, a power-law decay cannot describe the data. It is interesting to note that at a larger
value of qσl = 7.5 the data might approach this behavior at long times, even though within a two-step decay. The
power-law exponent of about 0.5 is also close to the Lorentz gas (0.527) and to MCT predictions. This suggests that
at the smaller length scales probed at larger q values, the particles mainly see the local environment and localisation,
while only at smaller q values the network structure of voids is explored and leads to anomalous behavior. Note
though that the self correlators significantly deviate from power-law behavior. In summary, these results complement
those provided in the manuscript and show that small particles moving in a frozen matrix behave very differently
from those moving in a glassy but mobile matrix of large particles.
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Additional MCT data
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FIG. S5: Left: self-intermediate scattering functions fself (q,Δt) for the small particles (solid lines) and the large particles
(dashed lines), for φ = 0.515, qσl = 3.4 and various size ratios δ, as indicated (increasing in the direction of the arrows). Right:
corresponding mean-squared displacements (MSD).
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FIG. S6: Self-intermediate scattering functions fself (q,Δt) of the small (solid lines) and the large particles (dashed lines), for
qσl = 3.4 and various packing fractions φ, as indicated. Left: size ratio δ = 0.2; middle: δ = 0.35; right: δ = 0.5.

Since the relative volume fraction of small particles is small, the main dynamical arrest mechanism for the large
particles (caging) is not qualitatively affected by changing the size ratio δ. This is captured by MCT, see Fig. S5,
where the self-intermediate scattering functions are shown for various δ at fixed packing fraction, for both the large
and the small particles, together with the corresponding mean-squared displacements. At all size ratios, the large
particles indicate caging on the same length scale, indicated by the plateau of the MSD corresponing to a localization
length of about 10% of σl (Lindemann criterion). At the same time, the dynamics of the small particles changes
qualitatively, from caged at large δ, to diffusive at δ = 0.2, with a localization length that grows continuously as δ is
decreased.
The difference in dynamical behavior of the small particles at the glass transition, depending on δ, is elucidated

by Fig. S6, where MCT predictions corresponding to the simulation data shown in Fig. S2 are shown. The theory
qualitatively captures the change from localization-type behavior and a partially frozen glass at δ = 0.2, to an ordinary
glass transition showing caging for both species at δ = 0.5.
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����� ������

���� ������	
��� �	���� ���������

������ ���� �	
�

��� ���� �
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������� ��� ��������� 
����������� �� ��� ����� 	���� I(�r, t) �� 	�/�� 	������� �r ��
 ����

t� ���� ����� 
��� ��� 
�#�������� ��������� ����������� �������� �%*.�!

D(�q, δt) = 〈|I(�q, t+ δt)− I(�q, t)|2〉, ���0!

��� �� ���������
� 1��� δt �� � 2/�
 ������	�� ��
 〈...〉 ��	������� ��� ������"�����

�������� �� ���� t� I(�q, t) �� ��� ����������������� �� I(�r, t) ���� D(�q, t) ��� �� �����	����
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�(������� �"������� �� D(�q, δt) �� ������� ���� ���
� � ����
���������� ������� 	�����

�	������ D(q, δt) ����� ��� �� ������� ��

D(q, δt) = A(q)(1− f(q, δt)) + B(q), ���3 !

����� f(q, δt) �� ��� �������
���� ���������� ��������� ��� ��	����
� A(q) 
�	��
� ��

���



D(q, δt) D(q, δt)
δt q

A(q) B(q)
τ qR R

τ(q) =
1

D0q2

B(q)

10−4

f(q, δt) = e−δt/τ(q),

τ(q)

R = 0.266
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� D0 =
kBT

6πηr
����� 	 �����
� �
������� D0 = 0.33��2��� �� �����

�
��
�	� ����
��
�� 104 ��	��� ���� 	 ���� 512×512 ���� �	��� 	� �� ��	��� ��� ���
��

��������� �� 	 �
�	� ���
���� ���� 
� ∼ 5.5 ��������  ���� ��� ��
����� �����!�
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��� ��� "#$% �� �������� 	� &��� �
 ��� ������
� ' �(�) ���� f(q) ��
� �*�

' �(()� +�� &� �	�	����� τ(q) �� �
�������� ���� ��� ���
�����	� �������
� ����� !�

τ(q) =
1

D0q2
������ 	� ��
�� �� %�����  �, ������

"��	���� 
� �	������� �� ����� ������� �	� !� ����� !� ""-� �.	����� 
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�� �� !�
�
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�

' �(�) ��� "#$% �	� !� �
������ �
 ��� #/% ���� ��� 	�������
� ��	� A(q) 	�

B(q) 	�� ��
��� %
� ����� �
����
�� A(q) 	� B(q) 	�� �������� !� &������ %
�

�
������	�� 	� �
����. �������� ��� �������	��
� 
� ��� �	�	������ !� &����� ��

���
���!�� �� 
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� ��� "#$% ������
� �� ��	���� '�� �
 �
��� 
� ��&������

�
�� ���	.	��
� ����) 	� ��� &� ������
� f(q, δt) �� ����
���

+
 ��� ""- �
� 	� �.��������	� �������	��
� 
� ��� ��������	�� ��	������� ����0

��
� �� ��� �	�� 
� �
������	�� �
����. �������� ��� �	�	������ A(q) 	� B(q) 	��
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IC(q, δt) = 〈I(q, t)I∗(q, t+ δt)〉, ' �(,)
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IC(q, δt) = 0.5A(q)f(q, δt) + 0.5B(q)δδt,0 + C(q), ' �(�)
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D(q, δt) q
δt A B

δt
C

A(q) B(q)

A(q) = 2IC(q, δtmin)

B(q) = 2IC(q, 0)− 2IC(q, δtmin),

δtmin

D(q, δt) = 2[IC(q, 0) −
IC(q, δt)]

IC(q, δt) IC(q, 0) δt → ∞ B(q) = 0

C(q) = 0

A(q) = 2IC(q, 0)



A(q) B(q)

R = 0.838

×
104 × qi

N ×N

qi =
2π

Ndpix
i , i = 1, . . . , N/2.

dpix = 0.42 q 0.029 −1 7.48 −1

q

f(q, δt)



τ φ qR R

f(q, δt)
φ q

n φ qR
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f(q, δt) = e−(δt/τ(q))n , n ≤ 1 . ������
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������ !� �� f(q, δt) ���
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��� ������������ ����� τ 
������ �� !����� �� ��
�� �� ������ ��" �� �� ��	����� 

�
� ������ ���	����
�� ��� 	�
	
���
����� τ ∼ 1/D0q
2 ���� D0 = 0.1042 ��2/� �� �
���

�
� ����������� q� � ������
� ��
� ���� �����
� 
������� �
� ���� q �� ��� �
 ���

������� �
��
�� ����� ����%���� δz ������ ��� ���� 
� ��� ������������ ���� �
� q → 0 ��

�������� �
 �� τplateau ' 60 pm10 � �� �� ������ �
 ��� ���� ��� ��� 	������� ����

�
 ��(��� 
�� 
� ��� ����� )
���*������ ��� ����%���� 
� ��� ���� �� �� �������� �

δz =
√
τplateauD0 = 2.5± 0.2 ��� ���� ������ �� ���� ��
�� �
 ��� 
	����#����%���� ����

2.32 �� ����� �� 	�
����� �� ��� �
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� ��� �
��
��
	�� +
�� ��� ��� 
	����
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� ��� 	���
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� ��� �������

δz  ����� 
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��� ��������� ���
� S(q) �� ��&����� �� ��� �	������ A(q) ����� �� ����� ��

A(q) = φP (q)S(q)T (q), ����,�

���� �
�� ���
� P (q) ��������� ���
� S(q) �� 
	���� ������� ������
� T (q)������
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� T (q) �
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�  ������ �
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� ��� ��������� ���
� �� �*�� �
 � ���� S0(q) = 1 

����� ������� �� A(q) = φP (q)T (q)� ��� �
�� ���
� P (q) 
�  ������ �
����
� �� ��

������� �� ����� ��������� ��	�������� �
�	��������� ��� //$ ������������ �
�

���� ��� ��������� I 
� ��� �������� ����� �  ������
� 
� ���� 
� ���#����
� q ��

�������� ��� ��������� I(q) ∼ P (q) �
������� ��� 	�
������
� 
� A(q) � �� �� ��
�� ��
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A(q) I(q)
q I(q)

S(q)
qR

D(qmax)/D0 D0

∗ �
◦ �

q A(q) I(q)

T (q) A(q)

P (q) T (q)

φ

S(q) S(q) = φ0A(q)/φA0(q) φ0

A0(q)

φ = 0.02, 0.05

φ = 0.02, 0.05

S(q)

D(qmax) = 1/q2maxτ
n qmax q S(q)

D(qmax)/D0

D0 D(qmax)/D0

φ

D(φ)
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�� ��� ��� 	���� �	������ ��� ��������

������ ������	 ����	�� �	 ��� ���������	� ���� ��� 	��
�� � ��!��� ��� ��������� &�� ��

������� ��� �!������� % �� ��$� ��� ������ �� ���� ���������	 ���� ����	� d
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≈ 7.7

��!��� ��� �������� �������� d� ��� ���������	 ������ �� ������ ����� �	��	���� #��������	�

���	 �� � ��	��	������	 � φ ≈ 0.4� (� ��� ���� ���� ������� ��� �������
�� q���	��

��	���	� ����� ������� ����� ��� 
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����� q�������+� ,��	 �� ����� ��������� ���� � ����� �������� �������	� �	 d
dpix

≈ 2.3�
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