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Summary

Colloids are particles in a solvent which, due to their size in the nano- to micrometer
range, undergo Brownian motion and are very susceptible to external forces. Their size
is comparable to the wavelength of light, which allows us to follow individual particle
under the optical microscope. Because they behave like large atoms, colloidal dispersions
have evolved into fascinating model systems to study fundamental physical problems.
Furthermore, they are found in many industrial and natural products giving them a vast
industrial and technological importance.

At very high packing fractions, colloidal hard spheres enter a non-equilibrium glass
state, which is characterized by arrested dynamics. Despite the simplicity of this system,
many facets of the nature of the glass transition have eluded a satisfactory explanation
so far. In particular, a detailed microscopic picture of the arrest mechanism, which is
expected to be governed by ,caging” through neighboring particles, and how these cages
can be broken and ergodicity restored still has to be explored.

Here we follow two strategies to investigate glassy dynamics. We use binary hard-
sphere mixtures with large dynamical asymmetry, which allow us to experimentally
explore and contrast different caging mechanisms: for example, the large particles can
be caged by large or small particles. Furthermore, we expose these mixtures to strong
external constraints, namely shear, to push the systems far from their quiescent state
and observe the shear-induced enhancement of the dynamics. The recently developed
rheoscopy enables us to follow the particles in situ by confocal microscopy while they
are exposed to external shear. We find that different caging mechanisms can lead to
different glass states that have very distinct properties, like structure, dynamics or
viscoelastic moduli. These caging mechanisms, together with the short- and long-time
single particle dynamics as well as dynamical heterogeneities, are also responsible for
the different yielding behaviors, i.e. transitions to flow.

Finally, we have investigated the dynamics of dilute small particles confined by dense
large spheres. Very small tracer particles can pass through the narrow channels between
large spheres, whereas larger tracers become increasingly localized. Due to the motion of
the large particles, however, localization is never perfect and results in slow anomalous
dynamics of the tracers. The competition between localization and diffusion has been
found to result in a logarithmic decay of the intermediate scattering function of the tracer
particles. The dynamics of the tracer particles could only be determined thanks to a
novel combination of fluorescent labeling methods, confocal microscopy and differential

dynamic microscopy, which was combined during this PhD.
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1. Introduction

1.1. What is soft matter?

Tooth paste, mud, plastic bags, DNA and soap have a lot in common: they constitute
examples of Soft Matter systems. Characteristic of such systems is that the size of their
building blocks or of their structures are mesoscopic: smaller than a grain of sand and
much larger than a simple molecule, hence their size is in the range of a few nanometers
to a few microns. With the exception of systems like polymer melts, the entities are
typically embedded in a solvent, for example water. Compared to atomic systems, soft
matter assemblies consist of large building blocks, resulting in a small energy density
and a small elastic modulus. Consequently soft matter systems can be easily deformed,
while exhibiting a strong response to small external forces!.

Soft matter systems also include complex fluids such as solutions of amphiphilic
molecules, polymers and colloids, — numerous examples can be found in nature and
technology. Soft matter also constitutes the very basis for any biological system, since
a living cell is a well-orchestrated system composed of a plethora of soft matter sub-
systems. For instance, the cell membrane consists of a bilayer of surfactant molecules
decorated by various membrane proteins, whereas the cell cortex is in the first place
a dense polymeric network. The cell inside, i.e. the cytoplasm, can be viewed as a
dense colloidal suspension, dispersed in a matrix of actin filaments and microtubules,

resembling a concentrated polymer solution.

1.2. Colloids

Colloids are particles ranging in size from 1nm to 10 pm and are small enough to dis-
play significant thermal agitation, i.e. Brownian motion, and on the other hand are
much bigger than the molecules of the dispersion medium, which can thus be viewed
as a continuum. Although the fluid surrounding the colloids appears as a structureless
continuum, it drives the motion of the colloids. Brownian motion performed by particles

is the random motion and originates from collisions of the solvent molecules with the
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particles. For very dilute solution of particles, the probability that the particle moves a
distance A7 in a lag time ¢ is Gaussian distributed. In the general case the probability
distribution of displacements, also referred to as van Hove (self-correlation) function, is

defined via
N

P(AT 1) = <—Z5(AF— (7i(t +to) — 7i(t0)))- (1.1)

Here (...) indicates a temporal average over different initial times ¢y, 7;(t) denotes the
position of particle 7 at time ¢, and N is the total number of colloidal particles in the sus-
pension. In particular, all moments of the time-dependent random displacement A7(t)
are encoded in the van Hove function p(A7,t). If the particle motion is isotropic, the
probability for a displacement in each direction is equal, in particular, the average dis-
placement (A7(t)) vanishes identically. Hence, the simplest non-trivial characterization

of the particle dynamics is the mean-squared displacement (MSD)

N
1
o2y - = 2

(AF(t)7) = <N;(n(t+to) 7i(to))"). (1.2)
Einstein showed in his seminal work on the molecular kinetic interpretation of Brownian
motion that for diffusive dynamics the mean-squared displacement is proportional to
time, (A7(t)?) = 2dDt, where d is the dimension of the embedding space. The transport
coefficient characterizing the increase of the MSD is referred to as diffusion coefficient

D.

Colloidal dispersions exhibit many phenomena known also from molecular systems,
such as a gas-liquid phase transition, crystallization, and vitrification. Therefore colloids
are used as a model system to study physical phenomena of atomic materials. Due to
their huge size in comparison to atoms and the induced slow dynamics of colloids,
they can be studied by small-scale lab techniques such as light scattering or optical
microscopy, whereas for atomic systems the use of large-scale techniques, e.g. X-rays or
neutron scattering becomes unavoidable. Moreover, the slow dynamics of colloids offers
the opportunity to monitor directly the trajectories of single particles. Yet, the interest
in colloidal systems is not limited to the use as model systems for atomic systems.
In contrast to atoms, where the interaction potential is determined by the electronic
structure, the interactions between colloidal particles can be of various origins and can
be manipulated and controlled by smart surface chemistry and a clever choice of the

solvent.



1.3. Colloidal hard spheres

1.3. Colloidal hard spheres

The simplest interaction between spherical particles is provided by the hard-sphere po-
tential: the interaction potential becomes infinite when the distance between particles
is smaller than the particle size, i.e. they cannot overlap, and is zero otherwise 2*. Thus
they behave as an assembly of billiard balls, yet their macroscopic behavior is dominated
by thermal fluctuations rather than gravity. The hard-sphere repulsion constitutes an
idealization of the interparticle interaction focusing on the mutual exclusion, while ig-
noring the attractive part of the potential at intermediate length scales. Surprisingly,
hard spheres still contain virtually all the relevant physics and therefore are an ideal

playground for theoretical models, computer simulations, and experiments >,

Experimentally, the hard-sphere interaction potential is realized to a good approxi-
mation in a system of sterically stabilized polymethylmethacrylate (PMMA) particles.
Without any stabilization, PMMA particles tend to aggregate due to the attraction
caused by van-der-Waals forces 8. One possibility to achieve stabilization is by coating

9 The polymer chains are chemically

the colloids with a thin layer of polymer chains
attached to the surface and build a brush around the colloid core. If two particles are
getting close to each other, the polymer brushes start to interdigitate. This leads to
a reduction of the configurational entropy of the chains and, as a result, to an effec-
tive repulsion between the chains. Consequently, the van-der-Waals attraction becomes
balanced by a short-range repulsion caused by the polymer brush. In this work, the
sterically stabilized PMMA particles are dispersed in a mixture of bromocycloheptane
(CHB) and cis-Decahydronaphthalene (cis-decalin). Mixing of the two solvents, one
(cis-decalin) with a density below the particle density and the second one (CHB) above,
allows matching the density of the particles to the density of the surrounding solution,
thereby suppressing the effects of gravity. Moreover, the refractive index of the solvent
mixture matches the refractive index of the particles, resulting in a reduction of the van-
der-Waals forces and virtually eliminating multiple scattering (the dispersion becomes
almost transparent). In CHB the PMMA particles become slightly charged, with the
consequence of an additional long-range repulsion between them, yet this can be circum-
vented by adding a small amount of salt, in our case tetrabutylammoniumchloride ', to

screen the residual charges.
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1.4. Colloidal glass

Since in hard-sphere systems all accessible configurations have the same potential energy,
temperature sets merely the time scale in dynamical processes while being irrelevant for
the thermodynamic and structural behavior. Hence, the particle density n = N/V is
the single control parameter determining the phase behavior of a colloidal hard-sphere

dispersion, a convenient dimensionless measure is the packing fraction

= —no”,

Vbarticles m 3
— particles _ 1.3
o= rite 2 (13)

with Viarticles = N7m3/6 the volume occupied by N spheres of exclusion diameter o and
V' the total sample volume. The most compact way to arrange spheres in a disordered
structure is the random close packing which results in a volume fraction ¢rcp =~ 0.64
for monodisperse spheres ™13, Depending on ¢, monodisperse hard spheres assemble in
different equilibrium phases or non-equilibrium states®. A fluid phase with amorphous
structure and diffusive dynamics of particles is found for ¢ < 0.49, while increasing
concentration, 0.49 < ¢ < 0.54, leads to fluid-crystal coexistence, followed by full crys-
tallization for ¢ > 0.54. In the liquid-crystal phase transition the structure of the
system changes from the amorphous structure of the liquid to the ordered structure of
the crystal.

A rapid increase of particle concentration from the fluid to the region where the crys-
tal is the thermodynamic equilibrium state, leads to the formation of an additional,
non-equilibrium state, a colloidal glass. The free volume accessible for rearrangement
in a liquid becomes smaller by increasing ¢. At a critical volume fraction ¢ ~ 0.58 the
free volume becomes too small and the rearrangement becomes postponed to longer and
longer times the hallmark of a glass. The same phenomenon occurs in molecular
liquids by a rapid quench to low temperatures. Unlike the crystalline phase, a col-
loidal glass is characterized by an amorphous liquid-like structure, where each particle
is surrounded by a shell of neighbors, inhibiting large excursions of the particle. Hence
particles are transiently caged by their neighbors, which in turn are trapped by their
respective neighbors 7%, Due to the dramatical reduction of free volume, the particles
perform essentially only movements within their cage and may escape from it only after
some much longer time. A further increase in concentration reduces the probability
of escaping from the cage, the particles stay in their cages for an increasingly longer
time, and no long-range motion is observed on experimental time scales. The transition
from a liquid to a glass state is recognized as a dynamical arrest transition without

any qualitative change in the structure, at least at the level of the pair distribution
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1.4. Colloidal glass
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Figure 1.1.: a) Logarithm of particle mean-squared displacement and b) intermediate scattering
function Fs(q,7) versus logarithm of time 7 for latex/silica spheres in suspensions.
Each line corresponds to a different volume fraction, increasing from left to right. The
solid line without symbols corresponds to a dilute solution where particles freely diffuse.
Taken from Ref.'®

function®'7%18,

The qualitative changes in the dynamics of the particles have been thoroughly studied.
Amongst others, it was shown in light scattering experiments 7 and molecular dynamics
simulations?’ that the approach to the glass transition is associated with an increase of
the structural relaxation time of the system by many orders of magnitude ?'. This is also
reflected in the evolution of the mean-squared displacement ' (see Figure 1.1 a). In a
dilute solution of colloidal particles, free diffusion is characterized by a linear increase of
the MSD with time. For larger concentrations, where particles are temporary caged, a
linear increase of the MSD can be observed as well, but only at short times, correspond-

ing to in-cage Brownian motion. At later times, where the average displacement reaches

11
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the size of the cage, the free motion becomes hindered by the collisions with neighbor-
ing particles and only motion within the cage is possible. The caging effect leads to a
sub-linear increase or a plateau, indicating particle localization. The time window over
which this plateau is observed becomes longer with increasing concentration in hard-
sphere colloidal systems, or decreasing temperature in other kinds of glassy materials.
For larger times, where particles are eventually able to escape the cage, a second linear
regime corresponding to diffusion out of the cage is observed. The process associated
with the breaking of the cage is referred to as a- or structural relaxation. Increasing
the concentration makes the escape from the cages very difficult or even impossible, so

that the plateau extends to very long times.

The cage effect can be inferred from the intermediate scattering function (ISF) which
is given by
f(g,t) = (exp(iq - A7), (1.4)

where (...) indicates ensemble averages and Afr(t) is the displacement of a particle in
time ¢. It initially decays for short times (S-relaxation due to the short-time in-cage
Brownian motion), but then shows a plateau, indicating localization of the dynamics 172
(see Figure 1.1 b). At low concentrations from time to time an opening of the cage, due
to the movement of the particles building the cage, may occur. This allows particles
to escape from the cage after some time and leads to a second decay of the ISF, the «
relaxation. This shifts to longer times when approaching the glass transition, eventually

exceeding the experimental time scales.

Besides the effect of dynamical arrest, which has been observed in several studies,
further phenomena are associated with the glass transition 2. One of them is dynamical

2325 It was

heterogeneity, studied by computer simulations, theory and experiments
shown that the individual dynamics of each particle may be different (spatial and tran-
sient) from the other particles. This indicates that the average structural relaxation of
the system is related to a broad distribution of local relaxation events. The distribu-
tion of particle displacements, quantified by the van Hove function, shows a deviation

from the Gaussian behavior which would be expected for isotropic diffusion 82326 (

see
Figure 1.2). These findings indicate the existence of particle populations with mobility
higher than average. The rather exponential instead of Gaussian shape of the tails of the
van Hove functions measured in glasses implies a qualitative deviation of the relaxation
mechanism in glassy systems from the diffusion-driven mechanism of normal liquids.
Colloidal glasses are an example of glassy materials. The most famous and best-known
example of a glassy material is silicate glass, which is used for windows. Different from

a colloidal glass, the temperature, instead of particle concentration, is the natural con-

12



1.5. Flow behavior of colloidal glasses
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Figure 1.2.: Van Hove function P(Ax) for a suspension of hard spheres at volume fraction ¢ = 0.56.
The best fit Gaussian is represented by the dashed line. The solid line corresponds to
a fit of a stretched exponential. From Ref.1®

trol parameter for the slowing down of the dynamics, which, in addition, is Newtonian
instead of Brownian. Further examples for glassy materials are polymers, for instance
polycarbonates which are used as a substrate for compact discs, plexiglass and styro-
foam. Also metallic glasses have been investigated extensively, primarily because their
mechanical and magnetic properties are used in electronics, aeronautics and medicine.
In all cases, the glassy systems are characterized by the presence of long lived non-

equilibrium metastable states.

1.5. Flow behavior of colloidal glasses

Beyond the quiescent properties of glasses, their behavior under application of a mechan-
ical deformation, for example shear, is of great interest. Indeed, in many applications
glass-forming systems need to flow to be able to process them. The application of shear
to a dense suspension of colloids leads to a competition between the internal slow re-
laxation process and the time scale imposed by the external driving. One consequence
of this competition is that the strongly sheared systems relax faster than those which
are only weakly or not sheared. Consequently, the viscosity 7 of the fluidized material
depends on the shear rate 4. Simultaneously the structural relaxation time of a sheared
dispersion is decreased. In a glass the acceleration of the dynamics leads to fluidiza-
tion. In the flowing steady state the glass loses the memory about its prior structural
configuration?” (but not completely). In a glass at low shear rates the stress becomes
independent of 7, indicating the divergence of the viscosity and the presence of a finite
yield stress o, (¥ — 0)?* (see Figure 1.3 a).

From rest to steady shear flow, transient phenomena are observed. After applying

13
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a) flow b) step rate c) step stress (creep)
o v E o v
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Oyield 4
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Figure 1.3.: Schematical representation of typically measured signal for colloidal glasses using dif-
ferent shear protocols.

a shear with a constant rate of deformation, a stress overshoot is observed in stress-
strain curves for intermediate times® 3! (see Figure 1.3 b). The magnitude of the
stress overshoot shows a dependence on the imposed shear rate, age of the system and
the distance to the glass transition. Moreover, the study of the microscopic structure
show the build-up of structural anisotropy indicating shear-induced cage deformation 2°.
The cages become elongated and the maximum cage deformation coincides with the
occurrence of the stress overshoot. Super-diffusive dynamics sets in when the particles
can leave the cages due to the breakdown following cage deformation.

Instead of a constant shear rate, a constant stress can be applied to a glass (see Figure
1.3 ¢). The response of the glasses to the applied stress can be divided into different
regimes. The appearance of the regimes depends on the magnitude of the applied stress,
time and the age of the system. It was shown that a fluidization of the glass, indicated
by a linear increase of the strain over time, can only be achieved by a stress larger than
the yield stress of the system?32. Before the steady state of flow is reached, a transient
super-linear increase of 7(t) can be observed. In contrast to that, for stresses below
the yield stress, no flow behavior can be found. Instead, the creep regime with a very
slow, sub-linear increase of v(t) is observed. The creep behavior can also be found in
other systems, soft-matter as well as hard-matter systems #3334, The microscopic picture

related to the absence of flow and the creep response is still incomplete.

1.6. Model system

In this study two component dispersions called binary mixtures are used as a model
system. Different kinds of glasses, like attractive and repulsive glasses, and dense fluids

can be obtained and systematically studied in the framework of a single model system.

14



1.6. Model system
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Figure 1.4.: State diagram of binary hard-sphere mixtures obtained from mode-coupling theory for
different size ratios d, as indicated. From Ref.3®

Binary mixtures with their three-dimensional non-equilibrium state diagram offer a wide

research field for the study of flow behavior of dense fluids and glasses.

The phase behavior of binary mixtures is determined by three control parameters.

These are the size ratio
5 - RSmall

- , 1.5
RLarge ( )

with Rgpmen and Rparge the radius of small and large particles, respectively, the compo-

sition of mixture
- VSmall

Ts

(1.6)

 Vpartictes
with Vau the volume of small particles, and the total volume fraction ¢ given by Eq.
(1.3).

Binary mixtures at different size ratios and volume fractions were studied previously.
It was found that in binary mixtures the volume fraction ¢rcp, at which random closed
packing is occurring, shifts to larger values demonstrating a more efficient packing ability
of mixtures compared to one-component systems?'. Keeping the total volume fraction
constant, the more efficient packing ability at intermediate mixing compositions leads
to plasticization: the glass transition for mixtures occurring at larger total volume

fractions 213,

For size disparity ¢ < 0.2, beside the plasticization, the phase behavior is characterized
by formation of additional kinds of glasses. The Mode-Coupling theory predicts four
different glasses (see Figure 1.4): fully frozen or double glass (both species are frozen);

partially frozen depletion-driven or attractive glass (large particles are bonded due to the

15
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Figure 1.5.: State diagram of binary hard-sphere systems for samples with different compositions x4
and size ratios § based on experimental data from Ref.36740  Different states can be
distinguished: repulsive glass (®), asymmetric glass (<), attractive glass (¥), gel (W),
fluids (A,0), fluid-crystal coexistence (¢)) and amorphous solids (). From Ref.36

depletion interaction induced by small spheres, small spheres stay mobile); asymmetric
or 'torroncino glass’ (large particles are diluted in the repulsive glass of small spheres).
Up to § = 0.18 partially frozen caging-driven or single glass (repulsive glass of large

35

particles driven by big-particle caging, small spheres remain mobile) may occur *°. In

37,44 45,46 with large

experiments on colloidal suspensions and in simulations of soft spheres
size disparity, the existence of a single glass, where only small spheres remain mobile,
and of a double glass have been demonstrated. Besides single and double glasses, an

47,48

asymmetric glassy state was found in star polymers mixtures Recent experiments

on colloidal binary mixtures with 6 — 0.09 (see Figure 1.5) indicate different arrested

states of large particles caused by bonding, namely an attractive glass and even a gel 3¢.
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2. Overview

This chapter summarizes the main results of this work and is divided into two parts. The
first part addresses observations of binary mixtures at rest. The focus here will be on
the structure and the particle dynamics. First, will discuss the properties of the large-
particle matrix and its dynamics. Afterwards the characteristics of the small-particle
dynamics under the geometrical constrictions due to the larger species is presented.

In the second part binary mixtures are studied under the influence of shear. A broad
range of rheological properties of the mixtures are discussed. In particular the identi-
fication of the link between local microscopic behavior and results from rheology is a

main achievement of our studies.

2.1. Quiescent binary mixtures

The study of binary mixtures with large size disparity of the constituents requires to
overcome several limitations of otherwise common experimental techniques. Let us illus-
trate some limitations by considering an example system. We assume a binary mixture
of size ration 1:5 in which the large particles have a diameter of 2 pm, resulting in
a small-sphere diameter of 0.4 pm. Both, structure and dynamics of the large parti-
cles, can be inferred from single-particle tracking using confocal microscopy which is a
powerful tool for the study of highly concentrated colloidal systems. In particular the
possibility of fluorescent marking of only a selected population of particles (for example,
only large spheres) opens up many experimental possibilities. Confocal (point-by-point)
illumination and a pinhole in the conjugate focal plane reduce the out-of-focus light 12,
This allows studying very dense systems and makes the technique irreplaceable. On the
downside, point-by-point illumination and scanning implies a limitation of the acquisi-
tion speed (here: 30 frames per second). Hence, even if the size of the small particles
is above the resolution limit (around 200nm) the motion of the particles is too fast to
be followed by tracking. Therefore, single-particle tracking cannot be used to determine
the dynamical properties of the small particles. Instead, the small spheres are studied

by Differential Dynamic Microscopy (DDM), which was adapted for multi-component
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2. Overview

systems at large concentrations. DDM is based on the time-correlation analysis of the
fluctuations of the fluorescence intensity. An introduction and details to the experimen-

tal techniques used for this research can be found in appendix A.4.

2.1.1. Large particle configuration and dynamic

The admixture of a second component with a different size into the system leads to the
distortion of the primary structure. The focus of this section lies on the structural and
dynamical changes observed in the system of large particles when a second component,
smaller particles, is added to the system. The structural and dynamical changes are
studied using confocal microscopy for different compositions x,, keeping the total volume
fraction ¢ and the size ratio § constant (here 6 ~ 0.2, ¢ ~ 0.61 and 0.58).

Figure 2.1 shows the reconstruction of large particle positions in binary mixtures for
different compositions z, from 0 to 0.9 at a fixed volume fraction ¢ ~ 0.61 . For clarity
only particles within a thin slice of the volume are shown. With increasing fraction
of small spheres, the large particles become effectively more diluted. The amorphous
nature of the structure is maintained. No evidence for phase separation predicted in
Ref.®* was found. This is quantified by the radial distribution functions g(r) for different
compositions z,, see Figure 2.2. As expected, for a one-component glass, z, = 0, the
position of the first maximum corresponds to the diameter d;, of large spheres, i.e. the
first-neighbor shell or cage. At large distances r, further peaks are recognizable, but
they become less and less pronounced with increasing r. This general behavior indicates
a decay of the layering beyond the third-neighbor shell.

Adding small particles changes the structure of the larger species. The small particles
perturb the cages formed by the large ones, resulting in a deformation of the cages formed
by the large particles. When the amount of small spheres reaches a critical number, each
large particle is almost completely surrounded by a layer of small particles. At this point
the large-particle cage is loosened. The layer of small particles can be identified in g(r),
where for zy; = 0.5 an additional maximum at r = d; + dg appears and eventually
becomes even larger than the first one at » = d;. The caging by small or large particles
plays a central role, since it determines the dynamics of large spheres and the rheology
of binary mixtures, as will be discussed below.

Other experiments on binary mixtures show that the cage-transition effect appears
only for a small range of the size ratios. In systems with a larger size ratio of d ~ 0.3
for example no transition in the caging mechanism takes place > . Here only the state
of repulsive glass is observed. Decreasing the size ratio to 0.09 on the other hand leads

to the formation of additional phases®. Different arrested states, like attractive glass or
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2.1. Quiescent binary mixtures

Figure 2.1.: Reconstruction of the large particle positions within a thin slice of thickness 3dy, in
mixtures with volume fraction ¢ ~ 0.61, size ratio 6 ~ 0.2 and different amount of small
spheres (which are not shown) as obtained from confocal microscopy measurements.
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2. Overview

g(r)

r/d.

Figure 2.2.: Left: Radial distribution function g(r) of the large spheres for different compositions

24

x as a function of normalized radius r/dr. The lines are shifted along the vertical axis
for clarity. The total volume fraction of the samples is ¢ =~ 0.61 and the size ratio of
the mixtures is § ~ 0.2. The additional maximum at the distance d, + dg corresponds
to the structure, where one small particle lies in between two large spheres, as shown in
the sketch. Right: Confocal microscopy frames for x5 = 0.3 (top) and 0.5 (bottom).
Only large particles are visible. The large particles (green) surrounding one randomly
chosen particle (blue) are indicated. The yellow points represent possible positions of
small particles, resulting in the first and second additional peaks of ¢(r) at dz, +dg and
dy, + 2dg, respectively.
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Figure 2.3.: Mean-squared displacement d4? as a function of time ¢ for mixtures with total volume
fraction ¢ =~ 0.61 and size ratio § ~ 0.2 for different compositions x as indicated.
Inset: The localization length [ defined as [ = \/dy2(t — 0) for different x.

even gel, are found. The bonding of the large spheres caused by depletion determines
the dynamics of large particles in such systems.

Figure 2.3 shows mean-squared displacements dy? of the large particles as a function
of time for mixtures of different compositions. Obviously, the type of large particle
dynamics, and not only their structure, depends on the composition. For a large particle
only system, i.e. x; = 0, the glassy dynamics, characterized by a long-time localization
of particles in the cages is found. Adding a small amount of small spheres to the glass,
xs = 0.1, does not alter the appearance of slow in-cage dynamics of the large spheres.
Yet, the presence of small spheres induces a small increase of the localization length
[, reflecting the widening of the cage? (see Figure 2.3 inset). For 0.3 < z, < 0.7, an
acceleration of the dynamics of the large particles is observed. This can be attributed to
an increase of the free space due to the more efficient packing ability of binary mixtures
reflected in the random close packing'®. The change of the packing ability leads to a
shift in the glass transition for binary mixtures, which now takes place at larger total
volume fractions. Keeping the total volume fraction constant, we obtain soft glasses
with 0.3 < x, < 0.7 which are closer, compared to the one-component system, to the
glass transition. Further increase of x up to 0.9 leads again to the formation of the
localization plateau observed in the MSD. Hence, the particles become localized very
tightly. The amount of small spheres is now so high, that the large particles are dilute
in a sea of small particles, which surround the large spheres and build a very tight cage.
The localization length of large particles [ decreases for 0.1 < zy < 0.9 continuously,
indicating a competition between softening and the transition in caging mechanism.

Let us sum up the situation at a fixed total volume fraction. An increase of x,
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2. Overview

in binary mixtures is followed by: (i) an acceleration of large-particles dynamics for
0.3 <z, < 0.7, (ii) a transition in the caging of large spheres from large-particle cages
for 0 < 2, < 0.3 to small-particle cages for 0.5 < x, < 1, (iii) a tighter localization of

large spheres.

2.1.2. Small particles

In this section we will discuss the dynamics of the small component in a binary mixture.
Here, mixtures with varying total volume fractions ¢ and size ratios ¢ are studied. The
amount of small spheres is kept constant at the small value z, ~ 0.01. At large volume
fractions the large particles form a matrix with an amorphous structure and slow glassy
dynamics. The holes formed in-between the large spheres may be connected with each
other by channels. The combination of holes and channels forms a porous medium which
is explored by the small spheres. At high concentrations of large particles, the channels
become narrower or some of them even close, forming finite pockets, where the small
particles become localized.

The motion of tracer particles in porous media is a currently very active research
field. Examples for systems of interest are binary mixtures of starpolymers !, proteins

1516 and fluids confined in porous

in a crowded cell >4, binary mixtures of soft spheres
matrices'”. Theoretical studies, based on the Lorenz model, where point-like particles
move through the channels of a matrix of randomly overlapping fixed obstacles, predict
anomalous diffusion of the small component '® 2!, Molecular dynamics simulations of a
colloidal fluid in a matrix of frozen particles show two distinct arrest scenarios, namely
the trapping in disconnected voids and a caging mechanism ?2. These and further model

23725 are based on the assumption that the matrix is completely frozen.

systems
In our experiments we face a more complicated situation compared to the studies
mentioned above. The void size, position in space, and the presence of void connections
are additionally time dependent due to the slow, glass-like dynamic of the large particles.
The slow dynamics of the large component are typical for crowded biological systems
like cells, where the macromolecules exhibit slow, glass-like dynamics !2'3. Thus, the
binary mixture represents a step forward towards a more realistic model system that
mimics anomalous transport of proteins within the crowded environments in cells.
Changes in the voids of the matrix as a function of time are indirectly visualised in
Figure 2.4, which shows the measured positions (the intensity peaks) of small particles in
a 2D plane of the size 100 x100 Pixel for two size ratios  ~ 0.18 and 0.28, respectively.
The positions of the small particles are shown for different time-intervals. We find that

some of the voids are accessible for only one time interval (single colored speckles),
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2.1. Quiescent binary mixtures

Figure 2.4.: Positions of small particles in mixtures with size ratio 0 ~ 0.18 and 0.28 for different
total volume fractions as indicated. The colors indicate the positions of particles for

1000 f
1000irames s ¢ 100x100 pisel

different time intervals, each with the length
301fps
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2. Overview

whereas other ones are accessible for longer times (multicolored speckles). Dilution of
the system leads to an increase of the average hole size, some of the channels expand
and the time-dependent changes of the voids become faster due to the fluidization of

the matrix.

Whether a tracer particle can pass through a channel or not depends on the size of
the particle relative to the channel width. At low size ratio § ~ 0.18 and high volume
fraction ¢ ~ 0.625 the tracers are usually localized in the voids for long times. A small
decrease of the volume fraction to ¢ =~ 0.61 leads to the formation of channels which
are wide enough to let the particles pass through. Now the particles may move between
the voids. In contrast to that, if the size of the tracers is large (¢ ~ 0.28) at the volume
fraction ¢ ~ 0.61, the channels are not big enough to let the tracers pass. Further

dilution of the system would be necessary to delocalize the tracers.

The dynamics of the small particles is described by the intermediate scattering func-
tion f(q,dt) which can be measured by confocal Differential Dynamic Microscopy. At
0 =~ 0.18 and at fixed wave-number ¢, the intermediate scattering function can be divided
into three temporal intervals: the initial decay at short time, the plateau at intermedi-
ate times and the second decay to 0 at late times, see Figure 2.5. The initial decay is
caused by in-void Brownian dynamics of the small spheres. In a dense matrix, i.e. at
large ¢, the dynamics of the small particles slows down and the decay takes longer. The
existence of the plateau in f(g,dt) indicates that a fraction of the small particles stays
localized for long time without the possibility to diffuse. The plateau height indicates
how large the fraction of the localized particles is and corresponds to the non-ergodicity

parameter 1516 At later times diffusion takes place again and f(q, dt) decays to 0.

Besides the dependence on ¢, the intermediate scattering function depends addition-

ally on the considered length scale determined by ¢~!.

Increasing ¢ leads to a faster
initial decrease of f(q,dt). The plateau height decreases exponentially with increasing ¢
(not shown here). This indicates a localization of the particles at length scales between

2dg for ¢ ~ 0.625 and 6dg for ¢ ~ 0.60, where dg the diameter of the small particles25.

At § ~ 0.28 we find anomalous dynamics at high volume fractions ¢. The intermediate
scattering function now shows an extended logarithmic decay for a series of ¢. This
behavior of f(q,dt) is the result of the dynamical heterogeneities caused by the influence
of two processes. On the one hand, the dense host of large spheres causes a geometrical
constriction to the motion of the small particles. And on the other hand, the matrix of
the large particles is slowly evolving, which leads to the transient opening or closing of
the channels connecting the voids. The transient opening of the channels allows the small

particles, which otherwise only explore their local environments, to diffuse out of the
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Figure 2.5.: Intermediate scattering function f(q,dt) for small particles in binary mixtures with
zs = 0.01 and (a) § =~ 0.18, ¢ ~ 0.625,0.61 and 0.60 from top to bottom at
g = 2.34pm~Y; (c) & ~ 0.28, ¢ ~ 0.61,0.604,0.588,0.58,0.57,0.56,0.52, 0.5, 0.4
and 0.3 from top to bottom at ¢ = 234um~'; (bd) ¢ =~ 0.61, ¢ =
0.23,1.05,1.87,2.69, 3.51,4.32,5.14,5.96 ym~", § ~ 0.18 (b) and § ~ 0.28 (d). The
black line in (a,c) corresponds to the f(g, dt) for dilute solution of small particles with-
out matrix.
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local cages. Three different situations, depending on the size ratio, can now be observed.
At a small size ratio of § &~ 0.18, the small particles are so small that they can easily pass
through the channels. In this case, the voids percolate even at high concentrations of the
obstacles. Simulation results show that instead in the opposite limit of large ¢ = 0.5, the
small spheres explore only the local voids where they are trapped 26. For the intermediate
size ratio 6 ~ 0.28 (experiment) and § = 0.35 (simulations) an intermediate situation
is observed. The small particles move most of the time in the local environment, but
sometimes migrate through the channels into the next void. Only a small fraction of
the particles diffuses through the tight channels connecting the voids. This leads to
a large distribution of residence times and, as a consequence, to anomalous diffusion.
Interestingly not only the channels, but also the spatial position and the size of the voids

are transient on the time scale of the large-spheres in-cage dynamics.

2.2. Binary mixtures under shear

In this section we will present results obtained from rheological and simultaneous mi-
croscopy measurements of binary mixtures. By combining microscopy and rheology,
single-particle dynamics can be linked to the macroscopic response of the system for
different types of shear. To this end, we studied binary mixtures with § ~ 0.2, volume
fraction ¢ ~ 0.58 and 0.61 and different composition =, under shear.

Shearing at very low strain -, i.e. in the linear visco-elastic regime, causes deforma-
tions which weakly perturb the quiescent structure 2”. The glass retains its structure and
behaves like a solid. For such almost unperturbed samples the rheological measurements
can be directly compared to the microscopic observations of the sample at rest.

Applying a larger shear leads to the fluidization of the binary glass, similar to recent

28,29 The transition from solid- to fluid-like shear

results on one-component glasses
response differs depending on the nature of the applied shear signal and on the internal
structure of the sample. In this regime we can no longer compare the rheological response
of mixtures to the microscopic dynamics at rest. Thus, a confocal measurement of the
single particle dynamics is required while the system is sheared.

The short following overview summarizes the main results.

2.2.1. Oscillatory shear

For the experiments with oscillatory shear the shear signal has a constant frequency

w, while the amplitude increases (Dynamical Strain Sweep or DSS). The frequency w is
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2.2. Binary mixtures under shear

adjusted for each sample such that the Peclet number Pe, = w(r5"t)

is the same for all
mixtures (which differ in z;). Peclet number quantifies the ratio between the timescale
of brownian motion and the timescale imposed by shear. Here, (75" = 67n(R3)/kgT
is the composition-averaged short-time Brownian time in the dilute limit and (R3?) =
R} qrgelms (35 — 1) +1].

As long as only a small deformation is applied to the sample, the linear visco-elastic
regime, characterized by strain-independent shear moduli G’ and G”, is observed. The
storage modulus G’ for a fixed Pe, ~ 0.55, extracted at v =~ 0.2 %, is shown in Figure 2.6
a) for different mixtures in units of the energy density pkpT. Presenting the results in
these units removes the trivial dependence of the rheological signal on the particle size.
In this representation one-component systems consisting of only small or large particles
show comparable linear rheological responses to oscillatory shear, i.e. both systems have
similar values of G'(w)/pkgT. For binary mixtures we observe a reduction of the shear
modulus, corresponding to a weaker elastic response of the mixtures. For § ~ 0.2 and
xs = 0.3, the value of G'/pkgT is up to two orders of magnitude smaller compared to
the one-component systems. The weaker elastic response of mixtures is consistent with
the acceleration of large-particle dynamics in mixtures, discussed in section 2.1.1, and
indicates a softening effect of binary glasses. An increase of the size ratio to § ~ 0.38

results in less pronounced softening.

The solid-like behavior of a sample in the linear visco-elastic regime is indicated by
G' > G". Increasing the shear amplitude leads to irreversible rearrangements of the
particles, cage breaking and fluidization of the glass with G’ < G”. The transition from
solid to fluid occurs at a critical value of deformation -, the yield strain of the system,
extracted at the crossing point of G’ and G”%3%3! Similar to the evolution of the elastic
modulus, a pronounced reduction of the yield strain was found. The minimal value of
7y is observed at x; = 0.3. The reduction of «, for binary mixtures supports the idea
of a glass softening effect. The decrease of total volume fraction to ¢ ~ 0.58 leads to
the melting of the glass, indicated by the absence of ~, for z, = 0.3 and 0.5. These two
mixtures show a fluid-like response with G’ < G” even at very small deformations. At
large size ratio 0 ~ 0.38, the yield strain remains almost constant, consistent with the

weak softening effect described earlier.

One can guess that the glass softening effect is only a result of more efficient packing
ability of the binary mixtures. The yielding behavior of one-component glasses and
binary glasses was compared as a function of the free volume ¢..c = ¢rcp — ¢, taking
into account the variation of ¢pcp in the mixtures'®. At free volumes, where the one-

component system melts, we found binary mixtures in a weak but still solid-like state,
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Figure 2.6.: a) Storage modulus G’ measured at small amplitude (7 = 0.2%) and b) yield strain
7y estimated from the crossing point of G’ and G” as a function of relative volume
fraction of small spheres x, for samples with size ratio § ~ 0.21 and total volume
fraction ¢ ~ 0.61 and ¢ =~ 0.58 and Pe,, = 0.55, and § ~ 0.38, ¢ ~ 0.615 and 0.595
and w = 1rads~!. The data for § = 0.38 were obtained by the Group of G. Petekidis.

indicated by a small finite yield strain®. Rheological properties of binary mixtures thus
not only depend only on the total volume fraction, like it is the case for one-component
glasses, but also on the role which each population plays in the microscopic structure

and dynamics.

2.2.2. Constant shear rate

In step-rate experiments a constant shear rate < is applied and the stress ¢ is measured
as a function of time t or strain v = 4¢. Applying a constant shear rate to a colloidal
glass leads to an initial almost linear increase of stress ¢ with strain ~, followed by a
non-linear increase until the stress reaches a maximum, see Figure 2.7 for an example.
Eventually, the stress decays to a constant steady-state value ogqqy When the system
flows32. For one-component systems, it was shown that the stress overshoot is associated
to the storage of the stress during elastic cage deformation, which is maximal at the

+28,33

overshoo and decreases when the cage is broken and the system flows. Around

cage-breaking super-diffusive particle motion is observed in experiments, simulations,
and predicted by mode coupling theory 28293334,

From the stress-strain curves two quantities are extracted, the strain at the overshoot
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overshoot magnitude

yield strain

Y

Figure 2.7.: Stress o measured in step rate experiment by applying of the constant shear rate plotted
as a function of strain . The yield strain 7,c., and the magnitude of the overshoot
Opeak/ Osteady — 1 are labeled.

Vpeak, associated to the yield strain, and the magnitude of the overshoot opear/Tsteady —1-
The results are shown in Figure 2.8 (a,b) as functions of z, and (c,d) Peclet number
Pes, = 4(rshort) with (rshort) = (7short) /f. The ¢-dependent factor f is estimated to
be f ~ 1/32 for the studied volume fraction ¢ =~ 0.61 (extrapolate the data in Figure 8
of Ref.??).

Two different regimes are observed for v,..; as a function of Pe.. In the first regime,
for small Peclet numbers Pe; < 1, the yield strain remains almost constant at a value
of about 10 %, similar to MCT (mode coupling theory) predictions for one-component

36 In this regime the deformation induced by shear is slow compared to the

glasses
Brownian dynamics. The second regime, Pe; > 1, is characterized by an increase of
the yield strain with increasing Pes, in agreement with experimental results obtained

28,29 In this regime, the shear is fast compared to

for one-component colloidal glasses
the Brownian dynamics and the affine motion becomes dominating. Collisions and cage
escape due to the Brownian motion become less probable and, and therefore the cage

can deform more before it breaks.

The two regimes can also be identified in the Pe; dependence of the magnitude of the
stored stress, see Figure 2.8 d). The first regime is characterized by the increase of the
magnitude of the overshoot, which is followed by the second regime where 0yeqr/Tsteady—1
decreases. For one-component glasses, similar regimes are observed ?®. The study of
binary mixtures with different compositions demonstrates that, different from the yield
strain, the transition between these two regimes appears at different Pe;, depending on
xs. It is particularly noticeable that for the mixture with z, = 0.5 the transition occurs
at considerably larger Pes; compared to other mixtures. This implies that the process

of stress storage does not scale with the Peclet number, i.e. the composition-averaged
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Figure 2.8.: a)Yield strain, Ypeqr, and d) the magnitude of the stress overshoot, opeqak/Tsteady —

1, as a function of composition z, for Peclet numbers Pes; = 0.03 (yellow), 0.24
(purple), 0.64 (turquoise), 1.20 (red), 2.40 (green) and 4.70 (blue). c) Ypeqr and d)
Opeak/Tsteady — 1 as a function of Peclet number Pe; for different compositions z:
0.1 (blue), 0.3 (green), 0.5 (red), 0.7 (turquoise), 0.9 (purple), 1.0 (yellow). Binary
mixtures with 6 =~ 0.2 and ¢ = 0.61 are studied.

short-time Brownian time. The correct time-scale was found by considering the long-
time structural relaxation time. The long-time structural relaxation time was estimated
for large and small particles in binary mixtures from MD simulations by C.D. Estrada
and R. Castaneda-Priego (not shown here, see Ref.?). For mixtures with z, < 0.5, the
amount of the stored stress is related to the long-time structural relaxation time of the
large particles and for x5 > 0.5 of the small ones, respectively. This observation leads to
the conclusion that the amount of the stored stress is affected by the caging mechanism

and is determined by the long-time structural relaxation time of the caging species.

Similar to the yield strain measured by oscillatory shear, the dependence of .. on
xs shows a softening effect, which is most pronounced for the mixture with x, = 0.3.
In contrast to that, a complicated behavior was found for the magnitude of the stress
overshoot as a function of z,, see Figure 2.8 b). The largest stress overshoot is found
for values of z, < 0.3, independent of the Peclet number Pe;. At x, = 0.5 the stress
overshoot is about an order of magnitude smaller than at xz, = 0.3. For large Pe, the
overshoot is almost constant for x, > 0.5, whereas for small values of Pej it increases

again to almost the same level as for z; = 0.1.

In order to understand the microscopic origin of the macroscopic rheological response,
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Figure 2.9.: a) Mean squared displacement in the vorticity direction §y? for mixture with z, = 0.7
at Pe;, = 0.0035. The black circles correspond to the MSD at rest, the blue circles
to the MSD under shear in the steady state and the thin lines to the transient MSD
for different waiting times t,,. The values K, the shear induced cage compression (eq.
2.1), and D?, the amount of super diffusion (eq. 2.2), are indicated schematically. b)
D? and c) K as functions of z, for different Pes as it is shown in the color code.
Dashed lines are drawn for clarity.

we study the individual particle dynamics during shear. The particle trajectories during
shear are obtained via a rheoscope. From these particle trajectories we calculate the
MSD during steady-state shear and the transient MSD obtained after a waiting time t,,
after applying the shear. Figure 2.9 a) shows typical results for the MSD during shear
(blue circles) and t,, after shearing (thin color lines). Note, that the contributions of
affine motions are absent. The dynamics under shear are compared to the MSD in the

quiescent state (black circles).

For long times the MSD in the regime of steady flow increases proportional to dy? ~ t"
with n ~ 1, showing diffusive dynamics of large particles. The shear-induced accelera-
tion of the dynamics is associated with shear thinning. This result is in agreement with

previous studies for one-component glasses 28-29-32:32,34,37

At short times, the dynamics are determined by the in-cage motion. The plateau of
dy? for t — 0 corresponds to the localization length of particles in their cages. The
localization length at rest [ was discussed in section 2.1.1, were a decrease of [ with
increasing xs was found. The MSD under shear at short times indicates a tighter local-
ization of particles. To characterize the shear-induced cage compression we introduce
the factor K, calculated as

K = 5y§hear/5yzest —1 ) (21)

where 0y?,,,, is the MSD under shear and dyZ2.,, the MSD at rest, both taken at short
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caging by small or large particles affects
typical time scale and localisation.
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yield strain magnitude of magnitude of
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Figure 2.10.: Schematic summary of the results obtained by comparing the rheological data to the
microscopical observations during the step rate experiments.

times. The variation of K for different compositions z, and Peclet numbers Pe; is
shown in Figure 2.9 c). Interestingly, the cage compression follows the variations of
stored stress amount measured in rheology. The large cage compressibility corresponds
to a small stored stress and vice versa. This suggests that a part of the stress is released
through the compression of the cage.

The qualitative change in caging mechanism, from large to small particle caging, is
reflected in the cage compression and in the amount of the stored stress as well. At rest,
the large particles in mixtures with x; = 0.3 and 0.5 are localised on similar lengths.
For x, = 0.3 the shear-induced cage compression is very poor, whereas at =, = 0.5
we observe the highest cage compression. Under shear the small spheres, caging the
large particles, can be rearranged easier due to the higher mobility, allowing further
compression.

From Figure 2.9 a) we can see that the transient MSD for ¢,, = 0 shows an extended
localization plateau. After starting to shear, the particles stay for some time tightly
localised, demonstrating a resistance to shear up to the point where the system yields.
The structure of the system breaks, the particles can now escape from the cages. This
process is related to super-diffusive dynamics of particles. The amount of super-diffusion
is given by

DS — Dsteady/Dsdiff _ 17 (2.2)

where D****¥ corresponds to the steady-state and D*%// to the transient diffusion coeffi-
cient of the large particles. The variation of D* as a function of x4 leads to the conclusion
that a tighter localization at rest results in more pronounced transient super-diffusion
under shear, see Figure 2.9 b).

Figure 2.10 schematically summarizes the findings and shows the link between macro-
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2.2. Binary mixtures under shear

scopic rheological response of binary mixtures and the microscopic single-particle dy-
namics. The kind of glass, i.e. the caging by small or large particles, sets the typical
time scale and the localization length. The typical time scale for the yield strain is the
composition averaged short-time Brownian time. In contrast to that, the amount of
the stored stress is sensitive to the structural relaxation time of the cage-dominating
species. Through cage compression a part of the stress is released. The absolute value
of the localization length is connected to the magnitude of super diffusion. A tighter
localization at rest leads to a more pronounced super-diffusion and an abrupt transition

to flow.

2.2.3. Constant shear stress

In the previous section and in Ref. %28 33:38 40 it wag shown that the application of an
arbitrary constant shear rate leads to the fluidization of the glass. In contrast to that,
the shear at constant shear stress may show different scenarios. In a step-stress or
creep experiment a constant shear stress o is applied on an initially quiescent system.
The evolution of the deformation v is now measured as a function of time ¢. Figure
2.11 a) shows a typical response of a glassy system in a creep experiment. Only the
application of a stress above the yield stress o, results in a flow response. The flow
response is characterized by a linear increase of strain with time, i.e. 7 is constant. For
stresses 0 < gy, a sub-linear increase of y(t) is observed* 3. This indicates a solid-like
response associated to the creep of the system. An intermediate response is found for
o 2 o0y. For short times the system shows a creep-like response, but at longer times the
system starts to show fluid-like behavior. The transition from one regime to the other
takes place during a finite time interval, during which a super-linear increase of 7(t) is
observed. Note that the oscillations of v at small times for small stresses are due to

4445 5nd will not be discussed here.

instrument inertia

To distinguish the regimes of creep and flow, the logarithmic time derivative of the
strain Agpeep(y) = dlog(y)/dlog(t) is calculated. The derivative A, corresponds to
the exponent of the time dependence of y(t) and is shown in Figure 2.11 b). The value
Acreep = 1 corresponds to flow and A.ep < 1 to creep response, respectively. The
transition from creep response to super-linear increase, characterized by Agpeep > 1, is
marked by the strain value ;. The value 7,,,, represents the strain with the steepest
increase in 7y(t), i.e. a maximum in Ageep-

The values of 7,4, and 7, are shown in Figure 2.12 as functions of applied stress. The
strain 7,,., increases continuously with applied stress. Moreover, the universal scaling

Ymaz ~ 023, independent of composition or size ratio, is found. The strain ~; shows a
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Figure 2.11.: a) Strain  as a function of time ¢t measured in a creep test for applied stress o > o,
o ~ gy, 0 < gy (from top to bottom). b) Logarithmic time derivative of the strain
Acreep(t) = dlog(y)/dlog(t) as a function of strain 7. 7y is the value of strain where
Acreep = 1, Ymaz indicates the maximum of Agreep.
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Figure 2.12.: a) Strain 7,4, and b) 1 as a function of applied stress o in units of energy density for
different mixtures with the volume fraction ¢ = 0.61 and fit Y40 ~ 0 with & = 0.3
(black line).
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2.2. Binary mixtures under shear

similar behavior. This result is comparable to the evolution of 7pq; as a function of 4 as
obtained from step-rate experiments (see Figure 2.8 ¢)). Two regimes in the dependence
Ypeak () are observed. At small shear rates Brownian motion determines the dynamics.
For large ~ the particle motion becomes increasingly affected by affine motion. The
creep experiments show that the application of large stresses lead to an increase of the
strain where the transition to flow happens. That implies that the cage can be deformed
more at large stresses before it eventually breaks. This observation may correspond to

the second regime of v,..x (%) from step rate experiments.

From what has been discussed in this and the previous section, we see that there are
two ways to achieve a fluidization of the glass. Either we apply a constant shear rate
or a shear stress ¢ > o,. A priori it is not clear that in both cases the steady flow
states are similar. To investigate this, we compare two quantities. The first one is the
4(o) obtained in creep measurement in the steady flow regime, where the deformation
increases linearly with time. The second quantities, o(%), is extracted from step rate
measurement, where the stress decays to his steady state value if the system flows. In
this way, each flow state can be characterized by two parameters, ¢ and 7. When we
apply a shear and fix one of these parameters we can measure the second. If the pair (o,
%) is independent of the choice which parameter is fixed and which is measured, then

the flow states are equivalent.

With the help of Figure 2.13 we can perform such an analysis. It shows two creep and
two step-rate measurements for one sample. In the creep experiment, the steady flow
is characterized by a linear increase of the strain with time, i.e. a constant shear rate
which is estimated to be (o = 20Pa) ~ 1.9s7!. Now, in the step-rate experiments a
similar shear rate, ¥ = 2.034s!, is applied. After the stress overshoot the system flows
and the stress decays to its steady-state value, 0 ~ 18.5Pa. Obviously both ways to
shear the system (by a stress or strain controlled shear) lead to the fluidization of the

glass and result in the same steady flow state.

Plotting the product o7 (see Figure 2.13 c) reveals a second interesting point, as-
sociated to the question whether the dynamics by which the final steady-state flow is
achieved depends on the way shear is applied. When we compare the results from strain-
controlled and creep experiments it is clearly visible that steady flow is achieved earlier
in time in the strain-controlled experiment. This is particularly well visible for the pa-
rameter o = 30 Pa and 4 = 10.17s7!. The transient regime prior to the onset of steady
flow seems to be very different for step-rate and creep experiments. The evolution of o7
obtained from the creep experiment (yellow line in Figure 2.13 ¢)) resembles the stress

1

overshoot measured in the step-rate experiment at ¥ = 2.034s~". However, this feature

39



2. Overview

10* P a apply

4 =2 10.4357

v/% and 4/s7!
-
)
2

PRI T T e T

107 3 £ 2 " o ar P 3
107 107 107 10 10 10 10
t/s

10%F p o ~2099Pa

o= 18.5Pa 1
apply : 4 = 10.17s71
apply : 4 = 2.034s7" 1

107 1072 107" 10° 10’ 102 10°
t/s

107" 10° 10" 102 10°
t/s

Figure 2.13.: a) The evolution of the strain «(¢) (solid line) and the corresponding shear rate 5(t)
(dotted line) measured in creep experiments for applied stress o = 20Pa and 30Pa
and b) the evolution of the stress o(t) obtained by applying the shear with shear rate
4 =2.034s7 and 10.17s~! on a binary mixture with § ~ 0.2, ¢ ~ 0.61 and =, = 0.7.
c) The curves from a) and b) plotted as o7(t).
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Figure 2.14.: Maps of particle mobilities for applied stress o ~ 50, (top) and o = o, (bottom) and
times t = 7,54,67,107,134 and 201s.

does not appear in the measurement for ¢ = 30 Pa and 4 = 10.17s™!. These findings
indicate that eventually the same flow state is reached in both cases, but via different
transient dynamics.

The difference between these two kinds of rheological experiments, strain-controlled
and creep, becomes even more clear when one observes the microscopic dynamics of
particles during shear. In the previous chapter we discussed the dynamics of large
particles under strain-controlled shear for a wide range of mixing compositions. For all
glassy systems we found that the transition to flow is accompanied by super-diffusive
dynamics of particles.

The microscopic single-particle dynamics of large particles during the application of
stress-controlled shear was studied for a mixture with § ~ 0.2, ¢ ~ 0.61 and x, = 0.16.
Similar to the step-rate experiments, at short waiting times super-diffusive dynamics
was observed in the regime for ¢ > o,, where the fluidization of the glass takes place.
For small applied stresses, i.e. in the creep regime with ¢ < o,, the MSD increases
sub-linearly with time without any waiting-time dependence.

How do the microscopic dynamics relate to the macroscopic rheology? For stress-
controlled shear a linear relation between the macroscopic strain (¢) and the mean
squared displacement dy*(t) was found. The relation dy*(t) ~ v(t) holds in the steady-
flow regime as well as in creep (o < 0,) and the transient regime before flow (¢ > o).
We attribute this finding to the fact that the time evolution of the fraction of more
mobile particles determines the changes in time of both the microscopic dynamics and
the macroscopic strain. In contrast to that, the linear relation between mean squared

displacement dy? and the macroscopic strain 7 cannot hold when a constant shear rate
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2. Overview

is applied. On the one hand, the constant 4 implies a linear increase of ~(¢) with time,

and, on the other hand, a super-linear increase of dy%(t) with ¢ was found 52934,

To get more insight into the dynamical activities of the particles the field of view of
the microscope is divided into 10 x 10 boxes. The size of each box is (2.8dy)%. The
mobility g, of the particles in the box with index Im (I, m = 1...10), is given by

fm(t) = (Ayi(t))im., (2.3)

where Ay;(t) = y;(t) — vi(to) is the displacement of particle i in the vorticity direction
and (...);, the average over all particles in box [m which are within the box at ¢t = t,.
The map of the mobility for large applied stress o > o, and low stress o ~ o, is
visualized in Figure 2.14 for different times. It can be seen that for ¢ > o, the amount
of boxes with high mobility (dark colored) increases with time. Moreover, a linear
proportionality between the amount of high-mobility boxes and macroscopic strain was
found. Interestingly, this proportionality holds also for small applied stresses, i.e. ¢ =~

Oy-.

A difference between two regimes, i.e. large and small applied stresses, was found in
the spatial distribution of the particle mobility. For ¢ ~ o, randomly distributed boxes
with high and low mobility are found at any time. In contrast to that, for o > o,
the randomly distributed regions of higher mobility observed at short times merge into
a large region which subsequently spans the whole system. The appearance of the
extended region of large mobility occurs for times where the onset of super-diffusion in
the MSDs is observed.

To conclude, in contrast to the strain-controlled shear, the stress-controlled shear
leads not necessarily to the flow of the glassy system. Two regimes for stress-controlled
shear are observed: for o < o, the creep regime with sub-linear increase of ~(t) and
the flow regime for ¢ > o0,. It was found, that the resulting steady-flow state may be
compared to the one observed in the strain-controlled shear. Albeit both kinds of shear
lead eventually to the same flow, the microscopic dynamics during the onset of flow is
found to be different. For constant stress in both stress regimes, ¢ > o, and 0 < 0y,
a linear increase of the mean squared displacement with time was found. This and the
heterogeneous distribution of the high-mobility regions found in the creep experiments

do not have an analogy in the strain-controlled case.
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Glasses of dynamically asymmetric binary colloidal
mixtures: Quiescent properties and dynamics under shear

Tatjana Sentjabrskaja*, Donald Guu®, M Paul Lettinga’, Stefan U Egelhaaf* and
Marco Laurati*

*Condensed Matter Physics Laboratory, Heinrich Heine University Diisseldorf, 40225 Germany
YICS-3, Institut Weiche Materie, Forschungszentrum Jiilich, 52425 Jiilich, Germany.

Abstract. We investigate mixing effects on the glass state of binary colloidal hard-sphere-like mixtures with large size
asymmetry, at a constant volume fraction ¢ = 0.61. The structure, dynamics and viscoelastic response as a function of mixing
ratio reflect a transition between caging by one or the other component. The strongest effect of mixing is observed in systems
dominated by caging of the large component. The possibility to pack a large number of small spheres in the free volume left by
the large ones induces a pronounced deformation of the cage of the large spheres, which become increasingly delocalised. This
results in faster dynamics and a strong reduction of the elastic modulus. When the relative volume fraction of small spheres
exceeds that of large spheres, the small particles start to form their own cages, slowing down the dynamics and increasing the
elastic modulus of the system. The large spheres become the minority and act as an impurity in the ordering beyond the first
neighbour shell, i.e. the cage, and do not directly affect the particle organisation on the cage level. In such a system, when
shear at constant rate is applied, melting of the glass is observed due to facilitated out-of-cage diffusion which is associated
with structural anisotropy induced by shear.

Keywords: glass, binary mixtures, viscoelasticity, dynamics, structure

PACS: 61.43.Fs,64.70.pV,81.05 kf,82.70.Dd,83.10.Pp,83.60.Bc,83.80.Hj

INTRODUCTION

Many different systems, among them polymers, metals
and colloids, can form thermodynamically equilibrated
states, but also non-equilibrium, metastable states, in-
cluding amorphous solid materials called glasses [1, 2].
The glass transition is generally associated with a dra-
matic slowing down of the particle dynamics which is
driven by changes in thermal energy or crowding.

One of the simplest model systems to study crowding in-
duced glass formation are suspensions of colloidal hard
spheres. By increasing the particle volume fraction ¢ for-
mation of a glass state above ¢ = ¢, prevents crystallisa-
tion, if the system has a sufficiently broad distribution
of sizes. The formation of the glass state is explained
in terms of the cage effect: At ¢ > ¢, each particle is
trapped in the cage of its neighbours resulting in dynam-
ical arrest, i.e. the absence of long distance diffusion over
a large window of times [3, 4]. Dynamical arrest and for-
mation of a solid state above ¢ > ¢ are also manifested
in the viscoelastic properties as a sudden increase of the
viscosity [5] and the appearance of a Maxwell plateau
modulus in the linear response [6].

The addition of a second component with a signifi-
cantly different mean size compared to the first compo-
nent, leads to an even richer scenario. Depending on the
total volume fraction of the system and the mixing ratio
of the two species, mode coupling theory (MCT) predicts

the existence of different glass states [7]. When the size-
ratio 6 = Ry/R; = d/d, where Ry, ds and Ry, d; are the
radii and diameters of the small and large components re-
spectively, becomes about 0.2 and smaller, four different
glass states are expected [7]: In the first state both com-
ponents are caged; in the second state dynamical arrest
of the large component is driven by depletion attraction
induced by the small species; in the third state the large
component is arrested through caging, while the small
component is mobile; finally the small particles can be
caged, while the large particles are not caged, but only
localised by the surrounding dense matrix of small parti-
cles. Despite the rich behaviour predicted by theory, the
glass state of colloidal binary mixtures at such large size
disparities is hardly studied experimentally [8]. In [8] the
formation of a glass despite the mobility of the small
component is reported. A similar glass state has also been
found in simulations of soft sphere mixtures [9, 10].

In order to extend these studies and to explore the for-
mation of different glasses, we performed experiments to
determine the microscopic structure, dynamics and vis-
coelastic response of colloidal hard-sphere mixtures of
large size disparity (6 = 0.2) and constant total volume
fraction ¢ ~ 0.61. We vary the relative volume fraction
of the small component, x; = ¢s/9, to explore the effect
of mixing on the glass state. We find that the composition
of the mixture strongly affects the dynamics and elastic
modulus of the system, in particular in mixtures contain-



ing a smaller volume fraction of small spheres, x; < 0.5.
In addition, we compare the dynamics of a sample under
shear to its quiescent state, showing that the driving intro-
duced by shear leads to an acceleration of the non-affine
particle motions, inducing glass melting. A discussion of
the non-linear rheology of these mixtures and compari-
son to predictions of mode-coupling theory are reported
in separate publications [11, 12].

METHODS

Samples

Suspensions of poly-methylmethacrylate (PMMA)
particles sterically stabilized with a layer of polyhydrox-
ystearic acid (PHS) were prepared in a solvent mixture
of cycloheptyl bromide (CHB) and cis-decalin, closely
matching the density and refractive index of the colloids.
In the CHB/decalin solvent mixture, the spheres acquire
a small charge which is screened by adding 4 mM
tetrabutylammoniumchloride [13]. This system shows
almost hard-sphere behaviour, with the volume fraction
¢ = (41/3)nR> being the only thermodynamic control
parameter, with » the number density of particles and
R the sphere radius. Binary colloidal mixtures with
0 ~ 0.2, fixed total volume fraction ¢ ~ 0.61 and dif-
ferent mixing ratios were prepared starting from one
component stock suspensions. The stock suspensions
were obtained by diluting a sediment of large particles
of mean size d; = 1.76 £ 0.02 um (relative polydis-
persity o = 0.057), or small particles of mean size
d; =0.3504+0.004 um (o = 0.150). The large particles
were fluorescently labeled with nitrobenzoxadiazole
(NBD). For the two one-component colloidal stock
suspensions, the values of the radius and polydispersity
were determined from the angular dependence of the
scattered intensity and diffusion coefficient obtained by
means of static and dynamic light scattering, respec-
tively, on a very dilute colloidal suspension (¢ ~ 10~%).
The volume fraction of the sediment of large spheres was
experimentally determined as follows: A first guess for
the volume fraction ¢rcp of the sediment was obtained
using simulation results [14]. The sediment was then
diluted to a nominal volume fraction ¢ ~ 0.4 and ob-
served using confocal microscopy. The imaged volume
was partitioned into Vorondi cells and the mean size of
the Vorondi volume per particle calculated. The ratio of
the particle volume to the mean Vorondi volume serves
as an estimate of the volume fraction of the sample.
This was found to be ¢ = 0.43 which corresponds to
¢1lzCP = 0.68. The small spheres were too small to be
imaged. Therefore their volume fraction was adjusted
to give an equivalent rheological response to the large

spheres. For ideal hard spheres, the energy density scales
as nkpT, so that the shear moduli must be equal in
these units. The volume fraction of the one-component
small particles suspension was adjusted to obtain the
same normalised shear moduli as for the one-component
large particles. Although their linear viscoelasticities
are thus within experimental resolution the same, their
volume fractions could be slightly different, since the
samples have different polydispersities. Accordingly, for
intermediate x;, shear moduli are reported in reduced
units of the energy density.

Confocal microscopy
Quiescent State

Confocal microscopy experiments on quiescent sam-
ples were performed using a VT-Eye confocal unit
(Visitech International), mounted on a Nikon Ti-U in-
verted microscope with a 100x Nikon Plan-Apo VC oil-
immersion objective, and a laser with A = 488 nm. Sam-
ples were contained in vials where the bottom was cut
and replaced by a coverslip to allow for imaging [15].
Stacks of images of 512x512 pixels, corresponding to
an x-y plane size of approx. 50 x 50 um? were acquired.
Each stack was composed of 101 images obtained ev-
ery 0.2 um in z-direction, leading to an imaged volume
of approximately 50 x 50 x 20 um? per stack. The time
needed to acquire one stack was approximately 3.8 s.
Stacks were acquired at a depth of approx. 30um from
the coverslip. Typically for each sample 7 different vol-
umes were imaged for 1200s during which 300 stacks
were collected for each volume to follow the dynamics
of the samples. The stacks were analysed using standard
routines [16] to extract particle coordinates and trajec-
tories. Figure 1 shows typical two-dimensional images
corresponding to a plane in a stack, acquired for samples
with different mixing ratios x;.

Under Shear

Under shear, samples were imaged using a custom-
built rotational shear cell (a modified version of the
model described in [17]), mounted on a Zeiss Axiovert
M200 microscope with a 63x Zeiss Plan Neo Fluar
water-glycerol immersion objective and equipped with
a VT-Infinity confocal unit (Visitech International). A
glass coverslip serves as bottom plate of the cell to al-
low for imaging with high numerical aperture objectives.
The glass surface was covered with polydisperse col-
loidal hard spheres with a size comparable to the large
spheres to minimise the effects of wall slip [18]. The top



FIGURE 1. Typical confocal microscopy images of quies-
cent samples showing the large fluorescently-labelled particles
only. The total volume fraction of the samples is ¢ = 0.61 and
the relative volume fraction of small particles x; are as indi-
cated.

of the cell is formed by a metal cone with 14 mm diam-
eter and 2° cone angle. Images are acquired at a radial
distance of 7 mm from the center. The plate and cone ro-
tate in opposite directions, giving rise to a zero-velocity
plane in the sample, the depth of which can be adjusted
through the relative speed of the cone and plate. Images
were acquired with an Andor iXon 897 EMCCD camera
for 300s, at an average rate of 10 frames per second. Sol-
vent evaporation was minimised using a solvent sealing
at the top of the cell.

Rheology

Rheology measurements were performed with a
AR2000ex stress-controlled rheometer, using a cone-
plate geometry with 20 mm diameter, 2° cone angle and
0.054 mm gap. A solvent trap was used to minimise
solvent evaporation during the measurements. The tem-
perature was set to 20 °C and controlled within 40.1
°C via a standard Peltier plate. The effects of sample
loading and aging were minimized by performing a
standard rejuvenation procedure before each test: di-
rectly after loading, we performed a dynamic strain

r/d,

FIGURE 2. Radial distribution function g(r) of the large
spheres, determined using confocal microscopy. The total vol-
ume fraction of the samples is ¢ = 0.61 and the relative volume
fractions of small particles are xg =0, 0.1, 0.3, 0.5, 0.7, 0.9 (top
to bottom). Data are shifted along the vertical axis for clarity.

sweep, i.e. applied oscillatory shear to the samples
with a frequency @ = 1 rad/s and an increasing strain
amplitude until the sample was flowing. Before each
measurement, flow of the sample was induced applying
oscillatory shear at strain ¥ = 300%. Shear was applied
for the time needed to achieve a steady-state response,
i.e. the storage modulus G’ and the loss modulus G”
become time-independent, typically 200 s. Successively,
the linear viscoelastic moduli were measured at 0.1%
< 7<0.5% (depending on sample) as a function of time
to monitor reformation of structure, until the moduli
reached a time-independent value, typically after 100 s to
900 s (depending on sample). After this, the experiment
was started immediately.

RESULTS AND DISCUSSION

Quiescent Structure

To understand mixing-induced changes on the cage
structure of a one-component glass, we used confocal
microscopy to determine the radial distribution functions
g(r) of large spheres, the only species which is fluores-
cently labeled and therefore visible (Figs. 1 and 2).

The g(r) for x; = 0 is typical of a glass-forming one-
component suspension with size polydispersity. It shows
a pronounced correlation peak at r» = d;, correspond-
ing to the highest probability of finding particles in the
first-neighbour shell, and additional peaks at larger r re-
lated to particles in the successive neighbour shells. For
a small volume fraction of small particles (x; = 0.1,
¢ = (1 —x5)¢ = 0.549) these features remain, but in
addition a small shoulder to the right of the first max-
imum is observed. This indicates a perturbation of the



cage formed by the large spheres. When increasing x; to
0.3 (¢; = 0.427), the height of the first-neighbour peak
decreases, which indicates dilution (also evident in Fig.
1), and that some particles formerly constituting the cage
are located at larger distances. These particles are found
at distances d; + d; (where the shoulder was observed
at x; = 0.1) and d; + 2d;, as seen from the correspond-
ing peaks in g(r). This implies that small particles are
located in between large particles and hence loosen the
cage structure. In line with this observation the layering
of large spheres only extends to the third neighbour shell.
At xs = 0.5 (¢, = 0.305) particles are mostly located at
distance d; + d; and also the probability of finding parti-
cles at d; 4 2d; is increased. Moreover, additional peaks
at d; + nd, are visible. This indicates that at x;, = 0.5 a
first neighbour shell of large spheres does no longer sur-
round large particles (Fig. 1), and a transition to a cage
of small spheres takes place. This is consistent with the
following geometrical argument: Each small sphere of
radius R; projects on a sphere of radius R; = R,/ an
angle 6 = 2arcsin(1/(1+1/6)). The maximum packing
of small spheres having the centers separated by this an-
gular distance, i.e. covering the surface area of a large
sphere, can be calculated as N = 120 [19]. At x; = 0.5
the number fraction of small particles for each big parti-
cleis &/& = x;/83(1 —x;) = 125, i.e. on average each
large particle is covered by small particles for x; = 0.5
and hence the first neighbour shell and cage of large par-
ticles disappear. At x; = 0.7 (¢, = 0.183) correlations at
distances d; + nd; dominate and layering beyond the sec-
ond neighbour shell vanishes due to the pronounced di-
lution of the large spheres (Fig. 1). Correlations are fur-
ther reduced at x; = 0.9 (¢, = 0.061) due to the increased
dilution of the large spheres (Fig. 1). From the evolu-
tion of the radial distribution function with increasing x;
one can therefore conclude that the small spheres occupy
an increasingly larger fraction of the free volume in be-
tween the large spheres, inducing a distortion of the cage
of large spheres until a transition to a system dominated
by the cage of small spheres is observed.

Quiescent Dynamics

To explore the effect of the structural changes dis-
cussed in the previous section on the microscopic dy-
namics, we investigate the mean squared displacements
(MSDs) of the large particles, 5r12, as a function of
xs (Figure 3). The system of only large spheres (x; =
0.0) presents an MSD which, within the accessible time
range, shows no long-time diffusion, i.e. glassy dynam-
ics. Moreover, the plateau of the MSD corresponds to
a localisation of the particles on distances of the order
Vi(xs = 0) = 0.1d;, which is typical for a cage in a one-
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FIGURE 3. Mean squared displacements 5r12 of the large

spheres, normalised by their diameter squared (dlz), determined
using confocal microscopy. The total volume fraction of the
samples is ¢ = 0.61 and the relative volume fractions of small
particles are xg = 0.0 (o), 0.1 (0), 0.3 (A), 0.5 (v), 0.7 (©), 0.9
(<).

component glass. The time-dependence of the dynam-
ics is similar for x; = 0.1, but the localisation length is
slightly larger. This reflects the small perturbation of the
cage structure (Figure 2). For x; = 0.3 a significant accel-
eration of the dynamics is observed, for times # > 10 s the
particles are no longer localised and the MSD increases
sub-linearly with ¢. It is expected that diffusive dynam-
ics is established beyond the accessible time scale. The
acceleration of the dynamics is related to the consider-
able distortion of the cage of large spheres induced by
the presence of the small spheres, which increase the mo-
bility. A comparable time-dependence of the MSD is ob-
tained at x; = 0.5, but the displacements are smaller, in-
dicating a stronger localisation. A stronger localisation
can be associated with the transition to the cage structure
of small spheres, as also evidenced in the g(). Note that
the caging of the small spheres is apparently incomplete
yet, and therefore the large particles are not localised.
For the two largest values of x; the large spheres are
localised by a cage of small spheres. Accordingly their
MSD again show no diffusion. The localisation length
is of the order of v;(x; > 0.7,0.9) =~ 0.02d, i.e. about
0v;(xs = 0), which indicates that the particles are indeed
localised on the length scale of the cage of small parti-
cles. Note that the plateau values of the MSDs of these
samples approach the resolution limit of the setup.

Linear Viscoelastic Moduli

In order to establish a link between the microscopic
structure and dynamics of the samples and their me-
chanical response, we measured the frequency depen-
dent linear viscoelastic moduli of the mixtures (Figure
4). The moduli are reported in units of energy density
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FIGURE 4. Storage modulus G’ (full symbols) and loss
modulus G” (open symbols), in units proportional to the energy
density (k3T /(R?)), as a function of oscillatory Peclet number
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(), 0.9 (1), 1.0 (D).

(nkpT) ~ kT /(R3), with n particle density and:

1 1 1

This representation removes the trivial effect of differ-
ent average particle sizes for different values of x5 on
the absolute values of the shear moduli. The data are
shown as a function of the oscillatory Peclet number
Pegy = 13/T» = (62N @(R?))/kpT which represents the
ratio between the period of oscillation, 7, = 1/®, and
the Brownian time, T3 = (R?/Dy), where Dy is the free
diffusion coefficient.

At large values of Pe,, for all samples G” is larger than
G'. This response can be associated to the in-cage dy-
namics, i.e. the short time diffusion of a particle in its
cage. In contrast at smaller frequencies, i.e. longer times,
the structural relaxation associated with long-time diffu-
sion allows us to distinguish the response of a glass from
that of a fluid.

The one-component systems (x; = 0.0, 1.0) show the re-
sponse of a glass. The storage modulus G’ is larger than
the loss modulus G” and no crossing of the two mod-
uli can be observed at low Pey,, indicating that no struc-
tural relaxation is observed in the accessible frequency
window. At x; = 0.1 the Pey (frequency) dependence
of the viscoelastic moduli is similar to that of the one-
component systems, i.e. still characteristic of a glass, but
the viscoelastic moduli are reduced by more than an or-
der of magnitude, despite the only limited structural de-
formation of the cage induced by the presence of the
small spheres. This is however consistent with the larger
localisation length observed in the dynamics, which in-
dicates a looser cage structure. At x; = 0.3 the reduc-
tion of the shear moduli is even more pronounced than at
xs = 0.1. Moreover G’ and G become similar, indicating
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FIGURE 5. (a) Height of the first, gimax (black, full sym-

bols), and second, grmax = g(d| + ds) (red, open symbols),
peaks of g(r) (Figure 2), (b) Localisation length v; in units
of d;, estimated from MSDs at = 4.5s (Figure 3) (c) Storage
modulus G’ (Peg, =0.1) (black, full symbols, left axis) and ratio
G'/G" at the same Pey, (red, open symbols, right axis), in units
of energy density kzT /(R3)) and (d) theoretical prediction [23]
for changes in ¢pcp at § = 0.175 as a function of x;.

a weaker solid-like response. This is consistent with the
large structural distortion of the cage manifested in the
radial distribution function (Figure 2) and with the faster
dynamics (Figure 3). Compared to x; = 0.3, at x; = 0.5
the moduli at large Pe,, are bigger, but smaller at low
Peg,, which is due to the stronger frequency dependence
of the shear moduli. In addition, G’ and G” have almost
identical values. Such a response is similar to that ob-
served for depletion driven colloidal gels in the vicinity
of the gelation boundary [20, 21, 22]. Further increas-
ing xs to 0.7 and 0.9, the moduli become larger and for
xs = 0.9 approach the values of the one-component sys-
tems. This is consistent with a transition to a system
dominated by cages formed by the small particles and
with structure and dynamics of these samples. Note that
the residual distortion induced by the large spheres leads
to a reduction of the overall elastic response of these
samples.

The trends discussed above are summarized by plotting
G’ and the ratio G/ /G” as a function of xy, at a fixed value
of Pey, = 0.1 (Figure 5c¢). The ratio G'/G” attains the



smallest value at x; = 0.5, which could reflect a transi-
tion from a system dominated by cages formed by large
spheres to a system dominated by cages formed by small
spheres. This interpretation is supported by the trends of
the heights of the first and second peaks of g(r) (Figure
5a): Between x; = 0.3 and x; = 0.5 the first peak strongly
drops and then remains nearly constant for larger x;, in-
dicating the disappearance of the first neighbor shell of
large particles, i.e the large spheres cage. The second
peak reaches its maximum at x; = 0.5, corresponding to
formation on average of a shell of small particles around
each large particle, and then decreases for larger values
of x5, due to the further intercalation of small spheres in
between two large spheres, which leads to caging of the
small spheres. In contrast, the elasticity of the samples,
represented by G, reaches a minimum at x; = 0.3. This
could be explained by the larger localisation length of
the large spheres at x; = 0.3 (Figure 5b). Furthermore,
changes in G’ are considerably larger in systems with
a larger volume fraction of large spheres. This can be
rationalized by considering the effects of the inclusion
of the second component on the structure of the sys-
tem in the two cases: In systems at small x;, the small
spheres can be packed in the free volume in between the
large spheres, including the free volume within the cages.
This deforms the cage and shifts random close packing
(Figure 5d, data for § = 0.175 taken from [23]). On the
other hand, addition of large spheres to a system of small
spheres only affects the order beyond the first shell, i.e.
beyond the cage, since the large spheres cannot fill the
space in between the small spheres. This results in struc-
tural heterogeneity rather than cage deformation, and in a
small shift of random close packing (Figure 5d, x; > 0.5).

Dynamics under shear

We investigated the effect of shear on the motions of
large particles in a sample with a major relative volume
fraction of small spheres (x; = 0.9). The mean squared
displacements 6r12 of large particles were determined in
the quiescent and steady state of shear, for two different
shear rates . For the applied shear rates, the time scale
introduced by shear, 1/7, is considerably longer than the
Brownian time 7 associated with the short-time diffu-
sion of both large and small spheres. This is quantified
through the Peclet number Pey = (671 }(R?)) /ksT. Both
time scales are smaller than the structural relaxation time
of the system, which diverges, although activated pro-
cesses typically lead to diffusion at long times [24].

The velocity profiles obtained in the steady state of shear
are shown in figure 6. They were obtained by determin-
ing the velocity of the particles from their trajectories.
The zero-velocity plane is located at about 15 um into
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FIGURE 6. Average velocity of the large spheres as a func-
tion of position z in the gap, for sample with a relative volume
fraction of small spheres x; = 0.9 and Peé, =4.2x10"" (main

plot) and 6.7 x 1072 (inset). Arrows indicate the location of the
plane where the dynamics were measured.

the sample for both shear rates. The velocity profiles
show a larger velocity gradient below the zero-velocity
plane than above. Within each band though the velocity
profile is linear, indicating laminar flow. For the higher
shear rate the slower band corresponds to 7 ~ 0.06 s~!,
while the faster band to 7 ~ 0.25 s~!. The weighted av-
erage 7~ 0.117 s~! agrees within uncertainties with the
expected value of 7~ 0.120 s~!. Similarly for the slower
shear rate the slower band corresponds to 7~ 0.0095 s~
and the faster one to 7 ~ 0.041 s~ ! with an average of
0.017 s~!. The formation of the two bands might be due
to the different roughness of the particles coated surface
of the bottom plate and the smooth metallic surface of
the cone. The dynamics under shear were determined
in a velocity-vorticity plane within the slower bands for
both shear rates, corresponding for the large spheres to
Pel,=4.2x 107" and 6.7 x 1072, and at about z =27 um
in the sample (arrows in Figure 6).

The results of measurements with the shear cell setup
are reported in Figure 7 as MSDs vs. strain ¥ = ¥¢. The
strain axis for the quiescent MSD was obtained using
the faster shear rate 7~ 0.06 s~!. The quiescent dynam-
ics show a time dependence similar to that obtained us-
ing the other confocal microscope setup (compare fig-
ures 7 and 3): particles are localised on the experimen-
tally accessible time window and no long-time diffusion
is observed. One can observe though that the localisa-
tion length is larger for the measurements with the shear
cell setup. This might be attributed to the combination of
two factors [25]: the larger noise level of the multi-beam
VT-infinity confocal microscope, which arises from the
cross-talk of the fluorescence emission from many dif-
ferent particles simultaneously excited; the smaller mag-
nification (63x instead of 100x) and the larger pixel size
(0.25 pm compared to 0.115 pum), which increase the
uncertainty in the determination of particle coordinates.



Note also that, in order to compare to measurements un-
der shear, the quiescent MSDs are measured in a two-
dimensional plane instead of a three dimensional volume
as in the other setup. Application of a slow shear rate,
corresponding to Peé, = 6.7 x 1072, induces a significant
acceleration of the non-affine dynamics of the large par-
ticles, as shown in figure 7: The particles are initially lo-
calised on the same length scale as in the quiescent state
but become delocalised at y > 6 %, with the MSD in-
creasing first sub-linearly and then linearly with y over
the remaining range of measured times. The final linear
increase of 5r,2 sint (Y o< t) indicates diffusive behavior.
At the larger shear rate (Pe/, = 4.2 x 10~!) the particle
dynamics first show localisation on a length scale smaller
than in the quiescent state and for y > 3 % the MSD in-
creases more than linearly with time # and might at larger
7 tend to normal diffusion. For the smaller shear rate, the
cage-deformation introduced by shear enables the ini-
tially caged particles to diffuse, resulting in the observed
acceleration of the average single-particle dynamics and
glass melting. The larger shear rate is sufficiently large
to possibly induce cage constriction at short times result-
ing in the lower localisation length of the MSD. More-
over, the observed super-diffusive behavior could result
from the transition from highly constrained in-cage mo-
tions to out-of cage shear induced diffusive motions. The
observed behavior is similar to the one which occurs in
one-component colloidal glasses and dense fluids under
application of a constant shear rate, as shown in experi-
ments [26, 27, 28, 29, 30], simulations [31, 27, 30] and
Mode-Coupling theory [27, 30]. In particular, a link be-
tween shear-induced cage break up and acceleration of
the dynamics has been found [29]. Upon application of
shear, the cage increasingly deforms, until the maximum
elastically sustainable deformation is achieved, where a
stress overshoot is observed in rheology, and the cage
opens, allowing for diffusion in the steady state of shear
where residual structural anisotropy is observed. Before
steady state is achieved, super-diffusion is observed at
the transition from caging to diffusion, corresponding to
cage yielding. When the shear rate becomes sufficiently
large, cage constriction is continuously induced by shear
and a super-diffusive regime is observed in the steady
state [29], similar to what is observed in the mixture
for the larger shear rate. Note that for x; = 0.9 the cage
being deformed is that composed of small spheres. The
Pe;, = 53Pe§~, values for the small spheres are 5.4x 10~

and 3.4x 1073 for the slower and faster shear rates re-
spectively. Cage constriction effects are typically ob-
served for Pe; > 0.1 in one-component glasses [29].

For glasses composed by only one species of particles
the long-time diffusion coefficient D, in the steady state
of shear is dominated by the time scale introduced by the
shear rate and scales as 0% [26, 31]. The scaling clearly
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FIGURE 7. Mean squared displacements 5r12 of the large
spheres as a function of strain y = ¥, in units of the squared
large spheres diameter dlz, determined by confocal microscopy
for sample with a relative volume fraction of small spheres
xs = 0.9, in the quiescent state (O) and in the steady state of
shear at Pel, = 6.7 x 1072 (o) and 4.2 x 10~ (A). The MSDs
under shear only contain non-affine particle motions. The strain
axis for the quiescent state was calculated using the lower shear
rate 7~ 0.06 s~

does not hold in this case, since the values on the x-axis
scale with y. The ratio between the D, values for the two
applied shear rates apparently scales with a larger expo-
nent of approximately 1.6, which could be related to the
peculiar properties of the mixture.

CONCLUSIONS

We presented experimental results on the structure, dy-
namics and viscoelasticity of glasses formed by binary
colloidal mixtures with size ratio § = 0.2 and different
mixing ratios. Changes in the properties of these glasses
as a function of mixing ratio can be rationalized in terms
of a transition from caging of the large spheres to caging
of the small spheres. In comparison to a glass com-
posed of only large spheres, mixing a large fraction of
large spheres with a small fraction of small spheres in-
duces pronounced changes in the glass state. The cage of
large spheres is deformed due to the inclusion of small
spheres in the free volume between the large particles.
This loosening of the cage results in increased mobil-
ity of the large particles and an acceleration of their dy-
namics. Correspondingly a strong decrease of the elastic
modulus is observed. Further increasing the fraction of
small spheres, the cage distortion increases as more and
more small particles fill the free volume. This is consis-
tent with random close packing occurring at a larger total
volume fraction [23]. It also results in a further speed-
ing up of the dynamics and reduction of the elastic mod-
ulus. At x; = 0.5 on average each large sphere can be
completely covered by small spheres and leads to a dis-



ruption of the cage structure of the large spheres. Con-
comitantly the response of the system starts to be dom-
inated by caging of the small spheres. This is seen as a
tighter localisation of the large spheres and a modulus
which starts to increase again. This trend continues with
increasing x,. In systems dominated by the cage of the
small particles, the large spheres reduce the order on the
intermediate length scale beyond the first shell, i.e. the
cage. If shear is imposed on a mixture where caging by
the small component dominates the response, the initially
frozen dynamics become diffusive in the experimental
time-window at small shear rates, and super-diffusive at
larger shear rates. A stronger localisation at short times
is also observed at larger shear rates. This indicates that
application of shear induces melting of the glass by fa-
cilitating out-of-cage diffusion through elongation and
deformation of the cage, and cage constriction at large
shear rates, similar to recent results on one-component
glasses [29, 30].
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Yielding of binary colloidal glasses

T. Sentjabrskaja,? E. Babaliari,” J. Hendricks,? M. Laurati,*® G. Petekidis?
and S. U. Egelhaaf®

The rheological response, in particular the non-linear response, to oscillatory shear is experimentally
investigated in colloidal glasses. The glasses are highly concentrated binary hard-sphere mixtures with
relatively large size disparities. For a size ratio of 0.2, a strong reduction of the normalized elastic
moduli, the yield strain and stress and, for some samples, even melting of the glass to a fluid is observed
upon addition of the second species. This is attributed to the more efficient packing, as indicated by the
shift of random close packing to larger total volume fractions. This leads to an increase in free volume
which favours cage deformations and hence a loosening of the cage. Cage deformations are also
favoured by the structural heterogeneity introduced by the second species. For a limited parameter
range, we furthermore found indications of two-step yielding, as has been reported previously for
attractive glasses. In samples containing spheres with more comparable sizes, namely a size ratio of 0.38,
the cage seems less distorted and structural heterogeneities on larger length scales seem to become
important. The limited structural changes are reflected in only a small reduction of the moduli, yield

www.rsc.org/softmatter strain and stress.

1 Introduction

Many particle dispersions used in applications, for example
paint, ink, cement, ceramics or foodstuffs, are characterised by
a size distribution of the dispersed phase. Even if a mono-
disperse system is desirable, it is often difficult to avoid a
distribution of particle sizes. Furthermore, through the size
distribution, the properties of a dispersion, such as its rheo-
logical behaviour, can be tuned, for instance to meet processing
or application needs. To investigate the effect of a distribution
of sizes, binary mixtures of spherical colloidal particles repre-
sent the simplest model system.

The interactions and the phase behaviour of binary colloidal
hard-sphere mixtures have been studied by theory'® and
simulations.*® In equilibrium, binary colloidal mixtures exhibit
a wider fluid-solid coexistence region than one-component
systems, which has been thoroughly investigated in experi-
ments.” " Additionally, formation of complex crystalline struc-
tures through co-crystallisation of the two species is predicted
and observed.'** For size ratios 6 = Rg/R;, < 0.2, where Rg and
Ry, are the radii of the small and large spheres, respectively,
theory expects fluid-fluid and solid-solid coexistences,* which
are also observed in simulations® but not yet in experiments. In
addition, non-equilibrium glass states have been predicted
theoretically'®™ and observed experimentally.>*® In particular,
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Mode Coupling Theory (MCT) predicts that, at constant total
volume fraction ¢, a one-component glass is melted upon
addition of a sufficient amount of spheres with a different size
(6 = 0.65).'*" This is consistent with the faster structural
relaxation experimentally observed in samples with 6 = 0.6, ¢
=~ 0.58 and intermediate mixing ratios.*® This leads to a strong
decrease of the viscosity, which has been determined in exper-
iments and simulations for a sufficiently large degree of mix-
ing.**** Recent MCT results'” furthermore predict that for a
large size disparity, 6 = 0.2, different glass states exist, which
are distinguished by caging of one or both species, or by
depletion induced bonding of the large spheres. The latter, for
which some experimental evidence exists for 6 = 0.1,° is
expected to show similarities with attractive glasses as those
observed in colloid-polymer mixtures.***

Similar to the interactions and the phase behavior, also the
rheological response of binary mixtures changes upon varying
the size and mixing ratios. This has been studied experimen-
tally,>*** theoretically**** and by simulations.**?*” In the
granular limit, i.e. when Brownian motion becomes irrelevant,
binary mixtures with a size ratio ¢ = 0.2 exhibit a minimum of
the viscosity at a relative volume fraction of small spheres, xs =
0.4,%® which is known as the Farris effect. In contrast, for
colloidal mixtures a minimum of the viscosity is only observed
at high total volume fractions ¢ = 0.4 and at a mixing ratio
which depends on ¢ and ¢.** With decreasing ¢, the minimum
occurs at smaller fractions of small spheres, which results from
a balance between the more efficient packing, since small
spheres can fill the space between large spheres, and the
depletion attraction induced between large spheres.**

This journal is © The Royal Society of Chemistry 2013
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Nevertheless, the rheology of concentrated binary colloidal
mixtures has hardly been studied,*** especially of spheres with
significantly different sizes, i.e. small size ratios o.

Here we investigate the rheology of dispersions containing
binary mixtures with small size ratios, 6 = 0.2 and 0.38, over a
broad range of total volume fractions ¢ and mixing ratios,
characterized by the relative volume fraction of small spheres xg
= ¢s/¢. Their response to oscillatory shear is studied with a
particular focus on the non-linear viscoelastic properties, while
the linear response, together with the structure and dynamics at
rest, will be discussed in detail elsewhere.*>** In the present
case of spheres with significantly different sizes (i.e. small ),
the non-linear response contains contributions related to the
different length scales present in the samples. This is similar to
colloid-polymer mixtures, where systems with attractive inter-
actions, such as gels or attractive glasses, are characterized by
two yielding processes.**** The two yielding processes reflect
the breaking of inter-particle ‘bonds’ and cluster breaking, in
the case of gels, or irreversible cage deformation, in the case of
attractive glasses.**** The yielding behaviour of attractive
systems is hence different from the one of repulsive systems,
which typically only show one yielding mechanism related to
cage distortion.*»*31%47

2 Materials and methods
2.1 Rheology

Rheological measurements were performed with an AR2000ex
stress-controlled rheometer, and ARES G2 and ARES strain-
controlled rheometers from TA instruments, using cone and
plate geometries of diameter D = 20 mm, cone angle o = 2°
and gap d = 0.054 mm (AR2000ex), D = 25 mm, « = 2° and
d = 0.048 mm (ARES G2) and D = 25 mm and 50 mm, « = 2° and
d = 0.048 mm (ARES). Solvent traps were used in all rheometers
to minimize solvent evaporation. The temperature was set to
T = 20 °C and controlled within £0.1 °C via a standard Peltier
plate (AR2000ex, ARES) or an advanced Peltier system (ARES
G2). The effects of sample loading and aging were reduced by
performing the following rejuvenation procedure before each
test. Directly after loading, a dynamic strain sweep was per-
formed to estimate the strain amplitude vy at which the system
starts to flow, i.e. oscillatory shear was applied to the samples
with frequency w = 1 rad s~ " and increasing vy until the sample
showed a liquid-like response. Then, before each measurement,
flow of the sample was induced by applying oscillatory shear at a
sufficiently large strain. In the case of the size ratio 6 = 0.20, y =
300% was used for all samples. For § = 0.38 and ¢ = 0.19,
different values 200% = vy = 1000% were used depending on
the volume fraction ¢ and relative volume fraction of small
particles x,. Shear was applied until a steady-state response, i.e.
a time-independent storage G’ and loss modulus G”, was ach-
ieved, which typically took about 200 s. Subsequently the
samples were sheared at 0.1% = v < 1.5% (depending on the
sample) until the linear viscoelastic moduli reached a time-
independent value, typically after 100 s to 900 s (depending on
the sample). This indicated that no further structural changes
occurred and hence a reproducible state of the sample was

This journal is © The Royal Society of Chemistry 2013
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reached and a new measurement could be started. Note that
ageing effects might be present at longer waiting times.
Measurements with serrated and smooth geometries, respec-
tively, yielded comparable results suggesting the absence of
wall slip.

2.2 Samples

Polymethylmethacrylate (PMMA) spheres sterically stabilized
with a layer of polyhydroxystearic acid (PHSA) were dispersed in a
mixture of cycloheptyl bromide (CHB) and cis-decalin that
closely matched the density and refractive index of the colloids
(6 = 0.20 and 0.19) or in a mixture of octadecene and bromo-
naphthalene which minimizes solvent evaporation (6 = 0.38).
For samples in octadecene-bromonaphthalene, measurements
of the time evolution of the linear viscoelastic moduli indicate
the absence of significant gravitational effects over times much
longer than typical measurement times. In the CHB-decalin
mixture, the particles acquire a small charge which was screened
by adding 4 mM tetrabutylammoniumchloride.*”® In this case,
the colloids behave like hard-spheres in both solvent mixtures.
PMMA spheres with different average radii were used; Rf =
880 nm (polydispersity 0.057) and Rs; = 175 nm (polydispersity
0.150) to result in 6 = 0.20; RY." = 942 nm (polydispersity 0.06)
and the same Rg; to resultin é = 0.19; Ry, = 358 nm (polydispersity
0.140) and Rs, = 137 nm (polydispersity 0.120) to result in
6 = 0.38. The radii and polydispersities were determined from
the angular dependencies of the scattered intensity and the
diffusion coefficients, obtained using static and dynamic light
scattering, respectively, with very dilute colloidal suspensions
(¢ = 10™*). For the large spheres, a similar radius, RY =885 nm,
has been estimated from the position of the first peak of the
radial distribution function, which was obtained by confocal
microscopy.* Confocal microscopy could be performed with
these large spheres, because they were fluorescently labelled
with nitrobenzoxadiazole (NBD). Confocal microscopy was also
used to determine the volume fraction of a dispersion of these
spheres as follows. A random close packed sample was obtained
by sedimenting a dilute suspension in a centrifuge. The sedi-
ment, whose volume fraction was roughly estimated using
simulation results,* was subsequently diluted to a volume
fraction ¢ = 0.4 and imaged by confocal microscopy. The imaged
volume was partitioned into Voronoéi cells and their mean
volume was determined. The ratio of the particle volume to the
mean Vorondi volume provides an estimate of the volume frac-
tion of the sample, ¢ = 0.43. This allowed us to calculate the
volume fraction of the random close packed stock solution ¢gcp
= 0.68. The smaller spheres were too small to be imaged (thus
also not fluorescently labelled). The volume fraction of their
sediment was estimated taking into account their poly-
dispersity:* ¢xcp = 0.68 for spheres with radius Rg; = 175 nm
and ¢z = ¢rep = 0.67 for spheres with radii Rg, = 137 nm and
R;, = 358 nm. The value of the volume fraction is known to suffer
from relatively large uncertainties.** Thus the value of ¢ obtained
for the large spheres was used as a reference value and the volume
fraction of the two batches containing the smaller particles was
adjusted using rheological measurements as follows. Linear

Soft Matter, 2013, 9, 4524-4533 | 4525
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Fig. 1 (top) Storage, G’ (full symbols), and loss, G" (open symbols), moduli of
samples containing large (7)) and small (O) spheres, respectively, as a function of
frequency w obtained by Dynamic Frequency Sweep measurements for (left) a
size ratio 6 = 0.20 and total volume fraction ¢ = 0.58 and (right) 6 = 0.38 and ¢ =
0.595. (bottom) Same data in units proportional to the energy density, i.e. kgT/R?,
and Brownian time 15 = Dy/R%. The strain amplitude was y = 0.5% for 6 = 0.20
and y = 1.5% for 6 = 0.38.

viscoelastic moduli for samples at nominally equal volume frac-
tion (¢ = 0.58 for 6 = 0.20, ¢ = 0.595 for 6 =0.38,¢ = 0.61 ford =
0.19) were measured in Dynamic Frequency Sweeps (DFS) at a
strain amplitude 0.1% < y < 1.5% (depending on sample). The
obtained storage moduli G’ and loss moduli G’ as a function of
oscillation frequency « are expected to agree for spheres of
different sizes but with the same volume fraction, if the moduli
are rescaled by the energy density ~ kgT/R® and the frequency by
the Brownian time 15 = R?*/D, with D, = 67nR the Stokes—Ein-
stein—Sutherland diffusion coefficient in the dilute limit>> and n
the solvent viscosity. The dispersion of small spheres was diluted
until its rescaled linear response matched that of the dispersion
of large spheres with the desired volume fraction, i.e. until an
equivalent rheological response in the linear regime was
obtained (Fig. 1). Furthermore, it was verified that the normalised
elastic modulus G’ and its ¢ dependence coincides, for all parti-
cles used, with that of a dispersion containing crystallising
colloids with a low polydispersity, whose volume fraction was
determined in the crystal-fluid coexistence region.”> When illu-
minated by laser light, Bragg reflections were not observed,
indicating the absence of crystallinity in the one-component
dispersions. By mixing appropriate amounts of the one-compo-
nent dispersions, samples with different total volume fractions ¢
and relative volume fractions of small particles xs = ¢s/(¢s + ¢1)
were prepared, where ¢g and ¢y, are the volume fractions of small
and large particles, respectively. Samples with different xs and
two differentvalues of ¢ (for 6 = 0.20 and 0.38) as well as fixed x5 =
0.65 and different values of ¢ (for 6 = 0.19) were investigated.

3 Results and discussion

In Dynamic Strain Sweep (DSS) experiments, a sinusoidal strain
is applied whose frequency w is constant but whose amplitude vy

4526 | Soft Matter, 2013, 9, 4524-4533
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is increased in steps, starting in the linear viscoelastic regime
and progressing into the non-linear regime. The stress response
of the system is recorded as a function of strain amplitude 7.
Fig. 2 shows the results of DSS measurements for samples with
size ratio 6 = 0.20, total volume fractions ¢ = 0.61 and 0.58, and
different relative volume fractions of small spheres xs. Beyond
the linear viscoelastic regime the stress response in DSS
experiments significantly deviates from a simple sinusoidal
form and can be decomposed into higher order (odd)
harmonics, as shown before for one-component hard-sphere
glasses.”> However, the G’ and G values shown in Fig. 2 corre-
spond to the first harmonic contribution of the stress response.
To allow for a comparison of the different samples, measure-
ments were not performed at a constant frequency w, but at a
fixed oscillatory Peclet number Pe,, = wtg. It is the ratio of the
Brownian time of the system, tz = (R*/D,), and the timescale
imposed by shear, ie. the inverse of the frequency, 7, = 1/w.
Thus, Pe,, = {(6mnR’)/(ksT))  and

Xs (% — l) +1

We applied Pe,, = 5.55 x 10~ ' corresponding to 7.6 x 107>
rad s = » = 9.7 rad s, depending on xs.

The one component systems (xs = 0 and 1) for both ¢ show
the characteristic response of a hard sphere glass (Fig. 2a
and b).*»**47%> (Note that due to the much lower energy density
of the samples with the large spheres, their response is much
weaker and thus more affected by noise.) The storage modulus
G’ is larger than the loss modulus G” in the linear viscoelastic
regime, with their values comparable to the ones obtained in
dynamic frequency sweeps (Fig. 1).** The two moduli become
equal at a strain amplitude v, (highlighted with circles in Fig. 2),
which is identified with the yield strain of the glass. At the yield
strain vy, and the corresponding yield stress oy, the local envi-
ronment of a particle is irreversibly rearranged, i.e. its cage
broken.*>***4” For vy > vy, G is larger than G’ and the system
starts to flow. In this regime, G shows a maximum which
indicates the largest energy dissipation and has also been
previously used to estimate the yield strain associated with
irreversible rearrangements of the cage.***® Upon increasing the
volume fraction from ¢ = 0.58 to 0.61, the linear viscoelastic
moduli and the yield strain v, increase. This is consistent with
previous studies,***”*> which found v, to increase with volume
fraction up to ¢ = 0.62, beyond which it decreases due to the
approach toward random close packing.

Keeping the total volume fraction ¢ constant, but changing
the composition to xg = 0.9, the storage and loss moduli decrease
(Fig. 2). The decrease is not only due to the presence of large
particles and hence a lower energy density, but remains even if
the moduli are rescaled by the energy density (nkgT) ~ 1/(R?).
This indicates a softening of the glass. A softer response is also
reflected in a reduced yield strain v, and yield stress g, (circles in
Fig. 2). A further decrease of the relative volume fraction of small
spheres to xs = 0.7 leads to an additional reduction of the
storage, G', and loss, G”, modulus, yield strain v, and stress oy,
which indicates that the glass still becomes mechanically

(R) =R M
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Fig.2 Storage, G, (full symbols) and loss, G”, (open symbols) moduli as a function of the strain amplitude y obtained in DSS measurements. The size ratio 6 = 0.20, the
total volume fraction (a) ¢ = 0.61 and (b) ¢ = 0.58, the relative volume fraction of small particles xs = 0.0 (>), 0.1 (), 0.3 (%), 0.5 (¢), 0.7 (<1), 0.9 (©), 1.0 (O) and Pe,, =
5.55 x 107" (corresponding to 7.6 x 102rad s~ = w = 9.7 rad s~ ). Circles indicate the yield points and the red solid line indicates their xs-dependence (the dashed

line in (b) is used for fluid samples, which do not present a yield point).

weaker. For xs = 0.7, comparable effects are found for ¢ = 0.61
and 0.58.

This is different for xs < 0.7. For the higher total volume
fraction ¢ = 0.61, the samples with x5 = 0.5 and 0.3 have a much
smaller G’ which, however, is still slightly larger than G” and the
samples hence show a weak solid-like response in the linear
viscoelastic regime (Fig. 2a). This is consistent with vy, and o,
values which are more than one and almost three orders of
magnitude smaller, respectively, than typical values of one-
component hard-sphere glasses at the same total volume frac-
tion. Hence the samples become very brittle and may flow
plastically at smaller strain amplitudes or stresses. A closer

G'.G"/Pa

Y/ %

Fig. 3 Storage, G/, (full symbols) and loss, G”, (open symbols) moduli as a
function of the strain amplitude y obtained in DSS measurements for size ratio 6 =
0.20, a relative volume fraction of small spheres xs = 0.3 and the total volume
fraction ¢ = 0.61 (O) and ¢ = 0.58 (). Arrows indicate the two yielding points
observed for the sample with ¢ = 0.61.

This journal is © The Royal Society of Chemistry 2013

inspection of the response of the sample with ¢ = 0.61 and x5 =
0.3 reveals a particularly interesting strain amplitude depen-
dence of the moduli (Fig. 3). The linear response ends already at
v = 0.2% (Fig. 3, arrow on the left), beyond which G’ decreases
smoothly up to v = 4%, where it shows a kink and subsequently
decreases with a power-law, while G’ shows a small maximum
(Fig. 3, arrow on the right). This response suggests the presence
of two length scales, most likely associated with the small and
large spheres, which both contribute to the yielding of the
system at this xg. The first yielding at small strains y = 0.2%
might correspond to plastic rearrangements of cages formed by
small spheres. Cage distortion and yielding might be facilitated
by the shear-induced interaction with the large spheres, i.e.
contact forces between large and small spheres. Once these
cages are rearranged, the system is still prevented from flowing
by the cages of large spheres which are only slightly deformed.
At strains of about 4% the cages of large spheres deform and the
system starts to flow. The ratio between the two yield strains,
0.2/4 = 0.04, corresponds to ¢6/4 which suggests a non-trivial
scaling of the yield strains with the cage size (which would give a
factor 6). This finding could also result from the moderate
polydispersity of the small spheres, which implies a distribution
of the effective size ratio and in particular accelerates the
dynamics,* and could contribute to reduce the magnitude of
the maxima of G, which are characteristic of the double
yielding phenomenon. A two-step yielding behavior has also
been observed for attractive glasses and gels.**™** Compared to
¢ = 0.61, at ¢ = 0.58 decreasing the relative volume fraction of
small spheres to xs = 0.5 has an even stronger effect (Fig. 2b).
Within the whole examined range of strain amplitudes, G’ > G/
which implies fluid-like behavior. Thus, the glass is melted.
Fluid-like behavior in the whole range of the measured v is also
observed for xs = 0.3, with the response being similar to that
obtained for ¢ = 0.61, except for the smallest v (Fig. 3). Samples

Soft Matter, 2013, 9, 4524-4533 | 4527
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showing fluid-like behavior (xs = 0.3 and 0.5) do not present a
finite value of yield strain and stress, corresponding to the
missing circles in Fig. 2b. The melting of the glass is caused by
the larger free volume fraction created by the presence of small
spheres, as will be discussed in more detail later. This is similar
to the behaviour of one-component systems when ¢ is
decreased below the glass transition.

Finally, the samples at both total volume fractions show the
response of a weak solid for xg = 0.1. For ¢ = 0.61 the storage
modulus G’ is further reduced and becomes similar to G”,
indicating the proximity of a transition to the fluid state. On the
other hand the yield strain v, and stress oy are slightly increased
(Fig. 2). In contrast, for ¢ = 0.58 the response again changes
qualitatively, which implies a reentrant behavior; the melting
and re-formation of a solid glass state as the fraction of small
spheres is reduced.

A second size ratio, 6 = 0.38, was investigated also at two
total volume fractions ¢ = 0.595 and 0.615 and different relative
volume fractions of small particles xs (Fig. 4). Starting from the
one-component systems and increasing the amount of the
second component, the storage modulus G’ decreases in the
linear viscoelastic regime indicating a softening of the glass,
similar to the findings with ¢ = 0.20 (Fig. 2). However, in the
case of 6 = 0.38, the minimum of G’ is located at xg = 0.5 for

10° 10" 10° 10°
Yy /%

Fig. 4 Storage, G/, (full symbols) and loss, G”, (open symbols) moduli as a
function of strain amplitude y obtained in DSS measurements. The size ratio 6 =
0.38, (a) the total volume fraction ¢ = 0.615 and the relative volume fraction of
small particles xs = 0.0 (=), 0.08 (), 0.25 (%), 0.5 (<)), 1.0 (C)) and (b) ¢ = 0.595 and
xs = 0.0 (), 0.25 (¢), 0.5 (<), 0.75 (©) and 1.0 (). The frequency w = 1 rad s~ .
Circles indicate the yield points and the red solid line indicates their xs-
dependence.
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both ¢. Note that in terms of the relative number of small
spheres &5 = np/(ng + ny) = x5[0° + x5(1 — 6°)] ', where ng and ng,
are the number densities of small and large spheres, respec-
tively, the minimum of G’ is found for both size ratios at values
of £5 > 0.85. Furthermore, the minimum in the xs-dependence is
much weaker for the yield stress ¢, and absent for the yield
strain v, (Fig. 4). Thus, no melting of the glass is observed for
0 = 0.38.

Having studied the rheological response as a function of the
relative volume fraction of small spheres xs, we now turn to the
dependence on the total volume fraction ¢ for constant x5 =
0.65 (6 = 0.19) and 0.5 (6 = 0.38) (Fig. 5). With decreasing ¢, the
storage modulus G’ decreases in the linear regime and
approaches the loss modulus G’ (Fig. 5a,b and e). Thus, with
decreasing ¢, the solid-like response becomes weaker. This is
particularly pronounced for ¢ = 0.19, which shows a fluid-like
response for ¢ = 0.55, that is G’ > G’ in the linear viscoelastic
regime (Fig. 5a and e). The yield point, i.e. the yield strain vy, and
stress oy, decreases with decreasing ¢ for both values of ¢ and,
for 6 = 0.19 it disappears at ¢ = 0.55, i.e. the sample becomes
a fluid (Fig. 5¢ and d). This is consistent with the response of
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one-component systems, whose yield strain v, also decreases
with decreasing ¢ until a transition to a fluid occurs.***">

The decrease in v, is attributed to the fact that, upon
decreasing ¢, the cages become larger and looser and thus
increasingly smaller distortions of the cages are sufficient to
allow the particles to escape through Brownian motion. Finally,
in the fluid phase (¢ = 0.55), particles can leave the cage even
in the absence of shear. The sample with § = 0.19, x5 = 0.65 and
¢ = 0.57 shows a dependence of G' and G’ on the strain
amplitude vy similar to that of the sample with § = 0.20, x5 = 0.3
and ¢ = 0.61 (Fig. 3), which again suggests the presence of two
yielding points. Note that this sample is a dense, slowly relaxing
fluid and not a glass, according to the frequency dependence of
the linear viscoelastic moduli (data not shown). Nevertheless,
the similarity of the response of the two samples suggests that a
glass state similar to that of 6 = 0.20, xs = 0.3 and ¢ = 0.61, i.e.
characterized by a double yielding process and caging on two
length scales, might be obtained at ¢ slightly larger than 0.57
for xs = 0.65. This is in agreement with MCT predictions, where
a transition from a glass characterized by caging on one length
scale (that of the small spheres) at high ¢, to a glass charac-
terized by caging on two length scales at lower ¢, and successive
melting of this glass with further decreasing ¢, is expected at
comparable, constant xg.'”*°

The results of the DSS measurements show a slight depen-
dence on frequency (Fig. 6). In the linear viscoelastic regime, the
storage modulus G’ increases with increasing frequency w, in
agreement with the results of our Dynamic Frequency Sweep
(DFS) measurements (Fig. 1) and as discussed in more detail
elsewhere.* With increasing frequency w, the probed times
decrease and are progressively shorter than the structural
relaxation time. This leads to an increasingly more elastic
response. Also the yield strain vy, and stress g, increase with
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6 = 0.20, total volume fraction (top) ¢ = 0.61 and (bottom) 0.58, relative volume
fraction of small spheres xs = 0.9, and frequencies w = 1 rad s~ (¢), 5 rad s (<)
and 10 rad s~ (©). (right) 6 = 0.38, (top) ¢ = 0.615 and (bottom) 0.595, xs = 0.5,
w=0.1rads ' (v),1rads ' (¢)and 10 rad s~ (O).
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sponding yield stress gy, as a function of the relative volume fraction of small
particles xs for samples with size ratio ¢ = 0.20 and total volume fraction ¢ = 0.61
(m) and ¢ = 0.58 (@) and Pe,, = 555 107", and 6 = 0.38, ¢ = 0.615 (C) and ¢ =
0.595 (0) and w = 1 rad s.”" (b) also contains results for Pe,, = 2.75 10~ (x) and
Pe,, = 5.55 1072 (+) for the sample with xs = 0.9 and ¢ = 0.61. (d) Height of the
maxima of the pair distribution function g(r), gmax, corresponding to r = 2R, (@),
r=2(R_+Rs) (#) and r = 2(R_ + 2Rs) (k) and (e) localisation length L extracted from
the plateaus of mean squared displacements as a function of xs, for samples with
6 =0.2 and ¢ = 0.61.4%4" Error bars are smaller than the symbols in all plots.

increasing Pe,, (Fig. 7b and c). This is similar to the behavior of
one-component colloidal glasses*******” and can be understood
as follows. Shear-induced cage deformation facilitates the
escape of particles from their cage through Brownian motion,
which results in yielding.** In oscillatory shear, the maximum
cage deformation is achieved at the largest excursion. In the
vicinity of this point a particle is most likely to escape from
the cage by Brownian motion. With increasing frequency, the
particles spend less time at the maximum (but more frequently)
and are therefore less likely to escape because the escape
probability depends rather on the balance between the resi-
dence time at the maximum and the Brownian time than on the
attempt rate.***>*® The reduced escape probability must be
compensated by a larger cage deformation. Thus, with
increasing frequency w, a larger strain and stress will be
required, and hence stored, before the cage breaks.

Our findings are summarized in Fig. 7. For a given total
volume fraction ¢, adding a second component to the one-
component systems results in a weaker elastic response. For 6 =
0.20, the glass softens particularly strongly and, if the sample is
sufficiently close to the glass transition (here ¢ = 0.58), even
melts and shows a fluid-like response. This reduction in G is
not symmetric with respect to the one-component systems, but
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is more pronounced for glasses mainly consisting of large
spheres to which a small fraction of small spheres has been
added. This is evident when comparing, for example, G’ for
samples with xg = 0.1 and 0.9. This asymmetry might, however,
be due to the choice of the control parameter, here the relative
volume fraction of small particles xs. Instead, one could use the
relative number of small spheres, £s. Hence xs = 0.1 corre-
sponds to £5 = 0.93 while x5 = 0.9 implies a relative number of
large spheres of only £;, = 8.9 x 10~ *. This might explain why for
xs = 0.9 the cage of small spheres is not significantly affected by
the small number of large spheres. In contrast, for xg = 0.1 a
large number of small spheres has to be accommodated by the
large spheres, which is likely to induce a significant cage
deformation and to result in a significant softening.

This is supported by confocal microscopy measurements of
the structure and dynamics of the large spheres,**** which are
summarized in Fig. 7d and e. Already at xg = 0.1, the pair
distribution function g(r) does not only show a peak at r = 2Ry,
but also a shoulder at 7 = 2 (Ry, + Rg) indicating that the cage of
large spheres is deformed and that a significant fraction of large
particles is separated by small particles. This cage deformation
leads to a slight increase in the particle localisation length
extracted from the plateau of mean-squared displacements, but
the dynamics of the system is still arrested.*>*' The reduced
localisation is thought to be responsible for the strong decrease
in yield strain. Rearrangement of the cage of large spheres
becomes even more pronounced as xgs is increased to 0.3 and
0.5, as demonstrated by the increasingly larger reduction of the
peak at r = 2Ry, and the corresponding increase at 7 = 2 (Ry, + Rs)
as well as the appearance of additional peaks at distances r = 2
(Ry, + nRg), with n an integer number. For these xg, the dynamics
show diffusion at ¢ = 0.58 and sub-diffusion at ¢ = 0.61 with a
decreasing localization length suggesting that large particles
start to be localized more tightly by small spheres.*>** During
this process of cage rearrangement, for ¢ = 0.58 the elasticity
decreases and the yield strain vy, disappears due to the melting
of the glass, while at ¢ = 0.61 both G’ and v, start to increase
again significantly above xg = 0.3 possibly due to the emergent
caging and localisation of large spheres by small spheres. For
xs > 0.5 the localisation in cages of small spheres, ie. the
transition to a different glass state, is accomplished: large
particles represent a dilute phase in a dense matrix of small
spheres and are localised on distances which are about a factor
6 = 0.2 smaller than at xs = 0 and their dynamics are again
arrested."®** The tighter localisation and dynamical arrest
induce an increased G’ and v, toward the values of the one-
component glass of small spheres. A pronounced effect of size
and mixing ratios on the structure and dynamics of the glass
was also reported for 2D colloidal glass formers.*”** In partic-
ular, changes in the relative content of the small component
and the size ratio have been reported to have pronounced
effects on the dynamics.*®*

For § = 0.38, the softening is less pronounced and no
melting is observed. Moreover, the dependence of G’ on xg is
more symmetrical with respect to the one-component systems.
The smaller effect is attributed to the fact that the small parti-
cles have a reduced ability to occupy the interstitial space
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between the large particles at this size ratio. The critical value d.
at which the small spheres cannot fill the space in between two
large ones in a dense packing of large spheres can be estimated:
in a group of 9 spheres arranged as in a body-centred cubic
lattice and in contact with each other, the centers of two spheres
along a face diagonal are separated by 2v/2R, and a small
sphere can fill the space left in between the large spheres if
Rs= (/2 —1)R.~0.41Ry, i.e. 6 = 6. = 0.41, which is compa-
rable to 6 = 0.38. Although in the glass states considered here,
ordered configurations are not expected, the size of the void
space might be similar. Thus the cage itself, i.e. the first
neighbour shell, is not expected to be rearranged significantly
and the softening hence appears to be caused by the heteroge-
neity of the cage on an intermediate length scale rather than a
more efficient packing. The weaker cage deformation induced
by the smaller packing ability at 6 = 0.38 can also explain the
weaker reduction of the yield strain and stress observed at
intermediate mixing ratios for this .

Instead of the relative volume, xg, or number, &g, fraction of
small particles, we now consider the distance to the two limiting
volume fractions of the glass state, corresponding to the glass
transition and random close packing. Mode Coupling Theory
(MCT) predicts'” that in mixtures the glass transition is shifted
to higher total volume fractions. For example, for the size ratio ¢
= 0.38 the maximum volume fraction for the glass transition is
expected at xg = 0.4, which is consistent with the occurrence of
maximum softening in our experiments. The shift of the glass
transition could be related to the addition of small particles
with their larger mobility. This might favour structural rear-
rangements of the large spheres through collective motions and
lead to a glass with a reduced elasticity, i.e. G'. In mixtures, MCT
predicts qualitative changes of the relative particle mobilities,
associated with different glass states.

In addition, the more efficient packing in mixtures results in
an increased total volume fraction at random close packing,
¢rcp. Theoretical predictions for ¢grcp are available for binary
mixtures of monodisperse hard spheres, with different size
ratios 6 and mixing ratios, i.e. x5.°>% Based on the predictions
for ¢rcp, we calculate the available free volume ¢gree = Prep — @
as a function of x5 and 6. (Predictions for 6 = 0.17 and 0.39 are
used for the experimental 6 = 0.20 and 0.38, respectively.) Note
that the predicted values of ¢rcp were shifted by the difference
between the value of ¢rcp in the monodisperse case (¢rcp =
0.64) and the experimental values of ¢rcp (Prcp = 0.68 for 6 =
0.2 and ¢gcp = 0.67 for 6 = 0.38, Section 2.2). With decreasing
free volume ¢gee, that is toward random close packing, the
storage modulus G is found to increase (Fig. 8). The depen-
dence of G’ on ¢y indicates a common behavior for all 6 and ¢
investigated and can be approximately described by a power-law
dependence G'(R*)/kT ~ (pfree) ¥, with p = 3. A similar power-
law dependence is observed for one-component hard-sphere
systems up to ¢gee = 0.1 (Fig. 8, dashed line).***75>%* At larger
values of ¢gee the one-component system shows a sharper
decay.

We now consider the dependence of the yield point on the
free volume ¢yree. The xg-dependence of the yield strain vy, and
stress oy is quite different for the two size ratios (Fig. 7b and c).
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In particular, both, v, and gy, show a much weaker dependence
on xs for 6 = 0.38 than ¢ = 0.2. This can also be linked to the free
volume available for structural rearrangements. The depen-
dence of vy, on ¢ (Fig. 8b) indicates that toward small free
volumes, the yield strain saturates at an approximately constant
value v, = 20%, which agrees with the yield strain observed in
one-component glasses.*>***>%* At smaller values of ¢y, Le.
very close to RCP, which are not reached here, in the one-
component systems the yield strain decreases (Fig. 8). In
contrast, toward large ¢ge. > 0.1 a strong decrease of v, is
observed (for samples with ¢ = 0.20 since only they reach large
enough ¢ge. due to their large ¢rcp). This decrease indicates
that if a sufficiently large free volume, i.e. a sufficiently loose
packing, is present, significant structural rearrangements can
be induced by small strains. The strong decrease of the yield
strain is observed for samples in which the small spheres
occupy the free space between the large spheres. The interca-
lation of small spheres in between large spheres possibly
induces a strong deformation of the cage. Similar effects have
been observed in mixtures of star polymers with significant size
disparity.®* This supports our previous finding that yielding is
not only facilitated by the increase of free volume but also by
structural heterogeneities leading to cage deformation. Inter-
estingly, the strong decrease in the yield strain vy, for ¢gee > 0.1
is not observed in one-component systems,***”** since in this
regime the glass is melted. This is also consistent with G’
sharply decreasing for ¢¢.. = 0.1 for the one-component system
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(Fig. 8a, dashed line). We speculate that in the glass state
G (R*)/kgT ~ (¢gee) ¥ with p = 3 for one and two-component
systems. The slight shift between our system (red line) and the
previous one-component data (dashed line) might be due to
different interactions mediated by different solvents.>® These
findings show that at large values of ¢g.e, a glass can still be
formed in the mixture (possibly due to attractions) while a
dense fluid is observed in one-component systems.

4 Conclusions

The linear and non-linear response to oscillatory shear has been
studied in concentrated binary hard-sphere mixtures with large
size disparities, 6 = 0.20 and 0.38. In the linear regime, the
response of mixtures is softer than that of the corresponding
one-component systems at the same total volume fraction ¢, as
demonstrated by the smaller normalised storage modulus G'.
The softening is associated with a shift of random close packing
to larger total volume fractions, and thus a larger free volume
fraction ¢gee, which results from the more efficient packing in
two-component systems.® Pronounced softening occurs for the
size ratio ¢ = 0.20 and for samples containing a majority of large
spheres (xs < 0.5). This indicates that softening is not only a
result of an increased free volume ¢ge. but also of cage distor-
tions due to small particles filling the space between the large
spheres. In contrast, in the samples with a smaller size disparity
(6 = 0.38) and a majority of small spheres (xs = 0.5), we can
speculate that on average the cage structure should be poorly
affected due to the reduced ability of the small component to fill
space in between the large spheres, and heterogeneities are thus
only introduced beyond the first neighbour shell, which results
in a weaker softening of the glass.

In the non-linear regime, the more efficient packing in the
mixtures affects the yielding behaviour. When the free volume
¢rree 1s Only slightly increased, yielding is characterised by a one-
step cage break-up, as in one-component systems. With
increasing free volume, yielding occurs at smaller deforma-
tions. Interestingly, at large values of the free volume, the
presence of a small but finite yield strain indicates the persis-
tence of a weak solid-like state in the mixtures, while at
comparable free volume a one-component system melts. This
occurs in systems where the small spheres can occupy the space
in between the large spheres, which suggests that the interca-
lation of small spheres induces a strong deformation and
loosening of the cage structure and thus contributes to the
reduction of the yield strain. Moreover, the yielding behaviour
could be affected by a possible transition between different
glass states, in particular if it is associated with the mobility of
the small spheres, which could facilitate yielding through
collective motions. In addition to the one-step yielding behav-
iour, we also found indications of a more complex two-step
yielding behavior for a sample with x5 = 0.3, ¢ = 0.61. The two
steps could be linked to the two different length scales present
in these samples, representing caging of small and large
spheres, respectively. While two length scales are present in all
mixtures, in most samples one of the two dominates, rendering
the second yielding insignificant.
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Transient dynamics during stress overshoots in
binary colloidal glasses

T. Sentjabrskaja,® M. Hermes,” W. C. K. Poon, C. D. Estrada,® R. Castafieda-Priego,°
S. U. Egelhaaf® and M. Laurati*®

We investigate, using simultaneous rheology and confocal microscopy, the time-dependent stress
response and transient single-particle dynamics following a step change in shear rate in binary colloidal
glasses with large dynamical asymmetry and different mixing ratios. The transition from solid-like
response to flow is characterised by a stress overshoot, whose magnitude is linked to transient
superdiffusive dynamics as well as cage compression effects. These and the yield strain at which the
overshoot occurs vary with the mixing ratio, and hence the prevailing caging mechanism. The yielding
and stress storage are dominated by dynamics on different time and length scales, the short-time in-
cage dynamics and the long-time structural relaxation respectively. These time scales and their relation
to the characteristic time associated with the applied shear, namely the inverse shear rate, result in two
different and distinct regimes of the shear rate dependencies of the yield strain and the magnitude of the

www.rsc.org/softmatter stress overshoot.

1 Introduction

A wide range of technical applications is based on glassy
materials, including polymeric," metallic> and colloidal
systems.®> One-component dispersions of hard-sphere like
colloids have been intensively used as model systems to study
the glass transition.? In this system, the volume fraction ¢ is the
only control parameter. The glass state is driven by crowding:
for ¢ > 0.58 particles are permanently localised in cages formed
by their neighbours, which they can only escape through acti-
vated processes.* Colloidal glasses melt and flow under appli-
cation of shear.** Shear-induced melting is associated with an
irreversible deformation of the cage®* and the onset of diffusive
dynamics.® It occurs via a transient regime in which the system
yields. At yielding a stress overshoot is observed in the rheo-
logical response and reflects maximal cage distortion in the
structure and a transient super-diffusive regime in the
dynamics.>**

Many glassy materials used in applications are not one-
component systems, but composed of particles with different
sizes. This raises the question whether, and if so how, the shear-
induced melting process, in particular the transient macro-
scopic rheology and the microscopic structure and dynamics, is
affected by the presence of multiple components. The simplest
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multi-component model system is a binary mixture of colloidal
hard spheres. The phase behavior of binary colloidal hard
spheres has been studied in experiments,'**° simulations*>*
and theory.®° It depends on several parameters, namely the
total volume fraction, the size ratio and the mixing ratio of the
two components. Theory predicts that at small to moderate size
disparities the glass transition shifts to larger total volume
fractions, similar to the effect of polydispersity.>#**** This
implies that for constant total volume fraction, glass melting
can be induced by mixing. This is reflected in the acceleration of
the dynamics measured by light scattering® as well as the
strong reduction of the viscosity observed by rheology.** At large
enough size disparities multiple glass states are expected.*
They differ by the mechanism driving the arrest of the large
spheres, either caging or depletion-induced bonding, and the
dynamics of the small spheres, either dynamical arrest or
mobility.>*** Some of these states have been observed experi-
mentally’”™® and in molecular dynamics simulations.*

The yielding behaviour of binary glasses under oscillatory
shear was recently studied for size ratios ¢ = Ry/R;, = 0.38 and
0.2, with Rg and Ry, the radii of the small and large spheres
respectively. At constant total volume fraction ¢, a decrease of
the yield strain and stress is observed at intermediate mixing
ratios, and is particularly pronounced for the larger size
disparity. This effect has been associated with the variation in
the free volume due to changes in the volume fraction of
random close packing, which also becomes more pronounced
at larger size disparities.

Here, we extend this study to explore the response after
switch-on of a constant shear rate. In particular the link

This journal is © The Royal Society of Chemistry 2014
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between the macroscopic non-linear rheology and the transient
single-particle dynamics is investigated using confocal micros-
copy. A stress overshoot and super-diffusive transient dynamics
is found to characterise yielding, similar to the behaviour of
one-component systems.”**** However, in binary mixtures the
yield strain and magnitude of the overshoot depend in a
complex and different way on the shear rate and show a
dependence on the composition of the mixture. The composi-
tion determines the caging mechanism, localization length as
well as the short and long-time dynamics, including the degree
of super-diffusion.

The manuscript is structured as follows. Section 2 describes
the experimental systems and methods, namely simultaneous
rheology and confocal microscopy, as well as the simulations. In
Section 3 we first present the equilibrium structure and
dynamics of the large particles in the mixtures and a resume of
the linear viscoelastic properties of the binary mixtures. Then
we discuss the results of the non-linear rheology and the
dynamics under shear before offering some conclusions in
Section 4.

2 Methods
2.1 Rheology

Rheological measurements are performed using an ARES G2
strain controlled rheometer (TA instruments) with a cone-plate
geometry (diameter 20 mm, cone angle 2°, truncation gap 0.054
mm). A solvent trap minimizes solvent evaporation. Rheological
measurements on colloidal glasses can be affected by loading
effects, shear history and aging. Therefore, before each test a
renjuvenation procedure is performed in order to obtain a
reproducible initial state. First, after loading we perform a
dynamic strain sweep to estimate the yield strain vyciq of the
system. Oscillatory shear at strain amplitude v = 300% >> vyjeiq
is applied to induce flow and maintained until the viscoelastic
storage, G', and loss, G’', moduli reach a stationary state, typi-
cally after 200 s. Afterwards, oscillatory shear in the linear
viscoelastic regime (0.05% < vy < 0.1%, depending on sample) is
applied until G' and G” become stationary, typically for times
200 s < t < 700 s, depending on the sample. The state charac-
terised by the stationary values of G’ and G” thus represents the
initial reproducible state. The absence of wall slip is verified by
comparison with measurements obtained with roughened
geometries (data not shown).

2.2 Confocal microscopy under shear

Confocal microscopy measurements under shear are per-
formed with a confocal rheoscope, which is a combination of
an MCR301 WSP rheometer (Anton Paar) and a fast-scanning
VT-Eye confocal scanner (Visitech), mounted on a Nikon Ti-U
inverted microscope with a Nikon Plan Apo 60x objective (NA
= 1.40). Details of the setup can be found in previous work.**
We use a cone-plate geometry with diameter 50 mm, cone
angle 1° and truncation gap 0.10 mm. To minimise wall-slip
the cone is sandblasted, while the bottom plate, consisting of a
thin glass plate, is coated with PMMA particles of size

This journal is © The Royal Society of Chemistry 2014
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0.885 um and 0.174 pm.*® A solvent trap is used to reduce
solvent evaporation. Images of the samples (512 x 512 pixels,
corresponding to about 48 um x 48 pm for samples with 0.3 <
X5 < 0.9, 51 pum X 51 um for x;, = 0.0, and 53 um x 53 um for
xs = 0.1) are acquired at a depth of 30 um from the bottom
plate and at a distance of about 6 mm from the center. Time
series of 2D images are taken at a rate of 31 or 67 frames per
second, depending on the sample. Particle coordinates and
trajectories are extracted from the pictures using previously-
explained routines.*

2.3 Samples

We use suspensions of polymethylmethacrylate (PMMA)
colloids, sterically stabilized with polyhydroxystearic acid (PHS)
and dispersed in a solvent mixture of cis-decalin and cycloheptyl
bromide (CHB). The solvent mixture matches the density and
almost the refractive index of the particles. The charge that the
particles acquire in the CHB/decalin solvent is screened by
adding 4 mM tetrabutylammoniumchloride (TBAC).*” Under
these conditions the interactions in the system are hard-sphere-
like.*® For the most sensitive rheological measurements we use
particles with radii R{"*° = 0.304 um and R,"° = 0.063 um, and
polydispersities of approximately 10% and 15%, respectively.
The size ratio of the mixture is 6""°° = 0.207. The high energy
density of these small particles leads to a strong rheological
signal. The sample set corresponding to these particles is
referred to as RH in the following. For measurements on the
confocal rheoscope, a mixture of PMMA particles with radii
R = 0.885 um (6% polydispersity) and R = 0.174 um (15%
polydispersity) is prepared resulting in 6™ = 0.197. The large
spheres with radius R™€ are fluorescently labelled with nitro-
benzoxadiazole (NBD) and can be observed with the confocal
microscope using a solid state laser with wavelength A = 488
nm. This sample set is referred to as CO in the following. The
particle radii and polydispersities are determined by static and
dynamic light scattering with an uncertainty in the radius of
about 2%.

The volume fraction of the sediment of the large spheres is
determined by imaging the sample by confocal microscopy and
using the Voronoi construction to estimate the mean Voronoi
volume per particle. The procedure of determining the volume
fraction is described in detail in** and leads to the estimate
#7" =~ 0.68. A one-component sample with ¢ = 0.61 is
prepared by diluting the sediment. This sample is used as a
reference. The volume fractions of the samples containing the
small particles are adjusted in order to obtain comparable
linear viscoelastic moduli in units of the energy density 3kg7/
4mR?, where kg is the Boltzmann constant, T the temperature
and R the particles' radius, while multiplying the frequency by
the free-diffusion Brownian time 7, = 6mnR’/ksT, where 7 =
2.2 mPa s is the solvent viscosity. In this way we obtain samples
with comparable dynamics, according to the generalised
Stokes-Einstein relation.** Samples with constant total volume
fraction ¢ = 0.61 and different compositions, namely fractions
of small particles x; = ¢s/¢, where ¢ is the volume fraction of
small particles, are prepared by mixing the stock solutions.

Soft Matter, 2014, 10, 6546-6555 | 6547
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2.4 Simulations

Event-driven molecular dynamics simulations are performed to
investigate the dynamics of binary hard spheres with the same
size ratio 6 = 0.2 as in the experiments. To render simulations
with this size disparity feasible, we applied the double-cell
scheme,* which uses a combination of large cells with a size
just above 2R;, and small cells with a size just above 2R,. This
allows us to compute long enough sequences of particle
configurations. Due to the nature of the hard-sphere potential,
the system is conservative and additionally the temperature is
constant. Thus, its evolution can be determined by calculating a
sequence of elastic collisions; the particles move in a straight
line before any collision. Given the positions, 7;, and velocities,
V;, of each pair (i, j) of particles at time ¢, the collision time At is
determined by the physical solution (real and positive) of the
quadratic equation F;/*(¢ + At) = [Fy(t) + Vi (t)Ae]* = [(2R; + 2R))/2]".
The set of collision times of each particle is stored in an ordered
list to monitor its trajectory with a nonuniform time step
sequence. In each collision, the change in the velocities of the
colliding particles is obtained by the energy and momentum
conservation laws as AV; = —2my;(Vy;-7;)7;/(m; +m;). Hence,
the next collision can be predicted. Thus, the simulations
provide particle trajectories, based on which the mean squared
displacement can be determined, as well as, e.g., the mean free
path 7, and the mean time between collisions, 75", With
increasing volume fraction, 75" approaches zero and thus the
rate of collisions quickly grows. With our computing resources
we can investigate volume fractions ¢ = 0.58, i.e. below the
experimental volume fraction. Experiments with ¢ = 0.61
(Fig. 2) and ¢ = 0.58 (ref. 40) indicate that the qualitative vari-
ations of the dynamics, quantified by the mean squared
displacements, as a function of mixing ratio are comparable for
the two volume fractions. We thus compare our experimental
findings to simulation results for ¢ = 0.58. The simulations
cover 0.1 = x;, = 0.7 and the one-component limits x; = 0.0 and
1.0. The numbers of large particles are 125 (x; = 0.7), 250 (xs =
0.5), 500 (other x;) and according numbers of small particles.
The large and small spheres have the same mass density and
the two populations are monodisperse. The simulations start
with random particle configurations. At least 10 different runs
are averaged for each x; to reduce statistical uncertainties.

3 Results and discussion
3.1 Quiescent structure

Binary mixtures with a size ratio ¢ = 0.2, a total volume fraction
¢ = 0.61 and different compositions 0 = x; = 1 are investigated.
The pair distribution functions g{(r) of the large particles in the
quiescent state were determined by confocal microscopy
(Fig. 1). They indicate an amorphous structure for all xs. Similar
data were reported and discussed in detail in ref. 19. We thus
only recall the main findings. The one-component glass of large
spheres shows a fluid-like structure typical of a colloidal glass; a
main peak corresponding to the first shell of nearest neigh-
bours at distance r = 2R;, (the caging particles) and additional
peaks indicating the successive shells of nearest neighbours.

6548 | Soft Matter, 2014, 10, 65466555
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Fig. 1 Pair distribution function g(r) of large particles R™™ in mixtures
with ¢ = 0.61, 6 = 0.2 and different compositions xs = 0.0 (%), 0.1 («),
0.3 (m), 0.5 (»), 0.7 (@), 0.9 (4). Data for xs > O are shifted vertically.
Dashed lines indicate particle—particle distances r = 2(R_. + Rs) and r =
2(R. + 2R¢), corresponding to configurations in which two large
particles are separated by one or two small particles, respectively.

Upon addition of small spheres, additional particle configura-
tions appear due to the intercalation of small spheres between
large spheres. While a small shoulder at r = 2Ry, + 2R, is already
visible for x; = 0.1, peaks at this distance and also at r = 2Ry, +
4R, are observed for x; = 0.3, which correspond to configura-
tions in which two large particles are separated by one or two
small particles, respectively (Fig. 1, dashed lines). This indicates
a loosening of the cage of large particles with increasing x;,
which leads to a transition in caging at x; = 0.5, as indicated by
the disappearing first peak at r = 2R;, and the pronounced peak
at r = 2R, + 2R,. Hence, at x; = 0.5 the large spheres are prev-
alently caged by small spheres. Upon further increasing x, the
large particles, still caged by small particles, become increas-
ingly more dilute. Particle configurations in which small parti-
cles intercalate between large particles were not observed in
mixtures with larger § = 0.67,*" in agreement with geometrical
arguments® predicting a limiting value 6 = 0.41.

3.2 Quiescent dynamics

The mean squared displacement (MSD) of the large particles in
one direction is:

82() = (e + to) — yto)) )i, » (1)

where t is the delay time, ¢, a selected time along the trajectory
of particle i and ( );,, indicates the average over all particles 7 in
the field of view and all times ¢,. It is determined from time
series of 3D stacks in the quiescent state before applying shear
(Fig. 2). For x; = 0.0 and 0.1 the MSDs are flat, indicating
localisation of particles in cages and absence of long-time
diffusion within the measurement window. The localisation
length L = /0y?(t1), with ¢; the shortest delay time measured,
corresponds to that expected for a cage of large particles. For
xs = 0.3 the large-particle dynamics become diffusive at long
times. Similarly, for x; = 0.5 mobility is observed at long times

This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Quiescent mean squared displacement in one direction dy? of
large particles RM™ in mixtures with ¢ = 0.61, 6 = 0.2 and different
compositions xs = 0.0 (), 0.1 («), 0.3 (m), 0.5 (»), 0.7 (@), 0.9 (#). The
delay time t is normalised by the composition-averaged short-time
Brownian time (z°"°™). (Inset) The x,-dependence of the localisation
length L = 1/8%(¢;) in units of RT™ (left y-axis) and R (right y-axis),
where t; is the shortest delay time measured.

even though no diffusive regime is visible within the experi-
mental time window. In addition, the localisation length L is
reduced, indicating the presence of small particles around the
large particles, hindering their motions. This is consistent with
the pair distribution function of the large particles (Fig. 1),
which shows an increasingly more pronounced shoulder at a
distance corresponding to the sum of a large and small
particle.***® For larger fractions of small particles, xs > 0.5, the
long-time dynamics again slow down and particles continue to
become increasingly localised in the cage of small particles. This
transition in caging and the faster dynamics at intermediate
compositions have been observed previously for the same 4.*
However, the acceleration of the dynamics in the present
mixtures is much more pronounced than at larger 4.'¢>%33%%
This could result from the melting of the cage of large spheres,
which accompanies the glass-glass transition observed at x; =
0.5 in our system. This appears to affect the particle dynamics
more than the smaller cage polydispersity in mixtures of particles
with more comparable sizes. Furthermore, the dependence of the
MSD on x, can be related to the available free volume in the
mixtures, which can be estimated on the basis of the x; depen-
dence of the volume fraction of random close packing, ¢rcp.*>*

The intrinsic time scales of the samples can be obtained
from the corresponding short- and long-time diffusion coeffi-
cients. The short-time Brownian time of the small particles,
short — R 2/pshot with the short-time diffusion coefficient
DR = D, .. Tt is related to the free (dilute) diffusion coefficient
Dy s = kgT/6TnR, by the ¢-dependent factor f. In a one-compo-
nent system, f can be estimated by extrapolating the data in
Fig. 8 of ref. 44 to ¢ = 0.61, yielding f = 1/32. Similarly, the
short-time Brownian time of the large particles, """ = z£°"/§°,
can be determined. For binary mixtures, the composition-
averaged short-time Brownian time in the dilute limit is
{rf)h"“) = 6mn(R*)/ksT and at a volume fraction ¢ we obtain
(TPt = (5ot I, where (R®) = RP/[1 — x(1 — 1/6%)] is the
number-averaged cube of the radius.

This journal is © The Royal Society of Chemistry 2014
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We studied the long-time dynamics using event-driven
molecular dynamics simulations of binary mixtures of hard-
spheres® with the same size ratio 6 = 0.2, but a reduced total
volume fraction ¢ = 0.58 to keep the simulation times reason-
able (Section 2.4). Although the simulations do not consider a
solvent and thus do not include Brownian motion at short
times, an effective short-time diffusion coefficient DS can be
determined; D? = 1,>/75"° with the mean free path I, and mean
free time 75" %5 With this rescaling the ratio D} is equivalent
to that obtained in a system with Brownian dynamics; Dy =
plong/pshort - wwith pShort the short-time Brownian diffusion
coefficient.*” The same equivalence applies to the ratio of the
long time relaxation time J long and the mean free time Fho™,
Then Dy for the small (and, similarly, the large) spheres can be
extracted from the MSDs rescaled by I,> with times rescaled by
F5hort To simplify the comparison with experiments, in what
follows we will indicate the ratio 71°"8/75°™ using the equiv-
alent ratio of the Brownian relaxation times t.°"¢/t5"°™, From Dy,
the normalised long-time structural relaxation time of the small
spheres, 7.°°8/78"°™ — 1/D}, and, similarly, of the large spheres,
708/78hott — 1/(5°D;), can be calculated (Fig. 3).

The structural relaxation time of the small spheres, 72",
monotonously increases with xg indicating the progressive
arrest of the small spheres. However, the structural relaxation
time of the large spheres, 71°n% - exhibits an intermediate
minimum (x; = 0.1) consistent with the melting of the one-
component glasses as a second species is added. While the
addition of small spheres to the glass of large spheres melts the
glass, the addition of large spheres not only melts the glass of
small spheres, but also induces obstacles.*® This leads to the
asymmetric dependence of 7:°"¢ on x,. We expect the minimum
to be more pronounced for the higher ¢ = 0.61 of the experi-
ments, since the large and small spheres are deeper in the
glassy state at x; < 0.3 and x5 = 0.7 than at ¢ = 0.58. Previous
experimental work on binary mixtures with the same size ratio

and comparable x; = 0.7 indicates glass states for ¢ > 0.57 and

_<g>’4 1] = o large L
e 10 o 0O small

100 L T T T T T T "

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3 Long-time structural relaxation times of large, °"9 (0), and
small, °"9 (), spheres as a function of composition xs, obtained from
MD simulations of binary hard sphere mixtures with size ratio 6 = 0.2
and total volume fraction ¢ = 0.58. The relaxation times are normal-
ised by the mean free time of the small spheres 12"°". The dashed and
solid lines indicate the number-averaged, (z*°"9), and dominant, 7°"9,

structural relaxation times, respectively.
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fluid states for ¢ = 0.57.*° In addition, the number-averaged
long-time structural relaxation time at a volume fraction ¢ =
0.58 can be calculated according to (7'°"8) = [(1 — x,)6°7}°™8 +
x0"8)/[(1 — x4)6° + x ] (Fig. 3, dashed line). This exhibits a
minimum at x; = 0.3. The minimum is shifted with respect to
the minimum of 71”8 (x, = 0.1) due to the increasing weight of
the smaller 7°"8. As mentioned above, a transition in caging is
expected at x; = 0.5 with caging by large and small spheres at
small and large x,, respectively.>® Thus, the systems are expected
to be dominated by 772 and 7°"8 for x, < 0.5 and x; = 0.5,

respectively, which we denote by 7°"8 (Fig. 3, solid line).

3.3 Linear viscoelasticity

The storage modulus, G/, as a function of composition x; is
extracted from the linear viscoelastic regime of dynamic strain
sweeps (0.5% <y < 1%, depending on sample), Fig. 4. Values of G’
are determined for an oscillatory Péclet number Pe,, = 1.2 with
Pe,, = w(t"")
reported in units of the composition-averaged energy density,
ksT/(R®), to remove the trivial dependence on the particle size.
The large values of G’ at x; = 0.0 and 1.0 are consistent with their
one-component glass states. By adding a second species, G’
decreases, indicating glass softening with the results for both
sample sets, RH (radii 0.304 pm, 0.063 pm) and CO (radii
0.885 um, 0.174 pm) being comparable. The glass softening is

, where w is the oscillation frequency. They are

thought to result from the transition in caging and the faster
long-time dynamics at intermediate compositions (Fig. 2).** It is
particularly pronounced for 0.1 < x; < 0.5, i.e. upon adding small
particles to large particles. This reflects the asymmetry observed
in the dynamics. The dependence of G' on x; hence appears
related to changes in the microscopic dynamics.

19,20

3.4 Non-linear stress response

In a step rate experiment, a constant shear rate v is applied to
the initially quiescent sample and the evolution of the stress o
as a function of time ¢ or, equivalently, strain vy = ¥t is
measured. The dependence of the measured stress on strain is
presented in Fig. 5 for binary mixtures with size ratio 6 = 0.2,
total volume fraction ¢ = 0.61 and different compositions x4 as

10% g
[ ]
o .t
A C
‘@ 10°¢
.V { ]
(O] ]
0 . - -
"5 01 03 05 07 09 1
X

Fig.4 Storage modulus G'/(ksT/(R*) in the linear viscoelastic regime,
extracted from dynamic strain sweep measurements at oscillatory
Péclet numbers Pe,, = 1.2 for two sample sets with ¢ = 0.61, 6 = 0.2: (@)
CO (larger spheres, also used for microscopy) and (@) RH (smaller
spheres, only used for rheology).
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(as indicated) and Péclet numbers Pe; = 0.03, 0.24, 0.64, 1.20, 2.40
and 4.70 (bottom to top).

well as different shear rates 7 or Péclet numbers Pe, = 7(""™).
For these values of Pe; and ¢, homogeneous flow, i.e. laminar
flow in the absence of shear banding, is expected for one
component systems.**” In order to compare different mixing
ratios, the stress ¢ is scaled by the composition-averaged energy
density. For all x; and Pe,, at small strains vy the stress increases
almost linearly and reaches a maximum or overshoot, opcai, at a
strain 7ypeax. Subsequently the stress decreases to a constant
value, ogeady, which is the steady state value of the stress when
the system flows. The noise in the measurements is seen to
decrease with increasing x, as a result of the increasingly larger
energy density of the mixtures as the fraction of small spheres
increases. From the curves in Fig. 5 we extract the value of the
strain at the peak, vpear and the magnitude of the stress over-
Shoot Gpea/Tsieady — 1 to quantify the stress overshoot as a
function of x; and Pe,. For one-component hard-sphere glasses
(xs = 0 and 1) this stress response, in particular the stress
overshoot, has previously been observed and studied as a
function of Pe,.>**'>*® It has been associated with the maximal
cage distortion before the cage breaks.”** During cage distortion
stress is stored, and is only released when the deformation of
the cage is partially relaxed by out-of-cage motion, resulting in
the overshoot. Moreover, the overshoot is linked to super-
diffusive particle motion observed in experiments and simula-
tions, and predicted by mode coupling theory.****

The strain at the overshoot, ypeak, is associated with the yield
strain. It exhibits a dependence on composition x;, which is
comparable for all Pe; (Fig. 6a). The yield strain vpeax initially
decreases until it reaches a minimum at x; = 0.3 and then
increases again. This x; dependence reflects the x; dependence
of the number-averaged long-time structural relaxation time
('°"8) (Fig. 3), which is associated with the distance to the glass
transition. This suggests that the yield strain is larger for systems

This journal is © The Royal Society of Chemistry 2014
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Fig. 6 (a) Strain at the stress overshoot, ypeak, Which can be taken as

the yield strain, and (b) magnitude of the stress overshoot, gpcak/Fsteady
— 1, as a function of composition x for Péclet numbers Pe;, = 0.03 (%),
0.24 (¢), 0.64 (»), 1.20 (), 2.40 (<€) and 4.70 (e).

which are deeper in the glass state. It might also be related to
variations in the localisation length of the caging species.

In samples for which a broad range of Pe; values is explored,
namely x; = 0.5 and 0.7, two regimes in the Pe; dependence of
the yield strain ypeak are observed (Fig. 7a). The yield strain vpeax
remains approximately constant at ypeax = 10% for Pe;, < 1,in
agreement with MCT predictions for one-component glasses,*®
but increases for larger Pe, similar to experimental results on
one-component colloidal glasses of hard-sphere like parti-
cles.* This behaviour becomes clearer by rescaling the yield
strain ypear With a scaling factor Z'(x;) (Fig. 7, inset), which is the
average of the ypeq values obtained for the different Pe values at
a given composition x; (Fig. 6a). As expected, the scaling factor
Z'(x) (Fig. 8) follows the x; dependence of vpea and hence also
('°"8), similar to the data in Fig. 6a.

The behaviour in the two regimes can be understood by
considering the relevant time scales; the characteristic time
scale of shear, t4,car = 1/, and the inherent time scale of the
sample, namely the number-averaged short-time Brownian time
(1°"°™") (defined in Section 3.2). If Tgpear > (™), i.e. Pey < 1, the
shear-induced deformation is slow compared to the Brownian
dynamics. Therefore structural rearrangements and yielding
can occur once the shear-induced cage deformation is suffi-
ciently large to facilitate escape through Brownian motion. This
cage deformation is expected to be similar to the size of the cage
in a glass or dense fluid (Fig. 2, inset), consistent with the
observed vpeak = 10%. At larger shear rates v, when tghear <
(1°"°™) or equivalently Pe; > 1, the probability of cage escape
due to Brownian motion decreases. With increasing Pe;, the
particle displacements are increasingly dominated by the affine
motion imposed by shear while the contribution by (random)
Brownian motion decreases and thus particle collisions become
less probable. Therefore, before yielding occurs the cage is
deformed more, i.e. Ypear increases. The rescaled yield strain
Ypeak/Z' is found to increase linearly with Pe; for Pe; = 1
(Fig. 7a, inset). Thus Ypeak = Ytpeak = 0.1Pe; = 0.14(z*"°™) and
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Fig.7 (a) Strain at the stress overshoot, ypeak, and (b) magnitude of the
stress overshoot, gpeak/Tsteady — 1. @s a function of Péclet number Pe;
and (c) rescaled yield strain, ypeac/Z(xs), and (d) rescaled magnitude of
the stress overshoot, (0peak/Tsteaaqy — 1)/Y(s), as a function of rescaled
shear rate, X(xs)y, for compositions x; = 0.1 («), 0.3 (m), 0.5 (»), 0.7 (@),
0.9 (4), 1.0 (). The data in (c) and (d) are the same as in (a) and (b),
respectively. The inset to (a) shows the same data as in the main plot,
but superimposed along the ordinate using the scaling factor Z'(xs).
The line indicates a slope of 1. (See text for details on the rescaling.)

hence fpeax = 0.1(z*"™), Therefore, independent of 4 or,
equivalently, Pe,, yielding occurs after the same time, about
0.1(c*"°™), This suggests that for yielding to occur, at least a
shear-induced (affine) displacement of about 10% and a
minimum Brownian (random) displacement are required. The
minimum mean squared displacement dypeai” = 20"t pear =
2D%earg 1 (¢5h°™y < 0.2(R?), where the last relation provides an
upper boundary since the diffusion coefficient under shear,
D" (Section 3.5), is smaller than the one in the quiescent
state, which is implicitly contained in (z*"°™). The minimum
displacement hence is about the size of the cage. A more
quantitative comparison needs to consider the anisotropic
structure of the sheared cages.>*®
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Fig. 8 Composition dependence of the scaling factors of the shear
rate, X (solid line), of the strain at the stress overshoot, Y (dashed-
dotted line), and of the magnitude of the stress overshoot, Z' (dotted
line). The scaling factor X represents a characteristic time and is
normalized by the short-time Brownian time of the small spheres
2" (For details on the scaling factors see text.)

Two regimes are also observed for the shear rate dependence
of the magnitude of the stress overshoot, quantified by opeax/
Osteady — 1, for x; = 0.5 and 0.7 (Fig. 7b). At small Pe,, the
magnitude of the stress overshoot increases with increasing
Pe;, as already observed in experiments on thermosensitive
pNIPAM particles and as predicted by MCT for one-component
systems.*® It then reaches a maximum and decreases for large
Pe,;, similar to one-component glasses of hard-sphere like
PMMA particles.>*® The transition between the two regimes
occurs at transitional Péclet numbers which depend on xg, in
contrast to the dependence of vype. on Pe. In particular, the
Opeak/Tsteady — 1 dependence for x; = 0.5 (Fig. 7b, ») is shifted to
considerably larger values of Pe;, compared to dependencies
observed for other x,. That the transitional Péclet number
depends on xs implies that the time at which the transition
occurs does not scale with the composition-averaged short-time
Brownian time (z**™), which determines Pe;.

To determine the appropriate characteristic time of the
transition in opea/osieady — 1 @s a function of x,, the data in
Fig. 7b are rescaled as (0peak/Gsteady — 1)/Y(xs) versus X(xs)y,
where the scaling factors X(x;) and Y(x;) are chosen such that
the resulting curves superimpose (Fig. 7d), that is the curves are
shifted horizontally such that the transition occurs at X(x)y = 1
and vertically that the curves overlap. The scaling factor X(x;)
hence represents the characteristic time of the transition
between the increasing and the decreasing branches of opecai/
Osteady — 1 for the different x,. It exhibits a pronounced
minimum at x; = 0.5 (Fig. 8, solid line). The x; dependence is
thus qualitatively different from the monotonously decreasing
(z°"°™), However, the dependence appears similar to the one of
the dominant structural relaxation time in the quiescent state,
71°"¢ (Fig. 3, solid line), which is the relaxation time of the
relevant caging species, i.e. the large particles for x; =< 0.3 and
the small particles for x5 > 0.3.

Therefore, the transition between the two regimes depends
on the balance between tg,.,r and the dominant structural
relaxation time 7'°"¢, This indicates that the processes relevant
for stress transmission involve particle movements on length
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scales of out-of-cage diffusion. This is consistent with the fact
that in one-component systems the overshoot has been asso-
ciated with the yielding of the cage.”** The out-of-cage move-
ments are longer than those required for cage deformation,
which determine 7ypeak, and hence the timescale of out-of-cage
diffusion is not relevant for the transition between the two
regimes of the Péclet number dependence of Ypeak- This is
supported by the poor overlap of the v ,.a curves if scaled by the
same X(x;) used for scaling the stresses (Fig. 7¢). The overlap is
not significantly improved by also scaling vpeax by Z(xs) such
that all curves superimpose in the ordinate and on the right
branch of the curve with x; = 1.0 in the abscissa (Fig. 7¢).

The value of Y(x;) (Fig. 8) corresponds to the average value of
Opeak/Tsteady — 1 fOr a given x,. The magnitude of the overshoot,
Opeak/Tsteady — 1 (Fig. 6b) increases from x; = 0.1, attains a
maximum at x; = 0.3 and reaches a minimum at x; = 0.5.
Subsequently it stays about constant for large Pe; (2.40 to 4.70)
or increases to an also approximately constant value for small
Pe, (0.03 to 1.20). The difference between small and large Pe; is
related to the two regimes of the stress response discussed
above (Fig. 7a and b).

3.5 Dynamics under shear

We aim to link the effects observed in the rheological
measurements to the individual-particle dynamics under shear
determined by confocal microscopy. Confocal microscopy
allows us to image colloids during the step rate experiments and
hence to follow shear-induced changes in the dynamics of the
large particles, which are fluorescently labelled. Based on the
particle trajectories in the velocity-vorticity plane, (x{¢), y(t)),
transient mean squared displacements in the vorticity direc-
tion, dy?, are calculated for different waiting times t, after
application of shear:

0y(t, ty) = (vt + 1) — yi(tw))2>ia (2

where the average runs over all large particles i in the field of
view, but not the waiting time ¢, (eqn (1)). In the vorticity
(neutral) direction contributions of affine particle motions are
absent, and thus do not affect an investigation of the effects of
shear on the Brownian motion of the particles. The particle
dynamics can only reliably be determined using particle
tracking if the particles move less than about a tenth of their
radius between two successive frames. This limits the shear
rates v or Péclet numbers Pe, to 10> < Pe; < 1, which corre-
sponds to the regime where Brownian motion significantly
contributes to yielding and stress relaxation (Fig. 7a and b).
After shear is switched on, a steady-state develops. The cor-
responding MSDs in the steady-state are reported in Fig. 9 (thick
color lines), together with the MSDs in the quiescent state (thick
black lines). Compared to the quiescent state, the steady-state
MSDs exhibit stronger localization at short times, but also faster
long-time dynamics, namely a significantly increased long-time
diffusion coefficient D{*®¥, which increases with increasing Pe,
for all compositions x, (Fig. 10a). The increase in D;**¥ corre-
sponds to shear thinning and is in agreement with previous
studies on one-component glasses®*'***** and measurements
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Fig. 9 Mean squared displacement in the vorticity direction éy? for
different compositions x5 and Péclet numbers. (a) xs = 0.1, Pe;, = 0.24
(red), (b) xs = 0.3, Pe;, = 0.24 (red), 0.08 (blue), (c) xs = 0.5, Pe;, = 0.24
(red), 0.005 (blue), (d) xs = 0.7, Pe;, = 0.035, and (e) x; = 0.9, Pe;, = 0.28
(red), 0.028 (blue), 0.003 (violet). The black lines correspond to the
MSDs in the quiescent state, thick lines to the MSDs in the steady-state,
and thin lines to transient MSDs at waiting time t,, = 0 and, where
present, at longer t,,, increasing from bottom to top.

of a two-component glass with § = 0.2 and x; = 0.9.* For the
largest Pe, values, Di**¥ as a function of x, presents a weak
maximum, and hence the fastest shear-induced dynamics, at
xs = 0.3 (Fig. 10a). The same composition also exhibits the
fastest long-time dynamics of the large particles in the quies-
cent state (Fig. 2 and 3). In addition, this composition shows the
smallest ypear (Fig. 6a), which indicates a link between facili-
tated yielding, i.e. a smaller yield strain, and fast dynamics in
the steady-state, i.e. a larger diffusion coefficient. This is
consistent with the observation that yielding requires a
minimum mean squared displacement, which is reached
earlier for faster dynamics. For the group of data at smaller Pe,,
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Fig. 10 (a) Steady-state diffusion coefficient D{*?% of the large
spheres, (b) amount of superdiffusion Df**¥/Di — 1 of the large
spheres at waiting time t, = 0, and (c) magnitude of the cage
compression K = 6yshear2/6yrest2 — 1, as a function of x;. Different Pe,
values are indicated according to the color scale. The error bars
represent variations between repeated measurements with same x;
and Pe;.

D{**% glightly decreases for x, = 0.3, ie. the steady-state
dynamics slows down with increasing x;. This seems to be
consistent with the slow-down of the dynamics in the quiescent
state and corresponds to the increase of ypeac (Fig. 6a), in
agreement with the proposed link between yielding and
dynamics in the steady-state.

In addition to the steady-state, the transient state following
switch-on of shear is investigated (Fig. 9, thin color lines). At
short delay times the transient MSDs moderately increase,
associated with a slight expansion of the cage, but they remain
below the quiescent MSD indicating tighter localization. At long
delay times, and for all waiting times, we observe relatively fast
diffusion, already with the steady-state diffusion coefficient
D{**%, While D§'*** is reached already at the shortest waiting
time t,, it is reached at a relatively late delay time ¢, which
becomes increasingly shorter as t,, increases. The steady-state
MSDs are recovered after a waiting time ¢, which depends on
the mixing ratio x;, and has apparently no relation with tshear,
different from one-component systems.*™*

At intermediate delay times a super-linear increase of the
MSDs is observed which indicates superdiffusion. The time
range with superdiffusion progressively disappears as ¢,
increases, but also depends on Pe; and x;. The amount of
superdiffusion is quantified by D{***®/D;%T — 1 with D} the
apparent diffusion coefficient at maximum superdiffusion,
estimated from the minimum of dy*/¢ vs. ¢ (not shown). With
increasing x,, the amount of superdiffusion, D§**%/p{9iff _ 1
increases for (almost) constant, large Pe, (Pe; = 0.24 for x; =
0.1, 0.3, 0.5 and Pe; = 0.28 for x; = 0.9, Fig. 10b orange/red
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color). As expected, this does not reflect the dependence of the
stress overshoot, peax/Tseady — 1 (Fig. 6b), since the large
particles, whose dynamics is studied here, dominate the rheo-
logical response only for x; < 0.5 (Section 3.4). However, the
increase in D{**¥/D{Y _ 1 with x, might reflect the decrease of
the localisation length at rest (Fig. 2, inset). This suggests that a
tighter localisation at rest leads to a more abrupt and
pronounced transition to flow once shear sufficiently deforms
the cage to allow particles to escape. The increase of the degree
of super-diffusion with increasing x; seems to become more
pronounced with increasing Pe; (Fig. 10b). With increasing Pe;,
Dpiteady/psdift 1 jncreases for all x; and ¢, = 0 s (Fig. 10D,
different colors). The Pe dependence is similar to the one of
D% and the magnitude of the stress overshoot, Opeald/ Tsteady —
1 (Fig. 7b). This is consistent with the idea that ¢pea/Tsteady — 1
is related to the probability of particle collisions, which occur
more frequent as the dynamics becomes faster. Furthermore, it
suggests that a larger stored stress results in a more
pronounced super-diffusive response, in agreement with
similar findings for one-component systems."”

At short delay times (¢ < 1 s, range decreasing with
increasing t,,), the MSDs are dominated by caging (Fig. 9). At
these times, the transient MSDs under shear remain below the
quiescent state, although they slightly increase with waiting
time ¢, toward the steady-state. Thus, shear results in a stronger
localisation of the large particles in the vorticity direction. The
magnitude of cage compression in the vorticity direction is
quantified by K = 0Yshear /0rest — 1, WheTe 0Ygpear” aNd 0)rest” are
the value of the MSD under shear and at rest, respectively, at the
same time 0.015 s =< ¢ =< 0.030 s (Fig. 10c). The magnitude of the
cage compression, |K| decreases from x; = 0.1 to 0.3 and 0.5 to
0.9. Increasing x from 0.1 to 0.3, and from 0.5 to 0.9, the local-
ization length of the large spheres at rest decreases (Fig. 2a,
inset). This implies that the cage is tighter and a smaller free
volume is available for compressing the cage, accordingly |K]|
decreases. However, at x; = 0.5, the cage is strongly compressed
although the localisation length at xs = 0.5 is comparable to that
at x; = 0.3 in the quiescent state (Fig. 2, inset). Nevertheless, for
Xs = 0.5 the cage is composed of small spheres which might
easier rearrange under shear and closely pack around the large
spheres than large spheres can. This supports the suggestion that
a qualitative change in caging occurs at x; = 0.5.

Moreover, K closely resembles the stress overshoot, opcar/
Oseady — 1 (Fig. 6b), with both exhibiting only a limited
dependence on Pe, (within the limited range of Pe, investigated
by confocal microscopy). In particular, a large |K| corresponds
to a small opear/0steady — 1 and vice versa. This suggests that
stress is partially released through irreversible cage compres-
sion, resulting in a smaller stress overshoot. In contrast, if stress
can not sufficiently be released through cage compression, it is
stored in the system. This storage of stress requires particle
movements beyond the cage size and involves several particles.
These large movements are related to the long-time diffusion of
the cage particles. Hence the relevant timescale is the dominant
long-time structural relaxation time 7'°°¢, consistent with the
conclusions based on the xs dependence of opear/Tsteady — 1
(Section 3.4). This illustrates the importance of caging and the
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transition in caging. In contrast, yielding requires many parti-
cles to move, although each particle might only move on the
length scale of the cage. Moreover, the yield strain ypeai is a
relative, dimensionless quantity and hence insensitive to
whether the cage is formed by large or small spheres.

4 Conclusions

The addition of a second species to a one-component glass
results in the loosening of the cage. The transition between
caging by small and large particles, respectively, occurs at x; =
0.5."?° The degree of arrest is reflected in the dynamics at
rest,’®?° and, as shown here, also under shear. We have shown
that under both conditions, at rest and under shear, the
mobility is maximum at x; = 0.3 (Fig. 2 and 10a).

The change in caging also affects the shear-induced cage
compression in vorticity direction, with the strongest compres-
sion at xg = 0.5 (Fig. 10c). This is attributed to the high mobility of
the small particles at x; = 0.5 allowing them to realize their
higher packing ability in the mixtures. In addition to this partic-
ular behaviour, in general the cage compression decreases upon
addition of small spheres, which is attributed to an increasingly
tighter cage at rest that leaves space for small cage compressions
only (Fig. 2, inset). A tight localisation at rest results in an abrupt
and pronounced transition to flow once shear-induced cage
deformations allow particles to escape. This transition is charac-
terised by transient superdiffusion (Fig. 9 and 10b).

Yielding appears to require Brownian motion beyond a
minimum excursion. When this excursion is reached depends
on the composition-averaged dynamics of the samples and the
shear rate. Slow glassy dynamics thus results in larger yield
strains vypeak, which is found to increase linearly with the shear
rate as long as ¥ (t°"°™) > 1 (Fig. 7a, inset). For the Brownian
motion to be effective, an affine shear deformation with ypear =
10% seems necessary, which limits yielding at small shear rates.
We therefore suggest that different processes set a lower limit to
the yield strain ypeqx at small and large shear rates, respectively.

Since stress is released during cage compression, the
magnitude of the stress overshoot is inversely related to the
degree of compression and the overshoot linked to super-
diffusion. Storage of stress requires rearrangements and
particle movements which, in contrast to the processes during
yielding, extend significantly beyond the cage and thus occur on
the structural relaxation time 7'°"¢ of the caging species, that is
the large spheres for x; < 0.5 and the small spheres for x; = 0.5.

In future work, the macroscopic rheological behaviour and
the microscopic single-particle dynamics need to be related to
the evolution of the microscopic structure during the applica-
tion of shear, similar to the link established in one-component
glasses.’
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1 Introduction

The behavior of glasses under application of a mechanical de-
formation, like shear, is of great interest for many applications
in which glass-forming systems need to flow, e.g., to be able
to process them. One model system to study this behavior is
a colloidal suspension in the glass state. Colloidal glasses are
characterized by frozen-in dynamics resulting in a very slow
internal relaxation. External driving by application of a shear
field leads to a competition between slow internal relaxation
and the time scale imposed by shear. Therefore, for small de-
formations, i.e. in the linear viscoelastic regime, the rheolog-
ical properties of colloidal glasses are dominated by elasticity
and the glass behaves like a solid 1=3 On the other hand, if the
deformation becomes larger, for example due to an increase
of the deformation amplitude, viscosity starts to dominate and
eventually the system flows>*.

For continuous shear, an application of a constant strain rate
or a constant stress larger than the yield stress leads to a steady
flow. The transition from rest to steady flow is characterized
by transient phenomena. In particular, after applying a step
rate of deformation, an anisotropy of the microscopic struc-
ture develops with increasing the time elapsed after applica-
tion of shear. The cages become elongated and the maximum
cage deformation coincides with the occurrence of a stress
overshoot in the macroscopic rheology>-8. The breakdown of
the cage following cage deformation is associated with super-
diffusive dynamics>3.

The application of a constant stress also leads to the flu-
idization of the glassy system if the stress is larger than the
yield stress of the system>10. For stresses below the yield
stress, the system does not flow. Instead a creep regime,
characterized by a slow, sublinear increase of the deforma-
tion as a function of time, is observed. The study of the mi-
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croscopic single-particle dynamics during the application of a
constant stress indicates a linear relation between the macro-
scopic strain and the mean squared displacement, which has
no analogue in the strain-controlled case. This finding can be
related to the fact that under stress-control both the dynamics
and the strain are dominated by groups of highly mobile par-
ticles and their spatial distribution. The fusion of these highly
mobile regions eventually leads to flow '°.

The different relations between strain and microscopic dy-
namics observed for stress and strain-controlled analogue rhe-
ological processes indicate qualitative differences that have to
be explored in more detail. In this work we compare therefore
the rheological response to stress- and strain-controlled shear
of model colloidal glasses both with respect to the steady state
and transient regimes. We use binary mixtures with large dy-
namical asymmetry, where different caging mechanisms are
found ''~13. We study in this way also the influence of a differ-
ent glass state on the rheological response to applied strain rate
or stress. Moreover, glass softening as a function of mixing
ratio between small and large spheres was observed in these
systems: This phenomenon gives us the possibility to system-
atically study how much the response in strain and stress con-
trolled experiments differs, depending on how glassy or fluid
the system is by simply changing the relative amount of the
mixture components.

2 Materials and methods

Sample

Our samples are sterically stabilized polymethylmethacrylate
(PMMA) particles [Antl1986]. We used PMMA spheres
with different radii: R;; = 304 nm (polydispersity 0.10) and
Rs1 = 63 nm (polydispersity 0.15) resulting in size ratio 6 =
Rs1/Rr1 =0.207. In a second system we used R;» = 358 nm
(polydispersity 0.14) and Rg; = 137 nm (polydispersity 0.12)
resulting in 6 = 0.38. The radii and polydispersities were
determined by using static and dynamic light scattering with
very dilute samples at ¢ < 1073,




The particles with § = 0.207 are suspended in a cis-decalin
and cycloheptyl bromide (CHB) mixture which matches
the density and the refractive index of the particles. In
decalin/CHB solvent colloids acquire charge which was
screened by adding salt, namely 4 mM tetrabutylammonium-
chloride'*. The particles with § = 0.38 are suspended in a
mixture of octadecene and bromonaphtalene to minimize the
solvent evaporation. In both solvent mixtures the PMMA par-
ticles behave like hard-spheres.

The volume fraction of sediments, obtained by centrifuging
dilute suspensions, were roughly estimated to be ¢ = 0.67 —
0.68 depending on the size and corresponding polydispersity.
One-component colloids stock solutions with ¢ = 0.61 were
obtained by subsequently diluting sediments until the linear
viscoelastic moduli (after subtracting the trivial size depen-
dence of the signal) match the values of a reference sample (as
described in Ref.'®). By mixing the batches of one-component
samples we prepared binary mixtures with constant total vol-
ume fraction ¢ = 0.61 and different fractions of small particles
xs = @/ @ where @ the volume fraction of small component.

Rheology

SmallSet creep: AR2000ex stress-controlled rheometer from
TA instruments, cone and plate geometries of diameter D =
20mm, cone angle a = 2°, gap d = 0.054mm and D =
40 mm, o = 0.3° and d = 0.012 mm.

SmallSet step rate relaxations: ARES G2 strain-controlled
rheometer from TA instruments, cone and plate geometries of
diameter D = 25 mm, cone angle ¢ = 2°, gap d = 0.048 mm
and (a part of relaxations) D = 50 mm, cone angle @ = 1.16°,
gapd = 0.051 mm.

Rejuvenation procedure was performed before each mea-
surement to reduce an influence of loading, aging and sample
history effects and to ensure a reproducible initial state of the
sample. For this reason, directly after loading, a Dynamical
Strain Sweep was performed, i.e. an application of oscilla-
tory shear to the sample with a frequency @ = 1rad/s and in-
creasing strain ¥ from 0.01 % to 700-1000 % (depending on
the sample). After that and before each measurement two Dy-
namical Time Sweeps (DTS) were performed: at first a DTS
by a strain ¥ = 300 % for a waiting time of 100s to fluidize
the sample and then a DTS by very low strain 0.01-0.1 % (de-
pending on the sample) until the elastic, G’, and viscous, G”,
moduli reached constant steady-state values. A solvent trap
was used to minimize solvent evaporation.

3 Flow

In this chapter we are going to discuss the steady-shear flow
of colloidal binary mixtures. For this we display the flow

curves, where the stress response of the sample is measured
as a function of the applied shear rate. The stress o is mea-
sured in the steady-flow state under application of a constant
shear rate 7. Flow curves for increasing (continuous line)
and decreasing (dashed line) shear rate are measured. In or-
der to account for trivial effects due to the different average
size of particles in the samples, the stress is expressed in units
of energy density kgT/ < R® >= kgT [l —x,(1 —1/8°)]/R}
and plotted against Peclet number Pey = } < oshort > with
< gohort =< gshort >/ f and < 1§ >= 67 <R3 > /kgT
the composition-averaged short-time Brownian time in the
dilute limit. The ¢-dependent factor f is estimated to be
f =~ 1/32 for volume fraction 0.61 (extrapolate the data in
Fig.8 of reference 1%).

Figure 1 shows the flow curves measured for samples with
0=0.207, ¢ = 0.61 and different mixing ratios x,. For all mix-
ing ratios, 0 < x; < 1, shear-thinning behavior characteristic of
colloidal dispersions” , indicated by an increase of the stress
o with increasing shear rate 7, was found. For glassy sys-
tem, in the regime ¥ — 0, the stress tends to a constant value,
associated to the yield stress of the system’ . Due to the lim-
ited accessible range of Pey, the existence of an yield stress
at 7 — 0 cannot be clearly determined for the measurements
discussed here.

For the one-component systems, x; = 0 and x; = 1, compa-
rable values of stress o7 in units of energy density are ob-
served. This observation indicates a similar glass state for
both. Nevertheless, the flow curves differ in their slopes. For
xs = 0, the slope of the flow curve is approximately 1, in con-
trast to ~ 0.??7 observed for x; = 1, what may be attributed to
a certain degree of softness of the small particles. The slope
of o(Pey) for 0 < x; < 1 shows a smooth transition from 1 at
xs = 0 to a smaller value obtained for x; = 1. In previous stud-
ies of colloidal glasses !%!7 it was shown that for hard spheres
at large Pey the stress is linearly proportional to y while for
soft spheres the slope of the stress tends to 0.5, i.e & ~ 0,
supporting the suggestion of a certain degree of softness for
the small particles.

Adding small spheres to a glass of large particles, i.e. in-
creasing x;, leads to a rapid decrease of the stress, which
reaches its minimum at x; = 0.3 at any Pey. By further in-
creasing xg, for 0.3 < x; < 1, the stress at certain Pey increases
again approaching the stress value of the one-component sys-
tem with x; = 1. This behavior of the stress as a function of x;
at a constant Pey indicates the softening and re-vitrification of
the system for intermediate x,;. The presence of a minimum of
o for x; = 0.3 at certain Pey and the glass softening observed
for intermediate x; qualitatively agrees with previous experi-
mental results '8, including DSS tests '3 and step-rate experi-
ments 2, and theoretical work 1920,

For comparison, () is also extracted from a series of step-
rate experiments, where a constant shear rate is applied and the
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Fig. 1 Flow curves, i.e. stress o in units of energy density as a
function of Peclet number. Continuous lines: measured from small
to large 7; dashed lines: measured from large to small ¥; cross:
extracted from step rates experiments; asterisk: extracted from step
stress (creep) experiments.

stress o as a function of strain ¥ is measured. The steady-flow
state is reached at large ¥, where the stress Oycqqy is extracted.
Note that in the step-rate experiment the initial state of the
sample is the quiescent state obtained after rejuvenation. This
is different from the measurement of the flow curve, where
the initial state of the sample is the steady-flow state reached
by the application of the previous y. However, both protocols
result in comparable ¢ (7) as it is shown in Figure 1. The val-
ues of shear stress Oyrqqy €xtracted from step-rate experiments
(cross) are in a good agreement with those from flow curves
(line).

One other way to measure the relation o(7) is a series of
creep experiments, where a constant stress o is applied to the
sample and the shear rate ¥ (or the strain ) is measured as a
function of time ¢ (Fig.2b). For stress above the yield stress,
0 > 0Oy, the shear rate y reaches a steady value Yoy after a
transient regime at intermediate times. The values Ypony(0)
lie typically on the flow curve or slightly above, indicating a
good agreement between results obtained with different shear
protocols (Fig.1). In the creep regime, ¢ < oy, the shear rate
slowly decreases all the time and does not reach a constant
value. In this regime, the steady-flow state cannot be reached.
In this case, Y.onsr is defined as the last measured point. The
points collected in this regime deviate from the expected evo-
lution of the flow curve for ¥ — 0. The deviation becomes
pronounced for the mixture with x; = 0.7.

In summary, these results show that both routes followed by
the system, the strain- and stress-controlled shear for o > o,
result in a comparable steady-flow state of the system. It holds
for one-component systems as well as for binary mixtures, in-
dependent on the mixing composition x;.

4 Creep

In creep experiments a constant shear stress ¢ is applied to the
system and the induced deformation 7y or deformation rate 7y is
recorded as a function of time 7. For a material characterized
by a yield stress oy, at least two regimes can be distinguished
on the basis of the applied stress: for ¢ < o), the material
presents a solid-like response and usually creep is observed;
second, for ¢ > o) a flow response is observed. For ¢ ~ o,
an intermediate response is found. These regimes are observed
in our measurements.

Figure 2 a) shows some of the results obtained for the one-
component glass of small spheres with radius Rg; and volume
fraction ¢ ~ 0.61. At short times, the initial super-linear in-
crease of strain (¢) is followed by oscillations which are an
effect of instrument inertia®">> and will not be discussed fur-
ther. After this initial stage, for small applied stress ¢ < oy,
a creep response is observed. This creep response is char-
acterized by a slow, sub-linear increase of strain with time.
The sub-linear increase can be separated in two additional
regimes: one at intermediate times (immediately after the
regime affected by instrument inertia) showing a very slow,
nearly plateau-like increase of (), and one at long times,
where the increase of strain becomes faster, but still remains
sub-linear. Recently it was shown that these two regimes are
characteristics of creep in colloidal glasses®?! and colloidal
gels?*. For considerably larger applied stress, ¢ > oy, the
system flows and the linear dependence of strain on time is ob-
served. For stress ¢ =~ 0y, an intermediate behavior is found.
The creep-like response at intermediate times is followed by a
rapid, super-linear increase of y(¢) observed over a restricted
time interval, before finally the flow regime is entered. For
one-component glasses it has been shown that the super-linear
increase of y(t), like the stress overshoot observed in step-
rate experiments, originates at the structural breakdown of the
cage 10,

The strain response of mixtures at similar applied stresses
o in units of energy density (R®)/kgT, as is shown in Figure
3. Different scenarios depending on the mixing composition
X, are observed. One-component glasses show a creep-like re-
sponse, what indicates that the selected value of the applied
stress lies below the yield stress of these systems. In con-
trast to that, a fluid-like response was found for mixtures with
intermediate x;. An intermediate behavior, where a transition
from creep to flow is observed, was found for the mixture with
xg = 0.7 and size ratio § ~ 0.207. Therefore, for mixtures with
intermediate x;, the applied stresses are larger (or comparable
for 6 =0.207 x; = 0.7) to their yield stresses. The different re-
sponses observed for binary mixtures in creep measurements
at similar applied stress 6 (R>)/kpT, show the effect of soft-
ening induced by mixing. The result is in agreement with the
previous study of binary mixtures'!2, where it was shown
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Fig. 2 (a) Strain y and (b) shear rate ¥ as a function of time ¢,
measured in step stress (creep) tests performed on samples with ¢ =
0.61 and radius Rg; (for applied stress ¢ = 10 Pa, 15Pa, 35 Pa,
50Pa, 65 Pa, 80 Pa, 100 Pa, 140 Pa, 200 Pa, 300 Pa from bottom to
top). (c) Logarithmic time derivative of the strain

Acreep(t) = d log(y)/d log (t) which corresponds to the exponent of
the time dependence of strain y on time ¢ and can be used to
distinguish regimes of linear, sub and super-linear dependence. The
time #,,,4y is defined at the maximum of Ayee p- The time 71 is the
time where A¢reep = 0, i.e. where transition from sub- to super-linear
regime happens. (d) Logarithmic time derivative of the strain Acyeep
as a function of strain y. y; indicate the value of strain where

Acreep = 1 and Ypqy is the value of strain at maximum of Acreep.

that the addition of a second component leads to glass soft-
ening, i.e. the reduction of the yield stress. The pronounced
effect of glass softening occurs in mixtures with small size
ratios 8 ~ 0.2, and is not symmetric with respect to the mix-
ing composition. The strongest softening effect is observed at
X~ 031112,

The evolution of y(¢) measured at one constant applied
stress ¢ may show different regimes as it was already dis-
cussed. To quantify the transition between these regimes, the
logarithmic derivative Acyeep Of strain y with respect to time f,
i.e. Acreep(t) = dlog(y)/d log(t), is calculated. Figures 2 c),
d) show Acyeep for the one-component glass of small spheres
as a function of ¢ or 7, respectively. The initial regime due to
instrument inertia is characterized by a fast decrease from an
initial exponent Acep = 2 and a regime of oscillations. Af-
ter that, for o = o, the value of A, starts to increase from
a value < 1 and presents a peak value larger than 1 before
tending finally to this value, which characterizes flow. The
deviations from this behavior are observed for ¢ ~ oy, where
the peak value is smaller than 1, and for o > o,, where no
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Fig. 3 Strain ¥ as a function of time ¢, measured in creep tests
performed on samples with ¢ = 0.61 and a) 6 = 0.207 and
composition xg = 0 (black), 0.1 (blue), 0.3 (green), 0.5 (red), 0.7
(turquoise), 0.9 (purple), 1 (yellow) and b) 6 =0.38 at x;, =0
(black), 0.25 (green), 0.5 (red), 0.75 (turquoise), 1 (yellow) at
similar applied stress 6 (R>) /kpT.

maximum is observed.

The transition between different regimes is analyzed more
closely. We extract the time 7,4, at the maximum of Ay, (see
Figure 4 a)). This represents the time at which the deforma-
tion increases most sharply. For all studied mixtures we found
a decrease of t,,,, with increasing applied stress o. Approach-
ing the yield stress oy from higher values of o, the transition
between creep and flow tends to move to increasingly longer
times. This suggests the presence of a divergent timescale in
the transition, where eventually the sub-linear increase will
continue indefinitely. The same phenomenon has already been
observed for one-component hard-sphere glasses® and col-
loidal gels?%4,

From the logarithmic time derivative of the strain, )uc,eep,
we also extract the strain Yuqx = Pfmax and the strain y;, where
Acreep = 1. The parameters, ¥4 and ¥;, are shown in Figure
4 b) and c), respectively. The strain 7., increases continu-
ous by increasing 6. Moreover, we find a scaling Y4, ~ 0%,
with @ = 0.3, independent of the composition x; and size
ratio 8. A similar dependence is found in the evolution of
71(o). The strain 9; indicates the transition from the creep
regime (characterized by Acreep < 1) to the super-linear regime
(with Acreep > 1). The evolutions of y; and ¥4, showing the
slow increasing of shear strain with increasing stress, can be




10
2 40
100}
107 2
10 10° 10’
10° Glcyield
R 10%! ]
g
£ 10 ]
0
10° L : : :
10° 10" 10° 10’
10 o [k TI<R%>
102%
2
== 10'F s gusn i
[+
0
10° Lo : : :
107 10 10° 10’
c/kBT/<R3>

Fig. 4 a) Time t,,,,x Where lcm)p is maximal as a function of
reduced stress 6/ Gy;e1q for samples with § = 0.207 and composition
x5 =0 (%), 0.1 («0),0.3 (M), 0.7 (¢),0.9 (§), 1 (+) and & =0.38 at x,
=0.5 (>), 0.75 (0). b) Strain ¥, Where lmep is maximal as a
function of applied stress in units of energy density and fit

Yinax ~ 0% with o = 0.3. ¢) Strain y; where Acreep crosses 1 by
transition from creep to super-linear regime.

compared to the dependence of 7y on shear rate ¥, discussed
in Ref.!2. The behavior can be understood within the cage
picture: the increase of o induces more affine displacements
of particles and reduces the probability of collisions between
particles associated with Brownian motion. Consequently, in-
creasing o the cage can be deformed more before it breaks.
We suppose to see an intermediate behavior between two ex-
tremes: a regime of ¢ — 0 dominated by Brownian motion
and a regime of ¢ — oo, where the particle dynamics is con-
trolled by the affine motion imposed by the shear.

5 Step-rate experiment

In a step-rate experiment the evolution of stress ¢ is mea-
sured as a function of strain Y (or time ¢) under application
of shear at constant shear rate 7. Typically, o(y) shows an
initial linear increase, followed by a maximum of the stress,
i.e. a stress overshoot, and finally a regime of constant stress
corresponding to the steady state flow, as it is shown in Figure
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Fig. 5 a) Stress o as a function of strain y and b) derivative of the
stress Agieprate = dlog(c)/dlog(y) as a function of strain ¥,
measured in step rate experiment for applied shear rates which
correspond to Pey = 4.7,2.4,1.2,0.64, 0.24 and 0.032 (from top to
bottom) for composition x; = 1.

5 a). For colloidal glasses the appearance of a stress overshoot
was observed and studied earlier. It was found that the stress
overshoot is related to the maximum cage deformation before
the cage breaks®3. Moreover, the singe-particle dynamics un-
der shear reveal a transient super-diffusive regime of the parti-
cle motions at deformations which are comparable to those at
which the stress overshoot is observed 78,

Introducing the small particles into the large-sphere glass
leads, similar to results of other tests described before, to soft-
ening, which is more pronounced at intermediate mixing ra-
tios and large size disparity!!"'3. Moreover, for the size ra-
tio 8 ~ 0.2, two different caging mechanisms depending on
the mixing composition x, are found '>. It was shown that for
0.5 < x; < 1 the localization of the large particles occurs due
to caging by the neighboring large particles. In contrast to that,
for 0.1 < x; < 0.5, large spheres are surrounded by the small
ones and become localised in small-particle cages. Two dif-
ferent caging mechanisms result in a non-trivial dependence
of the magnitude of the stress overshoot on x; as discussed
in Ref.!2. Increasing the size ratio up to § ~ 0.38 leads to a
reduction of the softening effect” .

We study binary mixtures with size ratios § =~ 0.38 and
0 ~ 0.207. Figure 6 shows o (y) measured for mixtures with
different compositions, under a constant Y, which results in
the similar Peclet number for all mixtures. The stress o is
represented in units of the energy density kg7 /(R*). The rep-
resentation highlights the similarity of the response to shear
observed for one-component systems (Fig. 6 b)). For bi-
nary mixtures with 6 = 0.207, a pronounced reduction of the




steady-state Stress Oyeqqy is Observed at intermediate mixing
ratios. For mixtures with § = 0.38 the reduction is less pro-
nounced. The reduction of Gyeqqy follows very closely the
variation of the yield stress measured by Dynamical Strain
Sweep (DSS)'? and the softening effect described before.

The strain at the overshoot, ¥4, and the magnitude of the
overshoot, Opeak / Ojteady — 1, are extracted from the measure-
ments and are shown in Figure 6 as functions of Peclet number
Pey. For both §, the strain at the overshoot Y. remains al-
most constant for Peclet number, Pe; < 1, independent on the
composition x;. In this Peclet number range the influence of
the affine motion is week and the shear-induced cage defor-
mation is slow. Therefore the escape from cages in mainly
due to Brownian motion. Consequently, in this regime the de-
pendence of ¥4, associated to the yield strain, shows only
a weak dependence on the shear rate. For 6 = 0.207 we also
observed that ¥, remains constant for Pey S 1 and increases
by larger Pey where the particle displacements are dominated
by affine motions '2. Moreover for § = 0.207 it was found that
the magnitude of the stress overshoot, associated to the stored
stress, exhibits a minimum at x; = 0.5 due to the transition in
caging mechanism, namely caging by large or small particles.
At § = 0.38, instead the magnitude of the overshoot is similar
for all mixtures (Fig.6 b)) since only one caging mechanism
is observed. This observation supports the idea that the stress
storage occurs on the long-time structural relaxation time of
the caging species and the absence of the sharp caging tran-
sition results consequently in a monotonic decrease of stored
stress with x.

6 Comparison

In previous sections we discussed two different shear exper-
iments: the application of constant strain or stress. It was
shown that they both lead to a comparable steady-flow state,
but the way to reach this state, particularly the yielding pro-
cess, may be different. To investigate this transient regime,
we compare the creep results to the results obtained in step-
rate experiments.

Figure 8 compares two creep and two step-rate measure-
ments for one sample. In the creep experiment, the steady
flow is characterized by a linear increase of the strain with
time, i.e. a regime of constant shear rate. In the step-rate ex-
periments we selected similar applied shear rates. After the
stress overshoot, the system starts to flow and the stress de-
cays to its steady-state value. It can be seen that both shear
protocols lead to the fluidization of the glass and steady flow.
The results of the two tests can be directly compared by plot-
ting the product oy versus time ¢ (see Figure 8 c)). This plot
evidences that the steady state of flow is the same for step rate
and creep experiment.

It also reveals a second interesting point, associated to the
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Fig. 6 Stress o as a function of strain 7y, measured in step rate
experiment for applied shear rates which correspond to a) Pe; = 0.24
for samples with § = 0.207 and composition 0.1 (blue), 0.3 (green),
0.5 (red), 0.7 (turquoise), 0.9 (purple), 1 (yellow) and b) Pey ~ 0.25
for samples with & = 0.38 and composition x; = 0 (black), 0.5 (red),
0.75 (turquoise), 1 (yellow).

question whether the dynamics, by which the final steady-state
flow is achieved, depend on the way shear is applied. When
we compare the results from strain-controlled and creep exper-
iments it is clearly visible that steady flow is achieved earlier
in time in the strain-controlled experiment. This is particu-
larly well visible for the parameter ¢ = 30Pa =?7??0, and
¥ = 10.17s7!. The transient regimes prior to the onset of
steady flow seems to be very different for step-rate and creep
experiments in particular at large o, 7. The evolution of oy
obtained from creep experiment (yellow line in Fig. 8 ¢)) re-
sembles the stress overshoot measured in the step-rate experi-
ment at 7 = 2.034s~!, while it is very different for c = 30 Pa
and 7=10.17s"1.

The difference between these two experiments is supported
by the observation of the microscopic single-particle dynam-
ics during the shear. In previous works '° the dynamics of par-
ticles under strain-controlled shear was studied. For glassy
systems it was shown that the transition to flow goes along
with the super-diffusive dynamics of particles. The super-
diffusivity was also found in the dynamics observed under an
application of a constant stress '°. For constant shear rate this
also implies that the relation between MSD and Yy shows a
super-linear regime. On the other hand, it was found that for
applied constant stress, a linear relation between MSD and y
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holds also in the transient super-diffusive regime of the MSD
(and even in creep regime). This could explain the faster dy-
namics leading to flow at constant shear rate. In addition,
the presence of strong dynamical heterogeneities observed in
stress-controlled experiments has no clear analogy in strain-
controlled case.

7 Recovery

After stress removal in a creep experiment, the system relaxes
and the recovered strain ¥ = y(to) — y(¢) is measured over
time ¢, as it is shown in Figure 9. At small times the signal
is affected by oscillations due to the instrument inertia and
was excluded from the analysis []. Depending on the state
of the sample at the end of the creep test priors the recovery
measurement, two different scenarios of strain recovery are
observed. For large stress, ¢ > o;, where at the end of the
creep test the fluidization of the glass is observed, the initial
oscillations are followed by an increase of the recovered strain
¥ which approaches a constant steady-state value ¥ at large
times. In contrast to that, for small stress, ¢ < oy, where the
system recovers after creeping, the recovery is poor and the
recovered strain increases for all times without approaching
a plateau. In this regime, the shape of () is concave, in
contrast to the convex shape observed for large stresses.
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Fig. 8 a) The evolution of the strain ¥(r) (solid line) and the
corresponding shear rate ¥(¢) (dotted line) measured in creep
experiment for applied stress 6 = 20 Pa and 30 Pa and b) the
evolution of the stress o (7) obtained by applying the shear with
shear rate 7= 2.034 s~ and 10.17 s~ ! on binary mixture with & =
0.207, ¢ = 0.61 and x; = 0.7. ¢) The curves from a) and b) plotted

as oy(r).

The two regimes of strain recovery are observed in the sys-
tems of binary mixtures with different composition x; as well
(see Figure 10). As it was discussed early, the similar value of
the stress (R) /kpT applied on mixtures with different com-
positions results in flow or creep behavior, depending on the
softness of the mixture, i.e. their yield stress. As expected, for
soft mixtures where the shear-induced flow is observed at the
end of the creep measurement, a pronounced stain recovery is
found. Differently to that, creeping behavior observed for the
one-component glasses and some of the mixtures (with x; =
0.9 at 6 ~ 0.207 and x; = 0.25 at J = 0.38), is followed by a
poor strain recovery.

The results show that the state of the sample when the shear
is removed determines the time-dependence and magnitude
of the strain recovery. To quantify this observation we de-
termine the total recovered strain ¥ and its dependence on
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the stress 6. To determine ¥, we consider the temporal

derivative Ayecor = d¥,/dt and determine Y. for low value of
Arecov = 1073, Figure 11 a) shows the evolution of ¥ as a
function of stress 6/0y, i.e. the stress ¢ applied in the pre-
vious creep experiment normalized by the yield stress oy of
the respective mixture. The yield stress is determined at the
cross point of the shear moduli G’ and G” measured in Dy-
namical Strain Sweep (DSS) experiment at angular frequency
® =1rad/s'3. For one-component glasses and glassy mix-
tures, the total recovered strain shows a strong dependence
on stress. Typically Y. increases with increasing o, reaches a
maximum at the stress close to the yield stress to decay than to
a constant value of 7-10%. For soft glasses (for example 6 =
0.207 and x; = 0.3) ¥ presents small values for all measured
stresses and no maxima is observed.

As it was already mentioned, the shape of 7 (¢) changes
from concave, observed for recovery after creeping, to convex,
if the sample flows. The transition from concave to convex is
additionally studied here. For this, the recovered strain 7, as a
function of time ¢ is characterized by a power law dependence
7, ~ t°, where b is a fit parameter. For ¢ < oy, the exponent
b is typically positive and represents the concave shape (see
Figure 11 b)). Increasing ¢ and leaving the creep regime is
followed by a decrease of b to negative values, indicating the
convexity of %(¢). The changing from convex to concave na-
ture of recovered strain occur at stress below the yield stress
.

In a perfectly elastic solid, the elastic restoring force,
i.e. o(t), is proportional to the deformation y(r) and causes
a continuing acceleration. This leads to a continuing increase
of the ‘velocity’ (recovered strain rate?) 7% and an increas-
ingly faster reduction of the deformation y(¢) = y(t0) — %(¢)
or increasingly faster increase of the recovered strain % (¢).
This implies a concave shape of (). In the ideal case, this
corresponds to the motion of an extended and recoiling har-
monic spring with y(r) = y(tp) cos (wr). The concave shape
remains for weak friction, although with a decreasing ampli-
tude. However, beyond the yield stress, we do not expect an
elastic restoring force and hence no proportionality between
o(r) and y(¢), and, in addition, we expect friction or dissipa-
tion and rearrangements to play a significant role. As a result,
there is no continuing force and hence no continuing accelera-
tion. Thus, the ‘velocity’ % does not increase during recovery.
This leads to the convex shape of ¥ (¢).

8 Stress relaxation

The stress relaxation is measured after cessation of shear with
a constant rate  starting from a well-defined steady-flow state.
The relaxed stress Gyejax = O/ Oplatean is measured as a func-
tion of time. The stress Gpjqzeqy s the corresponding steady-
state value of stress for applied rate 7. Figure 12 shows the
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Fig. 11 a) Total recovered strain 7. after creep experiment created
at different shear stresses o for samples with & = 0.207 and
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extracted from fits of the recovered strain vs time with 7, ~ 2.

transient decay of Gy.4,(f) measured after cessation of shear
for various shear rates. Like recovered strain after creep ex-
periments, the relaxed stress at short times is affected by in-
ertia. At high Peclet number Pej ~ 7, the oscillations due to
the inertia are followed by a fast decay of the relaxed stress.
In contrast to that, a slowing rate of decay is observed as Pey
decreases. This observation shows that the stress relaxation
is more effective if the preshear leads to a strong fluidization.
This can be understood in terms of stronger structural distor-
tions at larger shear rates®.

At large times, Oy, approaches a constant value, i.e. a fi-
nite persistent residual stress. Decreasing the shear rate goes
along with an increase of the finite persistent residual stress.
The results show that a less pronounced restructuring of the
sample leads to an incomplete stress relaxation and a larger
residual stress. The results are consistent with previous work,
where the partial stress relaxation in colloidal glasses was
studied by experiments, simulations and theory>. Moreover,
it was shown that for small shear rates, ¥ — 0, the finite persis-
tent residual stress approaches the yield stress of the system.

The stress relaxation for binary mixtures with different size
ratios 8 and mixing compositions x; is studied. Some of the
results are shown in Figure 13. The Oy, is shown as a func-
tion of ¥ and is measured for binary mixtures at size ratio 6 =
0.207 and 0.38 at similar Peclet numbers. The glass soft-
ening, with the pronounced reduction of the yield stress for
mixtures with intermediate compositions x; and low size ratio
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Fig. 12 Relaxed stress Oyejax = O/ Opjarequ as a function of time ¢
after cessation of shear with Peclet numbers Pey = 0.03, 0.24, 0.64,
1.20, 2.40 and 4.70 (from top to bottom) for one-component glass
with ¢ = 0.61 and particle radius Rygj .

relax

10° 5=037

o 107}

10 : : : : : i
10° 10% 10" 10°, 10" 10* 10° 10°*

Fig. 13 Relaxed stress Oy, as a function of 7 measured after
cessation of shear with Peclet number a) Pey = 0.24 for samples with
6 =0.207, ¢ = 0.61 and composition x; = 0.1 (blue), 0.3 (green),
0.5 (red), 0.7 (turquoise), 0.9 (purple), 1 (yellow) and b) Pe; ~
0.13-0.18 for samples with 6 = 0.38, ¢ = 0.61 and composition x; =
0 (black), 0.25 (green), 0.5 (red), 0.75 (turquoise), 1 (yellow).
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8 ~ 0.2, affects the stress relaxation. For the soft mixtures
with 8 = 0.207 and 0.1 < x; < 0.7, the stress relaxes almost
completely indicating small values of the yield stress. It is
different for the one-component system with x; = 1 and the
binary mixture with x; = 0.9, where G, decays to a finite
value reflecting the glass nature of the systems. Similar glass-
like relaxation is observed for the mixtures with & = 0.38 for
all mixing compositions 0 < x; < 1, in agreement with the
weak softening effect observed in this case.

9 Comparison

In the first part of the paper we have shown that the strain-
controlled shear as well as the stress-controlled shear (for o >
0,) result in a similar steady-flow state. An open question
is, to what extent the strain recovery is similar to the stress
relaxation, if both processes are started from the same steady-
flow state.

To answer this question, we consider the relaxation time
trelax» Where the temporal derivative Ayjqy = dOyejqy/dt
reaches a low value, and the recovery time f,..,, Where the
strain reaches the value ¥/°'. The results are shown in Figure
14. Both times, t,¢14, and t.c0v, are plotted as a function of en-
ergy [ oydt normalized by the yield stress o, of the respective
mixture. The black symbols correspond to the time 7,4, Ob-
tained in the stress relaxation experiments. It is clear, that an
increase of the preshear rate leads to a faster stress relaxation,
as indicated by the decreasing t,.;,, With 7. The behavior is
observed for all mixtures, independent on the size ratio or the

mixing composition.

Two regimes are observed in the evolution of recovery time
trecov (color symbols),obtained in the strain recovery experi-
ments. The first regime of #,.,, 15 to find at large stresses, 0 <
Oy, where fy,¢,, decreases with increasing Gi) J ovdt. More-

over, for Giy [ oydt > 1072, the overlap of the results for both
times, frecoy and t,.14, is observed. This reflects the similarity
of the stress relaxation and the strain recovery processes. An
additional regime is found for small stresses, ¢ < oy, where
the sample recovers after creeping. This second regime is re-
lated to an increase of recovery time with increasing stress,
and is not observed in the evolution of #,.;,, due to the absence
of the creeping-like behavior.

The results of #,..,, for small stresses may be compared with
the relaxation time measured after cessation of shear before
the steady-flow state occurs and where the structural deforma-
tions are still (partially) reversible. For this, in a future work,
the preshear at constant rate should be switched off before the
stress overshoot appears.

10 Conclusion

In this work we compared the rheological response of glasses
characterized by different caging mechanisms to the applica-
tion of stress-controlled or strain-controlled shear. We found
that the transient regime previous to steady flow, particularly
the yielding process, is different for the two protocols: The
strain-controlled protocol is more efficient in the sense that
the steady state of flow is reached more rapidly. Moreover,
while the yield strain determined in strain-controlled step rate
experiments is strongly dependent on the caging mechanism,
and therefore the cage size, as also found in previous stud-
ies =13, the same quantities under stress control show no clear
correlation. This might be due to the spreading of the yielding
process under stress control, with a cage deformation which,
possibly, is intermittent instead of continuous, as in the case of
a constant strain rate. Despite the different yielding processes,
both kinds of shear lead to a steady-flow state (for 6 > 0y, in
the stress-controlled case) which is comparable for both pro-
tocols.

Given the same flowing state, the relaxation of the stress or
strain from a step rate or step stress experiment is found to be
comparable in the regime accessible for both cases, the one of
large stresses o > oy. This suggests that the structure of the
flowing states achieved with the two protocols is comparable.
Furthermore, there is no visible effect of the caging mecha-
nism, indicating that the flowing state has lost memory of it. It
is rather the particle diffusion coefficient in the quiescent state,
as determined by the distance from the glass transition, which
affects the dynamics of restructuring and the relaxation time.
The stress-controlled measurements in addition show that re-




laxation from a non-flowing state, like that of a creeping glass,
has characteristics of rather an elastic recovery, with the relax-
ation time increasing with the applied stress and accumulated
strain.
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Creep and flow of glasses:

strain response linked to the
spatial distribution of dynamical
heterogeneities

T. Sentjabrskaja?, P. Chaudhuri?, M. Hermes3, W. C. K. Poon3, J. Horbach?, S. U. Egelhaaf* &
M. Lavurati*

Mechanical properties are of central importance to materials sciences, in particular if they depend
on external stimuli. Here we investigate the rheological response of amorphous solids, namely
colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we
establish a quantitative link between the macroscopic creep response and the microscopic single-
particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility,
which remain localized in the creep regime, but grow for applied stresses leading to steady flow.
These different behaviors are also reflected in the average particle dynamics, quantified by the mean
squared displacement of the individual particles, and the fraction of active regions. Both microscopic
quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and
non-linear conditions during creep and the transient regime prior to steady flow.

The properties of materials not only depend on their chemical composition, but also on the arrangement
and dynamics of their constituents. It is thus crucial to understand the link between the macroscopic
behaviour and the microscopic single-particle level. The relation between an applied mechanical force
and microscopic processes is understood for crystalline, i.e. ordered, materials. Crystalline solids (like
metals, ceramics or minerals) irreversibly deform when subjected to a load which is small enough to
avoid fracture, although this response is very slow. This kind of response is called creep and originates
from the presence of defects in the otherwise ordered arrangement of atoms. The diffusion of vacancies
and dislocations is responsible for the observed plastic deformation'. The same relation and microscopic
processes cannot occur in amorphous, i.e. disordered, materials.

Nevertheless, in amorphous solid-like materials, a similar macroscopic creep response is observed
under application of shear stresses below the yield stress o, , i.e. below the transition from an elastic to a
plastic response. The macroscopic creep response has been intensively studied in metallic, polymeric and
colloidal glasses*”. Several models®"3, successfully describe the time evolution of the strain measured
during creep, namely its characteristic sub-linear time dependence. However, the relation of the creep
response to the microscopic structure and dynamics has hardly been determined and is not well under-
stood. Due to the disordered structure of amorphous solids the concept of defects is not applicable and a
microscopic mechanism different from the one in crystalline solids must be responsible for creep. Thus,
to make progress, microscopic observations on a single-particle level during creep tests are required.

*Condensed Matter Physics Laboratory, Heinrich Heine University, Universitatsstr. 1, 40225 Dusseldorf, Germany.
2Theoretical Physics Il, Heinrich Heine University, Universitatsstr. 1, 40255 Disseldorf, Germany. 3SUPA, School
of Physics & Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EHg 3JZ, United Kingdom.
Correspondence and requests for materials should be addressed to M.L. (email: marco.laurati@uni-duesseldorf.
de)
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Combining experiments and simulations, we investigated colloidal glasses when constant stress is
suddenly applied, i.e. during creep tests . We reveal a quantitative link between the macroscopic rheolog-
ical response and the microscopic dynamics. This is possible due to recent developments in simultane-
ously performing rheology and confocal microscopy!®'’. During creep flow near the yielding threshold,
we observe that very few particles undergo large non-affine displacements which leads to pronounced,
but spatially localized, dynamical heterogeneities and sub-diffusive dynamics. In contrast, for stresses
beyond the yield stress, transient super-diffusive dynamics mark the onset of steady flow. At the same
time, growing domains of enhanced dynamic activity are present, with their number correlating with
the macroscopic strain. This is reflected in a correlation between the macroscopic strain and the single
particle displacements. In addition to the steady-state flow regime, this correlation also holds in the creep
and transient states, specially for stresses near the yield stress. Hence, we can quantitatively relate the
macroscopic rheological response of soft glasses to the average and heterogeneous microscopic dynam-
ics which are spatially localized during creep but span the entire system at large stresses that lead to
flow. The different microscopic behavior thus reflects the different macroscopic response during creep
and flow, respectively. This extends previous observations to non-linear and non-equilibrium situations.
Furthermore, as we observe the same behavior for different systems, realized in the experiments and
simulations, this appears to be a general feature of glasses.

Results and Discussion

In our experiments and simulations we investigated two different model colloidal glasses. In the experi-
ments, the glass is a binary mixture of sterically stabilised PMMA spheres with a size ratio of 5, dispersed
in a density and refractive index matching solvent, with total volume fraction ¢=0.61 and a relative
volume fraction of small spheres xs= ¢»s/¢» =0.1. In this binary glass, the motion of the large particles is
arrested via caging by neighbouring large particles'®-?. In our molecular dynamics simulations, the glass
is formed by a binary Yukawa fluid of large and small spheres with size ratio 1.2 and a relative number
fraction of small spheres of 0.5, large enough to prevent crystallization. This system is quenched to
T=0.10, i.e well below the mode-coupling critical temperature of the system, T, =0.14. All times are
normalized; in the experiments by the short-time one-dimensional Brownian diffusion time of the large
spheres, 75 = 3mnd; /8k,T ~ 3.765, where dy is the diameter of the large spheres , 7 is the viscosity
and kyT the thermal energy, and in the simulations by the time unit 70™ = (mdZ/eg)"/? where m, dg
and egg are units of mass, length and energy, respectively, with dg the diameter of the small spheres and
€4 the energy-scale corresponding to the interaction between small particles. The colloidal glasses inves-
tigated in experiments and simulations hence involve different interactions and different mixing and size
ratios of their components. Using these different model systems allows us to explore the general features
in the response of glasses to externally applied stresses.

Macroscopic Strain is Quantitatively Related to Single-Particle Mean Squared Displacement.
We performed a step to an applied constant stress (o= const) on an initially quiescent glass. In the
experiments, the stress was applied using a commercial stress-controlled rheometer, while in the simu-
lations one wall was pulled by a constant force F,. We monitored the macroscopic response via the time
evolution of strain ~(f). This situation is in contrast to the case of imposing a constant shear rate
(4= const)?"¥, where the bulk stress o(t) is monitored. Unlike for an applied shear rate 4, when constant
stress o is applied there is no timescale imposed and flow regimes below yielding can be investigated.
The choice of control parameter, i.e. constant o or constant 4, hence determines the intermediate flow
states via which a glass evolves from the quiescent state to steady flow'". In the following, we exploit these
possibilities and link the increasing macroscopic strain to the evolution of local particle motions, using
stress as the external variable and including stresses below the yield stress o, . In experiments, we esti-
mated the yield stress of the glass, 0~ 0.010 Pa, from the stress at the crossing point of the storage and
loss moduli in large amplitude oscillatory shear measurements at 1 rad/s. In simulations, at T=0.10 the
yield stress o, = 0.072 (in simulation units) was estimated by strain-rate controlled simulations?.

If the applied stress o~ o, , a characteristic creep response is observed with the strain increasing
sub-linearly with time within the experimental window, ~~t* with a~0.5 (Fig. la, broken line).
Furthermore, for o= 0.90, (Fig. 1b, broken line), a smaller effective exponent is found, in agreement with
previous results®'>*-. Hence, for o < o, , the deformation occurs extremely slowly and the system is
unable to reach a steady state within the observation time. This is reflected in the particle dynamics in
vorticity (neutral) direction, namely the mean squared displacement (MSD) Ay(¢) (Fig. lc,d, broken
lines). In experiments and simulations, at short times the increase of the MSDs is limited, consistent with
caging, while at longer times a sub-diffusive regime is observed; Ay?~#* with b < 1. We find b~ a within
the explored time window. The MSDs show little change with the waiting times ¢,, after the beginning of
the stress application (Fig. 1c,d, broken lines). The observed macroscopic creep response and the absence
of steady-state flow is thus connected to the particles’ inability to diffuse.

In contrast, if ¢ >> o , the strain response shows a rapid transition to a steady flow regime, which
corresponds to y~t, i.e. 4 is constant (Fig. 1a,b, solid lines). The MSDs again display caging at interme-
diate times (Fig. 1c,d, solid line), while at long times diffusion?”*!-3. The slightly lower MSD plateau
observed in experiments is due to cage constriction'®, and is also observed in Brownian dynamics
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Figure 1. Comparison of (left) experimental and (right) simulation results. (top) Time-dependence

of the strain +(t) for applied stresses o as indicated, relative to the yield stress o,. (bottom) Mean squared
displacement in the vorticity direction, Ay? (indicated by same colors and line styles), immediately after
stress application, i.e. for waiting time ¢, =0, and larger ¢, (as indicated) until the steady-state is reached, i.e.
t,—<o (symbols). For the smaller applied stress, Ay? is divided by a factor 3 for clarity, both in experiments
and simulations.

simulations®*?’, but not in molecular dynamics simulations where the microscopic dynamics is Newtonian.
In between caging and long time diffusion, a transient super-diffusive regime is observed. This coincides
with the transition of the rheological response from the initial elastic regime to the flow regime. Note
that in the experiments, the initial superlinear increase in strain is a known effect of the rheometer’s
inertia®. With increasing waiting time t,, (Fig. 1c,d), super-diffusion occurs at increasingly earlier times
and for increasingly shorter time intervals, until it almost disappears in the steady state. Thus, the onset
of flow is characterized by transient super-diffusion and, subsequently in the steady state, by diffusion.
This indicates that the different regimes in the macroscopic strain response 7(t) are reflected in different
features of the single-particle dynamics, here characterized by the MSD Ay(¢).

We now quantitatively investigate the relation between the macroscopic strain y(f) and the micro-
scopic MSDs Ay*(t). In the case of steady flow () = 4t and, since then the particles diffuse,
AyX(t)~D(o)t, which implies that Ay?(¢) ~ [D(c)/4]7(t) = C (o) (t). Previous experiments and
simulations under constant applied shear rate have found D ~ 4°% 222, which implies C (o) ~ 4 %%
since stress and strain control are equivalent in steady flow. In our case, in the asymptotic diffusive
regime (corresponding to v > 10, Fig. 1a,b) we observe an approximate linear relation Ay*(f) ~~(¢) for
a large range of ¢ (Fig. 2a, Sec. 1 in Supplementary Information). The slight shifts between the curves
for different o occur due to the expected behaviour of C(c) (Fig. 2b). If Ay? is rescaled by C(0), the data
fall onto a single line of slope 1 (Fig. 2c).

Although our argument for the relation Ay*(t) ~(¢) is based on the assumption of steady flow, the
relation surprisingly also holds in non-steady states for -y < 10, which corresponds to creep (for o < o)
or the transient regime before steady flow (for 0> 0,). In contrast, Ay*(t) ~~(t) does not hold for large
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Figure 2. (a) Mean squared displacement in vorticity direction, Ay? as a function of strain +y for different
values of the applied stress /0, obtained in experiments and simulations (Sec. 1 of Supplementary
Information). The experimental Ay? values are multiplied by a constant factor in order to match the
simulation data. (b) Ratio of diffusion coefficient to shear rate, C(c) = D(0)/+, obtained from fits (Sec. 1 of
Supplementary Information), as a function of the shear rate in the steady state, 4. The dashed line indicates
a power-law C (o) ~ 47 %2 (c) Scaling plot of Ay?/C(c) as a function of -y, with the dashed line indicating a

slope of 1.

stresses o and small strains vy (or short times ¢). In both, experiments and simulations, systematic devi-
ations are seen to occur with increasing stress. The deviations occur due to a time lag between the par-
ticles’ motion beyond their cages and the onset of macroscopic deformation (Fig. SM-1, Supplementary
Information). Moreover, at very short times, i.e. in the initial elastic regime (Fig. 1), the proportionality
is also not observed. This suggests that the observed correlation is a consequence of the plasticity that
develops after the initial elastic regime. Our observations mark a clear difference between the yielding
response under applied constant stress (investigated here) and applied constant shear rate (investigated
in?*?%). In the latter, Ay*(f) ~y(f) cannot hold in the transient regime, where Ay*(f) increases superline-
arly with t while ~(f) increases linearly. Note that this connection between nonlinear strain and the
single-particle dynamics is an implicit assumption in a recent theoretical approach based on a nonlinear
Langevin equation®-%’. Our data indicates to what extent such a connection is valid.

Displacement Distributions Indicate Small Fraction of Mobile Particles. In addition to the
characterisation of the particle displacements via the MSD, i.e. a mean value, we have also investigated
the distribution of the displacements, namely the self part of the van Hove function p(Ay). For o~ o,
(Fig. 3, left), at all times the van Hove functions exhibit a nearly Gaussian shape for small Ay, which
corresponds to localised particles, and moderate exponential tails which correspond to large displace-
ments of a small fraction of particles. The non-Gaussian tails only slightly change with increasing time.
This indicates that shear-induced delocalisation is a very slow process. In particular, large displacements
at the shortest time of the measurement ¢,/7,"? = 0.0037 hardly occur and therefore macroscopic flow
is delayed.

For o> o, (Fig. 3, right) shear leads to a larger deviation from a Gaussian distribution with a signif-
icant number of large displacements. The deviation from Gaussian behavior was quantified by the time
dependence of the integral Iz(f) of the residuals of the Gaussian fits to p(Ay), which, for each fixed
time, was normalised to the integral of the distribution (Fig. 3, inset). A non monotonic trend of Iy(t)
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Figure 3. Van Hove self-correlation functions, i.e. distributions of displacements p(Ay), determined
(top) by experiments for (a) a stress 0~ 7y, a waiting time t,,=0 and times t/7;* = 0.0037, 0.54, 1.05, 2.12
and 5.31 (left to right) and (b) o0~ 50, t,,= 0 and same times, except the longest time here is t /7" = 2.65,
(bottom) by simulations for (c) o~ 1.10,, £,,=0 and t/TOSi"? =20,3.7 x 10°, 11 x 10°, 56 x 10°> and

110 x 10° (left to right) and (d) 0~ 1.530y, t,=0and t/7;"" = 20, 1.01 x 10, 3.7 x 10°, 7.4 x 10® and
18.6 x 10° (left to right). Dashed lines represent Gaussian fits to p(Ay) for small Ay. Insets: normalized
integral I of the residuals of the Gaussian fits in the main plots, as a function of time #/7.

is observed, with a maximum value during the intermediate super-diffusive regime. At later times Ip(¢)
continuously decreases and eventually vanishes when diffusion sets in and a Gaussian distribution of
displacements is recovered.

Evolution of Dynamical Activity Follows Macroscopic Strain. The tails in the van Hove function
p(Ay) reveal the existence of a small number of very mobile particles during the transient regime. We
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Figure 4. Fraction of active particles &' (¢) (solid symbols) and active boxes ®P(¢) (open symbols)
determined (a) by simulations at stresses 0/0,= 0.9 (®, O), 1.1 (A, A), 1.4 (©), 1.53 (») and (b) by
experiments at o/0,~ 1.0 (M, 0J) and 5.0 (A, A). Lines of the same colour represent the strain ~y for the
corresponding applied stresses, where the instantaneous strain is shown in the case of the simulations.

quantify the time evolution of the fraction of these mobile particles by the ratio @' () = I_(t) with I,
the integral of p(Ay) for displacements Ay/d>5Ay,..., with d=dg and d; in simulations and experi-
ments, respectively (Fig. 4, solid symbols). The value Ay = JAy?(t,)/d?* is the localization length
estimated from the MSDs at the shortest time ¢, (Fig. ic d) In simulations the time-dependence of
O (1) closely follows that of the instantaneous strain (t), up to ®'"'(¢) = 1 (Fig. 4a, lines). In the
experiments, similar results for &' (¢) are observed (Fig. 4b) except that, in contrast to the simulations,
7(t) is not the instantaneous strain but a time average, leading to a small deviation between & (¢) and
~(t). The macroscopic strain is therefore not only proportional to the average mean squared displacement
(Fig. 2) but also the fraction of mobile particles: this indicates that the mobile, dynamically active parti-
cles contribute most significantly to the mean squared displacement. This is true both below and above
the yield stress.

Spatial Distribution of Dynamical Activity is Heterogeneous. We introduce spatial coarse-graining
in order to reduce noise. We divide the field of view into 10 x 10 square boxes, each with size (2.8 d;)?. For
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Figure 5. Maps of average particle mobilities f4,,(f) within boxes Im (Eq. (1)) for (top) stress o~ o, and
(bottom) o~ 50, and times t/7;* = 0.025, 0.20, 0.27, 0.43, 0.53, 0.80 (a—f, indicated in Fig. lc by dashed
lines) as observed in experiments. The box size is (2.8 dy)%

each particle i, the displacement in the vorticity direction, Ay,(f) =y,(t)-y(%,), was determined. The average
particle mobility in box Im, with [, m = 1 ... 10, was calculated according to

i (8) = (Ay,(0) (1)

where (...), denotes an average over all the particles which were in the box Im at t=t,. A box Im is
defined active at time ¢ if p,, > 5Ay,..., following the same criterion used to distinguish largest displace-
ments of single particles in the van Hove functions (Fig. lc,d). The fraction of active boxes,
®°(t) = N,(t)/N p with N, the number of active boxes and N, the total number of boxes. With time
®P(t) grows as the fraction of the single mobile particles &' (¢) (Fig. 4, symbols). Thus, the
time-dependence of @ (¢) is also proportional to ~(f). A similar connection between the number of
active regions and strain growth was experimentally observed in the creep flow of frictional granular
particles’.

To investigate the existence of heterogeneity in the dynamical activity, we consider the spatial distri-
bution of active boxes. For o~ o, , the distribution of local mobilities within the velocity-vorticity plane
does not indicate any prominent features (Fig. 5, top). At any specific time, there are some active boxes
with larger mobilities, but the locations of the boxes with the largest mobilities vary randomly with time.
For 0= 50, similar mobilities occur at short times, when the localisation plateau in the MSD is observed
(Fig. 5a,b, bottom). In contrast, at ¢ > 0.37,"F, roughly coincident with the onset of super-diffusion in
the MSDs determined for t,,= 0 (Fig. 1c), a region with enhanced mobilities emerges (Fig. 5¢,d, bottom),
expands with time (Fig. 5e, bottom) and spans almost the whole field of view once the system flows
(Fig. 5f, bottom). Hence, the onset of flow (Fig. 1a,b) coincides with the appearance of a region of higher
local mobility (Fig. 5) and super-diffusive dynamics (Fig. 1¢,d). Furthermore, it leads to the pronounced
non-Gaussian tails in the van Hove correlation function at intermediate times (Fig. 3), which disappear
once steady flow has developed and the dynamics again becomes more homogeneous (Fig. 3, inset).

The enhanced local mobilities do not result from sudden large displacements, but occur through the
accumulation of only slightly above-average local, non-affine particle displacements. This has been con-
firmed by calculating the instantaneous mobilities from 0.187;™F to 0.467,F and 0.287;*" to 0.567,7F, i.e.
for 10 sampling times, instead of starting from the shortest measurement time (as in Fig. 5). No large
instantaneous mobilities and no significant difference to o~ o, are observed (Sec. 2 in Supplementary
Information). Similar results are obtained in our simulations. The occurrence of correlated plastic
events***® and avalanche-like behavior**> have been proposed as mechanisms driving the onset of flow.
Such cooperative events might be connected to the correlated local mobilities and their spreading
observed in our study. The observed intermittency in the displacements might also be related to stick-slip
motion®.

The larger area in the velocity-vorticity plane monitored in the experiments allows us to quantitatively
investigate the spatial growth of active regions. If the box Im is active or inactive, ny,, is defined as 1 or
0, respectively. Based on this definition, we calculate the spatial correlation of active boxes, that is the
box-box correlation function, G (r) = (n;,ny,,) with r*=(I-I')>+ (m-m')* (Fig. 6a). The brackets {...)
indicate an average over the individual boxes. The characteristic length £ of the spatial correlation G(r)
was determined by fitting a stretched exponential function f (r) = A exp[—(r/€)”]to G(r). The corre-
lation length £(#) increases from an initial value £= 5d; at ¢ = 0.107;"P to £=30dy at t = 0.927,"F, with
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Figure 6. (a) Box-box correlation functions G(r) for stress U/Uyz 5 and time ¢/ 7'0e"P = 0.1, 0.20, 0.27, 0.43,
0.53, 0.66, 0.80 and 0.93 (left to right) as observed in experiments. Lines represent stretched exponential fits.
(b) Correlation length of active boxes, &, as a function of time for o/0,~ 5.0; the line indicates &/d; ~ t*°.

(1) ~ % (Fig. 6b). For o~ o, the correlation length £(f) instead does not grow and stays approximately
constant for all times ¢ (data not shown).

Conclusions

Using experiments and simulations, we demonstrated that under applied stress, the macroscopic defor-
mation of glasses can be linked in a consistent way to the single particle displacements. In particular, the
strain is approximately linearly related to the single-particle MSD even in the time-dependent non-linear
response regime, including the creep and the transient regime preceding steady flow. Furthermore, the
fraction of active particles in the van Hove function as well as the fraction of active regions, i.e. of
groups of particles, is also proportional to the macroscopic strain. Heterogeneities in the location of
these active particles are present both for applied stresses smaller and larger than the yield stress. The
spatial distribution of regions with larger displacements determines the onset of flow. For applied stresses
around the yield stress, i.e. during creep, localised regions of enhanced dynamical activity allow only
for sub-diffusive dynamics. Increasing the stress beyond the yield stress, the active regions grow heter-
ogeneously and super-diffusive transients emerge leading to particle diffusion with steady flow setting
in. We observe qualitatively the same behavior for the different models studied in our experiments and
simulations and thus expect that our observations represent generic features of glasses.
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Future work should focus on understanding how the external stress leads to the occurrence of locally
enhanced mobilities, e.g. whether these are related to thermally activated local structural changes.
Furthermore, the mechanisms that drive the spreading of the active regions within the plane as well
as in the transverse direction need to be identified, thereby providing possible links to transient shear
banding in the velocity-gradient plane?®**. All these would help to develop a more complete scenario for
the fluidisation of glassy systems under applied stress. Furthermore, it can open the route to the rational
design of materials with desired response to applied stresses.

Methods

Experiments. We investigated a mixture of sterically stabilized PMMA spheres of diameters
dy=1.76 um (fluorescently labeled) and ds=0.36 um, dispersed in a cis-decalin/cycloheptyl-bromide
mixture which closely matches their density and refractive index. After addition of salt (tetrabutylam-
moniumchloride), this system presents hard-sphere like interactions*>*. The total volume fraction is
¢=0.61 and the relative fraction of small spheres x;= ¢s/¢p=0.1. The formation of a glassy state in this
mixture was demonstrated by using rheology and confocal microscopy measurements of the dynamics
of large particles'®?’. The presence of small spheres, with their larger energy density, increases the yield
stress of the system, thereby improving the quality of the rheological data while still allowing for the
simultaneous observation of the large spheres with confocal microscopy'®!”. The rheological and confo-
cal microscopy measurements reported in the manuscript were obtained using a combination of a com-
mercial MCR-301 WSP stress-controlled rheometer (Anton-Paar) and a VT-Eye confocal unit (Visitech)
mounted on a Nikon Ti-U inverted microscope, with a Nikon Plan Apo 60x oil immersion objective
(NA=1.40). We used a cone-plate geometry of diameter 50mm, cone angle 1° and truncation gap
100 pm. The bottom plate consists of a microscope coverslip which was coated with a mixture of PMMA
particles of radius 0.885 ym and 0.174 yum. The surface of the cone is sandblasted. The roughness of the
geometries prevents wall-slip, as verified by imaging. A solvent trap was used to reduce solvent evapora-
tion. Due to the fact that rheological measurements on colloidal glasses are affected by loading effects,
shear history and aging, before each test a renjuvenation procedure was performed in order to obtain a
reproducible initial state of the system. After loading, we performed a dynamic strain sweep to estimate
the yield strain +, of the system from the crossing point of the strain-dependent storage, G, and loss,
G/, moduli. Oscillatory shear at v = 3 > 7, was applied to induce flow and maintained until the
time-dependent G’ and G’ reached a stationary state, typically after 200s. Afterwards, oscillatory shear
in the linear viscoelastic regime, = 0.001, was applied until G’ and G’ became stationary, typically for
t>300s. The state characterised by the stationary values of G’ and G’ was the initial state, prepared
before each creep measurement. The relative error on the strain determination during creep measure-
ments is smaller than 1%.

Confocal microscopy images were acquired in a velocity-vorticity plane about 6 mm from the center
of the geometries and 30 um from the bottom plate. Images with 512 x 512 pixels, corresponding to
51 pm X 51 pum, were acquired at a rate of 67 frames per second, which ensured accurate particle tracking
even at the highest applied stresses (typical movies in Supplementary Information). By imaging the
truncation gap of the cone, we verified that bending of the coverslip is negligible!®. This is also indicated
by the fact that, despite the applied stress, the particles in the imaging plane remain perfectly in focus
(movies in Supplementary Information). The fact that we can image the truncation gap of the cone is
also used to check that the bottom plate is perpendicular to the rotation axis of the cone. Particle coor-
dinates and trajectories were extracted from the images using standard routines?’. Mean squared dis-
placements from four independent measurements were averaged. The noise contribution to our MSD
data was estimated from the MSD of an immobile sample, resulting in Ay*/d} ~ 4 x 107% i.e. a factor
of about 2.5 times smaller than the Ay*(¢) values measured at short times.

Simulations. In our molecular dynamics simulations, a 50:50 binary Yukawa fluid of large and small
spheres with size ratio 1.2 is investigated. The model parameters have been reported earlier?>***%. OQur
simulations have been performed for samples consisting of N= 12800 particles and having dimensions
L,=26.66ds, L,=13.33d, L,= 53.31ds. We work in the NVT ensemble using periodic boundary condi-
tions, the temperature being controlled by a Lowe thermostat*’. The mode-coupling critical temperature
of the system is T,=0.14. The system is equilibrated at T=0.15 and then instantaneously quenched to
T=0.10, where it is aged for 10* 75"™. At this time, the walls are generated by freezing particles at
0<z<2dsand L,-2ds<z< L, *. Stress is applied by pulling one wall at a constant force F; in the x
direction. For each applied stress, runs over 24 independent replicas of the system were averaged. Similar
to the experiments, the dynamics were measured in a slice at the centre of the volume having thickness
13.3d; and distance about 18d to the walls on each side.
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In the first section we report the time evolution of the strain «(t) for further values of the applied stress o, and
the corresponding transient mean squared displacements for waiting time t,, = 0, complementing the data of Fig. 1
in the main manuscript. In the second section, maps of instantaneous experimental particle mobilities are shown for
comparison with the average mobilities.

I. STRAIN EVOLUTION AND TRANSIENT MEAN SQUARED DISPLACEMENTS FOR
ADDITIONAL APPLIED STRESSES

The time evolution of the strain v(t) is shown for additional values of the applied stress o (Fig. SM-1), complementing
the data presented in Fig. 1a,b of the manuscript. The corresponding mean squared displacements Ay?(¢), determined
immediately after application of stress, i.e. with waiting time ¢,, = 0, are also shown (lower panels). The data of
Fig. 1 are also reported for comparison. The transition from a creep to a flow response occurs with increasing o and
is found to be gradual. The simulations show that the super-linear regime of the stress and the super-diffusion, both
observed for o 2 oy, are especially pronounced for o = oy, while they become less pronounced for larger stresses.

For the imposed stresses, when diffusion is observed at long times, we can determine the corresponding diffusion
constants D (o) from the mean squared displacement Ay?(¢). Similarly, the steady state strain rate 4 can be obtained
from the corresponding long-time data for strain ~(t). Thus, C(o) = D(0)/4, defined in the main text, can be
calculated and yields C(o) ~ 492 (Fig. 2b). Taking this into account, i.e. by plotting Ay?/C(o) as a function of
strain 7, we obtain a collapse of the data, as shown in Fig. 2c.
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Fig-SM. 1. Comparison of (left) experimental and (right) simulation results. (top) Time-dependence of the strain +(t) for
applied stresses (a) o/oy ~ 1.0, 3.0 and 5.0, and (b) /oy = 0.90,1.10,1.18,1.39,1.53,1.67, 1.80 and 3.0 (bottom to top).
(bottom) Mean squared displacement in the vorticity direction, Ay?(t), for the same applied stresses (indicated by the same
colors and line styles) immediately after stress application, i.e. for waiting time t, = 0.
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Fig-SM. 2. Maps of instantaneous experimental particle mobilities uim (t) for /oy =~ 1 (top) and /o, ~ 5 (bottom), from
(a,c) 0.1875 to 0.4675*° and (b,d) 0.2875F to 0.5675P. Each box has size (2.8dr)%.

II. MAPS OF INSTANTANEOUS DISPLACEMENTS

Instantaneous mobilities were calculated from 0.1875* to 0.4675™" and 0.2875" to 0.567;"", for o /oy, = 1.0 (Fig. SM-
2a,b) and o/0y = 5.0 (Fig. SM-2c,d). No regions of large instantaneous and correlated mobilities are observed.
Moreover, the maps for /o, ~ 1 and /0, ~ 5 are comparable, contrary to what was observed in the average
mobility maps (Fig. 4). This indicates that the enhanced average mobilities observed in Fig. 4 are not the result
of sudden large displacements but rather occur through the accumulation of slightly above-average displacements
of particles in a specific region which seem to occur with a slightly larger probability in the beginning (compare
Fig. SM-2c,d to Fig. 4c).

III. MOVIES OF SHEARED SUSPENSIONS

Typical movies corresponding to series of confocal microscopy images of the sheared glass, for ¢ ~ o, and o ~ 50y,
acquired in a velocity-vorticity plane about 6 mm from the center of the geometries and 30 ym from the bottom plate.
Images with 512x512 pixels, corresponding to 51 ym x 51 um, were acquired at a rate of 67 frames per second.
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Many natural and industrial processes rely on constrained transport, such as proteins moving
through cells [1-3], cell migration [4], particles confined in nanocomposite materials and gels [5-10],
and individuals in highly dense groups of humans and animals or vehicular traffic conditions [11, 12].
These are examples of motion through crowded environments, in which the host matrix may retain
some slow, glass-like dynamics. Here we investigate constrained transport in a slowly rearranging
environment using binary colloids as model system, in which the dilute small spheres act as intruders
and the large spheres form the mobile matrix, generalizing the work of Lorentz [13]. Using confocal
differential dynamic microscopy to resolve the small particles dynamics, we discover a critical size
asymmetry at which anomalous collective transport appears, manifested as a logarithmic decay of
the density autocorrelation functions. Numerical simulations elucidate the crucial role played by the
host mobility, an aspect which has not been previously considered [13-16]. We demonstrate that
the continuous creation and disruption of channels within the matrix is central for the observed
anomalous behaviour. These results, crucially depending on the presence of size-induced dynamic
asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology.

In the presence of a confining medium, the transport of objects deviates from normal diffusion. Anomalous be-
haviour, usually manifested by the presence of sub-diffusivity [17, 18], emerges as a common feature of the dynamics.
In the Lorentz gas [13, 15], the prototype model for anomalous transport, point-like intruders move in voids between
immobile, randomly-distributed particles. Their motion becomes sub-diffusive once the voids are barely intercon-
nected. When a critical density of immobile particles is reached, they percolate and the intruder becomes localized
[13]. Softness of the immobile particles or interactions among the intruders are known to modify this picture [16, 19—
22].

So far the slow movement of the host matrix has been largely ignored, despite representing realistic situations of
biological [1-4, 12, 23] and industrial interest [5-11]. To address confined transport in slowly moving matrices, here
we investigate a binary colloidal mixture of small and large hard spheres, of diameters o5 and o7, which represent
intruders and host matrix, respectively. Changing the size ratio § = 0s/01 we also modify the dynamic asymmetry of
the system. We focus on volume fractions of large particles ¢; > 0.5 approaching the glass transition, occurring at
¢] =~ 0.58. In contrast the volume fraction of the intruders ¢s is very small with zs = ¢s/¢ = 0.01. Such a system
combines the confinement of a dilute fluid of mobile intruders with the slow dynamics of the matrix (Fig. 1a). It thus
provides the simplest minimal model for the investigation of motion in crowded soft and biological matter.

Despite its conceptual simplicity, experimental investigations of the dynamics of small intruders in mixtures of
Brownian particles with large size-asymmetry are scarce. This might be due to limitations in the spatial and temporal
resolution of confocal microscopy which make it difficult to track particles that are significantly smaller than another
species of Brownian, i.e. at most micron-sized, particles. To overcome these limitations, we keep the selectivity
of fluorescent labelling (Fig.1b), which allows us to separately determine the small and large particles. However,
instead of tracking we employ the recent Differential Dynamic Microscopy (DDM) technique [24-26]. This is based
on the time correlation in Fourier space of the difference between images separated by a time delay At (Fig.1c) and
provides a measure of the (isotropic) collective intermediate scattering function or density autocorrelation function
f(g, At), where ¢ is the modulus of the wavevector q (Fig.1d). The decay of f(g, At) as a function of time delay At
corresponds to the loss of correlation of the particle density on a length scale determined by ¢~! within the time delay

*emanuela.zaccarelli@cnr.it
Tmarco.laurati@uni-duesseldorf.de
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FIG. 1: Illustration of the system and measurement method: (a) Schematic illustration of our system at two times ¢;
and t2 > ¢1 highlighting the trajectories (green lines) of the intruders (red beads) in voids and between voids made possible
due to the mobility of the matrix particles. (b) An exemplary confocal microscopy image of a mixture with § = 0.18 and ¢ =
0.58 in which (left) both particles and (right) only the small particles are shown. (c) Image differences at different delay times
At are Fourier transformed to give 2D Fourier power spectra for different A¢. (d) After azimuthal averaging and additional
treatment the intermediate scattering function f(q, At) is obtained.

At. The decay time is therefore related to the characteristic time of the particle motions on the length scale ¢~ '.

Approaches similar to DDM, like fluorescence correlation spectroscopy, do not provide information on the probed
length scale. This information is crucial to investigate the effect on the dynamics of the size of the voids in which
the small particles move. The function f(g, At) can also be obtained by dynamic light scattering, which, however,
does not allow us to distinguish the two species by fluorescent labeling. We also study the same system by mode
coupling theory of the glass transition (MCT) and, both in the case of mobile and immobile matrix particles, by
numerical simulations, complementing the experimental results and providing insights on the underlying microscopic
mechanisms.

Fig. 2a-d shows the measured collective intermediate scattering functions f(g, At) of the small particles for size
ratios § = 0.18 (Fig.2a,c) and ¢ = 0.28 (Fig.2 b,d) for different ¢ and ¢q. For § = 0.18 and all ¢ and ¢, f(q, At) vs.
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FIG. 2: Dynamics of the intruders as observed in experiments and simulations: Intermediate scattering functions
f(q, At) (a~h) and mean-squared displacements (A72/0?) (i-j) as a function of delay time At, describing the dynamics of small
spheres in binary mixtures with size ratios § below (left) and around (right) the onset of anomalous dynamics, for different
magnitudes of the scattering vector ¢ and total volume fraction ¢ (as indicated).

At shows an initial decay, followed by a ¢-dependent intermediate plateau, and eventually a decay to zero at longer
times (Fig.2a). The initial decay can be associated with the Brownian motion of small particles within the voids of
the large particles matrix. It becomes increasingly slower for increasing ¢ (Fig.2a) and decreasing ¢, which means
increasing length scale (Fig.2c). The intermediate plateau indicates the dynamical arrest of the collective dynamics,
i.e. of density fluctuations, and hence the absence of diffusion on the length scale determined by ¢~'. The height of
the plateau increases progressively with increasing ¢, similarly to the scenario in which a percolation-type transition



is approached [19, 27], and indicates that voids become smaller and particles are increasingly localised [28]. The final
decay to zero of f(gq, At) shows that particles are still able to diffuse at long times. For a larger size ratio, § = 0.28, and
comparable ¢ values, a completely different scenario appears. Beyond ¢ ~ 0.60, f(q, At) shows remarkable anomalous
dynamics, manifested in an extended logarithmic decay over three decades in time. This intriguing behavior is mostly
visible at ¢ 2 0.60 and qo; = 3.5, i.e. when probing a length scale of about 20, (Fig.2b), which is comparable to the
size of the matrix particles.

The experimental findings are confirmed by simulations. For é = 0.20 no anomalous behavior of the small particles
is detected in the collective f(q, At) (Fig.2e,g) and in the self f*¢'f (g, At) correlation functions (Supplementary, Fig.
S1). Note that for § = 0.20, f(g, At) displays a two step-relaxation and the presence of localisation (Fig.2e,g),
which is absent in f*¢!/(q, At). Also the mean squared displacements (MSD) (Ar?) = (|7(t) — #(0)|?), with 7(t) the
position of a particle at time ¢, show almost no localisation at all ¢ (Fig.2i). This decoupling between collective
(f(q, At)) and self dynamics (f*¢!/ (¢, At), MSD) originates from the glassy environment in which the intruders move.
Correlated motions of a group of intruders distributed within the matrix are more influenced by the slow dynamics of
the matrix particles than uncorrelated single particle motions, which are mostly sensitive to the local structure of the
voids [19, 29]. For ¢ = 0.35 we find the emergence of logarithmic anomalous relaxations of f(g, At) (Fig. 2fh) and
f°¢¥ (q, At) (Supplementary, Fig.S1), for comparable ¢ as in the experiments. Additional simulations for § = 0.30
and § = 0.40 also show a logarithmic decay over a smaller time window (Supplementary, Figs. S1,52). Furthermore,
for § = 0.35 and ¢ = 0.60 the MSD displays a clear sub-diffusive behavior, i.e. (Ar?) ~ t* with a < 1 (Fig. 2j).
Finally, for 6 = 0.5, f(q, At) and f*¢'/(q, At) show a two-step decay and the MSD a localisation plateau at large ¢
(Supplementary, Fig. S2), consistent with a standard glass transition of the small particles. At all investigated § and
for ¢; > 0.55, the dynamics of the large particles are typical of glassy states and within the investigated time window
are indicating localisation and motion within nearest neighbour cages of approximate size 0.107 (Supplementary, Fig.
S3).

These results suggest the existence of a critical size ratio . >~ 0.35 at which pronounced anomalous dynamics mark
the transition from a diffusive to a glassy regime of the small particles moving in the large particles matrix. The &,
and ¢ values where this transition is observed are slightly smaller in the experiments than in the simulations. This
is attributed to the fact that in the experiments small particles are polydisperse, while in the simulations they are
monodisperse. Polydispersity is expected to affect the transition since the average size particles might still be able to
diffuse through the void spaces in the matrix, whereas the largest particles of the size distribution might no longer
be able to diffuse through them. The crossover observed at J. is analogous to the transition from a diffusive to a
localized state in the Lorentz gas. However, the excluded volume of the intruder generates a coupling with the host
matrix and, due to the mobility of the matrix, also between intruders in different voids, mutating localization into a
glass transition due to the (slow) mobility of the matrix particles. Although this is apparently similar to intruders in
a fixed matrix [16, 19, 20], the logarithmic decay of f(g, At) stands out as a novel feature.

On the basis of mode coupling theory (MCT), the appearance of logarithmic decays in f(g, At) [30-32] is usually
attributed to competing collective arrest mechanisms, like caging and bonding, and to higher-order glass transition
singularities [29, 33-35]. We solved MCT equations for a binary mixture of hard spheres and x5 = 0.01. The resulting
correlators f(q, At) for a range of packing fractions around the MCT glass transition, ¢, ~ 0.516 and § = 0.20 and
0.35, are shown in Fig. 3. No clear sign of logarithmic decay of f(q, At) is found for these states in MCT: while
an approximate logarithmic dependence of the decay is observed at § = 0.35, ¢ = 0.51 and qo; = 3.4, this extends
over an interval of times much shorter than in experiments and simulations. In addition, upon further increasing
¢ the logarithmic dependence does not take over, but instead a two-step decay is found, followed by the arrest of
the dynamics (Supplementary, Fig. S6). Indeed higher-order singularities are not present in this region of ¢ and
values [29]. On the other hand, the MSD obtained from MCT shows the qualitative signatures found in simulations:
for 6 = 0.20 < 6., the long-time diffusion barely slows down with increasing ¢, indicating a partially frozen glass in
which the small particles are mobile. For é = 0.35 ~ d., anomalous sub-diffusion is observed, indicating that the
glass-transition of the large particles and the localization transition of the small particles are close to each other.
Thus, the appearance of approximately logarithmic decay in Fig. 3 could be a signal of the transition from coupled
dynamics of the two species at large § to decoupled dynamics at small 4.

A direct visualisation of small particle locations shows that the transition from diffusive dynamics at small § to
localised dynamics at large ¢ observed in experiments, simulations and theory is associated, similarly to the Lorentz
gas, with the transition from percolating to non-percolating voids within the matrix. However, a static picture of
the void geometry cannot describe this transition, because the evolution of the void space involves a second timescale
to (Fig. la, right) associated with the mobility of the matrix. To analyse the dynamic rearrangements of the void
structure, we monitor the evolution of the position of the small particles which explore this evolving structure.
Accordingly, in Fig. 4a,b we show superpositions of small particle locations in 2D time series of confocal images over
a long total observation time t?‘p = 297 s, at which f(g, At) for § = 0.18 shows a decay of correlations, while f(g, At)
for § = 0.28 is in the logarithmic regime. For § = 0.18 we find that, within the observation time, small particles
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FIG. 3: Dynamics of the intruders as predicted by MCT: Intermediate scattering functions f(gq, At) (top, middle) and
mean-squared displacements (Ar?/of) (bottom) describing the dynamics of small spheres in binary mixtures with size ratios
delta below (left) and around (right) the onset of anomalous dynamics, for different magnitudes of the scattering vector ¢ and
total volume fraction ¢ (as indicated).

easily explore the whole space of the accessible voids which form a percolating network. In contrast, for 6 = 0.28
particles mostly explore their local environment, since voids only barely connect even at long times, allowing only a
slow, partial exploration of the available void space. Simulations provide not only particle locations but also single-
particle trajectories in three dimensions allowing a more quantitative determination of the percolation of the explored
space. Visualisations of typical small particle trajectories for a fixed observation time tj}m = 100ty (comparable to the
experiments) and three different values of § confirm the experimental features (Fig.4c): within the observation time
small particles explore a percolated space for small d, while for the critical size ratio the space is barely connected,
indicating that particles can rarely escape the local environment which is only possible due to the stochastic opening
and closing of channels between neighbouring void spaces, associated with the matrix motion on the long time scale
t2. In addition the simulations show that for even larger § the explored space is disconnected. To quantify these
observations we calculate the size distribution n(s) of the space s explored by small particles within a certain time
interval, as explained in Methods. The results are shown in Fig.4d for different § values for an observation time equal

to t;}im. This time corresponds to the interval over which the cluster size distribution of the explored space for .

is close to percolation, as indicated by the power-law dependence n(s) ~ s~21 consistent with random percolation

predictions [36]. Percolation at tj}m for §. is also indicated, in a finite-size system, by the maximum of the average
size of finite-size clusters (excluding percolating clusters, calculated as explained in Methods) L. as a function of
time (Fig.4e). For the other size ratios instead L. is very small at #3™. At small § this is due to the fact that
particles can easily move through channels connecting voids, and thus the explored space quickly associates into a
percolating cluster. On the other hand, for large J the creation of channels that allow the small particles to move
between neighbouring void spaces is rare, and thus percolation of the explored space does not occur at tj}m and only
voids corresponding to the size of monomers, dimers and few-mers are observed. This analysis reveals very different
timescales at which the explored space percolates at different 6. These timescales depend, besides §, on the timescale
to of the evolution of the void space, associated with the thermal motion of the matrix particles: yet this analysis is
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FIG. 4: Illustration of the space explored by small particles during their motions: (a-b) Overlay of small particle
positions at different times (colour coded from blue, corresponding to ;" = 0 s to red, corresponding to ¢ = 297 s with
time steps of 33 s), obtained by particle tracking applied to 2D confocal microscopy images, for ¢ = 0.60 and (a) § = 0.18,
(b) 6 = 0.28. (c) Positions of ten small particles (distinguished by different colours) for (left) 6 = 0.2, (middle) § = 0.35, and
(right) 6 = 0.5, for a fixed total time of the trajectories ¢t3™ = 100to, comparable to the experiments r(d) Distribution n(s)
(normalized by the number of small particles N;) of the size s of the space explored by small particles, evaluated within a fixed
time interval t?m = 100to. For § = 0.35 data are consistent with a power-law dependence n(s) ~ s~2'9 consistent with random
percolation (dashed line), while for 6 = 0.20 all particles belong to the same cluster. (e) Average size L. of finite clusters as a
function of time, for different ¢, as indicated. The maximum in each curve signals the onset of percolation.

not offering substantial evidence that this mobility of the matrix is causing the logarithmic decays of the correlators
observed at ..

To go one step further and link the residual mobility of the matrix particles with the anomalous logarithmic decays,
we perform additional simulations (for ¢ = 0.62) for immobile matrix particles and compare the dynamics of the
intruders with the case of a mobile matrix. When the large particles are immobile (Fig. 5a), the MSD shows a
sub-diffusive regime (MSD~ t%) followed by diffusion at long times (upward curvature) or localization (downward
curvature), depending on 0. The crossover between these two long time behaviors takes place at a critical size ratio
Simm ., 0.275 where the MSD remains subdiffusive also at long times [18]. The value of . is smaller for the simulation
with immobile large particles. This finding is consistent with the opening of channels as a consequence of the thermal
motion of the matrix particles. In the case of mobile matrix particles localisation is never observed (Fig. 5b): even
for large 4, the residual motion of the matrix allows the small particles to move and hence their MSD increases at
long times. Furthermore, the subdiffusive regime is only observed for § < §™™ and thus in a smaller range than
for mobile particles. This is consistent with the opening of channels as a consequence of the thermal motion of the
matrix particles, which allows larger particles to move between voids. We also find that f*¢/f(q, At) calculated for
the case of an immobile matrix displays a power-law dependence on time extending for several decades (Fig. 5c¢), in
agreement with the Lorentz gas model [37], while the collective f(g, At) displays neither a power-law nor a logarithmic
dependence (Supplementary, Fig. S4). In the case of a mobile matrix, however, power law behaviour is not observed
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dashed lines) highlighting the power-law dependence (dot-dashed line) in the immobile case.

but, close to ., a logarithmic dependence is found. Thus, thermal motion of the matrix particles gives rise to the
logarithmic decay, a novel type of dynamics which does not occur in the Lorentz model.

Our combined experimental, simulation and theoretical study shows that dynamics of intruders in a mobile crowded
environment requires a description beyond the classical Lorentz gas model. The novel application of the confocal DDM
technique to concentrated binary colloidal mixtures allows us to investigate the collective dynamics of intruders in a
mobile matrix, revealing extended anomalous dynamics for specific values of the size asymmetry and of the probed
length scale. While the Lorentz model predicts a power-law behavior, which is typical for systems close to a percolation
transition, in the case of a mobile matrix we observe a logarithmic decay of the collective and self density fluctuations
over at least three decades in time, at length scales comparable to the size of the matrix particles. This logarithmic
decay marks the transition between a diffusive behaviour of intruders in a glassy medium for small size ratios § < .,
where transient localization is due to the excluded volume of the mobile matrix, and glassy dynamics of the intruders
at large size ratios 6 > ., due to crowding. Our results thus show that both percolation and glassy dynamics have
to be considered. By comparing mobile and immobile matrix environments, we demonstrate that the dynamics of
the small particles is profoundly altered, in a qualitative way, by the continuous evolution of channels in the mobile
matrix, due to the thermal motion of large particles. A mobile matrix corresponds to an environment in which small
intruders move in many real systems and applications, like in glasses, nanocomposite materials, chromatography,
catalysis, oil recovery, drug delivery or cell signaling, cell interiors, human and animal crowds and vehicular traffic.
We thus expect that our findings will inspire the development of a more realistic description of these situations.



Methods

Materials We investigated dispersions of sterically stabilized PMMA spheres of diameters o,y = 3.10 pm
(polydispersity 0.07) or oy = 1.98 pm (polydispersity 0.07) mixed with spheres of diameter oy = 0.56 pm
(polydispersity 0.13) (fluorescently labeled with nitrobenzoxadiazole (NBD)), in a cis-decalin/cycloheptyl-bromide
mixture which closely matches their density and refractive index. The size ratio of the mixtures is 6 = 0.18 (o))
and § = 0.28 (o} ), respectively. After adding salt (tetrabutylammoniumchloride), this system presents hard-sphere
like interactions [38, 39]. A sediment of the large spheres with ¢ = 0.65 or of the small spheres with ¢ = 0.67, as
estimated from comparison with numerical simulations and experiments [40, 41], is diluted to obtain one-component
dispersions with desired volume fraction ¢. Following a recent study [42], the uncertainty A¢ can be as large or above
3 %. Using the nominal volume fraction ¢ of the large spheres as a reference, the volume fraction of the samples
containing the small particles are adjusted in order to obtain comparable linear viscoelastic moduli in units of the
energy density 3kgT/4mR3, where kg is the Boltzmann constant, T the temperature and R the particles’ radius, while
multiplying the frequency by the free-diffusion Brownian time 19 = 67nR3/kpT, where n = 2.2 mPas is the solvent
viscosity. In this way we obtain samples with comparable rheological properties and, according to the generalised
Stokes-Einstein relation [43], also dynamics and hence a similar location with respect to the glass transition. The
comparable dynamics but different polydispersities of the one-component samples imply slightly different ¢. Samples
with different total volume fractions and a fixed composition, namely a fraction of small particles x5 = ¢s/¢ = 0.01,
where ¢ is the volume fraction of small particles, are prepared by mixing the one-component samples.

DDM measurements Confocal microscopy images were acquired in a plane at a depth of approximately
30 um from the coverslip. Images with 512x512 pixels, corresponding to 107 um x 107 pm, were acquired
at a fast rate of 30 frames per second to follow the short-time dynamics and at a slow rate, between 0.07 and
0.33 frames per second, depending on sample, to follow the long-time dynamics. Image series were acquired
using a Nikon A1R-MP confocal scanning unit mounted on a Nikon Ti-U inverted microscope, with a 60x Nikon
Plan Apo oil immersion objective (NA = 1.40). The pixel size at this magnification is 0.21 pum x 0.21 pm.
The confocal images were acquired with the maximum pinhole size allowed by the microscope, corresponding to a
pinhole diameter of 255 ym. Time series of 10* images were acquired for 2 to 5 different volumes, depending on sample.

DDM analysis Particle movements induce fluctuations of the fluorescence intensity in the images, i(z,y,t), with
x, y the coordinates of a pixel in the image and ¢ the time at which the image was recorded. To obtain additional
information on the characteristic length scales of particle motions, i(x,y,t) can be Fourier transformed, yielding
i(q, t), with g the wave vector in Fourier space, and then differences of the Fourier transformed image intensities can
be correlated (Fig. 1c) to obtain the image structure function D(q, At):

D(q, At) = {Ji(a, t + At) —i(q, 1)[?) (1)

where () represents an ensemble average. This analysis technique is named Differential Dynamic Microscopy (DDM)
[24]. The intermediate scattering function f(q, At) (Fig. 1d) can be extracted from the image structure function:

D(q, At) = A(q)[1 - f(q, At)] + B(q) (2)

with A(q) = N|K(¢)|2S(q), where N is the number of particles in the observed volume, K (g) is the Fourier transform
of the Point-Spread Function of the microscope, S(q) is the static structure factor of the system, and B(g) accounts
for the camera noise. The inverse of the wave vector ¢ determines the length scale over which the particle dynamics
are probed. Thus f(q, At) is obtained, similarly to dynamic light scattering (DLS)[44], but for the present system
the advantage of DDM over DLS is that fluctuations of the incoherent fluorescence signal can be correlated, a
possibility which is excluded by the requirement of coherence of light in DLS. Furthermore, use of a confocal
microscope drastically reduces the amount of background fluorescence of the measurements, significantly improving
the determination of f(q,At). The effect of particles moving in and out of the observation plane on f(q, At) was
found to be negligible for all samples, as determined by the g-dependence of the relaxation times of the initial decay
of f(q, At), where no plateau at small q values was observed [25, 45].

Particle Localization Coordinates of the small particles were extracted from time series of 2-dimensional images
using standard particle localization routines based on the centroiding technique [46]. Only the particle positions at
each time could be determined, not the full trajectories. Indeed the displacement of small particles during the time
delay At between two successive frames is comparable or larger than their diameter, which implies that identifying
particles after a At becomes too uncertain.



Simulations We perform event-driven Molecular Dynamics simulations[47] in the NVT ensemble in a cubic
box with periodic boundary conditions for binary mixtures of hard spheres, of which the large components are 7%
polydisperse by a discrete Gaussian distribution[48] and the small ones are monodisperse. For each studied § we vary
the total number of particles in the range of a few thousands. The number of small particles thus varies from 1980 for
0 = 0.2 to 292 for § = 0.5. Mass and length are measured in units of particle mass m, average large particle diameter
o], whereas time is in units of ty = 4/ mal2 /KT, where kp is the Boltzmann constant and T the temperature. For
the simulations with immobile hard spheres, after equilibration of the mixture, we freeze the large particles only. To
roughly estimate the critical size ratio which demarcates the transition between diffusive and localized states, we
averaged results over ten different matrix realizations.

Mode Coupling Theory The equations determining f(q,t) and (Ar2(t)) within MCT were solved for a binary
mixture of hard spheres within the Percus-Yevick approximation for the static structure; for details on the theory
and the numerical procedure, see Ref. [29]. The f(q, At) were obtained using a wave-number grid of equidistant steps
Aq = 0.4/01, with large-g cutoff go; = 400. Brownian dynamics is assumed with the short-time diffusion coefficients
following the Stokes-Einstein relation; the diffusion coefficient of the large particles sets the unit of time 9. In the
calculations, the total packing fraction ¢ is varied, keeping zs = ¢s/¢ = 0.01 fixed.

Calculation of the size distribution of the explored space To evaluate the distribution of space sampled by
the small particles during time we employ the following procedure.

1. We generate a sequence of N, configurations saved at equally spaced times ¢; (with ¢ = 1... N.) within a given
time window ¢x,. The time interval At, between two successive configurations, i.e. At, =t;41 —t; is chosen in
such a way that (Ar2(At.))/o% = 0.5.

2. We overlap all N, configurations and perform a cluster size analysis according to the following criteria: (i) the
same particle at different times ¢; belong to the same cluster; (ii) if two particles overlap, they belong to the
same cluster; (iii) the size s of a cluster is defined as the number of distinct particles belonging to the same
cluster (running from one to the total number of small particles)

To improve statistics we average the cluster size distribution n(s) over a set of at least 10 independent groups of
N, configurations. The average size of finite clusters is calculated as L. = Y s?n(s)/ > sn(s), excluding percolating
clusters.
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Additional Simulation data

Self correlators

The self intermediate scattering functions f*¢/ (¢, At) are reported in Fig.S1 to complement the data of the collective
intermediate scattering function in the manuscript. It is evident that for § = 0.20 (Fig.S1(a)) the self dynamics of
large and small particles are completely decoupled; f*°!/ (g, At) for the small particles fully decay to zero on a much
shorter timescale than those for larger particles. In addition, the self dynamics is also decoupled from the collective
dynamics for small particles, similarly to early predictions by Bosse and Kaneko[1]. This confirms the scenario that
small particles are fully diffusive within the voids of the large particles at all explored ¢ (up to ¢ = 0.67, not shown).
For 6 = 0.35 (Fig.S1(b)), f*¢'f(q, At) for small particles show a logarithmic decay similarly to the collective ones.
Moreover, the self dynamics of the small and large particles starts to couple, as the logarithmic decay extends over
timescales comparable to the large particle relaxation time. Finally, for § = 0.50 (Fig.S1(c)), small and large particles
are fully coupled, both exhibiting a standard (and almost simultaneous) glass transition, with no sign of logarithmic
dynamics.

FIG. S1: Self intermediate scattering functions f*¢'/ (g, At) for large (dashed lines) and small (full lines) particles calculated in
simulations for go; = 3.5 and different ¢ (as indicated) at § = 0.20 (a), § = 0.35 (b) and § = 0.50 (c).



Dependence on ¢

In the manuscript we have shown that there exists a critical size ratio 6. = 0.35 above which, for ¢ 2 0.60, an
enhanced logarithmic decay of the correlators is observed, which extends over 3 decades. Here we complement these
results by reporting the collective density auto-correlation functions for other values of §. In particular, for § = 0.30
(Fig. S2(a)) we find that the correlation function starts to develop an incipient logarithmic behavior for a limited
time window at the highest studied ¢; for § = 0.40 (Fig. S2(b)) we see quite clearly an intermediate time regime
of logarithmic decay for about two decades, which is followed at long times by a standard (stretched exponential)
final decay. Finally for § = 0.50 (Fig. S2(c)) there is no evidence of any logarithmic decay and a standard two-step
behavior characteristic for concentrated suspensions is recovered, as also seen in the MSD (Fig. S2(d)).
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FIG. S2: Collective intermediate scattering functions f(q, At) for the small particles calculated for fixed go1 ~ 3.5 and different
¢ (as indicated) for § = 0.30 (a), 6 = 0.40 (b) and § = 0.50 (c); MSD for the small particles for § = 0.50, and different ¢ (as
indicated) (d).



Large particle dynamics

The small particle dynamics display a dramatic change of behaviour at the critical size ratio, which can be
associated with changes in the mechanism of arrest and the transition from caging at large § to localisation at small
0, related to the decoupling of the dynamics of the two species. On the other hand the arrest mechanism of the large
particles, caging by other large particles, is not significantly affected by the presence of the small fraction, zs = 0.01,
of small particles, irrespective of size ratio. As an example, Fig.S3(a) shows that large particles at d. = 0.35, where
the small particles show anomalous dynamics, approach a standard glass transition upon increasing ¢, characterised
by a typical two-step decay. Furthermore, Fig.S3(b) and (c) show that, upon changing J, the localisation length, i.e.
the cage size, does not change significantly, as evident from the plateau height of both the MSDs (~ 0.10}) and the
density correlators. The cage though becomes more mobile with decreasing §, as shown by the faster dynamics at
long times, possibly as a consequence of the fact that at small 6 the small particles do not hinder the large particle
movements due to their small size and large mobility.
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FIG. S3: (a) Collective intermediate scattering functions f(q, At) for the large particles calculated in the simulations for

0 = 0.35, qo1 ~ 3.5 and different ¢ (as indicated); f(q, At) for go1 ~ 3.5 (b) and large particles MSD (c), calculated for ¢ = 0.62
and different values of § (as indicated).



Frozen vs. mobile matrix of large particles

Here we want to compare simulations of a fully mobile binary mixture of hard spheres and one where the large
particles are immobile. For the latter situation, quantitatively accurate results can only be obtained when one considers
a large system size and also performs an average over several matrix realizations, as done in previous works [2—4].
However, our aim is only to provide a qualitative comparison with the mobile case, for which our approach, based on
a single realization for a system size of O(103) particles, is sufficient, as indicated by the fact that the MSD for the

immobile matrix case reported in Fig.4(a) displays the correct behaviour with a critical exponent compatible with
the analytical predictions|[4].

0

10" P 1oy
(b)
0.8 B
3 S 3 [o-o062 %
self, e S o X
:3 —_— (A0 uon“\\ o 0.6 fé\
% o'k — f(qA SN g k™ o, ° >
= o0 f(q.At) CR = | @An8=025 oy 2
<, ’ 1S G 04700 f(qAn 8-025
) 0, ) — f(qA1) 8=0.30 _
l o = e MgAY 5030 Ces el ]
0af 1 @Ay E
: *=* f(q,At) 8=0.30 08y, "a 0,
$=0.62,8=0.25, qo, =43 ES oo felf{q At) 5=0.30 ‘&g:guq (q.A0) 0=0.62
102 bl ! ! 1 L Y ! ! ! 10056 i 001 I 1 | 1 i
10% 10" 10’ 10' 10° 10° 10* 10° 10" 10 10' 10° 10° 10* 107 10" 10’ 10' 10° 10’ 10*
Att, At/ty At

FIG. S4: (a) Collective (full curve), self (dashed curve) and scaled f(q, At) (see text, circles) intermediate scattering functions

for ¢ = 0.62, 6 = 0.25 and go1 ~ 4.3 in log-log plot; (b) collective (full curve), self (dashed curve) and scaled f(g, At) (symbols)
for ¢ = 0.62 and & = 0.25,q01 ~ 4.3 (black), 6 = 0.30,go1 ~ 3.7 (red) in semi-log plot; (c) Same data as in Fig.2h of the
manuscript, but in log-log scale instead of semi-log scale: collective correlators for ¢ = 0.62 for various wavevectors.

Fig. 5(c) shows that the small particle self correlators for the immobile matrix case display (at intermediate time)
a power-law behavior. It is to be noted that these correlators, even below the critical size ratio ~ 0.3, display a
long-time finite value, i.e. a residual non-ergodicity. Indeed, different from studies on the Lorentz gas [5], we include
among the intruders small particles trapped in finite size voids, i.e. not pertaining to the percolating cluster of voids,
to make the analogy with the fully mobile case. The collective correlators, for the situation where the self ones
show a power-law dependence on time, do not present the same behavior (Fig.S4(a)). Nevertheless, defining a scaled
correlator f(q, At) = (f(q, At) — f(g,00))/(1 — f(q,0)), which allows us to remove the contribution of the frozen-in
component to the correlation function [6], we see that a power-law behavior seems to emerge also for the collective
correlators, even though our current numerical resolution is not good enough to determine this clearly. However,
the important point is that in semi-log plot (Fig.S4(b)) all correlators (self, collective and scaled) for frozen matrix
conditions do not show a logarithmic decay in any time window or wavevector. Finally, in Fig.S4(c) the correlators for
the mobile matrix at the critical size ratio are reported in log-log plot showing that at qo; = 3.5, where the anomalous
logarithmic behavior is observed, a power-law decay cannot describe the data. It is interesting to note that at a larger
value of qo; = 7.5 the data might approach this behavior at long times, even though within a two-step decay. The
power-law exponent of about 0.5 is also close to the Lorentz gas (0.527) and to MCT predictions. This suggests that
at the smaller length scales probed at larger q values, the particles mainly see the local environment and localisation,
while only at smaller q values the network structure of voids is explored and leads to anomalous behavior. Note
though that the self correlators significantly deviate from power-law behavior. In summary, these results complement
those provided in the manuscript and show that small particles moving in a frozen matrix behave very differently
from those moving in a glassy but mobile matrix of large particles.



Additional MCT data
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FIG. S5: Left: self-intermediate scattering functions f*¢*(q, At) for the small particles (solid lines) and the large particles
(dashed lines), for ¢ = 0.515, go1 = 3.4 and various size ratios ¢, as indicated (increasing in the direction of the arrows). Right:
corresponding mean-squared displacements (MSD).

§=0.35,q0,=3.4 5=0.50,q0,=3.4 N\ .
S 0 ! ! ! 0. ! ! ! ! bl
3 = 5 5 ; 5 03 = T 0 ] g 5 4 05 = 5 0 ] T g

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10° 10 10

Atty Att, Aty

\
§=0.20,q0,=34 \\
L L

FIG. S6: Self-intermediate scattering functions f*¢/ (¢, At) of the small (solid lines) and the large particles (dashed lines), for
go1 = 3.4 and various packing fractions ¢, as indicated. Left: size ratio § = 0.2; middle: § = 0.35; right: 6 = 0.5.

Since the relative volume fraction of small particles is small, the main dynamical arrest mechanism for the large
particles (caging) is not qualitatively affected by changing the size ratio . This is captured by MCT, see Fig. S5,
where the self-intermediate scattering functions are shown for various § at fixed packing fraction, for both the large
and the small particles, together with the corresponding mean-squared displacements. At all size ratios, the large
particles indicate caging on the same length scale, indicated by the plateau of the MSD corresponing to a localization
length of about 10% of o1 (Lindemann criterion). At the same time, the dynamics of the small particles changes
qualitatively, from caged at large J, to diffusive at § = 0.2, with a localization length that grows continuously as ¢ is
decreased.

The difference in dynamical behavior of the small particles at the glass transition, depending on §, is elucidated
by Fig. S6, where MCT predictions corresponding to the simulation data shown in Fig. S2 are shown. The theory
qualitatively captures the change from localization-type behavior and a partially frozen glass at § = 0.2, to an ordinary
glass transition showing caging for both species at § = 0.5.
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A. Appendix: Experimental

methods

A.l1. Rheology

The study of the flow behaviour of materials, including complex fluids, is a broad re-
search field summarized as rheology. Classically, materials are classified as elastic solids

and viscous fluids. For viscous liquids the stokes relation,

o=y (A.1)

describes the the proportionality of stress o, or force per area, and shear rate + via the

proportionality factor 7, the viscosity. Similarly, for elastic solids Hookes’ law states
o= Gy, (A.2)

where the constant G is called shear modulus and  is the strain or deformation. Ideally
elastic solids return to their initial shape after removing the force causing the deforma-
tion. In contrast to that, an ideal viscous liquid keeps the new form after removing the
force. The ideal cases of a solid and a liquid may be modeled by mechanical systems.
The ideal solid can be represented as a completely elastic spring, whereas the ideal liquid
corresponds to a purely viscous damper. The visco-elastic behavior of complex fluids
may be represented by a combination of these two mechanical systems. Spring and
damper may be connected sequentially (Maxwell model) or in parallel (Kelvin model)
to give a qualitative description of viscoelasticity. Obviously these simplified mechanical
toy models are not capable of reflecting any quantitative behavior of real complex fluids.

The resistance to shear, or viscosity, is one of the properties characterizing a fluid.
Different kinds of instruments for viscosity measurements have been developed over the
centuries, e.g. falling ball, U-tube, or the oscillating piston viscometer. The common
feature of all these instruments is that the measurement of viscosity occurs under only

one flow condition. Nevertheless, the viscosity of Newtonian fluids, like water and thin
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motor oil, can be measured correctly. Newtonian fluids are characterized by a constant
viscosity, i.e. by a direct proportionality between shear stress and shear rate.

Complex fluids, including biological fluids like blood and many materials used in ap-
plications, show a non-Newtonian behavior. The viscosity is no longer a constant value,
but depends on the shear conditions, in particular the shear rate. This introduces a non-
linearity into the system response. Most polymer solutions and colloidal dispersions are
shear thinning, i.e. a decrease of viscosity for increasing shear rate. The liquification of
material is due to the breaking of internal structures, like stretching and disentangle-
ment of polymers in the solution. The opposite behavior is shear thickening, where the
viscosity increases with increasing shear rate. A famous example for such materials is
corn starch dissolved in water. The study of non-linear phenomena requires a number
of parameters to be controlled, set and measured. That led to the development of such
instrument as rheometers.

An additional point in the study of non-linear phenomena is the flow field. Complex
flow fields result in complex fluid mechanics. The interaction between the flow field and
non-linear fluid becomes sophisticated and strongly nonlinear. In order to decouple ma-
terial properties and fluid mechanics, rheological measurements are typically performed
using simple, well defined flow fields. One of the most simple geometries used in rheol-
ogy is a combination of two parallel plates, where one plate is moved with velocity v by
applying a force F'. In the gap of width h between fixed and moving plate, a constant

shear profile is generated. The resulting shear rate * is

y=v/h. (A.3)
The ratio between required force and surface area A of the plate is the stress o,

o= F/A. (A.4)

In the plate-plate geometry one plate rotates above the second, fixed, plate. The ve-
locity, and consequently the shear rate, increases from zero in in the center to maximum
value on the rim. To avoid this, a cone-plate geometry is used, the gap width h increases
with distance from the center. If properly adjusted, the ratio v/h becomes constant.
The shear flow created in cone-plate geometry is homogenous and for a small cone angle
a < 4° the shear rate is given by

¥ =Q/a, (A.5)

where () is the angular velocity of the cone.

Oscillatory shear can be easily achieved by applying a sinusoidal angular velocity
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Q(t) = Qg sin(wt), with frequency w. The strain amplitude 7, imposed on the sample is

given by
. Qo/w

tan o

7o (A.6)

For small strain amplitudes 7y < 1 the linear viscoelastic regime is observed. In this
regime the deformations are so small that the structure distortions caused by shear are
reversible. The shear stress o(t) and the strain «(¢) are sinusoidal and proportional to

each other, but not necessarily in phase. The shear stress is given by
o(t) = {G (w) sin(wt) + G (w) cos(wt)}, (A7)

where the term containing G’ is in phase with the strain and the term with G” is in
phase with the shear rate. G’ represents the storage of energy, a typical feature of a
solid, and is called storage modulus. The loss modulus G” describes the dissipation of
the energy, typical for liquids. The structures at small and large scales can be probed

by application of high and low frequencies, respectively.

For large oscillation amplitudes the response becomes nonlinear and the stress contains

contributions of higher harmonics of w,
o(t) = Z{G;(w) sin(nwt) + G (w) cos(nwt) }. (A.8)

In Fourier-Transform rheology the spectra of o(t) are analyzed for signals at higher

harmonics of w. Usually, the contributions of additional Harmonics ( n > 1) is neglected.

The non-linear regime can be studied in rotational measurements, where a constant
stress (creep test) or a constant shear rate (step rate test) is applied. By applying a
constant shear rate in a step rate experiment, the evolution of stress as a function of
time or strain is measured. Compared to this, a creep experiment is performed at a
constant shear stress and the deformation as a function of time is measured. For these
kinds of experiments it is important to use suitable rheometers. A distinction is made
between stress- and strain-controlled rheometres. In principle, both experiments can be
performed on the same rheometer. But in this case it should be taken into account that
the use of an alternative measuring mode (for example application of constant shear
stress in a strain-controlled rheometer) leads to a long regulation time until the target

value of stress or strain is achieved.
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A.2. Confocal Microscopy

Microscopic structure and local dynamics can be studied by using microscopy. The use
of confocal microscopy 2 reduces a number of problems caused by multiple scattering in
classical microscopy, like the resolution in z-direction. Confocal microscopy is based on
two ideas. First, only a small volume of the sample is illuminated. Secondly, out-of-focus
light is rejected by placing a pinhole in the conjugate focal plane. Intense illumination
of only a small volume is achieved via laser light which is guided to the observation
volume by a pair of mirrors. Through the movement of these mirrors, the x-y-position
of the illuminated volume can be changed and the sample scanned point by point. The
light coming from only a thin sample layer is collected, which increases the resolution
in the x-y-plane as well as in z-direction. The illumination of a fluorescent sample leads
to emission of light by fluorescent substances, which have previously been attached to
the particle®*. Of course, the laser light has to match the absorption spectrum of the
fluorophores. The wavelength of the emitted light is longer than the laser wavelength °.
A part of the emitted light passes through the objective, is redirected by mirrors and
finally passes through a dichroic mirror and the pinhole to be collected by the detector,
a photomultiplier tube. A 2D image acquired by scanning is reconstructed by the
computer. A number of 2D images, collected at different focal depths, constitude a 3D
stack. The resolution of a confocal microscope is limited by diffraction. The limit of
resolution amounts to around 200nm and slightly depends on the wavelength of the
laser source and the numerical aperture of the objective. Direct imaging of colloids is

possible in the upper range of colloidal length.

One of the main advantages of confocal microscopy is the 3D resolution of single
particles even at high concentration and in the bulk, if the refractive index is matched.
On the other hand, the aquisition of images by scanning through the volume limits the

acquisition speed.

From confocal microscopy images the particle positions and trajectories can be ex-
tracted using particle tracking algorithms®. To characterize the local microstructure of
the system we calculate the radial distribution function g(r) (or pair correlation func-
tion) from the obtained data. The function gives the conditional probability of finding
a center of a particle at a distance r from a given particle center, relative to the proba-
bility in an ideal gas. Determining trajectories of particles, i.e. measuring the position
of particle at different times, allows us to calculate the squared displacement averaged

over all particles or(t)2.
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Figure A.1.: Schematic representation of the central part of a confocal rheoscope. The cone ge-
ometry is connected to the rheometer and can be rotated. The bottom part of the
geometry is a thin cover slip. Note that the cover slip is placed on the top of a metal
plate with an imaging slit (not shown in the Figure). The objective is the top part of
the imaging system contained in the confocal scanner. The sample is placed in-between
cone and plate geometries.

A.3. Rheoscopy

The mapping of structure and local dynamics of complex fluids to their flow properties
is one of the interesting points which brings rheology and microscopy together 7. The
microscopy of sheared colloidal systems can be studied in flow cells. In a flow cell the
complex fluid is placed between two parallel plates with a gap A much smaller that the
size of the plates. Once the two plates move relative to each other with velocity v a
linear shear profile with shear rate 4 = v/h is established® '°. Such a flow cell is then
combined with a microscope or a light scattering setup.

Also rotational shear cell combined with confocal microscopes have been developed 112
The bottom is still a plate, e.g. a thin glass cover slip, but the top geometry is now a
cone. Both, cone and plate, can be rotated independently from each other in opposite
directions. In between, at a certain height z above the bottom plane a zero velocity
plane is established. The z position of the zero velocity plane can be adjusted by chang-
ing the ratio of cone and plate rotational velocities. The advantage of imaging particles
in the zero velocity plane is that the particles stay in the field of view. On the other
hand, all types of shear cells have a common disadvantage, namely they do not measure
(at least directly) the resulting shear stress, i.e. the response of the material to the
application of the constant shear rate.

This is different for the combination of a confocal microscope and a rheometer, which
is a so called rheoscope. The setup permits simultaneous measurement of shear stress
(or other rheological quantities) during the imaging process. The most popular geome-

tries used for colloidal suspensions are plate-plate and cone-plate geometries. For the
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measurements presented in the thesis, the rheometer of the Edinburgh group with cone-
plate geometry was used. The setup is described in detail by R. Besseling et al. 3. For
the setup a stress controlled rheometer (AR200, TA instruments) is used. The space for
the imaging optics is secured by an open base construction of the rheometer. A plate
with an imaging slit is mounted on the rheometer. The top of the plate is covered with
a large circular cover slide, which builds the bottom part of the shear geometry. The
imaging is possible at different distances from the geometry center. Below the plate,
an inverted microscope is placed. The microscope is connected to the confocal scanner

(VTEye, Visitech), which allows 2D and 3D imaging of single particles during shear.

A.4. Differential Dynamic Microscopy

A.4.1. Main idea

The main idea of Differential Dynamic Microscopy (DDM) is to characterize the motion
of mesoscopic particles, such as macromolecules, colloids or bacteria due to the fluctua-
tions in the fluorescence intensity in the images caused by the variations in the particle
number density. From the time correlation of the fluorescence intensity the intermediate
scattering function (ISF), which usually acquired in light scattering, can be determined.
A detailed description and the theoretical background of this technique was described
by R. Cerbino et al.'* and others'®'®. A schematic summary of the procedure is shown
in Figure A.2. The raw data are microscope images recorded in a time loop. The images
contain the intensity distribution in the image plane I(7,t), at pixel position 7 and time
t. From these data the differential intensity correlation function (DICF)

D(q.6t) = (|1(q,t + ot) — I(q, t)[), (A.9)

can be calculated. Here 6t is a fixed time-span and (...) represents the time-average
starting at time ¢. 1(q,t) is the Fourier-transform of I(7,t), i.e. D({,t) can be interpreted
as a time averaged Fourier power-spectrum '*.

For isotropic systems, where the motion of the particles is direction independent, an
azimuthal averaging of D(q,dt) is useful. This leads a one-dimensional Fourier power-

spectrum D(q, dt), which may be written as

D(q,0t) = A(q)(1 — f(q,dt)) + B(q), (A.10)

where f(q,dt) is the intermediate scattering function. The amplitude A(q) depends on
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Figure A.2.: Schematic representation of the DDM method. From microscopy images a 2D Fourier
power spectrum is calculated. Azimuthal averaging results in the 1D Fourier power-
spectrum D(q,dt), if the system is isotropic. In the bottom plot, D(g,dt) is shown
as a function of the time delay 6t for one selected q. The line is fitted with an
exponential function, see equations (A.10) and (A.11). The parameter A(q) and B(q)
are indicated. Inset: the fit parameter 7 as a function of ¢R( R is the particle radius),

in comparison to the theoretical prediction given by 7(q) = Dod? (black line).

the imaging system and sample structure, the offset B(q) contains information on the
camera noise '>!7. In case of Brownian motion, in very dilute solutions of colloids with
volume fraction 1074, each Fourier mode decays exponentially with time. Thus, the
ISF is given by

f(q,0t) = e 2@ (A.11)

with characteristic time 7(q).

For the example in Figure A.2, we used a very dilute dispersion of colloidal hard
spheres with radius R = 0.266 nm dispersed in decalin/CHB solution. The Stokes-
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kT

Einstein relation Dy = gives a diffusion coefficient Dy = 0.33pm?/s. By using

™nr
confocal microscopy 10* images with a size 512 x 512 were taken at 30 frames per second,
resulting in a total recording time of ~ 5.5 minutes. After the procedure described
above, the DICF is determined and fitted to the function (A.10) with f(¢q) from Eq.

(A.11). The fit parameter 7(q) is consistent with the theoretical prediction given by

7(q) = =— '*"*, as shown in Figure A.2 inset.

Dyq
Dynamics of particles in dilute systems can be studied by DDM. Examples of such

systems are found in biology, e.g. solutions of bacteria or algae. From the ISF, different
quantities to characterize the dynamics of cells can be determined, e.g. distribution of

swimming speeds, amount of mobile cells or the diffusion coefficient 16:1,

A.4.2. From DICF to ISF

Complex systems can consist of particles with different size, shape or composition, where
each component behaves differently which can lead to complicated correlation functions.
The relaxation times for example may be longer than experimentally measurable and
therefore only a part of the DICF function can be obtained. According to equation
(A.10) the DICF can be converted to the ISF under the assumption that A(q) and
B(q) are known. For dilute solutions A(q) and B(q) are determined by fitting. For
concentrated and complex systems, the determination of the parameters by fitting is
impossible if only a part of the DICF function is measured (due to long, or infinitely
long relaxation time) and the fit function f(q,dt) is unknown.

To use DDM for an experimental determination of the intermediate scattering func-
tion in the case of concentrated complex systems, the parameters A(q) and B(q) are
approximated via image correlation. Figure A.3 visualizes a schematical comparison
between the DDM and the image correlation method. The temporal image correlation

results in the image correlation function, given by
10(q, 6t) = {I(q, t)I" (g, t + dt)), (A.12)

where (...) corresponds to averaging over different starting times ¢. For constant ¢ the
function IC(q, dt) is described as

IC(q,dt) = 0.5A(q) f(g,t) + 0.5B(q)dst0 + C(q), (A.13)

7

where C(q) is the background contribution'”. For confocal microscope measurements

we was found that the background contribution is negligible (not shown here). This
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D(q,dt) = <|1{q,t)-I(q,t+5t) | 2> IC(q,6t) = < I{q,t) I*(q,t+0t)>

D(q,6t)

Figure A.3.: Schematical representation of the functions obtained from Differential Dynamic Mi-
croscopy (left) and the g-dependent image correlation (right)'”. The differential inten-
sity correlation function D(q, dt) given by equation (A.9) for a fixed ¢ is an increasing
function of 0t with amplitude A and offset B (s. Eq. (A.10)). Image correlation
results in a decreasing function of §¢ (s. Eq. (A.12) and (A.13)) where additionally
the contribution of the background C'is present.

simplifies the relations for the determination of A(q) and B(q), resulting in
Alq) = 21C(q, 6tmin) (A.14)

and

where 0t,,;,, is the shortest time delay obtained in the measurements (here 1/30s).

Now, for the case of a diluted suspension, the determination of these parameters can
be done in two ways, either fitting or approximation by image correlation according to
Eq. (A.14), (A.15). The obtained results are shown in Figure A.4, demonstrating and

excellent agreement between the data obtained in these different ways.

The relation between DDM and image correlation, namely D(q,dt) = 2[IC(q,0) —
IC(q, dt)], has already been mentioned earlier °. This relation holds under the assump-
tion that IC(q,dt) decreases from IC(q,0) to 0 for 6t — oo, which implies B(q) = 0
and C(q) = 0. Under this assumption it was shown that the amplitude is given by
Alq) = 21C(q,0).
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Figure A.4.: The parameters A(q) and B(q) extracted from the fit (solid lines) and approximated
using image correlation method via Eq.(A.14) and Eq.(A.15) (crosses).

A.4.3. Applying DDM for high concentrations

To see how DDM can be used for suspensions with high concentration, we increased
the concentration from an initially diluted dispersion of colloidal particles step by step.
The particles used for these experiments are PMMA spheres of radius is R = 0.838 pm
diluted in the CHB/cis-decalin/salt mixture. From light scattering experiments we
estimate a polydispersity of about 6%. The dispersed particles behave like hard spheres
and are fluorescently marked with Nile red. For the DDM measurements the confocal
microscope Nikon AR-I-MP with a 60 x objective and numerical aperture 1.4 is used.
A series of 10* images, each with size 512x512 pixel, is collected. The wave-numbers g;

which can be uniquely resolved on an image of size N x N are

2
Ndp;y

¢ = i, 1=1,...,N/2. (A.16)
The pixel pitch dp;, = 0.423m results in a g-range from 0.029 pm™! up to 7.48 pm—'.

The recording speed is 30fps (frames per second). The series of images are analyzed
using the DDM method.

The resulting intermediate correlation functions for different g¢-values are shown in
Figure A.5 (b-d). Increasing the volume fraction of the particles results in the slowing
of the decay of f(q,dt). The exponential decay, found for diluted dispersion, becomes a
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Figure A.5.: a) Characteristic time 7 for different volume fractions ¢ as function of ¢R, where R is
the particle radius. The black line corresponds to the Stokes-Einstein prediction. b)-d)
Intermediate scattering functions f(q, dt) (symbols) and fit with stretched exponential
function (lines) for different volume fractions ¢ and at different ¢, which are marked in
a) by arrows. e) The exponent n for different ¢ as function of ¢R.
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stretched exponential given by
f(g,ot) = e /@ = p <1 (A.17)

The regime where a stretched exponential decay is found covers a broad range of volume
fractions 0.02 < ¢ < 0.36. Further increase of the concentration leads to the formation
of a localization plateau. The formation of the plateau is observed for ¢ = 0.42, where

the disparity between stretched exponential fit and f(q, t) becomes apparent.

The dependence of the exponent n on the volume fraction is shown in Figure A.5 e).
The decrease of n with increasing volume fraction indicates, as expected, the broadening
of the relaxation-time distribution. Moreover, the increase of concentration leads to the
formation of peaks in the curve n(qR). This illustrate the influence of the structure

factor.

The characteristic times 7 obtained by fitting are shown in Figure A.5 a). As expected,
for dilute dispersions the proportionality 7 ~ 1/Dyq? with Dy = 0.1042 pm? /s is found
for intermediate q. A deviation from this behavior observed for small ¢ is due to the
limited confocal slice thickness §z1%2?°. The value of the characteristic time for ¢ — 0 is
estimated to be Tpigzeqn, — 60 pm10s and is related to the time that the particles need
to diffuse out of the layer. Consequently, the thickness of the layer can be estimated as
0z = \/m = 2.5+ 0.2pm. This result is very close to the optical-thickness value
2.32um, which is provided by the software of the mocroscope. Note that the optical
thickness can be set by the size of the pinhole. To reduce the influence of the limited
0z a fully opened pinhole is beneficial. At large g-values the evolution of 7(q) becomes
affected by the structure factor. This influence is pronounced at high concentrations,

which is indicated by formation of peaks in 7(q).

The structure factor S(q) is reflected in the amplitude A(q) which is given by

A(q) = ¢P(q)S(9)T(q), (A.18)

with form factor P(q), structure factor S(g) and optical transfer function 7'(g)'2°.

According to Ref. ' the function T'(q) considers coherence of the light source, properties
of the lens and the 3D nature of the object.

In the case of a dilute solution the structure factor is equal to 1, i.e. Sp(q) = 1,
which results in A(q) = ¢P(q)T(q). The form factor P(q) of a dilute solution can be
measured in light scattering experiments, complementing the DDM measurements. For
this, the intensity I of the scattered light as a function of angle, or wave-vector ¢, is

measured. The resulting I(q) ~ P(q) continues the progression of A(q), as it is shown in
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Figure A.6.: a) Amplitude A(q) ( Eq.(A.14)) for a dilute solution (black) and intensity I(q) measured
in a light scattering experiment (blue) as a function of g. Note that I(g) was multiplited
by a constant to allow for the comparison of the data. b) Structure factor S(q) as
a function of ¢R for different particle concentrations. c¢) The normalized diffusion
coefficient D(gmaz)/ Do, where Dy is the diffusion coefficient for the dilute solution,
for different particle concentrations () obtained by DDM. (A) Long-time diffusion
coefficient of Ref.?!, (o) Ref.?2, (A) Ref.?3,

the Figure A.6 a). However, a slight shift to smaller g-values of A(q) relative to I(g) can
be observed. This shift can be associated with the contribution of the transfer function
T(q) to the amplitude A(q).

With increasing concentration, the functions P(q) and 7'(¢) remain unchanged, since
the particles and optical settings do not change. The structure factor on the other hand
deviates more and more from 1 with increasing ¢, see Figure A.6 b). The structure
factor S(q) is given by S(q) = ¢oA(q)/PAo(q), where ¢ is the volume fraction and
Ao(q) the amplitude of the dilute solution, respectively 2°. Tt should be noted that the
pinhole set for ¢ = 0.02,0.05 are smaller as for all other measurements (7.2a.u. for
¢ = 0.02,0.05 and 7.8 a.u. otherwise). This difference in the size of the pinhole results

in a deviation in the transfer function and as a consequence also in the corresponding

S(q) 15,20 .

From the DDM measurements the diffusion coefficient can be determined according to
D(qmaz) = 1/q2,,,7", With ¢a. the g-value at the maximum of S(g). Figure A.6 ¢) shows
the normalized diffusion coefficient D(gq.)/ Do for different particle concentrations,
with Dy the diffusion coefficient for the diluted solution. The dependence of D(¢maz)/ Do
on ¢ indicates a rapid decay with increasing concentration, as expected for a long-time
diffusion coefficient. The results are in good agreement with previous light scattering

measurements yielding the long-time diffusion coefficient D(¢) of hard spheres?' 23,

143

0.6



A. Appendix: Experimental methods

A.4.4. Limitations

This section brings into focus the limitations regarding the use of the DDM technique
for the study of multi-component and highly-concentrated systems. Usually if we deal
with multi-component systems we are interested in the dynamical properties of each
component in the presence of the other species. Therefore, each population of particles
should be distinguishable from the others.

One of the methods to determine the dynamical properties of dispersed particles is
light scattering. This method is based on the analysis of light which is scattered off
particle due to differences in the refractive indices of the particles and the liquid in
which they are dispersed. Consequently, to measure dynamics of only one population
of particles a variation of the refractive index is unavoidable. On the other hand, the
variation of the refractive index, i.e. changing of the dielectric constant, implies some
chemical modification and therefor also a modification of the interactions between the
particles. To avoid this, the use of fluorescence microscopy is favorable. One species
of the chemically identical particles is marked with a fluorescent marker. Moreover,
the use of different markers allows to image each particle population separately. The
illumination with light of a suitable wavelength excites the fluorescence. In this work
different setups were tested.

The epi-fluorescence setup is composed of a LED fluorescence lamp used for illumina-
tion and an Andor Neo camera for image acquisition. Dispersions of fluorescently-labeled
particles with different concentrations were studied. The increase of the particle con-
centration leads a reduction of the space in-between the spheres. Therefore more and
more spheres are in the field of view and, consequently, the amount of the emitted light
becomes larger as well. Additionally, the out-of-focus signal and the noise contribu-
tion becomes larger. At some critical concentration the intensity fluctuations due to the
changes in the local density are not distinguishable from the noise anymore. The critical

volume fraction depends on the resolution, i.e. the number of pixels per particle. Let us

discuss two examples. If we take the images at high resolution with around djix ~T.7
pixels per particle diameter d, the resolution allows to detect small intensity fluctuations
even at a concentration of ¢ ~ 0.4. At the same time however the accessible ¢-range
contains large values, which may be out of the range of interest (which is typically at
small g-values). When we study particles with a small diameter resulting in ﬁ ~ 2.3,
the critical volume is reached already at ¢ =~ 0.2. Note, that the same effect can be
achieved by an increase of d,;;. Having taken this into account, it will not be surprising,
that only very dilute suspension can be studied in the regime with d;Liz < 1. In summary,

the choice of the resolution has to be done with respect to the volume fraction of the
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dispersed particles and the g-range of interest.

The second setup is a confocal microscope Nikon AR-I-MP. The illumination source
used here is a laser. One of the main advantages of this kind of microscope is the
reduction of the out-of-focus light, due to the integrated pinhole in the conjugate focal
plane. Additionally, only a very small volume (a point) is illuminated. The full image is
now acquired trough point-by-point scanning. Such a scanning method implies several
limitations. If the particle is so fast that it moves significantly during the scan, not
the particle itself but its track is imaged. In this case, instead of speckles, bright lines
appear in the image. Also the imaging of half or part of a particle may appear, if the
particle is initially in the focus and then moves out of focus before scanning the next
line. In other words, the image obtained by scanning is not a snapshot at some time
t, but it contains already the information of the short-time dynamics. Therefore, the
choice of the particle size is limited not only by the resolution due to light diffraction,
but rather by the scanning and recording speed of the microscope.

Another factor to be taken into account is the size of the pinhole. Advantageous
for DDM is the imaging at fully opened pinholes. As discussed earlier, the size of the
pinhole determines the optical thickness, i.e. the thickness of the layer from which light
is collected. Reducing the size of the pinhole means that light from only a thin, nearly
2D sheet of the sample will be collected, resulting in a sharp image. The sharpness
of the image may be important for particle tracking, but not for DDM. Much more
important than the sharpness is the information about the density fluctuations in all
three directions.
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