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Abstract

Deutsche Zusammenfassung unter der Englischen.

In the field of quantum information theory one investigates the properties of in-
formation carriers which are subject to the laws of quantum mechanics. The
differences between quantum mechanics and the laws that govern macroscopic
information carriers lead to new opportunities and challenges in information pro-
cessing.
One of these differences is the entanglement of particles, which leads to strong
correlations of measurement outcomes. This allows the violation of so-called Bell
inequalities in quantum mechanics, which is impossible in “classical” theories. I
investigated the possible amount of violation for an important class of Bell in-
equalities. In doing so I found a simple mathematical expression for an upper
bound and studied the achievability of that bound. The approach provides a
basic understanding of the considered Bell inequalities, which allows to construct
new inequalities with interesting properties. In particular one can understand how
Bell inequalities allow to bound the dimension of a quantum system. Changing
a Bell inequality with invariant quantum value proved useful in optimizing them
with respect to the violation.
The distribution of entangled systems across large distances is achieved by send-
ing photons. However, since they are absorbed in long fibers, quantum repeater
become necessary for distances larger than approximately 200 km. Several ap-
proaches to counter the losses are known. In the long term error correction codes
are very promising. Here the information is encoded into many photons, such that
some losses can be compensated. I contributed to the analysis of this approach
by showing how it naturally generalizes to networks of quantum repeaters. The
formalism of graph states is useful in this context. A complete performance anal-
ysis of a quantum repeater contains many sources of errors and their propagation
inside the circuit. I extended this analysis compared to the literature. At the mo-
ment it is not clear which types of quantum repeaters will prevail. My comparison
of different theoretical proposals helps towards answering this question.
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In der Quanteninformationstheorie werden die Eigenschaften von Informati-
onsträgern untersucht, die den Gesetzen der Quantenmechanik folgen. Die Unter-
schiede der Quantenmechanik gegenüber den Gesetzen, die die makroskopischen
Informationsträger beherrschen, führen zu neuen Möglichkeiten, aber auch zu neu-
en Herausforderungen in der Manipulation von Information.
Ein solcher Unterschied ist die Verschränkung von Teilchen, die sich in besonders
starken Korrelationen von Messergebnissen äußert. Dadurch ist es möglich, dass
sogenannte Bell-Ungleichungen innerhalb der Quantenmechanik verletzt werden
können, was in “klassischen” Theorien nicht möglich ist. Ich habe untersucht, wie
stark diese Verletzung für eine wichtige Klasse von Bell-Ungleichungen sein kann.
Dabei habe ich einen einfachen mathematischen Ausdruck gefunden, der eine obe-
re Schranke liefert, und untersucht, wann diese Schranke erreicht werden kann.
Der Ansatz liefert ein einfaches Verständnis der Bell-Ungleichungen, was die Kon-
struktion neuer Ungleichungen mit interessanten Eigenschaften ermöglicht. Insbe-
sondere lassen sich Ungleichungen verstehen, die die Dimension eines Quantensys-
tems eingrenzen können. Die Abänderung einer Bell-Ungleichung mit invariantem
Quantenwert hat sich als vorteilhaft für die Optimierung von Bell-Ungleichungen
bezüglich der Verletzung erwiesen.
Die Verteilung von verschränkten Systemen über größere Entfernungen erfolgt
über das Senden von Lichtteilchen. Da diese jedoch von langen Glasfaserkabeln
verschluckt werden, werden für Entfernungen ab etwa 200 km Quantensignal-
verstärker nötig. Um die Verluste auszugleichen gibt es verschiedene Ansätze.
Langfristig sehr vielversprechend ist der Einsatz von Fehlerkorrekturcodes. Hier
wird die Information in viele Lichtteilchen kodiert, sodass vereinzelte Verluste
ausgeglichen werden können. Ich habe zur Analyse dieses Ansatzes beigetragen,
indem ich gezeigt habe, wie er sich in natürlicher Weise auf Netzwerke von Signal-
verstärkern erweitern lässt. Dafür hat sich der Formalismus der sogenannten Gra-
phenzustände als sehr nützlich erwiesen. Für eine möglichst vollständige Analyse
der Leistung eines Signalverstärkers müssen sowohl Fehlerquellen bei der Informa-
tionsverarbeitung als auch die Fortpflanzung der Fehler im gesamten Schaltkreis
berücksichtigt werden. Hier habe ich bestehende Ansätze erweitert. Zum jetzi-
gen Zeitpunkt ist nicht klar, welche Arten von Signalverstärkern sich durchsetzen
werden. Der von mir durchgeführte Vergleich mit verschiedenen theoretischen Vor-
schlägen für Quantensignalverstärker leistet einen Beitrag zur Beantwortung dieser
Frage.
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Preface

During the past century data processing has become a key technology of our so-
ciety, which enhances almost all parts of our lives. And it will become even more
important in the near future. This progress is driven by the development of more
powerful computers - an impressive evolution which can be described by Moore’s
famous law [Moo65]. It states that the complexity of the most cost efficient inte-
grated circuits grows exponentially. The industry is reaching 10 nm size for the
gates and plans to approach less than two nanometers in 2025 [Com13]. However,
it is clear that at some point this advancement of the technology will reach fun-
damental limits. Note that a silicon atom has an extent of approximately 0.2 nm.
Thus data processing technology is approaching a regime where classical physics
ceases to be a good description and quantum phenomena become important. One
is thus forced to consider the laws of quantum theory in the context of computa-
tion.
The physical limits on data processing technology highlight that the concept of
information depends on the physical theory, because it is necessarily stored in a
physical system. One might argue that the reverse is true, as well. The aim of
scientific theories is to predict perceptions, i.e. to describe how the information of
an observer changes. These considerations indicate that physics and information
theory are inextricably linked and motivate to shift classical information theory to
a theory of quantum information, i.e. information subject to the laws of quantum
mechanics instead of classical theories (like classical mechanics and electrodynam-
ics). My thesis is situated in this relatively new but rapidly expanding field of
physics.
There is positive motivation for research on quantum information. Richard Feyn-
man noticed that classical computers (i.e. Turing machines) cannot efficiently
simulate quantum systems, while a quantum computer can [Fey82]. This opened
the field of quantum computation. Quantum information theory also provides
other new possibilities compared to classical information theory, e.g. new cryp-
tographic schemes, see Chapter 3. Quantum cryptography in networks of several
parties separated by long distances of more than approximately 200 km is one
main topic of this thesis.
Quantum theory has a reputation of being incomprehensible, because its phe-
nomena are different from our everyday experience. One can hope that the more
quantum technology reaches daily life, the more people will get used to its logic.
This non-classicality of quantum theory is another emphasis of this thesis. It is
particularly striking in the violation of Bell inequalities, see Chapter 2.
My thesis is structured as follows. Chapter 1 gives the mathematical foundation
for the rest of the text, introducing in particular the concept of entanglement.
Entangled states exhibit properties which (still) contradict common sense. Some

xi
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tools to highlight these properties are introduced in Chapter 2, while Chapter 3
focuses on quantum cryptography as an application that uses entanglement as
a resource. In practice entanglement tends to be fragile and susceptible to dis-
turbance. This necessitates error correction techniques, which are discussed in
Chapter 4. Chapter 5 finally sketches how the error correction methods render
large scale quantum networks possible. Please find a short summary of my results
in Chapter 6.



Tu as voulu de l’algèbre, et tu en auras jusqu’au menton!
You wanted algebra, and now you shall have it over head and ears.

Jules Verne [Ver70, WMP04]

1
Foundations

This chapter introduces the notation and the mathematical concepts used later
on. These are essentially the Hilbert space representation for the state space and
entanglement as an important consequence thereof.

1.1 Bra-ket notation

All proofs and calculations of the present thesis, just like most of quantum in-
formation theory, take place in finite dimensional vector spaces, actually finite
dimensional Hilbert spaces over the field C of complex numbers.

Definition 1 (Hilbert space). A Hilbert space H is a vector space supplemented
by a scalar product, which is complete with respect to the norm induced by the
scalar product.

The bra-ket notation, also named Dirac notation after its famous inventor Paul
Dirac, is a convenient, basis independent notation for vectors. The ket symbol |ψ〉
(read “ket ψ”) denotes an element of a Hilbert space H. Instead of ψ, arbitrary
names, even pictograms, can be placed inside the ket. A bra 〈ψ| can be defined as
the complex conjugated transpose of the ket, i.e. 〈ψ| = |ψ〉†. The product of a bra
and a ket forms the scalar product of the two vectors 〈ψ||φ〉 = 〈ψ|φ〉. The names
bra and ket originate from the bracket commonly used for the scalar product.
A common (coordinate free description of a) basis of the d-dimensional Hilbertspace
H is denoted by {|0〉, |1〉, ..., |d − 1〉}. One may associate the canonical basis of
vectors with it, i.e. |n〉 = (0, ..., 0︸ ︷︷ ︸

n zeros

, 1, 0, ..., 0︸ ︷︷ ︸
d−n−1 zeros

)T .

1.2 Postulates of quantum mechanics

Motivating the mathematical structure of quantum theory is a difficult task and
even subject of ongoing research (see also Section 2.3). As a starting point it

1



2 CHAPTER 1. FOUNDATIONS

is convenient to accept the formalism and note that it seems to be justified by
its success and simplicity. Following this rule the mathematical structure and
its relation to physical phenomena can be introduced via postulates. Here only
the discrete and finite dimensional case is discussed, because this is the only one
of importance for the present thesis. The postulates for the continuous case are
analogous.

(P1) The state of a physical system is represented by an element |ψ〉 of a Hilbert
space H with length 1. This mapping is unique up to a complex phase eiϕ.

(P2) An observable on this system corresponds to a linear hermitian operator A.
The possible measurement outcomes lie in the spectrum of A.

(P3) The probability to obtain an outcome ai is given by 〈ψ|Pi|ψ〉, where Pi is
the projector onto the eigenspace of the eigenvalue ai. The state after the
measurement is Pi

〈ψ|Pi|ψ〉 |ψ〉.

(P4) The state space HAB of a system composed of subsystems A and B with
Hilbert spaces HA and HB, respectively, is given by the tensor product
HAB = HA ⊗HB.

(P5) The state of a system evolves in time according to

|ψ(t)〉 = U(t)|ψ(0)〉, (1.1)

where the time evolution operator U(t) is unitary.

The unitarity of the time evolution follows from the conserved normalization of
the state |ψ〉, which is necessary due to postulate (P3). The relation between time
evolution and Hamiltonian H of the system is given by the Schrödinger equation

∂

∂t
|ψ(t)〉 = − i

h̄
H(t)|ψ(t)〉. (1.2)

1.3 The Qubit

The simplest non-trivial state space is a two-dimensional complex Hilbert space. A
corresponding system is called a qubit, in analogy to the bit of classical information
theory. The canonical basis of this Hilbert space, the so-called computational
basis, will be denoted as {|0〉, |1〉}. In contrast to a bit the qubit has more than
two possible states: it can be in coherent superpositions (linear combinations) of
the basis states. Thus states of qubits have the form

|ψ〉 = α|0〉+ β|1〉, (1.3)

where α, β ∈ C and |α|2 + |β|2 = 1. After fixing the arbitrary global phase the
state |ψ〉 has two degrees of freedom. It can be written as

|ψ〉 = cos

(
ϑ

2

)
|0〉+ eiϕ sin

(
ϑ

2

)
|1〉 (1.4)



1.4. COMPOSITE SYSTEMS AND ENTANGLEMENT 3

with two real angles ϕ and ϑ.
A general measurement on a qubit with outcomes −1 and +1 is given by the
observable

A = 	a · 	σ, (1.5)

where 	a ∈ R3 has |	a| = 1 and 	σ = (X, Y, Z)T is the vector of Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. (1.6)

The vector 	a can be described in a spherical coordinate system as

	a =

⎛
⎝ sinϑ′ cosϕ′

sinϑ′ sinϕ′

cosϑ′

⎞
⎠ . (1.7)

Figure 1.1: The state of a qubit can be
marked on the Bloch sphere. The canon-
ical basis states |0〉 and |1〉, the general
state |ψ〉 (see Eq. (1.4)), and |ψ⊥〉 (see
Eq. (1.8)), which is orthogonal to |ψ〉, are
represented.

One can easily verify that |ψ〉 is an
eigenstate of A to the eigenvalue +1
for matching angles, i.e. ϕ = ϕ′ and
ϑ = ϑ′. The vector 	a lies on the origin-
centered unit sphere, which is called
the Bloch-sphere in this context, see
Figure 1.1. One can also mark the state
|ψ〉 on the Bloch sphere at the position
corresponding to the angles ϕ and ϑ.
On the Bloch sphere the state

|ψ⊥〉 = sin

(
ϑ

2

)
|0〉 − eiϕ cos

(
ϑ

2

)
|1〉,

(1.8)
which is orthogonal to |ψ〉, i.e.
〈ψ⊥|ψ〉 = 0, lies directly opposite to
it. For matching angles, |ψ⊥〉 is the
eigenvector of A to the eigenvalue −1.
The vector 	a will be called the mea-
surement direction of A. According to
(P3) measurement ofAmay lead to the
post-measurement state |ψ〉 or |ψ⊥〉.
In analogy to a qubit, a system with
d-dimensional Hilbert space is called a
qudit.

1.4 Composite systems and entanglement

According to postulate (P4) the combined state space of a composite quantum
system of two (and more) subsystems is formed via the tensor product. For two
matrices A = (Aij)ij and B = (Bij)ij with dimensions dA,1 × dA,2 and dB,1 × dB,2

it reads ⎛
⎜⎝ A11 A21 . . .

A21 A22
...

. . .

⎞
⎟⎠⊗B =

⎛
⎜⎝ A11B A21B . . .

A21B A22B
...

. . .

⎞
⎟⎠ . (1.9)
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The resulting matrix has dimension dA,1dB,1 × dA,2dB,2.
Given two systems A and B with Hilbert spaces HA and HB, respectively, the
state of the composite system AB is an element of HA ⊗ HB. In general this
state cannot be written as a tensor product of states on the subsystems. This
remarkable fact leads to the following two important definitions.

Definition 2 (Separable states). A state |ψ〉AB ∈ HA ⊗ HB is separable if and
only if it can be written in the form

|ψ〉AB = |a〉A ⊗ |b〉B, (1.10)

where |a〉A ∈ HA and |b〉B ∈ HB.

Definition 3 (Entangled states). A state that is not separable is called entangled.

Examples of separable states of a two-qubit system are |0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉
and |1〉 ⊗ |1〉. Often a shorter notation is used in which the tensor product is
omitted and all labels are written inside a single ket, e.g. |00〉. Examples for
entangled states are

|φ+〉 =
1√
2
(|00〉+ |11〉), |φ−〉 =

1√
2
(|00〉 − |11〉),

|ψ+〉 =
1√
2
(|01〉+ |10〉) and |ψ−〉 =

1√
2
(|01〉 − |10〉),

(1.11)

which are usually called Bell states.

1.5 Mixed states

The measurement of pure quantum states which can be written as coherent su-
perpositions of different eigenstates of the observable exhibits (true) randomness
according to postulate (P3). For example the states

|+〉 =
1√
2
(|0〉+ |1〉) (1.12)

and |−〉 =
1√
2
(|0〉 − |1〉) (1.13)

when measured in the computational basis can be found in the state |0〉 or in the
state |1〉, each with probability 1

2
. In contrast to an incoherent mixture of |0〉 and

|1〉 with equal probability, the coherence in this superposition implies, that the
two components can interfere, e.g. in the action of the Hadamard gate

H =
1√
2

(|+〉〈0|+ |−〉〈1|) : (1.14)

H|+〉 =
1

2
(|0〉+ |1〉+ |0〉 − |1〉) (1.15)

↓ Constructive interference in |0〉 and destructive interference in |1〉.
=|0〉. (1.16)
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Thus the state |+〉 is fundamentally different from producing the state |0〉 or |1〉
with probability 1

2
and not knowing which of the two states is present. In many

calculations it is also very convenient to have a description of this second type of
statistical mixture, which is the density matrix.

Definition 4 (Density matrix). The operator

ρ =
∑

i

pi|ψi〉〈ψi| (1.17)

describes a statistical mixture of states |ψi〉, i ∈ N, which are distributed according
to the probability distribution pi. The probabilities sum up to one, i.e.

∑
i pi = 1.

The density matrix of the mixed state in the example in which |0〉 or |1〉 are
produced with equal probability reads

ρ =
1

2
(|0〉〈0|+ |1〉〈1|) (1.18)

and is proportional to the identity operator 1. States of this form are called
completely mixed states. In contrast to Eq. (1.18) the density matrix of the state
in Eq. (1.12) reads

|+〉〈+| = 1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|), (1.19)

which again shows that these two states are different.
The ignorance of the present state can have different causes. An important reason,
the application of experimentally imperfect gates, which leads to noisy states, is
discussed in Section 4.1. In this case the exact time evolution of the quantum state
is not known. Furthermore the ignorance of the state can be caused by the lack of
knowledge of a measurement outcome. In particular, the state of one subsystem
in an entangled state may be described by a mixed state. Mathematically this
reduced state is obtained using the partial trace.

Definition 5 (Partial trace). The partial trace over system B of the density matrix
ρAB on the composite system of A and B is a density matrix acting on HA given
by

trB ρAB =

dA∑
i,j=1

dB∑
k=1

〈i|A〈k|BρAB|j〉A|k〉B|i〉A〈j|A, (1.20)

where dA and dB are the dimensions of HA and HB, respectively.

Sometimes, in particular for pencil and paper calculations, the short form

trB ρAB =

dB∑
k=1

〈k|BρAB|k〉B (1.21)

is more convenient.
Separability and entanglement of a mixed state is defined via a decomposition into
pure states.
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Definition 6. A mixed quantum state given by its density matrix ρ is called sep-
arable, if and only if there exists a decomposition

ρ =
∑

i

pi|φA,i〉|φB,i〉〈φA,i|〈φB,i| (1.22)

into an ensemble of pure separable states |φA,i〉|φB,i〉 (product states).

And, analogously to pure states, a mixed state is called entangled if it is not
separable.

1.6 Quantum operations

The state evolution in measurements and in time given by postulates (P3) and (P5)
exhaustively describe our possibilities to manipulate a quantum system. However
this description may not be useful when one is only interested in parts of a large
quantum system, e.g. a single particle which is interacting with its environment.
The evolution of a subsystem (usually) can be modeled by a quantum opera-
tion [NC00], which maps the state ρ of the subsystem to

ε(ρ) =
∑

k

EkρE
†
k, (1.23)

with ∑
k

E†
kEk = 1. (1.24)

This is the operator-sum representation of the quantum operation. Note that
the choice of operators Ek is not unique. The quantum operation is also called
a channel, depending on the context. Other tools to calculate the evolution of
“open quantum systems” interacting with the environment are known, too, e.g.
the master equation approach, see [NC00].

1.7 Measures of Entanglement and the maximally

entangled state

The quantification of entanglement is a subfield of quantum information theory.
A measure of entanglement is a function that maps states to non-negative real
numbers with the following properties. It is required to be invariant under local
basis transformations, non-increasing under local operations and classical commu-
nication (LOCC) and to vanish only on separable states.
The entropy of the reduced state trB ρAB is a measure for the entanglement of the
composite system AB in a pure state ρAB = |ψ〉AB〈ψ|AB.

Definition 7 (Entropy of entanglement). The entropy of entanglement in a pure
state ρAB with respect to the separation A|B is given by the von-Neumann entropy
of the reduced state ρA = trB ρAB of one subsystem,

S(ρA) = − tr[ρA log(ρA)]. (1.25)
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With this definition one can easily see, that the two-qudit state

|φ+
D〉 =

1√
D

D−1∑
k=0

|kk〉 (1.26)

is maximally entangled, because the reduced state of one subsystem

trB |φ+
D〉〈φ+

D| =
1

D

∑
k

∑
l,m

〈k|B|ll〉〈mm||k〉B (1.27)

↓ use orthogonality 〈i|j〉 = δij

=
1

D
(1.28)

has maximal von-Neumann entropy S(ρ) = log2D.
Entanglement measures for mixed states need to take into account, that the de-
composition of a mixed state into pure states is not unique. The following two
examples are relevant to Appendix B. For the best separable approximation one
decomposes the state into a sum of a separable state and an entangled state,
such that the weight of the separable state is maximal [LS98]. This weight thus
measures the “similarity” to a separable state. The robustness of entanglement
is the minimal amount of separable states that needs to be mixed into the state
to make it separable [VT99]. Intuitively it is the robustness against local noise.
See [HHHH09] for a review on entanglement measures.
Entangled states exhibit interesting properties. The strong correlations they, and
in particular |φ+

D〉 of Eq. (1.26), show are discussed in the following chapter.



8 CHAPTER 1. FOUNDATIONS



While we have thus shown that the wave function does not provide
a complete description of the physical reality, we left open the
question whether such a description exists. We believe, however,
that such a description is possible.

A. Einstein, B. Podolsky, and N. Rosen [EPR35]

2
The “non-classicality” of quantum theory

Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) showed that quan-
tum theory cannot be complete, in the sense that not every quantity that can
be predicted with certainty has a counterpart in the theory [EPR35]. This be-
comes apparent in their thought experiment. They consider two particles which
are entangled in their position and momentum state. From the wave function
description of the state they conclude, that measurement of the position (the mo-
mentum) of the first particle allows to predict the position (the momentum) of
the second particle with certainty. As there is no interaction, both position and
momentum should be elements of physical reality. However quantum theory does
not contain variables for the outcomes of the position and momentum that are to
be revealed by the corresponding measurement. The position and momentum of a
quantum even fulfill Heisenberg’s uncertainty relation and thus it is impossible to
simultaneously assign precise values to these two quantities according to quantum
theory, which therefore cannot be complete. EPR conjectured, however, that a
completion which adds the missing quantities should be possible.
Such a local hidden variable theory fulfills the following three axioms.

(LHV1) Locality. No action affects distant systems outside the light cone.

(LHV2) Realism. Properties of objects have definite values independent of mea-
surements.

(LHV3) Free will. It is possible to freely choose between different measurements.

2.1 Bell’s theorem

John Bell was able to show, that experimentally testable predictions of quantum
theory contradict (basically) these three assumptions [Bel64]. Thus there is a
conflict between local hidden variable theories and quantum mechanics and no
completion in the sense of EPR is possible.
The method Bell used to show the discrepancy between quantum theory and local

9
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Figure 2.1: A schematic of the setup of the Bell test experiment described in the
text. There are N parties labeled from 1 to N . Each party i (randomly) chooses
the measurement setting xi and performs the corresponding measurement. The
outcome of the measurement is denoted by ai and takes one of the two possible
values −1 and 1. The outcome of the joint measurement is the product of the
individual outcomes.

hidden variable theories are inequalities on measurable quantities, which must hold
in all local hidden variable theories but which are violated in quantum theory. Such
inequalities are called Bell inequalities.

2.1.1 A Bell test experiment

The experiment is subdivided into different spatially separated areas: the source
and N parties, where N ≥ 2, see Figure 2.1. The parties are labeled i = 1, 2, ..., N .
Each party i possesses one measurement apparatus. The party i can choose be-
tween Mi ∈ N measurement settings. This setting is an input to the measurement
apparatus. The source repeatedly produces a system and distributes its subsys-
tems to each party, which causes each of the measurement apparatuses to output
the measurement outcome ai. In the present context the possible outputs ai are
restricted to the set {−1, 1}. The outcome of the joint measurement is the product
of the individual outcomes, i.e.

∏
i ai = ±1. Many repetitions of this procedure

allow the estimation of the expectation value of the joint observable in an arbitrary
setting (x1, x2, ..., xN). It is denoted by E(x1, x2, ..., xN).

2.1.2 CHSH type Bell inequalities

One can now form arbitrary linear combinations of these expectation values
E(x1, x2, ..., xN) with real coefficients gx1,x2,...,xN

, i.e.
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M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN
E(x1, x2, ..., xN). (2.1)

In a classical theory, i.e. a local and realistic theory (with free will), the mea-
surement outcomes are probabilistic functions of the local settings. Any hidden
variable model with shared randomness is a probability distribution over determin-
istic models. Thus the maximum of Eq. (2.1) over all classical theories is obtained
by a deterministic strategy [BRSd10], i.e. the maximum can be calculated by
maximizing over all deterministic functions ai(xi),

B(g) = max
ai(xi)=±1

M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN

N∏
i=1

ai(xi). (2.2)

If there exists a classical theory that gives an adequate description of the Bell test
experiment, then the experimentally obtained expectation values E(x1, ..., xN) are
bounded by

M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN
E(x1, x2, ..., xN) ≤ B(g). (2.3)

The inequality (2.3) is called a CHSH type Bell inequality. The name originates
from the most prominent member of this class of inequalities, the Clauser-Horne-
Shimony-Holt (CHSH) inequality [CHSH69] that is discussed in Section 2.1.3. The
prediction of quantum theory for a state given by its density matrix ρ

E(x1, x2, ..., xN) =

〈
N⊗

i=1

Ai(xi)

〉
(2.4)

= tr

(
N⊗

i=1

Ai(xi)ρ

)
(2.5)

may violate the inequality 2.3. Here Ai is the observable of party i (with spectrum
in [−1, 1]) in the setting xi. Other examples can be found in [BC90, Mer90].

2.1.3 The CHSH inequality

The most famous Bell inequality is the one derived by John Clauser, Michael
Horne, Abner Shimony and Richard Holt in 1969 [CHSH69]. It applies to a bi-
partite (N = 2) Bell test experiment with two dichotomic observables per party
(M1 = M2 = 2). It is given by Eq. (2.3) with coefficients

gCHSH =

(
1 1
1 −1

)
(2.6)

and bound B(gCHSH) = 2, i.e.

E(1, 1) + E(2, 1) + E(1, 2)− E(2, 2) ≤ 2. (2.7)
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For a system in the state |φ+〉 (see Eq. (1.11)) and observables Ai(xi) with

A1(1) =X, A2(1) = 1√
2
(X + Z),

A1(2) = Z, and A2(2) = 1√
2
(X − Z),

(2.8)

where X and Z are Pauli matrices (see Eq. (1.6)), the quantum prediction of the
CHSH inequality is 2

√
2 ≈ 2.82843, which is greater than the classical bound 2.

2.1.4 On experimental implementations

By now there is very strong experimental evidence that the predictions of
quantum theory are correct, i.e. local hidden variable theories are ruled
out [AGR82, WJS+98, RKM+01, HBD+15, GVW+15, SMSC+15]. In other words
“nature” does not obey at least one of locality, realism and free will. Several loop-
holes made improved experiments necessary [Lar14].
Bell test experiments can be implemented in very different physical systems.
First experiments used the polarization entanglement of photons emitted in a
calcium cascade [FC72, AGR81, AGR82]. Then parametric down-conversion
sources with higher brightness were used [SA88, TBG+98, TBZG98, WJS+98,
SBvH+08, GMR+13]. Bell inequalities have also been violated in trapped ion sys-
tems [RKM+01], where very high detection efficiencies compared to the photonic
setup are possible. In [AWB+09] a Bell inequality has been violated in a solid-state
system (Josephson phase qubits). Also multipartite Bell inequalities (N > 2) have
been violated in experiment [PBD+00].

2.1.5 Other types of Bell inequalities

The CHSH inequality (Eq. (2.7)) is the most famous Bell inequality and used
in most cases. However, many more Bell inequalities with interesting properties
are known, see also Section 2.3.2. In principle any real-valued expression that is
bounded in a LHV model can be used to derive a Bell inequality (which, however,
might not be violated in quantum theory).
The CHSH-type Bell inequalities contain the expectation values of the correlation
measurements (i.e. the product of the ±1 outcomes). A more general approach
is to directly use the probabilities p(x1, x2) of the measurement outcomes. An
important example is the CH74 inequality [CHSH69, CH74], named after Clauser
and Horne,

− 1 ≤ p(1, 1)− p(1, 2) + p(2, 1) + p(2, 2)− p(2,1)− p(1, 1)

p(1,1)
≤ 0, (2.9)

where the argument contains the measurement settings and the symbol 1 is used
to denote a measurement of identity, e.g. absence of the polarization analyzers.
Note that p(1,1) is not 1 due to non-ideal detector efficiency. In contrast to
the CHSH type Bell inequalities, the lower and upper bounds of CH type Bell
inequalities are not symmetric in general.
A Bell inequality does not need to be linear in the outcome probabilities, see for
example [WW01].
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2.2 Communication Complexity

In addition to their relevance for the foundations of quantum mechanics, several
intriguing applications of Bell inequalities are known. One example is the appli-
cation to communication complexity [Yao79]. A standard problem in this context
can be described as follows. N parties cooperate in order to calculate a function
f(x1, x2, ..., xN), where each party i has only access to the input string xi. What is
the minimal amount of communication necessary for this distributed computation?
Or similarly, if the parties are restricted to a given amount of communication, what
is the maximal probability of success? In quantum communication complexity one
compares the classical success probability to the case where the parties are allowed
to share entangled quantum states.
A special case is the function f(y1, y2, ..., yN , x1, x2, ..., xN) =

∏
i yi sign(gx1,x2,...,xN

),
where the inputs yi ∈ {−1, 1} are equally distributed and the inputs xi are dis-
tributed according to the probability distribution

Q(x1, x2, ..., xN) =
|gx1,x2,...,xN

|∑
x̃1,x̃2,...,x̃N

|gx̃1,x̃2,...,x̃N
| . (2.10)

The classical and quantum success probability of correctly computing the value
of f is directly related to the classical and quantum value of the CHSH type Bell
inequality given by coefficients gx1,x2,...,xN

[BZPZ04, Epp12], respectively, see also
Appendix A. This way any CHSH type Bell inequality is linked to a corresponding
communication complexity task. It holds that the greater the amount of violation
of the Bell inequality the larger the quantum advantage.

2.3 Tsirelson’s bound

In communication complexity and other applications of Bell inequalities, the vi-
olation is directly linked to the benefit of sharing entangled resources. Thus the
question “What is the maximal violation of a Bell inequality?” naturally arises.
For a given Bell inequality this leads to the derivation of bounds on its quantum
value. Such a bound is named Tsirelson bound after the Russian-Israeli mathe-
matician Boris Tsirelson, who derived the bound T (gCHSH) = 2

√
2 for the CHSH

inequality [Tsi80, Tsi93]. In analogy to Eq. (2.2) it is defined (for CHSH type Bell
inequalities) as

T (g) = max
A,ρ

M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN
tr

(
ρ

N⊗
i=1

Ai(xi)

)
, (2.11)

where now the maximization is performed over the observablesAi(xi) and the state
given by its density matrix ρ. Note that the dimension of the state is not restricted.
As the problem of understanding the strength of correlations in quantum theory
is both of fundamental and practical relevance, several different approaches to cal-
culating the Tsirelson bound T have been developed. The principle of information
causality [ABPS09, PPK+09, GWAN11], macroscopic reality [NW09], uncertainty
principles [OW10], the exclusivity principle [Cab13] and semidefinite program-
ming approaches [Weh06, NPA07, NPA08, DLTW08] should be mentioned. My
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approach pursued in [EKB13] is related to the semidefinite programming approach
of [Weh06], see Appendix C, D, and E.
There is a close relation between the expectation value of quantum observables
and the scalar product of real vectors. Tsirelson used this relation amongst others
to prove the Tsirelson bound of the CHSH inequality. The parts of his theorem
most relevant to this thesis are:

Theorem 1 (Tsirelson’s Theorem [Tsi80, Weh06]). Let A1, ..., Am and B1, ..., Bn

be observables with eigenvalues in the interval [−1, 1]. Then for any state |ψ〉 ∈
HA ⊗ HB and for all k = 1, ..,m and l = 1, ..., n there exist real unit vectors
	v1, ..., 	vm, 	w1, ..., 	wn ∈ Rm+n such that

〈ψ|Ak ⊗Bl|ψ〉 = 	vT
k 	wl. (2.12)

Conversely, let 	vk, 	wl ∈ Rd be real unit vectors. Let |φ〉 ∈ HA ⊗ HB be any

maximally entangled state where D = dim(HA) = dim(HB) = 2�
d
2
�. Then for all

k, l there exist observables Ak on HA and Bl on HB with eigenvalues ±1 such that

	vT
k 	wl = 〈φ|Ak ⊗Bl|φ〉 (2.13)

2.3.1 Singular Value Decomposition

The Tsirelson bound of [EKB13], see Appendix C, is based on the singular value
decomposition (SVD) of matrices - a standard tool of linear algebra similar to the
eigenvalue decomposition [GVL13]. Any matrix g can be decomposed into the
product of a unitary matrix V , a diagonal matrix S and another unitary matrix
W †, i.e.

g = V SW †. (2.14)

If g has dimension M1 ×M2, then V has dimension M1 ×M1, S has dimension
M1 ×M2 and W has dimension M2 ×M2. For real matrices g, V and W can be
chosen real, too, which implies that they are orthogonal matrices and Eq. (2.14)
simplifies to g = V SW T . The matrix columns of V are called left singular vectors
and the columns of W right singular vectors. The entries on the diagonal of S
are called singular values. It is an usual convention to order the singular values in
non-increasing order, i.e. S1,1 ≥ S2,2 ≥ S3,3 ≥ ... ≥ Smin{M1,M2},min{M1,M2}.
In some applications the SVD can be used to approximate a matrix, which is
achieved by neglecting the parts of the SVD associated with small singular values.
This concept is called a truncated singular value decomposition [GVL13].

2.3.2 Dimension Witnesses

Similar to the local hidden variable bound (see Eq. (2.2)) or the Tsirelson bound
(see Eq. (2.11) of a Bell inequality), one can calculate the maximal value of the
same (or any) expression for all quantum states of dimension smaller or equal to
some value D ∈ N, i.e.

T ′
D(g) = max

A,ρ∈S(HD)

M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN
tr

(
ρ

N⊗
i=1

Ai(xi)

)
, (2.15)
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where S(HD) is the set of (D ×D)-dimensional density matrices. The inequality

M1∑
x1=1

M2∑
x2=1

...

MN∑
xN=1

gx1,x2,...,xN
tr

(
ρ

N⊗
i=1

Ai(xi)

)
≤ T ′

D(g) (2.16)

is a dimension witness: A violation of this inequality in some experiment witnesses
that the measured quantum system had a dimension greater than D. This rea-
soning does not require knowledge of the source or the experimentally performed
measurements, i.e. the dimension witness is device independent. Previous work on
dimension witnesses includes [BPA+08, PGWP+08, WCD08, WPG09, GBHA10,
BNV13].
In the present context and in the bipartite case it is more convenient to witness
the dimension d′ of the measurement directions. The two quantities D and d′ are
related, see Appendix C. The corresponding bound can be defined as

Td′(g) = max
�vx1∈Rd′ ,||�vx1 ||=1

M2∑
x2=1

∣∣∣∣∣
∣∣∣∣∣

M1∑
x1=1

gx1,x2	vx1

∣∣∣∣∣
∣∣∣∣∣ , (2.17)

see also Appendix D. I described, together with my co-authors, in [EKB13], how
it can be understood from the singular value decomposition, also geometrically,
whether a Bell inequality given by coefficients g is a d′-dimension witness, i.e.
whether Td′−1 < Td′ , see Appendix C.

2.4 Entanglement Witnesses

Entanglement witnesses are another tool to verify entanglement [GT09] of a quan-
tum state. The idea is similar to Bell inequalities: Here the set over which one
maximizes the value of some expression to get the corresponding bound is the set
of all separable states. In this context the dimension of the system is a fixed and
known value. In the simplest case the witness is given by a single observable.

Definition 8 (Entanglement witness). An entanglement witness W is an observ-
able that fulfills

〈W 〉 ≥0 for all separable states (2.18)

while 〈W 〉 <0 for some entangled state ρent.. (2.19)

It detects the entanglement of the state ρent. (amongst others).

When constructed appropriately, the expectation value of an entanglement wit-
ness can also lower bound the amount of entanglement in the measured system
according to some measure of entanglement, e.g. as obtained from the best sepa-
rable approximation [LS98] or the robustness of entanglement [VT99, Ste03]. In
some cases even macroscopic observables can be used as an entanglement witness,
e.g. observables related to the cross-section in neutron scattering from magnetic
materials, see Appendix A.



16 CHAPTER 2. THE “NON-CLASSICALITY” OF QUANTUM THEORY



If you want to keep a secret, you must also hide it from yourself.

George Orwell [Orw49]

3
Quantum cryptography

Given the strong correlations exhibited by measurements on an entangled quan-
tum system, one might be tempted to think of ways to harness this phenomenon
for non-local effects. In particular it might not be obvious why entanglement itself
does not allow for signalling, i.e. the transmission of information, which would be
secret to any adversary. Because the entangled state could be shared in advance,
before deciding on which information to send, signalling by means of entanglement
would be faster than light. But this is not possible in quantum theory. Theories
which do not allow for faster than light communication are called non-signalling.
A short calculation shows that no quantum operation that acts only on one sub-
system can have measureable effects to another subsystem, because the reduced
state is invariant:

trB ρ
′
AB = trB

(∑
l

(1⊗ El)ρAB(1⊗ E†
l )

)
(3.1)

↓ insert partial trace, see Eq. (1.20)

=
∑
ij

∑
l

tr
(
El〈i|AρAB|j〉AE†

l

)
|i〉A〈j|A (3.2)

↓ cyclically permute under the trace, use linearity of the trace

=
∑
ij

tr

(
〈i|AρAB|j〉A

∑
l

E†
lEl

)
|i〉A〈j|A (3.3)

↓ completeness relation of the quantum operation

=
∑
ij

tr (〈i|AρAB|j〉A) |i〉A〈j|A = trB ρAB. (3.4)

In other words, the quantum theory is non-signaling and local in the sense of
Axiom (LHV1).

17
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3.1 No-Cloning Theorem

A very simple but central theorem of quantum information theory is the No-
Cloning Theorem. It is closely related to quantum theory being non-signaling.
Suppose it were possible to copy an arbitrary unknown quantum state. Then
let two parties, Alice and Bob, share the singlet state |ψ−〉. This state exhibits
perfectly anti-correlated outcomes whenever Alice and Bob measure in the same
basis. Alice now measures in the X-basis to send a 0 and in the Z-basis to send a
1. Bob’s state is projected onto |+〉 or |−〉 for an X-measurement of Alice or |0〉
or |1〉 for a Z-measurement of Alice. If Bob is in possession of a quantum copier,
then he can distinguish the two cases, e.g. by measuring half of his copies in the
X-basis and the other half in the Z-basis: The measurements in the same basis are
all equal (to minus Alice’s outcome) and the other ones are equally distributed.

Theorem 2 (No-Cloning Theorem). It is impossible to clone an arbitrary un-
known quantum state perfectly.

Proof. As the quantum copier should be implemented by a physical process, it can,
according to the postulate (P5), be described by a unitary operation U . The initial
state of the target qubit and the one of any third ancillary system is independent
of the sample qubit and denoted by |0〉 of the respective Hilbert space. Suppose
U can clone |ψ〉 and |ϕ〉 with 〈ϕ|ψ〉 �= 0 and |ψ〉 �= |ϕ〉, i.e.

U |ϕ〉|0〉|0〉 =|ϕ〉|ϕ〉|a〉 (3.5)

and U |ψ〉|0〉|0〉 =|ψ〉|ψ〉|a′〉, (3.6)

with arbitrary states |a〉 and |a′〉 on the ancilla. Then:

1 =
|(〈ϕ|〈0|〈0|)(|ψ〉|0〉|0〉)|

|〈ϕ|ψ〉|
↓ Unitarity of U

=
|(〈ϕ|〈0|〈0|)U †U(|ψ〉|0〉|0〉)|

|〈ϕ|ψ〉|
↓ Apply cloning (to the left and the right)

=|〈ϕ|ψ〉||〈a|a′〉|
↓ with |〈ϕ|ψ〉| < 1 as |ϕ〉 �= |ψ〉 and |〈a|a′〉| ≤ 1

<1 E
The no-cloning theorem implies security against eavesdroppers in a cryptographic
setting: Alice wants to send a private message to Bob while an adversary Eve is
eavesdropping on the communication line, see Figure 3.1. The main idea here is
that Eve cannot perfectly distinguish the transmitted states due to the no-cloning
theorem (Theorem 2). Any attempt to eavesdrop on the line will necessarily
disturb the signal. The same holds for Bob, of course, but after the transmission
Alice and Bob can agree upon a subset on which Bob performed measurements in
the appropriate bases by chance.
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Figure 3.1: The typical situation in quantum cryptography: Alice and Bob com-
municate over a quantum channel and an authenticated classical channel, such
that Alice can send a secret message to Bob without exposing it to the eavesdrop-
per Eve. Protocols by which they can achieve this aim are described in the main
text.

3.2 The One-Time-Pad encryption

In quantum cryptography one usually employs the One-Time-Pad encryption,
which is also called Vernam cypher, after Gilbert Vernam who described the idea
in 1918 and developed it together with Joseph Mauborgne [Sin99]. The text is
encrypted by adding (modulo the alphabet size) a random key of the same length
to it. The receiver subtracts the key to recover the original message. See Table 3.1
for an example. The cipher is secure if the eavesdropper does not know the ran-

Table 3.1: Example for the One-Time-Pad encryption.

0100000101011000110001111 (message “HELLO”)
⊕ 0100111111111101100101011 (key “I?!YK”)
= 0000111010100101010100100 (ciphertext “AZRUD”)⏐⏐⏐� transmission

0000111010100101010100100 (ciphertext “AZRUD”)
⊕ 0100111111111101100101011 (key “I?!YK”)
= 0100000101011000110001111 (message “HELLO”)

dom key. Quantum key distribution aims at distributing such random keys in a
secure way.

3.3 The BB84 protocol

A quantum protocol to create a secret key shared by two parties Alice and Bob is
the BB84 protocol [BB84], where the two B’s stand for Bennett and Brassard, its
two inventors. The protocol can be summarized by the following steps [NC00].
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1. Alice generates L random data bits a = (a1, a2, ..., aL) as well as L random
bits b = (b1, b2, ..., bL) denoting the basis (X or Z).

2. Alice transmits the state

|ψ〉 =
L⊗

k=1

|ψakbk
〉 (3.7)

with

|ψ00〉 =|0〉, (3.8)

|ψ10〉 =|1〉, (3.9)

|ψ01〉 =|+〉, (3.10)

and |ψ11〉 =|−〉. (3.11)

3. Bob generates L random bits b′ = (b′1, b
′
2, ..., b

′
L) and measures in the corre-

sponding bases. The outcomes are denoted a′. He announces reception of
the signal.

4. Alice announces b.

5. Alice and Bob discard the data corresponding to measurements where bi �= b′i
(sifting).

6. Alice and Bob publicly compare a subset of their data a and a′ to check for
the disturbance of an eavesdropper. The estimated error rates in the X and
Z basis are denoted eX and eZ , respectively. The remaining data is the raw
key.

7. The data is post-processed to eliminate errors and reduce Eve’s knowledge
about the key (privacy amplification). By this procedure the key shrinks
to a fraction of the raw key and in the limit of infinitely many signals this
secret fraction reads

r∞ = max{1− h(eX)− h(eZ), 0}, (3.12)

where
h(p) = −p log2(p)− (1− p) log2(1− p) (3.13)

is the binary entropy. The resulting string is the secret key.

3.4 Ekert protocol

In the BB84 protocol Alice prepares one of the four states in Eqs. (3.8)-(3.11) and
Bob performs a measurement on it. Protocols of this type are called prepare-and-
measure protocols. In contrast to this approach, entanglement-based protocols
use shared entangled states between Alice and Bob. The two approaches are
equivalent. In case of the BB84 protocol one can easily see that the prepared
states can arise from measurements on one subsystem of a maximally entangled
state, e.g. |ψ−〉.
The first entanglement-based protocol is the Ekert-protocol [Eke91]. A simplified
version [AMP06] can be summarized in the following steps.
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1. Party 1 (Alice) and party 2 (Bob) each receive one qubit of a system in the
maximally entangled state |φ+〉.

2. Alice and Bob randomly choose a setting x1 ∈ {1, 2, 3} and x2 ∈ {1, 2}, re-
spectively, and measure along the measurement direction 	ai(xi) (see Eq. (1.5)),
where i = 1, 2 denotes the party and

	a1(1) =

⎛
⎝ 1

0
0

⎞
⎠ , 	a1(2) =

⎛
⎝ 0

0
1

⎞
⎠ , 	a1(3) =

1√
2

⎛
⎝ 1

0
1

⎞
⎠ , (3.14)

	a2(1) =
1√
2

⎛
⎝ 1

0
1

⎞
⎠ , 	a2(2) =

1√
2

⎛
⎝ 1

0
−1

⎞
⎠ , (3.15)

3. The steps 1 and 2 are repeated until a sufficient amount of data has been
accumulated.

4. The measurement outcomes in the setting (x1 = 3, x2 = 1) form the raw
key. The measurement results for x1 ∈ {1, 2} can be used to check for
an eavesdropper via the CHSH inequality (2.7). The results in the setting
(x1 = 3, x2 = 2) are discarded.

Because the security analysis is based on the violation of a Bell inequality, this
protocol is device-independent, which means that no assumptions about the Hilbert
space dimension and the performed measurements are necessary for the security
proof.

3.5 Security proofs

As motivated above, the security of quantum cryptography originates from the
laws of quantum theory, e.g. the no-cloning theorem. This reasoning becomes
explicit and quantitative in different security proofs of quantum cryptography.
Three main approaches are mentioned in the following.
Quantum error correction based security proofs. If Alice and Bob share a pure
maximally entangled state, then Eve cannot be correlated with the measurement
outcomes of Alice and Bob and the generated key is secure [LB13]. Alice and Bob
can employ error correction codes, see Chapter 4, to obtain (almost) pure states.
A secret key can be generated when the noise level is below the error correction
threshold.
Pure information theoretic approaches. The security analysis of [Ren05] is based
on conditional entropies, which lead to upper bounds on the length of the key
after post-processing it, such that Eve cannot know the secret key.
Proofs in the device-independent scenario. In the device-independent scenario, all
devices are treated as black-boxes and no assumptions are made about how they
work. It is possible to prove security even with these minimal assumptions using
Bell inequalities. The proof of [VV14] is based on a multipartite guessing game
(see also Section 2.2): If an eavesdropper Eve could gain more than a certain
amount of information about the secret key, then the three parties (Alice, Bob
and Eve) could beat the quantum bound of the guessing game.
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An error doesn’t become a mistake until you refuse to correct it.

Orlando Aloysius Battista [Bat81]

4
Quantum error correction

The previous chapters explained why entanglement is a valuable resource in various
tasks. Unfortunately, in practice entanglement tends to be very fragile. It is very
sensitive to experimental imperfections and environmental disturbance. Different
approaches to protect quantum information are known. After introducing the most
common error model, this chapter focuses on quantum error correction codes and
entanglement distillation protocols.

4.1 Modelling imperfections

In experiments the evolution of a quantum system during computations or other
protocols of quantum information theory deviates from the ideal and intended one
for several reasons. They can be grouped into two main classes:

1. The system is not isolated perfectly from its environment. The weak interac-
tion of the two can change the state of the system. Furthermore it entangles
the system and the environment. Because the environment is not isolated, it
is measured from time to time in some uncontrolled and unknown manner,
such that system and environment are projected onto unknown states. Both
processes lead to noise on the quantum system which can be modeled by a
mixed state.

2. The gates are not applied perfectly. If the gates are implemented by the ap-
plication of a specific Hamiltonian for a specific period of time, then any im-
precision in the interaction strength and time implies that actually a slightly
different gate has been applied. This again becomes noticeable as noise in
the quantum state.

A very common error model is the depolarizing noise [NC00, LB13]. The noisy
operation is modeled by the ideal evolution followed by a noise process. If ρ is the
ideal single qubit state, then

ε(ρ) = (1− px − py − pz)ρ+ pxXρX + pyY ρY + pzZρZ (4.1)
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Figure 4.1: The general schematic for error correction codes: k data bits are
encoded into n physical bits. The redundancy allows to correct errors that might
occur, e.g. during a transmission, such that the final decoding leads to the k data
bits without errors.

is the noisy state. The probabilities of X-, Y - and Z-errors are often assumed
to be equal, i.e. px = py = pz = f

4
. Then the depolarizing channel of Eq. (4.1)

depends only on the failure probability f and takes the form

εf (ρ) = (1− f)ρ+ f

(
1

4
ρ+

1

4
XρX +

1

4
XZρZX +

1

4
ZρZ

)
, (4.2)

which suggests the interpretation that in case of failure there are independent
probabilities of 1

2
for X- and Z-errors. Thus it suffices to correct X- and Z-

errors (this also holds for general single qubit noise). See also Appendix G for an
introduction to the error model.

4.2 Methods of error correction

Several methods to cope with errors in quantum information theory are known.
This is remarkable, especially because the state reduction in a measurement, the
no-cloning theorem and the continuous set of quantum errors complicate the trans-
fer of classical error correction methods to the field of quantum information the-
ory [LB13]. Despite these difficulties, quantum error correction codes which are
derived from classical linear codes are an important tool to protect coherent quan-
tum information.

4.2.1 Linear block codes

Error correction codes encode words of length k into codewords of length n, where
n > k such that the redundancy of the encoded information can be used to detect
and correct errors [MS78], see Figure 4.1. In the following the k bits of the
encoded information are called logical bits, while the n bits of the codeword are
called physical bits. The codewords of linear codes form a vector space, the code
space. This code space can be described as the kernel of a linear map, i.e. the
kernel of a ((n− k)×n)-matrix H, the parity check matrix. All codewords c fulfill
HcT = 0. Equivalently, the code space can be described via the generator matrix
G, whose rows form a basis of the code space. The encoding is very simple in
linear codes: the codeword c of a word x is obtained via c = xG.
The Hamming distance of two codewords is the number of different digits. The
Hamming distance of a code is the minimal distance of two codewords. A linear
code with k logical bits encoded into n physical bits with a Hamming distance of
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d is called a [n, k, d]-code. A code with Hamming distance d can correct up to
d−1
2

bit flip errors or d − 1 erasure errors. Errors in a codeword are detected if
the resulting vector does not fulfill the parity check condition, i.e. if the erroneous
word c′ has sT = Hc′T �= 0. This nonzero vector s is called the error syndrome
and the attempt to correct the error depends on the value of s.

4.2.2 Stabilizer codes

Stabilizer codes are an important class of quantum error correction codes [Got97,
LB13]. Similar to the parity check matrix of classical linear codes, the code space
of a stabilizer code is defined via constraints on the valid codewords. These con-
straints are

si|ψ〉 = |ψ〉, i = 1, 2, ..., n− k (4.3)

where the unitary operators si form a minimal set of generators of the stabilizer
group S (via multiplication), i.e. S = 〈s1, s2, ..., sn−k〉. The stabilizer group does
not contain −1 and all elements commute. The stabilizer formalism is also used
independent of the error correction context in the case of k = 0 to define a single
state, e.g. a graph state, see Section 5.2.

Figure 4.2: Measurement of the
stabilizer si. The ancillary qubit
is prepared in the |+〉 state. Then
a controlled-si operation is ap-
plied to the ancilla (control) and
the block qubits (target). After-
wards the ancilla is measured in
the X-basis.

In absence of errors Eq. (4.3) implies that
measurements of si, see Figure 4.2, have a
+1 outcome. All errors that anti-commute
with an element of the stabilizer are detected
by a −1 outcome of the measurements of si,
i = 1, 2, ..., n − k. The outcomes of all those
n − k measurements form the syndrome. A
detected error can be corrected by applying a
corresponding unitary operation, e.g. Z-errors
on a qubit are corrected by applying another
Z-operation on the same qubit as Z2 = 1. In
general several different errors can lead to the
same syndrome.
Operators outside of S that commute with the
elements of S are logical operators acting on
the k logical qubits. Among these logical op-
erators one can identify two anti-commuting
operators as Z̄ and X̄, where the bars above
the symbols indicate logical operators. The eigenstates of Z̄⊗k form the logical
computational basis.
Table 4.1 specifies the operators si (i = 1, 2, ..., 8), X̄, and Z̄ for the [[9,1,3]] Nine-
qubit-Shor code. Here the double brackets denote quantum codes. The Shor code
can correct an arbitrary single qubit error. The minimal number of physical qubits
to protect against an arbitrary single qubit error is five [BBPS96, LMPZ96]. See
Table 4.2 for a possible choice of operators of an [[5,1,3]] code.
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Table 4.1: The stabilizer generators and the logical operators of the Nine-qubit-
Shor code [LB13]. The tensor product is omitted.

Element Operator
s1 Z Z 1 1 1 1 1 1 1

s2 Z 1 Z 1 1 1 1 1 1

s3 1 1 1 Z Z 1 1 1 1

s4 1 1 1 Z 1 Z 1 1 1

s5 1 1 1 1 1 1 Z Z 1

s6 1 1 1 1 1 1 Z 1 Z
s7 X X X X X X 1 1 1

s8 X X X 1 1 1 X X X

X̄ X X X X X X X X X
Z̄ Z Z Z Z Z Z Z Z Z

Table 4.2: The stabilizer generators and the logical operators of the five-qubit
code [BBPS96, LMPZ96, LB13]. The tensor product is omitted.

Element Operator
s1 X Z Z X 1

s2 1 X Z Z X
s3 X 1 X Z Z
s4 Z X 1 X Z

X̄ X X X X X
Z̄ Z Z Z Z Z
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4.2.3 Calderbank-Shor-Steane codes

Calderbank-Shor-Steane (CSS) codes are stabilizer codes where the generators si

of the stabilizer can be written as a tensor product of 1- and either X- or Z-
operators [LB13]. One can associate a classical linear code with the generators
that contain Z and X, respectively. The first code is used to detect X errors, the
second to detect Z errors. This construction is possible if the dual code (generator
matrix and parity check matrix exchange their role) of the second, C⊥

2 , is a subcode
of C1. The nine-qubit-Shor code given above (see Table 4.1) is an example of a
CSS code, while the five-qubit code (see Table 4.2) is not. An important CSS code
is the [[7,1,3]] seven-qubit-Steane code (see Table 4.3), because it is the simplest
CSS code that can correct an arbitrary single qubit error. It can be derived from
the [7,4,3] Hamming code [MS78]. Another important example of a CSS code is

Table 4.3: The stabilizer generators and the logical operators of the seven-qubit-
Steane code [LB13]. The tensor product is omitted.

Element Operator
s1 1 1 1 X X X X
s2 1 X X 1 1 X X
s3 X 1 X 1 X 1 X
s4 1 1 1 Z Z Z Z
s5 1 Z Z 1 1 Z Z
s6 Z 1 Z 1 Z 1 Z

X̄ X X X X X X X
Z̄ Z Z Z Z Z Z Z

the [[23,1,7]] quantum Golay code, see Table 4.4. It is derived from the Golay
code [Gol49, Goe71] using the CSS construction.

4.2.4 Distillation

The error correction codes of the previous sections are used for forward error
correction, i.e. the receiver of the message can correct errors in the received
message single-handed without conferring with the sender. A different approach
to error correction uses additional classical communication between sender and
receiver [LB13]. The main idea is to use n imperfect copies of the wanted quantum
state as a resource to produce k < n copies of that state with a higher quality, i.e.
with less noise. The aim is to create quantum states that are entangled across the
bipartition sender vs. receiver. This explains why this error correction scheme is
usually called entanglement distillation. In most cases the targeted state is a Bell
pair, e.g. |φ+〉 (see Eq. (1.11)). The additional classical communication is used
during the protocol to transmit measurement results.
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Table 4.4: The stabilizer generators and the logical operators of the quantum
Golay code [Goe71]. The tensor product is omitted.

Element Operator
s1 1 X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1

s2 X X X 1 X X X 1 1 1 X 1 1 X 1 1 1 1 1 1 1 1 1

s3 X X 1 X X X 1 1 1 X 1 X 1 1 X 1 1 1 1 1 1 1 1

s4 X 1 X X X 1 1 1 X 1 X X 1 1 1 X 1 1 1 1 1 1 1

s5 X X X X 1 1 1 X 1 X X 1 1 1 1 1 X 1 1 1 1 1 1

s6 X X X 1 1 1 X 1 X X 1 X 1 1 1 1 1 X 1 1 1 1 1

s7 X X 1 1 1 X 1 X X 1 X X 1 1 1 1 1 1 X 1 1 1 1

s8 X 1 1 1 X 1 X X 1 X X X 1 1 1 1 1 1 1 X 1 1 1

s9 X 1 1 X 1 X X 1 X X X 1 1 1 1 1 1 1 1 1 X 1 1

s10 X 1 X 1 X X 1 X X X 1 1 1 1 1 1 1 1 1 1 1 X 1

s11 X X 1 X X 1 X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 X
s12 1 Z Z Z Z Z Z Z Z Z Z Z Z 1 1 1 1 1 1 1 1 1 1

s13 Z Z Z 1 Z Z Z 1 1 1 Z 1 1 Z 1 1 1 1 1 1 1 1 1

s14 Z Z 1 Z Z Z 1 1 1 Z 1 Z 1 1 Z 1 1 1 1 1 1 1 1

s15 Z 1 Z Z Z 1 1 1 Z 1 Z Z 1 1 1 Z 1 1 1 1 1 1 1

s16 Z Z Z Z 1 1 1 Z 1 Z Z 1 1 1 1 1 Z 1 1 1 1 1 1

s17 Z Z Z 1 1 1 Z 1 Z Z 1 Z 1 1 1 1 1 Z 1 1 1 1 1

s18 Z Z 1 1 1 Z 1 Z Z 1 Z Z 1 1 1 1 1 1 Z 1 1 1 1

s19 Z 1 1 1 Z 1 Z Z 1 Z Z Z 1 1 1 1 1 1 1 Z 1 1 1

s20 Z 1 1 Z 1 Z Z 1 Z Z Z 1 1 1 1 1 1 1 1 1 Z 1 1

s21 Z 1 Z 1 Z Z 1 Z Z Z 1 1 1 1 1 1 1 1 1 1 1 Z 1

s22 Z Z 1 Z Z 1 Z Z Z 1 1 1 1 1 1 1 1 1 1 1 1 1 Z

X̄ X X X X X X X X X X X X X X X X X X X X X X X
Z̄ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
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Distillation protocols

A distillation protocol using a [[n, k, d]]-code consists of the following steps [LB13].

1. Physical preparation. The sender prepares n copies of the target state |φ+〉⊗n.

2. Transmission. The second qubit of each pair is send through the channel.
Errors occur on the qubits that are now in possession of the receiver, i.e. the
state is 1⊗ EB|φ+〉⊗n.

3. Measurement. Both parties perform measurements of the stabilizer gener-
ators s1, s2, ..., sn−k and obtain binary strings of measurement outcomes a
and b, respectively.

4. Correction. The sender corrects according to the syndrome a. The receiver
corrects according to the syndrome a and the syndrome a⊕ b. This requires
the sender to send a via a classical channel. Note that the two “errors” at
the receiver’s site can cancel each other.

5. (Decoding.) Both parties perform a decoding operation to obtain k physical
|φ+〉 states. This step is not always necessary: If the final state is to be
measured, a logical measurement can be performed instead.

The two most-common distillation protocols, [DEJ+96] and [DBCZ99], use vari-
ants of a two qubit repetition code. They can detect a single error, and abort in
case of an detected error, because they cannot correct it. If the protocol does not
abort, then the fidelity increases. The two protocols differ in the concatenation of
different distillation rounds.

Bound entanglement

A state is called bound entangled, if it is entangled but no maximally entangled
state can be distilled from it. Bound entanglement is related to the positive partial
transposition criterion [Per96], which is a necessary condition for separable states:
All separable bipartite states have a positive semidefinite partial transposition
(PPT) with respect to one party. If a state is distillable, i.e. it allows to distill
a maximally entangled state from it, then it violates the PPT criterion [HHH98].
But entangled PPT states exist [Hor97, HHH98]. This implies, that there exist en-
tangled states, from which no maximally entangled state can be distilled. It is not
known whether also bound entangled states with a non-positive partial transpose
(NPT) exist, i.e. whether the PPT criterion is sufficient for distillability.
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We are all now connected by the Internet, like neurons in a giant
brain.

Stephen Hawking [Swa14]

5
Long distance entanglement distribution

The distribution of entanglement over long distances is hindered by (photonic)
qubit losses during the transmission. The probability ηT of a photon to cross a
fiber (i.e. of successful transmission) drops exponentially with the distance. It can
be described by

ηT (l) = 10−αl/10 (5.1)

where α is the attenuation coefficient. A typical value at the telecom wavelength
(around 850 nm, 1300 nm, or 1550 nm) is α = 0.2db/km [GYS04].
These losses imply that a direct fiber link of more than approximately 200 km
is not useful for quantum key distribution. To achieve entanglement distribution
over larger distances quantum repeaters are necessary. These repeater stations
are situated along the transmission line to cut it into shorter parts. The repeater
stations can employ different approaches to tackle the effects of losses at the cost
of increased resources.

1. Quantum memories. The transmission of a quantum state from one repeater
station to the neighboring one, e.g. the distribution of a Bell pair, can be
retried until success. Quantum memories can store the transmitted state
until transmission was successful on every repeater link.

2. Error correction. Error correction schemes like distillation or stabilizer
codes, see Chapter 4, can correct the noise caused by imperfections in trans-
mission and processing of the quantum system.

3. Multiplexing. Different transmission lines can be operated in parallel and
repeater links of different lines can be composed to achieve connection over
the full distance [CJKK07, AKB14]. This is a spatial analog of 1.

The additional qubits inserted by a quantum repeater are measured after they
have been processed. This way any quantum repeater scheme finally outputs a
Bell pair across the large distance of the full transmission line. Different schemes,
some of which are introduced below, can thus be compared by the quality of the
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produced Bell pair and the required costs as measured by the used resources. The
actual costs strongly depend on the concrete physical implementation and many
other influences, of course. A simple figure of merit is the cost function [MKL+14]

C =
n

R
, (5.2)

where n denotes the total number of qubits used in the protocol and R is the
secret key rate in a cryptographic application of the repeater scheme. Note that
the secret key rate depends on the quality of the finally produced state.

5.1 Different quantum repeater approaches

In 1998 Briegel, Dür, Cirac and Zoller proposed the first explicit quantum repeater
scheme [BDCZ98]. It applies a nested distillation protocol, where rounds of entan-
glement swapping and entanglement distillation alternate. The number of initially
distributed Bell pairs is a power of two and in each entanglement swapping step
two pairs each are merged into a single one across the doubled distance, until
the final entangled pair spans the whole distance. Several variants and improved
versions of this protocol have been analyzed, e.g. in [DBCZ99, DCB05, MDN11,
SSdRG11, ZDB12, ABB+13, AKB14].
Error correction codes in the transmission of quantum information have been dis-
cussed in [KL96] as an application of code concatenations. Protocols based on
encoding only require to store the qubits for the time needed to process them
via quantum gates. This is an advantage compared to memory-based quantum
repeaters, because the qubits are subject to noise during storage. Error cor-
rection similar to a surface code [BK98, DKLP02] has been applied on a quan-
tum network in [PJS+08]. The protocol of [JTN+09] uses encoded Bell-pairs be-
tween neighboring repeater stations and exemplifies the analysis for several dif-
ferent CSS codes. The transmitted qubits can also be encoded using the surface
code [FWH+10, FMMC12]. Several subsequent works used different codes or im-
proved the analysis of quantum repeater schemes with encoding, in particular with
respect to quantum key distribution [MSD+12, BKB14, MKL+14, MZL+15].
In [EKB15], see Appendix F, I developed, with the aid of my co-authors, an ap-
proach that generalizes the repeaters with encoding to general networks of these
devices. These networks can distribute general multipartite graph states, which
are defined in the following section.

5.2 Graph states

A graph state [SW01, BR01] |G〉 is a quantum state which is associated with a
(mathematical) simple undirected graph G = (V,E), i.e. a set of vertices V and
a set of edges E ⊂ V × V connecting the vertices [Die96], see Figure 5.1. The
terms simple and undirected mean that there are no edges from a vertex to itself
and the edges have no direction, respectively. Let N = |V | denote the number of
vertices.

The quantum state |G〉 can be defined as the unique state stabilized by the
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Figure 5.1: Example for a graph with vertices V = {A,B, ..., J} and edges E =
{(A,B), (A, I), (A, J), (B,A), (B,C), ..., (J,F)}.

stabilizer generators

gi = Xi

∏
j

(i,j)∈E

Zj, (5.3)

i.e. the state fulfills
gi|G〉 = |G〉 (5.4)

for all i ∈ V . It can be constructed from a product state |+〉⊗N by applying a
controlled-phase gate CZ for each edge, i.e.

|G〉 =
( ∏

(i,j)∈E
i<j

C
(i,j)
Z

)|+〉⊗N . (5.5)

5.3 Quantum Networks

The non-classicality of quantum systems in terms of the violation of Bell inequali-
ties can increase exponentially with the number of parties [Mer90], which leads to
larger advantages of quantum protocols compared to their classical counterparts,
see Section 2.2. These parties may form a network and they may communicate
quantum information along the network links. In general quantum networks are
capable of creating and distributing multipartite entangled states, see also Ap-
pendix F.
Because quantum repeaters are not available yet, hybrid networks of quantum links
together with classical nodes are used in cryptographic applications [PPA+09]. In
this case the security of the communication between two nodes in the network
depends on whether one can trust the intermediate network nodes and networks
of this type are called trusted node networks.
Routing denotes the path-selection for a signal that is traveling from one party
to another in a larger network. It is interesting to optimize the routing strategy,
because each individual link has only a finite capacity, such that the routing in-
fluences the overall throughput of the network. This classical problem has been
considered in quantum information theory, too [Ell02, VMSL+13].
Different to the routing approach, in a network coding scheme the signal is not
send along a single route only, but it is encoded into the signal of several channels.



34 CHAPTER 5. LONG DISTANCE ENTANGLEMENT DISTRIBUTION

This technique allows to efficiently use all links and relieves bottlenecks of the
network. The quantum analog of network coding has been investigated, e.g. in
[LOW06, Hay07, SINV15].
Large scale quantum networks rise many more research problems. As another
example I mention the interoperability of different network technologies, e.g. dif-
ferent encodings, analyzed in [NCD+15]. See also [PJC+13] for a review on entan-
glement distribution in quantum networks.



6
Overview of results

This chapter lists the main results of my attached work.

Appendix A: An explicit example for a communication complexity task is given,
in which the parties benefit from bound entanglement (see Sec-
tion 4.2.4). The three parties receive three different inputs (M1 =
M2 = M3 = 3). The function and the probability distribution are
given by (see Section 2.2)

g(x1, x2, x3) = 2[(δx1,x2,x3 + x1 + x2 + x3) mod 2]− 1

× (1 + 4δ0,x1,x2,x3)(1− δ2,(x1+x2+x3) mod 3)

× (1− δ3,x1)(1− δ3,x2)(1− δ3,x3)

, (6.1)

where the symbol δ is 1 if all subscripts are equal and 0 otherwise.

Appendix B: For a given lattice of N spins entanglement witnesses Ŵ are con-
structed as

Ŵ = aŜ + b1, (6.2)

where Ŝ is a particular combination of spin observables that typ-
ically arises in neutron scattering. The two real coefficients a and
b depend on the bounds

cmin ≤ 〈Ŝ〉sep. ≤ cmax (6.3)

on the expectation value of the scattering observable for separable
states. Furthermore they are rescaled, such that the expectation
value of the witnesses Ŵ give lower bounds on the entanglement
in the system according to different entanglement measures. For
thermal states given by different model Hamiltonians it is shown
that Ŵ can be used to detect entanglement in the system.
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Appendix C: It is shown that

T (g) =
√
M1M2

M3,...,Mn∑
x3,...,xn

||g∗,∗,x3,...,xn||2, (6.4)

where ||g∗,∗,x3,...,xn||2 is the largest singular value of the matrix
(gx1,x2,x3,...,xn)x1,x2 , is a Tsirelson bound for the CHSH-type in-
equality given by coefficients gx1,...,xn . For two parties this bound
simplifies to

T (g) =
√
M1M2||g||2. (6.5)

Conditions for achievability of the bound are given and inter-
preted geometrically and dimension witnesses are constructed
from this.

Appendix D: Operations on g which leave T (g) in Eq. (6.5) invariant are dis-
cussed. These are

• special rotations of the singular vectors and

• modifications of non-maximal singular values.

Rotations of the local coordinate system are identified with the
first. The fact that the operations affect the classical bound of
the Bell inequality associated with g is used to optimize w.r.t.
the violation.

Appendix E: This paper summarizes the previous two papers and is intended
to be accessible by readers outside of the scientific community.
It contains a simplified example of a Bell experiment without
common reference frame.

Appendix F: A network of quantum repeaters with encoding (see Section 5)
is described in the graph state formalism (see Section 5.2) and
a detailed error analysis (see Section 4) is done. The quality of
general graph states distributed by this network is analyzed. The
Golay code (see Section 4.2.3) is identified as a very efficient error
correction code in this context. The graph state repeater with
Golay code outperforms all other investigated repeater schemes
in the considered parameter regime.

Appendix G: Gives more details about the error analysis of quantum repeaters.
Contains the comparison of the standard repeater and the graph
state repeater. The result strongly depends on the time required
for local operations. For fast local operations quantum repeaters
with encoding outperform the standard repeater scheme due to
the classical communication. The impact on the key rate of dif-
ferent strategies to abort in case of an fatal amount of noticed
errors is discussed.
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Časlav Brukner
Vienna Center for Quantum Science and Technology (VCQ) and Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna,

Austria and Institute of Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences,
Boltzmanngasse 3, 1090 Vienna, Austria

(Received 17 January 2013; published 6 March 2013)

We present a simple communication complexity problem where three parties benefit from sharing bound
entanglement. This demonstrates that entanglement distillability of the shared state is not necessary in order to
surpass classical communication complexity.

DOI: 10.1103/PhysRevA.87.032305 PACS number(s): 03.67.Hk, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

Quantum information studies communication or compu-
tation schemes which allow more efficient solutions when
considering the laws of quantum theory instead of those of
classical physics. In this research field, entanglement has
proven to be a beneficial resource and many applications
make use of maximally entangled states [1]. Because these
states are important for such applications, methods have been
developed to create one maximally entangled state out of
several copies of less entangled states using local operations
and classical communication (LOCC) [2]. This process is
called entanglement distillation. Entangled states that allow
for the creation of a maximally entangled state by LOCC in
at least one bipartition of the composite system are called
distillable states. States which are entangled but not distillable
are called bound entangled states [3].

Bell inequalities are constraints on probabilities for local
measurements, which are satisfied by local hidden variable
theories [4,5]. However, they are not satisfied by quantum
mechanics. Entangled states that violate a Bell inequality are
called nonlocal. There exist (mixed) entangled local states,
i.e., states which do not violate any Bell inequality [6]. Yet, it
was shown that all entangled states, including bound entangled
ones, violate a Bell inequality when combined with another
state which on its own cannot violate the same Bell inequality
[7].

Every distillable state may be transformed into a nonlocal
state using only LOCC, but not every nonlocal state is
distillable. This was found recently by giving an explicit
example of a nonlocal bound entangled state [8] (strengthening
previous results [9–11] to fully bound entangled states; see
below for the definition of fully bound entangled states).
Even though no pure entanglement can be distilled from
bound entangled states, they constitute a useful resource
in quantum-information protocols. These are entanglement
activation [12,13], enhancement of the teleportation power of
some other state [14], quantum steering [15], quantum data
hiding [16], and quantum key distribution [17]. The last two
tasks are “classical” in the sense that they can be stated outside
the framework of quantum theory. Quantum theory can then

*epping@thphy.uni-duesseldorf.de

enable advantages in comparison to how the tasks can be per-
formed on the basis of classical laws. In this paper we consider
another task of this type—communication complexity—for
which we show that bound entangled states can provide an
advantage over all possible classical solutions. This task allows
to quantify the advantage of the bound entangled states with
respect to classical resources of shared (classically) correlated
bit strings. Communication complexity studies the amount
of information that must be communicated between distant
parties in order to calculate a function of arguments which are
distributed among the parties [18]. We consider a similar ques-
tion: If the parties are restricted to communicate only a given
amount of information, what is the highest possible probability
for them to estimate the value of the function correctly?

It is well known that nonlocal states can be useful in such
a task [19]. Here we give a surprisingly simple example
illustrating the fact that this includes even fully bound
entangled states.

II. A GENERAL QUANTUM COMMUNICATION
COMPLEXITY SCHEME

We make use of a generalization of the quantum commu-
nication complexity scheme introduced in Ref. [19] to more
than two bits of input per party. Consider the situation where
n parties labeled 1 to n are spatially separated. Let us assume
an inequality of the form

2m−1∑
x1,....,xn=0

g(x1, . . . ,xn)E(x1, . . . ,xn) � B, (1)

where the coefficients g(x1, . . . ,xn) and the local hidden
variable bound B are real numbers and E(x1, . . . ,xn) is
the correlation function of a measurement for the choice
of measurement setting xi by each party i. The correlation
function can be expressed as E(x1, . . . ,xn) = P (a1 · · · an =
1|x1, . . . ,xn) − P (a1 · · · an = −1|x1 · · · xn), where ai = ±1 is
the measurement result of observer i. We call inequality (1)
a Bell inequality if it can be violated by a value S > B using
quantum-mechanical expectation values. Following the idea of
Ref. [19] we introduce a quantum communication complexity
problem associated with this Bell inequality. Each party i

receives one bit yi ∈ {−1,1} and m bits xi ∈ {0,1, . . . ,2m − 1}
unknown to all the other parties. The two possible values of yi
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occur with equal probability whereas the values of xi follow
the probability distribution

Q(x1, . . . ,xn) = |g(x1, . . . ,xn)|∑2m−1
x ′

1,...,x
′
n=0 |g(x ′

1, . . . ,x
′
n)| , (2)

which is fixed beforehand and known to all parties. Their
common task is to output the value of the function

f (y1, . . . ,yn,x1, . . . ,xn) =
n∏

i=1

yisign [g(x1, . . . ,xn)] . (3)

The parties do not evaluate the function correctly with
certainty. The aim is to maximize the probability of successful
evaluation. Each party is allowed to broadcast a single bit
of information to its fellow parties. It is required that all
parties broadcast the bit simultaneously. (In this way the
communicated bit of one party does not depend on the
broadcasted bits of others, but only on the local input.)
Afterwards one of the parties is asked to output the value
of the function. We consider two different protocols. In the
classical protocol the bit si sent by party i could be in general
any function of yi and xi . However, it was shown in Ref. [20]
(analog to Ref. [19]) that in the optimal classical protocol
si = yiai(xi), where ai(xi) is an appropriate chosen function
{0,1, . . . ,2m − 1} → {−1,1} and the best guess is given by

A(y1, . . . ,yn,x1, . . . ,xn) =
n∏

i=1

yiai(xi). (4)

Intuitively one can understand this in the following way.
Opposite values of any yi lead to opposite values of the
function f . Missing a single yi would completely destroy
the information about the result. Therefore, it is crucial to
communicate yi in a way that allows to reconstruct the product
of all the yi’s. In the quantum protocol, ai(xi) is replaced by
the measurement result ai . Each party i chooses one out of 2m

possible measurement settings according to the input xi and
sends yi multiplied by the measurement result ai . The best
guess is then again given by Eq. (4).

The probability of success of the protocol, i.e.,
the probability for A(y1, . . . ,yn,x1, . . . ,xn) to equal
f (y1, . . . ,yn,x1, . . . ,xn) can be written as

P (A = f ) = 1
2 [1 + (f,A)] (5)

using the weighted scalar product

(f,A) =
∑

y1,...,yn=±1

2m−1∑
x1,...,xn=0

1

2n
Q(x1, . . . ,xn)

× f (y1, . . . ,xn)A(y1, . . . ,xn). (6)

Inserting Q, f , and A gives the probability of guessing
correctly:

PC = 1

2

(
1 + B∑2m−1

x1,...,xn=0 |g(x1, . . . ,xn)|

)
, (7)

in the classical protocol and

PQ = 1

2

(
1 + S∑2m−1

x1,...,xn=0 |g(x1, . . . ,xn)|

)
(8)

in the quantum case.

III. BOUND ENTANGLEMENT AS A RESOURCE

We now come to the explicit example. We choose n = 3,
so there are three separated parties. They share the state

ρ =
4∑

i=1

pi |ψi〉〈ψi | (9)

with p1 = 0.0636039, p2 = p3 = 0.273734, p4 = 0.388929,
and

|ψ1〉 = 0.183013|000〉 − 0.408248(|001〉 + |010〉 + |100〉)
+ 0.683013|111〉,

|ψ2〉 = −0.344106(|001〉 − 2|010〉 + |100〉)
+ 0.219677(|011〉 − 2|101〉 + |110〉),

|ψ3〉 = 0.596008(|100〉 − |001〉) + 0.380492(|110〉 − |011〉),
|ψ4〉 = −0.933013|000〉 + 0.149429(|011〉 + |101〉 + |110〉)

+ 0.25|111〉.
It was introduced by Vértesi and Brunner in Ref. [8]. See
the reference for an analytic expression for the amplitudes. It
is constructed such that it is symmetric under permutations of
the parties and invariant under partial transpose with respect to
party 3. The last condition is sufficient for ρ to be biseparable
on the partition (1,2)|3 [21]. Together these conditions ensure
that the state is separable along any biseparation. Therefore,
it is fully nondistillable. Here “fully nondistillable” refers to
the fact that none of the three groupings (1,2)|3, (1,3)|2, and
(2,3)|1 of subsystems to parties is distillable. Vértesi and
Brunner also found that ρ can be used to violate the Bell
inequality

−13 � sym[A1 + A1B2 − A2B2 − A1B1C1

−A2B1C1 + A2B2C2] � 3, (10)

which is listed under number 5 in Ref. [22]. The symbol
sym[X] denotes the symmetrization of X with respect to
the three parties, e.g., sym[A1B2] = A1B2 + A1C2 + A2B1 +
A2C1 + B1C2 + B2C1. Because ρ is fully nondistillable and
nonlocal it is fully bound entangled.

We now use the method of homogenization described by
Wu and Żukowski in Ref. [23]: By adding a constant 5
to inequality (10), the bounds become symmetric. Then we
introduce new observables A0, B0, and C0 which also take the
values −1 and 1. Substituting the observables Ai by Ai/A0,
Bi by Bi/B0, and Ci by Ci/C0 and factoring out 1/(A0B0C0),
one expands lower-order correlation terms to full correlation
terms. We arrive at the inequality∣∣∣∣ 1

A0B0C0
sym[5A0B0C0 + A1B0C0 + A1B2C0 − A2B2C0

−A1B1C1 − A2B1C1 + A2B2C2]

∣∣∣∣ � 8

⇔ |sym[5A0B0C0 + A1B0C0 + A1B2C0 − A2B2C0

−A1B1C1 − A2B1C1 + A2B2C2]| � 8, (11)

which is expression H05 given in Table I of Ref. [23]. This
inequality has the required form to link to the communication
complexity problem described above. Like in Ref. [8] we
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choose

A1 = B1 = C1 =
(

cos
(

2π
9

)
sin
(

2π
9

)
sin
(

2π
9

) − cos
(

2π
9

)
)

(12)

and A2 = B2 = C2 =
(

sin
(

π
18

) − cos
(

π
18

)
− cos

(
π
18

) − sin
(

π
18

)
)

. (13)

For the new observables it is sufficient to choose A0 = B0 =
C0 = 1. With these observables we calculate the left-hand side
of inequality (11) using the quantum-mechanical expectation
values as

S = 5 + 3.00685 = 8.00685. (14)

This violation of the Bell inequality (11) implies a quantum
advantage in the quantum communication complexity task
associated with it. We write the coefficients in front of
correlations Ax1Bx2Cx3 in inequality (11) as

g(x1,x2,x3) = {
2
[(

δx1,x2,x3 + x1 + x2 + x3
)

mod 2
]− 1

}
× (1 + 4δ0,x1,x2,x3

)(
1 − δ2,(x1+x2+x3) mod 3

)
×

3∏
i=1

(
1 − δ3,xi

)
, (15)

where the symbol δ is 1 if all subscripts are equal and 0
otherwise. The firstfactor of Eq. (15) gives the sign of the

coefficient while the others define the probability distribution
for x1, x2, and x3 [see Eq. (2)]. The task for the three parties is
to calculate the function

f = y1y2y3sign [g(x1,x2,x3)]

= y1y2y3
{
2
[(

δx1,x2,x3 + x1 + x2 + x3
)

mod 2
]− 1

}
, (16)

which is basically the parity of the sum of x1, x2, x3, and
δx1,x2,x3 . As we chose A0 = B0 = C0 = 1, a party i performs no
measurement if xi = 0 and simply sends yi . Using equations
(7) and (8) we get PC = 0.681818 and PQ = 0.681974. This
shows that, albeit slightly, the parties still can increase the
probability of success if they share the bound entangled state
ρ, as compared to any classical protocol. This is striking,
especially if you remind yourself that the state ρ is separable
along any bipartition; i.e., it satisfies all Bell inequalities across
every bipartition. The presented task is a simple application
associated with the Bell inequality (10) the authors of Ref. [8]
were asking for. We note that a similar advantage can be shown
using the nonlocal games from Ref. [24].
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We show how the entanglement contained in states of spins arranged on a lattice may be lower bounded
with observables arising in scattering experiments. We focus on the partial differential cross section obtained in
neutron scattering from magnetic materials but our results are sufficiently general such that they may also be
applied to, e.g., optical Bragg scattering from ultracold atoms in optical lattices or from ion chains. We discuss
resonating valence bond states and ground and thermal states of experimentally relevant models—such as the
Heisenberg, Majumdar-Ghosh, and XY models—in different geometries and with different spin numbers. As
a by-product, we find that for the one-dimensional XY model in a transverse field such measurements reveal
factorization and the quantum phase transition at zero temperature.

DOI: 10.1103/PhysRevB.89.125117 PACS number(s): 03.67.Mn, 03.65.Ud, 28.20.Cz, 78.70.Nx

I. INTRODUCTION

Entanglement is a key resource for performing quantum
information tasks [1,2]. At low temperatures, it occurs natu-
rally in quantum many-body systems and its amount (more
concretely, its scaling with the size of system partitions)
relates to the complexity of descriptions of such systems
[3–7]. It also serves to characterize exotic states of matter,
a prominent example being topological spin liquids; see, e.g.,
the recent Refs. [8,9]. While the task of merely verifying that
entanglement is present [10,11] is quite established and it
has been demonstrated in a number of experiments [12–22],
quantifying its amount rigorously and without any assumptions
is a delicate task and has only very recently been experimen-
tally achieved for a large many-body system of bosons in
optical lattices in Ref. [23] (see also, e.g., Ref. [24] where
the entanglement of a small photonic system was quantified
using few measurements). Generally speaking, the difficulty
increases with the number of particles carrying the quantum
information, i.e., it is especially delicate for large systems for
which the available measurements are usually very limited and
very far from being informationally complete (in which case
full state tomography [15,25,26] would be possible). Here, we
are interested in such large systems, namely, a large number
of spins arranged on a lattice. In order to quantify the amount
of entanglement that is shared between the spins, we rely
only on global measurements typically obtained in scattering
experiments. We achieve this by generalizing results of the
recent Refs. [27,28] to arbitrary spin and to more general
observables. In the case of neutron scattering from magnetic
materials, this enables us to quantify entanglement for arbitrary
lattice geometries relying solely on the Fourier transform of
the scattering cross section (or, alternatively, measurements
that do not resolve the energy of the scattered neutrons).
Our strategy adopts a principle from quantum information
theory that is simple yet powerful [29–33]: Given certain
observables and their experimentally obtained expectation
values, we ask what is the minimal amount of entanglement
that is consistent with the obtained outcomes, i.e., given the
expectation values of the observables, we minimize over all
density matrices that are consistent with them. In this way, we

arrive at the least amount of entanglement that is consistent
with the measurement outcomes and thus we put a lower bound
on the entanglement contained in the sample on which the
measurements were performed. By the very nature of this
principle, we need not make any assumptions on the system
(such as, e.g., the temperature, details of external potentials,
the Hamiltonian governing the system, or even the system
being in equilibrium).

We consider observables that arise in scattering experiments
from N spins arranged on a lattice. Examples include optical
Bragg scattering from ultracold atoms in optical lattices [34]
or from ion chains [35] and neutron scattering from magnetic
materials [36]. These observables may be written as

Ŝ(q) =
∑
α,β

Mα,β(q)Ŝα,β (q), (1)

where, usually, q = kout − kin is the scattering vector, i.e.,
the difference between the final and the initial wave vectors.
Here,

Ŝα,β (q) =
N∑

i,j=1

f ∗
i,α(q)fj,β(q)eiq(r i−rj )Ŝα

i Ŝ
β

j , (2)

where r i is the position of the i’th spin with corresponding
spin operators Ŝα

i , α = x,y,z, and spin quantum number s,
and the coefficients Mα,β (q) and fi,α(q) depend on the system
under consideration. While keeping our results as general as
possible, we will focus on neutron scattering experiments,
in which such observables arise as follows. The neutrons
interact magnetically with the atoms of the target sample,
whose magnetic moments mostly originate from the orbital
motion and spins of unpaired electrons. In many cases an
effective spin value can be assigned to either the magnetic
atoms or to the entire unit-cell. [36] With the formalism
introduced by Van Hove in Ref. [37], the partial differential
cross-section can be expressed in terms of time-dependent
correlation functions. Accordingly, for unpolarized neutrons,
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the magnetic cross-section is proportional to [36]

d2σ

d	dω
∝ kout

kin

∑
α,β

i,j

(δα,β − q̄αq̄β)f ∗
i,α(q)fj,β(q)eiq(r i−rj )

×
∫

dt e−iωt
〈
Ŝα

i Ŝ
β

j (t)
〉
, (3)

where ω is the energy transferred to the sample and 	 the
solid angle under which the scattered neutrons are observed.
Furthermore, fi,α(q) = Fi(q)gi,α , where Fi(q) and gi,α denote
the magnetic form factor and the Landé factor of the ith site,
respectively, and q̄ = q/|q|. In general, we allow the g factor
to be anisotropic and fi,α(q) to be site dependent, where i

labels the lattice sites with corresponding effective values
of fi,α and Ŝα

i (corresponding to an effective spin quantum
number s). The magnetic form factor Fi(q) stems from the
finite extent of the electron orbitals seen by the neutron with
wavelength of the order of interatomic distances. To determine
it, a detailed knowledge about the electronic wave functions
of the magnetic atoms in the scatterer is required, and its
values may be found in the literature. As kin,out are known, one
may multiply (3) by kin/kout and take the Fourier transform to
obtain the instantaneous scattering function S(q) = 〈Ŝ(q)〉,
where Ŝ(q) is as in Eq. (1) with Mα,β (q) = δα,β − q̄αq̄β .
Alternatively, S(q) may be obtained if the requirements of
the static approximation are fulfilled [38] and the final energy
is not resolved. For quasi-one- or two-dimensional systems
one may also consider a special scattering geometry [39–41]
to obtain S(q).

In Sec. II, we show how a lower bound to the entanglement
shared among N spins—as quantified in terms of the best sep-
arable approximation [42] or the (generalized) robustness of
entanglement [43,44]—may be obtained from the expectation
value of Ŝ(q) in Eq. (1). In this way, we quantify entanglement
of a collection of N spins without any assumption on the
system. In Secs. III and IV we show that our method allows
quantification of the entanglement of ground and thermal states
corresponding to several model Hamiltonians. We conclude
with a summary and outlook in Sec. V.

II. MAIN RESULTS

In this section we will show how observables as in
Eq. (1) may serve as lower bounds to the entanglement.
We will consider several entanglement monotones and a
particular simple form will be derived for the best separable
approximation (BSA)EBSA[�̂] in the neutron scattering setting:
For any scattering vector q, we find (see below and Appendix A
for details)

EBSA[�̂] � 1 − 1

cmin

∑
α,β

(δα,β − q̄αq̄β)〈Ŝα,β (q)〉, (4)

where cmin is a constant that depends on the spin quantum
number s and the magnetic form factors Fi(q) and Landé
factors gi,α . Hence, a measurement of the Fourier transform
of the magnetic scattering cross section at a single scattering
vector directly provides a lower bound to the entanglement
contained in the sample. A numerical analysis of the above
bound may be found in Sec. III (see Figs. 1–3) for different

physical models that describe, among others, the magnetic
compounds summarized in Table I.

In the remainder of this section, we detail the derivation of
the above bound and the bounds on robustness of entanglement
measures. We start with a detailed description of the scattering
observables under consideration.

A. The observables under consideration

We will see below that for many systems, a measurement
of 〈Ŝ(q)〉 at a single scattering vector q suffices to put
meaningful tight lower bounds on the entanglement quantified
via the best separable approximation. For the robustness
measures, however, we have found that measurements at a
single scattering vector q do not suffice to obtain nontrivial
bounds for large systems (see also Ref. [27]). To this end,
we incorporate knowledge of 〈Ŝ(q)〉 at several q by slightly
generalizing the observables in the Introduction to observables
of the form

Ŝ =
∑
q∈Q

Ŝ(q). (5)

As we will see, this summation over measurements obtained at
several scattering vectors will result in positive entanglement
bounds even in the thermodynamic limit. Here, Q ⊂ R3 is
some collection of scattering vectors and Ŝ(q) is defined as
in Eq. (1), where we make the following assumptions on the
coefficients Mα,β (q) ∈ C and fi,α(q) ∈ C: We assume that
the 3 × 3 matrix M(q) with entries Mα,β (q) is Hermitian,
i.e., Mα,β(q) = M∗

β,α(q), and positive semidefinite. We further
assume that for each i = 1, . . . ,N the 3 × 3 matrix M (i) with
entries

M
(i)
α,β =

∑
q∈Q

f ∗
i,α(q)fi,β(q)Mα,β(q) (6)

is real and symmetric, i.e., M
(i)
α,β = M

(i)
β,α ∈ R. All these

assumptions are fulfilled, e.g., in the neutron scattering setting,
for which we have M(q) = 1 − q̄ q̄ t [see Eq. (3)] and fi,α(q) =
Fi(q)gi,α with gi,α ∈ R.

B. Lower bounds to the entanglement

In what follows, we consider multipartite entanglement in
the following sense. Every state �̂ that is not fully separable,
i.e., of the form

∑
n

pn

N⊗
i=1

�̂
(n)
i ∈ S, (7)

with pn > 0 and
∑

n pn = 1, will be called entangled. Here,
we denoted the set of separable states by S. The degree of
entanglement is then quantified using entanglement mono-
tones [1,2], that is, functionals E[�̂] that do not increase under
local operations and classical communication. The monotones
under consideration are part of a larger family of monotones
that may be expressed as [30]

EC[�̂] = − min
Ŵ∈W∩C

tr[Ŵ �̂] (8)

with the convention that EC[�̂] = 0 if the minimization results
in a positive number. Here, W is the set of entanglement
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FIG. 1. (Color online) Lower bound EBSA[�̂](q) = EBSA[�̂](qx) [Eq. (20)] to the entanglement EBSA[�̂] vs temperature for thermal states
of the quasi-one-dimensional Heisenberg model Eqs. (26) and (27) for s = 1/2,1,5/2 (left to right) and L = 900 [56]. The gray solid line in
the leftmost plot depicts the entanglement bound for a ground state of the Majumdar-Ghosh model in the limit L → ∞. Note that for all shown
models the bound EBSA[�̂] � 1, which holds for any state �̂, is attained at T = 0, qx = 0.

witnesses (Hermitian operators with non-negative expectation
value for every separable state, i.e.,〈Ŵ 〉sep. � 0; see Ref. [11]
for a review) and the set C depends on the chosen entanglement
measure: If

C = {Ŵ ∈W | 1 + Ŵ � 0} (9)

then EC[�̂] = EBSA[�̂] quantifies entanglement in terms of the
best separable approximation [42], which, in essence, answers
the question of how much of a separable state is contained in
the state �̂. For

C = {Ŵ ∈W | tr[Ŵ σ̂ ] � 1 ∀ σ̂ ∈ S} (10)

we have EC[�̂] = ER[�̂], quantifying entanglement in terms of
the robustness of entanglement. Finally, if

C = {Ŵ ∈W | 1 − Ŵ � 0} (11)

then EC[�̂] = EGR[�̂] is the generalized robustness of entangle-
ment. These robustness measures [43,44] quantify the minimal
amount of noise (in the form of a general state in the case of
the generalized robustness and in the form of a separable state
in the case of the robustness) that must be mixed in to make �̂

separable.
Instead of minimizing over all the entanglement witnesses

Ŵ ∈ W ∩ C, we construct a single member of the set W ∩ C
of the form

ŴŜ,C = aC Ŝ + bC1 (12)

with appropriate real coefficients aC and bC [which will depend
on the set of scattering vectors Q and the matrices M(q)] and
Ŝ as in the previous section. By inspection of Eq. (8), we see
that any Ŵ ∈W ∩ C gives a lower bound to the entanglement
monotone and thus for any state �̂, one has

EC[�̂] � −aC〈Ŝ〉 − bC, (13)

which depends only on the expectation value 〈Ŝ〉 = tr[Ŝ�̂].
The coefficients are found in the following way. As the
matrices M(q) are assumed to be positive semidefinite, it is
straightforward to show that Ŝ is also positive semidefinite;
see Appendix A. Furthermore, one may derive bounds on the
minimal and maximal achievable expectation values in fully
separable states

cmin � 〈Ŝ〉sep. � cmax. (14)

Together with the positive semidefiniteness of Ŝ, such bounds
allow us to arrive at witnesses that are of the form as in Eq. (12)
and members of the set W ∩ C. One readily verifies that the
coefficients

aBSA = 1

cmin
, bBSA = −1,

aR = − 1

cmax − cmin
, bR = −cmaxaR, (15)

aGR = − 1

cmax
, bGR = 1,

0
0

0.5 1.51.0

0.5

1.0

γ

h
0

1
k T = 10 1

k T = 5 1
k T = 31

k T = 103 0.01
0.03
0.07
0.15

0.32
0.66

FIG. 2. (Color online) Lower bound EBSA[�̂] [Eq. (20)] to the best separable approximation EBSA[�̂] for thermal states of a system of
mutually uncoupled chains, Eq. (26), each of which is described by the XY model in Eq. (28). The linear dimension is L = 200 and the depicted
bounds are obtained by optimizing EBSA[�̂](q) over certain q and over the orientation of the chains (see the main text). For low temperature,
the phase boundary and factorization circle γ 2 + h2 = 1 are clearly visible. Note also that for higher temperature, there are regions on this
circle with finite entanglement.
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FIG. 3. (Color online) Lower bound EBSA[�̂](q) = EBSA[�̂](qx,qy) [Eq. (20)] to the entanglement EBSA[�̂] for thermal states of the quasi-
two-dimensional Heisenberg model in Eq. (29) with s = 1/2,1,5/2 (left to right). The top row shows EBSA[�̂](qx,qy) for T/J = 1/4, and the
bottom row shows cuts through the first Brillouin zone for different temperatures. Cuts are along the line from (qx,qy) = (π/2,π/2) to (0,0)
and and along the x axis from (0,0) to (3π/4,0). The simulated system size is L = 30 [56]. The lines are guides to the eye and only data points
with EBSA[�̂](qx,qy) > 0 and (qx,qy) ∈ 2π{0, . . . ,L − 1}×2/L are shown.

fulfil the necessary requirements as defined in Eqs. (9)–(11).
It remains to make the bounds cmin and cmax explicit. To obtain
these bounds, we will make use of ingredients that also enter
the derivation of spin-squeezing inequalities [45–47], such as
the reduction to bounds on single-spin variances as, e.g., in
Eq. (16). In contrast to the situation encountered for spin-
squeezing inequalities, however, we have the added difficulty
of not having access to first moments and having to consider
q �= 0 and general Mα,β(q).

1. Lower bound to the best separable approximation

For each i = 1, . . . ,N , denote the eigenvalues of the 3 × 3
matrix M (i) in Eq. (6) by m(i)

α . For product states, and so for
each summand in Eq. (7), the expectation value 〈Ŝα

i Ŝ
β

j 〉 can

be written as the product 〈Ŝα
i 〉〈Ŝβ

j 〉 for lattice sites i �= j . The
resulting expression can then be bounded with the help of the
eigenvalues of the coefficient matrices M (i) in the following
way (see Appendix A for details):

cmin =
N∑

i=1

min
|ψ〉

∑
α

m(i)
α

(〈ψ |Ŝ2
α|ψ〉 − 〈ψ |Ŝα|ψ〉2

)
, (16)

where Ŝα , α = x,y,z, are the spin operators for a single spin.
For each i, the minimization over pure states |ψ〉 ∈ C2s+1

may be solved numerically; to obtain analytical solutions, the
methods developed in Refs. [45–47] may be useful. For some
special cases, cmin may be given explicitly: For example, for
fi,α(q) = f (q) and Mα,β (q) = δα,β/|f (q)|2 (similar observ-
ables were considered in Ref. [28]), one finds

cmin = N |Q|s, (17)

where we recall that s is the spin quantum number correspond-
ing to the Ŝα

i and |Q| denotes the number of scattering vectors
in the set Q. If fi,α(q) = f (q), if M(q) = (1 − q̄ q̄ t )/|f (q)|2
as in the neutron scattering setting, and if Q contains only one
scattering vector, we have

cmin = NCs, (18)

where [48]

Cs =
{

1
4 for s = 1

2 ,

7
16 for s = 1,

(19)

and further values are listed in Ref. [49]. The latter yields
the following bound on the best separable approximation. For
each q ∈ R3, inserting Eq. (18) into Eqs. (13) and (15) leads
to

EBSA[�̂] � 1 −
∑
α,β

δα,β−q̄α q̄β

NCs

∑
i,j

eiq(r i−rj )
〈
Ŝα

i Ŝ
β

j

〉
=: EBSA[�̂](q). (20)

Note that this is a general bound for any state. Whenever the
expectation value EBSA[�̂](q) is accessible, it provides a lower
bound to the entanglement contained in �̂—no matter what
the underlying Hamiltonian of the system or the temperature
might be, no matter whether the system is in equilibrium or
not. If, depending on the experimental situation, EBSA[�̂](q)
is not accessible, i.e., the special form of M(q) and fi,α(q) is
not given, one has to use the observable given in Eqs. (1)
and (2) and the general bound in Eq. (16) needs to be
applied. Note that, for any state, EBSA[�̂] � 1, i.e., whenever
we find EBSA[�̂](q) = 1, the bound is in fact equal to the exact
entanglement. In Sec. III, we present EBSA[�̂](q) for several
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numerically simulated states (see Figs. 1–3), and in Sec. IV, we
discuss some examples for which EBSA[�̂](q) may be obtained
analytically.

2. Lower bound to robustness measures

The derivation of the general bound may be found in
Appendix A; for clarity, we state it here only for the following
special case. We let fi,α(q) = f (q) and Mα,β(q) = δα,β/

|f (q)|2 such that our observable reads

Ŝ =
∑
q∈Q

N∑
i,j=1

eiq(r i−rj )
∑

α

Ŝα
i Ŝα

j . (21)

We further assume that the N = N1N2N3 spins are arranged
on a finite three-dimensional Bravais lattice with primitive
vectors ad , d = 1,2,3, such that r i = ∑3

d=1 id ad with id ∈
{1, . . . ,Nd}. Further we assume that

Q ⊂
{

3∑
d=1

qd bd

∣∣ qd = i − 1

Nd

, i ∈ {1, . . . ,Nd}
}

=: Q, (22)

where the bd are the reciprocal primitive vectors. The upper
bound is derived in Appendix A and reads

cmax = N |Q|s + N2s2; (23)

see Eq. (A18). Hence, whenever the expectation of the
observable in Eq. (21) may be obtained, we have the following
lower bounds to the robustness measures for any state. For all
Q ⊂ Q, we have

ER[�̂] � 〈Ŝ〉 − N |Q|s
N2s2

− 1 =: ER[�̂],

EGR[�̂] � 〈Ŝ〉
N |Q|s + N2s2

− 1 =: EGR[�̂].

(24)

We present ER[�̂] and EGR[�̂] for several numerically simu-
lated states in Sec. III (see Fig. 4), and discuss some analytic
examples in Sec. IV.

III. NUMERICAL ANALYSIS OF MAGNETIC MATERIALS

For all our numerical examples we assume that fi,α(q) =
f (q), that the N = L3 spins are arranged on a simple
cubic lattice with r i = i ∈ {1, . . . ,L}×3 and periodic boundary
conditions, and that

Q ⊂ 2π{0, . . . ,L − 1}×3/L. (25)

We will consider ground and thermal states �̂ =
e−Ĥ /(kBT )/Z of quasi-one- and two-dimensional Hamiltonians,
that is, Hamiltonians of the form

Ĥ =
N∑

iz,iy=1

Ĥ
(iz,iy )
1D or Ĥ =

N∑
iz=1

Ĥ
(iz)
2D , (26)

i.e., Hamiltonians that correspond to L2 mutually uncoupled
chains or Hamiltonians that correspond to L mutually uncou-
pled two-dimensional systems. We further assume that the
individual chains are governed by the same one-dimensional
Hamiltonian Ĥ1D and will give numerical examples for
the one-dimensional Heisenberg model and the XY chain.

kBT/J0 0.5 2.0 2.5

0.1

0.4

0

0.5

E
R

/
G

R
[

]̂

1D, s = 1/2
1D, s = 1

2D, s = 1
2D, s = 1/2

1D, s = 1/2
1D, s = 1

2D, s = 1
2D, s = 1/2

EGR[ ]̂ :

ER[ ]̂ :

FIG. 4. (Color online) Lower bounds ER[�̂] and EGR[�̂]
[Eqs. (24) and (21); see the main text for the choice of the set Q] to the
robustness measures ER[�̂] and EGR[�̂] as functions of temperature
for thermal states of the quasi-one-dimensional [black, see Eqs. (26)
and (27)] and quasi-two-dimensional [blue, see Eq. (27)] Heisenberg
models with spin number s = 1/2 (solid) and s = 1 (dashed). Note
that for any state ER[�̂] � EGR[�̂]. The lines are guides to the eye
and N = 900 spins were simulated [56].

Similarly, we assume that the individual two-dimensional
systems are governed by the same Ĥ2D and provide numerical
examples for it being the two-dimensional Heisenberg model.

Results for thermal states are obtained using the loop
algorithm of the ALPS quantum Monte Carlo library [50]. For
details on the simulation of effective one- and two-dimensional
models and the symmetries of the models under consideration
see Appendixes B and C.

We start with quasi-one-dimensional models, the first of
which is the antiferromagnetic one-dimensional Heisenberg
model, i.e., the individual chains are governed by the Hamil-
tonian

ĤH
1D = J

∑
〈i,j〉

Ŝi · Ŝj = J
∑
〈i,j〉

∑
α

Ŝα
i Ŝα

j , (27)

where 〈·,·〉 denotes summation over nearest neighbors. Various
materials may approximately be described by such mutually
uncoupled chains and have been studied experimentally using
neutron scattering; see Table I for some examples. In Fig. 1,
we present results for the lower bound EBSA[�̂](q), which, due
to symmetries of the considered model, is independent of qy

and qz (see Appendix C for details).
As a second quasi-one-dimensional example, we consider

thermal states �̂ = e−βĤ /Z of the spin-1/2 XY chain in a
transverse magnetic field,

ĤXY
1D =

∑
〈i,j〉

[
(1 + γ )Ŝx

i Ŝx
j + (1 − γ )Ŝy

i Ŝ
y

j

]− h
∑

i

Ŝz
i , (28)

where γ is the anisotropy parameter and h denotes the
magnetic field. The system undergoes a quantum phase
transition at the critical value h = 1 and the ground state
factorizes for γ 2 + h2 = 1. See Ref. [57] for a comparison
of this model to experimental data on Cs2CoCl4 and Ref. [58]
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TABLE I. Various materials that have been studied using neutron
scattering and that may approximately be described by quasi-one- or
two-dimensional Heisenberg Hamiltonians.

Compound Effective D s J (K) Studied at T (K) Ref.

CuSO4· 5D2O 1 1/2 3 0.1 [51]
Cs2CuCl4 1 1/2 4 0.06 [52]
CsNiCl3 1 1 17 1.6 [53]
Cu(DCOO)2· 4D2O 2 1/2 72 1.5 [54]
La2CuO4 2 1/2 1567 337 [40]
SrCuO4Cl2 2 1/2 1451 10 [41]
K2NiF4 2 1 112 4.2 [39]
Rb2MnF4 2 5/2 8 10 [55]

for confirmation of the one-dimensional spin-1/2 XY character
of the interactions between the pseudospins of the Pr3+ ions
in PrCl3. The spin-correlation functions for thermal states of
this model were extensively studied by Barouch and McCoy
in Ref. [59] and may be obtained numerically for very large
chain lengths. We present lower bounds to the best separable
approximation of thermal states of this model in Fig. 2.
The presented results are for chains oriented along the x

direction and we maximize the bound EBSA[�̂](q) over all
q ∈ 2π{0, . . . ,L − 1}×3/L with q �= 0; see Appendix C for
details. Further, we use the fact that entanglement properties
of the thermal state are invariant under γ �→ −γ (as this may
be implemented by local unitaries).

Finally, in Fig. 3, we present results for the quasi-two-
dimensional model, in which each two-dimensional subsystem
is governed by the Heisenberg model such that the total
Hamiltonian reads

ĤH = J
∑
〈i, j〉

δiz,jz

∑
α

Ŝα
i Ŝα

j , (29)

where we recall that i = (ix,iy,iz) ∈ {1, . . . ,L}×3. Due to
the symmetries of this model, the bound EBSA[�̂](q) in
Eq. (20) is independent of qz; see Appendix C for details.
For compounds well described by the quasi-two-dimensional
Heisenberg model, see Table I.

To present results on the robustness measures ER[�̂] and
EGR[�̂], we need to specify the set of scattering vectors Q

appearing in the lower bounds ER[�̂] and EGR[�̂] in Eqs. (24)
and (21). We use the following choice of scattering vectors:

Q(x) =
⎧⎨
⎩q ∈ Q |

∑
i,j

eiq(r i−rj )
∑

α

〈
Ŝα

i Ŝα
j

〉
� x

⎫⎬
⎭ (30)

and then take Q as the Q(x) that maximizes the lower bound.
In Fig. 4, we present results for all the Heisenberg models that
we also considered for the best separable approximation.

IV. ANALYTIC EXAMPLES

In this section, we discuss resonating valence bond
(RVB) states and the Majumdar-Gosh model, for which an
exact expression for the expectation value of Ŝ(q) (and
hence for our entanglement bounds) may be obtained. In
the context of high-temperature superconductors, resonating
valence bond states were introduced by Anderson [60,61].

They are used to describe quantum spin liquids, i.e., states
without long-range magnetic order [62], and appear as
ground states of frustrated antiferromagnets. Such systems
and their description by the RVB model currently receive
increased theoretical as well as experimental attention; see,
e.g., Refs. [8,9,63,64], and Ref. [65] for a recent neutron
scattering investigation of the antiferromagnetic Heisenberg
model on a kagome lattice. Besides the characterization of
high-Tc superconductors, quantum spin liquids have poten-
tial applications for topological quantum computation [66].
The entanglement properties of RVB states have recently
been considered using tools from quantum information the-
ory [67,68]. Consider a lattice with N (even) sites and a
dimer covering  = {(i1,j1), . . . ,(iN/2,jN/2)}, i.e., a collection
of pairs of lattice sites such that each lattice site belongs
to exactly one dimer. To any such dimerization, one may
associate a valence bond state |ψ〉 = ⊗(i,j )∈|φi,j 〉. Sin-
glet RVB states are superpositions of such states, |ψ〉 =∑

 c|ψ〉, where each dimer forms a singlet |φi,j 〉 =
1√
2
(|↑〉i |↓〉j − |↓〉i |↑〉j ). The span of all singlet valence bond

states is equal to the singlet sector, i.e., to the spin-zero
subspace. For these states, in the limit q → 0, we have
EBSA[|ψ〉〈ψ |](q → 0) � 1 − 1

NCs

∑
α〈Ŝ2

α〉 = 1, where Ŝα =∑
i Ŝ

α
i is the total spin along α, i.e.,

EBSA[|ψ〉〈ψ |](q → 0) = 1, (31)

for all |ψ〉 = ∑
 c|ψ〉, i.e., these states maximally violate

the lower bound in Eq. (14) and their entanglement as quan-
tified in terms of the best separable approximation is hence
optimally quantified by the neutron scattering observable in
Eq. (20).

Hamiltonians for which the RVB model may describe the
ground state and explain low-lying excitations include exam-
ples with frustration due to additional next-nearest-neighbor
interaction such as the so-called Klein Hamiltonian [69] on
two-dimensional lattices and the Majumdar-Ghosh Hamilto-
nian in one dimension [70],

Ĥ MG
1D = 2

∑
i

Ŝi · Ŝi+1 +
∑

i

Ŝi · Ŝi+2. (32)

In Ref. [71] it was shown that the ratio of nearest-neighbor and
next-nearest-neighbor coupling in the quasi-one-dimensional
antiferromagnet CuCrO4 is close to 2, putting this magnet
in the vicinity of the Majumdar-Ghosh point. Every ground
state of Ĥ MG

1D is a superposition of two two-periodic states
given by products of nearest-neighbor singlets, i.e., a RVB
state. The equal-weight ground state may be given explicitly
by exploiting its description as a matrix product state [72].
The correlators can be computed exactly and allow for a
particularly concise expression of the structure factor in the
thermodynamic limit: The correlators for a single chain of
length L are given by [72,73]

〈
Ŝα

i Ŝα
i+r

〉 =
{

(−1)L/2−1 (−1)r

2L/2+1+4(−1)L/2 for r > 1,

− 1
4

2L/2+4(−1)L/2

2L/2+1+4(−1)L/2 for r = 1.
(33)

In the thermodynamic limit we find 〈Ŝα
i Ŝα

i+r〉 = − δ1,r

8 for
α = x,y,z and r > 0, which yields

EBSA[�̂](q) = 2 cos(qx) − 1 (34)
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if every one of the mutually uncoupled chains is in this ground
state; see the solid line in Fig. 1. With Q = {q}, i.e., |Q| = 1,
we find for the robustness bounds in Eq. (24) that, as N → ∞,

ER[�̂] = 1 − 3 cos(qx)

N
− 1,

EGR[�̂] = 3[1 − cos(qx)]

2 + N
− 1,

(35)

both of which become trivial if N is too large. Just as
for the numerical examples, we see that summation over
several scattering vectors is necessary to obtain a nontrivial
lower bound: We choose Q(c) = {q ∈ Q | 2π

L
L
2 − 2π

L
cL <

qx � 2π
L

L
2 + 2π

L
cL}, i.e., |Q(c)| = 2cN . This choice follows

from the form of the structure factor of this model, which
has a maximum at π and decreases monotonically towards
0 and 2π . Thus, c parametrizes the set Q(c) as in (30).
We may then, for large L, replace the summation of the
structure factor over different qx by an integral according
to limL→∞ 1

L

∑b
q=a f ( 2πq

L
) = 1

2π

∫ 2πb/L

2πa/L
f (q)dq. By direct

computation of the integral over the set Q(c) we obtain
lower bounds to the robustness measures for every c. By
maximizing over 0 < c < 1/2, we find that ER[�̂] ≈ 0.51 and
EGR[�̂] ≈ 0.23 in the thermodynamic limit.

V. SUMMARY AND OUTLOOK

We showed how entanglement may be quantified by relying
on observables typically obtained in scattering experiments. In
particular, these observables can be measured via the scattering
cross section in neutron scattering. We showed how such
measurements give lower bounds on the entanglement in
the sample, bounding the best separable approximation, the
robustness of entanglement, and the generalized robustness of
entanglement. These bounds rely neither on the knowledge of
the systems underlying Hamiltonian nor on any other informa-
tion about the state of the sample material. The detection can
be applied to macroscopic systems, because the experimental
effort does not increase with the system size—in stark contrast
to quantum state tomography. We showed for several model
Hamiltonians, such as the Heisenberg, Majumdar-Gosh, and
XY models (for different spin numbers and different spatial
geometries), that our method can indeed quantify entangle-
ment in large samples at finite temperature. Interestingly,
quantum phase transitions and factorization points are detected
by our entanglement bounds. The considered models are well
known and applicable to real materials. Therefore our results
pave the way for macroscopic entanglement quantification in
experiments. This is very important for future applications
which utilize entanglement, e.g., in quantum information
science. Our method might also be valuable as an alternative
way to check the power of a model to describe the sample
material, e.g., if a sample is highly entangled, a classical
description certainly fails.
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APPENDIX A: BOUNDS FOR FULLY SEPARABLE STATES

Let Q ⊂ R3. For q ∈ Q, i = 1, . . . ,N , and α = x,y,z, let
fi,α(q) ∈ C and r i ∈ R3. Further, for each q ∈ Q let M(q)
be a 3 × 3 Hermitian positive semidefinite matrix with entries
Mα,β(q). Consider the observable

Ŝ =
∑
q∈Q

∑
α,β

∑
i,j

Mα,β(q)f ∗
i,α(q)fj,β(q)eiq(r i−rj )Ŝα

i Ŝ
β

j , (A1)

which is positive semidefinite: Denoting Ŝα(q) =∑
i fi,α(q)e−iqr i Ŝα

i , we have

Ŝ =
∑
q∈Q

∑
α,β

Mα,β(q)Ŝα(q)†Ŝβ(q), (A2)

which is positive semidefinite as the 3 × 3 matrices M(q)
are and as for every q and every state vector |ψ〉 the 3 × 3
matrix with entries 〈ψ |Ŝα(q)†Ŝβ(q)|ψ〉 is positive semidefinite
[for every z ∈ C3, one has

∑
α,β z∗

α〈ψ |Ŝα(q)†Ŝβ(q)|ψ〉zβ =
〈ψ |[∑α zαŜα(q)]†[

∑
β zβŜβ(q)]|ψ〉 � 0].

For each i = 1, . . . ,N define the 3 × 3 matrix M (i) with
entries

M
(i)
α,β =

∑
q∈Q

f ∗
i,α(q)fi,β(q)Mα,β(q). (A3)

We assume that these matrices are real symmetric. This is
fulfilled, e.g., if fi,α(q) = Fi(q)gi,α with Fi(q) ∈ C and gi,α ∈
R. We further note that these M (i) are positive semidefinite
as we assumed that the M(q) are positive semidefinite: Let
z ∈ C3. Then

z†M (i) z =
∑
α,β

z∗
αM

(i)
α,βzβ

=
∑
q∈Q

[∑
α

zαfi,α(q)

]†
Mα,β (q)

×
⎡
⎣∑

β

zβfi,β(q)

⎤
⎦ � 0. (A4)

We set out to derive upper and lower bounds on the
expectation of Ŝ for product states |ψ〉 = ⊗i |ψi〉. The same
bounds then also hold for fully separable states �̂ = ∑

n pn ⊗i

�̂
(n)
i by convexity. For product states, we have that for all i �= j

the equality 〈Ŝα
i Ŝ

β

j 〉 = 〈Ŝα
i 〉〈Ŝβ

j 〉 holds. Hence,

〈Ŝ〉 =
∑

i

∑
α,β

M
(i)
α,β

〈
Ŝα

i Ŝ
β

i

〉−∑
i

∑
α,β

M
(i)
α,β

〈
Ŝα

i

〉 〈
Ŝ

β

i

〉

+
∑
q∈Q

∑
α,β

∑
i,j

Mα,β(q)f ∗
i,α(q)fj,β(q)eiq(r i−rj )

〈
Ŝα

i

〉 〈
Ŝ

β

j

〉
=: A − B + C. (A5)
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1. Lower bound

The third term C in Eq. (A5) is non-negative as for each q
the matrix M(q) is positive semidefinite. Hence we have the
lower bound

〈Ŝ〉 � A − B =
∑

i

∑
α,β

M
(i)
α,β

(〈
Ŝα

i Ŝ
β

i

〉− 〈
Ŝα

i

〉 〈
Ŝ

β

i

〉)
. (A6)

As we assumed that for each i the M (i) are real symmetric,
there are mutually orthonormal real eigenvectors m(i)

γ with

corresponding eigenvalues m(i)
γ and there is a unitary Ûi such

that
∑

α[m(i)
γ ]αŜα

i = Û
†
i Ŝ

γ

i Ûi for all γ . Thus∑
α,β

M
(i)
α,β

(〈ψi |Ŝα
i Ŝ

β

i |ψi〉 − 〈ψi |Ŝα
i |ψi〉〈ψi |Ŝβ

i |ψi〉
)

=
∑

γ

m(i)
γ

(〈ψi |Û †
i

(
Ŝ

γ

i

)2
Ûi |ψi〉 − 〈ψi |Û †

i Ŝ
γ

i Ûi |ψi〉2
)

� min
|ψ〉 ∈ C2s+1

〈ψ |ψ〉 = 1

∑
γ

m(i)
γ

(〈ψ |(Ŝγ

i

)2|ψ〉 − 〈ψ |Ŝγ

i |ψ〉2
)
,

(A7)

which is cmin presented in the main text.

2. Upper bound

We first bound, as above,

A =
∑

i

∑
α,β

M
(i)
α,β〈ψi |Ŝα

i Ŝ
β

i |ψi〉

=
∑

i

∑
γ

m(i)
γ 〈ψi |Û †

i

(
Ŝ

γ

i

)2
Ûi |ψi〉 �

∑
i

∥∥∥∥∥
∑

γ

m(i)
γ

(
Ŝ

γ

i

)2

∥∥∥∥∥ ,

(A8)

where ‖ · ‖ denotes the operator norm. Now denote byM the
Hermitian 3N × 3N matrix with entries

Mi,α;j,β =
∑
q∈Q

Mα,β(q)f ∗
i,α(q)fj,β(q)(eiq(r i−rj ) − δi,j ). (A9)

This matrix has tr[M] = 0, i.e., its largest eigenvalue λmax is
non-negative and therefore

C − B =
∑
α,β

∑
i,j

Mi,α;j,β
〈
Ŝα

i

〉 〈
Ŝ

β

j

〉
� λmaxNs2. (A10)

Hence, we have the bound

A − B + C �
∑

i

∥∥∥∥∥
∑

γ

m(i)
γ

(
Ŝ

γ

i

)2

∥∥∥∥∥+ λmaxNs2. (A11)

This constitutes our general result for cmax. To compute it, one
needs to find the maximum eigenvalue of the 3N × 3N matrix
M and, for each i = 1, . . . ,N , the eigenvalues of the 3 × 3
matrix M (i). We now discuss a geometry for which this may
be made more explicit.

Let the positions of the ith spin be r i = rk,l = Rk + xl ,
where k = 1, . . . ,Nc and l = 1, . . . ,n such that N = nNc.
Further we let the lattice sites k = 1, . . . ,Nc, with Nc =
Nc

1Nc
2Nc

3 , be the sites of a finite Bravais lattice with primitive
vectors ad , d = 1,2,3, such that Rk = ∑3

d=1 kd ad with kd ∈
{1, . . . ,Nc

d }. Note that this is more general than in the main
text as we allow for n spins in each unit cell. We now assume
that fi,α(q) = fk,l,α(q) = fl,α(q), i.e., it depends only on l.
Further we assume that

Q ⊂
{

3∑
d=1

qd bd

∣∣ qd = i − 1

Nc
d

, i ∈ {1, . . . ,Nc
d

}} =: Q,

(A12)

where the bd are reciprocal primitive vectors corresponding
to the ad . We then have 1

Nc

∑
p∈Q ei p(Rk−Rk′ ) = δk,k′ , which

yields

Mα,k,l;β,k′,l′ =
∑
q∈Q

Mα,β(q)f ∗
l,α(q)fl′,β(q)(eiq(Rk−Rk′ )eiq(xl−xl′ ) − δk,k′δl,l′)

=:
∑
q∈Q

M ′
α,l;β,l′ (q)(eiq(Rk−Rk′ ) − δk,k′δl,l′ )

=
∑
q∈Q

M ′
α,l;β,l′ (q)

⎛
⎝eiq(Rk−Rk′ ) − δl,l′

1

Nc

∑
p∈Q

ei p(Rk−Rk′ )

⎞
⎠

=
∑
q∈Q

M ′
α,l;β,l′ (q)

∑
p∈Q

(
δ p,q − δl,l′

1

Nc

)
ei p(Rk−Rk′ )

=:
∑
p∈Q

M ′′
α,l;β,l′ ( p)ei p(Rk−Rk′ )

=:
∑
p∈Q

[M ′′( p) ⊗ e pe†p]α,l,k;β,l′,k′ (A13)
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and thus λmax = Nc max p∈Q λmax[M ′′( p)] = Nc max p∈Q λmax[M ′′( p)], where

M ′′
α,l;β,l′ ( p) =

∑
q∈Q

Mα,β(q)f ∗
l,α(q)fl′,β(q)eiq(xl−xl′ )

(
δ p,q − δl,l′

1

Nc

)
. (A14)

Further,

M
(i)
α,β = M

(k,l)
α,β = M

(l)
α,β =

∑
q∈Q

f ∗
l,α(q)fl,β(q)Mα,β(q) (A15)

with eigenvalues m(l)
γ . We hence have the bound

A − B + C � Nc

n∑
l=1

∥∥∥∥∥
∑

γ

m(l)
γ

(
Ŝ

γ

i

)2

∥∥∥∥∥+ Ns2Nc max
p∈Q

λmax[M ′′( p)]. (A16)

Comparing this cmax to the general bound above, one now must, for each q ∈ Q, find the maximum eigenvalue of a 3n × 3n

matrix (where we recall that n is the number of spins in each unit cell) and, for each l = 1, . . . ,n, find the eigenvalues of the
3 × 3 matrix M (l).

If fl(q) = f (q) and Mα,β(q) = δα,β/|f (q)|2, we have

M ′′
α,l;β,l′ ( p) = δα,β

∑
q∈Q

eiq(xl−xl′ )
(

δ p,q − δl,l′
1

Nc

)
= δα,βei p(xl−xl′ ) − δα,βδl,l′

|Q|
Nc

(A17)

and M
(l)
α,β = |Q|δα,β , i.e., the bound simplifies to

A − B + C � N |Q|s + N2s2, (A18)

which is cmax in the main text.

APPENDIX B: SIMULATION DETAILS: EFFECTIVE
ONE- AND TWO-DIMENSIONAL SYSTEMS

Consider

Ŝα,β (q) =
∑
i, j

eiq(i− j )Ŝα
i Ŝ

β

j . (B1)

We write i = (ix iy iz) ∈ {1, . . . ,L}×3, q = (qx qy qz), ĩ =
(ix iy), q̃ = (qx qy). If the system consists of mutually un-
coupled (in the z direction) two-dimensional systems, we have
〈Ŝα

i Ŝ
β

j 〉 = 〈Ŝα
i 〉〈Ŝβ

j 〉 whenever iz �= jz, i.e.,

〈Ŝα,β (q)〉 =
∑
i, j

iz = jz

ei q̃·(ĩ− j̃ )
〈
Ŝα

i Ŝ
β

j

〉

+
∑
i, j

iz �= jz

eiq·(i− j )
〈
Ŝα

i

〉 〈
Ŝ

β

j

〉

=
∑
i, j

iz = jz

ei q̃·(ĩ− j̃ )
(〈
Ŝα

i Ŝ
β

j

〉− 〈
Ŝα

i

〉 〈
Ŝ

β

j

〉)

+
(∑

i

eiq·i 〈Ŝα
i

〉)(∑
i

eiq·i 〈Ŝβ

i

〉)∗

=: Sα,β(q̃) + Mα(q)M∗
β(q).

Now let the two-dimensional subsystems be equal. Then, any
thermal state of the system is of the form �̂ = ⊗iz �̂iz , where
the �̂iz are equal and each describes a two-dimensional layer
at z coordinate iz. Hence,〈

Ŝα
i

〉 = tr
[
Ŝα

i �̂
] = tr

[
Ŝα

i �̂iz

] =:
〈
Ŝα

ĩ

〉
2D, (B2)

which does not depend on iz. Similarly, for iz = jz,〈
Ŝα

i Ŝ
β

j

〉 = tr
[
Ŝα

i Ŝ
β

j �̂
] = tr

[
Ŝα

i Ŝ
β

j �̂iz

] =:
〈
Ŝα

ĩ Ŝ
β

j̃

〉
2D, (B3)

which does not depend on iz. Hence,

Sα,β (q̃)

L
=

∑
ix ,iy ,

jx ,jy

ei q̃·(ĩ− j̃ )(〈Ŝα

ĩ Ŝ
β

j̃

〉
2D − 〈

Ŝα

ĩ

〉
2D

〈
Ŝ

β

j̃

〉
2D

)
,

which does not depend on qz, and

Mα(q) =
∑

ĩ

ei q̃·ĩ 〈Ŝα

ĩ

〉
2D

∑
iz

eiqziz = Lδqz,0

∑
ĩ

ei q̃·ĩ 〈Ŝα

ĩ

〉
2D,

(B4)

where we used that qz = 2π i
L

for i ∈ {0, . . . ,L − 1}. Sim-
ilarly, if the system is quasi-one-dimensional with �̂ =
⊗iz,iy �̂iz,iy and all the �̂iz,iy equal, we have

〈Ŝα,β (q)〉 = Sα,β (qx) + Mα(q)Mβ(q)∗,

where

Sα,β (q)

L2
=
∑
ix ,jx

eiq(ix−jx )
(〈
Ŝα

ix
Ŝ

β

jx

〉
1D − 〈

Ŝα
ix

〉
1D

〈
Ŝ

β

jx

〉
1D

)
,

Mα(q)

L2
= δqz,0δqy,0

∑
ix

eiqx ix
〈
Ŝα

ix

〉
1D.

APPENDIX C: SYMMETRIES

1. Heisenberg models

For all the considered Heisenberg models, we have Ĥ =
(
⊗

i Ûi )Ĥ (
⊗

i Ûi ), where all the Ûi implement the same
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spin rotation. This implies 〈Ŝα
i 〉 = 0 and 〈Ŝα

i Ŝ
β

j 〉 = δα,β〈Ŝz
i Ŝ

z
j 〉.

Hence,

EBSA(q) = 1 −
∑
α,β

δα,β−q̄α q̄β

NCs

∑
i, j

eiq(i− j )
〈
Ŝα

i Ŝ
β

j

〉

= 1 − 2

NCs

∑
i, j

eiq(i− j )
〈
Ŝz

i Ŝ
z
j

〉
. (C1)

For the quasi-one- and two-dimensional systems we have

EBSA(q) = 1 − 2

LCs

∑
ix ,jx

eiqx (ix−jx )〈Ŝz
ix
Ŝz

jx

〉
1D (C2)

and

EBSA(q) = 1 − 2

L2Cs

∑
ĩ, j̃

ei q̃·(ĩ− j̃ )
〈
Ŝα

ĩ Ŝ
β

j̃

〉
2D, (C3)

respectively. To obtain expressions for the robustness mea-
sures, one proceeds analogously.

2. XY model

The Hamiltonian of the quasi-one-dimensional XY model
(with the chains along the x direction),

Ĥ =
∑
〈i, j〉

δiy ,jy
δiz,jz

[
(1 + γ )Ŝx

i Ŝx
j + (1 − γ )Ŝy

i Ŝ
y

j

]

−h
∑

i

Ŝz
i , (C4)

is invariant under simultaneous rotation of all the spins around
their z axis by π (which takes Ŝx

i to −Ŝx
i and Ŝ

y

i to −Ŝ
y

i ,
and leaves Ŝz

i invariant). Further, the Hamiltonian is a real
matrix. For thermal states �̂ = e−βĤ /Z, these properties of
the Hamiltonian imply 〈Ŝx

i 〉 = 〈Ŝy

i 〉 = 〈Ŝz
i Ŝ

x
j 〉 = 〈Ŝz

i Ŝ
y

j 〉 = 0,

and 〈Ŝy

i Ŝx
j 〉 = 0 (note that, in experimental reality, symmetries

are not respected and these expectation values may be finite).
Hence,

EBSA(q) = 1 −
∑
α,β

δα,β − q̄αq̄β

NCs

〈Ŝα,β (q)〉

= 1 − 1

NCs

∑
α

(
1 − q̄2

α

)〈Ŝα,α(q)〉, (C5)

where, assuming q �= 0 and using translational invariance
(such that we may write sz = 〈Ŝz

i 〉),
〈Ŝα,α(q)〉 =

∑
i, j

eiq·(i− j )
〈
Ŝα

i Ŝα
j

〉

=
∑
i, j

eiq·(i− j )
(〈
Ŝα

i Ŝα
j

〉− 〈
Ŝα

i

〉 〈
Ŝα

j

〉)

+
∑
i, j

eiq·(i− j )
〈
Ŝα

i

〉 〈
Ŝα

j

〉

=
∑
i, j

eiq·(i− j )δiy ,jy
δiz,jz

(〈
Ŝα

i Ŝα
j

〉− 〈
Ŝα

i

〉 〈
Ŝα

j

〉)
+ δα,zs

2
z N

2δq,0

=
∑
i, j

eiqx (ix−jx )δiy ,jy
δiz,jz

(〈
Ŝα

i Ŝα
j

〉− 〈
Ŝα

i

〉 〈
Ŝα

j

〉)

= L2
∑
i,j

eiqx (i−j )
(〈
Ŝα

i Ŝα
j

〉
1D − 〈

Ŝα
i

〉
1D

〈
Ŝα

j

〉
1D

)

=: L2
∑
i,j

cα
i−j (qx).

Due to translational invariance, we have cα
l (q) = cα

l+L(q) =
cα
l−L(q) = [cα

−l(q)]∗, and hence for L even,

∑
i,j

cα
i−j (q) = Lcα

0 (q) + Lcα
L/2(q) + 2L

L/2−1∑
l=1

Re
[
cα
l (q)

]

= L

(
1

4
− δα,zs

2
z

)
+ Lcα

L/2(q)

+ 2L

L/2−1∑
l=1

Re
[
cα
l (q)

]
, (C6)

i.e.,

E(q) = −1 + 4s2
z

(
1 − q̄2

z

)
− 4

∑
α

(
1 − q̄2

α

) (
cα
L/2(qx) + 2

L/2−1∑
l=1

Re
[
cα
l (qx)

])
.

(C7)

For the correlation functions, we use the results of [59]
(1 � l � L/2),

e−iqlcx
l (q) = 1

4

∣∣∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−l

G0 G−1 · · · G−l+1

...
...

. . .
...

Gl−2 Gl−3 · · · G−1

∣∣∣∣∣∣∣∣∣∣
,

e−iqlc
y

l (q) = 1

4

∣∣∣∣∣∣∣∣∣∣

G1 G0 · · · G−l+2

G2 G1 · · · G−l+3

...
...

. . .
...

Gl Gl−1 · · · G1

∣∣∣∣∣∣∣∣∣∣
, (C8)

e−iqlcz
l (q) = −1

4
GlG−l ,

where, for L → ∞,

sz = 1

2π

∫ π

0
dφ

tanh[β�(φ)/2]

�(φ)
[h − cos(φ)],

Gl = 1

π

∫ π

0
dφ

tanh[β�(φ)/2]

�(φ)
cos(φl)[h − cos(φ)]

+ γ

π

∫ π

0
dφ

tanh[β�(φ)/2]

�(φ)
sin(φl) sin(φ),

�(φ) =
√

γ 2 sin2(φ) + (h − cos(φ))2. (C9)
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Lett. 104, 250801 (2010).
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An interesting feature of quantum theory is correlations
between outcomes of spatially separated measure-
ments that contradict predictions of all theories based on
common-sense assumptions called locality, reality, and
free will [1,2]. This contradiction is shown by the violation
of Bell inequalities. A famous version of them was derived
by Clauser, Horne, Shimony, and Holt (CHSH) [3] and
many generalizations followed [4–10]. In addition to ruling
out local hidden variable theories, several other applica-
tions of Bell-type inequalities are known [11–15].

Regarding such applications one is interested in
the maximal value of the Bell expression predicted by
quantum theory and the corresponding measurements to
achieve this optimum. Bounds on this quantum value were
first derived by Tsirelson [16,17]. For general CHSH-type
Bell inequalities (which will be defined later on), similar
bounds can be derived. To this aim, approaches based on
different physical principles have been developed, under
them information causality [18–20], macroscopic reality
[21], uncertainty principles [22], and exclusivity [23].
Furthermore, methods based on semidefinite programming
are known [24–27]. In contrast here we present an analyti-
cal method to find a quantum bound, which makes use of
standard tools of linear algebra only.

Our bound is related to the optimization of Ref. [24]
with relaxed boundary conditions, which implies that our
bound is not necessarily reachable. However, the class of
Bell inequalities reaching our bound contains most ex-
amples from the literature. We introduce a constructive
method to determine whether the bound is tight, which
provides a geometric picture that allows us to construct
new Bell inequalities. We exemplify this by constructing
dimension witnessing Bell inequalities, analogous to the
ones discussed in Refs. [7,28–31]. Different techniques to
witness the dimension of a quantum system are described
in Refs. [32,33]. Our construction of new Bell inequalities
differs from known methods based on the correlation
polytope [34,35] and variable elimination [36,37].

We start with considering general bipartite correlation
type inequalities, where the two parties i ¼ 1, 2 measure

Mi different two-outcome observables AiðxiÞ, with
xi ¼ 1; 2; . . . ; Mi, on their part of the shared quantum state
� (see Ref. [35] for an overview). The principal setup of an
experiment associated with such an inequality is visualized
in Fig. 1. The expectation value of the product of the
measurement results of both parties in setting x1 of party
1 and setting x2 of party 2 is denoted by Eðx1; x2Þ. In any
local and realistic theory the inequality

XM1

x1¼1

XM2

x2¼1

gx1;x2Elrðx1; x2Þ � B (1)

holds, where gx1;x2 are real coefficients of a matrix g and B

is the corresponding local hidden variable bound. It can be
obtained by maximizing over all possible local realistic
expectation values Elrðx1; x2Þ ¼ a1ðx1Þa2ðx2Þ, where
aiðxiÞ ¼ �1 is the measurement result in setting xi of party
i. Throughout this Letter we are interested in similar
bounds T on the quantum value Q,

Q :¼ max
�;A1;A2

XM1

x1¼1

XM2

x2¼1

gx1;x2Eðx1; x2Þ � T; (2)

where Eðx1; x2Þ ¼ trðð�A1ðx1Þ �A2ðx2ÞÞ is the expecta-
tion value predicted by quantum theory. If the quantum
value Q violates inequality (1), i.e., Q > B, we call

FIG. 1 (color online). Illustration of a bipartite Bell experi-
ment. The source prepares the state � and distributes one
subsystem to each party. Each party i can choose between Mi

different measurement settings [AiðxiÞ, xi ¼ 1; . . . ; Mi].
Multiplying the two results of both parties, which are þ1 or
�1, and repeating the experiment many times gives the expec-
tation value Eðx1; x2Þ. Bounds on linear combinations of
Eðx1; x2Þ for different x1 and x2 are discussed in the text.

PRL 111, 240404 (2013) P HY S I CA L R EV I EW LE T T ER S
week ending

13 DECEMBER 2013

0031-9007=13=111(24)=240404(5) 240404-1 � 2013 American Physical Society



inequality (1) a Bell inequality. We now derive an
upper bound T on the quantum value Q using the singular
value decomposition of the coefficient matrix g [see
Eq. (1)]. For any real M1 �M2–matrix g we define an
orthogonal M1 �M1–matrix V, a diagonal M1 �M2–
matrix S, containing the singular values, and an orthogonal
M2 �M2–matrix W, such that

g ¼ VSWT: (3)

We use the convention of nonincreasing order on the
diagonal of S. The matrices V and W are uniquely defined
up to unitary operations on spaces associated with degen-
erate singular values. The maximal singular value S11 will
be written as jjgjj2, the spectral norm of g, which is defined
as jjgjj2 ¼ max ~x;j ~xj¼1jg~xj. The multiplicity of jjgjj2, i.e.,
the dimension of the corresponding space, is denoted by d.
Wewill also use the truncated singular value decomposition
associated with the maximal singular value only. In this
case the matrices are denoted Vd, Sd, andWd. See Fig. 2 for
an illustration of the dimensions of the involved matrices.

With these definitions we can formulate the quantum
bound for inequality (1).

Theorem 1. Let there be two parties, labeled with i ¼ 1,
2, sharing a state given by a density matrix �, i.e., a positive
semidefinite D�D matrix, D 2 N, with tr� ¼ 1. Let
fAiðxiÞ: 1 � xi � Mig be a set of observables with
all eigenvalues in [� 1, 1] on the subsystem of party i.
The expectation value in setting (x1, x2) is

Eðx1; x2Þ ¼ trðA1ðx1Þ �A2ðx2Þ�Þ: (4)

For real coefficients gx1;x2 the bound

XM1

x1¼1

XM2

x2¼1
gx1;x2Eðx1; x2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p kgk2 ¼: T (5)

holds, where kgk2 is the maximal singular value of g.
Proof.—As the maximal value of the Bell inequality is

achieved by a pure state, it is sufficient to focus on these. The
basic idea is to use a well-known result of Tsirelson [16] to
map physical observables to real vectors and bound the
resulting expression using their length and the maximal
singular value of g. In order to prevent confusion, the notation
of Tsirelson’s theorem is adopted to the one used here.

Theorem (Tsirelson [16]). Given sets of observables
A1ð1Þ; . . . ;A1ðM1Þ and A2ð1Þ; . . . ;A2ðM2Þ, whose
eigenvalues lie in [� 1, 1], and an arbitrary bipartite
state jc i 2H 1 �H 2, there exist real unit vectors
~v1;...; ~vM1

; ~w1;...; ~wM2
2RM1þM2 such that for all settings

x1 2 f1; . . . ; M1g and x2 2 f1; . . . ; M2g the expectation
value can be written as

Eðx1; x2Þ ¼ hc jA1ðx1Þ �A2ðx2Þjc i ¼ ~vT
x1

~wx2 : (6)

This theorem ensures one can write

XM1

x1¼1

XM2

x2¼1

gx1;x2Eðx1; x2Þ ¼ ~VTðg � 1M1þM2Þ ~W; (7)

where we introduced the vectors

~V ¼
~v1

..

.

~vM1

0
BBB@

1
CCCA and ~W ¼

~w1

..

.

~wM2

0
BBB@

1
CCCA: (8)

The relation between these vectors and the matrices V and
W from the singular value decomposition of g will become
clear in Theorem 2. From Eq. (7) we see that Q can be
bounded by use of the maximal singular value of
(g � 1M1þM2), which is the same as the maximal singular

value of g, and the length of ~V and ~W. Because the ~vi and

~wj are normalized vectors, the lengths of ~V and ~W are
ffiffiffiffiffiffiffi
M1

p
and

ffiffiffiffiffiffiffi
M2

p
, respectively. This finishes the proof.

The bound in Theorem 1 holds for any inequality given
by an arbitrary real matrix g. But so far we did not discuss
the quality of the bound and indeed not for all matrices g is
the bound achievable (see example 6 in the Supplemental
Material [38]). In the next theorem we give a necessary and
sufficient condition for tightness of our bound.
Theorem 2.—For a given real M1 �M2–matrix g and

the corresponding matrices Vd and Wd (see Fig. 2), the
bound (5) can be reached with observables, which are
linked via Eq. (6) to d0 � d-dimensional real vectors ~vi

and ~wj given by

~vi ¼ �TVd
i;�; (9)

~w j ¼
ffiffiffiffiffiffiffiffiffi
M2

M1

s
�TWd

j;�; (10)

if and only if the system of equations

k�TVd
i;�k2 ¼ 1; 8 i 2 f1; 2; . . . ; M1g (11)

k�TWd
j;�k2 ¼

M1

M2

; 8 j 2 f1; 2; . . . ; M2g (12)

is solvable. Here the d� d0–matrix � is the unknown
and Vd

i;� and Wd
j;� denote column vectors containing the

FIG. 2. The dimensions of the matrices V, S and W. The
shaded parts belong to the truncated singular value decomposi-
tion (Vd, Sd and Wd) for the maximal singular value.
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elements of the ith row of Vd and the jth row of Wd,
respectively.

The proof is given in the Supplemental Material
[38]. The main idea of the proof is, that the bound is
reachable, if and only if there exist singular vectors to

the maximal singular value of g � 1M1þM2 , ~V, and ~W
[see Eq. (8)], where the vectors ~vi and ~wj are unit vectors

[see Tsirelson’s theorem in Eq. (6)].
Note that all vectors that fulfill Eq. (11) lie on the surface

of a d-dimensional origin-centered ellipsoid (see Fig. 3).
If the vectors Vd

i;� and Wd
j;� permit us to find an ellipsoid

such that they all lie on it’s surface, then the bound is
tight. If semiaxes are infinite, e.g., if the ellipsoid is not
uniquely defined, then d0 < d and the corresponding �
does not have full rank. In particular d0 ¼ 1 implies, that
one-dimensional vectors reach the bound, the inequality
(1) cannot be violated and thus it is no Bell inequality
[see Fig. 3(b)]. An algorithm solving Eqs. (11) and (12) in
OððM1 þM2Þ3Þ is described in the Supplemental Material
[38]. From the real vectors ~vi and ~wj the observables can

be obtained using representants of a Clifford algebra; see
Ref. [17].

In the following we provide two sufficient criteria for
inequality (5) being tight.

Corollary 1.—If

kVd
i;�k ¼

ffiffiffiffiffiffiffi
d

M1

s
; 8 i 2 f1; 2; . . . ; M1g; (13)

and

kWd
j;�k ¼

ffiffiffiffiffiffiffi
d

M2

s
; 8 j 2 f1; 2; . . . ; M2g; (14)

then the bound is tight.
Proof.—The matrix � ¼ ðM1=dÞ1d solves the system of

equations (11) and (12).

A second corollary treats the special case when g is a
square matrix and all singular values are the same.
Corollary 2.—If d ¼ M1 ¼ M2, then inequality (5) is

tight.
Proof.—Due to the orthogonality of V and W, � ¼ 1d

solves the system of equations (11) and (12).
An application of this corollary is illustrated in the

following example.
Example 1.—Inequalities with coefficients

g ¼ 1 1

1 �1

 !�k

(15)

are considered in Ref. [39], where for k ¼ 2 an upper

bound of 4
ffiffiffiffiffiffi
10
p

for the quantum value is given. Inequality
(5) improves this bound to T ¼ 8, which coincides with the
local realistic bound B. Note that Corollary 2 states that the

bound TðkÞ ¼ 23k=2 is tight for all k. It can be easily seen,
that for all even k, the classical value coincides with the
quantum bound; i.e., the inequality is no Bell inequality.
For odd k numerical evidence indicates that the violation
vanishes. Therefore we do not expect the violation to reach

Q=B ¼ ffiffiffi
3
p

in the limit of large k, different to the conjec-

ture in Ref. [39]. A value of Q=B ¼ ffiffiffi
3
p

would be near the
maximal violation (Grothendieck’s constant) for any bipar-
tite full correlation Bell experiment [40]. Please note that
the well-known CHSH inequality is incorporated as the
special case with k ¼ 1.
Several more examples are given in the Supplemental

Material [38], amongst them the famous CHSH inequality
[3] (example 5) and inequalities by Braunstein and Caves
[5] (example 8), Vertesi and Pál [7] (example 7), Gisin [9]
(example 9), and Fishburn and Reeds [40] (example 10).
The presented method can be generalized to more than

two parties. All n-party Bell inequalities considered here
are of the form

XM1;...;Mn

x1;...;xn¼1
gðx1; . . . ; xnÞElrðx1; . . . ; xnÞ � B: (16)

Each party i receives a subsystem from the source and
measures it in a setting xi 2 f1; 2; . . . ; Mig. Suppose a time
order such that all but the first two parties do this before
party 1 and 2. Then the setup is exactly the same as
considered before, where the bipartite state is obtained
by tracing out parties 3 to n. Formalizing this one sees that

XM1;...;Mn

x1;...;xn¼1
gðx1; . . . ; xnÞEðx1; . . . ; xnÞ � T (17)

with

T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p XM3;...;Mn

x3;...;xn

kg�;�;x3;...;xn
k2: (18)

Here g�;�;x3;...;xn
denotes the matrix found in the nth-order

tensor g by fixing all but the first two indices. In general

(a) (b)

–
– –

–

FIG. 3 (color online). The vectors Vd
i;�, i ¼ 1; 2; . . . ; M1

(black) can be normalized by applying the matrix �T , if they
lie on an origin-centered ellipsoid (red), i.e., the vectors
~vi ¼ �TVd

i;� lie on the unit sphere (dashed). An analogous

picture could be drawn for ~wj, j ¼ 1; 2; . . . ; M2. (a) In this

example d ¼ 2 and M1 ¼ 4. The four vectors uniquely define
an ellipse. (b) In this example d ¼ 2 and M1 ¼ 2. This ellipse is
not uniquely defined by the vectors Vd

i;�. The one shown has one

infinite semiaxis.
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labeling different parties as 1 and 2 leads to different values
of the bound.

Example 2 (Mermin inequality). The Mermin inequality
is given by coefficients

gðx1; . . . ; xnÞ ¼ cos

�
�

2
ðx1 þ x2 þ � � � þ xnÞ

�
: (19)

Equation (18) gives the bound

T ¼ 2
X

x3;...;xn

kg�;�;x3;...;xn
k2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼1

¼ 2n�1; (20)

which is achievable with a GHZ state [4]. Thus the bound is
tight for this family of inequalities.

The insights on the mathematical structure gained above
help to construct new Bell inequalities. We focus on the
minimal dimension of the involved observables required
for the maximal violation. The dimension d of the real
vectors ~vi and ~wj is linked to the dimension of the corre-

sponding observablesD. Due to the explicit construction of
observables in Ref. [17], we know that

D � 2bd=2c (21)

is possible, while it is also known [28] that

D 	
�
dþ 1

2

�
(22)

is necessary. We construct g such that Eqs. (11) and (12)
are fulfilled for some matrix � with rank d. This implies
that the maximal violation can be achieved using
d-dimensional real vectors ~vi and ~wj. If in some experi-

ment only qubits (D ¼ 2) are available, then one can
construct Bell inequalities with d � 3, ensuring that the
maximal violation is within the scope of this experiment.
This can be done by explicitly constructing the singular
value decomposition of g, e.g.,

g ¼ Vdiagf2; 2; 2; 1; . . . ; 1gWT; (23)

where V and W are unitary matrices, such that the
conditions of Theorem 2, Corollary 1, or Corollary 2 are
fulfilled.

Example 3 (Inequality for qubits). Consider the Bell
inequality corresponding to a matrix g given by Eq. (23)
for

V ¼
1ffiffi
2
p 1ffiffi

2
p

1ffiffi
2
p � 1ffiffi

2
p

0
@

1
A�2; (24)

and

W ¼ 1 0

0 �1

 !
�

1ffiffi
2
p 1ffiffi

2
p

1ffiffi
2
p � 1ffiffi

2
p

0
@

1
A: (25)

By construction, the maximal quantum value is Q ¼ 8,

while B ¼ 4
ffiffiffi
2
p

is the maximum achievable value within
local hidden variable theories. From Eq. (23) we know that

d ¼ 3 and the maximal violation is achievable with qubits.
Note that the singular value S44 ¼ 1 needs only to be
smaller than jjgjj2 ¼ 2; i.e., it can also be chosen to be 0.
Furthermore one might be interested in constructing Bell

inequalities that cannot be violated by systems with di-
mension smaller than some chosen dimension. Such Bell
inequalities are a recent development called dimension
witnesses [7,28–33]. Here the unitary matrices V and W
are constructed such that a rank d solution � exists, but not
a rank d� 1 solution. We can assume � to be a symmetric
d� d matrix (see the Supplemental Material [38]), i.e.,
� contains dðdþ 1Þ=2 degrees of freedom. Therefore
dðdþ 1Þ=2 vectors, that lie on a d-dimensional ellipsoid
with finite semiaxes and lead to independent equations (11)
or (12), determine� and thus also its rank to be d. Note that
the rows of both Vd and Wd form this set of vectors. The
following simple construction illustrates this method.
Example 4 (Random dimension witness) Given d 2 N

greater or equal two, let k ¼ bðd� 1Þ=2c þ 1 and Ui, i 2
f1; . . . ; kg, be random unitary d� d matrices. The inequal-
ity with coefficients given by the following kd� d matrix

g ¼

U1

U2

..

.

Uk

0
BBBBBB@

1
CCCCCCA (26)

corresponds to a Bell inequality. Note that the truncated
singular value decomposition of g can be read from

Eq. (26) as Vd ¼ ð1= ffiffiffi
k
p Þg, Sd ¼ ffiffiffi

k
p

1d, Wd ¼ 1d. The
maximal quantum value Q ¼ kd is achievable (Corollary
1). With probability one, the kd measurement directions of
party 1 and the d measurement directions of party 2
uniquely define a d-dimensional ellipsoid. Note that due
to the orthogonality of Ui, more than dðdþ 1Þ=2 measure-
ment directions are used. Observables corresponding to
real vectors spanning a space with dimension smaller
than d do not suffice to observe a maximal violation of
such a Bell inequality and therefore it can be used as a
dimension witness. The number of measurement settings
needed to witness dimension d with this method is only
Oðd2Þ, while it is Oð2dÞ for the witness proposed in
Ref. [7]; see example 7 in the Supplemental Material [38].
In conclusion we introduced an approach for calculating

upper bounds on the quantum value of correlation type Bell
inequalities. Computing the bound only requires the prin-
cipal singular value of the coefficient matrix. We described
how the tightness of the bound can be tested. If the bound is
reachable, which we find in several important examples,
this method leads to optimal observables in a natural way.
Reversely, we showed how understanding the optimality
conditions for our bound allows us to construct Bell
inequalities with chosen properties, in particular properties
of optimal observables, including their dimension. The
tools developed here may be useful to construct Bell
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inequalities with stronger violations than the known
inequalities for this scenario. Amongst other advantages,
this may help to close the detection loophole in Bell test
experiments. Furthermore, an improved generalization of
the bound for three and more parties is possibly of avail.

We thank Costantino Budroni, Otfried Gühne, and
Tobias Moroder for helpful discussions. M. E. is supported
by Deutsche Forschungsgemeinschaft (DFG).

*epping@thphy.uni-duesseldorf.de
[1] J. S. Bell, Physics (N.Y.) 1, 195 (1964).
[2] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and

A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).
[3] J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys. Rev.

Lett. 23, 880 (1969).
[4] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).
[5] S.Braunstein andC.Caves,Ann. Phys. (N.Y.)202, 22 (1990).
[6] E. G. Cavalcanti, C. J. Foster, M.D. Reid, and P. D.

Drummond, Phys. Rev. Lett. 99, 210405 (2007).
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Supplemental Material for Epping et al. “Designing Bell inequalities from a Tsirelson
bound”

A. PROOF OF THEOREM 2

From the proof of Theorem 1 we know that

M1∑
x1=1

M2∑
x2=1

gx1,x2E(x1, x2) = �V T (g ⊗ 1M1+M2) �W (26)

where the real vectors �V and �W are defined in Eq. (8). From this we see, that the bound is reached, if and only if
�V and �W are “matching” singular vectors to the maximal singular value, i.e. (g ⊗ 1M1+M2) �W =

√
M2/M1||g||2�V ,

while at the same time the respective vectors �vi and �wj are unit vectors. The normalization of �vi and �wj is required
by Tsirelson’s theorem. General singular vectors to the maximal singular value can be written as

�V =
d∑

l1=1

M1+M2∑
l2=1

αl1,l2V∗,l1 ⊗ 1M1+M2
∗,l2

, (27)

�W =
d∑

l1=1

M1+M2∑
l2=1

βl1,l2W∗,l1 ⊗ 1M1+M2
∗,l2

, (28)

where V∗,l1 denotes the l1-th row of the matrix V as a column vector and 1M1+M2
∗,l2

denotes the l2-th canonical basis
vector. The fact that �V matches �W becomes manifest in

αl1,l2 =
√

M1

M2
βl1,l2 . (29)

We are interested in the components αl1,l2 introduced in Eqs. (27) and (28). They are restricted by the norm conditions
for �vi and �wj , which read

1 =||�vi||2 = ||αT V d
i,∗||2 (30)

and 1 =||�wi||2 =
√

M2

M1
||αT W d

i,∗||2. (31)

Therefore the bound is tight, if and only if this system of equations is solvable. We conclude by showing, how the
number of columns of α is related to the dimension of the measurement vectors. If and only if the bound is reachable
with d′-dimensional vectors �vi, �wj , the system of equations is solvable by a d× d′-matrix α, where d′ ≤ d.

“⇐”: If α is a d× d′-matrix that solves the system of equations, then

d′ ≥ rankα ≥ dim span{vi, wj}, (32)

where the last ≥-sign holds because �vi = αT V d
i∗ and �wi =

√
M2
M1

αT W d
i∗, i.e. �vi and �wj lie in the image of αT .

The result dim span{vi, wj} ≤ d′ implies, that after some appropriate rotation, (�vi)k = 0 and (�wj)l = 0 for
k, l > d′ and all i, j. Therefore �vi and �wj can be considered to be elements of Rd′

. Observables associated with
these d′-dimensional vectors permit maximal violation.

“⇒”: If the bound is reachable with d′-dimensional vectors �vi, �wj , then all vectors �vi and �wj lie on a d′-dimensional
unit sphere. Without affecting the mapping of the �vi and �wj , the image of α can be chosen to coincide with the
d′ dimensional subspace spanned by �vi and �wj , so the rank of α can be chosen to be d′. The rank is equal to
the number of nonzero singular values. The truncated singular value decomposition associated with all nonzero
singular values equals α. Let us call it α = Ṽ S̃W̃ T , so ααT = Ṽ S̃W̃T W̃ S̃Ṽ T = Ṽ S̃S̃Ṽ T , therefore α′ = Ṽ S̃ is
a d× d′-matrix solving the system of equations.
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B. ALGORITHM TO FIND α

We want to find the solution α to the system of equations

||αT V d
i,∗||2 =1 ∀i ∈ {1, 2, ...,M1} (33)

||αT W d
j,∗||2 =

M1

M2
∀j ∈ {1, 2, ...,M2}. (34)

It is convenient to rewrite these equations as

AT
i,∗XAi,∗ =1 ∀i ∈ {1, 2, ...,M1 + M2} (35)

where X = ααT is unknown and

A =

(
V d√
M2
M1

W d

)
(36)

is a (M1 +M2)×d matrix containing all the vectors Ai,∗ which will be normalized after application of αT (if possible).
Eq. (35) restricts X on the space spanned by these vectors. Unaffected by their linear dependence, the unknown X
in Eq. (35) can be defined via it’s action on these vectors,

XAi,∗ =
∑

k

c̃i,kAk,∗, (37)

where c̃i,k is real. If Ai,∗ and Ak,∗ are perpendicular, then we can choose c̃i,k = 0. Thus we use the form

c̃i,k = AT
k,∗Ai,∗ci,k (38)

and Eq. (37) becomes

XAi,∗ =
∑

k

ci,kAT
k,∗Ai,∗Ak,∗ (39)

=
∑

k

ci,kAk,∗AT
k,∗︸ ︷︷ ︸

X

Ai,∗, (40)

from which we can read X. This has to be the same X for every equation in the system of equations (35), i.e.
ci,k = ck. We have

X =
M1+M2∑

k=1

ckAk,∗AT
k,∗ (41)

=AT diag (c1, ..., cM1+M2)A. (42)

Inserting this into Eq. (35) gives for all i

1 =(AXAT )ii (43)
=(P diag (c1, ..., cM1+M2)P )ii (44)

=
M1+M2∑

k=1

ckP 2
ik. (45)

Here we introduced the projector P = AAT . We also introduce the matrix Q, which is P componentwise squared, i.e.
Qij = P 2

ij , and the vector �1, where every component is one. Then Eq. (45) can be written as

Q�c = �1 (46)

This equation is solvable if and only if

�1 = QQ−�1, (47)
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where Q− is the pseudoinverse of Q. Then all solutions to this equation are given by

�c = Q−�1︸︷︷︸
�c0

+ (1−Q−Q)�y︸ ︷︷ ︸
�cy

, (48)

with �y ∈ R
M1+M2 . Here we marked the y-independent and y-dependent part of �c. Inserting into Eq. (42) gives a

y-independent part and a y-dependent part of X, i.e.

X = X0 + Xy. (49)

The vector �cy = (1−Q−Q)�y lies in the kernel of Q. Therefore for all i ≤ M1 + M2

0 =
M1+M2∑

k=1

Qik(cy)k (50)

=
d∑

l1,l2=1

Ail1Ail2

M1+M2∑
k=1

Akl1Akl2(cy)k︸ ︷︷ ︸
(Xy)l1,l2

(51)

= AT
i,∗XyAi,∗. (52)

This implies that Xy = 0 and thus X = X0 is uniquely defined by Eq. (35) and Eq. (38). We obtain a solution α
with ααT = X via

α =
√

X. (53)

It is possible, that X is not semipositive, in which case there is no real solution α.
The described algorithm contains a singular value decomposition, the calculation of a pseudoinverse and a square
root of a matrix, as well as several matrix multiplications. The runtime complexities of all of these operations are
asymptotically upper bounded by the matrix dimension to the power of three [1]. Therefore the runtime complexity
of this algorithm is O((M1 + M2)3).
A summarized pseudo code version of the described algorithm follows.
1: procedure AlphaMatrix(g)
2: (V, S, W ) ← SVD(g) 
 singular value decomposition of g
3: d ← maxi:Sii=S11 i 
 degeneracy of maximal singular value
4: V d ← V with columns d + 1 to M1 dropped 
 truncated SVD
5: W d ← W with columns d + 1 to M2 dropped

6: A ←
(

V d√
M2
M1

W d

)

 the set of vectors on ellipsoid

7: P ← AAT

8: for all i, j ∈ {1, 2, ...,M1 + M2} do
9: Qi,j ← P 2

i,j

10: end for
11: �c← Q−�1 
 apply pseudoinverse
12: if Q�c = �1 then 
 solution exists
13: X ← AT diag (�c)A
14: α ← √

X
15: if Im(α)=0 then
16: return α
17: else 
 X is not semipositive
18: return 0 
 only complex solutions
19: end if
20: else
21: return 0 
 equation not solvable
22: end if
23: end procedure
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C. A COLLECTION OF INSTRUCTIVE EXAMPLES

This section contains more examples.

Example 5 (CHSH inequality). The original Clauser-Horne-Shimony-Holt(CHSH) inequality [2] is given by

g =
(

1 1
1 −1

)
. (54)

As g is symmetric, the singular values are given by the absolute values of it’s eigenvalues, which is
√

2. Since all
singular values are equal, the bound in Ineq. (5) is tight (Corollary 2, see also Fig. 4(a)). It is the well-known upper
bound of T = Q = 2

√
2 for the quantum value of the CHSH-inequality derived by Tsirelson [3].

Example 6. Consider the coefficients

g =
(

1 1
1 0

)
, (55)

where the bound gives T = 1 +
√

5, but obviously only 3 can be reached in any theory. Therefore the bound is not
tight for this instance of g.

Example 7 (Binary digits). In Ref. [4] a bipartite Bell inequality given by coefficients

gx1,x2 = 1− 2(�21−x2(x1 − 1)� mod 2) (56)

is discussed, which resembles a list of binary numbers. The number of measurement settings is given by M1 = 2M2−1.
It can be used to witness observables referring to d = M2 dimensional real vectors. Thus the number of measurement
settings M1 + M2 is O(2d). Bounds on the value of the Bell inequality are given in the reference.
It can be shown, that all singular values of g are equal to

√
M1 =

√
2M2−1. A singular value decomposition of g then

is

g =
1√
M1

g︸ ︷︷ ︸
V

√
M11

M2︸ ︷︷ ︸
S

1M2︸︷︷︸
W T

. (57)

From this the diagonal solution αi =
√

M1M2 can be read. This implies, that the bound T = M1

√
M2 is tight.

Example 8 (Braunstein-Caves inequalities). The Braunstein-Caves inequalities [5] are given by

gx1,x2 =

⎧⎨
⎩

1 if 0 ≤ x1 − x2 ≤ 1
−1 if x1 = 1 and x2 = M
0 else

, (58)

where M = M1 = M2. It can be shown that the maximal singular value of g is 2 cos(π/(2M)) and twofold degenerate.
The bound reads T = 2M cos(π/(2M)), which is achievable [5, 6]. See also Fig. 4(b).

Example 9 (Greater Equal Function). The greater-equal-function is related to a Bell inequality with coefficients

gx1,x2 =
{

1 if x1 ≥ x2

−1 else , (59)

where 1 ≤ x1, x2 ≤ M1 = M2 = M [7]. The maximal singular value of g, csc(π/(2M)), is twofold degenerate. The
quantum bound T = M csc(π/(2M) is tight (Corollary 1, see also Fig. 4(c)) and strictly larger than the local hidden
variable bound B = �M2/2�. The violation Q/B in the limit of large M is 4/π [7].

Example 10 (Fishburn-Reeds). The highest violation of an explicit bipartite correlation type Bell inequality known
to the authors is given by Fishburn and Reeds in [8]. They describe a series of Bell inequalities, which is constructed as
follows. Construct a k(k−1)×k-matrix Fk, which rows constitute all vectors of the form (0, ..., 0,−1, 0, ..., 0, 1, 0, ..., 0)
and (0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0). The Bell inequality is given by coefficients

g = FkFT
k −

4
3
1. (60)
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(a)CHSH Inequality (Ex. 5) (b)BC Inequality (Ex. 8) (c)Gisin’s Inequality (Ex. 9)

FIG. 4. If and only if the bound is tight, the vectors V d
i,∗ (blue) and

q
M2
M1

W d
j,∗ (red) lie on the surface of an origin-centered

Ellipsoid.

By construction, g′ = FkFT
k fulfills the conditions of Corollary 1. The diagonal modification changes the singular

values, without changing their order. Therefore also g fulfills the conditions of Corollary 1. Because the maximal
singular value is 2(k − 1)− 4/3, the maximal quantum value is Q = T = (2(k − 1)− 4/3)k(k − 1), which is the value
derived in the reference. The first k for which Q/B >

√
2 is k = 5, where Q/B = 10

7 ≈ 1.42857. For k = 5, the
explicit form of g is

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0
1 2

3 1 1 1 0 0 1 1 0 1 0 1 1 −1 0 0 1 1 0
1 1 2

3 1 0 1 0 1 0 1 1 1 0 1 0 −1 0 −1 0 1
1 1 1 2

3 0 0 1 0 1 1 1 1 1 0 0 0 −1 0 −1 −1
1 1 0 0 2

3 1 1 1 1 0 −1 −1 0 0 0 1 1 1 1 0
1 0 1 0 1 2

3 1 1 0 1 −1 0 −1 0 1 0 1 −1 0 1
1 0 0 1 1 1 2

3 0 1 1 −1 0 0 −1 1 1 0 0 −1 −1
0 1 1 0 1 1 0 2

3 1 1 0 −1 −1 0 −1 −1 0 0 1 1
0 1 0 1 1 0 1 1 2

3 1 0 −1 0 −1 −1 0 −1 1 0 −1
0 0 1 1 0 1 1 1 1 2

3 0 0 −1 −1 0 −1 −1 −1 −1 0
0 1 1 1 −1 −1 −1 0 0 0 2

3 1 1 1 −1 −1 −1 0 0 0
1 0 1 1 −1 0 0 −1 −1 0 1 2

3 1 1 1 0 0 −1 −1 0
1 1 0 1 0 −1 0 −1 0 −1 1 1 2

3 1 0 1 0 1 0 −1
1 1 1 0 0 0 −1 0 −1 −1 1 1 1 2

3 0 0 1 0 1 1
1 −1 0 0 0 1 1 −1 −1 0 −1 1 0 0 2

3 1 1 −1 −1 0
1 0 −1 0 1 0 1 −1 0 −1 −1 0 1 0 1 2

3 1 1 0 −1
1 0 0 −1 1 1 0 0 −1 −1 −1 0 0 1 1 1 2

3 0 1 1
0 1 −1 0 1 −1 0 0 1 −1 0 −1 1 0 −1 1 0 2

3 1 −1
0 1 0 −1 1 0 −1 1 0 −1 0 −1 0 1 −1 0 1 1 2

3 1
0 0 1 −1 0 1 −1 1 −1 0 0 0 −1 1 0 −1 1 −1 1 2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)
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Abstract
We consider a subclass of bipartite CHSH-type Bell inequalities. We investigate
operations which leave their Tsirelson bound invariant, but change their
classical bound. The optimal observables are unaffected except for a relative
rotation of the two laboratories. We illustrate the utility of these operations by
giving explicit examples. We prove that, for a fixed quantum state and fixed
measurement setup except for a relative rotation of the two laboratories, there
is a Bell inequality that is maximally violated for this rotation, and we optimize
some Bell inequalities with respect to the maximal violation. Finally, we
optimize the qutrit to qubit ratio of some dimension witnessing Bell inequalities.
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1. Introduction

Originally, John S Bell introduced what we now call Bell inequalities in order to show that the
ideas of locality and realism are incompatible with statistical predictions of quantum theory
[1]. Thus, the question whether a completion of quantum theory obeying these axioms exists,
as proposed by Einstein et al [2], was brought to an experimentally testable level. Now, 50 years
later, there is very strong experimental evidence that Bell inequalities can be violated by nature
[3–10], which implies that not all axioms in the derivation of Bell inequalities are followed
by nature. Nevertheless Bell inequalities are not water under the bridge yet. This is amongst
other reasons due to several interesting applications, like quantum key distribution, where the

1751-8113/14/424015+10$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1
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violation of Bell inequalities is a test for eavesdropping [11]. Here and in other applications,
the amount of violation becomes important and a stronger violation of the inequality is usually
beneficial (e.g. noise is less corruptive or the gap between classical and quantum performance
increases).

In the present paper, we discuss two methods to modify Bell inequalities, which change
the classical bound but leave the maximal value achievable in quantum theory unchanged.
These methods can be used to optimize Bell inequalities with respect to the possible amount
of violation. Various research on Bell inequalities with a large amount of violation has been
carried out [12–15], but literature on the specific problem investigated in this paper is less
extensive [16, 17].

We specify the Bell inequalities under consideration in the following section 2. Then we
formulate the above-mentioned methods as a corollary in section 3 and give examples for their
utility in section 4. Section 5 concludes this paper.

2. A subclass of CHSH-type Bell inequalities

We consider bipartite full correlation Bell inequalities (CHSH-type Bell inequalities [18, 19])
with Mi measurement settings at the site of party i. These settings are labelled xi = 1, 2, . . . , Mi.
Such Bell inequalities can be written in the form

M1,M2∑
x1,x2=1

gx1,x2 E(x1, x2) � B, (1)

where E(x1, x2) is the expectation value for setting x1 at Alice’s site and x2 at Bob’s site and
g is a real M1 × M2-matrix of coefficients. Measurement outcomes are required to be in the
interval [−1, 1]. The local hidden variable bound B holds for all values achievable in local
hidden variable theories, i.e.

max
a1,a2

M1,M2∑
x1,x2=1

gx1,x2 a1(x1)a2(x2) � B. (2)

B can be calculated by performing this maximization over all possible (deterministically)
predefined measurement outcomes a1(x1) = ±1 and a2(x2) = ±1. Due to the assumption of
locality, a1 (a2) does not depend on x2 (x1). The use of unmeasured outcomes is motivated by
the assumption of realism. See [20] for a more thorough analysis. For some g, inequality (2)
can be violated within quantum theory.

Similarly, one can write down bounds for expectation values predicted by quantum theory
[21]. The analogue of inequality (1) reads

M1,M2∑
x1,x2=1

gx1,x2 E(x1, x2) � T, (3)

where T is a Tsirelson bound, which holds for all quantum states given by a density matrix ρ

and all observables A1(x1) and A2(x2), i.e.

max
A1,A2,ρ

M1,M2∑
x1,x2=1

gx1,x2 tr(ρA1(x1) ⊗A2(x2)) � T. (4)

We do not restrict the dimension of the Hilbert space. In [22] we showed that a quantum bound
for inequality (3) is given by

T (g) = ||g||2
√

M1M2, (5)

2
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where ||g||2 is the largest singular value of g. However, this bound T is not always tight. It is
not always possible to achieve equality in inequality (4). Nevertheless it is tight for a subclass
of Bell inequalities, which contains many well-known Bell inequalities. In this paper we will
restrict ourselves to this class of Bell inequalities, for which T in equation (5) is achievable
for some states and observables. In this case the violation of the Bell inequality, which is the
ratio of the quantum and the classical value, is

ν = T

B
. (6)

According to a theorem by Tsirelson [23], there exist real vectors �v1, �v2, . . . ,�vM1 and �w1,
�w2, . . . , �wM2 , such that the quantum mechanical expectation value can be written as

E(x1, x2) = �vT
x1

�wx2 . (7)

In the present context, it is usually more convenient to use these vectors instead of the
observables. Let g be a real M1 × M2-matrix and V , S, W be a singular value decomposition of
g, i.e. g = V SW T with diagonal S and V , W being orthogonal. We denote the dimension of the
space of the largest singular value ||g||2 as d, i.e. this is the degeneracy of the largest singular
value. The corresponding matrices of the truncated singular value decomposition associated
with ||g||2 contain the first d columns (the singular vectors) of V and W , respectively.

Theorem 1 (Tightness of T [22]). For any real M1 × M2-matrix g, let V d, ||g||21d, W d be a
truncated singular value decomposition of g associated with ||g||2, where d is the degeneracy
of ||g||2. The bound T = ||g||2

√
M1M2 can be reached with observables, which are linked via

E(i, j) = �vT
i �w j to d′ � d-dimensional real vectors �vi and �w j given by

�vi = αTV d
i,∗ (8)

and

�w j =
√

M2

M1
αTW d

j,∗, (9)

if and only if there exists a d × d′-matrix α, such that these vectors are normalized. Here V d
i,∗

and W d
j,∗ denote column vectors containing the elements of the ith row of V d and the jth row

of W d, respectively.

There is a geometric interpretation of the norm conditions: the bound T is tight for
observables corresponding to d′-dimensional real vectors �vi and �w j if and only if the vectors

V d
i,∗ and

√
M2
M1

W d
j,∗ lie on the surface of an origin-centred ellipsoid with no more than d′ finite

semi-axes [22]. We call this object a d′-dimensional ellipsoid.

3. Modifying Bell inequalities inside this class

We aim at modifying Bell inequalities inside the class described in the previous section, i.e.
those where the quantum bound given in equation (5) is tight. In particular, we are interested
in operations that do not change the value of T given in equation (5). However, in general these
operations do change the classical bound of the Bell inequality, i.e. the modification’s effect
on the quantum and the classical value are qualitatively and quantitatively different. This is in
contrast to arbitrary modifications of the coefficients, where both values are simultaneously
affected. We will exemplify later that such modifications can be a useful tool, e.g. for optimizing
Bell inequalities. The following corollary gives modifications with the properties we are
seeking.

3
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Corollary 1. Let g be a M1 × M2 real matrix with singular value decomposition V , S, W, i.e.
g = V SW T , such that T (g) is achievable. The multiplicity of ||g||2 is denoted by d, the length
of the diagonal of S is s = min(M1, M2). The following modifications of g lead to achievable
bounds T (g′) (primed symbols correspond to the modified coefficients g′).

(i) ‘Twisting’ of singular vectors.
For

g′ = V

(
R1 0
0 R2

)
S

(
1d 0
0 R3

)
W T , (10)

where R1 is a d ×d orthogonal matrix commuting with α (see equation (8)) and R2 and R3

are orthogonal matrices of dimension (M1 −d) and (M2 −d), respectively, T (g′) = T (g)

is achievable.
(ii) Modification of singular values.

For real numbers λ1, λd+1, λd+2, . . . , λs fulfilling

|λi + Si,i| < | ||g||2 + λ1| for all i > d (11)

the modified coefficients g′ = V S′W T with

S′ = diag(S1,1 + λ1, . . . , Sd,d + λ1, Sd+1,d+1 + λd+1, . . . , Ss,s + λs) (12)

correspond to an inequality with achievable T (g′) = ||g||2+λ1

||g||2 T (g).

Proof.

(i) R1 can be considered as a rotation of the singular vectors, i.e. the singular values in S are
not affected. If R1 and the d × d-matrix α commute, then∣∣∣∣αT

(
RT

1 V d
i,∗
)∣∣∣∣ = ∣∣∣∣RT

1 αTV d
i,∗
∣∣∣∣ = ∣∣∣∣αTV d

i,∗
∣∣∣∣, (13)

i.e. the conditions of theorem 1 are not affected. R2 and R3 merely rotate the singular
vectors outside the space associated with ||g||2, which neither affects the tightness nor the
value of the bound.

(ii) The conditions for tightness according to theorem 1 and the value of T are not affected
by modification of non-maximal singular values, as long as they do not become maximal.
Adding the same value to all largest singular values is only a scaling of T (as long as they
remain maximal). A negative diagonal entry induces a sign change of the elements of the
corresponding singular vector. �

Please note that the condition of (i) is fulfilled if there exists a solution α ∝ 1.
We remark that (ii) is a generalization of the diagonal modification in [16]. There, V = W

and g′ = g + λ1, which corresponds to λi = λ. The condition of equation (11) on the λi can
be ignored, if one assures tightness according to theorem 1. For example, depending on the
particular form of V and W , the bound might be tight for different values of d. In particular,
T is tight, if the new singular values are all equal. Furthermore (ii) includes the special case,
where g′ = rg for any r ∈ R.

4. Using these modifications as a method

In this section, the modifications described in corollary 1 are applied to specific examples of
coefficient matrices g.

4
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4.1. Maximally violated Bell inequality for relative rotation of laboratories

We start with the modification (i), i.e. the twisting of the singular vectors. First we note that
R1 is a relative rotation of the two parties in the sense, that the real vectors �vx1 , which define
optimal observables for party one, are rotated by R1. For d′ = 3, one can interpret �vx1 as
a Bloch-vector, i.e. A(x1) = �vT

x1
�σ , where �σ denotes the vector containing the three Pauli

matrices. In this way we see that the rotation R1 corresponds to a relative rotation of the two
laboratories in the usual sense.

This motivates us to prove the following statement.

Example 1. For every relative rotation between the laboratories of party one and party two,
there exists a Bell inequality that is maximally violated for exactly this rotation. We require
that the experimental setup is fixed up to the relative rotation, i.e. the measurement directions
in the local coordinate systems and the shared state (e.g. |φ+〉 = 1√

2
(|00〉 + |11〉)) do not

depend on the rotation angle. Consider the Bell inequalities given via the coefficient matrix

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0

− 1
2

1
2 0

0 0 1√
2

1√
2

0 0

0 1√
2

0

0 0 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

R(�,	,
), (14)

where

R(�,	,
) =
⎛
⎝1 0 0

0 cos(�) sin(�)

0 − sin(�) cos(�)

⎞
⎠

×
⎛
⎝cos(	) 0 − sin(	)

0 1 0
sin(	) 0 cos(	)

⎞
⎠
⎛
⎝ cos(
) sin(
) 0

− sin(
) cos(
) 0
0 0 1

⎞
⎠ (15)

is a general rotation given by the roll-pitch-yaw angle. From equation (14) one can read
the truncated singular value decomposition associated with the threefold (d = 3) degenerate
maximal singular value 1: i.e. the first factor is V d , Sd = 1 and W T = R(�,	,
). From
this we already know that T (g) = √

M1M2 = 3
√

2 for all angles. This bound is achievable,
because α = √

213 is a solution (see theorem 1). The vectors V d
1,∗, V d

2,∗, V d
4,∗, V d

5,∗ force the
rank of α to be at least two (two or more semi-axes of the corresponding ellipsoid are finite).
Therefore, the inequality associated with g is really a Bell inequality, i.e. it can be violated.
The bound is achieved for the state |φ+〉 = 1√

2
(|00〉 + |11〉) with observables

A(x1) = �vT
x1

�σ , (16)

A(x2) = (
�wT

x2
�σ
)T

. (17)

Because

�w j =
√

M2

M1
αTW d

j,∗ = R(�,	,
) j,∗, (18)

i.e. the measurement directions of party two are given by the columns of RT (�,	,
), this
Bell inequality is maximally violated for a relative rotation of the laboratories given by the roll-
pitch-yaw angle (see figure 1(a)). The violation T

B of the inequality given by the coefficients
in equation (14) depends on the angles (see figure 1(b)–(d)).

5
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(a)

(b) (c) (d )

Figure 1. Violation of the ‘rotated’ Bell inequality (equation (14)). (a) The measured
violation (quantum value Q for actual observables divided by local hidden variable
value B) of the Bell inequality with coefficients given in equation (14) for optimal
angles (�,	, 
) depending on the yaw angle �′ of the actual observables. �, 	 and

 are fixed to arbitrary values. The same plot can be drawn for 	 and 
. (b)–(d)
The maximal violation of Bell inequalities given by different angles, see equation (14),
where 
 is fixed.

4.2. Optimization of Bell inequalities for fixed measurement directions

In several applications a large violation is desirable. Given the experimental measurement
setup used to evaluate a given Bell inequality, there might be different inequalities that lead to
a higher violation. In that sense, they are ‘better’ inequalities. Finding an optimal inequality
seems to be a difficult task. In some cases the methods above (corollary 1 (i) and (ii)) might
give an intuition how to improve a given matrix of coefficients g without changing the involved
measurements.

There is another possible motivation for restricting the observables in the optimization of
the violation: it turns out that the average violation of Bell inequalities inside this restricted
parameter space is larger than the one for the whole parameter space. Figure 2 shows the
probability of an amount of violation for completely random coefficients and rotated versions
(corollary 1 (i)) of

g =
⎛
⎝1 −1 −1

1 1 −1
1 1 1

⎞
⎠ . (19)

Example 2. The coefficients of Gisin’s inequality [24] for M1 = M2 = 6 read

g =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 1 −1 −1
1 1 1 1 1 −1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

6
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Figure 2. A histogram of the maximal violation ν ′ of a random Bell inequality (light)
and a ‘twisted’ version of Gisin’s inequality [24] (dark). The size of the matrices is
3 × 3. The random inequality has equally distributed coefficients in [−1, 1]. For the
other inequality, the rotation angles are equally distributed. The probability of a given
violation is estimated from samples of 50 000 inequalities each. The violation of the
original inequality by Gisin is ν = 1.2.

This inequality has B = 18, as one can easily see when the first two rows get multiplied
with −1. The quantum value is T = M/ sin(π/(2M)) = 12

√
2 + √

3 ≈ 23.1822. Using
corollary 1 (ii) we can optimize the coefficients numerically, and obtain

g′ = V diag (||g||2, ||g||2, ||g||2, ||g||2,−||g||2,−||g||2)W T

= (1 +
√

3)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 −1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 1 0 0
0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (21)

which is equivalent to the CHSH inequality. This implies a violation of ν ′ = √
2 and

B(g′) = 6(1 + √
3) ≈ 16.3923. Here we ignored the condition in equation (11) of corollary 1

(ii) as tightness of T is ensured by the fact that all singular values are equal. One would obtain
the same result, when considering g′ = V diag (||g||2, ||g||2, ||g||2 − ε, ||g||2 − ε,−||g||2 +
ε,−||g||2 + ε)W T for a very small positive ε. In this way the degeneracy remains d′ = 2 and
the condition of equation (11) is fulfilled. The matrix g′ constitutes a local optimum, i.e. small
modifications of the singular values lead to a smaller violation.

Example 3 (Fishburn–Reeds inequalities [16]). In [16], the authors construct a series of
inequalities with increasing number of measurement settings. For d ∈ N greater or equal two,

g = V d(V d )T − 4
31, (22)

where V d is a (d − 1)d × d-matrix containing all rows of the form
(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0). The columns of
V d are orthogonal and thus 1√

2(d−1)
V d , (2(d − 1) − 4/3)1d and 1√

2(d−1)
V d form a truncated

singular value decomposition of g. Therefore, the optimal measurement settings for party
one and party two are identical. Intuitively, this choice of settings seems to be not optimal
with respect to the amount of violation. We searched numerically for inequalities with a
larger violation using methods (i) and (ii) of corollary 1. We give improved violations for
d = 2, . . . , 5 in table 1. Due to the computational complexity of determining B, it is likely
that the given values are not the maximal ones achievable with these methods.

7
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Table 1. Optimized violations of the first four inequalities by Fishburn and Reeds
[16], T/B′, compared to the original violation T/B. The explicit coefficients of
the corresponding matrix g′ are given in the supplemental material (available at
stacks.iop.org/JPhysA/47/424015/mmedia). Note that the given values for ν ′ are not
necessarily maximal.

d ν = T/B ν ′ = T/B′

2 1
√

2 ≈ 1.414 21
3 4/3 ≈ 1.333 33 1.341 63
4 7/5 = 1.4

√
2 ≈ 1.414 21

5 10/7 ≈ 1.428 57 1.428 60

4.3. Optimization of dimension witnessing Bell inequalities

The minimal d′ for a solution α is a lower bound on the length of the vectors �vi and �w j, which
is linked to the dimension of the observables. For example, if this minimal d′ is larger than
three, the maximal quantum value of the inequality cannot be reached using qubits. Let us
denote the bound for d′-dimensional real vectors by Td′ . Please note that B = T1.

In the previous section, we aimed at increasing the ratio T/T1 by decreasing T1. The same
optimizations can be performed for any other value d′ with Td′ < T .

To calculate the bound Td′ , we are interested in the optimal strategy (optimal ‘observables’)
achieving this bound. We note that the optimal observables of party two are fixed by the ones
of party one. The maximum in equation (4) using equation (7) is achieved, if for all x2 (each
column), the vector �wx2 is parallel to

∑
x1

gx1,x2�vx1 , i.e.

�wx2 = 1

||∑ gx1,x2�vx1 ||
∑

gx1,x2�vx1 , (23)

so the bound simplifies to

Td′ (g) = max
�vx1 ∈Rd′

,||�vx1 ||=1

M2∑
x2=1

∣∣∣∣∣∣
∣∣∣∣∣∣

M1∑
x1=1

gx1,x2�vx1

∣∣∣∣∣∣
∣∣∣∣∣∣ . (24)

As Td′ (g) = Td′ (gT ), we can assume that M1 � M2 without loss of generality. We give an
example for such optimizations.

Example 4. We optimize inequality D61 in [25]. It is the skew left circulant matrix given by
the first row (1 0 1 0 1 1), i.e.

D61 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1
0 1 0 1 1 −1
1 0 1 1 −1 0
0 1 1 −1 0 −1
1 1 −1 0 −1 0
1 −1 0 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (25)

A solution α of theorem 1 is α =
√

M
d 1

d , as it is the case for many circulant (left, right,
skew left, skew right) matrices. See [26] for the singular value decomposition of circulant
matrices. This Bell inequality has T2 = T3 = T , which can be proved using a 4 × 2-matrix
α in theorem 1. Therefore it is no dimension witness. We applied modifications (i) and (ii)
of corollary 1. We started with a global random search to find good starting points, which
we further optimized by a local optimization. Both algorithms are numerical. The software
implementation of the maximization in equation (24) does not guarantee that the found value

8
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is a global maximum, which implies that the calculated values for the violation are in principle
only upper bounds. However since we used many different starting points and random seeds
we are confident that the given digits also present the actual value of the violation. Using the
described methods we arrived at the matrix

g′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.350 174 0.323 788 0.344 416 −0.368 076 −0.299 221 0.314 04
−0.472 675 −0.357 842 −0.182 589 −0.317 64 −0.377 403 0.215 713
−0.218 507 −0.300 642 −0.525 576 −0.185 735 0.389 52 0.279 595

0.394 05 0.286 377 −0.315 566 −0.315 986 0.296 399 0.391 561
0.303 896 0.375 89 −0.193 803 −0.514 786 −0.310 722 −0.200 436
0.190 791 −0.355 309 −0.321 679 −0.184 563 −0.326 631 −0.511 833

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(26)

which corresponds to an inequality with a qutrit to qubit ratio of T/T3 ≈ 1.026 22. This seems
to be small. However, we do not know of a higher ratio than 1.035 28 with few settings (see
BX4 in [27], with 8 + 4 settings). More settings allow for larger qudit to qubit ratios [27, 28].

5. Conclusions

We presented two modifications of the coefficients of bipartite CHSH-type Bell inequalities,
which preserve tightness of the Tsirelson bound T given in [22]. These are rotations of the
singular vectors on the subspace of the maximal singular value and the subspace of the non-
maximal singular values as well as changes of non-maximal singular values. Physically, they
do not affect the optimal observables (up to a relative rotation of the two laboratories).

We applied this method to show that for any relative rotation of the two laboratories, there
is a Bell inequality that is maximally violated for this rotation and a fixed shared quantum state.
Furthermore we optimized Bell inequalities with respect to the ratio of the quantum value and
the local hidden variable bound (the violation). In particular, we did this for Bell inequalities
from a series of Fishburn and Reeds [16]. The violation of the fourth Bell inequality from that
series could be improved to 1.428 60.

Finally, we showed how our method can be used to optimize dimension witnessing Bell
inequalities, i.e. Bell inequalities, where the maximal quantum value is not achievable with
two qubits. We present an explicit example with six settings per party where the qutrit to qubit
ratio is 1.026 22.
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Abstract Many typical Bell experiments can be described as follows. A source

repeatedly distributes particles among two spacelike separated observers. Each of

them makes a measurement, using an observable randomly chosen out of several

possible ones, leading to one of two possible outcomes. After collecting a sufficient

amount of data one calculates the value of a so-called Bell expression. An important

question in this context is whether the result is compatible with bounds based on

the assumptions of locality, realism and freedom of choice. Here we are interested

in bounds on the obtained value derived from quantum theory, so-called Tsirelson

bounds. We describe a simple Tsirelson bound, which is based on a singular value

decomposition. This mathematical result leads to some physical insights. In par-

ticular the optimal observables can be obtained. Furthermore statements about the

dimension of the underlying Hilbert space are possible. Finally, Bell inequalities

can be modified to match rotated measurement settings, e.g. if the two parties do

not share a common reference frame.

1 Introduction

Since the advent of quantum theory physicists have been struggling for a deeper un-

derstanding of its concepts and implications. One approach to this end is to carve out

the differences between quantum theory and “classical” theories, i.e. to explicitly

point to the conflicts between quantum theory and popular preconceptions, which

evolved in each individual and the scientific community from decoherent macro-

scopic experiences. Plain formulations of such discrepancies and convincing exper-

imental demonstrations are crucial to internalizing quantum theory and replacing

existing misconceptions. For this reason the double-slit-experiments (and similar
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Fig. 1 Two parties, Alice (A) and Bob (B), perform a Bell experiment. Both of them receive parts
of a quantum system from the source (S). They randomly choose a measurement setting, denoted
by x = 1,2, ...,M1 and y = 1,2, ...,M2, and write down their outcomes a =−1 or 1 and b =−1 or 1,
respectively. The experiment is repeated until the accumulated data is analyzed according to the
text. Angles of 45 degrees in the space-time-diagram correspond to the speed of light. The future
light cones of A, B and S show, that the setting choice and outcome of one party cannot influence
the other and that A and B also cannot influence any event inside the source.

experiments with optical gratings) [1, 2, 3, 4, 5], which expose the role of state su-

perpositions in quantum theory, are so very fascinating and famous. Other examples

of “eye-openers” are demonstrations of tunneling [6, 7, pp. 33-12], the quantum

Zeno effect [8] and variations of the Elitzur-Vaidman-scheme [9, 10, 11], to pick

just a few.

Bell experiments [12, 13, 14, 15], which show entanglement in a particularly strik-

ing way, belong to this list. Informally, entanglement is the fact that in quantum

theory the state of a compound system (e.g. two particles) is not only a collection of

the states of the subsystems. This fact can lead to strong correlations between mea-

surements on different subsystems. Before going into more detail here, we would

like to note that the described differences between the relatively new quantum theory

and our old preconceptions are obvious starting points when to look for innovative

technologies which were even unthinkable before. This is in fact a huge motivation

for the field of quantum information, where Bell experiments play a central role.

1.1 Bell experiments bring three fundamental common sense
assumptions to a test

The idea of Bell was to show that some common sense assumptions lead to predic-

tions of experimental data which contradict the predictions of quantum theory. In the

following we employ a black box approach to emphasize that this idea is completely

independent of the physical realization of an experiment. For example the measure-

ment apparatuses get some input (an integer number which will in the following be

called “setting”) and produce some output (the “measurement outcomes”). We refer
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readers preferring a more concrete notion to Section 1.2, where physical implemen-

tations and concrete measurements are outlined.

In the present paper we consider the following (typical) Bell experiment, see also

Figure 1. There are three experimental sites, two of which we call the parties Al-

ice (A) and Bob (B), and the third being a preparation site which we call source

(S). Alice and Bob have a spatial separation large enough such that no signal can

travel from one party to the other at the speed of light during the execution of our

experiment. The source is separated such that no signal can travel from A or B to it

at the speed of light before it finishes the state production. The importance of such

separations will become clear later.

The source produces a quantum system, and sends one part to Alice and one to Bob.

We will exemplify this in Section 1.2. A and B are in possession of measurement ap-

paratuses with a predefined set of different settings. In each run they choose the set-

ting randomly, e.g. they turn a knob located at the outside of the apparatus, measure

the system received from the source and list the setting and outcome. In the present

paper the measurements are two-valued and the outcomes are denoted by −1 and

+1. Let M1 and M2 be the number of different measurement settings at site A and B,

respectively. We label them by x = 1,2,3, ...,M1 for Alice and y = 1,2,3, ...,M2 for

Bob. This preparation and measurement procedure of a quantum system is repeated

until the amount of data suffices to estimate the expectation value of the measured

observables, up to the statistical accuracy one aims at. The expectation value of an

observable is the average of all possible outcomes, here ±1, weighted with the cor-

responding probability to get this outcome.

Let us sketch the preconceptions that are jointly in conflict with the quantum theo-

retical predictions for Bell tests. These are mainly three concepts: Locality, realism

and freedom of choice. This forces us to question at least one of these ideas, be-

cause any interpretation of quantum theory, as well as any “postquantum” theory,

cannot obey all of them. We invite the reader to pick one to abandon while reading

the following descriptions. Do not be confused by our comparison with the textbook

formalism of quantum theory: so far you are free to choose any of them.

Locality is the assumption, that effects only have nearby direct causes, or the other

way around: any action can only affect directly nearby objects. If some action here

has an impact there, then something traveled from here to there. And, according to

special relativity, the speed of this signal is at most the speed of light. In our setup,

this means that whatever Alice does cannot have any observable effect at Bob’s site.

In particular, the measurement outcome at one side cannot depend on the choice of

measurement setting at the other site. While the formalism of quantum theory has

some “nonlocal features”, e.g. a global state, it is strictly local in the above sense,

because any local quantum operation on one subsystem does not change expectation

values of local observables for a different subsystem.

Realism is the concept of an objective world that exists independently of subjects

(“observers”). A stronger form of realism is the “value-definiteness” assumption

meaning that the properties of objects always have definite values, also if they are

not measured or even unaccessible for any observer. It seems to be against common

sense to assume that objects cease to have definite properties if we do not measure
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them any longer. In particular the natural sciences were founded on the assumption,

that nature and its properties exist independently of the scientist. In our setup realism

implies, that the measurement outcomes of unperformed measurements (in uncho-

sen settings) have some value. We do not know them, but we can safely assume that

they exist, give them a name and use them as variables. If possible outcomes are

−1 and +1, for example, we might use that the outcome squared is 1 in any of our

calculations. In general the (usual) formalism of quantum theory does not contain

definite values for measurement outcomes independent of a measurement.

Freedom of choice, which is also sometimes called the free will assumption, means

it is possible to freely choose what experiment to perform and how. Because this

idea is elusive, we are content with a decision that is statistically independent of any

quantity which is subject of our experiment. The idea of fate seems to be tempting

to many people. However, dropping freedom of choice makes science useless. Just

imagine you “want” to investigate the question whether a bag contains black balls

but your fate is to pick only white balls (and put them back afterwards), even though

there are many black balls inside. In our setup, freedom of choice implies, that A’s

and B’s choice of measurement setting does not depend on the other’s choice or the

outcomes. In quantum theory, there is freedom of choice in the sense that random

measurement outcomes of some other process can be used to make decisions.

If you decided that you preferably take leave of locality you are in good company.

Many scientists conclude from Bell’s theorem, that the locality assumption is not

sustainable. This is particularly interesting when you consider the above compari-

son with the standard textbook formalism of quantum theory, which is apparently

not realistic but local in the described sense. The fact that in this context many scien-

tists speak about “quantum nonlocality” thus leads to controversy [16]. We therefore

want to stress again, that the experimental contradiction only tells us that at least one

of all the assumptions that lead to the predictions needs to be wrong. We cannot de-

cide which assumption is wrong from Bell’s theorem alone.

We now focus on a tool to show the contradiction in the described experiment be-

tween the above assumptions and quantum theory, the so called Bell inequalities.

These are inequalities of measurable quantities which are (mainly) derived from lo-

cality, realism and freedom of choice and therefore hold for all theories which obey

these principles, while they are violated by the predictions of quantum theory. We

consider a special kind of Bell inequalities which are linear combinations of joint

expectation values of Alice’s and Bob’s observables. The joint expectation value

of the two observables of Alice and Bob is the expectation value of the product of

the measurement outcomes, which again takes values ±1. It depends on the setting

choice x at Alice’s site and y at Bob’s site and we denote it by E(x,y). If we denote

the (real) coefficient in front of the expectation value E(x,y) as gx,y, then we can

write such Bell inequalities as

M1

∑
x=1

M2

∑
y=1

gx,yE(x,y)≤ Bg, (1)
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where the bound Bg depends only on the coefficients gx,y. These coefficients form a

matrix g which has dimension M1×M2. Any real matrix g defines a Bell inequality

via Eq. (1). The may be most famous example is the Clauser-Horne-Shimony-Holt

(CHSH) [17] inequality, which reads

E(1,1)+E(1,2)+E(2,1)−E(2,2)≤ 2. (2)

Here the corresponding matrix g is

g =
(

1 1

1 −1

)
. (3)

Due to its prominence we call the class of Bell inequalities in the form of Eq. (1)

CHSH-type Bell inequalities. For completeness we sketch the derivation of Bg. It

turns out that it suffices to consider deterministic outcomes only, as a probabilistic

theory, where the outcomes follow some probability distribution, cannot achieve a

higher value in Eq. (1): it can be described as a mixture of deterministic theories and

the value of Eq. (1) is the sum of the values for the deterministic theories weighted

with the corresponding probability in the mixture. For deterministic theories the

expectation value is merely the product of the two (possibly unmeasured) outcomes

a of Alice and b of Bob, which we are allowed to use when assuming realism. Due

to locality a only depends on the setting x of Alice, which has no further dependence

due to freedom of choice. Analogously b depends only on the setting y of Bob, which

in turn has no further dependence. Thus the expectation value is

E(x,y) = a(x)b(y). (4)

Now we can calculate Bg by maximizing Eq. (1) over all possible assignments of

−1 and +1 values to a(x) and b(y). In Eq. (2) the maximal value is Bg = 2, which

is achieved for a(1) = a(2) = b(1) = b(2) = 1, for example. Note that the sign of

E(2,2) cannot be changed independently of the other three terms, because E(1,2)
and E(2,1) contain b(2) and a(2), respectively.

We point out that any function that maps the probabilities of different measurement

outcomes to a real number may be used to derive Bell inequalities, and different

types of Bell inequalities can be found in the literature (e.g. [18]). However, here

we focus on Bell inequalities of the form of Eq. (1).

1.2 The CHSH inequality can be violated in experiments with
entangled photons

We recapitulate some basics of quantum (information) theory. Analogously to a

classical bit the quantum bit, or qubit, can be in two states 0 and 1, but additionally

in every possible superposition of them. Mathematically this state is a unit vector in
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the two-dimensional Hilbert space (a vector space with a scalar product) C2 spanned

by the basis vectors

0 :=
(

1

0

)
and 1 :=

(
0

1

)
. (5)

An example of a superposition of these basis states is ψ = 1√
2
(0+1). Any observ-

able on a qubit with outcomes +1 and −1 can be written as

A = ax

(
0 1

1 0

)
︸ ︷︷ ︸

σx

+ay

(
0 −i
i 0

)
︸ ︷︷ ︸

σy

+az

(
1 0

0 −1

)
︸ ︷︷ ︸

σz

, (6)

where the vector a = (ax,ay,az)T (here T denotes transposition) defines the mea-

surement direction and the matrices σx, σy and σz are called Pauli matrices. The ex-

pectation value of this observable given any state ψ can be calculated as E = ψ†Aψ
(here † denotes the complex conjugated transpose), which is between −1 and +1.

Any quantum mechanical system with (at least) two degrees of freedom can be used

as a qubit. In the present context the spin of a spin- 1
2 -particle, two energy levels of

an atom and the polarization of a photon are important examples of qubits. The spin

measurement can be performed using a Stern-Gerlach-Apparatus [19], the energy

level of an atom may be measured using resonant laser light, or the polarization of

a photon can be measured using polarization filters or polarizing beam splitters.

The Hilbert space of two qubits is constructed using the tensor product, i.e. C2⊗
C2 = C4. The tensor product of two matrices (of which vectors are a special

case) is formed by multiplying each component of the first matrix with the com-

plete second matrix, such that a bigger matrix arises. The state of the compos-

ite system of two qubits in states φ A = (φ A
1 ,φ A

2 )T and φ B = (φ B
1 ,φ B

2 )T then reads

φ AB = φ A⊗φ B = (φ A
1 φ B

1 ,φ A
1 φ B

2 ,φ A
2 φ B

1 ,φ A
2 φ B

2 )T . The states of such composite sys-

tems might be superposed, which leads to the notion of entanglement.

Out of several physical implementations of the CHSH experiment we sketch the

ones with polarization entangled photons (see [20]). We identify 0 with the horizon-

tal and 1 with the vertical polarization of a photon. Nonlinear processes in special

optical elements can be used to create two photons in the state

φ+ =
1√
2
(1,0,0,1)T , (7)

i.e. an equal superposition of two horizontally polarized photons and two vertically

polarized photons. The measurements of Alice and Bob in setting 1 and 2 are

A1 = cos(2×22.5◦)σx + sin(2×22.5◦)σz, (8)

A2 = cos(−2×22.5◦)σx + sin(−2×22.5◦)σz, (9)

B1 = cos(2×0◦)σx + sin(2×0◦)σz (10)

and B2 = cos(2×45◦)σx + sin(2×45◦)σz, (11)
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respectively. Here the angles are the angles of the polarizer and the factor 2 is due to

the fact that in contrast to the Stern-Gerlach-Apparatus a rotation of the polarizer of

180◦ corresponds to the same measurement again. One can now calculate the value

of Eq. 2:

E(1,1)+E(1,2)+E(2,1)−E(2,2) = φ †
+(A1⊗B1)φ+ +φ †

+(A1⊗B2)φ+

+φ †
+(A2⊗B1)φ+−φ †

+(A2⊗B2)φ+

=
1√
2

+
1√
2

+
1√
2
−
(
− 1√

2

)
= 2

√
2. (12)

The value 2
√

2≈ 2.82 is larger than 2 and therefore the CHSH inequality is violated.

One can ask whether it is possible to achieve an even higher value, e.g. when using

higher-dimensional systems than qubits, because at the first glance a value of up to

four seems to be possible. This question is addressed in the following sections (the

answer, which is negative, is given in Section 2.2).

1.3 The quantum analog to classical bounds on Bell Inequalities
are Tsirelson Bounds

Analogously to the “classical” bound one can ask for bounds on the maximal

value of a Bell inequality obtainable within quantum theory, so-called Tsirelson

bounds [21], and the observables that should be measured to achieve this value. In

other words: which observables are best suited to show the contradiction between

quantum theory and the conjunction of the three discussed common sense assump-

tions. This question, which is also of some importance for applications of Bell in-

equalities, is the main subject of the present essay.

The scientific literature contains several approaches to derive Tsirelson bounds,

some of which we want to mention. The problem of finding the Tsirelson bound

of Eq. (1) can be formulated as a semidefinite program. Semidefinite programming

is a method to obtain the global optimum of functions, under the restriction that the

variable is a positive semidefinite matrix (i.e. it has no negative eigenvalues). This

implies that well developed (mostly numerical) methods can be applied [22, 23].

The interested reader can find a Matlab code snippet to play around with in the ap-

pendix 4. Furthermore there has been some effort to derive Tsirelson bounds from

first principles, amongst them the non-signalling principle [24], information causal-

ity [25] and the exclusivity principle [26].

The non-signalling principle is satisfied by all theories, that do not allow for faster-

than-light communication. Information causality is a generalization of the non-

signalling principle, in which the amount of information one party can gain about

data of another is restricted by the amount of (classical) communication between
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them. The exclusivity principle states, that the probability to see one event out of a

set of pairwise exclusive events cannot be larger than one.

2 The singular value bound

Here we will discuss a simple mathematical bound for the maximal quantum value

of a CHSH-type Bell inequality defined via a matrix g, which we derived in [27].

While it is not as widely applicable as the semidefinite programming approach, it is

an analytical expression which is easy to calculate and it already enables valuable

insights. For “simple” Bell inequalities, like the CHSH inequality given above, it is

sufficient to use the method of this paper.

We will make use of singular value decompositions of real matrices, a standard tool

of linear algebra, which we now shortly recapitulate.

2.1 Any matrix can be written in a singular value decomposition

A singular value decomposition is very similar to an eigenvalue decomposition, in

fact the two concepts are strongly related. Any real matrix g of dimension M1×M2

can be written as the product of three matrices V , S, W T , i.e.

g = V SW T , (13)

where these three matrices have special properties. The matrix V is orthogonal, i.e.

its columns, which are called left singular vectors, are orthonormal. It has a dimen-

sion of M1×M1. The matrix S is a diagonal matrix of dimension M1×M2, which

is not necessarily a square matrix. Its diagonal entries are positive and have non-

increasing order (from upper left to lower right). They are called singular values of

g. The matrix W is again orthogonal. It has dimension M2×M2 and its columns are

called right singular vectors.

The largest singular value can appear several times on the diagonal of S. We call the

number of appearances the degeneracy d of the maximal singular value. Due to the

ordering of S, these are the first d diagonal elements of S. Here we note the concept

of a truncated singular value decomposition: instead of using the full decomposition

one can approximate g by using only parts of the matrices corresponding to, e.g.,

the first d singular values (i.e. only the maximal ones). These are the first d left and

right singular vectors, and the first part of S, which is just a d× d identity matrix

multiplied by the largest singular value. Since these matrices play an important role

in the following analysis we will give them special names: V (d), S(d) and W (d). All

these matrices are depicted in Figure 2.

The matrix g maps a vector v to a vector gv which, in general, has a differ-

ent length than v. Here the length is measured by the (usual) Euclidean norm
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Fig. 2 The matrices involved in the singular value decomposition of a general real M1×M2 matrix
g: V and W are orthogonal matrices, S is diagonal. V and W contain the left and right singular
vectors, respectively, as columns, and S contains the singular values on its diagonal. The shaded
parts belong to a truncated singular value decomposition of g. We denote the parts corresponding
to the maximal singular value as V (d), S(d) and W (d).

||v||2 =
√

v2
1 + v2

2 + ...+ v2
M2

. The largest possible stretching factor for all vectors

v is a property of the matrix: its matrix norm induced by the Euclidean norm. The

value of this matrix norm coincides with the maximal singular value S11. We can

therefore express the maximal singular value using

S11 = max
v∈RM2

||gv||2
||v||2 =: ||g||2. (14)

The notation ||g||2 for the maximal singular value of g is more convenient than S11,

as it contains the matrix as an argument.

2.2 The singular value bound is a simple Tsirelson bound

It turns out that the matrix norm of g, i.e. its maximal singular value, leads to an up-

per bound on the quantum value for a Bell inequality, defined by g via Eq. (1). This is

the central insight of this essay. It is remarkable that a mathematical property, solely

due to the rules of linear algebra, leads to a bound for a physical theory, here the

theory of quantum mechanics. With the definition of the matrix norm given above,

we can now write this singular value bound of g, a simple Tsirelson bound [27]. It

reads
M1

∑
x=1

M2

∑
y=1

gx1,x2
E(x1,x2)≤

√
M1M2||g||2, (15)

where E now denotes the expectation value of a quantum measurement in setting

x1 and x2. Eq. (15) is the central formula of this essay. Note that this bound is not

always tight, i.e. there exist examples where the right hand side cannot be reached
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within quantum mechanics. However for many examples it is tight. The proof of

this bound is sketched in Appendix 3.

We now calculate this bound for the CHSH inequality given in Eq. (2). We see, that

here the matrix of coefficients is

g =
(

1 1

1 −1

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
︸ ︷︷ ︸

V

(√
2 0

0
√

2

)
︸ ︷︷ ︸

S

(
1 0

0 1

)
︸ ︷︷ ︸

W T

. (16)

It is easy to check that the given decomposition of g is a singular value decomposi-

tion, i.e. V , S and W have the properties described above. From this we read, that the

maximal singular value of g is ||g||2 =
√

2. Then Eq. (15) tells us, that the maximal

value of the CHSH inequality (Eq. (2)) within quantum theory is not larger than

2
√

2, a value which can also be achieved when using appropriate measurements and

states (see Section 1.2)

2.3 Tightness of the bound can be checked efficiently

We already mentioned that the inequality (15) is not always tight, i.e. sometimes it is

not possible to find observables and a quantum state such that there is equality. From

the derivation of Eq. (15) sketched in Appendix 3 one understands, why this is the

case. The value
√

M1M2||g||2 is achieved if and only if there exists a right singular

vector v to the maximal singular value and and a corresponding left singular vector

w which fulfill further normalization constraints.

It is common to denote the element in the i-th row and j-th column of a matrix A
as Ai j. We will extend this notation to denote the whole i-th row by Ai∗ and the

whole j-th column by A∗ j, i.e. the ∗ stands for “all”. For example, the l-th M1 +M2

dimensional canonical basis vector, with a one at position l and 0 everywhere else,

can then be written as 1
(M1+M2)
∗,l .

With this notation at hand we write down the normalization constraint from above

as the system of equations ∥∥∥αTV (d)
x∗
∥∥∥2

= 1 for x = 1,2, ...,M1 (17)

and

∥∥∥∥
√

M2

M1
αTW (d)

y∗

∥∥∥∥2

= 1 for y = 1,2, ...,M2, (18)

where the d× d′ matrix α is the unknown. The bound in Eq. (15) is tight if and

only if such matrix α solving this system of equations can be found. Here d is the

degeneracy of the maximal singular value of g and d′, the dimension of the vectors

vx = αTV (d)
x∗ and wy = αTV (d)

y∗ , is a natural number. The steps leading to Eqs. (17)

and (18) can be found in the supplemental material of [27]. Because Eqs. (17) and
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(18) are quadratic in α it may not be obvious how to solve it. In [27] we described an

algorithm to solve the above system of equations in polynomial time with respect to

the size of g. The interested reader may also find a Matlab snippet in the Appendix 4.

Often the solution α is obvious, e.g. when it is proportional to the identity matrix.

2.4 Optimal measurements are obtained from the SVD

From the previous considerations we understand that the existence of the unit vec-

tors vx = αTV (d)
x∗ and wy = αTV (d)

y∗ , i.e. the existence of the matrix α that allows

this normalization, is crucial to the satisfiability of the singular value bound. Fur-

thermore they have a physical meaning, because they are related to the observables

in the following way.

Let us again consider the example of Eq. (2), with the singular value decomposition

g =
(

1 1

1 −1

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
︸ ︷︷ ︸

V

(√
2 0

0
√

2

)
︸ ︷︷ ︸

S

(
1 0

0 1

)
︸ ︷︷ ︸

W T

. (19)

which we repeat from Eq. (16). The multiplicity d = 2 of the maximal singular value√
2 equals the number of measurement settings M1 and M2, so each of the rows V (d)

x∗
and W (d)

y∗ are already normalized due to orthogonality of V and W . Therefore we

can choose α = 1(2) to solve Eqs. (17) and (18). We then have v1 = (1,1)T /
√

2,

v2 = (1,−1)T /
√

2, w1 = (1,0)T and w2 = (0,1)T . We are looking for a state and ob-

servables such that E(x,y) = vx ·wy, which is always possible to find (see Tsirelson’s

theorem, Appendix 3).

Consider for example two spin- 1
2 particles in the state φ+ = 1√

2
(1,0,0,1)T . Alice

and Bob can measure their particles’ spin with Stern-Gerlach apparatuses along any

orientation in the x-z-plane. The observable of Alice corresponding to a measure-

ment along the direction (ax,az)T is

A = ax

(
0 1

1 0

)
+az

(
1 0

0 −1

)
, (20)

where the matrices are two of the so-called Pauli matrices. Bob’s measurement reads

analogously. The reader can easily verify that the expectation value of the joint

observable A⊗B is given by

φ †
+(A⊗B)φ+ = a ·b. (21)

Therefore optimal measurement directions leading to equality in Ineq. (15) are given

by vx and wy. For this reason we will call vx and wy the measurement directions,

even though they can have a dimension greater than three for general g.

We note how this construction of observables generalizes: The state can be taken to
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be φ+ = 1√
D ∑D

i=1 ei⊗ ei and the observables can be constructed as Ax = vx ·X and

By = vy ·X, where X is a vector of matrices Xi generalizing Pauli matrices in some

sense (they anticommute, i.e. XiXj +XjXi = 0 for i �= j).

2.5 Bell inequalities allow to lower bound the Hilbert space
dimension

In the previous example we chose α to be a square matrix, namely α = 1(2). We

will now illustrate the role of the dimension of the measurement directions d′ with

an example of a trivial Bell inequality, where d′ = 1 suffices to obtain the Tsirelson

bound. For this example the coefficients are g = 1(2). An obvious singular value de-

composition of this identity matrix is to choose V = S =W = 1(2). Just as before we

can say that α = 1(2) is a solution to Eqs. (17) and (18), thus the bound is achievable

with d′ = 2. But we can also choose α = (1,1)T , which also solves the system of

equations. In this case the measurement directions are one-dimensional (d′ = 1), in

fact they are all equal to 1. Then the expectation value given by the scalar product

of the measurement directions reduces to the “classical” expectation value of deter-

ministic local and realistic theories given in Eq. (4). Both quantum theory and local

realistic theories can achieve the maximal value of two. This inequality is therefore

unable to show a contradiction between quantum theory and locality, realism and

freedom of choice. You might have expected this, since the matrix of coefficients

does not even contain a negative coefficient, which implies that the maximum value

is achieved if all outcomes are +1.

Let us discuss a more interesting example. It is a special instance of the family of

Bell inequalities discussed by Vertési and Pál in [28]. You can also find the following

analysis for the whole family in the supplemental material of [27]. The coefficients

are

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

−1 1 1 1

1 −1 1 1

−1 −1 1 1

1 1 −1 1

−1 1 −1 1

1 −1 −1 1

−1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

Please note, that the columns of g are orthogonal, thus it is easy to find a truncated

singular value decomposition of g: We can choose V (d) = 1

2
√

2
g, S(d) = 2

√
21(4)

and W = 1(4). One can easily check, that α =
√

21(4) is a solution for the (d×d′)-
matrix α of Eqs. (17) and (18), so the maximal quantum value of 16 (see Eq. (15))

is achievable with (d′ = 4)-dimensional measurement directions. It turns out, that

the system of equations is not solvable if we choose d′ = 3, i.e. α to be a (4× 3)-
dimensional matrix. This has some very interesting physical implications. Since
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(d′ = 3)-dimensional measurement directions do not suffice to obtain the maximal

value of the Bell inequality, we can conclude from a measured value of Q = 16, that

our measurement directions were at least four-dimensional. Of course one will never

measure this value perfectly in experiment, so what one has to do in practice is to

calculate the maximum of the Bell inequality over all three-dimensional measure-

ment directions (this is analog to the calculation of the classical bound Bg described

above). If we call this value T3, then any value between T3 and 16 witnesses the

dimension of the measurement directions to be at least four (see Figure 3).

For spin- 1
2 particles, there are three orthogonal measurement directions (orienta-

Fig. 3 Depending on the dimension d′ of the measurement directions different values Td′ are max-
imal for the Bell inequality given by coefficients in Eq. (22). An experimentally obtained value Q
of the Bell inequality inside the shaded area witnesses, that the produced quantum system had a
greater Hilbert space dimension than qubits (see text). The values are taken from [28].

tions of the Stern-Gerlach-apparatus), i.e. x-, y- and z-direction, corresponding to

the three Pauli matrices (see Eq. (6)) and not more. This holds for all quantum sys-

tems with two-dimensional Hilbert space (qubits). Thus if in some Bell experiment

the value of the Vertési-Pál-inequality given by the coefficients in Eq. 22 is found to

be 16 (or larger than T3), one can conclude that the produced and measured systems

were no qubits. In particular they were not single spin- 1
2 particles. Please note, that

this argument is independent of the physical implementation of the source and the

measurement apparatuses. For this reason the concept is often called device inde-

pendent dimension witness.

2.6 Satisfiability of the bound can be understood geometrically

With r = V (d)
x∗ Eq. (17) can be written as rT ααT r = 1. This quadratic form defines

an ellipsoid with semi-axes 1√
λ1

, 1√
λ2

, ..., 1√
λd

where λ1,λ2, ...,λd are the eigenval-

ues of ααT . Analogously the vectors r′ =
√

M2
M1

W (d)
y∗ lie on the same ellipsoid (see

Eq. (18)).

We therefore state, that the singular value bound is obtainable if and only if the vec-
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Fig. 4 The singular value
bound is achievable if and
only if the vectors V (d)

x∗ and√
M2
M1

W (d)
y∗ lie on the surface

of an ellipsoid. These vectors
and the ellipsoid (here a
circle) are shown for the
CHSH inequality.

Fig. 5 The vectors V (d)
x∗ and√

M2
M1

W (d)
y∗ of g = 1(2) lie on

the dotted ellipse. Increasing
the larger semi-axis while
keeping the vectors on the
ellipse leads to the solid
(degenerate) ellipse in the
limit. Infinite semi-axes of
the ellipsoid imply, that lower
dimensional measurement
directions (here d′ = 1) suf-
fice to achieve the Tsirelson
bound.

tors V (d)
x∗ and

√
M2
M1

W (d)
y∗ lie on an ellipsoid. As we mentioned before, in many cases

(e.g. from the literature), α can be chosen to be proportional to the identity matrix.

Thus in these cases the vectors lie on a d-dimensional sphere, i.e. for d = 2 they are

on a circle, which is shown for the CHSH inequality [17] in Fig. 4.

If α is not square or not full rank (i.e. at least one eigenvalue of α is zero), then

at least one of the eigenvalues of ααT is zero, too. We define the corresponding

semi-axis to be infinite.

The measurement directions lie in the image of the linear transformation associated

with α . Thus the dimension of the measurement directions cannot be larger than the

rank of α . For g = 1 we show the degenerate ellipsoid with one infinite semi-axis

corresponding to the solution α = (1,1)T (see above) in Fig. 5.

2.7 Changing g without changing the Tsirelson bound

The parts of the SVD of g which do not correspond to the maximal singular value

of (i.e. the non-shaded areas in Figure 2) did not appear in our discussion of the

Tsirelson bound. Therefore any changes of these singular vectors in V and W and

singular values in S will not affect our analysis. The last is, of course, only true

as long as these new singular values do not become bigger than the (previously)

maximal singular value. While this changes the matrix g, i.e. leads to a new Bell

inequality, the quantum bound remains obtainable and its value remains the same.
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Fig. 6 Alice and Bob share pairs of particles in a spin-entangled state ψ and want to violate a Bell
inequality. They each can measure the spin of their particle along transversal axes with different
angle relative to the table’s up. Unfortunately they were not able to agree on what “up” means,
yet, and their local coordinate systems are twisted by a relative angle ϕ . The text explains that one
possibility is to measure using (local) angles γ1 = 45◦, γ2 =−45◦, γ3 = 0◦, γ4 = 90◦ at Alice’s site
and δ1 = 0◦ and δ2 = 90◦ at Bob’s site and “rotate” the Bell inequality.

From the geometric picture we immediately understand, that rotations of the vectors

V (d)
x∗ and

√
M2
M1

W (d)
y∗ which keep them on the ellipsoid (see Figs. 4 and 5) also do not

change the value and satisfiability of the singular value bound.

We give an example to illustrate that the measurement directions can be rotated

without affecting the singular value bound and its tightness. Consider the CHSH

test described above, but now Alice and Bob did not agree on a common coordinate

system before performing the experiment, see Figure 6. Let us assume for simplicity

that their local coordinate systems are only rotated relative to each other by an angle

ϕ around their common y-axis. This angle ϕ is unknown to Alice and Bob at the time

of collecting the measurement data. The quantum state is still ψ = 1√
2
(1,0,0,1)T ,

independent of ϕ .

Let us analyze the effect of the relative rotation on the violation of the CHSH in-

equality. The first idea might be to measure the observables of Section 2.4 in the lo-

cal basis and insert the estimated expectation values into the CHSH inequality. For

a relative angle ϕ = 0◦ these observables are optimal, but for an angle of ϕ =−45◦
Alice and Bob measure in the same direction and their data will not violate the

CHSH inequality. From the previous considerations we know that it is also possible

to “rotate” the Bell inequality such that the actually performed measurements are

optimal for that inequality. This is can be done by applying a rotation matrix to the

matrix W . However, twisting the original CHSH inequality by 45◦ gives
√

21 (up

to relabeling of the measurement settings), see Figures 4 and 5. And as it is shown

in Figure 5 all but one semiaxis of the ellipse associated with α can be chosen to

be infinite, which is equivalent to the fact that the classical bound and the quantum

bound coincide. This implies that the inequality given by coefficients g =
√

21 can-

not be violated.
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0
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2
2

Angle

1.05

1.10

1.15

Violation
T

B ( )

Fig. 7 The ratio of the maximal qauntum and classical value, the violation, is plotted for the Bell
inequality given by the coefficients of Eq. (23) as a function of the relative rotation of the two
laboratories ϕ .

The trick is to include more measurement directions. If the measurement directions

of Alice already uniquely define the ellipsoid associated with α , then the rotation of

the measurement directions of Bob does not change the fact that the Bell inequality

can be violated. One obvious possibility to achieve this is to add all settings of Bob

to Alice. We do this for the CHSH inequality (see Eq. (16)) and get

g(ϕ) =

⎛
⎜⎜⎜⎝

1√
2

1√
2

1√
2
− 1√

2

1 0

0 1

⎞
⎟⎟⎟⎠
(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
. (23)

If we call the different measurement angles γ1,γ2,γ3,γ4 at Alice’s site and δ1,δ2 at

Bob’s site we have for α =
√

21 that γ1 = 45◦, γ2 =−45◦, γ3 = 0◦, γ4 = 90◦, δ1 = 0◦
and δ2 = 90◦ are optimal measurement settings. The quantum value T = 4 of this

inequality does not depend on ϕ , but the classical bound B does. Figure 7 shows the

violation of the Bell inequality depending on the relative rotation ϕ . As expected it

is always strictly larger than one. The maximal violation of 4−2
√

2 can be obtained

for ϕ = k π
4 , where k is an integer number. We remark that if Alice and Bob even do

not agree on a common coordinate system for the analysis of the data, they still can

maximize the violation over the angle ϕ .

A similar analysis for a general rotation in three dimensions given by three Euler

angles was done in [29]. Different approaches to Bell inequalities without a com-

mon coordinate system have been described in the literature. We want to mention

the following strategy. Each party measures along random but orthogonal measure-

ment directions. Afterwards the violation of the CHSH inequality is calculated for
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all combinations of pairs of measured settings of Alice and Bob. The result is simi-

lar to the one in this section: if the parties measure along more than two directions,

then one can find a Bell inequality that is violated with certainty [30].

A deeper understanding of the correlations between measurements on separated sys-

tems possible according to quantum theory, including the maximal value of Bell in-

equalities, is an aim of ongoing research in the field of quantum information theory.

In this essay we saw how more measurement settings and higher-dimensional quan-

tum systems can lead to stronger violations of Bell inequalities, e.g. in the context

of device-independent dimension witnesses or Bell experiments without a shared

reference frame. The insights gained from these simple examples may help to find

Bell inequalities well suited for different situations and applications.
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Appendix

3 Tsirelson’s theorem carries the Tsirelson bound to Linear
Algebra

We now sketch the derivation of Eq. (15) following [27]. It is strongly based on a

theorem by Boris Tsirelson [31]. It links the expectation values of quantum measure-

ments to scalar products of real vectors. While the full theorem shows equivalence

of five different ways of expressing the expectation value, we will repeat two of

them here.

Remember that in the formalism of quantum theory observables are hermitean op-

erators, i.e. they equal their complex conjugated transpose. And quantum states can

be described by density matrices, which are convex mixtures of projectors onto pure

quantum states, with the weights being the probability to find the system in the cor-

responding pure state. This implies that the density matrix is positive and has trace

one.

Consider two fixed sets of observables with eigenvalues in [−1,1], {A1,A2, ...,AM1
}

and {B1,B2, ...,BM2
}, and a quantum state given in terms of its density matrix ρ .

Then the expectation value of the joint measurement of Ax and By, Ax ⊗ By, is

E(x,y) = tr(Ax⊗Byρ) according to quantum theory. Tsirelson’s theorem states, that

there exist real M1 +M2 dimensional unit vectors {v1,v2, ...,vM1
} and {w1,w2, ...,wM2

}
such that all expectation values can be expressed as E(x,y) = vx ·wy. This is the di-

rection we need, because it allows us to replace the expectation value in Eq. (1)

by the scalar product of some real vectors. Tsirelson also proved the converse

direction: given the vectors v1,v2, ...,vM1
and w1,w2, ...,wM2

there exist observ-

ables A1,A2, ...,AM1
and B1,B2, ...,BM2

and a state ρ such that the expectation value

E(x,y) = tr(Ax⊗Byρ) equals the scalar product vx ·wy.

After application of Tsirelson’s theorem Eq. (1), i.e. ∑x,y gx,yE(x,y), takes the form

M1

∑
x=1

M2

∑
y=1

gx,y

M1+M2

∑
i=1

vx,iwy,i =
M1

∑
x=1

M2

∑
y=1

M1+M2

∑
i=1

M1+M2

∑
j=1

vx,igx,yδi jwy, j

= vT (g⊗1(M1+M2))w. (24)

Here we expressed the scalar product as a matrix product using the M1 + M2 di-

mensional identity matrix 1(M1+M2) and defined the vectors v and w, which arise

if one concatenates all vx and wy, respectively. For the decomposition given in

Eq. (16) with α = 1(2), for example, v1 = ( 1√
2
, 1√

2
)T and v2 = ( 1√

2
,− 1√

2
)T and

thus v = ( 1√
2
, 1√

2
, 1√

2
,− 1√

2
)T . From Eq. (24) we see, that the maximal quantum

value of the Bell inequality is given by the maximal singular value (the maximal

stretching factor) of g⊗1(M1+M2) times the length of the vectors v and w. The ma-

trix g⊗1(M1+M2) has the same singular values as g, except that each of them appears

M1 +M2 times. Because the vx and wy constituting v and w are all unit vectors, the

length of v is
√

M1 and the length of w is
√

M2. Putting these factors together we
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arrive at Eq. (15).

4 MATLAB snippets

f u n c t i o n [ T ] = s i n g u l a r v a l u e b o u n d ( g )

%SINGULARVALUEBOUND C a l c u l a t e s t h e SV−bound o f g
% t h e r e t u r n e d v a l u e i s a T s i r e l s o n bound f o r
% t h e CHSH−t y p e i n e q u a l i t y g i v e n by g
T= s q r t ( numel ( g ) ) ∗ norm ( g ) ;

end

f u n c t i o n [ a ] = a l p h a m a t r i x ( g )

%ALPHAMATRIX L i n k s SVD t o measurement d i r e c t i o n s
% s e e PRL 111 , 240404 ( 2 0 1 3 )
[M1 M2]= s i z e ( g ) ;

[V S W]= svd ( g ) ;

acc =1E−4; % a d j u s t t o n u m e r i c a l p r e c i s i o n
d=sum ( diag ( S)>=S(1 ,1)− acc ) ;

% t h e v e c t o r s t o be n o r m a l i z e d by a lpha :
A=[V( 1 :M1, 1 : d ) ; s q r t (M2/M1)∗W( 1 :M2, 1 : d ) ] ;

Q=(A∗A ’ ) . ˆ 2 ;

c=pinv (Q)∗ ones (M1+M2, 1 ) ;

i f sum ( abs (Q∗c−ones (M1+M2,1) ) > acc )

error ( ’ a l p h a m a t r i x : n o s o l ’ , ’No s o l u t i o n a l p h a found . ’ ) ;

e l s e
X=A’∗ diag ( c )∗A;

i f e i g s (X, 1 , ’sm ’ )<0

error ( ’ a l p h a m a t r i x : n o r e a l s o l ’ ,

’No r e a l s o l u t i o n a l p h a found . ’ ) ;

end
end
a=X ˆ 0 . 5 ;

end

f u n c t i o n [ T ] = t s i r e l s o n b o u n d ( g )

%TSIRELSONBOUND C a l c u l a t e s t h e T s i r e l s o n bound f o r g
% Uses t h e s e m i d e f i n i t e programm d e s c r i b e d by
% S t e p h a n i e Wehner i n PRA 73 , 022110 ( 2 0 0 6 ) .
[M1 M2]= s i z e ( g ) ;

W=[ z e r o s (M1,M1) g ; g ’ z e r o s (M2,M2 ) ] ;

G= s d p v a r (M1+M2,M1+M2 ) ;

o b j = t r a c e (G∗W) / 2 ;
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F= s e t (G>0);

f o r i =1 :M1+M2

F=F+ s e t (G( i , i ) == 1 ) ;

end
s o l v e s d p ( F , obj , s d p s e t t i n g s ( ’ v e r b o s e ’ , 0 ) ) ;

T=−d o u b l e ( o b j ) ;

end
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We show how general graph states, an important resource state for multipartite quantum pro-
tocols, can be distributed over large distances using intermediate repeater stations. To this aim
we describe a one way quantum repeater scheme using encoding in the language of graph states.
For a general Calderbank-Shor-Steane (CSS) code we do a refined error analysis that allows to cor-
rect qubit errors and erasures caused by imperfect preparation, gates, transmission, detection, etc..
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7-qubit Steane code and the quantum Golay code. In the considered parameter regime the latter
outperforms all known schemes.
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I. INTRODUCTION TO QUANTUM
REPEATERS

Several fascinating aspects of quantum theory can be
summed up as its “non-classicality”, which is particu-
larly striking in quantum entanglement. The benefit of
quantum technology increases with the system size, e.g.
when doing quantum computations [1, 2]. Additionally
the “non-classicality” of quantum systems increases with
the number of spatially separated subsystems. For exam-
ple the violation of Bell inequalities is known to increase
exponentially with the number of parties [3]. several mul-
tipartite protocols with quantum advantages are known,
e.g. secret sharing or multipartite cryptography [4–8].
They motivate the investigation of the distribution of the
required resource states consumed during the execution
of the protocols. In the age of the Internet it is not hard
to imagine that the parties will be distributed over dis-
tances at the global scale and form a two dimensional
network in the future. Distribution of entanglement over
more than ≈ 200 km requires intermediate quantum re-
peaters to compensate for losses [9–12].
In this letter we present the generalization of error correc-
tion [13–17] based quantum repeaters [18–24] to general
networks of such devices that are capable of producing
multipartite entangled resource states. This generaliza-
tion is facilitated by the use of the language of graph
states [25–32] that gives a graphic description of the net-
work and the corresponding quantum states. We improve
the error analysis compared to the literature by taking
many sources of errors into account. There are impor-
tant parameter regimes for which this protocol is more
efficient with respect to the used resources than the pre-
viously known ones.
First we explain the basic idea of the repeater for two
parties using the stabilizer formalism. We then shift the
graph state to a logical graph state via quantum error
correction codes and analyze the performance depending

∗ epping@hhu.de

on the amount of imperfections and the distance between
the repeater stations. Finally we show how this scheme
generalizes to networks.
A graph state |G〉 corresponds to a mathematical graph
G consisting of a set V of N vertices and a set of edges
E ⊂ V × V . It can be defined in two equivalent ways.
First, |G〉 is the state that is created from the state
|+〉⊗N , |+〉 = 1√

2
(|0〉 + |1〉), by applying a controlled-

phase gate CZ on each pair of vertices in E, i.e.

|G〉 =
∏

(i,j)∈E

C
(i,j)
Z |+〉⊗N . (1)

Second, |G〉 is the unique state stabilized by the stabilizer
generators

gi = Xi

∏
j∈V

(i,j)∈E

Zj , (2)

i.e. gi|G〉 = |G〉, for all i ∈ V . Here Xi and Zi denote
Pauli-operators for the vertex i.
In order to present the main idea we discuss how a simple
line graph is produced that consists of an even number
N of vertices (see Figure 1). Odd vertex counts lead to
an analogous reasoning. This line graph corresponds to a
chain of repeaters connecting two parties, Alice (A) and
Bob (B). The repeater scheme is one-way, i.e. signals are
sent from left to right starting at Alice’s site. A qubit in
state |+〉 is produced at each repeater station. This qubit
is entangled with the qubit from the previous station by
a local CZ gate and then sent through the channel (see
Figure 2). At the next repeater station it is processed
by another local CZ gate and it will be measured at this
site. The gates create the edges of the graph state. Note,
however, that it is not necessary to store the full graph
state, as it is created and measured step by step.
The maximal connectedness of a graph implies that it
is possible to turn the quantum state into a maximally
entangled state shared by Alice and Bob. This can be
formulated in the stabilizer formalism. We number the
vertices from left to right, and denote the first qubit by
A and the last by B.
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FIG. 1. A line of repeater stations links parties A and B. The
operators of the two main stabilizers are shown above and
below the graph. X-measurements on the repeater stations
(small dots) and application of appropriate byproduct opera-
tors projects the state of A and B onto a Bell pair. The arrow
indicates the transmission direction.

FIG. 2. The operations on repeater stations Ri and Ri+1.
The preparation and the gate of station Ri (a) and the trans-
mission of the qubit produced at Ri to Ri+1 (b) creates the
edge (i, i+1), where the same procedure is repeated to create
the next edge (c,d).

The product of all stabilizer generators centered on odd
qubits and the analogous product for the even ones are
two stabilizers connecting A and B (see also [33]). We
call them the main stabilizers SA and SB . All qubits ex-
cept A and B are measured in the X-basis. This projects
the state onto one stabilized by gA = XA ⊗ ZB and
gB = ZA ⊗ XB , up to byproduct operators which de-
pend on the measurement outcomes. Afterwards one of
four orthogonal Bell states is shared by A and B, where
the measurement outcomes determine which one. Any
qubit can be measured directly after it has been pro-
cessed by both gates. This is equivalent to creating the
whole graph state, but easier experimentally. If parties A
and B want to perform X or Z measurements on the final
Bell state, then the byproduct operators can be applied
on the measurement outcomes: X flips a Z outcome, Z
flips an X outcome and H = 1√

2
(X + Z) flips the basis

label.
The previous considerations must be expanded by an er-
ror model (see also [34]). We distinguish two main error
types: noticed (losses) and unnoticed ones (noise). Mea-
surement outcomes are 0, 1, and ? (no outcome). Both
types of errors, i.e. losses and noise, will be corrected
by the same error correction code as discussed later on.
In our error model a corrupted qubit is set to a com-
pletely mixed state, i.e. all errors are modeled by the
depolarizing channel. It is convenient to take the equiv-
alent viewpoint [35] that these imperfections are discrete
X and Z errors randomly occurring on the qubits af-
ter perfect distribution of the graph state. X and Z
errors each occur on this qubit independently with prob-
ability 1

2 . We account for spreading of errors by gates.
CZ-gates propagate X-errors to Z-errors while they do
not propagate Z-errors. Thus in the present circuit (see
Figure 3), errors only propagate to neighboring qubits.
X-(Z-)errors before a Z-(X-)measurement flip measure-
ment outcomes. The probability for wrong outcomes on
“inner” qubits (i.e. all qubits except A and B) is fq. Any
process acting on a physical qubit can lead to an error.

FIG. 3. Encircled processes in this circuit diagram can lead to
an error on the qubit measured at repeater i. Solid and dashed
lines denote unnoticed and noticed errors, respectively. Black
circle errors lead to a flip of the measurement outcome. The
outcome will be marked as ? if any white circle error occurred.

We include the failure rates fP (preparation), fG (gates),
fT (transmission), and fM (measurements).
Because the losses will be dominated by the transmis-
sion, we mark the outcome of repeater i as ? whenever
the qubit i− 1 got lost.
There are nine sources of unnoticed phase-flip errors on
an inner physical qubit i: three preparations, three gates,
two transmissions and one measurement (see black circles
in Figure 3). All lie in between repeater stations i−2 and
i, because errors only propagate to neighboring qubits.
Thus, for inner physical qubits the probability of phase-
flip errors reads

fq =Podd

((
Podd

(
fP,u

2
, 2
)

,
fP,n + fP,u

2
,

Podd

(
fG,u

2
, 3
)

, Podd

(
fT,u

2
, 2
)

,
fM,u

2

))
,

(3)

where Podd(p, n) denotes the probability that in n tosses
of a coin the side appearing with probability p occurs
an odd number of times and Podd(�p) is used when the
probabilities pooled in �p may be different for each toss
(see [36]). The index distinguishes noticed and unnoticed
errors. We assume that the single qubit errors are inde-
pendent and identically distributed. Physical qubits may
get lost in any process. Thus the effective probability for
a ?-outcome is (see white circles in Fig 3)

fl = 1−(1−fP,n)2(1−fG,n)3(1−fT,n)2(1−fM,n)2. (4)

Typical losses for optical fibers are

fT,n = 1− (1− fC,n)e−L0/Latt , (5)

where fC,n is a coupling failure probability, L0 is the re-
peater distance and Latt ≈ 20 km defines the attenuation
of the fiber.
Errors on inner qubits propagate to A or B via the appli-
cation of the byproduct operators. Additionally process-
ing A and B can directly lead to errors. We denote these
error probabilities fA and fB . In a prepare-and-measure
scenario of a quantum key distribution protocol, which is
equivalent to producing the entangled state and A is mea-
sured in X or Z basis, qubit 2 is prepared in |0〉, |1〉, |+〉,
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or |−〉 and qubit N − 1 is measured, i.e. fA = fB = 0.
Even numbers of errors on the same main stabilizer can-
cel each other. We denote the resulting error rate of the
main stabilizer SA by eA and for SB by eB : With prob-
ability eA (eB) the produced state is stabilized by −gA

(−gB) instead of gA (gB). We estimate these error rates
by

eA =Podd

((
Podd

(
f̄q,

⌈
N − 2

2

⌉)
, fA, fB

))

and eB =Podd

((
Podd

(
f̄q,

⌊
N − 2

2

⌋)
, fA, fB

))
,

(6)

where the logical error probability f̄q at the moment
equals the physical error rate fq. We come back to this
point later.
We focus on the application to quantum key distribution,
where the crucial quantity is the secret fraction r∞, i.e.
the number of secret bits per Bell pair that result after
the data post-processing. For the BB84 protocol it solely
depends on the error rates eA and eB and is given by [37]

r∞ = max{1− h(eA)− h(eB), 0}, (7)

with the binary entropy h(p) = −p log2(p) − (1 −
p) log2(1−p). We have discussed how a Bell pair is gained
from the graph state. In the following we describe how
our scheme can be used to decrease the error rates.
To tackle imperfections we use error correction codes, i.e.
we now use several physical qubits to encode the logical
qubit corresponding to a vertex. This leads to a logical
graph state. The operators in the graph state stabilizers
are replaced by logical operators, which we denote (like
all logical quantities) with a bar. The idea of creating a
Bell state from the main stabilizers transfers to the logi-
cal level.
We focus on Calderbank-Shor-Steane (CSS) codes.
Transversal (i.e. qubitwise) implementations of
controlled-NOT gates are valid in all CSS codes [17]. We
use two codes, the code C and the code C′, which arises
from C by exchanging the role of the X̄ and Z̄. Even
numbered logical qubits are encoded using C, the odd
ones using C′. This way the transversal application of
the controlled-NOT gates acts like a logical controlled-
Phase gate and we can stick to the notation of graph
states. The error analysis is analogous for both codes.
We elaborate on the analysis for C.
We assume, that the X̄i-operator consists exclusively of
single qubit X-operators. Hence the measurement out-
come of X̄i is affected by phase flip errors (Z). Due to
the transversal implementation the physical error rate re-
mains as before.
An [[n, k, d]] quantum code encodes k logical qubits into
n physical ones, such that t = �d−1

2 � single qubit errors
can be corrected. The graph state repeater simultane-
ously creates k Bell pairs. The code space stabilizers
containing X and 1 operators correspond to the rows of
a parity check matrix HX . Thus in absence of any er-
rors the X measurement outcomes are valid codewords

TABLE I. Example values of n (number of qubits per station),
w (number of stations), and L (total distance between A and
B) that lead to a nonzero secret key rate R. Unmentioned
errors are neglected for this calculation.

Code n w L in km R in % errors

7-qubit code 7 750 500 0.1 fG = 10−4

650 200 35.7

Golay code 23 800 1000 79.7

525 1000 4.7

2500 1000 28.4 fG = fP = 10−3,
fC = fD = 10−2

180 180 54.4

of the corresponding linear code. Decoder for common
codes and their error rates are known [13, 38]. An X̄-
error remains, if the outcomes are decoded to a wrong
parity codeword. This leads to the logical error rate f̄q.
If specific loss patterns occurred, e.g. more than d losses
in one block, we may choose to abort the protocol. The
effective secret fraction

R = Psuccr∞ (8)

then decreases by a factor Psucc. In our analysis f̄q and
Psucc are the only quantities that explicitly depend on
the employed code (in practice fP will also strongly de-
pend on the code).
A popular example of a CSS code is the [[7,1,3]] Steane
code [15]. It is symmetric in X and Z, thus we can simply
use one code and transversal CZ-gates. The stabilizers
can be read from the parity check matrix of the (7,4)-
Hamming code [13]. We choose to abort if we notice
three losses. The logical error rate f̄q and success rate
Psucc for this code and choice of fatal errors is given in
the supplemental material [36]. From these quantities the
effective secret fraction can be calculated using Eq. (7)
and Eq. (8). Example values can be found in Table I.
To tolerate more errors, e.g. for increased repeater dis-

tances or to relax the requirements for the gates, larger
codes are required. We discuss an application of the
[[23,1,7]] Golay code using a decoding described in [39].
We take the word error rate pw, i.e. the probability of re-
covering to a wrong codeword, from that reference. Half
of the 4096 codewords correspond to a +1 and −1 out-
come of X̄, respectively. We thus assume f̄q ≈ pw/2.
Fault tolerant preparation schemes have been investi-
gated in [40]. Table I lists values for the Golay code.
To compare different codes we use a cost function C ′ [24]
as figure of merit. It is the number of qubits per station
n (neglecting preparation overhead) times the number of
repeater stations w divided by the total distance L and
the rate R, i.e. C ′ = nw

LR . We optimized C ′ over w
for different L for several codes, see Figure 4. The opti-
mal separation distance of the repeater stations decreases
with increasing total distance.

This quantity also allows comparison with other re-
peater schemes, e.g. the analysis in [24] of the quantum
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FIG. 4. The cost for different schemes with gate failure rates
fG = 10−3 (dashed) and fG = 10−4 (solid): The presented
repeater using the Seven-Qubit Steane code (red) and the
quantum Golay code (yellow), the quantum parity code of
[24] (green) and the original (distillation based) scheme [9, 12]
(blue). The gray line corresponds to using no repeaters.

FIG. 5. The graph state of the large vertices is obtained,
when all repeater stations (small vertices) are measured in
the X-basis. The shown operators form the main stabilizer
centered on C.

parity code (QPC, a generalization of the Shor code with
special abortion strategy [41]), when one pays attention
to the fact that the authors considered less errors than
Eq. (3).
Figure 4 gives the comparison to the original distillation
based protocol without encoding [9]. Note that this com-
parison strongly depends on the assumed time for local
operations (here 10 μs), since this is the only limiting
factor in the case of forward error correction, while the
rate of the two-way protocol is restricted by the classi-
cal communication time [12]. We point out that the re-
peater with Golay code outperforms the original repeater
already at shorter distaces than the quantum parity code.
See [34] for details.
We considered a repeater setup corresponding to the gen-
eration of a line graph to distribute a Bell pair. For
more than two parties it is possible to distribute other
more complex and highly entangled states based on other
graphs. We generalize the idea of main stabilizers to gen-
eral graphs.
In order to distribute the graph state |G〉 the edges of G
are replaced by line graphs with repeater stations as dis-
cussed above (see Figure 5). Let the number of repeater
stations wij on all these transmission lines (i, j) ∈ E
be even for simplicity. The main stabilizers Si are the
stabilizer generators gi of |G〉 connected by chains of
X-operators on every second repeater station (see also

[33]). Measuring these intermediate qubits in the X-basis

TABLE II. The error rates for two small networks using the
Seven Qubit Steane Code with fG = 10−4.

Network (2d-coordinates in km) eA eB eC eD

0.02 0.04 0.04 0.02

0.06 0.02 0.02 0.02

projects the state onto one stabilized by the generators
of |G〉 up to byproduct operators, i.e. this procedure can
be used to create |G〉. Cycles in a graph may increase
the storage time of some qubits, since their measurement
can be performed only after all incoming neighbors gates
acted. Note that the distribution of a state |G′〉 which
is local-unitary-equivalent to |G〉 can be less demand-
ing [42, 43]. The performance analysis of the previous
paragraphs can be transferred to networks. Analogous
to Eq. (6) one can calculate the error probability

ei = Podd

⎛
⎝f̄q,

1
2

∑
j

wij

⎞
⎠ (9)

for all main stabilizers Si. Table II lists these values for
examples of two small networks, a line and a star graph.
The in-degree of a vertex corresponding to a party influ-
ences the noticed and unnoticed error rates at this posi-
tion (compare to Eqs. (3) and (4)) and the out-degree will
in practice influence the preparation error in a prepare-
and-measure-scenario. The last is due to the fact that
an (nno)-qubit state is sent, where n is the number of
qubits of one block and no is the out-degree. However,
the performance mainly depends on the error rates at
the repeater stations (assuming that there are few par-
ties and many repeater stations).
Thus in conclusion we described how any multipartite
graph state can be distributed via repeater stations.
The procedure can be understood as the creation of
a large graph state followed by a projection onto the
desired state by local measurements on the repeater
stations. Operational errors and channel erasures are
treated equally. CSS codes have been employed to tackle
these imperfections. In particular the 23-qubit Golay
code turns out to be remarkably efficient in the consid-
ered scenario of losses and noise. General graph states
can be distributed with effort, rate and quality compa-
rable to the distribution of a single Bell pair by error
correction based repeaters.
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Abstract Losses of optical signals scale exponentially
with the distance. Quantum repeaters are devices that
tackle these losses in quantum communication by split-
ting the total distance into shorter parts. Today two
types of quantum repeaters are subject of research in the
field of quantum information: Those that use two-way
communication and those that only use one-way commu-
nication. Here we explain the details of the performance
analysis for repeaters of the second type. Furthermore
we compare the two different schemes. Finally we show
how the performance analysis generalizes to large-scale
quantum networks.

1 Introduction

Signals in long distance telecommunications are subject
to corruptions. Typically the amplitude decreases expo-
nentially with the covered distance [11]. Thus interme-
diate repeaters which amplify and purify the signal are
necessary building blocks for reliable transmission. In
quantum cryptography and communication the signals
transport coherent quantum information.
One possibility to overcome the exponential scaling of
losses with distance is the entanglement swapping and
-distillation based repeater scheme, which was developed
by H.-J. Briegel, W. Dür, J. Cirac and P. Zoller in [3].
Here entangled pairs are distributed amongst neighbor-
ing repeater stations and Bell measurements on each sta-
tion result in entangled states covering a larger distance
(so-called entanglement swapping). These operations in-
troduce errors which can be tackled by entanglement dis-
tillation, i.e. protocols that concentrate several imperfect
copies of entangled states into a single copy with higher
fidelity with respect to a maximally entangled state [2,6,
7]. Two-way classical communication is used to acknowl-
edge reception of photons and success of distillation.
A different approach, introduced by L. Jiang, J. Taylor,
K. Nemoto, W. Munro, R. Van Meter, and M. Lukin in

[13], replaces the entanglement distillation step by the
use of quantum error correction codes for forward error
correction, i.e. communication is only required in one
direction. In comparison to the previous schemes these
improve the repeater rate at the cost of being more de-
manding in terms of resources and the quality of oper-
ations. Subsequent work considered different codes and
improved the error analysis [16,10,17,18,9].
In the present paper we attempt to give a simple analy-
sis of repeaters of the latter type. Before describing the
error analysis we motivate the quantum repeater circuits
in Section 2. We use the stabilizer formalism, which is
very convenient in this context. Section 3 summarizes the
error model of depolarizing noise, which is widely used in
the context of error correction. Section 4 then discusses a
quantum repeater in the circuit model. We put empha-
sis on the sources of errors and their propagation and
estimate the effective error rates of the physical qubits.
The considered repeater schemes are based on error cor-
rection codes, which implies that several physical qubits
form a logical qubit. This redundancy allows to correct
errors and the strength of this correction is discussed
in Section 5. The overall performance of the repeater
scheme, i.e. its ability to produce a specific entangled
state, is then analyzed in Section 6 and compared to the
original scheme. Finally we sketch in Section 7 how re-
peaters with encoding generalize to large-scale quantum
networks using the ideas we presented in [9].

2 The circuit of quantum repeaters can be
understood in the stabilizer formalism

Before diving into the error analysis of the quantum re-
peater we motivate the circuit using the stabilizer for-
malism [19,12]. This language simplifies the multipartite
generalization. Furthermore we think it is an aesthetic
way of constructing and understanding the circuit.
A state |ψ〉 is said to be stabilized by an operator s if it
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is an eigenstate of s to the eigenvalue +1, i.e.

s|ψ〉 = |ψ〉. (1)

The set of all operators that stabilize the state is called
the stabilizer of the state. An n qubit state can be uniquely
defined by n independent operators gi, i = 1, 2, ..., n,
that stabilize it. They generate the stabilizer of the state,
i.e. the product of two stabilizer elements is contained
in the stabilizer, too. Here we shortly call an element of
the stabilizer, i.e. the operator, a stabilizer. No confusion
should arise from this abbreviation.

2.1 The stabilizer of a maximally entangled state

Consider the maximally entangled state shared by par-
ties A and B

| 〉AB =
1√
2
(|0〉A|+〉B + |1〉A|−〉B), (2)

where |0〉 and |1〉 form the canonical basis of the Hilbert
space of a single qubit and |±〉 = 1√

2
(|0〉±|1〉). The state

| 〉AB is local unitary equivalent to any Bell pair in
the standard notation,

|ψ+〉 =
1√
2
(|01〉+ |10〉), (3)

|ψ−〉 =
1√
2
(|01〉 − |10〉), (4)

|φ−〉 =
1√
2
(|00〉+ |11〉), (5)

and |φ−〉 =
1√
2
(|00〉 − |11〉), (6)

i.e. they are identical up to local basis changes. The state
of Eq. (2) is stabilized by the two operators

gA = XAZB and gB = ZAXB . (7)

Here

X =
(

0 1
1 0

)
and Z =

(
1 0
0 −1

)
(8)

are Pauli matrices and the index denotes the party on
which this operator acts.
Since gA and gB are independent, they uniquely define
the state of Eq. (2). This implies that a repeater scheme
is successful if the state produced by the repeater is sta-
bilized by these operators.

2.2 Transformation of the stabilizer in a circuit

Suppose that s stabilizes the state |ψ〉 of a system on
which now a (unitary) gate U acts. Then

UsU†U |ψ〉 = U |ψ〉, (9)

i.e. the operator UsU† stabilizes the state after the op-
eration of the gate. Because the stabilizer generators
uniquely define the quantum state, keeping track of these
operators during a quantum computation is equivalent
to keeping track of the quantum state. And while it
might seem to be more effort to write down and ma-
nipulate the set of stabilizer generators than two hold
a single quantum state it can be much easier in special
situations [19]. This is because the state space increases
exponentially with the number of qubits. On the con-
trary the number of generators increases linearly with
the number of qubits and the set of operators occurring
as stabilizer generators can be very limited depending on
the performed gates. For example it can be restricted to
the Clifford group (see Gottesman-Knill-Theorem [12]).
This will be the case for quantum repeaters.
We need the controlled-Phase gate

C
(i,j)
Z = |0〉i〈0|i ⊗ 1j + |1〉i〈1|i ⊗ Zj (10)

that changes the phase of the second qubit if the first
qubit is in state |1〉. Fig. 1 shows the circuit diagram
symbol for a CZ gate. CX gates are defined analogously

(a) CZ-gate (b) CX -gate

Fig. 1 The circuit diagram symbols of common entangling
gates.

to Eq. (10). These are equivalent to CZ gates up to a
local basis change on the second qubit.
The CZ gate transforms the stabilizers XA1B and 1AXB

that correspond to the product state |+〉A|+〉B into the
stabilizers gA and gB . Thus it is an entangling gate.

2.3 Inserting and removing intermediate qubits

The idea of quantum repeaters is to counter the expo-
nential losses in a fiber by cutting the long transmission
line of length L into smaller parts of length L0. The re-
peater stations connect these shorter channels. Interme-
diate qubits are inserted, entangled with their neighbors
and measured. During this process some kind of error
correction (using two-way or one-way communication) is
performed. We now describe the basic scheme in the sta-
bilizer formalism. The error correction will be discussed
in Section 5. We also ignore the channel for now, since
it is not important for understanding why the circuit
produces a maximally entangled state. It is included in
Section 4.
Suppose the total number of qubits N is even for sim-
plicity. We sequentially number the qubits from A to B
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by 1 to N , where 1 is the qubit of A and N is the one
of B. We start with all qubits in the |+〉 state, i.e. the
natural choice of stabilizer generators is gi = Xi. Now
neighboring qubits are entangled by CZ gates. After ap-
plication of the CZ gates the list of stabilizers reads

g1 =X1Z2,

gN =XNZN−1,

and gi =Zi−1XiZi+1 for 1 < i < N.

(11)

By multiplication of gi with even and odd i we see that

SA =X1X3X5...XN−1ZN (12)
and SB =Z1X2X4X6...XN (13)

are two stabilizers of the state, respectively. We call these
two stabilizers connecting A and B the main stabilizers,
because they will play a central role in understanding the
quantum repeater in the stabilizer formalism. In the mul-
tipartite case discussed at the end of this article, there
will be one main stabilizer per party.
Now the intermediate qubits (2, 3, ..., N − 1) are mea-
sured in X basis, because this transforms the stabilizer
in the desired way. We replace the corresponding oper-
ator in the stabilizer (see Eq. (11)) by the measurement
outcome to obtain a stabilizer of the reduced state. The
state of A and B after all measurements is stabilized
by πAgA = πAXAZB and πBgB = πBZAXB , where
πA = ±1 and πB = ±1 are the parities of the mea-
surement outcomes on odd and even qubits, respectively.
One can correct for these measurement outcome depen-
dent factors by applying so called by-product operators,
here XπB

A ZπA

A . After this correction the state is stabilized
by gA and gB as desired. Therefore the circuit that ini-
tializes all qubits in the |+〉 state, connects all neighbor-
ing qubits via CZ gates and measures the intermediate
qubits in the X-basis can be used to create a maximally
entangled pair shared by A and B.
In the context of the original quantum repeater [3,1],
the described procedure of projecting onto a bipartite
entangled state is usually called entanglement swapping
and the application of the by-product operators is called
a correction of the “Pauli-frame”.
Note that all the CZ gates commute. Hence the order of
these gates is irrelevant in the ideal case, but it becomes
relevant when the error propagation is analyzed. There
are mainly two orderings of the gates: sequentially and in
two steps (e.g. first gates with odd labeled control qubits,
then gates with even labelled control qubits). The two
corresponding circuits are shown in Fig. 2. Apart from
the error correction method quantum repeater schemes
can also differ in the order of the gates and the position
of the transmission channels inside the circuit.
The produced state given in Eq. 2 and the state stabi-
lized by the generators given in Eq. (11) are examples of
graph states [4,20]. It is possible to create and distribute
every graph state in a similar way [9]. We describe this
generalization in Section 7.

(a) Application of CZ gates in
two time-steps.

(b) Application of CZ gates in
N − 1 time-steps.

Fig. 2 The basic circuit of quantum repeaters. Intermediate
qubits are inserted and measured such that the state of A
and B is projected onto a maximally entangled state. The two
shown circuits are equivalent, because CZ gates commute.

3 The error model of depolarizing noise

As a simple noise model we employ the depolarizing
channel εf (ρ) [19]. It depends on a parameter f which
defines the strength of the noise. With probability f (for
“failure”) the state ρ is replaced by the completely mixed
state 1/d, while it remains ρ with probability (1 − f),
which leads to the state

εf (ρ) = (1− f)ρ + f
1

d
, (14)

where d is the dimension of the Hilbert space.

3.1 Error discretization

One can replace the identity term in Eq. (14) in the
single qubit version using that

1

2
=

ρ + XρX + XZρZX + ZρZ

4
. (15)

This leads to the form

εf (ρ) = (1−f)ρ+f
ρ + XρX + XZρZX + ZρZ

4
, (16)

which has the following interpretation. With probabil-
ity (1−f) the channel acts as the ideal identity channel,
while it “fails” with probability f . In case of failure there
is a chance of 1

2 for an X error to occur and an indepen-
dent chance of 1

2 for a Z error to occur.
The analogous relation to Eq. (15) for n qubits reads

1

2n
=

1
4n

∑
i1,i2,...,in∈{1,X,XZ,Z}

n⊗
k=1

ikρ

n⊗
k=1

i†k (17)

and leads to the same error probabilities. We use this re-
lation for the error discretization of n-qubit gates and in
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particular for the CZ gate. Thus the description of con-
tinuous noise has been replaced by a description in terms
of randomly occurring discrete errors X and Z [19]. This
formulation is convenient with respect to error propaga-
tion and the stabilizer formalism.

3.2 Description of erasure errors

We model erasures with the same error model, but in
contrast to noise they are noticed in the sense that it is
known which qubit is affected. We think of this as a third
measurement outcome, a no-detection outcome, that we
denote by a “?”. Analogously to the unnoticed errors, the
state of an erased qubit is replaced by the completely
mixed state 1/2, i.e. it leads to X and Z errors from
the viewpoint of discretized errors. The response of the
elements of the circuit to erased qubits might strongly
depend on the physical implementation and the error
model can be improved for specific examples. Notice that
this simple model possesses the main property in the
context of entanglement distribution: If a qubit gets lost,
then it cannot become correlated with any other qubit
via a gate that processes them after the loss happened.

3.3 Error propagation by gates

Gates propagate errors, i.e. errors e before a gate are
equivalent to possibly different errors e′ after the gate [19].
Consider an arbitrary gate U . An error e before U cor-
responds to the overall action of Ue onto the state. Due
to unitarity of U we can write

Ue = UeU†︸ ︷︷ ︸
e′

U = e′U, (18)

i.e. the error is propagated to an e′ = UeU† error. Ta-
ble 1 lists this relation for the most common cases.
Tracking the propagation of X and Z errors in a quan-
tum circuit is a crucial part of the error analysis.

4 Physical errors in quantum repeater circuits

We first analyze the physical error rates of the circuit
with a single qubit per station shown in Fig. 3, which, in
contrast to Fig. 2, now includes the transmission chan-
nels. Section 4.3 treats an important variation of this
circuit and the error correction is discussed in Section 5.
Any operation inside a circuit can cause an error. We

use different indices to the symbol f to denote the fail-
ure rates of the corresponding process. These are prepa-
ration (fP ), transmission (fT ), gates (fG) and measure-
ment (fM ). We add another index u or n for unnoticed
and noticed errors, respectively. Errors might be noticed
by a non-detection event, i.e. no click in some time bin
where we expected one. This gives the additional knowl-
edge of the qubit on which this error occurred. Apart

Table 1 Propagation of X and Z errors by the Hadamard-
(H), controlled-Not- (CX), and controlled-Phase-gate (CZ).
Here the index i with i = 1, 2 refers to the i-th qubit. Note
that you can also read the stabilizer transformation UsU†

from this table.

Ue = e′U
HX = ZH
HZ = XH

CXX1 = X1X2CX

CXZ1 = Z1CX

CXX2 = X2CX

CXZ2 = Z1Z2CX

CZX1 = X1Z2CZ

CZZ1 = Z1CZ

CZX2 = Z1X2CZ

CZZ2 = Z2CZ

Fig. 3 A basic circuit for a quantum repeater with encod-
ing. Errors at the encircled locations inside the circuit indi-
cate possible causes for a flipped measurement outcome at
repeater i, see text. Errors inside white (black) circles con-
tribute to the noticed (unnoticed) error rate at station with
number i. Solid (dashed) circles denote errors that are no-
ticed (unnoticed).

from that we treat these errors using the same model
which we introduced in Section 3.
Typical transmission losses have the form [11]

fT,n = 1− (1− fC,n)e−
L0

Latt , (19)

where fC,n describes coupling losses, L0 = L
N−1 is the

repeater spacing and Latt ≈ 20 km gives the fiber atten-
uation.
To estimate the effective error rate of the measurement
outcomes, we collect all sources of errors that affect the
outcome of a specific measurement. An error on the mea-
surement outcome remains, if an odd number of errors
propagate from the source processes to the measure-
ment, while an even number of errors cancels each other.
We therefore introduce the functions

Peven(P,N) =
1
2
(
1 + (1− 2P )N

)
(20)

and Podd(P,N) =
1
2
(
1− (1− 2P )N

)
, (21)

which denote the probability to have an even and odd
number of events, respectively, in a sequence of N runs,
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Table 2 All causes of unnoticed measurement errors at re-
peater i. The corresponding processes are marked by a black
circle in Fig. 3.

probability operator site
fP,u

2
X Preparation of i− 2

fG,u

2
X Gate of i− 2

fT,u

2
X Channel from i− 2 to i− 1

fP,u

2
Z Preparation of i− 1

fG,u

2
Z Gate of i− 1

fT,u

2
Z Channel from i− 1 to i

fG,u

2
Z Gate of i

fM,u

2
Z Measurement of i

fP,u+fP,n

2
X Preparation of i

fG,u

2
X Gate of i

where in each run the probability of the event is P . We
generalize these formulas to the case where the probabil-
ity of the event differs in each run. These probabilities
are pooled into a vector p of dimension N and one can
write

Peven (p) =
2N−1∑
n=0

|n|H even

N∏
k=1

pn(k)

k (1− pk)1−n(k)
(22)

and Podd (p) =
2N−1∑
n=0

|n|H odd

N∏
k=1

pn(k)

k (1− pk)1−n(k)
. (23)

Here |n|H is the Hamming weight of n in binary repre-
sentation and n(k) is the k-th binary digit of n. These
definitions allow a compact notation for the exact error
rate.
Consider the measurement on the repeater station i in
Fig. 3. In total there are ten sources of errors for this
measurement (circles in Fig. 3): three preparations, three
gates, two channels and two measurements. Errors at
positions in the circuit other than the shown ones can-
not propagate to the measurement under consideration.
We first focus on sources of an unnoticed error of the
X-measurement on station i (black circles in Fig. 3).
The measurement outcome is flipped by Z errors, as
Z|+〉 = |−〉 and Z|−〉 = |+〉, but not by X errors as
X|+〉 = |+〉 and X|−〉 = −|−〉. We give a complete list
of error causes of an unnoticed error in Table 2. We ex-
emplify the route of an error for the X-error occurring
with probability fP,u

2 in the preparation at i−2. It passes
the gate of that station and the subsequent channel. At
the repeater i − 1 it propagates to an Z error on the
qubit i, passes channel and gate and flips the measure-
ment outcome.
Noticed errors on the qubit that is measured at station
i− 1 have a high probability of 50% to lead to a flipped
measurement outcome at site i. We thus choose to mark
the outcome of that measurement as “?”. In this way

Table 3 All causes of noticed measurement errors at re-
peater i. The corresponding processes are marked by a white
circle in Fig. 3.

probability operator site
fP,n

2
X Preparation of i− 2

fG,n

2
X Gate of i− 2

fT,n

2
X Channel from i− 2 to i− 1

fM,n

2
Z Measurement of i− 1

fP,n

2
Z Preparation of i− 1

fG,n

2
Z Gate of i− 1

fT,n

2
Z Channel from i− 1 to i

fG,n

2
Z Gate of i

fM,n

2
Z Measurement of i

we exclude these noticed errors from the unnoticed error
rate of i, which reads

fu =Podd

((
Podd

(
fP,u

2
, 2
)

,
fP,n + fP,u

2
,

Podd

(
fG,u

2
, 3
)

, Podd

(
fT,u

2
, 2
)

,
fM,u

2

))
.

(24)

The full list of sources of noticed errors in the measure-
ment at site i is given by Table 3 and in Fig. 3 white
circles mark the corresponding positions in the circuit.
The outcome is “?” if any of these errors occurred. This
happens with probability

fn = 1−(1−fP,n)2(1−fG,n)3(1−fT,n)2(1−fM,n)2. (25)

4.1 How far do errors propagate?

On the first glance it might seem possible that errors
propagate along the whole line of repeater stations to
Bob. This is not the case. The measurement outcome
on repeater i is only affected by errors on repeater sta-
tions i − 2 to i. The CZ gates propagate X to Z er-
rors on the neighboring qubit. These do not propagate
across CZ gates. Thus only elements of the circuit that
involve a neighboring qubit of the one measured in qubit
i need to be considered. For a full error analysis all these
sources need to be included. In particular, it is usually
not exhaustive to consider only a single repeater sta-
tion independently of the previous ones. One has to pay
attention to such restrictions when comparing different
repeater schemes from the literature.

4.2 Bit flip errors caused by erasures

The effect of one lost qubit before the application of
a two-qubit gate may strongly depend on the physical
implementation of the gate. It is reasonable, however,
to assume that there will be some unwanted effect on
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the remaining second qubit. In our error model the lost
qubit is replaced by the completely mixed state, or equiv-
alently, X and Z errors randomly occur at the position
of the loss. These errors propagate across the two-qubit
gates, possibly leading to flipped outcomes of measure-
ments on these adjacent qubits. In this way losses in our
model lead to noise on detected qubits.

4.3 Other circuits

An analogous error analysis can be done for other cir-
cuits, too. Here we discuss the error propagation in cir-
cuits where only half of the qubits are transmitted through
the channel, while the other half remains stationary as
another example. Fig. 4 shows a schematic of such a
repeater and the corresponding circuit. Again we iden-

(a) Spatial diagram

(b) Circuit diagram

Fig. 4 Schematic of a repeater with two qubits per station.
Two repeaters Ri and Ri+1 are shown in a spatial diagram
(a) and the circuit diagram (b). Entangled pairs are created,
distributed amongst neighboring repeater stations and then
connected locally. In a last step local measurements project
onto a two-qubit entangled state.

tify all sources of an flipped measurement outcome. The
treatment of noticed errors differs for stationary and fly-
ing qubits, so we calculate two different error rates. The

index s or f denotes stationary or flying qubits, respec-
tively. The rates of unnoticed errors read

fq,s =Podd

((
fP,u,f

2
,
fG,u,f

2
,
fT,u,f

2
,
fP,u,s

2
,
fG,u,s

2
,

fG,u,s

2
,
fM,u,s

2
,
fP,u,f + fP,n,f

2

))
,

(26)

fq,f =Podd

((
fP,u,s + fP,n,s

2
,
fP,u,f

2
,
fT,u,f

2
,
fG,u,f

2
,

fM,u,f

2
,
fP,u,s + fP,n,s

2
,
fG,u,s + fG,n,s

2

))
(27)

and the rates of noticed errors read

fl,s =1− (1− fP,n,f )(1− fG,n,f )(1− fT,n,f )×
× (1− fM,n,f )(1− fP,n,s)(1− fG,n,s)(1− fM,n,s)

(28)

fl,f =1− (1− fP,n,f )(1− fG,n,f )2(1− fT,n,f )×
(1− fM,n,f ).

(29)

Note that, analogously to the other circuit, we choose to
mark the stationary qubit as lost whenever the previous
flying qubit got lost. This is not necessary but improves
the error correction, as the stationary qubit has a high
probability for errors in this case.

5 Logical error rates of encoded qubits

So far we considered the error rates on physical qubits.
Quantum repeater with encoding use error correction
codes [21,22,2,14] to encode the information of logical
qubits into a larger number of physical qubits. The cir-
cuits discussed above are shifted to the logical level, i.e.
the shown qubits and operations are now replaced by
their logical counterparts. Before going into the details
of the analysis of the logical errors we give a short re-
minder of Calderbank-Shor-Steane (CSS) codes [5,23].

5.1 Calderbank-Shor-Steane codes

Stabilizer codes can be defined via the generators of the
stabilizer of the code space g1, ..., gn−k (n and k are the
numbers of physical and logical qubits, respectively) [?].
Valid codewords |ψ〉 satisfy gi|ψ〉 = |ψ〉. The logical Z̄i

operators, i = 1, 2, ..., k, are chosen such that they com-
mute with and are independent from each other and the
stabilizer generators. If the last are tensor products of
either only X and 1 or only Z and 1, the code is called
a CSS code. We give the popular example of the Seven-
Qubit-Steane code in Table 4.
The transversal, i.e. qubitwise (see Fig. 5), application

of controlled-NOT gates CX = |0〉〈0|⊗1+|1〉〈1|⊗X per-
forms the following mapping of the stabilizer generators.
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Table 4 The stabilizer generators and logical operators of
the Seven-Qubit-Steane code.

g1 = 1 ⊗ 1 ⊗ 1 ⊗X ⊗X ⊗X ⊗X
g2 = 1 ⊗X ⊗X ⊗ 1 ⊗ 1 ⊗X ⊗X
g3 = X ⊗ 1 ⊗X ⊗ 1 ⊗X ⊗ 1 ⊗X
g4 = 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ Z ⊗ Z ⊗ Z
g5 = 1 ⊗ Z ⊗ Z ⊗ 1 ⊗ 1 ⊗ Z ⊗ Z
g6 = Z ⊗ 1 ⊗ Z ⊗ 1 ⊗ Z ⊗ 1 ⊗ Z

Z̄ = Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z
X̄ = X ⊗X ⊗X ⊗X ⊗X ⊗X ⊗X

Fig. 5 Transversal implementation of a CZ gate. The i-th
gate acts on the i-th physical qubits of the first and second
block.

If gi contains only X operators, then gi ⊗ 1 → gi ⊗ gi,
1 ⊗ gi → 1 ⊗ gi, while a gi containing Z operators is
mapped according to gi⊗1→ gi⊗1 and 1⊗gi → gi⊗gi

(see Table 1). Thus transversal application of CX is a
valid gate in CSS codes, i.e. it preserves validity of the
codeword.
The Seven-Qubit-Steane code and the quantum Golay

code have even more symmetry: Exchanging X and Z
operators in a stabilizer operator s leads to another ele-
ment of the stabilizer s′. This implies that the transver-
sal Hadamard gate is valid and hence also the transversal
controlled-Phase gate CZ (Fig. 5).
Transversal implementations of gates have advantageous
error propagation properties: Because a single error on
one block cannot lead to more than one error on the
other block, these errors remain correctable after the
application of the gate. If all gates are implemented
transversally, then the physical error rates do not de-
pend on the code or its size. Thus Eqs. (24) and (25) are
true for all CSS codes.

5.2 Ideal measurement outcomes are codewords

The stabilizer generators that contain X correspond to
the rows of the parity-check matrix of a (classical) linear
block code. The classical parity-check matrix is obtained
from the stabilizer generators by replacing a 1 by 0 and
a X by 1 (and ⊗ by whitespace). The parity-check ma-
trix H of a classical code can be used to check whether
some word c is inside the code space, because HcT = 0
if and only if c is a codeword. In absence of any errors,
the measurement of any stabilizer generator containing
X operators gives a +1 result and, equivalently, the vec-
tor c of the individual X-measurements passes the parity
check. That is, this vector of the X-measurement out-

comes is a codeword of the associated classical linear
block code.

5.3 Calculating the logical error rate

After the X̄-measurement we are dealing with classical
data. In the presence of imperfections, some of the bits
will be flipped. Some values are marked as “?” due to a
non-detection event. This data could have been gener-
ated by a classical channel with both bit flip and erasure
errors. Thus a classical decoder can be used to find and
correct the errors on the data.
Some loss patterns in the data are not likely to be cor-
rected. In this case it can be beneficial to abort the pro-
tocol and throw away the data, i.e. rerun the experiment.
This leads to a success probability of the protocol. If F
is the set of fatal error patterns on which we choose to
abort, then the success probability of the protocol is

Psucc = 1−
∑
e∈F

Pe(e), (30)

where Pe(e) is the probability of the error pattern e. The
impact of the choice of F on the performance of the pro-
tocol with respect to some figure of merit is discussed in
Section 6.2.
If the protocol has not been aborted, then after decod-
ing we are left with a valid codeword (but not necessarily
the correct one), from which we can calculate the X̄ out-
come, which is the parity of the bits that contribute to
X̄ (i.e. the positions where X̄ contains a 1 are excluded).
The logical error rate f̄u is the probability to arrive at
the wrong X̄ outcome when following the above proce-
dure. Averaged over the logical qubits of one block we
get

f̄u(fu, fn) =
1
k

∑
e�∈F

f(e)Pe(e), (31)

where f(e) is the number of wrong logical outcomes in
a single block. For small codes this can be easily calcu-
lated by trying the decoder on any possible error pat-
tern. For larger codes this calculation cannot be done by
“brute-force” anymore and more clever approaches are
necessary.
We explicitly performed the sum in Eq. (31) for the
Seven-Qubit-Steane code and the fatal error set

F = {e|e contains more than nmax losses} (32)

for nmax = 1, 2, ..., 7. The results are listed in Table 5.
For larger codes, like the Golay code [15], the logical
error rate can be taken from the literature [8]. There
the probability pw that the decoding outputs the wrong
codeword is given. Half of the codewords have even and
half have odd parity. We therefore assume that the prob-
ability of a logical error is f̄u = pw

2 .
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Table 5 Logical error rates of the Steane code for different abortion strategies: nmax is the maximal number of tolerated
losses before abortion.

nmax = 0:

f̄u(fu, fn) = (fn − 1)7 f2
u

(
48f5

u − 168f4
u + 252f3

u − 210f2
u + 98fu − 21

)

Psucc(fn) = (1− fn)7

nmax = 1:

f̄u(fu, fn) = (fn − 1)6 fu

(
48 (fn − 1) f6

u − 168 (fn − 1) f5
u + 252 (fn − 1) f4

u − 210 (fn − 1) f3
u

+14 (9fn − 7) f2
u + 21 (1− 3fn) fu + 21fn

)

Psucc(fn) = (fn − 1)6 (6fn + 1)

nmax = 2:
f̄u(fu, fn) = (fn − 1) 5fu

(
48 (fn − 1) 2f6

u − 168 (fn − 1) 2f5
u + 252 (fn − 1) 2f4

u − 210 (fn − 1) 2f3
u

+14 (fn (3fn − 16) + 7) f2
u + 21 (fn (3fn + 4)− 1) fu − 21fn (2fn + 1)

)

Psucc(fn) =− (fn − 1) 5
(
15f2

n + 5fn + 1
)

nmax = 3:
f̄u(fu, fn) = 1

2
(fn − 1) 4

(
f3

n

(
96f7

u − 336f6
u + 504f5

u − 420f4
u + 308f3

u − 210f2
u + 84fu + 7

)

−2f2
nfu

(
144f6

u − 504f5
u + 756f4

u − 630f3
u + 266f2

u − 21fu − 21
)

+2fnfu

(
144f6

u − 504f5
u + 756f4

u − 630f3
u + 322f2

u − 105fu + 21
)

+2f2
u

(−48f5
u + 168f4

u − 252f3
u + 210f2

u − 98fu + 21
))

Psucc(fn) = (fn − 1) 4
(
20f3

n + 10f2
n + 4fn + 1

)

nmax = 4:
f̄u(fu, fn) = 1

2
(fn − 1) 3

(
3f4

n

(
32f7

u − 112f6
u + 168f5

u − 140f4
u + 84f3

u − 42f2
u + 14fu − 7

)

−f3
n

(
384f7

u − 1344f6
u + 2016f5

u − 1680f4
u + 840f3

u − 252f2
u + 42fu + 7

)

+12f2
nf2

u

(
48f5

u − 168f4
u + 252f3

u − 210f2
u + 98fu − 21

)

−6fnfu

(
64f6

u − 224f5
u + 336f4

u − 280f3
u + 140f2

u − 42fu + 7
)

+2f2
u

(
48f5

u − 168f4
u + 252f3

u − 210f2
u + 98fu − 21

))

Psucc(fn) =−15f7
n + 35f6

n − 21f5
n + 1

nmax = 5:
f̄u(fu, fn) = 1

2
(fn − 1) 2

(
6f5

nfu

(
16f6

u − 56f5
u + 84f4

u − 70f3
u + 42f2

u − 21fu + 7
)

−2f4
n

(
240f7

u − 840f6
u + 1260f5

u − 1050f4
u + 546f3

u − 189f2
u + 42fu − 7

)

+f3
n

(
960f7

u − 3360f6
u + 5040f5

u − 4200f4
u + 2016f3

u − 504f2
u + 42fu + 7

)

−6f2
nfu

(
160f6

u − 560f5
u + 840f4

u − 700f3
u + 336f2

u − 84fu + 7
)

+2fnfu

(
240f6

u − 840f5
u + 1260f4

u − 1050f3
u + 518f2

u − 147fu + 21
)

+2f2
u

(−48f5
u + 168f4

u − 252f3
u + 210f2

u − 98fu + 21
))

Psucc(fn) = 6f7
n − 7f6

n + 1

nmax = 6:
f̄u(fu, fn) = f7

n

(
48f7

u − 168f6
u + 252f5

u − 210f4
u + 126f3

u − 63f2
u + 21fu − 7

2

)

− 21
2

f6
n (2fu − 1) 3

(
4f4

u − 8f3
u + 6f2

u − 2fu + 1
)

+ 21
2

f5
n (2fu − 1) 3

(
12f4

u − 24f3
u + 18f2

u − 6fu + 1
)

−105f4
nfu (2fu − 1) 3

(
2f3

u − 4f2
u + 3fu − 1

)
+ 7

2
f3

n (2fu − 1) 3
(
60f4

u − 120f3
u + 90f2

u − 30fu − 1
)

−63f2
nfu (2fu − 1) 3

(
2f3

u − 4f2
u + 3fu − 1

)
+ 21fnfu (2fu − 1) 3

(
2f3

u − 4f2
u + 3fu − 1

)

+f2
u

(−48f5
u + 168f4

u − 252f3
u + 210f2

u − 98fu + 21
)

Psucc(fn) = 1− f7
n

nmax = 7:
f̄u(fu, fn) = 3f7

n (2fu − 1) 3
(
2f4

u − 4f3
u + 3f2

u − fu + 1
)− 21

2
f6

n (2fu − 1) 3
(
4f4

u − 8f3
u + 6f2

u − 2fu + 1
)

+ 21
2

f5
n (2fu − 1) 3

(
12f4

u − 24f3
u + 18f2

u − 6fu + 1
)− 105f4

nfu (2fu − 1) 3
(
2f3

u − 4f2
u + 3fu − 1

)

+ 7
2
f3

n (2fu − 1) 3
(
60f4

u − 120f3
u + 90f2

u − 30fu − 1
)− 63f2

nfu (2fu − 1) 3
(
2f3

u − 4f2
u + 3fu − 1

)

+21fnfu (2fu − 1) 3
(
2f3

u − 4f2
u + 3fu − 1

)
+ f2

u

(−48f5
u + 168f4

u − 252f3
u + 210f2

u − 98fu + 21
)

Psucc(fn) = 1

6 The final state

We motivated in Section 2, that the described circuits
produce a maximally entangled state and how this can
be understood in the stabilizer formalism. The same rea-
soning still holds when the operators are shifted to the
logical level. The logical state is stabilized by the logical
stabilizers, which transform under the action of logical
gates analogously to the physical stabilizers. Remember

that the state before the measurements is stabilized by
the main stabilizers SA and SB and thus after the X̄-
measurements it is stabilized by gA and gB up to byprod-
uct operators. These byproduct operators depend on the
measurement outcomes. They are necessary even in the
ideal case, where all operations and measurements are
perfect.
Odd numbers of logical errors on the same main stabi-
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lizer lead to the wrong parity and thus to the application
of the wrong byproduct operators, which implies that a
state orthogonal to the intended state given in Eq. (2)
is produced. We use the symbols eA and eB for the two
corresponding error rates on the final state. They read

eA =Podd

(
f̄u,

⌊
N − 2

2

⌋)
(33)

and eB =Podd

(
f̄u,

⌈
N − 2

2

⌉)
, (34)

and can be interpreted as X- and Z-error rates on qubit
1 of Alice. Thus the fidelity of the state is

F = (1− eA)(1− eB). (35)

6.1 The secret fraction and the costs

A very important application of quantum repeaters is
with respect to quantum key distribution. In this case
one is not interested in the fidelity of the state but in the
number of secret bits one can gain from many copies of
the state in a quantum key distribution protocol. The ra-
tio of secret bits per distributed entangled state is called
secret fraction and in the standard BB84 protocol it is
given by

r∞ = max{1− h(eA)− h(eB), 0}, (36)

where h(p) = −p log2(p)−(1−p) log2(1−p) is the binary
entropy. The secret key rate of a quantum repeater,

RQKD = Rrawr∞, (37)

is the product of the raw key generation rate Rraw and
the secret fraction r∞. If we set the probability of match-
ing basis choice of Alice and Bob (“sifting”) to 1, which
is possible in the asymptotic case [?], then Rraw corre-
sponds to the generation rate of entangled states. In a
forward error correction scheme this repetition rate of
the repeater is basically given by the fundamental time
needed for processing the signal at a single repeater sta-
tion and the success probability of the protocol. We as-
sume that the speed of the operations is limited by the
time TM needed for the measurement at the repeater
station. In this case

Rraw =
Psucc

TM
. (38)

For simplicity we will set the fundamental time TM to 1
when considering forward error correction schemes only.
In an attempt to do a fair comparison between repeater
schemes with different codes, we use the cost function

C ′ =
Nn

RQKDL
(39)

as a figure of merit [18]. Here N is the number of encoded
blocks, n is the number of physical qubits per block,
RQKD is the secret key rate and L is the total distance
bridged by the line of repeater stations.

6.2 The impact of abortion strategies

In the previous sections we derived all the necessary for-
mulas to compare different strategies of encoding. We
start the discussion of this result by comparing different
abortion strategies F for the simple Seven-Qubit-Steane
code, see Table 4. It is based on the (7,4)-Hamming code,
which has a Hamming distance of d = 3. This implies
that it can correct d−1

2 = 1 unnoticed errors or d−1 = 2
noticed errors.
More noticed errors are unlikely to be corrected and thus
an abortion of the protocol will prevent the production
of too noisy states. Abortion on two or less losses de-
creases the success probability unnecessarily. One might
therefore expect, that nmax = 2 gives the optimal fatal
error set F . Fig. 6 supports these considerations.

Fig. 6 The cost of the repeater using the Seven-Qubit-
Steane code for different abortion strategies. The number
nmax denotes the maximal number of tolerated losses. The
gate failure rate is fG = 10−4 for this plot.

6.3 The distillation based protocol

We compare the costs of repeaters with encoding to
the standard repeater with two-way communication us-
ing the results of [1]. There the repeater rate is calcu-
lated (amongst others) for the following setup. The to-
tal distance is divided into 2Ñ shorter channels of length
L0 = L/2Ñ by repeater stations. Initially 2k̃, k̃ ∈ N∪{0}
entangled states of fidelity F0 w.r.t. some maximally en-
tangled state are distributed amongst neighboring re-
peater stations. Here two-way classical communication
is necessary in order to acknowledge success of the distri-
bution. After k rounds of distillation using the protocol
of [6] for each channel a single pair with higher fidelity is
left (if the initial fidelity is greater than 1

2 ). Afterwards a
Bell measurement on each repeater station projects onto
the final entangled state shared by Alice and Bob.
The rate RO

QKD is (to some extent) limited by the classi-
cal communication time which is necessary to acknowl-
edge the successful transmission and distillation. For the
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two-way protocol we incorporate the measurement time
TM by adjusting the time needed to distribute a Bell
pair amongst two neighboring qubits to

T0 =
βL0

c
+ TM , (40)

where β is a factor depending on the position of the
source which we choose to be 1 and c = 2 × 105 is the
speed of light in the fiber. Apart from this change we use
the formulas derived in [?]. The total amount of qubits
is 2Ñ+k̃+1. Hence the costs of the original repeater read

C ′ =
2Ñ+k̃+1

RO
QKDL

. (41)

In the considered parameter regime the rate does not
double when using distillation. It therefore never pays off
to perform distillation with respect to the cost function
C ′, i.e. we set k̃ = 0. In our calculation we assume

F0 = 1− 3
4
fG. (42)

This fidelity is obtained when using a gate to produce
the initial Bell pair. Fig. 7 shows the cost comparison
for a gate failure rate of fG = 10−3 and three different
measurement times TM = 1 μs, 10 μs, 100 μs.
One immediately sees that the costs of the one-way re-

50 100 500 1000 5000 104
L in km

5. × 10-5
1. × 10-4

5. × 10-4
0.001

0.005
0.010

cost C'

Fig. 7 The costs C′ (in qubit seconds per bit and kilometer)
of the standard repeater (blue) and for the one with Golay
code (purple) as a function of the total distance L. The gate
errors are fG = 10−3, other errors are neglected. The mea-
surement time is TM = 1 μs (dotted), TM = 10 μs (dashed),
and TM = 100 μs (solid).

peater scheme are proportional to the measurement time
TM . This is clear from the fact that this time is the only
limiting factor in the repetition rate of this repeater. For
the two-way repeater this is not the case. Decreasing the
measurement time below approximately ten microsec-
onds does not improve the costs, because then the com-
munication time dominates the fundamental time (see
Eq. (40)) and becomes the limiting factor of the rate.

The sharp bends in the cost curve for the original re-
peater are due to the fact that [1] considers only powers
of two for the number of divisions of the transmission
line. The straight line of the cost curve for the one-way
repeater (over a large range of distances) shows that the
costs per kilometer of this repeater using the Golay code
increases polynomially with the total distance.

6.4 On the quality of some approximations

In the present paper we described the exact error analy-
sis, mainly because the function Podd gives a convenient
description of combined error rates. It is more readable
than the evaluated polynomials, while the computational
complexity is not an issue here. Nevertheless forward er-
ror correction requires a very low probability of opera-
tional errors of � 10−2 in order for the processing of the
qubits not to introduce more errors than are correctable.
And thus it is reasonable to approximate the derived for-
mulas for small error rates. On the other hand one usu-
ally considers the highest error rate that still allows to
produce a secret key. This is the most interesting regime
from a practical point of view due to the strong limita-
tions of current technology. A similar effect arises from
the use of the cost function as a figure of merit which
punishes the use of resources and rewards e.g. higher
losses in between the stations to some extent. Thus a
critical verification of the accuracy of these approxima-
tions is advisable.
The first order estimates of Podd(see Eqs. (21) and (23))
are

Podd(P,N) =NP +O(P 2) (43)

and Podd(p) =
∑

i

(p)i +O((p)2i ). (44)

With these and 1 − (1 − f)N ≈ Nf for small f we find
that (see Eqs. (24) and (25))

fu ≈3
2
fP,u +

1
2
fP,n +

3
2
fG,u + fT,u +

1
2
fM,u (45)

and fn ≈2fP,n + 3fG,n + 2fT,n + 2fM,n. (46)

Because operational errors are small (� 10−2), the sec-
ond order contributions are even smaller and Eq. (45)
seems to be a good approximation. The losses however
are typically bigger than ten percent (for repeater sepa-
rations of � 1 km, see Eq. (19)) so Eq. (46) turns out to
be a bad approximation, because second order contribu-
tions are not neglectable.
We use the Golay code to exemplify how the small inac-
curacy of Eq. (45) may become significant when the op-
erational errors are near the maximally tolerable value
in some situation and the number of repeater stations
is large. Using the logical error rate given in Eq (50)
one can calculate the cost C ′. For a total distance of
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(a) A mathematical
graph.

(b) The line graph
with six vertices.

Fig. 8 Examples of graphs.

L = 600 km, a gate error rate of fG = 5 × 10−3 and
w = 1500 repeater stations it is C ′ ≈ 3464 using Eq. (24)
while it evaluates to C ′ ≈ 6500 using the approximation
of Eq. (45). The discrepancy becomes even more obvious
for slightly larger repeater separations. Setting w = 1400
now C ′ ≈ 23448 according to Eq. (24) while Eq. (45)
leads to a zero secret key rate (i.e. infinite costs).

7 Generalization to the multipartite scenario

We described in Section 2 how the production of the final
state can be understood in the stabilizer formalism. Mea-
surements of the operators of the main stabilizers located
on the intermediate qubits (i.e. all except the two of the
parties) reduces the stabilizers to the stabilizers of the fi-
nal state up to by-product operators. This procedure can
be easily transferred to general graph states. We remind
the reader that they are quantum states associated with
mathematical graphs [4,20]. A Graph G = (V,E) con-
sists of a set of vertices V and a set of edges E ⊂ V ×V ,
see Fig. 8 (a) for an example. We denote the number of
vertices (|V |) by N .
The corresponding quantum state is the one stabilized
by

gi = Xi

∏
j

(i,j)∈E

Zj , (47)

for all i ∈ V . One can arrive at these stabilizers by start-
ing from gi = Xi (i.e. the state |+〉⊗N ) and applying a
CZ gate from qubit i to qubit j for all qubits i < j
with (i, j) ∈ E (see Table 1), i.e. for all edges in the
graph. We thus note that the repeater circuit discussed
in the previous sections (see Fig. 2) creates a graph state
where E = {(i, i + 1)|1 ≤ i < N}. We call this graph a
line graph (not to be confused with the line graph of a
graph, i.e. the graph where vertices and edges exchange
their role), see Fig. 8 (b).
Now the production/distribution of a general graph state
is straight forward. To design the repeater network we
start from the final graph and insert intermediate ver-
tices for the repeater stations (see Fig.9). We insert an
even number of repeater stations wij on each edge (i, j) ∈
E, for simplicity. In analogy to the bipartite case the
main stabilizer centered on some party is obtained by
multiplication of the graph state generators centered on
every second qubit until the neighboring parties are reached

(a) The final graph state. (b) The main stabilizer cen-
tered on C.

Fig. 9 Example of a network of parties A to E.

(with a Z-operator), see Fig. 9 (b). On the added ver-
tices the main stabilizer have the form of chains of X-
operators (see also [24]). This ensures that the main sta-
bilizers are transformed into the stabilizer generators gi

of the final graph state by X-measurements on the re-
peater stations, i.e. the corresponding graph state is pro-
duced. The circuit is obtained again by noting that each
edge of the graph corresponds to a CZ gate.
While the circuit of the repeater stations do not change
compared to the bipartite case, the parties now apply
more gates depending on the degree of their vertex (i.e.
the number of edges at this position). Usually the num-
ber of repeater stations is much bigger than the num-
ber of parties for the error correction based scheme.
One might therefore neglect the impact of the additional
gates. Nevertheless they can be easily incorporated in
Eqs. (24) and (25) which become

fi,u =Podd

((
Podd

(
fP,u

2
, 1 + deg−(i)

)
,

Podd

(
fP,n + fP,u

2
,deg+(i)

)
,

Podd

(
fG,u

2
, 1 + deg(i)

)
,

Podd

(
fT,u

2
, 1 + deg−(i)

)
,
fM,u

2

))
(48)

and

fi,n =1− (1− fP,n)1+deg−(i)(1− fG,n)1+deg(i)

(1− fT,n)1+deg−(i)(1− fM,n)1+deg−(i),
(49)

where deg(i), deg−(i), and deg+(i) are the degree, in-
degree, and out-degree of vertex i, respectively. Here the
direction of the edges corresponds to the direction of the
transmission.
Note that local unitariy equivalence of graph states can
be used to simplify the state distribution.
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8 Conclusions

We described how quantum repeaters can be understood
in the stabilizer formalism and how this formulation nat-
urally leads to the description of general repeater net-
works. Analyzing the error propagation in the circuit
diagram leads to the error rates of the (physical) mea-
surements on the repeater stations. To this end we iden-
tified all errors that may flip the measurement outcome
at a specific repeater station in this circuit. It turns out
that up to three repeater stations have to be considered
in this calculation.
We calculated the secret key rate for a general CSS code
given its logical error rate and exemplified this calcula-
tion with the Seven-Qubit-Steane code and the quantum
Golay code. The comparison with the original quantum
repeater scheme shows that the quantum Golay code
is particularly resource efficient for large distances (and
short measurement times of � 10 μs).
We investigated the quality of approximations of the
physical error rates to the first order of the failure rates
of the circuit elements (like gates) and found that these
can be inaccurate in case of many repeater stations.
The repeater rate strongly depends on the abortion strat-
egy, i.e. the set of error patterns on which one chooses to
abort and restart the protocol. It is reasonable to abort
on d and more losses, where d is the code distance.
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A The logical error rate of the Golay code

We give the logical error rate of the decoder by M. Elia and G. Taricco [8] for completeness. This decoder does not
abort, so Psucc = 1. Note that we assume f̄q ≈ pw

2 , where pw is the word error rate.

f̄u(fu, fn) =
1
2

(
− f23

n

4096
+

23 (fn + fu − 1) f22
n

2048
− 253 (fn + fu − 1) 2f21

n

1024
+

1771
512

(fn + fu − 1) 3f20
n − 8855

256
(fn + fu − 1) 4f19

n

+
33649
128

(fn + fu − 1) 5f18
n − 100947

64
(fn + fu − 1) 6f17

n +
245157

32
(fn + fu − 1) 7f16

n − 30613 (fn + fu − 1) 8f15
n

− 253
16

(fn − 1) (fn + fu − 1) 7f15
n + 101200 (fn + fu − 1) 9f14

n

+
3795

8
(fn − 1) (fn + fu − 1) 8f14

n − 272734 (fn + fu − 1) 10f13
n − 26565

4
(fn − 1) (fn + fu − 1) 9f13

n

+ 560924 (fn + fu − 1) 11f12
n +

115115
2

(fn − 1) (fn + fu − 1) 10f12
n − 695520 (fn + fu − 1) 12f11

n

− 319424 (fn − 1) (fn + fu − 1) 11f11
n +

8855
2

(fn + fu − 1) 11 (−fn + 2fu + 1) f11
n

+ 949256 (fn − 1) (fn + fu − 1) 12f10
n − 97405 (fn + fu − 1) 12 (−fn + 2fu + 1) f10

n

+ 779240 (fn + fu − 1) 13 (−fn + 2fu + 1) f9
n + 18975 (fn + fu − 1) 13 (−fn + 6fu + 1) f9

n

− 485760 (fn + fu − 1) 14 (−fn + 6fu + 1) f8
n − 2277 (fn + fu − 1) 14 (−fn + 14fu + 1) f8

n

+ 32384 (fn + fu − 1) 15 (−fn + 14fu + 1) f7
n +

253
2

(fn − 1) (fn + fu − 1) 14 (−fn + 14fu + 1) f7
n

+ 212520 (fn + fu − 1) 14
(− (fn − 1) 2 + 10fu (fn − 1) + 8f2

u

)
f7

n

− 100947 (fn − 1) (fn + fu − 1) 15 (−fn + 14fu + 1) f6
n

− 28336 (fn + fu − 1) 16 (−fn + 2fu + 1) (−fn + 14fu + 1) f5
n

− 5313 (fn + fu − 1) 16
(
(fn − 1) 2 − 15fu (fn − 1) + 30f2

u

)
f5

n

+ 8855 (fn + fu − 1) 17
(
(fn − 1) 2 − 17fu (fn − 1) + 90f2

u

)
f4

n

− 1771 (fn + fu − 1) 17
(
(fn − 1) 3 − 17fu (fn − 1) 2 + 138f2

u (fn − 1) + 96f3
u

)
f3

n

− 253 (fn + fu − 1) 18
(− (fn − 1) 3 + 18fu (fn − 1) 2 − 171f2

u (fn − 1) + 90f3
u

)
f2

n

+ 23 (fn + fu − 1) 19
(− (fn − 1) 3 + 19fu (fn − 1) 2 − 190f2

u (fn − 1) + 560f3
u

)
fn + (fn + fu − 1) 23

−23fu (fn + fu − 1) 22 + 253f2
u (fn + fu − 1) 21 − 1771f3

u (fn + fu − 1) 20 + 1
)

(50)


	Acknowledgment
	Abstract
	Contents
	List of Figures
	Preface
	Foundations
	Bra-ket notation
	Postulates of quantum mechanics
	The Qubit
	Composite systems and entanglement
	Mixed states
	Quantum operations
	Measures of Entanglement and the maximally entangled state

	The ``non-classicality'' of quantum theory
	Bell's theorem
	A Bell test experiment
	CHSH type Bell inequalities
	The CHSH inequality
	On experimental implementations
	Other types of Bell inequalities

	Communication Complexity
	Tsirelson's bound
	Singular Value Decomposition
	Dimension Witnesses

	Entanglement Witnesses

	Quantum cryptography
	No-Cloning Theorem
	The One-Time-Pad encryption
	The BB84 protocol
	Ekert protocol
	Security proofs

	Quantum error correction
	Modelling imperfections
	Methods of error correction
	Linear block codes
	Stabilizer codes
	Calderbank-Shor-Steane codes
	Distillation


	Long distance entanglement distribution
	Different quantum repeater approaches
	Graph states
	Quantum Networks

	Overview of results
	Bibliography
	Declaration of Originality
	Bound entanglement helps to reduce communication complexity
	Quantifying entanglement with scattering experiments
	Designing Bell Inequalities from a Tsirelson Bound
	Optimization of Bell inequalities with invariant Tsirelson bound
	A quantum mechanical bound for CHSH-type Bell inequalities
	Graph state quantum repeater networks
	On the error analysis of quantum repeaters with encoding

