








 

 

 

 

 

 





`Work is always a spiritual necessity even if, for some, work is not an economic

necessity.'
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Abstract 

 

The future of chemical and pharmaceutical industry will strongly rely on custom-

made proteins.  These small molecular machines are capable of amazing functions in nature.  

To harness the power of these biological entities a deeper understanding of the governing 

principles in their design is crucial.  The physical description of proteins have been explored 

in the past and yielded the powerful tool of molecular dynamics simulation.  For specific 

applications like the determination of small structural changes due to single point mutations, 

the contemporary simulations methods are not adequate.   

 

The main goal of this thesis is the development of improved simulation techniques 

that will enable protein engineers to predict reliably the outcomes of certain design decision 

on a protein.  In the context of this thesis several aspects of the field of computational protein 

engineering were explored.  Based on a method developed by Andre Wildberg a detailed 

analysis of the performance of a novel simulation protocol was analyzed on a benchmark set 

of protein homology models.  The motivating ideas behind this and the performance on the 

benchmark set are reported in this thesis.  This method was further refined and used in the 

international protein structure prediction competition CASP11.  The results of this 

competition revealed the power of this method to consistently refine protein structures and are 

reported here as well.  Furthermore this thesis contains a semi-empirical derivation of the 

fundamental ideas from statistical mechanics that govern the improved performances of this 

novel simulation approach.  The concluding chapter of this thesis introduces a novel 

simulation pipeline that is able to improve the substrate selectivity of an enzyme.  The 

predictions made with this simulation protocol can aid directed evolution experiments.  Single 

and double point mutations were proposed and the experimental validations are presented in 

this thesis as well.  
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Zusammenfassung 

 

Die Zukunft der Chemischen und Pharmazeutischen Industrie wird sich immer 

mehr auf Proteine stützen, die maßgeschneidert hergestellt werden.  Proteine sind 

flexibel einsetzbare molekulare Maschinen die verschiedenste Aufgaben in der Natur 

übernehmen.  Um Proteine zu unserem Gunsten einsetzen zu können bedarf es eines 

tieferen Verständnisses der zugrunde liegenden Prinzipien.  Die physikalische 

Beschreibung von Proteinen wurde in den letzten Jahren weiter voran getragen und 

Simulationen haben sich als ein wirkungsvolles Werkzeug herausgestellt, um Proteine 

noch besser zu verstehen.  Für bestimme Anwendungen, wie die Berechnung 

struktureller Veränderungen aufgrund von Mutationen, sind die Simulationen aber 

noch nicht ausgereift genug. 

 

Das Ziel dieser Arbeit ist es die bestehenden Methoden weiter zu verbessern 

und Protein Ingenieuren die Möglichkeit zu geben am Computer die Auswirkungen 

von Veränderungen an Proteinen vorherzusagen.  Im Zusammenhang mit dieser 

Arbeit wurden einige Aspekte des Protein Designs untersucht.  Auf der Arbeit von 

Andre Wildberg basierend wird ein Protokoll zum Verbessern von Protein Strukturen 

untersucht.  Die Ergebnisse anhand eines Benchmark Tests werden hier präsentiert. 

Weiterhin wurde diese Methode in abgewandelter Form von mir in einem 

Internationalen Wettbewerb zur Strukturvorhersage ( CASP11 ) angewandt.  Dieser 

Wettbewerb konnte die Verlässlichkeit der Methode unter Beweis stellen.  Die 

Ergebnisse dazu sind hier ebenfalls dargestellt.  Im weiteren wird der Versuch 

angestellt die statistischen Grundlagen hinter der Methode an vereinfachten 

Beispielen darzustellen.  Im Abschluss wird eine Methode eingeführt, die gezielten 

Evolution-Experimenten dabei helfen kann effektiver Proteine mit verbesserten 

Eigenschaften zu erzeugen. 
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Chapter  1 Introduction 

 

1.1 General Introduction 

 

 The intersection of physics, computer science and biology covers some of the 

most fundamental and interesting challenges that mankind has faced so far.[1, 2]  One 

of these challenges involves the smallest assemblies of molecules that compose living 

matter.  Only thirteen atoms form alanine, one of the smallest building blocks in 

nature’s protein constructions.  In combination with the other 19 amino acids, almost 

all functional units in nature are assembled.  Considering the wide application of these 

molecular machines, e.g. transport through cell membranes or catalyzing of bio-

reactions, the value of harnessing the power of protein creation becomes apparent.  

If a complete understanding of these machines could be obtained, mankind would be 

able to skip millions of years of evolution and directly synthesize proteins for our 

needs. 

Figure 1: Alanine, one of the 20 natural occurring amino acids, only one methyl 

group is attached to the protein backbone.  

 

 The field of biology has developed methods that allow the expression of 

proteins in microbial systems.[3]  It is possible today to design a sequence of amino 

acid residues on a piece of paper and then to use a biological system to generate a 

protein with exactly this sequence.  The remaining problem is that we cannot predict 

perfectly what this protein is going to look like or which function, if any, it will fulfill.  

Out of the need for a better understanding the field of protein engineering has 
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evolved.  The increased computational power, larger knowledge databases and deeper 

physical understanding of recent years are driving this field forward.  

 

  The discipline of protein engineering deals with the design of new proteins 

and aims at enhancing our understanding of fundamental processes on molecular 

levels.  For systems of atomistic sizes detailed real time observations are 

experimentally not possible.[4]  On the scale of atomic resolution where most of the 

basic reactions in living organisms take place, only the combined efforts of these 

disciplines can elucidate the unknown territory.  Physicists have derived the 

governing equations for systems at this scale during the last century.  The 

development of multi-core processors with billions of transistors and improved 

numeric simulation libraries have made it feasible to apply the laws of physics to 

system sizes of interest.  Only recent advances in computational power, however, 

allow the penetration of timescales with sufficient length for more complex 

reactions.[5]   

 

 One of the most interesting and pressing questions deals with the prediction of 

functional assemblies of atoms.[6]  In nature these molecular machines are called 

proteins.  A goal of the field of protein engineering is to change and design proteins 

so that they perform new and useful functions.[6]  Unfortunately our understanding of 

proteins is still limited; the way they form and find their native conformation, referred 

to as protein folding, is a topic of current research.[7]  Next to the design approach, 

there is an ever-growing need to predict structure and functions of proteins.[8]  

 

 In this thesis the technique of molecular dynamics simulation (MD) will be 

applied to some pressing open questions.  The first question deals with the refinement 

of protein structures in the context of the CASP11 competition.  Protein refinement is 

the act of further improving a three-dimensional representation of a protein that can 

originate in low-resolution experiments or other computational predictions like 

homology modeling.  The CASP competition provided the environment to show how 

MD simulations can be used to further improve protein structures obtained from 

knowledge-based homology modeling.  Furthermore, the fundamental principles that 

allow this structure refinement will be analyzed on a benchmark set of homology 
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models.   The achievements in this area are due to a novel algorithm, based on 

deformable elastic networks, which were introduced to the force fields used in the 

MD technique.  The statistical mechanics of this theory will also be explained.  The 

second important question aims at understanding the impact of protein mutations on 

the function and substrate selectivity of a protein.  The lipase LipA from Pseudomonas 

aeruginosa will be the subject of a directed evolution study.  If a directed evolution 

study is performed only in the lab, amino acid sequence spaces of astronomical sizes 

need to be expressed and screened in a random fashion.  Computational methods can 

provide a faster and cheaper alternative in order to search systematically through the 

space of possible conformations.  The last chapter introduces a computational pipeline 

that will help predict mutational candidates in the protein, which lead to improved 

activity for an industrial relevant substrate. 

 

1.2 Computational Protein Engineer ing  

 

 Nature offers access to a vast array of proteins with different functions.  For 

many laboratory and industrial applications, enzymes are of greatest interest.  These 

specialized proteins can increase the reaction rates of chemical processes.  The main 

ability of an enzyme is its power to stabilize the transition state geometry of a 

substrate and therefore to reduce the energy barrier that needs to be crossed along the 

reaction coordinate.  Unfortunately, the enzymes found so far in nature do not cover 

all reactions important to mankind.  Nevertheless, existing enzymes often support 

reactions very similar to those of interest.  This situation was the cradle for the idea of 

protein engineering.  In the early 1980s the field emerged with the goal of creating or 

adapting proteins and enzymes to novel tasks or to enhance their natural 

performances.[9]  The first attempts to alter existing proteins went hand in hand with 

arising high resolution protein structures obtained from x-ray crystallography.  The 

approach was coined rational design and involved manual investigation of the active 

pocket of a protein.  At this stage it was common to propose possible mutations to the 

protein based on experience and instinctive feeling.  Due to the lack of computational 

power at this time, most success was achieved via experimental processes.  It soon 

became the predominant idea to create larger libraries of protein mutants and to 

screen them for desired alterations.  The process of iterative mutating and screening 
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was called directed evolution, as it is an iterative procedure that selects always the 

best performing mutations under certain artificial evolutionary pressures.  This 

method was successful in finding enantio-selective enzymes, enhancing stability and 

catalytic rates, and even changing substrate selectivity.[10]  But with the emergence 

of ever faster super computers in the late 1990s, it became once more attractive to 

approach the problem of protein design in-silico.  The greatest successes are marked 

by the creation of novel proteins and enzymes facilitating the Diels-Alder reaction and 

the Kemp elimination following the “ inside out”  approach proposed by Houk.[11]  

But the main drawback of this is the reaction rates achieved by these designed 

proteins.   Even after further improvements through directed evolution rounds, they 

remained over 8 magnitudes below the rates achieved by nature’s pendants.[12]   

 

 The computational approach to protein design has still a long way to go.  So 

far most successes have been strongly dependent on additional experiments in the 

scope of directed evolution.  Nevertheless, much can be learned from the lessons of 

the past.  The main point that can be taken from the vast amount of available data is 

the requirement of a well-stabilized transition state geometry.  Many more 

sophisticated ideas involving protein dynamics and long-range interactions have been 

proposed, but the consus at this point is that only a stabilized transition state yields 

active mutants.[12, 13]  It is not yet fully understood which method yields the best 

quantification of the stability of the transition state.  There are many computationally 

expensive approaches involving quantum mechanical computations.  There are also 

very approximate methods in the field of docking simulations.  The main problem one 

has to keep in mind is that a successful method needs to include a tradeoff between 

two factors:  First, an accurate description of the transition state stability and second, 

scalability that allows it to be applied to thousands of mutations.  A review of the 

most influential sources suggests that it is necessary to perform a high quality 

parameterization of the transition state using quantum mechanical methods prior to 

running more scalable simulations in Newtonian molecular dynamics simulations.[6, 

11]  The protocol described in the last chapter of this thesis will exploit these two 

ideas to design a mutation evaluation scheme that can reasonably quickly search 

through a large mutational space. 
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1.3 Molecular  Dynamics Simulations 

 

It has always been a dream of mankind to look into the future.[14]  The great 

minds of the past have derived formulae and expressions that govern the classical 

movement of rigid bodies.[15]  But to predict the exact future of a system, an 

analytical solution needs to be found for the equations of motion for each of its 

constituents.  Even in the simple case of having 3 balls in a box, no closed analytical 

expression can be found to describe the motion for variable starting conditions.  The 

strong dependency of a system’s behavior on slight differences in the initial 

conditions is commonly referred to as chaos.[16]  If one imagines the world around us 

as a gigantic box full of little balls that form all larger bodies, it becomes apparent 

why one cannot predict the exact future.  Even under the assumption of a fully 

deterministic universe in which we know everything about the current state of each of 

its particles, one could not calculate its future conformations.  Despite this limitation 

it might as well be a worthwhile goal to learn as much as one can through as little 

approximations as possible. 

 

Late Richard Feynman said, “…everything that is living can be understood in 

terms of the jiggling and wiggling of atoms.”    Understanding macroscopic objects 

appears impossible because of the vast number of jiggling atoms.  But this is not true 

for the smallest conglomerates of atoms, the molecules.  And the role of molecules is 

of greatest importance to every aspect of life.[17, 18]  Methods that can elucidate the 

jiggling and wiggling of molecules are therefore paths that lead to a greater 

understanding of life in all of its spheres.  Of particular interest is the behavior of 

proteins in the human body.  Almost every biochemical reaction in the body involves 

these macromolecules.  Proteins are referred to as molecular machines because they 

are often specialized workhorses that fulfill a certain task to perfection.  They 

regulate, for example, the trans membrane diffusion in living cells, perform important 

roles in the immune system, or enable us to smell a rose.  In order to understand the 

function of a protein it is of greatest importance to know its structure and 

dynamics.[18]  At physiological temperatures the atoms inside a protein are never at 

rest, but constantly moving about.  The laws that govern this movement have been 
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known for centuries.  However, only in recent years feasible computer systems have 

evolved that enable us to calculate the behavior of proteins.[5] 

 

Because no analytical solution can be found to describe a system of many 

hundreds of atoms, approximations have to be made.  Molecular dynamics 

simulations (MD) are one approach to gain structural and dynamical insights into 

proteins.  The main approximation made in an MD is the expression of all interatomic 

forces in terms of a force field.[19-24]  A detailed description of a force field is given 

in a later section. With a force field, the Newtonian equations of motion can be 

written out for each atom in a protein.  These equations can then be solved by 

numerical integration.  There are many different algorithms that can be applied in 

numerical integrations; some of the important ones are described in a following 

section.  A protein does not live in a vacuum.  Solvent and other proteins surround it.  

To understand the true behavior of a protein in its native environment, solvent and 

boundary conditions have to be applied.[25, 26]  The common choices for these 

approximations are described in a later section as well.  During a numerical 

integration a lot of data is produced.  The analysis of this data is an art in and of itself.  

A later section describes common post processing tools to gain the most from a MD. 

 

 

Figure 2 Representations of a protein (LipA) in ball and stick model on the left to 

illustrate system complexity. Van der Waals representation on the right reveals a 

small substrate with hydrogen atoms (white) bound to the active pocket of the enzyme. 
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1.4 Equation of Motions and Numer ical Integrations 

 

From the set of numerical integrators, perhaps the most elegant one is the 

Verlet algorithm.[27] It is easy to implement and to derive as can be shown by the 

following considerations.  If a particle is at a position r at time t, then it can be 

advanced to a time t + ∆t using Taylor expansion: 

�
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For a time step into the past, Taylor expansion yields: 
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The sum of these two equations can be rearranged to give the Verlet update: 
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From Newton’s second law[15] we can conclude that 
!!!(!)

!!!
=

!(!)

!
.  The velocities can 

be obtained by averaging  
! " (!)

! "
=

! !!∆! !! !!∆!

!∆!
. 

 

A more frequently implemented variation of this algorithm is the time 

reversible and area preserving (symplectic) Velocity Verlet[28] formulation. Here the 

position update occurs after a half step propagation of the velocity according to: 
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and the final velocity update by: 
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The forces exerted on each atom are the result of its interaction with the 

surroundings.  These interactions can be summarized into a potential term U, which 

yields the forces according to: 

`� 푓푡=  −∇푈(푟). 

 

(7)�

 This implementation requires one force evaluation per MD step.  This 

evaluation is computationally the most expensive step of a MD and needs to be 

optimized.  For this purpose many approximations are made for the underlying 

potential.  These approximations of the correct potential landscapes are derived in the 

area of force field calculations and will be treated in the next section. 

 

Figure 3 Graphical illustration of velocity Verlet algorithm 
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1.5 Force Fields 

 

For a perfect force calculation the time dependent Schrödinger equation would 

have to be solved for all atoms and electrons in a model.  Normal simulation times 

require millions of iterations, which yield such a force evaluation infeasible.  The 

Born-Oppenheimer approximation simplifies the situation by assuming that electrons 

instantaneously follow the nuclei and therefore only the position of the nuclei of the 

atoms needs to be considered.  In this thesis only classical force calculations will be 

used for the MD.  Instead of solving first principle equations, a set of parameters is 

chosen to describe an atom and its interactions.  Through rigorous derivations or 

empirical fitting, these parameters have been identified and stored in the many 

different force field databases that are available.  All simulations in this work are 

based on the parameters derived for the AMBER99SB-ILDN[30] force field.  

 

The interactions that an atom can have may be sorted into two categories, 

bonded and non-bonded.  

� 푈푟 =  푈! " #$%$ 푟+  푈! " ! ! ! " #$%$ 푟. (8)�

The bonded interactions consist of influences due to covalent bonds between 

the atoms.  Between two covalently bonded atoms one can imagine a spring with a 

spring constant 퐾! and a minimum at a displacement 푏!.  If three atoms are connected 

in a chain an angle will form between the two bonds.  These angles have preferred 

values for the different atom types and bonds.  The energy stored in an angle can 

again be described by a harmonic potential term with a minimum at angle 휃! with a 

spring constant of 퐾! .  For four atoms in a chain the rotation between the planes 

through the first and last two bonds is defined as the dihedral angle.  The best fit for 

this parameter is a trigonometric form.  If three atoms are all connected to a fourth 

atom they form an improper dihedral interaction. This is once again a quadratic term.  

The sum of these contributions composes the bonded interactions and can be written 

as such: 
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  The non-bonded interactions are caused by the electric charge of the atoms, 

the limitations imposed by the Pauli exclusion principle, and the ability to induce 

dipoles.  The first aspect is encompassed in the Coulomb term[31] dealing with 

electrostatic interactions and the other aspects are approximated with the Lennard 

Jones Potential[27].  This can be expressed as such,  

�
푈! " ! ! ! " #$%$ 푟 = (

퐶!"
푟!"

−
퐶!
푟!

! "#$
! " #$%

) +  
푞!푞!

4 휋휖!휖!푟! "#$
! " #$%

. (10)�

 

The non-bonded energy is mainly a function of the distance between two 

atoms.  The parameters 퐶!" and 퐶!define the Lennard-Jones interaction, qi and qj are 

the charges of the atoms i and j, 휖! is the electric constant, and 휖! denotes the relative 

dielectric permittivity. 

 

In addition to the physics-based energy terms, a force field might need to be 

extended for certain applications.  For example in the protein structure refinement 

process described in this thesis, it is necessary to introduce restraints on certain atoms.  

Adding other energy terms can achieve this.  
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1.6 Solvents and Boundary Conditions 

 

A simulation of a real world system attempts to capture all of the important 

features while ignoring everything that can reasonably be neglected.  In the world of a 

protein this is a difficult design choice.  In physiological conditions, proteins are often 

inside of cells or are interacting with other substrates, proteins, membranes and 

liquids.  Ionic concentrations are changing and pH levels are varying.   Due to the lack 

of computational power, the first MD simulations were performed in vacuum[32].  

But this never led to a reasonable approximation of the free energy landscape of a 

protein.  One improvement over the vacuum is the addition of explicit solvent in form 

of water atoms[26].  For a single protein in a box the solvation easily increases the 

number of atoms tenfold.  Because the equations of motion have to be solved for each 

atom in the system this comes at a high computational cost.  However, with current 

high-end super computers one is still able to simulate relatively easily into the 

microsecond timescale[5].  

 

Figure 4 Illustration of Lennard Jones Potential 





Chapter 1 Introduction                     Protein Refinement & Engineering Methods 

�
�

It is difficult to exchange particles in a running simulation[33].  It is therefore 

common practice to add salt ions to the solvent before starting a simulation.  This 

allows for physiological salt concentration and can compensate possible charges of 

the protein.  For a protein in a box it is always dangerous if it drifts towards the 

borders of the box.  Edge effects can occur that have nothing to do with the real 

dynamics of the proteins[34].  To compensate for this it is common practice to include 

periodic boundary conditions.  These allow the protein to diffuse through one wall of 

the system and to enter back in through the opposite one.  One problem with this is 

that the protein may be able to interact with itself, if the box is too small.  Therefore it 

is often required to enlarge the box, and therewith the number of solvent atoms, if 

periodic boundary conditions are to be applied. 

 

 Oftentimes the simulations are desired to happen in the canonical ensemble 

with a constant number of particles, and constant pressure and temperature.  This can 

be ensured through the addition of thermostats[35, 36] next to the periodic boundary 

conditions.  In some situations it is unavoidable to have to sacrifice the accuracy of 

explicit simulations for a gain of speed through implicit solvation.  An implicit 

solvent is a continuous medium, which has interactions that are defined by a set of 

derived constants.[25]  For testing thousands of proteins in simulations it becomes 

necessary to replace the explicit with the implicit solvent.  One point in favor of this 

approximation is the deterministic effect of the solvent.  For short simulations the 

potential energy terms of different systems become more easily comparable for 

implicit solvent.  This fact will be used in the last chapter of this thesis, which deals 

with the redesign of a phospholipase.  

 

1.6 Energy Minimization 

 

 A typical protein structure as obtained from the Protein Data Bank (PDB) is 

described as a set of three-dimensional coordinates of all heavy atoms.  The distances 

and angles in such a structure are usually optimized to one set of force field 

parameters.  Because it might not necessarily be the same force field as chosen for 

further processing, an initial energy minimization is required prior to other MD steps.  

Such a procedure will resolve high-energy clashes that could otherwise yield non-
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physical solutions.  All energy minimizations in this thesis are conducted via the 

steepest descent algorithm as implemented in GROMACS.  

  

 The fundamental idea of steepest descent can be described as running down a 

hill.  Given a position along the hillside one looks for the direction that shows the 

steepest slope downwards and takes a step in that direction.  In the new position the 

optimal new direction is again searched for.  This is repeated until the next local 

energy minimum is found, a position where no direction yields a slope downward 

beyond a predefined cut-off.  If the step size is too small, such a procedure has bad 

convergence. If it is too large, then the risk of overshooting exists.  Therefore it is 

necessary to adapt the step size during the minimization.   

 

The algorithm as implemented has the following form.  First, the force vector 

on all atoms is calculated according to 

 

� 푓푘 =  −∇푈(푟). (11)�

 

Here U(r) denotes the potential energy as evaluated in the force field and k the 

integration step.  Next the position of each atom is shifted along the direction of the 

force by the magnitude of the step size s, 

 

�
푟푘+ 1 =  푟푘 +

푓푘

max(푎푏푠푓(푘) )
∗푠. (12)�

 

The step size is then adapted according to the rule 

 

� 푖푓 (푈푟!!! < 푈푟! , 푠!!! = 1.2 ∗푠!�

푖푓 (푈푟!!! ≥ 푈푟! ,         푠!!! = 0.2 ∗푠!.�
(13)�

 

This iteration is repeated until k reaches the predefined number of steps, a 

local minimum is found, or the algorithm converges to machine precision. 
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1.7 Analysis of MD Trajector ies  

 

 At the end of a simulation it is always necessary to analyze the produced data.  

Because of the very high number of degrees of freedom inside a protein, a lot of noise 

will cover the most essential signal from a simulation.  If one is interested in the 

function of a protein, then the main structural change becomes important.  One 

elegant way of filtering the signal from the noise is the method of principal 

component analysis.[37]  In this technique a new set basic vectors is found that will 

only display the movement of a protein along the greatest variance.  This is usually 

achieved through diagonalization of the covariance matrix of all Cα atoms and 

determination of the eigenvector associated with the largest eigenvalue.  Another 

method that is commonly used to determine the best structure from an ensemble of 

MD frames is[38] averaging.  Alignment is a simple procedure that aligns proteins to 

each other and then computes the average position in Cartesian space for each atom.  

This technique is frequently used in the determination of refined structures from MD 

refinement methods. 
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Chapter  2 Protein Refinement 
 

2.1 General Introduction to Protein Refinement 

 

Protein function is closely related to protein structure.  Though physiological 

temperatures generate an ensemble of protein conformations referred to as the 

Boltzmann ensemble, it is common practice to associate a protein with a single crystal 

structure.  These structures can be obtained from experiments but are often difficult to 

observe due to expression and crystallization challenges posed by the protein.  An 

interesting alternative to lab experiments and expensive synchrotron X-ray methods is 

an in-silico prediction of an unknown protein structure.  These predictions typically 

rely on already existing structures from proteins that are similar in sequence.  

Sequence related proteins are referred to as sequence homologs and have the 

marvelous attribute of having almost the same conformation in space.  Structure of 

proteins is better conserved than sequence, meaning that sequence identities down to 

50 % still end up in the same structural fold.   

 

The best homology building tools are able to predict high quality structures, 

but these structures are not perfect.  The aim of protein refinement is to further 

improve the best models achievable.  The international blind test Critical Assessment 

of Protein Structure Prediction (CASP) is a biannually competition in which groups 

from across the world compare their refinement protocols.  This chapter describes the 

development of a protein refinement protocol that was used with some derivations in 

the CASP11 competition.  The report on CASP11 is given in the next chapter.  

 

The work contained in this chapter has been submitted for peer review and 

follows the guidelines of a short communication with supplement material.  This work 

is based mainly on the PhD thesis of Andre Wildberg and was compiled in close 

collaboration with him.    

!
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2.2 Abstract 

 

Atomic models of proteins built by homology modeling or from low-

resolution experimental data may contain considerable local errors such as wrong 

loop conformations, errors in side-chain packing, or shifts of secondary structure 

elements.  The refinement success of molecular dynamics simulations is usually 

limited by both force field accuracies and by the substantial width of the 

conformational distribution at physiological temperatures.  We propose a method to 

overcome these problems by coupling homologous replicas during a molecular 

dynamics simulation, which narrows the conformational distribution, smoothens and 

even improves the energy landscape by adding evolutionary information.  The 

coupling of replicas mainly changes slow dynamics but leaves fast dynamics mostly 

unperturbed, which means that the important solvent interaction and therefore the 

solvation free energy is not strongly affected by the replica coupling.  We show that 

our method yields consistent improvement of protein models.  

 

2.3 Introduction 

 

The interpretation of genomics data in terms of protein structure is an 

important post genomic challenge.  Building atomic models for individual amino acid 

sequences becomes increasingly important to understand the molecular effects of 

genetic variation.  Homology modeling is a useful tool to build atomic models if the 

structure of an homologous protein is known.  However, due to the limitation of 

current methodology such models of protein structures may contain considerable 

errors.  Similarly, atomic models built with low-resolution (e.g. from X-ray 

diffraction or cryo-EM) or sparse experimental data might contain comparable errors.  

 

Refinement approaches have the goal of correcting these errors in atomic 

protein models. The types of errors we consider as being amenable to refinement 

include disrupted hydrogen bond networks, small shifts of secondary structure 

elements, incorrect side-chain packing and rotamers, and wrong loop conformations.  

Correcting such errors is typically challenging since the energy differences between 

alternative, slightly different conformations are rather small.  The Critical Assessment 
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of Structure Prediction (CASP) experiment has a refinement category to test the 

performance of refinement methods [40, 41].  

 

Regular molecular dynamics (MD) simulations are generally unable to refine 

homology models and do not consistently yield a structure that is moved closer to the 

"correct" structure (as usually determined by high-resolution X-ray crystallography) 

[42].  Even though MD simulations can sample closer-to-native structures, reliably 

selecting these structures is not possible [43]. 

 

The main causes for this limitation of MD simulations are 1) force field 

inaccuracies [44],  2) high energy barriers that need to be crossed, and 3) the fact that 

the Boltzmann distribution, which is approximated by the MD simulation, is broad at 

physiological temperatures. Simulation at physiological temperatures is however 

necessary to correctly describe the influence of the entropy; only then is the free 

energy of conformational states correctly described.  

 

Position restraints have been used successfully to prevent the simulation from 

exploring the broad Boltzmann distribution; these restraints force the structure to 

sample a region around the starting model, which also leads to sampling closer-to-

native structures with higher probability [44-46].  Position restraints however also set 

an upper limit to the extent of the conformational change, which might hinder 

sufficient sampling and refinement. 

 

The goal of structure refinement is to determine the most probable 

conformation, which corresponds to the free energy minimum, rather than the 

conformational distribution. It has been shown that the most probable conformation 

can be approximated by averaging the structures from an MD ensemble more robustly 

than by selecting a single structure with a scoring function[45, 46].   However, for the 

averaging to yield a good structure requires the simulation to predominantly sample 

near native structures. 
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2.4 Method 

 

We here present in two steps a modified MD protocol that addresses all three 

problems of regular MD simulations mentioned above (force field inaccuracies, high 

energy barriers, broad Boltzmann distribution).   

 

In the first modification step, we simulate simultaneously eight identical 

replicas of the starting structure.  These replicas are subjected to the same harmonic 

position restraints (on Cα-atoms), which forces them to remain similar to each other.  

The positions of the restraints are constantly updated during the simulation and slowly 

follow the motion of the center of mass of all replicas.  These adaptive restraints were 

inspired by deformable elastic network restraints (DEN), which have been shown to 

guide structure refinement against X-ray diffraction and cryo-EM data [47-49].  Since 

the restraints are adaptive, the coupled replicas are allowed to undergo any 

conformational motion as long as they stay close together. 

 

The harmonic restraints restrict larger motions more than smaller motions, 

which leads to a time-scale dependent diffusion coefficient (cf. Supplementary Fig. 

1).  For small time-scales the size of the diffusion coefficient is comparable to that of 

free MD simulations, which enables individual replicas to cross local energy barriers.  

In addition, entropic contributions of solvent and side-chains (which are not 

restrained) are not strongly affected, which means that in particular the solvation free 

energy is mostly unperturbed.   For longer time-scales the diffusion coefficient 

decreases significantly, which reduces large conformational fluctuations. Smaller 

fluctuations mean that the system of coupled replicas is less likely to drift in random 

directions and will sample low free energy states more frequently than a free MD 

simulation.  Furthermore, the coupling of replicas has an effect of smoothening the 

energy landscape, similar to particle swarm optimization, which has been applied to 

MD simulations before [50]. The motion of the center of mass is the result of an 

effective force averaged over all replicas.  Because the replicas are in different 

positions on the energy landscape the center of mass moves on a locally averaged, i.e. 

smoothened energy landscape.  
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In the second modification step, the target sequence in seven of the replicas is 

replaced with homologous sequences.  This is motivated by the observation that 

structure is much more conserved than sequence which causes homologous proteins 

to fold into similar structures [51].  This fact can be exploited by coupling 

homologous proteins (with pairwise sequence identity of at least 50%) instead of 

identical replicas during a MD simulation.  Keasar et al. [52-54] have proposed that 

such a coupling of homologous proteins with slightly different energy landscapes 

results in an energy landscape that is smoothened not only in structure space but also 

in sequence space.  The methodology was implemented in the GROMACS 4.5.3 [55] 

software (see Online Methods).   

 

2.5 Results  

 

To benchmark our approach a representative test set of 5 homology models 

was selected from the Badretdinov decoy set [56] (see Supplementary Table 1) and 

simulated 5 times for 10 ns each. We compared three different simulation protocols:  

1) a free MD simulation of the homology model, 2) coupled identical replicas, and 3) 

coupled homologous replicas.  
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Figure 1:  Comparison of different refinement protocols (1–3). Five test models (a–e) 

have been simulated 5 times with three MD protocols: coupled homologous replicas 

(1,left column), coupled identical replicas (2, middle column), and free MD 

simulation (3, right column).  dRMSD values were averaged over the 5 independent 

trajectories (black lines).  The standard deviation is shown in pink.  dRMSD values 

below the null refinement line (red line) indicate improved frames.  The bottom row 

(f) shows the average and standard deviation over the 5 test cases for each refinement 

protocol.  

 
Figure 1 shows for each test case average and standard deviation of dRMSD 

values (see Online Methods) from 5 independent simulations. Simulations with 

coupled replicas (with both homologous (Fig. 1, first column) and identical replicas 
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(Fig. 1, second column)) show clear improvement over regular free MD simulations 

(Fig. 1, third column).  In free MD simulations the structure drifted away from the 

correct structure in all cases except for 1hdn-1ptf, where a small number of frames 

was improved.  In simulations with identical replicas 51 % of the frames were 

improved on average, but the improvements are small fluctuations around the null 

refinement (horizontal red line). In contrast, simulations with homologous replicas 

consistently improve the structure and sample conformations closer to the native 

structure most of the time.   

Figure 2:  The average dRMSD for each test case and each refinement protocol is 

plotted as well as the average over the five test cases (dotted lines).  Coupling 

identical sequences leads to a clear improvement over free MD simulations.  

Coupling of homologous replicas leads to a consistent refinement of all 5 test cases.  

Interestingly, the main improvement of using homologous versus identical replicas is 

observed for the two test cases (1dvrA-1ak2 and1utrA-1utg), for which coupling of 

identical replicas was not successful. 

 

The improvement of the structures from the different refinement protocols is 

quantified by the change in dRMSD of the average structure from each trajectory, 

compared to that of the starting structure (see Fig. 2).  Free MD simulations led in all 

5 cases to the lowest structural quality.  Comparison of the average improvements 
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(Fig. 2, dashed lines) shows an offset between free MD simulation and coupling of 

identical replicas, which can be attributed to the particle swarm optimization effect.  

More importantly another offset can be seen between coupling with identical and with 

homologous replicas, which represents the improvement that is due to the added 

evolutionary information and which we interpret as an improvement of the force field. 

Only for 1lpt-1mzl, which has the lowest starting quality of 3.8 Å RMSD, the average 

dRMSD was not improved (see Fig. 1 c.1), however, the dRMSD of the average 

structure was slightly improved (Fig. 2), clearly showing the benefit of structural 

averaging[45].  

 

Figure 3 compares the result of the simulation with coupled homologous 

replicas (green) with the starting model (purple) and the native target structure (blue).  

Figure 3:   For each test case, thestarting structure (purple) is shown together with 

the best model from the simulations with coupled homologous replicas (green) and 

the native structure (blue).  Refined regions are highlighted by red arrows.  Figures 

were made with Chimera [39] . 
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Several secondary structure elements and loop regions are shifted towards the correct 

structure.  In contrast to free MD simulations, the coupled-replica simulations yielded 

very consistent results: the average structures from 5 independent simulations are very 

similar, as visualized in Supplementary Fig. 2 by multi-dimensional scaling [57]. 

 

2.6 Conclusion 

 

We found that refinement with coupled homologous replicas outperforms 

regular MD simulations in all test cases. Recently, we applied our method in the 

CASP11 experiment and could improve 65 % of the targets, with an average increase 

in GDT-HA score by 6.6 for the improved models.  The additional evolutionary 

information and the reduction in global fluctuations through coupling of homologous 

replicas leads to consistently sampling structures closer to their native state compared 

with free MD simulations.  This insight will help to develop even more powerful 

refinement methods based on MD. 

 

2.7 Online mater ial - Methods 

Distance root mean square deviation (dRMSD). 

 

The dRMSD is used to measure the deviation of two atomic models.  It is 

calculated as the root mean square deviation of corresponding pairs of Cα-atom 

distances in two structures.  All possible pairs of Cα-atoms were considered. 

 

Implementation of replica coupling in GROMACS 4.5.3.   

 

For the replica-coupled simulations, the simulation box was composed of 8 

replicas, which are positioned at the edges of a cube. The distance between the 

replicas needs to be large enough to avoid electrostatic interactions between the 

replicas.  

 

The replicas are coupled through adaptive position restraints on all Cα-atoms.  

GROMACS does not by default support dynamic updates of position restraints during 

a simulation. We implemented the necessary changes into the source code of Gromacs 
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4.5.3 [55] to enable updates without reducing the speed of GROMACS.  We 

implemented the changes only for domain decomposition runs (in source code file 

domdec.c).   

 

For each Cα-atom i in each replica j a position restraint 풑!,!!is defined on its 

initial position.  The time dependent energy term for the position restraints is given by 

 

퐸posre(푡)= 푤! 풙!,!(푡)− 풑!,!(푡)
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(1)

!

!!!

!

!!!

 

 

with the coordinates!풙!,!!of Cα-atom i in replica j, the number of atoms N, and the 

number of replicas M which we chose to be 8.  The force constant w was set to 100 

kJ/(mol nm2). After a period, n, of 500 steps the position restraints are updated 

according to: 

 

풑!,! 푡+ 푛∗Δ푡= 풑!,! 푡+ 휅!풙!,! 푡− 풑!,! 푡 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

 

with the integration timestep ∆t of 2 fs. The relaxation rate κ at which the position 

restraints follow the average coordinate displacement was set to 0.5.  The same 

displacement vector 풙!,! 푡− 풑!,! 푡 !!, which is an average over the corresponding 

displacements in all replicas j,  is added to all replicas, which leads to a coupling of 

the replicas.  These adaptive restraints were inspired by deformable elastic network 

(DEN) restraints, which yield a similar effect for a γ-value of 1.  The original DEN 

method employs a network of (also long) distance restraints, which cannot efficiently 

be parallelized with domain decomposition. We therefore decided to use adaptive 

position restraints. 

 

For identical replicas the assignement of corresponding atoms in different 

replicas is trivial. However, in case of homologous replicas, a multisequence 

alignment is performed to assign each Cα-atom from the starting sequence to the 

corresponding Cα-atoms in the homologs. If there are no gaps or insertions the 

assignment is again trivial. If the alignment shows a gap for k sequences at a certain 

amino acid position,  then position restraints are applied and averaged only for the 
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remaining (8-k) residues that are present at this position, which means that the 

displacement vector will be averaged over (8-k) replicas.  Insertions will not generate 

extra position restraints; those residues instead are kept unrestrained and are free to 

move. The total number of position restraints is therefore always identical to the 

number of Cα-atoms in the target sequence. 

 

 

Method availability. 

 

 The modified GROMACS version with adaptive position restraints to couple 

multiple replicas is available from the SimTK website: http://simtk.org/home/adpt-

gromacs. 

 

MD Protocols.   

 

All simulations used the AMBER99SB-ILDN force field with TIP3P explicit 

water with an integration time step of 2 fs.  Temperature was kept constant at 300 K 

by the Nosè-Hoover algorithm.  Electrostatic long-range interactions were calculated 

with PME and bond-lengths were constrained by the P-LINCS approach.  Na+/Cl- ions 

were added at physiological concentration.  Before and after adding the solvent 

molecules, the structure was energy minimized to remove any sterical clashes that 

may be the result of homology model building. 

 

Each simulation was repeated 5 times with duration of 10 ns.   For comparison 

we performed three different simulation protocols:  1) free MD simulation of a single 

protein structure, 2) replica-coupled simulation with identical sequences, and 3) 

replica-coupled simulations with homologous sequences.  The computational expense 

for the replica-coupled simulations is much larger than for the single MD simulations, 

since the simulation system is eight times larger.  The total amount of simulation time 

equals a single protein simulation in solvent for 4.25 μs. 
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Sequence Selection Strategy.   

 

To build the homologous replicas, seven homologous sequences were 

searched via BLAST [58] on the RefSeq [59] database. Sequences were manually 

selected that fulfilled two criteria: 1) their sequence identities with the target sequence 

needs to be between 50 and 80 %, and 2) the sequence identities between all pairs of 

the 8 sequences should ideally also be in the range 50–80 %.  However, for some test 

cases the second criterion could not be strictly fulfilled.  The sequences chosen haven 

an average sequence identity of 61.8 % to the target structure and are shown in 

Supplementary Table 2.  The homology models used as the replicas were generated 

with MODELLERv9 [60].  

 

Test case selection strategy.   

 

Homology models from the Badretdinov decoy set[56] were chosen as test 

cases. We aimed to cover a wide range of protein properties, such as size, secondary 

structure composition and shape.  The five homology models that were selected 

represent starting qualities between 2-4 Å RMSD to the solved crystal structure.  The 

sequence lengths vary between 70 and 220 amino acids.  The details of the selected 

models are shown in Supplementary Table 1.  The naming scheme of the models is 

xxxxX-yyyy,  where xxxx and yyyy are the PDB IDs of the the template and the 

target, respectively, and X is the chain ID of the target.  
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2.8 Supplemental Mater ial 

 

 

 

Supplementary Figure 1:  Mean square displacement as a function of time is shown 

as an example for the 1utrA-1utg test case for different simulation protocols.  All 

simulations were performed at a temperature of 300 K.  The gradient is proportional 

to the diffusion coefficient. The free MD simulation (black) has the largest diffusion 

coefficient. For MD simulations with position restraints the diffusion coefficient is 

decreasing with increasing strength of position restraints.  For comparison a 

simulation with 8 coupled identical replicas was performed where the coupling of the 

replicas was achieved by adaptive position restraints with a strength of 100 kJ/mol.  

Interestingly, the simulation with the coupled replicas shows a strongly timescale-

dependent diffusion coefficient.  For small timescales the diffusion is similar to a free 

MD simulation, but for larger timescales the diffusion coefficient is similar to the 

position restrained simulation with a restraint strength of 1000 kJ/mol. This allows 

small and fast motions such as those of side-chains and solvent molecules to be rather 

unperturbed, while at the same time, large scale conformational fluctuations of the 

protein structure are suppressed. 
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Supplementary Figure 2:  Shown are multi-dimensional scaling plots based on the 

dRMSD values between all pairs of structures.  dRMSD distances between structures 

are preserved as closely as possible in these two-dimensional representations.  For 

each test case and each refinement protocol, 5 independent simulations were 

performed. The simulations with the coupled replicas (identical replicas in cyan, 

homologous replicas in blue) yield consistent structures, i.e. the average structure 

from each independent simulation is similar to each other, while the structures from 

the free MD simulation are much farther apart from each other and also from the 
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target structure (green). Free MD simulations drift away more randomly and less 

directed towards the target than the coupled replicas.  The multi-dimensional scaling 

was performed with MDSJ (Algorithmics Group. MDSJ: Java Library for 

Multidimensional Scaling (Version 0.2). Available at http://www.inf.uni-

konstanz.de/algo/software/mdsj/. University of Konstanz, 2009). 

 

 

 

 

MODEL 

(PDB-ID) 

#atoms 

Cα/all 

RMSD 

(Å) 

dRMSD 

(Å) 

1dvrA-1ak2 220/3452 2.790 2.250 

1hdn-1ptf 87/1297 2.150 1.712 

1lpt-1mzl 93/1240 3.887 2.572 

1pod-1poa 118/1730 2.347 1.860 

1utrA-1utg 70/1116 3.002 2.509 

 

 

 

Supplementary Table 1:  The 5 test cases chosen from the Badretdinov decoy set 

(http://salilab.org/decoys/) and their root mean square deviation (RMSD) and 

distance root mean square deviation (dRMSD) from the corresponding native 

structures. 
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Supplementary Table 2:   For each test case, homologous replicas were built by 

homology modeling. The sequences for these models (obtained from a BLAST search) 

MODEL ID SeqId  SeqId (to all) %   

   min avg max 

1dvrA-1ak2 1 70 55 62.3 71 

 2 68 56 64.2 71 

 3 57 54 58.5 61 

 4 53 49 55.7 59 

 5 65 49 58.2 63 

 6 61 57 58.4 61 

 7 66 56 64.3 76 

1hdn-1ptf 1 68 56 68.8 82 

 2 66 59 68.6 82 

 3 64 53 62.1 71 

 4 51 53 57.2 61 

 5 59 57 64.4 71 

 6 71 53 64.2 73 

 7 54 53 59.5 62 

1lpt-1mz 1 58 42 54.1 68 

 2 56 41 48.8 62 

 3 55 47 55.1 63 

 4 52 41 45.6 50 

 5 67 47 55.5 68 

 6 76 41 56.2 62 

 7 63 45 53.2 63 

1pod-1poa 1 77 57 65.4 73 

 2 69 59 66.0 73 

 3 63 56 66.8 84 

 4 74 52 60.6 72 

 5 59 52 62.5 73 

 6 61 52 67.6 84 

 7 77 57 63.7 73 

1utrA-1utg 1 58 54 63.6 76 

 2 52 43 50.7 59 

 3 54 52 62.7 77 

 4 55 53 62.7 77 

 5 53 43 60.6 76 

 6 57 49 65.3 90 

 7 55 43 62.7 90 
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were selected to have a sequence identity to the target sequence (third column, SeqId) 

of between 50 and 80%.  Furthermore, the sequences were chosen to have low 

pairwise sequence identities to each other, as indicated by the SeqId(to all) values.  
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Chapter  3 CASP 11 Protein Refinement 
 

 

3.1 GENERAL INTRODUCTION TO CASP11 

This chapter contains the application of the protocol introduced in Chapter 2.  

The eleventh iteration of the CASP competition took place between April 2014 and 

December 2014.  Over the course of 3 months, multiple protein structures were 

released from predictors for further refinement.  Each target had a prescribed deadline 

of about 3 weeks for the refinement process.  Due to the computational expense of our 

method, a grant for the super computer JUROPA was secured.  In total, 37 targets 

were released and refined by our method. 

 

In conclusion of the challenge a final meeting was held in Mexico and the best 

performing groups were announced.  The assessor ranked our method as second best 

for initial model submissions.  In the context of this successful evaluation an 

invitation was extended to publish the results in a special issue of PROTEINS.   

 

The text of this chapter contains the final results as submitted to PROTEINS 

and is based on the application of a modified protocol as previously discussed.  The 

author, under very helpful supervision of Professor Schröder, has performed the 

experiments, analysis and formulation by himself.  The format is of a full research 

article as prescribed by PROTEINS. 

 

 

3.2 ABSTRACT 

A novel protein refinement protocol is presented which utilizes molecular 

dynamics simulations of an ensemble of adaptively restrained homologous replicas.  

This approach adds evolutionary information to the force field and reduces random 

conformational fluctuations by coupling of several replicas.  It is shown that this 

protocol refines the majority of models from the CASP11 refinement category and 

that larger conformational changes of the starting structure are possible than with 

current state of the art methods. The performance of this protocol in the CASP11 
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experiment is discussed.  We found that the quality of the refined model is correlated 

with the structural variance of the coupled replicas, which therefore provides a good 

estimator of model quality. Furthermore some remarkable refinement results are 

discussed in detail.  

 

 

 

3.3 INTRODUCTION  

Understanding protein function, folding, and interactions requires detailed 

knowledge of protein structures.  The determination of protein structures, e.g. by X-

ray crystallography, is usually time-consuming, challenging and sometimes not even 

possible with current methods.[61, 62]  The correct prediction of protein structures 

from amino acid sequences is therefore a very important problem[63].   Protein 

structure prediction is most successful if the structure of a protein with a similar 

sequence is already known, which can then be used as a template for modeling.[64-

67]  The achieved template-based models have approximate root mean square 

deviations (RMSD) of 2 – 6 Å to the corresponding experimentally determined 

structures.[68, 69]  This deviation is mainly caused by an insufficient number of 

highly homologous structures in the Protein Data Bank and the structural differences 

between those that are available   The field of protein structure refinement has the 

goal to bridge the gap between prediction and experimental accuracy. The Critical 

Assessment of Protein Structure Prediction (CASP) experiment is a biennial 

community-wide blind test, which introduced a refinement category in 2004.[70]  In 

this category of CASP, participants test their refinement protocols on protein models 

that were predicted earlier in the same round of CASP and that were selected by the 

organizers as refinement targets.  Over the last years the interest in the refinement 

problem has consistently grown.  This is reflected in the increasing number of 

refinement targets handed out to the predictors during the last CASP experiments as 

well as in the steadily growing number of participating groups.[68, 71]  

 

Over the last 50 years various approaches have been proposed to solve the 

refinement problem.  The earliest methods used vacuum energy minimization to find 

the closest potential energy minimum [72], and were further improved with better 
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parameterizations [73, 74].  With increasing computational power the impact of 

solvent became more apparent.[75]  Different sampling methods have been used, 

from Monte-Carlo Methods[76] over fragment guided simulations[77] and 

knowledge-based refinements[78-80] to physics-based molecular dynamics (MD) 

simulations[81-83].  The most recent advances in the refinement field by the Feig 

group indicate that MD simulations have the potential to refine predicted protein 

models consistently.[84, 85]  

 

Our approach to refine protein structures employs MD simulations with 

coupled homologous replicas, as is described in detail below.  The performance of our 

method during the CASP11 experiment is presented and the results for the 37 released 

targets are analyzed in detail. We find that our method has a high chance of improving 

a model if the quality of the starting structures lies in an intermediate range of initial 

model quality. Finally, we demonstrate how the model quality can be estimated even 

when the quality of the starting structure is not known. 

 

 

3.4 METHOD 

 

The main idea of our refinement protocol is the improvement of a physical 

force field through the addition of an extra parameter that incorporates evolutionary 

information.  We present a modification of the classical MD approach that improves 

the sampling of native protein conformations and yields, therefore, better refinement 

results than standard MD simulations.  Our approach has two components:  1) 

simulation of an ensemble of restrained replicas and 2) coupling of homologous 

sequences.  In the following we motivate the choice of this approach.  A single 

protein will usually drift quickly away from its native structure during a standard 

room temperature MD simulation, which is caused by thermal fluctuations, random 

start conditions, as well as inaccuracies of the force field.  Position restraints can 

suppress this effect and force the protein to sample a region around the start 

conformation.  The disadvantage of such restraints is however that the protein cannot 

progress far towards the native structure and therefore often does not yield optimal 

refinement results.[84]  Our approach is devised to reduce large fluctuations and at the 
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same time allow for large conformational changes.  For this, we perform an MD 

simulation of multiple replicas that are harmonically restrained to be similar to each 

other but are otherwise free to move.   The restraints are weak for small structural 

differences such that local fluctuations are relatively unperturbed, which enables 

individual replicas to cross local energy barriers almost as in a free MD simulation.  

The coupling leads to a time-scale dependent diffusion coefficient.  The diffusion 

coefficient becomes smaller for longer time-scales (and larger conformational 

changes).  On longer time-scales the motion of each replica is highly correlated with 

the motion of the center of mass.  The effective force that moves the center of mass is 

an average over all replicas, which visit slightly different points on the energy 

landscape.  The center of mass therefore moves on a locally averaged, i.e., 

smoothened energy landscape.  For such a coupled system it is thus possible to cross 

energy barriers more easily, which makes energy minima more accessible.  As a 

result, the coupled system is less likely to drift in random directions but will move 

more directly towards low free energy states.   We had some success in CASP9 with a 

similar approach of coupling replicas during short simulated annealing MD 

simulations.  

 

The native conformations of proteins are assumed to be global minima of their 

free energy landscapes.[86-88]  Empirical observations have shown that homologous 

proteins fold into similar structures as structure is much more conserved than 

sequence.[89]  This means that the position of their global free energy minima are 

similar.  We exploit this fact by coupling homologous proteins instead of identical 

replicas in a MD simulation.  

 

Since the energy landscapes of homologous proteins are slightly different, the 

coupling of such homologs results in an energy landscape that is smoothened in 

structure and sequence space.  Keasar et al. have proposed a similar idea earlier.[90, 

91]  The averaged energy landscapes contain thus also evolutionary information, 

which potentially increases the overall accuracy of the force field.  This improvement 

is not due to the fact that we changed the parameterization of the force field, but is 

rather the result of the additional position restraints that are used in the force 

evaluation. 
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Figure 1 visualizes the idea behind this approach.  The target structure (green 

circle) represents the correct structure of a protein, which is located in the center of a 

high-dimensional sphere.  The starting model for the refinement (blue circle) is a 

homology model that has the amino acid sequence of the target.  Then additional 

homology models (red circles) with homologous sequences are built using the starting 

model as a template.  The homology models are expected to have similar RMSDs to 

their respective target structures.  From empirical observation we know that the 

correct structures of these homologous proteins will also be very close to each other 

(possibly inside the 1 Å RMSD sphere).  If all of these models are coupled to each 

other in an MD simulation their collective motion is more likely to drift into the lower 

RMSD regions than in a free MD simulation.  

 

Figure 1:  Visualizing the concept of our structure refinement approach.  The 

structures of proteins (orange circles next to green circle) with sequences 

homologous (sequence identity > 40%) to a given target sequence are known to be 

similar to the target structure (green circle) with RMSD values often below 1 Å.  For 

a starting model (blue circle) that is to be refined, we build models (orange circles 

next to blue circle) with these homologous sequences using the starting model as a 
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template.  All these models should then have the tendency to move close to the correct 

target structure.  By coupling all models to each other during an MD simulation, the 

system of coupled models is moving on an energy landscape that is averaged in 

sequence space.  The coupling additionally reduces random conformational 

fluctuations. 

 

Generation of Replicas 

 

 

Figure 2:  Flowchart of the refinement protocol.  A BLAST search selects suitable 

homologous sequences.  For each CASP11 target, 18 MD simulations were 

performed.  The final model is obtained by clustering and structural averaging.  

 

Each CASP11 target was subjected to the refinement protocol depicted in 

Figure 2.  The first step is to identify possible homologous sequences which is done 

by a BLAST[92] search.  The RefSeq database[93] is searched for amino acid 

sequences that have an amino acid sequence identity between 50 and 95% to the 
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target sequence.  From this set of sequences a subset of seven sequences is selected.  

Another selection criterion is that these seven sequences are not allowed to have more 

than 95% sequence identity among each other.  This extra criterion ensures that no 

homology model will dominate the sampling process.  In the case that an insufficient 

number of sequences is found the target sequence is selected multiple times.  The 

number of found sequences and the average sequence identity they share with the 

target sequence are summarized in Table 1.  At the end of this step a list of seven 

sequences is generated. 

 

In the next step, an atomic model is created for each of these sequences.  We 

used MODELLER.v9[78] to map the sequences to the provided starting model, which 

is used as a template for building the homology models.  The results of this step are 

eight homologous protein structures, one of which is the provided CASP starting 

model and the others are seven homology models.  The number of amino acids can be 

different in these models, which mainly affects the length of the termini.  

Homologous sequences with large insertions or deletions should be avoided.  

Otherwise the sampling of this region will perturb the structure and will not take full 

advantage of the evolutionary information.  At the end of this step the eight models 

are aligned.  

 

 

Setup of Simulations 

 

To prepare the MD simulation these eight aligned structures are linearly 

translated into the corners of a cube.  It is important to maintain enough space for 

solvent between the models to avoid electrostatic interactions.  To couple the models 

time-dependent position restraints at positions pi,j(t) are defined for Cα atom i in 

replica j of the system.  We modified the GROMACS 4.5.3[94] code to update the 

position restraints after a predefined number of steps n.   
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Target ∆GDT-
HA 

Number 
Seq. 

Sequence 
Identity 

Start  
GDT-HA 

Avg 
RMSD 

Std. of 
PAVG 
RMSD 

Avg. 
Restraint 
Energy 

TR217  -4.88 5  84.13 65.12 49.88 0.22  875.23
TR228  4.16 4  82.86 55.66 42.93  0.17  300.09  
TR274  -3.28 1  100.0 29.10 75.16  0.36  950.43  
TR280  11.99 8  70.54 59.37 50.83  0.25  362.18  
TR283  -1.28 8  75.15 41.34 45.68  0.19  666.79  
TR759  7.66 8  82.77 45.16 54.00  0.28  320.23  
TR760  -6.34 8  56.18 57.71 49.02  0.21  885.63  
TR762  -7.69 8  55.59 70.82 32.81  0.16  813.19  
TR765  16.88 8  77.37 59.09 45.70  0.17  274.11  
TR768  4.54 1  100.0 64.69 35.75  0.18  344.62  
TR769  6.44 1  100.0 59.80 40.38  0.14  294.28  
TR772  -2.64 6  76.6 52.52 57.99  0.20  1063.24  
TR774  -2.66 1  100.0 39.16 59.70  0.29  744.35  
TR776  2.85 8  55.19 64.27 34.77  0.16  793.99  
TR780  5.01 8  84.52 54.47 37.73  0.24  294.73  
TR782  7.50 8  64.09 65.23 34.48  0.16  419.05  
TR783  3.71 8  82.79 58.02 52.63  0.26  903.64  
TR786  5.07 8  87.94 49.08 39.34  0.17  663.80  
TR792  8.13 8  71.78 57.81 33.04  0.16  265.78  
TR795  4.04 1  100.0 59.93 38.05  0.19  383.42  
TR803  -2.06 8  75.24 34.33 50.70  0.27  644.53  
TR810  2.45 1  100.0 55.33 59.23  0.21  753.24  
TR811  -6.18 8  81.41 73.51 32.09  0.15  656.26  
TR816  8.46 1  100.0 51.84 37.92  0.16  218.80  
TR817  -3.30 8  74.81 66.32  45.37  0.28  796.76  
TR821  13.92 5  82.2 49.02  35.71  0.24  527.74  
TR822  5.93 8  42.49 30.48  80.98  0.29  973.37  
TR823  5.99 8  9.67 41.32  63.90  0.23  2033.03  
TR827  6.48 8  69.0 35.23  57.12  0.25  821.60  
TR828  -4.77 5  73.61 50.30 63.58  0.23  468.97  
TR829  -1.50 8  55.25 51.12 47.32  0.15  311.65  
TR833  -3.71 4  80.08 62.27 39.67  0.23  390.82  
TR837  -0.62 8  78.81 43.80 50.09  0.15  458.97  
TR848  5.98 6  68.14 58.88 40.93  0.18  542.59  
TR854  -0.36 4  84.51 60.36 33.49  0.14  242.50  
TR856  -9.43 8  76.16 62.26 49.26  0.19  629.36  
TR857  1.29 6  80.85 34.12 54.05  0.19  478.75  

 
Table 1:  Overview of the refinement parameters for each CASP11 target.  ∆GDT-HA 

represents the change in GDT-HA through the refinement.  Positive ∆GDT-HA values 

indicate successful refinement.  The number of homologous sequences used is listed in 

the Number Seq. column.  The average sequence identity of the 8 sequences is shown 

under Sequence Identity.  The simulation was repeated Number runs times for each 

target.  The Runtime represents the number of ns sampled during the MD production 

step.  The Start-GDT indicates the quality of the starting structure. Large values mean 

better models.  The sum of all possible RMSD values between the average structures 

is listed under Average RMSD.  The standard deviation of all pairwise RMSD values 

between all average structures is written in the Std. of PAVG RMSD column.  The 
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final column is the energy contained in the dynamic position restraints averaged over 

all 18 runs. 

 
 

The replicas are coupled to the target through the position restraints.  For this 

purpose a multiple sequence alignment is carried out to assign the Cα atoms of the 

target structure to the corresponding Cα atoms in the replicas.  The position restraints 

of the assigned Cα atoms are updated by the same vector every n number of steps 

during the simulation.  The update vector is the displacement between each Cα atom 

position xi,j(t) and the corresponding position restraint pi,j(t) averaged over all eight 

models.  This procedure forces each model to follow the average movement of the 

ensemble.  The great advantage of this method over classical position restraints[85] is 

the ability of the system to undergo large conformational changes.  The structure of 

the target sequence is not restrained to the start model; it is only restrained to the 

replicas.  This removes a fundamental refinement limit and allows theoretically any 

structural changes necessary to reach the correct target structure. 

 

The position restraint energy is defined for homologs with the same sequence 

length as a sum over all N Cα atoms and all eight replicas 

퐸posre(푡)= 푤! 풙!,!(푡)− 풑!,!(푡)
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(1)

!

!!!

!

!!!

 

The minima of the position restraints are updated every n integration time steps by  

 

풑!,! 푡+ 푛∗Δ푡= 풑!,! 푡+ 휅!풙!,! 푡− 풑!,! 푡 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

where ! denotes averaging over all j replicas.  The main parameters that need to 

be chosen are the number of simulation steps, n, before the position restraints are 

updated, the force constant, w ,of the position restraints and the relaxation rate, 휅, at 

which the restraints follow the average displacement.  These parameters influence the 

dynamics of the system; a low rate 휅 results in strong damping of motion.  There is a 

tradeoff between reducing fluctuations and improving sampling of the conformational 

space per simulation length.  We found an update every 500 steps, a force constant w 

of 100 kJ/(mol nm2)  and a relaxation rate 휅 of .5 as the best compromise. 
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Each production run contained three steps.  As the first step, the system was 

energy-minimized to remove potential atomic clashes due to the homology model 

building.  The minimization was performed with the steepest descent algorithm 

implemented in GROMACS and ran for 5000 steps or until converged in the 

AMBER99SB-ILDN[95] force field.  Afterwards TIP3P water was added to the 

system.  Some of the water molecules were then replaced by sodium-chloride ions to 

generate a physiological salt concentration and to neutralize the system.  In the second 

step an MD simulation was performed using an integration time step of 2 fs. . For 

each simulation random initial atomic velocities were drawn.  The simulations were 

carried out with periodic boundary conditions in all directions.  The particle mesh 

Ewald algorithm was used for electrostatic interactions with a Fourier spacing of 0.12 

nm and cutoff values of 0.9 nm.  The Nosé-Hoover temperature coupling[96] was 

used with a target temperature of 300 K.  The model structure was written to an 

output file every 5 ps.  The total runtime of each simulation was 5 ns as listed in Table 

1.  This means that for each target we actually simulated eight proteins 18 times for 5 

ns, which equates to 720 ns for a single protein simulation in explicit solvent.  In the 

last step an average structure for the target sequence was extracted from the 

simulation trajectory.  For this the trajectory of the model with target sequence was 

retrieved from the total MD trajectory.  The trajectories of the homologous replicas 

were of no further interest and therefore discarded.  The extracted trajectory only 

contained heavy atoms belonging to the target sequence.  This trajectory was finally 

aligned and averaged in Cartesian coordinates. 

 

 

Analysis of Simulations 

 

Following the protocol shown in Figure 2 the 18 generated averages were 

clustered.  The clustering algorithm is based on the pairwise RMSD between all 

possible pairs of averages: The nclust averages that were closest to each other in 

pairwise RMSD were identified.  For this, all 153 possible pairwise RMSD values 

were calculated.  In the case of nclust=4, all 1530 possible sets of 4 averages were 

formed.  Each of these had 6 possible pairs for which the corresponding RMSDs were 
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added together.  The set of averages that yields the minimum total sum is the set with 

the highest similarity.   

 

This clustering aims to select those trajectories that sample a similar 

conformational space.  We assume that if several simulations sample similar regions 

in conformational space they are likely driven by lowering the free energy instead of 

by random fluctuations.  This selection should therefore increase the probability of 

selecting the best trajectories closest to the correct structure for further processing.   

The final step is the computation of a super-average from the previously selected nclust 

averages.  After alignment the averages are again averaged in Cartesian space, which 

leads to poor stereo-chemical properties such as wrong bond lengths and angles.  To 

fix the geometry we first used the SCWRL4.0[97] package for side chain 

replacement.  Since the super-averages still contained a good approximation of the 

center of mass for each side chain we did not perform a full rotamer optimization 

search but simply used the rotamer with a center of mass most similar to the averaged 

side chain.  To fix the atomic distances and angles, we performed one final energy 

minimization with weak position restraints of 100 kJ/(mol nm2) on all heavy atoms 

and additional strong position restraints of 50000 kJ/(mol nm2) on the Cα atoms.  The 

strong restraints prevented the structure from moving too far from the refined atomic 

positions, but still allowed for sufficient flexibility to correct the local molecular 

geometry.   

 

 

Our submission models 1 to 5 were calculated using nclust from 4 to 5, 6, 8 or 

10.  In Table 1 the details for each CASP11 target are summarized.  It is again 

important to underline that this protocol differs fundamentally from fixed position 

restraint MD simulation.  There is no restriction to the possible conformational 

changes due to the start conditions.  We do not employ any further information about 

the target starting quality or special regions of interest in a model as provided by the 

Prediction Center.  Every CASP target was treated in the same way, ignoring any 

hints provided. 
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3.5 RESULTS 

 

General CASP11 results 

 

Our refinement method was applied to all 37 refinement targets released in the 

refinement category by the Prediction Center during the CASP11 competition.  For 

each target 18 independent simulations with different random initial atomic velocities 

were performed.  Instead of a single long simulation, we performed multiple short 

simulations which has been observed to better sample closer to native structures [85], 

 

For each target five submission models were created (see METHOD).   

However, a reliable prediction requires selecting the best possible model; ranking 

models according to quality is therefore an important but typically challenging part of 

the prediction process.   This discussion, therefore, only focuses on our first 

submission models, which represent our best guesses.  However, it should be noted 

that in all cases the five submission models were very similar with an average 

standard deviation of GDT-HA values between the 5 models of 0.78 .  A detailed 

analysis comparing each submission model with its corresponding correct target 

structure was made available by the assessors on the official CASP11 website, after 

the end of the prediction period.  The quantitative analysis of our submissions is based 

in part on this information provided by the CASP11 assessors as well as on our own 

analysis.  The most common measures of refinement quality are the final values in the 

high accuracy global distance test (GDT-HA)[98] score,  the template modeling score 

(TMscore) [99], and the root mean square deviation (RMSD) of the submission model 

compared to the template.  These three measures test mainly the correct placement of 

Cα-atoms and use Cartesian distances after alignment to evaluate the similarity 

between two structures.  The Molprobity score (MolProb)[100] and the Sphere 

Grinder Score (SphGr)[101] are used to assess the quality of stereochemistry and side 

chain orientation.   
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Detailed Results 

 

The results of our refinement method are shown in Table 2 in terms of these 

five scores. The five best and the five worst scores for each submission are 

highlighted in green and red, respectively.  A comparison of the corresponding GDT-

HA values shows that 24 of 37 targets were improved and that the improvement of the 

best structures is nearly twice as high as the deterioration of the worst structures, 

which shows clearly that our method is more likely to generate larger positive than 

negative effects. 

Target 
 

GDT-
HA

∆GDT-
HA

RMSD ∆
RMSD

MolPrb ∆
MolPrb

SphGr ∆Sph
Gr

TM
score

∆TM
score

TR217 60.24 -4.88 1.90 0.20 1.98 -1.22 89.52 2.38 0.90 -0.02
TR228 59.82 4.16 3.40 0.10 1.24 -1.68 86.90 -2.98 0.76 0.06
TR274 25.82 -3.28 3.90 0.20 1.94 -0.04 28.14 0.82 0.61 -0.02
TR280 71.36 11.99 1.70 -0.40 2.09 -0.42 80.21 6.77 0.85 0.06
TR283 40.06 -1.28 2.80 -0.10 1.45 -1.70 61.22 0.32 0.78 0.01
TR759 52.82 7.66 2.00 -0.70 1.16 -1.59 73.39 4.04 0.68 0.10
TR760 51.37 -6.34 2.70 0.30 1.92 -1.50 72.14 2.99 0.84 -0.03
TR762 63.13 -7.69 2.30 0.10 1.35 -0.09 83.07 0.00 0.90 -0.01
TR765 75.97 16.88 1.80 -0.50 1.04 -2.15 83.55 0.66 0.46 0.03
TR768 69.23 4.54 2.10 -0.10 1.79 0.44 80.07 -0.70 0.87 0.01
TR769 66.24 6.44 1.60 -0.10 1.29 -0.57 63.40 10.82 0.86 0.02
TR772 49.88 -2.64 3.30 0.40 2.01 -0.09 64.65 -1.01 0.80 0.00
TR774 36.50 -2.66 3.00 0.30 1.92 -1.64 38.33 -5.67 0.68 -0.02
TR776 67.12 2.85 2.00 0.10 1.43 0.20 84.70 1.37 0.91 0.00
TR780 59.48 5.01 2.20 -0.20 1.79 -1.00 80.53 -2.10 0.79 0.00
TR782 72.73 7.50 1.40 -0.30 1.49 0.24 81.36 1.36 0.90 0.03
TR783 61.73 3.71 2.30 0.30 1.77 -1.33 86.83 1.64 0.88 -0.01
TR786 54.15 5.07 3.00 0.00 1.69 0.31 80.88 0.47 0.84 0.01
TR792 65.94 8.13 1.50 -0.50 1.23 -1.21 91.25 -0.63 0.85 0.06
TR795 63.97 4.04 2.20 0.30 1.60 -1.17 73.16 2.94 0.86 0.00
TR803 32.27 -2.06 3.10 0.30 1.05 -1.64 45.15 0.75 0.59 -0.05
TR810 57.78 2.45 1.60 -0.20 2.04 -0.15 62.00 0.44 0.81 0.01
TR811 67.33 -6.18 1.60 0.30 1.61 0.35 93.43 0.20 0.94 -0.02
TR816 60.30 8.46 1.90 -0.40 1.38 -1.24 85.29 4.41 0.76 0.08
TR817 63.02 -3.30 1.80 0.20 1.82 -1.48 86.79 -3.78 0.91 -0.03
TR821 62.94 13.92 1.70 -0.80 1.36 -0.71 97.06 0.79 0.93 0.07
TR822 36.41 5.93 2.90 0.00 1.94 -2.12 49.56 -3.51 0.62 -0.01
TR823 47.31 5.99 2.80 -0.20 1.46 0.01 73.96 -1.04 0.82 0.01
TR827 41.71 6.48 2.90 -0.60 1.44 -1.10 83.94 2.85 0.78 0.05
TR828 45.53 -4.77 2.80 0.60 2.15 -1.09 53.57 0.59 0.68 -0.05
TR829 49.62 -1.50 2.90 0.40 1.45 -0.64 54.48 0.00 0.62 0.00
TR833 58.56 -3.71 2.10 -0.10 1.75 -0.76 75.93 -0.46 0.76 -0.03
TR837 43.18 -0.62 2.30 0.20 1.73 -0.98 78.93 -2.06 0.77 -0.01
TR848 64.86 5.98 1.80 -0.20 1.77 -0.46 70.65 1.08 0.83 0.02
TR854 60.00 -0.36 1.90 0.10 1.79 0.56 79.29 -1.42 0.75 -0.02
TR856 52.83 -9.43 2.10 0.20 2.27 -0.68 67.30 -2.20 0.85 -0.03
TR857 35.41 1.29 2.50 -0.10 1.71 -1.60 17.33 5.33 0.67 0.01
 
Table 2:  Overview of the results for all CASP11 submission models 1.  The first 

column indicates the target ID number as assigned by the prediction center.  The 
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other columns provide the scores as obtained from the official CASP11 website.  The 

GDT-HA score is the difference between the submission model and the target 

structure.  ∆GDT-HA is the difference in the start model GDT-HA to the target 

structure and the submission model GDT-HA to the target structure.  Positive values 

indicate successful refinement.  For ∆RMSD negative values correspond to improved 

structures. High MolProbity score (MolPrb) values indicate model with good 

geometry.  SphGr is the Sphere Grinder score normalized to values between 0 and 

100, with 100 corresponding to a perfect prediction.  The TMscore is another 

measure of similarity related to GDT-HA and is defined between 0 and 1, where 1 

represents the best possible prediction. Highlighted in green are the 5 best targets in 

each column, in red the 5 worst targets. 

 
 

 

 

To further illuminate this point, Figure 3 shows the GDT-HA before 

refinement plotted against the GDT-HA after refinement for all 37 CASP11 targets.  

Points above (below) the null refinement line (Figure 3 black dashed line) represent 

targets that were improved (deteriorated) in terms of GDT-HA.  The majority of 

targets, in total about 65 % models, could be successfully improved by our refinement 

method.  Furthermore, the best models are much higher above the line than the worst 

ones are below.  This again underlines the claim that our method tends to improve 

more than to deteriorate a model during refinement.  If a model was improved the 

GDT-HA increased on average by 6.6, and if a model could not be improved, the 

GDT-HA decreased by 3.9 on average.  
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Figure 3: CASP11 refinement results are shown as a comparison of GDT-HA scores 

before and after the refinement for the first submission models.  The null refinement 

line is plotted in black.  Points above this line indicate an improved target, any point 

below a worsened target.  The blue region in the center defines the interval of most 

successful refinement, where 17 of 26 models could be improved.  Less than 50 % of 

the targets with lower starting quality were refined.  The two targets of higher 

starting quality could not be refined. 

 

Of special interest is the region of starting GDT-HA scores between 45 and 70 

(blue shaded area in Figure 3).  There were 26 targets that fell in this region, 17 of 

which were successfully refined.  Our method however failed on the two models with 

higher starting GDT-HA values.  The reason could be that improving a GDT-HA 

score above 70 is beyond the accuracy of our approach.  In particular, we used for 

both of these two high-quality starting structures homologous replicas with an average 

sequence identity of about 88 %, which further limits the accuracy, because the native 

structure of these replicas will be slightly different and therefore pull the model with 

the target sequence possibly in a wrong conformation.  It might be useful to use 

identical replicas for starting models above a certain quality to avoid to the potentially 

detrimental effect of different sequences.  This will need to be further investigated.  
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For starting GDT-HA scores below 45, less than 50% of the models were 

refined.  The large distance of the starting model from the native structure could mean 

that the free energy landscape is not strongly funneled towards the global free energy 

minimum.  For structures this far away from the global minimum the initial 

movement could therefore be driven more by random fluctuations rather than by 

directed motions.  Further the length of each individual simulation run limits the 

refinement.  To achieve successful refinement in this quality range it might be 

required to run longer simulations, which would allow the coupled proteins to 

undergo larger conformational motions. 

 

The blue shaded region in Figure 3 defines the range in which our method is 

most likely to produce successful model refinement.  It can be assumed that protein 

structures falling into this region benefit the most from the effect of coupled 

homologs.  The starting quality is sufficiently high to reduce random motions within 

local energy minima.  And it is not so high that the homologous structures end up in a 

tug-of-war between their individually favored conformations and the desired target 

structure.  If the starting quality of a homology model is known this observation 

allows an a priori estimation of the likelihood that this method will yield an improved 

structure.  Below we will demonstrate how this likelihood can also be estimated a 

posteriori using a correlation between starting quality and the variability of the 

different simulations. 

 

A close up on interesting targets 

 

In order to elucidate the effect of starting quality all 18 trajectories of 4 

representative targets were plotted in Figure 4.  A frame of the model with the target 

sequence was written to file every 5 ps during the simulation.  For each frame the 

TMscore to the correct structure was calculated.  The top curves show target TR811, 

which had an initial TMscore of 0.96 and a GDT-HA score of 73.5.  This target 

belongs to the group of targets with a high starting GDT-HA.  In all 18 trajectories the 

quality of the model worsened immediately to an average TMscore of 0.926.  After 1 
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ns the runs appear to converge and afterwards do not undergo any major 

conformational changes. 

 

Figure 4:  All 18 TMscore trajectories for 4 representative targets.  TR811 represents 

the class of high-quality starting structures.  After a few steps all 18 trajectories show 

a reduced TMscore.  It is not possible to pick trajectories from these simulations that 

will yield improved structures after averaging.  Similarly, TR274 had a very low 

starting TMscore, and random fluctuations cause the TMscore to further decrease.  

Targets TR792 and TR228 have starting structures that benefit strongly from the 

homologous replica refinement.  Since some trajectories are consistently better than 

others, it is important to select only the best trajectories for structural averaging. 

 

They are also all very close to each other (average Cα-RMSD of 0.8 Å) 

indicating that a similar conformational space was sampled.  The replicas for TR811 

have an average sequence identity of 81 %.  Homologs with a sequence identity in 

this range are generally expected to have a Cα-RMSD of up to about 0.5 Å [89, 102], 

which is smaller than the Cα-RMSD of 1.44 Å of the starting model.  One could 

therefore assume that the structural difference between the different homologs does 

not limit the refinement accuracy in this case.  However, it should be noted that 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

crystal structures in different space groups already have significant deviations, e.g. 

different crystal structures of myoglobin have Cα-RMSD values of 0.54–0.79 Å 

[103].  The target structure is therefore not precisely defined, which might contribute 

to the fact that our refinement protocol was not able to improve the high-quality 

structures.   

 

Target TR274, shown in the bottom of Figure 4, represents the class of low-

quality targets.  In comparison to TR811 a wider spread of the TMscores can be 

observed, which suggests that the free energy funnel becomes flat with increasing 

distance from the target structure.  Because of this lack in guidance the simulation 

might explore more random conformations instead of driving the structure towards 

the target conformation.  

 

The trajectories for targets TR792 and TR228 are typical for starting structures 

from the quality range that yields the best refinement results with our approach.  It can 

be observed that the individual trajectories have high fluctuations during the 

simulation.  Furthermore some trajectories are consistently improving the TMscore, 

while others fluctuate around the null refinement line.  It would be beneficial to select 

only the trajectories that yield the largest and most consistent improvement in 

TMscore for further processing.  To illustrate whether our clustering approach (see 

Analysis of Simulations) is able to perform this task, the percentage of frames with a 

TMscore above the null refinement is calculated for all trajectories.  The same 

calculation is then repeated for the four trajectories selected based on the clustering of 

average structures by our protocol.   
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Figure 5:  Shown is a measure for the effectiveness of the clustering approach to 

select the best trajectories.  For each target, the percentage of improved frames from 

all 18 runs is compared with the percentage of improved frames from the four 

trajectories that were selected by the clustering approach.  For points above the 

diagonal the average TMscore for the selected 4 trajectories is higher than the 

average over all trajectories, which means the selection was successful.  For TR768 

(red circle), which falls significantly below the diagonal, no homologous sequences 

could be found and average structures could not be clustered successfully because the 

pairwise RMSD values were very close to each other.  The points on the left 

correspond to targets for which all trajectories quickly decreased the TMscore.  

Points on the right represent targets for which all trajectories improved the TMscore.  

The center region contains the targets for which the selection procedure is most 

crucial, because the percentage of refined frames is dependent on the selected 

trajectories. 

 

Figure 5 summarizes the results of this calculation for all targets.  The black 

dashed line represents no change in the ratio of refined over unrefined frames.  The 

fraction of refined frames in the four trajectories that were selected by the clustering 
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method is consistently higher than the fraction of refined frames in all trajectories, as 

shown by the concave curve (blue dots) with start and end points on the no change 

line.  This is easily understood if one considers that trajectories that had zero percent 

of improved frames cannot yield a subset that has more than zero percent improved 

frames.  The same argument is valid for trajectories with more than 95% 

improvement.  Any subset of selected trajectories is likely to yield again the same 

amount of improvement.  Most interesting is the intermediate range from 10 to 90%.  

The trajectories for a target in this range have a high discrepancy between each other.  

An appropriate selection as done by our method therefore increases the fraction of 

refined frames drastically.  For all targets but TR768 the subset of selected trajectories 

improved the fraction of refined frames.  For TR768 no homologous sequences could 

be found and the clustered averages are all very close to each other making it difficult 

to select the four most similar ones.  It is interesting to note that, however, the 

refinement of TR768 did not suffer too much from this problem: With an increase of 

the GDT-HA score by 4.54 it can still be considered a successfully refined target.  

Overall Figure 5 emphasizes that trajectories that sample a similar conformational 

space, are moving into the right direction.  If a single trajectory explores a path very 

different from the other trajectories, it is most likely driven by random forces and 

should therefore be excluded from further processing.   

 

We tested whether 18 simulations per target were necessary to achieve the 

refinement quality.  Hypothetical submission models were calculated and compared 

for 9 randomly selected trajectories with the true submission model.  The difference in 

TMscore was less then 1 % on average from which we conclude that the required 

simulation time could effectively be reduced by factor of 2.   
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3.6 DISCUSSION 

 

Quantitative Analysis 

 

From the observations mentioned above, it can be concluded that our method 

reliably refines most structures in a certain starting quality range.  In CASP11 a 

measure of the starting quality is provided in terms of an initial GDT-HA value.  In 

applications where the correct structure is not known, however, it is not easily 

possible to determine the initial quality of a homology model.  It would therefore be 

useful to estimate the quality of a starting structure retrospectively after a refinement 

calculation.  Such an a posteriori approximation is possible by using the data 

generated during the clustering of average structures.  In the refinement protocol 18 

average structures were created.  For each pair of averages the RMSD was calculated.  

The standard deviation of the obtained 153 RMSD values is a measure of the total 

variance in the trajectories.  We observe that high-quality starting structures produce 

very similar averages.  Bad starting structures, on the other hand, yield quite disperse 

average structures.  In Figure 6 the standard deviation of the pairwise RMSD values 

for all CASP11 targets is plotted against the corresponding starting quality as 

measured by the TMscore.  A Pearson correlation coefficient of -0.73 was found 

between these two measures.  This strong negative correlation means that the quality 

of a homology model can be well estimated from the standard deviation of pairwise 

RMSD values after the refinement protocol is finished.   
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Figure 6:  The correlation between the standard deviation of all pairwise RMSD 

values of the averaged structures and the starting TMscore is -0.73.  The variance of 

pairwise RMSD values therefore yields an estimate of the quality of the starting 

model. 

 

In addition to assessing the absolute quality of a model, the success of a 

refinement calculation can also be estimated by calculating the average position 

restraint energy, as given by Equation 1.  Large average restraint energies indicate 

that the Cα atoms are often far away from the corresponding restraint positions, which 

means that most of the time the replicas do not sample a common energy minimum.  

Low restraint energy could, on the other hand, indicate a structure that is closer to 

convergence.  Figure 7 plots the average position restraint energy against the overall 

improvement measured by ∆GDT-HA.  After excluding the outlier TR823 with a 

restraint energy beyond 2000 kJ/mol, a Pearson correlation coefficient of -0.49 was 

obtained.  This correlation can be used to estimate the improvement of GDT-HA from 

the observed restraint energies.   

 

 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

 

Figure 7:  The averaged restraint energy for each CASP11 target is plotted against 

the ∆GDT-HA score, which is the difference between GDT-HA scores before and 

after refinement achieved by the refinement protocol.  A Pearson correlation 

coefficient of -0.49 is obtained.  This indicates that refinement simulations that yield 

high restraint energies are likely to have decreased the model quality, whereas low 

restraint energies suggest that the refinement was successful.  

 

Qualitative Analysis 

 

 

In addition to a quantitative analysis it is also interesting to obtain a qualitative 

impression of the achieved refinement results.  Depending on the protein size and the 

initial model quality, we separate the refinement challenge into two broad categories: 

1) large global conformational changes and 2) smaller local changes in loops and 

side-chains.   

 

Large conformational changes of secondary structure elements are required in 

bigger targets with low starting quality.   A subset of CASP11 targets before and after 

refinement is shown in Figure 8 (images prepared with CHIMERA[104]).  The targets 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

TR821 and TR827 undergo a global motion in order to relocate the α-helical regions 

into the correct conformation.  On a smaller scale a similar error exists in TR816.  

Here one α-helix needs to be moved towards the protein to yield a better structure.  

Target TR759 shows a misplaced α-helix and a large deviation of the terminal loop 

and β-sheet region from the correct target structure.  Our protocol was able to 

improve these highlighted regions, as shown in Figure 8.  

 

Figure 8:  Selected CASP11 targets demonstrate global conformational changes that 

occur during the refinement.  The initial (purple), refined (blue) and native (golden) 

model are shown for targets TR827, TR821, TR816, and TR759.  

 

The second category of interest is models of high starting quality.  These 

models require mainly local changes in loop regions and amino acid side chains.  

Figure 9 shows for TR280, TR792, TR765, and TR782 the starting, target, submission 

models as examples as well as a zoom into a region with refined side chains.  The 

overall improvements in GDT-HA for these targets are between 7.50 and 16.88.  It is 

interesting to note that this improvement is mainly caused by local improvements in 

comparison to the globally improved targets discussed previously.  Many rotamers 

that were wrong in the starting model (purple) are fixed in the submission model 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

(gold).  The final step of our refinement protocol is the optimization of 

stereochemistry after the structural averaging.  This step has a lot of potential to be 

improved upon for further side chain optimization.  The low sphere grinder scores for 

many of our models are mainly due to this weak spot in our protocol.  Considering 

that this error is avoidable, the refinement results on the local level are nevertheless 

remarkable.  
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Figure 9:  Selected CASP11 targets demonstrate local conformational changes.  On 

the left the initial (purple), refined (blue) and native (golden) model is shown for 

targets TR280, TR792, TR765, and TR782.  A zoom into side chain regions is shown 

on the right for the corresponding targets. 
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3.7 CONCLUSION 

 

The CASP11 experiment was an immensely important validation tool for our 

refinement approach.  We identified a starting model quality interval in which this 

method can be used with confidence to refine homology models.  We were also able 

to identify a criterion to estimate the model quality and the probability for refinement 

success.  This will be of particular importance for applications where model quality is 

not known.  The refinement protocol can be further improved upon, as this study has 

shown.  It was found that similar results could have been obtained with a lower 

demand in computer time.  Furthermore, we found that local structure refinement 

could be further improved by an adaption of the side chain optimization step. 
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Chapter  4 Refinement with Adaptable 

Restraints 

 

4.1 General Introduction 

 

 The last two chapters relied heavily on the technique of adaptable restraints.  

This is not per se a novelty, but rather an adaptation of the existing deformable elastic 

network method that has been used effectively in refinement of crystallographic 

models.  The underlying mathematical description of this method has not been 

investigated so far.  The aim of this chapter is to investigate the impact exercised by 

additional dynamic restraints on a molecular dynamics simulation. 

 

 The case of a simple one dimensional energy landscape with a single particle 

will be investigated.  The forces acting on the particle will be modified through the 

addition of a virtual mass that is connected with a spring to the particle.  This virtual 

mass does not experience the underlying potential and is therefore another 

representation of dynamic restraints.   

 

 This one-dimensional case will be expanded into higher dimensions and 

finally be applied to a small bio-molecule, trialanine.  The author has performed the 

implementation of the algorithms, the experimental setup, the derivations and final 

analysis under supervision of Professor Schröder.  This chapter will soon be 

submitted to peer review and follows the guidelines of JCTC.  
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4.2 Abstract  

 

 High-dimensional search problems are of great importance.  The method of 

adaptable restraints in elastic networks has been very successful in guiding high 

dimensional searches in the X-ray crystallographic settings and protein structure 

refinement problems.  Here we present the fundamental reasoning from statistical 

mechanics that shows the impact of such elastic networks.  We find that they rescale 

and smooths the energy landscape and allow searches to explore free energy minima 

more frequently.  

 

4.3 Introduction 

 

The refinement of a protein structure requires finding the most probable 

conformation of the protein. The most probable conformation corresponds to the 

lowest free energy state.  Several methods such as replica exchange[105], Monte 

Carlo sampling[106, 107] or importance sampling[108] have been developed to 

improve sampling of the energy landscape[109].  It is the aim of these methods to 

determine the Boltzmann distribution more efficiently. However, in the case of 

protein structure refinement, we are mostly interested in the most probable structure, 

which belongs to the free energy minimum[110].  Sampling the (broad) Boltzmann 

distribution should therefore not be necessary. In a high-dimensional system there are 

many local free energy minima. Even though the state with the lowest free energy is 

most probable, the chance of visiting this state is low because of the large number of 

accessible states.  Global minimization (e.g. simulated annealing [111], potential 

smoothing[112], global optimization[107]) methods are not suitable because we are 

not searching for the global energy minimum, but the free energy minimum at a given 

temperature.  It is important to make sure that the order of states remains unchanged. 

  

Here we investigate the effect of applying an adaptive restraint during the 

sampling. The idea is to add an extra harmonic potential to the energy landscape and 

to couple the minimum of this potential to the particle coordinates.  This can also be 

described as a coupling to a virtual heavy mass that is attached by a spring to the 
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particle, but that does not feel the energy landscape.  The motion of the virtual mass is 

instead over-damped such that the heavy mass slowly follows the motion of the 

particle. Such adaptive restraints have been introduced recently to the field of 

crystallographic and cryo-EM model refinement in the form of the Deformable Elastic 

Network (DEN) restraints [113-116].  Refinement with DEN restraints has been 

shown to lead to significantly improved structures especially with low-resolution data, 

where such a hybrid energy landscape is less tilted towards a global minimum.  The 

method of adaptable restraints has also gained importance in the field of protein 

structure prediction. Here large and heterogeneous proteins and complexes have been 

successfully refined using a DEN like approach, as seen in the CASP competitions 

(see Chapters 2 and 3). 

 

Here we first develop an analytical description for adaptive restraints in one 

dimension.  We then explore the impact of adaptive restraints in higher dimensions.  

Following this, the difference between lowering the temperature and the effect of 

adaptive restraints is explained.  Finally we apply this method to a high dimensional 

search problem on a small bio-molecule [117].  We apply the adaptive restraints to 

sample the conformational space of trialanine by molecular dynamics (MD) 

simulation and demonstrate improved sampling over classical MD simulation. 
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4.4 Theory 

 

We investigate the impact of an additional adaptive restraint on the population 

of states of a particle in a potential.  We also study how the adaptive restraints change 

the rate of transition over energy barriers.  The derivation presented in this section is 

made for an arbitrary potential and will be validated on the special case of a double 

well potential in the next section.   

 

Figure 1  An example double well potential is shown in blue.  The pink histogram 

represents the population of states of the particle over an integration time.  If the 

virtual mass is located at the minimum of the black parabola it will be updated 

towards the mean position of the particle by a fraction determined by kappa.  The 

black update arrow indicates this. The resulting extra potential after the update was 

applied is shown in green. 

 

Let us consider the distribution of a particle, p(x), which is given by the 

potential energy function, 퐸푥, according to the Boltzmann equation 

 
푝푥 =

!

!
∗exp −

! !

!! !
. (1) 

Update
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The additional adaptive restraint is modeled as a virtual mass connected by a 

spring to the particle position x. The position of the virtual mass, denoted by x’ , 

defines the minimum of a harmonic potential, 

 퐻푥,푥! =
!

!
휔푥− 푥! !, (2) 

with force constant ω .  The virtual mass, however, does not experience forces from 

E(x) and therefore moves on a flat energy landscape.  During a dynamics simulation 

the particle will sample the energy landscape, while the position of the virtual mass, 

x', will therein slowly follow that of the particle.  These position updates are 

controlled by a relaxation parameter!휅.  After each time step the position x’  is updated 

with 

 푥!!!
! = 푥!! + 휅푥− 푥!!  . (3) 

The virtual mass changes the energy landscape for the particle.  The potential 

energy at each time step is now 퐸total 푥,푥! = 퐸푥 + 퐻푥,푥! .   

 

We will first present an algorithm that can be used to simulate a particle 

coupled to a virtual mass on arbitrary energy landscapes.  Since we use this example 

as a simplified description of the motion of a molecule in solution we employ 

Langevin dynamics to describe the dynamics of the particle.  The advantage of 

Langevin dynamics is that it incorporates random movement due to Brownian motion 

and therefore allows for the particle to undergo random motion without the need of 

explicitly modeling interactions with solvent molecules.  A numerically stable way of 

integrating the Langevin equation of motion is provided by the leap-frog algorithm.  

Sweet et al. [118] presented a derivation for an implementation of the leap-frog 

algorithm for Langevin dynamics.  Here the algorithm needs to be complemented 

with additional updates for adaptive restraints.  This yields the following integration 

scheme:   

The first half step for the velocity is computed 

 
푣
!!

!
!
= exp −훾

! "

!
푣! +

!! ! " # !!
! "
!

!
푀!!푓푥! + 2푘!푇!훾푀

!
!
! ∗

!! ! " # !!!! "

!!
푅! , 

(4) 
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with the friction coefficient,!훾, the time step,!훥푡, the mass of the particle,!푀, the 

force,!푓(푥!) , acting on the particle at position 푥! , the Boltzmann constant 푘!  , the 

temperature 푇,  and a normal random variable 푅! .  

 

2. Propagation of the particle 

 푥!!! = !푥! + 훥푡!푣!!!!
!!. (5) 

3. Propagate the adaptive restraint 

 푥!!!
! = 푥!! + (푥!!! − 푥!!)∗휅!.!!!!!! (6) 

4. Calculate the force on the particle  

 
푓푥!!! = !−

푑퐸푥!!!
푑푥

−
푑퐻푥!!! − 푥!!!

!

푑푥
!!.!!!! (7) 

5. The final half step for the velocity 

 

푣!!! = exp −훾
훥푡

2
푣
!!

!
!
+

1− exp −훾
훥푡
2

훾
푀!!푓푥!!! +  

2푘!푇!훾푀
!
!
! ∗ !! ! " # !!!! "

!!
푅!!!.                       

(8) 

This algorithm has been implemented in Python.  

 

In the following we aim to determine the distribution of particle positions for a 

given energy landscape with adaptive restraints, 퐸total 푥,푥! = 퐸푥 + 퐻푥,푥! .  This 

expression is, however, not very useful for analytical investigation, because of the 

time dependency of x and x’  and a strong correlation between x and x'.  If we instead 

look at the equilibrium situation, the effect of the virtual mass can be written as a 

continuous offset in potential energy denoted as 퐸′푥, which leads to a modified 

expression of the Boltzmann distribution of the particle 

 

 

푝′(푥)=
!

!!
∗exp −

! ! !!! !

!! !
!. (9) 

The difference between Eq. 9 and Eq. 1 is the additional energy term 퐸′푥 

and the new partition function 푧!.  The distribution of particle positions, 푝′(푥), can 

easily be calculated numerically using the Langevin-dynamics algorithm described 

above.  The term 퐸′푥!describes the average offset in energy caused by the virtual 

mass in the limit of long simulation times.  We are now interested in understanding 
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how!푝′(푥) depends on the strength, 휔, and the relaxation rate, 휅, of the adaptive 

restraint.  For this we will derive an analytical expression of!퐸′(푥).  

The effect of the virtual mass on the energy landscape in equilibrium can be described 

as the contribution of the harmonic potential at each position, x.  This can be written 

as 

 퐸!푥 = !!∫푝푥,푥! ∗!퐻푥,푥!푑푥!!. (10) 

Here 푝(푥,푥′) represents the joint probability to find the particle at a position x 

and the virtual mass at a position x’ .  This expression can be substituted according to 

the multiplication rule as 

 푝푥,푥! = 푝푥푥! !푝′푥! !.! (11) 

The conditional probability 푝푥푥!  describes the distribution of the particle 

around a certain position of the virtual mass.  We approximate this distribution with a 

Gaussian distribution, 

 
푝푥푥! =

!

!!!
exp −

!!!!
!

!!!
. (12) 

The standard deviation in this expression depends on the strength, 휔, and the 

relaxation rate 휅 of the adaptive restraints.  The rate 휅 determines how fast the virtual 

mass follows the particle.  An increase in temperature will generate larger fluctuations 

of the particle around the virtual mass.  In a linear approximation this fluctuation 

increases with 1− 휅. With increasing force constant 휔 the restraints connecting 

particle and virtual mass become stiffer, which reduces the fluctuation.  Combining 

these observations we express the variance of the particle fluctuations as 

 
휎휔,푘!푇,휅 = !

!!!(!!!)

!
!!. (13) 

To solve Eq. 11 the distribution 푝!푥! !could be obtained from a simulation 

and be used to solve Eq. 9 numerically.  But a priori 푝!푥! !is unknown.  We therefore 

turn to an alternative representation of the joint probability in Eq. 10, 

 푝푥!,푥 = 푝푥!푥!푝!푥!. (14) 

Here the distribution of the virtual mass around a given particle position is 

needed.  We assume again that this distribution can be modeled with a Gaussian of the 

form 
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푝푥!푥 =

!

!!!!
exp −

!!!!
!

!!!!
. (15) 

In this expression the parameter 휎! is determined by fitting to numerical 

results from the simulation.  The distribution 푝!푥 in Eq. 14 is again unknown.  But 

in contrast to 푝′푥′ in Eq. 11 we find an approximation: if we assume that the virtual 

mass only slightly modifies the energy landscape it may be assumed that 

 푝!푥!~!푝푥!!.! (16) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The probability of finding a particle in state B is shown for simulations and 

analytical evaluations in the double well potential. Adaptive restrain simulations were 

performed for changing temperature and force constant.  The analytical solutions are 

obtained from solving Eq. 11.  The right branch is the integration of the unmodified 

potential without impact of the virtual mass.  The left branch keeps the temperature 

constant and changes the force constant on the adaptable restraint.  Each point 

represents the results of integration with fitting parameter 휎! = 2.4.  which is 

obtained approximating Eq. 13. 

 

With this approximation we determine 퐸′(푥) in Eq. 10 for any 휎! and then 

compute the Boltzmann distribution by Eq. 11.  This derivation has been used to 

analytically determine the relation between the population of the global free energy 

minimum and the effective energy barrier as shown in Fig. 2, which agrees well with 

the numerical results obtained from simulations, as described below.  
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4.5 Results 

To verify the assumptions made in the Theory section, we consider as a simple 

example of an energy landscape a double well potential, defined by the sum of two 

inverted Gaussians: 

 
퐸푥 = −

퐴!

2휋휎!
exp

푥− 휇!
2휎!

! − !
퐴!

2휋휎!
exp

푥− 휇!
2휎!

! !. (17) 

 

We selected a set of suitable parameters to generate a double well potential, which is 

depicted in Fig. 1. 

   

 

Figure 3 Boltzmann distributions for a double well potential defined by 퐴! =

111,휎! = 1.8,휇! = 1,퐴! = 115,휎! = 2.2,휇! = 1!is shown in black.  The energy 

difference 훥퐸 is the energy difference between the maximum in state A and the 

population at the energy barrier.  The Boltzmann distribution at lower temperature is 

shown in blue.  The arrows indicate that the change in population is negative at state 

A and at the energy barrier.  The simulated distribution for the adaptive restraints is 

shown in red.  A decrease in state A but an increase in energy barrier can be seen for 

a comparable increase in state B population. 

 

Energy Barrier

Local Minimum Global Minimum

∆E from Left

A B
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A Python implementation of the Langevin dynamics integration scheme was 

used to simulate a particle in this double well potential.  We chose to set the mass and 

friction coefficient to 1.  Only 푘!푇 was left variable to control the simulation 

temperature.  To ensure sufficient sampling each simulation was performed for 2 

million integration steps.  For a simulation without adaptive restraints the distribution 

of particle positions in the potential follows as expected the Boltzmann distribution, 

as shown for comparison for 푘!푇= 1 in Fig. 3 (black).  The particle can be found in 

two separate states according to the two energy minima in the double well potential.  

The local minimum on the left corresponds to state A, and the global minimum on the 

right corresponds to state B.  The left-sided energy barrier 훥퐸 is defined as 

 훥퐸= 푘!푇!(− ln!(푝푥barrier )+ ln 푝푥minimum !), (18) 

where p(x) denotes the probability to find the particle in a position x as obtained from 

the normalized histogram of particle positions and xbarrier is fixed at the position of the 

barrier in the original energy landscape.  Figure 3 also shows the particle distribution 

obtained from a simulation at!푘!푇=0.65 (blue curve).  According to the Boltzmann 

equation lower temperatures increase the population of states with lower potential 

energy leading to an increase in the population of state B.  Instead the populations of 

state A and at the energy barrier are reduced.  

 

Effect of adaptive restraints in 1D 

 

If we now apply the adaptive position restraint in the simulation a very 

different behavior is observed.  Figure 3 shows the resulting particle distribution for 휔 

set to 0.5 at 1푘!푇  (red curve).  The population of the global minimum (state B) with 

adaptive restraints is comparable to that obtained from the low temperature 

simulation.  But the population of state A has decreased even below the population of 

the energy barrier.  This causes a change in the sign of 훥퐸 for simulations with virtual 

mass.  Turning back to Eq. 10 it becomes apparent why this effect occurs.  In the limit 

of long simulations a particle in position x will see the virtual mass with a joint 

probability 푝(푥!,푥) at a position x’ .  To get the cumulative effect of the extra 

potentials we need to integrate over all possible positions x’ .  Because of the higher 

probability to find the extra potential in state B the energy of state A is raised.  Due to 
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the harmonic form of the extra potential the effect is even stronger for states farther 

away from state B.  This causes the energy of the local minimum to be raised above 

the level of the energy barrier.  From this we conclude that an extra potential raises 

the probability to be in the global minimum and increases transitions from nearby 

local minima into the global minimum.  The overall diffusion is however slowed 

down due to the relaxing additional harmonic potential.  For dynamics driven 

processes this is more advantageous than a reduction in temperature to find global 

energy minima.  In the further discussion we will also see that the extra potential 

increases the probability to be in free energy minima, a feature foreign to temperature 

downscaling. 

 

Figure 2 further illuminates our observations.  The purple points in the figure 

represent simulations performed at decreasing values of 푘!푇.  From each simulation 

we obtain an estimate for the energy barrier from the left state 훥퐸 according to Eq. 

18.  Further we calculate the population of the global energy minimum.  The blue 

curve represents the analytical values obtained from the Boltzmann distribution at a 

given 푘!푇.  We note that the as the population of the global minimum increases the 

energy barrier remains constant. The red points show simulation results with an extra 

potential for increasing coupling strength 휔.  We observe that the same improvements 

in population of global minimum are achievable as by temperature reduction.  Further 

we point out that 훥퐸 decreases with increasing population. In green we can observe 

that our approximated solution to Eq. 10 is capable of describing the effect of a virtual 

mass over a range of coupling strengths. This solidifies our claim that dynamic 

coupling improves the sampling of energy minima. 

 

High-dimensional energy landscapes 

 

An even more important task than sampling energy minima is the sampling of 

free energy minima.  In high dimensional problems entropic influences often times 

favor high-energy states above lower ones.  To discuss the impact of an extra 

potential on the population of free energy minima we generalize our Langevin 

dynamics simulation into higher dimensions.  For this it is only required to update 

each component of an n dimensional position and velocity vector with the previously 
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described integration scheme.  The only consideration to be taken into account is the 

distribution of the random force among the different coordinates.  For this reason the 

random force in each component is scaled by the inverse of the square root of the 

number of dimensions. 

 

The double well potential will again serve as the model.  For higher 

dimensions it is treated as a rotational symmetric potential.  For any position vector x 

of a particle in n dimensions a radius can be defined as distance from the origin 

푟= ∑푥!
!.  We select the parameters for the Gaussian distributions so that state A is 

now the global potential energy minimum, see inlet in Fig. 4a.  In three dimensions 

the volume increase of state B causes it to have higher entropy and to turn into the 

free energy minimum.  

 

Figure 4a The impact of adaptive position restraints in 3 dimensions is shown.  The 

double well potential (퐴! = 200,휎! = 5,휇! = 1.1,퐴! = 198,휎! = 5,휇! = 1.1) 

shown in the inset has an energy minimum in state A and a free energy minimum in 

state B.  The population state B is extracted from simulations with increasing 휔 at 

5!푘!푇 as shown in blue.  For increasing 휔 the occupation increases exponentially 

and the number of transitions decreases linearly, as shown Figure 4b.  For large!휔 

the transitions vanish and the statistics cause large fluctuations.  Compare in red with 

a decrease in temperature, which will yield greater occupation of state A, because 

temperature rescaling does not take into account entropy. 
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Figure 4b The number of transitions decreases almost linearly with increasing 

coupling strength 휔. 

 

At a temperature of !푘!푇= 5 the particle is simulated in the rotational 

symmetric potential in three dimensions.  For an unrestrained simulation the 

population of the free energy minimum is 0.55 %.  A stepwise increase in 휔 increases 

the population as shown in the blue line in Fig. 4 a.  With increasing 휔 the number of 

transitions decreases linearly as depicted in the dashed green line.  The transition rate 

is given in [1/s], wherein a second equals ten thousand integration time steps.  

The change in Helmholtz free energy is defined as 훥퐹= 훥푈− 푇훥푆, with internal 

energy U, temperature T and entropy S.  Therefore an increase in temperature is 

supposed to increase the population of the free energy minima as well.  The red curve 

in Fig. 4 a shows the results of simulations with decreasing temperature.  Even for 

very high temperatures we are not able to observe populations in the free energy state 

comparable to the simulations with adaptive restraints. 

 

This observation helps us understand the power of adaptive restraints in high 

dimensional problems.  The possibility of controlling free energy state population is 

much greater when an extra potential is introduced as compared to temperature 

rescaling.  Therefore high dimensional systems will sample free energy states more 

exhaustively with dynamic restraints. It is further to note that adaptive restraints do 

not only find energy minima but actually free energy minima. 
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MD simulations with adaptive position restraints 

 

One application of the adaptive restraint network is molecular dynamic 

simulations (MD).  It is commonly believed that proteins fold into conformations that 

minimize free energy.  For this reason it can be advantageous to add adaptive 

restraints to a MD.  These restraints will guide the simulation to explore 

conformations of proteins that are more native.  This can for example be used to 

refine protein structures obtained from homology modeling. Adaptive restraints were 

added to the GROMACS[119] (see Chapter 3) MD software.  They are implemented 

as harmonic position restraints with a strength 휔 that follow the restrained particles 

with a rate 휅.  

 

As a simple model we choose to investigate the conformational changes of a 

trialanine in explicit water when subject to dynamic restraints.  Mu et al. [120] have 

performed a detailed analysis of the states that trialanine can enter in a simulation.  

They further compared the calculated probabilities to experimental data.  They found 

that different MD force fields yield different population rates for the conformation 

that is found most frequently in lab experiments.  The stable conformations at 300K 

are the poly(Gly)II (P_II) structure, an extended 훽 conformation and the right handed 

helix conformation 훼! .  

 

These conformations are fully determined by the dihedral angles φ  and ψ  of 

the central alanine as shown in Fig. 5.  The center of each state have been proposed by 

Mu et al. as follows for (φ ,ψ ): 

 

P_II ≈ (-60°, +140°) 

훼!    ≈ (-80°, -50°) 

훽     ≈ (-120°, +130°) 
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Figure 5 Trialanine (inset) was simulated with GROMACS for three different 

conditions.  The population of the three main conformational states is shown.  The 

results for 200 ns simulation of a free MD at 300 K are shown in red.  In brown the 

results for adaptable restraints for 400 ns at 300 K but with 휔 = 900 and 휅= 0.5.  In 

blue temperature rescaled free MD at 200 K for 300 ns. 

 

For simulations at 300 K with the AMBER99SB-ILDN force field we can 

reproduce the three states.  But the main peaks are not exactly where proposed by Mu 

et al. [120].  For this study we performed nine100 ns simulations of trialanine in 

explicit TIP3P water with an integration time step of 2 fs.  From the generated 

trajectory the visited (φ , ψ ) combinations are extracted.  Each pair is assigned to the 

state with closest center.  In this fashion the population and transitions are counted.  

 

In Fig. 5 we report the impact of dynamically restraining the trialanine and 

compare it to simulations at 200 K and 300 K.  For the restrained simulation we kept 

the temperature at 300 K and added restraints of the strength ω=900 kJ/(mol nm2) 

with a following rate of κ=0.5 .  The 300 K simulations were performed for a total of 
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300 ns, the 200 K simulations for 200 ns, and the restraint simulations for a total of 

400 ns to improve the error estimate. 

 

We observe that the restrained simulations and simulations at 200 K yield the 

same population of the free energy minima.  This is because the P_II state is as well 

lower in terms of entropy and potential energy as the other states.  As observed in the 

one-dimensional analysis the 훽 state as the local minimum has a lower population for 

adaptive restraints.  The third state is no longer accessible for 200K simulations. For 

adaptive restraints the transition rates into the 훼!  state are extremely low. This is also 

the main reason for the large error bars.  To enter this state a large movement of the 

atoms is required.  Once the state is reached though the position restraints follow the 

atoms and make it very difficult to reach again the more distant 푃!! and 훽 states.  This 

is an artifact of the energy landscape in trialanine.  Two energy minima are close to 

each other and the third is remotely away.  In larger biological system with more 

degrees of freedom different states will be connected through paths along many 

smaller local minima.   

 

 

 

Figure 6 Transition rates for the three conditions.  Lower temperature shows 

substantially less transitions at similar occupation of the free energy minima. 

 

 

It is noteworthy to compare the transition rates as shown in Fig. 6.  For 200 K 

the transition rate between 푃!! and 훽 state dropped by 50 % compared to the 

restrained simulation. We conclude that the same population of free energy minima 

costs more in terms of systems dynamic for temperature scaled simulations.  It is 

therefore useful to guide a simulation with the aid of additional adaptive position 
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restraints.  This example has shown how adaptive restraints increase the sampling of 

free energy minima in biological relevant settings.  The same approach can also be 

used in more abstract methods.  We applied it for example successfully in high 

dimensional search problems.  

 

4.6 Conclusion 

 

This study has revealed the effect of adaptive restraints in molecular dynamics 

simulations. We have derived an expression for the one-dimensional case of a particle 

in an energy landscape.  This expression was verified for different coupling strengths 

in Langevin dynamic simulations. 

 

For high dimensional problems the adaptive restraints have been shown to 

sample the free energy minima more frequently.  This is an effect not always 

achievable by temperature rescaling. A small trialanine peptide was used to 

demonstrate the advantages of using adaptive restraints.  Adding adaptive restraints is 

powerful for a wide variety of search and sampling problems.  
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Chapter  5 Redesign of L ipase LipA 

 

5.1 General Introduction 

 

This chapter deals with the application of protein engineering methods to a 

real world example.  The lipase LipA from Pseudomonas aeruginosa will be the test 

subject of this study.  The aim is to modify this enzyme to catalyze a substrate that it 

does not catalyze in its wild-type form.  There are several aspects that are of great 

importance when designing a protein.  First one needs to find a way of reducing the 

search space of amino acid sequences.  The number of options for amino acid 

sequences is so large that it would not even be feasible to write them out.  Even a 

most simplistic ranking method, like alphabetical sorting, could not be achieved on 

the data set.  Second a tool is needed that can quickly and reliably compare and rank 

amino acid sequences with respect to their activity.    

 

In this chapter we will introduce the idea of sequential mutations to cope with 

the astronomical search space.  This will enable us to iteratively increase the activity 

with each new mutation.  A computational protocol is presented that can relatively 

quickly assign binding energies to amino acid sequences.  The combination of both 

methods has the purpose to assist directed evolution experiments to find a mutation of 

LipA with 900 % increased activity.  This work has been supported strongly by Dr. 

Filip Kovacic and Professor Karl-Erich Jäger.  The experiments and the 

corresponding analyses were performed in their lab.   The design of the simulation 

protocol and the search strategy is the work of the author under helpful supervision of 

Professor Schröder.  The calculations were performed with a computing grant on the 

super computer JUROPA.  The contents of this chapter will be submitted after final 

results are obtained from the lab. 
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5.2 Introduction: 

 

The Roche Ester is a molecule of high industrial relevance.  After hydrolysis a 

valuable component is generated that can be used for the production of detergents.  

Because no enzyme is known to facilitate this reaction, the aim of this study is to 

design one.  Protein engineering is the art of changing or altering, or even designing, a 

protein to make it serve a specific purpose. [121]  Nature appears able to adapt 

proteins for all of its own purposes.  The vast amount of sequence and structural data 

available today provides an impressive glimpse into the potential that rests in 

proteins.[122]  Most proteins consist of an amino acid chain with in between twenty 

and many thousand elements.  Each element is a small molecule, picked from the pool 

of 20 natural amino acids.   The amino acids form the basic set of building blocks 

from which the most complex molecular machines have emerged.[123]  The power to 

manipulate the coding sequence of genes has been harnessed for the last 30 

years.[124]  Provided the knowledge of a target amino acid sequence, advances in 

biotechnology allow the expression of any desired amount of a mutant protein in a 

suitable host system.[121] The key problem with protein engineering up until now 

rests in the following question:  how can we find the amino acid sequence that 

encodes a desired protein?[125]  

 

The most powerful tool in protein engineering to date is directed 

evolution.[126]  Random mutations are introduced to create a library of proteins.  

They are exposed to artificial evolutionary pressures in an attempt to identify more 

active mutations in the amino acid sequence.  The success of directed evolution over 

other protein design schemes is mainly due to of our current lack of understanding 

about the principal functions and interactions of the molecular machines.[127] [125]  

The alternative route to random experiments is rational design that utilizes existing 

knowledge about a protein such as its structure or sequence.[126] The often disastrous 

effects of 'rationally introduced' mutations on the stability and activity of proteins 

prompted Charles Craik to muse that 'protein terrorism' was a more suitable descriptor 

than protein engineering.[128]  But despite the very high failure rate associated with 

rational design, some proteins have been successfully engineered for industrial and 

biomedical applications.[129]  Oftentimes the engineered proteins are supposed to act 





Chapter 5 Redesign of LipA                      Protein Refinement & Engineering Methods 

�
�

as enzymes to accelerate desired reactions.  But even the best performing engineered 

enzymes are 5 to 10 magnitudes lower in activity than nature's counterparts.[125]  

Nowadays the distinction between rational design and directed evolution is becoming 

less clear as researchers commonly combine these techniques.[126]  In this work. a 

rational design approach is used to identify promising mutational candidates in the 

lipase LipA from Pseudomonas aeruginosa.  The predicted mutations have been 

introduced via PCR and tested for activity. The described protocol can aid to reduce 

the size of the screening libraries used in directed evolution experiments 

 

 

5.3 METHOD 

 

For a protein with 300 amino acids, which is about the size of an average 

protein, there exist a total of 10114 possible amino acid sequences (the known universe 

consists of approximately 1080 atoms).   To search for the best sequence is a search in 

an almost infinite space.  Therefore we need to make the assumption that there are 

many sequences that will yield the desired activity if we want to have any hope of 

tackling this problem successfully.  We start our search with the amino acids sequence 

of LipA from PA (PDB 1EX9) that has been crystalized in its open conformation.[130]  

It is the common belief that the transition state of an enzyme substrate complex has 

the greatest effect on activity.  If the transition state is more easily accessible and 

better stabilized by the binding pocket for a mutated sequence, then an increase in 

enzyme activity is expected.   

 

Here the next problem unravels.  How can one determine the transition state 

geometry for the amino acid sequences?  The correct geometry of the transition state 

can only be determined in the structure space.  The stable conformations of a protein 

are the minima of its free energy surface.[131]  The number of possible conformations 

that a protein of 300 amino acids can take may be approximated by the number of 

combinations of dihedral angles as has been done by Levinthal to be 10143[132], 

another astronomical number.  In a different paper Levinthal proposed a solution to 

the paradox arising from the vast number of different conformations a protein can 

explore and the efficiency of its folding.  He argued that pathways or energy funnels 
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exist which direct the search for free energy minima during the folding process.[133]  

We need to adapt a similar logic to cope with the search for the transition state 

geometry.  The crystal structure of LipA contains a covalently bounded substrate[130] 

and therefore approximates a transition state geometry.  One can expect additional 

electrostatic interactions for different substrates leading to slightly altered 

conformations.  But the conformation of LipA crystal structure should be deep enough 

inside the energy funnel for various substrates to allow a prediction of the true 

transition conformation.  We therefore simply removed the substrate from the PDB 

entry 1EX9 to obtain a scaffold for our protein design.  

 

Figure 1 Catalytic function of LipA. Left: catalytic triade with docked ester. Middle: 

transition state conformation with covalently bound substrate. Right: illustration of 

the catalytic reaction along a reaction coordinate.  The height of of the energy 

barrier, ∆G, determines the reaction rate.  A good enzyme design will reduce ∆G for 

a specific substrate.  Left image taken from [134] . 

 

Three states exist on the energy landscape of the hydrolysis reaction.  In the 

first state, substrate and enzyme interact only electrostatically.  In the second state, the 

product has been evicted leaving the enzyme unchanged.  In between the first and 

second state lies an energy barrier with the transition state of covalently bounded 

substrate and enzyme on top.[135]  The height of this energy barrier determines the 

catalytic rate of an enzyme.[136]  It is extremely challenging to quantify the absolute 

energy of a protein substrate complex, as no reference exists.  Fortunately it is a lot 

easier to express the relative difference between two states, by simply subtracting the 

potential energy calculated for both states.  We modeled the substrate-enzyme state 

(ES) as well as the transition state (TS).  The aim of our design approach is to 

minimize the energy difference between the ES and TS states.  There is also growing 

evidence that dynamics play a crucial role in protein function and that it should 

therefore be considered in the protein engineering process.[129]  Any simulation 

approach that wants to illustrate the change in dynamics due to mutations is 
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computationally expensive.  Because we do not want to ignore this important factor 

we do not consider only one single conformation of the protein.  Instead we generated 

an ensemble of 96 structures with exactly the same transition state geometry but with 

a spread of 2.5�Å�root�mean�square�deviation�(RMSD) in the remaining C-α protein 

backbone.  The RMSD value was calculated as the average of all C-α RMSD values 

between the 95 conformations and the crystal structure.  For each of these 96 

conformations the energy barrier is calculated.  The ensemble approach yields an idea 

of the role that dynamics plays.  If only a few conformations yield low energy 

barriers, then we can conclude that most of the structural space is unfavorable for the 

desired reaction.  

 

The transition state is the ground state geometry of the system consisting of 

the substrate, catalytic triad, and supporting amide groups in the protein 

backbone.[130]  For this set of molecules a density functional (DFT) transition state 

search was performed with SPARTAN[137].  From this calculation the charges and 

ground state geometry were obtained for the transition state geometry.  In addition a 

ground state search was performed just for the substrate to identify its geometry in the 

non-covalently bounded state.  The derived parameters and structures are listed in the 

next subsection.  With the ground and transition state geometries we are able to 

compare the energy difference between the ES and TS states for the wild-type LipA.  

At first 95 conformation of the crystal structure are created with CONCOORD[138], 

with the constraint of fixed atomic positions for the atoms used in the DFT 

calculation.  The crystal structure is also included into this ensemble.  For each 

structure in the ensemble two structures are generated, one with the ground state 

substrate inserted into the active site and one in the transition state conformation.   

 

The natural next question is how to calculate the energy difference between 

the substrate-bound and transition state.  Calculating the energy difference between 

the ES and TS states is the most crucial part of our design approach.  The scoring 

function needs to be precise enough to pick up small changes in the atomic 

composition of the protein, as well as fast enough to be applied to thousands of 

structures.  A full molecular dynamics simulation (MD) of the ES and TS systems 

would go beyond the constraints of time efficiency.  An energy minimization (EM), 
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on the other hand, can be done quite quickly, but might only yield a rough estimate of 

the closest minima next to the starting conformation.  We decided to approximate the 

energy barrier by the difference between the total potential energy between EM runs 

with implicit solvent for the ES and TS state.  We decided to use implicit solvent 

because an explicit water model generates large fluctuations in the potential energy.  

Implicit solvent yields more realistic results then a vacuum simulation.  The energy 

minimization is performed with the program GROMACS[139] for each mutation on 

all 96 structures of the CONCOORD ensemble.  The energy barrier is calculated as 

the mean of the differences between the TS and ES from all 96 structures.   The 

energy barrier obtained for the wild-type LipA serves as a reference for comparing the 

energy barriers obtained for the mutations.   The standard deviation between the 

energy differences calculated for the wild-type LipA amino acid chain in all 96 

conformations is at 1316 kJ/mol quite large.    

 

To be able to express the quality of a mutation in a comparable single number, 

potential energies from all 96 CONCOORD models are normalized with respect to the 

values obtained for the wild-type.  During the protein design process the mean of 

these normalized values will be minimized.  That means that a mutation which results 

in the same energy barrier as the wild-type would have a the normalized energy of 1. 

 

 

Figure 2  The evaluation pipeline takes a new amino acid sequence, performs and 

evaluates the mutation. The evaluation yields a small set of scores by which the 

mutations are sorted to find the most promising candidates in the sequence pool (see 

text). 

 

The generation and evaluation of mutants is depicted in Figure 2.  From a 

predefined pool of candidate sequences one is selected.  The side chain replacement 

tool SCWRL4[140] is used to introduce the mutations into the ensemble of structures.  
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Only the mutated side chains will be optimized, the remainder of the protein is kept as 

it was.  The replacement is done in the presence of the substrate to avoid unnecessary 

steric clashes.  The result of this step is an ensemble of 96 mutated structures,  for 

which the procedure described for the wild-type ensemble is repeated.  After 

minimization the potential energies are rescaled and averaged.  If the resulting value 

is smaller than 1 a potential candidate for the experiment was found.  One main 

challenge of this protocol is the creation of a useful pool of sequences.  When faced 

with the realization that it cannot be possible for a protein to try out every possible 

combination of dihedral angles,  Levinthal proposed an energy funnel that guides the 

folding of a protein.  We are in a situation similar to Levinthal’s paradox.  It is not 

feasible to try out every possible combination of amino acids to find the best 

performing protein.  In nature proteins that have emerged from evolution gained their 

function one mutation at a time.  Therefore we propose a funnel in sequence space, 

similar to the energy funnel proposed by Levinthal that leads to improved activity.   

Instead of jumping right towards the optimal sequence, we propose an iterative 

procedure.  Starting from single-point mutations we select the best candidate and then 

continue to double mutants and so forth.  A first the pool of sequences, therefore, 

consists of single point mutations.  We repeat the whole procedure to obtain two-point 

mutations for the successful candidates from this first iteration, treating the best one 

point mutations like the wild-type.  We can consider this strategy as a search tree.  At 

the root we have the wild-type sequence.  The first layer contains all possible 

(300*20-1) single-point mutations as children of the root.  Each consecutive layer 

adds the same number of children to each parent node.  Our search algorithm is a 

mixture of breadth and depth first searches.  All possible states that can be reached 

with a single-point mutation from the current node are first evaluated (breadth first).  

Then we jump to the child with the lowest scoring function value (depth first) and 

repeat for its children.  This process can be repeated until convergence for some 

higher point mutation. 

 

5.3 In silico Results 

 

 In this subsection, different steps of the design protocol are presented.  When 

redesigning an enzyme it is first crucial to understand its functional mechanism.  The 
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group of Karl-Erich Jäger has solved the open conformation structure of LipA in 

complex with OCTYL-PHOSPHINIC ACID 1,2-BIS-OCTYLCARBAMOYLOXY- 

ETHYL ESTER  at a resolution of 2.53 Å and published it under the entry 1EX9 in 

the Protein Data Bank.  The accompanying publication illustrates the main features of 

the protein structure and provides a comparison to the protein family via a multiple 

sequence alignment.  The structural information in Figure 3 is quoted here to assist 

the understanding of the reader.[130]   In the following subsections, the dynamics of 

LipA are analyzed through MD simulations.  Based on the movement of the double lid 

an ensemble approach is motivated.  The derivations of simulation parameters for 

Roche ester, docked and in complex are also presented.  Finally, all single-point 

mutations and the associated energy barriers, distances, and substitution probabilities 

are used to select the best candidates for in vitro experiments. 

 

 

 

 

 

 

 

Figure 3 Structure of P. aeruginosa lipase A, schematic view of the secondary 

structure elements of PAL. The ribbon representation was made using MOLSCRIPT 

(35); α-helices, β-strands, and coils are represented by helical ribbons, arrows, and 

ropes, respectively. α-Helices belonging to the cap domain involved in substrate 

binding are shown in red. The position of the α-helical lid is highlighted with the 

label LID. The phosphonate inhibitor covalently bound to the nucleophile Ser82, the 

calcium ion, and the disulfide bridge are in ball and stick representation in cyan, 
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black, and yellow, respectively. B, secondary structure topology diagram of PAL. The 

catalytic triad residues (Ser82, Asp229, and His251) and the position of the disulfide 

bridge are indicated, and a comparison with the canonical α/β hydrolase fold is 

given. α-Helices and β-strands are represented byrectangles and arrows, 

respectively. G1 and G2 are 310 helices and are represented by squares. Locations 

where insertions in the canonical fold may occur are indicated by dashed lines. 

Figure taken from Nardini et al. [130]  

 

5.3.1 MD Simulations of LipA 

 

The main points to take from Figure 3 are the helical lid motif right above the 

active pocket and the position of the catalytic triad.  To better understand the function 

of the lid and the overall dynamics of LipA, a MD simulation was performed starting 

from the crystal structure.  First, the ligand was removed from the PDB file.  

Afterwards a 1000 step energy minimization was performed with GROMACS.  The 

minimized structure was then solvated and the system neutralized by adding ions.  

Following this, short equilibrations were performed firstly in the canonical (NVT) 

ensemble to stabilize the temperature and then secondly another short equilibration in 

the isothermal-isobaric (NPT) ensemble to equilibrate the pressure.  This allows the 

water to relax and the following production run to occur at physiological conditions.  

The system was then simulated at 300 K for 200 ns with an integration time step of 2 

fs with temperature and pressure coupling.  The simulations were performed with 

periodic boundary conditions and long-range interactions were computed using the 

particle mesh Ewald method. 

 

The final trajectory was analyzed with the GROMACS tools and the results 

are visualized with PYTHON scripts.  The RMSD curve in Figure 5 shows certain 

transitions at about 100 ns.  A closer look into the structures reveals that the transition 

correlates with the movement of the helical lid.  To illustrate the movement further a 

principle component analysis was performed on the trajectory.  The aim of  the 

principle component analysis is to identify the main components contributing to the 

dynamics of the protein.  For this a covariance matrix of all C-α atoms is computed 

and diagonalized.  The eigenvalues and eigenvectors belonging to this matrix are the 
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principle components.  The eigenvector belonging to the largest eigenvalue is called 

the first component and contains the main movement of the protein.   In Figure 4 two 

projections on this first eigenvector are shown to illustrate the conformational change.   

The double-lid domains can achieve open and closed conformations.  The lid 

movement is essential for the function of the enzyme.[141]   

 

 

 

Figure 4 Projections on the first eigenvector of LipA 200 ns simulations.  An open 

and a closed conformation can be observed.  Rotational movement of the α helices 

(indicated by red arrows) along the hinge regions achieves the closed conformation in 

blue. 
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Figure 5 Root mean square deviation of C-α atoms of LipA from a MD simulation at 

a temperature of 300 K for a length of 200 ns. 

 

 

 

5.3.2 Multiple Sequence Alignment of LipA 

 

 In addition to the structural features the sequence of LipA is also of great 

interest.  Multiple sequence alignments help examine conserved residues in the amino 

acid chain.  Mutations in highly conserved areas are likely to disturb the overall 

function of the enzyme.  Mutations in less conserved regions are likely candidates for 

hot spots that trigger substrate selectivity.  To quantify the likelihood of a certain 

mutation, a position specific substitution matrix (PSSM) was computed via a 

PSIBLAST search.[142]  The heat map shown in Figure 6 represents the results of the 

BLAST search.  The dark colors in each band represent likely mutations.  The 

sequence search space for the enzyme optimization is restricted to mutations with low 

values in the PSSM (indicated by bright colors in Figure 6).  
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Figure 6 Position specific substitution matrix (PSSM) for LipA.  Darker colors 

suggest frequently occurring mutations in sequence related proteins.  Light colors 

represent mutations that do not occur often. 

 

 

5.3.3 Impact of Mutations on Protein Dynamics 

 

 The introduction of point mutations changes the local environment at first.  A 

change in the size of an amino acid’s side chain can open up cavities or cause steric 

clashes.  Besides these obvious effects, the overall dynamics of a protein can 

theoretically be changed through any mutation.  As shown previously, LipA uses a 

double lid movement to facilitate its enzymatic function.  If a certain mutation inhibits 

this movement the enzymatic function might be hindered.   It is therefore important to 

evaluate the impact of a mutation on the dynamics of the lipase.  It is computationally 

very expensive to perform full MD simulations for each mutation.  In this subsection 

a few representative simulations are analyzed and the results are used to motivate the 

ensemble strategy outlined earlier.   

 

The same simulation protocol as for the wild-type simulation was used for two 

mutations, 222Q and 122E.  These two mutations are directly in the hinge region as 

shown in Figure 7 and are expected to influence the dynamics of the lipase.  First the 

ligand was removed from the PDB file of 1EX9.  Then the mutations were written 

into a FASTA file.  This served as input for SCRWL4.0, a tool that can replace side 

chains and perform rotamer searches.  A 1000 step energy minimization was again 

performed with GROMACS for all mutants.  The minimized structures were then 

solvated and neutralized by adding ions.  Short equilibrations were then performed, 
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firstly in the canonical (NVT) ensemble to stabilize the temperature and then secondly 

in the isothermal-isobaric (NPT) ensemble to equilibrate the pressure.  The systems 

were then simulated at 300 K for 200 ns with time steps of 2 fs with temperature and 

pressure coupling.  The simulations were then performed with periodic boundary 

conditions and long-range interactions were calculated using the particle mesh Ewald 

method. 

 

 

Figure 7 Illustration of mutational sites of 122E and 222G.  These two mutations are 

directly in the hinge region and strongly impact the movement of the double lid motif. 

 

It is claimed that flexibility of the lid domain is of high importance for the 

enzymatic ability of the lipase.  To show the flexibility, the root mean square 

fluctuation of the four simulations is shown in Figure 8.  The shaded regions highlight 

the amino acids that belong to the double lid.  All mutations reduced the flexibility of 

residues 135 to 152.  These residues belong to the longer helix of the lid motif.  
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Residues 211 to 222 correspond to the second helix.  Most mutations appear able to 

retain the flexibility in this region.    

 

Figure 8 RMSF for 200 ns simulations of 3 mutations and wild-type LipA.  The 

shaded region shows the behavior on the double lid region. 

 

 From these observations it can be concluded that certain mutations might 

negatively affect the movement of the helical lid.  Unfortunately it is not possible to 

simulate every mutation to validate that the main enzymatic function is not hindered.   

The cost of such simulation would have exceeded our available computing time.  As 

an alternative approach to the simulation of the full dynamics, one can assume that 

various conformations will only be achieved if they are energetically favorable.  The 

mutations inserted in the two examples make it sterically impossible to achieve the 

closed conformation.  This insight can be used to our advantage.  Instead of 

simulating each mutation anew it is possible to select an ensemble of structures from 

the simulation of the wild-type lipase.  Every frame in the ensemble contains a 

different conformation.  If the mutations are introduced into these frames it is 

immediately possible to investigate possible clashes.  Therefore it is possible to assign 

a probability to each mutated frame that expresses the likelihood of achieving it 

during a simulation.  If a representative ensemble of the dynamics of the protein is 

picked it becomes therefore possible to evaluate and quantify the impact on the 

dynamics without the need of expensive simulations.   
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5.3.4 Representing Dynamics Through an Ensemble 

 

 A different way of sampling the Boltzmann ensemble of LipA is the generation 

of the ensemble with the CONCOORD algorithm.  The idea of this method is 

straightforward:  From the initial conformation of LipA a set of distance restraints 

between randomly chosen pairs of atoms is derived.  The distance restraints are 

represented by allowed distance intervals.  In the next step, the atomic coordinates are 

randomly perturbed.  In an iterative procedure a new conformation of the protein is 

constructed by moving pairs of atoms (that correspond to the distance restraints) along 

the connecting vector back into the allowed distance interval.  The iteration is 

repeated until all previously defined restraints are fulfilled.  This procedure was used 

to derive 95 protein conformations of LipA.  The RMSD between the frames and 

1EX9 is plotted in Figure 9. 

 

Figure 9 C-α RMSD for 95 frames obtained with the CONCOORD algorithm from 

LipA crystal structure.  The crystal structure was also added to the ensemble.  The 

frame with 0 RMSD corresponds to the crystal structure. 

 

 Whether or not to include the closed conformation in the ensemble was an 

important design decision.  After discussion with our collaborators it was decided to 

focus on an ensemble that represents the main features of the open conformation 
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dynamics.  Although the lid movement is of general importance, it does not affect 

investigation of the stability of the transition state geometry.  Figure 10 takes a closer 

look at the RMSF of the CONCOORD ensemble and compares it to the RMSF values 

shown earlier for the MD simulation of wild-type LipA.  It can be seen that the 

ensemble captures the dynamics observed in the MD simulation well and focuses 

thereby on the open conformation. 

 

Figure 10 RMSF of CONCOORD ensembles compared to wild-type LipA.  The α-

helix from residue 132 to 152 does not undergo the transition to the closed 

conformation.  This is desired to model the dynamics of the open conformation. 

�

5.3.5 Der ivation of Simulation Parameters for  Roche Ester  

 

So far only the impact of mutations on the structure and the dynamics of the 

lipase have been investigated.  Of course the main interest originates in the question 

of how the substrate specificity of the lipase changes due to mutations.  In order to 

quantify the interaction of protein and substrate we need to derive a set of parameters 

for the substrate that is compatible with the force field used in our simulation 

protocols.   

 

Our target substrate, Roche ester (C5H10O3), could not be found in any 

compound library with parameters for the AMBER99SB-ILDN force field.  For the 

derivation of accurate parameters for charges, bonds and angles in the ground state, 

we performed a density function theory (DFT) search for the Roche ester.  The 

MD-Simulation

Concoord Ensemble
Helical Lid
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computational chemistry program SPARTAN was used for this.  The first step was 

the creation of the compound with the GUI of the software.  The following table in 

the format of the Protein Data Bank was obtained. 

 

Table 1 PDB file for Roche ester 

 

The following table contains the parameterizations obtained for the ground state 

conformation of Roche ester.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ATOM 1� C4� ROC� A� 1� 0.932� -1.144� 45.332�
ATOM 5� O4� ROC� A� 1� 0.985� 0.168� 45.341�
ATOM 29� O5� ROC� A� 1� 1.553� -1.812� 46.520�
ATOM 30� C6� ROC� A� 1� 2.588� -1.047� 47.148�
ATOM 31� H9� ROC� A� 1� 3.399� -0.792� 46.441�
ATOM 32� H13� ROC� A� 1� 3.000� -1.687� 47.947�
ATOM 33� H3� ROC� A� 1� 2.195� -0.118� 47.591�
ATOM 43� C5� ROC� A� 1� -0.520� -1.742� 45.246�
ATOM 44� H11� ROC� A� 1� -0.871� -1.463� 44.227�
ATOM 45� C8� ROC� A� 1� -0.577� -3.283� 45.337�
ATOM 46� H15� ROC� A� 1� -0.353� -3.616� 46.363�
ATOM 47� H16� ROC� A� 1� 0.172� -3.733� 44.659�
ATOM 48� C7� ROC� A� 1� -1.461� -1.086� 46.277�
ATOM 49� H12� ROC� A� 1� -1.079� -1.256� 47.300�
ATOM 50� H8� ROC� A� 1� -2.472� -1.524� 46.211�
ATOM 51� H14� ROC� A� 1� -1.527� 0.002� 46.107�
ATOM 52� O6� ROC� A� 1� -1.898� -3.806� 45.051�
ATOM 53� H10� ROC� A� 1� -2.132� -3.485� 44.157�





Chapter 5 Redesign of LipA                      Protein Refinement & Engineering Methods 

�
�

 [ moleculetype ] 
; Name   nrexcl 
ROCE     3 
[ atoms ] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

; total charge of the molecule:   0.000 
[ bonds ] 

 

 [ pairs ] 

nr type resnr resid atom cgnr charge mass 
1 HC 1 ROCE H13 1 0.104 10.080 
2 HC 1 ROCE H9 1 0.104 10.080 
3 HC 1 ROCE H3 1 0.104 10.080 
4 CT 1 ROCE C5 1 -0.080 120.110 
5 O2 1 ROCE O5 1 -0.387 159.994 
6 O 1 ROCE O4 1 -0.594 159.994 
7 CT 1 ROCE C4 1 0.749 120.110 
8 HC 1 ROCE H11 2 0.046 10.080 
9 CT 1 ROCE C6 2 -0.115 120.110 
10 H 1 ROCE H10 2 0.438 10.080 
11 OH 1 ROCE O6 2 -0.657 159.994 
12 HC 1 ROCE H16 2 0.009 10.080 
13 HC 1 ROCE H15 2 0.009 10.080 
14 CT 1 ROCE C8 2 0.270 120.110 
15 HC 1 ROCE H14 3 0.061 10.080 
16 HC 1 ROCE H12 3 0.061 10.080 
17 HC 1 ROCE H8 3 0.061 10.080 
18 CT 1 ROCE C7 3 -0.183 120.110 

ai aj funct c0 c1 
1 4 2 0.1090 1.23E+11 
2 4 2 0.1090 1.23E+11 
3 4 2 0.1090 1.23E+11 
4 5 2 0.1435 6.10E+10 
5 7 2 0.1360 1.02E+11 
6 7 2 0.1230 1.66E+11 
7 9 2 0.1520 5.43E+10 
8 9 2 0.1100 1.21E+11 
9 14 2 0.1530 7.15E+10 
9 18 2 0.1530 7.15E+10 
10 11 2 0.1000 1.57E+11 
11 14 2 0.1430 8.18E+10 
12 14 2 0.1100 1.21E+11 
13 14 2 0.1090 1.23E+11 
15 18 2 0.1100 1.21E+11 
16 18 2 0.1100 1.21E+11 
17 18 2 0.1090 1.23E+11 
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[ angles ] 
 
 

ai aj funct 
1 7 1 
2 7 1 
3 7 1 
4 6 1 
4 9 1 
5 8 1 
5 14 1 
5 18 1 
6 8 1 
6 14 1 
6 18 1 
7 11 1 
7 12 1 
7 13 1 
7 15 1 
7 16 1 
7 17 1 
8 11 1 
8 12 1 
8 13 1 
8 15 1 
8 16 1 
8 17 1 
9 10 1 
10 12 1 
10 13 1 
11 18 1 
12 18 1 
13 18 1 
14 15 1 
14 16 1 
14 17 1 
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 [ dihedrals ] 
; GROMOS improper dihedrals 
;  ai   aj   ak   al  funct   angle     fc 
    7    5    6    9    2      0.00   167.36 

[ dihedrals ] 
Table 2 Force-field parameters for ground state Roche ester docked to LipA. 

 

ai aj� ak� funct� angle� fc�
1� 4� 2� 2� 110.00� 739.00�
1� 4� 3� 2� 110.30� 524.00�
1� 4� 5� 2� 110.30� 524.00�
2� 4� 3� 2� 110.00� 739.00�
2� 4� 5� 2� 110.30� 524.00�
3� 4� 5� 2� 109.50� 618.00�
4� 5� 7� 2� 118.00� 1080.00�
5� 7� 6� 2� 124.00� 730.00�
5� 7� 9� 2� 111.00� 530.00�
6� 7� 9� 2� 125.00� 750.00�
7� 9� 8� 2� 108.00� 465.00�
7� 9� 14� 2� 107.60� 507.00�
7� 9� 18� 2� 111.00� 530.00�
8� 9� 14� 2� 109.00� 842.00�
8� 9� 18� 2� 109.00� 842.00�
14� 9� 18� 2� 111.00� 530.00�
10� 11� 14� 2� 108.53� 443.00�
9� 14� 11� 2� 111.30� 632.00�
9� 14� 12� 2� 109.60� 450.00�
9� 14� 13� 2� 109.00� 842.00�
11� 14� 12� 2� 109.60� 450.00�
11� 14� 13� 2� 106.75� 503.00�
12� 14� 13� 2� 107.57� 484.00�
9� 18� 15� 2� 109.00� 842.00�
9� 18� 16� 2� 111.30� 632.00�
9� 18� 17� 2� 109.50� 450.00�
15� 18� 16� 2� 109.00� 842.00�
15� 18� 17� 2� 109.50� 285.00�
16� 18� 17� 2� 109.50� 618.00�

ai aj� ak� al� funct� ph0� cp� mult�
3� 4� 5� 7� 1� 0.00� 1.26� 3�
4� 5� 7� 6� 1� 180.00� 7.11� 2�
6� 7� 9� 18� 1� 180.00� 1.00� 6�
7� 9� 14� 11� 1� 0.00� 3.77� 3�
7� 9� 18� 17� 1� 0.00� 3.77� 3�
10� 11� 14� 9� 1� 0.00� 1.26� 3�
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The parameterization listed in Table 2 can be copied and pasted into the automatic 

topology output generated by the GROMACS tools and yields stable simulations.  

 

 The more challenging modeling process involves the derivation of parameters 

for the tetrahedral intermediate conformation of LipA covalently bounded to the 

Roche ester.  It is difficult to judge a priori which amino acids from the proteins 

binding pocket will influence the charge distribution of the covalent complex.  Roche 

ester binds to a serine in the backbone, which along with two other residues forms the 

catalytic triad.  But there are also some amide groups that stabilize the complex.  

Figure 11 displays the arrangement of atoms that was used in a transition state search 

in SPARTAN. 

 

 

 
Figure 11 Transition state geometry of LipA in complex with

Roche ester.  Some amide groups are included in the model 

that form hydrogen bonds and stabilize the transition state. 

�
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 The final conformation of the tetrahedral intermediate state and the 

corresponding charge distribution were used to define a new amino acid in the .rtp file 

of GROMACS with the name SEO.  The bond lengths and angles were again derived 

by hand and through scripts from the geometry.  The final charges obtained from the 

numerical simulation are listed below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Atom charges obtained for transition state geometry 

 

 

Nr Atom Electrostatic Mulliken Natural 
1 H1 +0.066 +0.175 +0.264 
2 C1 +0.341 -0.086 -0.199 
3 N1 -0.959 -0.714 -0.895 
4 H4 +0.333 +0.283 +0.370 
5 H5 +0.323 +0.283 +0.366 
6 C2 +0.436 +0.532 +0.804 
7 O1 -0.525 -0.519 -0.657 
8 O2 -0.547 -0.622 -0.743 
9 H7 +0.396 +0.454 +0.527 
10 C3 +0.074 -0.020 -0.104 
11 H2 +0.076 +0.122 +0.218 
12 H6 +0.021 +0.137 +0.207 
13 O3 -0.506 -0.553 -0.642 
14 C4 +0.566 +0.788 +0.886 
15 O4 -0.720 -0.743 -0.925 
16 O5 -0.315 -0.518 -0.626 
17 C5 -0.294 -0.187 -0.308 
18 H3 +0.107 +0.100 +0.189 
19 H9 +0.122 +0.129 +0.191 
20 H13 +0.113 +0.121 +0.186 
21 C6 +0.009 -0.127 -0.322 
22 H11 +0.025 +0.071 +0.207 
23 C7 -0.495 -0.432 -0.667 
24 H8 +0.104 +0.099 +0.208 
25 H12 +0.122 +0.139 +0.234 
26 H14 +0.141 +0.137 +0.226 
27 C8 +0.142 -0.029 -0.083 
28 H15 +0.089 +0.144 +0.216 
29 H16 +0.013 +0.112 +0.190 
30 O6 -0.637 -0.646 -0.770 
31 H10 +0.378 +0.370 +0.455 
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Table 4 Bond order values obtained from SPARTAN search for intermediate 

conformation 

 

The only requirement to insert these charges and the correct angles into the 

topology is the assignment of the correct atom numbers, which might be different for 

Bond Order Atom A Atom B Mulliken 
1 C1 H1 0.914 
2 C1 N1 0.982 
3 C1 C2 0.915 
4 C1 C3 0.942 
5 N1 H4 0.864 
6 N1 H5 0.860 
7 N1 C2 0.037 
8 O1 H5 0.025 
9 C2 O1 1.815 
10 C2 O2 1.173 
11 O1 O2 0.081 
12 O2 H7 0.544 
13 O4 H7 0.234 
14 C3 H2 0.938 
15 C3 H6 0.916 
16 C3 O3 0.939 
17 C3 O4 0.030 
18 O3 C4 0.784 
19 C4 O4 1.244 
20 C4 O5 0.827 
21 C4 C6 0.919 
22 O5 C5 0.974 
23 C5 H3 0.956 
24 C5 H9 0.929 
25 C5 H13 0.922 
26 C6 H11 0.914 
27 C6 C7 1.002 
28 C6 C8 0.994 
29 C7 H8 0.944 
30 C7 H12 0.947 
31 C7 H14 0.949 
32 C8 H15 0.930 
33 C8 H16 0.932 
34 C8 O6 0.903 
35 O6 H10 0.796 
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each calculation due to the mutations.  The correct mapping of the atoms is achieved 

through a PYTHON script and enables very fast assembly of running parameter files 

for the GROMACS simulations. 

 

5.3.6 Estimation of the Energy Barr ier  

 

 All the tools are available to introduce the Roche ester to different 

conformations and mutations of LipA both non-covalently bounded in the binding 

pocket as well as covalently bounded in the transition state. Because of sterical 

clashes, it is not possible to calculate a point energy for each conformation directly 

after inserting the substrate.  Even small deviations from the ideal parameters cause 

gigantic contributions to the potential energies of the complex.  It is therefore 

essential to perform an energy minimization of each LipA + Roche ester complex.  

This means that we need to construct 96 conformations of LipA with docked and 

covalently bounded Roche ester and minimize each of these complexes.  In total 192 

energy minimizations have to be performed for each mutation.  192 energy 

minimizations is feasible but still computationally demanding.  One issue with a 

physiological energy minimization is the impact of solvent molecules like water and 

ions on the potential energy.  Because of thermal noise, it would be impossible to get 

accurate potential point energy from a short MD if explicit water would be used in the 

simulations.  Due to the thermal noise we decided to use the GBSA implicit water 

model with a dielectric coefficient of 80 for the solvent in the minimization.  Figure 

12 illustrates the change of potential energy during the energy minimization.  It is 

apparent that the minimization is required to reduce the energy contributions due to 

clashes and seemingly small deviations in ideal bond lengths and angles.   
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Figure 12 Energy minimization.  After a very rapid decrease in energy over the first 4 

steps the energy drops slower and converges after about 500 steps.  In this case 

machine precision was achieved before convergence occurred. 

 

  

 It is possible to calculate the potential point energy for the docked LipA + 

Roche ester complex in 96 conformations and to repeat the same calculation for the 

tetrahedral conformation.  From these two values, the difference in potential energy 

for each conformation of the ensemble can be calculated.  The mean of these 

differences can be used to estimate the energy barrier between the docked and 

tetrahedral conformation.  If this barrier is reduced, the enzyme is assumed to be more 

active.  One problem that has not been investigated so far is the change in potential 

energy due to a change in the number of atoms through mutations.  The possible 

change of total atom numbers is the reason for the before-mentioned normalization.  

We always want to compare the energy barrier for each mutation to the wild-type 

LipA independent of the number of atoms.  We have to include, therefore, 

normalization.  For this purpose, the potential energy differences from the wild-type 

LipA were once computed as listed below. 
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Table 5 Normalization values for ∆E obtained from application of energy 

minimization to the 96 models in the ensemble of LipA structures. 

  

Model ∆E[kJ/mol] Model ∆E[kJ/mol] Model ∆E[kJ/mol] 
0 1.713.185 33 3224.343 65 1393.435 
1 4744.752 34 4329.144 66 2767.895 
2 5625.233 35 4152.811 67 1995.488 
3 4979.426 36 3565.484 68 1896.758 
4 10517.449 37 2600.601 69 2902.242 
5 4718.576 38 3655.35 70 2200.758 
6 4545.263 39 2779.42 71 2824.217 
7 3429.027 40 3672.808 72 2453.557 
8 3537.781 41 3122.055 73 2959.019 
9 2183.61 42 2047.793 74 1575.234 
10 3911.912 43 4187.687 75 3552.729 
11 4783.047 44 3521.781 76 3224.312 
12 4421.197 45 2158.697 77 3151.297 
13 4515.123 46 4310.861 78 2883.247 
14 1638.9 47 5083.896 79 2437.61 
15 6035.808 48 3785.791 80 2347.411 
16 3820.186 49 4210.451 81 2112.709 
17 2459.594 50 2607.644 82 1835.595 
18 2813.459 51 3752.543 83 2983.226 
19 3743.859 52 3810.967 84 3197.507 
20 5363.041 53 2850.285 85 3353.164 
21 3742.742 54 4616.551 86 3362.004 
22 4587.797 55 3942.402 87 1235.274 
23 2112.469 56 4576.244 88 2943.369 
24 4808.211 57 4033.174 89 3180.23 
25 3678.704 58 1601.918 90 2530.096 
26 2801.268 59 1740.633 91 1663.023 
27 3218.144 60 2635.385 92 2987.685 
28 4271.155 61 2461.528 93 829.684 
29 4852.27 62 2582.219 94 2665.398 
30 3741.871 63 2304.356 95 1601.918 
31 3253.076 64 1151.414 
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 For each mutation the ∆E values of all conformations were computed and 

normalized with respect to the listed ∆E values.  If a mutation has a similar energy 

barrier the mean value of normalized ∆E values will be close to 1.  Numbers smaller 

than 1 are considered more active mutations; numbers higher than 1 are treated as 

unfavorable mutations. 

Figure 13  Energy barriers obtained from application of minimization protocol to all 

single point mutations 

 

5.3.7 Evaluation of Single-Point Mutations 

 The energy minimization protocol was applied to all single point mutations of 

LipA.  Thanks to a computer time grant on the super computer JUROPA we could 

compute over 5000 point mutations and calculate the average energy barrier.  The 

number of mutations with favorable energies obtained exceeds the number of 

mutations that could be tested experimentally.  It was therefore necessary to further 

limit down the promising mutants.   

 

For the purpose of further limiting the number of mutants, we use the 

previously derived PSSM matrix for LipA and compare the energy barrier of a 
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mutation with the probability of occurring.  This yields the scatter plot shown in 

Figure 14. 

 

Figure 14 Segmentation of probable mutants via PSSM values.  Only points in the 

right bottom quadrant are mutations that likely yield low energy barriers. 

 

If only the points in the right bottom quadrant are considered as options, then 

the mutation space is almost narrowed down far enough.  To increase the likelihood 

of good mutations even further, another criterion is introduced to differentiate 

between mutations. As an additional criterion we chose the distance of the Roche 

ester to the mutated side chain to be lower than 5 Å.   Figure 15 shows the energy 

barrier plotted against the distance of the Roche ester to the mutation.  This distance is 

the smallest Cartesian norm of all possible vectors between any Roche ester atom and 

atom of the mutated amino acid.  Points in the left bottom quadrant are favorable 

mutations that are in close proximity to the substrate.   

 

 By combining the distance and PSSM criteria it is possible to select the best 

mutational candidates from the energy barrier calculation.  The final set of proposed 

mutations are shown in the next subsection.   
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Figure 15 Energy barrier compared to distance of Roche ester to mutation side.   

 

Points in the left bottom quadrant correspond to good mutations that are in proximity 

of the ligand. 

 

 

5.4 Results 

 

The first iteration of the described protocol identified 5 promising single point 

mutations of LipA with reduced energy barrier, high PSSM values, and a distance 

closer then 5 Å to the Roche ester.  The mutational sites are also shown in Figure 16. 
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Figure 16 Illustration of mutational sites in wild-type LipA.  Roche ester is shown in 

van der Waals and mutation candidates in ball and stick representation.  

 

After identification of the most promising mutations in silico, it was most interesting 

to compare our predictions with experimental values.  For this purpose, the following 

list of mutation proposals was sent to our collaborators at Karl-Erich Jäger’s lab. 

 

 

 

Table 5  Overview over the most promising mutations according to the free energy 

sorting and the general offset on the enzyme substrate energy ( Offset ES ).  The 

distance is the distance from the substrate to the mutation. 

 

 The in vitro results are shown in Figure 17.  It is remarkable that every 

proposed mutation did in fact increase the activity of LipA with Roche ester.  At the 

same time the natural lipase activity does undergo large fluctuations.  Of special 

interest is the mutation H14G.  The mutation H14G was ranked as the most promising 

Mutation Median ∆G Std. Dev Offset ES Distance (nm) 
HIS14GLY 0.984 0.214 32.656 0.493 
LEU17GLY 0.975 0.213 175.498 0.406 
HIS81SER 0.984 0.362 395.115 0.388 
MET16THR 0.985 0.308 179.26 0.174 
MET16ALA 0.984 0.26 157.285 0.174 
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mutation because it did not only reduce the energy barrier but it also kept the overall 

potential energy very comparable to the wild-type LipA.  A stable potential energy 

indicates that any mutational artifacts do not prohibit the initial docking of the Roche 

ester.  The fact that the H14G mutation yielded a more than 900 % active mutant of 

LipA (see Figure 18) is a great verification of our described in silico protocol.   Also 

of interest is mutation M16A, with over 450 % increase in activity.  In a first 

experimental (see Figure 17) evaluation, M16A was found to be the second best 

mutation.  What makes it remarkable is the fact that it also increased the lipase 

activity of LipA almost by 200 %.   This might be an indicator that the lipase did not 

become more selective for Roche ester, but rather gained in overall performance.  It 

would be of great interest to study the change in dynamics of this mutation in a future 

project. 

 

Figure 17 First experimental results for proposed mutations show an increase in 

activity with Roche Ester (black) and the resulting activity with the natural substrate 

(white).  Mutation H14G sticks out.  This was our highest ranked prediction and it 

yields an increase in activity of over 250 %. 

 

The results of the first round single point mutations were a great success.  The 

main question is, if the procedure can be repeated to find even more active mutations.  

Our initial hypothesis was that we could introduce a second-point mutation into the 

best single-point mutations and thereby increase the activity even further.  From the in 
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vitro experiments we identify the single point mutations H14G and M16A as the best 

candidates.  We can repeat the search procedure for these two conformations. 

 

 For each of the two candidates we start a separate search.  Because of our 

previous analysis we know that it is not necessary to again evaluate all possible 

mutations but rather focus from the beginning on those with high PSSM values and 

proximity to the active site.  The cutoffs in distance and similarity reduce the number 

of amino acids to mutate to about 50, yielding a total of 2000 double point mutations 

for analysis. We performed 2000 iterations of the energy minimization protocol and 

ranked the resulting mutations.  We selected 5 mutations with a distance smaller than 

5 Å and due to extreme low energy barriers, 4 mutations with distances up to 6.4 Å.  

As a test case we also included a mutation that yielded very bad results in silico.  The 

following tables contain the mutations as suggested to the lab of our collaborators.   

   

Table 6 Double mutant suggestions closer than .5 nm from ligand 

 

Table 7 Double mutant candidates with distance greater than .5 nm from substrate 

 

We also introduced one bad mutation to see if this procedure can also be used to 

deactivate an undesired reaction.   

 

Table 8 Test mutation with very bad scores 

Mutation median mean std_dev dEoffset #frames distance [nm]
H14P_M16A  0.915  0.951  0.237 176.414 95 0.387 
H14G_R56N  0.913  0.972  0.221 488.789 95 0.243 
H14G_L17A  0.916  0.987  0.246 206.602 96 0.477 
M16A_R56K  0.920  0.959  0.230 749.363 95 0.31 
M16A_H83M  0.921  0.970  0.241 204.844 95 0.253 

Mutation median mean std_dev dEoffset #frames distance [nm]
M16A_T114A 0.903  0.952  0.221 203.656 95 0.632 
M16A_I142M  0.908  0.956  0.213 216.832 95 0.577 
M16A_I142Y  0.909  0.977  0.292 182.180 95 0.577 
M16A_F214I  0.909  0.958  0.235 229.883 95 0.677 
    

M16A_G139F  1.348
  

1.448  0.406 1055.885 92 0.686 
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5.6 Evaluation of Double Point Mutations 

Our collaborators in Karl-Erich Jägers lab investigated the previously 

described mutations.  After purification of the double mutants they also tested again 

the single mutants in a more rigorous experimental setup.  Figure 18 shows the results 

of the double point mutation experiments, in which the activities with pNBP and 

Roche ester were measured.   

 
Figure 18 Results of in vitro experiments of all suggested single and double point 

mutations.  Similar trends as in Figure 17 can be observed for the single point 

mutations, but the absolute activity is even higher than initially supposed.  The double 

mutants show increased activity in 3 cases. The other 5 cases did loose all activity.  

Also the proposed bad mutation is among those without any activity. 

 

It is remarkable that the single point mutations perform up to 900 times better 

than the wild-type lipase.  As soon as double-point mutations are introduced into a 

protein, the chances for unexpected conformational changes increase.  This might be 

the reason for 4 inactive proposed double mutants.  Further detailed molecular 

dynamics simulations of these mutations might elucidate the change in structure.  It is 

also a great verification of our protocol that M16A_G139F does not show any 

activity.  M16A_G139F was proposed as a test because all single point mutations 

were successful predictions.  Three double-point mutations show an increase in 
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activity compared to the wild-type lipase.  H14G_R56N shows more then 400 % 

increase and serves as a motivation to explore even higher mutational spaces in the 

future. 

 

5.7 Conclusion 

 

We developed a protocol that is able to rank the influence of mutations on the 

substrate selectivity of LipA with Roche ester in silico.  This protocol provides 

guidance to directed evolution experiments and was able to predict a single point 

mutation with more then 900 % increased activity compared to wild-type LipA.  It 

was shown that the energy barrier of a protein between docked and covalently 

bounded substrate could be approximated by the potential energy difference of an 

ensemble of structures.  The main double-lid movement of the lipase was verified in 

MD simulations and considered as a possible criterion to rank mutations.  

Unfortunately restraints on computational time did not make is feasible to study the 

effect of all mutations on the lid dynamics.  

 

The best performing single-point mutations were used as new starting points 

for a second round of predictions.  In this second iteration, 10 mutations were selected 

and proposed to the experimental partners.  The evaluation of the double-point 

mutations generated three highly active derivatives of LipA.  A mutation with very 

bad scores was also tested and showed zero activity with Roche ester.  Although the 

activities did not add up as hoped for, the next steps would include the calculations of 

even higher order mutations. 

  

 

 

 

 

 

 

 

 





Publication L ist 
Paper  I  – See Chapter  2 

Protein Structure Refinement with Adaptively Restrained Homologous Replicas 

Dennis Della Corte, André Wildberg, and Gunnar F. Schröder (Proteins, Accepted) 

 

Paper  I I  – See Chapter  3 

Coupling an ensemble of homologs improves refinement of protein homology models 

André Wildberg, Dennis Della Corte, and Gunnar F. Schröder (JCTC, in review) 

 

Paper  I I I  – See Chapter  4 

The origin of improved sampling of free energy minima through adaptive restraints 

Dennis Della Corte and Gunnar F. Schröder (soon to be submitted) 

 

Paper  IV – Not included 

Design and application of a custom-made L-histidine sensor for the ultra-high-

throughput screening of Corynebacterium glutamicum producer strains 

Marcus Schallmey, Dennis Della Corte, Felix Tobola, Hugo van Beek, Alexander 

Grünberger, Sascha Sokolowsky, Gunnar F. Schröder, Jan Marienhagen (soon to be 

submitted) 

 

Paper  V – Not included 

Dynamics of the Autophagy-related Protein GABARAP on the Pico- to Nanosecond 

Time-scale by NMR and Fluorescence Spectroscopy in Concert with Molecular 

Dynamics Simulations  

Christina Möller, Jakub Kubiak, Oliver Schillinger, Ralf Kühnemuth, Dennis Della 

Corte, Gunnar F. Schröder, Birgit Strodel, Claus A. M. Seidel, Dieter Willbold, and 

Philipp Neudecker (soon to be submitted) 

 

Paper  VI  – See Chapter  5 

Simulation Guided Directed Evolution Experiments Increase Phospholipase Activity 

by Over 900 % 

Dennis Della Corte, Filip Kovacic, Karl-Erich Jäger, and Gunnar F. Schröder (in 

preparation)  





Chapter 1 Introduction                     Protein Refinement & Engineering Methods 

!
!

REFERENCES 

 

1. Marcotte, E.M., et al., Detecting protein function and protein-protein 
interactions from genome sequences. Science, 1999. 285(5428): p. 751-753. 

2. Gentleman, R.C., et al., Bioconductor: open software development for 
computational biology and bioinformatics. Genome Biology, 2004. 5(10): p. 
R80. 

3. Zubay, G., In vitro synthesis of protein in microbial systems. Annual Review 
of Genetics, 1973. 7(1): p. 267-287. 

4. Scherzer, O., The theoretical resolution limit of the electron microscope. 
Journal of Applied Physics, 1949. 20(1): p. 20-29. 

5. Shaw, D.E., et al., Anton, a special-purpose machine for molecular dynamics 
simulation. Communications of the ACM, 2008. 51(7): p. 91-97. 

6. Baker, D., An exciting but challenging road ahead for computational enzyme 
design. Protein Science, 2010. 19(10): p. 1817-1819. 

7. Dill, K.A. and J.L. MacCallum, The protein-folding problem, 50 years on. 
Science, 2012. 338(6110): p. 1042-1046. 

8. Moult, J., et al., Critical assessment of methods of protein structure prediction 
(CASP)—round x. Proteins: Structure, Function, and Bioinformatics, 2014. 
82(S2): p. 1-6. 

9. Carter, P.J., Introduction to current and future protein therapeutics: a protein 
engineering perspective. Experimental Cell Research, 2011. 317(9): p. 1261-
1269. 

10. Dalby, P.A., Strategy and success for the directed evolution of enzymes. 
Current Opinion in Structural Biology, 2011. 21(4): p. 473-480. 

11. Kiss, G., et al., Computational enzyme design. Angewandte Chemie 
International Edition, 2013. 52(22): p. 5700-5725. 

12. Frushicheva, M.P., et al., Computer aided enzyme design and catalytic 
concepts. Current Opinion in Chemical Biology, 2014. 21: p. 56-62. 

13. Woodley, J.M., Protein engineering of enzymes for process applications. 
Current Opinion in Chemical Biology, 2013. 17(2): p. 310-316. 





Chapter 1 Introduction                     Protein Refinement & Engineering Methods 

!
!

14. Starobinsky, A., Future and origin of our universe: Modern view. The Future 
of the Universe and the Future of our Civilization, 2000. 10: p. 
9789812793324_0008. 

15. Newton, I., et al., Philosophiae naturalis principia mathematica. Vol. 1. 1833: 
excudit G. Brookman; impensis TT et J. Tegg, Londini. 

16. Alligood, K.T., T.D. Sauer, and J.A. Yorke, Chaos. 1997: Springer. 

17. Dayhoff, M.O. and R.M. Schwartz. A model of evolutionary change in 
proteins. in In Atlas of Protein Sequence and Structure. 1978. Citeseer. 

18. Roca, A.I. and M.M. Cox, RecA protein: structure, function, and role in 
recombinational DNA repair. Progress in Nucleic Acid Research and 
Molecular Biology, 1997(56): p. 129-223. 

19. Cornell, W.D., et al., A second generation force field for the simulation of 
proteins, nucleic acids, and organic molecules. Journal of the American 
Chemical Society, 1995. 117(19): p. 5179-5197. 

20. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and testing 
of the OPLS all-atom force field on conformational energetics and properties 
of organic liquids. Journal of the American Chemical Society, 1996. 118(45): 
p. 11225-11236. 

21. Oostenbrink, C., et al., A biomolecular force field based on the free enthalpy 
of hydration and solvation: The GROMOS force- field parameter sets 53A5 
and 53A6. Journal of Computational Chemistry, 2004. 25(13): p. 1656-1676. 

22. Pearlman, D.A., et al., AMBER, a package of computer programs for applying 
molecular mechanics, normal mode analysis, molecular dynamics and free 
energy calculations to simulate the structural and energetic properties of 
molecules. Computer Physics Communications, 1995. 91(1): p. 1-41. 

23. Weiner, P.K. and P.A. Kollman, AMBER: Assisted model building with energy 
refinement. A general program for modeling molecules and their interactions. 
Journal of Computational Chemistry, 1981. 2(3): p. 287-303. 

24. Karplus, M., CHARMM: A program for macromolecular energy, 
minimization, and dynamics calculations. J Comput Chem, 1983. 4: p. 
187217. 

25. Chen, J., C.L. Brooks, and J. Khandogin, Recent advances in implicit solvent-
based methods for biomolecular simulations. Current Opinion in Structural 
Biology, 2008. 18(2): p. 140-148. 





Chapter 1 Introduction                     Protein Refinement & Engineering Methods 

!
!

26. Linge, J.P., et al., Refinement of protein structures in explicit solvent. Proteins: 
Structure, Function, and Bioinformatics, 2003. 50(3): p. 496-506. 

27. Verlet, L., Computer" experiments" on classical fluids. I. Thermodynamical 
properties of Lennard-Jones molecules. Physical Review, 1967. 159(1): p. 98. 

28. Tuckerman, M., B.J. Berne, and G.J. Martyna, Reversible multiple time scale 
molecular dynamics. The Journal of Chemical Physics, 1992. 97(3): p. 1990-
2001. 

29. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy 
calculations: molecular dynamics and conjugate gradients. Reviews of 
Modern Physics, 1992. 64(4): p. 1045. 

30. Lindorff- Larsen, K., et al., Improved side- chain torsion potentials for the 
Amber ff99SB protein force field. Proteins: Structure, Function, and 
Bioinformatics, 2010. 78(8): p. 1950-1958. 

31. de Coulomb, C.A., Collection de mémoires relatifs à la physique. Vol. 2. 
1889: Gauthier-Villars. 

32. Levitt, M. and R. Sharon, Accurate simulation of protein dynamics in solution. 
Proceedings of the National Academy of Sciences, 1988. 85(20): p. 7557-
7561. 

33. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge 
university press. 

34. Alder, B.J. and T. Wainwright, Studies in molecular dynamics. I. General 
method. The Journal of Chemical Physics, 1959. 31(2): p. 459-466. 

35. Berendsen, H.J., et al., Molecular dynamics with coupling to an external bath. 
The Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 

36. Evans, D.J. and B.L. Holian, The nose–hoover thermostat. The Journal of 
Chemical Physics, 1985. 83(8): p. 4069-4074. 

37. Balsera, M.A., et al., Principal component analysis and long time protein 
dynamics. The Journal of Physical Chemistry, 1996. 100(7): p. 2567-2572. 

38. Mirjalili, V., K. Noyes, and M. Feig, Physics- based protein structure 
refinement through multiple molecular dynamics trajectories and structure 
averaging. Proteins: Structure, Function, and Bioinformatics, 2014. 82(S2): p. 
196-207. 

 

 





Chapter 2 Protein Refinement                   Protein Refinement & Engineering Methods 

!
!

39. Pettersen, E.F., et al., UCSF Chimera—a visualization system for exploratory 
research and analysis. Journal of Computational Chemistry, 2004. 25(13): p. 
1605-1612. 

40. MacCallum, J.L., et al., Assessment of protein structure refinement in CASP9. 
Proteins: Structure, Function, and Bioinformatics, 2011. 79(S10): p. 74-90. 

41. Nugent, T., D. Cozzetto, and D.T. Jones, Evaluation of predictions in the 
CASP10 model refinement category. Proteins: Structure, Function, and 
Bioinformatics, 2014. 82(S2): p. 98-111. 

42. Fan, H. and A.E. Mark, Refinement of homology- based protein structures by 
molecular dynamics simulation techniques. Protein Science, 2004. 13(1): p. 
211-220. 

43. Zhu, J., et al., Refining homology models by combining replica- exchange 
molecular dynamics and statistical potentials. Proteins: Structure, Function, 
and Bioinformatics, 2008. 72(4): p. 1171-1188. 

44. Raval, A., et al., Refinement of protein structure homology models via long, 
all-atom molecular dynamics simulations. Proteins, 2012. 80(8): p. 2071-
2079. 

45. Mirjalili, V. and M. Feig, Protein structure refinement through structure 
selection and averaging from molecular dynamics ensembles. Journal of 
Chemical Theory and Computation, 2013. 9(2): p. 1294-1303. 

46. Mirjalili, V., K. Noyes, and M. Feig, Physics- based protein structure 
refinement through multiple molecular dynamics trajectories and structure 
averaging. Proteins: Structure, Function, and Bioinformatics, 2014. 82(S2): p. 
196-207. 

47. Schröder, G.F., A.T. Brunger, and M. Levitt, Combining efficient 
conformational sampling with a deformable elastic network model facilitates 
structure refinement at low resolution. Structure, 2007. 15(12): p. 1630-41. 

48. Schröder, G.F., M. Levitt, and A.T. Brunger, Super-resolution biomolecular 
crystallography with low-resolution data. Nature, 2010. 464(7292): p. 1218-
22. 

49. Schröder, G.F., M. Levitt, and A.T. Brunger, Deformable elastic network 
refinement for low-resolution macromolecular crystallography. Acta Cryst. D, 
2014. D70: p. 2241-2255. 





Chapter 2 Protein Refinement                   Protein Refinement & Engineering Methods 

!
!

50. Huber, T. and W.F. van Gunsteren, SWARM-MD:  Searching Conformational 
Space by Cooperative Molecular Dynamics. J. Phys. Chem. A, 1998. 102(29): 
p. 5937-5943. 

51. Chothia, C. and A.M. Lesk, The relation between the divergence of sequence 
and structure in proteins. The EMBO journal, 1986. 5(4): p. 823. 

52. Keasar, C., R. Elber, and J. Skolnick, Simultaneous and coupled energy 
optimization of homologous proteins: a new tool for structure prediction. Fold 
Des, 1997. 2(4): p. 247-59. 

53. Keasar, C., et al., Coupling the folding of homologous proteins. Proc Natl 
Acad Sci U S A, 1998. 95(11): p. 5880-3. 

54. Keasar, C. and R. Elber, Homology as a tool in optimization problems: 
structure determination of 2D heteropolymers. J. Phys. Chem., 1995. 99(29): 
p. 11550-11556. 

55. Pronk, S., et al., GROMACS 4.5: a high-throughput and highly parallel open 
source molecular simulation toolkit. Bioinformatics, 2013: p. btt055. 

56. Badretdinov, A. 1997; Available from: http://salilab.org/decoys/. 

57. Algorithmics Group, MDSJ: Java Library for Multidimensional Scaling 
(Version 0.2). 2009, University of Konstanz. 

58. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs. Nucleic acids research, 1997. 25(17): p. 
3389-3402. 

59. Pruitt, K.D., T. Tatusova, and D.R. Maglott, NCBI reference sequences 
(RefSeq): a curated non-redundant sequence database of genomes, transcripts 
and proteins. Nucleic Acids Research, 2007. 35(suppl 1): p. D61-D65. 

60. Fiser, A. and A. Šali, Modeller: generation and refinement of homology-based 
protein structure models. Methods in Enzymology, 2003. 374: p. 461-491. 

 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

61. Rosenbaum, D.M., S.G. Rasmussen, and B.K. Kobilka, The structure and 
function of G-protein-coupled receptors. Nature, 2009. 459(7245): p. 356-363. 

62. Branden, C.I., Introduction to protein structure. 1999: Garland Science. 

63. Baker, D. and A. Sali, Protein Structure Prediction and Structural Genomics. 
Science, 2001. 294(5540): p. 93-96. 

64. Zhang, Y. and J. Skolnick, The protein structure prediction problem could be 
solved using the current PDB library. Proc. Natl. Acad. Sci. U.S.A., 2005. 
102(4): p. 1029-1034. 

65. Ko, J., H. Park, and C. Seok, GalaxyTBM: template-based modeling by 
building a reliable core and refining unreliable local regions. BMC 
Bioinformatics, 2012. 13(1): p. 198. 

66. Qu, X., et al., A guide to template based structure prediction. Curr. Protein. 
Pept. Sci., 2009. 10(3): p. 270-85. 

67. Koehl, P. and M. Levitt, A brighter future for protein structure prediction. 
Nat. Struct. Mol. Biol., 1999. 6: p. 108-111. 

68. MacCallum, J.L., et al., Assessment of protein structure refinement in CASP9. 
Proteins, 2011. 79(S10): p. 74-90. 

69. MacCallum, J.L., et al., Assessment of the protein-structure refinement 
category in CASP8. Proteins, 2009. 77(S9): p. 66-80. 

70. Valencia, A., Protein refinement: a new challenge for CASP in its 10th 
anniversary. Bioinformatics, 2005. 21(3): p. 277-277. 

71. Nugent, T., D. Cozzetto, and D.T. Jones, Evaluation of predictions in the 
CASP10 model refinement category. Proteins, 2014. 82(S2): p. 98-111. 

72. Levitt, M. and S. Lifson, Refinement of protein conformations using a 
macromolecular energy minimization procedure. J. Mol. Biol., 1969. 46(2): p. 
269-279. 

73. Engh, R.A. and R. Huber, Accurate bond and angle parameters for X-ray 
protein structure refinement. Acta Cryst.  A, 1991. 47(4): p. 392-400. 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

74. Levitt, M., Accurate modeling of protein conformation by automatic segment 
matching. J. Mol. Biol., 1992. 226(2): p. 507-533. 

75. Chopra, G., C.M. Summa, and M. Levitt, Solvent dramatically affects protein 
structure refinement. Proc. Natl. Acad. Sci. U.S.A., 2008. 105(51): p. 20239-
20244. 

76. Rohl, C.A., et al., Protein structure prediction using Rosetta. Meth. Enzymol., 
2004. 383: p. 66-93. 

77. Zhang, J., Y. Liang, and Y. Zhang, Atomic-level protein structure refinement 
using fragment-guided molecular dynamics conformation sampling. Structure, 
2011. 19(12): p. 1784-1795. 

78. Fiser, A. and A. Šali, Modeller: generation and refinement of homology-based 
protein structure models. Meth. Enzymol., 2003. 374: p. 461-491. 

79. Rodrigues, J.P., M. Levitt, and G. Chopra, KoBaMIN: a knowledge-based 
minimization web server for protein structure refinement. Nucleic Acids Res., 
2012: p. gks376. 

80. Lu, H. and J. Skolnick, Application of statistical potentials to protein structure 
refinement from low resolution ab initio models. Biopolymers, 2003. 70(4): p. 
575-584. 

81. Fan, H. and A.E. Mark, Refinement of homology- based protein structures by 
molecular dynamics simulation techniques. Protein Sci., 2004. 13(1): p. 211-
220. 

82. Flohil, J., G. Vriend, and H. Berendsen, Completion and refinement of 3- D 
homology models with restricted molecular dynamics: Application to targets 
47, 58, and 111 in the CASP modeling competition and posterior analysis. 
Proteins, 2002. 48(4): p. 593-604. 

83. Zhu, J., et al., Refining homology models by combining replica- exchange 
molecular dynamics and statistical potentials. Proteins, 2008. 72(4): p. 1171-
1188. 

84. Mirjalili, V. and M. Feig, Protein structure refinement through structure 
selection and averaging from molecular dynamics ensembles. J. Chem. Theory 
Comput., 2013. 9(2): p. 1294-1303. 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

85. Mirjalili, V., K. Noyes, and M. Feig, Physics- based protein structure 
refinement through multiple molecular dynamics trajectories and structure 
averaging. Proteins, 2014. 82(S2): p. 196-207. 

86. Dinner, A.R., et al., Understanding protein folding via free-energy surfaces 
from theory and experiment. Trends Biochem. Sci., 2000. 25(7): p. 331-339. 

87. Kuhlman, B. and D. Baker, Native protein sequences are close to optimal for 
their structures. Proc. Natl. Acad. Sci. U.S.A., 2000. 97(19): p. 10383-10388. 

88. Anfinsen, C.B., Principles that Govern the Folding of Protein Chains. 
Science, 1973. 181(4096): p. 223–230. 

89. Chothia, C. and A.M. Lesk, The relation between the divergence of sequence 
and structure in proteins. EMBO J., 1986. 5(4): p. 823. 

90. Keasar, C., R. Elber, and J. Skolnick, Simultaneous and coupled energy 
optimization of homologous proteins: a new tool for structure prediction. Fold 
Des, 1997. 2(4): p. 247-59. 

91. Keasar, C., et al., Coupling the folding of homologous proteins. Proc. Natl. 
Acad. Sci. U. S. A., 1998. 95(11): p. 5880-3. 

92. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs. Nucleic Acids Res., 1997. 25(17): p. 3389-
3402. 

93. Pruitt, K.D., T. Tatusova, and D.R. Maglott, NCBI reference sequences 
(RefSeq): a curated non-redundant sequence database of genomes, transcripts 
and proteins. Nucleic Acids Res., 2007. 35(suppl 1): p. D61-D65. 

94. Pronk, S., et al., GROMACS 4.5: a high-throughput and highly parallel open 
source molecular simulation toolkit. Bioinformatics, 2013: p. btt055. 

95. Best, R.B. and G. Hummer, Optimized molecular dynamics force fields 
applied to the helix−  coil transition of polypeptides. J. Phys. Chem. B, 2009. 
113(26): p. 9004-9015. 

96. Evans, D.J. and B.L. Holian, The Nose–Hoover thermostat. J. Chem. Phys., 
1985. 83(8): p. 4069-4074. 





Chapter 3 CASP11 - Refinement              Protein Refinement & Engineering Methods 

!
!

97. Krivov, G.G., M.V. Shapovalov, and R.L. Dunbrack, Improved prediction of 
protein side- chain conformations with SCWRL4. Proteins, 2009. 77(4): p. 
778-795. 

98. Read, R.J. and G. Chavali, Assessment of CASP7 predictions in the high 
accuracy template- based modeling category. Proteins, 2007. 69(S8): p. 27-
37. 

99. Zhang, Y. and J. Skolnick, Scoring function for automated assessment of 
protein structure template quality. Proteins, 2004. 57(4): p. 702-710. 

100. Chen, V.B., et al., MolProbity: all-atom structure validation for 
macromolecular crystallography. Acta Cryst.  D, 2009. 66(1): p. 12-21. 

101. Piotr Lukasiak, M.A., Tomasz Ratajczak, Marta Szachniuk and Jacek 
Blazewicz. Quality assessment methodologies in analysis of structural models. 
in Proceedings of the 25th European Conference on Operational Research. 
2012. 

102. Wilson, C.A., J. Kreychman, and M. Gerstein, Assessing annotation transfer 
for genomics: quantifying the relations between protein sequence, structure 
and function through traditional and probabilistic scores. J. Mol. Biol., 2000. 
297(1): p. 233-249. 

103. Kondrashov, D.A., et al., Sampling of native conformational ensemble of 
myoglobin via structures in different crystalline environments. Proteins 2008. 
70: p. 353–362. 

104. Pettersen, E.F., et al., UCSF Chimera—a visualization system for exploratory 
research and analysis. J. Comput. Chem., 2004. 25(13): p. 1605-1612. 

 

 

 





Chapter 4 Refinement with Restraints       Protein Refinement & Engineering Methods 

 
 

105. Sugita, Y., A. Kitao, and Y. Okamoto, Multidimensional replica-exchange 
method for free-energy calculations. The Journal of Chemical Physics, 2000. 
113(15): p. 6042-6051. 

106. Li, Z. and H.A. Scheraga, Monte Carlo-minimization approach to the 
multiple-minima problem in protein folding. Proceedings of the National 
Academy of Sciences, 1987. 84(19): p. 6611-6615. 

107. Torrie, G.M. and J.P. Valleau, Nonphysical sampling distributions in Monte 
Carlo free-energy estimation: Umbrella sampling. Journal of Computational 
Physics, 1977. 23(2): p. 187-199. 

108. Liu, J., Metropolized independent sampling with comparisons to rejection 
sampling and importance sampling. Statistics and Computing, 1996. 6(2): p. 
113-119. 

109. Gront, D., et al., Optimization of protein models. Wiley Interdisciplinary 
Reviews: Computational Molecular Science, 2012. 2(3): p. 479-493. 

110. Piela, L., J. Kostrowicki, and H.A. Scheraga, On the multiple-minima problem 
in the conformational analysis of molecules: deformation of the potential 
energy hypersurface by the diffusion equation method. The Journal of Physical 
Chemistry, 1989. 93(8): p. 3339-3346. 

111. Goffe, W.L., G.D. Ferrier, and J. Rogers, Global optimization of statistical 
functions with simulated annealing. Journal of Econometrics, 1994. 60(1): p. 
65-99. 

112. Hart, R.K., R.V. Pappu, and J.W. Ponder, Exploring the similarities between 
potential smoothing and simulated annealing. Journal of Computational 
Chemistry, 2000. 21(7): p. 531-552. 

113. Brunger, A.T., et al., Application of DEN refinement and automated model 
building to a difficult case of molecular-replacement phasing: the structure of 
a putative succinyl-diaminopimelate desuccinylase from Corynebacterium 
glutamicum. Acta Crystallographica Section D, 2012. 68(4): p. 391-403. 

114. Wang, Z. and G.F. Schröder, Real-space refinement with DireX: From global 
fitting to side-chain improvements. Biopolymers, 2012. 97(9): p. 687-697. 

115. Schröder, G.F., A.T. Brunger, and M. Levitt, Combining Efficient 
Conformational Sampling with a Deformable Elastic Network Model 
Facilitates Structure Refinement at Low Resolution. Structure, 2007. 15(12): 
p. 1630-1641. 





Chapter 4 Refinement with Restraints       Protein Refinement & Engineering Methods 

 
 

116. Schroder, G.F., M. Levitt, and A.T. Brunger, Super-resolution biomolecular 
crystallography with low-resolution data. Nature, 2010. 464(7292): p. 1218-
1222. 

117. Nakajima, N., H. Nakamura, and A. Kidera, Multicanonical Ensemble 
Generated by Molecular Dynamics Simulation for Enhanced Conformational 
Sampling of Peptides. The Journal of Physical Chemistry B, 1997. 101(5): p. 
817-824. 

118. Sweet, C.R., et al., Normal mode partitioning of Langevin dynamics for 
biomolecules. The Journal of Chemical Physics, 2008. 128(14): p. 145101. 

119. Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. Journal of 
Computational Chemistry, 2005. 26(16): p. 1701-1718. 

120. Mu, D.S. Kosov, and G. Stock, Conformational Dynamics of Trialanine in 
Water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS Force 
Fields to NMR and Infrared Experiments. The Journal of Physical Chemistry 
B, 2003. 107(21): p. 5064-5073. 

 

 





Chapter 5 Redesign of LipA                      Protein Refinement & Engineering Methods 

!
!

121. van Gunsteren, W.F., The role of computer simulation techniques in protein 
engineering. Protein Engineering, 1988. 2(1): p. 5-13. 

122. Eisenberg, D., et al., Protein function in the post-genomic era. Nature, 2000. 
405(6788): p. 823-826. 

123. Dolezal, P., et al., Evolution of the molecular machines for protein import into 
mitochondria. Science, 2006. 313(5785): p. 314-318. 

124. Saiki, R.K., et al., Primer-directed enzymatic amplification of DNA with a 
thermostable DNA polymerase. Science, 1988. 239(4839): p. 487-491. 

125. Baker, D., An exciting but challenging road ahead for computational enzyme 
design. Protein Science, 2010. 19(10): p. 1817-1819. 

126. Eriksen, D.T., J. Lian, and H. Zhao, Protein design for pathway engineering. 
Journal of Structural Biology, 2014. 185(2): p. 234-242. 

127. Baker, M., Protein engineering: navigating between chance and reason. 
nature methods, 2011. 8(8): p. 623. 

128. Brannigan, J.A. and A.J. Wilkinson, Protein engineering 20 years on. Nature 
Reviews Molecular Cell Biology, 2002. 3(12): p. 964-970. 

129. Chica, R.A., Protein engineering in the 21st century. Protein Science, 2015. 
24(4): p. 431-433. 

130. Nardini, M., et al., Crystal Structure of Pseudomonas aeruginosa Lipase in the 
Open Conformation; the prototype for family I. 1 of bacterial lipases. Journal 
of Biological Chemistry, 2000. 275(40): p. 31219-31225. 

131. Dill, K.A., Theory for the folding and stability of globular proteins. 
Biochemistry, 1985. 24(6): p. 1501-1509. 

132. Levinthal, C., How to fold graciously. Mossbauer Spectroscopy in Biological 
Systems, 1969: p. 22-24. 

133. Levinthal, C., Are there pathways for protein folding. J. Chim. phys, 1968. 
65(1): p. 44-45. 

134. Bocola, M., et al., Learning from directed evolution: theoretical investigations 
into cooperative mutations in lipase enantioselectivity. ChemBioChem, 2004. 
5(2): p. 214-223. 





Chapter 5 Redesign of LipA                      Protein Refinement & Engineering Methods 

!
!

135. Eigen, M., Proton Transfer, Acid- Base Catalysis, and Enzymatic Hydrolysis. 
Part I: ELEMENTARY PROCESSES. Angewandte Chemie International 
Edition in English, 1964. 3(1): p. 1-19. 

136. Hänggi, P., P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years 
after Kramers. Reviews of Modern Physics, 1990. 62(2): p. 251. 

137. Hehre, W.J. and L. Lou, A guide to density functional calculations in Spartan. 
1997: Wavefunction. 

138. Benedix, A., et al., Predicting free energy changes using structural ensembles. 
Nature Methods, 2009. 6(1): p. 3-4. 

139. Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. Journal of 
Computational Chemistry, 2005. 26(16): p. 1701-1718. 

140. Krivov, G.G., M.V. Shapovalov, and R.L. Dunbrack, Improved prediction of 
protein side- chain conformations with SCWRL4. Proteins: Structure, 
Function, and Bioinformatics, 2009. 77(4): p. 778-795. 

141. Liebeton, K., et al., Directed evolution of an enantioselective lipase. 
Chemistry & Biology, 2000. 7(9): p. 709-718. 

142. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs. Nucleic Acids Research, 1997. 25(17): p. 
3389-3402. 

 

 




