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PREFACE

This thesis was created at the department for Theoretical Physics II: Soft Matter at the
Heinrich Heine University Düsseldorf from beginning of the year 2013 ot the end of the
year 2015. The major results of this work have been published in scientific journals, or
are submitted at the moment of writing this thesis. Here, I give a list of the publications
or preprints, and provide the respective abstracts and references. The manuscripts were
created in collaboration with other scientists, this section contains for each article a
statement about the personal contribution.
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A. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, H. Löwen, Phys. Rev. X 5,
011035 – Published 26 March 2015

Abstract:

There is a variety of situations in which Newton’s third law is violated. Generally,
the action-reaction symmetry can be broken for mesoscopic particles, when
their effective interactions are mediated by a non-equilibrium environment. Here
we investigate different classes of nonreciprocal interactions relevant to real
experimental situations, and present their basic statistical mechanics analysis.
We show that in mixtures of particles with such interactions, distinct species
acquire distinct kinetic temperatures. In certain cases, the nonreciprocal systems
are exactly characterized by a pseudo-Hamiltonian, i.e., being intrinsically
non-equilibrium, they can nevertheless be described in terms of equilibrium
statistical mechanics. Our results have profound implications, in particular
demonstrating the possibility to generate extreme temperature gradients on the
particle scale. We verify the principal theoretical predictions in experimental tests
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performed with two-dimensional binary complex plasmas.

Statement of the author: This work was done in collaboration with scientists from the
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and Vladimir Nosenko, I did the numerical simulations. The theory was developed by
Alexei Ivlev in collaboration by Marco Heinen, Hartmut Löwen, and me. My contribution
concerned particularly the rescaling argument for constant nonreciprocity.

[2] Structural correlations in binary colloidal mixtures with nonreciprocal

interactions

J. Bartnick, M. Heinen, A. Ivlev, H. Löwen – submitted

arXiv:1510.01870

Abstract:

Nonreciprocal effective interaction forces can occur between mesoscopic
particles in colloidal suspensions that are driven out of equilibrium. These forces
violate Newton’s third law actio=reactio on coarse-grained length and time
scales. Here we explore the statistical mechanics of Brownian particles with
nonreciprocal effective interactions. Our model system is a binary fluid mixture
of spherically symmetric, diffusiophoretic microswimmers, and we focus on
the time-averaged particle pair- and triplet-correlation functions. Based on the
many-body Smoluchowski equation we develop a microscopic statistical theory
for the particle correlations and test it by computer simulations. For model systems
in two and three spatial dimensions, we show that nonreciprocity induces distinct
nonequilibrium pair correlations. Our predictions can be tested in experiments
with colloidal microswimmers.

Statement of the author: This project was developed together with Marco Heinen, Alexei
Ivlev and Hartmut Löwen. The theory, the numerical solver and the Brownian dynamics
simulation were my work, while a part of the numerical algorithm (the Fourier-transform
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[3] Emerging activity in colloidal dispersions with wake-mediated interactions

J. Bartnick, A. Kaiser, A. Ivlev, H. Löwen – submitted

arXiv:1507.08962

Abstract:

When a planar bilayer of colloids is exposed to perpendicular flow, the wakes
generated downstream from each particle mediate their effective interactions.
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Most notably, the particle-wake interactions break the action-reaction symmetry
for the colloids in different layers. Under quite general conditions we show that, if
the interaction nonreciprocity exceeds a certain threshold, this creates an active
dispersion of self-propelled particle clusters. The emerging activity promotes
unusual melting scenarios and an enormous diffusivity in the dense fluid. Our
results are obtained by computer simulation and analytical theory, and can be
verified in experiments with colloidal dispersions and complex plasmas.

Statement of the author: This project was developed together with Andreas Kaiser,
Alexei Ivlev and Hartmut Löwen. Here, I am responsible for the theory and the numerical
simulations. The evaluation of the data and the development of the theory was strongly
supported by my co-authors, in particular Andreas Kaiser.
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Abstract

When the effective interactions between particles are mediated by some non-equilibrium
environment, the actio=reactio symmetry from Newton’s third law can be broken. Via
theory and numerical simulations, this work studies the impact of such nonreciprocal
pair interactions on the statistical mechanics. This is primarily done for binary mixtures
in the context of colloidal dispersions and complex plasmas. The major results of this
thesis are separated into three chapters.

Within the first part, nonreciprocal interactions in systems with Newtonian dynamics
are considered. A nonreciprocity parameter is introduced as the fraction of nonreciprocal
to reciprocal forces. Interactions where this parameter is independent from the inter-
particle distance, will be referred to as interactions with constant nonreciprocity. For this
case, it is shown that by renormalization a pseudo-Hamiltonian can be constructed and
the principles of equilibrium statistical mechanics are applicable. One major result is
the existence of a two-temperature steady-state, where the distinct species, i.e. the reci-
procal sub-ensembles, acquire different kinetic temperatures. When the nonreciprocity
parameter is a function of the distance, it is shown that there is a universal asymptotic
temperature growth. Within numerical calculations, the impact of density is examined,
while the theoretical results are confirmed by simulations and experiments.

In a subsequent chapter, a fully overdamped situation is inspected, where the tempera-
ture is imposed by a surrounding heat bath. A model is presented, where diffusiophoresis
leads to effective nonreciprocal Yukawa-like pair-interactions. The impact of these non-
reciprocal forces on the pair- and triplet correlations is studied in detail. A theory is
presented, that allows to compute the pair distribution function based on the Smoluchow-
ski equation and the Kirkwood approximation. It is shown, that for such situations
nonreciprocal interactions lead to distinct pair-correlation functions. The theory is tested
against Brownian dynamics simulations and shows a good agreement. The Kirkwood
approximation for such systems is tested and shows good results.

The last part of the thesis studies wake-mediated interactions in the fully overdamped
regime, under consideration of hydrodynamic interactions and thermal noise. It is shown,
that nonreciprocal interactions can lead to active units, when the reciprocal part of the
interaction vanishes. The onset of activity depends on the density of the system and can
lead to unusual melting and freezing behavior. The activity and configuration of active
units, as well as the freezing of many-body systems is predicted analytically. In a many-
body simulation the particles show strong velocity alignment, which is enhanced by
hydrodynamic interactions. For the case of finite temperature, the diffusion is drastically
increased relative to case without wake-mediated interactions. Hydrodynamic interactions
are shown to enhance the mobility of the fluid.
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Zusammenfassung

Die Reziprozität von Paarwechselwirkungen wird durch Newtons drittes Gesetz be-
schrieben. Dieses Gesetz kann gebrochen werden, wenn effektive Kräfte in einem Nicht-
gleichgewichtssystem betrachtet werden. Im Rahmen dieser Dissertationsschrift wird
der Einfluss von nichtreziproken Wechselwirkungen auf das Gebiet der statistischen
Mechanik untersucht. Dies geschieht im Rahmen von Simulationen und theoretischen
Beschreibungen für binäre Mischungen von Partikeln in kolloidalen Dispersionen oder
komplexen Plasmen.

In einem ersten Teil, werden nichtrezipoke Wechselwirkungen in Systemen mit un-
gedämpfter oder schwach gedämpfter Dynamik untersucht. Der Quotient von nicht-
reziproken zu reziproken Kräften wird als „Nichtreziprozitätsparameter“ eingeführt.
Wenn dieser Parameter unabhängig von dem Partikelabstand ist, sogenannte konstante
Nichtreziprozität, kann durch eine Renormalisierung der Massen und Potentiale ein
Pseudo-Hamilton-Operator eingeführt werden. Mit diesem Operator sind die Prinzipien
von klassischer statistischer Mechanik aus dem Gleichgewicht anwendbar. Ein beson-
deres Ergebnis dieser Arbeit ist die Existenz eines Zwei-Temperatur-Gleichgewichts,
bei dem sich für unterschiedliche Spezies im gleichen System verschiedene kinetische
Temperaturen einstellen. Falls der Nichtreziprozitätsparameter von dem Abstand der Par-
tikel abhängt, gibt es eine universelle Temperaturdivergenz. Die theoretischen Ergebnisse
werden durch Simulationen und Experimente bestätigt.

In einem darauffolgenden Kapitel werden überdämpfte Systeme betrachtet, bei denen
die Temperatur der Partikel durch ein umgebendes Wäremebad aufgeprägt wird. Es wird
gezeigt, dass Diffusiophoresis zu Yukawa-ähnlichen nichtreziproken Paarwechselwirkun-
gen führen kann. Der Einfluss von solchen nichtreziproken Wechselwirkungen auf die
Paar- und Tripletkorrelationen wird durch Theorie und Computersimulation untersucht.
Die vorgestellte Theorie erlaubt es, die Paarkorrelationen in guter Übereinstimmung
mit Simulationsergebnissen vorherzusagen. Sie basiert auf der Smoluchowskigleichung
und wird durch die Kirkwood-Approximation abgeschlossen. Die Kirkwoodtheorie
wird unabhängig von der Theorie getestet und zeigt gute Übereinstimmungen, auch für
nichtreziproke Wechselwirkungen.

Im letzten Teil dieser Arbeit wird der Einfluss von Wirbel-Vermittelten-
Wechselwirkungen in überdämpften Systemen untersucht. Es wird gezeigt, dass sich
aktive Einheiten bilden können, wenn der reziproke Teil der Wechselwirkung verschwin-
det. Der Aktivitätsübergang hängt dabei zum Einem von der Stärke der Nichtreziprozität
ab, aber auch von der Dichte des Systems. Dieses Verhalten kann zu ungewöhnlichen
Schmelzvorgängen bei Erhöhen der Dichte führen. Die Aktivität von einzelnen Paaren
wird analytisch vorhergesagt, und für Vielteilchensysteme werden stabile Kristallre-
gionen mit einer linearen Stabilitätsanalyse hergeleitet. In Simulationen werden die
theoretischen Resultate bestätigt und man kann ein starkes Ausrichtungsverhalten der ak-
tiven Teilchen erkennen. Für finite Temperaturen zeigt das System ein drastisch erhöhtes
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Diffusionsverhalten. Der Einfluss von hydrodynamischen Wechselwirkungen verstärkt
das Ausrichten und die Mobilität der Teilchen.
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CHAPTER 1

INTRODUCTION

The motion of all physical objects in our everyday life is subject to Newton’s laws [4].
The third of these fundamental postulates states that for every force FAB exerted by an
object A on an object B, there is an opposing force FBA on object A of equal magnitude

FAB = −FBA . (1.1)

Newton’s third law, Eq. (1.1), describes the reciprocity of pair interactions, which is
often referred to as actio = reactio. It is generally employed for any analysis of many-
body effects and forms the basics of modern statistical mechanics. Equation (1.1), is
in particular true for fundamental microscopic forces between particles, but it is also
valid for effective forces in equilibrium situations [5–9]. However, for effective forces,
it is possible to break Newton’s third law, if the system is out of equilibrium [10–13].
Multiple studies explored such situations in complex plasmas or colloidal dispersions.
In both cases, mesoscopic particles are embedded in a surrounding fluid, where the
particles are on much larger size range (typical diameters are between a few nanometers
and a few micrometers) compared to the atoms or molecules of the fluid. Due to
the different sizes, normally, the fluid is described by a mean-field approach, giving
rise to effective forces between the particles. In complex plasmas [14–17] studies
have shown that interactions between the micro-particles are nonreciprocal for many
different kinds of interactions. For example so-called shadow interactions [17–19],
occur when the presence of dust particle creates an anisotropy in its neighborhood
in the plasma. If two particles are close together, this can lead to bombardment of
plasma particles from a preferred direction, leading to an effective attraction which can
be nonreciprocal. Also, interactions in complex plasmas can break the actio-reactio
symmetry, if the charged particles are exposed to an external ion-flow. The resulting
wake structures can be described by an effective charge downstream of their position,
and the wake-mediated interactions [14–17, 20] are generally nonreciprocal. In colloidal
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dispersions, forces can break the actio-reactio symmetry in the case of a solvent or
depletant flow [11–13, 21], e.g. due to hydrodynamic interactions. Forces induced by
non-equilibrium fluctuations [22, 23], e.g. when two solutes induce density fluctuations
by reaction and diffusion, may also violate the action-reaction principle. Moreover,
optical [22,24,25] or diffusiophoretic forces [26–28] generally violate Newton’s third law.
Naturally, the actio-reactio symmetry is also broken in predator-prey systems [29–31]
or in the description of biological systems via effective forces, like human crowds in
pedestrian dynamics [32, 33].

It is the aim of this thesis to explore the statistical mechanics in systems where the
reciprocity of interactions can be broken. The focus is set on colloidal dispersions and
complex plasmas, where uneven magnitudes of effective forces are known and studied in
experiments. In this introduction, first both of these systems will be explained in more
detail. Some basic approaches to statistical mechanics are introduced for the case of
reciprocal interactions. Then, some typical situations where Newton’s third law is broken
are elaborated. In Chapter 2 the effect of nonreciprocal interactions on systems without
or with weak damping are explored, and the existence of a two-temperature steady-state
is shown. A characteristic nonreciprocity parameter is introduced and it is explained, how
by renormalization arguments a pseudo-Hamiltonian can be constructed, for which the
principles of equilibrium statistical mechanics are applicable. In Chapter 3, the effect of
nonreciprocity in the case of overdamped systems is analyzed. By theory and simulations,
it is shown that nonreciprocal interactions can lead to distinct pair-correlation functions.
In Chapter 4, an example of an overdamped system is given, where nonreciprocal forces
lead to the formation of active units. The activity gives rise to unusual melting scenarios,
which is studied with Brownian dynamics simulations and theoretical descriptions.
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1.1 Experimental systems

Colloidal dispersions and complex plasmas are ideal model-systems for the study of
many-body physics and statistical mechanics. They fall in the class of soft matter
systems, which is an active field of research. Topics like crystallization [34–41] and
melting [42–44], liquid structure [28,45], self-organization [46], phase separation [47–53]
or glass and gel formation [15, 54–57] are of current interest, e.g. in the development of
new technologies and materials.

Colloidal dispersions and complex plasmas consist both of mesoscopic particles
embedded in a surrounding fluid. This bears two major advantages: Unlike atoms in com-
mon liquids, particles are large enough that they are individually traceable. Additionally,
the effective interactions between the particles can be tuned by accessible parameters, e.
g. solvent properties or external fields. These systems immensely help to understand the
processes that occur at the individual particle level. Since the effects are often generic,
they serve as model system for atomistic processes. In this section, a short introduction
to the field of complex plasmas and colloidal dispersions is given.

1.1.1 Colloidal Dispersions

Colloidal dispersions as commonly used for experiments, are solid particles dispersed in
a liquid solvent [58]. Typically, the particles are of a size range between 1 nm and 1µm.
There are many everyday examples for such systems, like paint, ink, blood or milk. They
can be susceptible to external forces, e.g. paint is usually engineered such that it is highly
viscous once distributed on the wall, but less viscous while painting [59].

For colloidal dispersions, there is normally a difference in the refractive index of
the colloid and that of the solvent. This difference leads to spontaneously induced
dipoles, which in turn lead to effective attractive forces. When the force between of a
particle pair with distance r is reciprocal, it can be written as the gradient of a potential
F(r) = −∇V (r). For the interactions above, so-called non-retarded van der Waals
interactions, the potential can be described as [60]

VvdW = −AH

12

(
σ2

r2 − σ2
+

σ2

r2
+ 2 ln

r2 − σ2

σ2

)
,

with the Hamaker constant AH and colloid diameter σ. Usually AH ∝ (nparticle −
nsolvent)

2, where nparticle and nsolvent are the refractive indices of the particle and the
solvent, respectively. The strength of the van der Waals force can be reduced by index-
matching. Since this force is purely attractive with a divergence at contact, colloids will
coagulate if the dispersion is not stabilized.

One important stabilization method is electric charging of the colloids [44]. Due to
dissociation of surface groups and absorption of charges, the colloids naturally acquire a
charge Q. The sign or the magnitude of this charge is determined by e.g. the solvent’s
salt concentration or various material properties. For many organic solvents, the charge
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is so small that it can be reasonably neglected. On the other hand, for solvents with
high dielectric constants, e.g. water, the charging is strong. Assuming a constant surface
charge density, the charge of a colloid scales with its surface area.

A charged colloid will attract oppositely charged ions. In the direct vicinity of
the colloid a double layer forms, the so-called Stern layer. Usually, one differentiates
between strongly coupled charges, and in a subsequent layer more mobile charges. For
the mobile charges in the solution, a linearized screening theory is applicable. Under the
assumption of linear Poisson-Boltzmann theory the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory [61] is derived. The linearized Poisson-Boltzmann equation for the
electric potential Φ(r) at a position r is:

∇2Φ(r) =
e2

ǫ0ǫr

∑

j

[Z2
j ρ

∞
j ] β Φ(r) , (1.2)

where ǫ0 is the vacuum permittivity and ǫr the relative permittivity, and the charge number
Z is the particle charge normalized by the electron charge e. The ion density at infinity is
ρ∞ and the inverse thermal energy β = 1/kBT . When working in spherical coordinates
one finds, that Φ(r) = c e−r/λ/r, with a constant c and a screening length λ is a solution
to this equation. Assuming total charge neutrality, the interaction between two charged
colloids eventually reads:

VY(r) =

{
∞ if r < σ,

ǫY
e−(r−σ)/λD

r/σ
if r ≥ σ,

, (1.3)

where λD = (4πλBnion)
−1/2 is the Debye screening length and ǫY the contact potential.

The density of monovalent small ions is nion and the Bjerrum length λB = e2/ǫrkBT .
For the contact potential

ǫY =
Z2

(1 + σ/2λD)2
λB

σ
kBT .

The linear Poisson Boltzmann theory breaks down at large charging values. However,
for many applications it is sufficient to take linear screening theory and determine an
effective charge [44].

Active particles

Nonreciprocal interactions in overdamped suspensions are shown to induce activity,
i.e. a self-propulsion of particle clusters (see Chapter 4 or Refs. [27, 28]). Thus, it is
appropriate to mention the field of so-called active particles, which is important for the
area of colloidal dispersions [62]. Its study is initially motivated by effects in biological
groups: Young desert locusts can form a huge marching army [63], and flocks of bird
suddenly decide to land [64] without the existence of an leading alpha-bird. Such self-
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organization or sudden state switches can also be observed for other animals such as
fish [65], ants [66] or even human crowds [33, 67, 68].

Numerical studies show that such behavior might stem from simple local rules of
interaction. The most famous example for an algorithm leading to effects like local
swarming or global alignment is the Vicsek model [69]. There, individual animals, i.e.
active entities, are modeled as particles with orientation rules. They are driven with a
fixed absolute velocity, whereas the velocity direction is allowed to change depending
on the local environment. With a fixed frequency, a particle’s velocity direction is set
to the average direction of velocity of the neighboring particles plus some noise. Then,
depending on parameters as e.g. noise strength or density, there is a transition from
random motion to directed global motion.

On the colloidal length scale, important representatives for active particles are bacteria,
sperm, and also artificial microswimmers [62]. In the context of this thesis, an important
class of artificial microswimmers are those, that propel by diffusiophoresis [70–73],
which is a drift due to a chemical concentration gradient (see Section 1.3.3). The
transport of colloidal particles can occur e.g. for asymmetrically coated particles.

1.1.2 Complex Plasmas

The term plasma was coined by Irving Langmuir in 1928 [74]. It describes a gas that
is partially or fully ionized, i.e. it contains free charge carriers. Thus in a plasma, there
are free ions and electrons, but usually also a neutral, uncharged component. Plasmas
occur naturally, e.g. in the polar lights, lightnings, or space nebulæ [75]. For technical
applications plasmas are used for example for light emission, as in common gas discharge
lamps or in plasma TVs.

A plasma is typically distinguished from other gases by three important properties:
(i) the Debye length (the plasma-analogue to λD in Eq. (1.3)) is small in comparison
to the system size, (ii) the number of particles in a sphere with the radius of the Debye
length (the plasma parameter) is large, (iii) the typical time between collisions is large
compared to the period of the plasma oscillation. Typically, the charge ratio of positive
and negative charges in a plasma is close to one (quasi-neutral). Also, the mass of the
positively charged ions is much larger than the charge of the negatively charged electrons.
Important for the classification of a plasma are the plasma density, whether or not it is in
thermal equilibrium and the degree of ionization. All of the respective parameters can
vary in a very broad range.

Commonly, in a plasma there are objects much larger than the size of the gas atoms.
Typically this is known from space plasmas, e.g. in spokes of Saturn’s rings [76]. How-
ever, also in laboratory systems, there can be micro-particles, or dust, in plasmas. This
used to be considered an unwanted contamination. In 1994, several researchers reported
the emergence of crystalline structures in dust particles in a plasma [77–79]. Since then,
so-called dusty plasmas, or complex plasmas have received more attention [80]. These
systems are used for industrial processing [81], but they also serve as a model system for



6 CHAPTER 1. INTRODUCTION

many-body problems [14, 17]. In this respect, similarly to colloidal dispersions, they are
interesting, because they allow to observe the motion of particles at the individual-particle
level.

Experiments in the field of complex plasmas usually use plasmas, created by low-
temperature radio-frequency discharges. Seed electrons in a system are accelerated
in a strong electric field. Upon collisions with neutral atoms or molecules, the highly
accelerated electrons can remove another electron from its bound state. This leads to an
avalanche effect and the ionization of the gas, which then enters the plasma state.

In laboratory complex plasmas, dust particles become charged due to interaction with
the plasma environment. The particle charge Q influences the interaction between the
particles themselves, with the plasma environment, and their response to external electric
fields. The major mechanism behind particle charging is the balance of electron flux Ie
and ion flux II on the particle surface. The time evolution of the charge is Q̇ = Ii − Ie.
Typically the electron flux is much larger, because of the increased electron temperature.
For the analysis of a stationary charge, one seeks the situation where the ion and electron
fluxes are equal.

The orbital motion limited (OML) approximation [82] can describe the electron and
ion fluxes under the approximation of a dilute plasma. It considers an isotropic situation,
where the trajectories of ions and electrons in the vicinity of the particle are without
collisions. The ion and electron currents on the particle surface [83] are the determined
to be

Ii = 4πσ2nie

√
kBTi

2πmi

(
1− eφp

kBTi

)

and

Ie = 4πr2enee

√
kBTe

2πme

exp

(
eφp

kBTe

)

with the particle radius σ, the Boltzmann constant kB, the particle floating potential φp

, the electron charge e, and the number density ne, ni, the temperature Ti, Te and the
mass me, mi for electrons and ions respectively. In the derivation, it was assumed that an
ion has a single positive elementary charge. This fundamental theory also provides the
basis for theories describing the charging in different situations, like when ion neutral
collisions become important or the plasma is no longer isotropic [80].

Considering the charge of the dust particles as the major contribution to the interac-
tions with each other and in respect to external fields, the interaction potential can be
written as V (r) = Qϕ(r), where ϕ(r) is the distribution of the electrostatic potential
around a particle. Due to the charge of the particle, ions and electrons in the plasma
will redistribute and shield the charge. Under the assumption, that the charge Q is
independent of the inter-particle distance r, we consider the regime of linear response.
Within this regime, where e|φs|/kBT . 1 electron and ion distributions can be linearized.
Similarly to colloidal dispersions, we are using the linearized Poisson equation, Eq. (1.2).
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Figure 1.1: Qualitative sketch of the force balances in the plasma sheath region. The

absolute value of the potential |Esh| and the equilibrium particle charge |Q| are

given as dashed and dotted line, respectively. Particles levitate at that value z,

where the electrostatic repulsion balances gravity and the ion drag force. (see

Ref. [15])

Then, with the boundary conditions ϕ(∞) = 0 and ϕ(a) = ϕs we determine the Yukawa
potential

V (r) = Γ
e−(r−σ)/λD

r/σ

where Γ is the coupling parameter and the Debye length is λDi
=
√
kBTi/4πe2ni.

Sheath interaction

An important class of nonreciprocal interactions are the wake-mediated interactions (see
Section 1.3.2), which are intensively studied in complex plasmas [14, 15, 20]. Plasma
wakes naturally occur in the sheath region [81,84] sketched in Fig. 1.1. The sheath region
is an important aspect in modern complex plasma experiments. These experiments
are often carried out in a Gaseous Electronic Conference radio frequency-reference
cell [85]. In this setup the electrode required for the plasma discharge is set at the
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bottom of the experimental cell. The electrode is negatively charged, which generates
a region of negative potential, attracting positively charged ions. Ions accumulate near
the electrode and due to the resulting ion-flow, there is an ion drag on the particles. The
ions shield the electro-negative potential of the electrode, and the dust particles levitate
at the height, where the electric repulsion balances gravity and the ion drag force (see
again Fig. 1.1). The dust particles are thus levitating on a plane with a perpendicular
ion current. The particles act like lenses, and focus the ions downwards of the levitation
plane [1, 14, 15, 17–19]. The important quantity in this respect is the thermal Mach
Number MT . It is defined as the ion flow velocity ui divided by the ion thermal velocity
vT

MT =
ui

vT
.

For Mach numbers larger than one, MT > 1, the wakes are stronger than in the reverse
case, where the anisotropic deviations of the particle potential are rather weak. In
particular for a two-layer setup, these forces can become highly antisymmetric.
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1.2 Theoretical basics

Before the study of nonreciprocal forces, here the focus is put on the description of
dynamics in systems with classical reciprocal interactions in complex plasmas and
colloidal dispersions. Clearly, the motion of particles in a system is governed by the
inter-particle interaction and the particle’s response to the environment. Generally, one
starts derivations either from a individual particle approach or a probability density
formalism. The individual particle approach presented here is the Langevin approach,
for the probability density the Fokker-Planck formalism will be shortly introduced.
For both cases however, the description of mesoscopic particles in a microscopic fluid
usually involves a mean-field approach of the surrounding liquid. This is justified, since
the atomistic motion of the surrounding fluid takes place on much shorter time- and
length-scales than the particle motion.

The typical approach to include the fluid as a mean-field is via the assumption of a
random force Li(t), acting on the i-th particle at the time t. This is motivated by the
many collisions of the fluid molecules with the particle surface. These collisions are
undirected, i.e.

〈Li(t)〉 = 0 ,

where the brackets represent the ensemble average. The correlation of the random force
with itself is proportional to the damping rate of the liquid ν and the temperature T [86]

〈Li(t) Lj(t+ τ)〉 = 2νkBTδijδ(τ) .

The Langevin equation is a stochastic equation, that bases on this model. In general, it
does not differ much from the Newton’s equation with a friction force that is proportional
to the velocity. We write down the Langevin equation [87] as

∂pi(t)

∂t
+ νpi(t) = Fi(t) + Li(t) , (1.4)

where pi(t) = mi vi(t) is the momentum of the i-th particle with mass mi and velocity
vi(t) and Fi the superposition of external Fext and inter-particle forces Fint.

Alternatively, one can approach the dynamics of a many body-system by a probability
density. One writes the phase-space probability density f (N)(t,p1, r1, . . . ,pN , rN) for
N particles with positions ri and momenta pi. It describes the probability to find a
system in a given state, with given positions and momenta of the particles. The Fokker-
Planck formalism [88] describes the time evolution of this probability density. It is the
equivalence of the Langevin Eq. (1.4) for the probability density. One writes the kinetic
equation as

∂f (N)

∂t
+
∑

i

(
vi ·

∂f (N)

∂ri
+ Fi ·

∂f (N)

∂pi

)
= ν

∑

i

∂

∂pi

·
(
pif

(N) +miT
∂f (N)

∂pi

)
.

(1.5)
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where mi is the particle mass. The right hand side of Eq. (1.5) describes the collisions
with the fluid, while the left hand side incorporates Newton’s laws of motion. In the case
of negligible fluid interaction, the right hand side of this equation vanishes. The following
analysis considers the two extreme cases, where the dynamics are highly damped or
undamped: Highly damped or overdamped dynamics are found mainly in colloidal
dispersions, where the interaction with the fluid is essential. Undamped dynamics can be
important in the case of complex plasmas, which often operate at very low densities and
the motion is quasi undistributed Newtonian.

1.2.1 Undamped dynamics

If the damping rate ν is much smaller than the inverse of the timescale of the problem,
it is a reasonable approximation to neglect the right hand side of Eq. (1.5). The phase
space probability density f (N) includes the full information about the system. Often, this
amount of information is unhandy or not even desired. Instead, the i-particle distribution
f (i) is a preferred quantity. It is the partial integration over the remaining momenta and
coordinates

f (i) =

∫
dpi+1dri+1 . . . dpNdrNf

(N) .

Of major importance are the first three i-particle distribution functions, i.e. f (1), f (2)

and f (3). With these definitions and under the assumption of a large N , after multiple
integrations in Eq. (1.5), an equation for the one-particle distribution function is derived

∂f (1)

∂t
+ v1 ·

∂f (1)

∂r1
= N

∫
dp2r2

∂V12

∂r1
· ∂f

(2)

∂p1

. (1.6)

As long as no approximations are made concerning the kind of pair correlation, this
equation is exact. It relates the one-particle distribution function f (1) to the two-particle
distribution function f (2). A common approach to solve Eq. (1.6) is to replace the two
particle distribution function in the so-called superposition approximation. There, the
two-particle density is replaced by a product of two one-particle-distribution functions
f (2)(r1,p1, r2,p2) ≈ f (1)(r1,p1) f

(1)(r2,p2). Then, the integral on the right hand side
of Eq. (1.6) is reduced to the classical Boltzmann collision integral. In particular, this
approach can be used for weakly coupled plasmas.

In denser systems, or systems with stronger interactions, this approximation is no
longer valid. There, the two-particle distributions have to be taken into account. Devel-
oping a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is the standard
method to predict higher-order particle distribution functions. As the one-particle distri-
bution function f (1) is expressed as a function of the two-particle distribution, similarly,
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one can express the two particle distribution as a function of the three-particle distribution
function. Introducing relative coordinates r = r2−r1 and relative velocities v = v2−v1

∂f (2)

∂t
+ v · ∂f

(2)

∂r
− 2

∂V

∂r
· f

(2)

∂v
= N

∫
dp3dr3

(
∂V13

∂r1
· ∂f

(3)

∂r1
+

∂V23

∂r2
· ∂f

(3)

∂v2

)
.

Under the assumption of spacial translational invariance, this gives a chain of equations
each depending on the next higher f (i). Depending on the system parameters, this
expansion usually is cut off at some point by some closure.

1.2.2 Overdamped dynamics

For colloids, the collision operator on the right hand side of Eq. (1.5) is very important.
Concretely, the relevant time scales of a typical experiment are much larger than the in-
verse damping rate ν−1. Then, the inertia term in the Langevin Eq. (1.4) loses importance
and it is typically neglected. Equation 1.4 reduces to

νpi = Fi + Li .

Since in overdamped dynamics, the inertia part is negligible, the n-particle distribution
function is often written as a function of the positions only

Ψ(t, r1, . . . , rN) =

∫
dp1 . . .pN f (N)(t,p1, r1, . . . ,pN , rN) .

This approach allows, to derive the steady-state probability flux of the i-th particle Ji as

Ji = µ0FiΨ−D0
∂Ψ

∂ri
,

where µ0 is the mobility coefficient and D0 the free diffusion coefficient of a single
particle. The two latter quantities are connected via the Einstein relation D0 = µ0kBT .
By integration over the momenta in Eq. (1.5), all derivatives with respect to pi become
equal zero. With the probability flux, this immediately derives the Smoluchowski
equation [89]

∂Ψ

∂t
+

N∑

i

∂Ji

∂ri
= 0 . (1.7)

The Smoluchowski equation is often used as a basic for further theories on colloidal dy-
namics. In Chapter 3 of this thesis, the theoretical derivation for two-particle distribution
function also bases on this equation.
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1.3 Nonreciprocal forces

In this section, some selected occurrences of interactions that break the actio-reactio
symmetry shall be introduced. As mentioned earlier, this is done with the focus on
complex plasmas and colloidal dispersions, of which some basic properties and theoreti-
cal descriptions were outlined above. Nonreciprocal forces are nonconservative, which
can be illustrated by a simple example: Let the force of particle A on particle B be
FAB = 0, but for the force of particle B on particle A: FBA 6= 0. Then, the “work” of
bringing these two particles together, drastically depends on the path chosen. It is highly
important, how much the A or B particle is moved, with respect to the other one.

Even worse, nonreciprocal forces are not only nonconservative, but also energy
conservation is not valid. One might stipulate a situation where Eq. (1.1) would be
reversed, such that for two particles A and B the forces are equal FAB = FBA. Due to
the mere presence of both of the two particles, in an undamped situation they would
accelerate infinitely. This breaking of energy conservation would allow to build a
perpetual motion machine, which is of course unphysical.

However, nonreciprocal effective forces, occur naturally in many nonequilibrium
situations. Most intuitively, this is the case for biological predator-prey systems [29, 30],
where e.g. a lion chases a gazelle [90]. More “physical” systems were mentioned
earlier in this chapter: In particular, wake-mediated interactions in complex plasmas,
and also hydrodynamic or diffusiophoretic interactions in colloidal dispersions. Even
though, nonreciprocal interactions represent an important general class of interactions,
they have so far received little attention. In this section, the scientific discourse on the
three mentioned situations is introduced, where the actio-reactio symmetry is broken.
Typically, this is done in the context of some of binary mixtures, where the particles can
be separated in two reciprocal sub-ensembles. While the generalization to more species
is in principle straight forward, it may drastically complicate calculations. In this thesis,
all results are presented for two species systems.

1.3.1 Hydrodynamic interaction

Hydrodynamic interactions are nonreciprocal and play a major role in colloidal dis-
persions. They are of particular importance, if the environment moves with respect to
the particles, e.g. by an external flow. Thus they naturally occur in many systems, but
are often ignored, since their long-ranged nature encumbers simulations. Neglecting
hydrodynamic interactions is justified, if the suspension is strongly interacting, but the
volume fraction of the particles is low. The intuition behind hydrodynamic interactions
is straight forward: When a particle moves through a fluid it induces a flow field, and
when a particle is placed in moving fluid, it will respond to that motion. Now, when N
particles are dispersed in a fluid, they will induce a flow field, and respond to it. In that
sense, the velocity of a particle does not only depend on the forces it is exposed to, but



1.3. NONRECIPROCAL FORCES 13

also on the motion of the other particles. In a simplified picture, under the assumption of
immediate and linear fluid response and neglecting rotations, one writes [91],

vi =
∑

j

Lij({r}) Fj ,

where the coefficients Lij are the 3×3 mobility-matrices. Ideally, one would directly solve
the Navier-Stokes equations for the fluid flow. However, this is not simple: Hydrodynamic
interactions depend on all particle positions and have drastically different near and far
field behavior. For low concentrations and large distances, a multipole-like expansion for
particle pairs can be carried out. In this picture, the self interactions is Lii = I/γ, where
γ is the particle friction and I the unit matrix. For the pair-interaction between particle i
and j one has Lij = LRP (ri − rj), where LRP is the Rotne-Prager tensor [92]:

LRP (r) =
1

γ

[
3

4

Rh

r
(I + r̂r̂) +

1

2

R3
h

r3
(I − 3r̂r̂)

]
,

where RH is the hydrodynamic radius of the particles, r = |r| , r̂ = r/r and rr denotes
a dyadic product. Another frequently used approximation for hydrodynamic interactions
corresponds to the monopole part of the Rotne-Prager tensor. The so-called Oseen tensor
LO(r) [92] decays with 1/r and is the dominant part of the long-range interactions. For
the pair interactions between the particles i and j one has Lij = LO(ri − rj), with

LO(r) =
3Rh

4γr
(I + r̂r̂) . (1.8)

Hydrodynamic interactions can lead to effective nonreciprocal interparticle forces.
Within the Oseen regime |r| ≫ Rh, this can lead to the extreme case of nonreciprocity,
where FAB = FBA. Consider a bilayer setup in an external flow, as depicted in Fig. 1.2
(see Ref. [93] for an actual experiment). The motion of the particles in the system is
confined in the two parallel layers. The solvent flows in perpendicular direction with
velocity v0, and induces hydrodynamic interactions between the particles. Then, the
Stokes solution for a single sphere at the origin is

u(r) = v0 −
3Rh

4 |r|

(
v0 +

1

r2
(v0r)r

)
.

The total flow field v(r) of many of spheres is a linear superposition, such that v(r) =∑N
i=1 u(r− ri). In this picture, the effective forces between a particle in the upper layer

A and a particle in the lower layer B are

FAB(h, v0, r) = FBA(h, v0, r) = − 9πηR2
hv0h

2(r2 + h2)3/2
r , (1.9)
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Figure 1.2: The effective forces between two colloidal particles are nonreciprocal, when the

interactions are mediated by an external flow. In this example, two colloidal

particles are confined in two layers at different heights of distance h. Hydrody-

namic interactions lead to the extreme case of nonreciprocity, where the effective

forces are of equal strength and direction.
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Figure 1.3: The total force exerted on the upper-layer (U) particle from the lower-layer (L)

particle is the sum of the repulsive force F
p
LU of direct interparticle interaction

and the attractive force F
w
LU from the wake of the lower particle (and similar

for the total force on the lower particle). While the direct forces are reciprocal,

F
p
LU = −F

p
UL, the wake forces are not, Fw

LU 6= −F
w
UL; since the forces decrease

with the distance, we have |Fw
LU| < |Fw

UL| and therefore |FLU| > |FUL|.
(Figure and caption from Ref. [1])

where η is the fluid viscosity, v0 = |v0|, h the height difference between the layers and r
the distance between the particles projected on the layer. For the interaction in the same
particle species, the flow-induced forces vanish. Additionally, one would expect some
kind of reciprocal interaction between the particles, e.g. charge interaction. Then, the
relative magnitude of the nonreciprocity could be tuned by the external flow velocity.

1.3.2 Wake interaction

In a complex plasma, a charged particle will induce a wake, if placed in an ion flow. In
particular, this is the case for particles levitating in the sheath region [15]. The negatively
charged electrode attracts positively charged ions. The induced flow field is disturbed by
the particles, which act as a lens to focus the ions downstream of the particle. This wake
formation is a well-known and well studied phenomenon (see Section 1.1.2). In a good
approximation, one can consider every wake as a positive point-charge.

The levitation height of particles in the sheath region depends dominantly on the
balance of electrostatic repulsion, ion drag force and gravitation. Consider an experiment
with a bidisperse mixture in a complex plasma, i.e. two species of particles with distinct
diameters. Due to the different associated masses, the two particle species will levitate at
a different heights of distance h. This generates a bilayered set-up as depicted in Fig. 1.3.
Assuming that the distance between the particle and the wake is δ, every particle at
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position ri can be associated with a wake at position ri− δ ez, where ez is the unit vector
in flow direction. Then, the interparticle forces are the superposition of particle-particle
forces Fp and particle-wake forces Fw. While the particle-particle forces are reciprocal,
the particle-wake forces are not. The height difference between the wake of an upper
layer particle U and a particle in the lower layer L is h − δ. For the reverse case, the
height difference between a lower layer particle’s wake and an upper layer particle is
h+ δ. Following this simple geometric argument, the superposition of the effective pair
forces violates Newton’s third law.

1.3.3 Diffusiophoretic interaction

Gradients in concentration of a solute in colloidal dispersions can lead to net motion of
particles [94–97]. This motion along a concentration gradients ∇c(r) is called diffusio-
phoresis and typically connected to an equation of motion like

v(r) = µ ∇c(r) , (1.10)

which states that the velocity v of a particle is proportional to the concentration gradient
of the solute with a surface mobility µ [98]. The concentration gradients in the system can
be created by catalytic activity, e.g. of some object placed in the solvent. Let the surface
of that object emit some chemical with a surface activity s. Particular interesting effects
happen, when the catalyst is on the surface of the colloid itself. In the case of asymmetric
coating, this can lead to self-propulsion [70, 72, 98–101]. For the simpler case, where
the catalytic activity takes place on the surface homogeneously, the colloid generates an
isotropic concentration field around the particle [27]. Concretely, the concentration field
is obtained by solving the diffusion equation in the steady state:

∇2c(r) = 0 and −D
∂c(r)

∂r

∣∣∣∣
r=σ

= s ,

where ∇2 is the Laplacian, r the distance to the particle, σ is the radius of the colloid and
D the effective diffusion coefficient of the solute. This results in a concentration field
around the particle as

c(r) =
s σ2

D r
. (1.11)

From Eq. (1.10) it can be seen, that this is quite similar to an effective potential of a
particle.

Soto and Golestanian proposed a model, where in a binary mixture the two species
have different surface mobilities µA, µB and different surface activities sA, sB [27]. The
effective forces exerted by particle of type α on a particle of type β is then Fαβ ∝ µβ sα.
Then, the quantities µA, µB, sA and sB can be tuned by surface chemistry. In general,
one has FAB 6= FBA, i.e. for these effective interactions Newton’s third law is broken.
This model was studied in detail [27, 28]; for particular choices it is shown to form
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self-assembled active molecules. Also, one can achieve assemblies of particles that show
oscillatory motion, similar to bacteria. A model based on this is explained in detail in
Chapter 3.
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CHAPTER 2

MANY-BODY SYSTEMS WITH
NONRECIPROCAL INTERACTIONS

As described in the very beginning of this thesis, one of the fundamental postulates in
physics is Newton’s third law actio=reactio, laying the foundations of classical mechan-
ics. This law, which states that the pair interactions between particles are reciprocal, holds
not only for the fundamental microscopic forces, but also for equilibrium effective forces
on classical particles, obtained by integrating out microscopic degrees of freedom [5–9].
However, the action-reaction symmetry for particles can be broken when their interaction
is mediated by some non-equilibrium environment: This occurs, for instance, when
the environment moves with respect to the particles, or when a system of particles is
composed of different species and their interaction with the environment is out of equilib-
rium (of course, Newton’s third law holds for the complete “particles plus environment”
system). Recently there have been numerous studies of nonreciprocal interactions on the
mesoscopic length-scale. Examples include forces induced by non-equilibrium fluctua-
tions [22, 23], optical [24, 25] and diffusiophoretic [26, 27] forces, effective interactions
between colloidal particles under solvent or depletant flow [11–13, 21], shadow [17–19]
and wake-mediated [14, 15, 20] interactions between microparticles in a flowing plasma,
etc. A very different case of nonreciprocal interactions are “social forces” [32, 33]
governing, e.g., pedestrian dynamics.

A natural violation of Newton’s third law in non-equilibrium environments can be
easily illustrated. One example for nonreciprocal interactions occurs in the context of
catalytically driven colloids (microswimmers) [27]. Typically, a single colloidal particle
which produces or consumes chemicals on its surface, being embedded in a solution
with a gradient in the chemical concentration, is propelled along the gradient – this

This chapter was published in a very similar form under the title “Statistical Mechanics where Newton’s
Third Law is Broken” by Alexei Ivlev, Jörg Bartnick, Marco Heinen, Chengran Du, Vladimir Nosenko and
Hartmut Löwen, Phys. Rev. X 5, 011035 – Published 26 March 2015, see Reference [1].
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non-equilibrium transport phenomenon is termed as diffusiophoresis. Since each particle
generates an inhomogeneous concentration profile in its vicinity, the action-reaction
symmetry in a binary mixture of microswimmers (with different mobilities and surface
activities) is broken. The magnitude of the nonreciprocity can be tuned by varying the
relative disparity of the activities or/and mobilities. The other very different system
where the action-reaction symmetry is broken are quasi-two-dimensional (2D) binary
complex plasmas [15,16]. These are binary mixtures of charged microparticles, levitating
in a plasma over a flat horizontal electrode at slightly different heights. The horizontal
interactions between the microparticles are nonreciprocal, because they are mediated
by the plasma wakes – the perturbations below each particle, generated in a plasma
streaming towards the electrode. The magnitude of the nonreciprocity is controlled by
varying the difference of the levitation heights for the two species.

Nonreciprocal forces are in principle non-Hamiltonian (i.e., they cannot be derived
from a classical many-body Hamiltonian), so the standard Boltzmann description of
classical equilibrium statistical mechanics breaks down. Hence, it is a priori unclear
whether concepts like temperature and thermodynamic phases can be used to describe
them. Apart from a few considerations in the context of the multi-scale coarse graining
[7, 102], the classical statistical mechanics of systems with nonreciprocal interactions –
despite their fundamental importance – remains widely unexplored.

In this chapter we present the statistical foundations of systems with nonreciprocal
interparticle interactions. To describe various classes of interactions relevant to real
experimental situations, we consider a generic model where the action-reaction sym-
metry is broken for the pair interaction between two sub-ensembles. The asymmetry
is characterized by the nonreciprocity parameter ∆, which is the ratio of the nonrecip-
rocal to reciprocal forces. We show that for the “constant” nonreciprocity, when ∆ is
independent of the interparticle distance r, one can construct a (pseudo) Hamiltonian
with renormalized masses and interactions. Hence, being intrinsically non-equilibrium,
such systems can nevertheless be described in terms of equilibrium statistical mechanics
and exhibit detailed balance with distinct temperatures for different sub-ensembles (the
temperature ratio is determined by ∆). For a general case, when ∆ is a function of r,
the system is no longer conservative – it follows a universal asymptotic behavior with
the temperatures growing with time as ∝ t2/3. The temperature ratio in this case is
determined by an effective constant nonreciprocity which is uniquely defined for a given
interaction. The temperatures reach a steady state when the damping due to surrounding
medium is taken into account, while their ratio remains practically unchanged. One
of the remarkable implications of our results is the occurrence of extreme temperature
gradients, generated in mixtures of particles at the ultimate scale of interparticle distance.

To verify the principal theoretical predictions, we have also performed experimental
tests with quasi-2D binary complex plasmas. The interactions of particles of one sort with
the wakes generated by particles of the other sort results in a very general mechanism
of the action-reaction symmetry breaking due to the presence of a flow (as explained in
detail in the caption of Fig. 1.3. This makes 2D complex plasmas perfectly suited for
studying generic properties of many-body systems with nonreciprocal interactions.
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2.1 Models for wake-mediated interactions

All available self-consistent models for the interaction between microparticles in 2D
complex plasmas are based on the solution of the kinetic equation for ions moving in the
electrostatic field of the sheath, while electrons are described by the Boltzmann distribu-
tion [103]. Different approximations used for the ion collision operator (describing the
interaction with neutral gas) merely reflect different experimental regimes (in terms of the
rf discharge power and pressure) when the particular model is applicable. Note that the
wake generated by a given particle is practically unaffected by the field of the neighbors,
because the characteristic lateral range of the ion-particle interaction (providing the main
contribution to the formation of wake, the Coulomb radius) is typically 1-2 orders of
magnitude shorter than the interparticle distance [103].

In order to illustrate the essential features of the wake-mediated interaction, we
consider a simple “Yukawa/point-wake model” [20, 104]. In this model, the wake is
treated as a positive, point-like effective charge q located at the distance δ below each
negatively charged particle (of charge −Q). So, the total interaction between two particles
is a simple superposition of the particle-particle and particle-wake interactions, both
described by the (spherically-symmetric) Yukawa potentials with effective screening
length λ.

For a binary 2D system of particles, it is convenient to introduce the horizontal (radial)
distance r and the vertical distance z. The total potential governing the interparticle
interactions is ϕQ(r, z)− ϕq(r, z), where the particle-particle and particle-wake terms
are ϕQ(r, z) = (Q2/RQ)e

−RQ/λ and ϕq(r, z) = (qQ/Rq)e
−Rq/λ, respectively, RQ =√

r2 + z2 is the interparticle distance, and Rq =
√
r2 + (z + δ)2 is the distance to the

neighboring wake. For the layers separated by the height difference H , we readily obtain
the potentials of the reciprocal and nonreciprocal forces,

ϕr(r) = ϕQ(r,H)− 1

2
[ϕq(r,H) + ϕq(r,−H)] ,

ϕn(r) =
1

2
[ϕq(r,H)− ϕq(r,−H)] .

The interaction is reciprocal for particles levitating in the same layer. For the interlayer
interactions, when the height difference is much smaller than the interparticle distance
(within each layer), the nonreciprocity parameter scales linearly with H , as ∆(r) ∝
(q/Q)Hδ/r2.

2.2 Constant nonreciprocity

In the introduction we mentioned several prominent examples of nonreciprocity, in-
cluding the situations when different particles interact differently with the surrounding
non-equilibrium environment [17, 27], or when the action-reaction symmetry is broken
in the presence of a flow [13, 15] (while the particles themselves may be identical). In
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what follows, for the sake of convenience we generally attribute particles to “different
species” when their pair interaction is nonreciprocal.

To describe the variety of nonreciprocal forces we employ the following generic
model: We consider a binary mixture of species A and B, where the spatial dependence
of the pair-interaction force is proportional to the derivative of the function ϕ(r). The
interaction is reciprocal for the AA and BB pairs, whereas between the species A
and B the action-reaction symmetry is broken. The measure of the asymmetry is the
nonreciprocity parameter ∆(≥ 0).

It is noteworthy that the only assumption made about the general form of isotropic
nonreciprocal interactions is that non-pairwise additive many-body forces between
different species are negligible (which is always justified to describe, e.g., complex
plasmas and dilute colloids [15]). Apart form that, no further assumption is imposed on
the model, i.e., the parameter ∆ completely characterizes any isotropic type of pairwise
nonreciprocal forces.

First, we consider the case when ∆ is independent of the interparticle distance
(“constant”) – this represents, e.g., binary colloidal dispersions with the dominating
diffusiophoretic interactions [26, 27] or complex plasmas with the shadow interactions
[17–19]. We present the force Fij exerted by the particle i on the particle j as follows:

Fij = −∂ϕ(rij)

∂rj
×





1−∆ for ij ∈ AB;
1 + ∆ for ij ∈ BA;

1 for ij ∈ AA or BB,
(2.1)

where rij = |ri − rj| and each particle can be of the sort A or B. In order to distinguish
the effect of nonreciprocity ϕ(r) must be the same for the AB and BA pairs, while for
other pairs it may be different.

2.2.1 Pseudo-Hamiltonian

By writing the Newtonian equations of motion of individual particles interacting via the
force (2.1), we notice that the interaction symmetry is restored if the particle masses and
interactions are renormalized as follows:

m̃i = mi ×
{

(1 + ∆)−1 for i ∈ A;
(1−∆)−1 for i ∈ B,

(2.2)

ϕ̃(rij) = ϕ(rij)×





(1 + ∆)−1 for ij ∈ AA;
(1−∆)−1 for ij ∈ BB;

1 for ij ∈ AB or BA.
(2.3)
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Hence, a binary system of N particles with nonreciprocal interactions of the form of
Eq. (2.1) is described by a pseudo-Hamiltonian with the masses (2.2) and interactions
(2.3). In particular, this implies the pseudo-momentum and energy conservation,

N∑

i

m̃ivi = const,

N∑

i

1

2
m̃iv

2
i +

N∑

i<j

ϕ̃(rij) = const,

and allows us to employ the methods of equilibriums statistical mechanics to describe
such systems. For instance, from equipartition, 1

2
m̃A〈v2A〉 = 1

2
m̃B〈v2B〉 ≡ 1

2
DkBT̃ (where

T̃ is the pseudo-temperature and D is the dimensionality), it immediately follows that in
detailed balance TA = (1 + ∆)T̃ and TB = (1−∆)T̃ , i.e.,

TA

TB

=
1 +∆

1−∆
. (2.4)

We conclude that mixtures of particles with nonreciprocal interactions, being intrinsi-
cally non-equilibrium, can nevertheless reach a remarkable state of detailed dynamic

equilibrium, where the species have different temperatures TA and TB. Note that the
equilibrium is only possible for ∆ < 1, otherwise the forces FAB and FBA are pointed
in the same direction [see Eq. (2.1)] and the system cannot be stable.

2.3 General nonreciprocity

Now we shall study a general case, when the interactions between the species A and B
are determined by the forces FAB,BA(r) = ∓Fr(r) + Fn(r). The reciprocal, Fr(r), and
nonreciprocal, Fn(r), components are arbitrary functions of the interparticle distance,
they can always be presented as Fr,n(r) = (r/r)Fr,n(r), where Fr,n = −dϕr,n/dr. As
we show below, the dynamic equilibrium is no longer possible in this case, and analytical
results can only be obtained in certain limiting regimes.

To facilitate the analysis, we shall distinguish between the weakly- and strongly-
coupled systems: The former regime represents the situation when binary collisions
between particles play the dominant role (“dilute” systems), while in the latter regime
simultaneous interactions with many neighbors are crucial (“dense” systems). The
transition between the regimes is determined by the coupling parameter Γ, which is the
ratio of the mean energy of the (reciprocal) pair interaction to the particle thermal energy
(i.e., Γ ∝ T−1).
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2.3.1 Pair collisions: Variation of energy and scattering

functions

Let us first study weakly-coupled (Γ ≪ 1) systems whose dynamics is governed by binary
interparticle collisions (numerical analysis of strongly-correlated systems is presented
in Sec. 2.4). It is instructive to write the equations of motion for a pair of particles A
and B in terms of the relative coordinate r = rA − rB and the center-of-mass coordinate
R = (mArA +mBrB)/M ,

MR̈ = 2Fn(r), (2.5)

µr̈ = Fr(r) +
mB −mA

mA +mB

Fn(r), (2.6)

where µ = mAmB/(mA +mB) and M = mA +mB are the reduced and total masses,
respectively. Using Eqs. (2.5) and (2.6), we calculate the variation of the kinetic energy
after a collision, δEA,B, which is expressed via the relative velocity v = ṙ, the center-
of-mass velocity V = Ṙ, and the scattering angle χ for the relative motion. We define
the relative velocity, v = ṙ, the center-of-mass velocity, V = Ṙ, and their values after a
collision, v′ = v+ δv and V′ = V+ δV. From Eq. (6) we infer that the relative motion
is conservative, i.e., the absolute value of the relative velocity remains unchanged after
a collision, |v + δv| = |v|. Equation (5) governs the variation of the center-of-mass
velocity, δV, which is determined by the relative motion via Fn(r). By employing the
relation vA,B = V ± (µ/mA,B)v, we obtain the variation of the kinetic energy EA,B

after a collision,

δEA,B = mA,B

[
V · δV +

1

2
(δV)2

]

±µ (V · δv + v · δV + δV · δv) .

Since the relative motion is conservative, from Eq. (5) we conclude that δV is parallel
to δv, i.e., δV · δv = δV δv. For 2D collisions, let us introduce the angle θ between V

and v, and the scattering angle χ between v′ and v (Fig. 2.1). Then we have V · δV =
V δV sin(θ − 1

2
χ), V · δv = V δv sin(θ − 1

2
χ), and v · δV = −vδV sin 1

2
χ [105, 106].

For 3D systems the corresponding expressions are easily derived using the cosine rule of
spherical trigonometry.

In order to calculate the magnitudes of the velocity variations and the scattering angle,
we consider the approximation of small-angle scattering, χ ≪ 1. Using Eqs. (5) and (6),
for a given impact parameter ρ we get the following expressions [105]:

δV (ρ) =
4

Mv
fn(ρ),

χ(ρ) =
δv

v
=

2

µv2

[
fr(ρ) +

mB −mA

mA +mB

fn(ρ)

]
,
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d    dv V,

(p-c)/2
Figure 2.1: Sketch illustrating pair collisions in 2D systems. Shown are the variations of the

center-of-mass velocity V and the relative velocity v as well as the scattering

angle χ, plotted in polar coordinates.

determined by the scattering functions (α =r,n),

fα(ρ) = ρ

∫ ∞

ρ

dr
Fα(r)√
r2 − ρ2

. (2.7)

General equations describing the asymptotic evolution of the mean kinetic tempera-
tures of species A and B are obtained by multiplying δEA,B with the collision frequency
between the species and averaging it over the Maxwellian velocity distributions [106].
The collision cross section is represented by the integral over the impact parameter [105],∫
dρ for 2D systems or

∫
dρ 2πρ for 3D systems. Note that after the integration over θ

all terms in the above expression for δEA,B yield contributions ∼ χ2.

2.3.2 Asymptotic Universality

In the approximation of small-angle scattering [105], χ ≪ 1, which significantly
simplifies the analysis and is valid for sufficiently high kinetic energies (provided the
pair interaction is not of the hard-sphere-like type), one can derive general equations
describing the asymptotic evolution of the kinetic temperatures TA,B. To obtain a
closed-form solution, we assume that the elastic energy exchange in collisions provides
efficient Maxwellization of the distribution functions (which can be verified by molecular
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dynamics simulations discussed below). This yields the following equations for 2D
systems:

ṪA,B = ±1±∆eff

1 + ǫ

√
2πnB,AIrr

mAmB

(
TA

mA
+ TB

mB

)3/2

[
(1 + ∆eff)TB − (1−∆eff)TA +

ǫ

1±∆eff

(TB − TA)

]
, (2.8)

where nα is the areal number density (for simplicity, below we assume nA = nB = n).
The equations depend on the effective nonreciprocity ∆eff and the interaction disparity ǫ,

∆eff = Inn/Irn,

ǫ = IrrInn/I
2
rn − 1,

(2.9)

the integrals Iαβ =
∫∞

0
dρ fαfβ are expressed via the scattering functions fα(ρ) [see

Eq. (2.7) in Appendix 2.3.1; it is assumed that the integrals converge]. We point out that
∆eff and ǫ are numbers uniquely defined for given functions ϕr,n(r); from the Cauchy
inequality it follows that ǫ ≥ 0.

For 3D systems the r.h.s. of Eq. (2.8) should be multiplied by the additional factor
8/3, and the integrals become Iαβ =

∫∞

0
dρ ρfαfβ. Note that for a reciprocal Coulomb

interaction, Irr is proportional to the so-called Coulomb logarithm (see e.g., [106, 107])
and ∆eff = 0; Eq. (2.8) is then reduced to the classical equation for the temperature
relaxation in a plasma [106].

For the constant nonreciprocity [i.e., when Fn(r)/Fr(r) = ∆ is independent of r]
we get ∆eff = ∆ and ǫ = 0. In this case, Eq. (2.8) has an equilibrium solution given
by Eq. (2.4). Otherwise, we have ǫ > 0 and an equilibrium is no longer possible – the
temperatures grow with time, approaching the asymptotic solution,

t → ∞ : TA(t) = τTB(t) = ct2/3, (2.10)

where c ∝ (ǫnIrr)
2/3. The asymptotic temperature ratio,

τ =

√
(1 + ∆eff)2 + ǫ

(1−∆eff)2 + ǫ
, (2.11)

is a constant which tends to the equilibrium value (2.4) for ǫ → 0.

Thus, the disparity ǫ is the measure of “deviation” from pseudo-Hamiltonian systems,
where ǫ = 0 and different species reach the detailed dynamic equilibrium with distinct
temperatures. For ǫ > 0 this remarkable balance is broken and a system acquires the
energy, so the temperatures continuously grow. Nevertheless, in the next section we show
that even an infinitesimally small damping causes the temperatures to saturate, and then
systems with sufficiently small ǫ behave as “nearly equilibrium”.
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2.3.3 Effect of damping

Dynamics of individual particles can be damped due to friction against the surrounding
medium. To take this into account, one has to add the dissipation term −2νA,B(TA,B−Tb)
to the r.h.s. of Eq. (2.8), where να is the respective damping rate in the friction force
−mαναvα and Tb is the background temperature determined by the medium [15, 108].

In complex plasmas the damping is usually very weak, i.e., the damping rate is much
smaller than the rate of momentum/energy exchange due to interparticle interactions [15].
Let us use Eq. (2.8) to understand the effect of damping in this regime. For the constant
nonreciprocity we derive the following equilibrium temperatures: TA,B = Tb/(1∓∆)
plus small terms proportional to the ratio of νA,B to the energy exchange rate. Thus, to
the first approximation the damping does not affect the equilibrium temperature ratio
(2.4). In a general case, TA,B are no longer growing with time but reach a steady state,
since the growth term in Eq. (2.8) decreases with temperature. The resulting steady-state
temperature ratio, τν , can be easily derived assuming that TA,B are much larger than Tb.
For similar particles, this requires the strong inequality ν ≪ ǫ∆effnIrr/

√
mT 3

b to be
satisfied, which always holds for experiments with 2D complex plasmas discussed below
1. Then we obtain the following equation for τν :

ν̃[(1−∆eff)
2 + ǫ]τ 2ν − (ν̃ − 1)(1−∆2

eff + ǫ)τν = (1 + ∆eff)
2 + ǫ, (2.12)

where ν̃ = νA/νB. For ν̃ = 1 we get τν = τ , i.e., the steady-state temperature ratio is
not affected by friction. Generally, τν exhibits a weak dependence on ν̃: e.g., for the
Hertzian interactions (see next section) the deviation between τν and τ is within ≃ 1% in
the range 0.8 ≤ ν̃ ≤ 1.3.

In colloidal dispersions, where the dynamics is fully damped, the temperatures of
both species tend to Tb. This, however, does not imply elimination of nonreciprocity
effects: One can easily show that the Brownian dynamics of particles with nonreciprocal
interactions (2.1) is exactly equivalent to the dynamics with conservative interactions
(2.3) and different thermostat temperatures, equal to Tb/(1±∆) for the A,B species.
Therefore, nonreciprocal interactions are expected to have profound effects, e.g., on the
dynamic correlations of colloids.

2.4 Numerical simulations

To complement the analytical results and understand the behavior in the strongly-coupled
(Γ ≫ 1) regime, we carried out a molecular dynamics simulation of a 2D binary, equimo-
lar mixture of soft spheres. We implemented the velocity Verlet algorithm [109] with
an adaptive time step. The simulation box with periodic boundary conditions contained

1For the Yukawa potential ϕr(r) = (Q2/r)e−r/λ we get Irr ∼ Q4/λ; so the r.h.s. of the inequality
is proportional to the squared coupling parameter Γ = Q2

√
n/Tb, which is ∼ 102 − 103 for typical 2D

experiments [15].



28

CHAPTER 2. MANY-BODY SYSTEMS WITH NONRECIPROCAL
INTERACTIONS

0 1 2 3 4 5 6

log10 t

−4

−3

−2

−1

0

1

2

lo
g
1
0
T
A
,B

TA

TB

Figure 2.2: Growth of the mean kinetic energy in a 2D binary system (no damping). Particles

interact via the nonreciprocal Hertzian forces. Shown are the time dependence

of the temperatures TA and TB . The solid lines show the development obtained

from the simulations for the areal fraction φ = πr20n = 0.3 and different initial

temperatures T0. All curves approach the universal asymptotes ∝ t2/3 described

by Eqs. (2.10) and (2.11). The doted lines represent the solution of Eq. (2.8)

for T0 & 1. The early development at T0 ≪ 1 is fitted by the explosive solution

(2.14), shown by the dashed lines. The temperatures are normalized by ϕ0, time

is in units of
√

mr20/ϕ0.
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Figure 2.3: The velocity distributions fA,B(v) at t ≃ 700 for T0 = 1 and 10. At high

temperatures, weak collisions cannot provide efficient Maxwellization of the

velocity distribution.

2× 20, 000 particles with equal masses. To ensure precise numerical calculations at low
and high temperatures, we chose the Hertzian interactions [110, 111]. The reciprocal and
nonreciprocal parts of the Hertzian potential are given by

ϕr(r) =
1

2
ϕ0(max{0, 1− r/r0})2,

ϕn(r) =
1

3
ϕ0(max{0, 1− r/r0})3,

where ϕ0 is the interaction energy scale and r0 is the interaction range. At t = 0
the particles were arranged into two interpenetrating square lattices with the initial
temperature TA = TB = T0 (therefore, at early simulation time a certain fraction of T0

was converted into the interaction energy).

The numerical results are summarized in Figs. 2.2 – 2.5, where the temperature
evolution is presented in the dimensionless form (using parameters of the Hertzian
potential).

In Fig. 2.2 we plot the dependencies TA,B(t) for different T0. By substituting Fr,n(r) =
−dϕr,n/dr for the Hertzian potential in Eq. (2.7) and utilizing Eq. (2.9), we obtain
∆eff = 0.57 and ǫ = 0.082, so Eq. (2.11) yields the asymptotic temperature ratio
τ = 3.1. One can see that for all T0 the numerical curves approach the expected universal
asymptotes described by Eqs. (2.10) and (2.11). Note that the early development at
sufficiently low temperatures (i.e., when Γ0 ∝ T−1

0 is sufficiently large) exhibits a sharp
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Figure 2.4: Time dependence of the total kinetic energy (no damping). The development

obtained from the simulations for T0 = 1 and different φ (0.1, 0.3, 0.5, 0.7,

0.9, increasing along the arrow) is shown. The inset demonstrates the ∝ n2/3

density scaling of the asymptotic temperature growth. The temperature and time

units are the same as in Fig. 2.2.
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dependence on T0 – we observe the formation of a plateau which broadens dramatically
with decreasing T0. On the other hand, for T0 & 1 the numerical results are very well
reproduced by the solution of Eq. (2.8), as expected. A small (< 10%) deviation observed
in this case is due to the fact that weak collisions cannot provide efficient Maxwellization
of the velocity distribution for the “hotter” species A (see Fig. 2.3).

In Fig. 2.4 we show how the temperature evolution depends on the density n. Here,
the total kinetic energy TA(t) + TB(t) calculated for different values of the areal fraction
φ = πr20n is plotted. In contrast to the sharp dependence on T0 seen in Fig. 2.2, the
increase of n is accompanied by an approximately proportional shortening of the plateau
(a small dip in the early development is due to partial conversion of the initial kinetic
energy into the interaction energy). Fig. 2.5 demonstrates the predicted ∝ n2/3 scaling
for the asymptotic temperature growth.

In order to explain the observed behavior at low temperatures, we point out that the
approximation of small-angle scattering is not applicable in this strong-coupling regime
and, hence, Eq. (2.8) is no longer valid. Strong correlations make the analysis rather
complicated in this case, but one can implement a simple phenomenological model to
understand the essential features. We postulate that at sufficiently low temperatures the
energy growth caused by nonreciprocal interactions can be balanced by nonlinearity,
forming a “dynamic potential well” where the system can reside for a long time. Qualita-
tively, one can then expect the development around the initial temperature to be governed
by the activation processes, and introduce the effective Arrhenius rate characterizing
these processes. Assuming the dimensionless temperature T (normalized by the effective
depth of the well) to be small, we employ the following model equation:

Ṫ = C exp(−T−γ), (2.13)

where C is a constant (possible power-law factors can be neglected for T ≪ 1) and
γ is an exponent determined by the particular form the potential well. Substituting
T−γ ≃ T−γ

0 − γT−γ−1
0 (T − T0) in Eq. (2.13) yields the explosive solution,

T (t) = T0 −
T γ+1
0

γ
ln

[
1− Cγ

T γ+1
0

exp(−T−γ
0 )t

]
, (2.14)

with the explosion time tex = (T γ+1
0 /Cγ) exp(T−γ

0 ). In Fig. 2.2 we demonstrate that at
the lowest temperatures the explosive solution provides quite a reasonable two-parametric
fit (with C = 4× 10−5 and γ = 0.305) to the numerical results. In the end we observe a
natural crossover of TA,B(t) to the solution of Eq. (2.8).

When a weak damping is included in the simulations, the temperatures reach a
steady state with the ratio given by Eq. (2.12), as described above. Interestingly, at low
temperatures the system can be dynamically “arrested” due to friction and the asymptotic
stage is never reached. A simple analysis of Eq. (2.13) with the dissipation term shows
that the arrest occurs when νtex & 1, which is also confirmed by the simulations.
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2.5 Experimental test with complex plasma

The principal predictions of the theory have been verified in experimental tests performed
with weakly damped 2D binary complex plasmas. Such systems are obtained in radio-
frequency (rf) plasma discharge chambers [112–115] sketched in Fig. 2.6. Microparticles
injected in a plasma acquire equilibrium negative charges due to absorption of the
surrounding electrons and ions [14]. This enables particle levitation above a flat horizontal
rf electrode, where gravity is balanced by an inhomogeneous electrostatic force – the
latter is exerted by a steady vertical electric field (“sheath field”) generated in this region.
The combination of the two forces provides a stiff vertical confinement for particles,
inhibiting their vertical motion. The weak-damping regime is ensured by performing the
experiments at low gas pressures.

By injecting two sorts of monodisperse microparticles it was possible to obtain a
quasi-2D mixture. The particles formed two horizontal layers levitated at slightly different

heights, so that no vertical pairs were formed. Unlike earlier experiments with binary
complex plasmas [113], we utilized particles with specially chosen combinations of
sizes and material densities. The experiments were performed using a low-pressure
capacitively coupled plasma discharge [112–115]. The microparticles injected into the
plasma acquire negative charges Q and can be levitated in the sheath above the horizontal
rf electrode, due to steady vertical electric field generated in this region. In order to
create a “quasi-monolayer” binary mixture, we selected a particular combination of two
sorts of monodisperse microparticles whose material densities ρA,B and sizes aA,B satisfy
the relation ρAa

2
A ≃ ρBa

2
B; the latter is based on the assumption that QA,B ∝ aA,B and

the gravity is fully compensated by the electric force (i.e., the contribution of the drag
force due to flowing ions [103] is neglected). As the result, the particles of different
sorts formed two horizontal layers levitated at slightly different heights. By tuning the
rf discharge power Prf it was possible to effectively vary the strength of the vertical
confinement [116] and, hence, the height difference H .

A high-resolution video camera Photron FASTCAM 1024 PCI was mounted above
the chamber, capturing a top view with a size of 14× 14 mm2. In addition, a side-view
video camera was used to measure the vertical distance between the layers. The recording
rate for the top-view camera was set at 60 frames per second (to assure correct particle
velocity measurements, in accordance with recommendations of Refs. [117, 118]), the
obtained video was analyzed to find the positions of all particles in every frame. The
pixel intensity distribution of each particle image was fitted by a 2D Gaussian, its center
gave the particle position with subpixel resolution. The particles were traced from frame
to frame and their horizontal velocities were calculated from their positions in two
consecutive frames.

For the experimental test presented here, the plasma was generated in argon at a
pressure of 0.68 Pa. The upper and lower layers were composed, respectively, of
melamine-formaldehyde spherical particles of diameter 9.19 ± 0.09 µm and density
≃ 1.51 g/cm3, and polystyrene particles of diameter 11.36 ± 0.12 µm and density
≃ 1.05 g/cm3. The mean interparticle distance in each layer was about ≃ 0.9 mm. The
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Figure 2.6: Scheme of the experimental test and the mechanism of nonreciprocal wake-

mediated interactions. Sketch showing the experimental setup. Microparticles

levitate above a flat horizontal rf electrode. Two sorts of monodisperse particles

form two horizontal monolayers at slightly different levitation heights. The

layers are observed with the top-view and side-view video cameras, providing

complete information about the position of individual particles.
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damping rates for the two species, determined by the free-molecular (Epstein) regime
of interaction with neutral gas [103], were ≃ 0.96 s−1 and ≃ 1.2 s−1, respectively.
These values are ∼ 30− 100 times smaller than the characteristic Einstein frequency of
microparticles.

Figure 2.7 shows the top-view and side-view images of the layers obtained with the
respective video cameras. The height difference H between the layers was varied, from
quite small values (when the layers practically merged) to a significant fraction of the
horizontal interparticle distance, by tuning the rf power Prf which effectively controls
the sheath field [116].

The sheath field also drives a strong vertical plasma flow, and each microparticle
acts as a lens causing the flowing ions to focus downstream from it. This results in the
formation of plasma wakes “attached” to particles [14–16,20,119–121]. Figure 2.6c (see
also figure caption) demonstrates how the wakes exert attractive forces and break the
action-reaction symmetry for particles levitating in different layers [15, 20].

Figs. 2.8 and 2.9 show that the mean kinetic energy (temperature) of the horizontal
motion was noticeably higher for particles in the upper layer, and the temperature differ-
ence between the layers increased with H . From Fig. 1.3 we infer that the wake-mediated
interactions of particles levitating at different heights are such that nonreciprocity for the
upper layer is positive, and for the lower layer it is negative. Since ∆ is an increasing
function of H (∆ ∝ H for a small height difference), the theory predicts that (i) the
upper layer should have a higher temperature than the lower one, and (ii) the temperature
ratio TU/TL = (1+∆)/(1−∆) should increase with H . We see that the both predictions
are fully confirmed by the observations.

We point out that while the resolution of the side-view camera used for the experiment
was not sufficient to accurately measure the vertical velocities, it showed that the particle
motion was almost entirely horizontal. This observation indicates that mechanisms of
the individual-particle heating associated with charge fluctuations (which result in the
enhancement of the vertical motion, see, e.g., [122–124]) played a minor role in the
experiments.
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Figure 2.7: Scheme of the experimental test and the mechanism of nonreciprocal wake-

mediated interactions. Top and side views of a binary mixture forming the two

layers. The respective images are obtained by illuminating the particles with

thin horizontal and vertical laser sheets.
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Figure 2.8: Kinetic energy distribution for microparticles in monolayers. Shown are the

energy distributions measured for two different values of the rf discharge power
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are Gaussian fits. Prf = 20 W, H ≃ 110 µm, the temperatures of the upper
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(from Maxwellian fit, shown by the dashed lines)
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Figure 2.9: Kinetic energy distribution for microparticles in monolayers, similar to Fig. 2.8.

Shown are the energy distributions measured for two different values of the

rf discharge power Prf , which controls the height difference H between the

upper and lower layers. The insets depict the height histogram for particles

in the layers, the solid lines are Gaussian fits. Prf = 10 W, H ≃ 150 µm, the

temperatures of the upper and lower layers are estimated as TU ≃ 1350 K and

TL ≃ 1000 K, respectively (from Maxwellian fit, shown by the dashed lines).
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2.6 Conclusion

The presented results provide a basic classification of many-body systems with nonrecip-
rocal interactions. We investigated different nonreciprocity classes in 2D and 3D systems
which are relevant to a plethora of real situations. For instance, the shadow [17, 18] or
diffusiophoretic [26, 27] interactions have a constant nonreciprocity and can dominate
the kinetics of 3D systems, while the forces induced by the flow of the surrounding
plasma [15, 121] or solvent/depletant [13, 21] are generally characterized by a variable
nonreciprocity and govern the action-reaction symmetry breaking in 2D systems.

Irrespective of the particular nonreciprocity class, all such systems are expected to
reveal remarkable behavior. In the weak-damping regime typical – but not limited –
to complex plasmas (e.g., nonreciprocal optical forces [24, 25] can operate in different
systems and do not imply any damping), the reciprocal sub-ensembles reach distinct
steady-state temperatures, with the ratio uniquely determined by the effective nonre-
ciprocity. In the opposite fully damped regime typical to colloidal dispersions, the
Brownian particle dynamics of the coupled sub-ensembles can be equivalently described
with the thermostats having distinct temperatures.

We have verified our theoretical predictions by performing experimental tests with
weakly damped 2D binary complex plasmas, and expect that similar tests can be also
carried out with 3D clouds under microgravity conditions. Furthermore, colloidal dis-
persions open up a variety of options to probe the effect of nonreciprocal interactions
in the strong-damping regime, in particular by analyzing the dynamic correlations.
In this respect, binary suspensions of catalytic colloids are very attractive model sys-
tems for which the strength of nonreciprocity can be tuned [27]. Another interesting
analogy could be found in the purely kinetic clustering transition occurring with one-
component microswimmers, which was recently discovered experimentally [125–127]
for catalytically-driven particles (see also Refs. [128, 129]). It is intriguing to check
whether the cluster coexisting with a gas of microswimmers acts formally as a second
species, at an effective temperature different from that of the surrounding phase. We
believe that all these problems constitute promising research topics for the future.
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CHAPTER 3

STRUCTURAL CORRELATIONS IN
BINARY COLLOIDAL MIXTURES

WITH NONRECIPROCAL
INTERACTIONS

In the previous chapter, we introduced the nonreciprocity parameter ∆ and analyzed
the kinetic energy for systems with Newtownian Dynamics and nonreciprocal interac-
tions. Here, we analyze structural correlations for mesoscopic Brownian particles in
colloidal suspensions, with typical particle diameters between a few nanometers and
a few micrometers. These exert forces on each other that depend on the microscopic
position and velocity variables of many molecules in the suspending solvent. On coarse-
grained length and time scales where the solvent microstructure and dynamics are not
resolved, the solvent molecule’s degrees of freedom can be ‘integrated out’ and one is left
with colloidal particles that interact via effective forces. These effective forces depend
on the thermodynamic state of the solvent. The tunability of the effective interactions
between colloidal particles makes colloidal suspensions ideal model systems for studying
classical many-body behavior such as crystallization [34–37], melting [42–44], phase
separation [47–50] as well as glass and gel formation [15, 54–56]. In thermodynamic
equilibrium, the effective interactions fulfill Newton’s third law actio=reactio. That
is: the effective force generated by a particle and acting on a second particle is equal
in magnitude and opposite in direction, when compared to the force generated by the
second particle, acting on the first particle [5, 6, 9].

However, the actio=reactio principle can be broken in a nonequilibrium situation.
Nonreciprocity occurs in a multitude of systems. Naming a few examples only, non-

At the time of writing this thesis, this chapter is submitted in a very similar form by Jörg Bartnick, Marco
Heinen, Alexei V. Ivlev and Hartmut Löwen, see Reference [2].
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reciprocity can arise from nonequilibrium fluctuations [22, 23] and also in case of
diffusiophoretic forces [27, 28], optical forces [24, 25], out-of-equilibrium depletion
interactions [11, 13, 21], hydrodynamic interactions [130], and ‘social forces’ in pedes-
trian dynamics modeling [32, 33]. Nonreciprocal effective interactions are typically
superimposed by the classical reciprocal interactions, stemming from electric charges or
dipole moments on the particles, van der Waals interactions, excluded volume, or other
types of direct interactions.

Despite their importance, the many-body statistics of particles with nonreciprocal
interactions have not been studied so far in the context of colloidal suspensions. This
stands in stark contrast to the topic of complex (dusty) plasmas [15], where nonreciprocal
interactions are a familiar feature of anisotropic trailing space-charges in the downstream
direction behind charged mesoscopic particles in a flowing plasma. The phenomenon
is known as the plasma wake. Consequences of nonreciprocity have been explored in
various studies concerning complex plasmas [104, 116, 131–135]. The most prominent
difference between colloidal suspensions and complex plasmas is that the dynamics of
colloidal particles in high-density viscous solvent is completely overdamped while the
dust-grain dynamics in complex plasmas typically contain a large inertial contribution.

The binary colloidal model system that we study in this chapter is governed by
pairwise additive nonreciprocal forces and erratic Brownian forces. Like in Chapter 2,
we characterize the strength of nonreciprocity by a scalar parameter ∆ which is the
ratio of the nonreciprocal to reciprocal forces. We focus on the time-averaged pair- and
triplet-correlation functions for particle positions, developing a microscopic statistical
theory based on the many-body-Smoluchowski equation and the Kirkwood superposition
approximation as a closure. The theory is successfully tested against our Brownian
dynamics computer simulations. As a result, we find that nonreciprocity induces distinct
nonequilibrium pair correlations, and we also analyze the triplet correlations and the
impact of the Kirkwood superposition approximation.

3.1 The Model

Our model system is a generalized variant of a diffusiophoretic microswimmer suspension
that has been studied by Soto and Golestanian [27]. Consider an equimolar Brownian
suspension containing two different types, A and B, of spherically symmetric, catalytic
microswimmers. We denote the time-depended position of swimmer i of type α by the
row vector rα

i (t). The suspension contains 2N swimmer particles, and we define the
super vector

R(t) =
(
rA1 (t), . . . , r

A
N(t), r

B
1 (t), . . . , r

B
N(t)

)

as short-hand notation for the positions of all swimmer particles. Throughout this chapter,
upper indices containing Greek or capital Roman letters are species indices that should
not be confused with exponents.
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Let each swimmer particle of type A act as a source of strength sA, for a chemical
substance A that consists of small molecules. Likewise, let each swimmer of type B be a
source of strength sB for a low molecular weight chemical substance B. The molecules of
substances A and B undergo diffusive motion in the solvent phase, characterized by the
Stokes-Einstein-Sutherland translational diffusion coefficients DA and DB, respectively.
Evaporation or chemical decomposition into inert products causes molecules of types A
and B to disappear at constant rates νA and νB, respectively [136, 137]. The explicitly
position- and time-dependent concentration fields of the two chemical substances, cA(r, t)
and cB(r, t), depend in general also on R(τ) at all times τ < t. However, we assume
that the diffusion coefficients DA and DB are large enough to allow for a separation of
time scales: At a coarse-grained time scale, each individual swimmer particle traverses
a distance that is much smaller than the average distance to the nearest neighboring
swimmer and the swimmer configuration R is therefore practically unchanged. At the
same time scale, the fast diffusion of A- and B-type molecules has already led to steady-
state concentration fields cA(r, t) and cB(r, t) that depend only on the instantaneous
swimmer positions R(t), but not on the history R(τ) [138]. Restricting our study to time
scales that are longer than the mentioned coarse-grained time scale, and neglecting all
direct correlations between the two chemical substances’ molecules, the concentration
fields are governed by the instantaneous diffusion equations

νAcA(r, t)−DA ∇2cA(r, t) = sA

N∑

i=1

δ(r− rA
i (t)) (3.1)

and

νBcB(r, t)−DB ∇2cB(r, t) = sB

N∑

i=1

δ(r− rB
i (t)), (3.2)

where ∇2 is the Laplace operator with respect to the field point r and δ(r) is the Dirac
delta function. For the sake of simplicity we approximate the swimmers as point-like
objects, as reflected by the point sources on the right-hand sides of Eqs. (3.1) and (3.2).
This point-particle approximation is justified if the typical distances between swimmer
particles are much larger than the particle diameters, which is the case for the systems
that we have studied (see Fig. 3.1 and the relating text in Sec. 3.2).

Solving the linear screened Poisson equations (3.1) and (3.2) by standard Green’s
function methods gives the result

cA(r, t) =
sA
DA

N∑

j=1

G

(√
DA

νA
, |r− rAj (t)|

)
(3.3)

and an analogous expression for cB(r, t) which is obtained after the interchange of
indices A → B and A → B. In Eq. (3.3), G(λ, r) = exp(−r/λ)/(4πr) is the isotropic
Green’s function in terms of the norm r = |r| of vector r, satisfying the equation
(∇2 − λ−2)G(λ, r) = −δ(r) with an exponential screening length λ. Nonzero values of
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νA and νB correspond to finite values for λ, which sets our model apart from unscreened
chemotatic models with zero evaporation rate and λ → ∞ [139].

We continue by picking an arbitrary tagged particle i of species A, and splitting the
sum in Eq. (3.3) into a self-part (i = j) and a complementary distinct part (i 6= j). The
self-part gives the concentration field

csA,i(r, t) =
sA
DA

G

(√
DA

νA
, |r− rAi (t)|

)
(3.4)

of chemical A, which is created by the tagged particle around itself, and which is isotropic
around r = rAi . The anisotropic distinct part

cdA,i(r, t) =
sA
DA

N∑

j=1
j 6=i

G

(√
DA

νA
, |r− rAj (t)|

)
(3.5)

is created by the remaining particles of species A and, obviously, cA(r, t) = csA,i(r, t) +
cdA,i(r, t). Once again, Eqs. (3.4) and (3.5) can be repeated analogously for the chemical
species B and a tagged particle of species B, by interchange of indices A → B and
A → B.

Diffusiophoretic particles tend to swim in the direction parallel or opposite to a
chemical substance’s concentration gradient [26, 29, 94, 140]. Assuming concentration-
and configuration-independent mobility coefficients µAA, µAB, µBA and µBB, with
dimension Force × Length4, we define the total diffusiophoretic forces

FA
i (R) = −µAA∇cdA,i(r)

∣∣
r=r

A
i

− µAB∇cB(r)|r=r
A
i

(3.6)

and
FB

j (R) = −µBA∇cA(r)|r=r
B
j
− µBB∇cdB,j(r)

∣∣
r=r

B
j

(3.7)

acting on particle i of species A, and on particle j of species B, respectively. In
Eqs. (3.6) and (3.7) we drop the instantaneous time-dependence for clarity. Note that
the diffusiophoretic force on a particle is not affected by the isotropic self-part of the
concentration field around the respective particle, but only by the distinct part of the
concentration fields, created by all other particles. This is analogous to the forces among
a set of point-like electric charges, e.g. electrons: The Lorentz force on a single electron
depends on the positions and velocities of all other electric charges, but it is not affected
by the field that the tagged particle creates itself.

Our model shares many properties with a system of electric point charges that interact
via pairwise additive screened Coulomb forces, like charged particles moving in an elec-
trolyte, with electric fields calculated in the Debye-Hückel approximation. Combining
Eqs. (3.3) and (3.5)-(3.7) We can interpret the individual summands that contribute to
FA

i (R) and FB
j (R) as pairwise additive forces Fαβ(rβj − rαi ), exerted by particle i of
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species α on particle j of species β. However, a peculiarity of the binary diffusiophoretic
swimmer mixture that sets it qualitatively apart from the ensemble of electric point
charges is the action-reaction symmetry breaking: An inequality

FAB(rBj − rAi ) 6= −FBA(rAi − rBj ) (3.8)

occurs in the general case and, like in the simpler model of Ref. [27], a symmetry breaking
µABsB/DB 6= µBAsA/DA among products of transport coefficients and production rates
is generally sufficient to cause the symmetry breaking in Eq. (3.8). As in Chapter 2, we
introduce a scalar nonreciprocity parameter ∆(r) by the defining equation

∆(r)
[
FAB(r) + FBA(r)

]
= FBA(r)− FAB(r). (3.9)

In the reciprocal case, where FAB(r) = FBA(r), this parameter vanishes and we have
∆ = 0.

In the following we neglect hydrodynamic interactions, which can be justified if the
suspension is highly dilute but still strongly interacting. For our analysis to be valid,
the hydrodynamic diameters of the particles have to be much smaller than the shortest
typical particle distances in the suspension. Particles with sufficiently strong, repulsive
Yukawa-like interactions virtually never come into close contact, and the characteristic
length scale that dominates the correlation functions of such particles in d-dimensional
space is ρ−1/d, where ρ is the particle number density [141, 142]. Suspensions of such
particles can exhibit strong structural correlations, even if they are highly dilute from a
hydrodynamic point of view.

The Brownian particle dynamics, on time scales that exceed the momentum relaxation
time, are described by the overdamped Langevin equation [91]

ξα ṙαi = Fα
i (R, t) + fαi (t) (3.10)

with a friction coefficient ξα, Boltzmann’s constant kB, absolute temperature T , and
a random force fαi (t) with zero mean, 〈fαi (t)〉 = 0, and variance 〈fαi (t)fβj (τ)〉 =
2kBTξ

αδijδαβδ(t − τ)1. Here, δij is the Kronecker symbol, 1 the unit matrix and
the brackets 〈 . . .〉 represent an average with respect to the time t.

3.2 Many-body theory for the pair correlation

functions

On the coarse-grained time scale at which the Langevin equation is valid, an overdamped
complex liquid is fully described by the many-body distribution function p. Often
times one is interested in more accessible quantities like the pair distribution functions
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gαβ(r, r′), which, for the equimolar suspensions studied here, can be defined in the limit
N → ∞ in terms of the following (2N − 2)-fold integrals over p:

ρ2gAA(r, r′)

N(N − 1)
=

〈∫
drA3 ···

∫
drAN

∫
drB1 ···

∫
drBNΨ(R, t)

〉
,

ρ2gAB(r, r′)

N2
=

〈∫
drA2 ···

∫
drAN

∫
drB2 ···

∫
drBNΨ(R, t)

〉
,

ρ2gBB(r, r′)

N(N − 1)
=

〈∫
drA1 ···

∫
drAN

∫
drB3 ···

∫
drBNΨ(R, t)

〉
,

with ρ = 2N/V where V is the suspension volume in case of three-dimensional (3D)
systems, or the suspension area in case of two-dimensional (2D) systems. Alternatively,
gαβ(r) can be written as

gαβ(r) =
V

N2

〈
N∑

i=1

N∑

j=1
j 6=i∨α 6=β

δ
(
r− rαi (t) + r

β
j (t)

)〉
. (3.11)

For an isotropic and homogeneous system gαβ(r) is a function of particle distance only.
The triplet distribution function gαβγ3 (r, r′, r′′), which is a (2N − 3)-fold integral over p,
is analogously defined [143].

We start our analysis of particle correlations with the Smoluchowski equation

∂Ψ

∂t
=
∑

α=A,B

1

ξα

N∑

i=1

∇α
i · (kBT ∇α

i Ψ− Fα
i Ψ) , (3.12)

which is stochastically equivalent to Eq. (3.10), and where ∇α
i is the Nabla operator that

differentiates with respect to the particle position rα
i and the time- and configuration

dependence of Ψ has been dropped for clarity. Using a (2N − 2)-fold integration, we
transform Eq. (3.12) into an equation for the pair distribution function [144]. This
equation, however, does not only depend on the pair correlations, but also on the triplet
correlations which, in turn, depend on the quadruplet correlations and so on. We truncate
this Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [15] using the
Kirkwood-superposition approximation [145]

gαβγ3 (r, r′, r′′) ≈ gαβ(r, r′) gαγ(r, r′′) gβγ(r′, r′′). (3.13)
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In our derivation we use the fact that gAB(r) = gBA(r), which is apparent from Eq. (3.11).
The final set of coupled integro-differential equations for gAA(r), gAB(r) and gBB(r)
reads

(
kBT

ξα
+

kBT

ξβ

)
∇2 gαβ = −

∑

(α′,β′)=
(α,β), (β,α)

1

ξα′
∇ ·

[
Fα′β′

gαβ

+
ρ

2
gαβ

∑

γ=A,B

Fα′γ
(
gα

′γ ∗ gβ′γ
)]

, (3.14)

where gαβ ≡ gαβ(r) and F αβ ≡ F αβ(r). In Eq. (3.14), (f ∗ g)(r) denotes the d-
dimensional convolution of two isotropic functions f(r) and g(r), defined as

(f ∗ g)(r) ≡
∫

ddr′f(r′)g(|r− r′|).

Eq. (3.14) cannot be solved analytically for nonzero density or non-vanishing force.
We therefore solve it numerically, using fixpoint iteration algorithms [142]. With a
double integration, we eliminate the Laplace operator and the divergence. We solve the
convolutions in Fourier space, making use of the FFTLog algorithm for the d-dimensional
Hankel transform [146, 147].

3.3 Numerical simulations

To test the accuracy of the approximate theory, we perform Brownian dynamics simu-
lations for two and three dimensions. We use the forces derived in Eqs. (3.6) and (3.7),
for both the 2D and the 3D case. The former corresponds to swimmer particles that are
confined to move in a 2D plane, while the surrounding solvent is fully three-dimensional.
In our model system, the chemical substances A and B are free to diffusive throughout
the 3D solvent, irrespective of whether or not the swimmer particles are confined to a
2D plane. We express our simulation parameters in terms of the thermal energy kBT ,
the density ρ and the friction coefficient, choosing ξA = ξB. For the sake of symmetry
and in order to better isolate the effects of nonreciprocity, we consider a system where
FAA = FBB. We limit our study to the case of a r-independent parameter ∆, which is
the case in our model system if DA/νA = DB/νB. As in our discussion of the Green’s
function method in Sec. 3.1, we have λ =

√
DA/νA, which is now a unique exponential
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screening length for the concentration profiles of both chemical species A and B. We
quantify the strength of the interactions by a constant Γ, satisfying the equations

µAA sA
4πkBTDA

=
Γ

ρ1/d
µAB sB

4πkBTDB

=
(1 + ∆) Γ

ρ1/d
,

µBA sA
4πkBTDA

=
(1−∆) Γ

ρ1/d
and

µBB sB
4πkBTDB

=
Γ

ρ1/d
.

A potential energy in the usual sense cannot be defined in the general case ∆ 6= 0. How-
ever, for the special case of reciprocal interactions (∆ = 0), the interactions above can
be described by a pairwise additive potential energy V (r) = ΓkBTρ

−1/d exp(−r/λ)/r.
Using a simple forward time-step algorithm [148], we solve the Langevin Eq. (3.10)
for 2 × 20, 000 particles in a 2D quadratic or 3D cubic simulation box with periodic
boundary conditions. The forces are set equal to zero, when the distance between two
particles exceeds 5/ρ1/d. The particles are initialized at random positions throughout the
system, and the setup is given time to relax. We monitor the average forces 〈|Fα

i (R, t)|〉
and measure that for all of our simulations this value first reduces, and eventually reaches
a time-independent steady state. Then, we calculate the pair and triplet correlations by
averaging over multiple snapshots at different times. Figure 3.1 shows a comparison
of the pair distribution functions obtained from the theory and the BD simulations for
2D and 3D in the reciprocal and the nonreciprocal case. For the reciprocal case, ∆ = 0,
where gAA(r) = gAB(r) = gBB(r), the theory predicts the simulation results for gαβ(r)
with high precision. In case of nonreciprocal forces, ∆ = 0.5, the deviations between
theory and simulation results are larger, but the theory maintains a rather good accuracy
level and it continues to capture all qualitative features of the simulation. Note also,
that all functions gαβ(r) exhibit a pronounced ‘correlation hole’ at small values of r,
because the repulsive particles almost never come into close contact. This provides an
a posteriori justification of our point-particle assumption in Sec. 3.1: Particles that are
significantly smaller in diameter than the correlation hole have a negligible likelihood of
direct contact, and can therefore be approximated as point-like.

Without showing all results here, we have observed both in our simulations and
our theory results, and for 2D as well as for 3D systems, that the principal peak value,
gAA(rAA

max), of the function gAA(r) can assume a smaller or larger value than the principal
peak gAB(rAB

max). The peak-height ordering depends on the parameters (Γ, λ,∆) of the
nonreciprocal interactions and on the density ρ. In our simulation and theory results
we observe that the principal peak height of function gBB(r) is always less than the
peak heights of both functions gAB(r) and gAA(r). For an intuitive understanding of the
less pronounced peak in gBB(r), let us introduce effective radii rαβeff via the condition
that |Fαβ(rαβeff )| = kBT/λ. In Fig. 3.2 we show a snapshot from a 2D system with
nonreciprocal interactions twice, using different effective radii for the plotted disks that
are centered around the particle positions rAi (blue) and rBi (red): In the top panel of
the figure, the effective radius of the red, B-type disks is rBA

eff , and in the bottom panel,
the effective radius of the blue, A-type disks is rAB

eff , which is less than rBA
eff . The same
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Figure 3.1: Pair distribution functions gαβ(r) from computer simulation (solid) and theory

(dotted). Panels on the left (a, c) are for d = 2 spatial dimensions, and panels on

the right (b, d) are for d = 3. The upper panels (a,b) correspond to the reciprocal

case ∆ = 0.0. A nonreciprocal case with ∆ = 0.5 is shown in the bottom panels

(c, d). The remaining parameters of the simulation are λρ1/d = 1/4 and (a)

Γ = 100/3, (b) Γ = 200/3, (c) Γ = 25 and (d) Γ = 50. The plot does not show

the region g(r) < 0.5, where we observe a very good agreement between theory

and simulation.
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Perspective of the A particles (blue)

Perspective of the B particles (red)

Figure 3.2: Typical snapshot for a 2D-simulation with ∆ = 0.5 and Γ = 25. The system

exhibits different effective densities for A and B particles. The radii of the

plotted disks are proportional to the effective radii rαβeff .

effective radius, rAA
eff = rBB

eff , is used for the blue disks in the upper panel and for the
red disks in the lower panel. Clearly, the system is effectively more crowded for the
A-type particles than for the B-type particles, which explains the weaker principal peak
in gBB(r).

3.4 Kirkwood approximation for nonreciprocal

interactions

The approximation that allows us to solve the many-body Smoluchowski equation
numerically is the Kirkwood superposition in Eq. (3.13). In case of thermodynamic
equilibrium, it is known how this approximation breaks down at high density [149–151].
In the following, we test the Kirkwood superposition approximation in case of the
nonequilibrium steady state of Brownian suspensions with nonreciprocal interactions, by
comparison to our highly accurate computer simulation data.

One way to visualize a projection of the triplet correlation function gαβγ3 (r, r′, r′′) is
via the bond angle distribution function g3(θ, r1, r2) [151]. This function characterizes
triplets that have one inter-particle distance smaller than r1 and another inter-particle
distance smaller than r2, by the bond angle θ between the two straight lines that connect
the particle centers (see Fig. 3.3). The function g3(θ, r1, r2) is normalized such that
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Figure 3.3: The bond angle distribution function g3(θ, r1, r2) characterizes triplets of parti-

cles with the inter-particle distances rij < r1 and rik < r2 by the bond angle

theta θ.
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the integral over all bond angles yields unity. Often, r1 and r2 are chosen as the first
minimum of the pair distribution function. However, this is not uniquely defined for a
binary mixture. To avoid this ambiguity, we choose the parameters as the first minimum
of a corresponding gAA(r) for a simulation with ∆ = 0, which we call R, and which
should not be confused with the norm of the super vector R. For 2D and strong particle
interactions, pronounced peaks around values of θ that are integer multiples of 60◦

indicate triangular short-range order of the liquid [151].

Assuming Kirkwood superposition we can approximate the bond angle distribution
function trough a combination of pair distribution functions. We define the unnormalized
Kirkwood-approximation Gαβγ

3,K (θ, r1, r2) for the bond angle distribution function in 2D
as

Gαβγ
3,K (θ, r1, r2) ≡

∫ r1

0

∫ r2

0

drdr′ r r′gαβ(r)gαγ(r′)

× gβγ(
√

r2 + r′2 − 2rr′ cos θ)

and similarly in 3D as

Gαβγ
3,K (θ, r1, r2) ≡ sin θ

∫ r1

0

∫ r2

0

drdr′ r2 r′
2
gαβ(r)gαγ(r′)

× gβγ(
√
r2 + r′2 − 2rr′ cos θ).

Applying normalization we arrive at the Kirkwood approximation of the bond angle
distribution function,

gαβγ3,K (θ, r1, r2) =
Gαβγ

3,K (θ, r1, r2)∫ π

0

dθ Gαβγ
3,K (θ, r1, r2)

. (3.15)

In Figs. 3.4 and 3.5 we plot the functions gαβγ3 (θ, R,R) and gαβγ3,K (θ, R,R), both extracted
from our simulations. As in Fig. 3.1, we show data for the 2D and 3D case, both for
reciprocal and nonreciprocal interactions. All simulated systems are clearly in the liquid
state, as signaled by the very gentle principal peak at a bond angle θ just below π/3.
Low values of the bond angle distribution functions at small values of θ correspond once
again to a correlation hole: It is very unlikely for a pair of repulsive particles to occupy
the same space. In the 3D case, large bond angles are also untypical. The probability of
finding a particle at a given angle scales with the solid angle in 3D, which is proportional
to sin θ. For 2D systems, the bond angle distribution functions at angles larger than π/2
are almost constant.

We find that the Kirkwood approximation is very accurate for the studied systems with
reciprocal interactions, and somewhat less accurate in case of systems with nonreciprocal
interactions. As expected, the discrepancies between gαβγ3,K (θ, R,R) and gαβγ3 (θ, R,R)
are strongest for those systems where the pair distribution functions from the many-body
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Figure 3.4: 2D bond angle distribution function gαβγ3 (θ,R,R) computed directly from

our computer simulation (solid curves) and Kirkwood approximations,

gαβγ3,K (θ,R,R), of the bond angle distribution functions (dashed curves). The

functions gαβγ3,K (θ,R,R) are computed on basis of Eq. (3.15), using the pair cor-

relation functions gαβ(r) from the simulations as input. Simulation parameters

are the same as for Fig. 3.1.



54

CHAPTER 3. STRUCTURAL CORRELATIONS IN BINARY COLLOIDAL
MIXTURES WITH NONRECIPROCAL INTERACTIONS

0.45

0.50

0.55

g
α
β
γ

3
(
,K

)
(θ

,
R
,
R
)

3D

(a) ∆ = 0.0

0 0.2 0.4 0.6 0.8 1.0

bond angle θ/π

0.45

0.50

g
α
β
γ

3
(
,K

)
(θ

,
R
,
R
)

(b) ∆ = 0.5

gAAA
3(,K) gAAB

3(,K)
gBBA
3(,K) gBBB

3(,K)

Figure 3.5: 3D bond angle distribution function gαβγ3 (θ,R,R) computed directly from

our computer simulation (solid curves) and Kirkwood approximations,

gαβγ3,K (θ,R,R), of the bond angle distribution functions (dashed curves). The

functions gαβγ3,K (θ,R,R) are computed on basis of Eq. (3.15), using the pair cor-

relation functions gαβ(r) from the simulations as input. Simulation parameters

are the same as for Fig. 3.1.
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Smoluchowski theory with Kirkwood closure exhibit the lowest level of accuracy (c.f.,
Figs. 3.1,3.4 and 3.5).

3.5 Conclusions

We have studied 2D and 3D systems of Brownian particles with reciprocal and nonrecip-
rocal particle interactions. A microscopic theory based on the many-body Smoluchowski
equation with the Kirkwood superposition approximation as a closure predicts the particle
pair-correlation functions with good accuracy. Nonreciprocal interactions have distinct
influence of the pair-correlations, as revealed by the differences between the correlation
functions for systems with reciprocal and nonreciprocal forces. Our predictions for the
pair- and triplet-correlation functions can be tested experimentally with binary mixtures
of diffusiophoretic microswimmers.

Future theory could improve the closure beyond the Kirkwood superposition principle.
Possible candidates for future development are dynamical density functional theory
[152–156] or mode coupling theory [157] for nonequilibrium systems, which still need
to be generalized to systems with nonreciprocal interactions. Furthermore, the effect
of different nonreciprocity classes (constant versus r-dependent ∆) on the structural
correlations should be carefully explored.
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CHAPTER 4

EMERGING ACTIVITY IN
BILAYERED DISPERSIONS WITH

WAKE-MEDIATED INTERACTIONS

In the previous chapters, it is shown that effective forces between mesoscopic particles
often become nonreciprocal when the interactions are mediated by a nonequilibrium
environment. Such situations can be realized in various soft matter systems – most notably
in colloidal dispersions [22–27] and complex plasmas [14–17], where microparticles are
embedded, respectively, in a liquid solvent or a dilute weakly ionized gas. In particular,
the action-reaction symmetry in these systems is broken when the surrounding fluid
moves with respect to the particles [1, 10–13], or when the interaction of molecules with
the particle surface is out of equilibrium [22, 23, 26, 27].

Studies of nonreciprocal interactions have gained increased interest in recent time.
When the dynamics of individual particles is undamped or weakly damped Newtonian [1],
which is typical for complex plasmas, one can observe a remarkable state of detailed

dynamic equilibrium with different species having different temperatures. For Brownian
dynamics, it has recently been shown that mixtures of diffusiophoretic colloids experience
effective nonreciprocal forces which stimulate the formation of stable aggregates (so-
called active molecules) [27] and trigger collective oscillatory motion [28].

In this chapter we consider a layered (quasi two-dimensional) system of charged
Brownian particles exposed to a perpendicular electric field gradient. The electric
field causes a micro-ion flow, which generates wakes below the particles while the
solvent itself is at rest. The particles are kept within their layer by additional fields,
such as gravity or laser-optical fields. The resulting interparticle interactions are
mediated by flow generated wakes, and therefore the actio-reactio symmetry is broken

At the time of writing this thesis, this chapter is submitted in a very similar form by Jörg Bartnick, Andreas
Kaiser, Hartmut Löwen and Alexei V. Ivlev, see Reference [3].
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(see Chapter 2). Such a generic nonreciprocal system can be experimentally realized both
in strongly damped complex plasmas and colloidal dispersions, and has the advantage
that the strength of nonreciprocity can be tuned by the external field. Under quite
general conditions posed on the mutual reciprocal and nonreciprocal forces, we observe
here a continuous transition from inactive (stacked) pairs to active units, indicating the
emergence of active fluids. Different from ordinary active particle systems [158–160],
these active units can break and become passive again. Using analytical theory and
simulation, we explore the full density regime up to freezing and find an unusual melting
upon densification, along with a reentrant freezing and an enormous diffusivity in the
concentrated fluid.

4.1 Model

The motion of a particle i at position ri is governed by the fully damped Langevin
equation [91]

ṙi =
∑

j

Lij

(
Fj + ξj

)
+

1

2
kBT

∑

j

∂Lij

∂rj
, (4.1)

where Lij is the mobility matrix and ξi is a random force. The total force Fi on particle i
is given by Fi =

∑
j Fij , where Fij is the pair-interaction force exerted by a particle i on

the particle j. The random force ξi is Gaussian distributed with zero mean, 〈ξi(t)〉 = 0,
and variance 〈ξi(t)ξj(t′)〉 = 2 L

−1
ij kBTδ(t− t′), where T is the thermostat temperature,

kB the Boltzmann constant, δ(t) the Dirac delta function and L
−1 the inverse of the L. In

this chapter, we include hydrodynamic interactions in the zero-temperature limit, and
neglect them at finite temperatures. The latter approach is justified, when the suspension
is highly dilute, but still strongly interacting. Then, each mobility matrix reduces to
Lij = δijI/γi, where I is the unit matrix and γi is a friction coefficient. In the zero-
temperature limit, we consider the mobility matrix to be approximated by the Oseen
tensor [91]

LO(r) =
3RH

4γir
(I + r̂r̂), (4.2)

where RH is the hydrodynamic radius, r = |r| and r̂ = r/r. Thus, we have Lij ≈
LO(ri − rj) for i 6= j and Lii = I/γi.

We consider a typical situation when interactions between particles are isotropic. In
this case the mutual forces between particles i and j are radial, i.e., Fij = Fijnij with
nij being the unit vector from i to j, and Fij only depends on the absolute distance rij =
|ri − rj|. Furthermore, we introduce species A and B and attribute particles to the same
species if their pair interactions are reciprocal, i.e., FAA(r) = FBB(r) = −dϕr(r)/dr. A
generic form for the forces between different species,

FAB,BA(r) = −dϕr(r)/dr ± dϕn(r)/dr, (4.3)
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Figure 4.1: Schematic sketch of nonreciprocal wake-mediated interactions. The particle

species A and B are confined in the upper and lower layers, respectively. While

the direct interparticle forces are reciprocal, F
p
BA + F

p
AB = 0, the particle-

wake forces are nonreciprocal, Fw
BA + F

w
AB 6= 0 such that for the total forces

FAB 6= −FBA.

is a superposition of the reciprocal (r) and nonreciprocal (n) components, determined
by the respective potentials ϕr,n. The latter are related to the potential ϕij generated by
the particle i at the location of the particle j via ϕr,n = 1

2
(ϕji ± ϕij). Thus, the pair

interactions are reciprocal if ϕij = ϕji, and are nonreciprocal otherwise.

In Chapter 2, we introduced an important class of a constant nonreciprocity, where
ϕr(r) and ϕn(r) are similar functions, i.e., when the nonreciprocity ϕn(r)/ϕr(r) ≡
∆ = const. For undamped or weakly damped Newtonian dynamics with ∆ = const,
the equations of motion can be equivalently transformed into a reciprocal form by a
simultaneous proper renormalization of the interaction forces and masses, i.e., such
dynamics can in fact always be described by a (pseudo) Hamiltonian. It is noteworthy
that for the Brownian dynamics with nonreciprocal interactions one can employ a similar
approach: By performing the same renormalization for the interactions, Eq. (2.2) and
(2.3), and introducing the renormalized damping coefficients γ̃A,B = γA,B/(1∓∆), we
readily transform Eq. (4.1) to the form where the interactions are reciprocal, while the
solvent temperatures for the species A and B are different and equal to T̃A,B = T/(1∓∆).
Interestingly, such a “hetero-Brownian” model has been recently introduced in a different
context, to describe DNA dynamics [161, 162], and was also proposed for colloidal pairs
under external forcing [163].

In this chapter we consider the so-called wake-mediated interactions, representing
a generic class of nonreciprocal interactions occurring when particles are embedded
in a flowing medium. Such interactions can be induced in two-dimensional complex
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plasmas [10, 14, 17], or between colloidal particles [11–13] under flow. Such situations
can be modeled with a binary mixture of point-like particles with effective charges QA

and QB, confined in a horizontal xy-plane in two layers with a height difference h, as
sketched in Fig. 4.1. The point-like approximation is justified as long as the distance
between the particles stays larger than their diameter. Due to an externally imposed
micro-ion flow, parallel to the vertical z-axis, each particle induces a wake, while the
fluid remains at rest. The wake’s excess charge qi ∝ −Qi is considered as a point-like
effective charge at the distance δ downstream from the particle.

The particle’s total force is the combination of the direct particle interaction and
the particle-wake interaction. Following Refs. [104, 131], we assume that both forces
are described by a model Yukawa potential with the same effective screening length λ.
Let us introduce the three-dimensional particle coordinates Ri and the corresponding
coordinates ri in the horizontal plane. Then the force Fij = −∂ϕij/∂rj exerted in
the horizontal plane by the particle i on the particle j is determined by the potential
ϕij = QiQjY (Rij) + qiQjY (Rw

ij), where Y (R) = R−1e−R/λ is the (unity charge)
Yukawa potential which depends on the distance Rij = |Ri −Rj| between the particles
as well as on the distance Rw

ij = |Ri −Rj − δnz| between the particle j and the wake
center of the particle i. For particles in the same layer, A or B, we have Rw

ij = Rw
ji;

therefore, ϕn = 0 (since qiQj = qjQi), and hence the forces are reciprocal. For the AB
interactions the symmetry is broken, Rw

ij 6= Rw
ji, and the forces are nonreciprocal.

The analysis below shows that for fully damped systems with wake-mediated interac-
tions a rich variety of self-organization phenomena occurs, provided the species A and B
are oppositely charged, or the screening lengths for the direct interactions and for the
particle-wake interactions are different. While the latter case is typical for complex plas-
mas [15], in colloidal dispersions the former situation can be realized [164]. Therefore,
in this chapter we focus on a system of the oppositely charged particles, and assume for
simplicity that the charges have the same magnitude, i.e., QA = −QB ≡ Q, the same
friction coefficients γA = γB ≡ γ, and that the height difference is h = λ. A natural
measure of nonreciprocity in this case is the relative wake charge, q̃ = −qi/Qi > 0.

4.2 Stability analysis and self-organization

In order to illustrate a tendency of particles with nonreciprocal interactions to self-
organize themselves with increasing q̃, and to identify the characteristic building blocks
of this complex process, let us consider the formation of small clusters in the absence
of hydrodynamic interactions. Then, the equilibrium configurations for a cluster of N
particles are determined from the force balance in the horizontal plane,

∑N
j Fji(rij) = F,

where the net force F is a constant horizontal vector for ∀i ∈ [1, N ]. We apply the
standard stability analysis of the derived configurations in the zero-temperature limit.
This corresponds to the eigenvalue problem det (∂Fij/∂rj|eq − γλ1) = 0, where . . . |eq
denotes the (2N × 2N ) dynamical matrix calculated for the equilibrium configurations.



4.2. STABILITY ANALYSIS AND SELF-ORGANIZATION 61

4.2.1 Active and inactive doublets

A pair of particles of different species form an equilibrium doublet with the hori-
zontal separation rD when FAB(rD) = −FBA(rD) ≡ F ; the doublet is stable if
d [FAB(r) + FBA(r)] /dr|r=rD

< 0. From Eq. (4.3) we conclude that the stability con-
dition is only fulfilled when the reciprocal component of the force is equal to zero,
dϕr(r)/dr|r=rD

= 0.

For a vertical pair rD = 0 – we call it an inactive doublet – two regimes can
be distinguished: (i) When dFij(r)/dr|r=0 < 0 for both particles, they return to the
equilibrium after a small perturbation. Below we demonstrate that this case, sketched
in Fig. 4.2(a), is observed for a “weak” nonreciprocity, when the relative wake charge
is smaller than a certain critical value, q̃ < q̃cr1 (i.e., this always occurs for reciprocal
interactions). (ii) When dFij(r)/dr|r=0 > 0 for one of the particles, the restoring forces
are pointed in the same direction, as shown in Fig. 4.2(b). The equilibrium in this case,
corresponding to q̃cr1 < q̃ < q̃cr2, would only be restored in the zero-temperature limit;
in the presence of an infinitesimal thermal noise the doublet should break apart.

Under the general condition

dϕr(r)/dr|r=rD
= 0 and dϕn(r)/dr|r=rD

6= 0, (4.4)

satisfied for rD > 0, a pair emerges which is self-propelled in the direction nAB with
the velocity vD = −

[
dϕn(r)/dr|r=rD

]
/γ. Such clusters will be referred to as active

doublets and occur when q̃ > q̃cr2. Note that for a constant nonreciprocity, ∆ = const,
stable doublets are always at rest, since ϕn(r) = ϕr(r)/∆ and therefore the nonreciprocal
force is equal to zero at r = rD

1.

Figures 4.2(d) and (e) illustrate the results of the stability analysis in the horizontal
plane, performed in the zero-temperature limit. In the present example, two particles of
different species are stacked on top of each other (i.e., they form an inactive doublet)
when the relative wake charge is smaller than q̃cr2 ≃ 0.74. For larger q̃, the separation
rD continuously increases and an active doublet moves along its symmetry axis, with
the velocity vD which varies non-monotonically with q̃. Thus, in dilute systems (with in-
finitesimal number density) one can expect the formation of multiple individual doublets.
Hydrodynamic interactions do not influence the pair separation rD, but cause an increase
in the velocity.

Now, we study the effect of hydrodynamic interactions on a doublet in the dilute
limit. We consider two particles of species A and B, which are confined at different
heights. The position of the particles, projected on the xy-plane, shall be called rA and
rB, respectively. The position of the particles, projected on the horizontal xy-plane, shall
be called rA and rB, respectively. The general requirement for stable clusters is the
equality of the velocities

ṙA = ṙB . (4.5)

1Given the vertical separation of particles within an active unit, we refrain from the term active
molecules used in Ref. [27]
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Figure 4.2: Stable configurations of two-particle clusters, depending on the relative wake

charge q̃. (a-c) Sketches illustrate three distinct regimes (side view): For q̃ < q̃cr1,

particles form a stable vertical pair, an inactive doublet, since the restoring

forces FAB and FBA exerted by a small perturbation pull the particles back; for

q̃cr1 < q̃ < q̃cr2, the vertical pair remains stable only in the zero-temperature

limit assumed here, since FAB and FBA are pointed in the same direction; for

q̃ > q̃cr2, the particles form an active doublet with a finite horizontal separation,

moving along the force FAB = FBA. (d,e) Equilibrium horizontal separation of

the doublet, rD (normalized by λ) and the corresponding doublet velocity vD
(normalized by Q2/λ2γ), the shading indicates the stability regimes illustrated

in (a-c). The results are for the wake length δ = 0.2λ, h = λ and RH = 0
(black dashed line) as well as RH = 0.2λ (blue solid line).
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shown. The figure legend is the same as in Fig. 4.2.

The equation of motion of the A particle can be written as

ṙA =
1

γ
FA(rA − rB) +

[
3RH

4γr̃

(
1 +

r2

r̃2

)]
FB(rB − rA) , (4.6)

with the friction coefficient γ and r̃ =
√
r2 + h2 where h is the vertical distance between

the particles and r = |rA − rB|; the respective equation for the B particle, is obtained
by A ↔ B permutation. Equation (4.6) is only fulfilled if FAB(rD) = −FBA(rD), as
in the case without hydrodynamic interactions. Thus for a finite hydrodynamic radius,
Eqs. (4.4) remain valid. Figure 4.2 shows the result for a doublet with and without
hydrodynamic interactions. The doublet distance rD remains unchanged, while the
doublet velocity is slightly increased.
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4.2.2 Active and inactive triplets

In a similar manner, one can straightforwardly generalize the analysis for larger clusters.
For three particles, there is a variety of possible triplet configurations. To start with, let
us consider a cluster composed of one particle B and two particles A with negligible
hydrodynamic interactions. We work in the frame of reference of the first (B) particle,
i.e., the coordinates of the second and third (A) particles are r2,3. In this case, the general
equilibrium condition,

∑N
j Fji(rij) = F, can be identically transformed to the following

two equations for the particle coordinates (plus one equation for the net force F):

F̃ (r2)n2 + F̃ (r3)n3 = 0, (4.7a)

2FAA(r23)n32 − FBA(r3)n3 + FBA(r2)n2 = 0, (4.7b)

with F̃ (r) ≡ FBA(r) + 2FAB(r). In the reverse case, where clusters are composed of
one A and two B particles, the labels are simply to be swapped.

Using Eq. (4.7a), one can distinguish two principal cases: (i) F̃ (r2,3) 6= 0, then
solutions exist only for r2 ‖ r3; (ii) F̃ (r2) = F̃ (r3) = 0, then solutions are possible for
non-collinear r2 and r3.

(i) If F̃ (r) is a monotonic function, the only solution is r2 = −r3; from Eq. (4.7b) we
obtain FAA(2r) = FBA(r), which yields r2 = r3 ≡ r. Due to symmetry, F = 0
and hence we call such configurations inactive linear triplets. However, if F̃ (r) is
a non-monotonic function, also solutions with r2 6= r3 are possible – in this case
Eqs. (4.7) are reduced to F̃ (r2) = F̃ (r3) and 2FAA(r2+r3) = FBA(r2)+FBA(r3).
Such asymmetric clusters usually imply a non-vanishing net force, F 6= 0, which
generates a directed propulsion. We call these configurations active linear triplets.

(ii) If FBA(r) is monotonic, solutions for r2,3 are limited to triangles with r2 = r3 ≡ r
and the apex angle θ, obtained from F (r) = 0 and FAA(2r sin

1
2
θ)/ sin 1

2
θ =

FBA(r). Such configurations are called active triangular triplets. Finally, if
FBA(r) is a non-monotonic function, triangular triplets with r2 6= r3 are possible.

As for the doublets, we apply the standard stability analysis of the derived configurations
in the zero-temperature limit.

If the number of particles B is twice as high as the number of A particles, the
dependence on q̃ remains the same as in Fig. 4.2. The “excess” particle B simply remains
an inactive singlet [see Fig. 4.3(a)]. On the contrary, in the situation with two particles
A for one particle B various active and inactive structures emerge, as presented in
Fig. 4.3(b): An inactive doublet and an inactive singlet are formed when q̃ < 0.17, while
for q̃ ∈ (0.17, 0.36) they merge into an active linear triplet, where the position of particle
B is slightly shifted from the center (which determines the propagation direction along
the symmetry axis). The linear triplet becomes inactive at q̃ ∈ (0.36, 0.74). The further
increase of the wake charge, q̃ ∈ (0.74, 0.81), causes particle B to shift perpendicular
to the symmetry axis, leading to an active triangular triplet. For even larger values of
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Figure 4.4: Equilibrium horizontal separation in the doublet and triplet configurations

shown in Fig. 4.2.

q̃, the triplet breaks apart and an active doublet and an inactive singlet emerge. In a
similar manner, one can straightforwardly generalize the analysis for larger clusters or
investigate, e.g., the rotation activity.

Figure 4.4(a) shows the horizontal separation r1 for the case of (NA = 1, NB = 2),
where a passive singlet and a doublet form. In the reverse situation (NA = 2, NB = 1),
we characterize the emerging triplets by their individual bond distances r2, r3 [Fig. 4.4(b)]
and the respective apex angle θ [Fig. 4.4(c)]. Activity is a result of symmetry breaking,
therefore active units are found if r2 6= r3 or θ < 180◦.

If hydrodynamic interactions are taken into account, the general equilibrium condition
becomes

ṙi = ṙ ∀ i ∈ {1, . . . , N} . (4.8)

Generally, the triplet coordinates derived above do not fulfill this equilibrium condition.
This is in contrast with the doublets, where the inclusion of hydrodynamic interactions
only induces a rescaling of the velocity. For three particles, we solve Eq. (4.1) numerically
and show the results in Figs. 4.2 and 4.4. However, the resulting changes to the positions
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are minor, as shown in Fig. 4.4. Similar to doublets, the inclusion of hydrodynamic
interactions merely causes a slight increase of the velocity, see again Fig. 4.2.

4.2.3 Stability analysis for finite densities

For a finite number density φ in systems without hydrodynamic interactions, we analyze
the stability of crystalline structures in the zero-temperature limit. The time-dependent
coordinate of the ith-particle is presented as a sum of its equilibrium lattice position and
a displacement, ri(t) = req,i + ui(t). The interaction force, Eq. (4.3), is then expanded
to the first order in ui and substituted in Eq. (4.1). Using ui ∝ exp(ik · req,i + ωt),
the dispersion relations ω(k) are derived as eigenvalues of the resulting dynamical
matrix [104]. We examine a vertically stacked hexagonal lattice and an interdigitated

hexagonal lattice, the stability requires Re ω(k) < 0 for all k from the first Brillouin
zone of the lattice.

4.2.4 Diffusion of a doublet under thermal noise

Now, let us study the case of finite temperature in the absence of hydrodynamic inter-
actions. For a single stacked doublet, where rD = 0, we compute the mean-squared
displacement starting from Eq. (4.1). We compute the Taylor expansion of the forces at
a given q̃ around the equilibrium positions. Then, FBA(q̃, t) ≈ CA(q̃) [rA(t) − rB(t)]
and FAB(q̃, t) ≈ CB(q̃) [rB(t) − rA(t)], where CA(q̃) and CB(q̃) are the prefactors of
the linear order terms in the expansion. We define A(q̃) as a matrix containing these
prefactors, such that Eq. (4.1) can be written as a matrix equation

γ
∂X(t)

∂t
= A(q̃)X(t) +T(t), (4.9)

where X(t) = (rA(t), rB(t)) is the super vector of the particle positions and T(t) =
(ξ1(t), ξ2(t)) the vector with the random forces acting on the particles. For simplicity,
we set the friction coefficient γ independent of the particle index. Using variation of
constants, this differential equation is solved by the integration over a matrix exponential:

X(t) =
1

γ

∫ t

0

dτ exp [A(q̃)(t− τ)/γ] T(τ),

with 〈T(t)〉 = 0 and 〈Ti(t)Tj(t
′)〉 = 2γkBTδijδ(t − t′), leading to 〈X(t)〉 = 0. Via

computing the the mean squared displacement, we determine the diffusion ratio to

DL(q̃)

DS

=
C2

A(q̃) + C2
B(q̃)

[CA(q̃) + CB(q̃)]
2 . (4.10)
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The result of Eq. (4.10) is shown in Fig. 4.9 and in Fig. 4.10 as a black dashed line. As
long as the approximation of the forces remains justified, this result is valid independent
of the finite temperature.

4.3 Numerical simulations

The above analytical results are complemented with a numerical analysis [148]. We solve
the equation of motion, Eq. (4.1), using a forward time-step algorithm in a Brownian
dynamics simulation for three distinct cases: neglecting hydrodynamics we consider (i)
the zero-temperature limit and (ii) finite temperatures as well as (iii) the zero-temperature
limit taking hydrodynamic interactions into account. We use a 2D rectangular simulation
box with periodic boundary conditions and the edge ratio Ly/Lx =

√
3/2. The particles

are initialized on a distorted stacked hexagonal lattice with a fixed number density
φ = N/(LxLy).

In the case (i) and (ii), we use N = 2× 2500 particles. The respective edge lengths
of the simulation domain are varying from (Lx, Ly) ≃ (240λ, 210λ) at low densities
to (Lx, Ly) ≃ (43λ, 38λ) at φλ2 = 3. In the case (iii), we use N = 2 × 576 particles,
and the simulation domain is between (Lx, Ly) ≃ (115λ, 100λ) at low densities and
(Lx, Ly) ≃ (28λ, 24λ) at high densities. For all cases, the wake length is δ = 0.2λ, the
height between the layers is h = λ, the time t is measured in units of τ = γλ3/Q2 and
the distance r in units of λ. We set the time step to δt = 0.005τ in the cases (i) and
(ii) and to δt = 0.0025τ in case (iii), which ensures proper resolution of the particle
dynamics. After initialization, the system is given time of 104τ to relax into a steady
state. Statistics is gathered for multiple simulations runs with independent initializations
and the simulation time of 2500τ . By measuring the displacement of individual particles
within the time step, a particle velocity is calculated as vi(t) = [ri(t+ δt)− ri(t)]/δt.

4.3.1 Emerging states

Figure 4.5 presents the state diagram of the emerging activity, where we compare the
theoretical results against simulations in the zero-temperature limit. The state diagram is
plotted in the plane spanned by number density φ and relative wake charge q̃. We identify
three distinct domains: Toward the reciprocal limit q̃ = 0, the particles form a bilayered
stacked hexagonal crystal (green); for larger q̃, at increased density the system goes into
an interdigitated hexagonal solid (blue); for even larger q̃, at low densities we find an
active regime where the crystal melts (red). In addition, we show the results obtained
from the numerical simulations. Here, we differentiate between inactive solids (+) and
active fluids (©). The mobile units of the fluid are active doublets, that behave similar to
(deformable) active Brownian particles [165–167]. The active regime in the simulations
is defined for the average particle velocity 〈|v|〉 above a threshold of 10−2λ/τ . One
can see that the emerging state diagram exhibits a reentrant behavior both with φ and q̃.



4.3. NUMERICAL SIMULATIONS 69

Notably, for intermediate q̃, there is an anomalous “water-like” melting upon an increase
in φ followed by reentrant freezing.

4.3.2 Characteristics of active fluids

We introduce the averaged velocity 〈v〉 = 〈[ri(t+ δt)− ri(t)]/δt〉, Fig. 4.6(a), as well
as an alignment parameter c = |〈v〉| /〈|v|〉, Fig. 4.6(b): c = 1 for a perfect nematic
order and c = 0 in a totally disordered case. Furthermore, to quantify the stability
of doublets we define ND(t), the average number of particle pairs that remain nearest
neighbors over the time interval t. Generally, it is well described by an exponential decay,
ND(t) ∝ e−t/τD , with a doublet decay time τD. By an exponential fit ND(t) ∝ e−t/τD ,
we can obtain the doublet decay time τD, shown in Fig. 4.6(c) and (f). If no doublet
splits during the simulation time of 2500τ , then τD is set to infinity. Long-living active
clusters are marked by a diamond in Fig. 4.5. The existence of a finite decay time
τD reveals a qualitative difference of our system to a system of permanently active
particles [52, 159, 160, 168].

Figure 4.6(a) demonstrates that at low densities (φλ2 = 0.1), the average velocity 〈|v|〉
is well reproduced by the velocity of a single active doublet, vD, calculated analytically.
Above the threshold value of q̃cr2 = 0.74, the distance rD increases [see Fig. 4.2(d)]. For
this reason, the average velocity first increases with q̃, but then it starts falling off due to
decreasing interaction strength of a doublet [see also Fig. 4.2(e)]. As the activity sets
in, long-living doublets are formed throughout the system and their mutual collisions
lead to the velocity alignment [see Fig. 4.5], since the angle of reflection αr after their
mutual collision is always smaller the the incidence angle αi, as shown in Fig. 4.7. With
increasing the number density φ the onset of activity shifts towards smaller q̃, whereby
the average velocity vs. wake charge becomes a non-monotonic function, leading to a
reentrant effect for φλ2 > 1.25, where an inactive interdigitated hexagonal solid emerges
[see also Fig. 4.5].

The effects of hydrodynamic interactions are shown in Fig. 4.8. Similar to the
analysis of doublets and triplets, the general velocity is increased. The onset of activity is
practically unchanged, even for the dense colloidal fluid. In contrast to the case without
hydrodynamic interactions, larger number density leads to higher velocity than the dilute
colloidal fluids. The overall-alignment is increased, while the pair stability is practically
unchanged. In the region of large q̃, we observe high alignment, but low pair-stability
and low velocity, since the instable pairs are dragged with the background fluid.
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4.3.3 Finite Temperatures

Finally, we study the impact of finite temperature in the many-body simulations on the
characteristics of an active fluid, see Figs. 4.12 and 4.13. The temperature “smears out”
the velocity profile and the previously defined velocity threshold value to detect an active
fluid becomes obsolete. Instead for finite temperatures, the diffusion coefficient ratio is
the appropriate quantity to identify an active fluid, DL/DS > 1. The alignment rapidly
decreases, since the direction of propagation as well as the actual orientation of the
doublet are affected by the additional random forces. However stable active units can
still be found for a broad regime of relative wake charges q̃, see again Figs. 4.12 and
4.13. In Fig. 4.10 we compare those analytical results of Eq. (4.10) to numerical results
obtained for number density φλ2 = 0.01. The onset of activity defined by DL/DS > 1
is hardly affected by the given temperature. With increasing temperature, the diffusion
ratio itself goes to one, see Fig. 4.10.

Finally, we study the dynamics for finite temperatures. Results for the time-dependent
diffusion coefficient D(t) = 1

4t
〈|r(t) − r(0)|2〉 are summarized in Fig. 4.9 for a finite

temperature T = 10−3 Q2/(kBλ). There is diffusion at long times, as characterized by
the long-time diffusion coefficient DL = lim

t→∞
D(t). The latter is naturally normalized

by the short-time coefficient DS = lim
t→0

D(t) = kBT/γ. For intermediate times there is

either a sub-diffusive regime due to particle caging, or a ballistic regime arising from the
emerging activity [169,170]. The diffusion ratio of the particles is also shown in Fig. 4.11.
As discussed above (see Fig. 4.2), in dilute systems the activity at finite temperatures
is expected to set in at q̃ > q̃cr1(≃ 0.45). From Fig. 4.9 we see that for φλ2 = 0.01 the
transition to active fluids, DL/DS > 1, indeed occurs near this value. The long-time
diffusion increases over several orders of magnitude as a function of nonreciprocity q̃.
Even in dense colloidal fluids (at φλ2 = 1.75) the ratio DL/DS exceeds 5, implying that
there is an enormous diffusivity relative to the case of infinite dilution. As revealed by
the snapshots in Fig. 4.5, this is mainly due to significant local alignment in the fluid,
which allows for an efficient traveling of active doublets.
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4.4 Conclusion

In conclusion, we have shown that in two-dimensional systems with wake-mediated
interactions a rich variety of self-organization phenomena occur. In the zero-temperature
limit, the nonreciprocal forces exerted by wakes generate a complex diagram of steady
states. Hydrodynamic interactions do not qualitatively change our results. In particular,
we showed the formation of active units – bound particle pairs, having interesting
similarities with permanently active Brownian particles – and the realization of unusual
melting scenarios. At finite temperatures we identified regimes of anomalously high
diffusion. The ability of particles with the wake-mediated interactions to form active units,
the unusual melting and the unique diffusive behavior make such systems interesting for
many fields of research.
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CHAPTER 5

CONCLUSION

In this thesis, we explored the statistical mechanics of systems, where the reciprocity
of particle interactions can be broken. Nonreciprocal interactions are of fundamental
importance for many different experimental systems, and are attracting increasing atten-
tion. The majority of results presented in this thesis are generic, and independent of the
specific realization of the nonreciprocity. For the broad class of systems with constant
nonreciprocity and Newtonian dynamics, we showed the existence of the remarkable
state of detailed dynamic equilibrium, where the different reciprocal sub-ensembles
obtain distinct steady-state temperatures. There, the temperature ratio is uniquely de-
termined by the nonreciprocity. For the systems where the nonreciprocity parameter
depends on the inter-particle distance, we predicted a temperature growth that converges
to universal asymptotes. In numerical simulations, we studied systems with different
initial temperatures and varying number density, and we observed a good agreement with
the theoretical predictions. Additionally, our analysis was confirmed by experiments
carried out in two-dimensional complex plasmas with wake-mediated interactions.

We extended our study to the strong-damping regime, where the kinetic temperature
of particles is imposed by an external heat bath. Based on diffusiophoresis in colloidal
dispersions, we proposed a model that leads to Yukawa-like pair nonreciprocal interac-
tions. Based on the Smoluchowski equation, we developed a microscopic theory for the
pair-correlation functions and tested it against detailed Brownian dynamics simulation
results in 2D and 3D. Using the Kirkwood approximation as a closure, the theory al-
lowed for the prediction of the pair distribution functions. Within this theory no explicit
restrictions to the species dependent particle interactions were made and it compares to
the simulation results with good accuracy. We show that for nonreciprocal interactions,
the reciprocal sub-ensembles exhibit distinct structural correlations. Via the triplet angle
distribution function, we studied the quality of the Kirkwood approximation explicitly.
We computed the triplet angle distribution function, once directly from simulation data
and also via the pair distribution function and Kirkwood approximation. We compared
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reciprocal and nonreciprocal interactions, and showed that for nonreciprocal interactions,
the Kirkwood-approximation is less accurate.

Eventually, we studied a quasi-two-dimensional bilayered system with nonreciprocal,
wake-mediated interactions by theory and simulations. This system shows the fascinating
ability of spontaneous activity and self-organization. The particles can form an active
doublets, where these individual units can break and become passive again. We observed
interesting phase transitions and re-entrant phenomenons, e.g. where an increase in the
number density leads to a melting of a crystal. For broad regions in the active regime
of the phase diagram there is a strong alignment, which is enhanced by hydrodynamic
interactions. Also, we analyzed the effect of finite temperature on such a system, where
the activity of the system emerges as an increase in the relative diffusion.

The results presented in Chapter 2 have already motivated a different group to study
the redistribution of kinetic energies in detail [171] and we expect that field of nonrecip-
rocal interactions will grow in importance. There are many problems yet unexplored,
like the extension of mode coupling theory or dynamical density functional theory to
nonreciprocal interactions. Also, we expect that a two-temperature steady state can
exhibit very interesting melting phenomena. The Yukawa-like interactions, introduced
in Chapter 3, exhibit a nonreciprocity dependent demixing transition that should be
carefully investigated. In conclusion, nonreciprocal effective particle interactions provide
a multitude of promising research studies for the future.
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