

Magnetic resonance spectroscopy and quantitative brain water imaging in patients with hepatic encephalopathy

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Georg Oeltzschner

aus Leverkusen

Düsseldorf, November 2015

Aus dem Institut für Klinische Neurowissenschaften und Medizinische Psychologie

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Alfons Schnitzler Koreferent: Prof. Dr. Thomas Heinzel Tag der mündlichen Prüfung:

16.12.2015

ACKNOWLEDGEMENTS

Ich bedanke mich mit der größten denkbaren Herzlichkeit bei Herrn Prof. Dr. Alfons Schnitzler für die Gelegenheit, an seinem Institut und unter seiner hervorragenden Anleitung meine Dissertation anfertigen zu dürfen. Die Unterstützung in jeglicher Hinsicht, die ich durch ihn erfahren durfte, war außerordentlich und alles andere als selbstverständlich.

Ein besonderer Dank gilt Herrn Prof. Dr. Thomas Heinzel für die Übernahme des Koreferats sowie zahlreiche hilfreiche Hinweise beim Verfassen der Dissertation.

Herrn Prof. Dr. Dieter Häussinger sei für die Gelegenheit gedankt, im Rahmen des Sonderforschungsbereiches 974 an einem renommierten, aktuellen und spannenden Forschungsprojekt teilzuhaben. Weiter danke ich Herrn Prof. Dr. Gerald Antoch für die Aufnahme in das Institut für Diagnostische und Interventionelle Radiologie, ohne dessen Infrastruktur diese Arbeit niemals möglich gewesen wäre.

Besonders möchte ich mich bei Herrn Prof. Dr. Hans-Jörg Wittsack bedanken. Sein stets aufs Neue bewiesenes Nebeneinander von fachlicher Brillanz und großartiger Persönlichkeit hat mich verlässlich durch die vergangenen vier Jahre geführt und wird mir künftig als großes Vorbild dienen.

Herrn Dr. Markus Butz gilt ebenfalls eine besondere Danksagung. Auch ihn zeichnet die seltene Gabe aus, bei aller fachlichen Kompetenz ständig erreichbar, ansprechbar, hilfsbereit, aber auch im richtigen Moment kritisch und fordernd zu sein.

Bei der gesamten Arbeitsgruppe Medizinische Physik (Dr. Anja Müller-Lutz, Gael Pentang, Frithjof Wickrath) möchte ich mich für vier wunderbare Jahre bedanken, in denen ich mich stets heimisch gefühlt habe - und für stetige, unbedingte Unterstützung bei meinen Untersuchungen. Auch meine zweite Heimat, das Institut für Klinische Neurowissenschaften und Medizinische Psychologie, soll an dieser Stelle aus den gleichen Gründen nicht unerwähnt bleiben. Vor allem der feine Herr Thomas Baumgarten entwickelte sich zu einem hochgeschätzten Begleiter des Weges, der uns gemeinsam sogar bis nach Hawaii führte.

Frau Nur-Deniz Füllenbach gebührt ein herausragender Dank für ihr Engagement in der Patientenrekrutierung und -graduierung. Ohne sie wäre diese Arbeit unmöglich gewesen. Gleiches gilt für Frau Erika Rädisch, die bei unzähligen langen Messabenden wertvolle Unterstützung und Aufmunterung am MRT gab. Außerdem ist sie beim Quizduell nahezu unbesiegbar.

Eine gesonderte Erwähnung finden alle Last-Minute-Last-Second-Korrekturleser. Danke Imke, Hans-Jörg, Markus, Leona!

Leona! Hast Du wirklich gedacht, Du bekommst keine eigene Danksagung? Dir gebührt doch eine ganze Seite, oder eine ganze Arbeit. Vielen, vielen Dank - für jede gemeinsam verbrachte Sekunde, von denen mich jede einzelne unsagbar glücklich macht.

Weniger einen Dank als eine Huldigung verdient an dieser Stelle der beste denkbare Mitbewohner, Cocktailspezialist und Billardkollege Christian Kleinhans. 20 Jahre währt die Freundschaft, aber die Zeit der Promotion wird ganz besonders auf ewig hin untrennbar mit ihm verbunden sein. Es war mir eine Ehre, und es ist noch lange nicht vorbei!

Zu guter Letzt möchte ich mich bei meiner Mutter und meinem verstorbenen Vater bedanken, ohne die diese Arbeit erst recht nicht entstanden wäre. Eurer fortwährenden und unbedingten Unterstützung habe ich alles zu verdanken.

ii

AUTHOR'S DECLARATION

I declare that the work in the dissertation was carried out autonomously and independently and without using any unauthorized help, and has not in the same or similar form been submitted at a different institution. This is my first attempt at obtaining a doctoral degree.

SIGNED: DATE:

CONTENTS

Co	Contents v							
At	Abstract vi							
Zusammenfassung								
1	Introduction							
2	Neu	leurophysiological processing in the brain						
	2.1	Neurot	ransmission	3				
	2.2	Neural	oscillations	4				
3	Glut	athione in the brain						
4	Нер	patic encephalopathy						
	4.1	Symptoms, diagnosis, and grading						
		4.1.1	West-Haven criteria and minimal HE	10				
		4.1.2	Covert HE and overt HE	11				
		4.1.3	Critical flicker frequency (CFF)	11				
	4.2	Pathogenesis						
	4.3	GABA in HE		14				
	4.4	Oxidat	ive stress, hyperammonemia and glutathione	14				
5	esonance	17						
	5.1	Backgr	ound	17				

		5.1.1	Proton spin in a magnetic field	17				
		5.1.2	Macroscopic magnetization and relaxation	18				
		5.1.3	Spin echo and gradient echo	19				
	5.2	2 Magnetic resonance imaging						
		5.2.1	Spatial encoding	20				
		5.2.2	Echo Planar Imaging (EPI)	22				
		5.2.3	Quantitative brain water content imaging	23				
	5.3 Magnetic resonance spectroscopy							
		5.3.1	Chemical shift	25				
		5.3.2	Localisation and acquisition	26				
		5.3.3	Analysis and quantification	26				
		5.3.4	Edited MR spectroscopy	27				
6	6 Aims and hypotheses							
7	7 Study 1: GABA spectroscopy in hepatic encephalopathy							
8	8 Study 2: Covert hepatic encephalopathy: Elevated total glutathione and							
	abse	ence of	brain water content changes	39				
9	9 Methodological considerations: Water-scaled quantification of GABA							
10	10 Conclusions and Outlook 5							

ABSTRACT

Hepatic encephalopathy (HE) is a set of neurological symptoms frequently occurring as a consequence of liver cirrhosis. HE affects many functional entities of the brain, including cognitive, executive and perceptive systems. Patients with HE exhibit an impaired performance of cognitive tasks, abnormal perception of temperature stimuli, behavioural changes, and motor dysfunctions. The severity of these symptoms is highly volatile and can range from subtle alterations to stupor and *coma hepaticum*.

The accumulation of neurotoxic ammonia in the brain due to impaired liver activity has been identified as a key feature of HE, triggering manifold responses such as neuroinflammation, oxidative stress, and formation of low-grade oedema. Recent magnetoencephalography (MEG) studies have provided evidence that HE symptoms are consistently associated with slowing of neural oscillations in their respective functional systems, but the underlying mechanisms remain elusive. While these and numerous other processes behind HE have been identified on microscopic and mesoscopic scales, they are yet to be integrated into a coherent pathophysiological concept, and at this point, it remains unclear how they contribute to pathological neural activity.

The present work investigated the role of the main inhibitory neurotransmitter γ aminobutyric acid (GABA) for the pathogenesis of HE. As local GABA levels had previously been shown to influence the frequency of oscillations in the visual and the motor *gamma* frequency band, it was hypothesized that altered GABA concentrations contribute to HE symptoms via modulation of neural oscillations.

To test this hypothesis, magnetic resonance spectroscopy (MRS) was employed to determine in vivo levels of GABA in a cohort of 16 healthy controls and 30 HE patients. Results showed a decrease of GABA in the visual cortex in HE. Further, individual GABA levels correlated with the critical flicker frequency (CFF), a singular experimental parameter reliably reflecting HE severity. Low GABA was also linked to elevated blood ammonia levels. Beyond this, GABA was coupled to concentrations of glutamine and myo-inositole, two compounds that are highly involved in astrocytic regulation of hyperammonemia. However, none of these relationships became evident in the sensorimotor region, giving rise to the assumption that the mechanisms mediating pathological behaviour are substantially different across brain regions.

In a second MRS investigation, the interplay of the major cerebral antioxidant glutathione, magnetic resonance imaging (MRI) measures of brain water content and HE characteristics was studied. Glutathione was elevated in HE, correlated with blood ammonia levels and closely followed alterations of glutamine and myo-inositol, suggesting an involvement in the interception of oxidative stress induced by ammonia. In contrast, measures of brain water content were not influenced by HE severity, blood ammonia or metabolite concentrations. This may imply that, at least in early stages of HE, the pathological impact of cerebral oedema may be smaller than previously assumed.

In conclusion, the novel findings presented in this work may help improve the understanding of the emergence of HE. GABA concentrations are presumably relevant for the development of HE symptoms in certain functional systems, but evidence prompts the notion that the exact pathways mediating abnormal oscillatory behaviour are highly regionspecific. Further, glutathione appears to participate in the adaptation to hyperammonemia, whereas the relationship of brain water content and HE severity may be of more complex nature than previously expected.

ZUSAMMENFASSUNG

Die hepatische Enzephalopathie (HE) bezeichnet eine umfassende Reihe neurologischer Symptome, die als Folge einer Leberzirrhose auftreten können. Die HE kann verschiedene funktionale Einheiten des Gehirns beeinträchtigen, darunter Systeme, die für kognitive und exekutive Aufgaben oder die Wahrnehmung verantwortlich sind. Zu den Symptomen zählen unter anderem kognitive Verlangsamung, gestörte Temperaturwahrnehmung, Verhaltensänderungen und motorische Störungen. Dabei umfasst sie von im Alltag kaum wahrnehmbaren Veränderungen bis hin zu schwersten Störungen und *Coma hepaticum* eine große Bandbreite.

Hohe Ammoniakkonzentrationen infolge der Leberschädigung konnten als zentrale Ursache für vielfältige Folgevorgänge (u.a. entzündliche Prozesse, oxidativer Stress, Bildung niedriggradiger zerebraler Ödeme) identifiziert werden. Mit Hilfe der Magnetenzephalographie (MEG) konnte darüber hinaus in der Vergangenheit nachgewiesen werden, dass die Symptomatik der HE mit einer globalen, verschiedene funktionale Systeme betreffenden Verlangsamung neuronaler Oszillationen einhergeht. Eine vollständige und zusammenhängende Vorstellung von den zugrunde liegenden Mechanismen fehlt jedoch weiterhin, vor allem im Bezug darauf, wodurch die abnormale neuronale Aktivität hervorgerufen wird.

Im Rahmen der vorliegenden Arbeit wurde untersucht, inwieweit der wichtigste hemmende Neurotransmitter des Gehirns, γ -Aminobuttersäure (GABA), an der Pathophysiologie der HE beteiligt ist. In den vergangenen Jahren konnten verschiedene Studien lokale GABA-Konzentrationen mit der Frequenz der neuronalen Oszillationen im visuellen sowie im motorischen *Gamma*-Frequenzband in Verbindung bringen. In diesem Sinne wurde in der vorliegenden Dissertation die Hypothese geprüft, dass veränderte Konzentrationen von GABA – etwa durch Modulation der neuronalen Oszillationen – zur Entstehung der HE-Symptomatik beitragen.

In einer entsprechenden Studie wurden mit Hilfe der Magnetresonanzspektroskopie (MRS) die Spiegel von GABA in einem Kollektiv von 30 HE-Patienten und 16 gesunden Kontrollprobanden untersucht. Im visuellen Kortex von HE-Patienten wurden dabei

verminderte GABA-Konzentrationen nachgewiesen. Individuelle GABA-Spiegel korrelierten zudem mit der kritischen Flimmerfrequenz (CFF), einem routinemäßig erhobenen Diagnoseparameter, der den Schweregrad der HE nachweislich gut widerspiegelt. Niedrige GABA-Konzentrationen waren des Weiteren mit erhöhten Ammoniakspiegeln im Blut assoziiert. Zudem konnte gezeigt werden, dass GABA eng an die Konzentrationen von Glutamin und myo-Inositol gekoppelt ist, die wiederum zur Reaktion der Astrozyten auf den Ammoniaküberschuss beitragen. Keiner dieser Zusammenhänge konnte jedoch für das sensorimotorische Areal belegt werden. Dies legt nahe, dass die Mechanismen, die letztlich zur krankhaften Veränderung des Oszillationsverhaltens führen, nicht globaler Natur sind, sondern je nach Hirnregion stark variieren.

Eine weitere MRS-Untersuchung befasste sich mit der Rolle des wichtigsten Antioxidans im Gehirn, Glutathion, und seinen Wechselwirkungen mit dem HE-Schweregrad sowie dem Vorhandensein eines niedriggradigen zerebralen Ödems. Als Maß für dessen Ausprägung diente dabei eine quantitative Wassergehaltsbestimmung mittels Magnetresonanztomographie (MRT). Dabei konnte gezeigt werden, dass die Konzentration von Glutathion bei der HE erhöht ist, mit den Blutkonzentrationen von Ammoniak korreliert sowie dem Verhalten von Glutamin und myo-Inositol eng folgt. Diese Ergebnisse deuten auf eine prominente Rolle von Glutathion in der Bekämpfung des durch Ammoniak hervorgerufenen oxidativen Stress hin. Im Gegensatz dazu konnte keine maßgebliche Relevanz des Wassergehaltes festgestellt werden, der weder mit dem HE-Schweregrad noch den Blutammoniakspiegeln oder Metabolitenkonzentrationen zusammenhing. Dieser Befund könnte bedeuten, dass – zumindest im Falle der untersuchten niedriggradigen HE – die Rolle zerebraler Ödembildung für die Pathophysiologie geringer ist als bislang vermutet.

In der Gesamtschau könnten die in dieser Arbeit vorgestellten neuen Erkenntnisse das Verständnis der der HE zugrunde liegenden pathogenetischen Mechanismen verbessern. Die Konzentrationen von GABA sind in bestimmten funktionalen Systemen vermutlich maßgeblich an der Entwicklung der HE-Symptomatik beteiligt. Allerdings legen die vorgelegten Ergebnisse den Schluss nahe, dass die entscheidenden Störungen der neuronalen Oszillationen in verschiedenen Hirnregionen auf unterschiedlichen Wegen hervorgerufen werden. Glutathion nimmt indes offenbar eine wichtige Rolle in der Reaktion auf überschüssiges Ammoniak ein, während die Zusammenhänge vom HE-Schweregrad und erhöhten zerebralen Wassergehalts mutmaßlich komplexerer Natur sind, als bislang angenommen.

The human brain is a biological entity of utmost sophistication. Employing the highest degree of complexity, structural specialization and functional organization, brain is capable of receiving, processing and evaluating sensory input from the outside world, while it coordinates our every interaction with the sources of these stimuli.

The brain orchestrates its function in a symphony of communication within a network of billions of neural cells, the *neurons*. Coordinated signal processing of large populations of neurons defines how—and which—information is relayed between different functional areas of the brain. Information is transported via modulation of electric signals, and neurons pass this information on through the release of distinct chemical compounds, the *neurotransmitters* [1, 2].

In the healthy brain, the underlying biochemical mechanisms are highly regulated. If these well-balanced equilibria are disturbed, information exchange within the brain may be severely impaired. A lot of research effort within clinical neuroscience is dedicated to the investigation of neurological diseases that may emerge as a consequence of erroneous neural communication, which can in turn be traced back to malfunctions on a molecular level. However, these deleterious impairments are not necessary brain-immanent. Damage to other organs may induce systemic stress with detrimental effect on brain function.

Hepatic encephalopathy (HE) constitutes an example for cerebral dysfunction that originates from other sites than the brain itself. HE evolves as a complication of liver damage with subsequent loss of detoxification capacity, causing accumulation of ammonia in the brain, which in turn has been recognized as a crucial force driving HE emergence and progression [3]. Its clinical manifestations (cognitive, behavioural and motor dysfunctions) have been attributed to abnormal neural communication patterns [4, 5]. Amongst others, oxidative stress and formation of a low-grade cerebral oedema have been hypothesized to mediate deleterious effects of HE [6]. However, the exact origins and mechanisms of cerebral malfunction have not been completely understood.

The present work endeavours to elucidate the role of several aspects of HE pathogenesis, including neurotransmitter concentrations and cerebral water content. The following sections will provide brief summaries of the most relevant issues of the investigation. First, the important neurotransmitter γ -aminobutyric acid (GABA) will be presented in the framework of an introduction to the communication of neurons, followed by a concise explanation of the primary antioxidant compound glutathione. A review of the clinical symptoms, diagnosis and the current concept of the pathogenesis of hepatic encephalopathy (including the roles of GABA, glutathione and cerebral oedema) is presented afterwards. Finally, a brief introduction to the basic principles of magnetic resonance (MR) is given, including the key techniques of MR brain water imaging and MR spectroscopy that were employed in the present work.

NEUROPHYSIOLOGICAL PROCESSING IN THE BRAIN

In order to accomplish its tasks, the brain needs to collect, process and distribute information within its network of neurons. Neural signals are temporally and spatially limited inversions (*action potentials* or *spikes*) of the electric potential difference (*membrane potential*) between the inside and the outside of a neuron. Action potentials propagate along the membrane of branch-like structures of the neuron (*axons*) towards adjacent neurons, a process commonly referred to as *firing*. At the junction of two neurons, the *synapses*, the information needs to be relayed in order to facilitate further processing. The transfer of action potentials from one neuron to the next can be realised via direct electrical contact (*gap junctions*), but, in the brain, chemical synapses are predominant. These contacts convert an action potential into a chemical signal that bridges the gap to the next neuron where it elicits subsequent modulations of the membrane potential [7].

2.1 Neurotransmission

Several compounds in the brain, the *neurotransmitters*, accomplish the way of chemically forwarding an electric signal. One of them is γ -aminobutyric acid (GABA), a substance that is prevalent throughout the entire central nervous system. Chemically, GABA resembles another neurotransmitter, glutamate, a non-essential amino acid, from which it is also biosynthesized by the enzyme glutamate decarboxylase [1].

Neurotransmitters like GABA and glutamate are permanently held available in the *presy-naptic terminals*. Once a propagating inversion of the membrane potential arrives, the neuron releases neurotransmitter molecules into the *synaptic cleft*. They diffuse through extracellular space to arrive at the postsynaptic site, where they can bind to specific proteins in the cell membrane, the *receptors*. In turn, these receptors modify the membrane

potential by allowing influx or efflux of positively (potassium, K^+ , calcium, Ca^{2+}) or negatively (chloride, CI^-) charged ions. The membrane is consequently hyper- or depolarized. Depending on the receptor type, this modulation is mediated via different pathways and can be of varying extent and duration [1].

Despite their chemical resemblance, GABA and glutamate play opposing roles in the transmission of neural signals within the central nervous system. In most cases, GABA hyperpolarizes the postsynaptic neuron, i.e. makes it harder to elicit a subsequent action potential, whereas glutamate usually has a depolarizing effect and lowers the membrane potential towards its threshold of excitation. Consequently, GABA is labelled an *inhibitory* neurotransmitter and glutamate an *excitatory* one [1, 7].

2.2 Neural oscillations

Action potentials can be elicited successively and trigger repeated firing. Hence, they can influence post-synaptic potentials in subsequent neurons over time in various ways. Due to their abundant connectivity, neurons usually receive simultaneous synaptic signalling from numerous other neurons, with both excitatory and inhibitory input. As a result, the membrane potentials (and with them, the firing probability) within a population of many neurons can fluctuate. Post-synaptic potentials may now overlap, interfere constructively and synchronize across a neural ensemble to macroscopic *oscillations*. The amplitude of synchronized neural membrane potentials, i.e. their spatial average over a group of neurons, can reach such magnitude that it becomes measurable from outside the skull with electroencephalography (EEG) or magnetoencephalography (MEG) [8].

These techniques are used to noninvasively record neural activity on a time scale of milliseconds with coverage of the whole scalp. The collected time signals can be decomposed to yield the contribution of different frequencies. Oscillatory activity can be classified according to its frequency, encompassing the *delta* and *theta* bands (< 10 Hz), the *alpha* band (~ 10 Hz), the *beta* band (~ 20 Hz) and the *gamma* band (30 - 100 Hz) [9–11]. Cross-correlation analysis of neural activity recorded at different spatial locations can further provide measures of *coherence*, i.e. functional connectivity between brain areas [12]. Forming a bridge from activity on a cellular level to behaviour, different oscillatory networks are associated with distinct functions and tasks such as perception, attention modulation,

memory or motor control [8, 10]. Oscillating networks convey information between distinct brain regions over large distances, and their disturbance in disease can result in various neurological dysfunctions [8].

Gamma oscillations are prevalent throughout cortex, involved in numerous cognitive tasks, and are known to emerge in neuronal networks from the interplay of glutamatergic and GABAergic activity [11, 13]. Computer simulations showed that inhibitory feedback connections within those networks are of special importance for the genesis of *gamma* rhythms [11]. Further, the peak *gamma* frequency is critically influenced by balance and nature of inhibitory and excitatory connections [14], with increased inhibition eliciting higher dominant frequencies.

Recent studies combined MEG and magnetic resonance spectroscopy (MRS) to scrutinize these associations in vivo in healthy humans. In both the motor cortex and the visual cortex, the peak *gamma* frequency during tasks did in fact correlate with the local resting GABA concentrations in the respective areas [15, 16].

GLUTATHIONE IN THE BRAIN

While the activity of neurons is the centrepiece of information processing in the brain, they require vital support from surrounding cells. *Astrocytes*, star-shaped brain cells, take over various maintenance and support duties throughout brain, e.g. the supply of nutrients and other important metabolites to neurons, maintaining brain water homoeostasis etc. Further, they are crucially involved in the metabolism of *glutathione*, a chemical that is critical for the interception of deleterious oxygen compounds [17, 18].

During normal oxidative metabolisation (i.e. generation of energy from nutrients), reactive oxygen species (ROS) are inadvertently generated in cells. Through various pathways, molecules like superoxide (O_2^-) , hydrogen peroxide (H_2O_2) , and hydroxyl radicals (OH) form [19]. These compounds are toxic and detrimental in many ways, including cell membrane destruction, protein modification and DNA alteration [18]. Given its large energy turnover and oxygen consumption, brain is particularly vulnerable to damage inferred by ROS, requiring a potent system to maintain its antioxidant capacity [17]. *Oxidative stress* describes circumstances in which this antioxidant system is thrown out of balance.

Reduced glutathione (GSH), a tripeptide composed from glutamate, cystein and glycine, is a very important antioxidant compound in cells at a concentration of 1 - 10 mM [20]. GSH directly scavenges radicals under the formation of oxidized glutathione or glutathione disulfide (GSSG), and it catalyzes enzymatic antioxidant mechanisms [18]. To maintain antioxidant capacity, it is continuously restored from GSSG by enzymatic activity of glutathione reductase.

In brain, different cell types interact to provide protection against oxidative stress [17, 18]. Both neurons and astrocytes are able to synthetise GSH. However, astrocytes are the predominant site of synthesis and further provide precursor compounds to neighbouring cells. Hence, they prevent neuronal death and are therefore critical for the defence of brain integrity against ROS [21, 22].

Impairment of the glutathione defence system may be involved in various neurodegenerative disorders including Alzheimer's and Parkinson's disease [23].

HEPATIC ENCEPHALOPATHY

The liver is an organ with an enormous range of vital duties. Beyond the production of many important biochemical substances that are needed in almost all parts of the human body, its ability to detoxify deleterious compounds is of great importance.

Loss of liver filter function impairs the disposal of toxic substances which subsequently accumulate in the blood. Upon entering the brain, they affect cerebral mechanisms in multiple ways [24]. These alterations to cerebral functions are subsumed under the term *hepatic encephalopathy* (HE). HE can be classified with respect to the origin of hepatic dysfunction. The following typology has been adapted from the 1998 World Congress of Gastroenterology report [25].

- *Type A* (<u>a</u>cute) describes HE associated with acute liver failure (e.g. following paracetamol intoxication)
- Type B (bypass) means HE associated with portal-systemic bypass (i.e. redirection of bloodflow bypassing the liver for reduction of blood pressure), but no intrinsic liver disease
- *Type C* (<u>c</u>irrhosis) indicates HE associated with cirrhosis (regardless of the pathogenesis, i.e. alcoholic liver disease, viral hepatitis etc.)

The present work focuses on HE Type C, i.e. as a consequence of chronic liver damage.

4.1 Symptoms, diagnosis, and grading

HE is associated with a range of neuropsychiatric impairments, affecting cognitive function, attention, consciousness and behaviour [24, 25]. Motor symptoms of HE include Parkinson-like hand tremor of varying amplitude such as *mini-asterixis* (fine tremulousness) and *asterixis* (coarse flapping tremor) [24, 26]). HE affects a considerable fraction (30–45%) of patients with cirrhosis, resulting in frequent hospitalisation and great—probably underestimated—economic burden [27].

In the framework of chronic liver cirrhosis (as is the case in the present work), time course and severity of alterations allow for a differentiation between *overt* and *minimal* HE [25, 28]. Patients with overt HE exhibit clear manifestations of the aforementioned symptoms and are therefore diagnosed by clinical examination, whereas diagnosis of minimal HE requires additional neuropsychometric measurements (see below) [29].

4.1.1 West-Haven criteria and minimal HE

Grading of overt HE severity is routinely performed with the assessment of the mental state, focusing on consciousness and behaviour. The *West-Haven* criteria allow for a semiquantitative classification into four groups, ranging from comparably mild symptoms (grade 1) up to coma (grade 4). The following list is a compilation from various sources [25, 29, 30].

- Grade 1: Trivial lack of awareness, experience of euphoria or anxiety, shortened attention span, impaired performance of basic arithmetic operations, altered sleep rhythm
- *Grade 2*: Lethargy or apathy, minimal disorientation in time or space, subtle to obvious personality change, inappropriate behaviour, asterixis
- *Grade 3*: Somnolence to semistupor but responsive to verbal stimuli, confusion, gross disorientation, bizarre behaviour
- Grade 4: Coma (unresponsive to verbal or noxious stimuli)

The West-Haven scheme does, however, not apply to a considerable population of patients. These appear normal during clinical examination and do not present visible signs of brain dysfunction, but show significantly inferior results in psychometric tests revealing subtle impairments of psychomotor and executive performance [29, 30]. Originally, these patients were subsumed under the label of *subclinical HE* [31]. Subsequently, the term *minimal HE* (*mHE*) was introduced and used throughout the latest agreements on HE terminology [25, 29].

Per definition, diagnosis of mHE requires neuropsychometric testing [3], encompassing the assessment of fine motor performance, psychomotor speed and bimanual coordination. A number of test strategies exist, ranging from paper and pencil tests (portosystemic encephalopathy syndrome (PSE) test [32] or psychometric hepatic encephalopathy score (PHES) [33, 34]) over computerized psychometry [35] and reaction time assessment [36] to processing of incongruent colour stimuli (Stroop test [37]). However, single tests lack specificity [38] and standardization (e.g. across countries), which is why a combination of at least two test methods is recommended [29].

The prevalence of mHE is high. Between 30% to 84% of cirrhosis patients are reported to develop mHE [39]. The condition has not only been reported to predict episodes of higher-grade HE [40], but also has detrimental influence on life expectancy [41], quality of life [42, 43], fitness to drive [44] and other aspects of daily functioning.

4.1.2 Covert HE and overt HE

In 2011, the members of the International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) published a report of their 14th conference in 2010. Based on their experience of high subjectivity of the *West-Haven* criteria—especially considering the variability in identifying patients with HE of grade 1—they proposed an alternative classification [28]. The experts suggested to pool minimal HE and HE 1 patients to a *covert HE* group "with neuropsychometric/neurophysiological abnormalities in the absence of disorientation and asterixis" [28]. Covert HE should thus be delineated from an *overt HE* group including patients with grade II and above with clear physical signs of HE.

Fig. 4.1 summarizes the different grading agreements. Despite the diversity of classification schemes, it is important to recognize the continuous nature of HE, which hampers unambiguous grading and is the reason for the various revisions of classification agreements over the past years.

4.1.3 Critical flicker frequency (CFF)

A useful tool to describe HE severity on a non-discrete scale is the assessment of the critical flicker frequency (CFF). The CFF mirrors the individual ability to discern quickly oscillating visual stimuli, and is widely used to grade HE severity and clinically monitor symptom progression [45]. The measurement procedure—originally designed to investigate

Figure 4.1: Schematic overview of HE typology and grading agreements [25, 28, 29]. The present work focuses on patients with covert HE (i.e. minimal HE and HE 1) of type C.

neurological dysfunction such as multiple sclerosis or Alzheimer's disease—was adapted for the estimation of HE severity and is briefly outlined in the following paragraph [46].

The CFF device consists of a binocular-like display and a handheld switch. At the start of the measurement, the participant is being presented a visual stimulus in shape of a red light spot on the display. The spot initially flickers at a frequency of 60 Hz, giving the impression of a continuous fused light, and the flicker frequency is gradually decreased. The participant is instructed to press a button as soon as perception switches from steady to flickering light. The mean of the respective frequencies from 8 repeated measurements (with random frequency slopes to avoid habituation) is the individual CFF.

CFF in healthy controls is usually around 42 Hz, whereas deterioration of CFF is associated with increasing HE severity [46, 47]. Cut-off frequencies of 39 Hz and 38 Hz have been suggested for the discrimination between controls and patients [46, 48]. Potential benefits of CFF assessment for the delicate and elaborate diagnosis of mHE have been recognized [47, 48]. However, while it is regarded as a useful parameter and shows high specificity, CFF has been noted to have only moderate sensitivity to reliably distinguish mHE from controls or overt HE [45, 49]. The recommendation to use it as an addendum, but not a replacement to psychometric assessment, is therefore maintained [29, 49].

4.2 Pathogenesis

The exact pathogenetic concept of HE is complex, needs to consider a multitude of impacting factors and is still an important issue of current research [3, 30]. Numerous studies have unveiled a large array of phenomena which are potentially intertwined and may differentially contribute to different types, severity stages or symptoms of HE [6]. Amongst others, this array includes neuroinflammation (i.e. signs of systemic immune reaction in the brain [50, 51]), oxidative and nitrosative stress (i.e. formation of aggressive reactive oxygen and nitrogen oxide species [52]), low-grade oedema formation (i.e. tissue swelling due to disturbed cellular water homoeostasis [6]) and alterations of neurotransmitter systems [30].

Many mechanisms relate to, are enforced by and interact with the common thread in the HE pathogenesis, *hyperammonemia*, meaning excess presence of neurotoxic ammonia in the brain due to failed hepatic clearance and subsequent accumulation in the blood. Within brain, ammonia is metabolized and incorporated into glutamine (Gln) by the enzyme glutamine synthetase which is primarily expressed in the astrocytes [6]. Accordingly, studies using proton magnetic resonance spectroscopy could consistently show increased concentrations of Gln, along with lower concentrations of myo-inositol (ml), a compound that is presumably released from the astrocyte to maintain the osmotic balance between intraand extracellular space [53–56]. These findings are interpreted as a sign of abnormal cell volume regulation eliciting astrocyte swelling, leading to a low-grade cellular oedema [57, 58]. This hypothesis is corroborated by several studies demonstrating small changes in magnetic resonance imaging parameters that are either sensitive to or directly map brain water content [55, 59, 60] (reviewed in [61]).

HE symptoms are thought to emerge from a series of complex interactions of astrocyte swelling, oxidative stress, neuroinflammation, neurotransmitter system alterations and other HE-related phenomena. MEG experiments have linked disturbances in the several oscillatory systems to HE-induced abnormalities in numerous functional domains such as fine motor control [4, 62, 63], attention [64] and pain perception [65]. This is giving rise to a concept of global oscillatory slowing in HE across functional subsystems and oscillation frequency bands [4, 5, 66]. It is, though, currently not fully understood how oscillatory behaviour is deteriorated by the pathogenetic mechanisms of HE.

4.3 GABA in HE

For more than thirty years, it has been debated to what extent GABA is involved in the emergence of HE symptoms. Initially, a global increase of cerebral GABAergic tone was proposed and traced back to elevated bacterial synthesis of GABA in the gut [67], but subsequent attempts to substantiate potential effects on receptor architecture or regulation of GABAergic tone in the brain yielded controversial outcome [68]. A consistent notion of the role of GABA in HE is still lacking, although evidence against a generalized increase of GABAergic tone in HE grew stronger. Instead, recent concepts are in favour of localized, regionally selective and interdependent alterations of glutamatergic and GABAergic neurotransmission [69, 70]. These ideas are based on a number of experiments in rodent models of chronic HE. Rats with chronic liver failure showed hypokinesia along with increased thalamic GABA levels (in turn due to excessive glutamate receptor activation in the *substantia nigra*) [71]. In hyperammonemic rats, GABA levels were reported to be decreased in cortex, but elevated in cerebellum, and moreover linked to cognitive performance [72].

As mentioned above, disturbances of neurotransmitter systems might be mediating pathological oscillatory behaviour in HE, considering the link between GABA levels and oscillations in both the motor [15] and the visual cortex [16]. Hence, in **Study 1** GABA levels in HE patients were probed *in vivo* with magnetic resonance spectroscopy, and it was scrutinized whether clinical and behavioural indicators of HE severity are associated with altered GABA concentration.

4.4 Oxidative stress, hyperammonemia and glutathione

Oxidative stress is considered to be another key feature in the emergence of HE [6]. Formation of ROS has been shown to mediate ammonia neurotoxicity in cell cultures and in the rat brain (for a review see [73]), and recently, marker compounds indicating oxidative stress were also discovered in the brains of cirrhosis patients [74]. Oxidative stress in HE is closely interacting with astrocyte swelling, probably in a mutually self-amplifying way [58, 75], and its subsequent deleterious effects on RNA (ribonucleic acid) and protein synthesis may help explain various HE related deficits, including abnormalities of neurotransmitter systems [76]. Oxidative stress further seems to be critical for the emergence of cerebral oedema. Recent experiments demonstrated that only synergistic action with hyperammonemia, but not solitary action of one of both, elicited formation of cerebral oedema in animal models of chronic HE [77, 78].

The link between ammonia and oxidative stress sparked several studies investigating the effect of ammonia challenge on glutathione levels ¹. Increased glutathione concentrations and synthesis were found in cultured astrocytes [79] and in rodent brains [80, 81] under ammonia challenge, whereas cultured neurons show decreased GSx and subsequent cell death [82]. Rodent studies further revealed that hyperammonemia prompts astrocytes to synthesize and release GSH precursors into extracellular space, hence reinforcing their protection to neighbouring neurons [83].

In the light of these experiments, **Study 2** scrutinized whether altered glutathione levels can be shown in patients with HE and if they scale with HE severity or ammonia load. Given the close associations between oxidative stress, ammonia and cerebral oedema, it was further analysed whether brain water content measures are linked to glutathione levels.

 $^{^{1}}$ If not stated otherwise, this refers to total glutathione or GSx, i.e. both reduced and oxidized glutathione (GSH+GSSG).

MAGNETIC RESONANCE 5

In the late 19th and early 20th century, the quantised nature of the angular momentum of elementary particles in the presence of an external magnetic field became apparent (most notably through the ZEEMAN effect [84] and the STERN-GERLACH experiment [85]). Soon, quantisation of energy levels in magnetic fields was demonstrated for protons (RABI in 1938 [86]). Manipulation of spins via nuclear magnetic resonance (NMR) followed (PURCELL [87] and BLOCH [88] in 1946), paving the way towards the first imaging applications (LAUTERBUR [89] and MANSFIELD [90, 91] in 1973/74).

5.1 Background

Today, magnetic resonance techniques are valuable tools for the noninvasive assessment of structural and biochemical properties in the living brain. This section intends to introduce the most important concepts behind magnetic resonance experiments and to present essentials of the techniques that were used within this work. It is based on the standard textbook by Haacke et al. [92]

5.1.1 Proton spin in a magnetic field

Elementary particles carry intrinsic properties such as mass and charge, defining their interactions with other particles and fields. Another of these intrinsic features is *spin*. The elements of the quantum mechanical spin operator $\hat{\vec{S}}$ do not commute, i.e. not all three spin components of a given system can be simultaneously assessed (HEISENBERG's uncertainty principle). In contrast, $\hat{\vec{S}}^2$ and \hat{S}_z do commute. An eigenstate of $\hat{\vec{S}}^2$ has an eigenvalue of $s(s+1)\hbar^2$, with the *spin quantum number s* and the reduced Planck constant \hbar . Eigenvalues of \hat{S}_z are $m_s\hbar$, where m_s assumes one of the 2s + 1 values between -s and +s.

5.1 Background

Elementary particles have spin quantum numbers of s = 1/2 (fermions, e.g. electrons or protons) or s = 1 (bosons, e.g. photons).¹ Hence, protons have only two possible spin quantum states identified by $m_s = +1/2$ and $m_s = -1/2$. The intrinsic spin angular momentum \vec{S} is linearly associated with a magnetic moment

$$\vec{u} = \gamma \vec{S} \tag{5.1}$$

with the gyromagnetic ratio γ . Upon interaction with an external magnetic field $\vec{B_0}$ along the z-direction, the potential energy of a proton spin is found to be

$$E = -\vec{\mu} \cdot \vec{B_0} = -\mu_z B_z = -\gamma m_s \hbar B_z \tag{5.2}$$

The proton spin system in presence of an external magnetic field therefore possesses two discrete energy configurations. In the state with $m_s = +1/2$, the z-component of \vec{S} is aligned along the external field ("spin up"), whereas in the state described by $m_s = -1/2$, the z-component is antiparallel to $\vec{B_0}$ ("spin down"). By plugging the values of m_s into Eq. 5.2, the energy difference between the two states is found to be

$$\Delta E = E(m_s = -1/2) - E(m_s = +1/2) = \frac{1}{2}\gamma\hbar B_0 - (-\frac{1}{2}\gamma\hbar B_0) = \hbar\omega_0 \qquad (5.3)$$

where $\omega_0 = \gamma B_0$, the Larmor frequency, describes the precession that the tip of the spin angular momentum vector performs with respect to the magnetic field axis. This precession ultimately arises from the fact that magnitude and direction of \vec{S} are not precisely determined at the same time. Instead, its magnitude and z-component are constant in time, resulting in periodic modulation of the x- and y-components with angular frequency ω_0 .

Transition between the two spin states can be accomplished by absorption or emission of a photon with energy ΔE , i.e. with the Larmor frequency ω_0 ("spin flip", Eq. 5.3).

5.1.2 Macroscopic magnetization and relaxation

The probability of meeting a system at a certain energy state (in thermal equilibrium at temperature T) is following BOLTZMANN's distribution. The upper of the two proton spin

¹For particles containing more than one elementary particle, the total spin can be added up according to rules of quantum mechanical angular momenta. For example, ¹³C, ²³Na, ³¹P and other nuclei are widely employed for magnetic resonance experiments. The introduction will, however, stick to ¹H for the sake of simplicity.

states in an external magnetic field B_0 is therefore slightly less populated than the lower one, resulting in an excess macroscopic magnetization in direction of B_0 :

$$\vec{M}_0 \simeq \rho_0 \frac{\gamma^2 \hbar^2}{4kT} \vec{B}_0 \tag{5.4}$$

with the Boltzmann constant k. Here, M_0 is proportional to the local spin density ρ_0 . Although the relative spin excess contributing to M_0 is on the scale of 10^{-6} for room temperature and fields in the order of magnitude of 1 T, the vast number of spins in matter allows for actual detection of through induction in measurement coils.

The steady-state macroscopic magnetization $\vec{M_0}$ can be disturbed from outside through interaction with time-varying electromagnetic fields at Larmor frequency, i.e. irradiation of radiofrequency (RF) pulses. Such manipulation and subsequent observation of the then time-dependent $\vec{M}(t)$ is the essential of all NMR experiments. BLOCH introduced a set of motion equations for $\vec{M}(t)$, describing its return to thermal equilibrium after manipulation with exponential growth and decay terms (Eq. 5.5) [88]:

$$\vec{M}(t) = \begin{pmatrix} M_x(t) \\ M_y(t) \\ M_z(t) \end{pmatrix} = \begin{pmatrix} e^{-t/\tau_2} (M_x(0) \cos \omega_0 t + M_y(0) \sin \omega_0 t) \\ e^{-t/\tau_2} (M_y(0) \cos \omega_0 t - M_x(0) \sin \omega_0 t) \\ M_z(0) e^{-t/\tau_1} + M_0(1 - e^{-t/\tau_1}) \end{pmatrix}$$
(5.5)

The relaxation processes are defined by the time constants T_1 and T_2 . T_1 , the spinlattice or *longitudinal relaxation time*, characterizes the regrowth of M_z to the steady-state value M_0 . The parallel decay of magnetization in the x-y-plane (M_{xy}) is addressed as spinspin or *transversal relaxation time*. Both T_1 and T_2 depend on microscopic properties of the magnetized domains, e.g. tissue. Standard MR imaging contrasts base on the utilization of differing relaxation behaviour across tissue types.

5.1.3 Spin echo and gradient echo

Decay of transverse magnetization M_{xy} (i.e. the signal induced in the receiver coil) after initial excitation of spins is not only due to spin-spin interaction. B_0 inhomogeneities further contribute to signal decay via additional dephasing of the spins. The total signal decay is characterised by the time constant T_2^* , which is consequently shorter than T_2 .

5.2 Magnetic resonance imaging

In order to partially recover M_{xy} for signal recording, the *spin echo* technique can be applied. First presented by HAHN, it makes use of an additional RF pulse at $t = \frac{\text{TE}}{2}$ that flips the phase of all spins by 180° in the *x*-*y*-plane, while their frequency is maintained [93]. After the *echo time* TE, the spins are back in phase ("refocused") and interfere constructively. It is evident that this technique can only account for stationary sources of dephasing, i.e. B_0 inhomogeneities, but not intrinsic dephasing caused by spinspin-interaction. Hence, spin echo is still subject to the T_2 decay.

A gradient is an additional superimposed magnetic field with linear increase along a defined direction. For instance, a z-gradient changes the total field to be $\vec{B}(x, y, z) = B_0 \hat{z} + G_z z \hat{z}$ with the gradient strength $G_z = \frac{\partial B_z}{\partial z}$. Gradients are vital for the employment of magnetic resonance as an imaging technique (see next section). Application of a gradient is an artificial field inhomogeneity, hence amplifying spin dephasing. This can be countered by pre-applying an inverse gradient prior to the actual gradient. Rewinding of the spins subsequently induces a gradient echo. In contrast to the spin echo, the gradient echo will still suffer from stationary B_0 variation and thus be subject to the T_2^* decay. As the additional time for the refocusing pulse is saved, gradient echoes are nevertheless suitable for fast signal acquisition.

5.2 Magnetic resonance imaging

In order to enable imaging based on nuclear magnetic resonance, it is necessary to imprint spatial information on the signal that is induced in the measurement coil by precessing magnetization. Application of gradients to make the Larmor frequency and precession phase a function of position was the key concept applied by CARR (1D [94]), LAUTERBUR [89] and MANSFIELD [90, 91] (2D and 3D).

5.2.1 Spatial encoding

Adding spatial information to the signal is performed separately for the x-, y- and z-axis. These axes are defined as follows: z denominates the direction of the main magnetic field B_0 , x is the left-right-axis and y the up-down-axis (e.g. as perceived from a subject lying in an MRI scanner), hence $\vec{B_0}(x, y, z) = B_0 \hat{z}$.

- 5.2.1.1 Slice selection is the process of delineating the desired imaging volume in z-direction. To this end, a z-gradient is applied and renders the Larmor frequency dependent of the z position ($\omega(z) = \omega_0 + \gamma G_z z$). Irradiation of a rectangular RF pulse² of frequency $\omega = \omega_0 + \omega'$ and bandwidth $\Delta \omega$ will excite spins within a slice centered at $z = \frac{\omega'}{\gamma G_z}$ with a width of $\Delta z = \frac{\Delta \omega}{\gamma G_z}$. The slice thickness is hence determined by gradient strength and pulse bandwidth, its position by the center frequency of the RF pulse.
- **5.2.1.2** Frequency encoding: After slice selection, all spins within this slice precess with equal frequency and phase³. One direction (x in this example) is simply encoded by applying another gradient G_x , inducing Larmor frequency dependence from x within the slice. For this reason, x is referred to as the *frequency encoding direction*. As the gradient is active throughout the whole signal recording time t, it is also termed *readout* gradient. Its strength directly determines the range of frequencies contributing to the total recorded signal.
- **5.2.1.3** Phase encoding: The remaining direction (here y) needs to be encoded differently. Prior to frequency encoding, a *phase encoding gradient* G_y is therefore switched on for a brief period τ and then switched off again. Spins within the slice will afterwards precess at identical frequencies, but have acquired a phase shift $\Phi(y) = \gamma G_y y\tau$ linearly growing with y (further from y = 0, the acquired phase will be larger). Re-excitation of the slice with a small increment of the phase encoding gradient strength (ΔG_y) induces a different phase shift. This experiment is repeated to cover a range of maximum phase encoding gradients ($-G_{y,max}$ to $+G_{y,max}$). This allows to plot the phase shift will oscillate quicker for large y values and not at all for y = 0. y position is hence encoded in a "rate of change" of phase over gradient strength, which is similar to a frequency in time. In that sense, phase encoding is indirect frequency encoding—instead of sampling a signal at constant phase over time, the signal is sampled at constant time points by varying its phase shift over the repeated acquisitions.

 $^{^{2}}$ This refers to the shape of the pulse in the frequency domain. It has to be noted that real RF pulses are never perfectly rectangular, as a boxcar-shaped pulse would require an infinite pulse length in the time domain. Hence, the excitation profile deviates slightly from an ideal boxcar.

³To rewind the frequency dependence in *z*-direction *within* the slice, i.e. reset all excited spins to identical phase, an inverted slice selection gradient needs to be applied directly after slice selection.

5.2.1.4 k-space and 2D Fourier transformation: Realising that a given volume element at (x, y) produces a signal S(x, y, t) which is proportional to the local spin density $\rho(x, y)$ and is modulated by a phase $\Delta \Phi(x, y, t) = \gamma G_x xt + \gamma G_y y\tau$, one can rewrite the whole signal that is induced in the receiver as an integral over all (x, y):

$$S(t) = \iint_{x,y} \rho(x,y) e^{i\gamma G_x x t + i\gamma G_y y \tau} dx dy$$
(5.6)

Defining $k_x = -\gamma G_x t$ and $k_y = -\gamma G_y \tau$, Eq. 5.6 becomes a 2D Fourier integral, and the desired spin distribution $\rho(x, y)$ can be obtained from the total signal by 2D Fourier transformation:

$$\rho(x, y) = \iint_{k_x, k_y} S(k_x, k_y) e^{ik_x x + ik_y y} dk_x dk_y$$
(5.7)

k-space (k_x, k_y) immediately becomes obvious as conjugate to real space (x, y). Acquiring an image as outlined above simply means measuring the signal over discrete points in *k*-space. Frequency encoding corresponds to sampling the signal *M* times during the time *t* that a constant G_x gradient is active, thus recording *M* points with increasing k_x in *k*-space. *N* times increasing the gradient G_y for a constant phase encoding time τ is the equivalent of recording *N* such lines in *k*-space. 2-dimensional discrete Fourier transformation is finally performed on $S(k_x, k_y)$ to yield the desired spatial spin density distribution $\rho(x, y)$ (i.e. to reconstruct an image with $M \times N$ pixels).

5.2.2 Echo Planar Imaging (EPI)

Re-exciting the slice of interest for each k-space line can cost a considerable amount of time. *Echo Planar Imaging* (EPI) instead collects more than one k-space line after RF excitation [95]. With EPI, the whole of k-space (usually 64-128 phase encoding steps) is reached after one (single shot) or a low number (multi shot) of RF excitations.

EPI uses the frequency encoding gradient to refocus the precessing magnetization and collect a whole train of gradient echoes. Phase encoding starts with the maximum gradient and is gradually reduced by a small inverse gradient ("blip"). The readout gradient is inverted after every blip, leading to a zig-zag trajectory through *k*-space. Refocusing can

also be performed by a train of 180° pulses after excitation and normal readout of the resulting spin echoes. In this case, the label *fast spin echo* (FSE) instead of EPI is common.

EPI enables rapid imaging on a time scale of 100 ms per slice, but demands fast and strong gradient systems. It is further prone to inhomogeneities of the magnetic field.

5.2.3 Quantitative brain water content imaging

Radiological MR imaging for diagnostic purposes is mainly of qualitative nature, as its primary goal is to discern between pathological and healthy tissue. For research purposes, the assessment of quantitative parameters is particularly desirable. As the MR signal is directly proportional to the number of protons precessing at a given frequency, its assessment is intrinsically quantitative, but requires some kind of calibration. In the current work, a combination of several acquisitions has been used to provide a quantitative measure of cerebral water content. With these data, statements about the extent of the putative low-grade brain oedema in HE patients could be expressed. The method was originally proposed by Neeb and colleagues [96–98], and has subsequently been employed to investigate HE patients [60]. Its basic principles are briefly outlined below.

The foundation of this technique is a gradient echo sequence, hence, the signal decay can be expressed as

$$S(t) = S_{0,T_2^*} \cdot e^{-t/T_2^*}$$
(5.8)

The multi gradient echo sequence used for this technique measures the MR signal S(t) at 8 subsequent time points, each separated by 5 ms, with the first echo acquired 4 ms after excitation. The signal curve is extrapolated backwards to obtain the signal at $t_0 = 0$ ms. As the macroscopic magnetization of abundant non-water protons (fat, macromolecules etc.) decays very quickly, their contribution is already negligible at the time of the first echo after 4 ms. Hence, the signal $S_{0, T_2^*} = S(t_0)$ is directly proportional to the number of water protons. By comparison with a reference signal from a probe containing 100% water, a measure for absolute localized water content can be calculated.

However, such measures require various corrections to compensate for different sources of spatial signal inhomogeneity:

• RF excitation is performed by a body coil, while the signal itself is acquired by a dedicated head coil. The spatial profile of the RF excitation field strength (*B*₁) may

not be homogeneous throughout the whole image volume. As a result, different image voxels will experience deviations from the ideal 90° excitation pulse. This directly affects the measured signal intensity during readout. For compensation, an effective flip angle is calculated from two EPI images with varying nominal flip angle (90° vs. 30°). This effective excitation angle is used to calculate a B_1 correction map for the signal intensity S_0 .

- As the receiving profile of the head coil is also not uniform over the investigated volume, it will directly affect the measured signal intensities, too. The 90° EPI image from B₁ correction can be combined with a third 90° EPI acquisition, this time with the body coil as the receiver coil. In combination with the transmission characterics expressed by the effective flip angle, a correction map for receiver coil inhomogeneities can be computed.
- Lastly, spatial variations in tissue T_1 need to be accounted for, as the multi echo gradient sequence used to determine S_0 is performed with comparably short TR. Saturation effects will therefore modulate the measured signal intensities. T_1 mapping is performed with an additional two-echo gradient sequence (using a different RF excitation flip angle). It is subsequently used to calculate voxel-individual saturation correction.
- If a phantom probe is used as a 100 % water reference, additional correction for its temperature is required. In the present work, the cerebrospinal fluid in the individual brain was used as pure water reference, hence rendering temperature correction redundant.

Using this technique, reliable brain water maps (50 slices, 192x256 pixels, 1x1 mm resolution, 2 mm slice thickness) with whole-brain coverage can be obtained in roughly 11 minutes of measurement time. Three exemplary slices from a healthy control are displayed in Fig. 5.1. Average brain water content in healthy subjects roughly amounts to 70% in white matter and 80% in grey matter [97, 98].

Figure 5.1: Exemplary quantitative brain water content slices from a healthy control. Images are scaled from 0 (0% water content) to 1.0 (100% water content). The lateral ventricles were used as an internal 100% water reference.

5.3 Magnetic resonance spectroscopy

5.3.1 Chemical shift

⁴Tetramethylsilane and Dimethyl-silapentane-sulfonate. Due to the low electronegativity of silicon, the protons in both compounds are surrounded by high electron density, hence experience strong shielding and precess at comparably low frequencies.

5.3.2 Localisation and acquisition

5.3.3 Analysis and quantification

Figure 5.2: Exemplary PRESS spectrum of a healthy volunteer at TE = 30 ms. Prominent signals are from n-acetylaspartate (NAA, 2.01 ppm) and creatine (Cr, 3.02 ppm).

- Metabolite concentrations are most commonly expressed as ratios with respect to other metabolites, usually Cr or NAA, as these are of relatively low variance across healthy subjects. However, in certain pathologies, the assumption of constant Cr or NAA may not always be justified [109].
- Metabolite levels can also be normalized to the internal water signal from a spectrum without water suppression. With the assumption of standard molar concentration values for the water content of different brain tissue types, estimation of "absolute" metabolite levels (in mM) can be performed [109]. However, special care has to be dedicated to correction of partial volume effects (cerebrospinal fluid does not contain measurable amounts of metabolites) and to accounting for large impact of water relaxation times [110]. In the case of potential tissue water changes, water referencing has to be addressed in more elaborate ways [111, 112].

5.3.4 Edited MR spectroscopy

Analysis of in vivo MRS data acquired at common magnetic field strengths (i.e. 1.5 - 3 T)
 Can be hampered because of spectral overlap of neighbouring resonances. This is especially
 true for metabolites with J-coupled resonances (e.g. glutamate (Glu), glutamine (Gln),

AIMS AND HYPOTHESES

STUDY 1: LOW VISUAL CORTEX GABA LEVELS IN HEPATIC ENCEPHALOPATHY: LINKS TO BLOOD AMMONIA, CRITICAL FLICKER FREQUENCY, AND BRAIN OSMOLYTES

Methods

Results

HE-related GABA decrease in visual, but not in sensorimotor cortex

GABA vs. CFF, blood ammonia, psychometrics and metabolite levels

Glutamine, glutamate and myo-inositol

Discussion

GABA in HE

ॅ on the one of the one

Glutamine and myo-inositol in HE

Summary

STUDY 2: COVERT HEPATIC ENCEPHALOPATHY: ELEVATED TOTAL GLUTATHIONE AND ABSENCE OF BRAIN WATER CONTENT CHANGES

Methods

ॅं The results of the second sec

- Global tissue class specific analysis: Calculation of the average individual water content across all grey and white matter voxels
- Spectroscopic volume specific analysis: Calculation of the average individual water content across all grey and white matter voxels within the three MR spectroscopic volumes (left sensorimotor, right sensorimotor, visual)
- Individual region of interest (ROI) analysis: Calculation of the average individual water content from 10 regions of interest interactively drawn to cover distinct brain regions

Results

MR spectroscopy of glutathione

Correlation analysis further revealed positive associations of GSx/Cr ratios (visual and sensorimotor) with blood ammonia levels. Only the sensorimotor GSx/Cr levels correlated negatively with CFF (Appendix 2, Table 2).

Chapter 8. Study 2: Covert hepatic encephalopathy: Elevated total glutathione and absence of brain water content changes

Brain water content

Analysis did not yield significant effects on group level for any brain water measure. In addition, brain water data did not show any correlation with blood ammonia or the CFF (Appendix 2, Table 4).

Brain water content from the thalamus, *nucleus caudatus* and visual cortex showed positive correlations with the GSx/Cr ratio from the visual spectroscopic volume. No correlations of brain water measures with any other metabolite measure (GABA, Gln, Glu, ml) were observed.

Discussion

Glutathione in covert HE

An increase of GSx/Cr was not consistently found in the present analysis, i.e. it was not significant in the HE 1 group in the visual spectroscopic volume. This may suggest a similar region specificity of the glutathione defence system in HE as previously observed for neurotransmitter systems, which are differentially or even conversely affected across distinct brain areas [70, 72, 132].

ॅ <section-header>

Role of brain water content in covert HE

ॅ <list-item><text>

ॅ <list-item><text>

ॅ <list-item>

ॅ <list-item><text>

Summary

ॅ In concluui 2 In

Chapter 8. Study 2: Covert hepatic encephalopathy: Elevated total glutathione and absence of brain water content changes

METHODOLOGICAL CONSIDERATIONS: WATER-SCALED QUANTIFICATION OF GABA

In addition to the aforementioned studies, several aspects of the underlying methods have been investigated. Specifically, water concentration referencing of MR spectroscopic GABA levels on the grounds of quantitative water maps has been proposed. The concept is briefly outlined in the following sections.

Methods

Results

Chapter 9. Methodological considerations: Water-scaled quantification of GABA

Discussion

Summary

conclusions and outlook 10

The studies presented in this work may contribute to the understanding of several important pathogenetic mechanisms of hepatic encephalopathy, i.e. hyperammonemia, oxidative stress, and disturbed neurotransmission.

Together with previous findings from animal studies, the absence of HE-related GABA Together with previous findings from animal studies, the absence of HE-related GABA level and the previous of the previous findings from animal studies, the studies is the sensor of t

The observed reduction of visual GABA levels may contribute to the symptoms of HE via modulation of oscillatory activity. While it has to be noted that a recent study by Cousijn and colleagues [146] cast doubt on the previously observed direct relation between

In the course of the presented studies, each subject (controls and patients) also underunder the course of the presented studies, each subject (controls and patients) also underunder the course of the presented studies, each subject (controls and patients) also underunder the sentence of the presented studies, each subject (controls and presented to the control of the con

determine the bulk tissue content of GABA molecules, regardless of their exact location determine the bulk tissue content of GABA molecules, regardless of their exact location determine the bulk tissue content of GABA molecules, regardless of their exact location (extracellular or intracellular). It can not distinguish molecules, regardless of their exact location (extracellular) determine to for too of too of

The exact pathogenetic consequences of the proposed low-grade cerebral oedema for HE severity still require investigation. While previous studies clearly indicated a functional relevance of elevated brain water content in HE, results of **Study 2** point towards a less

prominent role. However, the present work only included patients with covert HE, i.e. the less severe early disease manifestation. The alteration of patients with covert HE is the less severe early disease manifestation. The alterations of glutamine and myo-inositol the less severe early disease manifestation. The alterations of glutamine and myo-inositol the present into a severe early disease manifestation. The alterations of glutamine and myo-inositol the present into a severe early disease manifestation. The alterations of glutamine and myo-inositol the present is the severe early disease manifestation. The alteration of the present is the severe early disease the severe early diseases the severe early disease the severe early dise

Absence of associations between brain water content and GABA or glutamate measures further indicate that the extent of low-grade content and GABA or glutamate or glutamate sures further indicate that the extent of low-grade content and does not directly affect sures further indicate that the extent of low-grade content or does not does not directly and sures further indicate the extent of low-grade content and glutamate or does not does not it water indicate the substant of a cellular level regarding the interaction between oxidative stress, antioxidant response and neurotransmitter systems is required to the pathological ramifications of HE.

BIBLIOGRAPHY

- Bear MF, Connors BW & Paradiso MA. Neurowissenschaften: Ein grundlegendes Lehrbuch f
 ür Biologie, Medizin und Psychologie (Spektrum Akademischer Verlag, 2008).
- Kandel E, Schwartz J & Jessell T. Neurowissenschaften: Eine Einführung (Spektrum Akademischer Verlag, 1995).
- Häussinger D & Sies H. Hepatic encephalopathy: Clinical aspects and pathogenetic concept. Archives of Biochemistry and Biophysics 536, 97–100 (2013).
- Timmermann L, Butz M, Gross J, Ploner M, Südmeyer M, Kircheis G, Häussinger D & Schnitzler A. Impaired cerebral oscillatory processing in hepatic encephalopathy. *Clinical Neurophysiology* 119, 265–272 (2008).
- Butz M, May ES, Häussinger D & Schnitzler A. The slowed brain: Cortical oscillatory activity in hepatic encephalopathy. *Archives of Biochemistry and Biophysics* 536, 197–203 (2013).
- Häussinger D & Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut 57, 1156–1165 (2008).
- Dudel J, Menzel R & Schmidt RF. Neurowissenschaft: vom Molekül zur Kognition (Springer, 2001).
- Schnitzler A & Gross J. Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience 6, 285–296 (2005).
- Ward LM. Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences 7, 553–559 (2003).
- Buzsáki G & Draguhn A. Neuronal Oscillations in Cortical Networks. Science 304, 1926–1929 (2004).

- 11. Buzsáki G & Wang XJ. Mechanisms of Gamma Oscillations. *Annual Review of Neuroscience* 35, 203–225 (2012).
- Gross J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A & Salmelin R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. *Proceedings of the National Academy of Sciences of the United States of America* 98, 694–699 (2001).
- 13. Wang XJ & Buzsáki G. Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model. *The Journal of Neuroscience* 16, 6402–6413 (1996).
- Brunel N & Wang XJ. What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. *Journal of Neurophysiology* 90, 415–430 (2003).
- Gaetz W, Edgar JC, Wang DJ & Roberts TPL. Relating MEG measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration. *NeuroImage* 55, 616–621 (2011).
- Muthukumaraswamy SD, Edden RAE, Jones DK, Swettenham JB & Singh KD. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. *Proceedings of the National Academy* of Sciences of the United States of America 106, 8356–8361 (2009).
- 17. Dringen R. Metabolism and functions of glutathione in brain. *Progress in Neurobiology* 62, 649–671 (2000).
- Dringen R, Gutterer JM & Hirrlinger J. Glutathione metabolism in brain. European Journal of Biochemistry 267, 4912–4916 (2000).
- 19. Forman HJ, Zhang H & Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. *Molecular aspects of medicine* 30, 1–12 (2009).
- Meister A. Glutathione metabolism and its selective modification. *Journal of Biolog*ical Chemistry 263, 17205–17208 (1988).
- Drukarch B, Schepens E, Jongenelen CAM, Stoof JC & Langeveld CH. Astrocytemediated enhancement of neuronal survival is abolished by glutathione deficiency. *Brain Research* 770, 123–130 (1997).

- Drukarch B, Schepens E, Stoof JC, Langeveld CH & Van Muiswinkel FL. Astrocyte-Enhanced Neuronal Survival is Mediated by Scavenging of Extracellular Reactive Oxygen Species. *Free Radical Biology and Medicine* 25, 217–220 (1998).
- 23. Schulz JB, Lindenau J, Seyfried J & Dichgans J. Glutathione, oxidative stress and neurodegeneration. *European Journal of Biochemistry* 267, 4904–4911 (2000).
- Häussinger D & Blei AT. in *The Oxford Textbook of Hepatology* (eds Rodes J, Benhamou JP, Blei AT, Reichen J & Rizzetto M) 728–760 (Blackwell, Oxford, 2007).
- Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K & Blei AT. Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998. *Hepatology* 35, 716–721 (2002).
- Butz M, Timmermann L, Braun M, Groiss SJ, Wojtecki L, Ostrowski S, Krause H, Pollok B, Gross J, Südmeyer M, Kircheis G, Häussinger D & Schnitzler A. Motor impairment in liver cirrhosis without and with minimal hepatic encephalopathy. *Acta Neurologica Scandinavica* 122, 27–35 (2010).
- Poordad FF. Review article: the burden of hepatic encephalopathy. *Alimentary Pharmacology & Therapeutics* 25, 3–9 (2007).
- Bajaj JS, Cordoba J, Mullen KD, Amodio P, Shawcross DL, Butterworth RF & Morgan MY. Review article: the design of clinical trials in hepatic encephalopathy – an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. *Alimentary Pharmacology & Therapeutics* 33, 739– 747 (2011).
- Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, Weissenborn K & Wong P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study Of Liver Diseases and the European Association for the Study of the Liver. *Hepatology* 60, 715–735 (2014).
- Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nature Reviews Neuroscience 14, 851–858 (2013).

- Rikkers L, Jenko P, Rudman D & Freides D. Subclinical hepatic encephalopathy: detection, prevalence, and relationship to nitrogen metabolism. *Gastroenterology* 75, 462–469 (1978).
- Schomerus H & Hamster W. Neuropsychological Aspects of Portal-Systemic Encephalopathy. *Metabolic Brain Disease* 13, 361–377 (1998).
- Weissenborn K, Ennen JC, Schomerus H, Rückert N & Hecker H. Neuropsychological characterization of hepatic encephalopathy. *Journal of Hepatology* 34, 768–773 (2001).
- Amodio P, Campagna F, Olianas S, Iannizzi P, Mapelli D, Penzo M, Angeli P & Gatta A. Detection of minimal hepatic encephalopathy: Normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. *Journal of Hepatology* 49, 346–353 (2008).
- 35. Amodio P, Del Piccolo F, Marchetti P, Angeli P, Iemmolo R, Caregaro L, Merkel C, Gerunda G & Gatta A. Clinical features and survivial of cirrhotic patients with subclinical cognitive alterations detected by the number connection test and computerized psychometric tests. *Hepatology* 29, 1662–1667 (1999).
- Lauridsen MM, Thiele M, Kimer N & Vilstrup H. The continuous reaction times method for diagnosing, grading, and monitoring minimal/covert hepatic encephalopathy. *Metabolic Brain Disease* 28, 231–234 (2013).
- 37. Bajaj JS, Thacker LR, Heuman DM, Fuchs M, Sterling RK, Sanyal AJ, Puri P, Siddiqui MS, Stravitz RT, Bouneva I, Luketic V, Noble N, White MB, Monteith P, Unser A & Wade JB. The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. *Hepatology* 58, 1122–1132 (2013).
- Kircheis G, Fleig WE, Görtelmeyer R, Grafe S & Häussinger D. Assessment of lowgrade hepatic encephalopathy: A critical analysis. *Journal of Hepatology* 47, 642–650 (2007).
- Agrawal S, Umapathy S & Dhiman RK. Minimal Hepatic Encephalopathy Impairs Quality of Life. *Journal of Clinical and Experimental Hepatology* 5, Supplement 1, S42–S48 (2015).

- Romero-Gomez M, Boza F, Garcia-Valdecasas MS, Garciaa E & Aguilar-Reina J. Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. *Am J Gastroenterol* 96, 2718–2723 (2001).
- 41. Stewart CA, Malinchoc M, Kim WR & Kamath PS. Hepatic encephalopathy as a predictor of survival in patients with end-stage liver disease. *Liver Transplantation* 13, 1366–1371 (2007).
- 42. Prasad S, Dhiman RK, Duseja A, Chawla YK, Sharma A & Agarwal R. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. *Hepatology* 45, 549–559 (2007).
- 43. Bajaj JS, Wade JB, Gibson DP, Heuman DM, Thacker LR, Sterling RK, Stravitz RT, Luketic V, Fuchs M, White MB, Bell DE, Gilles H, Morton K, Noble N, Puri P & Sanyal AJ. The Multi-Dimensional Burden of Cirrhosis and Hepatic Encephalopathy on Patients and Caregivers. *The American Journal of Gastroenterology* 106, 1646– 1653 (2011).
- Kircheis G, Knoche A, Hilger N, Manhart F, Schnitzler A, Schulze H & Häussinger D. Hepatic Encephalopathy and Fitness to Drive. *Gastroenterology* 137, 1706–1715.e9 (2009).
- 45. Kircheis G, Hilger N & Häussinger D. Value of Critical Flicker Frequency and Psychometric Hepatic Encephalopathy Score in Diagnosis of Low-Grade Hepatic Encephalopathy. *Gastroenterology* 146, 961–969 (2014).
- 46. Kircheis G, Wettstein M, Timmermann L, Schnitzler A & Häussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. *Hepatology* 35, 357–366 (2002).
- 47. Sharma P, Sharma BC, Puri V & Sarin SK. Critical flicker frequency: Diagnostic tool for minimal hepatic encephalopathy. *Journal of Hepatology* 47, 67–73 (2007).
- Romero-Gómez M, Córdoba J, Jover R, del Olmo JA, Ramírez M, Rey R, de Madaria E, Montoliu C, Nuñez D, Flavia M, Compañy L, Rodrigo JM & Felipo V. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. *Hepatology* 45, 879–885 (2007).

- Torlot FJ, McPhail MJW & Taylor-Robinson SD. Meta-analysis: the diagnostic accuracy of critical flicker frequency in minimal hepatic encephalopathy. *Alimentary Pharmacology & Therapeutics* 37, 527–536 (2013).
- Shawcross D & Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. *Cellular and Molecular Life Sciences CMLS* 62, 2295–2304 (2005).
- 51. Butterworth RF. Hepatic encephalopathy: A central neuroinflammatory disorder? *Hepatology* 53, 1372–1376 (2011).
- Görg B, Schliess F & Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Archives of Biochemistry and Biophysics 536, 158–163 (2013).
- Häussinger D, Laubenberger J, Vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W & Hennig J. Proton magnetic resonance spectroscopy studies on human brain Myo-inositol in hypo-osmolarity and hepatic encephalopathy. *Gastroenterology* 107, 1475–1480 (1994).
- Shawcross DL, Balata S, Damink SWMO, Hayes PC, Wardlaw J, Marshall I, Deutz NEP, Williams R & Jalan R. Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. *American Journal of Physiology - Gastrointestinal and Liver Physiology* 287, G503– G509 (2004).
- 55. Miese F, Kircheis G, Wittsack HJ, Wenserski F, Hemker J, Mödder U, Häussinger D & Cohnen M. 1H-MR Spectroscopy, Magnetization Transfer, and Diffusion-Weighted Imaging in Alcoholic and Nonalcoholic Patients with Cirrhosis with Hepatic Encephalopathy. *American Journal of Neuroradiology* 27, 1019–1026 (2006).
- Binesh N, Huda A, Thomas MA, Wyckoff N, Bugbee M, Han S, Rasgon N, Davanzo P, Sayre J, Guze B, Martin P & Fawzy F. Hepatic encephalopathy: a neurochemical, neuroanatomical, and neuropsychological study. *Journal of Applied Clinical Medical Physics / American College of Medical Physics* 7, 86–96 (2006).
- 57. Häussinger D, Kircheis G, Fischer R, Schliess F & Dahl Sv. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? *Journal of Hepatology* 32, 1035–1038 (2000).
- 58. Häussinger D. Low grade cerebral edema and the pathogenesis of hepatic encephalopathy in cirrhosis. *Hepatology* 43, 1187–1190 (2006).
- Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, Häussinger D & Zilles K. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. *Hepatology* 38, 1219–1226 (2003).
- Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D & Zilles K. Quantitative cerebral water content mapping in hepatic encephalopathy. *NeuroImage* 41, 706– 717 (2008).
- 61. Alonso J, Córdoba J & Rovira A. Brain Magnetic Resonance in Hepatic Encephalopathy. *Seminars in Ultrasound, CT and MRI* 35, 136–152 (2014).
- Timmermann L, Gross J, Butz M, Kircheis G, Häussinger D & Schnitzler A. Miniasterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. *Neurology* 61, 689–692 (2003).
- Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D & Schnitzler A. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. *Neurology & clinical neurophysiology: NCN* 2004, 26 (2004).
- 64. Kahlbrock N, Butz M, May ES, Brenner M, Kircheis G, Häussinger D & Schnitzler A. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. *NeuroImage* 61, 216–227 (2012).
- May ES, Butz M, Kahlbrock N, Brenner M, Hoogenboom N, Kircheis G, Häussinger D & Schnitzler A. Hepatic encephalopathy is associated with slowed and delayed stimulus-associated somatosensory alpha activity. *Clinical Neurophysiology* 125, 2427– 2435 (2014).
- Timmermann L, Butz M, Gross J, Kircheis G, Häussinger D & Schnitzler A. Neural Synchronization in Hepatic Encephalopathy. *Metabolic Brain Disease* 20, 337–346 (2005).
- 67. Schafer DF & Jones EA. Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. *The Lancet* 319, 18–20 (1982).

- Palomero-Gallagher N & Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy: A review. Archives of Biochemistry and Biophysics 536, 109–121 (2013).
- Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Archives of Biochemistry and Biophysics 536, 122–130 (2013).
- 70. Llansola M, Montoliu C, Agusti A, Hernandez-Rabaza V, Cabrera-Pastor A, Gomez-Gimenez B, Malaguarnera M, Dadsetan S, Belghiti M, Garcia-Garcia R, Balzano T, Taoro L & Felipo V. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. *Neurochemistry International.* doi:10.1016/j.neuint.2014.10.011 (2014).
- Cauli O, Llansola M, Erceg S & Felipo V. Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra. *Journal of Hepatology* 45, 654–661 (2006).
- Cauli O, Mansouri MT, Agusti A & Felipo V. Hyperammonemia Increases GABAergic Tone in the Cerebellum but Decreases It in the Rat Cortex. *Gastroenterology* 136, 1359–1367.e2 (2009).
- 73. Norenberg MD, Jayakumar AR & Rao KVR. Oxidative Stress in the Pathogenesis of Hepatic Encephalopathy. *Metabolic Brain Disease* 19, 313–329 (2004).
- 74. Görg B, Qvartskhava N, Bidmon HJ, Palomero-Gallagher N, Kircheis G, Zilles K & Häussinger D. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. *Hepatology* 52, 256–265 (2010).
- Schliess F, Görg B & Häussinger D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. *Biological Chemistry* 387, 1363–1370 (2006).
- Häussinger D & Görg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. *Current Opinion in Clinical Nutrition and Metabolic Care* 13, 87–92 (2010).
- Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M & Rose CF. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. *Free Radical Biology and Medicine* 52, 1228–1235 (2012).

- 78. Bosoi CR, Tremblay M & Rose CF. Induction of systemic oxidative stress leads to brain oedema in portacaval shunted rats. *Liver International* 34, 1322–1329 (2014).
- 79. Murthy CRK, Bender AS, Dombro RS, Bai G & Norenberg MD. Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. *Neurochemistry International* 37, 255–268 (2000).
- Wegrzynowicz M, Hilgier W, Dybel A, Oja SS, Saransaari P & Albrecht J. Upregulation of cerebral cortical glutathione synthesis by ammonia in vivo and in cultured glial cells: The role of cystine uptake. *Neurochemistry International* 50, 883–889 (2007).
- Sathyasaikumar KV, Swapna I, Reddy PVB, Murthy CRK, Gupta AD, Senthilkumaran B & Reddanna P. Fulminant Hepatic Failure in Rats Induces Oxidative Stress Differentially in Cerebral Cortex, Cerebellum and Pons Medulla. *Neurochemical Research* 32, 517–524 (2007).
- Klejman A, Wegrzynowicz M, Szatmari EM, Mioduszewska B, Hetman M & Albrecht J. Mechanisms of ammonia-induced cell death in rat cortical neurons: Roles of NMDA receptors and glutathione. *Neurochemistry International* 47, 51–57 (2005).
- Hilgier W, Wegrzynowicz M, Ruszkiewicz J, Oja SS, Saransaari P & Albrecht J. Direct Exposure to Ammonia and Hyperammonemia Increase the Extracellular Accumulation and Degradation of Astroglia-Derived Glutathione in the Rat Prefrontal Cortex. *Toxicological Sciences* 117, 163–168 (2010).
- 84. Zeeman P. The Effect of Magnetisation on the Nature of Light Emitted by a Substance. *Nature* 55, 347 (1897).
- Gerlach W & Stern O. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9, 349–352 (1922).
- Rabi II, Zacharias JR, Millman S & Kusch P. A New Method of Measuring Nuclear Magnetic Moment. *Physical Review* 53, 318–318 (1938).
- Purcell EM, Torrey HC & Pound RV. Resonance Absorption by Nuclear Magnetic Moments in a Solid. *Physical Review* 69, 37–38 (1946).
- 88. Bloch F. Nuclear Induction. Physical Review 70, 460–474 (1946).
- Lauterbur PC. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. *Nature* 242, 190–191 (1973).

- Mansfield P & Grannell PK. NMR 'diffraction' in solids? Journal of Physics C: Solid State Physics 6, L422 (1973).
- 91. Garroway AN, Grannell PK & Mansfield P. Image formation in NMR by a selective irradiative process. *Journal of Physics C: Solid State Physics* 7, L457 (1974).
- Haacke EM, Brown RW, Thompson MR & Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, 1999).
- 93. Hahn EL. Spin Echoes. Physical Review 80, 580-594 (1950).
- Carr HY & Purcell EM. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. *Physical Review* 94, 630–638 (1954).
- Mansfield P. Multi-planar image formation using NMR spin echoes. *Journal of Physics C: Solid State Physics* 10, L55 (1977).
- Neeb H, Zilles K & Shah N. A new method for fast quantitative mapping of absolute water content in vivo. *NeuroImage* 31, 1156–1168 (2006).
- Neeb H, Ermer V, Stocker T & Shah N. Fast quantitative mapping of absolute water content with full brain coverage. *NeuroImage* 42, 1094–1109 (2008).
- Neeb H, Zilles K & Shah NJ. Fully-automated detection of cerebral water content changes: Study of age- and gender-related H2O patterns with quantitative MRI. *NeuroImage* 29, 910–922 (2006).
- Mandal PK. In vivo proton magnetic resonance spectroscopic signal processing for the absolute quantitation of brain metabolites. *European Journal of Radiology* 81, e653–e664 (2012).
- 100. Friebolin H. Ein- und zweidimensionale NMR-Spektroskopie (Wiley, 2006).
- 101. Bottomley PA. Spatial Localization in NMR Spectroscopy in Vivo. Annals of the New York Academy of Sciences 508, 333–348 (1987).
- 102. Frahm J, Merboldt KD & Hänicke W. Localized proton spectroscopy using stimulated echoes. *Journal of Magnetic Resonance (1969)* 72, 502–508 (1987).
- 103. Poullet JB, Sima DM & Van Huffel S. MRS signal quantitation: A review of time- and frequency-domain methods. *Journal of Magnetic Resonance* 195, 134–144 (2008).

- 104. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, Beer Rd & Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. *Magnetic Resonance Materials in Physics, Biology and Medicine* 12, 141–152 (2001).
- 105. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN & Peet AC. A constrained leastsquares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. *Magnetic Resonance in Medicine* 65, 1–12 (2011).
- 106. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. *Magnetic Resonance in Medicine* 30, 672–679 (1993).
- Provencher SW. Automatic quantitation of localized in vivo1H spectra with LCModel. NMR in Biomedicine 14, 260–264 (2001).
- 108. Helms G. The principles of quantification applied to in vivo proton MR spectroscopy. *European Journal of Radiology. Clinical 1H MR Spectroscopy* 67, 218–229 (2008).
- Jansen JFA, Backes WH, Nicolay K & Kooi ME. 1H MR Spectroscopy of the Brain: Absolute Quantification of Metabolites. *Radiology* 240, 318–332 (2006).
- Gussew A, Erdtel M, Hiepe P, Rzanny R & Reichenbach JR. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in 1H-MR spectroscopic volumes. *Magnetic Resonance Materials in Physics, Biology and Medicine* 25, 321–333 (2012).
- 111. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE & Morrison LA. Use of tissue water as a concentration reference for proton spectroscopic imaging. *Magnetic Resonance in Medicine* 55, 1219–1226 (2006).
- 112. Gasparovic C, Neeb H, Feis D, Damaraju E, Chen H, Doty M, South D, Mullins P, Bockholt H & Shah N. Quantitative spectroscopic imaging with in situ measurements of tissue water T1, T2, and density. *Magnetic Resonance in Medicine* 62, 583–590 (2009).
- 113. Mescher M, Merkle H, Kirsch J, Garwood M & Gruetter R. Simultaneous in vivo spectral editing and water suppression. *NMR in Biomedicine* 11, 266–272 (1998).
- 114. Rothman DL, Petroff OA, Behar KL & Mattson RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. *Proceedings of the National Academy of Sciences of the United States of America* 90, 5662–5666 (1993).

- 115. Mullins PG, McGonigle DJ, O'Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ & Edden RAE. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. *NeuroImage* 86, 43–52 (2014).
- 116. Edden RA, Puts NA, Harris AD, Barker PB & Evans CJ. Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. *Journal of Magnetic Resonance Imaging* 40, 1445–1452 (2014).
- 117. Henry PG, Dautry C, Hantraye P & Bloch G. Brain GABA editing without macromolecule contamination. *Magnetic Resonance in Medicine* 45, 517–520 (2001).
- 118. Bhattacharyya PK. Macromolecule contamination in GABA editing using MEGA-PRESS should be properly accounted for. *NeuroImage* 84, 1111–1112 (2014).
- 119. Murdoch JB & Dydak U. *Modeling MEGA-PRESS macromolecules for a better grasp* of GABA in Proc. Intl. Soc. Magn. Reson. Med. 19 (Montreal, 2011), 1394.
- Edden RAE, Puts NAJ & Barker PB. Macromolecule-suppressed GABA-edited magnetic resonance spectroscopy at 3T. *Magnetic Resonance in Medicine* 68, 657–661 (2012).
- 121. Harris AD, Puts NA, Barker PB & Edden RA. Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression. *Magnetic Resonance in Medicine*. doi:10.1002/mrm.25549 (2014).
- 122. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A & Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. *Brain* 120, 141–157 (1997).
- 123. Behar KL, Rothman DL, Petersen KF, Hooten M, Delaney R, Petroff OA, Shulman GI, Navarro V, Petrakis IL, Charney DS & Krystal JH. Preliminary Evidence of Low Cortical GABA Levels in Localized 1H-MR Spectra of Alcohol-Dependent and Hepatic Encephalopathy Patients. *American Journal of Psychiatry* 156, 952–954 (1999).
- 124. Terhune DB, Russo S, Near J, Stagg CJ & Kadosh RC. GABA Predicts Time Perception. *The Journal of Neuroscience* 34, 4364–4370 (2014).

- 125. Edden RAE, Muthukumaraswamy SD, Freeman TCA & Singh KD. Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex. *The Journal of Neuroscience* 29, 15721–15726 (2009).
- 126. Sandberg K, Blicher JU, Dong MY, Rees G, Near J & Kanai R. Occipital GABA correlates with cognitive failures in daily life. *NeuroImage* 87, 55–60 (2014).
- 127. Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, Mlili Ne, Boix J, Agustí A & Felipo V. Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. *Metabolic Brain Disease* 24, 69–80 (2008).
- 128. Laubenberger J, Haussinger D, Bayer S, Gufler H, Hennig J & Langer M. Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. *Gastroenterology* 112, 1610–1616 (1997).
- 129. Chavarria L, Alonso J, García-Martínez R, Simón-Talero M, Ventura-Cots M, Ramírez C, Torrens M, Vargas V, Rovira A & Córdoba J. Brain magnetic resonance spectroscopy in episodic hepatic encephalopathy. *Journal of Cerebral Blood Flow & Metabolism* 33, 272–277 (2013).
- Murthy C, Rama Rao K, Bai G & Norenberg MD. Ammonia-induced production of free radicals in primary cultures of rat astrocytes. *Journal of Neuroscience Research* 66, 282–288 (2001).
- Dhanda S, Kaur S & Sandhir R. Preventive effect of N-acetyl-L-cysteine on oxidative stress and cognitive impairment in hepatic encephalopathy following bile ductligation. *Free Radical Biology and Medicine* 56, 204–215 (2013).
- 132. Oeltzschner G, Butz M, Baumgarten TJ, Hoogenboom N, Wittsack HJ & Schnitzler A. Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. *Metabolic Brain Disease*. doi:10.1007/ s11011-015-9729-2 (2015).
- 133. Qi R, Zhang LJ, Zhong J, Zhang Z, Ni L, Zheng G & Lu GM. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy. *European Journal of Radiology* 82, 850–856 (2013).

- 134. Qi R, Zhang LJ, Chen HJ, Zhong J, Luo S, Ke J, Xu Q, Kong X, Liu C & Lu GM. Role of local and distant functional connectivity density in the development of minimal hepatic encephalopathy. *Scientific Reports* 5. doi:10.1038/srep13720 (2015).
- 135. Qi R, Zhang LJ, Zhong J, Zhu T, Zhang Z, Xu C, Zheng G & Lu GM. Grey and white matter abnormalities in minimal hepatic encephalopathy: a study combining voxel-based morphometry and tract-based spatial statistics. *European Radiology* 23, 3370–3378 (2013).
- 136. Tao R, Zhang J, You Z, Wei L, Fan Y, Cui J & Wang J. The thalamus in cirrhotic patients with and without hepatic encephalopathy: A volumetric MRI study. *European Journal of Radiology* 82, e715–e720 (2013).
- 137. Cauli O, Llansola M, Agustí A, Rodrigo R, Hernández-Rabaza V, Rodrigues TB, López-Larrubia P, Cerdán S & Felipo V. Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. *Liver International* 34, 379–387 (2014).
- 138. Bosoi CR, Zwingmann C, Marin H, Parent-Robitaille C, Huynh J, Tremblay M & Rose CF. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. *Journal of Hepatology* 60, 554–560 (2014).
- 139. Bosoi CR & Rose CF. Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy. *Metabolic Brain Disease* 29, 919–925 (2014).
- 140. Friston KJ. Statistical parametric mapping the analysis of funtional brain images (Elsevier/Academic Press, Amsterdam; Boston, 2007).
- 141. Wansapura JP, Holland SK, Dunn RS & Ball WS. NMR relaxation times in the human brain at 3.0 tesla. *Journal of Magnetic Resonance Imaging* 9, 531–538 (1999).
- 142. Edden RA, Intrapiromkul J, Zhu H, Cheng Y & Barker PB. Measuring T2 in vivo with J-difference editing: Application to GABA at 3 tesla. *Journal of Magnetic Resonance Imaging* 35, 229–234 (2012).
- Puts NA, Barker PB & Edden RA. Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla. *Journal of Magnetic Resonance Imaging* 37, 999–1003 (2013).

- 144. Cho S, Jones D, Reddick WE, Ogg RJ & Steen RG. Establishing norms for agerelated changes in proton T1 of human brain tissue in vivo. *Magnetic Resonance Imaging* 15, 1133–1143 (1997).
- 145. Cauli O, Mlili N, Llansola M & Felipo V. Motor activity is modulated via different neuronal circuits in rats with chronic liver failure than in normal rats. *European Journal of Neuroscience* 25, 2112–2122 (2007).
- 146. Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ & Nobre AC. Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. *Proceedings of the National Academy of Sciences of the United States* of America 111, 9301–9306 (2014).
- 147. Jensen O, Goel P, Kopell N, Pohja M, Hari R & Ermentrout B. On the human sensorimotor-cortex beta rhythm: Sources and modeling. *NeuroImage* 26, 347–355 (2005).
- 148. Hall SD, Barnes GR, Furlong PL, Seri S & Hillebrand A. Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. *Human Brain Mapping* 31, 581–594 (2010).
- 149. Hall SD, Stanford IM, Yamawaki N, McAllister CJ, Rönnqvist KC, Woodhall GL & Furlong PL. The role of GABAergic modulation in motor function related neuronal network activity. *NeuroImage* 56, 1506–1510 (2011).
- 150. Muthukumaraswamy SD, Myers JFM, Wilson SJ, Nutt DJ, Lingford-Hughes A, Singh KD & Hamandi K. The effects of elevated endogenous GABA levels on movement-related network oscillations. *NeuroImage* 66, 36–41 (2013).
- 151. Stagg CJ, Bestmann S, Constantinescu AO, Moreno Moreno L, Allman C, Mekle R, Woolrich M, Near J, Johansen-Berg H & Rothwell JC. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. *The Journal of Physiology* 589, 5845–5855 (2011).

RELEVANT PUBLICATIONS

The present work is based on:

Publication 1:

Oeltzschner G, Butz M, Baumgarten TJ, Hoogenboom N, Wittsack HJ, Schnitzler A. Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. Metabolic Brain Disease 2015 (in press). DOI 10.1007/s11011-015-9729-2

Reprinted as Appendix 1 from Metabolic Brain Disease with permission from Springer. Original publication can be found online at http://link.springer.com/article/10. 1007/s11011-015-9729-2.

Impact factor (2014): 2.638

Personal contribution: 80% (Data acquisition, data analysis, interpretation of results, manuscript drafting)

Publication 2:

Oeltzschner G, Butz M, Wickrath F, Wittsack HJ, Schnitzler A. Covert hepatic encephalopathy: Elevated total glutathione and absence of brain water content changes. Metabolic Brain Disease 2015 (accepted for publication). The manuscript is included as Appendix 2.

Personal contribution: 80% (Data acquisition, data analysis, interpretation of results,

manuscript drafting)

Publication 3:

Oeltzschner G, Schnitzler A, Wickrath F, Wittsack HJ (2015) Use of quantitative brain water imaging as concentration reference for J-edited MR spectroscopy of GABA. Magnetic Resonance Imaging 2015 (submitted). The manuscript is included as Appendix 3.

Personal contribution: 80% (Design of analysis scheme, data acquisition, data analysis, interpretation of results, manuscript drafting)

Other aspects are taken from:

Publication 4:

Baumgarten TJ, Oeltzschner G, Hoogenboom N, Wittsack HJ, Schnitzler A, Lange J. Beta peak frequencies at rest correlated with endogenous GABA/Cr concentrations in the left sensorimotor cortex. PLoS One 2015 (under review). The manuscript is included as Appendix 4.

Personal contribution: 20% (Spectroscopy data acquisition, spectroscopy data analysis, manuscript revision)

ORIGINAL ARTICLE

Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes

Georg Oeltzschner^{1,2} • Markus Butz¹ • Thomas J. Baumgarten¹ • Nienke Hoogenboom¹ • Hans-Jörg Wittsack² • Alfons Schnitzler¹

Received: 31 March 2015 / Accepted: 3 September 2015 © Springer Science+Business Media New York 2015

Abstract The pathogenesis of hepatic encephalopathy (HE) is not fully understood yet. Hyperammonemia due to liver failure and subsequent disturbance of cerebral osmolytic balance is thought to play a pivotal role in the emergence of HE. The aim of this in-vivo MR spectroscopy study was to investigate the levels of γ -aminobutyric acid (GABA) and its correlations with clinical symptoms of HE, blood ammonia, critical flicker frequency, and osmolytic levels. Thirty patients with minimal HE or HE1 and 16 age-matched healthy controls underwent graduation of HE according to the West-Haven criteria and including the critical flicker frequency (CFF), neuropsychometric testing and blood testing. Edited proton magnetic resonance spectroscopy (¹H MRS) was used to non-invasively measure the concentrations of GABA, glutamate (Glu), glutamine (Gln), and myo-inositol (mI) - all normalized to creatine (Cr) - in visual and sensorimotor cortex. GABA/Cr in the visual area was significantly decreased in mHE and HE1 patients and correlated both to the CFF (r = 0.401, P = 0.013) and blood ammonia levels (r = -0.434, P = 0.006). Visual GABA/Cr was also strongly linked to mI/Cr (r = 0.720, P < 0.001) and Gln/Cr (r = -0.699, P < 0.001). No group differences or correlations were found for GABA/Cr in the sensorimotor area. Hepatic encephalopathy is

Georg Oeltzschner georg.oeltzschner@med.uni-duesseldorf.de

² Medical Faculty, Department of Diagnostic and Interventional Radiology, University Düsseldorf, D-40225 Düsseldorf, Germany associated with a regional specific decrease of GABA levels in the visual cortex, while no changes were revealed for the sensorimotor cortex. Correlations of visual GABA/Cr with CFF, blood ammonia, and osmolytic regulators mI and Gln indicate that decreased visual GABA levels might contribute to HE symptoms, most likely as a consequence of hyperanmonemia.

Keywords Hepatic encephalopathy \cdot MR spectroscopy \cdot γ -aminobutyric acid \cdot Ammonia \cdot Critical flicker frequency \cdot MEGA-PRESS

Abbreviations

hepatic encephalopathy
critical flicker frequency
magnetic resonance spectroscopy
γ-aminobutyric acid
glutamate
glutamine
myo-inositol
creatine
Mescher-Garwood
point resolved spectroscopy
repetition time
echo time
field of view
Cramér-Rao lower bounds
macromolecules
gray matter
white matter
cerebrospinal fluid
magnetoencephalography

¹ Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

Hepatic encephalopathy (HE) is a common complication in patients with liver cirrhosis. Its clinical manifestation comprises impairments of cognitive, behavioral, and motor functions. Symptoms fluctuate with disease severity, and the severest states of HE lead to somnolence, stupor, and even coma (Butterworth 2000; Ferenci et al. 2002; Felipo 2013).

The pathogenesis of HE is considered to be of multifactorial nature (Häussinger and Sies 2013). The intrusion of ammonia through the blood brain barrier sets off a multitude of reactions including inflammation and oxidative stress. Metabolisation of ammonia by glutamine synthetase (GS) in the astrocytes leads to increased glutamine (Gln) concentrations, resulting in an osmotic imbalance, which is believed to be partially countered by a depletion of osmolytes such as myo-inositol (mI). This has led to the proposal of subsequent astrocyte swelling and the formation of low-grade cerebral edema (Häussinger and Schliess 2008).

Elevated glutamine and decreased myo-inositol levels as a consequence of hyperammonemia were consistently observed with magnetic resonance spectroscopy (MRS) (Häussinger et al. 1994; Laubenberger et al. 1997; Shawcross et al. 2004). The degree of these Gln and mI abnormalities was linked to blood ammonia levels, HE severity and changes in diffusion properties of tissue water (Thomas et al. 1998; Binesh et al. 2006; Miese et al. 2006; Mardini et al. 2011). Using quantitative water mapping, small increases of white matter water content with increasing HE severity were demonstrated (Shah et al. 2008). Ultimately, a complex interaction of these processes is thought to induce alterations in synaptic plasticity and pathological abnormalities in the oscillatory brain networks that have been observed in context with the various functional deficits in HE patients (for reviews see Timmermann et al. 2003; Butz et al. 2013). Currently, it is unclear how the hyperammonemia-induced osmolyte depletion and subsequent edema formation could affect brain oscillations. A possible pathway for the development of abnormal oscillatory behavior is via disturbed neurotransmitter homeostasis (Llansola et al. 2014). An example for this is the inhibitory neurotransmitter γ aminobutyric acid (GABA), as GABA resting concentrations have been shown to be linked with cortical oscillations both in the motor (Gaetz et al. 2011) and the visual cortex (Muthukumaraswamy et al. 2009). However, investigation of GABA in HE yielded largely controversial outcome so far. Already more than thirty years ago gut-derived GABA was proposed to increase the GABAergic tone in the HE brain (Schafer and Jones 1982). Subsequent research analysed GABA synthesis regulation, receptor alterations, and pharmacological intervention in states of hyperammonemia, but the incoherent results did not lead to a consistent concept of the role of GABA in the pathophysiology of HE (Palomero-Gallagher and Zilles 2013). Recent animal works speak against the notion of a generalized increased GABAergic tone in HE, and instead point towards a rather regionally selective nature of interdependent alterations in GABAergic and glutamatergic systems (for a review see Sergeeva 2013; Llansola et al. 2014). For example, hypokinesia in rats with portocaval shunting was linked to increased GABA levels in the ventromedial thalamus as a consequence of excessive mGluR1 activation in the *substantia nigra* (Cauli et al. 2008). In similar experiments, the GABAergic tone was found to be decreased in prefrontal cortex, but increased in the cerebellum of hyperammonemic rodents, contributing to cognitive impairment (Cauli et al. 2009).

All in all, more work needs to be done to illuminate function and pattern of the pathophysiological contribution of GABA in HE.

The aim of the present study was to investigate the levels of GABA in different brain regions and to reveal potential links between these, glutamate levels, HE severity, blood ammonia levels, and brain osmolytes, i.e. glutamine, and myo-inositol. To this end, edited MR spectroscopy for GABA detection was performed in a cohort of clinically well characterized HE patients with varying disease grades and healthy controls.

Material and methods

The study was performed conforming to the principles of the Declaration of Helsinki and approved by the local ethics committee (study number 3644). All recruited subjects participated after giving their full prior written informed consent.

Participants and grading

Thirty patients with hepatic encephalopathy and 16 controls were enrolled. Necessary inclusion criteria for patients were clinically confirmed liver cirrhosis and diagnosis of minimal HE or HE1 as defined by *West-Haven* criteria (see below). Healthy controls were recruited to age-match the patient groups. Exclusion criteria for both patients and controls were severe internal, neurological or psychiatric diseases other than HE, use of psychoactive substances, blood clotting dysfunction and peripheral or retinal neuropathy. If alcohol abuse was part of the medical history, the subject had to remain abstinent for \geq 4 weeks prior to inclusion.

HE severity grading was done by a combination of the *West-Haven* criteria (Ferenci et al. 2002) and the critical flicker frequency (CFF). The CFF was used as an additional parameter as it was shown to be a reliable parameter for the graduation and monitoring of HE accounting for the continuous nature of HE (Kircheis et al. 2002, 2014). To this end, the participants underwent standard blood examination including ammonia.

Two subjects (1 mHE, 1 HE1) had to be excluded due to alcohol intake. One subject initially classified as HE1 had to

be excluded due to imprecise patient files. Information on the remaining study population is summarized in Table 1.

Assessment of HE severity according to the West-Haven criteria (Ferenci et al. 2002; Kircheis et al. 2002) included psychometric testing and a clinical assessment of the mental state and consciousness by an experienced clinician. Computer-based neuropsychological tests from the Vienna Test System (Dr. Schuhfried GmbH, Mödling, Austria) consisted of five test batteries and reported a range of 22 age-validated scores (calculated as percentage rank values from comparison with an age-matched control cohort) reflecting cognitive and motor performance. Higher scores indicated better performance. When a parameter value was found to be more aberrant than one standard deviation from the mean of a large control cohort, it was considered abnormal. If patients did not exhibit clinical symptoms of manifest HE, but showed more than 2 abnormal psychometric test results, they were classified as minimal HE (mHE) (Kircheis et al. 2002). Ten scores were selected for detailed analysis, including cognitive ("COG1": time to reject a geometric shape not matching control shapes; "COG2": time to confirm a geometric shape matching control shapes), fine motor performance (line following test: "LVT1": time per item; "LVT2": overall score), motor precision/speed ("MLS1": hand steadiness/tremor; "MLS2": arm/hand precision; "MLS3": arm/hand speed; "MLS4": finger tapping speed), and reaction performance ("WRT1": reaction time; "WRT2": motor reaction time).

MR measurements

Measurements were carried out on a clinical 3 T whole-body MRI scanner (Siemens MAGNETOM Trio A TIM System, Siemens Healthcare AG, Erlangen, Germany) using a 12channel head matrix coil.

MR spectroscopy

MRS volumes were placed in different anatomical locations as depicted in Fig. 1. One spectroscopic volume was placed in the central occipital lobe and carefully aligned to include as much of the visual area as possible. The caudal boundary of the volume was aligned along the *cerebellar tentorium*. In

Table 1Controls and patient population after exclusion. * = Significantlydifferent from mHE (P < 0.01) and from controls (P < 0.001) with non-parametric Kruskal-Wallis analysis for independent sampling

	Sex (M/F)	Age [y]	CFF [Hz]
Controls ($n = 16$)	7/9	60.1 ± 8.7	41.6 ± 4.0
mHE $(n = 13)$	8/5	55.7 ± 8.5	39.4 ± 3.2
HE1 $(n = 14)$	10/4	61.6 ± 7.6	34.5* ± 3.1

addition, in both hemispheres one volume each was centered on an anatomical region known as the "*hand knob*" (Yousry et al. 1997), a prominent feature of the *praecentral gyrus* that can be recognized with ease from transversal planning images. If centered at this landmark, the spectroscopic volume spans across the *central sulcus* to include both sensory and motor cortices, at the level of hand motor cortex (Hone-Blanchet et al. 2015). In all cases, special care was taken during placement of the volume to include as much cortical volume as possible and, on the other hand, avoid unwanted lipid contamination of the spectra from the skull.

After T_I -weighted planning sequences and localizing the target volumes, MEGA-PRESS (Mescher et al. 1998) spectra were acquired (number of excitations =192, TR = 1500 ms, TE = 68 ms, V = 3x3x3 cm³, bandwidth =1200 Hz, 1024 data points). Spectral editing was conducted by J-refocusing pulses irradiated at 1.9 ppm and 7.5 ppm using Gaussian pulses with a bandwidth of 44 Hz.

Structural MRI

For segmentation purposes, a high-resolution 3D anatomical transversal T_I -weighted magnetization prepared gradient echo (MP RAGE) scan was performed (TR/ TE = 1950/4.6 ms, FoV 256 × 192 mm, 256 × 192 matrix, slice thickness 1 mm, 176 slices).

Data processing

Evaluation of MRS data

MEGA-PRESS data were exported from the scanner in raw TWIX and Siemens RDA file format. Processing of TWIX data from the difference spectra was performed with the freely available MATLAB-based tool GANNET 2.0 (Edden et al. 2014) and included frequency and phase correction of the single acquisitions and Gaussian fitting of the 3 ppm GABA resonance (Fig. 2). The GABA-tocreatine ratio (GABA/Cr) was subsequently used for further analysis.

Spectra from the unedited MEGA-PRESS scan (*OFF* resonance) were analyzed with LCModel version 6.3 (Provencher 2001) to yield ratios of the following metabolites with respect to creatine: glutamine (Gln/Cr), glutamate (Glu/Cr), and myo-inositol (mI/Cr). The linear decomposition of an example signal into its spectral components is depicted in Fig. 3. The variance of the metabolite estimates was provided as CRLB (Cramér-Rao lower bounds).

Metabolite-to-creatine ratios for the sensorimotor area were obtained by averaging the results from the right and left hemisphere. If MRS evaluation was only successful for one side, the estimate from this side was used for further analysis.

Author's personal copy

Fig. 1 T_1 -weighted MRI scan of the brain. Exemplary localisation of the visual spectroscopic volume in the sagittal plane (a), placement of the left sensorimotor spectroscopic volume, centered on the hand knob, in the axial (b) and sagittal (c) planes

Evaluation of structural data

The 'New Segment' routine of SPM8 (http://www.fil.ion.ucl. ac.uk/spm/) was used to segment the MP RAGE scan into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The MR spectroscopic volumes were co-registered to the MP RAGE scan with a custom made MATLAB (The Mathworks Inc., Natick/MA) routine (Dr. Nia Goulden, Dr. Paul Mullins, Bangor University, http://biu.bangor.ac.uk/ projects.php.en, modified by the authors to work with Siemens file format). It transformed the volume parameters into a binary mask that was used to calculate the fractions of GM, WM, and CSF in the respective spectroscopic volume.

Statistical evaluation

Differences of metabolite levels and psychometric scores between the participant groups (controls, mHE, and HE1) were investigated by non-parametric Kruskal-Wallis one way analyses of variance for independent samples. If group differences were discovered, post-hoc tests were automatically performed to yield Dunn-Bonferroni adjusted P values. Group differences were considered significant for P < 0.05.

Relationships between CFF and metabolite levels were assessed with partial two-tailed correlation analyses, including correction for age. Relationships between metabolite levels and blood ammonia were assessed with bivariate two-tailed Spearman's rank correlation analyses. Again, correlations were considered significant for P < 0.05.

Relationships between metabolite levels and psychometric scores were also assessed with bivariate two-tailed Spearman's rank correlation analyses.

To investigate the interplay of metabolites, bivariate two-tailed Spearman's rank correlation analysis was performed for GABA/Cr, Gln/Cr, Glu/Cr, and mI/Cr. This was done separately for the sensorimotor and the visual MRS volume.

All correlation analyses included a false discovery rate (FDR) correction at $\alpha = 0.05$.

All statistical computations were performed using IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA).

Results

From a total of 43 participants (16 controls, 13 mHE, 14 HE1), visual GABA/Cr estimates could be obtained in all but 4 individuals. In these 4 participants, visual GABA/Cr estimates could not be obtained due to noisy or distorted spectra or cancellation of the measurements (2 controls, 2 mHE). Sensorimotor GABA/Cr estimates were obtained in all but 3 subjects (2 controls, 1 mHE). In eight subjects (4 controls, 2 mHE, 2 HE1), the sensorimotor GABA/Cr estimate of only one hemisphere was used for further analysis. Results from the unedited visual spectra could not be obtained from 3 subjects (2 controls, 1 mHE). Unedited sensorimotor spectra could not be analysed in one control subject. In one subject

Fig. 2 GANNET output of a difference spectrum from a healthy control (a). The gray-circled area of the 3 ppm GABA resonance is shown in (b), including the Gaussian fitting, the result of which is subsequently used for further analysis

Fig. 3 LCModel decomposition of an unedited (OFF resonance) spectrum

(mHE), the unedited sensorimotor spectra of only one hemisphere were used for further analysis.

Group results and correlations with CFF and blood ammonia are summarized in Table 2. No significant differences between males and females were observed in any parameter.

GABA

Visual GABA/Cr ratios were reduced in the mHE (P = 0.017) and the HE1 group (P = 0.001) compared to controls (Fig. 4a), but no difference was found between mHE and HE1 (P = 1.000). Additionally, a positive correlation of visual GABA/Cr with CFF (r = 0.401, P = 0.013, Fig. 4b) and a negative correlation with blood ammonia (r = -0.434, P = 0.006) were observed. No group differences (Fig. 4c) or correlations (Fig. 4d) could be revealed for the sensorimotor GABA/Cr levels.

Glutamate

Levels of Glu/Cr did not exhibit significant differences in mHE or HE1 compared to controls or correlations with CFF or blood ammonia. This was valid for both the visual and the sensorimotor areas.

Glutamine

Visual and sensorimotor Gln/Cr levels were elevated in the mHE and HE1 groups, but not differing between the two HE groups. There were negative correlations of Gln/Cr with CFF (visual: r = -0.497, P = 0.001, sensorimotor: r = -0.505, P = 0.001) and positive correlations with blood ammonia (visual: r = 0.429, P = 0.006, sensorimotor: r = 0.632, P < 0.001).

myo-inositol

mI/Cr levels in the visual and sensorimotor areas were decreased in the mHE and HE1 groups compared to the control group, yet did not exhibit differences between mHE and HE1. A positive correlation of mI/Cr with CFF (visual: r = 0.473, P = 0.002, sensorimotor: r = 0.516, P = 0.001) and a negative correlation with blood ammonia (visual: r = -0.456, P = 0.004, sensorimotor: r = -0.505, P = 0.001) were observed.

Cross correlations of metabolites

Our analysis of the visual metabolite concentrations yielded several important findings (Table 3):

GABA/Cr was positively correlated with mI/Cr and negatively correlated with Gln/Cr, but not correlated with Glu/Cr. mI/Cr and Gln/Cr furthermore showed a negative correlation with each other. mI/Cr and Glu/Cr were positively correlated.

In the sensorimotor MRS volume, there were no respective correlations between GABA/Cr and mI/Cr (r = 0.083, P = 0.622) or Gln/Cr (r = -0.029, P = 0.862). Glu/Cr was not correlated with any other metabolite. mI/Cr was positively correlated to Gln/Cr (r = -0.757, P < 0.001).

Psychometric testing

Results of the group analysis and correlation analysis of the psychometric test scores are shown in Table 4.

Differences between the control group and both patient groups could be observed for the cognitive scores COG1 and COG2. The line following scores LVT1 and LVT2, the finger tapping speed score MLS4, and the motor reaction time score WRT2 were different between HE1 patients and controls only.

Metab Brain Dis

	Controls mean (+/- SD)	HE patients mean (+/- SD)		Correlatior with CFF [n [Hz]	Correlation with blood ammonia [µg/dl]	
		mHE	HE1	r	Р	r	Р
Visual							
GABA/Cr	0.107 (0.011)	0.089* (0.026)	0.082** (0.011)	0.401	0.013	-0.434	0.006
Glu/Cr	0.687 (0.107)	0.661 (0.104)	0.608 (0.121)	0.183	0.265	-0.016	0.924
Gln/Cr	0.235 (0.077)	0.493* (0.248)	0.558** (0.321)	-0.497	0.001	0.429	0.006
mI/Cr	0.811 (0.132)	0.554* (0.152)	0.464*** (0.223)	0.473	0.002	-0.456	0.004
Sensorimotor							
GABA/Cr	0.0952 (0.011)	0.0921 (0.015)	0.0943 (0.014)	-0.184	0.263	-0.095	0.564
Glu/Cr	0.717 (0.071)	0.752 (0.135)	0.739 (0.123)	0.153	0.340	0.112	0.486
Gln/Cr	0.124 (0.053)	0.463** (0.275)	0.562*** (0.360)	-0.505	0.001	0.632	<0.001
mI/Cr	0.930 (0.163)	0.574** (0.161)	0.536*** (0.239)	0.516	0.001	-0.505	0.001

Table 2Results of MR spectroscopy in hepatic encephalopathy. Asterisks indicate significant differences from controls (* = P < 0.05, ** = P < 0.01,*** = P < 0.001). The two patient groups were not different in any of the comparisons. Bold figures indicate significant correlations

Fig. 4 GABA/Cr group differences in visual (a) and sensorimotor (c) areas and correlations of CFF and GABA/Cr in visual (b) and sensorimotor (d) areas. Group differences and correlations were significant for (a) and (b), but not for (c) and (d)

Deringer

Table 3	Results of cross correlations for the visual MRS volume. Bol	d
figures inc	icate significant correlations (FDR corrected at $P < 0.05$)	

	GABA/Cr	mI/Cr	Gln/Cr	Glu/Cr
GABA/Cr		r = 0.720 P < 0.001	r = -0.699 P < 0.001	r = 0.189 P = 0.270
mI/Cr			r = -0.751 P < 0.001	r = 0.415 P = 0.009
Gln/Cr				r = -0.288 P = 0.079
Glu/Cr				

Data also revealed correlations of visual GABA/Cr with COG1 scores. Additionally, Gln/Cr and mI/Cr correlated with several scores both for the visual and for the sensorimotor volume.

Discussion

In the present in-vivo MR spectroscopy study, we applied edited proton magnetic resonance spectroscopy to investigate

 Table 4
 Results of psychometric score analysis (COG1: time to reject a geometric shape not matching control shapes; COG2: time to confirm a geometric shape matching control shapes; line following test: LVT1: time per item; LVT2: overall score; MLS1: hand steadiness/tremor; MLS2: arm/hand precision; MLS3: arm/hand speed; MLS4: finger tapping speed; WRT1: reaction time; WRT2: motor reaction time; VIS: visual MRS

the link between hepatic encephalopathy and blood ammonia levels, neurotransmitter concentrations, and osmolyte concentrations. Our results show reduced visual GABA/Cr both in mHE patients and in HE1 patients. The GABA/Cr ratio is also correlated with CFF, blood ammonia, concentration of myoinositol and glutamine as well as psychometric parameters.

MR spectroscopy of GABA in HE

Our data demonstrate that GABA/Cr in the visual area is significantly decreased already in early stages of hepatic encephalopathy, i.e. mHE and HE1. This finding tallies with preliminary results from a previous study (Behar et al. 1999) which reported low cortical GABA + homocarnosine in the occipital brain. However, only four HE subjects were included in this study and a graduation of HE severity was missing. Our result of decreased GABA/Cr in visual cortex is also in line with experiments showing an increase of GABAergic tone in the cerebellum, but a decrease in the cortex in a rodent model of HE (Cauli et al. 2009). Moreover, previous studies using localized 2D correlation spectroscopy (L-COSY) at 1.5 T also gave evidence for regionally selective changes in GABA

volume; SMOT: sensorimotor MRS volume). Asterisks indicate significant differences from controls (* = P < 0.05, ** = P < 0.01, *** = P < 0.001, Dunn-Bonferroni corrected). The two patient groups were not different in any of the comparisons. Bold figures indicate significant correlations (P < 0.05, Benjamini-Hochberg FDR corrected)

	Differences to control group Adjusted <i>P</i> values		GABA/Cr r P		Glu/Cr r P		Gln/Cr r P		mI/Cr r P	
	mHE	HE1	VIS	SMOT	VIS	SMOT	VIS	SMOT	VIS	SMOT
COG1	0.008**	<0.001***	0.437 0.006	0.155 0.339	0.210 0.192	0.038 0.811	-0.588 <0.001	-0.509 0.001	0.523 0.001	0.435 0.004
COG2	0.029*	0.015*	0.328 0.044	0.212 0.189	0.103 0.525	0.124 0.435	-0.533 <0.001	-0.442 0.003	0.459 0.003	0.367 0.017
LVT1	0.124	0.016*	0.376 0.020	0.083 0.609	0.178 0.272	0.111 0.485	-0.496 0.001	-0.437 0.004	0.388 0.013	0.311 0.045
LVT2	0.215	0.038*	0.319 0.051	0.202 0.212	0.172 0.289	0.027 0.863	-0.403 0.010	-0.390 0.011	0.288 0.071	0.229 0.145
MLS1	-	_	0.185 0.266	-0.208 0.198	0.162 0.319	0.040 0.800	-0.121 0.456	-0.217 0.168	0.080 0.624	0.045 0.777
MLS2	-	-	0.149 0.371	-0.058 0.723	0.258 0.108	0.075 0.637	-0.253 0.115	-0.382 0.013	0.354 0.025	0.319 0.040
MLS3	-	_	0.112 0.501	0.045 0.782	0.157 0.334	-0.016 0.921	-0.175 0.280	-0.325 0.036	0.267 0.096	0.228 0.146
MLS4	0.811	0.007**	0.185 0.266	-0.083 0.613	0.171 0.293	-0.162 0.306	-0.446 0.004	-0.472 0.002	0.343 0.030	0.319 0.040
WRT1	_	_	0.263 0.111	0.139 0.392	0.351 0.026	0.146 0.355	-0.420 0.007	-0.238 0.128	0.402 0.010	0.334 0.031
WRT2	0.142	0.018*	0.336 0.039	0.133 0.414	0.187 0.247	-0.116 0.463	-0.610 <0.001	-0.556 <0.001	0.572 <0.001	0.525 <0.001

levels by reporting no significant difference of GABA/Cr between minimal HE and healthy controls in the anterior cingulated gyrus (Binesh et al. 2005) as well as the frontal lobe and the occipital lobe (Singhal et al. 2010). Compared to our data, these studies suffered from a very high variability of the measured GABA/Cr values with a standard deviation of >70 % of the group mean in the mHE group in the work of (Singhal et al. 2010). While studying a comparable number of individuals, the high variability might explain why group differences were not observed in these studies.

The present study found strong correlations of GABA/Cr with mI/Cr and Gln/Cr. Furthermore, our data demonstrate correlations of visual GABA/Cr with the CFF and blood ammonia levels. Elevated occipital GABA levels have been previously associated with improved visual orientation discrimination performance (Edden et al. 2009) and contracted time perception of visual intervals (Terhune et al. 2014). In line with these findings, the correlation we report between visual GABA and the CFF suggests that modulation of neural activity by resting GABA concentration is crucial for the individual ability to discern quickly oscillating stimuli. The potential mechanisms are difficult to relate to either specific inhibitory neurotransmission or GABAergic tone in general, as localized MRS is not capable of separating extra- and intrasynaptic GABA pools.

The correlation of visual GABA/Cr and COG1 test scores is concordant with earlier results showing that low visual GABA levels are associated with higher self-reported cognitive failure rates in daily life (Sandberg et al. 2014).

Slowing of oscillatory brain activity in the *gamma* band, as measured with magnetoencephalography (MEG), has been shown to be a feature of HE and to be correlated with the individual CFF (Kahlbrock et al. 2012). In turn, the peak gamma frequency has been found to be positively correlated to the resting GABA concentration in the visual area of healthy subjects (Muthukumaraswamy et al. 2009). While these relations would render decreased GABA levels in HE highly plausible, the direct link between peak gamma frequency and GABA could not be replicated in a recent study and therefore remains vague (Cousijn et al. 2014).

It is noteworthy that – in contrast to the visual area – our data do not show a correlation between osmolytes and neurotransmitters in the sensorimotor areas. This might indicate that GABAergic tone regulation is either regional-specifically or not even at all coupled to the osmolytic adaptation to hyperammonemia. Furthermore, our results do not reveal a significant change in sensorimotor GABA/Cr compared to controls or correlations with blood ammonia or CFF. Given that HE also slows down oscillatory brain activity in the *beta* band in motor relevant regions (for a review see Butz et al. 2013) and following a proposed link of GABA concentration and motor oscillations (Gaetz et al. 2011), a global decrease of GABA could be expected. In the rodent model, however, it was shown that HE motor symptoms like hypokinesia might be mediated by alterations of GABA levels in the ventromedial thalamus, ultimately leading to a modulation of cortical glutamate release (Cauli et al. 2008). In fact, the regionsensitive character of changes in extracellular GABA has been shown earlier (Cauli et al. 2009). Finally, taking into account that GABA levels are linked to osmolytes in the visual, but not in the sensorimotor area, our results lend additional support to the conclusion that HE-induced changes in GABAergic tone are regional specific.

An alternative explanation for our negative findings might be that tissue composition effects of the spectroscopic volumes obscured the detection of potential HE-induced changes of the sensorimotor GABA/Cr ratio. The average fractional gray matter volume (27 %) of the sensorimotor area volume is about half the average fractional gray matter volume (57 %) of the visual area volume. Given that GABA concentration is around two-fold higher in GM than WM (Jensen et al. 2005), one might argue that HE-induced changes in GABA/Cr will not be as prominent in white matter dominated volumes, if mainly the neuronal population in gray matter is affected. However, similar MRS volume positions proved to be sensitive to changes in sensorimotor GABA numerous times (for review see Puts and Edden 2012). The correlations of mI/Cr and Gln/Cr with CFF, blood ammonia, and psychometric test results further suggest that hyperammonemic regulation is indeed a global phenomenon in HE, but its subsequent effects on GABA levels again strongly depend on the specific brain region.

MR spectroscopy of other metabolites

Our data coincide with results from several previous studies that demonstrated elevated concentrations of glutamine and decreased levels of myo-inositol in HE (Miese et al. 2006; Chavarria et al. 2013; Alonso et al. 2014). Our analyses yield strong correlations of those metabolites with the CFF, the blood ammonia levels and psychometric test scores, further adding to the importance of recognizing the continuative nature of HE severity progression. Their substantial mutual correlation also underlines the close interaction in the osmolytic regulation.

Interestingly, our results reveal no significant alterations of glutamate levels in HE, albeit it may be linked to the HE-relevant osmolytic actor myo-inositol. Integrating these findings with literature is difficult, as most earlier studies reported combined Glu + Gln levels as Glx.

Limitations

It must be noted that ¹H-MRS levels of GABA represent the overall amount of GABA in the selected tissue volume, regardless of its functional role and prevalence in the extra- or intracellular space. As GABAergic neurotransmission arises mainly from extracellular GABA, MRS GABA levels do not necessarily reflect the actual degree of inhibitory activity in itself. It is thought that they are markers of the GABAergic tone (Stagg et al. 2011; Rae 2013). In disease, this interpretation has to be handled with caution. As an example, receptor densities or release and uptake mechanisms – all contributing to the GABAergic tone – can be severely altered in HE.

Another potential shortcoming of this study is the implementation of a "classic" spectral editing pulse scheme. With an editing pulse bandwidth of 44 Hz, GABA editing at 1.9 ppm will inevitably co-edit macromolecular (MM) resonances at 1.7 ppm, leading to a contamination of the 3 ppm peak area. Workarounds do exist, but require additional measurements or affect signal-to-noise (Mullins et al. 2014). The fraction of the peak occupied by MM signal is therefore often assumed to be constant, attributing differences in the peak area mainly to differences in GABA concentration. It should be noted, however, that recent work showed that this assumption needs to be handled with care, as MM contribution may vary across brain regions and subjects (Harris et al. 2014).

Last but not least, it is arguable whether separation of glutamine and glutamate in 68 ms PRESS spectra at 3 T is sufficient. Wijtenburg et al. showed that the coefficient of variation of Glu estimation for a 72 ms STEAM sequence (13.8 %) – comparable to our 68 ms PRESS – was acceptable with CRLBs <8 % (Wijtenburg and Knight-Scott 2011). In our study, the LCModel fits of visual Glu yielded CRLBs as low as 12.6 ± 4.9 % (Gln: 17.2 ± 15.0 %), suggesting that separate quantification is reasonable. The higher average Gln variability was mainly driven by the control group that exhibited comparably low Gln concentrations and, accordingly, higher CRLBs.

Conclusions

In this study, we investigated the relationships between GABA, glutamate, glutamine and myo-inositol with HE severity and blood ammonia levels. For both mHE and HE1, data indicate decreased visual levels, which are furthermore correlated to blood ammonia levels, CFF, and brain osmolytes myo-inositol and glutamine. No such outcome could be demonstrated for the sensorimotor area. This may be seen as evidence for a regional specificity of alterations in GABAergic tone in HE.

Acknowledgments The authors would like to express their thanks to Dr. James Murdoch (Toshiba Medical Research Institute USA) for the LCModel basis set and useful discussion on spectral evaluation, Nur-Deniz Füllenbach and Dr. Gerald Kircheis (Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf) for help with patient recruitment and psychometric grading, and Erika Rädisch (Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf) for support with MR measurements.

Funding This work was supported by the Sonderforschungsbereich (SFB) 974 of the Deutsche Forschungsgemeinschaft (DFG).

Conflict of interest The authors declare that they have no conflict of interest.

References

- Alonso J, Córdoba J, Rovira A (2014) Brain magnetic resonance in hepatic encephalopathy. Semin. Ultrasound CT MRI 35:136–152
- Behar KL, Rothman DL, Petersen KF, Hooten M, Delaney R, Petroff OAC, Shulman GI, Navarro V, Petrakis IL, Charney DS, et al. (1999) Preliminary evidence of low cortical GABA levels in localized 1 H-MR spectra of alcohol-dependent and hepatic encephalopathy patients. Am J Psychiatry 156:952–954
- Binesh N, Huda A, Bugbee M, Gupta R, Rasgon N, Kumar A, Green M, Han S, Thomas MA (2005) Adding another spectral dimension to 1 H magnetic resonance spectroscopy of hepatic encephalopathy. J Magn Reson Imaging 21:398–405
- Binesh N, Huda A, Thomas MA, Wyckoff N, Bugbee M, Han S, Rasgon N, Davanzo P, Sayre J, Guze B, et al. (2006) Hepatic encephalopathy: a neurochemical, neuroanatomical, and neuropsychological study. J Appl Clin Med Phys Am Coll Med Phys 7:86–96
- Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32(Supplement 1):171–180
- Butz M, May ES, Häussinger D, Schnitzler A (2013) The slowed brain: cortical oscillatory activity in hepatic encephalopathy. Arch Biochem Biophys 536:197–203
- Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, Mlili N el, Boix J, Agustí A, Felipo V (2008) Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis 24:69–80
- Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136:1359–1367
- Chavarria L, Alonso J, García-Martínez R, Simón-Talero M, Ventura-Cots M, Ramírez C, Torrens M, Vargas V, Rovira A, Córdoba J (2013) Brain magnetic resonance spectroscopy in episodic hepatic encephalopathy. J Cereb Blood Flow Metab 33:272–277
- Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ, Nobre AC (2014) Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proc Natl Acad Sci U S A 111:9301–9306
- Edden RAE, Muthukumaraswamy SD, Freeman TCA, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 29:15721–15726
- Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ (2014) Gannet: a batch-processing tool for the quantitative analysis of gammaaminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 40:1445–1452
- Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858
- Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th world congresses of gastroenterology, Vienna, 1998. Hepatology 35:716–721
- Gaetz W, Edgar JC, Wang DJ, Roberts TPL (2011) Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration. NeuroImage 55:616–621
- Harris AD, Puts NAJ, Barker PB, Edden RAE (2014) Spectral-editing measurements of GABA in the human brain with and without

macromolecule suppression. Magn Reson Med Published Online: December 17, 2014. doi:10.1002/mrm.25549

- Häussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165
- Häussinger D, Sies H (2013) Hepatic encephalopathy: clinical aspects and pathogenetic concept. Arch Biochem Biophys 536:97–100
- Häussinger D, Laubenberger J, Vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain Myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480
- Hone-Blanchet A, Salas RE, Celnik P, Kalloo A, Schar M, Puts NAJ, Harris AD, Barker PB, Fecteau S, Earley CJ, et al. (2015) Coregistration of magnetic resonance spectroscopy and transcranial magnetic stimulation. J Neurosci Methods 242:52–57
- Jensen JE, Frederick BB, Renshaw PF (2005) Grey and white matter GABA level differences in the human brain using two-dimensional. J-Resolved spectroscopic Imaging NMR Biomed 18:570–576
- Kahlbrock N, Butz M, May ES, Brenner M, Kircheis G, Häussinger D, Schnitzler A (2012) Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. NeuroImage 61:216–227
- Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Häussinger D (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35:357–366
- Kircheis G, Hilger N, Häussinger D (2014) Value of critical flicker frequency and psychometric hepatic encephalopathy score in diagnosis of low-grade hepatic encephalopathy. Gastroenterology 146:961– 969
- Laubenberger J, Häussinger D, Bayer S, Gufler H, Hennig J, Langer M (1997) Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616
- Llansola M, Montoliu C, Agusti A, Hernandez-Rabaza V, Cabrera-Pastor A, Gomez-Gimenez B, Malaguarnera M, Dadsetan S, Belghiti M, Garcia-Garcia R, et al. (2014) Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int. doi:10.1016/j.neuint.2014.10.011
- Mardini H, Smith FE, Record CO, Blamire AM (2011) Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol 54:1154– 1160
- Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272
- Miese F, Kircheis G, Wittsack HJ, Wenserski F, Hemker J, Mödder U, Häussinger D, Cohnen M (2006) 1 H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic and nonalcoholic patients with cirrhosis with hepatic encephalopathy. Am J Neuroradiol 27:1019–1026
- Mullins PG, McGonigle DJ, O'Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ, Edden RAE (2014) Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage 86: 43–52

- Muthukumaraswamy SD, Edden RAE, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci 106:8356–8361
- Palomero-Gallagher N, Zilles K (2013) Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch Biochem Biophys 536:109–121
- Provencher SW (2001) Automatic quantitation of localized in vivo1H spectra with LCModel. NMR Biomed 14:260–264
- Puts NAJ, Edden RAE (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc 60:29–41
- Rae CD (2013) A guide to the metabolic pathways and function of metabolites observed in human brain 1 H magnetic resonance spectra. Neurochem Res 39:1–36
- Sandberg K, Blicher JU, Dong MY, Rees G, Near J, Kanai R (2014) Occipital GABA correlates with cognitive failures in daily life. NeuroImage 87:55–60
- Schafer DF, Jones EA (1982) Hepatic encephalopathy and the gammaaminobutyric-acid neurotransmitter system. Lancet 319:18–20
- Sergeeva OA (2013) GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 536:122–130
- Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D, Zilles K (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 41:706–717
- Shawcross DL, Balata S, Damink SWMO, Hayes PC, Wardlaw J, Marshall I, Deutz NEP, Williams R, Jalan R (2004) Low myoinositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol - Gastrointest Liver Physiol 287:G503–G509
- Singhal A, Nagarajan R, Hinkin CH, Kumar R, Sayre J, Elderkin-Thompson V, Huda A, Gupta RK, Han S-H, Thomas MA (2010) Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuropsychological correlates in vivo. J Magn Reson Imaging 32:35–43
- Stagg CJ, Bachtiar V, Johansen-Berg H (2011) What are we measuring with GABA magnetic resonance Spectroscopy? Commun Integr Biol 4:573–575
- Terhune DB, Russo S, Near J, Stagg CJ, Kadosh RC (2014) GABA predicts time perception. J Neurosci 34:4364–4370
- Thomas MA, Huda A, Guze B, Curran J, Bugbee M, Fairbanks L, Ke Y, Oshiro T, Martin P, Fawzy F (1998) Cerebral 1 H MR spectroscopy and neuropsychologic status of patients with hepatic encephalopathy. Am J Roentgenol 171:1123–1130
- Timmermann L, Gross J, Butz M, Kircheis G, Häussinger D, Schnitzler A (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692
- Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3 T in 1 H magnetic resonance spectroscopy. J Magn Reson Imaging 34:645–652
- Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new Landmark Brain 120:141–157

Covert hepatic encephalopathy: Elevated total glutathione and absence of brain water content changes

Georg Oeltzschner^{1,2,*}, Markus Butz, PhD¹,

Frithjof Wickrath², Hans-Jörg Wittsack, PhD², Alfons Schnitzler, MD¹

¹ Institute of Clinical Neuroscience and Medical Psychology,

Medical Faculty, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany

² Department of Diagnostic and Interventional Radiology,

Medical Faculty, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany

* Corresponding author.

Address: Institute of Clinical Neuroscience and Medical Psychology,

Medical Faculty, Heinrich-Heine-University Düsseldorf,

Universitätsstr. 1, D-40225 Düsseldorf, Germany.

Tel.: +49 211 81 08609.

E-mail: georg.oeltzschner@med.uni-duesseldorf.de

- **Keywords:** Hepatic encephalopathy; MR spectroscopy; glutathione; ammonia; brain water content
- **Abbreviations:** HE, hepatic encephalopathy; GSx, total glutathione; GSH, reduced glutathione; GSSG, oxidized glutathione; OS, oxidative stress; CFF, critical flicker frequency; MRS, magnetic resonance spectroscopy; GABA, γ-aminobutyric acid; Glu, glutamate; Gln, glutamine; mI, myo-inositol; Cr, creatine; MEGA-PRESS; Mescher-Garwood point resolved spectroscopy; TR, repetition time; TE, echo time; FoV, field of view; CRLB, Cramér-Rao lower bounds; GM, grey matter; WM, white matter; CSF, cerebrospinal fluid.

Oeltzschner et al. – p. 2

Abstract

Introduction: Recent pathophysiological models suggest that oxidative stress and hyperammonemia lead to a mild brain oedema in hepatic encephalopathy (HE). Glutathione (GSx) is a major cellular antioxidant and known to be involved in the interception of both. The aim of this work was to study total glutathione levels in covert HE (minimal HE and HE grade 1) and to investigate their relationship with local brain water content, levels of glutamine (Gln), myo-inositol (mI), neurotransmitter levels, critical flicker frequency (CFF), and blood ammonia.

Materials and methods: Proton magnetic resonance spectroscopy (¹H MRS) data were analysed from visual and sensorimotor cortices of thirty patients with covert HE and 16 age-matched healthy controls. Total glutathione levels (GSx/Cr) were quantified with respect to creatine. Furthermore, quantitative MRI brain water content measures were evaluated. Data were tested for links with the CFF and blood ammonia. **Results:** GSx/Cr was elevated in the visual (mHE) and sensorimotor (mHE, HE 1) MRS volumes and correlated with blood ammonia levels (both P < 0.001). It was further linked to Gln/Cr and mI/Cr (P < 0.01 in visual, P < 0.001 in sensorimotor) and to GABA/Cr (P < 0.01 in visual). Visual GSx/Cr correlated with brain water content in the thalamus, *nucleus caudatus*, and visual cortex (P < 0.01). Brain water measures did neither show group effects nor correlations with CFF or blood ammonia.

Conclusions: Elevated total glutathione levels in covert HE (< HE 2) correlate with blood ammonia and may be a regional-specific reaction to hyperammonemia and oxidative stress. Brain water content is locally linked to visual glutathione levels, but appears not to be associated with changes of clinical parameters. This might suggest that cerebral oedema is only be marginally responsible for the symptoms of covert HE.

1. Introduction

Hepatic encephalopathy (HE) is a neuropsychiatric complication that frequently accompanies liver cirrhosis. Symptoms include impairment of cognitive, behavioural, and motor functions. Their severity varies, beginning with subtle changes in neuropsychometric test scores, i.e. the so-called minimal HE (mHE). Overt HE delineated by the West-Haven criteria (Ferenci et al. 2002) - reflects an increasing deterioration of the mental state from *HE 1* up to somnolence, stupor, and even hepatic coma (HE 4) (Butterworth 2000; Felipo 2013). Recently, a revised classification has been suggested to meet the substantial subjectivity in the assessment of clinical symptoms – most importantly the change of mental state – more appropriately, as especially the discrimination of minimal HE and HE 1 was not deemed satisfactory (Bajaj et al. 2011; Waghray et al. 2015). Rather than classifying patients as either minimal HE (without change of mental state) or overt HE (with change of mental state), the term *covert HE* was coined to define patients who present neuropsychometric changes, but do not exhibit clear clinical features of HE such as disorientation and motor symptoms like asterixis (Bajaj et al. 2011). According to the revised classification, covert HE comprises the mHE and HE 1 groups, and stands opposed to overt HE with clear exhibitions of the clinical symptoms (HE 2 – HE 4). The common thread in the complex and multi-factorial model of HE pathogenesis is ammonia. With the liver increasingly losing its filter function, the blood ammonia level rises. Finally, ammonia accumulates in the brain and triggers oxidative stress (OS), inflammation, and numerous other alterations regarding protein synthesis, receptor and transporter activity and metabolic pathways (Häussinger and Schliess 2008). In

Oeltzschner et al. – p. 4

addition, a global slowing of neural oscillations was described and suggested to underlie the global functional deficits in HE patients (Butz et al. 2013).

A low-grade cerebral oedema is believed to act as a mediator towards these functional impairments. Detoxification of ammonia in the astrocytes by glutamine synthetase (GS) causes glutamine (Gln) accumulation. This results in an osmotic gradient that may be partially balanced by release of myo-inositol (mI) from the astrocytes, but will induce cell swelling with increasing osmolyte depletion (Häussinger and Sies 2013). Both Gln increase and mI decrease have been consistently observed with magnetic resonance spectroscopy and linked to blood ammonia, HE severity, and diffusion parameters (Laubenberger et al. 1997; Miese et al. 2006). Using quantitative water mapping, small increases of white matter water content with increasing HE severity were demonstrated (Shah et al. 2008).

In a rodent model of chronic HE, cerebral oedema have recently been shown not to be elicited by either OS or hyperammonemia alone, but by synergistic effects of both (Bosoi et al. 2014a). A compound that is vitally involved in the adaptation to both OS and hyperammonemia is reduced glutathione (GSH), the most abundant antioxidant in the human brain. This tripeptide is capable of scavenging reactive oxygen species and thus decreasing OS (Bains and Shaw 1997). In the process, it converts to its oxidized form (GSSG) which can be recycled back for the replenishment of GSH by glutathione reductase to sustain the antioxidant potential of the cell. *In vitro* ammonia challenge experiments showed an increase of total glutathione levels (GSH+GSSG, henceforth labelled *GSx*) and stimulation of glutathione synthesis (Murthy et al. 2000; Wegrzynowicz et al. 2007) in cultured astrocytes, but total glutathione decrease and cell death in cultured neurons (Klejman et al. 2005). *In vivo* data from rodents showed that

hyperammonemia is associated with an increased glutathione synthesis and boosts export from the astrocytes to the extracellular space. This mechanism helps defending the otherwise unprotected neurons (Hilgier et al. 2010). Elevated total glutathione was also demonstrated *in vivo* in rodent cortex, cerebellum, and medulla after induced acute liver failure (Sathyasaikumar et al. 2007). In summary, glutathione is involved in the regulation and interception of the deleterious effects of oxidative stress and hyperammonemia. As both are prerequisites for the precipitation of cerebral oedema, total glutathione levels might be directly related to emergence, extent, and impact of brain water disturbances in HE.

Glutathione can be noninvasively detected and quantified *in vivo* with magnetic resonance spectroscopy (MRS) (Terpstra et al. 2002). Though optimized detection protocols do exist (Terpstra et al. 2003), it has been shown that reliable GSH levels can also be obtained from unedited subspectra of J-edited MEGA-PRESS acquisitions (Michels et al. 2014). These can provide sufficient signal-to-noise ratio, as they require comparably large MRS volumes for their routine use in quantification of gammaaminobutyric acid (GABA). This enabled us to re-analyse previously acquired GABAfocused MRS data, with attention to potential changes of total glutathione concentration in hepatic encephalopathy.

The aim of the present study was to re-analyse *in vivo* MR spectroscopy data from a population of HE patients and healthy controls, with focus on the role of total glutathione. Hence, it was intended to scrutinize whether the levels of this major antioxidant compound relate to clinical severity, ammonia load, or brain water content.

Ultimately, the role of glutathione in the regulation of hyperammonemia and oxidative stress in the pathophysiology of HE may be further elucidated.

To this end, we analysed total glutathione levels from a cohort of patients with covert hepatic encephalopathy (mHE and HE 1) and healthy controls, along with quantitative MR brain water content measures, blood ammonia, CFF, and their links to the levels of total glutathione, GABA, glutamate, glutamine, and myo-inositol.

2. Material and methods

The data under study stems from a recently acquired data set, which was analysed regarding GABA quantification previously (Oeltzschner et al. 2015). The study was performed conforming to the principles of the revised Declaration of Helsinki and approved by the local ethics committee (study number 3644). All recruited participants gave their full prior written informed consent before they participated.

2.1. Patients and healthy controls

Thirty patients with covert hepatic encephalopathy (defined as minimal HE or HE grade 1 (Bajaj et al. 2011)) and 16 healthy controls participated in this study. Patients were included if they had been diagnosed with clinically confirmed liver cirrhosis and minimal HE (Kircheis et al. 2002) or HE of grade 1. Healthy controls were enrolled in a third group to age-match the two patient groups.

Patients and controls were excluded if they suffered from any severe internal, neurological or psychiatric diseases other than HE, peripheral or retinal neuropathy, or reported use of psychoactive substances. Participants with reported alcohol dependency in their medical history needed to remain abstinent for at least 4 weeks prior before the study. Additional exclusion criteria were pregnancy and blood clotting dysfunction.

2.2 HE grading

HE severity was categorized according to the *West-Haven* criteria with psychometric testing and a clinical assessment of the mental state and consciousness by an experienced clinician including the assessment of the critical flicker frequency (CFF). The CFF was assessed as it has been demonstrated by several groups to be a reliable complementary parameter for the diagnosis and monitoring of HE severity. It allows indexing HE severity in a fine-graded manner accounting for the continuous nature of HE progression (Kircheis et al. 2002; Romero-Gómez et al. 2007; Sharma et al. 2007; Torlot et al. 2013). In addition, it has been shown to reflect both oscillatory brain activity in different brain regions and behavioural performance (Butz et al. 2013), e.g. motor performance (Butz et al. 2010) and somatosensory perception (Brenner et al. 2015).

For the psychometric testing, five batteries of computer-based neuropsychological tests from the Vienna Test System (Dr. Schuhfried GmbH, Mödling, Austria) were performed by each individual and revealed 22 age-validated scores reflecting cognitive and motor performance (reported as percentage ranks from comparison with agematched control cohorts). If a parameter value deviated more than 1 σ from the mean of the control cohort, it was considered *abnormal*. Patients with no clinical symptoms of manifest HE, but more than 2 abnormal psychometric scores, were classified as *mHE* (minimal HE) (Kircheis 2002). Additionally, all participants underwent standard blood tests including measurement of venous ammonia levels. Two participants (1 mHE, 1 HE 1) were excluded after assessment due to positive blood ethanol testing on the day of recording. One participant (initially classified as HE 1) had to be excluded due to imprecise patient files. The remaining population under study is characterized in **Table 1**.

	n	male / female	Age [y]	CFF [Hz]	Etiology of cirrhosis
Contr.	16	7/9	60.1 ± 8.7	41.6 ± 4.0	-
					7 ALC, 4 CRYP,
mHE	13	8 / 5	55.7 ± 8.5	39.4 ± 3.2	
					1 HBV, 1 AI
					7 ALC, 3 CRYP,
HE 1	14	10/4	61.6 ± 7.6	34.5* ± 3.1	
					2 NASH, 1 HCV, 1 PSC

Table 1: Healthy control (Contr.) and patient populations. Asterisks indicate significant differences of HE 1 group from mHE and from controls (Kruskal-Wallis test, both P < 0.001). AI = autoimmune, ALC = alcoholic, CRYP = cryptogenic, HBV = hepatitis B virus, HCV = hepatitis C virus, NASH = non-alcoholic steatohepatitis, PSC = primary sclerosing cholangitis.

2.3. MR measurements

MR data collection was performed on a clinical 3T whole-body MRI scanner (Siemens MAGNETOM Trio A TIM System, Siemens Healthcare AG, Erlangen, Germany) with a 12-channel head matrix coil.

2.3.1. MR spectroscopy

 T_1 -weighted planning sequences were used to localize MRS volumes in distinct anatomical positions (please see (Oeltzschner et al. 2015) for a detailed image). The "visual" spectroscopic volume was placed in the central occipital lobe. One "sensorimotor" volume in each hemisphere was placed on the "*hand knob*" (Yousry et al. 1997) to include both sensory and motor cortex areas. MEGA-PRESS (Mescher et al. 1998) spectra were acquired from these volumes (no. of excitations = 192, TR = 1500 ms, TE = 68 ms, V = $3 \times 3 \times 3$ cm³, bandwidth = 1200 Hz, 1024 data points). Gaussian (bandwidth 44 Hz) pulses irradiated at 1.9 ppm and 7.5 ppm were employed for frequency selective spectral editing.

Creatine-normalized measures of total glutathione (GSx/Cr), glutamine (Gln/Cr), glutamate (Glu/Cr), and myo-inositol (mI/Cr) were obtained with LCModel version 6.3 (Provencher 2001) by linear composition of the unedited MEGA-PRESS spectra (*OFF* resonance) into its spectral components (**Fig. 1**). Their variance was provided by LCModel as CRLB (Cramér-Rao lower bounds).

Sensorimotor data were calculated by averaging the metabolite-to-creatine ratios from both hemispheres. If acquisition was unsuccessful or evaluation failed for one side, the estimate from the remaining side was used for further analysis.

Fig. 1 Linear decomposition of an unedited (OFF resonance) MEGA-PRESS spectrum into its spectral components with LCModel. Metabolite levels were subsequently normalized to the creatine signal.

MEGA-PRESS difference spectra were processed with GANNET 2.0 (Edden et al. 2014), performing frequency and phase correction and Gaussian fitting of the 3 ppm GABA resonance to output the GABA-to-creatine ratio (GABA/Cr), which was used for further analysis.

2.3.2. Mapping of cerebral water content

Quantitative water content maps of the brain were created with an in-house developed MATLAB routine (The Mathworks Inc., Natick/MA) that has been published and applied in hepatic encephalopathy patients before (Neeb et al. 2006b; Shah et al. 2008; Neeb et al. 2008). Data acquisition included two gradient echo (GRE) sequences (FoV 256×192 mm, 256x192 matrix, slice thickness = 2 mm, gap = 1 mm, 50 slices) and three echo planar imaging (EPI) sequences (TE = 16 ms, FoV 256×192 mm, 64×48 matrix, slice thickness = 2 mm, gap = 1 mm, 50 slices): i) GRE for backwards extrapolation of the initial water magnetization (TR = 2140 ms, 8 echoes with TE = 4/9/14/19... ms); ii) GRE for T_1 mapping (TR = 638 ms, 2 echoes with TE = 4/9 ms); iii) EPI (90° flip angle); iv) EPI (30° flip angle); and v) EPI (30° flip angle, acquired with the body coil as receiver coil) to account for coil and B_1 field inhomogeneities. Transversal T_1 -weighted 3D magnetization prepared gradient echo (MP RAGE, TR / TE = 1950 / 4.6 ms, FoV 256×192 mm, 256×192 mm, 256×192 matrix, slice thickness 1 mm, 176 slices) images were acquired at the end of the measurement.

Structural data were segmented into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) with the 'New Segment' tool of SPMv8. The quantitative water maps of each participant were co-registered to the respective structural and subsequently evaluated in three different ways:

i) Global analysis: Average water contents for GM and WM were computed across all voxels with a respective tissue probability of >0.9 to circumvent partial volume effects.
ii) Spectroscopic volume analysis: The MR spectroscopic volume parameters were transformed into a binary mask that was subsequently co-registered to the structural with a custom-made MATLAB routine (Dr. Nia Goulden, Dr. Paul Mullins, Bangor

University, http://biu.bangor.ac.uk/projects.php.en, modified to process Siemens file format). Fractions of GM, WM, and CSF and their respective average water contents were calculated for each volume.

iii) Interactive ROI analysis: 10 individual regions of interest (ROI) were interactively defined in the *nucleus caudatus*, putamen, *globus pallidus*, thalamus, *corpus callosum*, *centrum semiovale*, prefrontal and occipital white matter, visual, and prefrontal cortex.
The ROIs were drawn on the individual structural maps as they offer improved contrast compared to the quantitative water maps.

2.4. Statistics

All statistical computations were performed with IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA).

Non-parametric Kruskal-Wallis one way analysis of variance for independent samples was used to assess differences of metabolite levels, tissue fractions (GM, WM, CSF) and brain water content parameters between the participant groups (controls, mHE, and HE 1). Post-hoc tests with Dunn-Bonferroni correction for multiple comparisons were performed to give adjusted *P* values. Group differences were significant if adjusted P < 0.05.

Mutual bivariate two-tailed Spearman's rank correlation analysis was conducted to test for relations between tissue fractions (GM, WM, CSF) of the spectroscopic volumes and their metabolite or tissue-specific water content measures, including Benjamini-Hochberg false discovery rate (FDR) correction at $\alpha = 0.05$.

Partial two-tailed correlation analysis was used to investigate relationships between CFF (including correction for age) and metabolite levels. Bivariate two-tailed Spearman's rank correlation analysis was used to discover links between metabolite levels, brain water content measures, and blood ammonia, with application of Benjamini-Hochberg false discovery rate (FDR) correction at $\alpha = 0.05$ to account for multiple comparison.

Mutual bivariate two-tailed Spearman's rank correlation analysis was performed for GSx/Cr, Gln/Cr, mI/Cr, Glu/Cr, and GABA/Cr to investigate their interdependencies (separately for the sensorimotor and visual MRS data), including Benjamini-Hochberg false discovery rate (FDR) correction at $\alpha = 0.05$.

3. Results

Out of 43 participants, metabolite-to-creatine estimates from the unedited visual spectra could be obtained in all but 3 participants (2 controls, 1 mHE). Visual GABA-to-creatine estimates were obtained in all but 4 individuals (2 controls, 2 mHE). Unedited sensorimotor spectra could not be analysed in one healthy control. Sensorimotor GABA-to-creatine estimates were obtained in all but 3 individuals (2 controls, 1 mHE). Data from only one hemisphere was used for one unedited spectrum (1 mHE) and eight GABA difference spectra (4 controls, 2 mHE, 2 HE 1).

No significant differences between males and females were observed. Moreover, no correlations of any metabolite measure with tissue volume fractions within the spectroscopic volumes were observed. Tissue fractions did not differ between controls, mHE or HE 1 groups, indicating that individual tissue composition did not influence the observation of HE-related metabolite findings.

3.1. MR spectroscopy

Results of the group analysis and correlation analysis of total glutathione (GSx/Cr) with CFF and blood ammonia are summarized in **Table 2**.

	Controls	mHE	HE 1	vs. CFF		vs. blood	
GSx/Cr	mean	mean	mean	[Hz]		ammonia [µg/dl]	
	(+/- SD)	(+/- SD)	(+/- SD)	r	P	r	Р
visual	0.199	0.260*	0.235	276	.089	.578	<.001
	(0.030)	(0.071)	(0.055)	270			
sensori	0.184	0.248**	0.242**	- 312	.047	.575	< 001
motor	(0.028)	(0.052)	(0.048)	312			<.001

Table 2: Total glutathione levels (expressed as ratios to creatine) measured with

magnetic resonance spectroscopy in hepatic encephalopathy. Asterisks indicate significant differences from controls (Kruskal-Wallis test, * P < 0.05, ** P < 0.01). No significant differences were observed between mHE and HE 1 groups. Bold figures indicate significant correlations (P < 0.05).

3.1.2. Glutamine

Visual and sensorimotor Gln/Cr levels were significantly elevated in the mHE and HE 1 groups. Gln/Cr correlated negatively with CFF (visual: r = -.497, P = .001,

sensorimotor: r = -.505, P = .001) and positively with blood ammonia (visual: r = .429,

P = .006, sensorimotor: r = .632, P < .001).

3.1.3. myo-Inositol

mI/Cr levels in the visual and sensorimotor areas were decreased significantly in the mHE and HE 1 groups compared to the control group. A positive correlation of mI/Cr with CFF (visual: r = .473, P = .002, sensorimotor: r = .516, P = .001) and a negative
correlation with blood ammonia (visual: r = -.456, P = .004, sensorimotor: r = -.505, P = .001) were observed.

3.1.4. GABA

Visual GABA/Cr levels were significantly reduced in the mHE and the HE 1 group compared to controls. Additionally, visual GABA/Cr correlated positively with CFF (r = .401, P = .013) and negatively with blood ammonia (r = -.434, P = .006). No group differences or correlations could be revealed for the sensorimotor GABA/Cr levels.

3.1.5. Glutamate

Levels of Glu/Cr did not exhibit significant differences in mHE or HE 1 compared to controls or correlations with CFF or blood ammonia. This was true both for the visual and for the sensorimotor areas.

3.1.6 Cross correlations of metabolites

Cross analysis of the visual metabolite levels resulted in several findings (Table 3).

	mI/Cr	Gln/Cr	GABA/Cr	Glu/Cr
GSx/Cr	r = -	r = .493	r =451	r = -
	.452	P = .002	<i>P</i> = .006	.047
	<i>P</i> =			P = .782
	.004			
mI/Cr		r = -	r = .720	r = .415
		.751	<i>P</i> < .001	<i>P</i> = .009
		<i>P</i> < .001		
Gln/Cr			r =699	r = -
			<i>P</i> < .001	.288
				P = .079
GABA/Cr				r = .189

			P = .270
--	--	--	----------

 Table 3: Metabolite cross-correlations in the visual MRS volume. Bold figures

 indicate significant correlations (after Benjamini-Hochberg false discovery

 rate correction).

GSx/Cr correlated negatively with mI/Cr and GABA/Cr, and positively with Gln/Cr. mI/Cr was negatively associated with Gln/Cr and Glu/Cr, and positively correlating with GABA/Cr. Gln/Cr correlated negatively with GABA/Cr. In the sensorimotor MRS volume, GSx/Cr correlated negatively with mI/Cr (r = -.544, P < .001) and positively with Gln/Cr (r = .726, P < .001) which were in turn anticorrelated to each other (r = -.757, P < .001).

3.2. Brain water content

Three individuals (1 control, 1 mHE, 1 HE 1) cancelled the measurements before the watermapping sequences. For 12 participants (4 controls, 3 mHE, 5 HE 1), reconstruction of reliable water maps failed or yielded very noisy maps which were excluded after visual inspection.

Average brain water measures for the healthy control population were 71.6 \pm 1.5 % for white matter and 81.9 \pm 1.8 % for gray matter. These results are within the range of previously published values obtained with a comparable watermapping method (70.9 \pm 1.1 % and 81.2 \pm 1.2 % (Neeb et al. 2006b), 70.3 \pm 1.4 % and 79.7 \pm 2.0 % (Neeb et al. 2006a), 70.8 \pm 1.2 % in WM (Shah et al. 2008)). Representative maps (healthy control no. 0573 and patient no. 582) are depicted in **Fig. 2**.

Fig. 2: Exemplary colour-coded brain water content map of a healthy control (left, female, 58 years) and HE patient (right, female, 58 years). The colour bar indicates the brain water content with respect to 100% (pure water).

Quantitative brain water content analysis did not yield any significant group effects or correlations with blood ammonia or CFF. This was true for the global, the MRS volume, and the ROI analyses (**Table 4**).

water content (%)	Controls	mHE	HE 1		vs. CF	FF [Hz]		vs. blood ammonia [µg/dl]	
	mean (+/- SD)	mean (+/- SD)	mean (+/- SD)		r	P		r	Р
global									
white matter	71.6 (1.5)	71.6 (1.5)	72.1 (1.3)		.136	.483		.028	.884
grey matter	81.9 (1.8)	82.9 (1.9)	82.6 (0.7)		.176	.370		.185	.345
MRS volume									
WM motor	71.6 (1.4)	71.4 (1.5)	71.7 (1.2)		.220	.261		025	.899
GM motor	83.7 (1.9)	84.2 (2.3)	83.3 (1.4)		.291	.134		050	.799
WM visual	74.3 (1.4)	75.3 (2.0)	74.4 (1.2)		.253	.213		.001	.996
GM visual	84.0 (1.8)	85.8 (2.7)	84.7 (1.0)		.113	.583		.052	.801
ROI analysis									

Nucleus caudatus	82.2 (1.4)	82.9 (2.5)	82.5 (2.9)	.132	.504	.106	.592
Putamen	81.8 (1.5)	81.8 (2.3)	81.9 (1.6)	.145	.461	.084	.672
Globus pallidus	75.2 (1.7)	75.4 (2.3)	76.7 (1.9)	328	.088	.183	.352
Thalamus	79.1 (1.2)	78.8 (2.2)	79.1 (2.0)	.030	.878	.214	.275
Corpus callosum	73.7 (3.0)	73.1 (2.3)	73.6 (2.1)	.313	.105	.050	.800
Centrum semiovale	71.7 (1.5)	71.5 (1.6)	71.9 (1.8)	.137	.486	020	.918
Prefrontal WM	71.4 (1.3)	72.3 (3.0)	72.9 (2.8)	006	.977	030	.883
Occipital WM	70.9 (1.1)	71.5 (2.2)	71.2 (1.7)	.264	.175	088	.655
Visual cortex	81.6 (2.1)	83.2 (3.4)	81.8 (2.0)	.141	.473	.152	.441
Prefrontal cortex	83.3 (1.5)	84.0 (3.3)	83.2 (1.8)	067	.733	060	.764

 Table 4: Results of quantitative brain water content measurement.
 Correlation

 analysis included patient and controls groups.
 Controls groups.

3.3. Correlation of brain water content and MR spectroscopy

Visual GSx/Cr correlated with thalamic (r = .694, P < .001), *nucleus caudatus* (r = .578, P = .001), and visual cortex (r = .573, P = .001) water content. No correlations of GM or WM water content in the visual MRS volume with the tissue fractions of GM, WM, or CSF were found, indicating that underlying tissue composition effects were not responsible for these observations.

Further correlations between metabolite levels and cerebral water measures were observed, but did not reach significance after correcting for multiple comparisons: Visual GSx/Cr correlated with global GM water content (r = .419, P = .030). Sensorimotor GABA/Cr correlated negatively with water content in the putamen (r = .458, P = .013), global WM (r = ..445, P = .015), visual cortex (r = ..386, P = .038), and prefrontal cortex (r = ..397, P = .033). Visual GABA/Cr was not linked to any water content parameter at all. Sensorimotor Glu/Cr correlated with water content in the corpus callosum (r = .391, P = .036).

Water content in the *globus pallidus* was associated with visual Gln/Cr (r = .414, P = .028), sensorimotor Gln/Cr (r = .378, P = .043), and sensorimotor GSx/Cr (r = .468, P = .010).

4. Discussion

In this study, we re-evaluated proton magnetic resonance spectroscopy data from HE patients with respect to glutathione. We used these data and quantitative brain water content imaging to investigate the interrelations of blood ammonia levels, total glutathione (GSH+GSSG or GSx) levels in the brain, low-grade cerebral oedema, neurotransmitter concentrations, and clinical symptoms of covert hepatic encephalopathy (i.e. minimal HE and HE of grade 1).

To our knowledge, we report the first *in vivo* MR spectroscopic estimates of GSx/Cr as a measure of total glutathione (GSH+GSSG) in HE patients. The principal findings are an increase of GSx/Cr in patients with mHE (sensorimotor and visual areas) and HE 1 (sensorimotor), and its positive association with blood ammonia levels. Moreover, GSx/Cr is linked to measures of the osmolytic compounds glutamine (Gln/Cr) and myoinositol (mI/Cr). Brain water content measures did not exhibit significant changes in covert HE, and showed only a few correlations with total glutathione, but not with MRS measures of other metabolites.

4.1 Increased total glutathione levels in HE

The observed elevation of total glutathione levels, tightly coupled to ammonia, tallies with several previous findings. Murthy and colleagues observed a 1.5-fold increase of GSH and a 5-fold increase of GSSG in cells and medium of cultured cortical astrocytes

that were treated with 5 mM ammonia chloride. The fraction of GSSG in total glutathione was rather small (16% in medium, <1% in cells) (Murthy et al. 2000). The effect was found to be dependent on ammonia concentration by Wegrzynowicz and colleagues who measured higher total glutathione after incubation of higher ammonium chloride doses (Wegrzynowicz et al. 2007). Experiments using the rodent models of HE reported further evidence. In vivo administration of ammonia raised total glutathione levels in the prefrontal cortex of rats, presumably by upregulated synthesis in astrocytes (Wegrzynowicz et al. 2007). Sathyasaikumar et al. measured increased levels of both glutathione forms. GSH elevation was attributed to increased gamma-glutamylcysteine synthetase activity. The increase in GSSG was suggested to be caused by both reactive oxygen species consumption and reduced activity of glutathione reductase, thereby impairing the recycling of oxidized to reduced glutathione (Sathyasaikumar et al. 2007). Hilgier and colleagues demonstrated increased extracellular glutathione in the rat prefrontal cortex, suggesting that excess ammonia stimulates GSH synthesis in the astrocytes, and further increases its degradation in the extracellular space. This is thought to boost the availability of GSH precursors to the neurons, effectively improving their defensive capability against ammonia neurotoxicity (Hilgier et al. 2010). Together with these findings, our data suggest that a similar activation of the glutathione defence system may be involved in the interception of hyperammonemia in patients with hepatic encephalopathy. More detailed and separate investigation of GSH and GSSG behaviour under hyperammonemia in the human brain might provide further insight.

The observed increase of visual GSx/Cr in HE 1 patients is not significant. A partial volume effect due to the higher fraction of white matter (~60%) in the sensorimotor MRS volume compared to the visual MRS volume (~30%) would imply that the interception process is majorly localized in white matter astrocytes. This is less likely, as the referenced experiments employed cultures from cortical astrocytes or investigated cortical areas in rodents. The variability in the glutathione increase may rather point towards a regional dependence of the mechanisms responsible for the reaction of the glutathione system. Similar region specific alterations have been observed for neurotransmitter systems in HE (Cauli et al. 2009; Llansola et al. 2014). Again, additional studies looking into glutathione behaviour in distinct brain regions may help clarifying the underlying mechanisms.

Further investigations into regional glutathione changes in HE might also be desirable in light of the correlations that visual GSx/Cr demonstrates with brain water content in the thalamus, *nucleus caudatus*, and visual cortex. Although all three regions did not exhibit significant group differences in brain water content or correlations with CFF and blood ammonia, they may be sensitive to oxidative stress (OS) and mediate HE-related functional impairment. Especially the thalamus is involved in the slowed oscillatory coupling within the motor system related to mini-asterixis (Timmermann et al. 2003) and shows abnormal functional connectivity in mHE (Qi et al. 2013a). Several studies could further verify increased thalamic volume in mHE, arguing that this may be a compensatory mechanism to counter the malfunctions in other brain regions (Qi et al. 2013b; Tao et al. 2013). HE-related alterations in the *nucleus caudatus* have been less frequently observed; one study confirmed a negative correlation between its T_1 relaxation time and blood ammonia levels, potentially a combined effect of manganese deposition and ammonia (Shah et al. 2003). Functional implications of structural alterations within *nucleus caudatus* remain, however, speculative.

Water content in the visual cortex notably correlates with visual GSx/Cr, which is anticorrelated with visual GABA/Cr. As visual GABA/Cr is in turn not correlated to visual cortex water content, but to CFF (Oeltzschner et al. 2015), low-grade oedema are less likely to directly affect visual performance. This may be in line with rodent experiments, in which cognitive and motor impairment occurred even without presence of cerebral oedema and instead possibly due to altered neurotransmission (Cauli et al. 2014; Llansola et al. 2014).

Interestingly, water content in the *globus pallidus* did not exhibit correlations with the CFF (despite a trend at P = 0.088) or blood ammonia in our study, although it has been a promising candidate in earlier quantitative imaging studies (Shah et al. 2003; Shah et al. 2008). Future MR spectroscopic experiments in the basal ganglia regions may shed light on the subcortical interactions of ammonia, glutathione, osmolytes, and HE severity.

4.2 The role of brain water content in HE

It is debatable why the results from our experiments can only partly reproduce the relationships between disease grade, CFF, and the cerebral water content that were previously demonstrated by Shah and colleagues using a 1.5 T MR scanner (Shah et al.

2008). An influence of magnetic field strength is unlikely, as water content estimates at 1.5 T and 3 T have been shown to be consistent (Abbas et al. 2015).

First and foremost, it is striking that our WM water content results are in good agreement with the results of Shah and colleagues for the mHE (71.6 % vs. 71.6 %) patients, while they are ~0.7 percentage points higher for controls (71.6 % vs. 70.9 %) and ~0.8 percentage points lower for HE 1 (72.1 % vs. 72.9 % from the overt HE group). The study population of Shah et al. included three patients with disease grade HE 2 which were subsequently pooled with ten HE 1 patients to form an "overt HE" group following earlier terminology. The HE-related changes found in cerebral water content (global white matter: +0.4 % for HE-0, +0.8 % for mHE, +2.1 % for overt HE; globus pallidus: +0.3 % for HE-0, +0.1 % for mHE, +1.9 % for overt HE) were relatively low compared to its inter-individual variance (global white matter: 1.2 % for controls, globus pallidus: 2.2 % for controls). Since most group differences were significant for the overt HE group only, one might speculate that the three HE 2 patients strongly impacted the group averages and were responsible for the observed effects. The absence of correlations between brain water measures and CFF or blood ammonia in our study might further suggest that the actual functional involvement of subtle brain water changes is rather small within early stages (< HE 2) of chronic HE. As stated above, a similar conclusion has recently been suggested by Cauli and co-workers after showing the occurrence of motor and cognitive deficits in chronic HE rats in absence of cerebral oedema (Cauli et al. 2014). Recent rodent experiments even suggest that cerebral lactate rather than glutamine might be a more important actor in the pathogenesis of cerebral oedema in HE (Bosoi et al. 2014b; Bosoi and Rose 2014).

Regarding potential population sampling errors, it is noteworthy that 6 out of 16 of our controls showed a CFF below the value of 39 Hz which was suggested as a cut-off to identify HE (Kircheis et al. 2014). An alternative threshold of 38 Hz, however, has previously been suggested (Romero-Gómez et al. 2007). The average CFF across controls in our study was 41.6 Hz (Shah et al.: 43.2 Hz). The higher mean age of our controls (60.1 y vs. 52.6 y in Shah et al.) might account for the CFF differences as CFF is known to be age-dependent. When performing the partial correlations with CFF, we observed that white matter water content measures across all participants correlated positively with age, although WM water content has previously been demonstrated not to vary with age in a cohort of healthy volunteers (Neeb et al. 2006a). As age was not included as a covariant in the correlation analysis by Shah et al., this may indicate that increase of white matter water content with age appears in HE patients only. This could explain the correlations between CFF and white matter water content that were observed by Shah and colleagues. Yet, in our study, the average WM water content in controls did not yield lower values even after we only included controls with CFF >39 Hz into the analysis.

Finally, its comparably high inter-individual variability gives rise to the thought that individual brain water content may not be a suitable indicator for HE severity. This is noteworthy, considering that osmotic regulation plays a vital part in the pathogenesis of HE, as is suggested by the consistently observed roles of glutamine and myo-inositol. Last but not least, MR brain water imaging is a measure of free bulk tissue water, and it is not capable of discerning between extracellular and intracellular water or detecting water bound to, for instance, macromolecules. Based on our data, it is hence not possible to rule out the emergence of a low-grade cerebral oedema in covert HE or its potential importance for HE progression. It might just be that the ratio of extracellular and intracellular water changes due to a low-grade oedema while the total amount of water content remains widely unchanged, or that the changes are subtle and below the detection threshold of the method at hand. This might be particularly the case in covert HE, but also remains to be investigated in more detail in overt HE. Considering these aspects, future studies are needed to further enlighten the role of cerebral oedema in HE. To this end, e.g. it might be valuable to design a longitudinal study approach. As HE patients are known to vary in their disease grade and degree of symptoms within weeks, repeated measurements of water content and brain metabolites could provide more detailed insight into individual short-term mechanisms of cerebral water homoeostasis and the impact of low-grade oedema formation.

4.3 Glutamine and myo-inositol

HE-related increase of glutamine and simultaneous depletion of myo-inositol has been observed in numerous studies (Laubenberger et al. 1997; Shawcross et al. 2004; Miese et al. 2006). Increase of glutamine has also been reported in patients in remission from alcohol use disorder (Thoma et al. 2011) and may drive the Gln increase in cirrhosis patients. In our data, however, no differences in Gln/Cr between alcoholic and nonalcoholic HE patients (see Table 1 for etiology details) were observed. This was true for both the sensorimotor and the visual data, in the mHE group as well as in the HE 1 group, suggesting that Gln is consistently elevated in HE, regardless of its etiology.

4.4 Limitations

Importantly, the MEGA-PRESS protocol used in this study is optimized for GABA detection and quantification, but not for measuring glutathione. Nevertheless, Cramér-Rao lower bounds (CRLB) – a parameter widely seen as quality criterion for MRS experiments – for GSx/Cr were on average <10% for both the sensorimotor and the visual volume in our study. This suggests sufficient sensitivity and reliable measurability, and may result from the relatively large MRS volume providing good signal-to-noise ratio, together with the spectral fitting approach using linear combination of metabolite basis sets. Optimized MRS protocols (Terpstra et al. 2003) may be employed in the future to enhance the reliability of glutathione quantification and confirm our results.

The MRS contribution of oxidized glutathione (GSSG) is assumed to be negligible in healthy human brain under normal physiological circumstances (Terpstra et al. 2003; Terpstra et al. 2006). The previous experiments with cultured astrocytes and rodents in the HE model (Murthy et al. 2000; Sathyasaikumar et al. 2007; Wegrzynowicz et al. 2007) have shown that the magnitude of increase of GSSG was notably higher than the increase of GSH, so that this assumption may not be valid any more in HE. Therefore, an important limitation of the present study may be the inability to discern the different functional pools of total glutathione. Other than the GSH/GSSG ratio, measures of total glutathione (obtained with PRESS) may thus not reflect the total level of OS or its fraction that is actually intercepted by the glutathione system. This might be different for MRS protocols that employ J-editing techniques (Satoh and Yoshioka 2006). The sufficiency with which glutamine and glutamate can be separated from 68 ms PRESS spectra at 3T is a concern. Analysis of a similar 72 ms STEAM acquisition has been shown to provide reasonable variability (13.8 %) and average CRLBs <8% (Wijtenburg and Knight-Scott 2011). In comparison, our LCModel fits of visual Glu yielded CRLBs as low as 12.6 ± 4.9 % (Gln: 17.2 ± 15.0 %). Considering that a CRLBs cut-off of 20% is routinely used for quality management in MRS experiments, separate quantification of Gln and Glu therefore appears feasible. The higher average Gln variability was mainly driven by the control group that exhibited comparably low Gln concentrations and accordingly higher CRLBs.

A potential source of error in the quantitative brain water content measurement originates in the interactive definition of ROIs, since it is clearly prone to additional inter-rater variability. While structures like the putamen or the *nucleus caudatus* are comparably well-defined, it is more challenging to reliably delineate areas such as the prefrontal cortex or the occipital white matter. Moreover, the areas close to the cortex boundaries may particularly suffer from partial volume effects that distort the water content estimations. However, this might add variance in the estimate of the respective regions, but should be independent of the disease grade.

5. Conclusions

In this work, we analysed MR spectroscopic data of healthy controls and patients suffering from covert HE with respect to total glutathione. GSx/Cr was significantly changed in patients, with links to concentrations of the osmolytic compounds glutamine and myo-inositol. Furthermore, it was associated with blood ammonia levels. This gives rise to the assumption that it is part of the reaction to OS induced by hyperammonemia.

Brain water content measures were neither changed in covert HE nor correlated to CFF, blood ammonia, neurotransmitter or brain osmolyte levels, suggesting that cerebral oedema have only subtle functional impact in these patients. However, few correlations with visual GSx/Cr might indicate region-specific relationships between cerebral oedema and OS.

Acknowledgements

The authors would like to thank Dr. James Murdoch (Toshiba Medical Research Institute USA) for providing the LCModel basis set, Nur-Deniz Füllenbach and Dr. Gerald Kircheis (Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf) for support with patient recruitment, psychometry, and HE grading, and Erika Rädisch (Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf) for help with MR measurements.

Funding

This work has been supported by the Sonderforschungsbereich (SFB) 974 of the Deutsche Forschungsgemeinschaft (DFG).

Conflict of interest

The authors declare that they have no conflict of interest.

References

- Abbas Z, Gras V, Möllenhoff K, et al (2015) Quantitative water content mapping at clinically relevant field strengths: A comparative study at 1.5 T and 3 T. NeuroImage 106:404–413. doi: 10.1016/j.neuroimage.2014.11.017
- Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335– 358. doi: 10.1016/S0165-0173(97)00045-3
- Bajaj JS, Cordoba J, Mullen KD, et al (2011) Review article: the design of clinical trials in hepatic encephalopathy – an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment Pharmacol Ther 33:739–747. doi: 10.1111/j.1365-2036.2011.04590.x
- Bosoi CR, Rose CF (2014) Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 29:919–925. doi: 10.1007/s11011-014-9573-9
- Bosoi CR, Tremblay M, Rose CF (2014a) Induction of systemic oxidative stress leads to brain oedema in portacaval shunted rats. Liver Int 34:1322–1329. doi: 10.1111/liv.12414
- Bosoi CR, Zwingmann C, Marin H, et al (2014b) Increased brain lactate is central to the development of brain edema in rats with chronic liver disease. J Hepatol 60:554–560. doi: 10.1016/j.jhep.2013.10.011
- Brenner M, Butz M, May ES, et al (2015) Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol Scand 132:156–163. doi: 10.1111/ane.12376
- Butterworth RF (2000) Complications of cirrhosis III. Hepatic encephalopathy. J Hepatol 32, Supplement 1:171–180. doi: 10.1016/S0168-8278(00)80424-9
- Butz M, May ES, Häussinger D, Schnitzler A (2013) The slowed brain: Cortical oscillatory activity in hepatic encephalopathy. Arch Biochem Biophys 536:197– 203. doi: 10.1016/j.abb.2013.04.004
- Butz M, Timmermann L, Braun M, et al (2010) Motor impairment in liver cirrhosis without and with minimal hepatic encephalopathy. Acta Neurol Scand 122:27– 35. doi: 10.1111/j.1600-0404.2009.01246.x
- Cauli O, Llansola M, Agustí A, et al (2014) Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver Int 34:379–387. doi: 10.1111/liv.12258
- Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia Increases GABAergic Tone in the Cerebellum but Decreases It in the Rat Cortex. Gastroenterology 136:1359–1367.e2. doi: 10.1053/j.gastro.2008.12.057

- Edden RAE, Puts NAJ, Harris AD, et al (2014) Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 40:1445–1452. doi: 10.1002/jmri.24478
- Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858. doi: 10.1038/nrn3587
- Ferenci P, Lockwood A, Mullen K, et al (2002) Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35:716–721. doi: 10.1053/jhep.2002.31250
- Häussinger D, Schliess F (2008) Pathogenetic mechanisms of hepatic encephalopathy. Gut 57:1156–1165. doi: 10.1136/gut.2007.122176
- Häussinger D, Sies H (2013) Hepatic encephalopathy: Clinical aspects and pathogenetic concept. Arch Biochem Biophys 536:97–100. doi: 10.1016/j.abb.2013.04.013
- Hilgier W, Węgrzynowicz M, Ruszkiewicz J, et al (2010) Direct Exposure to Ammonia and Hyperammonemia Increase the Extracellular Accumulation and Degradation of Astroglia-Derived Glutathione in the Rat Prefrontal Cortex. Toxicol Sci 117:163–168. doi: 10.1093/toxsci/kfq171
- Kircheis G, Hilger N, Häussinger D (2014) Value of Critical Flicker Frequency and Psychometric Hepatic Encephalopathy Score in Diagnosis of Low-Grade Hepatic Encephalopathy. Gastroenterology 146:961–969. doi: 10.1053/j.gastro.2013.12.026
- Kircheis G, Wettstein M, Timmermann L, et al (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35:357–366. doi: 10.1053/jhep.2002.30957
- Klejman A, Węgrzynowicz M, Szatmari EM, et al (2005) Mechanisms of ammoniainduced cell death in rat cortical neurons: Roles of NMDA receptors and glutathione. Neurochem Int 47:51–57. doi: 10.1016/j.neuint.2005.04.006
- Laubenberger J, Haussinger D, Bayer S, et al (1997) Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616. doi: 10.1016/S0016-5085(97)70043-X
- Llansola M, Montoliu C, Agusti A, et al (2014) Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int 88:15–19. doi: 10.1016/j.neuint.2014.10.011
- Mescher M, Merkle H, Kirsch J, et al (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272. doi: 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J

- Michels L, Schulte-Vels T, Schick M, et al (2014) Prefrontal GABA and glutathione imbalance in posttraumatic stress disorder: Preliminary findings. Psychiatry Res Neuroimaging 224:288–295. doi: 10.1016/j.pscychresns.2014.09.007
- Miese F, Kircheis G, Wittsack HJ, et al (2006) 1H-MR Spectroscopy, Magnetization Transfer, and Diffusion-Weighted Imaging in Alcoholic and Nonalcoholic Patients with Cirrhosis with Hepatic Encephalopathy. Am J Neuroradiol 27:1019–1026.
- Murthy CRK, Bender AS, Dombro RS, et al (2000) Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. Neurochem Int 37:255– 268. doi: 10.1016/S0197-0186(00)00028-0
- Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. NeuroImage 42:1094–1109. doi: 10.1016/j.neuroimage.2008.03.060
- Neeb H, Zilles K, Shah NJ (2006a) A new method for fast quantitative mapping of absolute water content in vivo. NeuroImage 31:1156–1168. doi: 10.1016/j.neuroimage.2005.12.063
- Neeb H, Zilles K, Shah NJ (2006b) Fully-automated detection of cerebral water content changes: Study of age- and gender-related H2O patterns with quantitative MRI. NeuroImage 29:910–922. doi: 10.1016/j.neuroimage.2005.08.062
- Oeltzschner G, Butz M, Baumgarten TJ, et al (2015) Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. Metab Brain Dis. doi: 10.1007/s11011-015-9729-2
- Provencher SW (2001) Automatic quantitation of localized in vivo1H spectra with LCModel. NMR Biomed 14:260–264. doi: 10.1002/nbm.698
- Qi R, Zhang LJ, Zhong J, et al (2013a) Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy. Eur J Radiol 82:850–856. doi: 10.1016/j.ejrad.2012.12.016
- Qi R, Zhang LJ, Zhong J, et al (2013b) Grey and white matter abnormalities in minimal hepatic encephalopathy: a study combining voxel-based morphometry and tractbased spatial statistics. Eur Radiol 23:3370–3378. doi: 10.1007/s00330-013-2963-2
- Romero-Gómez M, Córdoba J, Jover R, et al (2007) Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology 45:879– 885. doi: 10.1002/hep.21586
- Sathyasaikumar KV, Swapna I, Reddy PVB, et al (2007) Fulminant Hepatic Failure in Rats Induces Oxidative Stress Differentially in Cerebral Cortex, Cerebellum and Pons Medulla. Neurochem Res 32:517–524. doi: 10.1007/s11064-006-9265-x

- Satoh T, Yoshioka Y (2006) Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci Res 55:34–39. doi: 10.1016/j.neures.2006.01.002
- Shah NJ, Neeb H, Kircheis G, et al (2008) Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 41:706–717. doi: 10.1016/j.neuroimage.2008.02.057
- Shah NJ, Neeb H, Zaitsev M, et al (2003) Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 38:1219–1226. doi: 10.1053/jhep.2003.50477
- Sharma P, Sharma BC, Puri V, Sarin SK (2007) Critical flicker frequency: Diagnostic tool for minimal hepatic encephalopathy. J Hepatol 47:67–73. doi: 10.1016/j.jhep.2007.02.022
- Shawcross DL, Balata S, Damink SWMO, et al (2004) Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol - Gastrointest Liver Physiol 287:G503–G509. doi: 10.1152/ajpgi.00104.2004
- Tao R, Zhang J, You Z, et al (2013) The thalamus in cirrhotic patients with and without hepatic encephalopathy: A volumetric MRI study. Eur J Radiol 82:e715–e720. doi: 10.1016/j.ejrad.2013.07.029
- Terpstra M, Henry P-G, Gruetter R (2003) Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn Reson Med 50:19–23. doi: 10.1002/mrm.10499
- Terpstra M, Marjanska M, Henry P-G, et al (2006) Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magn Reson Med 56:1192–1199. doi: 10.1002/mrm.21086
- Terpstra M, Ugurbil K, Gruetter R (2002) Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 47:1009–1012. doi: 10.1002/mrm.10146
- Thoma R, Mullins P, Ruhl D, et al (2011) Perturbation of the Glutamate–Glutamine System in Alcohol Dependence and Remission. Neuropsychopharmacology 36:1359–1365. doi: 10.1038/npp.2011.20
- Timmermann L, Gross J, Butz M, et al (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692. doi: 10.1212/01.WNL.0000078816.05164.B1
- Torlot FJ, McPhail MJW, Taylor-Robinson SD (2013) Meta-analysis: the diagnostic accuracy of critical flicker frequency in minimal hepatic encephalopathy. Aliment Pharmacol Ther 37:527–536. doi: 10.1111/apt.12199

- Waghray A, Waghray N, Mullen K (2015) Management of Covert Hepatic Encephalopathy. J Clin Exp Hepatol 5, Supplement 1:S75–S81. doi: 10.1016/j.jceh.2014.02.007
- Węgrzynowicz M, Hilgier W, Dybel A, et al (2007) Upregulation of cerebral cortical glutathione synthesis by ammonia in vivo and in cultured glial cells: The role of cystine uptake. Neurochem Int 50:883–889. doi: 10.1016/j.neuint.2006.12.003
- Wijtenburg SA, Knight-Scott J (2011) Very short echo time improves the precision of glutamate detection at 3T in 1H magnetic resonance spectroscopy. J Magn Reson Imaging 34:645–652. doi: 10.1002/jmri.22638
- Yousry TA, Schmid UD, Alkadhi H, et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157. doi: 10.1093/brain/120.1.141

Use of quantitative brain water imaging as concentration reference for J-edited MR spectroscopy of GABA

Georg Oeltzschner^{1,2,*}, Alfons Schnitzler, MD¹, Frithjof Wickrath², Hans-Jörg Wittsack, PhD²

¹ Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany

² Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, D-40225 Düsseldorf, Germany

* Corresponding author. Address: Institute of Clinical Neuroscience and Medical

Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1,

D-40225 Düsseldorf, Germany. Tel.: +49 211 81 08609. E-mail:

georg.oeltzschner@med.uni-duesseldorf.de

Grant Support: Collaborative Research Centre (Sonderforschungsbereich) SFB 974 of the German Research Foundation (Deutsche Forschungsgemeinschaft)

Keywords: GABA, ¹H-MRS, MEGA-PRESS, water reference,

quantification, MRS analysis

Running Title: Watermap analysis of GABA spectroscopy

ABSTRACT

PURPOSE: To determine quantitative water-scaled in vivo concentrations of γ aminobutyric acid (GABA) by obtaining the water reference concentration from individual water maps.

METHODS: Water-scaled GABA estimates for localized J-edited MR spectroscopy experiments can be computed using standard values for tissue-specific water content and relaxation times. Water content and relaxation may, however, be altered in pathology. This work re-analysed data from a recent study in healthy controls and patients with minimal (mHE) or grade I (HE 1) hepatic encephalopathy, a disease associated with slight elevation of brain water content. J-edited MR spectroscopy data were combined with quantitative brain water measures which provided individual water concentration references and T_1 relaxation times. Resulting GABA estimates were compared to concentrations obtained using standard tissue-specific water content and relaxation values.

RESULTS: Occipital GABA concentrations obtained from individual water and T_1 maps were 1.64 ± 0.35 mM in controls, and significantly higher (P < 0.01) than in mHE (1.15 ± 0.28 mM) and HE 1 patients (1.18 ± 0.09 mM). Results from the tissuedependent approach (1.58 ± 0.30 mM (controls), 1.10 ± 0.27 mM (mHE) and 1.12 ± 0.12 mM (HE 1)) were slightly lower (P < 0.05 in each group).

CONCLUSION: Water-scaled in vivo GABA estimates can be obtained with individual water concentration and T_1 relaxation mapping. This approach may be useful for studying GABA levels in pathologies with substantial brain water content or relaxation changes.

1. INTRODUCTION

 γ -aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the human brain. Magnetic resonance spectroscopy (MRS) is the only technique to non-invasively measure cerebral GABA in vivo and has therefore gained a lot of research interest [1– 3]. In single-voxel proton magnetic resonance spectroscopy (¹H-MRS) at field strengths of 1.5 to 3 T, J-resolved spectral editing sequences are required to isolate the GABA resonance that is otherwise obstructed by peaks like creatine. MEGA-PRESS [4,5] is one of the frequently used editing schemes amongst others [6,7].

GABA concentration from MRS is currently almost exclusively reported in two ways: either it is normalized to other metabolites such as N-acetylaspartate (NAA) or creatine (Cr), or it is scaled to a water-unsuppressed spectrum and then provided in absolute measures (mM), based on assumptions of tissue specific molar water concentrations [1]. Particularly for water-scaled concentration estimation, data comparison across research sites, scanner platforms, and sequence implementations can be difficult, as the quantification routines are not uniform. Reported water-scaled GABA concentration for the healthy brain may range from 1.1 mM [8] to 2.5 mM [9], depending on the assumptions made. More importantly, the concentration estimates may be biased in pathologies where the water concentration in brain tissue might deviate from the assumptions, such as hepatic encephalopathy [10].

Both MEGA-PRESS spectra and brain water content data have been acquired from healthy controls and patients with hepatic encephalopathy (HE) in the course of a recent study [11]. HE comprises impairment of cerebral functions as a consequence of liver damage. Its severity can be classified from grade I to IV, complemented by the term *minimal HE (mHE)* to describe patients with subtle symptoms only measurable with psychometric testing [12]. HE is believed to be associated with a low-grade cerebral oedema due to disturbed cell volume regulation [13]. Previous investigations in HE patients showed mildly increased MR brain water content measures in white matter [10] and decreased T_I values in certain regions within the basal ganglia [14].

HE is therefore a suitable model to examine to what extent such alterations might affect water-scaled MR spectroscopic GABA concentrations. Hence, the goal of the present work was the employment of individual brain water content data to serve as subject-specific concentration reference for water-scaling, including individual T_1 relaxation correction [15,16]. A similar approach has previously been suggested by Gasparovic et al. for metabolite quantification in chemical shift imaging experiments [17]. To examine the impact of putative brain water and T_1 alterations in pathology, the obtained values were compared to GABA concentrations calculated using standard tissue-specific water concentration and relaxation values.

2. MATERIAL AND METHODS

2.1 Determination of GABA concentrations

For water-scaled spectroscopy experiments, the concentration of a metabolite [M] can be calculated according to

$$[M] = \frac{S_M}{S_{H_2O}} \cdot [H_2O] \cdot \frac{2}{H_M} \cdot C_{ref}$$

$$[1.1]$$

 S_M and S_{H2O} are the peak areas of the metabolite and water (including accounting for the averaging over the acquisitions), $[H_2O]$ denotes the concentration of MR visible water (55.5 mol/L for pure water), H_M is the number of signal giving metabolite protons (2 in the γ methylene group of GABA at 3 ppm), and C_{ref} is a term accounting for the water densities used for referencing, their relaxation properties and the relaxation behaviour of the target metabolite.

2.1.1 Water-scaling and relaxation correction

Treatment of the water reference determination varies largely across studies. In its general form

$$C_{ref} = \frac{f_{H_2O} \times R_{H_2O}}{R_M}$$
[1.2]

 f_{H2O} denotes the assumed or measured tissue water content (with 1 being pure water).

$$R_{H2O}$$
 and R_M contain the relaxation, according to $R_y = \exp\left(-\frac{TE}{T_{2,y}}\right) \times \left(1 - \exp\left(-\frac{TR}{T_{1,y}}\right)\right)$.

2.1.2 Spectral editing specific modifications

In case of spectral editing, Eq. [1.1] needs to be modified by an additional factor C_{edit} . It contains acquisition specific corrections treating (i) macromolecular contamination and

(ii) editing efficiency, and is calculated by
$$C_{edit} = \frac{MM_{cor}}{eff}$$
.

Regarding (i), editing techniques suffer from GABA peak contamination with co-edited macromolecule resonances. Different approaches have been introduced to work around the MM problem (MM nulling [18,19] or MM-symmetric editing [6]). In many cases the presence of MM contamination is simply accepted and explicitly acknowledged, with the corresponding peak area often being termed "GABA+" (for GABA + MM). In the present study, the macromolecular contribution to the GABA+ peak was assumed to be 55% since the classic editing scheme (pulses at 1.9 and 7.5 ppm) was used [1]. MM_{cor} was therefore set to 0.45 in this work.

Regarding (ii), the editing efficiency indicates how much of the signal intensity of the 3 ppm GABA resonance is conserved in the difference spectrum. Ideally, the normalized peak intensities within the triplet are 1-2-1 (with editing, ON resonance) and (-1)-2-(-1) (without editing, OFF resonance). Hence, they follow a 2-0-2 pattern in the ideal difference spectrum. As ON and OFF are subtracted and not averaged, accounting for the "number of acquisitions" (ON and OFF = 2, DIFF = 1) results in the ideal value of 0.5 for *eff*. In practice, imperfect editing leads to contribution of the central peak [20], altering *eff*. In the present work, *eff* was measured as described previously [18,21,22], by comparing PRESS and MEGA-PRESS spectra from a phantom containing GABA and glycine (pH = 7.0, concentration = 100 mM/L each) according to

$$eff = \left(\frac{I_{GABA, PRESS}}{I_{Gly, PRESS}}\right) / \left(\frac{I_{GABA, MEGA-PRESS, (ON-OFF)}}{I_{Gly, MEGA-PRESS, (ON+OFF)}}\right), \text{ containing the intensities of the GABA}$$

multiplet and the glycine singlet from the respective scans. The experimental value for *eff* was determined to be 0.63, exceeding the ideal value of 0.5 due to presence of the residual central peak [22].

2.1.3 Methods of GABA quantification

We designed two different quantification routines: **Segmentation** and **Watermap**. The **Segmentation** approach is based on tissue class segmentation of anatomical images into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). C_{ref} can be written as

$$C_{ref} = \frac{f_{GM} \times R_{H_2O,GM} + f_{WM} \times R_{H_2O,WM} + f_{CSF} \times R_{H_2O,CSF}}{R_{GABA} \cdot (1 - f_{vol} CSF)}$$
[1.3]

 f_i describes fractional water densities. C_{ref} is calculated pixel-wise using

$$f_{i} = \frac{f_{vol_i} \cdot WD_{i}}{f_{vol_GM} \cdot WD_{GM} + f_{vol_WM} \cdot WD_{WM} + f_{vol_CSF} \cdot WD}_{CSF}$$
[1.4]

where f_{vol_i} is the tissue class probability, and WD_i is its assumed relative water density. A similar approach has been described and used before [21,23,24]. In this work, GABA concentrations were calculated assuming the relative water densities in WM, GM, and CSF to be $WD_{WM} = 0.70$, $WD_{GM} = 0.80$ and $WD_{CSF} = 0.99$ [16,25]. Tissue specific values for water T_1 relaxation times were used: $T_{1,GM} = 1331$ ms, $T_{1,WM} = 832$ ms, $T_{2,GM} = 110$ ms, $T_{2,WM} = 79.6$ ms [26], $T_{1,CSF} = 4160$ ms and $T_{2,CSF} = 500$ ms [27]. As CSF contains negligible amounts of metabolites, partial volume correction is applied by dividing the complete term by the sum of non-CSF tissue fractions (GM+WM).

The **Watermap** approach has been originally suggested for chemical shift imaging [17]. Instead of assuming relative water densities for each tissue class (WD_i) , it is based on the additional acquisition of several multi gradient echo and EPI images as previously proposed [16]. This procedure yields a quantitative water and T_1 map, providing individual tissue-specific water intensities and T_1 for each high-resolution pixel inside

the spectroscopic volume. Eq. [1.4] thus becomes
$$f_y = \frac{\sum_{i} f_{vol,y}(i) \times WD_{Watermap}(i) \cdot R(i)}{\sum_{i} WD_{Watermap}(i)}$$
,

already including the relaxation terms. In this term, $WD_{Watermap}$ denotes the water density as measured by the watermapping technique. To ensure the correct relaxation correction, $WD_{Watermap}$ is attributed to the tissue fraction *y* by multiplying it pixel-wise with the tissue class probability f_{vol_v} , and the result is subsequently normalized by the sum of the water densities over all *i* pixels within the MRS volume [17]. Additionally, relaxation correction is conducted pixel-wise in this step by extracting the individual T_I values of water from the high-resolution T_I map and assuming the other relaxation parameters as in the **Segmentation** method. CSF partial volume correction is also applied.

For both methods, R_{GABA} is calculated tissue-independently with $T_{I,GABA} = 1310$ ms [28] and $T_{2,GABA} = 88$ ms [29].

2.2 Subjects and data acquisition

2.2.1 Participants

Data used in this work has been previously acquired in the course of a clinical study that included healthy controls and patients with hepatic encephalopathy (HE). Datasets included measurements of the critical flicker frequency (CFF), an experimental indicator of visual performance that is suitable to describe HE severity on a continuous scale [30–32].

The original study included 16 healthy controls and 27 HE patients of varying severity (13 with minimal HE, 14 with HE of grade 1). For details regarding inclusion and exclusion criteria, HE severity grading and CFF measurement, please see the original publication [11].

All participants underwent examination after giving their full written informed consent. The study was approved by local ethics committee (study number 3644) in accordance to the Declaration of Helsinki. All measurements were carried out on a clinical 3T whole-body MRI scanner (Siemens MAGNETOM Trio A TIM System, Siemens Healthcare AG, Erlangen, Germany) using a 12-channel head matrix coil.

2.2.2 Spectroscopic measurements

MEGA-PRESS spectra (TR = 1500 ms, TE = 68 ms, V = 27 mL, bandwidth = 1200 Hz, 1024 data points) were acquired from the central occipital lobe. Spectral editing was performed by 44 Hz broad Gaussian editing pulses irradiated at 1.9 ppm and 7.5 ppm. The acquisition included water-suppressed (96 MEGA-PRESS iterations) and non-suppressed (8 MEGA-PRESS iterations) spectra for the water reference. Manual tuning of the automatic second order 3D shim was performed to lower the width of the unsuppressed water peak (FWHM) to <15 Hz.

2.2.3 Watermapping procedure

The acquisition of the watermap consisted of five sequences and is briefly outlined in the following (for details, please refer to the original work of Neeb and colleagues [16]). First, a multi gradient echo sequence to determine the proton density was carried out (TR = 2140 ms, eight echoes with TE = 4/9/14/19... ms, flip angle 40°, FoV 256×192 mm², 256×192 matrix, slice thickness = 2 mm, gap = 1 mm, 50 slices). It was followed by another gradient echo sequence to map T_1 relaxation for the correction of saturation effects (TR = 638 ms, two echoes with TE = 4/9 ms, flip angle 70°, FoV 256×192 mm², 256×192 matrix, slice thickness = 2 mm, gap = 1 mm, 50 slices). 30 s waiting time for full relaxation were allowed before the upcoming echo planar imaging (EPI) with 90° flip angle, followed by another 30 s of waiting and the second EPI with 30° flip angle. Results allowed for the calculation of and correction for B₁ field inhomogeneities. After another 30 s of relaxation, another EPI with 30° flip angle followed, with data acquired by the body coil, allowing for the correction of receiving head coil inhomogeneities. All three EPI scans were acquired with TE = 16 ms, FoV 256×192 mm², 64×48 matrix, slice thickness = 2 mm, gap = 1 mm, and 50 slices. Total acquisition time for these five sequences was roughly 11 minutes.

2.2.4 Anatomical scan

For segmentation purposes, a high-resolution 3D anatomical transversal T_1 -weighted magnetization prepared gradient echo (MP RAGE) scan was performed at the end of the experiment (TR / TE = 1950 / 4.6 ms, FoV 256×192 mm², 512×384 matrix, slice thickness = 1 mm, 176 slices).

2.3 Postprocessing

2.3.1 Spectral postprocessing

GABA difference spectra were processed with Gannet 2.0 [33], including frequency and phase correction. Gannet 2.0 performs Gaussian fitting of the GABA+ resonance and mixed Gaussian-Lorentzian modelling of the water signal. For the present work, its

default corrections for macromolecule contamination, relaxation and editing efficiency were removed from the original code to obtain the pure ratio of GABA+ and water peak areas.

2.3.2 Image processing pipeline

The five images from the watermap acquisition protocol were processed with an inhouse written MATLAB (The Mathworks Inc., Natick/MA) program to calculate individual quantitative maps of brain water content, T_1 and T_2^* . Exemplary maps from a healthy control are shown in **Fig. 1**.

Figure 1: T1, T2* and water content maps from a healthy control (subject no. 573). T1 and T2* maps are expressed in milliseconds (ms). The water content map is scaled to 100% water content (1.0).

The 'New Segment' routine of SPM v8 [34] was employed to segment the anatomical scan into GM, WM and CSF tissue probability maps which were subsequently coregistered to the watermap.

MRS volume information were read from the raw file header with a custom made MATLAB routine (Dr. Nia Goulden, Dr. Paul Mullins, Bangor University, <u>http://biu.bangor.ac.uk/projects.php.en</u>, modified by the authors to work with Siemens file format). This routine also transformed the volume parameters into a binary mask. It was used to calculate the fractions of the three tissue classes (GM, WM, and CSF), the tissue-specific average water content, and the corresponding tissue-specific T_1 values from the water, T_1 and tissue probability maps.

2.4 Statistical evaluation

All statistical calculations were conducted with IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA).

Group differences between the healthy control, mHE and HE 1 groups were assessed with one-way ANOVA (after confirming normal distribution using Shapiro-Wilk testing), including post-hoc testing yielding Dunn-Bonferroni corrected *P* values. Group effects were considered significant for *P* < 0.05. Correlations of GABA estimates with the critical flicker frequency (CFF) were examined using partial two-tailed correlation analysis (age as control variable, significant for *P* < 0.05).

The differences of GABA concentration estimates between the **Watermap** and **Segmentation** routines were tested for statistical significance. Repeated measures one-way ANOVA (after confirming normal distribution using Shapiro-Wilk testing) was conducted for all complete datasets. Bonferroni correction for multiple testing was performed with a single test significance level of $\alpha = 0.05$.

Extreme outliers, as identified by SPSS boxplot analysis, were removed prior to further analysis.

3. RESULTS

Complete datasets (MEGA-PRESS spectra from the occipital cortex, quantitative brain water maps and anatomical scans) could be obtained from 10 controls, 10 mHE and 10 HE 1 patients. Due to measurement cancellation, noisy or distorted spectra or severe artefacts in the watermap reconstructions (assessed by visual inspection), 6 control datasets, 3 mHE datasets and 4 HE 1 datasets were discarded prior to analysis.

3.1 GABA estimates

Results of GABA estimation are listed in **Table 1**. Occipital GABA concentrations obtained with the **Watermap** method in controls were significantly higher (P < 0.01) than in mHE and HE 1 patients. No difference was noted between the HE groups. Respective results from the **Segmentation** approach in healthy controls were significantly (P < 0.01) higher than in the mHE and HE 1 groups. Within each group, they were slightly lower than the **Watermap** estimates (P = 0.03 in controls, P = 0.014in mHE, P = 0.002 in HE 1).

Both measures of GABA levels correlated positively with the critical flicker frequency. The normalized difference between the two methods increased from controls over mHE to HE 1, but this result was not significant.

	Controls	minimal HE	HE 1	Correlation with CFF
Watermap	1.64 ± 0.35 mM	1.15 ± 0.28 mM *	1.18 ± 0.09 mM *	r = 0.511, P = 0.009
Segmentation	1.58 ± 0.30 mM	1.10 ± 0.27 mM *	1.12 ± 0.12 mM *	r = 0.522, P = 0.007
Normalized difference (Watermap – Segmentation) / Segmentation	3.6 ± 4.1 %	4.7 ± 4.1 %	5.9 ± 4.3 %	-

Table 1: GABA estimates according to the Watermap and Segmentation routines, andnormalized difference measures. Asterisks mark significant differences from the controlgroup (ANOVA, P < 0.01). No significant differences between mHE and HE 1 groupswere noted.

3.2 Water content and relaxation times

Global water content within GM and WM, as well as tissue-specific GM and WM water content and T_1 and T_2^* relaxation times are summarized in **Table 2**. No significant alterations of brain water content measures could be determined between the groups in this particular study. T_1 of white matter in the MRS volume was significantly lower in HE 1 patients compared to healthy controls (P = 0.031).

		Controls	minimal HE	HE 1
Global water content	GM	82.6 ± 1.2 %	82.7 ± 2.0 %	82.6 ± 0.7 %
	WM	71.8 ± 1.5 %	71.4 ± 1.3 %	71.7 ± 1.1 %
MRS volume				
Water content	GM	84.0 ± 1.8 %	85.2 ± 2.1 %	84.7 ± 1.0 %
	WM	74.3 ± 1.4 %	74.8 ± 1.5 %	74.4 ± 1.2 %
T_1	GM	$1369 \pm 102 \text{ ms}$	$1355 \pm 65 \text{ ms}$	$1343 \pm 88 \text{ ms}$
	WM	$1004 \pm 33 \text{ ms}$	971 ± 28 ms	944 ± 64 ms *
T_2^*	GM	$56 \pm 6 \text{ ms}$	$58 \pm 4 \text{ ms}$	58 ± 10 ms
	WM	$51 \pm 3 \text{ ms}$	$50 \pm 4 \text{ ms}$	$50 \pm 4 \text{ ms}$

Table 2: Estimates of water content and relaxation times obtained with the Watermaproutine. Asterisks mark significant differences from the control group (ANOVA, P < 0.05).

4. DISCUSSION

The present work estimates in vivo GABA concentrations from J-edited MR spectroscopy, combined with individual quantitative water referencing and T_I relaxation correction. GABA estimates were computed for three groups: healthy controls, patients with minimal HE, and patients of HE grade 1. GABA levels were compared to estimates calculated with standard tissue-segmentation based evaluation. Tissue-specific global water content measures are within the range of previously published values for cohorts of comparable age [16,25], suggesting successful implementation of the MR brain water mapping method.

4.1 Literature consistency of GABA levels in healthy brain

The occipital GABA concentrations ([GABA]) for healthy controls that were obtained with individual **Watermap** quantification and the **Segmentation** routine are well inside the range of recently published literature. Several studies used quantification similar to the **Segmentation** method. Mon et al. calculated [GABA] = 1.50 ± 0.36 mM (parietooccipital cortex) [35], Gao et al. measured [GABA] = 1.65 ± 0.29 mM and 1.28 ± 0.31 mM (left and right auditory cortex) [36]. Liu et al. reported [GABA] = 1.43 ± 0.11 mM (anterior cingulate cortex) [24]. Foerster et al. determined [GABA] = 1.72 ± 0.34 mM [37] (motor cortex). Despite varying assumptions regarding mean tissue water content and relaxation, our results are within the range of these values.

4.2 GABA levels in hepatic encephalopathy

Water-scaled GABA estimates from the occipital area were significantly reduced in patients with minimal HE and HE 1, and correlated with the individual critical flicker

frequency. Thereby, this work confirms the findings of the original evaluation of the data, where creatine had been used as an internal reference [11].

It is noteworthy that the putative HE-related changes of brain water content reported by Shah et al. [10] were not found in this particular study. The inter-individual variance of brain water content is comparably large with respect to the water increase found by Shah et al. Hence, the small control sample sizes in both studies (9 in the present study vs. 7 in the study by Shah and colleagues) may critically bias the group mean values. Further, three patients with HE grade 2 were included in the study by Shah and colleagues, potentially increasing the mean water content value within the "overt HE" group they investigated.

4.3 Differences between Watermap and Segmentation method

Actual measures of water content within the MRS volume were slightly higher than the assumed standard tissue-specific values, and were therefore likely mainly responsible for the observed small differences in GABA estimates between the **Watermap** and the **Segmentation** method.

This effect was overlapped by a notable deviation of white matter T_1 from the standard value of 832 ± 10 ms [26] for all three groups in the present study, with the highest deviation in the control group. Considering the lower mean age in the study by Wansapura et al. (~37 y compared to 59 y in the present work), this T_1 increase might be due to an age effect [38]. White matter decrease of T_1 in HE was previously observed, albeit not for occipital white matter [14]. Average T_1 in grey matter was consistent with the values reported by Wansapura et al. (1331 ± 13 ms, [26]).

While HE-induced alterations in T_2^* -weighted images were reported [39], T_2^* did not differ between the groups in this study. This does not rule out variations of T_2 which may in turn influence the water reference signal, but would not be corrected for by the **Watermap** method. In fact, T_2 alterations have been reported in mHE, however not in occipital white matter [40].

Quantification patterns did not notably differ in their relative standard deviation (Controls: Watermap 21.3 % vs. Segmentation 18.9 %, mHE: Watermap 24.3 % vs. Segmentation 24.5 %, HE 1: Watermap 7.6 % vs. Segmentation 10.7 %). Potential sources of variance introduced by the **Watermap** method arise from the estimation of brain water content and T_I , but the systematic errors are rather small. According to Neeb et al., the underlying technique bears systematic errors of <1% and random errors of ~2-3% across the whole brain [16]. T_I estimation with a variable flip angle method, as was used here, exhibits an error of ~2% [41].

4.4 Limitations

While the impact of the water reference has been treated in this work and the editing efficiency can be attained by phantom measurements, two main issues of GABA quantification remain challenging: relaxation and the extent of macromolecular contribution to the GABA+ signal.

A drawback of the implemented watermapping technique is its use of gradient echo imaging. This has the disadvantage of producing a T_2^* map instead of a T_2 map. T_2 mapping may be included in future experiments using additional multi spin echo images [17]. Due to time concerns, it was not included in the protocol designed for this specific clinical study. In future studies, however, T_2 measurement should be included to enable
a more individual relaxation correction of the water signal and further improve GABA quantification.

Secondly, the described **Watermap** method is not able to account for possible individual or pathological changes of the GABA relaxation times. Pathological abnormalities in the relaxation behaviour of NAA, Cr and Cho have rarely been investigated, but were actually observed in patients with bipolar disorder and schizophrenia [42,43]. Individual measurement of GABA relaxation is possible [28,44], but time-consuming. Future studies will need to address regional or tissue specific variations of GABA relaxation in pathology.

Further, the influence of macromolecules on GABA quantification remains delicate. In this study, no attempt of individual accounting for MM was undertaken, i.e. the obtained GABA measurements directly scaled with GABA+ (see Section 2.1.2). Regional dependence, grey/white matter distribution or pathology may increase the variance of the MM contribution to the GABA+ area [45]. If it cannot be avoided at all by using MM suppression techniques (lower signal to noise ratio) or MM-nulling scans (additional scan time), accounting for MM contribution needs to be explicitly acknowledged when performing GABA quantification [46].

4.5 Conclusions and Outlook

In this work, it was demonstrated that GABA estimation from edited MR spectroscopy, based on individual brain water content mapping and T_1 relaxation, is feasible. The observed differences to standard tissue-specific estimation are comparably small, but significant. If substantial alterations of brain water content or relaxation times are not expected, the standard tissue-segmentation based approach can still be expected to

provide comparable results. For this particular study, both methods for GABA estimation confirmed the previously observed group difference between healthy control subjects and patients with covert (i.e. low-grade) HE.

The **Watermap** method may therefore be useful for future MR spectroscopic measurements of GABA in pathologies where larger alterations of brain water content or relaxation behaviour are expected (e.g. higher grades of hepatic encephalopathy, multiple sclerosis lesions, tumour etc. [47]). This is especially true if comparison with the healthy brain is targeted, and computation of individual GABA levels is desirable (e.g. for correlation with individual clinical or behavioural parameters). To further improve individual GABA quantification, more research regarding macromolecular influence and metabolite relaxation times in healthy and pathological tissue is needed.

Acknowledgements

This work was supported by the Sonderforschungsbereich (SFB) 974 of the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank Erika Rädisch for help with the measurements, Dr. Markus Butz (Heinrich Heine University Düsseldorf) for helpful discussions and comments on the manuscript, and Dr. Keith Heberlein (Siemens Medical Solutions) for technical support.

REFERENCES

- [1] Mullins PG, McGonigle DJ, O'Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage 2014;86:43–52. doi:10.1016/j.neuroimage.2012.12.004.
- [2] Puts NAJ, Edden RAE. In vivo magnetic resonance spectroscopy of GABA: A methodological review. Prog Nucl Magn Reson Spectrosc 2012;60:29–41. doi:10.1016/j.pnmrs.2011.06.001.
- [3] O'Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E. In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. J Magn Reson Imaging 2011;33:1262–7. doi:10.1002/jmri.22520.
- [4] Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed 1998;11:266–72. doi:10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J.
- [5] Rothman DL, Petroff OA, Behar KL, Mattson RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci 1993;90:5662–6.
- [6] Henry P-G, Dautry C, Hantraye P, Bloch G. Brain GABA editing without macromolecule contamination. Magn Reson Med 2001;45:517–20. doi:10.1002/1522-2594(200103)45:3<517::AID-MRM1068>3.0.CO;2-6.
- [7] Near J, Simpson R, Cowen P, Jezzard P. Efficient γ-aminobutyric acid editing at 3T without macromolecule contamination: MEGA-SPECIAL. NMR Biomed 2011;24:1277–85. doi:10.1002/nbm.1688.
- [8] Evans CJ, McGonigle DJ, Edden RAE. Diurnal stability of γ-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imaging 2010;31:204–9. doi:10.1002/jmri.21996.
- [9] Chowdhury FA, O'Gorman RL, Nashef L, Elwes RD, Edden RA, Murdoch JB, et al. Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS. J Magn Reson Imaging 2015;41:694–9. doi:10.1002/jmri.24611.
- [10] Shah NJ, Neeb H, Kircheis G, Engels P, Häussinger D, Zilles K. Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 2008;41:706–17. doi:10.1016/j.neuroimage.2008.02.057.
- [11] Oeltzschner G, Butz M, Baumgarten TJ, Hoogenboom N, Wittsack H-J, Schnitzler A. Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. Metab Brain Dis 2015. doi:10.1007/s11011-015-9729-2.
- [12] Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study Of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014;60:715–35. doi:10.1002/hep.27210.
- [13] Häussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut 2008;57:1156–65. doi:10.1136/gut.2007.122176.
- [14] Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, et al. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 2003;38:1219–26. doi:10.1053/jhep.2003.50477.

- [15] Neeb H, Zilles K, Shah NJ. A new method for fast quantitative mapping of absolute water content in vivo. NeuroImage 2006;31:1156–68. doi:10.1016/j.neuroimage.2005.12.063.
- [16] Neeb H, Ermer V, Stocker T, Shah NJ. Fast quantitative mapping of absolute water content with full brain coverage. NeuroImage 2008;42:1094–109. doi:10.1016/j.neuroimage.2008.03.060.
- [17] Gasparovic C, Neeb H, Feis D I., Damaraju E, Chen H, Doty M j., et al. Quantitative spectroscopic imaging with in situ measurements of tissue water T1, T2, and density. Magn Reson Med 2009;62:583–90. doi:10.1002/mrm.22060.
- [18] Terpstra M, Ugurbil K, Gruetter R. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med 2002;47:1009–12. doi:10.1002/mrm.10146.
- [19] Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 1994;32:294– 302. doi:10.1002/mrm.1910320304.
- [20] Near J, Evans CJ, Puts NAJ, Barker PB, Edden RAE. J-difference editing of gamma-aminobutyric acid (GABA): Simulated and experimental multiplet patterns. Magn Reson Med 2013;70:1183–91. doi:10.1002/mrm.24572.
- [21] Bhattacharyya PK, Phillips MD, Stone LA, Bermel RA, Lowe MJ. Sensorimotor Cortex Gamma-Aminobutyric Acid Concentration Correlates with Impaired Performance in Patients with MS. Am J Neuroradiol 2013. doi:10.3174/ajnr.A3483.
- [22] Oeltzschner G, Bhattacharyya PK. Editing efficiency for macromoleculesuppressed and unsuppressed J-edited GABA spectroscopy. Proc Intl Soc Magn Reson Med, vol. 23, Toronto: 2015, p. 1394.
- [23] Bhattacharyya PK, Phillips MD, Stone LA, Lowe MJ. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA pointresolved spectroscopy sequence. Magn Reson Imaging 2011;29:374–9. doi:10.1016/j.mri.2010.10.009.
- [24] Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, et al. Alterations of GABA and glutamate–glutamine levels in premenstrual dysphoric disorder: A 3T proton magnetic resonance spectroscopy study. Psychiatry Res Neuroimaging 2015;231:64–70. doi:10.1016/j.pscychresns.2014.10.020.
- [25] Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral water content changes: Study of age- and gender-related H2O patterns with quantitative MRI. NeuroImage 2006;29:910–22. doi:10.1016/j.neuroimage.2005.08.062.
- [26] Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999;9:531–8. doi:10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L.
- [27] Gussew A, Erdtel M, Hiepe P, Rzanny R, Reichenbach JR. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in 1H-MR spectroscopic volumes. Magn Reson Mater Phys Biol Med 2012;25:321–33. doi:10.1007/s10334-012-0305-z.
- [28] Puts NAJ, Barker PB, Edden RAE. Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla. J Magn Reson Imaging 2013;37:999–1003. doi:10.1002/jmri.23817.

- [29] Edden RAE, Intrapiromkul J, Zhu H, Cheng Y, Barker PB. Measuring T2 in vivo with J-difference editing: Application to GABA at 3 tesla. J Magn Reson Imaging 2012;35:229–34. doi:10.1002/jmri.22865.
- [30] Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Häussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 2002;35:357–66. doi:10.1053/jhep.2002.30957.
- [31] Kircheis G, Hilger N, Häussinger D. Value of Critical Flicker Frequency and Psychometric Hepatic Encephalopathy Score in Diagnosis of Low-Grade Hepatic Encephalopathy. Gastroenterology 2014;146:961–9. doi:10.1053/j.gastro.2013.12.026.
- [32] Sharma P, Sharma BC, Puri V, Sarin SK. Critical flicker frequency: Diagnostic tool for minimal hepatic encephalopathy. J Hepatol 2007;47:67–73. doi:10.1016/j.jhep.2007.02.022.
- [33] Edden RAE, Puts NAJ, Harris AD, Barker PB, Evans CJ. Gannet: A batchprocessing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 2013:(in press). doi:10.1002/jmri.24478.
- [34] Friston KJ. Statistical parametric mapping the analysis of funtional brain images. Amsterdam; Boston: Elsevier/Academic Press; 2007.
- [35] Mon A, Durazzo TC, Meyerhoff DJ. Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug Alcohol Depend 2012;125:27–36. doi:10.1016/j.drugalcdep.2012.03.012.
- [36] Gao F, Wang G, Ma W, Ren F, Li M, Dong Y, et al. Decreased auditory GABA + concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. NeuroImage 2015;106:311–6. doi:10.1016/j.neuroimage.2014.11.023.
- [37] Foerster BR, Carlos RC, Dwamena BA, Callaghan BC, Petrou M, Edden RAE, et al. Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014;1:107–14. doi:10.1002/acn3.30.
- [38] Cho S, Jones D, Reddick WE, Ogg RJ, Steen RG. Establishing norms for agerelated changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging 1997;15:1133–43. doi:10.1016/S0730-725X(97)00202-6.
- [39] Liu J-Y, Ding J, Lin D, He Y-F, Dai Z, Chen C-Z, et al. T2* MRI of minimal hepatic encephalopathy and cognitive correlates in vivo. J Magn Reson Imaging 2013;37:179–86. doi:10.1002/jmri.23811.
- [40] Singhal A, Nagarajan R, Kumar R, Huda A, Gupta RK, Thomas MA. Magnetic resonance T2-relaxometry and 2D L-correlated spectroscopy in patients with minimal hepatic encephalopathy. J Magn Reson Imaging 2009;30:1034–41. doi:10.1002/jmri.21943.
- [41] Wang J, Qiu M, Kim H, Constable RT. T1 Measurements incorporating flip angle calibration and correction in vivo. J Magn Reson 2006;182:283–92. doi:10.1016/j.jmr.2006.07.005.
- [42] Tunc-Skarka N, Weber-Fahr W, Hoerst M, Meyer-Lindenberg A, Zink M, Ende G. MR spectroscopic evaluation of N-acetylaspartate's T2 relaxation time and concentration corroborates white matter abnormalities in schizophrenia. NeuroImage 2009;48:525–31. doi:10.1016/j.neuroimage.2009.06.061.

- [43] Öngür D, Prescot AP, Jensen JE, Rouse ED, Cohen BM, Renshaw PF, et al. T2 relaxation time abnormalities in bipolar disorder and schizophrenia. Magn Reson Med 2010;63:1–8. doi:10.1002/mrm.22148.
- [44] Andreychenko A, Klomp DWJ, de Graaf RA, Luijten PR, Boer VO. In vivo GABA T2 determination with J-refocused echo time extension at 7 T. NMR Biomed 2013;26:1596–601. doi:10.1002/nbm.2997.
- [45] Harris AD, Puts NAJ, Barker PB, Edden RAE. Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression. Magn Reson Med 2014:n/a – n/a. doi:10.1002/mrm.25549.
- [46] Bhattacharyya PK. Macromolecule contamination in GABA editing using MEGA-PRESS should be properly accounted for. NeuroImage 2014;84:1111–2. doi:10.1016/j.neuroimage.2013.08.050.
- [47] Volz S, Nöth U, Jurcoane A, Ziemann U, Hattingen E, Deichmann R. Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities. NeuroImage 2012;63:540–52. doi:10.1016/j.neuroimage.2012.06.076.

Beta Peak Frequencies at Rest Correlate with Endogenous GABA/Cr Concentrations in the Left Sensorimotor Cortex

- Short title: B Peak Frequency Correlates with Sensorimotor GABA Concentrations 3 Thomas J. Baumgarten¹*, Georg Oeltzschner^{1,2}, Nienke Hoogenboom¹, Hans-Jörg Wittsack², 4 Alfons Schnitzler¹, Joachim Lange¹ 5 ¹ Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-6 University Düsseldorf, Düsseldorf, Germany 7 ² Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-8 University Düsseldorf, Düsseldorf, Germany 9 10 * Corresponding author. E-mail: Thomas.Baumgarten@med.uni-duesseldorf.de (TJB) 11 12
- 13 Number of figures: 3
- 14 Number of tables: 2
- 15 Number of words: Abstract: 225, Introduction: 586, Materials & Methods: 1421, Results: 609,
- 16 Discussion: 1505

18 Abstract

19 Neuronal oscillatory activity in the beta band (15-30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest 20 21 an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations 22 23 and power of beta band oscillations. It remains unclear, however, if GABA concentrations also 24 influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated 25 26 the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. 27 28 GABA concentrations and beta band oscillations were measured for the left and right sensorimotor and occipital cortex. A significant positive linear correlation between GABA 29 30 concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no 31 significant correlations were found for the right sensorimotor and the occipital cortex. The 32 results show a novel connection between endogenous GABA concentration and beta peak 33 frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the 34 sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-35 36 handed sample, the correlation between beta band oscillations and endogenous GABA 37 concentrations is evident the left sensorimotor cortex. only in

39 Introduction

Oscillatory activity in the beta (15-30 Hz) frequency range is a prominent signal in the human sensorimotor cortex, both at rest and during motor activity [1–4]. Beta band activity differs across areas and depends on motor output (see [5] for a review). For example, beta band power in sensorimotor cortex decreases during movement, whereas beta band power increases following movement [6].

45 The majority of studies on beta band activity investigated the role of power (e.g., [7,8]). In 46 addition to power, there is increasing evidence that beta peak frequency (i.e., the frequency 47 within the beta band with the highest power) is an important and functionally relevant 48 parameter of oscillatory activity [9]. Beta peak frequency differs across distinct recording sites within the sensorimotor cortex [1]. Furthermore, beta peak frequency differs during movement 49 and stimulation of lower and upper limbs, thereby distinguishing between different 50 51 somatotopic representations [10]. Finally, beta peak frequency seems to be an important factor 52 for the communication between cortical areas and muscles during movement. For example, 53 neuronal activity in the motor cortex and electromyographic activity during movement is coherently coupled at ~20 Hz [11]. This 20 Hz motor cortical activity is thought to optimize 54 55 motor output by maximal recruitment of motor neurons at a minimum discharge in the 56 pyramidal tract [11].

Animal and modeling studies provide evidence for an essential role of GABAergic interneuronal 57 58 activity for the generation of beta oscillations in the sensorimotor cortex [12–14]. For example, 59 a study using modeled neuronal networks found increases in the power of beta band 60 oscillations to result from an increase in the synaptic conductance of GABA_A-mediated inhibition [12]. Further, studies demonstrated increases in human beta power [7,8,12,15,16] as well as 61 62 decreases in beta peak frequency [12] (but see [16,17]) as a result of pharmacological GABAergic modulation. Such modulations of beta power were evident at rest [7,12] as well as 63 64 after motor output [8,15,17].

65 While the abovementioned studies demonstrated a causal link between GABA administration 66 and changes in beta band power and peak frequencies, the concentration of GABA and its direct 67 modulation in the sensorimotor cortex was not measured. Thus, the quantitative relation remains unclear. Magnetic resonance spectroscopy (MRS) offers a non-invasive method for in 68 69 vivo quantification of endogenous neurotransmitter concentrations in spatially restricted 70 cortical regions [18]. While this approach has initially been applied to estimate GABA 71 concentrations especially in occipital cortical areas (e.g., [19,20]), recent studies also focused on 72 the sensorimotor cortex (e.g., [16,21,22]). These studies demonstrated a linear relationship 73 between sensorimotor GABA concentration and post-movement oscillatory beta power. In 74 contrast, no relationship could be demonstrated between sensorimotor GABA concentration 75 and post-movement oscillatory beta peak frequency [16]. Taken together, there are consistent 76 results supporting a general relationship between GABA concentration and beta band power in 77 sensorimotor cortex areas. Contrarily, the results concerning beta band peak frequency are less 78 consistent. Therefore, the question remains whether beta peak frequency is related to GABA

concentrations and if such a potential relation is present at rest (i.e., without movement) and
for endogenous (i.e., non-modulated) GABA concentrations.

81 Here, we investigated whether the peak frequency of ongoing beta band oscillations is 82 correlated to endogenous GABA concentration in the sensorimotor cortex at rest. Beta peak 83 frequencies were determined by magnetoencephalography (MEG) and individual GABA concentrations were measured by means of MRS. Peak frequencies were determined for the 84 left and right sensorimotor cortex, as well as for a control region in the occipital cortex. For 85 these three regions of interest (ROIs), we linearly related peak frequencies to GABA 86 87 concentrations estimated for analogue cortical areas.

89 Materials & Methods

90 Subjects

91 15 subjects (7 male, age: 59.9 ± 9 years (mean ± SD)) participated after providing written 92 informed consent. The experimental protocol was reviewed and approved by the Ethical 93 Committee of the Medical Faculty, Heinrich-Heine-University Düsseldorf (study number: 3644). 94 The study was conducted in accordance with the Declaration of Helsinki. All participants had 95 normal or corrected to normal vision and reported no sensory impairments, known history of 96 neurological disorders or use of neuro-modulatory medication. Subjects were selected from the 97 healthy controls of a sample that was previously reported in [23].

98

99 Behavioral data

100 Individual handedness was assessed by comparing bi-manual performance (hand dominance 101 test (HDT) [24]). Categorization based on the performance measure resulted in 12 clearly right-102 handed subjects (HDT score: 29.8 ± 8.1 (mean \pm SD)) and 3 subjects with no clear hand 103 preference (HDT score: -6.8 ± 9.7).

104 Magnetic resonance spectroscopy (MRS) data

105 Spectroscopy

106 MRS data were recorded using a 3T whole-body MRI scanner (Siemens MAGNETOM Trio A TIM 107 System, Siemens Healthcare AG, Erlangen, Germany) in connection with a 12-channel head

matrix coil. Subjects were instructed to lie in the scanner, relax and refrain from any further 108 activity. For the determination of neurotransmitter concentrations, MRS voxels (3x3x3 cm³) were 109 placed in left and right sensorimotor cortices and occipital cortex (Fig 1A). For both 110 111 sensorimotor cortices, voxels were centered on the respective 'hand knob' within the Gyrus 112 praecentralis [25], thus covering both motor and somatosensory cortex. The occipital MRS voxel was medially centered on the occipital lobe with the inferior boundary of the voxel aligned with 113 114 the Tentorium cerebelli. For all subjects, voxel placement was performed with the focus to include a maximum portion of cortical volume, as well as a minimal volume of non-cerebral 115 116 tissues to avoid any additional lipid contamination of the spectra. MRS voxels will be addressed 117 as MRS ROIs (in contrast to MEG ROIs) subsequently.

Fig 1. Localization of MRS ROIs and average GABA/Cr concentrations across MRS ROIs. A) Placement of the occipital voxel in the sagittal plane (1), placement of the left sensorimotor voxel, centered on the hand knob, in the axial (2) and sagittal (3) planes. B) Average GABA/Cr concentrations for the left and right sensorimotor and occipital MRS ROIs. Error bars represent standard deviations. No significant difference between voxels was found ($p \ge 0.16$).

124

125 After the localization of target volumes by means of T_1 -weighted planning sequences, MEGA-126 PRESS spectra [26] were acquired (number of excitations = 192, TR = 1500 ms, TE = 68 ms, V =

3x3x3 cm³, bandwidth = 1200 Hz, 1024 data points). Spectral editing was performed by J-127 128 refocusing pulses irradiated at 1.9 ppm and 7.5 ppm using Gaussian pulses with a bandwidth of 129 44 Hz. Processing of MEGA-PRESS data was performed with the MATLAB-based tool GANNET 130 2.0 [27], including frequency and phase correction of the single acquisitions as well as Gaussian 131 fitting of the 3 ppm GABA resonance. For subsequent analyses, the GABA-to-creatine ratio 132 (GABA/Cr) was used [28].

133 GABA/Cr estimates were not available for every MRS ROI in each subject (see results section for 134 further details). Therefore, we applied two different statistical tests: 1) GABA/Cr concentrations 135 were compared across the left, right and occipital MRS ROIs by means of a one-factor repeated-136 measures ANOVA (with listwise deletion of values for all MRS ROIs of a single subject if a value 137 was missing in one MRS ROI). 2) We additionally computed pairwise comparisons between MRS ROIs by means of paired-sample t-tests corrected for multiple comparisons by means of the 138 139 Holm-Bonferroni procedure (see [29] for a similar procedure). Although this comparison also 140 implemented listwise deletion of missing values, the respective deletions are determined for 141 each comparison separately, resulting in fewer deletions compared to the abovementioned 142 ANOVA. This served to achieve a higher statistical power since more subjects could be included in the respective *t*-test comparisons. 143

144

MEG data 145

Experimental Design 146

Subjects were seated in the MEG with all visual stimuli projected on the backside of a 147 148 translucent screen (60 Hz refresh rate) positioned 57 cm in front of the subjects. Resting-state 8

neuromagnetic activity was recorded during two sessions with a respective duration of 5 149 150 minutes, with subjects being instructed to relax and refrain from any additional activity. In the first session, subjects had to focus a dimmed fixation dot (diameter: 0.5 degree) presented in 151 152 the middle of the translucent screen (eyes open condition (EO)). After completing the first 153 session, subjects were verbally informed regarding the beginning and the instructions of the 154 second session. In the second session, subjects had to close their eyes (eyes closed condition (EC)) but remain awake during the measurement. Stimulus presentation was controlled using 155 156 Presentation software (Neurobehavioral Systems, Albany, NY, USA).

157 Data Recording and Preprocessing

158 Continuous neuromagnetic brain activity was recorded at a sampling rate of 1000 Hz using a 159 306-channel whole head MEG system (Neuromag Elekta Oy, Helsinki, Finland), including 204 planar gradiometers (102 pairs of orthogonal gradiometers) and 102 magnetometers. Data 160 analysis in the present study was restricted to the planar gradiometers. Electro-oculograms 161 (EOGs) were recorded for offline artifact rejection by applying electrodes above and below the 162 left eye as well as on the outer sides of each eye. Further, an electro-cardiogram (ECG) was 163 164 recorded for offline artifact rejection by means of two electrodes placed on the left collarbone 165 and the lowest left rib.

Data were offline analyzed using custom-made Matlab (The Mathworks Inc., Natick/MA, USA)
scripts and the Matlab-based open source toolbox FieldTrip (http://fieldtriptoolbox.org; [30]).
Continuously recorded data were divided into two epochs according to the respective session
(EO and EC), starting 3 s after beginning and ending 3 seconds before the end of the respective
task. Data were band-pass filtered at 1 Hz to 200 Hz and power line noise was removed by using

a band-stop filter encompassing the 50, 100, and 150 Hz components. Data were detrended and 171 172 the mean of every epoch was subtracted. Continuous data were segmented into trials of 1 s duration with a 0.25 s overlap. Subsequently, trials were semi-automatically and visually 173 174 inspected for artifacts. Artifacts caused by muscle activity, eye movements or SQUID jumps 175 were removed semi-automatically using a z-score based algorithm implemented in FieldTrip. 176 Excessively noisy channels were removed. To further eliminate cardiac and ocular artifacts, an 177 independent component analysis was computed. Mutual information was calculated between the resulting components and the EOG and ECG channels [31,32]. Components were sorted 178 179 according to their level of mutual information and subsequently visually examined regarding 180 their topography and time course. Those components showing high mutual information with 181 EOG and ECG channels as well as topographies and time courses typical for cardiac and ocular artifacts were rejected. Afterwards, removed channels were reconstructed by an interpolation 182 183 of neighboring channels. After artifact rejection, 292 ± 34.5 (mean \pm SD) trials in the EC 184 condition and 304 ± 35.4 trials in the EC condition remained for further analysis. Subsequent 185 analyses were performed separately for the EO and EC condition as well as for a combined data 186 set created by appending the EO and EC condition (EC+EO).

187 Frequency Analysis and Peak Frequency Determination

To determine individual peak frequencies, we performed a frequency analysis encompassing all frequencies of the beta-band (15 to 30 Hz; [6,33]) by applying a Fourier transformation over the entire trial duration. Trials were tapered with a single Hanning taper, resulting in a spectral resolution of 1 Hz. Within each condition, spectral power was averaged over all trials for each frequency separately. Power was estimated independently for each of the 204 gradiometers. Subsequently, gradiometer pairs were combined by summing spectral power across the twoorthogonal channels, resulting in 102 pairs of gradiometers.

Since GABA-concentrations were assessed for three different MRS ROIs (left and right sensorimotor cortex, occipital cortex; see Fig 1A and methods section (MRS data, Spectroscopy) for details), we determined corresponding MEG ROIs by selecting 6 sensor pairs in the left and 6 sensor pairs in the right hemisphere covering the respective sensorimotor cortices (Fig 2A). The selection of sensors was based on previous studies [34,35]. In addition, we selected 6 posterior sensor pairs covering the occipital cortex [36].

Fig 2. Sensor selection for respective MEG ROIs, individual beta peak frequencies and average beta peak frequencies across MEG ROIs. A) Sensors for left sensorimotor MEG ROI (orange triangles), right sensorimotor MEG ROI (blue dots) and occipital MEG ROI (black

diamonds). B) Individual beta peak frequencies for all 15 subjects (EC+EO condition) for left sensorimotor MEG ROI (orange lines), right sensorimotor MEG ROI (blue lines) and occipital MEG ROI (black lines). C) Average beta peak frequencies separately for all conditions (EO, EC, EC+EO) and all MEG ROIs. Error bars represent standard deviations. *: p < 0.01; **: p < 0.05.

209

Individual beta peak frequencies were determined within each MEG ROI separately for each subject. For each subject, the frequency showing the maximum power within the predefined beta-band (15-30 Hz) was selected as the individual peak frequency. Beta peak frequencies were statistically compared between the three MEG ROIs and the three conditions by means of a two-factor repeated-measures ANOVA (main factors: MEG ROI (left sensorimotor, right sensorimotor, occipital) and condition (EO, EC, EC+EO)). In case of violations of sphericity, Greenhouse-Geisser corrected values were reported.

217

Correlation of MRS and MEG data

In order to examine the relationship between GABA/Cr concentrations and resting-state 218 neuromagnetic brain activity, we linearly correlated individual GABA/Cr concentrations within 219 220 the respective MRS ROIs with the beta band peak frequencies determined for the corresponding 221 MEG ROIs. We computed correlations within each ROI (e.g., between left sensorimotor MRS ROI 222 and left sensorimotor MEG ROI), thus resulting in 3 correlations for each condition (EO, EC, EC+EO). In addition, we corrected the respective correlations for the HDT handedness scores by 223 224 of correlation (Pearson). means partial

226 **Results**

225

227 GABA/Cr concentrations

228 GABA/Cr values were determined in left sensorimotor, right sensorimotor and occipital MRS 229 ROIs (Fig 1). Due to cancellation of the measurements or distorted spectra, GABA/Cr 230 concentrations could not be estimated for the left sensorimotor, right sensorimotor and 231 occipital MRS ROI in 4, 2, and 1 subjects, respectively (see Table 1 for a summary of GABA/Cr 232 estimates). For the remaining subjects, a one-factor repeated-measures ANOVA yielded no 233 significant difference between GABA/Cr concentrations in the 3 MRS ROIs (F(2, 16) = 2.06, p =234 0.16; Fig 1B). Likewise, paired-sample t-tests yielded no significant differences in GABA/Cr concentration between MRS ROIs (p > 0.017, after correction for multiple comparisons). 235

Subject	GABA/Cr values per MRS ROI			
	Left	Right		
	Sensori-	Sensori-		
	motor	motor	Occipital	
1	0.1097	0.1083	0.1054	
2	0.0798	0.0713	0.1197	
3	0.1035		0.1087	
4	0.0995	0.1011	0.1056	
5	0.0844	0.0886	0.0940	
6		0.0914	0.1213	
7		0.0730	0.1134	
8		0.1004	0.1166	
9			0.1110	
10	0.0948	0.1045	0.1073	
11	0.0920	0.1187	0.1083	
12	0.1078	0.0962		
13	0.1085	0.1014	0.1034	
14	0.0781	0.0908	0.0783	

15	0.0862	0.1079	0.1000			
Mean	0.0949	0.0964	0.1066			
SD	0.0117	0.0135	0.0110			
Table 1. CARA/Crivalues ner MRC DOI						

236 Table 1: GABA/Cr values per MRS ROI

238 MEG data

Beta peak frequencies could be determined in all subjects (Fig 2B; Table 2). A two-factor repeated measures ANOVA comparing beta peak frequencies for the factors MEG ROI (left sensorimotor, right sensorimotor, occipital) and condition (EO, EC, EC+EO) demonstrated a highly significant main effect for the factor MEG ROI (F(1.43, 19.97) = 7.27, p < 0.01; Fig 2C). Post hoc *t*-tests revealed a significant difference between peak frequencies in left sensorimotor MEG ROI vs. occipital MEG ROI (p < 0.01) and between peak frequencies in the right sensorimotor MEG ROI vs. the occipital MEG ROI (p < 0.05). For the factor condition, no significant main effect was found (F(2, 28) = 1.17, p > 0.05). Since no significant results could be found for the factor condition, we chose the combined condition EC+EO for visualization purposes in Fig 2B. Likewise, an ANOVA did not reveal a significant interaction between the factors ROI and condition (*F*(2.06, 28.77) = 0.49, *p* > 0.05).

	Beta peak frequency [Hz]							
Subject	Left Sensorimotor			Right Sensorimotor			Occipital	
	EO	EC	ECEO	EO	EC	ECEO	EO	EC
1	19	19	19	19	19	19	19	
2	17	17	17	18	16	17	17	
3	24	18	24	24	18	24	15	
4	19	16	19	19	19	19	16	
5	18	18	18	18	30	30	15	
6	18	18	18	18	18	18	17	
7	19	19	19	19	19	19	15	
8	18	19	20	18	17	17	16	
9	17	18	18	17	20	17	17	
10	19	19	19	19	19	19	15	

19.27

18.87

19.13

19.4

3.98

16.2

1.57

	SD	2.47	2.29	2.46	2.53	3.87	
260	Table 2:	Beta peak	frequenci	es per ME	G ROI and	l condition	1

18.53

Mean

Correlation of MRS and MEG data

18.87

We computed linear correlations between GABA/Cr concentrations determined in MRS ROIs and beta peak frequencies determined in MEG ROIs, separately for each of the three ROIs (left sensorimotor cortex, right sensorimotor cortex, occipital cortex). Correlation analyses revealed significant linear correlations in the left sensorimotor ROI (EO: r = 0.62, p < 0.05, EC: r = 0.05, r0.05, EC+EO: r = 0.73, p < 0.05; Fig 3A). No significant correlations were found in the right

ECEO

16.8

2.21

16.93

2.17

sensorimotor ROI (EO: r = -0.14, p > 0.05, EC: r = -0.07, p > 0.05, EC+EO: r = -0.13, p > 0.05; Fig 3B). Similarly, no significant correlations were found in the occipital ROI (EO: r = 0.24, p > 0.05, EC: r = 0.09, p > 0.05, EC+EO: r = 0.35, p > 0.05; Fig 3C). Since, within each ROI, correlations were highly similar across conditions, we selected the combined condition EC+EO for visualization purposes in Fig 3. Further, correlations within the respective ROIs statistically remained highly similar when correlations were restricted to those subjects for whom valid MRS spectra could be determined for all 3 MRS ROIs (see section MRS data above).

Fig 3. Correlation of beta peak frequencies and GABA/Cr concentration. (A) Beta peak frequencies calculated for the left sensorimotor MEG ROI and the EC+EO condition correlated with GABA/Cr estimates from the left sensorimotor MRS ROI. (B) Same as (A), but now for right sensorimotor MEG and MRS ROI. (C) Same as (A), but now for occipital MEG and MRS ROI.

280

We only found correlations between GABA/Cr concentrations and beta peak frequencies to be significant for the left sensorimotor ROI. Because the majority of the subjects (12/15) were classified as right-handed by means of the HDT performance measure, we additionally investigated the influence of handedness on the relationship between GABA/Cr concentration and beta peak frequency. Therefore, we partialized out the effect of handedness (assessed by 16 the HDT performance measure) on the correlations between GABA/Cr concentration and beta peak frequencies. We found a significant correlation between GABA/Cr concentration and beta peak frequencies for the left sensorimotor cortex for the EO and EC+EO conditions (EO: r = 0.69, p < 0.05, ECEO: r = 0.77, p < 0.01), and a strong trend towards significance for the EC condition (r= 0.6, p = 0.07). No significant correlations were found for the right sensorimotor and occipital cortex.

293 **Discussion**

Using magnetoencephalography (MEG) and magnetic resonance spectroscopy (MRS) in healthy human subjects, we investigated the relationship between beta peak frequencies at rest and endogenous (i.e., non-modulated) GABA/Cr concentrations in the left and right sensorimotor and occipital cortex. The results show significant positive linear correlations between peak frequencies in the beta-band (15-30 Hz) and GABA/Cr concentrations for the left sensorimotor cortex, i.e., higher beta peak frequency was related to a higher GABA/Cr concentration.

300 The present study is one of the first to investigate the connection between beta peak frequency 301 at rest (i.e., without movement or a movement-related task) and non-modulated GABA/Cr values in the sensorimotor cortex. Previous studies that have addressed the general question if 302 303 sensorimotor beta activity is related to the GABAergic system, applied pharmacological 304 GABAergic modulators [7,8,12,15,17] and/or investigated movement-related sensorimotor beta 305 activity [8,15–17]. By focusing exclusively on non-modulated (i.e., no movement-related and 306 pharmaco-induced manipulation) parameters, the present study was able to show a correlation 307 between GABA/Cr concentrations and beta peak frequency at rest.

Beta peak frequencies differed across measurement sites. While left and right sensorimotor cortices showed clear peaks in the beta-band in all subjects (Fig 2B), beta peaks were less prominent in the occipital cortex, with five subjects showing no clear peak. This is in agreement with the specific role of beta band activity for the sensorimotor cortex [1,4,37,38], while beta band activity in occipital regions is less common. Less clear peaks in the beta band for the 18

occipital ROI might be a reason why correlations between GABA/Cr concentrations and beta 313 314 peak frequencies were only found for the sensorimotor cortex. This interpretation, however, cannot account for the lack of a significant correlation in right sensorimotor areas, since we 315 316 found clear peaks in the right sensorimotor cortex for all subjects. Because GABA/Cr 317 concentrations across MRS ROIs did not differ significantly, it is also unlikely that GABA/Cr 318 concentrations are solely responsible for the unilaterality. Since 12 of 15 subjects in the present 319 study were classified as right-handed, handedness might be an explanation for the unilaterality 320 of the correlation. However, correlations remained significant even after correcting for 321 handedness. This finding suggests that handedness alone is unlikely to account for the 322 differences between left and right sensorimotor cortices. Handedness, however, is known to 323 lead to asymmetries with respect to hand representations in the sensorimotor cortex [39–41]. 324 Such asymmetries might lead to regional differences in GABA/Cr concentration and/or 325 generators of beta frequencies in left and right sensorimotor areas. The rather large size of the 326 MRS ROIs poses an additional challenge, since for such voxel sizes it is not possible to separately 327 measure GABA/Cr concentrations for motor and somatosensory cortex. Although smaller voxel 328 sizes are possible [21], they result in extended measurement time for a comparable signal to 329 noise ratio. Thus, although GABA/Cr concentrations did not significantly differ between left and 330 right sensorimotor MRS ROIs, our method might have measured more GABA/Cr concentrations 331 that are unrelated to beta frequency generations in right sensorimotor cortex (i.e., more 332 "noise"). More fined-grained analyses might resolve this problem and shed further light on the 333 relation between GABA concentration and beta peak frequencies. In addition, it would be

interesting to assess both left and right-handed populations in future studies to further
 elucidate the effect of handedness on GABAergic concentrations in sensorimotor cortices.

336 A general limitation of GABA measurements via MRS is that this method in unable to 337 differentiate between synaptic and extra-synaptic GABA concentrations [22]. Nonetheless, 338 GABA concentrations measured by MRS might primarily reflect extra-cellular GABA concentrations, i.e., the general GABAergic tone [42]. Contrary to intra-cellular GABA 339 340 concentrations, extra-cellular GABA concentrations would include synaptic concentrations. Beta 341 band oscillations would be primarily related to synaptic GABA concentrations, since this represents the synaptically active neurotransmitter pool [15]. Thus, our results represent 342 343 correlations with the overall GABA/Cr concentration of a given voxel, not exclusively for the synaptically active GABA concentration. Despite all potential limitations, we were able to 344 345 demonstrate a significant positive correlation between GABA/Cr concentration and beta peak frequency. In addition, various studies using parameters similar to the present study proved 346 that GABA MRS in sensorimotor and occipital cortices yields feasible results (reviewed in [22]). 347 348 The general feasibility of GABA MRS is further supported by studies that link MRS-derived neurotransmitter concentrations to functional and behavioral measurements [21]. 349

Neuronal oscillations are thought to depend on the balance between excitatory (i.e., glutamatergic synaptic input) and inhibitory (i.e., GABAergic synaptic input) network components [12,43,44]. For beta band activity in the sensorimotor cortex, a connection between GABAergic tone and beta band oscillations is supported by studies reporting increases in somatosensory beta band power as an effect of GABAergic modulation by means of GABAergic agonists (e.g., benzodiazepine) [7,12,15,17]. The relation between GABAergic

356 agonists and beta peak frequencies, however, is less clear. While, Jensen and colleagues [12] 357 reported a small decrease (~1.6 Hz) in resting-state beta peak frequency in bilateral sensorimotor cortices after the administration of benzodiazepine, Baker and Baker [17] found 358 359 no modulation of beta peak frequency after the administration of benzodiazepine. The 360 GABAergic agonist benzodiazepine is considered to enhance the synaptic GABAergic drive [12]. Simplified, an enhanced GABAergic drive could be related to an increased GABAergic 361 362 concentration. This simplified assumption along with the results from Jensen and colleagues 363 [12] would contradict the positive correlation between beta peak frequency and GABA/Cr levels 364 in the left sensorimotor cortex observed in the present study. Yet, various differences between 365 the studies have to be taken into account. First, Jensen et al. [12] and Baker and Baker [17] 366 measured the influence of pharmacological GABA modulations on beta peak frequencies on the within-subject level. The present study measured non-modulated GABA concentrations and 367 368 investigated correlations on a between-subject level. Further, while we report a correlation for 369 the left sensorimotor cortex, Jensen and colleagues [12] averaged beta peak frequency over 370 bilateral sensorimotor cortices (thereby not investigating lateral differences). Finally, we 371 measured mostly right-handed subjects, so that an influence of handedness cannot be excluded. The abovementioned studies do not report handedness of their subjects, making a 372 373 direct comparison difficult.

Gaetz and colleagues [16] found no correlation between beta peak frequency during postmovement beta-rebound and endogenous GABA concentrations for the left motor cortex. Postmovement beta-rebound, however, is intrinsically different from resting state beta activity, as measured in our study. Any differences found between our study and Gaetz et al. [16] might

thus be related to different tasks. Taken together, the few existing studies focusing on the connection between beta peak frequency and GABA concentrations in sensorimotor cortex areas strongly vary in experimental setting and assessed parameters, thereby complicating a comparison to our results.

382 For future studies, it would be interesting to determine how sensorimotor beta peak frequency and GABA concentration both relate on a behavioral level. There is evidence that higher 383 384 sensorimotor GABA concentrations correlate with slower reaction times in a motor sequence 385 learning task [45]. Here, slower reaction has been interpreted as a result of higher levels of inhibition. Furthermore, higher concentrations of sensorimotor GABA have been related to 386 387 lower discrimination thresholds in a tactile frequency discrimination task [21]. The authors associated higher GABA concentrations with a potentially higher temporal resolution of tactile 388 389 perception, which would enable neurons to more closely tune their responses to the stimulus cycles. Such an adjustment of neuronal response to stimulus frequency is considered as the 390 underlying mechanism of the connection between sensorimotor GABA levels and frequency 391 392 discrimination and to result in lower frequency discrimination thresholds. The influence of 393 oscillatory beta activity on behavioral parameters is less clear. Studies relating individual beta 394 peak frequencies to measures of functional performance apart from motor-related tasks are 395 scarce. Differences in the phase of ongoing beta band oscillations in the somatosensory cortex 396 have been shown to predict the temporal perception of subsequently presented tactile stimuli 397 [46]. Here, the specific beta band frequency showing the biggest phase differences predicted 398 the temporal resolution of tactile perception. Perfetti and colleagues [47] found beta power variations to successfully predict mean reaction time in a visually guided motor task, with a 399

decrease of beta power in left sensory-motor areas corresponding to faster reaction times. In line with this, lower beta-power levels during the time of stimulus presentation were related to a faster reaction towards this stimulus [48]. Taken together, these results suggest an involvement of GABA concentrations and beta band activity within the sensorimotor cortex in the temporal dimension of tactile perception. Thus, further research should investigate if GABA concentration and beta band activity show similar connections to behavioral parameters assessed in parallel.

407 In conclusion, the present study shows a significant linear correlation between beta peak frequency at rest and non-modulated endogenous GABA concentration measured by spectrally 408 409 edited MRS. Significant correlations were restricted to the left sensorimotor cortex area. While 410 previous studies revealed connections between GABA concentrations and beta band power, our 411 results provide a novel connection between GABA concentrations and peak frequencies in the beta band. In line with previous results from studies using pharmacological modulation of GABA 412 concentrations, these results support a specific role of GABAergic inhibition in the generation of 413 414 oscillatory beta-band activity within the sensorimotor system.

416 **References**

1.

417 418

415

419 to thumb movement. Neuroscience. 1994; 60:537–50. 420 2. Murthy VN, Fetz EE. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization 421 of local field potentials and relation to behavior. Journal of Neurophysiology. 1996; 76:3949-67. 422 3. Pfurtscheller G, Stancák A, JR., Neuper C. Post-movement beta synchronization. A correlate of an 423 idling motor area? Electroencephalography and Clinical Neurophysiology. 1996; 98:281–93. 424 4. Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of beta oscillations in 425 sensorimotor cortex. Special Issue: Neuronal oscillations in movement disorders. 2013; 245:15–26. 426 5. Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features 427 and functional correlates. Thalamo-Cortical Relationships. 2001; 43:41-58. 428 6. Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in 429 motor cortex: Evidence from neuromagnetic recordings. NeuroImage. 2006; 32:1281-89. 430 7. Hall SD, Barnes GR, Furlong PL, Seri S, Hillebrand A. Neuronal network pharmacodynamics of 431 GABAergic modulation in the human cortex determined using pharmaco-432 magnetoencephalography. Human Brain Mapping. 2010; 31:581-94. 433 8. Muthukumaraswamy S, Myers J, Wilson S, Nutt D, Lingford-Hughes A, Singh K, et al. The effects of 434 elevated endogenous GABA levels on movement-related network oscillations. NeuroImage. 2013; 435 66:36-41. 436 9. Kilavik BE, Ponce-Alvarez A, Trachel R, Confais J, Takerkart S, Riehle A. Context-Related Frequency 437 Modulations of Macaque Motor Cortical LFP Beta Oscillations. Cerebral Cortex. 2012; 22:2148–59. 438 10. Neuper C, Pfurtscheller G. Evidence for distinct beta resonance frequencies in human EEG related 439 to specific sensorimotor cortical areas. Clinical Neurophysiology. 2001; 112:2084–97. 440 11. Salenius S, Portin K, Kajola M, Salmelin R, Hari R. Cortical Control of Human Motoneuron Firing 441 During Isometric Contraction. Journal of Neurophysiology. 1997; 77:3401–05. 442 12. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex 443 beta rhythm: Sources and modeling. NeuroImage. 2005; 26:347–55. 444 13. Yamawaki N, Stanford IM, Hall SD, Woodhall GL. Pharmacologically induced and stimulus evoked 445 rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience. 2008; 446 151:386-95. 447 14. Roopun AK, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, et al. A beta2-448 frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of 449 the National Academy of Sciences. 2006; 103:15646–50. 450 15. Hall SD, Stanford IM, Yamawaki N, McAllister CJ, Rönnqvist KC, Woodhall GL, et al. The role of 451 GABAergic modulation in motor function related neuronal network activity. NeuroImage. 2011; 452 56:1506-10. 453 16. Gaetz W, Edgar J, Wang D, Roberts T. Relating MEG measured motor cortical oscillations to resting 454 y-Aminobutyric acid (GABA) concentration. NeuroImage. 2011; 55:616–21. 455 17. Baker MR, Baker SN. The effect of diazepam on motor cortical oscillations and corticomuscular 456 coherence studied in man. The Journal of Physiology. 2003; 546:931-42.

Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related

457 18. Durst CR, Michael N, Tustison NJ, Patrie JT, Raghavan P, Wintermark M, et al. Noninvasive
458 evaluation of the regional variations of GABA using magnetic resonance spectroscopy at 3 Tesla.
459 Magnetic Resonance Imaging. 2015; 33:611–17.

460 19. Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD. Resting GABA 461 concentration predicts peak gamma frequency and fMRI amplitude in response to visual 462 stimulation in humans. Proceedings of the National Academy of Sciences. 2009; 106:8356-61. 20. 463 Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ, et al. Resting GABA and glutamate 464 concentrations do not predict visual gamma frequency or amplitude. Proceedings of the National 465 Academy of Sciences. 2014; 111:9301–06. Puts NAJ, Edden RAE, Evans CJ, McGlone F, McGonigle DJ. Regionally Specific Human GABA 466 21. 467 Concentration Correlates with Tactile Discrimination Thresholds. The Journal of Neuroscience. 468 2011; 31:16556-60. 469 22. Stagg CJ. Magnetic Resonance Spectroscopy as a tool to study the role of GABA in motor-cortical 470 plasticity. NeuroImage. 2014; 86:19–27. 471 23. Oeltzschner G, Butz M, Baumgarten T, Hoogenboom N, Wittsack H, Schnitzler A. Low visual cortex 472 GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and 473 brain osmolytes. Metabolic Brain Disease. 2015:1-10. doi: http://dx.doi.org/10.1007/s11011-015-474 9729-2 475 24. Steingrüber H. Hand-Dominanz-Test. Göttingen: Hogrefe; 2011. 476 25. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, et al. Localization of the motor 477 hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997; 120:141-57. 478 26. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R. Simultaneous in vivo spectral editing and 479 water suppression. NMR in Biomedicine. 1998; 11:266–72. 480 27. Edden RA, Puts NA, Harris AD, Barker PB, Evans CJ. Gannet: A batch-processing tool for the 481 quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. Journal of 482 Magnetic Resonance Imaging. 2014; 40:1445–52. 483 28. Mullins PG, McGonigle DJ, O'Gorman RL, Puts NA, Vidyasagar R, Evans CJ, et al. Current practice in 484 the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage. 2014; 86:43–52. 485 29. Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC. Inter- and intra-individual variability in alpha 486 peak frequency. NeuroImage. 2014; 92:46-55. 487 30. Oostenveld R, Fries P, Maris E, Schoffelen J. FieldTrip: Open Source Software for Advanced Analysis 488 of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and 489 Neuroscience. 2011; 2011:9. 490 31. Liu Z, Zwart JA de, van Gelderen P, Kuo L, Duyn JH. Statistical feature extraction for artifact 491 removal from concurrent fMRI-EEG recordings. NeuroImage. 2012; 59:2073-87. 492 32. Abbasi O, Dammers J, Arrubla J, Warbrick T, Butz M, Neuner I, et al. Time-frequency analysis of 493 resting state and evoked EEG data recorded at higher magnetic fields up to 9.4T. Journal of 494 Neuroscience Methods. 2015. doi: 10.1016/j.jneumeth.2015.07.011 495 33. Haegens S, Nacher V, Hernandez A, Luna R, Jensen O, Romo R. Beta oscillations in the monkey 496 sensorimotor network reflect somatosensory decision making. Proceedings of the National 497 Academy of Sciences. 2011; 108:10708-13. 498 van Ede F, Jensen O, Maris E. Tactile expectation modulates pre-stimulus β -band oscillations in 34. 499 human sensorimotor cortex. NeuroImage. 2010; 51:867-76. 500 35. Lange J, Halacz J, van Dijk H, Kahlbrock N, Schnitzler A. Fluctuations of Prestimulus Oscillatory 501 Power Predict Subjective Perception of Tactile Simultaneity. Cerebral Cortex. 2012; 22:2564–74. 502 36. van Dijk H, van der Werf J, Mazaheri A, Medendorp WP, Jensen O. Modulations in oscillatory 503 activity with amplitude asymmetry can produce cognitively relevant event-related responses. 504 Proceedings of the National Academy of Sciences. 2010; 107:900-05. 505 37. Pavlidou A, Schnitzler A, Lange J. Distinct spatio-temporal profiles of beta-oscillations within visual 506 and sensorimotor areas during action recognition as revealed by MEG. Cortex. 2014; 54:106–16.

- S07 38. Pavlidou A, Schnitzler A, Lange J. Interactions between visual and motor areas during the
 recognition of plausible actions as revealed by magnetoencephalography. Human Brain Mapping.
 2014; 35:581–92.
- S10 39. Volkmann J, Schnitzler A, Witte OW, Freund H. Handedness and Asymmetry of Hand
 S11 Representation in Human Motor Cortex. Journal of Neurophysiology. 1998; 79:2149–54.
- 512 40. Sörös P, Knecht S, Imai T, Gürtler S, Lütkenhöner B, Ringelstein EB, et al. Cortical asymmetries of
 513 the human somatosensory hand representation in right- and left-handers. Neuroscience Letters.
 514 1999; 271:89–92.
- Triggs WJ, Subramanium B, Rossi F. Hand preference and transcranial magnetic stimulation
 asymmetry of cortical motor representation. Brain Research. 1999; 835:324–29.
- 42. Rae C. A guide to the metabolic pathways and function of metabolites observed in human brain 1H
 magnetic resonance spectra. Neurochemical Research. 2014; 39:1-36.
- 43. Brunel N, Wang X. What Determines the Frequency of Fast Network Oscillations With Irregular
 Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. Journal of
 Neurophysiology. 2003; 90:415–30.
- 522 44. Buzsáki G. Rhythms of the brain. Oxford ; New York: Oxford University Press; 2006.
- 523 45. Stagg CJ, Bachtiar V, Johansen-Berg H. The Role of GABA in Human Motor Learning. Current
 524 Biology. 2011; 21:480–84.
- Baumgarten TJ, Schnitzler A, Lange J. Beta oscillations define discrete perceptual cycles in the
 somatosensory domain. Proceedings of the National Academy of Sciences. 2015; 112:12187–92.
- 47. Perfetti B, Moisello C, Landsness EC, Kvint S, Pruski A, Onofrj M, et al. Temporal Evolution of
 Oscillatory Activity Predicts Performance in a Choice-Reaction Time Reaching Task. Journal of
 Neurophysiology. 2011; 105:18–27.
- Tzagarakis C, Ince NF, Leuthold AC, Pellizzer G. Beta-Band Activity during Motor Planning Reflects
 Response Uncertainty. Journal of Neuroscience. 2010; 30:11270–77.