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Abstract

In this thesis we investigate the glass transition and dynamic properties of sus-
pended mesoscopic charged particles in equilibrium and nonequilibrium conditions.

The glass transition curves of a single and double Yukawa potential model sys-
tem in 3D are obtained using mode-coupling theory. In the potential parameters
plane the glass transition curves are found to be parallel to the melting curves and
follow similar analytical formulas. The glass transition properties of the Yukawa
model system change between two limits; the one-component plasma and the hard
sphere limit. It is shown that in the limit of one-component plasma the nonergod-
icity parameter approaches zero in the small wave number region with a quadratic
behavior.

The glass transition of a two-dimensional confinement of charged particles is stud-
ied by mode-coupling theory considering two models of the interaction potentials;
the Yukawa interaction, and the Kompaneets potential. The Yukawa interaction
can model the system when the charged particles are levitating in an isotropic bath
of ions. However it frequently occurs that in complex plasma, the charged parti-
cles are levitating atop an electrode which causes the ions to stream downwards.
The downstream of the ions is focused by the charged particles attraction. This
causes anisotropic distribution of the ions which gives rise to the Kompaneets po-
tential interaction. We calculate and compare the mode coupling predictions for
both systems in an experimentally relevant parameter region. It is shown that in
the one-component plasma limit in 2D, the nonergodicity parameter approaches zero
with a linear behavior in the small wave number regime.

Simulations have shown that the structure factor of a jammed state of monodis-
perse packing, approaches zero with a linear behavior. In contrast to the simula-
tions, the liquid state theory predicts that the structure factor of the same system
approaches a non-zero value with a quadratic behavior in the small wave number
region for any value of the packing fraction. We use a long range potential γ/r2

to successfully introduce the linear behavior of the structure factor observed in the
simulation into the liquid state theory.

We consider a system in which energy is pumped into the Brownian particles
causing negative values of friction. This can occur for example in complex plasma
through the absorption of the ions by the dust particles. Starting from a Langevin
equation with a Rayleigh type velocity dependent friction, the time evolution opera-
tors are developed which in case of noninteracting particles leads to a non-Gaussian
velocity distribution. It is shown that for a constant effective temperature the higher
the noise strength, the lower the probability of finding the active particle in the sys-
tem. Using the Mori-Zwanzig formalism and the mode coupling approximation the
equation of motion for the density auto-correlation function is derived. The integra-
tion through transients approach is used to derive a relation between the structure
factor in the stationary state considering the interacting forces, and the conventional
equilibrium static structure factor.



Zusammenfassung

In dieser Doktorarbeit untersuchen wir den Glasübergang und dynamische Eigen-
schaften suspendierter mesoskopischer geladener Teilchen sowohl unter Gleichgewichts-
als auch unter Nichtgleichgewichtsbedingungen.

Die Glasübergangskurven sowohl für ein Single-Yukawa Potential als auch für ein
Double-Yukawa Potential Modellsystem in drei Dimensionen werden mit Hilfe der
Modenkopplungstheorie bestimmt. Es stellt sich heraus, dass die Glasübergangskurven
innerhalb der Parameterebene parallel zu den jeweiligen Schmelzkurven liegen und
ähnlichen analytischen Formeln folgen. Die Eigenschaften des Glasübergangs des
Yukawa Modellsystems variieren zwischen zwei Grenzfällen: Dem Grenzfall des
Einkomponenten-Plasmas und dem Grenzfall harter Kugeln. Es wird gezeigt, dass
sich der Nicht-Ergodizitäts-Parameter im Grenzfall des Einkomponenten-Plasmas
im Bereich kleiner Wellenzahlen quadratisch Null annähert.

Der Glasübergang eines auf zwei Dimensionen eingeschränkten Systems geladener
Teilchen wird mit Hilfe der Modenkopplungstheorie unter Berücksichtigung zweier
verschiedener Modelle des Wechselwirkungspotentials untersucht: Des Yukawa Po-
tentials und des Kompaneets Potentials. Das Yukawa Potential eignet sich zur Mod-
ellierung eines Systems innerhalb eines isotropischen Ionenbades levitierter geladener
Teilchen. Andererseits werden die geladenen Teilchen in komplexem Plasma häufig
oberhalb einer Elektrode levitiert, was dazu führt, dass die Ionen abwärts strömen.
Dieser abwärts gerichtete Ionenstrom wird dabei durch die Anziehung der gelade-
nen Teilchen fokussiert, was zu einer anisotropen Verteilung der Ionen führt, die
wiederum zu einem Kompaneets Wechselwirkungspotential führt. Wir berechnen
und vergleichen die Voraussagen der Modenkopplungstheorie für beide Modelle in-
nerhalb eines aus experimenteller Sicht relevanten Parameterbereiches. Es wird
gezeigt, dass sich der Nicht-Ergodizitäts-Parameter im Grenzfall des Einkomponenten-
Plasmas im Bereich kleiner Wellenzahlen linear Null annähert.

Simulationen haben gezeigt, dass der Strukturfaktor innerhalb eines monodis-
persen, dicht gepackten (jammed) Systems sich linear einem Wert von Null annähert.
Im Gegensatz dazu sagt die Ornstein-Zernike Gleichung voraus, dass sich der Struk-
turfaktor desselben Systems für alle Packungsdichten im Bereich kleiner Wellen-
zahlen dem Wert von Null quadratisch annähert. Wir benutzen das langreichweitige
Potential γ/r2, um das in Simulationen beobachtete lineare Verhalten des Struktur-
faktors in analytischen Berechnungen erfolgreich zu reproduzieren.

Wir betrachten ein System Brownscher Teilchen, in das Energie so hineingepumpt
wird, dass negative Reibungen auftreten. Diese können z.B. in komplexem Plasma
durch die Absorption von Ionen durch Staubpartikel auftreten. Beginnend von
einer Langevin Gleichung mit einer Rayleigh-artigen geschwindigkeitsabhängigen
Reibung werden Zeitentwicklungsoperatoren hergeleitet, was im Falle nicht wech-
selwirkender Teilchen zur einer nicht-gaußschen Geschwindigkeitsverteilung führt.
Es wird gezeigt, dass bei einer konstanten effektiven Temperatur die Wahrschein-
lichkeit, ein aktives Teilchen im System aufzufinden umso geringer ist, je höher die
Stärke des Rauschens ist. Mit Hilfe des Mori-Zwanzig Formalismus und der Mod-
enkopplungsnäherung wird die Bewegungsgleichung für die Dichteautokorrelations-
funktion hergeleitet. Der Integration Through Transients (ITT) Ansatz wird be-
nutzt um eine Relation zwischen dem Strukturfaktor im stationären Zustand unter



Berücksichtigung der Wechselwirkungskräfte einerseits sowie dem konventionellen
statischen Strukturfaktor im Gleichgewicht andererseits herzuleiten.
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Chapter 1

Introduction

1.1. Glass Transition

By cooling a liquid sufficiently fast, it is possible to avoid crystallization [1]. When

the temperature of the undercooled liquid reaches the glass transition temperature

Tg, it behaves like a solid material on the experimental time scale. At Tg, the

shear viscosity of the system reaches 1013 Poise and the relaxation time (the time

needed for a system to reach an equilibrium condition after a disturbance) becomes

of the order of 100 seconds. When T 6 Tg, the resulting material is called a glass.

Although a complete definition of the glass does not exist yet, this experimental

definition is widely used. The value of Tg depends on the cooling rate [2], however

its dependence on the cooling rate is small. When the temperature is near Tg,

dramatic changes happen in the enthalpy, viscosity [3] and the relaxation time of the

liquid. The dynamic behavior slows down near Tg and basically the system crosses

over to an arrested state, even though the structural changes are smooth. The

temperature range within which these changes happens, is a small range therefore

the term transition is used. Whether the glass transition is a purely dynamical

transition or it has thermodynamical origins is still a matter of debate.

Different theories have been developed to explain the glassy systems and their

dynamical properties. Some of theses are the energy landscape picture [3, 4], mode

coupling theory [5, 6] and random first order transition theory [7, 8]. Many literature

reviews investigate the strength and weaknesses of the theories of the glass transition

[9–11].

Mode coupling theory (MCT) results in an ideal glass transition, which in contrast

3
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to observation, is independent of cooling rate and does not depend on the exper-

imental time scale. The MCT glass transition temperature is at Tc > Tg. Mode

coupling theory predicts rather accurately the two step relaxations in the scattering

function or so called β and α-relaxations. These relaxations consist of two power law

decays and an stretched exponential decay which can be fitted by a Kohlrausch func-

tion. The Kohlrausch function which is also called the stretched exponential, can

be written as F = A exp(−(t/τ)β) [6]. The consistency of the scattering functions

with experiments and simulations has been demonstrated [12–14].

1.2. Complex Plasma and Charged Colloids

Complex plasma consists of charged microparticles (dusts) embedded in a weakly

ionized gas (plasma). The dust particles collect their charge from the surrounding

plasma. Because the electron thermal velocity is much larger than the ion’s thermal

velocity, the flux (flow rate per unit area) of the electrons on the surface of the

dust particles, is much larger than the flux of the ions. Therefore the amount of

negative charges on the dust particles is larger than the positive ones which causes

the dust particles to have negative charge [15]. The dust particles are of the size of

one micron and are individually traceable optically. This is a reason that complex

plasma can be used as a model system.

Charged colloids or charged stabilized suspensions consist of highly charged meso-

scopic particles suspended in a liquid solvent. The microscopic counterions exist as

a part of solvent [16]. The difference between ionic liquids such as a molten salt

and charged colloids is that in the ionic liquids the cations and the anions have

comparable sizes, however in charged colloids the macroions are mesoscopic while

the counterions are of microscopic size [17]. Despite their differences both charged

colloids and the ionic liquids can be treated by liquid state theory, since in general

the phase behavior of colloids is very much similar to atomic systems [18].

Both complex plasma and charged colloids can be used as a model systems to study

the dynamics of liquids. What makes charged colloids and complex plasma different

is the surrounding fluid, which is a liquid in case of colloids and a gas in case of dusty

plasma. The surrounding fluid being much denser in colloids makes the interaction

ranges much shorter. In charged colloids the interaction range is usually comparable

to the particle sizes. Therefore, charged colloids usually are modeled by a hard

sphere potential which models the excluded volume of the particle, plus a tail which
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describes the charge interactions. In complex plasma, the interaction range is much

larger than the particle sizes hence an approximation of pointlike particles is valid.

Another effect which a surrounding fluid has is the friction force which it imposes on

the particles. Since in colloids the surrounding fluid is denser, the damping time scale

is much shorter. The dynamics of colloids is basically considered as overdamped.

The damping time scale of the complex plasma is larger than colloids, therefore the

motion is considered Brownian on much larger time scales [15]. The accessibility

of the undamped short time regime in complex plasma allows better modeling of

the different dynamic regimes of conventional liquids [15]. The repulsive screened

Coulomb (Yukawa) potential is the potential which is used to model the interactions

in both complex plasma and colloids. While in charged colloids the hard core plus

a Yukawa tail is mostly considered [19], in complex plasma the Yukawa potential

between point particles is more relevant. Investigating the behavior and dynamics

of the mesoscopic particles usually is done in a coarse grained way which means the

effect of the surrounding fluid only enters the calculation through the effect it has

on the interactions between the mesoscopic particles.

Mode-coupling theory has been also used to investigate the glass transition of

binary charged hard sphere systems [20, 21], and charged hard spheres in front of a

homogeneous neutralizing background [22, 23]. They have found a glassy state at

low densities due to long range Coulomb interactions. They found that there exist

two sorts of glassy states in the charged hard sphere system, one originating from

the hard core potential which is the excluded volume effect and happens at high

densities; the other one, originating from the Coulomb potential at low densities.

In chapter 2, we use mode coupling theory to investigate the glass transition prop-

erties of a Yukawa model system which consists of point particles in three dimensions

interacting via Yukawa pair interactions. We also discuss the effect of the long range

interactions on the small wave number region of the nonergodicity parameters. Since

the long time dynamics and glass transition properties are the same for both New-

tonian and Brownian dynamics [24], the calculations are applicable to both complex

plasma and charged colloids.

1.3. Charged Particles in Confinement

A two dimensional configuration of charged particles can be observed in many cases

e.g. colloidal particles confined between two plates [25, 26] or in complex plasma
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when dust particles levitate above and parallel to the electrode [27].

In complex plasma, the Yukawa interaction model has been used widely to describe

the interaction between particles [15, 28, 29]. The Yukawa interaction can describe

the effective pair-potential between charged particles rather accurately around the

mean interparticle distance [30, 31]. It is the isotropic Boltzmann distribution of

electron and ions which give rise to the Yukawa model in two dimensions. However

in laboratory experiments of charged particles in two dimensional confinement, the

distribution of ions is anisotropic in three dimensions. Therefore, the Yukawa model

is not justified. In the common case of dusty plasma experiments in a radio frequency

chamber, the dust particles levitate as a two dimensional surface formed above the

electrode in the sheath region [29]. In that region because of the large value of the

electric field, the distribution of the ions is highly anisotropic. The ions are attracted

by the electrode and form a current downwards which is focused due the attraction

between the dust particles and the ions and forms a cone like shape. A kinetic

theory of the ion distributions and effective dust grain interactions is appropriate

in this case, and has been studied by different groups of researchers, under different

assumptions for the plasma parameters [31–39]. The theory is based on the solution

of the kinetic equation for the distribution of ions moving in the electrostatic field

in the sheath region. In the kinetic equation, the ion collision operator describes

the collision between the ions and the neutral particles in the plasma. According

to different experimental parameters, such as radio frequency discharge power and

pressure, different approximations are used for building the ion collision operator.

Among these kinetic models, the one published by Kompaneets et al. [31] is

based on a reasonable assumption of a mobility-limited ion drift in the sheath field,

as opposed to rather unrealistic inertia-limited motion [28]. The resulting three-

parametric potential from the Kompaneets model is anisotropic in three dimensions

(3D). For charged particles confined to 2D, it exhibits an algebraically long-ranged

r−3 in-plane decay. This model is expected to provide a realistic description of

interactions in ground-based dusty plasma laboratory experiments [40].

The dimensional dependence of the mode-coupling theory has been discussed in

Ref. [41]. They have shown that the d = 2 results are qualitatively in agreement

with simulations. Lang et al. [42–44] have developed the mode-coupling theory of

glass transition and glassy dynamics in planar confinements (quasi two dimensional

case). Planar is the confinement between two parallel walls with narrow separation.

They have shown that the MCT of the planar confinement converges to the two
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dimensional MCT for small separations of the walls.

In chapter 3 we use the two dimensional mode coupling theory [41] to acquire

the glass transition points of dust particles in a two dimensional layer, interact-

ing via the Yukawa potential. We also calculate the transition points for a 2D

layer of dust particles interacting via the Kompaneets potential. We obtain quali-

tatively similar liquid-glass transition curves for monolayers with Yukawa-like and

Kompaneets-like pair potentials. We find that the glass transition in a 2D complex

plasma experiment will show a re-entrant liquid-glass-liquid state sequence if one

decides to assume a Yukawa like potential between the particles. But this apparent

re-entrant phenomenon is an artifact which arises as a result of trying to describe the

interaction by a Yukawa potential which best fits the Kompaneets potential in the

distance range around the mean geometrical distance. When one assumes the more

realistic Kompaneets potential this re-entrant sequence disappears. In the end, we

compare the nonergodicity parameter of the Yukawa and Kompaneets monolayer.

1.4. Long Range Potentials and Jammed State Structure Fac-

tor

In the packing of identical particles in the vicinity of the jammed state, the structure

factor behaves differently than what the conventional liquid state theory predicts (by

liquid state theory we mean different closures and approximations [17] which exists

for solving the Ornstein-Zernike Integral equation to obtain the structure factor).

It was shown by simulations which contain a large number of particles, that in

the nearly jammed states with hard sphere interactions [45], repulsive short range

harmonic potential interactions [46], or other more realistic potential interactions

[47, 48], the structure factor displays a linear behavior at the small wave numbers and

approaches a very small number or possibly zero. The fact that in the jammed state

the structure factor behaves like S(k) ∝ k, has been termed hyperuniformity [47].

This is different from what is obtained using the conventional ways of calculating

the structure factor in liquid state theories. For short range potentials, such as hard

or harmonic soft spheres, the liquid state theory predicts an structure factor with

the behavior S(k) ' S(0) + αk2 at small wave number k. The finite intercept S(0),

represents a finite compressibility in the system. From liquid state theories point

of view, the structure factor behaves the same in liquid all the way to the glassy

or jammed state. This is in contrast to the simulations which suggest that linear
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behavior at small wave numbers emerges at the packing fractions in the vicinity

of the jamming. It is argued by Nixon et al. [49], that the linear behavior in

the structure factor is equivalent to the total correlation function h(r) ∝ r−4 where

h(r) = g(r)−1. Also, liquid state theories predict an structure factor which although

has a behavior ∝ k2 at k → 0, it approaches zero for the very long range Coulomb

potential. This may arises the thought that it can be possible to reproduce the

jammed state structure factor, using a long range potential inside the frame work

of the liquid state theories.

In chapter 4, we use a long range potential, to modify the structure factor acquired

from hypernetted chain closure [17] to create a jammed state structure factor. We

show that introducing an additional long range potential ∝ r−2 to the harmonic

short range potential can produce the linear behavior in the structure factor inside

the frame work of the liquid state theories.

1.5. Non-Equilibrium Brownian Motion

Brownian motion can be described by a Langevin equation [50, 51], where it is

considered that the gain of energy by stochastic forces is compensated by the energy

loss because of dissipation (due to a positive friction). In the usual case of Brownian

motion, the fluctuation-dissipation theory holds and the motion of the Brownian

particle is actually passive. Positive friction describes a passive motion. In complex

plasma the dust particles can absorb the ions due to the electrostatic forces. The

absorption of the ions by the dust particles in a specific parameter regime can cause

unbalanced momentum transfer to the dust grains. In a two dimensional Coulomb

plasma this can be described by a negative friction coefficient for slow dust particles

[52]. Negative friction means pumping of the energy to the Brownian particles. This

behavior is also visible in active or self propelled particles. The collective behavior

and dynamics of the active particles, be it bacteria, cells or complex plasma, in the

dense regime can be a matter of interest [53, 54]. One way to account for an internal

propulsion mechanism which pump some energy into the Brownian particle, is to

introduce a velocity dependent friction into the Langevin equation [55]. It is shown

by theoretical arguments that dense active systems can probably undergo a glass

transition [56].

Farage and Brader [57], recently studied the glass transition of active particles in

the framework of the mode coupling theory. They started from the Smoluchowski
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equation considering the rotational diffusion and the coupling between rotational and

translational motion. They have approximated, a single particle motion subjected

only to rotational diffusion and self propulsion, by a random walk motion. They

found that the glass transition will be shifted towards higher packing fractions by

increasing the activity. Glassy dynamics of active particles is also studied by Szamel

et al. [58] within MCT. They start from the Ornstein-Uhlenbeck process, modeling

the self propulsion as an internal driving force and they find that by increasing

activity the long time dynamics first accelerates and then slows down. They obtain

the steady state correlations from simulation.

In chapter 5, we study the mode coupling equations for the case of velocity depen-

dent friction. We start from the according nonlinear Langevin equation. A Rayleigh

type equation is used to model the velocity dependent friction. The solution of the

corresponding Fokker-Planck equation for non-interacting particles is used as the

velocity steady state distribution function. The total distribution function is as-

sumed as the multiplication of the velocity distribution and the Gaussian position

distribution. We use the Liouville operators and the mode coupling approximations

to obtain the equation of motions.

1.6. Mode-Coupling Theory

Mode coupling theory provides a time evolution equation for the density auto-

correlation function. The density auto-correlation function can be written as

φq(t) =
〈ρ∗q(t) ρq〉
NSq

, (1.1)

where Sq is the static structure factor, ρq =
∑

k exp(iq · rk) is the Fourier transform

of the density ρ(r) =
∑

k δ(r−rk), and the brackets are the canonical averages. The

canonical average for a phase variable A is defined as 〈A(Γ)〉 =
∫
f(Γ) A(Γ) dΓ,

where f is the distribution function and Γ is the set of phase space coordinates. At

time zero, 〈ρ∗q(t = 0) ρq〉 is equal to NSq, where N is the number of particles.

The density ρq is coupled with the Fourier transformed density current jq =∑
k vk exp(iq · rk), through the continuity equation

dρq
dt

= iq · jq. (1.2)
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The continuity equation is a time evolution equation for the dynamical variable

ρq. In general one can calculate the time evolution operator for all the dynami-

cal variables of a specific system using Liouville operators [59]. The Mori-Zwanzig

projection formalism [60, 61] is applied to the two dynamical variables ρq and the

longitudinal current jLq , which is the jq element in the direction of the q, to sepa-

rate the fluctuating forces. The resulting equation for the density auto-correlation

function is written as

∂2
t φq(t) + Ω2

qφq(t) +

∫ t

0

∂t′φq(t
′)Mq(t− t′)dt′ = 0, (1.3)

where Ω2
q = q2kBT/Sq. The expression Mq(t) is called memory kernel. Mq is again

projected on the product ρkρp where the first mode coupling approximation is used

to produce the kernel Mmct
q = Ω2

qm
mct
q . Mq(t) is approximated to consist of a white

noise term plus Mmct
q , thus Mq(t) = νqδ(t) + Ω2

qm
mct
q (t). Therefore Eq. (1.3) is

written as

∂2
t φq(t) + νq∂tφq(t) + Ω2

qφq(t) + Ω2
q

∫ t

0

∂t′φq(t
′)mmct

q (t− t′)dt′ = 0. (1.4)

where mmct
q is the MCT kernel

mmct
q (t) = Fq(φ(t)). (1.5)

The equation (1.4) can be solved using the initial condition φq(0) = 1 and ∂tφq(0) =

0. The solution of the equation is a correlation function with the value between 1 and

zero. The long time limit of the density auto-correlation function, limt→∞ φq(t) =

fq, is called the glass form factor or the nonergodicity parameter. If the density

correlation function stays non-zero in the long time limit fq > 0, the dynamic is

arrested and glassy. If eventually fq = 0, the state is still liquid. From Eq. (1.4),

(1.5) and limt→∞ φq(t) = fq one has

fq + lim
t→∞

∫ t

0

∂t′φq(t
′)Fq(φ(t− t′)) dt′ = 0, (1.6)

and therefore

fq + Fq(f) [fq − 1] = 0. (1.7)

This is the equation which can be solved to obtain the glass transition temperature

Tc or, in case of the hard sphere system, the glass transition packing fraction ϕc.
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The mode coupling theory can also be applied to colloids where the motion is

Brownian and overdamped. In that case, Eq. (1.4) turns into

τq∂tφq(t) + φq(t) +

∫ t

0

∂t′φq(t
′)mmct

q (t− t′)dt′ = 0. (1.8)

Here the fluctuation dissipation relation D0 = kBT/νq, is used. D0 is the diffusion

coefficient and τq = Sq/D0q
2. When mmct

q (t) = 0, one obtains φq(t) = exp(−t/τq).
This means the auto-correlation function has an exponential decay like in a normal

liquid above the melting temperature Tm. It was shown by Fuchs [62] and Szamel

et al. [24], that the asymptotic prediction of MCT do not change for Brownian

dynamics. MCT predicts the same transition temperature for molecular dynamics

described by Eq. (1.4) and Brownian dynamics. It is also shown by simulation that

apart from β relaxation the long time α relaxation of the correlation function and

the form factor is the same for both Newtonian and Brownian dynamics [63].

Mode coupling equations are also developed for a tagged particle motion quite

similar to the collective equations with a differently formulated MCT kernel [5, 6].

Later Fuchs and Cates have developed a mode-coupling approach to explore the

nonlinear rheology of colloidal fluids and glasses under steady shear [64, 65]. It has

been found in [65] that shear advection of density fluctuations accelerates the loss

of memory. Chong and Kim developed a non-equilibrium mode-coupling theory for

a uniformly sheared system [66] starting from thermostated Sllod equations [59].

The time dependent distribution function is calculated using the Liouville operator

based on the Sllod equations. Later Suzuki and Hayakawa [67] used the same starting

point, applied an isothermal condition, and resolved the contradiction between [65]

and [66]. Kranz et al. [68, 69] have developed a mode-coupling approach for granular

fluid (dissipative hard spheres) starting from a Liouville operator containing collision

and driving terms. They find that with increasing dissipation, the glass transition

shifts to higher densities.

1.7. Integration Through Transients

As we mentioned, a mode-coupling approach is developed by Fuchs and Cates to

explore the nonlinear rheology of colloidal fluids and glasses under steady shear
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[64, 65]. The starting point is the Smoluchowski equation

∂tΨ = ΩΨ,

Ω =
∑
i

∂i · (∂i − Fi − κri)
(1.9)

which is an equation for the time evolution of the distribution function Ψ. The

Smoluchowski operator only involves the position coordinates of the Brownian par-

ticles since on the Smoluchowski time scale the momentum coordinates already have

relaxed to equilibrium. The κ is the shear rate tensor κij = γ̇δixδiy and γ̇ is the

shear rate. The vanishing shear rate γ̇ = 0, corresponds to the equilibrium state

where ΩeΨe=0. At time t = 0, a constant shear rate γ̇ is switched on. Therefore,

the time dependence of the Smoluchowski operator can be written as

Ω(Γ, t) =

Ωe(Γ) =
∑

i ∂i · (∂i − Fi), t ≤ 0

Ω(Γ) =
∑

i ∂i · (∂i − Fi − κri). t > 0
(1.10)

When t ≥ 0, Ψ(Γ, t) = exp(Ω(Γ)t)Ψe(Γ) where exp(Ω(Γ)t) = 1+
∫ t

0
dt′ exp(Ω(Γ)t′) Ω.

For t → ∞ the distribution converges to the stationary distribution Ψs(Γ). There-

fore

Ψs(Γ) = Ψe(Γ) +

∫ ∞
0

dt eΩt Ω Ψe(Γ). (1.11)

Using Eq. (1.11), the stationary state average of an arbitrary function A(Γ) can be

written as∫
dΓΨs(Γ)A(Γ) =

∫
dΓΨe(Γ)A(Γ) +

∫ ∞
0

dt

∫
dΓA(Γ) eΩt Ω Ψe(Γ). (1.12)

This mechanism called integration through transients (ITT) is used by Fuchs and

Cates [65] to obtain the stationary state correlation functions. The point of using

ITT is that the stationary state distribution Ψs cannot be obtained directly from

solving the Smoluchowski equation. In section 5.9 we use ITT to obtain a relation

between the static structure factor in non-equilibrium condition and the conventional

equilibrium structure factor.



Chapter 2

Glass Transition of Yukawa Systems

in Three Dimensions

This chapter follows the publication Yazdi et al. [70].

2.1. Yukawa Model

If a point like negatively charged particle, is immersed in an ionized background

consisting of electrons and ions, the potential around the particle can be written as

screened Coulomb (Yukawa) potential [71]

φ(r) =
Q

4πεr
exp (− r

λ
), (2.1)

where r is the distance from the particle, ε is the permittivity of the medium and

λ is the screening length. The screening is due the fact that ions and electrons

shield the test charge potential which reduces the potential around the test charge

with the decay constant 1/λ. The Yukawa potential is derived solving the Poisson

equation when assuming Boltzmann distribution of ions and electrons [72, 73], for

the derivation, see Appendix A.

Considering N , the number of charged particles instead of one test charge, the

interest is focused on the pair interaction potential energy of the particles. Thus we

multiply the φ(r) in Eq. (2.1) by Q and make it dimensionless by dividing it by kBT .

We also make the distance dimensionless by dividing r by the mean interparticle

distance. The mean interparticle distance in three dimensions is 1/
√
n3 where n is

13
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the number density of the particles. Therefore the Yukawa interparticle potential

energy is written as
U(x)

kBT
=

Γ

x
exp(−κx), (2.2)

where x is the distance in the unit of average interparticle distance, x = r 3
√
n. The

Yukawa potential can be characterized by two parameters κ and Γ. κ = 1/(λ 3
√
n)

is the inverse of the screening length λ in the unit of average interparticle distance.

The coupling parameter or interaction strength is Γ = Q2 3
√
n/(4πεkBT ). In this

chapter whenever we refer to the Yukawa potential (energy) we mean Eq. (2.2).

In a system of particles interacting via the Yukawa potential, when the poten-

tial energy dominates the kinetic energy of particles (Γ & 1), the system is called

strongly coupled and therefore the main research interest is shifted from the gas

phase to the statistical mechanics of the liquid and solid state [15, 74]. The Yukawa

potential has been used to model charged colloids [75, 76] and the complex plasma

[15]. In colloids usually one consider a hard-sphere potential and a Yukawa poten-

tial outside the hard core [77]. Unlike typically in colloids, the interaction range

and the mean interparticle distances in complex plasma are much larger than the

particle sizes, hence an approximation of point-like particles is appropriate. We also

consider the vacuum permittivity ε = ε0 since in complex plasma this is usually the

case. In the limit of vanishing screening parameter, κ = 0, one recovers the one-

component-plasma (OCP), which is the simplest model that exhibits characteristics

of charged systems [17]. In this limit, the Yukawa potential tends to the Coulombic

pair interactions
U(x)

kBT
=

Γ

x
. (2.3)

We consider a model system of point particles in three dimensions interacting with

Yukawa potential (Eq. (2.2)). We use mode coupling theory [6], to investigate the

glass transition properties of the Yukawa model system.
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2.2. Methods

2.2.1. Mode-Coupling Glass Transition

Within MCT the glass transition is defined via the nonergodicity parameter fq,

which is the long time limit of the density autocorrelation function φq(t)

fq = lim
t→∞

φq(t). (2.4)

Inside the liquid φq(t) decays to zero resulting in vanishing fq. On the other hand in

the glassy state the density auto-correlation function remains finite therefore fq > 0

[5, 6]. It is also common to name the fq the glass form factor or Debye-Waller factor.

The nonergodicity parameter is a solution of the equation

fq
1− fq

= Fq(f), (2.5)

where Fq is the memory kernel. In a hard-sphere system (HSS) in three dimensions

the memory kernel can be written as [5, 41]

FHSS
q′ (f) =

nSq′

32π2q′5

∫ ∞
0

dk′
∫ k′+q′

|k′−q′|
dp′ k′p′ Sp′Sk′

×
[
ck′(q

′2 + k′2 − p′2) + cp(q
′2 − k′2 + p′2)

]2
fk′fp′ .

(2.6)

Here we used the prime symbol to differentiate between the hard sphere and the

Yukawa case which we explain later. Sq′ is the static structure factor which is related

to the Fourier transformed direct correlation function cq′ , via Sq′ = 1/(1 − ncq′).

Thus the only input to the Eq. (2.5) is the static structure factor. In the hard-

sphere system the dimension of the wave number q′, is the inverse length [q′] = L−1.

Also [Sq′ ] = 1, [cq′ ] = L3 and [fq′ ] = 1. Therefore the dimension of FHSS
q′ is given as

[FHSS
q′ ] = [n]L3 = 1. (2.7)

This means that, FHSS
q′ is a dimensionless quantity. In our Yukawa model system,

we have defined the distance in the unit of a length scale 1/ 3
√
n, thus the dimension

of wave number is

[q] =
1

L[ 3
√
n]

= 1. (2.8)
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The memory kernel can be written as

Fq(f) =
Sq

32π2q5

∫ ∞
0

dk

∫ k+q

|k−q|
dp kp SpSk

×
[
ck(q

2 + k2 − p2) + cp(q
2 − k2 + p2)

]2
fkfp,

(2.9)

which is different from Eq. (2.6) by the fact that the number density does not appear

explicitly behind the integrals. Here Sq = 1/(1− cq) and [cq] = 1, [Sq] = 1, [fq] = 1

therefore [Fq] = 1. The closed form of the memory kernel is

Fq(f) =
1

16π3

∫
d3k

SqSkSp
q4

(q · kck + q · pcp)2fkfp, (2.10)

where p = q−k. One can discretize Eq. (2.9), on a equidistant grid using the middle

point Riemann sum. We choose to do the discretization over 100 points with the step

size ∆ = 0.4. q = ∆q̂, k = ∆k̂ and p = ∆p̂ where q̂, k̂, p̂ = 1/2, 3/2, 5/2, . . . , 199/2.

The minimum value of q, k, pmin = 0.2 and the cut off value q, k, pmax = 39.8 [78],

therefore

Fq(f) =
Sq∆

3

32π2q̂5

∑
k̂,p̂

SkSp

[
ck(q̂

2 + k̂2 − p̂2) + cp(q̂
2 − k̂2 + p̂2)

]2

fkfp. (2.11)

Here the sum over p̂ has the restriction that |q̂− k̂|+1/2 ≤ p̂ ≤ q̂+ k̂+1/2 due to the

integral limits in Eq. (2.9). Later we will use the same discretization to discretize

Eq. (2.19). Using the discretized kernel in Eq. (2.11) we can solve Eq. (2.5) to

obtain the glass transition point and the non-ergodicity parameter at the transition.

Eq. (2.5) can be solved iteratively [78]

f (n+1)
q /(1− f (n+1)

q ) = Fq(f (n)), (2.12)

starting from f
(0)
q = 1. This means we feed f

(0)
q = 1 to the discretized kernel in

Eq. (2.11) and obtain the F (0)
q . From F (0)

q we calculate the f
(1)
q through Eq. (2.12)

and use it as an input to the discretized kernel again. We continue this procedure

until |f (n+1)
q=3.8 − f

(n)
q=3.8| < ε, with ε = 10−9. The value q = 3.8 is just an arbitrary

grid point, and in principle the fq converges for all arbitrary chosen grid points

values smaller than the q cutoff. The only inputs to the kernel which depend on

our potential are Sq and cq. Depending on which structure factor we feed to the

discretized kernel, the fq which we obtain from the iteration process can be zero,

showing us that we have liquid, or fq > 0 showing us that we have a glassy state.

For calculating the discretized memory kernel we reduce the computational effort
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by using the Bengtzelius trick explained in [79].

One other quantity which we will calculate is the localization length rcs. It is

defined as

rcs
2 = lim

t→∞

δr2(t)

6
, (2.13)

where δr2(t) is the mean squared displacement. At the transition density or tem-

perature a tagged particle will be able to move a distance equal to the localization

length before it is hindered by its neighboring particles. The localization length can

also be obtained using the relation [80]

rcs
2 =

1

FMSD(f, fs)
, (2.14)

where fs is the Lamb-Mössbauer factor f sq = limt→∞ φ
s
q(t), the long-time limit of the

tagged particle autocorrelation function φsq(t), and [80]

FMSD =
1

6π2

∫ ∞
0

Sqc
s
q
2q4fqf

s
q dq. (2.15)

In this equation again the number density n is canceled out since the dimension of

the wave number [q] is one and also [csq] = 1. Since the tagged particle is one of the

liquid particles csq = cq. One can discretize Eq. (2.15) as

FMSD =
∆5

6π2

∑
q̂

Sqc
s
q
2q̂4fqf

s
q , (2.16)

again we used the middle point Riemann sum with 100 points where the step size

∆ = 0.4, q = ∆q̂ and q̂ = 1/2, 3/2, 5/2, . . . , 199/2. qmin = 0.2 and the cut off value

qmax = 39.8.

The Lamb-Mössbauer factor f sq is calculated in MCT according to [80]

f sq
1− f sq

= F sq [f, f s], (2.17)

where F sq [f, f s] is the tagged particle memory kernel which is written as

F sq [f, f s] =
1

8π2q4

∫
d3k Sk(q · k)2c2

kfkf
s
p (2.18)
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or equivalently in bipolar coordinates

F sq [f, f s] =
1

16π2q5

∫ ∞
0

dk

∫ k+q

|k−q|
dp kp Sk

[
csk(q

2 + k2 − p2)
]2
fkf

s
p . (2.19)

This, using the same grid as in Eq. (2.11), F sq can be discretized as

F sq =
∆3

16π2q̂5

∑
k̂,p̂

k̂p̂ Sk

[
csk(q̂

2 + k̂2 − p̂2)
]2

fkf
s
p . (2.20)

Eq. (2.17) is solved iteratively starting from f
s(0)
p = 1 via f

s(n+1)
q /(1 − f

s(n+1)
q ) =

F sq [f, f s(n)]. The iteration process is the same as we explained for fq in Eq. (2.12).

In the tagged particle discretized kernel we need to input the fq which we have

calculated from Eq. (2.12) therefore when fq = 0 we have f sq = 0.

2.2.2. Structure Factor

As we can observe in Eq. (2.9) and (2.19) the input to the MCT equations are

the structure factor Sq and the Fourier transformed direct correlation functions cq.

These two functions are related via the Ornstein-Zernike equation

γq =
c2
q

1− cq
, (2.21)

where the spatial Fourier transform of γq is γ(x) = h(x) − c(x) and h(x) is the

total correlation function. The Fourier transform of the total correlation function,

hq, is related to the structure factor through Sq = 1 + hq. The Ornstein-Zernike

equation is not solvable by itself and we need to choose a closure for the equation. It

was found earlier that the hypernetted chain closure (HNC) approximation captures

various structural features for repulsive potentials, especially also for the OCP (one-

component plasma)[81]. Therefore the HNC closure is used

c(x) = exp [−U(x)/(kBT ) + γ(x)]− γ(x)− 1. (2.22)

Eq. (2.21) and Eq. (2.22) are solved by iteration using the mixing method [17] in

order to ensure convergence. Which means in every iteration step the result of the

current step for c(x), is mixed with some percentage of the result of the last step.
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The iteration is done n times from an initial guess, c(0)(x)

[∫ R

0

|c(n+1)(x)− c(n)(x)|2 dx

]1/2

< δ, (2.23)

with δ = 10−5, where R is the cut-off length of c(x). We employ R = 47.1239 and a

mesh of size M = 2396 points. Consequently, the resolution (step size) in real and

Fourier space is ∆x = R/M = 0.0197 and ∆q = π/R = 0.0667, respectively. An

orthogonality-preserving algorithm is used for the numerical calculation of Fourier

transforms [82]. To calculate the structure factors for Yukawa potentials with par-

ticular κ and a range of Γs: we begin the computation of c(x) at a small coupling

parameter Γ. Then we successively increase Γ. In each step we use the outcome as

an initial guess for the subsequent calculation with higher Γ values [70]1. For the

smallest Γ we use the initial guess of c(0)(x) = −U(x)/(kBT ). After obtaining the

structure factor over the aforementioned Fourier spaced grid, we use interpolation

to have the structure factor over the same grid points which we have in the MCT

discretized kernels. The MCT kernel is discretized over 100 points where the step

size is ∆ = 0.4, q = ∆q̂ and q̂ = 1/2, 3/2, 5/2, . . . , 199/2.

In section 2.3.2 we compare the glass transition points of a Yukawa system cal-

culated with the HNC structure factor and the glass transition points of a Yukawa

system with the Percus-Yevick (PY) structure factor [83]. The reason for this com-

parison is that for high Yukawa parameter values, the potential becomes very stiff

and resembles a hard sphere potential and in the hard sphere system the PY ap-

proximation is known to be more accurate [17]. The PY closure can be written as

c(x) = (1 + γ(x)) (exp [−U(x)/(kBT )]− 1) , (2.24)

where U(x) is the interaction potential. Except the closure form which is different,

the procedures and numerical values employed to obtain the PY structure factor are

the same as for the HNC which we explained. In PY we start the c(x) iteration for

the low Γ with the first initial guess c(0)(x) = exp [−U(x)/(kBT )]− 1.

1The structure factor code which I used was first written by A. Wysocki.
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2.3. Results

2.3.1. Transition Curve

Any Yukawa potential can be determined by two parameters: Potential strength

Γ and the screening parameter κ. For every potential associated with the pair

(κ,Γ) we can calculate the structure factor Sq within HNC approximation according

to the procedure explained in section 2.2.2. The structure factor is an input to

the memory kernel in Eq. (2.11). Using the discretized memory kernel we solve

Eq. (2.12) iteratively. If the resulting fq is zero we are in the liquid state and if

fq > 0 we are in the glassy state. For every particular κ value, we check the fq of

several values of Γ. In every step if we have a glass (fq > 0) we choose a lower Γ and

if we have a liquid (fq = 0) we choose a higher Γ value to approach the transition

point. For every κ value the lower most Γ in the parameter plane which result in a

non-zero fq value, identifies a glass transition point. In Fig. 2.1 we have shown the

glass transition points for a wide range of screening parameters.
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Figure 2.1.: Glass transition points of the Yukawa model system calculated within
MCT and HNC approximation in the potential parameters plane (κ,Γ).

One can observe that with increasing κ the transition Γ values increase which indi-

cates that when the screening length λ of the potential decreases, the particles should

be more charged or the temperature should be lower for the transition to happen.

Fig. 2.2 shows the transition points along with the melting curve of the similar sys-

tem for comparison. The melting line shows the transition from an ordered solid to
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a disordered liquid and follows the analytical formula Γ(κ) = 106 eκ/ (1 + κ+ κ2/2)

which is proposed by [84, 85]. The analytical formula is in very good agreement with

the simulation data of Ref. [86] for κ . 8. One should note that when one considers

the Wigner-Seitz radius 3
√

3/4πn as the unit of length instead of 1/ 3
√
n the constant

number in the Γ(κ) = 106 eκ/ (1 + κ+ κ2/2) changes from 106 to ' 172. The for-

mula is derived by [84] based on the Lindemann [87] type argument: the melting

happens when the mean squared displacement of the particles exceeds a certain frac-

tion of the average particles distance. They consider the mean square displacement

of the particles in a one dimensional Yukawa lattice to be inverse proportional to

their oscillation frequency [72] taking to account only the nearest neighbors and use

the Lindemann rule to obtain the analytical formula. We can observe in Fig. 2.2

that the evolution of the glass transition points seems to be parallel with the melting

curve. Here we use a similar argument to [84], to explain the resembling behavior

of the glass transition and the melting curve in the κ and Γ parameter plane.
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Figure 2.2.: Comparison between glass transition and the melting curve of the
Yukawa model system. Filled circles show the MCT-HNC glass transition points.
The solid curve is the melting curve from [84].

In general the only input to the MCT equations is the structure factor. Therefore

if we want to find a relation for the qualitative behavior of the MCT transition

curve we have to look at the structure factor. We use the quantity ψ(x) named the

potential of mean force [17, 88]

ψ(x) = −kBT lng(x), (2.25)

where g(x) is the pair distribution function and related to the structure factor
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through the Fourier transform

Sq = 1 +

∫
d3x eiq·x (g(x)− 1) . (2.26)

If we assume two arbitrary particles in the system, particle 1 and 2, ψ(x12) can be

interpreted as the reversible work for a process in which particle 1 and 2 are brought

to the relative separation x12, from an initial infinite separation. From Eq. (2.25)

ψ(x12) = −kBT

[
ln

∫
dx3 · · · dxne

−UT ({xN})
kBT + C

]
, (2.27)

where UT is the total potential energy originating from all particles. Taking a deriva-

tive of the potential of the mean force leads to

∂ψ(x12)

∂x1

=

∫
dx3 · · · dxn

(
∂UT
∂x1

)
e
−UT ({xN})

kBT∫
dx3 · · · dxne

−UT ({xN})
kBT

. (2.28)

This quantity shows the amount of force on particle 1, averaged over the position of

the other particles 3, 4, . . . , where particle 1 and 2 are kept fixed at x1 and x2. Now

if we assume that particle 2 remains fixed while particle 1 changes its position by a

small value dx1, we can use Eq. (2.28) to observe the change in the potential of mean

force ∆ψ = ∂ψ(x12)
∂x1

· dx1. We assume that the total interaction potential consist of

the sum of pair interactions only, UT =
∑

i U . When the distance between particle

1 and any other particle is x1i, the relative change of interparticle distance between

particle 1 and particle i can be written as dx = dx1 · (x1−xi). We show the average

over the position of the particles 3, 4, . . . by 〈· · · 〉i. Therefore from Eq. (2.28) we

have

∆ψ = 〈
∑

i U(x1i + dx)

kBT
−
∑

i U(x1i)

kBT
〉i. (2.29)

The change in ψ is equivalent to the sum of the changes in the pairwise interactions

between all the particles in the system and particle 1 average over the positions of

the other particles.

The pairwise interactions are in the form of Yukawa potentials. Using the Taylor

expansion we can write

〈U(x1i + dx)

kBT
− U(x1i)

kBT
〉i = −〈1 + κx1i

x2
1i

Γe−κx1idx〉i

+ 〈2 + 2κx1i + κ2x2
1i

2x3
1i

Γe−κx1idx2〉i + . . . .

(2.30)
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Due to symmetry the first term on the right hand side of Eq. (2.30) will be canceled.

In a strongly coupled Yukawa system, the interactions between the particles are

dominated by those at mean interparticle distances [89], or x ≈ 1. The change in

the potential of the mean force is then approximately proportional to the second

term in Eq. (2.30)

∆ψ ∝ Γe−κ(1 + κ+ κ2/2) . (2.31)

At the glass transition every particle 1 can change its position inside the cage until it

is hindered by neighboring particles (localization length). In the hard-sphere system

the force on the particle in that regime (ballistic regime) is zero. Here the force on

the particle is related to ∆ψ. If the average particle in an average cage experiences

the same forces along the line of glass transition, ∆ψ can be assumed approximately

constant. So from Eq. (2.31)

Γ ∝ eκ

1 + κ+ κ2/2
. (2.32)

Therefore we expect that the glass transition points can be fitted by the same relation

as in the melting line but the constant which change the proportionality in Eq. (2.32)

to equality remains to be calculated by mode coupling theory.

Now we go back to our MCT-HNC result. Fig. 2.3 shows that the glass transition

can be described by the function

Γc(κ) = ΓcOCP e
κ
(
1 + κ+ κ2/2

)−1
, (2.33)

where ΓcOCP = 366, is the transition potential strength at κ = 0.33. We do not cal-

culate the transition point exactly in the limit of κ = 0 since obtaining a converging

solution of both HNC and MCT in this limit is difficult.

One should also have in mind that in a hard sphere system the MCT and structure

factor approximation leads to a transition point that should be shifted by 10% to

match the experimental result [6, 90]. So here also we expect some deviation from

the experiment but the qualitative predictions should be reliable.

2.3.2. Glass Form Factors

As we mentioned in section 2.2.1, we can obtain the form factor from solving

Eq. (2.12). The critical form factor f cq , is the form factor at the glass transition
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Figure 2.3.: The solid red curve shows the analytical formula in Eq. (2.33). The
filled circles are the MCT-HNC transition points from Fig. 2.2 and the solid black
curve shows the melting curve from [84].

point. Fig. 2.4 displays the critical form factors f cq of the selected Yukawa transition

points which are shown in the inset. The red squares exhibit the form factor of the

transition point with κ = 0.33 and Γ = 366. The first peak value at q ' 2π shows

that the long time limit of the density autocorrelation function has a maximum value

for the wave length equal to the mean interparticle distance. This means that the

glass is less resistant to a density fluctuation with the wave length equal to the mean

interparticle distance and if an initial density fluctuation with that wave length is

assumed it will remain in the system. This property indicates the cage effect [6]. As

it is visible in the figure 2.4, the first peak height of the fq is the nearly the same

for all the transition points.

One can observe in figure 2.4 that at the OCP limit, the small q part of the form

factor approaches zero while larger κ values result in a finite value of fq in the small

q region. We will return to this point in section 2.3.3.

Now we want to compare the fq of the Yukawa system with a hard sphere system

(HSS). In a hard sphere system the Percus-Yevick (PY) structure factor is known

to be more accurate than the HNC [17]. In case of HSS, the PY closure for the

direct correlation function c(r) together with the Ornstein-Zernike equation, has an

analytical solution [17]. The structure factor is calculated via Fourier transforming
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g(r). The control parameter for the HSS is the packing fraction

ϕ =
πd3n

6
, (2.34)

where d is the hard-sphere diameter and n is the number density. We obtain the fq

of the HSS via Eq. (2.12) using 300 points grid with qmin = 0.067 and qmax = 39.933

and ∆ = 0.133 for descretizing the MCT integrals. The transition packing fraction

is at ϕc = 0.516. The dashed curve in Fig. (2.4) shows the MCT-PY fq of the hard

sphere system. The horizontal axis in Fig. (2.4) in case of the HSS results, is qd where

q is the Fourier conjugate variable to the center-to-center distance r between the

spheres. However for HSS result to be comparable with the Yukawa, it is reasonable

to have the structural inputs calculated with the same closure. Thus, we calculate

the structure factor of the HSS within HNC closure using the method explained in

section 2.2.2, with the difference that, since the HSS potential is discontinuous we

use more grid points M = 32×2396. We again obtain the fq of HSS from Eq. (2.12)

using the HNC structural input. The MCT-HNC transition packing fraction of HSS

is at ϕc = 0.525. The HSS fq using HNC structure factor is shown in Fig. (2.4)

with solid curve labeled HSS-HNC. The differences between the form factors of the

HSS calculated using HNC or PY is almost indistinguishable when comparing to

the experiment, cf. [91], except for the small q regime. In the small q regime the

experiment favors the PY result in case of the hard sphere system. One can conclude

that with increasing κ and Γ the form factor of the Yukawa system resembles the

form factor of a hard sphere system.

We have shown some representative Yukawa potentials at the transition, in Fig. 2.6.

One can observe that when κ and Γ increases the Yukawa potential becomes quiet

stiff and shorter range. We have used HNC structure factor for the whole range of

the Yukawa parameter to obtain the transition points in the Yukawa system but

here we want to compare our result with PY. We calculate the structure factor of

the Yukawa potential for κ > 10, using PY closure in Eq. (2.24). We obtain the

transition points repeating the procedure mentioned in the beginning of section 2.3.1

to obtain the Yukawa transition points this time using the PY structure factor. The

result is shown in Fig. 2.5 with full triangles. It is visible that there is no qualitative

difference between HNC and PY result in high (κ,Γ) regime in terms of following

the formula in Eq. (2.33).
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Figure 2.4.: Representative form factors at the selected transition points displayed
in the inset. The solid line shows the MCT form factor of a hard sphere system
with HNC approximation of the structure factor at the transition packing fraction
ϕc = 0.525 where the dashed curve shows the form factor of the hard sphere system
within MCT-PY at ϕc = 0.516.

2.3.3. Small q Behavior of the Glass Form Factor

In the OCP limit, fq approaches zero in the small q region. This is due to the small

q limit of the structure factor and vanishing compressibility. One can relate the

isothermal compressibility of the Yukawa system to the structure factor as

kBTχT = 1 +

∫
[g(x)− 1] d3x = Sq→0, (2.35)

where χT is the isothermal compressibility. A similar relation is valid for the HSS

[17], with the difference that in the HSS, the Sq→0 is a finite value resulting in a finite

compressibility but in the OCP limit zero Sq→0, causes vanishing compressibility.

The structure factor can be defined as the density response of the system to an

external field [17], therefore a vanishing structure factor Sq→0 = 0, means no matter

how large the external field, the response of the system is zero. Therefore one needs

to introduce an infinite external field to create a long wave length fluctuation. If one

assumes an initial long wave length density fluctuation in the OCP glass, eventually,

the system becomes completely uncorrelated to its initial state. This manifest itself

in fq→0 = 0.

The structure factor in the OCP limit is ∝ q2 in the small q region. We explain
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Figure 2.5.: Comparison between the transition values for large values of the param-
eters κ and Γ with structural input calculated within HNC (filled blue circles) and
Percus-Yevick (red triangles) approximation. Equation (2.33) is shown as a dashed
curve.

the reason as follows: The direct correlation function, can be written as c(x) '
−U(x)/kBT [17] in the large x regime. Therefore in the small q regime the behavior

of cq, is defined by the Fourier transform of the potential

cq ' −U(q)/kBT. (2.36)

In three dimensions the Fourier transform of an arbitrary function ω(r) can be

written as [6]

Ω(k) =
4π

k

∫ ∞
0

xω(x)sinkxdx, (2.37)

therefore for the Coulombic potential U(x)/kBT = Γ/x in the OCP limit

U(q)

kBT
=

4π

q

∫ ∞
0

sinqx dx

= lim
ε→0

4π

q
Im

(∫ ∞
0

exp(iqx− εx) dx

)
=

4πΓ

q2
.

(2.38)

Using the Ornstein-Zernike equation

Sq→0 =
1

1− cq→0

, (2.39)
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we obtain

Sq→0 =
q2

4πΓ
. (2.40)

In principle one can separate the direct correlation function into two parts: The

short range regular part cRq and the long range singular part cSq . At q → 0 the

singular part cSq = −U(q)/kBT and therefore as it is derived in [92]

Sq =
q2

4πΓ
+

q4

(4πΓ)2
[cR0 − 1] +O(q6). (2.41)

For obtaining the small q behavior of fq, we first start with Eq. (2.10) which can be

also written as

Fq(f) =
1

8π3

∫
d3kV (q,k,p)fkfp, (2.42)

where

V (q,k,p) =
1

2

SqSkSp
q4

[q.kck + q.pcp]
2δ(q− k− p). (2.43)

The delta function leads to p = k− q. We can apply that to the vertices

V (q,k,p) =
1

2

SqSkSp
q4

[q.kck + q.(q− k)c|q−k|]
2. (2.44)

We follow the method mentioned in [41]. We name the angle between q and k, θ so

we can Taylor expand cp = c|q−k| as

c|q−k| = c|−k| +
(
q · ~∇

) ∣∣∣∣
−k

c|−k| +
1

2

(
q · ~∇

)2
∣∣∣∣
−k

c|−k| +
1

6

(
q · ~∇

)3
∣∣∣∣
−k

c|−k| + . . .

(2.45)

where q · ~∇ = q · p̂ ∂
∂p

, which in the small q limit is equal to −q cos θ ∂
∂k

. Also

c|−k| = ck, therefore

c|q−k| = ck − c′kq cos θ +
1

2
q2cos2θc′′k −

1

6
q3cos3θc′′′k . (2.46)

where we have neglected the higher order terms. Substitution of Eq. (2.46) in
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Eq. (2.44) leads to

V (q,k,p) ' 1

2

SqSkSp
q4

q2(ck + kc′kcos2θ)︸ ︷︷ ︸
a

+ q3(−c′kcosθ − 1

2
kcos3θc′′k)︸ ︷︷ ︸

b

+ q4(
1

2
cos2θc′′k +

1

6
kcos4θc′′′k )︸ ︷︷ ︸

c


2

.

(2.47)

We remind ourselves that this is the integrand of the integral in Eq. (2.42). For

obtaining different orders of q in Fq, we first keep the Sq outside the integral. Later

we talk about the dependence of Sq on q.

We start with calculating the term in Fq which is only proportional to Sq and

does not have any other q dependency. For that we should choose the term a2 from

[a + b + c]2 = a2 + b2 + c2 + 2ab + 2bc + 2ac in Eq. (2.47). We replace the a2 term

inside Eq. (2.42) knowing that d3k = 2πk2dk sinθdθ or d3k = 2πk2dk d(cosθ)

FSq(f) =
2πSq
16π3

∫ ∞
0

dkk2S2
kf

2
k

∫ 1

−1

q4

q4
(c2
k + 2kckc

′
kcos2θ + k2c′k

2
cos4θ)d(cosθ)

=
Sq
4π2

∫ ∞
0

dkk2S2
k

(
c2
k +

2

3
kckc

′
k +

1

5
k2c′k

2

)
f 2
k .

(2.48)

For obtaining the Fq terms which are proportional to qSq, we have to replace the 2bc

term from Eq. (2.47) inside Eq. (2.42). This contains the integration
∫ 1

−1
d(cosθ), of

only odd powers of cos θ which results in zero.

For the term proportional to the q2Sq we place the b2 and 2ac from Eq. (2.47) in

Eq. (2.42). Hence

Fq2Sq(f) =
Sqq

2

8π2

∫ ∞
0

dkk2S2
kf

2
k

∫ 1

−1

(c′k
2
cos2θ +

1

4
k2c′′kcos6θ + kc′kc

′′
kcos4θ

+ ckc
′′
kcos2θ +

1

3
kckc

′′′
k cos4θ + kc′kc

′′
kcos4θ +

1

3
k2c′kc

′′′
k cos6θ)d(cosθ)

=
q2Sq
4π2

∫ ∞
0

dkk2S2
k

(
1

3
c′k

2
+

1

28
k2c′′k

2
+

2

5
kc′kc

′′
k +

1

3
ckc
′′
k

+
1

15
kckc

′′′
k +

1

21
k2c′kc

′′′
k

)
f 2
k .

(2.49)
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In summary the small q dependence of Fq can be written as

Fq(f) = αSq + βq2Sq +O(q3) , (2.50)

where [41]

α =
1

4π2

∫ ∞
0

dkk2S2
k

(
c2
k +

2

3
kckc

′
k +

1

5
k2c′k

2

)
f 2
k , (2.51)

and from Eq. (3.37)

β =
1

4π2

∫ ∞
0

dkk2S2
k

(
1

3
c′k

2
+

1

28
k2c′′k

2
+

2

5
kc′kc

′′
k

+
1

3
ckc
′′
k +

1

15
kckc

′′′
k +

1

21
k2c′kc

′′′
k

)
f 2
k .

(2.52)

From Eq. (2.50) and Eq. (2.41) we get

Fq = q2 α

4πΓ
+ q4[

β

4πΓ
+

α

(4πΓ)2
(cR(0)− 1)] +O(q6) . (2.53)

In the OCP limit when q → 0, Fq approaches zero with leading order q2 dependency.

From Eq. (2.5),

fq =
Fq

1 + Fq
, (2.54)

therefore the fq has the same behavior as Fq at vanishing q in the OCP limit.

We leave the OCP limit now, and increase the screening parameter κ. Looking

back to the Fig. (2.4), the fq of the Yukawa system for non vanishing screening,

κ > 0, has a non zero intercept. This is due to that the singular part of the direct

correlation function cSq = −U(q)/kBT = 4πΓ
q2+κ2

in case of q → 0 and κ > 0 stays

finite therefore the structure factor and the compressibility will not approach zero.

At increasingly high value of κ and Γ the small q limit of fq approaches the values

which correspond to the HSS.

2.3.4. Hard-Sphere Limit

In the high κ and Γ values at the transition, the Yukawa system behaves like a HSS.

A hard sphere potential is defined as U(r)/kBT = 0 when the inter-particle distance

is greater than the diameter of the spheres, r > d, and U(r)/kBT =∞ when r < d.
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Therefore it is possible to resemble a hard sphere system potential with

UHS

kBT
=
e−κ(r−d)

r
for large κ. (2.55)

Which has the same property of being zero when r > d and being very large when

r < d. We can write the Yukawa potential at the transition in the form of Eq. (2.55)

when Γ = exp (κ deff), therefore

dceff =
ln Γc

κ
. (2.56)

Using Eq. (2.34), we can also define an effective packing fraction

ϕceff =
π

6

(
ln Γc

κ

)3

, (2.57)

where we have considered the unit of length as n−1/3. Thus the density n does not

appears in the formula. One can derive the same effective diameter and packing frac-

tion simply assuming U(deff)/kBT = Γ exp(−κdeff)/deff ∼ 1 in the Yukawa potential.

We have shown some representative Yukawa potentials at the transition, in Fig. 2.6.

One can observe that at (κ,Γ) = (1.01, 396) the potential is quite soft and the ef-

fective diameter is greater than 4. In contrast, when (κ,Γ) = (38.71, 1.06 × 1017)

the potential is quite hard, basically the same as a hard sphere potential with the

effective diameter nearly equal to 1. We have shown the effective hard-sphere pack-

ing fractions and diameters of the Yukawa glass transition points in Fig. 2.7. For

small-κ values the effective packing fraction is larger than unity since the effective

spheres overlap and the potential is soft. At large κ values, κ & 30, the effective

packing fraction approaches the critical packing fraction of the hard sphere system

calculated within the HNC approximation of the structure factor.

2.3.5. Localization Length

We use Eq. (2.14) and (2.16) to numerically obtain the localization length rcs of

the Yukawa system along the transition curve. The input to those equations is f sq

which we calculate through Eq. (2.17) and (2.20) using the already obtained fq. The

result is shown in figure 2.8. In the OCP limit the localization length is 0.07 and it

increases with increasing κ. At κ ' 10 the localization length reaches its maximum

value. Towards the HSS limit the localization decreases again approaching the hard

sphere localization length. The MCT localization length of HSS within HNC is
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Figure 2.6.: Representative Yukawa potentials corresponding to the glass-transition
points shown in Fig. 2.1. The potentials from right to left correspond to (κ,Γ) =
(1.01, 396), (3.87, 1240), (9.87, 1.34× 105), and (38.71, 1.06× 1017).

rcs/d = 0.0634. The origin of maximum in the localization length is the interplay

between growing screening (which weakens influence of far neighbors and therefore

causes rcs to increase) and growing stiffness of the next-neighbor interactions (which

causes rcs to decrease) [93]. In Fig. 2.9 we show a sketch of three states of the

interactions for the central particle in green. Basically all blue particles shown in

the figure have the same potential field around, as the green one. The dimensions

of the particles are negligible in comparison to the average interparticle distance

l = 1/ 3
√
n. From top to bottom, we are increasing κ along the transition curve. In

the upper most panel the effective diameter (dashed circle) is much greater than l

and even particles farther away than the first neighbors can interact effectively with

the green particle. Decreasing the effective diameter (equivalent to increasing κ)

weakens the influence of the far away neighbors and therefore causes an increase in

the localization length. In the middle panel the effective diameter is nearly equal

to l and the green particle only interacts with the close neighbors (the surrounding

particles). Any further increase of κ, will not cause a pronounced change in the

effective diameter but will make the interaction potential much stiffer (as it is shown

in the lowest panel), therefore the localization length decreases again.

Also, as we see in Fig. 2.8 the overall changes of localization length along the

transition curve is rather small. So our earlier assumption in section 2.3.1, that the

average particle in an average cage experiences the same forces along the line of glass

transition, is valid.
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Figure 2.7.: Effective packing fraction and diameters for the Yukawa transition points
shown in Fig. 2.1. The filled red circles show the effective packing fraction and
effective diameters (inset) for the Yukawa glass transition points. The horizontal
dashed line shows the HSS-HNC limit of ϕcHSS = 0.525. The dotted line in both the
figure and the inset represents the formula in Eq. (2.33).
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Figure 2.8.: Localization length of a Yukawa system. The horizontal dashed line
shows the HSS localization length calculated within HNC-MCT approximation.
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l

Figure 2.9.: Sketch of three state of the Yukawa interactions. The color code black-
red-white show the strength of the interactions from high to low. All the particles
are equivalent but for clarity we have shown the interaction field only around the
central particle in green. The diameter of the dashed circle in all three panels shows
the effective diameter in Eq. (2.56). l = 1/ 3

√
n is the average interparticle distance.

From top to bottom the screening parameter κ is increasing along the transition.
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2.4. Double Yukawa Potential

Complex plasma consist of negatively charged dust particles immersed in a plasma

background of electrons and ions. In an equilibrium situation these electrons and

ions follow a Boltzmann distribution. When perturbations in the plasma potential

are small, one can assume a linearized Boltzmann distribution of electrons and ions.

From solving the Poisson equation in that case one obtains the Yukawa potential

in Eq. (2.2) with κ2 = e2n0(1/Ti + 1/Te)/(kBTε0) [72]. n0 is the density of ions

and electrons at U = 0, Ti is the temperature of the ions and Te is the temperature

of electrons. However there can be some mechanisms in plasmas which can cause

deviations from the Boltzmann distribution for ions and electrons [94, 95], therefore

the potential around the test charge also deviate from a single Yukawa potential. In

[73], Khrapak et al. have taken into account plasma production and loss in a highly

collisional plasma. Electron impact ionization causes the plasma production, where

recombination of the plasma particles and their diffusion to the boundaries causes

plasma losses. They have shown that the interaction potential in that case can be

written in terms of the sum of two Yukawa potentials with different parameters as

U(x)

kBT
=

Γ

x
[exp(−κx) + ε exp(−ακx)] , (2.58)

where ε and α < 1 show the relative strength and screening parameter of the second

longer range potential. When ε = 0, we recover the single Yukawa potential in

Eq. (2.2). We now use mode-coupling theory and the hypernetted chain closure

approximation explained in section 2.2, to calculate the glass transition points in

the κ and Γ plane for different α and ε.

2.4.1. Glass Transition

Using the HNC approximation of the structure factor, we obtain the glass transition

points (κ,Γ) via MCT for the double Yukawa potential in Eq. (2.58). The procedure

of obtaining (κc,Γc) of the transition is the same as the procedure for the single

Yukawa potential which is explained in section 2.3.1. We have shown the transition

points for α = 0.125 and ε = 0.2 (diamonds) in Fig. 2.10. For comparison, we show

also the glass transition points for the single Yukawa potential (ε = 0) with filled

circles. One can observe that the double Yukawa transition curve follow the same

behavior as the single Yukawa until κ ' 5.
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Afterwards the double Yukawa curve separates from the single Yukawa. We scale

the single Yukawa transition points by

Γ′ = Γ/ε, κ′ = κ/α . (2.59)

The scaled single Yukawa transition points is shown in Fig. 2.10 by empty circles.

Scaling the describing function (2.33), which we repeat here as

Γc1(κ) =
ΓcOCPe

κ

(1 + κ+ κ2/2)
, (2.60)

according to Eq. (2.59), leads to

Γc2(κ) =
ΓcOCPe

ακ

ε (1 + ακ+ α2κ2/2)
. (2.61)

Γc2(κ) is shown in Fig. 2.10 as a dashed curve. From the figure, one can perceive

that the doubled Yukawa transition points follow the same behavior as the single

Yukawa until κ ' 5, then it cross overs to the scaled single Yukawa. For κ & 8, the

doubled Yukawa transition points trace the scaled single Yukawa transition closely.

Therefore we can predict that, the double Yukawa transition curve should overall

follow the interpolation
1

Γc(κ)
=

1

Γc1(κ)
+

1

Γc2(κ)
(2.62)

or

Γc(κ)/ΓcOCP =
[
e−κ(1 + κ+ κ2/2) + ε e−κα(1 + κα + κ2α2/2)

]−1
. (2.63)

We have shown the analytical formula Eq. (2.63), in Fig. 2.11, by the green solid line.

The function can describe the double Yukawa transition curve rather accurately.

In Fig. 2.12 we have shown the analytical function in Eq. (2.63) for the transition

points calculated via MCT-HNC for α = 0.125 and both ε = 0.2, ε = 0.01. The

analytical function fits both ε = 0.2 and ε = 0.01 double Yukawas. The smaller is

the ε, the double Yukawa transition crossovers from the single Yukawa to the scaled

single Yukawa at a larger κ value. The scaled single Yukawas are shown with dotted

and dashed curves for ε = 0.01 and ε = 0.2 respectively.

In Fig. 2.13 we have plotted the single Yukawa transition function and the scaled

single Yukawa functions, Eq. (2.61), for different values of ε and α = 0.125. The

double Yukawa transition points, e.g. for ε = 0.2 follows closely the single Yukawa
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Figure 2.10.: Mode-coupling glass transition of the double Yukawa system for α =
0.125 and ε = 0.2 (diamonds). The filled circles show the single Yukawa (ε = 0)
transition points and the solid curve is the function in Eq. (2.33). The dashed curve
demonstrate the scaled Yukawa function in Eq. (2.61). The open circles represent
the scaled single Yukawa transition points via equation (2.59).

function until at the crossover point, where it changes its behavior to follow the

scaled single Yukawa curve.

We show the intersection points of the single Yukawa function and the scaled

single Yukawa for α = 0.125 and α = 0.25 each for different values of ε in Fig. 2.14.

We can observe that for larger α, intersection happens later in terms of κ and Γ.

This difference is more visible in the smaller values of ε, ε < 0.2.

2.4.2. Localization Length

In Fig. 2.15 we have shown the double Yukawa localization length for α = 0.125 and

ε = 0.2. We also have plotted the single Yukawa localization length, which we have

explained before in section 2.3.1, again for comparison. The scaled single Yukawa

localization lengths are shown by empty circles where we have scaled the κ values

according to Eq. (2.59). One can observe that for small κ values, the double Yukawa

localization lengths follow the single Yukawa curve. At κ & 5, the values start to

follow the scaled curve. The maximum is reached at κ ≈ 80.
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Figure 2.11.: Glass transition of the double Yukawa system for α = 0.125 and ε = 0.2
(diamonds). The solid green curve demonstrate the function in Eq. (2.63). The filled
circles show the single Yukawa (ε = 0) transition points and the solid red curve is
the function in Eq. (2.33).
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Figure 2.12.: Glass transition diagram for double Yukawa potentials with α = 0.125,
ε = 0.2 (diamonds) and 0.01 (squares). The single Yukawa data (filled circles) is
shown together with the analytical description by Eq. (2.33) (solid curve labeled
ε = 0). The single Yukawa points are scaled according to Eq. (2.59) for ε = 0.2, and
shown by open circles. Dotted and dashed curves represent Eq. (2.61) for ε = 0.01
and ε = 0.2, respectively. The solid curves labeled ε = 0.01 and ε = 0.2, respectively,
show the solution of Eq. (2.63).
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Figure 2.13.: Intersections of the single Yukawa analytical function Eq. (2.33), with
the scaled single Yukawa Eq. (2.61), for α = 0.125 and different values of ε. The
single Yukawa analytical function is shown by the red solid curve labeled with ε = 0.
The mode coupling glass transition points of the double Yukawa system for α = 0.125
and ε = 0.2 are shown with diamonds.

0 2 4 6 8 10
κ

2

3

4

5

L
o
g

1
0
Γ

α = 0.25
α = 0.125

Figure 2.14.: The intersection points of the single Yukawa analytical func-
tion Eq. (2.33), with the scaled single Yukawa Eq. (2.61), for α =
0.125 (filled squares) and α = 0.25 (filled circles) each for ε =
1, 0.98, 0.9, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01 from left to right of the figure.



40 2.4. Double Yukawa Potential

0 20 40 60 80 100
κ

0.064

0.068

0.072

0.076

0.080

r
s

c

ε = 0

ε = 0.2

Figure 2.15.: Localization length of the double Yukawa system with α = 0.125 and
ε = 0.2 shown with diamonds. The filled circles show the localization length of
a single Yukawa system while the open circles exhibit the scaled single Yukawa
localization lengths. The horizontal dashed line represents the HSS localization
length calculated within HNC-MCT approximation.



Chapter 3

Glass Transition of Charged Par-

ticles in Two-Dimensional Confine-

ment

This chapter is written based on Yazdi et al. [96]. The structure factors are produced

by M. Heinen’s program [97].

3.1. Yukawa Monolayer

As we have mentioned in the introduction, in complex plasma, the charged particles

(dusts) which are embedded in the plasma (a mixture of ions and electrons and

neutrals), can form a two dimensional layer [98]. The surrounding ions inside the

plasma are distributed in a three dimensional volume (see Fig. 3.1). In an equilibrium

situation and only when ions follow the Boltzmann distribution the potential at the

distance r from a dust particle can be written as screened Coulomb or Yukawa

potential

Φ(r) =
Q

4πε0r
exp (−r/λY ). (3.1)

λY is the screening length and Q is the charge of the dust particle. When dust

particles are levitating in the form of a two dimensional layer, some phenomena can

effect the measurements of the potential, e.g. ion depletion due to the absorption

of particles on the probe surface [99]. Consideration of these phenomena leads to

a potential which can be mapped to the Yukawa form with an effective charge QY ,

which is less than the dust particle charge.

41
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Since we need to use the pair interaction potential energy instead of the single

particle potential in the future equations we multiply Eq. (3.1) with the QY . To

obtain a dimensionless quantity, we scale the pair interaction potential energy by

kBT , where kB is the Boltzmann constant and T is the absolute temperature. Scaling

the pair interaction potential energy by kBT also represents the ratio of the potential

energy to the average kinetic energy. We assume the average interparticle distance

1/
√
n as the unit of length, where n is the number density of the dust particles.

Applying all these to Eq. (3.1) we can write the dimensionless Yukawa potential

energy as, cf. Eq. (2.2)
UY (x)

kBT
= ΓY

exp(−κY x)

x
, (3.2)

where x is the dimensionless center to center distance of the dust particles, x = r
√
n.

κY is the screening parameter defined as the inverse of the dimensionless screening

length κY = 1/(λY
√
n), and ΓY is the coupling parameter which quantifies the

potential energy strength ΓY = Q2
Y

√
n/(4πε0kBT ). The two parameters κY , ΓY

characterize a Yukawa system.

In charged colloids, the two dimensional Yukawa potential has been used to de-

scribe the interaction between charge stabilized colloids confined between two par-

allel charged plates [100] or to a low angle wedge geometry [101].

Over this chapter we consider a model system of point particles in a two-dimensional

plane interacting via Eq. (3.2) as a Yukawa monolayer. The plasma background en-

ters our model only through its effect on the interaction potential (energy).

3.2. Kompaneets Monolayer

Complex plasma experiments consist of dust particles which levitate in a plasma

background. There exist an external electrical field originating from the electrodes

at the top and bottom of the plasma chamber, cf. [28, 30, 102]. In case of a radio

frequency discharge in a weakly ionized low pressure plasma the dust particles lev-

itating in the plasma acquire a large amount of negative charge and therefore they

experience a high amount of electrostatic repulsion due to the external field. The

high repulsion force will be balanced by gravity near the lower electrode thus the
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Figure 3.1.: Edge-on schematic of a Yukawa monolayer. Charged particles (filled
circles) are confined to a plane, while oppositely charged ions are free to move in the
surrounding, unbounded 3D space. The mean ion density is color-coded. Typical
in-plane nearest neighbor distances are similar to the mean geometric distance n−1/2,
and of the same order of magnitude as the Yukawa screening length λY . Particle
separations greatly exceed the particle diameter. The effective particle interactions
are quantified by the two dimensionless parameters ΓY and κY = 1/(λY

√
n). This

figure is produced by M. Heinen and taken from [96].

dust particle form a two dimensional layer at the sheath region. Figure 3.2 demon-

strates an schematic view of the complex (dusty) plasma monolayer in the sheath

region. In the sheath region the ions inside the plasma do not follow the Boltzmann

distribution because of the highly non equilibrium situation. The repulsion between

the dust particles and the ions, also the absorption of the ions by the lower electrode

result in downstream focusing (cone like shape cf. [103, 104]) of ions. Therefore

the pair interaction potential between the dust particles is anisotropic in 3D. The

ion drift in the sheath region and deviating from the Boltzmann distribution is the

source of different screening of the dust particles and consequently there exist a dif-

ferent pair interaction potential between the dust particles than a simple Yukawa

interaction.

Kompaneets et al. [31] have derived an exhaustive model for obtaining the poten-

tial around the dust particles in the aforementioned situation. In [31], it is assumed

that a test charge Q is immersed in a weakly ionized plasma. The potential of the

test charge is due to the sum of the existing external field E0 and the plasma field

where the latter is the solution of the Poisson equation. The ion density is also

an input to the Poisson equation. The ion distribution function is obtained from a

steady state kinetic equation which relates the ion-neutral mean free path l and the

plasma electric field to the ion distribution function. A mobility limited ion drift is

assumed which means that there exist a balance between acceleration of the ions in
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the electric field and their collision to the neutrals. The plasma field is only due to

the interaction with the test charge thus faraway from the test charge there exist

only E0 and the considered temperature of the ions is field induced T = eE0l (The

ions do not respond to the time variation of the electric field). The electron density

is assumed to be homogeneous and not influenced by the test charge therefore the

electrons do not play a role in screening. Basically when electron temperature is

much higher than ion temperature Te >> Ti the screening is only due to the ions.

The complete derivation and assumption can be found in [31]. The Kompaneets

potential around the dust particle in 3D (z is the perpendicular distance from the

dust monolayer and r is the in-plane distance from the dust particle) in SI units is

written as

φ(r, z) =
2QK

4π2ε0l
Re

∫ ∞
0

dt
exp [it(z/l)]

1 + (l/λK)2Y (t)
K0

(
r

l

√
t2 + (l/λK)2X(t)

1 + (l/λK)2Y (t)

)
(3.3)

where K0 is the zeroth order modified Bessel function of the second kind and l is

the ion-neutral mean free path which shows the free path between two successive

collision of an ion and a neutral gas particles. The functions X(t) and Y (t) are

defined as

X(t) = 1−
√

1 + it,

Y (t) =
2
√

1 + it

it

∫ 1

0

dα

[1 + it(1− α2)]2
− 1

it(1 + it)
.

(3.4)

What we are interested in is the pair interactions between particles, so the potential

should be multiplied by QK to obtain the pair potential (energy). For having the in-

plane part of the potential we consider z = 0. We normalize the potential (energy)

by kBT . We also normalize the distance r, by the mean interparticle distance in two

dimensions 1/
√
n where n is the number density. Therefore x = r

√
n. We define

a collision parameter as ζ = λK/l where λK =
√
εE0l/(e2ni) is a field-induced

screening length. Therefore, the in-plane Kompaneets potential (energy) is defined

as

UK(x)

kBT
= ΓK

2ζκK
π

Re

∫ ∞
0

dt

1 + ζ−2Y (t)
K0

(
xζκK

√
t2 + ζ−2X(t)

1 + ζ−2Y (t)

)
, (3.5)

where ΓK = Q2
K

√
n/(4πεkBT ) quantifies the interaction strength in terms of the

effective charge QK and functions X(t) and Y (t) are defined in Eq. (3.4).
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When ζ →∞ the Kompaneets potential has the form

lim
ζ→∞

UK(x)

kBT
= ΓK

2ζκK
π

Re

∫ ∞
0

dt K0 (xζκKt) . (3.6)

Due to the Bessel function normalization 1 = 2
π

∫∞
0
K0(y) dy [105] one concludes

lim
ζ→∞

UK(x)

kBT
=

ΓK
x
. (3.7)

Therefore, for every distance x when ζ →∞ the Kompaneets potential would reduce

to the Coulomb potential. The ζ →∞ limit is due to the very small value of ni or

l or the very large value of E0. The same thing happens when κK → 0 and ζ and

is a finite number larger than zero. In that case ζ � κK and Eq. (3.7) holds again.

The other case that Eq. (3.7) can hold is at very small separation when x→ 0 and

ζ is a finite number larger than zero, therefore ζ � x. In general one can write

ζ � xκK :
UK(x)

kBT
→ ΓK

x
. (3.8)

For large particle separations and finite values of ζ, the Kompaneets potential

reduces to its in-plane asymptotic form [96]

UK(x)

kBT

∣∣∣∣
x→∞

=
ΓK

6
√

2κ2
Kx

3

(
60ζ2 − 1

)
+O(x−4). (3.9)

The leading order asymptotic form of the anisotropic out-of-plane electrostatic po-

tential is proportional to x−2, and is given in Eq. (8) of Ref. [31] (in Gaussian units).

Konopka et al. [30], have measured the interaction potential between two dust par-

ticles which are levitating in the sheath region for particle separation nearly equal

to the mean geometrical distance (x ≈ 1). They have shown that the interaction po-

tential when x ≈ 1 can be fitted by the Yukawa potential. In [31] it has been shown

that the experimentally measured interaction potential can be equally well fitted by

the Kompaneets potential in that region. However, the behavior of the Kompaneets

and Yukawa potential is qualitatively different outside the distance range where ex-

periments are performed. Therefore one can expect differences in collective behavior

and transitions between the systems described by these two kinds of potentials.
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Figure 3.2.: Edge-on schematic of a dusty plasma monolayer. Negatively charged
dust particles (blue filled circles) levitate in a well-defined 2D layer above an elec-
trode in a radio frequency discharge plasma chamber, at a height where gravity is
balanced by the vertical electrostatic force. The mean distribution of ions is color-
coded in orange. Three characteristic ion trajectories are sketched by red arrows.
Subsequent collisions between ions and neutral particles are separated on average
by the ion-neutral mean free path l. Ions are focused in the downstream direction
below the dust particles, giving rise to positive space-charges in the plasma wake
region. The effective dust particle interactions are quantified by the three dimen-
sionless parameters ΓK , κK = 1/(λK

√
n), and ζ = λK/l. This figure is produced by

M. Heinen and taken from [96].
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3.3. Structure Factor and Mode-Coupling Theory

We have summarized the equations we need to calculate the glass transition in

three dimensions in the last chapter in section 2.2.1. The glass transition in two

dimensions in mode coupling theory can be calculated via the same equations as in

three dimensions
fq

1− fq
= Fq(f), (3.10)

with the difference that the MCT kernel in two dimensions for the hard sphere

system is written as

FHSS
q′ (f) =

nSq′

8π2q′4

∫
d2k′ Sk′Sp′ (q

′ · k ck′ + q′ · p′ cp′)2
fk′fp′ , (3.11)

with p′ = q′ − k′. Here the difference with 3D is only the integration element. The

integration element in 2D is d2k/(2π)2, and in 3D is d3k/(2π)3. Eq. (3.11) can be

also written as

FHSS
q′ (f) =

nSq′

8π2q′4

∫ ∞
0

dk′
∫ k′+q′

|k′−q′|
dp′ k′p′ Sp′Sk′

× [ck′(q
′2 + k′2 − p′2) + cp(q

′2 − k′2 + p′2)]
2

[4q′2k′2 − (q′2 + k′2 − p′2)2]1/2
fk′fp′ .

(3.12)

In the hard-sphere system the dimension of the wave number q′, is the inverse

length [q′] = L−1. Also [Sq′ ] = 1, [cq′ ] = L2 and [fq′ ] = 1. Therefore the dimension

of FHSS
q′ is given as

[FHSS
q′ ] = [n]L2 = 1. (3.13)

This means that, FHSS
q′ is dimensionless. In our Yukawa or Kompaneets monolayer

system, we have defined the distance in the unit of a length scale 1/
√
n, thus the

dimension of the wave number is

[q] =
1

L[
√
n]

= 1. (3.14)

The memory kernel can be written as

Fq(f) =
Sq

8π2q4

∫ ∞
0

dk

∫ k+q

|k−q|
dp kp SpSk

× [ck(q
2 + k2 − p2) + cp(q

2 − k2 + p2)]
2

[4q2k2 − (q2 + k2 − p2)2]1/2
fkfp,

(3.15)
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which is different from Eq. (3.12) by the fact that the number density does not

appear explicitly behind the integrals. Here in Eq. (3.15), Sq = 1/(1 − cq) and

[cq] = 1, [Sq] = 1, [fq] = 1 therefore [Fq] = 1. One can discretize Eq. (3.15), on an

equidistant grid using the middle point Riemann Sum. Here in the 2D system we

choose to do the discretization over 200 points with the step size ∆ = 0.2. q = ∆q̂,

k = ∆k̂ and p = ∆p̂ where q̂, k̂, p̂ = 1/2, 3/2, 5/2, . . . , 399/2. The minimum value of

q, k, pmin = 0.1 and the cut off value q, k, pmax = 39.9 [78], therefore

Fq(f) =
Sq∆

2

8π2q̂4

∑
k̂,p̂

SkSp

[
ck(q̂

2 + k̂2 − p̂2) + cp(q̂
2 − k̂2 + p̂2)

]2

[
4q̂2k̂2 − (q̂2 + k̂2 − p̂2)2

]1/2
fkfp. (3.16)

Here the sum over p̂ has the restriction that |q̂ − k̂| + 1/2 ≤ p̂ ≤ q̂ + k̂ + 1/2 due

to the integral limits in Eq. (3.15). From solving Eq. (3.10) and (3.16) together

numerically we can obtain the fq. The procedure of solving Eq. (3.10) is the same

as in 3D which we have explained in section 2.2.1.

The Lamb-Mössbauer factor f sq is calculated in MCT with the same equation as

in the 3D case,
f sq

1− f sq
= F sq (f, f s), (3.17)

with the difference that the tagged particle kernel in 2D in our system can be written

as [41]

F sq (f, f s) =
1

4π2q4

∫
d2k Sk(q · k)2c2

kfkf
s
p . (3.18)

with p = q − k. Note that again the number density n, does not explicitly enter

into Eq. (3.18), since all lengths and wave vectors are expressed in units of 1/
√
n

and
√
n. In our notation the wave vector q is the dimensionless Fourier conjugate

variable to the dimensionless distance vector x = r
√
n. Eq. (3.18) can be written

in bipolar coordinates

F sq (f, f s) =
1

4π2q4

∫ ∞
0

dk

∫ k+q

|k−q|
dp kp Sk

[csk(q
2 + k2 − p2)]

2

[4q2k2 − (q2 + k2 − p2)2]1/2
fkf

s
p . (3.19)

This, using the same grid as in Eq. (3.16), can be discretized as

F sq =
∆2

4π2q̂4

∑
k̂,p̂

k̂p̂ Sk

[
csk(q̂

2 + k̂2 − p̂2)
]2

[
4q̂2k̂2 − (q̂2 + k̂2 − p̂2)2

]1/2
fkf

s
p . (3.20)
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From solving Eq. (3.17) and (3.20) together numerically we can obtain the f sq . The

procedure of solving Eq. (3.17) is the same as in 3D which we have explained in

section 2.2.1.

The input to the MCT equations is the structure factor. In two dimensions the

Ornstein-Zernike (OZ) equation can be written as [17]

γ(x) =

∫
d2x′ c(|x− x′|)h(x′), (3.21)

where h(x) is the total correlation function, c(x) is the direct correlation function

and γ(x) = h(x)− c(x). The hypernetted-chain (HNC) closure can be written as

h(x) = exp

[
−U(x)

kBT
+ γ(x)

]
− 1, (3.22)

where U(x) is the interaction potential. OZ equation and HNC closure can be solved

together. Replacing Eq. (3.21) in (3.24) will result in

γ(x) =

∫
d2x′ c(|x− x′|)

(
exp

[
γ(x′)− U(x′)

kBT

]
− 1

)
, (3.23)

which is called the coupled OZ equation. This equation can be solved numerically.

We use the same program written by M. Heinen to obtain the c(x), γ(x) and also

Sq which is related to the the Fourier transform of total correlation function, hq by

Sq = 1 + hq. The numerical procedure is described in detail in [97].

If one decides to write the HNC equation for a temperature T ′ = T/2 then the

Eq. (3.24) can be written as

h(x) = exp

[
−2U(x)

kBT
+ γ(x)

]
− 1. (3.24)

This is called the T/2-HNC closure. One can replace the T/2-HNC closure in the

OZ equation and one has

γ(x) =

∫
d2x′ c(|x− x′|)

(
exp

[
γ(x′)− 2U(x′)

kBT

]
− 1

)
. (3.25)

Both Yukawa Eq. (3.2) and Kompaneets potential Eq. (3.5), contain of a prefactor

Γ. The structure obtained from Eq. (3.25) for a Yukawa or Kompaneets potential

with prefactor Γ0 is exactly the same as the structure factor obtained from Eq. (3.23)

for a Yukawa or Kompaneets potential with prefactor Γ0/2. Therefore the structure
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factors calculated via HNC closure represent the T/2-HNC structure factors with

the half potential prefactor value and vice versa. For instance if we need to calculate

the T/2-HNC structure factor for a Yukawa potential with Γ = 300 and κ = 2 we

simply can solve the HNC closure for a Yukawa potential with Γ = 600 and κ = 2.

It has been shown by [106], that the T/2-HNC matches the simulation data better

than the HNC result, in their case for a binary dipole model in 2D.

Comparison between HNC, T/2-HNC and Monte Carlo simulation for Yukawa and

Kompaneets potential is done by M. Heinen [96], see Fig. 3.3 and 3.4. Metropolis

Monte Carlo (MC) simulations are done in the NLT -ensemble of constant particle

number N , constant system area L2, and constant temperature T . A square simula-

tion box with periodic boundary conditions in both Cartesian directions is used in the

simulations, and the parameters ΓY = 100 and κY = 2.0 for the Yukawa monolayer

of N = 10.000 particles and ΓK = 300, κK = 2.0, and ζ = 0.25 for the Kompaneets

monolayer of N = 12.000 particles, are chosen. Both simulated systems are strongly

coupled equilibrium liquids not far from the crystal-liquid transition point. In the

simulation, the direct particle interactions are truncated at a dimensionless cutoff

radius of xc = rc
√
n = 5 in case of Yukawa interactions, and at xc = 12.5 in case

of Kompaneets interactions. For pair separations x > xc, the pair-potential is set

equal to zero in the simulations. Varying its numerical value, it is checked that the

cutoff radius is large enough and does not have a significant effect on the measured

quantity Sq.

From Fig. 3.3 and 3.4 we can conclude that HNC underestimates the first peak

value of the structure factor of both Yukawa and Kompaneets in 2D. According

to the figures these underestimation happens for both smaller κ value, e. g. κ =

0.5 and larger κ value e. g. κ = 2.0. The T/2-HNC also underestimates the

first peak value in comparison to the MC simulation data. But T/2-HNC is an

improvement over the HNC in predicting the first peak value of the structure factor.

Since MCT is mostly concerned with the fluctuations with the wave length equal to

the interparticle distances x ≈ 1, the accuracy of MCT predictions mostly depends

on the first peak values at q ≈ 2π, of the structural input. T/2-HNC is far more

accurate than HNC in predicting the first peak of Sq for the whole range of the small

and large screening parameter κ. Therefore we decide to use the T/2-HNC structure

factors for MCT calculations.

Although T/2-HNC is much better than HNC in terms of predicting the first peak

value of the structure factor, it still underestimates the first peak value in comparison
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Figure 3.3.: Static structure factors for a Yukawa monolayer with ΓY = 60 and κY =
0.5 (lower three data sets) and a Kompaneets monolayer with ΓK = 75, κK = 0.5,
and ζ = 0.25 (upper three data sets). Crosses and circles: Monte Carlo simulation
results. Blue dashed curves: HNC integral equation solution. Red solid curves:
Solution of the T/2-HNC in Eq. (3.25). The Kompaneets monolayer structure factors
are shifted by 3 units along the vertical axis for clarity. All data in this plot is
provided by M. Heinen.

to the MC simulation result. Moreover the approximation of the structural input

will be combined by the approximations inside the MCT equation later and these

combined uncertainty is not easy to be calculated. Although we are aware of this

uncertainty in the transition values, we expect that the transition curves behavior

should be at least qualitatively correct.

3.4. Results

3.4.1. Glass Transition Diagrams

We numerically calculate the glass transition points as it is described in section 3.3 for

the Yukawa monolayer and Kompaneets monolayer, using Eq. (3.10), (3.16) and the

T/2-HNC structure factor. The result is shown in the κY and ΓY plane for Yukawa

monolayer and κK and ΓK plane for Kompaneets monolayer in Fig. 3.5. The Kom-
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Figure 3.4.: Static structure factors for a Yukawa monolayer with ΓY = 100 and κY =
2.0 (lower three data sets) and a Kompaneets monolayer with ΓK = 300, κK = 2.0,
and ζ = 0.25 (upper three data sets). Crosses and circles: Monte Carlo simulation
results. Blue dashed curves: HNC integral equation solution. Red solid curves:
Solution of the T/2-HNC in Eq. (3.25). The Kompaneets monolayer structure factors
are shifted by 3 units along the vertical axis for clarity. All data in this plot is
provided by M. Heinen.

paneets transition points are shown for three different values of ζ = 0.25, 0.375, 0.5.

We show the Yukawa transition curve in the experimentally available range [107] of

the Yukawa screening parameter 0.05 < κY < 3 and we choose the same range for

κK . In the one-component-plasma (OCP) limit, which is the limit κY , κK → 0, all

the glass transition curves approach the same value ΓY = ΓK = 138.5. This value

corresponds to the smallest screening parameter, κ = 0.05, which we have investi-

gated. The fact that all the glass transition curves approach the same value in the

OCP limit is due to the fact that the Yukawa and Kompaneets potentials both will

reduce to the bare coulomb potential in that limit (see Eq. (3.2) and (3.8)).

While the glass transition curves are qualitatively similar for the Yukawa and the

Kompaneets systems, the transition occurs at higher values of the coupling param-

eter in case of the Kompaneets monolayer. For decreasing values of the parameter

ζ, the differences between the Yukawa and Kompaneets glass transition curves are

increasing. As we discuss in the next subsection (see also Fig. 3.6), the deviation
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of the Kompaneets potential from the Yukawa-like form drastically increases as ζ

decreases. Here we go back to look at the complete picture which leads to Kom-

paneets interaction between particles; considering ions, neutrals and the external

electric field E0 which holds the point particles (dusts) against gravity. The dis-

tribution of ions is what is responsible for screening. In Figure 3.5, for a chosen

value of κ e.g. κ = 2.0, a smaller ζ, corresponds to a larger value of l. For larger

values of l, the ion can speed up due to the external field before a collision with a

neutral. This makes the non-equilibrium condition stronger and also will result in

a non-equilibrium distribution of ions, which in the end through its effect on the

potential results in a higher Γ value necessary for the transition.

On the other hand, in the limit ζ → ∞, the Kompaneets potential tends to the

Coulomb form (see Eq. (3.7)). Therefore for very large values of κ, the Kompaneets

transition curve in the κK and ΓK plane will be an straight horizontal line starting

from ΓK = 138.5.

As we discussed in the last chapter, in 3D the glass transition curve and melting

curve of the Yukawa system have the same behavior in the κ and Γ plane, and are

parallel to each other. Here we want to compare the Yukawa transition curve with

the melting curve from [107]. Hartmann et al. [107] have shown that there exists

good agreement between their simulation result for the melting transition of a 2D

Yukawa layer with the function

Γ =
Γ̃∗

1 + f ′2κ̃
2 + f ′3κ̃

3 + f ′4κ̃
4
, (3.26)

where f ′2 = 0.388, f ′3 = 0.138, f ′4 = 0.0138 and Γ̃∗ = 131. They have scaled the

distance with the WignerSeitz radius a = 1/
√
πn where n is the number density.

For mapping the function in Eq. (3.26) to our κ and Γ plane, we need to take into

account the different length scale, which results in κ̃ = κ/
√
π. In our κ and Γ plane

Γ =
Γ∗

1 + f2κ2 + f3κ3 + f4κ4
, (3.27)

where f2 = −0.1235, f3 = 0.0248 and f4 = −0.0014 and Γ∗ = 131/
√
π = 73.9. The

function in Eq. (3.27) is shown in Fig. 3.5 with the dashed curve in violet. One can

notice that there exist a similarity between the T/2-HNC-MCT Yukawa monolayer

glass transition and the melting curve.
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Figure 3.5.: Glass transition curves in the (κ,Γ)-plane, for the Yukawa potential
(black curve with triangles) and three different Kompaneets potentials with param-
eters ζ = 0.25 (solid curves with diamonds), ζ = 0.375 (solid curve with squares)
and ζ = 0.5 (solid curve with circles). The dashed curve is the 2D Yukawa freezing
line from Ref. [107].

3.4.2. Potentials and Structure Factors at the Transitions

The Kompaneets potentials for different values of ζ and the Yukawa monolayer

potential are shown in Fig. 3.6.

The potentials are shown for κY = κK = 2.0 and the glass transition Γ value which

is specified in the figure caption. From Eq. (3.9) one can see that the Kompaneets

potential has the 1/x3 asymptotic for large x. In Fig. 3.6 the vertical axis shows

xU(x)/kBT , which implies that the potential is multiplied by x, therefore the large x

asymptotic has the behavior x−2 as we have shown in the figure with the dotted line.

The structure factors at the transition points for κY = κK = 2.0 are shown in the

inset figure and one can notice that despite the differences between the potentials

the structure factors coincide.

In Fig. 3.7 we have shown representative structure factors of the Yukawa mono-

layer along the Yukawa glass transition curve in Fig. 3.5. One can observe that along

the glass transition curve the structure factors are falling on top of each other and no

differences are visible. The first peak height of the structure factors varies between
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curve in Fig. 3.5. The κY values are specified in the legend. The correspon-
dent ΓY values at the transition are (κY ,ΓY ) = (0.05, 138.7), (0.5, 141.7), (1, 151.4),
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(κY ,ΓY ) = (3.0, 291.1).
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Sq = 6.39 for (κY ,ΓY ) = (0.05, 138.7) and Sq = 6.24 for (κY ,ΓY ) = (3.0, 291.1)

which is not sensible on the scale of our figure. This means that the MCT equa-

tions also trace the curve in the parameters plane which every transition point of

that curve corresponds to the same structure factor. Mathematically speaking, the

Yukawa monolayer glass transition curve in the κ and Γ plane is a locus of a transi-

tion point which has the structure factor with the exact shape shown in Fig. 3.7.

3.4.3. A Fallacious Re-entrant State Sequence

As we have mentioned in section 3.1 and 3.2, the 2D Yukawa potential is mostly a

simplified model of the interactions which exist in the monolayer of charged particles

experiments. For modeling the interaction the Kompaneets interaction is more real-

istic. In this section we explain one of the possible consequences. We show that the

liquid-glass transition of a system with Kompaneets-like pair potential appears as

a non-monotonic curve (corresponding to liquid-glass-liquid state re-entrance) when

it is plotted in terms of the inappropriate parameters of the Yukawa potentials that

represent a best fit to the actual (Kompaneets) potential around the mean geometric

distance x = r
√
n = 1.

In Fig. 3.8 we plot the Yukawa glass transition curve that is also shown in

Fig. 3.5 (black curves with triangles). The 2D Yukawa freezing line, reproduced

from Ref. [107], is also shown (dashed line) to allow a better comparison to the

glass transition line than on the scale of Fig. 3.5. The curve with open squares in

Fig. 3.8 is generated as follows: For given values of the two Yukawa parameters κY

and ΓY , we calculate the Kompaneets potential that fits best the Yukawa potential

in the distance range 0.7 < x < 3 which is most frequently sampled by the particles

[30]. The fit is conducted as follows: For given values of l and n, which yield the

combination ζκK ≡ (l
√
n)−1 (' 0.354 for the example shown in the figure), we tune

the two remaining, independent Kompaneets parameters κK and ΓK ; an optimal fit

is achieved by minimizing the square deviation
∫ 3

0.7
dx[UY (x)− UK(x)]2 between the

two potentials. We then calculate Sq for the best-fitting Kompaneets potential in the

T/2-HNC scheme, and use it as the input to the MCT equations (3.10) and (3.16)

for fq. If fq = 0, the system is classified as liquid, and if fq > 0, it is classified to be

in the glassy state. We repeat the full procedure for various Yukawa parameters κY

and ΓY , which are tuned by interval bisection, until we find for each κY the smallest

(critical) value of ΓY at which the best-fitting Kompaneets system vitrifies.
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timally fitted to the corresponding Yukawa potential in the region 0.7 < x < 3,
by pointwise tuning of the Kompaneets screening parameter κK and coupling pa-
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√
n [96].
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Thus, the curve with open squares in Fig. 3.8 is the glass transition curve of a

dusty plasma monolayer with Kompaneets-like interactions, as it would appear when

plotted in terms of the dimensionless parameters κY and ΓY of the Yukawa potentials

that best fit the actual Kompaneets potential around the mean geometric distance,

where the potential is directly accessible [30]. Therefore, if one observes vitrification

in a dusty plasma monolayer and assumes Yukawa-like interactions in the experiment

analysis, the transition behavior may be misinterpreted as a re-entrant liquid-glass-

liquid state sequence, while the transition diagram in terms of the three relevant

Kompaneets potential parameters does not exhibit any re-entrance (see Fig. 3.5).

3.4.4. Nonergodicity Parameters

Representative form factors (nonergodicity parameters) of Yukawa and Kompaneets

monolayers at the transition are shown in Fig. 3.9. The existence of the non vanishing

form factor for all the q values smaller than the cut off value in the glassy state

is due to the fact that the glassy state is resilient to the rearrangement of the

particles in any length scale which is required for the relaxation of the density

fluctuations. Same as in the 3D case, the form factor has a maximum at q = 2π

which represents the density fluctuations with the wavelength equal to the mean

interparticle distance would survive the most in the system. For relaxation of those

fluctuations, rearrangements of particles in the order of the mean particle distance

are needed which do not take place because of cage effect. The q = 2π is also the

wave number which corresponds to the structure factor first peak position.

In both Yukawa and Kompaneets monolayers when κ → 0, the Coulombic po-

tential (OCP limit) is revisited, cf. Eq. (3.2) and (3.8). In the OCP limit, as we

discussed in more detail for the 3D case in section 2.3.3, zero compressibility makes

it impossible to create a long wave length (small q) fluctuation in the glassy system.

Therefore an assumed initial long wave length fluctuation in the glassy state relaxes

back to equilibrium. This is the reason that the form factor vanishes in the OCP

limit for both Kompaneets and Yukawa potential when q → 0. In Fig. 3.9, it is

visible that when κY = κK = 0.05 the form factor is nearly approaching zero, while

for κY = κK = 2.0 the form factor is approaching a finite value at small q.

We showed in section 2.3.3 that the small q behavior of the fq in the OCP limit is

proportional to the small q behavior of the structure factor. The small q behavior of

the structure factor can be obtained starting from the long range asymptotic of the
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direct correlation function c(x). In most of the closure relations for the Ornstein-

Zernike equation such as HNC, the long range asymptotic of the direct correlation

function is obtained from c(x) = −U(x)/kBT [17, 108]. However for the T/2-HNC

one can obtain the asymptotic as follows. Taking the natural logarithm of the both

side of the Eq. (3.24)and replacing h(r) = g(r)− 1 leads to

c(x) +
2U(x)

kBT
= g(x)− ln g(x)− 1. (3.28)

Using the Taylor expansion of ln g(x) around g(x) = 1, ln g(x) = (g(x)−1)−(g(x)−
1)2/2 + . . . , one can write Eq. (3.28) as

c(x) = −2U(x)

kBT
+
h2(x)

2
+ . . . . (3.29)

Therefore one can write the large x asymptotic of direct correlation function in

T/2-HNC as

c(x) = −2U(x)

kBT
. (3.30)

Taking the Fourier transform of Eq. (3.30) when U(x)/kBT = Γ/x (Coulomb poten-

tial) in 2D results in

cq = −2U(q)

kBT
= −4πΓ

q
. (3.31)

Thus through Sq = (1− cq)−1,

Sq =
q

4πΓ
. (3.32)

Therefore, in case of the Coulomb potential the structure factor meets zero with a

linear behavior at q → 0. Since in that case the form factor is proportional to Sq in

the small q region (see section 2.3.3), the form factor approaches zero linearly. In

the 3D case, the structure factor and the fq also approach zero in the small q region,

but they approach zero with q2 behavior.

In Fig. 3.9, we present the fq of the Yukawa and Kompaneets when κY = κK =

0.05. In that limit, the fq of the two potentials are indistinguishable on the scale of

the figure. Using Eq. (3.30) and the Fourier transform of the Yukawa potential in

two dimensions we have the asymptotic of the T/2-HNC direct correlation function

of the Yukawa monolayer as

cq ≈ −
2UY (q)

kBT
= − 4πΓY√

κ2
Y + q2

for q + qt � κ2
Y + q2. (3.33)

that is, when both the wavenumber q and the screening parameter κY are small and
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within a certain ratio of each other. In Eq. (3.33), qt is a dimensionless non-negative

threshold wavenumber with a typical value of qt ∼ 0.1. For more information about

the condition q + qt � κ2
Y + q2 see Ref. [96]. When κY → 0, the Eq. (3.33) reduces

to (3.31). In Fig. 3.10 we have shown the T/2-HNC structure factors of the Yukawa

monolayer at the transition for different κY . When κY = 0.05 the small q behavior

of the structure factor appears approximately linear.

Here we want to calculate the small q behavior of fq in 2D. The 2D-MCT kernel

in Eq. (3.15) can be written also as

Fq(f) =
1

4π2

∫
d2kV (q,k,p)fkfp, (3.34)

where V (q,k,p) is written the same as in 3D case in Eq. (2.44):

V (q,k,p) =
1

2

SqSkSp
q4

[q.kck + q.(q− k)c|q−k|]
2. (3.35)

We follow the same method as we discussed in the 3D case to evaluate the small q

behavior of Fq(f). We Taylor expand the cp = c|q−k| as in Eq. (2.46) and replace the

expansion in Eq. (3.35) where we end up with Eq. (2.47). For obtaining the term in

Fq(f) which is only proportional to Sq and does not have any other q dependence,

we replace the a2 term from Eq. (2.47) in Eq. (3.34):

FSq(f) =
Sq
8π2

∫ ∞
0

dk kS2
kf

2
k

∫ 2π

0

q4

q4
(c2
k + 2kckc

′
kcos2θ + k2c′k

2
cos4θ)dθ

=
Sq
4π

∫ ∞
0

dk kS2
k

(
c2
k + kckc

′
k +

3

8
k2c′k

2

)
f 2
k .

(3.36)

The term which is proportional to qSq in Fq(f) is obtained from replacing the 2bc

term from Eq. (2.47) inside Eq. (3.34). This term vanishes since the integrals of odd

powers of the cos θ for
∫ 2π

0
dθ, are zero.

The term which is proportional to q2Sq is calculated from substitution of the b2
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62 3.4. Results

and 2ac from Eq. (2.47) in Eq. (3.34):

Fq2Sq(fk) =
q2Sq
8π2

∫ ∞
0

dkkS2
kf

2
k

∫ 2π

0

(c′k
2
cos2θ +

1

4
k2c′′kcos6θ + kc′kc

′′
kcos4θ

+ ckc
′′
kcos2θ +

1

3
kckc

′′′
k cos4θ + kc′kc

′′
kcos4θ +

1

3
k2c′kc

′′′
k cos6θ)d(cosθ)

=
q2Sq
8π

∫ ∞
0

dkkS2
k

(
c′k

2
+

5

32
k2c′′k

2
+

3

2
kc′kc

′′
k + ckc

′′
k+

1

4
kckc

′′′
k +

5

24
k2c′kc

′′′
k

)
f 2
k .

(3.37)

In summary, in the small q region in 2D

Fq = (α + βq2 + . . .)Sq (3.38)

with

α =
1

4π

∫
dk kS2

k

(
c2
k + kckc

′
k +

3

8
k2c′

2
k

)
f 2
k (3.39)

and

β =
1

8π

∫
dk kS2

k

(
c′k

2
+

5

32
k2c′′k

2
+

3

2
kc′kc

′′
k + ckc

′′
k +

1

4
kckc

′′′
k +

5

24
k2c′kc

′′′
k

)
f 2
k .

(3.40)

Considering only the leading order of the approximation in Eq. (3.38), and also

considering Eq. (3.33) where Sq = (1−cq)−1, the small-q, small-κY limiting behavior

of the Yukawa monolayer form factor, is given by

fq = α

[
1 + α +

4πΓY√
κ2
Y + q2

]−1

for q + qt � κ2
Y + q2, (3.41)

in the T/2-HNC approximation. For finite κY , the function fq in Eq. (3.41) assumes

a positive value for q = 0, and increases ∝ q2 when q → 0. Only in the OCP limit

κY = 0, the function fq in Eq. (3.41) vanishes for q = 0, and increases initially as

∝ q. In a broad scale, the fq asymptotic for κY = 0.05 and ΓY = 138.7 is almost

linear.

Note here that the small-q limiting OCP form factor is qualitatively different in

two and three dimensions. In 3D, the function fq vanishes in the OCP limit κY = 0

as ∝ q2. In 2D, it vanishes linearly.
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We calculate numerically the Lamb-Mössbauer factor f sq , using Eq. (3.17) and

(3.20) and the T/2-HNC structure factor. The f sq for the Yukawa monolayer at

(κY ,ΓY ) = (0.05, 138, 7) and (2, 195.4) is shown in Fig. (3.11). The f sq of the Kom-

paneets monolayer for (κK ,ΓK , ζ) = (0.05, 139.2, 0.5) and (2, 345.0, 0.5) are also

presented in Fig. (3.11). The parameter values are all at the transition. One can

observe that there exists no small q suppression in the Lamb-Mössbauer factor in

the OCP limit, which is expected since there exist no Sq dependence in F sq (f) (see

Eq. (3.18)). In fact all the Lamb-Mössbauer factors of Kompaneets and Yukawa

monolayer fall on top of each other at the transition.
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Figure 3.11.: The Lamb-Mössbauer factors f sq (monotonically decaying as functions
of q) for various Yukawa monolayers (symbols) and Kompaneets monolayers (curves)
at their respective MCT glass transition points, with potential parameters as indi-
cated in the legend.



Chapter 4

Modification of a Liquid State Struc-

ture Factor to Create a Jammed

State Structure Factor

It has been shown by large scale simulations that the long wave length behavior of

the structure factor in a jammed state is suppressed [45–48] in comparison to what

the liquid state theories predict [17]. In liquid state theory 1, the static structure

factor in a hard sphere or soft sphere (short range soft potential) system, is predicted

to behave as S(k) ' S(0) + αk2 where S(0) is proportional to the compressibility.

In contrast, the simulation shows that in nearly jammed packings of hard or soft

spheres [45, 46] the structure factor has a linear relation with wave number, S(k) ∝ k

at small k and would reach a very small or possibly zero value at k = 0. For the

large scale simulation of the jammed state, Silbert et al. [46] have used the harmonic

short range potential of the form

U(r)

kBT
=

Γ(1− r)2, r ≤ 1

0, r > 1,
(4.1)

where 1 is the particle diameter, and Γ is a temperature dependent constant. They

have found the linear relation S(k) ∝ k at small k for the structure factor of a

jammed state. As we show later in this chapter, liquid state theory predicts the

behavior S(k) ' S(0) + αk2 for the same potential Eq. (4.1). Using the effects of

long range potentials, we try to modify the structure factor resulting from the liquid

1by liquid state theory we mean different closures and approximations [17] which exist for solving
the Ornstein-Zernike Integral equation to obtain the structure factor.
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state theory in a way that it matches the simulation result in the small k regime.

4.1. Small Wave Number Dependence of the Structure Fac-

tors of the Long Range 1/rn Potentials

One can calculate the structure factor of a system of particles interacting via the

potential in Eq. (4.1) using the HNC approximation. In the simulation the jamming

temperature is considered very low so the Γ should be very large. For the HNC

calculation we have chosen Γ = 500. The HNC structure factors are presented in

Fig. 4.1 for different values of the packing fraction. The HNC result in the small

k regime is not compatible with the simulation result for the jammed system [46],

since S(k) approaches a constant value with k2 behavior for every packing fraction.

Here we want to find a way to reproduce the simulation results in the small k regime

using liquid state theory.

0 10 20 30 40 50
k

0

1

2

3

4

S(k)

0 2 4 6
0

0.1

0.2

Figure 4.1.: Static structure factor S(k) calculated via HNC for a monodisperse
system of soft spheres with the harmonic potential in Eq. (4.1). The inset shows
how the compressibility, χT ∝ S(0), decreases with increasing ϕ, but with all curves
following the standard: S(k → 0) ' S(0) + αk2 form. The packing fractions are
0.4, 0.5, 0.55, 0.6, 0.633316, 0.65, 0.7 respectively from top to bottom.

As we discussed in section 2.3.3, in a Coulombic potential system which is a very

long range potential, the structure factor approaches zero with the behavior S(k) ∝
k2 which leads to vanishing compressibility. Nixon et al. [49] have argued before

that the behavior S(k) ∝ k is equivalent to a long range decay in the correlation

function, h(r) = 1/r4. Considering that, one may assume, longer range potentials
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can have the effect of suppressing the structure factor in the small wave number

regime.

In order to investigate the last assumption we consider a long range potential in

the form

V (r) = 1/rn. (4.2)

The small k behavior of c(k) ' −βV (k) [108] can be obtained by taking the Fourier

transform of the potential. When n = 1 we have the familiar case of the Coulom-

bic potential which we discussed in 2.3.3 as the OCP limit of Yukawa potential.

Following Eq. (2.38) to Eq. (2.40) leads to S(k) ' β
4π
k2 for the n = 1.

When n = 2, using Eq. (2.37), the Fourier transform of the potential 1/r2 can be

written as

V (k) =
4π

k

∫ ∞
0

sinkr

r
dr. (4.3)

The integral does not converge absolutely but has a removable pole and results in

c(k) ' −βV (k) = −2βπ2/k. This together with Eq. (2.39) would result in linear

behavior in the small k regime in the structure factor

S(k) ' k

2βπ2
. (4.4)

For n = 3, 4, 5, ... (when n is integer and n > 2) the integral V (k) = 4π
k

∫∞
0

sinkr
rn−1 dr

does not converge, since the Cauchy principal value of the integral is ∞. For this

case one can define a small positive non integer ε, and calculate the integral for the

potential 1/rn−ε (see Appendix B)

V (k) =
4π

k

∫ ∞
0

sinkr

rn−1−εdr = −4πsin(
n− 2− ε

2
π)Γ(2− n+ ε)kn−3−ε (4.5)

where Γ(s) =
∫∞

0
exp(−y)ys−1dy. This has been derived in a similar way in [49],

but one should consider that when n is integer and n > 2 one cannot put ε = 0 since

the Γ function would result in ∞. From Eq. (4.5) one has c(k) ' αkn−3−ε so

S(k) ' 1

1− αkn−3−ε ' 1 + αkn−3−ε. (4.6)

If there exists a short range potential, csr(r) = c(r)− clr(r) where clr(k) ' αkn−3−ε

then

S(k) ' 1

1− csr(0)− αkn−3−ε ' S(0) + αkn−3−ε. (4.7)
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This means for n=4, S(k) has an approximately linear behavior (not completely

linear due to the fact that ε 6= 0) in the small k domain. Also, it approaches a

non-zero constant S(0) at k = 0.

4.2. The Effects of an Additional 1/r2 Potential

What we can conclude from the last section is that, considering a potential ∝ 1/r2

prompts a structure factor which linearly approaches zero S(k → 0) ∝ k. For

introducing the linear behavior into the HNC structure factor of the potential (4.1),

we use an additional potential γ/r2. We propose a potential of the form

V (r)

kBT
= Γ(1− r)2 +

γ

r2
r ≤ 1

V (r)

kBT
=

γ

r2
r > 1

(4.8)

and solve the Ornstein-Zernike equation with HNC closure numerically for this po-

tential. For Γ = 500 and different packing fractions we have shown the structure

factor for γ = 1 and γ = 10 in Figures 4.2 and 4.3 respectively. One can detect that

adding the potential γ/r2 to the harmonic potential resulted in linear behavior in

small k region for all the different values of packing fractions. Comparison between

the two figures also shows us that apparently the linear behavior of the structure

factor lasts until higher k, when γ = 10. Another observation is that increasing γ,

increases the height of the structure factor first peak for every packing fraction.

In Fig. 4.4 We have presented the HNC structure factor of the proposed potential

in Eq. (4.8) for Γ = 500, packing fraction 0.64 and different values of 1 ≤ γ ≤ 12.

When γ is between 8 and 10 the structure factor is comparably consistent with

simulation data for the same packing fraction taken from [46].

In a jammed state (unlike a liquid) all the particles start to correlate with each

other therefore it resembles a continuum matter. In a continuum matter in three

dimensions the stress resulting from a small fluctuation will propagate through the

system with 1/r2 dependence, since a perturbation is propagating as a spherical

wave with a wavefront (surface) ∝ r2. The energy transfer to a particle due to a

stress field is proportional to the stress multiplied by the particle volume. On this

ground, introducing a potential energy = γ/r2, as an effect of the emergence of the

jammed state, is logical.
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Figure 4.2.: HNC structure factor of the proposed potential in Eq. (4.8), for different
values of packing fractions when Γ = 500 and γ = 1. The inset shows the S(k) in
the small k region. The dashed line shows a linear relation between S(k) and k.
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Figure 4.3.: HNC structure factor of the proposed potential in Eq. (4.8), for different
values of packing fractions when Γ = 500 and γ = 10. The inset shows the S(k) in
the small k region. The dashed line shows a linear relation between S(k) and k.
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Figure 4.4.: HNC structure factor of the proposed potential in Eq. (4.8), for different
values of γ, packing fraction of 0.64 and Γ = 500. The simulation data, shown in
blue, is produced by L. E. Silbert [46]. The dashed line shows a linear relation
between S(k) and k.

4.3. A Random Phase Approximation

We can also use the γ/r2 potential as a perturbation. We assume a system inter-

acting via a short range potential mentioned in Eq. (4.1) (reference system) and a

perturbative longer range potential u(r)/kBT = γ/r2. The structure factor of the

whole system S(k) is defined as a density response of the system to a weak external

potential in Fourier space [17]

δn(k) = −nS(k)
φ(k)

kBT
, (4.9)

where δn(k) is the Fourier transform of the deviation of the particle density from its

mean value δn(r) = n(r) − n and φ(r) is an small external potential. If φ(r) is an

external potential to the reference system plus the perturbative long range potential,

the external potential φ0(r) to the reference system will be [109]

φ0(r) = φ(r) +

∫
u(r− r′)δn(r′)dr′, (4.10)

where

δn(k) = −nS0(k)
φ0(k)

kBT
. (4.11)
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φ0(k) is the Fourier transform of φ0(r) and S0(k) is the structure factor of the

reference system. From Eq. (4.9), (4.11) and the Fourier transform of Eq. (4.10),

φ0(k) = φ(k) + u(k)δn(k), one has

S(k) =
S0(k)

1 + nS0(k)βu(k)
, (4.12)

where S(k) is the total structure factor. We have calculated the S0(k) within HNC

approximation considering Eq. (4.1) as the potential, and then used Eq. (4.12) to

calculate S(k). The result is shown in Fig. 4.5. For small k values, the perturbative

potential u(r) = γ/r2 with γ = 8.289 can reproduce the simulation data. But this

method would fail clearly for stronger perturbations. As we expect the perturbation

γ/r2 should only rise in large r or small k regions, but in smaller r or large k having

an 1/r2 interaction cannot be physically reasonable and creates a large amount of

perturbation which affects S(k) in the way that the peak values drop significantly,

Fig. 4.5. Therefore we decide to limit the perturbation γ/r2 only to small k by

altering u(k) = 2π2γ/k, the Fourier transform of u(r) = γ/r2, to

u′(k) = 2π2γ
exp(−ak2)

k
. (4.13)

The Gaussian term distributes the 1/k interactions normally on k. We again use

Eq. (4.12) to calculate S(k), this time for u′(k). The S0(k) is calculated via HNC

for the reference system interacting with the potential in Eq. (4.1). The result is

shown in Fig. 4.6 for different Γ and corresponding a values. In r-space, u′(r) can

be obtained from Fourier transforming back the u′(k) in three dimensions:

u′(r) =
γ√
a

D+( r
2
√
a
)

r
, (4.14)

where D+(x) = exp(−x2)
∫ x

0
exp(y2)dy is called Dawson function [110]. We plot the

u′(r) in Fig. 4.7. In small r region, u′(r) can be fitted by a Gaussian function, where

at large r it can be fitted by γ/r2. At small r, one can think of the energy localized

in the particle-particle contact by the Gaussian term, whereas at large r, there exists

the 1/r2 ’collective’ property. The corresponding pair correlation functions g(r), of

the structure factors represented in Fig. 4.6, are shown in Fig. 4.8.
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Figure 4.5.: Structure factors calculated via Eq. (4.12) for different values of γ and
packing fraction of 0.64 and Γ = 500. The simulation data shown with the solid
blue curve is produced by L. E. Silbert [46].
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Figure 4.6.: Structure factors calculated via Eq. (4.12), taking u′(k) in Eq. (4.13) as
the long range potential, for different values of Γ and a. Packing fraction is taken
0.64 and γ = 8.289. The simulation data shown with × is produced by L. E. Silbert
[46].
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small r region and (b) in large r region. The potential behaves like a Gaussian, at
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Gaussian function of the form A exp(−r2/2B2) with A = γ/2a and B = 0.56 which
fits the potential u′(r) at small r very well. The dashed red curve in (b) corresponds
to the function γ/r2, which shows very well the behavior of the u′(r) at large r.
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Figure 4.8.: Pair correlation functions calculated with u′(k) via Eq. (4.12) for the
Γ and a values presented in Fig. 4.6. Packing fraction is taken equal to 0.64 and
γ = 8.289.
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4.4. Conclusion and Outlook

In conclusion the HNC and other familiar closures in liquid state theory together

with the Ornstein-Zernike equation produce the S(k → 0) ' S(0) + αk2 behavior

in the structure for short range hard or soft sphere potentials like Eq. (4.1). In the

simulation for the same potential [46], the behavior of the structure factor is rather

different at small k values S(k → 0) ∝ k. We used two methods to introduce the

behavior S(k → 0) ∝ k into the HNC results. Both of these two methods are based

on using a weak long range potential (γ/r2) to bring the linear behavior near zero,

into the structural results. In the first method we have simply solved the HNC and

Ornstein-Zernike equation for the sum of the short range and long range potential

in Eq. (4.8). In the second method we used the localized long range potential in

Eq. (4.13) and (4.14) as a perturbation to the HNC structure result of the short range

potential system. Although the second method seems to be better in reproducing

the small k behavior in Fig. 4.6, the first method is better for keeping the expected

height of the first peak of the structure factor. One should also have in mind that in

the simulation the linear behavior in structure arises as one approaches the jammed

state therefore it indicates the emergence of the jammed state. In contrary when we

add the long range potential γ/r2, it will create a linear behavior in every packing

fraction, cf. Fig. 4.3. One should be able to modulate γ with the packing fraction,

in a way that in the packing fractions below the jammed state γ = 0 and therefore

the linear behavior vanishes.

If our assumption is true that the γ/r2 resulting from the spherical propagation of

a perturbation at the jammed state is creating the linear behavior in the structure

factor, one can expect that since in two dimensions the wavefront of the propagation

is a circle, the potential γ/r should create the linear behavior in 2D. The Fourier

transform of the potential γ/r in 2D can be written as

V (k) =2π

∫ ∞
0

dr r
γ

r
J0(kr) =

2πγ

k
. (4.15)

This result in the behavior c(k) ' −2πγβ/k in the small k regime. Using the

Ornstein-Zernike equation will lead to

S(k) ' k

2πγ
. (4.16)

Therefore, the structure factor should have a linear behavior in 2D, after introducing
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the γ/r potential. In the future after checking the validity of this assumption, one

should be able to establish a one to one fit between simulation result and theory for

every Γ and packing fraction value in both two and three dimensions.



Chapter 5

Dynamics of Brownian Particles with

Velocity-Dependent Friction

5.1. Nonlinear Langevin Equation

The motion of ordinary Brownian particles can be described by the Langevin equa-

tion [51]
dpi
dt

= Fi − γ0pi + ξRi(t), (5.1)

where γ0 is a constant friction. The interaction of the Brownian particle with the

solvent molecules is taking into account by a rapidly fluctuating force, ξRi(t) with

an ensemble average equal to zero

〈Ri(t)〉 = 0. (5.2)

The fluctuation force is a Gaussian white noise [111] which means the values that

the noise can take are Gaussian distributed but uncorrelated in time

〈ξRi(t)ξRj(t
′)〉 = ξ2δij δ(t− t′). (5.3)

Here ξ2 is the fluctuation strength. In Eq. (5.1), Fi = − ∂
∂ri
U({ri}) is the interaction

force or the outcome potential force inserted on particle i from other Brownian

particles. The diffusion in the velocity space is determined by the random force and

defined as Dv = ξ2/2m2. So when m = 1 then Dv = ξ2/2.

One way of describing the motion of Brownian particles with additional energy

75
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input or so-called activity is assuming a velocity dependent friction in the Langevin

equation [55]
dpi
dt

= Fi − γ(vi)pi + ξRi(t). (5.4)

The velocity dependent friction γ(vi), allows negative values of friction in some

regions in the phase space. When friction is negative, the −γ(vi)pi force instead

of dissipating the energy, pumps an additional mechanical energy into the system.

The fluctuating force ξRi(t), follows Eq. (5.2) and (5.3).

5.2. Time Evolution Operators

For deriving the mode coupling equation of motion in case of ordinary Brownian par-

ticle, the Smoluchowski time evolution operator has been used before [24]. In the

Smoluchowski or diffusive time scale the momentum coordinate of the Brownian par-

ticle has been relaxed to the equilibrium and therefore the time evolution operators

involve only the position coordinates of the Brownian particles. The Smoluchowski

operator also has been used for study of the shear effect on the dense colloidal sus-

pensions [64]. Here we want to derive the time evolution operators involving both

momentum pi and position ri coordinates of the Brownian particles. The Liouville

equation for a phase variable A(Γ) = A(r1, r2, . . . , rN ,p1,p2, . . . ,pN) is defined as

[59]
dA(Γ)

dt
= iLA(Γ), (5.5)

and for a non-equilibrium distribution f , the time evolution equation is considered

as
∂f(Γ, t)

∂t
= −iL†f(Γ, t). (5.6)

In these two equations iL and iL† are the time evolution operators for phase variables

and distribution function, respectively. Using Eq. (5.4) we can derive the time

evolution operators

iL = Γ̇· ∂
∂Γ

=
∑
i

(
pi
m
· ∂
∂ri

+ F i·
∂

∂pi

)
+
∑
i

(
ξRi(t)·

∂

∂pi
− γ(vi)

m
pi·

∂

∂pi

)
,

(5.7)
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and

−iL† = −Γ̇· ∂
∂Γ
− (

∂

∂Γ
· Γ̇) =

∑
i

(
−pi
m
· ∂
∂ri
− F i·

∂

∂pi

)
+
∑
i

(
−ξRi(t)·

∂

∂pi
+
γ(vi)

m
pi·

∂

∂pi

)
+
∑
i

(
1

m

∂γ(vi)

∂pi
·pi +

γ(vi)

m

)
.

(5.8)

Both time evolution operators iL and iL† contain the term ξRi(t)· ∂
∂pi

. Since ξRi(t)

is an stochastic force, the time evolution, would be different for every realization.

Thus we need to take an average over the noise. We follow the averaging procedure

in [112]: We assume dB(Γ(t))
dt

= iL1 B(Γ(t)) = −ξRi(t)· ∂
∂pi
B(Γ(t)) therefore

B(t+ ∆t)−B(t) =

∫ t+∆t

t

iL1B(t1)dt1. (5.9)

We substitute B from Eq. (5.9) inside itself and drop B from both side of the

equation

−ξRi(t)·
∂

∂pi
= lim

∆t→0

1

∆t

[∫ t+∆t

t

−ξRi(t1)· ∂
∂pi

dt1

+

∫ t+∆t

t

∫ t1

t

(ξRi(t1)· ∂
∂pi

)(ξRi(t2)· ∂
∂pi

)dt1dt2

]
.

(5.10)

Since the time scale of Ri(t) is much shorter than the phase variables, we can choose

∆t long enough that we can replace the terms inside the integrals by their averages

−ξRi(t)·
∂

∂pi
= lim

∆t→0

1

∆t

[∫ t+∆t

t

−〈ξRi(t1)· ∂
∂pi
〉dt1

+

∫ t+∆t

t

∫ t1

t

〈(ξRi(t1)· ∂
∂pi

)(ξRi(t2)· ∂
∂pi

)〉dt1dt2

]
.

(5.11)

According to Eq. (5.2) the first part of the right hand side of Eq. (5.11) is zero and

−ξRi(t)·
∂

∂pi
= lim

∆t→0

ξ2

∆t

[∫ t+∆t

t

∫ t1

t

〈Ri(t1)Ri(t2)〉 ∂
2

∂pi
2 dt1dt2

]
= lim

∆t→0

ξ2

2∆t

[∫ t+∆t

t

∂2

∂pi
2 dt1

]
=

1

2
ξ2 ∂2

∂pi
2 ,

(5.12)
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where we have used the property of the Dirac delta function
∫ t1
t

δ(t1− t2) dt2 = 1/2

where t < t2 < t1. From now on we assume m = 1 for simplicity. Replacing

Eq. (5.12), in Eq. (5.7)

iL = Γ̇· ∂
∂Γ

=
∑
i

(
vi·

∂

∂ri
+ F i·

∂

∂vi

)
+
∑
i

(
−1

2
ξ2 ∂2

∂vi
2 − γ(vi)vi·

∂

∂vi

)
.

(5.13)

Doing the same for Eq. (5.8) we have

−iL† = −Γ̇· ∂
∂Γ
− (

∂

∂Γ
· Γ̇) =

∑
i

(
−vi·

∂

∂ri
− F i·

∂

∂vi

)
+
∑
i

(
1

2
ξ2 ∂2

∂vi
2 + γ(vi)vi·

∂

∂vi

)
+
∑
i

(
∂γ(vi)

∂vi
·vi + γ(vi)

)
.

(5.14)

The average of a phase variable at time t > 0 can be calculated with having the

distribution function at time t > 0, and the phase variable at time t = 0. The

result will be the same if one use the distribution at the time t > 0, and the phase

variable at time t = 0. The time evolution operator for a phase variable is the

iL expressed in Eq. (5.13). The first two terms in this equation corresponds to

the equilibrium situation, while the other terms originates from the existence of

the velocity-dependent friction. The time evolution operator for the distribution is

shown with −iL† as declared in Eq. (5.14).

5.3. Distribution Function

Using the time evolution operator−iL† in Eq. (5.14), we can write the time evolution

equation (5.6) for the distribution of one particle

∂f

∂t
+ vi·

∂f

∂ri
+ F i·

∂f

∂vi
=

∂

∂vi

[
γ(vi)vif +

1

2
ξ2 ∂f

∂vi

]
. (5.15)

This is a Fokker-Planck equation. So, starting from the Langevin equation with

velocity dependent friction and using the Liouville or time evolution operators we

end up with the Fokker-Planck equation of the distribution function. In case of

constant friction γ(vi) = γ0 = −α, the stationary solution of the Fokker-Planck
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equation is

f0(Γ) = C exp

(
−U({ri})

kBT

)
exp

(
−γ0

∑
i vi

2

ξ2

)
(5.16)

where ξ2 = 2kBTγ0 according to the fluctuation-dissipation theorem [50].

When friction is velocity dependent, the stationary solution of Eq. (5.15) is only

trivial when neglecting the interaction forces, Fi = 0. The stationary solution (∂fs
∂t

=

0) of Eq. (5.15) in the case of Fi = 0 for one particle is [55]

fs(v) = C exp

(
− 2

ξ2

∫ v

dv′γ(v′)v′
)
. (5.17)

In this case the fluctuation-dissipation relation does not hold which is consistent

with the non-equilibrium situation.

5.3.1. Rayleigh-Type Model of Friction

We consider a Rayleigh-type model of friction

γ(v) = −α + βv2. (5.18)

This model of velocity dependent friction (pumping of energy) was introduced by

Rayleigh in the theory of sound [113]. The Rayleigh friction has been used before

to model the nonequilibrium Brownian motion [55, 114]. We choose the Rayleigh

friction because of its ability of modeling the pumping of energy to the system,

through the slow particles, without any rotational or directional dependence. For

simplicity of analytically calculating the distributions we consider β = 1, so that

γ(v) = −α + v2. (5.19)

When the direction of the so-called dissipative force −γ(v)v, is the same as the

velocity, or in other words, when γ(v) is negative the particle experiences additional

mechanical energy pumped into the system. In the other hand, when γ(v) is positive,

the dissipative force results in dissipation of mechanical energy of the particle. We

have shown in Fig. 5.1 the regions in the α, v = |v| plane which leads to Brownian

particles being active (pump of energy to the system) or passive (energy dissipation).
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Figure 5.1.: Different regions in the α and v = |v| plane which leads to Brownian
particles being active (pump of energy to the system) or passive (energy dissipation).
What separates these two regions from each other is the curve v2 = α or γ(v) =
−α + v2 = 0.

5.3.2. Distribution Function and Effective Temperature in Case of Rayleigh-

Type Model of Friction

The stationary velocity distribution (Eq. (5.17)) using the Rayleigh model of friction

in Eq. (5.19) in terms of Dv = ξ2/2 can be written as

fSR(v) = C exp

(
− 2

ξ2
(
v4

4
− αv2

2
)

)
. (5.20)

In two-dimensions when dv = 2π v dv, one can analytically obtain the value of C

in terms of Dv = ξ2/2, as it is also obtained in [114]

1

C
= 2π

∫ ∞
0

exp

(
− 2

ξ2
(
v4

4
− αv2

2
)

)
v dv

= π
√
πDv exp

(
α2

4Dv

)[
1 + erf

(
α

2
√
Dv

)]
.

(5.21)

In principle it should be possible to calculate this and the following integrals in 3D.

But for matter of simplicity we stay with a two dimensional system. Fig. 5.3 shows

the 2D normalized distribution fSR(v) for α = 1 and different values of ξ2/2. As

it is visible from the figure 5.1, When α = 1 the particles with the speed v < 1

are accelerated (show activity), while the particles who are faster are damped (show
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passive behavior). The probability of finding particles with the velocity |v| < 1 is

proportional to the area under the velocity distribution curves in Fig. 5.3 in that

interval. One can observe that with increasing the noise strength the probability of

finding slower particles decreases, which indicates that for a constant α value, the

active behavior of the system with increasing the noise strength, decreases.

The second, fourth and sixth moment of velocity in two-dimensions can be written

as:

〈v2〉 = 2π

∫ ∞
0

fSR(v) v2 v dv

= α + 2

√
Dv

π
exp

(
− α2

4Dv

)[
1 + erf

(
α

2
√
Dv

)]−1 (5.22)

〈v4〉 = 2Dv + α〈v2〉 = ξ2 + α〈v2〉 (5.23)

〈v6〉 = 2αDv + (α2 + 4Dv)〈v2〉 = αξ2 + (α2 + 2ξ2)〈v2〉 (5.24)

These equations have been derived in Appendix C where we have also explained

the slight difference between 〈v2〉, 〈v4〉 and what has been shown in [114]. Since

the velocity distribution is an even function, the odd moments of velocity are zero

in any dimension. The velocity distribution function only contains v2 term, thus

〈v2
x〉 = 〈v2

y〉 and in two dimensions: 〈v2
x〉 = 〈v2

y〉 = 〈v2〉/2. We define the effective

temperature of the system as

kBTEff = 〈v2
x〉 = 〈v2

y〉 =
〈v2〉

2
. (5.25)

Fig. 5.4 demonstrates the relation between 〈v2〉 and ξ2/2 due to Eq. (5.22). In

case of the normal Langevin equation with constant friction γ0, the fluctuation-

dissipation relation holds and ξ2/2γ0 = kBT = 〈v2〉/2, so that there is a linear

relation between 〈v2〉 and ξ2/2. But as we can see in the Fig. 5.4, 〈v2〉 and ξ2/2

have a non-linear relation. This nonlinearity originates from the velocity dependent

friction.

We assume that we can model the distribution of the particles with separating
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Figure 5.2.: The stationary velocity distribution for non-interacting Brownian par-
ticles shown in Eq. (5.20) for α = 1 and different values of Dv = ξ2/2.
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Figure 5.3.: The stationary velocity distribution for non-interacting Brownian par-
ticles (shown in Eq. (5.20)) multiplied by their speed, for α = 1 and different values
of Dv = ξ2/2. When α = 1 the particles with the speed 0 < |v| < 1 are accelerated
(show activity). The probability of finding particles with the velocity 0 < |v| < 1
is equal to the area under the curves in that interval. With increasing the noise
strength the probability of finding the particles which show activity decreases. This
indicates that for a constant α value, the active behavior of the system with increas-
ing the noise strength, decreases.
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Figure 5.4.: Second moment of velocity proportional to the effective temperature
against Dv = ξ2/2 for different values of α. There exists a nonlinear relation between
〈v2〉 and ξ2/2 which originates from velocity dependent friction.

the position and velocity dependence part

f({ri}, {vi}) = C exp

(
−2

U({ri})
〈v2〉

)
exp

(
− 2

ξ2

∑
i

∫ v

dv′iγ(v′)v′

)
. (5.26)

For the Rayleigh model of friction this will lead to

f({ri}, {vi}) = C exp

(
−2

U({ri})
〈v2〉

)
exp

(
− 2

ξ2

∑
i

(
vi

4

4
− αvi

2

2
)

)
. (5.27)

Replacing Eq. (5.26) in the Fokker Planck equation, Eq. (5.15), will result in

∂f

∂t
=
∑
i

(
− 2

〈v2〉
vi · Fi +

2

ξ2
F i · viγ(vi)

)
f

=
∑
i

(
− 2

〈v2〉
F i · vi −

2α

ξ2
F i · vi +

2

ξ2
v2
i F i · vi

)
f.

(5.28)

For understanding a little more about the term F i·vi we can multiply the nonlinear

Langevin equation by vi

vi ·
dvi
dt
− Fi · vi = −γ(vi)v

2
i + ξRi(t) · vi (5.29)

which can be representative of the mechanical energy loss or gain of one particle in
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the system. For having the same equation in a more general form we use Eq. (5.5)

and (5.13) to evaluate the time evolution of the variable
∑

i
v2
i

2

d

dt

∑
i

v2
i

2
=
∑
i

vi ·
dvi
dt

= iL
∑
i

v2
i

2

=
∑
i

Fi · vi −
∑
i

γ(vi)v
2
i +

∑
i

ξ2

2

(5.30)

In an overdamped motion where dvi/dt = 0 we have

∑
i

Fi · vi =
∑
i

γ(vi)v
2
i −

∑
i

ξ2

2

= −
∑
i

αv2
i +

∑
i

v4
i −

∑
i

ξ2

2
.

(5.31)

Replacing this in Eq. (5.28) would lead to

∂f

∂t
= Λf, (5.32)

where

Λ =

(
αN +

Nξ2

〈v2〉

)
+

(
2α2

ξ2
+

2α

〈v2〉
− 1

)∑
i

v2
i

+

(
−4α

ξ2
− 2

〈v2〉

)∑
i

v4
i +

2

ξ2

∑
i

v6
i .

(5.33)

5.3.3. Probability of Finding Particles with Negative Friction (Active

Particles)

Following Eq. (5.19), particles who have the velocity value v <
√
α, have negative

friction. Negative friction means that these particles are accelerated or show activ-

ity. For every distribution function with specific value of α and Dv, which follows

Eq. (5.20), the probability of finding particles which have the velocity less than
√
α

is equal to

Pactive =

∫ √α
0

2πfSR(v) v dv (5.34)
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The integral can be solved as

Pactive = 2πC

∫ √α
0

exp

(
− 1

Dv

(
v4

4
− αv2

2
)

)
v dv =

erf
(

α
2
√
Dv

)
1 + erf

(
α

2
√
Dv

) . (5.35)

Therefore, to compare two systems which have different values of α and Dv, we

can use Eq. (5.35). The larger the Pactive, the larger the percentage of particles in

the system with negative friction. As it is represented in Figure 5.5, for a constant

temperature 〈v〉 = 2kBTEff = 3, we choose three pairs of (α,Dv). Using Eq. (5.35),

we can obtain the probability of finding active particles in the systems which are

determined by these three pairs. The Pactive is equal to 0.021, 0.288 and 0.357 for

(α = 0.1, Dv = 6.897) , (α = 1, Dv = 5.315) and (α = 2, Dv = 3.415), respectively.

The probability of finding active particles is equal to the area under the correspond-

ing 2πfSR(v)v curve between zero and v =
√
α, see Figure 5.6. For a constant

effective temperature, the larger the α is (or the smaller the Dv is), the probability

of finding active particles is higher.

0 1 2 3 4 5 6 7 8 9 10

D
v
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1

2

3

4
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2
> α = 2
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 α = 0.1

Figure 5.5.: Second moment of velocity proportional to the effective temperature
against Dv for three different values of α according to Eq. (5.22). We choose three
pairs of (α,Dv) with a constant temperature 〈v〉 = 2kBTEff = 3.
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Figure 5.6.: The stationary velocity distribution for non-interacting Brownian par-
ticles (shown in Eq. (5.20)) multiplied by 2πv, for different pairs of α and Dv. The
(α,Dv) pairs are chosen as we have shown in Fig. (5.5). The particles with the speed
v <
√
α are accelerated (show activity). The

√
α is shown in dashed for every curve.

The probability of finding particles with the velocity between zero and
√
α is equal

to the area under the curves in that interval. This area is 0.021, 0.288 and 0.357 for
blue curve (α = 0.1, Dv = 6.897), red curve (α = 1, Dv = 5.315) and the green curve
(α = 2, Dv = 3.415), respectively. When temperature is constant, with increasing
the α, the probability of finding the particles which show activity, increases. This
indicates that the active behavior of the system with increasing α, increases.

5.4. Definition of the Averages

It will be useful for later sections to have a consistent definition of the ensemble

averages of the product of the phase variables A and iLB:

〈A∗|iLB〉 =

∫
fA∗ iLB dΓ, (5.36)

and

〈−iL†A∗|B〉 = −
∫ (

iL†fA∗
)
B dΓ. (5.37)

The effect of iL† on fA∗ can be evaluated as [59]

iL†fA∗ = Γ̇· ∂
∂Γ

(fA∗) + (
∂

∂Γ
· Γ̇)fA∗

= f Γ̇· ∂A
∗

∂Γ
+ A∗ Γ̇· ∂f

∂Γ
+ A∗(

∂

∂Γ
· Γ̇)f

= f iLA∗ + A∗iL†f.

(5.38)
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When the distribution follows Eq. (5.16), the iL†f is zero according to the equa-

tions (5.14) and (5.15). So one can write

iL†f0A
∗ = f0 iLA∗ (5.39)

and

〈−iL†A∗|B〉0 = −
∫
B iL†f0A

∗ dΓ

= −
∫
f0B iLA∗ dΓ,

(5.40)

which leads to

〈exp (−iL†t)A∗|B〉0 =

∫
f0B exp (−iLt)A∗ dΓ. (5.41)

From Eq. (5.41) and also knowing that 〈A∗| exp (iLt)B〉 = 〈A∗|B(t)〉 one can write

〈exp (−iL†t)A∗|B〉0 = 〈A∗(−t)|B〉0. (5.42)

If we assume 〈A∗|B(t)〉 = 〈A∗(−t)|B〉 then

〈A∗| exp (iLt)B〉0 = 〈exp (−iL†t)A∗|B〉0. (5.43)

We should have in mind that as long as the distribution function is a stationary

solution of the Fokker-Planck equation, the relations listed in Eq. (5.39) to (5.43)

are valid.

In the following parts of this chapter we use the distribution function noted in

Eq. (5.27). Since that is not the stationary solution of the Fokker-Planck equation,

iL†f will not be zero. In that case

iL†fA∗ = f iLA∗ + A∗iL†f

= f iLA∗ + A∗Λf,
(5.44)

where Λ is noted in Eq. (5.33). Consequently

〈−iL†A∗|B〉 = −
∫
fB iLA∗ dΓ−

∫
A∗BΛf dΓ. (5.45)
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5.5. Mori-Zwanzig Formalism

We consider two dynamical phase variables

ρq(t) =
∑
k

exp(iq· rk(t)) (5.46)

jLq (t) =
∑
k

vLk exp(iq· rk(t)), (5.47)

where q = (0, 0, q) and L is the longitudinal direction parallel to q. The inner

product of ρq(t = 0) with itself in 2D is

〈ρ∗q|ρq〉 = 〈
∑
i,j

exp (iq· (ri − rj))〉

= 〈
∑
i,j

∫
δ(r− ri + rj) exp (iq· r) d2r〉

= N

(
1 +

1

N

∫ ∑
i6=j

〈δ(r− ri + rj)〉 exp (iq· r) d2r

)
= NSq.

(5.48)

For jLq (t = 0) knowing that the odd moments of velocity are zero

〈jLq
∗|jLq 〉 = N〈vLi

2〉 =
N

2
〈v2〉, (5.49)

where 〈v2〉 follows Eq. (5.22). Here we have used the fact that the velocity distri-

bution, Eq. (5.20), depends on the velocity merely through |v|. So the average of

the longitudinal component of the velocity is equal to the average of the transverse

component and in two dimensions

〈vL2〉 = 〈vT 2〉 =
1

2
〈v2〉. (5.50)

using Eq. (5.48) and (5.49) for normalization we define

A =

 1√
NSq

ρq√
2

N〈v2〉j
L
q

 . (5.51)

In the following we use Mori-Zwanzig formalism [61], to project the phase variables

in to two subspace of slow (relevant) and fast (irrelevant) variables. This is done
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with the use of the projection operators

P = A1〈A∗1| . . . 〉+ A2〈A∗2| . . . 〉

=
1

NSq
ρq 〈ρ∗q| . . . 〉+

2

N〈v2〉
jLq 〈jLq

∗| . . . 〉.
(5.52)

and Q = 1 − P . Then the equation of motion or time evolution equation for the

correlation function can be written as (see Appendix E for derivation)

(zI + Ω−M) Y(z) = −I. (5.53)

In this equation

Ynm(z) = 〈A∗n|Ãm(z)〉 (5.54)

where Ãm(z) = i
∫∞

0
dt exp(izt)A(t) is a Laplace transform of Am(t),

Ωnm = 〈A∗n|LAm〉 (5.55)

and

Mnm = 〈A∗n|LQ(z +QLQ)−1QLAm〉. (5.56)

Now we calculate the Ωnm:

Ω11 =
1

NSq
〈ρ∗q|Lρq〉 =

1

iNSq
〈ρ∗q|iLρq〉 = 0. (5.57)

With use of Eq. (5.13), since 〈vL〉 = 0, Ω11 = 0. From Eq. (5.36) and (5.13) we have

Ω21 =
1

iN
√
Sq〈v2〉/2

〈jLq
∗|iLρq〉

=

√
2

iN
√
Sq〈v2〉

∫
dΓ f

∑
k

vLk exp (−iq· rk)
∑
i

vi·
∂

∂ri

(∑
k′

exp (iq· rk′)

)

=
Nq〈v2〉

2N
√
Sq〈v2〉/2

= q

√
〈v2〉
2Sq

.

(5.58)
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Using Eq. (5.13) we obtain

Ω12 =
1

iN
√
Sq〈v2〉/2

〈ρ∗q|iLjLq 〉

=
1

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
k

exp (−iq· rk)

(∑
i

vi·
∂

∂ri
+
∑
i

Fi ·
∂

∂vi

−
∑
i

(−α + v2
i )vi ·

∂

∂vi

)∑
k′

vLk′ exp (iq· rk′)

= Ω1
12 + Ω2

12 + Ω3
12.

(5.59)

The operation of the third term inside the parentheses on the rest of the integral

leads to the odd moments of velocity which is zero, so Ω3
12 = 0. Now we derive Ω1

12

and Ω2
12 separately:

Ω1
12 =

1

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
k

exp (−iq· rk)

(∑
i

vi·
∂

∂ri

)∑
k′

vLk′ exp (iq· rk′)

=
iq

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
k

exp (−iq· rk)
∑
i

vLi
2

exp (iq· ri)

=
iq

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
i,k

vLi
2

exp (iq· (ri − rk))

= q

√
〈v2〉Sq

2
,

(5.60)

and

Ω2
12 =

1

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
k

exp (−iq· rk)

(∑
i

Fi·
∂

∂vi

)∑
k′

vLk′ exp (iq· rk′)

=
1

iN
√
Sq〈v2〉/2

∫
dΓ f

∑
k

exp (−iq· rk)
∑
i

FL
i exp (iq· ri).

(5.61)

We use the method applied in [115] for a related case, to obtain the average in

Eq. (5.61). According to Eq. (5.27)

∂f

∂ri
= − 2

〈v2〉
∂U

∂ri
f =

2

〈v2〉
Fif, (5.62)
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and also by means of partial integration∫
B

∂f

∂ri
dΓ = −

∫
f
∂B

∂ri
dΓ. (5.63)

Therefore

Ω2
12 =

〈v2〉
iN2

√
Sq〈v2〉/2

∑
i

∫
dΓ

∂f

∂rLi
exp (iq· ri)

∑
k

exp (−iq· rk)

= − 1

iN

√
〈v2〉
2Sq

∑
i

∫
dΓf

∂

∂rLi

(
exp (iq· ri)

∑
k

exp (−iq· rk)

)

= − 1

iN

√
〈v2〉
2Sq

∑
i

∫
dΓf iq

(
exp (iq· ri)

∑
k

exp (−iq· rk)− 1

)

= −q

√
〈v2〉
2Sq

(Sq − 1) .

(5.64)

So we would conclude from Ω12 = Ω1
12 + Ω2

12 that

Ω12 = Ω21 = q

√
〈v2〉
2Sq

. (5.65)

This is the same as in equilibrium.

Now we calculate the Ω22

Ω22 =
2

iN〈v2〉
〈jLq
∗|iLjLq 〉

=
2

iN〈v2〉

∫
dΓ f

∑
k

vLk exp (−iq· rk)

(
−
∑
i

(−α + v2
i )vi ·

∂

∂vi

+
∑
i

Fi ·
∂

∂vi

)∑
k′

vLk′ exp (iq· rk′)

=
1

i〈v2〉
(
α〈v2〉 − 〈v4〉

)
+

2

iN〈v2〉

∫
dΓ f

∑
k

vLk F
L
k .

(5.66)

We can recall from Eq. (5.23) that α〈v2〉 − 〈v4〉 = −2Dv = −ξ2. Knowing that∑
k v

L
k F

L
k = 1

2

∑
k vk · Fk, from Eq. (5.31) we will have∫

dΓ f
∑
k

vLk F
L
k =

N

2

(
−α〈v2〉+ 〈v4〉 − ξ2

2

)
. (5.67)



92 5.6. Mode-Coupling Approximation

Therefore

Ω22 =
iDv

〈v2〉
=

iξ2

2〈v2〉
. (5.68)

So the existence of a the velocity dependent friction term in the Langevin equation

leads to the 〈jLq
∗|iLjLq 〉 = iNDv/2, Where the Dv is related to the second and forth

moment of velocity through Eq. (5.22). But 〈ρq
∗|iLρq〉 is still zero since the odd

moments of velocity are zero. We can write the elements of the Ω matrix as

Ω =

 0 q
√
〈v2〉
2Sq

q
√
〈v2〉
2Sq

iξ2

2〈v2〉

 . (5.69)

In Appendix D we show that in case of normal Brownian motion (equilibrium case)

the
∑

i Fi · vi = 0 and Ω22 = iγ0.

5.6. Mode-Coupling Approximation

For writing the complete equation of motion, Eq. (5.53), we still need to know

the elements of the memory kernel Mnm. We recall that From Eq. (5.58), LA1 =

q
√
〈v2〉
2Sq

A2 so QLA1 = 0 and M11 = M21 = 0. M22 can be written as

M22 = 〈A∗2|LQ(z +QLQ)−1QLA2〉

= 〈A∗2|LQ exp (itQLQ)QLA2〉.
(5.70)

For separating the remaining fast decaying fluctuation from the memory kernel we

use the projection operator PM = P1
M + P2

M + P3
M to project on to the pair modes

of density and currents:

PM =
∑
k<p

ρkρp

〈ρ∗kρ∗p| . . . 〉
〈ρ∗kρ∗p|ρkρp〉

+
∑
k<p

jLkρp

〈jLk
∗
ρ∗p| . . . 〉

〈jLk
∗
ρ∗p|jLkρp〉

+
∑
k<p

jLk j
L
p

〈jLk
∗
jLp
∗| . . . 〉

〈jLk
∗
jLp
∗|jLk jLp 〉

.

(5.71)

In a sense by projecting the kernel on to the pair modes of density and current, the

slowly decaying parts of the memory kernel remain which have the longest relaxation

times [66]. As mode coupling theory assumes the decay of the correlation functions
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at the long time scales is dominated by those slowly decaying part of the memory

kernel. We will show later in section 5.8 that, projection on |jLkρp〉 and |jLk jLp 〉
would involve the current correlation functions 〈jLq

∗|jLq (t)〉 which are negligible in

an overdamped Brownian motion, and also that the projections on both |jLkρp〉 and

|jLk jLp 〉 result in zero for our model. Here we remain with the projection to the pair

density modes and M1
22. We use the first mode-coupling approximation [6], and

replace exp (itQLQ) with PM exp (iLt)PM :

M1
22 ≈〈A∗2|LQP1

M exp (iLt)P1
MQLA2〉

=
2

N〈v2〉
∑

k<p,k′<p′

〈jLq
∗|LQρk′ρp′〉〈ρ∗k′ρ

∗
p′| exp (iLt)ρkρp〉〈ρ∗kρ∗p|QLjLq 〉

〈ρ∗kρ∗p|ρkρp〉〈ρ∗k′ρ
∗
p′ |ρk′ρp′〉

(5.72)

Also according to the factorization ansatz

〈ρ∗kρ∗p|ρkρp〉 ≈ 〈ρ∗k|ρk〉〈ρ∗p|ρp〉 (5.73)

and

〈ρ∗k′ρ
∗
p′ | exp (iLt)ρkρp〉

≈ 〈ρ∗k′| exp (iLt)ρk〉〈ρ∗p′ | exp (iLt)ρp〉δk,k′δp,p′

= δk,k′δp,p′N
2SkSpφk(t)φp(t),

(5.74)

where φk(t) = 〈ρ∗k| exp (iLt)ρk〉/NSk. We need to calculate two terms, first one:

〈jLq
∗|LQρkρp〉 =〈jLq

∗|Lρkρp〉 − 〈jLq
∗|Lρq〉

〈ρ∗q|ρkρp〉
NSq

=〈jLq
∗|(Lρk)ρp〉+ 〈jLq

∗|ρk(Lρp)〉 − q〈v2〉
2Sq
〈ρ∗q|ρkρp〉

=
〈v2〉

2
k3〈ρ∗q−k|ρp〉+

〈v2〉
2
p3〈ρ∗q−p|ρk〉 −

q〈v2〉
2Sq
〈ρ∗q|ρkρp〉

=N
〈v2〉

2
δq,k+p(kSp + pSk − qSkSp),

(5.75)

where we used the convolution approximation 〈ρ∗q|ρkρp〉 = Nδq,k+pSqSkSp. Above

and in the following equations, k and p are the longitudinal components of k and p

respectively.

The second term is

〈ρ∗kρ∗p|QLjLq 〉 =
1

i
〈ρ∗kρ∗p|iLjLq 〉 − 〈ρ∗kρ∗p|ρq〉

1

NSq
〈ρ∗q|LjLq 〉. (5.76)
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In equilibrium or the stationary state, 〈ρ∗kρ∗p|iLjLq 〉 = 〈(−iL†ρ∗k)ρ∗p|jLq 〉+〈ρ∗k(−iL†ρ∗p)|jLq 〉
as a result of Eq. (5.43). But here we need to leave the operator L to operate on

the variable jLq

1

i
〈ρ∗kρ∗p|iLjLq 〉 =

1

i
〈ρ∗kρ∗p|

∑
i

vi·
∂

∂ri
jLq 〉

+
1

i
〈ρ∗kρ∗p|

∑
i

Fi ·
∂

∂vi
jLq 〉

− 1

i
〈ρ∗kρ∗p|

∑
i

(−α + v2
i )vi ·

∂

∂vi
jLq 〉.

(5.77)

The third term is zero since the odd moments of velocity are zero. The first term

can be written as

1

i
〈ρ∗kρ∗p|

∑
i

vi·
∂

∂ri
jLq 〉 =

1

i
〈ρ∗kρ∗p|

∑
i

(
vi·

∂

∂ri

)∑
m

vLm exp (iq · rm)〉

=
q〈v2〉

2
〈ρ∗kρ∗p|ρq〉.

(5.78)

With the use of Eq. (5.62) and (5.63) the second term of Eq. (5.77) can be written

as

1

i
〈ρ∗kρ∗p|

∑
i

Fi ·
∂

∂vi
jLq 〉

=
1

i
〈ρ∗kρ∗p|

∑
i

FL
i exp (iq · ri)〉

=
〈v2〉
2i

∑
i

∫
dΓ

∂f

∂rLi
exp (iq · ri)ρ∗kρ∗p

= −〈v
2〉

2i

∑
i

∫
dΓf

∂

∂rLi

[
exp (iq · ri)ρ∗kρ∗p

]
= −〈v

2〉
2i

∑
i

∫
dΓf

[
iq exp (iq · ri)ρ∗kρ∗p − ik exp (i(q− k) · ri)ρ∗p

−ip exp (i(q− p) · ri)ρ∗k]

= −〈v
2〉

2

[
q〈ρ∗kρ∗p|ρq〉 − δq,k+pNkSp − δq,k+pNpSk

]
.

(5.79)

By adding up the Eq. (5.79) to Eq. (5.78) we have

1

i
〈ρ∗kρ∗p|iLjLq 〉 = N

〈v2〉
2
δq,k+p(kSp + pSk), (5.80)
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so

〈ρ∗kρ∗p|QLjLq 〉 = N
〈v2〉

2
δq,k+p(kSp + pSk − qSkSp). (5.81)

Placing Eq. (5.73), (5.74), (5.75) and (5.81) in Eq. (5.72) leads to

M1
22 =

〈v2〉
2N

∑
k<p

δq,k+p

(
kSp + pSk − qSkSp

SkSp

)2

SkSpφk(t)φp(t). (5.82)

The expression for the kernel is the same as the MCT kernel for conventional liquids

[6] with the only difference that here we have the effective temperature kBTEff =

〈v2〉/2 instead of the kBT . 〈v2〉/2 depends on the α and Dv through Eq. (5.22).

The effective temperature will drop out by defining

mmc
q =

1

Ω2
12

M1
22. (5.83)

Therefore the activity does not have any effect on the MCT kernel. Later in section

5.9 we show that it is possible to introduce some activity effects into the structure

factor.

mmc
q can be written in the integral form. The

∑
k<p can be written as 1

2

∑
k,p in

the thermodynamic limit. In two dimensions

L−2
∑

k

→ 1

(2π)2

∫
d2k, (5.84)

where L−2 = ρ/N and ρ is the average density for N particles in an area L2. Thus

the kernel in two dimensions can be written as

mmct
q =

∫
d2k

(2π)2

ρSqSpSk
2q4

[q · kck + p · qcp]2 δ(q− k− p)φk(t)φp(t), (5.85)

where Sk = 1
1−ρck

. The kernel is the same as the two dimensional case in [41].
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5.7. Equation of Motion for Density Auto-Correlation Func-

tion

One can write the equation of motion following Eq. (5.53), (5.69) and (5.85) as:

∂2
t φq(t) +

Dv

〈v2〉
∂tφq(t) + Ω2

qφq(t) + Ω2
q

∫ t

0

∂t′φq(t)mmct
q (t− t′)dt′ = 0 (5.86)

where φq(t) = φ11(t) and Ω2
q = Ω2

12 = q2〈v2〉/(2Sq). Here the kernel is only the MCT

part and we did not consider any regular or white noise term. For the overdamped

case the equation of motion can be written as

Dv

〈v2〉Ω2
q

∂tφq(t) + φq(t) +

∫ t

0

∂t′φq(t)mmct
q (t− t′)dt′ = 0. (5.87)

One should have in mind that the equation of motion presented as Eq. (5.86), con-

tains one more approximation in comparison to the overdamped case in Eq. (5.87).

The reason is that in calculating Ω22 in Eq. (5.66), we have used the property of the

Langevin equation with overdamped motion in Eq. (5.31).
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Figure 5.7.: Second moment of velocity against noise strength Dv according to
Eq. (5.22) for different values of α. When 〈v2〉 = 2kBTEff = 1010, the noise strength
D1
v = 88385.66, D2

v = 501096.48 and D3
v = 800608.13 for α = 1000, 500 and 1

correspondingly. The smaller the Dv the higher is the activity of the system.

Since the mmct
q here is the same as the kernel in case of normal Brownian motion,

the glass transition packing fraction will also not change. But the damping coefficient
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Figure 5.8.: The density correlation function φq(t) according to Eq. (5.86) for q = 4.2
and packing fraction ϕ = 0.73370 equivalent to ε = (ϕ − ϕc)/ϕc ' 0.0002, when
〈v2〉 = 2kBTEff = 1010 and D1

v = 88385.66, D2
v = 501096.48 and D3

v = 800608.13.
The higher the activity of the system (larger α and smaller Dv) the faster the
correlation function decays.
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Figure 5.9.: The density correlation function φq(t) according to Eq. (5.87) for over-
damped motion for q = 4.2 and packing fraction ϕ = 0.73370 equivalent to
ε = (ϕ − ϕc)/ϕc ' 0.0002, when 〈v2〉 = 2kBTEff = 1010 and D1

v = 88385.66,
D2
v = 501096.48 and D3

v = 800608.13. The higher the activity of the system (larger
α and smaller Dv) the faster the correlation function decays.
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in both Eq. (5.86) and (5.87) is different from the equilibrium case. We use the

Baus-Colot [41, 116] analytical expression for the structure factor of the hard-sphere

system in two dimensions to solve the equations of motion. The glass transition

happens at the critical packing fraction ϕc = 0.73382. We have used 100 grid points

in the range qmin = 0.2 to qmax = 39.8 to solve the integral equations.

We show in Fig. 5.7 that the constant value of the effective temperature or 〈v2〉 can

result in different values of Dv corresponding to different values of α. In Fig. 5.7,

we choose the temperature 〈v2〉 = 2kBTEff = 1010 and we consider three pairs

of parameters (α,Dv) = (1000, 88385.66), (500, 501096.48), (1, 800608.13) with the

mentioned temperature. As we discussed in section 5.3.3, the particles with smaller

velocity than
√
α, have negative friction and are active. We use Eq. (5.35) to obtain

the probability of finding active particle in the system for these three different pair

of parameters. The resulting value are Pactive = 0.0006, 0.2767 and 0.4956 for (α =

1, Dv = 800608.13) ,(α = 500, Dv = 501096.48) and (α = 1000, Dv = 88385.66)

respectively. For a constant temperature the larger the α (or the smaller is the

Dv), the higher the probability of finding active particles in the system. In Fig. 5.8

the solution of the Eq. (5.86) for φq(t) with the packing fraction ϕc = 0.73370 in

the liquid state and close to transition is presented for the three pairs of (α,Dv).

The higher the probability of finding active particles in the system, the smaller the

time that the correlation function decay to zero. The same thing happens in the

overdamped case. Fig. 5.9 shows the same result for the Brownian (overdamped)

motion in Eq. (5.87).

In summery, since the memory kernel does not change in the presented model, the

activity does not effect the glass transition packing fraction which means; activity

does not melt the glass. But it can shift the correlation function in the way that for

a constant temperature and below the glass transition packing fraction, the higher is

the probability of finding active particles in the system, the smaller is the time that

the correlation function decays to zero. For a better comparison we use the second

scaling law (α-scaling) [6]. We scale the time in the correlation functions shown in

Fig. 5.8, in a way that all three correlations fall on top each other in the long time

regime. The scaling follows

φq(t̃) = φq

(
t

τ(Dv)

)
, (5.88)

where τ(Dv) is the scaling time dependent on Dv. For the correlation function

corresponding to (α = 1000, Dv = 88385.66) the τ(Dv) = 0.282, for (α = 500, Dv =
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501096.48) the τ(Dv) = 0.681 and for (α = 1, Dv = 800608.13) the τ(Dv) = 1. The

scaled correlation functions are shown in Fig. 5.10. Except the short time dynamic

the rest of the correlation function falls on top of each other. One should have in

mind that the scaling time τ(Dv) will not diverge, since the glass transition packing

fraction is not dependent on activity and in any case in the packing fraction below

ϕc, the correlation function will always decay to zero.
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Figure 5.10.: The scaled density correlation function φq(t̃) according to Eq. (5.88) for
q = 4.2 and packing fraction ϕ = 0.73370 equivalent to ε = (ϕ − ϕc)/ϕc ' 0.0002,
when 〈v2〉 = 2kBTEff = 1010. For (α = 1, D3

v = 800608.13) the τ(Dv) = 1, for
(α = 500, D2

v = 501096.48) the τ(Dv) = 0.681 and for (α = 1000, D1
v = 88385.66)

the τ(Dv) = 0.282. The scaling time τ(Dv) will not diverge, since the glass transition
packing fraction is not dependent on activity and in any case in the packing fraction
below ϕc, the correlation function will always decay to zero.

5.8. Kernel Projection on Density-Current and Current-Current

Pairs

In this section we calculate the projection of the memory kernel on to the current-

density |jLkρp〉, and current-current |jLk jLp 〉 pairs, related to second and third term

in Eq. (5.71). As we show in the following, in both of these projections the cor-

relation function 〈jLk
∗|jLk (t)〉 appears. Via the continuity equation, 〈jLk

∗|jLk (t)〉 is

proportional to the second derivative of density correlation function which vanishes

in the overdamped Brownian motion. Therefore we expect these projection not to
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play an important role in the equation of motion. Still, the calculated M2
22 and M3

22

is presented in this section since we want to show that their values are zero within

the mode-coupling approximation. The projection of the memory kernel M22 on the

current-density pair results in

M2
22 ≈〈A∗2|LQP2

M exp (iLt)P2
MQLA2〉

=
2

N〈v2〉
∑

k<p,k′<p′

〈jLq
∗|LQjLk′ρp′〉〈jLk′

∗
ρ∗p′| exp (iLt)jLkρp〉〈jLk

∗
ρ∗p|QLjLq 〉

〈jLk
∗
ρ∗p|jLkρp〉〈jLk′

∗
ρ∗p′ |jLk′ρp′〉

.
(5.89)

According to the factorization ansatz

〈jLk
∗
ρ∗p|jLkρp〉 ≈ 〈jLk

∗|jLk 〉〈ρ∗p|ρp〉

= N2 〈v2〉
2
Sp,

(5.90)

and

〈jLk′
∗
ρ∗p′| exp (iLt)jLkρp〉 ≈ 〈jLk′

∗| exp (iLt)jLk 〉〈ρ∗p′ | exp (iLt)ρp〉δk,k′δp,p′

= δk,k′δp,p′N
2 〈v2〉

2
Spψk(t)φp(t),

(5.91)

where ψk(t) = 2〈jLk
∗| exp (iLt)jLk 〉/N〈v2〉. From Eq. (5.53) one can conclude

ψ =
z

Ω2
k

(1 + zφ). (5.92)

If we assume ∂tφk(t = 0) = 0 and φk(t = 0) = 1 in the time domain, as it is normally

used to solve the MCT equations [6], we have

ψk(t) = − 1

Ω2
k

∂2φk(t)

∂2t
, (5.93)

which is a form of the continuity equation for the density auto correlation function.

In a Brownian over damped motion the second time derivative of the density auto

correlation vanishes, thus we expect M2
22 to vanish too. We still calculate M2

22, to

show that M2
22 is zero irrespective of that fact.

〈jLq
∗|LQjLkρp〉 =〈jLq

∗|LjLkρp〉 − 〈jLq
∗|Lρq〉

〈ρ∗q|jLkρp〉
NSq

− 〈jLq
∗|LjLq 〉

〈jLq
∗|jLkρp〉

N〈v2〉/2

=〈jLq
∗|(LjLk )ρp〉 − 〈jLq

∗|LjLq 〉
〈jLq
∗|jLkρp〉

N〈v2〉/2
.

(5.94)
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The terms 〈jLq
∗|jLk (Lρp)〉 and 〈jLq

∗|Lρq〉〈ρ∗q|jLkρp〉/NSq are considered zero since the

odd moments of velocity are zero. The first term in the right hand side of Eq. (5.94)

can be written as follows using Eq. (5.13),

1

i
〈jLq
∗|(iLjLk )ρp〉 =

1

i
〈jLq
∗|(
∑
i

vi·
∂

∂ri
jLk )ρp〉

+
1

i
〈jLq
∗|(
∑
i

Fi ·
∂

∂vi
jLk )ρp〉

− 1

i
〈jLq
∗|(
∑
i

(−α + v2
i )vi ·

∂

∂vi
jLk )ρp〉.

(5.95)

In the last equation again the first term is zero because it contains the average of

the first power of velocity. The second term of Eq. (5.95), in case of constant friction

and equilibrium can be written as

1

i
〈jLq
∗|(
∑
i

Fi ·
∂

∂vi
jLk )ρp〉

=
1

i
〈jLq
∗|
∑
i

FL
i exp (ik · ri)ρp〉

=
〈v2〉
2i

∑
i

∫
dΓ

∂f

∂rLi
exp (ik · ri)jLq

∗
ρp

= −〈v
2〉

2i

∑
i

∫
dΓf

∂

∂rLi

[
exp (ik · ri)jLq

∗
ρp

]
= −〈v

2〉
2i

∑
i

∫
dΓ
[
ik exp (ik · ri)jLq

∗
ρp − iqvLi exp (i(k− q) · ri)ρp

+ip exp (i(k + p) · ri)jLq
∗]

= −〈v
2〉

2

[
k〈ρkj

L
q

∗|ρp〉 − q〈jLk−q|ρp〉+ p〈jLq
∗|ρk+p〉

]
= 0,

(5.96)

where we used Eq. (5.62) and Eq. (5.63). The fact that we obtained zero here as

the answer is due to the fact that in case of equilibrium
∑

i Fi · vi = 0. According
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to the Eq. (5.31) and (5.67) for the nonlinear Langevin equation we can write:

1

i
〈jLq
∗|(
∑
i

Fi ·
∂

∂vi
jLk )ρp〉

=
1

i
〈jLq
∗|
∑
i

FL
i exp (ik · ri)ρp〉

= −i〈
∑
i

vLi F
L
i exp(−i(q− k))ρp〉

= −i〈vLFL〉〈ρ∗q−k|ρp〉 = −iNDv

2
Spδq,k+p.

(5.97)

Therefore 1
i
〈jLq
∗|(
∑

i Fi · ∂
∂vi
jLk )ρp〉 in our system is actually not zero.

The third term of Eq. (5.95) is

−1

i
〈jLq
∗|(
∑
i

(−α + v2
i )vi ·

∂

∂vi
jLk )ρp〉

= −1

i
〈jLq
∗|
∑
i

(−α + v2
i )v

L
i exp(ik · ri)ρp〉

= −1

i
〈
∑
m

(−α)vLm
2

exp(−i(q− k) · rm)ρp〉

− 1

i
〈
∑
m

vLm
2
v2
m exp(−i(q− k) · rm)ρp〉

=
α

i
〈vL2〉〈ρ∗q−k|ρp〉 −

1

i
〈v2vL

2〉〈ρ∗q−k|ρp〉

=
−i
2

(
α〈v2〉 − 〈v4〉

)
NSpδq,k+p = iDvNSpδq,k+p.

(5.98)

Also

〈jLq
∗|jLkρp〉 = N

〈v2〉
2
〈ρ∗q−k|ρp〉 = N

〈v2〉
2
Spδq,k+p. (5.99)

Therefore by substitution of Eq. (5.97) and (5.98) in (5.95) and Eq. (5.95), (5.99)

and (5.68) in Eq. (5.94) we have

〈jLq
∗|LQjLkρp〉 = 0, (5.100)

which shows that M2
22, the projection of the kernel on the current-density pair, is

zero.

Now we start with calculating M3
22, the projected component of M22 on the
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current-current pair |jLp jLk 〉.

M3
22 ≈ 〈A∗2|LQP3

M exp (iLt)P3
MQLA2〉

=
2

N〈v2〉
∑

k<p,k′<p′

〈jLq
∗|LQjLk′j

L
p′〉〈jLk′

∗
jLp′
∗| exp (iLt)jLk jLp 〉〈jLk

∗
jLp
∗|QLjLq 〉

〈jLk
∗
jLp
∗|jLk jLp 〉〈jLk′

∗
jLp′
∗|jL

k′
jLp′〉

,

(5.101)

where

〈jLk
∗
jLp
∗|jLk jLp 〉 ≈ 〈jLk

∗|jLk 〉〈jLp
∗|jLp 〉 = N2 〈v2〉2

4
, (5.102)

and

〈jLk′
∗
jLp′
∗| exp (iLt)jLk jLp 〉

≈ 〈jLk′
∗| exp (iLt)jLk 〉〈jLp′

∗| exp (iLt)jLp 〉δk,k′δp,p′

= δk,k′δp,p′N
2 〈v2〉2

4
ψk(t)ψp(t).

(5.103)

We need to calculate

〈jLq
∗|LQjLk jLp 〉 =

1

i
〈jLq
∗|(iLjLk )jLp 〉+

1

i
〈jLq
∗|jLk (iLjLp )〉 − 1

NSq
〈jLq
∗|Lρq〉〈ρ∗q|jLk jLp 〉,

(5.104)

where we already ignored the term which is zero because of the average of the odd

moment of the velocity.

1

i
〈jLq
∗|(iLjLk )jLp 〉 =

1

i
〈jLq
∗|(
∑
i

vi·
∂

∂ri
jLk )jLp 〉

+
1

i
〈jLq
∗|(
∑
i

Fi ·
∂

∂vi
jLk )jLp 〉

− 1

i
〈jLq
∗|(
∑
i

(−α + v2
i )vi ·

∂

∂vi
jLk )jLp 〉.

(5.105)

The third term in the last equation is zero. The first term can be written as

1

i
〈jLq
∗|(
∑
i

vi·
∂

∂ri
jLk )jLp 〉 = k〈vL2〉2〈ρ∗q−p|ρk〉 = Nδq,k+p

〈v2〉2

4
kSk. (5.106)
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The second term using the same method as in Eq. (5.79) will result in

+
1

i
〈jLq
∗|(
∑
i

Fi ·
∂

∂vi
jLk )jLp 〉

= −〈v
2〉

2
(k
〈v2〉

2
〈ρ∗q−p|ρk〉 − qN

〈v2〉
2
δq,k+p + pN

〈v2〉
2
δq,k+p)

= −N 〈v
2〉2

4
δq,k+p(kSk − q + p),

(5.107)

therefore

1

i
〈jLq
∗|(iLjLk )jLp 〉 = N

〈v2〉2

4
δq,k+p(q − p). (5.108)

With the same method

1

i
〈jLq
∗|jLk (iLjLp )〉 = N

〈v2〉2

4
δq,k+p(q − k). (5.109)

We also know

− 1

NSq
〈jLq
∗|Lρq〉〈ρ∗q|jLk jLp 〉 = −Nq 〈v

2〉2

4
δq,k+p. (5.110)

Replacing Eq. (5.108), (5.109) and (5.110) in Eq. (5.104) we get

〈jLq
∗|LQjLk jLp 〉 = 0. (5.111)

Which shows that M3
22, the projection of the kernel on the current-current pair, is

also zero.

5.9. Integration Through Transients (ITT)

T. F. F. Farage et al. [57] have used ITT to calculate the structure factor of an

active system using the Smoluchowski operator.

As we have mentioned before, the distribution function f following Eq. (5.27),

is not a general solution of the Fokker-Planck equation (5.15). Replacing f in the

Fokker-Planck equation would yield ∂f/∂t = Λf where Λ follows Eq. (5.33). The

velocity dependent part of the f is the solution of the Fokker-Planck equation when

the interaction forces are neglected or switched off. This means that the complete f ,

consisting of the velocity and the position dependent parts, is also a solution of the
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Fokker-Planck equation with neglected interaction forces, Fi = 0. We can assume

that at t < 0 the interaction forces are switched off and at t = 0 we switch on the

interaction forces Fi, therefore

f(Γ, t) =

f(Γ), t ≤ 0

eΛtf(Γ), t > 0.
(5.112)

We write [65]

eΛt = 1 +

∫ t

0

dt′ eΛt′Λ. (5.113)

Therefore when t→∞∫
dΓf(Γ, t)ρ∗q ρq =

∫
dΓf(Γ, 0)ρ∗q ρq +

∫
dΓ

∫ ∞
0

dt ρ∗q ρqe
ΛtΛf(Γ, 0)

NSsq = NSq +

∫ ∞
0

dt

∫
dΓ Λf(Γ, 0)e−Λtρ∗q ρq.

(5.114)

Here Ssq is the structure factor at the stationary state which is reached at t → ∞.

Since as we calculated, Λ is the actual time evolution operator for f , −Λ is the time

evolution operator for dynamic variables. Therefore −Λ is equivalent to iL. Thus

e−Λtρ∗q ρq = eiLtρ∗q ρq. (5.115)

Using the projection operator Q = 1 −
∑

q ρq〈ρ∗q| . . . 〉/NSq, from Eq. (5.114) and

(5.115) we get

NSsq = NSq +

∫ ∞
0

dt〈ΛQeiQLQtQρ∗q ρq〉. (5.116)

Here we use the mode coupling approximation to calculate

〈ΛQPeiLtPQρ∗q ρq〉 =∑
k<p

〈ΛQ|ρkρp〉〈ρ∗kρ∗p| exp (iLt)ρkρp〉〈ρ∗kρ∗p|Qρ∗qρq〉
〈ρ∗kρ∗p|ρkρp〉2

.
(5.117)

From Eq. (5.33) for one particle

〈Λ〉 =

∫
dΓf(Γ, 0)Λ =

(
3〈v2〉 − ξ2

〈v2〉
− α

)
=

(
3〈v2〉 − 2Dv

〈v2〉
− α

) (5.118)

where f(Γ, 0) follows Eq. (5.27).



106 5.9. Integration Through Transients (ITT)

Also

〈ΛQ|ρkρp〉 = Nδ−k,p〈Λ〉Sk, (5.119)

and

〈ρ∗kρ∗p|Qρ∗qρq〉 = 〈ρ∗kρ∗p|ρ∗qρq〉 −
∑

q

〈ρ∗kρ∗p|ρq〉〈ρ∗q|ρ∗qρq〉
〈ρq|ρ∗q〉

= δ−k,pδq,k+pN
2SkSq −

∑
q

N2δq,k+pδq,q+qSkSpSqS
3
q

NSq

= δ−k,pδq,k+pN
2Sk(1− Sk).

(5.120)

Substitution of Eq. (5.119) and (5.120) in (5.117) would result in

〈ΛQPeiLtPQρ∗q ρq〉 =
1

2
〈Λ〉N(1− Sk)φ2

k(t). (5.121)

Therefore

Ssq = Sq +
1

2
〈Λ〉(1− Sq)

∫ ∞
0

φ2
q(t)dt. (5.122)

Ssq = Sq +
1

2

(
3〈v2〉 − 2Dv

〈v2〉
− α

)
(1− Sq)

∫ ∞
0

φ2
q(t)dt. (5.123)

By substituting the correlation function φq(t), which is the solution of Eq. (5.87),

in Eq. (5.123) we can calculate the Ssq . The integral
∫∞

0
φ2
q(t)dt becomes infinitely

large at the glass transition, therefore Eq. (5.123) result in a reasonable Ssq only

when we are sufficiently away from the glass transition and inside the liquid state.

The other necessity for Eq. (5.123) to result in a reasonable Ssq is that the effective

temperature should be sufficiently low.

For ε = (ϕc−ϕ)/ϕc ' 0.0215 and 〈v2〉 = 2kBTEff = 0.1 we have solved Eq. (5.87)

for three pairs of (α,Dv) = (0.08, 0.00284), (0.05, 0.004881) and (0.02, 0.06697). As

we discussed in section 5.3.3, the higher the α (the smaller the Dv), the higher is the

probability of finding active particles in the system. For solving Eq. (5.87) we use

the Baus-Colot [41, 116] analytical expression for the structure factor Sq of the hard-

sphere system in two dimensions. For every q value, replacing φq(t) in Eq. (5.123)

and calculating the integral
∫∞

0
φ2
q(t)dt results in the Ssq . We show the Ssq values

around the first peak, in Fig. 5.11. The squares are the Baus-Colot Sq values. We

can observe that with decreasing the α equivalent to decreasing the probability of

finding active particles in the system, the peak value of the Ssq decreases too. This

is different from [57]. Here we model the activity with velocity dependent friction

which is isotropic and does not have any rotational or directional dependence. But
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Figure 5.11.: The Ssq values around the first peak, calculated via Eq. (5.123), for three
pairs of (α,Dv) as indicated in the legends. The Baus-Colot equilibrium structure
factor Sq is shown with squares. ε = (ϕc−ϕ)/ϕc ' 0.0215 and 〈v2〉 = 2kBTEff = 0.1.

we are adding an additional constraint to the system; Dv related to the probability

of finding active particles in the system. The higher is that probability (the smaller

is the Dv), the more ordered the system becomes and the higher is the peak value of

the structure factor. However in general the structure factors Ssq are less pronounced

than the equilibrium Baus-Colot structure factor.



Chapter 6

Summary and Conclusion

In this thesis we investigated the glass transition and dynamics of suspended charged

particles. We started in chapter 2, with obtaining the mode coupling glass transi-

tion curve of a single and double Yukawa potential models in three dimensions. The

glass transition curve follows the same qualitative behavior as the melting curve.

The analytical formulas for both single and double Yukawa glass transition curves

are discussed. The transition properties of a Yukawa potential system varies be-

tween two limits of the potential; one-component plasma and hard sphere. The

nonergodicity parameter in the limit of one-component plasma (Coulombic poten-

tial) has a qualitatively different behavior compared to the hard sphere system in

the small wave length regime. The nonergodicity parameter approaches zero with q2

behavior, q being the wave number. We derived the asymptotic of the non-ergodicity

parameters in vanishing wave number regime using the structure factor asymptotic

and the mode coupling kernel relation.

In chapter 3, we looked at charged particles in two dimensional confinement. We

investigated the glass transition of 2D monolayers with a Yukawa potential and

another more realistic potential between dust particles in complex plasma derived

by Kompaneets et al. [31]. Glass transition curves are obtained by a MCT-T/2-HNC

approximation in a plane of screening parameter and coupling strength. While glass

transition curves of Yukawa and Kompaneets monolayers are qualitatively the same,

the transition temperature of the Kompaneets monolayer increases with increase

of the collision parameter ζ. Both potentials reduce to a Coulombic potential in

the limit of infinite λY and λK , therefore all transition curves join at the same

point in that limit. The Kompaneets transition curve is monotonous considering its

three relevant parameter. However the transition curve can appear non-monotonous
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corresponding to a fallacious re-entrant state sequence, if the pair interactions are

misinterpreted as Yukawa interactions. We investigated the small wave number

dependence of the nonergodicity parameters fq of both Yukawa and Kompaneets

potential. In the OCP limit the small wave number part of the fq approaches zero

with a linear behavior. When the screening parameter increases, the small wave

number asymptotic of the fq approaches a finite number.

A future generalization of the results, would be to investigate the binary mixtures.

one could look at the case when one sort of particles are point like and the other

sort have a finite diameter.

The long range potentials, such as the Coulomb potential, can suppress the struc-

ture factor asymptotic in the small wave number regime. In chapter 4, we have used

this fact, for modifying the structure factor obtained from liquid state theory to

create a jammed state structure factor. According to simulations, the jammed state

structure factor has a linear behavior S(k) ∝ k at small k [46]. We added a long

range potential of the form 1/r2 to the harmonic short range potential to introduce

this linear behavior into the hypernetted chain structure factor. Without the long

range potential, the structure factor has the behavior S(k) ' S(0) + αk2 which is

different from the jammed state structure factor. We also used the random phase

approximation to introduce the 1/r2 potential into the system as a perturbation for

creating the linear behavior in the structure factor. The emergence of a 1/r2 po-

tential can be rationalized if one assumes that perturbations are propagating with

a spherical wave front ∝ r2 in a jammed state.

Since in complex plasma the dust particles can absorb some charges from the

surrounding particles, the momentum transfer becomes unbalanced. This can lead

to negative friction and active behavior in some regions of the phase space. In

chapter 5, we start from a nonlinear Langevin equation which has a velocity de-

pendent friction. The velocity dependent friction allows pumping of the energy into

the system of Brownian particles in some regions of the phase space. We model

the velocity dependence of the friction with a Rayleigh-type friction. The Rayleigh

friction γ(v) = −α+v2, does not have any rotational dependence and only depends

on the velocity magnitude. In this case the slow particles v <
√
α are accelerated

(active), when faster particles v >
√
α are damped. Using the nonlinear Langevin

equation the (Liouville) time evolution operators for the distribution function and

the phase variables are calculated. The time evolution of the distribution function is

a Fokker-Planck equation with a velocity dependent friction term. If the interaction
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forces are negligible, the Fokker-Planck equation can be solved and the solution is

non-Gaussian and only velocity dependent. Neglecting the hydrodynamic interac-

tions, we assume that we can use the product of the Boltzmann position distribution

and the velocity dependent part as the distribution function of our system. A two

dimensional system is assumed, to explicitly calculate the velocity distribution. The

Mori-Zwanzig formalism and the mode coupling approximation are used to obtain

the equation of motion for the density auto-correlation function. The obtained mem-

ory kernel is the same as the memory kernel of the normal Brownian motion. Since

the fluctuation-dissipation relation does not hold the relation between the effective

temperature and the noise strength is nonlinear. We showed that for a constant

effective temperature, the larger is the α (or the smaller is the noise strength), the

probability of finding particles which are active increases. The MCT equation of the

motion for the density auto-correlation functions for HSS in 2D is solved. Since the

memory kernel does not change in the presented model, the activity does not effect

the glass transition packing fraction. It can however shift the correlation function

in the way that for a constant temperature and below the glass transition packing

fraction, the higher is the probability of finding active particles in the system, the

smaller is the time that the correlation function decays to zero. The relative time

scales of the auto-correlation functions are calculated using the α-scaling.

We have estimated the distribution function of the system as a Boltzmann position

distribution multiplied by the non-Gaussian velocity distribution resulted from non-

interacting Fokker-Planck equation. Therefore, we use ITT to relate the structure

factor in the interacting stationary state to the hard sphere structure factor in the

state with our estimated distribution function. We find that since in our model

introducing activity will put additional constraint on the system, with increasing

the activity the hight of structure factor peak increases.

A future investigation in this direction is to expand the results to the complex

plasma by using a Yukawa potential interaction instead of hard sphere potential.



Appendix A

Derivation of the Yukawa Potential

The Poisson equation (in the SI units) for a test charge Q at the origin surrounded

by plasma, can be written as

∇2φ(r) =
e

ε0
(n+(r)− ne(r)) +

Q

ε0
δ(r), (A.1)

where the n+ and ne are respectively the density of the ions and the electrons of the

plasma. In the equilibrium condition ions and the electrons follow the Boltzmann

distribution

n+(r) = n0e
eφ(r)/kBT+

ne(r) = n0e
−eφ(r)/kBTe ,

(A.2)

where T+ is the ion and Te is the electron temperature. In the high temperature

plasma it is possible to Taylor expand the distributions as

n+(r) = n0(1 + eφ(r)/kBT+)

ne(r) = n0(1− eφ(r)/kBTe).
(A.3)

Replacing this in the Poisson equation results in

∇2φ(r) =
1

λ2
φ(r), (A.4)

where

1

λ
=

√
n0e2

kBε0

(
1

T+

+
1

Te

)
, (A.5)

for any position except the origin. Normally in the equilibrium situation T+ <<

Te, therefore λ =
√
ε0kBT+/(n0e2). Thus normally λ depends only on the ions
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temperature. In three dimensions, Eq. (A.4) can be written as

1

r2

∂

∂r

(
r2∂φ

∂r

)
=

1

λ2
φ. (A.6)

The function α
r

exp(−r/λ) where r = |r| is a solution of this equation. α should be

determined from the boundary condition. Here when r → ∞ the potential should

be a Coulomb potential. Therefore α = Q/(4πε0). This potential is called screened

Coulomb or Yukawa potential

φ(r) =
Q

4πε0r
exp(−r/λ). (A.7)

A two dimensional Yukawa potential is derived from solving the Poisson equation in

3D and then considering a vanishing vertical distance from the 2D plane.



Appendix B

Fourier Transform Integral of 1/rn−ε in 3D

For calculating the integral in Eq. (4.5), we first start with

I =

∫ ∞
0

sin r exp(−γr)
rm−ε

dr = Im

∫ ∞
0

exp((i− γ)r) r−m+ε dr. (B.1)

Taking y = (γ − i)r

I = Im

(
(γ − i)m−ε−1

∫ ∞
0

exp(−y) y−m+ε dy

)
. (B.2)

Using Γ(s) =
∫∞

0
exp(−y)ys−1dy and taking γ = 0

I = −sin(
m− 1− ε

2
π)Γ(1−m+ ε). (B.3)

From Eq. (B.1) and Eq. (B.3) while taking r = kx and m = n− 1∫ ∞
0

sin(kx)

xn−1−ε dx = −sin(
n− 2− ε

2
π)Γ(2− n+ ε)kn−2−ε. (B.4)

113



Appendix C

Normalization Constant and Different Moments of

the Velocity Distribution

Here we calculate the Integrals in Eq. (5.21), (5.22), (5.23) and (5.24):

1

C
= 2π

∫ ∞
0

e
−
(
v4

4Dv
− αv2

2Dv

)
vdv

= 2πe
α2

4Dv

∫ ∞
0

e
−
(

v2

2
√
Dv
− α

2
√
Dv

)2

vdv

= 2π
√
Dv e

α2

4Dv

∫ ∞
−α

2
√
Dv

e−U
2

dU

(C.1)

where U = v2

2
√
Dv
− α

2
√
Dv

. Therefore

1

C
= 2π

√
Dv e

α2

4Dv

[∫ 0

−α
2
√
Dv

e−U
2

dU +

∫ ∞
0

e−U
2

dU

]

= π
√
πDv exp

(
α2

4Dv

)[
1 + erf

(
α

2
√
Dv

)]
,

(C.2)

using the definition of the error function erf(x) =
∫ x

0
e−t

2
dt and the integral

∫∞
0
e−t

2
dt =

√
π/2. Also

〈v2〉 = 2πCe
α2

4Dv

∫ ∞
0

e
−
(

v2

2
√
Dv
− α

2
√
Dv

)2

v2 v dv

= 2π
√
Dv e

α2

4Dv

∫ ∞
−α

2
√
Dv

e−U
2

2
√
Dv (U +

α

2
√
Dv

) dU

= 4πDv e
α2

4Dv

[∫ ∞
−α

2
√
Dv

α

2
√
Dv

e−U
2

dU +

∫ ∞
−α

2
√
Dv

U e−U
2

dU

]
.

(C.3)
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the first integral is proportional to 1/C and the second integral can be calculated

easily ∫ ∞
−α

2
√
Dv

U e−U
2

dU =
1

2
e
−α2
4Dv . (C.4)

Therefore

〈v2〉 = α + 2

√
Dv

π
exp

(
− α2

4Dv

)[
1 + erf

(
α

2
√
Dv

)]−1

(C.5)

this is different from what Erdmann et al. [114] calculated by one minus in the power

in the exp
(
− α2

4Dv

)
. We go ahead and use the same method as [114, 117] to obtain

〈v4〉. At the end we also calculate 〈v6〉 which we need to use later.

〈v4〉 =
4D2

v

C−1

∂2

∂α2
(C−1) (C.6)

where C−1 follows Eq. (C.2). And

〈v6〉 =
8D3

v

C−1

∂3

∂α3
(C−1). (C.7)

So

〈v4〉 = 2Dv + α〈v2〉, (C.8)

and

〈v6〉 = 2αDv + (α2 + 4Dv)〈v2〉. (C.9)



Appendix D

Ω22 for Normal Brownian Motion

Here we calculate Ω22 for normal Brownian motion to compare with Brownian motion

with velocity dependent friction. For normal Brownian motion following the linear

Langevin Eq. (5.1), the time evolution operator is written as

iL = Γ̇· ∂
∂Γ

=
∑
i

(
vi·

∂

∂ri
+ F i·

∂

∂vi

)
+
∑
i

(
−1

2
ξ2 ∂2

∂vi
2 − γ0vi·

∂

∂vi

)
.

(D.1)

Therefore

Ω22 =
1

iNkBT
〈jLq
∗|iLjLq 〉

=
1

iNkBT

∫
dΓ f

∑
k

vLk exp (−iq· rk)

(
−
∑
i

γ0vi ·
∂

∂vi

+
∑
i

Fi ·
∂

∂vi

)∑
k′

vLk′ exp (iq· rk′)

= iγ0 +
1

ikBT

∫
dΓ f

∑
k

vLk F
L
k ,

(D.2)

where the distribution function follows Eq. (5.16). Eq. (5.31) in case of linear

Langevin equation can be written as

∑
i

Fi · vi =
∑
i

γov
2
i −

∑
i

ξ2

2
= 0, (D.3)
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since the fluctuation-dissipation relation, ξ2 = 2kBTγ0, is valid for normal Brownian

motion. Replacing this in Eq. (D.2) one has

Ω22 = iγ0 (D.4)

This is consistent with what is calculated in [118].



Appendix E

Mori-Zwanzig Formalism

Here we derive Eq. (5.53) following the procedure in [119] but using the Laplace

transform

f(z) = i

∫ ∞
0

eiztϕ(t)dt t > 0, Re(z) < 0, Im(z) > 0. (E.1)

For a phase variable A(Γ(t)) ≡ A(t) one can write Eq. (5.5)

dA(t)

dt
= iLA(t), (E.2)

taking the Laplace transform from both side of the equation would give

i

∫ ∞
0

eizt
dA(t)

dt
dt = −L

∫ ∞
0

A(t)eiztdt (E.3)

where

i

∫ ∞
0

eizt
dA(t)

dt
dt = −iA(0) + Z

∫ ∞
0

eiztA(t)dt. (E.4)

This would leads to

zÃ(z) + LÃ(z) = −A. (E.5)

Multiplying Eq. (E.5) from right with projector operator P and using Q2 = Q,

P2 = P and Q+ P = 1 leads to

zPÃ(z) + PLPÃ(z) + PLQQÃ(z) = −A. (E.6)

Also multiplying Eq. (E.5) from right with Q ends with

zQÃ(z) +QLQÃ(z) +QLPÃ(z) = 0. (E.7)
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Replacing QÃ(z) from Eq. (E.7) into Eq. (E.6), we have

(
z + PLP − PLQ(z +QLQ)−1QLP

)
PÃ(z) = −A. (E.8)

Thus for every matrix element An(
z + PLP − PLQ(z +QLQ)−1QLP

)
PÃn(z) = −An. (E.9)

Assuming P =
∑

mAm〈A∗m| . . . 〉 where 〈A∗m|Am〉 = 1, Eq. (E.9) can be written as∑
m

z〈A∗m|Ãn(z)〉Am +
∑
m,l

〈A∗m|LAl〉〈A∗l |Ãn(z)〉Am

−
∑
m,l

〈A∗m|LQ(z +QLQ)−1QLAl〉〈A∗l |Ãn(z)〉Am = −An.

(E.10)

Therefore∑
m

z δk,m 〈A∗m|Ãn(z)〉+
∑
l

〈A∗k|LAl〉〈A∗l |Ãn(z)〉

−
∑
l

〈A∗k|LQ(z +QLQ)−1QLAl〉〈A∗l |Ãn(z)〉 = −δk,n,

(E.11)

or∑
l

z δk,l 〈A∗l |Ãn(z)〉+
∑
l

〈A∗k|LAl〉〈A∗l |Ãn(z)〉

−
∑
l

〈A∗k|LQ(z +QLQ)−1QLAl〉〈A∗l |Ãn(z)〉 = −δk,n.
(E.12)

which is called Mori-Zwanzig equation of motion. The matrix form of Eq. (E.12) is

written as

(zI + Ω−M) Y(z) = −I. (E.13)

where

Ynm(z) = 〈A∗n|Ãm(z)〉, (E.14)

Ωnm = 〈A∗n|LAm〉, (E.15)

and

Mnm = 〈A∗n|LQ(z +QLQ)−1QLAm〉. (E.16)
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[24] G. Szamel and H. Löwen, Phys. Rev. A 44, 8215 (1991).

[25] P. Pieranski, L. Strzelecki, and B. Pansu, Phys. Rev. Lett. 50, 900 (1983).

[26] E. Chang and D. W. Hone, Europhys. Lett. 5, 635 (1988).

[27] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and
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[77] M. Heinen, A. J. Banchio, and G. Nägele, J. Chem. Phys. 135, 154504 (2011).

[78] T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh, Phys. Rev. E

55, 7153 (1997).

[79] M. Sperl, Glass Transition in Colloids with Attractive Interactions (Diploma

thesis, TU München, 2000).

[80] M. Fuchs, W. Götze, and M. R. Mayr, Phys. Rev. E 58, 3384 (1998).

[81] K. Ng, J. Chem. Phys. 61, 2680 (1974).

[82] F. Lado, J. Comput. Phys. 8, 417 (1971).

[83] J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

[84] O. S. Vaulina and S. A. Khrapak, JETP 90, 287 (2000).

[85] O. Vaulina, S. Khrapak, and G. Morfill, Phys. Rev. E 66, 016404 (2002).

[86] S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671

(1997).

[87] F. A. Lindemann, Phys. Z. 11, 609 (1910).
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