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Abstract

The name Soft Matter refers to materials that are easily deformable. Famous representa-
tives of such materials are for example suspensions that comprise of two components,
one being the solvent and the other being the solute. The solute typically consists of
micro-sized (∼ 1nm – 1μm) constituents which are immersed in the solvent medium.
The particles are exposed to the influence of thermal fluctuations and bear multifaceted
application possibilities for material industry. In this thesis, we introduce theoretical
model systems where the constituents are spherical particles. We slightly perturb the
systems in order to obtain complex phenomena, such as segregation of distinct particle
species, glassy dynamics in anisotropic environments, and network-like clusters of bonded
particles. The respective perturbations are an external gravitational field, flat repulsive
walls, or short-ranged interparticle attractions.
After drafting the technical fundament in Chapters 2 and 3, this thesis mainly discusses
the microscopic structure and the relation to the accompanied dynamics for three setups
that are obtained by the above-mentioned perturbations: bidisperse stackings, broken
symmetries, and gel-networks. In Chapter 4, two species of ultra-soft but yet repulsive
colloidal solvent particles under the influence of gravity are studied. The arising stackings
remind of the so-called Brazil nut effect, that depicts the segregation of large and small
nuts in a package of cereals after shaking. However, in our Soft Matter systems the
observed states are even more manifold, e.g., as characterized by stackings of large
particles at the top and the bottom of a basin and small colloids in between. Chapters
5 and 6 investigate the emergence of broken symmetries that occur for a system of hard
spheres close to a flat wall. Besides the heterogeneous distribution of single particles
in such a situation, we also acknowledge spatial correlations of a couple of particles
by means of theory and computer simulations. Amorphous structures are obtained
by polydisperse setups at high packing fractions. For such systems, the dynamics of
individual tracers is supposed to slow down significantly due to the formation of local
cages of neighboring particles. We explain this so-called glassy behavior in an anisotropic
situation by the consideration of spatial correlations that are locally anisotropic and
by employing a one-particle model that incorporates the history-dependent memory
during a cage escape. In Chapters 7 and 8 we consider interactions, that are repulsive on
long ranges and at contact, but attractive in between. The corresponding experiments
with colloid-polymer mixtures, in which the polymers mediate an effective attraction,
show the same intriguing finding as our simulations: even at low packing fractions
heterogeneous bonded cluster-networks with different states occur. One is characterized
by the possibility to draw a system spanning line through the interconnected network that
may contain loops or backward steps; in the other state forward connections dominate
the nature of the network. We identify only such so-called directed percolated gels with
non-equilibrium arrested states. As we shear these gels a fracturing of the network into
huge slab-like clusters occurs. The slabs only become teared apart at very large stresses.
The presented results are mostly theoretical predictions. But due to the size of the
particles our results can be experimentally verified with optical microscopy.





Zusammenfassung

Die Physik der Weichen Materie beschäftigt sich im Allgemeinen mit leicht deformier-
baren Materialien. Diese Materialien bestehen häufig aus zwei Komponenten, nämlich
einem flüssigen Lösungsmittel und der gelösten Substanz, die sich darin befindet. Dabei
handelt es sich oft um kleine Teilchen in der Größenordnung von einigen Nanometern bis
zu wenigen Mikrometern, die aufgrund ihrer Größe thermischen Fluktuationen ausgesetzt
sind. Diese besondere Charakteristik Weicher Materie sorgt in vielen Anwendungen für
interessante Phänomene. Im Verlauf dieser Arbeit werden einfache Kugel-Modelle so
modifiziert, dass verschiedene komplexe Phänomene beobachtet werden können: Die
Entmischung unterschiedlicher Teilchensorten auf verschiedenste Weisen, die glasar-
tige Dynamik einzelner Teilchen in lokal anisotropen und dichten Umgebungen sowie
netzwerkartige Strukturen, die wir mit Hilfe kolloidaler Gele untersuchen.
Nachdem in den einleitenden Kapiteln 2 und 3 das Fundament für theoretische Ansätze
und Simulationsmethoden gelegt wird, beschäftigen sich die darauf folgenden Kapitel
insbesondere mit den Ergebnissen zu den bereits angedeuteten Phänomenen. In Kapitel 4
widmen wir uns dem Effekt von Gravitation auf eine zwei-komponentige Mischung sehr
weicher Teilchen. Hier beobachten wir, dass sich große und kleine Teilchen entmischen und
übereinander stapeln, ähnlich dem “Paranusseffekt”, bei dem sich während des Schüttelns
größere und kleinere Bestandteile in einer Müslipackung trennen. Im Gegensatz zu
diesem relativ einfachen Entmischungsvorgang (groß-klein) beobachten wir in unseren
kolloidalen Systemen auch wechselnde Stapelung (z.B. groß-klein-groß) oder netzwerkar-
tige Strukturen. In den Kapiteln 5 und 6 untersuchen wir einen Symmetriebruch, der
durch die Anwesenheit einer flachen Wand hervorgerufen wird. Dieser Symmetriebruch
äußert sich in der lokalen Struktur der Suspension sowie der damit einhergehende Dy-
namik. Die amorphen Strukturen, die wir mit Hilfe von kleinen Größenunterschieden
der Teilchen erreichen, weisen in unseren dicht gepackten Mischungen vor der Wand
ausgeprägte anisotrope Eigenschaften auf, welche wir mit der ebenfalls anisotropen
glasartigen Dynamik in Verbindung bringen. Nachdem wir für diesen speziellen Fall
auch den Zusammenhang von Dynamik und “Gedächtnis” eines Teilchens untersuchen,
werden wir im Anschluss ein Ein-Teilchen-Modell benutzen, um das Entkommen des
Teilchens aus seinem lokalen “Käfig” zu modellieren. Schließlich untersuchen wir in
den Kapiteln 7 und 8 Gele, in denen Teilchen neben langreichweitigen repulsiven Wech-
selwirkungen auch eine kurzreichweitige Anziehungskraft besitzen. Hierbei bilden sich
große Netzwerke, die das System durchspannen und dabei insbesondere in zwei Fälle
unterschieden werden müssen: Entweder sind beim Verfolgen eines Verbindungsweges
durch das Netzwerk Rückwärtsschritte erlaubt, oder es sind nur Vorwärtsschritte in eine
spezielle Richtung erlaubt (gerichtete Perkolation). Wir legen dar, dass nur Letztere
mit Nicht-Gleichgewichtsgelen in Verbindung gebracht werden können, die in große
scheibenförmige Cluster aufbrechen, wenn sie von außen geschert werden.
Wenn auch diese Arbeit zu einem großen Teil aus theoretischen Vorhersagen besteht, so
ist die experimentelle Validierung mit Hilfe von optischer Mikroskopie leicht möglich.
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Chapter 1
Introduction

Our modern Physics comprises inexhaustible depths of questions that bother our
daily life. A lot of different scientific fields have developed, among which especially

Soft Matter science became a famous and competed area.
When talking about Soft Matter, skeptical people may ask two questions in the first
place: What is the scope of this scientific field and how can we legitimate its significance
for our world? Fortunately, they are rather easy to respond. In the prosperous and
pulsating century of Soft Matter that we live in a lot of materials that are associated
with it prevail in the most elementary situations of our life. Such particularly designed
materials have not only become convenient for consumers, but also highly manifold for
industrial applicants and especially incredibly interesting for us scientists. To name some
of the most important candidates of Soft Matter: There are liquid crystals, whose studies
have purportedly begun in the late 19th century and for which about 100 years later (in
1991) Pierre-Gilles de Gennes, who is sometimes referred to as the founding father of Soft
Matter, was awarded with the Nobel prize1. Paints, inks, styling gels and toothpaste are
also Soft Matter systems. They are pretty well understood and they become constantly
improved in industrial fabrication. Furthermore, polymer physics play an important role
as a subtopic of this field. Here, scientists investigate materials, such as, e.g., acrylic
glass (Poly-methylmethacrylate/PMMA) or polystyrene (PS), which provide interesting
applications as vitreous bodies in automotive industry, synthetic fibers in textile industry,
or wrappers of perishable goods in the food industry.
There are many more technical applications, which make this field so important. However,
one should also not forget about non-synthetic systems like cell membranes, vesicles,
organelles and blood corpuscles, which consist of self-aggregating amphiphile lipid bilayers
and which is equally worth to be studied due to its relevance in medicine. Such a broad
spectrum of science is an optimal basis for interdisciplinary research. Nevertheless, as
theorists explore models in order to describe the underlying physics, it turned out, that

1“for discovering that methods developed for studying order phenomena in simple systems can be
generalized to more complex forms of matter, in particular to liquid crystals and polymers.”
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the special kind of physics, which is in principle governed by the stochastic motion of
its little compounds, is not only interesting for immediate applicable situations, but the
inquired problems also led to the evolution of prominent model systems. Model systems
are tremendously important for the understanding of universal problems, e.g., the drastic
slow-down at the glass transition. The important role of the Soft Matter glasses became
even more manifest due to handy realizations in experimental labs and the ability to
track the behavior of (all) individual constituents. Although its particles are typically too
small (∼ 1nm – 1μm) for an observation with bare eyes, rather simple microscopy tools
and and light scattering techniques give rise to the direct observation of the microscopic
processes [6–8]. On the other hand, the underlying physics can often be described by
means of simple statistical mechanics. In return, one is able to predict the accompanied
macroscopic consequences, which can then for example be verified by mechanical studies.

In Ref. [9] it is proposed to arrange the huge variety of different investigation fields as
well as the intricacy of given problems in a two-dimensional complexity plane, where
the first axis would describe the complexity of the constituents and the second axis
the complexity of the problem. For example, if one studies the polymer or dendrimer
physics, the complexity along the first axis is increased from simple monomeric particles
to chains or networks of successively docked particles. By manipulating the system from
outside, e.g., by applying external fields, the complexity along the second axis is increased.
The underlying problems become even more difficult to understand, when equilibrium
or ergodicity assumptions are not fully valid anymore. In these cases the investigated
systems are entitled with the tags steady-state, metastability, or non-equilibrium.

In this thesis, systems along the second (schematic) complexity axis, i.e., the complexity
of problems, will be investigated, whereas the constituents are held rather simple. Thus,
only spherically symmetric particles will be considered, where sizes, degree of repulsions,
and also attraction potentials are varied. Additionally, external potentials will be used
for the specific models, among which especially confining potentials are discussed. This
way is chosen in order to obtain fundamental results out of mostly simplistic models.
Nonetheless, we will see, that such simplistic particles still bear multi-particle cooperation,
where huge aggregates are considered that are the predominant and determining factor for
dynamical processes. As the title of this work already suggests, we study three different
setups, which are shortly illuminated in the following.

Bidisperse stackings. The first setup, which will be introduced in Chapter 4, is given
by stackings of spherical particles with two different sizes in a gravitational and with a
wall at the bottom. Gravity is ubiquitous and it therefore plays a crucial role in many
applications. It is important to understand the effects of gravity, because they may
cause advantageous or disadvantageous features. Yet, the theoretical prediction is a
challenging task. In our study of bidisperse stackings we will address the segregation
of species according to their size [10]. Within this scope it is inevitable to ignore the
famous topics of the Brazil nut effect or the reverse Brazil nut effect [11–14], whose
names are associated with the demixing of larger and smaller pieces in a mixed cereals
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Figure 1.1: Binary soft spheres in the gravitational field sediment to the ground. The
concurrent pressure gradient and the employed mass density ratio of the two
species give rise to (from left to right) different stacking mechanisms as well
as arrested network-like structures. The figure has been taken from Ref. [1].

package while shaking. Besides the research with macro-sized samples [15,16] also for
micro-sized systems elaborate experiments [17–19] as well as simulations and theoretical
works [20–25] have been advanced. The major difference between macro-sized (granular)
and micro-sized (Soft Matter) systems is, that the thermal energy can be neglected in the
former one but not in the latter one. Furthermore, the effect has been discussed mostly
for hard particles. Therefore, in this thesis a colloidal system of ultrasoft particles within
the gravity field will be addressed. It typically differs from the granular one [26–31].
The addressed colloidal system shows very interesting phenomena, where a selection
of the final states is in a simplified manner sketched in Fig. 1.1. With the help of
theoretical predictions, that are based on buoyancy behavior of the colloids, we will
show that by slightly changing the mass density ratio distinct stackings of species and
even long-lasting network structures are obtained. Furthermore, we will give insight into
the dynamical process of sedimentation and the evolution of a perturbation of already
sedimented system. We will show, that restructuring processes are mainly dominated
by multi-particle (cooperative) dynamics. We characterize this effect by adding a few
particles at the top of already sedimented particles and trace the evolution of these
additional particles. First, particles of the same species aggregate into a cluster, then
this cluster consecutively sinks to the ground.

Broken symmetries. In this part of the thesis we study a system of hard spheres close to
a wall. The ensemble consists of differently sized particles, such that no local crystallites
can form, but rather amorphous structures arise at high densities [32]. Examples for
amorphous materials are, e.g., plastics, window glasses, or gelatin. At high packing
fractions (or low temperatures) the structure is similar to a liquid, but the dynamics
becomes dramatically slow such that solid-like behavior is observed [33–38]. Often
referred to as the local cage [39–41], the surrounding neighbors of an individual particle
make sure that its motion is hindered for intermediate or even long times. Such local
structural arrangements are fundamental for the understanding of relaxations [42, 43].
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(a) (b)

Figure 1.2: Sketch of cuttings in (a) bulk and (b) a system close to a wall. One particle
(white) resides inside a typical configuration of neighboring particles (green
and red). The colored rings around the white sphere in (b) mark regions of
high contact probability and therefore increased local pressure.

As sketched in Fig. 1.2(a), the local cage (colored in green) of a particle in a homoge-
neous situation may look rather arbitrary such that often only average over all possible
configurations can be calculated from theories. Contrarily, for a system that is perturbed
by a flat wall, one will always observe a similar local arrangement, where some posi-
tions of neighboring particles are more probable than others. If not suppressed [44],
layers of particles form in front of the wall [45–48], as represented by the differently
colored particles in Fig. 1.2(b). In such a situation, broken symmetries appear not
solely on the one-particle level [49, 50]. The tag also refers to broken symmetries of the
two-particle structure (cf. Refs. [46,51–53]), which becomes clear in Fig. 1.2(b) by the
enhanced contact probabilities at the color-marked rings around the white sphere. But
also the symmetries in the resulting diffusion process of individual particles are broken
(cf. Refs. [45, 54, 55]). These closely related properties will be investigated in this thesis,
where especially for questions concerning the structural, a very accurate theory (density
functional theory) will be compared with computer simulations of extensively large
multi-particle systems. Additionally, in the inspection of the dynamics, two mechanisms
are important in glassy systems: the memory of a particle’s history and a more detailed
resolution of its local cage-structure. We will show, that these two ingredients are crucial
by employing them in an effective one-particle model.

Gel networks. Finally, we probe the behavior of gel networks in a homogeneous envi-
ronment (bulk) and in the case of pore confinement and shear. The label gel typically
describes a whole class of different materials and solutions. However, in this thesis it will
refer to colloidal spherical particles, which are able to form bonds and interconnect with
each other. To facilitate such a bonding, particles not only repel each other but they
also exhibit an attraction [56–64]. The interaction can be described within theoretical
models, where smaller particles (polymers) induce an effective attraction between the
larger colloids [65,66]. For sufficiently strong attractions huge clusters of particles emerge
(see Fig. 1.3).
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Experiment

Simulation

without shear with shear

(a)

(b)

(c) (d)

Figure 1.3: In the slice-cuts of (a) experimental and (b) simulation gels one can identify
connected paths of particles (blue lines) through the network, which are
directed (directed percolation). (c) Confinement of such gels between two
plates gives rise to a local detachment from the plates. (d) If the gel is
additionally sheared it may break into large vertical slabs.

We observe directed paths through clusters of bonded particles in experiments (Fig. 1.3(a))
and simulations (Fig. 1.3(b)). Systems with highly attractive particles show arrested
dynamics [43,67–73] similar to the above-mentioned glasses. But the coherent structure is
different and can contain huge empty (void) volumes [74]. Only few studies report about
the interplay of dynamical slowdown and the local structure. For example, the dynamic
arrest was associated with local arrangements of favored structures [57]. Also the rigidity
percolation was linked to the dynamical arrest [75]. We will show, that especially the
occurrence of directed percolated paths (blue lines in Fig. 1.3(a-b)) through the gel
network can be related to the onset of dynamical slowdown and therefore non-equilibrium
aging in the samples. As we start to shear these network structures in our simulations
(Fig. 1.3(d)), we observe successive bond-breaking and the formation of larger slab-like
domains. These structures may occur at intermediate shear rates. When the shear stress
is increased even more, internal aggregates also fracture and homogeneous systems are
regained.

This thesis is organized as follows: Chapters 2 and 3 are introductory chapters, where in
particular the statistical description and the employed theories for our predictions as well
as our Brownian dynamics simulations are explained. In Chapter 4, the binary system of
ultrasoft particles in the gravitational field will be investigated by means of computer
simulations and simple theoretical approximations for the dense and the dilute phases.
Chapters 5 and 6 discuss the structure as well as the resulting dynamics of a binary
hard-sphere system close to a flat wall. For the structural studies, computer simulations
will be compared to calculations from density functional theory that is based on a very
accurate fundamental measure theory, termed the White Bear, mark II [76]. Finally,
Chapters 7 and 8 deal with the gel-networks. In the former one, structural properties
are connected with observed dynamics by means of experiments and simulations. The
latter chapter discusses the effect of confinement of such gels and the impact of shear.
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Chapter 2
Colloidal suspensions

2.1 Thermodynamics of soft matter systems

Thermodynamics in general describes the interplay of so-called (natural) thermodynamic
variables of a particular system with the heat or the mechanical work done by it. Its
manifest is built on the so-called laws of thermodynamics, whose first member was written
down in early works from the 19th century. They originated mainly as byproducts of
considerations about power efficiency of steam engines from Rudolf Clausius [77] and
works by Lord Kelvin (William Thomson) [78]1.

Following these laws, the equilibrium is, based on its constraints, defined by the so-called
thermodynamic potentials. These potentials can be used to explain the change from
one thermodynamic state to another. Within a particular thermodynamic potential it
is possible to extract macroscopic quantities, e.g., such as compressibilities, expansion
coefficients or heat capacities. Which potential has to be taken into account, depends
on the choice of thermodynamic variables. For example, one choice of a parameter set
is (T, V, {Nν}) for a system with a fixed number of particles {Nν}, where the subscript
ν = 1, . . . ,m refers to the set of particle numbers of the different species. The number of
particle species is m, the volume is V , and the temperature is T . A microscopic example
of such a so-called canonical ensemble is shown in Fig. 2.1(a), where the confined particles
can only move inside the constant volume, whilst the system is connected to a bath with
constant temperature. One of the laws of thermodynamics states that, if such a system
is connected with a heat reservoir of constant temperature, it adjusts its internal energy
due to the exchange of heat with the thermal bath until the equilibrium is obtained. The
thermodynamic potential, which describes this equilibrium state, is the Helmholtz free
energy F = F (T, V, {Nν}). The differential form represents the change of this energy

1It should be noted, that in the very early 19th the physicists N.L.S. Carnot and J.P. Joule also had a
huge contribution to the development of thermodynamics.
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with respect to its thermodynamic variables

dF = −SdT − pdV +
∑
ν

μνdNν , (2.1)

where p is the pressure and S is the total entropy of the system.

If the system is additionally allowed to exchange particles with the bath, as shown in
Fig. 2.1(b), the natural variables {Nν} are replaced by their conjugate variables, the
so-called chemical potentials {μν}. The set of parameters of such a grand canonical
ensemble is then given by (T, V, {μν}). The respective equilibrium potential is then
the grand canonical potential Ω = Ω(T, V, {μν}), which is related to the Helmholtz free
energy via a Legendre transformation [79], i.e., Ω = F (T, V, {Nν})−

∑
ν μνNν . The total

differential reads
dΩ = −SdT − pdV −

∑
ν

Nνdμν . (2.2)

Although these two presented potentials are fundamentally different, it is possible to make
approximate comparisons. In the thermodynamic limit, where N → ∞, both ensemble
descriptions are equivalent. The chemical potential in a respective grand canonical system
can be fixed in such a way that the average densities in the middle of both ensembles,
e.g., far away from a perturbing wall, coincide. Consequently, both routes will lead to
the same results, even in regions closer to the confining walls.

Coarse grained thermodynamic descriptions are nowadays due to their huge significance
widely spread in teaching lectures of undergraduate students at almost every university.
Thanks to the early studies of the Scottish physicist James Clerk Maxwell (1831-1879),
who basically founded the kinetic theory, and Ludwig Boltzmann (1844-1906), who worked
on the physical agreement of atomistic models with the accompanied macroscopics, low-
level theories are able to verify these famous laws of thermodynamics. They start with
individual particles and proceed with their microscopic interactions. Such theories give
rise to investigations of the connection between materials and the atomistic matter
they are made of. With the help of partly complicated and partly simple microscopic
models of soft matter systems very important macroscopic properties can be predicted
or even designed. Therefore, in this Chapter the focus will be laid on such microscopic
approaches.
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(a)  canonical (b)   grand canonical

N  , V

V

μ

T T
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Figure 2.1: (a) Sketch of a canonical (T, V, {Nν})-ensemble, where the system is allowed
to exchange heat with a surrounding bath and is confined by two walls (top
and bottom). The left and right jagged lines are “periodic boundaries”, as
e.g. realized by a toroidal symmetry. (b) Example of a grand canonical
(T, V, {μν})-ensemble of half-confined microscopic particles. Instead of con-
stant {Nν}, the system may also exchange particles with the bath, such that
the chemical potentials {μν} equilibrate. Due to a proper choice of those
chemical potentials the densities of both systems (a) and (b) may coincide in
the middle of the system, i.e., far away from the perturbing wall.
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2.2 Slowed-down dynamics in glasses and gels

In this thesis, the focus lays on the investigations of glassy colloidal systems, but the
original tag is mostly associated with molecular glasses, where the single constituents
are on the atomistic length-scale. In order to disclose the connection to colloidal glasses,
there will first be a few words about molecular glasses.

Although most probably the first molecular glass has already been used in the ancient
Egypt, the microscopic understanding of its behavior, which is the basis of all macroscopic
properties, is still not overarching gathered. One of the most challenging debates runs
around the dramatic slow-down of the dynamics of glasses. In today’s industry the
most common glass is made out of one fundamental material: Silica (chemical: SiO2)

2.
Its applications range from simple windows, that must consist of a huge percentage of
transparency for visible light, over extremely robust phone displays, to frequency-sensitive
optical instruments, which are used in scientific as well as in industrial areas.

The transparency of a molecular glass stems from its microscopic structure, which differs
from the structure of other solids. In metals, the behavior of the electrons are the
main reason, why the macroscopic solid is not transparent for our visible light. In
solid crystalline materials the electromagnetic waves are trapped by multiple intrinsic
reflections with the underlying crystalline lattices. In contrast to that, glasses are
typically fabricated by freezing a fluid-like structure very rapidly in such a way, that
the microscopic structure, e.g., the relative position dependence of two particles, does
not differ much from the fluid state. Contrarily, the dynamical properties slow down
significantly by many orders of magnitude, which consequently makes the material to
become solid-like. On the one hand this slow-down results in a macroscopic solid and
its properties might be analyzed by rheology experiments such as shearing, where large
dynamic viscosities of typically 1013Poise occur [80], which is more than 15 magnitudes
larger than for water at room temperature. Here, the viscosity might also be a function of
the applied strain, such that materials may behave differently upon different load. On the
other hand, the process of freezing into a glassy state can be quantified by the relaxation
times of individual particles on microscopic lengths. From molecular considerations it is
then also possible to derive the thermodynamic quantities, which have been mentioned
before (compressibility, thermal expansion coefficients, specific heat).

About the definition of glasses. In contrast to the structure, which has no longer
ranged order in a glass [81], at the transition from a fluid-like to a glassy state the
above-mentioned specific thermodynamic order parameters (compressibility, etc.) exhibit
abrupt changes at the (experimental) glass transition temperature Tg. This temperature
typically depends on the fixation point of the corresponding experiments, as exemplary
shown in Fig. 2.2. Here, the glass transition temperature is defined by the point, where

2Silica is mostly not used in its pure form, since it has a rather high transition (melting) temperature.
Therefore one often adds impurities in order to simplify the processing in industrial operations.
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Figure 2.2: Angell-Plot (or Arrhenius plot) for different materials (from Ref. [35]). Semi-
logarithmic presentation of the viscosities of different materials as a function
of Tg/T , where Tg is the glass transition temperature, at which the viscosi-
ties of the different materials reach 1014Poise. Linear dependencies in this
representation are referred to as strong glasses, which obey the Arrhenius law
(see Eq. (2.3)). Materials with curved data are referred to as fragile glasses
with super Arrhenius behavior (see, e.g., Eq. (2.4)).
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the dynamic viscosity η exceeds 1014Poise. As the transition temperature is approached,
the viscosity increases dramatically. Simultaneously a gradual drop in the specific heat
and abrupt changes in other parameters can be observed (not shown in Fig. 2.2). The
adapted plot is the well-known and hugely marveled Angell plot [82, 83], which is widely
used to characterize the glassy character of substances. Furthermore, one can observe
differences in the degree of the decrease of dynamics, i.e., some of the materials exhibit
more curvature than others. While Silica (SiO2) exhibits an exponential scaling, which
is disclosed by a linear relation in a semi-logarithmic plot, some other materials seem so
have a moderate viscosity increase at intermediate temperatures and an even more rapid
increase very close to the transition. The former one is connected with strong glasses
and sometimes called Arrhenius-behavior, i.e.,

η = η0e
−α T

Tg . (2.3)

This equation implies, that the viscosity stays finite for all finite temperatures. Here α is
a dimensionless constant, which originates from the idea of a temperature-independent
“activation energy” that can be formally described within the framework of the Transition
State Theory (TST). The theory was applied for forward and reverse equilibrium chemical
reactions by Pelzer, Wigner and Eyring [84, 85] as well as for more abstract systems,
where general transition phenomena can be described by a particle which has to overcome
an energy barrier. The latter one is referred to as the Kramers transition state theory
(see, e.g., Refs. [86, 87]).

However, although the representation of data shown in Figure 2.2 incorporates many
length-scales and shows nicely the slowdown of dynamics on approaching the transition,
it lacks the fact that due to its definition the experimental glass transition does not
necessarily coincide with a thermodynamic glass transition. The results typically depend
on the duration of the experimental time windows. With ultrasound experiments it could
be even argued, that the glass transition happens well above Tg [80]. Therefore one could
conclude, that the glass transition is not well defined by experimental settings due to
choice of measurement times and the fact, that systems already freeze into metastable
states well above the actual glass transition temperature. Furthermore, by changing the
reference values Tg in Fig. 2.2 the curvature in the shown viscosity range would also
change. As a consequence, the difference between strong and fragile glasses could no
longer be distinguished in a well-defined way. Another very important point is, that
the glass transition also depends on the setup, e.g., the cooling rate of the system, and
therefore the accompanied aging. The measured relaxation times depend on the history
(=age) of the glass and would therefore lead to different reference points. Such effects
must also be discussed in order to make results comparable with each other [88, 89].

Besides these problems, for the very basic assumptions there are also different theoretical
approaches present in the scientific glass community. While on the one hand the glass
transition could be thought as a steady slow down of dynamics [67], e.g. as represented
by Eq. (2.3), there exist many other works which rely on the assumption of a finite glass
transition temperature [90–92].
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The former ones question, whether the slowdown is really connected with thermodynamic
properties at all, or whether the jump in the corresponding order parameters is not a
real equilibrium jump, but rather a jump induced by one frozen metastable and very
long lasting configuration. This would mean that the glass transition is only a dynamic
phenomenon. Contrarily, the latter ones postulate, that the transition is a thermodynamic
one, where (several) order parameters change discontinuously. One of the most prominent
examples is probably the Vogel-Fulcher-Tammann (VFT) ansatz, where the viscosity
from Eq. (2.3) diverges at a finite glass transition temperature [90]

η = η0 exp

(
αT

T − TVF

)
. (2.4)

Here TVF is the Vogel-Fulcher temperature, which lays below the experimental glass
transition Tg and at which the dynamics becomes completely frozen. The prefactor αT

corresponds to a fitting parameter that equals the activation temperature for the given
material. Moreover, it turned out that especially soft matter glasses serve as very valuable
tools to study the mostly universal properties of glasses in general, since microscopy tools
facilitate the observation of what is happening within such a system.

Figure 2.3: (a) Jamming phase diagram for repulsive particles by Liu et. al. [34]. The
jammed state, which is represented by the transparent surface, can be reached
by changing one of the three parameters while the other two are fixed. (b)
Jamming phase diagram for particles with attractive interactions, by Trappe
et. al. [93]. Here the inverse attraction energy U between a pair of particles
replaces the temperature from (a). Systems can become jammed, when the
attraction is sufficiently strong, and when the density (here: φ) or load (here:
σ/σ0) are varied.
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Jamming. A real transition point is motivated by the experimental findings of glass
transition temperatures. For this purpose the concept of the jamming phase diagram
was proposed by A.J. Liu and S.R. Nagel [34] and other groups [94, 95]. The diagram is
shown in Fig. 2.3(a) for three involved parameters: in this representation, for completely
repulsive particles, jamming and the accompanied dynamical slowdown can be achieved,
when either the density (ρ) is increased sufficiently, or the temperature (T ) is lowered
below a certain threshold, or an optional externally applied load (here: σ) is reduced.
At the origin of the coordinate system, the density is at its maximum, whereas the
temperature and stress vanish. Another representation of the jamming phase diagram
can be found, when additionally attractive forces are incorporated between the particles,
e.g., in colloid-polymer gels. If we measure the attraction strength between a pair of two
particles by the binding energy U , again a jamming phase diagram can be constructed,
where the temperature is now replaced by the inverse attraction energy, see Fig. 2.3(b).
Such systems also show a slowdown of dynamics and similar jamming behavior at very
low densities [68, 69, 71,72].

In the athermal limit (T → 0) the critical jamming packing fraction or jamming transition
point is defined as the point where overlap cannot be prevented anymore. It probably
cannot be connected directly with the glass transition, since recently it was found, that
without shear “the glass transition line does not extrapolate to the jamming point” in
this athermal limit [96]. It rather happens already at lower packing fractions.

The glassy regime. In the so-called glassy regime dynamical rearrangements are rare
but still possible, in contrast to a thermodynamic glass. When considering the glassy
dynamics, one can for example measure the probability distribution for finding a particle
at a displacement vector r after a time t, i.e.,

G(r, t) =
1

N

〈
N∑
i=1

δ
[
r− (ri(t)− ri(0)

)]〉
, (2.5)

with the Dirac-δ function and the vectorial descriptors ri(t) of the individual trajectories
of all i = 1, . . . , N particles. Equation (2.5) is the density auto-correlation and is called
self part of the van-Hove correlation function [97], where the brackets 〈.〉 denote an
ensemble average.
The intermediate scattering function (ISF) f(k, t) is defined as the Fourier transform of
the van-Hove self-correlation. It can therefore be written as

f(k, t) =

∫
drG(r, t)e−ikr . (2.6)

A similar measure is given by the mean square displacement MSD, which is proportional
to the second moment of the van-Hove function. It represents a more intuitive connection
between length- and timescales and is defined over the average squared displacement of
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the particles after a time t, i.e.,

Δr2(t) =
1

N

〈
N∑
i=1

(ri(t)− ri(0))
2

〉
. (2.7)

These equations are written as bulk-averages. Therefore, they do not depend on spatial
coordinates. Of course, if one wants to investigate spatially resolved quantities around
r′ in inhomogeneous systems, it would be necessary to perform the average over an
infinitesimal volume around r′. The above presented well-defined measures allow us to
quantify how glassy a system is. We will use them in this thesis to investigate dynamic
properties of colloidal model systems. Such colloidal model systems are well suited to
investigate the topic of glasses, since the visualization of its individual constituents is
possible and the most interesting mechanisms are often universal, no matter whether the
glass is a molecular glass or a colloidal one.
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2.3 Statistical description

2.3.1 Classical many-body systems

A classical many-body system in general contains a certain number of particles N , where
distinct particles are not necessarily of the same species. In this work, multi-component
and polydisperse systems are studied that consist of m particle species3. For these
systems summing over all numbers of particles of the individual species yields

N =
m∑

ν=1

Nν . (2.8)

We reduce the discussion on polydisperse many-body systems with isotropic interactions.
Here, any individual particle, that resides at position rν,i and is of species ν, may
interact with any other particle (at rν′,i′) via an interaction potential vνν′(|rν,i − rν′,i′ |).
Additionally, all particles may have a kinetic energy and eventually be exposed to an
external field. The many-body Hamiltonian for such a classical system reads

HN = UN +Hkin
N + V ext

N , (2.9)

where the right hand side represents the split-up of the Hamilton into the pair-interaction

UN =
1

2

m∑
ν

Nν∑
i

m∑
ν′

Nν′∑
i′ �=i

for ν=ν′

vνν′(|rν,i − rν′,i′ |) , (2.10)

where it has been assumed, that no explicit many-body interactions (between three or
more particles) are present. The total kinetic energy reads

Hkin
N =

m∑
ν=1

Nν∑
i=1

p2
i,ν

2m
, (2.11)

where pν,i are the momenta of the particles. The term V ext
N origins from an external field

and will be explained in Sec. 2.4.

2.3.2 Probability density and averages

In order to describe a problem within a statistical treatment, we need to introduce a
probability density ω. It is a function of the current state of the system and depicts – in
simple terms – whether the state is likely expected or not. Therefore, ω must depend
on all particle positions and, in general, all particle momenta. Furthermore, if neither a

3In the following, the Greek letters ν and ν′ will always account for the species of the particle.
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steady state nor equilibrium is investigated, the function ω will additionally depend on
the time t.
In a multi-component system it is tedious to always write down the exact dependencies
on all positions rν,i and momenta pν,i. Therefore, in the following abbreviations for the
multidimensional phase space coordinates are introduced,

rN = (r1,1, . . . , r1,N1 , . . . , rm,1, . . . , rm,Nm) , (2.12)

pN = (p1,1, . . . ,p1,N1 , . . . ,pm,1, . . . ,pm,Nm) , (2.13)

and for the infinitesimal elements

drN = (dr1,1, . . . , dr1,N1 , . . . , drm,1, . . . , drm,Nm) , (2.14)

dpN = (dp1,1, . . . , dp1,N1 , . . . , dpm,1, . . . , dpm,Nm) . (2.15)

Assuming that the system is in a certain state around (rN ,pN), the function ω is
defined in such a way, that the infinitesimal product ω(rN ,pN , t)drNdpN represents the
configurational probability of finding the system in the phase space volume drNdpN . The
probability density must be a normalized function. Therefore, integrating the function
ω(rN ,pN) over the whole phase space (denoted by Γ) yields∫

Γ

drNdpN ω(rN ,pN) = 1 . (2.16)

As the name of the function suggests, the average value of a configuration-dependent
observable O(rN ,pN) is calculated by evaluating its scalar product with respect to the
probability density. The scalar product is defined as

〈O〉 = 〈ω,O〉 =
∫
Γ

drNdpN ω(rN ,pN)O(rN ,pN) . (2.17)

2.3.3 Statistics of thermodynamic ensembles

Considering a problem in the framework of statistical mechanics, it is beneficial to treat it
within the scope if a thermodynamic ensemble. Two of the most prominent examples have
already shortly been mentioned in Sec. 2.1. In the canonical ensemble the thermodynamic
variables were introduced as (T, V, {Nν}), where now the system’s state is defined by the
temperature T rather than by the internal energy.
If one would allow for the fact, that the number of particles may also fluctuate due to,
e.g., a coupling to a reservoir of particles, it becomes necessary to fix for each particle
species the chemical potentials {μν} such that they equal the chemical potentials of
the reservoir (T, V, {μν}). Any ensemble has a unique set of conjugate variables. The
different state potentials can be formally connected to other state potentials via a
Legendre transformation of one of the variables.
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All simulations within this thesis are performed with a constant total number of particles
and constant volume and temperature, which causes the system to be described within a
canonical ensemble. For the application of density functional theory (DFT) the grand
potential Ω, which is defined in the grand canonical ensemble, must be minimized.
Therefore, we will shortly introduce these two ensembles within the preluded statistical
manner of probability densities.

The canonical ensemble. The canonical ensemble describes closed systems, which
have a fixed number of particles at fixed temperature and volume. In equilibrium the
energy distribution is a Boltzmann distribution and therefore the probability density can
be written as

ωc(r
N ,pN) :=

exp[−βHN ]

Z(T, V, {Nν}) , (2.18)

where HN is the Hamiltonian, β−1 = kBT is the inverse thermal energy and the so-called
canonical partition function is [98]

Z(T, V, {Nν}) = 1

h3N
∏
ν′
Nν′ !

∫
Γ

drNdpN exp[−HN/kBT ] , (2.19)

with a prefactor that determines the smallest possible volume in phase space and therefore
contains the Planck constant h. In the canonical ensemble the corresponding thermo-
dynamic potential is the Helmholtz free energy F . By making use of the fundamental
thermodynamic equations it can be shown, that the free energy is connected to the
logarithm of the partition function (see, e.g., Refs. [98, 99])

F (T, V, {Nν}) = −kBT ln
(
Z(T, V, {Nν})

)
. (2.20)

Assuming, that the canonical partition function is known for the system, one is able
to calculate all thermodynamic quantities and explain macroscopic physical properties
of the system. For an ideal gas, consisting of N non-interacting and indistinguishable
particles with mass m, the partition function can be calculated analytically. It reads [98]

Z id =
qN

N !
, (2.21)

where we have introduced the single-particle partition function q = V/Λ3 with the thermal
De Broglie wavelength Λ = h/

√
2πmkBT .

In the limit of large particle numbers Stirling’s approximation for the factorial in Eq. (2.21)
can be used (see, e.g., Ref. [100]). Combining Eq. (2.20) with Eq. (2.21) then yields

F id = NkBT
(
ln(Λ3ρ)− 1

)
, (2.22)

with the bulk number density ρ = N/V . This equation determines the equilibrium
free energy for an ideal gas (non-interacting, point-like particles without external field).
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Unfortunately, as systems become more complex or particles start to interact with each
other, the partition function is an unknown quantity, as well as the free energy. In this
case it is usual to split the free energy into an ideal and a so-called excess part, which
originates from interparticle interactions,

F = F id + F exc . (2.23)

The latter part is unknown in the first place and requires assumptions or approximations.

The grand canonical ensemble. In the (T, V, {μν}) ensemble the probability density
needs to include the chemical potentials weighted by the number of particles in the
current configuration, i.e.,

ωg(r
N ,pN , {Nν}) :=

exp

[
−β
(
HN −

m∑
ν′=1

μν′Nν′

)]
Ξ(T, V, {μν}) , (2.24)

where the grand canonical partition function for a multi-component system with a given
composition {Nν} and with N =

∑
Nν′ is given by

Ξ(T, V, {μν}) =
∞∑

{Nν}=0

m∏
ν′=1

z
Nν′
ν′

Nν′ !

∫
Γ

drNdpN exp[−HN/kBT ] . (2.25)

Here we have made use of the abbreviations of the short-cut sum and the definition of
the fugacity zν′

∞∑
{Nν}=0

=
∞∑

N1=0

. . .

∞∑
Nm=0

; zν′ = exp[μν′/kBT ]/Λ
3
ν′ (2.26)

In opposite to the one-component ideal gas case from before the thermal De Broglie
wavelength is now also species-dependent (Λν′ = h/

√
2πmν′kBT ). Again, the partition

function is connected to the potential via a logarithm, i.e., the grand canonical potential,

Ω(T, V, {μν}) = −kBT ln
[
Ξ(T, V, {μν})

]
. (2.27)

2.4 Particle correlations

The statistical description of microscopic properties of a soft matter system can be a great
tool for the investigation of macroscopic quantities. If one is interested in the equilibrium
value of some quantity, it is necessary to average over every possible configuration of the
system weighted by the corresponding probability of that state. Many observables only
depend on a reduced set of particle coordinates, e.g., such as the average distribution
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of two individual particle positions relative to each other. In the thermodynamic limit
the averages of such observables can be compared within different ensembles. For large
systems we assume the approximate identity

〈O〉c ≈ 〈O〉g (2.28)

where the indices refer to the two ensembles from the previous paragraphs. Without loss
of generality, we introduce statistical quantities solely within the canonical description.
Grand canonical averages can be made analogously.

2.4.1 One-particle quantities

In a multi-component system of m species a one-particle quantity is for example an
external potential, which can be applied to an initially homogeneous liquid. The energetic
contribution from the external potential in the Hamiltonian (see Eq.( 2.9)), is given by
the complete set of N particles. For a given configuration rN = rN1 , . . . , rNm it is the
sum of the external potential energies of all particles

V ext
N (rN) =

m∑
ν=1

Nν∑
i=1

V ext
ν (rν,i) =

m∑
ν=1

∫
dr ρ�ν(r; r

Nν )V ext
ν (r) . (2.29)

Here the function V ext
ν (r) is the external potential for species ν at position r. This

function is a one-particle quantity since it only depends on the coordinates of a single
particle. ρ�ν(r; r

Nν ) =
∑N

i δ(r− rν,i) is the instantaneous density at point r (in general a
sum of δ-distributions). Of course, with respect to the chosen ensemble one can perform
the statistical averages (see, Eq. (2.17)), where the probability density can be simplified
to the number density in this case

V ext
N = 〈V ext

N (rN)〉 =
m∑

ν=1

∫
V

drρν(r)V
ext
ν (r) . (2.30)

Here we have introduced the average one-particle density

ρν(r) = 〈ρ�ν(r; rNν )〉 =
〈∑

i

δ(r− rν,i)

〉
. (2.31)

The one-particle density can be referred to as an one-particle correlation if the external
field is present. For example, we will study the sedimentation of particles within a
standard gravitational field. The average density as well as the external field will depend
only on one coordinate. Therefore, the density measures the “correlation” of the particles
with the bottom of the sediment in dependence of their height.
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2.4.2 Two-particle correlations

Correlations of two particles of species ν and ν ′ are described by the total pair correlation
functions h

(2)
νν′(r, r

′), with r corresponding to the position of the particle of species ν
and r′ corresponding to the position of the particle of species ν ′. These functions are
connected to the one- and two-particle densities. The two particle density is similarly to
Eq. (2.31) defined as

ρ
(2)
νν′(r, r

′) =

〈∑
i,i′

′
δ (r− rν,i) δ (r

′ − rν′,i′)

〉
. (2.32)

It is therefore a statistic average of the product of the two number densities ρ�ν(r; r
Nν )

and ρ�ν′(r
′; rNν′ ) and has the dimension of [V −2]. Inside the averages of Eqs. (2.31)

and (2.32) both relevant indices have been printed for clarity. The primed sum
∑′

i,i′

runs over Dirac-δ distributions for all position indices i = 1 . . . Nν and i′ = 1 . . . Nν′ of
the respective species ν and ν ′, while it avoids terms with i = i′ for ν = ν ′ (in words:
only pairs of distinct particles are considered).

The pair-correlation is obtained via the two-particle density by dividing by the respective
densities:

g
(2)
νν′(r, r

′) :=
ρ
(2)
νν′(r, r

′)
ρν(r)ρν′(r′)

(2.33)

and the total correlation function is

h
(2)
νν′(r, r

′) = g
(2)
νν′(r, r

′)− 1 . (2.34)

2.5 Potential of mean force (PMF)

In Sec. 2.3.3 the thermodynamic potentials have been introduced, which depend only on
their corresponding thermodynamic variables. In reality it is observed, that individual
subsets of particles are able to evolve or reconstruct in such a way, that intermediate
and metastable states with larger free energy might be obtained locally. One can deal
with such local events by making use of similar statistical assumptions as before, but
constraining the system on a so-called reaction coordinate R. This reaction coordinate
can be defined as a scalar function R

(
rN ,pN

)
[101]. In practice this means, that mostly

all parameters can be integrated out, despite those, which the reaction coordinate depends
on. A typical example for the reaction coordinate is R = z, i.e., the z-position of an
arbitrary particle. Another typical example is the distance R = |rA − rB| between two
particles A and B.
In more general examples the reaction coordinate could depend on even more particle
positions or momenta.
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The practical usage will become clear later on. Let us first define the constrained
probability density of finding the system in a state, where its reaction coordinate has the
value R′. Here, we can write such a density as the product [101]

ωR(r
N ,pN , R′) = ω(rN ,pN)δ(R′ −R(rN ,pN)) , (2.35)

where ω(rN ,pN) is the usual probability density given by Eq. (2.18). We now redefine
the free energy for the system along the reaction coordinate R′ (as in Eq. (2.20)). The
whole set of coordinates is constrained in such a way, that they are always aligned with
the particular path along R′. In the statistical sense, this means, that the partition
function is not fully evaluated. It rather depends on a set of coordinates, aligned with
the reaction coordinate, i.e.,

ZR(T, V, {Nν};R′) =
1

h3N
∏
ν′
Nν′ !

∫
Γ

drNdpN exp[−βHN ]δ
(
R(rN ,pN)−R′) . (2.36)

Assuming, that also along this path, the system is always in a local equilibrium, the
definition of a potential makes sense. For the (T, V, {Nν};R′) ensemble we can define
the reduced Helmholtz free energy, which does then depend on the reaction coordinate
R′, i.e.,

FR(R
′) = −kBT ln(ZR) . (2.37)

This result can be easier understood by introducing the reaction-coordinate probability

PR(R
′) =

∫
Γ
drNdpN ωR(r

N ,pN , R′)
Z

. (2.38)

Putting Eqs. (2.36) and (2.38) together, one can rewrite the reduced free energy from
Eq. (2.37)

FR(R
′) = −kBT ln

(
PR(R

′)
)− kBT ln(Z) . (2.39)

Now, PR(R
′) represents the probability of finding the system in a state along the reaction

coordinate at the specific position R′. The second term on the right hand side represents
a constant offset of the reduced free energy. Eq. (2.39) is also referred to as the potential
of mean force (PMF).

Mean force as a function of z. For the purposes of this thesis the distance between a
wall and an arbitrary particle is used as the reaction coordinate, i.e., the z-component of
its position (R ≡ z). One can then calculate the mean force on a particle of species ν
from Eq. (2.39). By partial differentiation one obtains

fν(z) ≡ kBT∇ ln
(
Pν,z(z)

)
= kBTez

∂ ln
(
ρν(z)

)
∂z

, (2.40)

where we have identified the probability of finding a particle of species ν at position z
with the one-particle density ρν(z) (cf. Eqs. (2.31) and (2.38) for R = z). We also used
the notation ∇ =

(
∂/∂x , ∂/∂y, ∂/∂z

)
for the Nabla operator.
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2.6 Density functional theory (DFT)

Walter Kohn, who received the Nobel prize in chemistry “for his development of the
density-functional theory” (DFT), brought out a new theory, which was capable to
calculate density-profiles as well as direct correlation functions. DFT is based upon
the Euler-Lagrange equation, which is associated with the minimization of the grand
potential energy functional. An abbreviated pathway of the soft matter version of the
DFT will be described in the following section. The general pathway of this chapter
follows the paper by R. Evans [102] and accordingly the third edition of the book “Simple
Liquids” by J.-P. Hansen and I. R. McDonald [98].

2.6.1 Functional derivatives

A functional is a mathematical function that can be used for variational calculus [103]. It
is a mapping from a vector to scalar numbers. In practice, it assigns a whole function (or
vector) a(r), e.g., such as the density, a unique number A[a(r)] ∈ R, which for example
represents the energy of the respective density field.
The functional derivative defines the change of the functional with respect to a change in
the vector that it depends on. Assuming, that a(r) is changed by an infinitesimal εb(r),
where a(r) and b(r) are two particular functions out of the vector space of the functional,
the functional derivative is defined as the integral [103]

lim
ε→0

A[a(r) + εb(r)]− A[a(r)]

ε
=

∫
dr′

δA

δa(r′)
b(r′) . (2.41)

From this definition we can evaluate the limit on the left hand side and obtain the
functional differential

δA[a(r); b(r)] =

∫
dr′

δA

δa(r′)
b(r′) , (2.42)

where formally, the first argument determines the derivative coordinate and the second
argument is treated as the small change of the first argument, i.e., b(r) ≡ δa(r).
There exist some mathematical rules, which will be used within this work to derive final
equations. The necessary tools (Eqs.(2.43), (2.44), (2.48)) are listed below.
Firstly, the chain rule reads [103]

δA

δa(r)
=

∫
dr′

δA

δb(r′)
δb(r′)
δa(r)

, (2.43)

where for the special case b(r) = a(r) the functional derivative in the integral leads to a
delta peak

δa(r)

δa(r′)
= δ(r− r′) . (2.44)
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A second special case is given by the explicit functional definition

A[a(r)] =

∫
V

dr′ a(r′) ln [a(r′)] . (2.45)

Its differential form can be written as

δA[a(r)] =

∫
V

dr′ (δa(r′) ln [a(r′)] + a(r′)δ ln [a(r′)]) . (2.46)

The infinitesimal change in the term ln[a(r)] can be simplified,

δ ln[a(r)] = ln [a(r) + δa(r)]− ln[a(r)] = ln

[
a(r) + δa(r)

a(r)

]

≈ δa(r)

a(r)
. (2.47)

A derivative of the functional in Eq. (2.45) follows by combining Eqs.(2.46) and (2.47):

δ
∫
dr′ a(r′) ln [a(r′)]

δa(r)
= ln [a(r)] + 1 . (2.48)

2.6.2 Functionals in classical systems

Although it is often convenient to first only describe bulk cases of the theories, it turns
out, that in the derivation of DFT the general case can be discussed, including the
assumption of an external field (e.g., such as confining walls). To separate the explicit
impact of the external field from the equations two new quantities will be introduced:
The first one is the intrinsic free energy F , which is used in the canonical ensemble to
measure the free energy with all implicit dependencies of the external field included,
but all explicit dependencies being excluded. The second one is the intrinsic chemical
potential ψ, where the explicit contribution of the external field is subtracted from the
chemical potential.
In a situation, where the number of particles is preserved and the system is in equilibrium,
the Helmholtz free energy is minimized, as discussed in Sec. 2.1. One can write the free
energy as a unique functional of the density (with the other thermodynamic parameters
(T, V, {Nν}) being fixed)4,

F [{ρν}] ≡ F [{ρν};T, V, {Nν}] . (2.49)

Consequently, when the number of particles is not fixed, but the system is rather connected
to a bath with constant chemical potentials {μν}, the set of natural thermodynamic

4Please note, that this is not a trivial statement. For a complete and well-written proof of this
assumption see Ref. [98].
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variables changes from (T, V, {Nν}) to (T, V, {μν}) and the minimizing thermodynamic
potential is now determined by the grand (canonical) potential. Its functional form reads
via Legendre transformation of Eq. (2.49)

Ω[{ρν}] = F [{ρν}]−
∑
ν′
Nν′μν′ (2.50)

= F [{ρν}] +
∑
ν′

∫
V

dr ρν′(r)V
ext
ν′ (r)−

∑
ν′
Nν′μν′ (2.51)

with

F [{ρν}] = F [{ρν}]−
∑
ν′

∫
V

dr ρν′(r)V
ext
ν′ (r) (2.52)

being the intrinsic free energy, where explicit impact from the external potential has
been subtracted. Analogously, one can define the intrinsic chemical potential

ψν′ (r
′; [{ρν}]) = μν′ − V ext

ν′ (r′) , (2.53)

which has contrarily to the chemical potential (in equilibrium) an explicit dependency on
the position and a functional dependence on the densities. Due to the particle interactions
and the implicit effect of the external potential both intrinsic functions are in general
unknown. Therefore, in analogy with Eq. (2.23), the intrinsic free energy can be split
into two parts

F [{ρν}] = F id[{ρν}] + F exc[{ρν}] , (2.54)

where again F id is the ideal gas part and F exc is the over-ideal excess part. Assuming,
that the considered system contains only ideal gas particles (without interactions), the
second part vanishes. The first one (ideal part) is written in terms of a local representation
of Eq. (2.22), where the constant prefactor N is rewritten as an integral over the in
general inhomogeneous density, i.e.,

F id[{ρν}] = kBT
∑
ν′

∫
V

dr′ ρν′(r′)
(
ln(Λ3

ν′ρν′(r
′))− 1

)
. (2.55)

2.6.3 DFT iteration equation

As the second tag of the theory’s name already suggests, the variational principle is
used within the functional forms of the equilibrium potential in both ensembles (grand
canonical, canonical). Originally DFT has been described in the grand canonical ensemble,
where the natural variables are (T, V, {μν}). In order to find the equilibrium state for
these fixed parameters, one can write the grand potential as a functional of the density, or
in general of the probability density ω. Note, that ω denotes a general probability density
and not necessarily the equilibrium one. It shall be used to determine the equilibrium
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state ωeq. Following the work by N. D. Mermin [104], it is assumed, that for an arbitrary
ω Eq. (2.24) holds. Although this is in general not the case, this pathway gives access
to a variation procedure, where the equilibrium configuration ωeq as an input yields
the equilibrium grand potential, i.e., Ωeq = Ω[ωeq]. For our purposes the functional
should not be minimized with respect to the whole probability density ω but only on the
densities ρν , since otherwise it would lead to an unsolvable problem with a huge set of
parameters.

Of course, the functional in Eq. (2.51) only coincides with the equilibrium grand potential
of Eq. (2.27), when {ρν(r)} = {ρeqν (r)} holds. All functional derivatives of the grand
potential with respect to general density profiles ρν , evaluated at equilibrium ρeqν , must
be zero due to the minimization principle [104], i.e.,

0 =
δΩ[{ρν(r)}]
δρν′(r′)

∣∣∣∣
{ρν}={ρeqν }

(2.56)

and also via Legendre transformation for the intrinsic free energy

0 =
δF [{ρν(r)}]
δρν′(r′)

∣∣∣∣
{ρν}={ρeqν }

− μν′ + V ext
ν′ (r′) . (2.57)

The latter two equations are the fundamental DFT equations. In order to make them
applicable for soft matter systems, one has to go back to previous results and plug in the
split-up of the intrinsic free energy (Eq. (2.54)) into Eq. (2.57).
After using the differentiation rule from Eq. (2.48) for Eq. (2.55) we obtain the partial
functional derivative of the ideal part,

δF id[{ρν(r)}]
δρν′(r′)

= kBT ln
[
Λ3

ν′ρν′(r
′)
]

(2.58)

and the partial functional derivatives of the yet unknown excess part of the intrinsic
free energy, which are known as the so-called direct correlation functions. The first two
members of these direct correlations read

c
(1)
ν′ (r

′; [{ρν}]) = −β δF
exc[{ρν}]
δρν′(r′)

, (2.59)

c
(2)
ν′ν′′(r

′, r′′; [{ρν}]) = −β δ2F exc[{ρν}]
δρν′(r′)δρν′′(r′′)

. (2.60)

Assuming, that the excess part of the functional (or the first member of the direct
correlations) is known exactly, one can determine any higher order of particle correlations.

However, by putting Eqs. (2.57), (2.58) and (2.59) together, one can formally solve for
the density profile by inverting the logarithm

ρ
(eq)
ν′ (r′) = zν′ exp

(
−βV ext

ν′ (r′) + c
(1)
ν′ (r

′; [{ρ(eq)ν }])
)
, (2.61)
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with the same definition of the fugacity as before (Eq. (2.26)). This result is an implicit
equation for ρeq, since the direct correlation functions themselves depend on equilibrium
density profiles.

What remains, is to find an approximation for the free energy functional. There exist
many different approaches for this. For example, one approach was proposed by T.V. Ra-
makrishnan and M. Yussouff [105] or by the mean field approximated density functional
(MFA DF) in which it is assumed, that the particles are very soft, such that entropic
contributions can be fully neglected [106]. In this case the excess part of the functional
is given only by the respective mean field, i.e., the integration over the pair-interaction
weighted with the respective densities,

F exc
[{ρν}] MFA DF≈ 1

2

∑
ν′,ν′′

∫
dr′
∫

dr′′ρν′(r′)ρν′′(r′′)vν′ν′′(|r′ − r′′|) , (2.62)

where vν′ν′′ is the pair interaction potential between species ν ′ and ν ′′. This is of course a
very poor approximation and mostly only applicable for dilute systems or soft particles,
which is undesired for our purposes.
Probably one of the most promising approaches for hard bodies is the so-called fun-
damental measure theory (FMT), which relies upon the deconvolution of the particle
interactions into their “fundamental measures”, such as their position, their surface
and their volume. In the next section, the FMT will be introduced and other possible
approximations for the excess free energy are mentioned. Later, in section 5.3, the DFT
with FMT will be applied for a special anisotropic case, where correlations are neither
homogeneous nor isotropic.

However, let us for a moment assume, that the excess free energy is known (at least
approximately). A one-step calculation of the right hand side of Eq. (2.61) cannot be
carried out straight forward. The mechanism to solve this formal DFT-equation or other
transcendental equations is based on an iteration scheme. Such an iteration scheme will
now shortly be sketched, before returning to the approximations for the unknown excess
part.

2.6.4 Fixed point iterations

The iterative solution of non-linear equalities as in Eq. (2.61) can be regarded as a
so-called fixed point problem

{an} �→ T({an}) , (2.63)

where the right-hand-side is iteratively evaluated and the result is successively used as a
new input for the next iteration step. Here, {an} is the series of vectors, that have been
iterated and T(. . .) is the function, which provides the next iteration step. The key idea
behind this is, that the newly mapped vector is a better approximation of the actual
solution of the equation. Such mapping techniques can sometimes be implemented by
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direct Picard iteration, or more likely Krasnoselskij iteration [107]. In these two methods,
the function T does only depend on the last iteration vector, i.e.,

an+1 = λT(an) + (1− λ)an , (2.64)

where λ ∈ [0, 1] and λ = 1 in the case of Picard iteration.

Sometimes it is needed due to stability and performance problems, to implement more
complicated techniques. In any case, the sequence of vectors

a0, a1 = T(a0), . . . , an+1 = T({an}), . . .

may converge or not. A powerful mathematical theorem states, that, if T : A→ A is a
contraction self-mapping5 in the sense of

lim
n→∞

‖an+1 − an‖ = 0 , (2.65)

any such sequence converges to a unique solution. This statement is called Banach’s
fixed-point theorem. Although the requirements are a priori not provable for a certain
problem, the theorem nevertheless provides the possibility to measure by the norm in
Eq. (2.65) the convergence of the iterative scheme in DFT-like equations or even more
complicated integral equations [108], e.g., such as the Ornstein Zernike (OZ) relation that
will be introduced later. We will see, that the OZ relation can be used to transform the
direct correlation functions c(n) into the more illustrative total correlation functions h(n).

Besides the very easy linear fixed point iteration, which was presented above, there are
also other types of iteration schemes, which for example use the history of the last few
iteration steps in order to improve the convergence for the next iteration step. One very
important method it the direct inversion in the iterative subspace (DIIS), in which the
norm between the actual and the last step shall be minimized with respect to the iteration
history. A short description of the algorithm is given in Appendix A.1. It increases the
degree of convergence and the overall stability of the algorithm. Such special procedures
are not always needed for the DFT iterations. Only at high densities DIIS might be
inevitable to apply them. It is also suitable for the fix point iterations in our integral
equation theory (the OZ relation), which will be introduced in Sec. 2.8.

2.7 Fundamental Measure Theory (FMT)

DFT is a great tool to inspect classical many-body systems and calculate thermodynamic
quantities. But the remaining challenge is to find an appropriate expression for the excess
free energy.

5For further details please see Refs [107] or [108].
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In 1989 the Fundamental Measure Theory (FMT) has been published for hard-sphere
mixtures in a famous paper by Y. Rosenfeld [109]. Since then a lot of development has
been made. In a review paper by R. Roth [110] from 2010 the major milestones are
nicely itemized. Although in this thesis, only a special version of the excess free energy
functional is used, namely the White Bear mark II version [76], the most basic points
of the origin and foundation of FMT will shortly be sketched in this section along with
other possible approximations. The steps that are presented within this section are the
following:

First, the virial expansion of the excess free energy is identified with integrals over
distinct pairs of so-called Mayer-f correlation functions. This expansion is truncated
after the third order, such that it only represents a good solution for low densities and
becomes only exact in the low-density limit. Next, the decomposition of the integrands of
the above-mentioned functional is presented, namely the decomposition of the Mayer-f
functions into so-called weight functions ω

(α)
ν . Consequently, it is shown, how the weight

functions are used to generate the so-called weighted densities nν by simple integration
with the local densities ρν . These weighted densities can then be inserted into the
expression for the excess free energy in order to obtain the functional expression in the
low-density limit. Finally, using the excess free energy for the low density limit as a
motivation, it will be shown, how the weighted densities can be used as a set of basis
functions to extrapolate towards higher densities. We will see, that for this step the
famous Caranahan-Starling equation of state [111] and its extended versions [112–114]
can be used as approximations for higher densities.

The fundamental measures are defined in three spatial dimensions by all sub-spaces
with an Euler-characteristic being equal or lower than three. They are therefore given
by volume terms (3D), surface terms (2D), distances (1D), and curvatures (0D). FMT
stems from the idea, that the so-called Mayer-f function [115,116] can be expressed in
terms of fundamental measures. The Mayer-f -function is for an isotropic pair potential
of interacting particles given by

fνν′(r) = exp[−βvνν′(r)]− 1 , (2.66)

where for hard spheres vνν′ = ∞, if the particles are overlapping, and zero otherwise.
The reason, why the Mayer-f function has been introduced, is, because J.E. Mayer and
E. Montroll found out that it can be used to expand the intrinsic excess free energy in
terms of the density [115]. The expansion reads [110,115]

βF exc
[{ρν}] =− 1

2

∑
ν′,ν′′

∫
dr′
∫

dr′′ρν′(r′)ρν′′(r′′)fν′ν′′(|r′ − r′′|) (2.67)

− 1

6

∑
ν′ν′′ν′′′

∫
dr′
∫

dr′′
∫

dr′′′ρν′(r′)ρν′′(r′′)ρν′′′(r′′′)

× fν′ν′′(|r′ − r′′|)fν′ν′′′(|r′ − r′′′|)fν′′ν′′′(|r′′ − r′′′|)
+O(ρ4)
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The expansion truncated after the second order is an approximation that is suitable for
low densities or high densities and soft potentials. We can identify the connection to the
MFA DF (Eq. (2.62)) by inserting the approximate Mayer-f function

fνν′ = exp(−βvνν′)− 1 ≈ −βvνν′ (2.68)

into the expansion (Eq.(2.67)) and truncating it after the first term.

Virial series. For better approximations one has to acknowledge more terms from the
series of Eq. (2.67). First, it provides a general formulation6 that is in principle valid for
any interaction potential. Second, the series is applicable to any externally perturbed
system, where the external field is only incorporated implicitly. But for the special case,
when there is truly no external field acting on the system, one can assume that the
densities are homogeneous and therefore constant. Consequently, they can be pulled out
of the integrals from Eq. (2.67). The remaining terms can then be identified with the
virial coefficients, where the first coefficient equals zero and the next coefficients read

B
(2)
νν′ = − 1

2V

∫
dr

∫
dr′fνν′(|r− r′|) (2.69)

B
(3)
νν′ν′′ = − 1

3V

∫
dr

∫
dr′
∫

dr′′ fνν′(|r− r′|)fνν′′(|r− r′′|)fν′ν′′(|r′ − r′′|) (2.70)

B
(4)
νν′ν′′ν′′′ = · · · (2.71)

From the coefficients B(i) one can already see the reason, why the previous expansion
from Eq. (2.67) becomes accurate in the low-density limit: correlations between three (as
regarded by Eq. (2.70)) or more particles are negligible in this limit and the expansion
can be truncated.

Homogeneous case – virial series. By means of the series expansion of the excess free
energy functional, it is possible to obtain the common virial series. In the case of a bulk
monodisperse hard-sphere mixture with density ρ̄ = N/V and the particle diameter σ,
one can use the thermodynamic relation p = ∂F/∂V |T,N 7 to write down such a series,
multiply it by β and divide by the density, such that the dimensionless so-called equation
of state (EOS) is obtained. It reads

zEOS =
βp

ρ̄
=
β

ρ̄

∂F exc

∂V

∣∣∣∣
T,N

= 1 +
∞∑
i=2

(
6

πσ3

)i−1

B(i)φi (2.72)

= 1 + 4φ+ 10φ2 + 18.365φ3 + 28.225φ4 + . . . , (2.73)

with the packing fraction φ = πσ3/6. In the above equation the first few virial coefficients
have been evaluated approximately by E.J Janse van Rensburg [117].

6For further reading see sections 3.4-3.9 from Ref. [98] about the cluster expansion.
7Note, that the excess free energy equals the intrinsic excess free energy for the bulk.
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General case – FMT for low densities. In the general case Eq. (2.67) represents a
virial expansion, where the densities cannot be pulled out of the integrals. Additionally,
the number of considered orders in the density will increase the accuracy with increasing
density.

The remarkable notice by Rosenfeld was, that the Mayer-f function of spherical hard
bodies could be decomposed in odd dimensions into the above-mentioned weight functions8.
If one defines the convolution y1 ◦ y2 of two functions as

(y1 ◦ y2) (r− r′) =
∫

dr′′ y1(r′′ − r)y2(r
′′ − r′) , (2.74)

then the deconvolution of the Mayer-f function in three spatial dimensions reads

−fνν′(r) = ω(3)
ν ◦ ω(0)

ν′ + ω(0)
ν ◦ ω(3)

ν′ (2.75)

+ ω(2)
ν ◦ ω(1)

ν′ + ω(1)
ν ◦ ω(2)

ν′

+ ω
(2)
ν′ ◦ ω(1)

ν′ + ω
(1)
ν′ ◦ ω(2)

ν′ ,

where now the weight functions have been introduced. They are given by [109]

w(3)
ν (r) = Θ(Rν − |r|) (2.76)

w(2)
ν (r) = δ(Rν − |r|) (2.77)

w(1)
ν (r) =

1

4πRν

δ(Rν − |r|) (2.78)

w(0)
ν (r) =

1

4πR2
ν

δ(Rν − |r|) (2.79)

w(2)
ν (r) =

r

|r|δ(Rν − |r|) (2.80)

w(1)
ν (r) =

r

|r|
1

4πRν

δ(Rν − |r|) (2.81)

with the particle radius Rν = σν/2 and the Heaviside step function

Θ(x) =

{
0 , x < 0
1 , x ≥ 0

. (2.82)

It should be noted, that this deconvolution is not a unique one. One year after Rosen-
feld, in 1990, the authors E. Kierlik and M.L. Rosinberg found another deconvolution,
which does not incorporate any vectorial components at all [119]. Both approaches are
equivalent.

8The original paper by Rosenfeld [109] had a inconsistency in the actual definition of the convolution,
which would cause a sign change in the equation of the deconvolution. This mistake has been
corrected later [118].
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Now, going back to the low density functional of Eq. (2.67), one can define the weighted
densities9

nα(r) =
n∑

ν=1

∫
V

ρν(r
′)w(α)

ν (r− r′)dr′ , (2.83)

that “weight” the actual microscopic densities ρν with the above introduced weight
functions. Via the presented deconvolution the weighted densities can be identified in the
low-density expansion, i.e., the truncation of Eq. (2.67) after the first term. It is given by

βF exc [{ρν}] =
∫

dr (n0(r)n3(r) + n1(r)n2(r)− n1(r) · n2(r)) . (2.84)

General case – FMT for higher densities. Equation 2.84 was a very important mile-
stone in the history of FMT, since it gave rise to the idea, what an actual approximate
expression for the intrinsic free energy should be built of. Although it is strictly mathemat-
ically derived, it cannot be applied for higher densities, contrarily to heuristic or empirical
findings, e.g., such as the Caranahan-Starling (CS) virial equation of state [111] or its
improved version, the Boubĺık-Mansoori-Carnahan-Starling-Leland (BMCSL) equation
of state [112,113].

These equations turned out to be well-suited for the prediction of compressibilities of
HS mixtures, even in the regime of high densities. The hour of birth of the CS equation
was in 1969, when N.F. Carnahan and K.E. Starling had recognized that one could
approximately replace the series of virial coefficients B(i) of a hard-sphere (HS) system
by an infinite series of integers, such that a simple formula would come out. The virial
coefficients, on which the final formula is based on, is obtained by using a mixture of
2/3 of the solution of the so-called Percus-Yevick (PY) integral equation [120] via the
compressibility route and 1/3 of the solution via the pressure route10. The formula is
until today a very accurate and well accepted approximation for the HS fluid. It reads
for the homogeneous and one-component case [111]

zCS(φ) :=
βp

ρ̄
=

1 + φ+ φ2 − φ3

(1− φ)3
. (2.85)

For the two-component case the extended BMCSL-equation [112,113] is used. It depends
on the particle diameters σν , the dimensionless concentrations xν = ρν/(ρ1 + ρ2), and on
the total packing fraction φ = φ1 + φ2 and reads [114]

zeCS :=
1

1− φ
+

3φ

(1− φ)2
ξ1ξ2
ξ3

+
φ2(3− φ)

(1− φ)3
ξ32
ξ23

+
φ3

(1− φ)3
ξ2
ξ23
(ξ1ξ3 − ξ22) , (2.86)

9Note, that this definition of the weighted densities also holds for the vectorial weights,

e.g. n1(r) =
∑
ν′

∫
dr′ρν′(r′)ω(1)

ν′ (r− r′).
10The original PY solution was proposed by J.K. Percus and G.J. Yevick [120]. Their proposition of the

HS solution was later used by other authors [121,122] to evaluate the virial coefficients.
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with the abbreviations ξi = x1σ
i
1 + x2σ

i
2.

Coming back to the actual problem, the inconvenience of FMT as presented so far is, that
it can only be applied for very low densities. On the other hand, the above presented
heuristic equations of state hold up to higher densities. Therefore, it is an excellent step
to extrapolate the low-density limit from Eq. (2.84) in such a way that the extrapolation
towards higher densities goes along with the heuristic equations.

In each FMT the basic approach is always the same [109,110]. One expresses the intrinsic
excess free energy as an integral over the local excess free energy density Φ [{nν}], which
itself is a functional of the weighted densities, as defined in Eq. (2.83). The relation reads

βF exc[{ρν}] =
∫
V

Φ [{nν(r)}] dr. (2.87)

Using the low-density ansatz as a starting point and extrapolating towards higher densities
leads to different versions of the FMT. In Rosenfeld’s paper from 1989, he presents the
course of doing this [109]:

“Note that n0, n1n2, n
3
2, n1 ·n2, and n2(r2 ·n2) are the only five positive power

(to yield a virial expansion) combinations of {nα} [. . .] providing the basis for
expressing Φ [. . .] with dimensionless, n3-dependent, coefficients.”

This perception was the result of combining the mathematical formalism of FMT (de-
convolution of the Mayer-f function) with thermodynamic equations (for the pressure).
Rosenfeld managed to put both together, which led to a system of five differential
equations, that will not be discussed in detail11. However, with the solution of the set of
equations, he could state, that any FMT-functional density Φ[{nν}] must therefore be a
representation in the basis functions nν , that are listed in the quotation. The coefficients
must only be dependent on n3.

There were slight problems within the first version of Rosenfelds functional, which for
example led to a divergence of the functional in the exact zero- or one-dimensional
limit [123]. These so-called “lost cases” were fixed by later propositions: one should
especially mention the extended deconvolution FMT (edFMT) for anisotropic convex
shaped hard particles [124] and the White Bear [125] and White Bear mark II [76]
versions for hard spheres, which typically include tensorial corrections to recover the
exact zero-dimensional limit of extremely confined systems. These tensorial corrections
must of course be formulated on the lowest level of the FMT, namely the weight functions.
Following Refs. [123,126], the correction to get the desired approximation of the functional
is given by the additional tensorial weight

↔
w

(2)

ν (r) =

(
r · rT
|r|2 −

↔
I

3

)
δ(Rν − |r|), (2.88)

11For the actual solutions of the differential equations, see Eqs.(5) et seq. from Ref. [109].
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where
↔
I is the 3D unity matrix and rT is the transposed of r.

For this thesis the White Bear mark II (WBII) version with the tensorial correction has
been chosen, because it has accurately predicted not only the freezing transition in hard
spheres [127] but also phase coexistence and the involved crystal-fluid interface [128]. Its
excess free energy density reads

ΦWBII[{nν}] =− log(1− n3)n0 (2.89)

+

(
1 +

1

9
n2
3φ

WBII
2 (n3)

)
n1n2 − n1 · n2

1− n3

+

(
1− 4

9
n3φ

WBII
3 (n3)

)

×
n3
2 − 3n2n2 · n2 +

9
2

(
nt
2·

↔
n2 ·n2 − tr(

↔
n
3

2)
)

24π(1− n3)2
,

with tr(
↔
A) denoting the trace of the argument

↔
A and the two functions φWBII

2 (n3) and
φWBII
3 (n3) are defined by

φWBII
2 (n3) =

6n3 − 3n2
3 + 6(1− n3) log(1− n3)

n3
3

, (2.90)

φWBII
3 (n3) =

6n3 − 9n2
3 + 6n3

3 + 6(1− n3)
2 log(1− n3)

4n3
3

. (2.91)

In Eqs. (2.89) one can nicely distinguish between the basis system of functions, that have
been postulated by Rosenfeld (including the tensorial correction), and the coefficients of
these functions.

As we state in the submitted paper [2], for all FMT functionals with an excess free
energy density that only depends on the weighted densities nα, the direct pair correlation
functions from Eq. (2.60) can be written as

−c(2)νν′(r, r
′) =
∑
α,β

∫
V

dr ′′ ∂2Φ

∂nα∂nβ

(r ′′)w(α)
ν (r ′′ − r)w

(β)
ν′ (r

′′ − r ′). (2.92)

In bulk, the derivative with respect to the weighted densities becomes independent of
the spatial coordinate and the direct correlation function can be calculated analytically
[109,125,129]. For an anisotropic system with only cylindrical symmetry we report in
Sec. 5.3 a semi-analytical form for general multi-component mixtures in the framework
of the FMT.
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2.8 Ornstein Zernike (OZ) integral equation

In physics, integral equation theory is a very powerful tool to deal with multi-particle
problems, where the correlation of observables, e.g., the positions of two distinct particles,
can be predicted. Such microscopic arrangements can then be investigated by solving
integral equations up to the first or second [47, 49, 52, 130–133] and even up to the third
order [134]. It is noteworthy, that once a solution of a certain order has been achieved,
the lower orders immediately follow by integrating out the respective degrees of freedom.
A nice overview over integral equations that are relevant in physics is given in Ref. [98],
which we use as a reference for this section.

One of the most prominent representatives of integral equations in statistical soft matter
physics is the Ornstein-Zernike (OZ) relation12

h
(2)
νν′(r, r

′) = c
(2)
νν′(r, r

′) +
∑
ν′′

∫
V

dr′′ h(2)νν′′(r, r
′′)ρν′′(r′′)c

(2)
ν′′ν′(r

′′, r′) . (2.93)

It relates the two-particle total correlation h(2) with the two-particle direct correlation
c(2). How the two functions are connected with each other becomes obvious, when we
write down the OZ relation up to the zeroth order approximation, where the integral is
neglected, i.e.,

h
(2)
νν′(r, r

′) ≈ c
(2)
νν′(r, r

′) . (2.94)

Up to the first order one would replace the total correlation h
(2)
νν′ in the integral by

Eq. (2.94), such that on the right hand side and inside the integral only direct correlations
appear. Recursively the integral can be written as an infinite series of couplings over
c
(2)
νν′-functions. Thus, the meaning of the OZ relation (2.93) is the following: The total
correlation is the sum over direct correlations between two particles for all possible
amounts of intermediate particles.

In the following we derive the OZ relation from the statistical equations, that have
already been introduced in the previous sections.
The differential forms of the free energy (2.1) and the grand potential (2.2) provide
starting points for the derivation of the OZ relation. First, let us have a look at the
canonical case: If we assume an infinitesimal change in the intrinsic part of the free
energy, this causes in the case of the intrinsic free energy a change in the term pdV ,
which can be expressed as an infinitesimal change in density. Therefore, the differential

12The name is a credit to L.S Ornstein and F. Zernike (1910s). Sometimes it is called OZ equation.
Within this thesis the term “relation” will be used predominantly due to the fact that it will be
applied to relate two different correlation functions with each other.
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form of the intrinsic free energy can be written in functional nomenclature as [98]

δF [{ρν}] = −SδT −
∑
ν′

∫
V

dr′ δρν′(r′)V ext
ν′ (r′) +

∑
ν′
μν′δNν′ (2.95)

Eq.(2.53)
= −SδT +

∑
ν′

∫
V

dr′ δρν′(r′)ψν′(r
′) . (2.96)

The intrinsic chemical potential then follows as the functional derivative of the intrinsic
free energy (Eq. (2.96))

ψν′ (r
′; [{ρν}]) = δF [{ρν}]

δρν(r′)
. (2.97)

Second, in the case of the grand potential, the change in volume V can be written as the
external work against the hydrostatic pressure p, i.e., δV ext = pδV . This infinitesimal
change in the external potential is used in Eq. (2.2) rather than the volume change. The
accompanied differential reads [98]

δΩ[{ρν}] = −SδT +
∑
ν′

∫
V

dr′ ρν′(r′)δV ext
ν′ (r′)−

∑
ν′
Nν′δμν′

= −SδT −
∑
ν′

∫
V

dr′ ρν′(r′)δψν′(r
′) . (2.98)

The first derivative of Eq. (2.98) with respect to the intrinsic chemical potential can be
made with the functional differentiation rules from Eqs. (2.43) and (2.44). It follows

δΩ

δψν(r)
= −
∑
ν′

∫
V

dr′ ρν′(r′)
∫
V

dr′′
δψν′(r

′)
δψν′′(r′′)

δψν′′(r
′′)

δψν(r)

=

∫
V

dr′
∫
V

dr′′ ρν(r′)δ(r′ − r′′)δ(r− r′′)

= −ρν(r) , (2.99)

where all terms in the sum are zero for ν �= ν ′.

With the grand partition function from Eq. (2.25) it is a straight forward procedure to
show that the second order partial functional derivatives with respect to the intrinsic
chemical potential can be connected to partial functional derivatives with respect to the
so-called local activities

z∗ν(r) = zνe
−βV ext

ν (r) , (2.100)

such that

δΩ

δψν(r)δψν′(r′)
= −βz∗ν(r′)

δ

δz∗ν(r′)

(
1

Ξ
z∗ν(r)

δΞ

δz∗ν(r)

)
. (2.101)
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By plugging in the grand potential partition sum and evaluating the expression on the
right hand side, one can see that most of the integrals cancel out. Only a few expressions
survive, which can be reduced into terms of the one- and two-particle densities from
Eqs. (2.31) and (2.32) such that the resulting so-called density-density correlation function
comes out

Hνν′(r, r
′) := kBT

δΩ

δψν(r)δψν′(r′)

= ρν(r)ρν′(r
′)− ρν(r)δ(r− r′)δνν′ − ρ

(2)
νν′(r, r

′) . (2.102)

This result can be rewritten in terms of the total correlation functions from Eq. (2.34),
i.e.

Hνν′(r, r
′) = ρν(r)ρν′(r

′)h(2)νν′(r, r
′) + ρν(r)δ(r− r′)δνν′ . (2.103)

The tag “density-density correlation” comes from the fact that this function measures
the fluctuations of local (equal or distinct species) density profiles about their average
values, i.e., Hνν′(r, r

′) = 〈[ρν(r)− 〈ρν(r)〉][ρν′(r′)− 〈ρν′(r′)〉]〉. Together with Eq. (2.99)
one can write the density-density correlation also as

Hνν′(r, r
′) = kBT

δρν(r)

δψν′
, (2.104)

which says that the density profile of every species ν is mediated not only by their own
intrinsic chemical potential, but also by each other specie’s intrinsic chemical potential
ψν′ . The inverse function H

−1
νν′(r, r

′) of the density-density correlator Hνν′(r, r
′) is defined

through the identity [98]

∑
ν′′

∫
V

dr′′Hνν′′(r, r
′′)H−1

ν′′ν′(r
′′, r′) = δ(r− r′)δνν′ . (2.105)

With the differentiation rules for functionals (Eqs. 2.43 and 2.44) the inverse must be
equal to

H−1
νν′(r, r

′) = β
δψν(r)

δρν′(r′)
, (2.106)

which corresponds exactly to the intuitive perception of an inverse of Eq. (2.104).

We can now systematically deduce the (OZ) relation, especially by using the orthogonality
property (Eq. (2.105)). For this purpose, we take the identity relation (2.105) and replace
Hνν′′ with Eq. (2.103) and H−1

ν′′ν′ with Eq. (2.106). This yields

δ(r− r′)δνν′ =
∑
ν′′

∫
V

dr′′
[
ρν(r)ρν′′(r

′′)h(2)νν′′(r, r
′′) + ρν(r)δ(r− r′′)δνν′′

]
(2.107)

× β
δψν′′(r

′′)
δρν′(r′)

.
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If now the intrinsic chemical potential is replaced by the derivative of the intrinsic free
energy according to Eq. (2.97), the second factor in the integrand will become a second
order functional derivative of the total intrinsic free energy F = F id + F exc, where the
ideal part is defined by the derivative of Eq. (2.58) and the excess part is defined over
the direct correlation function (2.60) from the DFT:

δ(r− r′)δνν′ =
∑
ν′′

∫
V

dr′′
[
ρν(r)ρν′′(r

′′)h(2)νν′′(r, r
′′) + ρν(r)δ(r− r′′)δνν′′

]
(2.108)

× kBT

[
1

ρν′′(r′′)
δ(r′′ − r′)δν′′ν′ − c

(2)
ν′′ν′(r

′′, r′)
]
.

Simplification then yields the OZ relation

h
(2)
νν′(r, r

′) = c
(2)
νν′(r, r

′) +
∑
ν′′

∫
V

dr′′ h(2)νν′′(r, r
′′)ρν′′(r′′)c

(2)
ν′′ν′(r

′′, r′) . (2.109)

One realization from this relation is, that one has to know the complete (V ×V ′)-resolution
of, e.g., the direct correlations, in order to obtain the total correlations for two specific
particle positions and species. Since also the opposite statement is true (c(2) ↔ h(2)), the
mapping between the two functions is a bijection.

Closure relations Because the OZ relation is not directly applicable in the first place,
since usually both two-particle correlation functions are unknown, there exist many
approximations [135], that relate h(2) and c(2) with each other. These relations are
called closure relations. They provide at least an approximate solution for one of the two
functions. One of the most famous approximations is the already mentioned Percus-Yevick
(PY) approximation [120,136], which is good for hard spheres. The hypernetted-chain
closure (HNC) [137] is also nicely applicable for softer particle. The Zerah-Hansen
(ZH) closure [138] combines PY and HNC by interpolating between them. Furthermore,
one should also mention the often applied Rogers-Young (RY) closure [139], the Mean
Spherical Approximation [98] that connects the direct correlations with the interaction
potential, and the Generalized Mean Spherical Approximation (GMDA) [140]. On the
one hand, by only knowing particle interactions and applying a closure relation, the OZ
yields both, the one- and two-body correlations. On the other hand, the OZ relation
is also an useful tool for the transformation of the correlation functions h(2) and c(2)

into one another. This will be used in Sec. 5.3 and Sec. 5.4 to translate the information
from direct correlations, which are produced via our DFT/FMT route, into the total
correlations that are comparable to simulation results.
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Chapter 3
Computer simulations

3.1 Overview over different simulation methods

For the numerical investigation of soft matter systems different approaches exist. Besides
the integral equation approaches, e.g., those which are based upon iterative [108] solution
of the Ornstein-Zernike relation [131, 135, 136, 138], there are computational methods,
which simulate the multi-particle dynamics by using rather simple individual equations.
With increasing computational power such computer simulations1 have become more and
more relevant for scientific applications. They are able to predict accurately experimental
structures and especially dynamics, whereas simultaneously the absolute run times,
which are more advantageous in integral equation theories, decrease due to our modern
processor techniques2. Here the three most popular techniques are pictured with their
accompanied advantages and disadvantages as well as their application idea.

Monte Carlo (MC) method. The termMonte Carlo coins to the massive use of random
numbers, which the founders3 associated with the Monte Carlo Casino in Monacco. The
algorithmic Monte Carlo integration scheme uses random numbers, to integrate over a
high-dimensional space, e.g., such as a many particle ensemble. The basic idea is to
generate a lot of numbers randomly, associate them with parameters or coordinates of the
underlying problem and decide from a physical or mathematical point of view, whether
the rolled random numbers can be accepted, since they reflect e.g. energetic constraints,
or not. The sampling of a soft matter system is in this framework connected with random

1For comprehensive overviews over the most common computer simulation techniques see the textbooks
by M.P. Allen and D. Tildesley [141] or G. Gompper et al. [142].

2The ability of performing algorithms in parallel gives rise to a modern and very powerful tool: graphics
processing units (GPU).

3First principles with applications have been developed by Stanislaw Ulam and Nicholas Metropolis in
cooperation with John von Neumann in 1946 at the Scientific Laboratory of Los Alamos
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displacement of particles about very small distances according to the so-called Metropolis
algorithm [141]. After such a step the energy is evaluated and by means of this energy
the step is either rejected or accepted. A very intuitive picture is given by the distance
relation between two hard spheres. As one of them is displaced randomly, such a step
can always be accepted when particles do not overlap, but the step must be rejected as
soon as particles exhibit an overlap. In the Monte Carlo algorithm no real time evolution
is involved. One is rather interested into the statistics of a final equilibrium state than
into dynamical aspects, which could possibly also reveal pathways through different
metastable states.

Molecular dynamics (MD). One of the most widely used and fundamental models
to study the evolution of a soft matter system is Molecular Dynamics (MD). In this
scheme, the Newton’s equations of motion for a system of interacting particles are used
to describe the individual behavior of all particles at the same time. This means, that
the total internal energy, which is composed of a kinetic and an interaction part, must
be a constant. Numerically this procedure needs the effort to calculate pair interactions
at a certain time and integrate the system over a short time interval Δt. A symplectic
integrator, e.g., such as Leap frog or Verlet algorithm [141], is needed in order to guarantee
stability. Additionally, computational errors lead to a heating or cooling of the system,
i.e., the increase or decrease of internal energy. Therefore, standard procedures exist
for holding the temperature at a constant value4. This makes the integration scheme
more time consumable than those, which go along without the implementation of a
thermostat. Furthermore, when interaction potentials become steep and densities become
high, a lot of computational effort must be spent for the rattling of particles in their
local cages. Although the MD algorithm can for short ranged interparticle potentials
nicely be scheduled in parallel, the above disadvantages make MD less popular, when
only the solute particles are interesting.

Brownian dynamics (BD). In Brownian Dynamics, the motion of particles in a solvent
medium is described via stochastic differential equations. The name is a credit to the
Scottish Botanist Robert Brown, who purportedly discovered the jittering motion of
small particles under his microscope. Although the motion of particles is caused by the
random kicks with the surrounding solvent molecules, within BD these molecules are –
contrarily to MD simulations – described as a continuum [145]. This leads to a set of
differential equations, where only the larger solute particles are described explicitly and
the smaller solvent molecules are only mimicked by a random force, acting on the larger
particles in a well-defined statistical manner. BD simulations are often applied for soft
matter systems with a viscous background medium. In these systems, due to the high
friction between solute and solvent, one can often even neglect the momentum term in
the underlying differential equations. Such systems are called overdamped. In addition,

4A constant temperature can be guaranteed by a thermostat, e.g., the Nosé-Hoover thermostat [143,144].
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due to the thermalizing random forces the overdamped BD simulations do not need an
external thermostat.

Throughout the whole thesis BD simulations have been applied, since the underlying
problems were either motivated by experimental studies where the systems are over-
damped, or motivated by very fundamental questions regarding universal observations,
for which it is more profitable to investigate effects by means of the most simple model.
In Sec. 3.3 the BD simulation will be explained in more detail. It is the implementation
of the so-called Langevin equation [146], which will be introduced in the next section.

Hydrodynamics interactions (HI). As particles are moving, they typically induce long-
ranged flows in the surrounding medium. The induced motion of the background can for
example be explained by the viscous friction of the particles and with the accompanied
energy and momentum conservation. On the one hand, by means of these flows a
particle responds to its own motion through a re-coupling with the relative velocity of
the background fluid. On the other hand, all particles are coupled to the flow fields of
other particles.
Incorporating HI, even if it is implemented only implicitly into an algorithm, often means,
that a lot of additional computational power is needed. There are possibilities to deal
with effects from hydrodynamics on an approximate level, e.g., such as with the Oseen
tensor that is the Green’s function of the linear Navier-Stokes equation [147] or the
Rotne-Prager tensor [148]. Other Methods, such as the full MD simulations or Lattice
Boltzmann simulation [149], often lead to more accurate results with respect to the
experiments. Although the HI are ubiquitous in all soft matter systems, its relevance does
strongly depend on the application and the quantitative concern of detailed peculiarities,
in which we are not interested. Thus, we will not employ HI in this thesis.

3.2 Langevin dynamics

Mesoscopic particles, which are suspended in a medium of much smaller particles, undergo
Brownian motion. The smaller solvent molecules are treated to be in equilibrium at a
constant temperature. This means, that they are moving with their thermal velocity,
which is Maxwellian distributed. In Brownian dynamics they are treated as a continuum,
which acts on the one hand as a damping medium for the solute particles and on the
other hand as the source of a stochastic force due to the stochastic collisions with the
much larger particles. Typically, the damping is characterized by a damping constant
γν , which is a function of the shape and size of the particle species ν as well as of the
macroscopic viscosity of the solvent medium. Particularly, for spherically symmetric
particles in viscous fluids (low Reynolds numbers) the damping constant is known by the
Stokes’ law

γν = 6πηRν , (3.1)
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where η is the macroscopic viscosity of the medium and Rν is the radius of the particle
of species ν. In 1905, A. Einstein developed the prominent relation, which connects the
friction of such a particle with its self-diffusion coefficient [145]

Dν =
kBT

γν
, (3.2)

where kBT is the thermal energy. Eq. (3.2) is the so-called Stokes-Einstein-relation that
characterizes the magnitude of the free diffusion of a particle due to the random forces
acting on it. The random forces are given by a stochastic function fν,i(t). It is referred
to as the thermal white noise and must obey the fluctuation-dissipation theorem. The
theorem states, that in terms of a noise average 〈.〉 the first two moments of the function
fν,i(t) have to fulfill the constraints [98, 145]

〈fν,i(t)〉 = 0 , (3.3)

〈fν,i(t)fTν′i′(t′)〉 = 2Dνδii′δνν′δ(t− t′)
↔
I , (3.4)

where the superscript T on the left-hand side of Eq. (3.4) denotes the transposed of the

vector fν′,i′(t
′),

↔
I is the unity matrix with rank equal to the number of spatial dimensions,

and δνν′ and δ(t− t′) are the Kronecker-Delta and the Dirac-delta function, respectively.
Eq. (3.3) ensures, that there is no spatially preferred direction. Although the second
moment in Eq. (3.4) looks rather complicated, the carrying information is simple: any
component of any stochastic force acting on a particle is completely uncorrelated with
any other component of a stochastic force except with itself. The above definitions of
the first and second moment are enough to describe the random walk of the particles.
The Langevin equation for each particle i of species ν reads [146]

mν r̈ν,i(t) +
1

γν
ṙν,i(t) +∇rν,iUν,i

(
rN(t)

)
= fν,i(t) , (3.5)

where mν is its mass and −∇rν,iUν,i(r
N) the systematic force acting on particle i of

species ν. It is composed of interaction with other particles and the external force.

One can neglect the inertia term at very low Reynolds numbers, i.e., mν r̈ν,i � γ−1
ν ṙν,i.

Then the Langevin equation simplifies to

1

γν
ṙν,i(t) = −∇rν,iUν,i

(
rN(t)

)
+ fν,i(t) . (3.6)

3.3 Implementation of algorithms

A suitable numerical solver for Eq. (3.6) is provided by a first order integration scheme.
Such a scheme is stable [141, 150] and already well tested for different kinds of problems
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[151–153]. Oppositely to MD simulations, where energy must be conserved explicitly, the
BD dynamics of overdamped systems does not need for such an artificial conservation
and can therefore be handled with a linear expansion in time. If Δt denotes a small
timestep, one can write a simple forward time differentiation scheme as

ṙ(t) =
r(t+Δt)− r(t)

Δt
, (3.7)

which yields with Eq. (3.6) the evolution equation

rν,i(t+Δt) = rν,i(t)− γν∇rν,iUiν

(
rN(t)

)
+Δr , (3.8)

where Δr is a random displacement vector due to the random force. Its first two moments
must satisfy the fluctuation dissipation theorem of Eqs. (3.3) and (3.4). Following the
principle of maximizing the ignorance with respect to these two constraints, one can
draw the components of Δr from a Gaussian distributed random number generator with
zero mean and the second moment (variance) being 2DνΔt.

5

The random number generator Ran3 from Ref. [154] has been used as an input of a
Box-Muller transform [155], in order to generate Gaussian distributed random numbers.
A very striking positive side effect of the simple first order algorithm from Eq. (3.8)
is its low computational cost, where in principle only pair interactions and random
displacements have to be evaluated.

Cell-linked list. Whereas the computational time to produce random numbers for the
above algorithm scales linearly with the number of particles in the system (O(N)), the
most effort is typically spent on calculating pair interactions, that are hidden in the
∇rν,iUν,i(r

N) term of Eq. (3.8). Because in principle every particle could interact with
every other particle, the computational power scales as O(N2). Nevertheless, in many
situations, e.g., when the pair interaction potential has a finite range, it is not necessary
to calculate interactions between all pairs of particles. When the interaction potential has
a finite range, the algorithm has been designed in such a way, that prior to a calculation
of pair interactions all particles are collated to cells, where the size of these cells just
exceeds the maximum interaction range of the interaction potential (see Fig. 3.1). In
the next step, all pair interactions of particles that are sitting in the same cell or in
a neighboring cell (cell-linked list) are evaluated. Since the range of the potential is
constant for a certain simulation and the intermediate number of particles per cell is
also constant in the most cases, this algorithm only scales as O(N) and should be used
whenever possible, especially when system sizes become large.

5Note, that the random numbers could in principle also be drawn from other random number distribu-
tions with the same first and second moment, e.g., from a uniform distribution. In the central limit
theorem, such a distribution will converge against a uniform Gaussian.
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Figure 3.1: Sketch of a simulation box with periodic boundary conditions at the left
and right borders and with a Cell-linked list structure, demonstrated by a
two-dimensional representation. Each individual particle is interacting with
any other particle only if the distance is below a certain threshold (cutoff).
This fact allows for a previous sorting of particles into cells (1-9) and a
subsequent calculation of pair interactions only with particles, which are
sitting in the same cell or in a neighboring one (cell-linked).
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Chapter 4
Particle segregation in binary soft systems
with gravity

Preface. The present chapter is based on the original paper “Particle segregation in a
sedimenting bidisperse soft sphere system” [1] by the author of this thesis and contains
literal adoptions of the text and figures. Little modifications of the original paper have
been made in order to obtain a consistent nomenclature.

4.1 Introduction

We study the sedimentation of a binary particle system by means of Brownian dynamics.
In our model system particles are very soft and are therefore able to reduce their effective
diameter. With given masses of large and small particles, we can predict the phase
separation and complicated stackings in the gravitational field by making use of low
density and high density approximations of the equation of state (EOS). Whereas in the
low density regime the EOS can be approximated up to the second order virial coefficient,
the very dense systems can be quantified in the framework of the so-called Mean Spherical
Approximation (MSA). One species has twice the diameter of the other species and both
species have a completely penetrable core. We show, that soft spheres show a richer
behavior than hard ones and that the final states not only depend on the mass densities of
the involved particle species, but also on the temperature. We present a theoretical ansatz
for calculating final sedimentation states qualitatively. By making use of approximate
solutions of the EOS for soft particles in the two limiting cases of very dilute and very
dense packings separately for both of the particle species, we are able to make conclusions
for the resulting sedimentation profile. This chapter is organized as follows: Firstly, the
EOS of soft particles is discussed for bulk systems without any external field. Secondly,
we predict the influence of a linear external field by assuming different buoyant forces
to be responsible for the phase separation. Theoretical predictions are compared to
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results from Brownian dynamics computer simulations. Finally, metastable states and
the dynamics of yielding towards the final state are investigated by computer simulations.

4.2 Model

We consider a binary mixture consisting of Ns small particles with diameter σs and mass
ms and Nl large particles with diameter σl and mass ml. Throughout the whole chapter
we fix σl = 2σs but vary the masses. As a control parameter, we employ the ratio of the
mass densities, i.e.,

ξ =
ms/σ

3
s

ml/σ3
l

. (4.1)

The particles interact according to a finite-ranged purely repulsive harmonic pair potential

vνν′(r) =

{
ε
2

(
1− r

σνν′

)2
r < σνν′

0 r ≥ σνν′
, (4.2)

where r is the distance between the centers of two spheres, σνν′ = (σν + σν′)/2 is their
average diameter and the prefactor ε defines the energy scale.

We study particles in a gravitational field in z-direction. Moreover, there is a plane wall
at the bottom of the simulation box. This corresponds to an additional external field
acting on every sphere

V ext
ν (r) = mνgz + V w

ν (z) , (4.3)

with mν = ms or ml depending on the type of the particle and

V w
ν (z) =

{
εw
2

(
1− z

σν/2

)2
z < σν

2

0 z ≥ σν

2

. (4.4)

The stiffness of the wall is given by a dimensionless constant ε∗w = εw/ε and the strength
of the gravitational field by g∗ = msgσs/ (ξkBT ).

In the following we use the particle diameter σs of the smaller particles as a suitable length
scale and the prefactor ε of the interaction potential as an energy scale. Throughout this
chapter we employ the Brownian time τB = σ2

s /Ds as a time scale, with Ds = kBT/γs
denoting the short-time self-diffusion coefficient of small particles and where γs is the
friction coefficient of a small sphere. We also introduce the dimensionless temperature
T ∗ = kBT/ε and the dimensionless pressure P ∗ = pσ3

s /ε. The total bulk number density
of the system is given by ρ = N/V , where N = Ns +Nl is the total number of particles
and V denotes the volume of the system.
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4.3 Simulation details

We perform Brownian dynamics simulations, i.e., we simulate the particle trajectories
according to the overdamped Langevin equation (3.6), where depending on the species
γν is either the friction constant of a small sphere γν = γs or the friction constant of a
large sphere γν = γl = γsσl/σs. The force −∇rν,iUν,i(r

N) from Eq. (3.6) is given by the
pair interactions, the external wall potential, and the gravitational force.

In our simulation we consider Ns = 2000 small and Nl = 2000 large particles. We employ
periodic boundary conditions perpendicular to the gravitational force. The length of the
simulation box in x and y-direction is Lx = Ly = 10σs. We use finite time steps with
Δt = 10−4τB or below. In the beginning we place all the particles randomly into the
simulation box at a low packing fraction of φ = φs + φl = 0.1, with φν = πσ3

νρν/6. After
an initial relaxation time without gravity of 200τB, the external field is instantaneously
switched on.

We choose an almost hard wall with a stiffness ε∗w = 100 that makes it rather impenetrable
for the particles. The strength of the gravitational field throughout this chapter is held
constant at g∗ = 1.5.

4.4 Results

4.4.1 Bulk equation of state: limiting cases

In the gravity field we observe a segregation of the two particle species. In order to
predict which species is forced to the top and which one to the bottom, we first consider
the low and high number density limits of the bulk EOS of separate phases that consist
either of small particles or large particles only.

For low densities, the EOS for species ν can be estimated by truncating the virial
expansion (2.72), that is expressed by the series of virial coefficients (2.69) et seq., after
the second term, i.e.,

zEOS,ν =
βp

ρν
= 1 +B(2)

νν ρν , (4.5)

where again β = (kBT )
−1. For sufficiently fast decaying interaction potentials the

second virial coefficient is equal to the integral over the Mayer-f function with the given
pair-potential

B(2)
νν = 2π

∫ ∞

0

dr [1− exp (−βvνν(r))] r2 . (4.6)

For large densities, we employ the so-called Mean Spherical Approximation (MSA) [98].
The MSA is a well-established approximation for soft particle systems at large densities
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[156–159]. Note that sometimes the MSA is also called random phase approximation
(RPA) [156,159]. For soft penetrable spheres the hard core within the MSA framework
becomes infinitely small and the overall approximate closure relation [158]1

cνν(r) = −βvνν(r) . (4.7)

The EOS of a monodisperse system of species ν is determined by integrating over the
compressibility factor [98]

zEOS,ν =
βp

ρν
=

β

ρν

ρν∫
0

dρ′ν
∂p(ρ′ν)
∂ρ′ν

=
1

ρν

ρν∫
0

dρ′ν [1− ρ′ν ĉνν(k → 0)] , (4.8)

where ĉνν(k) is the Fourier transform of the direct correlation function cνν(r). Since
ĉνν(k) according to Eq. (4.7) does not depend on the density, one finds for the high
density regime

zEOS,ν = 1− 1

2
ĉνν(0)ρν . (4.9)

In summary, for our soft sphere systems we can use the limiting approximations

zEOS,ν =

{
1 + B

(2)
νν ρν , ρν ≤ ρlow

1− 1
2
ĉνν(0)ρν , ρν ≥ ρhigh

(4.10)

The prefactor in the low number density case is calculated by Eq. (4.6). For the high
number density regime an analytical estimate for the prefactor is given by the MSA (see
Eq. (4.7)). For our system, we use the dimensionless packing fraction φ = ρπσ3

ν/6 and fix
the boundaries ρlow and ρhigh deep in the limiting cases according to the packing fractions
φlow = 2−3 and φhigh = 2, respectively.

In Fig. 4.1 the bulk equations of state for monodisperse soft spheres at different tem-
peratures are presented theoretically for the limiting cases of high and low densities
together with data from Brownian dynamics simulations. Note that the packing fraction
can be larger than one [160–162]. In order to prevent crystallization effects at very high
densities in our simulations, we have introduced a small bidispersity for the diameters,
which is equivalent to a variance of 0.04. The approximations for small and large packing
fraction describe our simulation results very well. Apparently, at low packing fractions
the pressure increases for increasing temperature. However, at large packing fractions,
the pressure is approximately independent of the temperature. Therefore, the slopes
in the intermediate regime must also become larger. Since the EOS is typically not
analytically known in an intermediate number density regime, we will later approximate
the intermediate regime by a polynomial interpolation of the two limiting cases, with the
respective cutoff-values of the two regimes chosen according to φlow and φhigh.

1The equation can formally be derived by inserting the approximate expression of the Mayer-f function
(Eq. (2.68)) into the second order truncation of Eq.(2.67) and applying a subsequent double functional
differentiation.
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Figure 4.1: Double logarithmic plot of the equation of state of a system consisting of one
particle species with only a small amount of bidispersity in order to avoid
crystallization. The different colors denote cases with different temperatures.
The points show the simulation data. Additionally, the limiting cases of the
analytical approximations from Eq. (4.10) are plotted (solid lines). All curves
converge against a limiting line at large packing fractions.

4.4.2 Sedimentation profiles

To introduce gravity it is necessary to also incorporate the masses ms and ml into the
discussion. As mentioned before, we investigate the particular case, where small and
large particles have a size ratio σl/σs = 2. The masses are set by the dimensionless mass
density ratio ξ defined in Eq. (4.1). The sedimentation profiles will strongly depend on
this mass density ratio.

For hard particles with a ratio ξ = 1 no phase separation due to buoyant forces is expected.
Inertia effects that are important for the Brazil nut effect in granular systems [163,164]
can be neglected because the dynamics is overdamped.

However, in our case particles are very soft and as a consequence their thermodynamic
properties strongly depend on the temperature and pressure (see Fig. 4.1). As we will
show in the following, especially the compressibility will determine the buoyant forces,
which for soft particles also depend on temperature and pressure. We will use estimates
of the buoyancy in order to predict the segregation of sedimenting soft colloids. The
buoyancy of the large particles for a given temperature T ∗ and pressure P ∗ depends on
the ratio of the mass densities, i.e., the ratio of the number densities ρl(P

∗, T ∗)/ρs(P ∗, T ∗)
weighted by the corresponding masses ml and ms. We introduce a buoyancy function

bl(P
∗, T ∗, ξ) := 1− ρl(P

∗, T ∗)ml

ρs(P ∗, T ∗)ms

= 1− φl(P
∗, T ∗)

φs(P ∗, T ∗)ξ
. (4.11)

If bl(P
∗, T ∗, ξ) is positive, the larger particles will be lifted up with respect to the smaller

ones. On the other hand they sink to the ground as soon as bl(P
∗, T ∗, ξ) becomes negative.
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Figure 4.2: (a) Equations of state of large and small particles with a mass density ratio of
ξ = 2.4 and at temperature T ∗ = 0.005. Note that the packing fraction of the
larger particles is not weighted, whereas for the small particles it is multiplied
by ξ for the visualization of the corresponding impact of gravity. Points
indicate simulation data, the solid lines are the limiting approximations of
equation (4.10). In order to obtain the dashed lines, the limiting cases are
interpolated by a polynomial function. The curves have two intersection
points. (b) The buoyancy function bl(P

∗, T ∗, ξ) denoting the buoyancy of
the larger particles. For small and large pressures the function is negative
indicating that large particles sink while for intermediate pressure bl(P

∗, T ∗, ξ)
is positive and therefore large particle rise. The red points and line denote
the simulation results, the black dashed line corresponds to a theoretical
prediction obtained by the interpolation of the analytical limiting cases of
the EOS (cf. dashed line in (a)).

In Fig. 4.2(a) we show the normalized pressures P ∗, which are the product of the EOS
with the density, for small and large particles with ξ = 2.4 and T ∗ = 0.005. Note, that
we have weighted the packing fraction of the small particles with the mass density ratio
ξ. In Fig. 4.2(b) we plot the buoyancy function as a function of P ∗. As it turns out,
for ξ = 2.4 the buoyancy function has two zeros corresponding to the two intersecting
points of the weighted equations of state in Fig. 4.2(a). The zeros denote the pressures
for which the direction of the buoyant forces on large particles reverse. Consequently,
for intermediate pressures the larger particles are lifted up in a bath of smaller particles,
whereas for small and large pressures they sink. In the further discussion we will focus on
the second zero, because in our simulations the pressure due to gravity is usually larger
than the one at the first zero of bl. In the next section, we will discuss the final states
that we expect from considering the buoyancy function and compare these predictions to
the final states we find in the simulations.
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4.4.3 Final states

In this section we discuss the final states of the sedimentation process for different values
of the mass density ratio ξ defined in Eq. (4.1). For hard particles from considerations of
buoyancy one expects that large particles reside on top of the small ones for ξ > 1 or the
other way around for ξ < 1. In our case of soft particles, buoyancy also depends on the
pressure. Gravity induces a monotonic increasing pressure from the top to the bottom of
the system and therefore the pressure depends on the height. As a consequence, we find
equilibrium phases, where large particles gather both on the top and at the bottom of
the system.

In Fig. 4.3 the buoyancy function bl(P
∗, T ∗, ξ) together with final states of simulations

are shown for a constant temperature T ∗ = 0.005. For ξ = 1.3 the function bl(P
∗, T ∗, ξ)

is negative at any pressure. Therefore, smaller particles are always expected to lay above
the larger ones. The corresponding simulated final state is shown in Fig. 4.3(a). For
ξ ≈ 1.8 there is one zero, for ξ > 1.8 even two zeros are possible. In case of two zeros, i.e.,
1.8 < ξ < 2.76, an intermediate pressure regime exists, where the large particles move
upwards. As a consequence, for a simple sedimentation with a randomly distributed
mixture at the beginning, one will always obtain a 3-phase-stacking. These states are
mainly governed by large particles that are lifted up for the intermediate pressure in the
upper part of the system and large particles that sink due to sufficiently high pressure in
the lower part of the system. The small particles gather in the center part of the system.
It is important to note, that the thickness of the top slice of larger particles is limited. If
one adds more particles at the top of the box, the pressure at the upper interface will
increase and therefore the threshold for the uplift of larger particles will be exceeded.
Then, some of the larger particles aggregate into a cluster and sediment cooperatively
to the bottom basin. This procedure may appear several times until the condition of
positive buoyancy is recovered. We will describe the dynamics of this process in more
detail in the next section.

For ξ ≈ 2.76 the buoyancy function is only negative for very low pressures, then it becomes
positive and converges roughly towards zero for very high pressures. For this value no
preferred stacking is expected at high pressures. In the simulations (cf. Fig. 4.3(d)),
particles segregate into a network structure at high pressure regions at the bottom of the
simulation box. Despite the network-like segregation no net flow of one of two species can
be observed over the whole time of the simulation and we can not discriminate from our
simulation times whether a further segregation process takes place only very slowly or
whether the networks depict some kind of a metastable state. For intermediate pressures
towards the top of the system the uplift of the larger particles becomes significant. A
further increase of the mass density ratio, i.e., ξ > 2.76, again leads to segregation into
two phases with an oppositely stacking than for small ξ. Except for the small pressures in
the top layer, for all other pressures within the sedimentation profile bl(P

∗, T ∗, ξ) > 0 and
therefore the large particles move to the top. In principle, this behavior is confirmed by
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Figure 4.3: (Top panel) Dependency of the buoyancy function bl(P
∗, T ∗, ξ) on the pressure

P ∗ for different mass density ratios ξ. (a-e) Corresponding final sedimentation
profiles obtained from Brownian dynamics simulations after 500τB simulation
time for a temperature T ∗ = 0.005. Large particles are colored yellow, small
particles are depicted blue. The mass density ratios are (a) ξ = 1.3, (b)
ξ = 1.8, (c) ξ = 2.1, (d) ξ = 2.76 and (e) ξ = 3.5 (cf. corresponding
buoyancy functions in the upper plot). Note that the first zero of bl(P

∗, T ∗, ξ)
corresponds to small pressures that usually only occur in a small slice at
the top layer of the system and therefore is not to be considered here. The
stacking of the rest of the system depends on whether the second zero of
bl(P

∗, T ∗, ξ) exists. (a) For small ξ, the buoyancy function is always negative
and therefore all large particles move to the bottom. (c) bl(P

∗, T ∗, ξ) possesses
two zeros and therefore large particles rise to the top in the upper part of
the system and sink to the bottom in the lower part. (e) If bl(P

∗, T ∗, ξ)
possesses only one zero at small pressures, the large particles gather at the
top of the system. (b) and (d) show the limiting cases where the relaxation
into a stationary final state takes a very long time and therefore clusters and
network-like structures occur.
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Figure 4.4: Buoyancy functions bl as function of the pressure for ξ = 2.5 and (a) for
different temperatures, computed from simulations (colored linepoints) and
from calculated theoretically (dashed curves). The uppermost curve (T ∗ =
0.005) corresponds to a final 3-phase-stacking displayed in (b), whereas the
simulation snapshot displayed in (c) belongs to T ∗ = 0.05 and shows only a
2-phase-stacking in the final state. This is expected from the corresponding
buoyancy functions.

our simulations (see Fig 4.3(e)). However, we also observe an unexpected non-equilibrium
behavior at the interface of the two phases. Particles at the interface are arranged in
bubble-like objects, where the shell consists of large and the core of small particles.
Though these structures are very stable over the whole simulation run of 500τB, the
behavior probably does not denote the equilibrium case. We suppose that the occurrence
of these bubbles stems from the different effective softnesses of the particle species. Due
to the fact that all particles have the same maximum potential, larger particles can easily
have more absolute overlap with each other. Therefore, a shell of larger particles that
forms during the sedimentation process is stable and hardly penetrable for a cluster
of smaller particles. A shell of large particles forms when a cluster of small particles
moves through the bath of large particles until the basin of small spheres is attained.
However, the shell of large particles does not break up in order to release the small
particles. Instead a protuberance is formed at the interface.

In Fig. 4.3 we have considered the final states for constant temperature, constant relative
softness of the particles, and varying relative mass densities. In order to investigate how
the buoyancy function and therefore the final states depend on the temperature or on the
relative softness of the particles, we also consider systems with a fixed mass density ratio
of ξ = 2.5 but with varying temperature (cf. Fig. 4.4(a)). While at a small temperature
the buoyancy function possesses two zeros and therefore we observe a 3-phase-stacking
(see also Fig 4.4(b)), for a larger temperature the buoyancy function is negative for all
pressures and as a consequence for a large temperature the small particles always end up
on top of the large particles (see final state shown in Fig. 4.4(c)).
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Figure 4.5: Buoyancy functions bl calculated from the theoretical approximations in case
of different softnesses of the two particle species. The relative softness is
measured by the aspect ration εl/εs of the respective potential prefactors εs
and εl in case of overlaps between two small or two large particles, respectively.

Particles of distinct species may not have the same softness. Therefore, for the buoyancy
functions shown in Fig. 4.5 we again fixed the temperature at T ∗ = 0.005, where the
3-phase-stacking has been found, but now vary the relative softness of the particles. The
relative softness is given by the fraction εl/εs, where εν denotes the prefactors of the
interaction potentials of small and large particles in Eq. (4.2). Here, the temperature has
been normalized with respect to the energy scale of the small particles. Our theoretical
approximations predict a 3-phase-stacking in case of εl ≈ εs or εl > εs. However, for
εl < εs/2, the buoyancy functions are negative for all pressures and therefore, we only
expect 2-phase stackings with the softer large particles at the bottom and the small
particles on top. Note, that the theoretical formalism for the prediction of buoyancy
functions does not depend on the softness prefactor εls for the interaction between a
small sphere and a large sphere. Thus, our considerations should only be valid if mixing
of the particles is not artificially supported, e.g., by a prefactor εls that is much smaller
than εl or εs.

4.4.4 Dynamics

In the following we discuss the dynamics of the sedimentation processes. Fig. 4.6 shows
the evolution of the sedimentation for a mass density ratio ξ = 2.5. At time zero the
particles are randomly mixed. While they sink to the ground the pressure is increased at
any point within the already sedimented particles. High densities cause a segregation of
large and small particles, where the larger particles either sink at high pressures or raise
at low pressure regions. The final state after 500τB is shown in the last snapshot and
consists of a clear 3-phase-stacking.
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Figure 4.6: Sedimentation of small and large particles with ξ = 2.5 from an initial system
with randomly distributed spheres with φ = 0.3. The snapshots only show
the bottom of the simulation box. In the final state large particles can be
found below and above the smaller ones. A fully time resolved visualization
of this exemplary sedimentation process is included in the supplementary
video material of Ref. [1].

The segregation process consists of different steps. First the particles locally segregate.
This is due to the fact that the gain in volume fraction for overlaps between particles
of the same species is larger than the volume gain of overlaps between small and large
particles.

In order to quantify this effect, we plot the relative gain in free volume ΔVνν′/(Vν + Vν′)
due to an overlap of spheres of species ν and ν ′ as a function of the overlap energy Eνν′

in Fig. 4.7. The overlap energy Eνν′ is given by the respective pair interaction potentials
as in Eq. (4.2). The relative gain in volume for overlaps of spheres of the same kind is
energetically preferred in comparison to the volume gained by overlaps of two spheres of
distinct species. The effect becomes even larger at higher energies, i.e., large overlaps.
Therefore, the segregation of particle species will occur faster if the overlaps become
large. For this reason the segregation in colder systems is slowed down mainly because
of two influences, one being the dynamical slow-down due to the low temperature and
the other being the less significant volume gain due to smaller overlaps. Indeed, in some
of our simulations we could observe that at lower temperatures segregation does not
take place within the whole simulation time. Unfortunately, from finite simulation time
one can not discriminate between real asederotrope phases (as in the experiments by
Serrano et al. [19]) and a very slow separation process. Nevertheless, one can conclude
that particles in cold systems with less overlaps stay mixed at least for very long times.

At the temperatures that we usually consider in most of our simulations, in the first step
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Figure 4.7: Schematic picture of the three different cases of possible particle overlaps.
The plot shows the relative gain of volume ΔVνν′ between two particles of
species ν and ν ′ as a function of their overlap energy Eνν′ .

the particles locally segregate and we observe the formation of clusters of the particles
that are unstable in the region they are located. In the next step these clusters raise or
sink. Finally the clusters merge with the phase consisting of the same particles at the
top or bottom of the system. Note that the merging process can take a long time and
might include the formation of protuberances as we have already mentioned at the end
of the previous section.

In order to study the cluster formation and movements, we perturb final states by adding
additional small or large particles such that we can observe the relaxation process of
the additional particles in detail. We begin with the state that for granular systems
is referred to as the reverse Brazil nut effect. Here, small particles lay on top of the
larger ones. We choose ξ = 1.8, which is the threshold value for such a stacking (cf.
Fig. 4.3(b)). Now we add a small amount of large particles and let them sediment on
top of the small particles. In Fig. 4.8 the resulting relaxation process is shown. First,
larger particles stay segregated from the small ones on the top. Then they form a cluster,
which subsequently is able to pass through the barrier formed by the small particles. The
cluster sinks downwards and finally merges with the lower phase of large particles. The
process repeats several times with other clusters until a stable final state is recovered.

If the initial state is the other way around, i.e., large particles are on top of the small
ones (as in Brazil nut systems), we observe how additional small particles also pass the
central zone of large spheres by forming clusters. In Fig. 4.9 we show the dynamics of
such a relaxation process for ξ = 3.5 (see also Fig. 4.3(e) for the corresponding final
state). Interestingly, the cluster formation of small particles only occurs at sufficiently
high pressures and densities. While in the diluted regions close to the top of the system
the small particles slip through voids between the large particles and therefore penetrate
the central zone of large particles one by one, this is no longer possible if the particles
are further away from the top region, i.e., when the pressure becomes larger and overlaps
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Figure 4.8: Snapshots of a system with small particles (blue) sitting on large particles
(yellow) at a mass density ratio of ξ = 1.8 (cf. Fig. 4.3(b)). The system is
perturbed by additional large particles that are placed on top of the final
state. The snapshots (b)-(e) shows the resulting relaxation process. The small
particles have been faded out for better insight on the large spheres. First, a
cluster of large particles (for better visibility colored magenta) emerges from
the unstable top layers of larger particles, then the cluster sinks through the
basin of small particles until it merges again with the stable ensemble of the
larger particles. A movie of this cluster sedimentation can be found in the
supplementary material of Ref. [1].
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(a) (b) (c) (d) (e)

Figure 4.9: Snapshots of a system with large particles on top of small particles at ξ = 3.5
(cf. Fig. 4.3(e)). Additional small particles are added on the top. The
relaxation process is displayed in (b)-(e) where the larger particles are faded
out and clusters of small particles are marked by different colors. The newly
added small particles first penetrate the zone of large particles where they
form clusters. The clusters then sink to the interface, where they may remain
in bubbles or form protuberances that are meta-stable and stay for a long
time.
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between large particles become more pronounced. At the depth, where the motion of
single small colloids through the voids of large particles is no longer efficient, formation
of clusters of small particles sets in. Subsequently these clusters pass through the zone of
large particles. When the clusters reach the interface, they usually remain stable for a
long time while they are still surrounded by a shell of the opposite species (cf. description
in the previous section and Fig. 4.3(e)).

4.5 Conclusions

We have presented approximative theoretical predictions for the final states of a sedi-
mentation process within a binary colloidal soft sphere system and confirmed them by
Brownian dynamics simulations. The results turned out to differ significantly from the
behavior of sedimenting hard spheres. For example, we observe 3-phase-stackings as well
as metastable or long-lasting network-like structures. Furthermore, the sedimentation
process is even more comprehensive. In order to demonstrate the relaxation process, we
have perturbed sedimented states by adding particles on top of already finished sedimen-
tation profiles. We observe that particles do not sediment homogeneously through the
zone of the other species in order to re-establish the equilibrium state, but they rather
aggregate into clusters and sink to the ground cooperatively.

We want to mention that, if the buoyancy function bl that we introduced in Section 4.4.2
possesses two zeros, our theory will even allow for a 4-phase-stacking with small particles
on top followed by large particles, then small particles again, and finally large particles
at the bottom. The reason, why we did not observe such a stacking, is that the first zero
occurs at very small pressures such that for our gravitational strength the uppermost
small particle phase is only stable within a small layer. However, further investigations
with other pair interactions or other parameters might lead to situations where the
4-phase-stacking is stable.

For our analysis we employed a harmonic model pair potential. However, we expect
that our method and the reported mechanisms of separation are also valid for other soft
particle systems whenever significant overlaps between the particles occur. Furthermore
it would be interesting to study the particle separation process in a system of a soft
granular material, where in addition to the buoyancy effects studied here also inertia
effects might be important.
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Chapter 5
Structure and particle correlations close to a
wall

Preface. The present chapter is based on the paper “Anisotropic pair correlations
in binary and multi-component hard-sphere mixtures in the vicinity of a hard wall: a
combined density functional theory and simulation study” [2], which has been submitted to
the journal Physical Review E. It contains literal adoptions of text and figures. Whereas
the introductory section of this chapter is not fully regarded in the paper, the subsequent
sections contain only minor modifications of the original manuscript.

5.1 Introduction and the hard-sphere (HS) limit

In theory, the interaction between two particles is often described analytically by using
approximations or assumptions for the actual physical system. For example, soft colloids
are often treated in the fashion of soft model-potentials. Typical models describe the
interaction between star-polymers [165–167], polymer coils [168] or microgel particles
[169]. For such model potentials a limiting case occurs in BD simulations at very low
temperatures, as long as the potential drops to zero at a finite distance [91]. In this
special case the interaction potential between particles becomes very steep compared to
the thermal energy. Due to this fact particles are no longer able to notice the softness
and the underlying system becomes hard sphere (HS) like, as the temperature is lowered
sufficiently [91, 170, 171]. The HS system is a purely theoretical model system. Still,
its outstanding importance as a universal model for the explanation of a variety of
experimental setups is prevailing. As a matter of fact, the monodisperse version of a HS
system crystallizes already at a packing fraction closely below 0.5 [172]. For this reason,
polydispersity is studied in theories and simulations [46,173]. It has a major influence on
the solidification and the formation of amorphous glassy materials. In the early days of
research on simple liquids, systems were assumed to be as simple as possible, in other
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Figure 5.1: The HS limit of binary (50:50) mixtures with diameters σ1 and 1.4σ1, repre-
sented in different diagrams: (a) The probability P (δ) for finding a pair of
particles with an overlap of δ is plotted for different temperatures in a double
logarithmic representation and for constant a packing fraction of φ = 0.3.
(b) Typical relaxation times against kBT/(pσ

3) for systems with different
temperatures and packing fractions. The black dotted curve corresponds to
the HS limit simulation. Arrows indicate increasing temperature. (c) The
equation of state zEOS as a function of the total packing fraction φ. The black
dotted curve is HS limit data, the purple solid line is the analytic prediction
from Ref. [114] (cf. Eq.(2.86)). The green triangles are calculated from our
DFT, as explained in the text.

words monodisperse and homogeneous. For these and advanced studies, like for example
binary systems, typically integral equations and bridge functions were formulated [135]
to describe the second order (pair) correlations between particles [174–177].

Throughout the whole thesis soft model-potentials are used. In Chapter 4 a binary
mixture of ultra-soft particles was employed, since the main feature, which gave rise to
the various results, is the ability of the particles to penetrate each other up to a certain
degree. In this chapter the feature of the hard sphere limit will be used. One could
ask, why no hard core interaction between the particles with momentum conserving
hard collisions has been implemented in the first place. The answer to that question
stems from the nature of the simulation method. In BD simulations, the thermal input
is modelled statistically, although it originated from the bath of smaller surrounding
molecules. At a constant timestep the stepwidth of a particle is drawn from a Gaussian.
This means in return, that the particle will very probably make only a small random
jump in a random direction. But there is also a very low probability for the particle to
make a larger jump. Unfortunately, when simulation times and the number of particles
become large, the event driven technique, which would be able to solve this problem,
causes a rather poor computational performance. It is more efficient to allow for small
overlaps between particles and simulate them close to being hard spheres.
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The pair potential again reads

vνν′(r) =

{
ε
2

(
1− r

σνν′

)2
r ≤ σνν′

0 else
, (5.1)

where r is the distance beween the two particles centers and where ν and ν
′
are their

species. σνν′ again is the intermediate diameter of the two particle species. The prefactor
ε in Eq. (5.1) fixes the energy scale of the potential and is therefore the only parameter
being changed during a cooldown to the HS regime. However, if ε/kBT is around one, the
potential is very soft and particles at high densities are even overlapping, which can lead
to multiple reentrant transitions for the jammed state [161] or also multiple rheological
changes [178]. However, for such soft particles the assumption of a fixed diameter as in
Eq. (5.1) does not hold. In these systems it is possible to calculate an effective particle
width via an approximation that has been elaborated by Andersen et al. [179].

At sufficiently low temperatures, when the prefactor is dominating over the thermal
energy, i.e., that ε/kBT � 1 holds, the particle overlaps become very small and the
definition of an intermediate diameter σν as used in the model potential makes sense. To
illustrate the transition from soft to hard interactions, we have investigated a structural,
a dynamic and a thermodynamic property of a binary system under the aspect of
decreasing temperature. Fig. 5.1 shows the corresponding plots for bulk situations. For
the bulk-plots we have studied small systems with only 1000 particles. In the later
considerations, where we study the impact of a wall, we employ a cubic simulation box
with side length l, periodic boundary conditions in x- and y-direction, and walls at z = 0
and z = l, where the same harmonic overlap potential as in Eq. (5.1) is used for the walls.
In these simulations N = 32000 particles are used, such that the box is large enough to
avoid confinement effects such as non-trivial correlations of particles with both walls.

First, in Fig. 5.1(a) it is shown how the convergence against the well defined and
universal HS limit arises in structure. This is nicely represented by a vanishing width of
the distribution of particle overlaps with decreasing temperature. As the temperature is
still of the order of the particle interactions (purple curve), large overlaps are possible
and the effective diameter of particles is significantly below the model parameter σνν′ .
As temperature decreases, a sharp distribution around 0 emerges. The limit distribution
for hard particles would be a δ-peak.
Second, in Fig. 5.1(b) the dynamical behavior is shown in dependence of the average
relaxation times of the particles. Here, τ corresponds to the typical time that the
intermediate scattering function needs to drop below a certain threshold. In the presented
data this threshold has arbitrarily been set to f(k = 2πρ1/3, t = τ) = 1/e. The
(normalized) relaxation time is plotted against kBT/(pσ

3), which is a uniform measure
for systems with different temperatures and pressures [91]. As one can see, the colored
curves of different packing fractions converge against the black dotted mastercurve,
which represents the HS limit. The datapoints first approach this curve when a certain
temperature is undershooted. Consequently, the datapoints simply follow the mastercurve.
Finally, in Fig. 5.1(c) the equation of state is shown for the same data. While the packing
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Figure 5.2: Sketch of two hard spheres of different species ν and ν ′ close to a hard wall.
Their respective positions r and r ′ (not shown) define their relative distance
Δ = r ′ − r. Particle diameters are σν = 2Rν and σν′ = 2Rν′ . We employ
cylindrical coordinates z, r, ϕ around the green (left) sphere.

fraction of the soft particles is held constant, zEOS converges against the prediction of
Eq. (2.86). In order to obtain HS like results for denser systems the temperature had to
be significantly lower than in the diluted systems. Therefore temperature adjustments
in the HS simulations have been made while increasing the density. These adjustments
result in little “jumps” of the mastercurve at φ = 0.29, 0.47 and 0.531. Via the framework
of DFT the equation of state with pressure p = −Ω/V [98] can be determined by the
minimization of the grand potential Ω. The calculated values are shown by the green
triangles and coincide with the eCS from Eq. (2.86). In summary, it can be observed,
that all major properties of the underlying model become universal in the corresponding
low temperature simulations.

5.2 Model

We investigate monodisperse, binary, and six-component mixtures in front of a wall,
which we access with both classical density functional theory (DFT) and Brownian
dynamics (BD) computer simulations in the HS limit. For the latter, the number of
particles of each species ν is fixed, i.e., at a 50:50 mixture in case of a binary system. In
the grand canonical framework of DFT all species are assumed to have the same averaged
number densities in a reference bulk system. In case of the binary system, the spheres
have diameters σ1 and σ2 = 1.4σ1 in order to avoid crystallization effects [32].

The wall is located in the xy−plane at position z = 0 (see Fig. 5.2). To express two-
particle correlations, we consider one sphere at position (x′, y′, z′) as reference particle
such that the positions (x, y, z) of all other particles can be expressed in cylindrical

1Note, that some values slightly overshoot the theoretical prediction. This is not a real effect, but it is
rather due to the statistical noise.
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coordinates relatively to the reference sphere. As a consequence, two-particle correlations
depend on the distance z′ of the reference sphere to the wall, the distances z of the

other particles to the wall, and the distance r = [(x− x′)2 + (y − y′)2]1/2 between the
particles and the reference sphere measured parallel to the wall. All other coordinates are
integrated out due to symmetry. As a consequence, no crystallization or other symmetry
breaking ordering parallel to the wall is resolved.

5.3 FMT and OZ calculations restricted in half space

As a flat wall is introduced to the system due to the symmetry of the structure close
to that wall, all density profiles ρν as well as all derivatives ∂2Φ/(∂nα∂nβ) in Eq. (2.92)
solely depend on the spatial coordinate z, perpendicular to the wall. Furthermore, the
direct correlation functions only depend on three coordinates, i.e., c

(2)
νν′ ≡ c

(2)
νν′(r, z, z

′).

For numerical reasons, we sample our functions on a distance L between the wall and the
bulk fluid and on equidistant discrete points zi = idz with dz = L/M for i = 0, . . . ,M −1.
When we consider intervals Ii = [zi − 1

2
dz, zi +

1
2
dz], we can split the integration volume

V = R3 on the right-hand side of Eq. (2.92) into slices Vi = R2 × Ii and rewrite the
direct correlation functions as

−c(2)νν′(r, r
′) ≈

M−1∑
i=0

∑
α

∑
β

∂2Φ(zi)

∂nα∂nβ

×
∫
Vi

dr ′′w(α)
ν (r ′′ − r)w

(β)
ν′ (r

′′ − r ′). (5.2)

In order to calculate the direct correlation functions, it is necessary to compute the
integral in Eq. (5.2), which for given combinations of particle species and weight functions
solely depends on the interval I and the distance Δ = r ′ − r. Thus, we define auxiliary
functions

W
(αβ)
νν′ (I,Δ) :=

∫
R2×I

dr ′′w(α)
ν (r ′′)w(β)

ν′ (r
′′ −Δ) , (5.3)

which we pre-compute analytically whenever possible. This reduces the computational
cost significantly. For further details about the calculations we refer to Appendix A.4.

Finally, the knowledge of the density profiles ρν and of the direct correlations c
(2)
νν′ enables

us to determine the total correlations h
(2)
νν′ via the OZ relation from Eq. (2.93). It is useful

to solve this relation partially in Fourier space to exploit the symmetries of our system.
For this purpose, we define an in-plane Fourier or Hankel transform (see Appendix A.3)
by

Hr

{
h
(2)
νν′(·, z, z′)

}
(K) ≡ h

(2)
νν′(K, z, z

′)

=
1

2π

∫ ∞

0

dr

∫ 2π

0

dϑ rh
(2)
νν′(r, z, z

′)e−ıKr cos(ϑ) , (5.4)
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which only assigns the radial components of a function and usually is employed to obtain
structure factors of layers parallel to a symmetry-breaking wall (cf. [180]). With such a
transform, the OZ relation from Eq. (2.93) can be re-written in the form

Hr

{
h
(2)
νν′(·, z, z′)

}
(K) = Hr

{
c
(2)
νν′(·, z, z′)

}
(K) + 2π

n∑
ν′′=1

∫ ∞

−∞
dz′′ ρν′′(z′′) (5.5)

×
[
Hr

{
h
(2)
νν′′(·, z, z′′)

}
Hr

{
c
(2)
ν′′ν′(·, z′′, z′)

}]
(K).

For several values K, we determined the total correlations from this equation using
an iterative numerical scheme (see Sec. 2.6.4 or, for a more sophisticated approach,
Appendix A.1). In order to cope with numerical circumstances, we define our discrete
lattice for the radial coordinate r in a way that the value r = 0 is avoided in real space.
For this reason, we solely provide data, where the radial component is very close but not
equal to zero.

5.4 Results

In this section we quantitatively compare the results that we obtain from our multi-
component DFT and the (BD) simulations. First, we focus on one-particle densities.
Second, we bear in mind the anisotropy in our system and consider the two-particle
correlations. Consequently, all these results are employed in order to quantitatively
analyze the contact properties of particles. These contact values are directly related to
the anisotropic force distribution acting on a particle. As a result, the net force for a
particle can be determined (cf. [51]). The nonuniform distribution of forces leads to the
differences between effective diffusion coefficients in different directions and therefore to
anisotropic diffusion paths as we will discuss in the next chapter.
Finally, we demonstrate the impact of polydispersity by a comparison between our findings
for a binary and a six-component mixture. In this context we discover a significant
improvement of the agreement between the predictions of DFT calculations and the
results of BD simulations for an increasing number of particle species.

5.4.1 One-particle density profiles

In Fig. 5.3 we show density profiles of both DFT calculations and BD simulations for
small and large particles in our binary (50:50) mixture of hard spheres. The bulk densities
have been fixed such that the corresponding total packing fractions are deep in the liquid
phase (φ = 0.3), close to the fluid-crystal transition in monodisperse systems (φ = 0.48),
and in the regime where glassy dynamics sets in (φ = 0.54). The most obvious differences
between DFT calculations and BD simulation results occur in the second-layer peak of
the density profiles. Especially in the profiles of higher bulk densities, the second-layer
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Figure 5.3: Density profiles of (a) small and (b) large particles in binary (50:50) mixtures
of hard spheres with diameters σ1 and σ2 = 1.4σ1 in the vicinity of a flat
hard wall (at z = 0). Circles represent simulation data, whereas results of
DFT calculations are given by solid lines. To enhance readability, density
profiles are shifted for different packing fractions by 0.5 (φ = 0.48) and 1.0
(φ = 0.54) upwards and the dashed lines denote the bulk values. The small
sketches at the bottom of the figures mark distinct packings of spheres.

peak splits up into two peaks in case of the simulation results (circles in Fig. 5.3) or they
just contain shoulders in case of the DFT predictions (solid lines). Each local peak or
shoulder can be connected with a particular stacking of particles belonging to different
species, as illustrated by some exemplary sketches at the bottom of Fig. 5.3. Note that
local crystal-like ordering is not precisely captured in our DFT approach because we
assume translational invariance along the wall. As a consequence, as soon as such locally
ordered structures are preferred by the system, our DFT predictions become less accurate,
even though the overall structure is not yet a crystal. Accordingly, the overall agreement
between simulations and theory is very good for low packing fractions.

5.4.2 Two-particle correlations

In DFT, the two-particle or pair correlations can be obtained via the test-particle or the
compressibility route. For the first, density profiles are determined around a fixed test
particle which results in an effective two-particle density. We follow the compressibility
route, where the direct correlation functions c

(2)
νν′ from DFT are used to close the OZ

relation (Eq. (2.93), or more precisely, Eq. (5.5)). Using the WBII functional, we obtain

the density profiles ρν and direct correlation functions c
(2)
νν′ , where we calculate the latter

directly via Eqs. (5.2) and (5.3) for our inhomogeneous system.
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Figure 5.4: Direct correlation functions obtained from DFT using Eqs. (5.2) and (5.3)
for the binary HS mixture as explained in the text. The reference particle is
fixed at z′ = 1.5σ1. For a second particle at position r, z we show the direct
correlations (a) c

(2)
11 between small and small, (b) c

(2)
21 between large and small,

(c) c
(2)
12 between small and large, and (d) c

(2)
22 between large and large particles.

Note that the second index always denotes the fixed reference particle. The
total volume fraction is φ = 0.5. Below the contour plots the profile along
the z-axis with r = 0 are shown (marked by red lines in the contour plots).
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Figure 5.5: Direct correlation profiles along the z-axis as shown in Fig. 5.4, but for various
positions z′ of the reference particle. The profiles from Fig. 5.4 with z′ = 1.5σ1
are shown in solid bold red. Again, the correlations are between (a) small
and small, (b) large and small, (c) small and large, and (d) large and large
particles. In addition, the envelopes of all profiles are shown. The horizontal
stroked lines mark the depths of the minima in (b) and (c), which are equal.

Direct correlations. The direct correlations are shown exemplarily in Figs. 5.4-5.6 for
the binary mixture of hard spheres. First, in Fig. 5.4, we compare c

(2)
νν′ for the four

combinations between the two species with each other (small-small, large-small, small-
large, and large-large). The position of the reference particle is fixed at z′ = 1.5σ1 and
the direct correlations are plotted as functions of the position of the other particle, where
the position can be expressed in the natural cylindrical coordinates (r, z). In addition, we
show the profile along the z-axis together with each plot. While the correlations between
two large or two small particles only differ by a constant factor and by the length scale,
the correlations between a small and a large particle depend on which particle is used as
reference particle. In both cases the direct correlation functions do not have one clear
minimum. While in case of a small reference particle there is a plateau with an extent of
0.4σ1 in z-direction, in case of a large reference particle there are two distinct minima at
z ≈ 1.3σ1 and z ≈ 1.7σ1.
Note that in bulk, both correlation functions between large and small particles are
identical (see Appendix A.2) and possess a plateau for r < 0.2σ1 where the direct
correlation function is constant. The plateau is due to the fact, that in the FMT for the
3D-fundamental measures the intersection volume of two spheres does not change as long
as the smaller one is located completely inside the large one (for an illustrative sketch
see Fig. A.1(a) in Appendix A.2). Therefore, the value of the integral in Eq. (2.92) does
not change and the observed plateau develops.
Back to the anisotropic case of Fig. 5.4, a similar explanation holds: when the position
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reference particle at different positions z′, which are marked by vertical lines
at (a) 0.5, (b) 0.7, (c) 1.0, (d) 1.5, (e) 2.0, and (f) 2.3.

of a small particle is fixed, as in Fig. 5.4(b), the integration volume V in Eq. (2.92) is
restricted to the shape of this particle as long as the small particle is completely contained
inside the larger one. In contrast, when a large particle is fixed, as in Fig. 5.4(c), the
previously mentioned integration volume depends on the position of the small particle.
Thus, the result of the integral in Eq. (2.92) depends also on the relative positions of
the particles2. The resulting direct correlation function is similar to the self correlations
between two small particles, because the relevant combinations of weight functions w(α)

that enter Eq. (2.92) give the same results in this case (for further details see Appendix
A.4, Case 3).

In Fig. 5.5 we compare slice cuts of the direct correlation profiles along the z-axis for
various positions z′ of the reference particle. Additionally, we draw the envelope to all
shown profiles. Figures 5.5(a) and (c) demonstrate the similarity between small-small
and small-large correlations, which was mentioned in the previous paragraph.

In Figs. 5.4(c) and 5.5(c), we observe a splitting of the minimum of the direct correlation
function into two minima. The splitting occurs for the parameters where the direct
correlation functions reach local maxima in the corresponding envelope of the profiles
as can be seen in Fig. 5.5(c). This suggests that there exists a z-dependent maximum
correlation for a particular combination of species. In Fig. 5.6 we show a series of direct
correlation functions with varying position z′ of the reference particle.

These positions are marked by vertical lines and, obviously, the absolute minima of the
direct correlations are located in the vicinity of these positions. Specifically, the global
minima of the direct correlation functions shown in Fig. 5.6 can be found at z > z′ in
(a), (b), and (e), but at z < z′ in (c) and (f). In (d) the minimum is split into two local
minima on both sides of the center of the reference particle. This behavior can again
been understood from studying the corresponding profiles in Fig. 5.5(c), where the shape
of the region around the minimum of each profile always follows the maximum possible
correlation, given by the envelope.
The anisotropic arrangement of the direct correlation around the center of the reference
particle will lead to the emergence of an anisotropic force, as we will show in the later
sections.

2The position dependence enters via the derivative of the excess free energy density Φ.
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νν′(r, z, z

′) for a reference particle at position
z′ = 0.5σν′ between (a) small and small, (b) large and small, (c) small and
large, and (d) large and large particles, where the second particle denotes the
reference particle. The packing fraction is φ = 0.5 in the bulk limit and each
plot is split up into data from BD simulations (upper half) and DFT results
(lower half), where the total correlation functions were determined via the OZ
equation. Note that in case of the DFT calculations all numerical artifacts at
forbidden positions (inside the wall and inside the reference particle) have
been reset to −1.

Total correlations. Starting from the direct correlations and one-particle densities
determined with DFT, we calculate the total correlations between two particles using
the OZ relation from Eq. (5.5). As mentioned in Sec. 5.3, this equation is exact, but we
have to deal with numerics in order to perform this transformation. Especially the finite
number of Fourier modes in our discretization gives rise to artifacts. We illuminate the
impact of the artifacts by means of bulk calculations in Appendix A.2. There we show,
that basically the resulting total correlation functions show unphysical values differing
from −1 inside the core. Note that this behavior not only originates from numerical
inconveniences during solving the OZ relation but also depends on the inconsistency
of the approximate excess free energy functional we have used. Such inconsistencies
are common for all approximate functionals and could only be resolved by the exact
functional, which in general is not known [104].
In our case the specific artifacts in the forbidden regions could be avoided by employing
the earlier mentioned test-particle route, where one particle is fixed at a position in
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at z = 0. BD data is shown in the first and third row, DFT results in the
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rows. Each column denotes a different position z′ of the reference particle
(z′/σ1 = 0.5, 1.1, or 1.5). All numerical artifacts at forbidden positions have
been removed and reset to −1 in case of DFT results. The speckled pattern in
the lower density simulation data arises from poorer statistics at the location
of local minima in the density close to the z-axis with r = 0. The vertical lines
in the bottom panel indicate the position of the profiles shown in Fig. 5.9.
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front of the wall whilst the number density around it is calculated with the help of
DFT. However, this route is expected to show deviations in other regions of the profiles
where the compressibility route might work more precisely. Furthermore, solving for the
two-particle correlations via the compressibility route provides a better computational
performance. Deviations between both routes could provide a measure for the consistency
of functionals.

Similar to Fig. 5.4, we show the total correlation functions for all possible pairs of
particles in Fig. 5.7. In addition to our results determined with DFT and the OZ relation,
we plot the total correlations obtained from BD simulations. Simulation results are
presented in the upper half of each plot, in the lower half the immediate comparison to
the DFT results is shown. In general, both DFT calculations and BD simulations show
good agreement for all total particle correlations. However, as we have already noted
in case of the direct correlation function in the previous subsection, the corresponding
local structures are usually underestimated by DFT predictions whenever local ordering
occurs. For example, deviations can be seen in Figs. 5.7(a) and (b), where simulations
lead to stronger correlations between the fixed reference particle and a second particle at
(r ≈ 1σ1, z ≈ 2.2σ1). At this position, particles in the second layer of a local fcc or bcc
structure are located. Such orderings occur more often for higher packing fractions and
they are not incorporated in our DFT approach.

In Fig. 5.8 a small reference particle is fixed at different positions z′ and the total
correlation with another small particle at position (r, z) is shown. Besides the previously
discussed small deviations, the comparison between DFT calculations and BD simulations
in general reveals a good quantitative agreement.

In order to study possible deviations in more detail, we show the profiles along the
vertical lines in the bottom panel of Fig. 5.8 separately in Fig. 5.9. Note that this data
is taken at the rather high packing fraction φ = 0.54 where glassy dynamics sets in.
Nevertheless, the overall agreement is still good. The most pronounced differences occur
close to particle contact. In the simulation data this behavior is affected by two effects:
on one side, the slight softness of the repulsive interactions, and on the other side, the
uncertainty of the actual position of the reference particle due to the discretization of
the z-axis. In the next subsection, we study contact values and resulting forces on the
test particle in more detail.

5.4.3 Contact values and anisotropic forces

Anisotropy in structure results in an anisotropic distribution of forces acting on a particle.
Obviously, such an anisotropic distribution can result in a non-vanishing net force. The
force distribution and the net force depend on the total pair correlations at particle-
particle contact. For this reason, we explored the value of the total pair correlation
functions hcontνν′ = gcontνν′ − 1 at particle-particle contact. Note that the condition of contact
effectively reduces the amount of independent parameters by one, i.e., (r, z, z′) → (z, z′).
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In Fig. 5.10 we present the contact values along the surface of a small reference particle
in a binary mixture, which is located at several distances from the wall. Starting in
Fig. 5.10(a) with wall contact, the reference particle is slowly detached from the first
layer at the wall in Figs. 5.10(b) and (c) until it reaches the second layer in Fig. 5.10(d).
For these different positions, we compare results obtained from our BD simulations
with the results calculated from DFT and the OZ relation. We find reasonable overall
agreement. However, aside of statistical noise, some details of the data reveal significant
differences: First, in Fig. 5.10(a) the total correlations hcontνν′ (z, z

′) obtained from the
simulations exhibit a very pronounced maximum at around (z − z′)/σ1 ≈ 0.71 in case
of the two systems with higher densities. The contact values obtained from DFT also
possess maxima at these positions, but they are less pronounced. Probably, this is again
due to the neglect of the local structure parallel to the wall in our theory. Indeed, the
simulation data show some entropically favored contact correlations which are most
obvious by the stronger oscillations in Fig. 5.10(d).

As mentioned before, anisotropies in structure also cause anisotropic force distributions.
For such a situation we have introduced the PMF (Eq. (2.39)) and the accompanied
mean force (Eq. (2.40)) as a function of the reaction coordinate that is z in our case.
Recalling the derivation from the introductory chapter (Sec. 2.5), it reads

fν,z(z) = kBT
∂ ln
(
ρν(z)

)
∂z

. (5.6)

Now, the Lovett-Mou-Buff-Wertheim equations [181, 182] can be used to connect the
gradient of the density profile, and therefore the resulting mean force, with the two-particle
direct correlations by

fν′,z(z
′) = 2πkBT

n∑
ν=1

∫
dz dr rc

(2)
νν′(r, z, z

′)
∂ρν(z)

∂z
(5.7)

and via an orthogonality relation for the density-density correlations (cf. Eq. (2.105)),
which was introduced within the derivation of the OZ relation (see Sec. 2.8), the mean
force can also be connected with the pair correlation functions leading to [181]

fν′,z(z
′) = 2πkBT

n∑
ν=1

σνν′

∫
dz ρν(z)g

cont
νν′ (z, z

′)
z′ − z

σνν′
. (5.8)

Note that Eqs. (5.6) and (5.8) provide an exact relation between a one- and a two-particle
correlation, because Eq. (5.8) corresponds to the first member of the Born-Green-Yvon
hierarchy [51,52].

In Fig. 5.11, we plot the net forces obtained from our theoretical calculations via Eqs. (5.6),
(5.7), and (5.8); in comparison, we additionally plot the forces directly obtained from our
BD simulations. Clearly, the net forces that are theoretically obtained via the density
profiles as in Eq. (5.6) match the simulation results very well. However, at high densities
we observe a significant deviation between the curves at around z = 1.9σ1, where the small
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test particle can stack exactly on top of one large particle that is in contact with the wall
and where local ordering might have a pronounced influence on the particles structure.
Employing Eqs. (5.7) and (5.8) lead to forces that deviate from the simulation results for
z < 1.9σ1. These differences are probably due to the thermodynamic inconsistency of the
functional, which for example manifests in the differences between the compressibility
and the test-particle route. Note that Eq. (5.6) corresponds to the test-particle route,
because it solely involves the density profiles, while Eqs. (5.7) and (5.8) involve the direct
correlations. The latter seem to capture the behavior around z = 1.9σ1 better, while the
results from Eq. (5.6) have a better agreement close to the wall.

In the inset of Fig. 5.11(b) we finally separate the contributions from small and large
particles to the net force on the small test particle. Close to the wall, the large particles
push the small test particle stronger to the wall than the small particles do. If the test
particle is moved away from the wall, first the contribution from the small particles
reverses its direction such that they start pushing the particle away from the wall. For
the larger particles the reversal of force direction occurs at a larger distance. Between
the positions of these two reversals of directions, the resulting net force is small.

Differences between Eqs. (5.7) and (5.8). Even if Eqs. (5.7) and (5.8) are equivalent,
only Eq. (5.8) allows directly to decode which directions contribute most to the net force
and which species of neighboring particles has most impact on the average force of a
certain particle. The contributions to the net force which result from different species are
shown in the inset of Fig. 5.11(b). Contrarily, this information is contained only indirectly
in Eq. (5.7). Thus, splitting up the sum in Eq. (5.7) leads to force contributions, which
on the one hand add up to the overall force but on the other hand only represent forces
with respect to direct correlations, whose impact must be integrated (via the OZ relation)
over all possible amounts of intermediate particles in order to yield the actual interaction
between a combination of two particular species.

5.4.4 Comparison between one-, two- and six-component mixtures

For an increasing amount of components in a mixture, local ordering is suppressed even at
high densities. As we will show in the following the signatures of local structures in one-
or two-particle correlations are smeared out with an increasing number of components.
As a consequence, DFT calculations that neglect some types of local ordering become
more accurate in such a type of polydispersity.

In Fig. 5.12 we demonstrate this effect for a packing fraction of φ = 0.5, where (a) a
one-component, (b) a two-component, and (c) a six-component system have been used.
The binary mixture is the same as discussed throughout this work with particle diameters
σ1 and σ2 = 1.4σ1, whilst the more polydisperse system contains an equimolar mixture
with particles of six discrete sizes σ1, 1.1σ1, 1.2σ1, 1.3σ1, 1.4σ1, and 1.5σ1. In the left
panel of Fig. 5.12 we show the total self-correlation function h

(2)
11 (r, z, z

′) of the smallest
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particles, where one particle is in contact with the wall. Obviously, for the monodisperse
case the peaks are very pronounced and, due to the high packing fraction of φ = 0.5 and
the induced anisotropy, crystal-like structures are visible already on the two-particle level.
As expected, major differences occur between DFT calculations and simulations in this
case, e.g. at the position indicated by the arrow in Fig. 5.12(a1). However, the peaks
due to local orderings are less pronounced if more components are added. Therefore,
Figs. 5.12(b1) and (c1) show a much better agreement between simulations and theory.
This result is confirmed by the right panel of Fig. 5.12, where we compare the density
profiles obtained from simulations and DFT. The smoothing of these profiles, while
increasing the number of components, is the result of the increasing number of possible
configurations of different stackings next to the wall. As a consequence, the peaks are
smeared out for an increasing number of components and the splitting of a peak can
no longer be observed in case of a more homogeneous spectrum in the polydispersity
distribution. Nevertheless, Figs. 5.12(b1) and (c1) already show the trend that prominent
peaks in the pair correlations still occur in the polydisperse situation even for the second
shell of surrounding particles. These peaks are retained even if the averaged correlation
functions h1(r, z, z

′) = 1
n

∑n
ν=1 h

(2)
ν1 (r, z, z

′) (not shown here) would be plotted instead of
the self-correlations between solely the smallest ones. Obviously, these peaks represent
the most probable positions of next-neighboring particles, no matter what size they have.

5.5 Conclusions

Using comparisons to BD simulations, we have quantitatively explored the strengths and
weaknesses of the WBII FMT approach within DFT in predicting one- and two-particle
correlations in hard sphere systems. In order to study anisotropic situations, we broke
the symmetry and explored the behavior in the vicinity of a hard wall. Especially in case
of our six-component systems, DFT led to excellent predictions even at high packing
fractions. However, in case of mono- or bidisperse systems, DFT not necessarily resolved
the formation of local order. We demonstrated that the compressibility route of DFT
can be employed to calculate two-particle correlations, contact values, and forces acting
on a particle, even in the investigated strongly anisotropic situations.

Our finding, that particularly at packing fractions above φ = 0.5 two-particle correlations
can be well-predicted, might turn out to be important to understand the relation of
structure and dynamics of such systems. For these large packing fractions the dynamics
tends to become very slow. Such a dramatic slowdown of dynamics usually is termed
as glassy dynamics and its relation to structure is the subject of intensive research in
experiments [43,50,183,184] as well as in simulations or theory [43,45,51,185]. Advanced
theories that deal with glassy dynamics, e.g., mode coupling theory [186,187] or similar
approaches [39, 185,188–190], rely on the knowledge of the structure of the system.
Our work demonstrates that FMT is a suitable approach to obtain a reliable input for
these theories even in the case of anisotropic geometries, e.g., in the vicinity of a wall.
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Chapter 6
Dynamics close to a wall

6.1 Introduction

In search of explanations for the dramatic slowdown of dynamics in glassy systems
many different approaches and also a huge variety of theories exist, cf. Refs. [67, 191]
with [90–92]. One of the most promising theories that copes with the matter of glassy
systems is the so-called mode coupling theory (MCT) [191–193]. Within MCT particles
are assumed to have a memory about their past. This fact results in an adaption of time-
dependent transport-coefficients, which can be handled by approximations of so-called
memory kernels. Whereas these theories are mostly and most easily applied for bulk-
situations, the incorporation of, e.g., the external potential of a flat wall, is less studied.
In this chapter, rather than with MCT, we will focus on a more simplistic and intuitive
picture for the dramatic slowdown of dynamics with the help of a symmetry-breaking
flat wall. Rather than as an inconvenience, we will use the wall as a feature, that enables
us to study a pre-designed cage for a particle that resides in a dense environment.

We use the same model as in the previous chapter and apply the identical pair potential
(Eq. (5.1)). Furthermore, we employ τB = σ2

1/(3πD1) as a suitable Brownian time
throughout the whole chapter, where D1 is the self-diffusion coefficient (cf. Eq. (3.2)).
We will start with the presentation of anisotropic diffusion paths close to a wall and from
this starting point step-wise deduce characteristics of the dynamics, that will in the end
be used to probe a one-particle random-walk model. We will show, that even at high
densities the main features of the dynamical process close to a wall can be described with
the help of single-tracer memory and without the involvement of multi-particle dynamics.
We use measured bulk history-dependent forces, apply them for our random-walk model
close to the wall, and finally show, that the simulation short-time (or short-distance)
dynamics can nicely be allegorized by our modified one-particle random walk.
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Figure 6.1: (a) Distribution of the mean normal forces that act on a small particle from
different directions in a system with φ = 0.58. Here, ϑ is the polar angle
that determines the direction of the force (0 = top, 1 = bottom) and z is the
position of the particle. (b) Cross section forces as a function of the polar
angle ϑ and the position z of a small particle, compared to the bulk value
(dashed line). The inset highlights the behavior on the upper hemisphere
of the particles, with respect to the z-axis. The forces are results from an
average over a half-spherical cross section as explained in the main text.
The direction for different cross sections is determined by the angle ϑ. Two
particular examples for such cross sections are indicated in the main plot, i.e.,
the gray lines at (c1) ϑ = 0 and at (c1) ϑ = π/4. The corresponding surfaces
of these gray lines are sketched in (c) for a particle with wall contact.

6.2 Results

6.2.1 Diffusion paths of a binary mixture

In bulk it is not possible by means of two-particle correlations to identify a preferred
path for the tracer out of its cage. The only thing one can do is taking into account
averaged quantities and design a cage from them. It is possible to model the “activated
hopping” [190] of particles due to fluctuations of the surrounding neighborhood in order
to design a more sophisticated cage [185,189]. Since in this chapter we want to investigate
the particular process, that describes the cage escape of a tracer particle through a given
path (namely the z-direction), we first have to be sure, that the path is a probable route
for an escape.
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We use computer simulations to calculate the average normal force 〈f1,⊥(z, ϑ)〉1 acting
on a small particle’s surface with respect to its position z and from a certain direction
denoted by the polar angle ϑ. Fig. 6.1(a) shows these forces in a dense system with
φ = 0.58. The two very prominent peaks in all the distributions stem from the pair
correlations with small and large particles of the first layer, respectively. As the particle
detaches from the wall, the peaks shift towards the bottom hemisphere of its surface
(with respect to the z-axis). However, from atop (ϑ = 0) the forces become smaller.
This is due to the unfavored position of a neighboring particle on top of it, which must
necessarily buckle from the second density layer in order to stack with the upcoming
particle. This already suggests, that the perpendicular direction is a more probable
direction than the tilted one.

The above argument becomes even more manifest, when we consider total forces acting
on a cross section of a particle. One can integrate over the component of the force
distribution which is parallel to a certain vector a that points into the middle of the
(half-spherical) cross section cap. We define this normalized pointing vector

a(ϑ, ϕ) = sin(ϑ)cos(ϕ)ex + sin(ϑ)sin(ϕ)ey + cos(ϑ)ez (6.1)

in spherical coordinates, with the additional (azimuthal) angle ϕ. In Fig. 6.1(c) two such
cross sections are sketched, the first defined by the vector a(0, 0) ≡ ez (cf. Fig. 6.1(c1))
and the second by a(π/4, 0) ≡ (ez + ex)/

√
2 (cf. Fig. 6.1(c2)). We call the resulting force

〈f1,◦(z, ϑ)〉 the cross section force (marked by ◦). It is determined by the average

〈f1,◦(z, ϑ)〉 = 〈f1,⊥(z, ϑ′)a(ϑ′, ϕ′) · a(ϑ, 0)〉ϑ′,ϕ′ , (6.2)

where the right-hand-side averages the projection of the normal force 〈f1,⊥(z, ϑ′)〉 onto
the direction of the pointing vector a(ϑ), evaluated for a particle at a certain position z.
The average is taken with the coordinates ϑ′ and ϕ′ over the whole cross section cap,
where its alignment is set by the angle ϑ.
Results of the angle-dependent cross section forces are shown in Fig. 6.1(b) for different
particle positions z. The curves represent forces that a particle has to countervail in order
to move into that direction. However, one can nicely see the change of the forces with
the angle and the particle detachment. When a particle is at contact, the cross section
force exhibits a subtle local minimum perpendicular to the wall (red line, ϑ = 0) and a
maximum into the tilted direction (red line, ϑ ≈ π/4). The total minimum exists for the
direction parallel to the plane (ϑ = π/2)2. As the particle moves farther away from the
wall towards the middle of the first two density layers, the minimum in the perpendicular
direction becomes even more pronounced, whilst the maximum shifts towards the parallel
direction, e.g., as represented by the yellow/green lines. This gives information about
the fact that the “channel”, which the particle has to pass in order to arrive at the
second layer, becomes stabilized from the lateral sides, such that a motion in the xy-plane

1This force is proportional to the anisotropic distributed pressure around the surface of a particle.
2Note, that although the forces for larger angles are even lower, these regions cannot be entered due to
the repulsive wall, which is not incorporated in the description via 〈f1,◦(z, ϑ)〉.
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is more improbable. Note, that the cross section force can be calculated from theory
only within a two-body description as presented in the previous chapter, because the
anisotropy of the force distribution is crucial. Thus, the prediction of drags due to, e.g.,
the cross section force, needs a theory, that is at least based on two-particle correlations.

In cylindrical coordinates the van Hove self correlation function Gν(r, z; t) (cf. Eq. (2.5))
is the probability density for a particle of species ν at the point (r, z; t) after it initially
started at (0, 0, 0). It represents in principle the fully resolved information about the
diffusion pathways or preferred particle trajectories. For example the mean square
displacement (MSD), which is proportional to the second moment of the self-part of
the van Hove correlation function, only connects one distance with the time, where all
other information is integrated out. In dilute bulk systems, the van Hove self correlation
function starts as a δ-peak, that smears out as an isotropic Gaussian, where the width at
long times is proportional to t.

In dense systems and close to a wall, the situation is different, as shown in Fig. 6.2. The
upper panel (Fig.6.2(a)) displays G1(r, z; t) for small particles (first row) and G2(r, z; t)
for large particles (second row) at φ = 0.50 and for different evolution times, as indicated.
The dynamics is already slowed down significantly for shorter times (Fig. 6.2, (a1-a3)

and (a6-a8)), the diffusion is prohibited inside the wall, but the overall diffusion process
still looks rather homogeneous. On the other hand, for a density close to the glass
transition (Fig.6.2(b), φ = 0.58), Gν(r, z; t) displays a much slower diffusion process
(note the different timescales). Furthermore, it becomes more anisotropic. Whereas
the diffusion parallel to the wall is barely affected, smaller particles tend to use on
average a perpendicular path to swap into the second layer (Fig. 6.2, (b2-b3)) before
spreading into the parallel plane (Fig. 6.2, (b4-b5)). This fortifies the predictive conclusion
of our calculated cross section force, where we concluded, that paths more likely are
perpendicular and not tilted. However, for the large particles, the typical diffusion paths
look different. First, when approaching the second layer, they remain normal to the
wall (Fig. 6.2, (b6-b8)). Subsequently, when arriving at a distance of approximately 1.7σ1,
trajectories branch away from the z-axis. This can be explained by a preferred stacking
of large particles above small particles. If a large particle was initially located next to a
small one, it raises towards the second layer until it is possible to stack with its smaller
neighbor. In order to do so, it leaves the actual perpendicular path. The last plot of
the time series of the large particle’s van Hove function (Fig. 6.2, (a10 and b10)) suggests,
that first such isolated peaks evolve before the probability density washes out in the
second layer. These two mechanisms, namely the perpendicular diffusion of small and
the tilted diffusion of large particles, account for local rearrangement processes. Such
rearrangements also occur in the bulk case, just that in our situation the probability
densities Gν(r, z; t) are anisotropic and therefore bear pre-defined more probable diffusion
paths due to the local structural neighborhood.

One might state, that preferred paths are a result of local structures. This is for sure
not only the case at a symmetry-breaking wall, but also in bulk. Unfortunately, for an
individual particle that resides inside its cage in bulk, there is on average no information
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about spatially modulated two-particle correlations and therefore no direction-dependent
diffusion probabilities. This is, because in bulk the cage usually is just known on average
(over all possible configurations and alignments). We want to take the advantage of the
knowledge of the alignment and the shape of such a cage in front of a wall in order to
describe one local rearrangement process in more detail.

Let us first have a closer look at the motion of one small particle from the wall into
the second layer, by means of our BD simulations. We have learned, that this process
is obviously rather well described by the diffusion just along the z-axis. We now show,
that the diffusion process and the accompanied escape of the cage into that direction is
similar to other spatial directions, only that it is weighted with a probability to chose
such a path in the first place. If we introduce Δr(t) = r(t)− r(0) (with the respective
components (x, y, z)) we can plot in Fig. 6.3 the normalized MSDs of small particles in
different directions, i.e., in z-direction,3

〈
Δz(t)2

〉
=

1

N1

N1∑
i=1

(
zi(t)− zi(0)

)2
(6.3)

parallel to the wall, 〈
Δr(t)2

〉
=
〈
Δx(t)2

〉
+
〈
Δy(t)2

〉
, (6.4)

and the radial MSD into certain solid angle [ϑI, ϑII],

〈
Δr(t)2

〉
[ϑI,ϑII]

=
1

N
′
1

N1∑
i=1

θ
(
ϑi(t)− ϑI

)
θ
(
ϑII − ϑi(t)

)(
ri(t)− ri(0)

)2
, (6.5)

where in the formulas we have used the Heaviside step function θ(.) and the number
of considered particles N

′
1, i.e., the number of non-zero addends. The last equation

represents the diffusion process of selected particles, that move only into the desired
direction. Their final positions after time t are restricted to ϑI ≤ ϑi(t) ≤ ϑII.

The MSDs from Fig. 6.3(a) are calculated with respect to different starting positions, i.e.,
z(t = 0)/σ1 = 0.55, 0.95, 1.55, where in Fig. 6.3(b-d) the particles always start at wall
contact. As it is clearly visible in Fig. 6.3(a), the effect of different starting positions
has major impact on the shape of the vertical MSD for intermediate or high packing
fractions. If the test particle starts inside a layer, i.e., the maximum of the density
profile (z1/σ1 = 0.55, 1.55), it immediately feels the impact of the confining cage at that
position. This fact makes it to become trapped at short and intermediate times and
only jump after larger waiting times. Furthermore, if a particle starts in the second
layer, it is able to jump forward or backward. Therefore, especially at shorter times
the diffusion is enhanced by a factor of approximately 2 with respect to a particle that
starts in front of the wall. Contrarily, if the starting position is in between the first two
layers (z1/σ1 = 0.95), the diffusion in z-direction is larger for short times and smaller for

3Note, that for reasons of simplicity the index 1 for the smaller particle species has been omitted.
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long times. This is due to the fact, that the starting position for such a particle is less
stable, because it is unfavorable to stay in between two layers. Successively, when the
particle relocates along the z-axis, it inevitably reaches one of the neighboring layers,
where it will stay stable for a typical period. However, as we want to investigate the
local rearrangement from one stable position to another, in the following, we will always
consider particles, that start at the wall.

In Fig. 6.3(b) we plot the MSD for the higher packing fraction (φ = 0.58) parallel
and perpendicular to the wall in comparison with the free diffusion. The averaged
curves suggest, that the diffusion process in the z-direction is stronger alleviated than
parallel to the wall. This is of course the case, when we take the average over all
particles. However, as anticipated in Fig. 6.3(c), the MSD with pre-selected directions
(see Eq. (6.5) together with the demonstrative sketch in Fig. 6.3(d)) look all rather akin
and fall approximately onto the curve of the parallel wall diffusion from Fig. 6.3(b). This
intriguing finding motivates for the following conclusion: The diffusion behaves similar
in all spatial directions. Since in the usual representation of the MSD the displacement
is weighted by the probability of the accompanied sampling in a certain direction, a
more pronounced plateau emerges when inspecting less probable directions, e.g., as in
Fig. 6.3(b).

One has to be careful with the interpretation of the above presented averages, since a
particle could for example escape in a tilted direction due to the lack of a neighboring
particle at that position by chance. Furthermore, a cooperative motion with its neighbors
might be possible. Such cooperativity cannot be resolved by means of simple equilibrium
two-body correlations. Still, the above described perceptions motivate for the fact,
that the escape in other directions can probably be treated in a similar way as the
perpendicular escape, just with the difference, that some directions are more probable
than others. Concerning the importance for the bulk, the completely averaged diffusion
process is probably the result of the weighted composition of the separate diffusion
mechanisms in all possible directions. In the following sections we will illuminate the
cage escape in z-direction for our setup.

6.2.2 History dependence in dense systems

On the way to deduce atomistic descriptions of potential barriers that a particle needs
to overcome in order to leave its cage into a given direction, we found out that for a
small particle the escape from the cage along the z-axis is a probable process. The
intermediate and restoring forces along this reaction coordinate are given by the mean
force (Eq. (2.40)) that have been investigated for the same model in the previous chapter
(cf. Fig. 5.11). As it will turn out, it is not sufficient to simply apply the PMF as an
external field describing the confinement by a local cage. The reason is, that the PMF is
the statistical average over all particles at the desired position, no matter what history
they comprise. Since the particles have different histories and therefore also completely
different memories, one has to reduce the description to only those particles, whose



87

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

φ = {
0.5

1

2

4

8

0.1 1 10 100 1000

t−1/2

φ

−14

−10

−6

−2

2

6

10

0 50 100 150 200 250

−2

0

2

0 50 100

−14

−10

−6

−2

2

6

10

0 50 100 150 200 250

Δ
f
< 1
,z
(z

,t
)σ

1

k
B
T

,
Δ
f
> 1
,z
(z

,t
)σ

1

k
B
T

t/τB

0.49
0.50
0.52
0.54
0.55
0.56
0.57
0.58

Δ
f
< 1
,z
(z

,t
)σ

1

k
B
T

,
Δ
f
> 1
,z
(z

,t
)σ

1

k
B
T

t/τB

Δf>
1,zexp

[
(t/τmem)

0.4
]

Δ
f
X 1
,z
(0

.5
5
σ
1
,t
)σ

1

k
B
T

t/τB

Δf>
1,z(0.55σ1, t)σ1/kBT

Δf<
1,z(0.55σ1, t)σ1/kBT

Δ
f
X 1
,z
(0

.9
5
σ
1
,t
)σ

1

k
B
T

t/τB

Δf>
1,z(0.95σ1, t)σ1/kBT

Δf<
1,z(0.95σ1, t)σ1/kBT

(a) (b)

(c) (d)

b
u
lk

cl
o
se

to
th

e
w
a
ll
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fraction (φ = 0.58) for small particles at (c) z = 0.55σ1 and (d) z = 0.95σ1.
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history starts with wall contact. We elaborate a model that relies on forces acting on
individual particles containing also information about their history.

In order to acknowledge the history dependence, we separately determine the forces for
the following two groups of particles: Firstly, particles that at a previous time −t were
at a position z(−t) > z(0), i.e., above the current position. Secondly, particles that were
at a previous time −t below the current position (z(−t) < z(0)). The average force on a
particle, if it was above, is then

f>
1,z(z, t) =

1

N
′
1

∑
i=1

f1,z
(
zi(0)
)
θ
(
zi(−t)− zi(0)

)
. (6.6)

Here, N
′
1 is again the number of the considered particles only. Similarly, if in the past

the particle was below, it is exposed to the force

f<
1,z(z, t) =

1

N
′
1

∑
i=1

f1,z
(
zi(0)
)
θ
(
zi(0)− zi(−t)

)
. (6.7)

Furthermore, we introduce the deviations from the average value 〈f1,z(z)〉 and call those
functions the force memories, i.e.,

ΔfX
1,z(z, t) = fX

1,z(z, t)− 〈f1,z(z)〉 , (6.8)

with the placeholder X ∈ {<,>}. In Fig. 6.4(a-b) we plot the history dependent force
memories for bulk systems with different packing fractions in (left) linear as well as
(right) double logarithmic representation. As the packing fraction is increased, two major
characteristics determine the curves. The first is the starting point of the memory curve,
i.e. Δf>

1,z(z) := Δf>
1,z(z, t → 0), which sets the magnitude of the force memory. The

second is the timescale, on which the memory approximately decays. For the bulk, we
pick out two systems, one being at intermediate packing fraction (φ = 0.52) and the
other one being close to the glass transition density (φ = 0.58) and fit the force memories
via stretched exponentials4 [194]

Δf>
1,z(z, t) = Δf>

1,z(z)exp [−(t/τmem)
α] , (6.9)

where we fixed the exponent α = 0.4, in order to obtain reasonably comparable fits.
For the two shallow dark lines in Fig. 6.4(b) the characteristic memory times are
τmem = 187.5τB (for φ = 0.58) and τmem = 6.3τB (for φ = 0.52).
Whilst the simulation curves seem to follow such a stretched exponential for short to
intermediate times, for very old histories the memories behave like a power-law with
an exponent −1/2. This is expected, since in an overdamped system our definition
of the instantaneous force deviations are supposed to behave similar to the velocity-
autocorrelation function (see, e.g., Ref. [195, 196]) that is expected to decay with an

4Stretched exponentials are often referred to as Kohlrausch-Williams-Watts [194] functions, which
account for the approximate descriptor of a spectrum of distinct (ordinary) exponential decays and
are often used to picture the relaxation of disordered systems with more than one typical timescale.
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exponent of −3/2 in 3D [197]. Since we restrict the diffusion direction to 1D, our
curves should be comparable with the 1D velocity-autocorrelation functions with a decay
exponent of −1/2 [196].

The meaning of the force memory can be interpreted in the following way: as a particle
leaves its initial location, in the case of dense systems it has to overcome an effective
energy barrier that is induced by its cage. During a short-distance movement the particle
already deforms its cage in such a way, that the probability of finding a neighboring
particle in the direction of its movement increases. At the same time, the probability
to lack a neighbor in the opposite direction also increases. This causes the particle to
feel an average opposing force, the force memory. Such an effect is more pronounced for
denser systems than for dilute suspension.

Whereas in bulk the force memory does not depend on the position z, close to the wall it
does. Thus, in Fig. 6.4(c-d) we show the ΔfX

1,z(z, t) for the densest system (φ = 0.58)
at wall contact and in between the first two layers. One can nicely see the quantitative
difference between the memories at the two investigated positions. For a particle, which
is in the first layer and therefore very close to the wall, the force memory has only very
subtle impact (Fig. 6.4(c)). Contrarily, the memory for a particle in between two layers
seems to be crucial (Fig. 6.4(d)). This finding suggests that the magnitude of the force
memories is position-dependent in an inhomogeneous system.
To study this further, we plot in Fig. 6.5(a) the average forces as functions of the position,
with the short-time history for the particle, i.e. fX

1,z(z, t � τ), and in Fig. 6.5(b) the
respective force memories ΔfX

1,z(z) = ΔfX
1,z(z, t � τ). Here, τ is the rearrangement

time and in the figures we use t = τB/3, because for dense suspensions the typical
rearrangement time τ is much larger than τB. By this choice we approximately sample
the zero-time limit.

Intriguingly, as marked by the vertical lines in Fig. 6.5(b) a connection between maxima
of the local density (red line) and the magnitude of the force history (green and blue
lines) becomes visible. Always, when a local density peak emerges, the magnitude of
the memory becomes decreased. The opposite is true for local density minima, where
the magnitude of the corresponding force memories is increased. This connection makes
intuitively sense: on the one hand, when particles reside inside a local density layer,
they are supposed to be more stable at this position for longer times and individually
occurring forces are similar. In return, this would precipitate in the average of the force
memory and therefore result in a less pronounced deviation from the total average. On
the other hand, when a particle is on its way from one density maximum to another, it
necessarily crosses a local minimum. On this crossing, its history has major influence
on the average forces. For example, when the particle is moving in positive z-direction,
it possibly leaves void space behind it, whereas in front of it a barrier of neighboring
particles is blocking its path. Therefore, it is very likely that at such a position the
memory has a large effect on the consecutive motion.
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6.2.3 Force distribution in the hard-sphere limit

In this section we study another ingredient of Brownian systems at low temperatures. As
presented in Sec. 5.1, we employ a soft model potential that is truncated. We perform
BD simulations in the HS limit, where by a decrease of temperature the average forces
between particles also decrease due to the constant prefactor (energy scale ε) of the
potential from Eq. (5.1). However, this is not only due to smaller overlaps between the
particles, but also due to the fact, that the fraction of contacts becomes significantly
decreased. We will now deduce a way to estimate the probability to observe contacts in
the HS limit.
The Boltzmann-factor for two particles of the species ν and ν ′ with the interaction
potential vνν′(d) is proportional to the probability of finding those two particles with an
overlap d. It is given by

Pνν′(d) ∝ exp

[
−vνν′(d)

kBT

]
. (6.10)

Since the force |f | is in our harmonic model potential proportional to the overlap d
(Eq. (5.1)), we can immediately rewrite the Boltzmann-factor, such that it resembles the
distribution of instantaneous forces |f |, i.e.,

Pνν′(|f |) ∝ exp

[
−|f |2σ2

νν′

2εkBT

]
, (6.11)

where σνν′ is again the intermediate diameter. In Fig. 6.6(a) we plot the force distribution
of our (50:50) binary systems at different temperatures, where the lowermost temperatures
have been fitted according to an uniform intermediate Boltzmann-factor of such a mixture,
yielding the force density (distribution of instantaneous forces)

P (|f |) = Aσ1
4ε

∑
ν,ν′=1,2

exp

[
−|f |2σ2

νν′

2εkBT

]
, (6.12)

where A is a dimensionless fitting parameter. For temperatures below 10−4kBT , the fits in
Fig. 6.6(a) become sufficiently good and the prefactor of the distribution stays constant.
Therefore, if we calculate the first moment of the distribution, 〈|f |〉 ≡ 〈|f |, P (|f |)〉, the
result (Fig. 6.6(b)) is inversely proportional to the temperature, as it should be. Since the
force distributions follow a Gaussian, the expectancy value of a modified normalization
only over non-zero forces must be proportional to A

√
kBT . The simulation results are

shown in Fig. 6.6(c) together with a square root power-law, P1,coll ∝
√
kBT , which

can be applied as a prediction of the fraction of interacting (or colliding) particles at
low temperatures, where sufficiently below jamming particles exhibit only one or zero
overlaps.

However, if one used the HS equation of state (Eq. 2.86) in bulk or the integration over a
pre-calculated force distribution around a particle in an anisotropic situation to estimate
the intermediate force (or pressure) on a particle, it would be possible to calculate the
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Points are from simulations and the line is proportional to

√
kBT/ε.
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Figure 6.7: (a) MSDs in z-direction for small particles starting at the wall. The plot
shows two different packing fractions (φ = 0.52, 0.58), compared to a free
particle (black solid line). The dashed lines are measured in our multi-particle
simulations, whereas the colored shallow lines are data from our random-walk
model, (RW) with and (RW, no mem.) without history-dependent memory.
(b) Measured (average) position-dependent force in the random-walk model
with incorporation of memory and for different runtimes. As the runtime
goes to infinity, the random-walk model approaches the average force from
our multi-particle simulation (black solid line).

prefactor A in Eq. (6.12). Applying this prefactor A for our binary system, one can then
deduce the collision probability

P1,coll =
A

8

√
2πkBT

ε

∑
ν,ν′=1,2

σ1
σνν′

. (6.13)

This ingredient will be used in the next section of this chapter to develop a random walk
model for a single tracer particle in front of the wall, that is not in every step interacting
with its environment, but rather only with a probability equal to P1,coll.

6.2.4 Random-walk model for a particle at the wall

In this section a random-walk (RW) model will be applied for the motion of a single small
particle starting at the wall, moving towards the second layer in a perpendicular straight
path. For the most simplistic model, we use the average force profiles in order to calculate
the typical paths along the z-axis, where the diffusion coefficient is set by the temperature
and the probability for a collision is input from simulation data. Nevertheless, it can in
principle be calculated via the Boltzmann force-distribution as explained above5. We use

5For the results presented in this chapter we rather use the measured collision probability from the
simulations. Nevertheless, as Fig. 6.6 suggests, in the HS limit via the functional form of the fits the
respective values can also be calculated using a known equation of state.
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two RW models to mimic the diffusion of single tracer particles that are starting in front
of the wall.

Model 1: RW, no mem. Our first model does not incorporate any memory but rather
only employs the average force 〈f1,z(z)〉 acting on a particle. It consists of the steps:

1. Calculate a three-dimensional diffusion step Δrstep within Δtstep and with a diffusion
coefficient according to the Stokes-Einstein relation (Eq. 3.2) and an optional
external force.

2. Decide from an equally distributed random number, if the particle collides with
another particle, according to the z-dependent collision probability P1,coll(z):

2(a). no collision: go to 1.

2(b). collision: apply the force f step to the particle and go to 1.

The force f step = f step,1 + f step,2 consists of two contributions, the first being the kickback
with respect to the movement direction, i.e.,

f step,1 = − Δrstep

|Δrstep|
〈|f1,⊥(z)|〉
P1,coll(z)

, (6.14)

where 〈|f1,⊥(z)|〉 is the average of the absolute (normal) forces acting on the particles
surface at a position z. It is proportional to the local average pressure and can be
calculated from the one-particle density together with the anisotropic pair correlations.
The second force is the mean force, exerted by the structure of the neighboring particles,

f step,2 = ez
〈f1,z(z)〉
P1,coll(z)

, (6.15)

where in both cases the normalization with the collision probability P1,coll(z) guarantees,
that the average force profile 〈f1,z(z)〉 is recovered over time.

Model 2: RW. Our second RW model incorporates the memory of the particles history,
namely the fact that it has started at the wall and therefore is supposed to recognize
the impact of the force memory Δf<

1,z(z, t). In this model the second force is slightly
modified, such that

f step,2 = ez
〈f1,z(z)〉+Δf<

1,z(z)exp
[− (t/τmem)

0.4
]

P1,coll(z)
, (6.16)

where we use the fits of the force memories from Eq. (6.9) as an input and the respective
parameters as indicated in Fig. 6.4(b).
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In Fig. 6.7(a) we plot the MSD of small particles in z-direction for simulation data,
compared with results from our RW models for the two different densities6. In case of
the improved model the discrepancies between the RW and the simulation are small, at
least for a typical rearrangement. For the simple RW model without memory, the curves
deviate from the measured ones already very early. This deviation is less pronounced
for the dilute system, where memory is supposed to play a smaller role than for systems
close to the glass transition.

One can conclude, that the memory improves the details of the RW model. Its impact
is illustrated in Fig. 6.7(b), where we plot the average measured forces on a particle in
dependence on the particle position z and the runtime τRW. For short runtimes, the
particles do not manage to hop over the first few particle layers. This results in truncated
lines. However, as the runtime increases, the time-averaged forces from our RW model
converge, as expected, against 〈f1,z(z)〉. This mimics the loss of memory.

6.3 Conclusion

Whereas studies about the structural aspects of dense and polydisperse systems seem to
be allegeable and even accessible with theoretical tools (as demonstrated in the previous
chapter), the multifaceted behavior of slowed-down dynamics in glassy systems remains
hardly comprehensive. In this chapter we studied dense systems of binary suspensions in
front of a wall and connected the predominant structure with the dynamics.
We considered a small test particle and used the symmetry breaking of its two-body
particle correlations to explain qualitatively the anisotropic nature of its surrounding
potential landscape. It turned out, that the neighboring particles form a cage that is more
fragile for some particular escape directions. Specifically, we identified a cage-weakness
in the normal direction with respect to the wall.

Subsequently, this direction was further studied and the dynamics compared to predictions
of an one-particle RW model. The first model (RW, no mem.) was designed without
any memory. It applied the instantaneous force acting on a configuration-averaged
particle with respect to its distance from the wall, no matter what history the particle
went through in its past. In the second model (RW), the force history was determined
from bulk simulations and used as an input for the memory in the modified random walk.
This memory acknowledged the initial starting position of the particle with wall contact.
We found out, that the obtained results of the RW without memory deviated very early
from BD simulations, whereas in the case of the memory-dependent RW the obtained
dynamics in the z-direction resembled those of the multi-particle simulations. This
intriguing finding lets us adumbrate, that the anisotropic and locally non-equilibrium
nature of the cage are both two very important ingredients for the explanation of
single-particle dynamics.

6In case of the improved model the respective memory times are tmem = 187.5τB for φ = 0.58 and
tmem = 6.3τB for φ = 0.52.
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In the case of bulk one should split up the problem such that first the averaged cage-
structure, as represented by radial symmetric pair correlations must be modified such that
it contains correlation maxima (cage fortifications) and minima (cage flaws). This could
for example be introduced by the employment of three-body correlations. Successively,
one needs to determine the memory-dependent diffusion through the modulated potential
landscapes and in the end an average over all possible paths must be made.
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Chapter 7
Colloid-polymer mixtures

Preface The present chapter is based on the paper “Directed percolation identified as
equilibrium pre-transition towards non-equilibrium arrested gel states” [3], which has been
submitted to the journal Nature Communications. It contains literal adoptions of text
and figures. Whereas the first two introductory sections of this chapter are not fully
regarded in the paper, the subsequent sections contain only minor modifications of the
original manuscript.

7.1 Introduction

Colloid-polymer mixtures are widely investigated and also used in many useful industrial
applications. The more common appellation for a special phase that these mixtures are
able to form is gel. A gel can consist mostly of the solvent with only very little packing
fraction of the gel-forming solute. It is a flabby and solid-like material, which consists
of network-like connections of its microscopic components. Induced by the microscopic
structure the macroscopic properties of such gels can have a very diverse exposure. When
changing a suitable parameter, e.g., such as the concentration of the polymers in the
mixture or the temperature, the viscosity can be tuned from very small to very large
values.

In gel-forming colloid-polymer mixtures, the colloids are typically larger than the polymers.
Nevertheless, the polymers also play a crucial role. Assuming that the interaction between
two polymers is negligible compared to the colloid-colloid or colloid-polymer interactions,
one can derive effective interactions between the larger colloidal particles, which are due
to entropically favored void-spaces at close distances. As sketched in Fig. 7.1(a) there
are depleted shells around the colloids, which cannot be entered by the polymers due
to repulsive interactions. As soon as two colloids come close to each other they feel an
effective attraction that is mediated by the following picture: The space that can be
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(a) (b)

Figure 7.1: Sketch of the depletion mechanism in a colloid-polymer mixture. (a) The
depleted shells (blue) of the colloids (orange) cannot be entered by the centers
of the polymer coils (red). Therefore the pair of colloids on the very left,
which has overlapping depletion shells, “feels” an effective interaction due to
the higher osmotic pressure from polymer coils, which are still present at the
averted hemispheres. (b) At sufficiently large polymer concentrations, the
colloids bond with each other and form network-like structures.

occupied by the centers of the polymer coils is limited to the free volume in the whole
solution minus the shell volumes around the colloids. This configurational space can be
increased by partial overlap of several of these shells. It will result in an increase of the
overall entropy and therefore in an accompanied decrease of the free energy. Another
intuitive picture, which incorporates the osmotic pressure, is represented by the fraction
of polymer coils which are colliding with the involved colloids from the outer hemispheres
over those, which are colliding with the inner hemispheres. By the underpopulation
due to the shell overlap an overbalance of pressure from outside arises, resulting in an
attractive force. If the attraction strength is large enough, the colloids become bonded
with each other, such that large and even system spanning networks can form, as sketched
in Fig. 7.1b.

In 1954 S. Asakura and F. Oosawa captured the entropic mediated imbalance of pressure
around approaching colloids. They extracted the effective force on spherical and plate-like
objects, which are immersed in a bath of macromolecules [65]. Today this procedure is
still well known as the Asakura-Oosawa (AO) model, which assumes that the force is
proportional to the overlap volume of the depleted shells of colloidal particles.

7.2 Model

The attractive force can be quantified in a mathematical manner. If one assumes hard core
repulsions for colloid-colloid and colloid-polymer interactions and negligible interactions
between polymers, one is able to integrate out the polymers. In a simplified setup, we
consider only two spheres whose depletion shells are overlapping (see Fig. 7.2(a)). The
diameters of the spheres are σ and those of the polymers are given indirectly by the
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Figure 7.2: (a) Sketch of the depletion mechanism in colloid-polymer mixtures. The
blue shells around the larger colloids cannot be entered by the centers of the
smaller polymers. Due to this fact the overlap region (depletion volume) in
between the two particles causes a lack of osmotic pressure exerted by these
polymers. This results in an effective attractive force as explained in the text.
(b) Limit for negligible three-body interactions: the depletion model becomes
exact for ξ∗ � 0.155, when there is no possibility for three blue shells to
overlap at the same point.

aspect size ratio ξ∗ = σP/σ, where σP is the radius of gyration of the polymers [147].

A normal and uniform pressure p on the colloids surfaces is exerted by the polymers from
all directions. Due to the depleted region around the spheres and the intersecting volumes,
there is a leak of pressure on the two inner caps of the spheres. The attractive force
is obtained by integrating over the parallel component of the force density (pressure),
p‖ = p sin θ, with respect to the connecting axis. θ is the polar angle and sketched in

Fig. 7.2(a). The surface element at θ is given by dA = π/2
(
σ(1 + ξ∗)

)2
sin θ dθ. An

upper boundary angle for the integration can be calculated by the separation r of the
two spheres, i.e.

θmax = arc cos

(
r

σ(1 + ξ∗)

)
. (7.1)

Now, one can calculate the depletion force

fD(r) =

{
fD,overlap(r) , r ≤ σ(1 + ξ∗)
0 , else

, (7.2)

where fD,overlap(r) is given by the integration of p‖ over the surface AD of the intersecting
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spherical cap, i.e.,

fD,overlap(r) =

∫
AD

dAp‖

=

θmax∫
0

dθ (p cos θ)

(
π

2

(
σ(1 + ξ∗)

)2
sin θ

)

=
πp

2

(
σ(1 + ξ∗)

)2 θmax∫
0

dθ cos θ sin θ

= −πp
2

(
σ(1 + ξ∗)

)2 [
1− r2

σ2(1 + ξ∗)2

]
. (7.3)

By inserting Eq. (7.3) into Eq. (7.2) and integrating over it under the condition of a
steady potential, the standard AO depletion part of the potential is obtained. Together
with the hard-core interaction, represented by a function VH(r), one gets the overall
potential

VD(r) =

{
−D0

[
1− 3(r/σ)

2(1+ξ∗) +
(r/σ)3

2(1+ξ∗)3

]
+ VH(r) , r ≤ σ(1 + ξ∗)

0 , else
. (7.4)

In Eq. (7.4) we have abbreviated the constants by a prefactor D0, which sets the energy
scale of the system, typically with respect to the thermal energy kBT .
Although in the above discussion no constraints on the polymer sizes have been made, in
a multi-particle ensemble it is important to note, that the polymers radius of gyration
must be smaller than a certain fraction of the colloids radius. This is due to the fact, that
only two-body interactions have been discussed in the model, although three particles
could possibly interact at the same time. The three-body interactions mediated by
the polymers can be neglected and reduce to two-body interactions as soon as one
can fit exactly one polymer coil in the middle of three triangular aligned colloids (see
Fig. 7.2(b)). The threshold value for this situations can be calculated and is equal to
ξ∗ = 1.0/ cos(30◦)− 1 ≈ 0.155.

In order to prevent flocculation in experiments colloidal particles are often charged. The
charge, which is – without screening – well described by a r−1 Coulomb potential, is
long ranged and makes the suspension stable against strong and short ranged van-der-
Waals attractions. Nevertheless, in the experiments the range of the repulsion can be
manipulated by imposing salt to the solution. Salt is composed of anoins and cations,
such that the chemical compound is neutral, e.g., sodium chloride Na+Cl− (common salt).
Immersed into water, it splits up due to the dipolar character of the water molecules.
Successively, one species of ions will tend to accumulate in a layer at the surface of the
charged colloids, whereas the counterions will arrange in the subsequent region (double
layer). The inhomogeneous distribution of oppositely charged ions makes sure, that the
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Coulombic potential is screened with an exponential, such that it can be written as [198]

VC(r) = C0

(
2

2 + κσ

)2
σ

r
exp [−κ(r − σ)] . (7.5)

Here the prefactor C0 is an energy scale of the electrostatic coupling between the colloids
and is in principle set by the charge of the particles [98]. The parameter κ is the inverse
screening length and can be varied by the salt concentration [98]. Lastly, the colloids
must be modeled with a finite diameter, which introduces the prefactor 4/(2 + κσ)2 and
a shift by σ in the exponential [198].

7.3 Simulation details

We simulate a system consisting of N particles with mean model diameter σ and a
polydispersity of about 7%. The polydispersity is realized through 17 different particle
diameters σν , where their numbers Nν are normally distributed with a standard deviation
of the diameter of 0.07 σ and N =

∑
ν Nν . In the calculation of pair interactions the

above introduced model potentials are being shifted according to the deviation from
intermediate diameter (for further information, see Appendix A.5). If not stated otherwise,
N = 9856.

Motivated by the experiments, we fix ξ∗ = 0.03 for Eq. (7.4) although in our model this
does not necessarily imply that the position of the potential minimum is fixed. The hard
interaction of particles with diameter σ is approximated by VH(r) = H0(r/σ)

−32 [199].
The prefactor H0 defines the energy scale of the potential and is kept constant at
H0 = 0.25 kBT . For different particle sizes the potential is also shifted according to
Appendix A.5. Note, that due to the softness of the hard core potential the model
parameter σ not necessarily coincides with the position of the potential minimum, but it
is typically slightly smaller. We cut the potential and the corresponding force at 4σ and
shift them to zero at the cut-off distance. In our model, the range of the attractive part
in the potential may vary while other parameters are changed. The interaction potential
exhibits a minimum Vmin = V (σeff) with the effective diameter σeff slightly smaller than
σ. The effective packing fraction φeff = (π/6V )

∑
ν Nν(σ

eff
ν )3 = 0.2, with V the volume

of the system, is kept constant. For our bulk simulations we employ periodic boundary
conditions to the cubic simulation boxes and simulate the particle trajectories according
to the Langevin equation (3.6).

The Brownian time τB = σ2/(3πD), with the short-time self-diffusion coefficient D =
kBT/γ and the friction coefficient γ of a particle with diameter σ, is used as time scale.
The time steps are 10−4τB or less. Starting from an initial randomly-distributed ensemble,
the systems were equilibrated for 300 τB before statistics are gathered.
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7.4 Experiment

The experimental realization was performed by Ronja Capellmann from the Soft Con-
densed Matter Institute at the Heinrich-Heine-Universität Düsseldorf.

Samples. The samples, which have been set up in the corresponding experiments,
consist of spherical Poly-Methylmethacrylate (PMMA) colloids, which is mostly referred
to as acrylic glass. In order to prevent flocculation, the colloids are synthesized in such
a way, that their surface is coated with very small polymeric chains. This procedure is
well established in colloid synthetization and is called steric stabilization. In the case of
our experiments, polyhydroxystearic acid (PHSA) polymers have been attached to the
colloids. The colloids have been fluorescently labeled with 7-nitrobenzo-2-oxa-1,3-diazole-
methylmethacrylate (NBD-MMA) in order to make them visible in the experimental
setups. The reason for this label is, that solvent and solute have the same refractive
index. This adjustment makes the solvent transmittable for the laser light1, but on the
same time it makes the colloidal particles visible under the microscope.

Additionally, linear Polystyrene (PS) polymers have been added to the solution. These
polymers form coils and induce the depletion attraction. All components are dispersed
in a chemical mixture of cis-decalin and cycloheptylbromide (CHB). These chemical
compounds have different mass densities (CHB has a higher mass density) and their
proportions are successively adjusted in such a way, that the overall mass density matches
that of the particles (density matching). This calibration of the mass density of the
solvent with respect to the solute is needed in order to remove sedimentation effects from
the samples, which are otherwise always present in gravitational fields.

The colloids have an average (hydrodynamic) radius of R = 0.5 σ = 0.86 μm and a
polydispersity of 7%. Rather than the real radius of the particles, only the hydrodynamic
radius can be determined by static and dynamic light scattering of a very dilute suspension
(volume fraction φ = 0.005). In such experiments, one can fit with the self-diffusion
law (eq. 3.1 and 3.2) an effective radius to the measured density fluctuations, where the
radius is their hydrodynamic one (see, e.g. Refs. [200, 201]). Of course the real radius of
the particles should only slightly differ from the obtained value.

For the PS with a mass average molar mass of Mw = 106 kg/mol and polydispersity
Mw/Mn = 1.17, where Mn is the number average molar mass, the radius of gyration was
calculated following Berry’s work [202]. Here a value of rg = 65 nm has been obtained.
This leads to a polymer-colloid size ratio of ξ = 0.076 for a dilute solution. As the size
of a polymer coil changes with the concentration of polymers and the polymers start
to overlap at a concentration higher than the overlap concentration – which will be
labeled c∗p in the following – an effective polymer-colloid size ratio was estimated from

1The laser excites the NBD-MMA and is not scattered at the interface between the particles and the
solvent.
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Sample φ c/c∗ cfree/c∗ ξ∗ csalt [mM ]
B1 0.19 1.46 ± 0.01 1.95 ± 0.01 0.031 ± 0.001 3.5 ± 0.5
B2 0.23 1.54 ± 0.01 2.06 ± 0.01 0.030 ± 0.001 9.4 ± 0.5
B3 0.21 1.55 ± 0.01 2.01 ± 0.01 0.030 ± 0.001 20.1 ± 0.5
C1 0.20 2.25 ± 0.01 2.87 ± 0.01 0.025 ± 0.001 0.0 ± 0.5
C2 0.23 2.24 ± 0.01 2.98 ± 0.01 0.024 ± 0.001 3.2 ± 0.5
C3 0.20 2.25 ± 0.01 2.87 ± 0.01 0.025 ± 0.001 4.0 ± 0.5
C4 0.20 2.24 ± 0.01 2.86 ± 0.01 0.025 ± 0.001 7.8 ± 0.5
C5 0.24 2.24 ± 0.01 3.02 ± 0.01 0.024 ± 0.001 8.4 ± 0.5
D1 0.19 0.76 ± 0.01 0.97 ± 0.01 0.045 ± 0.001 2.8 ± 0.5

Table 7.1: Experimental samples with their corresponding parameters calculated after
GFVT [203, 204]. The first column corresponds to the tag of the different
paths through the bond-phase-diagram, that is discussed in the results section.

the Generalized Free Volume Theory (GFVT) [203–205]. This effective size ratio ξ∗

for our samples is shown in table 7.1, where cfreep is the polymer concentration in the
volume which is not occupied by colloids, estimated according to GFVT. The overlap
concentration was calculated using c∗p = 3Mw/4πNAr

3
g.

PMMA colloids become charged when they are dispersed in the used solvent mixture of
CHB and cis-decalin [206]. As discussed above, these charges can be screened. In such a
solvent the screening can be realized by the addition of the salt tetrabutylammonium-
chloride2 (TBAC) [207,208]. We use samples with different amounts of salt (see table
7.1) to vary the Debye length (κ−1) of the particles.

Sample preparation. In order to obtain colloid-polymer mixtures, separate colloid
and polymer stock solutions were prepared and successively mixed together. For the
colloid stock solution, the colloids were sedimented in a centrifuge. The sediment was
assumed to be random close packed with a volume fraction φRCP,1 = 0.65, as found in
simulations [209]. After diluting the sediment to a nominal volume fraction of φ = 0.4,
the sample was imaged with a confocal microscope and the actual volume fraction was
determined to be φ = 0.43. This actual volume fraction was calculated by the mean
volume fraction per particle from a Voronoi construction. With this value, the before
measured random close packed volume fraction needed to be adjusted at φRCP,2 = 0.68.
This calibration gave rise for a starting value in the dilution process of further samples.

Restarting with φRCP,2, the sediment was diluted to a colloid stock solution with φCS = 0.4.
For the polymer stock solutions, dry polymers were dispersed in the bare solvent mixture.
The corresponding polymer concentrations of the polymer stock solutions cP = mP/Vsolvent
were calculated with the mass of the dry polymers mP and the density and mass of the

2For further studies with more insight into the behavior of such suspension, which are loaded with
TBAC, see also the thesis in Ref. [206].
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added solvent mixture. By mixing the two stock solutions with a ratio 50:50, we obtained
colloid-polymer mixtures with an average volume fraction of φ = 0.23. The exact values
for all relevant samples, which are being discussed within this thesis, are reported in
table 7.1. These mixtures were intensively mixed in a vortex mixer for some minutes and
then left in a flask shaker for homogenization for at least one day. After this, different
amounts of TBAC were added to the colloid-polymer mixtures. Then they were gently
moved in the flask shaker for three days to ensure that as much salt as possible was
dissolved.

Confocal microscopy. The finished solutions were imaged in a self-built sample cell [210]
with a VT-Eye confocal microscope (Visitech International) mounted on a Nikon Ti-U
inverted microscope. The measurements were performed with a Nikon Plan Apo VC
100 oil immersion objective4. For each sample, 25 to 30 image stacks were recorded,
consisting of 151 single images (512 x 512 pixels) with z-steps of 200 nm in between.
Each slice was calculated as an average over three snapshots. With an imaging rate of
30 fps, a sampling time of at most 20 s per stack could be achieved. Each measured
image stack corresponds to a volume of 54 x 54 x 20 μm3 and contains usually around
7000 particles. We extracted the particle coordinates with standard routines, originally
written by J. Crocker and D. Grier [211]. The measurements with confocal microscopy
were performed within three hours after mixing the sample to avoid aging.

7.5 Results

7.5.1 States of the system

In charged colloid-polymer mixtures, two particle-particle interactions compete on differ-
ent length scales: First, screened electrostatic interactions, which are long ranged for low
salt concentrations and become shorter ranged upon addition of salt; second, depletion
interactions, which are short ranged, typically at most one tenth of the colloidal particle
diameter, and controlled through the radius of gyration of the polymers.

In experiments and simulations, we have consistently observed four different states
that show distinct structural arrangements of the colloidal particles (Fig. 7.3, left). A
transition between these states can be induced by varying, e.g., the salt concentration csalt,
and therefore the screening length κ−1, at fixed polymer concentration cp, i.e. attraction
strength. This path will be referred to as path B. In the absence of salt, a fluid state

3To obtain colloid-polymer mixtures with φ ≈ 0.20, for samples B1–B3, C1, C3 and D1 colloid and
polymer stock solutions were mixed with a volume ratio 50 : 50, while dry polymers were added to
the diluted colloid stock solution in the case of samples C2, C4 and C5.

4Oil can – due to its refraction properties – be used to improve the numerical aperture, which represents
a measure for the resolution quality in optics.
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Figure 7.3: (left) Two-dimensional slices of the thee-dimensional systems. The upper
row shows confocal microscopy data, where the polymer concentrations
are 3c∗ (C1) and 2c∗ (B1-B3) with the overlap concentration c∗. The salt
concentration increases from left to right (Tab. 7.1). The lower row represents
the corresponding states as observed in the simulations. (C1) Fluid state
with only very few small aggregates, (B1) non-percolated chain-like clusters
of particles having on average at most two bonds, (B2) percolated network
and (B3) directed percolated network. (right) Corresponding pair correlation
functions g(r) as a function of the particle distance r in units of the particle
diameter σ, which, for the simulation data, is taken to be the effective particle
diameter, i.e. σ ≡ σeff that denotes the position of the potential minimum and
is typically slightly deviating from the actual model parameter σ. Symbols
represent experimental data, solid lines simulation data and (only for B1)
the light blue solid line simulation data with parameters obtained by a multi-
parameter fit (for details see Appendix A.6). Data have been shifted for
clarity. The inset shows the (unshifted) first peaks.
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is observed (sample C1; note that cp of this sample is higher than the one of the other
samples, see Tab. 7.1). Adding salt, particles aggregate into isolated small clusters (sample
B1). At large salt concentrations, larger clusters are observed and the particles form
a continuously percolated network (sample B2), while at the largest salt concentration
studied, a heterogeneous network structure of even larger, dense clusters with thick
strands is formed (sample B3). As will be shown later, directed percolation characterizes
this network.

The different states show distinct pair correlation functions g(r) (Fig. 7.3, right). In
the fluid (C1), g(r) is dominated by a peak located at the mean particle distance ρ−1/3.
Furthermore, a small peak at particle contact reflects the presence of a small number of
aggregated particles. For small amounts of added salt (B1), the presence of doublets,
triplets or small string-like clusters is indicated in g(r) by an increase in the contact peak
and a corresponding decrease of the second peak. The size of the clusters is limited by
the repulsive contribution to the potential [212–214]. For sample B2 the large peak at
contact is consistent with the large fraction of particles forming clusters that connect
to a space-spanning network, i.e., a percolated gel-like structure. Finally, the radial
distribution function of sample B3 with its very high first peak at contact reflects the
presence of a large number of bonded particles and a local increase of order. Furthermore,
its deep first minimum and pronounced split second peak arise from triplet structures
and local close packed arrangements. These features are observed in the experiments as
well as in the simulations. (The mapping of the simulation and experimental parameters
is described in Appendix A.6.)

7.5.2 Bond number diagram

The different structures are distinguished by the degree of particle aggregation. This
is linked to the mean number of bonds per particle, 〈Nb〉. Individual particle-particle
bonds cannot be determined unambiguously because the first peak in g(r) is broadened
due to polydispersity (about 7 %). Hence two particles are defined to be bonded if they
are closer than the position of the first minimum in g(r), which is located between 1.10
and 1.22 σeff (Fig. 7.3, right), where σeff denotes the position of the minimum of the
interaction potential and is for the simulations typically slightly smaller that the actual
model parameter σ.

The mean number of bonds per particle, 〈Nb〉, is determined as a function of the
interactions, namely the salt concentration csalt, controlling the screening lengths κ−1,
and the polymer concentration cp, represented by the depletion part of the potential
VD,min = VD(σeff) that is evaluated at the overall potential minimum Vmin = V (σeff)
(Fig. 7.4). A transition from a fluid, indicated by the absence of a significant number
of bonds (white to purple), to a bonded state (red) can be achieved by increasing the
polymer, cp, and/or salt, csalt, concentrations. In contrast to previous results [56], 〈Nb〉
monotonically grows without a reentrant transition. The highly-bonded gels are not in
equilibrium and therefore, even for large screening and strong attraction, 〈Nb〉 hardly
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Figure 7.4: Mean number of bonds per particle, 〈Nb〉, as a function of the minimum of the
attractive part of the potential, evaluated at the global minimum, VD,min in
units of the thermal energy kBT , and the inverse screening length κ in units of
the particle diameter σ, which, for the simulation data, is taken to be the mean
model diameter, i.e. σ, in a semi-logarithmic representation. The background
color represents 〈Nb〉 as obtained by simulations, the circles and their colors
denote the positions and 〈Nb〉 of the experimental systems, respectively. The
two white lines indicate paths from fluid systems via continuous percolation
networks to directed percolation networks, during which either the polymer
concentration (‘path A’) or the salt concentration (‘path B’) are increased.
The upper dark solid line indicates the directed percolation transition, the
lower one denotes the continuous percolation transition.

exceeds seven. As will be discussed later, the systems do not reach equilibrium and aging
sets in beyond a threshold mean number of bonds per particle. For a purely repulsive
interaction such a transition is expected once the system becomes isostatic, i.e., globally
stable with six bonds per particle [32, 215].

The observed structures along two paths are now analyzed in more detail (Fig. 7.5).
Along path A, the salt concentration csalt and hence the screening length κ−1 is kept
constant while the polymer concentration cp and hence the depth of the potential
minimum VD,min is decreased. Instead, along path B the screening length κ−1 is reduced
at constant attraction. For path A, i.e. upon increasing attraction, 〈Nb〉 increases and
the distribution of the number of bonds per particle, p(Nb), first broadens, indicating
a more heterogeneous structure, but then narrows again once a gel state is observed
(Fig. 7.5(a)). While p(Nb) sharpens, the probability to find monomers is reduced to zero.
Along path B, i.e. increasing csalt (inset), the distributions also shift to larger Nb and
broaden, again indicating the coarsening of the structure. Compared to path A, the p(Nb)
are sharper, indicating that monomers are suppressed by the strong repulsion.
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Figure 7.5: (a) Distribution of the number of bonds per particle, p(Nb), as obtained by
simulations for constant screening length κσ = 40 and varying attraction (as
indicated on the left), i.e. path A in Fig. 7.4. In the inset simulation (lines)
and experimental (circles) results for varying κσ and constant attraction,
i.e. path B, are compared. (b) Mean 〈Nb〉, variance 〈ΔN2

b〉 and the most
probable value Nb,max of p(Nb) as a function of the attraction strength,
Vmin. The gray vertical lines denote the percolation (P) and the directed
percolation (DP) transition. (c) Distribution of the angle between two
successive bonds, p(ϕ), along path A. The inset shows p(ϕ) obtained in
simulations and experiments along path B. The light blue line represents
simulation data with parameters obtained by a multi-parameter fit (for details
see Appendix A.6). Colors of the lines are same as in (a) and indicated on
the left.

We characterize p(Nb) by its mean 〈Nb〉, variance 〈ΔN2
b〉 and maximum Nb,max. With

increasing attraction, that is |VD,min|, they all sharply increase at Vmin ≈ −3.0 kBT
(Fig. 7.5(b)). Furthermore, we consider the distribution p(ϕ) of angles between two
successive bonds, ϕ, which is normalized by the solid angle covered by the angle ϕ,
i.e. such that 2π

∫
p(ϕ) sinϕ dϕ = 1. It reveals a qualitative change that also occurs at

Vmin ≈ −3.0 kBT (Fig. 7.5(c)). While the peak at ϕ = π/3, which is related to locally
dense tetrahedral packings, grows monotonically with |Vmin|, a second peak at ϕ = 2π/3
develops and becomes pronounced for |Vmin| > 3.0 kBT . Furthermore, for these large
potential depths, a peak at ϕ = π emerges, which indicates the formation of straight
strings of connected particles.

7.5.3 Directed percolation

The data presented above indicate two percolation transitions from the fluid to the gel:
first, a continuous percolation transition, second, a directed percolation transition. Both
networks span the whole system. In continuous percolation, a walk along a percolating
cluster may contain steps in all directions, including backward steps (Fig. 7.6(a), P).



109

0.01

0.1

1

0.01 0.1 1 10

Δx−δ

a

0.01

0.1

1
1 10

a b

0

0.5

1

−4 −3 −2 −1
0

0.5

1
−8 −7 −6 −5 −4

a b

c

157696

a b

c

0.1

1

0.01 0.1 1

a b

c

0.1

1
0.01 0.1 1

a b

c d

Δ

p
(Δ

x
)

Δx/σ

p
(l
b
o
x
)

p
(l
b
o
x
)

Vmin/kBT

VD,min/kBT

9856
78848

(VP − Vmin)/kBT

(VDP − Vmin)/kBT

x

DP P

Figure 7.6: (a) Sketch of (DP) a directed and (P) an undirected cluster of length Δx.
(b) Probability p(Δx) for a particle to reside in a (main figure) directed and
(inset) undirected cluster with a length smaller than the maximum length Δx.
Solid lines represent simulation data along path A and symbols experimental
data along path B. Colors of the lines are defined in the legend of Fig. 7.5.
The gray solid line indicates the DP critical point, where the percolation
probability is expected to be proportional to Δxδ with δ = 0.451 [216]. (c)
Probability p(lbox) for a particle to reside in a (solid symbols) directed and
(open symbols) undirected cluster with the maximum possible length, i.e. the
box size lbox, and hence system-spanning, for different system sizes, quantified
by the number of particles N (as indicated). Vertical lines indicate the
(left) directed and (right) continuous percolation transitions. Solid black
lines represent critical power law fits with (left) p(lbox) ∼ (VDP−Vmin)

0.58

and (right) p(lbox) ∼ (VP−Vmin)
0.42. (d) Same data as in (c) but in double-

logarithmic representations and relative to the (top) directed and (bottom)
continuous percolation transitions.



110

Instead, in the case of directed percolation, a walk along a percolating cluster must always
be directed along the main direction of the cluster (Fig. 7.6(a), DP). In our simulations
following path A, the continuous percolation transition occurs at Vmin ≈ −2.3 kBT and
the directed percolation transition at Vmin ≈ −3.0 kBT . The latter coincides with the
significant changes observed in p(Nb) and p(ϕ) (Fig. 7.5). Furthermore, this indicates
that continuous percolation occurs for 〈Nb〉 � 2 and directed percolation for 〈Nb〉 � 3.
This suggests a connection between the percolation transitions with 〈Nb〉.
The (cumulative) probability p(Δx) to observe continuous and directed percolation
up to a length Δx is shown in the inset and main part of Fig. 7.6(b), respectively,
where the solid lines represent simulation data along path A and symbols results from
experiments along path B. For both percolation transitions, the probabilities decay to
zero in the case of weak attractions (small |Vmin|). In contrast, for strong attractions
plateaus develop, indicating large clusters that span the whole system. The height of the
plateau corresponds to the fraction p(lbox) of particles that are part of a cluster with the
maximum possible length, i.e. the box size lbox (Fig. 7.6(c)). The system size determines
lbox and also affects the simulations. Nevertheless, within the investigated system sizes
only a weak dependence on system size, quantified by the total number of particles N , is
observed and, in particular, no significant effect on the percolation transitions and their
positions is observed. We determined the continuous percolation and directed percolation
transitions in simulations for the complete parameter space of Fig. 7.4. The locations of
these transitions are indicated by dark solid lines in the figure. The threshold for these
curves is chosen according to the percolation probability for system spanning clusters,
i.e., p(Nb) ≥ 0.2 for systems with N = 9856 particles5.

Along path A, the probability for space-spanning clusters becomes non-zero at VP =
−2.3 kBT for continuous percolation and at VDP = −3.0 kBT for directed percolation,
consistent with our other findings. Furthermore, the values of p(lbox) obey critical power
law scaling close to the transitions (Fig. 7.6(c,d)). Our data are consistent with theoretical
predictions for the critical exponents of the power law scalings, i.e., βP = 0.42 for
continuous percolation [217, 218] and βDP = 0.58 for directed percolation [216] (black
lines in Figs. 7.6(c,d)).

7.5.4 Slowdown of dynamics and onset of aging

The dynamics of the different network structures are quantified by the self-intermediate
scattering function (Fig. 7.7), i.e., Eq. (2.6). Along path A, a dramatic slowdown of the
dynamics is observed beyond the DP transition. Directed percolation is characterized by
dense clusters with thick strands (Fig. 7.3, B3) and thus rearrangements are expected to
involve long-range, global motions and/or the breaking of several bonds. Correspondingly,
they require long times. In contrast, in continuous percolation more open structures (B2)

5The threshold value stems from the observation, that systems with 9856 particles exhibit an enhanced
percolation probability of p(Nb) ≈ 0.2 along the actual transition line, due to finite size effects.
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are formed that can be rearranged by local motions requiring less time, of the order of
the Brownian time τB. This is consistent with our observations.

The dependence of the mean number of bonds per particle, 〈Nb〉, on the potential depth
Vmin has been linked to the continuous and directed percolation transitions (Fig. 7.5(b)).
It (as well as all other parameters) has been determined a waiting time 300 τB after the
initial quench. Now its dependence on waiting time is considered (Fig. 7.7(b)). For small
attraction strengths, |Vmin| ≤ 3.0 kBT , 〈Nb〉 is independent of the waiting time within the
examined time range. However, for |Vmin| > 3.0 kBT and thus directed percolation, 〈Nb〉
is found to increase with waiting time. This indicates that aging effects are important
in directed percolated systems. In contrast, in continuous percolation equilibrium is
attained quickly. These findings support the importance of the above-mentioned local
and global rearrangement processes in continuous and directed percolation, respectively.
Furthermore, in continuous percolation equilibrium is reached quickly, while in directed
percolation it is reached only very slowly.

7.6 Conclusions

We have investigated gel formation in a system with competing attractive and repulsive
interactions. Confocal microscopy experiments on charged colloid-polymer mixtures
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were combined with Brownian dynamics simulations of particles interacting via the
Asakura-Oosawa and Coloumb potentials. Depending on the overall potential minimum
Vmin, which can be varied through the attractive and/or repulsive component of the
interactions, different states have been identified; a fluid and continuous as well as
directed percolated networks. The transitions between these states are associated with
changes in structural parameters, in particular the number of bonds per particle with
significant increases in the mean, variance and most probable value of the distribution of
the number of bonds.

The effect of continuous percolation on the dynamics is small. However, directed
percolation leads to a significant dynamic slowdown. This is attributed to the large
number of bonds and concomitant strong confinement of the particles in the attractive
potentials of their neighbors. This is also reflected in significant aging observed in
directed percolated systems. It suggests that equilibration is very slow in directed
percolated systems, but occurs quickly in continuous percolated systems. Our results
hence contribute to an improved understanding of the relation between structural and
dynamic features of gel forming systems and hint at their importance for their rheological
properties.
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Chapter 8
Colloid-polymer mixtures: confinement and
shear

8.1 Introduction

This chapter is directly tied to the last one, but now the influence of pore confinement,
i.e., the incorporation of two parallel flat walls, as well as the influence of shear on the gel
model system from the previous chapter are explained. Especially at low shear strengths
for gels beyond the DP transition a selective yielding of the network structures can be
observed, which typically results in the formation of larger clusters, that will be referred
to as gel-slabs.

8.2 Model

Repulsive flat walls. A very crucial ingredient for the discussions is the influence of
walls, which turn out to mediate a local microscopic synersis, i.e., the detachment of
the short-ranged but purely repulsive wall. The walls in our simulations are realized via
completely repulsive potentials, which we define via the repulsive force on species ν

f extν (z) = ez

{
fwall atan

(
− z−(σν/2)

10σ

)
, z < σν/2

0 , else
, (8.1)

for the bottom wall. For the top wall, we apply the same repulsive force. The energy
scale of the wall potential has been set to fwallσ = 104kBT in order to obtain a steep wall
potential without softness effects.
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Couette shear flow. A second external field is applied on our systems: a linear Couette
shear flow. The shear flow is induced in the y-direction of the simulation box, whereas
the gradient is imposed in the z-direction. The corresponding solvent velocity in the
dependence of the spatial coordinates is defined as

u∞(z) = eyu(z) = ey(−umax + zγ̇) , (8.2)

where the shear rate γ̇ and the maximum velocity umax = γ̇lz/2 (with lz being the box
size in z-direction) have been introduced. The shear rate has the dimension of a frequency
and determines the strength of the gradient of the applied flow.

The magnitude of the external field is expressed by the dimensionless number, that is
referred to as the Peclét number, i.e. Pe. For a monodisperse system with a self-diffusion
coefficient D and particle radius R = σ/2 it is defined by

Pe =
γ̇R2

D
. (8.3)

We are dealing with a slightly polydisperse system. Therefore, particles of different sizes
have also different Peclét numbers. Since larger particles have a larger contribution to the
overall packing fraction, we define our applied shear rate in terms of the Peclét number
Pe as

〈γ̇〉 = 1

m

m∑
ν=1

Pe
Dν

R2
ν

, (8.4)

with Dν the diffusion coefficient of species ν is (Eqs. (3.1) and (3.2)). The externally
applied shear flow imposes a linear force field in the system. The fact that the shear can
easily be represented as a force with linear dependence comes from the assumption of
neglected hydrodynamic interactions. Although for low Pe the effect should not be too
large, at this point it is important to note, that in general hydrodynamic interactions play
an important role for non-equilibrium setups. In some cases can lead to fundamentally
different results, as shown, e.g., by J. Vermant and M.J Solomon [219].

We neglect hydrodynamic interactions and assume no-slip boundary conditions at the
particle-solvent interface. The velocity u of a particle then equals the velocity of the
solvent background, i.e., u∞. According to the BD algorithm from Eq. (3.8) the particle
displacement due to the external shear flow can be expressed as

Δrshear(z) =

Δt∫
0

dtu∞(z) ≈ u∞(z)Δt . (8.5)

Inserting Eq. (8.2) with the new definition of the shear rate (Eq. (8.4)) into this equation
yields

Δrshear(z) = ey(−umax + z〈γ̇〉)Δt . (8.6)
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Figure 8.1: Rendered snapshots of samples in the vicinity of a wall obtained in (top)
simulations with systems along path A and (bottom) an experiment with
sample B3.

Since rearrangements in the vicinity of such a shear flow happen on a different (typically
shorter) timescale, we introduce an adjusted shear time-scale

τs =

{
τB/Pe , Pe > 1
τB , else

, (8.7)

which is more suitable to compare systems with different shear strengths.

8.3 Results

8.3.1 Confined gels

In Fig. 8.1 we illustrate qualitatively the effect of flat repulsive walls, that has been
observed in simulations (top panel) and experiments (bottom panel). In continuous
percolation, the particles occupy the whole volume, also in the vicinity of the wall. In
directed percolated systems, in contrast, the vicinity of the wall is depleted of particles.
This indicates that directed connections between particles tend to compact the network.
This resembles syneresis, i.e. the macroscopic expulsion of fluid from a gel due to
the shrinking of the network. This has been observed in a variety of materials, like
gelatin [220], polysaccharide gels [221, 222], organogels [223], microgels [224] and also
weakly attractive colloidal gels [225]. The link between network shrinkage and directed
percolation might provide new aspects for the understanding of syneresis.
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Figure 8.2: Confined gel without externally applied shear flow after an initial relaxation
time of 550τB for gels with different attraction strength and constant κσ = 40
(along path A). (a) 〈Nb〉 as a function of Vmin or VD,min. (b) Snapshots
of the final configurations of the different gels with attraction strengths
according to the red points in plot (a): Vmin,1 = −6.1kBT , Vmin,2 = −4.4kBT ,
Vmin,3 = −3.2kBT , Vmin,4 = −2.8kBT , Vmin,5 = −2.5kBT , Vmin,6 = −2.2kBT .
The particles are continuously colored with respect to the number of bonds,
where red particles have 5 or more bonds and green particles have one or less
bonds.

To further study the detachment, we focus on a number of six different gels (see Fig. 8.2)
along path A (cf. Fig. 7.4). The samples are chosen in such a way, that three of them
are beyond the DP transition (1-3), two are below the DP transition but beyond the P
transition (4-5), and one is not percolated at all (6), in the non-shear case . In Fig. 8.2(a)
the connection of the slight detachment from the wall with the directed percolation can
easily be identified. Additionally, as the color code of the particles indicates, there are
only few low-bonded particles deep in the DP phase (see Fig. 8.2(b)/1-2), whereas for the
system close to the transition, large aggregates that are highly-bonded are surrounded by
less-bonded and homogeneously distributed particles (see Fig. 8.2(b)/3). For the remaining
systems (see Fig. 8.2(b)/4-6), one can see the formation of small clusters indicated by
orange particles.

8.3.2 Confined and sheared gels

In this section the effect of the Couette shear flow on a confined gel is investigated. The
protocol in order to obtain the final non-equilibrium steady-states reads as follows:
First, the systems are relaxed without shear for a time of 550τB as described before.
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Figure 8.3: (a) xz-plane of the final configuration of the state point 2 (κσ = 40 and
Vmin,2 = −4.4kBT after a relaxation time of 550τB) from Fig. 8.2 which is
used as a start configuration for the shear simulations (b-e): The shear force
is linearly switched on within 30τB from Pe = 0 to Pe = 5. Then the system
is sheared continuously and the state is shown after (b) 60τs, (c) 180τs, (d)
400τs, (e) 1000τs. The upper panel shows the xz-plane perpendicular to
the direction of the shear force, whereas the bottom panel shows the same
snapshot from the side-face (the yz-plane).

Subsequently, the final states of the relaxed gels, which may already show the local
detachment from the walls, are exerted to the additional external field. The shear flow is
linearly switched on during a timespan of 30τB. After that, the gels are being sheared
for 1000τs.

Switch-on of the Couette flow. The typical evolution in time of a sheared gel, that
corresponds to point 2 (from Fig. 8.2) is illustrated in Fig. 8.3 for two point-of-views,
i.e., looking on of the xz-plane (top) or on the yz-plane (bottom).

The gel in Fig. 8.3 represents the relaxed configuration after the initial 550τB. Shortly
after starting the shear, some of the strands inside the network break up. This is followed
by a consecutive alignment of the open ends. This two-step process is the reason for the
holes that become visible in the xz-view (see Fig. 8.3(b)). First only the thinner or longer
strands break up, later thicker connections tear apart, as can be seen in the center of the
simulation box at intermediate and long times (see Fig. 8.3(c-e)). The remaining large
aggregations are elongated in the y- and z-direction and might be completely separate
from other aggregations. They will be referred to as shear-induced gel-slabs in the
following. Although they look rigid at first glance, particles inside such a slab rearrange
locally by hopping from one neighbor to another rather than moving cooperatively as
one large cluster.
On the other hand, the bottom panel of Fig. 8.3 displays the yz-planes of the same
snapshots. First, no holes are visible from this point-of-view. Second, as indicated by a
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Figure 8.4: Final snapshots after shearing different gels for 1000τs at the state points
κσ = 40 and (a) Vmin,1 = −6.1kBT , (b) Vmin,2 = −4.4kBT , (c) Vmin,3 =
−3.2kBT , (d) Vmin,4 = −2.8kBT , (e) Vmin,5 = −2.5kBT , (f) Vmin,6 = −2.2kBT .
In all figures the xz-plane is displayed at front.

larger number of green particles, the switch-on of the shear induces break-ups of some of
the bonds, especially at the surfaces of the gel-slabs. This indicates, that the slabs are
very compact inside, but contain rather loose particles at their surfaces.

Increasing Vmin, constant Pe. In Fig. 8.4 snapshots of typical systems at the state
points from Fig. 8.2 are shown for a shear rate according to Pe = 5 and after 1000τs of
shearing. For the systems that are below the DP threshold (4-6) the shearing has no
apparent impact on the system. Despite some bond-fracturing, the systems remain in an
overall homogeneous structure, in which most of the particles are still interconnected
with each other in a similar way as in the unsheared system.

The gel, which was in the unperturbed case just beyond the DP transition (3), contained
larger domains of clustered particles (cf. Fig. 8.2(b)). The size of the clusters has been
reduced due to the shear forces. This becomes visible by a more homogeneous color
distribution.

Finally, for the state points, that lay in the unperturbed case farther beyond the DP
transition (Fig. 8.4(1-2)), the sheared networks tend to break up in gel-slabs. However,
the stronger the attraction strength is the more highly bonded particles can be identified.
For the gel of state point 1 nearly all particles exceed five bonds. The gel-slabs have high
packing fraction inside, which compensates the large void volumes that arise between
the gel-slabs. We expect that the large and compact structures remain stable for long
times after stopping the Couette flow. Although this has not been investigated further,
the stability of gel-slabs is expected in both cases (points 1 and 2), because the thermal
energy is lower by a factor of at least 4 than the attraction strength and therefore
cooperative rearrangements of very large clusters would be needed in order to split up
one slab or merge two them.
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Figure 8.5: Final snapshots of the xz-plane of the final states after 1000τs for the
parameters κσ = 40 and Vmin = −6.1kBT (point 1) and the Peclét numbers
(a) Pe = 0, (b) Pe = 5, (c) Pe = 20, (d) Pe = 50, (e) Pe = 100. The
configuration in (a) has been used for the other simulations as an initial seed.

Constant Vmin, increasing Pe. Now, we study the effect of shear strength at Vmin,1 =
−6.1kBT . The final configurations of the systems with different Peclét numbers are shown
in Fig. 8.5. For the case of zero shear the system detaches from the wall as discussed
before. Most of the particles are colored red, indicating a large number of bonds (≥ 5).
Whereas for small shear rate (Fig. 8.5(b)) the number of highly bonded particles has
barely changed, the overall structure undergoes a huge change, namely the formation
of gel-slabs. This effect can clearly be observed up to Pe = 50, whilst the number of
bonds per particle significantly decreases, as indicated by an increasing number of green
particles. For Pe = 100 (Fig. 8.5(e)), much more loose and homogeneous structures are
obtained. This is accounted to the large Pe and an additional (second) break-up of local
cluster structures [226].

Interestingly, as the configuration at rest (Fig. 8.5(a)) has been used as a seed for the
sheared systems, the accompanied lateral position of the major network-fracturing are
located approximately at the same positions. This might be connected with a built-in
weakness of the gel in the first place. However, this question will not be discussed within
this work.

Void volumes and free paths We quantify the above described findings by introducing
so-called void volumes, as employed in the study from N. Koumakis et al. [74]. For
our purposes two distinct void volumes are defined. Their meanings are sketched in
Fig. 8.6(a). For their calculation the simulation box is divided into a grid ofMx×My×Mz

points. Then for each point, the largest possible sphere that does not intersect with
any particle of the gel is calculated. The radius of this sphere is denoted by ΔsR and is
exemplarily sketched by the blue line in Fig. 8.6(a). The second measure is characterized
by a (not necessarily finite) volume, which is elongated in the z-direction, as indicated
by the yellow line in Fig. 8.6(a). It is defined for every grid point as the smallest free
path in z-direction until a colloid is intersected and is denoted by Δsz in the following.
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Figure 8.6: (a) Illustration of the definition of the two investigated void volumes, where
the size is determined by the parameters ΔsR (blue line) and Δsz (yellow
line) as explained in the text. (b) Distribution of (lines) ΔsR and (symbols)
Δsz for the three state points 1,2, and 4 as given by Fig. 8.2. The black line
is a guide to the eye and proportional to a power law Δs−3

z .

We reduce our study on the three systems corresponding to the points 1,2, and 4. Then
we plot the distributions P (ΔsR) and P (Δsz) of the measures ΔsR and Δsz in Fig 8.6(b)
for the above-mentioned gels at rest. First, one can see the striking difference between
the widths of the distributions of the void volumes for systems, which are not inside the
DP phase (red) and those which are inside the DP phase (blue and green). Second, the
elongated void volumes can be larger than the radial ones and seem to approach a Δs−3

z

power law for large Δsz.

After the shear flow is switched on the distributions of void volumes change for both,
the percolated and the directed percolated gels (see Fig. 8.7). In the percolated gel both
void volume measures just become smaller with increasing Pe, indicated by a narrowing
distribution (Fig. 8.7(a,b)). For the directed percolated gel, the distributions first become
broader with increasing Pe and then contract again. Especially the case of the elongated
measure Δsz in Fig. 8.7(d) is interesting. Whilst the distribution is broadening with low
Pe, it exhibits a power-law decay with an exponent −1 for intermediate lengths. For
larger Pe the decay becomes approximately proportional to Δs−3

z again. This goes along
with the inner break-up of gel-slabs. A possible interpretation for the occurrence of the
two exponents will be given in the following.

For the sheared system the elongated void measure along the z-direction becomes
independent of the other spatial directions. As the plot suggests the remaining dependency
is approximately proportional to the inverse of the length scale (in z-direction). Therefore,
Pshear = Pz ≈ Δs−1

z is the isolated (decoupled) probability for such a length along a
single direction. In the case of no shear the structures are expected to be rather isotropic
in all three spatial directions. Therefore the probability of finding a void length Δsz in
the z-direction should depend also on the other spatial directions. One can therefore
conclude, that due to the isotropy the length of the elongated void volumes in one
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direction is limited by a similar length (of free volume) in the other spatial directions,
i.e. Piso = PxPyPz ≈ [ΔssΔsyΔsz]

−1. Assuming, that all spatial directions are equal, we
obtain the relation Piso = P 3

shear. For extreme large Pe the constituents of the gel-slabs
are teared apart. Therefore the whole slabs dissolve, the void volumes shrink again and
a power-law decay with exponent −3 is regained.

8.4 Conclusion

We have shown, that gels beyond the DP transition possess a complex structural behavior
if they are subjected to confinement and shear. This suggests that the observed effects
are caused by the non-equilibrium properties of gels. Firstly, we have investigated the
effect of confinement. Here, the gels were exerted to the external field of two parallel,
flat, and completely repulsive walls. In the experiments as well as in the simulations
we found local detachments of the network structures from the wall, but only for the
samples that were directed percolated.
Secondly, in the simulations we have applied a Couette shear flow on the system. For
low shear rates and increasing waiting times not only the thinner and longer network
connections broke up, but also thicker strands were split. Here, in particular diagonally
directed particle chains broke up and aligned parallel to the external shear field in a way
that the re-aggregation of diagonally split strings became less probable. Whether the
initial gel (at rest) was directed percolated or not had further influence on the final states
during shear. For systems beyond the DP transition very compact gel-slabs formed,
which were not rigid but rather exhibited an internal hopping motion of particles from
one neighbor to the other. Although the fate of these slabs could not be fully determined,
it is rather probable that they remain stable for long times. However, the expected
long-time meta-stability of the gel-slabs will be explored in future simulations.

Additionally, we observed that the final location of the gel-slabs might be dependent on
the location of previously built-in weaknesses of the network structure.
In the quantitative analysis of the gels we had a look at length-scales of two different
types of void volumes, one being of a spherical shape and the other being elongated in
z-direction. In the case of the formation of gel-slabs the appearance of different exponents
in the distribution of the elongated void volume sizes indicated a decoupling of spatial
directions in the network structures.
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Appendix A
Appendix

A.1 Fixed point iterations

In Sec. 2.6.4 the fixed point iterations have been shortly sketched for a general iteration
scheme (Eq. (2.63)) and the Picard-like iteration scheme (Eq. (2.64)). The latter one is
rather easy to implement, but unfortunately sometimes not sufficient to solve implicit
equations within reasonable time. Sometimes it is even impossible to solve the equations
due to the deficient convergence towards the fixpoint. Nevertheless, this algorithm has
been applied to solve the DFT equation (Eq. (2.61)) transform the direct correlations
via the OZ relation into total correlation functions.

A more sophisticated approach is given by the direct inversion in the iterative subspace
(DIIS), which was proposed by K.-C. Ng [227] from necessity in order to solve the OZ
relation within the HNC closure for very strong coupling parameters of charged particles.
It can defined within a certain linear iteration scheme, where an define the series of
iteration vectors and serve as input vectors vor the next iteration step. The output vectors
are bn. Then we have the relationship

bn = T(an) (A.1)

where the mapping function T is linear, for example a simple Picard iteration. The
Ng-algorithm now requires the history of the last N vectors. For each member of this
history, we can define the error vector

dn = bn − an (A.2)

The ansatz is, that the residuum of the next step shall be constructed via a linear
combination of the previous error vectors, i.e.,

dN+1 =
N∑

m=1

cmdm (A.3)
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For the representation in the basis system of the error vectors, we want to minimize the
norm of the next-step residuum vector, such that it should coincide with the zero vector.
Therefore, we can define a Lagrangian

L = cT
↔
D c− λ

(
N∑

m=1

cm − 1

)
, (A.4)

where λ is the undetermined Lagrangian parameter and the elements Dij = 〈di,dj〉 are
defined by the standard vector space scalar product of the two error vectors di and dj.
We can apply the Euler-Lagrange equations for the expression from Eq. (A.4), i.e.,

∂L
∂cm

= 0 =
N∑
i=1

ci〈di,dm〉+
N∑
j=1

cj〈dm,dj〉 − λ . (A.5)

The sums occuring on the right hand side are equal. Therefore, we can replace λ by
2λ and obtain a simple set of linear equations, from where the coefficients cm can be
determined ⎛

⎜⎜⎜⎜⎜⎝

〈d1,d1〉 〈d1,d2〉 · · · 〈d1,dN〉 −1
〈d2,d1〉 〈d2,d2〉 · · · 〈d2,dN〉 −1

...
...

. . .
...

...
〈dN ,d1〉 〈dN ,d2〉 · · · 〈dN ,dN〉 −1

−1 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

c1
c2
...
cN
λ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
−1

⎞
⎟⎟⎟⎟⎟⎠ , (A.6)

where the last column of the matrix guarantees the normalization criterion
∑

m cm = 1.
After solving the set of equation, we can finally calculate the best approximation for the
next iteration step according to the N -step-DIIS

aN+1 =
N∑

m=1

cmbm . (A.7)

A.2 Bulk comparisons between DFT/FMT
and BD simulations

In Chapter 5 we have presented two-particle direct correlations (Eq. (2.60)) and total
correlations (Eq. (2.34)) in anisotropic situations for HS particles that reside in front of

a wall. Access to former correlations (c
(2)
νν′) have been made possible by means of DFT

calculations, whereas for the latter ones (h
(2)
νν′) we have transformed the direct correlation

by making use of the general OZ relation (Eq. (2.93)). These total correlations were
detailed studied for anisotropic, polydisperse, and dense systems. In this appendix,
we visualized both kinds of correlation functions in Fig. A.1 for a monodisperse and a
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Figure A.1: (a) Direct and (b) total correlation functions in bulk for one- and two-
component (50:50) hard-sphere systems with volume fraction φ = 0.5. In
the two-component case, the correlations between possible combinations of
species are labeled by 11 (small/small), 21 (large/small), and 22 (large/large).
All correlations are determined from our DFT calculations in combination
with the OZ relation; for comparison we also show the analytically known
Percus-Yevick (PY) result for the one-component system [122]. The inset
in (a) sketches that if a small particle 1 is inside a larger particle 2 its
center point can move within the gray (shaded) area without changing the
intersection volume of the spheres. As a consequence, there is a plateau in
the 21 curve between the two red (solid) dots.
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binary system in bulk. In the binary system, four combinations between small and large
particles exist, where the mixed combinations small/large and large/small are identical
in bulk. The direct correlations are calculated using Picard iterations on DFT with FMT
as described in Sections 2.6 and 2.7.

In the left plot (Fig. A.1(a)) one can nicely see the emergence of a plateau for r < 0.2σ1,
where c(2) is constant. This plateau stems from the fact, that the 3D-fundamental
measures do not change the relevant integration volume V in the corresponding equation
(Eq. (2.92)). In other words: the overlap volume of two unequally sized spheres remains
constant as long as the smaller sphere is completely encapsulated by the larger one.

In the right plot (Fig. A.1(a)) the transforms of the direct correlation functions in bulk, i.e.

h
(2)
νν′ , are shown without a numerically cleared core as always done in the corresponding

plots of the main chapter (Chap. 5). The calculated total correlations of our approach
tend produce unphysical data in the core of the particles. The Percus-Yevick solution [122]
is shown as a reference. Contrarily, it does not contain any values unequal to -1 inside
the core (as it should). As stated in the main chapter, we deal with this fact by replacing
the forbidden values with -1 in our plots.

A.3 Hankel transform of the anisotropic OZ relation

Starting with the direct correlation functions c
(2)
νν′ determined from FMT, we obtain the

total pair correlation functions h
(2)
νν′ by solving the OZ relation as defined in Eq. (2.93)

numerically. In a gedankenexperiment we rescale the involved correlation functions by a
factor

√
ρν(r)ρν′(r ′) such that they are 0 in all locations that must not be reached by a

particle. Therefore, it is sufficient to solve the OZ relation only outside of the wall, even
if the original direct correlations might be nonzero inside the wall.

As shown in Eq. (5.5), we solve the OZ relation numerically in Fourier space, where
convolutions become simple products. In our case, we consider functions with radial
symmetry, i.e., functions f(x, y) with x = r cos(ϕ) and y = r sin(ϕ) that do not depend
on ϕ. Then, their Fourier transforms are

F (f)(kx, ky) =
1

2π

∫
R2

dxdy f(x, y)e−ı(xkx+yky) , (A.8)

which in polar coordinates after the integration over ϕ leads to

F (f) (s) =

∫ ∞

0

dr rf(r)J0(sr) . (A.9)

This result corresponds to a Hankel transform (or Bessel transform) as introduced in
Eq. (5.4), which in general is defined by [228,229]

Fν(u) = Hν {f(t)} =

∫ ∞

0

dt f(t)Jν(ut)t , (A.10)
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where Fν(u) is called the Hankel transformed function of order ν of the function f if the
integral exists. The function f can be a complex valued function and Jν denote Bessel
functions of the first kind that for integer ν are given by [154,228,229]

Jν(x) =
1

2π

∫ π

−π

dτ e−ı(ντ−x sin(τ)) . (A.11)

The inverse Hankel transform is given by

f(t) = H−1
ν {Fν(u)} =

∫ ∞

0

duFν(u)Jν(ut)u . (A.12)

We employed the Hankel transform that for numerical calculations is available in the Gnu
Scientific Library (GSL) and whose calculation scheme follows the work of H. F. Johnson
[228] and D. Lemoine [229].

A.4 Explicit terms from the anisotropic FMT (White
Bear II)

Preface. This part of the appendix supplies the derived terms that are used in the
anisotropic FMT for a multi-component system in order to obtain the direct correlation
functions (cf. Sec. 5.3). Major parts of this section have been written together with
Andreas Härtel and Michael Schmiedeberg. Andreas Härtel implemented the necessary
numerics.

From Eq. (5.2) we know that the direct correlation functions in FMT on a discrete
numerical grid read

−c(2)νν′(r, r
′) ≈

M−1∑
i=0

∑
α

∑
β

∂2Φ(zi)

∂nα∂nβ

W
(αβ)
νν′ (Īi,Δ), (A.13)

where Δ = r′ − r, zi are the discrete and equidistant sample points along the z-axis
separated by dz, the weight-correlation functionsW

(αβ)
νν′ (I, r) were defined in Eq. (5.3), and

Īi is a corresponding interval Īi = [zL, zR], with zL = zi−(r)z− 1
2
dz and zR = zi−(r)z+

1
2
dz

which contains zi. Note that we employ rX ≡ (r)X as a short writing for the X-component
of the vector r in Cartesian coordinates spanned by {êx, êy, êz}.
The weight-correlation functions W

(αβ)
νν′ (I, r) are representations of convolutions of the

translational invariant weight functions w
(α)
ν and w

(β)
ν′ from Eqs. (2.76)-(2.81) and (2.88)

on the interval I. These weight functions have non-vanishing values solely on the volume
Sν or on the surface ∂Sν of a sphere of species ν with radius Rν . Thus, we consider two
spheres A and B with centers in the origin and at Δ.
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In order to calculate a function W
(αβ)
νν′ as given in Eq. (5.3), its integration interval I

must have certain properties. To guarantee these properties, the interval I can be split
into parts I1 and I2 with I1 ∩ I2 = ∅ and I = I1 ∪ I2, such that

W
(αβ)
νν′ (I,Δ) := W

(αβ)
νν′ (I1,Δ) +W

(αβ)
νν′ (I2,Δ). (A.14)

Subsequently splitting I in an appropriate way into intervals Ii guarantees the following
necessary properties after splitting:

• Either the weight-correlation function vanishes on the interval Ii (W
(αβ)
AB (Ii,Δ) = 0)

or both spheres SA and SB contain at least one point with z-component z for each
point in the interval Ii (∀z ∈ Ii, Vz := R2 × {z}: Vz ∩ SA �= ∅ and Vz ∩ SB �= ∅).

• The intersection ∂SA ∩ ∂SB of both spheres ∂SA and ∂SB either contains for all z
in Ii at least one point r with z-component rz or it contains for all z in the inner
kernel I̊i no point r with z-component rz.

Note that the whole intersection line ∂SA ∩ ∂SB can be contained in one slice Vz :=
R2 × {z}, when Δ||êz (for visualization see Fig. A.2). We do not consider the special
situation where the spheres touch in a single point which would contribute only to the
point of the direct correlation function at particle contact whose value is not defined.

As can be seen from its definition in Eq. (5.3), the absolute value of the weight-correlation

function W
(αβ)
AB does not change if the spheres SA and SB exchange their positions and

the interval I is adapted in an appropriate way, i.e., I = [zL, zR] must been adapted
to I ′ = [(Δ)z − zR, (Δ)z − zL]. However, the sign of the function changes when one of
the involved weight functions is anti-symmetric and sign(wA)sign(wB) < 0; in our FMT
approach, only the vectorial weight functions are anti-symmetric. Therefore, an exchange
of the two spheres leads to

W
(αβ)
AB (I,Δ) = sign(w

(α)
A )sign(w

(β)
B )W

(βα)
BA (I ′,Δ). (A.15)

For this reason we only calculate combinations with α ≥ β, according to the order

3 > 2 > 1 > 0 > 2 > 1 >
↔
2. Furthermore, from the definition of the weight functions it

follows

W
(α1)
AB = 1

4πRB
W

(α2)
AB , (A.16)

W
(α0)
AB = 1

4πR2
B
W

(α2)
AB , (A.17)

W
(α1)
AB = 1

4πRB
W

(α2)
AB . (A.18)

In summary, we have to calculate only the weight-correlation functions for the following
combinations1:

(αβ) ∈ {(33), (32), (32), (3 ↔
2),

(22), (22), (2
↔
2), (22), (2

↔
2), (

↔
2
↔
2)
}
. (A.19)

1Note, that vectorial weight functions are represented by bold numbers.
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All other combinations can be obtained by the relations mentioned above.

If the support of W
(αβ)
AB and the volume V = R2 × I do overlap (have a non-vanishing

intersection), three cases are left on this volume V :
1. sphere B inside sphere A

Sphere B is completely encapsulated by sphere A (or vice versa), i.e, without loss
of generality:
SA ∩ SB ∩ V = SB ∩ V and ∂SA ∩ SB ∩ V̊ = ∅

2. partial intersection
Different spheres with only partial intersection, i.e., without loss of generality:
∂SA ∩ ∂SB ∩ V̊ �= ∅, but SA �= SB

3. two equal spheres
Equally sized spheres are at the same position
SA = SB.

In the following sections we calculate the weight-correlation functions W
(αβ)
AB in these

three cases for all combinations mentioned in Eq. (A.19). During this calculation, we use
the in-plane radii rA and rB of the spheres intersecting with a plane Vz perpendicular
to the z-axis, i.e., of the circles Vz ∩ SA and Vz ∩ SB as shown in Fig. A.2(a). In our
three cases, these radii are well-defined for all z ∈ I with planes Vz within the volume
V = R2 × I of integration and read

rA(z) =
√
R2

A − z2, (A.20)

rB(z) =

√
R2

B − ((Δ)z − z
)2
. (A.21)

Case 1 - sphere B inside sphere A

This case only occurs, when A is larger than B and when B is fully encapsulated. In such
a situation the unit vectors pointing from the centers of sphere A or B towards their
respective surfaces can be parametrized for z ∈ Ii with cylindrical coordinates (γ, z) by

RA(γ, z)

RA

=
1

RA

⎛
⎝rA(z) cos(γ)rA(z) sin(γ)

z

⎞
⎠ , (A.22)

RB(γ, z)

RB

=
1

RB

⎛
⎝−rB(z) cos(γ)rB(z) sin(γ)

z − (Δ)z

⎞
⎠ , (A.23)

where rA(z) and rB(z) are given by Eqs. (A.20) and (A.21).

For all combinations, where the weight function of the larger encapsulating sphere is
not w

(3)
A , both weight functions do not intersect and one trivially obtains W

(α �=3,β)
AB = 0;
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Figure A.2: Sketch of the intersection of two spheres A and B with radii RA and RB at a
center-center distance of Δ. The sketch contains notations and parametriza-
tions for (a) the intersection in the xy-plane and for (b) the intersection line,
both illustrated on the right. Note that in (b) |C| = ΔA and Δ = ΔA +ΔB.
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we neglect the case where the encapsulated sphere touches the outer one in a single
point. For the remaining combinations of weight functions the first two weight-correlation
functions read

W
(33)
AB =

∫ zR

zL

dz πr2B(z)

=

[
πR2

Bz +
π

3

(
(Δ)z − z

)3]zR
z=zL

, (A.24)

W
(32)
AB =

∫
Vi

drΘ
(
RA − |r|)δ(RB − |r−Δ|) . (A.25)

Since sphere B is encapsulated inside of sphere A, the Θ weight in Eq. (A.25) is
equal to unity on the integration volume of interest. Furthermore, a linear parameter
change for the xy-integration in this equation and a change to cylindrical coordinates
(r cos(γ), r sin(γ), z) lead to

W
(32)
AB =

∫
Ii

dz

∫ 2π

0

dγ

∫ ∞

0

dr rδ
(
RB −

√
r2 +

(
z − (Δ)z

)2)
. (A.26)

In order to perform the integrals in Eq. (A.26), we use the equality

δ
(
g(r)
)
=
∑
i

δ(r − ri)

|g′(ri)| (A.27)

for a continuously differentiable function g(r) with the finite set {ri} of simple zeros
and the derivative g′(r) = ∂g/∂r. In Eq. (A.26) the argument of the δ-distribution has
the simple zero r1 = rB(z) and |g′(r1)| = r/RB. Accordingly, the previous result of
Eq. (A.26) becomes

W
(32)
AB = 2πRB(zR − zL). (A.28)

Similarly, it follows

W
(32)
AB =

∫ zR

zL

dz

∫ 2π

0

dγ

∫ ∞

0

dr RBδ
(
r − rB(z)

)
RB(γ, z)

=2πêz

[
1

2
z2 − (Δ)zz

]zR
z=zL

, (A.29)

W
(3

↔
2 )

AB =
(
êx ⊗ êx + êy ⊗ êy

)
× π

RB

[
R2

Bz +
1

3

(
(Δ)z − z

)3]zR
z=zL

+
(
êz ⊗ êz

) 2π
RB

[
−1

3

(
(Δ)z − z

)3]zR
z=zL

−
↔
I

3
W

(32)
AB , (A.30)

where the outer product êi ⊗ êj between êi and êj is defined as the matrix product êi · êTj
with T indicating a transposed vector.
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Case 2 - partial intersection

In this case, both spheres A and B intersect each other and the intersection occurs at
z-positions with zL ≤ z ≤ zR. In order to calculate the weight-correlation functions
W

(αβ)
AB we distinguish two cases:

(2a) at least one of the corresponding weight functions incorporates a Θ weight:
⇔ α = 3 ≥ β

(2b) no Θ-weight function is involved:
⇔ 3 > α ≥ β

Case 2a - partial intersection, α = 3

In this case, we employed numerical integration in order to determine W
(αβ)
AB following

some analytical calculations.

According to previous discussions, Δz := (Δ)z < |Δ| and Δxy :=
√
(Δ)2x + (Δ)2y > 0.

Thus, the vectors RA and RB, which point from the center of the spheres SA and SB to
their surface (at position z), can be parameterized by (see Fig. A.2)

RA(ϕA) = CA + rA(z) (DcA cos(ϕA) +DsA sin(ϕA)) (A.31)

RB(ϕB) = CB + rB(z) (DcB cos(ϕB) +DsB sin(ϕB)) , (A.32)

where

CA = zêz , CB = (z −Δz)êz, (A.33)

DcA = Δ−1
xy (Δxêx +Δyêy) = −DcB, (A.34)

DsA = êz ×DcA = −êz ×DcB = DsB. (A.35)

The in-plane radii rA and rB are used as defined in Eqs. (A.20) and (A.21). From the
law of Cosines it follows

rA cos(ϕA) =
r2A +Δ2

xy − r2B
2Δxy

, ϕA ∈ (0, π) (A.36)

rB cos(ϕB) =
r2B +Δ2

xy − r2A
2Δxy

, ϕB ∈ (0, π), (A.37)

where the correlated angles ϕA and ϕB become π
2
for vanishing radii rA and rB, respec-

tively.

In the case of two Θ-weights, the intersection area of the kernel is given by two caps of
the corresponding intersecting circles as illustrated in Fig. A.2(a). The area D of such
a cap is given by the fraction 2ϕ

2π
of the corresponding circle with a triangle subtracted
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or added, depending on the opening angle of ϕ: if ϕ ≤ π
2
, the triangle is subtracted,

otherwise added. With h = | sin(ϕ)|r, the area follows with

D = ϕr2 − r2 cos(ϕ) sin(ϕ). (A.38)

Thus, the weight-correlation function for two Θ-weights follows with

W
(33)
AB =

∫ zR

zL

dz
(
r2A(z)

(
ϕA − sin(ϕA) cos(ϕA)

)
(A.39)

+r2B(z)
(
ϕB − sin(ϕB) cos(ϕB)

))
.

Referring to calculations from Eqs. (A.26) - (A.28) in case 1, we furthermore get

W
(32)
AB =

∫ zR

zL

dz

∫ ϕB

−ϕB

dγ RB = 2

∫ zR

zL

dz ϕBRB . (A.40)

Using the parameterization of RB from Eq. (A.32), we obtain

W
(32)
AB =

∫ zR

zL

dz

∫ ϕB

−ϕB

dϕRB(ϕ)

= 2

∫ zR

zL

dz [ϕBCB + rB(z)DcB sin(ϕB)] . (A.41)

Using furthermore the equalities
∫
dx sin2(x) = x

2
− 1

4
sin(2x),

∫
dx cos2(x) = x

2
+ 1

4
sin(2x),

and
∫
dx sin(x) cos(x) = −1

2
cos2(x), if follows(

W
(3

↔
2 )

AB

)
ij

=

∫ zR

zL

dz

∫ ϕB

−ϕB

dϕ
RB

R2
B

(RB(ϕ))i (RB(ϕ))j −
∫ zR

zL

dz

∫ ϕB

−ϕB

dϕRB
1

3
δij (A.42)

=

∫ zR

zL

dz
2

RB

[
ϕB (CB)i (CB)j

+ rB(z) sin(ϕB) (CB)i (DcB)j

+ rB(z) sin(ϕB) (DcB)i (CB)j

+ (rB(z))
2

(
ϕB

2
+

1

4
sin(2ϕB)

)
(DcB)i (DcB)j

+ (rB(z))
2

(
ϕB

2
− 1

4
sin(2ϕB)

)
(DsB)i (DsB)j

]

− 1

3
δijW

(32)
AB . (A.43)

Finally, we calculated the remaining integral over the interval Ii = [zL, zR] in Eqs. (A.39)-
(A.43) numerically on a discrete grid of 16 points. Keep in mind that zR − zL ≤ dz which
is the numeric resolution of the grid of the direct correlation functions in Eq. (5.2).
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Case 2b - partial intersection, α < 3

On the interval Ii = [zL, zR] of interest, an unique intersection circle between the surfaces
∂SA and ∂SB exists. Note, that the whole intersection circle might lay in one plane
R2 × {zc} if Δ ‖ êz. Otherwise, the distance Δ must have non-vanishing contributions
orthogonal to êz.

The intersection circle, as sketched in Fig. A.2(b), can be parameterized by the vector

rI(t) = C+DcrI cos(t) +DsrI sin(t), (A.44)

where the radius rI =
√
R2

A −Δ2
A = sin(ϑA)RA follows from R2

B = R2
A + Δ2 −

2RAΔcos(ϑA) with Δ ≡ |Δ| and from ΔA = cos(ϑA)RA.

For Δ ∦ êz, the vectors in the parameterization read

C = ΔA
Δ

|Δ| =
R2

B −R2
A −Δ2

−2Δ2

⎛
⎝Δx

Δy

Δz

⎞
⎠ , (A.45)

Ds =
êz ×Δ

|êz ×Δ| =
1

Δxy

⎛
⎝−Δy

Δx

0

⎞
⎠ , (A.46)

Dc =
Ds ×Δ

|Δ| =
1

ΔxyΔ

⎛
⎝−ΔxΔz

ΔyΔz

−Δ2
xy

⎞
⎠ . (A.47)

Moreover, |Ds ×Δ| = |Δ|, because Ds ⊥ Δ and |Ds| = 1. By definition it also follows
Ds ⊥ Dc. To map the parameter t onto the given interval Ii we furthermore solve
z = (rI(t))z and find

cos(t) =
z − R2

B−R2
A−Δ2

−2Δ2 Δz

−2Δxy

Δ. (A.48)

Thus, the interval Ii = [zL, zR] corresponds to the intervals [t1, t2] and [−t2,−t1], due to
the symmetry properties of the Cosine.

In case Δ ‖ êz, when the whole intersection circle is located in one z-slice at z = zc, we
set the vectors in the parameterization to C = zcêz, Ds = êy, and Dc = êx. Then the
whole circle is caught by the above defined intervals [t1, t2] and [−t2,−t1] with t1 = 0
and t2 = π.

Now, we consider the weight-correlation function

W
(22)
AB =

∫ zR

zL

∫ ∫
dr δ
(
RA − |r|)δ(RB − |r−Δ|) . (A.49)

Splitting the vector r into parallel and orthogonal components r‖ ‖ Δ and r⊥ ⊥ Δ and
converting to cylindrical coordinates (r cos(γ), r sin(γ), c ≡ |C|) on the Euclidean base
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(Dc,Ds,C/c), we find

W
(22)
AB =

∫
R
dc

∫ −t1

−t2

dγ

∫ ∞

0

dr rδ
(
gA(c)

)
δ
(
gB(r)

)
+

∫
R
dc

∫ t2

t1

dγ

∫ ∞

0

dr rδ
(
gA(c)

)
δ
(
gB(r)

)
(A.50)

with the arguments gA(c) = RA −√
r2 + c2 and gB(r) = RB −

√
r2 +

(
c− |Δ|)2, where

the conditions concerning the z-integration from Eq. (A.49) have been transferred to
conditions of the γ-integration.

In this tilted geometry, we first apply the identity from Eq. (A.27) to the second
δ-distribution with argument gB(r) in Eq. (A.50) and achieve the simple zero r0 =√
R2

B − (c− |Δ|)2 together with |g′B(c0)| = r/RB. Second, we apply the same identity

to the first δ-distribution with argument gA(c), where we already replaced the parameter
r by the value which is set by the r-integration over the second δ-distribution, leading to

gA(c) = RA−
√
c2 +R2

B − (c− |Δ|)2 with the simple zero c0 =
(
R2

A−R2
B+ |Δ|2)/(2|Δ|)

and the corresponding |g′A(c0))| = |Δ|/RA. Accordingly, we find

W
(22)
AB =

∫
R
dc

∫ −t1

−t2

dγ

∫ ∞

0

dr
RARB

Δ
δ(c− c0)δ(r − rI)

+

∫
R
dc

∫ t2

t1

dγ

∫ ∞

0

dr
RARB

Δ
δ(c− c0)δ(r − rI), (A.51)

which leads to the final result

W
(22)
AB =

RARB

|Δ| 2(t2 − t1). (A.52)

The vectorial and tensorial weight-correlation functions are calculated in a similar manner.
For this purpose, we define vectors

RA(t) = rI(t) and RB(t) = rI(t)−Δ (A.53)

which point from the centers of the spheres A and B to a point on the intersection line
∂SA ∩ ∂SB, which is parameterized by t. In combination with Eq. (A.51) we obtain

W
(22)
AB =

RARB

|Δ|
∫ −t1

−t2

dγ
RB(γ)

RB

+
RARB

|Δ|
∫ t2

t1

dγ
RB(γ)

RB

= 2
RA

|Δ| [(C−Δ) t+ r0Dc sin(t)]
t2
t=t1

, (A.54)
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(
W

(2
↔
2 )

AB

)
ij

=
RARB

|Δ|
∫ −t1

−t2

dγ

(
(RB(γ))i

RB

(RB(γ))j
RB

− δij
3

)

+
RARB

|Δ|
∫ t2

t1

dγ

(
(RB(γ))i

RB

(RB(γ))j
RB

− δij
3

)
, (A.55)

(
W

(22)
AB

)
ij
=
RARB

|Δ|
∫ −t1

−t2

dγ
(RA(γ))i

RA

(RB(γ))j
RB

+
RARB

|Δ|
∫ t2

t1

dγ
(RA(γ))i

RA

(RB(γ))j
RB

, (A.56)

(
W

(2
↔
2 )

AB

)
ijk

=
RARB

|Δ|
∫ −t1

−t2

dγ
(RA(γ))i

RA

(
(RB(γ))j

RB

(RB(γ))k
RB

− δjk
3

)

+
RARB

|Δ|
∫ t2

t1

dγ
(RA(γ))i

RA

(
(RB(γ))j

RB

(RB(γ))k
RB

− δjk
3

)
, (A.57)

(
W

(
↔
2
↔
2 )

AB

)
ijkl

=
RARB

|Δ|
∫ −t1

−t2

dγ

((↔
RA(γ)

)
ij

R2
A

− δij
3

)((↔
RB(γ)

)
kl

R2
B

− δkl
3

)

+
RARB

|Δ|
∫ t2

t1

dγ

((↔
RA(γ)

)
ij

R2
A

− δij
3

)((↔
RB(γ)

)
kl

R2
B

− δkl
3

)
, (A.58)

where
↔
RA (γ) = RA(γ)⊗RA(γ) with the tensor product⊗,

(↔
RA (γ)

)
ij
= (RA(γ))i (RA(γ))j ,

and
(↔
RB (γ)

)
ij
= (RB(γ))i (RB(γ))j . The analytical form of Eqs. (A.55)-(A.58) follows

from straight forward integration.

Case 3 - two equal spheres

In the last case, sphere B is equal to sphere A. This case of equal spheres corresponds to
a limiting case of the first two cases such that we do not need additional calculations. For
example, case 1 already covers all situations where α = 3. These situations are addressed,
when in the discussion in Sec. 5.4.2 the correlations between a small and a large particle
are called similar to the self correlations of the small particles. In this discussion all cases
with α ≤ 2 were neglected. In cases with α = 2, we find

W
(22)
AB =

∫ zR

zL

∫ ∫
dr δ
(
RA −

√
r2 + z2|

)
δ(RB −RA) . (A.59)
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Figure A.3: (Left) Numbers Nν of particles with diameters σν . The total number of
particles adds up to 9856 in order to fulfill the constraint of a normal
distribution with approximate integer numbers. (Right) Typical potential
shapes for particles with different model diameters σν .

This result corresponds to Eq. (A.25) in case 1, where α = 3 and β = 2, because the
Θ-weight of sphere A completely contains the weight function of sphere B and as a
consequence is irrelevant. Note, that here the naming of the spheres A and B was
switched.

All remaining situations with α < 2 can be reduced to already discussed cases with α = 2,
because all weights with α < 3 are δ-weights and only differ in a prefactor. This applies
even for the vectorial and tensorial weights

A.5 Polydispersity in gel simulations

In order to display the experimens better, which have been presented in Chap. 7,
polydispersity was added to the simulation routine, as illustrated in Fig. A.3. As the two
plots indicate, it was realized by splitting the total number of particles into species with
different model diameters (Fig. A.3, left) and consecutively shifting the final curves of the
potential or interaction forces by δr = 0.04σ steps (Fig. A.3, right), such that 17 distinct
diameters are obtained. These diameters have been chosen to be normal distributed with
a polydispersity, i.e., the standard deviation, of ≈ 7%. Furthermore, a simple shift of the
potentials conserves the depths and heights of the potential minima and maxima. Note,
that the position of the total potential minimum (denoted by σeff in the main text) is not
identical to the model parameter σ. It is rather smaller than the designated diameter
and only coincides with it in the limit of infinite inverse screening lengths σκ or infinitely
steep hard-core repulsions (cf. Eq. (7.4)).
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A.6 Fitting experimental gels to the simulation

Calibration of C0. The experiments have been carried out with charged particles. The
charge of the particles is contained in the interaction parameter C0 in the electrostatic
part of the interaction potential (Eq. 7.5). Using simulations, C0 is fitted. The fit is
based on the pair correlation function g(r) of a sample without added salt (C1, Tab. 7.1)
and thus interactions that are dominated by the electrostatic interaction. In the fit, only
the parameter C0 is varied and, as suggested by the low salt concentration, κσ = 0.25 is
fixed. Best agreement with the data was obtained for C0 = 200 kBT . Consequently, this
value was used for all samples. With C0 fixed the attraction strength D0 (Eq. 7.4) was
successively increased, until a peak in g(r) appeared at particle-particle contact.

Fitting via 〈Nb〉. In order to map the experimental samples onto the VD,min– κσ
plane, the positions of all samples have been fitted simultaneously based on their
average number of bonds and taking into account the following two constraints: First,
their relative distances along the κσ axis is given by their relative rather than their
absolute screening lengths according to Tab. 7.1. Second, the attraction strengths D0

corresponding to the three polymer concentrations cfreep = [c∗p, 2c
∗
p, 3c

∗
p] are assumed to

differ by at least 4 kBT . Thus, only affine transformations of the sample positions in
the VD,min– κσ plane are considered in a simultaneous fit of all sample positions. The
abolute positions were determined by minimizing the difference between 〈Nb〉sim and
〈Nb〉exp as determined in simulations and experiments, respectively, i.e. the minimum
Min{∑Bi,Ci,Di

|〈Nb,j〉sim − 〈Nb,j〉exp|}, where the individual 〈Nb,j〉sim are constrained by
allowed affine transformation, as explained above. This fit determines the relative
positions of all samples, such that the overall agreement between the average bond
numbers from experiments and simulations is good. Note, that this fitting is enough
for our purposes but that the absolute positions of the experimental samples are not
necessarily determined exactly.

Unconstrained fit In order to determine the individual sample positions within the
VD,min– κσ plane better, we additionally performed a free fit where the parameters
are not constrained to any path. The results are represented by the light blue solid
lines in Figs. 7.3 and 7.5. This fit relies on the minimization of the absolute error
(vector) Δg(r) = |gsim(r) − gexp(r)| between the pair correlations in simulations and
experiments, respectively, over the interval [σ, 3σ]. Thus, the local pair correlations
between experimental and simulation agree better, but the freely fitted positions cannot
be mapped onto the affine grid of paths anymore.
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[201] P. N. Segré, O. P. Behrend, and P. N. Pusey, “Short-time Brownian motion in
colloidal suspensions: Experiment and simulation,” Phys. Rev. E, vol. 52, pp. 5070–
5083, 1995.

[202] G. C. Berry, “Thermodynamic and Conformational Properties of Polystyrene. I.
Light-Scattering Studies on Dilute Solutions of Linear Polystyrenes,” The Journal
of Chemical Physics, vol. 44, no. 12, p. 4550, 1996.

[203] G. J. Fleer and R. Tuinier, “Analytical phase diagram for colloid-polymer mixtures,”
Phys. Rev. E, vol. 76, p. 041802, 2007.

[204] H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B.
Warren, “Phase Behaviour of Colloid + Polymer Mixtures,” EPL (Europhysics
Letters), vol. 20, no. 6, p. 559, 1992.

[205] D. Aarts, R. Tuinier, and H. N. W. Lekkerkerker, “Phase behaviour of mixtures
of colloidal spheres and excluded-volume polymer chains,” Journal of Physics:
Condensed Matter, vol. 14, pp. 7551–7561, 2002.

[206] M. E. Leunissen, Manipulating colloids with charges and electric fields. PhD,
Utrecht University, 2007.



160

[207] A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction
tunable from hard sphere to soft and dipolar,” Nature, vol. 421, no. 6922, pp. 513–
517, 2003.

[208] C. P. Royall, W. C. K. Poon, and E. R. Weeks, “In search of colloidal hard spheres,”
Soft Matter, vol. 9, no. 1, p. 17, 2013.

[209] W. Schaertl and H. Sillescu, “Brownian dynamics of polydisperse colloidal hard
spheres: Equilibrium structures and random close packings,” Journal of Statistical
Physics, vol. 77, no. 5-6, pp. 1007–1025, 1994.

[210] M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles:
towards reliable, optimum coordinates,” Advances in colloid and interface science,
vol. 136, no. 1-2, pp. 65–92, 2008.

[211] J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal
studies,” Journal of colloid and interface science, vol. 179, pp. 298–310, 1996.

[212] T. H. Zhang, J. Klok, R. Hans Tromp, J. Groenewold, and W. K. Kegel, “Non-
equilibrium cluster states in colloids with competing interactions,” Soft Matter,
vol. 8, pp. 667–672, 2012.

[213] A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U. Egelhaaf, and
P. Schurtenberger, “Equilibrium cluster formation in concentrated protein solutions
and colloids,” Nature, vol. 432, no. 7016, pp. 492–495, 2004.

[214] A. Stradner, F. Cardinaux, S. U. Egelhaaf, and P. Schurtenberger, “Do equilibrium
clusters exist in concentrated lysozyme solutions?,” Proc. Natl. Acad. Sci. USA,
vol. 105, pp. E75–E75, 2008.

[215] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, “Random Packings of
Frictionless Particles,” Phys. Rev. Lett., vol. 88, p. 075507, 2002.

[216] H. Hinrichsen, “Non-equilibrium critical phenomena and phase transitions into
absorbing states,” Advances in Physics, vol. 49, no. 7, pp. 815–958, 2000.

[217] H. E. Stanley, “Cluster shapes at the percolation threshold: and effective cluster
dimensionality and its connection with critical-point exponents,” Journal of Physics
A: Mathematical and General, vol. 10, no. 11, p. L211, 1977.

[218] A. Bunde and S. Havlin, Fractals and disordered systems. Springer-Verlag, 1991.

[219] J. Vermant and M. J. Solomon, “Flow-induced structure in colloidal suspensions,”
Journal of Physics: Condensed Matter, vol. 17, no. 4, p. R187, 2005.

[220] M. Kunitz, “Syneresis and Swelling of Gelatin.,” J. Gen. Physiol., vol. 12, no. 2,
pp. 289–312, 1928.

[221] T. Matsuhashi, “Agar,” in Food gels (P. Harris, ed.), ch. 1, pp. 1–51, Elsevier
Applied Science London, 1990.



161

[222] T. Divoux, B. Mao, and P. Snabre, “Syneresis and delayed detachment in agar
plates,” Soft Matter, vol. 11, pp. 3677–3685, 2015.

[223] J. Wu, T. Yi, Y. Zou, Q. Xia, T. Shu, F. Liu, Y. Yang, F. Li, Z. Chen, Z. Zhou,
and C. Huang, “Gelation induced reversible syneresis via structural evolution,” J.
Mater. Chem., vol. 19, no. 23, p. 3971, 2009.

[224] T. Gan, Y. Guan, and Y. Zhang, “Thermogelable PNIPAM microgel dispersion
as 3D cell scaffold: effect of syneresis,” J. Mater. Chem., vol. 20, no. 28, p. 5937,
2010.

[225] L. Cipelletti, S. Manley, R. C. Ball, and D. A. Weitz, “Universal aging features
in the restructuring of fractal colloidal gels.,” Phys. Rev. Lett., vol. 84, no. 10,
pp. 2275–2278, 2000.

[226] N. Koumakis, A. B. Schofield, and G. Petekidis, “Effects of shear induced crystal-
lization on the rheology and ageing of hard sphere glasses,” Soft Matter, vol. 4,
no. 10, 2008.

[227] K.-C. Ng, “Hypernetted chain solutions for the classical one-component plasma up
to Γ=7000,” The Journal of Chemical Physics, vol. 61, no. 7, pp. 2680–2689, 1974.

[228] H. Johnson, “An improved method for computing a discrete Hankel transform,”
Comput. Phys. Commun., vol. 43, pp. 181–202, 1987.

[229] D. Lemoine, “The discrete Bessel transform algorithm,” J. Chem. Phys., vol. 101,
no. 5, pp. 3936–3944, 1994.


