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Abstract

When pulling a probe particle in a many-particle system with fixed force, the
probe may approach a steady velocity. the effective friction of the probe, defined
as the pulling force over its average velocity, γeff := Fex/⟨u⟩, exhibits intriguing
non-linear behaviours with increase of the pulling force: it first keeps constant
(linear response), then decreases (thinning), and finally keeps constant for col-
loidal suspensions but increases for granular particles.

The goal of this thesis is to understand the non-linear behaviour in the active mi-
crorheology, in particular, to understand why thickening happens in the granular
particle systems, but not in the earlier colloidal suspensions.

To achieve this, we study the microrheology in both low and high density. In
the low density limit, we first construct a simple kinetic model, and find that iner-
tia causing thickening. Then we extend the model to include the thinning regime.
The thinning and thickening behaviour of the probe is unified by a three-time-
scales picture: the thinning/thickening is determined by the interplay of the three
time scales of bath particles: diffusion, damping and single probe-bath particles
collision. This picture is confirmed by a Langevin dynamics simulation. Cor-
respondingly, the microscopic mechanism of thickening is obtained as well: the
crossover from the creep motion of the bath particle to the direct single collision
leads to the thickening behaviour.

In high density, we extend the MCT to include the force-dependent short time de-
cay, which is crucial for thickening. First we construct a schematic-MCT model,
which can exhibit thickening behaviour as the friction contains the square of the
force. And we apply it to fit simulation data of pulling in driven granular particles.
Microscopically, we obtain the force dependent memory term in the schematic
model by a MCT calculation.
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Zusammenfassung

Beim Ziehen eines Testpartikels durch ein Vielteilchensystem mit konstanter Kraft,
nähert sich das Teilchen einer gleichbleibenden Geschwindigkeit an. Die effektive
Reibung des Teilchens, welche durch die Zugkraft geteilt durch die Durchschnitts-
geschwindigkeit definiert ist, γeff := Fex/⟨u⟩, zeigt dabei interessante nichtlineare
Eigenschaften mit steigender Zugkraft: Sie bleibt zunächst konstant (lineares Ver-
halten), wird dann kleiner (thinning), um dann schließlich für kolloidale Suspen-
sionen konstant zu bleiben oder für Granulate anzusteigen.

Das Ziel dieser Arbeit ist es, das nichtlineare Verhalten der aktiven Mikrorheolo-
gie zu verstehen, insbesondere, zu verstehen, warum es in granularen Teilchensys-
temen zu einer Verdickung kommt, nicht aber bei den oben genannten Kolloiden.

Um dies zu erreichen, wollen wir Mikrorheologie bei niedrigen und hohen Dichten
untersuchen. Für den Grenzfall sehr niedriger Dichten erstellen wir erst ein ein-
faches kinetisches Modell, um festzustellen, dass Trägheit Verdickung er-zeugt.
Wir erweitern dieses Modell dann auf das Verdünnungsregime. Das Verdünnungs-
und Verdickungsverhalten des Testteilchens wird durch ein Drei-Zeitskalen-Bild
erklärt: Verdünnung/Verdickung wird durch das Zusammenspiel der drei Zeit-
skalen mit den Badpartikeln bestimmt: Diffusion, Dämpfung und Einzelstöße
zwischen Test- und Badteilchen. Dieses Bild wird mittels einer Langevindy-
namiksimulation bestätigt. Dementsprechend wird auch der mikroskopische Mech-
anismus erhalten: Der Übergang des Kriechverhaltens der Badpartikel hin zu di-
rekten Einzelstößen führt zur Verdickung.

Für hohe Dichten erweitern wir die MCT, um den kraftabhängigen Zerfall auf
kleinen Zeitskalen mit einzuschließen, was für Verdickung entscheidend ist. Zun-
ächst erstellen wir ein schematisches MCT-Modell, welches Verdickungsverhal-
ten auf-weisen kann, da die Kraft quadratisch in die Reibung eingeht. Wir passen
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dies dann auf Simulationsdaten von Zugversuchen in getriebenen Granulaten an.
Mikroskopisch erhalten wir in diesem schematischen Modell dann den kraftab-
hängigen Memory-Term durch MCT-Berechnungen.

xii



Contents

1 Introduction 1
1.1 Microrheology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Phenomena: micro-shear thinning and thickening . . . . . 2
1.1.2 Granular materials vs. colloidal suspensions . . . . . . . . 5
1.1.3 Comparison with macrorheology . . . . . . . . . . . . . . 5

1.2 Two theoretical methods . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Microscopic dynamics: under-damped vs. over-damped . 8
1.2.2 Low density: two body Smoluchowski equation . . . . . 9
1.2.3 High density: mode-coupling theory . . . . . . . . . . . 10

1.3 Motivation and structure of the thesis . . . . . . . . . . . . . . . . 11

2 Kinetic Models of Thickening 13
2.1 Kinetic models of thickening I: fixed force pulling . . . . . . . . . 13

2.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Key idea . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Expression of average velocity and friction . . . . . . . . 14
2.1.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6 Role of energy dissipation . . . . . . . . . . . . . . . . . 17

2.2 Kinetic models of thickening II: fixed velocity pulling . . . . . . . 19
2.3 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Time scales picture of thinning and thickening 23
3.1 Three-time-scales picture . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Stochastic simulation . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Reflecting boundary condition . . . . . . . . . . . . . . . 29

xiii



CONTENTS

3.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Microscopic mechanism of thickening 35
4.1 Microscopic mechanism of thickening . . . . . . . . . . . . . . . 35
4.2 Density and velocity distributions . . . . . . . . . . . . . . . . . 40

4.2.1 Density distribution . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Velocity distribution . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Why does Maxwellian work or not? . . . . . . . . . . . . 45

4.3 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Pulling in High Density: Mode-coupling Theory 47
5.1 Generalized Green-Kubo formula . . . . . . . . . . . . . . . . . 48

5.1.1 General formalism and proof . . . . . . . . . . . . . . . . 48
5.1.2 Application to fixed force pulling . . . . . . . . . . . . . 49
5.1.3 Mapping ITT to the density correlator . . . . . . . . . . . 50

5.2 Mori-Zwanzig equation . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 General formalism and proof . . . . . . . . . . . . . . . . 53
5.2.2 Mori-Zwanzig equation of the probe . . . . . . . . . . . . 58

5.3 Microscopic MCT of the probe . . . . . . . . . . . . . . . . . . . 62
5.3.1 Translational invariance . . . . . . . . . . . . . . . . . . 63
5.3.2 Vertex terms and closure equation . . . . . . . . . . . . . 64

5.4 Schematic-MCT model . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Schematic model of fixed force pulling . . . . . . . . . . 67
5.4.2 Comparison with simulation data . . . . . . . . . . . . . 71
5.4.3 Microscopic derivation of νs(Fex) . . . . . . . . . . . . . 75
5.4.4 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion and discussion 81
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendices 83

A Operators of the Fokker-Planck Equation 87

Bibliography 91

xiv



Chapter 1

Introduction

Rheology 1 studies flow and deformation of materials under external forces [1, 2].
It can be applied to all kinds of materials, ranging from simple liquids to com-
plex fluids. The later includes colloidal suspensions, granular materials, polymers,
gels, active bacteria, etc. A comprehensive review of rheology of different com-
plex fluids can be found in ref. [3]. Conventionally, external forces are applied to
the bulk materials (for instance, simple shear), which is referred to as macrorhe-
ology. Due to experimental developments in the past two decades [4, 5], forces
can also be applied to a single particle size level (such as passively monitor the
motion of a single particle, or actively pulling a particle embedded in a bulk ma-
terials), which is referred to as microrheology.

The task of this thesis is to investigate the non-linear response behaviour of active
microrheology. We first introduce the phenomena of micro-shear thinning and
thickening in active microrheology, and compare them with macro-shear thinning
and thickening in macrorheology. Then we briefly discuss two typical theoret-
ical methods to calculate the non-linear response of the active microrheology:
1) in low density, the two-body Smolukwuski equation and 2) in high density, the
mode-coupling theory (MCT). The main goal of this thesis is to develop these two
methods to include thickening, which will be discussed in detail in the following
chapters.

1The term "rheo" originated from Greek, means to flow.
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1.1. MICRORHEOLOGY

1.1 Microrheology
Microrheology studies the deformation and the flow of materials under micro-
mechanical control [6, 7]. It can be classified into two categories:

• passive-microrheology. The diffusive motion of a probe particle is moni-
tored, e.g., by diffusive wave spectroscopy [8] or confocal microscopy [9],
and the visco-elastic properties, the frequency dependent storage and loss
moduli, are yield by the fluctuation-dissipation relation [6], which connects
the response of an observable to the thermal fluctuations.

• active-microrheology. The motion of a probe is controlled by an external
force, which can be realized by magnetic [10] or optical [11] tweezers in
colloidal suspensions, or direct mechanic pulling [12, 13, 14] in granular
matter.

While in passive microrheology, only linear response to the thermal fluctuations
is possible, in active microrheology, nonlinear response can also be realized by
pulling with large forces. It provides not only a novel method to understand ma-
terials’ viscoelasticity on the microscopic level [15, 16, 17, 18] but also a nice
example of studying the response theory, which is a fundamental issue in statisti-
cal mechanics [19, 20, 21, 22, 23].

1.1.1 Phenomena: micro-shear thinning and thickening
A typical experiment of active microrheology is to pull a probe particle embedded
in a complex fluid with fixed velocity then measure the average force, or pull it
with fixed force, then measure the average velocity [24, 25] 2. Let us pull a probe
particle in a colloidal or driven granular system with constant force Fex (see fig.
1.1), then the probe particle may approach a steady velocity u. Correspondingly,
we can define an effective friction coefficient of the probe as the external pulling
force over its steady velocity

γeff := Fex/
⟨
u
⟩
, (1.1)

which exhibits interesting non-monotone behaviours both in the colloidal suspen-
2Typically, for the same system, the friction for the fixed velocity pulling is larger than the

one for the fixed force pulling, because the former has to break the build-up of the surrounding
particles along the moving direction, while the latter has freedom to choose a less build-up way
[24, 25], which is also confirmed experimentally in [26].

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of active microrheology of pulling with fixed force. A
probe particle (red) is embedded in host bath particles (blue). All particles
are immersed in a solvent (gray). The particles are agitated either by
thermal fluctuations for colloidal suspensions or external random driving
for granular materials. An external fixed force Fex is applied to pull the
probe particle (red) only.

sion [27] and granular systems [28].

• For a colloidal suspension of hard sphere particles [27], see Fig.1.2 left.
with fixed packing fraction Φ, the effective friction γeff keeps constant (lin-
ear response) in the small pulling force regime and starts to decrease only
(thinning) to a constant value in the large force regime, i.e.

γeff ∝ F 0
ex (1.2)

as Fex → ∞. With increasing packing fraction, the effective friction γeff
increases dramatically in the small pulling force regime. Linear response
and thinning were observed in colloidal systems in experiments [29, 30]
and simulations [31, 32] as well.

• For a driven granular hard sphere system [28], see Fig.1.2 right. The effec-
tive friction behaves similar to the one in the colloidal system, except that
in the large-force regime, the effective friction does not only decrease in
the moderate force regime but also increases in the large force regime, and
asymptotically tends to

γeff ∝
√

Fex. (1.3)

3



1.1. MICRORHEOLOGY
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Figure 1.2: Effective friction for increasing external pulling force. Left:
colloidal hard sphere system. The points are simulation result, and the
lines are schematic mode-coupling theory fits. Fex is the external pulling
force, γeff is the effective friction coefficient rescaled by the solvent fric-
tion γ0, Φ is the packing fraction. The figure is adopted from [27]. Right:
driven granular hard sphere system. The arrow indicates the direction of
the increasing of the density. The dashed line indicates the scaling of√
Fex. Data are reproduced from the original velocity-force relation in

[28]
.

In short, in the microrheology of fixed force pulling experiments, linear response
and thinning occurs in the colloidal system [27]; while in the driven granular sys-
tem [28], besides linear response and thinning, thickening also occurs.

In addition, for the fixed velocity pulling, thickening was also observed for the
static granular systems (surrounding particles at rest), by experiment in refs. [13,
14] and simulation in ref. [33]. All data exhibit the same scaling law 3

γeff ∝ u (1.4)

But no thinning behaviour was observed for the static granular system. It will be
explained why thinning was not observed by a time scales picture in chapter 3.

3The scaling is essentially the same with the fixed force pulling by noting that γeff = Fex/u ∝
u → γeff ∝

√
Fex
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CHAPTER 1. INTRODUCTION

1.1.2 Granular materials vs. colloidal suspensions
Why does thickening occur in granular particles, but not in the colloidal suspen-
sions? To better understand the discrepancy, let us compare some fundamental
differences between them.

Colloidal particles have small size, ranging from 1nm to 1µm [34] Typically,
they are over-damped due to the large viscosity of the solvent, and affects by the
temperature due to the thermal fluctuations from the solvent.

Granular particles have much larger size, ranging from 10µm to 10cm. The vis-
cosity of the surrounding medium of them is typically much smaller than the one
of colloidal particles. They can lose kinetic energy through inelastic collisions
[35]. Temperature is ignorable for static granular particles.

Note that granular particles can also be agitated by external random forces to bal-
ance the dissipative collisions between particles. In this aspect, as colloids, they
can behave like a thermal system as well. Thus for driving granular particles, the
intrinsic differences from colloids are 1) dissipative collisions and 2) small vis-
cosity. It will be clarified in the following chapters that not dissipation but small
viscosity is the essential point for thickening.

1.1.3 Comparison with macrorheology
A typical macrorheology measurement is the simple shear of a bulk material, i.e.
applying a fixed shear stress σ (defined as the total force along the shear direction
over the area of one plane, σ := Fx/A ) to the two parallel planes of it, then
observing how the materials deforms. As illustrated in Fig. 1, for fixed stress σ,
there are two limiting deformation cases:

• Elastic solid. After some transient time, the deformation along the stress
stops (solidity), which is characterized by the strain κ (defined as the dis-
placement of the top plane over its hight κ := ∆x/h). The corresponding
shear modulus G can be defined as the applied stress over the responding
strain

G := σ/κ, (1.5)

which indicates the rigidity of a solid against an applied shear. Ideally, the
strain is proportional to the external stress, the shear modulus is independent

5



1.1. MICRORHEOLOGY

(a) (b)

Figure 1.3: Sketch of simple shear for a solid and a fluid. For both
materials, a shear stress σ is applied to the top plane of the material. The
deformations are different. (a) For a solid, the deformation stops with
strain κ = ∆x/h. (b) For a fluid, the deformation continues in time
with constant shear rate κ̇ = dv/dy. The arrows in the bulk indicate the
velocity field of the flow. (The figure is adapted from [36].)

of the strain, which is an elastic solid.

• Newtonian fluid. After some transient time, the deformation along the stress
keeps constant speed, i.e. κ̇ = ∆ẋ/h = const. (fluidity). The correspond-
ing viscosity η can be defined as the shear stress over its shear rate

η := σ/κ̇. (1.6)

Ideally, the shear rate is proportional to the applied stress, which is a New-
tonian fluid.

Many soft materials are neither ideal solid nor ideal fluid, they exhibit both elastic
and viscous properties. Here we focus on the unideal fluid property, i.e. the flow
is non-Newtonian. The relation between the shear stress and the shear rate is non-
linear, either thinning – the viscosity decreases with increasing of the shear rate
(or stress), or thickening – the viscosity increases with increasing of the shear rate
(or stress).

The control variables and observables in the simple shear are similar to the ones
in the single particle pulling experiments as shown in the following table

6



CHAPTER 1. INTRODUCTION

Microrheology Macrorheology

force Fex stress σ

velocity u shear rate κ̇

friction γ = Fex/u viscosity η = σ/κ̇

Furthermore, they also exhibit similar non-Newtonian behaviour. In the macrorhe-
ology of the simple shear,

• For colloidal suspensions, linear response and shear thinning are typically
observed [37, 38, 39], and also thickening [40, 41]. Conventionally, thick-
ening is explained due to hydrodynamical interaction (HI) causing cluster
forming of particles [42]. And a recent simulation [43] found that friction
between particles plays the key role but not the HI.

• For granular materials, a typical thickening behaviour is that the shear stress
is propotional to the square of the shear rate,

σ ∝ κ̇2, (1.7)

as proposed by Bagnold [44]. The Bagnold law describes the inertial effect
of rapid shear granular flow [45, 46]. Noting that if we replace the variables
in the Bagnold law (1.7) by their microscopic corresponding variables as
shown in the above table, we get Fex ∝ u2, which equals the scaling law
(1.4).

1.2 Two theoretical methods
Theoretically, there are two different methods for the calculation of the non-
linear force dependent effective friction of active microrheology: the effective
two body Smoluchowski equation [24] in low density, and the non-equilibrium
mode-coupling theory (MCT) [27, 47] in high density. Here we first give the

7



1.2. TWO THEORETICAL METHODS

microscopic equations, the Smoluchowski equations, and then briefly introduce
these two theories.

1.2.1 Microscopic dynamics: under-damped vs. over-damped
Stochastic description: Langevin vs. over-damped Langevein

Let us consider a system of N identical particles suspended in a solvent. One of
them, the probe labelled s, is under a constant pulling force Fex. The dynamics of
each particle obeys the (under-damped) Langevin equation (LE)

mv̇i = −γ0vi + ξi + Fi + Fexδi,s, (1.8)

where m is the mass of each particle; γ0 is the friction coefficient of each particle.
The Stokes law [48] gives the friction of each particle as

γ0 = 6πRη, (1.9)

where η is the solvent viscosity, and R is the radius of each particle, ξi is a Gaus-
sian random force satisfying the fluctuation-dissipation relation⟨

ξνi (t)ξ
µ
i′(t

′)
⟩
= 2γ0kBTδi,i′δ

ν,µδ(t− t′) (1.10)

ν, µ ∈ {x, y} are the components of the random force; Fi is the interaction force
of other particles to the i-th; Fex is a constant external pulling force on the probe
only.

In the large friction γ0 limit, the inertial term mv̇i may be dropped, which re-
duces the dynamics to the over-damped LE

ṙi =
1

γ0

(
ξi + Fi + Fexδi,s

)
(1.11)

Probability description: Fokker-Planck vs. Smoluchowski

Equivalently, the above stochastic description of the dynamical variables can be
transferred to the probability description of the phase-space variables Γ. The dy-
namical equations of the probability distribution function (PDF) P (Γ, t) can be
obtained by applying the Kramers-Moyal expansion [49] of the corresponding
stochastic equations.

8



CHAPTER 1. INTRODUCTION

• For the under-damped system, a phase-space point includes both position
and velocity of the N particle’s

Γ =
(
r1, · · · , rN ,v1, · · ·vN

)
(1.12)

The dynamical equation of the PDF obeys the Fokker-Planck equation (FPE)

∂tP (Γ, t) =
{
−
[
vi · ∂ri+

Fi

m
· ∂vi

]
  

Ω̂0
FP

+
γ0
m
∂vi

·
[
vi +

kBT

m
∂vi

]
  

Ω̂1
FP

−Fex

m
· ∂vs  

Ω̂ex
FP

}
P

(1.13)
where the sum rule for the same index is applied in the equation.

• For the over-damped Langevin equation, a phase-space point is the N -
particle positions only

Γ =
(
r1, · · · , rN

)
(1.14)

The corresponding dynamical equation of the PDF obeys the Smoluchowski
equation

∂tP (Γ, t) =
[
D∂ri ·

(
∂ri − Fi)−DFex · ∂rs

]
P. (1.15)

where D is the self diffusion coefficient of a single particle in the low den-
sity limit obeying the Einstein relation [50]

D =
kBT

γ0
(1.16)

1.2.2 Low density: two body Smoluchowski equation
In the low density limit, the interaction between bath particles can be ignored.
Besides the friction due to the solvent, only the interaction between probe-bath
particles (P-B) causes an additional friction of the probe. In this limit, without HI,
Squares and Brady derived a two-body Smoluchowski equation (or say diffusion-
convection equation) [24]:

D∇2g +U · ∇g = 0 (1.17)

with a reflecting boundary condition (RBC) at the P-B contact surface

n · j = Dn · ∇g + n ·Ug = 0, r = R (1.18)

9
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and undisturbed distribution far away

g = 1, r → ∞, (1.19)

Where g(r) is the P-B pair distribution function in the coordinate of the probe
describing the relative number density of bath particles around the probe

g(r) = n(r)/n0 (1.20)

n(r) is the density of bath particles in the coordinate of the probe; n = N/V is
the average number density (N is particle number, V is the volume of the system.).

The above two-body SE is derived from the many body SE (1.15) with trunca-
tion of the condition average to the P-B pair distribution only, which is valid in
the low density limit. The two-body SE (1.17) with BCs (1.18) and (1.19) can be
analytically solved by polynomial expansion. The corresponding average velocity
of the probe can be obtained by⟨

U
⟩
=

1

γ0

[
Fex − nkBT

∮
r=R

eng(r)ds
]
, (1.21)

which results in the increased effective friction relative to the solvent friction,
∆γeff/γ0. Linear response and shear thinning was obtained based on this model.

1.2.3 High density: mode-coupling theory
In high density, the interaction between bath particles no longer can be ignored.
Bath particles move slowly and collectively (glassy dynamics) due to crowding.
Such glassy dynamics can be described by conventional MCT 4, which predicts a
dynamical arrest transition of the system [52] for a quasi-equilibrium state.

As the system is driven out of equilibrium by an external force, the response to the
driving can be calculated by a MCT with the integration through transients (ITT)
method. The ITT is a generalized Green-Kubo formula, expressing a responding
observable by the time autocorrelator of it [53] [54]. The derivation of the ITT
will be discussed in chapter 5. The key point of applying the ITT in high density

4A quite readable introduction to MCT can be found in ref. [51].

10



CHAPTER 1. INTRODUCTION

is to project the autocorrelator in the ITT formula onto the density pairs. The lat-
ter can then be treated by the standard MCT. This novel ITT-MCT method was
first introduced by Fuchs and Cates by applying the ITT to the simple shear of the
dense hard-sphere system [55], A review of the method and applications to simple
shear can be found in ref. [56].

Recently, the ITT-MCT method was applied to investiage the nonlinear active
microrheology [27, 47] as well. The main points of the calculation in [47] are as
follows: The dynamics of the system obeys the many body Smoluchowski equa-
tion (1.15). The average force is connected by the force autocorrelator of the probe
by ITT ⟨

Fs

⟩
(t) = −DFex

∫ t

0

⟨
Fs

⏐⏐⏐eLSM t′
⏐⏐⏐Fs

⟩
dt′. (1.22)

where eLSM t′ is the dynamical evolution operator of the N-body Smoluchowski
equation. And the force autocorrelator is approximated by the projecting it onto
the density pairs of the probe and the bath particles⟨

Fs

⏐⏐⏐Fs(t)
⟩
≈

∑
p,q,p′,q′

⟨
Fs

⏐⏐⏐ρspρq⟩  
L

⟨
ρspρq

⏐⏐⏐eLSM t′
⏐⏐⏐ρsp′ρq′

⟩
  

M

⟨
ρsp′ρq′

⏐⏐⏐Fs

⟩
  

R

(1.23)

where term (M) can be treated by standard MCT theory, approximating the four
correlator by pairs:

⟨
ρspρq

⏐⏐⏐eLSM t′
⏐⏐⏐ρsp′ρq′

⟩
→ ϕq(t)ϕ

s
q(t), (A similar calculation

will be given in detail in chapter 5.) Terms (L) and (R) just pre factors and can
be calculated directly. Thus the force correlator is approximated by the density
correlators, which can be treated by the MCT. The ITT-MCT calculation in refs.
[27, 47] predicts a linear response and thinning behaviour of the probe.

1.3 Motivation and structure of the thesis
Obviously, thickening in active microrheology is not included either in the two-
body Smoluchowski equation, or in the ITT-MCT calculation based on the many-
body Smoluchowski equation. Why can’t they capture the thickening behaviour?
Does the problem come from the Smoluchowski equation, the over-damped de-
scription? And what’s the mechanism of thickening?

To answer these questions, we apply the under-damped Langevin dynamics and

11



1.3. MOTIVATION AND STRUCTURE OF THE THESIS

the corresponding Fokker-Planck equation to describe the system, and investigate
the non-linear response behaviour in active microrheology, especially the thicken-
ing behaviour, in both low and high density.

The rest of the thesis are organized as follows:

In the first part, we focus on the low density limit. In chapter 2, the thickening
phenomenon is captured by simple kinetic models, both for the case of pulling
with fixed force, and with fixed velocity.

In chapter 3, we propose a Langevin dynamics model to include both thinning
and thickening. And the whole range of the non-linear response is reproduced by
the model.

In chapter 4, we discuss the microscopic mechanism for thinning and thicken-
ing. We will clearly see what role inertia plays in the microrheology.

In the second part, see chapter 5, we are discuss the microrheology in the high
density. Basesd on the Fokker-Planck equation, we develop a MCT of microrhe-
ology which can exhibit thickening.

The summary of the main results and a final discussion is given in chapter 6.

12



Chapter 2

Kinetic Models of Thickening

One of the central issues in active microrheology is to understand the mechanism
of thinning and thickening effects, i.e. why the effective friction of the probe will
decrease first (thinning) and then increase (thickening) with the external increas-
ing pulling force. In this chapter, we propose a kinetic model to understand the
thickening behaviour.

2.1 Kinetic models of thickening I: fixed force pulling

Why does thickening occur in the driven granular system but not in the colloidal
system? Here, we study the origin of the discrepancy of the above phenomena by
simple kinetic models in the low density limit. (The content of this section except
the fixed point analysis for the case of energy dissipation is published in [57].)

2.1.1 Model

Our driven granular system consists of N identical particles interacting with each
other and one of them, the probe, experiences a constant pulling force. The equa-
tion of motion of the probe is

mv̇ = −γ0v + Fint + ηdr + Fex, (2.1)

where γ0 is the bare friction due to the surrounding medium, Fint is the particle
interacting force, ηdr is a random Gaussian noise and Fex is the pulling force. The

13



2.1. KINETIC MODELS OF THICKENING I: FIXED FORCE PULLING

probe’s ensemble average velocity is⟨
v(t)

⟩
=

Fex

γ0

(
1− e−

γ0
m

t
)
+

e−
γ0
m

t

m

∫ t

0

e
γ0
m

t′
⟨
Fint(t

′)
⟩
dt′, (2.2)

where the initial velocity and the random force are averaged out:
⟨
v0

⟩
= 0 and⟨

η(t)
⟩
= 0.

2.1.2 Key idea
It is difficult to directly calculate the interaction force Fint. The key point of our
kinetic theory is viewing the dynamics as a series of scattering processes: on col-
lisions, the interaction force causes momentum and energy transfer; between two
consecutive collisions, no interaction force exists.

For simplicity, let us consider the equal mass and two-body head-on elastic colli-
sion first:

• between two consecutive collisions, the probe will be accelerated by the
pulling force.

• on a collision, the probe will totally lose its kinetic energy by collision due
to momentum and energy conservation.

Thus, the velocity of the probe exhibits periodic motion, which is illustrated in
Fig. 2.1.

2.1.3 Expression of average velocity and friction
The velocity of the probe during a period is⟨

v(t)
⟩
=

Fex

γ0

(
1− e−

γ0
m

t
)
, 0 ≤ t ≤ tc, (2.3)

and the displacement of it during the period, which equals the mean free path l0,
is

l0 =
⏐⏐⏐ ∫ tc

0

⟨
v(t)

⟩
dt
⏐⏐⏐ = Fex

γ0

[
tc −

m

γ0
(1− e−

γ0
m

tc)
]
, (2.4)

where l0 is mean free path assumed to be fixed in the low density limit and tc is
the collision time.

14



CHAPTER 2. KINETIC MODELS OF THICKENING

         Periodic Motion:
Acceleration ---> Collision

Figure 2.1: Sketch of the periodic motion of the probe due to the equal-
mass head-on collision. The probe is accelerating before colliding a bath
particles, and completely loses its velocity due to the collision. tc denotes
the time between two consecutive collision events.

For given mean free path l0 and pulling force Fex, the collision time tc can be
calculated by eq. (2.4). The corresponding average velocity and the effective
friction during a period of motion are⟨

v
⟩
= l0/tc, (2.5)

and

γeff = Fex/
⟨
v
⟩
=

Fextc
l0

(2.6)

can be calculated based on eq.2.4 as well.

2.1.4 Result

The effective friction of the probe is numerically calculated based on eqs. (2.4)
and (2.6). Before giving the full solution, let us consider the two limiting cases
(see Fig.2.2):
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2.1. KINETIC MODELS OF THICKENING I: FIXED FORCE PULLING

        Collision Dominated         Damping Dominated

(a) (b)

Figure 2.2: Sketch of two limiting cases of the periodic motion. (a) Col-
lision dominated. The collision processes are so frequent that the velocity
of the probe is little affected by the damping of the solvent but the colli-
sion. (b) Damping dominated. The collision time is so long that in most
time the velocity balances with the damping.

(a) Overdamped limit: tc ≫ m
γ0

, Brownian motion dominates. Equivalently,

Fexγ
2
0 ≪ l0

m
. (2.7)

The friction of the probe is just the bare friction from the surrounding medium:⟨
vs

⟩
= Fex/γ0, γ = γ0. (2.8)

(b) Ballistic limit: tc ≪ m
γ0

, collision dominates. Equivalently,

Fex

γ2
0

≫ l0
m
. (2.9)

The average velocity and the friction of the probe are

⟨
vs

⟩
=

√
l0Fex

2m
∝
√

Fex, γ =

√
2mFex

l0
∝
√

Fex. (2.10)

Both are proportional to the square-root of the external pulling force and in-
dependent of the solvent friction.

The whole solution of the force dependent effective friction is plotted in Fig. 2.3.
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Figure 2.3: Effective friction γ vs. pulling force Fex for different
bare friction γ0. Inset: Overlap of the rescaled variables (Fex →
Fex/γ

2, γ → γ/γ0) of different curves in the main figure.

2.1.5 Discussion
The behaviour of the probe in the large-pulling-force regime is determined by the
ratio of the collision time scale over the Brownian velocity relaxation time scale,
tc/

m
γ0

, or equivalently the value of the rescaled force Fexm
γ2
0 l0

. In a driven granular
system, the bare friction is quite small compared to the one in a Brownian suspen-
sion, γ0 = 1 in [28] and γ0 = 50 in [58], which is the origin of the apparent dis-
crepancy between driven granular systems and Brownian ones under large pulling
force. Indeed, one would also obtain the same asymptotic behaviour γ ∝

√
Fex

for Brownian systems for extremely large pulling forces.

2.1.6 Role of energy dissipation
For non-equal-mass collisions, or inelastic ones, the velocity of the probe may not
totally vanish. Interestingly, by stability analysis of the mapping problem [59], it
can be proved that after finite collisions, the probe may achieve a steady average
velocity, a stable fixed point, and then exhibit periodic motion again. As a result,
the above analytical result is still valid; energy dissipation is non-essential to the
asymptotic behaviour.
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2.1. KINETIC MODELS OF THICKENING I: FIXED FORCE PULLING

Momentum conservation holds during the collision process between the probe
and a bath particle

msv
′
s +mbv

′
b = msvs +mbvb (2.11)

Different from colloidal particles, the collision typically is inelastic, which can be
modelled by the phenomenon law [35]

v′s − v′b = −ϵ(vs − vb) (2.12)

where ϵ indicates the restitution coefficient. According to Eqs.(2.11) and (2.12),
we get the velocity of the probe after collision is

v′s = vs −
m2

m1 +m2

(1 + ϵ)(vs − vb) (2.13)

In the large pulling force regime , the velocity of a bath particle may be ignored,
due to the fact vs ≫ vb. In the following, we set vb = 0 and Eq.(2.13) can be
written as

v′s = (1−K)vs (2.14)

with K = mb(1+ϵ)
ms+mb

∈ (0, 1] indicating the effective relative mass. The velocity
of the probe is fluctuating in time. Denote its average velocity just after the n-
th collision as vn at collision time tn. Thus the velocity just before (n + 1)-th
collision can be calculated by the eq. (2.4). Explicitly, we have

l0 =

∫ tn+1

tn

vn(t)dt = vn
mb

γ0

[
1−e

− γ0
mb

∆tn
]
+
Fex

γ0

[
∆tn−

m

γ0
(1−e−

γ0
m

∆tn)
]
, (2.15)

where ∆tn = tn+1 − tn is the time interval between the n-th and the (n+1)-th
collisions. The average velocity just after the (n + 1) collision can be expressed
based on Eq.(2.2) (here the initial velocity is nonzero.) and Eq.

vn+1 = (1− k)
{
vne

− γ0
mb

∆tn +
Fex

γ0
[1− e

− γ0
mb

∆tn ]
}

(2.16)

Note that the time interval ∆tn(vn) is a function of the n-th collision velocity vn,
implicitly given in (2.15). Correspondingly, the velocity of (n+1)-th collision is
the function of the n-th collision only, denoting as vn+1 = f(vn).

18



CHAPTER 2. KINETIC MODELS OF THICKENING

Stability analysis of fixed point

Physically, after many collision times, the velocity of the probe may become sta-
ble. Thus the steady velocity should satisfy the following fixed point equation

v∗n+1 = f(v∗n) = v∗n (2.17)

which can be numerically solved based on Eq. (2.15) and (2.16). Furthermore,
based on Eq. (2.15) and (2.16), it can be proved that⏐⏐⏐dvn+1

dvn

⏐⏐⏐
vn=v∗n

= e−∆tn(1− k) < 1 (2.18)

satisfying the stability condition of a fixed point [59]. In other words, after a
transient of many collisions, the motion of the probe shows periodic motion again.
Thus the above discussion of the elastic collision can be also applied, which means
that the inelastic collision is not essential for the thickening.

2.2 Kinetic models of thickening II: fixed velocity
pulling

What happens in the case of fixed velocity pulling? Intuitively, the thickening
should also occur due to inertia.

For simplicity, let us consider a toy model of pulling a thin plane with fixed ve-
locity u = ueu, where eu = u/|u| is the unit vector of u. The bath particles
are isotropically distributed in space and have only two equal-weighted velocities
along the moving plane, ±veu. The particles are non-interacting with each other,
each of them moves freely before colliding the plane. The only interaction is the
collision between the plane and the bath particles. See the schematic Fig. 2.4.
We want to get the collision force on the plane and the corresponding effective
friction, which depends on the relative velocity:

1) u < v. The absolute velocity of the plane is smaller than the one of the bath
particles.

• In front of the plane. The collision number is

Nf =
1

2
ρA| − v − u|∆t =

1

2
ρ(v + u)∆t, (2.19)
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Figure 2.4: Sketch of microrheology with fixed velocity pulling. A plane
is pulled with a fixed velocity u. Initially, bath particles are isotropically
distributed around the probe, and have two kinds of velocities along and
opposite the velocity of the probe, v,−v,with equal probability.

where ρ = N/V is bath particles’ number density, A is the area of one
side of the plane, and ∆t is the time interval. In the frame of the plane, the
transferred momentum and force on the plane are

If = 2m(−v − u)Nf = −mρA(v + u)2∆teu (2.20)

Ff = If/∆t = −mρA(v + u)2eu (2.21)

• Behind the plane. The collision number is

Nb =
1

2
ρA|v − u|∆t =

1

2
ρ(v − u)∆t (2.22)

The transferred momentum and force to the plane are

Ib = 2m(v − u)Nb = mρA(v − u)2∆teu (2.23)

Fb = Ib/∆t = mρA(v − u)2eu (2.24)

The effective friction is defined as the ratio of the total external pulling force acting
on the plane over its velocity

γeff := |Fex|/|u|. (2.25)
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CHAPTER 2. KINETIC MODELS OF THICKENING

For fixed velocity pulling, the external force balances the collision force

Fex = −Fcol = −(Ff + Fb) = 4mρAvueu (2.26)

The corresponding effective friction is

γeff = |Ff + Fb|/u = 4mρAv (2.27)

2) u ≥ v. The absolute velocity of the plane is larger than the one of the bath
particles. In this case, behind the plane, no particles collide with the plane. And
in front, there are additional collision forces due to the collision of front bath
particles with velocity v. The additional collision number and force are

N ′
f =

1

2
ρA(|v − u|)∆t =

1

2
ρA(u− v)∆t (2.28)

F ′
f = 2m(v − u)N ′

f/∆t = −mρA(u− v)2eu (2.29)

The effective friction is

γeff = |Ff + F ′
f |/u = 2mρA(u+

v2

u
) (2.30)

In summary, the effective friction shows a constant value for small pulling ve-
locity (u < u). Then it starts to increase when u > v and tends to asymptotically
being proportional to the pulling velocity u. The pulling velocity vs. effective
friction is plotted in Fig. 2.4

What can we learn from the toy model? The model proposes a microscopic mech-
anism for the linear response and the thickening phenomena in the single pulling
particle experiment. In the linear response regime, when the velocity of the plane
is smaller then the velocity of the bath particles, the plane will be affected by
the collisions of the bath particles on both sides of it. The front side (towards its
moving direction) will receive the collisions of the bath particles moving opposite
of the velocity of the plane, which cause resistance in front; while the back side
will receive the particles’ collisions along the velocity of the plane, which cause
pushing behind.
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Figure 2.5: Pulling velocity vs. effective friction for the microrheology of
fixed velocity pulling. The effective friction keeps constant as the pulling
velocity is smaller than the velocity of the bath particles, u < v, see
eq.(2.27). When u > v, the friction starts to increase and tends to be
proportional to the pulling velocity in the large pulling velocity regime,
see eq.(2.30).

2.3 What’s new
We propose two simple kinetic models, pulling with fixed force and pulling with
fixed velocity to investigate the thickening behaviour. We find inertia is the mecha-
nism for thickening in both cases. It can be determined by the ratio of the collision
time scale over the velocity relaxation time scale, tc/m

γ0
. The granular materials

have quite small bare friction compared with the Brownian suspension, which
is the origin of the apparent discrepancy between driven granular systems and
Brownian ones under large pulling. However, these two models do not capture
the thinning behaviour. Temperature and solvent friction may be non-trivial for
the thinning, which will be discussed in the following chapters.
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Chapter 3

Time scales picture of thinning and
thickening

In the last chapter, we found that inertia causes thickening. To find a general pic-
ture including both thinning and thickening, here, we propose a three-time-scales
picture (TTSP) to unify thinning and thickening and confirm it by a stochastic
simulation. The results of chapter 3 and 4 are presented based on the pre-print
[60].

3.1 Three-time-scales picture

The probe’s friction arises from the drag of the solvent with friction coefficient
γ0 and the interaction with bath particles. Because fixed force pulling and fixed
velocity pulling both show similar thinning and thickening behaviour, here let us
consider the case of fixed velocity pulling for simplicity. Let us fix our frame in
the probe. In the large pulling velocity regime, we found in our earlier paper [57]
that inertia causes thickening by a simple kinetic theory.

Thickening occurs when the frequent probe-bath collisions dominate over the ve-
locity damping of bath particles due to the solvent. The criterion of the thick-
ening is tcol/tdamp ≪ 1, where tcol = l0/u is the P-B collision time scale, and
tdamp = γ0/m is the damping time scale of a bath particle.

Now let us consider thinning. In the small pulled velocity regime, the diffusion of
bath particles may cause additional resistance. The corresponding diffusion time
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3.1. THREE-TIME-SCALES PICTURE

scale is tdiff = l20/D with the diffusion coefficient D = kBT/γ0. The compe-
tition between the diffusion time scale and the damping time scale should cause
thinning.

A unifying picture of thinning and thickening is that three time scales of bath
particles are involved (see fig. 3.1.):

• diffusion time scale: tdiff = R2/D, where D = kBT
γ0

is the diffusion coef-
ficient with the solvent friction γ0, R is the characteristic length scale (for
hard sphere systems, it should be the center distance of the probe-bath par-
ticles contacting with each other). The corresponding diffusion velocity is
udiff = R/tdiff .

• damping time scale: tdamp = mb/γ0, where mb is the mass of a bath particle.
The damping velocity is udamp = R/tdamp.

• collision time scale: tcol = R/u, where u is the pulling velocity. It charac-
terizes the mean-free time between first and second P-B collisions without
damping. The collision velocity is ucol = R/tcol = u.

The dominating time scales are controlled by the pulling velocity u, which can be
indicated by the Peclet number Pe := u/udiff = Rγ0

kBT
u and the Reynolds num-

ber Re := u/udamp = mb

Rγ0
u. Different dominating time scales lead to different

behaviour of the increased friction ∆γeff = γeff − γ0. In detail,

(i) when the pulling velocity is small enough that Pe ≪ 1 and Re ≪ 1, the
diffusion dominates. ∆γeff arises from the diffusion of bath particles, which
leads to a linear response regime.

(ii) As the pulling velocity is much larger than the diffusion velocity but still
much smaller than the damping velocity, i.e. Pe ≫ 1 and Re ≪ 1, diffusion
is unimportant, damping dominates. ∆γeff arises from the damping of bath
particles, which leads to another linear response regime.

(iii) As the pulling velocity is even larger than the damping velocity, i.e. Pe ≫ 1
and Re ≫ 1, inertia dominates, ∆γeff arises from single P-B collision,
which leads to a regime of increasing friction.

The plateau value of the linear response regime in (i) should be larger than the
value in (ii), because diffusion causes larger friction in (i) compared to the one
arising from the damping only in (ii). As a result, the crossover from (i) to (ii)
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Figure 3.1: Sketch of the TTSP of thinning and thickening: the effective
friction γeff = Fex/u vs. the pulling velocity u. Three time scales of bath
particles are involved: diffusion, damping and single P-B collision, which
lead to three friction behaviour: a high plateau regime, a low plateau
regime, and an increasing friction regime, respectively. The pulling ve-
locity controls which time scale dominates. The crossover from diffusion
to damping causes thinning. Thickening starts from the crossover from
damping to collision. The onsets of thinning and thickening are around
Pe := u/udiff = Rγ0

kBT
u = 1 and Re := u/udamp = mb

Rγ0
u = 1, respec-

tively.
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causes thinning. And the crossover from (ii) to (iii) causes thickening. The start-
ing points of thinning and thickening should be around Pe = 1 and Re = 1,
respectively (see fig. 3.1).

3.2 Model
To test the TTSP, we consider the model of pulling a probe particle with fixed ve-
locity embedded in a suspension of N identical bath particles in two dimensions.
Because pulling with fixed force and pulling with fixed velocity behave similarly,
both may show thinning and thickening 1, we choose the latter for simplicity. All
particles are assumed to be smooth and elastic hard disks with the same radius r0.
The dynamics of a bath particle (labelled i) and of the probe (labelled p) obey the
Langevin equations (3.1a) and (3.1b), respectively,

mbv̇i = −γ0vi + ξi + Fi,col (3.1a)
0 = −γ0u+ ξp + Fp,col + Fex (3.1b)

where mb is the mass of a bath particle; vi is the velocity of the i-th bath particle, u
is the fixed pulling velocity of the probe; γ0 is the friction coefficient (all particles
have the same value due to γ0 ∝ r0η; η is the solvent’s viscosity.); ξk (k = i
or p) is a Gaussian random force satisfying the fluctuation-dissipation relation as
discussed for the Langevin equation of the fixed force pulling, see (1.10). Fi,col

(or Fp,col) is the interaction force between particles; Fex is the external pulling
force on the probe only. Being different from the case of fixed force pulling, here
the external force is not constant but fluctuating in time to keep the probe with
fixed velocity. According to the equation of motion (EOM) (3.1b), the probe’s
increased friction ∆γeff := γeff − γ0 is

∆γeff =
⟨
Fp,col

⟩
/u, (3.2)

where u, Fex, Fp,col are absolute values of the corresponding vectors, and the ran-

dom force has been averaged out:
⟨
ηp

⟩
= 0.

Obviously, the P-B interaction directly leads to the increased friction of the probe,
while the bath-bath (B-B) particle interaction affects the probe’s effective friction

1The effective friction of pulling with fixed velocity in general is larger than the one of pulling
with fixed force as pointed out in [24] and further analysed in [25]
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CHAPTER 3. TIME SCALES PICTURE OF THINNING AND THICKENING

indirectly. We omit the B-B interaction in our model because 1) such interaction
may not be necessary for thinning and thickening behaviour; 2) the omission it-
self should be valid in the low density limit. In addition, we set the mass of the
probe as much heavier than the mass of a bath particle: mp ≫ mb, so that in the
coordinate of the probe, P-B collision just causes specular reflection of the bath
particles, but affects little the probe’s velocity.

Now the system of pulling a probe with fixed velocity u is equivalent to the sys-
tem of a flow with velocity −u of a suspension of N non-interacting bath particles
passing a fixed disk with radius R = 2r0. The EOM of a bath particle (the index i
is dropped) in the coordinate of the probe is

mbv̇ = −γ0(v + u) + ξ (3.3a)

with the reflecting boundary condition (RBC)

v = v − (v · en)en for |r| = R, (3.3b)

where R = 2r0 is the contact distance between the probe and a bath particle, and
en is the unit normal vector along the direction from the center of the probe to that
of the bath particle colliding with it. Note that the P-B interaction term Fi,col in
Eq.(3.1a) is mapped into the RBC (3.3b).

Being equivalent to its stochastic description Eq.(3.3), the probability description
of a bath particle obeys the Fokker-Planck equation (FPE)

∂tP (r,v, t) = −v · ∂rP +
γ0
mb

∂v ·
[
(v + u) +

kBT

mb

∂v

]
P, (3.4a)

The corresponding RBC is

P (r,v, t) = P (r,v − (v · en)en, t) for |r| = R. (3.4b)

In principle, the steady state equation (∂tP = 0) of the FPE (3.4a) can be solved
with the RBC (3.4b). Then one can obtain the average collision force of N bath
particles on the probe:⟨

Fp,col

⟩
=

∫
dv

∮
r=R

dlNPst(r,v)v · (−en)Θ[v · (−en)]

2(−en)mbv · (−en)

(3.5)
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where Pst denotes the steady state distribution, dlNPst(r,v)v ·(−en)Θ[v ·(−en)]
is the density current of bath particles with velocity v passing through a small con-
tact surface dlen ( Θ(x) = 1 for x ≥ 0;Θ(x) = 0 for x ≤ 0 ), and 2(−en)mbv ·
(−en) is the bath particles’ momentum transferred to the probe due to single P-B
collisions. Inserting Eq.(4.20) into Eq.(3.2), one obtains the effective friction γeff .

In practice, however, to analytically solve the FPE (3.4) is difficult due to the RBC
(3.4b). Our strategy is to solve Eq.(3.4) by simulation of the stochastic process
Eq.(3.3), because of its equivalence to the FPE (3.4) and simplicity.

3.3 Stochastic simulation
To calculate the effective friction, the stochastic dynamics simulation according
to Eq.(3.3) is performed.

3.3.1 Wiener Process
The discrete form of the Gaussian random force is

ξ =
√
2γ0kBT/h(ξ

x
0 , ξ

y
0), (3.6)

where ξµ0 (µ ∈ x, y) is the standard Gaussian random number of the probability
distribution function as

P (ξµ0 ) =
1√
2π

exp(−ξµ 2
0

2
), (3.7)

and h is the time step of the dynamics set to be h = 1
2γ0

for different solvent fric-
tions. The box size is set to be Lx × Ly = 20R × 20R with periodic boundary
conditions, which is large enough to suppress finite size effects. The mass of bath
particles and the P-B contact distance are set to be unit values: mp = 1, R = 1.
The density of bath particles is also rescaled to unit value n0 = 1, since it is not
a control parameter in our model due to the assumption of non-interacting bath
particles. The control parameters are the pulling velocity u, the solvent friction
γ0 and the temperature kBT , which are applied to investigate the whole regime of
different time scales.
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CHAPTER 3. TIME SCALES PICTURE OF THINNING AND THICKENING

3.3.2 Reflecting boundary condition
The RBC (3.3b) for the stochastic dynamics (3.3a) can be realized as follows:
consider a P-B collision process in the coordinate of the probe. Before the colli-
sion at time t = 0, a bath particle is located at x0 with |x0| ≥ 1, and ignoring the
P-B collision, at time h, it would move into the P-B boundary x′

1 with |x′
1| < 1.

Thus the average velocity during the time interval ∆t = h is

v0 = (x′
1 − x0)/h. (3.8)

For small enough h, we can consider the velocity during the short time interval
[0, t∗] keeping constant value v0, where t∗ is the collision time satisfying the ge-
ometry restriction (the bath particle should be located on the P-B contact surface)
as indicated in the fig. 3.2.

Figure 3.2: Sketch of simulation realization of reflecting boundary con-
dition

|x0 + v0t
∗| = 1 (3.9)

There are two roots of the above equation t1, t2
2 . We choose the smaller one,

t∗ = t1 due to the real physics process. The collision point is

xc = x0 + v0t
∗ = en, (3.10)

where en is the normal vector of the reflecting surface. The corresponding reflect-
ing velocity and the position at time h are

v1 = v0 − 2(v0 · en)en

x1 = xc + v1(h− t∗)
(3.11)

2In 2D, the (3.9) is equivalent to (xx
0 + vx0 t

∗)2 + (xy
0 + vy0 t

∗) = 1.
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3.4. RESULT

The transformed momentum of the bath particle due to the P-B collision is

∆Ib = mb(v1 − v0) = −2mb(v0 · en)en (3.12)

And the collision force acting on the probe is

Fp,col = ∆Ip/h = 2mb(v0 · en)en/h, (3.13)

where we have applied the momentum conservation of the P-B system, i.e. Ib +
Ip = 0.

Initially, bath particles are homogeneously distributed in space (the configuration
is generated by uniform random numbers) with Maxwellian distributed veloci-
ties. Then the probe is pulled along the x direction with total running time 10R/u,
which ensures that the bath particles around the probe reach the steady state. After
a transient time, the steady average P-B collision force is computed by detecting
the bath particles passing through the boundary:⟨

Fp,col

⟩
=

1

∆t

∮
r=R

dl

∫ ∆t

0

dt2
[
mp(−en)v(t) · (−en)

]
Θ[v(t) · (−en)], (3.14)

which is the simulation realization of the collision force expressed in Eq. (4.20).
The corresponding increased friction ∆γeff is obtained based on Eq. (3.2).

3.4 Result
Fig. 3.5 (a) shows the simulation result of the increased friction ∆γeff versus
the pulling velocity u for different solvent frictions and temperatures, {γ0 =
1000, kBT = 1000, 100} and {γ0 = 100, kBT = 100, 10, 0}. All plots, except
for {γ0 = 100, kBT = 0}, exhibit linear response, thinning and thickening as
expected by the TTSP. For the exception, only linear response and thickening oc-
cur, because no diffusion but only damping and collision time scales are involved.

Fig. 3.5 (b) 3 shows the rescaled increased friction ∆γeff/γ0 versus Peclet num-
ber, Pe = u/udiff = Rγ0

kBT
u. In the small Pe regime Pe < 1, the diffusion time

scale dominates, all plots coincide with each other in a plateau value. With in-
creasing Pe, diffusion becomes less important, all plots start to decrease around

3Data set of {γ0 = 100, kBT = 0} is not included in fig.3.5 (b), because udiff = 0, no
diffusion is involved.
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Figure 3.3: Simulation results for increased friction ∆γeff vs. pulling
velocity u for different solvent frictions and temperatures. For a curve
with fixed finite temperature and solvent friction, the increased effective
friction exhibits linear response, thinning and thickening. For a curve with
zero temperature, only linear response and thickening occur.

Pe = 1, which agrees with the TTSP. Between Pe = 100 and Pe = 1000, for
{γ0 = 1000, kBT = 100}, the brown line, clearly there is a second plateau lower
than the first one, being consistent with the TTSP. In addition, the length of the
thinning regime varies for different data sets 4, because for the same Pe, the Re
numbers can also be different. At Pe = 100, for {γ0 = 1000, kBT = 100},
Re = 0.01, bath particles are still in the damping dominated regime; for {γ0 =
100, kBT = 100}, Re = 1, bath particles are already in the inertia (thickening)
regime, which suppresses the thinning process.

4The exception is that {γ0 = 1000, kBT = 1000} and {γ0 = 100, kBT = 10} coincide with
each other in both fig. 3.5 (b) and (c), because for the same u, they have the same Pe and Re
numbers.
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Figure 3.4: Rescaled increased friction ∆γeff/γ0 vs. Peclet number
Pe = u/udiff = Rγ0

kBT
u. The red arrow indicates Pe = 1. Different colors

indicate different solvent frictions and temperatures as these are labelled
in (a). At Pe = 100, for different solvent frictions and temperatures, the
corresponding values of the Re number are indicated.

Fig. 3.5 (c) shows the rescaled increased friction ∆γeff/γ0 versus Reynolds num-
ber, Re = u/udamp = mb

Rγ0
u. All plots start to converge around Re = 1, which

agrees with the TTSP. In the small Re regime, for different plots, at Re = 0.01,
the frictions increase with the decreasing Pe as indicated in the figure, which
supports the TTSP that the diffusion causing larger friction than the one in the
damping only regime Pe → ∞. For Re > 1, i.e. the inertia regime, all plots co-
incide with each other and asymptotically tend to ∆γeff ∝ u, because the flux of
bath particles passing through the P-B contact surface is j ∝ n0u with momentum
transferring to the probe p ∝ mu, and ∆γeff =

⟨
Fcol

⟩
/u = jp/u ∝ u.

In summary, the friction behaviour of different dominating time scales and of
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Figure 3.5: (c) Rescaled increased friction ∆γeff/γ0 vs. Reynolds num-
ber Re = u/udamp = mb

Rγ0
u. The red arrow indicates Re = 1. At

Re = 100, for different solvent frictions and temperatures, the corre-
sponding values of the Pe number are indicated. On the plot of zero tem-
perature, the gray line, four filled blue circles at Re = 0.01, 0.3, 1, 5 are
drawn to compare with the corresponding streamlines in fig. 4.1.

the two starting points as shown in fig. 3.5, all agree quite well with the TTSP.

3.5 What’s new

We propose a TTSP to unify thinning and thickening phenomena in active mi-
crorheology (see fig. 3.1), and confirm it by a model of pulling with fixed veloc-
ity. The simulation result (fig. 3.5), which is equivalent to the solution of the FPE
(3.4) in the steady state, shows linear response, thinning and thickening. As far
as we know, this is the first example demonstrating that both thinning and thick-
ening can occur in non-interacting bath particles systems (only P-B interaction is
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included), which indicates that the many body interaction is not necessary for thin-
ning/thickening behaviour in the low density. Furthermore, as shown in fig. 3.5,
the results of the onsets of the thinning and thickening being around Pe = 1 and
Re = 1, respectively, and the friction behaviour in different time scale regimes,
all agree with the TTSP.

According to the TTSP, thinning arises from the crossover from diffusion to damp-
ing, and thickening arises from inertia, starting from the crossover from damping
to inertia and exiting in the whole regime when inertia is dominated. Note that
diffusion was not involved in the experiments of pulling a single particle in static
(T = 0) granular systems [13, 14], that’s why thinning was not observed. For the
same reason, it was not included in our earlier kinetic model [57]. Thickening was
not found in colloidal systems [29, 30, 31, 24, 61], because they were limited to
Re ≪ 1 regime, where inertia is unimportant.

The TTSP should also be valid in the high density regime with dressed values
of Pe and Re. B-B many body interaction increases the friction of a single bath
particle, γ′

0 > γ0 (in the low density limit, γ′
0 is just the solvent friction γ0). Based

on the TTSP, the onset of thinning Pe = 1 ∝ uγ′
0 should shift to a smaller pulling

velocity value, and that of the thickening Re = 1 ∝ u/γ′
0 should shift to a larger

value.
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Chapter 4

Microscopic mechanism of
thickening

In the last chapter, the three-time-scales picture (TTSP) was proposed to unify the
thinning and the thickening behaviour of the probe with fixed velocity pulling.
The time scales of bath particles, diffusion, damping and single probe-bath parti-
cles collision are the essential points. The pulling velocity controls the dominating
time scales, leading to the thinning/thickening behaviour.

In this chapter, we will discuss the microscopic mechanism of the thickening,
i.e. microscopically, how does inertia play a role. Furthermore, the validity of the
assumption of the Maxwellian distribution will also be discussed.

4.1 Microscopic mechanism of thickening
Based on the TTSP, thickening is determined by the competition of the damping
time scale and the single P-B collision time scale, which has nothing to do with
the diffusion time scale. So let us consider the T = 0 limit, in which the diffusion
time scale is ruled out, Pe → ∞. The EOM of a bath particle in the coordinate of
the probe, (3.3a), is reduced to

mbv̇ = −γ0v − γ0u (4.1)

with the RBC (3.3b). Interestingly, such simple dynamics provides a clear mech-
anism of thickening: the crossover from creep flow in the low Re to gas-like
(inertial) flow in high Re, as shown in fig. 4.1: the black curves are the stream-
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Re=0.01 Re=0.3

Re=1 Re=5

Figure 4.1: Streamlines of bath particles for different Reynolds numbers
at the T = 0 limit. Red arrows are the velocity field (rescaled by the
pulling velocity for comparison). For small Reynolds number, the bath
particles behave like creep flow around the P-B contact surface. For high
Reynolds number, they behave like a gas: after a single collision, the bath
particles fly away. The corresponding increased frictions are indicated
with four filled blue circles in the gray line in fig. 3.5(c).
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CHAPTER 4. MICROSCOPIC MECHANISM OF THICKENING

lines of the bath particles in the frame of the probe; red arrows are the velocity
field. Before any collision, bath particles are moving with a constant velocity
−u. Collision causes mirror-like reflection. The term −γ0v reduces the velocity,
while −γ0u accelerates it. A loose criterion of single-collision-only should be
utdamp ≥ R, i.e. Re = u mb

Rγ0
≥ 1. In the small Re limit, many P-B collisions

occur and the bath particles tend to creep along the surface, see fig. 4.1 Re = 0.01,
which causes Fcol ∝ u and ∆γeff ∝ u0, while in the large Re limit, the single
collision causes Fcol ∝ u2 and ∆γeff ∝ u1.

Creep flow in low Reynolds number limit
Let us prove that in the limit Re → 0, the P-B collision force is proportional to
the pulling velocity of the probe

Fcol ∝ u. (4.2)

A non-dimensional form of the EOM of the bath particles (4.1) is

∂t̄v̄ = −v̄ − ū (4.3)

with the RBC (3.3b), where the EOM (4.1) is non-dimensionalized by setting
r̄ = r/R, t̄ = t/(mb/γ) and v̄ = v/(Rγ/mb). It means that the unit of length
is the P-B contact surface radius R, the unit of time is the damping time of a bath
particle mb/γ, and the unit of velocity is the unit of length over the unit of time,
Rγ/mb. By noting that Re = u/udamp = umb/(Rγ), the pulling velocity of the
probe u is rescaled as ū = Reeu. In the following, we omit the script "−" for
simplicity.

Creep motion along a line

Consider a simple case that the P-B contact surface is just a straight line with
length ∆l. In the coordinate of the probe, the motion of a bath particle is illus-
trated in fig.4.2. It is convenient to separate the motion of the bath particle in the
direction along the line ex and in the direction being perpendicular to the line ey.
Along the direction of the line ex, the bath particle always moves with a constant
velocity

ux = u sin θex (4.4)

(θ is the the angle between the incoming velocity u and the normal direction ey),
because in this direction the effective force Gx = ux balances with the solvent
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Figure 4.2: Sketch of the creep motion of a bath particle along the tangent
plane to the P-B contact surface

drag force Fdrag,x = −ux, and no P-B collision occurs.

Now let us focus on the motion along the direction being perpendicular to the
line ey. Denote the velocity of a bath particle just after the k-th collision with the
line as vk = (u sin θex, v

y
key). Obviously, vy1 = u · ey = u cos θ = uy. According

to the EOM (4.3), between the k-th collision to the k+ 1 th collision, the velocity
of the bath particle is

vyk(t) = (vyk + uy)e−t − uy (4.5)

and the displacement is

yk(t) =

∫ t

0

vyk(t
′)dt′ = (vyk + uy)(1− e−t)− uyt. (4.6)

The time interval τk between the k-th collision and the k + 1 th collision is deter-
mined by yk(τk) = 0, which equals

(1 + ṽyk)(1− e−τk)− τk = 0 (4.7)

with ṽyk = vyk/u
y and ṽy1 = 1. The solution of τk is

τk = W0

[
− (1 + ṽyk)e

−(1+ṽyk)
]
+ (1 + ṽyk), (4.8)

where we have applied the Lambert-W function.1 It is defined as the inverse func-
tion of z(x) = xex, i.e. W (z) = x. For z ∈ R, there are two branches of the
W function as shown in fig.4.3. The domain of W0(x) (the principle branch) is
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Figure 4.3: Two real branches of the Lambert W function. It is defined
as the inverse of the function z(x) = xex.

x ∈ [−1/e,∞) and the domain of W−1(x) is x ∈ (−1/e, 0).

The corresponding velocity of the bath particle just after the (k + 1)-th collision
is

vyk+1 = −vyk(τk) = −(vyk + uy)e−τk + uy (4.9)

Inserting eqs. (4.7) and (4.8) into eq.(4.9), we get

ṽyk+1 = W0

[
− (1 + ṽyk)e

−(1+ṽyk)
]
+ 1, ṽy1 = 1 , (4.10)

with ṽyk = vk/u
y. Eqs.(4.8) and (4.10) leads to

τk = ṽyk + ṽyk+1 . (4.11)

Therefore, we can obtain the velocity of the bath particle after each collision by
the recurrence formula (4.10) and the time interval by the relation (4.11).

1In general, the solution of equation ex = ax + b is x = −W (− 1
ae

− b
a )− b

a , which can be
obtained by setting y = ax + b, the equation can be transformed to − 1

ae
− b

a = −y
ae

− y
a , which

results in y = −aW (− 1
ae

− b
a ) and the solution.
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The incoming density current of the bath particles onto the line of length ∆l is
j = n0u⊥∆l. The corresponding collision force is

F
(1)
col = j · 2mbu⊥ = 2n0∆lmbu

2
⊥ (4.12)

The average collision force of a bath particle except for the first incoming collision
F

(1)
col is

F k≥2
col =

∑n
k=2 2mb(vk)∑n−1

k=1 τk
=

1− v1/sn
1− vn/sn

γu⊥, sn =
n∑

k=1

vk. (4.13)

If the length ∆l is long enough so that the collision time can be infinitely large,
this results in sn → ∞ as n → ∞. The steady state density of the bath particles is

nst = n0 cot θ, (4.14)

which can be obtained by noting the balance of the incoming current and the
outgoing current

nstu∥ = jin = jout = n0u⊥ (4.15)

Thus, the total collision force is

Fcol = F 1
col + nst∆lF k≥2

col = 2n0∆lmbu
2 + n0∆l cot θγu (4.16)

which results in
Fcol ∝ u (4.17)

in the small Re limit. Also note that in the large u limit, Fcol ∝ u2. Therefore
the crossover from the small u limit to the large u limit causes thickening of the
probe’s effective friction.

4.2 Density and velocity distributions
The TTSP tells us that thinning occurs when the damping time scale of the bath
particle dominates its diffusion time scale, which can be indicated by the Peclet
number Pe := udamp/udiff . In this section, we first have a detailed look at the
density distribution for different Pe and then discuss the validity of the density
distribution for calculation of the effective friction in different Re regimes.
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4.2.1 Density distribution

Microscopically, it is convenient to compare the behaviour of bath particles in
different Pe regimes by computing the pair distribution function g(r), which is
the normalized number density of bath particles in the coordinate of the probe

g(r) = n(r)/n0 = V

∫
dv p(r,v) (4.18)

where V is the volume of bath particles (for 2d it is the area) , n0 = N/V is the
average number density of the bath particles, and p(r,v) is the steady state prob-
ability density of a bath particle appearing relative to the probe at position r with
velocity v.

Fig. 4.4 shows the simulation result g(r) for different Pe numbers. For small Pe
numbers Pe = 0.1, 1, bath particles are both built up in front and left behind of the
probe, i.e. the diffusion dominating regime. As Pe is quite large, Pe = 10, 100,
only a thin layer of bath particles build in front but no particles are left behind in
a long tail region of the probe, which means that the diffusion is ignorable. The
observation that diffusion dominates in the small Pe and is unimportant for large
Pe, is consistent with the TTSP.

4.2.2 Velocity distribution

Does the pair distribution function contain enough information to calculate the
effective friction?

If the velocity of bath particles is Maxwellian distributed, so the PDF of a bath

particle is feq(v) =
(

1√
2πvth

)d
e
− v·v

2v2
th with thermal velocity vth =

√
kBT/mb, then

the total probability can be separated into

p(r,v) = V −1g(r)
( 1√

2πvth

)d
e
− v·v

2v2
th (4.19)
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Figure 4.4: Pair distribution function g(r) of bath particles in the frame
of the probe for different Peclet numbers. The solvent friction is γ0 = 100
and the temperature is kBT = 100.
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The collision force in eq. (3.5) can be reduced as⟨
Fp,col

⟩
= −2n0mp

∮
r=R

dleng(r)
( 1

2πv2th

)∫
dve

− v·v
2v2

th (v · en)
2Θ(−v · en)

= −2n0mp

∮
r=R

dleng(r)
( 1

2πv2th

)∫ ∞

−∞
dvte

− v2t
2v2

th

∫ 0

−∞
e
− v2n

2v2
th v2n

= −n0mpv
2
th

∮
r=R

dleng(r)

(4.20)

Thus the collision force is reduced to⟨
Fp,col

⟩
= −n0kBT

∮
r=R

dleng(r) =

∮
r=R

dl(−en)n(r)kBT (4.21)

which means that under the assumption of the Maxwellian distribution, the colli-
sion force is just ideal gas like. The only difference is that the pressure of bath
particles typically should not be isotropically distributed around the probe, due to
anisotropy of the density distribution 2 : Πprobe

pressure(r) = −enn(r)kBT . ( Recall
that Πideal gas

pressure = −enn0kBT with n0 = N/Ld )

For a given position r = Ren, after averaging out the velocity distribution, the
flux of colliding particles passing through the surface dlen is

jN(r) =

∫
dvNP (r,v)v · (−en)Θ(−v · en)

= −Ng(r)

∫
dv
( 1

2πv2th

)
e
− v·v

2v2
th v · enΘ(−v · en)

= −Ng(r)
( 1

2πv2th

)∫ ∞

−∞
dvte

− v2t
2v2

th

∫ 0

−∞
e
− v2n

2v2
th vndvn

= Ng(r)
vth√
2π

(4.22)

Comparing it with Eq. (4.21), we obtain⟨
Fcol

⟩
=

√
2πmbvth

∮
r=R

dlenjN(r) (4.23)

2 The number density of bath particles is n(r) ≡ N
∫
dvP (r,v) = Ng(r).
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Figure 4.5: Increased effective friction calculated from different meth-
ods: the violet line is the direct simulation result. The green and the black
lines are calculated by inputting g(r) from the simulation associated with
Maxwellian distribution and delta distribution of velocity parts, respec-
tively.

which is identical to the expression in ref. [24].

If the velocity is delta distributed, f(v) = δ
(
v − (−u)

)
, the collision force in

Eq. (4.20) is reduced to⟨
Fp,col

⟩
= −n02mb

∮
r=R

dleng(r)(u · en)
2Θ[u · en] (4.24)

Inputting g(r) from the simulation into Eq.(4.21) and Eq.(4.24), respectively, we
obtain two increased effective frictions, the green line and black line, respectively,
as indicated in fig. 4.5. Comparing them with the direct simulation result, the vi-
olet line (see fig. 4.5), one can conclude that for the calculation of the friction, the
pair distribution function still works, but the proper velocity distributions should
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CHAPTER 4. MICROSCOPIC MECHANISM OF THICKENING

be input, according to different Re regimes: Maxwellian distribution in low Re
and the delta distribution δ

(
v − (−u)

)
in high Re.

4.2.3 Why does Maxwellian work or not?
Based on the microscopic picture of Re (fig. 4.1), the fact that the Maxwellian
distribution works in low Re but fails in high Re can be understood. Let us con-
sider the Pe ≫ 1 limit, where a bath particle moves with velocity −u relative to
the probe before any P-B collision 3. Re determines whether the solvent plays a
role during P-B collisions.

• If Re ≪ 1, damping dominates, the incoming velocity −u of the bath
particle is quickly erased due to the damping and agitation processes by the
solvent at the beginning of a few P-B collisions. In the following multiple
P-B collisions, the bath particle transfers the thermalized velocities to the
probe. That’s why the Maxwellian distribution works in this limit.

• If Re ≫ 1, inertia dominates, the P-B collision happens only once. The
bath particle’s velocity transferred to the probe is exactly the incoming ve-
locity −u, which has nothing to do with the solvent. Thus, instead of the
Maxwellian, the delta distribution δ

(
v − (−u)

)
works in this limit.

4.3 What’s new
In this chapter, the microscopic mechanisms of thickening is obtained. When
Re ≪ 1, damping dominates, the constant friction comes from creep flow, the
bath particles collide with the probe and then creep around it; when Re ≫ 1,
inertia dominates, the increasing friction comes from the single P-B collisions.

Based on the picture of bath particles in different Re regimes, the applicability
of the Maxwellian distribution can also be understood, which explains the reason
why thickening is not observed in the over-damped dynamics (with hydrodynami-
cal interaction). See for instance, Smolukwuski equation in theory [24] and Stokes
dynamics in simulation [31].

3 Indeed, before any P-B collision, the motion of a bath particle is determined by Pe only. It
has nothing to do with Re.
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Chapter 5

Pulling in High Density:
Mode-coupling Theory

In the last chapter, we discussed the thinning and the thickening behaviour of the
probe’s friction in the low density limit, in which only the interactions between the
probe and the bath particles are included, but not the interaction between bath par-
ticles. Under this two-body assumption, we find that the dominating time scales
of bath particles are essential for the thinning and the thickening behaviour. The
thinning depends on the Peclet number Pe = u/udiff , and the thickening depends
on the Reynolds number Re = u/udamp. The corresponding thinning and thick-
ening onsets are around Pe = 1 and Re = 1, respectively.

In high density, as the probe is pulled under a small force, the responding effective
friction of it should indicate the rigidity of the system (because of crowding) close
to the quasi-equilibrium state, i.e. the linear response regime. As the pulling force
increases, the probe is driven away from the equilibrium, follows a thinning and a
thickening regime.

The linear response and thinning regimes have been captured by the non-equilibrium
MCT [27, 47]. The motivation here is that we want to extend the non-equilibrium
MCT including the regime of thickening. We apply the MCT combined with a
generalized Green-Kubo formula to calculate the effective friction of the probe in
high density. There are three steps in the standard MCT method:

• applying the projection operator to get a reduced dynamics equation with
memory term, the Mori-Zwanzig (MZ) equation
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• applying the factorization approximation in the memory term to obtain a
closed MCT equation.

• Inputting the static structure factor or reducing to a schematic model to
numerically solve the MCT or the schematic-MCT equation.

5.1 Generalized Green-Kubo formula
We choose the FPE (1.13) to describe the microrheology of pulling with fixed
force, which is equivalent to the under-damped LE (1.8). Being different from
the Smoluchowski dynamics applied in the refs. [27, 47], where operation is
only in position space, in the above FP dynamics, operation in velocity space is
also included, due to the under-damped property of the granular systems. The
advantage of this choice is that under the FPE, the dynamics of colloidal particles
(large friction) and granular particles (low friction) can be uniformly described.
The aimed average velocity of the probe is⟨

vs(t)
⟩
=

∫
dΓP (Γ, t)vs. (5.1)

In the following, we will first introduce the ITT to reformulate the average velocity
(5.1) by the velocity autocorrelation function (VACF), and then map the VACF to
the density auto-correlator of the probe (DACP).

5.1.1 General formalism and proof

The ITT provides an exact formula for the average of an arbitrary response phase
variable to external driving at a given time.

The formula of it is Eq. (5.8). Here we give the proof based on the derivation
in ref. [47]. According to the definition, the average of a phase space variable A
at time t is ⟨

A
⟩
(t) =

∫
dΓP (Γ, t)A(Γ) (5.2)

Assuming the evolution of the PDF satisfies

∂tP (Γ, t) = Ω(Γ)P (Γ, t), (5.3)
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CHAPTER 5. PULLING IN HIGH DENSITY: MODE-COUPLING THEORY

it has a formal solution
P (Γ, t) = eΩ(Γ)tP (Γ, 0). (5.4)

Inserting eq.(5.4) into (5.2) and taking the derivative of both sides with respect to
t, we obtain

∂t

⟨
A
⟩
(t) =

∫
dΓ
[
eΩ(Γ)tΩP (Γ, 0)

]
A(Γ). (5.5)

Correspondingly,⟨
A
⟩
(t) =

⟨
A
⟩
(0) +

∫ t

0

dt′
∫

dΓ
[
Ω(Γ)P (Γ, 0)

]
eLt

′
A(Γ), (5.6)

where we have defined the self conjugate operator L of Ω through∫
dΓ
[
ΩX(Γ)

]
Y (Γ) =

∫
dΓX(Γ)

[
LY (Γ)

]
, (5.7)

X, Y are arbitrary phase space variables. To further simplify, if the system is
initially in equilibrium P (Γ, t) = Peq(Γ) and the probability operator can be sep-
arated as Ω = Ω0 + Ωex satisfying Ω0Peq = 0, then we have⟨

A
⟩
(t) =

⟨
A
⟩
(0) +

∫ t

0

dt′
∫

dΓ
[
Ωex(Γ)Peq

]
eLt

′
A(Γ) (5.8)

which is the so-called ITT. Noting that replacing Ω → Ω0 in the definition of (5.7),
the dynamical operator will be correspondingly changed, denoted as L → Leq.
The changing L → Leq in the ITT is the famous Green-Kubo formula [62, 63] .
For this reason, the ITT is also called a generalized Green-Kubo formula. An im-
portant feature of this generalization is that in the ITT, the formula is exact even
for the non-linear regime, while the GK formula is valid in the linear response
(small perturbation) only.

5.1.2 Application to fixed force pulling
Now let us apply the ITT to the fixed force pulling to calculate the effective fric-
tion. The aimed response variable is the velocity of the probe, A = vs. According
to Eq. (1.13), the external phase-space operator for the FP dynamics is

Ωex = −Fex

m
· ∂vs (5.9)
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Initially, the system is in the equilibrium state with distribution function

Peq(Γ) =
1

Z
e−H(Γ)/kBT (5.10)

where Z =
∫
dΓe−H(Γ)/kBT is the normalization factor of the PDF, H(Γ) =

1
2
mvi · vi +

∑
i<j U(ri, rj) is the Hamiltonian of the N -particle system with-

out external pulling, and U(ri, rj) is the potential energy between particle i and
j. Inserting Eqs. (5.9) and (5.10) into the ITT (5.8) and choosing the velocity of
the probe in time, vs(t), as our response variable, we get

⟨
vs(t)

⟩
=

Fex

kBT
·
∫ t

0

dt′
∫

dΓPeq(Γ)vse
LFP t′vs =

Fex

kBT
·
∫ t

0

dt′
⟨
vsvs(t

′)
⟩
eq

(5.11)
where the subscript eq denotes that the average is under the equilibrium distribu-
tion Peq. The time dependent average velocity now is connected to the integral of
the velocity autocorrelation function. Symmetry of the system (the Hamiltonian)
tells us only the velocity average along the pulling direction is nonzero. Thus the
above formula can be simplified to

⟨
vs(t)

⟩
=

Fex

kBT

∫ t

0

dt′
⟨
vzse

LFP t′vzs

⟩
eq

(5.12)

where we have choose the z axis along the pulling force Fex.

Note that the FP operator depends on the force, i.e. LFP = LFP (Fex). Therefore,
in general, the relation between the external driving Fex and the response average
velocity

⟨
vs

⟩
is non-linear. While in the conventional GKF, LFP is independent

of the pulling force, the response velocity depends linearly on the external force,
which is valid in the regime of small pulling force only.

5.1.3 Mapping ITT to the density correlator

The ITT expression of the average velocity eq. (5.12) is exact but lacks practical
application. To proceed, let us connect the VACF to the self-density autocorrela-
tor, and treat the latter by the standard MCT technique.
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Density and current

Let us introduce the density of the probe particle and the bath particles in real
space and its Fourier transform

ρs(r) = δ(r − rs), ρsq =

∫
ρs(r)eiq·rsdrs = eiq·rs

ρ(r) =
N∑
k=1

δ(r − rk), ρq =

∫
ρ(r)eiq·rdr =

N∑
k=1

eiq·rk
(5.13)

where ρs(r) and ρ(r) denote the number density of the probe and the bath parti-
cles in position space, and ρsq and ρq denote the number density of them in Fourier
space, respectively. Note that the probe particle is not included in the density ex-
pression of the bath particles. Being different from ref. [27, 47], our system is not
overdamped, so here we also need to introduce the density current of the probe
and the bath particles

js(r) = vsρ
s(r), jsq =

∫
js(r)eiq·rsdrs = vse

iq·rs

j(r) =
N∑
k=1

vkδ(r − rk), jq =

∫
j(r)eiq·rdr =

N∑
k=1

vke
iq·rk

(5.14)

Typically, we will use the current along the vector jsqL = q̂ · jsq and jqL = q̂ · jq,
where q̂ = q/|q| is the unit vector of the wave vector q.

Connection between the self-density correlator and the average velocity

For convenience, let us apply the Dirac notation to the phase space variables:⏐⏐⏐A⟩ : = A(Γ)⟨
A
⏐⏐⏐ : = A∗(Γ)⟨

A
⏐⏐⏐B⟩ :=

∫
A∗(Γ)B(Γ)Peq(Γ)dΓ

(5.15)

The autocorrelation function of a phase space variable is⟨
A
⏐⏐⏐A(t)⟩ :=

∫
A∗(Γ0)A(Γ(t))Peq(Γ0)dΓ0 =

∫
A∗(Γ0)A(Γ0, t)Peq(Γ0)dΓ0,

(5.16)
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where A(Γ0) is the value of A at the initial point Γ0 (* denotes its conjugate),
A(Γ(t)) = A(Γ0, t) is the value of A at point Γ(t) with the same initial point Γ0.

In particular, we are interested in the DACP defined as

ϕs
q(t) :=

⟨
ρsq

⏐⏐⏐ρsq(t)⟩ =
⟨
eiq·[rs(t)−rs]

⟩
eq
=

∫
eiq·[rs(t,Γ0)−rs(Γ0)]Peq(Γ0)dΓ0

(5.17)
Note that LFPρ

s
q(t) = ∂tρ

s
q(t) = iq · vsρ

s
q(t) = iqvsqLρ

s
q(t), where we denote the

velocity along the wave vector q as eq · vs = vsqL , eq is the unit vector of q and q
is the absolute value of it. Conveniently, let us choose the wave-vector along the
direction of the pulling force, eq = eFex . Thus

LFPρ
s
q(t) = iqvzsρ

s
q(t)

L†
FPρ

s
q(t) = −(iq +

Fex

kBT
)vzsρ

s
q(t)

(5.18)

where we have applied the self- adjoint operator of LFP , see (A.13), in the second
equation. Correspondingly,

ϕ̈s
q(t) =

⟨
ρsq

⏐⏐⏐eLFP tL2
FP

⏐⏐⏐ρsq⟩ =
⟨
L†

FPρ
s
q

⏐⏐⏐eLFP t
⏐⏐⏐LFPρ

s
q

⟩
= (−q2 + iq

Fex

kBT
)
⟨
vzsρ

s
q

⏐⏐⏐eLFP t
⏐⏐⏐vzsρsq⟩. (5.19)

Note that ρsq = eiq·rs → 1 as q → 0. Therefore the VACF is

⟨
vzs

⏐⏐⏐eLFP t
⏐⏐⏐vzs⟩ = lim

q→0

kBT ϕ̈
s
q(t)

iqFex

(5.20)

Inserting (5.20) into (5.12), we get the average velocity expressed by the self-
density autocorrelator as follows

⟨
vzs(t)

⟩
= lim

q→0

∫ t

0

ϕ̈s
q(t

′)

iq
dt′ = lim

q→0

ϕ̇s
q(t)

iq
(5.21)

where we have used the property ϕ̇s
q(0) = 0.
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An alternative derivation

Note that the time derivative of the DACP is

ϕ̇s
q(t) = iq ·

⟨
vs(t)e

iq·[rs(t)−rs]
⟩
= iq

∫
vzs(t,Γ0)e

iq[rzs (t,Γ0)−rzs ]Peq(Γ0)dΓ0,

(5.22)
where we have chosen the wave-vector q along z. Correspondingly,

⟨
vzs

⟩
= lim

q→0

ϕ̇s
q(t)

iq
(5.23)

which gives the same result with simpler derivation compared to the one based on
the ITT. So why ITT? Because this trick does not work in most cases, and ITT
provides a general framework to calculate the nonlinear response variable.

The corresponding effective friction of the probe is

γeff := lim
t→∞

Fex⟨
vzs(t)

⟩ = iFex lim
t→∞

lim
q→0

q

ϕ̇s
q(t)

(5.24)

5.2 Mori-Zwanzig equation

5.2.1 General formalism and proof

Now we should derive a dynamical equation for ϕq(t). In general, let us consider

the time derivative of a phase space’s variable
⏐⏐⏐A(t)⟩, which can be rewritten as

follows ⏐⏐⏐Ȧ(t)⟩ = L
⏐⏐⏐A(t)⟩ = eLtL

⏐⏐⏐A⟩
= eLt(P +Q)L

⏐⏐⏐A⟩
= eLt

⟨
A
⏐⏐⏐A⟩−1⏐⏐⏐A⟩⟨A⏐⏐⏐L⏐⏐⏐A⟩+ eLtQL

⏐⏐⏐A⟩
=
⟨
A
⏐⏐⏐A⟩−1⟨

A
⏐⏐⏐L⏐⏐⏐A⟩  

−λ

⏐⏐⏐A(t)⟩+ eLtQL
⏐⏐⏐A⟩,

(5.25)
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where the projectors are defined as

P =
⟨
A
⏐⏐⏐A⟩−1⏐⏐⏐A⟩⟨A⏐⏐⏐

Q = 1− P
(5.26)

The projector P just picks out the component of a variable including
⏐⏐⏐A⟩. The

formal solution of (5.25) is⏐⏐⏐A(t)⟩ = e−λt
⏐⏐⏐A(0)⟩+ e−λt

∫ t

0

e(L+λ)t′QL
⏐⏐⏐A⟩dt′ (5.27)

However, usually it is difficult to solve the integration. The key point of the MZ
equation is the reformulation of the integration above. Here I follow the derivation
given in [64]. Note that ⟨

A
⏐⏐⏐eQLtQL

⏐⏐⏐A⟩ = 0 (5.28)

Let
eLt − eQLt = eLtS(t) (5.29)

Thus

S(t) = 1− e−LteQLt

Ṡ(t) = e−LtLeQLt − e−LtQLeQLt

= e−LtPLeQLt

(5.30)

Formally,

S(t) =

∫ t

0

e−Lt′PLeQLt′dt′ (5.31)

where we have applied that S(0) = 0 according to eq. (5.29). Thus

eLtQL
⏐⏐⏐A⟩ = eQLtQL

⏐⏐⏐A⟩+

∫ t

0

eL(t−t′)PLeQLt′QL
⏐⏐⏐A⟩dt′ (5.32)

The above formula can be rewritten as

eLtQL
⏐⏐⏐A⟩ =

⏐⏐⏐f(t)⟩+

∫ t

0

eL(t−t′)PL
⏐⏐⏐f(t′)⟩dt′ (5.33)

where the fluctuating force is defined as⏐⏐⏐f(t)⟩ := eQLtQL
⏐⏐⏐A⟩. (5.34)

54



CHAPTER 5. PULLING IN HIGH DENSITY: MODE-COUPLING THEORY

Note that⟨
A
⏐⏐⏐L⏐⏐⏐f(t)⟩ =

⟨
A
⏐⏐⏐LQ⏐⏐⏐f(t)⟩ =

⟨
(LQ)†A

⏐⏐⏐f(t)⟩ =
⟨
QL†A

⏐⏐⏐f(t)⟩ =
⟨
f †(0)

⏐⏐⏐f(t)⟩
(5.35)

and

eL(t−t′)PL
⏐⏐⏐f(t′)⟩ = eL(t−t′)

⟨
A
⏐⏐⏐A⟩−1⏐⏐⏐A⟩⟨A⏐⏐⏐L⏐⏐⏐f(t′)⟩

=
⟨
A
⏐⏐⏐A⟩−1⟨

f †(0)
⏐⏐⏐f(t′)⟩⏐⏐⏐A(t− t′)

⟩ (5.36)

Denote

m(t) =
⟨
A
⏐⏐⏐A⟩−1⟨

f †(0)
⏐⏐⏐f(t)⟩⟨

f †(0)
⏐⏐⏐ = ⟨QL†A

⏐⏐⏐ (5.37)

Thus we get the Mori-Zwanzig (MZ) equation⏐⏐⏐Ȧ(t)⟩ = −λ
⏐⏐⏐A(t)⟩+

∫ t

0

m(t′)
⏐⏐⏐A(t− t′)

⟩
dt′ +

⏐⏐⏐f(t)⟩ (5.38)

Denoting the autocorrelator of the variable A as C(t) :=
⟨
A
⏐⏐⏐A(t)⟩, the MZ

equation for the corresponding autocorrelator is

Ċ(t) + λC(t)−
∫ t

0

m(t′)C(t− t′)dt′ = 0, (5.39)

where

λ = −
⟨
A
⏐⏐⏐A⟩−1⟨

A
⏐⏐⏐L⏐⏐⏐A⟩

m(t) =
⟨
A
⏐⏐⏐A⟩−1 ⟨

QL†A
⏐⏐⏐  ⟨

f†(0)

⏐⏐⏐
eQLtQL

⏐⏐⏐A⟩  ⏐⏐⏐f(0)⟩
(5.40)

Matrix Form of the MZ equation
The projector can be generalized to project to a subspace and the corresponding
MZ equation should have matrix form. Explicitly, the projection to a n dimen-
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sional subspace {
⏐⏐⏐A1

⟩
, · · · ,

⏐⏐⏐An

⟩
} is

Pn =
∑
i,j

(C−1)i,j

⏐⏐⏐Ai

⟩⟨
Aj

⏐⏐⏐ (5.41)

where the normalization matrix C−1 is the inverse of the matrx C with Ci,j :=⟨
Ai

⏐⏐Aj

⟩
. It can be readily proved that

P2
n = Pn, (5.42)

which justifies the definition of a projector itself. The corresponding matrix form
of the MZ equation is

Ȧ(t) = −λA(t) +

∫ t

0

m(t′)A(t− t′)dt′ + f(t) (5.43)

where
A(t) =

(⏐⏐⏐A1(t)
⟩
, · · · ,

⏐⏐⏐An(t)
⟩)T

, (5.44)

f(t) =
(⏐⏐⏐f1(t)

⟩
, · · · ,

⏐⏐⏐fn(t)⟩)T (5.45)

−λ = (C−1L)T , Li,j =
⟨
Ai

⏐⏐⏐L⏐⏐⏐Aj

⟩
, (5.46)

and

m = (C−1m̄)T , m̄i,j =
⟨
QnL†Ai

⏐⏐⏐eQnLt
⏐⏐⏐QnLAj

⟩
(5.47)

The corresponding MZ equation for autocorrelation function is

ĊT (t) + λCT (t)−
∫ t

0

m(t′)CT (t− t′)dt′ = 0 (5.48)

MZ equation in the frequency domain
Now we want to get the MZ equation in frequency domain by a modified Laplace
transform (LT) defined as

ϕ̂(z) = i

∫ ∞

0

eiztϕ(t)dt, Im(z) > 0 (5.49)
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The conversion to the conventional LT ϕ̄(s) =
∫∞
0

e−stϕ(t)dt (Re(s) < 0) is

ϕ̂(z) = i

∫ ∞

0

e−(−iz)tϕ(t)dt = iϕ̄(−iz) (5.50)

Two important properties of the modified LT are

ˆ̇ϕ(z) = i ¯̇ϕ(−iz) = i[(−iz)ϕ̄(−iz)− ϕ(0)]

= −izϕ̂(z)− iϕ(0)
(5.51)

and

LT [

∫ t

0

f(t− t′)g(t′)dt′](z)

= iLT [

∫ t

0

f(t− t′)g(t′)dt′](−iz)

= if̄(−iz)ḡ(−iz) = −if̂(z)ĝ(z)

(5.52)

which can be easily obtained from the ones of the conventional LT [65].

Doing LT of the MZ equation (5.39) with the LT properties (5.51, 5.52), one gets

ˆ̇C(z) = −izĈ(z)− iC(0) (5.53)

LT [

∫ t

0

m(t′)C(t− t′)dt′] = −im̂(z)Ĉ(z) (5.54)

Thus
− izĈ(z)− iC(0) + λĈ(z) + im̂(z)Ĉ(z) = 0 (5.55)

The LT transform of the autocorrelation function of
⏐⏐⏐A(t)

⟩
is

Ĉ(z) =
iC(0)

−iz + λ+ im̂(z)
(5.56)

m̂(z) = i

∫ ∞

0

eizt
⟨
A
⏐⏐A⟩−1

⟨
QL†A

⏐⏐⏐eQLtQL
⏐⏐⏐A⟩dt

= i
⟨
A
⏐⏐A⟩−1

⟨
QL†A

⏐⏐⏐ ∫ ∞

0

eizteQLtdt
⏐⏐⏐QLA

⟩ (5.57)
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Note that ∫ ∞

0

eizteQLtdt = (iz +QL)−1e(iz+QL)t
⏐⏐⏐∞
0

= −(iz +QL)−1

(5.58)

where we have used the property e(iz+QL)∞ → 0 due to Im(z) > 0. Thus

m̂(z) = −i
⟨
A
⏐⏐A⟩−1

⟨
QL†A

⏐⏐⏐(iz +QL)−1
⏐⏐⏐QLA

⟩
(5.59)

5.2.2 Mori-Zwanzig equation of the probe
In this section, first we will derive the dynamics of the DACP ϕs

q(t) based on the
above MZ formalism.

Subspace and projectors

Let us pick a subspace whose bases are

S2 =
{⏐⏐⏐A1

⟩
=
⏐⏐⏐ρsq⟩, ⏐⏐⏐A2

⟩
=
⏐⏐⏐jsqL⟩}, (5.60)

where ρsq and jsqL are density and current of the probe defined in Eq. (5.13) and
Eq.(5.14), respectively. Note that being different from refs.[27, 47], here we not
only choose the density but also current as the basis, the reason is that granular
particles are typically not over-damped, the density current may also be important
to the dynamics of the self density correlator.

The projector P into the subspace of the probe’s density and current is

P =
∑
i,j

⏐⏐⏐Ai

⟩⟨
Aj

⏐⏐⏐(C−1
)
i,j

(5.61)

where C−1 is the inverse matrix of the correlation matrix C defined as Ci,j =⟨
Ai

⏐⏐⏐Aj

⟩
. The dynamics of the density autocorrelator of the probe is included in

the MZ equation

ĊT (t) = −λCT (t) +

∫ t

0

m(t′)CT (t− t′)dt′ (5.62)
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with

−λ = (C−1L)T , Li,j =
⟨
Ai

⏐⏐⏐L⏐⏐⏐Aj

⟩
,

m = (C−1m̄)T , m̄i,j =
⟨
QL†Ai

⏐⏐⏐eQLFP t
⏐⏐⏐QLAj

⟩ , (5.63)

where L is the frequency matrix, ,m̄ is the memory matrix, and −λ and m are
the normalization form of the corresponding matrices.

correlation matrix and frequency matrix

Note that ρsq = eiq·r
s
, and jsqL = vsqLρ

s
q, and

⟨
ρsq

⏐⏐⏐jsqL⟩ =
⟨
vsqL

⟩
= 0 due to

symmetry in the initial equilibrium state. The correlation matrix c and its inverse
matrix can be easily obtained,

C =

(
1 0
0 kBT

ms

)
, C−1 =

(
1 0
0 ms

kBT

)
. (5.64)

Note that LFPρ
s
q = vs · iqρsq = iqjsqL and LFP j

s
qL

= (iqvs 2qL +
F int
s L −γvsqL

+Fex

m
)ρsq,

and
⟨
vs
qL

⟩
=
⟨
vs 3
qL

⟩
= 0, and

⟨
vs 2
qL

⟩
= kBT

m
due to the Maxwellian distribution

of the velocity in equilibrium state. The frequency matrix L is

L =

(
0 iq kBT

ms
+

Fex,qL

ms

iq kBT
ms

−γ0kBT
m2

s

)
(5.65)

and the normalized form of the frequency matrix is

− λ = (C−1L)T =

(
0 iq

F ex
qL

ms
+ iqkBT

ms
− γ0

ms

)
. (5.66)

memory matrix

Now let us deal with the memory matrix. Note that QLFP |ρsq
⟩
= iqQ|jsqL

⟩
= 0

and QLFP |jsqL
⟩
= iqQ|vs 2qLρ

s
q

⟩
+ 1

m
Q|F int

sL ρ
s
q

⟩
. The conjugate term is

L†
FPρ

s
q = −(vs · iq)ρsq +

Fex

kBT
· vsρ

s
q = −iqjsqL +

Fex

kBT
jsqL

=⇒
⟨
QL†

FPρ
s
q

⏐⏐⏐ = 0

(5.67)
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where we have assumed that the wave vector q is parallel to the pulling force,
q ∥ Fex, and applied the expression of the conjugate operator L†

FP . Thus the
memory term and its normalized form are simplified to

m̄(t) =

(
0 0
0 ms

q(t)

)
, m(t) = (C−1m̄)T =

(
0 0
0 M s

q

)
(5.68)

where M s
q = ms

kBT
ms

q(t) and

ms
q(t) =

⟨
QL†

FP j
s
qL

⏐⏐⏐eQLFP t
⏐⏐⏐QLFP j

s
qL

⟩
. (5.69)

MZ equation in the the frequency domain

By applying Laplace transform ϕ̂(z) = i
∫∞
0

eiztϕ(t)dt, Im(z) > 0, we can obtain
the MZ equation in the frequency domain as

CT (z) =
{
− zI − iλ+m(z)

}−1

CT (0) (5.70)

Inserting the related matrices as obtained in the last subsection, we get

ĈT (z) =
−1

z(z −M s
q (z) +

iγ
ms

)− ( q
2kBT−iFex·q

ms
)

(
z −M s

q (z) +
iγ
ms

−q kBT
ms

− qkBT−iFex·q̂
ms

z kBT
ms

)
(5.71)

which is the MZ equation in the frequency domain. The density correlator of the
pulled particle equals ϕ̂s

q(z) = [ĈT (z)]1,1, whose explicit form reads

ϕ̂s
q(z) =

−1

z − (q2kBT−iFex·q)/ms

z−Ms
q (z)+iγ/ms

(5.72)

MZ equation in the time domain
Rewriting the (5.72) as{

−M s
q (z) +

iγ

ms

+ z
}{

zϕ̂s
q(z) + 1

}
−
{q2kBT − iFex · q

ms

}
ϕ̂s
q(z) = 0 (5.73)

Applying the LT properties, we have

ˆ̇ϕs
q(z) = −i

{
zϕ̂s

q(z) + ϕs
q(0)

}
= −i

{
zϕ̂s

q(z) + 1
}

ˆ̈ϕs
q(z) = −i

{
z ˆ̇ϕs

q(z) + ϕ̇s
q(0)

}
= −z

{
zϕ̂s

q(z) + 1
} (5.74)
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Inserting (5.74) and the initial conditions ϕs
q(0) = 1 and ϕ̇s

q(0) = 0 into eq.(5.73),
we obtain

− iM s
q (z)

ˆ̇ϕs
q(z)−

γ

ms

ˆ̇ϕs
q(z)−

ˆ̈ϕs
q(z)−

{q2kBT − iFex · q
ms

}
ϕ̂s
q(z) = 0 (5.75)

Laplace transforming the above equation, we obtain the density auto correlator of
the the pulled particle in time domain 1

ϕ̈s
q(t) +

γ

m
ϕ̇s
q(t) + (Ωs 2

q − iFex · q
ms

)ϕs
q(t) +

∫ t

0

dτ M s
q (t− τ)ϕ̇s

q(τ) = 0

(5.76)
with

Ωs 2
q = q2

kBT

ms

M s
q (t) = − ms

kBT

⟨
QL†

FP j
s
qL

⏐⏐⏐eQLFP t
⏐⏐⏐QLFP j

s
qL

⟩ (5.77)

Note that the above MZ equation is exact! But it is usually difficult to solve it due
to the memory term M s

q (t). For the over-damped case, γ
ms

≫ Ωs
q, the second time

derivative can be ignored and the MZ equation is reduced to

γ

m
ϕ̇s
q(t) + (Ωs 2

q − iFex · q
ms

)ϕs
q(t) +

∫ t

0

dτ M s
q (t− τ)ϕ̇s

q(τ) = 0 (5.78)

which is identical to the eq. (54) in ref. [47] with the same frequency term (Ωs 2
q −

iFex·q
ms

), see eq. (60) in ref.[47].

Connection to the effective friction

Here we want to obtain the effective friction γeff by combining the expression of
(5.24) and the above MZ equation. Eq.(5.23) tells us that the average velocity of

1At first glance, the memory term looks inconsistent with the same derivation for a Hamiltonian
system (the sign of the memory term is "+" in a Hamiltonian system). However, the results are
consisted. Note that LFP −→ iL and Ms

q,FP (t) = − ms

kBT

⟨
jsqL

|LFPQeQLFP tQLFP |jsqL

⟩
−→ − ms

kBT

⟨
jsqL

|iLQeQiLtQiL|jsqL

⟩
= ms

kBT

⟨
jsqL

|LQeQiLtQL|jsqL

⟩
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the probe along a wave vector q is
⟨
vs(t) · q̂

⟩
= limq→0

ϕ̇s
q(t)

iq
. Note that

ϕ̇s
q(t → ∞) =

∫ ∞

0

ϕ̈s
q(t

′)dt′ + ϕ̇s
q(0) = −i ˆ̈ϕs

q(z)
⏐⏐⏐
z→0

= iz
{
zϕ̂s

q(z) + 1
}⏐⏐⏐

z→0
= iz2ϕ̂s

q(z)
⏐⏐⏐
z→0

(5.79)

where we have applied the definition of the LT and its property (5.74). We have
chosen the wave vector q along the direction of the pulling force q ∥ Fex. Insert-
ing the above expression (5.79) and the MZ equation (5.72) into the expression of
the effective friction (5.24), we get

γeff = iFex lim
t→∞

lim
q→0

q

ϕ̇s
q(t)

= Fex lim
z→0

lim
q→0

q

z
{
zϕ̂s

q(z) + 1
}

= Fex lim
z→0

lim
q→0

[q
z
+

−iγ + (M s
q (z)− z)ms

qkBT − iFex

]
= γ + imsM

s
q→0(z → 0)

(5.80)

Note that the limit order cannot be changed for the term q
z

in the third equation!
Thus we obtain

γeff = γ +ms

∫ ∞

0

M s
q→0(t

′)dt′ (5.81)

Here the expression of the effective friction is exactly connected to the memory
term in the MZ equation, while in [47], the force autocorrelator is approximated
by projecting onto the pair density pairs, see Eq. (88-89) in [47].

5.3 Microscopic MCT of the probe

In the MZ equation of the probe, the memory term may slowly decay in high
density due to crowding. Thus we will apply the standard mode-coupling approx-
imation (MCA) to the memory term

M s
q (t) ≈ M s,MCT

q (t) = − ms

kBT

⟨
jsqL

⏐⏐⏐LFPQPs
2e

QLFP tPs
2QLFP

⏐⏐⏐jsqL⟩ (5.82)
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where the projector is defined as

Ps
2 =

∑
k1,k2,k′

1,k
′
2

⏐⏐⏐Ak1,k2

⟩⟨
Ak′

1,k
′
2

⏐⏐⏐C−1
k1,k2,k′

1,k
′
2⏐⏐⏐Ak1,k2

⟩
=
⏐⏐⏐ρsk1

ρk2

⟩
Ck1,k2,k′

1,k
′
2
=
⟨
ρsk1

ρk2

⏐⏐⏐ρsk′
1
ρk′

2

⟩ (5.83)

5.3.1 Translational invariance

Note that translating all the positions with an arbitrary vector R , Γ = (r1, · · · , rN) →
Γ′ = (r1 +R, · · · , rN +R), both the Hamiltonian H(Γ) and Fokker-Planck op-
erator LFP (Γ) are invariant, i.e.

H(Γ) = H(Γ′), LFP (Γ) = LFP (Γ
′), (5.84)

which can be easily confirmed by their definitions. Applying the properties of the
translational invariance, we have

⟨
ρsq

⏐⏐⏐ρsp(t)⟩ =

∫
e

−H(Γ)
kBT

Z
e−iq·rseLFP (Γ)teip·rsdΓ

=

∫
e

−H(Γ′)
kBT

Z
e−iq·(rs+R)eLFP (Γ′)teip·(rs+R)dΓ′

= ei(p−q)·R
⟨
ρsq

⏐⏐⏐ρsp(t)⟩ =
⟨
ρsq

⏐⏐⏐ρsp(t)⟩δq,p
(5.85)

In the second equation of the above formalism, just a change of the integration
variable Γ → Γ′ is used, in the third equation, the translational invariance proper-
ties (5.84) are applied, and in the last equation, we have input a physics require-
ment that observables should be independent of the choice of coordinate and have
noted that the vector R can have an arbitrary value. Similarly, we have⟨

ρsq

⏐⏐⏐ρp(t)⟩ =
⟨
ρsq

⏐⏐⏐ρp(t)⟩δq,p, ⟨
ρq

⏐⏐⏐ρp(t)⟩ =
⟨
ρq

⏐⏐⏐ρp(t)⟩δq,p (5.86)
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5.3.2 Vertex terms and closure equation

The normalization matrix can be calculated by applying the translational invari-
ance

Ck1,k2,k′
1,k

′
2
=
⟨
ρsk1

ρk2

⏐⏐⏐ρsk′
1
ρk′

2

⟩
=
⟨
ρsk1

⏐⏐⏐ρsk′
1

⟩⟨
ρk2

⏐⏐⏐ρk′
2

⟩
= δk1,k′

1
NSk2δk2,k′

2

(5.87)

where Sk2 =
⟨
ρk2

⏐⏐⏐ρk2

⟩
/N is the static structure of the bulk system. The corre-

sponding inverse matrix is

C−1
k1,k2,k′

1,k
′
2
=

1

NSk2

δk1,k′
1
δk2,k′

2
(5.88)

The explicit form of eq.(5.82) is

M s,MCT
q (t) = − ms

kBT

∑
k1,k2,k′

1,k
′
2

p1,p2,p′
1,p

′
2

C−1
k1,k2,k′

1,k
′
2
C−1

p1,p2,p′
1,p

′
2

⟨
jsqL

⏐⏐⏐LFPQ
⏐⏐⏐ρsk1

ρk2

⟩
  

(L)

⟨
ρsk′

1
ρk′

2

⏐⏐⏐eQLFP t
⏐⏐⏐ρsp1

ρp2

⟩
  

(M)

⟨
ρsp′

1
ρp′

2

⏐⏐⏐QLFP

⏐⏐⏐jsqL⟩  
(R)

(5.89)

The right term (R) is

(R) =
⟨
ρsp′

1
ρp′

2

⏐⏐⏐QLFP

⏐⏐⏐jsqL⟩ =
⟨
ρsp′

1
ρp′

2

⏐⏐⏐F int
sL + iq

(
vL 2
s ms − kBT

)
ms

ρsq

⟩
=

1

ms

⟨
ρsp′

1−qρp′
2

⏐⏐⏐F int
sL

⟩
=

kBT

ms

i(p′
1 − q) · q̂Ss

p′1−qδp′
1+p′

2,q

=
−ikBTp

′
2 · q̂

ms

Ss ∗
p′2
δp′

1+p′
2,q

(5.90)

where we have used the result
⟨
vL 2
s

⟩
= kBT

ms
, have defined the probe-bath particles

static structure
Ss
q :=

⟨
ρsq

⏐⏐⏐ρq⟩ (5.91)
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and calculated the interaction force term⟨
ρsqρp

⏐⏐⏐F int
s

⟩
=

1

Z

∫
dΓe

−H(Γ)
kBT ρs∗q ρ∗p(−∂rsH) =

−kBT

Z

∫
dΓe

−H(Γ)
kBT ∂rs(ρ

s∗
q ρ∗p)

= kBTiq
⟨
ρsq

⏐⏐⏐ρ−p

⟩
= kBTiqS

s
qδq+p,0.

(5.92)

In the calculation, the partial integrals and the identity e
−H(Γ)

kBT (−∂rsH) = kBT∂rse
−H(Γ)

kBT

have been applied in the second equation, and the translational invariance has been
applied in the last equation.

The left term (L) can be calculated in a straightforward way as follows

(L) =
⟨
QL†

FP j
s
qL

⏐⏐⏐ρsk1
ρk2

⟩
=
⟨
ρsk1

ρk2

⏐⏐⏐QL†
FP j

s
qL

⟩∗
= −

⟨
ρsk1

ρk2

⏐⏐⏐QLFP j
s
qL

⟩∗
+
⟨
ρsk1

ρk2

⏐⏐⏐Q{2γ
m

[
− vi +

kBT

m
∂vi

]
· ∂vi

+
Fex · vs

kBT

}
jsqL

⟩∗
= −

⟨
ρsk1

ρk2

⏐⏐⏐QLFP j
s
qL

⟩∗
+

FL
ex

kBT

⟨
ρsk1

ρk2

⏐⏐⏐−kBT +mvL 2
s

m
ρsq

⟩∗
=

−ikBTk2 · q̂
ms

Ss
k2
δk1+k2,q

(5.93)

where we have used the property of the relation that

L†
FP = −LFP +

2γ

m

[
− vi +

kBT

m
∂vi

]
· ∂vi

+
Fex · vs

kBT
(5.94)

The middle term (M) can be obtained by the factorization approximation

(M) =
⟨
ρsk′

1
ρk′

2

⏐⏐⏐eQLFP t
⏐⏐⏐ρsp1

ρp2

⟩
≈
⟨
ρsk′

1

⏐⏐⏐eQLFP t
⏐⏐⏐ρsp1

⟩⟨
ρk′

2

⏐⏐⏐eQLFP t
⏐⏐⏐ρp2

⟩
≈
⟨
ρsk′

1

⏐⏐⏐eLFP t
⏐⏐⏐ρsp1

⟩⟨
ρk′

2

⏐⏐⏐eLFP t
⏐⏐⏐ρp2

⟩
= ϕs

p1
(t)ϕp2(t)NSp2δp1,k′

1
δp2,k′

2
,

(5.95)

Putting the results (5.88), (5.90), (5.93), and (5.95) together into (5.89), we get

M s,MCT
q (t) =

kBT

ms

∑
k+p=q

(p · q̂)2Ss
pS

s ∗
p

NSp

ϕs
k(t)ϕp(t) (5.96)
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which is the mode-coupling approximation (MCA) of the memory term. With in-
putting static structures and the density correlator of the bulk system ϕk(t), which
can be obtained by the standard MCT equation, the MZ equation (5.114) under
the MCA (5.96) forms a closed equation, i.e. a microscopic MCT formalism for
the fixed force pulling microrheology. An important difference to the refs.[27, 47]
is that here the memory term has nothing to do with the external pulling force Fex.
This is due to the fact that here the external force in the adjoint dynamics operator
is coupled to the velocity, see term Fex·vs

kBT
in eq. (5.94), which is cancelled in the

right term in the third line of eq. (5.93) due to parity. While the adjoint dynamics
operator is coupled to the interacting force, see eq. (77) in [47], which results in a
force dependent memory term, eq. (78) in [47].

5.4 Schematic-MCT model

Before solving the microscopic mode-coupling equation, it is interesting to inves-
tigate the simplified version of the microscopic equation, the schematic model.
The basic assumption is that the essence of the MCT is captured by the coupling
of the density correlators with different wave-vectors (the modes), which can be
reduced to an equation of single wave-vector dependence. (additional fitting pa-
rameters are required.) This simplified model is important mainly for two reasons:

1. It helps to understand the underlying mathematical structure of the full-
MCT (Note that the full-MCT is quite complex that there are vertex terms
and couplings between different DACs). Many features of the full-MCT
can be reproduced based on the schematic model. For instance, the two
step decays and the exponent relation between α and β relaxations. A com-
prehensive and mathematical discussion can be found in W. Götze’s book
[52].

2. It provides a tool to compare the MCT with various experiments. The as-
sumption is that the schematic model can capture the full-MCT equation
with additional control parameters. In practice, applying the schematic-
model to fit the glassy dynamics in experiments is not only convenient,
because in many experiments, the precise interaction is unknown, which
makes the construction of a full-MCT is quite difficult. A few nice exam-
ples of applying the schematic model to fit experimental data can be found
in [27, 66, 67, 58].
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5.4.1 Schematic model of fixed force pulling
Let us construct a simplified model of the MCT based on the expression of the
effective friction eq.(5.81) and the mode-coupling approximation eq.(5.96). Note
that

• the effective friction in eq.(5.81) is related to the memory kernel in the q →
0 limit;

• the MCT approximation of the kernel eq.(5.96) requires all coupling terms
of the DACs with the restriction of the wave vectors k + p = q.

These hint us to construct a memory kernel which contains only a pair of wave
vectors satisfying k + p = 0 and the wave vector k is chosen along q. The
corresponding MCT equation of the probe with a pair of coupling wave vectors
only is

ϕ̈s
k(t) +

γ

m
ϕ̇s
k(t) +

[k2kBT

ms

− ikFex

ms

]
ϕs
k(t)

+
kBT

ms

∫ t

0

dτ
k2Ss

kS
s ∗
k

NSk

ϕs ∗
k (t− τ)ϕk(t− τ)ϕ̇s

k(τ) = 0

(5.97)

where we have applied the properties ϕs
−k = ϕs ∗

k , ϕ−k = ϕk and S−k = Sk.

To further simplify the above equation, we choose k = γ = ms = 1 and re-
place the coupling parameter between the DAC of the probe and the DAC of the
bath particles by a simple coupling parameter: k2Ss

kS
s ∗
k

NSk
→ vA. The corresponding

simplified equation is

ϕ̈s(t) + νsϕ̇s(t) + Ω2
sϕs(t) +

∫ t

0

dτ Ms(t− τ)ϕ̇s(t) = 0

Ms(t) = vAϕ
s ∗(t)ϕ(t)

, (5.98)

where the damping term and the frequency term are

νs = 1, Ω2
s = 1− iFex. (5.99)

The above is a schematic model of the probe particle. The frequency term Ω2
s is

identical to the earlier schematic equation for the over-damped colloidal systems
[27, 47]; the memory term of the probe Ms is a product term of the reduced DAC
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of the probe and the one of the bulk bath particles; vA is a fitting parameter de-
scribing the coupling strength between the bath particles and the probe. ϕ(t) is
the reduced DAC of the N-bath particles ϕq(t) :=

⟨
ρq

⏐⏐⏐ρq(t)⟩/⟨ρq⏐⏐⏐ρq⟩.

Assume that the N-bath particle system is large enough so that its DAC is not
affected by the external pulling force. Consequently, the DAC of the bulk bath
particles can be described by the equilibrium MCT equation. So the dynamics of
the reduced DAC of the bath particles ϕ(t) is just the standard schematic model,

ϕ̈(t) + νϕ̇(t) + Ω2ϕ(t) +

∫ t

0

dτ M(t− τ)ϕ̇(τ) = 0

M(t) = v1ϕ(t) + v2ϕ
2(t)

(5.100)

where the memory term is a non-linear combination of the reduced DAC of the
bath particles. The control parameters (v1, v2) of the bath particles determine the
liquid or glassy state together with the distance of a chosen state point from a
glass-transition line. In this case, the schematic models can be calculated analyti-
cally [52]. The state points

(v1, v2) = [vc1(1 + σ), vc2(1 + σ)] (5.101)

are specified by a distance σ to the transition line given by vc1 = vc2(2/
√
vc2 − 1)

with the specific choice vc2 = 2 for the transition point. For simplicity, we fixed
the damping term and the frequency term of the bulk to be unit values ν = Ω2 = 1.

The combination of eq.(5.98) and eq.(5.100) construct a simplified MCT equa-
tion, which is reduced to a standard F12 model in the case Fex = 0. The only
control parameter of the bath particles’ DAC is the distance to the glass transition
line σ by controlling the value of (v1, v2) in the memory term explicitly according
to eq.(5.101). Except for σ, the control parameters of the probe’s DAC are the
coupling strength vA, and the pulling force Fex.

With inputting parameters σ, vA and Fex, we can obtain the reduced DACs ϕs(t)
and ϕ(t) based on eq. (5.98) and eq.(5.100). Consequently, the relative effective
friction of the probe can be calculated through

γeff/γ = 1 + vA

∫ ∞

0

ϕs ∗(t′)ϕ(t′)dt′ (5.102)
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Figure 5.1: Schematic model calculation of the DACs of the probe parti-
cle for different pulling force Fex = 0, 1, 3. The real and imaginary parts
of the probe’s DACs are plotted by numerical solution of the schematic
model eq. (5.98) and eq. (5.100). The DAC of the bath particles are plot-
ted in the red line. The parameters are ν = Ω = 1, νs = 1, Ωs = 1− iFex,
vA = 200 and σ = −0.01.

divergence problem of the schematic-model

Now we numerically solve the schematic model equations (5.98) and (5.100) with
the fixed parameters mentioned above (ν = Ω = 1, νs = 1, Ωs = 1− iFex). And
we choose the distance parameter as σ = −0.01 and the coupling strength be-
tween the probe and bath particles as vA = 200. The numerical results are shown
in fig.5.1.

In the small pulling force regimes, with increasing of the pulling force, the am-
plitude of the oscillation of the DACs increases, which is consistent with the be-
haviours of the probe’s DAC in the low density limit. However, as the pulling
force increases to Fex = 5 (not plotted), the probe’s DAC starts to exponentially
increase, which is obviously unphysical due to the fact that the original probe’s
DAC should be normalized (|ϕs

q(t)| =
⏐⏐⏐⟨eiq·(rs(t)−rs

⟩⏐⏐⏐ = 1 ).

Where does the divergence come from? The schematic model without memory
term may be convergent, since it is possible that the simplifying of the MCT mem-
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ory kernel causes the divergence, and for Ms = 0 (by setting vA = 0), the model
should be just a simple damped oscillator However, surprisingly, for the same
parameters excluding vA = 0, the model is still divergent, and even worse, the
probe’s DAC starts to be divergent at smaller force Fex = 2 (Note that with mem-
ory term vA = 200, the DAC is still convergent at Fex = 3).

force dependent damping term νs(Fex)

To clarify the origin of the divergence, let us analyse the schematic model without
the memory kernel, i.e.

ϕ̈s(t) + νsϕ̇s(t) + Ω2
sϕs(t) = 0 (5.103)

with Ω2
s = 1− iFex. The exact solution is 2

ϕs(t) = (
1

2
+

νs
4β

) exp
{
(−νs

2
+ β)t

}
+ (

1

2
− νs

4β
) exp

{
(−νs

2
− β)t

}
, (5.104)

where β =
√

(νs
2
)2 − Ω2

s, and we have input the initial conditions ϕs(0) = 1 and
ϕ̇s(0) = 0.

Note that different from the solution for the real parameters as discussed, where
the correlator is always bounded (either under-damped or over-damped), the so-
lution for the complex parameter can exponentially increase by noting that the
solution has the term e(−

νs
2
±β)t with β =

√
(νs
2
)2 − Ω2

s. The convergence condi-
tion ϕs(t → ∞) < ∞ requires that

Re
νs
2

>
⏐⏐Reβ

⏐⏐ (5.105)

For Ω2
s = 1− iFex and real νs, it leads to

νs > Fex ! (5.106)

Surprisingly, different from equilibrium MCT and the corresponding schematic
model, the damping term must depend on the pulling force. In the former case, νs
is set to be a constant due to its irrelevance with the long time glassy dynamics.

2 The general solution can be readily got by setting ϕs(t) = Aeαt, α ∈ C. Inputting it into eq.
(5.103), one gets α2 + νsα+Ω2

s = 0, so α = 1
2

(
− νs ±

√
ν2s − 4Ω2

s

)
.
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Under the convergence condition (5.106), we propose two possible sets of νs(Fex):
(a) νs = 1 + Fex and (b) νs = 1 + F 2

ex. The numerical solutions for the force de-
pendent friction are plotted in fig.5.2, where

σ(φ̄) := (φ̄− φ̄c)/φ̄c (5.107)

is the reduced parameter of glass transition with φ̄c denoting the parameter of the
critical point of the transition.

The diagram of the probe’s effective friction can be separated into three regimes,
see fig.5.2:

1. Linear response regime: the friction coefficient is constant within a certain
range of small pulling forces, or equivalently, the average velocity of the
probe is proportional to the external pulling force.

2. Force thinning regime: the friction coefficient tends to decay to the value
near to the bare friction coefficient with the increasing of the pulling force.

3. Large force pulling regime: only in this regime, significant difference of
Fig. 5.2 (a) and Fig. 5.2 (b) is exhibited. The friction coefficient in
Fig.5.2(a) keeps constant asymptotically with increasing pulling force, while
it starts to increase and tends to saturate asymptotically.

In general, Fig.5.2(a) is quite similar to the earlier schematic models for colloidal
hard-sphere systems [27, 58, 68], and Fig.5.2(b) qualitatively exhibits the increas-
ing friction coefficient found in a simulation of a granular hard sphere system [28],
but fails to reproduce the scaling law ζ ∝

√
Fex in it.

5.4.2 Comparison with simulation data
We apply our schematic model to fit a simulation result of pulling in driven gran-
ular systems

Simulation details

The simulation is performed by M. Grob and A. Zippelius, the simulation details
is addressed by them in ref [57] as follows:
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Figure 5.2: Force-Friction coefficient relation is shown for different
νs(Fex). σ = (φ̄ − φ̄c)/φ̄c is the distance to the transition point. φ̄c is
critical parameter for the glass transition.

The simulation is performed in two dimensions and the setup is the same as de-
scribed in ref. [28]. In a bidisperse mixture of hard disks with size ratio Rs/Rb =
4/5 of small to big particles and a respective mass ratio ms/mb = 16/25, an in-
truder of radius R0 = 2Rs and mass m0 = 4ms is suspended. All collisions are
inelastic, characterized by the coefficient of restitution, ϵ. The particles are kicked
randomly to balance energy input and dissipation by drag and inelastic collisions.
Lengths and masses are measured such that Rs = 1 and ms = 1 and a time scale is
set by requiring that the granular temperature TG = 1 in the system with Fex = 0.
An event driven code is implemented to simulate N = 1024 particles for a wide
range of Fex.
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Figure 5.3: Fit of density autocorrelator of probe for different pulling
force Fex = 1, 250 under different energy dissipation ε = 0.9, 0.1. the
Packing friction is fixed to φ = 0.8. Dashed line: simulation data; solid
line: schematic fit.

Schematic model fitting

We adopt νs = 1 + F 2
ex as our schematic model to compare with the simulation

data in detail due to this set of νs can show the increasing friction tendency. The
fit of the DACP is given in fig. 5.3.

The numerical solution of the probe’s DAC fits quite well with the correspond-
ing simulation data for moderate force Fex = 250. For small force Fex = 1, it
shows some deviation. The fit parameters are vA = 200 , σ = −0.05 for ε = 0.9
and σ = −0.13 for ε = 0.1. The other parameters are the same as the ones men-
tioned above.
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Figure 5.4: Fitting of the effective friction of the probe for different en-
ergy dissipation ε = 0.9, 0.1 with the fixed packing friction φ = 0.8.
dashed line: simulation data; solid line: schematic fitting.

The corresponding fit of the friction is given according to the parameter set of
the density autocorrelator fit. The result is shown in Fig. 5.4. In the small force
regime, our schematic model shows a plateau while the simulation data tends to
jump to a large value for Fex < 10. The deviation we think is mainly due to the
inaccuracy of simulation in this small force regime. The error bar of the simula-
tion data can be comparable with the result itself. This large error may cause from
comparable large thermal fluctuation for small pulling force kBT/(FexR), where
R is particle size. In large force regime, the model can only qualitatively show the
increasing friction coefficient as mentioned above.

Physics: dissipation melt the glass

Though the schematic model only qualitatively fits the simulation data, it confirms
the physics picture from the earlier MCT calculation of the driven granular parti-
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cles: energy dissipation plays a negative role to the glass transition [69, 70, 71].

In detail, see the small and moderate external pulling force regime (Fex < 100) in
Fig.5.4. For a fixed force Fex, two important observations are that

1. The event driven simulation result shows that the effective friction of the
probe decreases with the increasing energy dissipation rate 1− ε2

2. The fit by the schematic model shows that the distance σ to the glass tran-
sition line of the host system should increase with the increasing energy
dissipation rate.

These observations indicate that the rigidity of the system decreases with the in-
crease of the energy dissipation, which is the main point in refs [69, 70, 71].

5.4.3 Microscopic derivation of νs(Fex)

What’s the microscopic origin of the force dependent friction term νs(Fex)? Note
that on one hand the slow dynamics is captured by the mode-coupling approxima-
tion (MCA), but the fast dynamics is ignored by the MCA due to its irrelevance to
the slow glassy dynamics; on the other hand, in the large pulling force regime, the
fast external driving dynamics dominates over the intrinsic slow glassy dynam-
ics3. Therefore, it is important to extract the fast dynamics in the memory kernel
of the MZ equation (5.76). Let us separate the exact memory kernel in the MZ
equation (5.76) into two parts

M s
q (t) ≈ M s,Fex

q (t) +M s,MCT
q (t) (5.108)

The MCT part of the kernel is given in the MCA equation (5.96), which originated
from the probe-bath particles interactions F int

s in high density. To extract the short
time dynamics, let us consider the Taylor expansion of the memory kernel of the

3So the divergence of the schematic model without force dependent damping term is under-
standable.
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MZ equation with the approximation F int
s = 0 4

M s
q (t) = − ms

kBT

⟨
QL†

FP j
s
qL

⏐⏐⏐eQLFP t
⏐⏐⏐QLFP j

s
qL

⟩
= − ms

kBT

⟨
QL†

FP j
s
qL

⏐⏐⏐[1 +QLFP t+
t2

2
(QLFP )

2

+
t3

6
(QLFP )

3 +O(t4)
]⏐⏐⏐QLFP j

s
qL

⟩ (5.109)

Note that

LFP

⏐⏐⏐jsqL⟩ = iqvL 2
s

⏐⏐⏐ρsq⟩+
F int
sL − γvLs + FL

ex

m

⏐⏐⏐ρsq⟩
PLFP

⏐⏐⏐jsqL⟩ =
iqkBT + FL

ex

m

⏐⏐⏐ρsq⟩− γ

m

⏐⏐⏐jsqL⟩
QLFP

⏐⏐⏐jsqL⟩ =
F int
sL − iqkBT

m
|ρsq
⟩
+ iqvL 2

s |ρsq
⟩

⟨
L†

FP j
s
qL

⏐⏐⏐ = ⟨− iqvL 2
s ρsq

⏐⏐⏐+ ⟨−F int
sL − γvLs − Fex

m
ρsq

⏐⏐⏐+ ⟨ FL
ex

kBT
vL 2
s ρsq

⏐⏐⏐
(5.110)

We set F int
sL = 0. And by tedious but straightforward calculation, we obtain

a0 =
⟨
QL†

FP j
s
qL

⏐⏐⏐QLFP j
s
qL

⟩
= −−2iqkBTFex + 2q2(kBT )

2

m2
s

a1 =
⟨
QL†

FP j
s
qL

⏐⏐⏐(QLFP )
2jsqL

⟩
=

4γqkBT (qkBT − iFex)

m3
s

a2 =
⟨
QL†

FP j
s
qL

⏐⏐⏐(QLFP )
3jsqL

⟩
= −

qkBT (qkBT − iFex)
[
8γ2 + 3qms (3qkBT + 2iFex)

]
m4

s

a3 =
⟨
QL†

FP j
s
qL

⏐⏐⏐(QLFP )
4jsqL

⟩
=

γqkBT (qkBT − iFex)
[
16γ2 + 3qms (31qkBT + 14iFex)

]
m5

s

(5.111)

where we have used the Gaussian property of vLs due to the Maxwellian distribu-
tion of the velocity in the initial equilibrium state⟨

vL 4
s

⟩
= 3(

kBT

m
)2. (5.112)

4Since the interaction force is assumed to be captured in the memory kernel of the MCA.
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Thus the Taylor expansion of the memory kernel without the interaction force F int
sL

is

M s,Fex
q (t) ≈ M s

q (t)
⏐⏐⏐
F int
s L =0

= a0 + a1t+ a2
t2

2
+ a3

t3

6
+O(t4)

Furthermore, assuming that M s,Fex
q (t) decays so fast that it can be approximated

by a delta function as

M s,Fex
q (t) ≈

[
a0 + a1τ0 + a2

τ 20
2

+ a3
τ 30
6

]
τ0δ(t)

where τ0 is a typical decay time scale. Correspondingly,∫ t

0

dτ M s,Fex
q (t− τ)ϕ̇s

q(τ) ≈
[
a0 + a1τ0 + a2

τ 20
2

+ a3
τ 30
6

]
τ0ϕ̇

s
q(t)

≈ ν ′
s(Fex)ϕ̇

s
q(t)

(5.113)

Interestingly, the damping term has an additional force dependent term ν ′
s(Fex),

which means that the short time dynamics depends on the pulling force. This may
be a crucial point for the calculation of the effective friction of the probe by MCT.
The failure of earlier microscopic MCT calculation refs.[27, 47] in the moderate
pulling force regime may come from the lack of force dependent short time decay
of the DAC. In refs. [27, 47], the force is coupled to the density pair only, see eq.
(79) in [47].

The MZ equation now can be reformulated as follows

ϕ̈s
q(t) +

{ γ

m
+ ν ′

s(Fex)
}
ϕ̇s
q(t) + (q2

kBT

m
− iFex · q

ms

)ϕs
q(t)

+

∫ t

0

dτ M s,MCT
q (t− τ)ϕ̇s

q(τ) = 0

(5.114)

Note that νs = γ
m
+ ν ′

s(Fex), the corresponding schematic model is

νs = 1 + F 2
ex − iFex (5.115)

which can be obtained by considering the terms contained in the eq. (5.111). The
relative effective friction vs. the pulling force is shown in fig. 5.5. It exhibits
both thinning and thickening, and the thickening part saturates to a second plateau
value. The result is similar to the set vA = 1 + F 2

ex. So here we do not use it to fit
the simulation data again.

77



5.4. SCHEMATIC-MCT MODEL

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

ζ
/ζ

0

Fex

νs=1+Fex

2
−iFex

σ= −0.05

σ= −0.1

σ= −0.5

Figure 5.5: Schematic model calculation of the effective friction of the
probe for different force. The damping term νs is as indicated in the figure.
σ is the reduced packing fraction.

5.4.4 What’s new
In this chapter, we derive a microscopic MCT equation for the probe particle and
construct the corresponding schematic-MCT model. Different from earlier MCT
on the microrheology refs. [27, 47], here we consider the under damping system
and correspondingly we use the Fokker-Planck dynamics (the phase space and
operators are have both position and velocity parts) but not the Smoluchowski
dynamics (the phase space and operators depends on the position only). The main
results are summarized as follows

1. We find the damping term νs should depend on the pulling force νs(Fex),
which is different from earlier standard MCT [52] . In the standart MCT, the
damping is treated as a constant value representing the dynamics of simple
liquid, and is irrelevant with the long time glassy dynamics. However, in
our non-equilibrium system, the microrheology, we find that the damping
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term must depend on the pulling force, otherwise the probe’s DAC will be
divergent, which suggests that the earlier MCT treatment for the micro-
rheology [27, 47] may not fully capture the force dependence of the probe’s
effective friction.

2. Furthermore, we find the explicit form of the νs(Fex) affects the behaviour
of the probe’s friction in the large pulling force regime. If νs is only related
to the linear term Fex or iFex, only thinning is observed in the large force
regime. However, If νs depends on F 2

ex, then also increasing friction, i.e.,
thickening can be observed.

3. We use νs = 1 + F 2
ex to fit the experimental result of the microrheology

for the driven granular hard-sphere system, and find the schematic model
works in the small and moderate force regimes, and can exhibit increasing
friction, though the scaling behaviour cannot be captured.

4. Microscopically, we also give the derivation of the force dependence of νs
by Taylor expansion of the memory kernel by assuming that the interaction
force is included in the MCA kernel and only consider F int

s,L = 0 for the
expansion.

In short, the most interesting part of our MCT is that we find the damping term ν in
the MZ equation should depend on force, which affects not only the convergence
of the probe’s DAC, but also affect the behaviour (thickening or not) of the probe
in large force regime.
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Chapter 6

Conclusion and discussion

6.1 Conclusion

In this thesis, we investigate the non-linear response in active microrheology. In
particular, starting from the under-damped Langevin dynamics, we extend the ear-
lier two-body Smoluchowski equation [24] in low density and MCT [27, 47] in
high density, both to include thickening. The mechanism of thickening is also
clarified in the low density limit by a simple kinetic model and a Langevin dy-
namics simulation.

In chapter 1, we construct a simple point like collision model. The key idea is
that assuming the many body interaction between probe-bath particles can be re-
duced to two body probe-bath particle collision, and considering the interaction
as a series of discrete collisions. We find that inertia causing thickening. Thick-
ening depends on the two time scales, velocity damping of a bath particle, and
the collision between probe and a single bath particle. When collision dominates,
thickening happens. In addition, by applying the stability of fixed point analysis,
we find the dissipative collisions between particles are not essential for thickening.

In chapter 2, we extend the model to include the thinning regime, and unify the
thinning and thickening by a three-time-scales picture, see fig. 3.1. The point is
that thinning/thickening is determined by the dominating one of three distinctive
processes (or time scales) of bath particles: diffusion, damping and single probe-
bath particles collision. In detail, for small pulling velocity, the diffusion time
scale dominates, which results in a high a high plateau of the effective friction of
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the probe. As the velocity is much larger than the bath particle’s diffusion, the
diffusion can be ignored, damping dominates. The friction decreases to a lower
plateau, i.e., thinning occurs. And as the pulling velocity is so large, that the
collision between probe bath particles dominates over the damping, the friction
starts to increase, i.e. thickening occurs. This time scale picture is confirmed by a
Langevin dynamics without considering the interaction between bath particles.

Furthermore, in chapter 3, in the low density limit, we discuss the microscopic
mechanism of thickening. We find the crossover from the creep motion around
the probe-bath contact surface of a bath particle to the direct single collision only
with the probe is the microscopic picture for the thickening, see fig. 4.1.

In the high density, in chapter 4, we extend the MCT to include the force-dependent
short time decay, which is crucial for thickening. First we construct a schematic-
MCT model, which can exhibit thickening behaviour as the friction contains the
square of the force. And we apply it to fit simulation data of pulling in driven gran-
ular particles. Microscopically, the force dependent memory term in the schematic
model is obtained by a MCT calculation. Comparing the MCT calculation in the
thesis with the MCT in refs. [27, 47], except for the difference of the microscopic
dynamics1, in our calculation, a short decay and force dependent memory term
is introduced to reproduce thickening, while in refs. [27, 47], no such short time
decay term and thickening was included.

6.2 Discussion
In the low density limit, as far as we know, our Langevin dynamics simulation
(or equivalently the numerical solution of a two-body Fokker-Planck equation) is
the first result demonstrating that both thinning and thickening can occur in the
low density limit. While earlier the Stokes dynamical simulation [31] and the an-
alytical calculation based on a two-body Smoluchowski equation [24] can only
capture thinning, but not thickening.

The non-linear behaviour of thinning and thickening can be unified by the three-
time-scale picture (confirmed by the Langevin dynamics simulation). This fact
tells us that the essence of "non-linear" in low density limit is just the interplay

1 our calculation is based on the under-damped Fokker-Planck equation, while the earlier is
based on the over-damped Smoluchowski dynamics
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of different dominating time scales. The failure of reproducing thickening by
the over-damped dynamics, Stokes [31] or Smoluchowski [24], suggests that as
the system is driven far away from equilibrium, the inertia time scale is missing,
and the velocity distribution can no longer be simply assumed as the Maxwellian
distribution. While the under-damped dynamics, Langevin or Fokker-Planck, ex-
plicitly includes the velocity information, which can be applied from the range of
near to equilibrium to far way from equilibrium.

In high density, it is interesting to investigate how does the many body interac-
tion modify the time scales picture, especially the following prediction of the the
three-time-scale picture: the onset of thinning should shift to smaller pulling ve-
locity regime, and the onset of thickening should shift to larger one, since the
effective solvent friction of the bath particles increases due to interaction.

For the MCT, we separate the memory term into two parts, M = MFex +MMCT .
The force dependent term MFex is required for large pulling force, otherwise the
density autocorrelator becomes unphysical: it increases exponentially. This find-
ing suggests that strong external driving may destroy the collective slow dynam-
ics, resulting in a fast dynamics. Correspondingly, for strong driving, in the Mori-
Zwanzig equation, the dynamics of the density autocorrelator may be controlled
by the memory term of the external driving but not the memory term of the MCT
kernel. It is interesting to see microscopically how does the driving destroy the
collective motion in high density.
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Appendix A

Operators of the Fokker-Planck
Equation

Here we give the derivation of the Fokker-Planck equation, which is the starting
point of the MCT calculation in the thesis.

Probability Operator
The probability evolution operator Ω is defined according to

∂tP (Γ, t) = Ω̂P (Γ, t). (A.1)

Explicitly,
Ω = −∂Γ · Γ̇− Γ̇ · ∂Γ, (A.2)

In particular, for FP dynamics, the probability evolution operator reads

Ω̂FP = −
[
vi · ∂ri +

Fi

m
· ∂vi

]
  

Ω̂0
FP

+
γ

m
∂vi

·
[
vi +

kBT

m
∂vi

]
  

Ω̂1
FP

−Fex

m
· ∂vs  

Ω̂ex
FP

(A.3)

where Fi = −∂riU(Γr). (See Risken eq. (4.113). )

Dynamics Operator LFP

The dynamical operator of a phase space variable is just the adjoin operator of the
probability operator,∫

dΓ
(
Ω̂A(Γ)

)
B(Γ) =

∫
dΓA(Γ)LFPB(Γ) (A.4)
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because⟨
A(t)

⟩
≡
∫

dΓP (Γ, t)A(Γ) =

∫
dΓ
[
eΩ̂FP tP (Γ, 0)

]
A(Γ) =

∫
dΓP (Γ, 0)eLFP tA(Γ)

(A.5)
The explicit form of LFP is

LFP =
[
vi · ∂ri +

Fi

m
· ∂vi

]
  

L0
FP

+
γ

m

[
− vi +

kBT

m
∂vi

]
· ∂vi  

L1
FP

+
Fex

m
· ∂vs  

Lex
FP

(A.6)

which can be easily obtained by noting that∫
dΓA(Γ)∂iB(Γ) =

∫
dΓ′A(Γ)B(Γ)|bound i −

∫
dΓB(Γ)∂iA(Γ)

= −
∫

dΓB(Γ)∂iA(Γ)

(A.7)

Its adjoint: L†
FP

L†
FP as ⟨

A∗LFPB
⟩
eq
=
⟨
(L†

FPA)
∗B
⟩
eq

(A.8)

Explicitly, ⟨
A∗LFPB

⟩
eq
=

∫
dΓPeqA

∗LFPB

=

∫
dΓ[(Ω̂0

FP + Ω̂1
FP + Ω̂ex

FP )(PeqA
∗)]B

(A.9)

Calculate
Ω̂0

FP (PeqA
∗)]B = [Ω̂0

FPA
∗]PeqB (A.10)

[Ω̂1
FP (PeqA

∗)]B =
γ

m

{
∂vi

·
[
vi +

kBT

m
∂vi

]
(PeqA

∗)
}
B

=
γ

m

{
∂vi

·
[
viA

∗ +
kBT

m
∂vi

A∗ − viA
∗
]
Peq

}
B

=
γ

m

{
∂vi

·
[kBT

m
∂vi

A∗
]
Peq

}
B

=
{[γkBT

m2
∂vi

· ∂vi
− γ

m
vi · ∂vi

]
A∗
}
PeqB

(A.11)
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and

[Ω̂ex
FP (PeqA

∗)]B =
[
− Fex

m
· ∂vs(PeqA

∗)
]
B

=
{
− Fex

m
·
[
∂vs −

mivi

kBT

]
A∗
}
PeqB

(A.12)

where we have applied the properties Peq =
1
Z
e
−U+1

2mivi·vi
kBT , ∂riPeq = Peq

Fi

kBT
and

∂vi
Peq = −Peq

mivi

kBT
.

Collecting all the terms, we get

L†
FP = −

[
vi · ∂ri +

Fi

m
· ∂vi

]
  

L† 0
FP

+
γ

m

[
− vi +

kBT

m
∂vi

]
· ∂vi  

L† 1
FP

+
Fex

m
·
[
− ∂vs +

mvs

kBT

]
  

L† ex
FP

(A.13)
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