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Abstract

In this dissertation we deal with multiple test procedures that control the False Discovery

Rate (FDR) and the Expected Number of False Rejections (ENFR) for independent as

well as dependent test statistics.

Chapter 1 serves as an introduction to multiple testing and related error rates.

In Chapter 2 we restrict attention to several dependence structures. A new kind of de-

pendence, namely the martingale dependence, is introduced. Among others, useful rela-

tionships between different dependence structures are provided.

Chapter 3 is devoted to the Asymptotically Optimal Rejection Curve (AORC) introduced

in Finner et al. [2009]. Based on the AORC, we propose some estimates for the FDR that

lead to FDR- and ENFR-controlling step down (SD) test procedures.

In Chapter 4 we show how the power of SD procedures can be improved in case the un-

derlying p-values are positive regression dependent on a subset of true null hypotheses or

positive orthant dependent. Motivated by the SD procedure in Benjamini and Liu [1999],

we propose a new technique for the improvement of the power of SD procedures based on

the increase of the smallest critical values.

In Chapter 5 we focus on adaptive SD procedures based on the so-called β−adjusted

AORC. Several new results on FDR- and ENFR-control under martingale dependence are

provided. In the case of independent test statistics we prove FDR- and ENFR-control in

an alternative way. Moreover, based on results in Chapter 4 we propose an improvement

of the procedure introduced in Gavrilov et al. [2009] without loss of FDR-control.

Chapter 6 is devoted to martingale dependent test statistics. We provide sufficient condi-

tions for that kind of dependence. Various examples for martingale dependent statistics

are presented.

In Chapter 7 we consider the situation where null hypotheses and alternatives cannot be

separated from each other - the case of uniformly distributed p-values under alternatives.

Finally, in Chapter 8 we introduce a necessary condition for FDR-control of SD tests.



Zusammenfassung

In dieser Dissertation beschäftigen wir uns mit multiplen Testprozeduren, die sowohl unter

unabhängigen als auch unter abhängigen p-Werten die ”False Discovery Rate” (FDR) bzw.

die ”Expected Number of False Rejections” (ENFR) kontrollieren.

Kapitel 1 ist eine Einleitung in die grundliegenden Konzepte.

In Kapitel 2 werden verschiedene Abhängigkeitsstrukturen betrachtet. Es wird ein neues

Abhängigkeitskonzept, nämlich die Martingalabhängigkeit, eingeführt. Außerdem be-

weisen wir nützliche Beziehungen zwischen unterschiedlichen Abhängigkeitskonzepten.

Kapitel 3 widmet sich der ”Asymptotisch Optimalen Ablehnkurve” (AORC), die in Finner

et al. [2009] vorgestellt worden ist. Darauf basierend schlagen wir einige Schätzer für die

FDR vor, die später zu FDR- bzw. ENFR-kontrollierenden step down (SD) Prozeduren

führen.

In Kapitel 4 zeigen wir, wie man die Güte einer FDR-kontrollierenden SD Prozedur

verbessern kann, wenn die p-Werte bestimmte Abhändgigkeitsvorausetzungen erfüllen,

nämlich ”positive regression dependence on a subset” (PRDS) oder ”positive orthant de-

pendence” (POD). Motiviert durch die SD Prozedur von Benjamini und Liu [1999] schla-

gen wir eine neue Technik vor, die eine Verbesserung der Güte durch Vergrößerung der

kleinsten kritischen Werte von SD Prozeduren ermöglicht.

In Kapitel 5 betrachten wir die SD Prozedur, die auf der sogenannten β−adjustierten

AORC basiert. Wir beweisen neue Resultate für FDR- und ENFR-Kontrolle unter Martin-

galabhängigkeit und schlagen alternative Beweise für den Fall unabhängiger p-Werte vor.

Basierend auf den Ergebnissen aus Kapitel 4 wird eine Verbesserung der Güte (ohne Ver-

lust der FDR-Kontrolle), von der in Gavrilov et al. vorgestellten SD Prozedur, vorgeschla-

gen.

In Kapitel 6 studieren wir martingalabhängige Teststatistiken. Es werden hinreichende

Bedingungen für die Martingalabhängigkeit vorgeschlagen und bewiesen. Dabei werden

verschiedene Beispiele für diese Abhängigkeitsart vorgestellt.

Wir beschäftigen uns in Kapitel 7 mit der Situation, in der man die Nullhypothesen von

den Alternativen nicht trennen kann, d.h., mit dem Fall gleichverteilter Alternativen.

Schließlich werden notwendige Bedingungen für die FDR-Kontrolle einer SD Prozedur im

Kapitel 8 bewiesen.
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Nomenclature

D−→ Convergence in distribution

I(p 6 t) Indicator function of the event {p 6 t}

IA Indicator function of the event A ⊂ Ω

γ−FDX False Discovery Exceedance

F̂n Empirical cumulative distribution function of p-values

N Set of natural numbers

R Set of real numbers

<st Stochastically larger

a ∧ b min(a, b)

I {1, ..., n}

I0 {i ∈ I : Hi is true }

I1 {i ∈ I : Hi is false }

k−FWER Generalized Family-Wise Error Rate

N(µ, σ) Normal distribution with mean µ and variance σ2

R(τ) Number of all rejections of the procedure τ

S(τ) Number of correct rejections of the procedure τ

U(0, 1) Uniformly distribution on the interval [0, 1]

v



vi

V (τ) Number of false rejections of the procedure τ

(s)MD (super-)Martingale Dependent

a.s. almost surely

AORC Asymptotically Optimal Rejection Curve

ASDP Adaptive Step Down Procedure of Gavrilov

BH Benjamini and Hochberg

BIA Basic Independence Assumptions

DM Dirac-Martingale

DU Dirac-Uniform

ENFR Expected Number of False Rejections

FDP False Discovery Proportion

FDR False Discovery Rate

FWER Family-Wise Error Rate

i.i.d. independent identically distributed

iff if and only if

LFC Least Favourable Configuration

MD Martingale Dependent

MTP Multiple Testing Procedure

PA Positive Association

POD Positive Orthant Dependent

PRDS Positive Regression Dependent on a Subset

SD Step Down

SU Step Up
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Preface

An important and challenging problem in multiple testing theory is the construction of

valid and, at the same time, powerful multiple testing procedures that control an appro-

priate Type I error rate. One of the well-known error rates is the so called Family-Wise

Error Rate (FWER), that is, the probability to reject at least one true null hypothe-

sis. Thereby, the disadvantage is that test procedures controlling the FWER are often

too conservative, especially for larger families of hypotheses, for example, cf. Benjamini

and Hochberg [1995], Gordon [2007]. In contrast to tests that control the FWER, proce-

dures controlling the so-called False Discovery Rate (FDR) are typically less restrictive.

The FDR originally introduced in Benjamini and Hochberg [1995] is defined to be the

expected proportion of false rejections among all rejections. Most of the existing FDR-

controlling procedures can be roughly divided into two main groups: procedures which

exhaust the pre-chosen significance level α well and operate only with independent test

statistics, e.g., cf. step up (SU) tests in Storey et al. [2004], and procedures which allow

some dependence structures, e.g., cf. linear SU tests in Benjamini and Hochberg [1995].

However, procedures controlling the FDR under independence as well as under some de-

pendence are typically less powerful than tests controlling the FDR under independence

only. Regrettably, independence of the underlying single tests and their test statistics are

rare in practice. To develop procedures which control the FDR under some dependence

assumptions and exhaust the significance level well, some authors, for instance, Finner et

al. [2009], Gontscharuk [2010] and Neuvial [2013], resort to asymptotic considerations.

The drawback of this method is that the asymptotic behavior of test statistics and its

finite counterpart may differ drastically so that tests controlling an asymptotic error rate

may lead to a considerable violation of the pre-chosen level α in the finite setting.

The main focus of this thesis lies on step down (SD) procedures which control the FDR

5
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and the so-called Expected Number of False Rejections (ENFR) for a finite number of null

hypotheses. The underlying test statistics are assumed to fulfill some special dependence

assumptions.

Chapter 1 is an introduction to basic concepts and an outline of some Type I error

rates which are relevant for this thesis.

Chapter 2 is devoted to some dependence concepts. Among others, we introduce a new

type of dependence, the so-called martingale dependence. We also prove some relation-

ships between different dependence structures which will be useful for later considerations

in Chapter 5.

In Chapter 3 we restrict attention to the Asymptotically Optimal Rejection Curve

(AORC) proposed by Finner et al. [2009]. It is known that several stepwise test proce-

dures related to that rejection curve exhaust the FDR level α under specific asymptotic

models. First, we provide an alternative motivation for the AORC in mixture models.

Then we introduce an AORC-based estimator α̂(t) (say) for the FDR related to a deter-

ministic critical value t ∈ [0, 1] and prove a central limit theorem for this estimator. Note

that estimators which are used in Chapter 5 to construct FDR- and ENFR-controlling

procedures, are all related to the estimator α̂(t) and, hence, to the AORC.

In Chapter 4 we discuss a possibility to improve the power of SD tests by an increase

of the smallest critical value without loss of the FDR-control. The underlying p-values,

that is, specific test statistics, must be either positive regression dependent on the subset

of true null hypotheses (PRDS) or positive orthant dependent on the subset of true null

hypotheses.

In Chapter 5 we expand upon the results in Gavrilov et al. [2010] and Scheer [2012].

We consider models, where the underlying p-values that belong to true null hypotheses

are martingale dependent, and prove the ENFR- and FDR-control for corresponding SD

tests. Moreover, we introduce a class of SD procedures which control the ENFR and FDR

or FDR-related error rates under dependence. Finally, we propose new error rates which

are controlled by the aforementioned SD tests under martingale dependence, positive as-
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sociation and PRDS.

Chapter 6 deals with (super-)martingale dependence structures. Here we propose suf-

ficient conditions for martingale dependence. Some non-trivial examples of martingale

dependent p-values that are PRDS at the same time are investigated in detail. Thereby,

such p-values fulfill the assumptions of the main theorem from Chapter 5. Some numerical

examples confirm our theoretical results from Chapter 5.

Several proofs in Chapters 5 and 6 are based on the martingale theory. In the FDR-

framework such proofs were first applied in Storey et al. [2004]. It seems that until now

martingale methods were applied to SU procedures only. In this thesis we show that the

martingale theory can also be used in the area of SD procedures. It looks like martingale

approaches may simplify the existing proofs and enable us to get new, generalized results

in the field of ENFR- and FDR-control.

In Chapter 7 we restrict our attention to the case where test statistics under alter-

natives have the same distribution as test statistics under null hypotheses, e.g., the case

where null hypotheses and alternatives cannot be separated. We prove that under some

basic independence assumptions the linear SU procedure maximizes the FDR if p-values

that belong to alternatives are uniformly distributed on [0, 1].

Finally, Chapter 8 presents a discussion concerning some necessary assumptions for

FDR-control under general dependence.



Chapter 1

General framework and basic

concepts

1.1 Introduction (or how I explained hypothesis testing to

my children)

Do you know, last Monday you broke a blue cup, and I laughed and said: “It doesn’t

matter!” (the cup was old and I wanted to throw it away anyway). So, you could think:

“It doesn’t matter, if we break a cup! Mama will laugh!” It was your hypothesis H0. Then

you want to carry out an experiment to confirm your hypothesis. What will you do? You

break another cup, this time a green one and see how I react. This time I do not laugh

and instead reply that it is not funny when one intentionally breaks cups. So you cannot

accept your hypothesis H0, you reject it.

Perhaps you think: “Maybe green was Mama’s favorite color and that was why she reacted

as she did”. You have to take other cups, for instance, green, white, yellow, blue and

multicolored one. Now you move to a multiple testing problem. You have five hypotheses:

Hcolor : mama laughs, if we break a cupcolor,

color=green, white, yellow, blue, multicolored

... I could tell from the look on the faces of my children that they understood the theory

well and wanted to move to the practice as soon as possible.

8



CHAPTER 1. GENERAL FRAMEWORK AND BASIC CONCEPTS 9

Now things are getting serious - we start with the mathematics.

1.2 Notations

Let X = (X1, ..., Xn), n ∈ N, be observations on a probability space (Ω,F ,P), where P
is a (parametric or nonparametric) family of probability distributions without any special

requirement. Let X follow some unknown probability distribution P ∈ P. We consider

a general problem of simultaneously testing n null hypotheses H1, . . . ,Hn. Thereby, null

hypotheses Hi, i ∈ I ≡ {1, . . . , n}, are defined as nonempty subfamilies of P fulfilling

∅ ̸= Hi ⊂ P, i ∈ I. The corresponding alternatives are given by P \ Hi, i ∈ I. We say

that a null hypothesis Hi is true if the underlying probability distribution P belongs to

Hi. Consequently, Hi is false if P /∈ Hi. Let I0 ≡ I0(P ) be the index set of true null

hypotheses, that is, i ∈ I0 if Hi is true. Further, I1 ≡ I1(P ) = I \ I0 denotes the index set

of false null hypotheses. The number of true null hypotheses is denoted by n0 = |I0| and
the number of false ones is n1 = n− n0.

Remark 1.1

The number of true null hypotheses n0 and the number of false ones n1 are typically

unknown in practice.

For what follows we assume that testing of an individual null hypothesis Hi is based on

a specific test statistic, namely a p-value pi ≡ pi(X) fulfilling pi : (Ω,F) ↦→ ([0, 1],B), i ∈ I,

where B is the Borel-σ-algebra over the interval [0, 1]. The vector of p-values is defined by

p ≡ p(X) = (p1, . . . , pn). In most cases we assume that pi, i ∈ I0 are stochastically greater

than uniformly distributed U(0, 1) random variables. Let φ = (φ1, ..., φn) : [0, 1]n →
{0, 1}n be a multiple testing procedure (MTP), that is, a rule that makes decisions about

each null hypothesis Hi, i ∈ I, in the following way. A null hypothesis Hi is rejected (Hi

is significant) if φi ≡ φi(p) = 1 and Hi is accepted if φi = 0.

Remark 1.2

MTPs can often be represented in the form φi = I(pi ≤ τ), i ∈ I, for a suitable threshold

τ ≡ τ(p) so that a null hypothesis Hi is rejected if the corresponding p-value pi fulfills

pi 6 τ . Thereby, τ can be considered as a stopping rule of the MTP. It is not necessarily

that τ is a stopping time in the sense of the theory of stochastic processes.
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In this thesis we restrict attention to MTPs in the aforementioned form and, for the

sake of simplicity, often denote such MTPs by the related stopping rule τ .

1.3 Stepwise procedures and rejection curves

A lot of existing MTPs belong to the class of stepwise test procedures. These procedures

can be defined in terms of critical values or in terms of rejection curves. In this subsection

we describe how the most prominent members of that class, namely step down (SD) and

step up (SU) tests work.

Let p1, . . . , pn be p-values and let p1:n ≤ . . . ≤ pn:n be the corresponding order statis-

tics. The empirical distribution function of the p-values is given by

F̂n(t) =
1

n

n∑
i=1

I(pi 6 t).

For what follows, we use the convention max{∅} ≡ 0.

Definition 1.3

The stopping rule of an SD procedure based on a set of critical values 0 6 a1 6 ... 6 an 6 1

is defined by

τSD = max{ai : pj:n 6 aj , for all j 6 i}

and the stopping rule of an SU test based on the same critical values is

τSU = max{ai : pi:n 6 ai}.

Consequently, SD and SU tests reject all null hypotheses such that related p-values are not

larger than the threshold τSD and τSU , respectively.

Remark 1.4

Comparing SD and SU procedures based on the same critical values, we observe that an

SU procedure rejects at least as many null hypotheses as the corresponding SD test.

A set of critical values 0 6 a1 6 ... 6 an 6 1 can be generated by a rejection function

r (say) as follows. Let r by a strictly increasing continuous function fulfilling r : [0, 1] →
[0,∞), r(0) = 0 and r(1) > 1. The related critical values are given by

ai = r−1

(
i

n

)
, i ∈ I. (1.1)
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Under suitable assumptions stopping rules of SD and SU tests can be rewritten in terms

of rejection curves.

Remark 1.5

Setting a0 ≡ 0 and assuming that the multiplicity of each positive p-value is 1 P -a.s., that

is, F̂n(pi:n) =
i
n P -a.s. if pi:n > 0, the stopping rules of the SD and SU procedures based

on a rejection curve r fulfill

τSD = aj∗ P -a.s. for j∗ = max{i ∈ I : r(pj:n) 6 F̂n(pj:n) for all j 6 i}

and

τSU = aj∗ P -a.s. for j∗ = max{i ∈ I : r(pi:n) 6 F̂n(pi:n)},

respectively.

Note that in Chapter 5 we represent a stopping rule of an SD procedure as the smallest

crossing point between the path of a suitable stochastic process {α̂(t), t ∈ (0, 1)} with the

α-line.

Figure 1.1: The empirical distribution function of n = 10 p-values (green curve) together with three

rejection curves. Here τ1 is the stopping rule of the SD and SU tests based on the blue rejection curve, τ2

is the stopping rule of the SD test related to the magenta rejection curve, τ3 corresponds to the SD and

SU procedures generated by the black curve and τ4 is the threshold of the SU test related to the magenta

curve.
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Figure 1.1 illustrates SD and SU procedures based on three different rejection curves.

Note that SD and SU procedures based on the same rejection curve may lead to the same

threshold and, hence, to the same number of rejections. Obviously, the lower a rejection

curve, the more null hypotheses can be rejected by a stepwise test procedure.

The following example shows that the assumption about the multiplicity of positive

p-values in Remark 1.5 is necessary for SD procedures if the probability for a tie is positive

for the underlying measure P ∈ P.

Example 1.6

For some fixed α ∈ (0, 1) and n = 3 consider an SD procedure with critical values generated

by the rejection curve r(t) = t
α . Hence, the related critical values are given by

a0 ≡ 0, a1 =
α

3
, a2 =

2α

3
, a3 = α.

Let p-values be such that

p1 = p2 = p3 =
α

2
.

Then we get by Definition 1.3 τSD = 0, while Remark 1.5 provides aj∗ = α. Hence, τSD ̸=
aj∗ P -a.s. if the underlying distribution P is such that P (α/3 < p1 = p2 = p3 < 2α/3) > 0

for some i, j ∈ I with i ̸= j.

Now we show that the condition that a rejection curve is strictly increasing is not

necessary, that is, a set of valid critical values for a stepwise procedure can be generated

by a non-decreasing rejection function.

Definition 1.7

Let r be a non-decreasing function such that r : [0, 1] → [0,∞), r(0) = 0 and r(1) ≥ 1.

Then the related critical values ai, i ∈ I, are defined by the right continuous inverse

function r̃−1 (say), i.e.,

ai = sup

{
t ∈ [0, 1] : r(t) =

i

n

}
≡ r̃−1

(
i

n

)
, i ∈ I. (1.2)

The next lemma provides an equivalent definition of the stopping rule of an SU and/or

SD procedures defined by a non-decreasing rejection curve.

Lemma 1.8

Let r : [0, 1] → [0,∞) be a continuous non-decreasing function with r(0) = 0 and r(1) ≥ 1.
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Let ai, i ∈ I, be critical values given by (1.2).

(a)Then the stopping rule τSU from Definition 1.3 fulfills

τSU = aj∗ P -a.s. for j∗ = max{i ∈ {1, ..., n} : r(pi:n) 6 F̂n(pi:n)}.

(b)If, in addition, F̂n(pi:n) = i
n P -a.s. for all i ∈ I, then the stopping rule τSD from

Definition 1.3 fulfills

τSD = aj∗ P -a.s. for j∗ = max{i ∈ I : r(pj:n) 6 F̂n(pj:n) for all j 6 i}.

Proof. Obviously by Definition 1.3 it is enough to prove the statement of the lemma

for j ∈ {i ∈ I : F̂n(pi:n) =
i
n} for SU procedures. Hence, we have to show

pj:n 6 r̃−1

(
j

n

)
iff r (pj:n) 6 F̂n(pj:n) (1.3)

for all j ∈ {i ∈ I : F̂n(pi:n) =
i
n}. Let

pj:n 6 r̃−1

(
j

n

)
(1.4)

for some j ∈ {i ∈ I : F̂n(pi:n) =
i
n}. Since r is continuous, the supremum will be attained.

Hence, (1.4) yields

r(pj:n) 6 r

(
r̃−1

(
j

n

))
=
j

n
≡ F̂n(pj:n). (1.5)

Now we assume that r (pj:n) 6 F̂n(pj:n) is fulfilled for some for j ∈ {i ∈ I : F̂n(pi:n) =
i
n}.

Then

pj:n ≤ r̃−1(r(pj:n)) 6 r̃−1
(
F̂n(pi:n)

)
≡ r̃−1

(
j

n

)
, (1.6)

which completes the proof for the SU procedure.

The part (b) can be proved similar to part (a) with only one difference, here I = {i ∈ I :

F̂n(pi:n) =
i
n} is fulfilled, so that the equivalence (1.3) is valid for all i ∈ I. Otherwise, for

the cases F̂n(pi:n) >
i
n , we get in (1.5)

r(pj:n) 6
j

n
> F̂n(pj:n),

which may injure (1.3) (cf. Example 1.6). �
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The following counter example shows that the right continuous inverse r̃−1 can not be

replaced by the left continuous inverse

r−1(t) = inf

{
t ∈ [0, 1] : r(t) =

i

n

}
in Lemma 1.8.

Example 1.9

Let us consider the following rejection curve (cf. Figure 1.2)

r(t) = 2tI
(
t 6

1

4

)
+

1

2
I
(
t ∈

(
1

4
,
3

4

])
+

(
9

4
t− 19

16

)
I
(
t ∈

(
3

4
, 1

])
.

Then the critical values which are defined in terms of right continuous inverse r̃−1 are

a1 =
1

8
, a2 =

3

4
, a3 =

31

36
, a4 =

35

36
.

The critical values which are defined in terms of the left continuous inverse r−1 are

b1 =
1

8
, b2 =

1

4
, b3 =

31

36
, b4 =

35

36
.

Now we consider the set of p-values

p1 =
1

8
, p2 =

1

2
, p3 =

31

32
, p4 =

71

72
.

Definition 1.3 provides the stopping rule of the SU procedure

τSU (a) = a2 =
3

4
and τSU (b) = b1 =

1

8
.

From the other hand, Lemma 1.8 implies τSU = 3
4 in both cases. Hence, we have τSU =

τSU (a) > τSU (b).
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Figure 1.2: Rejection curve from Example 1.9

.

Remark 1.10 � Critical values of a stepwise procedure can alternatively be defined

by a critical value function ρ (say) such that ρ : [0, 1] → [0, 1], which is assumed

to be continuous non-decreasing function satisfying ρ(0) = 0 and ρ(t) > 0 for all

t ∈ (0, 1]. Then the corresponding critical values are given by ai = ρ(i/n) and the

induced rejection curve is defined as a left continuous inverse function

ρ−1(t) = inf{s ∈ [0, 1] : ρ(s) = t}, t ∈ [0, 1],

cf. Finner et al. [2009], p.8 in Gontscharuk [2010] and p.11 in Scheer [2012].

Thereby, rejection curves which are defined in such a way are strictly increasing,

but they may be discontinuous, whereas rejection curves from Definition 1.7 may be

non-decreasing but continuous.

� Critical values of the most famous stepwise procedures which control the FDR are

generated by strictly increasing rejection curves, so that the corresponding critical

value curve is defined by ρ(t) = r−1(t) for all t ∈ [0, 1], cf. Benjamini and Hochberg
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[1995], Storey et al. [2004], Gavrilov et al. [2009] and Finner et al. [2009]. For

example, the rejection curve of the Benjamini and Hochberg (BH) procedure is r(t) =
t
α , the rejection curve of the SD procedure proposed in Gavrilov et al. [2009] is

r(t) = n+1
n

t
t(1−α)+α and the asymptotically optimal rejection curve in Finner et al.

[2009] is fα(t) =
t

t(1−α)+α .

1.4 Error rates

In statistical hypothesis testing, a type I error denotes the rejecting a true null hypothesis

and a type II error is the failing to reject a false null hypothesis. By testing many null

hypotheses, several incorrect decisions, that is, type I and II errors, as well as correct

decisions are possible simultaneously. For a stopping rule τ of an MTP for testing n

null hypotheses H1, . . . ,Hn let the number of false rejections, that is, false positives, be

denoted by

V (τ) =
∑
i∈I0

φi(τ) =
∑
i∈I0

I(pi 6 τ)

and the number of all rejections, that is, all discoveries, be given by

R(τ) =
∑
i∈I

φi(τ) =

n∑
i=1

I(pi 6 τ).

Further, we denote the number of true negatives and positives by U(τ) and S(τ), respec-

tively, and the number of false negatives, i.e., type II errors, by T (τ). Table 1.1 provides

possible outcomes of an MTP.

Remark 1.11

Due to the fact that the underlying sample X1, . . . , Xn follows an unknown distribution

P ∈ P and τ ≡ τ(p(X)), outcomes in Table 1.1, among others, V (τ) and R(τ), depend on

P ∈ P.

Remark 1.12

Note that the number of all rejections R(τ) can be observed while the number of false

rejections V (τ) as well as U(τ), T (τ) and S(τ) are typically unknown.

By testing a singular null hypothesis the stopping rule of a statistical test is typically

equal to the predefined significance level α so that the probability to accept a true null

hypothesis is 1−α. Clearly, if we perform n independent individual tests, each of them at



CHAPTER 1. GENERAL FRAMEWORK AND BASIC CONCEPTS 17

Null true Alternative true Total

not called significant U(τ) T (τ) n−R(τ)

called significant V (τ) S(τ) R(τ)

Total n0 n1 n

Table 1.1: Possible outcomes of a multiple testing procedure.

level α, the probability to accept all true null hypotheses is (1 − α)n0 and, consequently,

the probability for at least one false rejection is 1−(1−α)n0 , if the corresponding p-values

are uniformly U(0, 1)-distributed. For example, for n0 = 100 we get that the probability

to reject at least one true null hypotheses is about 99, 4%. Hence, we need another signif-

icance concept and MTPs controlling some other error rates.

In the following subsections we summarize several well-known multiple error rates. An

extensive survey of the development of different error criteria is given by Scheer [2012],

pp.5-10. Further useful references are Dudoit and van der Laan [2010] and Dickhaus [2014].

1.4.1 Family-Wise Error Rate

Along with the development of the multiple testing theory the Family-Wise Error Rate

(FWER) is the oldest and the most conservative error rate. For a given MTP based on

the stopping rule τ the (actual) FWER is defined as the probability to reject at least one

true null hypothesis, i.e.,

FWER(τ) ≡ FWER(τ, P ) = P (V (τ) > 0).

Definition 1.13

We say that an MTP controls the FWER at level α, if FWER(τ) 6 α for the underlying

P ∈ P.

The most known procedures controlling the FWER were suggested by Bonferroni [1936]

and Holm [1979]. These procedures operate without any assumptions about dependence

between p-values. In contrast to these procedures Sidak [1967] and Hommel [1986] proce-

dures control the FWER if the underlying p-values are independent.
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1.4.2 Generalized Family-Wise Error Rate

An interesting attempt “to reduce the conservatism” of the FWER-concept is the sug-

gestion of a new error rate, namely generalized FWER, or k-FWER. By definition the

k-FWER is the probability of at least k false rejections, where k ∈ N, i.e.,

k-FWER(τ) ≡ k-FWER(τ, P ) = P (V (τ) > k).

Definition 1.14

Let k ∈ N be fixed. We say that an MTP controls the k-FWER at level α if the inequality

k-FWER(τ) 6 α holds for the underlying probability measure P ∈ P.

The intuitive point of the criticism of k-FWER control is the fact that k-FWER = 0

for k > n0. Since n0 is typically unknown to the experimenter, it can be difficult to find

some fitting k. Nonetheless, MTPs controlling the k-FWER with k > 2 are obviously not

as conservative as procedures that control the original FWER. Even though the concept

of the generalized FWER was discussed earlier, Victor [1982] for instance has proposed

that for given k 6 n0 one should allow up to k− 1 false rejections, the term k-FWER was

introduced in Lehmann and Romano [2005]. Lehmann and Romano proposed a class of SD

procedures controlling the k-FWER under arbitrary dependence. One year later, Romano

and Shaikh [2006] proposed a SU procedure controlling the k-FWER under arbitrary

dependence.

1.4.3 False Discovery Rate

Benjamini and Hochberg’s [1995] paper has given the theory of multiple tests a new

impulse in more liberal direction. This paper proposed the term False Discovery Rate

(FDR). For a given MTP τ the FDP is defined to be the expectation of the proportion of

all false rejections among all rejections under the underlying distribution P ∈ P. Thereby,
the proportion of all false rejections among all rejections is called the False Discovery

Proportion (FDP), that is,

FDP(τ) =
V (τ)

R(τ)
I(R(τ) > 0).

Clearly, the FDP depends on the underlying probability measure P ∈ P.
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Note that we always use the convention 0
0 ≡ 0.

It follows

FDR(τ) ≡ FDR(τ, P ) = E [FDP(τ)] ,

where E ≡ E(P ) denotes the expectation under the underlying measure P ∈ P.

Definition 1.15

We say that an MTP τ controls the FDR at level α, if FDR(τ) 6 α for the underlying

measure P ∈ P.

Benjamini and Hochberg proposed an SU procedure (BH SU) which controls the FDR

at level αn0/n for all n0 = 1, . . . , n, if the underlying “true” p-values are independent

and independent from the “false” ones or if they fulfill the special dependence assumption

called positive regression dependence, cf. Benjamini and Yekutieli [2001] which will be

treated later. Since the proportion n0/n may be very small, the power of the BH SU

procedure can be also small.

A further approach is to estimate the number of the true null hypotheses n0 by some

appropriate estimator n̂0 by means of the data X to improve the power of the BH SU

procedure. Such procedures are called adaptive BH-procedures. The most famous adaptive

SU procedures are the procedures of Storey et al. [2004] and Benjamini at al. [2006].

Publications which play an important role in this dissertation are Finner et al. [2009],

Gavrilov et al. [2009] and Scheer [2012]. Among others, we provide alternative proofs and

generalizations for some of results in Gavrilov et al. [2009] and Scheer [2012].

1.4.4 Expected Number of False Rejections

The Expected Number of False Rejections (ENFR) is the expectation of the number

of false discoveries under the underlying distribution P ∈ P, that is,

ENFR(τ) ≡ ENFR(τ, P ) = E[V (τ)],

where E ≡ E(P ) is the expectation for a given P ∈ P. As was noted in Scheer [2012], there

are not many publications that are concerned with the ENFR. Some references related to

the ENFR can be found in Finner and Roters [2001], [2002] and Gordon et al. [2007].
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Definition 1.16 (a) We say that an MTP with the stopping rule τ controls the ENFR

at some function g fulfilling g : {1, ..., n − 1} → [0, n], if ENFR(τ) 6 g(n1) for all

n1 = 0, ..., n− 1.

(b) An MTP τ controls the ENFR (linearly) at γ, if ENFR(τ) 6 (n1 + 1)γ for all

n1 = 0, ..., n− 1.

Scheer [2012] proposed the aforementioned concept of ENFR-control. He investigated

the ENFR for some FDR-controlling procedures and proved ENFR-control for some of

them under independence of the underlying p-values.

In this thesis the control of the ENFR plays an important role. We will show for some class

of SD procedures that the ENFR is controlled under a special dependence, namely mar-

tingale dependence. Furthermore, ENFR-control for these procedures will imply control

of the FDR or control of error rate criteria closely related to the FDR.

1.4.5 False Discovery Exceedance

Many authors have noted that the concept of FDR-control works well if the FDP is con-

centrated around the FDR, for example, cf. Genovese and Wasserman [2004] and Roquain

et al. [2011]. In this context a new criterion was suggested, namely the False Discovery

Exceedance (γ-FDX). Thereby, the γ-FDX is defined as the probability that the FDP is

greater than some pre-chosen level γ, that is,

γ-FDX(τ) ≡ γ-FDX(τ, P ) = P

(
V (τ)

R(τ)
> γ

)
.

Definition 1.17

The γ-FDX is said to be controlled at level α by an MTP τ if γ-FDX(τ) 6 α for the

underlying P ∈ P.

In the aforementioned work of Lehmann and Romano [2005] some SD procedures

controlling the γ-FDX were proposed. One of these SD procedures controls the γ-FDX

under arbitrary dependence. One year later Romano and Shaikh [2006] proposed an SU

procedure with γ-FDX-control under general dependence.
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1.5 Relationships between various error rate

In this section we present some mostly known relationships between the aforementioned

error measures. Some of them are obvious and have often been referred in publications such

as the second inequality in (1.7), cf. Benjamini and Hochberg [1995] and p.6 in Dickhaus

[2014]). Others are simple, but for the sake of clarity we provide proofs.

Lemma 1.18

Let n0, n ∈ N be such that n1 = n − n0 > 0 and let τ be a stopping rule of some MTP.

Then we have the following relations between related error rates:

FWER(τ)

n1 + 1
6 FDR(τ) 6 FWER(τ), (1.7)

ENFR(τ) =

n0∑
k=1

k-FWER(τ), (1.8)

ENFR(τ) 6 n0 · FWER(τ), (1.9)

FDR(τ) =

1∫
0

P

(
V (τ)

R(τ)
> γ

)
dγ =

1∫
0

γ-FDX(τ) dγ. (1.10)

Proof. The second inequality in (1.7) is trivial and the first one can be proved as

follows:

FDR(τ) = E
[
V (τ)

R(τ)
I(V (τ) > 0)

]
> E

[
V (τ)

V (τ) + n1
I(V (τ) > 0)

]
>

1

n1 + 1
P (V (τ) > 0)

=
FWER(τ)

n1 + 1
.

Equality (1.8) follows from the fact that V (τ) is a non-negative discretely distributed

random variable. Therefore, the ENFR, that is, the mathematical expectation of V (τ),
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can be rewritten in the following way:

ENFR(τ) =

n0∑
i=1

iP (V (τ) = i)

=

n0∑
i=1

i∑
k=1

P (V (τ) = i)

=

n0∑
k=1

n0∑
i=k

P (V (τ) = i)

=

n0∑
k=1

P (V (τ) > k)

=

n0∑
k=1

k-FWER(τ).

Inequality (1.9) follows immediately from equality (1.8), since obviously

P (V (τ) > 1) > P (V (τ) > k) for all k > 1.

Inequality (1.10) follows directly from the definition of the mathematical expectation via

integration by parts. It is an alternative representation of the mathematical expectation

of the non-negative random variable FDP(τ) = V (τ)/R(τ)I(R(τ) > 0). Let FFDP(τ) be

the distribution function of the FDP. Then according to Fubini’s theorem we get:

FDR(τ) =

1∫
0

xdFFDP(τ)(x)

=

1∫
0

x∫
0

dγdFFDP(τ)(x)

=

1∫
0

⎛⎝ 1∫
0

I(0,x](γ)dFFDP(τ)(x)

⎞⎠ dγ

=

1∫
0

P (FDP(τ) > γ)dγ

=

1∫
0

γ-FDX(τ) dγ.
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�

It should be noted that for all inequalities in Lemma 1.18 we do not require any assump-

tions about independence or any specific dependence structures between the underlying

p-values. The relations remain true if we consider any dependence between p-values.



Chapter 2

Some concepts of dependence

Dependence structures play a crucial role in the FDR-control framework. Many existing

multiple testing procedures use independent test statistics under the null and fail if the

test statistics are dependent, for instance, the adaptive step-up procedure as proposed by

Storey et al. [2002].

2.1 Basic independence assumptions

Let n ∈ N and m ∈ N with m 6 n.

Definition 2.1 (Basic independence assumptions (BIA))

We say that random variables Y = (Y1, ..., Ym) : Ω → [0, 1]m and X = (X1, ..., Xn−m) :

Ω → [0, 1]n−m fulfill the basic independence assumptions if Y and X are mutually inde-

pendent and X1, ..., Xn−m are i.i.d. U(0, 1)-distributed random variables (cf. Finner et al

[2009], assumptions I1,I2 and D3).

Let I = {1, ..., n}, I1 = I \ I0 and i ∈ I0 iff pi corresponds to the true null hypothesis

(cf. p.9).

Remark 2.2 (BIA)

We say that the p-values p1, ..., pn fulfill BIA, if Ū = (pi)i∈I0 and f̄ = (pi)i∈I1 are mutually

independent and pi, i ∈ I0 are i.i.d. U(0, 1)- distributed.

24
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2.2 Positive association

Definition 2.3 (Positive association (PA))

Let X = (X1, ..., Xn), Xi : Ω → R, i ∈ {1, ..., n}. The random variables X1, ..., Xn are

said to be positively associated if Cov(φ(X), ψ(X)) > 0 holds for all component-wise non-

decreasing functions φ : Rn → R and ψ : Rn → R, for which Cov(φ(X), ψ(X)) exists.

This concept was introduced by Esary, Proschan and Walkup [1967], although the

authors called it not positive association but association. We use the term positive as-

sociation, like, for example, Jogdeo and Proschan [1981]. Esary et al. [1967] studied

different properties of positively associated random variables and gave some equivalent

criteria for positive association. We will use just one property of positively associated

random variables in this dissertation.

Lemma 2.4 (Esary et al. (1967), p.1467)

Non-decreasing functions of positively associated random variables are positively associ-

ated.

A simple, but very useful example of positively associated random variables, are the

order statistics X1:n, ..., Xn:n of independent random variables X1, ..., Xn (cf. Esary et al.

[1967], pp.1473-1473).

The aforementioned assertion follows directly from Lemma 2.4 and can also be proved by

Lemma 3.1 proposed in Hájek [1968] (cf. Hájek [1968], p.331).

2.3 Positive regression dependence on a subset and positive

orthant dependence

The next type of dependence we will use is the positive regression dependence on a subset.

In the FDR-framework it was firstly considered by Benjamini and Yekutieli [2001] and

Sarkar [2002].

Definition 2.5 (Positive regression dependence on a subset (PRDS))

Random variables Xi, i = 1, ..., n, with values in R are said to be positively regression

dependent on a subset J ⊂ {1, ..., n} (or are PRDS ), if x ↦→ E [φ(X1, ..., Xn) | Xi = x] is

increasing (decreasing) in x for each i ∈ J and any coordinate-wise increasing (decreasing)
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integrable function φ : Rn → R.

The PRDS concept is related to the positive regression dependence concept (cf.

Lehmann [1966] for the bivariate case, Sarkar T.K. [1969]) as will be defined below, with

the difference that the PRDS assumption is required to be fulfilled only on a subset of

random variables and the conditioning is on one variable and not on all variables which is

the case for positive regression dependence.

Lemma 2.6

Assume that X1, ..., Xn are PRDS on J ⊂ {1, ..., n} in the sense of Definition 2.5. Let

Fi : [a,∞) → [0, 1], a ∈ R be a marginal continuous distribution function of Xi, i ∈ J with

Fi(a) = 0. Then x ↦→ E [φ(X1, ..., Xn) | Xi 6 x] is increasing for each i ∈ J ⊂ {1, ..., n}
and all coordinate-wise increasing function φ : [a,∞)n → R of (X1, ..., Xn).

Proof. For i ∈ J define

fi(x) = E [φ(X1, ..., Xn) | Xi = x] ,

gi(u) = E [φ(X1, ..., Xn) | Xi 6 u] .

Hence, for all u ∈ [a,∞] with Fi(u) > 0 we get

gi(u) =

u∫
a
fi(x)dFi(x)

Fi(u)
.

Now, we obtain for a 6 u1 6 u2 <∞ and i ∈ J

gi(u2)− gi(u1) =

Fi(u1)
u2∫
a
fi(x)dFi(x)− Fi(u2)

u1∫
a
fi(x)dFi(x)

Fi(u1)Fi(u2)
(2.1)

=

(Fi(u1)− Fi(u2))
u1∫
a
fi(x)dFi(x)

Fi(u1)Fi(u2)
+

Fi(u1)
u2∫
u1

fi(x)dFi(x)

Fi(u1)Fi(u2)
. (2.2)

Further, due to the mean value theorem for Riemann-Stieltjes integrales (cf. Jie Xiao

[2008], p.60 ), there exist some values a 6 ξ 6 u1 6 ζ 6 u2 with

ξFi(u1) =

u1∫
a

fi(x)dFi(x), ζ(Fi(u2)− Fi(u1)) =

u2∫
u1

fi(x)dFi(x). (2.3)
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Thereby

inf
t∈(a,u1)

f(t) 6 ξ 6 sup
t∈(a,u1)

f(t) 6 inf
t∈(u1,u2)

f(t) 6 ζ 6 sup
t∈(u1,u2)

f(t)

holds, because f is an increasing function by assumptions. Hence, continuing (2.1) we

obtain by (2.3)

gi(u2)− gi(u1) =
ξFi(u1)(Fi(u1)− Fi(u2)) + ζFi(u1)(Fi(u2)− Fi(u1))

Fi(u1)Fi(u2)
(2.4)

=
Fi(u1)(Fi(u2)− Fi(u1))(ζ − ξ)

Fi(u1)Fi(u2)
> 0, (2.5)

hence, the assertion follows. �

Remark 2.7

The technique of the last proof is similar to the method of proof applied in Lehmann

[1966]. The assertion of Lemma 2.6 can also be deduced by applying Wijsman’s inequality

(Wijsman [1985]), cf. Finner et al. [2009], p.9.

Remark 2.8 (PRDS)

We say that Ū = (pi)i∈I0 is PRDS if u ↦→ E [φ(p1, ..., pn) | Ui = u] is increasing (decreas-

ing) in u, u ∈ (0, 1) for each i ∈ I0 and any coordinate-wise increasing (decreasing)

integrable function φ : [0, 1]n → R.

Lehmann [1966] introduced a bivariate positive regression concept. The next definition

is a generalization of the concept of Lehmann for multivariate cases (cf. Sarkar [1969],

Barlow and Proschan [1981]).

Definition 2.9

Random variables X1, ..., Xn are said to be positively regression dependent if

E (φ(X1, ..., Xn) | (Xi = xi)i∈J) is non-decreasing in (xi)i∈J for all coordinate-wise increas-

ing integrable functions φ : [0, 1]n → R, for all J ⊂ I.

A stricter requirement is the multivariate total positivity of order 2 (MTP2) property

(Karlin and Rinott [1980]).

According to Definition 2.5 the random variables Xi, i ∈ {1, ..., n} are [0, 1]−valued

when we are concerned with PRDS dependence since we have p-values in mind. The

subsequent definitions also work for real-valued random variables.
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Definition 2.10 (MTP2)

Real-valued random variables X1, ..., Xn are said to be MTP2 if the random vector X̄ =

(X1, ..., Xn) has a density (or probability function) f : Rn → [0,∞) satisfying

f(x ∧ y)f(x ∨ y) > f(x)f(y) (2.6)

with x∧y = min(x, y) and x∨y = max(x, y), where min and max are taken coordinate-wise.

The MTP2 condition (2.6) implies the PRDS property and is easier to verify, that is

why it is widely used (cf. Benjamini and Yekutieli [2001], p.1170).

The next dependence type is the oldest of the four dependence structures defined before

and was proposed by Lehmann [1966] for the bivariate case. Many authors considered the

generalization of this concept for multivariate distributions. For example, Ahmed et al.

[1978] and Block and Ting [1981] studied this concept.

Definition 2.11 (Positive orthant dependence (POD))

We say that real-valued random variables X1, ..., Xn are (upper) positively orthant depen-

dent (POD), if for any set of real values {a1, ..., an}

P (X1 > a1, X2 > a2, ..., Xn > an) >
n∏

i=1

P (Xi > ai).

Note that positive regression dependence implies positive association. PRDS does not

imply positive association. A simple example confirming this statement is given in Ben-

jamini and Yekutieli [2001] (p.1172). It is the multivariate normal distribution N(µ,Σ),

Σ = (Σk,l)k,l∈I , which fulfills the PRDS property on the subset I0, and on each other

subset of I0, if for all i ∈ I0 and for all j ̸= i Σi,j > 0 is valid, however it is not positively

associated if there some indices k, l ∈ I, for which Σk,l < 0 holds, exist, cf. Pitt [1982],

Tong [1990], p.97, Theorem 5.1.1.

Now we will show that the positive regression dependence on a subset J implies the

positive orthant dependence on the same subset J .

Lemma 2.12

If [0, 1]-valued random variables X1, ..., Xn are PRDS on J ⊂ {1, ..., n}, then {Xi}i∈J are

positively orthant dependent.

Proof. W.l.o.g. let us assume that J = {1, ..., n} holds. For any other subset J the

proof works in the same way.
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First, we show the inequality

E

[
n∏

i=2

I(Xi > ai) | X1 > a1

]
> E

[
n∏

i=2

I(Xi > ai) | X1 6 a1

]
. (2.7)

This inequality is intuitive and clear. Indeed, the PRDS property means that the knowl-

edge of X1 becoming greater increases the probability of φ(X1, ..., Xn) being greater, if φ

increases coordinate-wise.

Or more precisely: let F denote the marginal distribution function of X1, we define

f(u) = E
[

n∏
i=2

I(Xi > ai)|X1 = u

]
, then we have

E

[
n∏

i=2

I(Xi > ai)I(X1 > a1)

]
=

1∫
a1

f(u)dF (u)

and

E

[
n∏

i=2

I(Xi > ai)I(X1 6 a1)

]
=

a1∫
0

f(u)dF (u).

Then (2.7) is equivalent to

1∫
a1

f(u)dF (u)

1− F (a1)
>

a1∫
0

f(u)dF (u)

F (a1)
. (2.8)

From the mean value theorem for Riemann-Stieltjes integrales (cf. Jie Xiao [2008] p.60 )

we can deduce that there exist some values ξ1 and ξ2 with

ξ1 =

1∫
a1

f(u)dF (u)

1− F (a1)
, inf

t∈(a1,1)
f(t) 6 ξ1 6 sup

t∈(a1,1)
f(t)

ξ2 =

a1∫
0

f(u)dF (u)

F (a1)
, inf

t∈(0,a1)
f(t) 6 ξ2 6 sup

t∈(0,a1)
f(t).

(2.9)

Since f is an increasing function of u, (2.9) yields ξ1 > ξ2, hence (2.8).
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Further we get:

P (X1 > a1, X2 > a2, ..., Xn > an) = E

[
n∏

i=1

I(Xi > ai)

]
(2.10)

= P (X1 > a1)E

[
n∏

i=2

I(Xi > ai) | X1 > a1

]
> P (X1 > a1)E

[
n∏

i=2

I(Xi > ai)

]
(2.11)

= P (X1 > a1)P (

n⋂
i=2

(Xi > ai)) > ... >
n∏

i=1

P (Xi > ai). (2.12)

The inequalities in (2.11)-(2.12) hold due to the PRDS-assumption since according to the

law of total probability we have

E

[
n∏

i=2

I(Xi > ai)

]
= E

[
n∏

i=2

I(Xi > ai) | X1 > a1

]
−

P (X1 6 a1)

(
E

[
n∏

i=2

I(Xi > ai) | X1 > a1

]
− E

[
n∏

i=2

I(Xi > ai) | X1 6 a1

])
  

>0 due to (2.7)

.
(2.13)

�

Definition 2.13

We call the set A ⊂ Ω increasing on the subset J for [0, 1]-valued random variables

X1, ...., Xn if the indicator Xi ↦→ IA ≡ IA(X1, ..., Xn) is increasing whenever i ∈ J .

Lemma 2.14

If X1, ..., Xn are PRDS on J ⊂ {1, ..., n}, then the following inequalities hold for any

increasing on J set A (cf. Definition 2.13), for all i ∈ J and for all u ∈ [0, 1]

(a)

E [IA | Xi > u] > E [IA | Xi 6 u] , (2.14)

(b)

E [IA | Xi > u] > E [IA] , (2.15)

(c)

E [IA | Xi 6 u] 6 E [IA] . (2.16)
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Proof. The proof of part (a) can be carried out similarly to the proof of inequality

(2.12) in the proof of Lemma 2.12.

Part (b) follows directly from (a) since obviously

E [IA] = E [IA | Xi > u]P (Xi > u) + E [IA | Xi 6 u]P (Xi 6 u)

= E [IA | Xi > u]− P (Xi 6 u) (E [IA | Xi > u]− E [IA | Xi 6 u])  
>0

6 E [IA | Xi > u]

holds for all i ∈ J.

Part (c) can be proved similar to part (b). We obtain for all i ∈ J

E [IA] = E [IA | Xi > u]P (Xi > u) + E [IA | Xi 6 u]P (Xi 6 u)

= E [IA | Xi 6 u] + P (Xi > u) (E [IA | Xi > u]− E [IA | Xi 6 u])  
>0

,

which completes the proof. �

Corollary 2.15

Let the following assumptions be fulfilled

� X1, ..., Xn are PRDS on J ⊂ {1, ..., n}, with |J | = m,

� IA ≡ IA(X1, ..., Xn) increases, if Xi increases for all i ∈ J ,

� φ : [0, 1]m → [0,∞) is coordinate-wise increasing function.

Then we have for all i ∈ J and all u ∈ [0, 1]:

(a)

Cov(IA, I(Xi > u)) > 0, (2.17)

(b)

Cov(φ, I(Xi > u)) > 0, (2.18)

(c)

Cov(φ, I(Xi < u)) 6 0. (2.19)



CHAPTER 2. SOME CONCEPTS OF DEPENDENCE 32

Proof. We have to show that

P (A ∩ {Xi > u}) > P (A)P ({Xi > u}) holds.

The assertion (a) follows directly from Lemma 2.14 (b) since

P (A ∩ {Xi > u}) = P (A|{Xi > u})P (Xi > u) is valid for all i ∈ J.

(b) For all i ∈ J and all u ∈ [0, 1] we get by Lemma 2.12 (since PRDS on J implies POD

on the same subset)

E [φI(Xi > u)] =

∞∫
0

P (φI(Xi > u) > x)dx

>

∞∫
0

P (φ > x)P ({Xi > u})dx = E [φ]P (Xi > u).

(c) Follows directly from (b). Indeed we have similarly to (b)

E [φI(Xi < u)] = E [φ]− E
[
φI{Xi>u}

]
6 E [φ]− E [φ]P (Xi > u) = E [φ]P (Xi < u),

which completes the proof.

�

2.4 Martingale Dependence

Related to the [0, 1)−valued random variables X1, ..., Xn let us define the filtration

Ft = σ(I[0,s](Xi), 0 6 s 6 t, i ∈ {1, ..., n}), 0 6 t < 1, (2.20)

which contains all information about each Xi, i = 1, ..., n, up to the time t ∈ [0, 1). Now

we want to introduce a new concept of dependence in multiple testing, the martingale

dependence.

Definition 2.16

We say that random variables X1, ..., Xn are Ft(super-)martingale dependent on J ⊂
{1, ..., n} (or belong to the classMJ on some subset J ⊂ {1, ..., n}) ((s)MD), if the stochas-

tic process M(t) =MJ(t) =
∑
i∈J

(I(Xi6t)−t
1−t

)
, 0 6 t < 1 is a Ft (super-)martingale.
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( cf. Chapter 6 for examples and more details.)

Remark 2.17

In this dissertation we consider the vector of p-values p = (p1, ..., pn), thereby the vector

of the p-values which corresponds to true null hypothesis is denoted by Ū = (U1, ..., Un0) =

(pi)i∈I0 (cf. p.9). We say that U1, ..., Un0 are MD, if Definition 2.16 is fulfilled with

(X1, ..., Xn) = (p1, ..., pn) and J = I0.

Remark 2.18 (General remark to MD)

If we say that the random variables X1, ..., Xn are MD w.r.t. the filtration Ft we always

assume that the filtration is complete. If this is not the case then we define Ft := Ft ∪NP

where NP is the set of all P-null-sets in Ft.

2.5 Summary

In this chapter we introduced some well known kinds of dependence, namely PA, POD

and PRDS. We showed that PRDS implies POD on the same subset and proved some

inequalities for PRDS random variables. Unfortunately, positive association as well as

positive regression dependency on a subset are not an easy to verify. Nevertheless, both

are widely used in multiple testing theory, especially in the FDR-framework.

We introduced the concept of martingale dependent random variables. The idea of this

concept does not appear to be intuitively meaningful at first sight. On the other hand,

since the empirical process (F̂n(t))t∈(0,1) goes well with the theory of semi-martingales,

the requirement of super-martingale dependence seems to be natural. The martingale

dependence will be very useful for our later considerations in Chapter 5.

In general, the literature about dependency structures is huge. There is much cross

over among the many authors who have studied different properties of the dependence

structures mentioned above. It is therefore complex to verify the originator of the property.



Chapter 3

Asymptotically optimal rejection

curve (AORC)

3.1 Motivation

Let us consider an asymptotic Dirac-uniform model, i.e., the p-values Ui, i = 1, ..., n0,

which correspond to true null hypotheses, are i.i.d. U(0, 1)- distributed random variables

and the false ones follow the Dirac distribution with point mass 1 at 0, or which is the

same, that f1 = ... = fn1 = 0 PDU(n0,n) a.s. Finner et al. [2009] proposed a new rejection

curve, called asymptotically optimal rejection curve (AORC). The AORC is defined by

fα(t) =
t

t(1− α) + α
.

This approach was motivated as follows (cf. Finner et al. [2009]).

Let ζn = n0(n)
n denote the portion of the true null hypotheses with lim

n→∞
ζn = ζ ∈ [0, 1].

Then by the Glivenko-Cantelli Theorem we get:

F̂n(t) → F∞(t|ζ) = (1− ζ) + ζt for all t ∈ [0, 1] PDU(n0,n)a.s.

If for some fixed t ∈ (0, 1] a test procedure rejects all null hypotheses Hi, i = 1, ..., n with

pi 6 t, then the asymptotic FDR of this procedure is given by

FDR(t) =
tζ

(1− ζ) + tζ
. (3.1)

If we determine the point tζ , for which FDR(tζ) = α, ζ ∈ [α, 1) holds, we get

tζ =
α(1− ζ)

ζ(1− α)
. (3.2)

34
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The idea of Finner et al. [2009] was to find a strictly increasing rejection curve

fα : [0, 1] → [0, 1], which fulfills the property fα(tζ) = F∞(tζ) for all ζ ∈ [α, 1). And

fα(t) =
t

t(1−α)+α , t ∈ [0, 1] is a such curve.

Now we present a further motivation which is based on a model of independent p-

values.

Let p1, ..., pn be i.i.d Q−distributed random variables with distribution function F (t) ≡
FQ(t) > t, t ∈ [0, 1]. For some fixed t ∈ (0, 1) we may decompose the distribution function

F by

F (t) = κt(Q) + t(1− κt(Q)), (3.3)

where the statistical functional

Q ↦→ κt(Q) =
F (t)− t

1− t
(3.4)

represents the nonuniform part of Q on the interval [0, t]. The maximal relative portion of

the uniformity of Q on [0, t] is given by

α(t) = 1− κt(Q)

F (t)
(3.5)

when F (t) > 0 holds. Then α(t) is the solution of

(1− α(t))F (t) =
F (t)− t

1− t
(3.6)

and F (t) = t
t(1−α(t))+α(t) holds. In this particular model the control of α(t) yields the

asymptotic optimal rejection curve fα, i.e.,

α(t) 6 α iff F (t) > fα(t) =
t

t(1− α) + α
. (3.7)

Figure 3.1 gives a geometrical interpretation of equality (3.6). The green straight line

g ≡ g(s) which connects a fixed point (t, F (t)) with the point (1, 1), is described by the

equality

g(s) =
1− F (t)

1− t
s+

F (t)− t

1− t
. (3.8)

Due to the intercept theorem from elementary geometry, we have the slope of the green

line x
t = 1−F (t)

1−t , where x is a length of the “blue” interval on Figure 3.1, which implies
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x = t
1−t(1− F (t)). Consequently, the relative part of x on [0, t] is x

F (t) which corresponds

to α(t) in our consideration.

Figure 3.1: Uniform and nonuniform part of Q on [0, 0.4]. The black curve on the left graphic is the

distribution function of the p-values, the black curve on the right graphic is the empirical distribution

function F10(t) of ten realizations p1, ..., p10. The green straight line is described by (3.8). The red line

corresponds to the nonuniform part of Q on [0, 0.4], the blue one corresponds to the uniform part of Q on

[0, 0.4].

.

3.2 Some FDR-Estimators

Consider the problem of simultaneously testing n null hypotheses H1, ....,Hn. The corre-

sponding p-values are denoted by p1, ..., pn. The vector of p-values corresponding to true

null hypotheses is denoted by U = (U1, ..., Un0), thereby we have U = (Ui)i∈{1,...,n0} =

(pj)j∈I0 . The vector of the p-values which correspond to alternatives is denoted by f =

(f1, ..., fn1). Based on the motivation in Section 3.1, we consider the following empirical

version of α(t), which may serve as an estimator of FDR(t) (the FDR of the MTP with

τ = t), that is,

α̂n(t) =
t

1− t

1− F̂n(t)

F̂n(t)
I(F̂n(t) > 0). (3.9)
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Subsequently, we will first consider only models, in which F̂n(t) > 1
n holds for all t ∈ [0, 1),

since by Lemma 4.3 and Lemma 5.3 (in the next Chapters) it will be possible to replace

f1 by 0 for SD-procedures. Consequently, we may drop the indicator I(F̂n(t) > 0) in (3.9).

The case n0 = n will be considered separately.

Lemma 3.1

Let p1, ..., pn be realizations of i.i.d. random variables, F̂n be the empirical distribution

function of p1, ..., pn. If for some fixed t with 0 6 t < 1 we have F̂n(t) > 0, then

E [α̂n(t)] > α(t). (3.10)

Proof. Since the empirical distribution function F̂n is an unbiased estimator of the

distribution function F and the function x ↦→ 1−x
x is convex, we have by Jensen’s inequality

E

[
t

1− t

1− F̂n(t)

F̂n(t)

]
>

t

1− t

1− E[F̂n(t)]

E[F̂n(t)]

=
t

1− t

1− F (t)

F (t)
= α(t).

�

Remark 3.2

Storey et al.[2004] proposed for some fixed λ ∈ [0, 1] the following estimator for the FDR,

that is,

ˆFDRλ(t) =
t

F̂n(t)

1− F̂n(λ)

1− λ
, (3.11)

which is sometimes more convenient for the asymptotical consideration. We can see that

for λ = t

ˆFDRt(t)I(F̂n(t) > 0) = α̂n(t),

where α̂n is given in (3.9). In this context the estimator α̂n can be considered as a modified

dynamic version of the estimator (3.11) (cf. Dickhaus [2008], p.81).

Remark 3.3 1. The process t ↦→ α̂n(t) is right continuous, adapted to the filtration

Ft = σ(I(0,s](pi), 0 6 s 6 t, i = 1, ..., n), t ∈ (p1:n, 1), n ∈ N.

2. It is continuous and strictly increasing for t ∈ [pi:n, pi+1:n) with i < n, n ∈ N.
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3. It is lower semi-continuous at each data point pi:n, i > 2, with strict inequality

lim
t↑pi

α̂n(t) > α̂n(pi) a.s., n ∈ N.

4. Whenever pi increases, then α̂n(t) increases in that argument for fixed t, n ∈ N.

5. lim
n→∞

α̂n(t) = α(t) P−a.s.

3.3 Asymptotic normality of the estimator α̂n(t)

Theorem 3.4 (Asymptotic Normality of αn(t))

Let p1, ..., pn : Ω → [0, 1] be i.i.d. random variables with distribution function F . Fix

t ∈ [0, 1] with 1 > F (t) > 0. Then

√
n(α̂n(t)− α(t))

D→ N
(
0,

α(t)2

F (t)(1− F (t))

)
. (3.12)

Proof. The empirical distribution function F̂n of i.i.d random variables is an unbiased

estimator for the distribution function F . Its variance is given by

Var(F̂n(t)) =
1

n2

n∑
i=1

(
E
[
I2(pi 6 t)

]
− (E [I(pi 6 t)])2

)
(3.13)

=
1

n

(
E [I(p1 6 t)]− (E [I(p1 6 t)]])2

)
(3.14)

=
F (t)(1− F (t))

n
. (3.15)

By the Central Limit Theorem we have

F̂n(t)− E
[
F̂n(t)

]
√

Var(F̂n(t))
=

√
n(F̂n(t)− F (t))√
F (t)(1− F (t))

D→ N (0, 1) . (3.16)

Consequently by application of the delta method (cf. A.W. van der Vaart pp.25-35) we

get

√
n
(
g(F̂n(t))− g(F (t))

)
D→ N

(
0, F (t)(1− F (t))(g′(F (t)))2

)
(3.17)

holds with g(x) = t
1−t

1−x
x I(x > 0). Finally, since g(F̂n(t)) = α̂(t), g(F (t)) = α(t) and

∂

∂x
g(x)|x=F (t) = − t

1− t

1

(F (t))2
,
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we get

√
n(α̂n(t)− α(t))

D→ N
(
0,

t2

(1− t)2
(1− F (t))

(F (t))3

)

= N
(
0,

α(t)2

F (t)(1− F (t))

)
.

�

3.4 Conclusions

In this chapter we recalled the asymptotically optimal rejection curve (AORC) which

was introduced by Finner et al. [2009]. We proposed another motivation for the AORC

and provided an estimate for the FDR(t) related to the AORC. Finally, we proved an

asymptotic normality of this estimate.



Chapter 4

Improvement of the first critical

values under BIA’s, PRDS or

POD

The literature highlights some methods to characterize the power of a multiple testing

procedure - for instance it can be characterized by the expected number of true rejections

ENTR= E [S(τ)]. In this chapter we concentrate on the power of FDR-controlling proce-

dures. Let us assume that an SD procedure controls the FDR. Is there any possibility to

improve the power of this procedure without loss of the FDR-control? This question is

the subject of this chapter.

Firstly, let us assume that the p-values are given by

pi = εiVi + (1− εi)gi, i = 1, ..., n, (4.1)

where εi ∼ B(1, q), i = 1, ..., n are i.i.d. Bernoulli random variable with unknown success

parameter q. Suppose that ε̄ = (ε1, ..., εn), V̄ = (V1, ..., Vn) and ḡ = (g1, ..., gn) are

mutually independent random vectors. Here εi = 1 corresponds to the true null Hi with

p-value Vi whereas εi = 0 codes p-value gi under alternative. Then the p-values which

belong to true null hypotheses are defined as

U = (Ui)
i∈{1,...,

n∑
l=1

εl}
= (pi)(i∈{1,...,n}:εi=1) = (Vi)(i∈{1,...,n}:εi=1),

40
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and the false ones as

f = (fj)
j∈{1,...,(n−

n∑
l=1

εl)}
= (pj)(j∈{1,...,n}:εj=0) = (gj)(j∈{1,...,n}:εj=0).

The number of true nulls is thereby n0 =
n∑

i=1
εi and n1 = n−n0 is the number of the false

ones.

Remark 4.1

In the following chapters we always consider the conditional expectation

E [·|ḡ, ε] = Ef [·]

conditioned under the false p-values and the status ε. Note that the information about

n0 = n− n1 is also present. Observe that the conditional model given ḡ and ε is a part of

(4.1) where ḡ and ε are deterministic.

Benjamini and Liu [1999] proposed a SD procedure with critical values

bi = 1− (1− α
n

n− i+ 1
∧ 1)

1
n−i+1 , i = 1, ..., n. (4.2)

They proved that this procedure controls the FDR if the underlying test statistics are mu-

tually independent. Sarkar [2002] showed that the FDR of the SD procedure with critical

values (4.2) is still controlled at level α if the p-values are PRDS.

Remark 4.2

The critical values (4.2) have the following asymptotic representation.

bi = − ln(1− α)

n
+O(1/n2), for all fixed i = 1, ..., n with i 6 n(1− α) + 1

bi = 1, if i > n(1− α) + 1.

4.1 Increase of the first critical values without loss of the

FDR-control

In this chapter we consider a SD-procedure with ordered critical values (c1, ..., cn) which

controls the FDR at level α, if the true p-values are PRDS or POD. We may do our
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Figure 4.1: Comparison of the critical values bi, i = 1, ..., n from (4.2) (green line) with critical values of

the BH procedure aBH
i = iα

n
(red line) and critical values of the SD procedure with ai =

iα
n+1−i(1−α)

(blue

line). In the left graph the curves correspond to α = 0.75, n = 15 in the right one to α = 0.1, n = 100.

analysis for the conditional model of Remark 4.1 given ḡ and ε.

We define

k = max(i = 1, ..., n : cj 6 bj for all j 6 i), (4.3)

where bi, i = 1, ..., n are given in (4.2).

Lemma 4.3

Let n0 ∈ N be some fixed number. If the following assumptions are fulfilled:

1. U1, ..., Un0 <st U(0, 1) and (U1, ..., Un0) are PRDS or POD,

2. (U1, ..., Un0) are independent of the false ones,

3. the SD-procedure which uses the critical values c1 6 ... 6 cn, controls the FDR under

(1-2) for all f1, ..., fn1 and arbitrary fixed n0,

then the SD procedure with critical values

di = I(i6k)bi + I(i>k)ci, i = 1, ...n,

with k defined in (4.3), controls the FDR under (1-2) at desired level α, too.
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Proof. Firstly, we briefly discuss the case n = n0. For this case we have for the SD

procedure with critical values (b1, ..., bn)

FDR = FWER = P (U1:n 6 b1).

We know by Lemma 2.12 that PRDS implies POD consequently we get immediately

P (U1:n 6 b1) 6 1− (1− b1)
n = α.

Let f be some fixed vector and f1 6 ... 6 fn1 be the ordered coordinates of the vector f.

We define j∗ = max(i = 1, ..., n1 : fj 6 dj , for all j 6 i). Since j∗ false p-values will be

rejected anyway, the FDP for the vector p̄ = (f1, ..., fj∗ , fj∗+1, ..., fn1 , U1, ..., Un0) will be

the same as the FDP for the vector p̄j∗ = (0, ...0, fj∗+1, ..., fn1 , U1, ..., Un0).

We still use the convention 0
0 ≡ 0.

We define the FDP of the SD procedure with critical values d1, ..., dn by V (d)
R(d) and the

FDP of the SD procedure with critical values c1, ..., cn by V (c)
R(c) , respectively. Let f∗ =

(0, ..., 0, fj∗+1, ..., fn1).

First, note that

Ef

[
V (d)

R(d)
I(V (d) > 0)

]
=

= Ef

[
I({j∗ > k})V (d)

R(d)
I(V (d) > 0)

]
+ Ef

[
I({j∗ < k})V (d)

R(d)
I(V (d) > 0)

]
= I({j∗ > k})Ef

[
V (d)

R(d)
I(V (d) > 0)

]
+ I({j∗ < k})Ef

[
V (d)

R(d)
I(V (d) > 0)

]
,

with k defined in (4.3).

Further we consider two cases.

1. j∗ > k. For this case we have

Ef

[
V (d)

R(d)
I(V (d) > 0)

]
= Ef∗

[
V (d)

R(d)
I(V (d) > 0)

]
= Ef∗

[
V (c)

R(c)
I(V (c) > 0)

]
6 α.

2. j∗ < k. In this case we have

E
[
V (d)

R(d)
I(V (d) > 0)

]
6 E

[
V (d)

j∗ + V (d)
I(V (d) > 0)

]
(4.4)

6
n− j∗

n
E [I(V (d) > 0)] 6

n− j∗

n
P (U1:n0 6 dj∗+1) (4.5)

=
n− j∗

n
P (U1:n0 6 bj∗+1) 6

n− j∗

n
(1− (1− bj∗+1)

n0) (4.6)

6
n− j∗

n
(1− (1− bj∗+1)

n−j∗) =
n− j∗

n
(α

n

n− j∗
∧ 1) 6 α. (4.7)
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The inequality in (4.6) holds by POD (since by Lemma 2.12, PRDS implies POD

on the same subset) and the equality in (4.7) holds by the choice of bi’s. �

Remark 4.4

The proof of Lemma 4.3 is similar to the proof of the Theorem in Benjamini and Liu

(1999) (cf. Benjamini,Liu [1999], pp.165-166).

Remark 4.5

Let U1, ..., Un0 be PRDS or POD, then the FDR of the SD-procedure with critical values

c1 = 1− n
√
1− α 6 c2 6 ... 6 cn 6 1 is less or equal to α (equal to α if U1, ..., Un0 are i.i.d

U(0, 1)-distributed) if n0 = n holds, i.e., when all hypotheses are true.

Example 4.6

Let us assume that the p-values which correspond to true null hypotheses are i.i.d. U(0, 1)-

distributed and the false ones are i.i.d. U( b12 , α)−distributed random variables. For α = 0.1

we computed the FDR for 5 different procedures:

� the adaptive SD procedure which was proposed by Gavrilov et al [2010] and uses

critical values ai =
iα

n+1−i(1−α) , i = 1, ..., n, (ASDP),

� the adaptive SD procedure of Gavrilov with increased first critical values by Theorem

4.3 ( ASDP+),

� the linear SD which uses the critical values ai =
iα
n , i = 1, ..., n, (BHsd),

� BH SD procedure with increased first critical values by Theorem 4.3 (BHsd+),

� BH SU procedure (BHsu).

The results are summarized in Table 4.1.
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n, n0 ASDP ADSP+ BHsd BHsd+ BHsu

50, 40 0.071 0.073 0.071 0.074 0.08

50, 25 0.037 0.038 0.038 0.039 0.05

50, 10 0.017 0.018 0.013 0.013 0.02

100, 90 0.08 0.08 0.08 0.08 0.09

100, 50 0.036 0.039 0.038 0.04 0.05

100, 20 0.0156 0.0157 0.013 0.014 0.02

300, 250 0.069 0.072 0.069 0.072 0.083

300, 150 0.034 0.035 0.033 0.036 0.05

300, 100 0.021 0.022 0.021 0.022 0.033

Table 4.1: Simulation outcome for Example 4.6 based on L = 10000 replications, α = 0.1. Comparison

of the FDR for the adaptive SD-procedure (5.1) (ASDP), for the SD-procedure with the increased first

critical values by Theorem 4.3 (ASDP+), for the SD-procedure with Benjamini-Hochberg critical values

(BHsd), for BH-SD-procedure with increased critical values based on Theorem 4.3 (BHsd+) and for the

linear SU-procedure (BHsu).

As we can see from Table 4.1, the FDR of the SD procedures with the increased critical

values is slightly larger than the FDR of the original procedure and it lies below the level α.

Obviously the procedure ASDP+ is more powerful than the procedure BHsd+, because

the critical values of the procedure ASDP+ are larger than the corresponding critical

values of the BHsd+. Nevertheless it does not mean that the ASDP+ exhausts the level

α better. For instance, for n0 = 40 and n = 50 the FDR of the ASDP+ is less than the

FDR of BHsd+ in contrast to the case n0 = 10 and n = 50. This result is not surprising,

since, in general, FDR(t) is not monotone in t, t ∈ (0, 1).

Example 4.7

Let us consider the following (extreme) case. The random variables V1, ..., Vn are i.i.d.

U(0, 1)-distributed.

(a) The true p-values Ui = Vi, i = 1, ..., n0,

(b) The false p-values fi = Vn0+i, i = 1, ..., n1.



CHAPTER 4. IMPROVEMENT OF THE FIRST CRITICAL VALUES UNDER

BIA’S, PRDS OR POD
46

n, n0 ASDP ADSP+ BHsd BHsd+ BHsu

50, 40 0.079 0.083 0.079 0.08 0.08

50, 25 0.046 0.048 0.046 0.047 0.05

50, 10 0.018 0.019 0.018 0.019 0.02

100, 90 0.085 0.09 0.085 0.085 0.09

100, 50 0.048 0.05 0.048 0.049 0.05

100, 20 0.018 0.019 0.018 0.018 0.02

300, 250 0.081 0.086 0.081 0.082 0.083

300, 150 0.048 0.05 0.048 0.048 0.05

300, 100 0.034 0.036 0.034 0.034 0.033

Table 4.2: Simulation outcome for Example 4.7 based on L = 10000 replications, α = 0.1. Comparison

of the FDR for the adaptive SD-procedure (5.1) (ASDP), for the SD-procedure with the increased first

critical values due to the Theorem 4.3 (ASDP+), for the SD-procedure with Benjamini-Hochberg critical

values (BHsd), for the BH-SD-procedure with increased critical values according to Theorem 4.3 (BHsd+),

for the linear SU-procedure (BHsu).

In Chapter 7 we consider this example in more detail. We will see that under the

assumptions (a),(b) the FDR of any SD procedure which uses the first critical value b1 =

1 − n
√
1− α, is less or equal to αn0

n , if all p-values are i.i.d. U(0, 1). That is, any SD-

procedure which controls the FDR under POD can be modified according to Theorem

4.3 to some procedure which maximizes the FDR under BIA with i.i.d. uniformly U(0, 1)

distributed alternatives. Later, in Chapter 7 we will prove these statements.

To proceed, let us compare the following three procedures: ASDP with critical values

ai =
iα

n+1−i(1−α) , the linear SD procedure with critical values ci =
iα
n and the Benjamini

and Liu SD procedure with critical values bi = 1− (1− α n
n−i+1 ∧ 1)

1
n−i+1 , i = 1, ..., n. We

can see that the inequalities

a1 6 b1 and c1 6 b1

are valid for all n > 1 and α ∈ (0, 1). In the majority of practical cases, where α is “small”

and n is “large”, we get b2 6 c2 6 a2. But there exist cases, for which a2 6 c2 6 b2 holds,

as for example n = 50 and α > 0.76 or c2 6 a2 6 b2 for n = 2 and α = 0.15. In practice,we

can alway increase the smallest critical value of an FDR controlling SD procedure without

loss of the FDR control, which can lead to the improvement of power.
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4.2 Conclusions

We proved in this chapter that if some SD procedure with critical values c1 6 ... 6 cn,

c1 6 b1, controls the FDR under PRDS oder POD, then we can improve the power of this

procedure without loss of FDR-control by replacing the first critical values by ci∨bi, i 6 k,

where bi, i = 1, ..., n, defined in (4.2) and the value k is defined as in (4.3).



Chapter 5

On the adaptive

Gavrilov-Benjamini-Sarkar SD

procedure

In this chapter we consider the SD procedure which was proposed by Gavrilov, Benjamini

and Sarkar [2009] and by Finner et al. [2009] (in context with β−adjusted AORC). This

SD procedure uses the deterministic critical values

ai:n =
iα

n+ 1− i(1− α)
(5.1)

and the SD-stopping rule

τ1(p) = aR:n = max{ai:n : pj:n 6 aj:n for all j 6 i}. (5.2)

Remark 5.1

Note that by Bernoulli inequality we have

α

n
6 1− n

√
(1− α)

for α ∈ (0, 1). This implies that for the smallest critical value from (5.1) we get

a1:n =
α

n+ α
<
α

n
6 1− n

√
(1− α).

Remark 5.2

Gavrilov et al. call the procedure with critical values (5.1)“adaptive” SD procedure (ASDP)

48
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and it is not clear why. In the FDR-framework it exists an approach to estimate the number

of the true null hypotheses n0 by some appropriate estimator n̂0 by means of the data X,

such procedures are so-called adaptive BH procedures (cf. Subsection 1.4.3). We propose

an interpretation of the term adaptive for this procedure in Remark 5.7.

Recall that the p-values which belong to the true null hypotheses are denoted by

U1, ..., Un0 . The “false” p-values are denoted by f1, ..., fn1 and are assumed to be ordered,

i.e., f1 6 f2 6 ... 6 fn1 . Further in this chapter we consider the conditional expectation

E [· | f ] = Ef [·] , f = (f1, ..., fn1).

The vector of all p-values is denoted by p = (p1, ..., pn).

In this chapter we present a new alternative proof of the FDR-control for the adap-

tive SD procedure with critical values (5.1) under BIA and we prove a new result on the

FDR-control under some dependence assumptions (cf. Theorem 5.17 and Theorem 5.23).

Moreover, the critical value a1:n in (5.1) can be modified according to Chapter 4.

We start with some useful observations. Let us consider the SD procedure which uses

some (deterministic) critical values d1 6 d2 6 ... 6 dn. We denote the stopping rule of

this SD procedure by d, where

d = max{di : pj:n 6 dj for all j 6 i}.

Note that we use the convention 0
0 ≡ 0.

Lemma 5.3

Let the following assumptions be fulfilled:

1. n1 > 1,

2. d1 6 1− n
√
1− α,

3. the random variables U1, ..., Un0 are POD,

4. Ef0

[
V (d)
R(d)

]
6 α with f0 = (0, f2, ..., fn1) for all possible f2, ..., fn1 .

Then we have E
[
V (d)
R(d)

]
6 α for all n0 ∈ N.



CHAPTER 5. ON THE ADAPTIVE GAVRILOV-BENJAMINI-SARKAR SD

PROCEDURE
50

Proof. Note that Ef

[
V (d)
R(d)

]
= Ef

[
I(f1 6 d1)

V (d)
R(d) + I(f1 > d1)

V (d)
R(d)

]
is always valid

and let us consider two different cases: (a) f1 6 d1, (b) f1 > d1.

(a) Since f1 will be rejected, the equality Ef0

[
V (d)
R(d)

]
= Ef

[
V (d)
R(d)

]
holds. Therefore the

statement of the lemma is proved for this case.

(b) If f1 > d1 holds, we have by POD assumption P (U1:n0 6 1 − n
√
1− α) 6 α, which

implies

Ef

[
V (d)

R(d)
I(V (d) > 0)

]
6 Ef [I(V (d) > 0)] = P (U1:n0 6 d1)

6 P (U1:n0 6 1− n
√
1− α) 6 α.

Hence, we get Ef

[
V (d)
R(d)

]
6 α for all possible vectors f = (f1, ..., fn1). Further, E

[
V (d)
R(d)

]
=

E
[
Ef

[
V (d)
R(d)

]]
, which completes the proof. �

Remark 5.4

According to Lemma 5.3 we only have to consider the case f1 6 d1, if we want to prove the

FDR-control of the SD procedure with critical values d1 6 d2 6 ... 6 dn if d1 6 1− n
√
1− α

under PRDS or POD.

Let us return to the SD procedure with critical values (5.1) (ASDP). We define a

random variable

τ(p) = min{ai:n : pi:n > ai:n} ∧ an:n. (5.3)

It is easy to see from (5.2) and (5.3) that τ(p) > τ1(p) a.s. But R(τ1(p)) = R(τ(p)) a.s.

holds for the number of rejections as we will see later. Let us consider the following

estimator for FDR(t), that is,

α̂(t) =
t

1− t

n−R(t)

R(t) + 1
. (5.4)

Remark 5.5

Comparing the estimator α̂(t) from (5.4) with the estimator α̂n(t) from (3.9), we obtain

R(t) + 1

R(t)
α̂(t) = α̂n(t)

for all t with R(t) > 0.

We now show that the SD procedure with critical values (5.1) is related to the estimator

(5.4).
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Lemma 5.6

The following equality is valid

τ(p) = inf{t ∈ (0, 1) : α̂(t) > α} ∧ an:n (5.5)

for all α ∈ (0, 1), where τ(p) is defined in (5.3).

Proof. If there are no points of intersection between the curve α̂(t) and the α−line,

i.e., the equality α̂(t) = α has no solution on t ∈ [0, 1), then τ(p) = an:n by definition and

(5.5) is valid. If there exist some points of intersection between the curve α̂(t) and the

α−line then they are obviously of the form

t =
α(R(t) + 1)

n+ 1− (R(t) + 1)(1− α)
.

Since R(t) ∈ {1, ..., n}, for all t ∈ (0, 1), we have at most n points of the intersection,

namely a1:n, ..., an:n (see also Scheer [2012] (p. 33)). Further we get

τ(p) = min{ai:n : pi:n > ai:n} ∧ an:n

= min{ai:n : F̂n(pi:n) > F̂n(ai:n)} ∧ an:n

= min{ai:n : F̂n(ai:n) =
i− 1

n
} ∧ an:n

= min{ai:n : α̂(ai:n) = α} ∧ an:n

= inf{t ∈ (0, 1) : α̂(t) > α} ∧ an:n.

�

Remark 5.7

The estimator (5.4) can be represented as

α̂(t) =
t

R(t)

R(t)

R(t) + 1

n−R(t)

1− t

=
t

F̂n(t)

R(t)

R(t) + 1
π̂0(t),

with π̂0(t) =
n−R(t)

n(1− t)
.

Thereby π̂0(t), t ∈ (0, 1) is an estimate of n0
n , the proportion of true null hypotheses

proposed by Storey et al. (cf. Storey et al. [2004] p.190) with λ = t. Thus, we can
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interpret the SD procedure with critical values (5.1) as an adaptive BH SD procedure with

the following estimator ˆ̃π0(t) of
n0
n

ˆ̃π0(t) =
R(t)

R(t) + 1
π̂0(t).

Lemma 5.8

Let us consider the values τ(p) and τ1(p) which are defined in (5.2) and (5.3).

1. The random variable τ(p) is a stopping-time w.r.t. the filtration

Ft = σ(I[0,s](pi), ∀0 6 s 6 t, i = 1, ..., n), t ∈ [0, 1).

2. On the set
⋃

i∈{1,...,n}
{α̂(ai:n) > α} there are no p-values between τ1(p) and τ(p).

Therefore F̂n(τ(p)) = F̂n(τ1(p)) =
R(τ(p))

n holds.

3. On
⋂

i∈{1,...,n}
{α̂(ai:n) 6 α} we have τ1(p) = an:n = τ(p) and we reject all hypotheses.

4. From 5.8.2 and 5.8.3 we get R(τ(p)) = R(τ1(p)) a.s.

5. The functions Ui ↦→ τ(U) and Ui ↦→ τ1(U) are decreasing for each i = 1, ..., n0.

Proof. 1. Since α̂n is the right continuous Ft-adapted process, then by Debut Theorem

(cf. Richard F. Bass [2011] p.117), τ(p) is a stopping time as a first entrance time into an

open set.

Let us define h : (x, y) ↦→ x
1−x

1−y

y+ 1
n

. The implications 2. and 3. follow from the observation

that α̂(t) = h(t, F̂n(t)) and h(ai:n,
i−1
n ) = α.

The function F̂n(t) ↦→ α̂(t) is decreasing which implies that the function Ui ↦→ α̂(t, F̂n(t))

is increasing, so we can prove property 5. �

5.1 Control of the ENFR under (s)MD between the true

p-values

In the sequel we will often use the Optional Sampling Theorem for bounded stopping times

which can be found, for example, in Karatzas [2000] (p. 20, Problem 3.23). The next

lemma shows, that the SD-procedure (ASDP) based on the critical values (5.1) controls

the ENFR at level α
1−α(n1 + 1) under the assumption that the p-values p1, ..., pn belong

to the class MI0 , i.e., the process
(
V (t)−n0t

1−t

)
t∈[0,1)

is an Ft-martingale (conditionally on f

and n0 ), where Ft is defined as in Lemma 5.8.1. (see also Definition 2.16).
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Lemma 5.9

If U = (U1, ..., Un0) = (pi)i∈I0 are (s)MD in sense of Definition 2.16 and P (pi = 0) = 0

for all i ∈ I0, we have

Ef [V (τ(p))] 6
α

1− α
(n1 + 1). (5.6)

Proof. For all t ∈ (0, 1) we have

(1− α̂(t))(R(t) + 1) =
R(t)− tn

1− t
+ 1 (5.7)

=
V (t)− n0t

1− t
+
S(t)− n1t

1− t
+ 1 (5.8)

=M(t) + S(t) + 1 +
t

1− t
(S(t)− n1) (5.9)

6M(t) + S(t) + 1. (5.10)

Further, note that the inequality

lim
t↑pi

R(t) < R(pi) (5.11)

is valid for all i ∈ I, which implies

lim
t↑pi

α̂(t) > α̂(pi) (5.12)

for all i ∈ I. Hence, the process α̂(t) has only negative jumps. Consequently α̂(τ) 6 α

by Lemma 5.6. Due to Lemma 5.8, part(4), and the chain of (in)equalities (5.7)-(5.10) we

get

(1− α)R(τ1(p)) = (1− α)R(τ(p)) (5.13)

6 (1− α̂(τ(p)))R(τ(p)) =M(τ(p)) + S(τ(p)) + α̂(τ(p)) (5.14)

6M(τ(p)) + S(τ(p)) + α. (5.15)

Since τ(p) is the stopping-time w.r.t. Ft and R(τ(p)) = V (τ(p)) + S(τ(p)), we have from

the Optional Stopping Theorem Ef [M(τ(p))] 6 Ef [M(0)] 6 0 (with equality in the case

of martingale dependence) and

(1− α)E [V (τ(p))] 6 E [M(τ(p)) + α(S(τ(p)) + 1)] 6 α(n1 + 1). (5.16)

This completes the proof of the Lemma. �
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Note that in Lemma 5.9 we do not need the assumption about independence between

(U1, ...., Un0) and (f1, ..., fn1).

Remark 5.10

Scheer [2012] (pp. 51-55) proved the same result for i.i.d. U(0, 1)-distributed true p-

values. Lemma 5.9 is a generalization of his result, since it allows dependence between the

underlying p-values. The proof of Lemma 5.9 is based on a martingale argument which

makes the proof more elegant.

Lemma 5.11 (Some exact formulas for the ENFR)

Let U1, ..., Un0 be MD (cf. Definition 2.16 and Remark 2.17) with P (Ui = 0) = 0 for all

i ∈ {1, ..., n0} and 0 < n0 6 n be some fixed number. Then we have:

(a) If fi, i = 1, ..., n1 follow the Dirac δ(0) distribution, then

E [V (τ)] =
α

1− α
(n1 + 1)− α

1− α
(n+ 1)P (V (τ) = n0). (5.17)

(b) If (f1, ...., fn1) belongs to MI1 (cf. Definition 2.16 ),i.e., M1(t) =
(
S(t)−n1t

1−t

)
t∈[0,1)

is

an Ft−martingale and L(fi) = L(Uj) for all i = 1, ..., n1 and all j = 1, ..., n0, then

E [V (τ)] =
α

1− α

n0
n

− α

1− α

n+ 1

n
P (R(τ) = n), (5.18)

where τ ≡ τ(p) is defined in (5.3).

Proof. (a) From the definition of τ and α̂ and due to (5.7)-(5.9) we have α̂(τ) =

αIR(τ)<n and

(1− α̂(τ))(R(τ) + 1) = (1− α)(R+ 1)IR(τ)<n + (n+ 1)IR(τ)=n (5.19)

=M(τ) + n1 + 1. (5.20)

Since IR(τ)<n = 1− IR(τ)=n holds, the equalities (5.19)-(5.20) are equivalent to

(1− α)(R(τ) + 1) + α(n+ 1)IR(τ)=n =M(τ) + n1 + 1, (5.21)

which implies the equality

(1− α)V (τ) =M(τ) + α(n1 + 1)− α(n+ 1)IR(τ)=n. (5.22)

To complete the proof of this part we take the expectation Ef and apply the Optional

Sampling Theorem.
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(b) Analogous to the case (a) we have

(1− α)(V (τ) + S(τ) + 1) + α(n+ 1)IR(τ)=n =M(τ) +M1(τ) + 1, (5.23)

thereby M1(t) =

n1∑
j=1

I(fj6t)−n1t

1−t is a Ft−martingale. Equality (5.23) implies

(1− α)E [V (τ) + S(τ)] = α− α(n+ 1)P (R(τ) = n) (5.24)

by taking the expectation E and applying the Optional Sampling Theorem. The equality

E [S(τ)] = n1
n0
E [V (τ)] (which follows from the assumption, that U1, ...Un0 , f1, ..., fn1 are

identically distributed) completes the proof of this Lemma. �

Remark 5.12

The BIA are a special case of the assumptions of Lemma 5.9.

Remark 5.13

Lemma 5.9 remains true for any random variable σ 6 τ(p) a.s., i.e., if U = (U1, ..., Un0) =

(pi)i∈I0 are (s)MD in sense of Definition 2.16 and Remark 2.17 with P (Ui = 0) = 0 for

all i ∈ {1, ..., n0}, we have

Ef [V (σ)] 6
α

1− α
(n1 + 1). (5.25)

Remark 5.14

If U1, ..., Un0 are i.i.d uniformly U(0, 1)-distributed, then the following equalities are valid:

(a)

E [V (τ)] =
α

1− α
(n1 + 1)− α

1− α
(n+ 1)Fn(an1+1:n, an1+2:n, ..., an:n), (5.26)

under the assumptions of Lemma 5.11 (a), i.e., if fi, i = 1, ..., n1 follow the Dirac δ(0)

distribution.

(b)

E [V (τ)] =
α

1− α

n0
n

− α

1− α

n+ 1

n
Fn(a1:n, ..., an:n), (5.27)

under the assumptions of Lemma 5.11 (b), i.e., if f1, ...., fn1 belong to MI1 (cf. Definition

2.16 ),i.e., and L(fi) = L(Uj) for all i = 1, ..., n1 and all j = 1, ..., n0.

Thereby Fk is the joint c.d.f. of the order statistics U1:k, ..., Uk:k, of k i.i.d. uniformly

distributed random variables Ui, i = 1, ..., k, which can be computed recursively by

Fk(γ1, ..., γk) = 1−
k−1∑
j=0

(kj )Fj(γ1, ..., γj)(1− γj+1)
k−j , (5.28)
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with 0 6 γ1 6 ... 6 γk, k ∈ N and F0 ≡ 1, cf. Shorack and Wellner [1986] (pp. 366-367).

Thereby the stopping rule τ is defined in (5.3).

Remark 5.15

Consider the SD procedure with critical values (5.1). If for some k > 1 the equalities
n1∑
i=1

I(fi 6 a1:n) = n1 − k and
n1∑
i=1

I(fi > an:n) = k hold, then we have

E [V (τ(p))] =
α

1− α
(n1 − k + 1) (5.29)

if (U1, ..., Un0) are MD with P (Ui = 0) = 0 for all i ∈ {1, ..., n0}.

Proof. The assumption, that k > 1 holds, ensures that some i = 1, ..., n exists with

F̂n(ai:n) =
i−1
n , which implies that α̂(τ(p)) = α holds (compare with Lemma 5.8). Hence,

we have

(1− α)V (τ) =M(τ) + α(S(τ) + 1) =M(τ) + α(n1 − k + 1).

Applying the Optional Sampling Theorem completes the proof of this Remark. �

5.2 Control of the FDR under BIA

The next lemma is a technical result which will be used for the proof of FDR-control

under BIA of the SD procedure with critical values (5.1) (ASDP). Note that we use the

convention 0
0 ≡ 0.

Lemma 5.16

Consider the stopping rule τ1 ≡ τ1(p) given in (5.2). Under BIA we have

Ef

[
V (τ1(p))

τ1(p)

]
6 n0. (5.30)

Proof. Observe that

Ef

[
V (τ1(p))

τ1(p)

]
= n0Ef

[
I(U1 6 τ1(p))

τ1(p)

]
(5.31)

= n0Ef

[
I(U1 6 τ1(p))

τ1(p(0))

]
6 n0Ef

[
I(U1 6 τ1(p

(0)))

τ1(p(0))

]
(5.32)

= n0, (5.33)
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where p(0) in (5.32) is given by p(0) = (f, U (0)) with U (0) = (0, U2, ..., Un0). The equality

in (5.32) follows from the observation that

τ1(p)I(U1 6 τ(p)) = τ1(p
(0))I(U1 6 τ(p)) is valid.

It is easy to see that τ1(p
(0)) > τ1(p), which implies the inequality in (5.32). The last

equality is true due to the Fubini Theorem, since p(0) and U1 are independent. �

Remark 5.17

Let 0 < n0 6 n be some fixed number. If σ(p) is a stopping time w.r.t. the reverse filtration

RFt = σ(I(s,1](pi),∀0 6 t 6 s, i = 1, ..., n), t ∈ (0, 1], then we have E
[
V (σ(p))
σ(p)

]
= n0 under

BIA, since the process
(
V (t)
t

)
t∈(0,1]

is a reverse RFt-martingale. (cf. Shorack, Wellner

[1986] p.136). This fact is not relevant for SD procedures, but it is of great importance for

the proof of the FDR-control for some SU procedures, for example the BH SU procedure

and the Storey’s SU procedure (cf. Storey [2004]).

Now we are able to prove the FDR-control under BIA.

Theorem 5.18

Under BIA we have

E
[
V (τ1(p))

R(τ1(p))

]
6 α,

where τ1 ≡ τ1(p) is defined in (5.2).

Proof. We note at first that by Lemma 5.3 we only need to prove that Ef0

[
V (τ1(p))
R(τ1(p))

]
6

α holds for the vector f0, with f0 = (0, f2, ..., fn1), f2 6 f3 6 ... 6 fn1 . Hence, for the

number of all rejections of the procedure τ1(p) we get:

R(τ1) =
(n+ 1)aR:n

α+ aR:n(1− α)
=

(n+ 1)τ1(p)

α+ τ1(p)(1− α)
, (5.34)

which implies

Ef0

[
V (τ1(p))

R(τ1(p))

]
= Ef0

[
V (τ1)(α+ τ1(p)(1− α))

(n+ 1)τ1(p)

]
(5.35)

=
(1− α)

n+ 1
Ef0 [V (τ1(p))] +

α

n+ 1
Ef0

[
V (τ1(p))

τ1(p)

]
(5.36)

6 α
n1 + 1

n+ 1
+ α

n0
n+ 1

= α. (5.37)
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The inequality in (5.37) follows from Lemma 5.16, Remark 5.12 and Lemma 5.9. �

Remark 5.19

Gavrilov et al. [2009] proved the same result as in Theorem 5.18. We used an alternative

short proof based on a martingale argument and on the control of the ENFR.

5.3 Control of the FDR under PRDS and (s)MD

In this section we continue to consider the SD procedure (5.1)(ASDP) with critical values

ai:n = iα
n+1−i(1−α) and the stopping rule τ1 = max{ai:n : pj:n 6 aj , for all j 6 i}.

Gavrilov et al. [2009] have shown with help of simulations that the FDR-level of the

SD procedure (5.1) can exceed α, when the p-values are PRDS (cf. Gavrilov et al. [2009]

pp.625-626). They proposed another SD procedure which controls the FDR for this kind of

dependence. This new SD procedure uses the critical values bi:n = iα
n+βn−i(1−α) , i = 1, ..., n

with βn > n(1 − α). Unfortunately, this procedure is very conservative (cf. Gavrilov et

al. [2009] p.628). We show that if the p-values are both PRDS and (s)MD (see Chapter 6

for Examples), then the FDR of the SD procedure with critical values (5.1) is controlled

at level α. The next lemma is a technical tool for the proof of FDR control under PRDS

and MD.

Lemma 5.20

Let the following assumptions be fulfilled

1. U1, ..., Un0 <st U(0, 1)

2. U1, ..., Un0 are PRDS in the sense of Definition 2.5 and Remark 2.8.

Then we have

Ef

[
V (τ1(p))

τ1(p)

]
6 n0, (5.38)

where τ1 ≡ τ1(p) is defined in (5.2).
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Proof. Let us define a0:n = 0 for technical reasons. We obtain the following sequence

of (in)equalities:

Ef

[
V (τ1(p))

τ1(p)

]
=

n0∑
j=1

Ef

[
I(Uj 6 τ1(p))

τ1(p)

]
(5.39)

=

n0∑
j=1

n∑
i=1

Ef

[
I(Uj 6 ai:n)

ai:n
I(τ1(p) = ai:n)

]
(5.40)

=

n0∑
j=1

n∑
i=1

Ef

[
I(Uj 6 ai:n)

ai:n
(I(τ1(p) 6 ai:n)− I(τ1(p) 6 ai−1:n))

]
(5.41)

6
n0∑
j=1

n∑
i=1

(Ef [I(τ1(p) 6 ai:n)|Uj 6 ai:n]− Ef [I(τ1(p) 6 ai−1:n)|Uj 6 ai:n]) (5.42)

6
n0∑
j=1

n∑
i=1

(Ef [I(τ1(p) 6 ai:n)|Uj 6 ai:n]− Ef [I(τ1(p) 6 ai−1:n)|Uj 6 ai−1:n]) (5.43)

=

n0∑
j=1

Ef [I(τ1(p) 6 an:n)|Uj 6 an:n] = n0. (5.44)

The inequality in (5.42) is valid, since U1, ..., Un0 are stochastically greater than U(0, 1).

The inequality in (5.43) holds, because the function

x ↦→ I(τ1(p) 6 ai−1:n | Ui 6 x) is increasing in x for all i ∈ {1, ..., n0} and since U1, ..., Un0

are assumed to be PRDS. Consequently, using the telescoping sum, we obtain the first

equality in (5.44). The proof is completed, because τ1(p) 6 an:n holds by definition of τ1.

�

Remark 5.21

The assumptions in Lemma 5.16 are obviously a special case of the assumptions of Lemma

5.20. Since the proof of the Lemma for i.i.d random variables U1, ..., Un0 can be conducted

by simpler arguments, we stated the proof of Lemma 5.16 first for instructive purposes.

Remark 5.22

Lemma 5.20 obviously remains valid for any stopping rule σ(U) which is a non-increasing

function of Ui, i = 1, ..., n0, and has a finite range of values β1 < β2 < ... < βn, with

βi ∈ (0, 1).

Lemma 5.23

If the random variables U1, ..., Un0 are PRDS and MDI0 (cf. Definition 2.5, Remark 2.8
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and Remark 2.17) with P (Ui = 0) = 0 for all i ∈ {1, ..., n0}, then we have

E
[
M(τ)

τ

]
6 0, (5.45)

where τ ≡ τ(p) is defined in (5.3).

Proof. Remember that τ is the stopping time w.r.t. the filtration Ft = σ(I(Ui6s), 0 6

s 6 t, i = 1, ..., n0), t ∈ (0, 1) and τ1 is the classical stopping rule of the SD-procedure

(5.1). By Lemma 5.8.4 we have R(τ) = R(τ1). From Lemma 5.20 and due to the Optional

Sampling Theorem we conclude

n0 > Ef

[
V (τ1)

τ1

]
> Ef

[
V (τ)

τ

]
= Ef

[
M(τ)(1− τ) + n0τ

τ

]
= Ef

[
M(τ)

τ

]
+ n0,

(5.46)

which immediately implies the statement of this lemma. �

Theorem 5.24

If the random variables U1, ..., Un0 are PRDS and (s)MD (cf. Definition 2.5, Remark 2.8

and Remark 2.17) with P (Ui = 0) = 0 for all i ∈ {1, ..., n0}, then the FDR of the procedure

with critical values (5.1) (ASDP) is controlled at the desired level α, i.e.,

E
[
V (τ1(p))

R(τ1(p))

]
6 α, (5.47)

where τ1 ≡ τ1(p) is defined in (5.2).

Proof. Recall the proof of Theorem 5.18 and use Lemma 5.20 instead of Lemma 5.16.

�

Remark 5.25

Let U1, ..., Un0 be PRDS and (s)MD (cf. Definition 2.5, Remark 2.8 and Remark 2.17)with

P (Ui = 0) = 0 for all i ∈ {1, ..., n0}. Based on Remark 5.13 and 5.22 we obtain:

E

[
V (σ(p))

R(σ(p))

]
6 α (5.48)

for any stopping rule σ = σ(p) 6 τ(p) which has a finite range of values and is decreasing

in each coordinate of p, where τ ≡ τ(p) is defined in (5.3).

We refer to the next chapter for examples of (s)MD and PRDS random variables.
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5.4 Another generalization

Let us consider the estimator

α̂β(t) =
t

1− t
· n−R(t)

R(t) + β
(5.49)

for FDR(t) for some real number β ∈ (0, 1] and the SD procedure with stopping rule

τβ = inf{t ∈ (0, 1) : α̂β(t) > α} ∧ α(n− 1 + β)

n+ β − (n− 1 + β)(1− α)
. (5.50)

For this τβ SD procedure we formulate the following theorem.

Theorem 5.26

If the p-values U1, ..., Un0 which correspond to true null hypothesis are a.s. positive, are

PRDS and (s)MD (cf. Definition 2.5, Remark 2.8 and Remark 2.17) and are independent

from the p-values f1, ..., fn1 corresponding to alternatives, then we have

E
[

V (τβ)

R(τβ)− (1− β)

]
6 α. (5.51)

Proof. Firstly, we can see that analogous to Lemma 5.6, it can be easily shown that

the SD procedure τβ is equivalent to the SD procedure with critical values

aβi =
α(i− 1 + β)

n+ β − (i− 1 + β)(1− α)
.

Consequently, the stopping rule τβ can be represented as

τβ =
α(R− 1 + β)

n+ β − (R− 1 + β)(1− α)
,

where R = R(τβ) is the number of rejections of the procedure τβ. Now, similarly to

Theorem 5.24, we get

E
[

V (τβ)

R(τβ)− (1− β)

]
= E

[
α+ τβ(1− α)

(n+ β)
·
V (τβ)

τβ

]
(5.52)

=
α

n+ β
E
[
V (τβ)

τβ

]
+

(1− α)

n+ β
E [V (τβ)] . (5.53)

For the first summand in (5.53) we can conclude by Remark 5.22 that
α

n+βE
[
V (τβ)
τβ

]
6 α·n0

n+β . In order to make a statement about the second term in (5.53), we

obtain from (5.49) and (5.50) the inequality

(1− α)(R(τβ) + β) 6
R(τβ)− τβn

1− τβ
+ β. (5.54)
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Analogously to Theorem 5.9 the last inequality implies

(1− α)E [V (τβ)] 6 E [M(τβ)] + α(n1 + β). (5.55)

Therefore, due to the Optional Sampling Theorem, we finally get

E
[

V (τβ)

R(τβ)− (1− β)

]
6
α · n0
n+ β

+
α(n1 + β)

n+ β
= α.

�

Remark 5.27

It can be seen from the proof of Theorem 5.26 that if U1, ..., Un0 are (s)MD with P (Ui =

0) = 0 for all i ∈ {1, ..., n0}, then the SD procedure τβ controls the ENFR in the sense of

Definition 1.16 with g(n1) =
α

1−α(n1 + β), i.e.,

E [V (τβ)] 6
α

1− α
(n1 + β).

5.5 Control of the k-FWER under martingale dependence

Now let us consider a multiple testing procedure τ̃(p) which controls the expected number

of false rejections at g in the sense of Definition 1.16 with

E [V (τ̃)] 6 g(n1) (5.56)

for all n1 = 0, ..., n − 1. In this section we assume that n0 ∈ N is an arbitrary but fixed

number. Since the random variable V (τ̃) can take only non-negative values i ∈ {0, ..., n0}
we obtain by Lemma 1.18

ENFR(τ) =

n0∑
k=1

k-FWER(τ).

Thus, if (5.56) holds, we get

n0∑
k=1

k-FWER(τ̃) 6 g(n1). (5.57)

Obviously, for all 0 < k1 6 k2 6 n0 and all k 6 n0 we have

P (V (τ) > k2) 6 P (V (τ) > k1) and P (V (τ) = n0) 6 P (V (τ) > k) .



CHAPTER 5. ON THE ADAPTIVE GAVRILOV-BENJAMINI-SARKAR SD

PROCEDURE
63

Hence, we obtain the inequality

k · k-FWER(τ̃) + (n0 − k)P (V (τ̃) = n0) 6
n0∑
k=1

k-FWER(τ̃) (5.58)

for all k 6 n0. Consequently, from (5.57) and (5.58) it follows that

k · k-FWER(τ̃) + (n0 − k)P (V (τ̃) = n0) 6 g(n1) (5.59)

for k 6 n0, which yields an upper bound for the k-FWER(τ̃), that is,

k-FWER(τ̃) 6
g(n1)− (n0 − k)P (V (τ̃) = n0)

k
. (5.60)

Let us assume that the false p-values are independent from the true ones. Then the least

favorable configuration for the k-FWER (exactly as for the ENFR) is the Dirac-uniform

model DU(n0, n). For this configuration the k-FWER (as well as the ENFR and the FDR)

is analytically computable, if the step-wise procedure is defined in terms of the determin-

istic critical values.

The following lemma yields an upper bound for the k-FWER of the SD procedure with

critical values ai:n = iα
n+1−i(1−α) (ASDP). Note that this bound may be large.

Lemma 5.28

If U1, ..., Un0 are MD (cf. Remark 2.17) with P (Ui = 0) = 0 for all i ∈ {1, ..., n0} and

f1, ..., fn1 are independent from U1, ..., Un0, then we have

k-FWER(τ) 6
α

1− α

n1 + 1

k
− P (M(τ) = n0)

(
α

1− α
(n+ 1)− (n0 − k)

)
(5.61)

for all k ∈ {1, ..., n0} and τ which is defined in (5.3).

Proof. We have shown, in the proof of Lemma 5.11 that

E [V (τ)] =
α

1− α
(n1 + 1)− α

1− α
(n+ 1)P (M(τ) = n0) (5.62)

holds, if the p-values, which belong to the false null hypotheses, are all Dirac δ(0)−distributed,

i.e., PDU(n0,n)(fi = 0) = 1 for all i = 1, ..., n1. �

Similar to the motivation at the beginning of this section we get from (5.62)

k · k-FWER+ (n0 − k)P (M(τ) = n0) 6
n0∑
k=1

k-FWER(τ) (5.63)

=
α

1− α
(n1 + 1)− α

1− α
(n+ 1)P (M(τ) = n0), (5.64)
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which implies, that

k-FWER(τ) 6
α

1− α

n1 + 1

k
− P (M(τ) = n0)

(
α

1− α
(n+ 1) + (n0 − k)

)
(5.65)

remains valid for all k = 1, ..., n0, since P (V (τ) = n0) = P (M(τ) = n0). The fact that

Dirac-uniform configurations are least favorable configurations for the k-FWER and for

the ENFR as well, completes the proof. �

Remark 5.29

Note that if U1, ..., Un0 are sMD (cf. Definition 2.16 and Remark 2.17) with P (Ui = 0) = 0

for all i ∈ {1, ..., n0} then we have an inequality (6) in (5.62).

5.6 Comparison of the SD procedure 5.1 with BH-SU pro-

cedure under total and block-dependence

In Chapter 6 we will study martingale structures and consider some simulated examples

for the FDR of different stepwise procedures under the assumption that the true p-values

belong to the class MI0 . In this section however we compare at first the FDR of the

adaptive SD procedure (5.1) with the FDR of the Benjamini and Hochberg linear SU pro-

cedure. It is clear that the BH-procedure is a step-up procedure whereas the procedure

(5.1) belongs to the class of step down procedures. But it is interesting from a theoretical

point of view to compare the procedures which control the FDR under the same assump-

tions. This is why we are now considering only the dependence structures, for which it can

be easily proved that the FDR of both aforementioned procedures is controlled at α. We

begin with the consideration of the following Dirac-Martingale situation (DM1)-(DM2).

Let α ∈ (0, 1) be given and assume that n0 6 n is some fixed positive number in this

section.

(DM1) The true p-values are totally dependent and uniformly distributed, that is, U1 =

... = Un0 = U ∼U(0, 1)-distributed.

(DM2) The false p-values follow a Dirac δ(0) distribution with point mass 1 at 0.

It is clear that if the p-values fulfill (DM1)-(DM2), then the process (M(t))t∈(0,1) is

an Ft−martingale as well as the process (V (t)
t )t∈(0,1) is a RFt−reverse martingale, where

RFt = σ(I(Ui > s), for all t 6 s 6 1) is the reverse filtration. Moreover, the process

Ũ(t) =
(
R(t)−nt

1−t

)
t∈(0,1)

is also a Ft−martingale with E
[
Ũ(t)

]
= n1.
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Since under (DM1)-(DM2) the process (V (t)
t )t∈(0,1) is a reverse RFt martingale and

the stopping-rule of the Benjamini-Hochberg SU procedure τBH given by

τBH = sup{t ∈ (0, 1) :
t

F̂n(t)
6 α},

is a reverse stopping-time w.r.t. RFt, we get for the FDR of the BH-SU procedure (cf.

Heesen, Janssen [2014])

E
[
V (τBH)

R(τBH)

]
= E

[
V (τBH)

τBH

τBH

R(τBH)

]
=
α

n
E
[
V (τBH)

τBH

]
=
n0
n
α.

Now we compute the FDR of the SD procedure (5.1).

Lemma 5.30

Suppose that (DM1) and (DM2) are fulfilled. Then the FDR of the SD procedure with

critical values 0 6 c1 6 ... 6 cn 6 1 satisfies

E
[
V (τc)

R(τc)

]
=
n0
n
cn1+1, (5.66)

where τc is the stopping rule of the SD procedure with critical values (c1, ..., cn).

Proof. Obviously τc can only take two values, either cn1 or cn. Then

I(τc = cn1) = I(U > cn1+1) and I(τc = cn) = I(U 6 cn1+1) hold. Consequently, we get

E
[
V (τc)

R(τc)

]
= E

[n0
n
I(U 6 cn1+1)

]
=
n0
n
cn1+1.

�

Figure (5.1) shows the values of the FDR for the SD procedure with critical values

(5.1) and BH SU procedure for different values of α and n0, where n0 corresponds to the

x−axis. For the first picture we have chosen n = 200 and for the second one n = 500.

We can see that FDR of the procedure (5.1) exhausts maximally half of the level α and

becomes maximal, when the number of the true nulls is about a quarter of the number

of all hypotheses and then it decreases as n0 increases to n, whereas FDR of the BH SU

procedure is equal to α if n0 = n.

Next we consider the case of total dependence in two blocks. Let n0 be a fixed even

number here. We suppose that the following assumption (DM3), that is,
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Figure 5.1: Comparison of the FDR for the SD procedure (5.1) and the BH-SU procedure. Here SD(α)

corresponds to the FDR of the adaptive SD procedure (5.1) and BH(α) to the FDR of the BH SU procedure.

(DM3) U, V are independent uniformly U(0, 1)-distributed random variables, U1 = U2 =

... = Ul = U ∧ V, Ul+1 = ... = Un0 = U ∨ V, l = n0
2 ,

and the assumption (DM2) is fulfilled. In this case we can compute the FDR of both

procedures analytically. The FDR of the BH SU procedure is still αn0
n , since (DM2)-(DM3)

model obviously ensures that the process
(
V (t)
t

)
t∈(0,1]

is a reverse RFt− martingale. And

for the FDR of some SD procedure we get the following result.

Lemma 5.31

Assume that (DM2) and (DM3) are fulfilled. Then for the SD procedure with critical

values c1 < c2 < ... < cn and stopping rule τc we have

E
[
V (τc)

R(τc)

]
= 2cn1+1

l

n1 + l
(1− cn1+l+1) +

n0
n
cn1+1 (2cn1+l+1 − cn1+1) .

Proof. Similarly to the previous lemma we obtain

E
[
V (τ)

R(τ)

]
=

l

n1 + l
P (U ∧ V 6 cn1+1, U ∨ V > cn1+l+1) +

n0
n
P (U ∧ V 6 cn1+1, U ∨ V 6 cn1+l+1)
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=
l

n1 + l
P (U ∧ V 6 cn1+1) + P (U ∧ V 6 cn1+1, U ∨ V 6 cn1+l+1)

(
n0
n

− l

n1 + l

)
=

l

n1 + l

(
1− (1− cn1+1)

2
)
+
(
c2n1+l+1 − (cn1+l+1 − cn1+1)

2
)(n0

n
− l

n1 + l

)
=

l

n1 + l

(
2cn1+1 − c2n1+1

)
+

(
n0
n

− l

n1 + l

)
cn1+1 (2cn1+l+1 − cn1+1)

= 2cn1+1
l

n1 + l
(1− cn1+l+1) +

n0
n
cn1+1 (2cn1+l+1 − cn1+1) .

�

Figure 5.2 shows the behavior of the FDR of the procedures (5.1) and BH SU for fixed

n and α dependent on the number l = n0
2 of the elements in each block. It is known

that the FDR of the BH procedure depends linearly on the proporton n0
n and is equal to

αn0
n = α2l

n .

Figure 5.2: Comparison of the FDR of the SD procedure (5.1) and the BH SU procedure. Here SD(α)

corresponds to the FDR of the adaptive SD procedure (5.1) and BH(α) to the FDR of the BH SU procedure.

The number of the null hypotheses is chosen to be n = 200 in the left picture and n = 500 in the right

one.

We can see that if the proportion of the number of true null hypotheses among all

hypotheses n0
n is small, then the SD procedure exhausts the level α better, than the BH

procedure and, if the proportion of the true nulls is large the BH procedure exhausts the

level α much better for this kind of dependence.
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Finally we want to compare the BH SU procedure with the SD procedure, based on

the critical values (5.1) under the DU(n0, n)-model.

Figure 5.3: Comparison of the FDR for the SD procedure (5.1) and for the BH-SU procedure. Here

SD(α) corresponds to the FDR of the adaptive SD procedure (5.1) and BH(α) to the FDR of the BH SU

procedure.The number of the null hypotheses is chosen to be n = 50 in the first picture and n = 200 in

the second one.

As we can see from Figure 5.3, the FDR of the SD procedure (5.1) exceeds the FDR

of the BH SU procedure for all n0 < n. If all hypotheses are true, i.e., for the case n0 = n,

the FDR of the linear SU is slightly larger, than the FDR of the procedure (5.1). This

disadvantage can be eliminated, if we increase the first critical value a1 = α
n+α of the

procedure (5.1) (due to Theorem 4.3) to the value b1 = 1 − n
√
1− α (cf. Figure 5.4). In

this way it will be achieved that the FDR of the SD procedure (5.1), as well as the FDR

of the BH SU procedure, is equal to α, when n0 = n holds.
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Figure 5.4: Comparison of the FDR for the SD procedure with critical values(5.1) with increased first

critical values by Lemma 4.3 and for the BH-SU procedure. Here SD(α) corresponds to the FDR of the

adaptive SD procedure (5.1) and BH(α) to the FDR of the BH SU procedure.The number of the null

hypotheses is chosen to be n = 10 in the first picture and n = 50 in the second one.

As we can see from figures 5.2 - 5.4 the FDR of the SD procedure with critical values

(5.1) (ASDP) is better exhausted in comparison with the BH SU procedure under BIA.

On the other hand the BH SU test is much more robust under total- and total block-

dependence.

5.7 What happens under positive association?

In this section we propose the proof of the control of the FDR-related values (see Theorem

5.36). The next three lemmas are technical tools for the proof of Theorem 5.36.

Lemma 5.32

If a.s. positive random variables U1, ..., Un0 are (s)MD and positively associated (cf. Def-

inition 2.3) conditioned on f , then for any number k ∈ R, k > 0 and any coordinate-wise

decreasing stopping-time σ = σ(U), with 0 6 σ 6 a, where a ∈ [0, 1) is a positive real

number, the following mathematical expectation is not positive:

Ef

[
M(σ(U))

S(σ(U)) + k

]
6 0. (5.67)
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Proof. Firstly, let us define

ñ1 =

n1∑
i=1

I{0}(fi). (5.68)

Remember that the ”false” p-values are assumed to be fixed and ordered, i.e., f1 6 f2 6

... 6 fn1 . Then we get S(t) + k = S̃(t) + (ñ1 + k) =
n1∑

i=ñ1+1
I[0,t](fi) + (ñ1 + k), with

S̃(t) =
n1∑

i=ñ1+1
I[0,t](fi), which implies the following identity

1

S(t) + k
=

n1∑
i=ñ1+1

biI[0,fi)(t) + bñ1 . (5.69)

Here the non-negative deterministic coefficients bi and bñ1 can be computed recursively

(see Appendix for more details ). From (5.69) we have

M(σ(U))

S(σ(U)) + k
=

n1∑
i=ñ1+1

biI[0,fi)(σ(U))M(σ(U)) + bñ1M(σ(U)). (5.70)

This yields

Ef

[
M(σ(U))

S(σ(U)) + k

]
=

n1∑
i=ñ1+1

biEf

[
I[0,fi)(σ(U))M(σ(U))

]
+ bñ1Ef [M(σ(U))] (5.71)

6
n1∑

i=ñ1+1

biEf

[
E
[
I[0,fi)(σ(U))M(σ(U))|Ffi

]]
6

n1∑
i=ñ1+1

biEf

[
I[0,fi)(σ(U))M(σ(U) ∧ fi)

]
(5.72)

=

n1∑
i=ñ1+1

biEf

[
(1− I[fi,1](σ(U)))M(σ(U) ∧ fi)

]
6 −

n1∑
i=ñ1+1

biEf

[
I[fi,1](σ(U))M(fi)

]
(5.73)

=−
n0∑
j=1

n1∑
i=ñ1+1

biEf

[
I[fi,1](σ(U))

(
I(Uj 6 fi)− fi

1− fi

)]
, (5.74)

where the (in)equalities (5.72) and (5.73) follow from the Optional Sampling Theorem.

Note that if the random variables Ui i ∈ {1, ...n0} are positively associated, then we

have from (5.74)

Ef

[
M(σ(U))

S(σ(U)) + k

]
6 −

n0∑
j=1

n1∑
i=ñ1+1

biCov(I(fi,1](σ(U)),mj(fi)) 6 0, (5.75)



CHAPTER 5. ON THE ADAPTIVE GAVRILOV-BENJAMINI-SARKAR SD

PROCEDURE
71

since both of the functions Ui ↦→ mj(fi) and Ui ↦→ I(fk,1](σ(U)) are non-increasing for each

i, j = 1, ..., n0 and k = 1, ..., n1. The proof of this Lemma is completed. �

Lemma 5.33

The statement of Lemma 5.32 remains true, if a.s. positive random variables U1, ..., Un0

are (s)MD and PRDS.

Proof. The proof follows directly from (5.75) and Corollary 2.15. �

Now we formulate a generalization of Lemma 5.32.

Lemma 5.34

Let the following assumptions be fulfilled.

(a) U1, ..., Un0 ∈M(U, n0) are positively associated, conditioned on f , and stochastically

independent from f1, ..., fn0 with P (Ui = 0) = 0 for all i ∈ {1, ..., n0},

(b) f = f(σ, f̄) : [0, 1]× [0, 1]n1 → (0,∞) is some positive and increasing function,

(c) σ = σ(U, f) is an Fdi−stopping time, with finite range {d1, ..., dm}, m ∈ N, d1 6

... 6 dm,

(d) Ui ↦→ σ(U, f) is decreasing for all i = 1, ..., n0.

Then we have

Ef

[
M(σ)

f(σ)

]
6 0. (5.76)

Proof. We have

Ef

[
M(σ)

f(σ)

]
= Ef

[
m∑
i=1

M(di)

f(di)
I(σ = di)

]
(5.77)

= Ef

[
m∑
i=1

M(di)

f(di)
(I(σ 6 di)− I(σ 6 di−1))

]
(5.78)

=

m∑
i=1

(
Ef

[
M(di)

f(di)
I(σ 6 di)

]
− Ef

[
M(di)

f(di)
I(σ 6 di−1)

])
(5.79)
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=

m∑
i=1

(
Ef

[
M(di)

f(di)
I(σ 6 di)

]
− Ef

[
E
[
M(di)

f(di)
I(σ 6 di−1)|Fdi−1

]])
(5.80)

=
m∑
i=1

(
Ef

[
M(di)

f(di)
I(σ 6 di)

]
− Ef

[
M(di−1)

f(di)
I(σ 6 di−1)

])
(5.81)

6
m∑
i=1

(
Ef [M(di)I(σ 6 di)]

f(di)
−

Ef [M(di−1)I(σ 6 di−1)]

f(di−1)

)
(5.82)

=
Ef [M(dm)I(σ 6 dm)]

f(dm)
= 0. (5.83)

The above relations hold due to the following reasons: equality (5.81) is valid, because σ

is a stopping time, and hence, I(σ 6 di−1) is Fdi−1
-measurable. Because of the positive

association, conditioned on f , we have Ef [M(di−1)I(σ 6 di−1)] 6 0 and, due to assump-

tion (b), we have inequality in (5.82). Finally, the first equality in (5.83) is valid by the

telescopic sum argument. The application of the Optional Sampling Theorem completes

the proof, since σ 6 dm a.s. �

Remark 5.35

The assumption (a) of Lemma 5.34 can be replaced by the requirment that U1, ..., Un0 are

PRDS. Because of Corollary 2.15 we get

Ef [M(dj)I(σ 6 di)] = Covf (M(dj), I(σ 6 di)) 6 0 (5.84)

under assumption (d) of Lemma 5.34. Hence, the chain of (in)equalities (5.77)-(5.83)

remains true.

As a consequence of Lemma 5.32 we propose the next theorem. It yields some func-

tionals which can be controlled by the procedure 5.1 under the martingale dependence

and positive association.

Theorem 5.36

If a.s. positive random variables U1, ..., Un0 ∈ M(U, n0) are positively associated and

stochastically independent from f1, ..., fn0, then for the SD procedure with critical values

(5.1) the following bounds are valid:

(a)

Ef

[
V (τ1)

S(τ1) + 1

]
6

α

1− α
,
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(b)

Ef

[
V (τ1)

R(τ1) + 1

]
6 α,

(c) let n1 > 1 then

Ef0

[
V (τ1)− α

R(τ1)

]
6 α,

where f0 is given by f0 = (0, f2, ..., fn1), 0 6 f2 6 f3 6 ... 6 fn1 6 1.

Proof. Firstly, remember that R(τ1) = R(τ) and V (τ1) = V (τ) hold (cf. Lemma 5.8.

4). Similarly to (5.13) we have:

(1− α)R(τ) 6M(τ) + S(τ) + α, (5.85)

which is equivalent to

(1− α)V (τ) 6M(τ) + α(S(τ) + 1). (5.86)

Dividing (5.86) by S(τ) + 1 yields

(1− α)
V (τ)

S(τ) + 1
6

M(τ)

S(τ) + 1
+ α. (5.87)

Taking Ef in (5.87) and applying Lemma 5.32 for k = 1 proves part (a) of the Theorem.

Based on part (a) and due to Jensen’s inequality we obtain

Ef

[
V (τ)

R(τ) + 1

]
= Ef

⎡⎣ V (τ)
S(τ)+1

V (τ)
S(τ)+1 + 1

⎤⎦

6
Ef

[
V (τ)

S(τ)+1

]
Ef

[
V (τ)

S(τ)+1

]
+ 1

6 α,

which proves part (b).

Now we prove part (c). Firstly note, that the function x ↦→ 1
1+x is convex on x ∈ (−1,∞).

From (5.85) we get

M(τ)

S(τ) + α
> (1− α)

R(τ)

S(τ) + α
− 1 > −1 on {f1 = 0}.
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Hence, from (5.86) and the Jensen’s inequality we obtain

Ef0

[
V (τ)− α

R(τ)

]
= 1− Ef0

[
S(τ) + α

R(τ)

]
6 1− (1− α)Ef0

[
S(τ) + α

M(τ) + S(τ) + α

]
6 1− (1− α)

1

Ef0

[
M(τ)

S(τ)+α

]
+ 1

.

Finally, Lemma 5.32 with k = α provides the desired inequality. �

5.8 Conclusions

In this chapter we considered a well-known SD procedure (5.1) (ASDP) with critical values

ai:n = iα
n+1−i(1−α) . This procedure was studied by Finner et al. [2009] in context with the

β−adjusted asymptotically optimal rejection curve. Two years later Gavrilov et al. [2010]

proved that this procedure controls the FDR if the underlying p-values are independent.

Scheer [2012] showed that the procedure (5.1) controls the ENFR linearly. We proved the

ENFR-control under new dependence assumptions - under the martingale dependence.

We also proposed a new martingale based proof for FDR-control of the procedure (5.1)

under the BIA assumptions. We generalized the result of Gavrilov et al. [2010] by the

proof of the FDR-control under PRDS and (s)MD. Moreover, we proposed a class of SD

procedures τβ, β ∈ (0, 1], that control ENFR and FDR (or FDR-related values) under

martingale dependence and PRDS.



Chapter 6

(Super-)Martingale Structures

In this chapter we study structures, for which the process

M(t) =

n0∑
i=1

I(Ui 6 t)− n0t

1− t
=

n0∑
i=1

I(Ui 6 t)− t

1− t
=

n0∑
i=1

mi(t) (6.1)

is a (super-)martingale w.r.t. the filtration Ft = σ(I(Ui6s), 0 6 s 6 t,∀i = 1, ..., n0), t ∈
[0, 1).

Remember that the vector of p-values is denoted by p = (p1, ..., pn), U = (pi, i ∈ I0) =

(U1, ..., Un0) is the vector of true p-values, f = (pi, i ∈ I1) = (f1, ..., fn1), is the vector of

the false ones, thereby we assume that f1 6 f1 6 ... 6 fn1 holds. The number of true

nulls n0 6 n is assumed to be an arbitrary fixed natural number in this chapter.

The following Lemma can be found in Shorack and Wellner [1986], p.133.

Lemma 6.1

If U1, ..., Un0 are i.i.d uniformly distributed on (0, 1), then {M(t), t ∈ [0, 1)} is a Ft-

martingale.

Proof. Since Ui, i = 1, ..., n0, are i.i.d random variables it is sufficient to prove that

for all i = 1, ..., n0, mi(t) is a F i
t -martingale with F i

t = σ(I(Ui6s), 0 6 s 6 t), t ∈ [0, 1).

Obviously, mi(t) is adapted on the filtration F i
t and we have for every fixed t ∈ [0, 1)

E [| mi(t) |] 6
E [I(Ui 6 t)] + t

1− t
=

2t

1− t
<∞. (6.2)

75
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It remains to prove the martingale property E
[
mi(t)|F i

s

]
= mi(s), for all s 6 t. For all

fixed t ∈ [0, 1) and for all s 6 t we have:

E
[
I(Ui 6 t)− t

1− t
|F i

s

]
=

E [I(Ui 6 t)|Ui 6 s] I(Ui 6 s) + E [I(Ui 6 t)|Ui > s] I(Ui > s)− t

1− t
=

I(Ui 6 s) + I(Ui > s) t−s
1−s − t

1− t
=

I(Ui 6 s)− s

1− s
= mi(s).

�

Remark 6.2

The process {V (t)
t , t ∈ (0, 1]} is a reverse martingale w.r.t. the reverse Filtration RFt =

σ(I(s,1)(Ui), ∀0 < t 6 s 6 1, i = 1, ..., n0) under the assumptions of Lemma 6.1. This

statement is proved in Shorack and Wellner [1986], p.136. The reversal t ↦→ 1 − t yields

the statement of Lemma 6.1.

Lemma 6.3

If U1, ..., Un0 are i.i.d. random variables and the distribution function F of Ui, i = 1, ..., n0,

is convex on [0, 1], then {M(t), t ∈ [0, 1)} is an Ft-supermartingale.

Proof. By the convexity of F we have

P (Ui 6 t|Ui > s) =
F (t)− F (s)

1− F (s)
6
t− s

1− s
, s 6 t,

which implies that

E
[
mi(t)|F i

s

]
=

I(Ui 6 s) + I(Ui > s)P (Ui 6 t|Ui > s)− t

1− t
6 mi(s)

holds, and consequently {M(t), t ∈ [0, 1)} is a super-martingale. �

Remark 6.4

Note that the assumption from Lemma 6.3 is not necessary, but sufficient. We can for-

mulate the neccesary and sufficient assumption as follows.

For the distribution function F of i.i.d. random variables U1, ..., Un0 the following inequal-

ity holds
F (t)− F (s)

1− F (s)
6
t− s

1− s
, 0 6 s 6 t,

iff

{M(t), t ∈ [0, 1)} is a Ft−super-martingale.
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6.1 Sufficient conditions for MD

Theorem 6.5

If the two following conditions are fulfilled, then the process {M(t), t ∈ [0, 1)} from (6.1)

is a supermartingale w.r.t. the filtration Ft.

1. (Markov Property) The elementary Markov property holds, i.e., for all i =

1, ..., n0, for all m ∈ N, for all 0 < s1 < ... < sm 6 s 6 t, for all l1j , ...l
m
j ∈ {0, 1}, for

which the intersection
n0⋂
j=1

m⋂
k=1

{I(0,sk](Uj) = lkj } is not empty, we get

P

⎛⎝Ui 6 t |
n0⋂
j=1

m⋂
k=1

{I(0,sk](Uj) = lkj }

⎞⎠ = P

⎛⎝Ui 6 t |
n0⋂
j=1

{I(0,sm](Uj) = lmj }

⎞⎠ .

2. ((Super-)Martingale Property) For all i ∈ {1, ..., n0}, for all lj ∈ {0, 1}, j =

1, ..., n0, with j ̸= i, s 6 t either the following inequality (a) or (b) holds:

(a)

E

⎡⎢⎢⎣I(Ui 6 t) | (Ui > s) ∩
n0⋂
j=1
j ̸=i

{I(0,s](Uj) = lj}

⎤⎥⎥⎦ 6
t− s

1− s
, (6.3)

(b)

E

⎡⎢⎢⎣ n0∑
i=1

I(Ui 6 t) | (Ui > s) ∩
n0⋂
j=1
j ̸=i

{I(0,s](Uj) = lj}

⎤⎥⎥⎦ 6 n0
t− s

1− s
. (6.4)

Remark 6.6

The integrability assumption E [|M(t)|] < ∞ is always fulfilled, because obviously the in-

equality

−n0
t

1− t
6M(t) 6 n0

is valid for all t ∈ [0, 1) and fixed n0 ∈ N.

Proof. In order to verify that {M(t), t ∈ [0, 1)} is a Ft-(super-)martingale, we have to

show that the (super-)martingale property E [M(t) | Fs] 6 M(s) for all s 6 t holds. The

integrability of M(t) is fulfilled (see Remark 6.6). By assumption 1 we have

E [M(t) | Fs] = E
[
M(t) | I(0,s](U1), ..., I(0,s](Un0)

]
. (6.5)
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Further, by assumption 2 (a) we get

E
[
I[0,t](Ui) | I[0,s](U1), ..., I[0,s](Un0)

]
= I(Ui 6 s)

+ I(Ui > s)
∑

lj∈{0,1}
j=1,...,n0,j ̸=i

⎛⎜⎜⎝ n0∏
j=1
j ̸=i

I(I(0,s](Uj) = lj)E

⎡⎢⎢⎣I[0,t](Ui) | {Ui > s} ∩
n0⋂
j=1
j ̸=i

{I(0,s](Uj) = lj}

⎤⎥⎥⎦
⎞⎟⎟⎠

6 I(Ui 6 s) + I(Ui > s)
∑

lj∈{0,1}
j=1,...,n0,j ̸=i

⎛⎜⎜⎝ n0∏
j=1
j ̸=i

I(I(0,s](Uj) = lj)

⎞⎟⎟⎠ t− s

1− s
,

(6.6)

thereby the summation is over all vectors (l1, ..., li−1, li+1, ..., ln0) from {0, 1}n0−1.

Since ∑
lj∈{0,1}

j=1,...,n0,j ̸=i

n0∏
j=1
j ̸=i

I(I(0,s](Uj) = lj) = 1

holds, we have

E
[
I[0,t](Ui) | I[0,s](U1), ..., I[0,s](Un0)

]
6 I(Ui 6 s) + I(Ui > s)

t− s

1− s
,

which implies that {M(t), t ∈ [0, 1)} is an Ft−super-martingale.

The case of assumption 2 (b) can be proved in the same way. �

Remark 6.7

Note that the following structures obviously fulfill the assumptions of Theorem 6.5.

(i) Total dependence between true p-values, i.e., U1 = ... = Un0 = U and U has a con-

vex distribution function. If the random variable U is uniformly U(0, 1)-distributed,

then the total dependence between true p-values belongs to the class of martingale

dependence.

(ii) Block-total dependence between true p-values, that is, a partition I0 =
d∑

k=1

Jk of

pairwise disjoint sets Jk of the index set I0 of true p-values exist such that Ui = Uj

whenever {i, j} ⊂ Jk holds and the vectors

(Ui1)i1∈J1 , (Ui2)i2∈J2 , ..., (Uid)id∈Jd

are independent.
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(iii) The set of null p-values satisfies the Joint Null Criterion (cf. Leek and Storey

[2011]), that is, the joint distribution of the order statistics U1:n0 , ..., Un0:n0 is equal to

the joint distribution of U∗
1:n0

, ..., U∗
n0:n0

, where U∗
1 , ...U

∗
n0

are i.i.d U(0, 1)-distributed

random variables.

Let for some interval T ⊂ [0,∞), (Ω,G, (Gt)t∈T , P ) be some filtered probability space

which satisfies the “usual conditions”, i.e.,

� the probability space (Ω,G, P ) is complete, i.e., for all the null-sets N ∈ G, with
P (N) = 0 and all Ñ ⊂ N we have Ñ ∈ G,

� the filtration Gt is complete, i.e., every σ-algebra Gt contains all the null-sets in G,

� the filtration (Gt)t∈T is is right-continuous, i.e., for every (non-maximal) t ∈ T the

σ−algebra Gt+ = ∩s>tGs is equal to Gt.

Lemma 6.8 1. If {X(t), t ∈ T} is a real valued Gt−super-martingale and φ : R → R is

a concave, increasing function, so that φ(X(t)) is integrable for each t ∈ [0, 1), then

the process Y (t) = φ(X(t)) is also a Gt−super-martingale.

2. If X(t) is a real valued Gt−martingale and φ : R → R is a concave, φ(Xt) is integrable

function (not necessarily increasing), then Y (t) = φ(X(t)) is a Gt−super-martingale.

Proof. The proof is a simple consequence of Jensen’s inequality for conditional ex-

pectations (cf. Hoffman-Jørgensen, [1994], pp.492-493). �

Let us denote the space of cadlag-Gt−martingales by M and the space of cadlag-Gt−
super-martingales by Ms.

Remark 6.9 (a) The space M of Gt−martingales is a real vector space.

(b) The space Ms of Gt− super martingales is closed with respect to addition, multipli-

cation with positive constants and the finite Infimum.

Lemma 6.10 (Optional Switching)

Let (M1(t),Gt)t∈(0,1) and (M2(t),Gt)t∈(0,1) be cadlag-martingales and τ ∈ (0, 1) be a bounded

Gt−stopping time. If M1(τ) =M2(τ) holds a.s., then the following process

M(t) =

⎧⎨⎩M1(t), t 6 τ

M2(t), t > τ
(6.7)
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is also a Gt-martingale.

Proof. By the definition of the process (M(t))t∈(0,1) we have

M(t) = It6τM1(t) + It>τM2(t)

=M1(t ∧ τ)(1− It>τ ) + It>τM2(t)

=M1(t ∧ τ) + It>τ (M2(t)−M1(t ∧ τ))

=M1(t ∧ τ) + It>τ (M2(t)−M2(t ∧ τ))

For s 6 t we can compute E [M(t) | Gs]. Applying the Optional Sampling Theorem brings

us to:

E [M(t) | Gs] =M1(s ∧ τ) + Iτ<s(M2(s)−M2(s ∧ τ)) + E [Is6τ<t(M2(t)−M2(t ∧ τ)) | Gs] .

(6.8)

Now, we observe that {τ > s} = {τ < s}c and consequently Is6τ is Gs-measurable.

Let us consider the third term in (6.8). Firstly, we decompose Is6τ<t in the following

way Is6τ<t = Is6τ − Iτ>t, further by applying the Optional Sampling Theorem we get

E [Is6τ<t(M2(t)−M2(t ∧ τ)) | Gs]

= E [Is6τ (M2(t)−M2(t ∧ τ)) | Gs]− E [Iτ>t(M2(t)−M2(t ∧ τ)) | Gs] =

= Is6τ (M2(s)−M2(s ∧ τ))− E [Iτ>t(M2(t)−M2(t)) | Gs] = 0

Hence, we have shown

E [M(t) | Gs] =M1(s ∧ τ) + Iτ<s(M2(s)−M2(s ∧ τ)) (6.9)

=M1(s ∧ τ) + Iτ<s(M2(s)−M1(s ∧ τ)) =M(s), (6.10)

which implies that (M(t),Gt) is a martingale. �

The next lemma shows that martingale dependence and uniform distribution are

in a certain sense related concepts.

Lemma 6.11

Let random variables X1, ..., Xn be MD on {1, ..., n} in the sense of Definition 2.16

and let σ : {1, ..., n} → {1, ..., n} be some random permutation of the index-set

{1, ..., n} which is independent of Xi, i = 1, ..., n.
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(a) If

M(t) =
n∑

i=1

I(Xi 6 t)− t

1− t
is a Ft −martingale,

with Ft = σ(I[0,t](Xi), 0 6 s 6 t, i = 1, ..., n),

and if additional E [M(t)] = 0 is valid, then the random variable Yi = Xσ(i):n, i =

1, ..., n, is U(0, 1)-distributed.

(b) If the random variables X1, ..., Xn are sMD on {1, ..., n} ( i.e., that the process M(t)

is Ft−super-martingale) with E [M(0)] 6 0, then we have Yi <st U(0, 1), i = 1, ..., n.

Proof. Firstly note, that since σ is an independent permutation, the random variables

Yi, i = 1, ..., n are exchangeable. This implies

E [I(Yi 6 t)] = E

[
1

n

n∑
i=1

I(Yi 6 t)

]
holds. (6.11)

Moreover, we get

E

[
1

n

n∑
i=1

I(Yi 6 t)

]
= E

[
1

n

n∑
i=1

I(Xi 6 t)

]
(6.12)

=
(1− t)

n
E [M(t)] + t 6 t. (6.13)

Note that we have an (in)equality in (6.13), if (M(t),Ft) is a (super-)martingale. �

Lemma 6.12

Let X1, ..., Xn be MD on J ∈ {1, ..., n}, i.e., the process M(t) =

( ∑
i∈J

I(Xi6t)−|J |t

1−t

)
t∈(0,1)

is

an Ft−martingale. If additionally Xi,∈ J, are exchangeable, then the processes mi(t) =(I(Xi6t)−t
1−t

)
t∈(0,1)

are Ft- martingales for all i ∈ J .

Proof. By exchangeability of X1, ..., Xn on J we get for 0 < s 6 t

E

⎡⎣
∑
i∈J

I(Xi 6 t)− |J |t

1− t
|Fs

⎤⎦ =
∑
i∈J

E
[
I(Xi 6 t)− t

1− t
|Fs

]

= |J |E
[
I(Xi 6 t)− t

1− t
|Fs

]
= |J |E [mi(t)|Fs] a.s. for all i ∈ J.

(6.14)
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On the other hand by the martingale dependence of X1, ..., Xn on J we have

E

⎡⎣
∑
i∈J

I(Xi 6 t)− |J |t

1− t
|Fs

⎤⎦ =

∑
i∈J

E
[
I(Xi 6 s)− s

1− s
|Fs

]
=
∑
i∈J

E [ms(t)] a.s.

(6.15)

From (6.14) and (6.15) follows that for all i ∈ J

E [mi(t)|Fs] =

∑
i∈J

mi(s)

|J |
= mi(s) a.s.

and, consequently (mi(t))t∈(0,1) is an Ft−martingale for all i ∈ J . �

The following lemma shows a relation between the martingale dependence of the indi-

vidual p-value (see RV model of Heesen [2014], p.22 ) with MD on J .

Lemma 6.13 (a) Let X1, ..., Xn be MD on J (J ⊂ {1, ..., n}) and σ : J → J be

an independent permutation of the index set J . Then the random variable Yi =

Xσ(i), i ∈ J is MD on Jσ(i) = {i}, i.e., (m̃i(t))t∈(0,1) =
(I(Yi6t)−t

1−t

)
t∈(0,1)

, i ∈ J is

an Ft−martingale.

(b) If X1, ..., Xn are MD on each Ji = {i}, i ∈ J , i.e., (mi(t))t∈(0,1) is an Ft−martingale

for each i ∈ J, then X1, ..., Xn are MD on J .

Proof. The proof of part (a) follows directly from Lemma 6.12. The part (b) is

obvious. �

Lemma 6.14

Let E1, ..., En+1 be i.i.d. standard exponential distributed. Set Vi =

i∑
j=1

Ej

n+1∑
j=1

Ej

, i = 1, ..., n.

The random variables V1, ..., Vn are martingale dependent random variables, i.e., the pro-

cess M(t) =

n∑
i=1

I(Vi6t)−nt

1−t is a martingale w.r.t. the filtration Ft = σ(I(Vi 6 s) : 0 6 s 6

t < 1, i = 1, ..., n), t ∈ (0, 1).

Proof. The proof is based on the fact that the random variables Vi, i = 1, ..., n, have

the same distribution as the order statistics U1:n, ..., Un:n of a sample of size n from the
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uniform distribution U(0, 1) (cf. Shorack,Wellner [1986] pp.335-336). Therefore we have

E

⎡⎢⎢⎣
n∑

i=1
I(Vi 6 t)− nt

1− t

⏐⏐⏐Fs

⎤⎥⎥⎦ = E

⎡⎢⎢⎣
n∑

i=1
I(Ui:n 6 t)− nt

1− t

⏐⏐⏐Fs

⎤⎥⎥⎦
for all 0 6 s 6 t < 1. �

Remark 6.15

The random variables V1, ..., Vn obviously fulfill the Joint Null Criterion (cf. Leek and

Storey [2011]), (see also Remark 6.7 (iii)).

6.2 Some Examples

In this section we consider more complicated examples of martingale dependent random

variables. We give the proofs of the martingale dependence for all of them. We will

soon see that the class of random variables which are martingale dependent and fulfill the

PRDS assumption at the same time is greater than merely i.i.d U(0, 1)-distributed random

variables. There exist some nontrivial dependence structures which fulfill the assumptions

of Lemma 5.9 and Theorem 5.24, as well as Lemma 5.28 and Theorem 5.36.

Example 6.16 (martingale dependence)

Let us consider the random variables V0, V1, ..., Vn0 which are i.i.d uniformly distributed

on (0, 1). Then the random variables

Ui = 1− (1− V0 ∧ Vi)2 (6.16)

are U(0, 1)-distributed and MD, i.e., the process M(t) =

n0∑
1
I(Ui6t)−n0t

1−t is an Ft-martingale

with Ft = σ(I(0,s](Ui), i = 1, ..., n0, 0 6 s 6 t), 0 6 t < 1.

Proof. Since V0 and Vi, i = 1, ...n0 are i.i.d. U(0, 1)-distributed random variables, we

have

P (Ui 6 t) = P (1− (1− V0 ∧ Vi)2 6 t) = P (V0 ∧ Vi 6 1−
√
1− t)

= 1− P (V0 > 1−
√
1− t)P (Vi > 1−

√
1− t) = t.
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To show that the random variables U1, ..., Un0 are MD random variables, we have to

check the martingale property

E [M(t)|Fs] =M(s), for s 6 t. (6.17)

Let us assume that the elementary Markov property holds, i.e.,

E [I(Ui 6 t)|Fs] = E [I(Ui 6 t)|I(U1 6 s), I(U2 6 s), ..., I(Un0 6 s)] . (6.18)

We have

E
[
I[0,t](Ui)|I[0,s](U1), ..., I[0,s](Un0)

]
= I(Ui 6 s)

+I(Ui > s)
∑

lj∈{0,1}
j=1,...,n0,j ̸=i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n0∏
j=1
j ̸=i

I(I(0,s](Uj) = lj)E

⎡⎢⎢⎣I[0,t](Ui) | (Ui > s),

n0⋂
j=1
j ̸=i

{I(0,s](Uj) = lj}

⎤⎥⎥⎦
  

p(l1,...,ln0 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(6.19)

thereby the summation in the second term corresponds to the one in the proof of The-

orem 6.5. We will see that p(l1,...,ln0 )
only takes one value for each possible (l1, ..., ln0) ∈

{0, 1}n0−1. To proceed, let us delve closely into the structure of U1, ..., Un0 .

If we define f(x) = 1−
√
1− x, we get

Ui > s⇔ 1− (1− V0 ∧ Vi)2 > s⇔ Vi ∧ V0 > f(s)

⇔ I(V0 > f(s))I(Vi > f(s)) = 1.
(6.20)

The above chain of equivalences implies that for all ω ∈ {ω ∈ Ω : Uj > s}

I(0,s](Uj) = I(0,f(s)](Vj), j = 1, ..., n0 (6.21)
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must hold. Thus, we have

p(l1,...,ln0 )
= P (Ui 6 t | (Ui > s) ∩

n0⋂
j=1
j ̸=i

(I(0,s](Uj) = lj)) (6.22)

= 1− P (Ui > t | (Ui > s) ∩
n0⋂
j=1
j ̸=i

(I(0,s](Uj) = lj)) (6.23)

= 1− P (V0 > f(t), Vi > f(t) | V0 > f(s) ∩ V1 > f(s) ∩
n0⋂
j=1
j ̸=i

(I(0,s](Uj) = lj)) (6.24)

= 1− P (V0 > f(t), Vi > f(t) | V0 > f(s) ∩ V1 > f(s)) = 1− (1− f(t))2

(1− f(s))2
(6.25)

=
t− s

1− s
. (6.26)

The equalities in (6.25) hold, because the random variables V1, ..., Vn0 are i.i.d. U(0,1). The

equality (6.19), the chain of equalities (6.22) - (6.26) and the fact that∑
lj∈{0,1}

j=1,...,n0,j ̸=i

n0∏
j=1
j ̸=i

I(I(0,s](Uj) = lj) = 1 holds,

bring us the following result

E [M(t)|Fs] =

n0∑
i=1

(
I(Ui 6 s) + I(Ui > s) t−s

1−s − t

1− t

)
=M(s). (6.27)

Therefore, assuming that the property (6.18) holds, we have shown that U1, ..., Un0 are

MD. It remains to show that the Markov property (6.18) is fulfilled. Or equivalently: we

have to show that for all 0 < s1 < ... < sn = s and for all possible lkj ∈ {0, 1}, j =

1, ..., n0, k = 1, ..., n the following equality is valid

:=P1  
P (Ui 6 t |

n⋂
k=1

{I(0,sk](Ui) = lki } ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,sk](Uj) = lkj }) =

P (Ui 6 t | {I(0,sn](Ui) = lni } ∩
n0⋂
j=1
j ̸=i

{I(0,sn](Uj) = lnj })

  
:=P2

.

(6.28)
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Note that we have to consider only the cases, for which l1j 6 l2j , ... 6 lnj for all j = 1, ..., n0

holds, since for the other cases the probability of the condition in (6.28) is equal to zero.

Let us consider following two cases

1.Case lni = 1, i.e., Ui 6 sn holds. Then we have (Ui 6 t) ∩ (Ui 6 s) = (Ui 6 s), and hence,

P1 =

P

⎛⎜⎝(Ui 6 t) ∩
n⋂

k=1

{I(0,sk](Ui) = lki } ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,sk](Uj) = lkj }

⎞⎟⎠
P

⎛⎜⎝ n⋂
k=1

{I(0,sk](Ui) = lki } ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,sk](Uj) = lkj }

⎞⎟⎠
= 1,

P2 =

P

⎛⎜⎝(Ui 6 t) ∩ (Ui 6 s) ∩
n0⋂
j=1
j ̸=i

{I(0,sn](Uj) = lnj }

⎞⎟⎠
P

⎛⎜⎝(Ui 6 s) ∩
n0⋂
j=1
j ̸=i

{I(0,sn](Uj) = lnj }

⎞⎟⎠
= 1.

2.Case lni = 0, i.e., Ui > sn holds. With the same argumentation as in (6.20) we get

I(0,sn](Ui) = I(0,f(sn)](Vi) for all ω ∈ {ω ∈ Ω : Ui > s}, (6.29)

which together with the fact that {Vj > f(t)} ∩ {Vj > f(sn)} = {Vj > f(t)} for all
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j = 1, ..., n0 holds, implies analogously to (6.22)-(6.26) the following equations:

P1 = 1−

P

⎛⎜⎝(Ui > t) ∩ (Ui > sn) ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,sk](Uj) = lkj }

⎞⎟⎠
P

⎛⎜⎝(Ui > sn) ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,sk](Uj) = lkj

⎞⎟⎠
(6.30)

= 1−

P

⎛⎜⎝(V0 > f(t)) ∩ (Vi > f(t)) ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,f(sk)](Vj) = lkj })

⎞⎟⎠
P

⎛⎜⎝(Vi > f(sn)) ∩ (V0 > f(sn)) ∩
n0⋂
j=1
j ̸=i

n⋂
k=1

{I(0,f(sk)](Vj) = lkj }

⎞⎟⎠
(6.31)

= 1− P ((V0 > f(t)) ∩ (Vi > f(t)))

P ((Vi > f(sn)) ∩ (V0 > f(sn)))
. (6.32)

= 1−

P

⎛⎜⎝(V0 > f(t)) ∩ (Vi > f(t)) ∩ (V0 > f(sn)) ∩
n0⋂
j=1
j ̸=i

{I(0,f(sn)](Vj) = lnj }

⎞⎟⎠
P

⎛⎜⎝(Vi > f(sn)) ∩ (V0 > f(sn)) ∩
n0⋂
j=1
j ̸=i

{I(0,f(sn)](Vj) = lnj }

⎞⎟⎠
(6.33)

= P (Ui 6 t | (Ui > s) ∩
n0⋂
j=1
j ̸=i

{I(0,sn](Uj)}) = P2. (6.34)

The equality in (6.32) holds, because V0, ..., Vn0 are independent. Hence, we have

shown that the elementary Markov property is valid and consequently by (6.27)

U1, ..., Un0 are MD-random variables.

�

Of particular interest is the fact that the random variables from this example are

PRDS.

Lemma 6.17

The random variables U1, ..., Un0 from Example 6.16 are PRDS.
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Proof. Firstly note, that the structure of (U1, ..., Un0) belongs to the unidimensional

latent variable model, cf. Holland and Rosenbaum [1986]. We denote this model by (U, V0).

The components of the vector Ū = (U1, ..., Un0) are conditional independent given V0 = v.

Each component Ui is increasing in V0 and Vi, i = 1, ..., n. Hence, the latent variable model

(U, V0) is monotone, satisfies the conditions of latent conditional independence and latent

unidimensionality, cf. Holland and Rosenbaum [1996]. Due to Theorem 6 of Holland,

Rosenbaum [1986], pp.1533-1534, it implies, that the random variables U1, ..., Un0 are

conditionally associated. Consequently (U1, ..., Un0) are PRDS on I0 (and on each subset

of I0), cf. Benjamini and Yekutieli [2001], p.1173. �

Example 6.18 (martingale dependence)

We consider random variables V0, V1, V2, V3 which are i.i.d. U(0, 1). Then the random

variables

Ui = xV0I(V3 6 x) + (1− (1− x)Vi)I(V3 > x), for some fixed x ∈ (0, 1), i = 1, 2

are U(0, 1)-distributed and MD random variables.

Proof. Since V0, V1, V2, V3 are i.i.d U(0, 1)-distributed random variables, we have

P (Ui 6 t) = P (xV0I(V3 6 x) + (1− (1− x)Vi)I(V3 > x) 6 t)

= P (xV0 6 t)x+ (1− x)P (1− (1− x)Vi 6 t)

= tI(t 6 x) + xI(t > x) + I(t > x)(1− x)

(
1− 1− t

1− x

)
= t.

Let us assume, as before, that the Markov property (6.18) holds. Then we have to

show that the martingale property E
[

2∑
i=1

I(Ui6t)−t
1−t |I(0,s](U1), I(0,s](U2)

]
=

2∑
i=1

I(Ui6s)−s
1−s is

valid. Similarly to the previous example, we have

E
[
I[0,t](U1)|I[0,s](U1), I[0,s](U2)

]
= I(U1 6 s) (6.35)

+ I(U1 > s)I(U2 > s)E
[
I[0,t](U1)|(U1 > s) ∩ (U2 > s)

]  
:=p1

(6.36)

+ I(U1 > s)I(U2 6 s)E
[
I[0,t](U1)|(U1 > s) ∩ (U2 6 s)

]  
:=p2

. (6.37)
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Further we get

p1 =
P (U1 6 t, U1 > s,U2 > s|V3 6 x)x+ P (U1 6 t, U1 > s,U2 > s|V3 > x)(1− x)

P (U1 > s,U2 > s|V3 6 x)x+ P (U1 > s,U2 > s|V3 > x)(1− x)

=
P (xV0 6 t, xV0 > s)x+ P (V1 > 1−t

1−x , V1 <
1−s
1−x , V2 <

1−s
1−x)(1− x)

P (xV0 > s)x+ P (V1 <
1−s
1−x , V2 <

1−s
1−x)(1− x)

=
Is6t<x(t− s) + Is<x6t(t− s) + Ix6s6t

(t−s)(1−s)
1−x

Is<x(1− s) + Ix6s
(1−s)2

1−x

= Is6t<x
t− s

1− s
+ Is<x6t

t− s

1− s
+ Ix6s6t

t− s

1− s
=
t− s

1− s
.

p2 =
P (U1 6 t, U1 > s,U2 6 s|V3 6 x)x+ P (U1 6 t, U1 > s,U2 6 s|V3 > x)(1− x)

P (U1 > s,U2 6 s|V3 6 x)x+ P (U1 > s,U2 6 s|V3 > x)(1− x)

=
(1− x)P (V1 > 1−t

1−x , V1 <
1−s
1−x , V2 >

1−s
1−x)

P (V1 <
1−s
1−x , V2 >

1−s
1−x)(1− x)

=
t− s

1− s
Ix6s6t.

Now we have to prove the Markov property (6.18) which is equivalent to

P (Ui 6 t|(
n⋂

k=1

{I(0,sk](U1) = lk1) ∩ (
n⋂

k=1

{I(0,sk](U2) = lk2)})

= P (Ui 6 t|(I(0,sn](U1) = ln1 ) ∩ (I(0,sn](U2) = ln2 ))

(6.38)

for this example.

1.CASE s 6 x. Note that in this case lk1 = lk2 holds for k = 1, ..., n. Otherwise, if, for example,

lk1 = 1 and lk2 = 0 holds for some k = 1, ..., n, we would have I(U1 6 sk) = 1. It

would imply I(U1 6 x) = 1. The last identity yields U1 = U2, and consequently

I(U2 6 sk) = 1 must hold. Thus, we got lk1 = lk2 = 1. Hence, we have to consider

only two cases:

(
ln1

ln2

)
=

(
0

0

)
and

(
ln1

ln2

)
=

(
1

1

)
In the first case we have U1 > sn and U2 > sn, so we get

{
n⋂

k=1

{I(0,sk](U1) = lk1) ∩ (

n⋂
k=1

{I(0,sk](U2) = lk2)}} = {U1 > sn, U2 > sn} (6.39)

= {(I(0,sn](U2) = ln1 ) ∩ (I(0,sn](U2) = ln2 )}, (6.40)
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which implies (6.18) for this case. In the second case we have U1 6 sn and U2 6 sn

and consequently we obtain

(Ui 6 t) ∩ (Ui 6 sn) = (Ui 6 sn) for i = 1, 2,

which implies the identity (6.28).

2. CASE x < s (w.l.o.g. we can assume that x 6 sn, otherwise see CASE 1 of this example).

Here we have the four following possibilities:

(
ln1

ln2

)
=

(
0

0

)
,

(
ln1

ln2

)
=

(
0

1

)
and(

ln1

ln2

)
=

(
1

0

)
,

(
ln1

ln2

)
=

(
1

1

)
.

W.l.o.g let i = 1. The two first cases, when U1 6 sn holds, were considered in the Example

6.16, (1.CASE).

Let us consider the case U1 > sn, U2 6 sn. We can transform

P (U1 6 t|(
n⋂

k=1

{I(0,sk](U1) = lk1) ∩ (
n⋂

k=1

{I(0,sk](U2) = lk2)})

= P (U1 6 t|(U1 > s) ∩ (U2 6 sn) ∩ (
n−1⋂
k=1

{I(0,sk](U2) = lk2)}))

=

P (V3 > x)P (V1 > 1−t
1−x , V1 <

1−s
1−x ,

⊥V1  
V2 <

1− s

1− x
, (

n−1⋂
k=1

{I
[
1−sk
1−x

,s1)
(V2) = lk2)}))

P (V3 > x)P (V1 <
1−s
1−x , V2 <

1− s

1− x
, (

n−1⋂
k=1

{I
[
1−sk
1−x

,s1)
(V2) = lk2)})  

⊥V1

)

=
P (V1 > 1−t

1−x , V1 <
1−s
1−x)

P (V1 <
1−s
1−x)

=
P (V1 > 1−t

1−x , V1 <
1−s
1−x , V2 <

1−s
1−x)

P (V1 <
1−s
1−x , V2 <

1−s
1−x)

= P (U1 6 t|U1 > s,U2 6 s),

where ⊥ signifies stochastic independence. Thus we have shown the Markov property for

this case.

It remains to consider the case

(
ln1

ln2

)
=

(
1

1

)
, i.e., U1 > sn and U2 > sn. Since s1 < s2 <

... < sn, we have

2⋂
j=1

n⋂
k=1

(Uj > sk) = (U1 > sn) ∩ (U2 > sn). (6.41)
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Hence, the Markov property

P (U1 6 t |
2⋂

j=1

n⋂
k=1

(Uj > sk)) = P (U1 6 t | (U1 > sn) ∩ (U2 > sn)) (6.42)

holds for this case and, consequently, overall. �

6.3 A counter example

The examples for the martingale dependent random variables considered before were all

designed as functions of the i.i.d. random variables. For all of these structures the Markov

property was fulfilled. Hence, the following question seems to be reasonable: Is the el-

ementary Markov property always fulfilled for functions of the i.i.d. random variables?

The next counter example provides the answer.

Example 6.19

For independent, identically U(0, 1)−distributed random variables Y0, Y1, Y2 we define the

random variables X1, X2 as

Xi = g(Y0, Yi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Yi
5 , if I(Y0 6 1

5)I(Yi 6
1
2) = 1,

1
2 + 2Yi−1

10 , if I(Y0 6 1
5)I(Yi >

1
2) = 1,

1+8Yi
10 , if I(Y0 > 1

5)I(Yi 6
1
2) = 1,

6
10 + 8Yi−4

10 , if I
(
Y0 >

1
5

)
I(Yi > 1

2) = 1.

i ∈ {1, 2}.

Now we show that the process Z(t) =

(
I([0,t])(X1)

I([0,t])(X2)

)
does not fulfill the Markov property,

since

P
(
Z(0.6) =

(
1
1

) ⏐⏐Z(0.5) = (10) , Z(0.1) = (10)) ̸= P
(
Z(0.6) =

(
1
1

) ⏐⏐Z(0.5) = (10)) (6.43)

holds. More precisely:

{Z(0.1) =
(
1
0

)
} = {X1 6 0.1} ∩ {X2 > 0.1}

⊂ {Y0 6
1

5
} ∩ {Y1 6

1

2
} ∩ {Y2 >

1

2
}

⊂ {X1 6 0.6} ∩ {X2 6 0.6} = {Z(0.6) =
(
1
1

)
},

which implies that P
(
Z(0.6) =

(
1
1

) ⏐⏐Z(0.5) = (10) , Z(0.1) = (10)) = 1 is valid. On the other

hand the inequality P
(
Z(0.6) =

(
1
1

) ⏐⏐Z(0.5) = (10)) < 1 obviously holds which implies the

inequality in (6.43).
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6.4 (Super-)martingale dependent test statistics

We propose the following example in answer to the question - what kind of dependence

must be between the test statistics to guarantee the martingale dependence between the

corresponding p-values.

Let us consider the following multiple test with components:

φi =

⎧⎨⎩1, if Di < ai

0, if Di > ai

, i = 1, ..., n. (6.44)

Thereby the test statistics Di, i = 1, ..., n, Di : Ω → R have a common continuous and

strictly monotone distribution function G under the null hypothesis and ai, i = 1, ..., n are

some critical values.

Now we can define the p-values as

pi = G(Di) (6.45)

which are uniformly distributed on [0, 1]. Then we have:

Lemma 6.20

If the process M̃(x) =

n∑
i=1

I(Di6x)−G(x)

1−G(x) is a Gx− martingale, with

Gx = σ(I(Di 6 s), s 6 x, i = 1, ..., n), then p′is, defined as in (6.45), belong to the class

MD(P, n).

Proof. With the transformation x = G−1(t) and because of the continuity and strict

monotonicity of the distribution function G we get:

M̃(x) =

n∑
i=1

I(Di 6 x)− nG(x)

1−G(x)
(6.46)

=

n∑
i=1

I(Di 6 G−1(t))− nG(G−1(t))

1−G(G−1(t))
(6.47)

=

n∑
i=1

I(pi 6 t)− nt

1− t
=:M(t), (6.48)

which implies that M(t) is a Ft−martingale. �
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The following example is analogous to Example 6.16 with only one difference. Here,

we have the martingale structure of the test statistics which implies by Lemma 6.20 the

martingale dependence between the corresponding p-values Pi, i = 1, ..., n.

Example 6.21 (martingale dependence of test statistics)

Let us consider the random variablesD0, D1, ..., Dn0 , which are i.i.d, continuous distributed

with a strictly monotone distribution function F. Then for the random variables D̃i =

D0
⋀
Di, i = 1, ..., n0 the process MD̃(x) =

n0∑
i=1

I(D̃i6x)−n0F̃ (x)

1−F̃ (x)
is a Gx− martingale, where

F̃ is the common distribution function of D̃i, i = 1, ...n.

6.5 Simulation example

We conducted a simulation study to investigate the FDR level under martingale depen-

dence of adaptive procedures numerically. Therefore we compare the SD procedure (5.1)

with the magnified critical values by Lemma 4.3, the linear Benjamini Hochberg SU pro-

cedure and the adaptive λ−based Storey’s SU procedure. We have set the number of

tests to be n = 100, 500 and 800. The fraction of the true null hypotheses n0/n was set

at (n − 1)/n, 1/4, 1/2, and 3/4, the tuning parameter λ = 0.8 and the FDR-controlling

level α = 0.15. Our computations are based on L = 10000 replications. We have investi-

gated the following three configurations. Note that the first two structures belong to the

martingale model, the last one belongs to the super-martingale model.

(1) The first configuration is based on the following multiple testing situation.

The random variables X1, ..., Xn are independent, 2-parameter exponentially dis-

tributed with scale parameter λ = 1 and location parameter ϑi 6 5, i = 1, ..., n. X0

is independent from each Xi, i = 1, ..., n and is exponential distributed with scale

parameter λ = 1 and location parameter ϑ0 = 5. We consider the test problem

Hi : ϑi = 5 vs. Hc
i : ϑi < 5. (6.49)

The location parameter ϑi, i ∈ I is generated as

ϑi = 5I(i ∈ I0) + ζiI(i ∈ I1), i ∈ I, with ζi i.i.d. U(0, 0.5).
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The p-values are generated in the following way. At first we defined the test statistics

Di = X0 ∧Xi,

and then we defined the corresponding p-values as

pi = GH0(Di).

We have

GH0(t) = PH0(X0 ∧Xi 6 t)

= 1− PH0(Xi > t)P (X0 > t)

= 1− (I(t < 5) + I(5 6 t) exp(−(t− 5)))2

= I(5 6 t)(1− exp(−2(t− 5))).

(2) The second configuration referes to the four blocks total dependence.

For X1, X2, X3, X4 i.i.d N (0, 1) , εi = 1 − I(i ∈ {1, ..., n0) and µi ∼ U(1, 5), dis-

tributed i.i.d random variables independent of X = (X1, ..., X4), i = 1, ..., n, we have

defined the p-values in the following way

pi = 1− Φ(Xj + εiµi), i = 1, ..., n, (6.50)

with j = 1 for i = 1, ..., k1 − 1, j = 2 for i = k1, ..., k2 − 1, j = 3 for i = k2, ..., k3 − 1

and j = 4 for i = k3, ..., n 1 6 k1 < k2 < k3 < n. Thereby Φ is the c.d.f. of N(0, 1).

(3) The third configuration corresponds to an n0−dimensional version of Example 6.18,

i.e., for i.i.d. random variables V0, ..., Vn0 , Vn0+1, Vi ∼ U(0, 1), i = 0, ..., n0 + 1, we

consider

Ui = xV0I(Vn0+1 6 x) + (1− (1− x)Vi)I(Vn0+1 > x)

for some fixed x ∈ (0, 1), i = 1, ..., n0. We set x = 0.05 in our simulated example.

The false p-values are independent of the true ones and are uniformly U(0, α
n+α)-

distributed.

We summerize the results of the aforementioned sumulations in the following three

tabels.
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Table 6.1: Comparison of the FDR for the SD-procedure (5.1) (ASDP), for the adaptive λ− Storeys

SU-procedure (StSU), for the linear SD-procedure (BHsd) and for the linear SU-procedure (BHsu) under

the martingale dependence (1) for α = 0.15

n ξ ASDP BHsd BHsu StSu

n = 100 99/100 0.0734 0, 0728 0.1417 0.39

3/4 0.093 0.071 0.1148 0.306

1/2 0.103 0.057 0.074 0.212

1/4 0.102 0.033 0.037 0.124

n = 500 499/500 0.0782 0.0781 0.152 0.404

3/4 0.091 0.069 0.108 0.302

1/2 0.105 0.058 0.079 0.216

1/4 0.104 0.033 0.037 0.125

n = 800 799/800 0.074 0.073 0.145 0.395

3/4 0.093 0.072 0.11 0.3

1/2 0.104 0.057 0.074 0.207

1/4 0.103 0.033 0.037 0.125

As we can see from Table 6.1 the linear SU exhausts the level α well, when almost all

hypotheses are true, as in the BIA case. When the portion of the true nulls is smaller than
3
4 , the ASDP seems to exhaust the level α better than the BH SU. The FDR of the linear

SD is smaller than the FDR of the ASDP for all values of n0(n). The FDR of the adaptive

λ−based procedure of Storey lies above the level α in most cases, hence, this procedure

can not be used for such kind of dependence.
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Table 6.2: Comparison of the FDR under the martingale dependence (2) for α = 0.15

n ξ ASDP BHsd BHsu StSu

n = 100 96/100 0.011 0, 011 0.13 0.32

72/100 0.097 0.072 0.11 0.27

52/100 0.012 0.075 0.097 0.195

24/100 0.011 0.037 0.042 0.132

n = 200 196/200 0.036 0.036 0.13 0.27

152/200 0.066 0.055 0.105 0.23

1/2 0.093 0.05 0.07 0.21

52/200 0.105 0.037 0.039 0.15

n = 800 792/800 0.006 0.006 0.15 0.264

3/4 0.063 0.053 0.11 0.231

1/2 0.1 0.06 0.075 0.202

1/4 0.1 0.034 0.038 0.139

The results from Table 6.2 again show that the Storey SU procedure is not suitable for

such kind of dependence because the FDR level essentially exceeds the pre-chosen level

α. The BH SU procedure still has the largest FDR level when most of the hypotheses

are true. When the portion of the true null hypotheses is smaller or equal to the half of

all hypotheses, the FDR of the SD procedure (5.1) is larger as the FDR of the linear SU

procedure. It is interesting that the FDR of the BH SU procedure behaves similarly to the

BIA case (as well as the reverse martingale case), i.e., it gets closer to αn0
n , even though the

dependence type 2 does not belong to the class of reverse-martingale dependent random

variables.
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Table 6.3: Comparison of the FDR dependence (3) for α = 0.15

n ξ ASDP BHsd BHsu StSu

n = 100 99/100 0. 0 0.06 0.18

3/4 0.04 0 0.04 0.07

1/2 0.12 0.05 0.05 0.13

1/4 0.15 0.05 0.05 0.14

n = 200 199/200 0 0 0.05 0.17

3/4 0.023 0.023 0.023 0.06

1/2 0.12 0.053 0.053 0.11

1/4 0.13 0.02 0.02 0.16

n = 800 799/800 0 0 0.07 0.13

3/4 0.04 0.04 0.03 0.06

1/2 0.12 0.045 0.045 0.12

1/4 0.141 0.037 0.038 0.14

Table 6.3 shows that both SD procedures, ASDP and BH SD as well, have the FDR

equal to zero if almost all hypotheses are true. The FDR of the Storey’s SU procedure lies

slightly above the level α for these cases. For the other cases the FDR of the Storey’s SU

is smaller, than α. The FDR of the ASDP and Storey’s SU as well get closer to the level

α if the portion of the true null hypotheses is equal to 1/4. Note that the FDR of the BH

SU procedure is not longer equal (or approximately equal) to αn0
n in this example.

6.6 Concluding remarks

In this chapter we considered different dependence structures which belong to the (super-)

martingale dependence structures. Theorem 6.5 yields sufficient conditions for the mar-

tingale dependence. We have shown that some non-trivial examples of the martingale

dependent random variables exist which are PRDS or PA at the same time, and conse-

quently fulfill the assumptions of the main theorems from Chapter 5. Finally, we proposed

some numerical examples which confirm our theoretical statements from Chapter 5. Fur-

thermore as we can see from Tables 6.1 - 6.3, only knowledge of Ui, i = 1, ..., n0 being
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martingale dependent does not give us the information about which kind of procedures is

more powerful in terms of the FDR-level.



Chapter 7

On uniformly distributed

alternatives

In this section we devote our attention to the situation when null hypotheses and alter-

natives are not really separable. These alternatives can be seen as a boundary case of

possible alternatives. Note that Dirac-alternatives, where p-values under alternatives are

equal to zero, can also be seen as a boundary case. In comparison to Dirac-alternatives,

uniformly distributed p-values under alternatives lie on the opposite side of the space of

possible alternatives for a given test. Results related to boundary cases of alternatives

yield some insight in the structure of MTPs.

(U) Let us assume that all (both true and false) p-values are i.i.d. uniformly U[0, 1]-

distributed. We label the first n0 of p-values as true and the last n1 as false:

p̄ = (U1, ..., Un0 ,  
true

Un0+1, ..., Un  
false

)

Theorem 7.1

Let τ = τ(pi:n), i 6 n be an arbitrary stopping procedure (not necessary SD) which rejects

all p-values with pi:n 6 τ. Suppose that assumption U is fulfilled.

If

FWER(τ) 6 α (7.1)

holds for n0 = n, then

FDR(τ) = E
[
V (τ)

R(τ)
I(R(τ) > 0)

]
6
n0
n
α (7.2)

99
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is valid for any n0 6 n. If FWER(τ) = α for n0 = n, then FDR(τ) = n0
n α for all n0 6 n.

Proof. For i ∈ {1, ..., n} we consider the following values

ci =

{
1, i 6 n0

0, i > n0
(7.3)

Let Di be the anti-rank of Ui:n (cf. Definition 8.12 in Appendix). Then it follows from

(7.3)

cDi =

{
1, if Ui:n is true,

0, if Ui:n is false.
(7.4)

Consequently, we get

V (τ) =

n0∑
i=1

I(Ui 6 τ) =

R(τ)∑
i=1

cDi . (7.5)

Since Ui, i = 1, ..., n are i.i.d. random variables we have from Basu’s Theorem, that

(Di)i6n and (Ui:n)i6n are stochastically independent (cf. Ghosh [2002]). Thus, by the

assumption that τ = τ(pi:n) = τ(Ui:n), i 6 n, the random variables cDi and R(τ) are also

independent. Consequently we get

E
[
V (τ)

R(τ)
I(R(τ) > 0)

]
= E

[
E
[
V (τ)

R(τ)
I(R(τ) > 0)|R(τ)

]]
(7.6)

=
n∑

r=1

E
[
V (τ)

R(τ)
|R(τ) = r

]
P ({R(τ) = r}) (7.7)

=
n∑

r=1

E

[
1

r

r∑
i=1

cDi

]
P (R(τ) = r) (7.8)

=
n∑

r=1

(
1

r

r∑
i=1

E [cDi ])]P (R(τ) = r) (7.9)

=

n∑
r=1

n0
n
P (R(τ) = r) =

n0
n
P (R(τ) > 0) (7.10)

=
n0
n
FWERn=n0(τ) 6 α

n0
n
, (7.11)

thereby FWERn=n0(τ) is defined to be FWER(τ) under global null hypothesis, i.e., if

n0 = n. We can see from (7.11) that FWERn=n0(τ) = α implies the corresponding

equality for FDR(τ) . �
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Remark 7.2 (a) From Theorem 7.1 it follows that the BH-procedure maximizes the FDR

if all p-values are i.i.d., U(0, 1)-distributed, as actually any other procedure for which

under global null hypothesis FWER= α.

(b) By Lemma 4.3 an SD-procedure with critical values ai, i = 1, ..., n controlling the

FDR at level α under BIA, can be modified to an SD-procedure, for which FWER = α

for n0 = n. Theorem 7.1 implies that for such modified SD-procedure FDR= n0
n α if

all p-values are i.i.d., U(0, 1)-distributed.

(c) From (a) and (b) it follows that if all p-values are i.i.d., U(0, 1)-distributed, then

any SD-procedure which controls the FDR at α under BIA, can be modified to the

procedure which attains the FDR of the BH SU procedure, by an adjustment of the

first coefficients due to Lemma 4.3.

Remark 7.3

In comments on the publication of Romano et al. [2008] Yekutieli stated that if p-values are

exchangeable, then it is easy to see that the FDR for any value of n0 is FDR = n0
n FDR0,

if all p-values are marginally U(0, 1)-distributed. Thereby FDR0 is the FDR under the

complete null hypothesis, n0 = n, although it is stated without proof (cf. Yekutieli [2008],

p.459). This statement coincides with the statement of Theorem 7.1 for i.i.d U(0, 1) p-

values.

The next theorem is a weakened version of Theorem 5.3 from Benjamini and Yekutieli

[2001], p.1181.

Theorem 7.4

Consider the problem of testing of n hypotheses with the SU test which uses the critical

values 0 ≡ c0 6 c1 6 c2 6 ... 6 cn. Assume that

1. the false p-values f1, ..., fn1 are i.i.d. P1-distributed, with U(0, 1) <st P1,

2. the true p-values U1, ..., Un0 are i.i.d U(0, 1)-distributed,

3. vectors (f1, ..., fn1) and (U1, ...., Un0) are mutually independent.

(a) If the ratio ck
k is increasing in k, as the distribution P1 increases stochastically

then the FDR decreases.

(b) If the ratio ck
k is decreasing in k, as the distribution P1 decreases stochastically

then the FDR increases.
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Corollary 7.5

Assume that the assumptions 1-3 from Theorem 7.4 are fulfilled. Further, assume that

under global null hypothesis FWER(τc) = α holds. Then, we have

1. If the ratio ck
k is increasing in k, then FDR(τc) >

n0
n α.

2. If the ratio ck
k is decreasing in k, then we have FDR(τc) 6

n0
n α.

Thereby τc is the stopping rule of the SU procedure which uses critical values 0 ≡ c0 6

c1 6 c2 6 ... 6 cn.

Proof. By Theorem 7.4 the FDR(τc) becomes minimal (maximal) under P1 = U(0, 1),

if the ratio ck
k decreases (increases, respectively). Further, due to Theorem 7.1, we have

FDR(τc) = αn0
n under assumption of Corollary 7.5 which completes the proof. �

Remark 7.6

In case of the BH critical values ci =
iα
n , i = 1, ..., n, Theorem 7.1 already yields: since

for n0 = n FWER(τc) = α is valid, we get FDR(τc) =
n0
n α if the underlying p-values are

i.i.d. U(0, 1)-distributed.

In this chapter we discussed the case of uniformly distributed alternatives. We proved

that if FWER of an MTP is controlled at α under the global null hypothesis, i.e., when

n = n0 holds, it implies that the FDR of this procedure is controlled at level α′ ≡ α′(n0) =
αn0
n . This means also that BH SU procedure maximizes the FDR if underlying p-values

are i.i.d. U(0, 1)-distributed.



Chapter 8

Upper bounds for the critical

values for SD-procedures and

maximal procedures

In this chapter the following assumptions are used.

U1 The vector of the true p-values U = (U1, .., Un0) ∈ Ũ(n0), with Ũ(m) = {V :

V = (V1, ..., Vm), Vi ∼ U(0, 1), i = 1, ...,m} , i.e., Ui’s , i = 1, ..., n0, are uniformly

distributed (with no assumptions about independence).

U2 (f1, ..., fn1) and (U1, ..., Un0) are independent random vectors.

U3 We consider an SD-procedure which uses the deterministic critical values 0 6 a1 6

a2 6 ... 6 an 6 1, a = (a1, ..., an).

U4 The FDR and the FWER of the above procedure are denoted by FDR(a) and

FWER(a).

For y ∈ [0, 2] let us define the “mod 1”-operation as follows

“y mod 1” = y − I(y > 1).

The next example motivates the main theorem of this Chapter.

Example 8.1

(a) Let us consider a SD-procedure using critical values a1 6 a2 6 ... 6 an and a multiple

testing problem with n1 = 0. Then by the Bonferroni inequality we have

103
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FDR(a) = FWER(a) = P (U1:n 6 a1)

= P

(
n⋃

i=1

{Ui 6 a1}

)
6 na1.

(8.1)

If all the sets {Ui 6 a1}, i = 1, ..., n, are disjoint, then we have an equality in (8.1). We

will see that there exist some configurations of the p-values, so that due to the Bonferroni

(in)equality in (8.1) FDR(a) = na1 is valid.

We want to construct some uniformly distributed random variables for which Bonfer-

roni inequality (8.1) is sharp under the assumption n1 = 0. We consider for i = 1, ..., n,

and U ∼ U(0, 1) the following random variables

Ui =

(
U +

i

n

)
mod 1 = U +

i

n
− I(U +

i

n
> 1). (8.2)

Firstly, note that Ui, i = 1, ..., n, are U(0, 1)-distributed. Indeed, for t ∈ [0, 1] we have

P (Ui 6 t) = P

(
U 6 t− i

n
, U 6 1− i

n

)
+ P

(
U > 1− i

n
, U 6 1 + t− i

n

)
=

(
t− i

n

)
I(t >

i

n
) +

i

n
I(t >

i

n
) + tI(t 6

i

n
) = t.

Let us calculate the distance | Uk − Ui |. W.l.o.g. assume that k > i. We get

| Uk − Ui | =

⏐⏐⏐⏐⏐⏐⏐⏐
k − i

n
+ I(U +

i

n
> 1)− I(U +

k

n
> 1)  

∈{−1,0}

⏐⏐⏐⏐⏐⏐⏐⏐ >
1

n
. (8.3)

Consequently if a1 6 1
n holds, then all the sets {Ui 6 a1}, i = 1, ...n, in (8.1) are disjoint

which implies that FDR(a) = a1n must hold. And with the choice a1 =
α
n , we have

FDR(a) = nP (Ui 6
α

n
) = α

We summarize it as Remark.

Remark 8.2

If some SD procedure with critical values 0 6 a1 6 a2 6 ... 6 an 6 1 controls the FDR at

level α for all possible parameter configurations then

a1 6
α

n

must hold.
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Example 8.1 (continued)

(b) Our second example is a problem of the testing of n, n > 2 hypotheses, thereby the

number of alternatives is n1 = 1. Further, let us consider an SD procedure which controls

the FDR with a1 = α
n . We are interested in the case f1 6 a1. For the case f1 > a1 we

have, conditioned on f ,

FDR(a) 6 FWER(a) 6 P (U1:n0 6 a1) 6
n− 1

n
α 6 α.

Otherwise, for the case f1 6 a1, we get:

α > Ef

[
V (a)

R(a)
I(V (a) > 0)

]
= Ef

[
V (a)

V (a) + 1
I(V (a) > 0)

]
>

1

2
Ef [I(V (a) > 0)] . (8.4)

Analogously to (8.2) we consider now for n > 2 the U(0, 1)-distributed random vari-

ables Vi

Vi =

(
U +

i

n− 1

)
mod 1, i = 1, ..., n− 1 (8.5)

For such “true” p-values Vi we have analogously to (8.3):

| Vk − Vi |>
1

n− 1
. (8.6)

Consequently if a2 6 1
n−1 is valid, we get:

α >
1

2
P (V > 0) =

1

2
P

(
n−1⋃
i=1

{Vi 6 a2}

)
=

(n− 1)a2
2

. (8.7)

Hence, we can discuss a2 =
2α
n−1 if 2α 6 1.

(c) Now let us consider the case n0 = n− k, f1 = f2 = ... = fk = 0, k ∈ {1, ..., n} . In the

same way as before we get

α >
1

k + 1
max
Ui∈Ũ

P (U1:n−k 6 ak+1). (8.8)

The consideration of the uniformly distributed random variables of the form

Wi =

(
U +

i

n− k

)
mod 1, i = 1, ..., n− k (8.9)

leads to

1

k + 1
P (W1:n0 6 ak+1) =

1

k + 1
(n− k)ak+1 = α for ak+1 =

(k + 1)α

n− k
(8.10)

if α 6 1
k+1 holds.
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Now we are able to prove the following theorem which gives us a necessary condition

for FDR-control.

Theorem 8.3 (a) Let us assume that nα < 1 and n1 6 n hold. If the SD-procedure

using critical values b1, ..., bn controls the FDR at α for all configurations under

assumptions U1-U2, then the critical values fulfill

bk:n 6
kα

n+ 1− k
= ak:n ≡ ak:n(α), k = 1, ..., n. (8.11)

(b) Let us assume that f1 = ... = fn1 = 0 and α 6 1
n1+2 hold. Then for all n0 > 1 there

exists some U ∈ Ũ(n0), so that FDR(a) = α holds, where a = (ak:n(α))k∈(1,...,n).

Proof. (a) We have

α > E
[
V (b)I(V (b) > 0)

R(b)

]
> E

[
V (b)I(V (b) > 0)

n1 + V (b)

]
>

1

n1 + 1
P (V (b) > 0) (8.12)

The chain of inequalities (8.12) holds for all possible U = (U1, ..., Un0), which belong to the

class Ũ . So we consider the p-values, for which the probability in (8.12) becomes maximal.

With the choice

Ui = U +
i

n− n1
mod 1, i = 1, ..., n0 (8.13)

fj = 0, j = 1, ..., n1 (8.14)

we get by (8.12):

α >
n0

n1 + 1
bn1+1. (8.15)

This implies bn1+1 6
α(n1+1)
n−n1

.

The number n1 of the false null hypothesis is, in general, unknown and can take values

from {0, ..., n} and by the assumptions of this theorem it can take the values from the

set {0, ..., n − 1}. Therefore, if it is claimed that the SD-procedure with critical values

b1 6 ... 6 bn controls the FDR at α for all possible distributions which belong to the class

Ũ , then we have

bk 6
kα

n+ 1− k
=: ak = ak(α). (8.16)
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Thus, we have proved part (a).

(b) If f1 = ... = fn1 = 0 and U = (U1, ..., Un0) ∈ Ũ hold, then we have

FDR(a) = E
[

V (a)

n1 + V (a)
I(U1:n 6 an1+1)

]
. (8.17)

Analogously to (8.13), we consider the random variables

Ui = U +
i

n0 − 1
mod 1, i = 1, ..., n0. (8.18)

Due to the condition α 6 1
n1+2 , we get

an1+2 =
α(n1 + 2)

n+ 1− (n1 + 2)
6

1

n0 − 1
6| Ui − Uj |, i ̸= j. (8.19)

This implies that V (a) in (8.17) can be either 0 or 1. Hence, it follows from (8.17):

FDR(a) = E
[

1

n1 + 1
I(U1:n 6 an1+1)

]
=

1

n1 + 1
P (

n0⋃
j=1

{Uj 6 an1+1}) = α (8.20)

by the choice of ai’s, i = 1, ..., n and Uj ’s, j = 1, ..., n0. �

Remark 8.4

Finner and Gontscharuk [2013] have also considered configurations of the p-values which

are weakly dependent and for which the Bonferroni inequality is sharp. As a consequence,

they found a model of dependent p-values for which the FDR of the BH procedure is greater

than α, even in the asymptotic sense.

Definition 8.5

We say that the procedure τ̄ is α−maximal in sense of the FDR-control in some class Υ if

� FDR(τ̄(p)) 6 α holds, whenever the p-values belong to the class Υ ,

� there exists some parameter configuration p̄ ∈ Υ, so that FDR(τ̄(p̄)) = α holds.

Lemma 8.6 (a) The SD procedure which uses the critical values ak:n, k = 1, ..., n, from

(8.11) is α−maximal for the class

Υ ={U ∈ Ũ(n), the sets {Ui 6 an1+1}, i = 1, ..., n0, are disjoint,

U and f are independent random vectors}.
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(b) For n = 2 the SD procedure which uses the critical values c1 = 1− 2
√
1− α, c2 = a2:n =

2α is α−maximal, if the p-values belong to the class Υ = {Ui are PRDS, Ui ∼
U(0, 1), i = 1, ..., n0, U and f are independent random vectors} .

(c) The BH SU procedure is α′−maximal, α′ ≡ α′(n0) = αn0
n , for the following class

Υ =

{
U = (U1, ..., Un0) : the process

(
V (t)

t

)
t∈(0,1)

is a reverse RFt-martingale

}
.

Remember that the reverse filtration RFt is defined as

RFt = σ(I(s,1)(pi), ∀0 < t 6 s 6 1, i = 1, ..., n).

Proof. (a) see proof of the Theorem 8.3.

(b) Let n0 = 1. Consider two cases f 6 c1 and f > c1. For the first case we have

FDR(c) = Ef

[I(U6c2)
2

]
= α. For the second one FDR(c) 6FWER(c) = 1 − 2

√
1− α 6 α

holds.

If all hypotheses are true, i.e., n0 = n = 2 holds, then by Lemma 2.12 (which states that

the positive regression dependence on the subset implies the positive orthant dependence

on the same subset) we have

FDR(c) = FWER(c) = P (U1:2 6 c1) 6 1− P (U1 > c1)P (U2 > c1) = α. (8.21)

Note that if the random variables U1 and U2 are independent, then we have an equality

in (8.21).

(c) Let τBH denote the stopping rule of the BH procedure, i.e. τBH = j∗α
n , with j∗ =

max{i, i = 0, ..., n : pi:n 6 iα
n }, p0:n ≡ 0. We define τ̃BH = τBH ∨ α

n . Note that τ̃BH is a

positive reverse stopping time. Then we get

E
[

V (τBH)

R(τBH) ∨ 1

]
= E

[
V (τ̃BH)

R(τ̃BH) ∨ 1

]
= E

[
V (τ̃BH)

τ̃BH

τ̃BH

R(τ̃BH) ∨ 1

]
=
α

n
E
[
V (τ̃BH)

τ̃BH

]
=
αn0
n
.

The last equality is valid due to the Optional Sampling Theorem for reverse martingales

(cf. Heesen, Janssen [2015]). �



In this chapter we proposed some necessary assumptions for FDR-control under general

dependence. We proposed and discussed the consept of maximal procedures. In particular,

based on results in Chapter 7 we showed that there exists a class of the distribution of

p-values for which the BH SU procedure is maximal.



Appendix

Let S be a separable metric space. Suppose Ft is a filtration satisfying the usual conditions

and X is a stochastic process taking values in S.

The following version of the optional sampling theorem can be found in Bauer [2002] (p.

456).

Theorem 8.7 (Optional sampling theorem for right-continuous super-martingales)

Let X = (Xt)t>0 be a cadlag Ft-super-martingal and p ∈ N some finite number. Further

let τ1, ...τp be bounded Ft−stopping times with τ1 6 τ2 6 ... 6 τp. Then (Xτj ), j = 1, ..., p

is a right-continuous Fτj− super-martingale.

If B is a Borel subset of a metric space S, let

UB = inf{t > 0 : Xt ∈ B}.

UB is called a first entry time of B.

The next Theorem is a variant of the Debut Theorem and can be found, for example, in

Richard F. Bass [2011] (p.117).

Theorem 8.8 (Debut Theorem)

If X is a cadlag process taking values in S and B is a borel subset of S, then UB is a

stopping time.

Definition 8.9 (Comonotonicity)

Two real-valued measurable functions f and g are comonotone on S ⊂ Ω iff for any ω1

and ω2 ∈ S,

(f(ω1)− f(ω2))(g(ω1)− g(ω2)) > 0.

Definition 8.10 (Class of comonotone functions)

The family of measurable real-valued functions (fi)i∈I={1,2,...,n} is a class of comonotone
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functions if for all i, j ∈ I, for any ω1 and ω2 ∈ S, S ⊂ Ω,

(fi(ω1)− fi(ω2))(fj(ω1)− fj(ω2)) > 0.

Remark 8.11

The set of increasing (without strong increasing) functions is a comonotone class.

Definition 8.12

Let x = (x1, ..., xn) be a point in Rn with pairwise distinct coordinates xi, i ∈ {1, ..., n}.
Let x1:n < x2:n < ... < xn:n be ordered coordinates of x.

� For i ∈ {1, ..., n} we call the value

ri =
n∑

j=1

I(xj 6 xi)

the rank of xi. The vector r = (r1, ..., rn) is called the rank vector of x.

� The inverse permutation d(x) = r−1(x) is called the anti-rank vector of x, thereby

d(x) = (d1(x), ..., dn(x)). The value di(x) is called the anti-rank of i (the index which

corresponds to the i. smallest observation).

Example 8.13 (How to compute the coefficients bi in proof of Lemma 5.32.)

From the formula

1

S̃(t) + ñ1 + k
=

n1∑
i=ñ1+1

biI[0,fi)(t) + bñ1 (8.22)

we get bñ1 = 1
n1+k by the substitution t = fn1 in (8.22). Further, if the multiplicity of

each fj , j > ñ1 + 1, ..., n1 is equal to 1, we obtain

bn1+1−l =
1

(n1 − l + k)(n1 + 1− l + k)
, l = 1, ..., n1 − ñ1, (8.23)

due to the sequential substitution of t = fn1−l, l = 1, ..., n1 − ñ1, in (8.22).

If for some j = ñ1 + 1, ..., n1 the relations fj−1 < fj = ... = fj+mult(fj) < fj+mult(fj)+1

hold, where mult(fj) is die multiplicity of fj , we set bj = bj+1 = ... = bj+mult(fj) = 0 and

compute bj+mult(fj)+1 at the same way as in (8.23) by the substitution of t = fj+mult(fj)

and t = fj+mult(fj)+1 into (8.22). Consequently, we get

bj+mult(fj)+1 =
mult(fj+mult(fj)+1)

(S(fj+mult(fj)) + ñ1 + k)(S(fj+mult(fj)) +mult(fj+mult(fj)+1) + ñ1 + k)
,
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The way of the computation of the coefficients bi, i = ñ1, ..., n1 seems to be complex, but

in reality it is just the comparison of the formula (8.23) at the points fj∗ and fj∗+1 for

j∗ = ñ1, ..., n1.
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