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[about thought and deception; science defined]

We conclude, therefore, that the argument from religious experience is altogether

fallacious. The fact that people have religious experiences is interesting from the

psychological point of view, but it does not in any way imply that there is such a

thing as religious knowledge, any more than our having moral experiences implies

that there is such a thing as moral knowledge. The theist, like the moralist, may

believe that his experiences are cognitive experiences, but, unless he can formulate

his “knowledge” in propositions that are empirically verifiable, we may be sure that

he is deceiving himself. It follows that those philosophers who fill their books with

assertions that they intuitively “know” this or that moral or religious “truth” are

merely providing material for the psycho-analyst. For no act of intuition can be

said to reveal a truth about any matter of fact unless it issues in verifiable propo-

sitions. And all such propositions are to be incorporated in the system of empirical

propositions which constitutes science.

Alfred Jules Ayer [1]
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Introduction

The smallest building blocks of matter are comprised — at the level above elemen-

tary particles — by atoms and small molecules. A detailed understanding of these

systems is highly desirable, both for the sake of knowledge about the small sys-

tems themselves as well as the implications of this knowledge for larger molecules.

Fundamental understanding of molecular structure, therefore, commences with the

study of small molecules1. Much has been accomplished for light systems in the

past, whereas small molecules containing heavy elements, i.e. atoms from the fifth

row of the periodic table and beyond, are much less well understood.

The first and foremost piece of information relevant to chemistry and molecular

physics is delivered by the investigation of the electron “cloud” surrounding the

nuclei, the electronic structure. The theoretical framework for such investigations

is provided by quantum mechanics, and the quantum mechanical methodology for

carrying out the relevant calculations is at the heart of quantum chemistry.

An understanding of the electronic structure of atoms and molecules is based

on the solution of the quantum mechanical equations for the electronic many-body

problem, yielding ground- and excited-state energies. Nuclear structure is typically

neglected in these treatments, and the nuclei are considered as point charges or

simple charge distributions. Going beyond the “pure energetics”, derived proper-

ties can be obtained such as the equilibrium bond distances of molecules (and the

molecular geometry), harmonic vibrational frequencies of the nuclei in the electronic

potential, and dissociation energies. Beside the excitation energies, these spectro-

scopic properties are primarily sought for in theoretical spectroscopy, and form an

important source of information — apart from their predictive power — e.g. for the

correct assignment and interpretation of experimental data. An even more detailed

understanding is achieved by the consideration of vibrational and rotational states

and the various possible couplings such as rovibronic couplings, most of which is

beyond the scope of this thesis.

Of similar importance as the determination of energies and spectral constants

is the investigation of the electron density in atoms and molecules and its response

to external strain, e.g. electric and magnetic fields. The electric polarizability, the

extent to which the electron cloud responds to an external electric field, is a basic

1A “small” molecule will in this thesis be understood as consisting of not more than six or seven
atoms.
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quantity in the study of scattering processes and is also valuable for the understand-

ing of chemical reactions. The electric dipole moment provides information about

molecular bonding and mirrors the shift of electron density in the formation of a

molecule from its consitutents.

Accurate electronic structure methods must go beyond Hartree-Fock theory

where the electron-electron interaction is approximated by a mean field. Instead, the

full interaction of electrons needs to be taken into account. There is a wealth of such

“correlated” electronic structure methods available for small molecules containing

only light elements. These methods, in particular new implementations of general-

order coupled cluster theory, are able to produce results of arbitrary accuracy within

a given physical framework (Hamiltonian). This is not the case for heavy elements.

Obtaining accurate electronic structure data for heavy elements necessitates the ex-

plicit consideration of the theory of special relativity, a fact which has hampered

the development of such quantum chemical methods.

Special relativity reveals itself in two principal ways in heavy systems: It explains

the orbital contractions affecting chiefly s and p shells of heavy elements owing to

the increased observed mass of electrons with high velocities and the connected self-

consistent expansion mainly of d and f shells [11]. The corresponding changes of

electron density and associated changes of atomic and molecular properties can be

considered as perturbations in the 1st through 4th and sometimes also the 5th row

of the periodic table, respective to a non-relativistic description of these systems.

In the 6th row and beyond, however, a non-relativistic theory in general yields re-

sults which are often not even in qualitative agreement with experiment. Striking

examples are the shorter and stronger molecular bonds of gold as compared to sil-

ver [12], the participation of 5f electrons in the chemical bonds formed by actinide

atoms [13], and the volatility of mercury [11], to name but a few properties which

are ill-described in a non-relativistic framework. These “effects”2 are commonly

termed “scalar” relativistic. The terminology refers to the structure of the Hamil-

tonian which here only acts in coordinate space and not in spin space, allowing for

a one-component formulation of the wave function. This is the reason why scalar

relativistic modifications are today available in many quantum chemistry program

packages.

The second important phenomenon in heavy elements which is only described

through special relativity is the occurence of internal magnetic fields arising from

the motion of charged particles — the electrons — in the electric fields of the nuclei

and other electrons. In the inertial frame of an electron, this leads to a coupling of

the magnetic field to magnetic momenta of the electron, its spin and orbital momen-

tum, giving rise to spin-orbit, spin-spin, and orbit-orbit interactions. Of particular

importance in heavy elements is the spin-orbit interaction, which beside further

2Some care should be taken with the term “effect” here: In the present context, it has become
customary to call the difference between non-relativistic and relativistic view of a phenomenon an
“effect” which in strict linguistic terms is improper.
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contraction/expansion effects of orbitals partially lifts the non-relativistic energetic

degeneracies of states. The consequences in heavy elements can be as drastic as

the change of a ground state (PtH, [14]), the qualitatively different description of a

dissociation process (Tl2, [15]), or the variance of an atomic electric polarizability in

the order of 35% (Tl, [7]). The description of magnetic couplings necessitates the use

of spin-dependent and therefore at least 2-component Hamiltonians. Consequently,

the implementation of the spin-orbit interaction into a quantum chemical method

requires severe structural modifications.

The most rigorous theoretical framework to account for all these relativistic ef-

fects is Dirac’s relativistic quantum mechanics [16, 17, 18]. Here, the Hamiltonian

and the wave function obtain 4-component form, the additional components owing

to the description of anti-matter, which for electrons are positrons. In 4-component

relativistic theory, scalar relativistic and magnetic effects are intertwined and con-

sistently included. The work discussed in this thesis is based on 4-component theory

and approximative ansatzes within the 4-component framework, both with respect

to method development and application, and solutions are obtained to the Dirac

(-Coulomb), not the Schrödinger equation. Many implications related to the level

of relativistic treatment and the consequences in application are discussed in the

appropriate sections.

The rigorous treatment of relativity is necessary but not sufficient in obtaining

high-precision properties for heavy-element systems. Essential is also to account for

electron correlation, the static part in the near-degeneracy case and the dynamic

part reflecting the explicit electron-electron interaction. The methods presented in

this thesis are all based on non-relativistic precursor methods which allow for the

highest-level treatment of correlation, i.e. approaching the exact solution of the

relevant many-particle equations with a given one-particle basis set (Full Configu-

ration Interaction, General-Order Coupled Cluster), if desired and computationally

feasible. This is seldomly done in practice, but these wave-function based methods

allow for a systematic improvement of the correlation level and therefore a detailed

assessment of electron correlation contributions.

Two specific further complications occurring in heavy-element systems are im-

portant to mention, and they cannot be neglected if high precision of properties is

to be obtained. First, particularly d and f elements and their compounds often

exhibit states, even ground states, which are characterized by several unpaired elec-

trons, i.e. open shells. The treatment of such states surpasses the use of a single

Hartree-Fock determinant as a reference function for the correlation step of the cal-

culations. Instead, the multi-reference character of the states must be accounted for,

and this calls for methods going beyond standard single-reference implementations

(this applies in particular to coupled cluster approaches). Second, many common

approaches assume additivity of electron correlation contributions and contributions

due to spin-orbit interactions to a given property. This is sometimes reasonable, but

restricts those methods in their applicability. A quite impressive example of failure



is the thallium dimer [19], where an additive calculation of the ground state vibra-

tional frequency results in a deviation of more than 35% from the corresponding

simultaneous treatment of correlation and spin-orbit coupling. All methods intro-

duced in this thesis treat electron correlation and magnetic couplings simultaneously

and on the same footing.

Summarizing, the central objectives of this thesis are to provide universally ap-

plicable quantum chemical methodology for small heavy-element systems, which in

application have the potential of carrying the precision obtainable for properties of

light molecules over to the domain of small systems containing heavy elements. Uni-

versal refers to both the system itself, the state (ground or excited), and properties

which can either be derived directly from the energetics (spectroscopic properties)

or application of weak external electric fields (electric properties). The reported

applications demonstrate the present-day margins of attainable precision for spec-

troscopic and electric properties of such systems, which are within or often clearly

better than chemical accuracy (1 kcal
mol

for energy differences). In direct comparison,

it is shown how the presented methods improve on available approaches. The fact

should not be suppressed, however, that the application of rigorous relativistic elec-

tronic structure methods is highly demanding on the computational side, which does

not allow for exhaustive “scans” of compounds across the periodic table, but rather

for studies devoted to the detailed analysis of problem cases.

This thesis provides a snapshot of the methodological and applicational achieve-

ments I have contributed to. Despite the completion of many projects, there are

just as many, if not more, loose ends remaining. It is to some degree intended

to give an overview of a field of quantum chemistry rather than a mere summary

of accomplished work. Therefore, part I reviews the state-of-the-art, disregarding

own contributions. In part II, the new relativistic quantum chemical methods are

described, and part III is devoted to the application of these methods.
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State of the Art
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Properties of Small

Heavy-Element Molecules

At the other end of the spectrum are the opponents of reductionism who are appalled

by what they feel to be the bleakness of modern science. To whatever extent they and

their world can be reduced to a matter of particles or fields and their interactions,

they feel diminished by that knowledge [. . .] I would not try to answer these critics

with a pep talk about the beauties of modern science. The reductionist worldview is

chilling and impersonal. It has to be accepted as it is, not because we like it, but

because that is the way the world works.

Steven Weinberg [20]

Small heavy-element molecules were already subject to theoretical studies in the

early days of quantum chemistry. These investigations were, however, either of qual-

itative character or the reliability of quantitative results was rather limited. In the

last two decades progress has been made mainly along two lines: The development

of modern relativistic quantum chemical methods has improved both the range of

applicability and the obtainable accuracy of properties. Second and indirectly, the

enormous increase in computational power over the last decades opened for appli-

cations of higher and higher precision with available techniques.

The initial section of this thesis is meant to give an overview of modern rela-

tivistic electron correlation methods and their application to heavy-element systems.

Naturally, such an account cannot make a claim for completeness, so I resort to a

summary of methods which have recently been applied and which allow for an as-

sessment of their accuracy through available experiments. The selection is intended

to be as objective as possible and not biased towards specific failures. Nevertheless,

it serves as a motivation for the development work described in this thesis.

7
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Chapter 1

Heavy-Element Properties and

Methods

1.1 Spectroscopic Properties

The majority of all published results in quantum chemistry is today obtained by

application of density functional theory (DFT) [21]. The reason lies in the great

efficiency of DFT in the treatment of electron correlation which makes it applicable

even to very large molecules. For small molecules, pure ab-initio methods play a

more prominent role. As the methods presented in this thesis are solely based on

the wave function, the two different “world views” are discussed separately.

1.1.1 Density Functional Theory

The minimization of the energy expectation value formulated as a functional of the

electron density instead of the wave function comprises the central idea of DFT. The

resulting equations are structurally equivalent to the Hartree-Fock equations, but

in addition accounting for dynamic electron correlation. This efficiency comes with

a price, namely the obstacle that the true exchange-correlation density functional

is unknown. Commonly, density functionals are calibrated on a series of atoms and

small molecules, rendering the approach semi-empirical. Most DFT applications

to small molecules are therefore carried out to test the various density functionals

and to investigate basis set effects on selected molecular properties with a given

functional (“chemist’s functionals”). Although it is seldomly claimed that DFT can

systematically provide results of high accuracy, comparable to that attainable with

pure ab-initio methods, it is imperative to make this evident here for different types

of molecules and properties.

A number of “fully relativistic” 4-component as well as 2-component DFT im-

plementations is available today. The 4-component Beijing DFT package (BDF

[22, 23]) has been applied to properties of the gold dimer, a system which in its

ground state is characterized by strong scalar relativistic but weak spin-orbit effects

9
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(see subsection 5.2.3.1 for a detailed study). Both Local Density Approximation

(LDA [24]) and BP/BP86 [25, 26] functionals perform quite well for the equilibrium

bond length Re, the deviations remaining within 4 pm [27, 28]. Harmonic vibrational

frequencies are off by roughly 10 cm−1 (5%), dissociation energies De by almost 0.1

eV (4%) save for the Local Density Approximation which generally fails to describe

molecular dissociation satisfactorily. In part, the studies contain extrapolation to

the basis set limit. The results of Anton et al. using collinear and non-collinear 4-

component Kohn-Sham DFT and the same functionals are significantly better [29]

for the gold dimer, although the error for Re remains at 3 pm. The authors also

report calculations on the mercury dimer, a van-der-Waals system which is known

to be a difficult case; here BP and PW91 [30] functionals give dramatically different

results for all investigated properties.

Matveev et al. [31] studied a series of diatomic molecules where spin-orbit inter-

action plays a more important role in spectroscopic properties, the lead and bismuth

dimers as well as PbO and TlH. Their implementation is based on a 2-component

Douglas-Kroll approximation to the Dirac-Coulomb Hamiltonian, which generally

do not introduce large errors for valence properties. Despite the consideration of

spin-orbit interaction and the use of gradient-corrected functionals (BP), the results

are rather poor for the De, where Pb2 is off by 0.3 eV (25%) and PbO by 0.4 eV

(11%). Bond lengths, on the other hand, are reproduced satisfactorily, and this is

valid also for the LSDA functional VWN [32].

Particularly interesting are the studies carried out by Fossgaard et al. [33, 34]

on a test set of 14 molecules of the type HX and XY (X,Y = halogen atoms) and

molecules formed from Cs and the coinage metals. The DFT program used [35] is

incorporated in the DIRAC quantum chemistry program package [36], and the values

are systematically compared to high-level 4-component coupled cluster results. For

the test set, LDA functionals perform well, but GGA functionals overestimate bond

lengths and underestimate harmonic frequencies by 5-10%. On the more positive

side, non-relativistic density functionals seem to perform well also in relativistic cal-

culations, although this issue was not considered closed. Relativistic density func-

tionals would have to be calibrated on heavy-element systems to account for the

strongly modified electron density in “relativistic” systems. For CsAu, a molecule

with high ionicity and partial negative charge on the gold atom, the error for the dis-

sociation energy amounts to roughly 0.1 eV, whereas the deviation from experiment

is an order of magnitude smaller in a coupled cluster calculation.

The Amsterdam Density Functional (ADF [37]) package provides the possibility

of calculating excited-state properties via time-dependent (TD) DFT. Wang et al.

[38] report vertical excitation energies of the closed-shell diatomics I2, AgI, AuH,

Au2, TlH, and Bi2. The Hamiltonian employed is the 2-component spin-dependent

zeroth-order regular approximation (ZORA) [39, 40]. With only a few exceptions,

the deviations from experimental excitation energies vary between 0.1 and 0.5 eV

(roughly 3-15%). Some systematic dependency with respect to the type of exci-
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tation (involving only valence s and p orbitals or also d orbitals) and the applied

exchange-correlation functionals (VWN, LB94 [41], and SAOP [42]) is made out.

The number of excited states which may be obtained to this accuracy, however, is

quite impressive, and up to 20 lowest-lying states are reported for the gold dimer.

Density functional methods are widely applied to complexes of lanthanide and

actinide atoms, where ab-initio approaches are less efficient. A wealth of results also

exists for a few actinide molecules which are of particular experimental interest,

the actinyl cations. Some of these are studied by comparing different methods in

reference [43], where especially the bond length of the uranyl ion received attention.

Various DFT results using large-core and small-core relativistic pseudopotentials

are compared to benchmark relativistic coupled cluster calculations. With the more

accurate small-core pseudopotentials the results scatter around the benchmark value

in a range of 2 pm. Vibrational frequencies are produced at significantly reduced

accuracy compared to experiment.

A number of neutral systems has also been investigated using DFT approaches,

e.g. OUCO, OThCO [44], NUO, NThO [45], and PuN2 [46]. The data set for the

uranium and thorium compounds does not allow for a critical judgement, but the

error margins for vibrational frequencies appear to be the same as in the above-

mentioned cases. The PW91 calculations on PuN2 yield results in agreement with

the Complete Active Space Perturbation Theory 2nd Order (CASPT2) approach

[47, 48] for the bond lengths and semi-quantitative agreement for the excitation

energies of lower excited states. However, the precision of the CASPT2 method for

the properties of actinide species is yet unknown (see further comments in subsection

1.1.2). Souter et al. [49] find a vibrational frequency for the UH molecule of 1353

cm−1 using ADF along with a BP functional, where the experimental value obtained

is 1423.6 cm−1.

The series of uranium trihalogenides has been investigated by Joubert et al.

[50] using ADF/ZORA and quasirelativistic effective core potentials [51] within the

Gaussian98 [52] package. For the heaviest homologue, UI3, the various function-

als (BP, B3LYP [53, 54], B3P [26, 53], and PBE0 [55, 56]) give equilibrium bond

lengths within 3 to 10 pm from experiment. Both theoretical and experimental stud-

ies suggest that the molecules prefer a pyramidal C3v arrangement, and the DFT

calculations produce bond angles deviating by 20-30◦ (20-30%) from the experimen-

tal value.

In conclusion, DFT approaches do not comprise the method of choice for small

molecules containing heavy elements. Although successful in some cases using dis-

tinct density functionals, high accuracy (errors smaller than 1% or 1 kcal/mole for

energy differences) cannot be achieved systematically. Furthermore, DFT is not

universally applicable, as e.g. states characterized by a significant amount of charge

transfer from one system entity to another are typically ill-described. This relates

to the additional Coulombic potential arising in such cases and the inherent self-

interaction deficiency of conventional density functionals [57, 58]. This also explains
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the errors in dissociation energies of highly ionic systems such as the CsAu molecule

mentioned above.

1.1.2 Wave Function Based Correlation Methods

Quantum chemical models based on the electronic wave function allow for a sys-

tematic improvement of the level of calculation and therefore a more complete un-

derstanding of electronic structure in general. Figure 1.1 displays this alongside

an increasing one-particle basis set, a more exact Hamiltonian ranging from non-

relativistic to “fully” relativistic, and an improvement of the treatment of electron

correlation. For DFT, variations are possible only on the lower 2 axes, but the

method axis remains fixed, save for the possibility of employing different density

functionals which is not a systematic procedure to the date.

Basis set

Hamiltonian

Method

DZ TZ QZ
Non−relativistic
(one−component)

two−component

four−component

Hartree−Fock

MP Perturbation Theory

Configuration Interaction

Coupled Cluster

Figure 1.1: The three axes along which a quantum chemical model based on the wave
function may be improved: Basis set, Hamiltonian, and the treatment of electron correla-
tion

With respect to the work presented in this thesis, the Hamiltonian axis is mostly

at highest precision1, with the possibility of introducing approximations in specific

cases. A general discussion of relativistic Hamiltonians in theory and application

1Corrections from quantum electrodynamics and terms of higher order in the fine-structure
constant are not taken into account.
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can be found in a number of recent review articles [59, 60, 61]. Various basis sets are

used, in part reaching the level of quadruple zeta (QZ) quality. In general, a basis

set of at least triple zeta quality should be used to avoid artefacts in the treatment

of electron correlation and to be reasonably sure that the errors due to basis set

truncation are smaller than those arising from an approximate treatment of electron

correlation [62]. For some of the studies reported here which focus on the influence

of electron correlation and/or relativistic effects on properties an improvement of

the basis set is a requirement for more accurate results. Approaching the basis set

limit is very often computationally intractable when highly-correlated wave-function

based methods are used, whereas such studies are significantly easier to carry out

with DFT approaches. The optimization of relativistic basis sets is a tedious task,

but extensive sets have become available for most heavy elements in recent years

[63, 64, 65, 66, 67]. The method axis, however, is the one of major interest in the

present context. The electron correlation problem plays the prominent role also in

heavy-element chemistry and physics. Therefore, the methods for its treatment,

in conjunction with exact relativistic Hamiltonians, are of crucial importance for

guaranteeing high precision in obtained properties. The hierarchy of the models on

the axis is of course overlapping, but at a given order/excitation level the coupled

cluster model provides the most accurate approach. Detailed surveys of available

relativistic correlation methods and some results for spectroscopic properties are

given in the appropriate sections of this thesis. It is imperative, however, to mention

a few general issues here.

A variety of relativistic core potentials/pseudopoentials, e.g. [68, 69], is in use for

heavy-element systems, where the inner regions of heavy atoms are typically mod-

elled by a potential fitted to all-electron structure data. This approximation is useful

for larger molecules where the orbital optimization step (Dirac-Coulomb Hartree-

Fock) becomes computationally impracticable. For atoms and small molecules, how-

ever, the correlation step becomes the more demanding in general, and the orbital

optimization can always be carried out with the all-electron treatment, even for

systems containing 4 or 5 heavy atoms. At the correlation stage, a frozen core is

formed from inner electron orbitals and pseudopotentials comprise an unnecessary

approximation. Thus, all calculations reported here are carried out explicitly con-

sidering all system electrons. The introduced methods, however, allow for the use

of core or model potentials in principle, but such an implementation has not been

carried out for the mentioned reasons.

Most quantum chemical implementations which can account for magnetic inter-

actions treat correlation and spin-orbit interaction separately, to a larger or smaller

degree. The separation takes place at different stages of the calculation. In most

instances, orbital optimizations are carried out neglecting spin-orbit coupling. Ad-

vancing the same argument as above, the computational cost is much higher in the

correlation step, which justifies the more costly spin-dependent orbital optimization.

In general, spinors from such a calculation form a significantly improved one-particle
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basis in heavy-element calculations [4] and facilitate as well as improve the subse-

quent correlation treatment. Regarding 4-component methods in this respect, the

explicit treatment of the small component degrees of freedom can indeed become

too inefficient here if the impact of the small component functions is negligible.

Approximate 2-component Hamiltonians e.g. [70, 71, 72], then become a favorable

choice. Upon correlating, however, this advantage disappears as the negative-energy

states are usually and to a very good approximation neglected in the 4-component

correlation treatments (no-pair approximation2) [73].

Another place to separate correlation and spin-orbit coupling is in this later step

of the calculation. There exist a number of different “shadings” of how rigorous the

separation is carried out, and many of these are mentioned in the following sections.

The models seem to work well in many cases where the coupling between correlation

and spin-orbit interaction is not decisive. To name but one example, the spin-orbit-

(SO-) CASPT2 method [74, 75] draws advantage from its efficient (perturbative)

treatment of electron correlation, but spin-orbit interaction is considered only after

the orbital optimization and not simutaneously with (dynamic) electron correla-

tion3. The method is successful but not universally applicable to small molecules.

An assessment of its accuracy remains an open issue and will rely on the direct com-

parison with rigorous methods as the ones presented here (see subsection 5.2.2.2 for

an example).

The methods presented in this thesis are capable of computing properties with

in principle arbitary precision, as far as electron correlation is concerned. Coupled

cluster as well as configuration interaction calculations may be carried out to any or-

der/excitation level, and extensive (typically uncontracted) basis sets can be used,

so that the feasibility of a calculation merely depends on the avaliable computer

power. Regarding the Hamiltonian axis, the use of the Dirac-Coulomb-Breit opera-

tor is not possible currently4. This limits the treatment of spin-orbit interaction to

the one-electron spin-orbit and the spin-same-orbit two-electron terms in correlated

calculations. However, this is a good approximation for the great majority of heavy-

element properties, where the one-electron spin-orbit terms become cleary dominant

due to the increasing nuclear charge [4, 77]. Corrections due to quantum electro-

dynamics like the self-energy and the vacuum polarization (constituting the Lamb

shift) are very small for valence properties (less than 1 kcal/mole for atomization

energies for instance [78]) and therefore not taken into account.

2As the positive- and negative energy solutions are not decoupled a priori in the 4-component
formalism, a realistic screened nuclear potential is used here to define the no-pair approximation.

3A spin-orbit Hamiltonian is diagonalized in the basis of CASSCF (see section 3) wave functions
with shifts from spin-orbit free CASPT2 calculations of dynamic electron correlation applied to
the diagonal elements.

4The Gaunt term is implemented within a local version of the DIRAC program package [76]
but cannot be used in correlation approaches due to the lacking integral transformation for Gaunt
integrals.
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1.2 Electric Properties

The electric properties considered in this work are limited to the static domain, im-

plying that perturbing external fields are always time-independent. Static electric

properties may be obtained either analytically, e.g. by applying response theory or

by evaluating expectation values of the relevant property operators, or by numer-

ical procedures (see chapter 6). The methods introduced here employ the latter

approach. Thus, the attainable accuracy is determined by the precision to which

the respective total energies may be calculated, and therefore the same arguments

apply as in the preceding chapter on spectroscopic properties.

The focus here lies on electric dipole moments of molecules and electric dipole

polarizabilities of both atoms and molecules. Reference [79] provides an excellent

state-of-the-art account of atomic polarizabilities. These are required for instance in

the study of scattering phenomena, chemical reactions, or electric processes under

exposure to irradiation. Quite surprisingly though, accurate polarizabilities — both

experimental and theoretical — are available only for a minority of atoms, typically

the closed-shell and lighter atoms. Reliable polarizabilities for heavy open-shell

atoms and/or excited states are rare if they can be found at all. Most calculations on

heavy elements are carried out using DFT with LDA functionals, and the residual

errors are in the order of 25% [80]. The magnitude of the errors can be related

to the fact that the major part of the atomic polarizability is determined by the

outermost electrons. Only a small selection of atoms has been treated with the

more reliable CASPT2 (Sb, Re, Bi, Am) or coupled cluster methods (Cd, Xe, Cs,

Ba, Au, Hg, Pb, Rn, Fr). The principal difficulty in calculating atomic (and of

course also molecular) polarizabilities of heavy elements to high accuracy lies in the

sensitivity of the property to electron correlation, necessitating the inclusion of many

electrons in the correlation treatment. In addition, large and diffuse basis sets are

required to describe the response of the electron density in the valence region to the

external perturbation. A particular difficulty is encountered in open-shell systems

where spin-orbit interaction often needs to be accounted for consistently. Moreover,

the high-accuracy Fock-space coupled cluster methods available become difficult to

apply when the number of open shells of a given state exceeds 2 [81]. Open-shell

systems may be treated with standard coupled cluster approaches if the open-shell

reference function is comprised by a single determinant to a good approximation,

e.g. in the study of Ln3+ ion polarizabilities [82].

Only a few recent applications to molecular polarizabilities of heavy-element sys-

tems (Au2 [28], AlAu [83], PbO [84]) shall be mentioned here, as such properties are

not discussed at length in this thesis. The methods presented here do allow for finite-

field calculations also of molecular static polarizabilities. The referenced approaches

cover 4-component DFT, scalar relativistic coupled cluster, and 2-component SO-

CASPT2. However, no experimental data are available for an assessment of the

accuracy of these calculations.



The calculation of molecular dipole moments is somewhat easier than that of

polarizabilities, mainly because the dipole moment is only a first-order property.

The range of approaches which have been used so far is similar, though. Recent

studies report dipole moments of Al-coinage metal compounds (coupled cluster [83])

and group 13-17 heavy diatomics (Dirac-Coulomb Hartree-Fock [85]). A molecule of

particular interest is lead oxide (PbO) which has been investigated several times in

the past. The most recent work confirms the strong dependency of the property on

spin-orbit interaction which varies significantly as a function of the distance between

the atoms [84]. Again, 2-component SO-CASPT2 is applied yielding results very

close to coupled cluster with perturbative triple excitations (CCSD(T)) when spin-

orbit coupling is excluded. An estimate of the spin-orbit contribution gives a result

farther away (lower) but still within the error margin of the experimental result [86].

The authors conclude that the inclusion of excited-state configurations relevant for

describing spin-orbit interaction decreases the dipole moment due to the smaller

polarity of these configurations. Another specific problem case is the HI molecule

which is adressed in detail in subsection 6.3.1. For obtaining a quantitatively correct

dipole moment value of this molecule, all three axes in figure 1.1 require special

attention [87].

Frequency-dependent electric polarizabilities (for the coinage metal dimers [88]

and for the series of furan homologues XC4H4, X = O, S, Se, Te [89]) have been

determined for heavy-element compounds at the Dirac-Coulomb Hartree-Fock level

using the DIRAC package in the framework of response theory. No such properties

are reported here, but as linear and non-linear response properties can be deter-

mined within 4-component Hartree-Fock calculations already, the extension to the

correlated quantum chemical methods discussed here comprises an issue of future

development work.
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Method Development
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Relativistic Multi-Reference

Electron Correlation Methods

So the other afternoon I knocks at the door of Dr. Dirac’s office in Sterling Hall and

a pleasant voice says “Come in.” And I want to say here and now that this sentence

“come in” was about the longest one emitted by the doctor during our interview.

[. . .]

Then we sat down and the interview began.

“Professor,” says I, “I notice you have quite a few letters in front of your last

name. Do they stand for anything in particular?”

“No,” says he.

“You mean I can write my own ticket?”

“Yes,” says he.

“Will it be all right if I say that P.A.M. stands for Poincaré Aloysius Mussolini?”

“Yes,” says he.

“Fine,” says I, “We are getting along great! Now doctor will you give me in a

few words the low-down on all your investigations?”

“No,” says he.

Roundy interviews Professor Dirac [90]

The methodological work described in this thesis encompasses the development

or generalization of tools central to quantum chemistry and based on the optimiza-

tion of the electronic wave function. The development has been and is carried out

entirely within a local version of the DIRAC quantum chemistry program package.

One of the new modules (LUCITA) has been included in a released version [36] and

is accessible to a wider public.

Before embarking on a discussion of the 3 different models which have come to im-

plementation, figure II depicts the hierarchy of the methods and their interrelations.

The methods cover static (MCSCF) and dynamic (CI, CC) electron correlation and

can make use of fully relativistic 4-component Hamiltonians. The elaboration in the
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following 3 chapters emphasizes major issues of theory and implementation as well

as important implications concerning application, whereas a great deal of details is

omitted and left to the published material.

Dirac−Coulomb
Hartree−Fock

KR−MCSCF
   (LUCIAREL CI)

MR−CC incl. spin−orbit

CC branch

New Multi−Reference Electron Correlation Programs in DIRAC

CI branch

spin−orbit freeMR−CCLUCITA spin−orbit free

LUCIAREL CI

Olsen, Fleig

Fleig, Olsen, Visscher

Thyssen, Jensen, Fleig,
Visscher

Olsen, Fleig, Soerensen

Soerensen, Fleig, Olsen

Figure 1.2: An overview of the new relativistic 4-component electron correlation programs
in DIRAC and the main authors of the modules.
Color code (green, black): Completed; (red): Under development



Chapter 2

Relativistic Multi-Reference

Configuration Interaction (CI)

2.1 General Remarks

The configuration interaction approach is the oldest and also a conceptually very

simple and straightforward method to go beyond the Hartree-Fock model in many-

particle theory. There is hardly any quantum chemical program package that does

not include a CI module of some type.

Despite this theoretical simplicity, however, the linear parameterization of the

wave function in the CI model comprises a quite inefficient approach to the electron

correlation problem. The exact solution of the Schrödinger equation given a basis

set expansion of the wave function, the Full (F) CI solution, for 20 electrons in 100

spin orbitals spans a Fock space of more than 5 · 1020 terms disregarding spatial or

spin symmetry reductions. Practical applications are therefore limited to restricted

CI expansions, very often including only single and double excitations out of a

single- (or multi-) reference space. This approach has two severe drawbacks: On

one hand, the CI energy converges slowly to the FCI solution with the excitation

level [91]. On the other, owing to the linear parameterization, truncated CI models

no longer conserve the property of size-extensivity/size-consistency with the number

of correlated particles/non-interacting subsystems [92].

Regarding molecular (and atomic) properties, finite-field approaches (6.1.2) based

on CI wavefunctions are as easily applied as in other correlation methods and are

used quite frequently. The application of analytical procedures (6.1.1) like response

theory, on the other hand, have received rather little attention. This is due to the

size-consistency problem and to the fact that the one-particle functions are not re-

optimized with respect to the external perturbation introduced for obtaining the

property, which is the case for instance in the Multi-Configuration Self-Consistent-

Field (3) approach.

Nonetheless, CI theory has some striking advantages. Unlike the coupled cluster
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approach (4) excited states are straightforwardly obtained and do not essentially

depend on a specific reference function, like e.g. a closed-shell electronic configura-

tion. Moreover, CI methods are generally based on the variation principle leading

to an upper bound for determined energy eigenvalues. On the technical side, the

generalization of existing CI technology to the relativistic domain can be carried

out using the same specialized algorithms (e.g. for direct CI procedures) but the

required modifications are substantial. These are chiefly the generalization to com-

plex algebra due to the use of spin-dependent Hamiltonians, the implementation

of double point group symmetry, and a structural modification to account for the

increased number of types of relativistic integrals. The latter point in particular will

deserve special attention in subsection 2.2.2.

Non-relativistic CI programs are typically based on expansions in Configuration

State Functions (CSF) which are spin eigenfunctions [93], because S comprises a

“good” quantum number for the total electronic spin of the many-particle system.

However, determinant- (or more precisely string-) based implementations are more

efficient as the time-consuming comparison of configurations in the evaluation of CI

coupling coefficients is not required [94]. Advances in CI technology have made the

treatment of huge CI expansions possible [95] which opens for large-scale applications

of relativistic CI programs based on these improved codes [4, 96].

2.1.1 Previous relativistic implementations

A common classification of relativistic CI approaches is comprised by the one-step

and the two-step methods. The distinction refers to at what stage of the algorithm

spin-orbit coupling is treated. The less general two-step procedures typically involve

a scalar relativistic determination of the wave function followed by an optimization

including the spin-orbit Hamiltonian. In physical terms, these approaches rely to

some extent on the separation of electron correlation and relativistic effects, in par-

ticular the spin-orbit interaction, and are therefore intrinsically approximate1.

In the Restricted Active Space State Interaction (RASSI) [75] program of the

MOLCAS package [97] matrix elements of scalar relativistic RASSCF wave functions

are evaluated over a spin-orbit Hamiltonian in atomic mean-field approximation [98].

This approach provides results of considerable accuracy but is difficult to apply when

many open shells are involved or/and many states have to be coupled. Moreover,

it is not a classical CI approach and only accounts for a small fraction of dynamic

electron correlation. In combination with the perturbative CASPT2 method for

dynamic electron correlation, the afore-mentioned SO-CASPT2 method has become

a tool of increasing popularity in relativistic quantum chemistry (see also sections

3.1 and 5.2.2.2).

The Effective and Polarized Spin-Orbit CI (EPCISO) code published a few years

ago [99] can be best described as a mixture of a one-step and two-step proce-

1Except in the FCI limit where the method becomes independent of the one-particle basis
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dure. Dynamic correlation is accounted for by an effective Hamiltonian and spin-

orbit coupling introduced by including single excitations out of a determinantal

model space predefined by non-relativistic LS-coupled wave functions of the differ-

ent spatial symmetries. The method thus becomes applicable also to medium-sized

molecules [100] but lacks rigor in general. The implementation by Kleinschmidt et

al. [101, 102] which can be run as a genuine one-step procedure uses non-relativistic

Multi-Reference (MR) CI starting vectors to form a model space in which subse-

quently a SOCI calculation in the given CSF basis for the coupling spin multiplets

is performed. The program is currently applicable to lighter elements only (as it

is based on an integral interface to the TURBOMOLE [103] program package lacking

auxiliary basis sets for heavy elements). Single excitations with respect to all model

space functions can be considered, but an explicit selection of configurations with

respect to spin-orbit coupling contributions is not performed.

Other implementations are purely based on effective core potentials, e.g. the

Graphical Unitary Group Approach (GUGA) CI in the Columbus program package

[104] which is programmed as a one-step double group CI. The use of relativistic

effective core potentials aims at molecules containing several or many heavy centers,

because there the Hartree-Fock step can already become prohibitively expensive

in all-electron approaches. Otherwise, core potentials are not required as given a

successful Hartree-Fock or Multi-Configuration SCF calculation, the uncorrelated

electron orbitals form a frozen core in the subsequent correlation treatment which

does not contribute to the computational expense of the method.

Of the purely one-step methods, two recent ones shall be mentioned here which

have been successfully applied in molecular electronic structure calculations: The

4-component direct double group CI program DIRRCI from the MOLFDIR package

[105] is now also part of the DIRAC [36] program system and is capable of performing

relatively small CI expansions of up to a few million Slater determinants [106]. A

previous generalization [107] of the LUCIA program system [108] works with scalar

relativistic orbitals only and RAS expansions of the wave function. The code exploits

non-relativistic symmetry as far as possible and thus cannot be applied in general

spinor calculations. Another drawback is the limitation to 3 active orbital spaces.

The CI code described in this thesis can use an arbitrary number of spaces, denoted

as Generalized Active Spaces (GAS) with arbitrary occupation constraints (2.2.1).

The great potential and use lying in this generalization will become apparent also in

the methodology and applications of relativistic MCSCF (3) and the coupled cluster

approach described in (4).

The relativistic CI implementation reported earlier [96, 109] which is the precur-

sor to the here-described programs already bears the generality with respect to the

one-step approach, the associated one-particle basis and double group symmetry in

the one- and many-particle spaces. Furthermore, LUCIAREL is an all-electron imple-

mentation. The following sections are concerned with the theoretical implications

and the practical aspects of the generalization of this method [4] to 4-component
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relativistic methodology. It is to be emphasized that the implementation described

in [109] and [96] was only used in connection with a scalar orbital basis and in

2-component relativistic approximation. The latter aspect is more of a technical

issue, because the difference between 2- and 4-component versions merely lies in

the interface to the respective transformed integrals after the Hartree-Fock step and

did not require significant modifications of the CI code as such. A distinction of

much greater importance is the advance from using a scalar orbital basis to a spinor

basis, as the symmetry and associated quantum numbers are changed. However,

the implementation described in this thesis is also general with respect to the one-

particle basis, and applications employing both approaches will be reported in the

appropriate section (6).

Two common features of all the varieties of CI implementations reported in this

thesis shall receive special attention at this point. Apart from the GAS concept,

these are

1. String-driven algorithm. Configuration interaction (and also e.g. coupled clus-

ter) procedures require the multiplication of some coupling coefficients with

integrals and the model parameters, here the CI coefficients (or CC ampli-

tudes). The most efficient way of performing these transformations is to rep-

resent the involved determinants (or CSFs) by strings of creation operators in

second quantization and to replace the loops over (spin-) orbitals by loops over

strings [94, 110]. By this, the evaluation becomes independent of the number

of occupied (spin-) orbitals in the occupied/virtual subspaces.

2. Arbitrary excitation level. As a direct consequence of the above, the implemen-

tation of arbitrary excitation levels is greatly facilitated, because the evaluation

of coupling coefficients and the contractions is independent of the excitation

level of the occurring determinants. This provides CI codes which can straight-

forwardly perform up to FCI expansions [95, 108] if the computational demand

allows this.

2.1.2 Scope of the Method

With the large-scale implementation of relativistic CI theory presented here, I pursue

the following purposes:

1. Relativistic generality. The program can be used with scalar relativistic or-

bitals or general spinors. The former computations are generally less time-

and resource-comsuming because the orbital optimization step can be done in

1-component approximation. Full 4-component calculations as well as using

2-component spinors from the Barysz-Sadlej-Snijders (BSS) Hamiltonian [72]

as implemented in the DIRAC program package [111] can be carried out. The

4-component scheme is important in property calculations where the wave
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function in the vicinity of the nucleus changes, e.g. core excitations or nu-

clear spin-spin couplings. The 2-spinor approach is preferred over the scalar

relativistic environment due to reduced truncated CI expansion lengths when

spin-orbit coupling is large in the one-particle basis, rendering the scalar ap-

proach inefficient. This occurs in heavy p elements with open shells, but also

the lanthanides and actinides and their compounds (see subsections 5.1.1 and

5.1.2 for examples).

Currently, 4-component calculations use the Dirac-Coulomb Hamiltonian which

lacks spin-other orbit 2-electron terms. For heavy elements, this is a valid

approximation, but not satisfactory if a rigorous framework is desired. The

implementation of the required Gaunt operator is under development in DIRAC

[76] and completed for the Hartree-Fock step.

2. Excited states. The iterative methods implemented2 allow for the determina-

tion of many eigenstates. The program can therefore be applied to complicated

open-shell compounds as well as closed-shell molecules. Beside excitation en-

ergies, spin-orbit splittings/shifts in ground and excited states can be deter-

mined. On the technical side, excited states become accessible in relativistic

MCSCF calculations by constructing specific active spaces; this feature will

be explained in the section on MCSCF (3).

3. High precision calculations on small systems. Spectroscopic properties like

equilibrium bond lengths, harmonic frequencies, and dissociation energies can

be obtained both for ground and excited states at high precision using multi-

reference CI wave functions3. As CI expansions are almost always truncated,

the determination of electric properties also for small systems is carried out

via finite-field techniques (6.1.2). Not all of these properties can be accessed

by these means, as one is often limited by implemented operators in the re-

spective program packages or technical obstacles. Typical applications involve

perturbing electric fields yielding static electric dipole moments and polariz-

abilities.

4. CI module for relativistic MCSCF program. One of the most important uses

of LUCIAREL finally lies in the conjunction with MCSCF methodology, where

beside the integral storage the efficiency of the CI module crucially determines

the applicability of the method. With the extended implementation including

LUCIAREL active spaces with up to roughly 50 Kramers-paired orbitals and

configuration spaces with several tens of millions of determinants are feasible

in relativistic MCSCF calculations. Details are discussed in subsection 3.3 and

relevant applications are reported in 5.2.2.2.

2Complex Davidson algorithm, see e.g. [112].
3In Active Space sense described below (2.2.1)
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2.2 Relativistic CI Theory

The present relativistic CI implementation is based on Slater determinants formed

from two separate sets of creator strings, one for spin-up type orbitals, the other

for spin-down type orbitals. This concept allowed for generalizations to relativis-

tic Hamiltonians by introducing the additional determinant coupling types in the

relativistic case and by accounting for the additional types of relativistic integrals.

The underlying one-particle functions are assumed to be pairwise related through

time-reversal symmetry. Both one-particle functions and strings are classified fully

in terms of double point group symmetry, a consequence of the symmetry reductions

due to spin-orbit interaction.

The initial steps of generalizing the non-relativistic precursor program LUCIA

[95, 108] to relativistic Hamiltonians has been described earlier [96, 109]. The ob-

tained version is capable of performing large-scale all-electron applications in a one-

step procedure, i.e. optimizing the wave function by a fully variational treatment in

configuration space including the full spin-dependent Hamiltonian, e.g. in reference

[2]. Both one- and many-particle functions are classified according to irreducible

representations of double groups here. Kramers symmetry is formally included, but

as this initial implementation works from scalar spin orbitals only, the relations re-

duce to the well-known restrictions induced by spin symmetry like in non-relativistic

implementations. As an example, consider the two-particle integral [ij|kl] in Mul-

liken notation for spin orbitals. The action of the time-reversal operator K̂ is defined

as

K̂ϕiα = ϕ∗
iβ

K̂ϕiβ = −ϕ∗
iα

K̂ϕi = ϕ∗
i

K̂ϕi = −ϕ∗
i

where in the last two lines the index i denotes a general spinor. These one-particle

functions are per constructionem Kramers pairs, and spin orbitals are but a special

case of spinors. In a Kramers basis of spin orbitals the mentioned integral fulfills

[ij|kl] = (ij|kl) = (ij|lk) = [ij|lk], where spin integration is carried out leading to

the orbital notation (pq|rs). If the functions are Kramers-paired spinors, however,

merely the identity [ij|kl] = [ij|lk] 6= [ij|lk] holds (beside similar relations via time-

reversal symmetry for the other types of integrals). The use of Kramers symmetry in

the present implementation is more involved and will be dealt with in the subsection

on excitation classes (2.2.2).

The general difference between the previous and the present implementation

does not lie so much in the Hamiltonian employed in the actual CI procedure itself

but rather in the Hamiltonian used for obtaining the respective one-particle basis.

Thus, the CI procedure starting from a relativistic spinor basis will be elucidated in
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the following. Common features are a complex modification of the inverse-iteration

Davidson algorithm (reference [91], pp. 544) and a vector partitioning technique

which will be described here.

2.2.1 Generalized Active Spaces (GAS)

The GAS formalism imposes extensive implementational requirements on a wave

function optimization procedure, but it leads to a program with great generality

in application. Restricted Active Spaces (RAS) have been used earlier (e.g. in

the RASSCF module of the MOLCAS package [113]). GAS can be considered as

the complete generalization of this approach, where the one-particle functions are

divided into an arbitrary number of subspaces, e.g. as shown in figure 2.1.

External

 Frozen CoreGAS I

GAS II
GAS III

GAS N

GAS N−1....

....

Figure 2.1: Division of the one-particle space into Generalized Active Spaces. The ’Frozen
Core’ space can be omitted when a core Fock matrix is generated for these orbitals.

To make the scope of the procedure clearer and also to prepare for the discussion

of the excitation class formalism, I will focus on a simple atomic example here, the

Arsenic atom. Its valence configuration is 4p3, the outer core can be described as

3d104s2.

Assuming now that all other electrons form a frozen core, the CI trial wave

function is constructed via the scheme in table 2.1. The setup employs 5 GAS, the

last of which contains an unspecified number (m,n) of virtual functions. The first

column of the Kramers pairs denotes the functions transforming as to the Eg irrep,

the second column those transforming as to the Eu irrep of the symmetry group. The

first column of the electron occupations denotes the minimum number of electrons

taken into account after this GAS has been considered, the second the maximum

number of electrons after this GAS. Thus, GAS I and II remain completely occupied.

Single, double, and triple excitations are performed out of GAS III, and combined
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GAS GAS Kramers pairs Accum. electron occupation Function type

I 5 0 10 10 3d, outer core

II 1 0 12 12 4s, outer core

III 0 3 12 15 4p, valence

IV 0 3 13 15 5p, valence correlating

V m n 15 15 rest, virtual

Table 2.1: Generalized Active Spaces and occupation constraints for the As atom, valence
correlation, symmetry double group C∗

i

with single and double excitations out of GAS IV into the virtual space. In other

words, GAS III carries between 0 and 3 electrons in all constructed determinants,

GAS IV between 1 and 3, and GAS V between 0 and 2 electrons. The so-defined

wave function is comprised by all configurations which can be constructed from

4p3, 4p25p1, 4p2V1, 4p15p2, 4p15p1V1, 4p1V2, 5p3, 5p2V1, 5p1V2. (2.1)

The calculation therefore refers to a complete expansion (FCI) in a valence space

defined by the 4p and 5p functions, and single and double excitations with respect

to each of these CAS configurations. By these means, Multi-Reference (MR) CI

calculations can be modelled: active spaces with varying excitation levels are defined

and a virtual space is branched off and restricted to, e.g, a maximum of 2 electrons.

GAS GAS Kramers pairs Accum. electron occupation Function type

I 5 0 9 10 3d, outer core

II 1 0 10 12 4s, outer core

III 0 3 12 15 4p, valence

IV 0 3 13 15 5p, valence correlating

V m n 15 15 rest, virtual

Table 2.2: Generalized Active Spaces and occupation constraints for the As atom, valence
correlation and core polarization/correlation, symmetry double group C∗

i

To demonstrate the power of the method, I will discuss a second example. Fol-

lowing the setup in table 2.2, where the outer core shells are opened for excitations,

the following additional configurations arise:

3d104s1(III− V)4, 3d104s0(III− V)5, 3d94s2(III− V)4, 3d94s1(III− V)5 (2.2)

Triple excitations out of the combined spaces I and II are not allowed, so the con-

figurations 3d94s0(III− V)6 do not occur4. The combined spaces III-V may now

4This could be achieved by replacing the 10 with a 9 in the GAS II minimum occupation
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carry up to 5 electrons instead of 3 as in table 2.1, and the additional electrons have

to be distributed in accordance with the predefined occupation constraints. In the

present example this means that the single and double excitations out of the outer

core shells are not combined with excitations from the valence shells into the corre-

lating or virtual functions because of the minimum constaints of 12 and 13 in GAS

III and IV, respectively. Again, if combined excitations were desired, this could be

achieved by lowering the minimum occupations in GAS III and IV accordingly.

The improved wave function now also contains core-valence correlation of the 3d

electrons and outer core correlation of the 4s electrons along with the valence cor-

relation given by the original space. In practice, employing a reasonable contracted

basis set, the first setup gives rise to 10.552 determinants whereas the second spans

2.187.570 determinants.

In summary, GAS spaces allow for a very flexible definition of the wave function

in view of the physical or chemical problem aimed at. In particular, it may be and

has been applied in the following contexts:

1. Core-valence and core-core correlation. These contributions can efficiently be

taken into account through the GAS scheme. Likewise for molecules, the outer

core orbitals can be divided into a few spaces and the desired excitation level

defined for each of the shells. A typical example is the atomic study in reference

[2]. Similar to the above setup, the polarization effect of the (n− 1)p shell of

the halogen atoms is taken into account in highly correlated estimations of the

atomic static electric polarizabilities in the J, MJ components of the ground

state. In this calculation based on spin orbitals, the (n−1)p polarization serves

the purpose of giving a better spin-orbit splitting in the valence shell. In a

spinor basis, this is seldomly necessary and the outer core is rather opened for

obtaining correlation contributions.

2. Complete and near-complete valence spaces. In molecular applications the

orbitals or spinors which come to lie in the energetic vicinity of the valence

functions most often comprise the antibonding correlating functions required

for modelling static correlation. In cases where a complete expansion in such a

subspace is desired, a single complete active space (CAS) may be constructed.

This type of expansion becomes very extensive rather quickly if one faces a

large number of valence orbitals. Then 2 spaces — one from the occupied

bonding, the other from the unoccupied antibonding orbitals — with a high

excitation level, e.g. up to Triples or Quadruples, may be constructed to

consider as many reference configurations of the valence space as possible.

3. Excited states in MCSCF calculations. The GAS formalism is also imple-

mented in the presented MCSCF program (3). Here it becomes particularly

useful for obtaining excited state wave functions, as described in the applica-

tions section (5). In the non-relativistic domain, excited states are very often
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obtained from calculations in a different irreducible representation of the point

group in MCSCF applications. In relativistic MCSCF, however, the spatial

symmetries are mixed and desired excited states most often are found in the

same double group representation. If the MCSCF implementation does not

open for multi-root optimizations (like the presented one), GA spaces provide

a means of converging to an excited state of a given symmetry by ruling out

precisely the ground state configuration from the CI expansion.

4. Core holes. Employing a restricted space for a core shell enables straight-

forward and precise construction of core excited states. The energetically

following orbitals can be placed into completely filled GA spaces from which

excitations are disabled.

As a closing remark, the GAS procedure should not be mistaken for a type of in-

ternal contracted CI, as was introduced and refined earlier [114, 115]. CI calculations

based on internal contractions diagonalize the Hamiltonian in a model space and in

a second step consider excitations from this model space into external orbitals. The

GAS CI is, also in this respect, a purely one-step procedure5.

2.2.2 Excitation Class Formalism

The creation of excitation manifolds based on a reference state — be it single- or

multi-reference — is a substantial issue both in coupled cluster and CI theory. The

concept of excitation classes applies to both the wave function, where the type of

excitation relative to the reference state is characterized, as well as the Hamilto-

nian which in second quantization carries out one- and two-particle displacements.

The introduction of GA spaces calls for an efficient and transparent handling of the

arising excitation types because the excitation level is linked to the chosen occupa-

tions of the active spaces. In the second quantization picture this is ideally achieved

by labelling all unique excitation types and bookkeeping the number of creation

and annihilation operators referring to that excitation type. As a simple example,

consider table 2.3.

Excitation class A represents an annihilation of an electron in GAS I and a

creation in GAS III, where both operators refer to the Kramers unbarred set of one-

particle functions. The type of excitation therefore generates determinants with an

occupation lowered by one spinor in the first space and increased by one spinor

in the third space and the same Kramers projection MK as the reference state.

This projection value can be understood as the remainder of spin symmetry in the

relativistic formalism and is defined as MK :=
Np−Np

2
with Np the number of Kramers

unbarred and Np the number of Kramers barred electrons.

5The option of internal contraction is implemented in the spin-free precusor program LUCIA
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GAS

Exc. class Elementary operator I II III

â†i Creation of unbarred spinor 0 0 1

â†
j

Creation of barred spinor 0 0 0

âk Annihilation of unbarred spinor 1 0 0
A

âl Annihilation of barred spinor 0 0 0
...

â†i Creation of unbarred spinor 0 1 1

â†
j

Creation of barred spinor 0 0 0

âk Annihilation of unbarred spinor 1 0 0
E

âl Annihilation of barred spinor 1 0 0
...

Table 2.3: Two exemplifying excitation classes of a one- and a two-particle operator

An excitation class for a two-particle operator is shown in the lower half of table

2.3. Two electrons in an unbarred and a barred spinor of space I6 are annihilated

and created in two unbarred spinors of spaces II and III, respectively. The complete

operator in normal ordering and the associated integral read

â†
iII â

†
jIII âkI â

l
I (il|jk). (2.3)

Therefore, this operator may be classified as flipping the Kramers projection by

one unit, according to ∆MK = +1. It becomes clear that the first limitation to the

excitation classes generated is comprised by the number of spinors per active space

and the allowed occupations given by the GAS setup. Within these constraints, the

program generates all possible excitation classes already in the setup. The second

limitation is imposed to account for different relativistic frameworks. Five commonly

occurring cases, labelled by the excitation class manifold M, are implemented and

displayed in table 2.4.

M=1 refers to a non-relativistic Hamiltonian and therefore disallows for a change

in the Kramers projection. As this environment always implies the use of (restricted)

spin-orbitals, the Kramers pairs are simply comprised by a pair of α and β spin

functions and a common spatial function. This Hamiltonian class is only used for

testing purposes.

M=2 defines a widely-used type of operators where the spin-dependent two-

particle terms are approximated by an atomic mean-field [98]. The interface of

LUCIAREL to a spin-orbital environment (like in the MOLCAS implementation [96])

would refer to this Hamiltonian type, but as the mentioned interface was written

prior to the introduction of the excitation class formalism, it is currently not in use.

6Not necessarily forming a Kramers pair!
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excitation classes

M 1-particle terms 2-particle terms Environment

1 ∆Mk = 0 ∆Mk = 0 Non-relativistic

2 ∆Mk = 0,±1 ∆Mk = 0 Orbitals, mean-field spin-orbit

3 ∆Mk = 0,±1 ∆Mk = 0,±1,±2 Orbitals, full spin-orbit

4 ∆Mk = 0,±1 ∆Mk = 0,±2 Spinors, real/complex double groups

5 ∆Mk = 0,±1 ∆Mk = 0,±1,±2 Spinors, quaternion double groups

Table 2.4: Manifolds of excitation classes depending on the relativistic Hamiltonian and
framework

M=3 comprises the generalization of M=2 to a fully spin-dependent Hamiltonian,

especially its two-particle terms, but still referring to a scalar one-particle basis. This

line of development has been abandoned for the time being, for two reasons: It would

go beyond the atomic mean-field approximation for the spin-orbit terms, but as this

approach has proven to be extremely reliable and precise both for heavy [61] and

also light elements [4, 116], there is little motivation for this kind of implementation.

Second, the interface to a spinor environment which is completed [4] and presented

in this thesis opens for the use of fully spin-dependent operators in the orbital

optimization step. Beside this generalization as such, spinors form an improved

one-particle basis for subsequent excitation-restricted correlation calculations.

When a spinor basis of Kramers pairs is used the type of Hamiltonian depends on

the double group: The groups currently implemented are the binary groups (with an

atmost twofold rotation axis). These can be subdivided into 3 classes by applying the

Frobenius-Schur test [117], namely real matrix groups (D2h, D2, and C2v), complex

matrix groups (C2h, C2, and Cs), and quaternion groups (Ci and C1)
7. Unbarred

and barred spinors transform according to different irreducible representations in the

real and complex groups. This makes integrals with an odd number of bars vanish

in these cases giving rise to the class M=4. In the quaternion groups the partners of

a Kramers pair belong to the same symmetry, so all possible non-redundant integral

types must be considered (M=5).

In the current implementation Kramers symmetry is exploited in the following

fashion: Transformed integrals are initially stored over a full spinor list, meaning

no reduction through Kramers symmetry is used at this stage. The excitation class

formalism requires a distinct ordering of integrals, so a sorting (and reduction) step

follows and the spinor list of integrals is deleted afterwards. The formalism further-

more allows for implicitly exploiting Kramers symmetry. Reference [4] gives details

on the implemented types of excitation classes. As an example, the integral type

7The classification can best be understood in the context of quaternion algebra [118, 119, 8]
where in the case of real matrix groups the quaternion degrees of freedom of represented quantities
become scalar, those of complex groups become twofold, and those of quaternion groups remain
fourfold.
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[ij|kl] is never explicitly referred to. In a conventional implementation of Kramers

symmetry [96], one can relate [ij|kl] to [ij|lk] and fetch the corresponding integral

from a reduced list. In the new implementation, the corresponding second quan-

tization operator a†ia
†
k
alaj does not form a non-redundant excitation class, because

a†ia
†
k
alaj referring to the integral [ij|kl] is used in its stead. The essential difference

between the mentioned operators is merely a sign. Thus, reference to most Kramers

redundant integral types is intrinsically avoided and these are not stored on the

integral list used in the CI procedure. The storage requirements have been further

reduced by loading only a reduced list of integrals where quaternion symmetry is

exploited (as described in reference [8]).

The implications of the excitation class formalism are twofold:

1. Scientific. Apart from the facilitated implementation of different Hamiltonian

types in relativistic CI technology – as demonstrated above –, the formalism

opens for general coupled cluster models where the use of multiple active spaces

defines multi-reference approaches (4.2).

2. Technical. In the present implementation the evaluation of projected vectors

and density matrices (2.2.3) is greatly simplified and generalized through the

use of excitation classes. The incorporation of a new operator type is almost

trivial now, as it merely requires a modification of a single setup routine.

Moreover, the classes define a distinct ordering of integrals (associated with the

string of elementary second-quantized operators) and density matrix elements,

and allow for a concise storage of the quantities required in an individual

calculation.

The precursor program code for the implementation has been taken from the non-

relativistic coupled cluster version of LUCIA (in [120]) and extended to account for

the relativistic environment. The excitation class formalism will thus be addressed

with the according implications in the context of CC theory (section 4).

2.2.3 Projected Vectors and Density Matrices

The treatment of large CI expansions where at the same time only a few (lowest)

eigensolutions are required calls for devoted iterative optimization procedures. In

the present context, the decisive step of the afore-mentioned complex Davidson

algorithm is the linear transformation acting on the CI coefficient vector of a given

iteration. The principles and performance of this approach are described elsewhere

[91, 95].

The appearance of a wider class of integrals (and density matrices!) in the spinor

basis calls for modifications of existing program code that can best be tackled by a

complete generalization. The projected vectors are required for plain CI calculations,

but for MCSCF problems (3) active density matrices for Kramers-paired spinors
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need to be computed in addition. Two aspects of this generalization are of particular

importance; A more detailed account can be found in reference [4]:

2.2.3.1 Excitation class driven algorithm.

As an example, I will discuss the evaluation of a projected (sigma) vector fragment

from the linear transformation (in matrix notation)

σ = HC.

Large calculations make it impossible to store the entire Hamiltonian matrix

H or even a single reference vector C of expansion coefficients. The occurring

vector quantities are therefore split up into batches and processed one at a time.

Hierarchical criteria for the construction of a batch are

• Real/imaginary part of coefficients

• Kramers projection MK of corresponding determinants

• Symmetry and GAS occupation type of the corresponding unbarred and barred

creator strings

• A maximum subblock size which is input-driven

The fragments of the sigma vector can be labelled with an MK and a real/imaginary

index, e.g. as σMK
r . A specific example might be

σ+1
r (T , T ) =

∑
ijkl

∑
S,S

(
ij|kl

)r/i
AT T ,SS

ijkl
C

r/i

S,S (2.4)

where SS denote unbarred and barred creation strings and

AT T ,SS
ijkl

=
〈
T †T †

∣∣∣ a†ia†kalaj

∣∣∣S†S†
〉

is the CI coupling coefficient for the batch types

of bra (T T ) and ket (SS) determinants. Given a batch type of these for both the bra

and the ket side, the excitation classes (of the operator) leading to a non-vanishing

coupling coefficient are determined. If a coupling is detected, the code enters a set

of routines that is entirely independent of excitation class or the above-mentioned

labels8, carrying out the matrix operations. The introduction of excitation classes

therefore makes these evaluation procedures very transparent and easy to modify,

because a new operator would not call for modifications in the involved inner parts

of the program.

8It would, e.g., even evaluate a sigma vector over a 3- or n-particle operator
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2.2.3.2 Equivalence of evaluation.

The true power of the method but unfolds in the fact that the computation of sigma

vectors and density matrices can now be carried out with the same inner set of

routines, respectively. Replacing the integrals
(
ij|kl

)r/i
used in the contraction for

the sigma vector (2.4) with expansion coefficients of the bra determinants CT ,T , a

density matrix fraction

ρr(2)
(
ijkl

)
=
∑
S,S

∑
T ,T

C
r/i

T ,T AT T ,SS
ijkl

C
r/i

S,S (2.5)

is evaluated. The computation of general relativistic density matrices is now

possible in the recent implementation. This possibility opens for the incorporation

of LUCIAREL in a relativistic MCSCF program (3.3.2) where such density matrices

are required.

The here-described features are in essence of technical nature, but the imple-

mentation allows for extensions and interfaces in a straightforward and transparent

manner and thus comprises a cornerstone for improved scientific methodology as

elucidated in the following sections on MCSCF and coupled cluster theory.

2.2.4 Relativistic GASCI in an overview

Figure 2.2 displays the schematic Hamiltonian matrix for a 6-particle system.

Figure 2.2: Hamiltonian matrix for a 6-particle system. Np is the number of electrons in
unbarred Kramers pairs, Np the number of electrons in barred Kramers pairs.

The first CI iteration is the Hartree-Fock determinant in the closed shell case and

a simple linear combination of a few determinants in the open-shell case. Assuming
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that the initial wave function corresponds to a non-relativistic or scalar relativistic

Hamiltonian, this initial wave function has a well-defined Kramers projection value

MK . In the second iteration, all possible couplings from the initial determinants to

all singly and doubly excited determinants are included, necessarily having Kramers

projection value from MK to MK±2. This step can be viewed as a first order coupling

in terms of perturbation theory. The third iteration includes all the determinants

that can be obtained from the initial wave function with up to quadruple excitations

and Kramers projection from MK to MK ± 4. In the case depicted in figure 2.2 this

comprises the full determinant space, but in cases with more open orbitals, a larger

number of iterations may be required to include the full determinant space.

An additional feature can be seen from figure 2.2 (further details can be found in

reference [121]): The box in the upper left corner symbolizes the reduction of non-

redundant contributions in the case of an even number of electrons. This corresponds

to exploiting time-reversal symmetry in the many-particle wave function (see also the

discussion of this point in the context of coupled cluster theory, subsection 4.3.2), the

implementation of which would require changes in the linear transformation (sigma

vector) evaluations. In the odd-fermion case, time-reversal symmetry is more easily

exploited at the many-particle level if Kramers partners fall into different fermion

irreducible representations, which is the case in complex matrix groups. Real matrix

groups are treated by switching to the highest complex subgroup thus ensuring the

same symmetry blocking. Here in addition, it is exploited that all integrals are

purely real [118].

2.3 Approximate Schemes: Spin-orbit Free CI

4-Component Dirac theory does not essentially distinguish between internal mag-

netic interactions (like spin-orbit coupling) and spin-independent relativistic phe-

nomena. These become apparent only when 4-component operators are transformed

to an approximate, 2-component framework [122]. The obtained operators may

then be identified as those describing magnetic interactions leading to level split-

tings and those referred to as “scalar relativistic” contributions which include the

mass-velocity term giving rise to relativistic orbital contractions and associated en-

ergy shifts. Using only the latter allows for a one-component formalism and the

use of point group symmetry for orbitals and many-particle functions just as in

non-relativistic implementations.

Unfortunately, there are multiple ways of carrying out the separation into spin-

dependent and spin-free terms. A good overview is given in [123] which also includes

a numerical comparison of the different approaches. A very elegant variant has been

proposed by Dyall [124] where the Dirac identity and a formalization of the kinetic

balance relation are used to obtain a spin-free 4-component Dirac Hamiltonian.

Based on this separation scheme and its implementation in the DIRAC program
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package, both “scalar relativistic” CI (2.3.3) and CC (4.4) implementations are

described and applications reported (5.2.3.1 and 5.2.2.3) in the following.

2.3.1 General Remarks

When spin-orbit coupling is omitted from the relativistic formalism regular non-

relativistic point group symmetry can be used in program implementations. More-

over, the program package DIRAC [36] supplies algebraically real molecular integrals

in the spin-free limitation, despite the use of a 4-component formalism. This is

achieved by employing quaternion algebra [119], in particular a formulation based

on the quaternion-modified Dirac equation [118]. In view of the fact that the corre-

lation stage of a quantum chemical calculation usually is the cost determining, the

increased expense by carrying out a 4-component orbital optimization prior to the

CI is hardly relevant. The present implementation therefore allows for large-scale

scalar relativistic CI calculations.

2.3.2 Previous Implementations

To my present knowledge, the only configuration interaction program capable of

running spin-free Dirac calculations is the DIRRCI (see [105]) module of the Dirac

program package. This implementation is based on the threefold RAS concept and

allows for arbitrary excitations out of the hole space (RAS 1), arbitrary excitations

into the particle space (RAS 3), and CAS CI expansions in the active space (RAS

2). The need for improvement becomes obvious when comparing performance with

the present implementation which is reported in subsection 2.3.5. Many other CI

programs are used in 1-component approximation where most often the required

integrals are evaluated over the Douglas-Kroll-Hess Hamiltonian [125, 126, 127].

2.3.3 Implementation

The precursor CI code for this development work is the spin-free Hamiltonian CI

code LUCITA [128] which is the MOLCAS-adapted version of LUCIA, mentioned

earlier. The existence of a general input and integral interface section in this modi-

fication was the reason for using LUCITA as a set-out for the adaptation to the DIRAC

package. The adaptation includes

1. A modification of the concise input section to DIRAC standards, documented in

the manual of the DIRAC04 release [36]. Like the LUCIAREL program described

above, the program exploits the concept of general active spaces (2.2.1). Beside

this most general specification, the standard CI models of Singles and Doubles

CI (SDCI), Singles, Doubles, Triples, Quadruples CI (SDTQ), Restricted Ac-

tive Space (RAS) CI, and full CI (FCI) are automatic input options, all based

upon the GAS representation of the wave function.
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2. An integral interface to transformed integrals over point group symmetry or-

bitals. Integrals with the same symmetry properties are delivered also in the

Lévy-Leblond formalism of the DIRAC package. This opens for applications

studying the effect of scalar relativistic contributions directly by comparison

with the 4-component non-relativistic Lévy-Leblond scheme [129].

Further details on the implementation are mentioned in the references [5, 10].

2.3.4 Scope of the Method

2.3.4.1 Scientific

The range of applicability of a large-scale spin-free relativistic CI method is some-

what limited. Spin-orbit coupling often plays an important role in heavy-element

compounds, and for all such electronic spectra which either have large spin-orbit

splittings or states in which second-order spin-orbit contributions become sizeable,

the method does not apply. However, many molecules have closed-shell (ground)

states with rather small second-order spin-orbit contributions, e.g. the gold dimer

[5], the CsLi molecule [10], or the hydrogen halogenides [130]. In most of these

cases, single-reference CC methods are better suited due to their greater efficiency

as compared to CI techniques. There are systems, though, where the singlet states

have significant multi-reference character, like the heavier sulfur analogue trimers

[131] in linear geometry. Here multi-reference approaches are required. Moreover,

LUCITA provides a straightforward means of describing also excited states with the

mentioned character.

2.3.4.2 Technical

There are two main technical motivations for the discussed CI implementation:

1. Higher excitations. Singles and Doubles CI calculations do not provide high

accuracy and fail to predict e.g. dissociation energies even of closed-shell com-

pounds due to the unbalanced description of bonded and dissociated system.

Multi-reference CI expansions typically contain triple and quadruple excita-

tions relative to the reference state, but also higher excitations than Quadru-

ples are desirable for achieving high accuracy [132].

2. Long CI expansions. The high-precision treatment of dynamic electron corre-

lation by CI methods requires the inclusion of many determinants (or CSFs),

often up to several billion even in smaller molecules. The DIRRCI program can

efficiently handle only roughly up to 1 million determinants.



2.3. APPROXIMATE SCHEMES: SPIN-ORBIT FREE CI 39

2.3.5 Performance

A timing comparison of the two CI modules given in table 2.5 demonstrates the

achievements of the current implementation.

# of dets Energy EH DIRRCI LUCITA

SD8: 23.169 −2605.6739629466 794 s 54 s

SDT8: 1.575.409 −2605.6780714925 124.2 h 0.8 h

SDTQ8: 56.025.807 −2605.6849961265 – 24.5 h

SD18: 118.728 −2605.8559825571 5.085 s 130 s

SDT18: 21.704.728 −2605.8611977183 9 11.3 h

Table 2.5: CPU Timings for CI calculations on the HBr molecule, distance 2.5 a0, virtual
cutoff 100 a.u., point group C2v. A single processor type Pentium IV Xeon, 2.4 GHz was
used. SD8 denotes a single-reference CI calculation with Single and Double replacements
and correlating 8 electrons.

The calculations employ the MOLCAS 6.1 [97] basis sets of type ANO-S in an

uncontracted fashion, where the small component functions are generated via the

restricted kinetic balance prescription [133]. Small component integrals are neglected

and their effect modelled by the Coulombic interaction of atomic small component

charges [134]. The virtual orbital space is truncated at 100 a.u.10.

It becomes obvious that DIRRCI cannot compete even in small calculations in-

volving only up to double excitations. Correlating 18 electrons, the Singles and

Doubles calculation (118.728 determinants) gains a speed-up of a factor of almost

40 in the LUCITA run. The discrepancy becomes even more drastic when triple ex-

citations are included (correlating 8 electrons). Here, the string-based algorithm

of LUCITA has the great advantage of being entirely independent of the excitation

type, resulting in a 155 times shorter calculation time. At the larger scale (SDT18),

DIRRCI runs cannot be completed in a decent amount of time, whereas LUCITA

requires merely 11.3 hours for a calculation involving more than 20 million determi-

nants. As demonstrated in the calculation including also all quadruple excitations

and correlating 8 electrons, LUCITA converges to the ground state in about a day.

2.3.5.1 Further Remarks

Large-scale calculations involving hundreds of millions of determinants require a few

days of computing time, as reported in reference [5]. Most of the time (more than

80%) is spent in the linear transfomations to obtain sigma vectors which opens for

efficient parallelization schemes based on the batching of transformation tasks.

9After 13 days a single iteration has completed. The required disk space amounts to roughly
20 GB.

10The use of uncontracted basis sets justifies such truncations as virtual orbitals of high energies
either hardly contribute at the correlated stage or are of core-correlating type.
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A performance comparison of the fully relativistic implementation LUCIAREL (see

2.1.2), where the relativistic GAS implementation leads to a somewhat increased

overhead, with the DIRRCI code gives a similar picture. The speed-up is not as

dramatic, but still amounts to a factor of 2 in an SD18 calculation and the same

orders of magnitude as the scalar relativistic speed-ups for calculations involving

higher than double excitations.



Chapter 3

Relativistic Multi-Configuration

Self-Consistent Field Technique

3.1 General Remarks

MCSCF theory comprises the most general optimization procedure of the wave

function in both the N-electron sector of Fock space and its one-particle subspace

[135]. Orbital transformations and excitations in configuration space are parame-

terized and simultaneously optimized which in particular aims at the treatment of

near-degeneracies of states as they occur in molecular dissociation processes. The

method contains the Hartree-Fock Self-Consistent Field (SCF) method and Config-

uration Interaction theory as special cases. Consequently, its high generality makes

it applicable for describing the electronic structure of virtually any molecule or

atom. The method has therefore been established as a central technique in many

quantum chemical program packages, e.g. [113, 136, 137, 138], and is used for ob-

taining orbitals for subsequent (dynamic) electron correlation treatments or/and

property calculations including the so-called static correlation effects arising from

near-degenerate electronic valence configurations. Examples of modern applications

involve the calculation of ground and excited state potential energy surfaces like

in the geometry optimization of the HMn(CO)3(1,4-diaza-1,3-butadiene) molecule

[139] and frequency-dependent polarizabilities and hyperpolarizabilities using MC-

SCF reponse theory [140]. When the configuration space expansion in the selected

active space includes all possible determinants or CSFs, the CI becomes a Full CI

expansion and the method is referred to as Complete Active Space (CAS) SCF [141].

It is the most widely used variant of MCSCF methods, and in conjunction with the

CAS Perturbation Theory 2nd order (CASPT2) approach [47, 48], where dynamic

electron correlation is assessed by second-order perturbation theory based on the

CASSCF reference function, the method has become a powerful tool for carrying

out correlated calculations. Sample applications cover excited states of adenine and

uracil [142] or auride ions embedded in He clusters [143].

41
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The range of applicability in view of the size of a molecule is difficult to discuss.

In principle, MCSCF applies to any system that can also be treated by a Hartree-

Fock calculation. The limiting factors strongly depend on the efficiency of a given

implementation. In the present case, they are the size of the corresponding CI

expansion (see section 2.1), which in turn is determined by the number of active

electrons and the number of active orbitals required, and the hard disk requirements

for molecular integrals over 2 general and 2 active orbital indices1. Due to the large

basis sets required in 4-component relativistic theory, which moreover are usually

uncontracted, this issue implicitly leads to another practical limitation: The iterative

MCSCF procedure involves an integral transformation step in each of the macro-

iterations, and this step becomes very time-consuming in larger-scale calculations.

3.1.1 Previous Relativistic Implementations

Two types of ”relativistic” MCSCF programs will be excluded from the following

summary:

1. Scalar relativistic implementations. Based on scalar relativistic approxima-

tions of the Hamiltonian (like the DKH approximation excluding spin-depen-

dent terms or a perturbational account of the mass-velocity and Darwin terms)

any non-relativistic MCSCF program can in principle make use of these con-

tributions in molecular calculations (e.g. [113]).

2. Purely atomic codes. A number of typically numerical finite-difference pro-

grams is reported which are restricted to atoms only; a full account is given

in a recent review [60].

The MCSCF approach in the framework of quasidegenerate direct perturbation

theory of relativistic contributions [144, 145] is not genuinely relativistic MCSCF in

the sense used here as relativistic effects in their approach are added on top of a non-

relativistic MCSCF. Furthermore, the implementation has not been pursued further

so as to allow for a full inclusion of spin-orbit coupling in the optimization, although

the method is applicable to general molecules. The molecular code presented by

Kim and Lee [146] is restricted to two-component approximation, and furthermore,

is based on relativistic effective core potentials. Their work documents some of

the benefits of a fully variational KR-MCSCF method for static correlation. To my

present knowledge, the implementation described in this thesis is the first all-electron

4-component MCSCF method of general applicability to any molecule or atom. The

1The basis for the latter argument is the commonly encountered case that the virtual orbital
space is much larger than the active and the inactive spaces. In HF theory then, the largest number
of two-particle integrals occurs in the virtual-virtual Fock matrix elements, containing 2 virtual
and 2 inactive indices. Likewise in an MCSCF, the 2 inactive indices are replaced by 2 indices
which run over the inactive and active orbital spaces.
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philosophy adopted here is to have maximum generality available and then in view

of specific applications “activate” particular approximations. Currently, the afore-

mentioned (see 2.1.2) 2-component BSS Hamiltonian may be used which speeds up

the time-consuming integral transformation step significantly2 and is a very good

approximation for electronic valence properties. In the framework of the quaternion

modified Dirac equation [118] the two-component ZORA approximation [39, 40] is

parameterized in the program package DIRAC, constituting a further — but as of yet

unused — alternative.

3.1.2 Scope of the Method

The aim of this method development work is mainly directed at properties of heavy-

element systems where spin-orbit contributions are important and the states of inter-

est cannot be described sufficiently by a single electronic configuration. In particular,

the following areas are of interest:

1. Spectroscopic Properties. Open-shell and multi-reference molecular systems

containing heavy elements require a simultaneous treatment of electron cor-

relation and spin-orbit coupling. Typical examples are the dimer of thallium

[19] and many lanthanide and actinide-containing molecules [147]. A more

exotic case is the dimer of the superheavy element 111 [27]. The static corre-

lation level adopted in MCSCF methodology is an ideal starting point for the

study of these systems. The most important contributions can be accounted

for by selecting active spaces appropriately. In cases where dynamic electron

correlation is essential, the spinors obtained from an MCSCF calculation serve

as a one-particle basis for subsequent correlation treatments, already includ-

ing spin-orbit coupling in the valence shells. MCSCF further allows for the

calculation of full potential curves (surfaces).

2. Electric and magnetic properties. Numerical finite-field evaluations of such

properties can (almost) always be applied (see 6.1.2). In combination with

response theory, (4-component) MCSCF allows for a fully variational relax-

ation of the wave function with respect to the external perturbation [148]. In

the 4-component framework, the calculation of magnetic response properties

is facilitated as there is only one perturbing operator, linear in the vector po-

tential [149]. The MCSCF implementation therefore will be useful for linear

and non-linear response properties in later developments.

2as small component integrals are eliminated.
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3.2 Relativistic MCSCF Theory

A full account of the underlying formalism of relativistic MCSCF theory can be

found in the references [8, 121, 150]. I therefore refrain from repetition and instead

focus on and discuss important aspects from both a theoretical and a practical point

of view, especially with respect to the scope of the method and potential and actual

applications.

3.2.1 Furry picture

The adopted physical picture in the present MCSCF implementation [121] is based

upon the traditional view of Dirac-Fock theory [119]. Here, the negative-energy

states3 are considered unoccupied and, therefore, belong to the secondary orbital

space. These eigenstates are not re-interpreted as is done in Quantum ElectroDy-

namics (QED) by renormalization, where the negative-energy states are occupied

allowing for the creation of electron-positron pairs by excitation from the negative-

to the positive-energy branch [151, 152]. Instead, excitations are allowed into the

negative-energy states and the energy is maximized with respect to such orbital

rotations, whereas it is minimized for orbital rotations involving the unoccupied

positive-energy (electronic) solutions. This procedure is called minmax principle, a

generalization of the variation principle. It is implemented as a generalization to the

MCSCF procedure of what Talman describes [153] for the Dirac-Coulomb Hartree-

Fock (DC-HF) case. In the QED picture, on the other hand, the optimization follows

a minimization principle. In effect, retaining the additional degrees of freedom (the

orthogonal complement to the electronic orbitals) allows for the complete relaxation

of the electronic ground state [119].

The MCSCF approach employs an iterative procedure corresponding to a multi-

configurational extension of the procedure in a DC-HF program. The averaged Fock

potential for the electron-electron interaction changes from iteration to iteration,

until convergence. This potential implicitly contains — beside the plain Coulombic

interaction term of the electrons — the spin-same-orbit interaction which separates

off upon applying a transformation to a 2-component framework [122].

3.2.2 MCSCF Parameterization

The wave function explicitly depends on the vectorial set of parameters in configu-

ration space (δ) and the one-particle subspace (κ) and together with the complex

conjugates forms a parameter manifold λ = [Γ,Γ∗] = [δ, κ, δ∗, κ∗]. Interest lies in

3Most often, these states are referred to as positronic states, and this expression will be used
in the following for convenience. It has been pointed out by Visscher and Saue [59], however,
that due to the definition of one-particle solutions with respect to the electronic charge, all states
are actually electronic. Positronic states are obtained from the negative-energy states by charge
conjugation.
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the stationary variational value derived by minimization/maximization of the energy

expectation value functional over this wave function, i.e. the variation of

E(λ) =
〈
Ψ(δ, κ, δ∗, κ∗)

∣∣Ĥ∣∣Ψ(δ, κ, δ∗, κ∗)
〉

(3.1)

with the parameter set. The Hamiltonian Ĥ remains general at this point. The

implementation has been tested with the Dirac-Coulomb and the BSS Hamiltonians,

but other operators, for instance the spin-free Dirac or the ZORA Hamiltonian, can

in principle also be invoked.

In contrast to non-relativistic MCSCF theory [135] where spin-independent Hamil-

tonians lead to formalisms of real arithmetic, the parameter set here becomes twice

as large, containing also the complex conjugate parameters accounting for the imagi-

nary degrees of freedom of the system. Consequently, the relativistic implementation

has to consider all possible additional savings in order to be efficient. In particu-

lar, these are the use of Kramers symmetry, quaternion symmetry, and fully direct

iterative techniques, both in the integral transformation step as well as in the con-

struction of the second-derivative matrix (Hessian) with respect to the parameter

set. Implications of these will be addressed in appropriate subsections.

3.3 Implementation

3.3.1 Optimization algorithm

Expanding the energy expression (3.1) in a Taylor series q(λ) around the current

expansion point λ and applying variation ∂q(λ)
∂λ

to the expression truncated after the

second-order term yields the Newton step equation

λ = −
(
E[2]

)−1
E[1], (3.2)

where

E[1] =

(
∂E
∂Γ∗
∂E
∂Γ

)
and E[2] =

(
∂2E

∂Γ∗∂Γ
∂2E

∂Γ∗∂Γ∗
∂2E
∂Γ∂Γ

∂2E
∂Γ∂Γ∗

)
(3.3)

are the complete gradient and Hessian matrices.

In contrast to non-relativistic MCSCF calculations, the Hessian must not be pos-

itive definite but must rather display one negative eigenvalue per electron-positron

orbital rotation parameter to avoid variational collapse, according to the minmax

principle. The number of negative eigenvalues of the Hessian can be controlled ef-

ficiently within the implemented Norm Extended Optimization (NEO) algorithm

[154]. It includes a “level-shift” parameter ν resulting in a Newton-type equation

with a modified Hessian matrix:

λ = −
(
E[2]′ − νI

)−1

E[1], (3.4)
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Moreover, the NEO algorithm conserves quadratic convergence and even guar-

antees convergence to the lowest state of a given symmetry by restricting the step

vector to a trust region inside a hypersphere. The major advantage of the proce-

dure in comparison with conventional second-order Newton-Raphson optimization

techniques [135, 155] lies in the algorithm-contained specification of the level shift

parameter which in the Newton-Raphson scheme has to be determined by explicitly

obtaining the Hessian eigenvalues at the beginning of each macro-iteration.

3.3.2 Direct MCSCF algorithm

In view of large-scale applications and the increased number of parameters in the

relativistic domain, it is imperative to exploit direct techniques for solving eqn.

(3.2). By analogy to the complex generalization of the Davidson algorithm [112] the

Hessian matrix is not set up explicitly but, instead, the step vector is expanded in a

set of trial vectors b. Separate sets of these trial vectors for the electronic-electronic,

electronic-positronic, and configurational parameters, respectively, are introduced

to assure the correct number of negative Hessian eigenvalues for a given state. The

introduced expansion coefficients are then obtained by solving a set of projected

linear equations, as described in detail in the literature [8, 121, 150]. Converging

this “inner” type of iterations yields the optimal step vector λ which comprises the

walk on the hypersurface towards the optimized MCSCF wave function.

The successive linear transformations comprising the micro-iterations read

σj = E[2]bj (3.5)

where the σ vectors include both orbital and configurational contributions. The

off-diagonal parts comprising orbital contributions to configurational vectors and

vice versa are also treated, yielding an algorithm which optimizes on the complete

expansion space simultaneously. This procedure is more efficient than, e.g., the

one adopted in [146] where successive optimizations in configuration and orbital

space are carried out. The configurational (Hessian) sigma vectors (both orbital

and configurational contributions) require the evaluation of CI sigma vectors with

either the currect expansion point CI vector or a trial vector. The orbital sigma

vectors, on the other hand, require the evaluation of active density matrices, both

of regular and transition density type (details in subsection 3.3.4). The recent

implementation [9] makes use of the large-scale CI program LUCIAREL in these steps,

allowing for the treatment of large CI expansions and a rapid evaluation4. This is

important, as the inner loops of the iterative procedure are carried out quite often

in a complete calculation. Moreover, the excitation class formalism described in

detail in subsection 2.2.2 allows for the calculation of general density matrices using

4A CI sigma vector calculation including 25 million Slater determinants requires less than 30
minutes on a single Pentium IV Xeon 2.4 GHz processor.
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the same inner code routines as for the CI sigma vectors, ensuring the same high

efficiency in the computation of density matrices.

Before elaborating on the large-scale MCSCF implementation, the optimization

procedure is described in figure 3.1.

Setup: Basis set, active space, convergence

Generation of start guesses (DHF, CI)

Macro iteration counter k=k+1; transf. integrals

; k=0

no

yes

Compute residual  r = (H’ − ν1) λ  + g

Compute D, P, F, and E, g

Compute new orbitals: φk+1= φk e−κ

Solve reduced linear equations
vectors

Find new trial

Find restricted step; initial trial vectors b ; t=0

yes

no

Micro iteration counter t=t+1

||g|| less than threshold ?

Define threshold for residual

Compute conf. and orb. sigma vectors

||r|| less than threshold ?

Compute new reference conf. vector

Convergence. Save, analysis, exit.

Figure 3.1: Schematic MCSCF optimization procedure

1. Setup of the calculation. Selection of basis set, generalized active space(s), convergence
threshold tMC , wave function symmetry (D∗

2h and subgroups), and state s to converge to
(s = 1 for lowest state of specified symmetry, s = 2 for first excited state, etc.).
Generation of start guess. Macro iteration counter set to zero, k := 0.

2. Incrementing macro iteration counter k := k + 1. If k > kmax then JUMP TO STEP 8
(exit, not converged).

3. Transformation of integrals to the molecular orbitals of the current expansion point. Two-
electron integrals with 2 general (electronic and positronic) and 2 active indices are needed.

4. Calculation of Kramers-reduced active one- and two-electron density matrices and the gen-
eralized Fock matrices; calculation of the total energy and the gradient.
check the norm of the gradient for convergence ‖E[1]‖ < tMC ; if converged, exit the macro
iteration loop (JUMP TO STEP 8).

5. Step control (when k > 1). A large ratio between the actual energy change and the second-
order prediction indicates an incorrect description of the hypersurface structure; decrement
the macro iteration counter in this case and resume in STEP 7 with the solution vector
for a reduced trust radius calculated from the saved trial vectors from previous iteration;
otherwise delete trial and sigma vectors from previous iteration.
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6. Find the restricted step iteratively: the micro iterations. Project the Hessian onto the set of
trial vectors b; Find the initial trial vectors using the generalized Davidson-Liu algorithm
[112, 156]; set micro iteration counter to zero, j := 0, and set electron-positron (e-p) orbital
rotation counter to zero, p := 0.

6.1. Increment micro iteration counter (j := j + 1) and compute the sigma vector(s) for
the trial vector(s) (of either configurational, e-e orbital, or e-p orbital type): (σn =
E[2]bn). For each trial vector of e-p orbital type, p := p + 1.

6.2. Diagonalize the reduced Hessian E[2j], eigenvalues {εi}. Solve the reduced linear
equations: find the optimal level shift parameter εp+s−1 < νj < εp+s and the current
approximate solution λj within the trust radius.

6.3. Calculate the residual according to Rj = (E[2] − νjI)λj + E[1]; if the norm of the
residual is less than convergence threshold tmicro, then exit the micro iteration loop
and jump to STEP 7; if not, new trial vectors are generated and the program continues
with STEP 6.1.

7. Obtain new orbitals and new configuration coefficients.
Jump to STEP 2.

8. Exit, print requested information about final KR-MCSCF wave function.

3.3.3 Large-scale MCSCF implementation

The main interface points to LUCIAREL for obtaining a large-scale implementation are

the linear transformations of given vectors and the computation of density matrices

from CI vectors. A short summary follows, and further details can be found in

reference [9].

3.3.3.1 Sigma vectors

The evaluation of the complete electronic gradient E[1] calls for derivatives with

respect to the configurational parameters in a given macro-iteration. As an example,

the term for a determinant |Φµ〉 reads (eqn. (3.12) from reference [121])

∂E

∂δ∗µ

∣∣∣∣
λ=0

=
〈
Φµ

∣∣∣Ĥ∣∣∣ c(k)
〉
− E[0]c(k)

µ (3.6)

meaning a sigma vector type expression Ĥ
∣∣c(k)

〉
needs to be determined from the

current expansion point vector
∣∣c(k)

〉
.

The second place where computations of sigma vectors are required is in the cal-

culation of orbital and configurational contributions to the configurational Hessian

sigma vectors. Expressed in terms of configurational (c) and orbital (o) parameters,

the matrix equation 3.5 reads
σc

σo

σc∗

σo∗

 =


E[2]c∗c E[2]c∗o E[2]c∗c∗ E[2]c∗o∗

E[2]o∗c E[2]o∗o E[2]o∗c∗ E[2]o∗o∗

E[2]cc E[2]co E[2]cc∗ E[2]co∗

E[2]oc E[2]oo E[2]oc∗ E[2]oo∗

 ·


bc

bo

bc∗

bo∗

 , (3.7)



3.3. IMPLEMENTATION 49

of which the different elements E[2]c∗c · bc etc. can be expressed as eqns. (3.29-32) in

reference [121])

σcc
µ =

〈
0
∣∣∣Ĥ∣∣∣B〉− E[0]bc

µ (3.8)

σco
µ =

〈
µ
∣∣∣H̃∣∣∣ 0〉 (3.9)

σoc
pq =

(
g̃o

pq

)∗
(3.10)

σoo
pq =

(
g̃o

pq

)∗
+

1

2

∑
r

g(r)b(r). (3.11)

where H̃ and g̃ refer to the one-index transformed Hamiltonian and gradient, re-

spectively, and g(r)b(r) is an abbreviated expression involving products of gradient

elements and expansion coefficients.

The first two expressions (3.8) and (3.9) correspond to a sigma vector step with

the trial vectors |B〉 (Hessian solution expansion vector) and |0〉 (current config-

urational C vector), respectively. These linear transformations are now efficiently

carried out by LUCIAREL on the basis of the string-based algorithm. The remain-

ing two orbital terms (3.10) and (3.11) are derived from the orbital gradient, the

evaluation of which will be discussed in the following subsection 3.3.3.2.

As an efficient option, integrals with two positronic indices may be neglected

in the calculation of sigma vectors. As long as these are included in the gradient,

the KR-MCSCF wave function is fully relaxed with respect to electron-positron

rotations. Although this is not a fully second-order optimization, it gives satisfactory

convergence at a significantly lower cost in the integral transformation [8, 121].

3.3.3.2 Density matrices

Both the orbital part of the gradient and of the direct Hessian evaluation require

one- and two-electron density matrices over the active space indices (active in the

sense of the GAS concept 2.2.1). Excitations between all orbital spaces including

the inactive and secondary spaces are considered and the spinor gradient element

reads

∂E

∂κ∗pq

∣∣∣∣
λ=0

= −
〈
c(0)
∣∣∣[X̂−

qp, Ĥ]
∣∣∣ c(0)

〉
= Fqp − F ∗

pq = f(ρ+
1 , ρ++

2 ). (3.12)

Fqp here is a generalized Fock matrix [8, 150] and f(ρ) a function of the one- (ρ+
1 )

and two-electron (ρ++
2 ) density. The X̂ operators are unitary second-quantized ex-

citation operators adapted to time-reversal symmetry (defined in [157, 158], see also

subsection 4.3.3). The introduction of Generalized Active (GA) spaces makes the

classification of orbital rotations non-trivial. To exclude redundant orbital rotations

between two GA orbital spaces it is examined whether the chosen CI space is in-

variant with respect to rotations between these two GA spaces. Redundant orbital

rotations are subsequently removed from the parameter space.
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In each iteration, the density matrices are constructed to calculate the orbital

part of the gradient. The second type of call occurs inside the micro-iteration loops

in the evaluation of the orbital contributions to the orbital sigma vectors. Here,

transition density matrices are required for expressions of the type〈
c(0,k)

∣∣∣[X̂−
qp, Ĥ]

∣∣∣B〉
where B is a trial vector expansion in terms of determinants Φµ required for the

direct update procedure

|B〉 =
∑

µ

bµ |Φµ〉 .

Full details can be found in the references [8, 9].

Density and transition density matrices are again computed efficiently also for

large CI expansion vectors by LUCIAREL as described in subsection 2.2.3.2.

3.3.4 Further technical remarks

Full formal details on the technical quantities involved in the implementation can

be found in reference [8]. The gradient and Hessian are expressed, like in regular

MCSCF theory, in terms of generalized Fock matrices accounting for the different

subspaces occurring (inactive, active, virtual). Unlike non-relativistic theory, the

amount and classes of integrals and density matrix elements is now increased, owing

to the separate treatment of unbarred and barred spinors. An efficient means of han-

dling is comprised by quaternion algebra, which in combination with time-reversal

and double group symmetry allows for a concise formulation and computational

savings [119]. By means of specific choices of quaternion phase factors, all integrals

(also spin-orbit type) can be brought to real form for the real matrix double groups

(D∗
2h, D

∗
2, and C∗

2v), allowing for real algebra in the entire formalism. This is ex-

ploited in part in LUCIAREL, but a full implementation would require to adapt the

entire vector handling of the program to real algebra. The current implementation

makes use of the corresponding storage reductions on integrals.
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Relativistic Multi-Reference

Coupled Cluster (CC) Theory

4.1 General Coupled Cluster Theory

Full CI calculations become computationally intractable even for systems with less

than 20 electrons when moderate basis set expansions (like a triple-zeta basis) are

used. The most efficient many-body theory to approach the FCI energy is today

comprised by coupled cluster theory1. The main advantages of the CC model lie in

the much higher compactness of the wave function and its termwise size-extensivity.

The former leads to a rapid decrease of the error as compared to the FCI energy

with increasing cluster excitation level which is due to the product (or equivalently

exponential) parameterization of the wave function. In contrast to CI theory, this

decrease also pertains at the odd excitation levels. The size-extensivity property

makes CC methods favorable in the treatment of extended molecular systems and

when correlating many electrons. A perturbative treatment of triple excitations

on top of the iterative CC Singles and Doubles (CCSD) model (called CCSD(T)

[161]) has become a standard model of electron correlation methods. Very often in

molecular property calculations, the accuracy of more approximate treatments of

electron correlation is calibrated by using the CCSD(T) result as a reference point

(see subsection 5.2.3.1 for an example).

The problems unfold when the method is to be applied to open-shell states, in

particular in multi-reference situations. In the non-relativistic case, pure spin states

are not straightforwardly obtained, and the solutions proposed (spin-restricted CC

theory [162], and for excited states [163]) fulfill this requirement in part. A full spin

1Recent advances in the field of the Density Matrix Renormalization Group (DMRG) suggest an
alternative methodology, but the current demands on resources both in time (weeks for a single-
point calculation on the water molecule) and space (several hundreds of gigabytes of disk and
memory) remain formidable [159]. A recent study [160] shows improvement of the DMRG technique
which becomes more favorable than high-order single-reference CC at stretched geometries of the
nitrogen molecule.
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adaptation in the open-shell case leads to a theory where the cluster operators no

longer commute, in turn rendering an efficient implementation a difficult task.

The calculation of excited states in CC methodology is nowadays carried out

along three different lines: 1) Equation-of-Motion (EOM) ansatz, 2) CC response

theory, and 3) Fock-space CC approach. Recent applications of the EOM-CC

method include excited states of formaldehyde [164], but the method is by defini-

tion not strictly size-extensive. Linear response approaches based on CC expansions

have become very popular both for the determination of various molecular properties

and excitation energies, e.g. [165, 166, 167, 168, 169]. These approaches, however,

are not applicable to multi-reference problems. The Fock-space CC approach is a

genuine multi-reference technique and provides — beside excitation energies — es-

pecially ionization energies and electron affinities of the system and its positive and

negative ions [170, 171, 172]. Fock-space CC has, on the other hand, so far not been

used for the analytic determination of properties other than spectroscopic. Here it is

worth mentioning that FSCC can describe a molecular dissociation process properly,

but implementational as well as practical difficulties (convergence, intruder states)

occur when this process involves more than two open shells [173]. Finite-field electric

properties like dipole moments have been reported [174].

4.1.1 Previous Relativistic Implementations

The CC model currently witnesses rapid progress, with modern developments con-

cerning iterative excitation levels higher than CC Doubles [110, 120, 164, 175] and

various multi-reference approaches [120, 176, 177, 178]. However, none of these

methods have been generalized to a relativistic formalism. The 4-component im-

plementations by Visscher et al., Kramers-restricted [179] and unrestricted [180],

respectively, are not generally applicable to open-shell/multi-reference states. The

only relativistic multi-reference approaches reported to the date are the Fock-Space

CC implementations by Landau et al. [181] and Visscher et al. [81]. These methods,

as the Fock-space approach in general, suffer from the use of a common orbital basis

for all of the occurring ionized systems. When the Fock space sector is increased

to higher than ±2, the calculations become increasingly difficult to converge. Cal-

culations with 4 or 5 open shells are therefore not possible in general with current

FSCC implementations.

4.1.2 Scope of the Method

The multi-reference approach described here is capable of treating an arbitrary num-

ber of open shells and is therefore generally applicable, e.g. to heavy d and f ele-

ments. The state-selective MRCC approach (see 4.2) provides a means for treating

general multi-reference problems including bond-breaking by proper choices of the

reference space. Therefore, the current goal is the precise determination of spec-
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troscopic properties of small heavy-element molecules from calculations of complete

ground-state potential energy curves (surfaces). The latest version of the program

can treat scalar relativistic contributions “exactly”, i.e. in the spin-orbit free for-

malism (subsection 4.4) as discussed in the framework of CI (2.3). This limits the

current applicability to systems with small contributions from spin-orbit coupling in

the ground state, e.g. closed-shell compounds or open-shell systems with σs bond-

ing orbitals (see 5.2.2.3). The full spin-dependent implementation is in progress,

and theoretical issues are discussed in the following (4.3). The general-order im-

plementation allows for calculations of benchmark precision on diatomic molecules,

including cluster excitations of full iterative Triples or even Quadruples.

The implementation is carried out in the DIRAC framework which straightfor-

wardly allows for the introduction of approximations, e.g. by the already-mentioned

spin-orbit free formalism or by using the “exact” 2-component BSS Hamiltonian

[72, 111]. Even though the computational expense at the correlated level is not

reduced by a 2-component approximation, the orbital optimization and integral

transformation steps are strongly reduced in demand which allows for the treatment

of systems with more than 2 heavy atoms.

As the implementation is strongly facilitated by available relativistic CI technol-

ogy, an EOM-CC implementation is considered for the calculation of excited states

and their properties.

4.2 State-Selective Multi-Reference Approach

The original idea for this type of multi-reference CC approach is ascribed to Oliphant

and Adamowicz [182, 183]. In the present approach [120, 132] the projection man-

ifold is extended to simulate excitations from additional reference functions beside

those from the Fermi vacuum state. The reference state is formally re-interpreted

as a multi-configuration state including the additional reference functions. The pa-

rameters of the reference functions which are kept fixed in the implementations by

Oliphant et al. are reoptimized in the present approach. The procedure retains the

advantages of the single-reference formalism, although higher excitations than those

arising from a standard single-reference ansatz are included in the amplitude equa-

tions. The drawback of this formalism — in contrast to FSCC or the state-universal

ansatz [177, 184] — is the variance with respect to the choice of the Fermi vacuum,

because despite the multi-determinantal nature of the reference state a “memory”

of the occupied and unoccupied orbitals in the original reference state is retained in

the cluster expansion. This also explains the term “state-selective”. The remedy, a

separate cluster expansion for every reference function, leads to the state-universal

Hilbert-space CC theory which is far less efficient [184]. The loss of Fermi vacuum

invariance is, however, not of crucial importance in application and problems can

be avoided by proper choices of reference spaces.
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The relativistic CC method developed and applied presently is based on the

state-selective implementation by Olsen [120, 132], where CAS or even GAS expan-

sions (see 2.2.1) form the formal reference state. Three different implementations of

the non-relativistic precursor code are being pursued also in the relativistic imple-

mentation:

1. Scheme 1: Based on CI expansions and very general, but without optimal

scaling of the method (published in [120]) with respect to the number of oc-

cupied/unoccupied orbitals.

2. Scheme 2: Based on a similarity-transformed Hamiltonian and a completely

revised evaluation of the CC vector function. This scheme offers the optimal

scaling but does not allow for all types of MRCC expansions (published in

part in [132]).

3. Scheme 3: Code which is based on the evaluation of commutators. It is

completely general, efficient (on scaling and memory), but the current non-

relativistic version is not fully stable, yet [185].

The generalization to a fully relativistic framework is carried out in different fashions,

the theoretical foundations of which are explained in the following.

4.3 Spin-Dependent MRCC Implementation

The decisive aspects of the complete relativistic implementation are the inclusion

of spin-orbit coupling, both at the one- and the many-particle level. The former

requires the interfacing of the code to molecular (or atomic) integrals over general

spinors, which in the current framework of the DIRAC package are Kramers-paired.

The latter calls for a generalization of the cluster operators and the Hamiltonian to

include Kramers flip terms. Moreover, time-reversal symmetry may be implemented

at the many-particle level or not. These arguments lead to 3 implementation lines,

an unrestricted, a Kramers restricted, and a Kramers adapted formulation.

4.3.1 Unrestricted Generalization

Extending the cluster excitations straightforwardly to include Kramers flip terms

yields the operators in a Kramers-paired spinor basis

T̂1 =
∑
ia

{
tai τ̂

a
i + ta

i
τ̂a
i

+ tai τ̂
a
i + ta

i
τ̂a
i

}
T̂2 =

∑
i<j
a<b

{
tab
ij τ̂ab

ij + tab
ij

τ̂ab
ij

+ tab
ij

τ̂ab
ij

. . . + +tab
ij

τ̂ab
ij

+ tab
ij

τ̂ab
ij

. . .
}

. . . (4.1)
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etc. for T̂n, with e.g.

τ̂a
i

:= â†aâi

This straightforward formulation has the advantage of the relative ease of imple-

mentation and the conservation of the commutativity of the excitation operators

T̂n. The reason for this is that the active (multi-reference) spaces are kept as ac-

tive hole and active particle spaces analogous to the non-relativistic implementation

in [120]. The drawbacks are the expense of the approach (no implemented sav-

ings through time-reversal symmetry at the many-particle level) and the expected

Kramers contamination (see below) of amplitudes for many-particle states which

would theoretically be related by time-reversal symmetry.

4.3.2 Kramers-Restricted Formalism

Non-relativistic open-shell and therefore multi-reference CC theory suffers from the

imperfection of spin contamination (pp. 704 in [91]). Several possiblities of solution

have been explored, and the most promising appears to be the spin-restricted scheme

by Szalay and Gauss [162]. Here, spin equations in a subspace of the excitation

manifold are fulfilled, yielding cluster amplitude restrictions ensuring the correct

spin expectation value of the CC state. However, the CC wave function is not fully

spin adapted and consequently, the energies of, e.g., the MS components of a triplet

state may still differ. The great advantages lie in the usual truncation of the spin-

orbital CC amplitude equations and the possibility for computational savings by

exploiting the amplitude relations.

In the relativistic case the problem of spin contamination remains, but as spin

itself is not conserved there is no obvious way of curing spin contamination. However,

as the employed one-particle basis is Kramers paired, there exists the possibility of

a partial remedy.

In CI theory, the Kramers pairing of one-particle functions ensures certain time-

reversal relations between the coefficients of many-particle functions formed from the

one-particle functions, i.e. with Φ a many-particle wave function and K̂Φ = Φ it

follows that K̂Φ = (−1)NΦ with N the number of particles (see also reference [121]),

giving rise to identities for expansion coefficients of the functions Φ and Φ. The deep

reason for this lies in the fact that the CI solutions obtained are eigenfunctions of

the Hamiltonian and
[
K̂, Ĥ

]
= 0. The latter is also true for CC theory, but here

the common way of proceeding is to solve the equation system by projection instead

of variational techniques2. As a consequence, the optimized CC wave function is no

longer an eigenfunction of the Hamiltonian, and the property of parameter relation

through time-reversal symmetry is lost in general. Thus, the CC amplitudes do not

reflect the time-reversal relations inherent in the many-particle states, in essence

2Variational CC theory is possible in principle, but highly inefficient because a truncation of
the cluster expansion is no longer possible (see reference [91], p. 652).
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due to the product parameterization of the wave function and the non-variational

solution procedure. I will dub this symmetry breaking of the amplitudes Kramers

contamination, accordingly. Two possibilities of removing Kramers contamination

are explored in this thesis, the second of which involves a complete adaptation of the

formalism to time-reversal symmetry which is discussed in the following subsection

(4.3.3). The first possibility is motivated by the spin-restricted formalism of Szalay

and Gauss and leads to the following conclusions:

From basic manipulations with the time-reversal operator K̂ acting on many-

particle states the following condition is derived:〈
µ
∣∣∣[K̂, eT̂

]∣∣∣RHF
〉

= 0 (4.2)

with µ the excitation manifold and |RHF〉 some Kramers-restricted Hartree-Fock

reference state. Given the commutativity of the Kramers operator with the (ex-

panded) cluster excitation operator, this equation would be trivially fulfilled. For

the closed-shell CCSD case, Visscher et al. showed that a set of amplitude conditions

is fulfilled within the CC amplitude equations [179] and that these conditions could

be exploited for computational savings. In the general open-shell case, however,

where
[
K̂, T̂

]
6= 0, eqn. (4.2) delivers the following amplitude relations:

tai = ta∗
i

tai = −ta∗
i

tab
ij = tab∗

ij
tab
ij

= −tab∗
ij

. . . (4.3)

tabc
ijk = tabc∗

ijk
. . .

. . .

These are obtained by evaluating the commutator in eqn. (4.2) and comparison of

coefficients, so that the total expression vanishes. The general pattern for higher

amplitudes is that pairwise related amplitudes are found by barring all indices in a

given amplitude and assigning a minus sign for every barred index that is barred a

second time (turning it into an unbarred index). This of course reflects the properties

of the time-reversal operator acting on one-particle states.

Similar to the approach proposed by Szalay and Gauss for the non-relativistic

spin case, the Kramers conditions may be imposed to recover the Kramers relations

between many-particle states in the CC optimization. To which extent this leads to

computational savings and amends the Kramers contamination problem is subject

of further investigation. The advantage of this approach lies in the fact that the

structure of the cluster operators remains unchanged, i.e., a commuting formalism

for the cluster operators can be retained. It may furthermore be possible to exclude

redundant amplitudes (by eqn. 4.3) from the optimization thus reducing the number

of independent parameters.
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4.3.3 Kramers-Adapted Formalism

The complete spin adaptation of non-relativistic CC theory can be carried out by

introducing linear combinations of spin-orbital excitation operators, the singlet op-

erators Ê, ê. These were implemented for the general open-shell case [186] in a

unitary group framework and have the advantage of automatically ensuring exact

spin states and a reduction of the number of free parameters. However, the expense

is vastly increased by the complexity of the formalism, as non-commuting cluster

operators lead to a theory where Baker-Campbell-Hausdorff (BCH) expansions of

the wave operators truncate only after the the 8th-order commutator (instead of

the 4th as in standard commutative CC approaches). An efficient non-relativistic

implementation along these lines is in progress [187] which would be available for

relativistic generalization.

The introduction of spin-orbit coupling to the formalism necessitates the use of

Kramers instead of spin-adapted operators to remove Kramers contamination and

to reduce the number of free parameters. The natural choice would be the X̂, x̂

operators as introduced by Aucar et al. [157] (only the one-particle operators are

shown here)

X̂±
pq = p†q ± q†p

X̂±
pq = p†q ∓ q†p

X̂±
pq = p†q ∓ q†p

but they contain de-excitation terms q†p etc. leading to the so-called unitary CC

theory [188]. As a consequence, the BCH expansion of the amplitude equations even

with a truncated excitation manifold µ〈
µ
∣∣e−T̂ (X)Ĥ(X)eT̂ (X)

∣∣HF
〉

does not truncate at all. The reason lies in the fact that the de-excitation terms

undermine the rank reduction mechanism in the commutators which are obtained

by expansion. Alternatively, the excitation operators (and the Hamiltonian) may

be formulated in terms of the modified Ê operators

Ê+
pq := p†q + p†q

Ê+
pq := p†q − p†q

Ê+
pq := p†q − p†q

Ê−
pq := i

(
p†q − p†q

)
Ê−

pq := i
(
p†q + p†q

)
Ê−

pq := i
(
p†q + p†q

)
which do not contain de-excitation terms. For ensuring time-reversal symmetry, an

option is to treat real and imaginary parts of the Ê operators separately, casting a
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general one-electron operator Ŵ in the following form:

Re(Ŵ ) =
∑
pq

Re(Wpq)Ê
+
pq + Re(Wpq)Ê

+
pq

Im(Ŵ ) = −i
∑
pq

Im(Wpq)Ê
−
pq + Im(Wpq)Ê

−
pq

The so-defined Ê operators fulfill
[
Ê±, K̂

]
= 0 and therefore ensure a fully time-

reversal symmetry adapted formalism, given that the Hamiltonian and the cluster

excitation operators are expanded in them. Using the generic expressions of the

many-particle excitation operators (with the help of reference [189]) as

Ê+
pq =

(
1 + K̂pq

)
p†q

ê+,+
pq,rs =

(
1 + K̂pq

)(
1 + K̂rs

)
p†r†sq

ê+,+,+
pq,rs,tu =

(
1 + K̂pq

)(
1 + K̂rs

)(
1 + K̂tu

)
p†r†t†usq

. . .

where K̂pq is a Kramers replacement operator acting as

K̂pq p†q := p†q,

cluster operators and the Hamiltonian can be expressed. As an example the one-

particle cluster operator takes the form

T̂1 =
∑
ia

{
Re(tai )Ê

+
ai + Re(tai )Ê

+
ai −ıIm(tai )Ê

−
ai − ıIm(tai )Ê

−
ai

}
.

Clearly, the redundant amplitudes identified in (4.3) have vanished. However, the

separate treatment of real and imaginary terms is a complication which requires

a careful implementation, because due to the exponential their admixture is much

more intricate than in CI theory where simple loop structures suffice.

It is easily shown that for the general (open-shell) case, these Ê, ê operators (like

the X̂, x̂ operators) are non-commuting. An efficient implementation will rely on

the availability of a non-relativistic version employing non-commuting spin singlet

operators.

4.4 Spin-Free MRCC Implementation

An intermediate stage of the development work is achieved by the incorporation

of the CC implementation by Olsen [120] into the DIRAC program package and the

interfacing to the integrals based on the quaternion modified Dirac equation and the

spin-free formalism. The same arguments as advanced in sections 2.3 and 2.3.1 apply

here. Presently, the resulting CC implementation is the only one that includes scalar

relativistic contributions “exactly” and can perform general-order CC calculations.



4.4.1 Previous Implementations

To the best of my knowledge, the only CC program capable of performing spin-orbit

free Dirac calculations is the RELCCSD module by Visscher et al. [179, 180]. This

program does not allow for the treatment of general open-shell states (in particu-

lar multi-reference states) and is furthermore limited to a maximum of full iterative

double excitations (CCSD) and perturbative Triples corrections (CCSD(T)). A vari-

ety of CC implementations make use of approximate scalar relativistic Hamiltonians

like the DKH Hamiltonian, e.g. in the MOLCAS [113] and DALTON [137] program

packages.

4.4.2 Implementation

The spin-orbit free version of the CC program, called ARDUCCA, uses the same inte-

gral interface as described in section 2.3.3. Due to the classification of one-particle

functions as in non-relativistic frameworks according to point group symmetry, no

further modifications to the CC code were necessary. Details can be found in refer-

ence [10].

4.4.3 Scope of the Method

Although limited to applications where spin-orbit contributions are of minor im-

portance, ARDUCCA enables for the high-precision treatment of an interesting class

of (diatomic) molecules. The molecules formed from two heavy group 1 and/or

group 2 atoms have Σ ground states originating in a bonding σs-type of molecular

orbital. Spin-orbit contributions to such states enter only in second order and are

therefore small. Systems like Rb2 [190] or KCs [191] exhibit large scalar relativis-

tic contributions to their spectroscopic properties and are typically weakly bound.

Extensive correlation treatments, preferrably beyond the level of single and double

replacements, are required for obtaining properties of high accuracy. Such a study is

reported in reference [10] on the CsLi molecule (see section 5.2.2.3). Other examples

are the heavy homologues of ozone Te3 and Po3, the ground states of which have

quite pronounced multi-reference character [131].

4.4.4 Performance

The final paragraph concerns a timing comparison of the spin-free RELCCSD and

ARDUCCA modules in table 4.1, again carried out on the HBr molecular ground state.

3The energy of the perturbative Triples CCSD(T) calculation with RELCCSD is
−2605.66451358 EH .

4Due to increased memory requirements this calculation was carried out on a single IBM shared-
memory processor, type Power4+, 1.7 GHz, and with a cutoff value of 10 a.u. for virtual orbitals.
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# of amplitudes Energy EH RELCCSD ARDUCCA

CCSD8: 23.168 −2605.66038918 18 s 77 s

CCSDT8: 1.575.408 −2605.664841573 not possible 42 m

CCSDTQ8: 13.277.367 −2605.66413080 not possible 7.5 h4

CCSD18: 118.727 −2605.85738898 51 s 194 s

CCSDT18: 21.704.727 −2605.86390631 not possible 11.1 h

Table 4.1: CPU timings for spin-orbit free CC calculations on the HBr molecule, distance
2.5 a0, virtual cutoff 100 a.u., point group C2v. A single processor type Pentium IV Xeon,
2.4 GHz was used. CCSD8 denotes a CC calculation with Single and Double excitations
and correlating 8 electrons etc.

CCSD runs with 8 and 18 correlated electrons, respectively, are somewhat faster

with RELCCSD. This is likely to be due to the higher generality of ARDUCCA (im-

plementation of GAS) as compared to RELCCSD which is a single-reference im-

plementation. However, even the demanding calculations including full iterative

Triples (CCSDT8/18) or even Quadruples (CCSDTQ8) can be performed in a de-

cent amount of time using ARDUCCA. A CCSDT calculation correlating 22 electrons

on the CsLi molecule (60.8 million amplitudes, see subsection 5.2.2.3) takes less than

3 days.
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Spectroscopic and Electric

Properties of Small

Heavy-Element Systems

We are all, each in our own way, seekers of the truth [. . .]. As we collectively scale

the mountain of explanation, each generation stands firmly on the shoulders of the

previous, bravely reaching for the peak.

Brian Greene [192]

The methods presented in this thesis have been applied to a variety of heavy

atoms and molecules. All of these applications go beyond mere testing of methods.

Some of the calculations served the purpose to calibrate and to compare approaches,

e.g. the study of the effects of electron correlation on atomic polarizabilities compar-

ing CI and CC in subsection 6.2.1. Others are mentioned to show the applicability

and the performance of a method in cases where principal difficulties arise, for in-

stance in the calculation of excited states of the uranium atom in subsection 5.1.2.2.

However, the majority of studies has scientific impact, and many of the obtained

results are the most precise theoretical values available for these systems (e.g. Au2,

UO2, AuO, CsLi, Tl, I, At).

The chapters are subdivided into atomic and molecular sections, and particu-

lar issues regarding the application of molecular methods to atoms are adressed.

The largest molecule reported here is triatomic, but all methods can be applied to

molecules of roughly twice the size also. Beyond that, the rigor implemented into

the methods becomes the limiting factor, in particular the treatment of two-particle

integrals. For larger applications, these should be included in approximative ways

(e.g. by the resolution of the identity method) or calculated on the fly (integral-

direct techniques), all of which comprises work for future development.
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Chapter 5

Spectroscopic Properties

Theoretical spectroscopy in the first place seeks the energy differences between the

electronic states of atoms and molecules. In the great majority of calculations here,

this is achieved by solution of the Dirac-Coulomb equation, for molecules in the

Born-Oppenheimer approximation. In the case of atoms, the electronic spectrum

is the final piece of information in the scope of this thesis. For molecules, poten-

tial energy curves are determined by pointwise calculations at different molecular

nuclear geometries, yielding the spectral parameters of equilibrium bond lengths

and harmonic vibrational frequencies. Where possible and desired, the calculations

are carried out to the dissociation limit or, alternatively, dissociation energies are

determined by atomic calculations at the same level as a corresponding molecular

calculation (e.g. Au2). Both vertical and adiabatic molecular excitation energies are

reported (e.g. UO2).

The goals pursued by these studies are twofold: First, especially in the case of

molecular spectra, predictions of yet unknown spectral parameters are made. Even

when experimental data are at hand, precise theoretical results are of great impor-

tance as the assignment of experimental bands, e.g., often relies on a trustworthy

calculation of the corresponding electronic states. Second, and an always important

issue when new approaches have been developed, the methods are applied to system

properties known from experiment with high confidence to probe the reliability and

the applicability of the different approaches. As a general motivation, the methods

allow for a detailed understanding of the electronic structure of atoms and small

molecules, and this is demonstrated in numerous cases.

5.1 Atoms

The introduced methodology offers the refined calculation of atomic spectra at high

precision. Albeit the efficiency is not optimal in such calculations — due to the im-

plementation of binary double groups instead of the full atomic symmetry group —

the simultaneous treatment of electron correlation and spin-orbit coupling combined
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with the possibility of constructing appropriate GA spaces and long CI expansions

opens for calculations of high quality. Computational problems arise when the de-

generacy in the lower states of atoms becomes very high, as for instance in the

uranium atom. As the CI program determines every MJ component of an atomic

state J as a distinct eigenvector, excited-state calculations become extremely time-

consuming. The implementation of full atomic symmetry would be somewhat of

an improvement, but the problem pertains when several states of the same total

angular momentum are desired. CC calculations are not possible for excited states,

currently, so these studies are carried out using the MCSCF and CI programs. Ex-

perimental atomic spectra are available for all but the heaviest atoms, and a wealth

of excitation energies is tabulated [193, 194, 195].

5.1.1 Main group atoms

Main group atoms of the first two groups exhibit no spin-orbit splitting in their S

ground states1. The first excited states typically are 2,3P states arising from ns → np

single excitations, with the exception of Ba where the first excited state is 3D from

6s → 5d [193, 194, 195]. The trend of stabilizing the (n−1)d shell by many-particle

effects is counteracted in the heavy atom Ra, where the relativistic stabilization

(contraction) of the 7p shell makes the excitation ns → np more favourable.

Of greater interest in the present context are the p block atoms where spin-

orbit coupling leads to level splittings2 already in the ground state. These lowest

splittings increase as the nuclear charge increases and are largest at the end of the

p block (group XVII). For instance, indium having a nuclear charge of 49 exhibits a

J = 1
2
−J = 3

2
splitting of 2212 cm−1 where the much lighter bromine (nuclear charge

35) has 3685 cm−1 (for 3
2
− 1

2
). The reason for this is the increased effective nuclear

charge along a row in the p block, as nuclear charge is added and the additional

electrons only partially contribute to the screening. When switching to the next

row of the periodic table, on the other hand, the closed subshells screen the nuclear

charge more effectively for the early p atoms.

The publications [2, 7] mainly concern atomic static polarizabilities of group-13

and group-17 atoms (in 6.2.1), but for obtaining these in J, MJ resolution a detailed

study of the ground-state splittings in terms of electron correlation effects is required.

5.1.1.1 Group-13 atoms

The excitation energy of the 3
2

state is to a large degree determined by the description

of the p1/2 and p3/2 valence spinors. Spinor methods, i.e. approaches in which spin-

orbit coupling is already included in the optimization of the one-particle functions,

1Merely a level shift is caused by higher-order couplings.
2The term ’level splitting’ takes levels as a reference point which have been recorded without

spin-orbit coupling. In the following, the term ’excitation energy’ will be used when the picture
has been changed and j − j coupling or correspondingly ω − ω coupling is adopted.
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have a great advantage in such cases, because the correlation step need not account

for the radial difference of the valence spinors by additional terms in the determinant

expansions (like in SOCI methods based on spin orbitals [96, 99, 101]). In the latter

approaches, triple excitations may become important when spin-orbit interaction

affects the “shape” and radial extent of the one-particle functions significantly. For

the thallium atom, the ground state splitting in plain valence CI calculations using

spin orbitals amounts to 6599 cm−1 [96] (6330 cm−1 with a different basis set [4])

whereas the value obtained using 4-spinors is 7709 cm−1 which is very close to

the experimental value of 7792.7 cm−1 [195]. However, electron correlation plays a

profound role as explained in the following.

For the lighter atoms, B and Al, the excitation energy is determined by either

FCI or calculations of near FCI quality including more than 50 million Slater de-

terminants, yielding errors of only a few inverse centimeters [7]. The remaining

correlation (and basis set) errors are in this case even smaller than the one stem-

ming from the approximate Hamiltonian through neglect of the Gaunt interaction

(spin-other-orbit terms, see [122]). The Gaunt interaction accounts for the residual

error, quenching the splitting by a few inverse centimeters. Ongoing work in the

DIRAC package [196] involves the implementation of the Gaunt integrals which will

make studies of highest precision possible on systems of this type.

For the heavier atoms, Ga, In, and Tl, the error can be reduced to within 100

cm−1 by using large CI expansions [4, 7, 96]. These calculations are model cases for

studying error cancellation. DC-HF (or CASCI) calculations deliver J = 1
2
− J = 3

2

splittings in close agreement with experiment, but it is the right answer for the

wrong reason. Correlating the 3 valence electrons results in splittings too small by

about 10%. The reason for this is an unbalanced coupling of states to the 1
2

and 3
2

components leading to differential correlation effects [4]. The intershell correlation

effects can be investigated by including a GAS per subshell and restricting the num-

ber of holes to 1 (core-valence (CV) correlation) or 2 (core-core correlation). Several

shells may also be treated simultaneously with different numbers of holes. Adding

the (n− 1)d shell in CV correlation improves the results to errors of less than 5% of

the total splitting. This is explained by the depopulation of more compact shells and

population of more diffuse shells through the correlation treatment. Consequently,

the effective nuclear charge experienced by the valence electrons increases, and with

it the spin-orbit splitting. Adding the (n − 1)p electrons in CV correlation further

increases the spin-orbit splittings, in line with the above arguments.

The inclusion of double excitations from outer core shells has only small effects

on the splittings. However, they become important in the calculation of dipole

polarizabilities, as discussed in subsection 6.2.1.
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5.1.1.2 Group-17 atoms

Similar to the group-13 atoms, the difference in radial extent of the p1/2 and p3/2

valence spinors to a large degree determines the ground state spin-orbit splitting,

despite that the present atoms have a p hole instead of a p particle ground state.

In fact, in iodine the difference is even more pronounced than in thallium. The

spin-orbital plain valence CI yields a splitting of 5862 cm−1 [2], the 4-spinor result is

7765 cm−1 which again comes very close to experiment (7603.15 cm−1 [195]). When

a spinor basis is used, the excitation energy of the J = 1/2 state is obtained to

high precision already upon correlating only the p valence electrons (SDTQ 5, 7590

cm−1). The effect of correlating outer-core shells is of rather low significance here,

as the above-described depopulation impact on the valence shells is decreased in the

case of hole states.

5.1.2 Lanthanide and actinide atoms

The calculation of excited states of f elements is a demanding undertaking. Many

of the atoms have states in which configurations from several subshells are mixed

among each other. This is due to the energetic vicinity of ns, np, (n − 1)d and

(n − 2)f shells [197]. Spin-orbit coupling is strong and leads to a considerable

term mixing, both from the same and from different configurations. It therefore

necessitates the designation of states in terms of the total angular momentum J

in most cases. A simultaneous and high-level treatment of electron correlation is

indicated, and a further complication arises due to the frequently occurring large

number of open shells. This is no problem for MCSCF/CI methods in principle3, but

the high angular momentum values lead to high (MJ) degeneracies which calls for

the calculation of many eigenvectors to obtain but a few lower-lying excited states.

Two representatives are discussed in the following.

5.1.2.1 Lanthanides: Thulium

Among the most important observations made in lanthanides is the lanthanide con-

traction — a large fraction of which is ascribed to direct relativistic effects [198] —

and the participation of f electrons in bonding [147]. A question of interest aris-

ing in this context is the description of states formed from open f shells, e.g. the
2F7/2 and 2F5/2 components of the Tm atom ground state which is described by a

4f 13 configuration. The study carried out in reference [4] focusses on the spin-orbit

splitting obtained at a given level of electron correlation and depending on whether

a one-particle basis of spin orbitals or spinors already including spin-orbit coupling

have been used. Even though the radial extents of the underlying f7/2 and f5/2

spinors of the Tm atom do not differ greatly, the spinor basis proves much more

3In contrast to e.g. Fock-space CC methods where the number of open shells is limited typically
to 2 or 3 [173, 196], as mentioned earlier.
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efficient in reproducing the experimental splitting between the ground state compo-

nents. Excluding dynamic electron correlation, the J = 5
2

excitation energies do not

differ greatly in the spin-orbital and the spinor treatment. Upon correlating the 15

valence eletrons (from 6s24f 13) in a Singles and Doubles CI treatment, however, the

spin-orbital basis yields an excitation energy of 9817 cm−1 whereas the spinor basis

gives 9280 cm−1 which reduces the error by roughly 50% (the experimental value is

8771.243 cm−1 [199]). The remaining deviation is ascribed to basis set and correla-

tion errors. This finding underlines that the use of spinors in particular in open-shell

heavy-elements is favorable in general as compared to scalar relativistic spin orbitals

also in the f elements. This situation may also occur in molecules formed from the

f elements, but it is not necessarily so. An example where a spinor basis does not

comprise a major improvement is the UO2 molecule which is discussed in subsection

5.2.2.2.

5.1.2.2 Actinides: Uranium

Uranium and plutonium compounds have for a long time been at the center of

interest among the heavy f elements due to their importance in the nuclear fuel

cycle [200]. The lowest electronic states of the uranium atom are derived from

the odd-parity configurations s1f 3d2 and s2f 3d1, resulting in quintet and septet

states (LS coupling picture) of high angular momentum. Spin-orbit coupling mixes

the lowest terms 7M, 5L, 5K, 7I, 5H, 7L, and 7K arising from these configurations,

yielding lowest states of J = 5, 6, 7 [201].

The basis set for the present study is the ANO-DK3 set described in [202], but

used without contraction and augmented by 3 additional g functions and 1 h function

especially for correlating the f electrons. All calculations are fully 4-component.

The one-particle spinor basis for the correlated calculations is obtained by averaging

over the odd-parity configurations mentioned above and imposing restrictions with

3 electrons in the gerade and 3 electrons in the ungerade spinors. This ensures

a balanced description of the lowest excited states which all originate from these

configurations. The results of the correlated calculations are compiled in table 5.1

and compared to those from the Multi-Configuration Quasi-Degenerate Perturbation

Theory with Spin-Orbit coupling (SO-MCQDPT) method and experiment.

Upon accounting for dynamic electron correlation, the correct ordering of the

lowest excited states is obtained and the excitation energies improve significantly.

The ’corr. CASCI’ values are comparable to those in the column ’Valence’, where a

large set of many-particle states is included in the QDPT procedure. A closer agree-

ment with experiment requires the consideration of correlation contributions from

the outer core shells of uranium, which becomes evident from column ’CC+Valence’.

A corresponding calculation with the current implementation of LUCIAREL is possi-

ble, but the time required for converging on a large number of excited state compo-

4Obtained without the additional 3g1h basis functions.
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LUCIAREL SO-MCQDPT [201]

State (J) CASCI corr. CASCI Valence CC+Valence Exp. [203]

6 0 0 0 0 0

5 1741 1109 1069 607 620

7 2920 33334 3958 3267 3801

6 2205 6155 3768 4276

Table 5.1: Lowest excited states of the uranium atom without (CASCI) and with (corr.
CASCI) dynamic electron correlation, cutoff for virtual Kramers pairs: 1 a.u. ’Va-
lence’ denotes a correlated calculation including only the 6 valence electrons, whereas in
’CC+Valence’ also the 6p, 6s, 5d, 5p, 5s, 4f outer core electrons are correlated. Excitation
energies given in cm−1.

nents is not acceptable. The key problem lies in the extraordinarily high degeneracy

of the atomic states in uranium, requiring the optimization of at least 17 eigen-

vectors to obtain but the 2 lowest excited states (J = 5 and J = 7). Important

improvements of the program for atomic calculations of this type would be the im-

plementation of atomic symmetry and parallelization. The latter project has been

started and upon completion will allow for a much more efficient calculation of a

large number of excited states. The present code is more efficient in the treatment

of heavy-element molecules, which is the topic of the following section.

5.2 Molecules

5.2.1 Small Molecules with Light Atoms

Due to the few electrons that generally need be correlated, bond lengths, harmonic

frequencies, and dissociation energies in the ground state of such systems can be

determined to a high precision with the available methodology. The calculation of

spin-orbit splittings and excitation energies comprises a more difficult task, as the

size of basis sets needs to be increased and the computational demand grows with

the number of eigenvectors to be optimized on.

Properties of light systems are not in the focus of this thesis, so only a brief

account shall be given here. For light molecules, the lack of the Gaunt interaction

in the 4-component DIRAC package gives rise to larger errors than those typically

introduced by basis set or correlation deficiencies. A good example is the ClO

molecule, discussed in [4] with summarized results in table 5.2. The non-relativistic

ground state splits into 2Π3/2 and 2Π1/2 states including spin-orbit coupling, with a

splitting energy of 318 cm−1 experimentally. Neglecting the spin-other-orbit terms

(column in table 5.2 denoted ’spinors’), which are non-negligible in lighter systems

where the nuclear charge is small, leads to an overshoot of the splitting by 18.4
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cm−1 at the CCSD(T) level, which is almost 20% of the total splitting. Including

the Gaunt interaction (spinors+G) brings the splitting down to 315.3 cm−1, an error

of less than 1%.

Approach orbitals5 orbitals+G spinors spinors+G6

CAS 9 in 5 224.3 206.9 245.1

CAS 13 in 8 229.6 212.2 252.1

SD9-3au 291.9 274.3 313.1 est. 293

CCSD 324.4 303.5

CCSD-T 336.4 315.3

Exp7 318

Table 5.2: 2Π3/2-2Π1/2 level splittings of the ClO molecule in cm−1 at different correlation
levels and using different one-particle functions. CAS 9 in 5 is a CASCI calculation without
virtual orbitals with 9 electrons in 5 Kramers pairs, comprising the 2p electrons in the
occupied σ, π, and π∗ orbitals. In CAS 13 in 8 the 2s electrons are added as well as
the remaining p-type σ∗ orbital. SD9-3au denotes a correlated SDCI calculation with 9
electrons and a cutoff for virtual orbitals of 3 a.u. The estimate in the last column is
obtained by adding the Gaunt (G) contribution which is found to additive at the various
correlation levels.

Obviously, the largest fraction of the remaining deficiency can safely be ascribed

to the number of correlated electrons (9 in this case) and the basis set. Beside this,

using a spinor basis of one-particle functions proves more efficient than a spin-orbital

basis, with deviations on the same scale as the Gaunt interaction, as to be seen by

comparison of the columns ’orbitals’ vs. ’spinors’ in table 5.2. This deviation is less

pronounced when shifts on closed-shell (ground) states are investigated.

5.2.2 Molecules with One Heavy Atom

The electronic structure of these systems is to a large degree determined by the heavy

atom, both with respect to electron correlation and relativistic effects. A common

approach to the understanding of chemical bonding is to commence by investigating

the diatomic hydrides of heavy atoms. The importance of scalar relativistic contri-

butions very often is striking; E.g., the bond of the TlH molecule contracts by more

than 5% upon including relativistic kinematics [61, 205], that of the also closed-shell

AuH molecule even by more than 11% [206]. Whereas spin-orbit coupling is small

in the ground states of AuH and also the group 17 hydrides [3, 77, 130], it is impor-

tant for understanding the dissociation energy of TlH [207]. In open-shell molecules,

5Computed with a modified version of the AMFI code including only the one-electron and the
two-electron spin-same-orbit terms [204]

6Reference [180]
7Reference [86]
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spin-orbit coupling may even lead to a change of ground state, like for instance in

PtH [8, 14, 208] where 2Σ+ changes to 2∆5/2 upon inclusion of spin-orbit coupling.

In the following, the spectroscopic and bonding properties of more complicated

heavy-element oxides and the CsLi molecule will be discussed.

5.2.2.1 Coinage Metal Oxides

Coinage metal compounds are ideally suited for initial and benchmark applications

of new methods, for two essential reasons: (1) The heteronuclear diatomics are small

enough not to make the calculations too costly, and (2) within group 11 relativistic

contributions can readily be investigated due to the large effects for gold. Element

79, where a valence s shell is starting to be filled, comprises a maximum of relativistic

effects in the periodic system. It is explained by the strong contraction of inner

“wiggles” of the valence s orbitals due to the high electron speed near the heavy

nucleus accompanied by a contraction of the complete orbital [12, 209]. The same

effect is observed for the 6p1/2 orbital of Au.

Beside the relativistic contraction/decontraction of orbitals, spin-orbit coupling

leads to a splitting of the coinage metal oxide 2Π ground states into 2Π3/2 and
2Π1/2 components. Whereas the scalar relativistic effects in gold compounds are

well-investigated [5, 210, 211] (see also subsection 5.2.3.1) calculations including

spin-orbit coupling are scarce. Given the new methodology here, it is interesting to

study the sole effect of spin-orbit coupling in the coinage metal oxides. In reference

[8] AuO is discussed at some length, and the most important results are summarized

here.

Figure 5.1 shows the ground-state potential curves calculated by a 4-component

CASSCF including the full valence space and by an equivalent run using the Douglas-

Kroll-Hess Hamiltonian correct up to the second order in the external potential for

the one-electron terms and with uncorrected two-electron terms8 excluding spin-

orbit terms.

By these means, scalar relativistic effects are considered in both cases and the

bond contraction through spin-orbit coupling becomes apparent. This contraction,

amounting to −0.055 a0 for AuO at the CASSCF level, increases by nearly an order

of magnitude in AuO as compared to the lighter homologue (see table 5.3), pointing

to the relativistic maximum at this element. It is interesting to note that this bond

contraction is far more pronounced including static electron correlation than in a

DC-HF calculation where it only amounts to −0.013 a0. A closer look reveals that

the singly-occupied bonding π-type orbital obtains more and more contribution from

Au 5d as the bond is formed. In the CASSCF calculation, this open-shell character

of the Au 5d is increased as compared to the Hartree-Fock-type calculations, leading

to enlarged spin-orbit effects on bonding. Though the spin-orbit contraction of the

AuO bond is remarkable, it is still an order of magnitude smaller than the complete

8The induced picture-change error is negligible here.
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Figure 5.1: Potential curves of the AuO 2Π3/2 ground state at the CASSCF level with 17
electrons in 10 Orbitals/Kramers pairs. Comparison of scalar relativistic (DKH) vs. fully
relativistic (DC) calculation.

relativistic contraction of Au bonds, which is typically around −0.4 a0 [211].

Table 5.3 compiles bond lengths, harmonic frequencies, and correlated adiabatic

excitation energies for the two heavier coinage metal oxides. Including dynamic

correlation with a CAS reference space (CASCISD17) based on the 4-component

DC-HF orbitals brings the results for AuO quite close to the experimental values.

The agreement is somewhat reduced in case of AgO which is ascribed to the relatively

small basis set and correlation errors. A Coupled Pair Functional (CPF) correlation

calculation by Bauschlicher et al. [216] gives a result of 3.908 a0 for the 2Π3/2

ground state, close to the one obtained here. A Fourier Transform Spectroscopic

investigation by O’Brien et al. [217] reports a slightly larger value of 3.908 a0 than

the one from an earlier experiment given in table 5.3. The 4-component density

functional theory results (DFT BDF) by Liu et al. yield properties with significantly

larger errors, despite the moderate basis set (DZ quality) used in the present study.

To my knowledge, these results are the best obtained so far in a study of the AuO

molecule including spin-orbit coupling, although it is expected that in particular the

use of a more extensive basis set would lead to further improvement.

5.2.2.2 Uranium Dioxide (UO2)

Owing to the dangers and difficulties arising in experiments conducted with actinide

compounds, in particular the often toxic and radioactive uranium and plutonium

materials, experimental spectra are rather scarce. On the theoretical side, a number

of closed-shell compounds has been investigated in the past [218, 219, 220, 221], but
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AgO AuO
Approach Re [a0] ωe [cm−1] Te [cm−1] Re [a0] ωe [cm−1] Te [cm−1]
DC-HF SOF 3.910 518 3.753 567
DC-HF 3.909 518 3.740 572
DKH CAS 17 in 10 4.044 362 3.861 407
DC-CAS 17 in 10 4.037 367 3.806 427
CASCISD17DC−HF (2Π3/2) 3.915 460 0 3.673 520 0
CASCISD17DC−HF (2Π1/2) 3.922 459 219 3.715 516 805
DFT BDF [27] 3.460 695
Exp. (2Π3/2) 3.776 [212] 490.5 [213] 0 [214] 3.604 [215]
Exp. (2Π1/2) 3.781 [212] 489.9 [213] 270 [214]

Table 5.3: Equilibrium bond lengths, harmonic frequencies, and adiabatic excitation en-
ergies of coinage metal oxides using different approaches. CASCISD17 denotes MRCI
calculations with single and double excitations out of the CASSCF reference space corre-
lating 17 electrons. DC-HF Kramers pairs and a cutoff value of 5 a.u. for virtual orbitals
is used. SOF: Spin-orbit free.

calculations on open-shell molecules from this regime are more demanding and only

few methods for carrying them out have been available, e.g. [75, 99, 104].

A case study on the UO2 molecule is reported in reference [9]. Due to the

availability of recent experimental data [222, 223], it is suited for comparison of

modern theoretical approaches. Two open-shell electrons form an odd-symmetry

state manifold arising from the U(5f 7sσg)O2 configuration and an even manifold

from the U(5f2)O2 configuration. The molecule is linear and symmetric in the ground

state [222]. The splitting between the lowest u and g states is of interest because the

shifts in the asymmetric stretch vibrational frequency going from a neon to an argon

matrix (experiment in reference [224]) may be explained by assuming a change of

ground state in the argon matrix. This viewpoint is supported by the theoretical

work of Li et al. [225] which indeed indicates a significant lowering of the gerade

states upon coordination with argon. This interaction could be strong enough to

cause a matrix-induced change of ground state, similar to the one observed in CUO

[226]. This explanation is, however, not in agreement with the electronic spectra of

UO2 in argon reported by the group of Heaven [222, 223]. The latter investigation

renders an assignment of the ground state as gerade unlikely.

In DC-HF calculations, it is found that spin-orbit coupling has only a very small

effect, leaving the equilibrium U-O bond distance nearly unchanged at 3.315 a0. This

is supported by a close analysis of the bonding spinors/orbitals. Upon including spin-

orbit interaction, the deviation of the orbital angular momentum projection values

of the spinors from integer values is found to be very small. The bond is elongated to

Re = 3.348 a0 upon including static correlation in a restricted GASSCF calculation

yielding (Ω = 2)u as the molecular ground state.
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The configuration space for correlated calculations is based upon the restricted

GASSCF expansion and all single and double excitations into a virtual space trun-

cated at 2 a.u., amounting to 44 virtual Kramers pairs and a total expansion length

of almost 10 million determinants. The results are compiled in table 5.4.

Te [cm−1] Re [a0]

State present Exp.[222] present SO-CASPT2[227] SOCI [228]

2u 0 0 3.372 3.375 3.401

3uMC 417 360 3.379

3uDC−HF - 3.375

Table 5.4: Equilibrium bond lengths and adiabatic excitation energies of low-lying elec-
tronic states of UO2 using DC-MCSCF orbitals (MC) or DC-HF spinors (DC-HF) and
comparison with experiment and other approaches.

All presented methods find 2u as the ground state also at the correlated level.

The adiabatic excitation energy for the 3u state is in good agreement with exper-

iment, given the small splitting between the two states. The bond lengths hardly

differ for the 2u and 3u states and the two curves are nearly parallel. Using DC-HF

spinors, this correspondence is even better as the averaging eliminates the state-

specific (here 2u) character of the orbitals in the (MC) calculation. The agreement

between the present value and the SO-CASPT2 result obtained with a similar ba-

sis set and active CASSCF space is excellent. The deviation of the SOCI result

obtained with the COLUMBUS program is somewhat larger. The two most likely ex-

planations for this deviation are the use of an effective core potential and/or the

higher restriction on the multi-reference space in the SOCI treatment as compared

to the present calculations.

Single-point results for the states of u symmetry are collected in table 5.5. The

SO-CASPT2 results which are very close to the gas phase experiment in case of 3u

are off by more than 1000 cm−1 for the excited states 1u and 2u. A shift along the

(nearly parallel) potential curves yields a modification of roughly 300 cm−1 which

is too little to reconcile the results. Further, the U 6p electrons are correlated in a

fashion depicted in figure 5.2 and denoted CV in table 5.5. In total, 24 electrons

are correlated yielding a configuration space of more than 50 million determinants.

The significant increase of the 2u excitation energy indicates the importance of the

6p electrons in correlated calculations on uranium compounds.

The present calculations have been improved further by extending the basis set

with functions of high angular momentum mainly to account for angular correlation

of the f electrons on uranium. The 2u excitation energy is hereby increased to

2042 cm−1. Preliminary results of 4-component coupled cluster calculations on UO2

[230] indicate that this excitation energy is even further increased upon including

double excitations from the U 6p orbitals. The shift from the argon matrix, in which
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State SDT-SD CV-SDT-SD SOCI [228] SO-CASPT2[229] Exp.

U-O sep. 3.372 a0 3.402 a0 3.452 a0

2u 0 0 0 0 0 [222]

3u 427 431 378 360 [222]

1u 1089 1088 2567 1094 [223]

2u 1542 1814 1566 2908 1401 [223]

Table 5.5: Excitation energies of u electronic states of UO2 from different approaches and
compared with experiment. SDT-SD denotes SDT excitations from 7 occupied valence
orbitals to the U(7p,5f) orbitals and a σ∗g orbital and SD excitations into the virtual space
from all reference determinants so created.

the 1u and 2u excited state transitions have been measured, can hardly account

for such a deviation which ranges from at least 800 to at most 1400 cm−1 in the

different approaches. The highest confidence can be drawn from the fact that CI

excitation energies approach the preliminary CC result systematically, suggesting a

2u excitation energy in the range between 2200 and 2500 cm−1. It is likely that the

assignment of the experimental bands is in error as it is based on the lower-level

SOCI calculations from reference [228] and earlier SO-CASPT2 calculations [227]

which both are proven to be off substantially by the investigations reported here.

Two sources for the deviations between the different theoretical approaches are

possible but have not been investigated further: The SO-CASPT2 calculations are

carried out using spin orbitals instead of spinors as one-particle basis. An analysis

would require running the present calculations with spin orbitals in the 2-component

implementation of LUCIAREL [4]. It is unlikely, however, that the use of spinors can

make up for such large a difference in excitation energies, given the above analysis of

the influence of spin-orbit coupling at the one-particle level . The second and more

probable possibility concerns the assumption of additivity of spin-orbit coupling and

dynamic electron correlation in the SO-CASPT2 approach. Simulating this kind of

treatment is not possible with our current CI implementation. It remains to be

shown whether an additive treatment of spin-orbit coupling and electron correlation

can deviate from the simultaneous treatment on such a scale for excitation energies.

Furthermore, a careful study of basis set effects would be of value.

Table 5.6 shows our results for the lowest set of g states, calculated at an inter-

shell correlation level and compared to SO-CASPT2. The same ordering of states

is found and the excitation energies are in good agreement for the 4g and 2g states

after shifting along the potential curve. For the 1g state a deviation of at least

600 cm−1 remains. The 0g state from the 7s2 (U) configuration is found as the

second vertically excited state of g symmetry, and was not calculated in reference

[229]. Due to the small intensities for the 7s to 5f excitation these states have

not been observed experimentally so that the accuracy of the calculation cannot be
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Figure 5.2: Generalized Active Spaces for core-valence-type of correlation treatment on
UO2. Single (S) excitations from space I are combined with Single and Double (SD)
excitations from space II with a combination maximum of Double excitations into the
correlating valence and virtual spaces.

verified. Presuming that the reasonable agreement with the SO-CASPT2 values is

not fortuitous, it may in this case be assumed that differential correlation is small

and that the computed energies comprise reasonable predictions of the excitation

energies. Without explicitly calculating the UO2.Ar interaction energies it remains,

however, impossible to predict whether the lowest of these states may fall below the

2u state in an argon matrix.

The experience gained in this study clearly points out that the rigorous method-

ology of the combined application of MCSCF and MRCI including spin-orbit cou-

pling is capable of producing results of high reliability on such systems. However,

an extensive study of the spectrum of UO2 would require the calculation of a larger

number of excited states, inclusion of outer-core electrons in core-valence correla-

tion, and an increase of the (truncated) virtual orbital space. Ongoing work aims

at these goals, e.g. by parallelism of the CI program and implementation of linear

symmetry for reduction of the determinant expansions (and facilitated assignment

of states).

5.2.2.3 CsLi

The CsLi molecule is a sample system of molecules studied in ultracold and Bose-

Einstein condensation experiments. Its electronic structure in the ground state is

determined in particular by the scalar relativistic contraction of the Cs 6s orbital

forming the σ-bonding molecular orbital and dynamic electron correlation.

The study in reference [10] closely investigates correlation effects, resolved into
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State SO-CASPT2[229] S12C2− SDDC−HF

U-O separation 3.452 a0 3.481 a0

4g 3330 3102

0g(s2) - 5862

1g 6823 7243

2g 12073 11648

Table 5.6: Excitation energies of g electronic states of UO2 at different correlation levels
and comparison with other approaches. S12C2-SD denotes single (S) excitations of 12
valence electrons, a CAS with 2 electrons in the U(7s,7p,5f) orbitals and single and double
(D) excitations into the virtual space from all reference determinants so created.

lower and higher CC excitation level and valence and outer core correlation, and the

influence of scalar relativistic effects on ground state spectroscopic properties. The

most important results are summarized in table 5.7. An uncontracted basis set is

used with {24s18p13d3f} functions for Cs and {11s5p2d1f} functions for Li [231].

Method Corr. El. Re[Å] ωe [cm−1] De [eV]

LL-HF 0 3.979 170.3 -

SFDC-HF 0 3.909 173.9 -

CCSD 10 3.669 187.3 0.838

MRCCSD-SF 10 3.670 186.3 0.792

CCSDT-LL 10 3.703 183.8 0.767

CCSDT-SF 10 3.642 186.2 0.743

CCSD-SF 22 3.656 187.9 0.880

CCSDT-SF 22 3.623 186.5 0.752

MELD9 3.65 183 0.72

CIPSI110 3.615 187.1

CIPSI211 3.604 0.717

Table 5.7: Spectroscopic properties of the CsLi molecule at various correlation levels and
approaches to relativity. LL: Non-relativistic 4-component Lévy-Leblond; SF: Spin-orbit
free 4-component relativistic; otherwise: Dirac-Coulomb Hamiltonian

The most striking observation is the large bond contraction upon correlating

electrons. It is explained by a shift of electron density predominantly from the

delocalized bonding orbital to the more diffuse and localized low-lying 3px and 3py

9Reference [232]
10Reference [233]
11Reference [191]
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orbitals on Li but not the 3pz thereby making the molecule more ionic. The effect of

the outer core correlation is about 10% of the total correlation contraction and about

one third of scalar relativistic contributions. The increase in the dissociation energy

can be explained by the better description of the system near the equilibrium bond

distance compared to the separated atoms, a deficiency which is engrained in any

single-reference method. Inclusion of the outer-core electrons makes this unbalanced

desciption even more noticeable. Increasing the correlation level, on the other hand,

results in a more balanced description of the entire potential curve and in particular

yields improved dissociation energies. This is true for both the multi-reference (MR)

as well as the iterative Triples (CCSDT) treatments as compared to plain CCSD.

Spin-orbit contributions are found to be negligible. To summarize, a hierarchy of

contributions can be deduced, as shown in figure 5.3.

−0.24

−0.06

−0.025
−0.02

−0.357

+ 5s 5p (Cs)
Total

Valence correlation

Higher excitations

"Core" correlation

Rel. orbital contraction

Figure 5.3: Relativistic and correlation effects on the equlibrium bond length in CsLi
(atomic units).

The final equilibrium bond length at the spin-free CCSDT level with 22 electrons

correlated is 3.6225 Å. The various contributions are found to be decoupled to a

large degree, and the same trends apply to the values for harmonic frequencies. The

findings also point to the importance of correlation effects for the molecular dipole

moment [191], which should be calculated preferrably at the CC level. In contrast

to many other heavy-element molecules (e.g. the gold compounds, see subsection

5.2.3.1), correlation effects are more important than relativistic effects in this and

similar molecules.

An attempt to perform a more extensive multi-reference coupled cluster calcu-
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lation including 22 electrons in the reference space failed, i.e. the results were in

conflict with the expected trend. A deeper analysis revealed a deficiency in the em-

ployed basis set: The larger MR space strongly correlates the Cs d electrons, and the

Cs basis set does not contain appropriate angular correlation functions. Therefore,

a series of calculations is under way where the f and g spaces of the basis set are

extended (ANO-RCC [97]). Preliminary results indicate that apart from improving

on all the other approaches, the large MRCC expansions lead to results in agreement

with the expected trend.

5.2.3 Molecules with Two Heavy Atoms

High-precision theoretical spectroscopy on heavy-element diatomics remains a dif-

ficult undertaking. In most cases, even the ground states of these systems are of

the open-shell type, necessitating the inclusion of spin-orbit coupling and dynamic

(and often also static) electron correlation at best on equal footing. There is con-

siderable interest in gold diatomics, due to the large relativistic effects in the gold

atom. In general, most studies are concerned with the electronic ground state, e.g.

[27, 85, 234, 235]. Whereas TlAt is dominated by scalar relativistic bond contrac-

tion, the superheavy homologue Tl[117] exhibits some spin-orbit contributions due

to the increased spatial extent of the [117] 7p3/2,1/2 spinor [85]. It is a general trend

that spin-orbit coupling does not affect bond lengths to a large degree, but dissoci-

ation energies may change significantly upon including internal magnetic couplings,

as demonstrated on the halogen dimers and interhalogen diatomics [234]. Excited

states of PtAu and PtAu3 are investigated in references [236] and [237], where the

participation of Au d electrons in the ground state bonding and excitation processes

is demonstrated. Again, this is explained by the relativistic stabilization of the Au

6s orbital, decreasing the energetic separation between the 6s and 5d orbitals.

5.2.3.1 Au Dimer (Au2)

The work carried out in reference [5] primarily aims at a methodological comparison

of MRCI and CC in the case of a closed-shell heavy diatomic. Furthermore, an

attempt is made to investigate the truncation and picture-change error introduced

by a DKH approach truncated at the second order in the external potential and

completely neglecting the transformation for the 2-electron terms (DKH2/0). All

calculations reported here have been carried out using the 4-component spin-orbit

free Dirac-Coulomb Hamiltonian, except where noted otherwise.

Table 5.8 clearly displays the large effort required in the MRCI treatment to

approach the quality of CC calculations of the bond length, harmomic frequency,

and even dissociation energy, the latter of which for CC is determined from an

atomic calculation at the same correlation level. This is due to the pronounced

closed-shell character of the gold dimer. The multi-reference spaces required for
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including the important set of quadruple excitations involving the gold 5d electrons

lead to unmanageably large calculations (several tens of billions of determinants).

Method Number of determinants Re[pm] ωe [cm−1] De [eV]

Hartree-Fock 1 253.5 175.4 −
CISD 1.457.150 249.8 185.3 5.03

MR CISD 155.343.054 250.9 180.0 1.93

CCSD 248.4 190.4 2.06

CCSD(T) 247.7 192.1 2.28

Exp. [238, 239, 240] 247.2 190.9 2.29

Table 5.8: Spectroscopic properties of the gold dimer, (MR)CI and CC calculations. All
electrons from the 6s, 5d, and 5p shells (34 in total) are correlated

Using the same uncontracted basis set and the DKH instead of the Dirac-

Coulomb (DC) Hamiltonian, a CCSD(T) 34 value for Re of 248.4 pm is obtained as

compared to 248.0 pm with DC12. The deviation can be attributed to two possible

sources: On one hand, the DKH2/0 level of theory contains a picture-change error

in the two-particle integrals. This picture-change correction has been estimated by

Park and Almlöf [241] to quench the bond length by 1.1 pm at the SCF level. At

the correlated level, the effects of scalar relativity are reduced, in part through the

depopulation of compact shells. At the SCF level, the contraction of the Au2 bond

amounts to −32.8 pm when comparing a non-relativistic with a DKH2/0 calculation.

At the correlated level (SDCI34), it is only −27.1 pm, so the quenching of relativis-

tic one-electron effects amounts to roughly 15% through electron correlation in this

molecule. A similar quenching for the two-particle corrections can be expected, so

the picture-change error reported by Park and Almlöf will be reduced. It is there-

fore difficult to assign a quantitative residual deviation coming from higher-order

terms in the DKH transformation without an explicit elucidation of the two-electron

picture-change effect at the correlated level or a complete general-order calculation.

Starting out from the best bond length value from table 5.8 and applying further

corrections, the estimate in table 5.9 can be made.

CCSD(T) 34 247.7 pm

near-complete basis set . . . . . . . . . . . . −0.1 pm

Counterpoise correction . . . . . . . . . . . . +0.7 pm

Spin-orbit coupling . . . . . . . . . . . . −0.4 pm

Best estimate 247.9 pm

Table 5.9: Approaching the exact equilibrium bond length of the gold dimer.

12The cutoff for virtual orbitals was increased to 60 a.u. here for greater rigor.
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The estimate for the basis set completeness has been taken from reference [242].

The counterpoise correction and the shift from including spin-orbit interaction are

own calculations and are in agreement with the results obtained by other approaches

(mentioned in reference [5]). The different corrections are additive to a large degree.

The residual deviation of 0.7 pm (0.3%) from the experimental value is attributed

to the overshoot of the counterpoise correction and small correlation errors from the

Hartree-Fock treatment of inner-shell electrons.

The study demonstrates that very accurate results can be obtained for the ground

state geometries of heavy-element diatomics, provided a CC treatment is feasible.

The analysis of the influence of higher-order terms in the DKH expansion is ham-

pered by the unknown effect of the 2-electron picture-change error in these calcula-

tions, which only could be estimated.



Chapter 6

Electric Properties

6.1 Methods for Property Calculations

Different approaches for obtaining atomic and molecular electric properties are em-

ployed in this thesis, and therefore a brief overview of the techniques shall be given

here.

6.1.1 Analytical Methods

The Hellmann-Feynman theorem allows statements on how the total energy of a

system changes with a varying Hamiltonian. With both the total Hamiltonian

Ĥ(P ) = Ĥ(0) + Ĥ(1)(P ) and the solution depending on some parameter P , the

variation of the expectation value E(P ) =
∫

Ψ∗ĤΨdτ of the normalized state Ψ

delivers three terms:

∂E

∂P
=
〈∂Ψ∗

∂P

∣∣∣Ĥ∣∣∣Ψ〉+
〈
Ψ∗
∣∣∣∂Ĥ

∂P

∣∣∣Ψ〉+
〈
Ψ∗
∣∣∣Ĥ∣∣∣∂Ψ

∂P

〉
(6.1)

Assuming the wave function Ψ has been optimized with respect to the full Hamil-

tonian, one is left with the Hellmann-Feynman theorem:

∂E

∂P
=
〈
Ψ∗
∣∣∣∂Ĥ

∂P

∣∣∣Ψ〉 (6.2)

Under these circumstances the energy dependence on the parameter P may be

found by the computationally simple task of evaluating an expectation value over

the derivative of the complete Hamiltonian with respect to the perturbation.

This situation is given in Hartree-Fock optimizations, where the variational space

is comprised by the orbital rotation parameters, and the approach is applied in

calculations of electric field gradients in subsection 6.3.3. By these means, first-order

properties can also be evaluated as expectation values of MCSCF wave functions

over the Hamiltonian [243].

83
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Upon including dynamic electron correlation in the calculation, the optimization

of the full wave function with respect to the perturbation is mostly out of reach

in practice, so the so–called “non–Hellmann–Feynman” terms in equation (6.1) are

non-vanishing. As will be described for more specific cases, one is usually in an inter-

mediate situation, the two extremes being the full validity of the Hellmann-Feynman

theorem and the other having obtained a solution wave function for the zero-order

Hamiltonian only. Thus, the partial accounting for the external perturbation in

the wave function optimization comprises an approximation. Such approximations

include, e.g., neglecting the orbital optimization in a truncated CI or CC calculation.

The most sophisticated analytical approach to arrive at general-order properties

is comprised by response theory [244, 168]. The implementation of CC and MCSCF

response methods in the 4-component framework, however, comprise future work.

6.1.2 Numerical Methods

It is also possible, mostly due to the lack of appropriate implementations of analytical

procedures, to obtain electric (and magnetic) properties by applying the external

field at a set of given finite and small strenghts and to compute the total field-

dependent energy of the considered system at these different points. This type of

procedure will in general be called a finite-field technique. Its application to electric

properties is rather wide-spread (e.g. [245, 246]) and with appropriate choices of the

external field points and “hard” convergence of the iterative wave-function methods

leads to precise and reliable results.

The total field-dependent energy ε of the system may be expanded as a Taylor

power series around the point of zero electric field strength. For simplicity, only the

z component of the electric field will be used in the following:

ε(Ez) =
∞∑
0

1

n!

(
∂nε

∂En
z

)
Ez=0

En
z

= ε0 +

(
∂ε

∂Ez

)
Ez=0

· Ez +
1

2

(
∂2ε

∂E2
z

)
Ez=0

· E2
z +

1

6

(
∂3ε

∂E3
z

)
Ez=0

· E3
z

+O(En>3
z ) (6.3)

By using the Hellmann-Feynman theorem (6.2) for this particular case

∂ε(Ez)

∂Ez Ez=0

=

〈
∂Ĥ(Ez)

∂Ez

〉
Ez=0

(6.4)

specific relations for the desired system properties may be found.

Continuing the argument above and representing the perturbing external (elec-

tric) field by a Hamiltonian Ĥ(1) = −µzEz added to the complete Hamiltonian

Ĥ = Ĥ(0) +Ĥ(1), where µ is the complete dipole moment of the system, so including
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the permanent and the induced moment, the Hellmann-Feynman theorem becomes

∂ε(Ez)

∂Ez

= −〈µz〉0 with
∂
(
Ĥ(0) − µzEz

)
∂Ez

= −µz. (6.5)

Evaluating this expression for the above taylor series expansion of the total energy

(6.3) one obtains

〈µz〉0 = −
(

∂ε

∂Ez

)
Ez=0

−
(

∂2ε

∂E2
z

)
Ez=0

· Ez −
1

2

(
∂3ε

∂E3
z

)
Ez=0

· E2
z +O(En>2

z ). (6.6)

Comparing this expression with a basic expansion as known from electrodynamics

the occuring derivative terms can be identified with the electric system properties

of ascending order, so

−
(

∂ε

∂Ez

)
Ez=0

= µz permanent electric dipole moment (6.7)

−
(

∂2ε

∂E2
z

)
Ez=0

= αzz electric dipole polarizability (6.8)

−
(

∂3ε

∂E3
z

)
Ez=0

= βzzz electric first dipole hyperpolarizability (6.9)

The total energy of the perturbed system can thus be expressed as

ε(Ez) = ε0 − µzEz −
1

2
αzzE

2
z −

1

6
βzzzE

3
z −O(En>3

z ). (6.10)

The properties are therefore the coefficients of a power series of the total energy

in the electric field. In the general case, the dipole moment becomes a vector, the

polarizability a second-rank tensor etc.

By determining the total energy at a sufficient number of finite-field strength

points, the resulting function can be interpolated by a fitting procedure, and the

coefficients are directly obtained from the polynomial function (e.g., program WF-

FIT [247] which is applied for all results obtained in this fashion). It is important

for this numerical procedure to carefully consider the energy convergence in the it-

erative optimization of the wave function when the perturbation is included. For

first-order properties like the dipole moment this is less crucial, but for second-order

properties like electric polarizabilities, the Hartree-Fock and correlated energies have

to be converged to at least within 10−10EH . This becomes of utmost importance

when spin-orbit interaction is included and the resulting level splittings are small,

as is the case for the lighter atoms in subsections 6.2.1.1 and 6.2.1.2.

6.2 Atoms

6.2.1 Electric Dipole Polarizabilities

Accurate polarizabilities of heavy atoms with open p, d, or f shells require the use

of extensive and diffuse basis sets and the treatment of dynamic electron correla-
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tion and spin-orbit interaction on the same footing. The methods described here

thus allow for such studies, in particular also of excited-state polarizabilities. In

the following, the heavy p block elements where spin-orbit coupling becomes very

important are investigated.

6.2.1.1 Group 17 Atoms

The study in paper [2] is the first of its kind, in the sense that the impact of

spin-orbit coupling on individual J, MJ state polarizabilities of atoms is resolved.

The sample calculations are carried out on the halogen atoms where for iodine and

astatine large spin-orbit splittings between the J = 3
2

ground state and the J = 1
2

excited state occur. As polarizabilities strongly depend on the radial distribution

of valence electron density, the values for J = 3
2

and J = 1
2

states are expected to

differ significantly. The results are of limited accuracy, for two reasons: 1) The spin-

free polarizabilities are determined at high correlation level but only for the ground

state (ML = 0) component. These values are — due to the lower pz occupation

in field direction — smaller than the ML-averaged values usually reported in such

studies (e.g. [248]). 2) The spin-dependent calculations are carried out in restricted

subspaces and resulting spin-orbit shifts added to the spin-free values. Therefore,

the spin-orbit resolved results are of lesser quality than the spin-free ones. The fact

that 2-component instead of 4-component CI calculations are carried out leads to

a picture-change error which is analyzed and found to be smaller than 1.5% of the

total polarizability of At. The most important finding is comprised by the difference

in polarizabilities between the values for the (averaged) J = 3
2

ground state and the

J = 1
2

excited state. For iodine, this difference amounts to 2.8% (or 0.14 Å3) and for

astatine to 8% (or 0.54 Å3) of the total polarizability. The most important results

are summarized in table 6.1.

F Br I At

Correlation level SDTQ SSDTQ SSDTQ SSDTQ

Scalar rel. reference 0.510 2.795 4.405 5.165

J = 3
2
, MJ = 3

2
0.533 2.835 4.568 5.475

J = 3
2
, MJ = 1

2
0.486 2.735 4.148 4.495

J = 1
2
, MJ = 1

2
0.510 2.815 4.498 5.525

Table 6.1: Polarizabilities in different J,MJ components, given in Å3, scalar relativistic
CI and 2-component spin-orbit CI calculations.
SSDTQ: Singles from sub-valence p shells, combined with SDTQ excitations from the
valence orbitals into the external space.

As the external electric field is applied in one (z) direction, one of the 3
2
, MJ

components has an increased, the other a decreased polarizability value, in line with

the z character of the corresponding atomic spinors. As the nuclear charge increases,
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however, relativity comes into play, contracting the p1/2 spinor and resulting in an

increased (!) polarizabiltity for the 1
2

state which has the hole in the p1/2 spinor. In

the extreme case of astatine, the 1
2

state even has a larger polarizabiltity than the
3
2
, 3

2
state.

A final word about the importance of spin-orbit coupling calls for determining the

deviation of the (averaged) J = 3
2

ground state value from the ML-averaged value.

Along with an analysis of polarizability anisotropy components, this is elucidated

in a more rigorous and complete study on the group 13 atoms (subsection 6.2.1.2).

6.2.1.2 Group-13 Atoms

The group-13 atoms have a p particle instead of a p hole valence state, reducing

the spin-orbit splittings somewhat compared to the group-17 elements and relative

to the nuclear charge. On the other hand, polarizability anisotropies are largest

at the beginning of the p block. Paper [7] reports benchmark values of predictive

quality for the heavier elements Ga, In, and Tl in the J = 1
2

ground states at the

4-component CCSD(T) level, shown in table 6.2.

Correlated electrons Ga In Tl

CCSD(T) 19 9.11 7.64

CCSD(T) 21 7.36

Table 6.2: Coupled cluster benchmark polarizabilities of the 1
2 , 1

2 ground states of the
group-13 atoms, in Å3.

These coupled cluster results are also used for calibrating CI calculations for ob-

taining excited-state polarizabilities of high accuracy. Further calibration is obtained

by examining the influence of the cutoff value for virtual orbitals and the correlation

treatment on the spin-orbit splittings. Table 6.3 compiles all static polarizabilities

for the group 13 atoms.

The line αJ= 3
2
−αJ= 1

2
can be understood as the effect of both spin-orbit coupling

and the contraction of the p1/2 spinor/decontraction of the p3/2 spinor, so a measure

of the importance of relativistic contributions in total. In the last line, the effect of

spin-orbit coupling is displayed as the difference of the ML-averaged polarizability

including scalar contributions and the value for the J = 1
2

ground state.

Comparing with the available experimental values for the ground state, the re-

sult for Tl is in excellent agreement. Also, an earlier (preliminary) calculation by

relativistic response theory [80] reports a value of 7.5 Å3. Given the high level of

1Reference [248]
2Reference [249]
3Reference [250]
4Reference [80]
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α[Å3] B Al Ga In Tl
αL,mL

α0,0 3.634 10.96 10.72 13.66 16.02
α1,1/−1 2.759 6.85 5.90 8.01 7.57
αmL 3.051 8.22(8.561) 7.51 9.89 10.38

α1/2,1/2 3.042 8.21 7.39 9.17 7.64
αJ,mJ

α3/2,1/2 3.340 9.68 9.25 12.41 15.68
α3/2,3/2 2.747 6.90 6.05 8.23 8.40

Corr. level MRSDT5 (100) MRSD13 (100) SD13 (10) SD13 (10) SD13 (10)
α1/2,1/2 (Exp.) - 6.8± 0.32 - 10.2± 1.23 7.6± 1.14

αJ= 3
2
− αJ= 1

2
0.002 0.08 0.26 1.15 4.40

αmL − α1/2,1/2 0.01 0.01 0.12 0.72 2.74

Table 6.3: Component-resolved static polarizabilities, spin-orbit free (αL,mL
) and spin-

dependent (αJ,mJ
), group-13 atoms. MRSDT5 (100) denotes a multi-reference Singles,

Doubles, and Triples calculation with 5 electrons and a cutoff value of 100 a.u. for virtual
orbitals. α denotes an averaging over the polarizabilities in the index.

electron correlation and the extent of the basis sets in the present study, some ref-

erence values for In are questionable. The experimental reference value for In of

10.2 Å3 has an estimated error bar of 12%, and the present result is within this

error range. The true polarizability is therefore at the lower end of the experimental

range. A relativistic density-functional theory calculation yields a value of 9.66 Å3

(in [250]) which is likely to be too large. The relativistic response theory result of

9.1 Å3 (in [80]), on the other hand, agrees very well with the present value. The

experimental result for aluminum is certainly in error. The high-level CI result re-

ported here agrees reasonably well with previous CC calculations by Lupinetti and

Thakkar (as reference value in table 6.3) and Fuentealba [251] (8.66 Å3).

The values for the lightest atom are near FCI quality. Already here, the difference

between α1/2,1/2 and that of the other two components is significant, but eliminating

the directional dependence from the excited-state component values by averaging,

the difference αJ= 3
2
− αJ= 1

2
amounts to only 0.002 Å3. Also aluminum is essentially

non-relativistic. Apart from the increasing importance of relativity in the gallium

atom, the decrease of all property values is remarkable when comparing to aluminum.

The reason lies in the smaller screening of the nuclear charge by the d electrons in

Ga, resulting in more compact valence shells and a reduced polarizability. A similar

argument applies when comparing In and Tl with respect to f electrons in Tl, but

here the effect becomes mingled with large relativistic effects and is therefore not

directly visible.

The sole effect of spin-orbit coupling on the polarizabilities can now be eluci-

dated: The spin-free calculations yield one-particle basis functions with radial parts

modified by relativistic corrections, i.e., valence s and p shells are contracted as com-

pared to the non-relativistic picture. This contraction is the same in all ML state
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components, and it is of course also present in the spin-dependent calculations. In

the latter, the p1/2 spinor gives rise to a spherically symmetric electron density and,

therefore, the polarizability of the corresponding J = 1
2

state can be compared to

the average value of the ML component polarizabilities from the spinfree calculation.

At a given level of electron correlation the difference will be the impact of spin-orbit

coupling alone on the polarizability.

Figure 6.1 gives an overview of the spin-orbit effects on static polarizabilities

in the group 13 atoms in the upper part. The lower part shows the anisotropy

component αa (also referred to as tensor polarizability [252]) from spin-free and

spin-dependent calculations.
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Figure 6.1: Component-resolved group 13 polarizabilities and polarizability anisotropy
components. α denotes a polarizability averaged over the components in the respective
index.

The tensor polarizability increases on the absolute as the nuclear charge in-

creases. The difference between αa(J) and αa(L) is due to spin-orbit coupling,

because the mixing of spin and spatial degrees of freedom leads to deviations from

the purely spatial anisotropies. Again, the impact of spin-orbit interaction is seen

to be considerable for In and strong for the Tl atom.

Results are estimated to be within error ranges of 1-4%, depending on the atom

and employed basis set, both for ground and excited states. The values for the three

heavier atoms are assigned predictive power regarding possible future experiments

of the static electric properties of these atoms.
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6.3 Molecules

Whereas the studies on atoms were focussed on open-shell systems and resolving the

properties in states split by spin-orbit coupling, the molecules studied so far are of

the closed-shell type. Orbital contraction by the relativistic description is a major

issue in these studies, and the effect of spin-orbit coupling — mainly introduced

through singlet-triplet coupling — is presumably of minor importance.

6.3.1 Electric Dipole Moments

HI molecule. The electric dipole moment of hydrogen iodide has been investi-

gated repeatedly both by experimentalists and theoretical groups, yielding a residual

discrepancy which could not be reconciled by the most sophisticated approaches.

The study in reference [3] employs high-level treatments of electron correlation

(CCSD(T), 26 correlated electrons), large and diffuse basis sets, and accounts for

scalar relativistic, spin-orbit, and vibrational corrections. The largest effects come

from electron correlation and scalar relativistic contraction, quenching the dipole

moment by roughly 20%, respectively. The effects are to a large degree additive.

The final value obtained from a scalar relativistic CCSD(T) calculation in a large

uncontracted basis set and correlating 26 electrons is 0.155 a.u. at the experimental

bond length of Re = 3.0409 a.u. A spin-orbit correction to this value is estimated

to be −0.01 a.u., which yields a result too far from experiment (0.176 a.u. [253]).

As expected, the dipole moment is sensitive to the extent and the diffuseness of

the employed basis set, in particular at the correlated level. Despite the investigation

of the impact of various basis sets on the dipole moment and convergence of the

property with respect to electron correlation in study [3], an unresolved discrepancy

with experiment of roughly 10% remains. A later investigation by van Stralen

et al. [87] reports a more systematic study of extending the basis set, including

iodine functions with angular momenta up to h. It is these high angular momentum

functions which provide the flexibility for the correlated wave function to reproduce

the dipole moment in close agreement with experiment.

6.3.2 Electric Dipole Polarizabilities

HI molecule. Paper [3] also reports detailed studies of the static electric polariz-

ability and polarizability anisotropy, depending on the choice of basis set, relativistic

contributions, and the effect of dynamic electron correlation. The relaxation of the

wave functions through electron correlation leads to an increase in polarizability

(αzz) as the electron distribution becomes more diffuse in the valence region. Scalar

relativistic contributions are sizeable, cancelling the increase due to electron correla-

tion to a large degree. Spin-orbit coupling, on the other hand, is far less important,

leading to only marginal corrections. Similarly, the increase in the number of corre-
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lated electrons is rather unimportant, even exhibiting an oscillatory behavior.

The effects of electron correlation and relativity on the perpendicular polarizabil-

ity component αxx are altered somewhat compared to the αzz component. Whereas

the influence of electron correlation is increased, the contraction due to scalar rel-

ativistic effects does not affect the polarizability to the same degree as for αzz.

This difference is related to the relativistic bond contraction in HI which affects the

parallel polarizability component more strongly than the perpendicular one. It is

demonstrated that the polarizability in general increases, not unexpectedly, when

stretching the bond, and that the anisotropy increases more strongly than the mean

polarizability, again reflecting the difference between the behavior of the parallel

and the perpendicular components.

A substantial deviation from experiment also prevails here. Although it has not

been shown explicitly in reference [87], the use of augmented basis sets will most

likely also lead to electric dipole polarizabilities in close agreement with the available

experimental values for HI.

6.3.3 Electric Field Gradients

The electric field gradient (EFG) in a molecule is an important property in spec-

troscopic techniques such as electron paramagnetic resonance (EPR) and nuclear

quadrupole resonance (NQR). The coupling of the electrostatic field-gradient tensor

to the nuclear quadrupole moment tensor is the most widely applied approach to the

determination of nuclear quadrupole moments (NQM). This is an indirect manner

of determining the NQM which can also be obtained directly from nuclear structure

calculations.

Hydrogen Halides (HX). The study in [6] is devoted to the investigation of the

convergence of electric field gradients at the heavy nucleus in the diatomic hydrogen

halides when approximate Hamiltonians, here in particular the Douglas-Kroll-Hess

Hamiltonian, are employed to the values obtained by fully 4-component approaches.

The field gradients are obtained as expectation values at both the Dirac-Coulomb

Hartree-Fock and Density Functional Theory level, neglecting (the small) contribu-

tions from spin-orbit coupling. The agreement between the 4-component and the

DKH results is extremely well, with maximum deviations not larger than 1% of the

property value. This applies to calculations where picture-change errors have been

eliminated from the approximate-Hamiltonian methods properly. It appears hardly

necessary to extend the Douglas-Kroll transformation of the property operator or

the Hamiltonian to beyond the second order in the external field, even for the heav-

iest nucleus At. It is also again shown that the field gradient is not a typical core

property, with contributions from the electronic core region limited to roughly 15%.
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Zusammenfassung

Im Zentrum dieser Arbeit steht die Entwicklung relativistischer Elektronenkorre-

lationsmethoden sowie deren Anwendung auf schwere Atome und kleine Moleküle

mit schweren Elementen. Elektronische Strukturmethoden, die die höchstgenaue

Berechnung spektroskopischer und elektrischer Eigenschaften von kleinen Systemen

ohne schwere Elemente erlauben, sind in der Quantenchemie weitgehend etabliert.

Die Möglichkeit zu schaffen, ähnliche Genauigkeit auch für kleine Systeme mit schwe-

ren Elementen in elektronischen Strukturrechnungen zu erzielen, ist eine Grundmo-

tivation für die hier vorgestellten Arbeiten. Hierbei richtet sich das Augenmerk

wesentlich auf zwei Kernpunkte: Erstens sind alle Methoden universell anwendbar,

d.h. sie liefern unabhängig vom betrachteten System oder Zustand zuverlässige

Resultate. Zweitens sind die Methoden in der Anwendung systematisch und prinzi-

piell beliebig weit verbesserbar. Die Methoden erlauben den Einsatz großer, unkon-

trahierter Basissätze und Hamiltonoperatoren verschiedener Genauigkeit, bis hin

zum vierkomponentigen Dirac-Coulomb-Hamiltonoperator.

Methodenentwicklung

Um diese Ziele zu erreichen, wird ein Satz von Elektronenkorrelationsmethoden

vorgestellt, der es erlaubt, statische Korrelation bei der Orbitaloptimierung zu be-

rücksichtigen (MCSCF) und dabei alle führenden relativistischen Beiträge zu be-

rücksichtigen, d.h. skalar-relativistische Orbitaleffekte sowie Spin-Bahn-Wechsel-

wirkung. Das Programm wurde in einer ersten Implementierung von Jørn Thyssen

und Hans Jørgen Aagaard Jensen vorgestellt und von mir weiterentwickelt. In

der Hauptsache besteht diese Weiterentwicklung auf einem verzahnten Zusammen-

schluss der Methode mit dem von mir entwickelten relativistischen Konfigurations-

wechselwirkungs- (CI)- Programm LUCIAREL (s.u.), sodass MCSCF-Rechnungen mit

großen aktiven Orbitalräumen und Determinantenentwicklungen überhaupt und auf

effiziente Weise möglich wurden. Die erweiterte vierkomponentige MCSCF-Methode

erlaubt die Berechnung von Molekülen, in denen die Spin-Bahn-Wechselwirkung

insbesondere in den Einteilchenfunktionen von Bedeutung ist, die in nachfolgen-

den Berechnungen dynamischer Elektronenkorrelation verwendet werden. Hierbei

ist nun wegen des Einbezugs statischer Korrelation auch die Berechnung voller Po-

tentialkurven oder -flächen von Molekülen mit schweren Elementen möglich. Die

93
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Berechnung von Grundzuständen wird in einigen Fällen diskutiert, aber auch an-

geregte Zustände können mit Hilfe des Konzeptes generalisierter aktiver Räume

(GAS) zugänglich gemacht werden. Die Verwendung vierkomponentiger Hamilton-

operatoren ist in den meisten Fällen, in denen Valenzeigenschaften schwerer Ele-

mente untersucht werden, nicht vonnöten. Daher ist es möglich, mittels des zweikom-

ponentigen BSS-Hamiltonoperators approximative Berechnungen mit ebenso hoher

Genauigkeit aber stark reduzierten Rechenanforderungen durchzuführen. Dies spielt

im Schritt der Orbitaloptimierung eine wichtige Rolle, weil hier der zusätzliche Ba-

sissatz, der für die Beschreibung der zwei kleinen Komponenten benötigt wird, nicht

mehr auftritt. Die Verwendung eines genäherten Hamiltonoperators ist jedoch in

den üblicherweise nachfolgenden Schritten der dynamischen Korrelationsbehandlung

nicht mehr von Vorteil.

Das vorgestellte relativistische CI-Programm LUCIAREL bildet sowohl die Grund-

lage für erweiterte MCSCF-Berechnungen als auch das “Arbeitspferd” für die Be-

handlung dynamischer Korrelation und kommt in einer Vielzahl von Anwendungen

zum Einsatz. Auf der physikalischen Seite ist anzumerken, dass die Methode allge-

mein konzipiert ist und prinzipiell mit jedem in Frage kommenden Hamiltonoper-

ator (vierkomponentig, zweikomponentig, skalar-relativistisch) sowie mit Spinoren

als auch Spinorbitalen verwendet werden kann. Die einzige Einschränkung besteht

in der Forderung nach Einteilchenfunktionen, die an Zeitumkehrsymmetrie adap-

tiert sind, d.h. Kramers-Paare. Eine solche Formulierung ist ohne externe Magnet-

felder, die in dieser Arbeit nicht betrachtet werden, grundsätzlich immer möglich.

LUCIAREL basiert auf einer Erzeugerstring-getriebenen, nichtrelativistischen Imple-

mentierung von Jeppe Olsen, die hauptsächlich von mir auf den relativistischen For-

malismus verallgemeinert wurde. Die jüngsten Errungenschaften bestehen in der

Verwendung von Spinoren statt Spinorbitalen sowie dem Anschluss an ein vierkom-

ponentiges Programmpaket (DIRAC). Spinoren bilden einen wesentlich besseren Aus-

gangspunkt für die Behandlung dynamischer Korrelation, weil der entsprechende

Konfigurationsraum weitgehend nach Kriterien der Korrelation selbst aufgebaut

werden kann. Werden Spinorbitale hingegen verwendet, so müssen in der Regel

auch Anregungen berücksichtigt werden, die nur zur Beschreibung der Spin-Bahn-

Wechselwirkung von Bedeutung sind, was die Effizienz dieses Ansatzes verringert.

Zu den eher technischen Neuerungen zählt die Programmierung von relativistischen

Ein- und Zweiteilchendichtematrizen, die über Spinoroperatoren und relativistische

CI-Vektoren ausgewertet werden. Neben der Erzeugung von natürlichen Orbitalen

(oder Spinoren) finden diese insbesondere im Anschluss an das erwähnte MCSCF-

Programm Verwendung. In der Anwendung auf schwere Atome und Moleküle er-

weist sich LUCIAREL derzeit in der Lage, eine kleinere Zahl (bis zu etwa 5) an-

geregter Zustände pro irreduzibler Doppelgruppen-Darstellung zu erfassen, wobei

der beschränkende Faktor weitgehend in der erforderlichen Rechenzeit besteht. In

diesen Rechnungen sind jedoch ausgedehnte GAS-Multireferenzentwicklungen mit

insgesamt bis zu etwa 100 Millionen Slaterdeterminanten möglich. Ähnliche Be-
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schränkungen gelten auch für die oben diskutierten MCSCF-Anwendungen. In der-

artigen Berechnungen zahlt es sich aus, dass höhere Anregungen als Doppelanregun-

gen ebenso effizient behandelt werden wie Doppelanregungen selbst, was im Falle

von ausgedehnten Multireferenzentwicklungen unabdingbar ist.

Zur Effizienzsteigerung in dynamischen Korrelationsbehandlungen wird ein rela-

tivistisches Coupled Cluster (CC)- Programm vorgestellt, das derzeit ohne Einbezug

der Spin-Bahn-Wechselwirkung angewendet werden kann. Die nichtrelativistische

Vorläufermethode von Jeppe Olsen wird von Lasse Sørensen und mir selbst zur

Verwendung allgemein relativistischer Operatoren ausgebaut. Hierzu habe ich den

erforderlichen Formalismus ausgearbeitet und ein Konzept entwickelt, wie Zeitum-

kehrsymmetrie im Allgemeinen in der CC-Theorie implementiert werden kann, was

bislang nicht bekannt war. Es zeigt sich, dass eine Implementierung ähnlich dem

spinbeschränkten Formalismus von Szalay und Gauss [163] am vielversprechend-

sten erscheint, weil unter Verwendung einer speziell formulierten Zeitumkehrsym-

metriebedingung für die Cluster-Amplitudengleichungen die Vertauschbarkeit der

Clusteroperatoren erhalten werden kann. Die voll adaptierte Version, hingegen,

bei der zeitumkehrredundante Amplituden vollständig eliminiert werden, führt zu

einem nichtkommutativen CC-Formalismus, der aufwendig zu implementieren ist

und dessen Effizienz trotz seiner Eleganz fragwürdig bleibt. Die spinfreie Variante

ARDUCCA entstand durch Anschluss an das vierkomponentige Programmpaket DIRAC

und vermag effizient CC-Entwicklungen allgemeiner Ordnung und mit mehr als 100

Millionen Clusteramplituden durchzuführen, was in einer ersten Anwendung auf

das CsLi-Molekül demonstriert wird. Eine analoge Implementierung wird im Falle

der CI-Methode ergänzend zur voll relativistischen Variante vorgestellt (LUCITA).

LUCITA und ARDUCCA beweisen in der Praxis den Fortschritt in Anwendbarkeit und

erreichbarer Genauigkeit für spektroskopische und elektrische Eigenschaften.

Anwendung

Die in dieser Arbeit vorgestellen Anwendungen befassen sich mit der Ermittlung

genauer spektroskopischer sowie elektrischer Eigenschaften kleiner Moleküle mit

schweren Elementen und schwerer Atome. Die neu entwickelten quantenchemischen

Verfahren werden hierbei meist in Kombination eingesetzt.

Die relativistisch vierkomponentige MCSCF-Methode wird einerseits im Ver-

gleich mit einer spinfreien Variante am AuO-Molekül zur Bestimmung des Ein-

flusses der Spin-Bahn-Wechselwirkung auf die Gleichgewichtsbindungslänge ange-

wandt. Es zeigt sich, dass sich besonders unter Einbezug statischer Elektronenkor-

relation die AuO-Bindung durch Spin-Bahn-Kopplung stark verkürzt, was auf den

erhöhten offenschaligen Charakter der Au-5d-Orbitale zurückgeführt wird, die an

der partiellen π-Bindung beteiligt sind. Ein spinorbasiertes MCSCF-Verfahren ist

folglich nicht allein für die Beschreibung von Dissoziationsprozessen von Bedeutung,
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bei denen Spin-Bahn-Wechselwirkung eine entscheidende Rolle spielt, sondern dient

auch zur korrekten Beschreibung molekularer Zustände im Bindungsbereich schwe-

rer Moleküle mit ähnlichen Valenzstrukturen wie AuO. Andererseits, und hiervon

nicht losgelöst, stellen MCSCF-Spinoren für schwere Elemente eine verbesserte Ein-

teilchenbasis dar, die in nachfolgenden Behandlungen dynamischer Elektronenkorre-

lation zum Einsatz kommt. Dies wird am Beispiel des UO2-Moleküls diskutiert und

bei der Berechnung der tiefstliegenden Molekülzustände durchgeführt. Derzeit wird

das MCSCF-Programm zur Berechnung der vollen Potentialkurve des Tl-Dimers

eingesetzt, bei dem die simultane Berücksichtigung statischer Korrelation und Spin-

Bahn-Kopplung unabdingbar ist.

Die Berechnung spektroskopischer und elektrischer Eigenschaften angeregter Zu-

stände wird vornehmlich mit dem vorgestellten Multireferenz-CI-Verfahren vorge-

nommen. Hochgenaue statische elektrische Polarisierbarkeiten wurden mit Hilfe von

CC-Kalibrierungsrechnungen an den jeweiligen Grundzuständen für die angeregten

Zustände der Atome der dritten Hauptgruppe ermittelt. Hier ist die Verwendung

von MCSCF-Spinoren als Einteilchenbasis nicht notwendig, jedoch erweisen sich zu-

standsgemittelte Dirac-Coulomb Hartree-Fock Spinoren als sehr vorteilhaft, weil die

nachfolgenden CI-Berechnungen, insbesondere beim Thalliumatom, auf die Beschrei-

bung dynamischer Elektronenkorrelation beschränkt werden können und keine zu-

sätzlichen Anregungen zur Erfassung von Spin-Bahn-Effekten benötigt werden. Die

Resultate haben großenteils geschätzte Restfehler von nur 1-2% und sind somit zu-

verlässige Daten für Untersuchungen, die auf die Polarisierbarkeiten dieser Atome

zurückgreifen. Eine ähnliche Studie, jedoch weniger rigoros, wurde einige Jahre

zuvor für die Halogenatome durchgeführt, die ebenfalls vorgestellt wird.

Genaue spektroskopische Eigenschaften mittels relativistischer MRCI-Rechnun-

gen wurden für die Moleküle AuO und UO2 bestimmt. Für Goldoxid sind ins-

besondere die Gleichgewichtsbindungslänge und die erste Anregungsenergie zu nen-

nen. Am Urandioxid wird demonstriert, wie das implementierte Konzept gen-

eralisierter aktiver Räume bei der Behandlung eines Moleküls mit komplizierten

Bindungsverhältnissen vorteilhaft eingesetzt wird. Die Beschränkung der CI-Ent-

wicklungen erlaubt auf diese Weise die Korrelation auch der äußeren “core”-Elektro-

nen des Uranatoms, deren Einbezug zur Berechnung insbesondere von Anregungsen-

ergien hoher Genauigkeit erforderlich ist. Für vertikale Anregungsenergien wird

nahegelegt, dass bisherige Berechnungen anderer Gruppen mit weniger rigorosen

Methoden (COLUMBUS Spin-Bahn CI [228], Spin-Bahn-CASPT2 [227, 229]) für

Anregungsenergien von UO2 signifikante Fehler (wenigstens 15%) aufweisen und dass

hierdurch auch die Zuordnung von Zuständen in experimentellen Spektren fehler-

haft sein könnte. Die Studie an UO2 macht den derzeitigen Anwendungshorizont

des neuen CI-Programms deutlich, der jedoch noch durch technische Verbesserungen

(z.B. Parallelisierung, Implementierung linearer und atomarer Symmetrie) erweitert

werden kann.

Die effizienteste Weise, hochgenaue Eigenschaften in korrelierten elektronischen
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Strukturrechnungen zu erhalten, stellt die CC-Methode dar. Die neue Implemen-

tierung, die derzeit nur auf Grundzustände und ohne Spin-Bahn-Wechselwirkung

angewandt werden kann, wurde in einer umfassenden Studie am CsLi-Molekül einge-

setzt. Die Auswirkungen relativistischer Effekte und dynamischer Elektronenkorre-

lation wurden hier in Berechnungen höchster Genauigkeit ermittelt, die insbesondere

Multireferenz-CC-Entwicklungen und iterative Dreifach-Clusteranregungen beinhal-

teten. Im CsLi- und ähnlichen Molekülen dominieren Korrelationseffekte auf die

spektroskopischen Eigenschaften deutlich, während skalar-relativistische Effekte we-

sentlich schwächer sind und die Spin-Bahn-Wechselwirkung vernachlässigbar klein

ist. In einer methodisch vergleichenden Untersuchung am Golddimer wird die Ef-

fizienz und überlegenheit der CC-Methode gegenüber dem CI-Ansatz (wiederholt)

demonstriert. Die nach Berücksichtigung weiterer Korrekturen erhaltene Gleichge-

wichtsbindungslänge weicht nur 0.3% vom experimentellen Wert ab, der mit einer

verlässlichen Methode ermittelt wurde [238]. Es ist erstrebenswert, die vorgestellte

CC-Implementierung auch auf die Behandlung angeregter Zustände zu erweitern.

Derzeit werden die in dieser Arbeit vorgestellten Konzepte zur Verallgemeinerung

auf den voll relativistischen Fall implementiert, so dass der Einbezug der Spin-Bahn-

Kopplung möglich wird.

Mit Ausnahme der Berechnungen an CsLi und den Wasserstoffhalogeniden, für

die elektrische Dipolmomente und Polarisierbarkeiten sowie elektrische Feldgradi-

enten berechnet wurden, sind alle in dieser Arbeit diskutierten Anwendungen von

mir selbst durchgeführt worden. An den erstgenannten Untersuchungen habe ich

mitgewirkt.
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