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Zusammenfassung

Electron injection and acceleration in the bubble regime

von Johannes Thomas

Einige der grundlegendsten Fragen der Physik lassen sich heute nur noch mit Hilfe

von Experimenten an Teilchenbeschleunigern beantworten (weitere Informationen sind

z.B. unter http://www .weltmaschine.de/cern_und_lhc/cern/ erhältlich). Dabei werden

immer höhere Stoßenergien und immer hochwertigere Teilchenstrahlen benötigt. Um

die Energie der beschleunigten Teilchen zu erhöhen, müssen herkömmliche Beschleu-

nigersysteme wie Linear- und Zirkularbeschleuniger immer weiter ausgebaut und ver-

größert werden. Eine Verstärkung der beschleunigenden elektromagnetischen Felder ist

auf Grund sonst auftretender Materialschäden nicht möglich. Ein anderer Ansatz, der

diese Schwäche nicht hat, ist die Beschleunigung von Elektronen in Plasmen. Hierbei

wird ein Laserpuls, oder ein kurzer hoch energetischer Elektronenstrahl in ein Plasma

geschossen um dort freie Elektronen direkt durch den Laser, oder durch eine vom Laser-

puls getriebene Plasmawelle zu beschleunigen.

Plasmawellen, die durch kurze hoch-intensive Laserpulse angeregt werden, beherbergen

in ihrem Inneren elektromagnetische Felder, die um viele Größenordnungen höher als

in herkömmlichen Beschleunigern sind. Ist die Breite des Laserpulses kürzer als eine

halbe Plasmawellenlänge, werden Plasmawellen angeregt, die nach einer halben Peri-

ode brechen. Eine Besonderheit dieser gebrochenen Wellen ist, dass sie ein Volumen

im Plasma bilden, aus dem alle Elektronen entrückt sind, und das sich mit annähernd

Lichtgeschwindigkeit durch das Plasma bewegt. Auf Grund seiner Form wird ein solches

Volumen auch als Bubble bezeichnet. Elektronen, die in der beschleunigenden Phase der

Bubble gefangen werden, formen einen dichten Elektronenstrahl und können innerhalb

von wenigen cm auf Energien von einigen GeV beschleunigt werden.

In dieser Arbeit werden verschiedene analytische Bubble Modelle vorgestellt, die in-

dividuelle Problemstellungen behandeln. Zuerst wird dabei eine neue Injektionsmeth-

ode vorgestellt, bei der ein kurzer Teilchenstrahl seitlich in die Bubble geschossen wird.

Dadurch wird die Breite der Energieverteilung des Elektronenstrahls minimiert. An-

schließend wird berücksichtigt, dass hoch energetische Elektronen in elektromagnetischen

Feldern viel Energie durch Strahlung verlieren. Zum Schluss wird ein neues Model einge-

führt, das das Hintergrundplasmadichteprofil für gegebene Felder bestimmbar macht.





Abstract

Electron injection and acceleration in the bubble regime

by Johannes Thomas

Some of today’s most basic questions in physics can only be answered with experi-

ments at particle accelerators (further information is available at http://www.welt- mas-

chine.de/cern_und_lhc/cern/). In order to access new research fields the particle energy

and the beam quality have to be increased continuously. In order to achieve this, conven-

tional accelerators, like linear and circular accelerators, have to be extended and enlarged

since amplification of the accelerating electromagnetic fields is not possible because too

large field strengths may cause material damages. Another method that does not suffer

from this disadvantage is the acceleration of electrons in plasmas. Here, a laser pulse or a

short electron bunch is directed into a plasma such that ambient electrons are accelerated

directly by the laser pulse (DLA) or by the laser driven plasma wake field (PWFA).

Plasma waves that are driven by high intense and short pulses may break and build up

field strengths that are many orders of magnitude larger than in conventional accelerators.

If the laser pulse duration is shorter than half a plasma wave length, the plasma wave

breaks after its first oscillation and a highly non-linear broken wave regime is reached.

In this regime the laser pulse excites a plasma cavity without any electrons left. The

shape of this cavity is spherical so the corresponding acceleration technique is also known

as the bubble acceleration and the wake field is called the bubble. Electrons that are

trapped in the bubble form a dense bunch that is accelerated to high energies (GeV and

more) on a cm scale.

This thesis presents various analytical bubble models that treat individual problems.

The first point is to present a new injection technique that describes the lateral injection

of short electron bunches into the bubble. This method is suited to minimize the en-

ergy spread of the electron bunches. Secondly, radiation reaction for ultra-high electron

energies in the GeV regime and above is included into the theory for the new injection

method. The last point of this theses is to introduce a new model that calculates the

background plasma density profile for given fields.
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Chapter 1

Introduction

Since their invention in the 1960s, lasers form the foundation of technological and sci-

entific progress. Today - more than 50 years later available laser systems range from

powerful industrial lasers to spectrally very narrow-banded continuous wave lasers for

precise measurements of fundamental constants. At the end of the 1960s intensities in the

range of 1015 W/cm2 could be produced. Since 1985 a further enhancement of the peak

power could be reached with the chirped pulse amplification (CPA) [2] of laser pulses

with durations in the pico- and femto-second regime. Today, the CPA method allows an1

easy generation of atto-second pulses with intensities in the bulk of 1021 W/cm2 [3, 4].

Next generation single shot laser systems that are build for fusion experiments reach

1026 W/cm2 [5]. Even higher intensities can be reached if such strong radiation interacts

with plasma. Then it is supposed that non-linear laser-plasma interaction will provide a

way to reach field intensities above 1026 W/cm2. This would exceed the Schwinger-field

and lead to pair creation, a prediction from QED theory [6].

One of the most important applications of such high intense laser pulses are laser-plasma

accelerators [7–9]. They are considered as a new generation of electron accelerators

because the accelerating electrical fields may be larger than 100 GV/m. This is more than

three orders of magnitude larger than accelerating fields in conventional linear or circular

accelerators. The key for the production of such high field strengths is to maintain high

field gradients sufficiently long for particle acceleration. The corresponding effective

acceleration time limits all other conventional accelerators. The functional principle of

the laser-plasma accelerator is to trap electrons in the accelerating phase of a plasma

wake field. The wake field in turn is produced by a relativistic laser pulse and can have a

limited life time due to wave breaking. In Fig.(1.1a) a wake field (white border) is driven

by high intense laser pulse (yellow area). The laser-plasma parameters are chosen such

1
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(a) (b)

Figure 1.1: (a) Laser driven plasma wake field with trapped and accelerated electrons.
(b) Bubble with trapped electron bunch. Both pictures are taken from [1].

that the field does not break after its first oscillation. The red area shows the density of

trapped electrons in the accelerating phase.

The stability of the wake-field is of central interest for the laser-plasma accelerator scheme

because wave-breaking limits the effective acceleration time and thus the maximum

achievable electron energy. An analytical description of the wave breaking mechanism of

electrostatic plasma waves goes back to a paper from Dawson [7]. Here, plasma waves

in the non-relativistic case in a homogeneous background plasma were studied. Fur-

thermore, a critical threshold amplitude below which plasma oscillations are stable were

found. When the oscillation amplitude is larger enough, a multi stream-flow sets in

within the first oscillation and the wave breaks.

When the plasma wake field is driven to nonlinear amplitudes, it takes the form of an

electronic cavity. The acceleration regime is called the "bubble regime" in the case that

the wake field is driven by a short laser pulse [10]. If the driver is a dense highly energetic

particle bunch the regime is called the "blowout regime" [11, 12]. For the laser driven

case, the pulse is shorter than the plasma wavelength and fits perfectly into the first

half of the plasma period. The laser intensity is high enough that the created wake

field breaks after its first oscillation. In this regime, the wake field takes the form of

a distorted spherical cavity from which all electrons are banished and that moves with

nearly the speed of light through the plasma. In the following this wake-field is referred

as "the bubble".

Inside the bubble, an accompanying electron bunch - the so called beam load - is acceler-

ated until the spherical shape of the bubble breaks down or the electrons get out of phase

with the wake. In Fig.(1.1b) the beam load (red bunch) is accelerated in the bubble.

The driving laser pulse (yellow area right) is far at the front of the bubble. The life time

of the bubble is limited by the energy exhaust of the driver which means that the sphere

breaks as soon as the laser pulse has reached a characteristic depletion length [8, 13]. The

fields inside the bubble can be calculated from Maxwell’s equations for an empty sphere
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[14] and a sphere that takes into account the field enhancement at the bubble back due

to electron sheet crossing [15, 16]. An even simpler model for the fields inside the bubble

has been proposed recently: a static piecewise model (PWM) [17]. This simplified model

neglects any spatial or temporal field dependence, but due to its simplicity it is possi-

ble to calculate amplitude envelope functions to the transverse particle coordinates and

momenta, and to analyze some self-injection physics analytically. In contrast to recent

experiments, the PWM misses the prediction of mono energetic electron beams. Another

method that modifies the PWM to a more general case but stay analytically treatable is

a time dependent semi-piecewise model (tPWM)[18].

Another important point for the optimization of electron acceleration in laser plasma

accelerators is the proper injection of electrons into the accelerating phase of the wake

field. The physics of electron injection into a non-linear plasma wake, however, is very

complex. The most common mechanisms to inject electrons are the beat wave mecha-

nism, the gradient method, the ionization-based injection [19, 20], the transverse colliding

laser injection method [21], self-injection of plasma background electrons, and injection

of prior accelerated bunches. The modern theory of self-injection is still in early stage

as it cannot predict quantitatively quantities observed in experiments, for example, the

electron charge loaded in the bubble as function of laser-plasma parameters (plasma den-

sity, laser intensity, pulse duration and focal spot size) etc. At present there are many

bubble models that treat self-injection physics and suggest their own criteria for electron

trapping.

In this context some models suggests that plasma electrons are self-injected in the bubble

when the normalized bubble radius is approximately larger than the Lorentz gamma-

factor of the bubble rear [22, 23]. Other models suggest that electron self-injection occurs

in the evolving bubble when the effective Hamiltonian becomes negative. This implies

that the untrapped electrons cross the separatrix in the phase space, get into the ’bucket’

and become trapped. In the recent advanced theories the effect of the plasma sheath

surrounding bubble, the current distribution in the bubble sheath, and the driver effect

is included [24]. Recently it was deduce from 3d numerical simulations that electron

self-injection in a laser driven bubble happens when the amplitude of the normalized

laser vector potential is approximately more than 3.8 [16].

The only fully-analytical models so far are the piecewise and semi-piecewise model from

I. Kostyukov, E. Nerush, A. Pukhov, V. Seredov, and J. Thomas. They are based

on a piecewise approximation of the bubble field in a time-independent model[17]. In a

generalization the fields are time dependent, but piecewise constant in space. In this case

the model is a sphere with an adiabatically growing radius R(t) and a growing trapping

cross-section. A physical justification for this approach is that the interaction of the
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electron bunch with the bubble border is taken into account. Since the fields remain

constant in space the production of mono energetic electron beams is still missing [18].

A second generalization is to introduce a model that treats the right field gradient in

the longitudinal direction. For this case energy spectra that are comparable to PIC

simulations and a full gradient model are found. Simplifications in these models are that

the interaction between the accelerated electrons and the laser pulse at the bubble front

as well as the mutual electron interaction are neglected. The plasma ambient density is

always continuous and constant. The motivation for all these assumptions are several

observations in the phenomenological model of the bubble regime [14, 22].

Recent experiments in the bubble regime have shown that the production of ultra-cold

and low emittance electron bunches is feasible. Normalized transverse emittance between

0.1 mm mrad and 1 mm mrad were realized, measured, and confirmed by numerical

simulations [20, 21, 25]. The measurement of the bunch size is determined by an indirect

method based on the measurement of the relativistic up shifted betatron x-ray radiation.

The characteristics of the x-rays are related to the properties of the electron beam and

the plasma wiggler [26]. To control the x-ray source it is necessary to characterize the

electron bunch properties within the bubble. A spatial characterization of a laser-plasma

based betatron source is used to estimate the transverse diameter of the electron bunch

in the bubble. For the characterization both, the betatron oscillation amplitude of the

electrons as well as the x-ray source size have to be determined. By measuring the

betatron spectrum and comparing with theoretical prediction, the oscillation amplitude

can be estimates. Furthermore, the traversal electron bunch size within the bubble is

deduced from the x-ray source size and the betatron amplitude [27].

In this work the phenomenological model from [14, 22] is generalized by a new injection

technique, the inclusion of radiation reaction effects, and model for the blow out regime

that allows the calculation of plasma profiles for given fields inside the blow out. The

new injection technique is based on the idea to suppress the self-injection. Then a dense

electron bunch is injected from an external source. If the injection process is fast enough,

the bunch is strongly localized in space and all electrons have the same longitudinal phase.

This in turn leads to the generation of a high dense, ultra-cold electron bunch. The key

in the external injection method is to inject the bunch at a certain angle that can be

optimized so that more than 50% of the injected electrons are trapped and energy spread

is minimized simultaneously.

For high laser energies this thesis also discusses radiation reaction (RR) effects on electron

acceleration in the bubble model. Since the bubble fields are always weak enough to

neglect QED effects like a recoil from quantized radiation, it is the electron energy that

determines whether RR must be included or not. The electron energies that are discussed
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in this frame work are fare beyond the GeV regime. It is also show that for MJ laser

pulses the known scaling laws [28, 29] fail if RR is considered.

In the last part of this thesis the basis of the phenomenological bubble model is reviewed

and all simplifications are reversed as far as possible. The first and most important

simplification that is repealed is the model of the ambient plasma. In general the plasma

density is homogeneous and constant. Now the driver runs in a deep plasma channel

that is cylinder symmetric in propagation direction. Furthermore, the wake field radius

depends on driver potential and the bunch potential. This is a significant change to

the phenomenological model because a direct back action of the electron bunch on the

bubble border was neglected so far. Since the driver field also determines the blow out

shape, an indirect action of the driver on the accelerated bunch is included, too. The

bubble sheath is modeled in two ways. First a delta layer with thickness zero is assumed

so that the potentials and fields everywhere inside the cavity can be determined. For a

study of any kind of injection mechanics the layer has a certain width ε. In this second

case the potentials are equal to the former case but the sheath now models the injection

mechanics additionally.

The structure of this thesis is the following. In the next chapter a brief overview about

current acceleration and injection techniques in the laser plasma accelerators is given.

The following chapter discusses a new injection method that shows how prior accelerated

electron bunches must be injected into a bubble to minimize the energy spread of the

bunch load after acceleration. In this chapter the self-injection mechanism is suppressed.

Chapter 4 also neglects the injection of background electrons and considers externally

injected electron bunches. Different to the previous chapter, here the energy spread

minimization at ultra high laser pulse energies in a new bubble model that includes

radiation reaction effects is discussed. Chapter 5 introduces a blow out model that

considers an electron sheath and its current, the mean field inside the accelerated electron

bunch and a particular field inside the driver. The last chapter gives a summary of all

conclusions and a short prospect of the possible further work in the field of bubble

acceleration.





Chapter 2

Principles of classical and plasma

based acceleration concepts

2.1 Principles of conventional accelerators

The most important tools for experiments in particles physics are particle accelerator.

The working principle of all kinds of accelerators is that a particle with mass m and

charge q passes an electric field E that points in acceleration direction. Then the force

F = qE (2.1)

accelerates the particle. If the velocity is small compared to the speed of light the force

accelerates the charge according to Newton’s second law F = ma. If the velocity is close

to the speed of light, F = dp/dt, where p is the particles momentum and p = mγv. The

Lorentz factor

γ =

√
1 +

|p|2
m2c2

(2.2)

describes whether the particle is non-relativistic (γ � 1), relativistic (γ ≈ 1), or ultra-

relativistic (γ � 1). The relativistic energy of a particle is

E = mc2 + T = γmc2. (2.3)

The kinetic energy T in the non-relativistic case is the classical expression T = m|v|2/2 =

|p|2/(2m). In the relativistic case T = (γ − 1)mc2 and in the ultra-relativistic case

T ≈ |p|c. If a particle passes in parallel to a homogeneous, constant electric field E

7



Chapter 2. Principles of acceleration 8

(a) (b)

Figure 2.1: (a) Working principle of a linac. Charged particles (orange) are emitted
from a source (black square) into an accelerating field between two tubes at distance d.
The field is switched when the charges travel through the insulated tubes. (b) Schematic
view of a cyclotron from top. The constant (blue) electrical field accelerates particles
while the perpendicular (red) magnetic fields bends the trajectory (dotted line) to a

circle.

along the distance d it gains the energy

W = q|E|d. (2.4)

As a consequence there are two possibilities to accelerate charged particles to relativistic

and ultra-relativistic energies. The first method is to increase the field strength so that

a higher accelerating force acts on the particle. The second method is to enlarge the

acceleration distance d.

In a linear accelerator (see Fig.2.1a) charged particles are injected from a source into a

series of homogeneous electrical fields. The fields are build up between Faraday tubes

and accelerated the charges uniformly. When the particles are inside a tube the field

changes its sign and the accelerating phase lies between the next two tubes so that the

acceleration goes on. The total energy gain in this linear configuration is limited by the

total length of the accelerator and the maximum applicable field strength. The limit

for the field strength is material dependent and is usually in the order of Emax ≈ 100

MeV/m. If higher field strengths are applied, the accelerator material itself breaks which

means that a short circuit between the tubes destroys the accelerating field.

Another idea to apply the linear acceleration in a more compact accelerator is the cy-

clotron (see Fig.2.1b). Here a constant magnet field B bends the trajectory of charged

particle on a circle. On this circle the Lorentz force compensates the centrifugal force
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and it is

F =
m|v|2

r
= q|v|B (2.5)

where r = |v|ω is the gyroradius and ω = qB/(γm) is the cyclotron angular frequency.

The acceleration of the particle is done every half cycle in a static electric field. The

direction of the field is turned while the particle crosses the magnetic field. In the classical

limit the accelerating field frequency is independent from the particle velocity and the

path radius. In the relativistic case it is possible to adjust the magnetic field proportional

to the Lorentz factor B = γB0. Then the frequency is constant again and the gyroradius

r = m|v|/(qB0) depends on the velocity solely.

A further development of the cyclotron is the synchrotron (see Fig.2.2a). In this kind

of accelerator the particle is accelerates in a uniform electrical field again. Different to

the cyclotron a synchrotron has two kinds of magnetic fields exist. The first kind bends

the particle trajectories. The second kind is important if a whole bunch of particles is

accelerated as it focuses the bunch. The energies that can be achieved with synchrotron

accelerators are only limited by the synchrotron radius. Todays largest synchrotron is

the large hadron collider (LHC) in Geneva which is build for collision energies up to 14

TeV.

The development of hadron and electron-positron colliders in the last 50 years is shown in

the Livingston plot in Fig.2.2b. Here the original graph produced by M.S. Livingston in

1954 is updated and shows how the maximal reachable laboratory energy of accelerated

particle bunches increases with time. An important observation in this graph is that

the energy of the accelerators increases exponentially in time. Starting from 1960s the

energy has increased both in hadron and e+-e−-colliders by a factor of 10 every 15 years.

All above explained acceleration methods use high frequency electric fields to accelerate

particles while the maximum applicable field strength is limited by material break down.

A completely different method is based on the idea that the particles stay in the acceler-

ating phase of an electromagnetic wave. In the next sections an introduction to plasma

waves and basic acceleration concept in plasmas is given.

2.2 Plasma waves

2.2.1 The ponderomotive force

In laser-driven plasma-based accelerators, plasma waves are driven by the ponderomotive

force of a short laser pulse. This force can be derived from the equation of motion of a
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(a) (b)

Figure 2.2: (a) Schematic view of a synchrotron with yellow accelerating part, red
focusing part, and blue bending part. (b) Livingston plot. [30]

single point like particle with charge q and mass m

dp
dt

= q
(
E +

p
mc
×B

)
, (2.6)

where E and B are the electric and magnetic field of the laser pulse. Since a laser

pulse has a pure electromagnetic potential, it is E = −∂A/∂t and B = ∇ × A where

A = A0 cos(k·r−ωt)~e⊥ is the laser potential. In the non-relativistic limit the normalized

vector potential

a =
eA
mc2

(2.7)

is smaller than one and equal to the normalized transverse quiver momentum of a plasma

electron in the laser field pq/(mc) = a. The laser strength parameter a0 is the peak

amplitude of a . It is related to the peak laser intensity I0 and the laser power P via

I0 = πc

(
a0mec

2

cλlaser

)2

, P = πr2
0I

2, (2.8)

where r0 is the laser focal spot size and λlaser = 2π/k is the wave length of a laser with

frequency ω0 = 2πc/λlaser

If the momentum of an electron is split up according to p = pq + δp the second order

motion gives the 3D poderomotive force in the non-relativistic limit [31]

Fp =
dδp
dt
≈ −me[(pq/me · ∇)pq/me + cpq/me × (∇× a)] = −1

2
mec

2∇a2. (2.9)
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Here it was used that vq ≈ pq/me, ∂pq/∂t ≈ −eE, and γ ≡ 1. In the nonlinear regime

the leading order transverse motion of an electron is still the quiver motion if r0 > λp �
λlaser, where λp = 2πc/ωp is the plasma wave length and ωp = (4πn0e

2/me)
1/2 is the

electron plasma frequency in a homogeneous background plasma with density n0. The

gamma factor of the electron can be expressed in terms of the laser amplitude and the

electrostatic wake field potential Ψ if the energy is averaged over the fast laser period

[32, 33]

γ =
1 + v̄2

⊥/c
2 + ā2

⊥ + (1 + Ψ̄)2

2(1 + Ψ̄)
. (2.10)

In a quasi-static approximation that assumes that the laser envelope only depends on

the distance to the propagation axis r and ξ = z − ct the wake field potential Ψ can be

expressed in terms of the electrostatic potential ϕ and a via Ψ = ϕ−a|| and the effective

nonlinear ponderomotive force is

Fp,rel = −mec
2∇γ. (2.11)

2.2.2 Linear plasma waves

In the non-relativistic limit (a0 � 1) a laser pulse excites a linear plasma density per-

turbation that can be described by the normalized density perturbation δn/n0 and the

wake field potential via(
∂2

∂t2
+ ω2

p

)
δn

n0
=

1

2
c2∇a2,

(
∂2

∂t2
+ ω2

p

)
Ψ =

1

2
ω2
pa

2. (2.12)

If δn = n − n0 � n0 and |E| � mecωp/e Eqs.(2.12) describe sinusoidal plasma waves

with frequency ωp so that

δn

n0
=

c2

2ωp

∫ t

0
sin(ωp(t− t′))∇2a2(r, t′)dt′, (2.13)

E
E0

= − c
2

∫ t

0
sin(ωp(t− t′))∇a2(r, t′)dt′. (2.14)

These solutions indicate that the radial extend of the plasma wave is in the order of the

laser focal spot size and that the wave is excited effectively if the laser envelope scale

length is in the order of the plasma wave length. The cold non-relativistic wave breaking

field [7]

E0 =
mecωp
e

∝
√
n0 (2.15)
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(a) (b)

Figure 2.3: Time averaged density variation δn/n0 (dashed curve) and axial electric
field Ez/E0 (solid line) in a LWFA for (a) a0 = 0.5 and (b) a0 = 2. [34]

is a limit for the electrical field in linear plasma waves. It can be estimated form the

Poisson equation ∇E = 4πe(n0 − ne) and the idea that all plasma electrons are oscillat-

ing with frequency ωp since then (ωp/c)Emax = 4πen0. The cold non-relativistic wave

breaking field gives a first estimate of how large the accelerating fields in a laser plasma

accelerator can be. For example, if the plasma density is in the order of n0 ≈ 1018 cm−3,

the wave breaking field is E0 ≈ 100 GV/m.

As Fig.2.3a shows, the plasma wave, also called wake field, is a sinusoidal plasma density

perturbation with constant phase and amplitude at a certain distance from the driving

laser pulse. The key for the laser plasma acceleration now is to inject electrons into the

accelerating phase of the wake field and to extract them before they reach the decelerating

phase.

2.2.3 Nonlinear plasma waves

In the relativistic a0 > 1, or non-linear limit |E| > E0 the plasma wave becomes highly

non-linear, i.e. the wave steepens and its wave length increases as Fig.2.3b illustrates.

Now the wake field potential oscillates between a minimum and a maximum which are

related to the amplitude of the axial electric field via

− Emax ≤ Ez ≤ Emax, (2.16)

Ψmin =
E2
max

2E2
0

− vp
c

√(
1 +

E2
max

2E2
0

)2

− 1, (2.17)

Ψmax =
E2
max

2E2
0

+
vp
c

√(
1 +

E2
max

2E2
0

)2

− 1, (2.18)
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where, vp ≤ c is the phase velocity of the plasma wave. The form of the electric field

exhibits a characteristic sawtooth profile that indicates the wave steepening while the

density perturbations become highly peaked. The lengthening of the plasma wave length

can be described by[35, 36]

λp,rel =

λp
(

1 + 3E
2
max

16E2
0

)
, Emax

E0
� 1

2λp
π

(
Emax
E0

+ E0
Emax

)
, Emax

E0
� 1.

(2.19)

This increase of the wave length with increasing wave amplitude has an important effect

on nonlinear 2D and 3D plasma waves because it explains a basic mechanism for wave

breaking. The reason why the new amplitude dependence can lead to wave breaking is

that the plasma wave amplitude is maximum on the z-axis and decreasing radially. Thus

λp,rel is a function on the laser focal radius which leads to a bending of the wave fronts.

If the curvature is too strong the wave breaks radially.

2.2.4 Wave breaking

The cold non-relativistic wave breaking field in the linear regime must be corrected for

stronger fields (Emax > E0) and larger laser pulse amplitudes (a0 > 1). This is usually

done by using the nonlinear, relativistic, cold fluid equations in one dimension. In the

limit γp = (1− v2
p/c

2)−1/2 ≈ ωlaser/ωp � 1 they are [35]

n

n0
=
γ2
⊥ + (1 + Ψ)2

2(1 + Ψ)2
,

vz
c

=
γ2
⊥ − (1 + Ψ)2

2(1 + Ψ)
, γ =

γ2
⊥ + (1 + Ψ)2

2(1 + Ψ)
, (2.20)

where γ⊥ = 1+a2 and a = v⊥/c. The cold relativistic wave breaking field that is related

to these non-linear equations is [37]

E0,rel =
√

2γp − 2E0. (2.21)

If the electric field amplitude now approaches the wave breaking limit, the minimum

wake field [cmp. Eq.(2.17)] becomes

Ψmin = γp − 1−
√

1− 1

γ2
p

√
γ2
p − 1 =

1

γp
− 1 (2.22)

and the cold plasma density diverges. The cold fluid equations can be applied as long

as electron fluid velocity ve is less than the wake field phase velocity. In the calculation

above, however, ve → vp, so the wave is said to "break" if ve ≈ vp and the density

becomes singular.
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General expressions for the maximum field amplitude in three dimensions are not known

jet. However, full relativistic particle in cell simulations indicated first that after the

nonlinear wake field regime an even more promising acceleration regime exists [10, 38].

In this highly nonlinear regime the plasma wave is broken after the fist oscillation and

the shape of the electron density is a sphere from which all electrons are dispelled (see

Fig.2.5b).

The next sections discuss how these wake fields can be excited and how electrons can be

injected into the accelerating phase of the fields.

2.3 Laser plasma accelerators

2.3.1 The laser wake field accelerator

In the laser wake field acceleration (LWFA) a short (τ < 1 ps), high intense (I0 > 1017

W/cm2) laser pulse drives a wake field in an under dense plasma (λlaser/λp � 1) in

the linear or nonlinear regime. The plasma wave is excited most efficiently if the pulse

length L = cτ is in the order of the plasma wave length. A first demonstration of

the LWFA was possible with the invention of the chirped pulse amplification (CPA) [2]

while the nonlinear theory in one dimension was developed. In the linear wake field

regime (a0 < 1 ) the optimal pulse length conditions in terms of the full width at half

maximum (FWHM) for square, sine, and Gaussian pulse profiles are LFWHM = 0.5λp,

LFWHM = 0.42λp, and LFWHM = 0.37λp respectively. The maximum electrical fields at

these optimized scalings are Emax = a2
0E0 for square pulses, Emax = 0.82a2

0E0 for sine

pulses, and Emax = 0.76a2
0E0 for Gaussian pulses. [39]. First experiments that could

achieve accelerating gradients in the order of 100 GeV/m were realized at the turn of the

millennium [40, 41]. Today, electron bunches that are accelerated in the LWFA regime

have durations in the order of femto-seconds as the driving laser pulses have durations

in the same order.

In the nonlinear regime the laser wake field acceleration is dominantly performed in the

highly nonlinear regime where the wake field breaks after a view oscillations or shortly

after the driver. Thus this kind of acceleration has its own subsection in 2.3.4.

2.3.2 The laser beat wave accelerator

If long L � λp laser pulses are shot into a plasma no wake field is excited. However,

if two long laser pulses with frequencies ω1 and ω2 are shot into an underdense plasma
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and if the frequencies satisfy the resonance condition ω1−ω2 ≈ ωp, a wake field is driven

resonantly. The method of properly adjusting the two frequencies is called the plasma

beat wave acceleration (PBWA) and excites the plasma wave similar to the laser wake

field acceleration. Here, however, the ponderomotive force is a nonlinear combination

of the ponderomotive forces each laser pulse involves. In the non-relativistic regime the

total force is Fp ∝ ∇a2, where |a| = a1 cos(k1z − ω1t) + a2 cos(k2z − ω2t) and the beat

term a1a2 cos((k1 − k2)z − ∆ωt) can resonantly drive a plasma wave with wake field

potential Ψ = a1a2kpξ sin((k1 − k2)z −∆ωt)/4 at distance ξ = z − ct from the front of

the laser pulse. Simplified, the laser beat wave can be described as a series of laser pulses

each with amplitude a1a2 and duration 2π/∆ω.

In the nonlinear regime the plasma wave length increases with increasing wave amplitude.

Thus the wake field will become out of phase with the laser beat wave so that the

maximum plasma wave amplitude is limited. The growth of the plasma wave stops as

soon as the difference between the laser beat wave and the plasma wave is π/2 which

gives a characteristic saturation distance after the laser pulse front and a maximum

wake field amplitude of Ψmax = (2πa1a2)1/3 [42]. If the beat frequency is slightly detuned

(∆ω < ωp) it is possible to maximize the plasma wave amplitude at an optimal detuning.

This principle is illustrated in Fig.2.4. Here a laser beat wave consists of four beat periods

generated by four laser pulses. In Fig.2.4a the detuning is not considered and ∆ω = ωp.

The wake field amplitude saturates after the second beat wave but is driven down by the

third and fourth shortly after. The net wake field excitation after the four beat waves

is nothing more but a very small density perturbation. However, if the beat period

is optimized the wake field is driven to nonlinear amplitudes and the wake steepening

in Fig.2.4b matches the sawtooth form already discussed in the nonlinear plasma wave

section.

First experiments that report about plasma wave excitation in the PBWA regime were

done in 1985[43]. Later electrons from the plasma back ground could be accelerated by

beat wave driven wake fields. Since prior to 1985 the generation of short laser pulses was

not possible, the principle of LBWA was the only realistic method to accelerate electrons

in a plasma wake field.

2.3.3 The self-modulated laser wake field accelerator

Another acceleration method that uses long laser pulses to drive plasma wake fields is the

self-modulated laser wake field acceleration (SMLWFA). Here, a single long pulse breaks

up into many short pulses due to enhanced focusing and diffraction in different regions of

the plasma wave. Each laser pulse fragment has a width in the order of the plasma wave
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(a) (b)

Figure 2.4: (a) PBWA example with four beat pulses without optimization showing
the effect of detuning. (b) PBWA example with four beat pulses with optimization

∆ω < ωp. [44]

length L ≈ λp. This self-modulation process has a couple of advantages over the short

pulse driven LWFA regime. First, the SMWFA regime does not need matching condition

like L ≈ λp or a special laser pulse tailoring. Second, the acceleration is enhanced because

(i) the SMWFA regime operates at higher densities, (ii) the laser pulse tends to focus

to higher intensities, (iii) the wake field is resonantly excited by a couple of laser pulses,

and (iv) relativistic optical guiding extends the acceleration distance to several Rayleigh

lengths. Experiments with laser pulses in the range of picoseconds showed that trapped

electrons from background plasma could be accelerated up to more than 40 MeV while an

estimate of the electron dephasing length indicated that the field strength in acceleration

direction must be at least 100 GeV/m [45].

2.3.4 Highly nonlinear laser wake field accelerator

If a wake field is driven to the nonlinear regime the electron density profile exhibits

deviations from the sinusoidal form that is known as an analytical solution to the linear

regime. In three dimensions a completely new shape is formed if the wake field breaks or

- equivalently - if the driver pushes all electrons from the axis. Then a cavity develops

right after the driver and moves with nearly speed of light through the plasma. If the

driver is a short electron bunch, the cavity is referred to as the "blow out", while a short

and high intense laser pulse usually excites a so called "bubble" [10]. Both regimes are

characterized by an accelerating field that depends only on the distance to the driver

and a focusing field that is linear in the distance to the propagation axis. The fields in

cylindrical coordinates in the quasi-static approximation ξ = r|| − ct are [14, 46]

E|| ≈
1

2
kpξE0, E⊥ =

1

4
kprE0, Bϕ = −1

4
kprE0. (2.23)
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(a) (b)

Figure 2.5: (a) Blow out driven by an electron beam with energy 0.5 GeV [34]. (b)
Bubble driven by a laser pulse with energy 12 J and duration 33 fs [48].

As a consequence the radial focusing force F⊥ = E⊥ − Bϕ on a trapped electron is as

large as the forward accelerating force and both are equal to the radial space charge force

in a long ion channel [11].

An example for the blow out regime is shown in Fig.2.5a. Here a Gaussian electron bunch

with density nb = 5n0 and energy ε = 0.5 GeV drives a cavity with radius kprb ≈ 3.

Experiments in the blow out regime have demonstrated the generation of 40 GeV electron

bunches and simultaneously showed that the energy of the driving bunch was lowered as

a certain amount of energy is needed to drive the wake field [47].

To drive a wake field in the bubble regime, a high intense (a0 � 1) laser pulse that

satisfies
√
a0 ≥ r0kp/2 is shot into an under-dense plasma. An example of a bubble is

shown in Fig.2.5b. Here, a laser pulse with a0 = 5, r0 = 9 µm, and λlaser = 800 nm

excites an almost spherical bubble with radius kprb = 3. If electrons are trapped in

the bubble the wake field associated with the trapped bunch can lead to beam loading

effects and thus to an elongation of the bubble. Theoretical models for the bubble regime

include a similarity theory that describes the wake field by the similarity parameter [49]

S =
n0

a0ncr
(2.24)

where ncr = meωlaser/(4πe
2) is the critical density. The S parameter allows to distinguish

between relativistically overdense (S � 1) and underdense (S � 1) plasmas. The

optimal laser plasma parameters to drive a bubble are kpao ≈
√
a0, L = cτ ≤ r0, and

P (GW) > 30[τ(fs)/λlaser(µm)]2. Since most laser systems use wave lengths in the range
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of 300 nm to 1.2 µm, the critical density is always in the range of 1021cm−3 because

ncr[cm−3] =
πmec

2

e2

1

λ2
laser

=
1.127× 1021

λ2
laser[µm]

. (2.25)

2.3.5 Acceleration limits and scaling laws

An estimate of the energy an electron bunch may reach after acceleration in the bubble

regime is

W ≈ 0.22mec
2 cτ

λlaser

√
P (GW). (2.26)

The acceleration length the bunch needs to travel before it reaches this energy is Lacc ≈
0.7cτZR/λlaser. In general, however, there are many mechanisms in the laser plasma

interaction that limit the energy gain in a laser plasma accelerator. The most important

are laser diffraction (for laser driven plasma waves), pump depletion, and dephasing.

The laser diffraction is the natural laser pulse broadening within a few Rayleigh lengths.

It limits the acceleration because at some point a broadened pulse looses the ability to

drive a wake field. A successful countermeasure that prevents the laser pulse diffraction is

optical guiding such as a preformed plasma channel. In the highly nonlinear regime, this

measure is not necessary because high intense, ultra short laser pulses usually experience

self focusing effects.

The pump depletion is a limiting factor that cannot be avoided by some optical guiding

since it describes the energy transfer from the driver to the wake field and the accelerated

electron bunch. The pump depletion length Ldp is the absolute limit of the acceleration

distance. It can be estimated by considering that the whole energy from the driver is

converted to wake field energy. Consequently, in case of a laser driver with field EL it is

Ldp ≈ cτ
E2
L

E2
z

. (2.27)

In the nonlinear regime depletion is the dominant effect that limits the energy gain.

In the linear regime, however, the depletion length is long enough to allow accelerated

electrons to outrun the accelerating phase of the wake field. Thus, in the non-relativistic

case the limiting factor is the dephasing length Ld that determines how much energy

a trapped electron may gain in a plasma wake field accelerator. An estimate of the

dephasing length in the linear limit is

Ld =
λp

2(1− vp/c)
≈ γ2

pλp (2.28)
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(a) (b)

Figure 2.6: (a) Single particle orbits in phase space for an electron in a small ampli-
tude sinusoidal plasma wave. The solid curve is the separatrix. The dashed curves are
cold fluid orbits. [34] (b) Profiles of the pump laser a0, the wake Ψ (dashed curve), the
forward injection pulse a1, and the backward injection pulse a2. In the Ψ = kp(z− vpt)
frame a0, a1, and Ψ are stationary while a2 moves with velocity ≈ 2c to the left. [34, 50]

where γp is the gamma factor related to the phase velocity vp of the wake field.

2.4 Electron trapping and injection

2.4.1 Beam loading and self-injection

To decide whether an injected electron is trapped in a wake field it is reasonable to

analyze its trajectory in phase space where trapped particles move on closed orbits. An

example from a 1D linear model is shown in Fig.2.6a. Here single particle orbits are

dotted curves within a separatrix (solid line). The orbits of electrons in the cold fluid are

dashed. In this linear regime the wake field is described by the sinusoidal electrostatic

potential Ψ = Ψ0 cos(kpξ) with Ψ0 = Emax/E0. So the phase region −π < kpξ < 0 is

accelerating and an electron that is injected at ξ = 0 with v|| < vp first moves further

into the accelerating region. If the electron has an initially sufficient large velocity it

will be faster than the wake field v|| > vp at some point and performs closed orbits in

the −π < kpξ < pi range. Since the energy of the electron is conserved in the plasma

wave, it will never leave the orbit and is trapped. If the initial velocity of the electron

is to small, it slips out of the wake at kpξ = −π and continues slipping backward in the

plasma wave. This behavior is related to untrapped electrons. The separatrix separates

regions of trapped and untrapped orbits in phase space.
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A more mathematical description of electron trapping in a wake field is possible with the

Hamiltonian of a single electron in a laser pulse generated plasma wave

H = γ − vp
c
p̃−Ψ, (2.29)

where p̃ is the normalized momentum of the electron. Since in most quasi-static models

the electron energy is a constant of motion the minimum initial electron momentum can

be calculated from H0 = γ0 − vp
c p̃0 = Hs and [51]

p̃0 = γp
vp
c

(γ⊥ − γpΨmin)− γp
√

(γ⊥ − γpΨmin)2 − 1. (2.30)

Here Hs is the Hamiltonian that describes the orbit in phase space which lies on the

separatrix.

When the driver propagates through the plasma more electrons get trapped and a dark

current in the plasma wave builds up. If beam loading is neglected, i.e. if the wake

field produces by the trapped electrons is much smaller than the confining field, a first

estimate suggests that charges in the bulk of nC can be trapped. However, if the wake

field amplitude is substantially reduced due to beam loading the charge limit is the

number of accelerated electrons that necessary to produce a wake field which cancels the

accelerating field [52].

At present there are many bubble models that treat self-injection physics and suggest

their own criteria for electron trapping. In this context the KNPS model [I. Kostyukov

et al., Phys. Rev. Lett. 103, 175003 (2009) [22]] suggests that plasma electrons are

self-injected in the bubble when the normalized bubble radius is approximately more

than Lorentz gamma-factor of the bubble rear. The same criterion has been derived

in the framework of the CSV model by S. Corde, A. Stordeur, and V. Malka [23]. A

modification of this criterion has been proposed in a model by A. G. R. Thomas [53, 54].

However, this modification has been seriously criticized in the Comment of S. Corde et al.

[23]. The KYKS models by S. Kalmykov, S. Yi, V. Khudik, and G. Shvets [55–57] suggest

that electron self-injection occurs in the evolving bubble when the effective Hamiltonian

becomes negative. This implies that the untrapped electrons cross the separatrix in the

phase space, get into the ’bucket’ and become trapped. In the recent advanced version

of the KYKS models the effect of the plasma sheath surrounding bubble, the current

distribution in the bubble sheath, and of the driver effect is included [24]. W. Lu et al.

have deduced from PIC simulations a simple criterion that electron self-injection in a

laser driven bubble happens when the amplitude of the normalized laser vector potential

is approximately more than 3.8 [16]. In more recent papers the trapping condition is

expressed through a wake pseudo-potential [58, 59].
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2.4.2 Ponderomotive injection

If a small energy spread electron bunch is injected into the accelerating phase of a laser

wake field the bunch can be accelerated to high energies while the energy spread is

conserved. To achieve this it is necessary that the bunch length is in the order of the

plasma wave length, i.e. in the µm range. To trigger the injection ultra-short high

intense laser pulses can be used. A fist realization of this idea included two laser pulses

propagating perpendicular to another. Here, the first pulse drives the wake field while the

second pulse intersects the wake at a certain distance to the driver. The ponderomotive

force of the injecting pulse then accelerates a fraction of the plasma electrons in the

wake so that they become trapped. The key role of the injecting pulse is to change the

momenta of the electrons sufficiently so that they cross the separatrix of the wake field.

Today this injection method is used to gain additional control on the electron bunch

emittance during the injection process [21].

2.4.3 Beat wave injection

In the ponderomotive injection it is the time-averaged intensity gradient that pushes the

electrons into the separatrix of the wake field. In contrast to that the beat wave injection

uses the ponderomotive force associated with the slow beat wave of two intersecting pulses

[50]. Fig.2.6b illustrates this idea. Here, three short laser pulses are used to drive the

wake field (done by the pump pulse with intensity a0 ≈ 1) and to drive a beat wave

for injection. The beat wave is generated by a forward going pulse a1 and a backward

going pulse aL2 which are both orthogonally polarized to avoid interaction with the

driver. The injection pulse frequencies are adjusted so that ω1 − ω2 = ∆ω � ωp. The

forward running injection pulse is as fast as the driver and travels at a fixed distance that

controls the point of injection into the wake field. When the injection pulses collide a

slow ponderomotive beat wave is generated and during the overlapping time a two-stage

accelerating process can occur. In this process the beat wave traps and heats background

plasma electrons and thus can inject them into the separatrix of the wake field.

Advantages of the beat wave injection method are a detailed control of (i) the injection

phase via the position of the forward injection pulse, (ii) the beat wave velocity via ∆ω,

(iii) the injection energy via a1 and a2, and (iv) the number of injected electrons via the

backward injection pulse duration. Another setup for the beat wave injection is to use

only two laser pulses that are equally polarized. Then the tail of the pump laser pulse is

used to beat the second, counter propagating laser pulse [60].
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2.4.4 Ionization based injection

Another idea to inject electrons from the plasma background into the accelerating phase

of a plasma wake field is to use a second laser pulse that further ionizes the plasma so

that the newly released electrons can be trapped. This kind of injection requires high Z

plasmas and was first proposed in [61]. A few years later a realization of the ionization

based injection showed the injection of a few 100 keV electrons from a low pressure Kr

gas [62]. Today the ionization-induces injection method is also applicable to the highly

nonlinear regime [19].

2.4.5 Density transition injection

To inject electrons into the accelerating phase of a wake field a decreasing plasma density

ramp that is either long compared to the plasma wave length [63] or sharp and short

[64] can be used. The basic mechanism that injects electrons and leads to trapping is a

change of the wake field phase velocity vp due to the density change. In general trapping

will occur as soon as the local phase velocity of the wake field on the density ramp equals

the fluid velocity of the electrons. A stable experimentally method to generate negative

density gradients has been demonstrated by focusing a laser on the downstream edge of

a gas jet [65].

Results from this chapter are/will be published in the following publications:

J. Thomas, A. Pukhov, I. Yu. Kostyukov, Temporal and spatial expansion of a multi-

dimensional model for electron acceleration in the bubble regime, published to Laser and

Particle Beams 32, 277-284 (2014)



Chapter 3

Side injection of short electron

bunches into the bubble

3.1 Introduction

The acceleration of electrons in the bubble regime [10] has experienced massive progress

in the last decade. In this time injection techniques as the beat wave mechanism, the

density gradient method, the ionization-based injection, the injection by (transverse)

colliding laser pulses, and the self-injection of plasma background electrons [19–21, 65–

73] have been developed. During this process the achievable electron energy has been

continuously raised. Recent experiments report form bunches with energies above 10

GeV and numerical simulations suggest that the limit is not reached by far [1, 74]. The

relativistic emittance of the accelerated electron bunch has been reduced to a few mm

mrad while at the same time smaller energy spreads could be produced [20, 21, 25, 65, 75,

75–78]. In comparison to classical linear or circular accelerators, however, these energy

spreads are rather large. Since many present-day applications base on the production

of high energetic, small spread electron bunches, it is of utmost interest to develop

new bubble acceleration techniques that minimize the energy spread and maximize the

number of accelerated electrons.

In this chapter an injection method is presented that allows to minimize the energy

spread of the accelerated electrons under a mean FWHM of 0.5% mean electron energy.

Simultaneously it is shown that this method is applicable to all energy ranges if radiation

effects of ultra-high energetic electrons are neglected. It is also shown that the new

injection technique can trap a quit large amount (more than 70%) of injected electrons.

The basic idea of this method is to switch off the self injection of background plasma

electrons into the bubble and to inject a small electron cloud from side at a certain angle

23
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Figure 3.1: PIC simulation of accelerated electron bunch (red dots left) in the bubble
after side injection. The driving laser pulse (yellow-red left) is far in front of the bubble

and does not interact directly with the bunch.

α. From PIC simulations it is known that this injection method is applicable. For the

discussion of the new technique this chapter models all electrons as test particles in the

phenomenological bubble model of a perfect sphere with constant radius R0. The bubble

moves with laser group velocity V behind a generating laser pulse in z− direction. The

bunch interaction with the laser field is neglected [10, 17, 22]. Any electron interaction

is also ignored as number of accelerated electrons is always small and the inter-particle

distances are large. In the first part of this chapter it is shown how side injection can

be optimized to reach a minimal FWHM and a high amount of trapped electrons at the

same time. In the second part the cut-off angle αcut beyond which no electrons that are

injected from side will be trapped is calculated. Afterward, this angle is compared to

full 3D simulations of an electron cloud that is injected into the bubble.

3.2 Bubble model and simulations

Simulations with a full 3d PIC code prove that the self-injection mechanism indeed can be

suppressed. Furthermore, these simulations show that is possible inject and accelerated

external electron bunches in the now always empty bubble. A PIC simulation for side

injected electrons is shown in Fig.(3.1). Here a bunch of injected electrons (red dots

left) was trapped in a bubble that is driven by a high intense laser pulse (yellow spot

right). The electrons are in the accelerating phase of the bubble (blue background) and

will stay spatially close together until the bubble breaks due to depletion of the laser

pulse. In the following simulations bunches of test electrons are injected into analytically

given fields from a certain 3d bubble model that allows to simply switch off self injection
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[14, 22, 46]. Then the equations of motion are solved for every test particle individually.

For the present analytical bubble model the wake field potential Ψ is coupled to the

electromagnetic potential A and the electrostatic potential ϕ via

Φ(r) =
ξ2 + ρ2 −R2

0

4
, A|| = −ϕ =

Φ

2
, A⊥ = 0. (3.1)

Here, ρ2 = |r⊥|2 is the displacement of the charge from the propagation axis and ξ =

z − V t because the laser pulse is propagating in z-direction. In this notion the standard

relativistic normalization of variables is used: The electron plasma frequency ωpe =(
4πe2n0/me

)1/2, the electron massme, the velocity of light c, and the plasma background

density n0 are used to normalize by substituting r→ rωpe/c for length, t→ tωpe for time,

v→ v/c for velocity, p→ p/(mec) for the kinetic momentum, and Φ→ eΦ/(mec
2) for

potentials.

The idea that all potentials are only depending on ξ and ρ is a quasi-static approximation

of the bubble potentials. The electrical field E and the magnetic field B inside the bubble

are E = −∇ϕ− ∂/∂tA and B = ∇× 1A, so

E(r) =
1

4


x

y

(1 + V )ξ

 , B(r) =
1

4


y

−x
0

 . (3.2)

From these analytically given fields the equations of motion for a single test electron in

a co-moving frame of reference are

dp||

dt
= −(1 + V )

ξ

4
+
r⊥ · p⊥

4γ
,

dξ

dt
=
p||

γ
− V, (3.3)

dp⊥
dt

= −
(

1 +
p||

γ

)
r⊥
4
,

dr⊥
dt

=
p⊥
γ
. (3.4)

Here, the double dashed variables are the vector components of the longitudinal, in laser

propagation direction pointing vectors. Those variables with a corner are the perpendic-

ular vector components.

The setup for our simulations is shown in Fig.3.2a. Here, a cloud of test electrons

(colored cloud) is injected from side at an angle α into a bubble. The bubble moves

with velocity V =
√

1− 1/γ2
0 in ξ-direction. The initial momentum of every electron in

the cloud is p0 = p0(cos(α),− sin(α), 0), where p0 ∼ N(µ0, 0.05µ0) is normal distributed

and µ0 = 1.2γ0. Thus, the initial energy distribution of the electron ensemble is a

Gaussian as shown in Fig(3.2b). The initial position of the cloud is chosen such that

its center of mass passes the point (0, R0, 0) on the bubble border. The size of electron

bunch is always a × b × b, where a = 0.5R0 and b = 0.25R0. This ensures that all
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(a) (b)

Figure 3.2: Simulation with E = 100 J, λlaser = 600 nm, and a0 = 9. (a): Initial
configuration of the electron bunch before the injection, (b): Corresponding initial

energy spectrum.

electrons in the bunch will be injected. The normalized bubble radius R0 and the bubble

velocity V are calculated for a spherical laser pulse with duration τ = R0/c, wave length

λlaser = 600 nm, dimensionless amplitude a0 = 9, and laser energy Elaser between 1J

and 1kJ according to known scaling laws[1, 28, 49]. Then the maximum sum of trapped

electrons, the cut off angle, after which no electron is trapped, and the mean energy

spread over all minimal energy spreads from simulations that could trap at least 50%

of the bunch are analyzed. The equations of motion Eqs.(3.3)-(3.4) are solved for every

electron independently.

3.3 Optimized side injection

During the injection process the former Gaussian shape of the energy distribution is

broadened (see Fig.(3.3a)) because those electrons that enter the bubble first are also

the first who are accelerated in ξ-direction (see Fig.(3.3b)). The energy spread briefly

after injection is rather large because the absolute maximal energy difference in the

spectrum is large compared to mean energy. The shape of the energy spectrum also

has lost its Gaussian form and now looks similar to an equal distribution. In Fig.(3.3b)

the initially chosen 10% energy spread already increased to 100% and will stay at this

level until the injection is finished. In the hereafter following acceleration, the spectrum

becomes more Gaussian like again and the spatial distribution of the electrons is dense,

too.
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(a) (b)

Figure 3.3: Simulation with E = 100 J, λlaser = 600 nm, and a0 = 9. (a): Electron
distribution during the injection process, (b): Corresponding energy spectrum.

After the electron bunch has reached the dephasing length of the bubble, the mean elec-

tron energy is maximized and the energy spread is minimized. The spatial distribution

is squeezed in ξ-direction and the energy spectrum is Gaussian again. In this state the

transversal beam width is two times the betatron amplitude in injection direction (see

Fig.(3.4a). A comparison between the color scheme of the corresponding energy spec-

trum in Fig.(3.4b)) and the color distribution in the bubble shows that the individual

energy of the electrons has no impact on position inside the bunch. This is very different

to the injection situation in Fig.(3.3a) where hot (red) electrons are always left to cold

(blue) electrons. The simulation for Fig.(3.2), (3.3), and (3.4) was done for a laser pulse

energy of E = 100 J, a laser wave length of λ = 600 nm, and a laser intensity of a0 = 9.

The minimal energy spread after acceleration is as low as 0.6% while the mean bunch

energy is Eb = 4.7 GeV.

After injection the number of finally trapped electrons strongly depends on the injection

angle α (see Fig.3.5a). For small angles the amount of trapped electrons is in a range of

80 − 100% but for α larger than some cut off angle αcut the hole electron bunch passes

the bubble and no charge is trapped. Now, the main goal of a series of simulations is

to to find out, how far the energy spectra of the injected and accelerated electrons can

be compressed. Of course, the minimal energy spread is always found in a vicinity of

αcut since then the spatial distribution is always point like. In the simulation series,

however, it is not only important to find a minimal energy spread but also to maximize

the number of trapped electrons. Thus, the mean minimal energy spread 〈FWHM〉 is
calculated over all injection angles for which more than 50% of all electrons are trapped.
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(a) (b)

Figure 3.4: Simulation with E = 100 J, λlaser = 600 nm, and a0 = 9. (a), (b):
Electron bunch after injection and spectrum with FWHM = 0.6%µ.

The simulation series varies the laser energy but fixes both the intensity a0 = 9 and the

laser wave length λ = 600 nm in order to fix the normalized bubble radius R0 = 3.6,

too. Then the geometry of the bubble-bunch configuration remains the while and all

other laser-plasma parameters like laser power, laser duration and plasma density are

adjusted. An overview about the scaling of these parameters is given in Tab.3.1.

Fig.3.5b shows the connection between 〈FWHM〉 and E. Here it can be observed

that 〈FWHM〉 decreases with increasing laser energy. The reason therefor is that two

counteracting effects determine the energy spread. The first effect which raises the

energy spread is that the angle of incidence must be chosen smaller the higher γ0 is.

With decreasing α the injection time increases and thus the spectrum is broadened from

the beginning on. The other, helping effect is that the maximal energy of the trapped

electron cloud strongly increases with Elaser and thus reduces the ratio ∆γ/γ.

The maximum amount of trapped electrons seams to be weakly dependent from the

laser energy and is always above 75%. The progression of Fig.(3.6a), however, indicates

Elaser [J] Plaser [W] Emono [GeV] ne/nc τ [fs] S R [λlaser]

1 1.2× 1014 0.24 1.9× 10−2 8.3 2.1× 10−3 4.2
10 5.6× 1014 1.1 4.1× 10−3 18 4.5× 10−4 9
100 2.6× 1015 5.1 8.7× 10−4 39 9.7× 10−5 19
1000 1.2× 1016 23 1.9× 10−4 83 2.1× 10−5 42

Table 3.1: Overview about the scaling of the laser-plasma parameter for simulations
of the side injection method for λlaser = 600 nm, a0 = 9, and nc = 3.1× 1021 cm−3.
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(a) (b)

Figure 3.5: (a): Rel. number of trapped electrons vs incidence angle for E = 100J ,
λlaser = 600nm, a0 = 9. (b): Mean FWHM of the energy spectra for different laser
energies. The mean value is calculated for all those spectra that contain at least 50%

of all particles.

that the limit decreases with increasing laser energy. In contrast to that the angle at

which the maximum of trapped electrons is observed - αmax - strongly depends on E.

As Fig.(3.6b) shows αmax converges to 0 for large Elaser. The cut off angle after which

no electrons could be trapped also converges to 0 for large Elaser (see Fig.3.8b) but is

for laser energies in the bulk of 1 J to 100 J one order of magnitude larger than αmax. As

seen in Fig.(3.5a) the number of trapped particles rapidly decreases for α > αmax. Thus

it is favorable to inject bunches between αmax and αcut. The next section introduces an

analytical estimate for the cut off angle and shows how it scales with the laser energy.

3.4 Analytical estimate of the cut off angle

If the equations of motion are solved for a single test electron, the solution is the tra-

jectory shown in Fig.3.8a. Here, the electron oscillation fast around the ξ-axis and

approaches the bubble center slowly. The fast oscillations are well known betatron os-

cillations that are also seen in experiments [20, 26, 27]. To calculate the cut-off angle it

is necessary to know an approximation function to the envelope of this oscillation and

solutions of ξ(t) and p||(t) near the bubble center. The latter can be calculated from

a guiding center approximation for times near the critical time tmax with ξ(tmax) = 0.

The guiding center approximation takes only the mean displacement of an electron from

the ξ-axis into account. This, however, is zero and the differential equation system for
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(a) (b)

Figure 3.6: (a): Maximal sum of trapped electrons vs laser energy. (b): Injection
angle at which the maximal sum of trapped electrons is achieved.

ξ(t) and p||(t) in terms of τ = t− tmax becomes

dp||

dτ
= −(1 + V )

ξ

4
,

dξ

dτ
=
p||

γ
− V ≈ 1

2γ2
0

− 1

2γ2
. (3.5)

Since the energy of the electro is maximal for τ = 0, the velocity dξ/dτ is nearly constant

in a wide range of the bubble. The solutions to these equations are then deduced from

the initial conditions ξ(τ = 0) = 0 and γ(τ = 0) = γmax by simply integrating

γ(τ) ≈ p||(τ) ≈ γmax −
(1 + V )τ2

16γ2
0

, ξ(τ) ≈ τ

2γ2
0

. (3.6)

A combination of Eqs.(3.3) and (3.4) leads to a second order ODE for ρ(τ) = |r⊥(τ)|.
In the limit ρ′(τ)2/2� 1 this ODE becomes the damped harmonic oscillator

ρ′′(τ) + Pρ′(τ) +Qρ(τ) = 0 (3.7)

with coefficient functions P = −Ṽ ξ/(4γ), Q = 1/(2γ), and Ṽ = 1 + V . The approx-

imation ρ′(τ)2/2 � 1 is applicable because the envelope function varies slowly in time

(compare Fig.3.8a). To separate the slowly evolving envelope from the fast oscillation,

the trajectory of the test electron in the ρ− ξ-plain is canonically identified with a com-

plex function f : R→ C. The phase function of f then bears the information about the

fast betatron oscillation which occurs on a much shorter time scale than the evolution

of the envelop function. To model this two different times scales properly a smallness
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(a) (b)

Figure 3.7: Guiding center approximation to p|| and ξ. (a): The blue solid line
is the p||(τ) function, the red dotted line is the guiding center approximation to p||.
(b): The blue solid line is the ξ(τ) function, the red dotted line is the guiding center

approximation to ξ.

parameter ε is introduced. Then it is convenient to define

ρ(τ) = g(ετ)eiτ . (3.8)

and postulate ε2 ≡ 0. In this multi-scale approach g(ετ) is an arbitrary complex function

with a slowly developing complex amplitude and a certain phase. The phase of ρ(τ) is

coded in the sum of this phase and the one from the exponential function and describes

the motion betatron oscillation of the particle. If this multi-scale approach is substituted

in Eq.(3.7) a new first order ODE with known time-dependent coefficient functions for

the slowly varying function evolves

g′(ετ)(2i+ P )ε+ g(ετ)(−1 + iP +Q) = 0. (3.9)

The complex part describes how the electron slowly approaches the bubble center. The

real part of Eq.3.9 is the envelop approximation function ρ̃(τ) so

ρ̃(τ) = A exp

(
−1

ε

∫
P (1 +Q)

P 2 + 4
dτ

)
. (3.10)

The solution to the integral expression on the right hand side can be expressed as

I = −1

8
log(a− Ṽ τ2 + bτ4) +

c

4Ṽ 2
tan−1

(
4τ2 − 1

)
(3.11)
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(a) (b)

Figure 3.8: (a): Trajectory in the 2D model together with amplitude envelope
approximation functions. (b): Cut off angle vs laser energy for simulations with
λlaser = 600nm and a0 = 9. Red dotted line: analytical prediction; Blue solid line:

numerical simulations.

with a = 8γ2
0(2γmax + 1), b = 256γ4

0γmax, and c = Ṽ 2 − 32γ2
0γmaxṼ . This solution has

two degrees of freedom, namely the A and ε. To fit ρ̃(τ) to the actual trajectory two

points (ρ1, τ1), (ρ2, τ2) are taken from a single one particle simulation. Then the two

degrees of freedom are determined via

ε =
I(τ1)− I(τ2)

log(ρ1/ρ2)
, A = ρ1 exp

(
I(τ1)

ε

)
. (3.12)

These solutions together with Eq.(3.10) give the envelop approximation function ρ̃(τ).

In contrast to [17, 18] this approximation is found without any reductions of the phe-

nomenological bubble model.

A plot of a single test electron trajectory as solid red line in Fig.(3.8a) together with the

analytical envelope approximation function ρ̃ as doted blue line shows that the approxi-

mation fits as long as the Taylor expansions to γ(τ) and ξ(τ) hold. This in turn is true

as long as the trapping process is successfully passed. Nevertheless, the time at which

the envelop approximation function crosses the bubble border is approximately the time

at which the electron’s guiding center drift in ξ-direction is reversed and the electron

gets trapped.

An important application for the amplitude envelope approximation function in Eq.3.10

is to estimate the cut-off angle αcut beyond which no injected electrons can be trapped.

To estimate αcut analytically, it is necessary to determine the distance of the electron to
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the bubble origin at any time the electron is inside the bubble. A single test electron that

enters the bubble at r = (0, R0, 0) with p = p0(cos(α),− sin(α), 0), and γ(0) = γb = 1.2γ0

is a representative example. It has the same initial parameters as the center of mass of

the injected electron bunch in the previous section. The Hamiltonian of this test electron

is H(r,p) = γ − V p|| + (1 + V )Φ(r)/2. Since the present bubble model assumes that

the bubble radius R0 is constant the Hamiltonian is a constant of motion and the initial

conditions give

γ − V p|| +
Ṽ

2
Φ(r) = γb − V cos(α)p0 (3.13)

If the wake field potential Φ = (|r|2 − R2
0)/4 is substituted the test electron approaches

the bubble center according to

|r|2 ≈ 8

Ṽ
(γb − V cos(α)p0)−

4p||

Ṽ γ2
0

+R2
0. (3.14)

To decide, whether the electron will be trapped, it is necessary to look at the points of

maximal |r|. These these are found with d|r|/dt !
= 0, or equivalently |ρ(τcirt)||ρ′(τcirt)| =

Ṽ |ξ(τcirt)| for a certain τcrit. The key to find the right τcrit is to substitute ρ′(τ) from

Eq.(3.9) and to write a new equation in terms of ρ̃(τ). Then

ρ̃2(τcirt)

(
1 +

∣∣∣∣P (τcirt)(1 +Q(τcirt))

P (τcirt)2 + 4

∣∣∣∣) = Ṽ |ξ(τcirt)|. (3.15)

gives the critical time τcrit at which the electron is near the bubble border. The solution

to this equation is determined by the envelope approximation function and the approx-

imating functions to γ(τ) and ξ(τ) solely. The externally injected test electron stays

trapped if r2 ≤ R2
0 for all τ . As a consequence

|α| ≤ arccos

(
γb
V p0

− γ(τcrit)

2V p0γ2
0

)
≈ arccos

(
1− γ(τcrit)

2p0γ2
0

)
(3.16)

is an explicit restriction to the angle of incidence α. The critical time τcrit, however,

must be calculated numerically from Eq.(3.15). As is easy to see, for large initial electron

energies the maximum applicable angle is not depending on the bubble radius but on

the laser group velocity and the momentum of the injected electron.

A comparison between the analytically found cut-off angle (red dotted line) with found

angles from 3d multi particle simulations (solid blue line) is shown in Fig.(3.8b). Here

αcut is plotted against the applied laser energy while the initial energies for the calculation

of Eq.(3.16) is always chosen as γ(0) = γb = 1.2γ0. Both graphs in Fig.(3.8b) converge to

zero for largeElaser. This behavior is now better understood since arccos
(
1− γ(τcrit)/2.4γ

3
0

)
→

0 for γ0 →∞. The offset between both lines can be explained from the fact that not all
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electrons in the many particle simulations pass the point r = (0, R0, 0) and have different

energies. Thus all electrons have different initial conditions and Eq.(3.16) gives an upper

bound for αmax.

3.5 Conclusion

In this chapter a new injection mechanism for the bubble regime of electron acceleration

is discussed. The lateral injection of an electron bunch under a certain angle into the

bubble has been investigated. Furthermore, it is shown that the mean FWHM as well

as the trapping rate can be optimized if the injection angle is chosen small enough. An

analytical estimate for the maximal applicable injection angle is found from a guiding

center approximation and a multi-scale approach to the envelope approximation function

of the trajectory of a single test electron.

An important conclusion of this chapter is that for high laser energies E ≥ 50J and small

injection angles α ≈ π/180 rad the minimal FWHM of the trapped electron bunches can

be pushed well under 0.5% of the actual bunch energy. At the same time, the ratio of

trapped electrons stays well above 70% for all energies. The cut-off angle above which

no electrons can be trapped is reviewed numerically in 3d multi particle simulations

and analytically evaluated in a reduced 2d model. The comparison shows that for laser

energies E ≥ 50J both angles are comparable but not for lower energies. Consequently,

the side injection of electron bunches in the GeV-regime is a promising accelerating and

focusing mechanism that will be a center of interest for the next time.

Another important aspect of the side injection, that has been ignored so far, is the effect

of radiation reaction of accelerated electrons. In the bubble regime the field strength is

small compared to the Schwinger fields but if the electron energies are in the order of

10 GeV and above, radiation reaction effects become important. The simulations with

highest energies in this chapter involve laser energies of J=1 kJ and lead to mean electron

bunch energies in the range of 23 GeV. Since the energy spread is minimized for these

high energies, the following chapter discusses the impact of radiation reactions on the

optimized side injection for high and ultra-high laser energies.

Results from this chapter are/will be published in the following publications:

J. Thomas, O. Jansen, A. Pukhov, Side injection and full solution to the bubble model,

to be submitted



Chapter 4

A radiation model for high electron

energies in the GeV and TeV regime

4.1 Introduction

Research in ultra-relativistic laser-material interaction is progressing significantly [48, 79].

At present, table top laser intensities of 1019 W/cm2 are available based on chirped pulse

amplification methods, while larger laser systems may deliver intensities up to I≈ 1023

W/cm2 at the focal spot. In the near future, extreme laser intensities I� 1023 W/cm2 are

expected to become available. Electrons that directly interact with laser pulses of these

intensities are accelerated to ultra-high energies within a fraction of the laser period [80].

If this happens, non-linear effects like radiation reaction due to the huge acceleration and

self-interaction become important [81]. One of the most important phenomena of laser-

matter interaction at these intensities is the production of electron-positron pairs from

vacuum and the appearance of showers of charged particles. These showers are produced

by repeated emission of hard photons and pair creation by hard photons. Qualitative

estimations predict that cascades might arise as soon as the field strength exceeds a

certain threshold [82]

Es =
m2
ec

3

e~
≈ 1.3× 1018V/m (4.1)

where ~ is the reduced Plank constant, me is the electron mass, and c is the speed of light

[83–86]. In general Es is also referred to as the Schwinger field because Julian Schwinger

first derived the leading nonlinear corrections to electro magnetic fields in the non-linear

regime and calculated the production rate of electron-positron pairs in a strong field.

35
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(a) (b)

Figure 4.1: Comparison of energy gain with and without radiation reaction effects in
a simulation with a0 = 4, λlaser = 1 µm, and E = 1 MJ. (a): Phase space plot of the
trajectory of a test charge without RR. (b): Phase space plot of the trajectory of a test

charge with RR.

Similar to the last chapters this chapter treats the laser wake field acceleration and

the side injection of dense electron bunches. Different to the last chapters here it is

considered that the electron energies are so high enough that radiation reaction effects

must be considered. In general, the laser wake field based acceleration uses a plasma

wave with a phase velocity that is close to the speed of light to accelerates trapped

electrons to ultra-high energies. The wake is driven by a short high intense laser pulse and

electrons can be injected and trapped by various techniques. A special case of the laser

wake field acceleration is the so called bubble regime, in which all electrons are radially

expelled from a volume that is created by the laser pulse [10]. A necessary condition

for this regime is that the laser pulse length is shorter than the plasma wavelength and

fits into the first half of the period. The bubble regime cannot be described by fluid

dynamics anymore. However, recent bubble models have been introduced that describe

the inner electromagnetic fields, the boundary, and the trapping of electrons in the bubble

[9, 10, 12, 14, 16–18, 22]. All these models neglect the direct electron-laser interaction

but recent scaling laws connect the bubble shape, the bubble speed, and the acceleration

length with the laser intensity. Scalings for highest energies suggest to use laser pulses

with durations of τ = R/c, where R is the laser radius and c is the speed of light. Then

the bubble takes the form of a sphere and trapped electron bunches - the so called beam

load - are accelerated until the laser is depleted or the bunch has reached the dephasing

length [1, 16, 28, 87].

If electrons are accelerated to energies in the GeV and TeV range new effects like radiation
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reaction (RR) appear. A comparison of single particle simulations in the bubble regime

in Fig.(4.1) gives a strong impression about the impact of the RR. Here, two phase space

plots of a single trapped electron are shown. In Fig.4.1a the simulation neglects RR

while Fig.4.1b is from a simulation with same parameters but under consideration of

RR. In both simulations an electron was injected into a bubble that is driven by a 1 MJ

laser pulse with wave length λ = 1 µm and intensity I = 2.2 × 1019 W/cm2. For the

blue graph in Fig.(4.1a) the equations of motion (3.3) and (3.4) are solved. The highest

energy the electron could reach after it has reached the dephasing length is more than

1.5 TeV (see projection of the blue graph to the energy axis). In contrast to that, for the

red graph in Fig.(4.1b) the equations of motion are completed by a classical radiation

term that is introduced in the following sections. The betatron amplitude of the damped

electron is much smaller than the amplitude of the undamped one and the maximum

energy (see projection of red graph to the energy axis) is not more than than 500 GeV -

this is a factor of three between both maximum energies.

This chapter discusses the impact of radiation reaction on the maximum achievable

electron energy after bubble acceleration. Furthermore, the discussion of the last chapter

is extended to the current situation, so the laser energy will be varied again while the

laser intensity and the laser wave length is fixed. In the following, section 4.2 introduces

a new analytical bubble model that includes classical radiation reaction effects for high

electron energies. An application of the new model is given in section 4.3, 4.4, and 4.5

where the side injection of electron bunches is optimized again to achieve minimal energy

spreads and to maximize the number of trapped electrons at the same time. Different

to the last chapter this is also done for laser energies in the MeV regime. The following

section 4.6 estimates the radiated energy for high energies and corrects the expected

maximum energy gain from recent bubble scaling laws. The end of this chapter is a

conclusion and summary.

4.2 Relativistic radiation damping

If radiation of relativistic and ultra-relativistic charges in external electromagnetic fields

is considered, there are two principle ways to treat the particle field interaction. The first

way is to describe the radiation in the frame work of QED [88, 89]. Here, the electrons are

scattered at photons from the bubble back ground field. Every time this event happens,

the electron energy might be reduced drastically and the electron’s momentum must be

calculated from the conservation of the four-momentum pµe + qµ = p
′µ
e + pµγ . Here pµe is

the four-momentum of the accelerated electron, qµ is the momentum extracted from the

bubble field, p
′µ
e is the momentum of the electron after the scattering process, and pµγ is
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the momentum of the emitted photon. Common simulation techniques for this approach

are quantum Monte-Carlo simulation [86, 90–92].

The other way to include radiation reaction into the acceleration model of the bubble

regime is to treat the radiation classically. In this case a basic idea from Lorentz, Abra-

ham, and Dirac (LAD) [81] is sufficient for the description of the new set of equations

of motion. For relatively weak fields, the Landau-Lifshitz approach (which is followed in

this thesis) is widely accepted [93] because it does not produce paradox situations as e.g.

a diverging acceleration in the absence of an external field and it is equivalent to the LAD

equation up to the first order in the coupling parameter [94]. To decide which approach

is best suited to describe radiation reaction in the bubble regime an investigation of the

Lorentz-invariant QED parameter

χ =

√(
γ
E
Es

+
p

mec2
× B
Bs

)2

−
(

E · p
mec2Es

)2

(4.2)

is helpful. In general it is understood that if χ� 1 the loss of energy due to emission of

a single photon is negligible and the damping can be describes in a continuous classical

theory. If, in contrast to that, χ ≥ 1 the emission causes both a considerable loss of

energy and a recoil in moving direction. Hence, the radiation must be treated in terms

of QED.

In this thesis the electron energies are considered to be quiet large but the bubble fields

are usually small enough to ensure that the QED parameter of every test charge in

the simulations is much smaller than unity. A representative example therefor is shown

in Fig.(4.2). Here both the local field strength
√
E2 + B2 and the QED parameter

are calculated for a single test electron and the same the simulation parameters as in

Fig.(4.1). Since the fields are linear in the distance to the axis, the field strength is

strongest when the electron enters the bubble and vanish as soon as the electron reaches

the dephasing length [see Fig.(4.2a)]. The QED parameter as seen by the electron is

shown in Fig.(4.2b). If radiation reaction is not included (black line) the maximum of

χ is 0.1 < 1. In contrast to that the consideration of radiation (red line) decreases the

electrons energy while the fields are the same so that maxχ = 0.007 � 1. Thus it is

justified to treat radiation reaction in the bubble regime classical.

In the following, RR is described as in Landau-Lifschitz (LL) §75 [93]. So the general

covariant formulation of the equations of motion for a relativistic particle with mass m

and charge q in the presence of an electromagnetic field is

mc
dui

ds
=
q

c
F ikuk + gi. (4.3)
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(a) (b)

Figure 4.2: QED parameter and field strength as seen by a test charge which is
accelerated in the bubble. (a): Field strength as seen by a fast oscillating test charge in
a simulation without RR. (b): Fast oscillating QED parameter as seen by a test charge
with RR (red) and without RR (black). The envelope of χ shows that a classical

approach to RR is justified.

The force four-vector gi can be formulated in the Lorentz-Abraham-Dirac form [81]

gi =
2

3

e2

c

(
d2ui

ds2
− uiuk d

2uk
ds2

)
. (4.4)

In this form the three space components of gi go over into gi ≈ f = 2e2v̈/(3c3) for

|v|/c� 1 and it is gigi = 0. The force f in turn is related to dipole radiation [see §75 in

[93]] which is the first kind of radiation that appears in the general theory of interacting

charges in an electromagnetic field. The basic idea of LL is to neglect all derivatives

dgi/ds which is equivalent to the assumption that gi is small in the rest frame of the

particle. In the special case that the charge is an electron it is m = me, q = −e, and

gi ≈ 2

3

e2

c

[
− e

mec2

∂F ik

∂xl
uku

l − e2

m2
ec

4
F ikFlku

l +
e2

m2
ec

4
(Flku

k)(F lmum)ui
]
. (4.5)

A further discussion of all terms in this expression is given in [93, 95].

In terms of the coupling constant Λ = 2/3 · e2ωp/(mec
3) and after a normalization of

variables according to x → xωpe/c, t → tωpe, v → v/c, p → p/(mec), and Φ →
eΦ/(mec

2), where ωpe =
(
4πe2n0/me

)1/2 is the electron plasma frequency and n0 is the



Chapter 4. A radiation model for high electron energies 40

plasma background density, the equations of motion for an electron are

dr
dt

=
p
γ
, (4.6)

dp
dt

= −(E + v×B) + RR1 + RR2 + RR3, (4.7)

RR1 = −Λγ

[
dE
dt

+ v× dB
dt

]
, (4.8)

RR2 = −Λvγ2
[
(E + v×B)2 − (E · v)2

]
, (4.9)

RR3 = +Λ[E(E · v) + (E×B)−B× (B× v)]. (4.10)

After the normalization the QED parameter is

χ =
3

2

Λ

α

√
(γE + p×B)2 − (E · p)2 (4.11)

where α = e2/~c = 1/137 is the fine structure constant. The electromagnetic field inside

the bubble is given independently from the electron energy. An analytical expression

from a recent phenomenological model is [17]

E =
1

4


(1 + V )(x− V t)

y

z

 B =
1

4


0

z

−y

 , (4.12)

where V =
√

1− 1/γ2
0 ≈ 1 is the velocity of the bubble. If these fields are substituted

into Eqs.(4.6-4.10) and transformed into the co-moving frame of reference ξ = x− V t, a
new set of equations arises that represents a new bubble model for trapped test-electrons

dp||

dt
= −(1 + V )

ξ

4
+
r⊥
4
· p⊥
γ

+ ΛGx,
dξ

dt
=
p||

γ
− V (4.13)

dp⊥
dt

= −
(

1 +
px
γ

)
r⊥
4

+ ΛG⊥,
dr⊥
dt

=
p⊥
γ
. (4.14)

Here, the radiation factor G collects all terms in RR1 to RR3 which are

dE
dt

+ v× dB
dt

=
1

4γ2


Ṽ (γpx − γ2V )− |p⊥|2

(γ + px)py

(γ + px)pz

 , (4.15)

(E + v×B)2 =
1

16γ2
[Ṽ 2ξ2γ2 − 2Ṽ ξγr⊥ · p⊥ + (r⊥ · p⊥)2 + (γ + px)2|r⊥|2], (4.16)
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(E · v)2 =
1

16γ2
[Ṽ 2ξ2p2

x + 2Ṽ ξpxr⊥ · p⊥ + (r⊥ · p⊥)2], (4.17)

E(E · v) =
1

16γ


Ṽ ξ(Ṽ ξpx + r⊥ · p⊥)

y(Ṽ ξpx + r⊥ · p⊥)

z(Ṽ ξpx + r⊥ · p⊥)

 , (4.18)

E×B =
1

16


−|r⊥|2

Ṽ ξy

Ṽ ξz

 , (4.19)

B× (B× v) = − 1

16γ


px|r⊥|2

yr⊥ · p⊥
zr⊥ · p⊥

 . (4.20)

For high electron energies px ≈ γ, γ � |p⊥|, and |p⊥| � 1. Thus the terms inG simplify

to

γ

[
dE
dt

+ v× dB
dt

]
≈ 1

4γ


−|p⊥|2

2γpy

2γpz

 , (4.21)

p
γ
γ2(E + v×B)2 ≈ p

16γ
[Ṽ 2ξ2γ2 + 4γ2|r⊥|2], (4.22)

p
γ
γ2(E · v)2 ≈ p

16γ
Ṽ 2ξ2p2

x, (4.23)

E(E · v) =
1

16γ


Ṽ ξ(Ṽ ξpx + r⊥ · p⊥)

y(Ṽ ξpx + r⊥ · p⊥)

z(Ṽ ξpx + r⊥ · p⊥)

 , (4.24)

E×B =
1

16γ


−γ|r⊥|2

Ṽ ξγy

Ṽ ξγz

 , (4.25)

B× (B× v) = − 1

16γ


px|r⊥|2

yr⊥ · p⊥
zr⊥ · p⊥

 . (4.26)

In all these terms many different products occur. Some are composed by momenta

solely, others only depend on spatial components. Many terms are canceling out and

others vanish in their mean action on the charge, averaged over a betatron oscillation.

The leading, non-vanishing term that is at least γ-times stronger than all other terms

primarily determines the radiation reaction. As a consequence G can be approximated

by

G ≈ −γ
4
r2
⊥p (4.27)
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and - written in terms of the classical Lorentz force - the equations of motion of an

electron with ultra high energies in a co-moving frame of reference are

dr
dt

=
p
γ
− V ~ex,

dp
dt

= −
(
E +

p
γ
×B

)
− Λ

4
r2
⊥γp. (4.28)

In the next section the minimal energy spread of an externally injected and accelerated

electron bunch in this model is analyzed and optimized. In the simulations it is assumed

(i) that the bubble driver does not interact with the electron bunch; (ii) that the plasma

background density is homogeneous; (iii) that the accelerated electrons do not interact.

The electron bunches are side injected as in chapter 3.4. Different to that chapter, the

following work does not focus on laser energies in the range E = 1J − 1kJ but will

also discuss an application of MJ (E = 1kJ − 1MJ) lasers to the bubble regime. In the

following sections, three kind of simulation series are done. The first series is for the laser-

plasma parameters E = 1 . . . 1000 J, λlaser = 600 nm, and a0 = 9 which corresponds

to a laser intensity of I = 6.2 × 1020 W/cm2. With these parameters the bubble has a

constant normalized radius of R0 = 3.6. The variation of the other laser parameters is

summarized in Tab.4.1. In the second series the laser intensity is I = 4.4× 1019 W/cm2

which corresponds to a0 = 4 and the energy is varied from 1 kJ to 1MJ. The laser wave

length λlaser = 1 µm for these energies is adjusted to that of MJ laser systems[5, 96].

The variation of the other laser parameters is summarized in Tab.4.2. In the third and

last series the dimensionless amplitude is a0 = 64 which corresponds to a laser intensity

of I = 1.1 × 1022 W/cm2. The energy is varied from 1 kJ to 1MJ and the laser wave

length is λlaser = 1 µm again. The variation of the other laser parameters is summarized

in Tab.4.3.

4.3 Optimized injection under consideration of radiation re-

action

In the last section the equations of motion for a test particle with the same mass and

charge as an electron was derived. In this section the impact of the damping term on

the optimal side injection is discussed. The simulations series are done for varying laser

energies but fixed laser intensities and fixed laser wave lengths again (cmp. Ch.3). In

addition the connection between the focal spot size R of the laser and the laser duration

τ is assumed to be τ = R/c again.

The spatial simulation setup it the same as in the last chapter, so a cloud of not in-

teracting test electrons (colored cloud in Fig.3.2a) is injected from side at an angle α

into a bubble. The bubble moves with velocity V =
√

1− 1/γ2
0 in ξ-direction. The
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(a) (b)

(c) (d)

Figure 4.3: (a), (b): Injection process and corresponding energy spectrum. (c), (d):
Electron bunch after injection and its spectrum with FWHM = 0.6%µ for E = 100J ,

λlaser = 600nm, a0 = 9.

initial momentum of every electron in the cloud is p0 = p0(cos(α),− sin(α), 0), where

p0 ∼ N(µ0, 0.05µ0) is normal distributed and µ0 = 1.2γ0. Thus, the initial energy distri-

bution of the electron ensemble is a Gaussian as shown in Fig(3.2b). The initial position

of the cloud is chosen such that its center of mass passes the point (0, R0, 0) on the bubble

border. The size of electron bunch is always a× b× b, where a = 0.5R0 and b = 0.25R0.

This ensures that all electrons in the bunch will be injected. Furthermore, the maximum

sum of trapped electrons, the cut off angle, after which no electron is trapped, and the

mean energy spread over all minimal energy spreads from simulations that could trap

at least 50% of the bunch are analyzed. The equations of motion are solved for every
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(a) (b)

Figure 4.4: (a): Rel. number of trapped electrons vs incidence angle for E = 100J ,
λlaser = 600nm, a0 = 9 in the radiation reaction model. (b): Maximal sum of trapped

electrons vs laser energy in the radiation reaction model.

electron independently. However, in the simulations G is not reduces as in Eq.(4.27) but

linked to the QED parameter as

G = −4α2

9Λ2
χ2p
γ

= −p
γ

[(γE + p×B)2 − (E · p)2]. (4.29)

In this form, G clearly reduces to the leading term in Eq.(4.27) but is also the limit of

a QED radiation method that describes radiation in terms of Monte-Carlo simulations.

Thus the here presented results can always be interpreted as the expected limit of Monte-

Carlo simulations for χ� 1.

In the fist simulation series with the same laser plasma parameters as in the last sec-

tion the additional damping terms has almost no influence. The injection process and

the energy spectra at injection time are the same (see Fig.4.3a and 4.3b). The spatial

distribution of the bunch after the acceleration in Fig.4.3c is identical focused as in the

Elaser [J] Plaser [TW] Emono [GeV] ne/nc τ [fs] S R [λlaser]

1 120 0.24 1.9× 10−2 8.3 2.1× 10−3 4.2
10 560 1.1 4.1× 10−3 18 4.5× 10−4 9
100 2600 5.1 8.7× 10−4 39 9.7× 10−5 19
1000 12000 23 1.9× 10−4 83 2.1× 10−5 42

Table 4.1: Overview about the scaling of the laser-plasma parameter for the side
injection method in the radiation reaction model with a0 = 9, λlaser = 0.6 µm, and

nc = 3.1× 1021 cm−3.
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(a) (b)

Figure 4.5: (a): Injection angle at which the maximal sum of trapped electrons is
achieved in the radiation reaction model. (b): Mean FWHM of the energy spectra for
different laser energies in the radiation reaction model. The mean value is calculated

for all those spectra that contain at least 50% of all particles.

undamped case. The energy spectrum, however, shows a small difference. In the damped

case in Fig.4.3d the mean energy is about 20 MeV smaller than in the undamped sim-

ulation in Fig.3.4b. Thus the bunch gained 0.4% less energy in the whole acceleration

process for E = 100 J.

The amount of trapped particles vs incident angle for E = 100J in Fig.4.4a shows that

also the injection angle for laser energies in the range of 1 J to 1 kJ is comparable. As

in the last section most electrons are trapped for small injection angles. The decrease of

the number of trapped particles with growing angle is also similar to the case without

radiation. The maximum amount of trapped electrons vs laser energy in Fig.4.4b clearly

shows that it is always possible to trap more than 70% of all electrons. The number

is slightly decreasing with increasing laser energy. The injection angle at which most

electrons can be trapped depending on the laser energy in Fig.4.5a is again rapidly

decreasing for low energies and slowly converging to zero for higher energies. The angles

are in a close vicinity of the cut off angles after which no electron can be trapped.

The mean energy spread over all angles for which more than 50% of the injected electrons

could be trapped - 〈FWHM〉 - is strongly related to the laser energy (see Fig.4.5b).

For low energies and relatively high injection angles 〈FWHM〉 is in the range of 1%

mean bunch energy. This is comparable to energy spreads from experiments with other

injection methods [19–21, 65–73]. For increasing laser energies the mean energy spread

decreases linearly until the minimum possible mean spread of about 0.5% is reached.
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(a) (b)

Figure 4.6: (a) Final spectrum from a simulation with FWHM = 2%µ for a0 = 64.
and (b) Final energy spectrum with FWHM = 2%µ from a simulation with a0 = 4.

In both simulations the laser energy is E = 1 MJ and λlaser = 1 µm.

When the minimum is reached the strong dependency to the laser energy disappears.

It is possible to state that the energy spread is always in the bulk of 0.5% mean bunch

energy if the laser energy is more than 100 J. This result differs to the found behavior in

the last section where Fig.3.5b proved a further decrease of 〈FWHM〉 with increasing

energy. The reason for this observation is the additional radiation term in the equations

of motion. Since the radiation lowers the maximum reachable bunch energy it also

increases the minimum achievable energy spread. Additionally the absolute spread is

enlarged. For energies in the range of 100 J to 1 kJ this broadening can be seen in

a comparison between Fig.4.3d and Fig.3.4b. Here both spreads are Gaussian and the

spectrum from the simulation without radiation reaction has a absolute width of 25 MeV.

The spectrum from the simulation with radiation has an absolute spread of 30 MeV, this

is 5 MeV or 20% more.

4.4 Optimized side injection for ultra high energies and low

intensities

In the second simulation series the laser energy goes beyond the 1 kJ limit. The laser

intensity, however, is decreased to I = 4.4 × 1019 W/cm2 which corresponds to a0 = 4

and a normalized bubble radius of R0 = 2.4. The laser wave length is λlaser = 1 µm so

that the parameters correspond to known laser parameters from MJ laser systems. The

electron energies after acceleration could be in the TeV range if radiation effects did not
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(a) (b)

Figure 4.7: (a): Rel. number of trapped electrons vs incidence angle for E = 1 MJ,
λlaser = 1000 nm, and a0 = 4 in the radiation reaction model. (b): Maximal sum of

trapped electrons vs laser energy in the radiation reaction model.

act. Since these high energies must be expected even with radiation reaction, the initial

bunch energy before the injection is considered to be in the range of several hundred

MeV so that the energy spread is 20% mean bunch energy again.

During the injection the bunch is fanned out and the energy spectrum is broadened. After

the accelerated bunch has reached its maximal energy the spectrum is Gaussian again.

The mean energy is in the bulk of 1.17 TeV and the spread is 25 GeV (see Fig.4.6b).

Since the initial absolute spread and the absolute spread during the injection are more

than ten times smaller, the additional radiation reaction term in the equations of motion

seems not only to lower the maximum achievable energy but also broadens the absolute

energy spread.

The reason why the spread after injection is as large as many GeV is the small injection

angle that must be applied. For E = 1 MJ the necessary injection angle is as small

Elaser [kJ] Plaser [PW] Emono [GeV] ne/nc τ [fs] S R [λlaser]

1 5 22 4.0× 10−5 200 1× 10−5 60
10 23 100 8.6× 10−6 430 2.1× 10−6 130
100 110 470 1.9× 10−6 930 4.6× 10−7 280
1000 500 2200 4.0× 10−7 2000 1× 10−7 600

Table 4.2: Overview about the scaling of the laser-plasma parameter for the side
injection method in the radiation reaction model with a0 = 4, λlaser = 1 µm, and

nc = 1.1× 1021 cm−3.
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(a) (b)

Figure 4.8: Simulation with E = 1 MJ, λlaser = 1000 nm, and a0 = 4 in the radiation
reaction model. (a): Injection angle at which the maximal sum of trapped electrons
is achieved. (b): Mean FWHM of the energy spectra for different laser energies in
the radiation reaction model. The mean value is calculated for all those spectra that

contain at least 50% of all particles.

as 0.01 deg. To reach the maximum amount an even ten times smaller injection angel

is required. For E = 1 MJ the number of trapped electrons is shown in Fig.4.7a. As

in all previous simulation series the number of trapped electrons strongly decreases for

increasing injection angles. Different is that the angles are very small while the bubble

radius is in the same order.

The maximum amount of trapped electrons vs laser energy at these small angels is shown

in Fig.4.7b. Here, the maximum is always above 60% and slightly increasing for higher

energies. Different to the low energy cases is that the maximum does not go over the

80% mark. At these small angles it is hard to distinguish between the optimal injection

angle to trap many electrons as possible and the cut off angle. Both converge rapidly to

zero which also affects the mean energy spread.

In Fig.4.8a the injection angles at which most electrons could be trapped are plotted

against the applied laser energy. The resulting graph starts at angles that are as small as

the those from the last simulation series for E = 1 kJ. Then the graph decreases steadily

but it does not seem to converge to zero. The graph of the mean energy spread over all

angles for which more than 50% of the injected electrons could be trapped begins where

the graph from the last series ends (see Fig.4.5b). Then the 〈FWHM〉 stays at the 0.5%

level until E reaches 10 kJ. For higher energies 〈FWHM〉 increases linearly until the

maximum at E = 1 MJ is reached.
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The dominant reasons that lead to this development are the small injection angles and

the broadening of the energy spreads. Due to the small angles the time the bunch needs

to be injected - the injection time - is large and those electrons that are accelerated

first experience the action of the radiation stronger. Due to the spatial concentration of

the beam load it is solely the energy difference between the electrons that determines

radiation and since the radiation is proportional to the square of the energy, the energy

spread is broadened with increasing mean energy. The only possibility to hold down

the growth of the energy spread with increasing laser energy is to enlarge the injection

angle. This, however, is difficult because the low injection angles result from the fact

that the bunches are injected at energies that are higher than maximum bunch energies

from other experiments and simulations.

4.5 Optimized side injection for ultra high energies and high

intensities

The next simulation series discusses the side injection for energies in the range E = 1

kJ to E = 1 MJ and a thousand times higher intensity of I = 1.1× 1022 W/cm2 which

corresponds to a0 = 64 and a normalized bubble radius of R0 = 9.6. The laser wave

length is λlaser = 1 µm again. The expected electron energies after acceleration are well

below the TeV limit if radiation effects did not act. Since these energies are much lower

than in the previous simulation series, the initial bunch energy before the injection does

not need to be in the range of several hundred MeV but rather in the range of 50 MeV

to 200 MeV. The energy spread is 20% mean bunch energy again.

During the injection the bunch is fanned out across the whole bubble volume which is

now three times larger than in the previous ones. After the accelerated bunch has reached

its maximal energy the spectrum is Gaussian again. The mean energy is in the bulk of

270 GeV and the spread is 4 GeV (see Fig.4.6a). This time the initial absolute spread is

more than a hundred times smaller but the absolute spread during the injection is more

than two times larger. Thus the additional radiation reaction term in the equations of

Elaser [kJ] Plaser [PW] Emono [GeV] ne/nc τ [fs] S R [λlaser]

1 32 8.6 2.6× 10−2 32 4× 10−4 10
10 150 40 5.6× 10−3 68 8.7× 10−5 20
100 680 190 1.2× 10−3 150 1.9× 10−5 44
1000 3200 870 2.6× 10−4 320 4× 10−6 95

Table 4.3: Overview about the scaling of the laser-plasma parameter for the side
injection method in the radiation reaction model with a0 = 64, λlaser = 1 µm, and

nc = 1.1× 1021 cm−3.



Chapter 4. A radiation model for high electron energies 50

(a) (b)

Figure 4.9: (a): Rel. number of trapped electrons vs incidence angle for E = 1 MJ,
λlaser = 1000 nm, and a0 = 64 in the radiation reaction model. (b): Maximal sum of

trapped electrons vs laser energy in the radiation reaction model.

motion does lower the maximum achievable energy but has not the same effect on the

energy spread than in the last low intensity simulation series.

The reason why the spread after injection is again in the range of some GeV is the small

injection angle that must be applied. This times the angles are by far not that small as

in the last series but still small against those from the first series with lower energies.

For E = 1 MJ the necessary injection angle must be chosen as small as 0.3 deg to trap

at least some electrons. To reach the maximum amount a three times smaller injection

angel is required. For E = 1 MJ the number of trapped electrons is shown in Fig.4.9a.

As in all previous simulation series the number of trapped electrons strongly decreases

for increasing injection angles. Different is that the angles are between those from the

last series while the bubble radius is now the largest.

The maximum amount of trapped electrons vs laser energy is shown in Fig.4.9b. Here,

the maximum is almost always 100%. An explanation for this curious effect is shown in

Fig.4.9a where the grapgh converges to 100% for small angles. This is different to the last

simulation series where the number of trapped particles decreases again after the optimal

injection angle. An explanation why the present series show a complete different behavior

is the large bubble radius combined with radiation effects so that injected electrons have

enough space to oscillate and can radiate a sufficient mount of radial momentum at the

same time.
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(a) (b)

Figure 4.10: Simulation with E = 1 MJ, λlaser = 1000 nm, and a0 = 64 in the
radiation reaction model. (a): Injection angle at which the maximal sum of trapped
electrons is achieved. (b): Mean FWHM of the energy spectra for different laser energies
in the radiation reaction model. The mean value is calculated for all those spectra that

contain at least 50% of all particles.

The injection angle at which the maximum number of electrons is trapped is somewhere

between the angle at which the graphs similar to Fig.4.9b begin to converge to 100% and

the minimum applied angle. In Fig.4.10a the injection angles at which most electrons

could be trapped are plotted against the applied laser energy. The resulting graph starts

at angles that are much larger than those from last section and much larger than those

from the last simulation series for E = 1 kJ. Then the graph decreases steadily and

converge to zero. The graph of the mean energy spread over all angles for which more

than 50% of the injected electrons could be trapped begins where the graph from the

last series ends (see Fig.4.5b). Then 〈FWHM〉 increases immediately linear until a

maximum is reached. For higher energies 〈FWHM〉 decreases again but stays always

well above the 1% level.

Now that a qualitative analysis of the side injection method under consideration of ra-

diation reaction has shown that larger laser intensities lead to lower particle energies

but to higher trapping rates, it is important to understand the basic mechanism that

leads to this effect. Since it is the radiation of energy that is responsible for the ob-

served phenomena the next section gives an analytical estimate of the radiated energy

in transversal and forward direction and explains why larger laser intensities are better

suited to accelerate electrons in the far GeV bubble regime.
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4.6 Analytical estimate of radiated energy

If the equations of motion are solved for a single test electron, the solution is the trajec-

tory shown in Fig.4.1b. Here, the electron oscillates fast around the ξ-axis and approaches

the bubble center slowly. The fast oscillations are well known betatron oscillations that

are also seen in experiments [20, 26, 27]. To estimate the amount of radiated energy

during the acceleration the following calculations estimate the radially emitted energy

and the forward radiation by averaging over a betatron oscillation.

Similar to the last chapter the center of mass acceleration can be approximated by a

guiding center approximation for times near the critical time tmax with max p||(t) =

p||(tmax). The guiding center approximation takes only the mean displacement of an

electron from the ξ-axis into account. This, however, is zero and the differential equation

system for ξ(t) and p||(t) in terms of τ = t− tmax and ρ = |r⊥| becomes

dp||

dτ
= −(1 + V )

ξ

4
− Λ

4
ρ2γp||,

dξ

dτ
=
p||

γ
− V ≈ 1

2γ2
0

−
1 + p2

⊥
2γ2

. (4.30)

Since the energy of the electro is maximal for τ = 0 and since the maximum reachable

energy is much larger than the transversal energy, the velocity dξ/dτ is nearly constant in

a wide range of the bubble. The solutions to Eq.(4.30) are then deduced from the initial

conditions ξ(τ = 0) = ξ0 and γ(τ = 0) = γRRmax [cmp. Fig.4.11a] by simply integrating

ξ(τ) = ξ0 +
1

2γ2
0

τ, γ(τ) ≈ p||(τ) = γRRmax −
(1 + V )

16γ2
0

τ2. (4.31)

Here dp||(τ)/dτ = dγ(τ)/dτ = 0, 〈ρ〉 ≡ 0, and 〈p⊥〉 ≡ 0 for high energies (see Fig.4.11b)

was used so that the radiation reaction force Gx has no influence at this level of accuracy.

The position at which the maximal energy is reached, however, does depend on Gx and

can be calculated from the maximum energy and the beam waist radius ρ0 via

dp||(τ)

dτ
= 0 ⇒ ξ0 ≈ −

Λ

1 + V
ρ2

0(γRRmax)2. (4.32)

Since ξ0 ≤ 0 radiation damping always decreases the effective acceleration length. Due

to the extremely small damping factor λ, which is usually in the order of 10−9 to 10−10,

this additional energy gain limiting effect is important for very high electron energies in

the far GeV regime solely.

The time-independent notation of the test electron energy

γ(ξ) = −(1 + V )

4
γ2

0(ξ − ξ0)2 + γRRmax. (4.33)
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shows that the evolution of the damped particle energy can be modeled as a shifted

parabola. The vertex is, in contrast to the side injection without radiation reaction, not

only shifted along the energy axis but also to the left. Since ξ0 is proportional to γ2
max all

vertices lie on a parabola through the vertex of the undamped energy curve with ξ0 = 0

and γ0
max > γRRmax.

According to Fog.4.11b the envelop oscillation amplitude of the betatron oscillation

around the ξ axis changes very slowly. Thus the shift from the axis can be modeled

as

ρ(τ) = ρ0 sin(ωβτ), ρ′(τ) =
p⊥
γ

= ρ0ωβ cos(ωβτ). (4.34)

In general the betatron oscillation is ωβ = ωp/
√

2γ [97–99] and the characteristic time

∝ 1/ωβ is short enough to assume that γ is quasi constant in a period. Within the current

normalization of variables the betatron frequency is ωβ = 1/
√

2γ and the transversally

radiated energy during one oscillation is

〈E⊥〉 =

∫ 2π
√

2γ

0
λG⊥|dρ| ≈ λγ2

∫ √2γπ/2

0
(ρ(τ))2(ρ′(τ))2dτ. (4.35)

With Eq.(4.34) the anti derivative of the integral is proportional to τ and sin(4ωβτ).

Thus the transversally radiated energy after one period is

〈E⊥〉 ≈ λω2
βγ

2ρ4
0

√
2γπ

16
=

λπ

16
√

2
ρ4

0γ
3/2. (4.36)

The longitudinally radiated energy during one oscillation is

〈E||〉 =

∫ 2π
√

2γ

0
λG|||dξ| ≈

λγ2

2γ2
0

∫ √2γπ/2

0
(ρ(τ))2dτ. (4.37)

With Eq.(4.34) the anti derivative of the integral is proportional to τ and sin(2ωβτ).

Thus the forward radiated energy after one period is

〈E||〉 ≈
λγ2

2γ2
0

ρ2
0

√
2γπ

4
=

λπ

4
√

2

ρ2
0

γ2
0

γ5/2. (4.38)

A first result from these considerations is that a side injected electron will radiate more

energy while it is trapped than another electron with same energy that is injected into a

smaller bubble. In the simulations from the last two sections the bubble radii differ by

a factor of 4 while the injection energies are 6 times smaller for those electrons that are

injected into the larger bubble. In affect the slower electron radiates more than ten times
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(a) (b)

Figure 4.11: Comparison of energy gain with and without radiation reaction effects
in a simulation with a0 = 4, λlaser = 1 µm, and E = 1 MJ. (a): Phase space plot of
a simulation with RR (red line) and without RR (blue line). (b): Fast oscillation of a

trapped electron in a simulation with RR.

more energy during the injection process and thus can be injected at an at least ten times

larger angle. A comparison of Fig.4.7a and Fig.4.9a confirms this general statement.

If the oscillation number n is interpreted as a continuous variable - which is possible

because the actual shift in ξ-direction is extremely small during one period - it is

dξ(n)

dn
=

ξn+1 − ξn
(n+ 1)− n

=
π
√

2γn
γ2

0

(4.39)

where ξn+1 = ξn + π
√

2γn/γ
2
0 and γn = γ(ξn). The total radiated energy during the

acceleration is

Erad =
∑
n

En =
∑
n

En∆n =

∫
Endn =

∫ ξ0

−R
En

dn

dξn
dξn (4.40)

where En = 〈E||(γn)〉+ 〈E⊥(γn)〉. Thus it is

Erad =

∫ ξ0

−R

λγ2
0

32
ρ4

0γdξ +

∫ ξ0

−R

λ

8
ρ2

0γ
2dξ (4.41)

and the connection to the estimated energy gain without radiation γ0
max is given by

γ0
max = γRRmax + Erad which in turn determines γRRmax in terms of ξ0, ρ0, R, and γ0. ξ0

is given by Eq.(4.32) and both R and γ0 are related to the laser plasma parameter via

known scaling laws [1]. The envelop function ρ0 is quasi constant in a wide range of the
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bubble and has its smallest value at ξ0. Thus Eq.(4.41) gives a good lower limit for an

estimation of the amount of radiated energy.

4.7 Conclusion

In this chapter the side injection and acceleration of electrons in the bubble regime under

consideration of radiation is discussed. The radiation reaction is derived from a covariant

formulation of the equation of motion to which a linear damping term is added. This

term then is discussed and analyzed for high energies and the special form of the bubble

fields that are given analytically.

It is shown that the mean FWHM as well as the trapping rate can be optimized if

the injection angle is chosen small enough. An important conclusion of this chapter is

that for laser energies E ≥ 50J and small injection angles α ≈ π/180 rad the minimal

mean FWHM of the trapped electron bunches cannot be pushed under a limit of 0.5%

of the actual bunch energy. At the same time, the ratio of trapped electrons stays well

above 70% for all energies. The cut-off angle above which no electrons can be trapped is

numerically reviewed in 3d bubble multi particle simulations and analytically evaluated

in a reduced 2d model. The comparison shows that for laser energies E ≥ 50J both

angles are comparable but not for lower energies. Consequently, the side injection of

electron bunches in the GeV-regime is a promising accelerating and focusing mechanism

that will be a center of interest for the next time.

For higher laser energies the radiation reaction terms lead to a broadening of the energy

spreads so that it is not possible to achieve less than 1% mean energy spread if the laser

energy is above a certain limit. For small laser intensities in the bulk of I = 1019 W/cm2

the limit is 100 kJ. For higher intensities the limit decreases so that in a simulation series

with I = 1022 W/cm2 the mean FWHM is well above 1% if the energy is higher than 10

kJ. The optimal injection angles at which most electrons can be trapped must be chosen

very small for energies larger than 1 kJ and small intensities. For high intensities the

optimal injection angles are in the same order of magnitude as for low energies and low

intensities again.

In the last section of this chapter an analytical estimate of the radiated energy is cal-

culated from a guiding center approximation to the damped single particle trajectory.

It could be shown that higher laser energies need smaller injection angles than lower

ones and that higher laser intensities allow higher injection angles than lower ones. The

solution of the guiding center approximation also showed that for ultra-high electron
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energies the effective acceleration length is reduced proportional to the expected energy

maximum after acceleration.

In the present and the last chapter the only limiting factor for the electron accelera-

tion is the - damping dependent - dephasing length. Another factor that appears in

experiments and PIC simulations is the depletion length after which the driver of the

bubble is consumed and the bubble breaks. Recent PIC simulations and bubble models

suggest that it is possible that avoid depletion if the driver runs through a plasma chan-

nel. If the plasma density drops to zero at the acceleration axis the intern bubble fields

gain an additional degree of freedom. The next chapter introduces two analytical mod-

els for electron bunch driven wake fields in arbitrary radially symmetric plasma channels.

Results from this chapter are/will be published in the following publications:

J. Thomas, O. Jansen , A. Pukhov, Radiation effects on ultra-high electron energies in

the bubble regime, to be submitted



Chapter 5

Deep plasma channels for tunable

bubble fields

5.1 Introduction

Plasma wake fields provide a feasible path for high gradient particle acceleration [8, 13,

34, 100, 101]. Especially efficient are the so called bubble regime of laser-plasma wake

fields [10] and the blow out regime of electron bunch driven wake fields [102]. In the first

case the laser intensity is high enough to expel all background plasma electrons from the

first half of the plasma wave. In the blowout regime all electrons are expelled from a

region behind a driving electro bunch. The left behind void of plasma ions is surrounded

by a thin layer of expelled electrons and a weakly perturbed plasma. The ions pull

the electrons back to the acceleration axis in about a plasma wave length λ = 2πc/ωp.

Overshooting electrons then create the characteristic volume. The advantage of the

hollowed region is that it has a transversely uniform accelerating field [14, 103] that

helps to generate quasi-mono-energetic electron bunches readily registered in experiments

[104].

Despite various analytical approaches to the bubble and the blow out regime, a self-

consistent theoretical description is still missing. What has been developed so far is

a similarity theory for the bubble regime [29], a non-linear theory for the blow out

regime [16, 46, 103], and a phenomenological model of the bubble [14]. In the similarity

theory the leading parameters for homogeneous background plasmas are the S−number

S = ne/anc � 1 and the pulse aspect ratio Π = cτ/R ≤ 1. Here, ne is the plasma

electron density and nc = π/reλ
2
0 is the critical plasma density for a laser pulse with

the wavelength λ0, a = eE0/mcω0 is the relativistically normalized laser field amplitude,

ω0 = 2πc/λ0, and re = e2/mc2 is the classical electron radius.

57
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So far, energy conservation arguments and massive 3D PIC simulations have been used to

get optimal scaling laws for the bubble regime in homogeneous plasmas [1, 28]. A straight

forward estimation assumed that the laser energy first is converted into the wake field and

afterwards into kinetic (bunch) energy. A similar argumentation holds for the blow out

regime where the energy of the driving bunch is converted to kinetic energy of trapped

electrons. The energy transfer process is stable as long as the accelerated bunch is in

the accelerating phase of the wake and as long as the driver has enough energy to drive

the wake - otherwise the driver depletes. In a uniform plasma the depletion length of

the laser is shorter than the dephasing length which limits the maximum electron energy

gain. Furthermore, the interaction of the accelerated electrons with the laser pulse can

broaden the energy spectrum of the bunch [97, 105].

A common tool to increase the depletion length of laser pulses are plasma channels.

Originally, they are used to guide weakly relativistic pulses over distances much larger

than the Rayleigh length ZR = πR2/λ0 but a recent work suggests to use nearly hollow

plasma channels to provide independent control over the focusing and accelerating forces.

They considered a moderately relativistic laser pulse and a rectangular channel density

profile [106–108].

A deep plasma channel that is (nearly) empty on-axis can strongly modify both the bub-

ble fields, the laser dynamics, and the trapping. In this context a recent work that looks

for laser-plasma parameters that maximize the energy of the accelerated electron bunch

and that reduce the energy spread [109]. Here the use of a deep channel demonstrates an

increased effective bubble phase velocity, an improved energy gain, a longitudinal field

that has a plateau and allows for mono-energetic acceleration, and a strongly reduced

focusing force. Furthermore, new bubble scaling laws and field distributions for the deep

channel are derived. According to these new scaling laws ultra-short pancake-like laser

pulses help to match the dephasing and depletion length and thus lead to ultra high

energy gains of accelerated electrons. The lack of focusing in the channel eliminates the

betatron resonance and thus leads to much sharper beam energy distributions.

In this chapter the analysis that lead to the above found advantages and scalings in deep

channels is presented. The followed analysis is done for a driving electron bunch but can

easily be transferred to the bubble regime if the potentials of the driver are replaced by

the laser potential and if the time averaged (over a laser period) ponderomotive force is

included into the equations of motion of single test electrons.

In the next section first the general form of the electric and the magnetic field in terms

of charge density and current density are derived in a quasi-static, cylindrical approx-

imation. Then section 5.3 introduces an analytical model for an electron beam driven

blow out that follows these approximations. The model further assumes that the blow
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out surrounding electron layer is infinitely thin and carriers a surface current that cor-

responds to a current generated by those electrons that are blown out from the cavity.

A major result of this section is the connection between the fields, the currents, and the

densities that allows to model the densities according to given fields and conversely. The

following section 5.4 introduces a finite electron layer model that allows the study of side

injection physics and has the same general field-source connection as the first model.

Section 5.5 gives a few important examples for fields and density profiles before the last

section summarized the found results.

5.2 Potentials and fields in a wake field in a plasma channel

Since the broken wake field is moving with almost speed of light through the plasma,

it is convenient to perform all analysis in a co-moving frame of reference. If the frame

is moving with speed of light to the right the corresponding canonical transformation

of variables is ξ = ct − z. In the following the fields, potentials, densities ect. inside

the blow out are assumed to be quasi-static which means that the variables are not no

explicit time dependent in the moving frame. With this approximation the differential

operators in the moving frame system are

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂t

∂t

∂

∂t
= c

∂

∂ξ
+
∂

∂t
≡ ∂

∂ξ
(5.1)

∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂t

∂z

∂

∂t
= − ∂

∂ξ
+

1

c

∂

∂t
≡ − ∂

∂ξ
(5.2)

Due to the cylindrical symmetry it is helpful to express the spatial variables in cylindrical

coordinates. Thus it is

x = r cos(ϕ), y = r sin(ϕ), ξ = ξ. (5.3)

Furthermore, all gradients in ϕ-direction vanish as no variable explicitly depends on ϕ

- which is a key property in the simplification of all following equations. The vector

potential A inside a bubble or blow out has no ϕ-component so that the magnetic field

has only a ϕ-direction which corresponds to all jet found analytical solutions to wake

fields in recent models. A list of all differential operators in the moving frame in these

cylindrical coordinates is given in appendix A.

In the following all variables are normalized to the speed of light c, to the electron

mass me, to the electron plasma frequency ωpe =
(
4πe2n0/me

)1/2, and to the plasma

background density n0 via x → xωpe/c, t → tωpe, v → v/c, p → p/(mec), Φ →
eΦ/(mec

2), and E→ E/mec
2. All bubble potentials are expressed in terms of the vector
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potential A and the wake field potential

Ψ = ϕ−Az. (5.4)

In terms of these potentials and aboce mentioned simplifications the Lorenz gauge is

1

r

∂

∂r
(rAr) = −∂Ψ

∂ξ
. (5.5)

and the normalized Poisson equations forA and Ψ are calculated from the plasma density

and the electron current. Both are also cylindrical symmetric which means that they are

only depending on the distance to the symmetry axis.(
∂2

∂t2
−∇2

)
Ai = Ji,

(
∂2

∂t2
−∇2

)
ϕ = ρ, (5.6)

⇒ 1

r

∂

∂r

(
r
∂Az
∂r

)
= −Jz, ⇒ 1

r

∂

∂r

(
r
∂Ψ

∂r

)
= −ρ+ Jz. (5.7)

In general the electro magnetic fields are related to the potentials via

E = −∇ϕ− ∂

∂t
A, B = ∇×A. (5.8)

In the present approximations they reduce according to Eq.(A.7) to

E = Er~er + Ez~ez = −∇Ψ−∇Az −
∂A
∂ξ

, B = Bϕ~eϕ = −
(
∂Ar
∂ξ

+
∂Az
∂r

)
~eϕ. (5.9)

Thus the only non-vanishing coefficient functions of the electric and magnetic field inside

the blowout are

Ez =
∂Ψ

∂ξ
, Er = −∂Ψ

∂r
− ∂Ar

∂ξ
− ∂Az

∂r
, Bϕ = −∂Ar

∂ξ
− ∂Az

∂r
. (5.10)

5.3 The δ-layer model

In this section an analytical model for the blow out regime is introduced. In this model

the assumptions and notations from the previous chapter are valid because the driving

electron bunches usually have energies in the GeV regime so that their gamma factor is in

the bulk of 100 to 1000. The blow out sheath is modeled as an infinitely thin layer because

this section does not treat any injection techniques. What is treated, however, is a case

sensitive partition of the interior potentials and fields. The cases in turn guaranty that

the potentials and fields are reasonable. The electron density ρe and the ξ-coordinate

of the electron current-density Je both split up to distinguish between the driving and
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the accelerated electron bunch. For simplicity the driver densities are assumed to be

constant, i.e. there are no gradients in the driver density. The volume which is occupied

by the driver is modeled as a cylinder with high le and radius re. The densities inside

the accelerated bunch are given in a more general way so that they depend on ξ and r.

The volume of the beam load is also modeled as a cylinder with high lee and radius ree.

In terms of the coordinated ξe (starting point of the driver) and ξee (starting point of

the beam load) the densities can be written as

ρe = Je =


J0, r < re, ξe < ξ < ξe + le

ja(ξ, r), r < ree, ξee < ξ < ξee + lee

0, else

. (5.11)

The source term for the charge density ρ and the current ξ-coordinate Jz obeys the

cylinder symmetric density profile for the channel and models the surrounding sheath by

a delta distribution. Since the source is cylinder symmetric inside the blow out it only

depends on the distance to the symmetry axis. Inside the sheath, however, the source

depends only on the ξ-coordinate so that all currents in the sheath have no angular

component.

S(ξ, r) = Jz − ρ =

si(r), r < rb(ξ)

s0(ξ)δ(r − rb), else
. (5.12)

At this point it is important to mention that ρ is the sum of the electron density and

the ion density ρi. Furthermore J is the sum of the (local) electron current density and

the ion current densities Ji. In terms of the sources above inside the blow out it is

ρ = ρe + ρi = ja(ξ, r) + ρi (5.13)

J = Jz~ez = (si(r) + ρ)~ez = (ja(ξ, r) + si(r) + ρi)~ez (5.14)

Ji = 0. (5.15)

The radial component of the electron and ion current density does not vanish for a single

electron but the sum of all radial currents inside the bunches vanishes in the average.

According to Eq.(5.11) the interior of the bubble can be separated into five zones (see

Fig.5.1). The first (gray) zone describes the interior of the bubble that is free of electrons.

The 2nd (light red) and 4th (light blue) zone are free of electrons too, but the potentials

depend on the bunches. The last two zones are the inner domains of the bunches.

In the following subsections first the wake field potential Ψ, the vector potential A, and

the fields are calculated from the sources in all five zones. Afterwards, desired fields are
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Figure 5.1: Five zones model of the blow out. Gray zone: empty zones, the electron
bunches do not influence this zone; (II) Light red zone: also empty but the electromag-
netic potential depends on the current from zone III; (III) Red zone: interior of the
driving bunch; (IV) Light blue zone: empty but the electromagnetic potential depends
on the current from zone V; (V) Blue zone: Interior of the accelerated electron bunch.

given and it is determined whether a Jz(ξ, r) and a si(r) existed that generate these

fields. In both cases the bubble or blow out radius is assumed to be known from an ODE

that is also derived in one subsection.

5.3.1 The potentials in terms of the sources

To determine the potentials in terms of the sources first the sheath source s0(ξ) is cal-

culated as a function of the blow out radius rb(ξ). Starting point will be the partial

integration of the continuity equation in the cylindrical, quasi-static approximation un-

der the consideration that Jr = 0

∂ρ

∂t
+∇ · J = 0 (5.16)

⇒ ∂

∂ξ
(ρ− Jz) +

1

r

∂

∂r
(rJr) = 0 (5.17)

⇒ ∂

∂ξ
(ρ− Jz) = 0 (5.18)

⇒ ∂

∂ξ

∫ ∞
0

S(ξ, r)rdr = 0 (5.19)

⇒
∫ rb

0
si(r)rdr + rb(ξ)s0(ξ) = −c1 (5.20)
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Since the left hand side of Eq.(5.20) is independent from r, the integration constant is

also and together with the integral source

SI(r) =

∫ r

0
si(r

′)r′dr′. (5.21)

the general solution for the sheath current source is s0(ξ) = −[SI(rb(ξ)) + c1]/rb(ξ).

To determine c1 a boundary condition that is independent from r is necessary. Since

S(r, ξ) = 0 outside the boundary, it is convenient to demand the condition s0(ξ(rb =

0)) = 0. But since

lim
rb→0

s0(ξ(rb)) = lim
rb→0

SI(rb)

rb

l′H
= lim

rb→0

si(rb)rb
1

= 0, (5.22)

c must be zero too and it is

s0(ξ) = −SI(rb(ξ))
rb(ξ)

. (5.23)

This relation connects the inner and the outer source term so that the surface current

equals the current that would be produced by all those electrons that are expelled from

the volume inside the blow out or bubble.

To determine the wake field in terms of the inner source term the Poisson equation for

Ψ in Eq.(5.7) and the model for the source in Eq.(5.12) are combined. Both give, after

two partial integrations, two different solutions for Ψ(ξ, r)

Ψ(ξ, r) =

∫
SI(r)

dr

r
+ c2(ξ) ln(r) + Ψ0(ξ), r < rb(ξ), (5.24)

Ψ(ξ, r) = [s0(ξ)rb(ξ) + c3(ξ)] ln(r) + c4(ξ) else. (5.25)

The integration constants are deduced and simplified as follows:

1) The fields in the bubble interior are restricted ⇒ c2(ξ) = 0.

2) The electric and the magnetic field vanish outside the boundary.

∂

∂r
Ψ = 0 ⇒ c3(ξ) = −s0(ξ)rb(ξ),

∂

∂ξ
Ψ = 0, ⇒ c4 = const (5.26)

3) Ψ is continuous in r = rb.∫
r=rb

SI(r)
dr

r
+ Ψ0(ξ) = c4 ⇒ Ψ0(ξ) = c4 −

∫
r=rb

SI(r)
dr

r
(5.27)
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If all terms are added together, the wake field potential can be written as

Ψ(ξ, r) =

∫
SI(r)

dr

r
+ Ψ0(ξ) =

∫
SI(r)

dr

r
−
∫
r=rb

SI(r)
dr

r
+ c4, r ≤ rb(ξ), (5.28)

Ψ(ξ, r) = 0 else. (5.29)

The electromagnetic potential A can be derived in a similar way from the Poisson equa-

tion 5.7 and the Lorentz gauge 5.5. This time, however, the solutions will be presented

by defined integrals so that no additional boundary condition is necessary.

Since the longitudinal component of the magnetic potential Az only depends on the

electron current in both the driving and the accelerated bunch Je, the Poisson equation

[see Eq.(5.7)] gives after partial integration

1

r

∂

∂r

(
r
∂Az
∂r

)
= −Jz ⇒ Az = −

∫ r

0
dr′

r′

r
Jz(ξ, r

′) (5.30)

To determine the fields only terms proportional to ∂Az/∂r appear. Thus it is sufficient

to derive all five derivatives. In terms of the integral current

JA(ξ, r) =

∫ r

0
ja(ξ, r

′)r′dr′ (5.31)

these can be expressed as

(I)
∂Az
∂r

= 0 else (5.32)

(II)
∂Az
∂r

= −J0

2

r2
e

r
r > re, ξe < ξ < ξe + le (5.33)

(III)
∂Az
∂r

= −J0

2
r r ≤ re, ξe < ξ < ξe + le (5.34)

(IV )
∂Az
∂r

= −JA(ξ, ree)

r
r > ree, ξee < ξ < ξee + lee (5.35)

(V )
∂Az
∂r

= −JA(ξ, r)

r
r ≤ ree, ξee < ξ < ξee + lee (5.36)

These five equations give the longitudinal electromagnetic potential component of the

blow out potentials inside the cavity under the requirement that the potential does not

diverge for small r and that it is continuous in r-direction. Outside the potential is set

to zero so that the fields vanish again. Thus the Az induced fields are discontinuous at

the sheath.
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The radial component Ar is calculated from the Lorentz gauge (5.5) and the wake field

potential which is already known from Eq.(5.24)

1

r

∂

∂r
(rAr(ξ, r)) = −∂Ψ0(ξ)

∂ξ
⇒Ar(ξ, r) = −1

2
r
∂Ψ0(ξ)

∂ξ
. (5.37)

5.3.2 Calculate the electron sheath current

To determine the electron current in the surrounding sheath it is necessary to solve the

equations of motion of a test electron at positions r = rb(ξ). A simple method to do this

could be to solve the equations of motion for a single electron inside the bubble in the

moving frame of reference

dp
dt

= −
(
E +

p
γ
×B

)
,

dr⊥
dt

=
p⊥
γ

+ ~ez

(
1− pz

γ

)
. (5.38)

in the limit r → rb. In the following, however, a differential equation that depends on

the sources and rb solely is derived. To achieve this first an expression for the change

of the radial momentum due to a shift in ξ-direction inside the volume is calculated.

Afterward the potentials are evaluated at the border.

Since trapped electrons perform betatron oscillations in a plain and since the energy gain

of the accelerated electrons is coded in the longitudinal position, it is sufficient to split

equations up into a radial part and a longitudinal part [also remember ~er × ~eϕ = ~ez and

~ez × ~eϕ = −~er]

dpr
dt

= −
(
Er −

pz
γ
Bϕ

)
,

dr

dt
=
pr
γ

(5.39)

dpz
dt

= −
(
Ez +

pr
γ
Bϕ

)
,

dξ

dt
= 1− pz

γ
. (5.40)

The angular part of the equations of motions does not contribute to the desired ODE.

The Hamiltonian H(p, r, t) for electrons in a quiescent plasma is one and since all poten-

tials are time-independent, H is a constant of motion. The Hamiltonian of the system

thus is [110]

H(p, r, t) = γ −Πz − ϕ = γ − pz −Ψ = 1, (5.41)

where ~Π = p−A is the canonical momentum and γ =
√

1 + |p|2 is the electron energy.

It follows from H = 1 and Eq.(5.39) that

dξ

dt
= 1− vz = 1− pz

γ
=

1 + Ψ

γ
(5.42)



Chapter 5. Deep plasma channels for tunable bubble fields 66

and

pr = γ
dr

dt
= (1 + Ψ)

dr

dξ
. (5.43)

With Eq.(5.41) the energy can be written in terms of pr and Ψ as

γ2 = 1 + p2
r + p2

z ⇒ γ =
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)
. (5.44)

Together with Eq.(5.42) this immediately gives

1

1− vz
=

γ

1 + Ψ
=

1 + p2
r + (1 + Ψ)2

2(1 + Ψ)2
. (5.45)

Adding together the relation between the fields and the potentials in the quasi-static

approximation in cylindrical coordinates from Eqs.(5.10), (5.39), (5.40), and (5.42) the

change of the radial momentum due to a shift in ξ-direction inside the volume is

dpr
dξ

= − 1

1− vz
(Er − vzBϕ) (5.46)

⇒ dpr
dξ

= − 1

1− vz

(
−∂Ψ

∂r
− ∂Ar

∂ξ
− ∂Az

∂r
+ vz

∂Ar
∂ξ

+ vz
∂Az
∂r

)
(5.47)

⇒ dpr
dξ

=

[
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r
+
∂Az
∂r

+
∂Ar
∂ξ

(5.48)

To prepare an ODE for test electrons in the sheath this equation must be expressed in

terms of the sources and rb solely. Thus in the next steps Ψ and A and their derivatives

are evaluated at the sheath border. Here the potentials and their derivatives are

Ψ(ξ, r = rb) =

∫
r=rb

SI(r)
dr

r
+ Ψ0(ξ) = c4, (5.49)

Ar(ξ, r = rb) = rbσ(ξ) (5.50)

∂Ψ

∂ξ

∣∣∣∣
r=rb

=
dΨ0

dξ
= −SI(rb)

rb

drb
dξ
, (5.51)

∂Ψ

∂r

∣∣∣∣
r=rb

=
SI(rb)

rb
, (5.52)

∂Ar
∂ξ

∣∣∣∣
r=rb

= rb
dσ

dξ
(5.53)

Az
∂r

∣∣∣∣
r=rb

=

λ(ξ)/rb ξe ≤ ξ ≤ ξe + le

JA(ξ, ree)/rb ξee ≤ ξ ≤ ξee + lee

(5.54)

λ(ξ) = −1

2
J0r

2
e(ξ), JA(ξ, ree) =

∫ ree

0
ja(ξ, r)rdr, σ(ξ) = −1

2

∂Ψ0(ξ)

∂ξ
. (5.55)
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Now Eq.(5.43) and (5.48) give the equation of motion for a test electron on the bubble

border, i.e. for r = rb

d

dξ

[
(1 + Ψ)

drb
dξ

]
=

[
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r
+
∂Az
∂r

+
∂Ar
∂ξ

(5.56)

⇒ dΨ(ξ)

dξ

drb
dξ

+ (1 + Ψ)
d2rb
dξ2

=

[
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r
+
∂Az
∂r

+
∂Ar
∂ξ

(5.57)

If Eq.(5.57) is sorted with respect to derivations of rb and if Eqs.(5.51) to (5.54) are

substituted, the equation of motion can be expressed in form of a single ODE for the

sheath radius rb

A(rb)
d2rb
dξ2

+B(rb)

(
drb
dξ

)2

+ C(rb) =


λ(ξ)/rb ξe ≤ ξ ≤ ξe + le

JA(ξ, ree)/rb ξee ≤ ξ ≤ ξee + lee

0 else

. (5.58)

To determine the coefficient functions it is necessary to expand all potentials and ab-

breviating functions that were defined so far. For simplicity all terms that contribute to

A(rb) are marked red, all terms that contribute to B(rb) are marked blue, and all terms

that contribute to C(rb) are marked green.

(i)
dσ

dξ

(5.55)
= −1

2

d2Ψ0

dξ2

(5.27)
=

1

2

d

dξ

(
SI(rb)

rb

drb
dξ

)
(5.59)

⇔ dσ

dξ

(5.21)
=

1

2

(
SI(rb)

rb

d2rb
dξ2

+
si(rb)rb
rb

(
drb
dξ

)2

− SI(rb)

r2
b

(
drb
dξ

)2
)

(5.60)

(ii)
∂Ar
∂ξ

(5.53)
= rb

dσ

dξ
(5.61)

⇔ ∂Ar
∂ξ

(5.60)
=

SI(rb)

2

d2rb
dξ2

+
1

2

[
si(rb)rb −

SI(rb)

rb

](
drb
dξ

)2

(5.62)

(iii)
∂Ψ

∂ξ

drb
dξ

(5.51)
= −SI(rb)

rb

(
drb
dξ

)2

(5.63)

(iv) (1 + Ψ)
d2rb
dξ2

(5.51)
= (1 + c4)

d2rb
dξ2

(5.64)
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(v)

[
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r

(5.52)
=

[
p2
r

2(1 + Ψ)2
+

1 + (1 + Ψ)2

2(1 + Ψ)2

]
SI(rb)

rb
(5.65)

⇔
[

1 + p2
r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r

(5.43)
=

1 + (1 + c4)2

(1 + c4)2

SI(rb)

2rb
+
SI(rb)

2rb

(
drb
dξ

)2

(5.66)

Now the coefficients of the colored expressions are summarized. The integration constant

c4 that appears explicitly is a global constant for the wake field inside and outside the

blow out. To get the same expression for A and B as in recent works it is not explicitly

given but rather estimated as small against SI(rb)/2 and simultaneously large against 1

in a direct comparison. Then the functions A, B, and C in Eq.(5.58) are

1) A(rb) ≈ 1− SI(rb)

2
, (5.67)

2) B(rb) = −SI(rb)
rb

− 1

2

[
si(rb)rb −

SI(rb)

rb

]
− SI(rb)

2rb
(5.68)

⇒ B(rb) = −SI(rb)
rb

− si(rb)rb
2

= s0(ξ)− si(rb)rb
2

, (5.69)

3) C(rb) = −
[
1 +

1

(1 + c4)2

]
SI(rb)

2rb
≈ −SI(rb)

2rb
=
s0(ξ)

2
. (5.70)

Another argumentation that leads to these limits is that the potentials are sufficiently

large at the blow out border. However this condition is not always fulfilled because the

electron layer crosses the ξ axis at two distinctive points. At these points the argumen-

tation fails and the coefficients do not reduce to the above shown form. for a further

discussion see [46].

Summarizing the equations of motion for an electron in the sheath - the sheath current

- is

[
1− SI(rb)

2

]
rb
d2rb
dξ2
−
[
SI(rb) +

si(rb)r
2
b

2

](
drb
dξ

)2

− SI(rb)

2
=


λ(ξ) ξe ≤ ξ ≤ ξe + le

JA(ξ, ree) ξee ≤ ξ ≤ ξee + lee

0 else

.

(5.71)

5.3.3 Calculate the bubble fields from the sources and vice versa

Now that the bubble potentials, the equations of motion for test electrons inside the

bubble, and an equation for the electron sheath current is found, it is possible to calculate

the bubble fields in terms of the sources either fromMaxwell’s equations or from Eq.(5.10)
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directly. Since there are five different solutions to Az, one for each of five areas inside the

bubble, the solution for the fields will be case sensitive, too. In the following Eq.(5.10)

is followed while the derivation through Maxwell’s equations is given in the appendix A

as an alternative way.

The ϕ-component of the magnetic field can be calculated from the explicit form of Az
and Ar in Eqs.(5.32) - (5.36) and Eq.(5.37)

Bϕ = −∂Ar
∂ξ
− ∂Az

∂r
= −rdσ

dξ
− ∂Az

∂r
. (5.72)

The component functions of E are given by the inner wake field potential in Eq.(5.28),

too, so that

Er = −∂Ψ

∂r
− ∂Az

∂r
− ∂Ar

∂ξ
= −SI

r
− rdσ

dξ
− ∂Az

∂r
, (5.73)

Ez =
∂Ψ

∂ξ
=
∂Ψ0

∂ξ
= −2σ. (5.74)

With the new and most general model for the source terms inside the bubble [cmp.

Eqs.(5.11) and (5.12)] five different solutions for the E and B field arise. They are coded

in Az which in turn is related to the fields via

B = −
(
r
dσ

dξ
+
∂Az
∂r

)
~eϕ, E = −

(
SI
r

+ r
dσ

dξ
+
∂Az
∂r

)
~er − 2σ~ez. (5.75)

Now that an expression is found that links the E and B field to the plasma and bunch

source, the last step must be done. This is to invert the equations found above in order

to find proper conditions for which it is possible to recalculate the sources for given fields,

this means for given Bϕ, Er, and Ez. For Ez this is simply

Ez = −2σ =
∂Ψ0

∂ξ
=
dΨ0

dξ
= −SI(rb)

rb
r′b = s0(ξ)r′b(ξ) (5.76)

independent from the region in the bubble interior. Furthermore, the Ez component al-

ways determines the current sheath density s0(ξ) with this equation. Since the difference
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between Bϕ and Er is also independent from the bubble region, it is always

Bϕ − Er =
SI(r)

r
(5.77)

⇒ SI(r) = (Bϕ − Er)r (5.78)

⇒ si(r)r = (Bϕ − Er) + r
∂

∂r
(Bϕ − Er) (5.79)

⇒ si(r) =

(
1

r
+

∂

∂r

)
[Bϕ(ξ, r)− Er(ξ, r)]. (5.80)

Another therm that needs to be calculated in every region is

dσ

dξ
= −1

2

d2Ψ0

dξ2
= −1

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] (5.81)

To get the r-dependency of the sources Bϕ and Er must be inverted. This, however,

must be done for every sector independently. For simplicity, the following calculation

assumes that rb is already known from the sheath current ODE in Eq.(5.58).

Region I - no electron bunch - compare Eq.(5.32)

B =
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)]~eϕ, (5.82)

E = −
[
SI(r)

r
− r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)]

]
~er + s0(ξ)r′b(ξ)~ez (5.83)

In all other regions the Bϕ and Er are related to the sources via

Bϕ = −
(
r
dσ

dξ
+
∂Az
∂r

)
, Er = −

(
SI
r

+ r
dσ

dξ
+
∂Az
∂r

)
, (5.84)

so the next overviews just collect all specific forms of Az and give the corresponding

field-source relations.

In the next two overviews J0 is assumed to be constant so one degree of freedom is lost

but if Ez and Er are given it is possible to calculate from this expression all Bϕ so that

J0 is constant.
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Region II - outside the driving electron bunch - compare Eq. (5.33)

Bϕ =
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

J0

2

r2
e

r
, (5.85)

Er = −SI(r)
r

+
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

J0

2

r2
e

r
(5.86)

Bϕ −
r

2

d

dξ
Ez =

J0

2

r2
e

r
(5.87)

⇒ J0 = 2
r

r2
e

Bϕ(ξ, r)− r2

r2
e

E′z(ξ) (5.88)

Region III - inside the driving electron bunch - compare (5.34)

Bϕ =
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

J0

2
r, (5.89)

Er = −SI(r)
r

+
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

J0

2
r (5.90)

Bϕ −
r

2

d

dξ
Ez =

J0

2
r (5.91)

⇒ J0 =
2

r
Bϕ(ξ, r)− E′z(ξ) (5.92)

Region IV - outside the accelerated electron bunch - compare Eq. (5.35)

Bϕ =
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

JA(ξ, ree)

r
(5.93)

Er = −SI(r)
r

+
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

JA(ξ, ree)

r
(5.94)

Bϕ −
r

2

d

dξ
Ez =

JA(ξ, ree)

r
(5.95)

⇒ JA(ξ, ree) = rBϕ −
r2

2
E′z(ξ) (5.96)
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Region V - inside the accelerated electron bunch - compare Eq. (5.36)

Bϕ =
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

JA(ξ, r)

r
(5.97)

Er = −SI(r)
r

+
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)] +

JA(ξ, r)

r
(5.98)

Bϕ −
r

2

d

dξ
Ez =

JA(ξ, r)

r
(5.99)

⇒
∫ r

0
ja(ξ, r

′)r′dr′ = rBϕ −
r2

2
E′z(ξ) (5.100)

⇒ ja(ξ, r) =

(
1

r
+

∂

∂r

)
Bϕ(ξ, r)− E′z(ξ) (5.101)

5.3.4 Summary for the δ-layer model

The aim of this section was to introduce a most general model for the blow out or bubble

model in terms of sources for the electron density and current

ρe = Je =


J0, r < re, ξe < ξ < ξe + le,

ja(ξ, r), r < ree, ξee < ξ < ξee + lee,

0, else

(5.102)

and sources for the background plasma density

S(ξ, r) = Jz − ρ =

si(r), r < rb(ξ)

s0(ξ)δ(r − rb), else
. (5.103)

The electric and magnetic field inside the void behind the driver in a quasi-static cylin-

drical approximation are related to the electromagnetic potential A and the wake field

potential Ψ via

B = −
(
r
dσ

dξ
+
∂Az
∂r

)
~eϕ, E = −

(
SI
r

+ r
dσ

dξ
+
∂Az
∂r

)
~er − 2σ~ez. (5.104)
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In turn the potentials inside the void are related to the sources as

Az = −J0

4
r2
e −

J0

2
r2
e ln

(
r

re

)
r > re, ξe < ξ < ξe + le (5.105)

Az = −J0

4
r2 r ≤ re, ξe < ξ < ξe + le (5.106)

Az = −
∫ ree

0

JA(ξ, r′)

r′
dr′ − JA(ξ, ree) ln

(
r

ree

)
r > ree, ξee < ξ < ξee + lee (5.107)

Az = −
∫ r

0

JA(ξ, r′)

r′
dr′ r ≤ ree, ξee < ξ < ξee + lee (5.108)

Ψ(ξ, r) =

∫
SI(r)

dr

r
+ Ψ0(ξ), Ar(ξ, r) = −1

2
r
∂Ψ0(ξ)

∂ξ
(5.109)

where

SI(r) =

∫ r

0
si(r)rdr, JA(ξ, r) =

∫ r

0
ja(ξ, r

′)r′dr′, σ(ξ) = −1

2

dΨ0

dξ
, (5.110)

Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
+ c4. (5.111)

The inverted component functions of E and B give expressions for the sources in terms

of the fields. This allows for a

The electron sheath radius rb is related to the sources by an ordinary differential equation

with coefficients that depend on the sources. If the driver - a short high energetic electron

bunch - is substituted by a short, high intense laser pulse

5.4 The finite layer model

In the last section an electron beam driven blow out model was introduced that allowed to

derive the inner fields in terms of sources for the electron current, the electron density, and

the charge density. The model assumed that the surrounding sheath is infinitely thin and

that it does not act on the driving electron bunch. In this section the plasma density is

modeled with an additional finite layer that is important for a study of electron injection

dynamics. Furthermore, the layer allows to demand additional continuity conditions so

that - in contrast to the former model - the fields at the border are steady.
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In this section the normalized electron current and charge density are modeled again as

in Eq.(5.11)

ρe = Je =


J0, r < re, ξe < ξ < ξe + le

ja(ξ, r), r < ree, ξee < ξ < ξee + lee,

0, else

. (5.112)

For simplicity the driver densities are assumed to be constant and the volume which is

occupied by the driver is modeled as a cylinder with high le and radius re [see Fig.5.2 red

area III]. The electron densities inside the accelerated bunch are given in a more general

way so that they depend on ξ and r. The volume of the beam load is also modeled as a

cylinder with high lee and radius ree [see Fig.5.2 blue area V].

The source term for the plasma ion density and the ξ-coordinate of the electron current-

density Je of the driving and the accelerated electron bunch is modeled in comparable

way as before. This time, however, the electron sheath has a small but still finite width

∆

S(ξ, r) = Jz − ρ =


si(r), r < rb(ξ)

s0(ξ), rb(ξ) ≤ r < rb(ξ) + ∆

0, else

. (5.113)

Since the source is cylinder symmetric inside the blow out it only depends on the distance

to the symmetry axis. Inside the sheath, however, the source depends only on the ξ-

coordinate so that all currents in the sheath have no angular component. Similar to the

last section ρ is the sum of the electron density and the ion density ρi. Furthermore J is

the sum of the (local) electron current density and the ion current densities Ji. In terms

of the sources above inside the blow out it is

ρ = ρe + ρi = ja(ξ, r) + ρi, (5.114)

J = Jz~ez = (si(r) + ρ)~ez = (ja(ξ, r) + si(r) + ρi)~ez, (5.115)

Ji = 0. (5.116)

The radial component of the electron and ion current density does not vanish for a single

electron but the sum of all radial currents inside the bunches vanishes in the average.

According to Eq.(5.112) the interior of the bubble can be separated into five zones (see

Fig.5.2). The first (gray) zone describes the interior of the bubble that is free of electrons.

The 2nd (light red) and 4th (light blue) zone are free of electrons too, but the potentials

depend on the bunches. The last two colored zones are the inner domains of the bunches.



Chapter 5. Deep plasma channels for tunable bubble fields 75

Figure 5.2: Five zones model of the blow out with finite sheath thickness ∆. (I)
Gray zone: empty zones, the electron bunches do not influence this zone; (II) Light red
zone: also empty but the electromagnetic potential depends on the current from zone
III; (III) Red zone: interior of the driving bunch; (IV) Light blue zone: empty but the
electromagnetic potential depends on the current from zone V; (V) Blue zone: Interior
of the accelerated electron bunch; Dashed line: External limit of the electron sheath.

The interior of the sheath is an additional 6th region. It is important for the study of

injection physics but does not affect the inner fields if the thickness ∆ is much smaller

than the blowout radius.

In the following subsections first the wake field potential Ψ, the vector potential A and

the fields are calculated from the sources in all five zones. Afterwards, the electron

sheath current for is calculated in the limit that the thickness ∆ is much smaller than

the blowout radius. In the last part the desired fields are given and it is determined

whether a Jz(ξ, r) and a si(r) existed that generate these fields.

5.4.1 The potentials in therm of the sources

To determine the potentials in terms of the sources first the sheath source s0(ξ) is calcu-

lated in terms of the bubble radius. Afterwards the wake field potential is calculated in

all six zones. Starting point is the partial integration of the continuity equation (5.17)
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under the general consideration that Jr 6= 0 in the sheath and zero outside.

∂ρ

∂t
+∇ · J = 0 (5.117)

⇒ ∂

∂ξ
(ρ− Jz) +

1

r

∂

∂r
(rJr) = 0 (5.118)

⇒ ∂

∂ξ

∫ ∞
0

S(ξ, r)rdr + [rJr]
∞
0 = 0 (5.119)

⇒ ∂

∂ξ

∫ rb

0
S(ξ, r)rdr +

∂

∂ξ

∫ rb+∆

rb

S(ξ, r)rdr +
∂

∂ξ

∫ ∞
rb+∆

S(ξ, r)rdr = 0 (5.120)

⇒
∫ rb

0
si(r)rdr +

1

2
[(rb(ξ) + ∆)2 − rb(ξ)2]s0(ξ) = −c (5.121)

Since the left hand side of Eq.(5.121) is independent from r, the integration constant is

also and in terms of the integral source from Eq.(5.21) it is∫ rb

0
si(r)rdr +

1

2
[(rb(ξ) + ∆)2 − rb(ξ)2]s0(ξ) = −c (5.122)

⇒ s0(ξ) =
−2c− 2SI(rb(ξ))

(rb(ξ) + ∆)2 − r2
b (ξ)

=
−2c− 2SI(rb(ξ))

r2
b (ξ)[(1 + ε)2 − 1]

= − 2[SI(rb(ξ)) + c]

r2
b (ξ)(X

2(ξ)− 1)
. (5.123)

Here the relative bunch width ε and the abbreviation X is are introduced. For the

following calculations it is useful to introduce two additional abbreviations β and δ

which are related to ε and X via

ε =
∆

rb
, X = 1 + ε δ(ξ) =

X2

X2 − 1
, β(ξ) = 2δ(ξ) ln(X)− 1. (5.124)

In contrast to the last section c can be used to apply a further continuity condition at the

layer border so that the fields do not jump in radial direction. Before this can be done

it is necessary to determine the wake field potential. This can be done by two partial

integrations of the Poisson equation (5.7). According to the source in Eq.(5.113) there

are three different solutions for Ψ(ξ, r)

Ψ(ξ, r) =

∫
SI(r)

dr

r
+ c1(ξ) ln(r) + Ψ0(ξ), r ≤ rb(ξ) (5.125)

Ψ(ξ, r) =
s0(ξ)

4
r2 + s1(ξ) ln(r) + Ψ1(ξ), rb(ξ) ≤ r ≤ rb(ξ) + ∆ (5.126)

Ψ(ξ, r) = c5(ξ) ln(r) + c6(ξ), r > rb(ξ) + ∆. (5.127)

The integration constants - including c from Eq.(5.121) - are deduced and simplified as

follows:

1) All fields vanish outside the bubble sheath: r > rb + ∆⇒ c5(ξ) = c6(ξ) = 0.

2) The fields in the bubble interior are restricted ⇒ c1(ξ) = 0.
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3) ∂rΨ is continuous in r = rb.

⇒ SI(rb)

rb
=
s0(ξ)

2
rb +

s1(ξ)

rb
(5.128)

(5.123)⇒ s1(ξ) = SI(rb) + c− c+
SI(rb) + c

X2 − 1
(5.129)

(5.124)⇒ s1(ξ) = [SI(rb) + c]δ(ξ)− c (5.130)

4) ∂rΨ is continuous in r = rb + ∆.

⇒ rb + ∆

2
s0(ξ) +

s1(ξ)

rb + ∆
= 0 (5.131)

(5.123),(5.134)⇒ −
r2
bX

2

2

2[SI(rb) + c]

r2
b (X

2 − 1)
+ [SI(rb) + c]δ(ξ)− c = 0 (5.132)

(5.124)⇒ c = 0 (5.133)

⇒ s1(ξ) = SI(rb)δ(ξ) (5.134)

5) Ψ is continuous in r = rb + ∆.

⇒ s0(ξ)

4
(rb + ∆)2 + s1(ξ) ln(rb + ∆) + Ψ1(ξ) = 0 (5.135)

(5.123),(5.134)⇒ Ψ1(ξ) =
1

2
SI(rb)δ(ξ)− SI(rb)δ(ξ) ln(rbX) (5.136)

6) Ψ is continuous in r = rb.

⇒
∫
r=rb

SI(r)
dr

r
+ Ψ0(ξ) =

s0(ξ)

4
r2
b + c3(ξ) ln(rb) + Ψ1(ξ) (5.137)

(5.123)⇒ Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
− SI(rb)

2(X2 − 1)
+ SI(rb)δ(ξ) ln(rb) + Ψ1(ξ) (5.138)

(5.136)⇒ Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
− SI(rb)

2(X2 − 1)
+ SI(rb)δ(ξ) ln(rb)

+
1

2
SI(rb)δ(ξ)− SI(rb)δ(ξ) ln(rbX) (5.139)

⇒ Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
+
SI(rb)

2
− SI(rb)δ(ξ) ln(X) (5.140)

(5.124)⇒ Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
− SI(rb)

2
β(ξ) (5.141)
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With these integration constants the wake field potential inside the blow out, in the

sheath, and outside the layer is

Ψ(ξ, r) =

∫
SI(r)

dr

r
−
∫
r=rb

SI(r)
dr

r
− SI(rb)

2
β(ξ), r ≤ rb(ξ) (5.142)

Ψ(ξ, r) = −1

2

r2

r2
b (ξ)

SI(rb(ξ))

(X2(ξ)− 1)
+ SI(rb)δ(ξ) ln(r)

+
1

2
SI(rb)δ(ξ)− SI(rb)δ(ξ) ln(rbX), rb(ξ) ≤ r ≤ rb(ξ) + ∆ (5.143)

Ψ(ξ, r) = 0, else. (5.144)

This complicated appearing wake potential has the known r-dependency inside the blow

out and converges to a function at the inner layer border that depends on β and the

blow out radius rb. As is shown later, the function β converges to zero for ε→ 0 so that

in this limit both this wake potential and that from the δ-layer model are the same.

The inner longitudinal component of the electromagnetic potential Az only depends on

the electron current in both the driving and the accelerated bunch Je. Since the bunches

are located in the bubble interior, the Poisson equation (5.7) can be solved in the same

way as in the last section. The result is the same cases sensitive solution as in Eqs.(5.32)

to (5.36). These five equations give the longitudinal electromagnetic field component

of the blow out potentials inside the cavity. Outside the layer the potential is set to

zero so that the fields vanish again. In contrast to the last section the sheath can be

used to ensure that Az is not discontinuous at the inner bunch radius rb. In the layer

the only non-vanishing source term is s0(ξ) which is related to the inner source si by

Eq.(5.123) and rb(ξ). So the fields inside the layer are determined by the wake potential

solely. Similar to the last section the radial component Ar can be expressed in terms of

σ(ξ) = −0.5∂Ψ0(ξ)/∂ξ again

1

r

∂

∂r
(rAr(ξ, r)) = −∂Ψ

∂ξ
⇒Ar(ξ, r) = −1

2
r
∂Ψ0(ξ)

∂ξ
= rσ(ξ). (5.145)

This time, however, the function Ψ0 bears information about the sheath width ∆.

5.4.2 Calculate the electron sheath current

To determine the electron current in the bubble sheath it is necessary to solve the equa-

tions of motion of a test electron at positions r = rb(ξ). In the last section a differential

equation that depends on the sources and rb solely was derived. To achieve this first an

expression for the change of the radial momentum due to a shift in ξ-direction inside the

volume was calculated. Afterward the potentials were evaluated at the border. Since

Ψ(ξ, r) and A(ξ, r) are continuous in r = rb and since the general equation of motion
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(5.48) applies also in this section, it is possible to give an equivalent expression fro a finite

width layer. All that remain s to do is to evaluate the potentials and their derivations

at position r = rb:

Ψ(ξ, r = rb) =

∫
r=rb

SI(r)
dr

r
+ Ψ0(ξ) = −SI(rb)

2
β(ξ), (5.146)

Ar(ξ, r = rb) = rbσ(ξ), (5.147)

∂Ψ

∂ξ

∣∣∣∣
r=rb

=
dΨ0

dξ
= −SI(rb)

rb

drb
dξ
− si(rb)rb

2
β(rb)

drb
dξ
− SI(rb)

2
β′(rb)

drb
dξ
, (5.148)

∂Ψ

∂r

∣∣∣∣
r=rb

=
SI(rb)

rb
, (5.149)

∂Ar
∂ξ

∣∣∣∣
r=rb

= rb
dσ

dξ
(5.150)

Az
∂r

∣∣∣∣
r=rb

=

λ(ξ)/rb re < ξ < re + le

JA(ξ, ree)/rb ree < ξ < ree + lee

. (5.151)

Here, the functions λ and JA are defined in Eq.(5.55) and it was used that β′(rb) =

dβ(rb)/drb.

The difference to the δ-layer model is now visible. It is the appearance of the factors β

and β′ that bear the information about the layer with width ∆. The equation of motion

for a single electron at position rb - the electron sheath current - can be written in the

same form as in the last section [cmp. Eq.(5.58)]

A(rb)
d2rb
dξ2

+B(rb)

(
drb
dξ

)2

+ C(rb) =


λ(ξ)/rb ξe ≤ ξ ≤ ξe + le

JA(ξ, ree)/rb ξee ≤ ξ ≤ ξee + lee

0 else

. (5.152)

To determine the coefficient functions the procedure is the same as in before. This time,

however, all derivatives must include the β-terms, too. Fortunately, all derivations are

terms of dσ/dξ, so it is sufficient to calculate first

dσ

dξ
= −1

2

d2Ψ0

dξ2
= −1

4

d

dξ

([
−2

SI(rb)

rb
− si(rb)rbβ − SI(rb)β′

]
drb
dξ

)
(5.153)

⇒ dσ

dξ
=

1

4

[
2
SI(rb)

rb
+ si(rb)rbβ + SI(rb)β

′
]
d2rb
dξ2

+
1

4
SI(rb)β

′′
(
drb
dξ

)2

+
1

4

[
2si(rb)− 2

SI(rb)

r2
b

+ si(rb)β + 2si(rb)rbβ
′ + s′i(rb)rbβ

](
drb
dξ

)2

. (5.154)

Now every summand in Eq.(5.57) is calculated anew and the different contributions to
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A, B, and C are marked colored. Terms that belong to A(rb) are marked red, those that

belong to B(rb) are marked blue and all other terms are marked green. They belong to

C(rb).

(i)
∂Ar
∂ξ

= rb
dσ

dξ
(5.155)

(5.154)⇒ ∂Ar
∂ξ

=
1

4

[
2SI(rb) + si(rb)r

2
bβ + SI(rb)rbβ

′] d2rb
dξ2

+
1

4
SI(rb)rbβ

′′
(
drb
dξ

)2

+
1

4

[
2si(rb)rb − 2

SI(rb)

rb
+ si(rb)rbβ + 2si(rb)r

2
bβ
′ + s′i(rb)r

2
bβ

](
drb
dξ

)2

(5.156)

(ii)
∂Ψ

∂ξ

drb
dξ

(5.148)
= −

(
SI(rb)

rb
+
si(rb)rb

2
β(rb) +

SI(rb)

2
β′(rb)

)(
drb
dξ

)2

(5.157)

(iii) (1 + Ψ)
d2rb
dξ2

(5.146)
=

(
1− SI(rb)

2
β(ξ)

)
d2rb
dξ2

(5.158)

(iv)

[
1 + p2

r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r
=

[
1 + p2

r

2(1 + Ψ)2
+

(1 + Ψ)2

2(1 + Ψ)2

]
SI(rb)

rb
(5.159)

(5.43)⇒
[

1 + p2
r + (1 + Ψ)2

2(1 + Ψ)2

]
∂Ψ

∂r
=
SI(rb)

rb

1 + (1 + Ψ)2

2(1 + Ψ)2
+
SI(rb)

2rb

(
drb
dξ

)2

(5.160)

Adding all colored terms together gives the coefficient functions

1) A(rb) = 1− SI(rb)

2
β − 1

4

[
2SI(rb) + si(rb)r

2
bβ + SI(rb)rbβ

′] (5.161)

⇒ A(rb) = 1− SI(rb)

2
− 1

4
(2SI(rb) + si(rb)r

2
b )β −

rb
4
SI(rb)β

′ (5.162)

2) B(rb) = −SI(rb)
rb

− si(rb)rb
2

β − SI(rb)

2
β′ − SI(rb)

2rb
− rb

4
SI(rb)β

′′

− 1

4

[
2si(rb)rb − 2

SI(rb)

rb
+ si(rb)rbβ + 2si(rb)r

2
bβ
′ + s′i(rb)r

2
bβ

]
(5.163)

⇒ B(rb) = −
[
SI(rb)

rb
+
si(rb)rb

2

]
−
[
3si(rb)rb + s′i(rb)r

2
b

] β
4

− [SI(rb) + si(rb)r
2
b ]
β′

2
− SI(rb)rb

β′′

4
(5.164)

3) C(rb) = −1 + (1 + Ψ)2

2(1 + Ψ)2

SI(rb)

rb
(5.165)

⇒ C(rb) = −SI(rb)
2rb

(
1 +

(
1− SI(rb)

2
β

)−2
)

(5.166)
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5.4.3 Calculate the electron sheath current in the limit ε→ 0

To model the electron sheath usually a very thin sheath around a large bubble is assumed.

A more mathematical expression for this idea is that for ε→ 0 the electrons generate a

quasi two-dimensional surface-current density. In this case also the equation of motion

for a single test electron in the bubble sheath simplifies dramatically. Of course the

absolute thickness is never zero but the limit ε→ 0 later implies that the inner fields are

independent from the sheath. This in turn is helpful because then all results from the

last section can be transfered to this section.

Since all β, β′, β′′, and rb strongly depend on ε this subsection derives the reduced sheath

equation of motion in terms of X = 1 + ε [also remember the definitions in Eq.(5.124)].

To determine the limits in Eqs.(5.162), (5.164), and(5.166) it is necessary to know the

source term si(r) or at least how it behaves for r → rb. To calculate the most general

limits, however, it is sufficient to assume that si is analytical. Then si(r), s′i(r), and

SI(r) are expandable in the Taylor series

si|r=0(r) =
∞∑
n=0

s
(n)
i (0)

n!
rn (5.167)

s′i|r=0(r) =
∞∑
n=1

s
(n)
i (0)

n!
nrn−1 (5.168)

SI |r=0(r) =

∫ r

0
si(r

′)r′dr′ =

∞∑
n=0

s
(n)
i (0)

n!

∫ r

0
r′n+1dr′ =

∞∑
n=0

s
(n)
i (0)

n!

rn+2

(n+ 2)
(5.169)
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around the origin and the expansions converge inside the blow out. Following the idea

above these Taylor expansions are substituted into Eqs.(5.162), (5.164), and (5.166):

A(rb) = 1− SI(rb)

2
− 1

4
(2SI(rb) + si(rb)r

2
b )β −

rb
4
SI(rb)β

′ (5.170)

⇒ A(rb) = 1−
∞∑
n=0

[
s

(n)
i (0)

n!

rn+2
b

2(n+ 2)
− 1

4

(
2s

(n)
i (0)

n!

rn+2
b

(n+ 2)
+
s

(n)
i (0)

n!
rn+2
b

)
β

]

− 1

4

∞∑
n=0

s
(n)
i (0)

n!

rn+3
b

(n+ 2)
β′ (5.171)

⇒ A(rb) = 1−
∞∑
n=0

s
(n)
i (0)

n!
rn+2
b

[
1

2(n+ 2)
− 1

4

(
2

n+ 2
+ 1

)
β − 1

4

rb
(n+ 2)

β′
]

(5.172)

B(rb) = −
[
SI(rb)

rb
+
si(rb)rb

2

]
−
[
3si(rb)rb + s′i(rb)r

2
b

] β
4

− [SI(rb) + si(rb)r
2
b ]
β′

2
− SI(rb)rb

β′′

4
(5.173)

⇒ B(rb) = −
∞∑
n=0

[
s

(n)
i (0)

n!

rn+1
b

(n+ 2)
+
s

(n)
i (0)

2n!
rn+1
b

]

−
∞∑
n=0

[
3s

(n)
i (0)

n!
rn+1
b +

s
(n)
i (0)

n!
nrn+1

b

]
β

4
(5.174)

−
∞∑
n=0

[
s

(n)
i (0)

n!

rn+2
b

(n+ 2)
+
s

(n)
i (0)

n!
rn+2
b

]
β′

2
−
∞∑
n=0

s
(n)
i (0)

n!

rn+3

(n+ 2)

β′′

4

⇒ B(rb) = −
∞∑
n=0

s
(n)
i (0)

n!
rn+1
b

[
1

n+ 2
+

1

2
+
n+ 3

4
β +

n+ 3

n+ 2
rb
β′

2
+

r2
b

(n+ 2)

β′′

4

]
(5.175)

C(rb) = −SI(rb)
2rb

(
1 +

(
1− SI(rb)

2
β

)−2
)

(5.176)

⇒ C(rb) = −SI(rb)
2rb

1 +

(
1−

∞∑
n=0

s
(n)
i (0)

n!

rn+2

2(n+ 2)
β

)−2
 (5.177)

All terms that must be considered in Eqs.(5.172) and (5.175) in the limit ε → 0 are

similar to β, rbβ′, and r2
bβ
′′. In Eq.(5.177), however, terms like rkβ appear for arbitrary

k ≥ 2. This circumstance leads to a situation similar to that from last section where the

argumentation was to assume that an integration constant, namely c4, was larger than

unity but smaller than SI/2. In the following more general calculations this conclusion

arises automatically.
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To calculate the limits for the derivatives of β first it is necessary to differentiate with

respect to rb. With

d

drb
=

dε

drb

dX

dε

d

dX
= −∆

r2
b

d

dX
= −X − 1

rb

d

dX
= −(X − 1)2

∆

d

dX
. (5.178)

this can be done according to

β′(rb) =
dβ

drb
= −(X − 1)2

∆

dβ

dX

(5.124)
= −(X − 1)2

∆

d

dX

(
2
X2 ln(X)

X2 − 1
− 1

)
(5.179)

⇒ β′(rb) = −(X − 1)2

∆

(
4X ln(X) + 2X

X2 − 1
− 4X3 ln(X)

(X2 − 1)2

)
(5.180)

⇒ β′(rb) = − 1

∆

(
−4X ln(X) + 2X3 − 2X

(X + 1)2

)
(5.181)

and

β′′(rb) =
dβ′

drb
=

(X − 1)2

∆2

d

dX

(
(X − 1)2 dβ

dX

)
(5.182)

⇒ β′′(rb) =
(X − 1)2

∆2

d

dX

(
−4X ln(X) + 2X3 − 2X

(X + 1)2

)
(5.183)

⇒ β′′(rb) =
(X − 1)2

∆2

(
−4 ln(X)− 4 + 6X2 − 2

(X + 1)2
− −8X ln(X) + 4X3 − 4X

(X + 1)3

)
(5.184)

In the coefficient functions both β′ and β′′ are multiplied by rb and r2
b respectively. Thus,

the ∆ in the denominators cancel and it is

rbβ
′ = − 1

∆

(
−4X ln(X) + 2X3 − 2X

(X + 1)2

)
∆

(X − 1)
=
−4X ln(X) + 2X3 − 2X

(X + 1)2(X − 1)
(5.185)

r2
bβ
′′ = β′′

∆2

(X − 1)2
= 2

(
−2 ln(X)− 2 + 3X2 − 1

(X + 1)2
− −4X ln(X) + 2X3 − 2X

(X + 1)3

)
(5.186)

The limits of β, rbβ′, and r2
bβ
′′ now vanish as

lim
ε→0

β(ε) = lim
X→1

(
2
X2 ln(X)

X2 − 1
− 1

)
l′H
= lim

X→1

(
4X ln(X) + 2X

2X
− 1

)
= 0. (5.187)

lim
X→1

rbβ
′ = lim

X→1

4X ln(X)− 2X3 + 2X

(X + 1)2(X − 1)

l′H
= lim

X→1

4 ln(X) + 4− 6X2 + 2

2(X + 1)(X − 1) + (X + 1)2
= 0,

(5.188)
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lim
X→1

r2
bβ
′′ = lim

X→1
2

(
−2 ln(X)− 2 + 3X2 − 1

(X + 1)2
− −4X ln(X) + 2X3 − 2X

(X + 1)3

)
= 0.

(5.189)

All other limits of the form limε→0 r
k
bβ diverge for k ≥ 2 because

lim
ε→0

rkbβ = lim
X→1

∆k

(X − 1)k

(
2
X2 ln(X)

X2 − 1
− 1

)
= ∆k lim

X→1

(
2X2 ln(X)− (X2 − 1)

(X − 1)k+1(X + 1)

)
l′H
= ∆k lim

X→1

(
4X ln(X) + 2X − 2X

(k + 1)(X − 1)k(X + 1) + (X − 1)k+1

)
l′H
= ∆k lim

X→1

(
4 ln(X) + 4

k(k + 1)(X − 1)k−1(X + 1) + 2(k + 1)(X − 1)k

)
(5.190)

⇒ lim
ε→0

rkbβ =∞, ∀k ≥ 2 (5.191)

If Eqs.(5.187), (5.188), (5.189), and (5.191) are substituted into Eqs.(5.172), (5.175), and

(5.177) the coefficient functions in the limit ε→ 0 are

lim
ε→0

A(rb) = 1−
∞∑
n=0

s
(n)
i (0)

n!
rn+2
b

[
1

2(n+ 2)

]
= 1− SI(rb)

2
(5.192)

lim
ε→0

B(rb) = −
∞∑
n=0

s
(n)
i (0)

n!
rn+1
b

[
1

n+ 2
+

1

2

]
= −

[
SI(rb)

rb
+
si(rb)rb

2

]
(5.193)

lim
ε→0

C(rb) = −SI(rb)
2rb

. (5.194)

At this point it is important to mention that A, B, and C converge for all possible

source terms si(r) as long as these are analytical. Furthermore, it is now possible to

write down the equation of motion for a test particle in the electron sheath in the limit

of an arbitrary thin sheath. This ODE is exactly the same as in Eq.(5.71) which proves

that the model of a blow out with an infinitely thin layer indeed is a useful model.

[
1− SI(rb)

2

]
rb
d2rb
dξ2
−
[
SI(rb) +

si(rb)r
2
b

2

](
drb
dξ

)2

− SI(rb)

2
=


λ(ξ) ξe ≤ ξ ≤ ξe + le

JA(ξ, ree) ξee ≤ ξ ≤ ξee + lee

0 else

(5.195)

Since this section includes a layer around the blow out it is more appropriate for the

study of injection physics. In the following the fields in all regions of the bubble are

calculated first for a finite ε = ∆/rb and afterwards in the limit ε→ 0 again.
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5.4.4 Calculate the fields from the sources and vice versa

Now that the wake field potential and the electromagnetic potential, the equations of

motion for test electrons inside the blowout, and an equation for the electron sheath

current is found, it is possible to calculate the fields in terms of the sources. Since there

are five different solutions to Az, one for each of five areas inside the bubble, the solution

for the fields will be case sensitive, too. The general expression is already known from

Eq.(5.75)

B = −
(
r
dσ

dξ
+
∂Az
∂r

)
~eϕ, E = −

(
SI
r

+ r
dσ

dξ
+
∂Az
∂r

)
~er − 2σ~ez, (5.196)

In this section, however, all coefficient functions are depending on the sheath width. This

means that

SI(r) =

∫ r

0
si(r)rdr, JA(ξ, r) =

∫ r

0
ja(ξ, r

′)r′dr′, σ(ξ) = −1

2

dΨ0

dξ
, (5.197)

Ψ0(ξ) = −
∫
r=rb

SI(r)
dr

r
− SI(rb)

2
β, β = 2δ(ξ) ln(X)− 1, δ(ξ) =

X2

X2 − 1
, (5.198)

X = 1 + ε, ε =
∆

rb
, λ(ξ) = −1

2
J0r

2
e(ξ). (5.199)

In the limit ε→ 0 all these terms converge to the known terms from the δ-layer model.

Thus, all inner fields converge to those summarized in subsection 5.3.4 and since ∆� rb

is assumed everywhere inside the blow out, it is justified to adopt the sources in terms

of given fields from the δ-layer model. The fields and the source inside the sheath are

always given by the limit of the inner sources in Eq.(5.123).

5.5 Important examples

In this section some important examples are studied. The first examples calculate the ion

density, the electron currents and the electron density inside the blow out from ρe = Je

and ρion(ξ, r) = Je(ξ, r) − si(r) − ρe = −si(r) inside the electron bunches as well as

ρe = Je = 0 and ρion(ξ, r) = −si(r) outside the bunches. Under the assumption that the

driver and the accelerated bunch do not affect the sheath shape the perpendicular parts

of the fields calculate like those in sector I

Bϕ
(5.82)

=
r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)], Er

(5.83)
=

r

2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)]− SI(r)

r
.

(5.200)

The only missing variable is the explicit solution of the blow out radius rb. This can be

calculated in some special cases.
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(a) (b)

Figure 5.3: Electron layer shapes in black are solutions to the electron current ODE.
Red circles represent former idealized bubble models. (a): Difference between a perfect
sphere and the actual layer for a constant plasma density. (b): Difference between a

perfect sphere and the actual layer for a linear plasma density.

5.5.1 ρion(r) =const

For the case of a constant density the new blow out model gives the known fields from

previous works. Now, however, it is possible to include a shape deformation of the

electron layer due to the driver and the accelerated bunch. Since the density is normalized

to the plasma background density it is ρion = 1 and thus

ρion = 1 ⇒ si = −1
(5.110)⇒ Si(r)

r
= −r

2

(5.23)⇒ s0(ξ) =
rb(ξ)

2
, (5.201)

s0(ξ) =
rb(ξ)

2
⇒ s′0(ξ) =

r′b(ξ)

2
⇒ s′′0(ξ) =

r′′b (ξ)

2
, (5.202)

Ez(ξ) = s0(ξ)r′b(ξ) =
1

2
rb(ξ)r

′
b(ξ). (5.203)

According to Eq.(5.71) the sheath radius can be found by solving the ODE

[
1 +

r2
b

4

]
rb
d2rb
dξ2

+ r2
b

(
drb
dξ

)2

+
r2
b

4
= 0. (5.204)

As Fig.5.3a shows the blow out is spherical near the peak and the tail but in between the

shape slightly differs from a perfect sphere. In recent analytical bubble models [17, 18, 22]
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(a) (b)

Figure 5.4: Plasma density and blow out radius for constant plasma density. (a):
Empty volume. (b): Volume with driver and accelerated bunch.

the confining radial electrical and circular magnetic field

E =
1

4


x

y

−2ξ

 =
r

4
~er −

ξ

2
~ez, B =

1

4


y

−x
0

 = −r
4
~eϕ (5.205)

are calculated for a perfect sphere. I this model these fields also imply a perfect sphere

because Ez = rbr
′
b/2 = −ξ/2 gives

rbr
′
b = −ξ ⇒ rb =

√
c− ξ2 ⇒ r2

b + ξ2 = c. (5.206)

In Fig.5.4 the 3D blow out is shown both as an empty volume and with a deformation

due to the included bunches. The red background symbolizes the constant background

density. If the bunch densities are considered the perpendicular fields are modify. Since

r′b = −ξ/rb and r′′b = −1/rb + ξr′b/r
2
b the corrected fields inside the driver are

Bϕ
(5.89)

=
r

2

[
(r′b)

2

2
+
rbr
′′
b

2

]
+
J0

2
r =

(
J0

2
− 1

4

)
r, (5.207)

Er
(5.90)

=
r

2

[
(r′b)

2

2
+
rbr
′′
b

2

]
+
r

2
+
J0

2
r =

(
J0

2
+

1

4

)
r. (5.208)
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(a) (b)

Figure 5.5: Plasma density and blow out radius for linear plasma density profile and
α = 1. (a): Empty volume. (b): Volume with driver and accelerated bunch.

Inside the accelerated electron bunch the field components are

Bϕ
(5.97)

=
r

2

[
(r′b)

2

2
+
rbr
′′
b

2

]
+
JA(ξ, r)

r
=
JA(ξ, r)

r
− 1

4
r, (5.209)

Er
(5.98)

=
r

2

[
(r′b)

2

2
+
rbr
′′
b

2

]
+
r

2
+
JA(ξ, r)

r
=
JA(ξ, r)

r
+

1

4
r. (5.210)

5.5.2 ρion(r) = αr

If the plasma density is linear in r the border shape is further deformed and steeper at

the tail (see Fig.5.3b). The longitudinal field component can be calculated very easy as

ρion = αr ⇒ si = −αr (5.110)⇒ Si(r)

r
= −αr

2

3

(5.23)⇒ s0(ξ) = α
rb(ξ)

2

3
, (5.211)

s0(ξ) = α
rb(ξ)

2

3
⇒ s′0(ξ) = α

2

3
rb(ξ)r

′
b(ξ) ⇒ s′′0(ξ) = α

2

3
[rbr

′′
b + (r′b)

2], (5.212)

Ez(ξ) = s0(ξ)r′b(ξ) =
α

3
rb(ξ)

2r′b(ξ). (5.213)

According to Eq.(5.71) the sheath radius can be found by solving the ODE

[
1 + α

r3
b

6

]
rb
d2rb
dξ2

+ α
5r2
b

6

(
drb
dξ

)2

+ α
r3
b

6
= 0. (5.214)
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(a) (b)

Figure 5.6: Plasma density and blow out radius for parabolic plasma density profile
with α = 1. (a): Empty volume. (b): Volume with driver and accelerated bunch.

As Fig.5.5a suggests the form of an empty blow out is more pan cake like. If the in-

ner bunch densities are considered, however, the shape is stretched like in the previous

example. The only difference is that the left and right tail are still more flattened.

5.5.3 ρion(r) = αr2

If the plasma density is parabolic in r the border shape is further deformed and even

steeper at the tail as in the linear model. In the present model the longitudinal field

component and the electron sheath current are

ρion = αr2 ⇒ si = −αr2 (5.110)⇒ Si(r)

r
= −αr

3

4

(5.23)⇒ s0(ξ) = α
rb(ξ)

3

4
, (5.215)

s0(ξ) = α
rb(ξ)

3

4
⇒ s′0(ξ) = α

3

4
rb(ξ)

2r′b(ξ) ⇒ s′′0(ξ) = α
3

4
rbr
′′
b + α

3

2
rb(r

′
b)

2,

(5.216)

Ez(ξ) = s0(ξ)r′b(ξ) =
α

4
rb(ξ)

3r′b(ξ) (5.217)[
1 + α

r4
b

8

]
rb
d2rb
dξ2

+ α
3r4
b

4

(
drb
dξ

)2

+ α
r4
b

8
= 0. (5.218)

As Fig.5.6 shows, the plasma density is very steep at the channel border and flat in

the mid. Thus the consideration of the shape adjustment to the bunch densities is

almost negligible for the trapped blue bunch. The driver still elongates the blow out but

compared to the last two examples the resulting shape change is rather small. In general

the blow out has lost its spherical form.
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(a) (b)

Figure 5.7: Plasma density and blow out radius for Gaussian plasma density profile
with α = −1.5 and σ = 4. (a): Empty volume. (b): Volume with driver and accelerated

bunch.

5.5.4 ρion(r) = 1− α exp(−r2/σ2)

In this example a Gaussian plasma profile of the form ρion(r) = max(0, 1−α exp(−r2/σ2))

is assumed so that for α > 1 the density is not negative. If α and σ are chosen right

the accelerated bunch is accelerated in the empty part of the channel. Here the sources

sources are simply

si(r) = 0 ⇒ SI(r)

r
= 0 ⇒ Bϕ = Er =

r

4

[
(r′b)

2 + rbr
′′
b

]
(5.219)

At the blow out border the density is finite so that the sources are

ρion = 1− αe−r2/σ2 ⇒ si = −1 + αe−r
2/σ2 (5.110)⇒ Si(r)

r
= −r

2
− ασ2

2r
e−r

2/σ2
, (5.220)

(5.23)⇒ s0(ξ) =
rb
2

+
ασ2

2rb
e−r

2
b/σ

2 ⇒ Ez(ξ) = s0(ξ)r′b(ξ) =
rbr
′
b

2
+
ασ2

2rb
r′be
−r2b/σ

2
.

(5.221)

Now, that the channel density is dropped to zero on the acceleration axis the focusing

electric and magnetic fields are identical. Thus the focusing force at the bunch border

r = ρ is - according to Eq.(5.39) -

F⊥ =
dpr
dt

= −ρ
2

[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)]

(
1− pz

γ

)
≈ − ρ

4γ2
[s′0(ξ)r′b(ξ) + s0(ξ)r′′b (ξ)].

(5.222)
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5.6 Summary

In this chapter two analytical models for the blow out regime of a radially symmetric

plasma channel are derived. Both models hold for arbitrary radial profiles and represent

the basis for tunable blow out fields. The presented analysis is done for a driving elec-

tron bunch but can easily be transferred to the bubble regime if the potentials of the

driver are replaced by the laser potential and if the time averaged (over a laser period)

ponderomotive force is included into the equations of motion of single test electrons.

The first model in section 5.3 describes a blow out with an infinitely thin electron layer.

The layer carriers a surface current that corresponds to a current generated by those

electrons that are blown out from the cavity. A major result of this section is the

connection between the fields, the currents, and the densities that allows to model the

densities according to given fields and conversely. The form of the layer is determined by

an ODE with coefficients that are given by the densities and currents. The potentials and

fields inside the blow out are calculated from source terms for electron and ion density

and currents. Afterward, the sources for given field configurations are calculated.

The second model considers a thin but finite electron layer around the blowout. The

electron sheath current in this layer is calculated in terms of the layer width as well as

in the limit that the layer is very small against the blowout radius. The inner fields and

potentials are calculated in terms of sources again and around. In the limit that the

relative sheath width vanishes the sheath current converges to that from the first model

and the inner fields converge to the known ones, too. The advantage of the second model

over the first is that the physics of electron injection can be studied in more realistic way

while it is still possible to adjust the plasma density to desired fields.

A recent work that is build up on these models but is settled in the bubble regime has

shown that a deep plasma channel that is (nearly) empty on-axis can strongly modify

both the bubble fields, the laser dynamics, and the trapping [109]. Here the use of a deep

channel demonstrates an increased effective bubble phase velocity, an improved energy

gain, a longitudinal field that has a plateau and allows for mono-energetic acceleration,

and a strongly reduced focusing force. Furthermore, new bubble scaling laws and field

distributions for the deep channel are derived. According to these new scaling laws

ultra-short pancake-like laser pulses help to match the dephasing and depletion length

and thus lead to ultra high energy gains of accelerated electrons. The lack of focusing

in the channel eliminates the betatron resonance and thus leads to much sharper beam

energy distributions.

The last section of this chapter discusses some important examples that show how the

blow out shape is deformed by the driving and the trapped electron bunch. The plasma
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densities for which the shape and the fields are calculated have a constant, a linear, a

square, and an exponential profile.

Results from this chapter are/will be published in the following publications:

A. Pukhov, O. Jansen, T. Tueckmantel, J. Thomas, and I. Yu. Kostyukov, Field-reversed

bubble in deep plasma channels for high quality electron acceleration, PRL 113, 245003

(2014), published

J. Thomas, J. Pronold, A. Garbonov, I. Kostyukov, A. Pukhov, A non-linear theory for

multi-dimensional relativistic plasma wave wake fields in tailored plasma channels, to be

submitted

J. Thomas, A. Pukhov, Delta layer model with important examples, to be submitted

J. Thomas, J, Pronold, A. Pukhov, Electron injection mechanisms for broken wake fields

in deep plasma channels, to be submitted



Chapter 6

Summary and prospect

In the past, many acceleration concepts for electrons were investigated and developed. In

the field of plasma-based electron acceleration two principle methods are distinguished:

the particle beam-driven plasma wake field acceleration (PWFA) and the laser-driven

plasma wake field acceleration (LWFA). The latter can form a highly non-linear broken

wave which leads to an electronic plasma cavity (“bubble”) [10]. A similar wake field

structure can be created in PWFA by a dense charged particle beam in the "blowout

regime". These regimes can be used as effective electron accelerators with various possible

electron injection techniques. The strong and nearly harmonic wake fields (with electric

field strength of more than 100 GV/m) focus the injected electrons to the center of the

cavity.

Recent injection techniques as the beat wave mechanism, the density gradient method,

the ionization-based injection, the injection by (transverse) colliding laser pulses, and the

self-injection of plasma background electrons have been developed. During this process

the achievable electron energy has been continuously raised. Recent experiments report

form bunches with energies above 10 GeV and numerical simulations suggest that the

limit is not reached by far [1, 74]. The relativistic emittance of the accelerated electron

bunch has been reduced to a few mm mrad while at the same time smaller energy

spreads could be produced. In comparison to classical linear or circular accelerators,

however, these energy spreads are rather large. Since many present-day applications

base on the production of high energetic, small spread electron bunches, it is of utmost

interest to develop new bubble acceleration techniques that minimize the energy spread

and maximize the number of accelerated electrons.

This thesis presents a new injection mechanism that helps to reduce the energy spread

under a critical value of 1% mean bunch energy and simultaneously allows to trap more

than 70% of the injected electrons. Furthermore, a new bubble model is introduced that

93



Chapter 5. Deep plasma channels for tunable bubble fields 94

includes radiation reaction effects for ultra-high particle energies. In this context it is

analyzed again at which injection angle electron bunches must be injected to minimize

the energy spread. In both cases - the model with and without radiation reaction -

limiting factors like depletion are neglected.

After the second chapter has given an over view of recent and former plasma wake

fields acceleration and injection techniques, the third chapter discusses the new injection

mechanism for the bubble regime. Here, the lateral injection of an electron bunch under

a certain angle into the bubble is investigated. Furthermore, it has been shown that

the mean FWHM as well as the trapping rate can be optimized if the injection angle is

chosen small enough. An analytical estimate for the maximal applicable injection angle

has been found from a guiding center approximation and a multi-scale approach to the

envelope approximation function of the trajectory of a single test electron.

An important conclusion of this chapter is that for high laser energies E ≥ 50J and small

injection angles α ≈ π/180 rad the minimal FWHM of the trapped electron bunches

could be pushed well under 0.5% of the actual bunch energy. At the same time, the

ratio of trapped electrons stays well above 70% for all energies. The cut-off angle above

which no electrons can be trapped was numerically reviewed in 3d bubble multi particle

simulations and analytically evaluated in a reduced 2d model. The comparison showed

that for laser energies E ≥ 50J both angles are comparable but not for lower energies.

Consequently, the side injection of electron bunches in the GeV-regime is a promising

accelerating and focusing mechanism that will be a center of interest for the next time.

Another important aspect of the side injection, that has been ignored so far, is the effect

of radiation reaction of accelerated electrons. In the bubble regime the field strengths

are small compared to the Schwinger fields but if the electron energies is in the order

of 10 GeV and above, radiation reaction effects become important. The most energetic

simulations in this chapter involve laser energies of J = 1 kJ and lead to mean electron

bunch energies in the range of 23 GeV. Since the energy spread is minimized for these

high energies, the forth chapter discusses the side injection and acceleration of electrons

in the bubble regime under consideration of radiation. The radiation reaction is derived

from a covariant formulation of the equation of motion to which a linear damping term is

added. This term then is discussed and analyzed for high energies and the special form

of the bubble fields that are given analytically.

It is shown that the mean FWHM as well as the trapping rate can be optimized if

the injection angle is chosen small enough. An important conclusion of this chapter is

that for laser energies E ≥ 50J and small injection angles α ≈ π/180 rad the minimal

mean FWHM of the trapped electron bunches cannot be pushed under a limit of 0.5%

of the actual bunch energy. At the same time, the ratio of trapped electrons stays well
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above 70% for all energies. The cut-off angle above which no electrons can be trapped is

numerically reviewed in 3d bubble multi particle simulations and analytically evaluated

in a reduced 2d model. The comparison shows that for laser energies E ≥ 50J both

angles are comparable but not for lower energies. Consequently, the side injection of

electron bunches in the GeV-regime is a promising accelerating and focusing mechanism

that will be a center of interest for the next time. For higher laser energies the radiation

reaction terms lead to a broadening of the energy spreads so that it is not possible to

achieve less than 1% mean energy spread if the laser energy is above a certain limit. For

small laser intensities in the bulk of I = 1019 W/cm2 the limit is 100 kJ. For higher

intensities the limit decreases so that in a simulation series with I = 1022 W/cm2 the

mean FWHM is well above 1% if the energy is higher than 10 kJ. The optimal injection

angles at which most electrons can be trapped must be chosen very small for energies

larger than 1 kJ and small intensities. For high intensities the optimal injection angles

are in the same order of magnitude as for low energies and low intensities again.

In the last section of the forth chapter an analytical estimate of the radiated energy is

calculated from a guiding center approximation to the damped single particle trajectory.

It could be shown that higher laser energies need smaller injection angles than lower

ones and that higher laser intensities allow higher injection angles than lower ones. The

solution of the guiding center approximation also showed that for ultra-high electron

energies the effective acceleration length is reduced proportional to the expected energy

maximum after acceleration.

In the third and forth chapter the only limiting factor for the electron acceleration is the -

damping dependent - dephasing length. Another factor that appears in experiments and

PIC simulations is the depletion length after which the driver of the bubble is consumed

and the bubble breaks. Recent PIC simulations and bubble models suggest that it is

possible that avoid depletion if the driver runs through a plasma channel. If the plasma

density drops to zero at the acceleration axis the intern bubble fields gain an additional

degree of freedom. In this context the fifth chapter two analytical models for the blow

out regime of a radially symmetric plasma channel are derived. Both models hold for

arbitrary radial profiles and represent the basis for tunable blow out fields. The presented

analysis is done for a driving electron bunch but can easily be transferred to the bubble

regime if the potentials of the driver are replaced by the laser potential and if the time

averaged (over a laser period) ponderomotive force is included into the equations of

motion of single test electrons.

The first model in section 5.3 describes a blow out with an infinitely thin electron layer.

The layer carriers a surface current that corresponds to a current generated by those

electrons that are blown out from the cavity. A major result of this section is the
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connection between the fields, the currents, and the densities that allows to model the

densities according to given fields and conversely. The form of the layer is determined by

an ODE with coefficients that are given by the densities and currents. The potentials and

fields inside the blow out are calculated from source terms for electron and ion density

and currents. Afterward the sources for given field configurations are calculated. The

second model considers a thin but finite electron layer around the blowout. The electron

sheath current in this layer is calculated in terms of the layer width as well as in the limit

that the layer is very small against the blowout radius. The inner fields and potentials

are calculated in terms of sources again and around. In the limit that the relative sheath

width vanishes the sheath current converges to that from the first model and the inner

fields converge to the known ones, too. The advantage of the second model over the first

is that the physics of electron injection can be studied in more realistic way while it is

still possible to adjust the plasma density to desired fields.

The last section of the fifth chapter discusses some important examples that show how

the blow out shape is deformed by the driving and the trapped electron bunch. The

plasma densities for which the shape and the fields are calculated have a constant, a

linear, a square, and an exponential profile.

A recent work that is build up on these models but is settled in the bubble regime

has shown that a deep plasma channel that is (nearly) empty on the driver axis can

strongly modify both the bubble fields, the laser dynamics, and the trapping [109]. Here

the use of a deep channel demonstrates an increased effective bubble phase velocity,

an improved energy gain, a longitudinal field that has a plateau and allows for mono-

energetic acceleration, and a strongly reduced focusing force. Furthermore, new bubble

scaling laws and field distributions for the deep channel are derived. According to these

new scaling laws ultra-short pancake-like laser pulses help to match the dephasing and

depletion length and thus lead to ultra high energy gains of accelerated electrons. The

lack of focusing in the channel eliminates the betatron resonance and thus leads to much

sharper beam energy distributions.



Appendix A

Derivations in the quasi-static

cylindrical approximation for

chapter 5

In section 5.2 a canonical transformation into the moving frame system

ξ = ct− z (A.1)

was implemented and it was assumed that all functions are quasi-static in this frame.

Thus it was found that ∂/∂t ≡ 0 and the differential operators transformed according

to ∂/∂z ≡ −∂/∂ξ and ∂/∂t ≡ +∂/∂ξ. A further symmetry in the system assumed that

the plasma density and all functions are cylinder symmetric which means that in the

coordinates

x = r cos(ϕ), y = r sin(ϕ), ξ = ξ (A.2)

all derivatives in ϕ-direction vanish. With these assumptions all first order derivatives

in the co-moving frame in cylindric coordinates are

gradf = ∇f = ~er
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If the vector valued function A represents the vector potential inside the bubble or the

blow out, the cylindrical symmetry further implies that A has no ϕ-component and the

rotation further reduces to

rotA ≡ −~eϕ
(
∂Ar
∂ξ

+
∂Az
∂r

)
. (A.7)

All second order derivatives in the co-moving frame in cylindric coordinates are
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where the last step assumed again that the vector valued functionA represents the vector

potential inside the bubble or the blow out and thus has no ϕ-component.
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